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AbsWracW   

In  this  dissertation,  we  take  a  closer  look  at  the  astonishing  diversity  of  input  children  grow  up                   

hearing  all  around  the  globe,  and  we  ask  how  this  diversity  matters  to  language  acquisition.  For  this,                   

we  employ  interdisciplinary  methods.  We  consider  the  type  of  language  and  culture  as  two  principal                 

sources   of   diversity,   and   we   investigate   them   in   two   distinct   parts   of   the   dissertation.  

  

Previous  studies  on  language  learning  have  focused  mainly  on  English,  and  there  is  much  less                 

information  on  how  other  languages  are  learned.  However,  languages  vary  a  lot  to  each  other.  Across                  

languages,  our  first  goal  is  to  describe  the  nature  of  children¶s  input  an d  to  identify  its   diversifying                   

characteristics .  For  example,  children  learning  Chintang  are  exposed  to  a  polysynthetic  language,  with               

a  particularly  rich  morphological  system.  How  does  this  input  compare  to  input  from  a  language  with                  

a  simpler  morphological  system,  such  as  Japanese?  Our  second  goal  is  to  comprehend  the  relation                 

between  this  diversity  and  learnability.  We  examine  learnability  in  the  context  of  language               

segmentation,  a  fundamental  learning  task.  We  assess  how  informative  input  is,  and  whether  learning                

is  affected  by  the  characteristics  described  above.  We  further  ask  whether  some  cognitive  strategies                

are   viable   across   cross-linguistic   environments.   

  

To  answer  these  questions,  we  conduct  extensive  analyses  of  ambient  input  in  largely  diverse                

environments.  First,  we  retrieve  this  input  from  databases  of  longitudinal  recordings.  One  such               

database  is  AcqDiv,  which  contains  longitudinal  recordings  of  caregiver-child  interactions  across             

eight  languages  differing  in  morphosyntactic  features.  We  estimate  robust  descriptive  measures  of              

input  quality,  such  as  its  lexical  and  morphosyntactic  diversity.  Second,  we  implement  artificial               

language  and  modeling  experiments.  These  methods  allow  us  to  inspect  the  learnability  properties  and                

segmentability  of  different  kinds  of  input  speech.  We  argue  that  segmentation  of  words,  but  also  of                  

other  meaningful  units,  such  as  morphemes,  should  be  considered  when  learning  language.  Moreover,               

we  investigate  whether  previously  proposed  learning  strategies  for  word  segmentation  perform  above              

chance   and   stably   for   the   AcqDiv   languages.   

  

In  the  second  part  of  this  dissertation,  we  look  at  differences  across  speech  registers,  speakers  and                 

cultural  norms.  Previous  studies  on  early  language  learning  focused  mainly  on  child  directed  speech,                

mother-child  interactions  and  WEIRD  cultures.  However,  this  input  is  not  the  only  one  children  get                 

exposed  to  when  learning  language.  Across  cultures,  our  first  goal  is  to  describe  the  nature  of                  

children¶s  input  an d  to  identify   diversifying  characteristics .  For  example,  how  does  input  of  children                
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learning  Sesotho,  who  are  mostly  addressed  by  other  children  and  receive  little  child-directed  input                

from  adults,  compare  to  that  of  French-learning  children?  How  does  input  overheard  by  French                

children  differ  from  input  directed  to  them?  Our  second  goal  is  to  study  the  relation  between  this                   

diversity   and   learnability.   

  

To  answer  these  questions,  we  use  data  from  longitudinal  recordings  such  as  the  LENA-Lyon,  the                 

Demuth  and  other  CHILDES  corpora.  First,  we  quantify  the  relative  contribution  of  speech  registers                

and  speakers  in  Sesotho,  French  and  English-learning  children¶s  overall  input,  and  further  compare               

this  input  based  on  corpus  statistics.  Second,  making  use  of  well-established  segmentation  models,  we                

provide  key  insights  on  the  segmentability  of  French  overheard  and  child-directed  input.  We  assess                

how  informative  child  directed  input  is  compared  to  overheard  input,  and  whether  segmentability               

differences   between   the   two   can   be   explained   by   their   characteristics.   

