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Titre : Un spin et ses vallées dans les matériaux lamellaires Mots clés : Spin et Vallées, Graphène, 2H-MoTe 2 , STM, RPE, Micro-onde Résumé : Les états de spin quantiques constituent une ressource pour le développement des technologies quantiques. Ils ont été envisagés pour la réalisation d'ordinateurs quantiques, de simulateurs quantiques et de capteurs quantiques. Ces objectifs à long terme nécessitent l'identication d'hautes appropriés pour les états de spin quantiques avec un temps de cohérence long et compatibles avec les technologies de microfabrication. En raison de leur caractère bidimensionnel qui permet une localisation plus aisée des dopants dans le matériau, les couches monoatomiques des matériaux de Vander-Waals présentent un vif intérêt.

Dans ce manuscrit, je décris des travaux expérimentaux qui abordent deux problématiques dans ce domaine. Premièrement, l'identication de défauts ponctuels avec des propriétés de spin intéressantes dans les matériaux de Van-der-Waals ; deuxièmement, la détection électrique de la résonance magnétique (EDMR) dans ces matériaux Van-der-Waals.

Après un premier chapitre introductif, le deuxième chapitre présente les techniques expérimentales employées, en particulier, la Microscopie à Eet Tunnel (STM) et la Résonance de Spin Electronique (ESR).

Le troisième chapitre présente le contexte théorique, en particulier, les hamiltoniens à liaison fortes et les propriétés de symétrie des structures de bandes.

Le chapitre quatre présente une caractérisation détaillée des propriétés de charge et de spin de cristaux 2H-MoTe 2 dopés au brome par transport, ESR et STM. J'ai identié trois défauts ponctuels : la lacune de molybdène V M o , l'antisite de molybdène Mo T e et la substitution Br T e par le dopant Br. En me concentrant sur Br T e , j'ai trouvé que le dopant Br fournit un signal de résonance de spin, This dissertation work was completed at a difficult time affected by Covid-19, when we had to think not only about science, but also about the safety and lives of others. This work was completed thanks to my motivation and efforts, and also thanks to the support from colleagues and from family. I would like to express my special thanks to the following people.

First of all, this work could not exist without my supervisor, Herv é AUBIN, who not only set interesting and relevant tasks for me, but also accompanied me during the implementation of experiments and data processing. His extraordinary view of the world inspired me and made me constantly think critically, carefully analyzing everything, which is an essential quality for a scientist. I am deeply grateful for his insightful

d'amplitude élevée, à basse température dans le régime VRH, atteignant une durée de vie de cohérence d'environ 50 ns à la température 10 K. De plus, j'ai trouvé que les niveaux électroniques de ce dopant s'hybrident aux vallées dans la bande de conduction, ce qui donne lieu à une modulation caractéristique de la densité d'états avec des composantes de Fourier correspondant à la diérence entre les vecteurs d'onde des vallées. Ensemble, ces observations montrent que Br T e produit un état de vallée de spin où les nombres quantiques de spin et de vallée sont verrouillés. Ceci est d'un intérêt pratique car de tels états peuvent être manipulés commodément par des champs électriques. Enn, je montre que la résonance de spin peut être observée grâce à des mesures de transport électrique.

Le chapitre cinq présente une caractérisation des propriétés de transport du graphène, encapsulé dans du hBN, sous irradiation micro-ondes. Je montre qu'une détection électrique de la résonance de spin est également possible dans ce matériau. Le changement de résistance de l'échantillon sous irradiation micro-ondes même dans des conditions non résonantes a compliqué l'identication du mécanisme permettant la détection de résonance de spin. Cependant, une analyse minutieuse des données montre que le signal de résonance de spin provient d'une magnétorésistance dépendante du spin, qui est la conséquence probable des processus de diusion dépendant du spin tels que la diusion Elliot-Yaet. Je propose un modèle simple reliant le signal de résonance de spin à la moyenne temporelle de la composante d'aimantation perpendiculaire ⟨M z ⟩. Ce modèle montre que le signal de résonance de spin résulte de la précession simultanée du spin autour de son axe de quantication et de la modulation micro-onde de la densité de porteurs au point de Dirac.

Title : Spin and valleys in layered materials Keywords : Spin and Valleys, Graphene, 2H-MoTe 2 , STM, ESR, Microwave Abstract : Quantum spin states constitute a resource for the development of quantum technologies. They have been considered for the realization of quantum computers, quantum simulators and quantum sensors. These long term goals demand for the identication of appropriate hosts for quantum spin states with long coherence time and compatible with microfabrication technologies. Because of their two-dimensional character that enable an easier localization of the dopants in the material, monoatomic layer of Van-der-Waals materials are of intense interest.

In this manuscript, I describe experimental works that address two issues in this eld. First, the identication of point-defects with interesting spin properties in Van-der-Waals materials ; second, the Electrical Detection of Magnetic Resonance (EDMR) in those Van-der-Waals materials.

After a rst introductory chapter, the second chapter presents the experimental techniques employed, in particular, Scanning Tunneling Microscopy (STM) and Electron Spin Resonance (ESR).

The third chapter presents the theoretical background, in particular, the eective tight binding Hamiltonians and the symmetry properties of the band structures.

chapter four presents a detailed characterization of charge and spin properties of bulk brominedoped 2H-MoTe 2 crystals by transport, ESR and STM. I have identied three point-defects : the Molybdenum vacancy V M o , the Molybdenum antisite Mo T e and the Br dopant substitution Br T e . Focusing on Br T e , I have found that the Br dopant provides a large spin-resonant signal at low temperature in the variable range hopping regime, reaching a coherence lifetime of about 50 ns at the temperature of 10 K. Furthermore, I have found that the electronic levels of this dopant are hybridized to the valleys in the conduction band, which give rise to a characteristic modulation of the density of states with Fourier components corresponding to the dierence between the wave-vectors of the valleys. Together, these observations show that Br T e produces a spin-valley state where the spin and valley quantum numbers are locked. This is of practical interest as such states can be manipulated conveniently by electric elds. Finally, I show that the spin resonance can be observed through electric transport measurements.

Chapter ve presents a characterization of the transport properties of graphene, encapsulated in hBN, under microwave irradiation. I show that an electrical detection of the spin resonance is also possible in this material. The change of sample resistance under microwave irradiation even in nonresonant conditions complicated the identication of the mechanism enabling spin resonance detection. However, a careful analysis of the data shows that the spin-resonant signal originates from a spin-dependent magnetoresistance, which is the likely consequence of spin-dependent scattering processes such as Elliot-Yaet scattering. I propose a simple model relating the spin-resonant signal to the time average of the perpendicular magnetization component ⟨M z ⟩. This model shows that the spin resonant signal results from the simultaneous precession of the spin about its quantization axis and the microwave modulation of the carrier density at the Dirac point. Fast Fourier Transform Première zone de Brilloin Pour tester la d étection électrique de r ésonance de spin dans une monocouche atomique, nous avons choisi le syst ème 'mod èle' du graph ène. Le chapitre cinq pr ésente une caract érisation des propri ét és de transport du graph ène, encapsul é dans du hBN, sous irradiation micro-ondes. Je montre qu'une d étection électrique de la r ésonance de spin est également possible dans ce mat ériau. Dans la g éom étrie o ù la ligne de transmission est connect ée à la grille de l' échantillon, je montre que le signal micro-onde induit une variation de la densit é de charge et donc du niveau de Fermi dans le graph ène, oscillant à la fr équence micro-onde. Le changement de r ésistance de l' échantillon sous irradiation micro-ondes m ême dans des conditions non r ésonantes a compliqu é l'identification du m écanisme permettant la d étection de r ésonance de spin. Pour cette raison, nous avons r éalis é des mesures électriques de la r ésonance de spin en fonction de la tension de grille, la fr équence et puissance RF dans diff érents échantillons afin de comprendre l'origine du changement de la r ésistivit é à la r ésonance. Une analyse minutieuse des donn ées montre que le signal de r ésonance de spin provient d'une magn étor ésistance d épendante du spin, qui est la cons équence probable des processus de diffusion d épendant du spin tels que la diffusion Elliot-Yaffet.

Je propose un mod èle simple reliant le signal de r ésonance de spin à la moyenne temporelle de la composante d'aimantation perpendiculaire xM z y. Ce mod èle montre que le signal de r ésonance de spin r ésulte de la pr écession simultan ée du spin autour de son axe de quantification et de la modulation micro-onde de la densit é de porteurs au point de Dirac, ce qui g én ère une aimantation perpendiculaire xM z y non nulle à la r ésonance. Ce mod èle explique en particulier deux caract éristiques du signal mesur é exp érimentalement. Premi èrement, ce mod èle montre que la variation rapide de la forme de la raie de r ésonance peut être expliqu ée par l'existence d'un d éphasage entre la tension de grille et le niveau de Fermi. Ce d éphasage modifie la sym étrie de la courbe à la r ésonance. Deuxi èmement, ce mod èle montre que l'amplitude de la composante xM z y est maximale lorsque le niveau de Fermi est au point de Dirac, ce qui explique que le pic de r ésistance à la r ésonance est d'amplitude la plus élev ée lorsque le niveau de Fermi est au point de Dirac.

Le temps de coh érence de spin dans le graph ène, extrait de la largeur de la raie de r ésonance, est de environ
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Introduction

Today, numerous laboratories aim at exploiting the quantum properties of electrons for the fabrication of new generations of quantum electronic components. The spin of electrons is of particular interest because it can be used for encoding quantum information. Because spin up/down states correspond to the values 0/1 in binary logic and because the spin state can exist in a quantum mechanical superposition of its eigenstates, the logic element formed by the spin is not a classical bit but a quantum bit, the so-called Qbit.

Numerous methods for implementing Qbits are being explored. Some research groups try to implement Qbits with microfabricated structures such as Quantum Dots or Superconducting Josephson junctions, thus making "artificial" Qbits. In this type of Qbits, addressing a single Qbit is possible but the coherence time of the QBit remains short. In contrast, some other groups try to implement Qbits into single electronic or nuclear spins. In those "natural" Qbits, the coherence time is much longer, however, it remains extremely difficult today to address a single spin, either electronic or nuclear. Actually, the standard methods of spin resonance detection, Nuclear Magnetic Resonance (NMR) and Electron Spin Resonance (ESR), are not sensitive enough for the detection of a single spin.

For this reason, the search of alternative methods for measuring spin resonances with single spin sensitivity is of intense interest.

Remarkable progress has been obtained by Thiele et al. [START_REF] Thiele | Electrically driven nuclear spin resonance in single-molecule magnets[END_REF] performing electrical transport measurements through the single Tb phthalocyanine double decker molecule coupled to source, drain, and gate electrodes. They found that the reversal magnetic field of the Tb 2`i on could be measured from a simple conductance measurement as a function of magnetic field, due to the coupling of the f-electron spin of the Tb atoms with the conduction electrons. Furthermore, because the f-electron of the Tb-atom has hyperfine coupling with the nuclear spin of the Tb atom, they found that the reversal magnetic field of the molecule depends on the state of the nuclear spin, which enabled an electrical detection of the state of a single nuclear spin.

Photoluminescent detection of spin-resonance is also possible and has been used to the detect the spinresonance of single nitrogen-vacancy centers (NV ´) in diamond. At the heart of the Optical Detection of magnetic 18 CHAPTER 1. INTRODUCTION resonance (ODMR) technique is the ability to simultaneously drive strong optical transitions, which alter the population distribution of magnetically-sensitive states, and narrow radio-frequency transitions between them. The NV ćenter in diamond is a promising candidate to realize diamond-based quantum information processing [4], because of its long coherence time approaching duration of about one second.

Finally, in a recent spin-polarized STM experiment, Fabian D. Natterer et al. [5] demonstrated the detection of spin-resonance of a single Fe atom deposited on the insulating MgO substrate. An extreme sensitivity of the paramagnetic center to its environment enables to probe local magnetic fields. In this last experiment, the Fe atom was employed as a spin sensor of the magnetization of a single holmium (Ho) atom. ESR-STM was employed recently to the study the exchange coupling between magnetic Fe-phthalocyanine molecules [START_REF] Zhang | Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions[END_REF].

Motivated by these recent developments, the objective of my thesis is to explore spin states in layered materials.

From a practical point of view, the layered materials have several advantages. As bulk materials, their spin properties can be measured with a standard ESR spectrometer. Furthermore, they can be easily cleaved in ultra-high vacuum (UHV) for STM characterization. In this thesis, I only used standard STM characterization, but, in the future, spinpolarized and ESR-STM could also be employed. Finally, if promising spin states were identified, because the layered materials can be exfoliated down to a single monolayer, it would be easier to address a single dopant/spin with microfabrication methods than it is with the three-dimensional silicon.

My work concentrated on two Van der Waals materials: the bromine-doped 2H-MoTe 2 semiconductor and hBN encapsulated graphene. Both materials present multiple valleys in the band structure. These valleys provide an additional degree of freedom that can possibly lock with the spin degree of freedom. Exploiting the valley degree of freedom could lead to the development of valleytronic technology [START_REF] Gong | Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers[END_REF][START_REF] Rohling | Hybrid Spin and Valley Quantum Computing with Singlet-Triplet Qubits[END_REF][START_REF] Ányos | Spin-Orbit Coupling, Quantum Dots, and Qubits in Monolayer Transition Metal Dichalcogenides[END_REF][START_REF] Wu | Spin-valley qubit in nanostructures of monolayer semiconductors: Optical control and hyperfine interaction[END_REF][START_REF] Brooks | Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers[END_REF][START_REF] Échenyi | Impurity-assisted electric control of spin-valley qubits in monolayer MoS 2[END_REF][START_REF] David | Effective theory of monolayer TMDC double quantum dots[END_REF][START_REF] Pawłowski | Spin-valley system in a gated MoS 2 -monolayer quantum dot[END_REF][START_REF] Goh | Toward Valley-Coupled Spin Qubits[END_REF][START_REF] Song | A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe 2[END_REF]. The manuscript will continue with two chapters presenting the experimental techniques (chapter 2) and the theoretical background (chapter 3). They will be followed by two chapters presenting the experimental results obtained.

Chapter 4 presents a detailed characterization of charge and spin properties of bulk bromine-doped 2H-MoTe 2 crystals by transport, ESR and STM. I have identified three point-defects: the molybdenum vacancy V M o , the molybdenum antisite Mo T e and the bromine dopant substitution Br T e . Focusing on Br T e , I have found that the Br dopant provides a large spin-resonant signal at low temperature in the variable-range hopping regime, reaching a coherence lifetime of about 50 ns at the 12 K. Furthermore, I have found that the electronic levels of this dopant are hybridized to the valleys in the conduction band, which give rise to a characteristic modulation of the density of states with Fourier components corresponding to the difference between the wave-vectors of the valleys. Together, these observations show that Br T e produces a spin-valley state where the spin and valley quantum numbers are locked. This is of practical interest as such states can be manipulated conveniently by electric fields. Finally, I show that the spin resonance can be observed through electric transport measurements. Chapter 5 presents a characterization of the transport properties of graphene, encapsulated in hBN, under microwave irradiation. I show that an electrical detection of the spin resonance is also possible in this material. The change of sample resistance un-der microwave irradiation even in non-resonant conditions complicated the identification of the mechanism enabling spin resonance detection. However, a careful analysis of the data shows that the spin-resonant signal originates from a spin-dependent magnetoresistance, which is the likely consequence of spin-dependent scattering processes such as Elliot-Yaffet scattering. I propose a simple model relating the spin-resonant signal to the time average of the perpendicular magnetization component xM z y. This model shows that the spin resonant signal results from the simultaneous precession of the spin about its quantization axis and the microwave modulation of the carrier density at the Dirac point.

Chapter 2

Experimental techniques

In this chapter, I will present a brief introduction to the experimental techniques employed during my PhD. A major part of my work relies on Scanning Tunneling Microscopy (STM) for the investigation of local topographic and spectroscopic properties of layered materials. I will start this chapter with a description of the quantum tunneling effect, on which STM is based, and I will describe different modes of utilisation. A second, nonetheless significant, part is devoted to the Electron Spin Resonance (ESR) technique, used to characterize paramagnetic spin states. I will describe the technical principle of the ESR, as well as the theory used to interpret the experimental spectra. I will complete the chapter by describing the Electrical Detection of Magnetic Resonance (EDMR) method which consists in measurements of transport properties of spin state under microwave irradiation.

Scanning Tunneling Microscopy

In 1981-1982 G. Binnig and H. Rohrer developed the first STM and received in 1986 the Nobel Prize for this invention [START_REF] Binnig | Scanning tunneling microscopy[END_REF][START_REF] Binnig | Scanning tunneling microscopy-from birth to adolescence[END_REF] because of the importance this invention had for the development of nanosciences. In STM, a sharp metallic tip is used to detect the local properties of an investigated conducting sample with a spatial resolution on the atomic scale. STM provides topographic maps of surfaces while Scanning Tunneling Spectroscopy (STS) provides maps of the local density of states, which is of interest to describe bound states around dopants or impurities, reveals quantum quasi-particle interference effects or charge density waves, identifies the spin state of magnetic atoms, etc... The principle of STM is sketched Fig. 2.1, where a metallic tip is approaching a conducting surface to establish a quantum tunneling contact through a vacuum barrier. A voltage bias V Bias , applied between the tip and the sample, controls the energy at which the electrons are transferred across the tunnel barrier. Piezoelectric motors enable x, y, z control of the tip position at the atomic scale. The feedback loop integrated into the STM circuit maintains a constant tunneling current by adjusting the height of the tip. The recorded height signal as a function of the x, y 

Quantum tunnelling effect

At a distance d between the tip and the sample of only a few nanometers, because of the expansion of the electron wavefunction across the vacuum between the tip and the sample, there is a finite probability for the electron to cross the energy barrier. Because of the exponential dependence of the tunneling current with the distance between the tip and the sample, the detected signal is extremely sensitive to the topography of the surface and so allow the atomic resolution observed by STM.

The calculation of the transmission coefficient across a tunnel barrier can be done in the so-called Wentzel-Kramers-Brillouin (WKB) approximation, giving the transmission coefficient T as function of the electron energy ε as:

T pεq9e ´2? 2mpU ´εqd (2.1)
where U is the average work function of the tip+sample and d is the distance tip-sample, m is the mass of electron, is the reduced Planck constant.

The application of quantum theory of tunneling to the case of two metallic electrodes separated by a thin insulating barrier was done in the 1960s by Bardeen[18] and Simmons [START_REF] Simmons | Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film[END_REF]. An applied voltage V Bias between two metallic electrodes leads to a shift of the electrochemical potentials. In this situation, empty electronic states of one metallic 2.1. SCANNING TUNNELING MICROSCOPY electrode are facing occupied electronic states of the other metallic electrode. If the insulating barrier is not too thick, quantum electron tunneling from the occupied states to the empty states is possible.

The tunneling current between the two metallic electrodes can be calculated from the Landauer formula [START_REF] Landauer | Electrical resistance of disordered one-dimensional lattices[END_REF][START_REF] Üttiker | Generalized many-channel conductance formula with application to small rings[END_REF] :

IpV Bias q " 2e h ż 8 ´8 T pεq rf L pεq ´fR pεqs dε (2.2)
where f L pεq " Introducing the transmission coefficient (2.1) into the Landauer equation (2.2), one gets an expression for tunneling current, a formula first obtained by J. Simmons [START_REF] Simmons | Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film[END_REF]:

1 exp " ε´µ L ´eψ L k B T ı `1 and f R pεq " 1 exp " ε´µ R ´eψ R k B T ı `1
I " I 0 rU exp " ´AU 1{2 ı ´pU `eV q exp " ´ApU `eV q 1{2 ı s (2.3)
with:

I 0 " e 4π 2 pβdq 2 (2.4) A " ´2βd ? 2m (2.5) 
where β " 1. In the low voltage limit, this last formula can be written as:

I " e 2 ? 2mU h 2 d V exp " ´2d ? 2mdU  (2.6)
which shows that the tunnel junction has a ohmic behavior at low voltage, i.e. the tunneling current increases linearly with the voltage, I " V Bias , and so the differential conductance dI{dV Bias is constant and featureless at low bias. This formula also shows that the current decreases exponentially with the distance, I " expp´β 0 dq, where the attenuation coefficient β 0 " 1 Å´1 for a tunnel barrier of height U = 1 eV.

The differential conductance dI{dV pV Bias q remains constant at low bias only when the density of states in the two metallic electrodes is constant as function of energy. When this is not the case, i.e. the density of states changes with energy, its effect on the tunneling current can be described by a formula similar to the Landauer formula :

IpV Bias q " 2e h ż 8 ´8 ρ S pεq rf L pεq ´fR pεqs dε (2.7)
where ρ S pεq is the density of states in one of the metallic electrodes, from which it follows that the differential CHAPTER 2. EXPERIMENTAL TECHNIQUES conductance is proportional to the density of states :

dI dV pV Bias q " ρ S peV Bias q (2.8)
Thus, the dI{dV curve as function of bias voltage provides a measure of the local density of states on the sample surface as function of energy.

In a STM experiment, the following approximations are usually assumed :

• Tunneling process is considered to be elastic, an electron is transferred from an initial state to a final state of identical energy.

• The tunnel barrier is assumed to be a simple 'square' shape, but it could actually be more complicated because of the different work functions for the tip and the sample and the effect of the applied voltage that deforms the tunnel barrier.

• The wave function of the tip can be viewed as spherical s-wave, according to Tersoff-Hamann approximation [START_REF] Tersoff | Theory of the scanning tunneling microscope[END_REF], which density of state remains constant during small bias variations and independent on the lateral position of the tip.

Electron Spin Resonance

Electron Spin Resonance (ESR) is a spectroscopy technique where microwave radiation is used to drive transitions between quantum spin states.

Experimental setup

A standard ESR spectrometer is composed of a microwave generator, a waveguide, a resonant cavity, a microwave power detector and an electromagnet. There are, moreover, modulation coils and lock-in amplifier to improve the signal-to-noise ratio. The electromagnet generates a static magnetic field, which is controlled by adjusting the current intensity in the conducting coils. The RF generator produces microwave radiation typically in the range of one mW, which propagates inside the waveguide. The latter is coupled to a resonant cavity, which contains the sample. The reflected radiation from the cavity is sent out towards the detector, from which the power absorbed by the sample is measured. The absorption signal represents the power difference between the incident microwave signal and the signal reflected from the cavity. The detector is a Schottky diode, where the current is dependent on the electric component E of the electromagnetic field. The power (bias) of the incident radiation, as well as the phase with respect to the reflected radiation in the cavity, can be adjusted manually. For the most sensitive measurements, the sample is placed in the center of the cavity, where the magnetic component of the microwave radiation B 1 (t) is perpendicular to the static magnetic field B 0 , and its amplitude is maximal.

To reduce the effects of the electric component E 1 (t) on the sample, the cavity is designed in such a way as the TM102 mode has a zero of electric field at the sample position. Usually, to enhance the sensitivity of the spectrometer, the magnetic field is modulated with small coil located near the cavity and a lock-in detector demodulates the voltage signal provided by the Schottky diode. Thus, the signal delivered by the detector is proportional to the derivative of the "signal of absorption" s(H) with respect to the magnetic field, ds/dH(H).

ESR measurements can be performed at low temperature, down to T = 4.2 K, using a Helium flow cryostat.

Shown in Fig. 2.3, the cryogen supply passes through a heat exchanger in the main body of the cryostat where it is warmed up to the required temperature by a heater. It then flows through a delivery tube to the sample. A temperature controller adjusts the heater output to maintain good temperature control [START_REF]ESR900 continuous flow cryostat[END_REF].

Effective Spin Hamiltonian

An electron on a state with angular moment L carries a magnetic moment :

ˆ µ L " γ ˆ L (2.9)
CHAPTER 2. EXPERIMENTAL TECHNIQUES where γ " e 2m is the gyromagnetic constant, which is negative for electrons.

The magnetic moment can be rewritten as :

ˆ µ L " ´gL µ B ˆ L (2.10)
where g L =1 is a dimensionless gyromagnetic constant and µ B " |γ| is the Bohr magneton.

By analogy with the orbital angular momentum, the magnetic spin moment ˆ µ S is related to the magnetic spin quantum number ˆ S by the relation:

ˆ µ S " ´gS µ B ˆ S (2.11)
where the g-factor g S « 2 is the dimensionless gyromagnetic constant for spins.

