
HAL Id: tel-03596964
https://theses.hal.science/tel-03596964v1

Submitted on 4 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural learning and validation of hierarchical
multi-criteria decision aiding models with interacting

criteria
Roman Bresson

To cite this version:
Roman Bresson. Neural learning and validation of hierarchical multi-criteria decision aiding models
with interacting criteria. Artificial Intelligence [cs.AI]. Université Paris-Saclay, 2022. English. �NNT :
2022UPASG008�. �tel-03596964�

https://theses.hal.science/tel-03596964v1
https://hal.archives-ouvertes.fr

T
H
E
S
E
D
E
D
O
C
T
O
R
A
T

N
N
T
:
2
0
2
2
U
PA

S
G
0
0
8

Neural learning and validation of hierarchical
multi-criteria decision aiding models with

interacting criteria
Apprentissage neuronal et validation de modèles

hiérarchiques d’aide à la décision multicritère présentant
de l’interaction entre les critères

Thèse de doctorat de l’Université Paris-Saclay

École doctorale : n°580 : sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat: Informatique
Graduate School : Informatique et sciences du numérique, Référent : Faculté des

sciences d’Orsay

Thèse préparée dans l’unité de recherche: Laboratoire interdisciplinaire des sciences du
numérique, (Université Paris-Saclay, CNRS), sous la direction de Johanne COHEN, Professeur,

le co-encadrement de Christophe LABREUCHE, Docteur et Ingénieur de Recherche (Thales
Recherche et Technologie).

Thèse soutenue à Paris-Saclay,
le 02 Février 2022, par

Roman BRESSON

Composition du jury
Patrice PERNY Rapporteur & Président
Professeur, Sorbonne Université, Paris 6
Andrea PASSERINI Rapporteur & Examinateur
Professeur Associé, Université de Trente, Italie
Hendrik BLOCKEEL Examinateur
Professeur, KU Leuven, Belgique
Krzysztof DEMBCZYŃSKI Examinateur
École Polytechnique de Poznań, Pologne
Eyke HÜLLERMEIER Examinateur
Professeur, Université Louis-et-Maximilien, Munich, Alle-
magne
Michèle SEBAG Examinatrice
Professeur, Université Paris-Saclay
Johanne COHEN Directrice
Professeur, Université Paris-Saclay

Titre: Apprentissage neuronal et validation de modèles hiérarchiques d’aide à la décision multicritère
présentant de l’interaction entre les critères
Mots clés: Apprentissage Automatique, Aide à la Décision Multicritère, Intégrale de Choquet, IA de
Confiance

Résumé: L’aide à la décision multicritères
(ADMC) est un domaine qui vise à aider des
décideurs experts (DE) pour des problèmes tels
que la sélection, le classement ou la classifica-
tion d’alternatives définies par plusieurs attributs
qui peuvent intéragir. Ces modèles ne sont pas
ceux qui prennent pas la décision, mais ils ap-
portent une assistance au DE lors du processus.
Il est donc crucial que le modèle offre au DE
des moyens d’interpréter ses résultats. Ceci est
en particulier vrai dans des contextes critiques où
les erreurs peuvent avoir des conséquences désas-
treuses. Il est par conséquent indispensable que les
modèles d’ADMC soient intelligibles, interpréta-
bles et que leur comportement soit fortement con-
traint par des connaissances provenant d’une ex-
pertise dans le domaine. De tels modèles sont
généralement construits par une interaction (ques-
tions/réponses) avec un DE, par le biais de méth-
odes issues de la recherche opérationnelle.

D’autre part, l’apprentissage automatique
(ML) fonde son approche sur l’apprentissage du
modèle optimal à partir de données d’ajustement.
Ce domaine se concentre généralement sur les per-
formances du modèle, en adaptant les paramètres
de modèles complexes (dits boîtes noires) pour
obtenir une erreur statistiquement faible sur de
nouveaux exemples. Bien que cette approche soit
adaptée à de nombreux contextes, l’utilisation de

modèles boîtes noires est inconcevable dans les cas
usuels d’ADMC, car ils ne sont ni interprétable, ni
facilement contraignables.

Cette thèse fait le pont entre ces deux do-
maines. Nous nous concentrons sur une cer-
taine classe de modèles d’ADMC, appelés inté-
grales de Choquet hiérarchiques utilitaires (ICHU).
Notre première contribution, qui est théorique,
est de montrer l’identifiabilité (ou l’unicité de la
paramétrisation) des ICHUs. Ce résultat motive
notre seconde contribution : le framework Neur-
HCI, une architecture de modules de réseaux de
neurones qui peuvent apprendre les paramètres
d’un ICHU. En particulier, tous les modèles Neur-
HCI sont garantis comme étant formellement
valides, répondant aux contraintes qui conviennent
à de tels modèles (monotonie, normalisation), et
restent interprétables.

Nous montrons empiriquement que les mod-
èles Neur-HCI sont performants sur des ensem-
bles de données artificielles et réelles, et qu’ils
présentent une stabilité remarquable, ce qui en
fait des outils pertinents pour alléger l’effort
d’élicitation de modèles lorsque les données sont
facilement disponibles, et permet leur utilisation
comme outils d’analyse appropriés pour identifier
certains phénomènes sous-jacents dans les don-
nées.

3

Title: Neural learning and validation of hierarchical multi-criteria decision aiding models with interact-
ing criteria
Keywords: Machine Learning, Multi-Criteria Decision Aiding, Choquet Integral, Trustable AI

Abstract: Multicriteria Decision Aiding (MCDA)
is a field that aims at assisting expert decision mak-
ers (DM) in problems such as selecting, ranking,
or classifying alternatives defined on several inter-
acting attributes. Such models do not make the
decision, but assist the DM, who takes the final
decision. It is thus crucial for the model to offer
ways for the DM to maintain operational aware-
ness, in particular in safety-critical contexts where
errors can have dire consequences. It is thus a
prerequisite of MCDA models to be intelligible, in-
terpretable, and to have a behaviour that is highly
constrained by information stemming from in do-
main knowledge. Such models are usually built
hand in hand with a field expert, obtaining infor-
mation through a Q&A procedure, and eliciting
the model through methods rooted in operations
research.

On the other hand, Machine Learning (ML),
and more precisely Preference Learning (PL), bases
its approach on learning the optimal model from
fitting data. This field usually focuses on model
performances, tuning complex black-boxes to ob-

tain a statistically low error on new examples cases.
While this is adapted to many settings, it is out of
the question for decision aiding settings, as neither
constrainedness nor intelligibility are available.

This thesis bridges both fields. We focus on
a certain class of MCDA models, called utilitaris-
tic hierarchical Choquet integrals (UHCI). Our first
contribution, which is theoretical, is to show the
identifiability (or unicity of the parameterization)
of UHCIs This result motivates our second con-
tribution: the Neur-HCI framework, an archi-
tecture of neural network modules which can learn
the parameters of a UHCI. In particular, all Neur-
HCI models are guaranteed to be formally valid,
fitting the constraints that befit such a model, and
remain interpretable.

We show empirically that Neur-HCI models
perform well on both artificial and real dataset, and
that they exhibit remarkable stability, making it a
relevant tool for alleviating the model elicitation
effort when data is readily available, along with
making it a suitable analysis tool for indentifying
patterns in the data.

Maison du doctorat de Université Paris-Saclay
2e étage, aile ouest, École normale supérieure Paris-Saclay
4 avenue des Sciencs
91190 Gif-sur-Yvette, France

CONTENTS

I Introduction 11

1 Introduction 13
1.1 Context and Motivation . 13
1.2 Main Contributions . 15
1.3 Publications . 16
1.4 Organization of this Manuscript . 17

1.4.1 Part II: Background and Existing Work 17
1.4.2 Part III: Theoretical Contribution 18
1.4.3 Part IV: Technical Contribution 19
1.4.4 Part V: Experimental Results 20
1.4.5 Part VI: Perspectives and Conclusions 20

II Background and Existing Work 21

2 Multi-Criteria Decision Aiding 23
2.1 Introduction . 24
2.2 Notations and Definitions . 25

2.2.1 Alternatives and Attributes 25
2.2.2 Formalizing preferences . 26
2.2.3 MCDA problems . 29

2.3 Multi-Attribute Utility theory . 30
2.3.1 Global Utility . 30
2.3.2 Basic structure . 32
2.3.3 Aggregation and Comparison 33

2.4 MAUT Models . 36

5

6 CONTENTS

2.4.1 Suitable Properties . 36
2.4.2 Decomposable models . 37
2.4.3 Weighted sum . 38
2.4.4 Ordered weighted average 39
2.4.5 Additive Utilities . 39
2.4.6 Generalized Additive Independance 40

2.5 Fuzzy Measures . 41
2.5.1 Definition . 41
2.5.2 Möbius transform of a fuzzy measure 42
2.5.3 Representation of Preferences by a Fuzzy Measure 43
2.5.4 k-additive fuzzy measure . 44
2.5.5 Shapley values and interaction indices 44

2.6 Choquet Integral . 47
2.6.1 Definition . 47
2.6.2 2-Additive Choquet Integral 49

2.7 Hierarchical Models . 49
2.7.1 Motivation . 49
2.7.2 Hierarchical Choquet Integral 52
2.7.3 Global Winter Values . 52
2.7.4 Utilitaristic HCI Model . 53

2.8 Deterministic Elicitation of MCDA models 54
2.8.1 Robustifying MCDA models 56
2.8.2 Limitations, and Motivations for Machine Learning 56

3 Supervised Machine Learning 59
3.1 Introduction . 60
3.2 Notations and General Principle . 60
3.3 Optimizing the Learning Criterion 63

3.3.1 Gradient Descent . 63
3.3.2 Strengths and limitation of gradient descent 63
3.3.3 Algorithms Based on Gradient Descent 64

3.4 Classes of Supervised Learning Problems 67
3.4.1 Basics . 67
3.4.2 Linear Models . 68

3.5 A Universal Approximator: the Neural Network 71
3.5.1 Neurons . 72
3.5.2 Feedforward Neural Networks 73
3.5.3 Other Architectures . 76

3.6 Classic Difficulties in Machine Learning 77
3.6.1 Over- and Under-fitting . 77
3.6.2 Testing, and Validation Sets 78

CONTENTS 7

3.7 Machine Learning for Safety-Critical Contexts 80
3.7.1 Uncertainty in Machine Learning 80
3.7.2 Taking Uncertainty into Account 82
3.7.3 Formal Properties for Learning Systems 82
3.7.4 Adversarial Examples . 83

3.8 Preference learning . 84
3.8.1 Preference Learning Tasks 85
3.8.2 Multi-criteria Preference Learning 86
3.8.3 Dealing with Uncertainty . 88

3.9 Our Contribution . 89

III Theoretical contributions 91

4 Identifiability - Fixed Hierarchy 93
4.1 General Considerations . 93

4.1.1 Identifiability . 93
4.1.2 Motivation . 94
4.1.3 Assumptions . 95

4.2 Showing Identifiability with a Fixed Hierarchy 96
4.3 Conclusion . 98
4.4 Proofs . 98

5 General Identifiability of a UHCI 101
5.1 Showing Identifiability with a Free Hierarchy 101

5.1.1 Structure of the UHCI . 103
5.1.2 Construction of the Set of Separation Frontiers from the

UHCI Model . 104
5.1.3 Construction of the Hierarchy from the Set of Separation

Frontiers . 107
5.1.4 Main Result . 109

5.2 Conclusion . 111
5.3 Proofs . 112

IV Neural Representation of MCDA Models 115

6 Marginal Utility modules 117
6.1 Motivations . 118
6.2 Logistic Sigmoid . 120
6.3 Monotonic Marginal Utility . 121

8 CONTENTS

6.3.1 Non-decreasing marginal utility 121
6.3.2 Computing the gradient . 124
6.3.3 Ensuring the Validity of the Module 125
6.3.4 Non-increasing marginal utility 125

6.4 Bitonic Marginal Utility . 126
6.4.1 Validity Constraints . 126
6.4.2 Parametric Representation 126
6.4.3 Implementation as a Neural Module 127
6.4.4 Computing the Gradient . 128
6.4.5 Enforcing the Constraints on the Network 129
6.4.6 Re-characterization . 130
6.4.7 Single-Valleyed Marginal Utility 134
6.4.8 Ensuring the Validity of the Parameterization 135

6.5 Marginal Utility Selector Module 136
6.5.1 Implementation as a Neural Module 136
6.5.2 Backpropagation . 136
6.5.3 Re-characterization . 137
6.5.4 Representable Functions . 137
6.5.5 Discussion . 138

7 Aggregator Modules 139
7.1 Role of an Aggregator Module . 140
7.2 General Choquet Integral . 140

7.2.1 Reminder and Validity Constraints 140
7.2.2 Representating the General FM 141
7.2.3 Representation of the CI as a Neural Module 143
7.2.4 Validity of the Module . 144
7.2.5 Backpropagation . 146
7.2.6 Discussion . 148

7.3 2-additive Choquet Integral . 149
7.3.1 General considerations . 149
7.3.2 Möbius-values-based parameterization 149
7.3.3 Weights-based parameterization 150
7.3.4 Implementation as a Neural Module 153
7.3.5 Validity of the Module . 154
7.3.6 Ensuring the Satisfaction of the Constraints 155
7.3.7 Backpropagation . 158

7.4 3-additive 0-1-FM-based Choquet Integral 160
7.4.1 General Results . 160
7.4.2 Remark on the number of parameters 165
7.4.3 Implementation as a Neural Module 166

CONTENTS 9

7.4.4 Validity of the Module . 169
7.4.5 Ensuring the Validity of the Constraints 170

8 Assembling and Training a Network 173
8.1 General Considerations . 174
8.2 Hierarchical Choquet Integral . 174

8.2.1 Recalls . 174
8.2.2 Architecture . 175
8.2.3 Forward and Backpropagation 176
8.2.4 Showing the Validity of the Network 179

8.3 Directed Acyclic Graphs . 180
8.3.1 Definition . 181
8.3.2 Implementation of a DAG-CI Network 182
8.3.3 Interests and Drawbacks . 182
8.3.4 Forward Propagation and Backpropagation 184

8.4 Adding Marginal Utilities . 186
8.5 Training Settings . 187

8.5.1 End-to-End Training . 187
8.5.2 Regression . 188
8.5.3 Ordinal Regression . 189
8.5.4 Pairwise Preference Learning 192
8.5.5 Training and Regularization 194
8.5.6 Convergence of the Learning Settings 195

8.6 Conclusion and Remarks . 196

V Experimentations and Empirical Validation 199

9 Empirical Validation of Neur-HCI 201
9.1 Experimental Setting and Objectives 202

9.1.1 General Considerations . 202
9.1.2 How to Read a Figure ? . 203
9.1.3 Generator Models . 204

9.2 Training with a Fixed Hierarchy . 208
9.2.1 General Settings . 208
9.2.2 Consistent Data, Large Sample Limit 208
9.2.3 Selectors . 211
9.2.4 Bitonic utilities . 212
9.2.5 Smaller and Noisy Datasets 215
9.2.6 Comments and Conclusion 227

9.3 Learning a Model without a Known Hierarchy 228

10 CONTENTS

9.3.1 Performance . 228
9.3.2 Stability of the Indicators across the Models 229
9.3.3 Evaluating the Global Winter Values as Weights of a Linear

Approximators . 235
9.4 Real Data . 237

9.4.1 Setting . 237
9.4.2 Analysis of the Results . 238
9.4.3 Stability . 240

9.5 Training Time . 243

VI Perspectives and Conclusion 247

10 Perspectives and Conclusion 249
10.1 Conclusion . 249
10.2 Perspectives . 252

10.2.1 Background and Formal Work 252
10.2.2 Experimental and Implementation Work 254

10.3 Closure . 256

A Figures for the Empirical Results 259
A.1 Figures: fixed hierarchy large sample limit 260
A.2 Small Datasets . 265
A.3 Noisy Datasets . 270
A.4 Corner Points - Binary Alternatives 278
A.5 Learning Without a Known Hierarchy 282
A.6 Stability of DAG-Winter Values . 286
A.7 Training Time . 289

B Résumé en Francais 293
B.1 Partie II : Contexte et travaux existants 294
B.2 Partie III : Contribution théorique 295
B.3 Partie IV : Contribution technique 296
B.4 Partie V : Résultats expérimentaux 297
B.5 Partie VI : Perspectives et conclusions 298

Part I

Introduction

11

CHAPTER 1

INTRODUCTION

1.1 Context and Motivation

Preference and scoring models are pervasive in our world. They take on many
forms and find applications as diverse as recommending a movie to a streaming
plaftorm’s users, suggesting a treatment for a medical doctor’s patient, or desig-
nating a suspect vehicle to be intercepted by the authorities.

Machine Learning (ML) is a set of methods for building models whose pa-
rameters are extracted from data through statistical optimization methods. In
particular, Preference Learning is the subfield which aims at building and pa-
rameterizing preference models from data. Preference Learning methods are thus
expected to yield accurate predictive models, learning from observations which are,
by nature noisy and imperfect. Such models are expected to determine a preferred
alternative among a set of several ones.

Nonetheless, ML is, by nature, highly statistical, and the trained models usually
do not offer the trustability needed in safety-critical contexts. Safety-critical fields,
like medicine, defense, or air-traffic management, are characterized by the fact that
a single error can have devastating consequences, from system failures to loss of
lives. In these cases, where much is at stake, it is not enough for a model to simply
perform well statistically. It is then often necessary that the used models behave
in a specific way; there might thus be some strong constraints, extracted from
domain-specific knowledge, that the model must fit in order to be accepted by a
field-expert, and thus used in practice.

Moreover, if the model is to be trusted by such an expert, meeting these con-
straints is necessary, but not sufficient. Indeed, the user might want to be able
to appreciate the (context-dependent) relevance of a suggested alternative, or a

13

14 CHAPTER 1. INTRODUCTION

given score; in order to make the final decision themselves, thus using the model
as a decision-aiding tool rather than a decision-making one. On another side, users
might want to verify the model, after training and before using it, checking if it fits
their high-level idea of what its behaviour should be. For both of these reasons, it
is necessary that the model be interpretable.

A field which adresses such concerns is Multi-Criteria Decision Aiding (MCDA).
MCDA focuses on building, with the help of an expert, preference and decision
models based that are highly constrained, interpretable, and trustable, thus clearly
adapted for safety-critical contexts. In this thesis, we focus on models based on an
aggregation function called the Choquet integral (CI), which belongs to a frame-
work called Multi-Attribute Utility Theory (MAUT). MAUT models aim at as-
signing, to any given alternative, a score, or global utility, which corresponds to its
attractiveness. One can easily see how such scores can then be used as bases for
ranking, pairwise preferences, or for sorting the alternatives into diverse preference
classes.

We chose to work with the CI, as it offers a good trade-off between repre-
sentation power (being a non-linear aggregator able to model several types of
interactions) and interpretability (its complexity being limited from the selected
CI parametric class). Moreover, it has the advantage of filling by-design many de-
sireable properties, such as being monotonic and compensatory w.r.t. its inputs,
regardless of its parameterization. Finally, it is a well known model, which has
been used in decision aiding for decades, and is starting to gain interest in ML.

Still, when considering up to some dozen criteria, models can become hard
to both design and interpret. Hierarchical models, and in particular hierarchical
Choquet integrals (HCIs) address this limitation through a divide-and-conquer ap-
proach, gradually aggregating the original criteria to form higher-level (abstract)
criteria. As a small number of criteria are aggregated at each step, the model
recommendations can easily be traced, verified and understood. Moreover, as
each individual CI is compensatory ad monotonic w.r.t. its inputs, we have the
guarantees that the HCI has the same properties.

It is also common in MAUT to use marginal utility functions for rescaling
and normalizing the attributes. Our approach is thus adapted to learning such
functions, which associate to each attribute a satisfaction depending on its value,
independently from the values of the other attributes. These marginal utilities
take values in the interval [0, 1]. In order to retain interpretability, we focus on
monotonic or bitonic marginal utilities, which are usual in MCDA. Such rescalings
allow to increase greatly the representation power of the model class, while retain-
ing a high interpretability. Below, we write UCI (resp. UHCI) a model composed
of a CI (resp. HCI) fitted with marginal utilities.

Traditionally, in decision-aiding, UHCIs are manually designed by domain ex-

1.2. MAIN CONTRIBUTIONS 15

perts. This means that the latter must be able to define:

• a hierarchy (i.e. a tree of successive aggregations of the criteria)

• the marginal utilities

• the parameters (weights) of the aggregators

Usually, those elicitation methods rely on approaches from operations research
(OR): the domain knowledge is represented as constraints; combinatorial opti-
mization methods can then be used to optimize each aggregator and find a proper
model parameterization thereof. The manual design methodology however faces
two well-known bottlenecks: the shortage of the expert time, and the law of di-
minishing returns, making it increasingly more difficult to improve the models as
their quality increases.

Moreover, these OR-based approaches require to elicit each part (aggregators
and marginal utilities) of the model separately. In many situations, the decision
maker (DM) cannot effectively provide local preferences without provoking global
inconsistencies (namely, the DM might disagree with the consequence at holistic
level of all preferential information they provided at local level).

In contexts where user preferences/constraints are available from data, an alter-
native to manual model design is offered by automatically building preference mod-
els through supervised machine learning (tackling classification, regression and/or
preference learning problems depending on the available data); nonetheless, these
approaches are currently limited to single CIs rather than hierarchical ones.

In order to exploit the best of both worlds (MCDA and ML), we propose in this
thesis a framework for learning UHCIs, from data. As a consequence, we can both
exploit noisy and large datasets for building a model, but can still guarantee and
validate the model, exploiting decades of formal work on MAUT models, which
show their interpretability, constrainedness, and all in all, trustability. Thus, the
learned models are thus exploitable in safety-critical contexts, once validated by a
field expert.

1.2 Main Contributions

Our main theoretical contribution of this thesis is the proof of identifiability of
the class of UHCI functions. That is, under mild assumptions, a given UHCI can
have a single hierarchy, a single set of marginal utilities, and a single set of weights
(parameters of each aggregator). This unicity is highly interesting, as it helps
building trust in a model learned from otherwise statistical data.

16 CHAPTER 1. INTRODUCTION

The main technical contribution of this thesis is the Neur-HCI framework,
which automatically extracts the parameters of a UHCI model, along with its
marginal utilities, from: i/ the available data, ii/ the hierarchical aggregation
tree-structure defined on the criteria.

The model verification and interpretation are ensured as Neur-HCI enforces
by design all HCI model constraints (e.g. monotonicity and idempotency). Specifi-
cally, Neur-HCI automatically translates the HCI tree structure into the architec-
ture of a neural net, the weights of which are optimized through back-propagation
from the available data. Neur-HCI thus gets the best of both worlds, retaining
the interpretability of the HCI representation class, and the affordable training
complexity of neural nets.

Interestingly, Neur-HCI also learns the marginal utility functions, supporting
a simpler description of the model. As said, a Neur-HCI model is modular by
design; this enables experts to validate, modify, or re-structure the tree whenever
they need (in which case it might be necessary to re-train the model, or at least
parts of it).

1.3 Publications

This PhD yielded four publications:

Neural Representation and Learning of Hierarchical 2-additive Cho-
quet Integrals
R Bresson, J Cohen, E Hüllermeier, C Labreuche, M Sebag; International Joint
Conference on Artificial Intelligence (IJCAI-20), Pages 1984-1991

Learning 2-additive Hierarchical Choquet Integrals with non-monotonic
utilities
R Bresson, J Cohen, E Hüllermeier, C Labreuche, M Sebag; Proceedings, From
Multiple Criteria Decision Aid to Preference Learning, (DA2PL2020)

Evaluating the stability of the Neur-HCI framework
R Bresson, J Cohen, E Hüllermeier, C Labreuche, M Sebag; Actes de la conférence
(CAID 2020), Pages 120-128

On the Identifiability of Hierarchical Decision Models
R Bresson, J Cohen, E Hüllermeier, C Labreuche, M Sebag; 18th International
Conference on Principles of Knowledge Representation and Reasoning (KR2021),
Pages 151-162

1.4. ORGANIZATION OF THIS MANUSCRIPT 17

1.4 Organization of this Manuscript

This thesis is organized as follows:

1.4.1 Part II: Background and Existing Work

In this part, we present the basic notions necessary for establishing the context of
our work. This part is divided into two chapters, as this thesis is at the crossroad
of two large fields. First, in Chapter 2, we introduce the field of Multi-Criteria
Decision Aid (MCDA).

We first present the basic notions and motivations of the field; in particular,
the notion of alternatives defined over attributes. We detail the motivations of the
field; that is, to build criteria that will represent how satisfying an alternative is
on a given attribute, in order to establish decision models that represent a deci-
sion maker’s preferences. Such models are interpretable, and highly constrained
(trustable), making them suitable for use in safety-critical systems. We detail
several classes of models, along with model-building methods.

We focus in particular on decomposable models. Such models have the follow-
ing interesting property: the satisfaction brought by a given attribute does not
depend on the value of the other attributes. While this restricts the possible be-
haviours of the model, it also brings intelligibility to the model, which can then
be interpreted much more easily.

The specific family of models on which we focus is the Choquet Integral (CI),
a generalization of the weighted sum which allows to take interactions among
criteria (synergy, independance and redundancy) into account. We generalize to
its hierarchical version (HCI). The HCI is a highly interpretable aggregator, which
will be used to compute a global score, for an alternative, given its attribute-wise
satisfactions. This requires to have the latter readily available, which is not always
the case when we are given the raw values on the attributes. As a consequence, an
HCI can also be combined with so-called marginal utilities, which are 1-dimensional
real functions on the attributes which allow to compute the satisfaction brought by
a certain value of the given attribute. An HCI thus fitted with marginal utilities
is called a UHCI. We detail these models, as they are at the center of this thesis’
contributions.

UHCIs have the advantages of MCDA models, in that it is interpretable and
constrained. Nonetheless, it also suffers the usual drawbacks of this field, which
is strongly linked to operations-research. It requires consistent preferential infor-
mation, obtained often iteratively through an interaction with a field expert. This
process is thus costly, and its efficiency is bottlenecked by the human source of
information. Finally, it does not allow to exploit existing and noisy data, which

18 CHAPTER 1. INTRODUCTION

might be readily available in certain contexts.
As a consequence, we turn our sights to Machine Learning (ML). In Chapter

3, we introduce the domain of supervised ML. We present the underlying concepts
and widely used methods. We then give a brief overview of a family of models
called Neural Networks (NN). Indeed, such models have an inherent hierarchical
structure, which is perfectly adapted for representing UHCIs.

We present recurrent issues present in ML, in particular those due to uncertainy,
or problematic behaviours, such as overfitting.

We then introduce basic notions of Preference Learning, a domain which focuses
on learning preference models from data, as a more statistical and data-driven
approach to the decision problems that MCDA tackles in a constraint-driven way.

We develop in particular ML methods aimed at learning models from the field
of MCDA, but conclude that, while the CI has been a point of interest for some
years now, UHCIs have never been learned before.

1.4.2 Part III: Theoretical Contribution

Part III is the first of the two parts dedicated to this thesis’s contributions. It
consists of a proof of identifiability of the UHCI model; that is, we show that there
is only a single parameterization possible for a given model. This means that, for
a given UHCI F which respects certain mild conditions, then F can only have:

• a single hierarchy;

• a single set of marginal utilities;

• a single set of weights for its aggregators.

This is a very interesting result for obtaining a trustable model. Indeed, a
UHCI’s intellegibility and interpretation lies in its parameters. Ensuring the ex-
istence of a single parameterization means ensuring that there cannot be two or
more contradicting interpretations on a given model; a fact which would render
the model effectively untrustable.

This proof is made in two steps, split among both chapters of the part. First,
Chapter 4 presents the proof of unicity when the model is defined on a fixed
hierarchy. That is, we suppose a given hierarchy, and show that two models that
are equal everywhere on the attribute space have necessarily the same aggregators
and marginal utilities. We proceed mainly by exploring the vertices of the input
hypercube, which allows us to single-out each element and show its unicity.

Then, Chapter 5 generalizes to the case where the hierarchy is free. We proceed
by considering another representation of the UHCI. Indeed, this class of models,
given piecewise-C1 marginal utilities (a weak assumption), is itself piecewise-C1.

1.4. ORGANIZATION OF THIS MANUSCRIPT 19

Our strategy is thus to study the borders between each region on which a UHCI
is C1. In doing so, we are able to show that under two mild assumptions, these
borders are unique for a given model, and only a single model can have those
borders, thus effectively completing the proof.

An added interest in this proof is that it is an encouraging result for the learning
of UHCIs using statistical methods.

1.4.3 Part IV: Technical Contribution

In this part, we present the main technical contribution of this thesis. This con-
tribution is the Neur-HCI framework, which is a type of specific neural modules
(i.e. small neural networks), each representing a specific part (CI aggregator, or
marginal utility) of an UHCI model.

Chapter 6 presents modules implementing marginal utilities. We treat 4 types
of marginal utilities:

• non-decreasing;

• non-increasing;

• single-peaked (non-decreasing then non-increasing);

• single-valleyed (non-increasing then non-decreasing).

These modules are built so that they can represent any (and only) marginal
utility of their respective type. Their design guarantees that any constraint that
are required by the model, in terms of monotonicity and normalization, be met,
so that the model remains valid at all time.

We also present a so-called selector module, which allows to chose, among the
four types presented above, the one most adapted to the training data.

Then, Chapter 7 introduces the neural architectures that represent CI-based
aggregator functions. We present three types of Choquet integrals:

• 2-additive (which allows interactions of up to two criteria at a time)

• a subset of the 3-additive Choquet integrals (which allows interactions of up
to 3 criteria at a time)

• general (any Choquet integral of the given dimension)

Just like for the marginal utility modules, we ensure by design the validity of
the CI represented by the module, in terms of formal constraints.

Finally, Chapter 8 explains how we train a neural network built from the mod-
ules introduced in the two previous chapters. The training settings are, namely:

20 CHAPTER 1. INTRODUCTION

• Regression: the model is given a set of alternatives, and their expected
scores, and learns to predict scores for new alternatives

• Classification: the model is given a set of alternatives, and their preference
class (very bad, bad,..., very good), and learns to classify new alternatives

• Pairwise preference learning: the model is given pairs of alternatives,
along with the information of which of both alternatives is prefered to the
other. It then learns to predict new preferences

We also have present a theorem of validity, showing that any Neur-HCI net-
work is a valid UHCI, and that any UHCI with the same types of marginal utilities
and additivity constraints as our modules can be represented by an Neur-HCI
network.

It is to be noted that this approach was validated on an internal Thales appli-
cation.

1.4.4 Part V: Experimental Results

In this section, we test the performance, robustness and stability of the models
presented in part IV. We do so on both artificially generated and real data. We
show that not only can Neur-HCI models learn efficiently a model that fits the
data well, they also prove stable; that is, given enough data, models trained on
similar data will have similar parameters and interpretation. This is highly relevant
for trusting the model, and thus for applications in safety-critical applications.

1.4.5 Part VI: Perspectives and Conclusions

We finally present perspectives of future work, which could be done to iterate on
the work presented in this thesis. These include extensions of the learned models,
along with possible theoretical work to develop new indicators for interpreting
MCDA models.

Part II

Background and Existing Work

21

CHAPTER 2

MULTI-CRITERIA DECISION AIDING

Contents
2.1 Introduction . 24

2.2 Notations and Definitions 25

2.2.1 Alternatives and Attributes 25

2.2.2 Formalizing preferences 26

2.2.3 MCDA problems . 29

2.3 Multi-Attribute Utility theory 30

2.3.1 Global Utility . 30

2.3.2 Basic structure . 32

2.3.3 Aggregation and Comparison 33

2.4 MAUT Models . 36

2.4.1 Suitable Properties . 36

2.4.2 Decomposable models 37

2.4.3 Weighted sum . 38

2.4.4 Ordered weighted average 39

2.4.5 Additive Utilities . 39

2.4.6 Generalized Additive Independance 40

2.5 Fuzzy Measures . 41

2.5.1 Definition . 41

2.5.2 Möbius transform of a fuzzy measure 42

23

24 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

2.5.3 Representation of Preferences by a Fuzzy Measure . . . 43

2.5.4 k-additive fuzzy measure 44

2.5.5 Shapley values and interaction indices 44

2.6 Choquet Integral . 47

2.6.1 Definition . 47

2.6.2 2-Additive Choquet Integral 49

2.7 Hierarchical Models . 49

2.7.1 Motivation . 49

2.7.2 Hierarchical Choquet Integral 52

2.7.3 Global Winter Values 52

2.7.4 Utilitaristic HCI Model 53

2.8 Deterministic Elicitation of MCDA models 54

2.8.1 Robustifying MCDA models 56

2.8.2 Limitations, and Motivations for Machine Learning . . . 56

2.1 Introduction

Decision Aiding (DA) was defined by B. Roy in 1996 as "the activity of the person
who, through the use of explicit but not necessarily completely formalized models,
helps obtain elements of responses to the questions posed by a stakeholder of a
decision process. These elements work towards clarifying the decision and usually
towards recommending, or simply favouring, behaviour that will increase the con-
sistency between the evolution of the process and this stakeholder’s objectives and
value system" [Roy, 1996].

In many application domains related to decision making and artificial intelli-
gence at large, an essential requirement is to gain the users’ trust [O’Neill, 2016].
To this end, the model must be interpretable, that is, a decision maker must un-
derstand which criteria influence the decision, how, and to which extent; in other
words, they must be able to trace back the assessment of an alternative to the
criteria involved. In some cases, syntactic constraints (e.g. monotonicity) might
be enforced to facilitate the interpretation of the model; in other cases, specific
domain knowledge is available (e.g. implying some preferences w.r.t. some criteria,
everything else being equal), and the model must comply with this prior knowl-
edge. Naturally, the trust-worthiness of the model is all the more important in
safety-critical contexts. We now detail how such preference models are established
in the context of multi-attribute utility theory.

2.2. NOTATIONS AND DEFINITIONS 25

We focus in this chapter on a subfield of DA, Multi-Criteria Decision Aid
(MCDA). This field aims at building and analyzing models for representing the
preferences of a decision maker (DM) over alternatives defined by their values w.r.t.
several, possibly conflicting criteria. We also introduce the models on which this
thesis will focus.

2.2 Notations and Definitions

2.2.1 Alternatives and Attributes

In the usual language, alternatives are the options given as possible choices in a
decision problem. The decision maker tries to select the "best" option among the
set of given alternatives, a notion which is further formalized in MCDA.

In MCDA, an alternative x is represented as a vector of its performance mea-
sured according to various attributes. Formally, let us write n the number of
attributes used to evaluate our alternative, and N = {1, ..., n} the set of the in-
dices of the attributes. We then have n sets X1, ..., Xn, respectively containing all
the possible values for attributes 1 to n. By abuse of notations, we assimilate an
attribute to its index, it will thus be common to see "attribute i" instead of "the
ith attribute".

We also write X = X1× ...×Xn the cartesian product of all of those sets; and
X is the set of alternatives. An alternative is thus a point written in the vector
space spanned by the basis composed of all of the Xi sets.

Example 1. A decision maker (DM) wishes to buy a house. Let us assume that
houses are defined on seven attributes, each defined on its own unit/set of values:

1. House surface area (sq. meters)

2. Garden surface area (sq. meters)

3. Garage (yes/no)

4. Distance to a large road (km)

5. Distance to public transportation (km)

6. Distance to downtown (km)

7. Price (e)

26 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

House Surface Garden Garage Road Transp. Downtown Price
m2 m2 (yes/no) km km km e

h1 50 100 No 0.1 0. 0. 400,000
h2 110 150 Yes 0.5 3. 4. 500,000
h3 150 0 No 1. 0.5 0.5 450,000
h4 150 30 No 0.1 5. 3. 300,000
h5 500 1000 Yes 5. 5. 10. 1,500,000

Table 2.1: Alternatives h1 to h5 for the pairwise learning setting

They have a set of 5 real estate ads (the alternatives) to chose from, written
h1 to h5, given in table 2.1. As we see, they are described by their values on each
attribute.

In this example, we have:

• X1 = X2 = X4 = X5 = X6 = X7 = R+

• X3 = {Yes, No}

2.2.2 Formalizing preferences

2.2.2.1 Definitions

We present here a mathematical formalization of the notion of preference, which
will be used throughout this thesis.

Definition 1. Let a relation P ⊆ (X×X), called strict preference, and a relation
I ⊆ (X ×X), called indifference on the element of X.

We assume the following properties on P and I:

• I is symmetric: xIy ⇒ yIx

• I is reflexive: ∀x ∈ X : xIx

• P is asymmetric: xPy ⇒ ¬yPx

• P ∪ I ∪ P−1 is complete: for x, y ∈ X, either xPy, yPx or xIy

Then R = P ∪ I is called a complete preference relation on X.

We focus in particular on the widely used weak orders (also called complete
preorders), which are a sub-class of preference relations:

Definition 2. A weak order is a preference relation R = P ∪ I such that:

2.2. NOTATIONS AND DEFINITIONS 27

• I is transitive: [xIy and yIz]⇒ xIz

• P is transitive

• R is reflexive and complete

In particular, R allows elements of X to be equivalent, even though they are
different.

From now on, we write P as ≻, I as ∼, and R as ⪰. We use the following
terminology:

• x ∼ y means that x is equivalent to y

• x ≻ y means that x is (strictly) preferred to, or better than, y

• x ⪰ y means that x is at least as good as y, i.e. x ∼ y or x ≻ y

2.2.2.2 Weak Separability

In the remainder of this thesis, we use the following compound notation:

Let i ∈ N, a ∈ X, xi ∈ Xi, b = (xi, a−i) is the alternative such that:

bk =

{
xi if k = i
ak otherwise (2.1)

We also write X−i the subspace spanned by all attributes, except i. Weak sep-
arability [Krantz et al., 1971, Bouyssou et al., 2006] is the property on a preference
relation ⪰ that states that:

∀i ∈ N, ∀ai, bi ∈ Xi, ∀x−i, y−i ∈ X−i :

(ai, x−i) ⪰ (bi, x−i) ⇐⇒ (ai, y−i) ⪰ (ai, y−i)
(2.2)

This means that the preference relation on attribute i is independent of the
value on any other attribute.

Example 2. Ex. 1 continued. The DM prefers a larger surface area. If their
preference relation satisfies weak independence, this means that, for two houses
that have the same values on all attributes except the surface area, then the larger

28 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

house will be preferred.

On the other hand, assume a decision problem where a doctor should evaluate
the healthiness of a patient, given several attributes, two of which would be their
average resting heart rate and their age. Nonetheless, we know that the ideal heart
rate is highly dependant on the age:

Age Average heart rate (bpm)
0.25 years 143
50 years 75

Table 2.2: Optimal heart rate for some ages

Assume two subjects, a1 of age 0.25 years (3 months), and a2 of age 50. We
write these alternative as vectors (age, heart rate).

Then, we have (0.25, 143) ≻ (0.25, 75), as a 3 months old baby with only 75
bpm has severe bradychardia (insufficient heart rate), but has a normal heart rate
with 143 bpm.

On the other hand, we have (50, 143) ≺ (50, 75), as a 50 year old person with
143 bpm has severe tachychardia (too high a heart frequency), but has a normal
heart rate with 75 bpm.

In this case, weak separability does not hold, as the satisfaction brought by the
heart rate is highly dependent on the age of the subject.

2.2.2.3 Marginal Preferences and Criteria

Weak separability on ⪰ allows us to introduce a marginal preference relation ⪰i

among the elements of Xi, with ≻i its asymmetric part and ∼i its symmetric part.

Example 3. Ex. 1 continued. A DM finds e400, 000 to be a more satisfying
price (attribute 7) than e1, 500, 000. We can thus write:

400, 000 ≻7 1, 500, 000

On the other hand, they find 500m2 to be a more satisfying surface area (cri-
terion 1.) than 100m2. Thus:

500 ≻1 100

Finally, the DM is indifferent about whether garden sizes of 300m2 and 400m2

(attribute 2.), as both are wide enough not to have any space issue. Thus, we write:

300 ∼2 400

2.2. NOTATIONS AND DEFINITIONS 29

An attribute, together with a total preference relation on its values, is called
a criterion. By abuse of notation, we also use N as our family of criteria. This
family must meet three main properties, defined in [Roy, 1999]:

• Exhaustiveness: if two alternatives have similar performance on all criteria,
the DM should not be able to say that one is preferred to the other (the family
can illustrate all of the preference information).

• Cohesiveness: if two alternatives a and b have the same performance on
all of the criteria except on criterion i, and ai > bi, then the DM recognizes
that a is preferred to b.

• Nonredundancy: if one of the criteria is removed from the family, at least
one of the properties above stops holding.

2.2.3 MCDA problems

The aim of MCDA is to build preference models which reflect the DM’s preferences
on the space of alternatives. Such models are then to be used for assisting the de-
cision maker in its later choices. According to [Danila, 1986] and [Roy, 1996], the
three following decision problems are often met by DMs: Choice, Ranking and
Sorting.

Choice: A Selection or Choice problem is when the DM must chose the best
alternative among a finite set of possibilities.

Example 4. Example 1 cont’d
The DM considers that house 3 is their favorite of the 5 given in Table 2.1.

Ranking: A Ranking problem is when the DM wants to order alternatives
from a set according to their preference; that is, from best to worst, with a pref-
erence ordering on the set of alternatives.

Example 5. Example 1 cont’d
The DM gets the following order from his preferences:

h3 ≻ h1 ≻ h5 ≻ h2 ∼ h4

with ≻ denoting preference, and ∼ denoting equivalence.

Sorting: A Sorting problem is when the DM wants to assign an alternative
to a preference class. Such classes are so there is a total order between all classes,
from most to least preferred.

30 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

Example 6. Example 1 continued
The DM sorts the houses among 3 preference classes:

• Satisfying: h3

• Average: h1 and h5

• Not-satisfying: h2 and h4

2.3 Multi-Attribute Utility theory

The focus of this thesis is on scoring functions, also called utility functions. Utility
functions, also simply called utilities, stem from economics, and are real functions
that aim at representing the satisfaction provided by an alternative to the DM.
Multi-Attribute Utility Theory (MAUT) [Fishburn, 1970, Abdellaoui and Gonza-
les, 2013] generalizes this notion to alternatives defined on several criteria, such as
those found in MCDA.

2.3.1 Global Utility

A utility function F : X → R is a function that is increasing with the satisfaction
of the DM. Formally, F is a suitable utility function for representing the DM’s
preferences if and only if

∀a, b ∈ X2, a ⪰ b ⇐⇒ F(a) ≥ F(b)

Example 7. Example 5 continued: a utility function that satisfies the prefer-
ence relations given among the houses would satisfy:

F(h3) > F(h1) > F(h5) > F(h2) = F(h4)

2.3.1.1 Marginal Utilities

Utility functions can also be defined on single criteria and are then called marginal
or local [Keeney et al., 1979] (as opposed to global when they compare complete
alternatives). In the same way as the global utilities, marginal utilities are built to
represent the satisfaction of a decision maker w.r.t. the value on a single criterion.
Formally, let ui : Xi → R, let a, b ∈ X2, ui(ai) ≥ ui(bi) means that a is more
satisfying on criterion i than b is (i.e. ai ⪰ bi).

2.3. MULTI-ATTRIBUTE UTILITY THEORY 31

Example 8. Given the preferences given in Example 3, we would have:

u7(400, 000) ≥ u7(1, 500, 000)

u1(500) ≥ u1(100)

u2(300) = u2(400)

More generally, as the DM always prefers a lower price to a higher one (the
cheaper the better), we would have a non-increasing marginal utility u1; on the
other hand, the bigger the surface area, the better, thus, u2 would be non-decreasing.

Usually, in MCDA, the attributes are built with the DM in order to ensure
that the marginal utilities be monotonic w.r.t. the value on the criterion (bigger
is better or smaller is better). This is possible as MCDA models are built hand in
hand with the DM, and it allows the local utilities to simply be re-scaling functions.
A common extension is the use of single-peaked or single-valleyed functions. A
single-peaked function is a function which is non-decreasing up to a maximal value,
then non-increasing; a single-valleyed one is the opposite: non-increasing then non-
decreasing.

Example 9. Example 1 continued: Consider attribute 4. distance to a large
road (in kilometers). The DM prefers

• to be close enough for easy access

• to be far enough that they are not bothered by the noise

Assuming 0.1km is too close, 2km is optimal, and 10km is too far. This pref-
erence is reflected by u4(2) > u4(0.1) and u4(10) < u4(2).

The adapted marginal utility function is thus single-peaked, with a peak (or
plateau) in 2.

2.3.1.2 Commensurability

It is a suitable property to have commensurable marginal utilities [Modave and
Grabisch, 1998]. This means that, unlike the attributes, which are defined on
diverse scales and with different different units, it is possible to compare the sat-
isfactions brought by the diverse criteria.

Given criteria i and j, and an alternative x, ui(xi) ≥ uj(xj) means that x is at
least as satisfying on criterion i than on criterion j.

This is a very strong assumption, as expressed in [Grabisch and Labreuche,
2004]. Indeed, it might be hard for a DM to know how to understand, or in-
terpret, that a surface area of 200 squared meters is as satisfying as having as a

32 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

price of e400, 000. Nonetheless, it brings several benefits; in particular, it allows
for comparison between criteria, which makes available some comparison-based
operators, such as max and min, along with averaging operators.

In this regard, it is also usual to normalize the marginal utilities [Grabisch
and Perny, 2003], such that ui(xi) = 0 means that xi is totally disatisfying, and
ui(xi) = 1 means that xi is totally satisfying. Criterion i thus takes values in the
unit interval.

We now present some models and methods from MAUT in order to build and
represent preference relations. While our aim is not to be exhaustive, we give
insight as to how such models are built in the state of the art.

2.3.2 Basic structure

The very essence of an MCDA model is to be able to represent preference relation
⪰ that fits that of the DM. In practice, let M : X2 → R a preference model. We
also introduce a decision rule D, which determines whether the first argument of
M is preferred or not to the second one from the output of M .

In crisp logic, D has output in {0, 1} (or their boolean equivalent {True, False}).
A common choice is a Heaviside function, where alternative a is said to be preferred
to b if and only if M(a, b) > 0, and a is equivalent to b iff M(a) = M(b). This is
what is needed to represent a weak order as formalized in Definition 2.

Nonetheless, that requires perfect precision to model, as two models with the
slightest difference in score (even imperceptible by a human decider) would mean
a strict preference. As a consequence, it is not absurd to add a tolerance threshold
ϵ to the decision model. Assuming we have a global utility function F defined on
all alternatives in X, then we could have the following M and D:

M : (a, b) 7→ F(a)−F(b)
D : t 7→ 1R∗

+
(t− ϵ)

There are then three distinct cases:

• F(a) > F(b) + ϵ; then D(M(a, b)) = 1 and D(M(b, a)) = 0 : the model
decides that a is preferred to b

• F(a) + ϵ < F(b); then D(M(a, b)) = 0 and D(M(b, a)) = 1 : the model
decides that b is preferred to a

• |F(b) − F(a)| ≤ ϵ; then D(M(a, b)) = D(M(b, a)) = 0; the model cannot
decides that a and b are equivalent.

2.3. MULTI-ATTRIBUTE UTILITY THEORY 33

Note that, with this decision rule, we need to relax the transitivity of equiva-
lence, as illustrated in Example 10.

Example 10.

• F(a) = F(b) + 2ϵ
3

• F(b) = F(c) + 2ϵ
3

then we have a ∼ b and b ∼ c but a ≻ c strictly. This would violate the
transitivity property. In this case, ⪰ is called a semi-order1.

In fuzzy logic, D can be a real function with its image being a real number
between 0 and 1. Then it can be interpreted as the certainty that the first alter-
native is preferred to the second, or as the intensity of the preference, for instance.
The choices of these functions depends on the problems we wish to solve and on
the model itself.

Example 11. Assume the following model:

M : (a, b) 7→ F(a)−F(b)
D : t 7→ max(0,min(1, t))

This D is illustrated in Figure 2.1. For instance, if F(a) = 0.8 and F(b) = 0.3,
we have a preferred to b with a degree of 0.5.

2.3.3 Aggregation and Comparison

An MCDA model such as described above thus takes values described by multiple
criteria as input and yields a mono-dimensional result (either a boolean or numeric

1One could also imagine a model that is intermediate between the fuzzy model of example 11
and the crisp one described above; in this case, there could be several crisp thresholds ϵ1 < ... < ϵc
such that:

• F(b) + ϵ2 > F(a) > F(b) + ϵ1 means that a is very weakly preferred to b

• F(b) + ϵ3 > F(a) > F(b) + ϵ2 means that a is weakly preferred to b

• ...

• F(b) + ϵc > F(a) > F(b) + ϵc−1 means that a is very strongly preferred to b

• F(a) > F(b) + ϵc means that a is extremely preferred to b

This is the idea behind the MACBETH methodology [Bana e Costa and Vansnick, 1999], which
utilizes 6 thresholds to build its preference model.

34 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

Figure 2.1: A fuzzy decision rule

value). This implies that, at some point, the information contained in all of the
criteria is aggregated into this single, explicit one-dimensional value. Moreover,
as it expresses preferences between two objects, there must also be a comparison
step.

These are essentially the two core steps of an MCDA model. The order in which
they are applied defines whether they are "compare-then-aggregate" or "aggregate-
then-compare" models [Grabisch and Perny, 2003]. These families will be described
in the next two sections.

2.3.3.1 Compare then Aggregate

Compare then Aggregate models have the following form :

M(a, b) = A(C1(a1, b1), ..., Cn(an, bn))

where each criterion i has a partial comparison operator on its performances
Ci : X2

i → R. Ci(ai, bi) is, of course, non-decreasing w.r.t. ai and non-increasing
w.r.t. bi.

Then, A : Rn ∈ R is the aggregation operator. It indeed aggregates the n
partial preferences into one global preference. A is non-decreasing w.r.t. its argu-
ments.

2.3. MULTI-ATTRIBUTE UTILITY THEORY 35

Example 12. The criterion-wise comparator of the performance on criterion i
can thus have the shape:

∀a, b ∈ X, Ci(ai, bi) = 1{ai>bi} − 1{ai<bi}

where 1S is the characteristic function of property S.
Then the aggregator A might be a simple sum:

A(C1(a1, b1), ..., Cn(an, bn)) =
n∑

i=1

Ci(ai, bi)

M(a, b) thus yields the number of criteria where a dominates b minus the num-
ber of subjects where b dominates a. The decision rule is then

a ≻ b ⇐⇒ M(a, b) > 0

.
For instance, given houses from Example 1, the DM could compare houses h1

and h2 in a compare-then-aggregate fashion, by noticing that:

• h1 has a smaller surface area and a smaller garden than h2

• h1 has no garage, while h2 has one

• h1 is closer to the road, to downtown and to transportation systems than h2

• h1 is cheaper than h2

As a consequence, h1 beats h2 on 4 attributes (4, 5, 6, 7) and is beaten by h2 on
the 3 other attributes. The aggregator C given above would yield that h1 is preferred
to h2.

Nonetheless, a more complex aggregator could yield that the difference in price
and accessibility is more than compensated by the presence of a garage and the
bigger surface, and make h2 the preferred alternative.

In this case, it is relevant to have skew-symmetric Ci, along with a linear ag-
gregator A. We thus have M(a, b) = −M(b, a) for each pair (a, b) of alternatives.

In this setting, ELECTRE method was first conceived by Roy in 1966 [Benay-
oun et al., 1966], and went on to be modernized through different versions (II, III,
IV, TRI for instance). A comprehensive overview can be found in [Figueira et al.,
2016]. These methods aim at solving problems of ranking, sorting and selecting
the best between several alternatives. It functions by building preference relations
and applying an elimination process on "unacceptable" alternatives, then dealing
with the rest depending on the chosen problem.

36 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

2.3.3.2 Aggregate then Compare

Aggregate then Compare models have the following form :

M(a, b) = C(A(a1, ..., an),A(b1, ..., bn))

This time, both alternatives are aggregated independantly of each other, and
the results of both aggregations are compared in order to determine the preferred
alternative. Here as well, A : X → R is non-decreasing w.r.t. its arguments, and
C : R2 → R is non-decreasing w.r.t. the first one and non-increasing w.r.t. the
second one.

Example 13. Assume we have a global utility F for scoring the houses. Then we
can have the aggregation function A to be F , and the comparison function C to
simply be a difference. That is:

M(a, b) = C(A(a),A(b)) = F(a)−F(b)

with the same decision rule as in Example 12.

We see from Example 13 that, if we have a global utility F for the alternatives,
F takes care of the aggregation step. It is thus very easy to work in the aggregate-
then-compare framework.

This thesis focuses on this second setting. The problem is now the establish-
ment of a global utility function which will be able to represent the preferences of
the DM.

2.4 MAUT Models

2.4.1 Suitable Properties

We give here a list of important properties, given by [Grabisch and Perny, 2003]
that we might expect our global utility functions to satisfy.

We call U the satisfaction space in which the values of the n criteria exist. If
the criteria are commensurate and normalized, we can have U = [0, 1]n.

We recall that, for a given criterion i, xi = 0 means that the alternative x is
not satisfying at all w.r.t. criterion i, xi = 1 means that it is, on the contrary,
fully satisfying. In the same way, we say that A has its image in [0, 1], with 0
meaning that the alternative is not satisfying at all, while one means that it is
fully satisfying.

We present below a list of properties which are often desirable for aggregation
functions. Let a and b two alternatives in U :

2.4. MAUT MODELS 37

• Continuity: w.r.t. all of the ai

• Monotonicity: if, ∀i ∈ N, ai ≥ bi, then A(a) ≥ A(b)

• Piecewise-Linearity

• Idempotency: ∀t ∈ [0, 1] ,A(t, ..., t) = t

The first two are quite easily understandable. A continuous model is desirable
for its stability and interpretability. This might even be reinforced by requiring
that it be Lipschitz-continuous, in order to moderate the impact of the change
of a criterion. Monotonicity is natural, given that the criteria already illustrate
attribute-wise satisfactions. What it means is that, if an alternative is at least as
satisfying as another one on all criteria, then it must be preferred.

Piecewise-linearity also allows some level of interpretation, by defining clear
regions in which the model is linear, and thus simple to understand.

Idempotency states that, if an alternative a is equally satisfying on all criteria
by a certain level, then it is also globally satisfying to the same level. Moreover,
Idempotency and Monotonicity yield two more interesting properties of the model:

Compensatoriness: min(ai) ≤ A(a1, ..., an) ≤ max(ai)
Compensatoriness is relevant as it makes the aggregator behave like an aver-

aging operator, stating that an alternative cannot be more (resp. less) satisfying
than its most (resp. least) satisfying criterion. This in turns allows to derive the
normalization property:

Normalization: max
a∈U
A(a) = 1, min

a∈U
A(a) = 0

Normalization gives bounds to the possible satisfaction, yielding a maximal
satisfaction level (with value 1) and a minimal one (with value 0).

2.4.2 Decomposable models

Under weak separability, we can assume a model F , called a decomposable models
[Krantz et al., 1971], that complies with the marginal preference relations.

Definition 3. A MAUT model F : X ∈ [0, 1] is called decomposable iff it can be
written as:

F(x) = A(u1(x1), ..., un(xn)) (2.3)

with A is non-decreasing w.r.t. its arguments and for each i in N , ui a function
which maps Xi into R. The latter are the marginal utilities evoked in Section
2.3.1.1.

38 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

We present below a number of widely used aggregators, F : X → R step. Each
time, we present how they are written, along with the requirements and properties.
Note that they do not all fit the properties evoked in the previous sections.

2.4.3 Weighted sum

The weighted sum aggregator is one of the simplest. As such, it is used in many
fields, from MCDA to everyday tasks. It can be written:

WS : X → R

x 7→
n∑

i=1

wixi

Where the wi are real weights. In order to ensure normalization, it is enough

to assume that
n∑

i=1

wi = 1. For monotonicity, we ensure ∀i ∈ N,wi ≥ 0.

This model is linear in all of its arguments. Each criterion has its own weight
which represents to which extent increasing the satisfaction on the criterion affects
the global score. Nonetheless, in order to obtain such an interpretation, it is
required that the value on the attributes be commensurate and scaled. To achieve
this, one might also assume that the weighted sum aggregates output of fixed
marginal utilities u1, ..., un, which serve as a rescaling and normalizing step:

WS : X → R

x 7→
n∑

i=1

wiui(xi)

As the weighted sum is a very simple model, it is easy to understand and
interpret. Nonetheless, this comes with a very limited expressivity, as illustrated
in Example 14.

Example 14. We assume a sub-domain of Ex. 1, where we can evaluate houses
only on criteria 4, 5 and 6. As we focus on the aggregation, we assume the marginal
utilities to have already been computed. Thus, we represent a house as a vector
of satisfactions on criteria 4, 5, 6; that is, a house that is totally satisfying on
criterion 4 and dissatisfying on criteria 5, 6 is represented as (1, 0, 0). Let ≻ and ∼
be a preference relation and an equivalence relation on houses restricted to criteria
4, 5, 6.

The DM considers that public transportation will mostly be used for accessing
the downtown hub; it is thus equally satisfying to be close to downtown, to the

2.4. MAUT MODELS 39

public transportation, or to both. This means that, given the satisfaction α on
criterion 4, we have

(α, 0, 1) ∼ (α, 1, 0) ∼ (α, 1, 1). (2.4)

The DM also considers that having only access to the city (5. or 6.) is as satisfying
as having only access to the outside world (4.), but is still better than having access
to neither. Thus

(0, 1, 0) ∼ (1, 0, 0) ≻ (0, 0, 0). (2.5)

Given a weighted sum, first equation gives us w5 = w6 = 0, and thus w4 = 1. On
the other hand, the second one gives w4 = w5; we can thus not represent the DM’s
rules with a weighted sum.