RpsXmp   

Dans  ce  manuscript,  nous  examinons  de  plus  prqs  l'ptonnante  diversitp  d¶input  que  les  enfants                

grandissent  en  entendant,  et  nous  demandons  en  quoi  cette  diversitp  est  importante  pour  l'acquisition                

du  langage.  Pour  cela,  nous  utilisons  des  mpthodes  interdisciplinaires.  Nous  considprons  le  type  de                

langue  et  de  culture  comme  deux  sources  principales  de  diversitp,   et  nous  les  ptudierons  dans  deux                  

parties   distinctes   de   cette   thqse.   

  

Des  ptudes  prpcpdentes  se  sont  principalement  concentrpes  sur  l'apprentissage  de  l¶anglais,  et  il  y  a                 

beaucoup  moins  d'informations  sur  comment  les  autres  langues  sont  apprises.  Cependant,  les  langues               

varient  ptonnamment  les  unes  des  autres.  Pour  des  langues  diffprentes,  notre  premier  objectif  est               

d¶identifier  les  caractpristiques  de  diversification  de  l¶input.  Par  exemple,  les  enfants  apprenant  le              

chintang  sont  exposps  j  un  langage  polysynthptique,  avec  un  systqme  morphologique  particuliqrement              

riche.  Comment  cet  input  se  compare-t-il  j  l'input  d'une  langue  plus  simple,  comme  le  japonais?  Notre                  

deuxiqme  objectif  est  de  comprendre  la  relation  entre  cette  diversitp  et  la  capacitp  d'apprentissage.                

Nous  examinons  cette  capacitp  pour  la  segmentation  du  langage.  Nous  pvaluons  j  quel  point                

l'apprentissage  des  langues  est  affectp  par  ses  caractpristiques.  Nous  nous  demandons  en  outre  si                

certaines   stratpgies   cognitives   sont   viables   dans   des   environnements   multilingues.   

  

Pour  rppondre  j  ces  questions,  nous  consultons  l¶input  de  bases  de  donnpes  d'enregistrements               

longitudinaux.  L'une  de  ces  bases  est  AcqDiv,  avec  des  interactions  soignant-enfant  dans  huit  langues                

dont  les  caractpristiques  morphosyntaxiques  diffqrent.  Nous  mesurons  la  qualitp  de  l¶input,  sa              
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diversitp  lexicale  et  morphosyntaxique.  Deuxiqmement,  nous  mettons  en  °uvre  des  exppriences  de              

langage  artificiel  et  de  modplisation.  Nous  soutenons  que  la  segmentation  des  mots,  mais  aussi                

d'autres  unitps  significatives,  comme  les  morphqmes,  devrait  rtre  considprpe  lors  de  l'apprentissage.              

De  plus,  nous  ptudions  si  des  stratpgies  d'apprentissage  statistique  prpcpdemment  propospes             

fonctionnent   de   maniqre   stable   pour   les   langues   AcqDiv.   

  

Dans  la  deuxiqme  partie  de  la  thqse,  nous  examinons  les  diffprences  de  l¶input  entre  les  registres                  

vocaux,  les  locuteurs  et  les  normes  culturelles.  Les  ptudes  antprieures  sur  l'apprentissage  prpcoce  des                

langues  se  sont  concentrpes  sur  la  parole  dirigpe  j  l'enfant,  les  interactions  mqre-enfant  et  les  cultures                  

WEIRD.  Cependant,  cet  input  n'est  pas  le  seul  auquel  les  enfants  sont  exposps  lorsqu'ils  apprennent  la                  

langue.  ¬  travers  les  cultures,  notre  premier  objectif  est  d'identifier  les  caractpristiques  de               

diversification.  Par  exemple,  comment  l'input  des  enfants  apprenant  le  spsotho,  qui  provient              

principalement  d'autres  enfants  et  pas  de  la  part  des  adultes,  se  compare-t-il  j  celui  des  enfants                  

apprenant  le  franoais?  En  quoi  l¶input  entendu,  mais  pas  directement  adressp  aux  enfants  franoais                

diffqre-t-il  de  l¶input  qui  leur  est  adressp?  Notre  deuxiqme  objectif  est  de  comprendre  la  relation  entre                  

cette   diversitp   et   la   capacitp   d'apprentissage.   