For an ion with N electrons into its last subshell, when inserted into a solid and assuming there is no interaction between the spin and nucleus, the full Hamiltonian is:

Ĥtot " Ĥ0 `N ÿ 1 ζl i .s i `Ĥ CF `gS µ B B ˆ S (2.12)
The first two quantities of this Hamiltonian are intra-atomic quantities that exist even for a free ion. Ĥ0 describes the kinetic energy of the electrons and intra-atomic Coulomb interactions. They constrain the electronic configuration n N where n is the principal quantum number of the shell, is the orbital quantum number of the subshell and N is the number of electrons in the subshell. Within a single subshell, the N electrons and their spin can distribute in many ways. All these possible distributions can be arranged in levels of distinct energy, where several distributions can have identical energy. Each level is called a term 2S`1 L, where an effective orbital quantum number L results from the degeneracy 2L+1 of the level; i.e. there are 2L+1 distributions with the same energy. Furthermore, summing the spins of all electrons within the subshell gives the quantum number S, which multiplicity 2S+1 in indicated as the upper exponent in the definition of the term. This is called the Russell-Saunders coupling scheme. Under the effect of intra-atomic exchange interactions between electrons, the Hund's rules apply and the term of lowest energy is the one that maximize the total spin and total orbital moment. The second quantity ř N 1 ζl i .s i in the Hamiltonian describes the intra-atomic spin-orbit coupling. When this spin-orbit coupling is strong as in f-electron ions, this leads to a splitting of the term 2S`1 L into subterms 2S`1 L J , where ˆ J " ˆ S `ˆ L is the total angular momentum. Upon insertion into a solid, the ion is submitted to the crystal or ligand field, described by ĤCF . The crystal field will split the term into so-called crystal field terms 2S`1 Γ α where Γ is an irreducible representation (irrep) of the point-group of the paramagnetic center within the crystal. Finally, the last quantity g S µ B B ˆ S of the Hamiltonian is the Zeeman energy that splits spin-degenerate states.

In solids, the lifting of the degeneracies by the crystal field leaves a single state as the ground state. For a non-degenerate state, the effective orbital quantum number L = 0 and the orbital moment for this ground state is said to be quenched [START_REF] Abrahams | Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions[END_REF] and so it will not contribute directly to the magnetic moment of the ion. In this situation, the effective spin of the effective Hamiltonian will be identical to the real spin. However, the crystal field levels 2S`1 Γ α at higher energy will contribute to the effective spin Hamiltonian through second order perturbation, as we see now.

The physical Hamiltonian above is usually too complicated to be used directly for analyzing ESR data. It has to be simplified to give an effective spin Hamiltonian [START_REF] Abrahams | Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions[END_REF][START_REF] Rudowicz | Disentangling intricate web of interrelated notions at the interface between the physical (crystal field) Hamiltonians and the effective (spin) Hamiltonians[END_REF]. Following [START_REF] Baranov | Magnetic Resonance of Semiconductors and Their Nanostructures[END_REF], the effective Hamiltonian can be written as :

Ĥ " µ B ˆ S Ø g B `ˆ S. Ø D . ˆ S (2.13)
where Ø D is the zero-field term and Ø g is an effective g-tensor. They are calculated through second order perturbation between the ground state and the crystal field terms at higher energy and are written as:

Ø g " g S Ø 1 `2λ Ø Λ Ø D" λ 2 Ø Λ (2.14)
where the spin-orbit tensor is given by:

Ø Λ" Λ ij " ´ÿ n x0| Li |ny xn| Lj |0y E p0q n ´Ep0q 0 (2.15)
CHAPTER 2. EXPERIMENTAL TECHNIQUES and the spin-orbit interaction in the physical Hamiltonian Eq. (2.12) has been replaced by:

N ÿ 1 ζl i .s i " λ ˆ L ˆ S (2.16)
where λ " p˘qζ{2S for ions with less(more) than half-filled subshell.

Examples of effective Spin Hamiltonian

To illustrate some effective spin Hamiltonian, let's look at a simple triplet state S = 1 in a static magnetic field along z direction. The Hamiltonian becomes:

ĤZeeman " g S µ B Ŝz B (2.17)
Because of the Zeeman interaction, the degeneracy of the spin quantum states m s is lifted, following ˘gS µ B B, as shown in Fig. 2.4.a. The transitions between levels are allowed when they imply a change of the magnetic moment by ∆m s " 1, the change of energy for this transition is:

∆E " hν " g S µ B B (2.18)
where ν is the frequency of the oscillatory magnetic field of the electromagnetic wave. Usually, in an ESR experiment, the frequency of the microwave signal remains constant, while the amplitude of the magnetic field is varied.

For this S = 1 system, there are two possible transitions of the same energy and so the absorption of microwave of frequency ν will occur at the magnetic field B res " hν g S µ B . In a ligand field of cubic symmetry the directions x, y z are equivalent and all resonances measured in these three directions occur at the same energy. However, if the system has axial symmetry about the z-axis, only the x 2.2. ELECTRON SPIN RESONANCE 29 and y axes are equivalent. In this case, the effective Hamiltonian becomes:

Ĥ " g S µ B Ŝz B `D " S 2 z ´1 3 SpS `1q * (2.19)
where the anisotropy tensor Ø D has been rewritten in terms of the zero-field parameter D [START_REF] Baranov | Magnetic Resonance of Semiconductors and Their Nanostructures[END_REF].

The allowed resonant transitions for the spin S = 1 in the presence of a non-zero parameter D is shown in the fig. 2.4.b. The resonant condition is hν " |D ˘gs µ B B|, which gives the resonant magnetic field: B res " phν ˘Dq{pg s µ B q.

Finally, if we introduce an hyperfine coupling of the electronic spins with the nuclear spins, the Hamiltonian reads:

Ĥ " g S µ B Ŝz B `ˆ S. Ø A . ˆ I (2.20)
Figure 2.4.c shows the three possible transitions for a system with electronic spin S = 1/2 and nuclear spin I = 1 system. The resonant condition is ∆E " |g s µ B B `Am I |, where m I = +1, 0 or -1 is the nuclear spin projection.

Line shape of resonances

From the measured ESR spectrum giving the number and energy of resonances, we can obtain the values of the parameters of the effective spin Hamiltonian. In addition, the shape and width of ESR spectral lines contain a considerable amount of information on the spin system. Typical ESR spectra consist of multiplets arising from the superposition of individual lines with Gaussian or Lorentzian shape.

The intensity of the resonances will depend on the number of paramagnetic sites and the number of transitions per second between spin levels. The transition probability between two states |αy and |βy is obtained using timedependent perturbation theory:

P α,β " π 2 γ 2 B 2 1 Γpω ´ω0 q (2.21)
where B 1 is the amplitude of the oscillatory magnetic field, typically (0.1-1G) and Γpω´ω 0 q is a Lorentzian distribution function. The transition probability increases with the amplitude B 1 which is controlled by the RF power.

An absorption of the electromagnetic energy by a system is governed by the transition probability and determines the shape of the ESR spectral line. In continuous wave magnetic resonance spectroscopy the energy absorption rate is given [START_REF] Weil | Electron Paramagnetic Resonance: Elementary Theory and Practical Applications[END_REF] as:

dE dt " π µ 0 B 2 1 ωω 0 p1 `γ2 B 2 1 τ 1 τ 2 q 1{2 χ 0 Γpω ´ω0 q (2.22) where χ 0 " µ0N V 2 γ 2 4k B T
is the magnetic susceptibility, τ 1 and τ 2 are longitudinal and transverse relaxation times CHAPTER 2. EXPERIMENTAL TECHNIQUES and Γpω ´ω0 q " τ2 π 1 1`τ 2 2 pω´ω0q 2 is the Lorentzian probability distribution. N V is the number of spins per cm ´3 and T is the temperature.

As B 2 1 is proportional to the incident microwave power, the absorbed microwave power will increases linearly at low power but will saturates at large power when γ 2 B 2 1 ą 1{τ 1 τ 2 .

At low power and at resonance (ω " ω 0 ), the above equation can be rewritten as:

dE dt " N V γ 2 B 2 1 p ω 0 q 2 τ 2 4k B T (2.23)
We will need this equation later for interpreting EDMR measurements on graphene.

For the discussion of the linewidth of resonance, we make the distinction between homogeneous and inhomogeneous broadening.

Homogeneous broadening is the intrinsic broadening of the spin resonance that results from the interaction of the spin with its environment. There are two significant interactions to be considered. The first represents the effect of thermal agitation of the crystal, spin-lattice relaxation, described by τ 1 . The second is the effect of interaction between dipoles themselves, spin-spin relaxation and other sources of relaxation described by τ 2 . In the first case, the energy is typically dissipated within the lattice as phonons to restore the thermodynamic equilibrium. In the second case, the initial equilibrium may also be established by energy exchange between the spins without the transfer of energy to the lattice. The spin-spin relaxation does not impact the population of the magnetic state energy levels. A spin-relaxation time can be estimated from the linewidth ∆B res of homogeneously broaden spectral lines in the non-saturated limit with the relation [START_REF] Baranov | Magnetic Resonance of Semiconductors and Their Nanostructures[END_REF]:

τ 2 " 1 γ∆B res (2.24)
The inhomogeneous broadening results from inhomogeneities in the spin system, i.e. the sample. Inhomogeneously broadened line consists of a spectral distribution of individual resonant lines or spin packets merged into one overall line or envelope. Inhomogeneous broadening may be due to magnetic field nonuniformities, unresolved fine or hyperfine structure, and dipolar interaction between unlike spins.

Electrical Detection of Magnetic Resonance

The principle of Electrical Detection of Magnetic Resonance (EDMR) is to detect the spin resonance through measurements of the sample electrical resistance. Fig. 2.5.a is a schematic representation of the EDMR setup in M.

Aprili laboratory (LPS). The setup is composed of an Helium cryostat placed between the bores of an electromagnetic coil generating the static magnetic field up to 0.6 Tesla. An RF source provides the microwave signal, it is connected to the sample via a semi-rigid coaxial cable. A Lock-in technique is used to measure the sample The semi-rigid cable is connected to the PCB sample holder with mini microwave connectors. From there, the microwave signal can be coupled to the sample in two different ways, as shown in Fig. 2.5.b :

1. If the microwave signal pass through a U-shape strip-line, from RF1 to RF2 where RF2 is connector to a 50Ω short, a large microwave current will flow in the U line and a microwave magnetic field will be generated.

2. If the microwave signal is only connected to a I line connected to RF1, the other end of the I line can be left open or connected to the sample gate. In both cases, the microwave magnetic field will be reduced and we expect that the effect of the microwave electric field is dominating.

As we will see in experiments done on graphene, in both configurations listed above, the effect of the microwave signal on sample resistance is dominated by the electric field component.

Chapter 3

Theoretical background on 2D systems

For a long period of time, the existence of 2D materials was considered unlikely as a consequence of Mermin-Wagner's theorem which implies that long-range order in crystals with dimensionality D ă 3 is thermodynamically unstable. For dimensionality smaller than D " 3, the theorem states that the amplitude of fluctuations are so large that long-range order is no more possible. In this context, the discovery of graphene by Andre Geim and Konstantin Novoselov in 2004 [START_REF] Novoselov | Electric field effect in atomically thin carbon films[END_REF] has surprised the community of researchers from condensed matter physics. At that time, graphene was only known scrolled into carbon nanotubes. The exfoliation method employed to obtain graphene monolayers was subsequently applied to many other types of layered materials and to the Transition Metal Dichalcogenides (TMDC) in particular. As of 2022, a florilege of 2D materials is now available [START_REF] Liu | Two-dimensional materials for next-generation computing technologies[END_REF] as well as heterostructures of these 2D materials [START_REF] Novoselov | 2D materials and van der Waals heterostructures[END_REF]. These 2D materials show novel fascinating properties that attract the attention of researchers, theorists and experimentalists alike.

In this chapter, after a brief introduction to the vocabulary of group and representation theory, I will describe Graphene and TMDCs semiconductors and the consequences of the dimensionality on their electronic properties.

An important attention will be dedicated to the band structure and valley degeneracy. I will take care addressing the issue of spin-orbit coupling and its role in the scattering processes. Moreover, I will describe an impact of disorder on the transport properties of conduction electrons.

Vocabulary of Group and Representation Theory

As we will be using the vocabulary of group theory to describe the symmetry allowed hybridization between electronic levels, I remind here the basic concepts of group and representation theory [START_REF] Ceulemans | Representations[END_REF].

From standard crystallography textbooks, we know there are 32 point-groups classified into 7 crystals systems.

These point-groups are composed of symmetry elements R such as rotations C n , roto-reflections S n , horizontal mirrors σ h and vertical mirrors σ v . Each symmetry operation R can be represented by a matrix i D(R) of dimension 34 CHAPTER 3. THEORETICAL BACKGROUND ON 2D SYSTEMS i . The set of matrix i D(R) for all the symmetry operations R of a group constitutes a representation i Γ of dimension i of the group. To this representation is associated a vector space i ψ of identical dimension spanned by the base vectors i ψ j , j " 1.. i , which constitute the basis of the representation. A representation can be generally decomposed into irreducible representations (irreps). The irreps have been tabulated for each of the 32 pointgroups. For each irrep i Γ of a point-group, we know the representation matrix D i (R) for each symmetry operation of the point-group. Usually, it is sufficient to know the trace of this matrix, which is called a character.

For each point-group, the character table is known. For example, the Table 3 

C 3v E 2C 3 3σ v A 1 1 Γ 1 1 1 A 2 2 Γ 1 1 -1 E 3 Γ 2 1 0
In this character table, we identify the columns corresponding to the different class of symmetry operations and the rows corresponding to the different irreps i Γ.

From standard quantum mechanics textbooks, we know that if a given Hamiltonian H is invariant by a symmetry operation R, then, for an eigenenergy i E, there should be i eigenstates i ψ j , j " 1.. i interchanged by the symmetry operation R. The eigenstates form a basis for the subspace i ψ of dimension i .

Group and representation theory allow to formalize the identification of these invariant subspaces and so the spectral decomposition of the Hamiltonian. After identification of the point-group symmetry of an Hamiltonian, examining the corresponding character table provides the number of distinct eigenenergies and their degeneracies as the number of distinct irreps and their dimensionality, respectively.

The concepts of restricted and induced representations are what makes this theory useful.

Knowing the irreps i Γ of a group G, we may need to express it as a function of irreps i Γ of a subgroup H. The representation in H generated by the irrep i Γ of the group G is said to be a restriction of the irrep i Γ and is written as i Γ Ó H. This restricted representation can be written as a tensor sum of irreps of the group H as : i Γ Ó H " ř j ' j Γ. A typical example is provided by an ion submitted to a ligand or crystal field. For a free atom with full rotation symmetry, the irreps Γ are those of the continuous rotation group. They are obtained on the basis formed by the spherical harmonics Y pθ, φq where the dimension of the irrep is 2 `1. Let's consider the d-orbital ( " 2) of an atom inserted at a site of a crystal with octahedral point-group symmetry O h . The crystal field will lift the degeneracy according to the irreps of O h contained in "2 Γ ÓO h obtained by restriction of the irrep "2 Γ of the continuous rotation group.

To find the restricted representation is made simple by the Bilbao server [START_REF] Elcoro | Double crystallographic groups and their representations on the Bilbao Crystallographic Server[END_REF] that provides online applications for performing various group-theoretical tasks. For example, the link [START_REF] Bilbao | Octahedral group[END_REF] shows that the d-orbital decomposes into 2. Similarly for the carbon site, find the representations "0,1 Γ Ó C 3v of the point-group C 3v obtained by restriction of the irreps "0,1 Γ corresponding to the orbitals s,p. Then, find the decomposition of these two restricted representations into tensor sums of irreps Γ i of the point-group C 3v . 4. The steps 2 and 3 will produce two sets of irreps Γ i of the group C 3v . Hybridization, i.e. molecular bonds, will form according to identical irreps Γ i found in both sets.

For each irrep

As we will see later for MoTe 2 , one can use the same method to identify the symmetry-allowed hybridization between a dopant orbital and the Bloch states of a particular point of the Brillouin zone. Given the dopant pointgroup symmetry, say C 3v , and the point-group symmetry of the K-point, also called the group of the wave-vector K, we will have to find the representations induced by the irreps of C 3v in the group of the wave-vector K.

An additional complication comes from the large spin-orbit in MoTe 2 . In that case, we cannot use the simple point-group representations but the double point-group representations, which are obtained by making a tensor product between simple point-group representations and a spinor describing the spin quantum number.

Finding the induced or restricted double-group representations at particular point of a Brillouin zone is not an easy task if done "by hand", fortunately, the Bilbao server provides online applications for those situations too.

Graphene

Graphene is 2D monoatomic sheet made out of carbon, which was first obtained by exfoliation of graphite. The crystallographic structure and the electronic properties of graphene arise from the sp 2 bonding between carbon atoms. In the ground state, carbon has 1s The corners of the hexagonal first Brillouin Zone (BZ) are indicated as K and K', while midpoint of the side-edges are indicated as M, M'. Thus, the BZ of graphene has two high symmetric directions, the Γ -M direction and the Γ-K direction, as shown Fig. 3.2.b. The two neighboring corners K and K' can not be related by any sum of the reciprocal basis vectors, this implies that these two points of the BZ are not equivalent. In contrast, the point K' and -K are separated by the sum of the basis vector a 1 + a 2 , so they are equivallent. Thus, the six valleys of the BZ can be classified in two nonequivalent valleys K and K'. The shape of the first Brillouin zone and the nonequivalence between the valleys represent an intrinsic property of the triangular Bravais lattice, which is independent of the number of atoms attached to the Bravais point in real space. A good starting point for the description of the electronic properties of graphene is given by the tight-binding Hamiltonian [START_REF] Min | Intrinsic and Rashba spin-orbit interactions in graphene sheets[END_REF] shown in Table 3.2: Table 3.2: Tight-binding model matrix elements at the K and K'-points. The upper (lower) sign corresponds to the K(K')-point.

Orbital A,s A,p x A,p y A,p z B,s B,p x B,p y B,p z A,s s 0 0 0 0 ˘iα α 0 A,p x 0 0 0 0 ¯iα -β ¯iβ 0 A,p y 0 0 0 0 -α ¯iβ β 0 A,p z 0 0 0 0 0 0 0 0 B,s 0 ˘iα -α 0 s 0 0 0 B,p x ¯iα -β ˘iβ 0 0 0 0 0 B,p y α ˘iβ β 0 0 0 0 0 B,p z 0 0 0 0 0 0 0 0
It is a 8x8 matrix on the basis formed by 8 atomic orbitals, 4 arising the atom A and 4 from atom B. The diagonal matrix elements s,p are the onsite energy of the s and p orbitals and α " 3 2 V spσ and β " 3 4 rV ppσ ´Vppπ s are function of the two-center Slater-Koster matrix elements pV spσ , V ppσ , V ppπ q for hopping between s and p orbitals. An inspection of this Hamiltonian shows that the matrix elements connecting the |2p z y orbital to the other orbitals are all null, indicating that the |2p z y orbitals are decoupled from the other orbitals. As will see later, spin-orbit coupling introduces additional coupling between |2p z y and the other orbitals.

Because of this decoupling, a low energy description of graphene is usually limited to a two-vector basis formed by Bloch sum of the p z orbitals [START_REF] Goerbig | Electronic properties of graphene in a strong magnetic field[END_REF], that is:

ψ pjq k prq "
ř l e ik.R l φ pjq pr `δj `Rl q q q where j " A or B labels the atoms on the two sublattices A and B, δ j is the vector that connects the sites of the underlying Bravais lattice with the site of the j atom within the unit cell and φ pjq pr `δj `Rl q " A r `δj `Rl q ˇˇ2p

pjq z E .

The eigenvalues ε k of the Schr ödinger equation Ĥψ " εψ are obtained from the secular equation:

detr Ĥk ´ελ k S k s " 0 (3.1)
where the Hamiltonian matrix is defined as :

Ĥk " ¨ψpAq‹ k Hψ pAq k ψ pAq‹ k Hψ pBq k ψ pBq‹ k Hψ pAq k ψ pBq‹ k Hψ pBq k ‹ ' (3.2)
and the overlap matrix is:

S k " ¨ψpAq‹ k ψ pAq k ψ pAq‹ k ψ pBq k ψ pBq‹ k ψ pAq k ψ pBq‹ k ψ pBq k ‹ ' (3.3)
Solving for the eigenvalues gives an effective Hamiltonian:

Ĥk " t N N N |γ k | 2 1 `t ¨0 γ ‹ k γ k 0 ‹ ' (3.4)
where γ k " 1 `eik.a2 `eik.a3 is the sum of phase factors, t is the nearest neighbors hopping between sublattice A and B, and t N N N is the next-nearest neighbors hopping between same lattice atoms.

Expanding the Hamiltonian around the valleys ˘K by decomposing the wave vector as k " ˘K `q, the effective
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k.p Hamiltonian describing a single Dirac point, i.e. a single valley, is given by :

ĤK,K 1 pqq " v F ¨0 q x ˘iq y q x ¯iq y 0 ‹ ' (3.5)
where v F is the electron Fermi velocity near the Dirac points. The effective Hamiltonian for a single valley K can be written as:

Ĥ " v F pq x σ x `qy σ y q (3.6)
using the Pauli matrix :

σ x " ¨0 1 1 0 ‹ ', σ y " ¨0 ´i i 0 ‹ '.
The eigenstates of this effective Hamiltonian are represented by a spinor ψ " ¨ψA q ψ B q ‹ ', a column vector with complex components, that represent the contributions of each sublattice to the electronic state [START_REF] Katsnelson | The Physics of Graphene[END_REF]. By analogy with the spin quantum number, this Hamiltonian implies the existence of an additional quantum number called pseudospin.

The Pauli matrices σ j in the Hamiltonian above represents this pseudospin, where "spin up" corresponds to the component on one sublattice and "spin down" to that on the other sublattice.

This Hamltonian implies that the pseudospin rotates, changing from σ x to σ y as the wave-vector q circles around the Dirac point.

The winding of the pseudospin around the Dirac point reverses between the valley K and the valley K'. To take this into account, one can introduce an additional quantum number, called the valley index, described by the Pauli

matrix τ z " ¨1 0 0 ´1‹ '.
The two valleys K,K' can now be described by a single Hamiltonian through a tensor product b between the valley index and the pseudospin: where the eigenvectors are four-spinor :

Ĥ " v F pτ z b σ x q x `1 b σ y q y q (3.7)
ψ " ¨ψA q,ψ B q,ψ A q,ψ B q,´‹ ‹ ‹ ‹ ‹ ‹ ‹ '
. The first two components represent the lattice components at the K-point and the last two components those at the K'-point.

As described above, the pseudospin rotates as one circles around the Dirac point. This endows the wavefunction with chirality that changes sign between valley K and K'. This chirality results from the dot product between the momentum wave vector k and the pseudospin vector σ in the Hamiltonian. This introduces an additional phase shift in the eigenstates that can be described as [START_REF] Katsnelson | The Physics of Graphene[END_REF] :

Ψ pKq e,h " 1 ? 2 ¨exp `´iφ k{2 ȇxp `iφ k{2 ˘‹ ' (3.8)
where φ k is the polar angle describing the wavevector k around the Dirac point. One sees that a circling around the Dirac point by 2π leads to a phase shift of π for the wavefunction written above. This phase accumulation is known as Berry phase.

Another consequence of the pseudospin is to prevent retro-reflection of the quasi-particles at scattering potentials, and this, because of the conservation of pseudospin during a scattering event, as shown Fig. 3.5.

To complete our description of the physics of graphene, one needs to introduce a last quantum number, the real spin of the electrons. The spin 1/2 state is described by a 2-components spinor with eigenstates |Òy " ¨1 0 ‹ ' and

|Óy " ¨0 1 ‹ '.
Thus, three quantum numbers, the real spin, the sublattice pseudospin and the valley index, are required to describe the electronic states in graphene. As each quantum number is described by a 2-components spinor, the full vector state is described by a tensor product of three spinors and so has 8 components. Consequently, the full So, as the quasi-electron can only go right into the p-doped region, to conserve pseudospin, it will be scattered into a state with momentum ´k. In the p-doped region, the group-velocities are reversed with respect to the n-doped region. Consequently, the ´k hole is actually moving right.

Hamiltonian should be described by 8x8 matrix and can be written as:

Ĥ " v F 1 2 b pτ z b σ x q x `12 b σ y q y q `gµ B s z b 1 4 B z (3.9) 
where 1 2 and 1 4 are 2-dimensional and 4-dimensional identity matrix, respectively.

In the Hamiltonian above, only the kinetic energy terms and the Zeeman energy have been included. In this situation, no coupling exists between the three quantum numbers and the 8x8 Hamiltonian is essentially a block diagonal repetition of the 2x2 Dirac Hamiltonian due to the tensor multiplication with the Pauli matrix describing the valley index and the real spin.