2.4.4 Ordered weighted average

Introduced in 1988 by Yager [Yager, 1988], the ordered weighted average operator
is written:

OWA : X → [0, 1]

x 7→
n∑

i=1

wixτ(i)

where the wi are weights, and τ(i) : N → N is a permutation of the indices of
the criteria so that xτ(1) ≥ xτ(2) ≥ ... ≥ xτ(n).

This model is very similar to the weighted sum, as the weights also sum to one
and are positive in order to ensure monotonicity and normalization. The difference
with the weighted sum is that each weight is associated not with a given criterion
index, but with the rank of the value on a criterion among all the values on all of
the criteria.

As a weight-based model, it is thus also necessary that the values be commen-
surate, so that the weights make sense; indeed, the same weight can be applied to
any of the attributes, depending on their values.

This particular type of aggregator can be used in contexts where we are given
a set of items to evaluate, whose order is not relevant. For instance, one could
evaluate the relevance of a list of movies suggested by an online streaming service,
with the attributes being the individual relevance of each movie w.r.t. the current
customer.

2.4.5 Additive Utilities

The additive utilities model [Fishburn, 1967a] is a generalization of the weighted
sum in the context of MAUT. It is written in the following way:

40 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

AU : X → [0, 1]

x 7→
n∑

i=1

vi(xi)

where the vi : Xi → R+ are local utility functions, associated with each crite-
rion, and yielding the marginal satisfaction brought by x on each criterion. Nor-
malization is ensured through the fact that:

n∑
i=1

vi(Ti) = 1

where Ti ∈ Xi is the element that maximizes vi (i.e. the "best" element). As
[Siskos, 1982] states, one can re-write each vi as:

∀i ∈ N, ∀xi ∈ Xi, vi(xi) = wi(xi) with wi = vi(Ti)

We thus have weights wi, along with normalized marginal utilities ui as evoked
before.

2.4.6 Generalized Additive Independance

Generalized additive independance (GAI) was introduced by Fishburn in 1967
[Fishburn, 1967b]. It generalizes the Additive Utility model described above, as it
allows the utility functions to be multidimensionnal.

Formally, we have:

GAI : X → [0, 1]

x 7→
∑
S⊆2N

uS(xS)

where xS is the orthogonal projection of x on S (only the criteria belonging to
S are kept), and uS :

∏
i∈S

Xi → [0, 1] are utility functions for some subsets S of N .

This model is more general than the additive utility (if we only have utilities
uS for |S| = 1, then the model is the AU).

This generality, as described above, can prove problematic if it is excessive
w.r.t. the complexity of the real decision process (that of the DM). In particular,
this model without restriction violates preferential independence weak separability
[Grabisch and Labreuche, 2015]. Thus, this model is clearly not decomposable.
Moreover, in the general case, it might require up to an exponential (w.r.t. n)

2.5. FUZZY MEASURES 41

Additive Non-Additive
Weights Weighted Sum, OWA Choquet Integral

No Weights Additive Utility GAI

Table 2.3: Relation Between the Aggregators

number of marginal utilities to be specified, which quickly becomes computation-
heavy.

In this section, we present an aggregation function, called the Choquet integral
[Choquet, 1954], which is at the heart of this thesis’s contribution. This model is
interesting, as it generalizes the weighted sum, is compatible with marginal utilities
for building a decomposable model, and has many interesting properties required
in the previous sections. It is in particular more constrained and interpretable than
a GAI [Grabisch and Labreuche, 2018], and more expressive than most additive
models, thus yielding a nice compromise between both families.

Table 2.3 shows the relation between the previously cited aggregators.

2.5 Fuzzy Measures

We describe below a way to take into account interactions among criteria, while
keeping, as much as is possible, the simplicity (and thus interpretability) of linear
models such as the weighted sum. We present here fuzzy measures [Choquet,
1954, Sugeno, 1974, Grabisch and Labreuche, 2004] to generalize the notion of
weights, in that purpose.

2.5.1 Definition

Let P = 2N the set of all subnets of N . A fuzzy measure, or capacity on N is a
set function µ : P → [0, 1] which satisfies the following three properties:

• Normal1: µ(∅) = 0

• Normal2: µ(N) = 1

• Monot: ∀A ⊆ N,∀B ⊆ A, µ(B) ≤ µ(A)

These properties are easy to understand. Normal1 and Normal2 ensure nor-
malization of the measure; that is, an empty set has a zero measure, the complete
set has a 1 measure. On the other hand, Monotensures that all sets have a larger
measure than any of their subsets.

42 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

In a weighted sum, there are n weights, which represent a discrete, additive
measure on N . That is, all attributes have a given weight, and the weight of a set
of attributes (assimilable to its impact on the output of the model) is the sum of
the weights of its elements. This is represented by a fuzzy measure µ such that,
∀S ⊆ N , µ(S) =

∑
i∈S

µ({i}). In the more general case of a fuzzy, non-additive

measure, this is not true anymore, as there is now a "weight" (i.e. its measure)
for any set, or coalition, of criteria, with the constraint being that no criterion
contributes negatively to a coalition (i.e. adding an element to a coalition cannot
decrease its weight, by Monot).

This principle is widely used in MCDA [Grabisch, 1996, Grabisch et al., 2000]
as it allows the modelling certain types of interactions among criteria [Grabisch
and Labreuche, 2004] by varying the weight assigned to this very subset of criteria.
To some extent, for S ⊆ N , µ(S) can be seen as a measure of the importance of
coalition S within the whole set N .

2.5.2 Möbius transform of a fuzzy measure

The Möbius transform [Rota, 1964, Grabisch, 1999] m of fuzzy measure µ is an-
other, equivalent, way of writing µ. Formally, m is the only function that satisfies:

∀S ⊆ N,µ(S) =
∑
B⊆S

m(B) (2.6)

m can be explicitly written from µ as:

∀S ⊆ N,m(S) =
∑
B⊆S

(−1)|S\B|µ(B)

The Möbius of a coalition m(S) can be seen as the importance, or weight,
of this coalition "on its own", regardless of the importance of its sub-coalitions.
In particular, while for S ⊆ N , µ(S) is in the unit interval, m(S) is in [−1, 1].
The normalization and monotonicity contstraints on an FM µ can be translated
in terms of the Möbius transform:

• Normal1: m(∅) = 0

• Normal2:
∑
S⊆N

m(S) = 1

• Monot: ∀A ⊆ N,∀B ⊆ A,
∑

S⊆A,S ̸⊆B

m(S) ≥ 0

2.5. FUZZY MEASURES 43

2.5.3 Representation of Preferences by a Fuzzy Measure

Assume a context where a criterion is either not satisfied (value 0) or totally
satisfied (value 1). An alternative is thus an element of {0,1}n. For S ⊆ N , we
write aS the alternative such that aS = (1S, 0−S) is satisfying on all criteria in S,
and only on those.

Let µ a fuzzy measure on N , we can measure the satisfaction of an alternative
aS as U((1S, 0−S)) = A((1S, 0−S)) = µ(S); that is, the satisfaction on a is the
measure of the set of criteria on which a is satisfying.

Then, the properties become intuitive. They can be translated as:

• Normal1: the alternative which is not satisfying on any criteria is not
satisfying at all

• Normal2: the alternative which is totally satisfying on all criteria is totally
satisfying

• Monot: if an alternative aA is at least as satisfying on all criteria than an
alternative aB, then aA is globally at least as satisfying as aB

This notion will be generalized to intermediate values for the criteria.
We stated above that fuzzy measures are used to represent interactions among

criteria. We now formalize this concept of interaction following [Grabisch, 1997a,
Grabisch and Labreuche, 2004].

Considering two coalitions of criteria A,B ⊆ N2, with A ∩ B = ∅ there are
three possible cases:

• Redundancy: µ(A ∪B) < µ(A) + µ(B)

• Independance: µ(A ∪B) = µ(A) + µ(B)

• Synergy: µ(A ∪B) > µ(A) + µ(B)

In the first case, the union of the coalition brings less value than the sum of
the values of the coalitions taken separately. The coalitions are thus considered as
redundant, as some of the value they bring is common to them both.

In the second case, both coalition together bring the same value as when they
are taken separately. They are thus considered independent, as there is no inter-
action between the values brought by both coalitions.

Finally, in the last case, getting both coalitions together brings some extra
value compared to what they bring independently. This phenomenon is called
synergy, or complementarity.

44 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

2.5.4 k-additive fuzzy measure

A fuzzy measure µ, or equivalently its Möbius representation m, has one value for
each of the subsets of N . This means that it has 2n values, which might lead to
several problems when using one to model a DM behaviour:

• exponential computational cost

• too many degrees of freedom can make a model too "loose", leading to
"ghosts in the data", a.k.a. overfitting (we shall return to this issue in
Section 3.6.1)

• a very hard time interpreting the model

In order to limit complexity of the models based on fuzzy measures, Grabisch
introduced the notion of k-additivity [Grabisch, 1997b]. Let k ∈ [1, n]. A fuzzy
measure µ is said to be k-additive if and only if:

∀S s.t. |S| > k, m(S) = 0

This property ensures that the model does not take into account the interac-
tions between more than k criteria. It thus simplifies the model, by making it
more rigid, as it lowers the number of values needed from 2n to O(nk).

In practice, in MCDA, 2-additive measures are usually enough used to param-
eterize a model. These allow to represent interactions between pairs of criteria,
while forbidding interactions between sets of three or more criteria. In practice,
this flexibility is sufficient to model adequately the DM’s preference function. In-
deed, while humans can easily acknowledge interactions between two criteria, they
usually have a hard time in trying to take into account interactions between three
criteria or more. Allowing more degrees of freedom to the model would just add
extra, non-interpretable parameters which, while making the model richer, require
more information to characterize.

2.5.5 Shapley values and interaction indices

In general, as we have seen, and without any assumption on its additivity, it might
be difficult to quickly analyze the behaviour represented by a fuzzy measure µ.

It is thus relevant to have indicators, computed from a fuzzy measure, which
allows to interpret diverse behavioral elements of the fuzzy measure at a glance.

2.5. FUZZY MEASURES 45

2.5.5.1 Shapley Values

Shapley values [Shapley, 1953] were introduced in collaborative game theory. In
these types of games, a coalition of players work together in order to obtain a
global reward. Then comes the question of how to split the reward among the
players in a way that reflects the respective contribution of each player.

While distributing the reward equally among the players is the easiest way to
share it, it might not be representative of how much any of the players brought to
the coalition.

In the case of a fuzzy measure, the analogy is trivial: the n criteria are players,
which collaborate in order to maximize their reward, i.e. the global utility of
the alternative. In this case, the contribution of a criterion is analogous to its
importance in the model, i.e. how much it influences the final output.

In this regard, we want to compute the average impact that a criterion i has
on the output of the model. Analogously, we assume that a criterion can either be
satisfied (value 1) or not satisfied (value 0). Then, for an alternative x ∈ X, we
call S ⊆ N the set of criteria on which x is satisfying. A logical way to evaluate
the impact of a criterion i ̸∈ S would be to compare the utility of two alternatives
whose criteria are aS = (1S, 0−S) and bS = (1S∪{i}, 0−S∪{i}). That is, we check the
difference between the utility of an alternative where criterion i is not met, and
that where it is satisfied.

Let A : [0, 1]n → [0, 1] a normalized aggregation model. If A is an additive
model, say, for instance, a weighted sum, then A can be written as:

A(x) =
n∑

i=1

wixi

As this model is additive, the difference A(bs) − A(as) is always wi, indepen-
dently of S. Criterion i thus contributes to a degree that is proportional to its
weight wi.

This makes the weights suitable measures for the contribution of their respec-
tive criteria. In particular, as the weights sum up to one by definition of the model,
such weights form a relevant distribution of the contribution to attribute to each
criterion.

This becomes more complicated when the model is not additive; that is, we do
not necessarily have:

A(bS1)−A(aS1) = A(bS2)−A(aS2)

In particular, if we assume the fuzzy-measure based µ introduced in Section
2.5.3, we can consider that the average contribution of being satisfied on i is the
average of the terms of shape µ(aS∪{i}) − µ(aS) on any S ⊆ N \ {i}. This is

46 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

the idea behind the computation of the Shapley value. For a criterion i, and a
fuzzy-measure µ the Shapley value Φµ

i is given by [Grabisch and Labreuche, 2004]:

Φµ
i :=

∑
S⊆N\{i}

(n− |S| − 1)!|S|!
n!

[µ(S ∪ {i})− µ(S)] (2.7)

Once computed, the Shapley values form an n-dimensionnal vector (Φµ
1 , ...,Φ

µ
n),

which has the interesting property that:∑
i∈N

Φµ
i = 1

It easy to see that all of the Φµ
i are non-negative as µ is monotonic. Thus, the

Φµ
i can be seen as a distribution of importance on all criteria. Note that, if µ is

1-additive, it is a set of weights (w1, ..., wn) = (µ({1}), ..., µ({n})), and its Shapley
values Φµ

i = wi.
This Shapley value is very important in MCDA, as it allows to quickly check

which criteria have a greater impact on a model [Murofushi and Soneda, 1993,
Labreuche and Fossier, 2018]. Nonetheless, as one sees, they require, in the general
case, an exponential number of computations. This can be simplified for k-additive
fuzzy measures.

2.5.5.2 Interaction Indices

While the Shapley values are great at indicating the comparative importance of
the criteria, they miss a type of information that is critical when analyzing a
fuzzy-measure-based model; that is, it leaves unexplained the interaction part.

Thus, in the same idea than the Shapley values, [Murofushi and Soneda, 1993]
proposes the following interaction index for studying the type and relative impor-
tance of the interaction among a pair of criteria i and j:

Iµi,j :=
∑

S⊆N\{i,j}

(n− |S| − 2)!|S|!
(n− 1)!

[µ(S ∪ {i, j})− µ(S ∪ {i})− µ(S ∪ {j}) + µ(S)]

(2.8)
This index was later generalized by Grabisch in [Grabisch, 1997b] in order to

reflect the interaction for any coalition A ⊆ N [Grabisch and Labreuche, 2004]:

Iµ(A) :=
∑

S⊆N\A

(n− |S| − |A|)!|S|!
(n− |A|+ 1)!

∑
L⊆A

(−1)|A\L|µ(S ∪ L) (2.9)

Note that, in the case of a 1-additive fuzzy measure, the interaction indices are
all 0. In the case of a 2-additive one, they are the Möbius of the corresponding
pair.

2.6. CHOQUET INTEGRAL 47

Set µ m
∅ 0 0
{4} 0.5 0.5
{5} 0.5 0.5
{6} 0.5 0.5
{4, 5} 1 0.
{4, 6} 1 0.
{5, 6} 0.5 −0.5
{4, 5, 6} 1 0.

Table 2.4: µ, defined on all subsets, along with its Möbius values

2.6 Choquet Integral

2.6.1 Definition

The Choquet integral [Choquet, 1954] is a particular case of the GAI model de-
scribed in 2.4.6, and a generalization of the weighted sum. It is parameterized by
a fuzzy measure µ, and is written as:

Cµ : X → R

x 7→
n∑

i=1

(
xτ(i) − xτ(i−1)

)
µ(Ai)

(2.10)

where τ(i) : N → N is a permutation of the indices of the criteria so that
xτ(1) ≥ xτ(2) ≥ ... ≥ xτ(n), xτ(0) = 0, and Ai = {τ(i), τ(i+ 1), ..., τ(n)}.

If we use the Möbius representation m of µ, we can alternatively write it in the
equivalent form:

Cµ : X → R

x 7→
∑
S∈N

m(S)min({xi|i ∈ S}) (2.11)

As we manipulate the attributes through min operators, along with computing
their differences, it is essential for interpreting this model that the inputs (the xi)
be commensurate.

Example 15 (Ex. 14 cont.). We define the fuzzy measure µ on set {4, 5, 6}, with
its values given in Table 2.4.

48 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

As these values are not necessarily commensurate, we assume that we work
on a normalized version of these attributes, i.e. the satisfaction they each bring.
In this case, the FM is 2-additive, meaning that its interaction index of a pair of
indices is the Möbius value of said pair. It is thus easily interpretable from the
third column.

In particular, we see that the term m({4, 5}) = −0.5 indicates some redundancy
among both attribute 5 (satisfaction on the distance to the public transportation
system) and attribute 6 (satisfaction on the distance to downtown). The Shapley
values are also easily computable:

Φ4 = 0.5; Φ5 = Φ6 = 0.25

From Equation (2.11), the equation can be simplified as:

Cµ(x) =
1

2
(x4 + x5 + x6)−

1

2
min(x5, x6)

=
1

2
(x4 +max(x5, x6))

As one can see, being satisfied on the proximity to a road (attribute 4.) brings
only half of the maximal satisfaction. The other half is brought by how accessible
the city is, either through public transportation (criterion 5) or by being close to
downtown (criterion 6). Nonetheless, only one of the latter is enough (as repre-
sented by the max term).

A Choquet integral parameterized by µ fulfills the preferences given in Ex. 14
– namely relations (2.4) and (2.5).

Let us compute

Cµ(α, 0, 1) = α (µ({4, 6})− µ({6})) + 1 µ({6}) = α

2
+

1

2
.

Likewise, Cµ(α, 1, 0) =
α
2
+ 1

2
= Cµ(α, 1, 1), so that condition (2.4) is satisfied.

We also check that:
Cµ(0, 1, 0) = µ({5}) = 1

2
= Cµ(1, 0, 0) > Cµ(0, 0, 0) = 0.

Hence (2.5) is also satisfied. This Choquet integral allows to represent the
preferences of the DM, unlike any possible weighted sum.

Its ability to rationally model a vast array of preference processes [Murofushi
and Sugeno, 1989] has made it one of the most widely used models in MCDA
[Grabisch and Labreuche, 2008, Grabisch, 2006]. In particular, there has been
some notable work on describing and adapting the model to different axiomatics
and conditions sets [Mayag et al., 2011, Labreuche, 2018]. A survey of more recent

2.7. HIERARCHICAL MODELS 49

methods and uses of the Choquet Integral can be found in [Beliakov and Divakov,
2021].

The Choquet integral offers many interesting properties, due to its structure.
Regardless of its parameterization (the fuzzy measure), a Choquet integral satisfies
the properties cited in 2.4.1.

2.6.2 2-Additive Choquet Integral

As it is parameterized by a fuzzy measure, the Choquet Integral (CI) might also
suffer from excessive flexibility. This can be easily tackled by using a k-additive
fuzzy measure for our model, in order to reduce the model complexity to a poly-
nomial one.

In particular, as evoked above, 2-additive fuzzy measures are frequently cho-
sen to represent the decision process of a human DM. The thus-called 2-additive
Choquet Integral can then be written in the following way (parameterized here by
the Möbius representation of the fuzzy measure µ):

Cm : X → [0, 1]

x 7→
n∑

i=1

m({i})xi +
n∑

i=1

n∑
j=i+1

m({i, j})min(xi, xj)

One can easily see this as a weighted sum, to which is added a second term
containing the interactions between pairs of criteria. It is to be noted that a
Choquet integral parameterized by a 1-additive (also simply called additive) fuzzy
measure is precisely a weighted sum.

2.7 Hierarchical Models

2.7.1 Motivation

When the number of criteria increases, so does the number of parameters. Models
can then become difficult to interpret by the decision maker. A common practice
in multi-criteria decision therefore is to structure the criteria along a hierarchy.
Formally, subsets of criteria are grouped into so-called intermediate or artificial
criteria. These intermediate criteria are iteratively aggregated (possibly with initial
criteria) until yielding a single score.

Definition 4. A hierarchy on N consists of a directed rooted tree T = ⟨r,M,Ch⟩
where M is the set of vertices (leaves included). Let V and N respectively denote
the set of non-leaf nodes and the set of leaves (as each leaf corresponds to a native

50 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

criterion), with thus M = V ∪ N . r ∈ V is the root node (the top aggregation
node) and Ch : M → 2V is the set of children of every node.

For k ∈ V , let Lf(k) denote the set of leaves in the subtree of T rooted at
k. We also write xk (resp. Xk) the restriction of x (resp X) to the attributes in
Lf(k).

For k ∈ V , let d(k) denote the number of children nodes of k: d(k) = |Ch(k)|.
We suppose the children to be ordered by their index in M , and we write Ch(k) =
{k1, ..., kd(k)}.

Example 16. Assume the problem and criteria given in Example 1. These criteria
are gradually aggregated as illustrated in Fig 2.2, to form new compound criteria:

8. Commodities, aggregates Garden and Garage

9. Building comfort, aggregates Surface and Commodities

10. Accessibility, aggregates distances to Road, Transportation and Downtown

11. Global score, aggregates Comfort, Accessibility and Price

1

2 3

4 5 6

7

8

9 10

11

Figure 2.2: Hierarchy of criteria described in Ex 1.

Definition 5. A hierarchical model F = ⟨T , ν⟩ is composed of a hierarchy T =
⟨r,M = V ∪ N,Ch⟩ and of a set of aggregators ν = {Ak | k ∈ V }, such that all
non-leaf nodes of T have an associated aggregator.

2.7. HIERARCHICAL MODELS 51

For all nodes k ∈ V , by construction,the number of values aggregated in Ak,
also referred to as the dimension of Ak, is equal to Ch(k).

Let x ∈ X. We assume that each node i ∈ M has a certain utility ai(x). The
ai are computed recursively from the leaves as:

ai(x) =
{
Ai((ak, k ∈ Ch(i))) if k ∈ V

xi otherwise
That is: each node aggregates the output of its children. The output of the

model is ar, the output of the aggregation at the root node.

This is illustrated in Example 17.

Example 17. In Figure 2.2, nodes 1 to 7 are native criteria, and nodes 8 to
11 are aggregation nodes. Their values are computed as the aggregation of their
respective children in the tree, which can be either criteria or aggregation nodes.
In particular, Accessibility (node 10) will aggregate the proximity to a large road,
to downtown and to public transportation systems (respectively nodes 4, 5, and 6).

Compared to models with a single aggregation, thereafter referred to as flat
models, hierarchical models offer several advantages:

• Representation power: due to the non-linearity of the aggregation, hierar-
chical models are strictly more representative than their flat counterpart, as
a flat model is simply a 1-level hierarchy;

• Sparsity: if the number of parameters of an aggregator is more than linear,
then a hierarchical model involves fewer parameters than a flat one with the
same number of criteria; likewise, the grouping of criteria into a smaller num-
ber of intermediate ones makes it easier for the decision maker to interpret
the mode (see Example 18);

• Representation of domain knowledge: hierarchical models can be tailored to
reflect pieces of expert knowledge and thus better fit the mental representa-
tion of the decision maker;

• Hierarchical structures can be inspected at different levels of detail: if the
decision maker needs to better understand the value of a given intermediate
criterion, they can look at the values on its children nodes and get a fine-
grained explanation thereof [Labreuche and Fossier, 2018].

Example 18 (Ex. 1 cont.). Consider the tree in Fig. 2.2. With 2k parameters for
an aggregation node (a non-additive Choquet Integral, for instance) with k children,
we have 4+4+8+8 = 24 parameters in a model with that hierarchy. On the other
hand, a flat model, with a single aggregation, would have 27 = 128 parameters.
The number of parameters is thus greatly reduced by such a hierarchy.

52 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

2.7.2 Hierarchical Choquet Integral

2.7.2.1 HCI Model

The hierarchical Choquet Integral (HCI) model retains the generalization from a
single CI to a network of CIs. Nonetheless, it restricts their structure to a tree.
That is, it is exactly a hierarchical model as defined in Section 2.7, with CIs as
the aggregators.

Each leaf of the tree corresponds to a single criterion, and each criterion appears
as a single leaf. Accordingly, the non-leaf nodes in the tree have a clear meaning
to the DM, as illustrated in Ex. 16. Note that, whatever the structure of the
tree, the number of aggregations and the size of each aggregation is at most n− 1.
Therefore, the number of parameters is lower or equal to that of a CI.

Each non-leaf node k ∈ V has an associated FM µk on the set Ch(k). A
hierarchical Choquet integral (HCI) on T is the set of hierarchical functions A =
{Ak}k∈M where Ak : Y

|Lf(k)| → Y is computed recursively as:

Ak(a) = Cµk

(
Ak1(ak1), . . . ,Akd(k)(akd(k))

)
if k ∈ V , and Ak ≡ Id if k ∈ N .

HCIs generalize CIs, preserving all CI properties, and bringing along additional
benefits. Essentially, the hierarchical decomposition involves many small, and
thus highly interpretable, aggregations (as opposed to a single, big one). This
decomposition is most appreciated for large n values to avoid cognitive fatigue, as
humans can hardly keep more than 7 elements in mind at the same time, according
to Miller’s law [Miller, 1956]. The reduced number of parameters also helps to learn
such models, by limiting overfitting.

This also allows for a local analysis of only the necessary parameters. In Ex-
ample 1, if two houses have similar evaluations, the DM might wish to look at the
direct nodes, and see that one offers more ease of access, while the other is much
more comfortable. Nonetheless, if two artificial criteria still have similar values,
the DM can "focus" on the associated node, and get a finer explanation, and so
on, going as deep as they want into the hierarchy. Finally, the normalization and
monotonicity constraints are still valid, as a composition of CIs. Due to the com-
pensatoriness property, a CI on a single criterion is the identity function. We thus
impose that every non-leaf node k has at least two children (d(k) ≥ 2).

2.7.3 Global Winter Values

A hierarchical version of the Shapley value, called the global Winter value was
also established for analyzing such models [Winter, 1989, Labreuche and Fossier,
2018]. We give here their definition.

2.7. HIERARCHICAL MODELS 53

Definition 6. Let k ∈ M a node of the hierarchy. Let πk = {r = p1, ..., pm =
k} ⊆ M the path from the root to k. That is, ∀i ∈ {2, ..., k}, pi ∈ Ch(pi−1). For
a node v ∈ V , and j ∈ Ch(v), we write Φµv

j the Shapley value of j w.r.t. the FM
that parameterizes its parent v. In other words, Φµv

j is the importance of j in the
aggregation v, relative to that of the other children of v.

Then, the global Winter value Ψk of node k is defined as:

Ψk =
k∏

i=2

Φ
µpi−1
pi (2.12)

It is easy to see that, on a flat model, this corresponds exactly to the Shapley
value. We only work with global Winter values (as opposed to their local version)
later on; we thus use simply Winter value later on.

2.7.4 Utilitaristic HCI Model

Definition 7. Let T be a hierarchy with root r on the set of criteria N . Let

• U : X → U be a function, composed by n marginal utilities {u1, · · · , un}, one
on each native attribute i.e. only on the leaves. With the above notation,
U(x) = (u1(x1), · · · , un(xn)), thus, U maps an alternative x to the vector
corresponding to x’s criteria-wise satisfaction in the utility space.

• A : U → Y be an HCI.

Function F : X → Y defined by F = A◦U is called a Utilitaristic Hierarchical
Choquet Integral (UHCI). Applications of such models can be found in [Angilella
et al., 2013].

The utilities are computed recursively from the leaves to the root node.
Given xN ∈ X, we first compute the utilities on the criteria: ai = ui(xi), for

i ∈ N on the leaves. Then the utility at node k ∈ V is given by ak = Fk(xk) =
Ak(aCh(k)), where it aggregates the utility values of its children. Finally the overall
utility is the utility ar at the root node: ar = Fr(xN) = F(xN).

Example 19. [Ex. 15 cont.] The recursive computation of the utility values in
the tree of Fig. 2.2 is done as follows:

• a1 = u1(x1), . . . , a7 = u7(x7),

• a8 = Cµ8(a2, a3),

• a9 = Cµ9(a1, a8),

• a10 = Cµ10(a4, a5, a6),

54 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

• a11 = Cµ11(a9, a10, a7).

Note that Ex. 15 gives an illustration of the computation of a10 given the value of
its children a4, a5, a6. Here µ10 is the FM given in Ex. 15. The overall score is
then the score a11 of the root node 11.

Assume a house defined on (4), (5), (6) by the values (1.5, 10, 3) in kilometers.
Our scoring model F is a UHCI composed by:

• u4, u5, u6, a marginal utility for each criteria

• A, an HCI composed by a single aggregation parameterized by the FM given
in Ex. 15.

Assuming we have u4(1.5) = 0.8, u5(10) = 0.0, u6(3) = 0.5, our final score is
computed through (2.10) as:

F(x4, x5, x6) = A(0.8, 0.0, 0.5)
= 0.5 (µ(4, 6)− µ(4)) + 0.8 µ(4)

= 0.65

2.8 Deterministic Elicitation of MCDA models

After presenting the models the models involved in this manuscript, let us describe
the existing approaches to build such models. These methods, usually rooted in
Operations Research, are mostly based on combinatorial optimization. Moreover,
they often require an interaction with the DM in order to ensure the absence of any
contradiction in the preferential information (for instance, a triangular preference
a ≻ b ≻ c ≻ a).

2.8.0.1 General models

The ELECTRE methods [Benayoun et al., 1966] rely on the intensive interaction
with the DM, manually adjusting some (sensitive) hyper-parameters of the algo-
rithms. This limitation is alleviated respectively in the ORESTE and PROMETHEE
approaches. The ORESTE methodology [Roubens, 1982, Pastijn and Leysen,
1989] inverses the order of the ELECTRE method, first building a complete pre-
order, then invalidating some parts of the preorder (marking them as incompara-
ble). The PROMETHEE method [Brans and Vincke, 1985] uses graphs parame-
terized by intelligible parameters in order to build a total preorder on the set of
possible actions (thus a preference relation on the said set, allowing ranking tasks).

2.8. DETERMINISTIC ELICITATION OF MCDA MODELS 55

Some work was done on elicitating the parameters of Majority Rule Sorting
(MR-Sort), a simplified ELECTRE TRI model through mixed-integer program-
ming [Leroy et al., 2011, Sobrie et al., 2016]. The same methods were also used to
learn 2-additive non compensatory models by Sobrie [Sobrie et al., 2015].

Mixed integer programming was also applied to elicit the parameters of the
Borda count [Benabbou et al., 2016a], a weighted vote method.

2.8.0.2 Utility-functions-based models

Among the utility function based models, one distinguishes piece-wise linear ap-
proaches [Siskos et al., 2005, Siskos, 1982, Figueira et al., 2008, Figueira et al.,
2009], non-linear ones [Perny et al., 2016, Gilbert et al., 2017], and regret minimization-
based ones [Benabbou and Perny, 2017]. These approaches mostly rely on linear
programming and involve an intensive interaction with the domain expert, e.g.
providing the intensity of their preferences in [Bana e Costa and Vansnick, 1999].
These preferences are used to refine the model and the process is iterated.

2.8.0.3 Choquet integral

As the Choquet Integral is a widely used model in MCDA, there has been some
work dedicated to the elicitation of its parameters, the values of the fuzzy measure
that parameterizes the model. A review of methods based on linear programming
can be found in [Grabisch et al., 2008]. An approach was established by Benabbou
[Benabbou et al., 2016b] by iteratively reducing the polytope of possible parame-
ters until the max regret yielded by the model was bounded in a satisfying way.
It was extended to several categories of MCDA problems (ranking, choosing and
sorting) by the same authors [Benabbou et al., 2017]. A fixed-point based method
can be found in [Goujon, 2018].

A particularity of these approaches is that they select the questions in order to
ensure the best possible separation of the space, with the will to reduce uncertainty
as much as possible. One of the downsides is that such questions do not allow to
detect or deal with incoherences among the preferential information. Indeed, these
questions are built so that the answer eliminates half of the remaining polytope,
without any answer being "impossible" with regards to the previous answers.

A more recent approach based on mixed integer programming (MIP) can be
found in [Beliakov and Wu, 2021]. MIP was also used for optimizing evaluations
[Martin and Perny, 2020]; on the other hand, an approach aiming at reducing the
domain by adding so-called buoyancy constraints can be found in [Beliakov and
James, 2021].

56 CHAPTER 2. MULTI-CRITERIA DECISION AIDING

2.8.1 Robustifying MCDA models

The pervasive interaction with the expert poses a risk of eventually selecting a
hazardous model, particularly so in the context of combinatorial optimization:
one more interaction might have shown the inconsistency of the retained model.
This fact reflects the ambient uncertainty inherent to modelization [Stewart et al.,
2005].

An alternative is to consider an ensemble approach, taking into account and
aggregating all models consistent with the preference constraints. This was in
particular tried in [Greco et al., 2005, Greco et al., 2009, Angilella et al., 2010],
by sampling the region of feasible models and checking where the models disagree
with each other. In particular, Stochastic Multicriteria Acceptability Analysis
(SMAA) is a method designed specifically for such aggregations [Angilella et al.,
2015, Saint-Hilary et al., 2017], and more specifically in ranking problems [Pelissari
and Duarte, 2020]. The idea is that a preference relation a is necessarily preferred
to b iff a dominates b according to all compatible models. If at least one model
yields that a dominates b, but another yields the opposite, then a is possibly
preferred to b.

Finally, some of the uncertainty on elicited model comes from the fact that
the DM might give inconsistent data, or contradict themselves [Labreuche and
Grabisch, 2013].

2.8.2 Limitations, and Motivations for Machine Learning

The above methods take their inspiration from the Operations Research domain,
handling preferences as constraints, such as "a is preferred to b", or "value ai is
preferred to value a′i on criterion i". The quality of the solution thus depends
on the consistency of these constraints, and/or the interaction with the expert
(supplying most informative constraints, removing constraints in case of insatis-
fiability). Moreover, some models are not designed for detecting inconsistencies,
leading high vulnerability to even a single erroneous constraint.

The main limitation of the state of the art thus lies in the fact that the existing
methods require an intensive interaction with the expert, thus being very costly
in time-to-information ratio. Furthermore in the Choquet integral context, they
only consider flat CIs; to our best knowledge, no approach has been developed to
elicit HCI or UHCI models.

The goal of the presented work is to alleviate the above limitation, and develop
Machine Learning-based approaches to learn HCI and UHCI models from data in
an end-to-end fashion. While ML approaches exploit data, reporting use cases and
gathered by human experts, they handle by construction (some amount of) noise
and inconsistencies in these data.

2.8. DETERMINISTIC ELICITATION OF MCDA MODELS 57

The supervised ML methods used in the presented approach are presented in
Chapter 3.

CHAPTER 3

SUPERVISED MACHINE LEARNING

Contents
3.1 Introduction . 60

3.2 Notations and General Principle 60

3.3 Optimizing the Learning Criterion 63

3.3.1 Gradient Descent . 63

3.3.2 Strengths and limitation of gradient descent 63

3.3.3 Algorithms Based on Gradient Descent 64

3.4 Classes of Supervised Learning Problems 67

3.4.1 Basics . 67

3.4.2 Linear Models . 68

3.5 A Universal Approximator: the Neural Network 71

3.5.1 Neurons . 72

3.5.2 Feedforward Neural Networks 73

3.5.3 Other Architectures . 76

3.6 Classic Difficulties in Machine Learning 77

3.6.1 Over- and Under-fitting 77

3.6.2 Testing, and Validation Sets 78

3.7 Machine Learning for Safety-Critical Contexts 80

3.7.1 Uncertainty in Machine Learning 80

3.7.2 Taking Uncertainty into Account 82

59

60 CHAPTER 3. SUPERVISED MACHINE LEARNING

3.7.3 Formal Properties for Learning Systems 82

3.7.4 Adversarial Examples 83

3.8 Preference learning . 84

3.8.1 Preference Learning Tasks 85

3.8.2 Multi-criteria Preference Learning 86

3.8.3 Dealing with Uncertainty 88

3.9 Our Contribution . 89

3.1 Introduction

Machine learning [Mitchell, 1997, Amini, 2015] is a subfield of artificial intelligence.
It focuses on the ability of certain systems to learn from data. Such a system
is usually composed of a model, i.e. a mathematical function whose behaviour is
controllable through a set of parameters; and of an algorithm, which is a procedure
that can extract information from data in order to find the best parameters for the
model to perform well on a specific task, without its behaviour being hard-coded
by the developer.

Supervised Machine Learning is the specific area of machine learning where
a model is given labeled data. This means that the model will be provided with
examples whose expected output, or label, is known. The algorithm uses the data
to tune the model’s parameters in order to get its own output as close to the label
as possible. Nonetheless, it is to be noted that the observed data is only a sampling
of the examples that can be found in the real world. It is thus expected that the
model not only performs well on the dataset that is used for training, but also on
any other, yet-unseen example. In this case, we say that the model generalizes
well to new data.

This process is detailed in the next sections.

3.2 Notations and General Principle

We adopt below the following notations, which will remain valid for the whole
document.

• X is the data space, or the set of possible inputs of the model. It might take
many forms, as long as its elements are represented as vectors; in general,
we assume that X is a subset of Rn for a given input dimension n;

• Y is the output space, or the set of possible outputs, or labels of the model;

3.2. NOTATIONS AND GENERAL PRINCIPLE 61

• Fθ : X → Y is a predictive model ; that is, a function which assigns an output
in Y to a data point in X, with θ a parameterization of the model (i.e. a
set of values which define the behaviour of Fθ). If there is no ambiguity, we
might simply write F ;

• Θ the set of all possible parameterizations (in particular θ ∈ Θ);

• DS = {(x(i), y(i)), i ∈ {1, ...,m}} is a training dataset, composed of m pairs
(x(i), y(i)) ∈ X × Y , with y(i) the label of x(i);

• ŷ = F(x) is the prediction of the output of x by the model F ;

• errθ : X×Y → R is a immediate error, or loss function induced by Fθ on an
example, and Errθ : 2(X×Y) → R is the global loss function, on a dataset or
(in a theoretical and impossible setting) on the whole possible input space.
We might also drop the subscript when not necessary.

A supervised learning model thus receives a training dataset DS, and attempts
to find the θ such that the model Fθ has the minimal possible error when trying
to predict the label of any x ∈ X. That is, we wish to find the parameterization
θ such that, for all examples (x, y) ∈ DS, we have Fθ(x) := ŷ to be as close as
possible to y. The error err is thus to be a measure of dissimilarity between ŷ and
y on all examples. Note that the error on the model depends on θ, we thus write
errθ, and omit the subscript when there is no ambiguity.

Example 20. Assume that our data points are pictures, with resolutions of 50
pixels by 50, which represent either a cat or a dog, in three colour channels (RGB,
with 256 possible values for each colour channel). We thus have:

X = {0, ..., 255}7500, Y = {cat, dog}
The dataset DS is a collection of pictures, each labeled by the animal they

represent. A naive error function would be the following:

Err : DS 7→ 1

m

∑
(x,y)∈DS

1(F(x)̸=y)

where 1A has value 1 if A is true, 0 otherwise. Err thus counts the proportion
of rightly classified elements among the dataset. The instantaneous error is simply
err(x, y) = 1(F(x) ̸=y), i.e. 1 if x is misclassified, 0 otherwise.

Formally, the overall goal is to minimize the generalization error:

min
θ∈Θ

Errθ(X × Y) = min
θ∈Θ

∫
(x,y)∈X×Y

p(x, y)errθ(x, y) (3.1)

62 CHAPTER 3. SUPERVISED MACHINE LEARNING

With p(x, y) the considered distribution on X × Y .
The difficulty is that the generalization error cannot be computed in practice:

we do not have access to the all possible instances x, and we do not know the
corresponding y (otherwise, learning would be unneeded). We only have access to
a limited training dataset, making it only feasible to compute the empirical error∑

(x,y)∈DS
1
m
errθ(x, y). The whole theory of statistical learning [Vapnik, 1998] aims

to define regularization terms R(θ), such that the sum of the empirical error and
R(θ) defines an upper-bound on the generalization error. The learning problem
thus becomes to find a (quasi) optimum solution of the optimization problem:

min
θ∈Θ

Errθ(X × Y) = min
θ∈Θ

∑
(x,y)∈DS

1

m
errθ(x, y) +R(θ) (3.2)

thus providing guarantees on the generalization error. The guarantees depend on
the size of the training set (the larger the better) and the complexity of the model
space (the simpler the better).

A key assumption of the statistical learning theory is that the dataset includes
independent and identically distributed samples, and that the distribution of the
training data is the same as that of the data the model will be applied to in the
following.1

In brief, the quality of the model learned by minimizing Eq. 3.2 depends on
i) the iid assumption and the fact that the training and test distributions are the
same; ii) the size of the training set to be "sufficiently" large; iii) the model space
to be "sufficiently simple".

Example 21. The impact of a training set drawn after a non-representative dis-
tribution can be illustrated as following. Assume that the data from Example 20
consists only of cats, mostly on a red carpet, and of dogs, mostly on a green carpet.
A model trained from these data might exploit a single feature, the color of the
carpet, to discriminate cats from dogs.

While this model behaves accurately on the training set, it will likely behave
very poorly on the test set. In summary, if the dataset contains a very biased
subset of the real world space, the model will generalize poorly.

Another issue, related with the discrepancy between the training and the test
set, is referred to as concept drift. Assume one wishes to predict the price of a
house based on attributes 1 to 6 in example 1. If the dataset includes the most
recent houses in the city, the learned model will tend to overprice the old houses,

1The case of a discrepancy between the training and the target test data attracts growing
attention under the name of domain adaptation [Ganin et al., 2016]; it is outside the scope of
the presented work.

3.3. OPTIMIZING THE LEARNING CRITERION 63

that usually are less expensive than new ones, everything else being equal. This
bias could be prevented by gathering a representative mixture of old and new houses
in the training dataset.2

3.3 Optimizing the Learning Criterion

A significant number of loss functions (Eq. 3.2) a.k.a. learning criteria have been
defined in the machine learning literature [Bishop, 2007]. In the remainder, we
limit ourselves to differentiable criteria and continuous model spaces, i.e. Θ ⊂
Rp. The search for an optimal or sufficiently good θ ∈ Θ, parameterizing the
sought model, can thus be based on the exploitation of the gradient of the learning
criterion. This section presents the principle of gradient descent and discusses its
strengths and limitations.

3.3.1 Gradient Descent

A family of optimization algorithms is based on gradient descent. Considering a
parameterized function f(θ), with θ ∈ Θ ⊆ Rp, the goal is to find

θ∗ = argmin
θ∈Θ
L(θ)

with L the learning criterion (the empirical error augmented with a regularization
term, Eq. 3.2). The gradient descent proceeds as follows: θ0 is initialized by
drawing at random in Θ. Then, for a certain number of steps, or until convergence
is reached, θt is updated according to:

θt+1 ← θt − ρ
∂f(θt)

∂θt

where hyper-parameter ρ is the so-called learning rate. A key issue consists
in setting or adjusting ρ, that controls the size of each update: too small a ρ will
increase the computational cost; too large a ρ will prevent the convergence of the
process.

3.3.2 Strengths and limitation of gradient descent

A main strength of gradient descent is that it performs well in convex optimization
problems, where the problem admits a single, global, optimum (provided that ρ is
not too large, as said). In the case of non-convex problems, gradient descent tends

2As the model would then tend to predict some average price, an even better option is to
consider a representative sample of houses, and add the age of the house as additional feature.

64 CHAPTER 3. SUPERVISED MACHINE LEARNING

Figure 3.1: Θ = [0, 100]. As f is not convex w.r.t. θ, there is a high chance that it
remains stuck in a local optimum. The global optimum is the leftmost, and the vertical
dotted lines define its basin of attraction. We see that there is little chance to reach this
region with a random initialization of θ0.

to converge to the local minimum closest to its initialization θ0, and the eventual
solution can thus be arbitrarily bad, depending on the initialization.3

As said, the learning rate is critical to achieve a good and fast convergence,
which raises some difficulties when the norm of the gradient has a high variance.
For instance (Fig. 3.1), the gradient norms are rather small for large values of
θ: it will take a large number of steps to move significantly if the learning rate
is small. Quite the contrary, the gradients around the global optimum are very
large: if the learning rate is large, θt might be ejected outside of the optimum’s
basin of attraction.

3.3.3 Algorithms Based on Gradient Descent

Several variants of the native gradient descent algorithm have been conceived over
the decades. It is to be noted that, all in all, it makes no sense telling that one
algorithm is "better" or "more performant" than another one. According to the

3Note that in the particular case of over-parameterized neural networks, that will be consid-
ered in the experiments, it is empirically noted that many local optima are actually good, i.e.
yield similar performance as the global one [Choromanska et al., 2015].

3.3. OPTIMIZING THE LEARNING CRITERION 65

(a) Large learning rate: the model bounces
off the sides of the function, unable to reach
a minimum

(b) Small learning rate: the model slows
down too much, unable to make any signif-
icant progress after a few steps

Figure 3.2: Influence of the learning rate

No-Free-Lunch theorem [Wolpert and Macready, 1997], all optimization algorithms
are equally performant when averaged over all possible problems. Nonetheless,
some are more relevant for solving certain problems than other. Moreover, none
of the variant presented in this section allow to get rid of the learning-rate tuning
problem, although they sometimes replace it by a different parameter to tune.

A momentum term [Rumelhart et al., 1986] can be added to the gradient.
This term conserves some information from the previous steps, in order to influence
the current gradient, and keep some inertia at times where the gradient might
vanish due to low absolute steepness. This might allow to cross some "hills" in
the objective functions, allowing the model to extract itself from shallow local
minima. It might also be useful to accelerate convergence in some configurations:
it accelerates the gradient along components that are consistently present several
steps in a row, while terms that contradict themselves from one step to the other
can cancel each other out.

Formally:

θt+1 ← θt − ρ

(
t−1∑
i=0

∂Errθi(DS))

∂θi
m(t−i)

)
With m the momentum term in [0, 1[. That is, the previous gradients are

preserved, but their influence decreases exponentially as they are further away in
the past. While it provides some advantages, this algorithm thus introduces a new
hyperparameter to tune, m; if m is too small, we have the same problem as in native
gradient descent, while if it is too large, it might conserve obsolete information,
along with increasing the size of the gradients, making the optimization unstable.
It also does not dispense from the need to tune ρ.

A widely used algorithm (which is also compatible with momentum) is the
stochastic gradient descent [Robbins and Monro, 1951]. This algorithm is

66 CHAPTER 3. SUPERVISED MACHINE LEARNING

Figure 3.3: Without momentum: the model follows the local gradient only, and bounces
on the walls of the valley, failing to reach the bottom

Figure 3.4: With momentum: the vertical components cancel each other out, while the
decent accelerates towards the lower x values

Figure 3.5: Momentum in pathological case: the narrow valley; the optimum is in the
light part (around x = 0.75, y = 3). Dotted arrows indicate the local gradient. Plain
arrows indicate the step actually taken, with momentum taken into account.

3.4. CLASSES OF SUPERVISED LEARNING PROBLEMS 67

based on computing the gradient of the loss with regards to a single data point
rather than the whole dataset. The update step is thus written

θt+1 ← θt − ρ
∂errθt(x, y)

∂θt

with a different (x, y) drawn randomly at each step. It is obvious that a stochas-
tic step is much quicker than a usual one, as it only needs to compute the gradient
for a single data point. On the other hand, each step is much less informative, some
even being counter-productive, especially if the example used for that step is very
noisy or biased. Nonetheless, if the dataset is large and clean enough, the large
number of good examples will cancel the few bad ones. All in all, this algorithms
provides a less smooth optimization, but its performances are on par or better to
many other algorithms, making it widely popular in ML. An intermediate between
stochastic and batch gradient descent is the mini-batch gradient descent, where
a portion of the dataset is used for each update (more than 1 example, and fewer
than the whole dataset). This allows a tradeoff between stability and efficiency.

More sophisticated approaches to adjust the learning rate along training are
Adam [Kingma and Ba, 2015], based on estimating the moments of the gradient;
Adagrad [Duchi et al., 2011]; Adadelta [Zeiler, 2012]; and RMSProp. The
reader is referred to [Ruder, 2017] for a more exhaustive list.

3.4 Classes of Supervised Learning Problems

3.4.1 Basics

We define in this section the two main classes of supervised problems: regression
and classification. In both problems, we want to infer from data the parameters
θ of a model Fθ that best re-attribute the label in Y to a given input in X, as
expressed in Equation 3.1. Then:

• if Y is discrete, the problem is called classification

• if Y is continuous, the problem is called regression

Example 22. Classification: In Example 20, the objective is to label new pic-
tures by whether they represent a cat or a dog. Y is thus discrete, with two possible
values, this is a classification problem. A usual loss function would be the misclas-
sification error, i.e. the proportion of examples whose predicted label ŷ is different
from their real label y;

Regression: Assume the price-predicting model from Example 21. In this
case, our output set of possible prices is Y = R+, which is continuous, making this

68 CHAPTER 3. SUPERVISED MACHINE LEARNING

a regression problem. A usual loss function would be the mean-squared error, i.e.
the average squared error distance between an example’s label y and the predicted
value ŷ.

Another class of supervised problems is learning to rank [Burges et al., 2005,
Burges et al., 2006, Liu, 2009]. In this case, the objective is to learn a partial order
among a set of examples, from data that reflects preferences among examples (for
instance, pairwise preferences, of lists of examples ranked from best to worst). A
usual loss function would be the proportions of inversions in the ranking predicted
by the model.

We will come down in more details on these problems in Chapter 8, when we
detail the specific problems that we work on.

3.4.2 Linear Models

We describe below linear learning models, as these models are the basis for many
others; their simplicity and the fact that they are relevant in many problems make
them fundamental models in machine learning. Moreover, the wide use of linear
models in MCDA makes the problem of learning them interesting to us; they
are indeed quite easy to interpret, especially if their inputs are normalized, as is
explained in Chapter 2.

Let F be the family of linear models with a one-dimensional output. That is
to say

F = {Fw : x 7→ wx+ b | w ∈ Rn, b ∈ R}

We show below two linear models, one for regression, and one for classification.
In both of these cases, X ⊆ Rn, Y ⊆ R.

3.4.2.1 Linear Regression

The problem of linear regression consists in finding the best weight vector w so
that, for any example (x, y) in the training dataset DS, wx + b be as close as
possible to y. It is usual that the measure of closeness is the Euclidean distance,
or its square. This comes down to minimizing Err(w,b)(DS) =

∑
(x,y)∈DS

(wx+ b− y)2

(least square linear regression).
Working with such models means that we assume that the output evolves lin-

early w.r.t. all of the values on the attributes, and that their respective influences
are additive. That is, we assume that there are no interaction between attributes.
Figure 3.6 illustrates this in a 1-dimensional setting.

3.4. CLASSES OF SUPERVISED LEARNING PROBLEMS 69

Figure 3.6: A linear regression, where the optimal w is 2, and the intercept is 0.5

3.4.2.2 Linear Classification

Assume we have two classes, 0 and 1. The aim of binary linear classification is
to find a hyperplane separating the examples into their respective classes; that is,
the representatives of class 0 should be on one side, the representatives of class 1
should be on the other side.

Formally, we wish to find w ∈ Rn, b ∈ R s.t.:

Fw(x) =

{
0 if wx+ b < 0
1 otherwise

A simple example of a binary linear classifier is Rosenblatt’s perceptron [Rosen-
blatt, 1958], where the discrimination function is a Heaviside step function in b.

A softer model is logistic regression [Cox, 1958], which can be seen as both
a classification and a regression algorithm. The regression in the name comes
from the fact that this algorithm aims at determining the probability of an input
belonging to class 1 rather than class 0. It can thus be used as a linear classifier
with a confidence index appended to the result-class.

The assumption is that, for any input x:

70 CHAPTER 3. SUPERVISED MACHINE LEARNING

Figure 3.7: Binary 2-dimensionnal classification: the red border (hyperplane) separates
both classes well

Figure 3.8: Binary 2-dimensionnal classification: the classes can not be linearly separated

3.5. A UNIVERSAL APPROXIMATOR: THE NEURAL NETWORK 71

log

(
πx

1− πx

)
= β + wx (3.3)

where β is a bias term, πx is the probability of x belonging to class 1 and
w ∈ Rn is a weight vector. Basically: the log of the ratio between the probabilities
of x belonging to either class is a weighted sum on x. Logistic regression will then
learn w and β.

This permits to write πx as:

πx =
1

1 + e−(β+wx)
(3.4)

The aim of the methods is then to learn the optimal w and β in order to fit
the data as much as possible. It can be noticed that the "indecision area", or the
set {x ∈ X | πx = 0.5} is again an hyperplane. This model can thus be used as
a linear classifier, by assigning to each point the label of the half-space it belongs
to.

When there are more than two classes involved, basic methods involve learning
several linear classifiers, and then aggregating their outputs, or votes, in order to
decide on the class. A usual way of doing this is to train one classifier for each
class, such that the classifier separates the space between the elements that belong
to that class, and those that do not [Amini, 2015]. This method is called One vs
All.

Note that other linear-based models exist, such as support vector machines
(SVM) [Boser et al., 1992]. The main idea behind SVMs is to warp the data
into a space of higher dimension, where it becomes linearly separable with a wide
margin (i.e. the separating hyperplane tries to remain "as far as possible" from
the datapoints). This idea of heavily warping the input space in a way that allows
for easy separation, or regression, is also at the root of neural networks, a class of
models we now present.

3.5 A Universal Approximator: the Neural Net-
work

Linear models are of strong interest, and they are still widely used today. Nonethe-
less, they have an obviously limited representation capability. That is, in real life
applications, a linear model is often not enough for solving a given problem. In
the presented work, we focus on neural networks, because of their flexibility and
the fact, as will be shown in Part IV, that we can design a neural architecture
corresponding to our target model space, i.e. UHCIs (defined in Chapter 2).

72 CHAPTER 3. SUPERVISED MACHINE LEARNING

Figure 3.9: Logistic Regression on 1-dimensionnal inputs: showing the probability πx
given x. The dots are data points, with theit y value being their observed class.

3.5.1 Neurons

A neuron is the base unit of a neural network. A neuron is usually a multi-input
function, which aggregates its inputs into a single output via a non-normalized
weighted sum, then returns the image of this aggregation by a non-linear function
called its activation. Formally, let ϕ be a neuron with n inputs, a weight vector
w = (w1, ..., wn), a bias b ∈ R and an activation function a : R → R. Given an
input x = (x1, ..., xn), we have:

ϕ(x) = a

(
n∑

i=1

wixi + b

)
= a(wx+ b)

Each neuron is thus in itself a small, non-linear operator, which offers some
representation power through the possible modification of its parameters (bias
and weights). Usual activation functions include:

• Logistic Sigmoids: σ : x 7→ 1
1+exp(−x)

;

• Inverse Tangent Function;

• Rectified Linear Units: ReLU : x 7→ max(x, 0);

3.5. A UNIVERSAL APPROXIMATOR: THE NEURAL NETWORK 73

• Leaky ReLU: LReLU : x 7→ max(αx, x), with α ∈]0, 1[;

• Softplus: SoftPlus : x 7→ ln(1 + exp(x)).

Of course, activation functions are not limited to these classes. In fact, there
is little formal restriction as to what should be used as an activation function.
Nonetheless, some properties are highly suitable for a:

• continuous, as discontinuities might make training highly unstable;

• easily differentiable almost everywhere, such that a gradient or subgradient
might be quickly computed for gradient descent;

• non-linear, otherwise the neuron itself is just a linear function of a linear
function, making the activation useless and limiting the expressivity;

• non-saturating (i.e. with a gradient that tends towards 0 on either side of
R), as that might cause the gradients to quickly become too small for the
model to learn (vanishing gradient phenomenon).

The last point is one of the reason as to why sigmoids have lost popularity in
the past years, to the benefit of ReLU and its variants: a composition of several
successive sigmoids tended to kill off the gradients. A more comprehensive analysis
of activation functions can be found in [Nwankpa et al., 2018]. Note that a single
neuron with a Heaviside activation is a perceptron as described above.

Below, for simplicity reasons, we write indifferently hi both for a neuron or the
value output by this neuron, when no ambiguity arises.

3.5.2 Feedforward Neural Networks

Considering a neuron as described above, we can now create a so-called "layer"
H. Assume m neurons h1, ..., hm, each with n inputs. Assume a bias vector Bh

in Rm, and a weight matrix Wh ∈ Rm×n. We also assume that neuron hi has an
activation function ai : R → R. Then, given an input vector x = (x1, ..., xn), we
compute the output of h as:

H : Rn → Rm

x 7→ (h1(W
(1)x+ b1), ..., hm(W

(m)x+ bm))
(3.5)

with W (i) the ith line of W .
Now, we assume that we have a number L of layers H1 through HL, such that,

for all j ∈ {2, ..., L}, the dimension of the input (or dimension) of Hj is equal to

74 CHAPTER 3. SUPERVISED MACHINE LEARNING

the number of neurons (or width) of Hj−1. We also write n the width of H1, and
m the width of HL then we can compose those functions, and compute:

FNN : Rn → Rm

x 7→ HL(HL−1(...H1(x)...))

= AL(WLAL−1(WL−1...A1(W1(x))...))

(3.6)

with Aj the function which applies the activation function element-wise to its
input; that is, writing mj the width of Hj (m0 = n for simplicity):

Aj(xj) = (a1(x1), ..., amj
(xmj

))

FNN is called a Feedforward Neural Network, or Multilayer Perceptron. H1 is
called the input layer, and HL is called the output layer. If we call X the input
space, and Y the output space, then FNN is a function from X to Y , parameterized
by:

• a set of weight matrices Wi for i in {1, ..., L}; we have Wi ∈ Rmi×mi−1 , and
Bi ∈ Rmi .