  

Nous  rppondons  j  ces  questions  par  des  donnpes  issues  d'enregistrements  longitudinaux  tels  que               

LENA-Lyon,  Demuth  et  autres  corpus  CHILDES.  Premiqrement,  nous  quantifions  la  contribution  des              

registres  et  des  locuteurs  j  l¶input  total  des  enfants  apprenant  le  spsotho  et  le  franoais,  en  utilisant  des                    

statistiques  de  corpus.  Deuxiqmement,  en  utilisant  des  modqles  de  segmentation  bien  ptablis,  nous               

fournissons  des  informations  clps  sur  la  segmentabilitp  de  l¶input  franoais  destinp  ou  pas  aux  enfants.                

Nous  comparons  des  deux,  et  nouns   enqurtons  si  les  diffprences  de  segmentabilitp  entre  les  deux                 

types   d¶input   peuvent   rtre   expliqupes   par   leurs   caractpristiques.   
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GeQeUaO   IQWURdXcWiRQ   

1.   Earl\   Language   Acquisition     

We  begin  Whe  diVVeUWaWiRn  ZiWh  an  RYeUaUching  chaSWeU,  ZheUe  Ze  SUeVenW  Whe  benchmaUkV  Rf  eaUl\                 

langXage  acTXiViWiRn,  and  Ze  inWURdXce  VRme  geneUal  cRnceSWV  WhaW  Zill  be  diVcXVVed  laWeU  Rn,  in  PaUW  1                   

and   2.     

EaUl\  langXage  acTXiViWiRn  UefeUV  WR  childUen¶V  acTXiViWiRn  Rf  WheiU  naWiYe  langXage(V).  All  W\Sicall\               

deYelRSing  childUen  acTXiUe  Whe  ambienW  langXage.  A  caUefXl  RbVeUYeU  cannRW  miVV  WheiU  RXWVWanding               

leaUning  SURgUeVV,  WheiU  incUeaVing  abiliW\  WR  cRmSUehend  and  XndeUVWand  neZ  aVSecWV  Rf  WheiU               

langXage.  We  ma\  Va\  WhaW  deVcUibing  acTXiViWiRn  benchmaUkV  iV  a  YieZ  Rf  eaUl\  langXage  acTXiViWiRn                 

from  the  outside .  When  Ze  VWaUW  ZRndeUing  hRZ  WhiV  acTXiViWiRn  WakeV  Slace,  ZhaW  aUe  Whe  SURceVVeV                  

WhaW   allRZ   iV   WR   haSSen,   Ze   ma\   Va\   WhaW   Ze   YieZ   eaUl\   langXage   acTXiViWiRn    from   the   inside .     

1.1   FURP   Whe   RXWVide   
LangXage  acTXiViWiRn  WakeV  Slace  eaUl\  Rn.  B\  Whe  age  Rf  3,  childUen  aUe  cRmSeWenW  VSeakeUV,                 

SURdXcing  ³nRYel  VenWenceV  WhaW  inYRlYe  cRmSlicaWed  cRnVWUXcWiRnV,  ZRUdV  WhaW  UefeUence  abVWUacW             

ideaV  RU  abVenW  enWiWieV,  VRXnd  VeTXenceV  WhaW  maUk  Whe  diVWincWiYe  cRnWUaVW  Rf  Whe  naWiYe  langXage´                 

(GieUXW,  2007 ,  S.1).  ObVeUYable  mileVWRneV  haYe  been  idenWified  fRU  Whe  acTXiViWiRn  Rf  ZRUdV  and                

mRUShemeV   b\   EngliVh-leaUning   childUen.   We   deVcUibe   VRme   Rf   WheVe   belRZ   ( Figure   1 ).   

  

FigXre  1 .  IQdicaWiYe  beQchPaUkV  SURSRVed  WR  deVcUibe  EQgOiVh  ZRUd  aQd  PRUShePe  OeaUQiQg  dXUiQg  OaQgXage                
acTXiViWiRQ.   GUeeQ   UefeUV   WR   UecRgQiWiRQ   aQd   RUaQge   SURdXcWiRQ.   
  

