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General Introduction

Thanks to the advance in technology over the past decades, more and more electronic devices are connected to the internet by businesses and consumers to provide services, leading to the concept called Internet-of-Thing (IoT). These IoT devices are placed in, for instance, light bulbs, re alarms, smart phones, TVs, wearable systems, game sets, and cars to empower healthcare, manufacturing, transportation, telecommunication and entertainments. The number of such devices is projected to be over 40 billions and even more from the year 2021 on [1][2][3]. To put it another way, every consumer will use over 10 internet-connected devices. These devices collect a variety of data, processing and extracting meaningful features and passing them through the networks to support the development of new services such as indoor environmental conditions monitoring and control and smart health monitoring.

Most deployed IoT devices are resource-constrained. Generally, they are battery-powered, and therefore, they may stop operating whenever the battery runs out of energy, leading to maintenance cost. Energy-harvesting enables a node to scavenge energy from its environment, such as solar, wind, vibration, thermal, water ow and other natural elements around it. Powered by harvested energy, any node could theoretically operate perennially for their physical lifetime. Combining the concept of IoT and energy-harvesting is therefore a good strategy for maintenance-free, fully automated operation of IoT nodes, which is known as energy-harvesting IoT (EH-IoT). If su cient energy can be harvested, the maintenance cost can be decreased while the quality of service (QoS) may be improved. However, trade-o s might be necessary, should the harvested energy being scarce. In reality, besides such a potentially transient and unreliable energy harvesting, many other uncertainties lie in system power source (e.g., self-discharging of a battery), wireless link quality in uenced by obstacles and object movements, application workload and many other elements that a ect incoming and outgoing (or consumed) energy and data, so that an intelligent management of power demand and supply (known as a power manager) must be made.

Arti cial intelligence (AI) has recently been a powerful method to augment nodes with capabilities to capture and extract more useful information that could not possibly be found without it and to provide better QoS in automation and control. A huge progress in information technology is that even small, ultra-low-power devices can today possess a fair amount of processing resources and bene t from such a feature. Hence, the EH-IoT node can use AI that helps balance the energy demand and supply of nodes while providing certain performances (power-performance trade-o s) in such a way that all the EH-IoT nodes automatically sense, process, and communicate with each other to expand their lifetime with no maintenance cost.

The combination of the aforementioned three concepts drive today's researchers to design and implement novel low-cost smart control systems or power managers for EH-IoT nodes. As said above, the di culty is that each device is subject to a plethora of uncertainties at varying degrees. Moreover, their stochastic nature changes in time and space. The key element is the use of machine learning (ML) algorithms that can e ectively resolve several con icting purposes such as the trade-o s between power and performance and the ones between adaptability/scalability to uncertainties and the algorithmic/architectural complexity.

As such an ML method, we leverage reinforcement learning (RL) in this manuscript. RL is capable of learning at run-time the dynamics of uncertainties in the concerned system. Many researchers investigate the RL-based power managers. The popular choice is employing neural networks to implement RL methods in order to increase the expressiveness of function approximations for non-linear functions, for example, in case we expect a complex dynamics of uncertainties. Meawhile, linear function approximations can also be considered to achieve less computation and less memory footprint. Since we wish to design an adaptive controller for ultra-low-power EH-IoT nodes, we choose linear function approximations for RL methods, more speci cally, Actor-Critic RL methods. These algorithms are called in this manuscript as Linear Actor-Critic (LAC).

Several problems of the LAC exist that mainly include sub-optimal reactivity, algorithmic overheads and incomplete solutions for con icting constraints. With respect to the constraints, constrained Markov decision process (CMDP) is an extension of MDP that considers the constraint and that helps RL deal with constrained optimization problems. There seems no solution, to the best of our knowledge, that addresses both the low-power and self-adaptive features of the controller for CMDP problems. Several important points are also missing in the literature: quantitative evaluations on the convergence speed and practical assessments of algorithmic overheads alongside with the implementation methodology must be further investigated to clarify the properties of the proposed controllers.

Hence, our research objectives are summarized as follows:

1. design a more self-adaptive and lightweight LAC-based algorithm;

2. analyze its practical implementations; 3. provide in-depth analysis on the algorithmic overheads and adaptability; 4. introduce a novel LAC-based solution for CMDP problems.

The corresponding contributions we made in this manuscript are:

1. integrate an adaptive learning rate called Adam into the LAC algorithm to achieve higher reactivity;

2. propose a novel de nition of convergence to quantitatively evaluate the improvements on reactivity;

3. employ three approximation methods with xed-point data precision to reduce the algorithmic costs;

4. analyze algorithmic overheads of adaptive controllers for RISC-V cores;

5. implement an asynchronous hardware for our proposed LAC algorithm;

6. introduce a novel LAC-based solution for CMDP problems.

The rest of the chapters in this manuscript are organized as follows.

In Chapter 2, we start from the research context in EH-IoT nodes that includes the application scenarios as well as the state-of-the-arts and their problems. With our design choice of LAC algorithms as the base, some existing issues in the literature are highlighted by comparisons and simulation studies.

Chapter 3 presents our proposed LAC-A algorithms that combine the LAC and the Adam to gain high reactivity. Further, we show that the initialization bias correction terms in Adam can be removed from the LAC-A solution to alleviate the computational and memory footprint costs with no degradation in the transmission latency performance, which introduces the LAC-AB algorithm. A novel de nition of convergence is also established to evaluate the convergence speeds of the algorithms.

In Chapter 4, three approximation techniques are leveraged to create the LAC-QAB algorithm, a more lightweight version of the LAC-AB, with the use of xed-point data arithmetic. Analysis of algorithmic overheads in terms of the number of cycles are conducted by using both Spike instruction set simulator and Questasim's RTL simulations for System-on-Chips (SoCs) called SamurAI integrating a RISC-V core known as RI5CY.

The dedicated asynchronous hardware component of the LAC-QAB algorithm is then described in Chapter 5. On one hand, the choice of such an asynchronous design avoids the wake-up power consumption overheads that arise in both the above software solution and a synchronous hardware solution. On the other hand, it brings intrinsic robustness and low power features to the controller in the frame of Energy-Harvesting based systems. This observation holds especially for today's ultra-low-power SoCs that place the microprocessor in On-demand part rather than in Always-on part. The implementation results are given to show its energy e ciency and area size along with the number of cycle to be executed.

Chapter 6 proposes the C-LAC-AB algorithm, a novel LAC-based algorithm that enables addressing the CMDP problem. We assume the soft real-time applications that allow for slight violations in tracking a certain latency and the ENO-Max conditions that attempt to follow a certain residual energy level formulated based on the widely-used ENO conditions in adaptive control in the EH-IoT domain. Thanks to these assumption, we exploit the symmetric relation between energy and performance to formulate a quadric surface based RL. Simulation results are given to show the e ectiveness and no sign of divergence of the algorithm. The comparisons are also made to clarify its capability of balancing the con icting constraints. To the best of our knowledge, this is the rst LAC-based RL solution for solving CMDP problems.

Finally, the conclusions and future work directions are given in the nal chapter.

This chapter will go deeper into adaptive controllers from the aspects of IoT, energy-harvesting and RL. The context of IoT applications is rstly elaborated with respect to sensors, processors and transceivers in Section 2.1. The types and characteristics of energy harvesters and batteries are also described. Section 2.2 then introduces the state-of-the-art of adaptive controllers using both statistics and machine learning (SM) and reinforcement learning (RL), one of the most common choices of algorithms for AI. The existing problems of the state-of-the-art are raised and discussed with concrete examples in Section 2.3.

Energy-Harvesting and Internet-of-Things

Internet-of-Things Applications

An IoT node is comprised of three main components: sensor(s), processor(s), and wireless transceiver(s) [4,5]. The role of these components may greatly vary from one node to another in a given network according to the application use cases as well as their physical placement in the environment. This section summarizes the characteristics of applications and uncertainties that each component may encounter, especially the ones that are focused in this work as illustrated in Figure 2.1. The variables d in t and d out t represent the income and outcome of data in the processing part of the node, while e h t and e c t are the harvested and consumed energies, respectively. The normalized level of the data bu er (i.e., State-of-Bu er) and energy storage (i.e., State-of-Charge) are expressed as φ SoB t and φ SoC t , both of which range from 0 to 1 (i.e., in [0, 1]). Note that the wireless channel conditions are modeled in simulation as an element outside of the sensor node. Each of these variables and models will be detailed in the following subsections. In the gure, the adaptive controller modulates the transmission duty-cycle as an example. The control algorithm is activated to decide a new duty-cycle ratio D t as an action at every control update interval (CUI) T cui . The system that adopts this isochronic way of control is called the time slotted system. We utilize this system model in this manuscript.

Sensing and Processing

Depending on the types of sensors and target applications, the traits of data generation, i.e., workload, can be di erent. The temperature data, for instance, will typically be sensed peri-odically [6] as continuous monitoring is of interest, while motion sensor (e.g., accelerometers and gyroscopes) data for the healthcare and smart home applications can be acquired on event and in accordance with human activities [START_REF] Dekimpe | A Battery-Less BLE IoT Motion Detector Supplied by 2.45-GHz Wireless Power Transfer[END_REF][START_REF] Fafoutis | Extending the battery lifetime of wearable sensors with embedded machine learning[END_REF][START_REF] Bhat | REAP: Runtime Energy-Accuracy Optimization for Energy Harvesting IoT Devices[END_REF]. Other sensors include surveillance cameras, pressure and conductivity [5], carbon dioxide, humidity, wind speed and other measurable information about a system. The characteristics of the generated data change depending on the sensor type, the sampling frequency, and the required accuracy of the applications [START_REF] Fafoutis | Extending the battery lifetime of wearable sensors with embedded machine learning[END_REF].

Sensing and transmitting the raw data could be redundant and/or heavy in terms of data analysis and network operations [START_REF] Fafoutis | Extending the battery lifetime of wearable sensors with embedded machine learning[END_REF][START_REF] Conti | An IoT Endpoint System-on-Chip for Secure and Energy-E cient Near-Sensor Analytics[END_REF]. Data compression and feature extraction techniques change the data characteristics [START_REF] Bhat | REAP: Runtime Energy-Accuracy Optimization for Energy Harvesting IoT Devices[END_REF]. Data compression [5,6,[START_REF] Fafoutis | Extending the battery lifetime of wearable sensors with embedded machine learning[END_REF][START_REF] Hakami | An optimal policy for joint compression and transmission control in delay-constrained energy harvesting IoT devices[END_REF] such as sub-sampling, thresholdbased compression and wavelet transforms, reduces the size of data to be transmitted, while feature extraction [START_REF] Fafoutis | Extending the battery lifetime of wearable sensors with embedded machine learning[END_REF] (e.g., data classi cation) also helps reduce the amount of data and alleviate the burdens of the cloud by moving processing from the cloud to the edge (known as Edge Computing). The overhead of data compression can be quite low and yet the original data can be restored to a reasonable extent or useful for higher-level applications [START_REF] Bhat | REAP: Runtime Energy-Accuracy Optimization for Energy Harvesting IoT Devices[END_REF]. The workload scenarios that are used in this work are presented below.

Poisson-distributed Workload Model

In existing studies, sensing workload is modeled as, for example, Poisson distributions [START_REF] Chan | Adaptive Duty Cycling in Sensor Networks With Energy Harvesting Using Continuous-Time Markov Chain and Fluid Models[END_REF][START_REF] Sangare | Mobile Charging in Wireless-Powered Sensor Networks: Optimal Scheduling and Experimental Implementation[END_REF], Bernoulli distributions [14] and Exponential distributions [START_REF] Pottier | Q-Learning Based Adaptive Channel Selection for Underwater Sensor Networks[END_REF]. We adopted a Poisson distribution in some of our simulation studies, as it is often deployed in the literature. If the incoming data follows the Poisson distribution with the average rate of λ, the probability of k events occurring, denoted by f (k; λ), can be expressed as:

f (k; λ) = λ k e -λ k! (2.1)
The number of incoming data din t during [t, t + ∆t] is generated by the above probability. An example of sensirng data every minute ∆t = 1min is practical in some applications such as indoor wireless sensor network in a printing factory [START_REF] Doherty | Channel-Speci c Wireless Sensor Network Path Data[END_REF] where a single sensing data packet is generated every 28 seconds, i.e., about 2 packets per minute. Without any data processing, the data incoming rate to the TX bu er d in t is equal to din t .

Sense-and-Compress Workload Model

When the temperature data is considered, the sensing interval is typically regular and the value changes slowly; thus, storing all the sensed data may be highly redundant. Zero-Order-Hold (ZOH) is a compression method that stores sensed data if its value di ers from the previous one by a threshold ∆ t [6]. The value of the threshold changes the trade-o s between the compression and the information loss rate that are determined by the required QoS. If g(•) is a function that represents the conversion rate due to the data compression, the rate d in t is:

d in t = g( din t ) (2.2) 
This function can easily be integrated as an embedded co-processor next to the sensors, or a software algorithm. An example of the workload as a result of the ZOH compression can be seen in Section 2.1.3.

Data Bu er Model

In this manuscript, an embedded sensor is assumed to generate data that are compressed if needed and then stored into the TX bu er for future transmissions (see Figure 2.1). We consider a TX bu er with maximum capacity B max . The bu er stores data that are newly generated or that require retransmission because of sending issue. The State-of-Bu er (SoB) φ SoB t of the current bu er level B t is de ned as:

φ SoB t = B t B max (2.
3)

The evolution of the bu er level, shown in Eq (2.4), is in uenced by the rate of data arrival and by the successfully transmitted data, d in t and d out t :

B t+1 = max (min (B t + d in t -d out t , B max ), 0) (2.4) 
The variable d out t is the TX rate that changes according to the duty-cycle and wireless channel quality, which will be discussed in the next subsection.

Wireless Link Quality and Packet Transmission

The sensed and processed data must be successfully transmitted to deliver high-level applications and services. Each IoT node usually communicates through wireless sensor networks, which is often prone to data losses and errors due to highly transient channel conditions: the transmitted data not only su er energy dissipation due to distance-dependent path-loss, but they also su er from shadowing e ects caused by large-scale obstacles encountered by the electromagnetic wave that attenuate the signal through absorption, re ection, scattering, and di raction [START_REF] Goldsmith | Wireless Communications[END_REF]. Furthermore, any movement either of the node or of people or objects in the vicinity of the node can cause signal fading that a ects the channel quality greatly. As a result, the quality of a wireless link, measured as packet error rate (PER), can be highly changing.

Referring to Figure 2.1, to properly evaluate the algorithms in simulation, we need a channel model able to relate output power P tx t to PER for a chosen node deployment scenario For example, this scenario could consist of constant node-to-sink distance with variable shadowing and no fading, or xed node/sink positions (hence, constant distance and shadowing e ect) but with mobility-induced fading. Many such models are available in the literature including analytical models that are based on real-world measurements [START_REF] Zuniga | Analyzing the transitional region in low power wireless links[END_REF]. Such models are ideal for running realistic simulations.

Pathloss and Shadowing Model

In the present work, we employ a channel model presented in [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF]. In this model, the relationship between the transmitted and received power is determined using the distance d between a transmitter and a receiver. With total channel loss (in dB) denoted P L(d), this is given by:

P rx (dBm) = P tx (dBm) -P L(d)(dB) (2.5)
In [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF], a combined path-loss and shadowing model [START_REF] Goldsmith | Wireless Communications[END_REF] in outdoor environment is assumed in which the total channel power loss:

P L(d) = K P L + 10 • η log 10 d d 0 + ψ shadow (2.6)
where ψ shadow is a Gaussian-distributed random variable with mean zero and variance σ 2 ψ shadow that represents the shadowing coe cient, whereas K P L , η, and d 0 characterize the distance dependent path-loss: K P L is a unit-less constant determined by antenna characteristics and the average channel attenuation, η is the path-loss exponent, and d 0 is a reference distance. K P L is computed with:

K P L = -20 log 10 c 4πd 0 f (2.7)
with c the speed of light and f the wireless carrier frequency.

The Received Signal Strength Indicator (RSSI) is a feedback measurement calculated on the receiver side that indicates how good the wireless link condition is. The RSSI value that is fed to the control algorithm proposed by [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF] is found using Eq (2.5). The authors assume that the RSSI value is measured by the sink node and is sent back (i.e., piggybacked) in the acknowledgement packet to the emitting node. As described in [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF], several embedded models are used to deduce P rx from the RSSI value, then deduce SNR from P rx , then deduce the bit error rate (BER) and nally PER from the estimated SNR. These models are either theoretical models or they are obtained using calibration data. In our approach, these models are not embedded onto the EH-IoT system. These equations are only used in our simulation to calculate the PER which is then used in a random draw that controls whether or not a given transmission is successful or not. This information is used to nd d out (t).

Power Consumption Model

Depending on the wireless protocol, di erent controllable variables exist such as the dutycycle, the output power, the modulation scheme, the spreading factor, the bandwidth, and the cyclic redundancy check.

In this work, we assume a continuous duty-cycle control of a CC2500 transceiver module whose output power is xed to +1 dBm that consumes 21.5 mA according to the datasheet [START_REF]CC2500 Low-Cost Low-Power 2.4GHz RF Transceiver[END_REF]. Considering the nA and mA order of magnitude for the current in deep-sleep mode and in active mode, the impact of TX duty-cycle control is much larger than the one of TX output power control.

We assume that the cycle period T cycle = 1 min consists of the active time T active and the sleep time T sleep . The TX duty-cycle D t is de ned as the ratio of T active to T cycle :

T active = D t • T cycle (2.8)
Taking into account η act and η slp that are the e ciency of the DC-DC regulator in active and sleep mode [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF], respectively, the TX power consumption during a cycle P cycle is expressed as:

P cycle = P active η actice • D + P sleep η sleep • (1 -D) (2.9)
where P active is the power consumption in the active mode, and T active is composed of the sum of time-on-air of frame TX and acknowledgements (RX) [START_REF] Urard | A selfpowered IPv6 bidirectional wireless sensor amp; actuator network for indoor conditions[END_REF]. Note that the transceiver wake-up time overhead [START_REF] Urard | A selfpowered IPv6 bidirectional wireless sensor amp; actuator network for indoor conditions[END_REF] is therefore ignored in this manuscript. T ack denotes the time required to receive an acknowledgement packet: it is assumed to be equal to the time-on-air of the acknowledgement frame. Under these assumptions, P active is obtained by:

P active t = P tx • (1 - T ack T active ) + P rx • T ack T active
(2.10)

where P tx and P rx are the power consumption during packet transmission and acknowledgement reception, respectively. In this work, we assume 20 bytes for an acknowledgement packet sent on a minute basis. Note that the acknowledgement packet could also be assumed to be 1 bit, as in [START_REF] Pottier | Q-Learning Based Adaptive Channel Selection for Underwater Sensor Networks[END_REF]. A combined path-loss and shadowing model [START_REF] Goldsmith | Wireless Communications[END_REF] in outdoor environment is assumed, but we opt for constant output power +1dBm throughout the whole manuscript, with which the packet error ratio is mostly zero all the time.

While the overall power consumption of an IoT node typically comprises sensing, processing and communication power [START_REF] Zhang | Harvesting-Aware Energy Management for Time-Critical Wireless Sensor Networks With Joint Voltage and Modulation Scaling[END_REF], only the last one was considered in our simulations. Note that the same assumption is also made in [START_REF] Masadeh | Look-Ahead and Learning Approaches for Energy Harvesting Communications Systems[END_REF]. This assumption holds for some applications: in monitoring the environment both indoors (e.g., detecting human motions in a house [START_REF] Dekimpe | A Battery-Less BLE IoT Motion Detector Supplied by 2.45-GHz Wireless Power Transfer[END_REF]) and outdoors (e.g., exploration into the unknown world [6]), sensing motions and temperatures, for example, are not costly, consuming 290nW for a duty-cycled motion sensor (merely 5.5µW even in active mode) or < 150nW at 0.66V for a temperature sensor when sampling up to 1ksamples/s.

With regard to the MCUs, researchers embed ultra-low-power processors into on-demand part of the system-on-chips [START_REF] Lallement | A 2.7pJ/cycle 16MHz SoC with 4.3nW power-o ARM Cortex-M0+ core in 28nm FD-SOI[END_REF][START_REF] Miro-Panades | SamurAI: A 1.7MOPS-36GOPS Adaptive Versatile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up Time and 1.3TOPS/W ML E ciency[END_REF] to save energy. According to [START_REF] Lallement | A 2.7pJ/cycle 16MHz SoC with 4.3nW power-o ARM Cortex-M0+ core in 28nm FD-SOI[END_REF], the total power consumption of their SoC integrating Cortex M0+ in FDSOI 28nm technology, for instance, are 42.8µW, 20.1µW and 0.7µW in case of Active/Sleep/Deep Sleep mode, respectively. Similar characteristics can be seen for di erent technology as well as di erent cores such as Cortex-M3 [START_REF] Salvador | A Cortex-M3 Based MCU Featuring AVS with 34nW Static Power, 15.3pJ/inst. Active Energy, and 16Temperature[END_REF] and Risc-V processors [START_REF] Davide Schiavone | Slow and steady wins the race? A comparison of ultra-low-power RISC-V cores for Internet-of-Things applications[END_REF][START_REF] Uytterhoeven | A sub 10 pJ/cycle over a 2 to 200 MHz performance range RISC-V microprocessor in 28 nm FDSOI[END_REF].

An example of transceiver is CC-2500 transceiver which only consumes 900nA in sleep mode and this gure increases up to tens of mA in active mode: 21.5mA for +1dBm [START_REF]CC2500 Low-Cost Low-Power 2.4GHz RF Transceiver[END_REF].

Under 1.8V, the transceiver consumes 36mW and 1.62µW in active/sleep mode, respectively. We can make a similar observation with another transceiver for LoRaWAN protocol [START_REF]LoRaWAN 868 MHz BAND TRX MODULE[END_REF], which becomes a popular solution nowadays. The TX power consumption can therefore be higher than those of sensing and processing, as it is also reported in the literature [START_REF] Fafoutis | Extending the battery lifetime of wearable sensors with embedded machine learning[END_REF].

We are aware that it may not be the case with edge-oriented applications where processing is moved from the cloud to the edge. Nevertheless, we speci cally focus on cloud-oriented applications where sensed raw data are transferred or only low-cost processing such as ZOH data compression [6] is involved before transmissions.

We address the adaptive control algorithm whose implementation induces power consumption. However, our work, at least in its rst stages, neglects the power consumption overhead of the proposed actor-critic-based controller that is evaluated as software for RISC-V cores in Section 4.3.2 and as a hardware component in Section 5.3. Note that, as will be reported later on, this assumption holds in our study, since the RTL simulations show that a single update, i.e., action-decision loop only consumes around 146.5nJ during 3.1ms of execution time (i.e., about 47µW), which can be negligible compared to the TX.

We justi ed the neglection of power consumption of sensing, processing and proposed control algorithm. As a result, the power consumption for the adaptive controller is optimistically estimated in the algorithm. Nevertheless, whatever the power consumption it may be, our proposed algorithm does not take into account the energy ow but the current SoC level only, and therefore, it can optimize the action accordingly anyway.

Energy-Harvesting and Storage

Energy-harvesting enables gaining renewable energy from the nature. Various harvesters already exist in the literature, e.g., photovoltaic cells for solar and indoor lights [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF], wind turbines [START_REF] Jushi | Wind Energy Harvesting for Autonomous Wireless Sensor Networks[END_REF][START_REF] Sharma | Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems[END_REF], vibration-based piezoelectric [START_REF] Chamanian | Implementation of Energy-Neutral Operation on Vibration Energy Harvesting WSN[END_REF][START_REF] Erdem | On the Lifetime of Compressive Sensing Based Energy Harvesting in Underwater Sensor Networks[END_REF], wireless power transfer [4,[START_REF] Dekimpe | A Battery-Less BLE IoT Motion Detector Supplied by 2.45-GHz Wireless Power Transfer[END_REF], body thermal, and other kinds. Each one presents di erent characteristics in terms of size, amount and stability of harvested energy, and e ciency. Sha k et al. illustrate the four major di erent harvesting traces [START_REF] Sha | Real-Power Computing[END_REF] as in Figure 2.2. For instance, the solar harvesting exhibits a macro- scale transition between day and night and a micro-scale sporadic uctuation within the day due to obstacles such as shades and clouds, whereas the wind harvesting is rather sporadic in both macro-and micro-scale, while the vibration made by machines uctuates periodically at a short interval, and the body thermal is quite constant. In this study, solar energy harvesting is considered during simulation tests. The following subsections therefore explain each harvesting model used in the simulations.

Solar Harvesting Model

The scavenged power P harv t is linearly proportional to the solar irradiance level and is formally calculated by:

P harv t = η • A • T F • I t (2.11)
with the solar irradiance I t [W/m 2 ], the size of the photovoltaic (PV) cell A[m 2 ], the conversion e ciency (rate) η, and the tracking factor (T F ) of maximum power point tracking [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF]. Note that the solar irradiance should represent the global horizontal irradiance and this equation also holds for the indoor lights. In terms of order of magnitude of scavenged energy, a standard o -the-shelf solar cell [35] can produce microwatts and milliwatts for indoor and outdoor light, respectively, per cm 2 .

Supercapcitor Model

Several battery types exist and come with di erent characteristics. The comparison of di erent battery types is provided in Table 2.1. As can be seen, the number of maximum charge cycles of a Li-ion battery is quite small (when compared to the other solutions given in the Table ) and its lifetime is up to ve years despite its high energy density and low self-discharging rate.

By contrast, an electrolytic capacitor is at the opposite end of the spectrum: longer lifetime and unlimited number of maximum charge cycles are advantageous at the cost of lower energy density and huge self-discharge. As such, a supercapacitor is considered an optimal solution as an energy storage device in energy-harvesting applications because of the well-balanced tradeo s among physical lifetime, energy density, maximum charge cycles, and self-discharging rate [START_REF] Dekimpe | A Battery-Less BLE IoT Motion Detector Supplied by 2.45-GHz Wireless Power Transfer[END_REF]. Let E max and E f ail denote the maximum and minimum (i.e., failing-threshold) energy levels that relate to the maximum and minimum voltage level V max and V min , respectively. The state-of-charge (SoC) of the residual energy E t is represented as:

φ SoC t = E t -E f ail E max -E f ail (2.
12)

The evolution of the energy level depends on the harvested energy e h t and the consumed energy e c t :

E t+1 = max (min (E t + e h t -e c t , E max ), 0) (2.13)
Note that severe self-discharging is a well-known issue in supercapacitors. Indeed, the selfdischarge rate τ during time ∆t can be up to 20% per day [START_REF] Dekimpe | A Battery-Less BLE IoT Motion Detector Supplied by 2.45-GHz Wireless Power Transfer[END_REF]. With its capacity C and voltage level V t , the leak power P leak due to self-discharging is given by:

P leak = 1 2∆t C(1 -τ 2 )V 2 t (2.14)
In the simulations, ∆t is equal to 1 min, and the discharging rate is τ = 0.8 1 1440 , which stands for 20% per day.

Three harvesting schemes exist in simulation study, namely, harvest-use, harvest-storeuse [START_REF] Masadeh | An Actor-Critic Reinforcement Learning Approach for Energy Harvesting Communications Systems[END_REF][START_REF] Qiu | Deep Deterministic Policy Gradient (DDPG)-Based Energy Harvesting Wireless Communications[END_REF], and harvest-use-store [START_REF] Liu | Harvesting-Aware Power Management for Real-Time Systems With Renewable Energy[END_REF][START_REF] Yuan | Optimal Harvest-Use-Store Strategy for Energy Harvesting Wireless Systems[END_REF][START_REF] Christmann | Bringing Robustness and Power E ciency to Autonomous Energy-Harvesting Microsystems[END_REF]. In the rst scheme, no energy storage is considered and the harvested energy is directly used; thus, the unused energy will be lost. The harvest-store-use scheme assumes that the energy required for operations can be drawn only from the battery and that the scavenged energy is exclusively used to recharge the battery. Alternatively in the harvest-use-store scheme, the harvested energy can be directly used to power the system, while overhead is used to charge the battery. If necessary, energy may be drawn out of the battery to complete the system energy needs. This strategy provides high energy e ciency and implementation of this scheme becomes realistic nowadays. As such, we employ the harvest-use-store scheme in this work.

Application Scenarios

In the context of EH-IoT, many variants of architecture of a node can be implemented. Moreover, several surrounding environments can be considered. Thus, a myriad of application scenarios exists. This section summarizes the sense-and-transmit scenario (SAT hereafter) as the base one, and extends this to the compress-and-transmit (CAT hereafter). Both scenarios are now described and will be used in this manuscript. Unless otherwise mentioned, the values given below hold throughout the manuscript.

The SAT is comprised of the following elements:

-the time slotted system (explained in Section 2.1.1) is considered and the control update interval (CUI) is T cui = 30min. The intervals of other dynamics such as workload and wireless conditions are basically 1min; -for the PV cell model, we set the cell area A, conversion e ciency η, and tracking factor T F at 2.5 cm 2 , 10%, and 96.3%, respectively [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF]. Note that we use the real-life solar irradiance data provided by Oak Ridge National Laboratory (ORNL) [START_REF]Oak Ridge National Laboratory (RSR) Daily Plots and Raw Data Files[END_REF]; -the self-discharge of a supercapacitor whose capacitor size is 1F is considered 20% per day (see details in Section 2.1.2.2). The harvest-use-store scheme is adopted [START_REF] Liu | Harvesting-Aware Power Management for Real-Time Systems With Renewable Energy[END_REF][START_REF] Yuan | Optimal Harvest-Use-Store Strategy for Energy Harvesting Wireless Systems[END_REF][START_REF] Christmann | Bringing Robustness and Power E ciency to Autonomous Energy-Harvesting Microsystems[END_REF] to provide high energy e ciency; -the wireless link quality is under the in uence of path-loss and shadowing; -the workload follows the Poisson distribution. The average rate doubles after the rst six months. This will challenge our proposed algorithms with respect to fast adaptability/reactivity. More precisely, the system receives the average of 1.0 pkt/min during the rst six months, and it impulsively becomes twice (2.0 pkt/min) afterwards.

The CAT is di erent from the SAT in the following points:

-as the sensed data, we employ real-life temperature data provided by ORNL [START_REF]Oak Ridge National Laboratory (RSR) Daily Plots and Raw Data Files[END_REF]. The sensing interval equals one minute; -we applied the cubic spline interpolation to create more ne-grained pseudo data in such a way that the sensing rate is assumed to be constant as 6.0pkt/min; -the resolution of the sensed data is assumed to be 16 bits; -the sensed data (e.g., temperature data) are then compressed using the ZOH algorithm with the threshold ∆ t = 0.01°C.

The resultant workload both in summer and in winter are illustrated in Figures 2.3. Note that the number of generated data are smoothed by exponentially weighted moving average (EWMA) using decay rate 0.1 for clear visibility. We can observe heavier workload during daytime (i.e., from 6h to 18h) and lighter one during nighttime (i.e., from 18h to 6h), regardless of the season. In summer, the average amount of data generated is 4.34 while it equals 2.98 in winter during daytime. The nighttime sees less di erence between summer and winter: 2.87 and 2.27, respectively. Some exceptions are observed in the gures: the amount moves around 3.5 at midnight on July 5th, while it drops below 2.0 on July 8th. On January 9th, the data rate signi cantly declined to 1.0 during daytime and then increases up to the same amount around midnight, which is 3.0, as noon. Exponentially weighted moving avg. (decay rate: 0.1) In each simulation study presented below, we specify which scenario and which dataset were used by the notation, SAT or CAT, and EHD1, EHD2 or EHD3, respectively. The use of EHD2 and EHD3 is justi ed in Sections 3.3 and 3.4.1.

Preliminaries to Research on Adaptive Controllers for EH-IoT Nodes

As discussed in the previous subsections, an EH-IoT node experiences various uncertainties in its environment such as harvested and consumed energy along with wireless link quality and sensing/processing workload. Ideally, EH-IoT nodes never stop operating, i.e., the power demand and supply should better be balanced while satisfying the QoS requirements. However, as discussed in the previous subsections, an EH-IoT node experiences various uncertainties in its environment such as harvested and consumed energy along with wireless link quality and sensing/processing workload. This makes it di cult to design such an adaptive controller.

To answer this challenge, AI technology has been already introduced to EH-IoT nodes in the literature to create a smart adaptive controller.

To begin with, as a common strategy for energy management, the researchers take into consideration the standard concept of "energy neutral operation" (ENO) [START_REF] Kansal | Power management in energy harvesting sensor networks[END_REF] where:

1. Harvested and consumed powers, P h t dt and P c t dt, must have the same mean/average during a certain period of time T ; 2. the residual battery, or the voltage level V t , never falls below a failing voltage threshold V min .

These energy neutral operation (ENO) conditions (or constraints) are mathematically expressed as:

∀t, V t ≥ V min (2.15) ∀n, ∃T , nT (n-1)T P h t dt = nT (n-1)T P c t dt (2.16)
Satisfying these conditions enables the nodes to operate perpetually. is the main objective of the literature. The complexity and scalability of the algorithms vary greatly, depending on the available resources, the implementations, the node architecture and the application scenarios.