The physics gets more interesting when spin-orbit coupling terms are introduced. They will introduce off-diagonal terms that will couple the different quantum numbers.

As in the previous chapter, the intra-atomic spin-orbit coupling is written as:

ĤSO " λ L. S (3.10)
where the spin-orbit coupling constant λ is rather small for the light element Carbon.

In addition to this intra-atomic spin-orbit coupling, to describe the effect of the substrate that leads to a perpendicular electric field that breaks the inversion symmetry of graphene, one has to introduce an additional term:

ĤEF " eEz 0 (3.11)
where z 0 is the size of the carbon atom.

To first order, the matrix elements

A 2p pjq z ˇˇĤSO `Ĥ EF ˇˇ2p
pjq z E are all null. So spin-orbit coupling can only occur to second order through the σ states, written as [START_REF] Min | Intrinsic and Rashba spin-orbit interactions in graphene sheets[END_REF]:

H i,s;j,s 1 " ÿ lPps,p x ,p y q A 2p piq z , s ˇˇĤSO `Ĥ EF ˇˇl E A l ˇˇĤSO `Ĥ EF ˇˇ2p pjq z , s 1 E E π ´Eσ (3.
12)

The resulting matrix elements are shown Table 3.3:

Table 3.3: The effective spin-orbit matrix at the K-point

Orbital A,p z ,Ò A,p z ,Ó B,p z ,Ò B,p z ,Ó A,p z ,Ò 0 0 0 0 A,p z ,Ó 0 -2λ SO 2i∆ BR 0 B,p z ,Ò 0 -2i∆ BR -2λ SO 0 B,p z ,Ó 0 0 0 0
where the Bychkov-Rashba term ∆ BR removes the spin degeneracy of the bands. It is proportional to the electric field E appearing from local inversion symmetry breaking caused by substrates or in the presence of a gate voltage.

Its amplitude is given by:

∆ BR " eEz 0 λ SO 3V spσ « 0.1 meV ˆErV {nms (3.13)
Inserting these matrix elements into the tight binding Hamiltonian, Table 3.2, and solving for the spectrum, one identifies the Kane-Mele energy scale ∆ KM [START_REF] Kane | Quantum Spin Hall Effect in Graphene[END_REF] that leads to the opening of a spin-orbit gap in the bulk of the monolayer, except at the edges of graphene where topological edge-states survive. Considering only the σ states for calculating the second-order corrections [START_REF] Min | Intrinsic and Rashba spin-orbit interactions in graphene sheets[END_REF], its value is given by :

∆ KM " s λ 2 SO 18V 2 spσ « 1 µeV (3.14)
where V spσ « 4.2 eV is a Slater-Koster hopping matrix element, s « ´7.3 eV is the energy of the s orbital and λ SO « 7.86 meV is the intra-atomic spin-orbit constant for carbon. Including the d-orbitals [START_REF] Konschuh | Tight-binding theory of the spin-orbit coupling in graphene[END_REF] into the second-order calculation, it has been shown that the amplitude of the Kane-Mele spin-orbit gap can reach ∆ KM « 40 µeV .

Including the spin-orbit corrections into the Hamiltonian Eq. (3.9), we obtain [START_REF] Avsar | Colloquium: Spintronics in graphene and other two-dimensional materials[END_REF]:

Ĥ " v F pτ z σ x q x `σy q y q `∆KM τ z σ z s z `∆BR pτ z σ x s y ´σy s x q `gµ B s z B z (3.15)

GRAPHENE

where, to simplify the notation, we removed the tensor product b and the identity matrices and tensor multiplication between the Pauli matrix is assumed as usually done in the literature.

For a single valley, the matrix form of the Hamiltonian reads:

ĤK pqq "

¨´∆ KM v F pq x `iq y q 0 0 v F pq x ´iq y q ∆ KM 2i∆ BR 0 0 ´2i∆ BR ∆ KM v F pq x ´iq y q 0 0 v F pq x `iq y q ´∆KM ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' (3.16)
where the 4-spinor basis is given by: ψ "

¨ψA q,Ò ψ B q,Ò ψ A q,Ó ψ B q,Ó ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
.

Solving for the eigen-energies will give the solutions: In addition to changes in the band-structure, the Bychkov-Rashba term will also alter the transport properties. In the context of the Hamiltonian Eq. (3.15), the effect of this term is to couple the pseudospin and the real spin. This implies that spin-dependent scattering becomes possible, which will give rise to spin-dependent magnetoresistance and spin-hall effects. My experimental work on graphene, presented Chapter 5, aims at testing whether such spindependent scattering phenomena can provide a mean to read the spin resonance of conduction electrons through transport measurements.

E " ∆ BR ˘ap∆ BR `∆KM q 2 `p v F qq 2 (3.
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Transition Metal Dichalcogenides

Following the successful production of graphene by exfoliation, the same method was employed on a variety of layered materials, in particular, the TMDCs.

The TMDCs present a remarkable diversity of structural and electronic properties. TMDCs are described by the general formula MX 2 where M is transition metal ion with coordination 6 and X is a chalcogen ion. As shown in The resulting molecular orbital diagram extracted from Ref. [START_REF] Pike | Origin of the counterintuitive dynamic charge in the transition metal dichalcogenides[END_REF] is shown Fig. 3.9.a. The lowest A' 1 , as well as the lowest E' and E" molecular orbitals are all bonding orbitals. This A' 1 orbital contains mostly the chalcogen orbital contributions, while the E' and E"orbitals are located on both Mo and chalcogen atom. The A" 2 orbital, arising from the interaction between p z orbitals of the chalcogen, does not hybridize with the Mo atomic orbitals. The last occupied orbital -also an A' 1 -is an antibonding orbital arising from Mo with a small amount of p-orbitals from the chalcogen and forms the valence band. The first unoccupied states correspond to antibonding E' and E" states containing both orbitals from Mo and chalcogen atoms.

The band structure calculations projected on the orbitals is shown Fig. and d xy orbitals. These contributions are similar for bulk materials [START_REF] Cappelluti | Tight-binding model and directgap/indirect-gap transition in single-layer and multilayer MoS 2[END_REF].

As a precise understanding of the symmetry properties of the band structure will be required to analyze the dopant in the chapter on MoTe 2 , we show in Fig. 3.10 the transformation properties of the bands according to the irreps of the single-group and double-group of the wavevectors at the Γ-point, Q-point and K-point, where the character tables of the different point-groups, using the notations of Ref. [START_REF] Bradley | The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups[END_REF], are shown in Appendix A.

At the Γ-point (K-point), the group of the wave-vector is D 3h (C 3h ). Fig. 3.10 shows that: the valence band To take into account the spin, the double-groups have to be employed where the irreps are obtained by taking the tensor product between the irreps of the single group and the irreps describing a single spin. As shown in Ref. [START_REF] Song | Transport theory of monolayer transition-metal dichalcogenides through symmetry[END_REF] and using the Bilbao server to establish the compatibility relations, Fig. 3.10 shows the transformation properties of the different points of the Brillouin zone. This diagram shows that all degeneracies are lifted at the Q-point and K-point. This is the reason why the spin-lifetime is expected to be long at these particular points of the Brillouin zone.

As done for graphene, it is usually convenient to derive an effective Hamiltonian describing the band properties around high symmetry point of the Brillouin zone. For one monolayer of TMDCs, a three bands (d

z 2 , d x 2 ´y2 , d xy )
tight binding Hamiltonian is generally employed [3]. At the K-point, this Hamiltonian can be expanded into a twobands k.p Hamiltonian [START_REF] Xiao | Coupled Spin and Valley Physics in Monolayers of MoS {2} and Other Group-VI Dichalcogenides[END_REF]:

Ĥ " atpτ z σ x q x `σy q y q `∆ 2 σ z (3.19) on the basis |φ c y " |d z 2 y, |φ τ v y " 1 ? p2 ` d x 2 ´y2 D `|d xy y ˘. c(v)
indicates the conduction (valence) band and τ " ˘1 is the valley index, t is the hopping integral between Mo sites, a is the lattice constant and ∆ is the energy gap separating the valence and conduction band. Note that this Hamiltonian is similar to the graphene Hamiltonian Eq. (3.7), which is not surprising because they have similar symmetries. One can note the following differences though. First, the above Hamiltonian contains a second term that opens a gap ∆ between the conduction and the valence band. This gap results from the broken sublattice symmetry in TMDCs, which is not present in graphene.

Second, while for graphene the basis is formed of the two p z orbitals of two distinct C atoms within the motif, for TMDCs, the basis is formed of d-orbitals of the transition metal atom (Mo,W).

Introducing the spin-orbit coupling L.S will lift the spin degeneracy [START_REF] Ochoa | Spin-orbit-mediated spin relaxation in monolayer MoS 2[END_REF] as expected from the group-theoretical analysis . To first order, the L.S term will lift the spin degeneracy of the valence bands but not the conduction band.

However, to second order, involving the left-over d xz , d yz orbitals of the Mo atoms and the p x , p y orbitals of the chalcogen atoms, the spin-orbit coupling will also lift the spin degeneracy of the conduction band.

The full Hamiltonian will now read [START_REF] Avsar | Colloquium: Spintronics in graphene and other two-dimensional materials[END_REF]:

Ĥ " atpτ z σ x q x `σy q y q `∆ 2 σ z `λv τ z 1 ´σz 2 s z `λc τ z 1 `σz 2 s z (3.20)
where 2λ v and 2λ c are the spin-orbit splitting induced in the conduction and valence bands, respectively. Note that this Hamiltonian does not mix the spin components and so s z remains a good quantum number.

The spin-orbit splitting parameters can be calculated from ab-initio methods [START_REF] Zhu | Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors[END_REF][START_REF] Ko Śmider | Large spin splitting in the conduction band of transition metal dichalcogenide monolayers[END_REF]3], they are given in Table 3.4 for all 6 TMDCs, where one can see that the spin-orbit induced splitting is one order of magnitude smaller in the conduction band than the valence band. conduction band located at the Q-points, situated on the Γ-K direction. Thus, for bulk materials, the conduction band is characterized by six valleys located at the six Q-points.
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Fundamentally, the lifting of the spin degeneracy for a particular valley results from the breaking of the inversion symmetry. However, because the time-reversal symmetry is not broken, one expect that all electronic levels to be two-fold degenerate as a consequence of Kramers theorem. The Kramers partner of a state |K, Òy is the state |´K, Óy, this implies that the three valleys K are the Kramers partners of the three valleys K'. They have identical eigenenergies and opposite spin-polarization. This leads to a strong spin-valley coupling. The Bloch states have also opposite orbital magnetic moment between the two valleys K and K' [START_REF] Srivastava | Valley Zeeman effect in elementary optical excitations of monolayer WSe 2[END_REF]. This leads to circular dichroism and enables selective addressing of the valleys with circularly polarized light [START_REF] Cao | Valley-selective circular dichroism of monolayer molybdenum disulphide[END_REF]. This phenomena stimulated numerous photoluminescence studies of these materials, looking for means to address optically the spin and valley degrees of freedom [START_REF] Xiao | Coupled Spin and Valley Physics in Monolayers of MoS {2} and Other Group-VI Dichalcogenides[END_REF][START_REF] Xu | Spin and pseudospins in layered transition metal dichalcogenides[END_REF], which could find technological applications in spintronics and valleytronics. For instance, it was found that the existence of the orbital moment leads to a valley Zeeman effect [START_REF] Srivastava | Valley Zeeman effect in elementary optical excitations of monolayer WSe 2[END_REF] in monolayers.

In bilayers or bulk materials, one may think that the recovery of the inversion symmetry should suppress the spin-valley coupling. This is not so as long as the spin-orbit coupling is larger than the inter-layer coupling. In this situation and for one bilayer, one can describe the band structure as the addition of the band structures of two monolayers labelled by a layer index i top (i bottom ) for the top (bottom) monolayer and where the spin-polarization is reversed between the bands of different layer indexes . Thus, globally, the material has inversion symmetry and the valleys are not spin-polarized. However, locally, the inversion-symmetry is still broken and the valleys of identical layer index are still spin-polarized. This leads to the concept of hidden spin-polarization [START_REF] Riley | Direct observation of spin-polarized bulk bands in an inversionsymmetric semiconductor[END_REF][START_REF] Zhang | Hidden spin polarization in inversion-symmetric bulk crystals[END_REF] that results from the locally broken inversion symmetry. This implies that even in bulk materials, surface sensitive probes such as spin-resolved photoemission can detect the opposite spin polarization between the two valleys measured on the top layer of the crystal [START_REF] Riley | Direct observation of spin-polarized bulk bands in an inversionsymmetric semiconductor[END_REF][START_REF] Razzoli | Selective Probing of Hidden Spin-Polarized States in Inversion-Symmetric Bulk MoS 2[END_REF][START_REF] Tu | Direct observation of hidden spin polarization in 2H-MoTe 2[END_REF]. Using circular-dichroism photoemission, the orbital magnetic moment and its associated Berry phase has also been observed on the top layer of bulk crystals [START_REF] Beaulieu | Revealing Hidden Orbital Pseudospin Texture with Time-Reversal Dichroism in Photoelectron Angular Distributions[END_REF][START_REF] Cho | Experimental Observation of Hidden Berry Curvature in Inversion-Symmetric Bulk 2H-WSe 2[END_REF]. Furthermore, the valley Zeeman effect has also been observed in MoTe 2 bilayer [START_REF] Jiang | Zeeman splitting via spin-valley-layer coupling in bilayer MoTe 2[END_REF]. For bilayer, applying an electric field normal to the surface breaks again the inversion symmetry, which provide a mean for manipulating the spin, pseudospin and valley index with electric field [START_REF] Gong | Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers[END_REF], which is of interests for technological applications.

Using optical means to address spin is complicated by the short lifetimes of photogenerated excitons, which is of the order of few picoseconds. For this reason, it is important to find ways to address the spin and valley index of resident electron/hole doped into the materials. Photoluminescent measurements [START_REF] Yang | Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS 2 and WSe 2[END_REF][START_REF] Ersfeld | Spin States Protected from Intrinsic Electron-Phonon Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe 2[END_REF] have shown that the lifetime of resident electrons could reach 100 ns. Another photoluminescent experiment [START_REF] Dey | Gate-Controlled Spin-Valley Locking of Resident Carriers in WSe 2 Monolayers[END_REF] has shown that gateinduced holes could have spin lifetime of 1µs. In all these experiments, the spin lifetime was measured optically through its effects on a Kerr signal measured on a large area of the sample. Following these results, employing spin-valley states for the sake of quantum information or quantum sensing require to adress single states. To that end, recent photoluminescent measurements have already managed to address a single spin-valley in a monolayer WSe 2 quantum dot [START_REF] Lu | Optical initialization of a single spin-valley in charged WSe 2 quantum dots[END_REF]. In the next chapter, we will show that the electronic levels of a Br dopant in MoTe 2 are hybridized to the valleys and constitute a promising spin-valley state.

Metal-insulator phase transition

Because I studied doped semiconductor in this thesis, I provide now a basic description of the metal-insulator transition in doped semiconductors, which has been reviewed in [START_REF] Mott | Metal-Insulator Transition[END_REF][START_REF] Lee | Disordered electronic systems[END_REF]. The theory of metal-insulator transitions remains one the most complicated and unsolved problem in condensed matter physics as it involves strong correlations effects and disorder. Nevertheless, we have a general understanding of the metal-insulator transition in semiconductor as a function of carrier concentration and temperature. Anderson has shown that if the disorder is very strong, the amplitude of the wave function should decay exponentially as a function of distance with respect to the dopant. Consequently, the electrons localize around the dopants and the wave function is described as a wave packet of width ξ, illustrated in Fig. 3.13.b. This length ξ is also called the localization length.

At low dopant concentration, all electrons are localized around their respective dopants. However, as the dopant concentration is increased, the Fermi level energy increases and when it crosses the mobility edge which separates the localized states from the extended states, a transition from the insulator to the metal occurs. This insulatormetal transition can be seen as a quantum percolation problem. A transition from the insulating semiconductor to the metal is reached when the wavefunction of the electronic levels, introduced by the dopants, overlap.

The metal-insulator transition has been described as a field theory where the correlation length is equivalent to the localization length. Using scaling arguments, the band of four (Abrahams, Anderson, Licciardello and Ramakr-
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ishnan) [START_REF] Abrahams | Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions[END_REF] has shown that the conductance is controlled by a scaling function d ln gpLq{d ln L " βpgpLqq where L is the system size and g is the conductance of the system in units of quantum conductance 2e 2 {h. According to this scaling theory, a metal-insulator transition is possible only in 3D systems. 2D systems must be always localized for any amount of disorder and carrier concentration in the absence of a magnetic field and zero temperature.

Graphene seems to be in contradiction with this theory. However, it has been argued that the presence of multiple valleys and the Berry phase [START_REF] Mccann | Weak-Localization Magnetoresistance and Valley Symmetry in Graphene[END_REF][START_REF] Hilke | Weak Localization in Graphene: Theory, Simulations and Experiments[END_REF] leads to antilocalization that prevents Anderson localization. While in the metallic phase, a simple Drude theory can be used to describe the transport properties of delocalized electrons, in the insulating phase, electronic transport mostly occurs through tunnel hopping between dopant states.

Three regimes are usually distinguished, as shown Fig. 3.14. At high temperature, electronic transport occurs through activation of the doped electrons (holes) into the conduction (valence) band. In this regime, the resistivity follows an activated law ρ " ρ 0 exppE A {k B T q where E A is the energy separation between the donor(acceptor) level and the conduction(valence) band. At lower temperature, the contribution of activated processes to electronic CHAPTER 3. THEORETICAL BACKGROUND ON 2D SYSTEMS transport decreases exponentially fast until transport by hopping dominates. In this regime, electronic transport occurs through tunnel hopping between dopants. The probability for hopping is given by p hop " e ´r{ξ ˆe´ε{k B T

where ε is the energy difference between the initial and final levels involved in the hopping process. Because the hopping length is not fixed and depends on the energy difference, this hopping regime has been called Variable Range Hopping (VRH) regime. From the hopping probability, one can show that the resistivity should read:

ρ " expppT 0 {T q α q (3.21)

where the temperature scale T 0 corresponds to the energy scale ε in Boltzman units. When the energy levels are shifted by the confinement energy, the temperature scale is given by T 0 9δ9 1 ξ 3 and α " 1{pD `1q where D is the spatial dimensionality of the system. This is the so-called Mott hopping regime. At very low temperature, a second hopping regime occurs when the shift of the energy levels is controlled by the Coulomb energy where T 0 9 e 2 ξ and α " 1{2. This is the so-called Efros-Shklovskii hopping regime.
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An alternative to optical methods would be to address directly the spin of doped electrons by spin resonance methods. To that end, one needs to identify suitable dopants in TMDC, alike phosphorus in silicon, that would inherit the strong spin-orbit coupling properties of TMDC while maintaining a long spin coherence time.

In this chapter, I will present a first step in that direction by providing a full characterization of Bromine dopants in the 2H-MoTe 2 semiconductor. We find that the dopants are n-type and that the doped electron localizes on the dopant site at low temperature. ESR measurements show that the spin-coherence time reaches 60 ns at low temperature. STM measurements show that the dopant is hybridized to the valleys. Together, these measurements establish Br as a spin-valley state. 

SPIN-VALLEY STATES

Spin-Valley states

As we have seen in Chapter 3, the valley index is described with a spinor and so can be used to store quantum bits of information. This has been demonstrated experimentally in carbon-nanotube quantum dots [START_REF] Pei | Valley-spin blockade and spin resonance in carbon nanotubes[END_REF][START_REF] Laird | A valley-spin qubit in a carbon nanotube[END_REF], where the carbon-nanotube inherits the K-valleys of graphene and Si quantum dots [START_REF] Mi | Landau-Zener interferometry of valley-orbit states in Si/SiGe double quantum dots[END_REF][START_REF] Penthorn | Two-axis quantum control of a fast valley qubit in silicon[END_REF], where Silicon has 8 valleys located on the ∆ direction of the Brillouin zone.

In TMDCs, the possibility of using valley states as QBits has been discussed in Refs. [START_REF] Pawłowski | Valley qubit in a gated MoS 2 monolayer quantum dot[END_REF][START_REF] Pawłowski | Valley Two-Qubit System in a MoS 2 -Monolayer Gated Double Quantum dot[END_REF]. Furthermore, because of their strong spin-orbit coupling, the possibility of using spin-valley Kramers states to form Qbits was discussed theoretically in Refs. [START_REF] Rohling | Universal quantum computing with spin and valley states[END_REF][START_REF] Xiao | Coupled Spin and Valley Physics in Monolayers of MoS 2 and Other Group-VI Dichalcogenides[END_REF][START_REF] Ányos | Spin-Orbit Coupling, Quantum Dots, and Qubits in Monolayer Transition Metal Dichalcogenides[END_REF][START_REF] Pearce | Electron Spin Relaxation in a Transition-Metal Dichalcogenide Quantum Dot[END_REF][START_REF] Échenyi | Impurity-assisted electric control of spin-valley qubits in monolayer MoS 2[END_REF][START_REF] David | Effective theory of monolayer TMDC double quantum dots[END_REF].

In this context, the spin-scattering properties of point-defects in TMDCs have attracted intense theoretical attention. In presence of non-magnetic impurities, it is generally expected that scattering in presence of spin-orbit coupling leads to spin relaxation as a consequence of Dyakonov-Perel [START_REF] Perel | Spin Orientation of Electrons Associated with the Interband Absorption of Light in Semiconductors[END_REF] and Elliott-Yafet [START_REF] Elliott | Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some Semiconductors[END_REF] mechanisms. The Elliot-Yafet mechanism results from the change in spin-polarization of a Bloch electron due to scattering on phonons or impurities. The Dyakonov-Perel mechanism results from the spin dephasing between the scattering events. However, in TMDCs, when the Fermi level is between the bands spin-split by the strong spin-orbit coupling, not only inter-valley scattering without spin-flip is forbidden, but from symmetry arguments, it has been shown that intervalley scattering with spin-flip disappears exactly at the K-point [START_REF] Ochoa | Spin-valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides[END_REF]. In monolayers, using the notations of the irreps of the group of the wavevector at the K-point [START_REF] Gilardoni | Symmetry and control of spin-scattering processes in two-dimensional transition metal dichalcogenides[END_REF], perturbations that break time reversal symmetry can induce intervalley transition between valence bands (K7ØK8) and conduction bands (K9ØK10) but, remarkably, not between the conduction bands (K11ØK12). Because the conduction bands (K11,K12) are the lowest energy conduction bands for Mo-based TMDCs, the spin lifetime is expected to be longer for doped electrons in Mo-based TMDCs.

For W-based TMDCs, the bands (K9,K10) are the lowest energy conduction band. Furthermore, for defects with threefold rotational symmetry (C 3 ), intervalley scattering is forbidden for defects centered on the anion site while it is allowed for cation-centered defects [START_REF] Kaasbjerg | Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides[END_REF]. These theoretical works suggest that n-type dopants substituting the anion site in Mo-based TMDC are among most promising spin states in the TMDC family of materials.

Note that in any case, if the Fermi level is larger than the spin-orbit gap and both majority and minory spin populations exist in both valleys, then intervalley scattering with and without spin-flip becomes possible.

In bilayer and bulk materials, additional spin-scattering channels become possible and have also been discussed in Ref. [START_REF] Gilardoni | Symmetry and control of spin-scattering processes in two-dimensional transition metal dichalcogenides[END_REF]. However, as discussed in Ref. [START_REF] Zhang | Hidden spin polarization in inversion-symmetric bulk crystals[END_REF], while the global inversion symmetry is restored in bulk materials, the local inversion symmetry is still broken, meaning that the bulk materials can be described as a stack of distinguishable layers. With respect to the monolayer, the major changes is that the intervalley scattering (K11ØK12) forbidden in one monolayer is now allowed in multilayers sytems. These charge carriers can now flip their spin by going from one layer into the other.

Experimentally, the spin lifetime of resident electrons in TMDC has been mostly measured by photoluminescent measurements. Values of 3 ns has been observed in electron doped MoS 2 and WS 2 monolayer [START_REF] Yang | Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS 2 and WSe 2[END_REF], 100 ns at room temperature in MoSe 2 [START_REF] Ersfeld | Spin States Protected from Intrinsic Electron-Phonon Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe 2[END_REF]. In gated WSe 2 monolayer [START_REF] Dey | Gate-Controlled Spin-Valley Locking of Resident Carriers in WSe 2 Monolayers[END_REF], the lifetime is observed to increase from 130 ns in n-type to 2 µs in p-type.