• a set of biases {B1, ..., BL}

It is the simplest architecture of neural networks, yet has a very high represen-
tation power. In fact, according to the Universal Approximation Theorem
[Hornik et al., 1989], a single-layer FNN (given enough width for the said layer)
is enough to approximate any Borel-measurable function. In our example, we can
count the number of free parameters to understand that flexibility:

•
L∑
i=1

mimi−1 weights (summing the number of elements in all matrices)

•
L∑
i=1

mi biases

For wide and deep neural networks (deep means that L is large), the number
of parameters augments at a polynomial rate of the width of each layer. Figure
3.10 represents a FNN with 1 hidden layer.

3.5. A UNIVERSAL APPROXIMATOR: THE NEURAL NETWORK 75

...
...

...

x1

x2

x3

xn

h1

hd

y1

ym

Input
layer

Hidden
layer

Ouput
layer

Figure 3.10: A multilayer perception with a single hidden layer, an n-dimensionnal input,
an m-dimensionnal output, and d hidden neurons on its hidden layer. An arrow from
neuron a to neuron b means that the output of a is an input of b.

3.5.2.1 Training an FNN

An FNN is usually trained using the backpropagation algorithm. This algo-
rithm is basically the chain rule applied to the expression in (3.6). The idea is to
compute the gradient of the error w.r.t. the output, then backpropagate, layer by
layer, until the gradient of the error with regards to all of the parameters has been
computed. Then, all of the parameters are updated at the same time.

The parameters upon which one can act are the weights and biases. In order to
compute the gradients of the parameters of layer Hj, one must first compute the
error Err(DS), along with its gradient w.r.t. the output layer HL. For instance,
for the kth neuron of HL, noted hL

k , we have:

δLk :=
∂Err(DS)

∂hL
k

Doing that for all neurons in HL, we have a gradient vector δL = (δL1 , ..., δ
L
mL

).
Then, for all j ∈ {1, ..., L}, we have:

76 CHAPTER 3. SUPERVISED MACHINE LEARNING

δj =
∂Err

∂Hj

=
∂Err

∂Hj+1

∂Hj+1

∂Hj

= δj+1∂Hj+1

∂Hj

(3.7)

We see from Equation (3.5) that the gradient ∂Hj+1

∂Hj
is easy to compute. Indeed,

we have:

Hj+1 = Aj(WjHj +Bj)

Thus

∂Hj+1

∂Hj

= ∇Aj(WjHj +Bj)Wj

as the activation has been chosen easy to differentiate, this gradient is quick to
compute. By applying this on all layers, we can efficiently compute the gradients
for both the weights and biases, thus allowing for gradient descent.

3.5.3 Other Architectures

It is to be noted that neural networks are not resticted to FNN, nor to linear
neurons, and that their applications extend beyond supervised learning. In fact,
in [Lecun et al., 1998], the authors describe neural networks in a much more general
way, as interconnected modules that can be optimized through gradient descent.

Many more architectures exists, for different problems. In particular:

• Recurrent Neural Networks [Hochreiter and Schmidhuber, 1997]

• Convolutional Neural Networks [Khan et al., 2019], which are widely used in
image processing, or when there exist spatial correlations among the data’s
dimensions

• In unsupervised or semi-supervised learning, autoencoders and their varia-
tional counterparts [Kingma and Welling, 2014] are widely used, along with
energy-based models built upon neural decoders [Song and Kingma, 2021]

More architectures can be found in [Liu et al., 2017]. The ability of a neural
network to approximate any function is its main strength. Nonetheless, it also
brings about several drawbacks, as we see in the following section.

3.6. CLASSIC DIFFICULTIES IN MACHINE LEARNING 77

3.6 Classic Difficulties in Machine Learning

3.6.1 Over- and Under-fitting

We present here the notions of underfitting and overfitting, two key concepts in
machine learning and interpolation in general.

Underfitting is the phenomenon that happens when the chosen model is too
rigid (too many constraints), or too simple (too few parameters), to accurately
represent the underlying structure of the data. As a consequence, the model is not
able to fit the data properly, and is forced to oversimplify its representation of the
data, resulting in the loss of a non-negligeable part of the information contained
in the training set. For instance, a linear model will easily underfit complex prob-
lems, which might require more complex structures.

Overfitting is the opposite phenomenon. When the model chosen has too
much freedom to fit the data, it might end up considering noise, or random arti-
facts, as information contained in the data it can see. It will then learn too much
from the training data. This will result in good performances on the specific exam-
ples from the training set, but a bad generalization ability, thus bad performances
on real life applications. This is often the case for small datasets, where the noise
is not compensated by the number of examples.

In order to counter overfitting, there are several widely used strategies. The
most popular ones are:

Using a simpler model: downgrading the representation power of the model
used can be done by using a subclass (for instance, linear instead of quadratic),
or by removing parameters (for instance, removing layers in a neural network).
This restricts the class of models that can be learned, leading to more constrained
behaviours.

Regularizing the model: regularizations are terms that can be added to a
loss function in order to penalize some behaviours. For instance, if we wish to
learn a linear model Fw for regressing, we might want to encourage the model to
drop as many weights as possible (that is, to take into account as few attributes
as possible, setting the other weights to 0).

If we use the so-called lasso, we use the L1-norm of w to penalize the loss
function Err, leading to a new error function Err∗ to minimize:

78 CHAPTER 3. SUPERVISED MACHINE LEARNING

Err∗(DS) = Err(DS) + λ

n∑
i=1

|wi|

The summing term to the right leads the model to reduce its weights as much
as possible. λ is a positive term which gives the extent to which the model is
regularized. Note that a large λ would lead to a highly penalized model, and
thus eventually to underfitting. It is thus a hyperparameter to be tuned. Note
that a regularization could be any numerical function that penalizes an unwanted
behaviour; frequent examples include, but are not limited to the L2 norm of the
parameters or Kullback-Leibler divergences between distributions.

Dropout: very large models, such as neural networks, are called overparame-
terized, because they have an excess of expressivity w.r.t. the functions that they
have to learn. Some methods were developped to prune some neurons [Le Cun
et al., 1989]. On the other hand Dropout [Srivastava et al., 2014] is one that
aims at forcing redundancy among the information learned by different neurons.
The idea is that, at each training step, a randomly selected subset of neurons are
deactivated (i.e. their output is set to 0), and reactivated afterwatards. As the set
of usable neurons change at each step, this means that the model uses effectively a
smaller number of parameters at each time than what is actually available in the
model. This method, repeated over several training steps allows to force neurons
to duplicate information, such that, at a given step, the used neurons compensate
for the deactivated subset.

Underfitting and overfitting are illustrated in Figure 3.11. In terms of the bias-
variance trade-off, underfitting shows high bias and low variance, while overfitting
shows high variance and low bias.

3.6.2 Testing, and Validation Sets

Now that we have seen how to train a given model, it is crucial to be able to
test it in order to evaluate its performance on future, yet unseen, inputs. Indeed,
the model could learn to fit perfectly the training dataset without being able to
generalize to new examples. A very widespread method, which we use here, is
called cross validation. The main idea is simple: the performance of the model
must be evaluated on data which was not used for training (i.e. data that the
model has never seen before).

The process is the following: the dataset DS is split between two sub-datasets:

3.6. CLASSIC DIFFICULTIES IN MACHINE LEARNING 79

Figure 3.11: Fitting the data with different complexities, we try to regress y = f(x) with
f being: Linear (left), Quadratic (middle), High-order polynomial interpolation (right)

• a training dataset DSTr, on which the model will be trained

• a testing dataset DSTe, on which the model will be evaluated

such that ⟨DSTr,DSTe⟩ for a partition of the initial dataset.
The model is then trained on DSTr, and the error computed on DSTe. Thus,

an error that is much lower on DSTr than on DSTe indicates overfitting. On the
other hand, similar errors on both datasets might show that the model is able to
generalise well. The evaluation of the model’s performance must be done on DSTe

only, which is also supposed to be representative of the real life distribution of
examples.

Nonetheless, it would often be useful to have an idea of the performance of the
model on unseen data during training, in order to, either, stop the training before
the model starts overfitting (a method known as "early stopping"), or to compute
criteria for adapting the hyperparameters in real time. Obviously, this cannot be
done on DSTe, as that would mean biasing the model to fit the testing set, thus
invalidating the performance on the latter. The usual method is thus to introduce
a third set, called a validation set DSV , which is a sub-part of the training set.

DSV is "seen" by the model during training, but is not used for computing any
gradient. It is only used for the training algorithm to evaluate performance on
unseen data, and thus stop, or tune its hyperparameters accordingly. Nonetheless,
when evaluating a model, DSTe only should be used, as it was not seen at all
during training.

The main tradeoff on the size of the three datasets is that:

• increasing the size of DSTr permits to use more data for training, thus im-
proving the training

• increasing the size of DSTe permits for higher accuracy on the estimation of
the performance on unseen data

80 CHAPTER 3. SUPERVISED MACHINE LEARNING

• increasing the size of DSV permits for higher confidence in early stopping
and improves training

Obviously, the larger one set is, the more we need to reduce at least one of
the others. A very large training set with a very small validation and testing set
leads to the model obtaining all of the available data for training, but very little
to prevent overfitting. On the other hand, a very large testing set will yield a good
estimate of the performance of the model, but the latter is trained on little data,
and thus probably not that good. These sizes have to be chosen according to the
size and noisiness of the dataset.

Moreover, it is usual to train and evaluate a model several time on different
partitions ⟨DSTr,DSV ,DSTe⟩; this allows to remove some bias in the evaluation,
as the performance is now given as the mean and variance of the error on several
splits. In particular , k-fold cross-validation is a popular setting where DS is split
into k equal parts; then, the model is trained on k − 1 parts, and tested on the
last part. The model is thus trained k times, switching the part used for testing
each time.

3.7 Machine Learning for Safety-Critical Contexts

3.7.1 Uncertainty in Machine Learning

Machine learning algorithms aim at eliciting the parameters of chosen model. They
do so by extracting information from data that is usually pulled from observation of
the real world (e.g. sensor values, websites metadata, products characteristics...).
We focus here on FNNs.

These models, as they are trained on data, have a highly probabilistic nature.
By that, we mean that there is often some uncertainty on the result, both on
the parameters learned, and (as a consequence), on the output (and thus the
performance). We describe the different sources of uncertainty below.

• Uncertainty inherent to the data

– The data that composes the datasets are observations of real world sit-
uation. As no sensor/predictor is perfectly accurate, there is necessarily
noise on at least some of the values recorded.

– some phenomena are very complex, as they have to take into account
more attributes than what the data provides. As a consequence, there
might be information that is missing in order to accurately and fully
determine the model. The second part of Example 21 illustrates this;
indeed, the age of the house is unavailable to the model, forcing it

3.7. MACHINE LEARNING FOR SAFETY-CRITICAL CONTEXTS 81

to yield a predicted averaged value, which might be wrong if the said
attribute is, in fact, very correlated to the output.

– The data is a finite sampling of all possible observations. In particular,
especially in large dimensional input spaces, there will necessarily be
sparse areas, where there is little to no information as to how the model
should behave there.

– There might be biases in the data, and it will in any way never be
distributed exactly as in real life; as a consequence, even though the
algorithm performs well on a given dataset, it might not generalize to
real life applications.

• Uncertainty inherent to the model

– The model might not be adapted to representing the data well. In
particular, might overfit or underfit

– In some cases, especially the very popular deep learning setting, where
networks usually have a large number of layers and neurons (and thus
parameters), the model might be too complex for any formal guarantee
to be obtained. This problem is especially true in areas from where
few data points were sampled, but it might also happen very close to
actual training datapoints, especially in high dimensions (adversarial
examples).

– Depending on the optimization algorithm and of the loss function cho-
sen (e.g. stochastic gradient descent, minibatch), there might be uncer-
tainty on the point where the algorithm stopped. It might be a local
minimum, or simply a point where the gradients were too small to ac-
tually make any progress towards a global minimum. There are thus
no guarantees that we effectively minimized the loss function.

All in all, the trained model is in itself a random variable (as it is highly
dependant on the training sampling and other sources of uncertainty. This makes
machine learning methods a priori not adapted to safety-critical environments and
applications. Indeed, these systems require guarantees on the decisions they take,
as a single mistake can prove disastrous. Such systems are, for instance, self driving
cars, autonomous systems in nuclear plants, or air traffic management systems.

As a consequence, there has been some literature, on trying to adapt the ability
of machine learning to automatically extract information from data to such systems
where control over many important properties are desirable/required. High-level
motivations and leads can be found in [Varshney and Alemzadeh, 2016].

We focus here on classification methods, learned from data that might be noisy
or faulty.

82 CHAPTER 3. SUPERVISED MACHINE LEARNING

3.7.2 Taking Uncertainty into Account

Counteracting the effect of such uncertainty is a studied problem in statistical
learning. One approach is to better quantify the said uncertainty [Abdar et al.,
2020], in order to evaluate the trust one can have in a model’s output.

A widely used method to robustify a machine learning predictor is to evaluate
an example on several models that are equally likely [Machida, 2019]. Then, one
removes the subjectivity that intervenes when a single model is chosen. Moreover,
this method assumes that, while one model can have weaknesses, and as such mis-
classify or mislabel one example, the others will "compensate". One issue with this
approach is that, if this reasoning is probabilistically sound, it would require the
models to have independant probabilities to fail on a specific example. Considering
that the data on which they were trained are all the same, it is nonetheless likely
that they will have similar bias and fail on the same examples. This is a direct
application of so-called ensemble methods [Zhou, 2012], where multiple models are
used to robustify of improve a ML system.

Jiang et al. [Jiang et al., 2018] proposed a method to verify whether a classifier
can be trusted by analyzing, a posteriori, the distance between the closest class
and the second closest, in order to derive confidence metrics.

A popular approach is the dual representation of uncertainty as part epistemic,
part aleatory. Epistemic uncertainty is that which comes from a lack of knowledge,
and is thus reducible, while aleatory uncertainty comes from intrinsic randomness
of the world, and is thus irreducible. Classifiers taking this framework into ac-
count can be found in [Senge et al., 2014, Nguyen et al., 2018]. Active learning
is a field where the training examples are chosen actively, through queries, during
the training in order for the learning phase to be as quick as possible, by avoiding
redundancy, for instance. Nguyen in [Nguyen et al., 2019] propose an active learn-
ing approach that aims at asking a decision maker to label the examples on the
ouputs of which there is the greatest epistemic uncertainty, thus effectively aiming
the uncertainty reduction at the reducible part.

Being able to evaluate the uncertainty associated with a given model’s output
is interesting from the point of view of robustness. Indeed, it allows for the user to
know when to trust a given model, or even for the model to "decide" not to yield
any output when uncertainty is too high.

3.7.3 Formal Properties for Learning Systems

The approaches that aim at quantifying and reducing uncertainty might not prove
enough for certain applications. In particular, some applications require formal
guarantees on the model, which are usually harder to obtain on machine learning
algorithms than on classical hard-coded algorithms, mainly because:

3.7. MACHINE LEARNING FOR SAFETY-CRITICAL CONTEXTS 83

• There are usually a large number of parameters for a given model

• The parameters are learned from data that is drawn from a certain unknown
distribution

• There might be large amounts of data

The objective of these methods is to formally prove that the relation between
input and output guarantees some boolean properties (SAT problems) or more
complex ones which can be reduced to SAT problems (SMT problems).

Such approaches (and others) are surveyed and proposed in [Bunel et al., 2017b,
Bunel et al., 2017a, Ehlers, 2017]. ReLUplex adapts the simplex algorithm to
neural networks with ReLU activations [Katz et al., 2017]; the properties proven
involve, for instance, "If two drones are sufficiently far enough, the network will
not consider that they are at a risk of collision". Other types of activations are
studied, as sigmoids [Pulina and Tacchella, 2010]. These approaches use mixed
integer programming, as well as overestimation of the estimation functions [Singh
et al., 2019].

3.7.4 Adversarial Examples

Adversarial examples [Szegedy et al., 2013] are a recurrent problem in complex
learning systems. In a classification problem, a data point is considered adversarial
if it is indistinguishably close to another point (for a human being), yet is not
assigned the same label by the model.

Formally, let X ⊆ Rn be the input space of our problem, and Y be the labels
set. Let δ ∈ R+. Finally, let yx ∈ Y be the label assigned to input x by the model.
Now, let (x, ϵ) ∈ X × Rn s.t.:

∥ϵ∥ < δ

yx ̸= yx+ϵ

Parameter δ is chosen so that the difference is too small to be detected by a
human, or at least too small to change the label a user would assign to the input.
Nonetheless, the perturbation ϵ still manages to fool the classifier, and ϵ is called
an adversarial perturbation. The data point x+ ϵ is called an adversarial example.
They usually appear in high dimensions [Goodfellow et al., 2014], as they exploit
the flexibility of complex models, such as deep neural networks. In contexts such as
the ones in which Thales has applications (e.g. safety, security, defense), it might
be the case that the models be submitted to adversarial attacks (i.e. adversarial
examples generated intentionally to fool the model) by an antagonistic system; it

84 CHAPTER 3. SUPERVISED MACHINE LEARNING

is thus important to present some guarantee against such attacks if the models are
to be trusted.

Formal verifications of robustness to adversarial examples is a recent, but
widely studied topic. Research includes methods to assess the robustness of black-
box trained neural networks through different metrics [Bastani et al., 2016, Wang
et al., 2018] or by identifying safe regions [Huang et al., 2016, Gopinath et al.,
2017].

While some approaches aim at building adversarially-robust neural networks
[Madry et al., 2018], some consider them unavoidable consequences of using un-
constrained neural networks [Ilyas et al., 2019].

Nonetheless, in the case of constrained models, a popular approach is the use
of Lipschitz-network [Hein and Andriushchenko, 2017], where the gradient of the
model is bounded. This means that a small disruption in the input can only pro-
voke a limited modification of the output, thus effectively counteracting, by design,
the adversarial effect. While such models are harder to train due to the added con-
straints, they were shown to suffer little to no loss of expressivity [Bethune et al.,
2021]. Nonetheless, this constraint is only efficient in networks with a small di-
mension; indeed, a small disturbance on a large number of dimensions might lead
to a large global disturbance, thus allowing for adversarial examples.

We have seen that ML models are highly vulnerable to the uncertainty inherent
to the data. As presented, some approaches have been developed to improve the
robustness of the learned models. But what is needed here is some guarantees in a
non-probabilistic sense (as provided by the statistical learning theory), about the
error in particular cases. We have seen in Chapter 2 that some models stemming
from MCDA and MAUT offer constrainedness and interpretability. This, in turn,
allows assessment of the model by an expert, and permits the use of the model
in safety-critical settings. We now present the field of preference learning, in par-
ticular the sub-field that focuses on learning MCDA models. Indeed, our main
technical contributions will be inscribed in the wake of the methods that will now
be introduced, aiming to learn, from data, models such as the previously presented
UHCIs.

3.8 Preference learning

Preference learning is the subfield of machine learning that aims at learning pref-
erence and ordering relations. It is a different field than MCDA, in particular in
the fact that there is little to no interaction with the DM in preference learning. In
particular, there might not be the same need for transparency and interpretability
of the models.

3.8. PREFERENCE LEARNING 85

3.8.1 Preference Learning Tasks

We present here three main categories of problems adressed by preference learning,
taken directly from [Fürnkranz and Hüllermeier, 2011].

Label Ranking: Label Ranking can be seen as a generalization of classifi-
cation, where, instead of returing a single class y ∈ Y := {1, ..., K}, the model
returns a preference ordering on the labels (i.e. a permutation of Y). In essence,
the model, given an example x, learns a preference relation ≻x on the labels. Then,
given y, y′ ∈ Y , y ≻x y′ means that label y is prefered to y′ for classifying x.

Example 23. A movie streaming plaftorm knows some data about its users. They
also propose four types of movies:

Y = {Action,Drama,Comedy,Romantic}

Given a new user profile x, the platform might want to recommend movies that
the customer likes. If we have:

Comedy ≻x Action ≻x Drama ≻x Romantic

then the platform can recommend mostly comedies and action movies to the user.

Instance Ranking: In this setting, the model is given a training set of exam-
ples from X, along with time their corresponding class y ∈ {1, ..., K}. We assume
that there is a preference order on the elements of y, such that an example labeled
with class i is strictly preferred to any in class i − 1. Then the model aims at
learning a preference relation ≻ among the elements of X; that is, given any set
of elements of X, the model can re-order them from least to most preferred.

Example 24. A movie streaming platform classifies its movies among three cate-
gories:

1. those that were upvoted, or liked, by fewer than 60% of the watchers

2. those that were upvoted, or liked, by more than 60%, but fewer than 90% of
the watchers

3. those that were upvoted, or liked, by more than 90% of the watchers

Then, given the metadata of all the movies from the next batch to be added
to the catalog, the model can sort those movies by a prediction of how much they

86 CHAPTER 3. SUPERVISED MACHINE LEARNING

will be liked by the users. This allows the platform to focus its advertisement and
suggestions on those of the movies that are more likely to be appreciated by the
users.

Object Ranking: The aim of this setting, like Instance Ranking, is to learn to
sort the examples by preference. Nonetheless, this time, the incoming data is not
labeled by a class; instead, the training data consists of data that is already ordered
from least to most preferred (i.e. the label is implicitly given by the position of an
example in the ordering).

Example 25. The same movie streaming platform ranks all of its movies from
least to most liked, and uses this to train the model, without even indicating the
percentage of upvotes. Once trained, it can order new data, just like in Instance
Ranking.

An early approach by Cohen et al [Cohen et al., 1999] proposes a method
to aggregate on-line the preferences of several weighted experts. Learning from
sets of pairwise comparisons between options has been investigated by Fürnkranz
and Hüllermeier, with the use of several machine learning methods, in particular
classification [Fürnkranz and Hüllermeier, 2003, Hüllermeier et al., 2008].

Active learning approaches were tried in contexts where there was some feed-
back (possibly incomplete, or less informative than what having the DM at hand
could provide). Such approaches can be found in [Qian et al., 2015, Bärmann
et al., 2017, Bourdache and Perny, 2019].

3.8.2 Multi-criteria Preference Learning

As we have seen, uncertainty is unavoidable in most learning contexts. It was thus
considered that, as it was dangerous to use a learned model on its own to accom-
plish safety-critical decisions, one could apply the MCDA philosophy (i.e. build
models for aiding a human, rather than for taking a decision). The idea is that,
if we can learn an MCDA model from data, we can obtain a model that is inter-
pretable, formally constrained, and verifiable by design; that is, once the model is
trained, there is no difference at all between using it and using a "traditionally"-
elicited model. The-thus verified model is thus totally free of the issues induced by
uncertainty in the training data, as is one that was built with the help of a DM.

Moreover, the model is built at a fraction of the cost of building it through the
usual MCDA methods of interviewing an expert, as one can use data that is already

3.8. PREFERENCE LEARNING 87

here (for instance, logs from previous decisions). We present here the approaches
developed to elicit MCDA models through learning. This field is sometimes called
Multi-Criteria Preference Learning (MCPL).

A probabilistic approach for eliciting the utility functions of a AU model was
implemented by [Bous and Pirlot, 2013].

A first method for learning a fuzzy measure was proposed by Grabisch [Gra-
bisch, 1995]. This approach is a supervised regression using gradient descent,
under the constraints that befit a fuzzy measure. A modification to Grabisch’s
algorithm was implemented in [Alavi et al., 2009] and achieves better results. This
paper also tries a genetic algorithm method to learn fuzzy measures, but concludes
that it is less efficient than the modified gradient descent. A more recent method
involve linear programming based on data [Beliakov and Wu, 2019].

A great deal of work was accomplished by Tehrani et al on learning binary clas-
sifiers based on the Choquet integral [Fallah Tehrani et al., 2011, Fallah Tehrani
et al., 2012, Hüllermeier and Tehrani, 2013]. These approach generalize the logistic
regression by replacing the linear part (weighted sum) by a Choquet integral. An
even more general model, called Choquistic Utilitaristic Regression [Fallah Tehrani
et al., 2014] was also learned. This model is a Choquistic regression, where the
utilities that rescale the parameters are learned at the same time as the fuzzy mea-
sure of the aggregator. More recently, Havens et al. [Havens and Anderson, 2018]
extended these methods to non-monotonic fuzzy measures. Finally, Bourdache
[Bourdache et al., 2019] recently used Bayesian linear regression to regress the
parameters of weighted models, such as 2-additive Choquet integrals or ordered
weighted averages.

They thus try to tackle the problem of, given data, a decision maker that can
generate more data, and a model family, elicit preferences. The uncertainty there
comes from the fact that the data does not reduce the set of compatible parame-
terizations to a single point; as a consequence picking only one single parameteri-
zation among the feasible region is highly subjective. The ideas developped below
try to look at all possible models, and elicit preferences according to those. These
approaches were developed around MCDA, and thus use mainly piecewise linear
models.

Active learning is a learning procedure which, rather than learning from a
fixed dataset, uses an oracle (expert or program) which can label examples as
the learning phase progresses. This allows the learning system to request the most
informative examples. This approach was used to obtain a set of parameterizations
for linear models in order to obtain a set of models which minimizes the maximal
min-max regret [Benabbou et al., 2016b]. In [Benabbou and Perny, 2017], the
authors assume that the output is not deterministic w.r.t. the input, but they
assume knowledge about the conditional distribution of the output knowing the

88 CHAPTER 3. SUPERVISED MACHINE LEARNING

input, and they apply the same active learning procedure.
Approaches for learning hierarchical interpretable models include, notably,

[Senge and Hüllermeier, 2011], where the trees learned are binary, but can have the
same attribute intervening several times. In the case of 2-level hierarchical models
(not necessarily trees), an approach exploiting such models for data fusion can be
found in [Beliakov et al., 2021]; it offers elements of simplification for easing the
learning of such models, when using Choquet integrals.

3.8.3 Dealing with Uncertainty

Preference learning is still machine learning, and is as such also subject to the
uncertainty evoked in the previous sections. Some of the uncertainty on elicited
model comes from the fact that the DM is not perfect, and might give inconsistent
data, or contradict themselves [Labreuche and Grabisch, 2013].

Cailloux and Destercke present in [Cailloux and Destercke, 2017] reasons as to
why the modelling of preferences should be incomplete, meaning that there must
be some cases for which a model cannot determine which of two alternatives is the
better one, but instead conclude on an impossibility to choose.

Theories such as possibility theory [Dubois and Prade, 2015] and belief theory
[Shafer, 1976] have models to describe uncertainty with more information than a
single number (as probability theory does), allowing deeper analysis.

Greco et al proposed the robust ordinal regression [Greco et al., 2009], later
extended to the Choquet integral [Angilella et al., 2010] as a way of establishing a
reliable decision-making tool. The idea is, given a class of parameterized decision
models (with a piecewise-linear relationship between input and output), to elicit
through linear programming the set of all possible parameterizations. Then, it is
possible to compute, for a given decision, its support in the set of possible parame-
terizations (the number of parameterizations for which the model supports a given
decision). This was also put in practice through the stochastic multiattribute ac-
ceptability analysis [Angilella et al., 2015, Saint-Hilary et al., 2017], which samples
a set of parameterizations and aggregates the results in order to obtain a decision
support.

For instance, in a sorting problem between alternatives a1, ..., an, the informa-
tion that can be obtained in this way would be the proportion of models which
rank alternative ai in the first position, but also the proportion of models which
rank ai higher that aj. This, under the assumption that the model is actually
able to represent the preference information well, allows the DM to know to which
extent the proposed decision is reliable.

3.9. OUR CONTRIBUTION 89

U H CI References

✓

[Grabisch, 1995],[Grabisch et al., 2008]
[Alavi et al., 2009],[Fallah Tehrani et al., 2012]

[Hüllermeier and Fallah Tehrani, 2012],[Benabbou et al., 2017]
[Havens and Anderson, 2018],[Bourdache et al., 2019]

✓ [Bous and Pirlot, 2013]
✓ ✓ [Fallah Tehrani et al., 2014]

✓ ✓ ✓ [Huang et al., 2008],[Senge and Hüllermeier, 2011]
(restricted to binary trees/2-dim CIs)

✓ ✓ ✓ Our Contribution

Table 3.1: Table of methods for learning diverse aspects of the UHCI models

3.9 Our Contribution

We have introduced in this part the basic notions that will serve as the basis for this
thesis. In essence, we aim at leveraging the power of supervised machine learning
and neural networks for learning the parameters of UHCI models, a work which was
new before this thesis. Indeed, while the Choquet integral was learned before, even
with marginal utilities, neither HCIs nor UHCIs were learned, limiting severely the
representativity of the model. A review of references evoked in this chapter, about
learning models that include Choquet integrals (CI), marginal utilities (U) and
hierarchies (H) is presented in Table 3.9. Each time, we ticked the properties that
are covered by the reference.

As we see, the state of the art in (H)CI learning is thus restricted to flat
models, containing a single aggregation step. Furthermore these approaches, e.g.
[Fallah Tehrani et al., 2012, Fallah Tehrani et al., 2014], hardly extend to HCI as
they rely on a black-box sequential quadratic optimizer, and would face a non-
convex optimization problem in the hierarchical case.

Our ambition is to address these limitations by learning the parameterization of
2-additive HCI models together with marginal utilities in an efficient way, assuming
that the hierarchical structure be given. As will be shown, the framework that we
developed, called Neur-HCI, satisfies by design the formal (e.g. monotonicity) or
semantic (e.g. based on the expert hierarchy) constraints, thereby enforcing the
soundness, interpretabiliy and semantic meaningfulness of the eventual model. To
the best of our knowledge, there is no other approach for learning HCI models
with a general hierarchy.

On the other hand, the proposed methods for learning hierarchical models
learn arguably different models, for different contexts. They indeed learn aggre-
gators which are more general than Choquet Integral, as they also encompass

90 CHAPTER 3. SUPERVISED MACHINE LEARNING

non-compensatory aggregation functions (t-norms or co-norms for instance), but
are restricted to a binary setting (each aggregator has 2 inputs). This allows them
to learn the hierarchy in a tractable way, which contrasts with our approach where
the aim is to incorporate an expert-given hierarchy (based on domain knowledge).
Moreover, each criterion can, in this approach, appear at several leaves of the tree,
each with its own marginal utility. As a consequence, there might be a loss of
interpretability, especially if the model is not bounded in size.

The main challenge is in learning such highly constrained models, which in-
cludes domain knowledge which must be strictly and formally enforced (rather
than simply "approached", through classic regularizations). This allows for a
fully-trained, understandable and predictable model, which a domain expert can
easily verify and validate, or discard.

Our contribution is presented in two parts. First, Part III presents a proof of
identifiability of the UHCI model; this proof of uniqueness lays the theoretical ba-
sis validating the attempts at learning such model, along with hinting at empirical
satability of the learned model. Then Part IV presents the practical implementa-
tion of Neur-HCI, our framework for learning a UHCIs model’s aggregators and
marginal utilities, while preserving all of its constraints.

Part III

Theoretical contributions

91

CHAPTER 4

INDENTIFIABILITY OF A UHCI
WITH A FIXED HIERARCHY

Contents
4.1 General Considerations 93

4.1.1 Identifiability . 93

4.1.2 Motivation . 94

4.1.3 Assumptions . 95

4.2 Showing Identifiability with a Fixed Hierarchy 96

4.3 Conclusion . 98

4.4 Proofs . 98

4.1 General Considerations

4.1.1 Identifiability

The main contribution of this part is establishing the identifiability of UHCI mod-
els. The identifiability [Rothenberg, 1971] of a model is the uniqueness of its
parameterization. That is, let C = {Fθ, θ ∈ Θ} be a family of functions de-
fined on X, and with parameters in the parameter space Θ. Let Fθ (resp. Fθ′)
∈ C be parameterized by θ (resp. θ′). Then C is identifiable if and only if:
∀x ∈ X,Fθ(x) = Fθ′(x)⇒ θ = θ′.

93

94 CHAPTER 4. IDENTIFIABILITY - FIXED HIERARCHY

This subsection focuses on the case where the hierarchy of the UHCI is fixed,
and establishes the identifiability property under this assumption. Let us consider
two UHCIs that are equal everywhere on the input space, and which are assumed
to have the same hierarchy denoted by T . Proving Identifiability of a UHCI model
with fixed hierarchy means that:

(A) the marginal utilities are equal on both models for each criterion;

(B) the fuzzy measures of each of the aggregators are equal between both models.

Under some assumptions, Subsections 4.1.3 and 4.2 establishes (A) and (B).

4.1.2 Motivation

In many application domains related to decision making and artificial intelligence
at large, an essential requirement is to gain the users’ trust [O’Neill, 2016]. To this
end, the model must be interpretable, that is, the DMs must understand which
criteria influence the decision, how, and to which extent; in other words, they must
be able to trace back the assessment of an alternative to the criteria involved.
In some cases, syntactic constraints (e.g. monotonicity) might be enforced to
facilitate the interpretation of the model; in other cases, specific domain knowledge
is available (e.g. implying some preferences w.r.t. some criteria, everything else
being equal), and the model must comply with this prior knowledge. Naturally, the
trust-worthiness of the model is all the more important in safety-critical contexts.

In order for the model’s explanation to be trustable by a human DM, it is
required that several conflicting interpretations could not be drawn from it, which
would make the model confusing. One can now see why identifiability of the model
is of the essence. Typically, ambiguities arise if the same utility function can be
represented in different ways, preventing the DM from understanding the impact
of each attribute; for instance, one model may suggest that a certain criterion
is rather unimportant, while the other one concedes it a high relevance. In this
case, which interpretation can the DM trust ? In such a case, the model becomes
untrustable -and thus useless-.

Note that the identifiability property is also relevant in the machine learning
context: the existence of a single solution brings several benefits to the learning
[Paulino and Pereira, 1994, Ran and Hu, 2017].

The contribution of this part is to establish the identifiability of UHCIs, for-
mally showing that, if two UHCIs are equal for all possible alternatives, then they
have to have the same parameters, and thus the same interpretation. This re-
sult encompasses the identifiability of the marginal utilities from the raw criteria
data, of the aggregation hierarchy, and of the aggregation parameters. Moreover,

4.1. GENERAL CONSIDERATIONS 95

it bridges a gap between both fields of Machine Learning − where powerful black-
box models are learned with no general identifiability guarantees − and MCDA,
where models are constrained and need to be interpretable. The UHCI model
space thus offers an interesting trade-off for safety-critical applications, enabling
the data-driven learning of interpretable and identifiable models.

In this chapter, we establish the UHCI identifiability when the hierarchy is
fixed. Then, Chapter 5 establishes the identifiability of both the hierarchy and the
parameters of the sought UHCI. Note that these results can be found in our paper
[Bresson et al., 2021]. In both of these chapters, for readability reasons, we split
the chapters into two main parts:

• the general idea of the proof, presenting assumptions, lemmas, algorithms
and other necessary tools

• the actual proofs of said lemmas and theorems

4.1.3 Assumptions

To represent information on the local preferences restricted to single features (at-
tributes), it is usual to impose some assumptions on the marginal utilities. Note
that the marginal utilities used in practice are either monotonic or bitonic (either
single-peaked or single-valleyed). In Example 1, it is increasing w.r.t. criterion 1
(surface area) and single-peaked w.r.t. criterion 4 (distance to large road).

The continuity of ui is desirable to avoid a non-stable behavior of the local and
hence the global utility. To have meaningful relative importance degrees among
criteria, one also imposes the marginal utilities to be normalized. Moreover, a very
common assumption is that the smallest possible utility is 0 (a value suggesting
that the corresponding criterion is not met at all), and the largest one is 1 (the
criterion is satisfied). For convenience, we impose that these extreme values be
reached (possibly asymptotically) for a given value on attribute i. Overall, the
assumptions are summarized as follows:

∀i ∈ N ui is continuous on R (4.1)
∀i ∈ N inf

xi∈R
ui(xi) = 0 (4.2)

∀i ∈ N sup
xi∈R

ui(xi) = 1 (4.3)

All marginal utilities evoked in the remainder of this chapter are assumed to
respect constraints (4.1), (4.2) and (4.3).

Assume in Figure 2.2 that node 9 has no effect in the aggregation 11. Then
one can modify the parameters of aggregations 8 and 9, with no consequence on

96 CHAPTER 4. IDENTIFIABILITY - FIXED HIERARCHY

the global score. This illustrates that identifiability cannot be obtained if there are
useless criteria. We formalize this in the following way. We say that no criterion
in N is useless if

∀i ∈ N ∃xi, yi ∈ Xi, z ∈ X,

F(xi, z−i) ̸= F(yi, z−i) (4.4)

where (xi, z−i) is the alternative whose value is xi on attribute i, and zj on all
other attributes j ̸= i. We introduce the following definition on FMs.

Definition 8. Consider a FM µ on N . A criterion i ∈ N is said to be degenerate
if µ(S ∪ {i}) = µ(S) for every S ⊆ N \ {i}. A fuzzy-measure is said to be non-
degenerate if there is no degenerate criterion.

A first result (inspired from [Labreuche, 2018]) is:

Lemma 1. Relation (4.4) holds for F with marginal utility functions if and only
all aggregators Ak for k ∈ V have a non-degenerate measure.

4.2 Showing Identifiability with a Fixed Hierarchy

The uniqueness of the representation of the UHCI model on a fixed hierarchy
follows from Lemma 1:

Theorem 1. Let F and F ′ be two UHCIs with same hierarchy T = ⟨r,M,Ch⟩,
and assume that they involve different fuzzy measures and utilities. Assuming that
(4.4) holds for F and F ′, and that the following relation is satisfied

∀x ∈ X, F(x) = F ′(x), (4.5)

then F and F ′ have the same parameterization, that is:

• ∀i ∈ N , ∀xi ∈ Xi, ui(xi) = u′
i(xi)

• ∀k ∈ V , µk = µ′
k

The proof is organized as follows (see the detailed proof in Section 4.4): First,
F and F ′ can be written:

F : x 7→ Cµr(Fr1(xr1), . . . ,Frd(r)(xrd(r))),

F ′ : x 7→ Cµ′
r
(F ′

r1
(xr1), . . . ,F ′

rd(r)
(xrd(r))),

with Ch(r) = {r1, ..., rd(r)}. Using this form, it is enough to show these two
properties:

4.2. SHOWING IDENTIFIABILITY WITH A FIXED HIERARCHY 97

(*) µr = µ′
r,

(**) ∀k ∈ Ch(r),∀x ∈ Xk, Fk(x) = F ′
k(x).

Indeed, if we prove this for the root, then the proof applies on the children as
well, as they are all UHCI. We can then propagate the result from the root to its
children, and so on. When we reach a leaf i, we show that we obtain ui = u′

i. We
distinguish three cases, represented each by a lemma below.

Lemma 2. If ∀k ∈ Ch(r), ∀x ∈ Xk, Fk(x) = F ′
k(x), then we have µr = µ′

r.

Lemma 2 means that (**) ⇒ (*).
Let Bk = {xk ∈ Xk : Fk(x) = 1} and Bk = {xk ∈ Xk : Fk(x) = 0}. The

next two steps depend on the intersections of Bk∩B′
k and Bk∩B′

k of all children
k ∈ Ch(r).

Lemma 3. If, ∀k ∈ Ch(r),[
(Bk ∩B′

k ̸= ∅) and (Bk ∩B′
k ̸= ∅)

]
, then we have (**).

Lemma 3, shows that if all Fk and F ′
k have non-disjoint support for 0 and for

1, then we have (**); by Lemma 2, we also have (*). We thus have identifiability.

Lemma 4. Assume there exists k in Ch(r) such that Bk ∩B′
k = ∅ or Bk ∩B′

k = ∅.
Then, F ̸= F ′.

Lemma 4 shows that, should the assumptions of Lemma 3 be violated, then F
is necessarily different from F ′. As a consequence, we have an equivalence between
the assumptions of Lemma 3 and that of Theorem 1; we have thus shown that,
given two equal UHCIs with the same hierarchy, they have necessarily the same
marginal utilities, and the same aggregations. Then, we can conclude:

Proof of Theorem 1:

F = F ′ ⇒ ∀k ∈ Ch(r),[
(Bk ∩B′

k ̸= ∅) and (Bk ∩B′
k ̸= ∅)

]
by Lemma 4

⇒ ∀k ∈ Ch(r),Fk = F ′
k by Lemma 3

⇒ µr = µ′
r by Lemma 2

The proof is completed.

98 CHAPTER 4. IDENTIFIABILITY - FIXED HIERARCHY

4.3 Conclusion

We have, in this chapter, shown that, given a UHCI with a given hierarchy, there is
unicity of both its fuzzy measures and marginal utilities, under mild assumptions.
The proofs of all lemmas and theorems evoked are given thereafter in Section
4.4. This is a first interesting result, as it allows to ensure the unicity of the
interpretation of a given HCI model. There now remains to show that this unicity
still holds when the hierarchy is left unfixed, which is done in the next chapter.

4.4 Proofs

Proof of Lemma 2: Let S ⊆ M a set of nodes, we write Lf(S) =
⋃
k∈S

Lf(k).

We use the following compound notation. Let x,x′ be two vectors in X, and let
S, S ′ ⊆M so that (Lf(S),Lf(S ′)) is a partition of N . Then we write x = (xS,x′

S′)

the vector s.t. xi =

{
xi if i ∈ Lf(S)
x′
i if i ∈ Lf(S ′)

Let Z ∈
∏

k∈Ch(r)

Bk, and O ∈
∏

k∈Ch(r)

Bk.

Let S be an arbitrary subset of Ch(r). By definition, we have F(OS,ZCh(r)\S) =
Cµr(1S, 0Ch(r)\S). Thus F(OS,ZCh(r)\S) = µr(S). In the same way, we obtain
F ′(OS,ZCh(r)\S) = µ′

r(S).
As the values of F and F ′ are equal for any x ∈ X, we have µr(S) = µ′

r(S).
This applies for all S ⊆ Ch(r), thus Property (*) holds.

Proof of Lemma 3: Let k ∈ Ch(r). By the assumption of the lemma, we can
construct Z ∈

∏
k∈Ch(r)

Bk ∩B′
k, and O ∈

∏
k∈Ch(r)

Bk ∩B′
k. Since µr is by hypothesis

non-degenerate, we have that ∃Sk ⊆ Ch(r) \ {k} s.t. µr(Sk ∪ {k})− µr(Sk) > 0.
Thus, we have: ∀xk ∈ Xk

F(OSk
,ZCh(r)\(Sk∪{k}),xk)

= Cµr(1Sk
, 0Ch(r)\(Sk∪{k}),Fk(xk))

= Fk(xk)(µr(Sk ∪ {k})− µr(Sk)) + µr(Sk)

Likewise for F ′, thus, we have the following equality:

Fk(xk)(µr(Sk ∪ {k})− µr(Sk)) + µr(Sk)

= F ′
k(xk)(µ

′
r(Sk ∪ {k})− µ′

r(Sk)) + µ′
r(Sk)

Since µr(Sk ∪ {k})− µr(Sk) > 0 by definition of Sk, we obtain:

∃α ∈ R+, β ∈ R,∀xk ∈ Xk,Fk(xk) = αF ′
k(xk) + β

4.4. PROOFS 99

Applying this equality in Zk and Ok, we get α = 1 and β = 0.

Fk(Zj) = αF ′
k(Zj) + β ⇒ 0 = 0 + β ⇒ β = 0

Fk(Oj) = αF ′
k(Ok) + β ⇒ 1 = 1α⇒ α = 1

We have thus shown that the assumption on this case implies that ∀k ∈
Ch(r),Fk = F ′

k.

We define ui and ui to the marginal utility. For i ∈ N , we write ui = {xi ∈ Xi :
ui(xi) = 0} and ui = {xi ∈ Xi : ui(xi) = 1}. Note that, in some cases, these values
can be reached asymptotically. In these cases, ui (resp ui) might only contain −∞
or +∞.

Property 1. Let k ∈ Ch(r), such that Bk ∩ B′
k = ∅ (resp. Bk ∩ B′

k = ∅). Then
there exists a leaf i ∈ Lf(k) such that ui ∩ u′

i = ∅ (resp. ui ∩ u′
i = ∅).

Proof : We show the first result by contradiction. Let k ∈ Ch(r), such that
Bk ∩ B′

k = ∅. We assume that ∀i ∈ Lf(k), ∃ xi ∈ ui ∩ u′
i. Then there exists xk =

(x1, · · · , x|Lf(k)|). Thus Fk(xk) = Ak(1, . . . , 1) = 1. Using the same argument, we
can obtain : F ′

k(xk) = 1. Thus, xk ∈ Bk ∩B′
k, hence the contradiction.

The very same reasoning can be applied for the case Bk ∩B′
k = ∅.

Proof of Lemma 4: We prove this lemma by contradiction, by assuming F = F ′.
Then, let i ∈ Lf(k) such that ui ∩ u′

i = ∅ or ui ∩ u′
i = ∅, which exists by Property

1. There is thus an interval I = [αi, βi] ⊆ Xi such that ui and u′
i have opposite

monotonicity on I. This can easily be verified by enumerating the cases. WLOG,
we assume that ui is decreasing on I while u′

i is non-decreasing.

Let S ⊆ N \ {i}. Let xS ∈
∏
j∈S

uj ×
∏

i∈N\S
uj. Then, by monotonicity of HCIs,

ui(αi) < ui(βi) implies:

Fk(αi,xS
Lf(k)\{i}) ≤ Fk(βi,xS

Lf(k)\{i})

⇒ F(αi,xS
N\{i}) ≤ F(βi,xS

N\{i})

Likewise, we have: F ′(αi,xS
N\{i}) ≥ F ′(βi,xS

N\{i}) as u′
i is non-decreasing on [αi, βi].

Since F and F ′ are equal everywhere, we thus have:

∀S ⊆ N \ {i},
F
(
αi,xS

N\{i}
)
= F

(
βi,xS

N\{i}
)

We show that this equation leads to a contradiction, by building an S ⊆ N such
that we do not have the equality.

100 CHAPTER 4. IDENTIFIABILITY - FIXED HIERARCHY

We denote by π = {π1, . . . , πt} the unique path from root r to leaf i, with t
the depth of i in the tree. We order them so that π1 = r and ∀j ∈ {2, . . . , t}, πj ∈
Ch(πj−1). This means that πt = i.

For each j in {1, . . . , t− 1}, let Sj be a subset of nodes in Ch(πj) \ {πj+1} such
that µπj

(Sj) > µπj
(Sj ∪ {πj+1}). The non-degenerateness property implies that

such sets exist. We denote by Sk =
t−1⋃
j=1

Sj.

Now, let vα be a vector in X such that :


vα = αi

vα
i ∈ ui if ∃g ∈ Sk, i ∈ Lf(g)

vα
i ∈ ui otherwise

and vβ = (vα
N\k, βi).

We write dj = Ch(πj) \ (Sj ∪ {πj+1}) . Then, at node πj, we have:

Fπj
(vα

πj
) = Cµπj

(Fπj+1
(vα

πj+1
), 1Sj

, 0dj)

= Fπj+1

(
vα
πj+1

)
γj + δj

with γj = µπj
(Sj ∪ {πj+1})− µπj

(Sj) and δj = µπj
(Sj).

when j = t− 1, we have:

Fπt−1(v
α
πt−1

) = γt−1ui(αi) + δt−1

Fπt−2(v
α
πt−2

) = γt−2Fπt−1

(
vα
πt−1

)
+ δt−2

= γt−2(γt−1ui(αi) + δt−1) + δt−2

And so on. Since ∀j ∈ {1, ..., t}, γj > 0 by construction of Sj, and δj ≥ 0,
we have Fπ1(vα

πt
) = Γui(αi) + ∆ with Γ > 0 and ∆ ≥ 0 by composition of

affine functions with a strictly increasing coefficient. Likewise, for vβ, we obtain
Fπ1(vβ

πt
) = Γui(βi) + ∆. Nonetheless:

ui(αi) < ui(βi)⇒ Γui(αi) + ∆ < Γui(βi) + ∆

⇒ F(vα
πt
) < Fr(vβ

πt
)

We have built a set S ⊆ N such that Eq. (4.5) does not hold. Thus F ≠ F ′ and
this yields to the contradiction.

CHAPTER 5

GENERAL IDENTIFIABILITY OF A
UHCI

Contents
5.1 Showing Identifiability with a Free Hierarchy 101

5.1.1 Structure of the UHCI 103

5.1.2 Construction of the Set of Separation Frontiers from the
UHCI Model . 104

5.1.3 Construction of the Hierarchy from the Set of Separation
Frontiers . 107

5.1.4 Main Result . 109

5.2 Conclusion . 111

5.3 Proofs . 112

5.1 Showing Identifiability with a Free Hierarchy

The aim of this chapter is to show the identifiability of the UHCI model in the gen-
eral case, that is, when the hierarchy, the aggregation functions and the marginal
utility functions are unknown. Let us start with an example to give the intuition
of the approach.

Example 26. Consider three criteria organized as in Figure 5.1. We assume
the models a4 = a1+min(a1,a2)

2
and a5 = a3+min(a3,a4)

2
and identity marginal utility

101

102 CHAPTER 5. GENERAL IDENTIFIABILITY OF A UHCI

5

4 3

1 2

Figure 5.1: Example of a tree.

functions. As we will see in this section, a5 is piecewise affine with respect to
a1, a2, a3 and is composed of the following affine parts a3, a1

2
+ a3

2
and a3

2
+ a1+a2

4

which are separated by the frontiers

a1 = a2 , a1 = a3 and
a1 + a2

2
= a3. (5.1)

We note that, at the root of the hierarchy presented in 5.1, the root (node 5),
has two children, each of which define a subtree:

• the subtree whose root is 4, and with leaves 1 and 2

• the subtree composed of the single node 3, which is a leaf, and thus a native
criterion

We can thus partition the leaves depending on the subtree to which they belong,
yielding the subsets {1, 2} and {3}. This partition can be found again in the equa-
tion for the third separation border in Equation (5.1). Indeed, the left-hand side of
the equation is a convex sum involving criteria 1 and 2, while the right-hand side
is a convex sum involving only criterion 3.

As illustrated in this example, the tree structure can be recovered from the
expression of the separation frontiers. Theorem 1 can then be applied, and yields
the uniqueness of both the aggregator weights and the marginal utility functions.
So the major ingredient to show identifiability of the UHCI model is to have a
good characterization of the separation frontiers (Section 5.1.1). In Section 5.1.2,
we present an algorithm Alg1 which, given a UHCI under the form of its marginal
utilities, hierarchy and set of fuzzy measures on its non-leaf nodes, yields the set of
separation frontiers. In Section 5.1.3, we present an algorithm Alg2 which, given
a set of separation frontiers of a UHCI model, constructs a tree compatible with
these frontiers. Finally, in Section 5.1.4, we exhibit two conditions on the hierarchy
T and aggregation of a UHCI F . Under those conditions, Alg2(Alg1(F)) = T ;
that is, T is the only hierarchy that can parameterize F .

5.1. SHOWING IDENTIFIABILITY WITH A FREE HIERARCHY 103

Towards a generalization of the Choquet integral
By Eq. (2.10), a CI is a piecewise affine function, involving subdomains where

the CI returns a weighted sum, and the domains being separated by hyperplanes of
the form xi ≥ xj. While these domains make sense in the view of the idempotency
property, one would like to generalize them.

It is shown in [Grabisch et al., 2009], based on [Ovchinnikov, 2002], that any
non-decreasing, and positively homogeneous piecewise linear function can be rep-
resented by a network of interconnected CIs. The statement in question is that
the three following properties are equivalent:

• F is a multilevel Choquet integral;

• F is a 2-level Choquet integral, with all capacities of the first level being
additive, and the capacity of the second level being 0–1 valued;

• F is nondecreasing and positively homogeneous piecewise linear.

While this result shows the generality of interconnected CIs, the lack of struc-
ture on these CIs might harm the overall interpretability, all the more so as there
is no restriction on number of CIs, possibly yielding very large models. Moreover,
as each CI aggregates all inputs, the traceability of the criteria impact and their
interactions is lost. The model needs to be inspected in every detail to be under-
stood. Moreover, this results shows that such DAG-CIs are not identifiable, as
they can be re-written as a 2-level CI.

As a consequence, we focus on tree-like structures, relaxing the 2-level condi-
tion, but effectively constraining the model to sparse and interpretable models,
with a width naturally limited by the number of criteria.

5.1.1 Structure of the UHCI

From the definition of the CI (given in Equation (2.10), in Chapter 2), we see
that the CI (and thus the HCI) is a continuous, piecewise-linear function w.r.t. its
inputs. It is, more precisely, a piecewise-convex combination, as the weights in all
regions sum to one and are non-negative.

We consider here a UHCI model F characterized by a tree T = ⟨r,M,Ch⟩,
a set of FM {µk}k∈V for its aggregations, and a set of marginal utility functions
U = {u1, · · · , un}. For an HCI model, identifiability is obtained by analyzing
the linear separation borders between linear parts. For a UHCI, we impose the
following regularity constraint on the marginal utilities:

∀i ∈ N, ui is piecewise C1. (5.2)

104 CHAPTER 5. GENERAL IDENTIFIABILITY OF A UHCI

This is a reasonable assumption, as it encompasses most used models, such
as sigmoids or piecewise affine functions. The UHCI is thus now a piecewise-C1

function, and our strategy is to analyze the separation frontiers between the C1

parts.
We also maintain assumptions (4.1), (4.2), (4.3) on the marginal utilities, as in

Section 4.1.1.
F can thus be described by a finite number of C1 functions G = {g1, . . . , gm}.

It is, in particular, a piecewise convex combination of the output of the marginal
utilities:

∀g ∈ G, g(x) =
n∑

i=0

wg
i ui(xi),

with non-negative weights that sum to one.
Space X can thus be split into a finite number of regions R1, ..., Rm, such that

∀x ∈ Ri, F(x) = gi(x). F is thus C1 on each of these regions, and we call H the
set of frontiers between each of these regions. F is also continuous on X.

For a node k ∈ M , we call Gk the set of C1 functions that Fk can take, where
these C1 functions depend only on xk, and Hk the set of separation frontiers
between the C1 regions of Fk that are induced by node k.

Note that G = Gr, but H =
⋃

k∈M
Hk.

Lemma 5. For a leaf node i ∈ N , the separation frontiers of Hi are of the form
xi = θ with θ ∈ Xi.

For an aggregation node k ∈ V , the separation frontiers of Hk take the form of
linear equations of the marginal utility functions of the attributes:

∑
l∈K wlul(xl) =

0 with K ⊆ Lf(k) and wl ̸= 0 for all l ∈ K. Then there exist k′, k′′ ∈ Ch(k) with
k′ ̸= k′′ such that we have {l ∈ K : wl > 0} ⊆ Lf(k′) and {l ∈ K : wl < 0} ⊆ Lf(k′′).

H thus contains separation frontiers of two forms. We call form 1 the frontiers
written as xi = θ, i.e. induced by a leaf. We call form 2 the frontiers of the type∑

l∈K wl ul(xl) = 0, i.e. induced by an aggregation node.

5.1.2 Construction of the Set of Separation Frontiers from
the UHCI Model

We have just seen that a HCI model is a piecewise linear function. As the marginal
utility functions are piecewise C1, we conclude that a UHCI model is a piecewise
C1 function.

We present Algorithm 1 in this section. This algorithm takes as an input a
UHCI, characterized by its hierarchy T = ⟨r,M,Ch⟩, its set of the fuzzy measures

5.1. SHOWING IDENTIFIABILITY WITH A FREE HIERARCHY 105

of all of its aggregators and its marginal utility functions. It then computes H.
Note that this algorithm also computes G as an internal variable. The approach
is constructive, building the two sets Gk and Hk for every k ∈ M in a bottom up
manner from the leaves to the root.

Let k ∈ V . For FM µk, we write Sk the set of subsets having a non-zero Möbius
coefficient in Eq. (2.11). As stated ak is a piecewise linear function of the ui(xi)
for i ∈ Lf(k).

We now illustrate Alg1 in an example.

Example 27. Consider the tree given by Figure 5.2 and a UHCI model defined
by a6 = 1

2
min(a3, a5) +

1
2
min(a4, a5), a5 = 1

2
a1 +

1
2
min(a1, a2), uk(xk) = xk

k+1

for k = 1, 2, 3, and u4(x4) =
√
x4 if x4 ≤ 1

4
and u4(x4) = 2x4+1

3
otherwise, with

X1 = · · · = X4 = [0, 1]. Utility function u4 is continuous and has two C1 segments.
The execution of Algorithm 1 gives:

• At k = 1, 2, 3: Gk = {xk
k+1} and Hk = ∅.

• At k = 4: G4 = {
√
x4;

2x4+1
3
} and H4 = {x4 =

1
4
}.

• At k = 5: E5 = {(1, 2)} so that the connected component is {1, 2}. Then a5
can take the expressions a1 and a1+a2

2
depending on whether a1 ≤ a2. Hence

G5 = {x1
2 ; x1

2+x2
3

2
} and H5 = {x1

2 = x2
3}.