With respect to the resources, the end node MCUs, based on processor cores such as RISC-V and Cortex-M series, consume power in µW order of magnitude [START_REF] Lallement | A 2.7pJ/cycle 16MHz SoC with 4.3nW power-o ARM Cortex-M0+ core in 28nm FD-SOI[END_REF][START_REF] Salvador | A Cortex-M3 Based MCU Featuring AVS with 34nW Static Power, 15.3pJ/inst. Active Energy, and 16Temperature[END_REF][START_REF] Davide Schiavone | Slow and steady wins the race? A comparison of ultra-low-power RISC-V cores for Internet-of-Things applications[END_REF], and therefore, the algorithmic overhead of the controller should ideally be less than or equal to the µW range, which this work also targets. Note that the choice of sensors, processors, transmitters and harvesters in their sizes and types should rather be exibly addressed with few algorithmic overheads for the EH-IoT context.

For the controller outcome, various "actions" can be considered such as the sensing frequency [START_REF] Fafoutis | Extending the battery lifetime of wearable sensors with embedded machine learning[END_REF][START_REF] Prauzek | Q-Learning Algorithm for Energy Management in Solar Powered Embedded Monitoring Systems[END_REF], data compression threshold [6,[START_REF] Hakami | An optimal policy for joint compression and transmission control in delay-constrained energy harvesting IoT devices[END_REF], processor voltage and frequency [START_REF] Zhang | Harvesting-Aware Energy Management for Time-Critical Wireless Sensor Networks With Joint Voltage and Modulation Scaling[END_REF][START_REF] Fletcher | Power neutral performance scaling for energy harvesting MP-SoCs[END_REF], transmission (TX) channel [START_REF] Pottier | Q-Learning Based Adaptive Channel Selection for Underwater Sensor Networks[END_REF], TX duty-cycle [START_REF] Masadeh | An Actor-Critic Reinforcement Learning Approach for Energy Harvesting Communications Systems[END_REF][START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF], TX output power [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF], and many others. For example, one application use case can be to modulate the TX output power for periodic sensing workload and to rely on indoor lights for harvesting. Another one can be to control both the output power and the duty-cycle for non-periodic workload and the node harvests both solar and wind energy while it is surrounded by many obstacles that may change the harvesting e ciency and wireless link quality. Adaptive sensing is another situation that requires saving energy and yet collecting as many valuable information for longer duration as possible.

As such, a number of environmental combinations diversi es the application use cases. The next section therefore summarizes di erent solutions for the adaptive controller that are proposed in the state-of-the-art. We also concisely explain our di erences and contributions. Business forecasts expect, in near future, a lot of EH-IoT nodes to be deployed in di erent environments, thus, experiencing various uncertainties. In such situations, these devices will manage the demand and supply of both data and energy on their own, so that, in a "best e ort way", they will constantly meet the required QoS while they will never stop operating until their physical lifetime is over.

State-of-the-Art on Adaptive Controller

The literature proposes various power managers to achieve such a goal. Since the main focus in the present work is on the algorithm aspects for the power manager, the summary of the existing solutions is categorized into two classes: statistical and machine learning approaches (SM), and reinforcement learning (RL) ones. The review considers that the former approach is based on thresholds, design points and/or prediction models obtained by o ine analysis, or more broadly, any method that di ers from RLs, whereas the latter is independent of such statistics and learns parameters of the controller to optimize the next action with no a priori knowledge, i.e., with no use of o ine analysis. All the prior arts introduced below are summarized in Table 2.2. For readability, Table 2.3 shows all the notations used for the Action column.

Statistical methods and Machine Learning

We now shortly analyze the state-of-the-art related to adaptive controllers based on statistics and machine learning used mainly o ine.

Ju et al. [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF] propose the joint optimization of the TX duty-cycle and output power to achieve the energy neutral operation (ENO) conditions and to minimize the energy consumption of transmission, including re-transmissions. They use the prediction of the solar energyharvesting that is made in every 30 minutes, which may induce huge prediction errors for the optimal voltage level based step-wise control algorithm that is activated every 10 minutes. A discrete action space is assumed, which can be a limit for applications that require continuous spaces. Note that our algorithm deals with the continuous spaces of the state and the action.

Castagnetti et al. [START_REF] Castagnetti | A Joint Duty-Cycle and Transmission Power Management for Energy Harvesting WSN[END_REF] pre-de ne a threshold for the scavenged energy to decide if the energy budget is su cient or not. Their algorithm alters the decision of the next TX duty-cycle when the threshold is crossed. The modulation of the TX output power is also considered using a RSSI target point set o ine according to energy constraints. To this end, the RSSI measurement and its estimation using EWMA are supposed, which are error-prone.

In [START_REF] Zhang | Harvesting-Aware Energy Management for Time-Critical Wireless Sensor Networks With Joint Voltage and Modulation Scaling[END_REF], the joint optimization of dynamic voltage/frequency scaling (DVFS) and dynamic modulation scaling (DMS) of wireless communication with latency and energy constraints is addressed to maintain su cient battery level across nodes. Their method, however, assumes a "reasonably" predictable energy-harvesting. Their predictions are made every 15 minutes for water-ow harvesting, but other harvesters such as solar and wind harvesting may require more ne-grained predictions, which end up with more computations.

Ashraf et al. [START_REF] Ashraf | Combined Data Rate and Energy Management in Wireless Sensor Networks with Energy Harvesting Capability[END_REF] also use the prediction of harvested energy in the control of both the energy and data queue by controlling the TX rate. Their approach is based on pre-de ned reference levels, and the energy output and the incoming data rate are adjusted to achieve the convergences to these levels. Although the prediction error is taken into account, they show mathematically that the tracking accuracy is bounded by the error. Also, they introduced a linear model between the energy budget and the TX data rate, but the learning of the linear coe cient is not addressed. Our method is independent of predicting harvested energy and automatically learns the relationship between the TX data rate (precisely, duty-cycle) and the states of both data queue and energy.

The authors of [START_REF] Qiu | Lyapunov Optimization for Energy Harvesting Wireless Sensor Communications[END_REF][START_REF] Hu | Lyapunov-Optimized Two-Way Relay Networks With Stochastic Energy Harvesting[END_REF] formulated an optimization problem with some constraints and solve it using Lyapunov optimization method. They require an energy-harvesting model established o ine for predictions with pre-de ned target energy levels. Moreover, a non-convex problem is di cult and costly to solve, with possibly multiple optima. In Section 2.3.1, we will illustrate how the prediction errors may degrade the control accuracy and the lightweight design concerns. Note that our solution do not require design-time prediction of any variable.

In [START_REF] Xiao | Full-duplex machine-to-machine communication for wireless-powered Internet-of-Things[END_REF], a stochastic game-based model is established for the interactions between the TX and the RX. A Markov strategy is used to choose the TX power and whether RX conducts a wireless power transfer to supply energy with TX for maximizing the long-term payo , i.e., the TX rate. However, this solution assumes the observation of the residual energy in the battery, the channel gains of both TX and RX, and self-interference of the RX. The transmission data are also assumed to exist at all time. Note that our solution does not assume any data exchange between the TX and the RX, except for the acknowledgement packets. The nite capcity of data queue is considered in our study.

A time-varying utility-aware hybrid approach of reactive and predictive algorithm is intro-duced in [START_REF] Geissdoerfer | Getting More Out of Energy-harvesting Systems: Energy Management under Time-varying Utility with PREAcT[END_REF] to grapple with the potential prediction errors. Their approach uses a userde ned utility function and the one-year ahead predictions of daily harvested energy to derive the SoC target value for the next day at the end of each day. The expected deviation between the target SoC and the sum of the current SoC level and the predicted harvested energy is fed to a PID controller to nd the next duty-cycle. However, the predictions of harvested energy must be prepared for a single node at design-time, which can be costly in case of deploying multiple nodes.

Roose et al. [6] proposed a hardware solution for a sense and compress application. Their method loads tuning parameters obtained by o ine evolutionary algorithm onto statistics (sample variance)-based runtime control. This reduces the online resources, but the run-time adaptability might not be enough in the case of unexpected events that were not in the training dataset.

Chamanian et al. [START_REF] Chamanian | Implementation of Energy-Neutral Operation on Vibration Energy Harvesting WSN[END_REF] deal with the energy neutral operation (ENO) by the self-adjustment of duty-cycle using vibration-based harvesters. More precisely, the time-interval between two consecutive transmissions is modulated. Their method is also based on several energy thresholds to address and control each energy level.

Bhat et al. [START_REF] Bhat | Near-optimal energy allocation for self-powered wearable systems[END_REF] introduced a hardware component for a nite-horizon energy management framework to solve the linear programming used in the power manager with the help of relaxed Karush-Kuhn-Tucker (KKT) conditions in adapting the system duty-cycle of a wearable device. They also present a run-time simplex algorithm that addresses the linear programming with energy-accuracy trade-o s [START_REF] Bhat | REAP: Runtime Energy-Accuracy Optimization for Energy Harvesting IoT Devices[END_REF]. However, 24 design points on the Pareto-front are created at design-time, which is hard to scale up to multiple applications.

Vigorito et al. [START_REF] Vigorito | Adaptive Control of Duty Cycling in Energy-Harvesting Wireless Sensor Networks[END_REF] formulated a linear-quadratic problem by de ning the ENO-Max condition in the TX duty-cycle modulation. Their method is lightweight, model-free, and agnostic of prior knowledge on energy-harvesting. Nonetheless, a performance term based on the data queue as well as its constraint(s) cannot be taken into account.

The solutions presented above require the implementation of costly adaptation methods (e.g., based on optimization algorithms). Moreover, they do not easily scale to various scenarios encountered by each IoT node because they require o -line adaptation. In the present work, we will address these drawbacks via the use of RL.

Reinforcement Learning

Basics on Reinforcement Learning

Unlike statistical methods and machine learning, reinforcement learning (RL) [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] is an online self-adaptive algorithm that aims at nding an optimal action in each situation. The reward that represents how optimal the previous action was is used to learn RL instead of providing expected outputs for training as in supervised machine learning.

To establish a model that can predict the behaviors of the environment, we must collect them as trainig data. However, since each node experiences many di erent uncertainties in the environment, it is unrealistic and impractical to prepare such a prediction model. On the other hand, RL algorithms learn such behaviors through the interactions with the environment. Hence, RL seems a suitable choice to grapple with many di erent stochastic situations each node will experience at run-time in real-world operations. An introduction to RLs is rstly given below, followed by the related work concerning the power management of EH-IoT nodes based on the RL methods.

Markov Decision Process

In RL, a nite Markov Decision Process (MDP) is considered. In this framework, a decision maker (named an agent) interacts continually with the surroundings (the environment) at each discrete time interval. The interactions of both parts are illustrated in Figure 2.5. We consider that the agent takes an action a t from a feasible action set A based on its policy π(a|s) when the environment is in a state s t from a state set S. If the policy, which can be either deterministic or stochastic, is optimal, then the selected action will also be optimal. As a result of the action, the environment state transitions to a new state s t+1 and returns to the agent a reward r t+1 = f (s t , a t , s t+1 ). Since the reward indicates the goodness of the action, it helps nd the (more) optimal policy. The MDP procedure is expressed as follows:

s 0 a 0 → r 1 s 1 a 1 → r 2 s 2 a 2 → r 3 ... (2.17)
The goal of RLs is de ned as maximizing the expected total rewards from the present to the future. Finding the optimal policy using the obtained rewards thus far will improve the rewards in the future and help achieve this goal. The future discount factor γ ∈ [0, 1] is introduced to put more weights in the near future, since the events closer to the present time are generally more important. The expected total future-discounted reward G t is then de ned as:

G t = r t+1 + γ • r t+2 + γ 2 • r t+3 + ... = r t+1 + γG t+1 (2.18)
The total reward G t depends heavily on the current state s t and on the action a t ; in other words, the policy π(a|s) a ects G t . Under the policy π(a|s), the expectation of G t when starting from s t = s and when starting from (s t , a t ) = (s, a) are de ned as the state value function V π (s) and the state-action value function Q π (s, a), respectively:

V π (s) = E π [G t |s t = s, π] (2.19) Q π (s, a) = E π [G t |s t = s, a t = a, π]
(2.20)

The former represents how valuable the state is, while the latter indicates how valuable the action under that state is. Since these values are expectations, the di erence of the two can be used to see if the action is better than the average or not. Note that this di erence is known as the advantage function. This di erence information can be used to evaluate and improve the optimality of the current policy. Nonetheless, these values are practically impossible to calculate, since the future is unforeseeable. Hence, we need to estimate the value functions as accurately as possible. To this end, we leverage the Bellman equation. The following discussion does not focus on the state-action value function Q π , but on V π for brevity, as we can use the same procedure for both.

Bellman Equation

We consider the state transition probability p(s , r|a, s) that expresses the dynamics that the state changes from s to s by action a while getting reward r. In other words, a state transitions probabilistically to many di erent states even with the same action, and the amount of the reward also changes accordingly. By exploiting the recursive relationship, we hold:

V π (s) = E π [G t |s t = s] = E π [r t+1 + γG t+1 |s t = s] = a π(a|s) s ,r p(s , r|s, a) [r + γV π (s )] (2.21)
This equation is called Bellman equation for V π . If V π (s) ≥ V π (s) holds for all the states s ∈ S, then π ≥ π . When the policy π is better than or equal to all other policies, π is the optimal policy π * . With the optimal policy, we have the optimal value function as well:

V * (s) = max π V π (s) (2.22)
Hence, maximizing the total reward corresponds to nding the best policy that leads to higher rewards. At this point, the RL goal can be re-de ned: it consists of two purposes:

1. nd the optimal policy π * ;

2. estimate the value function v π accurately under a certain policy.

In theory, the optimal policy should know the best action at each state. Since V π (s) is the expectation of Q π (s, a) over all the actions, V * (s) is equal to Q * (s) with the best action:

V * (s) = max a Q π * (s, a) = max a E [r t+1 + γV * (s t+1 )|s t = s, a t = a] = max a s ,r p(s , r|a, s) [r + γV * (s )] (2.23)
This latter equation is the Bellman optimality equation for V * that can be approximated and used to learn V π (s) at run-time through the interactions with the environment.

Value Function and Policy

We must seek the optimal policy and the precise estimate of the value function under the following two conditions:

1. the reward for each state-action pair is unknown;

2. the state transition probability is unknown.

To estimate the value function, three main approaches exist: dynamic programming (DP) [START_REF]Dynamic Programming and Optimal Control[END_REF], Monte Carlo (MC) methods and Temporal Di erence (TD) learning [START_REF] Sutton | Learning to predict by the methods of temporal di erences[END_REF].

In DP, we approximate (2.23) and obtain an iterative update rule:

V k+1 (s) = E π [r t+1 + γV k (s )] = a π(a|s) s ,r p(s , r|s, a) [r + γV k (s )] (2.24)
where V k is the estimated value function for V * (s) at time k. The convergence of the sequence V k as k → ∞ is guaranteed since the sequence is based on the same policy π. Meanwhile, the value function helps evaluate the policy goodness and nd better policies. This iterative method, however, requires sweeping all the states in each iteration along with the perfect model of the environment, i.e., its dynamics p(s , r|a, s), which is unrealistic.

MC methods, on the other hand, take average of some samples of G t as an estimate of Q * (s, a) with no assumption of such a perfect model. Since the estimate is made from the samples, the policy must be stochastic to, instead of exploiting the currently best action, explore a potentially non-optimal action for avoiding a local optima. That is, the policy may not be fully learned, so that the current best action may not be the optimal and the other actions need exploring to optimize the policy and to nd the real best action. The con icting objectives are known as the exploitation-exploration trade-o s (EETs), since such an exploration may either lose the opportunity for more rewards or nd the better actions. The downside is that getting samples of G t for the estimation of Q * (s, a) is time-consuming, since calculating a single G t that requires all the rewards from time t until termination of the algorithm must be conducted multiple times.

TD learning incorporates the advantages of both DP and MC methods. It learns from actual experiences like MC methods and updates the estimates at run-time based on the observation of only the next time step like DP algorithms. This single-step update based on real-life interactions with the environment is convenient and practical. Therefore, it is typically used for most of the RL methods. Eq. (2.24) gives the target value r t+1 + γV (s t+1 ) for the old estimate V (s t ), instead of G t in MC methods. Hence, in its simplest form, we have the following update rule of TD learning:

V (s t ) ← V (s t ) + α • δ t+1 (2.25) δ t+1 = r t+1 + γV (s t+1 ) -V (s t ) (2.26)
where δ t is the TD-error and α is the learning rate. Note that the TD-error can be expressed using the state-action value Q(s t , a t ) instead of V (s t ).

δ t+1 = r t+1 + γQ(s t+1 , a t+1 ) -Q(s t , a t ) (2.27)
In this way, getting samples from the interactions with the environment helps the agent capture information about the reward and state transition probability to learn the policy and the value function. Again, today's most RL methods are based on TD learning, as it can learn them at each time step, which is e cient and practical in real-life operations. Now we will look into several RL algorithms.

Reinforcement Learning Algorithms

When learning the estimate of the value function V (s), the relationships between the input and the output can be parameterized by function approximations illustrated in Figure 2.6. As an example, in Q-learning [START_REF] Watkins | Q-learning[END_REF] and SARSA [START_REF] Rummery | On-line Q-learning using connectionist systems[END_REF], the corresponding function for the value function is a table that links state-action pairs and state-action values (known as Q-values). Since this Q-learning is based on a table, it is also called a tabular Q-learning. If an action at a state leads to a more valuable state, we can naturally assume that the action is also as valuable.

The idea of Q-learning is that the expectation term Q(s t+1 , a t+1 ) in Eq (2.27) is replaced by the currently estimated maximum Q-value at the next state max a Q(s t+1 , a). The Q-values are updated based on TD-errors as follows:

Q(s t , a t ) ← Q(s t , a t ) + α r t+1 + γ max a Q(s t+1 , a) -Q(s t , a t ) (2.28) 
Theoretically, if we keep exploiting the most valuable action at each state, the total accumulated reward will be the optimal. However, such values are only the "estimates", and therefore, that action may be sub-optimal. The accuracy of the estimation should be improved by more samples. This leads to, as discussed, the EETs. To solve the EETs, the -greedy policy is typically employed in Q-learning that exploits the currently optimal action with probability 1and explores non-optimal ones with probability .

a t = arg max a∈A Q(s, a) with probability 1 - ∼ U (A) with probability (2.29)
where U (A) is a uniform distribution over the action set A. The value is typically set to 0.01 or 0.05 as its simplest design choice. Meanwhile, decaying over time [START_REF] Sha K | Learning Transfer-Based Adaptive Energy Minimization in Embedded Systems[END_REF] is also a reasonable approach, as the learned parameters will be more optimal. The stochastic policy is not directly learned and updated in these approaches, but it changes its optimality based on the parameterized value function.

The policy π(a|s) can also be parameterized by function approximations, rather like the value function V (s) (see Figure 2.6). Contrary to Q-learning and SARSA, an actor-critic RL updates the parameterized actor (i.e., the policy) and critic (i.e., the value function) in parallel. Each goal can be achieved, for instance, by means of either the policy gradient theorem and TD(λ) algorithm [START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF] (considered in this work) or neural networks. In the policy gradient theorem [START_REF] Sutton | Policy gradient methods for reinforcement learning with function approximation[END_REF], we consider a parameterized policy π ψ and we obtain a gradient from (2.19):

∆ ψ J(π ψ ) = E[Q(s t , a t )∆ ψ log π ψ (a t |s t )] (2.30) 
This approach su ers from high variance and slow convergence due to the Q(s t , a t ) term that greatly varies according to the action a t . Therefore, the advantage function A(s t , a t ) = δ t+1 = R t+1 + γV (s t+1 ) -V (s t ), i.e., the TD-error is introduced:

∆ ψ J(π ψ ) = E[δ t+1 ∆ ψ log π ψ (a t |s t )] (2.31) 
Using this gradient, the policy can be updated with the stochastic gradient ascent in parallel with the value function estimation. Note that the TD(λ) algorithm for estimating the value function is a variant of TD learning; it will be explained in Section 3.2.

In general, the policy and the value function can be expressed using the function approximations:

a t = π(a t |s t ; ψ t ) (2.32) V t = f (s t ; θ t ) (2.33)
where ψ t and θ t are the matrix of the parameters learned, and f (•) is the function used to estimate the value function. These approximation functions can be neural networks, tabularbased, linear combinations and linear functions. Note that, depending on the approximation functions employed, the cost and scalability of the RL algorithm vary, which will be discussed in Section 2.3.4. For example, when the neural networks are considered, the target values are also the TD-errors, and the updates are performed via the back propagation and stochastic gradient descent which require extra costs compared to linear function approximations.

Lastly, the RL methods can be categorized into two groups: on-policy and o -policy RL. Formally, on-policy RL uses the same policy for both generating an action and improving its policy, while o -policy RL employs two di erent policies. In other words, on-policy RL explores based on a policy and optimizes the same policy that again encourages to explore (i.e., learns a stochastic optimal policy), whereas o -policy RL explores based on one policy and optimizes another policy (i.e., learns a deterministic optimal policy). It can also be said that on-policy RL nds a near-optimal policy, while o -policy RL can nd the optimal policy. For example, Q-learning is an o -policy RL because it tries to explore based on the -greedy policy while updating the Q-values (or policy) based on absolute greedy policy. On-policy RL includes an actor-critic method that uses a stochastic policy π(a|s) (for instance, the Gaussian policy) to generate the next action and to optimize the policy (see Eq (2.31)).

The next subsection presents the state-of-the-art related to adaptive controllers using the RL methods for di erent IoT applications. The use of energy-harvesting is not explicitly considered, since the ideas of the proposed algorithms may still contain relative elements to EH-IoTaware controllers such as self-adaptability and lightweight design.

Review on RL-Based Adaptive Controllers in IoT Context

The implementation of a tabular Q-learning, which is a classical Q-learning that uses a Qtable, is presented in [START_REF] Debizet | Q-Learning-based Adaptive Power Management for IoT System-on-Chips with Embedded Power States[END_REF] as a dedicated hardware for adaptive power management. It aims at minimizing the power consumption of the processor in suspend modes, which is expressed in the reward function. To deal with the QoS, their reward function misses the information about performance. We will propose QoS-aware control algorithms that leverage the data queue information as the QoS metric.

In [START_REF] Hakami | An optimal policy for joint compression and transmission control in delay-constrained energy harvesting IoT devices[END_REF], an another tabular-based Q-learning is proposed to solve the CMDP problems in sense and compress applications along with TX modulations. Although tabular-based Q-learning is easy to implement and powerful to grapple with stochastic situations, it can be exponentially expensive in case of large state-action spaces and/or continuous states and actions. This also slows down the convergence speed. For instance, when the state and the action space are both divided into 10, the Q-table requires 100 memory space, which quadruples when the partitions of the state and the action space double. To solve this issue, Hasselt et al. proposed a scalable RL approach when continuous spaces are considered [START_REF] Van Hasselt | Using continuous action spaces to solve discrete problems[END_REF]. If a linear relationship between the value function and the state-action pair can be found in the form of y = ax, only a single memory space is required. Note that in our PhD work, we will follow such an idea.

Sharma et al. [14] leverage a post-decision state that incorporates predicted e ects of the chosen action (e.g., consumed energy and transmission rate in the form of probabilistic distribution) without taking into account the unknown dynamics such as harvested energy, data arrival rate and wireless channel quality. They minimize the average packet queuing delay while considering the wireless channel quality. To alleviate the learning complexity, a piecewise planar approximation of the value function was introduced. Their approach is identi ed as the CDMP problem. Nevertheless, it only deals with discrete spaces of the state and the action and still has to update a large number of parameters in case of large state-action spaces.

Note that we will address the continuous spaces and CMDP problems by using linear function approximations.

Moreover, capturing the distribution for the post-decision state requires extra computations for either o ine analysis or online training, which do not exist in our method.

In terms of CMDP problems in RL, the maximization of average TX throughput with the constraint of average energy level is addressed in [START_REF] Chun | Adaptive Rate and Energy Harvesting Interval Control Based on Reinforcement Learning for SWIPT[END_REF] while Kang et al. [START_REF] Kang | Reinforcement Learning Based Adaptive Resource Allocation for Wireless Powered Communication Systems[END_REF] tackles the minimization of outage probability under the constraint of average power level. They also utilize tabular-based Q-learnings. When solving CMDP-based RL, violations of the constraint should constantly be experienced to update a learned parameter, which is known as the Lagrange multiplier, until its convergence. Once converged, the learned parameter needs saving. As such, o -policy RL such as tabular Q-learning, which is explained in section 2.2.2.1.4, is suitable for solving CMDP problems. The discrete space is again the downside. Although the con icting objectives between the performance and the energy level are considered, we cannot take into account, if any, the constraints of both objectives, since CMDP-based RL formulations are based on the constraint term and the objective term whose constraint is not included in the formulations. Our proposed RL approach is on-policy and yet can optimize the Lagrange multiplier(s) at run-time.

Decisions on the TX power and the number of TX data packets are made by using a Bayesian RL in [START_REF] Xiao | Bayesian reinforcement learning for energy harvesting communication systems with uncertainty[END_REF]. Unlike the Q-learning and SARSA, this method "probabilistically" models and learns the reward function and state transition function using the Bayes' rule. Since such probabilistic models take uncertainty into account, the EETs are resolved. However, this algorithm is computationally intensive in the updates of probabilistic distributions.

When using neural networks to represent the policy and/or the value function, the RL methods are known as deep reinforcement learning (DRL). Generally, the DRLs can be highly scalable by using many layers and neurons at the cost of computational and memory footprint overhead 1 .

In practice, various environmental uncertainties make it hard to predict its dynamics, which drives researchers to employ more scalable DRLs.

Masadeh et al. [START_REF] Masadeh | An Actor-Critic Reinforcement Learning Approach for Energy Harvesting Communications Systems[END_REF] presented an actor-critic RL method for TX output power control in energy-harvesting communications system. Their actor learns the parameters for the mean and the standard deviation of a normal distribution, while the critic is constructed by a rather shallow two-layer neural network, which can still be costly for resource-constrained devices.

Likewise, in [START_REF] Li | Deep Reinforcement Learning Optimal Transmission Policy for Communication Systems With Energy Harvesting and Adaptive MQAM[END_REF][START_REF] Murad | Autonomous Management of Energy-Harvesting IoT Nodes Using Deep Reinforcement Learning[END_REF][START_REF] Qian | Deep RL-Based Time Scheduling and Power Allocation in EH Relay Communication Networks[END_REF], three layer neural networks are employed, which is again computationand memory-intensive 1 .

In [START_REF] Li | Deep Reinforcement Learning Optimal Transmission Policy for Communication Systems With Energy Harvesting and Adaptive MQAM[END_REF], the authors propose an optimal transmission policy based on a DRL in a batterypowered transmitter with energy-harvesting. For the control of the modulation level (correspondingly, TX output power), they observe information such as harvested energy, battery state, and channel gain to maximize the system throughput (i.e., to achieve a single-objective optimization).

In [START_REF] Murad | Autonomous Management of Energy-Harvesting IoT Nodes Using Deep Reinforcement Learning[END_REF], the sensor's duty-cycle is modulated using DRL to maximize the sum of duty-cycle with less or no power failure and low variance of duty-cycle.

Qian et al. also employ DRL (called Asynchronous Advantage Actor-Critic, or A3C) for the TX/RX time scheduling and output power allocation of both source and relay node [START_REF] Qian | Deep RL-Based Time Scheduling and Power Allocation in EH Relay Communication Networks[END_REF]. They assume the wireless channel with slow-fading.

Even though these three works above [START_REF] Li | Deep Reinforcement Learning Optimal Transmission Policy for Communication Systems With Energy Harvesting and Adaptive MQAM[END_REF][START_REF] Murad | Autonomous Management of Energy-Harvesting IoT Nodes Using Deep Reinforcement Learning[END_REF][START_REF] Qian | Deep RL-Based Time Scheduling and Power Allocation in EH Relay Communication Networks[END_REF] may have studied a series of values for the learning rates, they are xed during the operations.

In [START_REF] Li | Partially Observable Double DQN Based IoT Scheduling for Energy Harvesting[END_REF], partially observable double deep Q-Network is adopted for TX scheduling (e.g., channel allocation) in energy-harvesting wireless communications system. They adopt an adaptive learning rate called the Adam optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] (simply Adam hereafter), but the necessity of fast online adaptation to the sudden change of state is not discussed; the smoothing factors for the rst and second moments are set to address the sparse gradient issues observed typically in neural networks.

The authors in [START_REF] Zhao | Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Networks[END_REF] employ double deep Q-network (DDQN) to deal with the joint optimization of user association and resource allocation. Adam is also leveraged, however, the fast online adaptation is hardly considered for the same reasons as above.

In the present manuscript, we will show how to integrate Adam into the LAC algorithm to achieve high reactivity.

Another neural net based approach called deep deterministic policy gradient (DDPG) is proposed in [START_REF] Qiu | Deep Deterministic Policy Gradient (DDPG)-Based Energy Harvesting Wireless Communications[END_REF] as an energy management system with an energy-harvesting feature both in point-to-point or one-way relay communications. It modulates the transmission energy consumption based on the measurements of the residual energy, harvested energy, and the instantaneous channel power. Depending on the training process, the method might be able to deal with many di erent situations; however, the required memory footprint and computations are massive 1 . Also, the solar power data used for validation have been collected only for a certain period of the days, which lacks the proof of the algorithm's scalability. In our work, real-life more-than-a-year-long 24-hour solar irradiance data are used.

Neural networks in DRLs are considered as non-linear function approximations. Obviously, linear function approximations can instead be adopted to improve the computation and memory footprint at the cost of function approximation accuracy. In [14], they adopt a piece-wise planar approximation for value function estimation in controlling the number of TX packets. The Gaussian radial basis functions are employed in [START_REF] Zhao | Application of a Gradient Descent Continuous Actor-Critic Algorithm for Double-Side Day-Ahead Electricity Market Modeling[END_REF] as function approximations for both the actor and the critic in electricity market modeling. Ortiz et al. [START_REF] Ortiz | A Two-Layer Reinforcement Learning Solution for Energy Harvesting Data Dissemination Scenarios[END_REF] propose using the linear combinations based SARSA for TX power budgeting and allocation for TX throughput maximization. The linear combinations of the input features enable keeping better scalability than linear function approximations and less computations/memory footprint than neural network based solutions. It can also deal with the continuous range of states and actions. They consider that only the data stored in the data queue can be transmitted. Energy and data over ow are addressed; however, power failure is not considered.

Linear function approximations are adopted in [START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF][START_REF] Sawaguchi | Multi-Agent Actor-Critic Method for Joint Duty-Cycle and Transmission Power Control[END_REF] to further achieve the low cost implementation. In their TX control applications, the loss of scalability seems to be bearable to increase the energy e ciency. However, these papers use a xed learning rate and they do not discuss the algorithm reactivity to environmental changes (covariate shift), i.e., reoptimization to a new state.

In the state-of-the-art summarized above, multiple problems were observed, namely: 1) model-based prediction errors;

2) discrete space of state-action pairs;

3) reactivity (or scalability); 4) algorithmic overhead; 5) implicit awareness of constraints.

To the best of our knowledge, all the ve points are hardly addressed simultaneously in the literature. As an initial design consideration, our work starts from points 2) and 4) for ultra-lowpower IoT nodes, and therefore, we will propose LAC-based algorithms. It is worth mentioning that the linear function approximations are "relatively" lightweight when compared to other approaches, e.g. neural network ones, but the cost can be non-trivial when reactivity and constraint issues, points 3) and 5), are addressed, with which the existing LAC algorithms cannot deal.

Analysis of Existing Problems

We now discuss the problems 1 to 5 identi ed in the state-of-the-art with some examples. For point 1, section 2.3.1 shows that the prediction errors may be non-negligible for optimal control algorithms. Then, we brie y describe the potential problems caused by using the discrete spaces for the state and the action as point 2 in section 2.3.2. Section 2.3.3 addresses point 3: the existing LAC algorithms may encounter divergence or cannot achieve high reactivity, leading to power failures. As of point 4, section 2.3.4 highlights the computational and memory footprint costs of the existing neural network solutions that are popular choices of design in adaptive control domain. A prior LAC method is also presented as a comparison to reveal its lightweight characteristics. Last but not least, we elaborate point 5 in Section 2.3.5; the di culty in dealing with the constraints by implicitly considering them, especially the con-icting constraints such as energy and performance is explained with some examples of the existing methods.

Prediction Errors and Control Accuracy

Many related works are based on predictive models, especially of the harvested energy [START_REF] Bhat | REAP: Runtime Energy-Accuracy Optimization for Energy Harvesting IoT Devices[END_REF][START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF][START_REF] Bhat | Near-optimal energy allocation for self-powered wearable systems[END_REF] Although the amount of harvested energy can be predictable, the accuracy depends on the prediction interval as well as on the prediction method itself. The predicted values are then used by the control algorithm, regardless of the generated/tolerable errors. Therefore, we now highlight the potential damage on the control accuracy due to the prediction errors.

