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Abstract

There is an increasing demand for images with higher spectral and spatial resolution
for applications in several domains such as health, environment, quality checking and
natural disasters monitoring. Hyperspectral imagery provides the necessary spectral
diversity to recover the composition of materials on site for applications such as the
detection of fires, anomalies, chemical agents, targets and changes in the scene. The
requirement for cheaper and more compact devices (e.g. to be embarked on low cost
satellites and airborne platform) which are capable of capturing this information has
led to the development of nonconventional innovative design concepts to overcome
the technological limitations of traditional cameras. Data acquired by such novel
imaging devices following the computational imaging paradigm are typically not
readily exploitable for the final application. A computational phase is hence needed
for extracting useful information from the raw acquisitions.

This thesis addresses this issue by setting up an inversion problem. The general
approach is to characterize the data fidelity term with a physical model, describing
the underlying optical transformations performed by the device. The challenge is
then shifted on the regularization step to properly characterize the features of the
quantities of interest and improve the accuracy of the estimation, which can be
tackled with variational techniques.

The analysis is applied on two novel concepts for nonconventional optical devices.
The first one is a novel compressed acquisition imaging system based on color filter
arrays, which embeds information from sensors with different spatial and spectral
characteristics into a single mosaiced product. As opposed to existing compressed
sensing based devices, the goal is not to recover the original uncompressed mul-
tiresolution sources, but instead to directly recover a synthetic fused image with
both high spatial and spectral resolutions. The proposed solution relies on the
total variation regularization and is the subject of a detailed analysis, comparing
its compressive power with straightforward software alternatives, evaluating its
performances as the amount of channels changes, and validating its efficiency in
comparison to state of the art methods when applied to classical fusion or mosaicing
algorithms separately. The second class of devices is based on the ImSPOC patent,
a design concept for a low finesse snapshot imaging spectrometer based on the
interferometry of Fabry-Pérot. Its ideal behaviour follows the principle of the Fourier
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Transform Spectroscopy, as its acquisition can be interpreted as a sampled version
of an interferogram, arranged across different sub-images distributed on the same
focal plane. After defining a physical model based on optical geometry, its validity
is evaluated over real acquisitions by setting up a Bayesian inference problem to
determine its parameters, with approaches based on maximum likelihood estimators,
regular-grid searches and nonlinear regression. A variety of preliminary tests are
then carried out on the inversion method, with approaches based on singular value
decomposition and sparse-inducing regularizers, accompanied by an analysis of their
robustness to model mismatches.

Résumé
Il existe une demande croissante d’images avec une résolution spectrale et spa-
tiale plus élevée pour des applications dans plusieurs domaines tels que la santé,
l’environnement, le contrôle qualité et la surveillance des catastrophes naturelles.
L’imagerie hyperspectrale fournit la diversité spectrale nécessaire pour récupérer
la composition des matériaux sur site pour des applications telles que la détection
d’incendies, d’anomalies, d’agents chimiques, de cibles et de changements de scène.
L’exigence de dispositifs moins chers et plus compacts (par exemple, pour être
embarqués sur des satellites à faible coût et une plateforme aéroportée) capables de
capturer ces informations a conduit au développement de concepts de conception
innovants non conventionnels pour surmonter les limitations technologiques des
caméras traditionnelles.

Les données acquises à partir de ces nouveaux dispositifs d’imagerie suivant le
paradigme d’imagerie informatique ne sont généralement pas facilement exploitables
pour l’application finale. Une phase de calcul est nécessaire pour extraire des
informations utiles des acquisitions brutes.

Cette thèse aborde cette question en mettant en place un problème d’inversion.
L’approche générale consiste à caractériser le terme de fidélité des données avec un
modèle physique, décrivant les transformations optiques sous-jacentes effectuées
par le dispositif. Le défi est ensuite déplacé vers l’étape de régularisation pour bien
caractériser les caractéristiques des quantités d’intérêt et améliorer la précision de
l’estimation, ce qui peut être abordé avec des techniques variationnelles. L’analyse est
appliquée à deux nouveaux concepts de dispositifs optiques non conventionnels.
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Le premier est un nouveau système d’imagerie d’acquisition compressé basé sur des
matrices de filtres de couleur, qui intègre des informations provenant de capteurs
avec différentes caractéristiques spatiales et spectrales dans un seul produit mosaïqué.
Contrairement aux dispositifs existants basés sur la détection compressée, l’objectif
n’est pas de récupérer les sources multirésolutions non compressées d’origine, mais
plutôt de récupérer directement une image fusionnée synthétique avec une résolu-
tion spatiale et spectrale élevée. La solution proposée repose sur la régularisation
de la variation totale et fait l’objet d’une analyse détaillée, comparant sa puissance
de compression avec des alternatives logicielles simples, évaluant ses performances
au fur et à mesure que le nombre de canaux change, et validant son efficacité par
rapport aux méthodes de l’état de l’art lorsque appliqué séparément aux algorithmes
classiques de fusion ou de mosaïquage. La deuxième classe d’appareils considérée
dans ce travail est basée sur le brevet ImSPOC, un concept de conception pour un
spectromètre imageur instantané de faible finesse basé sur l’interférométrie de Fabry-
Pérot. Son comportement idéal suit le principe de la spectroscopie à transformée de
Fourier, car son acquisition peut être interprétée comme une version échantillonnée
d’un interférogramme, disposée sur différentes sous-images réparties sur le même
plan focal. Après avoir défini un modèle physique basé sur la géométrie optique,
sa validité est évaluée sur des acquisitions réelles en mettant en place un prob-
lème d’inférence bayésienne pour déterminer ses paramètres, avec des approches
basées sur des estimateurs du maximum de vraisemblance, des recherches en grille
régulière et une régression non linéaire. Divers tests préliminaires sont ensuite
menés sur la méthode d’inversion, avec des approches basées sur la décomposition
en valeurs singulières et les régularisations creuses, accompagnées d’une analyse de
leur robustesse aux mésappariements de modèles.

Abstract intended to a wider audience
There is a continuous quest for finer resolution images. The limits of traditional
imaging systems (e.g., RGB cameras) are constantly pushed as applications demand
increasingly spatially and spectrally resolved images for better sensing the phenom-
ena of interest. Moreover, increasingly more compact and less expensive prototypes
are also in high demand, opening new applications when mounted on space or
airborne platforms.

Novel acquisition strategies, such as those obtained by "computational imaging
devices", attempt to answer these needs by overcoming the technical limitations of
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traditional imaging devices. This comes at the expenses of a heavier computational
phase. For example, the raw acquisitions of these nonconventional imaging systems
are often unintelligible to the final user and require a signal processing to extract
useful information.

This thesis addresses the development of signal and image processing approaches for
the analysis of acquisitions obtained by two nonconventional optical imaging systems.
The first explores a novel strategy for the compressed acquisition of a high spatial
resolution monochromatic image and a lower resolution multispectral image of the
same scene. The retrieval of a high spatial multispectral image of the scene requires
to perform a joint fusion and reconstruction of the raw acquisitions. The second
prototype is a novel snapshot Fourier Transform imaging spectrometer developed in
Grenoble based on a matrix of Fabry-Pérot interferometers. A hyperspectral image
of the scene can be obtained from the processing of the raw acquisitions which are
composed of a series of interferograms. This requires to perform a characterization
of the imaging device and an inversion of the raw acquisitions.

The computational techniques proposed in this manuscript rely on physical models
representing the acquisition process of the two imaging prototypes considered.
Image reconstruction is then addressed as an inverse problem and tackled with
variational techniques.

Résumé destiné à un public plus large
Il y a une quête continue pour des images à résolution plus fine. Les limites des
systèmes d’imagerie traditionnels (par exemple, les caméras RVB) sont constamment
repoussées car les applications exigent de plus en plus des images résolues spatiale-
ment et spectralement pour mieux détecter les phénomènes d’intérêt. De plus, des
prototypes de plus en plus compacts et moins chers sont également très demandés,
ouvrant de nouvelles applications lorsqu’ils sont montés sur des plateformes dans
l’espace ou aéroportées.

Des nouvelles stratégies d’acquisition, telles que celles obtenues par les dispositifs
baseés su la co-conception computationelle/optique, tentent de répondre à ces
besoins en surmontant les limitations techniques des dispositifs d’imagerie tradi-
tionnels. Cela se fait au prix d’une phase de calcul plus lourde. Par exemple, les
acquisitions brutes de ces systèmes d’imagerie non conventionnels sont souvent
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inintelligibles pour l’utilisateur final et nécessitent un traitement du signal pour en
extraire des informations utiles.

Cette thèse porte sur le développement d’approches de traitement du signal et
de l’image pour l’analyse des acquisitions obtenues par deux systèmes d’imagerie
optique non conventionnels. La première explore une nouvelle stratégie pour
l’acquisition compressée d’une image monochromatique à haute résolution spatiale
et d’une image multispectrale à plus faible résolution de la même scène. La récupéra-
tion d’une image multispectrale spatiale élevée de la scène nécessite de réaliser
une fusion et une reconstruction conjointes des acquisitions brutes. Le deuxième
prototype est un nouveau spectromètre imageur instantané à transformée de Fourier
développé à Grenoble à partir d’une matrice d’interféromètres de Fabry-Pérot. Une
image hyperspectrale de la scène peut être obtenue à partir du traitement des acqui-
sitions brutes qui sont composées d’une série de interférogrammes. Cela nécessite de
réaliser une caractérisation de l’appareil d’imagerie et une inversion des acquisitions
brutes.

Les techniques de calcul proposées dans ce manuscrit reposent sur des modèles
physiques représentant le processus d’acquisition des deux prototypes d’imagerie
considérés. La reconstruction d’images est ensuite abordée comme un problème
inverse et abordée avec des techniques variationnelles.
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Introduction 1
1.1 General overview

In recent years, both the industry and the scientific community have shown increas-
ing interest for high-quality images that complement the information with finely
sampled spectra, which allow to extract features of a given portion of a scene that
were previously unavailable with traditional cameras.

Hyperspectral imaging (HSI) addresses these demands by measuring the light spec-
trum in a contiguous set of wavelengths, thus providing novel information for the
analysis of the scene, which includes change detection, identification of materials,
chemical imaging, vegetation monitoring [52].

The target of making HSI cheaper, more compact, easy to interpret and readily
available for the final user is an open goal in many fields of research [42, 99].

In this context, computational imaging is a quickly growing field that provides
a novel approach to face such issues; this domain encompasses all digital image
capture and processing techniques that combine computation and acquisitions from
optical imaging devices.

Devices designed following this principle exploit the advantages of nonconventional
cutting-edge technologies to reach better performances with respect to traditional
cameras, e.g. in terms of signal to noise ratio (SNR), resolution, compactness, and
cost. Unfortunately, the acquired raw products are most of the times not intelligible
for the final user, leaving the bulk of the work to the algorithmic side to recover
the quantities of interest. These quantities are described, in general terms, by a
synthetic datacube which emulates an acquisition taken by a standard HSI device.

This thesis focuses on the analysis of nonconventional optical devices from the per-
spective of the software engineer, viewed under the framework of inverse problems.
In principle, the pipeline of operations of this study can be separated in two steps.
In the characterization phase, the task is reduced to develop a physical model that
is able to accurately model the optical transformations performed by the device. In
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the inversion phase, the target is to recover a robust estimation of the desired final
product.

While computational imaging systems cover a broad range of applications [143],
our analysis will focus on novel concepts of snapshot optical devices: the multires-
olution color filter array acquisition (MRCA), an original compressed acquisition
device based on color filter arrays (CFAs) capable of capturing multi-modal re-
motely sensed data at different resolutions [187], and the image spectrometer on
chip (ImSPOC) [104], a snapshot image spectrometer based on Fabry-Pérot (FP)
interferometry [124].

The MRCA is a proposed novel approach for a compressed acquisition system of
images at different resolutions; the measured samples constitute a partial repre-
sentation of the scene, which demands both a superresolution and demosaicing to
reconstruct the quantities of interest, which we address through variational tech-
niques. The target of this thesis is a proof of concept of the feasibility of the novel
design, for which we set up a very versatile mathematical model, which jointly
deals with the problem of fusion and reconstruction, which is applicable to any
filter array pattern over the focal plane. This joint inversion algorithm explores
state-of-the-art inversion techniques based on total variation (TV) regularization,
and its performances are compared to the results of classic fusion and demosaicing
algorithms, applied separately and in cascade to one another.

For the ImSPOC project, which relies on real prototypes, the target is to provide a
solid mathematical description of the physical operations performed by the device
and set up a solid formulation of the inversion problem based on it. The pipeline of
the data processing is then described in detail, providing some baseline results for
each of the operations that characterize the device. For this device, the description
of the model can be fine-tuned by analyzing real acquisitions in well-known setups;
the inversion is approached with different techniques, favoring a low computational
complexity as they should eventually be run on board of embedded platforms.

1.2 Context

This thesis is aimed at providing novel algorithmic approaches for the treatment
of acquisitions taken with nonconventional cameras. Their design, in compari-
son to standard devices (e.g. RGB cameras), is aimed at surpassing the current
technological limitations, in terms of either resolution, size, cost, or storage power.

2 Chapter 1 Introduction



The scope of this work is aimed at modeling prototypes for compact, low-cost
nonconventional hyperspectral (HS) imaging devices, and at reconstructing the
desired products from their raw acquisitions.

In this chapter, we provide a quick introduction to the related fields of applicability
of miniaturized snapshot devices, able to be embarked on low-cost satellites or
airborne vehicles. We also describe the characteristics of HS images in Section 1.2.1,
presenting the related applications and acquisition methods. Computational imag-
ing involves a series of conceptual and practical optical devices designs that aim
to indirectly measure those quantities, addressing their reconstruction with an in-
creased computational effort. This is the topic of Section 1.2.2. Finally, a brief
very high level description and classification of the mathematical models which are
employed in this work are the topic of Section 1.2.3.

1.2.1 Hyperspectral imaging (HSI)

Image representation

In the context of data processing, a natural image can be seen as an ordered
collection of intensity values, which contains both some spatial information, e.g. the
position of a determined object on the scene, and some spectral information, e.g.
its color component. The amount Np of bits used to describe these intensity levels
is known as bit depth (or sometimes radiometric resolution, since it is typically
related to the sensitivity of the radiance), so that each pixel is described by an integer
in the range

[
0, ... , 2Np − 1

]
.

In its natural representation, a digital image is represented by a 3-way array,
denoted in this thesis by the tensor notation U . A letter contained as superscript in
square brackets specifies which kind of image we are considering.

I.e., the label x is used in this thesis to define a desired image product and the
associated tensor is denoted by U [x] ∈ RNi1×Ni2×Nb , where Ni1 and Ni2 are the
amount of column and row pixels, respectively, and Nb is the amount of channels
or bands.

A visual representation of U [x] is given in Fig. 1.1a. Its bands are color coded as red
green blue (RGB) channels, although, depending on the technology, the spectral
information may be also associated with other wavelengths, e.g. near infrared (NIR)
or ultraviolet (UV).
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In Chapter 3 and 4, we also employ a different representation of the image, which
we define as lexicographic order. In this representation, the image is reshaped as a
2-dimensional matrix, so that the first and second dimensions represent the spatial
and spectral information, respectively. This is denoted by a bold uppercase letter,
corresponding to associated label. E.g., U [x] can be rewritten in lexicographic order
as X ∈ RNi×Nb where Ni = Ni1Ni2 , as shown in Fig. 1.1d. This reshaping operation
is denoted by X = matr

(
U [x]

)
.

With this formalism, the k-th column x:k of X contains the information associated
with the k-th channel (Fig. 1.1e), while the i-th row is the spectrum associated with
the i-th pixel (Fig. 1.1c).

In Chapter 6, the 4-dimensional array U [x] ∈ RNi1×Ni2×Nb×Na denotes a set of Na

images captured at different times. In that context, it is convenient to define a
permuted lexicographic order X ∈ RNb×Na×Ni . With this representation, the i-th
frontal slice X::i is a list of Na spectra, ordered along the columns and relative to the
i-th pixel. This operation is denoted by X = reshape(U [x]). More details are given
in Section 6.1.1.

Ni1

Nb

Ni2

(a) 3-way array
representation U [x]

Ni1

Ni2

(b) k-th channel U::k

Nb

(c) Lexicographic i-th
spectrum xi:

Nb

Ni = Ni1Ni2

(d) Lexicographic order

X = matr
(

U [x]
)

Ni = Ni1Ni2

(e) Lexicographic
k-th channel

x:k

Fig. 1.1. Different representations of an image with Ni1 column and Ni2 row pixels, for
which Nb channels are available. Each channel is represented with a different
color hue. Other then the natural representation (Fig. 1.1a), we also give its
representation in lexicographic order (Fig. 1.1d). The remaining figures show
various slicing operations.
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Spectral and spatial resolution

For the qualitative assessment of image products, especially in the field of remote
sensing, it is a common practice to classify them in terms of their resolution in the
spatial and spectral domains.

Formally, we define:

• Spatial resolution: The ability of the imaging system to separate objects
spatially adjacent in the target scene and resolve them as distinct. This
characteristic usually depends on the spatial sampling rate (e.g., the number
of pixels), the type and quality of the optical system. Some examples of
factor that may factor in the quality of the systems include its magnification
power and its point spread function (PSF), which describes the response of
the imaging system to a point source.

• Spectral resolution or spectral diversity: The ability to resolve different
spectra as distinct. This depends on the number of bands and their full width
at half maximum (FWHM).

A visual representation of these definitions are provided in Fig. 1.2 and 1.3. An addi-
tional property, radiometric resolution, denotes the available amount of intensity
levels per pixel, and is expressed in units of bits. The described properties allow to
link the image to the characteristics of the scene.

(a) Low spatial resolution (b) High spatial resolution

Source: [216]

Fig. 1.2. Visual representation of images acquired with different spatial resolutions. In the
high spatial resolution acquisition, it is possible to distinguish more details on the
scene.

The fusion problem, which will be detailed in sec. 3.5, is a good example to show
the utility of these concepts. This problem consists in combining multimodal data
with different resolutions in order to generate a single synthetic image with the best
spectral and spatial resolution available.
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(a) 4-band
datacube

(b) Low resolution
Spectrum

(c) Hypercube (d) High resolution
spectrum

Source: Smart Vision Lights [@11]

Fig. 1.3. Visual representation of acquisitions with different spectral resolution. The de-
picted spectra refer to a single pixel of their respective datacube.

Acquisition technologies

We define as hypercube a data collection of both spectral and spatial information
related to the scene under target; the capture of a hypercube is the main task of HS
imaging devices.

It is possible to distinguish between three different acquisition techniques [28] for
the scanning of the scene:

• Spatial scanning: which is performed on a pixel-by-pixel basis. This config-
uration is typical of spectrometers whose field of view is limited to a fixed
direction, which are specialized in resolving very finely sampled spectra and
are consequently able to provide very high spectral resolution. To acquire a full
hypercube, the target image is scanned sequentially by varying the orientation
of the instrument with respect to the scene, which results in relatively slow
acquisition times. Different technologies may be employed to distinguish the
spectral components of the scene, such as: 1) Elements of spectral dispersion
(e.g. prisms), 2) Static filters on the detectors, 3) Linear variable filters.

• Spectral scanning: which is specialized in resolving very fine spatial detail
on the scene. The 2-dimensional scene is recorded at a fixed angle of view
and then scanned sequentially with filters with different bandwidths. The
amount of acquisitions defines the spectral diversity that the user wants to
achieve; this generally results in better performances than equivalent larger,
more expensive and more complex instantaneous detectors, but it is really
dependant on changes in the scene. These devices typically exploit one of the
following two technologies: 1) interferometry (Fig. 1.4a), 2) tunable filters.
In terms of spectral resolution, better performance is typically achieved in
interferometry-based devices compared to tunable filters.
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• Snapshot or instant imaging: They involve a simultaneous acquisition of
both the spatial and spectral component of the hypercube. In this configura-
tion, there is no need for any scanning, which greatly enhances the speed of
acquisition and reduces the temporal sensitivity [107, 108]. On the other hand,
the quality of the image is generally degraded and the amount of available
bands is limited to around 30, with the complexity of the system increasing
with the number of desired channels. Two of the most widespread technologies
for snapshot systems are: a) based on dispersive elements or b) based on a
mosaic of filters (such as multispectral filter array (MSFA)) with different
spectral responses for each detector. The latter principle is commonly used for
RGB cameras (Fig. 1.4b).

In the context of satellite platforms, where the flight direction is defined as along-
track direction and the perpendicular direction as across-track direction, two
main scanning techniques are available.

In the whisk broom scanning, the detection system focuses on a subsection of the
swath width, so that its whole length is sequentially scanned in the across-track
direction, while in the push broom scanning, each line of sensor statically captures
the whole swath sequentially as it moves in the along-track direction.

Applications

HS imaging is a field of research that studies the techniques aimed at capturing a
scene with the highest spectral diversity. The acquisitions typically involve a few
dozens to hundred channels, each providing information over a different set of
wavelengths. They typically cover the domain of visible (VIS), NIR, infrared (IR) or
UV, with either narrow or wide bandwidths, depending on the application [42, 132].
The availability of such diversity, compared to classical RGB cameras [146], allows
to discriminate the chemical composition of the components of the scene through its
spectral signature, to either discriminate or classify them. [132]

Remote sensing makes vast use of this kind of imagery; the currently commercially
available high performance HS cameras are generally bulky (more than 15 kg) and
expensive (from 50 to 500 thousands of euros for Telops Hypercam cameras) [28].

The spread of such systems are thus still limited in many real life applications,
especially if the aim is to embark them over airplanes/drones. This situation has
stemmed, in the last 20 years, an increased interest in developing HS detectors
which employ nonconventional technologies [194, 208], so that a wide range of
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alternatives is currently available, with different specifics with regard to the desired
spectral, spatial or temporal resolution.

HS imaging enables a wide variety of applications [132] and its scope spans across
multiple domains which include:

• Industry: Their main application is for non-invasive monitoring of products,
such as in the case of automated waste recycling [207, 151]. Additionally,
the technology has been efficiently employed for agricultural [74, 37] and
pharmaceutical quality control [199]

• Agriculture and environment: Historically, these domains were the first to
adopt the advantages of HS imagery. Miniaturized devices would allow to
both enhance the precision of the measurements and to allow for multi-view
acquisitions through the employment of drones. These setups can be employed
for environment monitoring [2, 23], gas detection [135] or cultivation
monitoring [220]. The detection of pollution (e.g. asbestos in the domain
of the IR [27])) is also a prominent field of application. The reader can also
consult the related works [17, 16] for a review on the most recent applications
in remote sensing.

• Health: HS imagery has also emerged in the medical domain for the diag-
nosis and monitoring of pathologies [37, 138], other than as support for
surgery [28].

Source: ABB Ltd [@1]

(a) Schematized principle of the Fourier transform spectrom-
eter (FTS)

Source: IMEC [@6]

(b) MSFA pattern over a matrix of de-
tectors

Fig. 1.4. Two different technologies for snapshot acquisitions, requiring ad-hoc algorithms
to recover user-ready HS products [28].
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1.2.2 Computational imaging

In recent years, the increasing availability of computing power and the recent
advances in terms of algorithms opened novel possibilities for the design of more
sophisticated optical systems, as computational-intensive methods could be exploited
for the recovery of the images of interest.

As imaging acquisition systems are physically limited by the current rate of tra-
ditional technological growth, computational imaging aims at overcoming those
limitations for increased precision, focusing on cutting-edge data processing proto-
cols of measurements taken with nonconventional approaches. As some physical
phenomena are inherently coded, their raw acquisitions, which are theoretically
able to provide better performances in terms of either SNR, resolution or some other
practical advantage (cost, weight, etc.), require a post-processing to transfer them
to the desired domain.

This transfer of domain can sometimes be also exploited to retrieve information
from the measurements that would otherwise be unavailable or by obtaining higher
performances on the final acquisition (e.g. better resolution or lower SNR).

Computational imaging techniques are constantly gaining more attention in the field
of consumer cameras, cell phone cameras, vehicle camera systems, surveillance, med-
ical imaging, remote sensing, human computer interaction [154]. In remote sensing
in particular, the synthetic aperture radar (SAR) systems are a prominent example,
as the synthesis of the antennas of the arrays is performed with computational
techniques [81].

A very closely related field, known as optical co-design (or sometimes with its
French definition "co-conception") has the additional goal to design both the optical
components and the data processing simultaneously. The mutual interaction across
the two point of view can at the same time simplify the inversion algorithms and
compensate eventual flaws due to the intrinsic optical properties.

We do not aim in this section to provide a detailed list of researches and works
related to computational imaging, which spans across various fields; the associated
approaches also vary wildy in relation to the given capturing device. For a review
of some of the applicable fields of computational imaging, which include pinhole
cameras and more, one can check the work of Mait et al. [154]; we just list here
a couple of examples that are relevant to the devices that are investigated in this
work:
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• Compressed sensing: According to the theory of compressed sensing imag-
ing [69], it is possible to capture all the relevant desired information from
sparse signals, reducing the amount of necessary measurements which would
be usually needed in traditional cameras. In this context, the desired product
is only available through partial measurements, according to a defined encod-
ing system, requiring an ad hoc computational analysis to infer the missing
information. Various encoding approaches have been proposed, so that the
compressive measurements contains the least redundancy with respect to the
full spectral and spatial content of the scene from the acquisition. I.e., one
of such compressed acquisition systems is the compressive coded aperture
spectral imaging (CASSI) [14], a device employing coded aperture spatial
encoding and spectral dispersion to encode the information over a shared focal
plane.

• Fourier transform spectrometers (FTSs): The FTS describes a group of tech-
niques aimed at the estimation of spectra through the detection of radiation
of coherent sources. This class includes instruments for optical spectroscopy,
IR spectroscopy (widespread in chemistry and known as Fourier transform
infrared spectroscopy (FTIR)), nuclear and magnetic resonances, mass spec-
trometers [186]. Perhaps the most known example of such devices is the
Michelson interferometer, a device able to split the incident light into two
interfering beams and combine them over a common detector; the acquisition
obtained by varying the path difference between the two beams, known as
interferogram, can be interpreted, under particular constraints, as the Fourier
transform (FT) of the spectrum, hence the name. The processing of the acqui-
sitions is particularly well suited for computational imaging strategies, as a
deeper knowledge of the model allows a more precise reconstruction of the
spectrum and the image.

1.2.3 Mathematical modeling of the imaging process

The main approach that we employ for the analysis of nonconventional devices
consists of constructing a physical model of the optical system, able to link the
quantities of interest to the readout of the instrument under test.

The final goal is to reconstruct a digital representation of spectra, with a user-
specified target spectral resolution. Each spectrum may be associated their direction
of incidence of the incoming radiance, forming a multiband image that provides the
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full characterization of the scene. For the sake of exposition, the spectra in this set
are arranged over columns of a matrix X.

In a snapshot-type acquisition, the observation is given by a set of measurements of
a group of sensors, typically determined by the photo-detectors over a focal plane
array (FPA), which we can temporarily denote with a column vector y. The snapshot
characteristic of the investigated devices implies that all the information about the
quantities to reconstruct are obtained at a given instant, so there is no need to
consider any acquisition at different time.

In general terms, we can now describe the optical transformation that characterizes
the device with a general purpose relationship, such as y = A(X). No particular
constraint is imposed at this point on the structure of A, other than describing the
imaging process.

In this framework, we are interested in three different scenarios:

• Simulation (y[sim] = A(X)): In the design phase for a certain novel technol-
ogy, before the prototypes are available or if they are not fully finalized, it is
interesting to verify the viability of given components, parameters and operat-
ing conditions. For this purpose, it is interesting to generate some simulated
responses y[sim], based on a given model of the acquisition system A and a set
of known realistic inputs X.

• Model characterization (y = A[β̂](X)): Its target is to estimate the properties
of the acquisition system A(·) ≡ A[β](·) under test. The latter is described
as function of a discrete set of parameters β, of which we aim to find an
estimation β̂, given a set of example pairs of X and y. I.e., if A is described
by a linear operator, the parameters to infer may be the coefficients of the
characteristic matrix.

In the context of machine learning this problem is commonly known as super-
vised learning, yet considering the small cardinality of available experimental
data, this interpretation will be considered out of the scope of this thesis. In-
stead, the main approach is based on the so-called geometrical optics [202].
With this framework, the light rays within the optical system are assumed to
propagate in straight lines in homogeneous media, while bending and splitting
occurs only at the interface between dissimilar media. The energetic balance
between the incident and the detected rays allows to build a theoretical model
which links the readout of the instrument to the directional input spectrum
that we want to reconstruct.
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• Inversion (X̂ s.t. y ≈ A(X̂)): If y and A are given, the problem reduces to
estimate the spectra from the measurements. This problem, if approached as
a mathematical inversion of the deterministic part of the model, is generally
ill-posed. In Hadamard’s sense [106], this means the reconstruction is either
not unique or does not vary continuously with the observation. This demands
to impose some regularization, or in other words, to impose some prior
information on the solution to compensate for such drawbacks.

When we analyse a novel acquisition prototype, where no or very few real data are
available, the robustness of the inversion protocol may only be tested by imposing
a model for the expected behaviour of the system and simulating an acquisition,
given a series of realistic inputs. As soon as a prototype is available, the mismatches
with the real behaviour of the system can then be tested with an ad hoc calibration
to refine the original model; this procedure can be iterated until a certain targeted
accuracy is reached.

1.3 Investigated devices

The proposed approach for the inversion of acquisitions to reconstruct a HS virtual
image was applied to two nonconventional design concept, which we denote with
the acronyms MRCA and ImSPOC. This section provides a brief overview of these
two optical devices, describing the specific challenges which are associated with the
data processing of their raw acquisitions.

1.3.1 Multiresolution color filter array acquisition (MRCA)

The MRCA defines an acquisition strategy based on compressed acquisitions of
multiresolution remotely sensed data. The envisioned design is defined by an array
of mosaiced sensors with different characteristics, following the same principle of
CFA cameras.

More specifically, the focal plane is composed of a mosaic of sensors with different
spatial and spectral characteristics, disposed in a user-defined pattern (Fig. 1.5a);
such sensors provide a partial knowledge of the characteristic of the scene, that the
data processing is in charge to extend to the whole scene [187]. An example of such
acquisition is shown in Fig. 1.5b, which shows a monochromatic product that we
aim to process to ideally recover the information of the scene of Fig. 1.5c.
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Two main challenges are associated with this novel concept. Firstly, we need to
setup a framework to recover the desired products that takes into account the
correlation between the information provided by each of the readouts. For the case
of sensors with the same characteristics, this problem is known in the literature as
demosaicking [145, 134]. The case under study additionally involves the fusion
of information with different characteristics; if two separate acquisitions were
available on the whole scene, this problem is commonly known in the literature
as pansharpening [224, 147], which is a particular instance of data fusion. An
additional challenge is given by the choice of the distribution of the sensors over the
focal plane. This pattern has to provide the least amount of redundant information,
to facilitate the process of inversion.
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(a) Example sensor pattern (b) MRCA compressed
acquisition

(c) Ideal reconstruction product

Fig. 1.5. Visual representation of the MRCA concept. In Fig. 1.5a, an example disposition of
the sensors over the focal plane, with the P label referring to wideband monochro-
matic sensors, and R,G, and B referring to CFA with a RGB spectral response. The
compressed acquisition (Fig. 1.5b) can be seen as a degraded resolution mosaiced
version of the ideal acquisition to reconstruct (Fig. 1.5c).

1.3.2 Image spectrometer on chip (ImSPOC)

The concept of ImSPOC [104] defines a snapshot imaging spectrometer based on
the interferometry of Fabry-Pérot (FP). A set of different FP etalons with different
thickness is disposed as a matrix in a staircase shaped structure. This structure
allows to capture multiple simultaneous acquisitions at once by focusing the re-
sponse of each interferometer on separated portions of the FPA. This separation
is obtained through an array of small lenses, one for each interferometer, which
leads to a division of aperture. A possible implementation of this design is shown in
Fig. 1.6a. The different replicas of the scene are commonly defined as subimages
(or, equivalently, as thumbnails).
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If we fix the angle of incidence, it is possible to identify an associated set of readings
across the different subimages (Fig. 1.6b), which is a sampled version of a continuous
interferogram (Fig. 1.6c). According to the principle of FTSs, the interferogram can
be inverted to reconstruct the associated spectrum (Fig. 1.6d).

This project is currently in its prototyping stage, and a series of test devices based
on this concept were recently made available for testing.

Various challenges are associated with the reconstruction of the input spectra:

• It is necessary to rigorously define a mathematical model that describes the
optical transformations operated by the device, attempting to include all the
possible causes of nonideality, to increase the precision of the reconstruction;

• The different subimages are usually not perfectly co-registered, so a proper
procedure to align them is required to have consistent samples across different
representations of the scene;

• The expression of the transfer function which describes the system cannot
be based just on the physical structure of the system under test, as there is a
mismatch between the design and the manufacture stage. This mismatch has
to be properly compensated in the characterization stage;

• The inversion protocols have to be robust enough to adapt to deviations of the
real behaviour of the system from our calibrated transfer model.
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Source: [76]

(a) ImSPOC structure
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(b) Example of acquisition

(c) Extracted interferogram (d) Ideal spectrum to reconstruct

Fig. 1.6. Visual representation of the ImSPOC acquisition principle. In Fig. 1.6a, an exam-
ple for a prototype structure of a device based on the ImSPOC concept, together
with an associated acquisition (Fig. 1.6b). The acquisition shows the different
subimages associated with the same scene, framed within green rectangles. If we
isolate the red spots related to a given angle of incidence and arrange them as a
sequential array, we obtain a sampled version of the interferogram (Fig. 1.6c). This
graph can be inverted to obtain the desired input spectrum associated with the
incoming radiance (Fig. 1.6d)). The spectrum is expressed in terms of wavenum-
bers (reciprocal of wavelengths), while the interferogram in terms of optical path
difference (OPD), which is proportional to the interferometers’ thicknesses.
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1.4 Manuscript structure

Each chapter of this manuscript is self contained, and can be read independently
from the other ones.

Chapter 2 is a brief introduction of the inversion framework employed in this work,
Chapter 3 describes a set of operations to deal with remotely sensed images with
different resolutions.

Chapter 4 introduces the novel concept of MRCA, a compressed acquisition system
based on CFAs that simultaneously captures scene samples with different resolution,
including a detailed analysis of the joint demosaic and fusion of the raw data, based
on TV regularization, aimed at generating a synthetic image that simultaneously
features high spatial and spectral resolution. Chapter 5 provides some background
on optical concepts to develop an encompassing model that describes the operating
principle of ImSPOC. Chapter 6 is devoted to the pipeline of processes for the
treatment of raw acquisitions with the ImSPOC device, involving the registration
of subimages, the inference of the parameter of the transfer model and some
preliminary results for the interferogram inversion.

The manuscript can also be read from a thematic point of view. If the reader is
more interested in inversion problems, chapters 2, 4, and 6 provide a theoretical
and practical overview of their application in image processing. If the reader is
instead more interested in how to model an optical system, chapters 4 and 5 offer
an in depth explanation on how to describe the optical transformation of the two
prototypes under test. Finally, if the reader wants an analysis from the point of
view of the fusion of multimodal data, chapters 3 and 4 provide an overview of the
standard techniques, together with an application to the MRCA concept.

1.5 Scientific contributions

1.5.1 Original contributions of this PhD

Given the multidisciplinary nature of this thesis, it was decided to provide a suffi-
ciently exhaustive introduction of the concepts which are discussed. Nonetheless,
for the reader’s convenience, we deem appropriate to provide a list the original
contributions of this manuscript. The section where those original contributions are
detailed is also indicated below.
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The original contribution related to the MRCA include:

• the MRCA concept itself, which describes a novel compression acquisition for
multiresolution sensors, inspired by the CFA [176] (Section 4.2);

• a Bayesian formulation of the posteriori framework for the inversion of said
compressed acquisitions, which jointly addresses the problem of fusion and
demosaicing of multiresolution data by exploiting state-of-the-art variational
techniques (Section 4.4);

• a comparison of the quality of the products generated by a selection of software
image compression algorithms and of the reconstructed acquisition of coded
aperture based compressed acquisition imaging systems, such as the CASSI
and the MRCA (Section 4.6.3);

• a comparison between the reconstruction results of our proposed joint ap-
proach and of an approach based on classic fusion and demosaicing techniques,
applied separately in cascade (Section 4.6.4);

• a preliminary analysis of the combined filter array patterns (Section 4.3)
developed ad hoc for the proposed device, analyzing the effectiveness of
periodic and pseudo-random designs (Section 4.6.6);

• preliminary considerations on the description of a selection of demosaic algo-
rithms with the framework of classic pansharpening techniques (Section 3.7).

The original contributions linked to the ImSPOC concept include:

• a detailed physical model that describes the optical transformations of the
device, based on Airy’s distribution (Section 5.5);

• three novel algorithms for the estimation of the center points of subimages
over a focal plane, applicable both to point and extended sources, based on
mathematical morphology and nonlinear regression (Section 6.2);

• a proposed procedure for the coregistration of the sub-images, based on a point
mapping protocol. The procedure is based on a point mapping calibration,
measuring the shifts across different sub-images, and applying a polynomial
geometric transformation and a regular grid resampling to synchronize their
geometry with respect to a reference one (Section 6.3);

• the definition of three different novel approaches for the characterization
of the parameters of the acquisition system, based on maximum likelihood,
exhaustive search and a nonlinear regression, comparing the accuracy of the
estimated parameters in the case of real calibration datasets taken with 3
different prototypes (Section 6.4);

• a comparison of single pixel inversion techniques based on singular value
decomposition (SVD) and least absolute shrinkage and selection operator
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(LASSO) frameworks for the reconstruction of interferograms generated by
solar spectra, with an analysis of the degradation of the products in the
case of parametric mismatches between the acquisition system and its model
(Section 6.5).

For all the contributions, we developed a toolbox of algorithms, which we plan to
release to the scientific community, in order to support the reproducibility of the
results and any further research development.

1.5.2 Publications

Part of the content of this PhD manuscript has been presented in the following
publications:

• "Pansharpening of images acquired with color filter arrays" [189];
• "Image Fusion and Reconstruction of Compressed Data: a Joint Approach" [187];
• "Analysis of masks for compressed acquisitions in variational-based pansharp-

ening" [188];
• "Gas characterization based on a snapshot interferometric imaging spectrome-

ter" [59];
• "Characterization of a Snapshot Fourier Transform Imaging Spectrometer

Based on an Array of Fabry-Perot Interferometers" [190].

1.5.3 Other contributions

Some contributions developed during the course of this PhD were not included in
this manuscript, as they slightly deviate from the topics that are discussed in this
dissertation. Those include:

• a collaboration with doctor Bouthayna Msellmi, of the University of Manouba,
on the topic of sub-pixel mapping. The published works, related to this
subject, propose to solve the problem with two novel regularization approaches
based on the isotropic total variation (ITV) [173] and on sparse dictionary
decomposition [174];

• an ongoing collaboration with doctor Aneline Dolet and professor Didier Voisin,
of the Université de Grenoble Alpes, France, in the context of project ImSPOC-
ultraviolet (ImSPOC-UV) (Appendix A.2), employing a different strategy to
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process the data acquired with the ImSPOC devices, based on the differential
optical absorption spectroscopy (DOAS) [60, 61];

• an ongoing collaboration with doctor El Mehdi Abdali and professor Stéphane
Mancini of the Université de Grenoble Alpes, France, also in the context
of the ImSPOC-UV, aimed at the implementation of the proposed inversion
algorithms on a field programmable gate arrays (FPGAs);

• a collaboration in a Precursory Research for Embryonic Science and Technology
(PRESTO) project [@14], directed by professor Kuniaki Uto of the Tokyo
Institute of Technology, aimed at the estimation of crop vitality through the
analysis of aerial acquisitions. This project led to a 3-month visit to Japan,
where I participated in campaigns for in situ acquisitions of images for precision
agriculture with unmanned aerial vehicles (UAVs).
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Inverse problems theory 2
Signal reconstruction constitutes one of the most challenging problems related to
data processing for computational imaging systems.

As the operating principle of nonconventional imaging devices can be seen as a set
of optical transformations up to the final measurements, those may in fact generally
span in a domain other than the physical quantity of interest.

Mathematically, this process of estimating the quantities that act as causal factor
for the observations is formally known as an inverse problem [26], which can be
addressed as a discrete optimization problem, a field of research that investigates
methods for the choice of the best solution among all the feasible ones [29].

An inverse problem is typically solved by imposing an objective function to minimize,
which, in the formulation of Tikhonov [170], can be separated into a weighted linear
combination of two metrics: a data fidelity term and a nonnegative functional that
acts as regularization. These quantities can also be respectively interpreted, in the
framework of a Bayesian inference, as a maximum likelihood (ML) estimation and
a nonnegative functional that models the prior information, which in this thesis is
imposed through both sparsity-inducing and variational regularizers.

This chapter provides a brief introduction to the abstract concepts of inversion
problems, decoupled from any application. In particular, Section 2.1 introduces the
general framework of inverse problems, Section 2.2 describes some regularization
approaches that address the ill-posedness of the problem and Section 2.3 briefly
describes some widespread algorithms for their solution.

2.1 The inversion framework

In general terms, an inverse problem consists in estimating a set of quantities of
interest that have a causal relationship with given observations [26, 112]. The term
inversion stems from the intention to produce the inverse result of a given forward
model of a physical phenomenon, which in our context defines the acquisition
system.
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This forward model is in general a stochastic process, where the input variables
to infer are realizations of a random variable (r.v.). These variables are indirectly
measured through a series of observations and physically obtained by a series of
complex transformations in a typically noisy environment.

The transformations are partially known to the user through a direct model, whose
expression may be obtained by describing the underlying physical phenomena, either
through a data-assisted calibration or with data-driven models (such as deep neural
networks) [15].

More formally, in its standard stochastic formulation, the goal of an inverse problem
is to obtain an estimation x̂ ∈ Ex of the desired quantities x, captured through a set
of indirectly measured data y ∈ Ey, modeled as:

y = A(x) + e . (2.1.1)

Here, e is a particular realization of additive noise, Ex and Ey are respectively the
desired product and observation spaces. A(·) : Ex → Ey is an operator that describes
a direct model, which we assumed to be known. This relationship is also summarized
in Fig. 2.1.

Traditionally, inverse problems can be analyzed both with a deterministic and
statistical interpretation and many of the results of each of the two framework can
find a correspondence in the other domain. Section 2.1.1 and 2.1.2 provide a brief
introduction to these two interpretations.

Desired quantities
x

Stochastic
transfer process

Direct model
A(·)

Observations
y

Inversion algorithmEstimated product
x̂

Model characterization

Fig. 2.1. Block diagram representation of a direct and an inverse problem. In the forward
sense, an unknown realization of the input is available to the user as a series of
indirect measurements. In the inverse sense, the input data has to be inferred
from such observations, given a deterministic model that describes the direct
transformation.
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2.1.1 Ill-posed problems

To avoid ambiguities with the stochastic model, we denote with y[sim] a "simulated"
observation, obtained as a deterministic component of eq. (2.1.1):

y[sim] = A(x) . (2.1.2)

The problem of generating a vector y[sim] that most closely matches the true instru-
ment acquisitions, given a known input x, is commonly known as direct problem
or forward problem.

Under the formalism proposed by Hadamard [106], an inversion operator GA :
EG ⊆ Ey → Ex is defined as a series of procedures whose goal is to find an estimation
of the input x, given y[sim], whose respective domains Ex and Ey are generic Banach
spaces with norms ‖ · ‖x and ‖ · ‖y, respectively.

GA specifically defines a well-posed problem if:

• a solution exists;
• the solution is unique;
• its solution is stable to perturbations of y[sim], i.e. GA is defined on all Ey and

is continuous.

More specifically, if the problem is well-posed, let the observation yδ̌ be known
within a given error 1 δ̌, or in other words that its distance ‖yδ̌ − y‖y ≤ δ̌, then the
candidate solution GA(yδ̌) exists and verifies the condition:

lim
δ̌→0
‖GA(yδ̌)− x‖x = 0 . (2.1.3)

Conversely, if any of Hadamard conditions is not verified, the problem is ill-posed.
This is the case of many real life problems, as the direct model is typically a physical
phenomenon defined in a continuous space, while the observations are limited in
number.

The mathematical formalism of Tikhonov [219] shows that, if GA is ill-posed, it is
sometimes possible to generate new operators that are well-posed, which a Cauchy
convergence to a mapping of GA if the observation is not in the domain of GA.

1In our thesis we are concerned with both the domain of inverse problems and of optics. In the
standard literature of both of these domains, it is common practice to employ Greek letters to
define certain standard variables. To distinguish between the two domains, we add a ·̌ symbol
over Greek letters to denote variables related to inverse problems, in comparison with those of the
domain of optics, which are kept without. E.g., the value λ̌ denotes a regularization parameter in
the inversion domain, while λ denotes a wavelength in the domain of optics.
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In this case GA is called regularizable and the novel mapping functional is called
regularizing operator.

A well-posed problem does not however assure that the numerical implementation of
the operator leads to stable solutions, as machines work with finite precision. Such
instances are commonly known as ill-conditioned problems. Roughly speaking,
in ill-conditioned problems, small variations on the observation map to very large
deviations of the desired products. This effect is quantified by the condition number,
defined as:

κ(A) = lim
ε̌→0

sup
δ̌≤ε̌

‖GA(yδ̌)−GA
(
y[sim]) ‖x

‖yδ̌ − y[sim]‖y
(2.1.4)

The most common case study is the one in which the direct model is a linear operator
represented by a multiplication by a matrix A, which operates between two real
vector spaces.

In fact, if A is nonsingular matrix describing a deterministic process, then the inverse
matrix A−1 describes a well-posed problem. However, its condition number (2.1.4)
is given [51] by the product κ(A) = ‖A‖op‖A−1‖op, where the ‖.‖op defines the so
called operator norm.

For any given operator A : Ex → Ey, its operator norm is defined as the largest scalar
by which A stretches the elements of Ex:

‖A ‖op = inf {α̌ ≥ 0 : ‖A(x)‖y ≤ α̌‖x‖x,∀x ∈ Ex} , (2.1.5)

which in the case of a matrix multiplication the operator norm ‖A‖op = ζ̌maxA is
given by the largest singular value of the matrix A (i.e. the square root of the largest
eigenvalue associated with the Gram matrix A∗A).

2.1.2 Statistical description

An alternative framework for the estimation of x̂ requires a statistical description of
the optical transformations, taking into account the sources of uncertainties in the
model description and the unavoidable noise phenomena.

Two classical approaches are widespread for the statistical formulation of the prob-
lem. Following the formalism of eq. (2.1.1), the Bayesian approach attempts to
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maximize the a posteriori probability of the observation, given the statistical descrip-
tion of both the noise e and the desired input x. If x is considered deterministic, this
results into the special case known as maximum likelihood estimation (MLE).

Maximum likelihood estimation

The ML method is based on the assumption that the every possible input x is
"equally likely" (uniformly distributed). With this assumption, one can imagine to
fix a particular input x and analyze the conditional statistical distribution of the
observation. This allows to construct a family of possible distributions, among which
we can select the most likely to have generated the measured realization y.

Mathematically, let ψ be the r.v. associated with the observation and let the likeli-
hood function pψ(y|x) denote the probability mass function (pmf) of the observa-
tion conditioned to a fixed deterministic input x.

The MLE x̂ consists then in selecting the input that maximizes fL(x):

x̂ = arg max
x∈Ex

pψ(y|x) . (2.1.6)

As a main case study, let us suppose that the noise e is described as a multi-variate
Gaussian noise with zero mean and covariance matrix C (its elements cij are the
covariances between its i-th and j-th component). In the ML framework, the
statistical representation of the r.v. ψ is as well a multi-variate Gaussian but with
mean A(x); in mathematical terms:

pψ(y|x) ∝ exp
(
−1

2
(
(y− A(x))∗C−1(y− A(x))

))
(2.1.7)

where ∝ stands for "proportional to" and A∗ denotes the complex conjugate of A.

The criterion of ML is equivalent to minimizing the so called log-likelihood log fL(x):

x̂ = arg min
x∈Ex

log pψ(y|x) (2.1.8a)

= arg min
x∈Ex

1
2
(
(y− A(x))∗C−1(y− A (x))

)
. (2.1.8b)
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In the case in which the noise is composed of independent and identically distributed
(i.i.d.) acquisitions the covariance matrix is proportional to an identity matrix, so
the criterion is equivalent to minimization of the mean square error:

x̂ = arg min
x∈Ex

1
2‖A(x)− y‖22 , (2.1.9)

where ‖ · ‖2 denotes the `2-norm.

Bayesian estimator

In the Bayesian estimation, the model of the previous section is extended to consider
that the input itself is modelled as a r.v. χ, with its own characteristic distribution.

In the formulation of eq. (2.1.1), the r.v. ψ of the observation can then be expressed
as a function of two r.v.:

ψ = A(χ) + ν , (2.1.10)

where ν is the r.v. associated with the noise.

With this framework, the stochastic description ofψ is given by a joint pmf pψ,χ(x,y),
which, according to Bayes’ theorem, is a function of both the marginal pχ(x) and
the likelihood function pψ(y|x):

pψ,χ(x,y) = pψ(y|x)pχ(x) . (2.1.11)

The target of the Bayesian estimator is to maximize the a posteriori probability
pχ(x|y), which acts as a measure for how likely a certain representation of the input
is, given a particular realization y of the output. The a posteriori probability can be
expressed in terms of the a priori probability pψ(y|x) as:

pχ(x|y) =
pψ,χ(x,y)
pψ(y) =

pψ(y|x)pψ(x)
pψ(y) (2.1.12)
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Consequently, given a certain realization y of ψ, the criterion of estimation of the
input becomes:

x̂ = arg max
x∈Ex

pχ(x|y) = arg max
x∈Ex

pψ(y|x)pχ(x)
pψ(y) (2.1.13a)

= arg max
x∈Ex

pψ(y|x)pψ(x) (2.1.13b)

= arg min
x∈Ex
− log pψ(y|x)− log pχ(x) (2.1.13c)

It can be easily shown that, if χ is uniformly distributed the term log pχ(x) is
constant and the estimator reduces to the MLE approach of the minimization of the
log-likelihood pψ(y|x).

The Bayesian estimator can be seen as a minimization of a function J(x) = − log pψ(y|x)−
log pχ(x) which is composed as the sum of the log-likelihood and a contribution given
by the prior information of the input. J(x) usually known as objective function or
cost function.

In the case the noise components are i.i.d. realizations of zero mean Gaussian
distributions, the objective function can be simplified as follows:

J(x) = 1
2‖A(x)− y‖22 + λ̌g′(x) (2.1.14)

where the regularization function or penalization function g′(x) can be seen as
a Bayesian interpretation of the regularizing operation popularized by Tikhonov’s
formalism [219] to impose a well-posedness condition over a standard mean square
error (MSE).

2.2 Regularization approaches

The role of the regularization is to modify an objective function associated with
an ill-posed problem to enforce the uniqueness and continuity of a solution. This
section provides a brief introduction to the regularization techniques that will be
employed in this thesis, which include approaches based on the penalized matrix
decomposition (PMD) (Section 2.2.1), sparsity-inducing operators (Section 2.2.2),
and variational methods (Section 2.2.3).
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2.2.1 Penalized matrix decomposition

In this section we assume that the linear operator A(·) that describes the direct model
is a linear operator represented by a multiplication by a matrix A ∈ RNy×Nx .

We are concerned in this section with methods that make use of the singular value
decomposition (SVD). For a given matrix A ∈ RNy×Nx , the SVD of A is given by:

A = UΣV∗ . (2.2.1)

In its economized (also known as compact) form, the matrices U ∈ RNy×Nr and
V ∈ RNx×Nr are semi-unitary and Σ ∈ RNr×Nr is diagonal; here, Nr ≤ min(Nx, Ny)
defines the rank of A.

The elements {ζ̌(
Ai)}i∈[1,... ,Nr] of the main diagonal of Σ are known as singular

values (s.v.) of A. Without loss of generality, those are typically sorted in descending
order of magnitude (i.e., ζ̌(1)

A ≥ ζ̌(2)
A ≥ ... ≥ ζ̌(Nr)

A > 0).

As described in Section 2.1.2, the most naive approach for the inversion is given
by the minimization of the MSE between the simulated noiseless output y[sim] of
eq. (2.1.1) and the observation y:

x̂ = arg min
x∈Ex

1
2‖Ax− y‖22 = A†y = U∗Σ−1Vy , (2.2.2)

where A† denotes the Moore-Penrose pseudo-inverse of A. If the SVD of A is known,
the SVD A† = U∗Σ−1V can be efficiently computed, as Σ−1 is also diagonal and
the generic i-th element ζ̌A†

(i)
of its main diagonal is given by ζ̌A†

(i) = 1/ζ̌(i)
A .

In the majority of practical scenarios, the problem at hand is ill-conditioned, as
the condition number associated with the inverse problem is generally too large
to be computationally stable. The singular values associated with A are generally
upper bounded, as they are associated with physical processes which are limited in
energy.

However, if certain s.v. of A are below a certain threshold, the associated s.v. of
A†, and consequently, the condition number associated with the inverse problem,
may get too large. Consequently, the estimation itself is sensitive to errors which are
either introduced by the finite precision or by uncertainties introduced by noise.

In the literature, the approaches based on defining a new set of s.v. are com-
monly known as penalized matrix decomposition (PMD); among those, the most
widespread approaches are:
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• Truncated singular value decomposition (TSVD): The TSVD approach con-
sists in setting all the s.v. below a certain threshold equal to zero. I.e. if we let
N ′r ≤ Nr denote the amount of nonzero s.v., then:

ζ̌
(i)
Ã†

=
{

1/ζ̌(i)
A if i ≤ N ′r ,

0 if i > N ′r .

(2.2.3a)

(2.2.3b)

• Ridge regression (RR): Following the framework described in Section 2.1.1,
the approach known as Tikhonov regularization was popularized, as it was
proven to satisfy the requirements of a regularizing operator to be robust to
errors both in the observations and the direct operator A [219]. It consists in
the following estimation:

x̂ = arg min
x∈Ex

J(x) = arg min
x∈Ex
‖Ax− y‖22 + ‖Λx‖22 (2.2.4a)

= arg min
x∈Ex
‖Ax− y‖22 + λ̌2‖x‖22 , (2.2.4b)

where Λ is a domain transformation matrix, known as Tikhonov matrix. The
expression (2.2.4b) is a special case known as ridge regression (RR), for which
the Tikhonov matrix Λ = λ̌I is an identity matrix I, multiplied by a scalar
factor λ̌, known as ridge parameter. For this choice, the expression of the
gradient ∇J(x) of the objective function J(x) is given by:

∇J(x) = 2
(
A∗ (Ax− y) + λ̌2x

)
(2.2.5a)

= 2
(
A∗A + λ̌2I

)
x− 2A∗y (2.2.5b)

= 2V
(
ΣΣ∗ + λ̌2I

)
V∗x− 2VΣ∗U∗y , (2.2.5c)

where we have used the property of semi-orthogonality of V to express the
identity matrix as I = V∗V. The condition ∇J(x̂) = 0 is then equivalent to:

x̂ = V
(
ΣΣ∗ + λ̌2I

)−1
Σ∗U∗y , (2.2.6)

thus the influence matrix is characterized by Σ̃ =
(
ΣΣ∗ + λ̌2I

)−1
Σ∗ and

consequently:

ζ̌Ã†
(i) =

ζ̌
(i)
A(

ζ̌
(i)
A

)2
+ λ̌2

, ∀i ∈ [1, ... , Nr] . (2.2.7)
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Choice of the regularization parameter

The choice of the parameter N ′r in the TSVD or λ̌ in the RR is not a trivial problem
and many possible approaches have been proposed in the literature to automatize
its choice and a noncomprehensive selection of the most widespread methods is
provided here.

Let x̃β denote the estimation obtained with a given parameter β (either λ̌ or N ′r
depending on the method). Three widespread strategies are available:

• Morozov’s Discrepancy Principle [171]: Let us suppose the observation y
is known with a certain uncertainty such that ‖y − y[sim]‖ < δ̌, then the
discrepancy principle consists in picking an the largest β such that ‖Ax̂β −
y‖2 ≤ δ [102].

• Generalized cross validation (GCV) [93]: For the case of RR, a common
procedure for the estimation of λ̌2 is given by the the following minimization
criterion:

arg min
λ̌2

1
Nr
‖Ax̂λ̌‖

2
2(

1
Nr

tr
(

I−A
(
AA∗ + λ̌2I

)−1
A∗
))2 , (2.2.8)

where tr(·) evaluates the trace of the square matrix it takes as argument.

• L-curve criterion [113]: the parameter β is chosen, such that maximizes the
curvature of the parametric curve log(‖Axβ − y‖2) /log(‖xβ‖2).

If applied to real world scenarios, each of these methods has a series of drawbacks.
I.e. the discrepancy methods require the knowledge of the noise energy in the
system, the characteristic functional GCV is sometimes too small (below the machine
precision) within the decision range and that L-curve decision does not converge in
the case of low-noise acquisitions [110].

With some adjustments [197, 55], these techniques can also be applied to the
sparsity-inducing regularizations that will be presented in the following section.

More recently, the hierarchical Bayesian inference technique [184] was proposed
for an iterative algorithm for successively refining the choice of the regularization
parameter λ̌. The method applies to the solution of all objective functions in the
form J(x) = f(x) + λ̌g(x), where the term f(x) = − log pψ(y|x) is the ML estimator
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and λ̌g(x) = − log pχ(x) is the prior. Let us suppose that the regularizer term λ has
its own stochastic formulation, so that the a priori probability can be expressed as:

pχ(x) =
∞∫

0

pχ(x|λ)pλ(λ̌)dλ̌ (2.2.9)

where pλ(λ̌) is the probability density function (pdf) associated to the regularization
parameter and:

pχ(x|λ̌) = exp(−λ̌g(x))
C
(
λ̌
) (2.2.10a)

C
(
λ̌
)

=
∫

x ∈ RNx
exp(−λ̌g(x))

d
x (2.2.10b)

is the expression of prior conditioned to a certain value of λ, which has to be
normalized over the space of the input parameter x through the term C

(
λ̌
)

. If g(x)
is Nm-homogeneous (that is, if g(ηx) = ηNmg(x), which is the case of most norms),
then C

(
λ̌
)

= C(1)λ̌−Nx/Nm , and assuming that λ̌ is distributed with an exponential

distribution (pλ(λ̌) = exp−βλ̌ for λ̌ > 0), the proposed method proves [184], that if
the majorization-minimization (MM) algorithm [212] is applied to the cost function
J(x), given a first guess λ̌(0) for the regularization parameter, the q-th update x̂λ̌(q)

of the desired product is obtained as:

x̂λ̌(q) = arg min
x
f(x) + λ̌(q−1)g(x) (2.2.11a)

λ̌(q) = Nx/Nm − 1
g(x̂λ̌(q))− 1 (2.2.11b)

2.2.2 Sparsity-inducing regularizers

In the context of image processing, it is a common scenario to work with data
that contains a large amount of redundancy, which allows for natural images to be
represented in sparse domains, i.e. domains with a limited amount of nonzero
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elements. This property has allowed to develop very popular algorithms for image
compression, such as the Joint Photographic Experts Group (JPEG) [@7].

The sparsity condition is properly measured with the pseudo-norm `0, which, in the
formalism of Donoho [63], denotes the amount of nonzero elements in an array.
The problem is theoretically formalized by:

x̂ = arg min
x∈Ex
‖L(x)‖0 s.t. ‖A(x)− y‖22 ≤ ε̌2 , (2.2.12)

where ‖ · ‖0 denotes the `0-norm, L(·) is an operator that represents the argument
in a sparse domain and ε̌2 is a given scalar threshold.

This problem is not trivial to solve exactly in the form of (2.2.12), which led to a
series of techniques of sparse approximation to make it mathematically approach-
able. Two main strategies exist: the orthogonal matching pursuit (OMP) [222], a
greedy iterative algorithm which sequentially locates all the nonzero elements of
the solution, and the basis pursuit [62], where the `0-norm is substituted with an
`1-norm.

In this second approach, the estimation is given by the functional known as least
absolute shrinkage and selection operator (LASSO) [217]:

x̂ = arg min
x∈Ex

1
2‖A(x)− y‖22 + λ̌‖L(x)‖1 , (2.2.13)

and a visual representation of its sparse-inducing effect (for L equal to an identity
operator) in comparison to the RR is provided in Fig. 2.2.

In this thesis, two orthogonal domain transformations will be employed to induce
sparsity in the data: the discrete cosine transform (DCT) and the discrete wavelet
transform (DWT).

If x ∈ RNx , the most common form of DCT, known as DCT-II, is a multiplication by
a matrix W ∈ RNx×Nx , whose elements {wkl}k∈[1,... ,Nx],l∈[1,... ,Nx] are:

wkl =
√

2
Nx

cos
(
π

Nx

(
k + 1

2

)
l

)
. (2.2.14)

The obtained coefficients are related to the discrete Fourier transform (DFT)[198]
and can be seen as a frequency representation of the signal. Multidimensional
versions of this transform are also available, i.e. in the case it is applied to both
spatial coordinates of an image.
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The DWT is the topic of a vast and mature literature, and the work of Mallat [155]
provides an in depth introduction. In this context, we just want to recall the
main ideas behind it, with no claim of mathematical rigorousness. The DWT’s
goal is to discretely sample a (typically dyadic) wavelet transform and the obtained
coefficients provide time-scale representation of the original signal, i.e. embedding
information relative both to the self-similarity of the signal and in the original
domain.

The DWT is based on the multiresolution analysis (MRA), which consists in segment-
ing the space Ex into nested subspaces [155], which maps into subsequent levels of
decomposition, whose coefficients describe the evolution of the signal in the original
domain at each scale.

For each level, the signal is simultaneously decomposed by passing through a low
and high pass convolution filter, whose kernels are related and form a quadrature
mirror filter (QMF) [9]; subsequently, the coefficients are decimated by a factor of
2. If there is no source of error, biorthogonal wavelets define a particular class of
invertible DWT, for which case the decomposition and the associated reconstruction
are shown in Fig. 2.3 and employ a complementary set of synthesis and analysis
filters. If perfect reconstruction is achieved with the same filters, the wavelet is
called orthogonal, so that the inverse and the adjoint operator of the DWT are the
same, as seen in eq. (A.1.1).

The DWT can be straightforwardly extended to multiple dimensions, and an example
of the product for monochromatic images is shown in Fig. 2.4. A variant algorithm,
known as stationary wavelet transform (SWT), proposed by Holschneider et al. [121],
is sometimes employed in image processing to allow for the transformation to
verify the property of translation invariance; this result is obtained by skipping the
decimation and comes at the cost of introducing redundancy in the transformation.

2.2.3 Variational methods

In their seminal paper, the authors Rudin, Osher and Fatemi [200] propose a
regularization model for images s(r) : Er ⊆ R2 → R defined on an ideally continuous
plane r = [r1; r2] and for which it is possible to define a gradient∇rs =

[
∂s
∂r1

; ∂s
∂r2

]
.

The regularization criterion consists in minimizing the term:

∫∫

Er

‖∇rs(r)‖2 dr (2.2.15)
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x̂ML

x̂

x1

x2

(a) `2-norm regularization

x̂ML

x̂

x1

x2

(b) `1-norm regularization

Fig. 2.2. Representation of the `1 and `2-norm regularization effect for arrays of length 2,
whose space spans in the coordinates [x1;x2]. The MLE estimation is denoted with
x̂ML. Along the red curves, the data fidelity term has constant magnitude and
the regularized estimation x̂ is obtained at the intersection between the `2 and `1
ball, whose sizes depend on the regularization parameter. The `1 regularizer has a
sparsity-inducing effect, since it has a single non-zero component.
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Fig. 2.3. Block scheme for a two-level biorthogonal wavelet decomposition and reconstruc-
tion through QMFs. The synthesis filters Lg(·) and Lh(·) implement a high and a
low pass convolution product, respectively. Lg̃(·) and Lh̃(·) denote the associated
analysis filters to allow for perfect reconstruction. They are identical to Lg(·) and
Lh(·) in the case of orthogonal wavelets. ↓ 2 and ↑ 2 denote the operations of
decimation and expansion by a factor of 2, respectively, which are bypassed for
SWTs.
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(a) Original image (b) 2-level DWT

Fig. 2.4. Example of a 2-level bidimensional wavelet applied on a square image. In this case
the DWT transformation is applied to both dimension, so at each step, 4 different
classes of coefficients are generated, according to the combination of low-pass and
high-pass filters. The successive step is just performed on the low-pass component
(here, depicted in the top left corner). The sparsity-inducing effect is also shown,
as the high-pass components feature a high amount of low-intensity (black) pixels.

in conjunction with the data fidelity term that characterizes the specific problem (e.g.
denoising, deblurring, etc.). The signal s(r) can be seen as an ideal monochromatic
input image with infinite spatial resolution; the prior constraint given by eq.(2.2.15)
penalizes fast oscillations in sufficiently homogeneous zones, while keeping sharp
transitions across intensity edges. This criterion promotes sparsity across the gradient
of the image, flattening the variation of intensity in regions bounded by those sharp
transitions.

The regularization criteria based on this principle were then identified as variational
methods 2, and the approaches aimed at adapting the Rudin-Osher-Fatemi (ROF)
model (2.2.15) to discrete spaces became popular with the name Discrete Total
Variation, or simply total variation (TV).

This section provides a brief introduction to the approaches developed in the litera-
ture [31, 48]. The employed formalism separates between strategies to evaluate the
gradient and metrics to weight their combined contribution, based on the formalism
of the collaborative total variation (CTV) [65, 66].

2In the classical literature of variational methods, the term is usually referred to any optimization
method that requires an analysis to any kind of variation of the quantities to estimate, such as in
the case of analysis of the gradients. In this work, we instead refer to variational methods as an
analysis of variations of the spatial intensities.
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Notation

In the following, we denote with U [x] ∈ RNi1×Ni2×Nb the conventional 3-dimensional
array representation of an image, composed of Nb frontal slices

{
U[x]

::k

}
k∈[1,... ,Nb]

,

each relative to a particular channel.

For our purposes, it will be also useful to represent the same images in lexicographic
order; in this representation, denoted with X = matr

(
U [x]

)
, the original image

U [x] is reshaped into a horizontal matrix X ∈ RNi×Nb , with Ni = Ni1Ni2 . The
concatenation operation [·; ·], [·, ·], and [·, ·]3 denotes a concatenation over the first,
second and third dimension, respectively. ‖·‖p1p2p3 denotes the `p1 , `p2 and `p3-norm,
applied in order on the third, second and first dimension of the 3-dimensional array,
respectively 3 I.e., the operator

∥∥∥U [x]
∥∥∥
∞21

applies the `∞-norm over each frontal
slice (each channel), then the `2-norm over the rows, and finally the `1-norm over
the columns.

A generic coefficient of the 3-dimensional array is denoted with the associated
lowercase letter, i.e. u[x]

i1,i2,k
(or sometimes simply u[x]

i1i2k
) represents the pixel index

coordinates (i1, i2) of the k-th channel of U [x].