In silicon, the evolution of the spin relaxation properties of P and As through standard ESR measurements has been measured extensively as a function of carrier concentration and temperature. Recently, STM spectroscopy studies [START_REF] Salfi | Spatially resolving valley quantum interference of a donor in silicon[END_REF] have demonstrated that the dopant levels of As and P are hybridized to the valley states within the conduction band, giving rise to a characteristic modulation of the envelope wavefunction of the dopant levels. Furthermore, interference between two dopants have also been observed by STM spectroscopy recently [START_REF] Voisin | Valley interference and spin exchange at the atomic scale in silicon[END_REF].

Doping through substitution the TMDCs can be understood with simple models based on the change in the total number of electrons in the compound by selecting a dopant having one more or one less electron in its valence shell than the substituted atom. For example, p-type conduction has been measured in MoS 2 by substituting Mo with Nb [START_REF] Title | Band Structure of the Layered Transition-Metal Dichalcogenides: An Experimental Study by Electron Paramagnetic Resonance on Nb-Doped MoS 2[END_REF][START_REF] Suh | Doping against the Native Propensity of MoS 2 : Degenerate Hole Doping by Cation Substitution[END_REF] or S with As [START_REF] Title | Electron-Paramagnetic-Resonance Studies on Arsenic Acceptors in Natural (2H) and Synthetic (3R) MoS 2 Crystals[END_REF] or N [START_REF] Azcatl | Covalent Nitrogen Doping and Compressive Strain in MoS 2 by Remote N 2 , Plasma Exposure[END_REF] while strong n-type conduction has been reported when S is substituted by Cl [START_REF] Yang | Chloride molecular doping technique on 2D materials: WS 2 and MoS 2[END_REF]. In MoTe 2 , Te substitution with Br leads to n-type doping [START_REF] Morsli | Tellurium depletion electrical effects in MoTe 2´x single crystals doped with bromine[END_REF][START_REF] Zoaeter | Electrical properties and band structure of the transition metal dichalcogenide MoTe2-x doped with bromine[END_REF]. The formation of donor states near the conduction band by halogen dopants has been confirmed by first principles calculations [START_REF] Komsa | Twodimensional transition metal dichalcogenides under electron irradiation: defect production and doping[END_REF][START_REF] Yue | Functionalization of monolayer MoS 2 by substitutional doping: A first-principles study[END_REF][START_REF] Dolui | Possible doping strategies for MoS 2 monolayers: An ab initio study[END_REF][START_REF] Onofrio | Novel doping alternatives for single-layer transition metal dichalcogenides[END_REF][START_REF] Guo | Large spin-orbit splitting in the conduction band of halogen (F, Cl, Br, and I) doped monolayer WS 2 with spin-orbit coupling[END_REF][START_REF] Guo | A comparative first-principles study of point defect properties in the layered MX 2 (M= Mo, W; X= S, Te): Substitution by the groups III, V and VII elements[END_REF]. Interestingly, recent STM characterization of S vacancies in WS 2 have shown that the in-gap states present a giant spin-orbit splitting [START_REF] Schuler | Large Spin-Orbit Splitting of Deep In-Gap Defect States of Engineered Sulfur Vacancies in Monolayer WS 2[END_REF]. Such a large spin-orbit splitting has also been predicted in the conduction of halogen-doped WS 2 [START_REF] Guo | Large spin-orbit splitting in the conduction band of halogen (F, Cl, Br, and I) doped monolayer WS 2 with spin-orbit coupling[END_REF].

In this context, the identification of suitable dopants in TMDC, providing spin states with long spin-coherence, and yet, hybridized to the valley states of the conduction band, is of intense interest. With respect to silicon, the system where the investigation of the dopants as host of spin-based QBits is the most advanced, the TMDC offers two major advantage: a large spin-orbit coupling that will enable electric field manipulation of the spin, a twodimensional atomic monolayer structure that will make the implantation and the localization of dopants easier than in the tri-dimensional silicon. The implantation of dopants with atomic precision in two-dimensional TMDCs remain a microfabrication challenge though.

Our collaborator, Vyacheslav Marchenkov from Mikheev Institute of Metal Physics at Ekaterinburg, provided us with several bulk crystals of MoTe 2 doped with either transition metals or Bromine. Bromine is actually used as chemical transport agent and usually result in n-type doping, even so its presence and effects are not always identified [START_REF] Campbell | Intrinsic insulating ground state in transition metal dichalcogenide TiSe 2[END_REF]. After a first characterization of all the crystals with ESR, we decided to focus on Bromine doped MoTe 2 as it was showing the sharpest ESR lines. On these Bromine doped MoTe 2 , we measured the charge transport properties, the ESR spectrum and we characterized the dopants by STM spectroscopy. Those results are presented in the next sections. For the sake of comparison, we also studied crystal grown with I 2 as a transport agent and undoped commercial crystals (HQ-graphene) grown by the self-flux method. 

Electronic properties of Br-doped 2H-MoTe 2

Transport measurements were carried out in a Physical Property Measurement System (PPMS). The longitudinal and Hall resistance were measured using a standard lock-in technique. For these measurements, the bulk crystals were exfoliated down to obtain thin crystals about ten micrometers thick, deposited on an insulating silicon wafer.

The electrical contacts were realized with gold wires (I25µm) glued with silver paint. 

ρ xx " exp E A k B T (4.2)
where E A is the activation energy, k B is the Boltzman constant. Fitting this formula to the experimental data gives an activation energy E A " 28 meV . This value is consistent with past works on Br doped MoTe 2 [START_REF] Morsli | Tellurium depletion electrical effects in MoTe 2´x single crystals doped with bromine[END_REF][START_REF] Zoaeter | Electrical properties and band structure of the transition metal dichalcogenide MoTe2-x doped with bromine[END_REF] which found activation energies about 10 meV. This is also consistent with DFT calculations [START_REF] Komsa | Twodimensional transition metal dichalcogenides under electron irradiation: defect production and doping[END_REF][START_REF] Dolui | Possible doping strategies for MoS 2 monolayers: An ab initio study[END_REF][START_REF] Onofrio | Novel doping alternatives for single-layer transition metal dichalcogenides[END_REF][START_REF] Guo | Large spin-orbit splitting in the conduction band of halogen (F, Cl, Br, and I) doped monolayer WS 2 with spin-orbit coupling[END_REF][START_REF] Guo | A comparative first-principles study of point defect properties in the layered MX 2 (M= Mo, W; X= S, Te): Substitution by the groups III, V and VII elements[END_REF] that indicates the formation of donor states near the conduction band. Thus, this activation energy corresponds to the energy separating the dopant level from the bottom of the conduction band.

Below 25 K, the resistivity crossovers from the activated regime to a variable-range hopping described by the Mott law:

ρ " expppT 0 {T q α q (4.3)

where α " 1{pD `1q. Using the dimensionnality D=2 expected for these layered materials, the fit of the experimental data with the Mott law provides an energy scale 0 " k B T 0 « 3 meV. This energy scale corresponds to a characteristic energy difference between different dopant levels. At the lowest measurement temperature T « 4.2 K, the resistance is too high (Rą100 MOhm) to be measurable with a standard lockin technique and the charge carriers are fully localized.

Electron Spin Resonance measurements

Because the Bromine shallow level lies near the Fermi energy and carries an extra electron, it provides an unpaired spin and so is expected to provide a measurable ESR signal as is observed for Phosphorus dopants in Silicon [START_REF] Paalanen | Spin dynamics of nearly localized electrons[END_REF]112].

The samples were studied with a standard Bruker spectrometer, situated in LPEM laboratory of ESPCI, where the ESR signal is obtained from a measurement of microwave power absorbed by the sample located in a microwave cavity, as described in Chapter 2. The plots reveals two peaks. A first peak, appearing only below 20 K, has g-factor about g = 2.03. A second peak of small amplitude, visible from room temperature down to lowest temperature, has g-factor about 2.24. These peaks are not seen in the undoped sample. Anticipating the results of the analysis, the first peak corresponds to the Br dopant, the second peak corresponds to antisite Mo T e , their ESR signals are analyzed more precisely in the next two sections. This hyperfine splitting is consistent with the one measured for Br ions within molecules [START_REF] Nishikida | ESR spectrum and structure of BrF 6[END_REF][START_REF] Picone | ESR study of a bromine-containing radical in γ-irradiated bromomalonamide[END_REF][START_REF] Muto | An ESR study at 77 K of the bromine atom and the ÁN-Br ´¨σ ˚radical in x-irradiated N-bromosuccinimide single crystals[END_REF].

ESR signal of the Br dopant

To extract the parameters more precisely, we fit the effective spin Hamiltonian :

Ĥ " µ B ˆ S Ø g ˆ B `ˆ S. Ø A . ˆ I `ˆ I. Ø Q . ˆ I (4.4)
with Easyspin1 .

From this fitting procedure, we obtain the effective parameters given in Table 4.1. In addition, Fig. 4.5.a shows that the ESR spectrum is anisotropic, where the g-factor g zz = 2.09 for the magnetic field perpendicular to the sample plane and g xx = 2.02 for the magnetic field parallel to the sample plane. This anisotropy results from the intra-atomic spin-orbit coupling that mixes the ground state with excited states of different orbital moments [START_REF] Baranov | Magnetic Resonance of Semiconductors and Their Nanostructures[END_REF] as was shown in chapter 2.2.2.

We note that the anisotropy coefficient is such that g zz ą g xx , which is opposite to what has been observed for As acceptor in MoS 2 [START_REF] Title | Electron-Paramagnetic-Resonance Studies on Arsenic Acceptors in Natural (2H) and Synthetic (3R) MoS 2 Crystals[END_REF][START_REF] Stesmans | ESR study of p-type natural 2H-polytype MoS 2 crystals: The As acceptor activity[END_REF][START_REF] Toledo | Electrical and structural characterization of shallow As acceptors in natural p-type 2H-MoS 2[END_REF]. Furthermore, we observe that the anisotropy is smaller for the donor Br than observed for the acceptor As. This is expected given that the spin-orbit coupling is one order of magnitude larger for valence electron than for conduction electrons. To calculate the amplitude of the anisotropy, one can use the formula valid for a shell with a single electron:

Ø g " g S Ø 1 `2 Ø Λ (4.5) (4.6)
where the spin-orbit tensor is written as : This spin-orbit tensor has two contributions arising from both Mo and Te as was done in Ref. [START_REF] Ko Śmider | Large spin splitting in the conduction band of transition metal dichalcogenide monolayers[END_REF] to calculate the spin-orbit splitting in TMDCs. To calculate the expression above, one needs the decomposition of the bands on the d-orbitals and p-orbitals of Mo and Te ions, respectively. This decomposition is given in Ref. [START_REF] Ko Śmider | Large spin splitting in the conduction band of transition metal dichalcogenide monolayers[END_REF] for MoS 2 and

Ø Λ" Λ ij " ´ζMo
MoSe 2 , where one can see that this decomposition is similar for both materials, we assume to be identical to MoTe 2 .

More details are given in Appendix B. Furthermore, we need the values of the one-electron spin-orbit coefficients :ζ M o " 90 meV [START_REF] Dunn | Spin-orbit coupling in the first and second transition series[END_REF] and ζ T e " 490 meV [START_REF] Wittel | Atomic spin-orbit interaction parameters from spectral data for 19 elements[END_REF].

From these values, one calculates the g-factor for an electron(hole) in the conduction(valence) band, the results are summarized in : This calculation shows that the anisotropy is indeed reverse for electrons (g zz ą g xx ) and holes (g zz ă g xx ), consistent with the experimental data . One finds that the theoretical value of the anisotropy for an electron in the conduction band is of the order of ∆ g =g zz -g xx « 0.08 which is close to the anisotropy measured experimentally.

Note however that the absolute values of g zz and g xx are shifted between the theoretical and experimental values.

A more detailed analysis would require the projection of the DFT bands for bulk MoTe 2 at the Q-point, which is not yet available. remain localized on the Br dopant where their coherence lifetime is much longer. Such a correlation between the spin resonance amplitude/linewidth and the resistivity has also been observed in As doped MoS 2 [START_REF] Stesmans | ESR study of p-type natural 2H-polytype MoS 2 crystals: The As acceptor activity[END_REF][START_REF] Toledo | Electrical and structural characterization of shallow As acceptors in natural p-type 2H-MoS 2[END_REF] and Nitrogen doped MoS 2 [START_REF] Schoenaers | ESR identification of the nitrogen acceptor in 2H-polytype synthetic MoS 2 : Dopant level and activation[END_REF], as well as in other type of materials such as β-Ga 2 O 3 [START_REF] Von | Unusual conduction mechanism of n-type β-Ga 2 O 3 : A shallow donor electron paramagnetic resonance analysis[END_REF] and polarons in organic semiconductors [START_REF] Schott | Polaron spin dynamics in high-mobility polymeric semiconductors[END_REF].

Assuming the same Mott expression Eq. Those values are close to the value 0 " k B T 0 « 3 meV found to describe the Mott regime of resistivity.

Thus, one finds that the width of the ESR resonance peak is extremely well correlated with the hopping rate, this is a strong evidence that the observed resonance can be attributed to the electron doped by the Br atom.

Far from the saturation, the linewidth of the ESR signal is related to the spin coherence time through the relation [START_REF] Weil | Electron Paramagnetic Resonance: Elementary Theory and Practical Applications[END_REF]:

∆H " 1 |γ e |τ 2 (4.9) 
Extracting the real linewidth of the resonance line is complicated by the hyperfine coupling that splits the resonance into four lines. Using the software Easyspin and the parameters The question of spin-relaxation in semiconductors has been studied intensively in silicon and III-V semiconductors. In semiconductors with broken global inversion symmetry, a Dyakonov-Perel spin-relaxation mechanism [START_REF] Dyakonov | Spin relaxation of conduction electrons in noncentrosymmetric semiconductors[END_REF][START_REF] Wu | Spin dynamics in semiconductors[END_REF] is dominant when electrons are delocalized but disappears when electrons localize [START_REF] Kavokin | Spin relaxation of localized electrons in n-type semiconductors[END_REF], as observed in GaAs [START_REF] Dzhioev | Low-temperature spin relaxation in n-type GaAs[END_REF]. Magneto-conductance measurements of MoS 2 monolayers, doped to high carrier density by a gate voltage, have shown that Dyakonov-Perel was the dominant spin-relaxation mechanism in this system too [START_REF] Schmidt | Quantum Transport and Observation of Dyakonov-Perel Spin-Orbit Scattering in Monolayer MoS 2[END_REF].

In our measurement, one finds that the resonance disappears in the activated regime when electrons are delocalized in the conduction band. This is consistent with a large Dyakonov-Perel coefficient, resulting from the strong spin-orbit coupling in MoTe 2 that suppress spin-coherence in the activated regime. In the hopping regime, it was suggested theoretically that the Dyakonov-Perel may still be an active source of decoherence, where each hop is accompanied by a rotation of the electron spin [START_REF] Shklovskii | Dyakonov-Perel spin relaxation near the metal-insulator transition and in hopping transport[END_REF][START_REF] Lyubinskiy | Spin dynamics in the regime of hopping conductivity[END_REF]. A more detailed theoretical analysis will be required to understand the relation between the hopping time and the spin relaxation time in TMDCs. From the two peaks in the ESR data Fig. 4.4.a, we just identified the Br dopant at g« 2.1. However, we also observed a sharp second peak at g = 2.24. We attribute this peak to the Mo T e antisite. Recent DFT calculations [START_REF] Guguchia | Magnetism in semiconducting molybdenum dichalcogenides[END_REF][START_REF] Tsai | Antisite defect qubits in monolayer transition metal dichalcogenides[END_REF] have identified that M X antisites in TMDCs should produce deep in-gap states and carry a magnetic moment. Ref. [START_REF] Guguchia | Magnetism in semiconducting molybdenum dichalcogenides[END_REF] indicates a magnetic moment between 0.9 and 2.8 µ B , Ref. [START_REF] Tsai | Antisite defect qubits in monolayer transition metal dichalcogenides[END_REF] shows that the M X antisite should carry a spin-1 triplet state and that, in sulphides and selenides based TMDCs, this triplet state should have an orbital-degenerate ground-state that would endow it properties similar to NV ´centers, making it optically addressable. The narrow ESR linewidth that we observe is consistent with a paramagnetic state located deeply in the band-gap, far from the band-edge and not hybridized with the conduction band, as shown by STM measurements presented in the next chapter. Fig. 4.8 shows the linewidth (panel a) and amplitude (panel b) of this resonance as a function of temperature. Upon cooling from room temperature down to 20 K, the linewidth increases with decreasing temperature. This is the opposite trend than observed for the Br dopant, which ESR signal disappears upon heating because of the broadening lineshape. This behavior could be due to a motional narrowing effect. The spin of the Mo T e antisite is localized but has dipolar interactions with the delocalized spins doped by the Br. At high temperature, the effects of delocalized spins average to zero. This reduces the linewidth through a motional narrowing effect. Upon cooling, the doped electrons localize and so the magnetic configurations seen by the Mo T e antisites become more and more heterogeneous, this explain the increase of the linewidth upon cooling from room temperature down to 20 K. Below T = 15 K, the linewidth starts to decrease again with decreasing temperature. This suggests that below that temperature, doped electrons are mostly localized and other effects, such as spin-lattice relaxation, controls the linewidth.

ESR signal of the antisite Mo Te

Finally, for the last defect V M o identified in our STM measurements, no ESR signal has been identified, this is also consistent with DFT calculations [START_REF] Guguchia | Magnetism in semiconducting molybdenum dichalcogenides[END_REF] that have shown the absence of any magnetic moment for this vacancy.

In Ref. [START_REF] Guguchia | Magnetism in semiconducting molybdenum dichalcogenides[END_REF], Muon rotation measurements on undoped MoTe 2 have identified a transition toward a magnetic order below 40 K. They suggested that this transition could result from the anti-ferromagnetic coupling between magnetic moments of the Mo T e antisite. Using a SQUID magnetometer, collab. B. Leridon (LPEM-ESPCI), we look extensively for the presence of a magnetic order through magnetization, but we did not find any, as shown Fig. 4.9.

STM characterization of Br-doped 2H-MoTe 2

Scanning tunneling microscope is a powerful instrument to characterize the nature of defects and the local density 

Identification of point-defects

Because TMDCs can be easily cleaved under UHV and the top surface is composed of relatively inert Tellurium chalcogen atoms, they constitute a convenient playground for STM studies. For the Br dopant, the 2D FFT spectrum shows peaks of intense intensity at the wave vector q
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sponding to the difference between two neighbor valleys Q and Q', and the wave vector q 2 =Q 1 -Q 2 corresponding to the difference between two valleys within the same set Q or Q'. Both wave-vectors q 1 and q 2 are indicated on the Brillouin zone shown Fig. 4.12.f. These modulation q 1 and q 2 are responsible for the modulation observed on the topographic image, panel d. A weaker peak is also observed at q 3 =Q 1 -Q' 2 corresponding to the difference between two opposite valleys Q and Q' across the Γ-point. These modulations are not observed for the antisite Mo T e and only a weak amplitude at q 2 is observed for the vacancy V M o .

The theoretical wave vectors q i can be estimated from Q-valley coordinates in reciprocal space. In ref. [START_REF] Ányos | k¨p theory for two-dimensional transition metal dichalcogenide semiconductors[END_REF] We proceed now with a discussion of the experimental observation for the three point-defects.

For the dopant Br T e , Fig. the modulations q i are present on a large energy range from -1.2 V (valence band) to 0.2 V (conduction band). The amplitude of the Fourier components q i as a function of energy, shown in Fig. 4.14h,have maxima at the energies of the in-gap level (-0.75 eV) and shallow level (0 eV). While it may be tempting to interpret the modulation at wavevector q i as resulting from QuasiParticle Interference (QPI) [START_REF] Crommie | Confinement of Electrons to Quantum Corrals on a Metal Surface[END_REF][START_REF] Roushan | Topological surface states protected from backscattering by chiral spin texture[END_REF] of the conduction electrons on the pointdefects, the experimental data are not consistent with such a scenario. Instead, we will see that the modulation results from the hybridization of the dopant levels with the valleys in the conduction band.

For QPIs, the details of the electronic levels of the point-defect are not relevant. It is enough that the point-defect acts as a Dirac-potential V δpr ´r0 q that will produce a coupling xk|V |k 1 y between Bloch states of the host material.

In this situation, the wave-vector q i describes a modulation of the density of states of the host material that can extend far from the point-defect. These QPIs should exist around all types of defects as well as at atomic steps. This is not the case in our STM maps. The modulation is observed only around the point-defects V M o and Br T e , not around the antisite Mo T e . For QPIs, the Fourier components should be visible only at the energies corresponding to the wavevector in the band-structure. In our particular case, QPI modulation at the wave-vector q i should only be visible in the conduction band as they correspond to scattering between the valleys Q,Q' of the conduction band. This is not the case in our data. The modulation is observed on a large energy range from the valence to the conduction band.

Let's describe now the data for the antisite Mo T e . Fig. 4.14c,f shows an in-gap state at energy « ´0.5 eV and another one at energy « -0.9 that seems to merge with the valence band. These two states may correspond to DFT calculations [START_REF] Tsai | Antisite defect qubits in monolayer transition metal dichalcogenides[END_REF], which predict the formation of two deep in-gap states resulting from the d-orbitals of the substitutional Mo atom. In MoTe 2 , the higher energy state should be split by a Jahn-Teller, an effect that may be too weak to be observed in the experimental data. As the levels are located below the Fermi level, they should be filled with electrons with parallel spin-alignment as expected from Hund's rules and so the anti-site should carry a magnetic moment S = 1 as shown on the molecular diagram Fig. 4.15.b. This magnetic moment is possibly responsible for the second resonant signal observed in ESR spectra. This resonance is sharp as expected for deep in-gap states.

Let's turn now to third point-defect, the vacancy V M o . Fig. 4.14a,d shows an in-gap state at energy « -0.4 eV, far from the conduction and valence bands. DFT calculations [START_REF] Guguchia | Magnetism in semiconducting molybdenum dichalcogenides[END_REF] predict that this point-defect should not be a dopant

The identification of band representations induced by an irrep of the symmetry point-group of a crystallographic site is made simple by the Bilbao server [START_REF] Elcoro | Double crystallographic groups and their representations on the Bilbao Crystallographic Server[END_REF]140] that provide online applications [140]. Knowing the space group for one TMDC monolayer (187), the wickoff position (h) of the Br site with point-group symmetry C 3v , and the wavevector K (LD) for the K (Q)-valley respectively, and using the Bilbao server [140], one can find that the p orbital of the Br atom, restricting to the double-group irreps Ē1 , 1 Ē and 2 Ē of the C 3v point-group, induces the irreps (K8 to K12) and (LD3, LD4) of the group of the wavevector K and Q, respectively. The induced irreps correspond to the conduction and valence bands at the K and Q-points as shown Fig. 3.10. This show that the hybridization of the p levels of the Br dopants and the Bloch states at the K, Q-valleys are allowed by symmetry.

Reciprocally, let's consider a single conduction band valley, say K11. We find that this band K11 restricts to the irreps 1 Ē and 2 Ē of the C 3v site symmetry group. Furthermore, the irrep "0,1 Γ, corresponding to the dopant s and p orbitals, restrict to the irreps Ē1 , 1 Ē and 2 Ē. Consequently, hybridization between the dopant levels and the valley will give rise to four levels. Two levels, one bonding and one anti-bonding, of 1 Ē symmetry and two levels, one bonding and one anti-bonding, of 2 Ē symmetry, as shown Fig. 4.16.

While DFT calculations would be required to identify the energy location of the four levels obtained, it is very likely that the in-gap state observed at « -0.75 eV corresponds to one of the bonding levels and the shallow state observed at 0 eV corresponds to one of the anti-bonding levels. All four levels are hybridized with the valley Q, which explain that the modulation is observed on a large energy range, from the top of the valence band to the bottom of the conduction band.

Following Refs. [START_REF] Kohn | Theory of Donor States in Silicon[END_REF][START_REF] Koiller | Exchange in silicon-based quantum computer architecture[END_REF], the wavefunction of the dopant level, which is degenerate because of time-reversal symmetry, can be written on the basis of the Bloch states at the valleys K [or Q] as:

Ψpr, Óq " 1 ? 3 F prq ÿ µ φ kµÓ prq Ψpr, Òq " 1 ? 3 F prq ÿ µ 1 φ k µ 1 Ò prq (4.10)
where the sum ř µp 1 q runs over three valleys at K(K') [or Q(Q'] and φ kµσi prq " u µ prqe ikµ.r xr|σ i y are Bloch wavefunctions describing the valley states where the periodic part u µ prq of the Bloch functions is obtained as a Bloch sum on the atomic orbitals. The envelope function F prq " exp `´px 2 `y2 q{a 2 ˘centered on the dopant describes the decay of the amplitude of the wavefunction with the distance from the dopant.