B\  Whe  end  Rf  Whe  fiUVW  \eaU,  childUen  can  alUead\  SaUVe  inSXW  VSeech  Rf  WheiU  naWiYe  langXage                   

(PieUUehXmbeUW,  2003) .  The\  diVcRYeU  iWV  ShRnemeV   (SZingle\,  2009) ,  ShRneV  (PieUUehXmbeUW,  2003)             

and  V\llableV   (Bijeljac-Babic  eW  al.,  1993) .  The\  aWWXne  WheiU  innaWe  VenViWiYiW\  WR  acRXVWic  YaUiaWiRn  WR                 
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Whe  langXage  Rf  WheiU  enYiURnmenW   (KXhl  eW  al.,  1992) .  The\  can  SeUceiYe  Whe  SURVRd\  Rf  WheiU  langXage                   

(ChUiVWRShe   eW   al.,   2008)    and   iWV   ShRnRlRgical   ShUaVeV    (GRXW   eW   al.,   2004) .   

  

DXUing  WheiU  fiUVW  \eaU  Rf  life,  childUen  alVR  VWaUW  bUeaking  VSeech  inWR  ZRUd-like  XniWV,  in  a  WaVk  RfWen                    

called   word  segmentation .  ThiV  WaVk  iV  challenging,  and  Whe  facW  WhaW  Whe\  accRmSliVh  iW  faVW  and                  

effRUWleVV  iV  aVWRniVhing  fRU  VeYeUal  UeaVRnV.  FiUVW,  VSeech  iV  cRnWinXRXV,  ZiWh  nR  acRXVWic  cRUUelaWeV  WR                 

ZRUd  bRXndaUieV  (nR  µZhiWe  VSaceV¶  beWZeen  ZRUdV,  aV  in  VRme  ZUiWing  V\VWemV).  We  can  nRWice  WhaW                  

VSeech  iV  cRnWinXRXV  Zhen  Ze  heaU  VRmeRne  Walking  in  an  XnknRZn  langXage.  SecRnd,  aW  Whe                 

beginning  Rf  acTXiViWiRn,  childUen  dR  nRW  diVSRVe  Rf  a  ZRUd  le[icRn  and  dR  nRW  knRZ  Whe  UegXlaUiWieV                   

Rf  WheiU  fXWXUe  langXage   (BlanchaUd  eW  al.,  2009) ,  VR  Whe\  dR  nRW  haYe  an\  knRZledge  VSecific  WR  Whe                    

langXage  Uead\  WR  helS.  ThiUd,  YeU\  feZ  ZRUdV  RccXU  in  iVRlaWiRn  in  VSeech   (BUenW  &  SiVkind,  2001) ,                   

and,  fRU  WhRVe  ZRUdV  WhaW  RccXU  in  iVRlaWiRn,  WheUe  iV  nR  SURSRVal  Rn  hRZ  Whe\  cRXld  be  UecRgni]ed                    

(Gambell  &  Yang,  2006) .  MRVW  ZRUdV  aUe  neYeU  eYen  heaUd  in  iVRlaWiRn  (deWeUmineUV  fRU  e[amSle),                 

WhXV   childUen   VhRXld   VRmehRZ    segment    Whem   RXW   Rf   VSeech.   

  

We  can  RbVeUYe  WUaceV  Rf  VegmenWaWiRn  b\  Whe  age  Rf  7  mRnWhV,  b\  e[amining  childUen¶V  UecRgniWiRn   Rf                   

ZRUdV  and  fXncWiRnal  iWemV.  FRU  e[amSle,  childUen  UecRgni]e  WheiU  RZn  nameV  b\  4.5  mRnWhV   (Mandel                 

eW  al.,  1995) ,  and  VegmenW  familiaU  cRnWenW  ZRUdV  VXch  aV   cup  and   feet  fURm  UXnning  VSeech  b\  7.5                    

mRnWhV   (DeSaRliV  eW  al.,  2014;  JXVc]\k  &  AVlin,  1995) .  AURXnd  WheiU  fiUVW  \eaU  and  SUiRU  WR  SURdXcWiRn,                   

childUen  alVR  UecRgni]e  fUeTXenW  fXncWiRnal  iWemV   (ChUiVWRShe  eW  al.,  2008) ,  VXch  aV  deWeUmineUV  (b\  11                 

mRnWhV,   (Shi,  WeUkeU,  eW  al.,  2006)  and  eYen  leVV  fUeTXenW  fXncWiRn  ZRUdV  (b\  13  mRnWhV,   Shi,  CXWleU,                   

eW  al.,  2006) .  PUiRU  WR  SURdXcWiRn,  and  ma\be  eYen  SUiRU  WR  VemanWic  knRZledge,  Whe\  UecRgni]e  bRXnd                  

iWemV  VXch  aV  affi[eV   (GRme]  &  GeUken,  1999b;  MinW]  eW  al.,  2002;  MinW],  2013) .  BUiefl\,  childUen                  