Total variation

In the most classic formulation of the TV, the main building blocks for the formu-
lation of a discrete regularizer are the gradients U [h] ∈ RNi1×Ni2×Nb and U [v] ∈
RNi1×Ni2×Nb in the horizontal and vertical direction of the image, respectively. They
are defined as:

u
[v]
i1i2k

= u
[x]
i1+1,i2,k − u

[x]
i1,i2,k

, (2.2.16a)

u
[h]
i1i2k

= u
[x]
i1,i2+1,k − u

[x]
i1,i2,k

, (2.2.16b)

(2.2.16c)

paying attention to replace the values outside of the domain of U [x] with zeroes.
The TV operator, which we will denote with LTV (X) can then be obtained by simply
concatenating the two building blocks over a common singleton dimension:

LTV (X) =
[
matr

(
U [v]

)
,matr

(
U [h]

)]
3
. (2.2.17)

3We opted in this work to invert the order with respect to the dimensions to prioritize the order in
which each norm is applied first.
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The regularizers gATV (X) and gITV (X) associated with the anisotropic and isotropic
TV, respectively, are then defined as:

gATV (X) :=
Ni1∑

i1=1

Ni2∑

i2=1

Nb∑

k=1

(∣∣∣u[h]
i1i2k

∣∣∣+
∣∣∣u[v]
i1i2k

∣∣∣
)

= ‖LTV (X)‖111 , (2.2.18a)

gITV (X) :=
Ni1∑

i1=1

Ni2∑

i2=1

Nb∑

k=1

√(
u

[h]
i1i2k

)2
+
(
u

[v]
i1i2k

)2
= ‖LTV (X)‖211 . (2.2.18b)

The anisotropic total variation (ATV) can be seen as a sparsity-inducing regularizer
in the domain of the gradient of the image, not in a dissimilar way to what was
shown in Section 2.2.2, but is known to be a poor discrete approximation of the
ROF criterion, as it over-estimates the gradient over oblique contours. The isotropic
total variation (ITV) partly improves by imposing more isotropy across oblique
directions, however it can be shown that both regularization functionals (2.2.18) do
not compute to the same value after the image is flipped horizontally/vertically or
rotated by 90 or 180 degrees [48].

To increase the isotropy of the representation, the approach of Chambolle et al. [39],
known as upwind total variation (UTV), consists in evaluating 4 different gradients:

u
[v+]
i1i2k

= max
(
u

[x]
i1+1,i2,k − u

[x]
i1,i2,k

, 0
)
, (2.2.19a)

u
[v−]
i1i2k

= max
(
u

[x]
i1,i2,k

− u[x]
i1−1,i2,k, 0

)
, (2.2.19b)

u
[h+]
i1i2k

= max
(
u

[x]
i1,i2+1,k − u

[x]
i1,i2,k

, 0
)
, (2.2.19c)

u
[h−]
i1i2k

= max
(
u

[x]
i1,i2,k

− u[x]
i1,i2−1,k, 0

)
, (2.2.19d)

and the associated linear operator

LUTV (X) =
[
matr

(
U [v+]

)
,matr

(
U [v−]

)
,matr

(
U [h+]

)
,matr(U [h−])

]
3

(2.2.20)

results invariant to flipping the image around a central vertical or horizontal axis.

More sophisticated solutions are available in the literature, such as the Shannon total
variation (STV) [1], that tries to reconciliate the theory of TV with the Shannon in-
terpolation theory, a new definition of TV with very highly isotropic behaviours [48],
and the total generalized variation (TGV) [31], which considers higher order deriva-
tives of U .
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Collaborative total variation

The principles of TV described up to now considers the contribution on the regular-
izer of each channel separately; the framework proposed by Duran et al. [65, 66]
allows to take into account the cross-correlation across channels. In this formalism,
known as collaborative total variation (CTV), the regularizer operates over a trans-
formed domain L(X), where one can identify three different dimensions relative to
the derivatives (gradients), the channels and the pixels, and the associated regular-
ization function is a combination of the norms operating over the three dimensions.
The estimation problem then reduces to this minimization problem:

X = arg min
X∈RNi×Nb

1
2‖A(X)− y‖22 + λ̌‖L(X)‖p1p2p3 . (2.2.21)

The operator L(X) is a generic TV operator, which, i.e., could be substituted with
either eq. (2.2.17) or (2.2.20).

The norms `p1 , `p2 and `p3 are the norms relative to the gradients, channels and
pixels, respectively, with the norm ‖ · ‖221 being a particularly widespread choice,
known as vector total variation (VTV) [32].

The norms in eq. (2.2.21) can also operate jointly across multiple dimensions, such
as in the case of the Shatten norm Sp defined as the `p norm of the s.v. of a matrix.
The case p = 1, known in the literature as nuclear norm, has been shown to yield
particularly good reconstruction performances of red green blue (RGB) images if the
regularizer is in the form ‖LTV (X)‖S1,`1 where the nuclear norm is applied jointly
on the derivatives and the channels [203, 66] (the subsequent `1-norm over all
pixels gives an equal penalization weight in every local area of the image).

2.3 Algorithms for inverse problems

The minimization of objective functions that will be addressed in this thesis can be
generally seen as the solution of a general problem in the form:

x̂ = arg min
x
J(x) = arg min

x
f(A(x)) + 〈x, c〉+ g(L(x)) , (2.3.1)

where:

• J(x) denotes the objective function,
• x ∈ Ex is the data to reconstruct,
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• A(·) : Ex → Ey is the direct model operator,
• L(·) : Ex → Eu is a generic domain transform operator,
• f(·) : Ey → R+ is the metric for the data term,
• g(·) : Eu → R+ is the metric for the regularization term,
• 〈·, ·〉 : Ex × Ex → R+ is a scalar product defined in Ex,
• c ∈ Ex is a constant term.

The sets Ex and Eu are sometimes known as primal and dual space, respectively,
and the joint minimization on both of these spaces can be exploited to improve the
convergence speed of the algorithms aimed at solving (2.3.1) [29, 40].

In the case when A(·) is a bounded linear operator (or a linearized version of some
generically nonlinear process), it can be shown that the formalism of (2.3.1) is a
generalization of eq. (2.1.14), with g′(·) = 1

λ̌
g(L(·)). In fact:

x̂ = arg min
x∈Ex

1
2 ‖A(x)− y‖2 + λ̌g(L(x)) (2.3.2a)

= arg min
x∈Ex

1
2 ‖A(x)‖2 − 〈A(x),y〉+ 1

2‖y‖
2 + λ̌g(L(x)) (2.3.2b)

= arg min
x∈Ex

1
2‖A(x)‖2 + 〈x,−A∗(y)〉+ λ̌g(L(x)) , (2.3.2c)

where A∗ denotes the adjoint of A, defined in Appendix A.1.1, and we used the
symmetry of the scalar product in the step (2.3.2b) and the invariance of the
minimization to ‖y‖ in the step (2.3.2c).

This section’s goal is a brief introduction to possible algorithmical approaches for
the solution of eq. (2.3.1) under different conditions, starting with the classical, but
limiting, approach of the gradient descent (GD) and then expanding the solution to
a more encompassing class of solvers, based on the proximal operator; finally, we
present some classical approaches to manage the nonlinearity of the direct model.

2.3.1 Gradient descent algorithms

The gradient descent (GD) algorithm is a first-order optimization algorithm, at-
tributed to Cauchy, but popularized by Hadamard [106]. It is applicable to any
situation in which the objective function J(·) is convex and differentiable, so that it
is possible to define an associated Fréchet gradient ∇J .
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The GD method consists in iterative refinements of the estimation of the minimum
of J , obtained through successive descents in the direction of the gradient ∇J . If the
current estimate at the q-th step is denoted with x(q), the next step update x(q+1) is
given by:

x(q+1) = x(q) − γ̌∇J(x(q)) . (2.3.3)

If ∇J is a β̌-Lipschitz continuous function:

‖∇J(x)−∇J(x0)‖x ≤ β̌‖x− x0‖ ∀x,x0 ∈ Ex (2.3.4)

where ‖.‖x is the norm of the normed space Ex, the convergence is assured for any
coefficient γ̌ ≤ 2/β̌. I.e. if J(x) = 1

2‖Ax− y‖22, where A is a matrix, the condition
is equivalent to γ̌ ≤ 2/‖A‖op.

If J(x) is written as the quadratic expression (2.3.1) and both f(·) and g(·) are
differentiable with gradients ∇f (·) and ∇g(·), respectively, the update step can be
rewritten as:

x(q+1) = x(q) − γ̌ (A∗(∇f (A(x))) + c + L∗(∇g(L(x)))) . (2.3.5)

The conjugate descent is a very common variant of the GD method, for which
the descent is not pursued in the direction of the local gradient of the function,
but instead on one orthogonal to all previously explored directions, derived with a
Gram-Schmidt decomposition [119].

2.3.2 Proximal gradient algorithms

In the context of inverse problems, it is very common to face the situation in which
the objective function to minimize is not differentiable, such as in the case of the `1-
norms employed in the LASSO framework (Section 2.2.2). To address this problem,
we introduce here a particular class of iterative algorithms, known as proximal
gradient algorithms or simply proximal algorithms [181] This class of algorithms
relies on the use of proximal operators, which we describe in the following section;
we also list some of its desirable properties and introduce two of the most widespread
algorithms belonging to this class: the Loris-Verhoeven and the Chambolle-Pock
algorithms.
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Iterative nonexpansive algorithms

The basic idea of iterative algorithms is to perform a series of operations T on a
given estimate of x(q) to obtain a new estimate x(q+1) = T (x(q)) for the minimizer
of J(x) ∈ Γ0(Ex), real-valued bounded lower semicontinuous convex cost function
defined in a Hilbert space Ex. For the transformation T to be convergent, the
necessary condition is given by:

lim
q→∞

J(x(q)) = min
x
J(x) , ∀x(0) ∈ Ex . (2.3.6)

Additionally, if the iterative operator T is also β̌-Lipschitz continuous for a certain
β̌ ∈ (0, 1):

‖T (x1)− T (x2)‖ ≤ β̌‖x1 − x2‖, ∀x1,x2 ∈ Ex (2.3.7)

the estimation converges to one of the fixed points, defined as the points x̂ ∈ Ex :
T (x̂) = x̂. An effective design of an iterative algorithm T for the minimization of
J(x) is made up of two main steps:

• Check that the fixed points of T are also minimizers of J(x);
• Assure that T is β̌-Lipschitz continuous for a certain β̌ ∈ (0, 1).

If the operator T is nonexpansive (that is if it is 1-Lipschitz continuous), it is possible
to generate a β̌-averaged new operator T ′ = β̌T +(1− β̌) Id, where Id is the identity
operator. The so called β̌-averaged operator T ′ will be β̌-Lipschitz continuous. This
result is known in the literature as Krasnoselskii–Mann method for nonexpensive
mappings [44]. Equivalently, if the operator is already β̌-Lipschitz continuous for
a certain 0 < β̌ < 1, one can over-relax the operator T ′ by ρ̌-averaging it with any
0 < ρ̌ < 1/β̌, so that the operator becomes (ρ̌β̌)-Lipschitz continuous [50].

Proximal operator

Let f : Ex ⊆ RNx → R \ [−∞,∞] be a lower semi-continuous convex function. The
proximal operator associated with a function γ̌f , obtained by scaling f by a factor
γ̌ > 0, is defined by:

proxγ̌f (x′) = arg min
x∈Ex

(
f(x) + 1

2γ̌ ‖x− x′‖22
)
. (2.3.8)

The function Mγ̌f (x′) = minx∈Ex

(
f(x) + 1

2γ̌ ‖x− x′‖22
)

is usually known as Moreau
envelope of γ̌f and is, in non rigorous terms, a smoothed and regularized version
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of f . Mγ̌f (x′) is continuously differentiable and its domain is in RNx , even if f is
not. Fig. 2.5a shows a visual example of the Moshida envelope for a particular f .

With this interpretation, the proximal operator is a compromise between minimizing
f and being close (in terms of the Euclidean metric) to x, with the parameter γ̌
weighting each of the two contributions. Additionally if and only if x̂ is a fixed point,
then proxγ̌f (x̂) = x̂.

This effect is shown on Fig. 2.5b and the parameter γ̌ acts similarly to the step size
of the GD method to converge over the minimizer, although the effect is extended
outside the boundaries of the domain of f .

The proximal operator is also useful to address problems defined on complementary
domains, such as in the primal/dual framework. Formally, for a topological space
characterized by a scalar product 〈·, ·〉 : Ex × Eu → R+, it is possible to define the
Fenchel conjugate f? : Eu → R as:

f?(u) := sup {〈u,x〉 − f(x) : x ∈ Ex} (2.3.9)

and the following relation, known as Moreau’s identity [169], holds:

proxγ̌f?(x) = x− γ̌ prox f
γ̌

(
x
γ̌

)
. (2.3.10)

This identity allows to express some proximal operators in close form; one common
example is in the case f(·) = ‖ · ‖1 is the `1-norm, for which proxγ̌f?(x) is the
projection of x over the `∞ ball, which is equivalent of a soft thresholding:

proxγ̌f?(x) = proj{‖x‖∞ ≤ γ̌} = max(min(x, γ̌),−γ̌) , (2.3.11)

or for the case f(·) = ‖ · ‖∞, where proxγ̌f?(x) = proj{‖x‖1 ≤ γ̌} is the projection
over an `1-ball, which can also be implemented efficiently [49].

Loris-Verhoeven algorithm

Let us consider a special case of eq. (2.3.1), in which the function h(x) = f(A(x)) +
〈x, c〉 is Fréchet differentiable with a β̌-Lipschitz continuous gradient∇h for a certain
β̌ > 0. We are interested in solving the following primal problem:

x̂ = arg min
x
h(x) + g(L(x)) , (2.3.12)
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Fig. 2.5. In Fig. 2.5a, an example of the expression of the Moreau envelope (in red) applied
to a function f(x) = |x| defined in the domain Ex ≡ [−1, 1] (in blue). In Fig. 2.5b,
the effect (in red) of applying the proximal operator to points (in blue) in the
domain R2, when f is compact and whose boundary is represented by a thick
black line. Points outside Ex are projected over the boundary of the domain, while
points within the boundary are shifted towards the minimum of f .

for which we make use in this section of the so-called property of duality. This
approach consists in defining a dual variable u and its associate dual problem:

û = arg min
u

h?(−L∗(u)) + g?(u) , (2.3.13)

which allows to get rid of the dependency of the operator L in the function g. Here,
h? and g? are the Fenchel conjugate of h and g, respectively, while L∗ is the adjoint
of L.

The primal-dual forward-backward iterations, also known as Loris-Verhoeven
algorithm [148] allows to solve both problems jointly. The update rule is in charge
to provide a more refined estimation u(q+1) to the dual variable, as well as one
x(q+1) for the primal one:





u(q+ 1
2 ) = proxσ̌g?

(
u(q) + σ̌ L

(
x(q) − τ̌

(
∇h(x(q)) + L∗(u(q))

)))

x(q+1) = x(q) − ρ̌τ̌
(
∇h(x(q)) + L∗(u(q+ 1

2 ))
)

u(q+1) = u(q+1) + ρ̌
(
u(q+ 1

2 ) − u(q)
)
.

(2.3.14)
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The parameters σ̌ > 0 and τ̌ > 0 must verify the condition σ̌τ̌ ≤ 1/‖L ‖2op to allow
for convergence. τ̌ is a free parameter that defines the speed of the convergence
and is typically chosen to be τ̌ = 1/‖A ‖2op [148]. ρ̌ is the so-called over-relaxation
parameter and the convergence is assured for ρ̌ ∈ (0, 2).

These iterations can be expressed for the basic problem in eq. (2.3.1) as follows:





u(q+ 1
2 ) = proxσ̌g?

(
u(q) + σ̌ L

(
x(q) − τ̌

(
A∗(∇f (A(x(q)))) + c + L∗(u(q))

)))

x(q+1) = x(q) − ρ̌τ̌
(
A∗(∇f (A(x(q)))) + c + L∗(u(q+ 1

2 ))
)

u(q+1) = u(q) + ρ̌
(
u(q+ 1

2 ) − u(q)
)
.

(2.3.15)

The Loris-Verhoeven algorithm is well suited to solve problems in the form of
eq. (2.3.2a) (or eq. (2.3.2c)) simply by substituting:

h(x) = f(A(x)) + 〈x, c〉 = 1
2‖A(x)‖2 + 〈x, c〉 (2.3.16)

as the gradient of f(x) = 1
2‖x‖

2 is the identity operator ∇f (x) = x. The Fréchet
gradient in this scenario has form: ∇h(x) = A∗(A(x) − y), for which we can
solve a variety of common cost function minimizations by substituting this value in
eq. (2.3.14) accordingly.

Chambolle-Pock algorithm

In the more general case in which f in eq. (2.3.1) is not differentiable, but it still
possible to define a proximal operator, the problem can be solved by the generalized
Chambolle-Pock algorithm;





u(q+ 1
2 ) = proxσ̌g?

(
u(q) + σ̌ L

(
x(q)

−τ̌
(
A∗
(
v(q)

)
+ c + L∗

(
u(q)

))))
,

x(q+ 1
2 ) = x(q) − τ̌

(
A∗
(
v(q)

)
+ c + L∗

(
u(q+ 1

2 )
))

,

v(q+ 1
2 ) = prox

ηf?

(
v(q) + ηA

(
2x(q+ 1

2 ) − x(q)
))

,

u(q+1) = u(q) + ρ̌
(
u(q+ 1

2 ) − u(q)
)
,

x(q+1) = x(q) + ρ̌
(
x(q+ 1

2 ) − x(q)
)
,

v(q+1) = v(q) + ρ̌
(
v(q+ 1

2 ) − v(q)
)
,

(2.3.17a)

(2.3.17b)

(2.3.17c)

(2.3.17d)

(2.3.17e)

(2.3.17f)
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whose convergence is assured in the case σ̌τ̌ ≤ 1/‖L‖2op and ητ̌ ≤ 1/‖A‖2op; typically
one can just impose τ̌ as a single tuning parameter and choose σ̌ and η such that
the above inequalities become equalities.

Let us assume f(x) = 1
2‖x‖

2 is a quadratic function and let us impose η̌ = 1. Under
these constraints, we can prove that the third term (2.3.17c) in the generalized
Chambolle-Pock expression can be rewritten as:

v(q+ 1
2 ) = 1

2v(q) + A
(
x(q+ 1

2 ) − x(q)
)
, (2.3.18)

which makes use of the property of quadratic functions that proxf (x) = proxf?(x) =
1
2x. Consequently, if we initialize the algorithm with v(0) = A

(
x(0)), the update

becomes v(q) = A(x(q)) for all q ∈ N. It can be shown [50] that the Chambolle-
Pock is a more general version of the widespread alternating direction method of
multipliers (ADMM) algorithm.

2.3.3 Nonlinear regression

It is a common occurrence in inverse problems to find situations where the model

A : RNx → RNy is nonlinear.

A possible strategy in this case consists in linearizing such model through successive
Taylor decompositions around the current estimation, which is applicable to the
case in which A is differentiable. Let ∇(q)

A denote the gradient of A evaluated at a
generic point x(q) ∈ Ex, which can be obtained as { ∂ A(x))

∂xi

∣∣∣
x=x(q)

}i∈[1,... ,Nx] where xi
denotes the i-th component of x, then the Taylor decomposition of A(x) truncated
at the first order derivative is given by:

A(x) ≈ A
(
x(q)

)
+∇(q)

A

(
x− x(q)

)
. (2.3.19)

If x(q) denotes the estimation of the desired quantity at the q-th iteration, the updated
estimation x(q+1) at the successive step can thus be obtained by solving a classical
linear inverse problem; the procedure is repeated until convergence is reached.
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More specifically, in the quadratic case of eq. (2.3.2a), the (q + 1)-th iteration of the
algorithm is equivalent to solve:

x(q+1) = arg min
x∈Ex

f
(
A
(
x(q)

)
− y +∇(q)

A

(
x− x(q)

))
+ g′(x) (2.3.20a)

= arg min
x∈Ex

1
2

∥∥∥A (x)− y +∇(q)
A

(
x− x(q)

)∥∥∥
2

2
+ λ̌g (L (x)) (2.3.20b)

= arg min
x∈Ex

1
2

∥∥∥∇(q)
A (x)−

(
∇(q)

A

(
x(q)

)
− A

(
x(q)

)
+ y

)∥∥∥
2

2
+ λ̌g (L (x))

(2.3.20c)

= arg min
x∈Ex

1
2

∥∥∥∇(q)
A (x)

∥∥∥
2

2
+
〈
∇(q)∗

A (x) ,∇(q)
A

(
x(q)

)

−A
(
x(q)

)
+ y

〉
+ λ̌g(L(x)) (2.3.20d)

= arg min
x∈Ex

1
2

∥∥∥∇(q)
A (x)

∥∥∥
2

2
+
〈
x,−∇(q)∗

A

(
∇(q)

A

(
x(q)

)

−A
(
x(q)

)
+ y

)〉
+ λ̌g(L(x)) , (2.3.20e)

so that the update x(q+1) can be performed, for any g ∈ Γ(0), via the Loris-Verhoeven
algorithm with the constant c = −∇(q)∗

A

(
∇(q)

A
(
x(q))− A

(
x(q))+ y

)
.

Of course, if less restrictive objective functions are used, such as in the case that g
is equally zero, simpler updating methods can be employed. I.e. if g is uniformly
equal to zero, the update can be performed with the well known Gauss-Newton
algorithm (GNA) [78], for which eq. (2.3.20d) has a closed form solution:

x(q+1) = x(q) −
(
∇(q)∗

A ∇(q)
A

)−1
∇(q)∗

A (A
(
x(q)

)
− y) (2.3.21)

The same problem can also be addressed by the GD algorithm, previously described
in Section 2.3.1 and the update as:

x(q+1) = x(q) − γ̌(q)∇(q)∗
A (A

(
x(q)

)
− y) (2.3.22)

where γ̌(q) < 2/‖∇(q)
A ‖op is a used-defined parameter deciding the rate of conver-

gence.

Another popular variant, commonly known as Levenberg–Marquardt algorithm [142,
156], introduces an extra penalization terms to impose the solution to not be too
distant from the current estimation, by imposing g′(x) = λ̌‖x − x(q)‖22. This work
is not meant to provide a comprehensive dissertation on the vast topic of nonlin-
ear optimization; for a more in depth discussion, including techniques to avoid
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the nonconvexity of the objective function, the interested reader may refer to [22,
77].
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Signal processing of
multimodal data

3
3.1 Introduction

Multimodal data defines a class of remotely sensed acquisitions that may differ
in imaging mechanism, spatial resolution, and coverage. Due to the improvement
in the specificity of different sensor technology, multimodality allows for a wide
degree of diversity of information of a given scene, whose complementarity can be
exploited in various applications, e.g., precision agriculture, urban planning, and
disaster responses [52].

Data fusion defines the process of of integrating multiple data sources to produce
relevant and consistent information to the final user. Various applications are
available that exploit the different characteristics of the image, which may include
either differences in elevation, such as LIDAR systems, or in structure, such as in
optical and synthetic aperture radar (SAR) system, or in the amount of available
channels, such as in the case of multispectral and hyperspectral data [52]. Data
fusion is not limited to the case of multimodal acquisitions, as different information
may be captured by sensors at different angles of view or at different times [4,
191].

In this chapter, we consider scenes captured with imaging systems characterized by
different spectral and spatial resolutions. The goal of a sharpening procedure is to
generate a synthetic image featuring the best resolutions of each of the two sensor
technologies.

The multimodality of the data is associated with a set of challenges to address, such
as spectral/spatial variations, missing information, and sensor-specific issues. In
particular, the necessity to link a diversified set of information to the same portion
of the scene requires specific procedures, such as scaling and co-registration.

Additionally, in this thesis, the concept of multimodality is also considered extended
to sensors with an overlaid color filter arrays (CFAs), whose acquisitions can be
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seen as multichannel samples with gaps in specific portions of the scene, which
require a procedure of demosaicing to infer information where it is not available.

In this chapter we provide a brief introduction to the concepts related to multi-
modality, defining the different sources employed in this work (Section 3.2), the
preprocessing required to coordinate different data sources (Section 3.4), image fu-
sion (Section 3.5), and demosaicing techniques (Section 3.7). We also introduce the
standard procedures for the validation of the reconstructed product (Section 3.8).

3.2 Multimodal acquisition systems

This section’s goal is to describe the acquisition systems that can describe the
multimodal data sources that are employed in this work, which in this context
consist in either multiresolution or multichannel data.

3.2.1 Multiresolution data

In the domain of remote sensing, it is quite common for a satellite platform to
accommodate sensors with different technologies. In terms of spatial and spectral
resolution, which were defined in Section 1.2.1, some specialized sensing technolo-
gies were developed which target a specific combination of those resolutions.

However, both technological and physical constraints do not allow to manufacture
sensors capable of simultaneously capturing images with simultaneously very high
spectral and spatial characteristics. In fact, if the noise level is kept constant, the
relevant signal’s energy can be raised by either targeting a larger field of view
(FoV) (hence reducing the spatial resolution) or from a larger band coverage (hence
reducing the spectral diversity).

In this regard, it is typical to distinguish between three different categories of sensors,
listed below in descending order of spatial resolution:

• Panchromatic (PAN): characterized by a single band (monochromatic) acqui-
sition covering a wide spectral domain,

• Multispectral (MS): characterized by a few (typically 3 to 15) spectral chan-
nels,

• Hyperspectral (HS): characterized by hundreds of narrow and contiguous
spectral bands.
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(a) PAN (Panchromatic) (b) MS (Multispectral) (c) HS (Hyperspectral)

Source: Modified from a work licensed under CC 3.0. Original author: Ant Beck

Fig. 3.1. Differences between different spectral and spatial resolution for multi-resolution
imagery, with the depth proportional to the amount of spectral channels. The
portrayed scale ratio between each class is just for illustration purposes, as it is
typically bigger in commercial bundles.

Many high quality commercial sensors, such as QuickBird, IKONOS, WorldView-2
and WorldView-3 are equipped with a platform of PAN and MS sensors working in
the optical range of wavelengths which simultaneously acquire the scene [@9].

The availability of HS data with a simultaneous matched multi-modal acquisition
is somewhat rarer: the now-discontinued Earth Observing-1 provided HS imagery
together with a matched PAN and MS sensor (the latter at the same spatial resolution
of the HS). In the last years, another option has been made available by the spacecraft
Hyperspectral Precursor of the Application Mission (PRISMA), whose platform is
equipped with both an HS sensor and a medium resolution PAN camera [84].

Although the terminology and the application of this work are mostly targeted to
remote sensing imaging systems, the theory is applicable with minor adjustments
also to commercial cameras dedicated to the acquisition of natural images, even for
portable devices that feature monochrome sensors (e.g. some smartphone models
by Huawei) [144].

In this thesis, we typically consider two types of multiresolution sources, which we
define as:

• High resolution image (HRI): characterized by relatively higher spatial reso-
lution and lower spectral resolution,

• Low resolution image (LRI): characterized by relatively lower spatial resolu-
tion and higher spectral resolution,
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and the goal of a sharpening algorithm is to produce a synthetic image with
the spatial resolution of the HRI and the spectral resolution of the LRI. In the
most widespread setup, known as pansharpening, the role of the HRI is played
by the PAN, while the LRI is a MS image [224]. Other configurations are also
available, such as PAN/HS (sometimes known as hypersharpening) [147] and
MS/HS fusion [239].

3.2.2 Multi-channel acquisitions

The most typical technologies of photodetectors for low to mid-cost commercial cam-
eras only allow for the characteristic spectral response allowed by the photodetector
technology, which does not allow to distinguish spectral information. To retrieve
spectral information, most commercial devices are equipped with a set of spectral
filters that limit the spectral response of the photodetector.

Two main strategies are available for filtering the acquisitions: in the multishot
setup, the filter is placed as leading optic, so that the filtering effect is applied to
the whole focal plane, while in the snapshot setup, separate filters are overlaid over
each photosensor. Some examples of both approaches are described in the following
section.

Snapshot setups

The most common solution for multichannel acquisitions, which makes up for the
great majority of available commercial cameras, consists in assigning a specialized
optical filter to each photodetector on the focal plane, as shown in Fig. 3.2a. Those
dedicated filters are taken from a set of given sensitivity, whose response defines the
channel, and arranged through patterns, commonly known as CFA, in the case of red
green blue (RGB) cameras, or multispectral filter array (MSFA), in the most general
case. The most widespread arrangement, known as Bayer pattern [21], is shown
in Fig. 3.2b, and a more in depth analysis of the literature of such arrangements is
provided in Section 3.6.2.

In the raw acquisition, each pixel holds information relative to a single channel, so
the full spectral information is incomplete. This raw product can be modeled as a
degraded version of the full color information, obtained by an element by element
multiplication with a binary mask, as described in Section 3.6.1. The demosaicing
(or demosaicking) is the field of study for the algorithms and techniques to recover
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Micro-Lens

Red Filter Green Filter Blue Filter

Photo-Detector

Substrate

(a) CFA Physical Design

Source: SIGMA Corporation [@4]

(b) CFA Operating Principle

Source: SIGMA Corporation [@4]

(c) Foveon Operating Principle [@4]

Fig. 3.2. Physical scheme and operating principle of snapshot-based spectral filters.
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the full spectral information from the available samples. An overview of the literature
on demosaicing is given in Section 3.7.

A more recent snapshot technique was made available by the Foveon X3 Sensor
technology designed by Foveon Inc. (now Sigma corporation [@4]). Its principle
of operation, shown in Fig. 3.2a, consists of a matrix of photosites composed of
three stacked photodiodes with different spectral sensitivity. The RGB information is
separated thanks to different silicon penetration depths, which, as opposed to what
happens in CFA-based structures, allows to capture the information of all channels
on a single photosite. However, the cross-talk between each layer may cause issues
in terms of color accuracy.

Multishot setups

In the multishot configuration, the filter is applied simultaneously on all the sensors
of the focal plane. This setup requires a series of acquisitions, each of which
corresponds to a specific spectral response.

The filter is positioned before the leading optic and different technologies are
available to change the spectral response of the filter itself. Compared to the
snapshot setup, which gives an intrinsically degraded product compared to the
potentially achievable spatial resolution, no such limitation is present in the multishot
setup. However, some time delay is introduced in order to switch filter between
multiple acquisitions, making this setup sensitive to temporal changes in the scene.
Consequently, this setup is limited to applications whose target is unaltered across
different shots, i.e. if the scene is static and the relative position and angle of view
of the instrument is kept constant. Between each acquisition, the filters can be
switched either through mechanical devices, such as in the case of dichroic filters
mounted on wheels (Fig. 3.3a) or sliders, or electronically, such as in the case of
tunable filters (Fig. 3.3b).

This first setup is quite common for applications such as astronomical observations:
the scene itself changes slightly, but the shots can be co-registered in post-processing.
The second setup is often used for benchmarks, such as some publicly available HS
image bundles: the CAVE dataset by the Columbia University [@2, 237] or the ones
by Harvard [@5, 38], and by TokyoTech [@13, 167].

An alternative setup is given by the colour co-site sampling [141], which defines a
micro-scanning of captures taken with a conventional camera. The micro-scanning
is obtained by moving the camera along the scene so that the focal plane shifts
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Source: Optec Inc.

(a) Dichroic filter wheel

Source: Perkin Elmer

(b) Varispec LCD tunable filter

Fig. 3.3. Different solutions for leading optic-type spectral filters.

by one pixel in one direction for every consecutive shot. If the scene is stable and
the alignment across each shot is carefully controlled, this allows to get the color
information over each pixel.

3.3 Notation

In the following, we denote with an uppercase U a 3-way tensor representation
of an image, whose dimensions represent in order the two spatial and the spectral
dimensions. A specific letter is given between square brackets as superscript to label
the assigned function of each denotation; specifically we denote with:

• U [x] ∈ RNi1×Ni2×Nb the ideal image to reconstruct;
• U [p] ∈ RNi1×Ni2×Nbp the HRI, which e.g. can be a PAN if Nbp = 1;
• U [m] ∈ R(Ni1/ρ)×(Ni2/ρ)×Nb the LRI, which typically represents a MS image;
• U [h] ∈ RNi1×Ni2×Nb a compressed acquisition mask;
• U [b] ∈ RNd1×Nd2×Nb a generic blurring filter.

Here, Ni1 and Ni2 are the amount of pixel rows and columns, respectively, while
Nb and Nbp < Nb are the amount of channels of the LRI and the HRI, respectively.
Finally, ρ denotes the scale ratio between the HRI and LRI, which will be assumed to
be the same in the along-track and across-track directions.

The k-th channel of any of the described variables, which can be seen with the tensor
formalism as the k-th frontal slice, is denoted with U::k, so i.e. U[m]

::k is the k-th
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channel of the LRI. A given pixel of said channel is denoted with a lowercase letter,
i.e. u[m]

i1,i2,k
is the pixel at the (i1, i2)-th position of U[m]

::k .

For each of the listed quantities, the same coefficients can also be arranged in
lexicographic order; this operation, denoted with matr(·), consists in representing
each frontal slice as a vector array, and then concatenating the results along each row.
Its result is denoted with the representative letter of the associated variable, in bold
uppercase, i.e. X = matr

(
U [x]

)
or M = matr

(
U [m]

)
. Formally, this is equivalent

to assign xi1+Ni1 (i2−1),k = u
[x]
i1,i2,k

; the inverse reshaping operation is denoted with
matr−1, i.e. U [x] = matr−1 (X).

With this formalism, we obtain the following lexicographic representation of the
same variables:

• X ∈ RNi×Nb for the ideal product to reconstruct,

• M ∈ R
Ni
ρ2 ×Nb for the LRI,

• P ∈ RNi×Nbp for the HRI,
• H ∈ RNi×Nb for the mask,
• B ∈ RNd×Nb for the filter.

where Ni = Ni1Ni2 and Nd = Nd1Nd2 . With this formalism, the k-th channel is
described as a vector column with a lowercase bold letter, i.e. m:k is the k-th channel
of M, and its i-th element is denoted with the corresponding non-bold letter mik (or
sometimes mi,k).

If the matr(·) operator is applied to an image already expressed in lexicographic
order, the effect is to concatenate all bands together into a single column vector; so
that, i.e., v[x] = matr(X) is a vector array such that v[x] ∈ R(NiNb). The operation is
however denoted as v[x] = vec(X), as the result is a vector, and is formally defined
as: v[x]

i+(k−1)Ni = xi,k.

Given a generic vector a = {ai}i∈[1,... ,Ni], a = 1
Ni

∑Ni
i=1 ai denotes its mean and

std(a) = 1
Ni−1

√∑Ni
i=1 (ai − a)2 its standard deviation (STD).

When an image is extended or decimated by a factor of ρ, this is denoted with
a ↑ and ↓ respectively, so that M↑ = matr

(
U [m↑]

)
stands for the product of a

spatial extension by a factor of ρ applied to M and P↓ = matr
(

U [p↓]
)

stands for a
decimation of the HRI P by the same factor. A low pass filtered version of an image
is denoted with a tilde, so that P̃ = matr

(
U [p̃]

)
is a low frequency version of P.
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Those operations can be also combined together so that M̃↑ is an upsampled version
of M (a cascade of an extension and a low pass filtering), and P̃↓ is a downsampled
version of P (a cascade of a low pass filtering and a decimation).

The symbols � and ⊗ denote the Hadamard (element-wise) and Kronecker product,
respectively, while (·)� denotes the masked version of a variable, i.e. X� = X�H.

The operator ∗∗ denotes a circular convolution product in the spatial domain,
when it is applied between images in their natural representation, and its rigorous
expression is given in eq. (A.1.3). However, as we commonly perform this operation
between images in their lexicographic order we define a shorthand operator ∗ ,
such that:

x:k ∗ b:k = matr
(
matr−1(x:k) ∗∗ matr−1(b:k)

)
= matr

(
U[x]

::k ∗∗ U[b]
::k

)
. (3.3.1)

Additionally, the [·; ·] and [·, ·] operators respectively stand for column and row
concatenation, while [·, ·]p is a generic concatenation along the p-th dimension.

The operations of addition, difference, element by element multiplication (· � ·) and
division ( ··) between arrays with different shapes assume that the array with shorter
dimension is broadcast to match the dimension of the longer one. I.e., m:k −m:k

denotes that the mean of m:k is subtracted from each its elements.

0[N1×N2] and 1[N1×N2] denote aN1×N2 matrices of all zeros and all ones, respectively.
Given a generic vector w, ‖w‖1, ‖w‖2 its `2-norm, std(w) is its standard deviation,
while 〈w,w′〉 and cov(w,w′) are its scalar product and its covariance with a vector
w′ of the same size, respectively. For any matrix W, ‖W‖F denotes its Frobenius
norm.

Given a generic 3-way tensor U the notation ‖U‖p1p2p3 denotes that the norm `p1

is applied over the third dimension, `p2 over the second one, `p3 over the first one,
in this order. I.e, this notation was already employed for the collaborative total
variation (CTV) in Section 2.2.3, for which each of the norms was applied to the
dimensions associated with the gradients, to the channels and to the pixels, in this
order. Similarly, ‖.‖Sp1`p2 similarly denotes a nuclear (also known as Shatten) norm
Sp1 jointly applied over the second and third dimensions, followed by an `p2-norm
operating on the first dimension.
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The operators max(·, ·) and min(·, ·) denote the maximum and minimum between
two scalar arguments, respectively, while max(w) and min(w) denote the maximum
and minimum element of the vector w, respectively.

3.4 Image preprocessing

The multimodality of the data introduces challenges related to the different char-
acteristics of the acquisitions, which have to be related to one another. Many of
such operation have often specific features which depend on the joint character-
istics of each data source, however some basic operations, such as rescaling and
co-registration, are commonly employed in many situations, and are the topic of the
following sections.

3.4.1 Image scaling

In the context of image processing, we often face the situation in which it is necessary
to either increase or decrease the scale of an image; in our context, e.g., it could be
useful to resize a LRI to the scale of a HRI or to find a low-resolution equivalent of
the HRI.

While different choices are available, we consider image resizing as a cascade of
operations over monodimensional arrays; specifically, each of the described operation
is first applied column by column and then row by row.

For the scale reduction, the main requirement is to avoid the aliasing effects which
arise when the Shannon-Nyquist theorem is not verified, which in the context of
image processing, typically shows as moiré patterns, that is, interferences in the
image due to quickly varying intensity levels.

We define as downsampling by an integer factor ρ the cascade of the following two
operations:

• Low-pass filtering: this operation allows to remove the high frequency com-
ponents to satisfy the Shannon-Nyquist,

• Decimation: taking every ρ-th sample.
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The main requirement for the low pass filter (LPF) is to have a monolateral cut-off
frequency of 1/(2ρ), to avoid any overlap between the signals’ replicas which arise
when decimating the image, whose spectra are separated by a digital frequency of
1/ρ. Various strategies can be employed for the choice of the LPF, such as a stationary
wavelet transform (SWT) [94], a Gaussian filter (e.g. matching the modulation
transfer function (MTF) of the sensor [5]) or classical finite impulse response (FIR)
designs such as the ones based on Butterworth or Chebyshev responses. This process
of image downsampling is also shown in Fig. 3.4.

(a) P - Original image (b) P̃ - LPF product (c) Decimation Samples (d) P̃↓

Fig. 3.4. Processing pipeline for the downsampling of a monochromatic image by a factor of
4. In this example, the LPF-effect is given by a Gaussian filter with cutoff frequency
1/4. Fig. 3.4c shows, in green, the selected pixels for the decimation.

Similarly, the upsampling operation can also be split into two parts:

• Expansion (or zero interlacing): In this step a ρ− 1 zeros are interposed in
between samples;

• Interpolation: The obtained image is smoothed via a LPF or by any other
technique that allows to evaluate the samples in the empty spots that were
introduced.

A visual representation of the upsampling process is shown in Fig. 3.5.

If the original signal is a discrete sampling of a band-limited continuous function,
the Whittaker–Shannon interpolation formula allows the perfect recovery of the
continuous function through upsampling. However, the use of this formula is limited
in practice as the resulting filters are infinite lengths, hence the most common
procedure involves convolution products with FIR filters. The most fitting ones for
this situation have a symmetrical response and they are categorized as type I when
they are even length, or type II when they are odd length.
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(a) M (b) M↑ - Expansion (c) M̃↑ - Lagrange
interpolator

(d) M̃↑ - Spline interpolator

Fig. 3.5. Processing pipeline for the upsampling of a multiband image by a factor of 4. The
image is firstly expanded and then either interpolated by a Lagrange polynomial
kernel of order 11 (Fig. 3.5c) or a cubic spline (Fig. 3.5d).

Various kernels can be used for the creation of FIR filters, such as the Lagrange
polynomials [8], which consists in finding the coefficients of a polynomial of a
given order that pass through the given coefficients.

Specifically, let {ri}i∈[1,... ,Ni] be the closest set of known sample points, {ui}i∈[1,... ,Ni]

the associated intensity values, and r be the query point. Each couple of values (ri, ui)
is also sometimes known as breakpoint. The Lagrange polynomial interpolator of
order Ni is given by:

s(r) =
Ni∑

i=1
uisi(r) , (3.4.1a)

si(r) =
∏

k≤Ni
k′ 6=i

r − rk
ri − rk

, (3.4.1b)

which results into a digital filter of length ρ(Ni − 1) + 1 if the image is upsampled
by a factor of ρ. For example, the most common kernel in image processing is for
the order Ni = 3, known as bicubic interpolation, but higher order interpolators
are not uncommon if the computational speed is not limited and the image sizes are
large enough not to generate relevant issues at the boundaries [5].

Computationally, it is also common to employ the so-called piecewise polynomial
interpolation. In the monodimensional case, it consists in estimating the coeffi-
cients of an analytical function at each interval between breakpoints. For example,
for the cubic spline the imposed condition for the interpolators si(r) and si+1(r)
around a given breakpoint (ri, ui) are that they are cubic polynomial (in Hermite
form) and they are continuous up to their second order derivatives. That is, if
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si(ri) = si+1(ri), ∂si(t)
∂t

∣∣∣
r=ri

= ∂si+1(t)
∂t

∣∣∣
r=ri

and ∂2si(t)
∂t2

∣∣∣
r=ri

= ∂2si+1(t)
∂t2

∣∣∣
r=ri

for any

intermediate breakpoint; extra conditions have to be imposed for the boundary
points [205]. Some alternatives are also available, such as the piecewise cubic
Hermite interpolating polynomial (PCHIP), which is very similar to the cubic spline,
but it does not impose the continuity on the second order derivative and instead it
preserves the shape and monotonicity between consecutive breakpoints.

Irregular grid interpolation

When we need to perform an upsampling with the techniques described in last
section, the data points have to be arranged over a regular grid, to allow for the
procedure is to be applied in both direction. However, it is sometimes necessary to re-
sample an image from data points scattered irregularly over a generic bidimensional
grid.

To manage such situations, some different procedures have been developed through
the years. I.e., the grid could be represented as a triangulated irregular network
(TIN), that is, segmented into triangular meshes, whose vertices correspond to the
given data points. Each of those regions can then be resampled with either nearest
neighbour (NN) or linear interpolators.

Another possibility is to employ the radial basis function (RBF) interpolators [35].
Let R ∈ R2×Ni be a matrix such that its i-th column r:i is a 2 element vector
denoting the (vertical and horizontal) coordinates of the i-th sample point, and let
ui be it associated intensities. The RBF defines a function z(·) : R+ → R that whose
value depends only on the distance between the input and some fixed point. The
associated interpolator function at any given coordinate r′ is given by:

s(r′) =
Ni∑

i=1
wiz

(
‖r′ − r:i‖2

)
, (3.4.2)

where the coefficients {wi}i∈[1,... ,Ni] can be obtained by solving the system of equa-
tions:

s(r:i′) =
Ni∑

i=1
wiz (‖r:i′ − r:i‖2) , ∀i′ ∈ [1, ... , Ni] . (3.4.3)
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Typical choices for the RBF are, for a given coefficient ε̌ > 0 and a distance repre-
sented by the scalar t ≤ 0:

z(t) = exp(−(ε̌t)2) Gaussian , (3.4.4a)

z(t) =
√

1 + (ε̌t)2 Multiquadric , (3.4.4b)

z(t) = 1
1 + (ε̌t)2 Inverse Quadratic , (3.4.4c)

z(t) = t2 ln(t) Thin plate spline (TPS) . (3.4.4d)

Other approaches for multivariate interpolation non included in this thesis are also
available, such as inverse distance weighting (IDW), Kriging [244] and irregular
sampling of band-limited images [101].

3.4.2 Registration

The registration phase has the role to fit all sources to the same coordinate system.
This issue is mostly relevant for multiplatform, multitemporal or generally inhomo-
geneous sources (such as for fusing SAR and optical images). Some pre-constructed
commercial image bundles usually do not need this step, as in the last level of the
processing pipeline, they are also available in orthorectified form, which is not only
geometrically corrected but with the elevation of the terrain taken into account.
Even for such user-ready products, however, some unpredictable effects, such as
small variations in the viewpoints and elevation of the satellite, have to be corrected
on a case by case basis.

Various techniques have been developed during the years for the joint alignment of
images, which is known as co-registration. The co-registration typically involves
the following steps [95]:

• Preprocessing: It is an initial preparation of the images to identify common
features; i.e. when there is a LRI/HRI combination, it could be useful to rescale
the LRI to match the ground sample distance (GSD) of the HRI;

• Feature Selection: Identification of a set of common features between the
different sources; in the case of sharpening, the size of the features have to
be large enough to be identifiable in the LRI, but small enough to allow to
identify their extension on the scene with sub-pixel precision. I.e. the selected
features may be corners of detected edges;
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• Feature Correspondence: Identification of the the coordinates on both images
associated with the shared features; this operation is straightforward for point
features (e.g. a corner reflector), but can be more involved in other situation,
such as for determining a centroid for extended sources, or the boundary
points for line features (e.g. a bridge);

• Determination of a transformation function: Given the correspondence
of the coordinates across the different images, it is necessary to identify a
(typically analytic) transformation function to adapt the unregistered image
to the geometry of the reference one. The choice of this function is strongly
dependent on the characteristics of the image.

• Resampling: Given the transformation to the new coordinates, a resampling is
often necessary to generate the new samples in the geometry of the reference
image. I.e., the translated original points may have been translated to an
irregular grid and an interpolation is necessary to obtain the contributions
over a regular grid.

Point mapping is a special case of this framework, in which the matching features
across the images to register are made of point coordinates. The geometry transfor-
mation functions are typically categorized as either rigid transformations, which
consist of just translations and rotations, and non-rigid transformations. The latter
category includes affine transformations, which preserve lines and parallelism, and
nonlinear transformations, such as TPS or polynomial transformations of order at
least equal to 2 [75].

3.5 Sharpening algorithms

The sharpening problem consists in estimating a synthetic image X̂ that ideally
matches the spatial resolution of a given HRI P and the spectral resolution of a LRI
M. This fusion scheme is necessary, as both technological and physical limitations
(e.g., signal to noise ratio of the acquisitions) prevent the acquisition of a single
image of both high spatial and spectra resolution. To simplify the exposition, we
present in this section a brief introduction to the approaches developed in the
literature for the classical problem of PAN/MS fusion, known as pansharpening,
and p ≡ P is a column vector which describes a monochromatic image.
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In classical approaches, the generic k-th band of the fused signal x̂:k is obtained
as:

x̂:k = m̃↑:k + g:k � (p− j:k) , ∀k ∈ [1, ... , Nb] , (3.5.1)

where g:k ∈ RNi are known as injection coefficients and the difference p − j:k

describes the details to be injected in the upsampled version m↑:k of the LRI.

Depending on the method to obtain the term j:k, it is possible to define three different
classes of approaches for classical pansharpening:

• Component substitution (CS): if j:k acts as an intensity component of the
LRI, that is if it is a linear combination of all channels of the upsampled LRI,

• Multiresolution analysis (MRA): if j:k is a low pass filtered version of the
HRI,

• Hybrid methods: if j:k contains a combination of information both from the
LRI and the HRI.

An illustrative flowchart for the CS and MRA approaches is shown in Fig. 3.6. A
wide variety of approaches are available to define the implementation of the relevant
coefficients [224], for which we provide a summary of the relevant literature in the
following sections.

M

Upsampling

M↑

Intensity Component

−
+

P Details

×

Injection
Coefficients

+
+

X̂

×

Weighting
Coefficients

(a) CS (Component substitution)

M

Upsampling

M↑

Low Pass Component

−
+

P Details

×

Injection
Coefficients

+
+

X̂

Low Pass
Filtering

(b) MRA (Multiresolution analysis)

Fig. 3.6. Different pipeline of operations of classical pansharpening approaches.

A special case of the relation (3.5.1), which is typically used as baseline for the
performances, is when the injection coefficients are identically equal to zero and the
sharpened image is simply equal to the upsampled version of the LRI; this method is
denoted with EXP.
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The two main strategies of injection coefficients which will be used in this work are:

g:k =
m̃↑:k
j:k

High pass modulation (HPM) , (3.5.2a)

g:k = cov(m:k, j:k)
std2(j:k)

Context based decision (CBD) . (3.5.2b)

The HPM method is also known as multiplicative scheme, as the resulting sharpened
image is obtained as:

x̂:k = m̃↑:k +
m̃↑:k
j:k
� (p− j:k) = m̃↑:k �

p
j:k

, (3.5.3)

while the injection coefficients in CBD can be seen as obtained by a Gram-Schmidt
(GSA) orthogonal decomposition of the details, if they are the same for each chan-
nel.

3.5.1 Component substitution methods

According to the rationale behind the CS approach, the associated intensity compo-
nent is given by:

j:k =
Nb∑

k′=1
wklm̃↑:l , (3.5.4)

where W = {wkl}k,l∈[∈,... ,1]Nb is a square matrix containing the weighting coeffi-
cients.

The two CS methods that will be employed in this thesis were chosen according to
the best performances in terms of quality of the final product [224].

In the GSA-based method, the injection method is given by eq. (3.5.2b). For the
Gram-Schmidt adaptive (GSA) method [6] in particular, the weighting coefficients
are given by solving the following regression problem at reduced resolution:

wk: = arg min
w′

∥∥∥∥∥p̃−
Nb∑

l=1
w′lm̃

↑
:l

∥∥∥∥∥
2

, ∀k ∈ [1, ... , Nb] , (3.5.5)

where w′ = {w′l}l∈[1,... ,Nb].
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In the band-dependent spatial detail (BDSD) method [86] it is typical to redefine
the complementary variables S =

[
p, m̃↑:1, ..., m̃

↑
:Nb

]
and its associated low resolution

version S↓ = [p̃↓, m̃:1, ..., m̃:Nb ], for which the sharpened channel can be obtained
as:

x̂:k = m̃↑:k + SS↓†(m:k − m̃:k) , (3.5.6)

where S↓† ∈ R(Nb+1)×Ni
ρ2 is the Moore-Penrose pseudo-inverse of S↓.

CS methods tend to prioritize the accuracy of the spatial information compared to
the spectral information, so that the product has a good visual appearance. They are
also robust to misregistration errors and aliasing [19].

3.5.2 Multiresolution analysis methods

In the multiresolution analysis (MRA) methods, the intensity component j:k is given
as a LPF version of the HRI.

Specifically, for the à trous wavelet transform (ATWT) method [178], this low
pass component is obtained as a SWT transformation of the original image (see
Section 2.2.2), ignoring all high pass components. The specific implementation is
obtained with a convolution product of each column and each row with a 5-tap filter
[1, 4, 6, 4, 1]/16, repeating the process log2(ρ) times.

In the MTF-matched generalized Laplacian pyramid (MTF-GLP) methods [7], the
low pass filter is obtained with a convolution product by a Gaussian filter matched
to the MTF. Typically, this filter is constructed with the constraint that the gain
at the Nyquist cutoff frequency matches the one given by the specifics of the LRI
sensor (typically around 0.3 for most commercial sensors). Two different versions
of this algorithm are employed in this thesis, denoted with MTF-GLP-HPM and
MTF-GLP-CBD, based on the injection scheme (either CBD or HPM, respectively).

MRA methods tend to preserve the accuracy of the spectral information over the
spatial details and are robust to temporal misalignments (e.g. changes in the
scene) [19].
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3.5.3 Bayesian methods

The Bayesian framework provides a possible alternative method to model the
fusion LRI and HRI as an inverse problem. The model was first proposed by Hardy et
al. [116] and successively employed in a variety of fusion approaches [231, 209].

The method is based on describing the available acquisitions as degraded version
of an ideal reconstruction X. Mathematically, this is represented by the stochastic
process:

P =Ap(X) + E[p] (3.5.7a)

M =Am↓(X) + E[m] (3.5.7b)

where P and M define the HRI and the LRI product, respectively, while E[p] and
E[m] are additive realizations of a specific noise model relative to their associated
acquisition systems.

The direct model operators are defined as follows:

• Ap(·) is a spectral degradation operator. Typically this is obtained as a
linear combination of channels, similarly to the description of the intensity
component in eq. (3.5.4) for the CS pansharpening methods. Specifically the
k-th channel p[sim]

:k of P[sim] = Ap(X) is given by:

p[sim]
:k =

Nb∑

l=1
wklx:l (3.5.8)

where {wkl}k∈[1,... ,Nbp ]
l∈[1,... ,Nb]

are once again weighting coefficients. The generic

coefficients wkl is commonly obtained as the relative overlap between the
spectral response of l-th band of the LRI with respect to that of the k-th band
of the HRI.

• Am↓(·) is a matched downsampling operator. Similarly to what described
in Section 3.4.1, this operation is typically obtained as a cascade of a low
pass filter and a decimation by a factor ρ. The low pass filtering option is in
charge of the spatial degradation and it can be performed with a convolution
product with a filter whose expression matches the MTF of the sensor (e.g. a
MTF-GLP filter). The decimation is then performed by taking every ρ-th value.
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Both Ap(·) and Am↓(·) are linear operators, as Ap is simply a linear combination
of given channels and Am↓ is a cascade of a convolution and a decimation, which
can both be represented as matrix multiplication, as as shown in Appendix A.1.2
and A.1.4.

If we assume that the noise is distributed as additive white Gaussian noise (AWGN),
then, as described in Section 2.1.2, the problem (3.5.7) is equivalent to minimizing
an objective function:

X̂ = arg min
X∈Ex

1
2 ‖Ap(X)−P‖2F + λ̌m

2 ‖Am↓(X)−M‖2F + λ̌ g(L(X)) , (3.5.9)

where λ̌m and λ̌ are regularization coefficients, used to weight each term of the
regularization, while ‖ · ‖F denotes the Frobenius norm.

Typically, in the context of PAN/HS fusion, the operator L(·) is chosen to be a
subspace transformation that reduces the redundancy of the data of the HS, such as
the principal component analysis (PCA) [72].

Various strategies can be employed for the regularization, such as applying the
vector total variation (VTV) (Section 2.2.3) in the transformed domain L(X), which
is known as hyperspectral superresolution (HySure) [209]. The Bayesian with
naive regularization (BayesNaive) [232] assumes instead that the regularizer
function g(·) is quadratic and has a computationally efficient implementation through
the solution of a Sylvester equation [233].

3.5.4 Other sharpening methods

A variety of other techniques and approaches are present in the literature for the
sharpening of image, which we consider outside the scope of this thesis. Firstly, it
is possible to extend classical methods to MS/HS fusions, i.e. with dedicated band
selection approaches from the MS to act like a single band HRI [192].

Other methods include the coupled nonnegative matrix factorization (CNMF)
[238], which is particularly suited for the sharpening of HS images; both the LRI
and HRI are alternately unmixed through nonnegative matrix factorization [10]
to estimate the spectral signatures of endmembers from the former and the high-
resolution abundance maps from the latter.
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More recently, more sophisticated techniques have been proposed based on deep
learning techniques to extract features from the HRI and LRI and inject them in the
fused image through a convolutional neural network [157, 241].

3.6 Color filter arrays

In this section we present a mathematical direct model that is able to describe
the direct acquisition of the CFA (Section 3.6.1), which represent one of the most
widespread solutions for multiband acquisition for commercial cameras. We also
present the most common designs available commercially and in the literature (Sec-
tion 3.6.2). Raw acquisitions of CFA do not simultaneously provide the information
relative to all channels for every portion of the scene, which demands a reconstruc-
tion of the full image with techniques known as demosaic. These techniques are the
topic of 3.7.

3.6.1 Direct acquisition model

In the context of digital cameras, a CFAs defines a matrix of spectral filters of
photosensors, chosen from a subset of possible spectral responses. In physical terms,
let us focus the analysis on a generic i-th detector, which captures the radiant
intensity contained within a given solid angle Ωi.

Let I[t]
λ (Ωi) denote the spectral radiance transmitted to the focal plane, which is a

function of the wavelength λ. While more details on the physical significance of
this quantity are provided on Section 5.2.3, at this stage it is sufficient to state each
photosensor has an assigned filter. The spectral response of this filter is chosen within
an assigned set {ξk(λ)}k∈[1,... ,Nb] of loosely bandpass filters over non-overlapping
wavelengths.

The measured radiant intensity yi at the i-th photosensor is given by:

yi =
∞∫

0

I
[t]
λ (Ωi)ξH(i)(λ) dλ , (3.6.1)

where H(i) : i ∈ [1, ... , Ni] → [1, ... , Nb] is an assignation function that associates
the generic class of spectral responses to the i-th photosensor. I.e., if the i-th pixel
is assigned to a green filter, whose spectral response is ξ2(λ) is a passband filtered
centered at the green wavelengths, then H(i) = 2.

3.6 Color filter arrays 69



The vector y = {yi}i∈[1,... ,Ni] can be interpreted as a selection of samples from an
ideal multiband acquisition X ∈ RNi×Nb , whose coefficients xik are given by:

xik =
∞∫

0

Iλ(Ωi)ξk(λ) dλ , (3.6.2)

which consequently allows to interpret y as obtained from a masking operation such
as:

y =
Nb∑

k=1
x:k � h:k , (3.6.3)

where H ∈ RNi×Nb is a binary mask, whose coefficients are:

hik =





1 , if H(i) = k ,

0 , otherwise .
(3.6.4)

From another perspective, the position of the 1 in the row vector hi: defines which
channel is selected by the i-th photosensor.

The 3-dimensional array U [h] = matr−1(H) is typically represented as a color-coded
map: a unique color is assigned to each available class of sensors (or equivalently to
a certain channel), and the pixels of that class are colored accordingly. An example
of such representation is shown in Fig. 3.8.

In the literature it is also common to distinguish between CFA, in the case the
spectral response is relative to RGB components, or MSFA, in the case they are
associated with general spectra. It is possible to extend this framework to the case
for which H is not binary, for which y can be seen as a linear combination of spectral
responses from different channels.

The problem of demosaicing can then be seen as finding the most accurate estima-
tion X̂ of X given y.

3.6.2 Mask design

Over the course of the years, a great variety of mask designs have arisen either in
commercial venues and in scientific endeavors. In this section, we discuss some
general design rules, based on periodic and pseudo-random patterns.
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General design principles

The design phase of MSFA filters are typically not independent from the envisioned
demosaicing algorithms to be implemented for the reconstruction of the full color
image.

As the accuracy of the reconstructed product is a compromise between the spectral
and spatial resolution, the mask design approaches can prioritize the optimization
of either the former or the latter, depending on the final users’ demands.

• Spectral resolution optimization: In the first case, the different set of filters are
distributed as much as possible uniformly over the whole pixel matrix. More
specifically if we define with Lk the minimum distance among elements of the
grid belonging to the k-th spectral characteristic, one strategy could be to find
an arrangement such that

∑Nb
k=1 Lk is minimized. This approach was studied

in [46] for three bands (3.8k) and can be extended to the pattern in Fig. 3.8j
in the case of four bands, where the yellow denotes the additional band (e.g.
a near infrared (NIR) channel). These patterns will be denoted as maximum
distance (MAXDIS) in the following.

• Spatial resolution optimization: In the second scenario, a widespread approach
is to define a dominant band, which appears the most frequently in the
pattern. The main goal of this approach is that the dominant band allows for
an easier recovery of the spatial component, which can be used to guide the
recovery of the samples from the remaining bands, exploiting their spectral
correlation [167].

The binary tree (BT) procedure [162] allows to design mask patterns that are
versatile for either strategy. The procedure, whose algorithm is described in detail
in the Algorithm 1 consists in sequentially splitting the available slots into two
subsections, deciding the channel assignation based on a binary tree. The tree can
either dictate for each channel to be approximately uniformly distributed, which
is the approach of uniform binary tree (UBT) in Fig. 3.7a, or to keep a single
dominating band to be assigned to the first split section such as in the dominant
binary tree (DBT) in Fig. 3.7b. Fig. 3.7 offers a visual representation of some
examples of BTs, together with their generated pattern.

Periodic masks

Periodic CFA patterns make up for the vast majority of existing digital cameras, with
the most common design dating back to a patent from Bryce Bayer of Eastman
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Algorithm 1: Binary tree (BT) method for the creation of masks [162].

Result: A square matrix U[h], whose elements are in [1, ... , Nf ] and define the
index of a set of assignation classes {ξk}k∈[1,... ,Nf ]

Inputs:
• A binary tree (e.g. as shown in 3.7) with Nk levels and Nf leaves (in a binary

tree, each node has at most 2 children)

Definitions:

• Qp: label of the parent node
• Qc1: the label of the first child node
• Qc2: the label of the second child node

Initialization:

• Assignation matrix: F(1) ← 1
• Label of the root node: Qp ← 1
• Current node: q ← 1
• Current level: k ← 1

while q ≤ Nf do
foreach node at level k do

Define the current node as the parent node
Qc1 ← Qp
if the parent node has 2 children then

Qc2 ← q

F′ ← F(q)

if at most one element of F(q) is equal to Qp then
Substitute the element of F′ equal to Qp with Qc2

F(q+1) ←
(

F′ F(q)

F(q) F′
)

else
Substitute one single element of F′ equal to Qp with Qc2
F(q+1) ← F′

end
q ← q + 1

end
end
k ← k + 1

end
return U[h] ← F(Nf )
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Fig. 3.7. Two examples of a binary tree and the associated masks generated truncating the
tree at the third and at the fourth level.

Kodak [21]; the Bayer filter is a 2 × 2 periodic pattern featuring RGB bandpass
filters arrangement shown in Fig. 3.8a. The green filters were originally chosen to
have twice the representation compared to their red and blue counterparts to ensure
that the green component may be reconstructed more accurately, in accordion to the
wavelength sensitivity of the human eye. This design is a special case of the result of
DBT pattern generation algorithm with three leaves. Since then, many other RGB
designs have been proposed, both in patents (such as Yamanaka’s [236] in Fig. 3.8b)
and in scientific publications (e.g. the proposition from Lukac [152] in Fig. 3.8c).

The Quad Bayer pattern shown in Fig. 3.8e is a variant of the Bayer filters, but with
2 × 2 square patterns being assigned to the same filter. This design was recently
manufactured by Sony to be included in the IMX250YMR sensor. While at first
blush this design may seem not to obey the principles described in Section 3.6.2,
its goal is to provide more flexibility for different acquisition modes. In conditions
of low lighting, the photons incident on each 2 × 2 square may be combined to
emulate a classical Bayer filter, and consequently raise the signal to noise ratio
(SNR). Additionally, this designs allows to reduce the area on the silicon for each
photosite, allowing for higher spatial resolution in normal conditions.
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The uniform mask design are a common alternative for periodic MSFA mask
designs, made up of non-redundant periodic rectangles (with no dominant band),
such as in the case of Fig. 3.7c and 3.7d.

Many other patterns were proposed, e.g. by employing dyes that work in the cyan
yellow magenta (CYM) color space instead of the classical RGB. Some designs
include "white" pixels, characterized by a wide-band filter (or more commonly, no
filter, so that the spectral response matches the one of the photosensor) 1; some
examples of this approach include the commercial cameras such as Teledyne Onyx
(Fig. 3.8f) and various patents by Kodak (Fig. 3.8g to 3.8i).

Pseudorandom masks

While deterministic masks are the standard in commercial cameras (with the Bayer’s
mask being the most widespread), recent studies have shown potential in employing
random patterns. In [12, 13], the authors investigate the effectiveness of random
binary masks, by proposing an MSFA with a completely randomized mosaic and a
customized demosaicing algorithm, which requires a training phase.

In the compressive coded aperture spectral imaging (CASSI) approach, specif-
ically in its single dispersion version (SD-CASSI) shown in Fig. 3.9, each band is
sequentially shifted by one pixel in the horizontal direction through a dispersive
element (e.g. a prism) and then filtered through a coded aperture, typically realized
with digital micromirror device (DMD), which emulates the behaviour of a binary
mask. Each filtered channel is finally combined over a shared focal plane array
(FPA).

In mathematical terms, this acquisition can be expressed as a modified version of
eq. (3.6.3), as shown below:

U[y] =
Nb∑

k=1

([
U[x]

::k �U[h]
::k , 0[Ni1×(Nb−1)]

])
→(k−1)

, (3.6.5a)

y =
Nb∑

k=1

([
x:k � h:k; 0[Ni1 (Nb−1)×1]

])
↓((k−1)Ni1 )

, (3.6.5b)

1Wideband pixels are commonly known as panchromatic in the CFA literature; nonetheless, we
denote them as wideband or "white" pixels not to generate confusion with sensors characterized by
higher spatial resolution.
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Fig. 3.8. Various choices for RGB CFA patterns. The pixels are labelled with the initial of
their associated color filter. The masks in Fig. 3.8f to 3.8i include a wide-band
sensor, labelled with "W". The cyan dotted outline delimits the periodicity.
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in its natural and lexicographic representation, respectively. The final acquisition
U[y] ∈ RNi1Ny2Nb features more rows than the product to reconstruct, due to the
shifting effect introduced by the dispersive element, represented by the operators
(·)→k and (·)↓i, which denote a circular shift by k columns on the right and by i rows
below, respectively. Typically, the masks h:k are chosen to be random binary masks,
and equal for each channel, as it allows for easy practical implementation, as the
DMD does not have to switch their coded aperture in a single acquisition. The origi-
nal paper proposes to reconstruct the full spectral image with a Bayesian framework,
by employing a sparsity inducing regularizers, with a wavelet transformation on
the spatial dimensions and a discrete cosine transform (DCT) transformation on the
spectral one [14].

Source: [14]

(a) Physical realization

Source: Adapted from [14]

(b) Acquisition model

Fig. 3.9. Single dispersion CASSI prototype and its acquisition model.

3.7 Demosaicing algorithms

The goal of a demosaicing method is to recover a full band image, given an acquisi-
tion by an optical system involving either a CFA or a MSFA.

Mathematically, the instrument’s readout y ∈ RNi is taken over a FPA with Nb

different kinds of filters, and the reconstructed product x̂ ∈ RNi×Nb has to contain
the full spectrum information at each pixel.

In this section we present a brief discussion of the demosaicing techniques proposed
in the literature, without any claim of exhaustivity, as we give priority here on sum-
marizing the general ideas behind various classes of approaches instead of detailing
each procedure. This section also contains some preliminary considerations to es-
tablish a mathematical link between demosaicing methods and classical sharpening
methodologies.
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3.7.1 Basic operations

This section’s goal is to describe some basic definitions and operations that are
common to a variety of demosaic approaches.

The discussion is limited here to acquisitions taken with MSFAs patterns described
by binary masks with a sum-to-1 condition in the spatial domain (

∑Nb
k=1 hik = 1, for

all i ∈ [1, ... , Ni]), so that each pixel is uniquely assigned to a single filter.

We define sparse channel Y� = y � H the Hadamard product between the ac-
quisition and the mask. The operation is mathematically consistent as long as we
broadcast the acquisition in the spectral dimension. In other words, the k-th channel
y�

:k of Y� is rigorously defined as:

y�
:k = y� h:k . (3.7.1)

The result y�
:k is sparse in the sense that it is zero everywhere, except for the pixels

assigned to the k-th filter, where it is equal to the original acquisition.

In mathematical terms, as proven in the Appendix A.1.3, Y� is equivalent to the
adjoint of the masking operation (3.6.3), applied to y.

If the direct acquisition model is fully deterministic, the sparse channel y:k can
be interpreted as a subsampled version of the ideal channel x:k that we aim to
reconstruct. By just exploiting the spatial correlation of each channel, it is hence
possible to obtain a naive demoisaiced product through the interpolation of each of
the sparse channels.