• At k = 6: E6 = {(3, 5), (4, 5)} so that the connected component is {3, 4, 5}.
Then a6 can take the expressions a5, a3+a5

2
, a5+a4

2
and a3+a4

2
depending on

whether a5 ≤ a3 and a5 ≤ a4. Hence G6 is composed of

– x1
2 [for a1 < a2, a5 < a3, a5 < a4]

– x1
2+x2

3

2
[for a1 > a2, a5 < a3, a5 < a4]

– x1
2

2
+ x3

4

2
[for a1 < a2, a5 > a3, a5 < a4]

– x1
2+x2

3

4
+ x3

4

2
[for a1 > a2, a5 > a3, a5 < a4]

– x1
2

2
+

√
x4

2
[for a1 < a2, a5 < a3, a5 > a4, a4 <

1
4
]

– x1
2+x2

3

4
+

√
x4

2
[for a1 > a2, a5 < a3, a5 > a4, a4 <

1
4
]

– x1
2

2
+ 2x4+1

6
[for a1 < a2, a5 < a3, a5 > a4, a4 >

1
4
]

– x1
2+x2

3

4
+ 2x4+1

6
[for a1 > a2, a5 < a3, a5 > a4, a4 >

1
4
]

– x3
4

2
+

√
x4

2
[for a5 > a3, a5 > a4, a4 <

1
4
]

– x3
4

2
+ 2x4+1

6
[for a5 > a3, a5 > a4, a4 >

1
4
]

106 CHAPTER 5. GENERAL IDENTIFIABILITY OF A UHCI

Function Alg1(T , {µk}k∈M , {uk}k∈N)
1 While some nodes remain untreated
2 Let k ∈M s.t. k has no untreated children
3 If k is a leaf
4 Gk := set of C1 expressions of uk

5 Hk := set of constraints xk = θ where θ is a
transition between two C1 domains of uk

6 Else
7 Ek := {(l, l′) : ∃S ∈ Sk with {l, l′} ⊆ S}
8 For all C connected components

of the graph ⟨Ch(k), Ek⟩:
9 Compute the linear model of ak as a function

of the aCh(k), by transforming terms mini∈A ai
into ai for an index i ∈ A depending on the order
among the variables. This yields∑

l∈K wl al with K ⊆ Ch(k)
10 For all term al, with l ∈ K
11 For all expression

∑
j∈Lf(l) w

l
j uj(xj) in Gl

12 Add
∑

l∈K
∑

j∈Lf(l) wl w
l
j uj(xj) to Gk

13 For all (l, l′) ∈ Ch(k)2 s.t. ∃S ∈ Sk : {l, l′} ⊆ S
14 For all

∑
j∈Lf(l) w

l
j uj(xj) ∈ Gl

15 For all
∑

j∈Lf(l′)w
l′
j uj(xj) ∈ Gl′

16 Hk ← Hk ∪
{
x ∈ X :∑

j∈Lf(l) w
l
j uj(xj) =

∑
j∈Lf(l′) w

l′
j uj(xj)

}
17 Add Hk to H
18 Return H

Algorithm 1: Obtaining H (and also G) from a UHCI

5.1. SHOWING IDENTIFIABILITY WITH A FREE HIERARCHY 107

6

5 3 4

1 2

Figure 5.2: Example of a tree.

and H6 = {x1
2 = x3

4 ; x1
2+x2

3

2
= x3

4 ; x1
2 =
√
x4 ; x1

2 = 2x4+1
3

; x1
2+x2

3

2
=

√
x4 ;

x1
2+x2

3

2
= 2x4+1

3
}.

Finally H = H4 ∪H5 ∪H6.

The next result shows that Algorithm 1 computes the set G of C1 functions
that F takes, and returns the set of separation frontiersH between these functions.

Lemma 6. Algorithm 1 computes the correct values of the set of piecewise C1

functions Gk and returns the correct set of separation frontiers Hk, for each k ∈M .

Lemma 6 states, in particular, that the output of Alg1 depends only on the
values of the UHCI as a piecewise-C1 function. The following corollary is a simple
rewriting.

Corollary 1. Let F (resp. F ′) be a UHCI defined on hierarchy T (resp. T ′), a
set of FMs ν (resp. ν ′) and a set of marginal utility functions U (resp. U ′). If
F(x) = F ′(x) ∀x ∈ X, then both UHCIs are the same piecewise C1 function.
Thus, we have Alg1(T , ν,U) = Alg1(T ′, ν ′,U ′).

5.1.3 Construction of the Hierarchy from the Set of Sepa-
ration Frontiers

Assume that we are given the set of separation frontiers H between the C1 func-
tions. We would like to be able to recover the hierarchy from this.

The idea is that, from Lemma 5, each term mini∈A ai (with A ⊆ Ch(k)) in the
expression of Ak yields the separation frontier al = al′

1 for any {l, l′} ⊆ A. In other
words, the positive and negative values of the weights correspond to two separate
sub-trees in the tree. Given the separation frontiers H (e.g. x1

2+x2
3

2
−√x4 = 0 in

1Terms al and al′ can be moved independently so that we can reach al < al′ and al > al′ .
For instance, we can have al = 0, 1 or al′ = 0, 1.

108 CHAPTER 5. GENERAL IDENTIFIABILITY OF A UHCI

Function Partition(N,K):
1 R = {(i, j) ∈ N ×N, i ̸= j : ∃(K+, K−) ∈ K,

[{i, j} ⊆ K+ or {i, j} ⊆ K−]}
2 {N1, . . . , Nq} = connected components of ⟨N,R⟩
3 For l ∈ {1, . . . , q}
4 If |Nl| > 1
5 Kl = {(K+, K−) ∈ K : K+ ∪K− ⊆ Nl}
6 Nl = Partition(Nl,Kl)
7 Else
8 Nl = {Nl}
9 Return (N1, . . . ,Nq)

Function Alg2(H):
10 Compute K from H
11 Return Partition(N,K)

Algorithm 2: Obtaining the hierarchy from H. N is
either given by the problem, or trivially retrieved from H.

Example 27), the idea is that the set of nodes having positive weights (e.g. {1, 2}
in the Example) and the set of nodes having negative weights (e.g. {4} in the
Example) correspond to separate subsets of criteria in the tree (e.g. {1, 2} and
{4} belong to separate branches in Figure 5.2).

We consider the set of separation frontiers of the 2nd form and we look at the
indices of the positive and negative weights – see Lemma 5:

K =
{
(K+, K−) : {x ∈ X :

∑
l∈K

wl ul(xl) = 0} ∈ H,

K+ = {l ∈ K,wl > 0} and K− = {l ∈ K,wl < 0}
}
.

Algorithm 2 provides the construction of the tree T only from K, following the
previous idea that K+ and K− shall belong to separate parts of the tree.

We assume we are given a UHCI model F , from which we know the separation
frontiers H. The following example illustrates the reconstruction of the hierarchy
from H. The correctness of Alg2 directly derives from Lemma 5.

Example 28. Let us consider a UHCI model over four attributes 1, 2, 3, 4, with

5.1. SHOWING IDENTIFIABILITY WITH A FREE HIERARCHY 109

the following separation frontiers:

H =
{
x1

2 +
3x2

3

7
=

10
√
x4

7
; x1

2 +
3x3

4

7
=

10
√
x4

7
;

x1
2 +

3x2
3

7
=

20x4 + 10

21
; x1

2 +
3x3

4

7
=

20x4 + 10

21
;

x1
2 = x3

4; x2
3 = x3

4; x4 =
1

4
;

x1
2 +

x2
3

2
+

x3
4

6
=

5
√
x4

3
; x1

2 +
2x3

4

3
=

5
√
x4

3
;

x1
2 +

x2
3

2
+

x3
4

6
=

10x4+5

9
;x1

2 +
2x3

4

3
=

10x4+5

9

}
.

We apply Alg2 to H. We compute K =
{
({1, 2}, {4}), ({1, 3}, {4}), ({1}, {3}),

({1, 2, 3}, {4}, ({1, 3}, {4}), ({2}, {3})
}
. Then we compute the partitions:

• Partition(N,K): R = {(1, 2), (1, 3), (2, 3)}. Hence the connected components
of ⟨N,R⟩ are {1, 2, 3} and {4}. For the first set, we have K1 =

{
({1}, {3}),

({2}, {3})
}
.

• Partition({1, 2, 3},K1): R = ∅. Hence the connected components of ⟨{1, 2, 3}, ∅⟩
are {1}, {2} and {3}.

The algorithm thus returns the tree of Figure 5.3.

6

5

3 41 2

Figure 5.3: Tree constructed by Algorithm 2 from the separation frontiers from example
28.

5.1.4 Main Result

In order to get uniqueness properties, we need to introduce some assumptions on
the HCI model.

110 CHAPTER 5. GENERAL IDENTIFIABILITY OF A UHCI

Assumption H1: At every aggregation node k ∈ V , Ch(k) is the only
connected component of graph ⟨Ch(k), {(i, j) , i ̸= j s.t. ∃S ∈ Sk :
{i, j} ⊆ S}⟩

H1 forbids to have a model Cµk
that is (even only partly) additive. For instance,

a5 = Cµk
(a1, a2, a3, a4) =

1
2
min(a1, a2)+

1
2
min(a3, a4) (see Figure 5.4-Left) violates

H1 as groups {1, 2} and {3, 4} of variables are disconnected. In this example,
we could obtain the same function with the tree of Figure 5.4-Right having two
new aggregation nodes: a6 = min(a1, a2), a7 = min(a3, a4) and thus a5 = a6+a7

2
.

Hence the hierarchy is clearly not unique in this example. On the other hand,
Cµk

(a1, a2, a3, a4) =
1
3
min(a1, a2)+

1
3
min(a2, a3)+

1
3
min(a3, a4) satisfies H1 as the

four variables are connected, and one cannot decompose Cµk
with sub-aggregation

nodes.

5

1 2 3 4

⇒

5

6 7

1 2 3 4

Figure 5.4: Illustration of H1.

Assumption H2: For all nodes k ∈ V :

|Sk| ≥ 2. (5.3)

Assumption H2 (combined with H1) forbids from having a simple min between
two variables. Intuitively, a simple min between two variables can be collapsed at
the higher level. Consider the example of Figure 5.5-left, where a4 = min(a1, a2)

(violating H2) and a5 = a3
2
+ min(a3,a4)

2
. Then we can remove node 4 and directly

write a5 in terms on a1, a2, a3: a5 = a3
2
+ min(a1,a2,a3)

2
, which is a valid Choquet

integral. Hence we can also represent this model with the tree of Figure 5.5-right.
The following lemma shows that under H1 and H2, applying successively Al-

gorithm 2 on the set of separation frontiers produced by Algorithm 1 yields the
same tree.

Lemma 7. Let F a UHCI on tree T = ⟨r,M,Ch⟩, with a set of FM ν = {µk, k ∈
V } and marginal utility functions U = {u1, . . . , un}. If F satisfies (4.4), T and ν
satisfy H1 and H2, and U satisfies constraints (4.1), (4.2), (4.3) and (5.2), then
Alg2(Alg1(T , ν,U)) = T .

5.2. CONCLUSION 111

5

1 2

34

min

⇒

5

1 2 3

Figure 5.5: Illustration of H2.

The next result shows that the hierarchy of a UHCI model can be uniquely
constructed from F .

Theorem 2. Under Assumptions H1, H2, and constraints (4.1), (4.2), (4.3), (4.4)
and (5.2), there is a single tree that represents a UHCI model.

Combining Theorems 1 and 2, we obtain our main result.

Theorem 3. Let F and F ′ be two UHCI satisfying constraints (4.5), with poten-
tially different hierarchies, fuzzy measures and marginal utility functions. Assume
that both models fulfill H1, H2, and consrtaints (4.1), (4.2), (4.3), (4.4), (4.5) and
(5.2). Then, both models have the same hierarchy, fuzzy measures and marginal
utilities.

5.2 Conclusion

We have, in this chapter, shown that, given a general UHCI, there is a unique
possible parameterization that fits the assumptions presented in this chapter. The
proofs of all lemmas and theorems evoked are given thereafter in Section 5.3. It is
interesting to notice that the necessary conditions are very easily understandable,
and make sense to a human DM; they hence do not conflict with the readability
of the model. A possible extension would be, in the cases where either H1 or H2
is not met, to automatically build the unique equivalent model that meets both of
these constraints.

This global unicity results allows to expect being able to trust the interpretation
of a given model. This, in turn, is crucial for applications in safety-critical contexts.
Moreover, interpretability is a very interesting result in machine learning. We thus
present, in the next part of this thesis, how we leverage neural networks for learning
these very same UHCI models.

112 CHAPTER 5. GENERAL IDENTIFIABILITY OF A UHCI

5.3 Proofs

Lemma 8. For all linear function of the marginal utilities
∑

j∈S(k) w
k
j uj(xj) ∈ Gk,

where S(k) ⊆ Lf(k), we have wk
j > 0 for every j ∈ S(k).

Proof : If there exists j ∈ S(k) with wk
j < 0, then the score ak would be locally

decreasing w.r.t. this variable, which contradicts monotonicity of A w.r.t. its
inputs.

Proof of Lemma 5: The result is clear for i ∈ N .
For k ∈ V , the separation frontiers in Hk corresponds to an equation gi(x) =

gj(x). Nodes i and j corresponds to two distinct sub-trees with roots k′ and k′′

respectively. Hence by Lemma 8, all coefficients of gi and gj are positive. Hence
the result.

Proof of Lemma 6: The proof is done by induction. For leaves, the separation
frontiers are the points of separation of the piecewise C1 segments of the marginal
utility functions. For the other nodes, the recursive construction of Gk and Hk is
clear by Lemma 5. There is no required property on the HCI model to have this
result.

Notation: Set Gk is written as a set of linear models of the marginal utility
functions. Each g ∈ Gk has a support, i.e. a set of leaves with non-zero weights;
we call Tk the set of the supports of all g ∈ Gk.

Gk =
{∑

l∈T

wT
l ul(xl) , T ∈ Tk

}
. (5.4)

We denote by G ′k the set of linear models of the marginal utility functions of ak as
a function of aCh(k).

Lemma 9. Under assumptions (4.4) and H2, for every k ∈M , the graph
⟨Lf(k), {(i, j), i, j ∈ T with T ∈ Tk}⟩ is connected, where set Tk in Gk is given

by Eq. (5.4).

Proof : The proof is done by backward induction.
For a leaf k ∈ N : Gk is the set of C1 expressions that ak can take, Hk is the set

of xk = θ for all θ where function uk has a discontinuity of its derivative, and thus
the assumption is proven at this node.

For an aggregation node k ∈ V : Let ℓ, ℓ′ ∈ Ch(k) with ℓ ̸= ℓ′. We need to
show that ℓ, ℓ′ are connected in the graph Gr := ⟨Ch(k), {(i, j), i, j ∈ T with T ∈
T ′
k}⟩ where T ′

k is the set of coalitions appearing in G ′k. By Assumption H2 and
the non degeneracy of the capacities (see Lemma 1 derived from (4.4)), we have

5.3. PROOFS 113

|Sk| ≥ 2 and there exist S1, S2 ∈ Sk such that ℓ, ℓ′ ∈ S1 ∪ S2 and S1 ̸= S2. The CI
Cµk

(aCh(k)) at node k takes the form

mk(S1) min
i∈S1

ai +mk(S2) min
i∈S2

ai + · · · (5.5)

Two cases (the other cases are obtained by symmetry):

• 1st case: ℓ ∈ S1, ℓ′ ∈ S2 and ℓ ̸∈ S2. Hence by an appropriate ordering of
the utilities, (5.5) can take the form mk(S1) aℓ +mk(S2) aℓ′ + · · · , so that ℓ
and ℓ′ are directly connected in Gr.

• 2nd case: {ℓ, ℓ′} ⊆ S1 and ∃ℓ′′ ∈ S2 with ℓ′′ ̸∈ S1. Hence by an appropriate or-
dering of the utilities, (5.5) can take the two forms mk(S1) aℓ+mk(S2) aℓ′′+· · ·
and mk(S1) aℓ′ +mk(S2) aℓ′′ + · · · . Therefore ℓ and ℓ′ are directly connected
in Gr through ℓ′′.

Replacing in the linear equation w.r.t. marginal utilities of G ′k, terms aℓ (ℓ ∈
Ch(k)) by any element of Gℓ, we obtain Gk and we easily see, by the induction
assumption, that any pair ℓ, ℓ′ ∈ Lf(k) is connected in Gk.

Proof of Lemma 7: Consider a UHCI model F = ⟨T , ν,U⟩, and let us apply
Algorithms 1 and 2. Let us show that the hierarchy obtained by Alg2(Alg1(F))
is exactly T . More precisely, we show by induction starting from root down to
the leaves that Algorithm 2 progressively produces hierarchy T . We use below the
sets Tℓ as defined in Eq. (5.4).

At the root node k = r,Hk is composed of the separation frontiers
∑

ℓ∈T wT
ℓ aℓ =∑

ℓ∈T ′ wT ′

ℓ aℓ for every T ∈ Tℓ and T ′ ∈ Tℓ′ , where {ℓ, ℓ′} ∈ Sk. In Algorithm 2,
such a pair (T, T ′) is an element of K. The leaves of two separate subtrees Lf(ℓ)
and Lf(ℓ′) are clearly separated.

Let ℓ ∈ Ch(k). By H1, leaf ℓ is necessarily connected to another node ℓ′ through
Sk. Hence, a separation frontier at node k takes the form aℓ = aℓ′ . By Lemma 9,
all leaves are connected through ⟨Lf(k), {(i, j), i, j ∈ T with T ∈ Tk}⟩. Therefore
all leaves of a child ℓ ∈ Ch(k) form a connected component of ⟨Lf(k),R⟩. Hence
we obtain the right grouping of the elementary criteria at the top level.

We finally reproduce the previous reasoning recursively on any aggregation
node k.

Proof of Theorem 2: Consider two UHCI models F = ⟨T , ν,U⟩ and F ′ =
⟨T ′, ν ′,U ′⟩ that both satisfy Assumptions H1, H2, (4.1), (4.2), (4.3), (4.4), (4.5)
and (5.2). Assume that these models are different and in particular T ̸= T ′.

Assume by contradiction that these two UHCI models yield exactly the same
overall utility model. By Lemma 6, Algorithm 1 to F and F ′ yields the piecewise
C1 functions and separating frontiers underlying F and F ′. By Corollary 1 of

114 CHAPTER 5. GENERAL IDENTIFIABILITY OF A UHCI

Lemma 6, set H obtained by Algorithm 1 is identical. That is Alg1(T , ν,U) =
Alg1(T ′, ν ′,U) = H.

This equality yields that Alg2(Alg1(T , ν,U)) = Alg2(Alg1(T ′, ν ′,U ′)) = T ′′.
Lemma 7 says that T = T ′′ and T ′ = T ′′, as both F and F ′ satisfy H1, H2, (4.1),
(4.2), (4.3), (4.4), (4.5) and (5.2). We conclude that T and T ′ are identical. We
raise a contradiction.

Proof of Theorem 3: Consider two UHCI models F = ⟨T , ν,U⟩ and F ′ =
⟨T ′, ν ′,U ′⟩ that both satisfy assumptions H1, H2, (4.1), (4.2), (4.3), (4.4), (4.5)
and (5.2).

By Theorem 2, we have T = T ′. As we are now in a setting where both UHCIs
have the same hierarchy, we can apply Theorem 1, which gives us that ν = ν ′ and
U = U ′, concluding the proof.

Part IV

Neural Representation of MCDA
Models

115

CHAPTER 6

MARGINAL UTILITY MODULES

Contents
6.1 Motivations . 118

6.2 Logistic Sigmoid . 120

6.3 Monotonic Marginal Utility 121

6.3.1 Non-decreasing marginal utility 121

6.3.2 Computing the gradient 124

6.3.3 Ensuring the Validity of the Module 125

6.3.4 Non-increasing marginal utility 125

6.4 Bitonic Marginal Utility 126

6.4.1 Validity Constraints . 126

6.4.2 Parametric Representation 126

6.4.3 Implementation as a Neural Module 127

6.4.4 Computing the Gradient 128

6.4.5 Enforcing the Constraints on the Network 129

6.4.6 Re-characterization . 130

6.4.7 Single-Valleyed Marginal Utility 134

6.4.8 Ensuring the Validity of the Parameterization 135

6.5 Marginal Utility Selector Module 136

6.5.1 Implementation as a Neural Module 136

6.5.2 Backpropagation . 136

117

118 CHAPTER 6. MARGINAL UTILITY MODULES

6.5.3 Re-characterization . 137

6.5.4 Representable Functions 137

6.5.5 Discussion . 138

6.1 Motivations

We have shown in Part III that the UHCI model is identifiable under mild condi-
tions. This is an interesting result for interpretability, but also for learning such
models from data.

This part will be dedicated to presenting the main technical contribution of
this PhD: the Neur-HCI framework. The ideas behind Neur-HCI are:

• Learn a UHCI model from data (both marginal utilities and the FM of each
aggregator)

• Have formal guarantees that the learned model be a valid UHCI (i.e. it meets
all of the constraints needed)

• All of this from data

The main idea is that the thus learned model be a valid UHCI. As such, Neur-
HCI exploits the qualities of both MCDA (in terms of formal constraints and
interpretability of the model) and machine learning (using data instead of an ex-
pert decision maker for building the model). The approach that we chose is using
so-called neural modules, which are small multilayer perceptrons. This approach
comes from the highly modular structure of the UHCI, as the hierarchy is a graph-
ical structure between several aggregators (CIs), with marginal utilities at the
leaves. As a consequence, there will be two main types of modules in Neur-HCI,
each able to represent and learn a certain class of functions:

• marginal utility modules, whose implementations are presented in this chap-
ter

– monotonic (non-decreasing/non-increasing)

– bitonic (single-peaked/single-valleyed)

• aggregation modules, whose implementation is presented in Chapter 7

– 2-additive Choquet integrals

– a subset of the 3-additive Choquet integrals

6.1. MOTIVATIONS 119

– general Choquet integrals

It is also interesting to see that the constraints of the UHCI model come from
constraints that are enforced locally (i.e. if all modules are locally valid, then the
whole model is). It thus seems relevant to leverage the efficiency of backpropa-
gation for learning such models. As a consequence, we want each of our modules
to be able to represent a dense part of their associated model class, so that our
search-space is dense in the space of all possible UHCIs.

Moreover, this modular approach enables experts to validate, modify, or re-
structure the tree whenever they need (in which case it might be necessary to re-
train the model, or at least parts of it). It also allows module-wise interpretation,
and thus validation, by a domain expert. In term, there is run-time interpretability,
which means that a DM using the model can at all time understand the output of
the model for a given alternative or decision, making it relevant in safety-critical
contexts.

It is to be noted that, once the model is trained, the neural network structure
can be discarded, and the model re-written as a simple mathematical formula,
making it highly compressible and fit for embedding in resource-scarce environ-
ments (i.e. FPGA boards).

The work presented in this part resulted in two papers, in IJCAI2020 [Bresson
et al., 2020c] and DA2PL2020 [Bresson et al., 2020b].

We recall that we assume a marginal utility ui to be of type t, among:

• non-decreasing (ND)

• non-increasing (NI)

• single-peaked (SP)

• single-valleyed (SV)

Let Et the set of all functions of type t = {ND,NI, SP, SV} which satisfy (4.1),
(4.2) and (4.3). Then Et is the set of all valid marginal utilities of type t.

We present in this chapter several architectures of multilayer perceptrons,
which we call marginal utility modules. There are four types of such modules,
one for each type of marginal utilities.

We want a marginal utility module Q of type t to satisfy the following require-
ments:

• Representativity: be able to approximate any f ∈ Et with an arbitrary
precision;

120 CHAPTER 6. MARGINAL UTILITY MODULES

• Constrainedness: only be able to represent a valid marginal utility of type
t (that is: Q ∈ Et)

Formally, we want the set of all possible modules of type t to be a dense part of
Et. Below, we write indifferently Q to describe the neural network and the function
it represents.

In Section 6.2, we introduce the logistic sigmoid, which will be the building
block of our parametric representations. Then, in Section 6.3, we show how we
implement a monotonic marginal utility (either non-decreasing or non-increasing).
Then, in Section 6.4, we show how we derive the bitonic ones (either single-peaked
or single-valleyed). Finally, in Section 6.5, we describe a selector, that is, a module
which can select the best type of marginal utilities during training.

In the remainder of this section, and for the sake of readability, we will drop
the subscript "i". u will thus be a marginal utility, and x the value on a given
attribute.

6.2 Logistic Sigmoid

Definition 9. A logistic sigmoid ση,β is a real mathematical function, which can
be written as:

ση,β :R→]0, 1[

x 7→ 1

1 + e−(ηx−β)

with η called the steepness of precision parameter, and β called the bias. The
effect of η can be seen in Figure 6.1. Below, we write σ = σ1,0 the standard logistical
sigmoid centered on 0 with steepness 1. Obviously, we have ση,β(x) = σ(ηx− β).

One advantage of the logistic sigmoid is that its gradient is quickly computed
from its value. That is:

∂σ

∂x
(x) =

e−x

(1 + e−x)2

=
e−x

(1 + e−x)
· 1

(1 + e−x)

=

(
1 + e−x − 1

(1 + e−x)

)
· σ(x)

= (1− σ(x))σ(x)

6.3. MONOTONIC MARGINAL UTILITY 121

Figure 6.1: Sigmoids with varying steepness parameters; β = 0.

Thus, given σ(g(x)) with g a differentiable function, we have, by the chain rule:

∂σ ◦ g
∂x

(x) = (1− σ(g(x)))σ(g(x))
∂g

∂x
(x)

In particular:

∂ση,β

∂x
(x) = (1− σ(g(x)))σ(g(x))

∂g

∂x
(x)

This ease of computation makes the sigmoid suitable for computing gradients
for the backpropagation algorithm.

6.3 Monotonic Marginal Utility

6.3.1 Non-decreasing marginal utility

6.3.1.1 Parametric representation

We assume in this subsection that t = ND, non-decreasing.
In order to learn the functions in END, we need to be able to write them in a

parametric form. Following the work in [Fallah Tehrani et al., 2014], we write a
marginal utility u ∈ END as a convex sum of logistic sigmoids:

u(x) =
h∑

k=1

rksk(x) :=
h∑

k=1

rk
1 + e−(ηkx−βk)

(6.1)

122 CHAPTER 6. MARGINAL UTILITY MODULES

By writing r = (r1, ..., rh), β = (β1, ..., βh) and η = (η1, ..., ηh), we can rewrite
this as:

u(x) = r • σ(ηx− β)

with • the dot product, σ applied element-wise, and where the hyper-parameter
h sets the maximum number of sigmoids involved in the representation1 ; βk and
ηk respectively are the bias and precision parameters of the k-th sigmoid, and rk
its weight.

The fact that this sum is convex means that we impose the following conditions
on the weight vector r = (r1, ...rk).

∀k ∈ {1, . . . , h} : rk > 0 and
h∑

k=1

rk = 1 (6.2)

We also impose one positivity condition on ηi:

∀k ∈ {1, . . . , h} : ηk > 0 (6.3)

Theorem 4. Let E∗ND be the set of all functions obtained by varying the weights,
steepness, and biases in Equation (6.1), under Constraints (6.3) and (6.2).

Then E∗ND is a dense part of END.

Proof :
1. Proof that E∗ND ⊆ END:

Proving this inclusion is equivalent to showing that, ∀u ∈ E∗ND, u is non-
decreasing, and u satisfies Constraints (4.1), (4.2) and (4.3). That is, it states that
any function build according to Equation (6.1) is a valid non-decreasing marginal
utility.

Non-decreasingness: by (6.3), all sk in Equation (6.1) are non-decreasing.
By Equation (6.2), u ∈ E∗ND is a sum with non-negative coefficients of non-
decreasing functions. It is thus, in turn, non-decreasing.

Normalization: by Equation (6.2), the rk sum to 1. As, ∀sk, sk(x) −−−→
x→∞

1

and sk(x) −−−−→
x→−∞

0, we have the same limits for u by combination of the limits.

Together with the non-decreasingness, this yields (4.1), (4.2) and (4.3).
This shows that any function written as in (6.1) under (6.3) and (6.2) is a valid

non-decreasing marginal utility.

1The actual number of sigmoids is minimized through L1 regularization, Eq. (8.1).

6.3. MONOTONIC MARGINAL UTILITY 123

p1

p2

p3

u

x

1

Utility

Hidden
layerInput

Bias

β3

β2β1

η3 η2

η1

r1

r2

r3

Figure 6.2: A utility module with 3 hidden nodes (h = 3).

2. Proof that E∗ is dense in E :
A variant of the universal approximation theorem [Daniels and Velikova, 2010]

tells us that, given any sigmoids components, we can approximate any function in
END by a function of E∗ND. This representation is thus suitable for parameterizing
the class of non-decreasing marginal utilities.

6.3.1.2 Implementation as a neural module

Another advantage of the form (6.1) is that it is exactly a simple FNN with:

• 1 input neuron

• h hidden neurons p1, ..., ph on a single layer with sigmoidal activations

• 1 output neuron

The neuron are classic linear neurons. There is thus a single weight (resp. bias)
between the input neuron and hidden neuron pj, and this weight (resp. bias) is ηj
(resp. βj). The weight between hidden neuron pj and the output is rj. There is
no bias on the output layer. This is illustrated in Figure 6.2 with h = 3.

In this module, the forward phase is thus as follows:

1. the input neuron/layer receives a single number (or 1-d vector) x;

2. each hidden neuron pj receives ηjx− βj as an input;

3. each hidden neuron returns its sigmoidal activation, that is σ(ηjx− βj);

124 CHAPTER 6. MARGINAL UTILITY MODULES

4. the output of each hidden neuron pj is weighed by the associated rj;

5. the output node sums all of its inputs, yielding exactly the value from (6.1).

6.3.2 Computing the gradient

Now that we have seen how to represent and implement a non-decreasing marginal
utility, it is necessary to be able to compute the gradients of the error, in order to
readjust the parameters during training.

Below, by abuse of notation, we write pj = sj(x) the output of node pj, and u
the output of the output node.

The parameters that have to be learned are the ηj, the βj, and the rj. We give
here the explicit expression for the gradient of each parameter, given ∂err

∂u
.

6.3.2.1 Gradient for the rj

∂err

∂rj
=

∂err

∂u
· ∂u
∂βj

∂u

∂rj

=
∂err

∂u
· pj

6.3.2.2 Gradient for the βj

∂err

βj

=
∂err

∂u
· ∂u
∂βj

=
∂err

∂u
· ∂u
∂pj
· ∂pj
∂βj

=
∂err

∂u
· rj · pj(1− pj)

6.3.2.3 Gradient for the ηj

∂err

ηj
=

∂err

∂u

∂u

∂ηj

=
∂err

∂u
· ∂u
∂pj
· ∂pj
∂ηj

=
∂err

∂u
· rj · pj(1− pj)x

6.3. MONOTONIC MARGINAL UTILITY 125

6.3.2.4 Gradient for the x (for backpropagating to potential previous
modules)

∂err

x
=

∂err

∂u
· ∂u
∂x

=
∂err

∂u
·

h∑
j=1

(
∂u

∂pj
· ∂pj
∂x

)

=
∂err

∂u
·

h∑
j=1

(rj · pj(1− pj)ηj)

6.3.3 Ensuring the Validity of the Module

As stated in the previous sections, there are constraints to ensure on the parameters
so that the model is valid. Namely, we need to satisfy (6.2) for r and (6.3) for
η. By definition, during the gradient-based learning process, it might happen that
the parameter start violating these constraints. We thus need some procedures to
prevent this from happening.

The positivity constraints on r are ensured through clipping. That is, if r exits
the subspace Rh

+, by having negative values on some coordinates, we project it
orthogonally back on Rh

+ by setting those values to 0. The process is analogous
for η.

For the normalization constraint in (6.2), we linearly re-normalize the param-

eters after each update; that is, we divide r by
h∑

j=1

rj.

Note that these normalizations and clipping are also done right after initializa-
tion, so the module starts training from the valid search space. These procedures
ensure that, at all time during training, the function represented by the module
is a valid non-decreasing marginal utility. This validity is formally enforced by
the architecture and constraints on the parameters, and cannot be violated, even
locally.

6.3.4 Non-increasing marginal utility

Now that we have seen how to build a non-decreasing marginal utility, it is trivial
to build a non-increasing one. There are actually two easy methods to do this:

First of all, we can initialize η to be non-positive, and clip it to zero on the
dimensions where its values become positive. Nonetheless, for the sake of factor-
ization, we favored an other approach: we represent our non-increasing u as 1−Q,
where Q is a non-decreasing utility module. Note that this implies to multiply all
of the gradients of Q by −1 during training.

126 CHAPTER 6. MARGINAL UTILITY MODULES

Corollary 2 (of Theorem 4). We define E∗NI as E∗NI := {1−u, u ∈ E∗ND}. Then E∗NI

is a dense part of ENI.

6.4 Bitonic Marginal Utility

We have seen in the previous section how to represent and learn any monotonic
marginal utility, while respecting the constraints set so that the model remains
valid. In this section, we generalize the class of marginal utilities that we can
represent to bitonic functions; that is, either single-peaked or single-valleyed.

In the remainder of this section, with the exception of Section 6.4.7, we assume
that t = SP is the single-peaked type. That is, it is non-decreasing on an interval
]−∞, T [, then non-increasing on]T,+∞[, with T ∈ R called the threshold.

Note that T might not be uniquely-defined; there might be a so-called plateau,
where the function remains constant and equal to 1 on an interval. Any value in
this interval can be a candidate for T .

6.4.1 Validity Constraints

The fact that we are now working with bitonic marginal utilities does not change
the normalization constraints (4.1), (4.2) and (4.3). Nonetheless, we add now a
new constraint, which is that:

lim
x→−∞

u(x) = lim
x→∞

u(x) (6.4)

This ensures that u has (potentially asymptotically) the extreme value 0 (resp. 1)
on the bounds of the intervals if u is single-peaked (resp. single-valleyed).

Just like before, we want u, and any trained approximation, to be formally
non-decreasing on its left part, that is, on interval]−∞, T [, and formally non-
increasing on its right part]T,+∞[. A single-peaked function thus reaches 1 in T ,
and tends to 0 on the bounds on the interval.

6.4.2 Parametric Representation

We have seen in Section 6.3.1.1 how to parameterize a monotonic marginal utility.
We use this in order to build a parametric version of the single-peaked marginal
utility u. We only need three components:

• a threshold T ∈ R

• a non-decreasing marginal utility Q, s.t. Q(T) = 1

6.4. BITONIC MARGINAL UTILITY 127

x

Q
T

S u

Q′

Figure 6.3: Bitonic single-peak utility module. S is a switch node, which returns Q(x) if
x < T, Q′(x) otherwise.

• a non-increasing marginal utility Q′, s.t. Q′(T) = 1

Note that (m,m′) must be in (END × ENI). Then, we can compute u:

u(x) =

{
Q(x) if x ≤ T
Q′(x) if x ≥ T

As we want u to be continuous, note that we have:

Q(T) = Q′(T) = 1 (6.5)

This implies that Q and Q′ must reach 1 in a finite value, and not asymptoti-
cally.

6.4.3 Implementation as a Neural Module

A single-peaked marginal utility module Q̃ will thus be implemented as a composite
network, composed of:

• a threshold parameter T

• a non-decreasing marginal utility module Q

• a non-increasing marginal utility module Q′

• a switch node S

This is illustrated in Figure 6.3. The switch node S takes x, T, Q(x), Q′(x)
as inputs. It returns Q(x) if x ≤ T , Q′(x) otherwise.

The set of functions representable by such modules is exactly E∗SP, which is a
dense part of the set we wish to learn.

128 CHAPTER 6. MARGINAL UTILITY MODULES

6.4.4 Computing the Gradient

For training the module, we need to compute the gradient for each parameter.
The parameters are:

• all of the internal parameters of Q and Q′ as monotonic modules, that is,
their respective r, β and η, as described in section 6.3

• the threshold T

6.4.4.1 Gradient for the Parameters of the Monotonic Components

The first point has already been described in 6.3. As Q and Q′ are monotonic
marginal utility modules, we can compute their gradient as presented. The nuance
is that they need to be applied only for the module that was used for forward-
propagation; that is, given θ ∈ {r, η, β} (resp. θ ∈ {r′, η′, β′}) a parameter of Q
(resp. Q′), the gradient is:

∂err

∂θj
= 1]−∞,T [(x)

(
∂err

∂u
· ∂u
∂θj

)
In the same way, for θ′ ∈ {r′, η′, β′}) a parameter of Q′, we have:

∂err

∂θj
= 1[T,−∞[(x)

(
∂err

∂u
· ∂u
∂θj

)
Where 1{S} is the characteristic function of set S; that is, 1{S} = 1 if x ∈ S, 0

otherwise.

6.4.4.2 Gradient of the Threshold Parameter

Computing the gradient for T is mode complex. Indeed, u is not necessarily
differentiable in T . Thus, we need to compute a surrogate, or sub-gradient, to
have an update rule for T . After testing, we settled for the following surrogate:

δt(x) = (x− t) (6.6)

The stochastic update rule thus becomes:

T ← T − ρT δT (x)
∂err(x)

∂u
(6.7)

with ρt the learning rate for t.

6.4. BITONIC MARGINAL UTILITY 129

6.4.5 Enforcing the Constraints on the Network

Let Q̃ = ⟨M,Q′, T ⟩ a single-plateau utility module implemented as described in
the above sections. In order for it to be valid, we need it to satisfy (4.1), (4.2),
(4.3) and (6.4). We have seen that this is equivalent to having:

1. (4.1), (4.2) and (4.3) for both Q and Q′

2. lim
x→∞

Q̃(x) = lim
x→−∞

Q̃(x) = 0

3. Q̃(T) = 1

Points 1. and 2. are taken care of through the same methods than presented
in 6.3.3. They ensure the validity of both Q and Q′ as monotonic marginal utility
functions of their respective types, and thus yields the right constraints.

Point 3., nonetheless, is a little trickier. Indeed, the representation given in
(6.1) does not allow to reach 1; it is only reached asymptotically.

In order to solve this problem, we use another type of renormalization. The
procedure is the same for Q and Q′, we describe it only for Q here.

First of all, we apply the procedures that we have already evoked, to normalize

Q as a valid monotonic marginal utility. After this point, we have
p∑

i=j

rj = 1. Then,

we have 0 < Q(T) < 1.
We then apply the following transformation on rj:

r ← r

Q(T)
(6.8)

Considering that the expression in (6.1) is linear in r, applying this procedure
to both Q and Q′ ensures that we have Q(T) = Q′(T) = 1. Note that, after
this operation, it is no longer true that ∀x ∈ R, Q(x) ≤ 1. In particular, ∀x >
T, Q(x) ≥ 1. Nonetheless, due to the switch node, we know that Q(x) will never
be returned for any value of x that is not in]−∞, T]. On the other hand, the fact
that lim

x→∞
Q(x) = 0 has been left unchanged.

The same considerations can be made for Q′.
As a consequence, after this renormalization, all of the constraints evoked above

are satisfied. If we apply it after normalizing Q and Q′ individually, at each epoch
or parameter update, we ensure that Q̃ satisfies all constraints that are necessary
for its validity as a single-peaked marginal utility.

In order to tackle some empirical instabilities, with exploding values for the rk,
we also use a second type of parameters re-adjustments. Indeed, if T gets small,
Q is only exploited on a small portion of the unit interval, namely [0, T]. As a

130 CHAPTER 6. MARGINAL UTILITY MODULES

consequence, all of the sigmoids sj with a precision parameter βj >> T will only
contribute marginally to the modules values on [0, T] (i.e. sj(T) ∼ 0). This leads
to small values of Q(T); thus, the transformation presented in Equation (6.8) leads
to exploding r.

In order to compensate for that, we simply instore a rule to eliminate the
sigmoids whose role is negligeable. That is, we set to 0 the weight of any sigmoid
whose bias parameter is above a certain threshold. Namely:

rj ←
{

rj if βj < T
0 otherwise

For large value of T , the symetric procedure is applied to Q′.

6.4.6 Re-characterization

It is to be noted that a monotonic marginal utility is a special case of a single-
peaked marginal utility. In particular, if T tends to infinity, Q̃ is a non-decreasing
function. On the other hand, if T tends to −∞, Q̃ is non-increasing.

Thus, it seems logical to have a criterion which would allow to detect whether
Q̃ is trying to learn a monotonic function (that is, if the underlying distribution
requires a monotonic relation). This decision criterion can then be used to identify
the underlying function, and change the type of marginal utility module accord-
ingly. This would allow to lighten the training burden, as we now have to train
only a single monotonic module to train, rather than two.

Note that re-characterization is part of the training; that is, it can be done
entirely during the training step, without interrupting it. Nonetheless, it might be
relevant to make sure the model trains for sufficient epochs after re-characterization,
to ensure that the model parameters adapt to this quite brutal change.

We have retained two recharacterization criteria:

6.4.6.1 Threshold-based

The method presented here is illustrated in Figure 6.4.
We need three parameters for this criterion: two extreme values x∗

1 < x∗
2 ∈ R

and a number of epochs k ∈ N. The criterion works as follows: if we reach k
consecutive epochs during which T < x∗

1 (resp. T > x∗
2), then we replace Q̃ by Q′

(resp. Q).
The extreme value parameters are usually chosen such that there is little to

no data points with a value outside of [x∗
1, x

∗
2] on the attribute associated with

the marginal utility, such that these values are considered extreme cases of the
observed data (in the sense that there is low probability that any value more
extreme can be observed). For instance, if the data was standardized to variance

6.4. BITONIC MARGINAL UTILITY 131

(a) At initialization, T = 0.5 (b) After some epochs, T goes towards 1

(c) T > 0.9, we start counting the epochs
during which it remains there

(d) T has remained greater than 0.9 for
more than k epochs: Q̃ was re-characterized
as a non-decreasing function.

Figure 6.4: Threshold-based re-characterization process of a single-peaked marginal util-
ity module into a non-decreasing one: the red vertical lines show the extreme values
parameters 0.1 and 0.9, the vertical black line shows the current threshold.

1 and mean 0, as is usual, we could chose −x∗
1 = −1.96 and x∗

2 = 1.96, as these
are the bounds of the confidence interval of 95% for such a standardized normal
distribution. Field knowledge might also provide such values. Otherwise, if the
data was normalized linearly on the unit interval, one might use x∗

1 = ϵ, x∗
2 = 1− ϵ

for a given ϵ > 0.

The k parameter gives the tolerance that the model has w.r.t. re-characterization.
The higher k, the more the model will need confirmation before making its deci-
sion, letting time for T to re-enter interval [x∗

1, x
∗
2]. The smaller k, the quicker such

decision will be taken. These are hyperparameters of the model; in practice, the
training is quite sensitive to them, it is thus important to tune them carefully.

132 CHAPTER 6. MARGINAL UTILITY MODULES

6.4.6.2 Extrema-based

The method presented here is illustrated in Figure 6.5.
We need four parameters for this criterion: two extreme values x∗

1 < x∗
2 ∈ R,

one tolerance parameter t and a number of epochs k ∈ N. The criterion works as
follows: if we reach k consecutives epochs during which Q̃(x∗

1) > t (resp. Q̃(x∗
0) >

t), we replace Q̃ by Q′ (resp. Q).
Informally, this means that if the non-decreasing (resp. non-increasing) part

of the module is "not increasing enough" (resp. "not decreasing enough"). Thus,
we eliminate this part and conserve only the other one.

As before, the extreme values should be chosen such that there is little to no
observed data outside of the interval [x∗

1, x
∗
2], in the same way as before. The

t parameter will need to be tuned according to the noise in the data, and the
tolerance we want the model to have. For non-noisy data, some values as low as
0.1 can be used; on the other hand, using a low t on noisy data will make the
model more prone to re-characterizing. This can be mitigated by using a larger k,
which will require the model to stabilize in the "critical zone" (where Q̃(x∗

1) > t
or Q̃(x∗

2) > t) for a longer time in order to make its decision.
Finally, it is obvious that the learning rate plays an important role as well.

Indeed, if it is too small, the model might take a large number of epochs in order
to escape the critical zone, thus making the model more prone to re-characterizing.
On the other hand, to large a learning rate might make the model jump in and
out of said critical zone, and it will never stabilize in or out of it, leading to no
re-characterization.

6.4.6.3 Precise procedure for re-characterization

Once the chosen criterion for re-characterization has been fulfilled, the module Q̃
can be replaced by its selected component, that is, either Q or Q′, which is then
normalized so that it fits the constraints for a monotonic marginal utility. We
assume, without loss of generality, that the non-decreasing part Q was the one
selected.

Then, several options are possible:

• The first one involves resetting the network, but using the used type of
Q (namely non-decreasing) in place of the former Q̃, then training again.
In this case, the only information extracted from the previous training is
the type of Q. This option is the safest, as it ensures that all marginal
utilities have the same training epochs, and that the error on the type of Q̃
(which was single-peaked rather than non-decreasing as it should have been)
will not influence the training of the other parameters. Thus, we lose any
information learned before. This is conceivable if there are a limited number

6.4. BITONIC MARGINAL UTILITY 133

(a) At initialization, Q̃ represents a valid
single-peaked marginal utility

(b) After some epochs, Q′(1) starts going
up, but remains in the tolerance interval
(between 0 and 0.3, represented by a hori-
zontal line)

(c) Q′(1) > 0.3, we start counting the
epochs during which it remains there

(d) Q′(1) has remained greater than 0.9 for
more than k epochs: Q̃ was re-characterized
as a non-decreasing function.

Figure 6.5: Extrema-based re-characterization process of a single-peaked marginal utility
module into a non-decreasing one: the red horizontal line shows the tolerance parameter
0.3; we have also x∗1 = 0 and x∗2 = 1

134 CHAPTER 6. MARGINAL UTILITY MODULES

of re-characterizations in the training, but it can quickly make training much
longer, as the model is reset each time a re-characterization occurs.

• A more efficient procedure is to keep the whole network as is, with the excep-
tion that Q̃ is replaced with a freshly initialized non-decreasing module Q′′.
This ensures that the other parameters retain the memory of their previous
training, and do not start from scratch when running new training epochs.
Nonetheless, it also makes Q′′ late in terms of training, as it is initialized
while the other modules in the network have already greatly progressed in
terms of optimization. If we are using decreasing learning rate, for instance,
this means that all other modules require a small learning rate for fine tuning,
while Q′′ requires a larger one for starting the whole initialization process
from scratch.

• Finally, the third method involves keeping all of the information learned,
both on the network and on Q. In this case, we use Q as is, potentially re-
normalizing it in order to make it a valid monotonic module (remember that
its weights might sum to more than 1 due to the previous treatments). In this
case, we extract most of the benefits of the previous training. Nonetheless
this is the most hazardous and unstable version; indeed, there might be
some extreme behaviours caused by the singularity at the threshold. These
involves, notably, exploding precision parameters (η).

Note that, in any case, it is unsuitable to stop training right after re-characterization,
even for the third procedure. Indeed, as the process is quite violent and non-
continuous (replacing a whole subnetwork), it is highly unlikely that the model
thus obtained be optimal a priori. More epochs are thus then needed on the new
network in order to make the model fit the data better with its new structure.

6.4.7 Single-Valleyed Marginal Utility

A module Q̃ is a valid single-valleyed marginal utility module if and only if there
exists a single-peaked marginal utility module Q̃′ such that:

∀x ∈ R, Q̃(x) = 1− Q̃′(x)

As a consequence, just as we did for the non-increasing marginal utility module,
we implement a single-valleyed marginal utility module by returning 1− Q̃′, with
Q̃′ a single-peaked marginal utility module. Note that, again, all gradients must
be multiplied by −1 during backpropagation.

The recharacterization procedures are, of course, adapted as well by exploiting
the symmetries.

6.4. BITONIC MARGINAL UTILITY 135

6.4.8 Ensuring the Validity of the Parameterization

We present here the representation theorem for the bitonic marginal utility mod-
ules.

Theorem 5. Let E∗SP be the set of functions representable by a non-recharacterized
single-peaked module defined, as above, by two monotonic submodules and a thresh-
old, and whose parameters satisfy (4.1), (4.2), (4.3) (for both submodules), and
(6.4). Let ESP the set of all valid single-peaked marginal utilities.

Then E∗SP is a dense part of ESP.

Proof : 1. Proof that E∗SP ⊆ ESP

This amounts to showing that any valid Q̃ ∈ E∗SP is a valid single-peaked
marginal utility. We know that Q̃ is composed of two monotonic submodules Q
and Q′ and a threshold T ∈ R.

We know from Theorem 4 and Corollary 2 that the monotonic submodules
represent valid monotonic marginal utilities of their respective types. Given the
definition of bitonic marginal utilities, we have that Q̃ is a valid single-peaked
marginal utility.

2. Proof that E∗SP is dense in ESP

Let f ∈ ESP be defined by the triple ⟨m,m′, T ⟩ that satisfies (m,m′) ∈ (END ×
ENI) and T ∈ R the threshold.

Then we know by Theorem 4 and Corollary 2 that m and m′ can be approx-
imated by monotonic modules Q ∈ E∗ND and Q′ ∈ E∗NI with arbitrary precision.
Building a single-peaked module Q̃ with T as a threshold and Q,Q′ as its submod-
ules, we can approximate f to any precision.

This concludes the proof.

Corollary 3. E∗SV is a dense part of ESV.

Theorem 6. The set of functions that a single-peaked module Q̃ can represent
after training is dense in END ∪ ENI ∪ ESP.

Proof : There are two possibilities. Either Q̃ remained a single-peaked marginal
utility module (no recharacterization). Then that the set of functions that Q̃ can
take is E∗SP.

Otherwise, Q̃ is now either a non-decreasing or a non-increasing marginal util-
ity. The set of functions that Q̃ can now represent is now E∗ND ∪ E∗NI.

Thus, the total set representable is E∗ND ∪ E∗NI ∪ E∗SP.

136 CHAPTER 6. MARGINAL UTILITY MODULES

Theorems 5 and 4 and Corollary 2 yield that this set is a dense part of END ∪
ENI ∪ ESP, concluding the proof.

Corollary 4. The set of functions that a single-valley module Q̃ can represent
after training is dense in END ∪ ENI ∪ ESV.

6.5 Marginal Utility Selector Module

The use of the monotonic or bitonic marginal utility modules presented in the
previous sections supposes that the type be given as a parameter of the model (in
particular as a single-valleyed model cannot be re-characterized as a single-peaked
and vice-cersa). Nonetheless, there might be cases where we wish the model to
select by itself the most adapted type of marginal utility during training. We
implemented modules which fulfill this very task. We call them marginal utility
selectors, or selectors, for short.

6.5.1 Implementation as a Neural Module

A selector Q̃ is a multilayer perceptron composed of two utility modules, Q and Q′,
along with a switch t ∈ R. Q and Q′ must have different types, among ND, NI, SP
and SV. Then, the output of the module given an input x ∈ R is computed as:

Q̃(x) = σ(t)Q(x) + (1− σ(t))Q′(x)

Where σ is the logistic sigmoid defined before, ensuring σ(t) ∈ [0, 1]. We see
here that σ(t) plays the role of a switch, favoring Q when σ(t) ∼ 1 and Q′ when
σ(t) ∼ 0. It is common for a sigmoid to play such a role, given its behaviour,
saturating in 0 on one side of R, and to 1 on the other, while remaining smoothly
differentiable.

Then, both Q and Q′, and t will be learned. The training of t, and the direction
whereto it tends, will determine which of Q and Q′ will be selected by the model.

6.5.2 Backpropagation

At each backpropagation step, the parameters of Q and Q′ are updated normally
(that is, as described above for their respective types), with the nuance that the
propagated gradients are weighed by σ(t) for Q and (1−σ(t)) for Q′. The gradient
of t is thus computed as:

6.5. MARGINAL UTILITY SELECTOR MODULE 137

∂err

∂t
=

∂err

∂Q̃(x)
· ∂Q̃(x)

∂σ(t)
· ∂σ(t)

∂t

=
∂err

∂Q̃(x)
· (Q(x)−Q′(x))σ(t)(1− σ(t))

6.5.3 Re-characterization

It is obvious that, as long as σ(t) is neither 0 or 1, Q̃ has no reason to be a valid
marginal utility, as it is simply a mixture of valid ones. As a consequence, it is
necessary to establish a criterion to select either marginal utility. The main differ-
ence with the re-characterization of single-peaked utilities is that, here, selecting
either Q or Q′ is necessary in order to have a valid model. As a consequence, the
selection must be forced at some point during the training, for instance, when a
certain number of epochs is reached.

We apply the following strategy: we choose a margin parameter ϵ and a stability
parameter k. Then, if σ(t) remains ϵ-close to 0 (resp 1) for k epochs, Q′ (resp Q)
is chosen, and takes the place of ui for the subsequent iterations. This is very
close to the threshold-based re-characterization criterion from Section 6.4.6. The
methods for replacing the Q̃ with the selected sub-module can be either of those
evoked in 6.4.6.3.

In any case, it is preferable to keep training for some epochs after such a re-
characterization (or to re-train completely using the new marginal utility), as there
are chances that the selected module will not be in its optimal state at that point.

6.5.4 Representable Functions

We write Sel(t1, t2) the type of a Selector module with submodules of types t1 and
t2. We introduce the function type to yield the type of a marginal utility (among
ND,NI, SP, SV). We say that a type is reachable by module Q if Q can become a
module of this type, through re-characterization. Table 6.1 shows which types are
reachable for each type of modules. We write R(M) the set of types reachable by
a module Q.
Theorem 7. The set of functions representable by a module Q̃ = ⟨M,Q′⟩ of type
Sel(t1, t2) after training is a dense part of

⋃
t∈R(M)∪R(Q′)

Et.

Proof : After training, Q̃ has selected one of its submodule. Without loss of
generality, assume σ(t) 1 and Q was selected. Thus, either Q was not recharacter-
ized during training (and is thus still of type t1), or it was (and is thus of either
type in R(M)).

138 CHAPTER 6. MARGINAL UTILITY MODULES

type(M) R(M)
ND ND
NI NI
SP SP, ND, NI
SV SV, ND, NI

Sel(SP, SV) SP, SV, ND, NI
Sel(ND, NI) ND, NI

Table 6.1: Types reachable by each type of marginal utility module, through re-
characterization

Considering that type is in {ND,NI, SV, SP}, we have, by Theorem 4, 5 or 6
or their corrolaries, that the set of functions thus representable is a dense part
of

⋃
t∈R(M)

Et. Assuming Q′ had been selected, we would have a dense part of⋃
t∈R(M)∪R(Q′)

Et instead.

Hence the conclusion.

6.5.5 Discussion

In practice, one can use any two marginal utility modules for a selector Q and Q′.
The two most usual cases, nonetheless, would be

• (1): Q non-decreasing and Q′ non-increasing, when ui is known to be mono-
tonic

• (2): Q single-peaked and Q′ single-valleyed

Note that case (2) is the most general: this module learn any of the four types
evoked, through recharacterization (see Table 6.1 and Theorem 7).

CHAPTER 7

AGGREGATOR MODULES

Contents
7.1 Role of an Aggregator Module 140

7.2 General Choquet Integral 140

7.2.1 Reminder and Validity Constraints 140

7.2.2 Representating the General FM 141

7.2.3 Representation of the CI as a Neural Module 143

7.2.4 Validity of the Module 144

7.2.5 Backpropagation . 146

7.2.6 Discussion . 148

7.3 2-additive Choquet Integral 149

7.3.1 General considerations 149

7.3.2 Möbius-values-based parameterization 149

7.3.3 Weights-based parameterization 150

7.3.4 Implementation as a Neural Module 153

7.3.5 Validity of the Module 154

7.3.6 Ensuring the Satisfaction of the Constraints 155

7.3.7 Backpropagation . 158

7.4 3-additive 0-1-FM-based Choquet Integral 160

7.4.1 General Results . 160

7.4.2 Remark on the number of parameters 165

139

140 CHAPTER 7. AGGREGATOR MODULES

7.4.3 Implementation as a Neural Module 166

7.4.4 Validity of the Module 169

7.4.5 Ensuring the Validity of the Constraints 170

7.1 Role of an Aggregator Module

We have seen in the previous chapter how to implement marginal utility functions
as neural networks. That is, given one utiliy module ui for each i ∈ N and an
alternative x ∈ X, we obtain the vector u := U(x) := (u1(x1), ..., un(xn)) by
applying each marginal utility on the associated attribute. u is the vector which
represents how satisfying x is on each criterion.

Note that, later in this chapter, we abuse the notation ui to mean either the
ith marginal utility function or the ith component of u.

The following step, as described in Section 2.4.2, is to aggregate those marginal
satisfactions into a final, global score for the whole alternative.

We have presented several aggregators, based on the Choquet integral (CI). We
will show here how they are implemented as neural modules. As for the marginal
utility modules, we want the set of functions represented by an aggregator module
to be dense in the set of aggregators of the same type. We recall that we only
work with normalized fuzzy measures here.

We work on three types of aggregators, all variants of the Choquet integral.
These types are:

• the general (or non-additive) Choquet integral

• the 2-additive Choquet integral

• the 0− 1-based 3-additive Choquet integral

We call these types, respectively, CG,C2,C3.

7.2 General Choquet Integral

The first module we implement is that of the general Choquet integral.

7.2.1 Reminder and Validity Constraints

A CI parameterized by a fuzzy measure µ can be written as:

7.2. GENERAL CHOQUET INTEGRAL 141

Cµ(u) =
n∑

i=1

(
uτ(i) − uτ(i−1)

)
µ(Ai)

with the ui permuted such that 0 =: u(1) ≤ u(2) ≤ ... ≤ u(n), and Ai =
{(i), (i+ 1), ..., (n)}.

Ensuring the validity of such a model is equivalent to ensure the validity of the
FM µ, which come down to:

• Monot: ∀A,B ⊆ N, B ⊆ A⇒ µ(B) ≤ µ(A)

• Normal1: µ(∅) = 0

• Normal2: µ(N) = 1

7.2.2 Representating the General FM

Lemma 10. Given the normalization properties Normal1 and Normal2, the
monotonicity property is equivalent to:

∀A ⊆ N, ∀B ⊆ A such that |B| = |A| − 1, we have µ(B) ≥ µ(A) (*).

Proof : It is obvious that Monot ⇒ (*), as (*) is a sub-case of Monot.