In monolayer and for a dopant located on the chalcogen atom, the two Kramers partners should not mix, which should enable spin states with long spin coherence. In bulk systems, the broken local inversion symmetry is still expected to provide significant protection of the spin lifetime, as discussed in Ref. [START_REF] Gilardoni | Symmetry and control of spin-scattering processes in two-dimensional transition metal dichalcogenides[END_REF], which explain the relatively long spin coherence of 60 ns that we measured for this Br dopant despite the strong spin-orbit coupling in MoTe 2 .

However, interlayer coupling mix the two Kramers states.

Using the the states Eq. ( 4.10), one can simulate the density of states associated with the dopant simply by calculating the probability density |Ψprq| 2 " Ψpr, ÓqΨ ˚pr, Óq. Note how the modulations q i arises from the calculation of the probability density. As Ψprq9 ř µ e ikµ.r , the probability density will contain the cross terms ř µ,ν e ipkµ´kν q.r where the modulation q i " k µ ´kν , is the difference between the valley wave vectors k µ . The result of the calculation is shown Fig. 4.17 for two cases when the wavefunction is taken either as Ψpr, Óq or Ψpr, Óq `Ψpr, Òq. In the former case, only the q 2 component is present, in the latter, both q 1 and q 2 are present. While in one monolayer of TMDC, only the component q 2 should be present, in bulk systems, the coupling between layers leads to mixing between the two Kramers states and so both components are present.

As the probability density associated to the dopant level has a spatially oscillatory behavior, one can now examine the evolution of the phase as function of energy. Selecting one component q 1,2 on the 2D FFT of a conductance map at selected bias (say -0.65 V) and performing the inverse FFT produces the real space images shown Fig. 4.18c,e for the two components. These two images show modulations with the corresponding wavelength λ 1,2 " 2π{q 1,2 .

From these images as a function of energy, we extract the data along a path across the dopant and show them as color maps as a function of distance and energy in panels d and f for the two components. We see that the position of the maxima changes with energy, which indicates that the phase of the wave function changes with energy. To obtain this phase for each energy value, we extract the conductance from panels d and f, shown panel g Real part of inverse FFT (IFFT) for selected q 1 and q 2 components of the conductance map at -0.7 eV. d and f. Conductance profiles extracted from IFFT images (c,e) along the path shown in panel a and plotted as a function of energy and distance. Solid red lines are guide to eyes showing that the extrema of the modulation changes with energy. g. Dotted black line is extracted from panel d at V Bias = -0.7 V. The blue dashed line is a fit of this modulation with Eq. (4.11), which provides the phase shift φ 0 . Performing this fit for all energies provides the energy dependence of the phase shift for the two components q 1,2 , which are plot panel h. Note the phase jumps at -1.05 eV and -0.75 eV. The red line provides the phase difference between the two components. A phase change of π{3 is observed between V Bias = -0.65 V and V Bias = 0.08 V. This phase difference is responsible for the change in contrast of real space conductance maps shown in Fig. 4.19.

for component q 1 and bias -0.7 V, and fit the data with:

ypxq " Ae ´p x´x 0 ? 2a q 2 cosp2πpx ´x0 q{λ i `φ0 q (4.11)
where A is the amplitude, a the width of the Gauss envelope function, x 0 is the coordinate of the center of the defect, φ 0 is the phase shift, λ i =2π/q i is the period. The Gaussian envelope function is centered on the donor site but the maximum of the wavefunction is shifted by an amount controlled by the phase shift φ 0 . The phase shift as function of energy is shown Fig. 4.18h for the two components q 1,2 . From this graph, one identifies two phase jumps, one of ∆φ « 3π{2 in the valence band at -1.05 eV and one of ∆φ « π at -0.75 eV, for both frequencies q 1 and q 2 . Furthermore, we see that the phase difference ∆φ q12 between the components q 1 and q 2 changes with energy, as

shown by the red curve on panel h. This phase difference between the two components q 1 and q 2 can be understood as the phase difference between the two Kramers partners Ψpr, Óq and Ψpr, Òq, plot Eq. (4.10). The change of this phase difference ∆φ q12 with energy has remarkable consequences on the conductance maps. corresponds approximately to the change in phase difference between the two components q 1 and q 2 extracted previously from the fit Eq. (4.11) and shown in Fig. 4.18h. We see that this phase shift of π{3 is able to render the change in contrast between the two conductance maps measured at these two different energies.

As shown in Fig. 4.16, the hybridization of the dopant p levels and the valleys produces at least 4 levels (2 binding and 2 anti-binding) which should cover the energy range from the valence to the conduction band. We suggest that the phase shifts as a function of energy for the components q 1 and q 2 should likely result from the different symmetry (irreps) of the levels 1 Ē and 2 Ē, which are of different energy, as shown Fig. 4.16. DFT calculations is required to know the energy location of these levels.

Phase coherence and quantum interference between two dopants

The hybridization of the dopant levels with the valleys offers an unique opportunity to study quantum interference between dopants levels, as was done recently with dopants in Silicon [START_REF] Voisin | Valley interference and spin exchange at the atomic scale in silicon[END_REF]. Understanding the coupling and the phase coherence properties between dopant states is essential for engineering hypothetical QBits circuits containing multiple dopants.

Two closed positioned donors are investigated in Fig. 4.20. Panel b of this figure reveals a doubling of all Fourier components. This is expected, because the modulations q 1,2 are not commensurate with the lattice. An interesting question is whether the two dopants are subject to quantum interference or not.

This comes down to asking whether the total density |Ψ tot | 2 measured by STM reflects the sum of probability amplitude or the sum of probability density of each dopant:

|Ψ tot | 2 " |Ψ 1 | 2 `|Ψ 2 | 2 (No quantum interference) |Ψ tot | 2 " |Ψ 1 `Ψ2 | 2 (With quantum interference)
Using the Bloch states written above, we simulated the image for two dopants in both cases. The results in Fig. 4.20.c show a different contrasts for the overlapping region between the two dopants. In the absence of interference, i.e. sum of probability density, two peaks are observed at the intersection of the two dopants. In contrast, considering the interference between dopants, i.e. sum of probability amplitudes, a single peak is observed. 

Electrical detection of donor spin resonance

While ESR is a powerful technique to probe spin states in large crystals, the sensibility of the technique is poor, a macroscopic number of spins (10 6 ) is required to get a measurable signal. For that reason, developing alternatives methods such as based on electrical transport properties to address the spin resonant signal in small samples is of intense interest.

An observation of the electron magnetic resonance through detection of changes in electrical resistance is called Electrically Detected Magnetic Resonance (EDMR).

We have just seen that the Br dopant levels in 2H-MoTe 2 are hybridized to the valleys of the conduction band EDMR measurements were realised in Hall geometry that allowed to measure the transverse resistivity. In magnetic materials, the Hall coefficient contains an anomalous part in addition to the ordinary part and is usually written as:

ρ xy " R H B `RS M (4.12)
While the Hall constant R H is inversely proportional to the density of the charged carriers, R S is non zero in magnetic materials and has been used for the detection of ferromagnetic resonance in permalloy/platinum (Py/Pt) bilayer wires [START_REF] Duan | Spin-wave modes in permalloy/platinum wires and tuning of the mode damping by spin Hall current[END_REF]. However, so far, the electrical detection of spin resonance in paramagnetic materials has not been much explored.

In Fig. unambiguous correlation of the anomaly in transverse resistivity with the spin resonance of Br T e observed in the ESR data. This data suggests that it is indeed possible to detect electrically the spin resonant signal of Br dopants in TMDCs. Adjusting the donor density and reducing of the size of the crystal could improve the quality of electrically detected spin resonance signal. Note that we cannot claim having demonstrated that the physical mechanism behind the spin-resonant resistive signal is a spintronic effect such as a spin Hall effect. While it is likely, it could also be the consequence of a bolometric effect. Indeed, at low temperature, the resistance is changing rapidly with temperature. So, at spin resonance, the absorbed microwave power is larger due to the absorption by the spin system, which relax through spin-lattice coupling. This could lead to an increase of sample temperature and so would enable the resistive detection of the spin resonance. Because we could not change the carrier concentration of this sample with a gate voltage, we cannot prove unambiguously that the spin-resonant signal is the consequence of a spintronic effect and not heating effect. In the case of graphene studied in the next chapter, the possibility to control the carrier concentration with gate voltages will provide much more flexibility to explore the mechanisms behind the resistive detection of spin resonance.

Conclusion and perspectives

In this chapter, I have presented a detailed characterization of charge and spin properties of bulk crystals of Brominedoped 2H-MoTe 2 by transport, ESR and STM measurements.

We have found that the Br dopant provides a large spin-resonant signal at low temperature in the variable range hopping regime, reaching a coherence lifetime about 50 ns at 12 K. In the activated regime, this spin signal disappears as a consequence of the large spin-orbit coupling in this material. We have found that the electronic levels of this dopant are hybridized to the valleys in the conduction band. This leads to a characteristic spatial modulation of the wavefunction associated with the dopant levels, where the Fourier components correspond to the difference between the wave-vectors of the valleys.

Until now, doped silicon was the only system where such an hybridization between the dopant levels and the valleys has been observed by STM [START_REF] Salfi | Spatially resolving valley quantum interference of a donor in silicon[END_REF]. In silicon, 6 valleys are located on the k x , k y and k z axis in reciprocal space.

Understanding this hybridization has been found to be essential for describing the exchange coupling between dopant spins in silicon [START_REF] Voisin | Valley interference and spin exchange at the atomic scale in silicon[END_REF]. Indeed, because the doping levels are hybridized to the valleys, the corresponding wavefunction oscillates rapidly in space with a period given by the valley wavevector. Because of this, the exchange interaction between two dopants will also oscillate rapidly with the distance between the dopants. This issue implies that the dopants be located with atomic precision along the three spatial dimensions to control the amplitude of the exchange interaction.

With respect to Silicon, the TMDCs and 2H-MoTe 2 in particular are characterized by a layered structure and a very large spin-orbit coupling constant. Because of the layered structure, the TMDCs can be exfoliated down 4.7. CONCLUSION AND PERSPECTIVES 85 to a single monolayer, which makes the localization and the addressing of a single dopant much easier than in silicon. Along the z axis, they are constrained to be located in the sample plane. In the two-dimensional plane, the dopant positions can be easily obtained by STM topography. Regarding spin-orbit coupling, Silicon and TMDC are in opposite limits. Usually, SOC is considered as a problematic phenomena reducing the spin lifetime. With this respect, Silicon is interesting as it has weak spin-orbit coupling and enables long spin coherence time. In contrast,

TMDCs have large spin-orbit coupling. Despite this, in this material, the spin projection s z remains a good quantum number and the valleys becomes spin-polarized which leads to spin-valleys states where the spin s z and the valley index are locked. This locking protects the spin coherence as a spin-flip necessarily implies a change of the valley index. Furthermore, the large spin-orbit coupling can be employed to drive the spin resonance with electric field.

Thus, I expect that this work on Br-doped MoTe 2 will motivate further investigation of this system and, more generally, motivate the study of the dopants in TMDCs.

In future works, it would be interesting to characterize the properties of Br dopants in monolayers to test whether the dopant hybridizes to the K-valleys and whether the spin lifetime increases as expected theoretically.

Chapter 5

Electrical detection of electron spin resonance in graphene

Introduction

The first investigation of spin resonance in graphite was realized by Wagoner in 1960 [START_REF] Wagoner | Spin Resonance of Charge Carriers in Graphite[END_REF], where he identified electrons and holes carriers to be responsible for the resonant transitions. He measured a g-factor anisotropy (g K "

2.002 and g {{ " 2.05) and a spin-spin relaxation time τ 2 = 2 ns.

In graphene, the first resistive detection of spin resonance was done by Mani et al. [START_REF] Mani | Observation of Resistively Detected Hole Spin Resonance and Zero-field Pseudo-spin Splitting in Epitaxial Graphene[END_REF] with epitaxial graphene prepared on an insulating 4H silicon carbide where the microwave magnetic field, applied with an antenna, was perpendicular to the static magnetic field. In this experiment, two resonant lines were observed, interpreted as a lifting of pseudospin degeneracy.

Almost five years later, R.H. Blick's group published three works on the resistive detection of spin resonance in graphene [START_REF] Lyon | Probing Electron Spin Resonance in Monolayer Graphene[END_REF][START_REF] Sichau | Resonance Microwave Measurements of an Intrinsic Spin-Orbit Coupling Gap in Graphene: A Possible Indication of a Topological State[END_REF][START_REF] Prada | Dirac imprints on the g-factor anisotropy in graphene[END_REF]. In their first paper [START_REF] Lyon | Probing Electron Spin Resonance in Monolayer Graphene[END_REF], graphene was prepared by chemical vapor deposition method and was transferred by wet method on SiO 2 /Si substrate. As in the Mani et al. [START_REF] Mani | Observation of Resistively Detected Hole Spin Resonance and Zero-field Pseudo-spin Splitting in Epitaxial Graphene[END_REF] experiment, Lyon et al. [START_REF] Lyon | Probing Electron Spin Resonance in Monolayer Graphene[END_REF] applied the electromagnetic field with an antenna to the graphene sample and compared the magnetoresistance of the illuminated device with the ordinary magnetoresistance. In contrast to the previous experiment, they observed only one spectral line at Land é factor g = 1.95, which value is in agreement with Mani et al. [START_REF] Mani | Observation of Resistively Detected Hole Spin Resonance and Zero-field Pseudo-spin Splitting in Epitaxial Graphene[END_REF] experiment. In their second paper [START_REF] Sichau | Resonance Microwave Measurements of an Intrinsic Spin-Orbit Coupling Gap in Graphene: A Possible Indication of a Topological State[END_REF], working with a suspended graphene sample, they observed two spectral lines, as was first detected by Mani et al. [START_REF] Mani | Observation of Resistively Detected Hole Spin Resonance and Zero-field Pseudo-spin Splitting in Epitaxial Graphene[END_REF]. The two resonant frequencies were separated by a constant frequency of 10.2 GHz (42.2 µeV), where the most prominent peak corresponds to g = 1.95 as in the Mani et al. [START_REF] Mani | Observation of Resistively Detected Hole Spin Resonance and Zero-field Pseudo-spin Splitting in Epitaxial Graphene[END_REF] and Lyon et al.

[145] experiments. Sichau et al. [START_REF] Sichau | Resonance Microwave Measurements of an Intrinsic Spin-Orbit Coupling Gap in Graphene: A Possible Indication of a Topological State[END_REF] proposed that the two lines were the manifestation of the intrinsic Kane-Mele spin-orbit gap ∆ KM . Finally, the last paper [START_REF] Prada | Dirac imprints on the g-factor anisotropy in graphene[END_REF] of R.H. Blick's group is dedicated to measurements of the g-factor Because of our general interest in the development of electric methods for reading spin resonance and, in the case of graphene, the possibility of addressing the intrinsic spin-orbit gap, we decided to explore the magnetoresistance of graphene under microwave irradiation. While the previous EDMR experiments on graphene were done with MBE or CVD grown samples, we worked with exfoliated graphene encapsulated in hBN, obtained thanks to a collaboration with P. Roulleau (SPEC). hBN encapsulation of exfoliated graphene provides sample of the highest quality, which justify our attempt for observing the spin resonance in this kind of samples.

GRAPHENE STACKS
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Graphene stacks

Even in graphene samples with no point-defects, ripples, appearing because of strain minimization of the surface, can induce inhomogeneous charge redistribution. A choice of a suitable substrate can reduce the graphene's surface strain and reduce charge inhomogeneities. The hexagonal boron nitride (hBN) has the same honeycomb lattice as graphene. The atomically flat non-conducting surface of hBN in contact with graphene suppresses the charge inhomogeneities. Encapsulated in hBN graphene provides extraordinary high-quality samples [START_REF] Avsar | Colloquium: Spintronics in graphene and other two-dimensional materials[END_REF]. For the experiment described in this chapter, I prepared stacks of graphene encapsulated in hBN multilayers, in collaboration with A. Assouline and P. Roulleau (SPECs). These samples provide high-quality transport measurements not affected by surface contamination and crystal deformations. As described in detail in Appendix F, the heterostructures were constructed using the hot pick-up transfer technique, where polypropylene carbonate (PPC) polymer is used to stamp and stack layers with the help of micromotors and an optical microscope. The final stack of layers was deposited on a graphite thin crystal that will be used as a gate. Three samples with different gates and contacts configurations will be presented in this chapter, whose characteristics are summarized in Table 5. The CNP is located at the gate voltage V CN P « -0.6 V. The carrier concentration resulting from the applied voltage between the graphite gate electrode and graphene, separated by hBN layer of 60 nm thick, is n e " Cg |e| (V g -V CN P ). The coefficient Cg |e| = 5.5 10 11 cm ´2 V ´1 is given by the capacitance between the gate and the graphene layer, which is controlled by the thickness of the hBN layer and its dielectric constant. Using the previous relation for the carrier density, the electron mobility is determined from µ " 1 neρxx , which result is plotted in Fig. 5.2.b. We obtain a mobility µ = 160.000 cm ´2V ´1s ´1 at n = 2¨10 11 cm ´2, which is much higher than the value of 3760 cm ´2V ´1s ´1 measured in suspended graphene used in the previous EDMR experiment in graphene [START_REF] Sichau | Resonance Microwave Measurements of an Intrinsic Spin-Orbit Coupling Gap in Graphene: A Possible Indication of a Topological State[END_REF]. , where the magnetic length is given by B " a {eB. This cyclotron energy is two orders of magnitude larger than for 2D electron gas with standard parabolic dispersion relation. This makes possible to observe a quantum Hall effect at room temperature in graphene [START_REF] Novoselov | Room-temperature quantum Hall effect in graphene[END_REF][START_REF] Neto | The electronic properties of graphene[END_REF].

Following [START_REF] Goerbig | Electronic properties of graphene in a strong magnetic field[END_REF], the energies of Landau levels are:

E n " ˘ ω c ? n (5.1)
where n is the Landau Level number, '+' is for the conduction band, and '-' is for the valence band. From this formula, one can identify the Landau levels in the experimental data shown in Fig. 5.3.

For a Fermi velocity v F « 10 6 ms ´1 and B = 0.6 T, one finds a cyclotron energy ω c « 28 meV. To understand 

Graphene in RF field

In previously published papers on the EDMR detection of the spin resonance in graphene, the RF field was always applied to the samples by an antenna [START_REF] Mani | Observation of Resistively Detected Hole Spin Resonance and Zero-field Pseudo-spin Splitting in Epitaxial Graphene[END_REF][START_REF] Lyon | Probing Electron Spin Resonance in Monolayer Graphene[END_REF][START_REF] Sichau | Resonance Microwave Measurements of an Intrinsic Spin-Orbit Coupling Gap in Graphene: A Possible Indication of a Topological State[END_REF][START_REF] Prada | Dirac imprints on the g-factor anisotropy in graphene[END_REF]. In our experiment, we will apply the microwave signal through a strip-line electrode located below the sample. A described in Section 2.3, we used two configurations.

In the first one, the microwave signal is applied directly to an U-shaped stripline located below the sample siliconchip holder, that is, below the backgate electrode. In this configuration, one semi-rigid coaxial cable is used to apply the microwave signal and one standard cable is used to apply the DC voltage to the graphite backgate of the sample.

In the second configuration, the microwave signal is applied to an I-shape stripline located below the sample, the stripline is wire-bonded to the backgate electrode of the sample. A Bias-Tee is employed to apply both the DC voltage and the microwave signal to the stripline connected to the gate electrode.

For sample 1, only the first configuration was employed. Both configurations were employed for sample 2, but no major difference is observed in the experimental data for the two configurations. For sample 3, only the second configuration was employed.

For a simple antenna, as used in past groups [START_REF] Mani | Observation of Resistively Detected Hole Spin Resonance and Zero-field Pseudo-spin Splitting in Epitaxial Graphene[END_REF][START_REF] Lyon | Probing Electron Spin Resonance in Monolayer Graphene[END_REF][START_REF] Sichau | Resonance Microwave Measurements of an Intrinsic Spin-Orbit Coupling Gap in Graphene: A Possible Indication of a Topological State[END_REF][START_REF] Prada | Dirac imprints on the g-factor anisotropy in graphene[END_REF], we expect that only the microwave magnetic field will be acting on the sample. However, in our configurations using a stripline located below the sample, the microwave electric field will also play a major role by modulating the carrier density in the graphene monolayer. When the power of the RF source reaches 16 dBm, the resistance maximum splits into two peaks.

This phenomena is due to the modulation of the carrier density by the RF voltage as :

n e " C g |e| rV g `VRF cospω RF tqs (5.2)
From the gate voltage difference between the two peaks, one can estimate that the effective RF voltage applied on the graphehe sample is V RF « 0.7 V for a microwave power of 16 dBm.

To describe more precisely the effect of microwave power on the graphene resistance, we make a Talyor expansion of the resistance with respect to the gate voltage:

RpV g , V RF q " RpV g q `BRpV g q BV g V RF cospω RF tq `1 2 B 2 RpV g q BV 2 g V 2 RF cos 2 pω RF tq `... (5.3) 
where RpV g q is the graphene resistance without RF signal applied.

As only the time-average of the resistance is measured with the lock-in, using:

ż `inf 0 cos pω RF tq dt " 0 ż `inf 0 cos 2 pω RF tq dt " 1 2 
(5.4) we find:

∆R " RpV g , V RF q ´RpV g q " " 1 4

B 2 RpV g q BV 2 g V 2 RF `... (5.5) 
which shows that the difference of resistances ∆R " RpV g , V RF q ´RpV g q, measured at different RF powers, should be proportional to the second derivative of the resistance with respect to the gate voltage, B 2 R{BV 2 g . This is confirmed experimentally as shown Fig. 5.5. Panel a shows the resistance, with no RF power applied, as well as its first and second derivatives as a function of gate voltage. Fig. 5.5.b shows the second derivative B 2 R 0dbm {BV 2 g compared to the difference ∆R " R 0.5dbm ´R0dbm , the similarity between the two curves confirms our analysis that the main effect of the microwave signal on the resistance is a modulation of the carrier density by the electric field component.

This sensitivity of graphene resistance to the applied microwave power will be useful later as it will allow us to calibrate the effective microwave power reaching the sample. Indeed, the microwave transmission from the microwave source to the sample is very complicated. While we use a microwave semi-rigid cable from the microwave source down to the microwave connector on the sample holder, itself connected to the stripline, the transmission from the stripline to the graphene is not adapted for RF frequencies, which makes the transmission frequency 

Spin resonance in graphene

Perpendicular magnetic field

To search for the spin resonance, we set the gate voltage at V CN P and apply a constant microwave signal at fixed frequency and power, then, the resistance is measured as a function of the amplitude of the magnetic field in the range of [ -0.6 : 0.6 ] T. Fig. 5.7.a shows a measurement for a magnetic field applied perpendicular to sample. The magnetoresistance increases linearly with the magnetic field. This results from increasing resistance at V CN P due to the formation of the first Landau level, as seen earlier in Fig. 5.3. On this linear magnetoresistance, we also see slight deviations, indicated by arrows on the figure. To see this more precisely, we remove the background magnetoresistance with a 3 rd order polynomial fit and plot the result on Fig. 5.7.b. From this plot, one can locate more precisely the peaks and we find that they disperse with RF frequency, following the spin resonance condition for free electrons hν RF " gµ B B res . This is our first observation of the spin resonance in graphene. We extract the g-factor value g K = 2.05 in perpendicular magnetic field.

While we managed to observe the spin signal in perpendicular magnetic field, this experiment is made complicated by the formation of the Landau levels. In particular, we found that the Landau levels depend, obviously, on the magnetic field but also on the microwave power as shown in Fig. 5.8. This figure shows the resistance as a function of gate voltage and increasing RF power, for a constant perpendicular magnetic field of 0.65 T. At near zero RF power (-15 dBm), the resistance shows three Landau levels as a function of gate voltage. Upon increasing the RF power, the n=˘1 Landau levels disappear and the amplitude of the Landau level n=0 increases and shift to higher gate voltage. It seems that the two lateral Landau levels merge with the central one. Currently, this behavior is not understood but the effect is likely related to the shift of the Fermi energy induced by the microwave signal. As we have seen in Section 5.3, for a magnetic field of 0.6 T, the cyclotron energy is about 29 meV. Clearly, the photon energy of the microwave signal is much too small (hν=41 µeV) to induce transitions between Landau levels. However, we have seen in Section 5.4 that the microwave signal modulates the carrier density at RF frequency. From the splitting of the resistance peak at V CN P , Fig. 5.4, one can see that an applied microwave power of 16 dBm leads to ∆V « 1V . Knowing the capacitance between the gate and the graphene, this means that the RF electric modulates the carrier density by an amount of 5.5 10 11 cm ´2. Using the relation between the Fermi energy and the carrier density [START_REF] Goerbig | Electronic properties of graphene in a strong magnetic field[END_REF], E F " v F ? πn, one obtains a shift of the Fermi energy about 86 meV, larger than the energy separation between Landau levels. This means that at high RF power, transport properties result from an average on multiple Landau levels. Why this averaging leads to a suppression of lateral n=˘1 Landau levels and an enhancement of the amplitude of the n=0 level is not yet understood. 