The weighted bilinear (WB) [30] is one of such methods, which implements a
linear interpolator. Let us define a uniform mask be defined as the concatenation of
non-redundant periodic rectangles of size Nb1 ×Nb2 such that Nb = Nb1Nb2 . In this
case let:

c(Nb) = 1
2Nb − 1[1; 2; ...;Nb − 1;Nb;Nb − 1; ...; 2; 1] (3.7.2)

be a column array that implements a linear kernel. The bilinear interpolation filter
is then given by the Kronecker product:

U[b]
::k = c(Nb1 ) ⊗ cT

(Nb2 ) , ∀k ∈ [1, ... , Nb] . (3.7.3)

The WB estimation ỹ�
:k (denoted with a tilde because it is equivalent to a low pass

filtering) is then given by the circular convolution product:

ỹ�
:k = y�

:k ∗ b:k . (3.7.4)
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where ∗ is the operator defined in eq. (3.3.1) and b:k = matr
(
U[b]

::k

)
.

In a more general case, the interpolation filter b:k can be different for each channel
and even not resulting from a Kronecker product; in the most widespread example,
applicable to acquisitions taken by a standard Bayer filter camera, each missing
sample is obtained as a weighted sum of the closest available neighbours, which
yields the following filters [109]:

U[b]
::1 = 1

4




1 2 1
2 4 2
1 2 1


 , U[b]

::2 = 1
2




0 1 0
1 2 1
0 1 0


 , U[b]

::3 = 1
4




1 2 1
2 4 2
1 2 1


 , (3.7.5)

relative to the red, green, and blue channel, respectively.

Another technique for band indipendent interpolation is the binary tree-based
edge-Sensing (BTES) [161], which performs a progressive estimation of missing
samples for masks generated with binary trees [162], although the interpolation
weights are locally different as they follow a custom edge sensing approach.

Finally, if the available samples are unevenly distributed, such as in the case of the
pseudo-random masks of Section 3.6.2, ỹ�

:k can be obtained with any of the irregular
grid interpolation methods shown in Section 3.4.1, such as the TPS RBF.

3.7.2 Spectral difference methods

The spectral difference (SD) techniques are a subset of demosaicing methods based
on the injection of complementary spectral information from all interpolated sparse
channels.

Let d[l]
:k describe the difference between the k-th sparse channel and the spectral

component of the l-th channel of the pixels assigned to the k-th channel:

d[l]
:k = y�

:k − ỹ�
:l � h:k , (3.7.6)

and let d̃[l]
:k = d[l]

:k ∗ b:k be its interpolated value. The SD estimation is then given
by:

x̂:k =
Nb∑

l=1

(
y�

:l + d̃[l]
:k � h:l

)
. (3.7.7)
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which can also be rewritten as:

x̂:k =
Nb∑

l=1
y�

:l +
((

y�
:k − ỹ�

:l � h:k
)
∗ b:k

)
� h:l (3.7.8a)

= ỹ�
:k +

(
y−

Nb∑

l=1

((
ỹ�

:l � h:k
)
∗ b:k

)
� h:l

)
(3.7.8b)

as a result of eq. (3.7.1) and the relationship y =
∑Nb

l=1 y�
:l �h:l, due to the structure

of the masks we are considering. The expression (3.7.8) showcases how the SD
estimation can be seen as an injection of the details (y−j:k) in the interpolated sparse

channel ỹ�
:k; the term j:k =

Nb∑
l=1

((
ỹ�

:l � h:k
)
∗ b:k

)
� h:l is a linear combination of

the spectral information from the other channels, similarly to what the CS class
performs in the context of fusion methods (Section 3.5.1).

An extension of this method, known as iterative spectral difference (ItSD) [165],
consists in iterating this procedure by taking into account that bands with closer
central wavelenghts are more likely to show higher correlation than the rest.

3.7.3 Residual interpolation methods

The residual interpolation (RI) methods are a particular class of demosaicing algo-
rithms for the reconstruction of acquisitions with a dominant band, denoted with
the index k′. I.e., for the case of a Bayer filter, for which the green filter has double
the occurrence compared to the other two colors, we have k′ = 2.

The RI method is very similar to the case of a SD demosaicing procedure, injecting
in the naive spatial interpolated estimation, the complementary spectral information
just from the dominant band, or in other words:

x̂:k =
(
y�

:k′ + d̃[k′]
:k � h:k′

)
. (3.7.9)

This procedure is shown in Fig. 3.10a.

The sparse channel difference d[k′]
:k , which for SD was defined in eq. (3.7.6), is

substituted in RI methods with the residual:

d:k = y�
:k − y̆:k , (3.7.10)
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(b) Residual interpolation

Fig. 3.10. Different procedures for the demosaic of a CFA camera acquisition with with a
dominant band. The figure shows the demosaicing of the red channel with green
used as guide.

which is the difference between the sparse channel and a guided interpolation
y̆:k = gGF (y�

:k, ỹ:k′), obtained by setting up a guided filter [118]. The flowchart of
this method is shown in Fig. 3.10b.

The specific definition of the guided filter has stemmed different variations on this
algorithm in the literature, such as the minimized-Laplacian residual interpolation
(MLRI) [133], where the guiding procedure is performed by minimizing the energy
of the Laplacian of the image and the adaptative residual interpolation (ARI) [166],
which evolves on the previous concept by introducing an iterative procedure. If
x(0)

:k is the product of the MLRI, the estimation x(q)
:k is given by applying the same

algorithm, except for the expression of the guided filter gGF (y�
:k, x̂

(q−1)
:k ), with the

estimation at the previous iteration x̂(q−1)
:k as guidance.

The RI procedure was also proposed for the reconstruction of NIR channels through
the removal of a subset of the filters from a standard Bayer pattern [215].

3.7.4 Intensity difference methods

The intensity difference (ID) methods are based on constructing a pseudo-panchromatic,
containing the common details available in all sparse channels, to inject in the naive
interpolation.
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The pseudo-panchromatic is typically defined as a convolution product in the form:

p = y ∗ b′ (3.7.11)

where b′ is an averaging filter that provides a smooth image from the mosaiced
acquisition. For the sake of exposition, we illustrate here a simple procedure
to construct the filter b′ which is applicable to masks made up of periodic non-
redundant rectangle of size Nb1 × Nb2 , but more sophisticated approaches are
available [164].

Let c′(Nb) be a column array acting as averaging kernel

c′(Nb) =





1
Nb

1[Nb×1] if Nb is odd
1

Nb+1 [1; 2 · 1[(Nb−1)×1]; 1] if Nb is even
(3.7.12)

and the associated averaging filter U[b′] = matr−1 (b′):

U[b′] = c′(Nb1) ⊗ c′T(Nb2) . (3.7.13)

The resulting ID estimation is then given by:

x̂:k = p +
(
y�

:k − (p� h:k)
)
∗ b:k (3.7.14a)

= ỹ�
:k + (p− (p� h:k) ∗ b:k) (3.7.14b)

which can be interpreted as adding to the pseudo-panchromatic the sparse difference
y�

:k − (p� h:k) interpolated to estimate the missing samples. Alternatively, this can
be interpreted as injecting into ỹ�

:k the details p−(p� h:k) ∗ b:k, which are obtained
by subtracting from p its low pass component (p� h:k) ∗ b:k, similarly to what is
performed in the MRA fusion methods (Section 3.5.2).

This iterative intensity difference (ItID) [163] is an extended version of the previ-
ous procedure, where the pseudo-panchromatic is re-evaluated at each successive
iteration as a weighted average of the current full channel estimation.

3.7.5 Other methods

Other than the discussed methods, the vast literature on demosaicing includes var-
ious other alternatives. The multiscale gradients (MSG) [126] provides a quick
noniterative procedure applicable to acquisitions which employ a Bayer mask, which
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is based on the calculation of image gradients at different scales. In the discrete
wavelet transform (DWT) method [228], each interpolated sparse channel is de-
composed with a wavelet transform and its high-filter component is substituted
with that of the dominant channel, if available, or generically the sharpest one.
In another derived approach [164], the high filter component is instead injected
by a pseudo-panchromatic image, such as the one obtained in eq. (3.7.11). Some
authors have also proposed to solve this problem by setting up a Bayesian inference
framework; in these approaches the reconstructed image is obtained by solving the
problem:

X̂ = arg min
x

1
2 ‖A(X)− y‖22 + λ̌ g(L(X)) (3.7.15)

where A(·) is the direct model that describe the mosaicing process of eq.(3.6.3),
g(·) is a generic regularization function, L(·) is a linear operator and λ̌ is the
regularization parameter. I.e., such approach was employed for the inversion of
compressed acquisitions acquired by the CASSI, for which eq. (3.7.15) is set as
a least absolute shrinkage and selection operator (LASSO) framework, with the
sparsity inducing operator L(·) being a wavelet transformation in the spatial domain
and a DCT transformation in the spectral domain [14]. More recently, patch-based
and convolutional neural network (CNN)-based approaches [34, 214, 67] showed
even more impressive performances.

3.8 Validation

To evaluate the quality of a reconstruction technique, it is often necessary to compare
the obtained product with a reference.

I.e. for a classic pansharpening problem such as the one described in Section 3.5,
when the PAN and MS to fuse are given with a certain GSD Lg and ρLg, respectively,
the reference should be given by an MS whose GSD is equal to Lg. I.e. for cameras
mounted on unmanned aerial vehicles (UAVs), those references could be obtained
by taking a different acquisition at a lower altitude, assuming the scene has not
changed.

However, it is a common occurrence that this reference is not available, so that the
validation has to be performed over a simulated acquisition. Let X ∈ RNi×Nb be a
multiband image that is representative of the products we would want to achieve,
and A(·) a given model of the acquisition system. In this validation framework,
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the simulated acquisition is given by y[sim] = A(X), whose format depends on the
specific acquisition system.

The reconstruction algorithm, that is the object of our test, is then performed as
usual over the simulated acquisition y[sim], ignoring the knowledge of X, to obtain
an estimation X̂ of the desired product.

Finally, the performances of the algorithm are evaluated by comparing X and X̂
with a set of quality indices that measure the similarities among the two, according
to a given criterion, which are described in Section 3.8.1.
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Fig. 3.11. Block scheme pipeline of the operations for the validation of the reconstruction
algorithms for the case of demosaicing and data fusion. The monochromatic
acquisition y[sim] is shown as a coloured mosaic for the sake of exposition.

This procedure can be adapted to any optical system with a known direct model,
such as in the case of the assessment of demosaicing or fusion algorithms, which are
shown in Fig. 3.11. In the case of fusion, the simulated acquisition consists in both a
LRI M[sim] and a HRI P[sim], which are obtained as spatial and spectral degradations
of X, respectively.

However, in the context of fusion algorithms, an alternative procedure is also com-
mon, known as Wald’s protocol or reduced resolution quality assessment [227];
in this case, the P[sim] is not obtained from X, but instead as downsampling from a
HRI at a higher resolution, similarly to how M[sim] is obtained from X, but whose
spatial degradation is obtained with filters match the point spread function (PSF) of
the HRI instead of the LRI.
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3.8.1 Quality indices

Let X = {xik} i∈[1,... ,Ni]
k∈[1,... ,Nb]

and X̂ = {x̂ik} i∈[1,... ,Ni]
k∈[1,... ,Nb]

be the reference and the recon-

structed image, respectively. We present here a list of the quality indices employed
in this thesis to compare their characteristics.

• Mean absolute error (MAE): It is defined as the mean absolute error between
X̂ and X:

MAE := 1
NiNb

Ni∑

i=1

Nb∑

k=1
|x̂ik − xik| (3.8.1)

• Root mean square error (RMSE): It is defined as the STD of the error X̂ and
X:

RMSE := RMSE
(
X, X̂

)
=

√√√√ 1
NiNb

Ni∑

i=1

Nb∑

k=1
(x̂ik − xik)2 (3.8.2)

• Peak signal to noise ratio (PSNR): The PSNR is a derived indices from the
RMSE, which evaluates the logarithmic difference between the maximum
available power of a signal and the distortion (noise) power. It is defined as:

PSNR := 20 log10

(
max(X)
RMSE

)
, (3.8.3)

where max(X) is the maximum possible intensity value of X.

• Relative dimensionless global error in synthesis (ERGAS) [226]: It is a
specific index for the quality assessment of multimodal fused images with a
scale ratio ρ between the HRI and the LRI:

ERGAS := 100
ρ

√√√√ 1
Nb

Nb∑

k=1

RMSE (x:k, x̂:k)
x̂:k

(3.8.4)
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• Spectral angle mapper (SAM) [242]: Let each pixel’s spectral component be
described by an Nb-dimension vector. The SAM is defined as the average angle
between the vector associated with the reference and the estimated image:

SAM := 1
Ni

Ni∑

i=1

〈xi:, x̂i:〉
‖xi:‖2 ‖x̂i:‖2

= 1
Ni

Ni∑

i=1

Nb∑
k=1

xikx̂ik
√√√√
(

Nb∑
k=1

x2
ik

)(
Nb∑
k=1

x̂2
ik

) . (3.8.5)

Small values of the SAM correspond to closer matches between the spectral
components.

• Structural similarity (SSIM) [229]: The SSIM is a comparison index between
the humanly perceived differences in the image, and it is defined as:

SSIM := 1
Nb

Nb∑

k=1

(
2x:kx̂:k + c1

)
(2 cov (x:k, x̂:k) + c2)

(
x2

:k + x̂2
:k + c1

) (
std2(x:k) + std2(x̂:k) + c2

) , (3.8.6)

with the default choices for the scalars c1 = (0.01 max(X))2 and c2 = (0.03 max(X))2.
The SSIM can be interpreted as the product:

SSIM = 1
Nb

Nb∑

k=1

2x:kx̂:k + c1

x2
:k + x̂2

:k + c1
· 2 std (x:k) std (x̂:k) + c2

std2(x:k) + std2(x̂:k) + c2

·
cov (x:k, x̂:k) + c2

2
std (x:k) std (x̂:k) + c2

2
, (3.8.7)

where each factor performs, in order, a comparison between the luminance,
contrast, and structure of the two. The SSIM is an extended case of the
universal image quality index (UIQI) [230], an index proposed by the same
authors, which coincides with the SSIM in the case c1 = c2 = 0:

UIQI := 1
Nb

Nb∑

k=1

4x:kx̂:k cov (x̂:k,x:k)(
x̂2

:k + x2
:k

) (
std2(x̂:k) + std2(x:k)

) . (3.8.8)

Those index are also sometimes calculated locally, over overlapped square
portions of the image of a given size, and a unique index is provided as the
average over all considered partitions. The original definition [229] was given
for monochromatic images, which is here extended here for multiband images
by taking the average across all bands.
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• Q2n index (Q2n) [85]: The Q2n is an extension of the UIQI, which was
originally proposed for 4 bands [11]. In the proposed index, each pixel
spectral component is represented by a hypercomplex number (specifically
as Nb-ions, or quaternions if Nb = 4) and eq. (3.8.8) can be rewritten in
terms of the definition of variances and covariances specific to hypercomplex
numbers [11].

• Spatial cross-covariance coefficient (sCC): The sCC is a measurement of
the cross-covariance between images, after processing both of them with an
edge-detection filter. I.e., let X[e] and X̂[e] be the reference and the estimated
image, with each frontal slice processed with a Laplacian filter, then the sCC is
defined as:

sCC := 1
Nb

Nb∑

k=1

cov
(
x̂[e]

:k ,x
[e]
:k

)

std2
(
x̂[e]

:k

)
std2

(
x[e]

:k

) . (3.8.9)
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Joint fusion and demosaicing
of compressed multiresolution
acquisitions

4

This chapter presents a novel design for a custom optical imaging device inspired
by the color filter array (CFA) technologies, whose compressed acquisitions embed
information from sources with different characteristics (e.g. with different spatial
and spectral resolution) disposed over a common focal plane. The main application
of this device is aimed at a constellation of low-cost satellites, whose optical on-board
system is able to directly generate a compressed final acquisition in order to reduce
the memory footprint and the downlink. The associated inversion algorithm is in
charge of directly estimating an ideal fused product from the multimodal sources of
information, containing the full spectrum information at every pixel. We propose
to address this problem with a joint reconstruction of compressed images and data
fusion. A full analysis is presented to demonstrate the flexibility and limitations of the
proposed approach, to discuss viable optimizations for the acquisition system, and
to identify the scenarios that lead to the highest quality reconstruction products.

4.1 Introduction

With the availability of lower budget small satellite carrying high-quality optical
imagery [240], on-board image compression has become an increasingly interesting
field to compensate for limited on-board resources in terms of mass memory and
downlink bandwidth. Many strategies have been developed to address this issue,
which either focus on software compression [122], or on the implementation of
nonconventional optical devices. The latter approach is the focus of this chapter.

The main motivation behind this work is to propose an acquisition device operating
with a single focal plane array (FPA), whose performances in terms of spectral and
spatial resolution match those of the fused products of image bundles acquired by
more sophisticated Earth observing satellites. In many of such cases, the satellite is
equipped with two different classes of sensor. Each class is specialized in capturing
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either a high resolution image (HRI) or a low resolution image (LRI), which are
respectively characterized by a high spatial and spectral resolution. This separation is
due to overcome technological and physical limitations, leaving the task of providing
a synthetic image with the best characteristics of each of the two class to the ground
segment.

In the case of sensors with the same spatial resolution, many commercial cameras
employ CFA patterns, whose operating principle is based on mosaicing different
spectral responses on the same focal plane.

We propose here the multiresolution color filter array acquisition (MRCA) concept
as a novel design for a nonconventional optical device, based on the assumption
that sensors with different characteristics can be accommodated on the same focal
plane. With this design, the compressed acquisition contains partial information
both from the LRI and the HRI. An example of such acquisitions was shown in the
introduction in Fig. 1.5; as the MRCA registers the image over a single array of
sensors, the raw product is monochromatic (Fig. 1.5b), but includes both samples
from a panchromatic (PAN) and a multispectral (MS), according to the pattern in
fig 1.5a.

The associated reconstruction algorithm requires then to solve two problems at
once; it has to recover the missing information acquired by each of the two classes
of sensors and it has to fuse them to reach the maximum available spatial and
spectral resolution. This is a computational imaging problem, as the burden of the
data downlink, storage, as well as the amount of dedicated sensors, is significantly
reduced at the expense of added processing power performed on the ground segment.
The main envisioned application for this setup is aimed at embarking devices based
on this architecture over a constellation of low cost satellites.

We present in this chapter a Bayesian formulation of the problem, whose goal is to
address the fusion and demosaicing of the compressed acquisition jointly, whose
regularization is approached through variational techniques. The proposed model
is not exclusively a demosaic-style image reconstruction, as the final product is not
the two image sources, but their fused product, nor it is a simple fusion, as the
products to process are not well-distinguished multi-modal sources, but rather a
lossy compressed combination of the two.

We employ in this chapter the same notation of the previous one, detailed in
Section 3.3.

The novel contributions of this chapter include:
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• a compression scheme for multiresolution sensors sharing a common focal
plane. The optical device can be manufactured with a cheap hardware imple-
mentation and easy to embark on board of satellite and avionic platforms. The
design is inspired by the theory of CFA [176],

• an inversion framework capable of simultaneously addressing the problem
of demosaicing and the fusion of partial multiresolution acquisition. For this
scheme, we test a variety of regularization approaches based on the total
variation (TV) [200],

• an analysis of the products, which we reconstruct both with our proposed joint
approach and with a cascade of classical algorithms of fusion and demosaicing
algorithms, applied separately. Their performances are comparing in different
scenarios with respect of the number of channels,

• an analysis of the compression power of the proposed approach, in comparison
with classical software compression schemes;

• a comparison of CFA-style masks patterns for the distribution of multimodal
sensors over the focal plane array, which includes both periodic and pseudo-
random designs inspired by the principles of compressed sensing [80].

The chapter is organized as follows: Section 4.2 describes the proposed acquisition
system, Section 4.4 presents the proposed inversion model capable to estimate the
desired product, Section 4.3 details some general design techniques to optimize
the design of the joint compressed acquisition and Section 4.6 presents the related
experiments.

4.2 Acquisition system

This section is devoted to the definition of the proposed acquisition system, both in
terms of design, manufacture, and mathematical modeling. We describe a CFA-based
theoretical model in Section 4.2.1 and some guidelines for the manufacture of an
optical device to implements them in Section 4.2.2.

4.2.1 Multiresolution masking

The operating principle of the MRCA is mainly inspired by the CFA technology,
whose physical model was detailed in 3.6.1. To briefly summarize the concepts
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that are relevant for the current discussion, a CFA/multispectral filter array (MSFA)
device acquisition can be modeled as a monochromatic compressed acquisition
U[y] ∈ RNi1×Ni2 , where Ni1 and Ni2 are the number of column and row pixels of the
FPA. To simplify the notation, all image variables are reshaped in their lexicographic
order so that y = matr

(
U[y]) is a column vector of length Ni = Ni1Ni2 .

This acquisition can be interpreted as a linear combination along the spectral dimen-
sion of an ideal demosaiced product X ∈ RNi×Nb , so that:

y =
Nb∑

k=1
x:k � h:k , (4.2.1)

where x:k and h:k are the k-th column of X and of a given mask H, respectively.
Typically, each row hi: is chosen such that it satisfies the sum-to-one condition:

Nb∑

k=1
hik = 1 , ∀i ∈ [1, ... , Ni] . (4.2.2)

For the special case of a binary mask, hi: is an all-zero vector except for one element,
which is equal to one; this is equivalent to choose a single filter for the i-th pixel
among a set of spectral responses {ξk}k∈[1,... ,Nb].

We aim in this chapter to extend this concept to multiresolution images, by defining

two different masks, H[m] ∈ R
Ni
ρ2 ×Nb and H[p] ∈ RNi×Nbp , respectively associated

with a LRI M ∈ R
Ni
ρ2 ×Nb and a HRI P ∈ RNi×Nbp .

As the sensors are at a different resolution but target the same scene, it is necessary
to consider a common system of spatial coordinates to project them both on the
same focal plane array This is achievable by performing an extension by a factor of
ρ of both the LRI and its associated mask, as described in Section 3.4.1. By properly
choosing the shift in the extension operation, it is possible to keep the centers of
the original samples of the LRI within half a pixel of misalignment in the target
coordinates of the HRI.

The sparse channels M� ∈ RNi×Nb and P� ∈ RNi×Nbp , for the LRI and HRI are thus
given with the same amount of pixels as follows:

M� = M↑ �H[m]↑ = M̃↑ �H[m]↑ , (4.2.3a)

P� = P�H[p] , (4.2.3b)
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where H[m]↑ and M↑ are an extension (zero interleaving) by a factor of ρ. The
zero samples in M↑ can be filled with any value as they are masked out, but
the most natural choice is to consider its interpolated version M̃↑, because, as it
will be described in Section 4.4.1, this allows to simplify the direct model for the
inversion.

The acquisition can then be modeled as the sum of the sparse channels associated
with both the LRI and the HRI:

y =
Nb∑

k=1
m�

:k +
Nbp∑

l=1
p�

:l . (4.2.4)

Let S = [M̃↑,P] be the row concatenation of the LRI and the HRI, then eq. (4.2.4)
can also be rewritten as:

y =
Nb+Nbp∑

k=1
s:k � h:k , (4.2.5)

where h:k is the r the k-th column of a generic mask H ∈ RNi×(Nb+Nbp ), i.e. such
that H = [H[m]↑,H[p]], while s:k can either describe a channel from the upsampled
LRI or from the HRI, depending on the value of k.

If H is binary and verifies the sum-to-1 condition (4.2.2), then it is possible to give
a color coded representation of the associated mask, some examples of which are
shown in Fig. 4.3. Compared to the case discussed in Section 3.6, other than the
colors for the channel of the LRI, it is necessary to allocate also a new set of colors
for the sensors associated with the HRI.

If both the HRI and the LRI have the same pixel depth (i.e., each sample, regardless
of the sensor, is represented with the same amount of bits), the compression ratio
ρc, defined as the ratio between the total amount of storage space necessary to the
acquisition and the uncompressed sources, is given by:

ρc = Ni

NiNbp +NiNb/ρ2 = ρ2

Nb + ρ2Nbp

. (4.2.6)

4.2 Acquisition system 91



According to the discussion in Appendix A.1.3, eq. (4.2.5) is a linear operator
y = Ah(S) : RNi×(Nb+Nbp ) → RNi that can also be described by a multiplication with
a matrix C such as:

y = Cv[s] = [diag(h:1),diag(h:2), ...,diag(h:(Nb+Nbp )] vec(S) (4.2.7)

where v[s] = vec(S) is a representation of S over a single column and diag(h:k) is a
diagonal matrix whose elements on the main diagonal are given by h:k.

4.2.2 Physical implementation

A physical prototype of the proposed scheme can be manufactured with various
technologies; in principle, the ideal solution would involve a matrix of acquisition
sensors exactly matching the type of CFA structures such as the ones shown in
Fig. 4.1. Unfortunately, HRI and LRI sensors generally operate with different tech-
nologies, as they are optimized to overcome complementary physical constraints: the
former captures more energy from larger ground areas, while the latter from wider
bandwidths of wavelengths. For a matrix of exclusively MS sensors, the CFA can
be implemented with optical filters realized with patterned optical coatings, made
possible by recent advances in micro-lithography and coating technologies [68].
When considering a classical setup, such as in the configuration in which the PAN
and MS sensors are separate (and with potentially distinct optical paths), the im-
plementation could be done by separating each MS component with a dispersive
element, usually a prism, and let each component pass through an assigned coded
aperture, which is in charge of ideally realizing the operation of masking described
in eq. (4.2.5). The PAN signal can go through a similar optical processing, with a
coded aperture that could implement H[p]; the PAN sensor matrix can also inten-
tionally feature holes in the places where the acquisition is not needed, avoiding
the redundancy of acquisition and the need of a mask altogether. The results for
each of those operations can be focused appropriately on FPA detector, which is in
charge of integrating the post-processed scene to generate y. It is worth noting that
the reconstruction method (which will be described below) does not require that
the position of each processed sample is the same as described in Section 3.6; any
permutation of the samples is allowed, as long as the final position of each is known
beforehand by the ground segment. That implies that the two sources can be kept
separate and managed by two different FPAs, if the joint focusing would pose any
challenge in the implementation [70].
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A full analysis of the advantages and disadvantages of physical components capable
of manufacturing such a prototype is outside the scope of this work. We just
recall here that a certain cost balance has to be reached for the manufacture of
MRCA devices, as it overall requires a reduced number of photosensors compared
to the separate HRI/LRI acquisition setup, but on the other hand it requires an
infrastructure to couple the different sensing technologies on the same FPA.

While technological constraints may still not allow imaging systems at different
resolutions on the same focal plane, some recent technology advancements may
make some alternative designs available in the near future.

Some promising designs include Onyx [@12] and certain prototypes by Kodak [213]
are based on mosaics which mix both wide-band and MS spectral responses, although
at the same spatial resolutions. Additionally, the Color SHADES© technology by
Silios [@10] allows for a flexible design for the photosites sizes and their associated
spectral responses. This solution may also allow to design sensors that realize
whatever compromise between the spatial and spectral resolutions.

4.3 Mask design

In the MRCA the final acquisition can be interpreted as a linear combination of
samples with a shared coordinate system; the inversion framework that will be
proposed in Section 4.4 is in principle applicable to every design following this
principle.

However, not every mask pattern is equally effective, as the general design principles
described in Section 3.6.2 still apply. In this section we provide a tentative analysis
for a general mask design based on compressed sensing (Section 4.3.1), which leads
to a random mask pattern (Section 4.3.2); additionally, the design for periodic masks
of Section 3.6.2 is extended to the case of multiresolution sensors (Section 4.3.3).

4.3.1 A compressed sensing interpretation

Let y = Cv[x] define a linear compression system, described by a multiplication with
a matrix C ∈ RNy×Nx . A proper design of C must preserve as much information as
possible from the input v[x] ∈ Ex ⊆ RNx within the acquisition y ∈ Ey ⊆ RNi .

We discuss here an approach based on compressed sensing [62, 69]. As v[x] rep-
resents a natural scene, all signals belonging to the sample space Ex of possible
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acquisitions can be approximated by its sparse representation in a certain trans-
formed domain (e.g., in its wavelet representation). Specifically, the signals of Ex are
defined Ns-sparse if their representation L

(
v[x]) in a specific transformed domain

have at most Ns nonzero samples (‖L(v[x])‖0 ≤ Ns).

The target of the compression is to embed the acquisitions so that all signals are
well distinguishable in the target domain Ey. In mathematical terms, given any two
signals v[x] and v[x̂] ∈ Ex, one would want to at least ensure that:

v[x] 6= v[x̂] ⇒





Cv[x] 6= Cv[x̂] , ∀v[x̂] 6= v[x] ,

Ce 6= 0[Ny×1] , ∀e 6= 0[Nx×1] ,
(4.3.1)

where e = v[x] − v[x̂] defines an error in vector form.

The error e is a (2Ns)-sparse signal, as the Ns sparse samples of v[x] and v[x̂]

may be in different positions; this implies that the necessary condition to perfectly
reconstruct Ns-sparse signals is that C has at least (2Ns) linearly independent
columns. Given that in eq. (4.2.7) we are considering a compression matrix C with
fixed dimensions, the best we can achieve is to impose that C is full rank. This is
obtained by assuming that C has no row with all zeros, that is, if each pixel on the
FPA is actually capturing a non-masked sample [69].

Unfortunately, the above condition may not be sufficient in most scenarios, as, in
noisy environments, signals may have slight deviations on their energy content. A
more strict definition is to preserve a certain distance in the observation space, if the
inputs are sufficiently distant themselves.

This condition is mathematically formalized by the so called restricted isometry
property (RIP) [36]; specifically, an observation matrix C satisfies the RIP of order
Ns if it exists a scalar δNs ∈ [0, 1] such that:

(1− δNs)
∥∥∥v[x]

∥∥∥
2

2
≤
∥∥∥Cv[x]

∥∥∥
2

2
≤ (1 + δNs)

∥∥∥v[x]
∥∥∥

2

2
. (4.3.2)

In other words, if C satisfies the RIP of order 2Ns, the distance (measured by the `2
norm) among Ns-sparse signals in Ex is approximately preserved in Ey. The scope of
this work does not include the analysis of the minimum amount of observations Ni

to provide Ns-sparse signals satisfying the RIP; however, we remind here the well-
known result in the literature that if δ2Ns ≤ 1/2, the amount of observations which
are necessary for C to satisfy the RIP of order 2Ns is Ni ≥ 0.28Ns log(Nx/Ns) [53].
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In our analysis, we instead fix the amount of observations Ni and we aim to design
a compression algorithm that maximizes the RIP property of order 2Ns with the
highest possible Ns. In the next section, we discuss some tentative designs to achieve
this goal.

4.3.2 Random mask patterns

Some deterministic patterns which allow to fulfill the RIP of a certain order have
been proposed, however we will not employ them as those constructions require
unreasonably large values for Ni [56].

However, a theorem [160] states that, if all elements of each row of C are chosen
according to a subgaussian distribution with a minimum value of observations Ni =
k1Ns log(Nx/ns)/δ2

2Ns , then C satisfies the RIP with probability 1−2 exp(−k2δ
2
2NsNi),

where k1 and k2 are two constant values that depend only on the characteristics of
the chosen distribution.

Subgaussian distributions include, among other ones, multi-variate Gaussian, bounded
and Bernoulli distributions. Unfortunately, most of the elements of our matrix C in
eq. (4.2.7) are null, since C is a representation of the masking operation (4.2.5),
and we have no possibility to modify their values.

We are just allowed to adjust the elements of the mask H, as long as the sum-to-
1 condition of eq. (4.2.2) is verified; we review here three possible strategies to
randomize these elements, which will be tested in Section 4.6.6.

• Compressive coded aperture spectral imaging (CASSI): In this setup the
vectors {h:k} assigned to each channel are random binary masks; in other
terms, for the k-th channel, the i-th element hik can be either 0 or 1, with a
certain possibility. The elements of the mask H are consequently independent
and identically distributed (i.i.d.) Bernoulli random variables. In this case, the
matrix C of eq. (4.2.7) may not be full rank, as a certain vector hi: assigned to
the i-th pixel may be made up of all zeros. The CASSI mask design is inspired
by the digital micromirror device (DMD) physical realization described in
eq. (3.6.5b) in Section 3.6.2. In the experimental section, all the vectors hi:
are scaled by a factor of 1/(Nb + Nbp) to satisfy the sum-to-1 condition of
eq. (4.2.2).

• Random pick (RAND): In this configuration, the vector hi: associated with
the i-th pixel is made of all-zeros, except for a single position, which is equal
to 1. This position is assigned randomly, so the RAND design is equivalent
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to randomly assigning a spectral response from the set {ξk}k∈[1,... ,Nb] to each
pixel. The resulting matrix C is automatically fully rank, but its values are only
softly randomized, as the corresponding mask H is binary. This randomized
mask design, which is equivalent to an MSFA with completely randomized
pattern, was proposed by various authors [152] and its effectiveness was
investigated by Amba et al. [12].

• Dirichlet distribution based (DIRI): In this approach, that we proposed
in [188], each vector hi: is filled with nonbinary weights generated according
to a flat Dirichlet distribution [136], which enforces a uniform distribution on
a (Nb +Nbp − 1)-dimensional simplex. This constraint, which is equivalent to
verify the condition (4.2.2), can be implemented by the Algorithm 2 [57]. As
the matrix H is nonbinary, the spectral response associated with each pixel
is a generally different linear combination of the ones available in the set
{ξk}k∈[1,... ,Nb].

On a practical level, this last design would correspond to having a matrix of sensors
with vastly different spectral responses. For silicon based technologies, a possibility
could be to filter a different set of wavelengths for each pixel from a wide-band
response; e.g., this setup could be realized with COLOR SHADES [@10] by SILIOS
technologies, which combines thin film deposition and micro/nano-etching processes
onto a silica substrate to provide band-pass filters in the visible and near infrared
range [140]. Since the resulting responses may be wider compared to the usual MS,
the larger amount of incoming light could overcome some of the signal to noise ratio
(SNR) limitations of available sensors, possibly increasing the spatial resolution of
the sensor.

If the need arises, considering without loss of generality the HRI to be a PAN, it is
possible assign a less/more prominent contribution of the weights assigned to the
HRI. I.e., a generic Dirichlet distribution D([11×Nb , α]) generates random samples
for the spectrum hi: of the i-th pixel. As a result, the average of the elements in
h:,Nb+1 is α times larger than the ones in {h:k}k∈[1,... ,Nb].

4.3.3 Periodic patterns for combined masks

In this section we investigate some proposed deterministic design for the arrange-
ments of multiresolution sensors on the FPA, which we aim to physically implement
in the MRCA. For simplicity, we will assume that the HRI is a (monochromatic)
PAN.

96 Chapter 4 Joint fusion and demosaicing of compressed multiresolution ac-
quisitions



Algorithm 2: Pseudorandom generation of a vector of Na i.i.d. r.v. uniformly
distributed over a (Na − 1)-simplex.
Result: Vector v of samples uniformly distributed over a (Na − 1)-simplex
Generate Na random variables (r.v.s) vi ∼ U [0, 1], with i ∈ [1, ... , Na]
Assign them to a column vector v ∈ RNa , whose elements are {vi}i∈[1,... ,Na]
v← − ln(v)
v =

∑Na
i=1 vi

v← v
v

return v

The most straightforward design, which we denote with panchromatic coverage
(COVE), consists in selecting a classic MSFA mask H[m] ∈ RNi/ρ2×Nb and performing
an expansion H[m]↑ by a factor of ρ (Section 4.2.1). The expansion H[m]↑ is nothing
else than an operation of zero interleaving, hence it introduces a certain amount of
zero pixels in the mask, which in the COVE design are assigned to the PAN. Formally,
the elements h[p]

i of the mask H[p] ∈ RNi×1 are given by:

h
[p]
i =





1 if
∑Nb

k=1 h
[m]↑
ik = 0 ,

0 otherwise .
(4.3.3)

The combined mask H = [H[m]↑,H[p]] is shown in Fig. 4.1c for a scale ratio ρ = 2.

The COVE pattern can be interpreted as a dominating band pattern, where the
occurrence of the HRI and LRI sensors are in a ratio of (ρ2−1) : 1. If a larger amount
of spectral information is necessary, some different designs may be useful to increase
the amount of sensors assigned to the LRI. We propose here some alternatives, based
on the patterns of commercial optical devices with dominant wideband sensors, such
as the ones by Teledyne and Kodak [@12, 213], shown in Fig. 3.8f to 3.8i.

Let vertical (VERT) and diagonal (DIAG) define the patterns for the HRI mask
H[p] shown in Fig. 4.1a and 4.1b, respectively. If ρ is even, these patterns can be
separated into square blocks of size ρ× ρ, with a given amount of empty slots Ne.
I.e., in Fig. 4.1b, where ρ = 2, each 2 × 2 square (delimited by red borders) has
Ne = 2 empty slots. If the periodic mask H[m] associated with the LRI follows the

condition
Nb∑
k=1

h
[m]
ik = Ne for all i ∈ [1, ... , Ni], then the filters associated with the i-th

pixel can be associated with the empty slots in the associated block.
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Mathematically, this operation of filling slots is equivalent to an appropriate hori-
zontal and vertical shift from the associated expanded mask H[m]↑, that yields the
following description of the acquisition:

y =
Nbp∑

l=1
p:l � h[p]

:l +
Nb∑

k=1

(
m↑:k � h↑:k

)
↓rk

(4.3.4)

where (·)↓rk defines an operation of circular shift by rk, that is in charge to placing
the sample in the appropriate position. As the mask is periodic, this shift is the same
for every pixel assigned to the same class. This process is shown in Fig. 4.1d to
4.3c, for ρ = 2 and for a mask inspired by the 4-band maximum distance (MAXDIS)
described in Section 3.6.2.
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(f) DIAG+MAXDIS (4 bands)

Fig. 4.1. The first row shows some basic patterns for the positioning of PAN samples, marked
with "P" for periodic masks. The remaining rainbow colored spots, labelled with
"M" denote the spots to be assigned to any sample from the uncompressed MS.
The second row shows the operation of masking and shifting of the green MS
pixels over empty slots, together with an example of the final combined PAN/MS
mask. Dark red borders mark the ρ× ρ regions of the PAN which map to a single
position of the original MS, while the cyan dotted cage shows the periodicity of
the combined mask.
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4.4 The inversion protocol

According to the Bayesian formulation described in Chapter 2, the inversion frame-
work allows to find an estimation X̂ of X by minimizing a certain cost function.
This is composed of a data fidelity term, in charge of comparing the acquisition to
an expected value of the transformation, and a regularization term, which takes
into account the prior information on the desired product, aimed at resolving the
ill-posedness of the problem.

This section is divided as follows: the direct model used for the data term is defined
in Section 4.4.1 and is employed in the definition of the complete objective function
in Section 4.4.2. The full inversion algorithm is then detailed in Section 4.4.4.

4.4.1 Direct model

The direct model is a description of the optical transformations linking the desired
product X with the acquisition y. This transformation is here considered linear and
denoted by A(X).

In general terms, A may combine both the effect of the compression and the spec-
tral/spatial degradation into a single functional; however, to simplify the analy-
sis, these effects are described here as a cascade of systems, which are shown in
Fig. 4.2.

The first leg of the transformation performs a spectral and spatial degradation, to
obtain the k-th channel of a simulated HRI P and of an upscaled LRI M̃↑, with the
same procedure described in Section 3.5.3:





p:k =
Nb∑

l=1
wklx:l ∀l ∈

[
1, ... , Nbp

]

m̃↑:k = x:k ∗ b:k ∀k ∈ [1, ... , Nb]

(4.4.1a)

(4.4.1b)

where b:k is a Gaussian convolution kernel, matching the modulation transfer
function (MTF) of the k-th LRI sensor, and {wkl}l∈[1,... ,Nb] denote the weighting
coefficients. The expression of wkl is obtained by evaluating the ratio of area overlap
between the spectral responses of each LRI sensor and that of the l-th band of the
HRI. In the expression (4.4.1), the LRI is not decimated for convenience, as the
relevant samples can be ignored when masked.
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If we also consider the compression step Ah(·) described in Section 4.6.3, the full
direct model is thus given by:

y[sim] = Ah(Ad(X)) . (4.4.2)

Spatial
Degradation

Spectral
Degradation

{w:k}k=1,...,Nb
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LRI Masking
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Ad: Degradation Ab: Blur Ah: Compression

A: Direct Model

Fig. 4.2. Scheme of the direct model for the relationship between the ideal reconstruction
product X and the acquisition, as described in Section 4.4.2. In this representation,
the HRI and LRI (whose role is taken here by the PAN and MS) compression is
completely separated. The products shown in the figure are color coded 4-bands
bundles, and the associated positions on the MS mask take samples only from
matching colors.

4.4.2 Cost function

The direct model (4.4.2) can be embedded in a classical Bayesian formulation
for an inverse problem. We assume here that the noise component associated
with the operation of either spatial or spectral degradation is an additive i.i.d.
Gaussian distribution with zero mean. According to eq. (4.2.5), as each of the
observation samples is given by a linear combination of different samples from
the multiresolution sensor readouts, the noise associated with the acquisitions
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themselves are still Gaussian and independent. Under these conditions, the inversion
problem is equivalent to the following minimization:

X̂ = arg min
X

1
2 ‖Ah(Ad(X))− y‖22 + gR(X) , (4.4.3)

where gR(X) is a generic regularization function.

We aim here to show how the proposed model (4.4.2), denoted with Demo-
saic+Fusion, is a generic case of the Bayesian formulation of the sharpening and
the demosaic problem, described in Section 3.5.3 and 3.7.5, respectively.

• Fusion Only: This case can be obtained by simply substituting the compression
operator Ah with an identity; this describes a sharpening operation:

X̂ = 1
2 ‖Ad(X)− S‖2F + gR(X) (4.4.4a)

= 1
2

(
‖Ap(X)−P‖2F + ‖Am(X)− M̃↑‖2F

)
+ gR(X) , (4.4.4b)

where S =
[
M̃↑,P

]
is the concatenation of the LRI and interpolated HRI. This

is similar to the formulation of eq. (3.5.9), except that the data fidelity term
for the LRI is evaluated at the scale of the HRI; additionally, the coefficient λ̌m
that weights each of the two Frobenius norms is set to 1.

• Demosaic Only: For this case, if we consider the degradation operator Ad
as an identity, the masking operator Ah has to be slightly modified, as the
dimensions of X ∈ RNi×Nb differ from those of S. However, in principle,
this operation may be performed by just considering a different mask H[x],
operating on Nb bands, such as the ones considered in Section 3.6.2. The
equivalent cost function then becomes:

X̂ = arg min
X

1
2

∥∥∥∥∥

Nb∑

k=1
x:k � h[x]

:k − y

∥∥∥∥∥

2

2

+ gR(X) (4.4.5)

4.4.3 Regularization approaches

The problem of eq. (4.4.3) is intrinsically ill-posed, as the amount of samples that
represent the acquisition is lower than that of the desired product, which demands a
regularization procedure. In our context, as the direct model is seen as a cascade
of two operators, the choice of the regularizer must provide a good compromise to
solve the two inversion problems associated with each operator.
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In particular, the inversion problem (4.4.5) can be seen as an inpainting problem, as
it is equivalent to recover missing samples over a regular grid. The regularization
approach of this thesis employs variational methods, but this may be a limitation, as
it was proven that the total variation is not able to preserve long elongated structures
if applied to inpainting problems [41].

To alleviate this issue, we propose to reframe the inversion as a magnification
problem. Specifically we introduce an additional blur operator Ab for the HRI P,
which is defined as:

Ab(P) = P ∗ B[p] , (4.4.6)

where B[p] is a low pass filtering kernel. In the experimental section, this is defined
with a 21-tap square matrix kernel, which implements a Butterworth filter with
normalized cutoff frequency equal to 1/db. db is a (generally not integer) user
defined parameter, which defines the radius of the blurring filter in the spatial
dimension.

As the blurring operation is performed after the spatial degradation and before the
masking, this allows allows some leeway to introduce some information from the
masked pixels of the HRI in the data term, at the cost of partially sacrificing the
spatial resolution of the final product.

The resulting objective function we propose is thus in the form:

X̂ = arg min
X

1
2 ‖Ah(Ab(Ad(X))− y‖22 + λ̌g(L(X)) , (4.4.7)

where λ̌ is a user-defined scalar, and L(·) : RNi×Nb → Eu is a domain transformation
operator and g : Eu → R+ is a metric function.

The different combination of L and g(·) defines the regularization approach.

In this thesis we will employ three different definitions for the L operator, which
correspond to as many approaches for the discretizations of the Rudin-Osher-Fatemi
(ROF) model [200]. These are the classic TV, defined in eq. (2.2.17), the upwind to-
tal variation (UTV) [39], defined in eq. (2.2.20), and the Shannon total variation
(STV) [1].

With regard to the operator g(·), we employ the framework of the collaborative total
variation (CTV) [65, 66]; in this interpretation, the function g(·) is a combination
of norms ‖ · ‖p1p2p3 , which are applied in order to the dimension of the gradients,
of the channels and the pixels, respectively, as described in Section 2.2.3. As it will
be discussed in detail in the experimental section, we experienced that the norm
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`221, also known as vector total variation (VTV), is a good compromise between
reconstructed image quality and computational time, while the norm S2`1 provides
the best overall results. The nuclear norm S2 whitens the correlated information of
the spatial gradients and of the channels.

This framework will be compared to the least absolute shrinkage and selection
operator (LASSO) protocol [218] employed for the inversion of the CASSI acquisi-
tions [14]:

X̂ = arg min
X

1
2 ‖Ah(Ad(X))− y‖22 + λ̌‖L(X)‖111 , (4.4.8)

where L is a Symlet-8 discrete wavelet transform (DWT) transformation in the
spatial domain and a discrete cosine transform (DCT) in the spectral domain.

4.4.4 Implementation details

The expression of eq. 4.4.7 is composed of a differentiable data fidelity term and a
regularization term whose metric function g(·) is a lower semi-continuous convex
function.

These conditions are sufficient to obtain the estimation X̂ with the iterative proce-
dure known as Loris-Verhoeven algorithm [148], described in Section 2.3.2.

The implementation requires the knowledge of the adjoint and the operator norm of
both linear operators A and L.

As A(·) = Ah(Ab(Ad(·))) is a cascade of operators, its adjoint A∗ is given by a cascade
of adjoint operators A∗(·) = A∗d(A∗b(A∗h(·))).

As a result of Cauchy inequality, its operator norm is bounded by the sum of the
individual norms:

‖A ‖op ≤ ‖Ah ‖op + ‖Ab ‖op + ‖Ac ‖op . (4.4.9)

The individual adjoint and operator norms are derived in Appendix A.1, specifi-
cally:

• Ah is a masking operator, described in Appendix A.1.3;
• Ab is a convolution operation, described in Appendix A.1.2;
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• Ad(·) = [Am(·),Ap(·)] is made up of two components. Am is also obtained by
a convolution operation, while P = Ap(X) from eq.(4.4.1a) can be rewritten
as a masking operation, as the i-th pixel of the k-th band of the HRI can be
rewritten as:

p:k =
Nb∑

l=1
x:l �

(
wkl1[Ni×1]

)
. (4.4.10)

The overall adjoint operator is then obtained as A∗d(·) = A∗m(·) + A∗p(·) and the
operator norm is ‖Ad ‖op = ‖Am ‖op + ‖Ap ‖op.

The definition of the adjoint and the operator norm of L is derived in Appendix A.1.5
in the case of the classic TV, while the reader may refer to the dedicated literature
for the other variants [39, 1].

The expression of the proximal operators relative to the metric function g(·) are
instead given in [66], for the norm that we employ in this work.

As Loris-Verhoeven is a primal-dual algorithm, it requires an initialization, both in
the reconstruction space Ex and in the transformed space Eu, although the algorithm
converges to the same solution, as the objective function is convex.

In the thesis, the reconstruction variable is initialized with A∗(y), and the dual
variable with L(A∗(y)). When multiple values of the regularization parameter λ̌ are
tested, the solution obtained with the most recent is used as initialization, instead,
to speed up the convergence [82].

The algorithm can either terminate after a fixed number of iterations or by evaluating
that the variation of the cost function at a certain iteration is below a certain
threshold. The full procedure is described by the Algorithm 3.

For our problem we propose to employ this algorithm mostly for its enormous
flexibility, as it allows to test for a great variety of regularizers, as long is is possible
to define for them a proximal operator, which is in general a more relaxed condition
than just having a gradient. We preferred the Loris-Verhoeven algorithm over more
complicated alternatives, such as the alternating direction method of multipliers
(ADMM) or the Chambolle-Pock as our fidelity term assumes Gaussian noise; if a
different choice is taken, the problem can still be tackled with one of those solutions,
but at the cost of slower computational time.
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Algorithm 3: Inversion procedure described in Section 4.4.4.

Result: Estimation of the fused product X̂
Input:

• Acquisition: y
• Masking Matrices: {h:k}k∈[1,... ,Nb+Nbp ]
• Spectral degradation coefficients: {wkl}k∈[1,... ,Nbp ]

l∈[1,... ,Nb]
• Spatial degradation kernels: {b:k}k∈[1,... ,Nb]
• Diameter of the blurring matrix: db (default: 1)
• Regularization parameter: λ̌ (default: 10−3 max(y))
• Over-relaxation parameter: ρ̌ (default: 1.9)
• Maximum amount of iterations: q[max] (default: 250)

Preprocessing:

• Direct model operator: A(·) = Ah(Ab(Ad(·))) where:

– Ad(·) from eq. (4.4.1),

– Ab(·) from eq. (4.4.6),

– Ah(·) from eq. (4.2.5).

• Its adjoint A∗ and its operator norm ‖A ‖op as described in Section 4.4.4;
• Operator L to choose among:

– Classic TV, from eq. (2.2.17),
– UTV, from eq. (2.2.20),
– STV [1].

• Their adjoint L∗ and operator norm ‖L ‖op, as described in Section 4.4.4;
• Proximal operator proxγ̌g? of the Fenchel conjugate g? of g [66];
• Apply the histogram matching procedure of eq. (4.6.1)

Initialization:

• τ̌ = 0.99/‖A ‖2op
• σ̌ = 1/(τ̌‖L ‖2op)
• X(0) = A∗(y)
• U(0) = Y

while q < q[max] do
U(q+ 1

2 ) ← proxσ̌(λ̌g?)
(
U(q) + σ̌ L

(
X(q) − τ̌

(
A∗(A(X(q) − y) + L∗(U(q))

)))

X(q+1) ← X(q) − ρ̌τ̌
(
A∗(A(X(q))− y) + L∗

(
U(q+ 1

2 )
))

U(q+1) ← U(q+1) + ρ̌
(
U(q+ 1

2 ) −U(q)
)

q ← q + 1

return X̂ = X(q[max])
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4.5 Related works

While the concept of the MRCA, intended as a shared focal plane for multiresolution
sensors is, to the best of our knowledge, a novelty, some compressed acquisition
systems that employ multiresolution data were already proposed in the literature.
Espitia et al. [70], in particular, proposed a fusion model in which both HRI and
the LRI are available as two compressed acquisitions (respectively, y[p] and y[m])
through two separate single dispersion CASSI devices.

The direct model for each of the available products is given by eq. (3.6.5b), applied
to both the ideal HRI and the LRI:

A[p]
h (P) =

Nbp∑

k=1

([
p:k � h[p]

:k ; 0[(k−1)Ni1×1]

])
↓((k−1)Ni1 )

, (4.5.1a)

A[m]
h (M) =

Nb∑

k=1

([
m:k � h[m]

:k ; 0[(k−1)Ni1/ρ×1]

])
↓((k−1)Ni1/ρ)

, (4.5.1b)

where (·)↓k denotes a circular shift of the vector by k elements. In the natural image
representation this is equivalent, for each of the two products, to an overlap of the
sparse channels, after an appropriate shift in the horizontal direction.

The estimated inversion is then performed by minimizing the following cost function,
inspired by the Bayesian formulation of the sharpening problem (3.5.9):

X̂ = arg min
X∈RNi×Nb

1
2

∥∥∥A[p]
h (Ap(X))− y[p]

∥∥∥
2

2
+ λ̌m

2

∥∥∥A[m]
h (Am↓(X))− y[m]

∥∥∥
2

2
+λ̌ ‖L(X)‖111 ,

(4.5.2)
where A[p]

h (·) and A[m]
h (·) are given by eq.s (4.5.1a) and (4.5.1b), respectively, while

(L) is a DWT in the spatial domain and a DCT in the spectral domain. Ap and Am↓
are respectively the spectral degradation and matched downsampling defined in
Section 3.5.3.

The availability of two separate products does not allow for a fair comparison with
our compression scheme, as it reaches a different compression ratio. The model
of eq. (4.5.1) can however be slightly modified to generate an acquisition y over a
single plane:

y =
Nb∑

k=1

([
s:k � h:k; 0[(k−1)Ni1×1]

])
↓((k−1)Ni1 )

, (4.5.3)
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where s:k can be either a channel from the HRI or from the interpolated LRI m̃↑:k.
This design will be employed in the comparison of Section 4.6.3.

Another formulation was given by Fu et al. [83], which proposed a fusion frame-
work for an uncompressed LRI with a CFA-based compressed acquisition HRI. The
proposed estimation is given by:

X̂ = arg min
X

1
2

(∥∥∥A[p]
h (Ap(X))− y[p]

∥∥∥
2

2

+ ‖Am(X)−M‖2F
)

+ λ̌ ‖LSK(X)‖S1`1
, (4.5.4a)

where we can immediately notice that there is no compressed acquisition for the
LRI M.

The linear operator LSK(X) denotes a segmentation of X into square blocks of user
defined sizes Nx ×Nx, expressed in lexicographic order 1. The penalization term
induces a low-rank decomposition of each multichannel block, which is imposed by
minimizing their singular values.

4.6 Experiments

To prove the effectiveness of our inversion framework, in the following sections we
analyse the proposed model under different points of view, whose setup is described
in Section 4.6.1. In particular we perform a comparison with naive software com-
pression algorithms in Section 4.6.3, we compare the effectiveness of the proposed
model considering the two problems both in cascade and separated in Section 4.6.4,
we analyse the flexibility of the algorithm with different channel configurations in
Section 4.6.5 and we explore some more advanced designs for masks in Section 4.6.6.
An analysis of the parameters of is finally given in Section 4.6.7.

1With the formalism described in Section 6.1.1 and 6.2.1, the linear operator LSK(X) can be formally
described as:

LSK(X) = matr
(

stack
(

matr−1(X),R[0], [Nx, Nx]
))

, (4.5.5)

where R[0] is a list of center coordinates arranged over a regular grid, whose horizontal and vertical
spacing is equal to Nx.
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4.6.1 Experimental setup

In the following sections we analyse multiple scenarios aimed at the estimation X̂ of
an ideal uncompressed image X, as described in Section 4.6.4. We always consider
the situation in which the role of the HRI is taken by a PAN and the role of the LRI by
a MS. Each test configurations is detailed in the dedicated section, but the validation
protocol is common to every experiment. The validation is based on Wald’s protocol
for reduced resolution validation [227] described in Section 3.8. In this setup, we
assume to have an ideal MS acquisition X, which we label GT and a simultaneously
captured PAN.

The PAN and the GT are both downsampled with a blurring kernel, respectively
realized with a bicubic filter and a set of filters matched to the MTF of the MS sensors.
The obtained acquisitions are then processed with the compressed acquisition model

Ah, which depends on the compressed design under test, to generate a simulated
acquisition y[sim].

Each tested reconstruction algorithm is then applied to y[sim] and the product X̂ is
compared with the GT, evaluating its quality through the set of indices described in
Section 3.8.1.

Unless otherwise noted, the interpolated MS, denoted with interpolated image
(EXP), is realized with a 11-order Lagrange interpolator. In the spectral degradation
model Ap, the weighing coefficients are always set as equal to w1,k = 1/Nb, for all
k ∈ [1, ... , Nb], so that the PAN is modeled as the average of the channels of the
GT. 2

When Bayesian frameworks are employed, the results are labeled with XXX+YYY+XXX
where XXX is the acquisition system, YYY is the regularization and ZZZ is the regular-
ization norm (if not clear from the context). Whenever the blurring radius db is not
specified, it is assumed that the operator Ab is set to identity. All iterative inversion
algorithms were run for 250 iterations.

2For the San Francisco dataset, the employed spectral degradation weights for red green blue (RGB)
and near infrared (NIR) were [0.2113, 0.2903, 0.1934, 0.3048], respectively, instead of the default
setting (0.25 to each), as QuickBird (QB) is more sensitive to a more accurate representation of the
wide-band spectral response.
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If the PAN and the MS samples are separable on the focal plane, their samples are
histogram matched. Specifically the histogram matched version m[HM ]

:k of the MS
samples from the k-th channel is obtained as:

m�
:k

[HM ] = std(p̃�↓)
std(m̃:k)

(
m�

:k − m̃�
:k

)
+ p̃ (4.6.1)

where m�
:k is the k-th MS sparse channel, m̃�

:k is its weighted bilinear (WB) de-
mosaiced version. Similarly p� is the sparse channel of the PAN, with p̃� its WB
demosaiced version and p̃�↓ its demosaiced and decimated version.
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(b) PERI (4 Bands)
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(c) MAXDIS (4 bands)
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(d) UBT (8 bands)

Fig. 4.3. A series of PAN and MS mask patterns to be used for the experiments in Section 4.6.
The masks are color coded to visualize the band they are assigned to: gray for
the PAN, red, green, blue for the MS RGB, yellow for the its NIR. In the case of
8 bands, their brighter counterparts denote the remaining MS bands. The thick
outline bounds the periodicity of each mask. The small captions just denote the
MS pattern for simplicity.

4.6.2 Dataset description

Each reference dataset is composed of a PAN/MS image bundle acquired almost
simultaneously, originally featuring a scale ratio of 1 : 4, although the tests are
performed at reduced resolution with a scale ratio of ρ = 2. They are acquired by a
variety of commercial satellites, a selection of which is freely available for download
by MAXAR Technologies [@9]. The characteristics of the obtained GT for each
employed dataset are shown in Table 4.1; for two of the employed sensors, GeoEye-1
(GE-1) and QB, 4 MS channels are available, RGB and NIR, while WorldView-2
(WV2) and WorldView-3 (WV3) feature 8 bands in the visible (VIS) and NIR range.
All the products are encoded with 11 bits; the spatial misalignment of the two PAN
and MS was verified to be within half pixel via the rigid transformation alignment
method described in [105].
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When the acquisition is taken with the proposed MRCA system, unless otherwise
noted, we assume that the HRI mask is the COVE pattern described in Section 4.3.3
(for each 2× 2 region, 3 pixels are assigned to the PAN and the remaining one to the
MS). The empty slots in the pan are filled with either a Bayer pattern in the case of
3 bands, or by a uniform binary tree (UBT) in the other cases [162]. The employed
combined patterns are shown in Fig. 4.3.

As discussed in Section 4.6.6, these masks are not the most efficient for a Bayesian
inversion. However, the reconstruction of the acquisitions with this simple de-
sign can be also approached with a variety of classic algorithms, to compare the
performances.

The alignment between the PAN and an interpolated version of the MS is checked
by evaluating the peak of the cross correlation in the Fourier domain [105]. The
images are then co-registered with rigid translations by integer pixels on the HRI, in
order to preserve the original intensity of the available samples.

Table 4.1. Characteristics of the GT of the datasets employed in the tests of Section 4.6.

Label Country Scene Sensor
GSD
[m]

Sizes

Beijing China Bird’s Eye Nest WV2 1.6 512× 512
Hobart Tasmania Periphery Area GE-1 2.0 512× 512
Janeiro Brazil Bay Area WV3 1.2 256× 256
San Francisco U.S. Luxury Rental Area QB 2.4 512× 512
Stockholm Sweden Industrial Area WV3 1.6 256× 256
Washington U.S. Capitol Building WV3 1.6 512× 512

4.6.3 Compression

The objective of this section is to compare the quality of reconstructed product in a
setting with fixed storage capabilities. To this end, the compression ratio ρc is set
equal to eq.(4.2.6) for all the algorithms under test. For 4-channel MS images, this
yields ρc = 50%.

The analysis of this chapter is focused on an image quality comparison of the
reconstructed products, generated from compressed images obtained with the two
following approaches:

• Software Compression: In this category, both the PAN and MS are first
compressed with a lossy software compression algorithm and these products
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are then fused with a selection of classical image fusion protocols. Two
compression approaches will be analyzed here:

– Radiometric binning (BIN): This approach is defined by a binning of the
radiometric levels. That is, if the original image is represented with Np

bits, or equivalently over 2Np levels, a naive compression scheme consists
in grouping together every 1/ρc level, so that the compressed image is
instead represented over ρc2Np levels.

– Joint Photographic Experts Group (JPEG): This approach is based on
the JPEG 2000 [@7] lossy protocol. To comply with the specifics of the
algorithm, the original data is first reduced from 11 to 8 bits with the BIN
method. As the JPEG operates over monochromatic or RGB bands, we
just apply the algorithm on each band separately.

• Hardware Compression: in this category, the acquisition are simulated with
the proposed multiresolution compressed acquisition model and the recon-
structed products are tested with our proposed inversion scheme. In particular
we investigate the following models of hardware compression:

– Multiresolution color filter array acquisition (MRCA): whose proposed
design is described by eq. (4.2.4), with the combined mask setup of
Fig. 4.3b.

– Compressive coded aperture spectral imaging (CASSI): whose adapted
design is given by eq. (4.5.3).

For those optical devices, the regularization is performed both with the TV-
based inversion detailed in Algorithm 3 and with the protocol of eq. (4.4.8),
which is simply denoted as LASSO. The latter is the original proposition for
the inversion of the CASSI acquisitions [14, 70], but it is here employed for
the inversion of both compressed acquisition systems.

Finally, we will provide a baseline for the potential results we could achieve if no
compression step was considered, by simply fusing the unmodified PAN and MS with
a selection of classical fusion techniques.

Table 4.2 shows the results of the reduced resolution quality assessment over three
datasets, with the associated visual comparison is provided in Fig. 4.4, 4.5, and 4.6.
If we limit the analysis to hardware compression techniques, the reconstruction
with our proposed variational framework leads to fused product with superior
quality compared to the literature. Additionally, the visual analysis of the CASSI
reconstructed products (Fig. 4.4h to 4.4i, Fig. 4.5h to 4.5i, and Fig. 4.6h to 4.6i)
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shows that the inversion is not able to fully recover the details, as the products
remain quite blurry. Even in the case in which the LASSO regularization is employed
on our custom masks, some texture pattern are not properly corrected, most likely
because the contribution of sparsity inducing regularizers is limited within small
areas.

In general, hardware compression does not show a drastic reduction in performance
compared to the baseline tests with uncompressed acquisitions, as long as an
appropriate combination of on-board acquisition and regularization is selected.
Some artifacts are although still present in our final product, especially in very thin
thread-like zones such as the road limits in Fig. 4.5f. Nonetheless, except for some
exceptions such as the blue field in Fig. 4.6f, the proposed algorithm is consistently
better at smoothing homogeneous areas. This is the case even for small areas, like
in the case of buildings, which show no visible texture artifact (Fig. 4.4f). On the
other hand, software compression tends to outperform hardware compression in
general, which is probably due to the fact that there is no information gap, especially
in critical zones, such as along borders. Naive software compression may however
be very limited in certain situations, such as in Fig. 4.4k, where many areas are
patched together because of the radiometric binning.

It is also worth noting, however, that some more advanced strategies of software
compression are available in the literature, such as those described by Consulta-
tive Committee for Space Data Systems (CCSDS) [240]. We did not investigate
these more sophisticated approaches, as the currently employed approaches already
outperform the hardware compression, as shown in Table 4.2. This result is not
completely unexpected; in fact, our hardware compression solutions work on the
basis that some samples are completely removed from our source pool, hence some
information is completely lost. The software compression instead takes full advan-
tage of the intrinsic redundancy of the image, from all the available samples, before
generating the compressed product.

To provide better performances, an alternative setup could be to combine the
hardware and software strategies, and achieve the compression advantages of both.
I.e., one could think of a setup where the final acquisition y could be post-processed
before being stored/transmitted. This step may anyway not be as straightforward,
as the algorithm has to be adapted to the particular statistical description of the
acquisition, which does not necessarily match that of a natural image.
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Table 4.2. Compression comparison results for the tests described in Section 4.6.3 for the 4-
band version of the Beijing, Hobart and San Francisco datasets. The dashed lines
separate among the three considered test setups: No Compression, Software and
Hardware Compression, respectively. For each of these classes, bold represents
the best result. Only the two best performing classical fusion methods are shown.