In the literature, several prediction methods exist, for instance, EWMA, weather-conditioned moving average (WCMA) [START_REF] Piorno | Prediction and management in energy harvested wireless sensor nodes[END_REF], pro le-based [START_REF] Cammarano | Online Energy Harvesting Prediction in Environmentally Powered Wireless Sensor Networks[END_REF], Q-learning [START_REF] Kosunalp | A New Energy Prediction Algorithm for Energy-Harvesting Wireless Sensor Networks With Q-Learning[END_REF], and Kalman lter [START_REF] Saidi | Adaptive transmitter load size using receiver harvested energy prediction by Kalman lter[END_REF][START_REF] Yao | Kalman Filtering Based Adaptive Transfer in Energy Harvesting IoT Networks[END_REF]. Among these methods, the EWMA is lightweight and easy to implement, but it is not highly accurate since it processes data only sequentially despite the randomness of some environmental parameters (e.g. the weather). The latter three methods can be more accurate, but they su er from more computations and/or memory footprint 1 .

In [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF], WCMA is implemented. A matrix of N time points information for the past D past days, i.e., N × D past are stored to consider the weather impacts when predicting the next value using all the samples K slot • D past of the past K slot time points from the past D past days. Their approach is to compensate for the prediction error by stepwise wise control. Using this method as an illustrative example, we show below how the prediction errors lead to control degradation.

It is reported that Pro-Energy [START_REF] Cammarano | Online Energy Harvesting Prediction in Environmentally Powered Wireless Sensor Networks[END_REF] overcomes WCMA in terms of mean absolute percentage error. This method also uses the same information as WCMA, but P days out of D past are selected and used based on mean absolute errors, instead of all D past days. We also implement Pro-Energy to provide its prediction errors.

The SAT and EHD1 are chosen (see Section 2.1.3). To test the WCMA method, with the same settings as in [START_REF] Ju | Predictive Power Management for Internet of Battery-Less Things[END_REF], K slot = 3, N = 48, and D past = 4 to predict the solar harvesting for the control algorithm every T cui = 30min. We set K = 2, N = 48, D past = 14 and P = 9 for Pro-Energy. The learning rate was set to α = 0.7 for both algorithms. Figures 2.7 show the traces of the real harvested power, its estimate and its prediction error of WCMA and Pro-Energy from July 31st to August 5th. Note that the algorithms were applied in simulations since June 1st, 2018. As can be seen, the prediction errors easily exceed 5mW, i.e., 3.0J during 10 minutes of the TX adaptation interval, which may lead to an optimistic control policy. With a supercapacitor of size 1F, for example, the maximum electrostatic energy is equal to 3.645J at V = 2.7V. The numbers of times that the prediction errors are greater than the maximum energy level of a supercapacitor with capacity C at 2.7V are listed in Table 2.4. Even with C = 2F, overly optimistic predictions are made around 300 times a year. Depending on the such prediction errors to avoid power failures. As such, prediction errors propagate through the main control algorithm, potentially violating the energy neutral operation (ENO) condition to cause power failures.

The prediction algorithm itself also exhibits an overhead in terms of computation and memory footprint 1 . Note that the RL methods are independent of such a prediction algorithm prepared o ine (and rely on online prediction algorithm) and are capable of managing ENO conditions fully at run-time.

Memory Space Problem of Discrete Space

If a continuous variable is expressed in discrete space, the information loss in quantization is unavoidable. The decision on the data quantization is dependent on the target application. Tabular Q-learning and SARSA use discrete spaces for states and actions. The problem of these approaches is that the memory footprint exponentially increases when the target application requires ne granularity in the state and the action. When they are both divided into M and N discrete section, respectively, M N memory spaces are necessary to store the learned parameters (i.e., Q-values), whereas LAC-based algorithm would only come with a single learned parameter.

As an example, the SoC level, which is practically continuous, is commonly taken into account in EH-IoT applications. In case of considering the SoB level, the maximum capacity of the SoB changes the granularity. The step size or granularity of the TX duty-cycle may also come at a di erent level. The continuous space for the state-action pairs makes it possible to scale to those di erent granularity of quantization at any stage. For instance, quantization can be done when receiving the state (ex. SoB and SoC) or outputting the next action. As such, the algorithm can easily adapt to both continuous and discrete spaces.

Divergence and Reactivity Issue

Lightweight implementations are indeed of great importance, yet this design choice may lead to less performance of the algorithm. This section sheds light on the inability of an existing lightweight LAC algorithm [START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF] to cope with reactivity. The analysis makes use of simulation results.

As an example of application scenario, let us consider SAT, EHD1 (see Section 2.1.3) and the TX duty-cycle optimization, which is, in essence, the same application as the packet rate optimization addressed by the LAC algorithm in [START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF]. In this latter paper, the reward function represents the product of the SoC and the packet rate that is equivalent to the duty-cycle, as performance factor. Figure 2.8 illustrates the simulation results with the evolution of both ψ and TD-errors over a year, obtained by directly applying the approach in [START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF]. Five power failures are highlighted as red crosses when they occur. Note that the set of hyperparameters for each algorithm is listed in Table 2.5; it will be used for all simulations throughout the manuscript unless otherwised noticed. Algorithm α β γ σ λ LAC 0.1 2.0 × 10 -6 0.9 5.0 × 10 -4 0.9 Such a representation of the reward function may cause the agent to greedily increase the dutycycle for more rewards, which ends up causing power failures. More precisely, a su cient energy reserve during the daytime helps such an increase, while, at some point, the blown-up duty-cycle cannot quickly be reduced anymore by the time the whole energy runs out due to a constant exploration range. The upper bound of the TX duty-cycle is way too large for the system as well as for the application; in other words, no upper bound for braking duty-cycle explosion exists in the prior method. Note that, even with the use of either Adam or a much smaller learning rate for the case of ve-year dataset, the same divergence was observed.

To solve this divergence issue, we suggest the use of SoB both as a performance and an upper bound index. The traces of ψ t values and TD-errors averaged over 262 successful runs are illustrated in Figure 2.9. Again, the power failures (in total 38 out of 38 unsuccessful cases, since one power failure was observed in each simulation) are highlighted as red crosses. Both ψ t values and TD-errors uctuate within a certain range without divergence, which shows that the SoB index provides the upper bound for the performance. However, the results also illustrate the reactivity issue: the policy standard deviation increases from 0.36 × 10 -2 to 0.61 × 10 -2 after December 1st, after which all the power failures occur. Note that constant control update interval (CUI) and an impulsive workload change (from 1.0 pkt/min to 2.0 after the rst six months) are considered. The larger amplitude of ψ's variations is therefore explained by the doubled workload as the SoB term is included in the reward, leading to larger gradients and actor updates for ψ due to xed learning rate. Note that we need to optimize ψ and θ, and we only observed ψ values since its convergence speed is slower than that of θ in the TD(λ) algorithm. This issue could be solved by an adaptive CUI or an adaptive learning rate.

In our work, we will consider constant CUI, which is a popular design choice in the literature, and therefore, we will focus on the adaptive learning rate. Chapter 4 will propose to integrate into the LAC algorithm a widely-used adaptive learning method called Adam, with unconventional setups of the decay rates to improve the performance in reactivity as well as in ne-tuning adaptation to the initial state.

Lightweight Design Concern

The adaptive controller shall generate an action continually to cope with the powerperformance trade-o s. Since it is often considered as smart energy-saving, i.e., saving energy for later-use while satisfying the QoS requirements, a huge algorithmic overhead of the adaptive controller itself totally annihilates the original purpose. As such, under the premise of providing su cient QoS all the time, the more lightweight the controller is, the better. The advent of the µW-range controller further pushes forward this objective.

As observed in Section 2.2, leveraging the scalability of neural networks is often adopted in the literature. Despite the research e ort to reduce the cost of neural networks, they can still be compute-and memory-intensive 1 , especially in resource-constrained IoT end nodes.

A Gaussian policy based actor is used in [START_REF] Masadeh | An Actor-Critic Reinforcement Learning Approach for Energy Harvesting Communications Systems[END_REF] with two-layered neural networks for the critic that consists of 3-10-5-1 neurons for each layer, which is, to the best of our knowledge, the most lightweight neural implementations in the domain. Since multiply-and-accumulate (MAC) operations are basically run for each connection of any two neurons between the neigh-boring layers, 101 MACs are required only for the feed-forward operations on top of the actor update (if online training is necessary for securing the reactivity, the cost will increase). In LAC based approaches, on the other hand, only a handful of multiplications and additions are necessary for the critic. Obviously, when an ultra-low-power controller is considered, the use of linear function approximations is advantageous.

Comparison of the three methods that address the TX duty-cycle is summarized in Table 2.6. Note that the indicated computational and memory overheads for the state-of-the-art solutions based on neural networks come from the feed-forward operations. Therefore, if we need to learn at run-time for newly obtained data, extra costs for the back propagation and the stochastic gradient descent, which may entail more arithmetically complex operations, are expected. The problem of the LAC algorithm, however, comes in the aforementioned reactivity due to the loss of scalability, which was discussed in Section 2.3.3. If we aim at improving reactivity, additional computational and memory costs are projected. In the literature, in-depth analysis on power consumption of not only LAC algorithms but also DRLs does not seem to be reported. However, we must analyze the cost of the algorithms, especially when ultra-low-power IoT end nodes are considered, to be sure that the controller is "viable".

Incomplete Incorporation of Constraints

Typically, RL methods are based on the MDP assumption, as discussed in Section 2.2.2.1.1. Meanwhile, the optimization problems addressed in EH-IoT contexts correspond to balancing the energy and the performance. Thus, the constraints may deal with energy (e.g., voltage threshold) as well as with performance (e.g., latency and data queue threshold) that, by essence, are con icting.

In the literature, both constraints are seldom formulated and addressed in a mathematical way. For instance, Aoudia et al. [START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF] use the LAC algorithm and tackle the energy neutral operation (ENO) condition implicitly by replacing the constraint that the voltage level is always greater than the failing voltage level with the reward function that constantly maximizes the SoC level.

In [START_REF] Masadeh | Look-Ahead and Learning Approaches for Energy Harvesting Communications Systems[END_REF], a constrained optimization problem is formulated, but the MDP is used to solve the problem and the constraints are implicitly addressed as well. Likewise, other MDP-based RL methods rely on a reward function that captures the con icting constraints simultaneously or a value function combining individual value functions that encode the constraints separately [START_REF] Paternain | Constrained Reinforcement Learning Has Zero Duality Gap[END_REF]. These approaches are still e ective, but the design of a controller that balances such con icting constraints can be di cult.

The Constrained MDP (CMDP) problem is considered to explicitly incorporate the con icting constraints of both energy and performance. It is solved by a tabular Q-learning [START_REF] Hakami | An optimal policy for joint compression and transmission control in delay-constrained energy harvesting IoT devices[END_REF] or by a value function approximation based RL [14]. Their large memory capacity enables retaining more past information inside the learned parameters, and therefore, small learning rate of the Lagrange multiplier can be accepted to optimize the parameters at the expense of slow convergence. Moreover, although their mathematical formulations of the problems enable resolving the constraint online, only either of the two con icting constaints can be addressed in their methods. Our approach, which will be presented in Chapter 6, deals with the two constraints in parallel fully at run-time based on the LAC algorithm that only uses two learned parameters. Note that no LAC-based algorithm for solving the CMDP problem exists in the literature.

Summary

An energy-harvesting IoT node mainly consists of sensor(s), processor(s) and transceiver(s) alongside with energy-harvesters. These components and their applications come in many different varieties. For example, the sensing data can be temperature, motions, humidity, wind speed and other mesurable information and the workload of generated data can vary. Processing such as feature extraction and data compression also changes such workloads. Wireless link quality is highly transient due to obstacles and movements of/around the node. The mathematical models that are employed in this manuscript were described. Each node therefore faces di erent uncertainties to a di erent degree and requires an adaptive controller for EH-IoT nodes.

In this work, we majorly categorized the existing adaptive control algorithms into statistics and machine learning (SM) methods and reinforcement learning (RL) methods and summarized the state-of-the-art. SM methods include step-wise control, o ine predictive models, o ine preperations of design points, and optimization methods such as Lyapunov and KKT conditions. Meanwhile, we presented a wide range of RL methods, such as Q-learning, SARSA, actor-critic methods, and neural network based RL methods. Based on simulations and analysis, ve problems were identi ed in these existing approaches:

1) model-based prediction errors;

2) discrete space of state-action pairs;

3) reactivity (or scalability); 4) algorithmic overhead; 5) implicit awareness of constraints.

Prediction errors of predictive models, which are frequently employed in SM methods, may lead to sub-optimal actions. For example, the amount of harvested energy is typically estimated, but huge prediction errors may cause unexpected power failures. By contrast, RL methods learn and adjust the precitions at run-time, which is more suitable for dealing with stochastic situations of each node.

In RL, the state and the action space are either discrete or continuous, depending on the algorithm. Continuous space can scale to discrete one. Taking this into consideration as well as a lightweight design for resource-constrained ultra-low-power nodes we target, a linear function approximation based actor-critic RL (LAC) was adopted as the base in this manuscript.

In an application use case we introduced, the LAC method experienced a reactivity issue. We found that the use of constant learning rate causes this issue. Therefore, in chapter 3, we will introduce an adaptive learning rate algorithm to solve this problem and propose a novel algorithm called the LAC-AB. To quantitatively evaluate the reactivity (i.e., the convergence speed), a novel de nition of convergence will be also given.

The integration of the adaptive learning rate increases the computational costs. Overall, some intensive operations exist in the LAC-AB algorithm. Three approximation methods will be presented in chapter 4 to address the algorithmic complexity. Fixed-point data precision is also adopted. The proposed algorithm in this chapter is called the LAC-QAB.

As of lightweight designs, a hardware implementation is an indispensable choice of methodology. Hence, chapter 5 is dedicated to the design and the analysis of the hardware component of the LAC-QAB algorithm. Speci cally, we will adopt the asynchronous implementation, as it is more energy e cient than the synchronous counterpart.

In the existing LAC algorithms, to the best of our knowledge, the constraint(s) cannot explicitly be controlled fully online. As an extention of the LAC-AB algorithm in chapter 3, we will propose the C-LAC-AB algorithm in chapter 6 that enables addressing them at run-time. The reactivity problem in the LAC algorithm has been highlighted in the previous chapter. This chapter therefore introduces a countermeasure that enhances the reactivity of the algorithm. Precisely, an adaptive learning rate algorithm will be proposed to solve the problem. To evaluate and compare the speed of convergence, i.e., reactivity as well as ne-tuning, a novel de nition of convergence will also be proposed.

Adaptive Learning Rate Algorithm

When training a classi er or a predictor, the goal is to minimize a cost function, i.e., the difference between the target and the predicted value such as TD-error in RLs, by updating the learned parameter(s). To update the parameter(s), the steepest gradient descent algorithm is the simplest method where a learning rate is normally introduced. Aside from multiple derivatives of this algorithm, the design choice here is to employ either a xed or an adaptive learning rate. The former is straightforward and low-cost, but it is unable at adapting to new situations or drastic changes. By contrast, the adaptive learning methods are capable of such adjustments at the expense of more algorithmic overheads.

The update equations of a learned parameter ω t in the steepest gradient descent are given as:

∆ω t = -α • g t (3.1) ω t+1 = ω t + ∆ω t (3.2)
where α is the learning rate and g t is the gradient. Obviously, when α is xed to a constant value, the update term -α • g t is proportional to g t whose amplitude is under the in uence of many elements such as the architecture of neural networks and the rate of change of parameters that are the basis of the gradient g t .

Taking Section 2.3.3 as an example, g t consists of the TD-error that changes according to the environmental changes, e.g., the workload that a ects the SoB. Moreover, the constant optimization and exploration in real-life stochastic situations by the unbiased Gaussian policy with constant variance can lead to the oscillating behavior of the gradient. As observed in Figure 2.9, the impulsive changes in the amplitude of the gradient and/or larger gradients may cause power failures. The adaptive learning rate focuses on this varying magnitude of g t and it adjusts the learning rate α at run-time. To this end, the past gradient information is frequently used. Several adaptive learning methods based on the steepest gradient descent are now explained.

Momentum Method

The rst method introduced here is known as the Momentum method [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF], which focuses on the sign of gradients. The gradients that share the same update directions should be kept and accumulated, while the changing directions should be removed, so that the update towards the optimum is accelerated. The update value ∆ω t of this method is expressed as the combination of the current gradient direction and the momentum (i.e., the previous update):

∆ω t = ρ∆ω t-1 -α • g t (3.3)
where ρ represents the decay rate of the previous update. Equation (3.3) can be seen as the moving average method, or the exponentially weighted moving average (EWMA). By running a moving average for the gradient, its oscillation can be suppressed; if the sign of the gradient changes from the previous one, the signs of the two are cancelled and the uctuation is mitigated.

RMSProp Algorithm

Whereas Momentum adapts the gradient to restrain the oscillation, the RMSProp algorithm [START_REF] Tieleman | Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[END_REF] adjusts the learning rate. The main idea is to divide the learning rate by the size of the gradient. This method is e ective for online learning in stochastic environments: when the amplitude of the gradient changes and/or uctuates. In other words, when the gradient becomes larger, the learning rate is adjusted to be smaller, and vice versa. Note that the learning rate itself is constant and needs to be optimized at design-time for the size of the initial (expected) gradient values.

The RMSProp utilizes the uncentered variance (or the second-order moment) of the gradient as its size, and we obtain the following update rules:

v t+1 = βv t + (1 -β) • g 2 t+1 (3.4) ω t+1 = ω t - α √ v t+1 + • g t+1 (3.5)
where is the parameter that avoids in nitesimally small v t causing the gradient explosion.

Adam Algorithm

Adam [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] is an adaptive learning rate algorithm that combines Momentum and RMSProp methods in its foundation. Using two decay rates β 1 and β 2 , Adam computes the rst and the second-order moment, m t and v t , each of which is the element of Momentum and RMSprop, respectively. Figure 3.1 illustrates the e ects of Momentum and RMSprop on the gradients. Note that the trace of √ v t is shown for the RMSprop method. When the amplitude of gradients rises, we can see the Momentum successfully reduce their amplitudes. Meanwhile, the larger the gradient's amplitude is, the larger values of √ v t the RMSprop returns, which means that the uctuation of gradients can be mitigated by dividing the original gradients by √ v t . The use of smaller decay rate increase the sensitivity to the changes in the amplitude of gradients in the Momentum and the speed of adaptation in the RMSprop. Combining the two methods, i.e., using the Adam therefore adds to the adaptability in terms of gradients. We obtain the update rules of the Adam as follows:

m t+1 = β 1 m t + (1 -β 1 ) • g t+1 (3.6) v t+1 = β 2 v t + (1 -β 2 ) • g 2 t+1 (3.7) m t+1 = m t+1 1 -β t+1 1 (3.8) vt+1 = v t+1 1 -β t+1 2 (3.9) ω t+1 = ω t -α m t+1 vt+1 + (3.10)
Generally, m t and v t are initialized to zero: m 0 = v 0 = 0. This initialization in the moving average method leads to an initialization bias. For example, m 1 and v 1 should be g 1 and g 2 1 where the moving average produces

m 1 = (1 -β 1 ) • g 1 and v 1 = (1 -β 2 ) • g 2 1 .
These initialization biases can be corrected by cancelling 1 -β 1 and 1 -β 2 term. Now we extend this to more general case and also only consider the second moment estimate, as the rst moment estimate can be explained the same way. Eq(3.7) can be rewritten by using all the gradients up to time t:

v t = (1 -β 2 ) t i=1 β t-i 2 • g 2 i (3.11)
If we take the expectations of both sides of this equation, we have:

E [v t ] = E (1 -β 2 ) t i=1 β t-i 2 • g 2 i (3.12) = E g 2 t • (1 -β 2 ) t i=1 β t-i 2 + ζ (3.13) = E g 2 t • (1 -β t 2 ) + ζ (3.14)
where ζ appears as a stochastic term and it becomes zero when E [g 2 t ] is stationary. Provided that ζ = 0, we can see that the term 1 -β t 2 is caused by initializing m t and v t as zero. As such, we apply Eq(3.8) and Eq(3.9) to correct such initialization biases. Large biases are particularly observed with high β 1 and β 2 . RMSProp does not deal with the initialization biases.

Algorithm Selection

The gradients of the proposed algorithm in stochastic situations tend to change in both direction and amplitude. The changes in the gradient direction are e ectively addressed by Momentum, while RMSProp mitigates the changes in the amplitude of the gradient. Since Adam is the combination of Momentum and RMSProp, our work opts for Adam.

Originally, Adam was adopted in training neural networks to cope with the sparse gradient issue. The problem arises in recurring zero or in nitesimally small gradients in the same synapses between two neurons. Such situations lead to biased update speeds of learned parameters in the networks. To solve this issue, the decay rates β 1 and β 2 are typically set as large as 0.9 and 0.999. This is because larger decay rates enable holding more past gradient values that may contribute to updating the parameters. For neural networks, such a setting leads to faster convergence, but large decay rates usually slow down the adaptation.

In our work, the LAC algorithm needs to update only one parameter in the actor, and therefore, such a problem does not exist. However, the impulsively varying gradients must be addressed. In the literature on workload change detection [START_REF] Sha K | Learning Transfer-Based Adaptive Energy Minimization in Embedded Systems[END_REF][START_REF] Biswas | Machine learning for run-time energy optimisation in many-core systems[END_REF][START_REF] Das | Workload Change Point Detection for Runtime Thermal Management of Embedded Systems[END_REF], the decay rate is often set smaller to achieve faster adaptation, which can help remove the initialization bias correction terms. Note that we will elaborate this point in the next section.

Multiple alternatives still exist. As opposed to AdaGrad [START_REF] Duchi | Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[END_REF] that utilizes the squared root of the total accumulated squared gradients from the beginning, which loses the adaptability, the use of the EWMA enables Adam to possess the online adaptation capability. ADADELTA is also considered an alternative method [START_REF] Zeiler | ADADELTA: An Adaptive Learning Rate Method[END_REF], but it is more compute-intensive as the secondorder moment of the update value along with that of the gradient is required.

Derivation of the LAC-AB algorithm

The LAC-AB algorithm is based on the LAC that was originally proposed in [START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF]. Section 2.3.3 presented the introduction of the SoB information into the reward function as the performance upper bound to resolve the divergence problem that was caused by the LAC algorithm. This improved version of the LAC algorithm is shown in Algorithm 3.1 concerning the SAT application example explained in Section 2.1.3. Note that it is trivial to transfer this algorithm to other application use cases.

The state is composed of the State-of-Bu er (SoB) and the State-of-Charge (SoC), which take into account the incoming and outgoing data packets and energy. The reward represents the multiplication of 1 -φ SoB and φ SoC , meaning that less SoB and more SoC are more rewarding (Line 3).

Likewise, the value function is assumed to be linearly proportional to the multiplication of 1 -φ SoB and φ SoC (Lines 4-5), which indicates that the value of the state is higher when less SoB and more SoC are con rmed.

Its coe cient, or the critic parameter θ t , is updated using the TD(λ) algorithm (Lines 6-8). Unlike in supervised learning, the target value of the value function is "estimated" in RLs using the immediate reward and the learned θ t , so that the temporal di erence error (TD-error) between the target and the current estimate is calculated to learn the policy and the value function. Lines 9-10 represent the policy gradient theorem that updates the actor parameter using the TD-error.

A linear relationship is also assumed between (mean) action value and the multiplication of φ SoB and φ SoC (Line 11) This means that smaller action values (i.e., less performance) are enough when the SoB level is less, and higher values can be provided when the SoC level is higher.

As stated, these linear function approximations can be replaced by neural networks. In case of more complex non-linear relationships between the state(s) and the action(s), for example, 

R t+1 = (1 -φ SoB t+1 ) • φ SoC t+1
For minimizing SoB and maximizing SoC 4:

V t = θ t • (1 -φ SoB t ) • φ SoC t
Less SoB and more SoC are better states (better values) 5: 

V t+1 = θ t • (1 -φ SoB t+1 ) • φ SoC t+1 / * TD-error for Actor-Critic * / 6: δ T D t+1 = R(t + 1) + γ V t+1 -V t Advantage function: A(s, a) = Q(s, a) -V (s) (Q(s,
z t+1 = γλz t + (1 -φ SoB t+1 ) • φ SoC t+1
Calculate the eligibility trace z t+1 8:

θ t+1 = θ t + αδ t+1 z t+1
Update the critic parameter / * Actor: Policy gradient theorem * / 9: 

g t+1 = δ t+1 • at-µt σ 2 • φ SoB t • φ SoC
µ t+1 = ψ t+1 • φ SoB t+1 • φ SoC t+1
Less SoB/more SoC, smaller/higher action values 12:

µ t+1 ← Clamp µ t+1 to [a min , a max ] 13: a t+1 ∼ N (µ t+1 , σ)
Gaussian policy for action generation 14:

a t+1 ← Clamp a t+1 to [a min , a max ] 15:
Return a t+1 16: end for each they are suitable choices at the cost of more intensive computations and memory footprint. Our case involves only controlling TX duty-cycle and assumes resource-constrained ultralow-power IoT nodes; thus, we adopted linear function approximations.

The nal action is generated based on the Gaussian distribution (Line 13) to guarantee exploration and to nd an optimal action. Line 12 and 14 serve to clamp the generated values within the de ned range of the TX dutycycle.

However, the reactivity issue exists in this algorithm, and we investigated an optimization technique called Adam to adapt the learning rate and solve this problem.

As discussed above, Adam is typically used for the sparse gradient issue of neural networks. The decay factors β 1 and β 2 are therefore set to 0.9 and 0.999 (which we call prior-art setting below), respectively. The use of linear functions in the LAC algorithm breaks free from this issue, enabling us to set the decay factors smaller, such as 0.1-0.7 as generally adopted in the literature on workload change detection [START_REF] Sha K | Learning Transfer-Based Adaptive Energy Minimization in Embedded Systems[END_REF][START_REF] Biswas | Machine learning for run-time energy optimisation in many-core systems[END_REF][START_REF] Das | Workload Change Point Detection for Runtime Thermal Management of Embedded Systems[END_REF], to achieve faster adaptation. The reasons are two-fold:

-smaller values lead to more weight on recent changes, i.e., faster online adaptation; -the gradient variance can become too large and yet carries an important information for parameter updates that can be lost with larger values of β 1 and β 2 .

Further, with such smaller rates, we can reduce some computations by excluding the initialization bias correction terms that are accounted in Adam (see section 3.1.3).

Hence, the LAC-AB algorithm, or the LAC algorithm using Adam with no initialization bias correction terms, is proposed. Simply replacing the Line -Actor parameter ∀t ≥ 0, ψ t ≥ 0 / * For LAC-A: Policy gradient theorem using Adam * / 

9: m t+1 = β 1 m t + (1 -β 1 )g t+1 10: v t+1 = β 2 v t + (1 -β 2 )g 2
m t+1 = m t+1 1-β t+1 1 12: vt+1 = v t+1 1-β t+1 2 13: ψ t+1 = ψ t + β • m t+1 √ vt+1 +
/ * For LAC-AB: Adam with no initialization bias correction terms * /

9: m t+1 = β 1 m t + (1 -β 1 )g t+1 10: v t+1 = β 2 v t + (1 -β 2 )g 2 t+1 11: ψ t+1 = ψ t + β • m t+1 √ v t+1 +
i.e., smaller decay rates β 1 and β 2 are to be employed to reason the formulation of the LAC-AB algorithm. The structure of the LAC-A and LAC-AB algorithm is illustrated in Figure 3.2. This novel algorithm mostly contains multiply and add operations. Only two divisions, one squared root operation and a Gaussian random number generator are used.

Definition of Convergence

The convergences of the TD(λ) algorithm in linear function approximations and policy gradient theorem are proven, but it is tricky and often application-speci c to determine when they have converged. For instance, in [START_REF] Devlin | Potential-based Di erence Rewards for Multiagent Reinforcement Learning[END_REF], the authors de ned "the time of convergence in an episodic task as when the returns of the rst 10 consecutive episodes are all within 5% of the average of the nal 150 episodes". Mastronarde et al. [START_REF] Mastronarde | Joint physical-layer and system-level power management for delay-sensitive wireless communications[END_REF] admits the convergence when the weighted absolute estimation error of the value function goes below the threshold . Meanwhile, other works have compared several methods and/or setups and analyzed the convergence only by the visual qualitative measurements [START_REF] Li | Deep Reinforcement Learning Optimal Transmission Policy for Communication Systems With Energy Harvesting and Adaptive MQAM[END_REF][START_REF] Zhao | Deep Reinforcement Learning for User Association and Resource Allocation in Heterogeneous Networks[END_REF]. The convergence evaluations are barely considered and these papers rely on the o -policy RL methods. In such methods, the learned parameters will converge to certain values unless the environment drastically changes. Di erently, our solution is based on an on-policy RL. Since it constantly explores to nd the optimal policy, the learned parameters tend to uctuate according to, for example, the trace of the harvested energy. Thus, the same de nitions of convergence of the above mentioned papers cannot directly be applied. These observations motivated the introduction of a novel de nition of convergence in this study.

Considering the SAT application scenario (see Section 2.1.3), we analyze two kinds of convergence: the convergence for the initial state (i.e., over the rst six months) and the convergence after workload change (i.e., over the last six months).

We call these convergence times the time of ne-tuning (ToF) and the time of reactivity (ToR), respectively. Since the optimization process may greatly di er for each simulation due to the Gaussian policy as well as other stochastic factors (e.g., the workload, scavenged energy, and wireless conditions) and the variance of the trace also appears to converge, as shown in Figure 3.3, the convergence analysis was conducted for the averaged trace of a concerned variable. Figure 3.4 shows the idea of how to analyze the convergence using two time-windows. We extend the approach used in [START_REF] Devlin | Potential-based Di erence Rewards for Multiagent Reinforcement Learning[END_REF] and de ne them as follows:

1. all the mean values (e.g., actor parameter values ψ t ) taken over all the simulations at the same time points in a x-day sweeping window are all within 5% error band of the average of all the mean values in the last x-day window under almost the same state (e.g., under the same workload scenario in our test study here);

2. the variances of the mean values taken over all the simulations at the same time points are con rmed to be not di erent. To this end, the homogeneity of variance is tested and con rmed by means of Levene's test [START_REF] Levene | Contributions to probability and statistics[END_REF], more precisely Brown-Forsythe [START_REF] Brown | Robust Tests for the Equality of Variances[END_REF] test. The con dence interval was set to y%. Note that we cannot say "the same" mathematically with this test. Note that we run the sweeping window from the rst day towards the end with a step size of a time point, which is equal to T cui = 30 min, until the convergence is con rmed.

The reason for evaluating the homogeneity of variance is that the sequences of the mean values may be di erent in terms of variance between the two windows, which can deny the convergence. The use of Brown-Forsythe test is because we cannot expect the mean values to follow normal or symmetric distribution, and it is not as sensitive to violations of the normality assumption as alternative tests such as Hartley's F max test [START_REF] Sheskin | Handbook of Parametric and Nonparametric Statistical Procedures[END_REF]. Further, we observe the daily and seasonal e ects induced by the weather that also heavily impact the optimization (see Section 3.4.1). Therefore, we prepared an arti cial one-year trace data by stacking one-day trace data upon one another 365 times. The use of such a data trace is considered acceptable because the RL algorithm adopted is on-policy. In on-policy RL, the agent explores based on a policy and updates the same policy that encourages to explore again. This procedure is utterly sequential. Hence, the mechanism of learning/keeping features or correlations between the current day and any past days does not exist. In other words, the algorithm is agnostic of time-independent information.

We set x = 5 throughout the following experiments, which corresponds to, for example, 240 data samples in a window in the case of T cui = 30 min, to ensure that the convergence is not merely temporal, and y = 5. Note that this quantitative way of evaluating the convergence is application-speci c and applicable to the use case analyzed here. Although this is an attempt to provide the convergence time, the latency performance itself may be su cient at an earlier point for the practical use.

Simulation Results

In the previous section, the integration of Adam into the LAC algorithm was explained to derive the LAC-A and LAC-AB algorithms that overcome the reactivity issue. We now present the simulation results to highlight the e ectiveness of both algorithms and the superiority of the LAC-AB algorithm with respect to the computation cost and the memory footprint. The models introduced in Section 2.1 and the adaptive decision-making algorithms proposed in Section 3.2 were all coded in C++ and di erent simulation studies were conducted. Remember that we use real-life solar irradiance datasets provided by ORNL [START_REF]Oak Ridge National Laboratory (RSR) Daily Plots and Raw Data Files[END_REF]. We now present the results of these simulations in the following sub-sections. The employed hyper-parameter values are listed in Table 3.1. Algorithm α β γ σ λ LAC-A 0.1 3.0 × 10 -4 0.9 5.0 × 10 -4 0.9 1.0 × 10 -6 LAC-AB 0.1 3.0 × 10 -4 0.9 5.0 × 10 -4 0.9 1.0 × 10 -6

Effectiveness and Convergence of LAC-AB

As observed in Section 2.3.3, the existing LAC method is limited in adaptability due to the xed learning rate. Thus, we introduced Adam to LAC to deal with this problem. The proposed algorithm has been called the LAC-A algorithm. In addition, as explained in Section 3.2, it is possible to leave out the use of initialization bias correction terms in Adam, which led to the LAC-AB algorithm.