The other direction of the equivalence is proven by immediate induction: given
B ⊆ A, there exists a path B = B0, B1, ..., B|A|−|B| = A such that Bk ⊆ Bk+1 and
|Bk| = |B|+ k. Thus we have, by (*):
∀k ∈ {1, |A| − |B|}, µ(Bk) ≥ µ(Bk−1), giving Monot by transitivity.

Theorem 8. Let MCG the set of all fuzzy measures on N .
Let F the set of all set functions on 2N with values in the unit interval, such

that f(∅) = 0 and f(N) = 1:

F := {f, f : 2N → [0, 1] , f(∅) = 0, f(N) = 1}

Now, given f ∈ F , we write νf the set function computed for all ∅ ≠ A ⊆ N :

νf (A) = f(A)

(
1−max

i∈A
(νf (A \ {i}))

)
+max

i∈A
(νf (A \ {i}))

and νf (∅) = 0.
We define by M∗

CG := {νf , f ∈ F}. Then M∗
CG =MCG

142 CHAPTER 7. AGGREGATOR MODULES

Proof : 1. M∗
CG ⊆MCG

This amounts to show that, for all νf ∈M∗
CG, νf satisfies Normal1, Normal2

and Monot.

Normal1 and Normal2: let νf ∈ M∗
CG. By definition of νf , we have Nor-

mal1. By definition of f , we have f(N) = 1; thus:

νf (N) = f(N)

(
1−max

i∈N
(νf (N \ {i}))

)
+max

i∈N
(νf (A \ {i}))

= 1−max
i∈N

(νf (N \ {i})) + max
i∈N

(νf (N \ {i}))

= 1

which gives us Normal2.
Monot: let νf ∈ M∗

CG. We first need to show that, ∀A ⊆ N , 0 ≤ νf (A) ≤ 1.
We do this by strong induction on the cardinality of A; let our induction hypothesis
Ht be: ∀A ⊆ N, |A| ≤ t, we have 0 ≤ νf (A) ≤ 1. H0 is true as νf (∅) = 0. Then,
assuming Ht, let A such that |A| = t+ 1:

νf (A) = max
i∈A

(νf (A \ {i})) (1− f(A)) + f(A)

⇒ 0(1− f(A)) + f(A) ≤ νf (A) ≤ (1− f(A)) + f(A) by Ht and (1− f(A)) ≥ 0

⇒ f(A) ≤ νf (A) ≤ 1

⇒ 0 ≤ νf (A) ≤ 1 by f(A) ≥ 0

Now, we can prove Monot; let ∅ ≠ A ⊆ N . Then, we have:

f(A)

(
1−max

i∈A
(νf (A \ {i}))

)
≥ 0

by the previous result and the fact that f(A) ≥ 0, thus:

νf (A) ≥ max
i∈A

(νf (A \ {i}))

By Lemma 10, and as we have shown Normal1 and Normal2, we have
Monot, which conludes this part of the proof. We have thus shown that any
function inM∗

CG is a valid FM

2. MCG ⊆M∗
CG

Let µ a fuzzy measure on N . Let f ∈MCG such that, ∀∅ ≠ A ⊆ N :

f(A) = µ(A)−max
i∈A

(µ (A \ {i}))

7.2. GENERAL CHOQUET INTEGRAL 143

Then µ = νf ; thus µ ∈M∗
CG, which concludes the proof.

The advantage is that this new representation allows to have very simple rep-
resentation of the constraints: ensuring that all values f(A) remain in the unit
interval is enough to represent any, and only, fuzzy measures. We build a neural
module based on this representation.

7.2.3 Representation of the CI as a Neural Module

We present here the hierarchy which allows us to exploit the representation pre-
sented in Theorem 8 in order to implement a neural module. Note that this module
exploits more than the simple neurons presented in Chapter 3. Nonetheless, it re-
tains the general principles, along with the ability to behave as a backpropagating
cell presented in [Lecun et al., 1998].

7.2.3.1 Structure and Parameters

A General Choquet Module Q on N possesses the following attributes:

• an input layer inp with n neurons (inp1, ..., inpn)

• a first hidden layer sor with n neurons (sor1, ..., sorn)

• a second hidden layer dif with n neurons (dif1, ..., difn)

• an output layer out with 1 neuron

• a set of parameters P ∈ {pA ∈ R, A ⊆ N}, with p∅ = −∞ and pN =∞

The idea behind the set of parameters pA is that we wish to have a set of
parameters {aA ∈ R, A ⊆ N}, which would serve the role of the f(A) in Theorem
8. These aA need to be kept in the unit interval, which might require clipping
or other violent procedures. Such procedures make the training unstable. As a
consequence, the approach we have is to allow the learned variables pA to cover the
entire real set unhindered, and then to compute the aA as a smooth, constrained
function of pA. In practice, we use a logistic sigmoid, such that ∀A ⊆ N, aA =
σ(pA). The sigmoid has the nice properties of being smooth, easily and quickly
differentiable, and monotonic, which make this a suitable intermediate step for
stabilizing training. Moreover, it allows to bound the value by design, rather than
using a specific step for renormalization.

As we have the aA easily computed, we also assume that we have the corre-
sponding µ at hand, computed as presented in the theorem.

144 CHAPTER 7. AGGREGATOR MODULES

7.2.3.2 Forward Propagation

Assume a vector u = (u1, ..., un) is given as an input. The forward propagation
happens as follows:

1. the input inp is set to x, i.e. inpi = ui ∀i ∈ N

2. a sorting operation is performed on inp by a sorter, returning the ordered
values along with the permutation τu : N → N s.t. ∀i ∈ N, inpτu(1) ≤
inpτu(2) ≤ ...,≤ inpτu(n). The sorter also propagates the τu value to the
output node, and retains memory of τ in order to backpropagate efficiently

3. sor receives the output values of the sorter, such that ∀i ∈ N, sori = inpτu(i),

4. dif is not fully-connected to sor; in fact, it acts as a 1d convolution with
kernel (1,−1) s.t. dif1 = sor1 and for all i > 1 difi = sori − sori−1

5. this step is the trickiest. Indeed, we need to do some weights selection based
on the τu sent by the sorter. To do this, we retrieve the vector wu of elements
from the pool µ, defined as

wu := (µ({τu(2), ..., τu(n)}), µ({τu(3), ..., τu(n)}), ..., µ({τu(n)}))

. We also need to keep in memory which parameters were used, so that we
can backpropagate later

6. the passage from dif to out is a simple dot product out← wu · dif

The main idea behind the last layer is that the weights are conditioned by the
input. That is, the fuzzy measure is, in itself, a pool of weights, which will only be
used for some inputs and not others. This is equivalent to choosing a linear region
of the CI based on the input. This process is illustrated in Figure 7.1.

7.2.4 Validity of the Module

We write and prove the following representation theorem:

Theorem 9. Let ECG the set of all general CIs on N . We define by E∗CG the set
of functions that a general Choquet integral module Q can represent. Then M∗

CG

is dense in MCG

Proof : 1.E∗CG ⊆ ECG:

Assume a general CI module Q, with P as its pool of parameters. Let P ′ :=
{aA := σ(pA), A ⊆ N}. Then, we have, ∀A ⊆ N, 0 ≤ aA ≤ 1, along with a∅ = 0

7.2. GENERAL CHOQUET INTEGRAL 145

u1

u2

u3

u4

sor1

sor2

sor3

sor4

dif1

dif2

dif3

dif4

OutputSorter

+1

+1

+1

+1

−1

−1

−1

sor layer dif layerinp layer out layer

τu

µ({N})

µ({τu(2), τu(3), τu(4)})

µ({τu(3), τu(4)})

µ({τu(4)})

Figure 7.1: A general Choquet integral module with 4 inputs

146 CHAPTER 7. AGGREGATOR MODULES

and aN = 1. By Theorem 8, we know that P ′ represents a valid general fuzzy
measure µ, which we can thus compute. Then, for a given u ∈ U , we follow the
same steps as presented in Section 7.2.3.2, and show that the result is, as expected
Cµ(u)):

1. inp = u

2. τu is computed, such that uτu(1) ≤ ... ≤ uτu(n)

3. sor = (uτu(1), ..., uτu(n))

4. dif = (uτu(1), uτu(2) − uτu(1), ..., uτu(n) − uτu(n−1))

5. wu is computed as:

wu := (µ({τu(2), ..., τu(n)}), µ({τu(3), ..., τu(n)}), ..., µ({τu(n)}))

6. out is computed as:

wu · dif =
n∑

i=1

wui
difi = uτu(1) +

n∑
i=2

(uτu(i) − uτu(i−1))µ({τu(i), ..., τu(n)})

We thus see that the output is exactly the formula given in Equation (2.10):
thus, Q does represent a valid parameterized by a valid FM µ.

2.E∗CG is dense in ECG:
Let Cµ a CI parameterized by µ. If we can approximate µ arbitrarily closely, then
we can represent Cµ as accurately as desired. This is equivalent, by Theorem 8 to
being able to approximate any P ′ := {aA ∈ [0, 1]} as closely as possible. This is
immediate, as the output domain of the logistic sigmoid is the open unit interval;
thus, ∀a ∈ [0, 1] , ∃p ∈ R s.t. σ(p) is arbitrarily close to a. Thus, our architecture
can represent any general Choquet integral to any desired precision.

The proof is thus concluded.

7.2.5 Backpropagation

We have seen how to implement this module; now we explain how we train it. We
write Q(u) the output of a general CI module Q given the input u. We assume
that we are given ∂err

∂M(u)
the gradient of the error, which was backpropagated back

to the module.

7.2. GENERAL CHOQUET INTEGRAL 147

7.2.5.1 Gradient w.r.t. the pA

Assume a set A ⊆ N s.t. µ(A) is part of wu. This means that:

∃i ∈ N s.t. A = {τu(i), ...τu(n)}

We recall that pA ∈ R is the parameter such that aA = σ(pA), as defined in
Section 7.2.3.1. Then:

∂err

∂pA
=

∂err

∂M(u)
· ∂M(u)
∂µ(A)

· ∂µ(A)
∂aA

· ∂aA
∂pA

=
∂err

∂M(u)
· difi · 1 · aA(1− aA)

Nonetheless, it is to be noted that µ(A), in this expression, does not depend
only on aA. Indeed, we recall:

µ(A) = aA +max
j∈A

(µ (A \ {j}))

Writing ∅ = B0, ..., B|A| = A, a sequence of sets such that for each j, |Bj| = j,
and Bj = argmax

B⊆Bj+1

(µ(B)), then we have:

µ(A) =

|A|∑
j=0

aBj

It is thus logical to apply a similar gradient to all of the pB with B ∈ B0, ..., B|A|.

7.2.5.2 Gradient w.r.t. the ui

Now that we can update the parameters, it is important to be able to backprop-
agate to the input, so that modules that precede Q can be updated themselves.
For the sake of commodity, we can add a ghost term wu

n+1 = 0 so that we avoid
an exception for the extremum.

∂err

∂ui

=
∂err

∂M(u)
· ∂M(u)

∂dif
· ∂dif
∂sor

· ∂sor
∂ui

=
∂err

∂M(u)
·
(
wu

τ(i) − wu
τ(i)+1

)

148 CHAPTER 7. AGGREGATOR MODULES

7.2.5.3 Normalization After Parameters Update

In order for the model to work, we see that we need the measure µ to be re-
computed after each parameter update. Obviously, this is a costly operation, as
there is an exponential number of variables to compute. We might thus be tempted
to avoid recomputing this number of parameters too often, for instance by training
only with large batches.

Nonetheless, there is no other normalization step required in this case.

7.2.6 Discussion

This module is very interesting in the sense that it allows to represent any (and
only) Choquet integral with dimension n. As a consequence, it is a highly ex-
pressive model, which nonetheless satisfies the monotonicity and normalization
constraints suitable for such a decision model.

On the other hand, it has an obvious flaw in its high number of parameters.
Indeed, as we saw, there needs to be 1 parameter for any subset of N (with
the exception of N itself and ∅ whose measures are fixed by the normalization
constraints). This brings the total amount to 2n − 2. There are three main issues
raised by this exponential number of parameters.

The clear first issue is the computational cost, which quickly becomes in-
tractable as the number of criteria increases. While this issue might be contained
on some real problems which involve a small number of criteria (10 or less), this
type of aggregator becomes unsuitable for large-dimensional inputs.

The second issue is the effect that such a large number of parameters has on
interpretability. In order to verify or explore the model, an expert would have to
look at all parameters, as they hold the information about the relative importance
and interactions among criteria. It is obviously time-consuming for a person to
look at hundreds of parameters (or thousands, if n ≥ 10). Even given all of that
time, it might still be very hard for a person to grasp the meaning between each
parameter, and thus to interpret the model. Indeed, while interactions between
pairs of variables is easily understandable, interaction parameters among the mem-
bers of a coalition of 3 or more elements (on top of the pairwise interactions) might
be hardly exploitable for getting an interpretation out of. In particular, as there
is a parameter for any coalition.

Finally, from a purely machine-learning point of view, the high number of
parameters is also an issue. Indeed, unlike large-scale problems with millions of
user data, or large amounts of labeled examples, MCDA problems tend to generate
small amounts of data. This is particularly true in safety-critical systems, as the
data is often collected from past choices by an expert from a given field. Due to
the limited number of expert (data sources) and the limited amount of data that

7.3. 2-ADDITIVE CHOQUET INTEGRAL 149

can be processed by a single human, the size of the available datasets is often
small. This, combined with a large number of parameters, could lead to heavy
overfitting by the model. In particular, there might be many possible models that
can represent a small dataset. This, in turn, leads to having no trust in the model,
as a very different one could perform just as well.

We explore below more restricted class of the Choquet Integral, in order to
tackle both of these issues.

7.3 2-additive Choquet Integral

7.3.1 General considerations

We already presented the 2-additive Choquet integral in Section 2.5.4. It is simply
a Choquet integral parameterized by a 2-additive fuzzy measure. That is, given
the Möbius m values of a 2-additive FM µ:

∀S ⊆ N, |S| > 2⇒ m(S) = 0

This means that such a FM can represent interactions of up to two criteria at
a time. Moreover, as we will see, it reduces the number of degrees of freedom of
the model from exponential to a quadratic function of n.

We recall that we write ∧ the min operator (i.e. a ∧ b = min(a, b), and ∨ the
max.

7.3.2 Möbius-values-based parameterization

From equation (2.11) a 2-additive CI can be written as:

Cµ(u) =
∑
S⊆N

m(S)
∧
i∈S

(ui)

=
∑
S⊆N
|S|=1

m(S)
∧
i∈S

(ui) +
∑
S⊆N
|S|=2

m(S)
∧
i∈S

(ui)

=
n∑

i=1

m({i})ui +
n∑

i=1

n∑
j=i+1

m({i, j})(ui ∧ uj)

(7.1)

For simplicity of writing, we write mi = m({i}) and mi,j = m({i, j}). The
parameterization in equation (7.1) is very interesting from an interpretability point
of view. Indeed, it reduces the number of parameters (the Möbius values) to n(n+1)

2

(n singletons, n(n−1)
2

pairs of criteria). This is exactly the number of independent

150 CHAPTER 7. AGGREGATOR MODULES

degrees of freedom at the model, and is thus the minimal number of parameters
to ensure a full covering of the space of 2-additive Choquet integrals.

Nonetheless, there are some constraints to ensure the validity of the model.
Just like in the previous section, these constraints are Monot, Normal1, and
Normal2. While the normalization constraints are easy to impose on the model
(namely, setting m∅ = 0 and making sure all the parameters sum to one),the mono-
tonicity constraint is problematic. Re-writing Monot in the 2-additive settings
give us, ∀A,B ⊆ N , such that B ⊆ A.

µ(B) ≤ µ(A) ⇐⇒ ∀A,B ⊆ N, B ⊆ A

⇐⇒
∑
S⊆B

m(S) ≤
∑
S⊆A

m(S)

⇐⇒
∑
S⊆B
|S|≤2

m(S) ≤
∑
S⊆A
|S|≤2

m(S)

⇐⇒
∑

S⊆A,S ̸⊆B
|S|≤2

m(S) ≥ 0

(7.2)

As we can see, each constraint thus obtained is ensuring a certain sum is non-
negative. Nonetheless, there is one such constraint for each pair B ⊆ A ⊆ N . By
Lemma 10, we can restrict this only to pairs such that |B| = |A| − 1; nonetheless,
that the number of constraints to verify remains exponential, at n2n − 1.

This brings along all of the computational issues that we have seen for the
general CI, and limits the advantage of using 2-additive CIs. This motivates the
use of another representation of the 2-additive CI.

7.3.3 Weights-based parameterization

As a consequence, we opt for another parameterization. According to [Grabisch,
1997b], a 2-additive Choquet integral on u = (u1 . . . un) can be written as follows:

Cµ(u) =
n∑

i=1

wiui +
∑

1≤i<j≤n

(
w∧

i,j(ui ∧ uj) + w∨
i,j(ui ∨ uj)

)
(7.3)

where ∧ and ∨ still denote the min and max operators, respectively. The fuzzy
measure µ is represented by the weights parameters of the form wi, w∨

i,j and w∧
i,j,

such that:

• wi for each i ∈ N

• w∧
i,j for each pair i, j ⊆ N with i < j

7.3. 2-ADDITIVE CHOQUET INTEGRAL 151

• w∨
i,j for each pair i, j ⊆ N with i < j

There are thus n weights of the first type, n(n−1)
2

of the second type, and n(n−1)
2

of the third type. In total, this means that we have n2 parameters (roughly twice
as many as we have degrees of freedom).

Note that these weights are yet another representation of a 2-additive fuzzy
measure µ. Given the weights, the Möbius values of this same FM can be computed
as:

∀i ∈ N, mi = wi +
n∑

j=1
j ̸=i

w∨
i,j

∀i, j ∈ N, i ̸= j, mi,j = w∧
i,j − w∨

i,j

(7.4)

which, through Equation (2.6), gives, for S ⊆ N :

µ(S) =
∑
i∈S

wi +
∑
j∈N
j ̸=i

w∨
i,j

+
∑
i∈S

∑
j∈S
j>i

(
w∧

i,j − w∨
i,j

)
(7.5)

In order to ensure validity, we need to impose the following constraints on the
weights:

∀i ∈ N, wi ≥ 0

∀i, j ∈ N, i ̸= j, w∧
i,j ≥ 0 and w∨

i,j ≥ 0
(7.6)

n∑
i=1

wi +
∑

1≤i<j≤n

(
w∧

i,j + w∨
i,j

)
= 1 (7.7)

Normal1 is yielded by design. Normal2 is given by Equation (7.7). By
equation (7.6), we have Monot.

We show in this section that, given the set of weight W , the expression in
(7.3) is exactly the same function as that given in (7.1), which is a known result
[Grabisch, 2016].

Let u ∈ [0, 1]n:

152 CHAPTER 7. AGGREGATOR MODULES

Cµ(u) =
n∑

i=1

miui +
n∑

i=1

n∑
j=i+1

mi,j(ui ∧ uj)

=
n∑

i=1

wi +
n∑

j=1
j ̸=i

w∨
i,j

ui +
n∑

i=1

n∑
j=i+1

(w∧
i,j − w∨

i,j)(ui ∧ uj)

=
n∑

i=1

wiui +
∑

1≤i<j≤n

w∨
i,jui + w∨

i,juj + w∧
i,j(ui ∧ uj)− w∨

i,j(ui ∧ uj)

=
n∑

i=1

wiui +
∑

1≤i<j≤n

w∧
i,j(ui ∧ uj) + w∨

i,j(ui + uj − (ui ∧ uj))

=
n∑

i=1

wiui +
∑

1≤i<j≤n

(
w∧

i,j(ui ∧ uj) + w∨
i,j(ui ∨ uj)

)
Thus, we have seen that the weights can parameterize a valid 2-additive CI.
Note that, while a weight vector represents a single fuzzy measure, a fuzzy

measure has infinitely many representations in the space of weights. Nonetheless,
for a given 2-additive fuzzy measure µ, there exists a weight representation such
that, for any given pair of criteria i, j, i ̸= j, either w∧

i,j = 0 or w∨
i,j = 0. We call

it the canonical weights.
It can be computed easily from the Möbius:

∀i, j ∈ N, i ̸= j,

w∧
i,j = mi,j if mi,j ≥ 0, else 0

w∨
i,j = mi,j if mi,j ≤ 0, else 0

wi = mi −
n∑

j=1
j ̸=i

w∨
i,j

(7.8)

The advantage of this representation, for interpretability, is that if w∧
i,j > 0 and

w∨
i,j = 0 means that mi,j > 0, and thus that i and j work are synergetic, while the

opposite means that these criteria are redundant.
Moreover, it allows to represent only, and any, 2-additive Choquet Integral, as

stated in the original paper. In particular, there is a bijection between the set of
valid 2-additive fuzzy measures and the set of canonical weights.

7.3. 2-ADDITIVE CHOQUET INTEGRAL 153

Parameters Monot Complexity Normalization complexity
Möbius (7.3.2) n(n−1)

2
n2n − 1 2

Weights (7.3.3) n2 n2 2

Table 7.1: Trade-off: Möbius-based vs weights-based parameterization

7.3.4 Implementation as a Neural Module

Now that we have seen that, given (7.6) and (7.7), representation (7.3) is suitable
for representing 2-additive Choquet integral. Considering the small amount of
constraints that have to be satisfied in order for the model to be valid, we use this
representation for our 2-additive CI neural module.

We see that, given u ∈ [0, 1]n, letting:

U∗ = (u1, ..., un, (u1 ∧ u2), ..., (u1 ∧ u2), (u1 ∨ u2), ..., (un−1 ∨ un))

W = (w1, ..., wn, w
∧
1,2, ..., w

∧
n−1,n, w

∨
1,2, ..., w

∨
n−1,n)

then (7.3) yields that Cµ(u) = W • U∗ the dot product of both vectors. Our
2-additive Choquet integral module, will thus compute Cµ(u) in two steps.

1. compute U∗ from the input u

2. compute Cµ(u) from the hidden values U∗

Overall, a 2-additive Choquet integral over an n-dimensional utility vector
u = (u1, . . . un) is represented as a neural architecture with a single hidden layer
h with n2 neurons (one for each element of U∗), as shown in Figure 7.2. The idea
is that h(u) = U∗; thus the weights between h and the single output node have to
be W .

Unlike a "traditional" layer, h is composed of three sublayers:

hId : composed of n neurons, one for each criterion i ∈ N . Each neuron, denoted
Idi, takes in a single input ui, and has identity activation, thus returning ui

unchanged;

h∧ : composed of n(n−1)
2

neurons, one for each pair i, j of criteria. The neurons
are denoted h∧

i,j. They each take in two inputs ui and uj, and return (ui∧uj).
This corresponds to a min-pooling on each pair of criteria i and j;

h∨ : composed of n(n−1)
2

neurons, one for each pair i, j of criteria. The neurons
are denoted h∨

i,j. They each take in two inputs ui and uj, and return (ui∨uj).
This corresponds to a max-pooling on each pair of criteria i and j;

154 CHAPTER 7. AGGREGATOR MODULES

u1

u2

u3

Id

Id

Id

∧

∧

∧

∨

∨

∨

Output

Hidden
layer

Utility
layer Output

layer

w1

w2

w3

w∧
1,2

w∧
1,3

w∧
2,3

w∨
1,2

w∨
1,3

w∨
2,3

Figure 7.2: A 2-additive Choquet module with 3 inputs, involving three categories of
hidden neurons noted Id, ∧ and ∨ (see text).

Then, the output h(u) = (hId(u), h∧(u), h∨(u)) is the concatenation of the
outputs of the three sublayers. It is then forward-propagated to the output node,
weighted by W .

7.3.5 Validity of the Module

We show in this section that, given the right assumptions on the parameters of
the module, it can represent any, and only, 2-additive Choquet integral.

Lemma 11. Let Q be a 2-additive CI module.
Let Wo = (w1, ..., wn, w

∧
1,2, ..., w

∧
n−1,n, w

∨
1,2, ..., w

∨
n−1,n) the weights between the

hidden layer and the output node.
Given that Wo satisfies (7.6) and (7.7), Q represents a valid 2-additive CI,

parameterized by the fuzzy measure µ associated with Wo.

Proof : We have seen that, by construction of h:

h(u) = (hId(u), h∧(u), h∨(u))
= (u1, ..., un, un, (u1 ∧ u2), ..., (u1 ∧ u2), (u1 ∨ u2), ..., (un−1 ∨ un))

thus, h(u) = U∗.
Just like for h, we decompose Wo into three parts:

7.3. 2-ADDITIVE CHOQUET INTEGRAL 155

• W Id
o = (w1, ..., wn) ∈ Rn

• W∧
o = (w∧

1,2, ..., w
∧
n−1,n) ∈ R

n(n−1)
2

• W∨
o = (w∨

1,2, ..., w
∨
n−1,n) ∈ R

n(n−1)
2

Then, during the propagation from the hidden layer to the output layer, the
dot product Wo • h(u) is computed. This yields:

Wo • h(u) = W Id
o • hId +W∧

o • h∧ +W∨
o • h∨

=
n∑

i=1

wiui +
∑

1≤i<j≤n

(
w∧

i,j(ui ∧ uj) + w∨
i,j(ui ∨ uj)

)
Given that Wo satisfies (7.6) and (7.7) by hypothesis, we have exactly the

definition of a valid 2-additive CI according to (7.3). The model represented by Q
is thus valid.

Lemma 12. Let µ be a 2-additive fuzzy measure. Then, it is possible for a 2-
additive CI model Q to be such that ∀u ∈ [0, 1]n, Q(u) = Cµ(u).

Proof : Let W any of the weight vectors associated with µ (which can be
computed by using the Möbius values of µ through equations (7.1) and (7.8). We
know by [Grabisch, 1997b] that W satisfies both (7.6) and (7.7).

Then, setting W as the weights for the output neuron of Q, we have, by Lemma
11 that ∀u ∈ [0, 1]n, Q(u) = Cµ(u).

Thus, any 2-additive CI is representable by a certain parameterization of a
2-additive CI module.

Theorem 10. Letting E∗C2 the domain of all functions that a 2-additive CI module
can take, and EC2 the domain of all 2-additive CIs. Then EC2 = E∗C2.

Proof : Lemma 11 gives us E∗C2 ⊆ EC2. Lemma 12 gives us EC2 ⊆ E∗C2.
Hence the equality.

7.3.6 Ensuring the Satisfaction of the Constraints

As we have seen before, there are only a few constraints to satisfy in order for this
model to be a valid 2-additive CI. Namely, these constraints are (7.7) and (7.6).

156 CHAPTER 7. AGGREGATOR MODULES

7.3.6.1 Ensuring Monotonicity

We recall that (7.6) is equivalent to Monot on the weights-based representation.
All we need to do in this case is to make sure that all the weights in W are
non-negative.

Following the method used for the marginal utility modules, one could reckon
that clipping the negative weights to 0 might be the right solution. Nonetheless, we
noticed that, in this setting, this violent process on a small amount of parameters
causes instability during training.

In order to adress this issue, we opted for an option analog to the one we used
for the general CI modules. That is, we do not directly learn the elements of W .
Rather, we learn a set of n2 latent variables Z = (z1, ..., zn, z

∧
1,2, ..., z

∧
n−1,n, z

∨
1,2, ..., z

∨
n−1,n) ∈

Rn2 , such that, given a smoothly differentiable non-negative function pos : R →
R+, we have:

∀i ∈ {1 . . . n} : wi = pos(zi);

∀i, j ∈ {1 . . . n} : i < j, w∧
i,j = pos(z∧i,j)

∀i, j ∈ {1 . . . n} : i < j, w∨
i,j = pos(z∨i,j)

Noting that clipping negative weights to zero is the same as applying a ReLU
function on each weight, we use the softplus function, which is a smooth version
of the ReLU; it is defined as:

∀x ∈ R, pos(x) = ln(1 + ex)

This function is illustrated in Figure 7.3.
As one can see, it quickly goes towards 0 for a negative input, and quickly goes

towards the identity for a positive input. Nonetheless, the singularity of the ReLU
in 0 is avoided by a smooth, differentiable transition. Moreover, the derivative of
pos is easy to obtain, as:

∇pos(x) = 1

1 + e−x
= σ(x)

with σ, as before, the logistic sigmoid.
Moreover, pos is bijective, and we can compute its inverse function pos−1:

pos−1(x) = ln(ex − 1)

Applying this procedure, and working with Z, we ensure that all elements of
W be positive at all time, by design, and that the gradient is always well defined.
This, in turn, ensures the monotonicity of the 2-additive FM represented by W .

7.3. 2-ADDITIVE CHOQUET INTEGRAL 157

Figure 7.3: Plot of the Softplus function (single line) and ReLU (crossed line)

7.3.6.2 Ensuring Normalization

In order to ensure normalization as described in equation (7.7), we simply divide
W at each epoch by the sum of its component. That is:

W ← W
n∑

i=1

wi +
∑

1≤i<j≤n

(
w∧

i,j + w∨
i,j

)
Then, the Z need to be re-computed from the new values of W .
We synthetize now the steps of the process for parameters update in a 2-additive

Choquet module:

1. receive the back-propagated gradient ∂err
∂M(u)

2. compute the gradients for Z and u

3. back-propagate ∂err
∂u

4. update Z through Z ← Z − ρZ
∂err
∂Z

, with ρZ the learning rate

5. update W through W ← pos(Z)

158 CHAPTER 7. AGGREGATOR MODULES

6. normalize W through W ← W
n∑

i=1
wi+

∑
1≤i<j≤n

(w∧
i,j+w∨

i,j)

7. update Z through Z ← pos−1(W)

At the end of the given epoch, W still represents a valid 2-additive FM, and
the network is in a coherent state, as W = pos(Z). We can thus proceed with a
new epoch, or stop training.

7.3.7 Backpropagation

Now that we have seen how to ensure, at each step, that the module be a valid
2-additive CI, we show how to compute the gradients of each parameters, along
with a synthesis of the parameters update pipeline.

7.3.7.1 Gradient w.r.t. h

Once again, we assume the gradient of the error err to have been backpropagated
to the module. We write Q(u) the output of the module when the input is u. First
of all, we look at the gradients of err w.r.t. the hidden layer:
∀i ∈ N :

∂err

∂hId
i

=
∂err

∂M(u)
· ∂M(u)

∂hId
i

=
∂err

∂M(u)
· wi

∀i, j, i ̸= j ∈ N :

∂err

∂h∧
i,j

=
∂err

∂M(u)
· ∂M(u)

∂h∧
i,j

=
∂err

∂M(u)
· w∧

i,j

∂err

∂h∨
i,j

=
∂err

∂M(u)
· ∂M(u)

∂h∨
i,j

=
∂err

∂M(u)
· w∨

i,j

7.3.7.2 Gradient w.r.t. Z

We can now compute the gradients of the elements of Z:

7.3. 2-ADDITIVE CHOQUET INTEGRAL 159

∀i ∈ N :

∂err

∂zi
=

∂err

∂M(u)
· ∂M(u)

∂wi

· ∂wi

∂zi

=
∂err

∂M(u)
· hId

i · σ(zi)

∀i, j, i ̸= j ∈ N :

∂err

∂z∧i,j
=

∂err

∂M(u)
· ∂M(u)

∂wi

· ∂wi

∂zi

=
∂err

∂M(u)
· h∧

i,j · σ(z∧i,j)

∂err

∂z∨i,j
=

∂err

∂M(u)
· ∂M(u)

∂wi

· ∂wi

∂zi

=
∂err

∂M(u)
· h∨

i,j · σ(z∧i,j)

7.3.7.3 Gradient w.r.t. u

Now that we have computed the gradient for the parameters Z, we can compute
the gradient to be back-propagated to the modules that might be upstream of the
current one. This is, in essence, the gradient of u.

Due to the non-differentiable operations (namely, min and max poolings), the
gradient is not defined everywhere w.r.t ui. In particular, if ui = uj, ui ∧ uj has
no defined gradient (see Figure 7.4). We thus decide to use the following obious
subgradient:

∂(ui ∧ uj)

∂ui

=


1 if ui < uj

0 if ui > uj

0.5 if ui = uj

and

∂(ui ∨ uj)

∂ui

=


0 if ui < uj

1 if ui > uj

0.5 if ui = uj

We can now compute the gradient to backpropagate. ∀i ∈ N :

160 CHAPTER 7. AGGREGATOR MODULES

Figure 7.4: Plot of the subgradient ∂(ui∨uj)
∂ui

as a function of uj , with a fixed ui

∂err

∂ui

=
∂err

∂M(u)
· ∂M(u)

∂ui

=
∂err

∂M(u)
·

wi +
∑
j∈N\i

(
w∧

i,j ·
∂(ui ∧ uj)

∂ui

+ w∨
i,j ·

∂(ui ∨ uj)

∂ui

)

=
∂err

∂M(u)
·

wi +
∑

j∈N\{i}
ui<uj

w∧
i,j +

∑
j∈N\{i}
ui>uj

w∨
i,j + 0.5

∑
j∈N\{i}
ui=uj

(w∨
i,j + w∧

i,j)



7.4 3-additive 0-1-FM-based Choquet Integral

7.4.1 General Results

Now that we have tackled the learning of 2-additive Choquet integrals, we can ad-
dress the learning to a more general class, that is, the 3-additive ones. Nonetheless,
this leads to the following issues:

7.4. 3-ADDITIVE 0-1-FM-BASED CHOQUET INTEGRAL 161

• there is no interpretable expression of the 3-additive CI

• there is an exponential number of monotonicity constraints

We would like to have an expression such as that from Equation (7.3), where
the convex combinations of min and max operators is easily understable. As a
consequence, we focus on a subset of the 3-additive CIs, which is described below.

Note that the following results can be found in [Grabisch, 2016]. We present
them as they are necessary for understanding our implementation.

7.4.1.1 Convex Combinations of Fuzzy Measures

Property 2. Let ν = {µ1, ..., µm} a set of FMs on N = {1, ..., n}. Let µΣ the
convex sum:

µΣ =
m∑
i=1

wiµi

with weights w non-negative and which sum to one. Then µΣ is also a valid
FM. In particular, the associated Möbius values follow the same relation as µ, that

is, ∀S ⊆ N,mµΣ
(S) =

m∑
k=1

wkmµk
(S).

Corollary 5. If all FMs ν = {µ1, ..., µm} are k-additive, then any convex sum of
elements of ν is also k-additive.

Corollary 6. Given µΣ as described above, we have, for any u ∈ [0, 1]n:

CµΣ
(u) =

m∑
i=1

wiCµi
(u)

7.4.1.2 0-1 Fuzzy Measures

A 0-1 fuzzy measure µ is a particular FM , which only takes values 0 and 1.
Obviously, by Monot, we have that:

∀A ⊆ N, µ(A) = 1 ⇒ ∀B ⊇ A, µ(B) = 1

and

∀A ⊆ N, µ(A) = 0 ⇒ ∀B ⊆ A, µ(B) = 0

We now look at an interesting way of describing a 0-1-FM.

162 CHAPTER 7. AGGREGATOR MODULES

Definition 10. An antichain on 2N (the powerset of N) together with the inclu-
sion relation ⊆ is a set of parts of N D = {S1, ..., Sp}, with ∀i ∈ {1, p}, Si ⊆ N ,
and there are no two Si, Sj ∈ D such that Si ⊆ Sj.

Then, given a non-empty antichain D, one can define its associated 0-1-FM µD
s.t., ∀S ⊆ N :

µD(S) =

{
1 if ∃ B ∈ D, B ⊆ S
0 otherwise

Note that there is a bijection between the set of antichains and that of 0-1-FM
for a given N .

Moreover, a CI parameterized by a 0-1 measure is easy to compute:

CµD(u) =
n∑

i=1

uτ(i) (µD(Ai)− µA(Ai+1))

=
n∑

i=1

uτ(i)

(
1{∃ B∈D, B⊆A(i)} − 1{∃ B∈D, B⊆A(i)})

)
=
∨

Sk∈D

∧
i∈Sk

xi

(7.9)

7.4.1.3 0-1 Fuzzy Measures as a Base

We denote byM0−1
k the set of k-additive 0-1-FM, and byMk the set of k-additive

FM.
Using the results from both sections above, we can now define a subclass Ck

of k-additive FM, which are all convex combinations of the elements in M0−1
k .

Formally:

Ck =

 ∑
µD∈M0−1

3

wDµD ; ∀ µD ∈M0−1
k , wD ≥ 0 and

∑
µD∈M0−1

k

wD = 1

 (7.10)

We see that the monotonicity and normalization constraints are written as:

∀ µD ∈M0−1
k , wD ≥ 0 (7.11)

and ∑
µD∈M0−1

k

wD = 1 (7.12)

7.4. 3-ADDITIVE 0-1-FM-BASED CHOQUET INTEGRAL 163

Interestingly, C2 is exactly the set of 2-additive fuzzy measures; that is, M0−1
2

is a base of M2. This, though, is not true for k ≥ 3. Nonetheless, as Corollary 5
states, we know that Ck ⊆Mk (Ck ⊂Mk if k > 2).

In practice, we wish to implement a neural module which allows to learn el-
ements in C3. In order to do so, nonetheless, we need to first compute the base
M0−1

3 of the search space. This comes down to being able to computing the set
D0−1

3 of all of the antichains corresponding to all elements inM0−1
3 .

Fortunately, they can all be expressed in a simple way. We list below the 10
forms that the elements in D0−1

3 can take:

1. {{i}} for i ∈ N (n elements)

2. {{i, j}} for {i, j} ⊆ N, i ̸= j (n(n−1)
2

elements)

3. {{i}, {j}} for {i, j} ⊆ N, i ̸= j (n(n−1)
2

elements)

4. {{i, j, k}} for {i, j, k} ⊆ N, i ̸= j ̸= k (n(n−1)(n−2)
6

elements)

5. {{i}, {j}, {k}}{i, j, k} ⊆ N, i ̸= j ̸= k (n(n−1)(n−2)
6

elements)

6. {{i}, {j, k}} for {i, j, k} ⊆ N, i ̸= j ̸= k (n(n−1)(n−2)
2

elements)

7. {{i, j}, {j, k}} for {i, j, k} ⊆ N, i ̸= j ̸= k (n(n−1)(n−2)
2

elements)

8. {{i, j}, {i, k}, {j, k}} for {i, j, k} ⊆ N, i ̸= j ̸= k (
(
n
3

)
elements)

9. {{i, j}, {k, l}, {i, l}} for {i, j, k, l} ⊆ N, i ̸= j ̸= k (2
(
n
2

)(
n−2
2

)
elements)

10. {{i, j, k}, {i, l}, {j, l}, {k, l}} for {i, j, k, l} ⊆ N, i ̸= j ̸= k ((n − 3)
(
n
3

)
ele-

ments)

Due to an error in our initial identification of the antichains, we do not actually
use the forms 8, 9 and 10 below. We thus, in practice, use only a subset of
these antichains of shapes 1 to 7. We call below D∗

3 this subset, and M∗
3 the

corresponding set of 0− 1 FMs.
Using these explicit forms, we can now generate any antichain in D∗

3. Note
that the first 3 forms correspond to the elements of D0−1

2 . We can compute the
total number of antichains:

|D∗
3| = n+ 2

n(n− 1)

2
+ 2

n(n− 1)(n− 2)

6
+ 2

n(n− 1)(n− 2)

2

= n2 +
4

3
n(n− 1)(n− 2)

=
4

3
n3 − 3n2 +

8

3
n

164 CHAPTER 7. AGGREGATOR MODULES

Figure 7.5: Comparing the complexity of the module depending on the number of criteria

While this is polynomial, it is important to note that it is still a large number of
parameters. In particular, if the aggregator has fewer than 9 criteria, a 0−1-based
3-additive CI has more parameters in this representation than a general CI, as is
shown in Figure 7.5.

It is to be noted that, if we were counting all antichains in D0−1
3 , the number

of parameters would be O(n4). Omitting shapes 9 and 10 allow this number to
remain cubic. It would be interesting to study formally how much representativity
is lost in this case. This could be done as a computation of volumes of both
polytopes, or the maximal distance between a point µ in M0−1

3 and the point of
M∗

3 that is closest to µ.
Below, we use only the antichains of forms 1 to 7. We work with the set:

C∗3 =

 ∑
µD∈M∗

3

wDµD ; ∀ µD ∈M∗
3, wD ≥ 0 and

∑
µD∈M∗

3

wD = 1

 (7.13)

7.4. 3-ADDITIVE 0-1-FM-BASED CHOQUET INTEGRAL 165

Figure 7.6: Comparing the number of antichains in D∗
3 and of free Möbius values

7.4.2 Remark on the number of parameters

We recall that a fuzzy measure µ, with Möbius values m, is defined on all subsets
of N . It thus has 2n free (but constrained) parameters. In the case of a 3-additive
FM, it is imposed by definition that, for each A ⊆ N such that |A| > 3, we have
m(A) = 0. Moreover, we have m(∅) = 0.

As a consequence, the free parameters of a 3-additive FM are only the Möbius
values of all A ⊆ N such that 1 ≤ |A| ≤ 3. There are, respectively:

• n subsets with 1 element

• n(n−1)
2

subsets with 2 elements

• n(n−1)(n−2)
6

subsets with 3 elements

The total number of free parameters is thus

n+
n(n− 1)

2
+

n(n− 1)(n− 2)

6
=

1

6
(6n+ 3n2 − 3n+ n3 − 3n2 + 2n)

=
1

6
(5n+ n3)

The comparison of this value with the number of antichains (and thus of pa-
rameters in the antichain-based representation) can be found in Figure 7.6.

We see that there is a larger number of parameters in the antichain-based
representation, with a ratio that converges to 8 as the number of criteria goes
towards infinity.

166 CHAPTER 7. AGGREGATOR MODULES

Parameters Monot Complexity
3-additive 1

6
(5n+ n3) n2n − 1

C∗3 4
3
n3 − 3n2 + 8

3
n 4

3
n3 − 3n2 + 8

3
n

General capacity 2n n2n − 1

Table 7.2: Trade-off: Möbius-based vs weights-based parameterization

Nonetheless, this increase in the number parameter allows to write the set of
constraints on each parameter much more easily. This is the same philosophy
as used in 7.3 for the 2-additive FMs, where we roughly doubled the number of
parameters in the representtaion in order to avoid an otherwise exponential number
of parameters.

Table 7.2 shows the comparison between the complexity of the FMs in C∗3 , the
3-additive FMs, and the general ones, in terms of parameters and monotonicity
constraints.

7.4.3 Implementation as a Neural Module

We explain in this section how we implement a module which learns any function
in C∗3 , and only those. First of all, we define a neuron which implements a CI
parameterized by a 0-1 3-additive FM. Then, we show how we assemble such
modules in order to learn the final function.

7.4.3.1 Implementing a 0− 1-based 3-Additive Neuron

The special type of neurons we present here efficiently compute the output of a CI
parameterized by µ ∈M∗

3. Indeed, such CIs are the base component for elements
of CIs parameterized by measures in C∗3 .

Let D the antichain associated with µ. Then, given an input vector u, the
output Cµ(u) is computed following Algorithm 3.

7.4. 3-ADDITIVE 0-1-FM-BASED CHOQUET INTEGRAL 167

Algorithm 3 Computing the Output of a CI with a 0-1 FM
sorted_indices← [(1), (2), ...(n)] s.t. u(1) ≤ u(2) ≤ ... ≤ u(n)

remaining_indices = {1, ..., n}
curr_ind ← 1
while ∃S ∈ D s.t. S ⊆ remaining_indices do

curr_ind ← curr_ind+1
remaining_indices ← remaining_indices\{(index)}

end while
passed_index = curr_ind-1
return u(curr_ind-1)

The complexity of the first line is in O(n log(n)), because of the need to sort.
The while loop has at most n steps; at each step, we need to check whether:

∃S ∈ D s.t. S ⊆ remaining_indices

Considering that checking B ⊆ A has complexity O(|B|) if A is a set, the above
line has complexity

O

(∑
S∈D

|S|

)
≤ 4

It is thus reasonable to write that the while loop has complexity O(n). Thus,
the evaluation of a given CI parameterized with µ ∈M∗

3 has complexityO(n log(n)).
Note that we store the index of the element of u that was returned. While this

is not useful at the moment, it will be during backpropagation.

7.4.3.2 Building the module

Now that we can efficiently evaluate a CI parameterized by any FM in M∗
3, we

can build a module which can represent any CI parameterized by an FM in C∗3 .
In order to do that, we first build an n-dimensional input layer. Then we

need a single hidden layer, composed of m := |D∗
3| hidden neurons h1, ..., hm, each

implementing a CI parameterized by an FM in M∗
3. Finally, we need a single

output neuron. The weights between the input and hidden layer are all 1, and the
weights between the hidden and the output layer are the weights of the convex
sum defined in (7.13). This is illustrated in Figure 7.7.

Note that the number of neurons is cubic w.r.t. n; thus, as there is one weight
for each hidden neuron, the number of free parameters of the model is cubic as
well. The weights between the input layer and the hidden layer are always set to

168 CHAPTER 7. AGGREGATOR MODULES

u1

u2

u3

h1

h2

h3

hm

..
.

Output

Hidden
layer

Utility
layer Output

layer
wD1

wD2

wD3

wDm

Figure 7.7: A 3-additive Choquet module with 3 inputs

7.4. 3-ADDITIVE 0-1-FM-BASED CHOQUET INTEGRAL 169

1, and do not change during training, as the aim of this layer is simply to dispatch
the input among all of the 0 − 1 Choquet integrals represented by each hidden
layer.

7.4.3.3 Forward Propagation

The forward propagation in such a module Q is made in two steps. Given the
input u ∈ [0, 1], we compute:

h(u) = (h1(u), ..., hm(u))
= (CµD1

(u), ..., CµDm
(u))

(7.14)

Thus, we have the evaluation of u by all 3-additive 0-1 CIs inM∗
3. Note that,

given the O(n3) number of CIs, and the O(n log(n)) cost of evaluating a CI, yields
a total cost of O(n4 log(n)) for computing Q(u). While rapidly increasing, this
remains tractable for many applications.

Then exactly as in 7.13, we compute W • h(u), with W = (wD1 , ..., wDm) the
weight vector for the output node.

The output is thus:

W • h(u) =
∑

µD∈M0−1
3

wDCµD(u) (7.15)

which is an element of C∗3 , given that W satisfies the right properties. We show
now how to ensure the validity of W , and thus that of the model.

7.4.4 Validity of the Module

Theorem 11. Let E∗C3 be the domain of all functions that a 0-1 based 3-additive
CI module can take, assuming that its weight vector satisfy (7.11) and (7.12). Let
also EC3 = {Cµ, µ ∈ C∗3} the set of all CIs parameterized by an FM in C∗3 .

Then E∗C3 = EC3.

That is, these modules can represent any function in C∗3 , and only those. We
can now prove this result.
Proof : 1. E∗C3 ⊆ EC3:
By (7.15), the output of a module Q is:

Q(u) =
∑

µD∈M∗
3

wDCµD(u)

170 CHAPTER 7. AGGREGATOR MODULES

By Corollary 6, this means that Q ca be written as:

M(u) = CµΣ
(u) with µΣ =

∑
µD∈M∗

3

wDµD

Thus Q ∈ EC3, which shows the first inclusion.

2. E∗C3 ⊇ EC3:
Let F ∈ EC3. By definition, ∃µ ∈ C∗3 s.t. F = Cµ with µ =

∑
µD∈M∗

3

wDµD

for a certain set of weights that satisfy (7.11) and (7.12). Using this set of
weight to parameterize the output layer of a module Q yields, by (7.15), the result
that Q = Cµ. Thus, we have F ∈ E∗C3.

This concludes the proof.

7.4.5 Ensuring the Validity of the Constraints

As we have seen, in order for the set E∗C3 of functions representable by such a
network Q to be equal to C3, we need W to satisfy:

• ∀ µD ∈M∗
3, wD ≥ 0

•
∑

µD∈M∗
3

wD = 1

These conditions are ensured in exactly the same way as for the 2-additive
module (see 7.3.6). That is, the wD are computed as the softplus of latent variables
zD in order to ensure non-negativity. Moreover, the wD are normalized at each
epoch by being divided by their sum.

These two procedures ensure that the module always yields a valid function
from C3. Nonetheless, as the softplus has its image in R∗

+, the search space E∗C3 is
not exactly EC3, but is a dense part; i.e. a module Q can approximate any function
in EC3 to an arbitrary precision.

7.4.5.1 Computing the gradients

Considering the highly linear nature of this aggregator, computing the gradients
for each free parameter zD is quite straightforward. Once again, given the gradient
of the error err w.r.t. Q(u), we have:

∂err

∂zD
=

∂err

∂M(u)
· ∂M(u)

∂wD
· ∂wD

∂zD

=
∂err

∂M(u)
· hD(u) · σ(zD)

(7.16)

7.4. 3-ADDITIVE 0-1-FM-BASED CHOQUET INTEGRAL 171

As for the gradients to back-propagate, that is the derivative of err w.r.t. u, we
have to use the variable passed_index that we stored during forward-propagation
(see Sec 7.4.3.1). For a given antichain D, we write passD this variable, which is
the index of the element of u that was returned by hD.

Thus, the gradient for ui is computed as:

∂err

∂ui

=
∂err

∂M(u)
· ∂M(u)
∂h(u)

· ∂h(u)
∂ui

=
∂err

∂M(u)
·
∑

µD∈M0−1
3

wD1{i}(passD)
(7.17)

That is, only the values that were actually forward-propagated get a gradient,
the other ones get 0, as they did not influence the output (and thus the error).

CHAPTER 8

ASSEMBLING AND TRAINING A
NETWORK

Contents
8.1 General Considerations 174

8.2 Hierarchical Choquet Integral 174

8.2.1 Recalls . 174

8.2.2 Architecture . 175

8.2.3 Forward and Backpropagation 176

8.2.4 Showing the Validity of the Network 179

8.3 Directed Acyclic Graphs 180

8.3.1 Definition . 181

8.3.2 Implementation of a DAG-CI Network 182

8.3.3 Interests and Drawbacks 182

8.3.4 Forward Propagation and Backpropagation 184

8.4 Adding Marginal Utilities 186

8.5 Training Settings . 187

8.5.1 End-to-End Training . 187

8.5.2 Regression . 188

8.5.3 Ordinal Regression . 189

8.5.4 Pairwise Preference Learning 192

8.5.5 Training and Regularization 194

173

174 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

8.5.6 Convergence of the Learning Settings 195

8.6 Conclusion and Remarks 196

8.1 General Considerations

We have seen in the previous chapters how we could implement several different
neural modules. Each of these modules implements a given type of function, either
a marginal utility or a Choquet integral-based aggragator.

We have seen how to compute the output of each module given its input, and
how to compute the gradient of each parameter given a backpropagated error. We
have also seen how to ensure, for each module, that it satisfies all constraints that
make it a valid instance if the function class it is supposed to represent.

In this chapter, we will present how to assemble these modules in order to build
diverse, more complex models. Such models are presented below. While they are
not the only thus buildable models, they present interesting properties, which we
will describe and exploit.

First, we present the UHCI model, introduced in 2.7.4 and in which the ag-
gregators are disposed in a tree-like manner. Then, we generalize this model to
any directed acyclic graph-structure (DAGs). Finally, we present how we train
the thus built models in different contexts, in order to deal with different types of
data and to solve different problems.

8.2 Hierarchical Choquet Integral

8.2.1 Recalls

In this section, we show how to implement a module which can represent a hier-
archical Choquet integral (HCI) using the previously defined aggregator module.
The HCI is presented in Section 2.7.2.1. We recall that it can be defined by:

• a hierarchy T = ⟨r,M,Ch⟩, which is a rooted tree with:

– n leaves N = {1, ..., n} (one for each criterion, hence the abuse of no-
tations of N)

– non-leaf nodes V

– a relation Ch : V → 2M , with M = V ∪ N , which, to each node k,
associates the set of its children

8.2. HIERARCHICAL CHOQUET INTEGRAL 175

Module Inputs
Q8 (out2, out3)
Q9 (out1, out8)
Q10 (out4, out5, out6)
Q11 (out9, out10, out11)

Table 8.1: Caption

• a set ν = {µk, k ∈ V } of fuzzy measures, such that µk parameterizes the CI
associated to node k

Then, the output of an HCI A given an alternative u is computed recursively,
starting from the leaves, as:

ak =

{
uk if k ∈ N

Cµk
((ai, i ∈ Ch(k)) if k ∈ V

We introduce a new notation, Pa : M \{r} → V , such that Pa(k) is the parent
node of k. That is: Pa(k) = j ⇐⇒ k ∈ Ch(j).

Now that this is re-established, we can proceed and assemble a network.

8.2.2 Architecture

Let T = ⟨r,M,Ch⟩ a hierarchy on the set of criteria N . We still write V = M \N .
An HCI network on T is composed of |V | Choquet neural modules {Qk, k ∈ V }.
We denote by inpk the input layer of Qk, and by outk its output layer (reduced
to a single neuron). For simplicity in the following, we also write for k ∈ N ,
outk = inpk, the input (leaves) nodes of the network.

Then, for k ∈ V , |inpk| = |Ch(k)|. In particular, inpk = {outi, i ∈ Ch(k)};
that is, the output neuron of a given module belongs to the input layer of the
module that represents its parent in T .

Note that the Qk can be of any type that is implemented by a module. They
do not need to all be of the same type; 2-additive, general and 0-1-based 3-additive
modules can be mixed according to the expertise of the network designer.

Example 29 (Ex. 1 cont’d). Assume the hierarchy from the previous examples
(Figure 2.2). As we have 5 aggregation nodes (with indices 8 to 11), we will need
4 Choquet modules to represent it as an HCI network. The inputs of each module
are given in table 8.1.

We illustrate in Figures 8.2 a 2-additive HCI network on a small hierarchy
given in 8.1, with three criteria and two internal nodes. Then figure 8.3 illustrates
a 2-additive HCI network on the hierarchy from Example 1. We chose 2-additive
CIs for simplicity, but any aggregator module could be used.

176 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

5

3

4

1 2

Figure 8.1: Example hierarchy, with 3 criteria and 2 aggregations.

8.2.3 Forward and Backpropagation

8.2.3.1 Forward-Propagation

Given a tree T = ⟨r,M,Ch⟩ and a set of FM ν = {µk, k ∈ V } with n leaves, and
an HCI network H defined on T with FM ν as described in the previous section,
we compute the output of the network recursively, as described in Algorithm 4.

Algorithm 4 Forward propagation with input u
Input: u ∈ [0, 1]n

Function: forward_node(k,u):
if k ∈ N then

outk ← uk

else
for c ∈ Ch(k) do

forward_node(c,u)
end for
outk ← Cµk

(outc for c ∈ Ch(k)) ▷ i.e. computing the output of the
module

end if
end Function

forward_node(r, u)
Return outr

This allows to compute the output of the modules by exploiting the tree struc-
ture. All modules are computed, in the right order (that is, a module is only
computed after all of its descendants have already yielded their own output).

Thus, given an HCI network H and a vector u ∈ [0, 1]n, Algorithm 4 returns
H(u).

8.2. HIERARCHICAL CHOQUET INTEGRAL 177

a1

a2

inp4

a3

Id

Id

∧

∨

a4

inp5

Id

Id

∧

∨

a5

Figure 8.2: Example of the combination of two 2-additive modules on the hierarchy from
Figure 8.1. Each module Q4 and Q5 is delimited by a box. The dashed boxes represent
the input layer of their respective module. Each node with a free in-going arrow a1 to
a3 is an input node of the module.

178 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

a2

a3

a1

a4

a5

a6

a7

Id

Id

∧

∨

a8

Id

Id

∧

∨

a9

Id

Id

Id

∧

∧

∧

∨

∨

∨

a10

Id

Id

Id

∧

∧

∧

∨

∨

∨

a11

Figure 8.3: Example of the combination of two 2-additive modules on the hierarchy from
Example 1. Each module is delimited by a box. The dashed boxes denote the input layer
of each module. Each node with an in-going free arrow (a1 through a7) is an input node.

8.2. HIERARCHICAL CHOQUET INTEGRAL 179

8.2.3.2 Backpropagation

The backpropagation algorithm, similarly, explores the network, starting from the
root r, and following the Ch relation. This procedure is presented in Algorithm 5.

Algorithm 5 Gradient backpropagation

Input: ∂err
∂H(u)

Function: compute_gradients(k, ∂err
∂Qk(u)

):

if k ∈ V then
Compute ∂err

∂θ
for any internal parameter θ of Qk

grad_input ← ∂err
∂inpk

▷ grad_input is composed of { ∂err
∂Qc(u)

, c ∈ Ch(k)}
for c ∈ Ch(k) do

compute_gradients(c, ∂err
∂Qc(u)

)
end for

end if
end Function

compute_gradients(r, ∂err
∂H(u)

)

Once Algorithm 5 has been applied, all of the modules have computed the
gradients of their parameters. They can then be used to update the parameters of
the whole network, which is then ready for a new forward pass.

8.2.4 Showing the Validity of the Network

We show now that such an HCI network can represent any HCI with hierarchy T
and with the right aggregator types. We work only with the aggregators that we
have described and implemented before, that is:

1. C2: the 2-additive Choquet Integrals

2. C3: the 0-1-based 3-additive Choquet Integrals

3. CG: the General Choquet Integrals

We write MC2, MC3 and MCG respectively the sets of 2-additive FMs, 0-1-
based 3-additive FMs and general FMs. We extend the function type from Section
6.5.4 to yield the type of an aggregator (instead of only managing marginal utility
modules).

type : M → {NI,ND, SP, SV,C2,C3,CG}

180 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

which yields the type of a module given its corresponding node k in the hi-
erarchy T . Note that it is the type of the module, and not that of the function
represented. That is, asMC2 ⊆MC3 ⊆MCG, it is possible that a module Qk with
type CG be parameterized to represent a 2-additive or 3-additive CI. Nonetheless,
type(k) remains CG.