SSIM PSNR Q2n SAM ERGAS sCC
Ideal (GT) 1 ∞ 1 0 0 1

B
ei

ji
n

g

EXP 0.9099 25.24 0.7763 4.394 12.45 0.2883
GSA 0.9655 28.46 0.9104 4.582 8.436 0.7395
MTF-GLP-CBD 0.9712 28.59 0.9116 4.446 8.291 0.7397
BIN+EXP 0.9030 25.19 0.7716 4.790 12.54 0.2776
BIN+GSA 0.9555 28.19 0.8985 5.018 8.724 0.7142
BIN+MTF-GLP-CBD 0.9628 28.36 0.9012 4.897 8.546 0.7152
JPEG+EXP 0.9088 25.23 0.7753 4.446 12.47 0.2869
JPEG+GSA 0.9644 28.42 0.9088 4.635 8.472 0.7363
JPEG+MTF-GLP-CBD 0.9702 28.56 0.9100 4.502 8.324 0.7366
CASSI+LASSO 0.8330 24.37 0.7273 13.68 6.861 0.2663
CASSI+TV+`221 0.8537 24.69 0.7413 13.18 5.759 0.3222
CASSI+UTV+S1`1 0.8744 24.95 0.7640 12.79 5.498 0.3603
MRCA+LASSO 0.9029 25.71 0.8226 11.63 6.654 0.5597
MRCA+TV+`221 0.9288 26.49 0.8508 10.64 5.493 0.6075
MRCA+UTV+S1`1 0.9445 27.02 0.8738 9.975 5.061 0.6475

H
ob

ar
t

EXP 0.9644 37.17 0.8835 2.987 6.393 0.5160
MTF-GLP-CBD 0.9855 40.61 0.9489 3.053 3.915 0.7692
BDSD 0.9884 40.98 0.9605 2.867 3.743 0.7964
BIN+EXP 0.9489 36.41 0.8245 4.194 7.083 0.4030
BIN+MTF-GLP-CBD 0.9658 37.85 0.8468 4.452 5.930 0.6200
BIN+BDSD 0.9641 38.09 0.8653 4.656 5.729 0.6518
JPEG+EXP 0.9611 37.01 0.8654 3.183 6.531 0.4914
JPEG+MTF-GLP-CBD 0.9830 40.17 0.9310 3.257 4.196 0.7435
JPEG+BDSD 0.9853 40.46 0.9423 3.130 4.046 0.7699
CASSI+LASSO 0.9108 34.12 0.7421 8.813 5.516 0.2948
CASSI+TV+`221 0.9325 35.05 0.7830 7.952 4.728 0.3973
CASSI+UTV+S1`1 0.9396 35.49 0.8003 7.508 4.368 0.4452
MRCA+LASSO 0.9465 35.96 7.059 0.8540 4.903 0.5410
MRCA+TV+`221 0.9669 37.85 0.9062 5.526 3.768 0.6483
MRCA+UTV+S1`1 0.9737 38.35 0.9204 5.195 3.467 0.6633

Sa
n

Fr
an

ci
sc

o

EXP 0.9904 45.91 0.9235 2.352 5.465 0.5487
MTF-GLP-CBD 0.9964 48.90 0.9551 2.713 4.020 0.7534
BDSD 0.9967 49.88 0.9694 2.414 3.558 0.7835
BIN+EXP 0.9673 42.03 0.7983 5.930 8.655 0.2770
BIN+MTF-GLP-CBD 0.9707 41.53 0.7961 6.470 9.294 0.4958
BIN+BDSD 0.9661 41.92 0.8079 7.212 9.001 0.5135
JPEG+EXP 0.9865 44.99 0.8949 3.220 6.094 0.4457
JPEG+MTF-GLP-CBD 0.9934 47.24 0.9308 3.514 4.826 0.6948
JPEG+BDSD 0.9931 47.77 0.9429 3.611 4.562 0.7242
CASSI+LASSO 0.9806 43.48 0.8509 4.835 7.203 0.3152
CASSI+TV+`221 0.9838 44.57 0.8837 4.084 6.375 0.4689
CASSI+UTV+S1`1 0.9857 45.10 0.8941 3.835 5.942 0.5454
MRCA+LASSO 0.9767 42.91 0.8340 5.558 7.985 0.5588
MRCA+TV+`221 0.9857 44.47 0.8907 4.213 6.699 0.6283
MRCA+UTV+S1`1 0.9867 44.70 0.8969 3.846 6.484 0.6849
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(a) PAN (b) EXP (c) GT

(d) MRCA acquisition (e) MRCA+LASSO (f) MRCA+UTV+S1`1 db = 1.4
(Proposed)

(g) CASSI acquisition (h) CASSI+LASSO (i) CASSI+UTV+S1`1

(j) Uncompressed MTF-GLP-CBD (k) BIN+MTF-GLP-CBD (l) JPEG+MTF-GLP-CBD

Fig. 4.4. Visual comparison of the hardware and software compression for the 4-band San
Francisco dataset (128× 128 px cropped detail).
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(a) PAN (b) EXP (c) GT

(d) MRCA Acquisition (e) MRCA+LASSO (f) MRCA+UTV+S1`1 db = 1.3
(Proposed)

(g) CASSI Acquisition (h) CASSI+LASSO (i) CASSI+UTV+S1`1

(j) Uncompressed MTF-GLP-CBD (k) BIN+MTF-GLP-CBD (l) JPEG+MTF-GLP-CBD

Fig. 4.5. Visual comparison of the hardware and software compression for the 4-band
Hobart dataset (128× 128 px cropped detail).
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(a) PAN (b) EXP (c) GT

(d) MRCA acquisition (e) MRCA+LASSO (f) MRCA+UTV+S1`1 db = 1.3
(Proposed)

(g) CASSI Acquisition (h) CASSI+LASSO (i) CASSI+UTV+S1`1 [db = 1.3]

(j) Uncompressed MTF-GLP-CBD (k) BIN+MTF-GLP-CBD (l) JPEG+MTF-GLP-CBD

Fig. 4.6. Visual comparison of the hardware and software compression for the 4-band
Beijing dataset (192× 192 px cropped detail).
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4.6.4 Separate and joint approach

The direct model proposed in Section 4.2 can be considered as a cascade of two
systems, which we labeled as Demosaic+Fusion. As described in Section 4.4.2,
this model can be specialized to a Fusion Only one, in charge of the fusion of
the multiresolution acquisitions and a Demosaic Only, in charge of recovering the
missing samples.

This section’s aim is to evaluate the performance of the proposed inversion frame-
work in each of these three situations. In particular, when our framework is applied to
the "Fusion Only" and "Demosaic Only" problems, its performances can be compared
to the fusion algorithms Section 3.5 or to the demosaic algorithms of Section 3.7,
which were described in the analysis of the literature.

Additionally, the "Demosaic+Fusion" scenario can also be addressed, other than with
our proposed inversion framework, by using a cascade of those same methods.

Specifically, if we can generate separate sparse channels P� and M�, we can define
the following procedure for the inversion of the MRCA acquisitions:

• The demosaiced PAN can be obtained with any of the irregular grid interpola-
tion methods described in Section 3.4.1, among which we propose to employ a
radial basis function (RBF) interpolator with a thin plate spline (TPS) kernel;

• The samples of the MS can be rearranged over a decimated grid and demo-
saiced with one of the techniques described in Section 3.7;

• The two demosaiced products can then be fused with one of the pansharpening
techniques, described in Section 3.5.

To the best of my knowledge, this cascaded approach is a novel proposition, which
can be used to investigate the effectiveness of noniterative approaches for the
inversion of the MRCA.

The datasets "Washington" and "Janeiro" described in Section 4.6.2 are used for the
experimental analysis. In particular, the GT is composed by cropping a section of
256× 256px from their RGB components.

The simulated MRCA acquisition for the "Demosaic+Fusion" setup is obtained with
the mask shown in Fig. 4.3a, which is a combination of the COVE pattern for the
PAN and a Bayer mask for the MS. The "Demosaic Only" setup is instead a obtained
simulating a standard Bayer mask. As the reconstruction of Bayer mosaic has a very
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mature literature (Section 3.7), the obtained benchmarks are expected to generally
favor classical approaches.

Quality assessment

The objective quality assessment results are given in Table 4.3 for "Washington"
and 4.4 for "Janeiro".

In these tables, we compared the best setup of our proposed inversion framework
(MRCA+UTV+S1`1), with a variety of classic demosaic methods, such as WB,
ID [163], ItID [164], ARI [166], MLRI [133], AP [149] and MSG [183]. We also
compared those with a variety of classic fusion methods such as: GSA [6], BDSD [86],
ATWT [178], MTF-GLP-HPM [7], MTF-GLP-CBD [7] and BayesNaive [232].

The three study cases all share the same GT, the indices relative to the three setups
are directly comparable. Consequently, by focusing on the "Demosaic+Fusion"
results, one can immediately assess the amount of distorted information in the
recovered products due to the compression, if those are compared with the "Fusion
Only" results, or due to the multiresolution sources, if compared with the "Demosaic
Only" results.

The associated visual comparison is given in Fig. 4.7 for "Washington" and Fig. 4.8)
for "Janeiro".

For the "Fusion Only" case, the recovered products with the proposed framework
are barely indistinguishable from the generalized Laplacian pyramid (GLP) meth-
ods, which provide the best performances among the classical ones, as shown by
comparing Fig. 4.8i and 4.8h.

For the "Demosaic Only" problem, the performances are mostly comparable to the
best performing legacy methods although it does not typically outperforms the
methods belonging to the family of residual interpolation (RI) [133]. The main
drawback of our proposed solution is showcased in well confined thread-like region,
such as in the outline of the Capitol Building in Fig. 4.7l or in regions with scattered
single pixels objects, such as the pool in Fig. 4.8l.

In the "Demosaic+Fusion" framework, as one can see in Fig. 4.7f and 4.8f the
color reconstruction of our proposed framework is sometimes not accurate (Fig. 4.7f
and 4.8f). This is confirmed by the analysis of the spectral angle mapper (SAM) index,
which typically is the best description of the accuracy of the spectral reconstruction.
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To address this issue, we investigated a mixed model, in which the demosaicing part
is dealt with the ARI, while the fusion is performed with the proposed framework.
With this choice, the visual results are close to indistinguishable with the overall best
performing methods. E.g. the reader can compare Fig. 4.7e and 4.7f or Fig. 4.8e
and 4.8f).
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Table 4.3. Results for the test scenarios described in Section 4.6.4 for the 3-band Washington
dataset with scale ratio ρ = 2. The PAN for the classic demosaic is interpolated
via TPS RBF. The proposed method uses a (normalized) regularization parameter
λ̌ = 1.93E − 03 and a blurring diameter db = 1.3.

Washington (RGB) SSIM PSNR Q2n ERGAS SAM sCC
Ideal (GT) 1 ∞ 1 0 0 1

D
em

os
ai

c+
Fu

si
on

MRCA+STV+S1`1 0.8934 30.75 0.8267 9.415 4.934 0.7677
ARI/STV+S1`1 0.9311 34.28 0.9192 6.113 2.940 0.7640
WB/EXP 0.7699 28.29 0.7720 12.22 3.929 0.2234
ID/EXP 0.7923 28.81 0.8085 11.50 3.707 0.2560
ItID/EXP 0.8298 29.67 0.8565 10.34 4.042 0.3669
ARI/EXP 0.8480 30.48 0.8584 9.371 2.922 0.4423
MLRI/EXP 0.8430 30.23 0.8573 9.647 3.025 0.4175
AP/EXP 0.8316 29.67 0.8469 10.35 4.442 0.3675
MSG/EXP 0.8407 30.02 0.8578 9.905 3.722 0.4016
WB/GSA 0.8683 29.72 0.8065 10.35 5.085 0.7320
MLRI/GSA 0.8934 31.21 0.8580 8.671 3.921 0.7510
WB/BDSD 0.8088 28.96 0.8161 11.35 4.165 0.4685
ARI/BDSD 0.8833 31.60 0.8922 8.256 2.976 0.6668
WB/ATWT 0.9125 32.95 0.9084 7.224 3.867 0.7399
ARI/ATWT 0.9293 34.54 0.9299 5.954 3.064 0.7617
MLRI/ATWT 0.9283 34.44 0.9308 6.015 3.056 0.7584
WB/MTF-GLP-HPM 0.9023 31.98 0.8897 8.086 3.791 0.7118
ARI/MTF-GLP-HPM 0.9348 34.75 0.9298 5.814 3.062 0.7544
MLRI/MTF-GLP-HPM 0.9330 34.48 0.9304 5.992 3.093 0.7493
WB/MTF-GLP-CBD 0.8990 31.95 0.8883 8.119 3.838 0.7246
ARI/MTF-GLP-CBD 0.9351 34.97 0.9288 5.658 2.894 0.7595
WB/BayesNaive 0.8379 28.60 0.7890 11.66 7.338 0.6310
ARI/BayesNaive 0.8982 30.29 0.8574 9.351 5.916 0.7437
MSG/BayesNaive 0.8699 29.47 0.8281 10.64 7.268 0.6839

D
em

os
ai

c
O

n
ly

MRCA+UTV+S1`1 0.9603 36.57 0.9615 9.587 2.612 0.8386
WB 0.9204 32.86 0.9221 14.80 3.505 0.6268
ID 0.9464 34.58 0.9470 12.16 3.112 0.7374
ItID 0.9546 36.15 0.9490 10.44 3.349 0.8529
ARI 0.9756 40.21 0.9727 6.311 2.181 0.9287
MLRI 0.9746 39.54 0.9715 6.814 2.248 0.9162
AP 0.9458 35.29 0.9267 11.52 3.694 0.8241
MSG 0.9578 37.15 0.9466 9.361 3.037 0.8762

Fu
si

on
O

n
ly

MRCA+STV+S1`1 0.9444 35.47 0.9372 5.285 2.282 0.8044
EXP 0.8629 30.89 0.8767 8.923 2.435 0.4914
GSA 0.9170 32.45 0.8866 7.471 3.209 0.7969
BDSD 0.8986 32.14 0.9080 7.735 2.413 0.7256
ATWT 0.9415 35.69 0.9443 5.186 2.505 0.8091
MTF-GLP-HPM 0.9475 36.04 0.9456 4.991 2.580 0.8019
MTF-GLP-CBD 0.9484 36.40 0.9450 4.776 2.350 0.8066
BayesNaive 0.9159 30.77 0.8779 8.782 5.524 0.7972
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Table 4.4. Results for the test scenarios described in Section 4.6.4 for the 3-band Washington
dataset with scale ratio ρ = 2. The PAN for the classic demosaic is interpolated
via Thin Plate RBF. The proposed method uses a (normalized) regularization
parameter λ̌ = 1.93E − 03 and a blurring diameter db = 1.3.

Janeiro (RGB) SSIM PSNR Q2n ERGAS SAM sCC
Ideal (GT) 1 ∞ 1 0 0 1

D
em

os
ai

c+
Fu

si
on

MRCA+UTV+S1`1 0.8412 29.39 0.8281 12.53 3.941 0.5755
ARI/UTV+S1`1 0.8830 31.44 0.8914 9.455 3.077 0.6209
WB/EXP 0.7273 27.59 0.7190 15.03 4.089 0.2007
ID/EXP 0.7483 28.01 0.7527 14.33 3.869 0.2320
ItID/EXP 0.8041 29.07 0.8223 12.46 3.837 0.3642
ARI/EXP 0.8174 29.48 0.8244 11.80 3.126 0.4215
MLRI/EXP 0.8088 29.20 0.8177 12.22 3.233 0.3838
AP/EXP 0.8080 29.00 0.8251 12.61 4.522 0.3647
MSG/EXP 0.8129 29.23 0.8330 12.16 3.837 0.3851
WB/GSA 0.8041 28.69 0.8037 12.98 5.002 0.5830
ARI/GSA 0.8202 29.17 0.8288 12.36 4.278 0.5932
WB/BDSD 0.7758 28.33 0.7753 13.81 4.476 0.4394
ARI/BDSD 0.8527 30.33 0.8608 10.69 3.239 0.5980
WB/ATWT 0.8557 30.45 0.8662 10.80 3.967 0.5878
ARI/ATWT 0.8810 31.53 0.9015 9.436 3.251 0.6225
WB/MTF-GLP-HPM 0.8430 29.83 0.8411 11.67 3.786 0.5702
ARI/MTF-GLP-HPM 0.8938 31.82 0.9053 9.122 2.957 0.6247
MLRI/MTF-GLP-HPM 0.8891 31.52 0.9013 9.442 3.032 0.6131
WB/MTF-GLP-CBD 0.8377 29.79 0.8403 11.71 3.962 0.5696
ARI/MTF-GLP-CBD 0.8883 31.75 0.9021 9.161 3.090 0.6190
WB/BayesNaive 0.7999 28.14 0.7977 13.97 5.558 0.5479
ARI/BayesNaive 0.8349 29.23 0.8270 12.23 3.802 0.5938

D
em

os
ai

c
O

n
ly

MRCA+UTV+S1`1 0.9407 34.59 0.9473 13.79 2.815 0.8098
WB 0.8943 31.64 0.8977 19.56 3.757 0.6081
ID 0.9234 33.08 0.9286 16.67 3.398 0.7055
ItID 0.9566 36.04 0.9641 11.46 3.082 0.8830
ARI 0.9760 39.05 0.9810 8.561 2.105 0.9387
MLRI 0.9707 37.27 0.9747 10.03 2.382 0.9037
AP 0.9447 34.41 0.9479 13.94 3.690 0.8545
MSG 0.9523 35.60 0.9604 12.05 3.135 0.8792

Fu
si

on
O

n
ly

MRCA+UTV+S1`1 0.9153 31.59 0.9378 7.944 3.610 0.6843
EXP 0.8391 29.99 0.8459 11.11 2.457 0.4759
GSA 0.8540 30.05 0.8664 11.16 3.547 0.6497
BDSD 0.8765 31.02 0.8830 9.844 2.567 0.6653
ATWT 0.9024 32.53 0.9232 8.314 2.571 0.6817
MTF-GLP-HPM 0.9176 32.85 0.9291 8.106 2.250 0.6734
MTF-GLP-CBD 0.9110 32.86 0.9258 8.003 2.413 0.6762
BayesNaive 0.8579 29.81 0.8529 11.41 2.966 0.6549
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(a) PAN (b) EXP (c) GT

(d) ARI/MTF-GLP-CBD
(Demo.+Fusion - Classic)

(e) ARI/STV+S1`1
(Demo.+Fus. - Clas.+Prop.)

(f) MRCA+STV+S1`1 db = 1.3
(Demo.+Fusion - Proposed)

(g) Acquisition
(Demosaic+Fusion)

(h) MTF-GLP-HPM
(Fusion Only - Classic)

(i) MRCA+STV+S1`1
(Fusion Only - Proposed)

(j) Acquisition
(Demosaic Only)

(k) ARI
(Demo. Only - Classic)

(l) MRCA+UTV+S1`1 db = 1.5
(Demo. Only - Proposed)

Fig. 4.7. Comparison among joint and separate fusion and demosaicing algorithms for
the RGB bundle of the Washington dataset (160 × 160 px cropped detail).The
considered acquisition setup is indicated within parentheses. The employed mask
for Demosaic+Fusion is shown in Fig. 4.3a.
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(a) PAN (b) EXP (c) GT

(d) ARI/MTF-GLP-CBD
(Demo.+Fusion - Classic)

(e) ARI/STV+S1`1
(Demo.+Fus. - Clas.+Prop.)

(f) MRCA+UTV+S1`1 db = 1.4
(Demo.+Fusion - Proposed)

(g) Acquisition
(Demosaic+Fusion)

(h) MTF-GLP-HPM
(Fusion Only - Classic)

(i) MRCA+STV+S1`1
(Fusion Only - Proposed)

(j) Acquisition
(Demosaic Only)

(k) ARI
(Demo. Only - Classic)

(l) MRCA+STV+S1`1 db = 1.4
(Demo. Only - Proposed)

Fig. 4.8. Comparison among joint and separate fusion and demosaic algorithms for the
RGB bundle of the Janeiro dataset (128 × 128 px cropped detail). The consid-
ered acquisition setup is indicated within parentheses. The employed mask for
Demosaic+Fusion is shown in Fig. 4.3a.

4.6 Experiments 123



Simulated dataset

The performances of the proposed framework for RGB image bundles can be ex-
plained with any of the following three reasons:

• the degradation model of the PAN and the MS from the GT is not accurate;
• the amount of MS samples is insufficient to describe the color information in

non-uniform regions;
• the regularization is not an accurate representation of the prior of certain

structures of the image.

In this paragraph, we investigate the consideration on the degradation model, which
is also backed up by a previous analysis from Duran et al. [64]. This work shows
that the linear dependence between the PAN and spectral modalities of the GT may
not be sufficient.

Additionally, as the spectral response of the PAN is wider than the combined one
of the RGB components, 3 bands are probably not enough to properly characterize
the structure of the PAN. This may also explain why fusion methods that use bands
independently, such as the ones from the GLP class, and demosaicing methods which
focus on modeling the dependencies locally, such as the RI classes, show better
performances.

We initially tried to improve the model by adjusting the spectral degradation weights
{w1k}k∈[1,... ,Nb], but only a slight improvement was obtained by decreasing the
coefficient assigned to the blue band and increasing the one assigned to the green
band.

To showcase the issue, we instead provide here an analysis with a perfect match
between the simulation and reconstruction model. In this analysis, the reduced
resolution PAN is not obtained through Wald’s protocol, but instead as a linear
combination of the bands of the GT; we additionally distorted the simulated acquisi-
tion with an additive white Gaussian noise (AWGN), such that the SNR is equal to
25dB.

This analysis was performed for the "Washington" dataset, for which the quantitative
and visual analysis are shown in Table 4.5 and products are shown in Fig. 4.9.

In this table, the "Demosaic Only" section is exactly the same as the one of Table 4.5,
as the PAN is not involved. For our proposed framework in the "Demosaic+Fusion"
problem, the obtained products not only recover their natural colors but also accu-
rately reconstruct the homogeneous zones, such as the one of the roof in Fig. 4.9f.
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This is also confirmed by indices, such as the structural similarity (SSIM) and Q2n

index (Q2n), which jointly evaluate the quality of spectral and spatial components.

Table 4.5. Results for the test scenarios described in Section 4.6.4 for the 3-band Washington
dataset with simulated PAN with additive Gaussian noise such that SNR = 25dB
and scale ratio ρ = 2. The PAN for the classic demosaic is interpolated via
TPS RBF. The proposed method uses a (normalized) regularization parameter
λ̌ = 1.8E − 03 and a blurring diameter db = 1.5.

Sim. Wa.ton (RGB) SSIM PSNR Q2n ERGAS SAM sCC
Ideal (GT) 1 ∞ 1 0 0 1

D
em

os
ai

c+
Fu

si
on

MRCA+UTV+S1`1 0.9436 35.07 0.9336 5.640 3.015 0.8402
WB/EXP 0.7699 28.29 0.7720 12.22 3.929 0.2234
ID/EXP 0.7923 28.81 0.8085 11.50 3.707 0.2560
ItID/EXP 0.8298 29.67 0.8565 10.34 4.042 0.3669
ARI/EXP 0.8480 30.48 0.8584 9.371 2.922 0.4423
MLRI/EXP 0.8430 30.23 0.8573 9.647 3.025 0.4175
AP/EXP 0.8316 29.67 0.8469 10.35 4.442 0.3675
MSG/EXP 0.8407 30.02 0.8578 9.905 3.722 0.4016
WB/GSA 0.9111 34.29 0.9126 6.175 3.932 0.8056
ARI/GSA 0.9163 35.41 0.9198 5.359 2.998 0.8125
WB/BDSD 0.8829 31.22 0.8864 8.880 4.247 0.7482
ARI/BDSD 0.9327 35.82 0.9327 5.111 2.844 0.8171
WB/ATWT 0.9170 33.85 0.9141 6.532 3.854 0.8003
ARI/ATWT 0.9302 35.75 0.9317 5.171 2.918 0.8187
WB/MTF-GLP-HPM 0.9059 32.62 0.8933 7.523 3.665 0.7815
ID/MTF-GLP-HPM 0.9184 33.66 0.9125 6.665 3.394 0.7903
ItID/MTF-GLP-HPM 0.9203 34.19 0.9166 6.347 3.760 0.8064
ARI/MTF-GLP-HPM 0.9372 36.22 0.9315 4.896 2.721 0.8211
MLRI/MTF-GLP-HPM 0.9359 35.89 0.9318 5.084 2.784 0.8167
AP/MTF-GLP-HPM 0.9162 33.77 0.9041 6.683 4.153 0.8040
MSG/MTF-GLP-HPM 0.9257 34.79 0.9187 5.909 3.443 0.8123
WB/MTF-GLP-CBD 0.9018 32.71 0.8929 7.451 3.899 0.7849
ARI/MTF-GLP-CBD 0.9299 36.01 0.9252 5.021 2.870 0.8137
WB/BayesNaive 0.8684 31.17 0.8598 8.869 5.283 0.7276
ARI/BayesNaive 0.9236 34.50 0.9115 5.899 3.292 0.8029

D
em

os
ai

c
O

n
ly

MRCA+UTV+S1`1 0.9603 36.57 0.9615 9.587 2.612 0.8386
WB 0.9204 32.86 0.9221 14.80 3.505 0.6268
ID 0.9464 34.58 0.9470 12.16 3.112 0.7374
ItID 0.9546 36.15 0.9490 10.44 3.349 0.8529
ARI 0.9756 40.21 0.9727 6.311 2.181 0.9287
MLRI 0.9746 39.54 0.9715 6.814 2.248 0.9162
AP 0.9458 35.29 0.9267 11.52 3.694 0.8241
MSG 0.9578 37.15 0.9466 9.361 3.037 0.8762

Fu
si

on
O

n
ly

MRCA+STV+S1`1 0.9639 38.91 0.9628 3.571 2.079 0.9121
EXP 0.8629 30.89 0.8767 8.923 2.435 0.4914
GSA 0.9243 37.04 0.9297 4.434 2.537 0.8626
BDSD 0.9449 38.04 0.9459 3.949 2.348 0.8684
ATWT 0.9394 37.63 0.9425 4.146 2.394 0.8703
MTF-GLP-HPM 0.9478 38.63 0.9443 3.691 2.207 0.8742
MTF-GLP-CBD 0.9367 37.99 0.9351 3.976 2.378 0.8636
BayesNaive 0.9371 36.10 0.9288 4.853 2.534 0.8574
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(a) Simulated PAN (b) EXP (c) GT

(d) Acquisition
(Demosaic+Fusion)

Simulated PAN

(e) ARI/MTF-GLP-HPM
(Demosaic+Fusion)

Simulated PAN - Classic

(f) MRCA+UTV+S1`1 db = 1.5
(Demosaic+Fusion)

Simulated PAN - Proposed

Fig. 4.9. Results for the image reconstruction in the Demosaic+Fusion experiment, in the
case of a simulated PAN (160× 160 px cropped detail). The first row shows the
reference and uncompressed sources. The second row is associated with the
"Demosaic+Fusion" scenario. The employed mask is shown in Fig. 4.3a.
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4.6.5 Extension to multiple channels

In this section, we investigate the performances of the proposed framework, when
addressing compressed acquisitions which involve an amount of channels superior
to 3. There are multiple motivations for this analysis:

• To provide a preliminary analysis for the behaviour of the MRCA with hyper-
spectral (HS) images;

• To use a MS bundle, whose spectral coverage completely includes that of the
PAN, as the previous analysis lacked information on the NIR bandwidths;

• To prove the flexibility of the algorithm to a wide variety of mask patterns.

The scenario under test employs the masks in Fig. 4.3b and Fig. 4.3d, that is, the MS
sub-mask is a periodic pattern, for which some of the previously considered classic
demosaic algorithms do not apply.

The analysis here was performed on two 4-band image bundles, "Washington" and
"Janeiro", and two 8-band image bundles, "Janeiro" and "Stockholm". The objective
quality assessment is given in Table 4.6, 4.7, 4.8 and 4.9, and the associated image
products in Fig. 4.10, 4.11, 4.12, and 4.13, respectively.

When more channels are available, the multiresolution analysis (MRA) fusion meth-
ods, which operate on each bundle independently, start to show reduced perfor-
mances in comparison to the proposed interconnected variational model. A quick
analysis of reduced resolution quality indices for 4 bands shows that the proposed
joint model consistently outperforms the classical methods in all scenarios under test.
The results are confirmed by the visual analysis; by comparing Fig. 4.7f and 4.10f
or Fig. 4.8f and 4.11f, it is evident that the proposed algorithm achieves a much
more accurate color reconstruction. Some margin of improvement is however still
possible, especially for localized pixels which interrupt homogeneous zones; i.e. the
proposed algorithm struggles to reconstruct the bathers in the swimming pool of
Fig. 4.11f.

This trend is further confirmed by analyzing the results at 8 bands, for which the
proposed framework is additionally able to correct the spatial distortions that are
present for the ¨Demosaic Only" scenario (as in Fig. 4.12i or 4.13i) with the help of
the spatial one (as in Fig. 4.12f or 4.13f).

For the "Demosaic Only" setup, to the best of my knowledge, the proposed method
reaches the state of the art performance for the case of masks with no dominant
band.
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Table 4.6. Results for the test scenarios described in Section 4.6.4 for the 4-band Washington
dataset with scale ratio ρ = 2. The PAN for the classic demosaic is interpolated
via TPS RBF. The proposed method uses a (normalized) regularization parameter
λ̌ = 5.62E − 04 and a blurring diameter db = 1.3

Wash.ton (4-band) SSIM PSNR Q2n ERGAS SAM sCC
Ideal (GT) 1 ∞ 1 0 0 1

D
em

os
ai

c+
Fu

si
on

MRCA+UTV+S1`1 0.8886 29.44 0.9179 6.886 3.848 0.6043
WB/EXP 0.6987 25.73 0.7480 12.06 5.271 0.1740
ID/EXP 0.7163 26.05 0.7664 11.38 5.279 0.2050
ItID/EXP 0.6816 25.78 0.7069 11.84 6.279 0.1938
SD/EXP 0.3926 12.31 0.2267 78.35 25.59 0.1551
WB/GSA 0.8164 27.36 0.8763 8.091 6.040 0.5226
ID/GSA 0.8173 27.49 0.8713 8.035 6.144 0.5330
ItID/GSA 0.7763 26.74 0.7949 9.733 7.482 0.5315
WB/BDSD 0.7815 26.79 0.8247 10.16 5.628 0.5562
ID/BDSD 0.8138 27.46 0.8537 8.875 5.467 0.6057
ItID/BDSD 0.8007 27.39 0.8068 9.170 6.328 0.6031
WB/ATWT 0.8540 28.23 0.8844 7.858 5.406 0.6285
ID/ATWT 0.8474 28.20 0.8727 7.744 5.437 0.6301
ItID/ATWT 0.7853 27.13 0.7863 9.550 6.504 0.6146
SD/ATWT 0.5011 12.34 0.2418 78.28 25.94 0.5994
WB/MTF-GLP-HPM 0.8405 27.92 0.8634 8.526 5.370 0.6257
ID/MTF-GLP-HPM 0.8426 28.13 0.8628 8.071 5.413 0.6321
ItID/MTF-GLP-HPM 0.7877 27.33 0.7830 9.401 6.459 0.6157
SD/MTF-GLP-HPM 0.4944 12.37 0.2439 77.99 25.59 0.5594
WB/MTF-GLP-CBD 0.8033 27.03 0.8484 8.942 5.601 0.5113
ID/MTF-GLP-CBD 0.8101 27.33 0.8530 8.389 5.685 0.5245
ItID/MTF-GLP-CBD 0.7584 26.74 0.7780 9.637 6.738 0.5119
SD/MTF-GLP-CBD 0.4099 12.32 0.2300 78.28 25.59 0.2828
WB/BayesNaive 0.7714 25.95 0.8034 11.76 7.517 0.5794
ID/BayesNaive 0.7839 26.23 0.8038 11.10 7.208 0.5972
ItID/BayesNaive 0.7274 25.57 0.6895 12.71 8.501 0.5556

D
em

o.
O

n
ly MRCA+STV+S1`1 0.9167 31.12 0.9407 12.09 3.195 0.6759

WB 0.8794 29.62 0.9046 15.37 3.886 0.5552
ID 0.8964 30.56 0.9094 13.11 3.769 0.6481
ItID 0.8239 29.32 0.8133 16.73 5.032 0.5965
SD 0.4772 12.12 0.2386 161.3 25.65 0.4929

Fu
si

on
O

n
ly

MRCA+UTV+S1`1 0.9488 33.93 0.9624 4.405 2.413 0.7849
EXP 0.8359 28.77 0.8792 8.508 3.302 0.4967
GSA 0.8981 30.44 0.9354 5.789 4.192 0.6351
BDSD 0.9165 31.39 0.9408 5.480 3.387 0.7295
ATWT 0.9127 30.98 0.9399 5.543 3.641 0.7180
MTF-GLP-HPM 0.9236 31.88 0.9430 5.182 3.570 0.7349
MTF-GLP-CBD 0.9038 30.72 0.9359 5.393 3.973 0.6476
BayesNaive 0.8775 28.51 0.8842 9.113 5.206 0.7159
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Table 4.7. Results for the test scenarios described in Section 4.6.4 for the 4-band Janeiro
dataset with scale ratio ρ = 2. The PAN for the classic demosaic is interpolated
via TPS RBF. The proposed method uses a (normalized) regularization parameter
λ̌ = 7.20E − 04 and a blurring diameter db = 1.3.

Janeiro (4-band) SSIM PSNR Q2n ERGAS SAM sCC
Ideal (GT) 1 ∞ 1 0 0 1

D
em

os
ai

c+
Fu

si
on

MRCA+UTV+S1`1 0.8493 28.67 0.8823 10.95 5.559 0.5624
WB/EXP 0.6589 25.36 0.6985 16.32 7.546 0.1536
ID/EXP 0.6823 25.76 0.7365 15.40 7.546 0.1978
ItID/EXP 0.6513 25.66 0.7224 15.53 8.946 0.2116
WB/GSA 0.8005 27.47 0.8469 12.40 7.877 0.5419
ID/GSA 0.7999 27.56 0.8521 12.29 7.931 0.5453
ItID/GSA 0.7559 26.85 0.8095 13.78 9.684 0.5426
WB/BDSD 0.7517 26.51 0.7914 14.20 7.977 0.5073
ID/BDSD 0.7879 27.27 0.8359 12.70 7.778 0.5481
ItID/BDSD 0.7694 27.16 0.8180 12.92 9.138 0.5473
WB/ATWT 0.8123 27.64 0.8495 12.25 7.459 0.5513
ID/ATWT 0.8097 27.82 0.8567 11.89 7.490 0.5558
ItID/ATWT 0.7472 26.98 0.8071 13.37 9.130 0.5449
WB/MTF-GLP-HPM 0.7898 27.11 0.8181 13.17 7.288 0.5401
ID/MTF-GLP-HPM 0.8005 27.52 0.8408 12.46 7.312 0.5330
ItID/MTF-GLP-HPM 0.7486 27.03 0.8038 13.23 8.837 0.5404
WB/MTF-GLP-CBD 0.7749 26.85 0.8128 13.41 7.634 0.5197
ID/MTF-GLP-CBD 0.7876 27.29 0.8374 12.59 7.674 0.5283
ItID/MTF-GLP-CBD 0.7378 26.82 0.8014 13.42 9.193 0.5205
WB/BayesNaive 0.7891 27.04 0.8381 13.30 8.538 0.5271
ID/BayesNaive 0.8043 27.42 0.8541 12.55 7.999 0.5394
ItID/BayesNaive 0.7783 27.09 0.8323 12.98 9.101 0.5424

D
em

o.
O

n
ly MRCA+UTV+S1`1 0.8727 29.63 0.8962 19.27 4.863 0.6393

WB 0.8546 28.88 0.8775 21.81 5.664 0.5108
ID 0.8845 30.13 0.9129 18.29 5.429 0.6431
ItID 0.8225 29.57 0.8713 20.12 6.928 0.6643
SD 0.5938 18.77 0.4607 85.49 18.94 0.6357

Fu
si

on
O

n
ly

MRCA+UTV+S1`1 0.9124 31.54 0.9357 8.066 3.701 0.6811
EXP 0.8180 28.34 0.8521 11.56 4.658 0.4867
GSA 0.8695 29.56 0.9039 10.15 5.117 0.6267
BDSD 0.8710 29.56 0.9028 10.03 4.948 0.6253
ATWT 0.8915 30.43 0.9242 8.935 4.778 0.6544
MTF-GLP-HPM 0.9051 30.92 0.9296 8.572 4.401 0.6636
MTF-GLP-CBD 0.8946 30.60 0.9248 8.707 4.784 0.6501
BayesNaive 0.8905 30.31 0.9113 9.347 4.293 0.6530
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Table 4.8. Results for the test scenarios described in Section 4.6.4 for the 8-band Janeiro
dataset with scale ratio ρ = 2. The PAN for the classic demosaic is interpolated
via TPS RBF. The proposed method uses a (normalized) regularization parameter
λ̌ = 9.21E − 04 and a blurring diameter db = 1.3.

Janeiro (8-band) SSIM PSNR Q2n ERGAS SAM sCC
Ideal (GT) 1 ∞ 1 0 0 1

D
em

os
ai

c+
Fu

si
on

MRCA+UTV+S1`1 0.8376 28.94 11.46 0.8582 8.110 0.5879
WB/EXP 0.6075 25.12 0.5973 18.58 11.03 0.06880
ID/EXP 0.6070 25.22 0.6100 18.36 11.02 0.06054
ItID/EXP 0.6134 25.62 0.6227 17.58 11.26 0.08454
SD/EXP 0.4996 21.62 0.4384 28.57 20.40 0.1348
WB/GSA 0.7931 27.52 0.8171 13.57 11.12 0.5739
ID/GSA 0.7994 27.70 0.8247 13.27 11.13 0.5780
ItID/GSA 0.7884 27.78 0.7806 13.38 11.33 0.5793
SD/GSA 0.5737 20.28 0.4780 34.13 32.38 0.5688
WB/BDSD 0.6570 25.40 0.6586 17.92 12.00 0.3883
ID/BDSD 0.6599 25.53 0.6698 17.63 11.94 0.4089
ItID/BDSD 0.6968 26.36 0.7053 16.04 11.97 0.4743
WB/ATWT 0.7805 27.20 0.7880 14.34 10.82 0.5782
ID/ATWT 0.7842 27.38 0.7961 14.02 10.81 0.5797
ItID/ATWT 0.7612 27.52 0.7585 13.94 11.18 0.5654
WB/MTF-GLP-HPM 0.7448 26.58 0.7383 15.55 10.73 0.5584
ID/MTF-GLP-HPM 0.7482 26.75 0.7494 15.23 10.71 0.5519
ItID/MTF-GLP-HPM 0.7402 27.15 0.7361 14.61 11.00 0.5449
SD/MTF-GLP-HPM 0.5922 22.00 0.4968 27.42 20.40 0.4881
WB/MTF-GLP-CBD 0.7249 26.32 0.7268 15.93 11.01 0.5399
ID/MTF-GLP-CBD 0.7304 26.51 0.7416 15.54 11.00 0.5419
ItID/MTF-GLP-CBD 0.7276 26.95 0.7311 14.85 11.30 0.5282
SD/MTF-GLP-CBD 0.5780 21.96 0.4905 27.49 20.54 0.4704

D
em

o.
O

n
ly MRCA+UTV+S1`1 0.8028 28.26 0.8099 25.78 7.877 0.5038

WB 0.7469 26.81 0.7570 30.73 10.07 0.2647
ID 0.7496 26.89 0.7597 30.42 10.19 0.2430
ItID 0.7555 27.62 0.7444 28.26 10.42 0.3279
SD 0.5633 21.48 0.4577 59.74 21.61 0.3395

Fu
si

on
O

n
ly

MRCA+UTV+S1`1 0.9336 33.34 0.9467 7.094 4.618 0.7208
EXP 0.8306 29.43 0.8495 11.34 5.785 0.4867
GSA 0.9061 31.68 0.9260 8.552 5.922 0.6789
BDSD 0.8919 30.70 0.9092 9.651 6.003 0.6658
ATWT 0.9132 32.03 0.9323 8.127 5.690 0.6921
MTF-GLP-HPM 0.9228 32.49 0.9362 7.781 5.411 0.7045
MTF-GLP-CBD 0.9134 32.12 0.9312 8.041 5.705 0.6889
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Table 4.9. Results for the test scenarios described in Section 4.6.4 for the 8 bands Stockholm
dataset with scale ratio ρ = 2. The PAN for the classic demosaic is interpolated
via TPS RBF. The proposed method uses a (normalized) regularization parameter
λ̌ = 9.21E − 04 and a blurring diameter db = 1.3.

Stockholm (8-band) SSIM PSNR Q2n ERGAS SAM sCC
Ideal (GT) 1 ∞ 1 0 0 1

D
em

os
ai

c+
Fu

si
on

MRCA+UTV+S1`1 0.8359 27.55 0.8572 14.40 8.449 0.7126
WB/EXP 0.5406 22.87 0.5724 24.38 11.80 0.07145
ID/EXP 0.5390 22.88 0.5875 24.36 11.81 0.04657
ItID/EXP 0.5689 23.43 0.6440 22.86 11.70 0.09530
SD/EXP 0.4747 20.53 0.5314 31.62 22.83 0.1834
WB/GSA 0.8156 26.63 0.8385 16.04 11.39 0.7335
ID/GSA 0.8262 26.86 0.8511 15.63 11.37 0.7361
ItID/GSA 0.8246 27.20 0.8528 15.16 11.33 0.7374
SD/GSA 0.5262 20.56 0.6853 33.03 47.00 0.7123
WB/BDSD 0.6082 23.31 0.6464 23.20 12.99 0.5025
ID/BDSD 0.6027 23.27 0.6542 23.34 13.08 0.4977
ItID/BDSD 0.6549 24.27 0.7263 20.97 12.84 0.5580
WB/ATWT 0.7726 25.70 0.7909 17.73 11.29 0.7223
ID/ATWT 0.7788 25.84 0.8041 17.44 11.32 0.7238
ItID/ATWT 0.7748 26.32 0.8187 16.58 11.38 0.7104
SD/ATWT 0.6259 21.48 0.6444 28.44 24.71 0.6803
WB/MTF-GLP-HPM 0.7196 24.73 0.7302 19.74 11.25 0.6802
ID/MTF-GLP-HPM 0.7246 24.86 0.7462 19.46 11.24 0.6788
ItID/MTF-GLP-HPM 0.7413 25.65 0.7859 17.81 11.17 0.6792
WB/MTF-GLP-CBD 0.7123 24.72 0.7298 19.81 11.55 0.7008
ItID/MTF-GLP-CBD 0.7394 25.65 0.7869 17.84 11.50 0.6915

D
em

o.
O

n
ly MRCA+UTV+S1`1 0.7877 26.04 0.8092 33.82 8.186 0.5569

WB 0.7094 24.42 0.7492 40.67 11.10 0.2968
ID 0.7121 24.42 0.7542 40.69 11.33 0.2494
ItID 0.7521 25.63 0.7977 35.65 11.33 0.4079
SD 0.5674 20.50 0.5784 64.20 24.91 0.4302

Fu
si

on
O

n
ly

MRCA+UTV+S1`1 0.9393 32.09 0.9452 8.460 5.033 0.8261
EXP 0.8053 26.83 0.8349 15.45 6.281 0.5000
GSA 0.9249 31.45 0.9397 9.242 6.230 0.8266
BDSD 0.9129 30.26 0.9285 10.57 6.395 0.8082
ATWT 0.9304 31.51 0.9430 9.175 5.894 0.8206
MTF-GLP-HPM 0.9361 31.96 0.9415 8.689 5.585 0.8361
MTF-GLP-CBD 0.9341 31.75 0.9395 8.951 5.800 0.8278
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(a) PAN (b) EXP (c) GT

(d) Acquisition
(Demosaic+Fusion)

(e) ARI/MTF-GLP-CBD
(Demosaic+Fusion - Classic)

(f) MRCA+UTV+S1`1 db = 1.3
(Demo.+Fusion - Classic)

(g) Acquisition
(Demosaic Only)

(h) ID
(Demo. Only - Classic)

(i) MRCA+UTV+S1`1 db = 1.5
(Demo. Only - Proposed)

(j) ATWT
(Fusion Only - Classic)

(k) MTF-GLP-HPM
(Fusion Only - Classic)

(l) MRCA+STV+S1`1
(Fusion Only - Proposed)

Fig. 4.10. Comparison among joint and separate fusion and demosaic algorithms for the
RGB+NIR bundle of the Washington dataset (160× 160 px cropped detail). The
considered acquisition setup is indicated within parentheses. The employed mask
for Demosaic+Fusion is shown in Fig. 4.3b.
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(a) PAN (b) EXP (c) GT

(d) Acquisition
(Demosaic+Fusion)

(e) WB/ATWT
(Demo.+Fusion - Classic)

(f) MRCA+UTV+S1`1 db = 1.3
(Demo.+Fusion - Proposed)

(g) Acquisition
(Demosaic Only)

(h) ID
(Demo. Only - Classic)

(i) MRCA+UTV+S1`1
(Demo. Only - Proposed)

(j) MTF-GLP-CBD
(Fusion Only - Classic)

(k) MTF-GLP-HPM
(Fusion Only - Classic)

(l) MRCA+UTV+S1`1
(Fusion Only - Proposed)

Fig. 4.11. Comparison among joint and separate fusion and demosaicing algorithms for
the RGB/NIR bundle of the Janeiro dataset (128× 128 px cropped detail). The
considered acquisition setup is indicated within parentheses. The employed mask
for Demosaic+Fusion is shown in Fig. 4.3b.
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(a) PAN (b) EXP (c) GT

(d) Acquisition
(Demosaic+Fusion)

(e) ID/GSA
(Demosaic+Fusion - Classic)

(f) MRCA+UTV+S1`1 db = 1.3
(Demo.+Fusion - Proposed)

(g) Acquisition
(Demosaic Only)

(h) ItID
(Demo. Only - Classic)

(i) MRCA+UTV+S1`1 db = 1.4
(Demo. Only - Proposed)

(j) MTF-GLP-CBD
(Fusion Only - Classic)

(k) MTF-GLP-HPM
(Fusion Only - Classic)

(l) MRCA+UTV+S1`1
(Fusion Only - Proposed)

Fig. 4.12. Comparison among joint and separate fusion and demosaic algorithms for the
8-band bundle of the Janeiro dataset (128× 128 px cropped detail). The consid-
ered acquisition setup is indicated within parentheses. The employed mask for
Demosaic+Fusion is shown in Fig. 4.3d.
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(a) PAN (b) EXP (c) GT

(d) Acquisition
(Demosaic+Fusion)

(e) ID/GSA
(Demosaic+Fusion - Classic)

(f) MRCA+UTV+S1`1 db = 1.3
(Demo.+Fusion - Proposed)

(g) Acquisition
(Demosaic Only)

(h) ItID
(Demo. Only - Classic)

(i) MRCA+UTV+S1`1 db = 1.4
(Demo. Only - Proposed)

(j) MTF-GLP-CBD
(Fusion Only - Classic)

(k) MTF-GLP-HPM
(Fusion Only - Classic)

(l) MRCA+UTV+S1`1
(Fusion Only - Proposed)

Fig. 4.13. Comparison among joint and separate fusion and demosaic algorithms for the
8-band bundle of the Stockholm dataset (192 × 192 px cropped detail). The
considered acquisition setup is indicated within parentheses. The employed mask
for Demosaic+Fusion is shown in Fig. 4.3d.
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4.6.6 Mask analysis

In this section we provide some preliminary tests on masks patterns based on
the approaches described in Section 4.3. While the tests themselves are a quite
exhaustive of a realistic set of patterns that could be implemented in practice, we
still define them as preliminary in the sense that an accurate formalization of the
problem requires a fully developed mathematical framework to strictly define the
characteristics of the desired mask patterns.

Two mask design approaches are investigated:

• Deterministic mask patterns: which were described in Section 4.3.3. The
test is performed with a variety of combination of PAN and MS masks. The
former includes the COVE, VERT and DIAG patterns of Fig. 4.1c to 4.1b, while
the latter includes the periodic (PERI) and MAXDIS patterns in Fig. 4.3b
to 4.3c. The two masks are combined with the shifting procedure described in
Section 4.3.3.

• Random mask patterns: which were described in Section 4.3.2. The investi-
gated designs include the CASSI (Fig. 3.9), RAND and DIRI with a flat Dirichlet
distribution.

The tests are performed on the 4-band bundles datasets "Hobart", "Janeiro" and
"Washington", whose GT has sizes 512 × 512 px. The results of their objective
analysis are given in Table 4.10, while the associated visual comparison is given in
Fig. 4.14, 4.15, and 4.16.

The reconstruction with the proposed framework is performed with baseline settings,
using a TV regularization embedded in an `221-norm, with the HRI blur operator Ab
set to identity.

The reference GT channels are histogram matched to the PAN, before proceeding
with the Wald’s protocol, so that the dynamic range is consistent across all the
samples of the acquisition. This choice was made for a fair comparison, as the
procedure of eq. (4.6.1) is not applicable to any random mask, other than the
RAND.

The main challenge for the reconstruction of acquisitions taken with a periodic mask
is their texturing pattern, which can be corrected solely through the regularization.
This effect is evident in products obtained with VERT pattern masked acquisitions,
e.g. within the dome in Fig. 4.16d and 4.16g or along the road sides in Fig. 4.14g
and 4.14g). The COVE masks, which were employed in the previous experiments
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do not provide enough color information for the for small patches, such as in the
case of the rooftops in Fig. 4.15h or the small habitations in Fig. 4.14h. The best
performances are obtained with the combination DIAG+MAXDIS, as it has both the
advantage of providing better localized channel information and PAN samples that
are better distributed in the final acquisition.

It is worth noting that this last mask design, explicitly shown in Fig. 4.1f, is exactly
equivalent to the design obtained by applying the dominant binary tree (DBT) [162],
shown in Algorithm 1, by choosing the PAN as dominant band. If this dominant
channel had the same spatial resolution of the MS channels, one could also think to
adopt the demosaicing strategy proposed in [167], although adapting it to our case
is not trivial.

Random masks produce localized spectral distortions, which are more relevant in the
CASSI-type masks, e.g. over the paved surfaces in Fig. 4.16j or across the roads in
Fig. 4.14j. Among the tested randomized masks, the proposed DIRI pattern provides
the best objective performances for the "Janeiro" and "Hobart" datasets, while the
RAND design performs better in the "Washington" dataset. The first two datasets
are in fact not characterized by which large uniform patches (Fig. 4.14l and 4.15l),
where the reconstruction can be supported by the mixed pixel information of the
DIRI, while the other case (Fig. 4.16k) does not require this level of detail, except in
some spurious pixels.

To balance the accuracy of the spectral and spatial reconstruction, it is also possible
to increase the occurrence ratio of the PAN samples in the mask pattern, i.e. by
employing a generalized Dirichlet distribution in the DIRI design, or by employing
non-uniform probabilities in the RAND design; in Table 4.10, we additionally test
the case where half the samples in the pattern are from the PAN, but this led to no
improvement.

Overall, the best periodic pattern (DIAG+MAXDIS) consistently outperforms random
masks. Even if the DIRI design may be used to generate wider spectral responses,
the same strategy can be employed even with deterministic masks, such as the cyan
yellow magenta (CYM) arrangements consequently, relegating the employment of
random masks to niche applications.
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Table 4.10. Mask comparison results for the tests described in Section 4.6.6 for the 4-band
512 × 512 cut version of the Hobart, Janeiro (different cut) and Washington
datasets. The dashed lines separate among the two considered classes: deter-
ministic and random mask, respectively. Bold and underline represents the
best and second best results for each dataset. The deterministic masks are
combinations of masks shown in Fig. 4.3. All inversions are performed with the
MRCA+TV+`221 method, with the Ab operator set to identity. The percentage
next to RAND denotes the amount of PAN samples. Only the best results for
the (normalized) value λ̌ for the Q2n parameter are given.

SSIM PSNR Q2n ERGAS SAM sCC
Ideal (GT) 1 ∞ 1 0 0 1

H
ob

ar
t

D
et

er
m

in
is

ti
c COVE+PERI 0.9717 38.02 0.9204 5.401 3.619 0.6304

DIAG+PERI 0.9788 38.57 0.9259 5.118 3.182 0.5496
VERT+PERI 0.9734 38.10 0.9176 5.552 3.200 0.5545
COVE+MAXDIS 0.9721 38.05 0.9207 5.353 3.610 0.6309
DIAG+MAXDIS 0.9847 39.35 0.9369 4.733 2.822 0.5623
VERT+MAXDIS 0.9734 38.06 0.9166 5.577 3.216 0.5484

A
le

at
or

y CASSI 0.9478 36.18 0.8585 6.924 4.313 0.4426
RAND (20%) 0.9746 37.87 0.9076 5.789 3.070 0.4606
RAND (50%) 0.9703 37.82 0.9091 5.630 3.478 0.5553
DIRI 0.9703 38.07 0.9139 5.407 3.708 0.5914

Ja
n

ei
ro

D
et

er
m

in
is

ti
c COVE+PERI 0.9484 30.26 0.8606 9.143 4.634 0.6448

DIAG+PERI 0.9594 30.11 0.8601 9.335 4.265 0.5630
VERT+PERI 0.9494 30.09 0.8594 9.418 4.187 0.5894
COVE+MAXDIS 0.9481 30.25 0.8601 9.162 4.643 0.6449
DIAG+MAXDIS 0.9653 30.42 0.8670 9.052 3.990 0.5638
VERT+MAXDIS 0.9489 30.00 0.8576 9.494 4.273 0.5779

A
le

at
or

y CASSI 0.9174 28.35 0.8162 11.47 5.209 0.4470
RAND (20%) 0.9511 29.42 0.8507 10.18 4.249 0.4817
RAND (50%) 0.9490 29.67 0.8480 9.865 4.571 0.5618
DIRI 0.9594 30.32 0.8668 9.108 4.564 0.6031

W
as

hi
n

gt
on

D
et

er
m

in
is

ti
c COVE+PERI 0.9303 28.55 0.9071 7.790 5.154 0.6145

DIAG+PERI 0.9506 29.49 0.9118 7.363 4.246 0.5856
VERT+PERI 0.9448 28.88 0.9054 8.047 4.397 0.5726
COVE+MAXDIS 0.9333 28.60 0.9070 7.779 5.176 0.6064
DIAG+MAXDIS 0.9623 29.99 0.9233 7.028 3.859 0.5837
VERT+MAXDIS 0.9440 28.78 0.9040 8.135 4.533 0.5595

A
le

at
or

y CASSI 0.8765 27.02 0.8278 10.28 5.465 0.4393
RAND (20%) 0.9451 28.78 0.9010 8.330 4.104 0.4912
RAND (50%) 0.9361 28.61 0.8991 8.285 4.661 0.5352
DIRI 0.9306 28.83 0.8943 8.066 4.914 0.5637
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(a) PAN (b) EXP (c) GT

(d) VERT+PERI (e) COVE+PERI (f) DIAG+PERI

(g) VERT+MAXDIS (h) COVE+MAXDIS (i) DIAG+MAXDIS

(j) CASSI (k) RAND (l) DIRI

Fig. 4.14. Comparison of the reconstructed products with different mask designs for the
4-band Hobart dataset (128 × 128 px cropped detail). The combined MS/PAN
masks are shown in Fig. 4.1. All inversions use the MRCA+TV+`221 method.
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(a) PAN (b) EXP (c) GT

(d) VERT+PERI (e) COVE+PERI (f) DIAG+PERI

(g) VERT+MAXDIS (h) COVE+MAXDIS (i) DIAG+MAXDIS

(j) CASSI (k) RAND (l) DIRI

Fig. 4.15. Comparison of the reconstructed products with different mask designs for the
4-band Janeiro dataset (128× 128 px cropped detail). The combined MS/PAN
masks are shown in Fig. 4.1. All inversions use the MRCA+TV+`221 method.
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(a) PAN (b) EXP (c) GT

(d) VERT+PERI (e) COVE+PERI (f) DIAG+PERI

(g) VERT+MAXDIS (h) COVE+MAXDIS (i) DIAG+MAXDIS

(j) CASSI (k) RAND (l) DIRI

Fig. 4.16. Comparison of the reconstructed products with different mask designs for the
4-band Washington dataset (128×128 px cropped detail). The combined MS/PAN
masks are shown in Fig. 4.1. All inversions use the MRCA+TV+`221 method.
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4.6.7 Setting the parameter values

We test here various possible parameters for the optimization of the proposed
framework. We analyze here the acquisition system already employed for the
"Demosaic+Fusion" setup in Section 4.6.4 and 4.6.5. The inversion algorithm
MRCA+TV+`221 with the blur operator Ab set to identity and a normalized regular-
ization parameter λ̌ = 10−3, is set as baseline protocol.

We then perform a series of tests: in each of them, we allow the modification
of a single parameter from that baseline setup, and evaluate the quality of the
reconstructed product in terms of that parameter. We empirically experienced that
setting up each parameter separately gives approximately the same result as if the
parameters were set up jointly.

These tests are applied to the 4-band "Beijing" and "Washington" data and a summary
of the results are given in Fig. 4.17 and 4.18, respectively. These results include the
GT, the visual result of the baseline test and an indication of the best available setup
of the proposed framework.

Specifically we perform the following tests:

• Regularization Parameter λ̌: The choice of the regularization parameter is
the most important to ensure that the quality of the reconstructed image, as it
provides a balance between the data fidelity term and the prior information
(Section 2.1.2). Unfortunately, its choice is not trivial, as it depends on the
SNR level of the acquisition, which in turn is a function of the characteristic
of the sensors and the illumination n the scene. Some techniques for the
automatic choice of the parameter, given the acquisition, such as generalized
cross validation (GCV) [90], the ones based on Stein’s unbiased risk estimate
(SURE) [211] and the L-curve criterion [111, 113], will be explored in Chap-
ter 6, as they are not easily adapted to the proposed framework. As a rule of
thumb, we found that λ̌ = 10−3 max y is a good compromise in most scenarios;
this is confirmed by the Q2n results in Fig. 4.17d and 4.17d. In the visual
comparison we provide the reconstructed products for implausible values of
λ̌, to exaggerate its effects for the sake of presentation. If the regularization
parameter is too low, there are relevant texture effects (Fig. 4.17e and 4.18e),
as we impose no structure on the final image. If it is too high, the smoothing
effect does not only apply on noisy regions, but to image features as well
(Fig. 4.17f and 4.18f).
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• Blurring diameter db: The blur operator Ab allows spreading the information
of the PAN to adjacent samples at the cost of considering a degraded spatial
resolution for the PAN. In our tests, the optimal value of the blur diameter was
found to be in the range 1.3− 1.5 px for a scale ratio ρ = 2. For the "Beijing"
dataset, the dependency is shown in Fig. 4.17g; a visual comparison of the
reconstruction products for different values of db is shown in Fig. 4.17b, 4.17h
and 4.17i. The optimal value is obtained as a trade-off between a more
accurate recovery of the PAN sample and avoiding out-of-focus effects in the
final product.

• Regularizer norm: In our proposed framework, the regularizer norm is an
expression for the metric function g(·) which TV contributions in the domains
of the spatial derivatives, channels and the pixels, according to the CTV [65,
66] formulation. The tested norms include the `111, `211, `221, `∞11, S1`1

and S∞`1 and the quantitative results are given in Fig. 4.17j for the "Beijing"
dataset and in Fig. 4.18j for the "Washington" one. From this analysis, the
`221 norm (the baseline VTV) is the best compromise between quality of the
reconstructed product and computational speed. Among the remaining choices,
better performances are only achieved with the S1`1, which has the additional
effect of whitening the noise contribution across different bands. For the visual
analysis, one can immediately notice that some spectral spot-shaped spectral
distortions in Fig. 4.17l when employing the `111. These distortions disappear
in the other cases, such as in Fig. 4.17b) for the `221 norm or, even better, in
Fig. 4.17k for the S2`1 norm.

• TV class: For this test, we tested some different digital formulations for the
discretization of the ROF model. In particular we tested the classic TV, the
UTV [39] and the STV [1]; the STV was tested with an upscale by a factor
of 2 and 3. For the "Washington" dataset, the qualitative comparison is given
in Fig. 4.18g, which highlights that any of the considered choices shows no
noticeable difference. The Q2n index varies within a 0.002 difference margin.
This is also confirmed by the visual inspection of Fig. 4.18i for the STV and
Fig. 4.18h for the UTV, which feature no noticeable differences at the naked
eye, in comparison to Fig. 4.18b.

To wrap the section, we would like to remind the reader that the accuracy of the
direct model transfer function is of the utmost importance for an accurate inversion.
The analysis of the accuracy of the direct model is outside of the scope of this work,
but some techniques are available for the estimation of its parameters [225], in case
of necessity. The histogram matching step of eq. (4.6.1), which was not studied
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in detail in this context, allow for non-negligible increases in performance; this
further confirms the requirement of an accurate description of the model for the
multiresolution sensors.
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(a) GT (b) MRCA+TV+`221
[λ̌ = 10−3]

Baseline result

(c) MRCA+TV+S1`1
[db = 1.5, λ̌ = 9× 10−4]

Best result

(d) Regular. Parameter Dependency (e) Baseline [λ̌ = 10−8] (f) Baseline [λ̌ = 10−1]

(g) Blur Diameter Dependency (h) Baseline [db = 1.5] (i) Baseline [db = 3]

(j) Norm Dependency (k) Baseline + Norm S1`1 (l) Baseline + Norm `111

Fig. 4.17. Parameters settings for the 4-band Beijing dataset (128× 128 px cropped detail).
The first row shows the reference with the baseline and best performing methods.
The following rows show the Q2n and the reconstruction product by varying one
parameter from the baseline setup.
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(a) GT (b) MRCA+TV+`221
[λ̌ = 10−3]

Baseline result

(c) MRCA+UTV+S1`1
[db = 1.3, λ̌ = 6× 10−4]

Best result

(d) Regular. parameter dependency (e) Baseline [λ̌ = 10−8] (f) Baseline [λ̌ = 10−1]

(g) TV Class Dependency (h) Baseline+UTV (i) Baseline+STV

(j) Norm Dependency (k) Baseline + Norm S1`1 (l) Baseline + Norm `111

Fig. 4.18. Parameters settings for the 4-band Washington dataset (128 × 128 px cropped
detail). The first row shows the reference with the baseline and best performing
methods. The following rows show the Q2n and the reconstruction product by
varying one parameter from the baseline setup.
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4.7 Conclusions and future perspectives

4.7.1 Conclusions

In this chapter, we proposed a model to jointly address the problem of image
fusion and reconstruction of compressed data; a particular focus is given on ease of
implementation with optical components on board of low-budget satellites, which
could justify mass production of a constellation of the latter. The relaxed constraints
on down-link resources is paid at a cost of a more complex and demanding processing
on the ground segment.

We proposed the design of the MRCA, a multiresolution compressed acquisition
system based on the CFA, both in its standard configuration and adapted to CASSI ac-
quisitions, with a still theoretical, but feasible, optical implementation. We proposed
a very flexible framework for the inversion of its acquisitions, cross checking results
with a variety of widespread regularizers and good performances were achieved with
an inversion based on the collaborative total variation. The promising results may
justify mass-production of a constellation of very low-budget satellites, where the
software reconstruction of the fused image is performed at the ground segment.

Additionally, we analyzed the effect of different masks for our proposed joint image
fusion and reconstruction scheme. The results show that an ideal computational
imaging-based design of the prototype should carefully balance the amount of
provided information from the high and low resolution source, and avoid strongly
localized patches with information pertaining to the same channel. The use of
nonbinary random masks, which may allow the manufacture of a wide array of
sensors with aleatory wider spectral responses with potentialities in overcoming the
physical limitations of current MS platforms, is still quite limited compared to the
case in which the design of deterministic masks is properly thought out.

When the spectral response of the PAN can be properly described by a combination
of the spectral responses of the MS, our proposed framework reaches the state-of-the-
art results. This is the case of 4 and 8-channel VIS/NIR bundles. In the case of RGB
compressed acquisition, we propose to approach the inversion with a combination
of classic demosaic and fusion methods, such as those based on the RI and GLP,
respectively.
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4.7.2 Future perspectives

Many different possible alternatives to extend this work are available. Among the
possibilities, one interesting path is to expand the proposed framework to even more
straightforward designs for commercial cameras. One of such examples could be
inspired by the recent success of technologies such as Quad Bayer masks, which
allow to combine together the energy acquired by multiple sensors to raise the SNR
in condition of low illumination. In our case, our framework can formalize the
setup of a single-chip acquisition system composed of wide-band pixels and 2× 2
sized patches of MS sensors which can be combined together. Additionally, more
advanced approaches for TV regularization could be employed, such the Elastica
minimization [41] based of the work in [158] for inpainting problems, which is
expected to have better reconstruction performances along curve borders. Some
other models are also available, such as total generalized variation (TGV) [31],
which also imposes a constraint on the Hessian operator, and the TV with more
isometric properties by Condat [48]. Some more sophisticated alternatives are also
available [128, 243]. The analysis could also focus on optimizing the computational
time [79]. The expansion of this work can also focus on the design of the compression
system itself, in similar vein of what is proposed in Section 4.3.1. The analysis may
focus on optimizing the mask itself, expanding the considerations on compressed
sensing of [131, 100]. Finally, in practical scenarios, the analysis may focus on the
description of the direct model, making use of analysis such as Duran’s work [64]. As
the Bayesian framework is in general more robust to the case where more channels
are involved, the most natural extension of this framework is to HS acquisition
systems, which can be approached with techniques such as spectral unmixing [25],
aimed at the reduction of the dimensionality of the channels.
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Optics foundations for the
ImSPOC acquisition system

5
This chapter is aimed at providing the foundational concepts necessary to model
Fabry-Pérot (FP) interferometers and lens optics, which constitute the main building
blocks for the description of the image spectrometer on chip (ImSPOC) concept. We
describe the involved optical quantities of interest for the final user and link them
with the observations on the detectors, characterizing the transformations operated
by the involved optical components.

The chapter is divided into five parts: in Section 5.1 and 5.2 we introduce the optical
variables at play, in Section 5.3 we perform a brief analysis of the lens optics, in
Section 5.4 we describe the general principles of interferometry, and in particular the
particular case of its realization through FP etalons. Finally, in Section 5.5, which is
a novel contribution of this work, we provide a detailed mathematical model which
describes the chain of optical operations of the ImSPOC concept.

5.1 Wave optics

The purpose of optical devices is to apply some transformation on the characteristic
properties of light rays. Under particular propagation scenarios that are easily
verifiable in practice, light rays are a particular instance of plane electro-magnetic
(EM) waves. The aim of this section is to introduce the concept of EM radiation
(Section 5.1.2), the properties of plane waves (Section 5.1.2), and the notable
physical quantities associated with EM waves.

5.1.1 Electromagnetic radiations

EM fields describe a perturbation of the space due to the movement of electrical
charges, whose dynamic, in their classical formulation, is described by Maxwell’s
equations. These equations define a set of coupled partial differential equations
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in the space domain, described by a position vector r in a given system of tri-
dimensional spatial coordinates (i.e. Cartesian), and in the time domain, described
by a scalar value t. Their macroscopic form is given by:





∇ · d = ρf ,

∇ · b = 0 ,

∇× e = −∂B
∂t

,

∇× h = jf + ∂d
∂t

,

(5.1.1a)

(5.1.1b)

(5.1.1c)

(5.1.1d)

where e, b, d, and h are known as the electric, magnetic, displacement and
magnetizing field, respectively.1 ρf and jf denote the spatial density of charges and
currents densities, respectively, and act as sources of energy. The dependency on r
and t is made implicit in every term to simplify the notation. ∇× and ∇· denote the
divergence and the curl operators in the spatial domain. d and h can be interpreted
as auxiliary fields, with the former representing how e influences the distribution of
electric charges and the latter how b influences the organization of magnetic dipoles
in a given medium. This relationship across fields can be made explicit in dielectric
materials [125], by defining their permittivity ε and permeability µ and obtaining:

D = εE , (5.1.2a)

B = µH . (5.1.2b)

The variables ε and µ are in general second order tridimensional tensors, which are
functions of both r and t. However, in the context of this work, we always consider
the propagation in linear, non-lossy, homogeneous, and nondispersive isotropic
media, for which ε and µ simplify to real scalar quantities, which do not vary with
time or with their spatial position. Under these conditions and considering eq. (5.1.1)
without charges or currents (in other words, with ρf and jf being identically equal to
zero), the only non-trivial solutions for b and e have to obey [125] the relationships:

∇2e = µε
∂2e
∂t2

, (5.1.3a)

∇2b = µε
∂2b
∂t2

, (5.1.3b)

1The names assigned to each field often vary across different authors, so it may be common to
encounter h defined as magnetic field strength, H-field or simply as magnetic field, and similarly b
as B-field or magnetic flux density.
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where ∇2 is the Laplacian operator in the spatial domain (i.e.: ∇2 = ∂2/∂r2
1 +

∂2/∂r2
2 + ∂2/∂r2

3 in the Cartesian system with axis [r1; r2; r3]) 2. If expressed in
Cartesian coordinates, each of the fields can be described by three components (e.g.,
so that e = [e1; e2; e3]) and each of the relations in (5.1.3) can be separated into
three Helmholtz equations. The spatial evolution of each component can be then
modeled as a wave, whose properties are described in the next section.

5.1.2 Helmholtz wave equation

In general terms, a wave defines any physical quantity u(r, t) whose evolution in
time t and distribution in the space r ∈ R3 is a solution of the so-called Helmholtz
equation:

∇2u− 1
c2
∂2u

∂t2
= 0 , (5.1.4)

where ∇2 denotes the Laplacian operator in the spatial domain. The uniqueness
of its solution is imposed by assigning boundary and initial conditions for u. It can
be shown [202] that the principle of superposition applies. Assuming that u has
limited energy, any particular solution u of (5.1.4) can be expressed with its Fourier
decomposition:

u(r, t) =
∫ +∞

0
uν(r, t)dν , (5.1.5)

In other terms, u is a combination of a set of monochromatic wavefunctions
uν(r, t) at a fixed frequency ν in the form:

uν(r, t) = |U(r, ν)| cos (2πνt+ ϕ(r)) , (5.1.6)

where |U(r, ν)| and arg{(r, ν)} denote the amplitude the phase of the monochro-
matic wave and are constant with time. For a given fixed frequency ν, it is common
to adopt an alternative representation of the wavefunction uν(r, t) in terms of the
complex function Ǔν(r, t):

Ǔν(r, t) = |U(r, ν)| exp (j U(r, ν)) exp (j2πνt))

= U(r, ν) exp (j2πνt) ,

(5.1.7a)

(5.1.7b)

where U(r, ν) = |U(r, ν)| exp (j U(r, ν)) is known in the literature as complex
amplitude. This representation is fully reversible, so that it is possible to recover

2In the literature the tern [r1; r2; r3] is typically denoted with [x, y, z].
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the original wavefunction uν(r, t) = Re
{
Ǔν(r, t)

}
, where Re {·} denotes the real

part of its argument. As an additional advantage, the Helmholtz equation can map
directly into the equivalent expression:

∇2Ǔ − 1
c2

∂

∂t2
Ǔ = 0 , (5.1.8a)

∇2Uν −
(

2πν
c

)2 ∂

∂t2
Uν = 0 , (5.1.8b)

∇2Uν − k2 ∂

∂t2
Uν = 0 , (5.1.8c)

and one can apply the same boundary/initial conditions to reach the same result in
the new representation. The expression at a given frequency ν at the step (5.1.8b)
is obtained by substituting eq. (5.1.7b) into (5.1.8a) and by defining the so-called
angular wavenumber k := 2πν/c.