In this section, we use 300 simulation results and compare these approaches with di erent decay rate setups in terms of convergence, latency, and power failures. Note that the latency is de ned as the time from when a packet arrives in the data bu er until when it is successfully transmitted from the end node to the sink node in a point-to-point network.

First, we use the EHD1 dataset and make a comparison between LAC-A and LAC-AB with di erent decay rates β 1 and β 2 . Based on this comparison, we show more suitable setups for LAC-A/LAC-AB and the improvement in terms of latency, reactivity, and the number of power failures. The transitions of ψ t for the three modes (LAC-A with prior art setting, LAC-A, and LAC-AB with β 1 = β 2 = 0.4) are depicted in Figure 3.5. The use of Adam rescales the gradient between before and after the workload change. However, this does not necessarily help avoid the power failures. While the number of failures increased to 88 times in prior art setting compared to 38 in the case of using xed learning rate (see Figure 2.9), the system experienced no failures with 0.4 for both decay factors. This suggests that too large decay rates may cancel out the gradient directions induced by the Gaussian policy, leading to ill-optimizations.

Moreover, we observe that smaller decay rates in Adam help achieve ne-tuning of the learning rate, faster reactivity and even less gradient variation, since they allow for faster online tracking of changes in gradients, the rewards, or the SoB and the SoC. The decay rate 0.4, for example, is relatively small and may permit no initialization bias corrections.

Table 3.2 summarizes the latency and the number of power failures for each use case above. The latency is evaluated before and after the workload change. As expected, the errors of the mean latencies and their standard deviations between the LAC-A and the LAC-AB using β 1 = β 2 = 0.4 are merely within 2 × 10 -2 . As such, for the rest of this manuscript, we leverage and focus on the LAC-AB algorithm for achieving faster adaptations while removing the computation cost of the initialization bias correction terms. Nonetheless, in the case of the latter two modes, the ψ traces of the last half a year constantly decrease, which makes it harder to judge the convergence, whereas that of the rst half remains almost constant. We use the EHD2 and EHD3 datasets where the seasonal and weather changes are removed and the randomness of real-life solar irradiance is still kept. The analysis with the use of those datasets can be supported by the fact that the LAC algorithm is an on-policy RL and no other algorithm for capturing correlations of any two di erent days is used. We obtained the traces of ψ for EHD2 and EHD3 depicted in Figure 3.3 as well as that for EHD1.

We can claim qualitatively that the ψ of LAC-A using β 1 = β 2 = 0.4 for the EHD1 dataset converges after the workload change despite its constant decrease. This is because the value converges to 2.25 × 10 -2 for EHD2 (corresponding to December) and to 2.0 × 10 -2 for EHD3 (corresponding to June), and the trace in-between can be explained by interpolation. This observation explains that the di erence in the ratio of variations of the SoB and the SoC at each control interval gives rise to di erent optimization process.

It can also be seen that the seasonal and weather-induced uctuations in energy-harvesting may blur the optimization process. Hence, the analysis of ToF and ToR was conducted using EHD2 and EHD3. This way, we can also infer the range of convergence time for whenever the state changes.

Decay Rates Study for LAC-AB

For β 1 and β 2 , various combinations can be made, and therefore, we need to evaluate which ones work better. To this end, we used EHD1 to evaluate the number of power failures and EHD3 to assess the convergence speed. Note that the ToF and ToR can be measured also with the EHD2 dataset, but the outcome is quite similar to that of EHD3 and therefore, not presented here.

We conducted 300 simulations for each parameter set that consists of β 1 , β 2 ∈ [0.1, 0.7] with the step size of 0.1, because the unnecessity of bias correction terms suggests the use of lower values. We used the average values over the 300 simulations, since randomness that exists in the simulations (e.g., Gaussian policy, workload, harvested energy, and wireless link quality) makes it di cult to predict the optimization process. Afterwards, we applied the ToF and ToR de nition in Section 3.3 to these results.

The results are depicted in Figure 3 both ToF and ToR tend to be faster when using lower β 2 ∈ [0.1, 0.3] than β 2 ≥ 0.4. This can be explained by the fact that the sudden change in gradients, i.e., SoB and/or SoC will be mitigated by the quick rescaling of variance, i.e., smaller decay rate such as β 2 = 0.1. By contrast, opting for β 2 = 0.1 and even 0.2 severely deteriorates the performance of the energy management when using a larger value of β 1 , such as 0.6-0.7. For this range of β 1 , we obtain better outcome in both power failure and convergence speed with β 2 ∈ [0.3, 0.4]. All the above results considered, the choice must be made by considering the trade-o between power failure and convergence speed.

Analysis of the latency in the two di erent workload periods was also conducted, as illustrated in Figures 3.7 constant (e.g., during the rst six months). When the state varies greatly as during the last six months, smaller β 1 produce better latency characteristics. We therefore claim that smaller β 1 for more dynamic states and larger β 1 for less varying states are advised. We ran 300 simulations and obtained ToF and ToR for both EHD2 and EHD3 dataset, since we can expect from the results in Figure 3.5 that the convergence speed may di er according to the season. Figure 3.9 shows the ToF and ToR for the chosen sets of decay rates with the baseline values of those of the LAC algorithm using xed learning rate. The values of ToF and ToR are also summarized in Table 3.4 and 3.3. Obviously, the convergence speed improved With respect to the latency and power failure, Figure 3.10 depicts these metrics for the chosen decay rate combinations in comparison to the LAC algorithm without Adam. The EHD1 dataset was used to obtain the results consistent with the real-world situation. The di erences in the mean values of latency are not outstanding across all cases, but the mean standard deviation for the rst six months tends to decrease as the decay rates become larger, especially until β 1 reaches 0.4, while that for the last six months show the opposite trend. Nonetheless, too large decay rates as well as xed learning rate are more likely to bring about power failures. With smaller decay rates, the controller reacts more quickly to environmental stochasticity, leading to larger variations in latency, i.e., duty-cycle in case of less drastic changes as in the rst six months, and yet with no or a couple of power failures, compared to 38 power failures in case of using xed learning rate.

Summary

In this chapter, we have integrated Adam into the LAC algorithm to tackle the reactivity problem observed in the existing method. We rstly explained that Adam addresses the changes in the direction and the amplitude of the updates by comparing it with other adaptive learning algorithms such as Momentum, RMSProp, AdaGrad and ADADELTA. A newly devised control algorithm called the LAC-AB algorithm was then presented as well as a novel de nition of convergence based on Brown-Forsythe test.

The simulation results show that no power failure was observed and the latencies were comparable even when using smaller decay rates. This allows for removing the bias initialization correction terms in Adam to reduce the computational costs. The acronym LAC-AB therefore comes from the LAC using Adam with no initialization Bias correction terms.

Further simulation studies were conducted to analyse the di erent combinations of the decay rates β 1 and β 2 . The SAT application was used with the control update interval T cui = 30min We advise setting small decay rates such as β 1 ∈ [0.2, 0.4] and β 2 = 0.1 for power-failuresensitive applications and larger β 1 ∈ [0.5, 0.7] with relatively smaller β 2 ∈ [0.2, 0.4] for latency-sensitive ones. These values, however, may vary according to the application considered. With any of these setups, the number of power failure can be drastically reduced to zero or a few. The reactivity speed falls around within a day up to 15 days and the initial convergence is attainable in about 5-13 days.

To cope with reactivity to new situations, another solution would be to reset and re-learn from scratch by detecting the environmental change as in [START_REF] Das | Workload Change Point Detection for Runtime Thermal Management of Embedded Systems[END_REF] that requires a change detection algorithm. However, the proposed solution can achieve faster time of reactivity (ToR) than time of ne-tuning (ToF), and therefore, it is simpler and yet e ective without such a mechanism. Thus far, we observed that the LAC algorithm augmented with biased Adam, or the LAC-AB algorithm, is capable of reacting to sudden changes in the environment (such as application workload) along with the improvement of the ne-tuning to the initial state. The use of Adam, however, comes with a division and a squared root operation that increase the computational overhead. The Gaussian distribution in the actor action decision process also incurs a nontrivial computation. This chapter explains how to approximate the proposed solution and alleviate such calculation costs. Precisely, three approximation techniques will be presented: the range rule of thumb for standard deviation, the Newton-Raphson method and the quartilebased Gaussian policy.

Fixed-Point Data Precision

When designing an arithmetical hardware accelerator, xed-point arithmetic is a common design choice, because the xed-point data can be calculated arithmetically the same way as the integer one, and therefore, alleviates the computations compared to the oating-point ones. Instead, considering the same bit widths, the data encoded in xed-point come with less precision than the oating-point counterparts. Hence, the performance or the accuracy of the algorithm may be degraded.

Data Structure

A xed-point variable consists of two elds, namely, the integer and fractional parts. The position of the binary point determines their respective length. The position of the binary point should be determined by the following two elements:

1. the required upper/lower bound of the concerned variable; 2. the quantization error that the application can tolerate.

Since the xed-point data type is essentially the same as the integer, Q format can use the most signi cant bit (MSB) as the sign eld and the two's complement representation.

Processing

In the xed-point format, the addition [START_REF] Arar | Fixed-Point Representation: The Q Format and Addition Examples[END_REF] and multiplication [START_REF] Arar | Multiplication Examples Using the Fixed-Point Representation[END_REF] are generally employed. They are now shortly summarized.

Consider the addition of a = 3.75 and b = -2.5, for example, that are 011.11 2 and 101.1 2 in two's complement form, respectively. Note that these variables are thus represented by Q3.2 and Q3.1. When adding a and b, we align the binary point and calculate as Eq (1a) below. Since the modulo-M arithmetic is applied to the two's complement representation, the MSB of this result must be discarded, which is above the sign bit. Therefore, we obtain 001.01 2 = 1.25 10 . Nonetheless, the addition of two N -bit numbers may cause an over ow and requires N + 1-bit for the result. To avoid the over ow, the guard bits are introduced.

011

As another example, consider adding a = -3.75 and b = -2.5, i.e., 100.01 2 and 101.1 2 in two's complement form. The MSB in Eq (1b) above is also discarded, so that we get 001.11 2 = 1.75 10 instead of the correct answer 1001.11 2 = -6.25 10 due to the over ow, since the lower bound of Q3.2 is -3.75 10 .

The concept of the guard bits is to prepare an arithmetic that can process larger values than the input values, e.g., providing 1 guard bit to make Q4.2 for the above example.

We therefore perform the sign-extension of the two inputs and the addition as in Eq (1c) above. In this case, we obtain 1001.11 2 = -6.25 10 by discarding the MSB.

In general, n guard bits enable accumulating 2 n inputs without over ow. If the multiplicand is negative as a = -3.75 = 100.01 2 , then Eq (2b) below holds. As the MSB of a is the sign bit, the partial products are always sign-extended up to m + n = 8 bits. The MSB of the nal result is here again discarded to obtain 10110.101 2 .

As a third example, consider that the multiplicand is unsigned and the multiplier is signed, e.g., a = 3.75 = 11.11 2 and b = -2.5 = 101.1 2 . This case requires that the two's complement of the 1-bit extended multiplicand should be multiplied by the sign bit of the multiplier (see Eq (2c) below).

Lastly, Eq (2d) below shows the product of two signed numbers, a = -3.75 = 100.01 2 and b = -2.5 = 101.1 2 . Rather like Eq (2c), the two's complement of the 1-bit extended multiplicand should be taken for the sign bit of the multiplier; otherwise, all the partial products are sign-extended to consist of 9 bits in the same way as Eq (2b). 

Approximation Techniques

The design concerns for the low-power implementation of the LAC-AB algorithm are threefold: (1) derivation of the squared root of the second-order moment of time-series gradients, (2) division by the obtained squared-root value, (3) Gaussian random number generator (GRNG). These operations contain non-trivial arithmetic, leading to more cycles to be executed.

By capitalizing on the original intentions of the LAC-AB algorithm, we apply the following three approximations or alternative ideas for the above three concerns:

1. instead of computing the squared root of the second-order moment used as the counterpart of the standard deviation, we employ and tweak the range rule of thumb for standard deviation that uses a subtraction and a division by 4, which is easily computed by 2-bit right shift operation;

2. to replace the division, we leverage a simple LUT-based piecewise linear approximation that only requires multiplications and additions;

3. we apply a quantile, i.e., divide the standardized Gaussian distribution into 16 segments and obtain the middle point value of each range that explains the probability of more or less 6%.

Note that upper/lower bound of a range at the tails of the Gaussian distribution are given as 2σ and -2σ, respectively. Hence, each tail segment occupies the probability of 8%.

Another way to reduce the computation cost is to remove the division by the σ 2 in the policy gradient theorem, since this value is always constant. Since the role of σ is essentially as an exploration space and the target application is non-stationary, this removal will be justied. Also, this constant σ 2 term will be counted in the initial learning rate (see lines 9-10 in Algorithm 3.1).

Range Rule of Thumb for Standard Deviation

Except for the variance and the standard deviation, other kinds of measures of variability exist. The range, which is the di erence between the largest and the smallest value in a sample dataset, is a simple measure of variability. According to the range rule of thumb [START_REF] Ramirez | Improving on the range rule of thumb[END_REF], the standard deviation σ is approximately four times as large as this range, although this estimate is quite rough, especially when the data do not follow normal distribution and their sample size is less than 30:

σ ≈ x max -x min 4 (4.1)
where x max and x min are the maximum and the minimum of the considered dataset.

The purpose of using a measure of variability in the proposed algorithm thus far is to divide the gradients by "the size of the gradients" that is in both Adam and RMSprop, for instance, the squared root of the uncentered variance (see line 13 for LAC-A or line 11 for LAC-AB in Algorithm 3.2). This process mitigates the variance of the gradients and leads to stability in convergence. In this context, the use of range rule of thumb is validated.

Secondly, the range rule works e ectively with data following a normal distribution. Given that, the actor parameter ψ in the LAC-AB algorithm, which stands for the mean value of the Gaussian distribution, is optimal at each time step, the Gaussian policy of the actor produces a more aggressive or a more conservative action that may cause the gradient variation that follows normal distribution. This fact supports the range rule.

To estimate the standard deviation, more than 30 data samples are preferable in this method. Due to the EWMA algorithm in the LAC-AB algorithm, the sample size of the gradients can be considered as less than 30. For example, the asymptotic memory length de ned as N = 1 1-γ [START_REF] Clarke | Self-tuning controller[END_REF], which implies the information disappears after N samples, is equal to 10 when the decay rate γ = 0.9. We advise even much smaller decay rates in our propose algorithm. Nevertheless, the fact that the standard deviation of only the recent values is of interest in the stochastic environment and the rst-order moment is also obtained by the EWMA can justify small sample sizes.

Hereby, we explain how to incorporate the range rule of thumb and replace the uncentered variance of Adam. In addition to the Gaussian policy that is likely to cause the uctuation in the gradients, the moving average of the gradients m t is derived the same way as Adam. This value can be a reference to judge if the present gradient contributes to the maximum x max or the minimum x min value of the range, which is further supported by the use of smaller decay rates that put more emphasis on the more recent values. As such, we de ne the quasi maximum and minimum, xmax and xmin , to replace x max and x min , respectively, as below:

xmax = β 2 x max + (1 -β 2 )g t+1 m t < g t+1 xmax otherwise (4.2) xmin = β 2 x min + (1 -β 2 )g t+1 m t > g t+1 xmin otherwise (4.3)
Note that if the condition is not met, the previous value will be kept. Therefore, we rewrite the range rule in (4.1) as (4.4) and replace the derivation of the squared root of the second-order moment in the proposed algorithm:

σ ≈ xmax -xmin 4 (4.4)

LUT-based Approximation of Division

The division by a measure of variability is unavoidable, and yet, the division operation itself is costly in ultra-low-power circuits. In [START_REF] Nenadic | Fast Division on Fixed-Point DSP Processors Using Newton-Raphson Method[END_REF], to give the initial approximation to the target to be At the expense of more instruction cycles induced by additional multiplication and addition, the output of linear function approximations method is more precise. An iterative update based on the Taylor series called the Newton-Raphson equation should be applied to gain more accurate reciprocal value. However, to reduce the arithmetical costs, we only use the initially approximated value and do not use such an iterative procedure. As such, a more accurate linear interpolation method with no iterative update is adopted in this work. 3. left-shift the same amount of bits as done at the beginning;

4. make a sign conversion if necessary.

In the rst step, the divisor b is expected to be positive. Therefore, the two's complement should be taken in case of a negative value. In step 2, the index size is application-dependent: the more the index bits are, the more accurate the approximation will be at the cost of memory space, and vice versa. The steps 3 and 4 are required if the original b was negative and the leftshift was conducted in Step 1. Note that the rst left-shift is applied to a divisor and the second one to its reciprocal.

Quartile Gaussian Policy

Many researchers have proposed the approximation of the Gaussian distribution. Despite the e ectiveness of the existing approaches, their calculation costs are still high, as the approximations of trigonometric and logarithmic functions [START_REF] Alimohammad | An iterative hardware Gaussian noise generator[END_REF], or of the Gaussian distribution itself [START_REF] Thomas | FPGA Gaussian Random Number Generators with Guaranteed Statistical Accuracy[END_REF] are unavoidable. The accuracy of the generated random number is an important aspect in the GRNG for their target applications, which adds more implementation costs.

In the work, we use the Gaussian distribution in the actor. The mean value of the Gaussian policy is the only parameter to learn. Since the environment constantly changes, this learned mean value is therefore hardly the same between any two consecutive control update timeslots. As such, whatever the exploration noise it is, the parameter optimization can be conducted.

Hence, we decide to employ the quantile for the Gaussian policy to drastically reduce the computational cost compared to the existing GRNG approximation methods. In fact, the idea of quantiles, or more precisely, the quartile that divides the Gaussian distribution equally into a proportion of 25 percentile is presented as an example in [START_REF] Chu | Fast Gaussian noise generator[END_REF]. All we have to do is then to generate a uniform random number and tie it to each segment of the distribution. The output value should well represent each section and can be chosen in several ways. In the present work, we split the "standard" Gaussian distribution into 16 parts. Note that in the real implementation, we will use only eight segments for the LUT due to the symmetric nature of the distribution. The i th segment of the quartile Gaussian distribution (i = 0, 1, ..., 7) is illustrated in Figure 4.3 where the range of the segment is de ned as

[x L i , x U i ) (0 ≤ x L i < x U i ≤ 2σ).
Note that the tail segments involve the in nity elements and therefore are limited to 2σ for seeking the middle points of these parts. For the output values, we choose the middle point of the range of each section, i.e.,

x U i -x L i 2
. The segmentation of the distribution used in this work is summarized in Table 4.1 with respect to the range, cumulative distribution function (CDF) and the corresponding midpoint value. The procedure to obtain the approximated GRNG in this method, which is illustrated in Figure 4.4, is as follows: 1) simply generate a 4-bit uniform random number, 2) use the three lowest signi cant bits as an index that corresponds to i in distribution segmentation to fetch the midpoint value, and 3) if the most signi cant bit is negative, negate the fetched value before their use. Since we considered the standard normal distribution, we need to scale to the employed Gaussian distribution, i.e., N (µ t , σ). Denoting by G qt a function that receives a uniform random number and returns its corresponding quartile-based Gaussian random number, we therefore generate the next action as:

a t+1 = µ t+1 + G qt • σ (4.6)

Derivation of the LAC-QAB algorithm

Three approximation methods have been introduced to decrease the computational and memory footprint cost in the proposed LAC-AB algorithm. As can be seen in Algorithm 3.2, the integration of Adam introduced extra costs such as the square and squared root operations to obtain the uncentered standard deviation (line 2 and 3) and the division (line 3).

Moreover, the LAC-based algorithm comes with the GRNG to produce the next action, which corresponds to line 13 in Algorithm 3.1. These lines of codes (i.e., line 9-14) can be replaced by Algorithm 4.1 to derive the LAC-QAB algorithm. Note that F recip (s t ) represents a function that approximates a reciprocal of a divisor s t .

Simulation Results

With the three approximation methods explained in the previous sections, Adam is now approximated as well as the Gaussian policy to reduce the algorithmic overhead. Hence, we call the novel algorithm the LAC-QAB algorithm, LAC using Quasi-Adam Biased. Due to those approximations, we analyse now the possible degradation in the performance of the original algorithm (LAC-AB). Practically, we consider the 32-bit RISC-V core that restricts maximum number of bits to represent the data to 32 bits, i.e., m + n ≤ 32. -Actor parameter ∀t ≥ 0, ψ t ≥ 0 / * Policy gradient theorem using Quasi-Adam * / 

a t+1 = µ t+1 + G qt • σ
Quartile Gaussian policy for action generation 16: a t+1 ← Clamp a t+1 to [a min , a max ] Simulation results are shown in this section to demonstrate similar performance and less computational burdens of the LAC-QAB algorithm in comparison to the LAC-AB. Regarding the evaluation of the overhead, a RISC-V processor was considered in the simulations. We suppose that µW-range adaptive controllers comply with today's µW-range micro-controllers, as discussed in section 2.1.4. The common hyper-parameter setting for the simulations of the LAC-AB and LAC-QAB algorithm is shown in Table 4.2. Other hyper-parameters such as T cui , β, β 1 and β 2 will be speci ed below. α γ σ λ 0.1 0.9 5.0 × 10 -4 0.9 1.0 × 10 -6

Performance

To evaluate the LAC-QAB algorithm, the decay rate study must be conducted: The results for the "best" combinations of the two decay rates are compared with the base LAC-AB algorithm, since the approximation methods introduced may change the algorithmic characteristics. For β 1 , β 2 ∈ [0.1, 0.7] with the step size 0.1, EHD1 was used to evaluate the power failure and latency, while the ToF and ToR were calculated based on the results using EHD3 that eliminates the seasonal e ects in the optimization process. Note that 300 simulations were conducted for each combination of the parameter values, and the results obtained by EHD2 are not reported because the results are similar to the ones obtained by EHD3.

Additionally, the values for the control interval T cui and the actor learning rate β are adjusted to analyze their impacts on those metrics. The granularity of the control update may change the variability of the SoB and the SoC. In our application use case, the SoB's uctuation follows the workload change, which in uences the gradient values. Hence, the control interval is closely correlated with the learning rate. We use T cui = 30 and T cui = 10 as the case of coarse-grained and ne-grained control, respectively. Also, di erent learning rates β = {1.5× 10 -4 , 3.0 × 10 -4 , 4.5 × 10 -4 } are tested to compare their impacts on the optimization process.

Case of Coarse-grained Control

In this section, we x T cui = 30 minutes. When the granularity of the control is coarse, relatively large β are more likely to cause power failures, unstable convergences, and worse latencies. This observation can be made when comparing β = 4.5 × 10 -4 and 3.0 × 10 -4 . Power failures are more likely to occur across a wider range of (β 1 , β 2 ) with 4.5 × 10 -4 , where zero or far less failures are con rmed with β = 3.0 × 10 -4 (see Figures 4.6). With respect to the ToF and the ToR, they mostly remain below 15 and 20 days, respectively, in case of β = 3.0 × 10 -4 , whereas those of β = 4.5 × 10 -4 may rise above 15 days and even more than 50 days for several di erent (β 1 , β 2 ) sets, which reveals the instability when using larger β (see Figures 4.5).

Speaking of latency characteristics, smaller β 1 mostly produces better mean latencies for all learning rates β and all β 2 values in the rst 6 months, except for β 1 = 0.5 that leads to comparable latencies (e.g., up to around 10.6 minutes) to those of β 1 = 0.1 (see upper left gure in Figures 4.7 latency characteristics (e.g., mean/stddev of 10.71/15.42 minutes when β 1 = 0.5). We now focus on the last 6 months. Similarly to the rst 6 months, using β 1 = 0.5 contributes to comparable or even better mean/stddev latencies (e.g., up to 9.4 and 12.1 minutes) (see bottom two gures in Figures 4.7). The di erence from the rst half period is that smaller learning rates β yield better mean/stddev latencies as well. We can also clearly see that smaller β 2 produces better latency characteristics for all learning rate cases.

To sum up, with β 1 = 0.5, smaller β 2 are in general more suitable for more dynamic situations such as doubled workload that raised the uctuations of the SoB level, i.e., the gradient. Smaller learning rates also help create such a tendency. In our application use case, the learning rate β = 3.0 × 10 -4 yields well-balanced performance including ToF/ToR, power failures and latency characteristics. Both large β 2 = 0.7 with β = 1.5 × 10 -4 and small β 2 ∈ [0.1, 0.3] with β = 4.5 × 10 -4 could even be comparable. Since long T cui may induce large gradient values, too big learning rates such as β = 4.5 × 10 -4 are more likely to update the parameter too much and to cause power failures, although the case of using β 1 = 0.5 and β 2 ∈ [0.1, 0.3] experiences no power failures.

Case of Fine-grained Control

Contrary to the previous section, we x T cui = 10 minutes. Figures 4.8 depict the ToF and the ToR of the LAC-QAB algorithm. The mean and the standard deviation of the latency for the same sets of con gurations are also summarized in Figures 4.9. Note that no power failure was observed in any combinations of β 1 , β 2 and β, as the update of the control is quickly conducted to prevent power failures.

The latency characteristics are clearly the best when β 1 = 0.5 (see Figures 4.9), similarly to the coarse-grained case. Larger learning rates β and/or larger β 2 improve both mean and stddev of the latency of the rst half a year (see upper two gures in Figures 4.9), With β 1 = 0.5, the mean latencies of β = 1.5 × 10 -4 and β = 4.5 × 10 -4 are about 4.7min and 4.5min, and the di erence of the stddev of latency between the cases of two learning rates can be more than 0.4min. Meanwhile, only slight di erences can be seen for the last 6 months in terms of β and β 2 (see bottom two gures in Figures 4.9). The di erences of the mean/stddev are kept within 0.1min with β 1 = 0.5 for all learning rates and all β 2 .

In terms of convergence speed, larger learning rates β lead to faster ToF and ToR (see Figures 4.8). Compared to the coarse-grained case, the convergence is more stable. It can be attributed to smaller deviations of the SoB and the SoC that results in less gradient uctuations. Although the ToFs and ToRs mostly stay around 20 ∼ 30 days when β = 1.5 × 10 -4 , they reduce to about 5 ∼ 15 days when β = 3.0 × 10 -4 , 4.5 × 10 -4 . Overall, considering both latency and convergence speed, the combination of β = 4.5 × 10 -4 , β 1 = 0.5 and smaller β 2 such as 0.1 ∼ 0.3 will be a good option in our application scenario.

Comparison with the LAC-AB Algorithm

By comparing to the results of the LAC-AB, similarities and di erences are now investigated. For fair analysis, the outcome of the two algorithms using the same hyper-parameter setting, i.e., T cui = 30min and β = 3.0×10 -4 along with a better choice with β 1 = 0.3 ∼ 0.5 (see blue lines of upper two gures in Figure 4.11). When β 1 is greater than β 2 by more than 0.5, we have severe degradations: for example, comparing (β 1 , β 2 )=(0.6, 0.1) and (0.5, 0.1), the mean latencies are equal to about 11.4 and 10.4 minutes, respecively, and the di erence in stddev of latency is even wider, i.e., about 5 minutes. We therefore conclude that the combinations of β 1 = 0.3 ∼ 0.5 and β 2 = {0.1, 0.2} in the LAC-AB algorithm can produce better latency results in both mean and standard deviation. On the other hand, the LAC-QAB method shows di erent latency characteristics. Smaller β 1 and larger β 2 globally lead to better mean latencies. Interestingly, β 1 = 0.5 is exceptionally as e ective as β 1 = 0.1 (see green lines of upper two gures in Figure 4.11)). In most cases, the LAC-QAB algorithm shows better stddev of latency (see upper right gure in Figure 4.11).

Thus far, we can claim that the LAC-QAB algorithm produces di erent attributes from the LAC-AB, due to the three approximation methods along with the xed-point data precision.

When the workload has doubled, both algorithms expect the rising tendency in the latency characteristics as β 1 increase (see bottom two gures in Figure 4.11). Also, smaller β 2 values yield better latencies, except when β 1 is greater than β 2 by more than 0.4 in the LAC-AB (see blue lines). We can claim that the reactivity to bigger uctuations of the workload can be provided by smaller decay rates for both algorithms. Again, β 1 = 0.5 exceptionally improves the latency performance of the LAC-QAB algorithm.

Lastly, we compare the two algorithms with an example. Consider that we opt for the following combinations: (β 1 , β 2 ) = (0.4, 0.1) for the LAC-AB and (β 1 , β 2 ) = (0.5, 0.2) for the LAC-QAB. Note that those combinations produce comparable latency characteristics in terms of both mean and stddev to the other combinations with no power failures. For ease of comparison, we denote by L(M L1, SL1, M L2, SL2) the mean latency (M L) and its standard deviation (SL) for the rst-half ( 1 as a su x) and last-half period ( 2 as a su x). In terms of the LAC-AB, we obtained L(10. minute, which is the di erence of standard deviation in the rst-half period between LAC-AB and LAC-QAB. This di erence can be considered small enough when compared to the average data arrival rate that is greater than 1.0pkt/min.

To conclude, we can con rm that the LAC-QAB algorithm is completely a di erent algorithm from the LAC-AB, due to the proposed approximation methods and the xed-point data representations. Still, the latency performances of the two algorithms can be considered comparable. We can also expect faster ToF and ToR in case of the LAC-QAB. Note that these analysis are given for our application scenarios.

Algorithmic Overhead

Since the proposed adaptive controller is intended to manage the power supply and demand in a resource-constrained EH-IoT node, it must reduce the overall power consumption to improve the energy e ciency of the system. To evaluate the algorithmic overhead, an instruction-set simulator Spike and an RTL simulator Questasim are utilized to obtain the number of instructions/cycles that it takes to execute the algorithms. For the post place-and-route simulations, the SamurAI architecture [START_REF] Miro-Panades | SamurAI: A 1.7MOPS-36GOPS Adaptive Versatile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up Time and 1.3TOPS/W ML E ciency[END_REF], which integrates a RISC-V core called RI5CY core [START_REF] Andreas | RI5CY: User Manual[END_REF], is targeted to obtain more accurate values.

Environment Setups

Along with the Spike Risc-V simulator, several tools such as the Risc-V toolchain and its proxy kernel are required. The proxy kernel serves as a lightweight application execution environment where statically-linked Risc-V ELF binaries are hosted [START_REF]RISC-V Proxy Kernel and Boot Loader[END_REF] and the evaluation of the number of cycles can be conducted. In this work, Spike provided in [103] was used based on the Risc-V GNU toolchain [104] as the C/C++ cross-compiler and the Risc-V proxy kernel [START_REF]RISC-V Proxy Kernel and Boot Loader[END_REF]. Our interest here is to compare the oating-point implementation with its xedpoint counterpart. Since the lightweight 32-bit Risc-V architecture is targeted, rv32i was selected as the architecture with the soft-oat option instead of FPU units that are area-and power-hogging. Note that the soft-oat option enables the oating-point operations by using the integer registers [START_REF] Andrew | The RISC-V Instruction Set Manual, Volume I: UserLevel ISA, Version 2.1[END_REF]. Therefore, the execution time is longer and the outcome is rounded and approximated. For example, the opcode mulsf3, which is the soft-oat multiplication for the oating-point multiplication, consists of multiple add and mul along with other basic arithmetic operations such as shifting.

In terms of the xed-point implementation, the RTL simulations were conducted to obtain the number of cycles more precisely. The target architecture is the SamurAI System-on-Chip [START_REF] Miro-Panades | SamurAI: A 1.7MOPS-36GOPS Adaptive Versatile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up Time and 1.3TOPS/W ML E ciency[END_REF] that integrates a RISC-V core called RI5CY core [START_REF] Andreas | RI5CY: User Manual[END_REF] which can be con gured to run ondemand at 345MHz and 0.9V. The below results is purely based on the number of cycles that it takes to execute the algorithm, and therefore, the wake-up overheads of the core are ignored. Note that the pure asynchronous hardware solution can almost eliminate such wakeup overheads.

Mentor's Questasim was used to obtain the number of cycles by reading the Performance Counter Counter Register (PCCR). The approach is to obtain the di erence between the start and the end of the number of cycles executed in active mode which can be read from the PCCR0 register. The start and the end of the concerned algorithm are judged based on the program counter. To this end, the assembly instructions are generated in the compilation process to track the program counters (PCs).