Then, we give the following representation theorem:

Theorem 12. Let T = ⟨r,M = V ∪ N,Ch⟩. Let H an HCI module on T ,
without restriction on the type of each aggregator. We call E∗ the set of all possible
functions that H can represent, by varying the parameters of all the aggregators
while respecting the validity constraints of the aggregators.

Then, we call E the set of all possible HCI functions defined on T , and such
that,

∀k ∈ V, µk ∈Mtype(k)

Then E∗ is a dense part of E.

Theorem 12 tells that an HCI network H can represent any HCI with the same
hierarchy whose aggregators are of the same type than those of H. It also states
that it cannot represent any other HCI on hierarchy T .

Proof : 1. E∗ is dense in E
Let A ∈ E . By Theorems 9, 10 and 11, each of the modules that compose

H can approximate of any function of their respective type to an arbitrary pre-
cision. That is, regardless of the fuzzy measure µk ∈ Mtype(k), Qk can represent
Cµk

. Thus, H can represent any A ∈ E as accurately as possible, hence the density.

2. E ⊇ E∗
Let H ∈ E∗. By Theorems 9, 10 and 11 each of the modules that compose H

can only ever take the form of a function of their respective type. Thus, H is a an
HCI with the right type of CI at any node; thus H ∈ E∗.

The proof is completed.

8.3 Directed Acyclic Graphs

Tree-like architectures have many qualities that make them suitable for decision
models. Nonetheless, one might want to generalize them to not only trees (where
each node has a single parent), but more general directed acyclic graphs, or DAGs.

8.3. DIRECTED ACYCLIC GRAPHS 181

We study, in this section, a generalization of HCI with a DAG-based structure.
We present their implementation, and compare their advantages and drawbacks
with regards to trees. We still call N = {1, ..., n} the set of criteria.

8.3.1 Definition

We define the important notions that will be used in this section:

Definition 11. A Directed Graph G is formed by a set of vertices M and a
partial order relation Ch : M → P(M). An edge from vertex m1 to vertex m2

exists if and only if m2 ∈ Ch(m1). We say that m2 is a child of m1.
We also define the opposite relation Pa : M → P(M), such that, ∀(m1,m2) ∈

M, m1 ∈ Pa(m2) ⇐⇒ m2 ∈ Ch(m1).

Definition 12. A path in a directed graph G is a sequence of vertices v1, ..., vm
such that ∀i ∈ {1, ...,m}, vi+1 ∈ Ch(vi). The length of such a path is m, the
number of edges in the path.

Definition 13. A cycle is a path π = (v1, ..., vm), with length(π)> 1 such that
v1 = vm, and all vi with i ∈ {2, ...,m− 1} appear only once in π.

Definition 14. A Directed Acyclic Graph (DAG), is a directed graph that
contains no cycle.

In the reminder of this section, we will only work with DAGs that have suitable
properties for being used as the structure of a neural network. That is, any DAG
G used in this section will also satisfy the following properties:

• G is connected

• ∃! v ∈ V such that Pa(v) = ∅. We call this vertice r, or the root.

• Let L = {v ∈ V, Ch(v) = ∅}. Then we enforce |L| = n, and we call the
elements of L the leaves. By abuse of notation, we write L = N , as there is
exactly one leaf for each criterion.

• ∀v ∈ V, |Ch(v)| ≥ 2

With these constraints, we see that the only difference between such a DAG
G and a tree hierarchy H as defined before is that a vertice can now have several
parents instead of a single one. The tree hierarchy is a special case of DAG where
∀v ∈M \ {r}, Pa(v) = 1.

We use from now on the same notations that we used on trees in the previous
section.

182 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

8.3.2 Implementation of a DAG-CI Network

We have seen in section 8.2.2 how to implement an HCI network. The implemen-
tation of a DAG-CI network is quite similar. Let G = ⟨r,M = V ∪N,Ch⟩, a DAG.
Then, for each v ∈ V , we build the aggregator module Qv, with inpv = {outc, c ∈
Ch(v)}.

8.3.3 Interests and Drawbacks

8.3.3.1 Advantages w.r.t. Trees

Directed acyclic graphs are an obvious generalization from tree structures. As a
consequence, they offer much more expressivity. In particular, while the number
of aggregations in a tree is bounded, a DAG can be arbitrarily large. We re-
call, from Section 5.1, that this allows to represent any non-decreasing, positively
homogeneous, piecewise-linear functions.

At the same time, as we are working with Choquet integrals as aggregator, we
ensure that the decision model remains monotonic (non-decreasing) and normal-
ized. In particular, such interesting properties as idempotency and compensatori-
ness are preserved.

Given enough CIs, this model can thus approximate a very large set of func-
tions, all constrained to the desired extent.

8.3.3.2 Drawbacks

Nonetheless, this increase in expressivity comes at a cost. While the number of
parameters in a tree-like structure is bounded w.r.t n (especially if the aggregator
have limited additivity), there can be an arbitrarily large number of parameters
for a DAG. This comes mostly from the fact that we can have arbitrarily many
aggregators in a DAG, and that any vertex can have arbitrarily many ancestors.

Example 30. To illustrate this, we use the DAGs from figure 8.4. For each model,
we compute the number of parameters they would have, depending on the type of
aggregator module, among 2-additive, 3-additive, and general Choquet Integral (we
assume all aggregators have the same type, for simplicity).

These numbers are given in Table 8.2.

This large number of parameters brings difficulty for training the model.
First of all, and most obviously, the computational cost of evaluating the model

and computing the gradients can quickly explode, making training slow, or even
intractable. Moreover, there is a much higher risk of overfitting, in particular with
small training datasets.

8.3. DIRECTED ACYCLIC GRAPHS 183

1 2 3 4

5

6

7

(a) Tree

1 2 3 4

5

6

7

(b) DAG1
1 2 3 4

5 6

7 8

9

(c) DAG2

Figure 8.4: Example hierarchies, with 4 criteria

Graph Inputs per Aggregations 2-additive 0-1-based 3-additive General
Flat 4 16 48 16
Tree 2,2,2 12 12 12

DAG1 4,4,4 48 144 48
DAG2 3,5,5,3,6 104 440 144

Table 8.2: Number of parameters for the graphs given in Figure 8.1. The columns give
the type of Choquet integral assumed. The fact that the general has fewer parameters
comes from the fact that the aggregators are rather small on this example (see Figure
7.5)

An added difficulty is that this structure makes interpreting the model sig-
nificantly harder, or even impossible. Indeed, a single criterion can go through
many aggregators, and thus interact in many different ways with a large number
of native and intermediate criteria. The thus obtained behaviours might prove too
complex and numerous for en expert to interpret even for small DAGs.

Finally, there is no identifiability result on such DAG-CI (i.e. a composition
of CI along a DAG strcture). In particular, due to the fact that we can create
as many "clone" nodes (i.e. with the same Ch and Pa sets), it seems clear that
the constraints to put on the structure and parameterization in order to obtain
uniqueness would be highly restricting.

8.3.3.3 Discussion

The DAG-CI is thus a suitable model when interpretability is not of the essence,
but we still wish our model to satisfy constraints such as monotonicity, idempo-
tency or normalization. It can thus be seen as a constrained black-box model,

184 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

more regularized than a classic Multilayer Perceptron, but less so than an HCI.
In order to tackle the overfitting and computation cost issues, the three main

axis on which we can act are:

• limit the number of aggregators, both in width and in depth

• limit the number of children of each vertice (and thus the dimension of each
aggregator)

• limit the complexity of each aggregator, by employing lower-additivity mod-
ules

Note that the second and third options are the most efficient in limiting the
number of parameters. Indeed, the number of parameters is:

• linear w.r.t. the number of nodes

• quadratic (2-additive), cubic (3-additive) or exponential (general) w.r.t. the
size of the aggregators

• variable by orders of magnitude w.r.t. complexity of each aggregator

As a consequence, such a model should be used for representing complex yet
constrained behaviours, with precautions taken as to how large the model can be.

8.3.4 Forward Propagation and Backpropagation

The forward propagation algorithm is quite similar to that of the Tree-based net-
work. Starting at the root, we explore the tree in a depth-first manner, until we
reach a leaf, and then compute the output of each module after all of its children
have been computed.

The difference with a tree structure is that, if we applied the exact same algo-
rithm, we would compute the output of a module as many times as this module
has parents (as each parent would call it). This is obviously suboptimal, as these
many computations would yield the same result.

As a consequence, we need to keep track of all the modules whose outputs
have already been computed at this step. We thus use a set to do so, as shown in
algorithm 6.

Backpropagation, now, is slightly more complex. Indeed, as a node can have
several parents, the gradients from each parent must be summed. Thus, we can
only treat a node if all of its ancestors have beed treated before; we keep track of
the untreated nodes in a queue (called to_treat thereafter). This is illustrated in
algorithm 7.

8.3. DIRECTED ACYCLIC GRAPHS 185

Algorithm 6 Forward propagation in a DAG-CI network, with input u
Input: u ∈ [0, 1]n

Function: forward_node(k,u, already_computed):
already_computed ← already_computed ∪{k}
if k ∈ N then

outk ← uk

else
for c ∈ Ch(k) do

if c /∈ already_computed then
forward_node(c,u, already_computed)

end if
end for
outk ← Cµk

(outc for c ∈ Ch(k))
end if

end Function

already_computed ← {}
forward_node(r, u, already_computed)
Return outr

Algorithm 7 Gradient backpropagation in a DAG-CI

Input: ∂err
∂H(u)

Function: compute_gradients(k, to_treat):
if Pa(k)∩ to_treat = ∅ then ▷ i.e. all ancestors have been treated

to_treat ← to_treat \{k}
∂err

∂Qk(u)
←

∑
p∈Pa(k)

∂err
∂Qp(u)

· ∂Qp(u)

∂Qk(u)

Compute ∂err
∂θ

grad_input ← ∂err
∂inpk

else
add k to the end of to_treat

end if
v = pop(to_treat) ▷ v takes the first value in to_treat, it is removed it
compute_gradients(v, to_treat)

end Function
compute_gradients(r, queue(V))

186 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

p11

p21

p31

p12

p22

p32

p13

p23

p33

u1

u2

u3

x1

x2

1

1

x3

1

Id

Id

∧

∨

u4 Id

Id

∧

∨

u5

Figure 8.5: Example of the combination of the two modules on a tree with three mono-
tonic marginal utility functions and two aggregation nodes.

8.4 Adding Marginal Utilities

We have shown in the previous sections how to implement neural networks to
represent Choquet integral-based aggregators, with hierarchical structures such as
trees and directed acyclic graphs.

A simple generalization is now to allow the models to represent UHCIs with
such structures; that is, we exploit the marginal utility modules that were presented
in Chapter 6. In order to do so, we generate n marginal utility modules, of any
of the types implemented (including Selector), and insert them at the input nodes
of an HCI or DAG-CI network. That is, the output of a given marginal utility
module must be an input node of the network of CIs. This is illustrated in Figure
8.5 on a small hierarchical network with 3 criteria and 2 CIs.

Theorem 13. Let H an HCI network with n inputs and hierarchy T = ⟨r,M =
V ∪N,Ch⟩. Let U = {Q1, ...,Qn} a set of n marginal utility networks. The network
H ′ is obtained by plugging the output node of each Qi on an input node of H, as

8.5. TRAINING SETTINGS 187

described earlier in this section.
Let E the set of UHCIs such that ∀v ∈ V , the aggregator is of type type(v),

and ∀k ∈ N , the marginal utility uk has one of the types reachable by a module of
type type(k).

Let E∗ the set of all functions representable by H ′ after training. Then E∗ is
dense in E.

Proof : Theorem 12 tells us that the aggregator network is a dense part of the
space of HCIs with hierarchy T with the right types of aggregators.

Theorems 4, 5 and 7, along with their respective corollaries, give us that the
set of all functions representable by a module Qk ∈ U is a dense part of the space
of the types reachable by a module of type type(k).

Combining such utility modules and such an aggregator network thus ensures
that the whole network is a valid UHCI with the sought function type at each
node. It also ensures that any such UHCI can be approximated to any extent,
thus ending the proof.

Note that, in any case, a value that is forward-propagated through the network
will only go through a single marginal utility module; thus, it will only go through
a single layer with sigmoid activations. This means that we do not suffer from the
tendency of sigmoids to provoke a vanishing-gradients-phenomenon, which is well
known in neural network with several layers of sigmoid-activated neurons.

8.5 Training Settings

8.5.1 End-to-End Training

We have seen in the above sections how to implement a fully valid Choquet-
integral-based neural network, with a DAG-based structure and marginal utilities
on all criteria. We have also seen how to compute their gradients from that of an
error, or loss function.

We will now see how to train these networks in practice. Neur-HCI can be
used to train in three different settings. Those are, respectively, Regression (see
Section 8.5.2), where the aim is to learn the precise, real satisfaction value, Ordi-
nal Regression (see Section 8.5.4), where the data is to be classified into ordered
satisfaction classes, and Pairwise Preference Learning (see Section 8.5.4), where
the alternatives are given as pairs, with the information of which alternative is
preferred to the other.

In those three settings, the preference model learned has the same type, that
is, a valid UHCI or U-DAG-CI. In all sections below, we call H our network
built from the modules above. We assume that, at all epochs, or even at each

188 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

Surface Garden Garage Road Transp. Downtown Price Score
m2 m2 (yes/no) km km km e
50 100 No 0.1 0. 0. 400,000 0.4
110 150 Yes 0.5 3. 4. 500,000 0.1
150 0 No 1. 0.5 0.5 450,000 0.9
150 30 No 0.1 5. 3. 300,000 0.1
500 1000 Yes 5. 5. 10. 1,500,000 0.3

Table 8.3: Caption

parameter update, each module is regularized through the procedures that ensure
that it remains a valid instance of the functions it is supposed to represent. The
procedure for a given type of module are described in the same section where the
module’s implementation is described (chapter 6 for marginal utilities, and 7 for
aggregators).

We also call, below, DS the set of training data point, with m := |DS|, and err
the immediate (i.e. example-wise) loss function.

8.5.2 Regression

The first and easiest setting to train in is regression. In this setting, the training
is made on a dataset of the form:

DS = {(x(j), y(j)), j = 1 . . .m}

Example 31. We present some houses in Table 8.4, defined on the criteria from
example 1. The label for each house (i.e. its satisfaction score) is given in the last
column.

Each element in DS is a pair (x, y) ∈ X × [0, 1]. x is an alternative, and y is
its expected score, normalized between 0 and 1. The aim of training will be for
the model to predict scores as close as possible to the expected one.

This type of data would be rather difficult to collect in a preference context, as
it implies that a decision maker can accurately label data, and give a satisfaction
score that is as accurate as possible, which would be rather imprecise due to the
subjectivity of that problem. This setting, nonetheless, becomes interesting and
believable when the score (or value of interest), is the result of a physical measure
or observation.

Example 32. If the alternatives are computer parts (graphics processing unit),
defined by three criteria :

8.5. TRAINING SETTINGS 189

• memory

• power consumption

• clock speed

and we wish to score them, then we can use the number of rendered frames per
seconds as an objective and accurate measurement of their performance (which can
be normalized in the unit interval in order to have a score between zero and one).

A usual loss function for this setting is the mean squared error, that is, we aim
at minimizing the total error:

Err(DS) =
1

m

∑
(x,y)∈DS

err(x, y) :=
1

m

∑
(x,y)∈DS

(H(x)− y)2

This loss is commonly used for such regression problems. Its gradient is easily
computed. Given DS, the gradient of the error w.r.t. the output of the model
(noted H(DS) by abuse of notation) can be computed as:

∂Err(DS)

∂H(DS)
=

1

m

∑
(x,y)∈DS

∂err(x, y)
∂H(x)

=
1

m

∑
(x,y)∈DS

∂(H(x)− y)2

∂H(x)

=
2

m

∑
(x,y)∈DS

(H(x)− y)

As we have a closed-form expression for this gradient, we can now back-
propagate through all of the modules, using the gradients given for each module.

8.5.3 Ordinal Regression

The second and setting to train in is ordinal regression. In this setting, the training
is made on a dataset of the form:

DS = {(x(j), y(j)), j ∈ {1 . . .m}}

Each element in DS is a pair (x, y) ∈ X × [0, 1]. x is an alternative, and
y ∈ {1, ..., K} is its class of satisfaction. That is, we assume that there is a
preference ordering of the classes, such that an element of class i is prefered to one
of class i− 1.

190 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

Surface Garden Garage Road Transp. Downtown Price Score
m2 m2 (yes/no) km km km e
50 100 No 0.1 0. 0. 400,000 Average
110 150 Yes 0.5 3. 4. 500,000 Bad
150 0 No 1. 0.5 0.5 450,000 Good
150 30 No 0.1 5. 3. 300,000 Bad
500 1000 Yes 5. 5. 10. 1,500,000 Average

Table 8.4: Caption

The objective is, as in classification, to allow the model to label new examples
with the right class. It is a problem that is very close to the preference learning
problem called instance ranking, presented in Section 3.8.1.

Example 33. We classify the houses in Table 8.4, defined on the criteria from ex-
ample 1. The label (or class) is given in the last column. We assume 3 satisfaction
classes : Bad, Average and Good, which are clearly ordered from least preferred to
most preferred.

This data is relatively easier to obtain than regression data, due to its lower
accuracy. We can consider that a human would be able to indicate the correct
class of satisfaction to associate to a given alternative, with high confidence (in
particular in usual cases with two or three classes). These can also be obtained
from implicit labels (for instance, if a user has "liked" or "disliked" some online
content, this content can be classified as "good" or "bad" for the given user). As
a consequence, behavioral data such as that used in recommender systems could
be exploitable in this setting.

8.5.3.1 2 Classes

We first look at the basic case, where there are only two classes (i.e. "Good" and
"Bad"). In this case, we can consider those labels to hold the respective values 1
and 0. An adapted loss for this problem is the logistic loss, which is heavily used
in logistic regression and, later, choquistic utilitaristic regression [Tehrani et al.,
2014].

The idea is to fit our model with a logistic sigmoid at its output node. That is,
given H a UHCI or U-DAG-CI network, which returns a score H(x) on alternative
x. Then, the probability that x belongs to class 1 is:

P (y = 1|x) = σβ,γ(H(x))

The idea behind this is that the probability of x belonging to class 1 increases
with H(x), following a logistic sigmoid centered in β and with steepness parameter

8.5. TRAINING SETTINGS 191

γ. These two parameters are to be learned during training. The logistic loss on a
dataset DS is given by:

Err(DS) =
∑

(x,y)∈DS

[y log(σβ,γ(H(x))) + (1− y) log(1− σβ,γ(H(x)))] (8.1)

8.5.3.2 K classes

The binary classification problem can be generalized to more classes. All classes
are denoted by the integers from 0 to K−1, with 0 being the least preferred class.
There needs to be a preference order among the classes; that is, all alternatives
from class i ∈ {0, 1, ..., K − 1} are preferred to all alternatives from class j < i.

Once again, we want the UHCI or U-DAG-CI to reflect that preference; that
is, we want the class returned to be non-decreasing w.r.t. the model (a higher
score will yield a more preferred class). While a sum of K step functions (a.k.a.
Heaviside functions) would be formally valid, we need a differentiable function in
order to have a gradient to back-propagate. Thus, we use a sum of K − 1 logistic
sigmoids σβi,γi , with i ∈ {1, K − 1}, in order to convert the score H(x) into a
predicted class. This is illustrated in Figure 8.6.

We can then use the mean squared error for training:

err(x) =

 ∑
i∈{1,...,K−1}

σβi,γi(H(x))− y

2

For simplicity, we assume that the βi are sorted, that is, βi ≤ βi+1. This is
not a strong constraint, as it can be done by re-indexing during or after training
without changing anything to the model.

In order to do inference on the class of a given alternative x, after training, we
define a set of K + 1 thresholds ti, i ∈ {0, ..., K}, such that:

t0 = 0, tK = 1, ti = βi otherwise

After training, the inference of a given class can be done as such:

ŷ = min{i ∈ {1, ..., K − 1}, H(x) > βi}

That is, all alternatives x from class i are such that ti < H(x) ≤ ti + 1. We
recall that, as the output of a U-DAG-CI or UHCI, we have H(x) ∈ [0, 1], ensuring
that all alternatives be able to be classified this way.

192 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

Figure 8.6: Class prediction (4 classes), given H(x): sum of 3 step functions with means
3 sigmoids with respective thresholds 0.18, 0.29, 0.8, compared to a sum of 3 logistic
sigmoids centered in 0.18, 0.29 and 0.8

8.5.4 Pairwise Preference Learning

Example 34. We assume the houses in table 8.5, defined on the criteria from
example 1. The alternatives are numbered from 1 to 5 according to their row in
the table. It is analogous to bipartite object ranking, such as presented in Section
3.8.1.

Then, we write i ≻ j (resp. i ∼ j) the information that the ith alternative is
preferred to (resp. equally satisfying as) the jth alternative. Then, we will have a
DS, of the following form:

Surface Garden Garage Road Transp. Downtown Price
m2 m2 (yes/no) km km km e
50 100 No 0.1 0. 0. 400,000
110 150 Yes 0.5 3. 4. 500,000
150 0 No 1. 0.5 0.5 450,000
150 30 No 0.1 5. 3. 300,000
500 1000 Yes 5. 5. 10. 1,500,000

Table 8.5: Alternatives 1 to 5 for the pairwise learning setting

8.5. TRAINING SETTINGS 193

• 1 ≻ 2 (alternative 1 is preferred to alternative 2)

• 1 ≻ 4

• 1 ≻ 5

• 3 ≻ 1

• 3 ≻ 2

• 3 ≻ 4

• 3 ≻ 5

• 5 ≻ 2

• 5 ≻ 4

• 2 ∼ 4 (the alternatives are equivalently appreciated)

That is, a set of pairs of preference and equivalence.

We wish to learn a UHCI or U-DAG-CI H which reflects those preferences.
That is, we wish that, given a pair of alternatives x(1) and x(2) such that if x(1) ≻
x(2), we have H(x(1)) > H(x(2)). In the same way, we wish that, if x(1) ∼ x(2),
then H(x(1)) = H(x(2)). Thus, H can still be interpreted as a score. Our dataset
will have the form:

DS =
{((

(x(1)
(j),x

(2)
(j)

)
, y(j)

)
, j ∈ {1, ...,m}

}
such that:

y(j) =


1 if x(1)

(j) ≻ x(2)
(j)

0 if x(1)
(j) ∼ x(2)

(j)

−1 if x(1)
(j) ≺ x(2)

(j)

In order to learn from such data, we adopt a siamese approach [Bromley et al.,
1993]. That is, we use not one, but two networks H1 and H2 with the same
architecture and parameters (i.e. both are exact copies of each other and represent
the same function). Given

((
(x(1)

(j),x
(2)
(j)

)
, y(j)

)
∈ DS, the forward phase is such

that H1 is fed x(1)
(j), and H2 is fed x(2)

(j). Their respective scores S1 := H1

(
x(1)
(j)

)
and

S2 := H2

(
x(2)
(j)

)
are computed normally, by propagating through both networks

parallelly. Then, the output of the siamese network is computed as:

194 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

2 ∗ σ0,γ(S1 − S2)− 1

With γ an hyperparameter that gives the steepness of the output sigmoid.
Using this, we see that, indeed, if S1 = S2 (that is, if the model gives the same
score to both alternatives), the output is 0. If S1 > S2, that is, if the model prefers
S1, the output goes towards 1, increasing with the difference S1 − S2. If S1 < S2,
that is, if the model prefers S2, the output goes towards −1, decreasing with the
difference S1 − S2. This fits the y(j) as described above.

As we recall, they both represent the same function H (either a UHCI or a
U-DAG-CI). Using the mean squared error as a loss function, we have:

Err(DS) =
1

m
(2 ∗ σ0,γ(S1 − S2)− 1− y)2

=
1

m

(
2 ∗ σ0,γ

(
H1

(
x(1)
(j)

)
−H2

(
x(2)
(j)

))
− 1− y

)2
=

1

m

(
2 ∗ σ0,γ

(
H
(
x(1)
(j)

)
−H

(
x(2)
(j)

))
− 1− y

)2 (8.2)

Now, the gradients can be computed on both networks H1 and H2. Indeed,
assuming a parameter θ in H. Writing O := S1− S2, we have:

∂Err(DS)

∂θ
=

∂Err(DS)

∂O
· ∂O
∂θ

=
∂Err(DS)

∂O
·
(
∂S1

∂θ
− ∂S2

∂θ

) (8.3)

Then, both sets of gradients are applied to H1, whose parameters are updated.
Finally, H2 is replaced by a copy of the updated H1, such that both network still
represent the same functions again.

8.5.5 Training and Regularization

8.5.5.1 Training Algorithms

These networks can be trained with any gradient descent algorithm available. In
practice, as will be described with the experimental results, we had good results
with stochastic gradient descent and batch gradient descent with simple geometric
learning-rate decay. In many cases, momentum helped speed up the training phase
by a significant factor.

8.5. TRAINING SETTINGS 195

8.5.5.2 Regularizations

In order to limit the number of parameters, and prevent overfitting, it is common
to use regularizations. These appendages to the loss function penalize undesired
behaviours, in particular keeping a large number of parameters.

This is in particular important for parameters that do not hold an intrinsic
meaning, and are redundant with others. In particular, let M any monotonic
marginal utility module (which might be part of a larger module, such as bitonic or
selector modules), as defined in Chapter 6. We recall that the function represented
by M can be written as shown in (6.1):

u(x) =
h∑

k=1

rksk(x) :=

p∑
k=1

rk

1 + e−(ηkx−βk)

Due to the high redundancy between all sigmoids in this sum, we introduce the
following L1 regularization term to the loss function on the parameters of module
M :

RM = λ
h∑

k=1

|rk| (8.4)

where λ is a non-negative hyperparameter determining the importance of the
regularization. The higher λ, the more the model will try to eliminate sigmoids
by reducing their weight to 0.

In practice, we need one such term for all monotonic marginal utility module
(once again, whether they are used on their own or as a component of a bigger
utility module).

8.5.6 Convergence of the Learning Settings

The three learning settings described in sections 8.5.2, 8.5.3 and 8.5.4 are not
mutually exclusive. Indeed, in the three cases, the model will learn a UHCI or
U-DAG-CI scoring model, with the given architecture, marginal utilities’ types
and aggregators’ types.

Thus, a model trained in either types can be used as an inference models for
either predicting a score (regression setting) or a preference (pairwise preference
setting). Regarding the ordinal regression setting, the issue would be that a model
trained in another setting would lack the information about the thresholds ti that
separate the classes. In any case, the scoring model might remain an informative
tool for further inference on new data points. Its aggregators and marginal utilities
can also be analyzed in order to obtain an interpretation of the data.

196 CHAPTER 8. ASSEMBLING AND TRAINING A NETWORK

This also allows the model to be trained in hybrid data, with data points
coming from either of the three settings, all within the same training dataset.

Example 35. Below, we represent the alternatives from examples 31 as vectors
of dimension 7 (one for each criterion). For instance, the first alternative of
Table 8.3 would be written as (50, 100,No, 0.1, 0., 0., 400000). For regression and
classification, we write a labeled datapoint as a pair (x, y) with x the alternative
and y the label.

A mixed dataset, taking points into all three settings, would look like:

DS = {((50, 100,No, 0.1, 0., 0., 400000), 0.4);
((110, 150,Yes, 0.5, 3., 4., 500000), 0.1);
((150, 0,No, 1., 0.5, 0.5, 450000),Good);
((150, 30,No, 0.1, 5., 3., 300000),Bad);
(50, 100,No, 0.1, 0., 0., 400000) ≻ (500, 1000,Yes, 5., 5., 10., 1500000)}

The two first points are from the regression setting, the two next ones are
from an ordinal regression setting, and the last one is a preference between two
alternatives.

Of course, training on such a data set might prove tricky. First of all, there
would be 3 learning rates to tune, rather than a single one. Secondly, as the data
likely comes from different sources, it might be harder to ensure that the dataset
is coherent (that is, that the optimal underlying decision model is similar for all
sources). Nonetheless, if it is the case, mixing those settings allows to train on a
larger dataset, in cases where data is hard to come by.

8.6 Conclusion and Remarks

We have seen in this part the heart of this thesis’s contribution, namely the ability
to learn a valid UHCI, or U-DAG-CI, end-to-end, from data of several types.
These models are formally valid, and any possible model can be approximaged by
a Neur-HCI network. As a consequence, this ensures that thus trained models
have all the desirable properties of their MCDA counterparts. In particular, they
are easily interpretable, and can thus be easily verified by a field expert after
training. They can also be analyzed at runtime by a DM, allowing their use in
a safety-critical context. One last advantage is that, once trained, the neuronal
structure of the model can be discarded, and the function represented can be
written as a single mathematical formula, making it lightweight, quick to run,

8.6. CONCLUSION AND REMARKS 197

and especially easy to embed on a dedicated frugal architecture, such as a FPGA
board.

Moreover, the CI is a 1-Lipschitz-continuous function; as a consequence, so
are HCIs and DAG-CIs. Assuming we can bound, by hand, the derivative of the
marginal utilities to a given value γ, we can then obtain a γ-Lipschitz function.
This can be done through clipping on the precision parameters of the logistic
sigmoids involved in the model. Combined with the limited dimmensionnality of
MCDA problems, this makes this model robust by-design to adversarial examples,
even during training.

The monotonicity conditions also play a role in robustness. Indeed, if the DM
can ensure that the model be valid on a given alternative x, then the whole area of
alternatives which x Pareto-dominates can only be considered at most as good as
x. If an expert can thus validate some critical outputs such as "unsatisfying", this
thus allows to guarantee formally that the model will consider this region of the
space as "unsatisfying", leading to the avoidance of errors on said region, regardless
of any adversarial manipulation which remains in the said region. We now present
some experimental results to validate our approach, both on real and artificial
data. We show that the models presented in this part perform well, and are quite
robust to noise [Bresson et al., 2020a]; this, together with the identifiability result
presented in Part III, allows to expect some interesting stability in trained models’
behaviours.

Part V

Experimentations and Empirical
Validation

199

CHAPTER 9

EMPIRICAL VALIDATION OF
NEUR-HCI

Contents
9.1 Experimental Setting and Objectives 202

9.1.1 General Considerations 202

9.1.2 How to Read a Figure ? 203

9.1.3 Generator Models . 204

9.2 Training with a Fixed Hierarchy 208

9.2.1 General Settings . 208

9.2.2 Consistent Data, Large Sample Limit 208

9.2.3 Selectors . 211

9.2.4 Bitonic utilities . 212

9.2.5 Smaller and Noisy Datasets 215

9.2.6 Comments and Conclusion 227

9.3 Learning a Model without a Known Hierarchy 228

9.3.1 Performance . 228

9.3.2 Stability of the Indicators across the Models 229

9.3.3 Evaluating the Global Winter Values as Weights of a
Linear Approximators 235

9.4 Real Data . 237

9.4.1 Setting . 237

201

202 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

9.4.2 Analysis of the Results 238

9.4.3 Stability . 240

9.5 Training Time . 243

9.1 Experimental Setting and Objectives

9.1.1 General Considerations

In this chapter, we work on evaluating key aspects of the relevance of Neur-HCI.
We wish to evaluate, in particular, its advantages and drawbacks, in particular for
using in safety-critical contexts.

In the first part of this chapter, we work in an MCDA-like setting. We assume
that we know, from expert knowledge, a hierarchy fitting that of the underlying
processes that generated the data. We show that a Neur-HCI network, built with
this information, is able to learn, very accurately, a model that fits the generated
data well. Moreover, we show that the model is able to recover the real parameters
of the generating model from this data only. The algorithms used for training are
either batch gradient descent or stochastic gradient descent, with varying levels of
momentum depending on the setting and hyperparameter tuning.

In the second part, we assume that the hierarchy and additivity is unknown.
We thus study how well models with unknown hierarchies can be approximated
by DAG-CI and flat models.

The main focuses of our evaluations:

• Performance: how well a Neur-HCI model is able to fit data, and to learn
a model with a low generalization error

• Stability/Robustness: how noise and random variations in data impact the
performance and the learned model

Performance is obviously relevant to evaluate how well the model would perform
on yet unseen data. It is the primary way of evaluating a machine learning model.
Indeed, a model which performs poorly on new data is virtually useless for real
life applications.

On the other hand, stability and robustness are necessary for interpretability
and trustability. Indeed, if the same data can make models learn very diverse sets
of parameters, there will be some conflicting interpretations, which, in turn, make
the model impossible to interpret. While we showed the unicity of the model in
Part III, this result is only theoretical, and does not provide any guarantees as to
the behaviour of the model when training on noisy data, or on finite datasets. We

9.1. EXPERIMENTAL SETTING AND OBJECTIVES 203

show, nonetheless, that empirical stability allows to reinforce this result, and hints
at a stronger formal result for robustness.

9.1.2 How to Read a Figure ?

In the different settings in which we experiment, it is necessary to train several
models to have a realistic evaluation of how well Neur-HCI performs in this
setting. Indeed, if we were to train only a single model in each setting, we could
be good or bad "by chance", especially if the training is unstable. After training m
models in the same context, we thus have m different values for a given parameter
of the model, as each model has its own set of parameters. It is important to
note that, unless stated otherwise in very specific cases, each model is trained on
a close, but different dataset; for randomly generated points, this means that new
points are drawn for each model. For real data, this means that we draw new
random points in the dataset for each model. Some added variability comes from
the random initialization of each model, which starts with random parameters
(otherwise, models would likely all converge to the same basin of attraction, even
if there are other local minima in the parameter space).

Stability would be ensured if, for each parameter, its m values across all models
are close. As a consequence, we use boxplots to display the spread of a given
parameter. An example of such a graph is given in Figure 9.1. This figure is read
as follows:

• there is one sub-plot for each aggregator. In the case of a flat model, there
is a single plot. In this case, we follow the hierarchy from Figure 2.2; there
are thus 4 aggregators, with respective dimensions 3, 2, 2 and 3, and thus
respectively 6, 3, 3 and 6 parameters in a 2-additive setting

• focusing on the first sub-plot (top left), we see 6 boxes (one for each pa-
rameter). Each box corresponds to a parameter. We chose to represent the
interaction indices (see Section 2.5.5). There is thus one parameter I(S) for
each subset S of input of the given aggregator. They are ordered by size,
then, for all subsets of equal size by lexicographic order. That is, given an ag-
gregator of dimension 3, which aggregates criteria 1, 2 and 3, the parameters
will be ordered as:

1. I({1})
2. I({2})
3. I({3})
4. I({1, 2})

204 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

5. I({1, 3})
6. I({2, 3})
7. I({1, 2, 3})

• note that, for 2 additive aggregators, we thus only display the parameters
I(S) with |S| ≤ 2. Indeed, all of the others are, by design, set to 0 as
the learned measure is 2-additive. In our example, we thus do not display
I({1, 2, 3}), as it would be set to 0 for all models

• for an aggregator with k inputs, the k first parameters are thus the Shapley
values of each criterion

• in all plots, the (red) stars show the ground-truth value, i.e. the value of the
given parameter for the model that generated the data

The boxplots are to be read as such:

• the orange line is the median of the data points

• the lower and upper box’s limits are respectively the quartiles Q1 and Q3

• let IQR be the interquartile range (Q3-Q1). The upper whisker will extend
to last datum less than Q3+1.5*IQR. Similarly, the lower whisker will extend
to the first datum greater than Q1− 1.5IQR 1

• the circles are the outliers (i.e. any point that is not in the range defined by
the whiskers)

We thus expect for our boxplots to be around the star, and as flat as possible.
For instance, we see that, in the top-right subfigure of Figure 9.1, the two first
parameters are well learned with little variance, while the third (I({1, 2}) has high
bias (the learned values are away from the ground truth) and medium variance.

9.1.3 Generator Models

We work in this section often with artificial data. That is we, construct a so-called
ground-truth model Q. Then, we randomly draw some data points (x(1), ..., x(m))
in X, and compute their expected labels as y(i) = Q(x(i)). In the case of pairwise
preference data, we randomly draw a, b two alternatives in X, and add the pair
(a, b) to the data if and only if Q(a) > Q(b) + δ, with δ the threshold for strict

1https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.boxplot.html

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.boxplot.html

9.1. EXPERIMENTAL SETTING AND OBJECTIVES 205

Figure 9.1: Example of Figures. Each of the 4 sub-plots represents a given aggregator.
Note that this does not represent any real experiment, and is only there to present the
structure.

preference. In our case, we used δ = 0.1, as this denotes a significant preference
while remaining reasonably small.

We can thus control many aspects of the data generation, including its volume,
noisiness, and the complexity of the underlying phenomena.

We present in this section two standard models that we used in all settings for
ability to compare. They have 2-additive aggregators, and were used to generate
data in dimension 7. We refer to them below as standard tree model and stan-
dard flat model, respectively. When their use is not specified, then a model was
randomly generate for the specific test.

206 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

9.1.3.1 Standard Tree Model

For generating artificial data, we build models, the parameters of which we know.
Nonetheless, for some tests, we built by hand a custom model, in dimension 7, so
that we have some consistency among the different settings. This model has the
same hierarchy as Figure 2.2, which we recall below in Figure 9.2. Its aggregators
have the following expressions:

1

2 3

4 5 6

7

8

9 10

11

Figure 9.2: Hierarchy of criteria described in Example 1.

• xi = ai for i ∈ {1, ..., 7}

• a8 =
a2+min(a2,a3)

2

• a9 = max(a1, a8)

• a10 = 0.1a4 + 0.4a5 + 0.1a6 + 0.3min(a4, a6) + 0.1max(a5, a6)

• a11 =
3a7+2a9+3a10+min(a7,a9)+2max(a9,a10)

11

Notice that aggregator 9 is a single max, which violates the assumption for
identifiability. Nonetheless, we assume in this setting that the hierarchy be fixed;
as a consequence, this is not an issue, since the model with a fixed hierarchy
remains identifiable even in this case by Theorem 1 in Chapter 4.

We illustrate in Figure 9.3 what each point corresponds to in the case of the
standard tree model. The node indices are those of figure 9.2. Note that these are
the local importance of each node w.r.t. its parent (Shapley values and interaction

9.1. EXPERIMENTAL SETTING AND OBJECTIVES 207

indices of each individual CI). We also give the global Winter value(as defined
in Section 2.7.3) of each leaf, from 1 to 7 respectively (rounded at 4 decimals):
(0.159, 0.1193, 0.0397, 0.109, 0.1636, 0.0909, 0.3181). We notice that criterion
7 is thus the most important (∼ 0.32), while crieterion 3 is the least important
(∼ 0.04).

Figure 9.3: Ground truth values of the interaction indices of each aggregator for the
standard tree model. Note that the x-axis is labeled by the set to which the parameters
correspond. If a set is a singleton, then its interaction index is also its Shapley value.
Note that these indicators are computed at a local aggregator level, they do not reflect
the general importance of a criterion in the model (see the Winter values given in Section
9.1.3.1 to know the global importance of all criteria).

208 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

9.1.3.2 Standard Flat Model

The standard flat model is a single, 2-additive CI in dimension 7. It can be written
as:

Cµ(x) =0.1x1 + 0.2x2 + 0.05x4 + 0.05x5 + 0.2x7+

0.05min(x1, x3) + 0.05min(x3, x5) + 0.1min(x4, x6) + 0.2max(x2, x4)

(9.1)

The Shapley values of each criterion on this model are, from criterion 1 to 7
(rounded at 4 decimals): (0.1249, 0.2999, 0.0499, 0.1999, 0.0749, 0.0499, 0.1999).
Note that due to this model being flat (single CI), its global Winter values are the
same as its Shapley values.

9.2 Training with a Fixed Hierarchy

9.2.1 General Settings

In this setting, we generate artificial data from a known model Q with hierarchy
T . Then, we build Neur-HCI network with the same hierarchy T and train
them on the given data. We show that the trained models not only achieve nice
performance on the data, but also that they are able to recover the true underlying
parameters of the generator.

In the same way, we allowed the trained models to learn marginal utilities if
and only if the generating model did use some to generate its data.

9.2.2 Consistent Data, Large Sample Limit

We assume, at the moment, that the data is not noisy. That is, for all (x, y) ∈ DS,
y = Q(x). This means that, by Theorem 12, we can approximate Q as closely as
possible with the right parameters. We show that, in practice, we do converge to
the right parameters.

In this section, we generated a large number of data points. In all cases, both
training and testing error converged to values close to 0, we usually stopped fine-
tuning the hyperparameters once we reached a mean squared testing error (on a
testing dataset of 10, 000 points) of 10−7.

Figure 9.4 shows the distribution of parameters of 50 models, trained on data
generated by the standard tree models. We recall that the models we trained have
the same hierarchy as the generating one. We thus see 4 subplots, corresponding to
the parameters of aggregators 11, 8, 9 and 10 (in that order from left to right, top

9.2. TRAINING WITH A FIXED HIERARCHY 209

Figure 9.4: Distribution of the parameters of the aggregators of a UHCI with C2 aggre-
gators, 10,000 training examples generated by a UHCI with 2-additive aggregators. 50
models trained in regression setting.

to bottom). We can clearly see that the parameters for all aggregators are learned
with very little bias and variance. Indeed, the boxes are so flat we cannot see any
significant spread, and they are centered on the values of the same parameters for
the generator model (the red stars). Even the outliers (circles) are very close to
the real values.

Figure 9.5 shows a similar ability to converge to the right values, but on a flat
model of the same dimension, with thus more parameters. We also plot in Figure
9.6 the marginal utilities learned of all models on the 7 dimensions. We see that
they are all superimposed over the real ones, which were used to generate the data.

We see that using a model with higher additivity is not a problem. For instance,
Figure 9.7 (learning 2-additive data with a general aggregator) shows that the
parameters corresponding to sets of cardinality greater than 2 have converged to
0, i.e. their real values considering that the generator is 2-additive.

Similar pictures for learning models with the same hierarchy as the generator
in the large sample limit can be found in Appendix A.1. In all cases, we notice that
the result is very stable, always centered around the right parameters. In other
words, given enough non-noisy data, and assuming that the generative model is a
UHCI, Neur-HCI is able to recover the true parameters of the underlying model.

This last fact suggests a stronger result than the theoretical identifiability;
indeed, it hints at the fact that the unique theoretical solution is also the only
local minimum of the practical loss function, given a fixed hierarchy. This, in

210 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

Figure 9.5: Distribution of the parameters of the aggregators of a flat UHCI with a 2-
additive aggregator, 10, 000 training examples generated by the flat standard model. 50
models trained in regression setting.

Figure 9.6: Plotting the marginal utilities of 50 models trained in regression setting,
10, 000 training examples generated by a UHCI, and trained on a UHCI with similar
hierarchy. The ground-truth marginal utilities are marked with crosses.

9.2. TRAINING WITH A FIXED HIERARCHY 211

Figure 9.7: Distribution of the parameters of the aggregators of a CI with CG aggregators,
10, 000 training examples generated by an HCI with 2-additive aggregators. 50 models
trained in regression setting.

turn, encourages theoretical work on proving the existence of a unique basin of
attraction in the parameter set, reinforcing the identifiability result.

9.2.3 Selectors

The tests below were made on artificial data, to test the ability of the new mod-
ules to learn models which are known perfectly. In order to train the selectors, we
create a UHCI model Q (with known parameters). Note that the model is not a
Neur-HCI network, as the marginal utilities are explicitly defined as mathemat-
ical functions; this means that they can only be approached by a Neur-HCI with
a finite number of sigmoids (we use 100 in these experiments).

Finally, we train 100 Neur-HCI models with the most general selectors in place
of utility modules (M1 is single-peaked, M2 is single-valleyed). Note that a new
dataset is drawn for each model. These selectors can choose between the four types
of marginal utilities, both monotonic and bitonic ones. We then compare the type
of the learned utilities to their ground-truth type, The results are presented in the
confusion matrix below. Each line and column correspond to a type of marginal
utilities, with: "ND": non-decreasing; "NI": non-increasing; "SP": single-peaked
and "SV": single-valleyed. For instance, the number in square from row "ND" and
column "SV" shows how many times the model learned a single-valley function
when the ground truth was "non-decreasing".

212 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

Real Type ND NI SP SV
ND 0.993 0.0 0.007 0.0
NI 0.0 1.0 0.0 0.0
SP 0.0 0.01 0.99 0.0
SV 0.0 0.0 0.0 1.0

Table 9.1: Confusion matrix, 6 criteria, 1000 generated examples

We see that there are very few errors here, showing Neur-HCI’s ability to
learn the right type of utilities. This is coherent with the identifiability of a UHCI
fitted with utilities of these types [Labreuche et al., 2016]. Moreover, there is
never any confusion between "opposite" types of utilities: a non-increasing one
(resp. single-peaked) is never identified as a non-decreasing (resp. single-valleyed)
one, and vice versa.

The remaining error nonetheles hints at the fact that there is high sensitivity
in the criteria used for re-characterizing a given bitonic marginal utility into a
monotonic one. There might thus be some work needed in order to robustify this
process, such that those models can work nicely even in noisy settings.

9.2.4 Bitonic utilities

We trained 100 models (4-dimensional, with one marginal utility of each type) on
1000 randomly generated examples (different for each models). Figure 9.8 shows
the graph of all of the learned marginal utilities (100 per graph), with the ground-
truth values as stars. As we see, there is little variation between the learned
functions, which fit the ground-truth well. The most sensitive areas seem to be
the threshold in the bitonic case, as the maximal variance is observed there.

Note that the parameters of the aggregators also showed very little variance,
and fitted the ground truth model well (the maximal error between a learned
weight and its true value was 0.02, the average error on all weights and all models
was 0.013). This is illustrated in Figure 9.9; note that we display the Möbius
values (see Section 2.11) here due to using an older version of the software being
used, the information contained is the same as when displaying interaction indices.

9.2. TRAINING WITH A FIXED HIERARCHY 213

Figure 9.8: The four types of marginal utilities, learned by 100 models on 1000 artificial,
noiseless examples. Black stars denote the real values.

Figure 9.9: Distribution of the CI parameters (Möbius values) of the model from Figure
9.8

9.2.4.1 Discussion

We saw above that Neur-HCI is able to recognize the direction of marginal utili-
ties (among the four defined behaviours) in most cases, with artificial data. More-
over, it yields high stability both in the parameters of the aggregators and the
values of the learned marginal utility functions. In all settings, the trained models
converged to the right parameters. In particular, we see in most figures that the
boxes are very flat, and centered on the ground-truth, which is exactly what we
seek (very low error, very low variance).

This opens an opportunity in using Neur-HCI as an analysis tool; in a case
where a user would wish to know whether the type of the relationship between
several criteria and an output (or a label), a Neur-HCI can be trained on a

214 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

dataset and show which values increase (or decrease) the output. In domains
where the user can affect the value of the criteria for building alternatives (in a
design setting, for instance), this can in turn be used to optimize the values of the
criteria w.r.t. a given metric; by increasing (resp. decreasing) the criteria with an
increasing (resp. decreasing) utility, or by aiming towards the peak (resp. valley)
when the utility is bitonic. By doing this, a user could build better alternatives or
improve existing ones.

This could also find application in black box optimization model, where pa-
rameters can be meaningless (and thus not have an obvious relationship with the
output), in order to find whether several parameters tend to affect the output
positively or not, and thus indicating directions or regions to explore, using the
parameters of the aggregator as indicator of their relative importances.

Indeed, in some technical cases, we might have datasets which reflects certain
phenomena that experts might be unaware, or unsure, of. As a consequence,
training a Neur-HCI model on such data might allow, by studying its parameters,
to determine:

• which attributes contribute positively/negatively w.r.t. the output

• which attributes contribute the most/the least

• which attributes are in synergy/redundancy/independance

• which values on a given attribute increases greatly or not the output

Example 36. Assume the realtor from Example 1 has a list of all houses sold
in the past years, along with a satisfaction grade given by the customers. By
training a model to predict this satisfaction, then looking at the model’s Shapley
values, interaction indices and marginal utilities, the realtor can determine which
parameters are the most important for the customers.

Assuming that the learned parameters show that having a garage is highly re-
dundant with having a garden, but that the Shapley value of the garden parameter
is larger than that of the garage, the realtor knows that they had rather build houses
with gardens than with both a garage and a garden. This way, they maximize the
satisfaction while reducing the costs.

This stability is also encouraging, as it seems to indicate that there is a single
basin of attraction in the loss function, reinforcing empirically the identifiability
result presented in Part III. Moreover, the learned values are always the same
as the real ones, i.e. this basin of attraction is around the ground-truth model.
In practice, this designates the real model as the single local minimum of the
function. This is highly relevant as bad local minima are a hindrance for using
gradient-based learning.

9.2. TRAINING WITH A FIXED HIERARCHY 215

Moreover, we have seen that, in safety-critical settings, it is necessary for an
expert to be able to validate the model in order to trust it. The fact that training
a model on data that differs slightly yields a similar result allows to expect the
model to be able to cope with the randomness inherent to the data. Moreover, the
unicity of the learned model means that an expert only has to validate a single
parameterization in order to approve or reject the model.

All in all, these empirical results confirm the interest for a theoretical study
of the shape of the loss function when learning the parameters of an HCI. Such
results could confirm the ease of learning such models from data.

Nonetheless, the real world applications are usually accompanied by noisy and
small datasets. Our next experiments thus focuses on such settings.

9.2.5 Smaller and Noisy Datasets

In this setting, we keep the assumption that the hierarchy is known. Nonetheless,
the datasets used to train our models will be relatively smaller and noisy. Given a
non-noisy example (x, y) and a noise level ϵ, we generate an ϵ-noisy example (x, ỹ)
with the following processes, depending on the setting:

• Regression: ỹ = Q(x) +N (0, ϵ)

• Binary Classification: ỹ = y with probabilty 1− ϵ, 1− y otherwise

• Pairwise preferences: given a non-noisy example x1 ≻ x2, we keep it intact
with probability 1− ϵ, and invert it as x2 ≻ x1 otherwise

9.2.5.1 Performance

We present here the errors (computed on large, non-noisy datasets) yielded by
models trained on smaller and noisy datasets, in the different settings. Each time,
once again, we train models with the right hierarchy. Table 9.2 shows the mean and
standard deviation of the mean squared error for the regression setting, 9.3 shows
the misclassification error (proportion of misclassified examples) for the binary
classification setting and 9.4 shows the mis-ranking error (number of erroneous
preferences) for the pairwise learning-setting. The errors were computed on 10, 000
non-noisy examples, to see how well the trained model is close to the underlying
source.

216 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

Noise Tree Flat
0. 7.1× 10−7 ± 4.4× 10−6 2.5× 10−6 ± 7.2× 10−7

0.05 1.1× 10−4 ± 4.6× 10−5 1.7× 10−4 ± 4.8× 10−5

0.1 4.4× 10−4 ± 1.6× 10−4 6.3× 10−4 ± 1.8× 10−4

0.2 1.6× 10−3 ± 7.6× 10−4 1.7× 10−3 ± 6.1× 10−4

Table 9.2: Mean Squared Error in regression setting, 300 examples generated by the
standard Tree models (Tree column) and the standard Flat model (Flat column). The
models learned have the right hierarchy. The error is computed on 10,000 noiseless data
points.

Noise Tree Flat
0. 0.02947± 0.00592 0.02741± 0.00493

0.05 0.06322± 0.00747 0.04792± 0.00741
0.1 0.06708± 0.01019 0.05679± 0.01209
0.2 0.09848± 0.02276 0.08067± 0.01579

Table 9.3: Misclassification Error (proportion of points that were not assigned to the right
class), binary classification setting. Training sets composed by 300 examples generated
by the standard Tree models (Tree column) and the standard Flat model (Flat column).
The models learned have the right hierarchy. The error is computed on 10,000 noiseless
data points.

Noise Tree Flat
0. 3.2× 10−5 ± 0.00012 9.5× 10−5 ± 0.00032
0.1 0.00731± 0.00911 0.01843± 0.0257
0.2 0.02676± 0.02331 0.04047± 0.04261

Table 9.4: Mis-Ranking Error (proportion of inverted pairwise preferences), pairwise
ranking setting, Training sets composed by 300 examples generated by the standard Tree
models (Tree column) and the standard Flat model (Flat column). The models learned
have the right hierarchy. The error is computed on 10,000 noiseless data points.

Note that, in all of these cases, when the noise was 0, the training error tended
to 0 or was marginally close, a sign that the models were always able to fit the
training data well.

In the regression setting, the testing error remains very low when there isn’t
any noise; it obviously increases with the noise, but always remains significantly
inferior to the noise level (note that the reported error is squared). This is probably
because regression data is very informative, giving a precise target to the model.

9.2. TRAINING WITH A FIXED HIERARCHY 217

Figure 9.10: Distribution of the parameters of the aggregators of an HCI with C2 ag-
gregators, 100 training examples generated by an HCI with 2-additive aggregators. 50
models trained in regression setting.

We see that the mis-ranking error in the pairwise-preference learning is quite
good as well, always inferior to the noise level of the training data. While there is a
significant difference between both columns, this does not mean that Tree models
perform better, as each column was trained on different datasets from different
models.

In the classification setting, we notice some level of error, even without noise.
Note that the training error usually converged to values close to the noise level (as
expected). In particular, the error was 0 (or marginally different) for non-noisy
training sets. This indicates overfitting; i.e. the level of information contained in
the dataset was too little for such flexible models; they were thus able to perfectly
fit the training set, but have difficulty generalizing well. Moreover, it is to be noted
that the data generation method used was a uniform sampling of the domain,
rather than the exponential distributions that are assumed by the use of a logistic
loss.

All in all, these examples show that Neur-HCI models are able to train even on
reasonably-sized and noisy datasets, and maintain good performance. Examples
on real data can be found later in Section 9.4.

9.2.5.2 Stability

We present here how the model’s parameters behave when trained on small random
datasets. Other settings and aggregators can be found in Annex A.2. When not
otherwise specified, we trained in the regression setting.

As we see, training with 100 datapoints is enough for a model to learn good
approximations of the parameters of an HCI. The marginal utilities, on the other

218 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

Figure 9.11: Distribution of the parameters of the aggregators of a UHCI with C2 ag-
gregators, 100 training examples generated by a UHCI with 2-additive aggregators. 50
models trained in regression setting.

Figure 9.12: Plotting the marginal utilities associated with the model of Figure 9.11.
Note that the criteria with the smallest importance (3 and 6, with respective global
Winter values of 0.04 and 0.09) are also the one with the most variance.

9.2. TRAINING WITH A FIXED HIERARCHY 219

Aggregator Tree Flat
C2 0.00018 ± 0.00012 0.00032 ± 0.00022
C3 0.00021 ± 0.00016 0.00041 ± 0.00025
CG 0.00062 ± 0.00041 0.00327 ± 0.00104

Table 9.5: Mean squared testing error of the model trained on 30 randomly selected
points. The error was computed on a testing dataset with 10, 000 examples, the training
labels were computed by the standard models.

Figure 9.13: Learned parameters of 50 flat 2-additive UCI models trained on data gen-
erated by a flat 2-additive UCI. The training set was composed of 1000 examples, with
a gaussian noise with standard deviation 0.05

hand, suffer a clear loss of quality; in particular, as we can expect, the attributes
with the lowest influence on the model see their marginal utility more degraded.
This is understandable, as an error on a criterion with small importance will yield
to a small global error, which might be compensated several times by an error on
a much important criterion, not allowing the model to correct the model perfectly.
It is recurrent in the figures to thus notice that criterion 3 is the least-well learned
each time, as it has a very low importance (0.04).

With 30 examples, the parameters learned are even more degraded, and the
marginal utilities become imprecise at best. Table 9.5 shows the mean squared
error of models trained on 30 random points, and tested on 10, 000 points from
the same generator.

We illustrate here, as well as in Appendix A.3 the boxplots of the parameters
of models trained with noisy datasets.

220 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

Figure 9.14: Marginal utilities for the model from Figure 9.13.

Figure 9.15: Learned parameters of 50 2-additive UHCI models trained on data generated
by a 2-additive UHCI. The training set was composed of 1000 examples, with a gaussian
noise with standard deviation 0.05

9.2. TRAINING WITH A FIXED HIERARCHY 221

Figure 9.16: Marginal utilities for the model from Figure 9.15.

We notice an obvious degradation of the learned parameters, in particular the
marginal utilities. Nonetheless, we see that the parameters of the flat model are
submitted to much higher volatility/variance than those of the tree model. In par-
ticular, in all cases, the Shapley values of all aggregators (i.e. the first k parameters,
with k the dimension of the said aggregator) are quite accurately obtained each
time. Nonetheless, such variance might make it quite hard to interpret a trained
model.

9.2.5.3 Corner Points - Binary Alternatives

Obviously, a small number of uniformly drawn values is not really informative; in
particular, there might be lots of information shared between points (redundancy).
As a consequence, and given the constrainedness of the model, we consider whether
a limited set of carefully chosen points might suffice in eliciting the real model.

In this setting, we generate data points that come from the corners of the unit
hypercube. That is, a given datapoint can be written as (0−S, 1S) for a given
S ⊆ N . These are also called binary alternatives.

We try then to learn an HCI model based on this data. Note that we do not
consider marginal utilities, as such a dataset would hold no information about
them (we assume to sample values only in the extrema of the interval domain of
each criterion).

The idea is that, depending on the additivity of the model, a fixed number of
such points are enough to fully determine a model through a combinatorial process,

222 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

as we showed in Chapter III. Each time, the label is computed by the standard
model.