5.1.3 Plane waves

Plane waves are the solutions of Helmholtz equation with the condition of free
charges propagation in a lossless, isotropic, and homogeneous medium [139]. These
solutions are characterized by a complex amplitude in the form:

U(r, ν) = U0(ν) exp (−jk · r) , (5.1.9)

where U0(ν) = |U0(ν)| exp (j U0(ν)) is known as complex envelope and is defined
by a complex scalar with amplitude |U0(ν)| and phase U0(ν). The wavevector k is
an intrinsic characteristic of the plane wave; its magnitude (obtained by comparing
eq. (5.1.9) with (5.1.8b)) is equal to the angular wavenumber and consequently
strictly related to the frequency of the wave, while its unit vector defines its direction
of propagation, regulated through the scalar product k · r.

To intuitively illustrate the function of each parameter of a plane wave, let us
suppose that, in a system of coordinates such as the Cartesian or cylindrical one, the
propagation is in the direction of the z-coordinates, which we denote with r3. With
this assumption, eq. (5.1.9) simplifies to Uν(r3) = U0(ν) exp (−jkr3). According to
eq. (5.1.7a), the associated wavefunction can be obtained by taking the real part of
Uν(r3):

uν(r3, t) = |U0(ν)| cos(ωt− kr3 + U0(ν)) (5.1.10a)

= |U0(ν)| cos(2π(νt− r3
λ

) + U0(ν)) , (5.1.10b)
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where k = 2π/λ and ω = 2πν; λ is simply known as wavelength, while ω is
frequently referred to as angular frequency. The resulting wavefunction uν(r3, t)
can be analyzed both in the time and space domains:

• If we fix a specific point in space r3, the value T = 1/ν, known as period,
represents the time interval to wait for the wave to return the same state, or,
equivalently in our context, to exhibit the same phase. Similarly, the frequency
ν = ω/(2π), when expressed in Hz, represents the average amount of times
the wave returns to the same state within a 1 second interval.

• If we fix a specific instant of time t, the surfaces which exhibit the same phase,
known as wavefronts are all planar and perpendicular to the direction of
propagation, and the distance between two consecutive wavefronts is defined
as the wavelength λ. Similarly, if we travel along the direction k for 1 meter,
the (non-angular) wavenumber 3 k/(2π), if expressed in m−1, denotes the
average amount of surfaces with the same phase for each meter along the
direction of propagation.

It is worth noting that the variables λ and ν, which characterize the propagation of
the plane wave with regard to space and time, respectively, are not independent,
since they are related through the characteristic phase velocity c of the propagation
medium itself, which imposes c = λν. In the field of optics, it is common practice to
define the phase velocity in relation to the speed of light in the vacuum, a universal
physical constant c0 = 299792458m/s with no dependency on the frequency ν. With
this definition, the phase velocity is often defined in relative terms as c = c0/n,
where the so-called refractive index n acts as an intrinsic characteristic of the
medium. The Fourier analysis of a wave packet, defined as a set of waves with
different frequency, may be performed as a combination of different monochromatic
waves ν. This frequency will stay fixed across different propagation media, while
the wavelength λ may vary, as the phase velocity c varies as well when switching
between different propagation media. To avoid this unnecessary complication, it
is useful to introduce the wavelength and wavenumber in the vacuum, defined
respectively as λ0 = c0/ν and σ = 1/λ0, which will remain constant across different
media. As a final remark, one could wonder how it is possible for a field to exist when
we considered a charge-free expression of Maxwell’s equations to derive eq. (5.1.3);
this assumption was taken to consider a scenario in which the EM radiation is not
perturbed by charges themselves. One common assumption for this condition to
be verified, known as far field, is to consider the distance between any source
and the position of the field itself to be longer than the Fraunhofer’s distance

3The wavenumber is simply denoted with σ in most publications, but, not to generate confusion in
the reader, in this thesis σ exclusively denotes the wavenumber in the vacuum.
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df = 2d2
r/λ, with dr identifying the largest dimension of the source radiator. Under

this approximation we can consider the radiator as a point source, and the solution
of the Maxwell’s equations is given by spherical wavefronts centered around the
radiator, which can be locally approximated as planar wavefronts [18].

5.1.4 Transverse electro-magnetic waves

By comparing eq. (5.1.3) with (5.1.4), it can be promptly obtained that the phase
velocity can be expressed in terms of the characteristic of the propagating medium
as c = 1/√εµ. The solution of Helmotz equations (5.1.3) can thus be rewritten as:

E(r) = E0 exp (−jk · r) , (5.1.11a)

H(r) = H0 exp (−jk · r) , (5.1.11b)

where E0 and H0 denote respectively the complex envelopes of E and H, which are
the complex functions associated with the fields e and h. By substituting (5.1.11a)
and (5.1.11b) into the system of Maxwell’s equations (5.1.1) and applying it to
complex functions, we obtain:

k×H0 = −ωεE0 , (5.1.12a)

k×E0 = ωµH0 . (5.1.12b)

The resulting E and H are perpendicular both to the direction of propagation
and to each other, generating a mode of propagation that is commonly known as
transverse electro-magnetic (TEM). The dependence between the fields is not
simply limited to their direction, as it can be shown that their complex amplitudes
are also related through the following expressions:

|H0| =
√
µ

ε
|E0| = ζ|E0| , (5.1.13)

where we have defined ζ =
√
µ/ε as the admittance of the medium and we have

substituted |k| = ω
√
εµ for simplicity.
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5.2 Radiometry

In the field of Earth monitoring and remote sensing applications, which is the main
target field of applications of this work, it is of the utmost importance to properly
measure the transfer of energy associated with EM radiations, commonly known
as radiant energy. The aim of this section it to briefly introduce and describe
the measurable quantities associated with the radiant energy and their associated
measurement techniques; those are the topic of the domain known as radiometry.
Firstly, Section 5.2.1 introduces the Poynting vector, providing a bridge between
the formalism of EM waves and radiometric quantities; the latter are then formally
described in Section 5.2.3.

Finally, the description of the characteristics of the photodetector, a sensor devoted
to their measurement of radiometric quantities, is the topic of Section 5.2.4. While
the focus of this work is mainly on Earth remote sensing, the applicability of the
concepts of this section goes far beyond the scope of Earth monitoring; for the
interested reader, a more detailed treatment on the subject of radiometry is provided
in the works of Grum and Wyatt [103, 235].

5.2.1 Poynting vector

Energy flux defines the energy transfer of a field per unit area and per unit time
and is measured in Wm−2 = Js−1m−2). Its directional value is described, for EM
fields, by a mathematical entity known as Poynting vector, which allows to impose
continuity conditions for the conservation of the energy through the Poynting
theorem [195].

The expression of the Poynting vector s, as it appears in the original work, is defined
for linear nondispersive metals as:

s = 1
2 (e× d + b× h) (5.2.1a)

= e× h . (5.2.1b)

where the simplification to the second expression (5.2.1b) is only valid for dielectric
media and obtained through eq. (5.1.2). As the Poynting vector varies with time,
its instantaneous amplitude cannot be measured with any practical detector, as it
is characterized by a certain response time. To avoid this inconvenience, it is more
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practical to average the expression (5.2.1) over a time window ∆t (i.e., the period
T = 1/ν for plane waves) short enough compared to the other times of interest in
the process under study. This average is commonly known as the irradiance and
given by:

E(r, t) = 1
∆t

∫

∆t
|s|dt . (5.2.2)

In terms of complex functions, the Poynting vector can be rewritten as:

s = Re {E exp(jωt)} × Re{H exp(jωt)} (5.2.3a)

= 1
4 (E×H∗ + E×H + exp(j2ωt)E×H + exp(−j2ωt)E∗ ×H∗) , (5.2.3b)

where we have used the relation Re{U exp(jωt)} = U exp(jωt) + U∗ exp(−jωt),
which is valid for any complex envelope U, as they have no dependence with t. By
averaging eq. (5.2.3b) over an interval of time equal to any multiple of an oscillation
cycle 1/ν, the third and fourth terms become null, which allows to define a complex
Poynting vector S:

S = 1
2E×H∗ . (5.2.4)

If the above relation is applied to TEM waves with complex envelopes E0, we obtain:

E = |S| = 1
2

√
µ

ε
|E0|2 . (5.2.5)

5.2.2 Solid angle

A solid angle, denoted as Ω, is defined as the tridimensional angular volume that a
certain surface in the space, projected over a unit sphere, subtends to its center point,
known as apex. In the context of radiometry, it is used to identify the amount of
field of view (FoV) from a particular point of observation covered by a certain object.
The term solid angle sometimes also defines its measure in steradians (symbol:
sr), which is equivalent to area of the surface S of the observed object projected
over the unit sphere centered in the apex. It is useful to define the solid angle in
terms of spanning angles in spherical coordinates with the origin in the apex. With
reference to the geometry shown in Fig. 5.1a, each point of the unit surface cant
be identified by a couple of spherical coordinates θ = [θ;φ], whose elements are
known as polar and azimuth angle, respectively. The area S projected over the unit
sphere is composed by an infinite set of elementary contributions dΩ, which can
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(a) Solid angle in spherical coordinates
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(b) Radiance over a detector surface

Fig. 5.1. The figure on the left shows a representation of the elementary solid angle dΩ over
an unitary sphere (bounded by the dashed lines). This visual representation shows
how it’s link with the variation dθ of the polar angle and dφ of the azimuth angle.
On the right, a representation of the radiance incident vector over an elementary
detection surface dS centered at r[0].

be expressed in terms of the variation dθ of the polar angle and dφ of the azimuth
angle as follows:

dΩ = sin θdθdφ . (5.2.6)

The total measure of the solid angle is thus given by
∫∫
S sin θdθdφ.

5.2.3 Radiometric measures

In the context of radiometry it is often required to quantify the transfer of radiant
energy Qe, which is the energy (measured in Joule) associated with the EM field, in
terms of directional, temporal, or spectral parameters. This is useful to characterize
the emission of a given radiator thanks to the detection of the incident radiation over
a sensor. These quantities can be interpreted either in term of emitted or received
energy, but this section is presented from the perspective of energy receptors, as our
work is mostly focused on the detection process. The four fundamental quantities
defined in the field of radiometry are presented below:

• Radiant flux Φ: defines the flux of the radiant energy Qe per unit of time that
flows across a given surface S. In mathematical terms, Φ can be interpreted
as the infinitesimal variation dQe/dt of Qe with respect to an infinitesimal
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variation dt of time. In other terms, the radiant flux Φ acts as a measure of EM
power in the same way Qe acts as a measure EM energy. The radiant flux is
formally defined by:

Φ = 1
∆t

∫

∆t

∫∫

S

|s| · −→iS dS dt , (5.2.7)

where
−→iS denotes the unit vector normal to the unit surface and ∆t defines a

time window multiple than the oscillation cycle, but shorter than the dynamics
of all quantities of interest.

• Irradiance E: defines the flow of radiant energy per unit area perpendicular
to the direction of the flow itself. In mathematical terms, if dS⊥ is a surface
element perpendicular to the direction of Φ, the irradiance can be expressed
as the infinitesimal variation E = dΦ

dS⊥ . As described in Section 5.2.1, the
irradiance can also be expressed as the amplitude of the Poynting vector,
averaged over an oscillation cycle. The full knowledge of E as a function of the
position in space is a stronger information than the radiant flux, as the latter
can be obtained integrating the irradiance over the surface under investigation.

• Radiance L: In most practical scenarios, the detector element is described
by a certain surface in the space S [t], which can be decomposed in a series of
elementary surfaces oriented in space. Any of those surfaces, denoted here
with dS, can be seen as a point detector in space, characterized by a given
normal

−→iS , acting as apex for its associated FoV. This FoV can be partitioned
into a continuous set of elementary solid angles dΩ; the FoV contained within
each of these elements can be considered small enough within the volume of
space identified by dΩ, such that the angle of incidence of the rays contained
in it is constant. From the perspective of the incident ray, the element area
dS of the detector is seen with a relative angle with respect to its normal.
Given the geometry of the problem shown in Fig. 5.1b, the projected area
dS⊥ of dS in the direction orthogonal to the direction of incidence is given
by dS⊥ = dS cos θ, where θ defines the angle between the direction of the
incident ray and the normal to the detector area. The radiance is henceforth
defined as the radiant flux flowing across a given surface, per unit solid angle
dΩ with apex centered in dS per unit projected area dS⊥, or in mathematical
terms:

L = d2Φ
dΩdS⊥

= d2Φ
dΩdS cos θ . (5.2.8)

The radiance fully characterizes a detection process, since the radiant flux
flowing across any given detector can be obtained by integrating the radiance
both over its surface and over the full extent of its FoV.
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• Radiant intensity I: is defined as the flow of radiant energy per unit solid
angle I = ∂Φ

∂Ω and acts as a simplification of the concept of radiance, but
applied to a point detector. The radiant intensity is a directional quantity and
it can be expressed in terms of spherical coordinates as I(θ), which roughly
represents the flow of radiant energy received by a point detector in a certain
angular direction θ = [θ;φ].

• Radiant Intensity D: is defined as the incident amount radiant flux incident
to the point source per unit solid angle, that is D = dΦ/dΩ. The radiant
intensity is a simplification of the concept of radiance for point detectors, as
we can imagine that, if the whole surface of a given detector is distant enough
from all emitting sources, then the radiant flux can only be considered only as
a function of the incident angle.

The radiometric variables are also often defined in terms of their spectral density. For
example, for the radiance, it is possible to define a spectral radiance either in terms
of the optical frequency optical frequency Lν = dL

dν , of the wavelengths Lλ = dL
dλ ,

or of the wavenumbers Lσ = dL
dσ . Each of these representation can be expressed in

terms of one another with appropriate mathematical adjustments [58]; in this thesis,
unless otherwise noted, we employ the expression in terms of wavenumbers σ. The
passage from the spectral to non-spectral definition is obtained by integrating over
σ, i.e. for the radiance:

L =
∫ +∞

0
Lσdσ . (5.2.9)

The definitions of the radiometric quantities are summarized in Table 5.1.

Table 5.1. Summary of the radiometric quantities introduced in Section 5.2.3.

Name Symbol Unit Definition
Radiant Energy Qe J
Radiant Flux Φ W dQe/dt
Spectral Radiant flux Φσ Wµm dΦ/dσ
Irradiance E W m−2 dΦ/dS⊥
Spectral Irradiance Eσ W m−2 µm dE/dσ
Radiant Intensity D W sr−1 dΦ/dΩ
Spectral Radiant intensity Dσ W sr−1 µm dD/dσ
Radiance L W sr−1 m−2 d2Φ/(dΩ cos θ∂S)
Spectral Radiance Lσ W sr−1 m−2 µm dL/∂σ

The quantities we discussed are often defined as densities (e.g.: spatial, directional
or spectral), which are defined in a continuous space and thus only measurable with
a finite precision, that is, by partitioning the continuous domains into sufficiently
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small intervals. E.g., a representation of the spectral radiance can be given as set
the radiant fluxes, whose generic element Φli is:

Φli =

σl+ ∆σ
2∫

σl−∆σ
2

∫∫

Ωi

Lσ (θ) dΩ dσ (5.2.10a)

≈ ∆σSΩiLσl(θi) , (5.2.10b)

where the spectrum is divided in intervals such that the l-th one is [σl −∆σ/2, σl +
∆σ/2] and the FoV is divided in solid angles, such that the i-th one Ωi has a
subtended area on the unit sphere equal to SΩi . If the spectral radiance is reasonably
uniform over the span of both intervals (and equal to Lσl(θi)), this justifies the
approximation 5.2.10b.

5.2.4 Photodetectors

Photodetectors define a class of sensors for the detection of the incident EM radia-
tion. We provide in this paragraph just a brief introduction; a more in depth analysis,
which includes more advanced concepts of photonics, is left to the specialized
literature [202, 43].

The most common technology of modern photodetectors are the photodiodes,
which are composed by a p-n junction (or a PIN structure), operating in zero or in
reverse bias mode. Their operating principle is based on the inner photoelectric
effect, which defines the generation of an electron-hole pair within the photodiode,
because of the the energy generated by a photon striking on its surface. If the
pair is generated in the depletion region (the region in the proximity of the doping
discontinuities where mobile charges have been diffused by the electric field and
is depleted of carriers), the electric field generates a drift current, so that electrons
can be collected at the cathode and holes at the anode. Therefore, the resulting
photo-current is approximately proportional to the incident irradiance. The vast
majority of photodiodes employ:

• a PIN structure: to enlarge the depletion area by inserting an intrinsic region
between the p-n junction;

• a reverse bias mode of operation: to increase the speed of the process of
photon absorption at the cost of more intense dark currents (current that
circulates in the device, even with no illumination).
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Some devices, known as avalanche photodiodes, additionally make use of the
avalanche effect to multiply the collected carriers.

When photons impact the photodiode, they are not necessarily absorbed, as the
electron-hole pair may either not be formed or recombine before its collection over
the electrical contacts. To model this nonideality effect, it is common to define
an associated function 0 < η < 1, called quantum efficiency, which defines the
probability that an incident photon becomes part of the flux of generated electrons,
which is typically a function of the wavelength of the incident ray.

The physical processes that are involved for the detection of the incident photons
introduce sources of unwanted deviations for the desired transfer function, which
can be categorized into two types:

• Thermal noise: is the main effect of photon noise, which are due to physical
phenomena in the detector itself. Thermal noise is determined by the thermal
fluctuation of circulation of carriers in the electronic circuit, which can be
modeled with an additive white Gaussian noise (AWGN) whose standard
deviation is proportional to the temperature and the resistance of the circuit
conductor.

• Shot noise: is the most relevant effect of circuit noise, which is due to the
electrical circuits associated the receiver. Shot noise is due to the fluctuation of
the bias current through depleted regions. This can be modeled by a Poisson
process with zero mean and power spectral density (PSD) proportional to the
dark current in the device. For a sufficiently large number of incident photons,
shot noise approaches a normal distribution.

5.3 Optics of lenses

As radiometric measures involve the directional measure of the radiance, one of the
main requirements is to be able to focus over a single detector a set of parallel rays
incoming from a certain direction; this focusing effect is generally accomplished by
the use of lenses. In this section we describe the optical phenomena related to the
transfer of rays across media characterized by stepwise uniform refraction indices;
we also introduce some basic tools to model the behaviour of focusing lenses.
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5.3.1 Fresnel equations

Let a monochromatic plane wave be incident to a planar boundary between two
linear, homogeneous, isotropic material with refractive indices n1 and n2 respectively.
When a light ray is incident to this boundary from the first medium, it is split into two
components, one which is reflected back into the medium itself and the other one
which is transmitted into the second medium. We denote the incident, reflected and
transmitted rays with the superscripts [in], [r] and [t], respectively. If the boundary
itself is lossless, the principle of the conservation of energy implies that the overall
amount of EM energy balance is preserved, or, in other words, that the incident
energy is equal to the sum of the reflected and transmitted energy. The reflected and
transmitted rays can be characterized by their direction of propagation and their
associated quota of energy; such characterization can be obtained as solution of
Maxwell’s equations, assuming as boundary conditions that the components tangent
to the discontinuity of both the electric and magnetization field are the same across
the two media. With regards to the direction, let θ[in], θ[r] , and θ[t] denote the
incidence angle, the reflection angle, and the transmission angle, respectively.
Those angles obey the following relationships:

θ[r] = θ[in] , (5.3.1a)

n1 sin θ[in] = n2 sin θ[t] , (5.3.1b)

respectively known as law of reflection and Snell’s law. With regard to the energy
balance, a common practice to decouple the field in terms of its polarization. Let
k[in], k[r], and k[t] denote the wavevectors associated with the incident, reflected
and transmitted ray, respectively. The polarization determines the direction of the
electric fields with respect to the the plane formed by the wavevector k[in] of the
incoming wave and the normal to the boundary, commonly known as incidence
plane.

The reference coordinate system is shown in Fig. 5.2 and is assumed to be taken
according to the direction of the propagation, with r3 defining the direction of k[in]

and r2 the direction parallel to the incidence plane and perpendicular to k[in].

We can decompose the plane wave into:

• a transverse electric (TE) mode, where the electric field complex envelope
E⊥ is directed in the r1 direction, perpendicular to the incidence plane;

• a transverse magnetic (TM) mode where the electric field complex envelope
E‖ is directed in the r2 direction, parallel to the incidence plane.
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Source: Adapted from [202]

Fig. 5.2. Coordinate system for the reflected and transmitted ray generated by a ray incident
on a discontinuity slab.

In the following, we will denote the complex envelopes in the assigned directions
for the electric and magnetization fields as follows:

E[in] = E
[in]
0 exp(−jk[in] · r) , (5.3.2a)

E[r] = r̃⊥,‖E
[in]
0 exp(−jk[r] · r) , (5.3.2b)

E[t] = t̃⊥,‖E
[in]
0 exp(−jk[t] · r) , (5.3.2c)

H [in] = ζ1E
[in]
0 exp(−jk[in] · r) , (5.3.2d)

H [r] = ζ1r̃⊥,‖E
[in]
0 exp(−jk[r] · r) , (5.3.2e)

H [t] = ζ2t̃⊥,‖E
[in]
0 exp(−jk[t] · r) , (5.3.2f)

where we denoted with E[in], E[r], E[t] the complex functions of the component
of electric field, with H [in], H [r], H [t] the complex functions of the component of
the magnetization field, with E

[in]
0 the complex envelope of the incident electric

field, with the superscript denoting if they are assigned the incident, reflected or
transmitted ray. The values r̃⊥,‖ and t̃⊥,‖ denote the reflection coefficient and the
transmission coefficient, respectively, with the subscript ‖ corresponding to the
TM mode and ⊥ to the TE mode. Finally ζ1 and ζ2 are the admittances of the two
media, which act as a link between the complex envelope of the magnetization and
electric field through eq. (5.1.13).

We derive the expressions of r̃⊥ and t̃⊥ by imposing the boundary conditions for the
TE mode, and r̃‖ and t̃‖ by imposing them for the TM mode:

5.3 Optics of lenses 163



• Transverse electric (TE): For the TE mode, the boundary conditions assume
the following form in correspondence to the discontinuity:

E[in] + E[r] = E[t] , (5.3.3a)

H [in] cos θ[in] −H [r] cos θ[in] = H [t] cos θ[t] , (5.3.3b)

and, by substituting them in (5.3.2), we obtain:

r̃⊥ = ζ1 cos θ[in] − ζ2 cos θ[t]

ζ1 cos θ[in] + ζ2 cos θ[t] , (5.3.4a)

t̃⊥ = 2ζ1 cos θ[in]

ζ1 cos θ[in] + ζ2 cos θ[t] . (5.3.4b)

• Transverse magnetic (TM): For the TM mode, the boundary conditions at
the discontinuity assume instead the following form:

E[in] cos θ[in] − E[r] cos θ[in] = E[t] cos θ[t] , (5.3.5a)

H [in] +H [r] = H [t] , (5.3.5b)

and by substituting them in (5.3.2), we obtain:

r̃‖ = ζ2 cos θ[in] − ζ1 cos θ[t]

ζ2 cos θ[in] + ζ1 cos θ[t] , (5.3.6a)

t̃‖ = 2ζ1 cos θ[in]

ζ2 cos θ[in] + ζ1 cos θ[t] . (5.3.6b)

In terms of irradiances E [in], E [r] and E [t] of the incident, reflected and transmitted
wave, respectively, we can define the reflectivity R and the transmissivity T as:

E [r] = RE [in] , (5.3.7a)

E [t] = T E [in] . (5.3.7b)
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Once again, the reflectivity R⊥,‖ and transmissivity T⊥,‖ are different for the TE and
TM mode. Since the irradiance is derived in the expression (5.2.5) as the amplitude
of the complex Poynting vector, we obtain:

R⊥,‖ =
∣∣r̃⊥,‖

∣∣2 , (5.3.8a)

T⊥,‖ = 1−R⊥,‖ , (5.3.8b)

where eq. (5.3.8b) was derived as a result of the principle of conservation of
energy.

By substituting eq. (5.3.4a) and (5.3.4b) into (5.3.8a), we finally obtain:

R⊥ =

∣∣∣∣∣
ζ1 cos θ[in] − ζ2 cos θ[t]

ζ1 cos θ[in] + ζ2 cos θ[t]

∣∣∣∣∣

2

=

∣∣∣∣∣
n1 cos θ[in] − n2 cos θ[t]

n1 cos θ[in] + n2 cos θ[t]

∣∣∣∣∣

2

, (5.3.9a)

R‖ =

∣∣∣∣∣
ζ2 cos θ[in] − ζ1 cos θ[t]

ζ2 cos θ[in] + ζ1 cos θ[t]

∣∣∣∣∣

2

=

∣∣∣∣∣
n2 cos θ[in] − n1 cos θ[t]

n2 cos θ[in] + n1 cos θ[t]

∣∣∣∣∣

2

. (5.3.9b)

The rightmost side of the equation is valid only for non-magnetic media, or in other
words such that their permeability is equal to that of the void, which is a commonly
verified hypothesis for the range of optical frequencies. In practical application,
where light is not artificially polarized, the amount of TE and TM modes are present
in equal amount, so that the effective reflectivity of the discontinuity can be assumed
to be an average of the two contributions:

R ≈ 1
2
(
R⊥ +R‖

)
. (5.3.10)

In the special case of normal incidence (θ[in] = θ[t] = 0), the reflective coefficients
are the same for both polarizations and the reflectivity can be simplified to:

R =
∣∣∣∣
n1 − n2
n1 + n2

∣∣∣∣
2
. (5.3.11)

5.3.2 Ray transfer matrix analysis

The ray transfer matrix analysis defines a series of tools to describe the direction
and position of rays in the space travelling across optical systems, such as lenses.
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From a physical point of view, if we consider light rays that travel across uniform
media in space, their path is straight everywhere except across their boundaries,
as the light beam changes direction when transmitted across adjacent media. The
ray transmission is regulated by Snell’s law (5.3.1b), where the angle of incidence
and transmission are intended here with respect to the normal to a generally curve
discontinuity.

Mathematically, lenses can be defined as a closed region of a transparent medium,
typically with rotational symmetry around a certain axis known as optical axis. In
the framework of the ray transfer matrix analysis, the incident and transmitted
rays can be defined as the light rays travelling across an input and output plane,
respectively, perpendicular to the optical axis.

Given a certain surface (either input or output), let r[0] its intersection with the
optical axis and let [r1, r2, r3] be a system of Cartesian coordinates centered in r[0],
with r3 oriented in the direction of the optical axis. Under this system, each ray
direction can be uniquely represented by two sets of parameters [88]:

• The position in the space, defined by the intersection of the ray with the
considered surface, which is identified by the vector r = [r1; r2];

• The direction of incidence defines the orientation of the ray with respect to
the surface. If the axis origin is shifted by r[0], this direction is fully described
by the polar angle θ between the direction of the ray and r3 and by the azimuth
angle φ that the the projection of k[in] on the discontinuity makes with the
r1 axis. To simplify the notation, the couple is denoted with the vector form
θ = [θ;φ].

The described set of variables is also shown (with a slightly different notation) in
Fig. 5.8. If we consider [r;θ] as a vector of 4 elements, the effect of a certain lens
of changing the direction and shifting the position can be modeled with a certain
transfer function Θ : R4 → R4 :

[
θ[t]

r[t]

]
= Θ

([
θ[in]

r[in]

])
, (5.3.12)

that links the incident vector
[
θ[in]; r[in]] to the transmitted one

[
θ[t]; r[t]]. If the

conditions of linearity between the input and output variables are satisfied, this
relationship can be modeled as multiplication by a 4× 4 matrix.

A great variety of optical devices is included in this model [120], but we focus our
attention to the case of lenses with perfect rotational symmetry. In this case, the
incident ray may be specified just with the two scalar variables r = ‖r‖2 =

√
r2

1 + r2
2
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and θ, and the transfer function Θ in (5.3.12) is a multiplication by a matrix of sizes
2× 2.

5.3.3 Spherical lenses

Spherical lenses are a special case of simple lenses, which define a transmissive
optical devices manufactured with a single transparent medium (in other words a
medium which is homogeneous, nondispersive, isotropic media, and uniform with
the wavelength). For spherical lenses, the boundaries of the simple lens are two
surfaces with a constant curvature, that is surfaces of spheres with fixed radii dr1
and dr2 . By convention, these radii are given with a positive sign for convex lenses
or negative for concave lenses (e.g. if the bounding surfaces bulges inward); an
example of a convex and concave lens is show in Fig. 5.3.

Optical Axis

Principal
Plane

dr1

dr2

C1 C2

dF

(a) Biconvex lens

Principal
Plane

Optical AxisC1

|dr1|

dF

C2

|dr2|

(b) Biconcave lens

Fig. 5.3. Visual representation of convex and concave lenses. The focus dF represents the
point of convergence of incident rays parallel to the optical axis coming from the
left side. Thin lenses are characterized by only one principal plane.

Given the rotational symmetry of the structure, the optical axis corresponds to the
straight path that links the centers of curvature of the two boundaries. Let n be the
refraction index within the lens and let n01 and n02 the refraction indices on the
two external sides of the lens (typically n01 = n02 ≈ 1 for lenses surrounded by air).
The ray transfer matrix Θ = Θ[3]Θ[2]Θ[1] of the overall system can be obtained as
cascade of three components: two matrices Θ[1] and Θ[3] for the transmission over
the discontinuities and a matrix Θ[2] for the propagation within the lens itself.

To derive the expression of each contribution, we assume that the angle of incidence
θ[in] is small enough so that we can approximate the associated sinusoidal functions
with the first term Fourier decomposition: sin θ[in] ≈ θ[in]. This condition is known
as paraxial approximation. Implicitly, this assumption implies that the radii of
curvature are big enough that each discontinuity surface is approximately planar for
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every intersection point r[in]; this allows to assume that all the refraction phenomena
happen over planes perpendicular to the optical axis, known as principal planes.
Two such planes can be identified situated at opposite sides of any thick lens,
separated by a distance dL.

Due to the geometry of the ray displacement, the intersection on the back plane
is obtained as r[t] = r[in] + dL sin θ[in], which under the paraxial approximation
becomes:

Θ[2] =
[

1 dL

0 1

]
. (5.3.13)

With regard to the transfer across a spherical surface discontinuity, one could simply
apply Snell’s law from eq. (5.3.1b), with the adjustment that angles of incidence are
to be considered with respect to the normal to the surface itself, which is directed
on the outside of the bounded region for Θ[1] and on the inside for Θ[3]:

Θ[1] =
[

1 0
n1−n0
R1n0

n0
n1

]
, (5.3.14a)

Θ[3] =
[

1 0
n0−n1
R2n0

n1
n0

]
. (5.3.14b)

The expression of Θ can be further simplified in the case in which thin lens approx-
imation holds, that is if the thickness dL of the lens is negligible compared to the
radii of curvature dr1 and dr2 . Substituting dL = 0 in eq. (5.3.13) for Θ2 produces
an identity matrix, so the overall transfer function becomes:

[
ρ[t]

θ[t]

]
=
[

1 0
− 1
dF

1

][
ρ[in]

θ[in]

]
. (5.3.15)

A quick analysis of (5.3.15) shows that r[t] = r[in], which implies that the two
principal planes overlaps for thin lenses, as we expected. For the case n01 = n02 = n0,
eq. (5.3.15) reduces to the lensmaker equation:

1
dF

= n− n0
n0

(
1
dr1
− 1
dr2

)
. (5.3.16)

for which we made the value of the focus dF explicit. The obtained result θ[t] =
θ[in] − r[in]/dF proves the focusing principle of the lens. In fact, if we consider a
series of incident ray beams perpendicular to the principal plane θ[in], they will
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appear deflected on the other side, such that all rays focus on a single point on the
optical axis at a distance dF from the principal plane.

5.4 Principles of interferometry

In this section, we provide a general introduction to the concept of interferometry in
Section 5.4.1 and specialize it to the case of two coherent EM waves in Section 5.4.2.
The Fourier transform spectrometers (FTSs), a special class of instruments of which
ImSPOC is part of, are the topic of Section 5.4.3. A special instance of interferometry,
known as Fabry-Pérot (FP), is then detailed in Section 5.4.4 and a mathematical
model for the transfer of energy is the topic of Section 5.4.5.

5.4.1 Introduction

Interferometry refers to the set of techniques for the measurement of superimposed
EM waves causing interference with each other. The term interference, in gen-
eral terms, refers to the interaction between EM waves, which allows to extract
information on the nature of the EM radiation itself.

In the simplest scenario, two monochromatic plane waves with a given frequency
ν share the same direction of propagation and, according to the principle of su-
perposition, their combination generates irradiance patterns whose expression is
determined by the phase difference between the two waves.

When they are in phase, they generate a constructive interference, and their com-
bined amplitude increases, while when they are in opposition of phase, they generate
a destructive interference and their combined amplitude decreases. Although it
is also possible, in very controlled environments, to extract information from the
interference of incoherent sources [129], the typical required condition for the
exploitation of interferometry is for the waves to exhibit coherence, that is to have
the same frequency waveform and a constant phase difference. These conditions
can be partially relaxed, up to a certain degree which is set by the required amount
of correlation between the packet of waves under test [234].

The most common technique to allow wave packets to interfere is to split (e.g with
a beam splitter) a single wave into two or more replicas that travel across different
paths before recombining. The resulting combined wave, called interferogram,
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features different interference fringes, a series of intensity peaks of the interfero-
gram, which provide information about the different optical path lengths (OPLs)
travelled by each of the originating waves.

5.4.2 Interference of two waves

Let us assume that two TEM waves are propagating in the space with the same
frequency, direction of propagation, and polarization (or, in other terms, that the
electric fields of the two waves share the same direction). According to the Fourier
analysis, as seen in Section 5.1.1, one could approach the problem by decomposing
the waves into a packet of monochromatic waves, each with a given optical frequency
ν. The complex functions E1(ν) and E2(ν) of the electic fields of the two waves at ν
are in the form:

E1(ν) = |E1(ν)| exp jϕ1(ν) , (5.4.1a)

E2(ν) = |E2(ν)| exp jϕ2(ν) , (5.4.1b)

where |E1(ν)| and |E2(ν)| are the amplitudes and ϕ1(ν) = E1(ν) and ϕ2(ν) =
E2(ν) are the phases of each of the two waves, respectively. The complex envelope

E of the combined wave, resulting from the interference of the two, can be simply
expressed, because of the superposition principle, as E(ν) = E1(ν) + E2(ν). Its
associated spectral irradiance Eν = 1

2ζ |E(ν)| (with ζ defining the impedance of the
medium), is obtained by the expression (5.2.5) of the Poynting vector, and assumes
the following form, known as interference equation:

Eν = 1
2ζ |Eν,1 + Eν,2|2 (5.4.2a)

= 1
2ζ
(
|E1|2 + |E2|2 + E∗1E2 + E1E∗2

)
(5.4.2b)

= Eν,1 + Eν,2 + 2
√
Eν,1Eν,2 cosϕ , (5.4.2c)

which allows to express the total irradiance as function of the irradiance associated
with each of the two waves Eν,1 and Eν,2. The phase difference ϕ = ϕ2 − ϕ1 is the
most important parameter for the process of interference, as it decides the amount
of constructive inference between the two waves.

As described in Section 5.4.1, the phase difference between coherent waves can
be induced artificially by having the two waves travelling across different paths.
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In media that are non-dispersive, lossless, isotropic, and homogeneous except for
a countable amount of discontinuities, it is possible to define the refractive index
n(r) as a function of the space coordinates r. Let the splitting point be defined as
the last point where the waves are completely in phase, with a certain initial phase
which we can assume equal to zero without loss of generality. The subsequent phase
contributions are introduced by the different paths travelled by the two waves. Those
two paths {Lm}m=1,2 can be partitioned into a set of infinitesimal contributions
dr, which allow to determine the phase contributions {ϕm}m=1,2 through the line
integral:

ϕm =
∫

Lm

k(r) · dr =
∫

Lm

(2πσn(r))dr (5.4.3a)

= 2πσ
∫

Lm

n(r)dr = 2πσδm , (5.4.3b)

where in eq. (5.4.3a) we make use of the fact that the direction of propagation
is always parallel to the travelled path, and in eq. 5.4.3b we have substituted
|k(r)| = 2πc(r)/ν = 2πc0n(r), where σ is the wavenumber in the vacuum and
n(r) is the refraction index in the generally inhomogeneous medium. The quantity
δm :=

∫
Lm

n(r)dr is known as optical path length (OPL) and, in homogeneous
media, as light propagates in straight lines, it is equal to the product between the
geometric path length and the refraction index of the media.

The irradiances associated with each of the two rays at the recombination point may
be unequal, as the paths themselves may feature different absorption coefficients.
This behaviour can be modeled with a quadratic coefficient 0 < R2 < 1, which
defines the ratio between the two irradiances at the recombination spot, so that
E2 = R2E1. This allows to rewrite eq. (5.4.2) as:

Eσ =
(
1 +R2(σ) + 2R(σ) cos(2πσδ(σ))

)
Eσ,1 , (5.4.4)

where we have expressed the spectral irradiance in terms of σ instead of ν and
we have defined the optical path difference (OPD) as δ := δ2 − δ1. The explicit
dependence by σ in δ is due to the spectral component of the refractive index n.

5.4.3 Fourier transform spectrometers

By analyzing eq. (5.4.4) over all frequencies, as previously shown in Section 5.4.2,
we can obtain the irradiance E of the combined rays, by integrating Eσ over the
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domain of the wavenumbers. One implicit assumption is that the complex amplitude
of both waves for any given wavenumber is either constant with time (for fully
coherent waves) or at least changing slowly with respect to the period of oscillation
(for which the waves are often called quasi-monochromatic). In particular, if the
refraction index n and the attenuation R are constant with the frequency ν (hence
with σ), we obtain:

E(δ) =
∫ +∞

0
Eσdσ (5.4.5a)

=
∫ +∞

0

(
1 +R2 + 2R cos(2πσδ)

)
Eσ,1 dσ (5.4.5b)

= (1 +R2)
∫ +∞

0
Eσ,1 dσ + 2R

∫ +∞

0
cos(2πδσ)Eσ,1 dσ (5.4.5c)

= 1 +R2

(1 +R)2E(δ = 0) + 2R
∫ +∞

0
cos(2πδσ)Eσ,1 dσ (5.4.5d)

where we have substituted E(δ = 0) =
∫ +∞

0 (1 +R)2 Eσ,1dσ as the value of the
irradiance E(δ) in δ = 0, which is commonly known as OPD-zero irradiance.

If we factorize eq. (5.4.5) as follows:

1
2RE(δ)− 1 +R2

2R(1 +R)2E(δ = 0) =
∫ +∞

0
cos(2πσδ)Eσ,1 dσ (5.4.6a)

=
∫ +∞

−∞
cos(2πσδ)E|σ|,1 dσ (5.4.6b)

=
∫ +∞

−∞

e−j2πσδ + e+j2πσδ

2 E|σ|,1 dσ (5.4.6c)

=
∫ +∞

−∞
e−j2πσδE|σ|,1 dσ = F

[
E|σ|,1

]
, (5.4.6d)

then we can immediately recognize on the right side the Fourier transform of E|σ|,1,
the even extension of Eσ,1, that we have denoted in eq. (5.4.6d) with F [E|σ|,1].4

Eq. (5.4.6d) can be seen as a transformation of Eσ,1 from the domain of the wavenum-
ber σ to the domain of the OPD δ. The user can obtain information on the spectral
signature of the input irradiance Eσ,1 by analyzing the detected irradiance at the
output of the interferometer for a different (ideally continuous) set of OPDs. The
obtained profile E as function of the OPD δ is known in the literature as interfero-
gram and it typically (but not necessarily) features oscillations, known as fringes,
around a central value.

4In the literature, the result of a Fourier transform is often referred as spectrum, but we choose not
to employ this convention to avoid confusion, as in the domain of the interferometry the input of
the Fourier transform itself is a description of a spectrum.
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The devices that are able to record an interferogram, by varying the OPD are known
as Fourier transform spectrometers (FTSs), and, broadly speaking, they are aimed
at the acquisition of a Fourier transformation of the input spectrum.

A multitude of techniques are available to generate different OPLs [117], but the
most straightforward example is the Michelson interferometer. In this device, the
input signal is divided into two arms through a beam splitter, usually manufactured
with a half-silvered mirror to make its faces partially reflective. The split rays are
then reflected by a series of mirrors in order to recombine them along the path that
leads to the detector. By adjusting the distance of one (or more) mirrors with respect
to the detector, one can adjust the OPD between the two rays, and perform multiple
shot acquisitions to obtain the expression of E(δ) for different values of δ.

5.4.4 Fabry-Pérot interferometry

The FP interferometer, also known as FP etalon, is an optical cavity made of two
parallel reflecting surfaces, that allows optical rays to interfere by making them
resonate within. The first prototype was developed by Charly Fabry and Alfred Pérot
in 1899 [185].

To mathematically characterize a FP interferometer, let us assume we have a slab of
transparent material bounded by two parallel reflective faces, which ideally extend
infinitely in the space and are separated by a distance L. The faces act as a boundary
for a certain medium, known as optical cavity, with refraction index n, sandwiched
between two media with refraction index n01 and n02 .

Let us consider a monochromatic plane wave incident to the surface that forms an
angle θ[in] with the normal to the surface itself, characterized by a certain input
irradiance E [in]; the associated incident plane can be defined as the one containing
both the wavevector of the incident wave and the normal to the surface at the
incidence point.

The main principle of operation of the device consists in letting the ray bounce
multiple times within the etalon, so that a set of interfering beam emerges on the
other side. To model this physical behaviour, we use the convention of the wave
optics, by analyzing the intersection of the ray paths with all the discontinuity
surfaces and by applying there the energy balance principle to obtain the resulting
reflected and transferred rays.
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With regard to the ray paths and with respect to the geometry of Fig. 5.4, we use
the Snell’s law (5.3.1b) to obtain the transmitted angle θ within the cavity and θ[t]

of the rays emerging on the other side, which yields:

n01 sin θ[in] = n sin θ = n02 sin θ[t] , (5.4.7a)

θ = arcsin
(n01

n
sin θ[in]

)
, (5.4.7b)

θ[t] = arcsin
(
n01

n02
sin θ[in]

)
. (5.4.7c)

We assume that the the internal sides of the slab are characterized by reflective
coefficients r̃1 and r̃2 and transmission coefficients t̃1 and t̃2, while the transmission
coefficient at the incidence point is t̃0. As usual, one can characterize any component
of the plane wave (either the electric or the magnetization field) by the means of the
associated complex functions. If we assume that the complex function associated
with the incident ray is E[in], we can define a series of emerging rays with complex
function {Em}m∈N, such that the k-th element of the set can be obtained, multiplying
it by a certain factor αm, which take into account all the attenuations that the m-th
ray finds on its path, and a phase difference 2πσδm, due to the ray travelling within
the slab an OPL equal to δm, then:

Em = αmE
[in] exp(−j2πσδm) . (5.4.8)

As multiple rays are involved in the interference, it is common practice to define the
OPD of FP as the differences between the OPLs of two consecutive emerging rays, so
that δ = δm+1− δm. To evaluate its expression, let us consider a plane perpendicular
to the direction of propagation of the emerging rays.

With reference to Fig. 5.4, the OPD δ is given by the difference between two
contributions: the round trip OPL δ[rt], depicted in green, travelled by a ray between
two consecutive impacts over the same face and the projection δ[t] of the distance
between said impact points over the considered plane, depicted in red:

δ = δ[rt] − δ[t]

= n
2L

cos θ − n02(2L tan θ sin θ[t])

= n (2L/ cos θ − 2L tan θ sin θ) = 2nL cos θ ,

(5.4.9a)

(5.4.9b)

(5.4.9c)

where Snell’s law (5.4.7a) is used in eq. (5.4.9a).
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Fig. 5.4. Ray path tracing in a FP interferometer. Its OPD is obtained as a difference between
the reflected path in green and the transmitted path in red.

With regard to the attenuation coefficients αm, one can consider that the first
emerging ray E1 is obtained by two consecutive transmissions through both surfaces
of the cavity. All subsequent waves have to be additionally reflected 2(m+ 1) times
over the internal surfaces of the cavity, consequently, as αm+1 = t̃0t̃1(r̃1r̃2)m, the
expression of each emerging wavefunction can be rewritten as:

Em+1 = t̃0t̃1(r̃1r̃2)mE[in]e−jπδrtσe−j2mπδσ (5.4.10a)

where we have imposed for simplicity ϕ = 2πσδ, which represents the phase
difference (as it has the same purpose of the homonym quantity presented in
Section 5.4.2).

5.4.5 Wave transfer models

As shown in the previous section, one could define a series of subsequently attenu-
ated rays emerging from a cavity generated from a single incident ray with incident
angle θ[in] and irradiance E [in]

σ = |E[in]|2.

5.4 Principles of interferometry 175



According to the principle of superposition, the irradiance E [t]
σ associated with the

monochromatic beam of a given number Nm of emerging waves can be obtained as
the irradiance associated with the sum of the complex functions of each emerging
ray; in mathematical terms:

E [t]
σ =

∣∣∣∣∣
Nm−1∑

m=0
Em+1

∣∣∣∣∣

2

=

∣∣∣∣∣
Nm−1∑

m=0
αm+1E

[in]e−jπδrtσe−jmϕ

∣∣∣∣∣

2

(5.4.11a)

=

∣∣∣∣∣
Nm−1∑

m=0

(
r̃1r̃2e

−jϕ)m
∣∣∣∣∣

2

|t̃0t̃1|2
∣∣∣E[in]

∣∣∣
2

(5.4.11b)

=

∣∣∣∣∣
Nm−1∑

m=0

(
R(σ)e−jϕ

)m
∣∣∣∣∣

2

T 2(σ)E [in]
σ (5.4.11c)

In the above expression, we defined T (σ) := t̃0t̃1 and implicitly supposed here that
the faces are lossless so one can impose R(σ) = |r̃1r̃2|; indeed if the structure is
symmetric from both directions, R(σ) represents the reflectivity of any of the two
surfaces, as defined in Section 5.3.1. It is worth stressing here that, other than the
explicit dependency by the wavenumber in the void σ, the terms R, T and ϕ are
also function of the incident angle θ[in] through δ (according to eq. (5.3.4), (5.3.6)
and (5.4.9)).

We aim now to define the irradiance ratio T(σ) = E [t]
σ /E [in]

σ for various values of
the amount of waves Nm.

• 2-wave model: The FP interferometer is a specific instance of a FTS, as long
as we consider the amplitude of the first emerging ray is much larger than
the rest (Em ≈ 0 for m ≥ 2). For this case, the expression of the irradiance
ratio T2 has the same structure of the 2-wave interferometry described in
Section 5.4.2:

T2(σ) = E [t]
σ

E [in]
σ

∣∣∣∣∣
Nm=2

=
∣∣1 +R(σ)e−jϕ

∣∣2 T 2(σ) (5.4.12a)

= |1 +R(σ) cosϕ− jR(σ) sinϕ|2 T 2(σ) (5.4.12b)

=
(
(1 +R(σ) cosϕ)2 +R2(σ) sin2 ϕ

)
T 2(σ) (5.4.12c)

=
(
1 +R2(σ) + 2R(σ) cosϕ

)
T 2(σ) . (5.4.12d)
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• Nm-wave model: If the 2-wave condition is not verified, let Nm be a fixed
amount of emerging rays with non negligible energy, then the irradiance ratio
TNm can be expressed in closed form, as eq. (5.4.11c) is a geometric series:

TNm(σ) = E [t]
σ

E [in]
σ

=
∣∣∣∣
1−RNm(σ)e−jNmϕ

1−R(σ)e−jϕ

∣∣∣∣
2
T 2(σ) (5.4.13a)

= 1 +R2Nm(σ)− 2RNm(σ) cos(Nmϕ)
1 +R2(σ)− 2R(σ) cosϕ T 2(σ) (5.4.13b)

• ∞-wave model: In the ∞-wave case (Nm → ∞), results in the following
transfer function, known as Airy’s distribution:

T∞(σ) = E [t]
σ

E [in]
σ

∣∣∣∣∣
Nm→∞

= 1
1 +R2(σ)− 2R(σ) cosϕT

2(σ) (5.4.14a)

= 1
(1− 2R(σ) +R2(σ))− 2R(σ)(cosϕ− 1)T

2(σ)

(5.4.14b)

= 1
(1−R(σ))2 − 4R(σ) sin2(ϕ/2)

T 2(σ) (5.4.14c)

= 1
1 + 4R(σ)

(1−R(σ))2 sin2(ϕ/2)

(
T 2(σ)

(1−R(σ))2

)
(5.4.14d)

= T∞(σ)|δ=0

1 + 4R(σ)
(1−R(σ))2 sin2(ϕ/2)

, (5.4.14e)

where we have denoted with T∞(σ)|δ=0 the value of the transfer function of
an equivalent cavity with OPD equal to zero.

If we suppose that the incident wave is nonmonochromatic, but still coherent, one
can obtain the total output irradiance E [t] by integrating the spectral irradiance E [t]

σ

over the wavenumber in the vacuum σ:

E [t] =
∫ +∞

0
E [t]
σ dσ =

∫ +∞

0
E [t]
σ dσ =

∫ +∞

0
T(σ)E [in]

σ dσ , (5.4.15)

where T(σ) can be any of the expressions from eq. (5.4.12), (5.4.13) or (5.4.14).

As described in Section 5.4.2, if R and T are constant with σ, the choice of T2(σ)
describes, if we exclude the bias and the multiplication coefficient, a cosine Fourier
transform from the domain of the wavenumber in vacuum σ to the domain of the
OPD δ.
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5.4.6 Filtering effect of Fabry-Pérot interferometers

The irradiance ratio T∞(σ) in 5.4.14 shows that FP interferometers act as filter for
the incident spectral irradiance, with a periodic response in σ. It is useful to describe
some characteristics of this filtering behaviour, in terms of some intrinsic parameters
of the FP etalon.

Two particular quantities are of interest 5:

• Free spectral range (FSR) ∆σFSR: it defines the spacing in wavenumbers
between two successive transmitted optical intensity maxima or minima of the
interferometer. A quick analysis of eq. (5.4.14) shows that T∞(σ) exhibits a
periodicity of π in terms of ϕ = 2πδσ. If we rewrite it as:

T∞(σ) = T∞(σ)|δ=0

1 + 4R(σ)
(1−R(σ))2 sin2

(
π σ

∆σFSR

) , (5.4.16)

we can immediately obtain that in terms of σ, the periodicity ∆σFSR = 1/δ is
the reciprocal of the OPD.

• Full width at half maximum (FWHM) ∆σFWHM : it defines the difference
between the two extreme values of the wavenumber at which the intensity of
the superposed wave is equal to half of its maximum value. This condition
is equivalent to find the difference between two consecutive values of the
frequency σ1,2 around a peak for which T∞(σ) = T(σ)|δ=0 /2. This is possi-
ble only for sufficiently big values of the reflectivity (R > 0.172) and from
eq. (5.4.16) we obtain:

4R(σ)
(1−R(σ))2 sin2

(
π

σ1,2
∆σFSR

)
= 1 , (5.4.17a)

∆σFWHM := |σ2 − σ1| =
2
π

∆σFSR arcsin
(

1−R
2
√
R

)
. (5.4.17b)

5Those quantity are typically defined in terms of optical frequency ν, although to simplify the
exposition, they are equivalently defined in terms of wavenumbers σ = ν/c0.
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In most works, it is customary to characterize the etalon with a single parameter
known as finesse F , defined as the ratio between ∆σFSR and ∆σFWHM :

F := ∆σFSR
∆σFWHM

= π

2 arcsin
(

1−R
2
√
R

) (5.4.18a)

≈ π
√
R

1−R , (5.4.18b)

where the approximation (5.4.18b) is just valid for high values of the parameter R
(typically R > 0.5). The value of the finesse influences the shape and the filtering
power of the transfer function, as shown in Fig. 5.5a. For devices characterized
by:

• high finesse: or in other words high reflectivity coefficients, the transfer
function shows a very narrow interferometric fringes, and they act as bandpass
filters;

• low finesse: the transfer function is approximately sinusoidal in nature, and
its behaviour is closer to a standard FTS with more energy is available for the
photodetectors to collect.

The effect of the finesse can also be seen in Fig. 5.5b, which shows the spatial
response of an interferometer with diffused incident light. The center of each
subimage shows the response for null polar incidence angle (perpendicular incidence
to the input plane), which linearly increases proportionally to the distance from the
center of each subimage. A quick visual analysis shows that the acquisitions with
interferometers characterized by high finesse appear noticeably sharper than their
low finesse counterparts and the density of fringes within the same FoV increases for
thicker interferometers, as ∆σFSR is inversely proportional with the OPD.

The value of R is not fixed by the nature of the media which surround the disconti-
nuity, as the expressions derived in Section 5.3.1 seem to imply, as we have a degree
of control over its expression by adding a coating over the surfaces.

5.5 The ImSPOC acquisition model

The main target of this section is to describe, mathematically characterize, and
quantify the physical transformations of the incident radiance, that are involved in
the generation of the acquisition with an ImSPOC device.
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Fig. 5.5. Representation of the interferometric fringes. In Fig. 5.5a, a representation of
the transfer function for different values of reflectivity. The dashed line marks
the half width bandwidth of the filter. In Fig. 5.5b, each subimage represents
the interferogram obtained by illuminating an interferometer to a diffused white
source. The center of each subimage is the answer for incident rays perpendicular
to the interferometer, with progressively increasing incident angles moving towards
the edges. Each row of the matrix is for a given finesse and each column for a
given interferometer thickness.
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5.5.1 Context

In recent decades, the field of remote sensing has become of the utmost importance
for monitoring the Earth’s surface (its lands, urbanisation, oceans, agriculture,
etc.) and its atmosphere [220, 23, 2, 135]. In particular, the need for accurate
measurements of gases in the atmosphere is ever increasing for tasks as monitoring
climate change and air quality study and regulation issues. These tasks require data
acquisitions with ever higher spatial, spectral and temporal resolutions, motivating
the development of new sensors and their corresponding signal processing methods.
In modern days, different types of hyperspectral (HS) imaging systems, based on
different techniques (e.g., spatial, snapshot or spectral scanning [28]), are available
and are tailored to specific applications.

Monitoring atmospheric gases in the context of climate change requires increas-
ingly accurate sensors and less spaced acquisitions, and HS imaging acquisitions
specifically offer the necessary diversity of spectral information for applications such
as atmospheric gas monitoring [135]. Most current HS imaging systems have to
balance a trade-off between spectral, spatial and temporal resolution and new tech-
nologies aim to either overcome those limitations or make it more efficient in terms
of price. An increasing interest is also shifting on the miniaturisation, especially
with the purpose of installation over airborne vehicles or nano-satellites [194, 208].
The implication on costs’ reduction may involve various fields: both the production,
maintenance and usage costs will be amortized, and more load would be available
for the platform to be mounted on.

This section focuses on the groundbreaking HS image acquisition technology based
on a miniaturised static (snapshot) interferometric imaging spectrometer, called
ImSPOC [104]. The main targeted applications of this device are in the Earth
observation field, in particular to monitor gases in the atmosphere, but requires
accurate signal processing developments to provide intelligible and well-calibrated
acquisitions for the final users.

This design is aimed to the manufacture a competitive low-cost snapshot spectrome-
ter with spectral resolution comparable to the conventional remote sensing systems
for measuring gases with similar performance, while also providing directional
information on the incoming radiance. The ImSPOC sensor poses a series of novel
challenges; on the manufacturing side, which is outside the scope of this work,
some of these issues involve the choice of the appropriate design, materials, layout,
dimensioning, and packaging [96, 97, 98, 76]. We aim instead to describe here the
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optical transformations that characterize the device, and investigate the task of the
data processing of raw data to Chapter 6.

5.5.2 Physical structure

ImSPOC describes a concept for an innovating spectro-imaging system, whose patent
was jointly presented by the Institut de Planétologie et d’Astrophysique de Grenoble
(IPAG) and Office National d’Etudes et de Recherches Aérospatiales (ONERA) in
2016 and deposited in 2018 [104]. It is a miniaturized snapshot acquisition system
for HS imagery, whose principle of operation is based on the interaction between a
matrix of micro-lenses and a staircase-shaped optical plate, superposed to a focal
plane. Each element (a step of the staircase pattern) in the optical plate forms a
FP etalon and is associated with a specific micro-lens; this block is in charge of the
acquisition of a single subimage over an assigned area of the focal plane.

In terms of its physical behaviour, the ImSPOC family of instruments can be con-
sidered as a spectrometer aimed at the measure of the incoming spectral radiance
through simultaneous acquisitions, each of which is performed through interferomet-
ric measurements with FP etalons with different thicknesses. A visual representation
of the device, complete with its leading optic, is shown in Fig. 5.6.

Source: [97]

Fig. 5.6. Optical concept of the ImSPOC device.

This allows the device to operate as a static snapshot detector, so that no complicated
methodologies, such as a temporal scanning of the scene (e.g., with a classical
spectrometer) or sequential variation of the OPD (e.g., in the case of standard
Michelson interferometers), are needed.

In this chapter a fully conceptual approach, partially divorced from its technological
realization, aimed at providing the mathematical tools to characterize the operations
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of the device. To this end, the ImSPOC concept will be simply intended as an array
of Nk adjacent elements, each composed by a stacked FP interferometer with an
associated lens, superimposed to a matrix of photodetectors.

The raw product of ImSPOC is a monochromatic acquisition with a series of Nk

small images next to one another, which we call subimages in the following, each
associated with the response of one of the interferometers, as shown in Fig. 6.4d.

5.5.3 Description of the ray transfer function

In this thesis we employ the approach to characterize the optical system through the
formalism of the ray transfer matrix described in Section 5.3.2; the full description
of all aberration introduced the device may require a full ray tracing procedure [91],
which is outside the scope of this work.

The ray transfer method describes each ray by its direction in terms of spherical
coordinates, and its intersection with a given plane in terms Cartesian coordinates.
So, i.e., the incident ray is represented by the quadruplets of coordinates

[
θ[in]; r[in]],

where θ[in] =
[
θ[in];φ[in]] and r[in] =

[
r

[in]
1 ; r[in]

2

]
denote said direction and intersec-

tion, respectively.

The ray path is traced across different parallel planes, and its evolution between two
consecutive planes is described with an assigned transfer function. The planes that
are considered in our context are:

• Input plane: The plane of the incoming radiance to measure, which in our
case is at the back plane of the interferometers;

• Principal plane(s): The hypothetical plane(s) of the lens where all refraction
are supposed to happen;

• Focal plane: The hypothetical plane where all parallel incident on the lens
converge, which in our context is at the plane of the photodetectors.

An example of the placement of the planes is shown in Fig. 5.7.

The framework of Section 5.3.2 defines a ray transfer matrix which maps each
incident ray to an associated transmitted ray. However, in the ImSPOC concept,
multiple replicas of a single ray are generated by the internal reflections within
the FP etalon. To model this behaviour, we propose to define a series of ray
transfer functions {Θkm} k∈[1,... ,Nk]

m∈[1,... ,Nm]
, so that Θkm is associated with the m-th replica

generated within the k-th interferometer.
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Fig. 5.7. Cross section of the ray path in an element of the ImSPOC taken along the plane
of incidence. The figure shows how the directly transmitted ray and its replica
generated by an internal reflection within the interferometer (in orange) are both
focused on the same spot on the focal plane, under idealized operating conditions.

The ray transfer function Θkm is modeled as a cascade of three transformations:

• Θ[fp]
km , which models to the m-th emerging ray within the k-th interferometer;

• Θ[lens]
k , which models the deflection of the ray due to the k-th microlens;

• Θ[foc], which models the free propagation in the space between the principal
plane the and the focal plane, whose distance is denoted by dF .

The description
[
θ

[t]
km, r

[t]
:km

]
of the m-th replica associated with the k-th interferome-

ter is then given by:

[
θ

[t]
km

r[t]
:km

]
= Θkm

([
θ[in]

r[in]
:k

])
= Θ[foc]

(
Θ[lens]
k

(
Θ[fp]
km

([
θ[in]

r[in]
:k

])))
, (5.5.1)

where we have denoted:
r[in]

:k = r[in] − r[0]
:k (5.5.2)

the vector difference r[in]
:k between r[in] and the position r[0]

:k of the optical axis of the
k-th lens with the input plane. A visual representation of the system of coordinates
is shown in Fig. 5.8.

The above equation intrinsically assumes that if one ray is transmitted through
the FP cavity, it is also fully transmitted through the lens surface, so that no extra
replicas are generated within the system. Under idealized conditions that the k-th
interferometer is a homogeneous medium with refraction index n and with thickness
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Lk bounded by parallel faces between two homogeneous media with refraction
indices n01 and n02 , and supposing that the paraxial approximation holds, the
transfer function Θ[fp]

mk can be expressed as:

Θ[fp]
km







θ

φ

r1

r2






≈




n01
n02

θ

φ

r1 + n01
n θ(2m− 1)Lk cosφ

r2 + n01
n θ(2m− 1)Lk sinφ



, (5.5.3)

where the expression for the polar angles a consequence of Snell’s law, and the new
position is updated considering that the the m-th ray travels a total of 2m+ 1 half
trips within the cavity before emerging on the other side.

A similar analysis can be applied for the ray transfer function describing the last leg
of the transformation, which is equivalent to a direct transmission across a single
homogeneous layer with thickness dF , so that:

Θ[foc]







θ

φ

r1

r2







=




θ

φ

r1 + (dF cosφ) θ
r2 + (dF sinφ) θ



. (5.5.4)

The expression for the lens matrix depends on its peculiar geometry and can be
characterized in the calibration phase, however, in the interest of providing at least
an idealized description for a thin spherical lens with focal distance d′F , typically
chosen to be equal to dF , the ray transfer function is equal to:

Θ[lens]







θ

φ

r1

r2






≈




θ −
√
r2
1+r2

2
d′F

φ

r1

r2



. (5.5.5)

5.5.4 Acquisition model

The target of this section is to mathematically describe the optical processes that
model the raw acquisition, described by the electrical charges collected by the
readout circuitry, characterizing the sensor matrix.
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Fig. 5.8. Geometrical system of coordinate for the an incident ray over the input plane
surface of the k-th interferometer. The coordinates relative to the position of the
intersection are highlighted in blue, while those relative to the angle of incidence
are highlighted in red.

This acquisition is a stochastic process in nature, since various sources of uncertainty
are introduced by the technical characteristics of the photodetectors, whose noise
characterization was introduced in Section 5.2.4. Photodetector noise is notori-
ously difficult to separate from the relevant information, but it may be possible
to compensate some other sources of uncertainty, such as the speckle noise. The
latter describes the effects of oscillations of wavefronts with different phases in the
path between the detector and the receiver, which combine to generate a wave
whose intensity varies randomly. This effect is deterministic nature in nature for
a fixed configuration, and can be compensated with either multi-look analysis or
reconstructions with wavelet regularization [81].

The analysis of this work assumes that all noise contributions are zero-mean, additive
and concentrated to the last node of the transfer model, making it possible to
separate the stochastic process into two components: a deterministic model, which
interpreted as the expected value of the stochastic process, and a random component.
If the signal to noise ratio (SNR) of the captured energy is above a certain threshold,
shot noise can be reasonably assumed to be a Gaussian process, justifying this
assumption.
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Under these premises, the main target becomes to find a mathematical relation,
quantifying the contribution of the incident spectral radiance Lσ

([
θ[in]; r[in]

:k

])

incident over the k-th interferometer for the acquisition yo over the generic o-th
detector.

According to the definition of radiometric measures of Section 5.2.3, the intensity
level of the acquisition may be simply obtained by integrating the radiance at the
focal plane L[t]

σ ([θ[t]; r[t]]). The is a function of three variables:

• the incidence angle θ[t], spanning over an emisphere Ω;
• the coordinates r[t] of the intersection with the focal plane, which span over

the surface S [t]
o of the o-th sensor that is sensitive to the light stimulus;

• the wavenumber σ, spanning over the range of the instrument [σmin, σmax].

We model the detected intensity level yo of the o-th detector with the integration:

yo =
∫∫

S[t]
o

∫∫

Ω

σmax∫

σmin

L[t]
σ

([
θ[t]; r[t]

])
cos θ[t]ηo(σ) dσ dr[t] dθ[t] , (5.5.6)

where we also defined ηo(σ) as the quantum efficiency of the o-th sensor to transform
the illuminating photons into a transfer of electrons. The term cos θ[t] is necessary
to take into account that the flux of photons is not necessarily perpendicular to the
surface of the photo-detector.

Unfortunately, eq. (5.5.6), the radiant energy collected on the sensor may bear
no resemblance to the incident radiance Lσ, as their relationship is given by the
characteristics of the optical system. In the case of classical cameras, the ray transfer
matrix analysis (Section 5.3.2) allows a one-to-one association between the direction
of an incident ray at the level of the input and the focal plane. In our case, however,
as shown in fig. 5.9a, a single incident ray generates a set of emerging rays. This
set is countable, as each of them is associated to a certain amount m of round trips
within the interferometer. Consequently, the relationship between the direction and
position [r[in]

:k ,θ[in]] of the incident radiance and the corresponding ones [r[t]
km,θ

[t]] of
the m-th replica on the focal plane can be described analytically by a set of transfer
functions Θkm, defined as follows:

Θkm

([
θ[in]

r[in]
:k

])
=
[
θ

[t]
km

r[t]
km

]
, (5.5.7)

which may additionally be expressed as a function of the wavenumber σ to take into
account the effects of spectral aberrations. For our purposes, however, we are mostly
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Fig. 5.9. Ray tracing seen from the perspective of an incident ray and from the perspective of
the receiver. In the left figure, the ray crosses the surface of he k-th interferometer
and it is split into a set of rays that impact the focal plane in different positions;
the m-th emerging ray is attenuated by a complex factor Tkm. In the right figure,
the ray that is absorbed by the sensor is traced backwards, identifying a countable
set of incident rays that combine together to generate the collected radiance L[t].

interested in the so-called backward ray tracing, that is expressing a generic couple
position/direction [r[t],θ[t] in terms of the corresponding set of the generating rays
incident to the input plane, as shown in fig. 5.9b. It is hence convenient to define an
inverse relationship:

Θ−1
km

([
θ[t]

r[t]

])
=
[
θ

[t]
:km

r[t]
:km

]
⇔ Θkm

([
θ

[in]
:km

r[in]
:km

])
=
[
θ[t]

r[t]

]
. (5.5.8)

It is worth noting that not all values necessarily exist for all available indices k and
m, but this can be easily fixed by imposing that the transfer function is zero for

The set of rays we identify with this process is generally incoherent under the current
hypothesis, so to completely characterize the input we need to define the following
two component:

• Incident radiance, which defines our quantity of interest in terms of energy
to detect:

Lσ,k,m := Lσ
([
θ

[in]
:km; r[in]

:km

])
; (5.5.9)
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• Phase component, which in conjunction with the radiance, allows to fully
define the complex amplitude of the incoming wave:

ϕσ,k,m := ϕ[in]
([
θ

[in]
:km; r[in]

:km

]
, σ
)
. (5.5.10)

The term L[t]
σ from eq. (5.5.6) can be finally expressed as:

L[t]
σ

([
r[t];θ[t]

])
=

∣∣∣∣∣

Nk∑

k=0

+∞∑

m=0
Tkm

([
r[in]

:km,θ
[in]
:km

]
, σ
)
Lσ,k,m exp

(
−jϕ[in]

σ,k,m

)∣∣∣∣∣ .