Results

To evaluate the algorithmic overheads of the proposed LAC-QAB algorithm, the oating-point counterpart is compared using Spike ISS. Importantly, note that the LUT-based approximation of divisions in Section 4.2.2 can only be implemented with xed-point data precision, and therefore, the division operation was directly calculated in case of oating-point arithmetic.

Table 4.3 summarizes the mean and the standard deviation of the number of cycles executed for the LAC-QAB algorithm in oating-point and xed-point precision, along with that of the other two LAC-based algorithms (e.g., LAC and LAC-A algorithm [START_REF] Sawaguchi | Highly Adaptive Linear Actor-Critic for Lightweight Energy-Harvesting IoT Applications[END_REF]) as the baseline performances. Note that the part of the algorithm to be evaluated involves one loop of the RL algorithm that starts with observing the state and nishes by returning the next action. The mean and the standard deviation were therefore calculated as the averages over 17 520 loops in a single simulation, since T cui = 30min. We also assume that the core runs at 345MHz,0.9V and the power consumption equals 22mW as in [START_REF] Miro-Panades | SamurAI: A 1.7MOPS-36GOPS Adaptive Versatile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up Time and 1.3TOPS/W ML E ciency[END_REF] for fair comparison with our asynchronous hardware solution.

The base LAC algorithm requires 99 851 cycles to complete a single loop, which accounts for 289.4µs. Due to the additional adaptive learning rate algorithm Adam for gaining the reactivity, the LAC-A algorithm requires 1.72 times more cycles than the LAC. By removing the initialization bias correction terms, we can bene t the 25.4% reduction in the mean number of execution cycles. Thanks to the approximation methods proposed in this chapter, the oatingpoint version of the LAC-QAB executes less complex arithmetic operations such as division and squared root, so that the number of cycles is drastically reduced by 91.1% compared to the LAC-AB. Finally, the proposed xed-point algorithm yields 1.59 times less overheads than the oating-point counterpart. Its execution time is 12.9µs and the energy consumption is 282.7nJ per loop of the control algorithm. Note that the evaluated gures above are the mean numbers of cycles, and their standard deviations range around [400, 500] cycles, except for the LAC-A that expects 170.0 cycles, which does not make huge di erences in the comparison results. The more practical/realistic number of cycles required to execute the LAC-QAB algorithm is obtained by Questasim RTL simulations targeting the SamurAI System-on-Chip. Note that the optimization option of the compilation was set -O0.

For example, the PC values of the start and the end of a loop were obtained as 32'h81c and 32'hee8 PC. When the algorithm starts running, 1 772 cycles have already passed for the initialization process. The next action value is returned when the number of cycles points to 3 142 cycles. As such, the overheads of the LAC-QAB algorithm in xed-point for the Samu-rAI's RI5CY core are equal to 1 370cycles. Figures 4.12 show the actual simulation results to nd these values. The same procedure was applied to every single loop, so that we obtain the mean and the standard deviation of the number of cycles to execute over 17 520 loops. The results are shown in Table 4.4 with their counterparts obtained by Spike ISS. Again, if we assume that the core runs at 345MHz with 0.9V [START_REF] Miro-Panades | SamurAI: A 1.7MOPS-36GOPS Adaptive Versatile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up Time and 1.3TOPS/W ML E ciency[END_REF], the resulting execution time and energy consumption are about 2.8µs and 60.8nJ, respectively. The di erence in the number of cycles of Spike ISS and Questasim RTL simulations ends up as 78.5%. This result suggests that the RI5CY core architecture is considered to be simpler than the target core in Spike ISS. 

Summary

This chapter has presented the LAC-QAB algorithm using xed-point precision that integrates into the LAC-AB algorithm three approximation methods:

1) the range rule of thumb for standard deviation;

2) the LUT-based linear function approximations for division;

3) the quartile-based Gaussian policy.

These approximations help break down the computationally expensive operations such as division, squared root and Gaussian random number generation into less intensive ones such as shift, addition and multiplication.

For the LAC-QAB algorithm, the decay rates β 1 and β 2 should be set di erently from the LAC-AB algorithm. For the SAT application, β 1 = 0.5 is the best value for almost all situations, In the previous chapter, we proposed the LAC-QAB algorithm to manage power in Energyharvesting IoT nodes. In section 4.3, we presented a lightweight software implementation of the proposed LAC-QAB algorithm. In this chapter, the complexity of the proposed algorithm will be further decreased to target an hardware component. We propose here the implementation of an asynchronous hardware component to further improve its energy e ciency. Firstly, we present the mechanism and the properties of asynchronous hardware. Subsection 5.2 will then describe the detailed hardware architecture of the LAC-QAB algorithm. The implementation results and their analysis are summarized in section 5.3.

Asynchronous Hardware

The most common choice for hardware design is synchronous hardware. Its functionality fully relies on a single clock signal. The so-called clock tree must be carefully laid out to synchronize every memory cell such as ip-op (state element, hereafter) across entire regions. Moreover, during the period between any two rising edges of the clock, all the updated data signals (tokens) must get from one state element to the other through each path of combinational logic to ensure the correct operation of the hardware component. Hence, the performance of the synchronous hardware, i.e., the maximum clock frequency is dependent on the longest combinatorial path between any pair of related two state elements, known as the critical path.

The asynchronous scheme [START_REF] Martin | Asynchronous Techniques for System-on-Chip Design[END_REF] is, on the other hand, independent of such a clock signal and memory cells. The asynchronous circuits are thus clockless. This scheme enables each hardware module to process and transfer the data independently with the help of local synchronization between any two neighboring modules. An asynchronous module must be able to:

1. wait for other asynchronous module(s) to send their message(s);

2. acknowledge the reception of the message(s);

3. conduct operations when all the data are ready at hand; 4. generate and transmit the output(s) to the next module(s).

A set of signals called a channel exists that contains (1) the processed data signal(s) from the downstream module (TX) to the upstream one (RX) and ( 2) a signal called the acknowledgment from the RX to the TX. With these signals, the realization of local synchronization can be achieved based on a bidirectional asynchronous communication protocol and/or data coding scheme. Figure 5.1 depicts the overview of the synchronous and asynchronous circuit for comparison. Generally, a variety of asynchronous approaches exists based on the delay assumption used to implement sequencing. A delay-insensitive circuit does not require any delay assumption to execute its correct operations, except that the delays are nite and positive. Such a circuit is in practice proven to be very limited. A Turing machine can be, on the other hand, implemented based on a delay assumption on so-called isochronic forks that connect the output of a gate to the inputs of other gates. Asynchronous circuits with such a delay assumption are known as quasi-delay-insensitive (QDI). QDI is the basis of asynchronous circuits where the delays in the interconnects, such as wires and forks, are negligible compared to those in the gates (combinational logic). Compared to its synchronous counterpart, the asynchronous design is advantageous in terms of the start-up overheads and the speed, at the cost of the chip area and therefore the leakage power. Also, asynchrony does not require the clock generation as well as the adjustment of the supply voltage.

As discussed, a bidirectional asynchronous communication protocol and/or data coding scheme are necessary to achieve local synchronization. The communication protocol is known as a handshake protocol. Mainly two kinds of handshake protocols exist: two-phase and fourphase handshake protocol.

In the two-phase protocol, upon the arrival of the new processed data from the TX, the RX switches the acknowledgment signal. After this transition of the acknowledgement signal, the TX can produce and transfer the next data. Despite its simple concept, its hardware implementation requires additional logic to detect the transitions of the data. On the other hand, the four-phase protocol resets the data and the acknowledgment to zeros every time after the data are correctly transmitted. No extra hardware is required unlike the two-phase protocol. Thus, the four-phase protocol is widely used. The two protocols are depicted in Figure 5.2. The original data can be encoded using a delay-insensitive (DI) code such as dual-rail code, quad-rail code, 1-of-N code and k-out-of-N code. The bubble, i.e., the neutral state of signals is inserted between two valid data tokens.

As an example, the dual-rail code, which is typically leveraged and is also used in this work, reserves zero as the neutral code. For a 1-bit data signal, two 1-bit wires are required, so that 2'b01, 2'b10 and 2'b00 represent "0", "1" and the neutral state, respectively. This encoding scheme is also called three-state encoding. Hence, to transfer N -bit data, the total of 3 * N wires are necessary that comprise 2N data wires and N acknowledgment wires. The acknowledgment wires can be merged, in which case 2N + 1 wires will be used. The dual-rail code can thus only convey 2 N di erent values with 2N data wires, with which the synchronous circuit can express 2 2N values. Here we can expect more overheads with respect to area in asynchronous schemes. In quad-rail code, one acknowledgement wire is assigned to a set of four data wires. Therefore we need 5 * (N/2) wires in total or 4 * (N/2) + 1 in case of merging (N/2) acknowledgment wires.

Bundle Data is another realization of data communication protocol without such DI codes. output y t+1 , which is the feedback data. Note that PE, ACK and Neut. in the diagram stand for processing element, acknowledgment and neutral, respectively. This loop circuit can correspond to an accumulator. As can be seen, the data can be reserved between two half-bu ers with negative acknowledgement signal, while the data are reset to neutral by the acknowledgements. Due to the four-phase handshake protocol, the acknowledgement signals are interchangeably positive and negative. If only two Half-Bu ers are used, the data token can be maintained in the loop. However, a blocking scheme is induced by the four-phase protocol and the system will not make any progress.

IP Module Structure and Mechanism

We now present the hardware design of the algorithm in a modular fashion. The proposed hardware accelerator of the LAC-QAB algorithm will be incorporated into an IoT sensor node as a smart adaptive controller, see Figure 2.4. Figure 5.7 presents the top module of the LAC-QAB algorithm using the xed-point data precision. Note that the critic parameter θ t is always fed back to the TD-ERROR module.

The following subsections explain the detailed architecture of each major sub-module, namely:

• FEATGEN for feature generation;

• TDERROR for temporal-di erence error; • CRITIC UPDATE for critic parameter update;

• ACTOR UPDATE for actor parameter update and new action value generation. . For the feedback mechanism, three half-bu ers are required. All the FIFOs for feedback purposes are presented as "3HBs" in the gures below.

Feature Generation

Since the SoB and the SoC are both normalized, their ranges are [0, 1]. Therefore, their Qformat should take Q0.n, where n is the fractional bit width. The shift operations after the multiplications help reduce the nal chip area by potentially degrading the accuracy, which was trivial as a result of the implementation made in this work (see the details and results in Section 5.3).

Temporal-Different Error

The TDERROR module is depicted in Figure 5.9. It calculates the TD-error δ t+1 based on the critic features f critic t+1 and f critic t . The critic parameter θ t will be fed back from the CRITIC module (see Section 5.2.3). The TDerror δ t+1 , calculated as in line 6 in Algorithm 3.1, can be reformulated as:

δ t+1 = f critic t+1 + (γ • f critic t ) • θ t (5.1) 
where

f critic t+1 , f critic t ∈ [0, 1].
Thus, the range of δ t+1 is given as [-θ t , 1 + γθ t ]. Note that the parameter θ t , provided that α ≤ 0.125, is always greater than zero, which is elaborated in the next subsection.

Critic Update

This module updates the critic parameter isochronically based on the TD(λ) algorithm. As can be seen, the multiplication by TD-error δ t+1 is postponed until the product of the eligibility trace z t and the learning rate of the critic α is conducted instead of multiplying δ t+1 and α. This design choice is because some data pass through the TDERROR module to produce the TD-error in parallel with the calculation of α • z t . The operations also involve the feedback loops of the eligibility trace z t as well as the critic parameter θ t .

We need to consider the upper bound of the necessary and su cient data precision for these two variables. The eligibility trace is expressed by the in nite geometric series where the coe cients are (1 -φ SoB t+1 ) • φ SoC t+1 and its common ratio is given as γλ which ranges [0, 1]. The upper bound of the coe cients is always one. If we replace the term with 1, then the value z t will converge to 1 1-γλ .

Typically, both decay rates, γ and λ, are set 0.9 (also in this study), with which the upper bound of z t is around 5.26. As such, only 3 bits for the integer part are required for z t .

Using

δ t+1 ∈ [-θ t , 1 + γθ t ], we obtain θ t+1 ∈ [(1 -8α)θ t , 8α(1 + γθ t ) + θ t ].
Should the learning rate of the critic α be less than 0.125, the lower/upper bound of θ t+1 is 0 + /1 + 1.9θ t,-, respectively. Note that the additional subscript of the sign indicates that these values are the possible minimum/maximum values for the lower/upper bounds.

This study uses α = 0.1 ≤ 0.125 and these smaller values for α are empirically recommended.

Otherwise, the θ value may diverge. As a result, θ t is always greater than zero. Since the upper bound is greater than one, the number of bits for the integer part of θ t depends on the target application. This SAT application in this study, for instance, necessitates only 4 bits.

Actor Update

The update of the actor is the most intensive process. This module is therefore divided into four smaller ones, namely, GRAD, QAB, UPDATE and ACTION-GEN as shown in Figure 5.11. GRAD is literally in charge of calculating the gradient value, which is then passed to the QAB (Quasi-Adam-Biased) module (see Figure 5.12). In QAB, the EWMA module is designed to return the rst-order moment of the gradients.

The second-order moment, on the other hand, is approximated by the rule of thumb for standard deviation that requires CEWMAs, or conditional EWMAs to derive the maximum and the minimum sample of the rst-order moment. The condition is given as the signal that judges if the incoming gradient is greater than the current rst-order moment m t or not, as discussed in Section 4.2.1. The moments obtained are then used to seek the update value for the actor parameter ψ t in the UPDATE module in Figure 5.13.

Since the orders of magnitude of the variables in this module, such as β, m t+1 and s t+1 , are quite small, the (left-)shift operations are applied to scale the values to the range [0.5, 1). These operations are conducted for m t+1 and s t+1 in the SCALE modules. Note that we treat β and obtain its number of bits shifted β cnt at design-time. This helps keep e ective bits in 32-bit width when multiplying m t+1 with both the reciprocal of s t+1 and β and leverage the LUTbased approximation of the reciprocal of s t+1 .

After seeking β • m t+1 • s -1 t+1 , the variable shift operations are made in the Vshift module to revert the original decimal point back to its original position. Note that the unscaled m t+1 is used as the multiplicand of β whose value is likely to be over zero, and the comparator receives the unscaled s t+1 and due to matching the orders of magnitude. The comparator returns the selection bit for the update value of the actor parameter ψ t .

The updated parameter ψ t+1 is then supplied to the ACTIONGEN module to return the next action value. Due to the linear function approximation, ψ t+1 and f actor t+1 are multiplied to obtain the mean action µ t+1 .

A linear feedback shift register (LFSR) generates a uniformly-distributed random number that serves as the key to withdraw a random number that follows the quartile-based standardized Gaussian policy. Note that the key and the corresponding value (i.e., the midpoint) are listed in Table 4.1. We adopted a Galois LFSR and its 4-bit implementation is illustrated in Figure 5.14. In this example, the leftmost bit and the rightmost bit are XORed before right-shifted by 1-bit, while the rest of the bits is simply right-shifted by 1-bit. The XORed bit positions are called the taps. The taps in this case are 1 and 4 as the positions from the least signi cant bit. The generations of the random numbers do not need any inputs and are enveloped in a loop within the module. Therefore, the three HBs need to be inserted to match the phases of the data tokens in the feedback loop in asynchronous circuits. In our design, we implemented a 16-bit Galois LFSR whose taps are 1, 12, 14, 15 and used the four LSBs. The use of 16 bits prolongs the repeating cycle of the random numbers.

Hence, the next action value is obtained by adding/subtracting the clamped µ t+1 by the midpoint value scaled by the actual exploration rate σ.

The CLAMP modules are used to t the value within the action valid range [a min , a max ]. 

Implementation Results

This chapter provides the implementation results of the asynchronous LAC-QAB hardware component. The synthesiser ACC (Asynchronous Circuit Compiler) is used for the area and PrimeTime Power is used for power consumption. Before presenting the results, we elaborate the data precision used for the implementation.

Data Precision for Fixed-Point Representation

For the state input such as the SoB φ SoB t and the SoC φ SoC t , we decided to use Q0.8, i.e., all 8 bits for the fractional parts as an unsigned value to represent their values. Note that φ SoB t and φ SoC t range [0, 1]. Correspondingly, all the other parameters are also expressed as Q0.8 except for the following input and output parameters.

The learning rate of the actor β may require a small order of magnitude, so that it works well with the application considered as in this study. In such a case, however, too many fractional bits are necessary to represent small values of β, which may explode the number of bits of the product between β and other variables.

Hence, if necessary, we left-shift β until it ranges [0.5, 1) and right-shift the product afterwards the number of times that β is shifted, denoted as β cnt . This way, we avoid the explosion of the number of bits potentially caused by multiplications. In this study, we use 4-bit unsigned integer for β cnt .

The hyper-parameter , which is used to avoid the division by in nitesimally small values is also a small constant value such as 1.0 × 10 -8 . Nevertheless, this parameter is only used for dividing β and comparing with gradient values. As β is a constant learning rate, the can be integrated into the learning rate from the very beginning.

When generating actions, we use the Gaussian policy where its standard deviation σ is given as a hyper-parameter. Its order of magnitude depends on the considered application, and it can be as small as 5 × 10 -4 in our application example. In such a case, σ may require 16 bits. This in uences the choices of precision for the action values; the 16 bits are also employed for the action a t .

Overall, the data precisions employed in this work are summarized in Table 5.1. Note that only the variables shown in Figure 5.7 are listed here. 

β 2 Q0.8 1 -β 1 Q0.8 1 -β 2 Q0.8 b cnt Q4.0 β Q16.0

Netlist-Level Analysis

We conducted the synthesis using the ACC and place and route using Innovus on our hardware design of the LAC-QAB algorithm. The implementation of the algorithm is based on ST Microelectronics 28nm FDSOI technology process. The oorplan for place and route was con gured as 330µm for both width and height. The layout of the design is illustrated in Figure 5.16. The resultant density and chip area are reported as 89.2% and 0.095mm 2 , respectively, where the number of gates used is equal to 19 411. Note that the supply voltage is considered 0.9V.

Since the asynchronous circuit is clockless, we cannot use the toggle rate information to cal- culate the algorithm's execution time and the dynamic power consumption pro les. To this end, we conducted the post place-and-route simulations and obtained the execution time and the dynamic power consumption of a single loop of the LAC-QAB algorithm. Note that we set the supply voltage and the temperature as 0.9V and 25°C, respectively, for the simulations in PrimeTime Power. The simulation results are summarized in Table 5.2. The leakage power and dynamic power were calculated as 39.6µW and 3.42mW per loop. These values, especially the dynamic power, are obtained for a single duration of a loop of the control algorithm. The loop of the test case was executed in about 36ns in the post place-and-route simulation. The measurement of the dynamic power consumption was therefore made to set the time window duration to 36.1ns to obtain the number within up to 0.28% error. We consider that this measurement method can be supported, because the di erence in algorithmic overheads due to the if-else branches can be negligible in our asynchronous design.

In terms of the leakage current, it is non-trivial. In the idle state, the power-gating can address this issue. This solution is particularly e ective, as our proposed algorithm can be activated to control at a mid-term interval, such as 10 and 30 minutes. Hence, the execution of a single loop control sequence consumes 124.56pJ/loop in total.

In section 4.3.2.2, we considered the RI5CY core that runs at 345MHz,0.9V and consumes 22mW [START_REF] Miro-Panades | SamurAI: A 1.7MOPS-36GOPS Adaptive Versatile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up Time and 1.3TOPS/W ML E ciency[END_REF], where the LAC-QAB algorithm was executed in 2.8µs for a single loop. This leads to the energy consumption of 60.8nJ/loop. Compared to the µW-range microcontroller, our hardware solution improved the energy e ciency by about two orders of magnitude, i.e., by 99.8%.

Summary

This chapter focused on the asynchronous hardware implementation of the LAC-QAB algorithm as another lightweight design choice. Considering its small algorithmic overhead, it is bene cial to reduce the start-up overhead of the chip by asynchrony. It also frees us from the clock generation and the adjustment of supply voltage that exist in synchronous circuits.

We used the ACC for the synthesis and Innovus for place and route to generate the net-lists of our design. The density and the chip area were reported as 89.2% and 0.095mm 2 , respectively. The static power consumption was estimated as 39.6µW at 0.9V as the supply voltage at 25°C, respectively.

For the analysis of energy e ciency of the circuit, we ran netlist-level simulations. We obtained the computational overhead as 36ns per loop and the dynamic power consumption as 3.42mW. This leads to the energy e ciency of 124.56pJ per loop. The asynchronous solution is therefore about two orders of magnitude more energy e cient than the RI5CY core of the SamurAI System-on-Chip obtained in the previous section, which is 60.8nJ/loop. In our application scenarios, the controller is activated at mid-term intervals such as 10 and 30 minutes. In such cases, the impact of the leakage power can be e ectively reduced by the power-gating. The propositions thus far revolved around the optimization problem under Markov Decision Process (MDP) without any constraint terms. If any, the constraints were only implicitly dealt with. For example, directing the system to maximize the SoC implies avoiding power failures, i.e., φ SoC t ≥ 0, while maximizing the TX duty-cycle. The maximization of the two terms is expressed in a reward function, but this design choice makes it di cult to balance such con icting objectives (or constraints) [START_REF] Paternain | Constrained Reinforcement Learning Has Zero Duality Gap[END_REF].

Chapter 6 CMDP-based LAC Algorithms for Awareness of Constraints

Instead of the maximization approach, a desired behavior is navigated more naturally by the constraints themselves. The users may want to keep the average SoC level to, for instance, φ SoC t = 0.8 while achieving the latency less than a certain threshold, which can be translated using the SoB level as φ SoB t ≤ δ SoB . To directly address the constraints in RL, a constrained MDP (CMDP) is generally considered. A constraint can be expressed as the mean value, the probability, a discounted sum and other criterions [START_REF] Tessler | Reward Constrained Policy Optimization[END_REF][START_REF] Geibel | Reinforcement learning for MDPs with constraints[END_REF]. In CMDP-based RL formulation, the optimization problem with the constraint term(s) is transformed into its unconstrained counterpart as a reward function. The formulation will be explained in details below.

Reinforcement Learning for CMDPs

A constrained MDP (CMDP) is an extension of MDP by adding a constraint term. By introducing a second reward (cost) function c t (s, a) and a constrained value function C π , we can formulate the CMDP problem:

max. V π s.t. C π E[ ∞ k=0 γ k c t+k+1 |s t = s|] ≤ δ (6.1) 
where δ is a constraint threshold. Recall that the value function V π is expressed as in Eq. (2.19).

The Lagrangian relaxation technique [START_REF]Nonlinear programming[END_REF] is often performed to solve the CMDPs. It enables transforming the CMDP problem into the unconstrained counterpart. This technique introduces a Lagrange multiplier λ L > 0 and derives an unconstrained problem by linearly combining the objective function and the constraint term in Eq. (6.1). Thus, under the policy π, the linearly combined reward function L π,λ L holds:

L π,λ L V π -λ L max(C π -δ, 0) (6.2) 
This equation suggests that the value should be evaluated less valuable by the di erence between the average cost C π and the prede ned threshold δ only if the former exceeds the latter; otherwise, by zero. Based on the TD-learning method, the immediate reward value for the CMDP-based RLs is therefore obtained:

l(s t , a t , λ L ) = r t+1 -λ L (c t+1 -δ) (6.3) 
Given that the policy π is feasible, the constraint in Eq. (6.1) is satis ed for all the states, and the following inequalities hold:

∀s ∈ S, C π (s) -δ ≤ 0 (6.4) ∀s ∈ S, ∀π ∈ Π, L π (s) ≤ V π (s) (6.5) 
where Π is a feasible policy space.

We can take the maximization of both sides of Eq. (6.5) to obtain:

∀s ∈ S, ∀π ∈ Π, max π L π,λ L (s) ≤ max π V π (s) (6.6) 
The left term is the lower bound of the value function.

Maximizing this lower bound gives a solution to the objective function shown in Eq. (6.1). More precisely, by minimizing λ L term for max π L π , we nd the greatest lower bound for V π . As such, the following unconstrained optimization problem is obtained:

∀s ∈ S, min λ L max π L π,λ L (s) (6.7) 
If the reward and cost function are both convex, the value V π obtained by the constrained optimization problem in Eq. (6.1) is the same as L π,λ L (s) obtained by the primal-dual problem in Eq. (6.7).

Hence, solving the following two optimization problems gives the optimal policy and Lagrange multiplier, π * and λ L * .

π * ∈ arg max π L π,λ L (6.8) 
λ L * ∈ arg max λ L L π * ,λ L (6.9) 
Generally, simultaneously solving the two problems causes ill-optimizations. To seek the two optimal values in an iterative manner, the theory of the two time-scale stochastic approximation is applied [START_REF] Borkar | An actor-critic algorithm for constrained Markov decision processes[END_REF]. This theory is to estimate the optimal policy π * under the quasi-static λ L . Let the learning rate for Eq. (6.8) and (6.9) at iteration t be α t and β t , then the following condition must be met to achieve such a concurrent update:

t (α 2 t + β 2 t ) < ∞ (6.10) lim t→∞ β t α t → 0 (6.11) 
As can be seen, Eq. (6.10) indicates the convergence of the RL algorithm. Therefore, RL methods that can memorize the past learning results, such as tabular Q-learning [START_REF] Hakami | An optimal policy for joint compression and transmission control in delay-constrained energy harvesting IoT devices[END_REF] and neural network based methods [START_REF] Tessler | Reward Constrained Policy Optimization[END_REF][START_REF] Miryoose | Reinforcement Learning with Convex Constraints[END_REF], are required. Note that the natural assumption is that the past learning results can be retained more accurately with more memory spaces. By Eq.(6.11), the learning speed of the Lagrange multiplier λ L is expected to be slow. This limitation is critical when an on-policy RL with less memory spaces is employed.

In this work, we utilize the LAC-based algorithm that is on-policy and possesses only one learned parameter. The past learnings are obviously discarded over time. Hence, the convergence of the Lagrange multiplier or its near-optimality cannot be ensured by the two time-scale theory. We propose a novel LAC-based algorithm that deals with the constraints at run-time without the theory. Our approach is based on two assumptions: the soft real-time applications and the ENO-Max conditions. We will explain these two concepts in the following sections.

Soft Real-Time Applications

With respect to the operations of nodes, a myriad of applications exists. Their performance requirements vary from one to another. In particular, the latency is an indispensable factor, with which applications are categorized into hard and soft real-time applications. While the latency must always be less than a threshold in hard real-time, it can be loosened to more or less around the threshold in soft real-time.

The formal de nition of a soft real-time application is given as [START_REF] Sha | Real-Power Computing[END_REF]:

∀ t ∃ P t ≈ P budget t : c ∈ C, min E(P t , T , c) max Q(c) (6.12) 
.s.t

E(P t , T , c) ≤ E avail T ≈ T d (6.13) 
To obtain the hard real-time counterpart, we only need to replace the second constraint by T ≤ T d .

In the present work, we further extend the de nition of soft real-time application. That is, assuming that the threshold T d can equally deviate by δ l , the latency constraint T ≈ T d can be rewritten as |T -T d | ≤ δ l . Moreover, taking the square of this constraint does not change its meaning. Therefore, we can even rewrite it as:

(T -T d ) 2 ≤ δ 2 l (6.14) 
By using the Little's law [START_REF] Berry | Communication over fading channels with delay constraints[END_REF], we can convert this latency constraint into a data bu er based counterpart. The Little's law states that the average bu er length B is expressed by the product of the average data arrival rate λin and the average (TX) latency l: B = λin • l (6.15)

Considering the maximum capacity of the data bu er B max , Eq. (6.15) can be rewritten with the average SoB level φSoB :

φSoB = λin B max • l (6.16) 
If the average data arrival rate λin is constant, the average bu er length, or the average SoB level is linearly proportional to the average latency. Also, this linear relationship holds between an instantaneous SoB level and a corresponding latency. This allows to convert the latency constraint (6.14) into the SoB constraint:

(φ SoB t -φSoB ) 2 ≤ ( λin B max • δ l ) 2 = δ 2 SoB (6.17)
where δ SoB is the threshold value for the SoB level. Note that, if δ SoB is constant, the target latency will change according to λin . For example, the average latency will also double if the average arrival rate doubles, and vice versa. In other words, latency characteristics can be xed if we can detect and re ect the changes in the data arrival rate λin on δ SoB (e.g., sampling rate of sensor).

We will now consider the soft real-time applications in CMDPs and utilize the new timing constraint given in Eq (6.17).

Formulation of the C-LAC-AB algorithm

This section describes how to modify the CMDP-based RL solutions into the LAC-based counterpart, the Constrained LAC-AB (C-LAC-AB) algorithm. The whole procedure of the C-LAC-AB algorithm is summarized in Algorithm 6.1. The derivation of the algorithm will be explained below, but some notations in Algorithm 6.1 may di er from when the equations are introduced below.

In [START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF], the objective was to maximize the SoC while maximizing the packet rate (i.e., minimizing the SoB), which are con icting objectives. Assuming the soft real-time applications, we do not necessarily minimize the data queue and we are more interested in following the target SoB value φSoB .

With regard to the SoC, the ENO condition should be satis ed. Vigorito et al. [START_REF] Vigorito | Adaptive Control of Duty Cycling in Energy-Harvesting Wireless Sensor Networks[END_REF] present their informal de nition of ENO where the consumed energy is always less than or equal to the harvested energy. They further de ne the ENO-Max condition as the condition of satisfying ENO while maximizing the task performance. To put it into mathematical perspective, if the initial battery level starts from B 0 , the battery level B t at any time t must achieve both B t ≥ B 0 to maintain the above informal ENO condition and B t ≤ B 0 to maximize the performance. Practically, such a situation cannot hold for all the time. Therefore, the mean squared error (MSE) is adopted as the cost function. Minimizing this cost function nearly achieves ENO-Max. Replacing the initial battery level with the desired one B * here also does not change the overall outcome because the di erence between B 0 and B * are negligible when t → ∞.

Hence, we have:

min lim N →∞ 1 N N -1 t=0 (φ SoC t -φSoC ) 2 (6.18)
Vigorito et al. do not mention any constraint term for the SoC MSE. However, we can introduce the constraint term δ SoC and formulate:

(φ SoC t -φSoC ) 2 = δ 2 SoC (6.19)
Comparing (6.17) with (6.19), we can now observe the "symmetrical relation" between the constraints of the SoB and the SoC, both of which are normalized.

The proposed LAC-AB algorithm takes into account the SoB and the SoC level as the state.

The objective was to maximize the SoC and to minimize the SoB simultaneously, so that the QoS requirement is met with less energy consumption. If the ENO-Max condition is adopted and the soft real-time application scenario is assumed, then (6.14) and (6.18) can be regarded as the immediate reward and cost function, r t and c t in Eq. ( 6.3), respectively, and we have our conventional form of immediate reward function:

l(s t , a t , λ SoB L ) = -(φ SoC t -φSoC ) 2 -λ SoB L [(φ SoB t -φSoB ) 2 -δ 2 SoB ] (6.20)
where λ SoB L is the Lagrange multiplier.

Note that minimizing the squared error of the SoC level suggests that the negative number of the squared error is equal to the "reward". If we think of the "symmetrical relation" between 

L t+1 = -1 2 [λ SoC L (φ SoC t+1 -φSoC ) 2 + λ SoB L (φ SoB t+1 -φSoB ) 2 ]
For targeting φSoB and φSoC within errors of δ SoB and δ SoC 4: Return a t+1 17: end for each the SoB and the SoC, (6.20) holds even by replacing "SoB" and "SoC". By taking advantage of this symmetric property, we propose a combined version of immediate reward as in line 3 of Algorithm 6.1:

f critic t+1 = λ SoC L |φ SoC t+1 -φ SoC target | + λ SoB L |φ SoB t+1 -φ SoB target | 5: V t = -θ t f critic
l(s t , a t , λ SoB L , λ SoC L ) = - 1 2 [λ SoC L (φ SoC t -φSoC ) 2 +λ SoB L (φ SoB t -φSoB ) 2 ] (6.21) λ SoC L + λ SoB L = 1 (6.22)
Note that we removed the terms δ 2 SoB and δ 2 SoC , as they are constant. Another reasoning is that the estimate of the value function is based on the rst-order derivatives of the immediate reward that are independent of δ SoB and δ SoC . Here we also consider another constraint given in (6.22) that can be introduced thanks to their symmetry. This allows for intuitive understanding of prioritization between the con icting constraints. This equation is broken down into line 12 ∼ 13 in Algorithm 6.1. Now we think about the design of the actor and the critic. By employing the squared errors of the SoB and SoC, the newly formulated reward function in (6.21) is a quadric surface, i.e., a family of f (x, y) = x 2 + y 2 . The choice of this function is due to the success of the existing methods [START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF][START_REF] Sawaguchi | Highly Adaptive Linear Actor-Critic for Lightweight Energy-Harvesting IoT Applications[END_REF] that also utilize the quadric surface based reward functions, e.g., f (x, y) = xy and f (x, y) = x(1 -y). The idea is to assume linear relationship between the value function and the rst-order derivative of the reward function. The function of the critic is therefore formulated as:

V t+1 = -θ t+1 {λ SoC L |φ SoC t+1 -φ SoC target | + λ SoB L |φ SoB t+1 -φ SoB target |} (6.23) 
This equation re ects the objective: the value of the state is better when the SoB/SoC level is closer to the target value. The Lagrange coe cients help the weighting of the constraint satisfactions between the SoB and the SoC in the estimate of the value function. The equation is expressed in line 4 ∼ 6 in Algorithm 6.1.