Veem  WR  bXild  a  SURWRle[icRn  Rf  candidaWe  ZRUd-like  XniWV  (RfWen  called  ³ZRUdfRUmV´)  b\  WheiU  fiUVW                 

biUWhda\   (BannaUd  &  MaWWheZV,  2008;  NgRn  eW  al.,  2013) ,  and  aV  Whe\  VegmenW  XniWV  acRXVWicall\                 

VimilaU   WR   each   RWheU,   Whe\   becRme   mRUe   aWWenWiYe   WR   WheiU   acRXVWic   deWailV    (SZingle\   &   AVlin,   2002) .     

  

IQ  WKLV  GLVVHUWDWLRQ,  ZH  IRFXV  RQ  D  VSHFLILF  OHDUQLQJ  WDVN:  WKH  VHJPHQWDWLRQ  WDVN.  HRZHYHU,  VLQFH                 

SUHYLRXV  ZRUN  RQ  VHJPHQWDWLRQ  LV  OLPLWHG,  ZH  DOVR  EULHIO\  UHIHU  WR  SURGXFWLRQ  DQG  JUDPPDU                

DFTXLVLWLRQ,  VXSSRVLQJ  WKDW  ERWK  UHVXOW  IURP  D  VXFFHVVIXO  VHJPHQWDWLRQ.   In  geneUal,  childUen              

cRmSUehend  ZRUdV  and  fXncWiRnal  iWemV  eaUlieU  Whan  WheiU  age  Rf  SURdXcWiRn   (ClaUk  &  HechW,  1983) .                 

FRllRZing  babbling,  SURdXcWiRn  Rf  Whe  fiUVW  cRnWenW  ZRUdV  RccXUV  aW  12-20  mRnWhV,  and  incUeaVeV                

UaSidl\  aW  16-18  mRnWhV  (DieVendUXck,  2007).  ThiV  incUeaVe  iV  RfWen  deVcUibed  aV  a  µYRcabXlaU\  VSXUW¶                

-  bXW  Vee   BlRRm  (2004)  challenging  WhiV  nRWiRn.  AW  aURXnd  WZR  \eaUV,  childUen  enWeU  Whe  WZR-ZRUd                  

SURdXcWiRn  VWage   (Sakai,  2005) .  B\  WZR  and  a  half  \eaUV,  WheiU  SURdXcWiYe  YRcabXlaU\  Vi]e  iV  abRXW  600                   
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ZRUdV,  and  aW  Vi[  \eaUV  iW  RfWen  e[ceedV  10,000  ZRUdV   (GRRdman  eW  al.,  2008) .  MRUShRlRgical                 

elemenWV   in   SURdXcWiRn   aSSeaU   ZiWhin   Whe   fiUVW   \eaU   Rf   Walking   (ClaUk,   2017).   

  

BefRUe  WheiU  VecRnd  biUWhda\,  EngliVh-leaUning  childUen  gUaVS  Whe  gUammaWical  VWUXcWXUe  Rf  Whe              

langXage,  iWV  caWegRUieV,  and  can  diffeUenWiaWe  beWZeen  nRXnV,  adjecWiYeV,  RU  eYen  WUanViWiYe  and               

inWUanViWiYe  YeUbV   (BRRWh  &  Wa[man,  2009;  Gelman  &  Ta\lRU,  1984;  Gyme]  &  LakXVWa,  2004;  H|hle                 

eW  al.,  2004) .  B\  Whe  age  Rf  2  \eaUV,  Whe\  maVWeU  nXmbeU,  eaUlieU  fRU  nRXnV  Whan  YeUbV,  and,  b\  Whe  age                       

Rf  3  \eaUV,  Whe\  maVWeU  mRVW  WenVeV  (eYen  WhRXgh  VRme,  VXch  aV  SUeVenW  SeUfecW,  aUe  nRW  fXll\  maVWeUed                    

XnWil   4-5)   and   deUiYaWiRnal   affi[eV.     