(5.5.11)
In the above equation the term Tkm

([
θ[in]; r[in]

:k

]
, σ
)

is the attenuation factor
due to the path traveled by m-th replica of the incident ray characterized by the
pair

[
θ[in]; r[in]

:k

]
; the attenuation factor is generally complex (in other words in

the form Tkm = |Tkm| exp (−j Tkm)), to take into account for the path crossed by
the ray within the optical system, as well as some effects of phase shift due to
bouncing elements within the device. The expression (5.5.11) assumes that, for
every interferometer, it is always possible to identify a certain ray path that, after any
number m of round trips, emerges in the direction under study; this condition is not
realistic in practice, as typically a certain area of the focal plane is just assigned to a
single interferometer, but this behaviour can be treated mathematically by setting
Tkm equal to zero for all the indices k which are not concerned with the subimage
area on the focal plane.

Eq. (5.5.6) is able to justify the behaviour of many nonidealities of the device, which
include, but are not limited to:

• non parallel faces manufacturing of the interferometers;
• not perfectly spherical lenses;
• unverified hypothesis of long range source;
• spectral aberration effects;
• roughness of the surfaces;
• aberration effects of the structure;
• inhomogeneous spectral response of the reflective surfaces of the interferome-

ter;
• cross talk between subimages belonging to different interferometers.

However, some effects are still not included:

• parasite effect of an interferometer with thickness dF in the free space between
the lens and the focal plane array (FPA);
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• exposure time, which is influenced by the photonic phenomena within the
photodetector.

5.5.5 Far field approximation

In this section, we want to define some assumption that allow to simplify the transfer
model (5.5.6). We specifically assume:

• Far field approximation: if the target is sufficiently distant (technically more
distant than the Fraunhofer distance), the whole spectrometer can be seen as
a point-target with regard to the scene, so any displacement of the intersection
spot on the device can be ignored, with respect to the distance of the target.
Under this assumption, the incident radiance Lσ can be seen as independent
from the intersection point and a given radiator on the scene would have the
same incident angle across the whole input plane of the instrument.

In terms of the description of the incident field of Section 5.5.4, this is equiva-
lent to impose that:




Lσ,k,m = Lσ

([
θ

[in]
:km, r

[in]
:km

])
= Lσ

(
θ

[in]
:km

)
,

ϕ
[in]
σ,k,m = ϕ[in]

([
θ

[in]
:km, r

[in]
:km

]
, σ
)

= ϕ[in]
(
θ

[in]
:km, σ

)
,

∀





r[in]
:km ∈ S

[in]
k ,

k ∈ [1, ... , Nk] .
(5.5.12)

This hypothesis, when not verified, can be sometimes exploited to achieve cer-
tain desired purposes; i.e., the plenoptic camera [87, 153], whose conceptual
design is shown in Fig. 5.10, shows many similarities with the ImSPOC concept,
although the former does not feature any interposed array of interferometers.
A plenoptic campera can be used to estimate the depth map of the scene, by
analyzing the parallax effect of the scene’s geometry. If the ImSPOC employs
this mode of operation, the subimages would be affected by an interferometric
modulations, so one possible strategy could be to decompose the reconstructed
hyper-cube into a panchromatic (PAN) component, which is common to all
subimages, and a specific modulation, characteristic of each subimage [210].
In this case the inversion problem could be considered as a joint problem of
spatial alignment and superresolution [73], which can be solved by dedicated
optimization protocols [177].
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Source: [153]

Fig. 5.10. Design of the plenoptic camera 2.0.

• No cross-talk effect: For this assumption a subset of detectors is assigned
exclusively for the detection of rays emerging by a single interferometer. In
other terms, we define a subset of detectorsQk with cardinality |Qk| associated
with the k-th element of the array, such that:

o ∈ Qk ⇔ ∃θ[in] ∈ Ω : r[t]
:km

(
θ[in]

)
∈ S [t]

o . (5.5.13)

The o-th sensor can then be uniquely associated to a pair of indices [k, i], such
that the i-th element of the set Qk of detectors is solely associated to the k-th
subimage. From now on we hence redefine the variables which are intrinsically
associated to a detector with the new convention:

yki := yo , S [t]
ki := S [t]

o , ηki := ηo . (5.5.14)

• Common focal spot: which defines the condition that all the parallel emerg-
ing rays for a given interferometer focus on the same spot on the focal plane.
We previously expressed the focal spot r[t]

:km associated with the m-th replica
generated by the k-th element as the second component of the ray transfer
relationship Θkm

([
θ[in], r:k

])
, which is a function of the direction θ[in] and

position r:k of a given input ray. The condition is then mathematically equiva-
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lent to suppose that this second component shows no dependency with the
position of the input ray r:k. In other words:

r[t]
:km

([
θ[in]

r[in]
:k

]
, σ

)
= r[t]

:k0

(
θ[in]

)
, ∀





r[in]
:k ∈ S

[in]
k , k ∈ [1, ... , Nk] ,

m ∈ N , σ ∈ [σmin, σmax] ,
(5.5.15)

where we dropped the dependency from m because all replicas at the principal
plane are parallel and from σ because we supposed that spectral aberrations
are negligible. A visual representation of this effect is shown in Fig. 5.7. The
above relation can also be seen as a 1-to-1 mapping between the incident
angle θ[in] and its associated illuminated spot on the focal plane due to the
k-th interferometer/lenslet couple. In physical terms, this condition can be
obtained with a matrix of perfectly spherical thin lenses under the condition
of paraxial approximation, as shown in Section 5.3.

When the three conditions are considered jointly, the FoV Ω can thus partitioned in
a set of solid angles {Ωki} k∈[1,... ,Nk]

i∈[1,... ,|Qk|]
such that:

θ[in] ∈ Ωki ⇔ r:km

(
θ[in]

)
∈ S [t]

ki . (5.5.16)

In other terms, Ωki denotes a continuous set of angles of incidence, such that, if it
intersect the input plane belonging to the k-th interferometer, it is focused on the
i-th sensor of the set Qk.
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We now want to rewrite the integration of the expression (5.5.11) for the transmitted
radiance L[t]

σ with respect to the angle of incidence, supposing the three conditions
are jointly verified. The expression becomes as follows:

∫∫

Ω

L[t]
σ

([
θ[t]; r[t]

:k0

])
cos θ[t] dθ[t] (5.5.17a)

=
∫∫

Ω

∣∣∣∣∣
+∞∑

m=0
Tkm

([
θ

[in]
:km; r[in]

:km

]
, σ
)
Lσ
(
θ

[in]
:km

)
e
−jϕ[in]

(
θ

[in]
km

)∣∣∣∣∣ cos θ[t] dθ[t]

(5.5.17b)

=





∫∫

Ω

∣∣∣∣∣
+∞∑

m=0
Tkm

([
θ[in]; r[in]

km

]
, σ
)∣∣∣∣∣ cos θ[t] dθ[t]



Lσ

(
θ[in]

)
(5.5.17c)

=T ′′k
(
θ[in], σ

)
Lσ
(
θ[in]

)
, (5.5.17d)

where we have exploited the far field approximation in eq. (5.5.17b), which
allows to remove the dependency from the position of incidence in the incident
complex amplitude and the no cross-talking to get rid of the summation over all
interferometers. Additionally, the common focal spot condition allows to uniquely
identify that all the rays that focus on the coordinate r[t]

k0 have a specific incident
angle θ[in], which is exploited in eq. (5.5.17c) to factor out of the integral the
expression of the input radiance Lσ

(
θ[in]), and its phase term disappears thanks by

taking its module. Finally we defined the term:

T ′′k

(
θ[in], σ

)
:=
∫∫

Ω

∣∣∣∣∣
+∞∑

m=0
Tkm

([
θ[in]; r[in]

:km

]
, σ
)∣∣∣∣∣ cos θ[t] dθ[t] . (5.5.18)

which is just a function of σ and θ[in], as the term r[in]
:km can be expressed just

as a function of the integration variable θ[t] and of r[t]
:k0, which has a one-to-one

relationship with θ[in] according to eq. (5.5.12).

With this substitution, the acquisition of eq. (5.5.6) can be rewritten as follows:

yki =
∫∫

S[t]
ki

σmax∫

σmin

T ′′k (θ[in], σ)Lσ
(
θ[in]

)
cos θ[t]ηki(σ) dσ dr[t] (5.5.19a)

=
∫∫

Ωki

σmax∫

σmin

T ′′k (θ[in], σ)Lσ
(
θ[in]

)
cos θ[t]ηki(σ)

∣∣∣∣∣
dr[t]

dθ[in]

∣∣∣∣∣ dσ dθ
[in] , (5.5.19b)

5.5 The ImSPOC acquisition model 193



where the Jacobian
∣∣dr[t]/dθ[in]∣∣, which is necessary for the change of variable.

We have additionally defined for convenience the solid angle {Ωki} k∈[1,... ,Nk]
i∈[1,... ,|Qk|]

as a

continuous collection of all the incident directions θ[in] that converge on the surface
S [t]
ki of the detector:

θ[in] ∈ Ωki ⇔ r:km

(
θ[in]

)
∈ S [t]

ki . (5.5.20)

5.5.6 Discretization of the acquisition model

With the analysis of the previous section, we assumed that it is possible to partition
the FoV of an interferometer in a set of solid angles {Ωki}i∈Qk , which map the
incident radiance to an associated set of acquisitions {yki}i∈Qk . When different
interferometers are considered together, i.e. for the purpose of gathering information
from a snapshot acquisition, the fact that each interferometer partitions the FoV of
the instrument in a different way may pose an issue. For the following analysis, we
hence assume that this partition is exactly the same for every k ∈ [1, ... , Nk]; in other
words, we can define a certain disjoint set of solid angles of incidence {Ωi}i∈[1,... ,Ni],
such that all the incident rays within Ωi are mapped on a given detector area, specific
for each subimage:

∃Ωi : ∀θ[in] ∈ Ωi, k ∈ [1, ... , Nk] , r
[t]
:k

(
θ[in]

)
∈ S [t]

ki . (5.5.21)

This condition 5.5.21 is not realistic in practice, but this misalignment effect can be
corrected with either:

• a hardware implementation that compensates the parallax effect with a certain
leading optical system;

• a software post-processing of the raw acquired data for the co-registration of
the subimages, e.g. with the approaches which we present in Section 6.3.

Eq. (5.5.19) can be rewritten for convenience to:

yki =
∫∫

Ωi

σmax∫

σmin

T ′′k (θ[in], σ)Lσ
(
θ[in]

)
dσ dθ[in] , (5.5.22)

where we have defined for simplicity T ′k(θ[in], σ) := T ′′k (θ[in], σ)η(σ)
∣∣∣ r[t]

dθ[in]

∣∣∣, assum-
ing that the quantum efficiency of all detectors is the same. We will assume here
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that this term includes also the effects of the leading optic, which we did not include
to simplify the exposition.

A computationally tractable version of eq. (5.5.22) requires a discrete approximation
of the above expression, which can be obtained by an appropriate partition of the
spaces of the involved variables. In particular, the space of the wavenumbers can
be divided into Nb equally spaced intervals, whose midpoints are denoted with
{σl}l∈[1,... ,Nb]. Additionally, T ′k(θ[in], σ) is considered approximately uniform both
within a given wavenumbers’ interval [σl −∆σ/2, σl + ∆σ/2] and within the solid
angle Ωi. This constant value is denoted for short as T ′k(θ

[in]
i , σl), where θ[in]

i is the
centroid of the solid angle Ωi.

Eq. (5.5.22) can then be rewritten in any of the following forms:

yki =
Nb∑

l=1
aklixli , (5.5.23a)

y:i = A::ix:i , (5.5.23b)

where y:i = {yki}k∈[1,... ,Nb] is a column vector representing the acquisitions relative
to the solid angle of incidence Ωi. The elements of x:i = {xli}l∈[1,... ,Nb] and A::i =
{akli}k∈[1,... ,Nk],l∈[1,... ,Nb] are defined as:

akli := T ′k

(
θ

[in]
i , σl

)
, (5.5.24a)

xli :=
∫∫

Ωi

σl+ ∆σ
2∫

σl−∆σ
2

Lσ
(
θ[in]

)
dσ dθ[in] . (5.5.24b)

With this formalism we obtain that:

• {xli}i∈[1,... ,Ni],l∈[1,... ,Nb] are a discrete characterization of the incoming spectral
radiance Lσ

(
θ[in]) obtained through the measure of incident radiant flux

within the set of solid angle {Ωi}i∈[1,... ,Ni] and in the wavelength ranges
{[σl −∆σ/2, σl −∆σ/2]}i∈[1,... ,Ni].

• y:i = {yki}k∈[1,... ,Nb] is a sampled version of the interferogram associated with
a specific portion of the scene, as we have shown in the introduction in Fig. 1.6.
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5.5.7 Definition of the transfer matrix

This section introduces a series of simplification of the model of the transfer function
of eq. (5.5.24a) to be able to link the acquisition to the ideal behaviour of a FTS.
The main assumption is that T [opt] and the quantum efficiency η exhibit no variation
with respect to their spatial or spectral dependency, so that they can be set equal to 1
without loss of generality. The coefficient akli of the transfer matrix can subsequently
be expressed as a sampled version Tk

(
θ

[in]
i , σl

)
of the response of the interferometer.

According to the analysis of Section 5.4.5 for the 2, Nm and ∞-wave model, in
eq. (5.4.12), (5.4.13) and (5.4.14), its explicit expression becomes:

akli =





(
1 +R2

kli + 2Rkli cosϕkli
)
T 2
kli 2-wave model

1 +R2Nm
kli − 2RNmkli cos(Nmϕkli)

1 +R2
kli − 2Rkli cosϕkli

T 2
kli Nm- wave model

1
(1−Rkli)2 + 4Rkli sin2(ϕkli/2)

T 2
kli ∞-wave model

(5.5.25a)

(5.5.25b)

(5.5.25c)

where Tikl and Rikl are the geometric mean of the reflectivities and the transmissiv-
ities of the two surfaces of the interferometer, respectively, while ϕikl denotes the
round trip phase difference.

If the interferometer is bounded by two layers on its surface with the same refractive
index ns = ns1 = ns2 and immersed in a medium with refractive index n0 = n01 =
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n02 (typically air), according to the analysis of Section 5.3.1, the relevant variables
of eq. 5.5.25 can be obtained as follows:

θli = arcsin
(

n0
n(σl)

sin θ[in]
i

)
≈ n0
n(σl)

θ
[in]
i (5.5.26a)

ϕkli = 2πσlδkli − ϕ
[0]
ki = 2πσln(σl)Lk cos θli − ϕ

[0]
ki (5.5.26b)

Rkli,⊥ =

∣∣∣∣∣∣∣∣

n(σl) cos θli − ns(σl)
√

1−
(
n(σl)
ns(σl) sin θli

)2

n(σl) cos θli − ns(σl)
√

1−
(
n(σl)
ns(σl) sin θli

)2

∣∣∣∣∣∣∣∣

2

(5.5.26c)

Rkli,‖ =

∣∣∣∣∣∣∣∣

n(σl)
√

1−
(
n(σl)
ns(σl) sin θli

)2
− ns(σl) cos θli

n(σl)
√

1−
(
n(σl)
ns(σl) sin θli

)2
+ ns(σl) cos θli

∣∣∣∣∣∣∣∣

2

(5.5.26d)

Rkli ≈
1
2
(
Rkli,⊥ +Rkli,‖

)
≈
∣∣∣∣
n(σl)− ns(σl)
n(σl) + ns(σl)

∣∣∣∣
2

(5.5.26e)

Tkli = 1−Rkli (5.5.26f)

where θli denotes the internal reflection angle, δkli represents the round trip OPD of
the consecutively reflecting rays within the interferometer, Lk denotes the thickness
of the k-th interferometer, whileRkli,⊥ andRkli,‖ are the internal reflectivities in case
the incident rays have perpendicular or parallel polarization, respectively. ϕ[0]

ki defines
a phase shift term to take into account all additional effect of phase differences
between consecutively transmitted rays which are not due to the difference in the
optical path.

In the above equations, we have made explicit the dependency from the wavenumber
σl both for the internal refraction index n and for the one at the surface ns. It was
instead made implicit for the term n0, as it is usually air, as it is approximately
constant with variation of the wavelengths. In case no layer is present on the surface
on the interferometer, then ns = n0.

The approximation in eq. (5.5.26a) is a result of eq. (5.4.3b), where the internal
reflection angle is expressed as function of the polar component θ[in]

i of the incident
angle via Snell’s law in the paraxial approximation. The other equations are an
instance of the Fresnel equations, which were derived from the analysis of the
surface reflectivity and transmissivity in Section 5.3.1; for a fixed incidence angle and
wavenumber, the expression of Rkli and Tkli is the same for every interferometer, as
consequence of the assumption of even coating over all the surfaces. The dependency
from the index k is hence just kept to take into account possible manufacturing
differences among different interferometers.
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5.5.8 Link with the Fourier transform spectrometer

The typical behaviour of a FTS can be obtained by assuming a 2-wave model on
the simplified expression of the transfer function that was derived in the previous
section, for which the transfer function becomes:

T ′k(θ
[in]
i , σ) = T 2

ki

(
1 +R2

i +Ri cos(2πσδki − ϕ
[0]
k )
)

(5.5.27)

and the associated acquisition yki:

yki =
∫ ∞

0
Tk

(
θ

[in]
i , σ

)
Eσ(Ωi) dσ (5.5.28a)

= T 2
ki

∫ ∞

0

(
1 +R2

ki + 2Rki cos
(

2πδkiσ − ϕ
[0]
ki

))
Eσ(Ωi) dσ (5.5.28b)

= T 2
ki(1 +R2

ki)
∫ ∞

0
Eσ(Ωi) dσ

+ 2Rki
∫ +∞

0
Eσ(Ωi) cos

(
2πδikσ − ϕ

[0]
ki

)
dσ (5.5.28c)

= T 2
ki(1 +R2

ki)Eσ(Ωi) + 2RkiT 2
ki cosϕ[0]

ki

∫ +∞

−∞
E|σ|(Ωi)e−j2πδkiσ dσ , (5.5.28d)

where Eσ(Ωi) =
∫∫

Ωi Lσ
(
θ[in]) dθ[in] is the spectral irradiance associated with the

solid angle of incidence Ωi, E |σ|(Ωi) is its average value with respect to the wavenum-
bers range and E|σ|(Ωi) is its even symmetrical extension to negative wavenumbers.

If E |σ|(Ωi) is known, eq. (5.5.28d) allows to express the acquisition yki as a linear
transformation of the Fourier transform of E|σ|(Ωi); this constitutes the expected
ideal behaviour of ImSPOC as a FTS, described in general terms in Section 5.4.3.

If no prior is considered, according to Shannon-Nyquist theorem, the absolute limit
for a perfect reconstruction of a spectral irradiance Eσ

(
Ω[in]
i

)
with monolateral

bandwidth Bσ = σmax − σmin from yi, which avoids aliasing, the average OPD’s
step size ∆δi =

∑Nk−1
k=1 (δi,k+1 − δik), must be such that:

∆δi < 2/Bσ , ∀i ∈ [1, ... , Ni] . (5.5.29)

One of the first designs of ImSPOC, known as microSPOC, was conceived to use a
triangular slab, so that one could obtain a situation of interferometer thicknesses
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varying continuously [89], which would imply ∆δi → 0. Technical issues, especially
related to cross-talk, eventually led to the current staircase design for the interfer-
ometers’ matrices, which implies that their thicknesses can only be chosen within a
discrete set {Lk}k∈[1,... ,Nk], which we consider arranged in increasing order.

The condition of eq. (5.5.29) must be valid for every angle of incidence, the average
difference ∆L =

∑Nk−1
k=1 Lk between consecutive thicknesses of the interferometer

must abide the following condition:

2n ∆L cos
(n0
n
θ[in]
max

)
<

2
Bσ

, (5.5.30a)

∆L < 1
nBσ cos

(
n0
n θ

[in]
max

) , (5.5.30b)

where θ[in]
max is the maximum polar angle of incidence allowed by the device; in

the case of paraxial approximation, the cosine term is close to 1, so the condition
simplifies to ∆L < 1/(nBσ).

In practice, however, the sampling period ∆δi of the OPD space must be much
smaller than this upper limit, both because of manufacturing imperfections, which
does not allow to limit the spectrum bandwidth to its nominal values. Additionally,
extra mathematical conditions have to be set up if the spectrum is not in its base-band
form, which opens up to the possibility for replicas of the reconstructed spectrum
to overlap in case the sampling frequency ∆δiσmin is not a multiple of σmin. To
deal with this case, one can make use of the bandpass sampling theorem [223],
to set up extra conditions to avoid aliasing. In particular for a uniform sampling
(∆δ = δk+1 − δk, ∀k = 2, ..., Nk), the condition has to be extended as follows:

q − 1
2σmin

≤ ∆δ ≤ q

2σmax
, ∀q ∈ N and 1 ≤ q ≤

⌊
σmax
Bσ

⌋
, (5.5.31)

where b·c denotes the highest integer smaller than its argument. The allowed ranges
of sample frequencies 1/∆δ are shown in Fig. 5.11.

Additional restrictions come into play when we consider different models for the
transfer function; under the constraints that we are considering in this chapter, the
transfer function Tk(θ

[in]
i , σ), in any of the models proposed in Section 5.4.5 is a

function of σ only through the term 2πδkiσ.
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In particular, for the general Nm-wave case (which includes as limit the ∞-wave
case), we obtain the following Fourier series decomposition:

Tk

(
θ

[in]
i , σ

)
= T 2

ki

1 +R2Nm
ki − 2RNmki cos (2Nmπδkiσ)

1 +R2
ki − 2Rki cos (2πδkiσ)

(5.5.32a)

= T 2
ki

1−R2Nm
ki

1−R2
ki

(
1

+2
Nm−1∑

m=1
Rmki

1−R2(Nm−m)
ki

1−R2Nm
ki

cos (2mπδkiσ)
)
. (5.5.32b)

For a perfect reconstruction, the Nyquist condition becomes ∆δi < 2/((Nm − 1)Bσ)
as the terms cos (2mπδkiσ) are equivalent to scaling the wavenumber range by a
factor of m. This condition usually imposes a strong constraint on the design of the
interferometers’ array matrix, hence the ImSPOC prototypes are usually designed
with low reflectivities Rki to make negligible all higher order terms of the Fourier
series.
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Fig. 5.11. Plot of the forbidden area (in yellow) for the perfect reconstruction of a Fourier
transform of a spectrum with bandwidth Bσ and maximum wavenumber σmax,
through an interferometer sampled with step size ∆δi.

200 Chapter 5 Optics foundations for the ImSPOC acquisition system



Data processing pipeline of
ImSPOC acquisitions

6
This chapter presents the image spectrometer on chip (ImSPOC) concept from the
perspective of signal processing, with the aim to present the necessary operations to
transform its raw acquisition into intelligible products, a spectral representation of
the scene and its associated image.

The discussion is intended as an accessible tutorial for a data processing engineer,
and acts as a detailed description of some preliminary approaches to address each
stage of the processing pipeline.

In contrast with the more theoretical approach of Section 5.5, we also address some
challenges associated with the nonidealities of real devices. Nevertheless, the chosen
methodology is still based on the physical model of the optical transformation, so
that the proposed procedures are available even with a limited amount of available
prototypes and acquisitions. Additionally, we favor here fast algorithms for the
recovery of the quantities of interest, as the final goal is to embark the device on
board of embedded platforms.

6.1 Introduction

In this chapter, we present a comprehensive discussion of the pipeline of operations
that transform the raw acquisitions of an ImSPOC prototype to user intelligible
products, which can be exploited to extract information on the spectral characteristics
of the scene.

The ImSPOC concept was described in detail in Section 5.5.2, so we just recall
here that its concept defines an imaging spectrometer based on the interferometry
of Fabry-Pérot (FP). Its optical components, shown in Fig. 6.1, are composed of
an array of low finesse FP etalons of different thicknesses, disposed in a staircase
pattern. The array is overlaid over a matrix of microlenses, which focuses a packet
of parallel rays incident to the input plane to an array of spots on the focal plane.
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The raw acquisition is composed of a series of subimages, which can be ideally
stacked to identify the interferometers associated with the spectral radiance in a
given direction.

The main envisioned application for the ImSPOC device is to estimate the concentra-
tion of a given component (e.g. a gas) in the atmosphere. However, in comparison
with other approaches [137], we assume that the instrument mode of operation
is that of a spectro-imaging system. In this configuration, the goal is to estimate a
discrete representation of the spectral radiance, and an associated image, for which
each pixel is associated a given partition of the field of view (FoV).

The proposed pipeline of data processing is aimed at addressing the following issues,
which are discussed in their dedicated sections:

• Segmentation of the subimages (Section 6.2);
• Spatial alignment of the datacube of subimages (Section 6.3);
• Spectral calibration of the optical transfer function, which characterizes the

device (Section 6.4);
• Reconstruction of the input spectra relative to the incident spectral radiance

(Section 6.5).

In this introduction, after we describe how the ImSPOC images are represented, the
pipeline of operations is laid out in terms of the desired products, challenges, and
protocols to implement.

Interferometer

Microlens

Separating wall

Subimage

Separating wall

Interferometers

Microlenses

Fringe patterns

(a) Tridimensional view (b) Side view

Fig. 6.1. Concept of the ImSPOC acquisition device. In the side view, from the top, the
device is composed by a staircase shaped array of interferometers, a matrix of
microlenses and a set of photodetectors on the focal plane.
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6.1.1 Image representation

Given a focal plane made up of No1 ×No2 photodetectors, distributed over a focal
plane, the natural representation of a bundle of Na raw acquisition is given by a
3-dimensional array U [o] ∈ RNo1×No2×Na . An example of a set of acquisitions is
shown in Fig. 6.2a.

Given the particular physical design of the ImSPOC acquisition system, it is however
convenient to generate a datacube U [s] ∈ RNi1×Ni2×Nk×Na by cropping and stacking
Nk subimages of sizes Ni1 × Ni2 . This operation is detailed in Section 6.2.1 and
shown in Fig. 6.2c.

In this chapter, we often employ a different representation of the image, where ele-
ments are arranged differently. Specifically, the unfolding operation S = reshape(U [s])
reshapes the tensor U [s] ∈ RNi1×Ni2×Nk×Na into a new tensor S ∈ RNk×Na×Ni ,
where Ni = Ni1Ni2 . This operation is still a representation in lexicographic order,
but the dimensions are permuted to make the interferogram samples appear along
columns. This arrangement is shown in Fig. 6.2d.

6.1 Introduction 203



No2

No1

Na

(a) Raw acquisition U [o]

No2

No1

Na

(b) Estimation of the centers of the subimages

Na acquisitions

Ni2

Ni1

Nk = 70

(c) Stacked interferogram -
U [s] = stack(U [o],R[0], [Ni1 , Ni2 ])

•
•

•

•
•

•

•
•

•

•
•

•

Ni = Ni1Ni2

Na

Nk

(d) Permuted lexicographic order -
S = reshape(U [s])

Fig. 6.2. Various image representations of ImSPOC acquisition. On the first row, a set of
acquisitions in their natural representation, where [No1 , No2 ] are the column and
row pixels of the focal plane. In the second row the subimages are stacked to
obtain the datacube U [y], whose dimensions are rearranged in Fig. 6.2d to obtain
the permuted lexicographic order.
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6.1.2 Notation

In this chapter we denote the following variables in their natural representation,
whose first two dimensions denote the column and row pixel:

• The raw acquisitions: U [o] ∈ RNo1×No2×Na ,
• The raw datacube of subimages: U [s] ∈ RNi1×Ni2×Nk×Na;
• The co-registered datacube of subimages: U [y] ∈ RNi1×Ni2×Nk×Na .

The following images are instead described in their permuted lexicographic order
described in Section 6.1.1:

• the co-registered datacube of subimages: Y ∈ RNk×Na×Ni;
• the ideal product to reconstruct: X ∈ RNb×Na×Ni;
• the estimated product: X̂ ∈ RNb×Na×Ni;
• the transfer model: A ∈ RNk×Nb×Ni .

The cardinality of each domain is given below:

• No1 and No2: the number of photodetectors on the column and on the row of
the focal plane array (FPA), whose product No = No1No2 is the total number
of photodetectors;

• Ni1 and Ni2: the column and row pixel size of each subimage, whose product
is Ni = Ni1Ni2;

• Na: the number of acquisitions;
• Nk: the number of active interferometers, or equivalently, the amount of

samples in the interferogram;
• Nb: the number of spectrum samples for the reconstruction;
• N ′b: the number of spectrum samples employed in the direct model.

For a single acquisition (Na = 1) the tensor variables are represented with a matrix
notation, i.e. U[o] denotes a single raw acquisition and u[o]

i1,i2
is a generic pixel on

the rectangular grid of photodetectors, which forms the FPA.

This notation is chosen to keep the standard of matrices being denoted with an
uppercase bold letter, vectors with a lowercase bold letter, scalars with a lowercase
non-bold letter. The arrays with dimensions superior to 3 are shown in their tensor
notation (e.g.: U).

The variables can be sliced in the following ways:
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• Frontal Slicing: The i-th frontal slice of any 3-way tensor is denoted with their
matrix notation, so i.e. Y::i is a frontal slice of Y, which defines a collection
of Nk interferograms over Na acquisitions, all relative to a given angle of
incidence Ωi. To simplify the notation, if Ωi is fixed, the listed variables can be
simply rewritten as the matrices Y ∈ RNk×Na , X ∈ RNb×Na and A ∈ RNk×Nb .

• Vector Slicing: a specific column or row of a matrix is represented with a
vector notation, e.g. y:k and yl: are the k-th column and l-th row of Y (with
Ωi fixed), respectively.

• Element Slicing: The generic element of any matrix is denoted with an
indexed scalar notation, e.g. akli denotes the element of A associated with the
k-th interferometer, to the l-th spectrum sample and to the i-th solid angle of
incidence Ωi. Once again, if Ωi is fixed, its generic element is simply denoted
with akl (or sometimes with ak,l).

Given a generic bidimensional matrix C, we denote with CT, C†, ck:, and c:l its
transpose, its (Moore-Penrose) pseudo-inverse, and the mean value of its k-th row
and l-th column, respectively.

Whenever any operation is performed between a matrix and a scalar, it is implicitly
assumed that the operation is broadcast to all elements of the matrix, e.g. a
difference C − ck: implies that the mean of the k-th row of C is subtracted from
each element of C.

Additionally, [·, ·] and [·; ·] stand for row and column concatenation, while ‖ ·‖1, ‖ ·‖2,
‖ · ‖F and < ·, · > denote the `1 norm, `2 norm, the Frobenius norm, and the scalar
product, respectively.

6.1.3 Desired products

In the interest of describing the necessary operations aimed at providing intelligible
results for the final users, it is useful to formally identify a stack of data processing
operations, aimed at transforming raw acquisitions to useful data for the final ap-
plications; as no unique standard is common practice to label such operations, we
propose in this work to employ a nomenclature inspired by the terminology of Na-
tional Aeronautics and Space Administration (NASA)’s Data Processing Levels.

This formalism consists in identifying a sequence of products at different stages of
the processing procedure, which we show in Table 6.1 for the reader convenience.
They are specifically defined as:
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• Level 0 (L0): The matrix of photo-detectors’ raw acquisitions.
• Level 1 (L1): A datacube of tractable interferogram; in general terms, the

operation to obtain L1 products include optical corrections and spatial align-
ments, aimed at relating the spatial coordinates of each slice to the same
unique set of incident angles.

• Level 2 (L2): The spectral characterization of the incident radiance; in our con-
text, it requires an inversion of the L1 products, given a particular knowledge
of the transfer model of the optical device.

• Level 3 (L3): User ready products, such as gas concentrations or composi-
tion in the atmosphere. Those are obtained through post processing of the
reconstructed spectra, such as spectral unmixing.

This separation between levels is just for the sake of exposition; they will be kept
separate in this thesis, but nothing prevents to merge multiple processing steps in
future works if particular necessities arise.

Table 6.1. Data processing levels, related to the ImSPOC acquisitions pipeline of operations.

Level Data Description ImSPOC Format Variable

L0 Raw Acquisition
Photodetectors’
intensity levels

Raw: U [o]

Stacked: U [s]

L1 Calibrated Output Adjusted interferogram Datacube: U [y]

Lexicographic: Y

L2 Reconstructed Input Directional Spectrum
Ideal: X

Reconstructed: X̂

L3
Application

Ready Products
Gas Concentration,
composition, etc.

Application
dependent

We detail here which variables we associate to each of the processing levels.

• Raw Input (L0): At this stage the available information is just made up of the
intensity levels acquired by the photodetectors. Since the FPA is composed
by a set of photodetectors arranged in a rectangular matrix of size No1 ×No2 ,
the natural representation of the raw input is a 3-dimensional array U [o] ∈
RNo1×No2×Na . According to the discussion of Section 6.1.1, the relevant
intensity levels are typically rearranged in a datacube S ∈ RNk×Na×Ni made
up of Nk subimages of Ni pixels.

• Co-registered datacube (L1): At this stage, we require, for each vector slice
s:li of the datacube S, to describe an intereferogram associated with the solid
angle of incidence Ωi. Unfortunately, the different optical properties of each
of the Nk microlenses introduce slightly different optical distortions, that
map to slight misalignments across different subimages. These have to be
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corrected with a co-registration procedure to generate an aligned datacube
Y ∈ RNk×Na×Ni .

• Reconstructed spectra (L2): This is a discretized representation of the in-
cident spectral radiance. Specifically, the FoV is segmented into a set of
solid angle of incidence {Ωi}i∈[1,... ,Ni], and the wavenumber range into a set
of intervals {[σl −∆σ/2, σl + ∆σ/2]}l∈[1,... ,Nb]. With this representation the
3-dimensional array X ∈ RNb×Na×Ni made up of the elements:

xlmi =

σl+ ∆σ
2∫

σl−∆σ
2

∫∫

Ωi

L[m]
σ

(
θ[in]

)
dθ[in] dσ . (6.1.1)

Here, L[m]
σ

(
θ[in]) denotes the spectral radiance of the m-th acquisition in terms

of the wavenumber σ (or, in other words, the reciprocal of the wavelength in
vacuum) and of the incident angle θ[in] =

[
θ[in], ϕ[in]]. The latter is expressed

in spherical coordinates in terms of the incident polar and azimuthal angle,
respectively.

• Information on the scene (L3): The final target of the instrument is to pro-
vide spectral information of the scene under target, as the required radiometric
measure involves a certain detection of its direct, reflected, and diffracted
electro-magnetic (EM) radiation. This in turn depends not only on the char-
acteristic of the scene itself, but also on the atmospheric path travelled by
the EM radiations; some post-processing operations is thus required to link
the EM radiations incident to the device to the characteristics of the scene.
As the scope of this work does not involve any discussion on the problem of
atmospheric correction, we redirect the reader to the relevant literature for
more details [193, 201, 204].

The scope of this thesis is limited to the analysis on the reconstruction up to the
L2 of the pipeline of operation, which is equivalent to recovering the spectral
characteristics of the incident light beams.

The spectral radiance L[m]
σ (θ[in]) is a function of continuous variables, so we need

some criterion to classify the quality of the reconstructed product X̂ , which is
discrete in nature. In simple terms, we say that X̂ has a:

• a high spectral resolution if short step sizes are chosen for the wavenumber
σ (i.e. if the amount of samples Nb is large);

• a high spatial resolution if the FoV is partitioned into small solid angles (i.e.
if Ni is large).
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6.1.4 Challenges

The ImSPOC acquisition can be seen as a problem of computational imaging, as
the raw acquisition actively lies in a domain other than the desired one. As common
in this scenario, this situation demands an inversion of the measured quantities in
order to recover the input spectra [117, 127, 172].

The main problem to overcome is related to the uncertainty of the measurements.
This is due to the noisy phenomena which characterize the sensors (Section 5.2.4).
Additionally, the quantities to infer are intrinsically in a continuous domain, while
we seek here for a discrete representation of that same input spectrum.

These conditions describe an ill-posed problem in the Hadamard sense [106], as
it was described in Section 2.1.1. A simple inversion of the transfer matrix which
describes the optical transformation would also enhance the noise, so we need to
introduce here some penalization term to impose the reconstruction to be well-
behaving.

Additionally, in comparison with the discussion of Section 5.5, the real acquisition
system is characterized by certain nonidealities, which we need to compensate.

These effects include:

• a not perfectly symmetrical behaviour of the optical system associated with
each interferometry, which causes spatial distortions on each subimage;

• a not perfect knowledge of the geometry of each FP etalon, which causes a
mismatch between the expected and the real behaviour of the system.

6.1.5 Protocol of operations

The data processing procedures related to the ImSPOC device can be classified
into:

• Calibration: where the target is to characterize the device under test. This
one-time operation is performed in a controlled environment and setup of the
input, and the obtained measurement is employed to improve the accuracy of
the data processing;

• Operation: where the raw acquisition that describes an unknown scene is
processed to recover the information on the incident spectral radiance.
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The pipeline of the data processing operations of the ImSPOC acquisitions proposed
in this chapter follows a layered approach and is described below:

• Stacking: whose aim is to segment the regions of interest (RoIs) associ-
ated with each subimage in order to arrange them in a datacube. This is
equivalent to estimating the centers R̂[0] ∈ R2×Nk of each subimage, as the
operation of piling subimages of size Ni1 × Ni2 is described by a function
U [s] = stack(U [o],R[0], [Ni1 , Ni2 ]);

• Co-registration: whose aim is to generate a coherent datacube of interfer-
ograms. This phase (also known as spatial calibration) involves the com-
pensation of spatially incoherent behaviours between different subimages,
typically caused by a not fully verified parallax approximation of the view
of the scene or small differences in the manufacture of the micro-lenses or
optical cavities. The main procedure we propose here is to infer a geometry
transformation function that describes an coordinate shifting procedure from
the original stack U [s] to a novel stack U [y]. The i-th frontal slice Y::i of its
permuted lexicographic representation describes then an interferogram that is
exclusively related to a fixed FoV partition Ωi.

• Model characterization: At this point the direct model of the optical system
is described by the relation X::i = A::iY::i; the aim of the spectral calibration
is to match a set of known inputs and outputs, acquired in a controlled
environment, from which we infer a description A[B̂] of the direct transfer
matrix, in terms of the set of parameters B̂. The proposed formulation assumes
that the coefficient of the transfer matrix are samples of the models described
in Section 5.5.7; e.g., these models includes the 2-wave, which defines the
Fourier transform spectrometer (FTS) behaviour, and the ∞-wave model,
also known as Airy’s distribution. Among the parameters to estimate, the
most relevant is the thickness of the array of interferometers, which generally
differs from it nominal value; in fact, as manufacturing techniques can cause
imperfections, the hypothesis of parallel face interfaces for the FP structures
may not fully hold.

• Inversion: whose target is an estimation X̂::i of the spectra related to the
incident radiance, subject to the condition that X̂::i ≈ A::iY::i, where the
matrix A::i is given by the previous estimation. This is a classic inversion
problem, which requires a regularization to counter the ill-posedness of the
problem.

A summary of these procedures is shown in Fig. 6.3. The flowchart highlights the
separation between calibration and operation of the device, illustrating the products
that we expect to obtain at each stage of the processing pipeline.
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Raw input U[o]

Stacking

Misaligned datacube U[s]

Center coordinates R[0]

Center
estimation

Laser spots

Co-registration

Aligned datacube U[y]

Geometry
transformation

function

Point Mapped Misalignment

Acquired interferogram y

Inversion

Reconstructed spectrum x̂

Model
characterization

A[B̂]

Single Interferometer Readout

Spectral
calibration setup

Impulsive spectra

Fig. 6.3. Visual representation of the pipeline of operations that we employ for the spectrum
reconstruction from an ImSPOC acquisition. The dashed rectangles denotes
calibration operations (which are one-time only), while the flowchart linked by
black arrows is necessary for each acquisition.
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6.1.6 Novel contributions

The novel contributions presented in this chapter are listed below:

• Three novel approaches to identify the positions of the center positions of
the subimages, based on the fitting of a Gaussian function, on the centroids
of regions processed with mathematical morphology, and with a scanline
approach;

• An analysis of the co-registration procedures for subimages, based on a point
mapping approach and employing polynomial geometry transformation func-
tions;

• Three novel methods for the estimation of the parameters (e.g. the interferom-
eters’ thicknesses) of the transfer function exploiting the description given by
the Airy’s distribution; the methods are based on its maximum likelihood (ML)
formulation, on an exhaustive search (ES) and on nonlinear regression;

• A comparison between Bayesian frameworks for the inversion of the interfer-
ograms captured over a single pixel and a discussion of regularization both
with a penalized matrix decomposition (PMD) and a least absolute shrinkage
and selection operator (LASSO) approach;

• An analysis of the effect of the distortions in the reconstruction in the case of a
mismatch between the acquisition and the inversion model.

6.1.7 Available prototypes

Each of the datasets employed in this work were captured with one of four available
prototypes, manufactured in the context of the projects described in Appendix A.2
and whose characteristics are described in Table 6.2.

They will be generically labeled as PROTO with a progressive number to keep
an internal consistency within the document. The prototype ImSPOC-UV/VIS
(PROTO-1) and its evolution the prototype ImSPOC-UV-drone (PROTO-2) were
developed in the context of the ImSPOC-UV project and they were originally designed
for acquisitions in the ultraviolet (UV) range, but they were successively repurposed
for operations in the visible (VIS) range. The prototype ImaGAZ-1 (PROTO-3) is
also realized with the same technology (glass etalon with an ad-hoc reflective layer
grown on the surfaces), but with a specific focus to cover the near infrared (NIR)
wavelengths, according to the aims of the ImaGAZ (ImaGAZ) project.
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All prototypes contain a matrix of interferometers disposed over a bidimensional
matrix in a staircase pattern with linearly increasing thicknesses. An index is assigned
to each interferometer, starting from 1, which corresponds to the interferometer at
the optical contact (i.e., with its reflecting surfaces directly touching each other); the
indices then increase sequentially following the increasing order of their nominal
thickness.

The PROTO-3 is characterized by a slightly different nominal surface reflectivity
compared to the ImSPOC-UV prototypes, due to a less thick surface layer. Addition-
ally, the optical behaviour of its reflective coating is not spectrally uniform, as its
reflectivity changes significantly in the range 800− 1100 nm.

The prototype NanoCarb-1 (PROTO-4) has more notable manufacturing differ-
ences, as it follows the design principles of the NanoCarb technology (silicon etalons
with no additional surface layer) and features four separated sets of interferometers,
each dedicated to an estimation of gas concentration in different regions of the
spectrum [97].

Each prototype has a slightly different arrangement of the staircase pattern. For
each prototype, the indices shown in Fig. 6.4 are given in increasing order of
interferometers’ thicknesses. The PROTO-3 is the only notable exception, as its
design also includes a second optical contact-type interferometer in position 80 to
double check the accuracy of the manufacturing process. The staircase design of
the PROTO-1 was designed to allow for the interferometers’ thicknesses to increase
linearly on both sides of a central vertical line. Its subimage in the bottom right
corner is not operational as it is insufficiently illuminated by the incident field and
was ignored in our analysis.
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(a) PROTO-1

(b) PROTO-2

(c) PROTO-3 (d) PROTO-4

Fig. 6.4. Spatial arrangement of the subimages for different prototypes with numbers
denoting the nominal thicknesses in increasing order. The subimage area is
marked by a green outline and its center by a red cross. The background picture
is a generic acquisition of the specified prototype. Some subimages extending
outside the focal plane are marked by a red colored index.
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Table 6.2. Characteristics of the available ImSPOC prototypes concept studied in this work.
Sizes are in length by height.

Prototype PROTO-1 PROTO-2 PROTO-3 PROTO-4
Project ImSPOC-UV ImSPOC-UV ImaGAZ NanoCarb

Wavelength
range [nm]

500− 1000 380− 1000 800− 1700

Reg. 1: ∼ 780,
Reg. 2: ∼ 1600,
Reg. 3: ∼ 1660,
Reg. 4: ∼ 2060.

Acquisition’s
sizes [px]

2808× 1096 2808× 1096 640× 512 640× 512

Subimages’
sizes [px]

100× 100 96× 96 64× 64 64× 64

Operative
interferometers

215 319 79(+1) 70

Subimage
arrangement

24× 9 29× 11 10× 8 10× 8

Subimages’
step size [nm]

100 87.5 200 Variable

Nominal
reflectivity

0.13 0.13 0.12 0.32
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6.2 Center estimation

The particular concept design of ImSPOC introduces the particular challenge that
multiple subimages are registered on the same focal plane. We are however in-
terested in stacking those images in datacubes, so that each of the frontal slices
represents a specific subimage. The determination of the regions associated with
each subimage requires the determination of their centers.

We consider two possible scenarios for the determination of the centers:

• Extended objects: whose sources have a finite extension over the focal plane,
such as in the case of a flat field illumination or a standard in situ acquisition.
We propose to address this problem by pre-processing the image with a set
of morphological transformations to identify the RoIs associated with the
sources (Section 6.2.2). Then, we propose the centroid center estimation
(CCE) and the scanline center estimation (SCE) methods to estimate their
centers (Section 6.2.2).

• Point objects: such as a laser beam incident to the input surface, which maps
to multiple replica on the captured image, as shown in Fig.6.5a. We propose
to address this case with the Gaussian-fit center estimation (GCE) method,
described in Section 6.2.3, for which we assume to already have an available
datacube of stacked subimages, and only one laser spot is detectable on each
frontal slice of the datacube.

A final discussion on the results is given in Section 6.2.4.

(a) Point source (b) Extended source

Fig. 6.5. Two different acquisitions taken with the PROTO-4, in response of a point and an
extended source.
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6.2.1 Coordinate system

In this chapter, the spatial coordinates are given in a list of generically Nr pairs,
arranged over a generic matrix R ∈ R2×Nr . With this description, the k-th column
r:k is a column vector whose elements define the vertical and horizontal coordinate
of the k-th pixel.

For our purposes, we are interested in defining two different coordinate systems, one
for the image represented in absolute coordinates, which describes the full FPA, and
one in relative coordinates, which describes the positions of its stacked version.

Absolute coordinates

The FPA is an array of No photo-detectors, which we consider regularly spaced and
arranged over a rectangular grid of sizes No1 ×No2 .

Let R[t] ∈ R2×No denote the centers of these photodetectors. If we assume the
distance between adjacent photodetectors is a single unit, the elements of R[t] are
given by:




r

[t]
1,(i2−1)No1+i1 = i1 ,

r
[t]
2,(i2−1)No1+i1 = i2 ,

∀i1 ∈ [1, ... , No1 ] , i2 ∈ [1, ... , No2 ] , (6.2.1)

so that all coordinates are integer values, as it is shown in Fig. 6.6a.

The raw acquisition is made up of a given amount Nk of subimages, whose centers
R[0] ∈ R2×Nk can be expressed in the same coordinate system. These centers are in
general not integer values (i.e., in Fig. 6.6c), but it is always possible (excluding bor-
der effects) to crop rectangles of given sizes Ni1 ×Ni2 around the set of coordinates
R[0].

Specifically, the i-th detector is associated the set of pixels Qk assigned to the k-th
subimage if the following condition are verified simultaneously:

i ∈ Qk ⇔





∣∣∣r[t]
1i − r

[0]
1k

∣∣∣ ≤ Ni1
2 ,∣∣∣r[t]

2i − r
[0]
2k

∣∣∣ ≤ Ni2
2 ,

∀i ∈ [1, ... , No] , k ∈ [1, ... , Nk] . (6.2.2)
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(subimages of even sizes)

Fig. 6.6. Comparison between the absolute and relative coordinate system. On the left
column, the red dots R[0] define the centers of the subimages, which corresponds
to the origins in the relative coordinate systems. These origins are in half pixel
positions in the case of even length subimages. On the left column the black dots
R[t] define the centers of the photodetectors, which correspond to the blue dots
Ř[t] in the second coordinate system.
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Given a certain raw acquisition U[o] ∈ RNo1×No2 , eq. (6.2.2) can guide the creation
of a stacked datacube U [s] ∈ RNi1×Ni2×Nk , by piling up each cropped subimage.
This operation is denoted with U [s] = stack

(
U[o],R[0], [Ni1 , Ni2 ]

)
and an example is

shown in Fig. 6.6b.

Relative coordinates

The datacube U [s] of stacked subimages can be interpreted as a spatial translation
operation of all subimages to a common origin. Consequently, we can define a
coordinate system shared by all frontal slices

{
U[s]

::k

}
k∈[1,... ,Nk]

of U [s].

All centers defined in this relative coordinate system are denoted with a specific
symbol Ř, to differentiate them with respect to the ones defined in the previous
section.

If the origin is chosen to be at the center of the subimages, then the coordinates
Ř[t] ∈ R2×Ni associated with the intensity values of the subimages are composed by
the following elements:





ř[t]
1,((i2−1)Ni1+i1) = −Ni1−1

2 + i1 ,

ř[t]
2,((i2−1)Ni1+i1) = −Ni2−1

2 + i2 ,
∀i1 ∈ [1, ... , Ni1 ] , i2 ∈ [1, ... , Ni2 ] . (6.2.3)

A typical application is to estimate a matrix of coordinates Ř[f ] ∈ R2×Nk×Na of Na

features (e.g., a contour) that are shared across all Nk subimages. The main assump-
tion here is that each feature corresponds to a single replica in each subimage.

The obtained features’ positions can be shifted to the original coordinate system,
obtaining:

R[f ] = Ř[f ] + R[0] , (6.2.4)

for which we remind here that R[0] is broadcast to allow for a sum over consistent
dimensions.

6.2.2 Extended sources

In a general acquisition, the scene is typically an extended sources as it is composed
by multiple radiators, which for the raw ImSPOC product map to a set of replicas
that cover a certain finite surface on each subimage. From these raw products, we
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aim in this section to estimate a matrix R[0] ∈ R2×Nk of centers and, eventually, the
sizes [Ni1 , Ni2 ] of the subimages.

We propose here a processing scheme to isolate the surfaces of the regions associated
with extended areas, which we denote as RoIs. The scheme employs an approach
based on mathematical morphology; we also propose two methods for the estimation
of the centers of the obtained RoIs.

Definition of the regions of interest

In the case of extended sources, the definition of the center is a challenging task, as
the object covers a large area on the focal plane.

In these instances, it is often possible to distinguish between regions of interest
(RoIs), which contain relevant information, and background, which is purely noisy.
A naive approach to separate between these two classes involves noticing that the
two classes are characterized by different intensities levels, with the RoIs associated
with brighter intensities.

We propose here to address the determination of the RoIs with an approach based on
mathematical morphology [115, 175, 206]. The most basic operations related to
mathematical morphology consist in probing the image with a simple shape, known
as structuring element, which defines an entity composed by a series of pixels on a
grid with an associated origin.

To simplify the exposition, let us assume the structuring element B ∈ RNd1×Nd2
is a odd length bidimensional binary mask, with its origin in the center. The
generic element bd1,d2 of B is either a zero or a one, and its indices span the ranges
d1 ∈ [−(Nd1 − 1)/2, ... , (Nd1 − 1)/2] and d2 ∈ [−(Nd2 − 1)/2, ... , (Nd2 − 1)/2]. An
example of such mask is shown in Fig. 6.7d.

The mask shifts along all position of an input image U and, at each overlap, the
ones in the mask select a subset of the pixels of U, according to the current position
of the ones in the mask. Then, a a nonlinear operation is computed which involves
the selected pixels and the result is stored at the current position of the origin. The
following four basic nonlinear operations are the most common:

• Dilation: computes the maximum value;
• Erosion: computes the minimum value;
• Opening: an erosion followed by a dilation;
• Closing: a dilation followed by an erosion.
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An examples of the results of each of these operations is shown in Fig. 6.7.

(a) Input image (U) (b) Erosion (c) Dilation

(d) Structuring element (B) (e) Opening (Erosion→Dilat.) (f) Closing (Dilation→Erosion)

Fig. 6.7. Results of mathematical morphology operation with a 3×3 cross-shaped structuring
element (Fig. 6.7d), whose origin is in the center pixel (red border). The operations
are applied over an image with four intensity levels (Fig. 6.7a). The products of
the morphological operators show how the opening has the effect of suppressing
the spurious pixels in the corners (Fig. 6.7e) and the closing to flatten the hole in
the center of the image (Fig. 6.7f).

In mathematical terms, applying an erosion or a dilation on an image U ∈ RNo1×No2 ,
whose generic element is denoted with ui1,i2 , generates another image U′ ∈
RNo1×No2 whose elements are given by:

u′i1,i2 =





min
[d1,d2]:sd1,d2=1

ui1−d1,i2−d2 for an erosion ,

max
[d1,d2]:sd1,d2=1

ui1−d1,i2−d2 for a dilation .

(6.2.5a)

(6.2.5b)

In the equation above, the elements outside of the boundaries of the image are
ignored when evaluating the max or min.

A quick analysis of Fig. 6.7e and 6.7f shows how the opening has the effect to
suppress the spurious bright pixels, while the closing flattens darker pixels. This is
the desired effect we were looking for to identify the RoIs.
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More in detail, we propose the following sequence of operations to label the RoI of
U, which we denote as GenerateROI(U) in Algorithm 4:

• An opening with a symmetric structuring element (either a disk or a square);
• A closing with a structuring element, with the same shape, but generally a

different size;
• A thresholding operation with a given threshold t, to transform each pixel
ui1,i2 in a binary value:

thres t (ui1,i2) =





1 , if ui1,i2 ≥ t ,

0 , otherwise ,
(6.2.6)

such that its intensity levels 0 and 1 label the background and the RoIs,
respectively;

This method is versatile, but requires the setup of a relatively large amount of
parameters: the shape and size of the structuring elements, and the threshold level.
As a rule of thumb, we suggest to choose the shape of the structuring element
to approximately follow the shape of the regions, i.e. to employ a square if the
subimages are approximately rectangular. Their sizes should be set up with a visual
analysis: the size of the structuring element for the opening should be increased until
the spurious pixels are eliminated, while that for the closing should be increased
until the RoIs are fully connected. With respect to the threshold, an initial guess can
be obtained by the procedure known as Otsu’s method [180]. An example of such
product is shown in Fig. 6.8c.

Centroid and scanline center estimation methods

We propose here two different methods for the determination of the centers of
the RoI, starting from the image processed with the mathematical morphology
techniques, described in previous section.

In our context, we are faced with two choices, we can either estimate the center of
the the regions regardless of their position on the focal plane, for which we propose
the CCE method. If this is not sufficient, and assume that the RoIs associated with
each interferometer are reasonably well aligned with the geometry of the focal plane,
so that the regions are approximately regularly spaced on the horizontal and vertical
direction. This condition may be exploited, in the proposed SCE method, to estimate
the horizontal and vertical coordinates of their centers separately.
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• Centroid center estimation (CCE): For this method each of the RoI is labeled
according to a connectivity-8 criterion, that is if any of the pixels surrounding
a white pixel is also white, they are labeled as part of the same region. The
final estimation of the center of each RoI obtained by evaluating the centroid
of each of the obtained regions, that is, by evaluating the average coordinate
of the pixel associated with each region.

• Scanline center estimation (SCE) 1: The algorithm is based on the detection
of trigger conditions that define the boundaries of each set of RoIs. Let us
imagine a vertical line travelling bottom to top across the image. Given the
binary nature of the image, the line will eventually intersect any of the bright
pixels; this is the first trigger condition. The line then continues scanning the
image, until it eventually its whole length exclusively intersects a background
area (black pixels); this is the second trigger condition. The coordinates of
these two trigger conditions, stored as a pair, represent the boundaries of
a given horizontally aligned set of RoIs. The process is repeated until the
whole image is scanned and the midpoints of all pairs are stored in a vector
r[1] ∈ RNk1 . An equivalent procedure is repeated, scanning the image from left
to right, returning a vector r[2] ∈ RNk2 of midpoints of vertically aligned RoIs.
The desired matrix of center estimation R̂[0] is finally obtained by considering
all combinations of the sets r[1] and r[2].

Each of the two methods is described in detail in the Algorithm 4. The estimated
centers R̂[0] can also be used to find an estimation

[
N̂i1 , N̂i2

]
of the sizes of each

subimage, which are given by:

N̂i1 =
Nk1−1∑

k=1

∣∣∣r[1]
k+1 − r

[1]
k

∣∣∣ , (6.2.7a)

N̂i2 =
Nk2−1∑

k=1

∣∣∣r[2]
k+1 − r

[2]
k

∣∣∣ . (6.2.7b)

As an example, both the proposed approaches were applied to an acquisition taken by
the PROTO-4, in the case the device is illuminated with an extended monochromatic
source. The results are shown in Fig. 6.8.

1The idea of the SCE method was originally proposed in the context of the "projet Intégrateur: Analyse
de données hyperspectrales pour la quantification de gaz dans l’atmosphère". The project, which
lasted from September 2019 to January 2020, was led by Aneline Dolet (ASI, ENSE3, Grenoble-INP)
and developed by Sandrine Gayrard, Franklin Mathiot, and Matty Battista. The algorithm presented
here is an expanded version based on that original code.
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Algorithm 4: Centroid center estimation (CCE) and scanline center estimation
(SCE).
Result:

• List of centers R̂[0] ∈ R2×Nk (and, consequently, the amount of RoIs Nk);
• Thumbnail Sizes: [N̂i1 , N̂i2 ] (only for the SCE).

Data:

• Acquisitions matrix U ∈ RNo1×No2 with elements ui1,i2 ;
• Structural element B[o] for the opening and B[c] for the closing;
• Threshold value t.

Function GenerateRoI(U,B[o],B[c], t) // Morphological operations
U← Opening (6.2.5a)+(6.2.5b) on U with structuring element B[o]

U← Closing (6.2.5b)+(6.2.5a) on U with structuring element B[c]

U← Thresholding on U with threshold t through eq. (6.2.6)
return U

Function CCE(U,B[o],B[c], t) // Centroid center estimation
U←GenerateRoI(U,B[o], ,B[c], t)
Generate sets {Qk}k∈[1,... ,Nk] of connect-8 regions of U with cardinality |Qk|
r̂[0]

:k ←
1
|Qk|

∑
r∈Qk

r // Evaluate Centroids

R̂[0] ← {r̂[0]
:k }k∈[1,... ,Nk]

return [R̂[0], Nk]
Function SCE1D(U) // SCE on a single direction

i′ ← NaN // Tracks the beginning of a RoI
Nk1 ← 0 // Counts the amounts of RoI per row
Assign [No1 , No2 ] as the sizes of U
for i1 = 1, ..., No1 do

if i′ = NaN and
No1∑
i1=1

ui1,i2 > 0 then

i′ ← i1

else if
No1∑
i1=1

ui1,i2 = 0 then

i′ ← NaN
Nk1 ← Nk1 + 1 // Updates the count

r
[1]
Nk1
← (i′ + i1)/2 // Average between boundaries of RoI

end

N̂i1 ← 1
Nk1−1

∑Nk1−1
k=1

(
r

[1]
k+1 − r

[1]
k

)

r[1] ← {r[1]
k }k∈[1,... ,Nk1 ]

return [r[1], N̂i1 , Nk1 ]

Function SCE(U,B[o], ,B[c], t) // Scanline center estimation
U←GenerateRoI(U,B[o],B[c], t)
[r[1], N̂i1 , Nk1 ]←SCE1D(U)
[r[2], N̂i2 , Nk2 ]←SCE1D(UT) // Repeat for the other direction

R̂[0] ←
{

[r[1]
k1
, r

[2]
k2

]
}
k1∈[1,... ,Nk1 ], k2∈[1,... ,Nk2 ]

// Assign all combinations

return [R̂[0], N̂i1 , N̂i2 ]
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(a) Input image (PROTO-1)

(b) CCE

(c) SCE

Fig. 6.8. Estimation of the centers for a PROTO-1 acquisition for an illumination with a
monochromatic extended source. The raw image (Fig. 6.8a) is first processed with
morphological operations described in Section 6.2.2; the opening and closing use
a disk-shaped structuring element with a diameter of 2 and 12 px, respectively,
while the thresholding employs a threshold level equal to 10% of the maximum
recorded intensity. The centers obtained determined with the CCE (Fig. 6.8b)
and the SCE (Fig. 6.8c) and shown with blue crosses. For the SCE, the green and
yellow lines denote opposing boundaries of the estimated sets of aligned RoIs.
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6.2.3 Point sources

In this section we consider the situation of a laser beam incident to an ImSPOC
device, acting as a point source, with the aim of estimating the position of each
replica of the laser spot illuminating the focal plane. This is a special case of finding
a set of spatial features, which are common across the Nk subimages. Each of these
features are measured separately with Na different acquisitions.

Let U [s] ∈ RNi1×Ni2×Nk×Na be a set of Nk stacked subimages from of a set of Na

acquisitions and Ř[f ] ∈ R2×Nk×Na be the relative positions of the center spots, as
described in Section 6.2.1.

We propose here to estimate Ř[f ] by solving a problem of nonlinear regression,
through the fit of a Gaussian function.

Gaussian-fit center estimation method

The proposed Gaussian-fit center estimation (GCE) defines a method to find
the position of a laser spots Ř[f ] on different subimages by fitting a bidimensional
Gaussian function to the available intensity levels. In particular, we aim to estimate of
a matrix of parameters B̂ ∈ R4×Nk×Na . For the k-th subimage of the l-th acquisition,
a vertical slice β̂:kl is composed by four elements, which are composed by the
following four characteristics of the Gaussian function:

• β1 ∈ [−Ni1/2, Ni1/2] ⊆ R is the vertical coordinate of its center;
• β2 ∈ [−Ni2/2, Ni2/2] ⊆ R is the horizontal coordinate of its center;
• β3 ∈ R+ is its peak intensity;
• β4 ∈ R+ is its standard deviation (STD), which we assume for simplicity equal

in the vertical and horizontal direction.

The solution is then given by the following minimization:

β̂:kl = arg min
β

Ni∑

i=1

(
β3 exp

(
−
‖r[s]

:k − [β1;β2]‖22
2β2

4

)
− skli

)2

. (6.2.8)

where sk1i is the generic element of the permuted lexicographic representation
S = reshape(U[s]) ∈ RNk×Na×Ni of the stacked image.

The above functional has a nonlinear dependency with the set of parameters; this is a
problem of nonlinear regression, that can be solved via the Gauss-Newton algorithm
(GNA) [78], described in Section2.3.3. With regard to the initialization, β1 and
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(a) GCE for PROTO-4
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(b) Detail for thumbnail 2 (c) Gaussian Fit for thumbnail 2

Fig. 6.9. Results obtained by applying the GCE protocol to a laser spot acquisition taken
with the PROTO-4. The estimated centers and their initial guesses are marked
with blue and red crosses, respectively. A detail for the interferometer 2 (Fig. 6.9b)
is used to show how the associated Gaussian bell shape can fit the acquisition
samples (red dots in Fig. 6.9c).

β2 can be initialized as the coordinates of the brightest spot, β3 as the maximum
intensity in the subimage and β4 can be set to 1 for simplicity.

Finally, the estimation center coordinates are given by: r[f ]
:kl = [β̂1kl; β̂2kl]. Addition-

ally, the estimated peak intensity β̂3kl can be compared to a user-defined threshold
to assess if the laser spot was actually present in the subimage.
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6.2.4 Discussion of the proposed methods

This section is not intended as a systematic discussion to the problem of center
estimation, as no experimental result is provided. However, we still believe that the
discussed techniques are of interest to the end user for the automatization of the
processing pipeline of ImSPOC and to provide some feedback based on our practical
experience.

As a rule of thumb, for extended sources, we suggest to firstly employ the SCE
method to have a reasonable estimation of the subimage sizes and then to refine the
center position of the sources with the CCE method. The refinement can be obtained
by picking the closest centers to the ones determined with the SCE method, which
also allows to arrange them in a systematic order.

The point source case can also be tackled with the methods developed for extended
sources, but we suggest to skip the morphological opening to avoid suppressing the
relevant information. For the SCE method in particular, it may also be useful to
perform a dilation on the input image, to aid the vertical alignment of the RoIs. This
may be useful to estimate the initial partition of the subimages, which can then be
used as pre-processing step for the GCE method.

6.3 Co-registration of subimages

In this section, we describe the processing operations to transform a datacube of raw
acquisitions U [s] (L0 product) into a co-registered datacube U [y] (L1 product).

The main goal is to correct the spatial distortions introduced by eventual asymmetries
in the optical path travelled by the incident rays for each element of the structure,
by aligning each of the subimages collected in the datacube.

We propose to address this problem by estimating a polynomial geometry transfor-
mation function and resampling over a regular grid in Section 6.3 and we test its
effectiveness with real acquisitions in Section 6.3.3.

6.3.1 Problem statement

The operating principle of ImSPOC relies on an array of optical elements with
different characteristics. The ideal behaviour of the instrument requires that, for a
given solid angle of incidence (or in turn for a given portion of the targeted scene),
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it is possible to uniquely identify an associated sample on the focal plane for each of
the Nk interferometers.

We employ here the relative coordinate system described in Section 6.2.1, obtained
by shifting the k-th subimage by r[0]

:k , which here denotes the intersection between
the optical axis of the k-th lenslet and the focal plane.

Let us partition the FoV into Na sufficiently small solid angles {Ωi}i∈[1,... ,Na] and let
Ř[f ] ∈ R2×Nk×Na , be the focal spots of the incident rays associated with the set of
solid angles 2. The alignment condition is then given by the following property:

ř[f ]
:kl = r[f ]

:k′l ∀k ∈ [1, ... , Nk] , l ∈ [1, ... , Na] , (6.3.1)

where k′ is the index of a subimage of reference.

The position of each of these features can be rewritten as a relative shift R[d] with
respect to the position of the corresponding focal spot in the reference subimage.
This description is given by:

Ř[d] = Ř[f ] − Ř[f ]
:k′: , (6.3.2)

where k′ is the index of the reference subimage. With this description, eq.(6.3.1) is
equivalent to impose all elements of Ř[d] to be equal to zero.

As seen in Section 5.5.6, verifying this condition allows to discretize the direct model
which describes the optical transformation performed by the ImSPOC device.

Unfortunately, this condition is unrealistic to be verified in practice for real devices,
as differences between the geometry of the lenslets and parallax effects introduce
misalignments across different subimages.

Misalignments due to parallax are exploited by optical devices such as plenoptic
cameras [87] to extract depth information of a close field acquisition of the scene
and the recognition of common features across different subimages is known as
correspondence problem [95]. The final target of our context is quite different, as
we are interested here to identify samples of the interferogram which are related
to the same portion of the scene, but the necessity to identify common features
is shared by both scenarios. Conversely, we are not interested in the information
provided by the amount of misalignment itself, which we aim to fully compensate
with a co-registration procedure.

2The case of spectral aberrations, which are due to a different directional response of the optical
system at different wavelengths is considered outside the the scope of this work, but it could be
possible characterize them through Zernike’s polynomials [71].
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The main target is then to define a transformation Ts(·) to generate a simulated
acquisition U [y] = Ts(U [s]), where the the new measure R[d] is approximately iden-
tically equal to zero. We will define the proposed procedure in the next section.