Theoretically, the Lagrange multiplier λ L can be updated using the sub-gradient descent algorithm:

λ L = λ L + χ • max(|φ t+1 -φ| -δ, 0) (6.24)
where χ is the learning rate, and φ t and φ are the feature and its target value. As can be seen, the update is done only when the constraint is violated. Along with (6.11) that guarantees the stable convergence of λ L , this method implicitly uses a decaying learning rate. Therefore, it is not particularly suitable for online algorithms. Thus, by focusing on the symmetrical relation between the performance and the energy term, we introduce a novel update rule for the two Lagrange multipliers (see line 10 ∼ 11 in Algorithm 6.1):

λ SoB L = λ SoB L + χ SoB (|φ SoB t+1 -φSoB | -δ SoB ) (6.25) λ SoC L = λ SoC L + χ SoC (|φ SoC t+1 -φSoC | -δ SoC ) (6.26)
Remember that the updated values are scaled by (6.22).

Regarding the actor, we make the same assumption as for the LAC-AB algorithm; that is, we use the policy gradient ascent algorithm and the occupancy of the SoB and the SoC are linearly proportional to the next (mean) action value:

µ t+1 = ψ t+1 • φ SoB t+1 φ SoC t+1 (6.27)
As such, we call this novel algorithm the constrained LAC-AB (C-LAC-AB) algorithm.

Simulation Results

The hyper-parameters that are introduced in the context of solving CMDPs in our approach are the target SoB level φ SoB target , target SoC level φ SoC target and the Lagrange multipliers, λ SoB L and λ SoC L . Note that, in essence, we seek only one Lagrange multiplier due to the constraint term as in Eq. (6.22). The considered application scenario here is the CAT (see Section 2.1.3).

As a metric to evaluate the tracking accuracy/error, we employ the mean absolute errors (MAEs) of the SoB and of the SoC. Note that this metric is less impacted by outliers. We formulate these MAEs as follows:

MAE SoB = E φ SoB target -φ SoB (6.28) MAE SoC = E φ SoC
target -φ SoC (6.29)

Preliminary Simulation Results

We use one-year real-life solar irradiance data from ORNL [START_REF]Oak Ridge National Laboratory (RSR) Daily Plots and Raw Data Files[END_REF]. We set

χ SoB = χ SoC = 0.1, δ SoB = φ SoB target 4
and δ SoC = 0.1. Note that we must have at least one feasible solution to satisfy the constraint; otherwise, we cannot avoid violations. For instance, if the control update interval (CUI) is too long for a constant constraint threshold, no action could solve the constraint violations. In other words, the CUI must be su ciently short to ensure that a feasible action set of the controller exists. This is why this on-policy RL approach can work suitably at run-time only for soft real-time applications where slight violations are acceptable, but not for hard real-time ones. Meanwhile, when φ SoC target = 0.9, the mean SoB levels rise above the upper bound of the constraint, i.e., the target value plus the acceptable error: φ SoB = {0.086, 0.135, 0.203} for φ SoB target = {0.05, 0.1, 0.15}, respectively.

Overall, we observe the downward tendency of the mean SoB level when φ SoC target decreases. This observation is intuitively correct, since smaller SoC target values allow for sparing more energy for larger TX duty-cycle values.

On the other hand, if we employ larger data queue capacity B max = 4096, we can observe that the tracking characteristics greatly change. Note that the SoB target values are adjusted to reach the same packet transmission rates in accordance with B max . If we set φ SoC target to 0.7 ∼ 0.9 when B max = 4096, the MAEs of the SoB severely degrades over 0.05 up to around 0.27 (see upper right gure in Figures 6.1). These values are signi cantly larger compared to the target values φ SoB target = {0.00625, 0.0125, 0.025}. Further, the tracking performances almost atten across any target SoB values when φ SoC target = {0.5, 0.6}.

The functionality of our proposed algorithm is therefore still limited and only works well for small maximum data queue capacity. The choice of this capacity leads to the di erent level of the di erence in the order of magnitude between the MSEs of the SoB and the SoC levels, which causes the di erence in the learning speeds of the Lagrange multipliers due to the use of constant learning rates χ SoB and χ SoC . The learned parameters here are correlated/constrained by (6.22). Therefore, both learning speeds should be matched. To solve this issue, we propose applying Adam again to the updates of the Lagrange multipliers, as it can equalize the size of the updates across di erent learned parameters. The update rule of the parameters using Adam is shown in Algorithm 6.2. As a result, we obtain Figure 6.2.

Compared to the case without Adam, it can be seen that the tracking accuracy has been improved in terms of both the mean and the standard deviation.

Hereafter, we call the proposed C-LAC-AB algorithm with and without Adam, for brevity, woAdam and wAdam, respectively. To make the comparison clear, the mean SoB/SoC levels are illustrated in Figures 6.3 along with their mean absolute errors in Figure 6.4 obtained by (6.28) and (6.29).

Firstly, we discuss the cases with B max = 512. When the target SoC level is set to 0.5, the wAdam method yields φ SoB = {0.036, 0.084, 0.127} for φ SoB target = {0.05, 0.1, 0.15}, respectively, compared to φ SoB = {0.035, 0.044, 0.088} for woAdam. The corresponding MAEs of the SoB are {0.037, 0.048, 0.061} and {0.037, 0.064, 0.079} by wAdam and woAdam, respectively. Also, even when we choose φ SoC target = 0.9, we can see the improvements in the tracking accuracy: woAdam achieves φ SoB = {0.086, 0.135, 0.203} for φ SoB target = {0.05, 0.1, 0.15}, respectively, while these results are improved to φ SoB = {0.057, 0.105, 0.170} by applying Adam. Note that these values are within the "acceptable" SoB errors. The corresponding MAEs have reduced by {33.9%, 35.4%, 32.2%}. The SoC levels and the SoC's MAEs are comparable between woAdam and wAdam. It suggests that the introduction of Adam enhances the tracking accuracy of the SoB while not losing that of the SoC.

In case of B max = 4096, we can also see improvements in tracking performances. Compared to woAdam, the MAEs of the SoB decreased to {0.032, 0.039, 0.055} for φ SoB target = {0.00625, 0.0125, 0.025}, respectively, when φ SoC target = 0.9. They declined more substantially to {0.011, 0.012, 0.014} both when φ SoC target = {0.7, 0.8}, i.e., improved by more than {80.0%, 77.4%, 73.1%}, respectively. The plateau of mean SoB levels when φ SoC target = {0.5, 0.6} has also ameliorated, especially when φ SoB target = 0.025: the MAEs of the SoB for each SoC target value fell from {0.024, 0.020} to {0.019, 0.015}. Despite those improvements, the tracking errors are still greater than the acceptable errors.

If we analyze the mean and the MAE of φ SoC , the shapes of the three line plots are similar in case of the woAdam method when B max = 4096 while the wAdam method produces more distinctive results for three di erent SoB target values. These line plots are more identical to the ones in case of B max = 512, with which the algorithm performs better tracking accuracy. This shows that the sensitivity to the changes in the SoB has increased thanks to using Adam, which leads to more balanced learning of the Lagrange multipliers. In other words, the use of Adam helps capture the deviations of both the SoB and the SoC from their target values in a more equal manner in the learning process. It can also be seen that the MAEs of the SoC are almost the same, i.e., {0.20, 0.14} for both maximum data queue capacity when φ SoC target = {0.7, 0.9}. Nonetheless, the action selection is adapted and the SoB level is still tracked in accordance with the target SoB value.

Hence, employing Adam is bene cial to balance the learning speeds of the two opposing Lagrange multipliers and to increase the tracking accuracy. The tracking performance can be still improved by adopting di erent learning rates for the SoB and the SoC based on the gran-ularity of their deviations. In our application scenario, we can conclude that φ SoC target should better be set to 0.5. Note that no power failure was observed in any simulation cases.

Hereafter, we use the C-LAC-AB algorithm with Adam for comparison and evaluations. Algorithm 6.2 Update of the Lagrange multipliers using Adam Require:

/ * Inputs * / -Gradient vector g t+1 / * Hyper-parameters for Actor-Critic * / -Decay rate vector η 1 and η 2 -Parameter for avoiding division by in nitesimally small values -Learning rate vector χ for the Lagrange multipliers for SoB and SoC Ensure:

-Lagrange vector

λ L = (λ SoB L , λ SoB L ) T for which λ SoB L + λ SoB L = 1 
1: Initialize at time t = 0:

-Initialize λ SoB L (0) and λ SoC L (0)

2: m t+1 = η 1 m t + (1 -η 1 )g t+1 3: v t+1 = η 2 v t + (1 -η 2 )g 2 t+1 4: λ L = λ L + χ • m t+1 √ v t+1 +

Comparison and Evaluation of C-LAC-AB

Now that the C-LAC-AB algorithm has been tuned, we will formally evaluate this novel algorithm by comparing its results with those of the existing algorithms. We compare with the following three baseline algorithms: for when φ SoC target = 0.5. Our proposed C-LAC-AB method is aware of both SoB and SoC level and mostly achieves better SoB/SoC MAEs.

The LAC algorithm attempts to maximize the SoC level while minimizing the SoB level at the same time. However, the notion of value-tracking does not exist, and therefore, it cannot be performed. This means that the tracking errors drastically change, depending on the target values.

Despite the best mean SoB values, the LAC algorithm shows the worst SoC MAEs, 0.270 and 0.256, when B max = 512 and φ SoC target = {0.7, 0.9}, respectively, due to its ignorance of the target values. The MAEs of the SoB also rises to 0.074 and 0.123 when B max = 512 and φ SoB target = {0.1, 0.15}, respectively, which are at least 39.6% and 57.7% worse than our proposed C-LAC-AB algorithm. In case of B max = 4096, the LAC method yields the largest MAEs apart from the SoC-LQ. Noticeably, the mean SoB reaches 0.006 when φ SoB target = 0.00625, indicating that the deviation of the SoB is signi cantly large.

The reward function in the LAC algorithm is formulated as r t = x α • y where the constant trade-o coe cient α = 1. Changing α leads to di erent trade-o s, but no run-time approach to updating α exists. A statistics-based online approach can be established. However, it is application-dependent. In this point, the C-LAC-AB algorithm also outperforms the LAC algorithm.

By comparing with the SoB-LQ method, the proposed method in this study not only follows the SoB target values but also improves the tracking accuracy within the acceptable error of the SoB level. In other words, the con icting objectives that aim at φ SoB target and φ SoC target with the acceptable errors δ SoB = φ SoC target 4

and δ SoC = 0.1 can be dealt with in the C-LAC-AB methods. More energy will additionally be spared in case of φ SoC target = 0.5 to achieve smaller mean SoB values, whereas less energy can be expended in case of φ SoC target = 0.9 to produce larger ones, compared to the SoB-LQ method. Especially when B max = 512, setting φ SoC target = 0.5 produces mean SoB values (0.036, 0.084, 0.127) for φ SoB target = {0.05, 0.1, 0.15}, respectively, while they become (0.057, 0.105, 0.170) when φ SoC target = 0.9. These mean SoB levels were almost or completely kept within the acceptable errors. With respect to the consideration of both energy and performance constraints, which correspond to the constraints given by soft real-time applications and ENO-Max conditions, the proposed C-LAC-AB method with Adam is a better solution than the SoB-LQ. 

Summary

To sum up, our proposed C-LAC-AB algorithm is capable of dealing at run-time with the con icting objectives brought by the assumptions of both soft real-time constraints and ENO-Max conditions. The contributions made in this chapter are: 1. the run-time property is based on the method of Lagrange multiplier that enables solving the CMDP problems;

2. our novel formulation of the reward function for the LAC method can automatically balance the tracking of both the data queue and the energy reserve, depending on their target values;

3. the above two assumptions help exploit the symmetric relation between the constraints of energy and performance term that helps overcome the two timescale update rule that hindered the update of the Lagrange multipliers in the LAC-based algorithms for non-episodic tasks;

The pure C-LAC-AB algorithm experienced much larger mean absolute errors of the SoB level that were over 0.05 up to 0.27 when φ SoC target = [0.7, 0.9] and the maximum data capacity B max is set to 4096, compared to when B max = 512. The di erence in the order of magnitude between the mean squared errors of the SoB and the SoC levels caused the di erence in the learning speeds of the two Lagrange multipliers, as the learning rate was constant. As such, Adam is again embedded into the updates of the Lagrange multipliers. This idea has successfully improved the tracking accuracy. For example, the MAEs of the SoB level reduced by 33.9%, 35.4%, 32.2% for φ SoB target = 0.05, 0.1, 0.15, respectively, when B max = 512, while those of the SoC level were comparable. Similarly, the improvements were observed when B max = 4096. Note that the convergence of our proposed algorithm is empirically shown.

To highlight the characteristics of the C-LAC-AB algorithm, comparisons were made based on simulation results with LQ-Tracker for only SoC and for only SoB, and multi-objective linear actor-critic (LAC) algorithm. Although the SoC-LQ method aims at tracking a target SoC level and achieved the best MAE when φ SoC target = 0.5, the C-LAC-AB algorithm provided better MAEs of both SoB and SoC when φ SoC target = {0.7, 0.9}. The LAC algorithm can neither track some target values nor control the trade-o s between the SoB and the SoC terms, so that our proposed algorithm yielded better MAEs of both SoB and SoC, apart from when φ SoC target = 0.5 and B max = 512. In comparison to the SoB-LQ, the C-LAC-AB method was capable of considering the acceptable tracking error; when φ SoC target = 0.5/0.9, smaller/larger mean SoB level was accomplished by expending more/less energy. Especially when B max = 512, these mean SoB levels were almost or completely kept within the acceptable errors. software solution run on the RI5CY core of the SamurAI SoC.

Chapter 6 focused on the consideration of the constraints in RL more explicitly by constrained Markov decision process (CMDP) as the extension of the LAC-AB algorithm from Chapter 3. The formulation of RL in CMDP is based on the method of Lagrange multiplier. The appropriate learning is supported by the two timescale theory with some violations of constraints. For that purpose, the memorization of learned parameters is almost indispensable, which is generally done in o -policy RL unlike the LAC variants. By assuming the soft real-time applications and the ENO-Max conditions, we established the "symmetric" reward function between normalized con icting objectives of energy and performance optimization. This made it possible for the LAC algorithm to optimize both the actor-critic and the Lagrange multipliers simultaneously. To cope with the di erent orders of magnitude of tracking error, we again applied Adam to the updates of the Lagrange multipliers. We name this algorithm as the C-LAC-AB algorithm (i.e., constrained LAC-AB). Based on simulation results, the proposed algorithm is empirically con rmed to converge. It enables balancing the tracking of the residual energy and data queue level at run-time in accordance with their target values, compared to three baseline solutions.

Our work can be extended as follows:

1) The study could take into account other energy harvesters and application use cases:

Throughout this work, we only used the solar irradiance data to show the e ectiveness of our proposed algorithms. However, multiple other energy harvesters such as wind and piezo-electric exist and are commonly used. Similarly, we have a great deal of applications in reality. For example, data generation may follow the Bernoulli and the Exponential distributions and wireless communications di er in terms of protocols (such as LoRa [START_REF] Gupta | Battery optimal con guration of transmission settings in LoRa moving nodes[END_REF]) and dynamics of link quality (such as Rayleigh fading [START_REF] Hakami | An optimal policy for joint compression and transmission control in delay-constrained energy harvesting IoT devices[END_REF][START_REF] Zhu | A new deep-Q-learning-based transmission scheduling mechanism for the cognitive Internet of Things[END_REF][START_REF] Tan | On rst-order Markov modeling for the Rayleigh fading channel[END_REF]). The consideration of data priority [START_REF] Zhang | Value of information aware opportunistic duty cycling in solar harvesting sensor networks[END_REF][START_REF] Muzakkari | Queue and priority-aware adaptive duty cycle scheme for energy e cient wireless sensor networks[END_REF] is an intersting research direction. The applicability to the discretespace states and actions should also be con rmed. We therefore must test other energy harvesting traces and application use cases to show the scalability of our methods. The rst study of our adaptive controllers for wind energy harvesting is given in Appendix A

2) The presented asynchronous hardware design of the LAC-QAB algorithm could be further optimized: The implementation of the LAC-QAB algorithm shown in Chapter 5 was straightforward and no intricate optimization has been done. On the one hand, improvement iterations could be performed on the HDL description code to optimize the generated netlist. On the other hands, the bit widths of some variables can be reduced and the multiplications are also to be optimized to improve the chip area and the energy e ciency. Also, the integration in a realistic microcontroller system needs to be done.

3) The update rule of the Lagrange multipliers is to be improved: The room for improvement was seen in our C-LAC-AB algorithm in case of large maximum capacity of data queue, as we observed slight degradations in the optimization of the Lagrange multipliers even after applying Adam. More precisely, the learning speeds of the two Lagrange multipliers are considered di erent due to the di erence in the orders of magnitude of the tracking errors.

We expect this di erence may be a ected/adjusted by the pre-determined learning rates for the two Lagrange multipliers. As such, further investigations must be conducted.

4) The asynchronous hardware component of the C-LAC-QAB algorithm could be implemented: Since the LAC-QAB algorithm is based on the LAC-AB, we can also implement the C-LAC-QAB algorithm and its hardware component. This will certainly reduce the complexity of the algorithm. B.2. Finally, we have opted the average values as the optimal hyperparameter sets for the evaluation purposes in Chapter 6. Note that the values obtained can vary depending on the setup such as the reference levels, but we employed the same values for fair comparisons, as our method also uses the same hyper-parameter values for di erent setups.

Résumé en Français

Résumé Substantiel en Français

Les noeuds de l'Internet des objets (IoT) intégrant des fonctions de récupération d'énergie (EH-IoT) a récemment attiré l'attention parce qu'il permet théoriquement le fonctionnement perpétuel des noeuds IoT sans frais de maintenance. Pour maintenir les noeuds en vie, les conditions de fonctionnement neutre en énergie (ENO) ont été couramment adoptées, où: 1) l'énergie recueillie doit correspondre à l'énergie consommée, et 2) le niveau d'énergie ne doit pas descendre en dessous du point de défaillance.

En parallèle, comme tous les noeuds fournissent des données aux applications, une certaine qualité de service (exprimée en termes de performance) doit être satisfaite. Cependant, l'énergie et la performance sont des objectifs contradictoires. Le compromis puissanceperformance de chaque noeud doit donc être traité par un contrôleur auto-adaptatif qui gère l'équilibre entre la qualité de service et l'énergie disponible. La di culté rencontrée lorsque l'on conçoit un tel contrôleur réside à la fois dans les incertitudes environnementales et architecturales, telles que la quantité d'énergie pouvant être récoltée en raison des conditions météorologiques, l'architecture du noeud, la charge de travail de l'application et les conditions du réseau de communication, toutes ces conditions étant transitoires et imprévisibles. À cette n, l'apprentissage par renforcement (RL) est un choix judicieux pour faire face à de telles situations stochastiques dans les noeuds EH-IoT et pour potentiellement résoudre ce compromis. En e et, un contrôleur intégrant du renforcement par apprentissage est capable d'apprendre une action optimale sans connaitre a priori les incertitudes. En outre, les noeuds EH-IoT sont limités en ressource (capacité de calcul, mémoire). Leur ressource de calcul sont souvent des micro-contrôleurs de gamme micro-Watt tels que les séries RISC-V et ARM Cortex-M. Le contrôleur adaptatif doit donc être très économe en énergie et compatible avec de tels microcontrôleurs basse consommation.

Notre travail présente l'état de l'art des contrôleurs adaptatifs. Les problèmes typiques rencontrés dans la littérature sont les erreurs de prédiction basées sur le modèle et l'utilisation d'espaces discrets pour les paires état-action. La prédiction de l'énergie récupérée est souvent utilisée pour aider à satisfaire les conditions ENO, mais sa précision d'estimation peut ne pas être able pour les noeuds à ressources limitées, en particulier lorsque le cycle de prédiction devient plus long. Par exemple, une estimation trop optimiste de l'algorithme de moyenne mobile conditionnée par les conditions météorologiques (WCMA) et de « pro-energy » donnerait lieu à environ 300 fois l'état de manque d'énergie dans le cas où la taille du supercondensateur est de 2F à 2.7V et le cycle de prédiction est égal à 10 minutes. Le deuxième problème est l'utilisation d'espaces discrets d'état et d'action dans le Q-learning tabulaire et dans les méthodes RL basées sur les réseaux de neurones. La quanti cation de l'état et de l'action nécessite des espaces mémoire massifs pour les paramètres appris. L'entraînement de l'algorithme peut être e ectué hors ligne, mais un nouveau entrainement peut être nécessaire en cas de nouveaux types de données hautement informatives. Le nombre de paramètres appris et la nécessité d'un réentraînement sont dans une relation de compromis. Dans le contexte de l'EH-IoT, de très nombreux noeuds IoT seront déployés dans di érents environnements, de sorte que la collecte d'ensembles de données d'entraînement complets deviendra une tâche complexe.

Pour surmonter ces deux problèmes, nous avons décidé d'utiliser un RL acteur-critique avec des approximations de fonctions linéaires (LAC) proposées à l'origine par Aoudia et al.. Cette solution peut traiter à la fois l'espace continu et discret avec moins de surcharge algorithmique que les méthodes RL basées sur un réseau neuronal et avec moins d'utilisation de la mémoire que les méthodes RL tabulaires telles que le Q-learning. En introduisant le LAC en remplaçant le taux de paquets par le rapport cyclique de transmission (TX), nous avons constaté que le paramètre appris diverge. En e et, la limite supérieure du rapport cyclique de TX (plus largement, de l'indice de performance) n'est pas fournie. Nous l'avons donc remplacé par l'état du tampon de données (que nous appelons état du tampon, ou SoB) ainsi que l'état de charge (SoC), qui exprime le compromis puissance-performance dans notre fonction de récompense. Cependant, cette formulation RL donne lieu à un autre problème, que nous appelons dans ce manuscrit le problème de réactivité. Nous observons ce problème lorsque l'état change radicalement: par exemple, lorsque le taux d'arrivée moyen des données double. L'algorithme ne peut pas s'adapter rapidement et un défaut dû au manque d'énergie dans le noeud IoT se produit (i.e., le noeud n'a plus assez d'énergie pour continuer à fonctionner). La cause profonde était le manque d'adaptabilité aux changements des valeurs de gradient, ce qui signi e que le taux d'apprentissage ou le cycle de contrôle ne doivent pas être xes.

Dans ce manuscrit, nous nous sommes concentrés sur le taux d'apprentissage et avons proposé l'utilisation d'un taux d'apprentissage adaptatif appelé Adam au chapitre 3. Dans l'algorithme Adam, les termes de correction du biais d'initialisation sont donnés pour traiter les biais initiaux causés par les grandes valeurs de deux facteurs de lissage dans les équations de moyenne mobile pondérée exponentiellement. Le choix de ces valeurs est destiné aux problèmes de gradient creux dans les réseaux de neurones. Notre algorithme n'utilise que les approximations de la fonction linéaire, et par conséquent, nous pouvons alternativement utiliser de petits facteurs de lissage qui aident également à augmenter l'adaptabilité. Ainsi, nous pouvons éliminer les termes de correction du biais d'initialisation. Cela crée un nouveau contrôleur adaptatif appelé l'algorithme LAC-AB. Ce nouvel algorithme présente des performances supérieures à celles de la méthode existante en termes de nombre de fois que le noeud IoT n'a plus assez d'énergie pour fonctionner, de latence et de vitesse de convergence dans une application de contrôle du rapport cyclique de transmission (TX). Pour la comparaison et l'évaluation de la vitesse de convergence, une nouvelle dé nition de la convergence est proposée. Elle exploite la notion d'homogénéité de la moyenne et de l'écart type d'un paramètre appris en utilisant une approche de bande d'erreur et le test de Brown-Forsythe. Les résultats de la simulation montrent que de petits facteurs de lissage tels que β 1 ∈ [0.2, 0.4] et β 2 = 0.1 conviennent aux applications sensibles au manque d'énergie, tandis que β 1 plus grand (typiquement dans l'intervalle [0.5, 0.7]) avec β 2 relativement plus petit (typiquement dans l'intervalle [0.2, 0.4]) sont adéquates pour les applications sensibles à la latence. La réactivité et la convergence initiale ont été obtenues entre un et 15 jours, et en environ 5 à 13 jours, respectivement, avec aucune ou peu de situations de pénurie d'énergie pour notre cas applicatif pour lequel l'intervalle de mise à jour de contrôle (CUI) a été dé ni à 30min.

Malgré une réactivité améliorée, l'algorithme d'Adam présente un coût algorithmique plus élevé à cause, par exemple de la division et de l'opération de racine carrée. En outre, l'algorithme LAC contient à l'origine un générateur de nombres aléatoires gaussiens (GRNG) dans la partie acteur. Pour le GRNG, la transformée de Box-Muller nécessite des opérations complexes telles que des fonctions trigonométriques et logarithmiques, tandis que l'algorithme de Zuggart nécessite une grande table de lecture (LUT). Pour réduire la complexité algorithmique de l'algorithme Adam et du GRNG, trois techniques d'approximation, telles que la règle empirique de plage de l'écart type, l'approximation de la fonction linéaire par morceaux basée sur la LUT pour les inverses des diviseurs et la politique gaussienne basée sur les quartiles, sont utilisées dans le chapitre 4. En outre, les données manipulées sont en en virgule xe pour transformer l'algorithme LAC-AB en un algorithme appelé LAC-QAB (Quasi-Adam Biased).

La règle empirique de plage est un algorithme très simple qui se rapproche de l'écart type des données échantillonnées en divisant par 4 la di érence entre les valeurs maximale et minimale des échantillons. Dans Adam, l'écart type a été calculé en prenant la racine carrée de la variance mobile non centrée des gradients. En utilisant la moyenne mobile des gradients, qui est également nécessaire dans Adam, comme critère de taille de gradient, les moyennes mobiles de la valeur maximale et minimale des gradients sont d'abord calculées. A partir de ces valeurs nous obtenons l'écart type en utilisant la règle empirique de plage. Plus précisément, si le gradient actuel est supérieur/inférieur à la moyenne mobile des gradients, il sera ajouté à la moyenne mobile du maximum/minimum obtenu jusqu'à présent, respectivement. Avec l'utilisation de la règle empirique de plage, nous nous libérons de l'opération racine carrée de la variance non centrée. Pourtant, nous devons appliquer une division par l'écart type. Pour rechercher une réciproque bien approchée d'un diviseur, la méthode Newton-Raphson peut être implémentée, où une valeur initiale est sélectionnée à partir d'une LUT, puis mise à jour de manière itérative pour a ner la précision de l'approximation. Dans notre cas, compte tenu du fait que cette opération conduit à la mise à jour du paramètre d'acteur qui produit une nouvelle action à explorer "au hasard", la division peut être grossièrement exécutée. Par conséquent, nous e ectuons uniquement l'approximation initiale de l'inverse du diviseur en utilisant la LUT et la fonction linéaire par morceaux. Cette approche est en fait basée sur la précision des données en virgule xe et ne nécessite qu'une multiplication et une addition avec deux variables à stocker dans la LUT. Le calcul est beaucoup moins intensif, parce qu'aucune itération n'est exécutée.

La politique gaussienne ne produit qu'un bruit d'exploration à une nouvelle action. Comme discuté ci-dessus, certaines erreurs d'approximation se propagent à la décision d'action comme un « bruit d'exploration ». Cela suggère que la politique ne fournit pas nécessairement des bruits précis non plus. Nous adoptons donc une solution simple basée sur une segmentation en quartile de la distribution gaussienne. Dans ce manuscrit, nous avons xé le nombre de segments à 16. Grâce à la symétrie de la distribution, nous n'avons besoin d'adresser que 8 segments. Dans l'approche par quartile, nous séparons la distribution en segments qui ont la même probabilité cumulée, c'est-à-dire environ 6%, à l'exception des queues qui viennent avec 8% dans notre conception. En stockant la valeur médiane de chaque plage du segment dans la LUT, nous n'avons qu'à générer un nombre uniformément distribué, puis à nous référer à la LUT pour récupérer la valeur stockée à utiliser à la place du GRNG (ou le bruit d'exploration).

La distribution uniforme peut ainsi être facilement mise en oeuvre: par exemple, le registre à décalage à rétroaction linéaire (LFSR).

Ce nouvel algorithme, LAC-QAB, présente des résultats comparables au LAC-AB en ce qui concerne la latence TX, la vitesse de convergence et le nombre de fois ou le noeud IoT manque d'énergie. Contrairement à l'algorithme LAC-AB, β 1 = 0, 5 est le meilleure choix pour presque toutes les situations, tandis que β 2 doit être sélectionné en fonction du taux d'apprentissage: grand β 2 tel que 0. Les méthodes d'approximation susmentionnées ont réussi à diminuer les coûts algorithmiques. Pour améliorer encore l'e cacité énergétique et présenter une solution matérielle, nous avons proposé une implémentation matérielle asynchrone de l'algorithme LAC-QAB au chapitre 5. Par rapport à la conception synchrone, l'asynchronie nécessite des connexions et des portes logiques supplémentaires, donc une plus grande surface du circuit qui consomme plus d'énergie statique. Les avantages sont que l'optimisation de la synthèse ne sera pas soumise à la tension d'alimentation, les opérations seront beaucoup plus rapides et aucune génération d'horloge n'est nécessaire, ceci grâce à la conception sans horloge intrinsèque à la logique asynchrone. Les coûts de réveil des circuits asynchrones sont également beaucoup plus faibles que ceux des circuits synchrones. Les résultats de placement-routage fournissent une taille de surface de 0.095mm 2 avec une densité de surface de 89.2% pour 330µm × 330µm. Nous avons dé ni la tension d'alimentation et la température à 0.9V et 25°C dans les simulations post placement-routage. Le temps d'exécution de la génération d'une nouvelle action à chaque boucle de contrôle est de 36ns. Les consommations d'énergie dynamique et statique ont été estimées à 3.42mW avec une erreur allant jusqu'à 0.28% et 39.6µW, respectivement. Ces résultats conduisent à 124.56pJ/boucle, soit 99.8% d'e cacité énergétique supérieure à celle du noyau RI5CY, c'est-à-dire 60.8nJ/boucle. Avec une surcharge algorithmique aussi faible, l'avantage de l'asynchronisme est signi catif, parce que le coût du réveil est considérablement réduit.

Nos solutions proposées jusqu'à présent ne traitent les éventuelles contraintes « qu'implicitement »; autrement dit, les contraintes éventuellement à prendre en compte ne sont pas intégrées dans la fonction de récompense. Une telle formulation ne permet pas d'identi er les contraintes exactes. Le processus de décision de Markov contraint (CMDP) est un processus de décision qui prend en compte le terme de contrainte, permettant à RL de s'attaquer de manière adaptative à la contrainte en utilisant la technique de relaxation A-12 lagrangienne. Dans les formulations basées sur CMDP, la contrainte est explicitement considérée et les optimisations des paramètres des acteurs et des multiplicateurs de Lagrange sont e ectuées simultanément. Néanmoins, une seule contrainte peut être explicitement adressée et la vitesse d'optimisation du multiplicateur de Lagrange est limitée en raison de la théorie à deux échelles de temps. Aussi, nous pouvons toujours nous attendre à des contraintes de puissance-performance con ictuelles qui nécessitent une optimisation du temps d'exécution en cas de nouvelles situations sans précédent. L'utilisation de réseaux de neurones et de Q-learning tabulaire permet de conserver les informations d'entraînement passées, de sorte que l'adaptation à l'exécution peut être réalisée en cas d'ensemble de données d'entraînement su sant. Cependant, étant donné que les noeuds EH-IoT seront déployés dans di érentes situations, la collecte d'un tel ensemble de données d'entraînement sera coûteuse (voire impossible à réaliser) et, par conséquent, la capacité d'optimisation de l'exécution sera très appréciée. A notre connaissance, aucun résultat actuel utilisant CMDP ne résout les contraintes con ictuelles et le temps prohibitif d'exécution de l'optimisation pour tous les paramètres appris. De toute évidence, aucune solution basée sur LAC pour les problèmes CMDP n'existe dans la littérature.

Notre proposition d'exécution qui exploite l'algorithme LAC pour les problèmes CMDP avec un compromis puissance-performance repose sur trois idées: 1) la prise en compte des contraintes basées sur l'erreur quadratique moyenne (MSE) pour l'énergie et la performance;

2) la formulation de la fonction de récompense pondérée en superposant les fonctions de récompense con ictuelles basées sur le CMDP;

3) l'utilisation de la dérivée du premier ordre de la fonction de récompense pour les approximations de la fonction linéaire pour la fonction de valeur.