  

ChildUen  Wend  WR  leaUn  fRUmV  Rf  ZRUdV  befRUe  WheiU  meaningV   (JXVc]\k  &  HRhne,  1997;  SZingle\,                 

2007) .  AlWhRXgh  eaUl\  VemanWic  leaUning  Zill  nRW  be  fXUWheU  diVcXVVed  in  WhiV  diVVeUWaWiRn,  Ze  menWiRn                 

WhaW  WhiV  iV  anRWheU  challenging  WaVk  Whe\  need  WR  Wackle,  giYen  WhaW  WheUe  RfWen  aUe  nXmeURXV                  

h\SRWheVeV  fRU  a  ZRUd¶V  meaning.  EngliVh-leaUning  childUen  VWaUW  aWWaching  candidaWe  UefeUenWV  WR              

ZRUdfRUmV  aW  abRXW  6  mRnWhV,  mRVWl\  fRU  cRncUeWe  iWemV   (BeUgelVRn  &  SZingle\,  2013;  DieVendUXck,                

2007)    and   Whe\   keeS   Uefining   Whe   cRnceSWV   baVed   Rn   inSXW    (He   &   AUXnachalam,   2017) .   

  

1.2   FURP   Whe   iQVide   
LangXage  acTXiViWiRn  can  be  deVcUibed  aV  a  SURdXcW  Rf  menWal  SURceVVeV,  Zhich  UeceiYe  aV   input                 

infRUmaWiRn  fURm  Whe  lingXiVWic  enYiURnmenW  and  SURdXce  aV   output  Whe  menWal  UeSUeVenWaWiRn  Rf  Whe                

langXage,  aV  Zell  aV  Whe  RbVeUYable  abiliW\  WR  cRmSUehend  and  SURdXce  langXage   (HRff,  2006) .  ThXV,                 

Whe  RXWSXW  Rf  langXage  acTXiViWiRn  iV  gXided  b\  Whe  inSXW,  iWV  aYailabiliW\  and  SURSeUWieV,  aV  Zell  aV  Whe                    

cRmSXWaWiRnal  V\VWem,  iWV  cRgniWiYe  mechaniVmV  and  WRRlV   (MinW]  eW  al.,  2002) .  FRU  Whe  Vake  Rf  WhiV                  

diVVeUWaWiRn,   Ze   adRSW   WhiV   definiWiRn.   

  

We  can  infeU  fURm  WhiV  definiWiRn  WhaW  childUen  need  WR  inWeUacW  ZiWh  Whe  ZRUld  ( Jiang  eW  al.,  2020) ,  and                     

geW  e[SRVed  WR  VXUURXnding  langXage  inSXW   (MRUgan  &  DemXWh,  1996) ,  Vince  langXage  leaUning  UeVXlWV                

fURm  WhiV  e[SRVXUe.  Indeed,  acURVV  acTXiViWiRn  WheRUieV   (ChRmVk\,  1959;  ChUiVWianVen  &  ChaWeU,  2008;               

Elman,  1996;  GeUYain  &  MehleU,  2010;  Michael  TRmaVellR,  2001) ,  WheUe  iV  a  cRnVenVXV  WhaW  inSXW  iV                  

eVVenWial  WR  acTXiViWiRn,  aV  iW  SURYideV  infRUmaWiRn  Rn  Whe  langXage,  iWV  YRcabXlaU\  and  VWUXcWXUe.                