6.3.2 Point mapping calibration

The scope of this work is limited to point mapping alignment procedures, for which
the common features that are shared across different subimages are made up of
point objects. An example of such calibration procedure, that is specifically used in
this thesis, consists in a setup with a laser beam that is incident to the input plane of
the ImSPOC prototype under test. The laser beam is placed over a moving platform
so that it is possible to vary its angle of incidence; this allows to record Na different
acquisitions, arranged in a tensor U [s] ∈ R2×Nk×Na , each with a different orientation
of the laser beam.

For each acquisition, a laser spot illuminates each of the subimages, which allows to
estimate the vertical and horizontal misalignments introduced by the not perfectly
matching geometry of the microlenses and by other effects.

The full procedure involves the following steps [95], as it was already described in
Section 3.4.2:

• Center Estimation: which involes estimating the position R[d] of the illu-
minated spots on each subimage, with respect to a reference subimage. We
propose to perform this step here with the GCE method described in 6.2.3.

• Determination of a transformation function: which involves the inference
of parameters of an analytic function that characterizes the geometric transfor-
mation of the coordinate system to be aligned with the reference one. More
specifically, we propose here to define a polynomial bidimensional function
pk : R2 → R2 of order Nm:

pk
(
ř[f ]

:kl,β::k

)
=

Nm∑

m=0

Nm−m∑

n=0
βmnk

(
ř

[f ]
1kl

)m (
ř

[f ]
2kl

)n
, (6.3.3)

such that the each function of the set {pk}k∈[1,... ,Nk] is used to fit a transfor-
mation from a generic position ř[f ]

:kl of the k-th subimage to the displacement
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ř[d]
:kl with respect to the reference image. Consequently the estimation β̂ of the

coefficients β::k = {βmnk}(m,n)∈N2:m+n≤Nm of pk may be inferred as:

β̂::k = arg min
β::k

Na∑

l=1

∥∥∥pk
(
ř[f ]

:kl,β::k

)
− ř[d]

:k′l

∥∥∥
2

2
. (6.3.4)

This is once again a problem of nonlinear regression, as which is suitable to be
solved with the Levenberg-Marquardt algorithm [168].

• Resampling: Once the geometry of the transformation is known, one can
determine the coordinate positions Ř[s] ∈ R2×Nk×Ni of the samples to interpo-
late in the target subimage, corresponding to the regular grid positions Ř[t] of
the reference subimage.
Specifically, the elements of Ř[s] are given by:

ř[s]
:kl = pk

(
ř[t]

:kl, β̂::k

)
+ ř[t]

:kl , ∀k ∈ [1, ... , Nk] , l ∈ [1, ... , Ni] . (6.3.5)

As the the samples of the target subimage are arranged over a regular grid,
the interpolation can be performed with one of the techniques described in
Section 3.4.2 for grid interpolation, e.g., with a cubic spline, bicubic kernel,
and other similar approaches. 3.

6.3.3 Experimental results

Experimental setup

The pipeline of spatial calibration is applied in this section for the registration of
subimages from acquisitions taken with the PROTO-4, which is the only available
prototype which is accompanied with a full characterization of its spatial response.

The point mapping setup is made up of 648 raw images, obtained by illuminating
the input plane with a laser beam with different orientations. The orientations were
chosen to span a relatively large set of incidence angles for a reasonable coverage of
the complete FoV of the instrument. From the perspective of the detectors, the laser
beam is indistinguishable from a radiation generated by a point source at infinite
distance, which is a reasonable simulation of a far field acquisition.

3The function pk defines a transformation from the coordinate system of the k-th subimage to that
of the reference subimage. If we performed the reverse transformation, this would not allow to
perform a resampling over a regular grid.
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The center positions R[0] of the subimages were estimated from a preliminary
acquisition where the laser beam was pointed perpendicularly to the input plane.
An area around the reference subimage was cropped to determine the position r[0]

:k′

of laser spot with the GCE method. The remaining center positions are set to be
regularly spaced over the FPA, so that it can be segmented into 70 non-overlapping
rectangular subimages with no gaps in between. The reference subimage corresponds
to the index k′ = 35, which is located around the middle position of the FPA.

The full set of 648 acquisitions is then stacked into a datacube U [s] ∈ R64×64×70×648,
and the position of focal spots of the laser beams was estimated with the GCE
method for each subimage. The results were arranged in a tridimensional array
Ř[f ] ∈ R2×70×648.

Among the elements of Ř[f ], a given pair of coordinate ř[f ]
:kl is labeled as outlier if it

does not satisfy both of the following conditions:

• the Euclidean distance from the reference is below 4 units, or in other terms if:

∥∥∥ř[f ]
:kl − ř[f ]

:k′l

∥∥∥
2

=
∥∥∥ř[d]

:kl

∥∥∥
2
≤ 4 ; (6.3.6)

• the peak intensity estimated with the GCE is less than 2% of the maximum
recorded peak intensity.

The set of polynomial geometry transformation functions {pk}k∈[1,... ,Nk] is then
obtained by solving eq. 6.3.4, ignoring the outliers. In our experiments, we tested
the estimation of pk with polynomial degree Nm ranging from 0 up to 5, in order
to find the best compromise between accuracy of the geometry transformation and
avoiding the overfitting problem.

A visual representation of the estimated geometry transformation function is given
in Fig. 6.11, expressed in the components of vertical and horizontal shift. Fig. 6.11c
to 6.11d showcase the limitations of a linear fitting function, which is unable to
analytically simulate the behaviour of the registered samples (Fig. 6.11a and 6.11b),
in comparison to the case of Nm = 3 (Fig. 6.11e to 6.11f). These considerations will
be justified analytically in the next sections.

We now have all the ingredients necessary to setup the calibration procedure Ts(·)
described in Section 6.3.2 on any raw image, which will be tested on two different
scenarios in the following sections. In those experiments, we test the resampling
with the following list of kernels:

• nearest neighbour,
• linear,
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• bicubic,
• cubic spline.
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Fig. 6.10. Position of the laser spots of the 648 acquisitions estimated with the GCE method.
The centers labeled in blue were labeled as outliers.
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(a) Horizontal displacement (not calibrated)
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(b) Vertical displacement (not calibrated)

(c) Horizontal displacement fit function
(polynomial degree: 1)

(d) Vertical displacement fit function
(polynomial degree: 1)

(e) Horizontal displacement fit function
(polynomial degree: 3)

(f) Vertical displacement fit function
(polynomial degree: 3)

Fig. 6.11. In Fig. 6.11a and 6.11a, the measured amount of horizontal and vertical mis-
alignment, expressed in unit values, with respect to the central thumbnail, before
the calibration procedure. The remaining figures show the two components of
the inferred geometry transformation function, for different polynomial degrees.
Green dots denote close to no misalignment, while red and blue dots denote a
strong misalignment in a given direction.
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Calibration dataset

The co-registration procedure is firstly applied to the datacube of calibration acqui-
sitions themselves. This is the training set, so we intend this experiment just as a
double check that the laser spots are shifted properly over the desired positions in
the processed datacube. These new center positions are calculated once again with
the GCE method.

The quantitative validation is performed by evaluating the mean Euclidean distance
(MED) index, which we define as:

MED =
Na∑

l=1

Nk∑

k=1

∥∥∥ř[d]
:kl

∥∥∥
2
, (6.3.7)

where ř[d]
:kl defines the estimated displacement of the laser spot of k-th subimage

with respect to the reference in the l-th processed acquisition. The results are given
in Table 6.3 for all the parameters under test; the GCE allows to also define a new
set of outliers, which are also given in the table. For a fair comparison, the outliers
of the raw image are excluded from the computation of the MED in eq. (6.3.7), but
the new outliers generated by the processing are included.

The analysis of the MED shows that an increasing degree of the fitting polynomial
yields a more accurate approximation of the training set, but this eventually comes
at a cost of overfitting the data, as shown in the next section. The qualitative results
also seem to imply that the linear resampling has the best performances, but this
result must be taken with a grain of salt. This effect is most likely due to the fact
that a linear transformation introduces less spatial distortions in the Gaussian bell
that characterizes the laser spot, which simplifies the GCE procedure to assess the
center positions.

A visual comparison of the results is given in Fig. 6.12, which also shows the
beneficial effect of polynomials of degree superior to 1, especially in comparison to
the unprocessed data of Fig. 6.11.
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(a) Co-registered horizontal displacement.
Polynomial degree: 1, resampling: spline
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(b) Co-registered vertical displacement.
Polynomial degree: 1, resampling: spline

100 200 300 400 500 600

Horizontal Coordinates

100

200

300

400

V
er

tic
al

 C
oo

rd
in

at
es

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c) Co-registered horizontal displacement.
Polynomial degree: 3, resampling: spline
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(d) Co-registered vertical displacement.
Polynomial degree: 3, resampling: spline
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(e) Co-registered vertical displacement.
Polynomial degree: 3, resampling: linear
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(f) Co-registered vertical displacement.
Polynomial degree: 3, resampling: linear

Fig. 6.12. Position of the centers of the laser spots, after the images were spatially aligned
with the parameters indicated in the small captions. The left and right col-
umn refer to horizontal and vertical misalignment with respect to the reference
thumbnail, respectively. The intensity scale is the same as Fig. 6.11a and 6.11b.
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Table 6.3. Quantitative results for the 648 laser beam acquisitions co-registration procedure.
The given values are the average and STD with respect to the subimages. The
new outliers are included in the computation of the MED. Best results are in
bold, second best are underlined.

Poly. degree
Nm

Resampling
MED

(Ideal value: 0)
New

outliers
0 Spline 0.6173± 0.4899 8
1 Spline 0.5633± 0.4214 10
2 Spline 0.1555± 0.0967 6
3 Spline 0.1476± 0.0902 6
4 Spline 0.1428± 0.0872 5
5 Spline 0.1406± 0.0858 8
3 Linear 0.1249± 0.0851 11
3 Cubic 0.1353± 0.0885 8
3 Near. Neig. 0.3382± 0.1689 18

Raw unprocessed data 0.6703± 0.5325 0
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In situ datasets

The same co-registration procedure is then applied on 91 in situ acquisitions, made
up of 26 shots of a "Landscape" scene, 47 shots of a "Mountain" scene; and 18 shots
of a "Sunny sky" scene.

The quality of the alignment is assessed by evaluating the structural similarity
(SSIM) [229] between the reference and the co-registered subimage. This validation
was limited to a subset area of 56× 56 pixels, as the spatial domain of the processed
subimages is slightly restricted after the stretching needed to align them with the
reference, especially in the corner areas shown in Fig. 6.13. The cut was chosen
arbitrarily to reasonably encompass a common overlapping area. While the SSIM
provides a great metric to evaluate the alignment of common features across different
replicas of the image, it is worth noting that we do not target its ideal value of 1
as each slice of the calibrated datacube has to provide different information on the
input spectrum.
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Fig. 6.13. SSIM map associated with the first in situ acquisition after the proposed subimage
co-registration procedure. The red and blue zones are associated with higher and
low structural similarities, respectively, with regards to the central thumbnail
(index 35). The yellow frame identifies the boundaries of the regions used for
the calculation of the global indices in Table 6.4. Subimage pixels falling outside
of the focal plane are assumed to be equal to 1.
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The average value of the computed SSIM with respect to all the subimages and all
the acquisitions are given in Table 6.3. The analysis of the SSIM shows that the
quadratic degree polynomial is the minimum requirement to appropriately describe
the geometry of the transformation, with slowly degrading performances for degrees
above 4. The cubic spline also proves to be the leading method of resampling for
in situ acquisitions, although all kernels, with the exclusion the nearest neighbour,
perform reasonably well.

A visual comparison of the co-registered subimages for a landscape acquisition is
shown in Fig. 6.14, 6.15, and 6.16 for the "Landscape", "Mountain" and "Sunny sky"
dataset. The aligned subimages are represented as red green blue (RGB) channels
to provide a visual feedback on their alignment. For all the considered datasets, it
can be immediately verified how the aberrations across the borders of the image
tend disappear with a sufficiently large degree polynomial geometric transformation
and with at least a linear resampling.

Table 6.4. Quantitative results on the 91 in situ acquisitions for the subimage registration
experiments described in Section 6.3.3. The given values are the mean and
STD with respect to both the acquisitions and the subimages for each of the
three datasets. The value Nm defines the degree of the geometry transformation
polynomial function. Best results are in bold, second best are underlined.

Dataset: Landscape Mountain Sunny sky
Number of acquisitions: 26 47 18
Nm Resampling SSIM (Ideal value: 1)
0 Spline 0.9324± 0.0359 0.9382± 0.0284 0.9891± 0.0057
1 Spline 0.9350± 0.0338 0.9371± 0.0310 0.9871± 0.0070
2 Spline 0.9633± 0.0178 0.9586± 0.0180 0.9969± 0.0021
3 Spline 0.9632± 0.0180 0.9587± 0.0179 0.9970± 0.0020
4 Spline 0.9623± 0.0184 0.9579± 0.0183 0.9969± 0.0020
5 Spline 0.9618± 0.0184 0.9575± 0.0181 0.9969± 0.0018
3 Bicubic 0.9633± 0.0178 0.9585± 0.0179 0.9969± 0.0020
3 Linear 0.9623± 0.0174 0.9567± 0.0176 0.9968± 0.0018
3 Near. Neig. 0.9479± 0.0192 0.9397± 0.0209 0.9939± 0.0030
Raw unprocessed data 0.9315± 0.0376 0.9286± 0.0332 0.9890± 0.0058
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Fig. 6.14. Visual representation of the aligned thumbnails, with different calibration meth-
ods, for the first acquisition in the "Landscape" dataset. The subimages identified
by the indices 2, 35, and 70 are visualized as RGB bands.
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Fig. 6.15. Visual representation of the aligned thumbnails, with different calibration meth-
ods, for the first acquisition in the "Mountain" dataset. The subimages identified
by the indices 2, 35, and 70 are visualized as RGB bands.
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Fig. 6.16. Visual representation of the aligned thumbnails, with different calibration meth-
ods, for the first acquisition in the "Sunny sky" dataset. The subimages identified
by the indices 2, 35, and 70 are visualized as RGB bands.
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6.4 Model Characterization

This section’s goal is to present the algorithms aimed at the inference of the parame-
ters of the transfer matrix which characterizes the optical transformation performed
by an ImSPOC device. The problem is introduced in Section 6.4.1, the algorithms
for the parametric inference are the topic of Section 6.4.3, and the results of the
related experiments are given in Section 6.4.4.

6.4.1 Problem statement

The manufacture of an ImSPOC device follows a series of design choices, which aim
to satisfy the requirements of the user application. It is however necessary, especially
for initial prototypes, to verify that the optical transformations performed by the
real device follow, within a certain degree of accuracy, the desired behaviour.

The procedure of model characterization aims at estimating the characteristics of
the direct model that describes the optical transformations of the device. The
characterization is not only useful to check that the device operates as intended.
In fact, as it will be discussed in Section 6.5, an accurate knowledge of the direct
model can dramatically improve the performances for the interferogram inversion
algorithms.

A typical characterization procedure consists in illuminating the device with a set of
Na known spectra and measure the intensity levels associated with each interferom-
eter over the illuminated areas. Formally, we define the following matrices:

• X::i ∈ RNb×Na is a matrix of input radiant fluxes associated with a given
incident solid angle Ωi, for which the l-th column x:li is a given input spectrum,
made up of Nb samples.

• Y::i ∈ RNk×Na is a matrix of spatially co-registered acquisitions, such that the
measurements are all due to a specific solid angle of incidence Ωi. The l-th
column y:li defines the interferogram measurement for the l-th acquisition; its
k-th sample ykli is due to the optical path difference (OPD) introduced by the
k-th interferometer 4.

4Y::i is the i-th frontal slice of the co-registered datacube Y = reshape
(

U [y]
)

obtained in Section 6.3.
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We propose to approach this problem with a linear model, where the acquisition is
described with the following stochastic process:

Y::i = A::iX::i + E::i , (6.4.1)

where A::i ∈ RNk×Nb is a transfer matrix that we want to estimate and E::i is a
realization of a certain additive noise. Ideally, the estimation of A::i should provide
the best available spectral resolution, or, in other terms, the cardinality Nb of the
wavenumber space should be as large as possible.

We identify here two possible approaches for the estimation Â::i of the direct
model:

• Coefficient estimation: for which the goal is a separate estimation âkli of
all the coefficients {akli}k∈[1,... ,Nk], l∈[1,... ,Nb], i∈[1,... ,Ni] of A. If we consider the
model (6.4.1) as noiseless, then, for the m-th acquisition, a naive estimation
is given by:

âkli := ykmi
xlmi

∣∣∣∣
xl′mi=0, ∀l′ 6=l

, (6.4.2)

or in other terms, âkli is equivalent to the stimulus due to a radiation character-
ized by an impulsive spectrum centered at the wavenumber σl, on the area of
the subimage associated with the k-th interferometer and assigned to the solid
angle Ωi. This consideration suggests that, for the most efficient calibration
setup, it is advisable to work with input spectra X::i that closely approximate
an identity matrix. The spacing ∆σ between the set of central wavelengths
{σm}m∈[1,... ,Na] determines the spectral resolution of the estimated transfer
matrix.

• Parametric estimation: This approach consists in assuming that the elements{
a

[β]
kli

}
k∈[1,... ,Nk], l∈[1,... ,Nb], i∈[1,... ,Ni]

of the direct model, which we denote here

with A[β], are samples of an analytical function in the set of parameters B,
for which we aim to find the estimation B̂. If the direct model accurately
describes the actual optical behaviour of the instrument and the parameters B
are estimated correctly, then the spectral resolution of A[B] (i.e., the number
of bands Nb) can be chosen as high as desired.

In this thesis, we focus on the parametric approach, although the calibration setup
for the characterization matches the one described in the coefficient estimation
approach.
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6.4.2 Model description

The most natural choice for the analytical function to assign to the direct model for
the parametric estimation is given by the interferometer optical transfer function,
which we presented in Section 5.5. In that discussion, the measurement was
interpreted as a combination of Nm interfering light rays, generated by multiple
reflections inside the FP etalons. This interpretation led to the definition of the "Nm-
wave model", whose special cases are the "2-wave model", which can be interpreted
as a discrete cosine transform (DCT), and the "∞-wave model", also known as Airy’s
distribution. For the reader’s convenience, the expressions for each of these models
are given in Table 6.5.

Table 6.5. Summary of the model of the coefficients akli of the interferometry transfer
matrix models. The pedex kli refers to the dependency from the incident angle,
the OPD and the wavenumbers, respectively. The shorthand values of the phase
ϕkli is defined in eq. 6.4.3. The expected average value in a full phase period
and the zero phase value are also provided for completeness.

Model Transfer function Mean value Zero phase value

2-wave T 2
kli

(
1 +R2

kli + 2Rkli cosϕkli
)
T 2
kli(1 +R2

kli) T 2
kli(1 +Rkli)2

Nm-wave T 2
kli

1+R2Nm
kli −2RNmkli cos(Nmϕkli)

1+R2
kli−2Rkli cosϕkli

T 2
kli

1−R2Nm
kli

1−R2
kli

T 2
kli

(1−RNmkli )2

(1−Rkli)2

∞-wave T 2
kli

(1−Rkli)2+4Rkli sin2(ϕkli/2)
T 2
kli

1−R2
kli

T 2
kli

(1−Rkli)2

With regard to the formalism,Rkli and T 2
kli respectively denote the surface reflectivity

and the gain of the system, while ϕkli is defined as:

ϕkli := 2πδkliσl − ϕ
[0]
k , (6.4.3a)

δkli := 2nklLk cos
(
n0
nkl

θ
[in]
i

)
, (6.4.3b)

where σl denotes the l-th wavenumber sample, θ[in]
i is the i-th incidence angle,

and δkli is the associated OPD related to the k-th interferometer with thickness
Lk. We keep here the dependence of the OPD on the wavenumber through the
refractive index nkl of the medium inside the k-th interferometer at σl. Compared
to the previous analysis, a new term ϕ

[0]
k was introduced, to consider the effect of

phase shift between consecutively reflected waves that are not taken into account by
the OPD. This additional phase shift may be introduced at the reflection over the
surfaces.
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A major assumption of this work is that both the reflectivity Rkli, the gain T 2
kli, and

the OPD δkli are:

• constant over the whole instrument’s bandwidth, which allows to remove the
dependency on the wavenumber; an analysis of the validity of such assumption
is provided in the experiments of Section 6.4.4;

• relative to a specific angle of incidence θ[in]
i . In particular, it is common practice

to perform calibrations where the illumination sources are perpendicular to
the incidence plane, for which the incident polar angle θ[in]

i is equal to zero.

This allows to simplify the notation for this section, by rewriting the relevant
variables as:

Rk := Rkli , X := X::i ,

T 2
k := T 2

kli , Y := Y::i ,

δk := δkli , A := A::i .

(6.4.4)

We finally want to provide an example of how an accurate knowledge of the trans-
formation matrix is useful for the inversion process. As the ImSPOC concept is a
particular case of a FTS, the OPDs are typically designed to be equally spaced, as
shown in Fig. 6.17a. This would allow to employ the inversion technique based on
the Fourier transform to be discussed in Section 6.5.2; however, the calibration pro-
cedure may show that the real OPDs are spaced irregularly. If this information was
not considered, the interferogram samples are placed incorrectly in the OPD domain,
as shown in Fig. 6.17b, which strongly degrades the quality of the inversion.

6.4.3 Parameter estimations algorithms

The analysis of this section will be limited to techniques aimed at the estimation
of the quadruplets of parameters for the analytical functions shown in table 6.5.
For the generic k-th interferometer, this quadruplet is identified by a column vector
β:k = [δk; Rk; ϕ

[0]
k ; T 2

k ], spanning the space Eb ⊆ R4 and made up of the following
four parameters:

• the OPD δk ∈ [0, 1/(2∆σ)];
• the surface reflectivity Rk ∈ (0, 1);
• the phase shift ϕ[0]

k ∈ [0, 2π);
• the system gain T 2

k ∈ R+.
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Fig. 6.17. Comparison between interferograms’ samples with nominal and exact values for
the OPDs.
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Here, ∆σ =
∑Na−1

l=1 (σl+1 − σl) is the step size of the reconstruction space of the
wavenumbers. The limitation on the domain of the OPD is to avoid aliasing, accord-
ing to the Shannon-Nyquist theorem, similarly to what was discussed in Section 5.5.8.
In fact, a certain estimation δ̂k of the OPD and its alias 1/2∆σ − δ̂k lead to the same
expression of the transfer matrix. The ambiguity arises due to its dependence on δk
through the phase term cos(2πσlδk), which for the alias becomes:

cos
(

2π
(

1
2∆σ − δ̂k

)
σl

)
= cos

(
(l − 1)π − 2πδ̂kσl

)
(6.4.5a)

= cos(2πδ̂kσl) , ∀l ∈ [1, ... , Nb] , (6.4.5b)

where we described σl = (l − 1)∆σ as an arithmetic sequence.

In the physical model of Section 5.5.7, a direct relationship between the terms Tk
and Rk was given based on the conservation of energy. However, we consider them
here as independent entities to include in T 2

k all the attenuation effects in the optical
path that are not due to the interferometer itself. Furthermore, we estimate the
reflectivityRk separately for each interferometer; while it is a reasonable assumption
for the reflectivity to be the same across all interferometers, this choice allows to
simplify the problem and to take into account manufacturing differences among
different reflective coatings.

While the core strategies of each algorithm may differ, their shared feature is to
consider for simplicity the noise from eq. (6.4.1) as instances of additive white
Gaussian noise, which is a realistic assumption for moderately high signal to noise
ratio (SNR) (Section 5.2.4). The inference problem, as demonstrated in Section 2.1.2,
becomes thus equivalent to minimizing the following cost function:

B̂ = arg min
B

∥∥∥A[B]X−Y
∥∥∥

2

F
(6.4.6)

where A[B] denotes the transfer matrix evaluated in the matrix of parameters
B ∈ R4×Nk , obtained by row concatenation of the vectors {β:k}k∈[1,... ,Nk].

Since the parameters β were assumed to independent on the wavelength, the k-th
row ak: of A[B] is just a function of β:k. This allows to separate eq. (6.4.6) in a set
of Nk estimations

{
β̂:k

}
k∈[1,... ,Nk]

in the form:

β̂:k = arg min
β∈Eb

∥∥∥a[β]
k: X− yk:

∥∥∥
2

2
, (6.4.7)
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where a[β]
k: is a row vector, expressed as a function of an array of parameters

β ∈ Eb ⊆ R4 yk: is the k-th row of the matrix Y.

The model (6.4.7) is structurally similar to an inversion problem, where the prior is
assigned intrinsically by imposing its parametric relationship. This model may be
extended to consider additional priors, e.g. by imposing that the thicknesses of the
interferometers increase in a given order. Such extensions come however at the cost
of introducing a correlation between the information of different interferometers,
which is not approachable with the formalism of eq. (6.4.7) and requires longer
computation times.

Maximum likelihood approach

In general terms, the parametric estimation can be considered as a problem of
data fitting. We employ in this section an approach based on maximum likelihood
estimation (MLE), which is an extension and mathematical justification of the work
we presented in [59].

The maximum likelihood (ML) method itself is based on two main assumptions:

• the input spectra are strictly impulsive, so that X is an identity matrix of sizes
Na ×Na, with Na = Nb; this allows to rewrite the simulated acquisition as:

Y[sim] = A[B]X = A[B] ; (6.4.8)

• the elements of the transfer matrix A are samples of a 2-wave model function,
so that its coefficients are given by:

akl = T 2
k

(
1 +R2

k + 2Rk cos
(

2πδkσl − ϕ
[0]
k

))
. (6.4.9)

We want to rewrite eq. (6.4.7) by normalizing the acquisitions as follows:

ỹk: := yk: − yk:
yk:

, (6.4.10)
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for which we obtain:

β̂:k = arg min
β∈Eb

∥∥∥ỹ[sim]
k: − ỹk:

∥∥∥
2

2
(6.4.11a)

= arg min
β∈Eb

∥∥∥∥∥
a[β]
k: − a[β]

k:

a[β]
k:

− ỹk:

∥∥∥∥∥

2

2

(6.4.11b)

= arg min
β∈Eb

Na∑

l=1

(
2Rk

(1 +Rk)2 cos
(

2πδkσl − ϕ
[0]
k

)
− ỹkl

)2
(6.4.11c)

= arg min
β∈Eb

Na∑

l=1

(
αk cos

(
2πδkσl − ϕ

[0]
k

)
− ỹkl

)2
, (6.4.11d)

where we made use of both the conditions (6.4.8) and (6.4.9) and we have defined:

αk = 2Rk
(1 +Rk)2 . (6.4.12)

Eq 6.4.11 is a classical problem of estimation of the parameters of a sinusoid affected
by Gaussian noise, whose MLE solution is a well known result in the literature (e.g.
the reader can refer to example 7.16 in [130]). Specifically, the inference of the
parameters is done as follows. First, we obtain the estimation δ̂k of the OPD:

δ̂k = arg max
δk∈[0, 1

2∆σ ]

[
yk:ck
yk:sk

]T [
cT
k ck cT

k sk
sT
k ck sT

k sk

]−1 [
yk:ck
yk:sk

]
, (6.4.13)

where cT
k = 1

Na
[cos(2πδkσ1), ..., cos(2πδkσNa)], sT

k = 1
Nb

[sin(2πδkσ1), ..., sin(2πδkσNa)].
If δk is not close to either zero or to 1/(2∆σ), then:

sT
k ck = cT

k sk = 1
2Nb

Na∑

l=1
sin(4πδkσl) ≈ 0 , (6.4.14)

for which eq. (6.4.13) can be simplified to:

δ̂k ≈ arg max
δ∈[0, 1

2∆σ ]

∣∣∣∣∣

Nb∑

l=1
ỹkle

−j2πδσl

∣∣∣∣∣ . (6.4.15)
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The MLE result δ̂k is hence equivalent to choosing the OPD which maximizes the
periodogram, that is, the generalized discrete Fourier transform (DFT) of ỹk:. Given
δ̂k, the estimations α̂k of αk and ϕ̂[0]

k of ϕ[0]
k are given by:

α̂k = 2
Na

∣∣∣∣∣
Na∑

l=1
ỹkle

−j2πδ̂kσl

∣∣∣∣∣ (6.4.16a)

ϕ̂
[0]
k = arctan

∑Na
l=1 ỹkl sin(2πδ̂kσl)∑Na
l=1 ỹkl cos(2πδ̂kσl)

(6.4.16b)

where arctan denotes a four quadrant inverse tangent of a point whose coordinate
are the denominator and the numerator of the argument; ϕ̂[0]

k can hence assume any
value in the range [0, 2π). The procedure is fully described in Algorithm 5.

Algorithm 5: Maximum likelihood (ML) parameter estimation.
Result: Parameters’ Estimation:

• β̂:k =
[
δ̂k, R̂k; ϕ̂

[0]
k ; T̂ 2

k

]
, ∀k ∈ [1, ... , Nk]

Input:

• Input spectra’s central wavenumbers: {σl}l∈[[1..Na]]
• Matrix of acquisitions: Y ∈ RNk×Na whose rows are {yk:}k∈[1,... ,Nk]
• OPD Sample Space: {δ′s}s=1,...,Ns ∈

[
0, 1

2∆σ
]

where δs = s−1
2∆σ and

∆σ = 1
Nb−1

∑Nb−1
l=1 (σl+1 − σl)

Procedure:

Construct W ∈ RNs×Na with elements wlk = e−j2πδ
′
kσl

for k = 1, ..., Nk do
ỹk: = (yk: − yk:) / yk:
r←

∣∣WỹT
k:
∣∣ ∈ RNs and denote the s-th element with Jsk

ŝ = arg max
s∈[1,... ,Ns]

rs

δ̂k = δ′ŝ
Calculate α̂k and ϕ̂[0]

k analytically from eq. 6.4.16

R̂k =
(

1−
√

1− α̂2
k

)
/α̂k

T̂ 2
k = yk:

1+α̂k
∑Nb
l=1 cos(2πδkσl)

end

The ML method requires very low computational power, but its applicability is
limited by validity of its assumptions. Specifically, the transfer function model can
be assumed as 2-wave only for devices for reasonably low reflectivities (typically
below 0.3), which is the case for the low finesse interferometers which are used in
the current ImSPOC designs.
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Exhaustive search approach

The exhaustive search (ES) approach, which we originally proposed in [190],
consists in sampling the parameters space Eb in order to define a set of Ns candidate
vectors {β′:s}s∈[1,... ,Ns] that can represent, up to a given desired accuracy, the whole
space. The objective function (6.4.7) is then computed for each of those candidates
and the one that corresponds to the minimum value is chosen as the estimation.

Formally, the estimation can be expressed as:

β̂:k = arg min
{β′:s}s∈[1,... ,Ns]

∥∥∥a[β′:s]
k: X− yk:

∥∥∥
2

2
= arg min

{β′:s}s∈[1,... ,Ns]

∥∥∥y[sim]
k: (β′:s)− yk:

∥∥∥
2

2
,

(6.4.17)
which is equivalent to comparing a simulated acquisition y[sim]

k: (β′:s) = a[β′:s]
k: X with

the measured one yk:.

The main challenge of this approach is to choose the segmentation of the parameter
space Eb that provides the best compromise between the amount of checks and the
accuracy of the estimation. There is a vast literature dedicated to this problem,
especially in the domain of machine learning where this field is known as hyper-
parameter search [24]; some possible approaches include grid searches, random
searches, Bayesian optimization, and more. Determining the most efficient solution
is however outside the scope of this work, as we simply investigate a regular grid
sampling of the parameter space Eb.

As the scanning of a three dimensional parameter space requires too much computa-
tional time, it is useful to operate in domains that are independent to the variations
of a given variable. For impulsive inputs X, we propose to approach this issue with
the following two adjustments:

• Gain: To get rid of the dependency from the gain T 2
k , one simple adjustment

is to normalize the acquisitions for their mean to be equal to 1, so that
eq. (6.4.17) can be rewritten as:

β̂:k = arg min
{β′:s}s∈[1,... ,Ns]

∥∥∥∥∥
y[sim]
k: (β′:s)

y[sim]
k: (β′:s)

− yk:
yk:

∥∥∥∥∥

2

2

, (6.4.18)

so that just check for sample vectors β′:s with a fixed T 2
k = 1.

• Phase shift: To make our estimation independent of the phase shift, we
propose to scan the parameter space in the Fourier amplitude domain. Specif-
ically, let W ∈ RNa×Na define a DFT transformation matrix whose elements
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wkl = exp
(
−j2πδ̌kσl

)
, where {σl}l∈[1,... ,Na] are the central wavenumbers of

the input spectra, whose mean step size is ∆σ and δ̌
[ref ]
k = (k − 1)/(2∆σ).

Then, we propose to estimate the OPD and the reflectivity with the functional:

[
δ̂k, R̂k

]
= arg min

[δ′s,R′s]:
s∈[1,... ,Ns]

∥∥∥∥∥∥∥∥

∣∣∣∣W
(
y[sim]
k: ([δ′s,R′s])

)T
∣∣∣∣

y[sim]
k: ([δ′s,R′s])

−
∣∣WyT

k:
∣∣

yk:

∥∥∥∥∥∥∥∥

2

2

, (6.4.19)

The main motivation behind this approach is due to the DFT shifting theorem,
which states that the magnitude of the DFT is invariant to any circular shift
of δ[ref ]

k ∆σ, where δ[ref ]
k is the real OPD to estimate. This is the maximum

error we allow on the estimation of the phase shift, which can be made small
enough if we raise the amount Na of acquisitions.

Once the OPD and the reflectivity are estimated, those parameters can be assumed
as fixed for the estimation of the phase shift. The full procedure is described in
the Algorithm 6. The ES method allows to extend the interferometer parameter
estimation to the cases in which the 2-wave model is not a sufficiently accurate
representation of the optical transformation, but its accuracy is limited by the
discrete segmentation of the sample space, which has to be very dense to return
precise results.
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Algorithm 6: Exhaustive search (ES) parameter estimation.
Result:

• Parameters’ Estimation: β̂k: =
[
δ̂k; R̂k; ϕ̂

[0]
k ; T̂ 2

k

]
, ∀k ∈ [1, ... , Nk]

Input:

• Matrix of acquisitions: Y ∈ RNk×Na whose rows are {yk:}k∈[1,... ,Nk]
• Amount of samples for parameters’ space tessellation: [Ns1 , Ns2 , Ns3 ]
• Wave model label (e.g. 2, Nm or∞ waves)
• Input spectra X ∈ RNb×Na and their central wavenumbers {σl}l∈[1,... ,Na]

Procedure:

Define the sample spaces: δ′s1 = s1−1
Ns1

1
2∆σ , R′s2 = s2−1

Ns2
, ϕ[0]′

s3 = s3−1
Ns3

2π,
∀s1 ∈ [1, ... , Ns1 ] , s2 ∈ [1, ... , Ns2 ] , s3 ∈ [1, ... , Ns3 ] with
∆σ = 1

Nb−1
∑Nb−1

l=1 (σl+1 − σl)
Construct W ∈ RNs×Na with elements wlk = e−j2πδ

′
kσl

for k = 1, ..., Nk do
Evaluate yk: =

∑Nb
l=1 ykl

Jmin ←∞
for s1 = 1, ..., Ns1 , s2 = 1, ..., Ns2 do

β′ ←
[
δ′s1 ; R′s2 ; 0; 1

]

Evaluate a[β′]
k: with the selected model from Table 6.5

Evaluate y[sim] = a[β′]
k: X and its mean y[sim]

Evaluate J ′ =
∥∥∥∥
|Wy[sim]T|

y[sim] − |WyT
k:|

yk:

∥∥∥∥
2

if J ′ < Jmin then
Jmin ← J ′, δ̂k ← δ′s1 , R̂k ← R

′
s2

end
end
Jmin ←∞
for s3 = 1, ..., Ns3 do

β′ ← [δ̂k; R̂k; ϕ
[0]′
s3 ; 1]

Evaluate a[β′]
k: with the selected model from Table 6.5

Evaluate y[sim] = a[β′]
k: X and its mean y[sim]

Evaluate J ′ =
∥∥∥y[sim]

y[sim] − yk:
yk:

∥∥∥
2

if J ′ < Jmin then
Jmin ← J ′, ϕ̂

[0]
k ← ϕ

[0]′
s3

end
end

Evaluate y[sim] = a[β′]
k: X and its mean y[sim]

T̂ 2
k ←

yk:
y[sim]

end
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Gauss-Newton algorithm approach

In this section, we present the Gauss-Newton algorithm (GNA) method, which is
an alternative procedure for the estimation of the parameters of an interferometer
based on the solution of a nonlinear regression problem. As opposite to ES method,
the GNA method allows to estimate the parameters with a user-defined degree of
precision. which can be set by choosing the amount of iterations of the solving
algorithm.

Eq. (6.4.17) can be interpreted as a problem of fitting a nonlinear function to each
of the acquisitions; this is a problem of nonlinear regression, which can be solved
with any of the techniques discussed in Section 2.3.3.

The GNA method iterates a two step procedure; if we suppose β(q)
:k is the estimation

of the parameters at the q-th iteration, the update step consists in:

• Linearization of the model: where the transfer matrix a[β(q)
:k ]

k: is represented
by a Taylor decomposition at β(q)

:k , truncated to its first derivatives.

Formally, for a the k-th interferometer, we define residual r(q) at the q-th
iteration the quantity:

r(q) := ak:(β
(q)
:k )X− yk: . (6.4.20)

Its gradient ∇(q)
r ∈ R4×Na is expressed in terms of the gradient ∇(q)

a of ak: as:

∇(q)
r = ∇(q)

a X , (6.4.21)

where

∇(q)
a =

[
∂ak:

∂β
(q)
:k

]
=
[
∂ak:
∂δk

; ∂ak:
∂Rk

; ∂ak:

∂ϕ
[0]
k

; ∂ak:
∂T 2

k

]
. (6.4.22)

The gradient ∇(q)
a ∈ R4×Nb is a concatenation of partial derivatives in terms

of each of the four components of β(q). For the 2-wave and∞-wave model,
those are given in Table 6.6.

• Linear Regression: where the objective function is solved as a classic regres-
sion, assuming that the direct model is linear.

The update for the parameters is then given by:

β
(q+1)
:k = β

(q)
:k −

(
∇(q)
r

)†
r(q) (6.4.23)
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where
(

∇(q)
r

)†
=
(

∇(q)
r

T
∇(q)
r

)−1
∇(q)
r

T
is the pseudo-inverse of ∇(q)

r .

Table 6.6. Summary of the coefficients of the Jacobian matrix associated with the transfer
matrix for the 2 and∞-wave model.

2-wave model ∞−wave model

ϕkl 2πδkσl − ϕ0
k

akl T 2
k

(
1 +R2

k + 2Rk cosϕkl
) T 2

k

(1−Rk)2+4Rk sin2(ϕkl/2)

∂akl
∂δk

−4πσlT 2
k Rk sinϕkl −4πσlRk

a2
kl

T 2
k

sinϕkl

∂akl
∂Rk 2T 2

k (Rk + cosϕkl) −2a
2
kl

T 2
k

(
2 sin2 (ϕkl

2
)

+Rk − 1
)

∂akl
∂ϕ0

k
2T 2

k Rk sinϕkl 2Rk
a2
kl

T 2
k

sinϕkl
∂akl
∂T 2
k

akl
T 2
k

The iterations are then repeated for either a fixed number of times or until the
decrease of the objective function J (q) = ‖r(q)

k ‖
2
2 is below a certain user defined

threshold. This method exhibits desirable features:

• the solution can converge to any point parameter space Eb;
• it allows for more sophisticated expressions for the transfer model, such as the
∞-wave model;

• it may use any set of input spectra X.

Its main limitation is the requirement for an accurate initialization β[0] for the
process to converge to the desired local minimum; a reasonable initialization, when
available, can be provided by the result of the ML Algorithm 5.

The whole procedure is described in Algorithm 7.
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Algorithm 7: Gauss-Newton algorithm (GNA) for parameter estimation.
Result:

• Parameters’ Estimation: β̂:k =
[
δ̂k; R̂k; ϕ̂

[0]
k ; T̂ 2

k

]
, ∀k ∈ [1, ... , Nk]

Input:

• Matrix of acquisitions: Y ∈ RNk×Na whose rows are {yk:}k∈[1,... ,Nk]
• Wave model label (e.g., 2 or∞ waves)
• Input spectra X ∈ RNb×Na
• Maximum number of iterations Nq

• Tolerance: Jtol

Procedure:

Initialize
{
β

(0)
k

}
k∈[[1..Nk]]

with Algorithm 5 (ML method)

for k = 1, ..., Nk do
J (−1) ←∞ // Initialize the objective function value
q ← 0 // Initialize the iterations

ak: ←



akl

∣∣∣∣[
δk;Rk;ϕ[0]

k ; T 2
k

]
=β(0)

k




l∈[1,... ,Nb]

with akl from Table 6.6

J (0) ← ‖ak:X− yk:‖2
while q < Nq and

∣∣J (q) − J (q−1)∣∣ > Jtol do
q ← q + 1

ak: ←



akl

∣∣∣∣[
δk;Rk;ϕ[0]

k ; T 2
k

]
=β(q)

k




l∈[1,... ,Nb]

with akl from Table 6.6

∇A ←





[
∂akl
∂δk

; ∂akl
∂Rk ; ∂akl

∂ϕ
[0]
k

; ∂akl
∂T 2
k

]∣∣∣∣[
δk;Rk;ϕ[0]

k ;T 2
k

]
=β(q)

k




l∈[1,... ,Nb]

with

partial derivatives from Table 6.6
r← ak:X− yk: // Evaluate the residual
∇r ←∇AX // Compute the Jacobian

β
(q)
:k = β

(q−1)
:k −

(
∇r∇T

r

)−1 ∇r rT // Update the parameters

J (q) =
∥∥rT∥∥2

2 // Compute the current error
end

β̂:k ← β
(q)
:k

end
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6.4.4 Calibration experimental results

Experimental setup

In this section we compare the performances of the model charaterization methods
we proposed for both real and simulated acquisitions.

The experiment is set up as follows:

• The device under test is illuminated with a series of monochromatic acquisi-
tions with central wavelengths {σl}l∈[1,... ,Na];

• The average values of the illuminated region of each subimage is arranged in
a matrix Y ∈ RNk×Na;

• The space of parameters B̂ ∈ R4×Nk is estimated with the investigated method;
• A simulated acquisition Y[sim] ∈ RNk×Na is evaluated as A[B̂]X;
• The simulated acquisition Y[sim] is compared with Y with a series of quality

indices.
• If the nominal set of OPDs is known (i.e. from the design sheets provided to

the manufacturer), their values are compared with the estimated OPDs.

The reconstructed interferogram Y[sim] is compared with the real acquisition Y, by
evaluating the root mean square error (RMSE) directly in the domain of the OPD:

RMSE =
∥∥∥Y[sim] −Y

∥∥∥
F

=
∥∥∥A[B̂]X−Y

∥∥∥
F
. (6.4.24)

We also evaluate the average Fourier norm (AFN) to compare their amplitudes in
the Fourier domain; this index is defined as follows:

AFN =
∥∥∥
∣∣∣
(
A[B̂]X−Y

)
WT

∣∣∣
∥∥∥
F
, (6.4.25)

where W ∈ RNk×Nk is a standard DFT transformation matrix. The RMSE and AFN
are expected to yield similar results in terms of hierarchies of the methods’ perfor-
mances, but the latter is reasonably exempt from the effect of phase mismatches. If
a set of nominal OPDs {δ[ref ]

k }k∈[1,... ,Nk] is available, this can be compared with the
array of estimated OPDs {δ̂k}k∈[1,... ,Nk]. For this purpose, the most natural quality
index is the mean absolute error (MAE):

MAE = 1
Nk

Nk∑

k=1
|δ[ref ]
k − δ̂k| . (6.4.26)

However, the current technology for manufacturing an array of interferometer is
able to control the variation of the thickness between adjacent interferometers with
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a much larger degree of accuracy than that of absolute thicknesses. To address
this issue, we define an alternative quality index, the mean absolute unbiased error
(MAUE), as:

MAUE = 1
Nk

Nk∑

k=1

∣∣∣
(
δ

[ref ]
k − δ[ref ]

)
−
(
δ̂k − δ̂

)∣∣∣ , (6.4.27)

where δ denotes the average of the associated OPD over all interferometers.

With respect to the tested methods, we compare the performances of the three
approaches proposed in Section 6.4, assuming different transfer matrix analytical
models. Specifically, the ML method always assumes that the optical transforma-
tion is described by a 2-wave model, but, once the parameters are estimated, the
simulated acquisition Y[sim] may be generated with any model. For the remaining
methods, we impose instead that the estimation and simulation model are the same.
In summary, the following method are tested:

• the ML method, with a 2-wave, 3-wave, and∞-wave simulation model;
• the ES method, with a 2-wave, 3-wave, and∞-wave estimation/simulation

model;
• the GNA method, with a 2-wave, and an∞-wave estimation/simulation model.

Real data results

For the real dataset, three different spectral spetral calibration procedures were
performed at the Institut de Planétologie et d’Astrophysique de Grenoble (IPAG),
for the PROTO-1, PROTO-2, and PROTO-3, whose general characteristics were
described in Section 6.1.7.

For each spectral calibration procedure, an extended source (i.e., a lamp) generates
a wideband incident field; its incident light is filtered by a diffraction grating,
which acts as a bandpass filter whose bandwidth is centered around a user-selected
center wavelength. The filtered light illuminates the input plane in a direction
roughly perpendicular to the device under test, and the readout of the instrument is
recorded. The procedure is repeated for Na acquisitions, selecting a different central
wavelength on the diffraction grating every time, to simulate the response of the
device to Na monochromators.

For each acquisition, the central area of each subimage is cropped into 12 × 12
px squares and the average values are arranged into the matrix of acquisitions
Y ∈ RNk×Na .
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The method for the determination of the centers of the illuminated spots are slightly
different for each prototype:

• For the PROTO-1, we perform the CCE on all acquisitions, and then we pick
the median coordinates across all acquisitions;

• For the PROTO-2, the center coordinates were given by the design datasheets;
• For the PROTO-3, the center coordinate of the central subimage was obtained

with the CCE on a sample image, and the remaining coordinates are chosen to
be regularly spaced on a grid.

These informations are summarized in Table 6.7.

Table 6.7. Characteristics of the spectral calibration procedures for the characterization of
the transfer matrix of an ImSPOC.

Prototype PROTO-1 PROTO-2 PROTO-3
Acquisitions (Na) 101 721 343

Central wavenumber
range [mm−1]

[1000,2000] [1000,2800] [625,1000]

Central wavenumber
step size [mm−1]

10 2.5
Variable

(1.1± 1.2)
Center estimation of
the illuminated area

Median
of CCE

Design
datasheet

CCE+
regular grid

Illuminated region (px) 12× 12 12× 12 12× 12

The results of the experiments on the three prototypes are given in tables 6.8, 6.9,
and 6.10; an analysis of these tables highlights the advantages of operating in
continuous domains, which yields a particular hierarchy of performances: GNA,
followed by the ML and the ES. The three methods explore a increasingly less
dense domain of parameters, which respectively are fully continuous, continuous
everywhere except for the OPD, and fully discrete. The results do not contradict
the previous literature [190], as the presented implementation of the ML is a more
refined version of the one presented by Dolet et al. [59], as the presented method
provides an estimation for both the phase shift and the reflectivity, other than just
the OPD.

For each of the three prototypes, Fig. 6.18 provides a visual representation of
the estimated OPD. They are expected to be roughly equivalent to two times the
interferometers’ thicknesses and are sorted with respect to their identifying indices
of Fig. 6.4. Those results closely match the nominal increase in thickness of Table 6.2.
With regard to some design specific considerations:

• The PROTO-1 is manufactured with a particular staircase design pattern, which
increases linearly from a central vertical axis both on the left and right direction
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(according the order shown in Fig. 6.4a). The step size of the thicknesses
is supposed to be the same on both sizes, but our results show that this is
not an accurate statement, probably because faces of the interferometers are
not exactly parallel, but instead bent on their top side. The effect of bending
causes a different behaviour on each side of the staircase, which causes the
alternating pattern of Fig. 6.18a;

• The PROTO-3 is characterized by two elements at the optical contact (the op-
posing reflective faces touch each other directly), which can be easily identified
at the two ends of Fig. 6.18c.

The analysis of the MAUE seems to indicate that the estimation of the OPD with the
ML is more accurate, but it is difficult to assess if this is due to the performances of
the inference method or because of imperfections introduced during the process of
manufacturing the device, especially considering that the GNA provides better per-
formances for simulated datasets. Another visual comparison between the observed
and simulated acquisition is available in Fig. 6.19 for PROTO-1 and in Fig. 6.20
for PROTO-3, showcasing the fitting of the analytical function for a relatively thin
and relatively thick interferometer. This visualization can be used both to show the
benefits of a proper choice of the options of the model characterization method and
to highlight some limitations of the proposed models; in particular a comparison
between Fig. 6.20a and 6.20e (or similarly Fig. 6.19a and 6.19e) shows that the
∞-wave model provides a better approximation of the acquisition by generating
oscillations that are more rounded towards the bottom. Similarly, a visual analysis of
Fig. 6.20b and 6.20h (and similarly, Fig. 6.19b and 6.19h) shows how the inference
of the OPD over a finer domain allows to follow more closely the oscillations of the
acquisition.

With respect to the limitations of the model, this work has assumed that the re-
flectivity is constant with the wavelength, so the proposed model is not capable to
take into account variations in the amplitude of the oscillation, which are instead
present on the real data across all prototypes, especially for PROTO-3 where the
coating exhibits a decrease in its efficiency for low wavelengths. PROTO-3 also
shows an anomalous effect in Fig. 6.20 of increase in frequency of oscillations for
high wavenumbers; to the best of my knowledge, this effect is not mainly due to a
variation of the OPD with the wavenumber, but instead because of uncompensated
spurious impulses generated by the monochromator.
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50 100 150 200 250 300

Interferometers' Indices

5

10

15

20

25

30

35

40

45

50

55

E
st

im
at

ed
 O

P
D

 [
m

]

(b) PROTO-2
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(c) PROTO-3

Fig. 6.18. Visual representation of the estimated values of the OPD for different prototypes,
performed with the GNA method and an∞-wave model.
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(b) Inference method: GNA, model: ∞-wave,
estimated R, interferometer index: 150
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(c) Inference method: GNA, model: ∞-wave,
fixed R, interferometer index: 20
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(d) Inference method: GNA, model: ∞-wave,
fixed R, interferometer index: 150
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(e) Inference method: GNA, model: 2-wave,
estimated R, interferometer index: 20
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(f) Inference method: GNA, model: 2-wave,
estimated R, interferometer index: 150

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Wavenumbers [ m-1]

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 In
te

rf
er

og
ra

m

Interferogram Fitting - Inteferometer Index: 20

Reference
Est. Method: ES, Model:  Waves

(g) Inference method: GNA, model: ∞-wave,
estimated R, interferometer index: 20
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(h) Inference method: ES, model: ∞-wave,
estimated R, interferometer index: 150

Fig. 6.19. Comparison between the observed interferogram (in blue) and its parametric
reconstruction (in red) with various configurations for the PROTO-1 prototype.
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(b) Inference method: GNA, model: 2-wave,
estimated R, interferometer index: 70
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(c) Inference method: GNA, model: 2-wave,
fixed R, interferometer index: 10
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(d) Inference method: GNA, model: ∞-wave
fixed R, interferometer index: 70
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(e) Inference method: GNA, model: 2-wave,
estimated R, interferometer index: 10
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Fig. 6.20. Comparison between the observed interferogram (in blue) and its parametric
reconstruction (in red) with various configurations for the PROTO-3.
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Table 6.8. Results for the model characterization of the PROTO-1. The cardinality of the
sample space for methods operating in a discretized space is [10000, 100, 10000]
and the tolerance for GNA is set to 10−15. Best results are in bold and second
best are underlined.

Method Model RMSE× 10−1 AFN MAUE [µm]

Es
ti

m
at

ed
R

ML 2 0.2845± 0.1211 4.210± 1.657 0.3496± 0.2309
ML ∞ 0.2489± 0.1080 3.848± 1.621 0.3496± 0.2309
ES 2 0.3397± 0.1653 4.534± 1.370 0.3714± 0.2596
ES 3 0.2953± 0.1412 4.152± 1.352 0.3701± 0.2637
ES ∞ 0.2906± 0.1368 4.133± 1.345 0.3683± 0.2629

GNA 2 0.2833± 0.1202 4.194± 1.671 0.3499± 0.2323
GNA ∞ 0.2438± 0.1048 3.776± 1.747 0.3511± 0.2355

Fi
xe

d
R

ML 2 0.3564± 0.1532 6.092± 5.320 0.3496± 0.2309
ML ∞ 0.3268± 0.1394 5.748± 5.212 0.3496± 0.2309
ES 2 0.3842± 0.1745 6.333± 5.576 0.3725± 0.2592
ES 3 0.3571± 0.1697 6.011± 5.428 0.3758± 0.2697
ES ∞ 0.3567± 0.1705 6.007± 5.426 0.3709± 0.2645

GNA 2 0.3537± 0.1517 6.018± 5.163 0.3500± 0.2320
GNA ∞ 0.3236± 0.1376 5.665± 5.062 0.3508± 0.2329

Table 6.9. Results for the model characterization of the PROTO-2. The cardinality of the
sample space for methods operating in a discretized space is [2500, 100, 2500]
and the tolerance for GNA is set to 10−15. Best results are in bold and second
best are underlined.

Method Model RMSE AFN MAUE [µm]

Es
ti

m
at

ed
R

ML 2 0.8879± 0.7539 258.706± 284.550 0.4758± 0.3327
ML ∞ 0.8892± 0.7649 255.162± 281.721 0.4758± 0.3327
ES 2 0.9285± 0.7837 259.462± 278.893 2.2738± 7.7980
ES 3 0.9286± 0.8115 259.260± 279.750 2.3636± 7.9696
ES ∞ 0.9523± 0.9092 261.687± 277.691 2.7474± 8.5237

GNA 2 0.8872± 0.7537 258.528± 284.455 0.4747± 0.3312
GNA ∞ 0.8804± 0.7539 256.886± 285.042 0.4750± 0.3305

Fi
xe

d
R

ML 2 0.9293± 0.7688 282.694± 300.610 0.4758± 0.3327
ML ∞ 0.9252± 0.7684 281.521± 300.362 0.4758± 0.3327
ES 2 0.9382± 0.7749 284.017± 301.077 2.2729± 7.7984
ES 3 0.9341± 0.7752 282.959± 301.001 2.6235± 8.3448
ES ∞ 0.9344± 0.7750 282.942± 301.041 2.6237± 8.3450

GNA 2 0.9277± 0.7683 281.977± 299.885 0.4746± 0.3311
GNA ∞ 0.9233± 0.7679 280.719± 299.618 0.4746± 0.3304
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Table 6.10. Results for the model characterization of the PROTO-3. The cardinality of the
sample space for methods operating in a discretized space is [10000, 100, 10000]
and the tolerance for GNA is set to 10−15. Best results are in bold and second
best are underlined.

Method Model RMSE× 10−1 AFN MAUE [µm]

Es
ti

m
at

ed
R

ML 2 0.1507± 0.0378 0.6640± 0.4765 0.6016± 0.3739
ML ∞ 0.1458± 0.0396 0.6342± 0.4690 0.6016± 0.3739
ES 2 0.2222± 0.0861 0.8693± 0.5052 0.8299± 0.7679
ES 3 0.2115± 0.1065 0.8102± 0.4389 0.8110± 0.6213
ES ∞ 0.2088± 0.1036 0.8065± 0.4403 0.7785± 0.5817

GNA 2 0.1449± 0.0404 0.6160± 0.4329 0.6620± 0.5004
GNA ∞ 0.1394± 0.0418 0.5902± 0.4096 0.6421± 0.4646

Fi
xe

d
R

ML 2 0.1526± 0.0371 0.6729± 0.4824 0.6016± 0.3739
ML ∞ 0.1478± 0.0390 0.6439± 0.4723 0.6016± 0.3739
ES 2 0.1979± 0.0732 0.8743± 0.6010 0.8307± 0.7345
ES 3 0.1925± 0.0677 0.8297± 0.5718 0.7704± 0.5386
ES ∞ 0.1918± 0.0686 0.8250± 0.5660 0.7680± 0.5423

GNA 2 0.1488± 0.0381 0.6581± 0.4587 0.6435± 0.4387
GNA ∞ 0.1437± 0.0390 0.6275± 0.4326 0.6313± 0.4397
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Simulated dataset

In this section the same experiments are carried out over a set of simulated acquisi-
tions, generated with our analytical model both under ideal conditions, which we
denote as baseline experiment, and with some elements of nonideality, to assess
the validity of the proposed algorithms in different testbeds.

In the baseline experiment, the matrix of acquisitions Y is assumed to be generated
as a matrix multiplication AX, such that:

• A is a matrix obtained by sampling an ∞-wave model analytical function,
whose parameters are chosen to match the nominal ones of the PROTO-1 from
Table 6.2. Specifically:

– the nominal OPDs increase with a step of 200 nm from a minimum value
of 1000 nm;

– the reflectivity is set to 0.13;
– the phase shift is set to zero;
– the system gain is set to 1;

• X ∈ R101×101 is made up of 101 perfectly impulsive spectra, whose central
wavenumbers are evenly spaced over the range [1000, 2000] mm−1.

The following nonidealities are considered as variations on the baseline experi-
ment:

• Noisy acquisition: in which we add additive white Gaussian noise (AWGN)
to each element of the acquisition Y, such that the SNR is equal to 20 dB;

• Non-impulsive inputs: For which the input is a matrix X ∈ R10001×101, for
which each input is a Gaussian curve with STD of 5 mm−1 (the resolution of
the spectra is thus 0.1 mm−1);

• Uncertain OPDs: where the nominal OPDs are perturbed by adding a zero
mean additive noise with STD of 20 nm.

The STD of the Gaussian is chosen to be below 10 mm−1, as the Gaussian can be
seen as a low pass operation in cascade of the impulsive input. In fact, to be able to
resolve a maximum OPD δ[max] = 47 nm, the Shannon-Nyquist theorem requires an
STD not greater than 1/(2δmax) ≈ 10 µm−1.

For all combinations, the complete set of parameters (OPD, reflectivity, phase shift
and gain) was inferred with the same methods investigated over real datasets, and
validated graphically in Fig. 6.21 and quantitatively in Table 6.11. A quick analysis
of the obtained results shows that the GNA method consistently outperforms the
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other approaches, especially when there is a match between the simulation and the
reconstruction models. In the case of noiseless acquisitions and impulsive inputs, the
spectra are perfectly reconstructed, regardless of the value of the nominal OPDs.

The GNA method shows impressive results even when the input spectra are not im-
pulsive and the acquisitions are noisy, as the OPD are consistently inferred accurately.
As opposite to the previous tests on real data, we have here perfect knowledge of
the reference OPD and the results justify the advantage of exploring continuous
parameters’ spaces.
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Fig. 6.21. Comparison between the simulated interferogram (in blue) and its parametric
reconstruction with various methods. Each row is relative to a specific configu-
ration. The simulation assumes an ideally constructed transfer matrix with the
nominal parameters of PROTO-1, with a bias on the nominal OPD of 1 µm.
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Table 6.11. Quantitative results for the model characterization for a set of 101 simulated
impulsive acquisitions with different parameters indicated in the sideline. The
cardinality of the search space is set as [1001, 101, 1000] and the tolerance for
the GNA method is 10−15. Groups separated by double horizontal lines have a
different reference. Best results are in bold, second best ones are underlined.

Mthd Mdl RMSE× 10−3 AFN× 10−1 MAE× 10−1 [µm]
Ideal ∞ 0 0 0

Im
pu

ls
e

sp
ec

tr
um

G
au

ss
ia

n
ST

D
:0

m
m
−

1

O
PD

ST
D

:0
nm SN

R
:∞

dB

ML 2 0.6607± 0.1276 0.9030± 0.8060 0.1666± 0.1169
ML 3 0.0883± 0.0952 0.1158± 0.0492 0.1666± 0.1169
ML ∞ 0.0790± 0.0925 0.1074± 0.0506 0.1666± 0.1169
ES 2 0.7757± 0.6540 1.0215± 0.8057 0.2020± 0.2770
ES 3 0.1411± 0.4829 0.1707± 0.0763 0.1806± 0.2488
ES ∞ 0.1328± 0.4860 0.1598± 0.0772 0.1828± 0.2518

GNA 2 0.5970± 0.0755 0.8478± 0.8146 0.0314± 0.1372
GNA ∞ 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0001

SN
R

:2
0

dB

ML 2 1.0391± 0.3287 1.2241± 0.7440 0.2768± 0.2036
ML 3 0.5116± 0.3904 0.5583± 0.1243 0.2768± 0.2036
ML ∞ 0.5045± 0.3944 0.5589± 0.1239 0.2768± 0.2036
ES 2 3.6414± 5.7534 4.2748± 0.7594 1.0721± 1.4333
ES 3 3.0694± 5.3210 3.7845± 1.0798 1.0476± 1.2776
ES ∞ 3.3082± 5.8621 4.0732± 1.0018 1.0796± 1.3566

GNA 2 0.9957± 0.2847 1.1992± 0.7537 0.2473± 0.2174
GNA ∞ 0.4064± 0.2782 0.4338± 0.1189 0.2260± 0.1796

O
PD

ST
D

:2
0

nm
SN

R
:∞

dB

ML 2 0.6620± 0.1398 0.1614± 0.1255 0.1614± 0.1255
ML 3 0.0889± 0.1021 0.1614± 0.1255 0.1614± 0.1255
ML ∞ 0.0794± 0.0994 0.0961± 0.0278 0.1614± 0.1255
ES 2 0.8410± 0.8901 0.2220± 0.3563 0.2222± 0.3564
ES 3 0.1422± 0.4345 0.1836± 0.2454 0.1839± 0.2477
ES ∞ 0.1268± 0.4244 0.1538± 0.0468 0.1823± 0.2419

GNA 2 0.5962± 0.0786 0.0360± 0.1364 0.0322± 0.1378
GNA ∞ 0.0000± 0.0000 0.0000± 0.0000 0.0000± 0.0001

Im
pu

ls
e

sp
ec

tr
um

G
au

ss
ia

n
ST

D
:5

m
m
−

1

O
PD

ST
D

:2
0

nm SN
R

:∞
dB

ML 2 0.2170± 0.2801 0.2405± 0.1798 0.1607± 0.1250
ML 3 0.0682± 0.0939 0.0793± 0.0337 0.1607± 0.1250
ML ∞ 0.0676± 0.0888 0.0801± 0.0354 0.1607± 0.1250
ES 2 0.2498± 0.2993 0.2640± 0.1650 0.1933± 0.2513
ES 3 0.0783± 0.1888 0.0855± 0.0231 0.1647± 0.1964
ES ∞ 0.0779± 0.1897 0.0863± 0.0249 0.1644± 0.1963

GNA 2 0.1688± 0.2005 0.1972± 0.1737 0.0210± 0.1331
GNA ∞ 0.0180± 0.0132 0.0230± 0.0184 0.0065± 0.0167

SN
R

:2
0

dB

ML 2 0.6453± 0.4249 0.6542± 0.1938 0.3923± 0.3138
ML 3 0.5193± 0.3553 0.5604± 0.1204 0.3923± 0.3138
ML ∞ 0.5193± 0.3551 0.5632± 0.1210 0.3923± 0.3138
ES 2 3.2669± 4.7574 3.6522± 0.6656 2.7486± 17.2989
ES 3 3.2256± 4.3751 3.8310± 0.7686 2.7697± 17.2658
ES ∞ 3.2445± 4.3662 3.8557± 0.6673 2.8022± 17.2696

GNA 2 0.5948± 0.3618 0.6046± 0.1904 0.3609± 0.3189
GNA ∞ 0.4466± 0.3091 0.4725± 0.1205 0.3570± 0.3063
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6.5 Inversion of interferograms

6.5.1 Problem statement

For the devices based on the ImSPOC concept, the inversion problem defines the
series of procedures aimed at recovering the incident spectral radiance, given the
measured intensity values associated with the matrix of interferometers.

From the previous analysis, the acquisition is defined as a datacube of co-registered
subimages Y ∈ RNk×Na×Ni , so that the generic element ykmi is the m acquisition
due to the k-th interferometer and associated with the solid angle Ωi.

With this description, the acquisition is then modeled as:

Y::i = A::iX::i + E::i , (6.5.1)

where E::i ∈ RNk is once again assumed to be realization of AWGN, with the same
caveats of Section 6.4.1 and A::i is the calibrated matrix that results from the model
characterization (Section 6.4). This is an ill-conditioned problem, which we aim to
address with the methods described in the following section, in order to recover the
reconstructed product X̂::i .

6.5.2 Inversion protocols

Three different approaches are investigated for the resolution of the inversion
problem (6.5.1) in the following section.

We employ in this context three different approaches:

• an inversion in the Fourier domain;

• a PMD for the inversion of the direct model;

• a regularization with a LASSO framework.

They are roughly ordered in increasing order of computational complexity, and in
decreasing order of versatility.
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Fourier transform based methods

As the ImSPOC device can be seen as a particular instance of a FTS, it is pedagogical
to describe the envisioned inversion method that guides the design of the device,
based on the description of the interferograms in the Fourier domain. The main
drawback of such theoretical technique is that its scope is limited to a very restrictive
set of assumptions, specifically:

• the transfer matrix A::i is perfectly described as samples of a 2-wave model
with zero phase shift;

• the OPDs associated with said matrix are described by a regularly spaced
arithmetic sequence of increasing values starting from zero;

• the reflectivity and gain parameter, denoted with Ri and T 2
i respectively, are

equal for every interferometer and are constant in the whole wavelength range
of operation of the device;

• the wavenumber spectrum of the incident radiance is strictly limited to a
baseband interval [0, Bσ].

According to the analysis of Section 5.5.8, the condition for an alias-free reconstruc-
tion of a spectrum with bandwidth Bσ is ∆δi ≤ 1/(2Bσ). For the sake of exposition,
we target a spectrum reconstruction over Nb = Nk samples, which is the maximum
spectral resolution allowed by the Nyquist-Shannon theorem. In summary, the set of
conditions is equivalent to having coefficients akli of the transfer matrix A in the
form:

akli = T 2
i

(
1 +R2

i + 2Ri cos(2πσlδki)
)

(6.5.2a)

δki = (k − 1)∆δi = (k − 1) 1
2Bσ

(6.5.2b)

σl = l − 1
Nk − 1Bσ (6.5.2c)

which yields the following deterministic model for the acquisition:

ykmi =
Nk∑

l=1
aklixlmi (6.5.3a)

= T 2
i

(
1 +R2

i

)
x:mi + 2T 2

i Ri
Nk∑

k=1
cos
(

π

Nk − 1(k − 1)(l − 1)
)
xlmi . (6.5.3b)

With some algebraic modification, eq. (6.5.3b) can be rewritten in matrix form as:

ỹ:mi = Wx̃:mi . (6.5.4)
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The coefficients of the matrices ỹ:mi = {ỹkmi}k∈[1,... ,Nk], W = {wkl} l∈[1,... ,Nb]
k∈[1,... ,Nk]

, and

x̃:mi = {x̃lmi}k∈[1,... ,Nk] are described by the equations:

ỹkmi :=
ykmi − T 2

i

(
1 +R2

i

)
x:mi

2T 2
i Ri

√
1 + Il,{1,Nk}

√
Nk − 1

2 , (6.5.5a)

x̃lmi := xlmi

√
1 + Ik,{1,Nk} , (6.5.5b)

wkl :=
√

2
Nk − 1

√
1(

1 + Il,{1,Nk}
) (

1 + Ik,{1,Nk}
) cos

(
π

Nk − 1(k − 1)(l − 1)
)
,

(6.5.5c)

where Ik,{1,Nk} is a Kronecker delta, defined as:

Ik,{1,Nk} =
{

1 if k = 1 or k = Nk ,

0 otherwise .