We study two cases:

• 30 points drawn randomly from the 128 corners

• all 128 corners of the unit hypercube

The results can be observed in Figures 9.17 to 9.18, with more settings in
Appendix A.4.

Figure 9.17: Distribution of the parameters of the aggregators of an HCI with C2 aggre-
gators, trained on 30 randomly drawn corners of the unit hypercube (different for each
trained model) , with the standard tree model as the ground truth.

9.2. TRAINING WITH A FIXED HIERARCHY 223

Figure 9.18: Distribution of the parameters of the aggregators of an HCI with C2 aggre-
gators, trained on all 128 corners of the unit hypercube, with the standard tree model as
the ground truth.

Figure 9.19: Distribution of the parameters of the aggregators of an HCI with C2 aggre-
gators, trained on 30 randomly drawn corners of the unit hypercube (different for each
trained model) , with the standard flat model as the ground truth.

224 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

Figure 9.20: Distribution of the parameters of the aggregators of an HCI with C2 aggre-
gators, trained on all 128 corners of the unit hypercube, with the standard flat model as
the ground truth.

We see on these pictures that, when given all of the corners, all of the models,
be it trees or flat, are able to recover the right parameters with little variance. On
the other hand, when given only 30, there is still variance among the parameters.
This is expected, as these points are not enough to actually define the model totally
(that is, several models could fit the data perfectly); the models are thus highly
vulnerable to the random drawing of the 30 points among 128. Table 9.6 shows
the error in training trees and flat models with different aggregators with those 30
corners. We notice that, as the aggregators get more complex, the error increases.
There is, nonetheless, a clearly lower error on tree models than on the flat one, as
is expected as the number of parameters to elicit is lower.

Aggregator Tree Flat
C2 4.4× 10−7 ± 1.3× 10−6 2.2× 10−5 ± 9.7× 10−5

C3 2.3× 10−5 ± 0.00013 0.00033± 0.00018
CG 0.00020 ± 0.00042 0.00052 ± 0.00194

Table 9.6: Mean squared testing error of the model trained on 30 randomly selected
corners of the unit hypercube. The error was computed on a testing dataset with 10, 000
examples, the training labels were computed by the standard models.

In effect, the training error converged quickly to very low values (we stopped
when we reached the 10−8 range) in all settings. In particular, the variance can be

9.2. TRAINING WITH A FIXED HIERARCHY 225

observed on parameters that correspond to interactions among large coalitions of
criteria. We see that, in terms of performance, all settings are better than on 30
points drawn randomly in the input space.

We also trained models on an even smaller dataset that fully defined the pa-
rameters of a given model (that is, a set of points that would be enough to elicit
the model with combinatorial methods):

• all corners written as (1S, 0−S) with 1 ≤ |S| ≤ 2 if the learned aggregators
are 2-additive: 27 points in dimension 7

• all corners written as (1S, 0−S) with 1 ≤ |S| ≤ 3 if the learned aggregators
are 3-additive: 62 points in dimension 7

Notice that we exclude the all-zero vector, as, by design, the model would
return 0 regardless of its parameters. In all cases, the models converged to the
right parameters, as illustrated in Figures 9.21 to 9.24 and in Annex A.4.

Figure 9.21: Distribution of the parameters of the aggregators of an HCI with C2 aggre-
gators, trained on the 27 corners of the unit hypercube with at most 2 coordinates set
to 1. The labels are computed by the standard tree model.

226 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

Figure 9.22: Distribution of the parameters of the aggregators of a CI with C2 aggrega-
tors, trained on the 27 corners of the unit hypercube with at most 2 coordinates set to
1. The labels are computed by the standard flat model.

Figure 9.23: Distribution of the parameters of the aggregators of an HCI with C3 aggre-
gators, trained on the 62 corners of the unit hypercube with at most 3 coordinates set
to 1. The labels are computed by the standard tree model.

9.2. TRAINING WITH A FIXED HIERARCHY 227

Figure 9.24: Distribution of the parameters of the aggregators of a CI with C3 aggrega-
tors, trained on the 62 corners of the unit hypercube with at most 3 coordinates set to
1. The labels are computed by the standard flat model.

It is interesting to notice that a few, well-informed points are sufficient to fully
recover the ground-truth model. This is of great interest, as it shows that, in clean
contexts, Neur-HCI models are efficient, as they only require little information to
uniquely and consistently identify the real parameters. Moreover, it has the added
advantage of learning the model end-to-end rather than locally, avoiding possible
bias induced by local elicitation of each module.

This is also encouraging for active learning methods. Indeed, if we noticed some
instability when training a given model, and an oracle was available to provide new
points, we could request some of these highly informative points to complete the
dataset, and thus constrain the model more strongly on area where it was overly
too lose due to lack of data points.

It would be interesting to determine the minimal set of points to fully determine
an HCI through combinatorial methods, and see whether Neur-HCI could be
trained efficiently on such a small dataset.

9.2.6 Comments and Conclusion

We saw in this section that, when given the right amount of data, and the expert in-
formation regarding the hierarchy of the model, Neur-HCI is able to consistently
retrieve the right parameters, both in terms of aggregator weights and of marginal
utility. This is coherent with the identifiability result with a fixed hierarchy that
we present in Chapter 4.

This is encouraging for working on theoretical results studying the shape of
the loss function. Moreover, we see some vulnerability to heavy noise, especially

228 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

if datasets are small, and if marginal utilities are required. Some technical work
in regularizations and training methods might help in improving these issues, and
are to be investigated.

We see also that Neur-HCI models do not require too large a dataset to train
on. In particular, small but informative datasets ensure a good training, and a
nicely trained model. We thus believe that Neur-HCI can be a good alternative
to combinatorial methods when trying to build a model hand in hand with an
expert, by minimizing the required interactions to:

• asking the hierarchy

• validation of the single model returned after training

9.3 Learning a Model without a Known Hierarchy

In this section, we illustrate how we can train Neur-HCI models when the hi-
erarchy is not readily available. We thus evaluate whether we still obtain good
performance. Moreover, we observe that some of the model’s indicators remain
intact, making explanation possible even in this setting.

9.3.1 Performance

We experiment on diverse methods for approximating a model with wrong or
uninformed hierarchies. Table 9.7 shows different settings, in different dimensions,
for testing the models. Our settings include:

• training a flat model to learn data generated by a tree model

• training a tree model to learn data generated by another tree model

• training a linear model to learn data generated by a tree model

• training a DAG-CI model to learn data generated by a tree model

• training a DAG-CI model to learn data generated by a flat general CI

• training a tree model to learn data generated by a flat CI

Unless otherwise stated, both generators and trained models have C2 aggrega-
tors. We also work in the regression setting, as we aim to see whether a model can
be approached closely by another with different hierarchy.

Note that the tree structure has no influence on the model if the aggregators
are linear (that is, any hierarchy can represent any linear model). That is, any

9.3. LEARNING A MODEL WITHOUT A KNOWN HIERARCHY 229

model should be able to learn the linear part of the ground truth model, with the
main source of error being that a given hierarchy cannot represent the non-linear
parts of a model with another hierarchy.

We notice that the linear model is the one that has the worst generalization
error among all models. We also see that trying to learn a tree model using a flat
model yields better performance than using another tree, which is understandable,
as a flat model can represent more interaction behaviours. On the other hand, we
see that the DAG models are the best for approximating a random tree, and that
a DAG with C2 aggregator can approximate a general CI well. The DAGs we
worked with had a single hidden layer, with the same width as the input layer.

Nonetheless, these results have to be mitigated; indeed, our tree and FM gen-
erators were naive, and thus probably biased. Moreover, the tuning of a DAG’s
hyperparameter has proven tricky, especially when the width of different layers dif-
fer greatly. It is thus not excluded that these results may be improved greatly (in
the case of DAGs) by some work on different methods for tuning and regularizing,
varying the layers’ width and the model’s depth.

In particular, we saw that, often, many of the CIs of the same layer tended to
learn the same weights. This clearly shows the need for working on a regularization
method, forcing the CIs to learn different weights, in order to escape the single
basin of attraction around a flat model. This also lead to training errors that
did not converge to 0., with the model stuck around a local minimum, and a
performance that is only slightly better than the flat model.

9.3.2 Stability of the Indicators across the Models

We also notice that, even when training a model with the wrong hierarchy, some
indicators (i.e. specific elements of the models that are used for interpretation)
remain constant, or stable. The agnosticity of such indicators is highly beneficial
for being able to interpret a model even if the given hierarchy is far from the real
one.

We notice that, in the large sample limit, we have very good approximations
of the marginal utilities of the model, indicating that they seem agnostic from the
aggregator’s hierarchy, as hinted in the identifiability result. Moreover, we notice
that the global Winter values for all attributes seem to remain close for all models
trained on close data, regardless of their hierarchy. Figures 9.25 and 9.26, along
with those in Annex A.5 display this phenomenon in various situations, where we
trained models with random hierarchies on datasets created by a ground-truth
model.

We note that, for some cases, there is a bias between the real value of a Shapley
or Winter value (depending on the setting) and the learned versions, despite having
low variance. This is an interesting phenomenon, which would deserve to be stud-

230 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

Hierarchy 5 10 20
Flat / Tree 0.00042 ± 0.00051 0.00051 ± 0.00057 0.00053 ± 0.00060
Tree / Tree 0.00195 ± 0.00130 0.00088 ± 0.0.00068 0.00074 ± 0.00071
LR / Tree 0.00354 ± 0.00254 0.00255 ± 0.00202 0.00202 ± 0.00172

DAG / Tree 0.00021 ± 0.00016 0.00031 ± 0.00017 0.00046 ±2.1× 10−5

DAG / CG 1.1× 10−5 ± 4.3× 10−6 0.0001± 1.6× 10−5 7.1× 10−5 ± 3.3× 10−6

Tree / Flat 5.5× 10−5 ± 1.3× 10−5 0.00018± 5.2× 10−5 0.00044± 0.00021

Table 9.7: Mean Squared Error in regression setting. Datasets contain 1000 examples
generated by 50 random models (random hierarchy and weights). The name of each line
is read as nature of the models trained / nature of the generator models. The dimension
of the models (number of criteria) is given by the column. In the first 4 lines, 50 datasets
were generated by random HCIs, each with a random set of weights and hierarchy. We
trained flat models (line 1), tree models with random hierarchies (line 2), linear regression,
and DAG-CI models over these datasets. The MSE is given over a large testing dataset
of 10, 000 examples. The 5th line is learning with DAG-CI data generated by a flat,
general, randomly generated CI. The last line is training 50 tree model with different
random hierarchies on data generated by randomly generated 2-additive flat models.
Each time, 1 model is trained on 1 dataset, the average and standard deviation over all
50 models is given each time.

ied in more details, in particular understanding which context makes a given value
be consistently over- or under-valued by other hierarchies. This tends to show that
such bias is linked to the hierarchy of the model that generated the data, rather
than the ones of the models that were trained on the data. In particular, this bias
is not present when the data is generated by a flat model.

When using DAGs, it becomes necessary to generalize the global Winter values,
in order to obtain indicators of the importance of a given criterion in the model.
We do so by introducing the generalized global Winter values, or DAG-Winter
values :

Definition 15. Let k ∈ M a node of the hierarchy. Let Pa(k) the set of parents
of node k. For a node v ∈ V , and j ∈ Ch(v), we write Φµv

j the Shapley value of
j w.r.t. the FM that parameterizes one of its parent v. In other words, Φµv

j is the
importance of j in the aggregation v, relative to that of the other children of v.

Then, the DAG-Winter value Ξk of node k is computed recursively as:

Ξr = 1

∀k ∈M \ {r} Ξk =
∑

v∈Pa(k)

ΞvΦ
µv

k
(9.2)

The philosophy behind it is that, in global Winter values for trees, we multiply
the Shapley values along the only path from a node to the root. In a DAG, there

9.3. LEARNING A MODEL WITHOUT A KNOWN HIERARCHY 231

Figure 9.25: Global Winter values for 50 tree models, each with a randomly generated
hierarchy, trained on (different) datasets (1000 examples each, dimension 5) generated
by the same randomly generated model (random hierarchy and weights).

Figure 9.26: Global Winter values for 50 tree models, each with a randomly generated
hierarchy, trained on (different) datasets (1000 examples each, dimension 10) generated
by the same randomly generated model (random hierarchy and weights).

232 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

Figure 9.27: Plotting the marginal utilities of 50 models trained in regression setting,
1, 000 training examples generated by a flat UCI, and trained on UHCIs with random
different hierarchies. The ground-truth marginal utilities are marked with crosses.

might be several paths from a given node to the root; we thus apply the same
process on each path and sum them.

Example 37. Assume the DAG-CI presented in Figure 9.28. We do not detail
their respective FM, but we assume that the aggregators have the following Shapley
values for their respective children:

• Agg. 5 has children (1, 2, 3, 4) with respective Shapley Values (0.5, 0.2, 0.2, 0.1)

• Agg. 6 has children (5, 2, 3, 4) with respective Shapley Values (0.1, 0.2, 0.3, 0.4)

• Agg. 7 has children (6, 2, 3, 4) with respective Shapley Values (0.2, 0.2, 0.6, 0.)

Then we can compute:

Ξ7 = 1(as r = 7 in this case)
Ξ6 = Ξ7Φ

µ7

6 = 0.2

Ξ5 = Ξ6Φ
µ6

5 = 0.2× 0.1 = 0.02

Ξ1 = Ξ5Φ
µ5

1 = 0.02× 0.5 = 0.01

Ξ2 = Ξ5Φ
µ5

2 + Ξ6Φ
µ6

2 + Ξ7Φ
µ7

2 = 0.004 + 0.04 + 0.2 = 0.244

Ξ3 = Ξ5Φ
µ5

3 + Ξ6Φ
µ6

3 + Ξ7Φ
µ7

3 = 0.004 + 0.06 + 0.6 = 0.664

Ξ4 = Ξ5Φ
µ5

4 + Ξ6Φ
µ6

4 + Ξ7Φ
µ7

4 = 0.002 + 0.08 + 0. = 0.082

9.3. LEARNING A MODEL WITHOUT A KNOWN HIERARCHY 233

1 2 3 4

5

6

7

Figure 9.28: DAG used in Example 37

Note that the sum of the DAG-Winter values of the leaves (1 to 4) is 1.

We see that this is equivalent to the global Winter value when working with a
tree (in this case, there is only a single parent for each node). Nonetheless, this is
at the moment an experimental value, as a natural extension of the global Winter
values to DAGs, which we use for these tests. It requires some formal work, and
axiomatization to see whether it holds the same intelligibility as the Shapley and
Winter values in their respective settings.

Despite their experimental nature, we notice that, indeed, these values are
stable for many DAGs trained on similar data. Moreover, they also provide good
approximations of the Winter values of the generating model, leading us to expect
them to have some interesting properties, and serve as a surrogate for interpreting
DAG-CI models. Nonetheless, while these values are clearly correlated to the
global Winter values of the ground-truth model, we notice a significant bias in
some cases (see, for instance, Figure 9.30). These results are illustrated in Figures
9.29 and 9.30, along with Annex A.6.

This bias is interesting as it is consistent across the models (that is, all models
undervalue or overvalue a given parameter, despite the dataset being different each
time). It would be interesting to study the origins of this phenomenon, given the
ground truth hierarchy and the size and width of the DAG network. As for the
previous setting, where we learned with purposefully erroneous hierarchies, the
biases seem to be correlated to the generator’s hierarchy.

234 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

Figure 9.29: DAG-Winter values for 50 DAG models, each with a randomly generated
hierarchy, trained on (different) datasets (1000 examples each, dimension 5) generated
by the same randomly generated model (random hierarchy and weights).

Figure 9.30: DAG-Winter values for 50 DAG models, each with a randomly generated
hierarchy, trained on (different) datasets (1000 examples each, dimension 10) generated
by the same randomly generated model (random hierarchy and weights). A clear bias is
observed between the real and learned values.

9.3. LEARNING A MODEL WITHOUT A KNOWN HIERARCHY 235

9.3.3 Evaluating the Global Winter Values as Weights of a
Linear Approximators

It is a known result that the Shapley values are the weights of the linear function
that minimizes the quadratic error with a given CI [Grabisch, 2016]. That is, the
vector w = (w1, ..., wn) that minimizes:∫

[0,1]n
(wx− Cµ(x))

2 dx

is such that wi = Φµ
i for each criterion i.

We study here whether this result still holds empirically for global Winter values
(resp. DAG-Winter values). That is, we study whether the global Winter values
(resp. DAG-Winter values) are the weights of the linear function that minimizes
the quadratic error with a given HCI (resp. DAG-CI). Below, we use the term
importance value of a criterion with regards to a model to designate either its
Shapley value (if the model is a CI), its global Winter value (if the model is an
HCI) or its DAG-Winter value (if the model is a DAG-CI).

In order to test this, we randomly generate 50 CI models, 50 HCI models (each
with its own random hierarchy), and 50 DAG-CI models. We use each model
to generate a dataset of 10, 000 points. We then train, on each dataset, scikit-
learn’s linear regression model2, which aims at finding the weights that minimize
the residual sum of squares (i.e. quadratic error). We allow the model to fit an
intercept. We thus obtain, for a given model Q, a vector wQ = (wQ

1 , ..., w
Q
n) which

we compare to the Shapley values (for CIs), to the global Winter values (for HCIs)
and to the DAG-Winter values (for DAG-CIs).

Figures 9.31 to 9.33 show the scatter plot of all the learned weights against the
importance value of the same model for the same criterion. That is, if model Q
has importance value ϕQ

i on criterion i, and if wQ is the weight vector learned by
linear regression on data generated by Q, the dot with coordinates (ϕQ

i , w
Q
i) will

appear on the plot. A point close to the x = y line means that the learned weight
is close to the corresponding importance value.

We clearly see that, in all cases, the weights learned by linear regression fit the
importance value of each model very well, as they are all disposed on the y = x
line. In particular, the average absolute error between an importance value and
the corresponding learned weight is in the range of the machine epsilon.

We can thus expect that the result evoked for CIs at the start of this section
still holds for (generalized) global Winter values in the cases of DAG-CIs and
HCIs. While these empirical results are no formal proof, they definitely show that
these importance values are good candidates for the weights of the optimal linear

2https://scikit-learn.org/stable/modules/linear_model.html

https://scikit-learn.org/stable/modules/linear_model.html

236 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

approximator of either model. Moreover, they motivate their use as an explanation
tool for interpreting Neur-HCI models.

Figure 9.31: Plotting the learned weights of the linear models against the Shapley value
of the generator CI model for the same criterion. The plot of y = x is also shown.

Figure 9.32: Plotting the learned weights of the linear models against the global Winter
value of the generator HCI model for the same criterion. The plot of y = x is also shown.

9.4. REAL DATA 237

Figure 9.33: Plotting the learned weights of the linear models against the DAG-Winter
value of the generator DAG-CI model for the same criterion. The plot of y = x is also
shown.

9.4 Real Data

9.4.1 Setting

We assess in this section the robustness of Neur-HCI on real data, in the clas-
sification, regression and ranking settings. The second goal is to investigate the
respective impacts of learning marginal utilities and using a hierarchical aggre-
gation. Accordingly, four Neur-HCI variants have been considered: NCI learns
a flat Choquet integral; NCI+U learns a flat CI together with marginal utilities;
NHCI learns a hierarchical CI with a tree-structured hierarchy; NHCI+U learns
an HCI together with marginal utilities.

Neur-HCI variants are compared to the following baselines: Multilayer per-
ceptron (MLP) with 1 fully connected hidden layer of n2 neurons, sigmoid activa-
tion function; Logistic regression (in the classification setting); Linear regression
(in the regression and ranking settings); Choquistic Utilitaristic Regression3 (CUR,
in the classification setting) [Fallah Tehrani et al., 2014]. The aggregators are 2-
additive for improved interpretability and complexity.

3As the binarization used with CUR was not available, we ran CUR on the same splits and
labels as Neur-HCI for a fair comparison; this might explain the performance differences w.r.t.
the original paper.

238 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

We compare on standard monotonic benchmarks, which include CPU, CEV,
LEV, MPG, DenBosch (DB), Mammographics (MG), Journal4, Boston Housing5,
Titanic6 and the Dagstuhl-15512 Arguments Quality corpus7 [Wachsmuth et al.,
2017]. The last one, reporting the preferences of three decision makers, yields
three sub-datasets referred to as Arguments 1, Arguments 2, Arguments 3 (each
one being associated with a single decision maker). A hierarchy is given for the
CEV and Arguments datasets; for all other datasets but LEV, the authors managed
to build a hierarchy; for LEV, no hierarchy was agreed upon (indicated as NA in
the results). Overall, the number of features ranges from 4 to 15; the number of
examples ranges from 119 to 1728. Ranking datasets are built from classification
(respectively regression) datasets, setting that x(i) ≻ x(j) whenever y(i) > y(j)

(resp. y(i) > y(j) + .05).
Each feature is associated with its monotonicity, i.e. whether the global score

U(x) increases with xi
8. All the features and labels in the training sets, were

normalized linearly in [0, 1].
The performance indicators are measured as follows. Each dataset is randomly

split into an 80% train and 20% test sets; the performance of the model trained
from the train set is measured on the test set, and averaged over 1,000 random
splits. Each time, all of the methods are evaluated on the same 1000 splits. De-
pending on the setting, the performance indicator is the misclassification rate, the
mean squared error, and the swapping rate in the ranking setting.

9.4.2 Analysis of the Results

Tables 9.8, 9.9 and 9.10 respectively report the Neur-HCI performances in the
classification, regression and ranking settings. The best result for each dataset
is displayed in bold 9. The MLP and Neur-HCI computational costs are below
5 minutes for each dataset on an Intel i7. The CUR computational cost is not
comparable (Matlab implementation).

As could have been expected, MLP generally behaves well; its number of
weights, cubic in the number of criteria, however precludes the interpretation of the
model. Neur-HCI behaves on a par with, or better than, the other interpretable
models, CUR and linear models.

4https://cs.uni-paderborn.de/?id=63916
5http://lib.stat.cmu.edu/datasets/boston
6https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/ problem12.html
7http://argumentation.bplaced.net/arguana/data
8The monotonicity is heuristically determined from the dataset, and decreasing criteria are

multiplied by −1 to comply with the fact that a Choquet integral is non-decreasing w.r.t. its
inputs.

9when several results are in bold, this means that the difference is not statistically significant

9.4. REAL DATA 239

A first remark is that learning marginal utilities does improve the performance:
NCI+U and NHCI+U perform better than their NCI and NHCI counterparts.
While this improvement can be naturally explained from the increased depth of
the neural architecture and thus the higher complexity of the model, it does not
come at the expense of the model interpretation.

A second remark is that hierarchical models outperform flat models on both
datasets with an expert hierarchy (CEV and Arguments). On some other datasets,
e.g. MPG, DG, MB, the hierarchy adversely affects the performance; as said, this
hierarchy is merely guessed by the authors. This suggests that a flat model is
preferable to one with an irrelevant hierarchy.

Dataset MLP Logistic Reg. CUR NCI NCI+U NHCI NHCI+U
CPU 0.015 ± 0.021 0.091±0.051 0.024 ± 0.025 0.045±0.039 0.023±0.024 0.030±0.027 0.023±0.026
CEV 0.004 ± 0.004 0.110±0.023 0.084±0.067 0.059±0.012 0.051±0.023 0.035±0.009 0.019±0.017
LEV 0.135 ± 0.021 0.161± 0.022 0.143±0.0213 0.136 ± 0.022 0.135 ± 0.019 N/A N/A
MPG 0.113 ± 0.036 0.090 ± 0.030 0.112 ± 0.099 0.086 ± 0.027 0.079 ± 0.027 0.085 ± 0.029 0.082 ± 0.027
DB 0.143 ± 0.069 0.164± 0.071 0.235 ± 0.017 0.139±0.067 0.132± 0.068 0.141 ± 0.068 0.132 ± 0.066
MG 0.179 ± 0.028 0.196 ± 0.027 0.166± 0.022 0.195 ± 0.027 0.166 ± 0.026 0.201 ± 0.030 0.181 ± 0.028

Journal 0.180 ±0.063 0.250±0.070 0.218±0.086 0.207±0.065 0.197±0.060 0.219±0.065 0.216±0.062
Boston 0.124 ± 0.030 0.145±0.033 0.1360± 0.085 0.127±0.031 0.129±0.032 0.121±0.032 0.129±0.031
Titanic 0.182 ± 0.025 0.202 ± 0.027 0.185 ± 0.041 0.192±0.0264 0.193 ± 0.027 0.203±0.027 0.194±0.027

Table 9.8: Neur-HCI, Classification setting: Classification error (average and variance
over 1,000 runs).

Dataset MLP Linear Reg. NCI NCI+U NHCI NHCI+U
CPU 0.0005 ± 0.0016 0.0022±0.0019 0.0023±0.0032 0.0009±0.0013 0.0026±0.0023 0.0009±0.0011
CEV 0.0094 ± 0.003 0.0434±0.0442 0.0437±0.0037 0.0264±0.0027 0.0197±0.0017 0.0176±0.0017
LEV 0.0312 ± 0.0254 0.0252±0.0029 0.0252±0.0031 0.0252±0.0029 N/A N/A
MPG 0.0047 ± 0.0008 0.0089±0.0019 0.0084±0.0018 0.0056±0.0013 0.0091±0.0018 0.0057±0.0012

Journal 0.0410 ± 0.010 0.0524±0.0128 0.0631±0.0127 0.0385±0.0112 0.0629 ± 0.0127 0.0391 ± 0.0117
Boston 0.0079 ± 0.0030 0.0174±0.0038 0.0157 ±0.0037 0.0072±0.0023 0.0151 ± 0.0033 0.0077 ± 0.0023

Table 9.9: Neur-HCI, Regression setting: Mean square error (average and variance over
1,000 runs)

Dataset MLP Linear Reg. NCI NCI+U NHCI NHCI+U
CPU 0.0005 ± 0.002 0.0006 ± 0.003 0.0007 ± 0.003 0.0006 ± 0.003 0.0009 ± 0.003 0.0010 ± 0.004
CEV 0.0174 ± 0.012 0.0642±0.011 0.0243±0.005 0.0099±0.002 0.0165±0.004 0.0088±0.003
LEV 0.0178 ± 0.025 0.0179±0.023 0.0178 ±0.024 0.0177±0.023 N/A N/A
MPG 0.0613 ± 0.012 0.0642±0.011 0.0610±0.011 0.0612±0.011 0.0633±0.012 0.0621±0.011
DB 0.1355 ± 0.0796 0.1257±0.079 0.1216±0.081 0.0942±0.069 0.1231 ± 0.092 0.0962 ± 0.081
MG 0.2601 ± 0.046 0.2661±0.047 0.2668±0.045 0.2381±0.037 0.2701±0.052 0.2446 ±0.036

Journal 0.1801 ± 0.064 0.1802±0.065 0.1761±0.063 0.1838±0.066 0.1711±0.063 0.1889±0.065
Boston 0.0659 ± 0.016 0.0790±0.014 0.0790±0.015 0.0669±0.012 0.0752 ± 0.014 0.0681 ± 0.014
Titanic 0.1521 ± 0.027 0.1651 ± 0.029 0.1632 ±0.028 0.1533 ±0.028 0.166 ± 0.028 0.1542 ± 0.029

Arguments 1 0.0157 ± 0.015 0.0195±0.016 0.0145±0.012 0.0141±0.012 0.0141±0.012 0.0140±0.012
Arguments 2 0.0588 ± 0.028 0.0653±0.031 0.0644±0.028 0.0581±0.027 0.0572±0.027 0.0572±0.028
Arguments 3 0.0740 ± 0.039 0.0941±0.042 0.0783±0.040 0.0784±0.040 0.0761±0.039 0.0771±0.041

Table 9.10: Neur-HCI, Ranking setting: percentage of mis-ordered pairs (average and
variance over 1,000 runs)

240 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

0.008±0.001 0.008±0.002 0.013±0.003
0.0±0.0 0.016±0.006 0.017±0.007

-0.007±0.006 0.001±0.001 0.131±0.005
0.03±0.011 0.168±0.008 0.004±0.004
0.121±0.006 0.025±0.008 0.129±0.003
0.047±0.005 -0.013±0.007 0.025±0.007
0.08±0.006 0.169±0.009 0.03±0.007

Table 9.11: CPU dataset (regression setting): Mean and standard deviation of the model
parameters (Möbius values) over 100 runs.

9.4.3 Stability

In terms of model identification, the solution trained from a given dataset along
independent runs is very stable, i.e. the parameters always converge towards the
same values, as is observed on artificial datasets. Table 9.11 reports the variance
over 100 runs of the 21 model parameters (the Möbius representation [Grabisch
and Labreuche, 2008]) on the CPU dataset.

The model stability makes room for the easy visual inspection of the model.
Indeed, a 2-additive model can be represented in the 2D plane, with the impor-
tance of the i-th criterion (respectively the synergy between i-th and j-th criteria)
depicted as the color of the (i, i) (respectively (i, j) and (j, i)) squares: the darker
the more important. As illustrated on Fig. 9.34, the most important criteria
in the CEV domain are the safety rating (criterion 6) and to a lesser extent the
passenger capacity (criterion 4); criteria 4 and 6 also happen to have a strong
synergy. The buying price and the security rating also have a significant synergy.
It is emphasized that this straightforward visualization enables the decision maker
to instantly check the trained model; the estimated synergies can be confronted
to the expectations and if needed the model can be revised by augmenting the
dataset, adding samples to illustrate the desired effects.

The performance of Neur-HCI in terms of classic error metrics (classification
loss, mean squared error) has been evaluated on diverse multicriteria datasets,
against several other models, including a similarly sized ANN. The results, which
can be found in [Bresson et al., 2020c], show that Neur-HCI performs globally well,
and can beat the unconstrained ANN on several datasets. We will here evaluate its
robustness and stability; that is, check whether the parameters of several learned
models are similar when trained on the same dataset, or slightly altered versions
of the same dataset. Such alterations involve adding noise, or training on different
parts of the dataset.

In the artificial case, we used an HCI with marginal utilities to generate ex-
amples, then trained our models on such data. In practice, every trained model

9.4. REAL DATA 241

Figure 9.34: CEV dataset: Visual inspection of the trained model, showing the impor-
tance of criteria 4 and 6, of their synergy, and to a lesser extent the synergy of criteria 1
and 6.

converged to the real one in the large sample limit (fewer than 100 samples were
enough in a 6-dimensional case).

We illustrate here the stability of Neur-HCI on the auto-MPG dataset10. It
holds 292 alternatives described by 7 criteria. Fig. 9.35 shows the parameters
values learned by 100 Neur-HCI networks in the regression setting, with a single
CI, each being trained on a different split of the dataset (80% of the dataset
was randomly chosen and used to train each model). We use a more compact
version of the parameters called their Möbius representation. One can see that the
parameters values remain similar for all models, indicating a strong influence of
criterion 4, followed by criteria 3 and 5. The marginal utilities are also very similar
for all models, as shown in Fig 9.36. This offers a first empirical confirmation of
the stability of Neur-HCI, as we obtain close models for close training sets.

Figures 9.37 and 9.38 show the stability of the interaction indices of the pa-
rameters on the CEV and LEV datasets respectively. We also notice an important
stability.

10collected from http://archive.ics.uci.edu/ml/index.php

242 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

Figure 9.35: Learned parameters (Möbius values) of 100 flat models trained on different
splits of the MPG dataset.

Figure 9.36: Learned marginal utilities of the models from Figure 9.35, trained on the
MPG dataset.

Figure 9.37: Learned parameters (interaction indices) of 100 flat models trained on dif-
ferent splits of the CEV dataset.

9.5. TRAINING TIME 243

Figure 9.38: Learned parameters (interaction indices) of 100 flat models trained on dif-
ferent splits of the LEV dataset.

9.5 Training Time

We present below the time it took to train a model, depending on the type of its
aggregators, dimension, and hierarchy. We tested on:

• Flat models, which maximizes the number of parameters, but minimizes the
number of aggregation steps

• Randomly generated trees, which gives an average between both values

• Binary trees, which maximizes the number of aggregators, but minimizes the
number of parameters. We look at two types of binary trees:

– chain binary tree, i.e. a binary tree where each non-leaf node has two
children, one of which is a leaf (see Figure 9.39)

– quasi-balanced binary tree, i.e. a binary tree where, for each non-leaf
node k, the number of descendants to the right of k differs of at least
one with the number of descendants to the left of k, (see Figure 9.40)

The results for all cases are reported for aggregators of types C2, C3 and CG,
respectively in Tables 9.15, 9.16 and 9.17, on an Intel i5 CPU. Table 9.12 through
9.14 show the number of parameter for each model (averaged over 50 models in the
case of the random trees). For non-random models, we had very little variance,
and thus only display the mean time.

We notice that the number of parameters of the model is not the only criterion
at play in estimating the time it takes to train a model. Indeed, while the flat

244 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

r

1 2n− 2

2

n+ 1

n− 1 n

. . .

Figure 9.39: Chain-binary tree with n leaves

r

11 12

8 9 10

7654321

Figure 9.40: Quasi-balanced binary tree with 7 leaves

models are clearly the longest to train in all settings, a random/quasi-balanced
hierarchy is still quicker to train than a binary one. This seems to indicate that
there is a tradeoff between the number of aggregators and that of parameters.
Nonetheless, both are very quick to train when compared to a flat model (which
becomes untractable for too large a dimension). We notice no significant difference
between the chain-binary model and the quasi-balanced one; nonetheless, it seems
that the latter could benefit from parallelization of its computations, given that
many nodes are not dependant upon each other.

Moreover, we see that, for tree networks, the time seems linear w.r.t. the
dimension. This is clearly understandable for binary models. Indeed, all of the
binary aggregators have 4 parameters, meaning that the binary trees have 4(n−1)
parameters. The fact that we notice the same linearity for random trees seems to
point at the fact that our tree generator was biased towards smaller aggregators,
making the number of parameters more dependant on the number of aggregators
than on their size.

9.5. TRAINING TIME 245

3 5 10 15 25 50 100
Flat 9 25 100 225 625 2500 10000

Binary 8 16 36 56 96 196 396
Random 8.34 17.67 41.28 64.62 112.21 233.33 477.29

Table 9.12: Average Number of Parameters of the Models, with C2 aggregators.

3 5 10 15 25 50 100
Flat 17 105 1060 3865 19, 025 159, 300 1, 303, 600

Binary 8 16 36 56 96 196 396
Random 10.79 28.42 79.17 135.7 267.44 547.03 1214.81

Table 9.13: Average Number of Parameters of the Models, with C3 aggregators.

3 5 10 15 25 50 100
Flat 8 32 1024 32, 768 3.3× 107 1.1× 1015 1.3× 1027

Binary 8 16 36 56 96 196 396
Random 8.0 17.24 39.72 66.08 120.6 256.88 559.68

Table 9.14: Average Number of Parameters of the Models, with CG aggregators.

3 5 10 15 25 50 100
Flat 38 52 104 187 426 1502 5682

Binary C. 58 104 222 336 553 1143 2193
Binary B. 57 103 214 327 549 1104 2211
Random 52± 9 81± 12 172± 17 233± 14 393± 18 781± 34 1587± 57

Table 9.15: Training time (seconds) of diverse HCIs with 2-additive aggregators. Lines
are the hierarchies, columns are the dimensions. Trained for 1000 epochs on 500 data
points. These values are represented in Figure A.55.

3 5 10 15 25 50 100
Flat 98 538 6808 31304 240159 ND ND

Binary C. 81 162 327 496 831 1649 3328
Binary B. 80 148 324 493 827 1672 3338
Random 86± 8 201± 53 673± 451 878± 445 1435± 409 3177± 643 6842± 591

Table 9.16: Training time (seconds) of diverse HCIs with 3-additive aggregators. Lines
are the hierarchies, columns are the dimensions. Trained for 1000 epochs on 500 data
points. ND values mean that the training time was too large to realistically train. These
values are represented in Figure A.57 and A.56.

246 CHAPTER 9. EMPIRICAL VALIDATION OF NEUR-HCI

3 5 10 15 25 50 100
Flat 32 458 101 557 514690 ND ND

Binary C. 43 75 160 234 392 771 1520
Binary B. 42 73 161 238 400 818 1638
Random 38± 5 69± 6 134± 10 196± 14 319± 14 644± 29 1276± 25

Table 9.17: Training time (seconds) of diverse HCIs with general aggregators. Lines are
the hierarchies, columns are the dimensions. Trained for 1000 epochs on 500 data points.
ND values mean that the training time was too large to realistically train. These values
are represented in Figure A.58 and A.59.

Part VI

Perspectives and Conclusion

247

CHAPTER 10

PERSPECTIVES AND CONCLUSION

10.1 Conclusion

Our work focuses on a class of MCDA decision models called UHCI; these mod-
els allow to represent an interpretable, highly constrained decision process. This
permits to build decision models which are easily validated by a field expert, and
can, in turn, be trusted for applications in safety-critical contexts. Nonetheless,
traditional methods for building such models often suffer several bottlenecks and
drawbacks, such as:

• the heavy need of preferential information obtained from a human DM

• the need to build the model element by element, leading to local constraints
that lead to global inconsistencies

Our first contribution [Bresson et al., 2021], presented in Part III, shows that,
under mild assumptions, a UHCI model has uniquely defined interpretable param-
eters. In other words, if two UHCIs give the same score to any two alternatives in
the alternative space, then we know them to have:

• the same marginal utilities: which is crucial to determine which values over
a given attribute give the highest or lowest criterion-wise satisfaction

• the same hierarchy: which indicates the underlying structure of the aggre-
gation

• the same weights for each aggregator: which determine the relative impor-
tance of each criterion, along with the way they interact with each other

249

250 CHAPTER 10. PERSPECTIVES AND CONCLUSION

This identifiability thus allows a single interpretation to be drawn from ob-
serving a model, which in turns encourages trust in the said interpretation. This
trust is necessary for a decision maker to accept the model’s aid in safety-critical
decision contexts.

The bulk of this proof is based on studying the UHCI composed of a piecewise-
linear HCI and of piecewise-C1 marginal utilities is a piecewise-C1 function. Our
proof is based on studying the frontiers between each C1 regions. We develop two
algorithms:

• one for recovering the separation frontiers of a given UHCI from its hierarchy,
aggregators and marginal utilities;

• one for recovering the hierarchy from the separation frontiers.

Through highlighting this relation between the structure of the UHCI as a
piecewise-C1 function and the model’s parameters (hierarchy included), we show
that the hierarchy is unique. We can then go on to prove that the rest of the
parameters can be recovered through evaluation in specific points, allowing us to
complete the proof.

This result thus encourages our second contribution [Bresson et al., 2020c, Bres-
son et al., 2020b], introduced in Part IV: a neural-networks framework called
Neur-HCI. Neur-HCI permits to recover, from data, the parameters of an
UHCI (including its marginal utilities), given as little expert knowledge as possible
(namely, we require an expert-provided hierarchy).

This framework is an important result to the field, as previous methods for
learning similar models were restricted to flat CIs (possibly fitted with marginal
utilities). Neur-HCI uses a modular approach, by representing each of the key
components of the UHCI by a small multilayer perceptron, called a module, then
assembling the modules along the pre-defined hierarchy. Each type of module is
designed to represent a specific type of function. The existing modules as to now
include:

• Marginal utilities;

– monotonic.

– bitonic.

– a selector module for automatically chosing among the other types.

• Choquet integral-based aggregators;

– 2-additive CIs;

– a subset of the 3-additive CIs;

10.1. CONCLUSION 251

– general CIs.

Each of this module implements by design all of the constraints expected from
the function it represents. Most notably, these include monotonicity and nor-
malization. Moreover, they can represent any of the functions of their respective
classes, making them relevant for learning such classes.

Once the UHCI is built from the said takes advantage of the backpropagation
algorithm to optimize all modules at the same time, effectively learning the model
from acquired data. It is important to note that the thus obtained UHCI is formally
valid. As a the neural structure is only a tool for learning; once trained, the model
can be rewritten as a simple mathematical formula, which is much lighter to use
and store, allowing for uses in resource-scarce environments, such as embedded
systems. Moreover, the native intelligibility of the UHCI allow for an end user to
quickly validate (or invalidate it) prior to using in run-time. The formal guarantees
on the model ensure that it satisfies all of the behavioural constraints expected
from an MCDA model, making it suitable for decision-aiding in a safety-critical
context.

We have shown several interesting empirical results in Part V:

Performance: Neur-HCI performs well in several learning settings. It achieves
good performance on both real and artificial dataset, in regression, binary classifi-
cation, and pairwise-preference learning. We see that an informed hierarchy allows
better performance than a random one, with the flat model as an in-between, of-
fering fairly good performance when no hierarchy is available.

Stability: the thus-learned models are stable, exhibiting robustness to noise
and random variability in a dataset. This encourages trust, as models trained on
close datasets will have close interpretations. Moreover, we see that indicators such
as the hierarchical Shapley values and marginal utilities remain consistent across
models with different hierarchies, with the most notable defect being some bias on
the Shapley values. This is encouraging, as it shows that, even if the expert-given
information or data is incomplete, or incorrect, the model can still be interpreted
along important behavioural aspects. These results were also presented in [Bresson
et al., 2020a].

Generalization of the Global Winter Value: We propose the DAG-Winter value
as a way to generalize the global Winter value to non-tree DAG structures. We
show that these indicators present the interesting property of being the optimal
weights (w.r.t. the mean squared error) for approximating a DAG-CI with a linear
model. We also see that these indicators are stable across models when training,
making them relevant values for estimating the relative importance of each crite-

252 CHAPTER 10. PERSPECTIVES AND CONCLUSION

rion.

This work thus effectively strengthens the bridge between MCDA and ML.
More generally, it encourages machine learning approaches on intelligible, con-
strained models, when the applications requires trust and formal guarantees.

We also provide an analysis of the training time depending on the hierarchy of
the model, showing that a hierarchy can significantly reduce training time in high
dimensions.

10.2 Perspectives

This works opens the way to a wide array of potential future research, both theo-
retical and technical.

10.2.1 Background and Formal Work

A large amount of work could be dedicated to the study of the representation
power of the (U)HCI and DAG-CI models. A classic metric for expressivity is
the VC dimension, which could be evaluated on UHCIs, in the wake of the work
presented in [Hüllermeier and Fallah Tehrani, 2012] that aimed at bounding it for
a simple CI.

Moreover, it would be interesting to study to what extent the additivity and
hierarchy-induced constraints affect that representation power. For instance, the
following questions might benefit from such analysis:

• how well can a 2-additive CI approximate a higher-additivity/general CI ?

• how well can a flat model approximate any HCI of the same dimension ?

• how well can a 0− 1-based 3-additive CI approximate any 3-additive CI ?

• what orders of sizes are needed for a DAG-CI to be a good approximator of
any HCI ?

Answering these questions allow to evaluate how well a model of a certain class
can learn a function of a more complex class. This, in turn, is useful for character-
izing the set of decision functions that can and cannot be represented under certain
complexity assumptions, allowing to automatically switch to a higher-complexity
class when needed.

Another strong result would be an extension of the theoretical identifiability
result presented in Part III. Indeed, this result only ensures the unicity of the

10.2. PERSPECTIVES 253

parameterization of a model defined over the entire, continuous, hyperspace Rn.
This result could be greatly reinforced in many ways.

First of all, one could wonder whether this result holds for a model defined on
a specific, discrete, or even finite, dataset, which is more realistic from a machine
learning point of view. If so, we could evaluate a minimal set of examples, then
use active learning methods for targeting specific examples.

Secondly, it would be relevant to evaluate whether two models with very dif-
ferent parameterizations can have very similar outputs for all points in the input
set. This is also crucial for machine learning, as it would ensure that, given two
very close datasets, we would learn models with very close parameterizations, thus
giving a theoretical guarantee over the robustness of the model. This would come
as a complement of the empirical stability that we have observed in Part V, where
noise only affects the learned model to a controlled extent.

The effect of the hierarchy is also an interesting topic to study; can two models
with different hierarchies be ϵ-close everywhere ? If so, do the hierarchies have to
be "close" w.r.t. a given metric ? In particular, if two hierarchies have a given
sub-tree in common, can we hope to have a similar behaviour among the shared
nodes ? These questions could allow to characterize even better the behaviour
of the HCI models, reinforcing the formal guarantees available and, in turn, user
trust in these models.

Another important point pertains to theoretical learnability. We have seen that
there is unicity of the model, but this is merely a first step in establishing accurately
the behaviour of the loss function. If we can prove the unicity of the basin of
attraction in the loss function, which is hinted by the experimental results, then we
can further reinforce the trust and learning processes, and guarantee additionnal
robustness on the learned models. We could also try and elicit minimal sets of
point to train a model, in the perspective of PAC learnability [Valiant, 1984].

We could also work on the global Winter values for HCIs. We have already
observed that they were quite stable, even across hierarchies. We also noticed that
the generalized version for DAG-CI also shows the same consistency. It might thus
be interesting to study formal properties of these indicators, and to what extent
some results that are true for Shapley values and a flat CI generalize to the tree
and DAG versions. These include:

• is the global Winter for Tree (resp. DAGs) the best linear approximator of
an HCI (resp. DAG-CI) ? We only showed empirically that it seems to be
the case, a formal proof would nicely complete this observation;

• can the (generalized) global Winter values be axiomatized in the same way
as the Shapley values already are ?

254 CHAPTER 10. PERSPECTIVES AND CONCLUSION

• can the interaction index of a CI be generalized, in the same way, under
reasonable axiomatics, to HCIs and DAG-CIs ?

Moreover, we have seen that the values of such global Winter values were some-
times biased when training on a different hierarchy. While this can be influenced
by our random generators for hierarchies and aggregator, which is naive and prob-
ably itself biased, the study of the effect of a given hierarchy on such values could
help building hierarchy-agnostic indicator for interpreting the model. In the same
direction, it would be interesting to evaluate the UHCI model in the framework of
intelligibility [Audemard et al., 2021], i.e. what informations can be derived from
the model

All in all, this work would help understand the Choquet integral and its hier-
archical extensions better, allowing to yield more guarantees for decision models
based on such aggregators. Such models could also be applied in contexts which
benefit from this graph structure, such as causal learning, in which the causality
relations between several variables are learned from data.

10.2.2 Experimental and Implementation Work

An obvious extension of Neur-HCI would be to be able to learn the hierarchy
from data. Indeed, at the moment, the tree-structure is supposed to be given
by an expert. We have tried a method based on building a DAG, then pruning
edges in order to recover, in the end, a treelike structure (by ensuring all node
have a single remaining outgoing edge). Nonetheless, this method failed, as the
model seemed always to converge towards a flat model. This corroborates the
fact that the flat model seems to be a good approximator of a tree-like model.
Methods based on evolutionary programming, such as those from the field of neuro-
evolution, focus specifically on tuning the architecture of a neural network. In
particular, an approach [Chen and Huang, 2019] based on genetic algorithms and
linear programming aims at learning such hierarchies. It would be interesting to
try it in concert with Neur-HCI and check the performance of this approach.

Following our proof of identifiability, we could also try and learn an HCI’s
separation frontiers between its affine regions, and thus rebuild the hierarchy from
there. It would be interesting to study the amount and quality of data required.
In particular, we have seen that a hand-picked sample of points allows to identify
the parameters of an HCI ; an active learning setting thus seems a good idea to
collect data for this method.

We could also work on developping neural modules for specific constrained
aggregators. One could think, for instance, about models such as OWA, WOWA
[Beliakov, 2018] or CIs with higher levels of additivity. We could also generalize to

10.2. PERSPECTIVES 255

multilinear models, in which the min terms of the CI are replaced by a product.
It would be relevant to then study hierarchical multilinear models.

On the other hand, it would also be reasonable to try and build multi- di-
mensionnal "marginal" utilities, to improve the representation power of strictly-
decomposable models, while maintaining the constrainedness and interpretability.
For instance, we could require a satisfaction function ui,j over criteria i and j,
such that ui,j is single-peaked w.r.t. xi, but where the optimal value x∗

i is a non-
decreasing function of xj. This would help deal with cases such as that from
Example 2 in Section 2.2.2.2, where the satisfaction over the heart rate is a single-
peaked function, with the value at the peak being a non-increasing function of the
age. This rejoins some work on the GAMI-Nets [Yang et al., 2021].

Another extension regards the types of models that can be elaborated from the
presented modules. We have presented Trees and GANs, but we could imagine
an intermediate model. The latter would be a set of HCI Q1, ..., Qm, each with
a different hierarchy, and possibly with different sets of criteria S1, ..., Sm. The
output of each HCI is then aggregated by a weighted sum, such that the global
model Q̃ can be written as:

Q̃(x) =
m∑
i=1

wiQi((xj, j ∈ Si)) (10.1)

with, ∀i ∈ [1, ...,m] , wi ≥ 0 and
m∑
i=1

wi = 1. We thus establish a sub-class of

the GAI model, which is a convex sum of HCI. This can be seen as an ensemble
method, which would generalize the HCI, while remaining strongly constrained,
and interpretable so long as the number of HCIs remains bounded.

There is also work in MCDA on the distinction between statistical correlation
(how two variables tend to evolve w.r.t. one another) and preferential interactions
(e.g. redundancy, synergy). Methods for decorrelating variables have been studied
(e.g. principal component analysis), trying to obtain new, uncorrelated latent
features. Neural approaches also exist, such as AgnoS [Doquet and Sebag, 2020],
which is based on a type of neural networks called an autoencoder, to build such
latent variables. It would be interesting to try and combine both approach by
connecting a Neur-HCI network on the output of such a "decorrelator". Then, the
parameters of both models would be learned together; on the one hand, the Neur-
HCI model would learn to solve the task at hand (regression, classification...)
while the decorrelator network would make the different criteria as independant
as possible. Studying the latent criteria might yield some interesting property of
the underlying phenomena.

In terms of learning methods, it seems that Neur-HCI models could greatly
benefit from parallelization of calculations at training time; indeed, when working

256 CHAPTER 10. PERSPECTIVES AND CONCLUSION

with trees, parallel branches can be computed independantly until they meet at
their common ancestor. We could also work on adapting Neur-HCI models to
online learning, allowing to extract information from a continuous data stream
rather than a fixed dataset. Improvements to the learning pipeline also includes
better tuning of the hyperparameters, especially on DAG-CIs, by adapting the
learning rate to the size of the aggregator, along as their position in the network.
Regularizations could also help the model converge nicely, forcing it to diversify
the behaviour of its different neurons (as this is an issue that was noticed when
training DAG-CIs).

Finally, the ability of Neur-HCI to learn significant and meaningful phenom-
ena about the data allows us to hope that a given model can be adapted for a task
different than the one it was trained to (for instance, train a model on classifica-
tion data, then use it for pair-wise preference elicitation). The field called transfer
learning specializes in this kind of method, and could help render Neur-HCI
models versatile for diverse MCDA settings.

10.3 Closure

In this thesis, we contributed to the bridging of two fields, by using ML methods to
learn MCDA models. We showed that our attempts were successful, making ML
ever closer to being used in settings where trusting the models is of the essence.

We have also proposed several axes for future work. Researching along those
lines seems highly relevant to us, helping both fields benefit from each other, as
the strengths of one can compensate some the other’s flaws.

10.3. CLOSURE 257

Acknowledgements

This thesis could not have been achieved without the help of a number of
people. Now is the time to thank them again for their help and contributions.

First of all, I cannot thank enough my supervisors Johanne and Christophe,
and advisors Michèle and Eyke, for providing invaluable help during the entirety of
these three years. Their advices and guidance, both in terms of scientific expertise
and in more transversal fields, made this work possible.

I am also grateful to the reporters Patrice Perny and Andrea Passerini for
accepting to review my thesis, and to the examiners Krzysztof Dembczyński and
Hendrik Blockeel for participating in the this Ph.D.’s jury.

I also thank my fellow Ph.D. students, both in Thales and in LISN, in particular
Adam, Armand, Douae, Erwann, Paul and Quentin. Casual conversations around
a coffee were always a good time, and more serious, scientific talk allowed me to
broaden my knowledge to fields I would probably not have explored otherwise.
Facing this Ph.D. side by side with such comrades made the difficult moments
much easier to overcome.

I finally thank my colleagues in both supervising entities, for their advice and
encouragements, as well as their friendliness and eagerness for sharing their exper-
tise.

259

260 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

APPENDIX A

FIGURES FOR THE EMPIRICAL
RESULTS

A.1 Figures: fixed hierarchy large sample limit

Figure A.1: Distribution of the parameters of the aggregators of a CI with CG aggre-
gators, 10, 000 training examples generated by an HCI with 2-additive aggregators. 50
models trained in regression setting. Notice that the parameters of the sets with more
than 2 elements are close to 0, as expected since the data is 2-additive.

A.1. FIGURES: FIXED HIERARCHY LARGE SAMPLE LIMIT 261

Figure A.2: Distribution of the parameters of the aggregators of a CI with C3 aggregators,
10, 000 training examples generated by an HCI with 2-additive aggregators. 50 models
trained in regression setting.

Figure A.3: Distribution of the parameters of the aggregators of a CI with C3 aggregators,
10, 000 training examples generated by an HCI with C3. 50 models trained in regression
setting.

262 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

Figure A.5: Marginal Utilities of 50 flat models trained on 1000 artificial datapoints
generated by the standard flat model. The ground-truth marginal utilities are represented
by the red stars.

Figure A.4: Distribution of the parameters of the aggregators of a CI with CG aggrega-
tors, 10, 000 training examples generated by an HCI with general-additive aggregators.
50 models trained in regression setting.

A.1. FIGURES: FIXED HIERARCHY LARGE SAMPLE LIMIT 263

Figure A.6: Distribution of the parameters of the aggregator of a CI with C2 aggregators,
10, 000 training examples generated by a CI with general-additive aggregators. 50 models
trained in binary classification setting.

Figure A.7: Distribution of the parameters of the aggregators of an HCI with C2 aggre-
gators, 10, 000 training examples generated by an HCI with general-additive aggregators.
50 models trained in binary classification setting.

264 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

Figure A.8: Distribution of the parameters of the aggregators of 50 HCI networks with
C3 aggregators, 1, 000 training examples generated by the standard tree model.

Figure A.9: Distribution of the parameters of the aggregators of 50 HCI networks with
CG aggregators, 1, 000 training examples generated by the standard tree model.

A.2. SMALL DATASETS 265

A.2 Small Datasets

Figure A.10: Distribution of the parameters of the aggregators of an HCI with C2 ag-
gregators, 100 training examples generated by an HCI with 2-additive aggregators. 50
models trained in regression setting.

Figure A.11: Distribution of the parameters of the aggregators of a CI with C2 aggrega-
tors, 100 training examples generated by a 2-additive CI. 50 models trained in regression
setting.

266 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

Figure A.12: Distribution of the parameters of the aggregators of a HCI with C2 ag-
gregators, 100 training examples generated by a 2-additive HCI. 50 models trained in
regression setting.

Figure A.13: Distribution of the parameters of the aggregators of a flat CI with C2
aggregators, 100 training examples generated by a flat CI with 2-additive aggregators.
50 models trained in regression setting.

A.2. SMALL DATASETS 267

Figure A.14: Plotting the marginal utilities of 50 models trained in regression setting,
30 training examples generated by a UHCI. The aggregators are 2-additive.

268 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

Figure A.15: Plotting the marginal utilities of 50 models trained in regression setting,
30 training examples generated by a UHCI. The aggregators are 2-additive.

Figure A.16: Distribution of the parameters of the aggregators of a CI with 3-additive
aggregators, 300 training examples generated by a flat 2-additive CI. 50 models trained
in regression setting.

A.2. SMALL DATASETS 269

Figure A.17: Learned parameters of 50 2-additive CI models trained on binary classifica-
tion data generated by a 2-additive CI. The training set was composed of 1000 examples,
with a noise level of 0.

Figure A.18: Learned parameters of 50 2-additive HCI models trained on binary clas-
sification data generated by a 2-additive HCI. The training set was composed of 1000
examples, with a noise level of 0.

270 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

A.3 Noisy Datasets

Figure A.19: Learned parameters of 50 2-additive CI models trained on data generated
by a 2-additive CI. The training set was composed of 1000 examples, with a gaussian
noise with standard deviation 0.1

Figure A.20: Learned parameters of 50 2-additive CI models trained on data generated
by a 2-additive CI. The training set was composed of 1000 examples, with a gaussian
noise with standard deviation 0.1

A.3. NOISY DATASETS 271

Figure A.21: Learned parameters of 50 2-additive CI models trained on data generated
by a 2-additive CI. The training set was composed of 1000 examples, with a gaussian
noise with standard deviation 0.2

Figure A.22: Learned parameters of 50 2-additive CI models trained on data generated
by a 2-additive CI. The training set was composed of 1000 examples, with a gaussian
noise with standard deviation 0.2

272 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

Figure A.23: Learned parameters of 50 2-additive CI models trained on data generated
by a 2-additive CI. The training set was composed of 1000 examples, with a gaussian
noise with standard deviation 0.2

Figure A.24: Learned parameters of 50 2-additive CI models trained on data generated
by a 2-additive CI. The training set was composed of 1000 examples, with a gaussian
noise with standard deviation 0.2

A.3. NOISY DATASETS 273

Figure A.25: Learned parameters of 50 2-additive HCI models trained on binary clas-
sification data generated by a 2-additive HCI. The training set was composed of 300
examples, with a noise level of 0.0.

Figure A.26: Learned parameters of 50 2-additive HCI models trained on binary clas-
sification data generated by a 2-additive HCI. The training set was composed of 300
examples, with a noise level of 0.0.

274 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

Figure A.27: Learned parameters of 50 2-additive HCI models trained on binary clas-
sification data generated by a 2-additive HCI. The training set was composed of 300
examples, with a noise level of 0.05.