Nous avons adopté la contrainte ENO-Max et la contrainte temps réel non dur comme contrainte d'énergie et de performance, respectivement. La condition ENO-Max est une version relaxée de la condition ENO où l'énergie récupérée est toujours supérieure à celle consommée tout en maximisant les performances, ce qui conduit à la MSE entre la cible et le niveau de tension actuel. Contrairement aux applications temps-réel dures, la contrainte est décrite comme satisfaisant la limite "plus ou moins" dans les applications temps-réel non dur, qui peut aussi être exprimé comme le MSE, par exemple, entre le niveau cible et le niveau actuel de la queue de données. Selon la loi de Little, le niveau moyen de la queue de données est converti en latence (TX). Pour chaque contrainte MSE, nous pouvons appliquer la technique de relaxation lagrangienne pour formuler la fonction de récompense. Puisque le SoB et le SoC sont tous deux des termes normalisés, les deux fonctions de récompense formulées sont symétriques en les termes SoB et SoC. La superposition des deux fonctions de récompense donne donc une fonction de récompense symétrique complète. En n, la fonction de récompense superposée est une surface quadrique. Dans les solutions LAC existantes, l'approximation de la fonction linéaire de la fonction de valeur a été faite pour la dérivée du premier ordre de la fonction de récompense basée sur la surface quadrique. Grâce à l'utilisation de la MSE comme contrainte, l'idée d'utiliser la dérivée au premier ordre peut être appliquée à notre formulation. Cette extension a été faite à l'algorithme LAC-AB pour proposer l'algorithme C-LAC-AB au chapitre 6.

Néanmoins, l'utilisation de la dérivée au premier ordre de la fonction de récompense n'est qu'une idée obtenue par observation. En e et, nous avons e ectué des simulations pour vérier « qualitativement » qu'aucune divergence ne se produit. Dans le cas de notre application de détection et de compression où la charge de travail est jusqu'à 4pkts/min en moyenne, un cycle de contrôle d'environ 10 minutes était préférable. L'optimisation de la durée d'exécution a également été admise avec un ensemble de données réelles sur l'irradiance solaire sur cinq ans. Pour cette étude préliminaire, nous avons testé deux tailles de capacité maximale di érentes de la queue de données, à savoir 512 et 4096, pour lesquelles les niveaux cibles normalisés de la queue de données ont été choisis comme {0, 05, 0, 1, 0, 15} et {0, 00625, 0, 0125, 0, 025}, respectivement, de sorte que les niveaux cibles soient les mêmes pour chaque capacité maximale. et δ SoC = 0.1. Ces valeurs ont été utilisées pour le reste de toutes les simulations ci-dessous. En conséquence, la tendance à la baisse des niveaux moyens de SoB est observée en fonction de l'augmentation des niveaux de SoC cibles, ce qui est intuitivement correct. Cependant, l'optimisation se dégrade dans le cas où φ SoC target est égal à 0.5 ou 0.9. De plus, en utilisant la grande taille de la queue de données, 4096, notre algorithme C-LAC-AB le plus simple produit de moins bonnes performances de suivi sur toutes les valeurs cibles du SoC. L'algorithme est donc encore limité vraisemblablement en raison des taux d'apprentissage xes et de l'écart dans l'ordre de grandeur entre les MSE du SoB et du SoC, ce qui entraîne les di érentes vitesses d'apprentissage des multiplicateurs de Lagrange.

Pour surmonter cet inconvénient présumé, nous avons de nouveau introduit l'algorithme Adam pour rendre notre méthode C-LAC-AB plus adaptative. Dans les cas où B max = 512 et φ SoC target est égal à 0.5 ou 0.9, les MSE entre le niveau moyen et le niveau SoB cible se sont améliorés pour tous les niveaux SoB cibles en raison du taux d'apprentissage adaptatif. En outre, les niveaux SoB moyens sont maintenus dans les limites des erreurs tolérables pour tous les cas, sauf lorsque les SoB et SoC cibles sont de 0.05 et 0.5; cependant, le niveau SoB moyen s'est rapproché de la limite inférieure de la bande d'erreur, par rapport à l'algorithme sans Adam. Les améliorations remarquables sont observées dans le cas de B max = 4096. La précision de suivi du niveau de SoB s'est améliorée lorsque les niveaux de SoC cibles sont compris entre [0.7, 0.9]. En particulier, les MAE du suivi SoB se sont améliorés de plus de 73 à 80% pour φ SoC target = 0.7, 0.8. Les niveaux moyens de SoB pour tous les niveaux de SoB cibles ont presque atteint un plateau dans le cas de φ SoC target est égal à 0.5 ou 0.6 sans Adam. Le taux d'apprentissage adaptatif a conduit à de meilleures performances de suivi pour les valeurs SoB cibles. De telles améliorations dans le suivi SoB apparaissent dans les niveaux SoC moyens. Dans le cas où B max = 4096, les niveaux de SoB moyens deviennent plus distinctifs à travers di érents niveaux de SoB cibles lors de l'utilisation d'Adam : moins le niveau de SoB cible est dé ni, plus on utilise d'énergie. L'étude en simulation semble montrer que les taux d'apprentissage adaptatifs pour les deux multiplicateurs de Lagrange opposés absorbent les di érentes tailles d'écart pour équilibrer leurs vitesses d'apprentissage.

Les comparaisons ont été faites entre notre C-LAC-AB avec Adam et trois algorithmes de base pour mettre en évidence les avantages de notre algorithme. L'algorithme de base comprend notre algorithme LAC-AB, le LQ-tracker pour SoB et SoC (nous appelons respectivement SoBLQ et SoC-LQ). Pour des comparaisons équitables, nous avons d'abord réglé manuellement les hyper-paramètres des trackers LQ sur la base des connaissances de l'expert issues de l'article original, puis nous les avons optimisés à l'aide d'un algorithme d'optimisation de type « boîte noire aléatoire » appelé algorithme CMA-ES. L'algorithme SoC-LQ ne prend en considération que la valeur SoC cible, ce qui conduit à la pire précision de suivi du SoB parmi les quatre algorithmes. Le processus d'optimisation est également sensible aux hyper-paramètres, de sorte qu'ils doivent être réglés pour les di érentes con gurations considérées. L'algorithme LAC-AB tente de maximiser le SoC tout en minimisant le SoB. La dé nition de la fonction de récompense ne réalise que certains compromis entre le terme SoB et le terme SoC. Par conséquent, l'algorithme ignore systématiquement les valeurs cibles spéci ées. En outre, dans certaines con gurations, l'algorithme LAC-AB produit de pires MAE du SoB d'environ 40 à 58% par rapport au C-LAC-AB. L'approche basée sur les statistiques peut être menée pour préparer les valeurs de compromis pour la fonction de récompense, mais l'adaptabilité à l'exécution sera perdue. En n, par rapport au SoB-LQ, le C-LAC-AB proposé suit non seulement le SoB cible mais aussi le SoC cible simultanément dans leurs plages d'erreur tolérables respectives. Dans nos scénarios d'application, avec B max = 512, les valeurs moyennes de SoB étaient presque ou complètement maintenues dans les erreurs tolérables. Dans l'ensemble, l'algorithme C-LAC-AB proposé est considéré comme le meilleur dans le cas où les contraintes de puissance-performance con ictuelles doivent être considérées.

En résumé, cette thèse de doctorat portait sur la proposition d'un nouveau contrôleur adaptatif léger en termes de calculs et d'empreinte mémoire pour les noeuds IoT à récupération d'énergie à ressources limitées (EH-IoT). L'apprentissage par renforcement (RL) a été étudié et s'est avéré e cace en tant que méthodologie pour les contrôleurs adaptatifs, et par conséquent, il a également été adopté dans ce travail. Grâce à notre étude sur les travaux de l'état de l'art, les limitations dues aux erreurs de prédiction de l'énergie récoltée et aux espaces discrets des paires état-action ont été identi ées. Ces deux limitations ont été abordées en utilisant un algorithme acteur-critique avec des approximations de fonctions linéaires (nous appelons cet algorithme LAC).

Le choix de l'algorithme LAC a entraîné trois problèmes majeurs: 1) le manque de réactivité (évolutivité) aux changements d'environnement;

2) les surcoûts algorithmiques;

3) la prise de compte implicite des contraintes. Suite à la résolution de ces problèmes, nous avons apporté les trois principales contributions suivantes pour le contrôleur adaptatif: 1) Un algorithme de taux d'apprentissage adaptatif appelé Adam dans la partie acteur a amélioré l'adaptabilité de l'algorithme LAC. Nous avons également introduit nos nouvelles méthodes statistiques basées sur les bandes d'erreur et le test de Brown-Forsythe pour évaluer l'adaptabilité comme la vitesse de convergence;

2) Pour réduire la complexité algorithmique de l'algorithme proposé, nous avons appliqué trois techniques d'approximation telles que la règle empirique pour l'écart type, la division basée sur la LUT et la politique gaussienne basée sur le quartile. D'autres améliorations de l'e cacité énergétique ont été présentées, mettant en oeuvre les approches asynchrones;

3) Nous avons proposé un algorithme basé sur LAC pour les problèmes MDP contraints qui permet de traiter les contraintes de puissance-performance con ictuelles. La formulation de cet algorithme repose sur les trois idées clef:

(a) les contraintes basées sur l'erreur quadratique moyenne (MSE) pour l'énergie et la performance; (b) la formulation de la fonction de récompense pondérée en superposant les fonctions de récompense con ictuelles basées sur CMDP; (c) l'utilisation de la dérivée au premier ordre de la fonction de récompense pour appliquer des approximations de fonction linéaire à la fonction de valeur.

Ces travaux ouvrent de nombreuses perspectives:

1) L'étude pourrait prendre en compte d'autres types de récupération d'énergie et cas d'applications. Tout au long de ce travail, nous n'avons utilisé que les données d'irradiance solaire pour montrer l'e cacité de des algorithmes proposés. Cependant, d'autres méthodes de récupération d'énergie tels que le vent et le piézo-électrique existent. De même, d'autres applications réelles pourraient être envisagées. Par exemple, la génération de données peut suivre les distributions de Bernoulli et exponentielle et les communications sans l di èrent en termes de protocoles (tels que LoRa) et de dynamique de la qualité de liaison (comme l'évanouissement de Rayleigh). La prise en compte de la priorité des données est une direction de recherche intéressante. L'applicabilité aux états et actions discrets de l'espace doit également être con rmée. Nous devons donc tester d'autres traces de récupération d'énergie et des cas d'utilisation applicatifs di érents pour montrer la généricité des méthodes proposées. Une pré-étude de l'utilisation des contrôleurs adaptatifs proposés pour la récupération de l'énergie éolienne est donnée en annexe A;

2) La conception matérielle asynchrone présentée dans l'algorithme LAC-QAB pourrait être encore optimisée. La mise en oeuvre de l'algorithme LAC-QAB présentée au chapitre 5 était simple et aucune optimisation n'a été e ectuée. D'une part, des itérations d'amélioration pourraient être e ectuées sur le code de description HDL pour optimiser la net-list générée. D'autre part, les largeurs de bits de certaines variables peuvent être réduites et les multiplications doivent également être optimisées pour améliorer la surface de la puce et l'e cacité énergétique. De plus, l'intégration dans un système micro-contrôleur réaliste doit être faite;

3) La règle de mise à jour des multiplicateurs de Lagrange est à améliorer. Une possibilité d'amélioration a été constatée dans notre algorithme C-LAC-AB en cas de grande capacité maximale de la queue de données car nous avons observé de légères dégradations dans l'optimisation des multiplicateurs de Lagrange même après l'application d'Adam. Plus précisément, les vitesses d'apprentissage des deux multiplicateurs de Lagrange sont considérées comme di érentes en raison de la di érence des ordres de grandeur des erreurs de suivi. Nous prévoyons que cette di érence pourra être a ectée/ajustée par les taux d'apprentissage prédéterminés pour les deux multiplicateurs de Lagrange. A ce titre, des investigations complémentaires doivent être menées; 4) Le composant matériel asynchrone de l'algorithme C-LAC-QAB pourrait être mis en oeuvre. Puisque l'algorithme LAC-QAB est basé sur le LAC-AB, nous pouvons également implémenter l'algorithme C-LAC-QAB et son composant matériel. Cela réduira certainement la complexité de l'algorithme.
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Adam An adaptive learning rate method proposed in [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF].

APM

Adaptive Power Management is to achieve the minimum power consumption during the suspend mode of System-on-Chips. Hence, its algorithm is only active during suspension. Note that the suspend mode includes idle, sleep and deepsleep.. 

C-LAC-AB

EH-IoT

It stands for Energy-Harvesting Internet-of-Things that literally combines the energy-harvesting technoligy and the IoT.. ENO Energy Neutral Operation is an important concept in EH-IoT nodes where the supply and the demand of the energy are matched during a certain period of time and the battery never runs out of energy. ENO-Max An extended version of Energy Neutral Operation. Refer to Section 6.3 for details..

EWMA

Exponentially Weighted Moving Average. The weight is known as smoothing factor or decay factor ρ. The current sample and moving average will be weighted by ρ and 1 -ρ, respectively..

GRNG

Gaussian Random Number Generator is a random number generator following a Gaussian distribution..

ISS

Instruction Set Simulator..
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Glossary

LAC

Linear Actor-Critic, or more precisely, Actor-Critic method based on linear function approximations originally proposed in [START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF].

LAC-A

Linear Actor-Critic using Adam. LAC-AB Linear Actor-Critic using Adam with no initialization Bias correction terms, which is one of the proposed algorithms made in this work. LAC-QAB Linear Actor-Critic using Quasi Adam with no Bias correction terms, which is one of the proposed algorithms made in this work. Three approximation methods are applied to the LAC-AB to establish this algorithm.. 

MDP

SAT

One of the application scenarios made in this study that is called Sense-and-Transmit. Detailed scenario is described in section 2.1.3.

ToF

Time of Fine-tuning is the convergence time of learned parameter(s) for the initial state. The convergence is de ned judged in this paper based on the homogeneity of the mean and the standard deviation of the learned parameter(s). Refer to the convergence de nition in Section 3.3.. ToR Time of Reactivity is the convergence time of learned parameter(s) for the new state after environmental change(s). The convergence is de ned judged in this paper based on the homogeneity of the mean and the standard deviation of the learned parameter(s). Refer to the convergence de nition in Section 3.3..
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 21 Figure 2.1: Example of an application scenario: adaptive controller for wireless communications such as TX duty-cycle of a sensor node in a point-to-point network.
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 22 Figure 2.2: Traces of different energy harvesters [34].
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 23 Figure 2.3: Workload of compressed temperature data using ZOH: (left) in summer and (right) in winter
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 2 Figure 2.4 depicts the example of an EH-IoT node where the smart adaptive controller is designed as an independent hardware component. Note that it could be alternatively implemented in software and run on the micro-controller unit (MCU). The blue highlighted box

Figure 2 . 4 :

 24 Figure 2.4: Example of a general system architecture for an EH-IoT node that integrates a smart adaptive controller as a hardware component.
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 25 Figure 2.5: Interactions between the agent and the environment.
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 26 Figure 2.6: Overview of function approximations for the value function estimation and the policy.
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 27 Figure 2.7: Prediction errors of harvested power of (left) WCMA and (right) Pro-Energy from July 31st to August 5th, 2018 (unit: W)

Figure 2 . 8 :

 28 Figure 2.8: Divergences of ψ (left) and TD-errors (right) over one year with the state-of-the-art LAC method [45] (red crosses indicate power failures).
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 29 Figure 2.9: Transitions of ψ (left) and TD-errors (right) in case of the LAC algorithm using fixed learning rate with the SoB as a performance upper bound (red crosses represent power failures).
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 31 Figure 3.1: Momentum and RMSprop with different setups of the decay rates.
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 31 LAC algorithm: the SoB term in the reward function as a performance upper bound Require: / * Inputs * / -State-of-Bu er φ SoB t+1 and State-of-Charge φ SoC t+1 / * Hyper-parameters for Actor-Critic * / -Learning rates β and α for Actor and Critic, respectively -Discount factor γ ∈ [0, 1] for past reward R t+1 -Recency weight λ ∈ [0, 1] in the TD(λ) algorithm -Exploration space σ (standard deviation for the Gaussian policy) Ensure: -Action a t ∈ [a min , a max ] -Actor and Critic parameter ψ t and θ t 1: Initialize at time t = 0: -Empty data bu er φ SoB 0 = 0 and fully-charged energy bu er φ SoC 0 = 1 -ψ 0 and θ 0 are random numbers ranging [0, 1] 2: for each t ∈ [0, ∞] do / * Observe the current state * / 3:

  a): state-action value function) / * Critic: TD(λ) algorithm * / 7:

t 10 :

 10 ψ t+1 = ψ t + β t+1 • g t+1Update the actor parameter / * Next TX duty-cycle selection * / 11:
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 32 Figure 3.2: Overview of the actor and critic in LAC-A/LAC-AB algorithms.
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 33 Figure 3.3: Transitions of actor parameter ψ using LAC-AB (β 1 , β 2 = 0.4) for EHD1, EHD2, and EHD3.
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 34 Figure 3.4: Overview of convergence analysis.
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 235 Figure 3.5: Transition of actor parameter ψ using Adam and EHD1 dataset: (left) LAC-A (β 1 = 0.9, β 2 = 0.999); (middle) LAC-A (β 1 = β 2 = 0.4); and (right) LAC-AB (β 1 = β 2 = 0.4).

. 6 .

 6 The number of power failures (Figure 3.6, left) tends to decrease as the β 1 value goes down to [0.1, 0.4] with at most one failure. With β 1 ∈ [0.1, 0.4],

and 3. 8 .Figure 3 . 6 :

 836 Figure 3.6: Power failure and Convergence speed analysis of LAC-AB for different sets of (β 1 , β 2 ) using EHD1 and EHD3 datasets, respectively: (left) number of power failures; (middle) ToF; and (right) ToR.
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 37 Figure 3.7: Latency analysis of LAC-AB during the first six months for different sets of (β 1 , β 2 ) using EHD1 dataset: (left) mean; and (right) standard deviation.
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 38 Figure 3.8: Latency analysis of LAC-AB during the last six months for different sets of (β 1 , β 2 ) using EHD1 dataset: (left) mean; and (right) standard deviation.
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 39 Figure 3.9: ToF and ToR of LAC-AB algorithm.
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 310 Figure 3.10: Latency (in green and blue for the first and the latter six months, respectively) and number of failed simulations (in red) of LAC-AB algorithm.

Figure 4 .

 4 1 illustrates an example of a variable x being expressed by the Q format Qm, n where m is the number of bits of the integer part and n is that of the fractional part[START_REF] Arar | Fixed-Point Representation: The Q Format and Addition Examples[END_REF].
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 41 Figure 4.1: Data structure of a fixed-point variable x as Qm, n

  The xed-point multiplication is now discussed. Let a and b be the numbers in Qm a .n a and Qm b .n b format, respectively, and consider the product of a × b. To avoid the over ow, the output register for this product should take Qm.n where m = m a + m b and n = n a + n b .The rst example is the product of two unsigned numbers: a = 3.75 and b = 2.5, i.e., a = 11.11 2 and b = 10.1 2 . As stated, the xed-point arithmetic is computed as the integer counterpart, see Eq (2a) below. Note that the above operation neglects the binary point. Since the results should be given as Q4.3, the nal outcome is equal to 1001.011 2 = 9.375 10 .

  a, b: unsigned (2b) a: signed, b: unsigned (2c) a: unsigned, b: signed (2d) a, b: signed

  estimated, a LUT-based piecewise constant approximation and linear function approximations are introduced. The former is to store the reciprocal of the midpoint value b = 01b 0 b 1 b 2 ...b N 1 between b = 01b 0 b 1 b 2 ...b N and its successor (where b k (k = 0, 1, ..., N ) stands for a single bit comprising b), while the latter stores two coe cients C 1 and C 2 of the linear function approximations to calculate the reciprocal.

  The basic idea starts from taking the reciprocal X of the divisor b and multiply it by the dividend a. ab = a • X ≈ a(C 2 -C 1 • b) (4.5)Equation (4.5) shows the piecewise linear approximation of the reciprocal X by using the divisor b. The LUT therefore stores C 1 and C 2 values. Given that the data are represented in xed-point precision, the design process can be illustrated as in Figure4.2 and is described as follows:
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 42 Figure 4.2: Procedure to obtain the reciprocal of a divisor b.

1 .

 1 let b > 0 and left-shift it until b = 01b 0 b 1 b 2 ...b N ; 2. use, for example, the rst 3 bits b 0 b 1 b 2 as an index of the LUT and take out C 1 and C 2 to calculate the reciprocal X;

Figure 4 . 3 :

 43 Figure 4.3: Overview of the quartile Gaussian distribution.
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 44 Figure 4.4: Procedure to obtain the reciprocal of a divisor b.
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 41 LAC-QAB algorithm: introduction of three approximation methods Require: / * Inputs * / -Learning rate β -Gradient g t+1 -Decay rates β 1 ∈ [0, 1] and β 2 ∈ [0, 1] for EWMA in Adam -to avoid division by in nitesimally small values in Adam Ensure:

  Figures 4.5 depict the ToF and the ToR of the LAC-QAB algorithm along with the number of simulations that encounter power failure(s) in Figure 4.6. The mean and the standard deviation of the latency for the same sets of con gurations are also summarized in Figures 4.7
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 45 Figure 4.5: Convergence analysis of LAC-QAB for different sets of (β 1 , β 2 ) using EHD3 with T cui = 30min: (left) ToF (days) and (right) ToR (days). β 2 values are swept from 0.1 to 0.7 with step size 0.1. (blue lines) β = 1.5 × 10 -4 ; (green lines) β = 3.0 × 10 -4 ; (red lines) β = 4.5 × 10 -4 .

  ). Both the mean and the standard deviation (stddev) clearly degrade when the learning rate drops from 3.0 × 10 -4 and 4.5 × 10 -4 to 1.5 × 10 -4 (see upper two gures in Figures 4.7). Still, larger β 2 such as 0.7 in case of β = 1.5 × 10 -4 helps achieve comparable
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 46 Figure 4.6: Power failure analysis of LAC-QAB for different sets of (β 1 , β 2 ) using EHD1 with T cui = 30min: (1 st row) ToF (days); (2 nd row) ToR (days); (3 rd row) Number of simulations that had power failures; (left) β = 1.5 × 10 -4 ; (middle) β = 3.0 × 10 -4 ; (right) β = 4.5 × 10 -4 .
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 47 Figure 4.7: Latency analysis of LAC-QAB with T cui = 30min for different sets of (β, β 1 , β 2 ) using EHD1 dataset: (1st Row) Latency charasteristics of the first 6 months and (2nd Row) those of the last 6 months; (blues lines) β = 1.5 × 10 -4 ; (green lines) β = 3.0 × 10 -4 ; (red lines) β = 4.5 × 10 -4 .
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 48 Figure 4.8: Convergence analysis of LAC-QAB for different sets of (β 1 , β 2 ) using EHD3 with T cui = 10min: (left) ToF (days) and (right) ToR (days). β 2 values are swept from 0.1 to 0.7 with step size 0.1. (blue lines) β = 1.5 × 10 -4 ; (green lines) β = 3.0 × 10 -4 ; (red lines) β = 4.5 × 10 -4 . Note that no power failure was observed for any of the cases.
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 49410 Figure 4.9: Latency analysis of LAC-QAB with T cui = 10min for different sets of (β, β 1 , β 2 ) using EHD1 dataset: (1st Row) Latency charasteristics of the first 6 months and (2nd Row) those of the last 6 months; (blues lines) β = 1.5 × 10 -4 ; (green lines) β = 3.0 × 10 -4 ; (red lines) β = 4.5 × 10 -4 .
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 411 Figure 4.11: Comparison of latency characteristics between (blue lines) LAC-AB and (green lines) LAC-QAB for different sets of (β 1 , β 2 ) using EHD1 with T cui = 10min: (1st Row) Latency charasteristics of the first 6 months and (2nd Row) those of the last 6 months.
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 412 Figure 4.12: Number of cycles at the beginning and the end of a loop of the LAC-QAB algorithm with the check of program counters.
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 51 Figure 5.1: Overview of synchronous (left) and asynchronous (right) circuit.
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 52 Figure 5.2: (Left) The two-phase and (right) the four-phase handshake protocol.
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 55 Figure 5.5: Circuit design and its symbol of 1-bit data transaction using four-phase handshake protocol and dual-rail code (also known as a Half-Buffer).

Figure 5 . 6 :

 56 Figure 5.6: Overview of the closed feedback loop in asynchronous circuits.
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 57 Figure 5.7: Top module of the LAC-QAB algorithm.

Figure 5 .

 5 Figure 5.8 illustrates the FEATGEN module that receives the current SoB and SoC as the state (inputs) from the register interface, assuming that the SoB and the SoC values are properly tracked and updated until the next control update.
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 58 Figure 5.8: Feature generation module of the LAC-QAB algorithm.
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 59 Figure 5.9: TD-error module of the LAC-QAB algorithm.

  Figure 5.10 illustrates the design of the critic update module.
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 510 Figure 5.10: Critic update module of the LAC-QAB algorithm.

Figure 5 . 11 :

 511 Figure 5.11: Actor update module of the LAC-QAB algorithm.
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 512 Figure 5.12: GRAD and QAB module, EWMA, CEWMA module of the LAC-QAB algorithm.
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 513 Figure 5.13: UPDATE module of the LAC-QAB algorithm.
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 514 Figure 5.14: A 4-bit Galois LFSR module of the LAC-QAB algorithm.
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 515 Figure 5.15: ACTIONGEN module of the LAC-QAB algorithm.
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 516 Figure 5.16: Layout of the asynchronous hardware for the LAC-QAB algorithm (330µW × 330µW).
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Algorithm 6 . 1 C 1 :

 611 -LAC-AB: Constrained LAC algorithm with Adam Biased Require: / * Inputs * / -State-of-Bu er φ SoB t+1 and State-of-Charge φ SoC t+1 / * Hyper-parameters for Actor-Critic * / -Learning rates β and α for Actor and Critic, respectively -Discount factor γ ∈ [0, 1] for past reward R t+1 -Recency weight λ ∈ [0, 1] in the TD(λ) algorithm -Exploration space σ (standard deviation for the Gaussian policy) -Learning rates χ SoB and χ SoC for updating the Lagrange multipliers for SoB and SoC Ensure: -Action a t ∈ [a min , a max ] -Actor and Critic parameter ψ t and θ t -Lagrange multipliers λ SoB L and λ SoC L Initialize at time t = 0: -Empty data bu er φ SoB 0 = 0 and fully-charged energy bu er φ SoC 0 = 1 -ψ 0 and θ 0 are random numbers ranging [0, 1] 2: for each t ∈ [0, ∞] do / * CMDP-based reward (cost) function * / 3:

tEligibility trace z t+1 9 :

 9 Closer to target values, better values 6:V t+1 = -θ t f critic t+1/ * TD-error for Actor-Critic * / 7:δ T D t+1 = L(t + 1) + γ V t+1 -V t Advantage function: A(s, a) = Q(s, a) -V (s) (Q(s,a): state-action value function) / * Critic: TD(λ) algorithm * / 8:z t+1 = γλz t + λ SoC L |φ SoC t+1 -φ SoC target | + f critic t+1 θ t+1 = θ t + αδ T Dt+1 z t+1 Update the critic parameter / * Lagrange multiplier: Sub-gradient descent algorithm * / SoB (|φ SoB t+1 -φSoB | -δ SoB ) SoC (|φ SoC t+1 -φSoC | -δ SoC )

Figure 6 .

 6 Figure 6.1 illustrates the resultant mean and standard deviation of the SoB and the SoC for di erent combinations of target SoB/SoC values. The values shown on the gure are averaged over 30 simulations.We also tested two di erent maximum capacity of data queue, e.g., B max = 512 and 4096, for which the target values are set to φ SoB target = {0.05, 0.1, 0.15} and {0.00625, 0.0125, 0.025}, respectively, in order to keep the same packet transmission rate. In case of B max = 512, the mean SoB levels tend to fall within the acceptable error ranges obtained by δ SoB = φ SoB target 4

Figure 6 . 1 :

 61 Figure 6.1: The mean and the standard deviation of the SoB and the SoC for each combination of their target values; (left) B max = 512, (right) B max = 4096.

Figure 6 . 2 :Figure 6 . 3 :Figure 6 . 4 : 2 Figure 6 . 8 :

 626364268 Figure 6.2: The mean and the standard deviation of the SoB and the SoC for each combination of their target values by the C-LAC-AB algorithm using Adam for update of the Lagrange multipliers; (left) B max = 512, (right) B max = 4096.

Figure 6 . 9 :Figure 6 . 10 :

 69610 Figure 6.9: Mean SoB/SoC levels when (left) B max = 512 and (right) B max = 4096.

9 1 . 67 × 3 Average 1 . 63 ×

 1673163 10 -4 1.99 × 10 -2 4.77 × 10 -3 10 1.62 × 10 -4 1.75 × 10 -2 5.70 × 10 -3 11 1.55 × 10 -4 1.87 × 10 -2 4.95 × 10 -3 12 1.48 × 10 -4 1.67 × 10 -2 5.12 × 10 -10 -4 1.91 × 10 -2 5.10 × 10 -3 φSoC = 0.5 were used for the SoC-opt method, while φSoB = 0.05 (where B max = 512) and φSoC = 0.7 for the SoB-opt. The optimizations have ended up with the 12 candidates shown in Table B.1 and Table

7

 7 pour β = 1.5 × 10 -4 et petit β 2 ∈ [0.1, 0.3] pour β = {3.0 × 10 -4 , 4.5 × 10 -4 }. Une CUI plus longue, telle que 30 minutes avec un taux d'apprentissage élevé β = 4.5 × 10 -4 , est plus susceptible de provoquer un manque d'énergie. En cas de T cui = 10 minutes, l'état de manque d'énergie n'a pas été observé avec l'algorithme LAC-QAB. Le simulateur de jeu d'instructions Spike a montré que le nombre de cycles à exécuter par la méthode LAC-AB originale était considérablement réduit de 91.1% par la méthode LAC-QAB à virgule ottante. Ce résultat s'est encore amélioré de 1.59 fois en utilisant la contrepartie àvirgule xe. Le temps d'exécution et la consommation d'énergie correspondants sont respectivement de 12.9µs et 282.7nJ. Notons que nous avons utilisé l'option »soft-oat » et sans unité à virgule ottante et que l'implémentation était conforme à un noyau RISC-V 32 bits. Nous avons également e ectué des simulations RTL avec Questasim et obtenu un temps d'exécution et une consommation d'énergie de 2.8µs et 60.8nJ, en supposant que le noyau RI5CY était le processeur cible fonctionnant à 345MHz avec une alimentation en tension de 0.9V.

  Dans ces deux cas, des taux d'apprentissage xes pour les multiplicateurs de Lagrange du SoB et du SoC ont été utilisés. Les erreurs tolérables pour le SoB et le SoC ont été dé nies égales à δ SoB = φ SoB target 4
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1: Characteristics of different energy storage devices.

Table 2 .

 2 

	Paper	Method	SoB	SoC	Harvester	Action	Neural?	LR	Constraints
	[19]	SM	-	Finite	Solar	A,B	No	Fixed	No
	[46]	SM	-	Finite	Solar	A,B	No	NA	No
					Water				
	[22]	SM	-	Finite		C,H	No	NA	Yes
					ow				
	[47]	SM	Finite	Finite Considered	D	No	NA	No
	[48]	SM	-	Finite	Solar	C	No	NA	No
	[49]	SM	-	Finite	Solar	B	No	NA	No
								Not	
	[50]	SM	Non-zero Finite	RF	B,G	No		No
								speci ed	
									Yes
	[51]	SM	-	Finite	Solar	J	No	NA	
									(energy)
	[6]	SM	-	Finite	-	I	No	NA	No
									Yes
	[32]	SM	-	Finite Vibration	A	No	NA	
									(energy)
	[52]	SM	-	Finite	Solar	J	No	Fixed	Yes
	[9]	SM	-	Finite	Solar	J, K	No	NA	Yes
	[53]	SM	-	Finite	Solar	J	No	Fixed	No
	[54]	RL	-	Finite	-	L	No	Fixed	No
	[36]	RL	In nite	Finite	Solar	B	3 layers	Fixed	No
					Uniform			Fixed or	
	[55]	RL	In nite	Finite		C (B)	3 layers		No
					dist.			decaying	
	[56]	RL	-	Finite	Solar	J	3 layers	Fixed	No
					Uniform				
	[57]	RL	Finite	Finite		A,B	3 layers	Fixed	No
					dist.				
					Solar,		Linear		
	[45]	RL	-	Finite		D		Fixed	No
					wind		function		
							Linear		
	[58]	RL	Finite	Finite	Solar	A,B		Fixed	No
							function		

2: State-of-the-art: Comparison of existing self-adaptive controllers.