Parallel magnetic field

To get rid of the orbital effects, we decided to measure the magnetoresistance as a function of in-plane magnetic field.

As shown Fig. 5.9.a, the magnetoresistance, measured in parallel magnetic field and under microwave irradiation, is weak and odd with respect to the sign of magnetic field. This suggests that this residual magnetoresistance signal results from a Hall effect. Note that while the electrical contacts are aligned nominally parallel to the injected current, because of the misalignement between the contacts and the quasi-ballistic transport properties of this sample, some degree of mixing between the longitudinal and transverse components are to be expected.

In addition, one can clearly see a resistance jump/peak that change with the microwave frequency. The data plotted in Fig. 5.9.b after subtraction of a linear background shows an unambiguous spin signal.

From now on, the essential question that we want to answer about this spin-resonant signal is whether it results from a "power effect" or a "spintronic effect".

In the former case, because the graphene resistance depends on the microwave power, as discussed Section 5.4, we expect the resistance to change if a fraction of the microwave signal is absorbed by the spin system.

In the latter case, because spin-orbit coupling leads to various spin dependent magnetoresistance and Hall effects induced by spin-dependent phenomena (Dyakonov-Perel or Elliot-Yaffet), at spin resonance, the change in the orientation of the spin should affect these spin-dependent scattering phenomena and could produce the observed signal.

In the case of power detection mode, one expects the lineshape of the spin resonance be symmetric about the resonance frequency. Instead, as already visible in Fig. 5.9b, the lineshape changes from symmetric peaks to assymetric steps as the frequency changes. This is the first indication that the observed signal may result from a Because the effective microwave amplitude depends on the frequency, we performed an experiment where we measured the magnetoresistance as a function of magnetic field and frequency, where, for each frequency, we adjusted the RF source power to get the same resistance at the Dirac point, and so the same effective RF power irradiating the graphene sample. Using this method, Fig. 5.6.a shows ∆R, obtained by subtracting a background from the raw data as in Fig. 5.9.b, as a function of a magnetic field and RF frequency for sample 2. This plot shows the linear dispersion of the resonant peak, from which we extract precisely the g-factor g {{ " 2.1. On panel b, one can see selected curves at different frequencies showing the change in the lineshape. On the color plot, the changes in lineshape with frequency appears as a beating color pattern, as indicated by arrows. As we have seen in the previous chapter on MoTe 2 , the g-factor becomes anisotropic in presence of spin-orbit coupling. In the case of graphene, this anisotropy is expected to be very weak but nevertheless interesting to measure, given that this weak spin-orbit coupling may be responsible for the Kane and Mele spin-gap and the apparition of a topological phase. Table 5.2 summarize our results, which are compared with those of Prada et al.

[147] measured on a large (1960 ˆ66 µm) CVD grown graphene sample deposited on SiO 2 .

We find a weak anisotropy ∆g " g zz ´gxx ă 0.05, smaller than the values observed by Prada et al [START_REF] Prada | Dirac imprints on the g-factor anisotropy in graphene[END_REF].

A weak anistropy is consistent with a weak spin-orbit coupling and the absence of the second resonant line due to Kane-Mele gap. However, a large anisotropy is consistent with a large spin-orbit coupling and the presence to two resonant lines, as observed in CVD-grown, SiO 2 -supported, graphene sample in R. Blick's.

Thus, the differences observed between our measurements and those of R. Blick's group, are likely related to the substrate, SiO 2 in their case, hBN in our case.

Power dependence of the resonance linewidth

As we have seen in Chapter 2, the spin lifetime can be extracted from the linewidth of the resonance, following Eq. (2.24). In standard ESR experiment, the amplitude of the ESR signal and the linewidth are usually measured as a function of microwave power to identify, if possible, the saturation effect. At low microwave power, the amplitude increases linearly with the power and the linewidth is constant; at high microwave power, the amplitude becomes constant, i.e. saturated, and the linewidth increases with the microwave power. This is an interesting observation as most spintronic effects such as a spin-dependent magnetoresistance or spin Hall effect are expected to be proportional to the resistance. Because some mixing between the longitudinal and transverse components are to be expected, we cannot tell, at this point, whether the spin-signal results from the longitudinal (magnetoresistance) or the transverse (Hall) component.

Theoretical modelling

Effective model

To describe the spin-resonant signal, we are going to write down a simple effective model. The starting point is Eq. ( 5.3) which is recalled here for convenience:

RpV g , V RF q " RpV g q `BRpV g q BV g V RF cospω RF tq `1 2 B 2 RpV g q BV 2 g V 2 RF cos 2 pω RF tq `... (5.8) 
where RpV g q is the graphene resistance without RF signal applied.

In this model, we consider the microwave signal only through the effects of terms proportional to derivative of the resistance with respect to the gate voltage. The following analysis has been done on Sample 2 where we checked that the magnetoresistance can indeed be described by this Taylor expansion as discussed in Section 5.4 and that other effects such as heating are negligeable.

To measure the sample resistance, a current I m cospω m tq oscillating at low frequency ω m " 77Hz is injected into the sample. In addition, it is not excluded that the microwave signal produces a microwave current I RF cospω RF tq into the sample. The voltage produced will be given by RpV g , V RF qrI m cospω m tq`I RF cospω RF tqs but only the signal at frequency ω m will be detected by the lock-in.

Thus, the measured resistance signal will be given by: R " RpV g q `25P e B 2 RpV g q BV 2 g (5.9)

where we neglected higher order terms and we use:

25P e " 1 2 
ż `inf 0 V 2 RF cos 2 pω RF tq dt (5.10)
To express the two effects, power absorption vs spin-dependent scattering, by which the spin resonance can induce a change of resistance, we introduce the coefficient α, which describe the second-order change in magnetoresistance at spin resonance :

B 2 R BV 2 g Ñ B 2 R BV 2 g +α B 2 R
BV 2 g and the coefficient β, which describe the amount of power absorbed by the spin system: P e Ñ P e ´β.
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Making these replacements into Eq. (5.9), we find that the change of resistance at resonance is given by:

∆R res " 25αP e B 2 RpV g q BV 2 g ´25β B 2 RpV g q BV 2 g (5.11)
where we assume α ăă 1.

One sees that both coefficients α and β contribute a signal proportional to the second derivative of resistance.

Assuming that one coefficient dominates over the second one, their value is given by either: as a function of gate voltage, where one can see that this ratio decreases toward zero at large gate voltage |V g | ąą V CN P . This behavior seems unlikely for the coefficient β. Indeed, the coefficient β is a power absorbed by the spin system and, with increasing gate voltage, should be either constant, if the number of spins is fixed as if the spin signal results from impurities, or increase with the gate voltage, if the spin signal results from charge carriers whose density increases with the gate voltage. In contrast, the possibility that the magnetoresistance coefficient α decreases with increasing gate voltage, i.e. increasing Fermi energy, seems 5.6. THEORETICAL MODELLING 105 plausible. This is the third argument indicating that spin-dependent scattering phenomena are responsible for the resistive detection of spin resonance.

α « 0 and β " ´1 25 ∆R res B 2 R BV 2 g or α " 1 25P e ∆R res

Spintronic model

To substantiate our hypothesis that the magnetoresistance coeffcient α may be responsible of the observed spinresonant signal, we show here that a simple spintronic model can describe the experimental data.

To establish a relation for α, we are looking for a transverse (longitudinal) magnetoresistance signal that should be proportional to odd (even) power of the magnetization M(t), to respect the transformation properties of these coefficients under time-reversal symmetry.

∆R9M ptqR (Transverse magnetoresistance)

∆R9M 2 ptqR (Longitudinal magnetoresistance)
In a Fermi liquid, the magnetization amplitude is given by: M 0 " µ B pn Ó ´nÒ q (5.13)

where n Ò (n Ó ) is the carrier density with spin +1/2 (-1/2). From the relation between the Fermi energy and the carrier density : E F " v F ? πn [START_REF] Goerbig | Electronic properties of graphene in a strong magnetic field[END_REF], one gets the magnetization as :

M 0 " 4gµ 2 B BE F π 2 v 2 F (5.14)
Applying the microwave signal will lead to a precession of the magnetization around the quantization axis. If the magnetic field is oriented in-plane, the precession of the magnetization will produce an out-of-plane component M z ptq oscillating at microwave frequency, as illustrated in Fig. 5.15.a. In presence of spin-orbit coupling, the outof-plane component will produce a spin-dependent voltage signal. The measured signal will be given by the time average :

∆R res R 9 ż t M z ptqdt " ż t rM 0 sin pθq cospω RF tqs ν dt (5.15)
where ν " 1p2q for the transverse (longitudinal) component. θ is the angle azimuthal angle between the quantization axis and the magnetization M 0 , which is non zero only at resonance. It is clear that this integral is non zero for ν " 2, however, this simple model is not sufficient to explain the experimental data. First, this magnetoresistif term would exist for both the resistance and the second derivative of the resistance, in contradiction with the experimental data, which is found to be proportional only to the second derivative. Second, this does not explain the change in the lineshape of the resonant line with the frequency.

For those reasons, we propose another model where the measured signal results from the simultaneous modulation of the magnetization amplitude M 0 and its precession about the quantization axis.

While the microwave signal induces transitions between spin levels, it also induces, simultaneously, a modulation of the carrier density δn RF ptq " CV RF cos pω RF tq and so a modulation of the Fermi energy. From Eq. (5.14), this leads to a modulation of the magnetization amplitude M 0 , which we calculate numerically and show Fig. One cannot demonstrate analytically that this model should give a spin-signal proportional to the second derivative of the resistance as observed experimentally, however, in this model, the amplitude ∆R res is proportional to the fraction of the density of states modulated by V RF and so to the fraction of sample resistance modulated by V RF .

In the Taylor development of the resistance with respect to the gate voltage Eq. (5.8), only the second order term is proportional to V RF , thus our model is consistent with the experimental observation.

To analyze further the effect of a modulating amplitude of the magnetization, we replace the static M 0 in Eq. (5.15) by an oscillating magnetization M 0 ptq « cospω RF tq:

∆R res R 0 9 ż t rM 0 cospω RF tq sin pθq cospω RF t `φpHq `φ0 qs dt (5.16)
where we introduced an arbitrary phase shift φ 0 between the terms M 0 cospω RF tq and cospω RF t `φpHq `φ0 q.

As the physical phenomena producing these two oscillating terms are different, the first one is due to a modulation of the carrier density by the microwave electric field, the second one is due to transitions between spin-levels induced by the microwave photons, this phase shift is unknown and could change in a complicate way with the frequency.

Effects of a perpendicular electric field

Dirac peak as a function of electric field

In the previous sections, we have seen how the microwave electric field modulates the carrier density and so the magnetization amplitude M 0 ptq. However, we did not discuss yet how the microwave signal is coupled to the spins and drive them into resonance. In standard ESR, the main driving force is the coupling with the magnetic field through the relation : gµ B B 1 cospω RF tq, where B 1 is the amplitude of the microwave magnetic field.

However, in our particular experiment, because the sample is not located in a microwave cavity, we expect this coupling to be weak. Furthermore, we measured sample 2 for two configurations of the microwave circuit. In a first configuration, the microwave stripline below the graphene sample had an U shape connected on one side to the microwave source and on the other side to a 50 Ω short. In this configuration, we expect to have a microwave current flowing in the U circuit and so a large microwave magnetic field. In a second configuration, the microwave stripline has an I shape and was connected only on one side to the microwave source. In this configuration, no microwave current is expected and so no microwave magnetic field. Yet, in both configurations, we observed the spin-resonant signal with similar amplitude. For this reason, we explored the possibility that the spins are actually coupled to the electric field component of the microwave signal through the Rashba coefficient.

To that end, we performed measurements as a function of the electric field at constant carrier concentration. For sample 1, two gates were located on the top and on the bottom sides of an encapsulated graphene as illus- 

Conclusion and perspectives

In this chapter, we have shown that it is possible to detect the spin resonance through a measurement of the encapsulated in hBN graphene resistance. The change of sample resistance under microwave irradiation even in non-resonant conditions complicated the identification of the mechanism enabling the spin resonance detection.

Most mechanisms we can think of can be classified into two categories.

The first one is the power detection mode : at spin resonance, the spin system absorbs a fraction β of the The second one is spin dependent transport: at spin resonance, the spin orientation changes with respect to the quantization axis imposed by the static magnetic field. This leads to a change in the longitudinal or transverse magnetoresistance described by the coefficient α, which results from the spin-orbit coupling that enable spin-dependent scattering phenomena such as the Dyakonov-Perel or Elliot-Yaffet effects.

Several evidences indicate that the spin resonant signal results from such spin-dependent scattering effects.

• If the amplitude of the spin-resonant signal ∆R res is interpreted as a consequence of the absorption of microwave power by the spin-system, we find that the absorbed power increases faster than the square of RF frequency, as shown Fig. 5.12. This implies that others effects such as spin-dependent scattering should contribute to ∆R res .

• We have seen that the ratio ∆R res

B 2 R BV 2 g
should reflect one of the coefficients α or β. The evolution of this ratio with gate voltage, observed to decrease at high gate voltage V g ąą V CN P , would be more appropriate for the evolution of the spintronic coefficient α. With increasing gate voltage, the coefficient β is expected to either remain constant or increase.

• We have found that the lineshape of the resonance changes quickly with the frequency. It is difficult to explain such a behavior in the power detection mode. In this mode, one would expect the lineshape to be a symmetric peak centered on the resonance frequency.

• We have found that a simple model relating the spin-resonant signal ∆R res to the time average of the perpendicular magnetization component xM z ptqy " M 0 ptq cospω RF tq, where the magnetization amplitude M 0 ptq is also modulated by the electric component of the microwave signal, can explain two salient features of the experimental data : i.e. the changing lineshape with frequency and the maximal sensitivity for the Fermi level at the Dirac point. This model also implies that the observed spin-resonant signal arises from the spin of the conduction electrons.

Note that we have not shown yet that this spin dependent model can explain the evolution of the amplitude of the resonant signal as function of gave voltage as ∆R res 9 B 2 R BV 2

g

. This remains to be studied.

Thus, we can conclude that even in a material with weak spin-orbit coupling such as graphene, it is possible to observe a spin-resonant signal generated by spin-dependent scattering effects. This is consistent with several works indicating that the spin relaxation in graphene, measured through Hanle spin-precession analysis of graphene incorporated into spin-valves, results from Elliot-Yafet and Dyakonov-Perel spin-scattering [START_REF] Han | Spin relaxation in single-layer and bilayer graphene[END_REF][START_REF] Jo | Spin relaxation properties in graphene due to its linear dispersion[END_REF][START_REF] Yang | Observation of long spin-relaxation times in bilayer graphene at room temperature[END_REF]. Actually, the details mechanism or spin-relaxation in graphene remains debated [START_REF] Kurpas | Spin-orbit coupling in elemental two-dimensional materials[END_REF][START_REF] Avsar | Colloquium: Spintronics in graphene and other two-dimensional materials[END_REF]. For instance, different spin-relaxation 5.8. CONCLUSION AND PERSPECTIVES 113 times have been measured in graphene monolayer and bilayers [START_REF] Han | Spin relaxation in single-layer and bilayer graphene[END_REF]. In graphene monolayers, experimental data indicate that the Elliot-Yafet mechanism dominates to give a spin relaxation time about 1 ns; in graphene bilayer, the Dyakonov-Perel seems to dominate and give a spin relaxation time about 10 ns.

In the previous works [START_REF] Mani | Observation of Resistively Detected Hole Spin Resonance and Zero-field Pseudo-spin Splitting in Epitaxial Graphene[END_REF][START_REF] Lyon | Probing Electron Spin Resonance in Monolayer Graphene[END_REF][START_REF] Sichau | Resonance Microwave Measurements of an Intrinsic Spin-Orbit Coupling Gap in Graphene: A Possible Indication of a Topological State[END_REF][START_REF] Prada | Dirac imprints on the g-factor anisotropy in graphene[END_REF], dedicated to electrical detection of spin-resonance in graphene, a magnetoresistive signal under MW radiation provided two resonant lines. The origin of the second resonant peak (shifted from the prominent signal at g = 2) has been interpreted as resulting from intrinsic spin-orbit coupling that opens a gap at Dirac point. This second peak correspond to a gap about 40 µeV , which is the order of magnitude expected for the Kane and Mele ∆ KM term (see Section 3.2). In our experiment in hBN encapsulated graphene devices, we did not see this second ESR signal, this could results from the closing of the Kane and Mele gap by an extrinsic spin-orbit coupling term such as Rashba coupling which closes the gap when (∆ BR ą ∆ KM ). The origin of this Rashba term could result from the interaction at interfaces between graphene and hBN crystals, which breaks inversion symmetry.

In this context, it would be interesting to extend EDMR studies to graphene bilayers. Unlike MoTe 2 , graphene monolayer samples of high quality and stable in ambient conditions can be fabricated. Previous experimental works by other groups have shown that the spin resonance of conduction electrons in graphene could be measured electrically [START_REF] Sichau | Resonance Microwave Measurements of an Intrinsic Spin-Orbit Coupling Gap in Graphene: A Possible Indication of a Topological State[END_REF]. Their measurements were realized on large, CVD-grown, graphene samples, where two resonant lines were observed. The presence of two resonant lines was interpreted as a signature of the edge-states expected from the Kane-Mele model. Because of our interest in the spin properties of 2D layered materials, we decided to explore EDMR in high quality hBN encapsulated graphene. We observed the spinresonant signal in three distinct samples with slightly different configurations for the electrical contacts, however, we only observed a single resonant line with g-factor close to the free electron value. This raises the question of the origin of the spins and the physical mechanism at the origin of the spin-resonant signal. Indeed, we found that the graphene resistance changes with microwave irradiation even in non-resonant conditions, which complicated the identification of the mechanism enabling spin resonance detection. However, a careful analysis of the data shows that the spin-resonant signal originates from a spin-dependent magnetoresistance, which is the likely consequence of spin-dependent scattering processes such as Elliot-Yaffet scattering. I proposed a simple model relating the spinresonant signal to the time average of the perpendicular magnetization component xM z y. This model shows that the spin resonant signal results from the simultaneous precession of the spin about its quantization axis and the microwave modulation of the carrier density at the Dirac point. This conclusion make us more confident that the spin signal originates from the conduction electrons of graphene and not from impurities in the graphene or even in the substrate. Thus, we confirm the previous observation from Blick's group that the spin resonance of conduction electrons can be detected electrically in graphene. From the linewidth of the resonance, we extracted a spin coherence time about 1 ns, which is consistent with Hanle analysis of graphene-based spin valves. It is remarkable to notice that the spin coherence of the conduction electrons in graphene, a material with very weak spin-orbit coupling, is 50 times smaller than the spin coherence time measured for the Br dopant in 2H-MoTe 2 , despite the very strong spin-orbit coupling in the TMDCs. This illustrates the coherence time protecting properties of the spin-valley locking in 2H-MoTe 2 . In contrast to the results obtained in Blick's group, only a single spin resonance is observed with no sign of the Kane-Mele spin-orbit gap. The origin of this discrepancy is probably related to the substrate used in the two experiments and remains to be elucidated. 
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and the conduction band: When the hole PPC front covers an hBN flake, the polymer retracts. After the picking-up of the hBN, the flake is analyzed by the microscope to be sure of the integrity of the crystal. The further step is a stamping of the hBN with the graphene flake. The procedure is the same, but the alignment of the hBN on the top of the graphene is crucial, because the whole grahene's layer have to be covered by the top hBN. The last step is the stamping of the graphene/hBN stack on the bottom hBN crystal, which have to be bigger then the top hBN. In the end, the PPC with the whole stack is melted at 180 ˝C. The final graphene encapsulated in hBN stack can have some bubbles, captured between layers. At high temperatures around 90 ˝C the stack deposition on the surface can favor a bubble's mobility and its migration to edges. The melted polymer is removed by a thermal annealing of the substrate in oven at 350 ˝C under high vacuum condition.
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The second part of the stack, composed of graphite and hBN is prepared in the same way. The graphite/hBN stack is annealed on the special for measurements SiO 2 /Si substrate with printed electrical contacts. The hBN/Gr/hBN
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 222 . EXPERIMENTAL TECHNIQUES coordinates of the tip constructs a 2D topography of the surface.

Figure 2 . 1 :

 21 Figure 2.1: Schematic illustration of STM principle Left: Sketch of an STM microscope. Right: Quantum tunneling effect.

  are the Fermi distributions of the left (L) and right (R) electrodes, respectively. µ LpRq is Fermi energy of the left and right electrodes and V Bias " µL´µR e is the voltage polarization of the junction. ψ R and ψ L are workfunctions of the left and right electrodes.

Fig. 2 .

 2 2 shows a schematic representation of the ESR set-up.

Figure 2 . 2 :

 22 Figure 2.2: ESR set-up Schematic representation of the ESR. Assembly of the cryostat / cavity in between the two magnet poles of the ESR. Adapted from [24].

Figure 2 . 3 :

 23 Figure 2.3: Schematic representation of the cryostat Extracted from [24].

Figure 2 . 4 :

 24 Figure 2.4: ESR resonance condition a For an isolated spin S = 1. b The spin S = 1 in a crystal field. c The spin S = 1/2 submitted to an hyperfin interaction with a nuclear spin I = 1.

2. 3 .

 3 ELECTRICAL DETECTION OF MAGNETIC RESONANCE 31 resistance.

Figure 2 . 5 :

 25 Figure 2.5: EDMR set-up a. Scheme of the experimental set up. b. Sample holder with RF contacts.

3. 1 .

 1 VOCABULARY OF GROUP AND REPRESENTATION THEORY 35 the two irreps (E g and T 2g ) of the point-group O h , a well known result in condensed matter physics. We have just seen that an irrep i Γ of a group G can restrict to a representation i Γ Ó H of a subgroup H. The inverse process, called induced representation, is also possible. An irrep i Γ of the subgroup H can induce a representation i Γ Ò G of the group G. Restriction and induction are typically used to construct molecular orbital diagrams where chemical bonds have to respect the molecule symmetry. Within a molecule such as CH 3 , [32] p. 75 -76, with point-group C 3v for the central carbon atom and point-group C s for the hydrogen atoms, the molecular orbital diagram is obtained following these steps : 1. For the H site, find the representation "0 Γ Ó C s of the point-group C s obtained by restriction of the irrep "0 Γ corresponding to the s orbital of Hydrogen. Then, find the decomposition of the restricted representation into a tensor sum of irreps Γi of the point-group C s .

  Γi found in step 1, find the representation Γi Ò C 3v of the point-group C 3v induced by the irrep Γi of the point-group C s . Then, find the decomposition of these induced representations into tensor sums of irreps Γ i of the point-group C 3v .

2 2s 2

 2 2p 2 configuration. The 4 unpaired valence electrons are populating the four quantum states |2sy,|2p x y,|2p y y,|2p z y. As shown in Fig. 3.1, the |2sy, |2p x y and |2p y y orbitals form σ states through sp 2 hybridization. They form occupied and empty band with a large gap. They lie in the px, yq plane and form strong covalent bonds. The last out-of-plane |2p z y orbital remains unhybridized, they form π bonds and are responsible for the peculiar band structure at the Fermi level of graphene.

Figure 3 . 1 :

 31 Figure 3.1: Molecular diagram of an unsaturated c-c bound a. Orbital representation. b. Diagram.

Figure 3 . 2 : 37 ( a 1 ,

 32371 Figure 3.2: Crystal structure of graphene a. Honeycomb lattice. b. The first Brillouin zone.

Figure 3 . 3 :

 33 Figure 3.3: Electronic band structure of the Graphene Figure adopted from [36].

  This shows that the dispersion relation around the Fermi level is linear in energy. The valence bands and conduction bands are formed by two sets of 6 cones located symmetrically with respect to the constant energy plane where the tips of the cones touch at the Dirac point, as shown in Fig.3.3. The Dirac points coincide with inequivalent K, K'-points in the reciprocal space, that automatically attributes to the Dirac points the property of the triangular Bravais lattice. The most unusual properties of graphene come from these Dirac cones formed at K-points in the reciprocal space. The linear dispersion is described by a Dirac equation implying that the quasiparticles are mass-less. In undoped graphene, the Fermi energy position coincides with the energy of the Dirac points. The absence of any gap between the conduction and valence bands makes graphene a semi-metal.