(6.5.6a)

(6.5.6b)

The matrix W may be easily recognized as a DCT-I matrix, an orthogonal transfor-
mation (i.e. WTW is an identity matrix), which is widely used in signal processing
and can be implemented very efficiently by the fast Fourier transform (FFT) [3, 198].
The orthogonality of W allows to estimate ̂̃x:mi in eq. (6.5.4) through the matrix
multiplication:

̂̃x:mi = WTỹ:mi . (6.5.7)

The vector x:mi is in turn obtained after scaling the first and last element of ̂̃x:mi by a
factor

√
2. The formula of eq. (6.5.7) has the advantage to avoid any form of matrix

inversion, which generally leads to relatively stable results [123]. According to the
bandpass sampling theorem, briefly introduced in Section 5.5.8, the constraint on
the instrument spectral range of operation and on the OPD thickness can be partially
relaxed. In fact, if the device wavenumber range is in the form [qBσ, (q+ 1)Bσ] with
q ∈ Z and we accordingly shift the reconstruction samples {σl}l∈[1,... ,Nk] by qBσ
from (6.5.2c), the cosine term in akli is equal to:

cos (2π(σl + qBσ)δki) = (−1)q(l−1) cos(2πσlδki) . (6.5.8)

Perfect reconstruction can thus still be obtained from the inversion procedure (6.5.7),
with no modification other than by swapping the sign of the even position samples
in ỹ:mi if q is odd. A similar remark can be found if the set of OPDs {δik}k∈[1,... ,Nk]

are shifted by q/(2Bσ) for which the same cosine term becomes:

cos
(

2πσl
(
δki + q

2Bσ

))
= (−1)q(k−1) cos(2πσlδik) , (6.5.9)
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where the adjustments apply here to ̂̃x:mi instead.

Penalized matrix decomposition based methods

In practical situations, it is necessary to develop quick inversion procedures that are
able to invert any known stochastic process in the form (6.5.1), regardless of the
form of the transfer matrix A. I.e., its expression can be obtained by either a full
characterization procedure aimed at evaluating each coefficient of A or through a
Bayesian inference of its parameters, as described in Section 6.4.

The ML solution X̂ ∈ RN ′b×Na of the stochastic process (6.5.1), if the noise is
assumed to be AWGN, is given by:

X̂ = arg min
X∈RNb×Na

1
2‖AX−Y‖2F , (6.5.10)

where we have dropped the dependence from the third dimension, as we assume
to work at a fixed incident solid angle Ωi. Its closed form solution is X̂ = A†Y
makes use of the Moore-Penrose pseudo-inverse A† = (ATA)−1AT, an operation
that can be implemented efficiently through singular value decomposition (SVD). In
its economic form, the decomposition of A is given by:

A = VΣUT , (6.5.11)

where V ∈ RNk×Nr and U ∈ RNb×Nr are unitary matrices (i.e. VTV and UTU are
identity matrices) and Σ ∈ RNr×Nr is a diagonal matrix, whose elements on the
main diagonal {ζ̌r}r∈[1,... ,Nr] are defined as singular values of A and assumed to be
ordered in decreasing order. Nr denotes the rank of A, which, in the vast majority
of the practical applications, is Nr = min(Nk, Nb). The straightforward inversion
method, denoted from now on as pseudo-inversion (PINV), consists in computing:

A† = UΣ−1VT , (6.5.12)

where Σ−1 is a diagonal matrix whose elements on the main diagonal are {1/ζ̌r}r∈[1,... ,Nr].
As formulated, the problem is heavily ill-conditioned, so the PINV solution is accurate
only in a completely noise-free environment, or in other words if we consider x:m

and y:m as purely mathematical entities obtained via matrix multiplication, with no
errors introduced either by the system or by the finite precision of the calculator.
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The penalized matrix decomposition (PMD) methods operate with modified version
of the matrix Σ−1, whose singular values {ζ̌}r∈[1,... ,Nr] have a well-defined upper
bound. Two such methods are the most widespread:

• Truncated singular value decomposition (TSVD): In the TSVD approach [114],
this modified matrix is obtained through a low rank decomposition of A†,
which preserves the Ne smallest singular values and equates the rest to zero.
In other words:

ζ̌ ′r =
{

1/ζ̌r if r ∈ [1, ... , Ne] ,

0 otherwise .

(6.5.13a)

(6.5.13b)

• Ridge regression (RR): For the RR method [92], the objective is to penalize
each singular value with a factor λ̌, so that:

ζ̌ ′r = ζ̌r

ζ̌2
r + λ̌2

r ∈ [1, ... , Nr] . (6.5.14)

This can be shown to be equivalent to the following estimation:

x̂TIK = arg min
x∈RNb

1
2 ‖Ax− y‖22 + λ̌2 ‖x‖2 . (6.5.15)

The optimal choice of the parameters Ne for the TSVD or λ̌ for RR is a critical
open problem in the literature. Some techniques for its estimation involve the
generalized cross validation (GCV) [93] and the L-curve criterion [113] (which
were described in Section 2.2.1).

LASSO regularizer methods

While the methods proposed in the previous section have the advantage to be
evaluated with a one-shot matrix multiplication, it is sometimes possible to sacrifice
some computational time for a better accuracy of the results. This section focuses
on iterative algorithms aimed at the resolution of problems with the framework
known in the literature as LASSO [218]. In this formalism, the estimation x̂:m of the
spectrum of the m-th acquisition is given by:

x̂:m = arg min
x∈RNb

1
2 ‖Ax:m − y:m‖22 + λ̌‖L(x:m)‖1 . (6.5.16)
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In the expression above, the regularizer is given by the minimization of an `1 norm,
which in turn tends to minimize the amount of the non-zero coefficients of the
estimation L(x̂:m) expressed in the transformed domain identified by a certain
linear operator L. The aforementioned transformation should be ideally realized
to highlight a particular effect of sparsity of the spectrum, so that one can classify
a particular approach based on the choice of L. Three possible choices will be
investigated here:

• Discrete cosine transform (DCT): The operator assumes in this case the form
of a multiplication by an orthogonal matrix, e.g. whose coefficients are in
the form (6.5.5c). If the spectrum contains a relatively limited amount of
fast oscillations, the coefficients associated with high frequencies tend to be
smaller, justifying the sparsity.

• Discrete wavelet transform (DWT): The implementation of L consists in
successive decomposition of the input in its low-pass and high-pass component
through quadrature mirror filter (QMF) (a cascade of fully reversible filtering
and decimation). The choice of the filters determines the nature of the DWT.
This work assumes 3 stages of decompositions with Daubechies 8 analysis
filters. The sparsity is here imposed as the amplitude of the coefficients
associated with low-pass components is typically much higher than their high-
pass counterparts.

• Total variation (TV): It imposes a minimization of the difference across
consecutive samples in the spectrum. The operation L(x) is defined as
{xl+1 − xl}l∈[1,... ,Nb−1].

To avoid ambiguities, from now on we will label these three techniques as LDCT,
LDWT and LTV, respectively.

Many methods are available to find a solution for the LASSO regression, but the
choice here is to employ proximal methods [181]. In particular, it is possible to
define a proximal operator for the Fenchel conjugate [20] g? of the `1 norm operator
g(x) = ‖x‖1 as a column vector of the same size of x, whose l-th element is obtained
via the following soft thresholding:

proxλ̌g?(xl) =





−λ̌ if xl < −λ̌ ,

xl if |xl| < λ̌ ,

λ̌ if xl > λ̌ .

(6.5.17)
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This is the sufficient condition to employ a solver such as Loris-Verhoeven [148],
described in Section 2.3.2. By denoting with x(q) the estimation of x:m at the q-th
iteration (and an associated dual variable u(q)), the updates are performed with the
iteration:





u(q+ 1
2 ) = proxλ̌g?

(
u(q) + σ̌ L

((
x(q))− τ̌

(
AT (Ax(q) − y

)
+ L∗

(
u(q))))) ,

x(q+1) = x(q) − ρ̌τ̌
(
AT (Ax(q) − y

)
+ L∗

(
u(q+ 1

2 )
))

,

u(q+1) = u(q) + ρ̌
(
u(q+ 1

2 ) − u(q)
)
,

(6.5.18)
where L∗ is the adjoint operator of L, σ̌ and τ̌ are convergence parameters such
that σ̌τ̌ ≤ 1/‖L ‖op and 1 ≤ ρ̌ < 2 is the over-relaxation parameter. The adjoint
operator for the LDCT and LDWT are equivalent with the inverse discrete cosine
transform (IDCT) and inverse discrete wavelet transform (IDWT), respectively,
and their operator norm is ‖L ‖op = 1, as both transformations are orthogonal.
For the LTV, the adjoint operator L∗(u) is {ul−1 − ul}l∈[1,... ,Nb] (assuming u0 = 0)
and its operator norm is ‖L ‖op =

√
8. An implementation-friendly summary of

the procedure, including a suggested initialization and common choices for the
convergence parameters, is proposed in Algorithm 8.
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Algorithm 8: Loris-Verhoeven algorithm for the solution of a LASSO problem.
Result:

• Spectrum Estimation: x̂:m ∈ RN ′b

Input:

• Direct model of the device: A ∈ RNk×N ′b
• Linear operator: L (with adjoint L∗ and operator norm ‖L ‖op)
• m-th acquisitions: y:m ∈ RNk
• Maximum number of iterations: Nq

Procedure:

1 Define the function: proxλ̌g?(x) = min
(

max
(
x,−λ̌

)
, λ̌
)

2 Define the convergence parameters τ̌ = 0.99
‖L ‖op and σ̌ = 1

‖L ‖op
3 Define the over-relaxation parameter: ρ̌ = 1.9
4 Initialize x(0) = ATy:m, `(0) = x(0), and u(0) = L

(
x(0))

5 for q = 0, ..., Nq − 1 do
6 e(q) = AT (Ax(q) − y:m

)

7 u(i+ 1
2 ) = proxλ̌g∗

(
u(q) + σ̌ L

(
x(q) − τ̌

(
e(q) + `(q))))

8 `(q+ 1
2 ) = L∗

(
u(q+ 1

2 )
)

9 x(q+1) = x(q) − ρ̌τ̌
(
e(q) + `(q+ 1

2 )
)

10 `(q+1) = u(q) + ρ̌
(
`(q+ 1

2 ) − `(q)
)

11 u(q+1) = u(q) + ρ̌
(
u(q+ 1

2 ) − u(q)
)

12 end
13 x̂:m ← x(Nq)
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6.5.3 Experimental results

Experimental setup

The experimental setup for the validation of the inversion protocol is made up of
the following phases 5:

• Input pre-processing: The first operations aim at generating an ideally sam-
pled set of Na high resolution spectra arranged in a matrix X ∈ RN ′b×Na ,
with an amount of samples N ′b sufficiently high to simulate a continuous
wavenumber range;

• Bandpass filtering: the input is filtered to simulate the limited bandwidth of
the instrument;

• Simulated acquisition: we simulate an ideal transfer function A′ ∈ RNk×N ′b
whose coefficients are obtained as sampling of an∞-wave model; the simu-
lated acquisition is then obtained as a matrix multiplication Y = AX;

• Noise perturbation: if indicated, AWGN is added to the acquisition, targeting
a certain SNR;

• Model description: Our knowledge of the system is supposed to be model
with a transfer matrix A ∈ RNk×Nb , which has in general less coefficients than
A′. These coefficients are also obtained by sampling the interferometer optical
transfer models of table 6.5, but with generally different parameters with
respect to A′;

• Inversion model testing: a selection of inversion methods are tested to obtain
a matrix of reconstructed spectra X̂ ∈ RNb×Na , at a lower spectral resolution,
such that Nb ≤ N ′b;

• Validation: a validation is performed comparing X̂ against a spectrally de-
graded version X̃↓ ∈ RNb×Na of the input spectra, which allows for dimen-
sional consistency; this is obtained by appropriately downsampling X (low
pass filtering with a cutoff frequency of Nb/(2N ′b) and decimating with a step
of N ′b/Nb). In our experiment, the mean and STD the reconstructed spectra
are equalized with respect to the reference before the comparison, as we are
just interested in the shape and not the absolute intensity of the reconstructed
spectra.

5In this experimental section, the operations of filtering are performed through the convolution with
a 23-rd order Butterworth digital filter
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Their m-th columns of X and X̃↓ are compared by evaluating the RMSE and the
spectral angle mapper (SAM), defined as:

SAMm = arccos




〈
x̂:m, x̃↓:m

〉

‖x̂:m‖2
∥∥∥x̃↓:m

∥∥∥
2


 , (6.5.19)

which are then averaged across all available spectra to provide a global index.

Baseline test

The first part of the experiment involves describing the system with a given standard
set of parameter and we suppose our modeled knowledge of the optical device
matches perfectly the one of the system. This test is defined here as baseline, to
assess the performances of the methods in close to ideal conditions.

• Input pre-processing: the input is obtained from a set of Na = 22 solar
spectra measured at the ground level at different times of the day. The intensity
samples were first transformed from the wavelength to the wavenumber
domain and interpolated with a cubic spline kernel over a regularly spaced
interval. The obtained input X has a spatial resolution of 1500 samples/um−1

(i.e. 1501 samples in the range [1, 2] um−1, if both ends are included). Some
more advanced domain transformations could have been considered, but it was
decided for this method as a good compromise between common practice [58]
and ease of reproducibility.

• Bandpass filtering: the input is filtered to limit the available samples to the
range [1, 2] um−1;

• Simulated acquisition: the transfer matrix is chosen to simulate the parame-
ters of the PROTO-1 prototype. Specifically, we choose a set of Nk = 215 OPDs
increasing from zero with a step of 200 nm. The reflectivity is set to R = 0.13,
the phase shift to zero and the system gain to 1;

• Noise simulation: no noise is added to the simulation (this is equivalent to
choosing an SNR of∞);

• Model description: We assume here that the parameters of the matrix A fully
match the ones of the simulation description of the optical system. We also
assume that the reconstruction samples are equal to the amount of interferom-
eters (Nb = Nk = 215);
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• Reconstruction test: From the SVD class, we test the RR, and TSVD, while
from the LASSO framework, we LASSO-DCT (LDCT), LASSO-DWT (LDWT),
and LASSO-TV (LTV). We also include the previously unmentioned TSVDL
and RRL, which are simple variation of the TSVD and RR, but an automatic
determination of their characteristic penalization parameters with the L-curve
method [113]. For the non-automatic parameter determination setups, the
best regularization term λ̌ for the LASSO methods and for the RR, as well as
the amount of singular value (s.v.) for the TSVD have been decided in terms
of the best measured RMSE in the validation. For the LASSO based methods,
we experienced better performances by normalizing each column of Y and
A in terms of their mean; this pre-processing phase is assumed in every test
where it can apply.

In this experiment, the solar spectra were chosen as ideal inputs as they are a typical
product to reconstruct for ImSPOC acquisitions. In the envisioned application setup,
the user can analyze the absorption ranges in the reconstructed spectra to detect the
concentration of a given gas component.

A first preliminary test, intended as a sanity check, is performed by matching the
amount of simulation and reconstruction samples (N ′b = Nb = 215). It can be
easily verified that in ideal conditions it is possible to obtain a perfect reconstruction
with a PINV, as shown in Fig. 6.22. All PMD-based and variational techniques
were tested but not visualized as the most appropriate choice of their respective
parameters reduces exactly to the PINV technique. The analysis can also provide
a quick assessment of the accuracy of the design principles of the FTS through
inversion technique described in Section 6.5.2, labeled as DCT. This is unfortunately
the only setup that allows this analysis, as the DCT does not allow for particular
versatility.

The results of the true baseline test are shown in Table 6.12 for the quantitative
analysis and in Fig. 6.23 for the visual comparison.

The analysis of the first group of results of Table 6.12 shows that the performances
of PINV method already degrade critically in the baseline simulation. As the recon-
structed spectra barely resembles the reference, it was decided not to show the PINV
results in any visual comparison, nor in the following section.

The LDCT outperforms all of its competitors; this is a reasonable result, since solar
spectra are likely to show sparsity in the DCT domain, as a cosine oscillation is a
reasonable first order approximation of its characteristic curve. Some other methods,
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(a) 16-th spectrum
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(b) 22-th spectrum

Fig. 6.22. Reconstruction of 2 sample input spectrum with perfect match between the
simulation and the reconstruction model. Black dots mark reconstructed points
with PINV, which perfectly follow the blue reference (within machine rounding
errors).

such LDWT and those based on the PMD, present unwanted oscillations, especially
for low intensities.
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Fig. 6.23. Visual comparison of the inversion of simulated interferograms, for the baseline
setup described in Section 6.5.3.
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Table 6.12. Reconstruction results of the 22 simulated acquisitions with input solar spectra,
for the baseline setup (Section 6.4.4) and the model mismatches described in
the sideline bars. Best results are in bold, second best ones are underlined.

Method Parameter RMSE× 10−3 SAM
Ideal 0 0

B
as

el
in

e
PINV 37.6044± 18.9494 26.707± 0.503
DCT 0.8817± 0.5185 4.022± 0.193
RR λ̌ = 1.58E + 00 0.5759± 0.3740 3.223± 0.210
RRL 0.5906± 0.3965 3.258± 0.228

TSVD s.v.= 95 0.6155± 0.4200 3.319± 0.246
TSVDL 0.7723± 0.4066 3.794± 0.129
LDCT λ̌ = 1.00E − 02 0.3615± 0.4123 2.370± 0.493
LDWT λ̌ = 1.58E − 02 0.6570± 0.5102 3.374± 0.341
LTV λ̌ = 3.98E − 03 0.6047± 0.3935 3.297± 0.219

Tr
an

sf
er

m
od

el

2-
w

av
e

RR λ̌ = 2.51E + 00 0.5536± 0.3786 3.144± 0.237
TSVD s.v.= 90 0.5187± 0.4155 2.998± 0.329
LDCT λ̌ = 1.00E − 02 0.3698± 0.4068 2.409± 0.482
LDWT λ̌ = 6.31E − 03 0.5611± 0.4706 3.098± 0.369
LTV λ̌ = 2.51E − 03 0.5476± 0.3596 3.130± 0.216

3-
w

av
e

RR λ̌ = 1.58E + 00 0.5749± 0.3757 3.218± 0.213
TSVD s.v.= 95 0.6172± 0.4227 3.323± 0.249
LDCT λ̌ = 1.00E − 02 0.3593± 0.4124 2.360± 0.497
LDWT λ̌ = 1.58E − 02 0.6514± 0.5034 3.362± 0.337
LTV λ̌ = 3.98E − 03 0.6065± 0.3959 3.298± 0.226

O
PD

st
an

da
rd

de
vi

at
io

n 10
nm

RR λ̌ = 1.00E + 00 0.7076± 0.5454 3.511± 0.361
TSVD s.v.= 105 0.7603± 0.5700 3.650± 0.352
LDCT λ̌ = 1.00E − 02 0.6243± 0.6433 3.169± 0.565
LDWT λ̌ = 6.31E − 03 0.8299± 0.7020 3.759± 0.461
LTV λ̌ = 1.00E − 03 0.7128± 0.5441 3.525± 0.363

20
nm

RR λ̌ = 3.98E + 00 1.2906± 0.7069 4.886± 0.172
TSVD s.v.= 95 1.8649± 0.8639 5.945± 0.188
LDCT λ̌ = 2.51E − 02 1.5917± 1.2386 5.244± 0.551
LDWT λ̌ = 2.51E − 03 1.8516± 0.9407 5.888± 0.172
LTV λ̌ = 6.31E − 04 1.8112± 0.8249 5.862± 0.174

30
nm

RR λ̌ = 1.00E + 01 2.2721± 1.6962 6.305± 0.652
TSVD s.v.= 95 4.6225± 2.0674 9.367± 0.184
LDCT λ̌ = 2.51E − 02 4.0214± 2.5657 8.489± 0.555
LDWT λ̌ = 3.98E − 03 4.5066± 2.0480 9.238± 0.161
LTV λ̌ = 1.00E − 03 4.5466± 2.0774 9.274± 0.156

W
av

el
en

gt
h

ra
ng

e

[4
00
,1

00
0]

nm RR λ̌ = 6.31E + 00 1.2320± 0.6602 4.785± 0.162
TSVD s.v.= 85 1.2972± 0.5859 4.970± 0.216
LDCT λ̌ = 2.51E − 02 0.5843± 0.5632 3.084± 0.502
LDWT λ̌ = 6.31E − 02 1.2622± 0.9451 4.709± 0.440
LTV λ̌ = 1.58E − 02 9.9067± 3.4245 14.066± 1.742

[3
80
,1

05
0]

nm RR λ̌ = 6.31E + 00 1.2653± 0.6630 4.859± 0.161
TSVD s.v.= 85 1.3198± 0.5936 5.016± 0.223
LDCT λ̌ = 2.51E − 02 0.6262± 0.5432 3.245± 0.431
LDWT λ̌ = 6.31E − 02 1.2657± 0.9598 4.712± 0.453
LTV λ̌ = 1.58E − 02 10.1759± 3.5561 14.231± 1.650
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Model mismatches

In this section, we investigate the robustness of the inversion framework when facing
specific sources of nonideality, which correspond to mismatches between the real
expression of the transfer matrix and our reconstruction model. To this end, the
parameters of our possible tests are modified from our baseline test setup; these
changes include:

• Bandwidth of the instrument: for which the input spectrum is filtered in a
larger bandwidth than that of the instrument. Compared to the baseline setup
([500, 1000] nm), we also consider wavelength bandwidth ranges of [400, 1000]
and [380, 1050] nm;

• Reconstruction model: where we consider different transfer models for the
construction of the reconstruction transfer matrix A. Other than the baseline
(∞-wave model), we also consider the 2-wave and 3-wave;

• Uncertain knowledge of the OPD: where we suppose that the OPD of the
reconstruction matrix A is known with some uncertainty, which is simulated by
adding a zero mean Gaussian noise to the nominal value of the OPD. Compared
to the baseline setup (perfect knowledge of the OPD), we also consider that
the Gaussian noise perturbs these values with a STD of 10, 20 and 30 nm.

For these tests, the results of the reconstruction are shown in Table 6.12, together
with the baseline results. The experiments show a significant degradation in the
quality of the reconstruction already with mismatches of the order of 20 nm, with the
RR method featuring an outstanding robustness to this class of mismatch (Fig. 6.24c
to 6.24d). A very accurate knowledge of the OPD associated with each interferome-
ter is then crucial for a good reconstruction, justifying the efforts on the research
devoted to an accurate transfer model characterization in Section 6.4. No partic-
ular degradation in quality was shown by employing a 2-wave model (Fig. 6.24a
to 6.24b), which is a reasonable consequence of simulating the response of an
optical instrument with low finesse/low reflectivity. More severe, but still control-
lable, distortions are caused by the wavelength bandwidth mismatch (Fig. 6.24e to
6.24f).

We also repeat the baseline experiment adding a noise contribution to the acquisi-
tions, such that we target a SNR of 40 and 50 dB (the baseline can be considered
with an SNR equal to ∞). Compared to the baseline test, where the number of
reconstruction samples was fixed to Nb = 215, we also test for 151 and 301 samples,
and the quantitative results are show in Table 6.13.
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Fig. 6.25a to 6.25b show that, in noiseless environments, a very accurate recon-
struction is possible even for 301 samples, which is equivalent to a smaller step size
than the limit imposed by the Nyquist-Shannon sampling theorem. The missing
information in the data term is in fact compensated by the prior. The sensitivity
of the device to the noise is however still a relevant issue; the results show that
the algorithms are well performing just for very high SNRs (e.g. equal to 50 dB
in Fig. 6.25c to 6.25d). To deal with this scenario, the regularization term is more
predominant and the performances degrades almost immediately for lower SNR.

The effect of the noise added to interferogram has to be kept under control, as
the relevant information contained within the oscillation around a given mean
value must be extremely accurate. For low finesse devices this oscillation is quite
limited (e.g., Fig. 6.23d), so the interferogram is easily distorted by the uncertainty
introduced by the additive noise.

Is it however worth noting that the low finesse has a complementary beneficial
effect that has been ignored within this simulation framework. As described in
Section 5.4.6, low finesse interferometers allow to collect a larger amount of photons
on the detectors due to their higher throughput, increasing the amount of energy of
the desired signal and in turn the SNR.
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(a) 2-waves model: reconstruction
of the 16-th interferogram
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(b) 2-Wave model: RMSE comparison
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(c) OPD STD 20 nm: reconstruction
of the 16-th interferogram
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(d) OPD STD 20 nm: RMSE comparison
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(e) Instrument range [380, 1050] nm:
reconstruction of the 16-th Interferogram
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(f) Instrument range [380, 1050] nm: RMSE
comparison

Fig. 6.24. Visual comparison results for the inversion procedures described in Section 6.5.3,
in the case of model mismatches.
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(a) SNR∞ dB, Ns = 301: reconstruction
of the 16-th interferogram
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(b) SNR∞ dB, Ns = 301: RMSE comparison

1 1.2 1.4 1.6 1.8 2

Wavenumbers [ m-1]

0

0.1

0.2

0.3

0.4

0.5

0.6

S
pe

ct
ru

m
 N

or
m

al
iz

ed
 In

te
ns

ity

TIK =2.51E+00
TSVD s.v.=90
LDCT =2.51E-02
LDWT =2.51E-02
LTV =2.51E-03
Reference

(c) SNR 50 dB, Ns = 215: reconstruction
of the 16-th interferogram
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(d) SNR 50 dB, Ns = 215: RMSE comparison
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(e) SNR 40 dB, Ns = 101: reconstruction
of the 16-th interferogram
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(f) SNR 40 dB, Ns = 101: RMSE comparison

Fig. 6.25. Visual comparison results of the inversion for noisy interferograms and different
amount Ns of reconstruction samples, with the setup described in Section 6.5.3
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Table 6.13. Validation comparison of SNR for the inversion of 22 simulated interferograms
obtained from solar input spectra. When non specified, the variables are
chosen according to the baseline setup described in Section 6.4.4. The cross-
comparison between setups separated by double horizontal line has to be taken
with caution, as they employ different references. Best results for each category
are in bold, second best ones are underlined.
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6.6 Conclusions and future perspectives

In this chapter, we described the signal processing operations that are required for the
treatment of a raw acquisition with an image spectrometer based on simultaneous
acquisitions with an array of FP interferometers, aimed at the reconstruction of the
input radiance spectra.

The first step includes a co-registration to align each portion of the acquisition
assigned to each element, whose position on the focal plane can be estimated with a
set of region estimation protocols based on mathematical morphology. The image
registration was approached via a point mapping technique assisted by laser spot
acquisitions. The spatial coordinates transformation function was modelled as a
bidimensional polynomial and validated with the SSIM index over real acquisition.
We verified that the quadratic or cubic degrees offer the best accuracy, avoiding
overfitting on the available illuminated spots. The algorithm is also not particularly
computationally intensive and just requires interpolation over regular grids.

The problem of model characterization, aimed at estimating the expression of
the transfer function which characterizes the device in terms of wavelength, was
approached by imposing a physical model based on the energy balance of the incident
and emerging rays under ideal conditions and by estimating its parameters through
Bayesian inference. A variety of different approaches aimed at this estimation were
proposed and tested over both simulated and real data, obtained in heterogeneous
conditions, showing the advantages of employing the Airy’s distribution models for
a more accurate description of the behaviour of the device. If computational speed
is the priority, solving the ML problem provides reasonable performances, which can
be iteratively refined with procedures based on the GNA, if necessity arises.

Finally, some initial consideration aimed at spectrum inversion were provided for
acquisition in a fixed incident direction, providing a basic framework to approach it
systematically; for the inversion of typical spectra, a LASSO based inversion with
DCT regularization seems to provide the most consistent and robust results with
whichever source of mismatch between the acquisition and the reconstruction model,
except for the case of OPD uncertainty, for which a more straightforward Tikhonov
regularization exhibited less overall degradation in the reconstructed spectrum.

This chapter is mostly intended to provide some baseline protocols to provide user-
ready products that can be exploited to recover information on the scene. Possible
evolutions may either involve keeping each processing layer separate or to merge
them to take advantage of the joint optimization. For the first set of techniques,
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which are better suited to be implemented in modular fashion, one desirable goal is
to make the process independent from any laboratory characterization of the device,
e.g. by forcing the registration of the subimages through the detection and matching
of specific characteristic features. Additionally, one could setup possible inversions
with partial or missing knowledge of the transfer function of the device, which could
be characterized dynamically with a black box approach. This procedure may exploit
a mixed approach of data-driven and machine/deep learning [179, 15, 159, 150].

The model to characterize can also be refined quite straightforwardly by introducing
a wavelength dependency on the reflectivity term, as well as considering additional a
priori, e.g. introducing the information that adjacent interferometers in the staircase
design of ImSPOC usually feature close thicknesses. It may also be useful not to be
subject to the liabilities of a faulty optimization of the non-convex objective function
used for the GNA, by relaxing the problem over a convex hull.

The inversion procedure was considered for a fixed direction of incidence, although
much better performances are expected to be achieved if the inversion introduces
a spatial regularization term, e.g. by imposing any form of TV [48, 65] that was
considered in the rest of the thesis.

With regard to merging steps together, a more encompassing framework may em-
ploy a joint optimization of both the coefficients of the transfer matrix and of the
spectrum to reconstruct, with an appropriate procedure of alternating optimiza-
tion, such as alternating least squares (ALS) [45] or majorization-minimization
(MM) [212]. Similarly, the spatial calibration may be considered jointly to the
inversion by introducing a spatial transformation relationship within the functional
to minimize.
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Conclusions 7
7.1 Summary

This thesis presented a series of approaches for the processing of data acquired with
nonconventional optical devices; the investigated prototypes required approaches
based on computational imaging as the desired products and the acquisitions are
in different domains. The problem was addressed with a physical based approach,
where we separated the analysis into a characterization, that defines the model
of the optical transformation performed by the instrument, and an inversion, to
recover the datacube of hyperspectral (HS) images, which describes the spectral
radiance incident to the instrument. The thesis was focused on the data processing
of acquisitions captured by two innovative optical device concepts:

• the multiresolution color filter array acquisition (MRCA), a compressed acquisi-
tion system based on the color filter array (CFA) technology, whose focal plane
array (FPA) is composed by detectors with different characteristic resolution.

• the image spectrometer on chip (ImSPOC), a snapshot spectro-imaging system,
made up of an array of Fabry-Pérot (FP) disposed over a staircase pattern,
overlaid to an imaging system.

The analysis was laid out as follows:

• In Chapter 1, we presented the context of compressed imaging, of HS imaging,
and the envisioned domains of applications;

• In Chapter 2, we provided a review of the inversion techniques based on
proximal operators [181], describing the importance of the regularization
process for an accurate reconstruction of the desired products;

• In Chapter 3, we introduced the problems related to multimodality of the data,
whose main challenges are an accurate registration of data and a fusion of the
information with different characteristics;
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• In Chapter 4, we proposed a model for the optical transformations performed
by the MRCA device, analyzing the performances of a set of inversion algo-
rithms based on a variational approach and proposing some initial designs for
the dispositions of the elements on the FPA;

• In Chapter 5, we introduced the optical concepts necessary for the interfer-
ometry and proposed a model of the acquisitions taken with the ImSPOC
prototype;

• In Chapter 6, we proposed a full pipeline of procedures for the inversion
of ImSPOC acquisitions, which include the stacking and co-registration of
subimages, the calibration of the direct model and the spectrum inversion.

In order to improve the versatility of the proposed approaches, the inversion prob-
lems that were setup in this work were based on the theory of proximal opera-
tors [181]. While the analysis of the speed of convergence was not a focus of this
thesis, the recent results of the over-relaxation of the algorithms [50], allowed to run
the test relatively quickly and the choice of the convergence parameters a relatively
painless process. On the other hand, the choice of the regularization parameter
is strongly reliant on the intensity of the noise and may require an analysis of the
measurement conditions to be set up properly. Some more advanced techniques
of inversion, such as elastic nets [41] and total generalized variation (TGV) [31]
require to set up more than one parameter, which may further complicate the
analysis.

For the MRCA we proposed:

• A mathematical formulation [187] of the optical transformation of the device,
to be exploited for a Bayesian inversion. This framework is versatile for any
composed design of the CFA pattern that makes up the FPA;

• An inversion scheme whose reconstruction scheme based on a collaborative
total variation (CTV) regularization [65, 66]. The scheme is able to deal jointly
with the problem of reconstruction and fusion of the virtual images at different
resolutions;

• A preliminary assessment of the most effective mosaicing patterns for the
distribution of the sensors over the FPA [188], based on non-redundancy
principles [46].

The proposed framework has state-of-the-art performances for periodic HS masks
and the total variation (TV) reconstruction allows for an impressive suppression
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of the artifacts introduced by the mosaicing. As the structure of the data is inter-
nally redundant, the take-home message for the regularization is that, if the mean
square error (MSE) is used as a metric for the data fidelity term, the reconstruction
has to provide some mechanism for noise whitening in the multi-dimensional do-
main spanned by the final product, as the noise is generally distributed unevenly
across different dimensions, while the Bayesian interpretation supposes additive
white Gaussian noise (AWGN). The employment of a nuclear norm is a good ex-
ample of the benefits of this whitening effect both in the spectral and in the spatial
domains [65].

While the proposed approach is applicable to every composed design of the CFA
pattern that makes up the FPA, the performances are not even across all its designs.
We tested that deterministic patterns tend to outperform random distributions, and
the sensors have to be spaced evenly to reach the best performances. An appropriate
ratio of the high resolution image (HRI) and low resolution image (LRI) sensors is
also necessary to reach a good balance between spatial and spectral accuracy of the
reconstructed products.

The effectiveness of the proposed approach is limited in comparison to more special-
ized demosaicing procedures in the case of masks with a dominant band, such as in
the case where we are facing a classical problem of demosaicing of Bayer patterns,
which are already accompanied by extremely specialized high performances recon-
struction methods [166]. For this cases, we experienced a limited effectiveness of the
inversion procedure along curve borders, which is a limitation of the demosaicing
part of the algorithm; to face this issue we propose instead to use a cascade of
classical methods for the inversion, while limiting our framework to the fusion of the
obtained products. Additionally, the compression ratio obtained of MRCA products
is not comparable to classic software compression approaches, which suggests that
proposed physical structure still has margins of improvement to further reduce the
redundancy of the acquisitions.

For the ImSPOC concept, we proposed:

• A classical framework of operations for the alignment of subimages, based on
a polynomial geometry transformation function;

• Three approaches for the spectral calibration of the interferometers which
compose the staircase pattern of the device, based on the estimations of the
parameters of an Airy’s distribution [59, 190];

• A framework for the inversion of a single interferogram, employing simple
regularization schemes, with an analysis of the mismatches between our
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knowledge of the parameters of the model and the real ones which characterize
the device;

The procedure of co-registration showed that the degree of the polynomial of the
analytical function that describes the geometry transformation must be chosen as a
good compromise between flexibility in shifting the structures of the subimages, and
avoiding overfitting of the training data. While the procedure gave very accurate
results, a possible limitation of this approach is that it requires a complicated ad-hoc
calibration procedure which allows to map points across different subimages, as we
did not provide a procedure to match features in the case of a generic acquisition.

For the spectral calibration, the procedure can be used both to highlight faults in
the manufacture of the device, such as interferometer thicknesses that do not match
nominal values and to refine the direct model to be used for the inversion. In
our analysis, we showed the advantages of employing a more accurate description
of the optical transformation model, as the Airy distribution is a more accurate
representation of the interferences of the rays within the FP etalons. Additionally,
technique based on nonlinear regression allow to explore a continuous space for the
parameters to infer, which yields better performances in the reconstruction. However,
some nonidealities are not taken into consideration in our considered approach,
which may be limiting for the accuracy of the inversion; nonlinear regression is also
reliant on a proper initialization, which may cause the solution not to converge.

The proposed inversion methods were chosen as a compromise between accuracy
of the reconstructed products and computational speed, and the best results were
obtained with sparse-inducing discrete cosine transform (DCT) regularizations. For
this method, the memory storage requirement, even for iterative-based approaches,
is relatively limited, as the current estimation is overwritten at every iteration.
The experiments proved a relative robustness of the proposed algorithms to an
"imperfect" knowledge of the parameters of the system, except for the thickness of
the interferometers, which has to be known with a relatively high degree of precision.
Unfortunately, the analysis also showed that interferograms are relatively sensitive
to additive noise, demanding for more sophisticated regularization techniques and
technological control of the measurements.

7.2 Perspectives for future works

In this section we list some macro-subjects of interest for the extension of this work
that employ different approaches compared to the rationale that was followed in
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this work; these considerations are intended as suggestions both to extend the scope
of this thesis and to kickstart future projects.

We separate these approaches in device-specific applications and general direction of
research. Some possible perspectives to investigate for the MRCA device include:

• Regularization protocols: the regularization protocols chosen in our experi-
ments were thought to minimize the amount of parameters to manually set up.
However, some advanced approaches include some variations on the TV [31,
48], the Elastica minimization [41, 158], and more [128, 243];

• Mask design: The design of the masks employed in this work is just based on
general considerations that act as rule of thumb guidelines. One more in depth
discussion may involve a deeper understanding of compression sensing, i.e. by
employing the framework of compressing statistical learning [131, 100];

• Sensor area-dependent design: As the MRCA is composed by sensors with
different characteristics, it is expected that the area of the sensors at different
resolutions may cover different a different area on the FPA. It would be
interesting to extend the current framework to consider this case, for which
one can model CFA patterns like the Quad Bayer.

Some possible developments on the data processing of ImSPOC protocols include
instead:

• More sophisticated regularization: In our inversion analysis, the analysis
was limited to a simplified case in which the interferogram relative pixel was
inverted separately. This approach has the intrinsic limitation that it ignores
the correlation of the information between adjacent pixels; the model can
be extended to take into account the spatial information by adding a spatial
regularization, even with simple approaches like the TV [48, 65];

• Acquisition model refinement: The spectral calibration acquisition showed
some optical effects that were not taken in consideration in our model, which
mostly involve a dependence of the parameters by the wavelength. Addi-
tionally some parameters share some common features between different
interferometers, while our characterization considered them as separate;

• Initialization of nonlinear algorithms: Some of the inversion techniques
that were developed for this thesis involve some form of linear regression;
with our proposed formalism, the convergence is reliant on an appropriate
initialization. More sophisticated methods allow however to avoid this issue,
which may involve some sort of nonlinear programming [22].
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Furthermore, some general purpose research directions are described in this list:

• Multimodal Fusion: The main target of employing specialized technologies
aims at resolving images with high spatial and spectral resolution. The limita-
tion of a given technology can be overcome with the support of an additional
acquisition system, which is in charge of acquiring complementary data in the
domain where they are lacking. One possible setup may consists in supporting
the ImSPOC acquisition with a traditional camera, e.g. which employs a CFA
technology [@3];

• Machine Learning Approaches: While inverse problems have a solid math-
ematical interpretation, its practical implementation is heavily reliant on a
good characterization of the direct model and the products to reconstructs.
While physical models are able to provide an initial interpretation of many
phenomena, some more advanced effect may become cumbersome to charac-
terize rigorously. Recent approaches introduce mixed model and data-driven
models [179, 15, 221] to train both the models and prior when acquisitions
are limited.

• Joint Optimization: In this thesis, the inversion problem and the determina-
tion of the direct model were approached separately, with the model inferred
from controlled acquisitions; this approach is efficient in terms of computa-
tional speed, yet there may be situations in which calibration data are either
absent or not sufficient to characterize the behaviour of the optical device
for in situ captures. This situation may be approached with protocols of al-
ternate minimization [45, 212], which aims to jointly optimize model and
reconstructed products.

• Super-resolution: The scenarios considered in this thesis suppose the utiliza-
tion of snapshot acquisitions, and target the highest resolution available in the
raw acquisition. Such limitation can be theoretically lifted in the case multiple
replicas are available (such as in the case of the multiple sub-images in Im-
SPOC), generating a high resolution from a set of low resolution images [182].

• User-ready Applications: The scope of this thesis is limited to the reconstruc-
tion of hyperspectral datacubes; an additional effort should be spent to identify
if the reconstructed products are sufficient for the envisioned applications. I.e.
for the case of ImSPOC, those applications are defined by the final applications
(e.g., Appendix A.2), which typically is a form of gas detection and estimation
of its concentration.
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• Choice of the inversion parameters: the recent results of the over-relaxation
of the algorithms [50], allowed to run the test relatively quickly and the choice
of the convergence parameters a relatively painless process. On the other hand,
the choice of the regularization parameter is strongly reliant on the intensity
of the noise and may require an analysis of the measurement conditions to be
set up properly, which would benefit from some more sophisticated procedure
of automatic procedure.
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Appendix A
A.1 Linear operators

In the context of inverse problems, direct models and regularization domains are
often described by a given linear operator A(·). We describe in this section a series
of linear operator that are used throughout this thesis.

The algorithms based on proximal operators, such as the ones described in Sec-
tion 2.3.2, are able to solve a wide variety of problems framed as Bayesian inferences,
but require the knowledge of their adjoint A∗(·) and of their operator norm ‖A ‖op.

In this section, we describe a set of operators that are commonly employed in this
thesis, by showing that they can be interpreted as a matrix multiplication.

This interpretation allows to derive the expression of its adjoint operator, which is
equivalent to the Hermitian of the matrix, while the operator norm is its largest
singular value (s.v.).

An implementation of the adjoint operator as a matrix multiplication is often too
computationally heavy, as the involved matrices often contain too many coefficients,
for which we aim to find equivalent expressions that may be easily implemented.

A.1.1 Operator properties

Let A : Ex → Ey define a generic bounded linear operator operating between two
real Hilbert spaces with scalar products 〈·, ·〉x and 〈·, ·〉y, respectively.

In this thesis, we are mostly interested in two properties of linear operators, the
adjoint operator and the operator norm, whose definitions are given in the following
subsections.
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Adjoint operator

The adjoint operator of A, denoted with A∗(·) : Ey → Ex is a generally unbounded
operator that satisfies the following condition:

〈A(x),u〉y = 〈u,A∗(u)〉x ∀x ∈ Ex,u ∈ Ey . (A.1.1)

For a matrix multiplication, in particular, where the original operator is given by
y = Ax, with x ∈ RNx and y ∈ RNy and A ∈ RNy×Nx it can be easily shown that
the adjoint operator is equivalent to the Hermitian conjugate A∗, or its transpose
AT if A is real.

Operator norm

The operator norm of A is defined as the largest scalar by which A stretches the
elements of Ex:

‖A ‖op = inf {α̌ ≥ 0 : ‖A(x)‖y ≤ α̌‖x‖x,∀x ∈ Ex} , (A.1.2)

which in the case of a matrix multiplication studied in the previous section, the
operator norm ‖A‖op = ζ̌

[max]
A is given by the largest singular value of the matrix A,

which is equivalent to the square root of the largest eigenvalue associated with the
Gram matrix A∗A.

A.1.2 Convolution product

Matrix multiplication interpretation

Let U[x] =
{
u

[x]
i1,i2

}
i1∈[1,...,Ni1 ]
i2∈[1,...,Ni2 ]

be a matrix representing a monochromatic image

and U[b] ∈ RNd1×Nd2 be a bidimensional filter, whose index in the coefficients
u

[b]
i1,i2

span the quasi-symmetrical ranges i1 ∈
[
−
⌊
Nd1

2

⌋
, ...,

⌊
Nd1−1

2

⌋]
and i2 ∈[

−
⌊
Nd2

2

⌋
, ...,

⌊
Nd2−1

2

⌋]
.
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We define in this thesis a circulant convolution product U[y] = U[x] ∗∗ U[b] a matrix
U[y] ∈ RNi1×Ni2 , whose coefficients are:

u
[y]
i1,i2

=

⌊
Nd1−1

2

⌋
∑

m1=−
⌊
Nd1

2

⌋

⌊
Nd2−1

2

⌋
∑

m2=−
⌊
Nd2

2

⌋u[b]
m1,m2u

[x]
(i1−m1)Ni1

, (i2−m2)Ni2
, (A.1.3)

where (i)Ni := ((i− 1) mod Ni) + 1 and b·c stands for integer part.

If the input and output matrices U[x] and U[y] are arranged in lexicographic order, it
can be shown that this operation is equivalent to a multiplication by a doubly block
circulant matrix B̌, which is a particular case of a Toeplitz matrix. A Toeplitz matrix
co the elements of each descending diagonal from left to right are the same; in our
case the matrix B̌ is generally sparse, and the non-zero elements are given by the
coefficients of U[b].

A formal proof of this statement, known as circulant convolution theorem, is
available in the dedicated literature [196], but we will show an example to illustrate
the main concept behind it. Let us consider a monochromatic image U[x] ∈ R3×3

and a convolution filter U[b] ∈ R2×2, then the circulant convolution product is given
by:

U[x] ∗∗ U[b] =



x1 x4 x7

x2 x5 x8

x3 x6 x9


 ∗∗

[
b4 b2

b3 b1

]
(A.1.4a)

=




x1b1+x4b3
+x2b2+x5b4

x4b1+x7b3
+x5b2+x8b4

x7b1+x1b3
+x8b2+x2b4

x2b1+x5b3
+x3b2+x6b4

x5b1+x8b3
+x6b2+x9b4

x8b1+x2b3
+x9b2+x3b4

x3b1+x6b3
+x1b2+x4b4

x6b1+x9b3
+x4b2+x7b4

x9b1+x3b3
+x7b2+x1b4


 . (A.1.4b)

which can be also interpreted as a correlation product if U[b] flipped both horizontally
and vertically, which is easier to mentally visualize, imagining the filter as a sliding
window over the image.
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If the resulting coefficients are rewritten in their lexicographic order y = matr
(
U[y]),

they can be also obtained multiplying x = matr
(
U[x]) by a doubly block circulant

matrix B̌, as shown below:

y = B̌x =




b1 b2 0 b3 b4 0 0 0 0
0 b1 b2 0 b3 b4 0 0 0
0 0 b1 b2 0 b3 b4 0 0
0 0 0 b1 b2 0 b3 b4 0
0 0 0 0 b1 b2 0 b3 b4

b4 0 0 0 0 b1 b2 0 b3

b3 b4 0 0 0 0 b1 b2 0
0 b3 b4 0 0 0 0 b1 b2

b2 0 b3 b4 0 0 0 0 b1







x1

x2

x3

x4

x5

x6

x7

x8

x9




(A.1.5a)

=




x1b1 + x4b3 + x2b2 + x5b4

x4b1 + x7b3 + x5b2 + x8b4

x7b1 + x1b3 + x8b2 + x2b4

x2b1 + x5b3 + x3b2 + x6b4

x5b1 + x8b3 + x6b2 + x9b4

x8b1 + x2b3 + x9b2 + x3b4

x3b1 + x6b3 + x1b2 + x4b4

x6b1 + x9b3 + x4b2 + x7b4

x9b1 + x3b3 + x7b2 + x1b4




. (A.1.5b)

Properties

The adjoint operator of a convolution product can be obtained by noticing that the
effect of transposing the circulant matrix B̌ from Appendix A.1.2 returns another
circulant matrix but with flipped coefficients. I.e., the adjoint operator of B̌ in
eq. (A.1.5) is given by:

B̌T =




b1 0 0 b4 b3 0 0 b2

b2 b1 0 0 b4 b3 0 0
0 b2 b1 0 0 b4 b3 0
0 0 b2 b1 0 0 b4 b3

b3 0 0 b2 b1 0 0 b4

b4 b3 0 0 b2 b1 0 0
0 b4 b3 0 0 b2 b1 0
0 0 b4 b3 0 0 b2 b1




, (A.1.6)
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from which we can notice (e.g. from the sixth row) that the filter coefficients
are flipped with respect to the original arrangement. Consequently, the adjoint
of a convolution product is equivalent correlation with the same kernel, that is, a
convolution with the same filter, whose coefficients are flipped both horizontally
and vertically.

Regarding the operator norm, we can make use here of a well known property of cir-
culant matrices, which allows to evaluate the eigenvalues of a circulant matrix [54].
Specifically, given a square circulant matrix B̌ ∈ RNi×Ni its i-th s.v. ζ̌(i)

B̌
is given

by:

ζ̌
(i)
B̌

=

√√√√
Ni∑

k=1
b̌k,1 exp

(
j

2π
Ni

(Ni − k + 1)i
)
, ∀i ∈ [1, ... , Ni] , (A.1.7)

where exp
(
j 2π
Ni

)
is the Ni-th root of unity, j is the imaginary unit, and b̌k,1 is the

k-th element of the first column of B̌. The relation (A.1.7) allows to define an upper
bound for the operator norm, as any s.v., including the largest one ζ̌ [max]

B̌
, has to

satisfy the following relationship:

ζ̌
[max]
B̌

≤

√√√√
Ni∑

i=1
|b̌i,1| =

√√√√
Nd1Nd2∑

i=1
|bi| , (A.1.8)

where {bi}i∈[1,... ,Nd1Nd2 ] are the elements of the convolution matrix b = matr
(
U[b]).

A.1.3 Masking

Matrix multiplication interpretation

Let X ∈ RNi×Nb and H ∈ RNi×Nb represent the original image and the mask,
respectively, represented in lexicographic order. A masking operation can be seen as:

y =
Nb∑

k=1
x:k � h:k , (A.1.9)

where � denotes an element by element multiplication, while x:k and h:k are the
k-th column of X and H, respectively. To find the equivalent matrix multiplication
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expression, let v[x] = vec(x) be the vector representation of X (obtained concate-
nating all of its columns), for which we obtain that eq. (A.1.9) is equivalent to:

y = [diag (h:1) , ...,diag (h:Nb)] v
[x] , (A.1.10)

where [·, ·] stands for row concatenation and diag(h:k) is a diagonal matrix whose
elements are on the main diagonal are given by the k-th column of H.

Properties

Let y ∈ RNi , be a monochromatic acquisition, expressed in lexicographic order. The
adjoint operator X = A∗(y) of a masking operation (A.1.9) can be derived from its
expression as matrix multiplication (A.1.10), transposing the transformation matrix.
This yields:

vec (A∗(y)) = [diag (h:1) ; ...; diag (h:Nb)] y , (A.1.11)

where the diagonal matrices are column concatenated instead of row concatenated
as it was in eq. (A.1.10). By unwrapping the result, this operation is equivalent to a
multiband image X ∈ RNi×Nb , whose k-th column x:k is given by:

x:k = y� h:k . (A.1.12)

With respect to the operator norm, the matrix that describes the masking is obtained
as column concatenation of A[k] = diag(h:k), hence the associated Gram matrix

is given by
∑Nb

k=1

(
A∗[k]A[k]

)
. Given the diagonal nature of its components, its

eigenvalues are given by the sum of the eigenvalues of the Gram matrix associated
with A[k], from which it follows that the operator norm of the masking operation is:

‖A ‖op = max
i∈[1,... ,Ni]

√√√√
Nb∑

k=1
h2
ik . (A.1.13)

A.1.4 Decimation

Matrix multiplication interpretation

In image processing, the operation of decimation by a factor ρ is equivalent to
take one every ρ-th sample both in the horizontal and vertical direction. For this
operation it is useful to introduce the so-called selection matrix, which is in charge
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of selecting a set of columns from a matrix. Let e(i) ∈ RNi1 denote a column vector
with all components equal to zero, except a 1 in the i-th position. This matrix allows
to select specific columns from a given monochromatic image U[x] ∈ RNi1×Ni2 .

I.e., if we want to select the second and fifth column from a 5×Ni2 image, we can
perform the following operation:

[
eT

(3); e
T
(5)

]
U[x] =

[
0 0 1 0 0
0 0 0 0 1

]
U[x] , (A.1.14)

where [·; ·] stands for column concatenation and (·)T is the transposition operator.

The full decimation operation can then be seen as applying a column selection
operator both in the horizontal and vertical direction:

U[y] = U[v↓]
(
U[h↓]U[x]

)T
, (A.1.15)

where U[h↓] ∈ R
Ni1
ρ
×Ni1 is a matrix whose i-th row is u[h↓]

i: = eT
(bNi1/2c+1+(i−1)ρ),

with the shift bNi1/2c+ 1 being necessary to select the center pixel in the decima-
tion.

Similarly, the i-th row of U[v↓] ∈ R
Ni2
ρ
×Ni2 is u[v↓]

i: = eT
(bNi2/2c+1+(i−1)ρ), where e(i)

is a column vector of length Ni2 .

Properties

The adjoint of a decimation can be promptly derived by noticing that the effect of
transposing a selection matrix is equivalent to placing the columns back in their
original positions. I.e., the adjoint of eq. (A.1.14), applied to an image U[y] of sizes
2×Ni2 is given by:

[
e(3), e(5)

]
U[x] =




0 0
0 0
1 0
0 0
0 1




U[y] =
[
0[5×1],0[5×1],u

[y]
:1 ,0[5×1],u

[y]
:2

]
, (A.1.16)

where 0[Ni1×1] ∈ RNi1 is a column vector of all zeros. Consequently, the adjoint
operator of a decimation by a factor ρ is equivalent to an expansion by the same
factor. The operator norm of a decimation operator is simply equal to 1, as the
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decimation matrix is simply equivalent to an identity matrix with interposed rows
made of all zeros.

A.1.5 Total variation

Matrix multiplication interpretation

For a given monochromatic image U[x] =
{
u

[x]
i1,i2,k

}
i1∈[1,... ,Ni1 ]
i2∈[1,... ,Ni2 ]

, the digital total

variation (TV) defines the concatenation of the gradients U[v] and U[h] in the
vertical and horizontal direction, respectively. Specifically, their elements are given
by:

u
[v]
i1,i2

= u
[x]
max(i1+1,Ni1 ),i2 − u

[x]
i1,i2

, (A.1.17a)

u
[h]
i1,i2

= u
[x]
i1,max(i2+1,Ni2 ) − u

[x]
i1,i2

, (A.1.17b)

for all i1 ∈ [1, ... , Ni1 ] and i2 ∈ [1, ... , Ni2 ]. Each of these operations can be seen as a
special case of a circular convolution, except that the operator does not wrap around
the boundaries of the image. Consequently, each of these operations is equivalent
to a multiplication by a circulant matrix with non zero elements equal to [1,−1]
and with the elements of its last row set equal to zero. I.e., if U[x] is a 5 × 4 px
image, then the i2-th column u[v]

:i2 of vertical gradient U[v] and the i1-th row u[h]
i1: of

the horizontal gradient U[h] can be obtained as:

u[v]
i1: =




1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 0




u[x]
i1: (A.1.18a)

(
u[h]

:i2

)T
=




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 0




(
u[x]

:i2

)T
(A.1.18b)

The two results are typically concatenated together along a new dimension; in this
thesis, this concatenation is performed along the fourth one, to keep the third one
for the channels, so that the full TV operator is A

(
U[x]) =

[
U[v],U[h]]

4.
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Properties

As the TV is given by a concatenation of a horizontal and vertical gradient, its
combined adjoint is given by the sum of the adjoint of each of the two components,
similarly to how the masking, which is a sum of operations applied to each bands,
can be seen as the adjoint of a concatenation.

That is, given the vertical and horizontal gradient components U[v] ∈ RNi1×Ni2 and
U[h] ∈ RNi1×Ni2 , the adjoint operator of the TV can be rewritten as A∗

([
U[v],U[h]]

4
)

=
A∗v
(
U[v]) + A∗h

(
U[h]) = V[v] + V[h], where V[v] = A∗v

(
U[v]) and V[h] = A∗v

(
U[h])

are the adjoint operators of the vertical and horizontal gradients respectively.

By transposing the matrix multiplications in eq. A.1.18, it is easy to show that their
coefficients are given by:

v
[v]
i1,i2

= u
[v]
i1,i2
− u[v]

min(i1−1,1),i2 (A.1.19a)

v
[h]
i1,i2

= u
[h]
i1,i2
− u[v]

i1,min(i2−1,1) (A.1.19b)

for all i1 ∈ [1, ... , Ni1 ] and i2 ∈ [1, ... , Ni2 ]. The expression assumes that u[v]
Ni1 : and

u[h]
:Ni2

are vectors made of all zeros, which is the case if those gradients are obtained
from eq. (A.1.17).

The operator norm ‖A ‖op must satisfy the following relationship:

‖A ‖2op = ‖A∗v +A∗h ‖2op ≤ ‖Av ‖2op + ‖Ah ‖2op =≤ (|1|+ | − 1|)2 + (|1|+ | − 1|)2 = 8
(A.1.20)

where we have used Cauchy’s inequality to upper bound the norm to the sum of the
operator norm of each of its components and we substituted eq. (A.1.8) with the
assumption that each gradient is approximately described by a multiplication by a
circulant matrix.
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A.2 ImSPOC research projects

Four different projects are currently associated with the ImSPOC concept:

• Horizon 2020 (H2020) Space CARBon Observatory (SCARBO) [@8] (2018-
2020), whose aim is to measure the effects of the greenhouse effect in the
atmosphere. The target of this project is to allow the finest resolution of
spectra within the absorption window of greenhouse gases (GHGs), such as
carbon dioxide CO2 or methane CH2. The device is mostly used in the visible
(VIS), infrared (IR) and short wave infrared (SWIR) bandwidths [33, 96, 97,
76, 98].

• Fonds Unique Interministériel (FUI) ImaGAZ (2017-2020) is aimed at the
monitoring of industrial sites at risk of environment, health and safety (EHS);
the main application is for the detection of gas leakages or anomalies in their
composition. This detector works in the IR domain of wavelengths and its
ideal final product is the concentration of each gas, through spectral unmixing
of the recovered spectrum, eventually supervised by the prior information of
the spectral signatures of the known gases involved in the acquisition.

• FUI ImSPOC-ultraviolet (UV) (2018-2021)’s main application is envisioned to
be for climate and air quality monitoring, or to track natural environments such
as for the monitoring of the aurora borealis, and providing better joint spectral
and temporal resolution than current commercial available alternatives. Its
spectral bands include the UV, VIS and near infrared (NIR) bandwidths (250-
950 nm);

• Agence Nationale de Recherche (ANR) Astrid FUsion MULTIspectral-ImSPOC
(FuMultiSPOC) [@3] (2021-2024), which main aim is the development of
tools for the data processing of raw acquisition and the fusion of acquisition
taken simultaneously by an ImSPOC device and a traditional camera.

While the model described in Section 5.4.2 is applicable to every prototype, the
necessity for different applications leads to different designs and priorities into
compensation of different undesired effects. The details of the manufacturing of
each prototype is still under constant discussion and fine-tuning; two main different
design philosophies arose for the manufacturing of the devices:

• The NanoCARB, which is the basic technology developed for SCARBO, con-
ceptualizes configurations able to recover spectrum samples within different
absorption windows; for each of such windows, the device has an associated
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set of interferometers, which is in charge to detect the interferogram samples
associated with the window of interest. For this design, the current proposition
is to realize he interferometers in silicon: as the refractive index of silicon
is pretty high compared to air (n ≈ 3.18), no additional coating is necessary
to the reflectivity of the surface, which is instead generated naturally by the
boundary. Another beneficial effect is related to the angle of acceptance (AoA),
as the leading optics may allow a relatively large input solid angle, as, ac-
cording to Snell’s law, as they still map to relatively small internal reflection
angles. However, the reflective index of silicon shows a strong dependency of
the optical path difference (OPD) with the wavenumber.

• For the other designs, intended for projects such as ImaGAZ and ImSPOC-UV
working over a wider range of wavelengths, the interferometers are planned
to be manufactured in glass. As the latter has a refraction index which is
extremely close to that of the air (n ≈ n0 = 1), the medium would be
transparent to incident rays. Consequently, the surfaces need a reflective
coating to allow the interference between replicas of the rays; at the current
point they are is planned to be realized in TiO2. One disadvantage of such
configuration is that the internal reflection angle is very close to the incident
angle, hence the former’s order of magnitude is similar to that of the AoA,
and more cross-talking between adjacent interferometers arises. On the other
hand, as glass shows almost no dependency with the wavenumber, the OPD
will not show any particular variation with σ, except for non uniform effects
of the coating.
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Glossary

Q2n Q2n index

ADMM alternating direction method of
multipliers

AFN average Fourier norm

ALS alternating least squares

ANR Agence Nationale de Recherche

AoA angle of acceptance

ARI adaptative residual interpolation

ATV anisotropic total variation

ATWT à trous wavelet transform

AWGN additive white Gaussian noise

BayesNaive Bayesian with naive regular-
ization

BDSD band-dependent spatial detail

BIN radiometric binning

BT binary tree

BTES binary tree-based edge-Sensing

CASSI compressive coded aperture spec-
tral imaging

CBD context based decision

CCE centroid center estimation

CCSDS Consultative Committee for
Space Data Systems

CFA color filter array

CNMF coupled nonnegative matrix fac-
torization

CNN convolutional neural network

COVE panchromatic coverage

CS component substitution

CTV collaborative total variation

CYM cyan yellow magenta

DBT dominant binary tree

DCT discrete cosine transform

DFT discrete Fourier transform

DIAG diagonal

DIRI Dirichlet distribution based

DMD digital micromirror device

DOAS differential optical absorption
spectroscopy

DWT discrete wavelet transform

EHS environment, health and safety

EM electro-magnetic

ERGAS relative dimensionless global er-
ror in synthesis

ES exhaustive search

EXP interpolated image

FFT fast Fourier transform

FIR finite impulse response

FoV field of view

FP Fabry-Pérot

FPA focal plane array

FPGA field programmable gate array

FSR free spectral range

FT Fourier transform

FTIR Fourier transform infrared spec-
troscopy

FTS Fourier transform spectrometer

FUI Fonds Unique Interministériel

FuMultiSPOC FUsion MULTIspectral-
ImSPOC

FWHM full width at half maximum

GCE Gaussian-fit center estimation

GCV generalized cross validation

GD gradient descent
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GE-1 GeoEye-1

GHG greenhouse gas

GLP generalized Laplacian pyramid

GNA Gauss-Newton algorithm

GSA Gram-Schmidt adaptive

GSA Gram-Schmidt

GSD ground sample distance

GT ground truth

H2020 Horizon 2020

HPM high pass modulation

HRI high resolution image

HS hyperspectral

HSI hyperspectral imaging

HySure hyperspectral superresolution

i.i.d. independent and identically dis-
tributed

ID intensity difference

IDCT inverse discrete cosine transform

IDW inverse distance weighting

IDWT inverse discrete wavelet trans-
form

ImSPOC image spectrometer on chip

IPAG Institut de Planétologie et
d’Astrophysique de Grenoble

IR infrared

ItID iterative intensity difference

ItSD iterative spectral difference

ITV isotropic total variation

JPEG Joint Photographic Experts
Group

L0 level 0

L1 level 1

L2 level 2

L3 level 3

LASSO least absolute shrinkage and se-
lection operator

LDCT LASSO-DCT

LDWT LASSO-DWT

LPF low pass filter

LRI low resolution image

LTV LASSO-TV

MAE mean absolute error

MAUE mean absolute unbiased error

MAXDIS maximum distance

MED mean Euclidean distance

ML maximum likelihood

MLE maximum likelihood estimation

MLRI minimized-Laplacian residual in-
terpolation

MM majorization-minimization

MRA multiresolution analysis

MRCA multiresolution color filter array
acquisition

MS multispectral

MSE mean square error

MSFA multispectral filter array

MSG multiscale gradients

MTF modulation transfer function

MTF-GLP MTF-matched generalized
Laplacian pyramid

NASA National Aeronautics and Space
Administration

NIR near infrared

NN nearest neighbour

OMP orthogonal matching pursuit

ONERA Office National d’Etudes et de
Recherches Aérospatiales

OPD optical path difference

OPL optical path length

PAN panchromatic

PCA principal component analysis

PCHIP piecewise cubic Hermite interpo-
lating polynomial

pdf probability density function

PERI periodic

PINV pseudo-inversion

PMD penalized matrix decomposition

pmf probability mass function
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PRESTO Precursory Research for Embry-
onic Science and Technology

PRISMA Hyperspectral Precursor of the
Application Mission

PROTO-1 prototype ImSPOC-UV/VIS
PROTO-2 prototype ImSPOC-UV-

drone
PROTO-3 prototype ImaGAZ-1
PROTO-4 prototype NanoCarb-1
PSD power spectral density
PSF point spread function
PSNR peak signal to noise ratio
QB QuickBird
QMF quadrature mirror filter
r.v. random variable
RAND random pick
RBF radial basis function
RGB red green blue
RI residual interpolation
RIP restricted isometry property
RMSE root mean square error
ROF Rudin-Osher-Fatemi
RoI region of interest
RR ridge regression
s.v. singular value
SAM spectral angle mapper
SAR synthetic aperture radar
SCARBO Space CARBon Observatory
sCC spatial cross-covariance coefficient
SCE scanline center estimation

SD spectral difference

SNR signal to noise ratio

SSIM structural similarity

STD standard deviation

STV Shannon total variation

SURE Stein’s unbiased risk estimate

SVD singular value decomposition

SWIR short wave infrared

SWT stationary wavelet transform

TE transverse electric

TEM transverse electro-magnetic

TGV total generalized variation

TIN triangulated irregular network

TM transverse magnetic

TPS thin plate spline

TSVD truncated singular value decompo-
sition

TV total variation

UAV unmanned aerial vehicle

UBT uniform binary tree

UIQI universal image quality index

UTV upwind total variation

UV ultraviolet

VERT vertical

VIS visible

VTV vector total variation

WB weighted bilinear

WV2 WorldView-2

WV3 WorldView-3
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Symbols

λ wavelength

σ wavenumber in the vac-
uum

k wavevector

ν optical frequency

θ polar angle

φ azimuth angle

θ spherical coordinate angle

R reflectivity

T transmissivity

n refractive index

n0 refractive index in the air/-
vacuum

ε absolute permittivity

µ absolute permeability

c phase velocity

c0 speed of light in the vac-
uum

L radiance

Lσ spectral radiance

E irradiance

Eσ spectral irradiance

A direct model (linear opera-
tor)

L regularizer (linear opera-
tor)

Ltv total variation operator

Lutv upwind total variation opera-
tor

J objective function

f data fidelity metric

g regularization metric

λ̌ regularization parameter

ζ̌ singular value

ρ̌ over-relaxation parameter

τ̌ main convergence parame-
ter

σ̌ secondary convergence pa-
rameter

P, p, U[p] high resolution image

M, U[m] low resolution image

M̃↑ upsampled LRI

H, U[h] mask

B, U[b] blurring kernel

ρ scale ratio
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ρc compression ratio

Ab HRI blur operator

Ac compression operator

Ad degradation operator

Am spatial degradation opera-
tor

Am↓ downsampling operator

Ap spectral degradation opera-
tor

Ex space of inputs

Ey space of acquisitions

Eb space of parameters

Na number of acquisitions

Nb number of bands

Nbp number of HRI bands

Ni number of incidence angle

Nk number of interferometers/-
subimages

Nm number of modes or order

No number of photodetectors

Nx number of input samples

Ny number of output samples

X , X, U[x] ideal input

Y , Y, U[y] acquisition

A, A direct model

X̂ , X̂ reconstructed input

B, β parameters

R[0] subimage centers

R[t], Ř[t] photodetector centers

Ř[f ] feature positions

Ř[d] misalignments

vec column concatenation

matr lexicographic order reshap-
ing

reshape permuted lexicographic or-
der reshaping

stack datacube stacking

∗, ∗∗ convolution product

� Hadamard product

max maximum operator

min minimum operator

(·)∗ adjoint operator

(·)T transpose operator

(·)↑ extension

(·)↓ decimation

(·)† Moore-Penrose pseudo-
inverse

(·)� sparse channel

(·)? Fenchel conjugate

‖ · ‖1 `1 norm

‖ · ‖2 `2 norm

‖ · ‖∞ `∞ norm

〈·, ·〉 scalar product
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