Table 2 . 3 :

 23 Notation for the Action column in Table 2.2.

	Sign	Description	Sign	Description
	A	TX duty-cycle	B	TX output power
	C	TX modulation	D	TX rate / Number of TX packets
	E	Energy Budgeting	F	Energy Allocation
	G	Energy Transfer	H	DVFS
	I	Sense & Compress	J	System duty-cycle
	K	Application accuracy	L	APM
	M	Scheduling policy	N	Channel selection

Table 2 . 4 :

 24 Number of times that prediction error goes over max. capacity.

	Algorithm C = 1F C = 2F
	WCMA	902	296
	Pro-Energy	964	282

component choice, any algorithms encounter the risk that they cannot quickly compensate for

Table 2 . 5 :

 25 Hyperparameter setups for the LAC algorithm.

Table 2 . 6 :

 26 Comparison of algorithmic costs of state-of-the-art RLs for TX duty-cycle modulation.

	Algorithm	Neural?	# of MACs	Memory
	[56]	4-64-64-2	9.22K	4.61K
	[36]	3-10-5-1	202	101
	[43, 67]			

Tabular Q-learning Over 2 Mul + 3 Add 100 ∼ 1000 [45] Linear Over 6 + 10 Mul 2
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Table 3 .

 3 

1: Hyperparameter setups for the LAC-A and LAC-AB .

Table 3 . 2 :

 32 Latency (min) and power failures for the three different algorithms and setups.

	Algorithm	LAC-A	LAC-AB
	β 1 /β 2		0.9/0.999	0.4/0.4	0.4/0.4
		First 6 months	10.09/15.89 10.51/17.04 10.52/17.06
	Latency (Mean/Std)	Last 6 months	9.38/12.49	9.11/12.10	9.11/12.09
	# of power failures/# of failed simulations	90/88	0/0	0/0

Table 3 . 3 :

 33 Time of Reactivity (ToR) of the LAC-AB algorithm.

	ToR	β 1 /β 2 0.1/0.1 0.2/0.1 0.3/0.1 0.4/0.1 0.5/0.2 0.6/0.2 0.7/0.3	w/o Adam Improve
	EHD2 (Jun)	12.69	7.08	7.67	5.94	14.44	4.50	9.35	45.77	68.5%
	EHD3 (Dec)	5.67	0.021	0.021	3.77	1.83	1.92	4.94	47.52	88.1%

Table 3 . 4 :

 34 Time of Fine-Tuning (ToF) of the LAC-AB algorithm.

	ToF	β 1 /β 2 0.1/0.1 0.2/0.1 0.3/0.1 0.4/0.1 0.5/0.2 0.6/0.2 0.7/0.3	w/o Adam Improve
	EHD2 (Jun)	13.12	9.29	7.48	9.92	8.44	5.52	5.54	60.17	78.2%
	EHD3 (Dec)	13.06	11.12	7.15	5.35	6.46	5.02	6.23	83.4	84.3%

Table 4 . 1 :

 41 Summary of the segmentation of the Gaussian distribution.

	Segment i	0	1	2	3	4	5	6	7
	Range (in σ)	[0.0, 0.15)	[0.15, 0.3)	[0.3, 0.45)	[0.45, 0.65)	[0.65, 0.85)	[0.85, 1.1)	[1.1, 1.4)	[1.4, 2.0)
	CDF	6.0%	5.8%	5.6%	6.8%	6.0%	6.3%	5.5%	8.0%
	Midpoint	0.075	0.225	0.375	0.55	0.75	0.975	1.25	1.7

Table 4 . 2 :

 42 Hyperparameter setups for the LAC-AB and LAC-QAB algorithm .

Table 4

 4 .2 are compared. Figures 4.10 illustrate the ToFs and ToRs for di erent combinations of β 1 and β 2 of both algorithms. As opposed to the LAC-AB, the ToF and the ToR are more stable in general in the LAC-QAB. Typically, the two metrics in the LAC-QAB typically fall between around 5 and 10 days. (see the green lines). These results are comparable or even better than those of the LAC-AB, which shows
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slightly slower ToFs and ToRs, stretching across 10 and 20 days and across 10 and 25 days, respectively. With respect to the latency, Figures 4.11 illustrate the latency characteristics of both algorithms for two di erent workload scenarios. In case of the LAC-AB algorithm, the latency characteristics during the rst-half period generally tend to improve as both β 1 and β 2 become larger. However, also considering the stddev, smaller β 2 such as 0.1 and 0.2 can be

Table 4 . 3 :

 43 Number of cycles executed of LAC-based algorithms obtained by Spike (cycles).

	Algorithm	LAC	LAC-A	LAC-AB LAC-QAB ( oating) LAC-QAB ( xed)
	Mean	99 851.2 171 885.2 128 186.4	11 468.4	4 434.2
	Stdev	380.8	170.0	375.6	492.1	386.2

Table 4 . 4 :

 44 Number of instructions executed of the fixed-point LAC-QAB algorithm (cycles).

	Tool	Spike Questasim
	Mean 4 434.2	954.2
	Stdev	386.2	433.9

Table 5 . 1 :

 51 Bit widths in Q format of variables employed in this work.

	Variable Precision Variable Precision
	φ SoB t+1	Q0.8	φ SoC t+1	Q0.8
	φ SoB t	Q0.8	φ SoC t	Q0.8
	f actor t+1	Q0.8	f critic t+1	Q0.8
	f actor t	Q0.8	f critic t	Q0.8
	θ t	Q4.8	δ t	Q5.8
	ψ t	Q5.23	µ t+1	Q0.16
	a t+1	Q0.16		
	α	Q0.8	β	Q0.16
	γ	Q0.8	γλ	Q0.8
	σ	Q0.16		Q0.23
	β 1	Q0.8		

Table 5 . 2 :

 52 Results of post place-and-route simulations.

	Area	Static Power Dynamic Power Execution Time Energy Consumption
	0.095mm 2	39.6µW	3.42mW	36ns/loop	124.56pJ/loop

  L'Internet des objets à récupération d'énergie (EH-IoT) permet d'éviter le manque d'énergie pour les opérations perpétuelles des noeuds sans induire de maintenance. Il permet également de fournir une meilleure qualité de service (QoS) en cas de budget énergétique su sant. En fonction de l'énergie récupérée et de la qualité de service requise, les opérations du système doivent être contrôlées de manière adaptative, en particulier dans les noeuds à ressources limitées. Chaque noeud sera confronté à des incertitudes di érentes dans des environnements di érents. Par conséquent, un contrôleur adaptatif intelligent léger est requis.La majorité des coûts algorithmiques provient de trois parties : la dérivation de l'écart type, les divisions et la distribution gaussienne. À cette n, trois méthodes d'approximation sont utilisées: la règle empirique pour les écarts types, les dérivations réciproques basées sur la LUT, et la méthode gaussienne basée sur les quartiles, respectivement. Avec l'utilisation de la précision à virgule xe, les frais généraux algorithmiques ont été considérablement réduits. Nous avons ensuite implémenté une solution matérielle asynchrone pour montrer d'autres améliorations de l'e cacité énergétique de l'algorithme proposé.En n, nous considérons le processus décisionnel de Markov contraint pour répondre aux contraintes des méthodes LAC. En utilisant les termes normalisés d'énergie et de performance, nous avons établi une fonction de récompense symétrique dans LAC. Cette approche permet

À cette n, l'apprentissage par renforcement (RL) est une solution appropriée qui interagit avec les environnements et apprend leur dynamique au moment de l'exécution sans aucune connaissance a priori à leur sujet. Nous nous concentrons spéci quement sur une méthode RL acteur-critique avec des approximations de fonctions linéaires et appelons ce type d'algorithme LAC (Linear Actor-Critic). Trois problèmes des méthodes LAC sont principalement abordés dans notre travail: divergence et réactivité lente aux changements environnementaux, coûts algorithmiques et prise en compte implicite des contraintes.

Le premier problème était causé par des taux d'apprentissage xes qui s'adaptent di cilement à de nouvelles situations. Nous avons introduit l'algorithme à taux d'apprentissage adaptatif appelé Adam et proposé d'utiliser des facteurs de lissage plus petits pour améliorer l'adaptabilité. Parallèlement à l'utilisation d'une distribution gaussienne pour l'acteur, l'ajout d'Adam augmente les coûts algorithmiques. d'apprendre et d'équilibrer à l'exécution les poids des contraintes contradictoires d'énergie et de performance.

Table B . 1 :

 B1 Optimized hyper-parameter sets by CMA-ES for SoB-opt. 10 -2 1.05 × 10 -1 6.15 × 10 -1 2 1.43 × 10 -2 1.02 × 10 -1 6.25 × 10 -1 3 1.19 × 10 -2 1.04 × 10 -1 6.13 × 10 -1 4 1.48 × 10 -2 1.16 × 10 -1 5.98 × 10 -1 5 1.25 × 10 -2 8.86 × 10 -2 5.95 × 10 -1 6 1.72 × 10 -2 1.03 × 10 -1 6.27 × 10 -1 7 1.34 × 10 -2 1.04 × 10 -1 6.04 × 10 -1 8 1.06 × 10 -2 1.12 × 10 -1 5.94 × 10 -1 9 1.48 × 10 -2 1.04 × 10 -1 5.87 × 10 -1 10 1.19 × 10 -2 9.46 × 10 -2 6.15 × 10 -1 11 1.43 × 10 -2 1.08 × 10 -1 5.77 × 10 -1 12 1.04 × 10 -2 1.03 × 10 -1 5.98 × 10 -1 Average 1.34 × 10 -2 1.04 × 10 -1 6.04 × 10 -1

	Search points	α	β	µ
	1	1.44 ×		

Table B . 2 :

 B2 Optimized hyper-parameter sets by CMA-ES for SoC-opt. 10 -4 1.96 × 10 -2 4.91 × 10 -3 2 1.65 × 10 -4 1.80 × 10 -2 5.74 × 10 -3 3 1.67 × 10 -4 2.05 × 10 -2 4.84 × 10 -3 4 1.60 × 10 -4 1.94 × 10 -2 4.66 × 10 -3 5 1.64 × 10 -4 1.92 × 10 -2 5.47 × 10 -3 6 1.65 × 10 -4 1.95 × 10 -2 5.41 × 10 -3 7 1.65 × 10 -4 2.00 × 10 -2 4.65 × 10 -3 8 1.69 × 10 -4 1.97 × 10 -2 4.88 × 10 -3

	Search points	α	β	µ
	1	1.63 ×		

  Constrained Linear Actor-Critic using Adam with no Bias correction terms, which is one of the proposed algorithms made in this work. Constrained Markov Decision Process (CMDP) is considered to formulate a constrained optimization problem, which is then reformulated as an unconstrained optimization problem using the Lagrangian relaxation technique. The newly formulated problem can be tackled by reinforcement learning..CATOne of the application scenarios made in this study that is called Compress-and-Transmit. Detailed scenario is described in section 2.1.3. CMA-ES Covariance Matrix Adaptation Evolution Strategy is a black-box optimization methods typically used for hyper-parameter optimizations. Unlike Bayesian optimization, no hyper-parameters exist in and of itself.. CMDP Constrained Markov Decision Process (CMDP) is an extended version of Markov Decision Process (MDP) where a contraint is considered in MDP.. CUI Control Update Interval is an interval, at which a control algorithm is activated to update the action for the next time slot (refer to Figure 2.1).

  Markov Decision Process (MDP) is the process where the next state and the reward are dependent only on the current state and the action. Refer to Section 2.2.2.1.1 for details.. MSB Most Signi cant Bit. SARSA One of the on-policy RL methods that serves its functions based on State-Action-Reward-(next)State-(next)Action information (whereas Q-learning uses State-Action-Reward-(next)State only).

	QoS	Quality of Service.

The cost will be detailed/discussed in Section
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while β 2 should be chosen in accordance with the learning rate β: large β 2 such as 0.7 for β = 1.5 × 10 -4 and small β 2 ∈ [0.1, 0.3] for β = {3.0 × 10 -4 , 4.5 × 10 -4 }. Note that longer control update interval T cui such as 30 minutes with large learning rate β = 4.5×10 -4 is more likely to cause power failures. In case of T cui = 10 minutes, no power failure was observed with LAC-QAB algorithm.

Using the Spike ISS, it takes 99 851 cycles to complete a single loop of the base LAC algorithm, which accounts for 289.4µs. The LAC-A algorithm requires 1.72 times more cycles than the LAC. The removal of the initialization bias correction terms reduces the mean cycles by 25.4%. Compared to the LAC-AB, the oating-point version of the LAC-QAB contains less complex arithmetic operations such as division and squared root, so that the number of cycles is drastically reduced by 91.1%. The proposed xed-point counterpart yields 1.59 times less overheads. Its execution time is 12.9µs and the energy consumption is 282.7nJ per loop of the control algorithm. Assuming the RI5CY core of the SamurAI chip that runs at 345MHz with 0.9V [START_REF] Miro-Panades | SamurAI: A 1.7MOPS-36GOPS Adaptive Versatile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up Time and 1.3TOPS/W ML E ciency[END_REF], the execution time and energy consumption of a single loop of the xed-point LAC-QAB algorithm are estimated in the Questasim RTL simulation as 2.8µs and 60.8nJ, respectively.

Thanks to the aforementioned approximations with the xed-point precision, the LAC-QAB method can be e ciently implemented as a dedicated hardware. Considering its execution time, the wake-up overhead of its hardware component will severely deteriorate the energy e ciency. As such, the next chapter introduces the asynchronous hardware design for the LAC-QAB algorithm to overcome this issue as well as to further reduce the algorithmic overheads.

Along with a single acknowledgment wire, the TX has a wire called request in this protocol. The use of these two enables the handshake protocols. The N data wires can be simply added in the channel. This protocol therefore requires N + 2 wires in total. Note that the delay of the request signal must be "safely" longer than those of the N data wires. Now we consider, as an example, 1-bit data transaction using the four-phase protocol and dual-rail code. The channel requires three wires such as a "0" data wire E 0 , a "1" data wire E 1 and an acknowledgement wire E a . Figure 5.3 illustrates the transactions of "0" and "1" with a bubble in-between. We mentioned that, in asynchronous hardware, a state-holding gate is the replacement of a memory cell of synchronous hardware to pass the data token with no glitch. The Muller's C-element is generally employed as a state-holding gate, whose circuit and the corresponding truth table are illustrated in Figure 5.4. It takes two inputs x and y and generates one output z. Its production rule is denoted as z = xCy, meaning that x ∧ y → z ↑, ¬x ∧ ¬y → z ↓ and z holds the current value otherwise. Note that z -1 therefore stands for the previous z value. Using two C-elements and one NOR gate, the aforementioned 1-bit transaction circuit based on four-phase protocol and dual-rail code is designed as in Figure 5.5. This circuit is called a Half Bu er (HB).

Many applications, including the RL, implement closed (feedback) loops. In asynchronous channels, three Half-Bu ers are necessary to implement a correctly-running hardware loop mechanism. Figure 5.6 depicts the case where the two inputs x t and y t are fed to obtain the The transitions of the learned parameters in SoB-LQ and SoC-LQ are shown in Figure 6.5, while Figure 6.6 indicates those of ψ and θ to show their convergences. Note that the red cross is the time point when power failure occurred, and the initial values for the learned parameters in SoB-LQ and SoC LQ are θ init = (θ 0 , θ 1 , θ 2 ) = (0.5, -12.5, 0.25) and (0.5, -0.25, 0.25), respectively. The optimization speed of these algorithms depends heavily on these initial values. One power failure was observed with the LAC algorithm, but more random workload of compressed temperature data is likely to have caused this issue. Figure 6.7 also illustrates those of ψ, θ and λ L for φ SoB target = 0.05 and φ SoC target = {0.5, 0.7, 0.9}, where λ L is de ned as

Qualitatively, the convergences of these three learned parameters are con rmed, except for the case of φ SoC target = 0.5.

For this case, we ran 5 simulations using real-life ve-year solar irradiance dataset to see the evolution of ψ. The obtained Figure 6.8 shows that the periodical traces are con rmed and no sign of divergence is observed. The mean levels and the MAEs of both SoB and SoC of the compared algorithms are illustrated in Figures 6.9 and 6.10, respectively. Note that the plot of each algorithm is shifted horizontally for clear visibility and the target SoB/SoC level on x-axis corresponds to the midpoint value of each range enclosed by vertical lines.

The SoC-LQ approach attempts to decrease only the di erence between the SoC level and the SoC target value. It produces the best mean SoC levels when φ SoC target = 0.5, 0.7. However, the MAEs of the SoB level are the worst among the compared algorithms, since this method does not take into account the tracking of the SoB. Moreover, the SoC MAE is the smallest value as 0.29 when φ SoC target = 0.5, but its MAEs become the second worst ones when φ SoC target = 0.7, 0.9.

Analyzing the results of φ SoC target = 0.7, we can claim that the SoC's deviation around the target value is considered large. The reason can be that the tuned hyper-parameters are optimized 

Conclusion and Future Work Directions

This present PhD thesis dealt with proposing a novel lightweight adaptive controller in terms of both computations and memory footprint for resource-constrained energy-harvesting IoT (EH-IoT) nodes. Reinforcement learning (RL) has been studied and proven e ective as a methodology for adaptive controllers, and therefore, it was also adopted in this work.

In Chapter 2, we explained the necessity of such a lightweight adaptive controller and identied the problems of the existing approaches in the literature by simulations and analysis. We presented the following existing problems: 1) model-based prediction errors;

2) discrete space of state-action pairs;

3) reactivity (or scalability); 4) algorithmic overhead; 5) implicit awareness of constraints.

Through the interactions with the environment, RL enables learning the optimal action at run-time without any a priori information on how the environment changes. The modelbased prediction is therefore unnecessary. Many variants of RL exist, and each one has their pros and cons in terms of algorithmic overheads and scalability to complex problems (such as non-linear problems).

As opposed to the neural network based RL that may be able to overcome the discrete space and the scalability issue at the cost of huge computations and memory footprint, this study has adopted the linear function approximation based RL to achieve the continuous space and less algorithmic overhead with less scalability. This design choice leaves the reactivity problem. In particular, we employed as a base the actor-critic algorithm with linear function approximations (LAC) proposed by Aoudia et al. [START_REF] Aoudia | RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting Wireless Sensor Networks[END_REF].

We found that the xed learning rate of the actor caused the reactivity problem. As such, in chapter 3, we introduced to the LAC algorithm an adaptive learning rate method called Adam. Through simulation studies, smaller decay rates help acquire the reactivity. This led us to propose the LAC-AB algorithm that ignores the initialization bias correction terms of Adam to reduce the computational costs. We also proposed a new convergence metric based on a statistical method called Brown-Forsythe test. Small decay rates such as β 1 ∈ [0.2, 0.4] and β 2 = 0.1 are suitable for power-failure-sensitive applications, while larger β 1 ∈ [0.5, 0.7] with relatively smaller β 2 ∈ [0.2, 0.4] are suitable for latency-sensitive ones in our application use case. The reactivity and the initial convergence were achieved from within a day up to 15 days and in about 5-13 days, respectively, with no or a few power failures for our application use case where the control update interval (CUI) was set to 30min. At the cost of gaining reactivity, the algorithmic overhead increased.

The LAC-AB algorithm involves three computationally intensive operations:

(1) derivation of the squared root of the second-order moment of time-series gradients;

(2) division by the obtained squared-root value;

(3) Gaussian random number generator (GRNG).

To convert these operations to more simple ones such as shift, addition and multiplication, we applied three approximation methods:

(1) rule of thumb for standard deviation;

(2) LUT-based piecewise linear function approximation;

(3) quartile based GRNG.

Using these approximation techniques in xed-point data precision, we proposed the LAC-QAB algorithm (LAC using Quasi-Adam-Biased) in Chapter 4. Di erently from the LAC-AB algorithm, β 1 = 0.5 is the best value for almost all situations, while β 2 should be selected according to the learning rate β: large β 2 such as 0.7 for β = 1.5×10 -4 and small β 2 ∈ [0.1, 0.3] for β = {3.0 × 10 -4 , 4.5 × 10 -4 }. Longer CUI such as 30 minutes with large learning rate β = 4.5×10 -4 is more likely to cause power failures. In case of T cui = 10 minutes, no power failure was observed with LAC-QAB algorithm. Using the Spike ISS, it takes 99 851 cycles to complete a single loop of the base LAC algorithm, which accounts for 289.4µs under the assumption that the core runs at 345MHz, 0.9V. The LAC-A algorithm requires 1.72 times more cycles than the LAC. The removal of the initialization bias correction terms reduces the mean cycles by 25.4%. Compared to the LAC-AB, the oating-point version of the LAC-QAB contains less complex arithmetic operations such as division and squared root, so that the number of cycles is drastically reduced by 91.1%. The proposed xed-point counterpart yields 1.59 times less overheads. Its execution time is 12.9µs and the energy consumption is 282.7nJ. By targeting the RI5CY core of the SamurAI System-on-Chip that runs at 345MHz,0.9V [START_REF] Miro-Panades | SamurAI: A 1.7MOPS-36GOPS Adaptive Versatile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up Time and 1.3TOPS/W ML E ciency[END_REF], the execution time and energy consumption of a single loop of the xed-point LAC-QAB algorithm are estimated in the Questasim RTL simulation as 2.8µs and 60.8nJ, respectively.

The algorithm thus far was supposed to run on software. However, considering the resourceconstrained EH-IoT nodes, the software solution may cause the wake-up overhead of the processor and may still be computationally demanding. Chapter 5 therefore presented the asynchronous hardware implementation of the LAC-QAB algorithm to solve these issues. The asynchrony is also free from the clock generation and the adjustment of the supply voltage. The place and route by Innovus shows that our implementation takes up about 0.095mm 2 area size with 89.2% density in 330µm × 330µm. The post place-and-route simulation was conducted with the assumption of the supply voltage 0.9V and the temperature 25°C. We obtained 3.42mW/loop and 39.6mW as the dynamic power and the leakage power, respectively. The average execution time was equal to 36ns. The energy e ciency is therefore estimated as 124.56pJ per loop of the algorithm, which accounts for 99.8% improvement compared to the Summary Energy-harvesting Internet-of-Things (EH-IoT) makes it possible to avoid the lack of energy for perpetual operations of nodes with no maintenance costs. It also enables providing better quality-of-service (QoS) in case of su cient energy budget. Depending on the harvested energy and the required QoS, system operations must be adaptively controlled, especially in resource-constrained nodes. Each node will face di erent uncertainties in di erent environments. As such, a lightweight smart adaptive controller is required.

For that purpose, reinforcement learning (RL) is a suitable solution that interacts with the environments and learns their dynamics at run-time with no a-priori knowledge about them. We speci cally focus on an actor-critic RL method with linear function approximations and call this type of algorithm LAC (Linear Actor-Critic). Three problems in LAC methods are mainly addressed in our work: divergence and slow reactivity to environmental changes, algorithmic costs, and implicit consideration of constraints.

The rst problem was caused by xed learning rates that cannot adapt to new situations. We introduced the adaptive learning rate algorithm called Adam and proposed using smaller smoothing factors to improve the adaptability. Along with the use of a Gaussian distribution for the actor, the addition of Adam increases the algorithmic costs.

The major part of the algorithmic costs comes from three parts: the derivation of the standard deviation, the divisions, and the Gaussian distribution. To this end, three approximation methods are employed: the rule of thumb for standard deviations, the LUT-based reciprocal derivations, and the quartile-based Gaussian method, respectively. With the use of xedpoint arithmetic, the algorithmic overheads drastically reduced. We then implemented an asynchronous hardware solution to show further improvements in energy e ciency of our proposed algorithm.

Lastly, we consider constrained Markov Decision Process to address the constraints in LAC methods. By using the normalized energy and performance terms, we established a symmetrical weighted reward function in LAC. This approach makes it possible to learn and balance fully at run-time the weights of the con icting constraints of energy and performance.

Appendix A Wind Harvesting in LAC-based Algorithms

As discussed in section 2.1.2, multiple energy harvesters exist and are employed for resourceconstrained energy-harvesting IoT (EH-IoT) nodes in today's wireless sensor networks. Throughout this manuscript, the mainly used energy harvesting was the solar energy harvesting. Here, we adopt a wind energy harvesting to further analyze the scalability and the reliability of our proposed LAC-based algorithms. Winds are generally more sporadic than solar irradiance levels.

In wind energy harvesting, the wind speed must exceed a certain threshold to scavenge some renewable energy. This wind speed is called the cut-in wind speed. Even with small wind turbines, the cut-in wind speed v cut-in should normally be around or above 2m/s [START_REF] Jushi | Wind Energy Harvesting for Autonomous Wireless Sensor Networks[END_REF][START_REF] Kishore | E cient Direct-Drive Small-Scale Low-Speed Wind Turbine[END_REF]. We applied the empirical model given in [START_REF] Jushi | Wind Energy Harvesting for Autonomous Wireless Sensor Networks[END_REF] to create the wind harvesting data for our simulation study.

P wind = 69, 626 ln vt+0.2218 0.0154 -3251.9

The wind speed dataset is provided by ORNL [START_REF]Oak Ridge National Laboratory (RSR) Daily Plots and Raw Data Files[END_REF] and is used below. The wind speed trace and the corresponding harvested power are illustrated in Figure A.1. The average harvested power is about 34mW, and the longest duration of zero energy harvesting was calculated as 3.27 days, which can be critical for perpetual operations of the system. This claim holds when comparing with the case of solar harvesting, in which case the longest duration for the EHD1 dataset is merely 0.61 day. Also, the numbers of days when the duration of zero energy harvesting goes over half a day (12 hours) are 289 and 124 times for wind and solar harvesting, respectively.

We consider the SAT application 2.1.3 for one-year real-life wind speed dataset [START_REF]Oak Ridge National Laboratory (RSR) Daily Plots and Raw Data Files[END_REF]. The wind speed dataset starts from June 1st, 2018. 100 simulations were conducted for each test case using the LAC-AB algorithm.

As discussed, the longest duration of zero energy harvesting is about 5 times as long in wind harvesting as in solar harvesting: the wind harvesting is more uncertain and sporadic than the solar harvesting. Here we pay attention to the following observations: 1) the deviations of both the data queue level and the energy bu er level are considered in our algorithms to estimate the transitions of those levels;

2) the situation will more likely to occur in wind harvesting IoT nodes, where the data queue becomes completely or almost full while the energy storage is almost empty;

We therefore mainly focus on the following three variables: the control update interval T cui (CUI), the maximum capacity of the transmission data queue B max , and the maximum capacity of the energy bu er C. The hyperparameter values employed for the LAC-AB algorithm are listed in Table A.1. Algorithm α β γ σ λ β 1 β 2 LAC-AB 0.1 1.0 × 10 -4 0.9 5.0 × 10 -4 0.9 0.2 0.1 1.0 × 10 -6

We set T cui = 10min because the zero-energy period occurs more frequently and its duration may last longer in wind harvesting than in solar harvesting. Firstly, we experimented the LAC-AB algorithm with , B max = {512, 4096} and C = 1.0F. The results of the power failure and the latency of the LAC-AB algorithm are summarized in Table A.2. As a comparison, the results of the case of using solar-harvesting are shown. Note that N pf , N max pf and N min pf are the average, maximum and minimum number of power failures that occurs in a single simulation, L 1 and L σ1 are the mean and standard deviation of latency in the rst half a year, L 2 and L σ2 are the mean and standard deviation of latency in the last half a year, and N of is the number of over own packets. In case of B max = 512, the average number of power failures N pf is 11.34 times and the mean latencies are 2.36min and 4.98min for the rst and the last half a year, respectively. Compared to using solar harvesting, the instability of wind harvesting led to the degradation in latency and some power failures. By expanding the size of B max to 4096, we change the di erence in the deviations of the SoB and the SoC, and therefore, change the optimization process. Due to the bigger size of the data queue, the algorithm enables saving energy to reduce the chances of power failures at the cost of latency. The number of power failures reduced to 3.02 times on average and the mean latency increased up to 9.34min for the rst six months. The mean latencies of the last six months for both B max are almost the same. However, the impact of using larger B max appears in the incrased standard deviation.

Considering the energy scarcity in wind harvesting, two possibilities exist. On one hand, we can naturally imagine that the increased energy bu er may reduce the chances of lacking energy. On the other hand, the advance in technology may improve the duration of zero energy harvesting. In fact, small-scale wind-harvesting technologies have been researched and can produce energy with the cut-in wind speed of more than 1.0m/s [START_REF] Zhao | Toward small-scale wind energy harvesting: Design, enhancement, performance comparison, and applicability[END_REF]. We therefore test two scenarios: (1) setting C = 2.0F with B max = {512} and (2) assuming v cut-in > 1.2 for C = 1.0F with B max = {512}. The results of the two cases are summarized in Table A.3. Note that the scenario (0) corresponds to the above rst case in wind harvesting, i.e., B max = 512 and C = 1.0F when v cut-in = 2.0m/s. As can be seen, thanks to the bigger capacity size of the supercapacitor, the number of power failures decreased, but we still observe 4.33 times on average. The reason lies in the fact that the algorithm would rather attempt to improve the latency than to save energy due to the increase in the capacity size. Meanwhile, in case of the small cut-in wind speed, the power failure is no longer observed with much improved latency characteristics. Note that the duration of zero energy harvesting was calculated as 1.05 days. This observation suggests that our proposed algorithms, for the moment, work well in case where the zero energy-harvesting duration is, at least, up to about one day and the harvester can provide su cient energy.

To sum up, the potential solutions for our LAC algorithms in wind energy harvesting are as follows:

1) increase the maximum data queue size in order to store data and to save energy;

2) increase the capacity size of the supercapacitor to enable storing more energy for zero energy-harvesting periods;

3) devise a wind harvester that generates su cient energy with small cut-in wind speeds such as 1.2m/s in our application scenario; 4) introduce another energy harvester to make hybrid energy harvesting system.

Appendix B

CMA-ES: Hyperparameter Optimization

CMA-ES is a stochastic, randomized method for real-parameter (continuous domain) optimization of non-linear, non-convex functions [START_REF] Hansen | The CMA Evolution Strategy: A Tutorial[END_REF]. In this method, a population of new search points is generated by sampling a multivariate normal distribution and we apply the black box optimization, where an objective function f , or a cost/ tness function, is minimized as much as possible to nd a more appropriate search point. When applied to our cases, the search point refers to the combination of hyper-parameters used in the algorithm, and the tness function is expressed as minimizing the mean combined squared errors of the SoB and the SoC as follows:

Here, we skip the detailed explanations on the derivation and the algorithm itself and highlight the practical aspects when used.

The important variables in this method are the search point centroid m, the standard deviation σ and the number of search points λ. The centroid represents the mean values of the concerned parameters, and therefore, the speci ed number of search points will then be generated by using a multivariate normal distribution with the input standard deviation. These values are updated after each trial, or generation.

With respect to LQ-tracker, three hyper-parameters exist such as α, β and µ. Therefore, we consider the centroid m = (α, β, µ) T . Depending on which variable of either the SoB or the SoC level is controlled, we call the algorithm the SoB-opt or the SoC-opt, respectively. Therefore, we describe the details for both cases. The common setups are that we set the number of search points to λ = 12 and conducted 40 generations (i.e., iterations) as a termination condition.

For initializing the centroid, we rst consulted the paper [START_REF] Vigorito | Adaptive Control of Duty Cycling in Energy-Harvesting Wireless Sensor Networks[END_REF] and manually found an appropriate set of values as m = (1 × 10 -5 , 1 × 10 -3 , 1 × 10 -3 ) T and m = (1 × 10 -5 , 1 × 10 -3 , 1 × 10 -2 ) T , respectively. Since the orders of magnitude vary across these values, we chose the initial standard deviations correspondingly as σ = (1 × 10 -4 , 0.01, 5 × 10 -3 ) T and σ = (5×10 -3 , 0.05, 0.5) T . For the reference levels, φSoB = 0.00625 (where B max = 4096) and

Appendix C RISC-V Compilation

In chapter 4, we utilized the open source tools for RISC-V cores. To prepare and run the Spike instruction set simulations, we need a RISC-V compiler, an instruction set simulator and a proxy kernel.

The GNU RISC-V toolchain [104] was chosen as the compiler. Since we are aiming at designing an ultra-low-power adaptive controller, no standard extension was added. Thus, we have the following con guration for the compiler:

$ ./configure --prefix=$RISCV --with-arch=rv32i --with-abi=ilp32

Note that the 32-bit architecture with only integer instruction set is indicated as "rv32i" and soft-oat option is enabled by "ilp32" in the ABI (Application Binary Interface) con guration.

An open-sourced instruction set simulator is provided in [103]. Simply running the below command is enough for the prepared compiler.

$ ../configure --prefix=$RISCV

For the proxy kernel, the setups are made to be consistent with the above gnu toolchain. We utilized an open-sourced proxy kernel in [START_REF]RISC-V Proxy Kernel and Boot Loader[END_REF] and ran the command to nalize the enrvironmental setups.

$ ./configure --prefix=$RISCV --with-arch=rv32i --host=riscv32-unknown-elf
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