Figure 3 . 4 :

 34 Figure 3.4: Pseudospin rotation in reciprocal space

Figure 3 . 5 :

 35 Figure 3.5: Klein tunneling Left: Real space visualization of the scattering of a quasiparticle at potential step.Right. Momentum space visualization. A quasi-electron coming from the left with momentum p on the green branch of the relation dispersion has pseudospin `σ. At the potential step, for the quasi-electron to be retro-reflected would require that it transfers to a state on the other dispersion relation (blue line), which would imply a value change of the pseudospin, which is not possible, at least with disorder potential that do not mix states with different pseudospins. So, as the quasi-electron can only go right into the p-doped region, to conserve pseudospin, it will be scattered into a state with momentum ´k. In the p-doped region, the group-velocities are reversed with respect to the n-doped region. Consequently, the ´k hole is actually moving right.

  [START_REF] Binnig | Scanning tunneling microscopy-from birth to adolescence[END_REF]

  )

Figure 3 . 6 :

 36 Figure 3.6: Calculated band structure at the K-point a. Without spin-orbit coupling. b. Only Kane and Mele spinorbit coupling opens a gap between CB and VB. c-d. The addition of Bychkov-Rashba lifts the spin-degeneracy and close the Kane-Mele gap.

Fig. 3 .

 3 Fig. 3.6 shows different band structures resulting from the competition between the Kane-Mele spin-orbit gap and Bychkov-Rashba energy [41]. The Kane-Mele ∆ KM opens a gap between the conduction and valence bands, however, maintains spin degeneracy of the bands. The Bychkov-Rashba ∆ BR term removes the spin degeneracy of the bands and tends to close the Kane-Mele spin-orbit gap.

Fig. 3 .

 3 Fig. 3.7.b, TMDCs can be found either in the 1T structure, with the cation octahedrally coordinated by the chalcogen anions, or in the 2H structure, with trigonal-prismatic coordination of the metal cation by the chalcogen anions. Structurally, the MX 2 can be regarded as strongly bonded 2D S-Mo-S layers that are loosely coupled to one another by Van der Waals interaction.

Figure 3 . 7 :Figure 3 . 8 :

 3738 Figure 3.7: Description of chemical composition and coordination symmetry a. Periodic table. b. Hexagonal and trigonal polytypes.

  3.9 for one monolayer. At the Γ-point, the top of the valence band has contributions from Mo d z 2 and chalcogen p z bonding state, while the bottom of the conduction band has contributions from Mo d x 2 ´y2 and d xy orbitals, which is consistent with the molecular orbital diagram Fig. 3.9.a. At the K-point, the contributions reverse their order. The major contributions to the valence band comes from Mo d x 2 ´y2 and d xy orbitals, while the major contribution to the conduction band comes from Mo d z 2 orbital. Finally, at the Q-point, the major contributions to the bottom of the conduction band comes from Mo d x 2 ´y2

3. 3 . 47 Figure 3 . 9 :

 34739 Figure 3.9: MoX 2 Band structure a. Molecular diagram for MoX 2 , adapted from Ref. [42], showing the transformation properties of the bands according to the irreps of the point-group D 3h . X = S, Se, Te, and n = 3, 4, 5, respectively b. DFT calculations of the band structure of 2H-MoS 2 projected onto the components of the d-orbital of Mo and p-orbital of X, extracted from Ref. [43].

Fig. 3 .

 3 11 that reflects the band structure of one monolayer of MX 2 . It shows 6 valleys : 3 at the K-point, 3 at the K'-point, with opposite spin-polarization, up and down spins are shown by blue and red colors, respectively. Increasing the number of monolayers changes significantly the relative positions of the conduction and valence bands. Fig. 3.12 shows the calculated band structure of 2H-MoS 2 as a function of number of layers, which is similar 2H-MoSe 2 and 2H-MoTe 2 . The monolayer shows a direct band-gap at the K-point while bulk MoX 2 becomes an indirect band-gap semiconductor, with the top of the valence band located at the Γ-point and the bottom of the

Figure 3 . 11 : 2 Figure 3 . 12 :

 3112312 Figure 3.11: 3D band structure of bulk 2H-MoTe 2

Figure 3 . 13 :

 313 Figure 3.13: Electron wave function in a solid a. Extended electron wave function. b. Localized electron wave function.

Figure 3 . 14 :

 314 Figure 3.14: Transport by tunnel hops a. Illustration of wave packet randomly distributed in real space. b. Tunnel hopping electrons between wave packets. c. Resistance as a function of temperature shown on an Arrhenius plot. Upon decreasing the temperature, we cross from the activated regime to the Mott regime to the Efros-Shklovskii regime. d. The variable range hopping laws.
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 3 ELECTRONIC PROPERTIES OF BR-DOPED 2H-MOTE 2 59

Figure 4 . 1 :Fig. 4 .

 414 Figure 4.1: Transport properties of undoped and Br-doped 2H-MoTe 2 a. Longitudinal resistivity as a function of the temperature. The arrow in the inset indicates the temperature range where the resistivity decreases with temperature. b. Carrier density as a function of the temperature.

Figure 4 . 2 : 61 Γ

 4261 Figure 4.2: ARPES in Br-doped 2H-MoTe 2 Top: Angle-Resolved Photoelectron Spectroscopy in the Γ-K direction measured at T= 12 K. As the band gap of MoTe 2 is about 1eV, one can clearly see that the Fermi level is just at the bottom of the conduction band. Unfortunately, the carrier concentration is too small for the electron pocket to appear in the photoemission spectrum. Bottom: Constant energy map at E = -1.2 eV.

Figure 4 . 3 :

 43 Figure 4.3: Transport laws in Br-doped 2H-MoTe 2

2 .

 2 Fig. 4.4.a shows a plot of the first-derivative ESR-signal as a function of the amplitude of the magnetic field and for different temperatures from 300 K down to 6 K.

Fig. 4 .Figure 4 . 4 :

 444 Fig. 4.5.a shows the ESR spectra for two orientations of the sample with respect to the applied magnetic field. In this figure, as well as in Fig. 4.4, a closer look shows that the spectral line is constituted of 4 peaks, which indicates a coupling of the electronic spin with the nuclear spin. The four peaks correspond to the spin multiplicity 2I+1 of the nuclear spin, which implies that the nuclear spin I = 3/2. Among all elements (Mo, Te, Br) in this Br-doped

Figure 4 . 5 : 64 CHAPTER 4 .

 45644 Figure 4.5: ESR signal of Br-dopant a. ESR spectrum, measured at 8 K for θ = 0 ˝(green) and θ = 90 ˝(blue). b. Spin energy levels. The Zeeman term ĤZ " µ B ˆ S Ø g ˆ B splits the spin states |S, Iy into |´1{2, Iy and |`1{2, Iy, the

Figure 4 . 6 :Fig. 4 .

 464 Figure 4.6: Transport laws and ESR for Br dopant a. Resistivity (blue line) and ESR linewidth (red line) as a function of reciprocal temperature. b. Resistivity (blue line) and ESR amplitude (red line) as a function of reciprocal temperature.

( 4 . 3 )= 3 . 4 ( 2 . 8 )

 433428 for the ESR linewidth (panel a) and ESR amplitude (panel b), we find that the relation: ∆H res " exp ´p´E ESR 0 {k B T q 1{3 ¯(4.8) with E ESR 0 meV provides a good fit of the spin resonance linewidth (amplitude) in the hopping regime.

Q

  obtained above, we can fit the linewidth of the individual line and obtain the spin lifetime from Eq. (4.9), which is shown as a function of reciprocal temperature in Fig.4.7b. One finds that the spin lifetime reaches 60 ns at 8 K. This value is comparable to highest values of 100 ns for conduction electrons measured by photo-luminescent in MoSe 2[START_REF] Ersfeld | Spin States Protected from Intrinsic Electron-Phonon Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe 2[END_REF].

4. 4 . 67 Figure 4 . 7 :

 46747 Figure 4.7: Linewidth from fit of ESR signal a. Fit line is composed of two contributions with equal weight: Lorentzian lineshape of a system S=1/2 and I=3/2 and Gaussian lineshape of a system with S=1/2. The Gaussian contribution serves to adjust a global background of ESR signal. b. A spin coherence time of fine Lorentzian contribution, calculated with Eq. (4.9).

Figure 4 . 8 : 68 CHAPTER 4 .

 48684 Figure 4.8: Transport laws and ESR for Mo Te antisite a. Resistivity and ESR linewidth as a function of reciprocal temperature. b. Resistivity and ESR amplitude as a function of reciprocal temperature.

  of state (LDOS). LDOS measurements with atomic resolution is of particular interest for dopants in semiconductors because it can reveal in-gap states. The bulk 2H-MoTe 2 doped crystals were cleaved under UHV conditions to get clean surfaces free of atomic contamination. The samples were measured at T = 77 K in two microscopes: Joule-Thomson (JT) with Vasily Stolyarov (MIPT in Russia) and Omicron with STM team (C2N in Palaiseau).

4. 5 . 69 Figure 4 . 9 :

 56949 Figure 4.9: DC moment vs Magnetic field a. DC Moment measured at different temperatures for swept forward and backward magnetic field. b. DC moment measured at 2 K in low field range for swept forward and backward magnetic field. We do not see any open loop, which suggests the absence of magnetic order.

Fig. 4 .

 4 10 shows a topographic STM image of Te lattice of 2H-MoTe 2 . This highly corrugated Te-covered surface has hexagonal symmetry with Te-Te distance of a = 3.53 Å.

Figure 4 . 10 :

 410 Figure 4.10: Topographic STM image showing the hexagonal Te lattice V Bias = -1 V, I setpoint = 400 pA.

Fig. 4 .

 4 Fig. 4.11 shows STM topographic images containing randomly distributed various types of defects.

Figure 4 . 12 :

 412 Figure 4.12: STM topographies and 2D FFT maps a, d, and g. Topographies of V Mo (I setpoint = 400 pA), Br Te and Mo Te (I setpoint = 180 pA), respectively, measured at V Bias = -1 V (I setpoint = 400 pA), T = 77 K. The dashed lines indicate the profiles along which voltage-distance conductance maps are extracted and shown Fig. 4.14. b, e, and h. Corresponding fast Fourier Transform images. c and f. Schematic representation of the inter-valley mixing between the Q-points of the conduction band for non-magnetic c and magnetic defects d.

Fig. 4 .

 4 Fig.4.12 shows topographic images (V Bias = -1 V) on isolated point-defects and the corresponding 2D Fast Fourier Transforms (2D FFT). For each point-defect, one can identify in the 2D FFT spectrum, the six Bragg points corresponding to the Te lattice. These Bragg points, indicated by solid white circles, are the point of higher intensity for the V M o and Mo T e point-defects, however, they are barely visible for the Br dopant.

5 For

 5 each point-defect, we measured the differential conductance on the bias voltage range [-1.2, 0.15 ] V on a 250x250 grid for the two V M o vacancies and on a 200x200 grid for the Br T e dopant, providing 3D datasets as a function of the spatial coordinates (x,y) and bias voltage. The conductance maps and their corresponding 2D FFT maps are shown Fig. 4.13 at selected voltages [-1.15,-0.55,0.15] for V M o and at selected voltages [-1.1,-0.7,0.2]for Br T e . These voltages are selected to correspond to the valence band, the in-gap state and the conduction band, respectively. As for the topographic maps in Fig.4.12, we observe modulations of the density of states at the wavevectors q i . Conductance and 2D FFT maps are shown at additional voltages in Appendix E for the three types of defects.From these 3D datasets, one can extract the differential conductance as a function of voltage and distance along a profile running across the point-defect, shown Fig.4.14a,b, and c. The profiles are indicated as dashed-lines on the topographic images shown Fig.4.12. For each point-defect is also shown Fig.4.14d,e, and f the differential conductance measured on each point-defect. Each curve is obtained by averaging the spectra contained within a disk of 0.5 nm diameter centered on the point-defect. The spectra are compared to the one measured on bulk MoTe 2 surface, far from any point-defect.

  4.14b,e shows an in-gap state at « ´0.75 eV below the Fermi energy, near the valence band, and a shoulder exactly at zero bias. This state at zero bias must correspond to the doping level responsible for n-type doping of the material. This assignment is expected from the molecular orbital diagram Fig. 4.15.a and DFT calculations [99, 100, 101, 102, 103, 104]. The conductance maps Fig. 4.13b and profile Fig. 4.14b show that

Figure 4 . 13 :

 413 Figure 4.13: Conductance maps and 2D FFT maps a. V Mo : Conductance maps and corresponding 2D FFTs at bias voltages [-1.15,-0.55,0.15] V. b. Br Te : Conductance maps and corresponding 2D FFTs at bias voltages [-1.1,-0.7,0.2] V. The amplitude of the Fourier components shown in Fig. 4.14.g,h are obtained by averaging the spectra located within the white dashed circles centered on q i wave-vectors.

Figure 4 . 14 : 75 Figure 4 . 15 :

 41475415 Figure 4.14: Conductance spectrum across point-defects a, b and c. Energy-distance conductance maps measured along the profiles shown in Fig. 4.12 for the point-defects V M o , Br T e and Mo T e , respectively. d, e and f.The blue lines shows the differential conductance obtained by averaging the spectrum measured on a disk of 0.5 nm diameter centered on the point-defect. The dash black lines shows the differential conductance from the pristine sample, far from any defect. g and h. FFT amplitude of wavevectors q i normalized by the FFT amplitude at the Γ-point.

Figure 4 . 17 :

 417 Figure 4.17: Simulated density of a Br dopant Left: Real space images using the Bloch states xΨpr, Óq|Ψpr, Óqy (top) and Ψpr, Óq `Ψpr, Òq (bottom). Right: Corresponding 2D FFT.

Figure 4 . 18 :

 418 Figure 4.18: Phase shift of the Br Te wavefunction a. STM topography, measured at V Bias = -1 V (I setpoint = 180 pA). b. 2D FFT of the topography in a. c and e.Real part of inverse FFT (IFFT) for selected q 1 and q 2 components of the conductance map at -0.7 eV. d and f. Conductance profiles extracted from IFFT images (c,e) along the path shown in panel a and plotted as a function of energy and distance. Solid red lines are guide to eyes showing that the extrema of the modulation changes with energy. g. Dotted black line is extracted from panel d at V Bias = -0.7 V. The blue dashed line is a fit of this modulation with Eq. (4.11), which provides the phase shift φ 0 . Performing this fit for all energies provides the energy dependence of the phase shift for the two components q 1,2 , which are plot panel h. Note the phase jumps at -1.05 eV and -0.75 eV. The red line provides the phase difference between the two components. A phase change of π{3 is observed between V Bias = -0.65 V and V Bias = 0.08 V. This phase difference is responsible for the change in contrast of real space conductance maps shown in Fig.4.19.

Figure 4 . 19 :

 419 Figure 4.19: Phase shift between q 1 and q 2 wave vectors, revealed by STS maps a. The conductance maps of Br T e are shown for V Bias = 0.08 V in upper panel and for V Bias = -0.65 V in lower panel. b. Probability density images obtained for the Bloch state Ψpr, Óq `Ψpr, Òq shown on the top panel and for the Bloch state Ψpr, Óq `Ψpr, Òqe jπ{3 shown on the bottom panel. A phase change of π{3 is required to render the change of contrast between the two conductance maps.

Fig. 4 .

 4 Fig.4.[START_REF] Simmons | Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film[END_REF] shows the conductance maps at two voltage bias V Bias = -0.65 V (V Bias = 0.08 V) compared to two maps of the probability density |Ψprq| 2 using the quantum state Ψpr, Óq `Ψpr, Òq for 0.08 eV and the quantum state Ψpr, Óq `Ψpr, Òqe iπ{3 for -0.65 eV. The phase difference π{3 « 1 between the quantum states at these two energies

Fig. 4 .

 4 Fig.4.20.e shows the conductance as a function of distance along a path across the two dopants. The experimental data seems more consistent with a single peak, suggesting that the dopants are interfering quantum mechanically, even so they seem to be in the two different layers as indicated by the different amplitude of modulations for the two dopants. In the simulation, the different amplitude for the two dopants is taken into account by changing the amplitude of the envelope function for one of the dopants.

Figure 4 . 20 :

 420 Figure 4.20: Quantum interference between two Br Te dopants a. The conductance map centered on two dopants (V Bias = -0.65 V) b. 2D FFT image of the map in a, revealing a doubling of the Fourier components. c. Simulation of real space image for quantum interference of two dopants. Upper panel: Sum of probability amplitudes. Lower panel: Sum of probability density. d. FFT images of the simulated real space images, revealing a doubling of the Fourier components. e. The red (green) dashed lines show the probability density extracted from the simulation shown in panel c along a path going across the center of the image. At the intersection of the wavefunction of the two dopants (d = 7.5 nm), a sum of amplitude (density) is characterized by one (two) peak(s). The experimental data are more consistent with a sum of amplitudes, indicating quantum interference between the dopants.

4. 6 .

 6 ELECTRICAL DETECTION OF DONOR SPIN RESONANCE 83 and carry a spin whose ESR linewidth follows the electrical resistance. Consequently, this spin state seems a good candidate for an electrical detection of the spin resonance.To attempt a detection of the spin state electrically, the sample was placed in the center of a home-made resonant cavity attached to a PPMS puck, the drawing of which is shown in Fig.4.21.a. The cavity is designed such that the mode TM102 is located at 9.5 GHZ as in standard ESR spectrometer. The cavity can be splitted into two parts along a plane corresponding to a zero of the electric field and a maxima of the magnetic field. When opened, a sample can be installed and connected to thin wires for resistance and Hall measurements. A microwave signal at 9.4 GHz frequency provided by a Rohde & Schwarz RF generator is feed into the cavity by a semi-rigid microwave cable. The cavity with the sample are installed into a PPMS for measurements as a function of temperature (300 -2 K) and magnetic field.

Figure 4 . 21 :

 421 Figure 4.21: Electrical detection of spin resonance in Bromine-doped 2H-MoTe 2 thick crystal a. Resonant cavity for PPMS. b. EDMR signal and ESR signal as a function of magnetic field. A resonance is observed in the EDMR signal, coincident with the ESR signal measured in a standard Bruker spectrometer.

  4.21.b the transverse resistivity is shown superimposed on the ESR spectrum. The plot demonstrates CHAPTER 4. DOPED 2H-MOTE 2
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 885 ELECTRICAL DETECTION OF ELECTRON SPIN RESONANCE IN GRAPHENE anisotropy in graphene.

Figure 5 . 1 :

 51 Figure 5.1: Graphene stack (Sample 3) Right : Optical microscopy image of the sample. Left : Top and side schematic description of the stack.

1 .

 1 Sample 1 has two gates, one on the top and one on the bottom. Sample 2 had two bottom gates with the one closest to the graphene layer covering half of the bottommost gate. Sample 3 had only a single bottom gate. Fig. 5.1 shows an optical photo of sample 3 with Cr/Au contacts on the graphene's edge. The samples and their contacts are shown in Appendix G. The schematic top view of sample 3 presents the five 'working' contacts; they are used to inject the current, measure voltages and apply a gate voltage as well as apply a microwave signal. All presented CHAPTER 5. ELECTRICAL DETECTION OF ELECTRON SPIN RESONANCE IN GRAPHENE data were measured at 1.4 K, the temperature was reached by pumping on the Helium bath.

Figure 5 . 2 :Fig. 5 .

 525 Figure 5.2: Electrical transport in graphene (Sample 2) a. Longitudinal resistivity, measured between 3-5 contacts (current along 2-4 contacts, see Appendix G) as a function of the gate voltage. b. Mobility, calculated from resistivity, as a function of the carrier density.

Figure 5 . 3 :

 53 Figure 5.3: Landau levels (Sample 1) a. Longitudinal resistance as a function of gate voltage and magnetic field. See more curves in Appendix H. b. Landau levels diagram.

Fig. 5 .

 5 Fig. 5.3.a shows the graphene resistance as a function of magnetic field, showing the so-called Shubnikov-de-Haas oscillations. Every peak disperses with the magnetic field, they correspond to Landau levels. Relativistic massless electrons of graphene behave differently than electrons in standard metals in perpendicular magnetic field. The cyclotron energy of a Dirac fermion is ω c " ? 2 v F B

Fig. 5 .

 5 Fig. 5.3.a, one has to realize that the position of the Landau levels does not depend on the carrier density. The Landau level n=0 is always at the Dirac point, we see on the figure that it is located at V g « ´0.6 V, which corresponds to V CN P extracted from the maximum of resistivity in Fig. 5.3. Because the transport properties are controlled by the carrier density at the Fermi energy, changing the gate voltage, which changes the Fermi energy, allow to probes the different Landau levels as a function of energy.

Figure 5 . 4 :

 54 Figure 5.4: Resistivity in RF field (Sample 2) a. Longitudinal resistivity, measured between 3-5 contacts (current along 2-4 contacts, see Appendix G), as a function of gate voltage for different RF power. b. Longitudinal resistivity at constant V g =V CN P as a function of RF power.

Fig. 5 .

 5 Fig. 5.4 shows the resistivity as a function of gate voltage and under microwave irradiation. One can see that

Figure 5 . 5 :Fig. 5 .

 555 Figure 5.5: Longitudinal resistance in RF field (Sample 2) a. Resistance (black) (current along 2-4 contacts, see Appendix G), first (blue) and second (red) derivatives of the resistance as a function of gate voltage. b. Second derivative of the resistance compared to the difference between resistivity with 0.5 dBm variation of RF power.

Figure 5 . 6 :

 56 Figure 5.6: Transmission of RF vs frequency (Sample 2) a. Resistance (current along 1-5 contacts, see Appendix G) of graphene at fixed V g = V CN P and constant RF Power of 0 dBm [1 mW]. b. Longitudinal resistivity, measured between 3-5 contacts (current along 2-4 contacts, see Appendix G), as a function of gate voltage for two RF frequencies.

Figure 5 . 7 :

 57 Figure 5.7: Magnetoresistance in RF field (Sample 1) a. Raw data : Voltage drop between contacts 1 and 2 measured at different frequencies. The dashed lines are polynomial fits used to remove the background. b. Data with background removed showing a peak whose magnetic field position increases with increasing RF frequency, following the Zeeman condition hν RF " gµ B B.

Figure 5 . 8 :

 58 Figure 5.8: Landau levels in RF field (Sample 1) Shubnikov-de Haas oscillations as a function of gate voltage for RF power ranging from -15 dBm to +15 dBm, at magnetic field H = 0.65 T.

Figure 5 . 9 :

 59 Figure 5.9: Magnetoresistance in RF field (10 dBm) (Sample 1) a. Raw data : Voltage drop between contacts 1 and 2, measured at different frequencies. The dashed lines are linear fit used to remove the background, the resulting data are shown in panel b. Relative voltage variation as a function of a magnetic field. Note how the lineshape changes from peaks at 12 GHz to steps at 15 GHz.
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 985 ELECTRICAL DETECTION OF ELECTRON SPIN RESONANCE IN GRAPHENE spintronic effect.

Figure 5 . 10 :

 510 Figure 5.10: Magnetoresistance in RF field (Sample 2) vs frequency a. Color map of the magnetoresistance (current along 2-4 contacts, see Appendix G), with removed background, as as function RF frequency and magnetic field. White arrows indicates where selected curves have been extracted and shown in panel b. Red line correspond indicates the resonant condition g {{ " 2.1. b. Selected curves as a function of magnetic field showing the change in spectral lineshape for different frequencies.

Figure 5 . 11 :

 511 Figure 5.11: Spin resonance as a function of RF Power (Sample 2) Color plot of graphene resistance (current along 2-4 contacts, see Appendix G), with polynomial background removed, as a function of RF power and magnetic field, V g = V CN P and T=1.4 K, for two frequencies 12 GHz (panel a) and 17 GHz (panel b).