Figure A.28: Learned parameters of 50 2-additive HCI models trained on binary clas-
sification data generated by a 2-additive HCI. The training set was composed of 300
examples, with a noise level of 0.05.

A.3. NOISY DATASETS 275

Figure A.29: Learned parameters of 50 2-additive CI models in pairwise preference set-
tings. The data was composed of 300 pairs of alternatives, with the preferred one given
each time. A given alternative a was considered prefered to b if Q(a) > Q(b) + 0.1, with
Q the standard flat model. The red star denote the ground truth parameters.

Figure A.30: Learned parameters of 50 2-additive HCI models in pairwise preference
settings. The data was composed of 300 pairs of alternatives, with the preferred one
given each time. A given alternative a was considered prefered to b if Q(a) > Q(b)+0.1,
with Q the standard tree model. The red star denote the ground truth parameters.

276 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

Figure A.31: Learned parameters of 50 2-additive CI models in pairwise preference set-
tings. The data was composed of 300 pairs of alternatives, with the preferred one given
each time. A given alternative a was considered prefered to b if Q(a) > Q(b) + 0.1, with
Q the standard flat model. The red star denote the ground truth parameters. The noise
level is at 0.1, i.e. 10% of the training pairs were inverted.

Figure A.32: Learned parameters of 50 2-additive HCI models in pairwise preference
settings. The data was composed of 300 pairs of alternatives, with the preferred one
given each time. A given alternative a was considered prefered to b if Q(a) > Q(b)+0.1,
with Q the standard tree model. The red star denote the ground truth parameters. The
noise level is at 0.1, i.e. 10% of the training pairs were inverted.

A.3. NOISY DATASETS 277

Figure A.33: Learned parameters of 50 2-additive CI models in pairwise preference set-
tings. The data was composed of 300 pairs of alternatives, with the preferred one given
each time. A given alternative a was considered prefered to b if Q(a) > Q(b) + 0.1, with
Q the standard flat model. The red star denote the ground truth parameters. The noise
level is at 0.2, i.e. 20% of the training pairs were inverted.

Figure A.34: Learned parameters of 50 2-additive HCI models in pairwise preference
settings. The data was composed of 300 pairs of alternatives, with the preferred one
given each time. A given alternative a was considered prefered to b if Q(a) > Q(b)+0.1,
with Q the standard tree model. The red star denote the ground truth parameters. The
noise level is at 0.2, i.e. 20% of the training pairs were inverted.

278 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

A.4 Corner Points - Binary Alternatives

Figure A.35: Distribution of the parameters of the aggregators of an HCI with C3 aggre-
gators, trained on 30 randomly drawn corners of the unit hypercube (different for each
trained model) , with the standard flat model as the ground truth.

Figure A.36: Distribution of the parameters of the aggregators of an HCI with C3 ag-
gregators, trained on all 128 corners of the unit hypercube, with the standard flat model
as the ground truth.

A.4. CORNER POINTS - BINARY ALTERNATIVES 279

Figure A.37: Distribution of the parameters of the aggregators of an HCI with C3 aggre-
gators, trained on 30 randomly drawn corners of the unit hypercube (different for each
trained model) , with the standard tree model as the ground truth.

Figure A.38: Distribution of the parameters of the aggregators of an HCI with C3 aggre-
gators, trained on all 128 corners of the unit hypercube, with the standard tree model as
the ground truth.

280 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

Figure A.39: Distribution of the parameters of the aggregators of an HCI with CG
aggregators, trained on 30 randomly drawn corners of the unit hypercube (different for
each trained model) , with the standard flat model as the ground truth.

Figure A.40: Distribution of the parameters of the aggregators of an HCI with CG
aggregators, trained on all 128 corners of the unit hypercube, with the standard flat
model as the ground truth.

A.4. CORNER POINTS - BINARY ALTERNATIVES 281

Figure A.41: Distribution of the parameters of the aggregators of an HCI with CG
aggregators, trained on 30 randomly drawn corners of the unit hypercube (different for
each trained model) , with the standard tree model as the ground truth.

Figure A.42: Distribution of the parameters of the aggregators of an HCI with CG
aggregators, trained on all 128 corners of the unit hypercube, with the standard tree
model as the ground truth.

282 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

A.5 Learning Without a Known Hierarchy

Figure A.43: Extended Shapley values for 50 tree models, each with a randomly generated
hierarchy, trained on (different) datasets (1000 examples each, dimension 15) generated
by the same randomly generated 2-additive model (random hierarchy and weights).

Figure A.44: Extended Shapley values for 50 tree models, each with a randomly generated
hierarchy, trained on (different) datasets (1000 examples each, dimension 20) generated
by the same randomly generated 2-additive model (random hierarchy and weights).

A.5. LEARNING WITHOUT A KNOWN HIERARCHY 283

Figure A.45: Extended Shapley values for 50 tree models, each with a randomly generated
hierarchy, trained on (different) datasets (1000 examples each, dimension 5) generated
by the same randomly generated flat 2-additive model (random weights).

Figure A.46: Extended Shapley values for 50 tree models, each with a randomly generated
hierarchy, trained on (different) datasets (1000 examples each, dimension 10) generated
by the same randomly generated flat 2-additive model (random weights).

284 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

Figure A.47: Extended Shapley values for 50 tree models, each with a randomly generated
hierarchy, trained on (different) datasets (1000 examples each, dimension 20) generated
by the same randomly generated flat 2-additive model (random weights).

Figure A.48: Marginal utilites of 50 random UHCIs (random hierarchy) trained on data
generated by the standard tree model, in regression setting, over 3000 data points.

A.5. LEARNING WITHOUT A KNOWN HIERARCHY 285

Figure A.49: Marginal utilites of 50 random UCIs (flat hierarchy) trained on data gen-
erated by the standard tree model, in regression setting, over 3000 data points.

286 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

A.6 Stability of DAG-Winter Values

Figure A.50: DAG Winter values for 50 DAG models, trained on (different) datasets (100
examples each, dimension 5) generated by the same randomly generated model (random
hierarchy and weights). We see a significant bias between the true and the learned values.

Figure A.51: DAG Winter values for 50 DAG models, trained on (different) datasets
(1000 examples each, dimension 5) generated by the same randomly generated model
(random hierarchy and weights).

A.6. STABILITY OF DAG-WINTER VALUES 287

Figure A.52: DAG Winter values for 50 DAG models, trained on (different) datasets
(100 examples each, dimension 10) generated by the same randomly generated model
(random hierarchy and weights). We see a significant bias between the true and the
learned values.

Figure A.53: DAG Winter values for 50 DAG models, trained on (different) datasets
(1000 examples each, dimension 10) generated by the same randomly generated model
(random hierarchy and weights).

288 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

Figure A.54: DAG Winter values for 50 DAG models, trained on (different) datasets
(1000 examples each, dimension 20) generated by the same randomly generated model
(random hierarchy and weights). We see a significant bias between the true and the
learned values.

A.7. TRAINING TIME 289

A.7 Training Time

Figure A.55: Training time (s) w.r.t. the dimension of the model. Comparison between
flat architectures, binary architectures and randomly generated trees. 2-additive aggre-
gators.

Figure A.56: Training time (s) w.r.t. the dimension of the model. Comparison between
flat architectures, binary architectures and randomly generated trees. 3-additive aggre-
gators.

290 APPENDIX A. FIGURES FOR THE EMPIRICAL RESULTS

Figure A.57: Same setting as in Figure A.56, without the flat model, to better compare
the non-flat models.

Figure A.58: Training time (s) w.r.t. the dimension of the model. Comparison between
flat architectures, binary architectures and randomly generated trees. General aggrega-
tors.

A.7. TRAINING TIME 291

Figure A.59: Same setting as in Figure A.58, without the flat model, to better compare
the non-flat models.

APPENDIX B

RÉSUMÉ EN FRANCAIS

Cette thèse a donné lieu à quatre publications:

Neural Representation and Learning of Hierarchical 2-additive Cho-
quet Integrals
R Bresson, J Cohen, E Hüllermeier, C Labreuche, M Sebag; International Joint
Conference on Artificial Intelligence (IJCAI-20), Pages 1984-1991

Learning 2-additive Hierarchical Choquet Integrals with non-monotonic
utilities
R Bresson, J Cohen, E Hüllermeier, C Labreuche, M Sebag; Proceedings, From
Multiple Criteria Decision Aid to Preference Learning, (DA2PL2020)

Evaluating the stability of the Neur-HCI framework
R Bresson, J Cohen, E Hüllermeier, C Labreuche, M Sebag; Actes de la conférence
(CAID 2020), Pages 120-128

On the Identifiability of Hierarchical Decision Models
R Bresson, J Cohen, E Hüllermeier, C Labreuche, M Sebag; 18th International
Conference on Principles of Knowledge Representation and Reasoning (KR2021),
Pages 151-162

Ca manuscrit est organisée comme suit :

293

294 APPENDIX B. RÉSUMÉ EN FRANCAIS

B.1 Partie II : Contexte et travaux existants

Dans cette partie, nous présentons les notions de base nécessaires pour établir le
contexte de notre travail. Cette partie est divisée en deux chapitres, car cette thèse
se situe à la croisée de deux grands domaines. Tout d’abord, dans le chapitre 2,
nous introduisons le domaine de l’aide multicritère à la décision (AMCD).

Nous présentons d’abord les notions de base et les motivations du domaine, en
particulier la notion d’alternatives définies sur des attributs. Nous détaillons les
motivations du domaine ; c’est-à-dire, construire des critères qui représenteront
le degré de satisfaction d’une alternative sur un attribut donné, afin d’établir des
modèles de décision qui représentent les préférences d’un décideur. De tels modèles
sont interprétables et hautement contraints (fiables), ce qui les rend aptes à être
utilisés dans des systèmes critiques pour la sécurité. Nous détaillons plusieurs
classes de modèles, ainsi que des méthodes de construction de modèles.

Nous nous concentrons en particulier sur les modèles décomposables. Ces mod-
èles ont la propriété intéressante suivante : la satisfaction apportée par un attribut
donné ne dépend pas de la valeur des autres attributs. Si cela restreint les com-
portements possibles du modèle, cela apporte également de l’intelligibilité au mod-
èle, qui peut alors être interprété beaucoup plus facilement.

La famille de modèles sur laquelle nous nous concentrons spécifiquement est
l’intégrale de Choquet (IC), une généralisation de la somme pondérée qui permet
de prendre en compte les interactions entre les critères (synergie, indépendance
et redondance). Nous généralisons à sa version hiérarchique (ICH). L’ICH est un
agrégateur hautement interprétable, qui sera utilisé pour calculer un score global,
pour une alternative, étant donné ses satisfactions attribut par attribut. Pour cela,
il faut que ces dernières soient facilement disponibles, ce qui n’est pas toujours le
cas lorsqu’on nous donne les valeurs brutes des attributs. Par conséquent, une
ICH peut également être combinée avec ce que l’on appelle des utilités marginales,
qui sont des fonctions réelles de dimension 1 sur les attributs, et qui permettent de
calculer la satisfaction apportée par une certaine valeur de l’attribut donné. une
ICH ainsi équipé d’utilités marginales est appelé une ICHU. Nous détaillons ces
modèles, car ils sont au cœur des contributions de cette thèse.

Les ICHU ont les avantages des modèles d’AMCD, en ce sens qu’ils sont in-
terprétables et contraints. Néanmoins, ils souffrent également des inconvénients
habituels de ce domaine, qui est fortement lié à la recherche opérationnelle. Elle
nécessite des informations préférentielles cohérentes, obtenues souvent de manière
itérative par une interaction avec un expert du domaine. Ce processus est donc
coûteux, et son efficacité est limitée par la source humaine d’information. Enfin,
il ne permet pas d’exploiter des données existantes et bruitées, qui pourraient être
facilement disponibles dans certains contextes.

B.2. PARTIE III : CONTRIBUTION THÉORIQUE 295

Par conséquent, nous nous tournons vers l’apprentissage machine (ML). Dans
le chapitre 3, nous introduisons le domaine de l’apprentissage automatique super-
visé. Nous présentons les concepts sous-jacents et les méthodes largement utilisées.
Nous donnons ensuite un bref apercu d’une famille de modèles appelés réseaux de
neurones (NN). En effet, ces modèles ont une structure hiérarchique inhérente, qui
est parfaitement adaptée pour représenter les ICHU.

Nous présentons les problèmes récurrents présents dans les ML, en partic-
ulier ceux dus à l’incertitude, ou les comportements problématiques, tels que
l’overfitting.

Nous introduisons ensuite les notions de base de l’apprentissage des préférences,
un domaine qui se concentre sur l’apprentissage de modèles de préférences à partir
de données, comme une approche plus statistique et plus orientée vers les don-
nées des problèmes de décision que le MCDA aborde de manière orientée vers les
contraintes.

Nous développons en particulier des méthodes de ML visant à apprendre des
modèles à partir du domaine de la MCDA, mais nous concluons que, si l’IC est un
point d’intérêt depuis quelques années, les ICHU n’ont jamais été appris aupara-
vant.

B.2 Partie III : Contribution théorique

La partie III est la première des deux parties consacrées aux contributions de
cette thèse. Elle consiste en une preuve d’identifiabilité du modèle ICHU, c’est-à-
dire que nous montrons qu’il n’y a qu’une seule paramétrisation possible pour un
modèle donné. Cela signifie que, pour un ICHU F donné qui respecte certaines
conditions faibles, alors F ne peut avoir que :

• une seule hiérarchie ;

• un seul ensemble d’utilités marginales ;

• un seul ensemble de poids pour ses agrégateurs.

Il s’agit d’un résultat très intéressant pour obtenir un modèle fiable. En ef-
fet, l’intelligibilité et l’interprétation d’un ICHU résident dans ses paramètres.
S’assurer de l’existence d’une seule paramétrisation, c’est s’assurer qu’il ne peut y
avoir deux ou plusieurs interprétations contradictoires sur un modèle donné ; ce
qui rendrait la confiance dans le modèle impossible en pratique.

Cette preuve est faite en deux étapes, réparties entre les deux chapitres de
la partie. Premièrement, le chapitre 4 présente la preuve de l’unicité lorsque le
modèle est défini sur une hiérarchie fixe. En d’autres termes, nous supposons

296 APPENDIX B. RÉSUMÉ EN FRANCAIS

une hiérarchie donnée, et montrons que deux modèles qui sont égaux partout
sur l’espace des attributs ont nécessairement les mêmes agrégateurs et les mêmes
utilités marginales. Nous procédons principalement en explorant les sommets de
l’hypercube d’entrée, ce qui nous permet d’isoler chaque élément et de montrer
son unicité.

Ensuite, le chapitre 5 se généralise au cas où la hiérarchie est libre. Nous
poursuivons en considérant une autre représentation de l’ICHU. En effet, cette
classe de modèles, étant donné des utilités marginales C1 par morceaux (une hy-
pothèse faible), est elle-même C1 par morceaux. Notre stratégie consiste donc à
étudier les frontières entre chaque région sur laquelle une ICHU est C1. Ce faisant,
nous sommes en mesure de montrer que sous deux hypothèses faibles, ces frontières
sont uniques pour un modèle donné, et qu’un seul modèle peut avoir ces frontières,
complétant ainsi efficacement la preuve.

L’intérêt supplémentaire de cette preuve est qu’elle constitue un résultat en-
courageant pour l’apprentissage des ICHU à l’aide de méthodes statistiques.

B.3 Partie IV : Contribution technique

Dans cette partie, nous présentons la principale contribution technique de cette
thèse. Cette contribution est le framework Neur-HCI, qui est un type de modules
neuronaux spécifiques (c’est-à-dire de petits réseaux neuronaux), chacun représen-
tant une partie spécifique (agrégateur de CI, ou utilité marginale) d’un modèle
d’ICHU.

Le chapitre 6 présente les modules implémentant les utilités marginales. Nous
traitons 4 types d’utilités marginales :

• décroissante ;

• croissante ;

• simple plateau (croissante puis décroissante) ;

• simple vallée (décroissante puis croissante).

Ces modules sont construits de manière à pouvoir représenter toute (et seule-
ment) utilité marginale de leur type respectif. Leur conception garantit que toutes
les contraintes requises par le modèle, en termes de monotonie et de normalisation,
sont respectées, de sorte que le modèle reste valide à tout moment.

Nous présentons également un module appelé selecteur, qui permet de choisir,
parmi les quatre types présentés ci-dessus, celui qui est le plus adapté aux données
d’apprentissage.

B.4. PARTIE V : RÉSULTATS EXPÉRIMENTAUX 297

Ensuite, le chapitre 7 présente les architectures neuronales qui représentent les
fonctions agrégatrices basées sur CI. Nous présentons trois types d’intégrales de
Choquet :

• 2-additif (qui permet les interactions de deux critères au maximum à la fois)

• un sous-ensemble des intégrales de Choquet 3-additives (qui permet des in-
teractions de jusqu’à 3 critères à la fois)

• général (toute intégrale de Choquet de la dimension donnée)

Tout comme pour les modules d’utilité marginale, nous assurons par conception
la validité de l’IC représentée par le module, en termes de contraintes formelles.

Enfin, le chapitre 8 explique comment nous formons un réseau neuronal con-
struit à partir des modules introduits dans les deux chapitres précédents. Les
paramètres de formation sont les suivants

• Régression : le modèle recoit un ensemble d’alternatives, ainsi que leurs
scores attendus, et apprend à prédire les scores des nouvelles alternatives.

• Classification : Le modèle recoit un ensemble d’alternatives et leur classe
de préférence (très mauvais, mauvais,..., très bon), et apprend à classer les
nouvelles alternatives.

• Apprentissage des préférences par paires : Le modèle recoit des paires
d’alternatives, ainsi que l’information indiquant laquelle des deux alterna-
tives est préférée à l’autre. Il apprend ensuite à prédire de nouvelles préférences.

Nous avons également présenté un théorème de validité, montrant que tout
réseau Neur-HCI est une ICHU valide, et que toute ICHU avec les mêmes types
d’utilités marginales et de contraintes d’additivité que nos modules peut être
représentée par un réseau Neur-HCI.

Il est à noter que cette approche a été validée sur une application interne de
Thales.

B.4 Partie V : Résultats expérimentaux

Dans cette section, nous testons la performance, la robustesse et la stabilité des
modèles présentés dans la partie IV. Nous le faisons sur des données réelles et
générées artificiellement. Nous montrons que non seulement les modèles Neur-
HCI peuvent apprendre efficacement un modèle qui s’ajuste bien aux données,

298 APPENDIX B. RÉSUMÉ EN FRANCAIS

mais qu’ils s’avèrent également stables, c’est-à-dire qu’avec suffisamment de don-
nées, les modèles formés sur des données similaires auront des paramètres et une
interprétation similaires. Cela est très important pour faire confiance au modèle,
et donc pour les applications critiques en matière de sécurité.

B.5 Partie VI : Perspectives et conclusions

Nous présentons enfin les perspectives de travaux futurs, qui pourraient être réal-
isés pour itérer sur les travaux présentés dans cette thèse. Il s’agit notamment
d’extensions des modèles appris, ainsi que d’éventuels travaux théoriques visant à
développer de nouveaux indicateurs pour interpréter les modèles MCDA.

BIBLIOGRAPHY

[Abdar et al., 2020] Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D.,
Liu, L., Ghavamzadeh, M., Fieguth, P. W., Cao, X., Khosravi, A., Acharya,
U. R., Makarenkov, V., and Nahavandi, S. (2020). A review of uncertainty
quantification in deep learning: Techniques, applications and challenges. CoRR,
abs/2011.06225.

[Abdellaoui and Gonzales, 2013] Abdellaoui, M. and Gonzales, C. (2013). Multi-
attribute utility theory. page 36.

[Alavi et al., 2009] Alavi, S. H., Jassbi, J., Serra, P. J. A., and Ribeiro, R. A.
(2009). Defining fuzzy measures: A comparative study with genetic and gradient
descent algorithms. In Machado, J. A. T., Pátkai, B., and Rudas, I. J., editors,
Intelligent Engineering Systems and Computational Cybernetics, pages 427–437.
Springer Netherlands.

[Amini, 2015] Amini, M.-R. (2015). Machine Learning. Eyrolles.

[Angilella et al., 2015] Angilella, S., Corrente, S., and Greco, S. (2015). Stochastic
multiobjective acceptability analysis for the choquet integral preference model
and the scale construction problem. European Journal of Operational Research,
240(1):172–182.

[Angilella et al., 2013] Angilella, S., Corrente, S., Greco, S., and Roman, S. (2013).
Multiple criteria hierarchy process for the choquet integral. volume 7811.

[Angilella et al., 2010] Angilella, S., Greco, S., and Matarazzo, B. (2010). Non-
additive robust ordinal regression: A multiple criteria decision model based on
the choquet integral. European Journal of Operational Research, 201(1):277–
288.

299

300 BIBLIOGRAPHY

[Audemard et al., 2021] Audemard, G., Bellart, S., Bounia, L., Koriche, F.,
Lagniez, J., and Marquis, P. (2021). On the computational intelligibility of
boolean classifiers. CoRR, abs/2104.06172.

[Bana e Costa and Vansnick, 1999] Bana e Costa, C. and Vansnick, J.-C. (1999).
The MACBETH approach: basic ideas, software, and an application. 4.

[Bastani et al., 2016] Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D.,
Nori, A. V., and Criminisi, A. (2016). Measuring neural net robustness with
constraints. CoRR, abs/1605.07262.

[Beliakov, 2018] Beliakov, G. (2018). Comparing apples and oranges: The
weighted owa function. International Journal of Intelligent Systems, 33(5):1089–
1108.

[Beliakov and Divakov, 2021] Beliakov, G. and Divakov, D. (2021). Aggregation
with dependencies: Capacities and fuzzy integrals. Fuzzy Sets and Systems.

[Beliakov et al., 2021] Beliakov, G., Gagolewski, M., and James, S. (2021). Hier-
archical data fusion processes involving the möbius representation of capacities.
Fuzzy Sets and Systems.

[Beliakov and James, 2021] Beliakov, G. and James, S. (2021). Choquet integral
optimisation with constraints and the buoyancy property for fuzzy measures.
Information Sciences, 578:22–36.

[Beliakov and Wu, 2019] Beliakov, G. and Wu, J.-Z. (2019). Learning fuzzy mea-
sures from data: Simplifications and optimisation strategies. Information Sci-
ences, 494:100–113.

[Beliakov and Wu, 2021] Beliakov, G. and Wu, J.-Z. (2021). Learning k-maxitive
fuzzy measures from data by mixed integer programming. Fuzzy Sets and Sys-
tems, 412:41–52. Fuzzy Measures and Integrals.

[Benabbou et al., 2016a] Benabbou, N., Di Sabatino Di Diodoro, S., Perny, P.,
and Viappiani, P. (2016a). Incremental preference elicitation in multi-attribute
domains for choice and ranking with the borda count. In Schockaert, S. and
Senellart, P., editors, Scalable Uncertainty Management, volume 9858, pages
81–95. Springer International Publishing.

[Benabbou and Perny, 2017] Benabbou, N. and Perny, P. (2017). Adaptive elici-
tation of preferences under uncertainty in sequential decision making problems.
In The 26th International Joint Conference on Artificial Intelligence.

BIBLIOGRAPHY 301

[Benabbou et al., 2016b] Benabbou, N., Perny, P., and Viappiani, P. (2016b). A
regret-based preference elicitation approach for sorting with multicriteria refer-
ence profiles. DA2PL’16.

[Benabbou et al., 2017] Benabbou, N., Perny, P., and Viappiani, P. (2017). In-
cremental elicitation of choquet capacities for multicriteria choice, ranking and
sorting problems. Artificial Intelligence, 246:152–180.

[Benayoun et al., 1966] Benayoun, R., Roy, B., and Sussman, B. (1966). ELEC-
TRE: une méthode pour guider le choix en présence des points de vue multiples.

[Bethune et al., 2021] Bethune, L., Gonz’alez-Sanz, A., Mamalet, F., and Ser-
rurier, M. (2021). The many faces of 1-lipschitz neural networks. ArXiv,
abs/2104.05097.

[Bishop, 2007] Bishop, C. M. (2007). Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, 1 edition.

[Boser et al., 1992] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A train-
ing algorithm for optimal margin classifiers. In Haussler, D., editor, Proceedings
of the 5th Annual Workshop on Computational Learning Theory (COLT’92),
pages 144–152, Pittsburgh, PA, USA. ACM Press.

[Bourdache and Perny, 2019] Bourdache, N. and Perny, P. (2019). Active prefer-
ence learning based on generalized gini functions: Application to the multiagent
knapsack problem. In Thirty-Third AAAI Conference on Artificial Intelligence
(AAAI 2019).

[Bourdache et al., 2019] Bourdache, N., Perny, P., and Spanjaard, O. (2019). In-
cremental elicitation of rank-dependent aggregation functions based on bayesian
linear regression. In IJCAI-19 - Twenty-Eighth International Joint Conference
on Artificial Intelligence, pages 2023–2029. International Joint Conferences on
Artificial Intelligence Organization.

[Bous and Pirlot, 2013] Bous, G. and Pirlot, M. (2013). Learning multicriteria
utility functions with random utility models. In Perny, P., Pirlot, M., and
Tsoukiàs, A., editors, Algorithmic Decision Theory, volume 8176, pages 101–
115. Springer Berlin Heidelberg.

[Bouyssou et al., 2006] Bouyssou, D., Marchant, T., Pirlot, M., Tsoukiàs, A., and
Vincke, P. (2006). Evaluation and Decision Models with Multiple Criteria: Step-
ping Stones for the Analyst, volume 86.

302 BIBLIOGRAPHY

[Brans and Vincke, 1985] Brans, J. P. and Vincke, P. (1985). A preference ranking
organisation method: (the PROMETHEE method for multiple criteria decision-
making). Management Science, 31(6):647–656.

[Bresson et al., 2020a] Bresson, R., Cohen, J., Hüllermeier, E., Labreuche, C., and
Sebag, M. (2020a). Evaluating the stability of the neur-hci framework. In CAID
2020 - Second Conference on Artificial Intelligence for Defence, pages 120–126.

[Bresson et al., 2020b] Bresson, R., Cohen, J., Hüllermeier, E., Labreuche, C.,
and Sebag, M. (2020b). Learning 2-additive hierarchical choquet integrals with
non-monotonic utilities.

[Bresson et al., 2020c] Bresson, R., Cohen, J., Hüllermeier, E., Labreuche, C., and
Sebag, M. (2020c). Neural representation and learning of hierarchical 2-additive
choquet integrals. In Bessiere, C., editor, Proceedings of the Twenty-Ninth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2020, pages 1984–
1991. ijcai.org.

[Bresson et al., 2021] Bresson, R., Cohen, J., Hüllermeier, E., Labreuche, C., and
Sebag, M. (2021). On the identifiability of hierarchical decision models. In
Proceedings of the 18th International Conference on Principles of Knowledge
Representation and Reasoning, KR2021.

[Bromley et al., 1993] Bromley, J., Guyon, I., Lecun, Y., Säckinger, E., and Shah,
R. (1993). Signature verification using a siamese time delay neural network. Int.
J. of Pattern Recognition and AI, 7:737–744.

[Bunel et al., 2017a] Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P., and Kumar,
M. P. (2017a). Piecewise linear neural network verification: A comparative
study. CoRR, abs/1711.00455.

[Bunel et al., 2017b] Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P., and Kumar,
M. P. (2017b). A unified view of piecewise linear neural network verification.
arXiv:1711.00455 [cs].

[Burges et al., 2005] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M.,
Hamilton, N., and Hullender, G. (2005). Learning to rank using gradient de-
scent. In Proceedings of the 22Nd International Conference on Machine Learn-
ing, ICML ’05, pages 89–96. ACM. event-place: Bonn, Germany.

[Burges et al., 2006] Burges, C. J. C., Ragno, R., and Le, Q. V. (2006). Learning
to rank with nonsmooth cost functions. In Schölkopf, B., Platt, J. C., and
Hofmann, T., editors, Neural Information Processing Systems NIPS, pages 193–
200. MIT Press.

BIBLIOGRAPHY 303

[Bärmann et al., 2017] Bärmann, A., Pokutta, S., and Schneider, O. (2017). Emu-
lating the expert: Inverse optimization through online learning. In International
Conference on Machine Learning, pages 400–410.

[Cailloux and Destercke, 2017] Cailloux, O. and Destercke, S. (2017). Reasons and
means to model preferences as incomplete. arXiv:1801.01657 [cs], 10564:17–30.

[Chen and Huang, 2019] Chen, C.-Y. and Huang, J.-J. (2019). Forming a hierar-
chical choquet integral with a ga-based heuristic least square method. Mathe-
matics, 7(12).

[Choquet, 1954] Choquet, G. (1954). Theory of capacities. Annales de l’Institut
Fourier, 5:131–295.

[Choromanska et al., 2015] Choromanska, A., Henaff, M., Mathieu, M.,
Ben Arous, G., and LeCun, Y. (2015). The Loss Surfaces of Multilayer Net-
works. In Lebanon, G. and Vishwanathan, S. V. N., editors, Proceedings of
the Eighteenth International Conference on Artificial Intelligence and Statistics,
volume 38 of Proceedings of Machine Learning Research, pages 192–204, San
Diego, California, USA. PMLR.

[Cohen et al., 1999] Cohen, W. W., Schapire, R. E., and Singer, Y. (1999). Learn-
ing to order things. Journal of Artificial Intelligence Research, 10:243–270.

[Cox, 1958] Cox, D. R. (1958). The regression analysis of binary sequences. Jour-
nal of the Royal Statistical Society. Series B (Methodological), 20(2):215–242.

[Daniels and Velikova, 2010] Daniels, H. and Velikova, M. (2010). Monotone and
partially monotone neural networks. IEEE Transactions on Neural Networks,
21(6):906–917.

[Danila, 1986] Danila, N. (1986). Roy b. : Méthodologie multicritère d’aide à la
décision.

[Doquet and Sebag, 2020] Doquet, G. and Sebag, M. (2020). pages 343–358.

[Dubois and Prade, 2015] Dubois, D. and Prade, H. (2015). Possibility theory and
its applications: Where do we stand? In Kacprzyk, J. and Pedrycz, W., editors,
Springer Handbook of Computational Intelligence, Springer Handbooks, pages
31–60. Springer Berlin Heidelberg.

[Duchi et al., 2011] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive sub-
gradient methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12(Jul):2121–2159.

304 BIBLIOGRAPHY

[Ehlers, 2017] Ehlers, R. (2017). Formal verification of piece-wise linear feed-
forward neural networks. CoRR, abs/1705.01320.

[Fallah Tehrani et al., 2011] Fallah Tehrani, A., Cheng, W., and Hüllermeier, E.
(2011). Choquistic Regression: Generalizing Logistic Regression using the Cho-
quet Integral. EUSFLAT-11.

[Fallah Tehrani et al., 2014] Fallah Tehrani, A., Labreuche, C., and Hüllermeier,
E. (2014). Choquistic utilitaristic regression.

[Fallah Tehrani et al., 2012] Fallah Tehrani, A., Cheng, W., Dembczyński, K., and
Hüllermeier, E. (2012). Learning monotone nonlinear models using the choquet
integral. Machine Learning, 89(1):183–211.

[Figueira et al., 2008] Figueira, J., Greco, S., Mousseau, V., and Roman, S.
(2008). Interactive multiobjective optimization using a set of additive value
functions. pages 97–119.

[Figueira et al., 2009] Figueira, J., Greco, S., and Roman, S. (2009). Building a
set additive value functions representing a reference preorder and intensities of
preference: Grip method. European Journal of Operational Research, 195:460–
486.

[Figueira et al., 2016] Figueira, J., Mousseau, V., and Roy, B. (2016). ELECTRE
methods. 233:155–185.

[Fishburn, 1967a] Fishburn, P. C. (1967a). Additive utilities with finite sets: Ap-
plications in the management sciences. Naval Research Logistics Quarterly,
14(1):1–13.

[Fishburn, 1967b] Fishburn, P. C. (1967b). Interdependence and additivity in
multivariate, unidimensional expected utility theory. International Economic
Review, 8(3):335–342.

[Fishburn, 1970] Fishburn, P. C. (1970). Utility theory for decision making. Wiley.

[Fürnkranz and Hüllermeier, 2003] Fürnkranz, J. and Hüllermeier, E. (2003).
Pairwise preference learning and ranking. In Lavravc, N., Gamberger, D., Bloc-
keel, H., and Todorovski, L., editors, Machine Learning: ECML 2003, Lecture
Notes in Computer Science, pages 145–156. Springer Berlin Heidelberg.

[Fürnkranz and Hüllermeier, 2011] Fürnkranz, J. and Hüllermeier, E. (2011).
Preference learning and ranking by pairwise comparison. In Fürnkranz, J. and
Hüllermeier, E., editors, Preference Learning, pages 65–82. Springer Berlin Hei-
delberg.

BIBLIOGRAPHY 305

[Ganin et al., 2016] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V. (2016). Domain-adversarial
training of neural networks.

[Gilbert et al., 2017] Gilbert, H., Benabbou, N., Perny, P., Spanjaard, O., and Vi-
appiani, P. (2017). Incremental decision making under risk with the weighted
expected utility model. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, pages 4588–4594. International Joint Con-
ferences on Artificial Intelligence Organization.

[Goodfellow et al., 2014] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014).
Explaining and harnessing adversarial examples. arXiv:1412.6572 [cs, stat].

[Gopinath et al., 2017] Gopinath, D., Katz, G., Pasareanu, C. S., and Barrett, C.
(2017). DeepSafe: A data-driven approach for checking adversarial robustness
in neural networks. CoRR, abs/1710.00486.

[Goujon, 2018] Goujon, B. (2018). Preference learning for object ranking and
classification with fixed-point algorithm. DA2PL’2018.

[Grabisch, 1995] Grabisch, M. (1995). A new algorithm for identifying fuzzy mea-
sures and its application to pattern recognition. In FUZZ-IEEE-95, pages 145–
150.

[Grabisch, 1996] Grabisch, M. (1996). The application of fuzzy integrals in multi-
criteria decision making. European Journal of Operational Research, 89(3):445–
456.

[Grabisch, 1997a] Grabisch, M. (1997a). Alternative representations of discrete
fuzzy measures for decision making. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, 5:587–608.

[Grabisch, 1997b] Grabisch, M. (1997b). K-order additive discrete fuzzy measures
and their representation. Fuzzy Sets and Systems, 92:167–189.

[Grabisch, 1999] Grabisch, M. (1999). The interaction and möbius representations
of fuzzy measures on finite spaces, -additive measures: A survey. page 24.

[Grabisch, 2006] Grabisch, M. (2006). L’utilisation de l’intégrale de choquet en
aide multicritère à la décision (french). European Working Group “Multiple
Criteria Decision Aiding, Series n\textsuperscripto3”, (14).

[Grabisch, 2016] Grabisch, M. (2016). Set Functions, Games and Capacities in
Decision Making.

306 BIBLIOGRAPHY

[Grabisch et al., 2008] Grabisch, M., Kojadinovic, I., and Meyer, P. (2008).
A review of methods for capacity identification in choquet integral based
multi-attribute utility theory. European Journal of Operational Research,
186(2):766–785.

[Grabisch and Labreuche, 2004] Grabisch, M. and Labreuche, C. (2004). Fuzzy
measures and integrals in MCDA. In Multiple Criteria Decision Analysis, pages
563–608. Kluwer Academic Publishers.

[Grabisch and Labreuche, 2008] Grabisch, M. and Labreuche, C. (2008). A decade
of application of the choquet and sugeno integrals in multi-criteria decision aid.
Annals of Operations Research, 175.

[Grabisch and Labreuche, 2015] Grabisch, M. and Labreuche, C. (2015). On the
decomposition of generalized additive independence models. page 26.

[Grabisch and Labreuche, 2018] Grabisch, M. and Labreuche, C. (2018). Mono-
tone decomposition of 2-additive Generalized Additive Independence models.
Mathematical Social Sciences, 92:64–73.

[Grabisch et al., 2009] Grabisch, M., Marichal, J.-L., Mesiar, R., and Pap, E.
(2009). Aggregation Functions. Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press.

[Grabisch et al., 2000] Grabisch, M., Murofushi, T., Sugeno, M., and Kacprzyk, J.
(2000). Fuzzy Measures and Integrals. Theory and Applications. Physica Verlag,
Berlin.

[Grabisch and Perny, 2003] Grabisch, M. and Perny, P. (2003). Agrégation multi-
critère.

[Greco et al., 2005] Greco, S., Mousseau, V., and Slowinski, R. (2005). Ordinal
regression revisited: multiple criteria ranking with a set of additive value func-
tions. page 30.

[Greco et al., 2009] Greco, S., Slowinski, R., Figueira, J. R., and Mousseau, V.
(2009). Robust Ordinal Regression. page 54.

[Havens and Anderson, 2018] Havens, T. C. and Anderson, D. T. (2018). Machine
Learning of Choquet Integral Regression with Respect to a Bounded Capacity
(or Non-monotonic Fuzzy Measure). In FUZZ-IEEE-18.

[Hein and Andriushchenko, 2017] Hein, M. and Andriushchenko, M. (2017). For-
mal guarantees on the robustness of a classifier against adversarial manipulation.
arXiv:1705.08475 [cs, stat].

BIBLIOGRAPHY 307

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory. Neural computation, 9:1735–80.

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Mul-
tilayer feedforward networks are universal approximators. Neural Networks,
2(5):359–366.

[Huang et al., 2016] Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. (2016).
Safety verification of deep neural networks. CoRR, abs/1610.06940.

[Huang et al., 2008] Huang, Z., Gedeon, T., and Nikravesh, M. (2008). Pattern
tree induction: A new machine learning method. IEEE TFS, 16(4):958–970.

[Hüllermeier and Fallah Tehrani, 2012] Hüllermeier, E. and Fallah Tehrani, A.
(2012). Efficient learning of classifiers based on the 2-additive Choquet inte-
gral. In Moewes, C. and Nürnberger, A., editors, Computational Intelligence in
Intelligent Data Analysis, Studies in Computational Intelligence, pages 17–30.
Springer.

[Hüllermeier and Fallah Tehrani, 2012] Hüllermeier, E. and Fallah Tehrani, A.
(2012). On the vc-dimension of the choquet integral. volume 297, pages 42–50.

[Hüllermeier et al., 2008] Hüllermeier, E., Fürnkranz, J., Cheng, W., and Brinker,
K. (2008). Label ranking by learning pairwise preferences. Artificial Intelligence,
172(16):1897–1916.

[Hüllermeier and Tehrani, 2013] Hüllermeier, E. and Tehrani, A. F. (2013). Ef-
ficient Learning of Classifiers Based on the 2-Additive Choquet Integral. In
Moewes, C. and Nürnberger, A., editors, Computational Intelligence in In-
telligent Data Analysis, Studies in Computational Intelligence, pages 17–29.
Springer Berlin Heidelberg.

[Ilyas et al., 2019] Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B.,
and Madry, A. (2019). Adversarial examples are not bugs, they are features.

[Jiang et al., 2018] Jiang, H., Kim, B., Guan, M. Y., and Gupta, M. (2018). To
trust or not to trust a classifier. arXiv:1805.11783 [cs, stat].

[Katz et al., 2017] Katz, G., Barrett, C. W., Dill, D. L., Julian, K., and Kochen-
derfer, M. J. (2017). Reluplex: An efficient SMT solver for verifying deep neural
networks. CoRR, abs/1702.01135.

[Keeney et al., 1979] Keeney, R., Raiffa, H., and W. Rajala, D. (1979). Decisions
with multiple objectives: Preferences and value trade-offs. Systems, Man and
Cybernetics, IEEE Transactions on, 9:403–403.

308 BIBLIOGRAPHY

[Khan et al., 2019] Khan, A., Sohail, A., Zahoora, U., and Qureshi, A. S. (2019). A
survey of the recent architectures of deep convolutional neural networks. CoRR,
abs/1901.06032.

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In Bengio, Y. and LeCun, Y., editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.

[Kingma and Welling, 2014] Kingma, D. P. and Welling, M. (2014). Auto-
Encoding Variational Bayes. In 2nd International Conference on Learning Rep-
resentations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings.

[Krantz et al., 1971] Krantz, D., Luce, R., Suppes, P., and Tversky, A. (1971).
Foundations of measurement, volume 1: Additive and Polynomial Representa-
tions. Academic Press.

[Labreuche, 2018] Labreuche, C. (2018). An axiomatization of the Choquet inte-
gral and its utility functions without any commensurability assumption. Annals
of Operation Research, 271(2):701–735.

[Labreuche and Fossier, 2018] Labreuche, C. and Fossier, S. (2018). Explaining
multi-criteria decision aiding models with an extended shapley value. In Proceed-
ings of the Twenty-Seventh International Joint Conference on Artificial Intelli-
gence, pages 331–339. International Joint Conferences on Artificial Intelligence
Organization.

[Labreuche and Grabisch, 2013] Labreuche, C. and Grabisch, M. (2013). Use of
the GAI model in multi-criteria decision making: inconsistency handling, inter-
pretation.

[Labreuche et al., 2016] Labreuche, C., Hüllermeier, E., Vojtas, P., and Tehrani,
A. F. (2016). On the Identifiability of Models in Multi-Criteria Preference Learn-
ing. In DA2PL-16.

[Le Cun et al., 1989] Le Cun, Y., Denker, J. S., and Solla, S. A. (1989). Optimal
brain damage. Advances in Neural Information Processing Systems 2 (NIPS
1989).

[Lecun et al., 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324.

BIBLIOGRAPHY 309

[Leroy et al., 2011] Leroy, A., Mousseau, V., and Pirlot, M. (2011). Learning the
parameters of a multiple criteria sorting method. In Brafman, R. I., Roberts,
F. S., and Tsoukiàs, A., editors, Algorithmic Decision Theory, volume 6992,
pages 219–233. Springer Berlin Heidelberg.

[Liu, 2009] Liu, T.-Y. (2009). Learning to rank for information retrieval. Found.
Trends Inf. Retr., 3(3):225–331.

[Liu et al., 2017] Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F. E.
(2017). A survey of deep neural network architectures and their applications.
Neurocomputing, 234:11–26.

[Machida, 2019] Machida, F. (2019). N-version machine learning models for safety
critical systems. In 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), pages 48–51. IEEE.

[Madry et al., 2018] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu,
A. (2018). Towards deep learning models resistant to adversarial attacks. CoRR,
abs/1706.06083.

[Martin and Perny, 2020] Martin, H. and Perny, P. (2020). New Computational
Models for the Choquet Integral. In 24th European Conference on Artificial
Intelligence - ECAI 2020, Santiago, Spain.

[Mayag et al., 2011] Mayag, B., Grabisch, M., and Labreuche, C. (2011). A rep-
resentation of preferences by the choquet integral with respect to a 2-additive
capacity. Theory and Decision, 71(3):297–324.

[Miller, 1956] Miller, G. A. (1956). The magical number seven plus or minus two:
some limits on our capacity for processing information. Psychological review, 63
2:81–97.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New
York.

[Modave and Grabisch, 1998] Modave, F. and Grabisch, M. (1998). Preference
representation by the choquet integral: The commensurability hypothesis.
IPMU 1998.

[Murofushi and Soneda, 1993] Murofushi, T. and Soneda, S. (1993). Techniques
for reading fuzzy measures (III): interaction index. In 9th Fuzzy System Sympo-
sium, pages 693–696, Sapporo, Japan.

310 BIBLIOGRAPHY

[Murofushi and Sugeno, 1989] Murofushi, T. and Sugeno, M. (1989). An interpre-
tation of fuzzy measures and the choquet integral as an integral with respect to
a fuzzy measure. Fuzzy Sets and Systems, 29:201–227.

[Nguyen et al., 2019] Nguyen, V.-L., Destercke, S., and Hüllermeier, E. (2019).
Epistemic uncertainty sampling. arXiv:1909.00218 [cs, stat].

[Nguyen et al., 2018] Nguyen, V.-L., Destercke, S., Masson, M.-H., and Hüller-
meier, E. (2018). Reliable multi-class classification based on pairwise epistemic
and aleatoric uncertainty. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, pages 5089–5095. International Joint
Conferences on Artificial Intelligence Organization.

[Nwankpa et al., 2018] Nwankpa, C., Ijomah, W. L., Gachagan, A., and Marshall,
S. (2018). Activation functions: Comparison of trends in practice and research
for deep learning. ArXiv, abs/1811.03378.

[O’Neill, 2016] O’Neill, C. (2016). Weapons of Math Destruction. Crown Books.

[Ovchinnikov, 2002] Ovchinnikov, S. (2002). Max-min representation of piecewise
linear functions. Beiträge zur Algebra und Geometrie, 43.

[Pastijn and Leysen, 1989] Pastijn, H. and Leysen, J. (1989). Constructing an
outranking relation with oreste. page 14.

[Paulino and Pereira, 1994] Paulino, C. and Pereira, C. (1994). On identifiabil-
ity of parametric statistical models. Journal of the Italian Statistical Society,
3:125–151.

[Pelissari and Duarte, 2020] Pelissari, R. and Duarte, L. T. (2020). Identification
of choquet capacity in multicriteria sorting problems through stochastic inverse
analysis. arXiv:2003.12530 [cs, stat]. arXiv: 2003.12530.

[Perny et al., 2016] Perny, P., Viappiani, P., and Boukhatem, A. (2016). Incre-
mental preference elicitation for decision making under risk with the rank-
dependent utility model. In UAI.

[Pulina and Tacchella, 2010] Pulina, L. and Tacchella, A. (2010). An abstraction-
refinement approach to verification of artificial neural networks. In CEUR Work-
shop Proceedings, volume 616, pages 243–257.

[Qian et al., 2015] Qian, L., Gao, J., and Jagadish, H. V. (2015). Learning user
preferences by adaptive pairwise comparison. Proc. VLDB Endow., 8(11):1322–
1333.

BIBLIOGRAPHY 311

[Ran and Hu, 2017] Ran, Z.-Y. and Hu, B.-G. (2017). Parameter identifiability in
statistical machine learning: A review. Neural Computation, 29(5):1151–1203.

[Robbins and Monro, 1951] Robbins, H. and Monro, S. (1951). A Stochastic Ap-
proximation Method. The Annals of Mathematical Statistics, 22(3):400 – 407.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: A probabilistic model
for information storage and organization in the brain. Psychological Review,
pages 65–386.

[Rota, 1964] Rota, G.-C. (1964). On the foundations of combinatorial theory i.
theory of moebius functions. page 29.

[Rothenberg, 1971] Rothenberg, T. J. (1971). Identification in parametric models.
Econometrica, 39(3):pp. 577–591.

[Roubens, 1982] Roubens, M. (1982). Preference relations on actions and criteria
in multicriteria decision making. European Journal of Operational Research,
10(1):51–55.

[Roy, 1996] Roy, B. (1996). Multicriteria Methodology for Decision Aiding. Non-
convex Optimization and Its Applications. Springer US.

[Roy, 1999] Roy, B. (1999). Decision aiding today: what should we expect?
page 35.

[Ruder, 2017] Ruder, S. (2017). An overview of gradient descent optimization
algorithms.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning representations by back-propagating errors. Nature,
323(6088):533–536.

[Saint-Hilary et al., 2017] Saint-Hilary, G., Cadour, S., Robert, V., and Gasparini,
M. (2017). A simple way to unify multicriteria decision analysis (MCDA) and
stochastic multicriteria acceptability analysis (SMAA) using a dirichlet distri-
bution in benefit–risk assessment. Biometrical Journal, 59(3):567–578.

[Senge et al., 2014] Senge, R., Bösner, S., Dembczyński, K., Haasenritter, J.,
Hirsch, O., Donner-Banzhoff, N., and Hüllermeier, E. (2014). Reliable classifi-
cation: Learning classifiers that distinguish aleatoric and epistemic uncertainty.
Information Sciences, 255:16–29.

312 BIBLIOGRAPHY

[Senge and Hüllermeier, 2011] Senge, R. and Hüllermeier, E. (2011). Top-Down
Induction of Fuzzy Pattern Trees. IEEE Transactions on Fuzzy Systems,
19(2):241–252.

[Shafer, 1976] Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton
University Press, Princeton.

[Shapley, 1953] Shapley, L. S. (1953). A value for n-person games. In Kuhn,
H. W. and Tucker, A. W., editors, Contributions to the Theory of Games, Vol.
II, number 28 in Annals of Mathematics Studies, pages 307–317. Princeton
University Press.

[Singh et al., 2019] Singh, G., Gehr, T., Püschel, M., and Vechev, M. (2019). An
abstract domain for certifying neural networks. Proceedings of the ACM on
Programming Languages, 3:1–30.

[Siskos, 1982] Siskos, J. (1982). Assessing a set of additive utility functions for
multicriteria decision-making, the UTA method.

[Siskos et al., 2005] Siskos, Y., Grigoroudis, E., Matsatsinis, N., Figueira, J.,
Greco, S., and Ehrogott, M. (2005). UTA methods, volume 233, pages 297–
334.

[Sobrie et al., 2015] Sobrie, O., Mousseau, V., and Pirlot, M. (2015). Learning the
parameters of a non compensatory sorting model. pages 153–170.

[Sobrie et al., 2016] Sobrie, O., Mousseau, V., and Pirlot, M. (2016). Learning
MR-sort rules with coalitional veto. page 9.

[Song and Kingma, 2021] Song, Y. and Kingma, D. P. (2021). How to train your
energy-based models. CoRR, abs/2101.03288.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural net-
works from overfitting. Journal of Machine Learning Research, 15:1929–1958.

[Stewart et al., 2005] Stewart, T., Figueira, J., Greco, S., and Ehrogott, M. (2005).
Dealing with uncertainties in MCDA. pages 445–466.

[Sugeno, 1974] Sugeno, M. (1974). Theory of fuzzy integrals and its applications.
phdthesis.

[Szegedy et al., 2013] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. (2013). Intriguing properties of neural net-
works. arXiv:1312.6199 [cs].

BIBLIOGRAPHY 313

[Tehrani et al., 2014] Tehrani, A. F., Labreuche, C., and Hüllermeier, E. (2014).
Choquistic utilitaristic regression. In Decision Aid to Preference Learning
(DA2PL) workshop, Chatenay-Malabry, France.

[Valiant, 1984] Valiant, L. G. (1984). A theory of the learnable. Commun. ACM,
27(11):1134–1142.

[Vapnik, 1998] Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-
Interscience.

[Varshney and Alemzadeh, 2016] Varshney, K. R. and Alemzadeh, H. (2016). On
the safety of machine learning: Cyber-physical systems, decision sciences, and
data products. arXiv:1610.01256 [cs, stat].

[Wachsmuth et al., 2017] Wachsmuth, H., Naderi, N., Hou, Y., Bilu, Y., Prab-
hakaran, V., Thijm, T., Hirst, G., and Stein, B. (2017). Computational argu-
mentation quality assessment in natural language. In Proc. 15th Conf. of the
European Chapter of the Ass. for Computational Linguistics.

[Wang et al., 2018] Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana,
S. (2018). Efficient formal safety analysis of neural networks. CoRR,
abs/1809.08098.

[Winter, 1989] Winter, E. (1989). A value for cooperative games with levels struc-
ture of cooperation. International Journal of Game Theory, 18(2):227–40.

[Wolpert and Macready, 1997] Wolpert, D. H. and Macready, W. G. (1997). No
free lunch theorems for optimization. IEEE Transactions on Evolutionary Com-
putation, 1(1):67–82.

[Yager, 1988] Yager, R. R. (1988). On ordered weighted averaging aggregation
operators in multicriteria decision making. IEEE Transactions on Systems,
Man, and Cybernetics, 18(1):183–190.

[Yang et al., 2021] Yang, Z., Zhang, A., and Sudjianto, A. (2021). Gami-net: An
explainable neural network based on generalized additive models with structured
interactions.

[Zeiler, 2012] Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate
method. CoRR, abs/1212.5701.

[Zhou, 2012] Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms.
Chapman & Hall/CRC, 1st edition.

	I Introduction
	Introduction
	Context and Motivation
	Main Contributions
	Publications
	Organization of this Manuscript
	Part II: Background and Existing Work
	Part III: Theoretical Contribution
	Part IV: Technical Contribution
	Part V: Experimental Results
	Part VI: Perspectives and Conclusions

	II Background and Existing Work
	Multi-Criteria Decision Aiding
	Introduction
	Notations and Definitions
	Alternatives and Attributes
	Formalizing preferences
	MCDA problems

	Multi-Attribute Utility theory
	Global Utility
	Basic structure
	Aggregation and Comparison

	MAUT Models
	Suitable Properties
	Decomposable models
	Weighted sum
	Ordered weighted average
	Additive Utilities
	Generalized Additive Independance

	Fuzzy Measures
	Definition
	Möbius transform of a fuzzy measure
	Representation of Preferences by a Fuzzy Measure
	k-additive fuzzy measure
	Shapley values and interaction indices

	Choquet Integral
	Definition
	2-Additive Choquet Integral

	Hierarchical Models
	Motivation
	Hierarchical Choquet Integral
	Global Winter Values
	Utilitaristic HCI Model

	Deterministic Elicitation of MCDA models
	Robustifying MCDA models
	Limitations, and Motivations for Machine Learning

	Supervised Machine Learning
	Introduction
	Notations and General Principle
	Optimizing the Learning Criterion
	Gradient Descent
	Strengths and limitation of gradient descent
	Algorithms Based on Gradient Descent

	Classes of Supervised Learning Problems
	Basics
	Linear Models

	A Universal Approximator: the Neural Network
	Neurons
	Feedforward Neural Networks
	Other Architectures

	Classic Difficulties in Machine Learning
	Over- and Under-fitting
	Testing, and Validation Sets

	Machine Learning for Safety-Critical Contexts
	Uncertainty in Machine Learning
	Taking Uncertainty into Account
	Formal Properties for Learning Systems
	Adversarial Examples

	Preference learning
	Preference Learning Tasks
	Multi-criteria Preference Learning
	Dealing with Uncertainty

	Our Contribution

	III Theoretical contributions
	Identifiability - Fixed Hierarchy
	General Considerations
	Identifiability
	Motivation
	Assumptions

	Showing Identifiability with a Fixed Hierarchy
	Conclusion
	Proofs

	General Identifiability of a UHCI
	Showing Identifiability with a Free Hierarchy
	Structure of the UHCI
	Construction of the Set of Separation Frontiers from the UHCI Model
	Construction of the Hierarchy from the Set of Separation Frontiers
	Main Result

	Conclusion
	Proofs

	IV Neural Representation of MCDA Models
	Marginal Utility modules
	Motivations
	Logistic Sigmoid
	Monotonic Marginal Utility
	Non-decreasing marginal utility
	Computing the gradient
	Ensuring the Validity of the Module
	Non-increasing marginal utility

	Bitonic Marginal Utility
	Validity Constraints
	Parametric Representation
	Implementation as a Neural Module
	Computing the Gradient
	Enforcing the Constraints on the Network
	Re-characterization
	Single-Valleyed Marginal Utility
	Ensuring the Validity of the Parameterization

	Marginal Utility Selector Module
	Implementation as a Neural Module
	Backpropagation
	Re-characterization
	Representable Functions
	Discussion

	Aggregator Modules
	Role of an Aggregator Module
	General Choquet Integral
	Reminder and Validity Constraints
	Representating the General FM
	Representation of the CI as a Neural Module
	Validity of the Module
	Backpropagation
	Discussion

	2-additive Choquet Integral
	General considerations
	Möbius-values-based parameterization
	Weights-based parameterization
	Implementation as a Neural Module
	Validity of the Module
	Ensuring the Satisfaction of the Constraints
	Backpropagation

	3-additive 0-1-FM-based Choquet Integral
	General Results
	Remark on the number of parameters
	Implementation as a Neural Module
	Validity of the Module
	Ensuring the Validity of the Constraints

	Assembling and Training a Network
	General Considerations
	Hierarchical Choquet Integral
	Recalls
	Architecture
	Forward and Backpropagation
	Showing the Validity of the Network

	Directed Acyclic Graphs
	Definition
	Implementation of a DAG-CI Network
	Interests and Drawbacks
	Forward Propagation and Backpropagation

	Adding Marginal Utilities
	Training Settings
	End-to-End Training
	Regression
	Ordinal Regression
	Pairwise Preference Learning
	Training and Regularization
	Convergence of the Learning Settings

	Conclusion and Remarks

	V Experimentations and Empirical Validation
	Empirical Validation of Neur-HCI
	Experimental Setting and Objectives
	General Considerations
	How to Read a Figure ?
	Generator Models

	Training with a Fixed Hierarchy
	General Settings
	Consistent Data, Large Sample Limit
	Selectors
	Bitonic utilities
	Smaller and Noisy Datasets
	Comments and Conclusion

	Learning a Model without a Known Hierarchy
	Performance
	Stability of the Indicators across the Models
	Evaluating the Global Winter Values as Weights of a Linear Approximators

	Real Data
	Setting
	Analysis of the Results
	Stability

	Training Time

	VI Perspectives and Conclusion
	Perspectives and Conclusion
	Conclusion
	Perspectives
	Background and Formal Work
	Experimental and Implementation Work

	Closure

	Figures for the Empirical Results
	Figures: fixed hierarchy large sample limit
	Small Datasets
	Noisy Datasets
	Corner Points - Binary Alternatives
	Learning Without a Known Hierarchy
	Stability of DAG-Winter Values
	Training Time
	Résumé en Francais
	Partie II : Contexte et travaux existants
	Partie III : Contribution théorique
	Partie IV : Contribution technique
	Partie V : Résultats expérimentaux
	Partie VI : Perspectives et conclusions