Figure 5 . 13 :

 513 Figure 5.13: Resonant amplitude as a function of gate voltage (Sample 2) a. Resistance as a function of V g voltage (f RF = 12 GHz, P = 0 dBm). The color dots indicate the gate voltages for which the resistance has been plot as a function of magnetic field on panel b. b. Resistance as a function of magnetic field for different gate voltages, from which the resistance at 0.2 T has been subtracted. The dashed lines indicate the polynomial fits used to remove the background. c. Color map of the resistance with background removed as a function of gate voltage V g and magnetic field. The dashed red line indicates the resonant field. d. The blue curve shows the second derivative of the resistance with respect to the gate voltage. The red curve shows the amplitude of resonance as a function of gate voltage. The second derivative and the resistance difference have been multiplied by scaling factors to highlight that the amplitude of the spin-resonant signal follows their amplitude.

2 g

 2 Figure 5.14: ∆R d 2 R{dV 2 gThe black curve shows the resonant amplitude divided by the second derivative of the resistance. The dashed blue (green) line shows the expected evolution of α (β) with V g .

Fig. 5 .

 5 Fig. 5.14 shows the ratio ∆R res B 2 R BV 2 g

Figure 5 . 15 :

 515 Figure 5.15: Illustration of magnetisation variation in RF field a. Magnetisation precession in parallel static magnetic field and in RF field. Top panel: The magnetisation amplitude M 0 is constant in time. Bottom panel: The magnetization amplitude changes with frequency ω RF . b. Oscillation of the Fermi energy induced by the RF electric-field. In a static magnetic field, this leads to an oscillation of the magnetization amplitude M 0 .

  5.16.a as a function of time. We see that M 0 ptq changes sign on one cycle and so averages to zero.If we now consider the perpendicular component M z ptq " M 0 ptq sinpθq cospω RF tq, Fig. 5.16.b shows that xM z ptqy does not average to zero, explaining our observation of the spin resonant signal. Note that for a constant M 0 , xM z ptqy does average to zero. For large gate voltage, |V g | ąą V CN P , such as the Fermi energy is deep into the conduction or valence band, Fig. 5.16.c shows that the magnetization M 0 ptq is large but always of the same sign and only weakly oscillating; consequently, the perpendicular component M z ptq average to zero. Fig. 5.16.c shows the average magnetization xM z ptqy as a function of DC gate voltage, for two RF voltages of 0.1 and 0.2 V, we see that xM z ptqy is large only for DC gate voltage smaller than the RF voltage amplitude. This explain that the spinresonant signal is only observed for V g «V CN P . More interestingly, Fig. 5.16.d shows that xM z ptqy increases with the amplitude of the RF voltage because of the increase in the amplitude of the M 0 ptq modulation.

Figure 5 . 16 :

 516 Figure 5.16: Spintronic model a. At V g = V CN P : the blue curve shows the modulation of the magnetization amplitude M 0 ptq. The dashed blue curve shows that it averages to zero. Taking into account the spin precession, the perpendicular component M z ptq " M 0 ptq cospω RF tq (green) has non-zero time average as indicated by the dash green curve. b. At V g ąą V CN P : M 0 ptq (blue) is large but has a small amplitude of oscillation. Now, the perpendicular component M z ptq " M 0 ptq cospω RF tq has zero time average as shown by the dash green curve. c. The average magnetization xM z ptqy increases sharply when |V g -V CN P | ă |V RF |. d. Magnetization increases with RF voltage amplitude for two gate voltages.

Figure 5 . 18 :

 518 Figure 5.18: Longitudinal resistance in a constant perpendicular Electric field (Sample 1) a. Resistance as a function of bottom-gate voltage for different top-gate voltages. One can see that the charge neutrality voltage V CN P changes with the top-gate voltage. b. Longitudinal resistance map as a function of top and bottom gate voltages.

Figure 5 . 19 : 2 z

 5192 Figure 5.19: Spin resonance under an electric field E z (Sample 1) a. Resistance, measured between contacts 1 and 2 (see Appendix G)) in a parallel magnetic field at different E z (f RF = 10.6 GHz, P = 15 dBm). Dashed lines represent the linear fits used to remove the background. b. The resistance , measured between contacts 1 and 2, with the background removed, showing the resonant amplitude dependence on the electric field E z . c. Color map of the resistance (panel b) as a function of electric field E z and magnetic field. The dashed red line indicates the resonant field (H res = 0.418 T). d. R(E z ), B 2 R BE 2 z and resonance amplitude ∆R res as a function of the electric field E z .
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 5 ELECTRICAL DETECTION OF ELECTRON SPIN RESONANCE IN GRAPHENEincident microwave signal. This will be detected by a change in the sample resistance which could depend on microwave power through various mechanisms such as electric field modulation of carrier concentration or microwave induced heating.
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 1166 CONCLUSION AND PERSPECTIVESthe two valleys are decoupled. Finally, it is worth exploring other S or Se based TMDC and other dopants from the halogen column.

5 )

 5 in order to choose the best among them, specifically clean, thin without impurities wrinkles and cracks. Optical reflection depends on the thickness of the layered crystals, which makes it possible to identify a relative number of layers just by the appearing color of the objects on the substrate. The careful procedure of adjusting colors and intensities is established to compare thickness of the chosen crystals.

Figure F. 1 :

 1 Figure F.1: A substrate with exfoliated crystals a. Large scale optical image of substrate with hBN crystals. b. Magnified image of a with two hBN crystals. c. Magnified image with multiple graphene and graphite crystals.

Fig. F. 1

 1 Fig. F.1 shows optical photos with exfoliated layers from graphite and hBN crystals. The a-panel shows a large area with layers of different colors, varying with thickness of the hBN crystals. The color changing from blue light to green corresponds to the thickness of 10-40 nm, an example is shown on b-panel. This thickness is appropriate for the stack because it can be easily picked up by a polymer. The thicker crystals have dark green, yellow and orange colors. Graphene identification is harder because of the slight color nuance of blue from one layer to multiplayer, nevertheless is possible by a trained eye, as illustrates the c-panel. Layers picking up and stack assembling is carried out on a Transfer Station, which main components are illustrated in the Fig. F.2. The Transfer Station is composed of a binocular microscope, a micromotor, a metallic stage holding the substrate, connecting to a heater with PID control, and a transfer arm with angle and plane manual adapter. The micromotor adjusts the position of the sample stage by hand and, at the same time, is connected to a computer to precise z-position control, regulating a speed and a step of the approaching/retracting motion. The glass with a polypropylene carbonate (PPC) bubble, holding by the transfer arm, is placed on top of the sample.The PPC dome, earlier heated, should face down and do not touch the sample. Because of the transparency of the PPC, it is possible to focus the microscope on the PPC surface as well as on the substrate surface in this position.The image, receiving by the objective of the microscope is transmitted to the computer. The one slide can be used several times in sample assembling, just by changing a center of the PPC dome, and so a 'working' surface, by an inclination of the glass slide.

Figure F. 2 :

 2 Figure F.2: Transfer station scheme

  

  

  

  

  

  

  

  

  

  

Table 3 .1: Character table of the point-group C 3v .

 3 

	.1 shows the character table for the

Table 3 .4: The SOC splitting in meV of then valence and conduction bands, extracted from Ref.[3]

 3 MoS 2 WS 2 MoSe 2 WSe 2 MoTe 2 WTe 2

	λ v	0.148 0.430 0.184	0.466 0.215 0.486
	λ c	0.003 0.026 0.007	0.038 0.015 0.237
	A 3D band model is shown in		

Table 4

 4 

		.1: Fitted effective parameters
		xx	yy	zz
	g	2.02	2.02	2.09
	A (MHz)	80	80	70
	Q (MHz)	100	100	210

Table 4 .

 4 

		2: Calculated g-factor for 2H-MoTe 2
		hole	electron
	g zz	2	2.005
	g xx	2.04	1.92
	g zz -g xx	-0.04	0.08

  the Q-valley coordinates are k x = 0.35 [2π{a 0 ] and k y = 0 were a 0 = 0.353 nm is lattice parameter of MoTe 2 . Theoretical and experimental wave vectors are given in the Table 4.4.

	Table 4.4: Wave vectors, connecting Q-valleys
		Theoretical Present experiment
	q 1 [nm ´1]	6.2	6.04 ˘0.5
	q 2 [nm ´1]	10.8	10.8 ˘0.5
	q 3 [nm ´1]		

Table 5 . 1 :

 51 Sample's characteristics № Global Top gate Global Bottom gate Half Bottom gate Top h-BN thick Bottom h-BN thick

	1

Table 5 .

 5 

			2: g-factor anisotropy
		Prada et al.	1	Present experiment 2	3
	g K g z 1.95 ˘0.01 2.05 ˘0.05
	g x 1.81 ˘0.01		
	g {{		2.03 ˘0.05 2.1 ˘0.05 2.0 ˘0.05
	g y	2.1 ˘0.05		

Table A .

 A 

1: Character table of the D 3h double group

Table A .

 A 

	-2 E 2 Γ 8 2 -2	1 1	-1 -1	0 0	? ´?3 3	-? ? 3 3	0 0
	E 3 Γ 9 2 -2	-2	2	0	0	0	0

2: Character table of the C 3h double-group We replace Γ with K for the irrep notation.

de r ésonance de spin. Malgr é la simplicit é des mesures électriques qui ont permis la d étection de r ésonances de spins de mol écules uniques, soit par mesures de transport[START_REF] Thiele | Electrically driven nuclear spin resonance in single-molecule magnets[END_REF] ou par des mesures STM[START_REF] Zhang | Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions[END_REF]), les conditions de mesure et de pr éparation des échantillons, ultra vide et tr ès basses temp ératures, sont difficilement compatibles avec les technologies standard de la micro électronique. Pour cette raison, il est important d'identifier d'autres m éthodes et syst èmes permettant de lire électriquement des r ésonances de spin.A cet égard, des mat ériaux avec une sym étrie cristalline particuli ère peuvent poss éder un autre d égr ée de libert é, le degr é de libert é de vall ée qui r ésulte de la pr ésence de multiples vall ées dans la structure de bande.En pr ésence de couplage spin-orbite, les vall ées deviennent polaris ées de spin, ce qui implique que les degr és de libert é de spin et de vall ée sont verrouill és dans ces mat ériaux. L'ajout de dopants de type n dans ces mat ériaux va produire des états de spin hybrid és aux vall ées, produisant des états dits de spin-vall ée. Dans cette situation, l' état de spin d'un électron ne pourra changer que simultan ément avec son état de vall ée. Les processus permettant un changement simultan é de l' état de spin et de vall ées étant peu probables, le temps de coh érence de spin augmente.En d'autres termes, l'hybridization de l' état de dopant aux vall ées prot ège le spin contre la d écoh érence.. En raison de leur caract ère bidimensionnel qui permet une localisation plus ais ée des dopants dans le mat ériau et de leur capacit é à porter des états spin-vall ées, les couches monoatomiques de mat ériaux de Van-der-Waals pr ésentent un vif int ér êt.Dans ce manuscrit, je d écris des travaux exp érimentaux qui abordent deux probl ématiques dans ce domaine.Premi èrement, l'identification de d éfauts ponctuels produisant des états spin-vall ées dans les mat ériaux deVan- 

ns, ce qui est 50 fois plus petit que le temps de vie mesur é par ESR dans

2H-MoTe 2 dop é au brome, bien que le couplage spin-orbit de 2H-MoTe 2 est beaucoup plus important que dans le graph ène. C'est un constat étonnant car un couplage spin-orbit élev é est g én éralement consid ér é comme une source de d écoh érence. Toutefois, dans 2H-MoTe 2 , la formation d'un état de dopant spin-vall ée verrouill é augmente le temps de coh érence de spins car les processus spin-flip impliquent un changement de vall ées, lequel processus est peu probable.

Easyspin is a Matlab-based software that makes easy the coding of a matrix corresponding to the effective spin-Hamiltonian. Furthermore, it provides tools for the diagonalization of this Hamiltonian and calculates the resonance position and amplitudes[START_REF] Stoll | EasySpin, a comprehensive software package for spectral simulation and analysis in EPR[END_REF].
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Chapter 4

Doped 2H-MoTe 2 4.1 Introduction

The identification of spin systems suitable as carriers of quantum information [START_REF] Petta | Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots[END_REF][START_REF] Hanson | Spins in fewelectron quantum dots[END_REF][START_REF] Zwanenburg | Silicon quantum electronics[END_REF][START_REF] Jelezko | Single defect centres in diamond: A review[END_REF] or as highly sensitive magnetic field sensors, also called quantum sensors, is of intense interest. To address individual spins and control the magnetic exchange between spins, they should be localized in quantum dots or at atomic dopants. In silicon, P-dopants [START_REF] Pla | A single-atom electron spin qubit in silicon[END_REF] are being considered as QBits. In diamond, NV ´centers have been scrutinized intensively. Both materials, silicon and diamond, are characterized by weak spin-orbit coupling and weak pollution by nuclear spins, which enables the long spin coherence time observed for dopants and point-defects in those materials. NV centers are usually addressed by photo-luminescent experiments, while dopants in Silicon are usually addressed by electrical detection methods. While the fabrication of highly sensitive single spin sensors is already possible with NV centers, the realization of full quantum circuits implying the coupling between multiple spins centers/dopants is an immense microfabrication challenge. This will require means to place dopants with atomic precision and to address them individually. In this context, TMDC offers interesting advantages. First, as a 2D material, the location of the dopants can be restricted to a single atomic layer. Second, a search through the NMR periodic table [START_REF]NMR periodic table[END_REF] shows that the TMDCs have a rather weak nuclear pollution. Finally, the strong spin-orbit coupling can be employed to manipulate the spin with electric fields. While the spin-orbit coupling is usually considered as a source of spin decoherence, the 2H-TMDC presents the particularity that the spin degeneracy is lifted at the K-valleys. This locks the spin projection eigenvalue S z with the valley index τ z , which is expected to increase the spin coherence time because now, spin-flip will require a simultaneous change of the valley index and so will occur with reduced probability.

So far, the spin-valley properties of TMDC have been mostly addressed by photoluminescence measurements.

In these experiments, optical pumping with circularly polarized light leads to spin-polarized excitons that can polarize resident electrons, which has been introduced by doping or gate voltage. While the exciton lifetime is very short (a few ps), it has been shown that the spin polarization of resident electrons can reach 1 µs. [START_REF] Guguchia | Magnetism in semiconducting molybdenum dichalcogenides[END_REF] and MoSe 2 [START_REF] Edelberg | Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control[END_REF] and their shapes have been theoretically confirmed by DFT calculations [START_REF] Ález | Theoretical characterisation of point defects on a MoS 2 monolayer by scanning tunnelling microscopy[END_REF].

In addition to these two defects that were also identified in the undoped MoTe 2 studied in Ref. [START_REF] Guguchia | Magnetism in semiconducting molybdenum dichalcogenides[END_REF], we observe an additional impurity site that we associate to the dopant Br T e . We find that the dopant produces a large-scale modulation with hexagonal symmetry, propagating over a disk about 5 nm diameter. These modulations have never been identified before in TMDCs.

For the three type of defects, counting their number appearing in large scale images allows to estimate their density, which are given in the table below for each defects. The corresponding large scale images are shown in Appendix D. and should not carry any magnetic moment. One see however that the levels of this Mo vacancy are weakly coupled to the valleys as shown by peaks at q 1 and q 2 on the 2D FFT of the topographic image Fig. 4.12b and the 2D FFT of the conductance maps Fig. 4.13a,c. Fig. 4.14g shows that the amplitudes of the Fourier components are maximum at the energy of the in-gap state. The amplitude of these modulations are smaller than for the dopant Br T e . A remarkable difference between the two point-defects is that the ordering of the amplitude of the two components q 1 and q 2 is reversed: q 1 (q 2 ) has the highest amplitude for Br T e (V M o ) in-gap state, which could be related to the magnetic (non-magnetic) character of the point-defect. Indeed the wavevector q 1 (q 2 ) couples valleys of opposite (identical) spin-polarization.

Hybridization of the Br dopant levels with the valleys

The first example of a theoretical discussion of the hybridization of dopant levels with valleys has been provided

by Kohn and Luttinger in 1955 [136] for the description of dopants in silicon. The first STM observation of this hybridization was obtained in 2014 [START_REF] Salfi | Spatially resolving valley quantum interference of a donor in silicon[END_REF]. In Ref. [START_REF] Kohn | Theory of Donor States in Silicon[END_REF], to describe the hybridization, the authors established a "valley representation" and show that it decomposes into irreps of the point-group symmetry of the dopant site. Today, more convenient methods, using band representation theory [START_REF] Zak | Band representations of space groups[END_REF], allow the identification of symmetry-allowed hybridization of point-defect levels and Bloch states [START_REF] Evarestov | Application of band representations of space groups in the theory of phase transitions and point defects in crystals[END_REF]. The principle of the method consists in looking for the band representations induced by the impurity site irreps. Band representation theory and site-symmetry induction of band representations have attracted significant attention lately as they are essential tools of topological quantum chemistry which enabled a classification of all topological materials [139]. 

CHAPTER 5. ELECTRICAL DETECTION OF ELECTRON SPIN RESONANCE IN GRAPHENE

For these reasons, we measured the spin resonance signal as a function of microwave power and the result is shown Fig. 5.11 for two frequencies, 12 GHz et 17 Ghz, with V g = V CN P , measured in parallel magnetic field. The resonant lines have an asymmetric shape, which center, marked by a dashed red line, corresponds to the resonant condition g = 2.1. From the measured linewidth and Eq. (2.24), we obtain a spin lifetime about 1-1.5 ns.

From these plots, the interesting question is whether the amplitude of the resonance signal ∆R res is related to the change in microwave power absorbed by the spin system. In the power detector mode, we expect this to be case, but not necessarily in the spintronic mode, as the physical mechanisms leading to the change of magnetoresistance are different in both cases.

At resonance frequency ω 0 , the abosorbed microwave power is given by Eq. (2.23) and recalled here as:

This equation shows that the absorption is proportional to the square of frequency. Thus, in the power detector mode, the ratio of power absorbed by the spins P spin 17GHz {P spin 12GHz should equal p17{12q 2 « 2.

To obtain the experimental quantity P spin ω0 , we divide the change of resistance at resonance ∆R res by the coefficient dR{dP e , i.e. the change of resistance at V g = V CN P with the effective microwave power P e , to get :

The effective microwave power is given by: P e " T ν RF P s " 1 R50 ş `inf 0 V 2 RF cos 2 pω RF tq dt, where T ν RF is the frequency dependent transmission coefficient, and R 50 = 50 Ω is the characteristic impedance line. To determine the transmission T 12GHz at (P s = 16 dBm, ν RF = 12 GHz), we read the voltage difference V RF between the two peaks in Fig. 5.4. For the other frequency, ν RF = 17GHz, we find T 17GHz " T 12GHz {22, which implies that 22 times more power is needed to obtain the same decrease in resistance at 17 GHz than at 12 GHz, as shown in Fig. 5.12.b.

The change of resistance ∆R res is obtained by fitting the resonance curve with an Hermite polynomial of order 1 (i.e. derivative of a Gaussian function). The power P spin ω0 absorbed by the spin systems is shown Fig. 5.12.c for the two frequencies 12 GHz and 17 GHz as a function of effective power P e . We see that P spin ω0 increases linearly with P e with no sign of saturation, which implies that Eq. (5.6) is valid. The ratio P spin 17GHz {P spin 12GHz of the two linear functions is proportional to the ratio of their slopes, which is equal to (0.044/0.008) 2 « 30, which is much higher than the ratio p17{12q 2 « 2 expected if the spin-resonant signal would result only from a change in the microwave power absorbed by the spin-system. This strong deviation is the second argument suggesting that the spin-resonant signal cannot be explained only by an effect of power absorption and that other effects such as spin-dependent scattering should contribute to ∆R res . 

Spin resonance detection far from the Dirac point

Until now, all presented data were measured at the Dirac point, V g =V CN P . For sample 2, Fig. 5.13 shows the magnetoresistance as a function of gate voltage and in-plane magnetic field under microwave irradiation (12 GHz, 0 dBm). At this low microwave power, panel a shows that the resistance peak is not yet split. Panel b shows the magnetoresistance for different gate voltages, on can see that the magnetoresistance is positive for electron doping ¸(5.17)

which varies from θ " 0 far from resonance to θ " π{2 at resonance. H 1 is the amplitude of the microwave magnetic field and ∆H is the linewidth of the resonance. Replacing θ by this value into Eq. (5.16), Fig. 5.17.a shows the amplitude of xM z ptqy as a function of magnetic field for different phase shift φ 0 , where it appears clearly that the spin-resonant lineshape depends on this phase φ 0 . This behavior could explain our observation that the lineshape depends on the frequency.

To summarize our model :

We make the assumption that the magnetoresistance is sensitive to the perpendicular component M z ptq of the magnetization. For a constant magnetization amplitude, M 0 , the time-average xM z ptqy of the perpendicular component will be zero. However, if we consider the modulation of the amplitude M 0 by the electric field component of the microwave signal, the time-average xM z ptqy will be non-zero. Furthermore, it will reach a maxima for V g = V CN P and the resonance lineshape will evolve from asssymetric to assymetric upon changing the frequency. These are two characteristic features of the experimental data. This resistance map shows the graphene resistance as a function of top and bottom gate voltage. A line of maximal resistance cross the map from top-left to bottom-down. All along this line, the Fermi level is at the Dirac point but the electric field E z changes from -0.3 V nm ´1 at one extremity to + 0.3 V nm ´1 at the other.

Near zero gate voltages, the resistance peak is sharp as observed previously, however, as the electric field E z increases, the resistance peak is seen to broaden. This behavior can be understood as the formation of n-type and p-type puddles due to inhomogeneities. From our experimental resolution on the measurement of the resonant magnetic field δB « 0.01 T, we obtain that the Rashba energy cannot exceed 1.2 µeV for an electric field of E z " 0.4 V {nm, instead of theoretical Rashba energy of 40 µeV [START_REF] Avsar | Colloquium: Spintronics in graphene and other two-dimensional materials[END_REF]. We see that the amplitude of the spin-resonant signal decreases with increase electric field, as does the resistance and the second derivative shown in Fig. 5.19d. Given our previous interpretation that the broadening of the Dirac peak is due to the formation of puddles with non-zero density of states and given our spintronic model

Resonance as a function of electric field

showing that the spin-resonant signal decreases away from CNP, this decrease of the spin-resonant signal with E z is to be expected. Focusing on Br T e , I have found that the Br dopant provides a large spin-resonant signal at low temperature in the variable-range hopping regime, reaching a coherence lifetime of about 50 ns at 12 K. Furthermore, I have found that the electronic levels of this dopant are hybridized to the valleys in the conduction band, which give rise to a characteristic modulation of the density of states with Fourier components corresponding to the difference between the wave-vectors of the valleys. Together, these observations show that Br T e produces a spin-valley state where the spin and valley quantum numbers are locked. This is of practical interest as such states can be manipulated conveniently by electric fields. Finally, on micrometer thick layer, I show that the spin resonance of the dopant spin can be observed through electric transport measurements. Because MoTe 2 monolayers are not stable in air, we did not try to prepare a single monolayer of this material. However, I expect that the work presented in this thesis will motivate the study of dopants and their spin in monolayer of TMDCs. The major expected change with respect to the bulk material are: First, the absence of inter-layer coupling will allow an enhancement of the spin-coherence time. How long that coherence time could be is an interesting question to answer. Second, the dopant levels will hybridize with the K-point of the Brillouin zone and not the Q-point as we observed in the bulk material. Because of the absence of inter-layer coupling, we should only see the single component q 2 in the 2D FFT map, meaning that Following [START_REF] Ko Śmider | Large spin splitting in the conduction band of transition metal dichalcogenide monolayers[END_REF], they are described as:

where the index n th corresponds to different bands, in order of increasing energy, the valence band V1, the top-most valence band V, the conduction band C, the higher conduction band C2. The coefficients α n ,β n given in Ref. [START_REF] Ko Śmider | Large spin splitting in the conduction band of transition metal dichalcogenide monolayers[END_REF] and reproduced in the Table B.1 are normalized orbitals contributions obtained by DFT calculations, verifying α 2 n `2β 2 " 1; s n " `1 for the bands C, V, V1 and -1 for C1.

Introduction the Bloch functions in the spin-orbit tensor (Eq. (4.7)), we get for the valence band : as also found previously [START_REF] Guguchia | Magnetism in semiconducting molybdenum dichalcogenides[END_REF]. The defect seems not centered on the Te site, which could result from a Jahn-Teller distortion as discussed in [START_REF] Tsai | Antisite defect qubits in monolayer transition metal dichalcogenides[END_REF]. The last III-panel reveals a Br atom occupying Te vacancy. The modulated density of states has a maximum at the center of the defect, that situated at Te sites. 

Preparation of graphene stacks

Here are the most important steps employed for the fabrication of the graphene stacks.

• Substrate preparation

• Crystal exfoliation and dilution on scotch from mother to daughter tape