HRZeYeU,  befRUe  diVcXVVing  mRUe  Rn  langXage  inSXW,  Ze  SURYide  belRZ  a  bUief  deVcUiSWiRn  Rf  Whe                 

cRgniWiYe   mechaniVmV   and   WRRlV   XVed   in   acTXiViWiRn.   
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1.3   LeaUQiQg   PechaQiVPV   aQd   cXeV     

SeYeUal  VWUaWegieV  haYe  been  SURSRVed  WR  accRXnW  fRU  ZRUd  and  mRUSheme  VegmenWaWiRn  and  leaUning                

in  langXage  acTXiViWiRn  (Vee   Figure  2 ).  CRnWUaU\  WR  adXlW  langXage  leaUning,  childUen  VWaUW  leaUning                

langXage  SURbabl\  baVed  Rn  bRWWRm-XS  (Vignal-deUiYed)  VWUaWegieV   (MaWW\V  eW  al.,  2005;  MeUVad  &               

Na]]i,  2012;  PieUUehXmbeUW,  2003)  -  alWhRXgh  Whe\  alVR  Veem  WR  haYe  SUele[ical  acceVV  WR  VRme                 

WRS-dRZn   infRUmaWiRn   (e.g.   ZRUd   RUdeU,    GeUYain   eW   al.,   2008) .     

  

TUadiWiRnall\,  WheVe  VWUaWegieV  haYe  been  deVcUibed  WR  cRnWain  bRWh  langXage-geneUal  and             

langXage-VSecific  cXeV.  HRZeYeU,  deSending  Rn  diffeUenW  definiWiRnV  Rf  µVSecificiW\¶  (ZheWheU  Whe\             

UefeU  WR  Whe  VWUaWeg\  RU  Whe  cRnWenW),  WhiV  claVVificaWiRn  Rf  cXeV  iV  nRW  VWUaighWfRUZaUd  (e.g.  ShRnRWacWicV,                  

BlanchaUd  eW  al.,  2010 ;  VWUeVV,   EndUeVV  &  HaXVeU,  2010) .  Man\  cXeV  VSecific  WR  VSeech  aUe                 

SURbabiliVWic,  and  cRXld  be  fUamed  aV  VWaWiVWical  cXeV.  FRU  inVWance,  ShRnRWacWicV  can  be  fUamed  aV  Whe                  

SURbabiliW\  Rf  Rne  VRXnd  fRllRZing  anRWheU  ZiWhin  Whe  VSeech  VWUeam.  EYen  fRU  VWUeVV,  a  WUadiWiRnall\                 

langXage-VSecific  cXe,  infanWV  need  WR  WUack  Whe  diVWUibXWiRnal  fUeTXencieV  Rf  VWUeVVed  V\llableV              

(JRhnVRn  &  JXVc]\k,  2001) .  FRU  illXVWUaWiRnal  SXUSRVeV,  Ze  SUeVenW  Whe  cXeV  in  FigXUe  2  aYRiding  WhiV                  

diVWincWiRn.     

  

IW  haV  been  VXggeVWed  WhaW  WUanViWiRnal  SURbabiliWieV  (TPV)  SURbabl\  SURYide  iniWial  infRUmaWiRn  fRU  Whe                

VXbVeTXenW  XVe  Rf  Whe  VSeech  cXeV   (JXnge,  2018;  SZingle\,  2005) ;  Vee  alVR   JRhnVRn  &  JXVc]\k,                 

(2001),  ThieVVen  &  SaffUan  (2003 )  fRU  e[SeUimenWal  and   Vallabha  eW  al.  (2007)  fRU  mRdeling  ZRUk.  IQ                  

WKLV  GLVVHUWDWLRQ,  ZH  WHVW  WKH  VHJPHQWDELOLW\  RI  LQSXW  EDVHG  RQ  ERWWRP-XS  FXHV,  XVLQJ  FXHV  VXFK  DV                  

TPV,   SKRQRWDFWLFV   DQG   XWWHUDQFH   ERXQGDULHV.   :H   GHVFULEH   WKHVH   FXHV   EHORZ.   
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In  labRUaWRU\  e[SeUimenWV,  childUen  manage  WR  e[WUacW   patterns  RXW  Rf  lingXiVWic  V\VWemV   (ChambeUV  eW                

al.,  2003;  GeUken,  2006;  SaffUan  &  ThieVVen,  2003) ,  and  WhURXgh  VRme  kind  Rf  abVWUacWiRn,  Whe\                 

geneUali]e  Whem  WR  neZ  VWimXli   (BeUkR,  1958;  GRme]  &  GeUken,  1999a;  TenenbaXm  eW  al.,  2011) .                 

TheVe  SaWWeUnV  emeUge  fURm  UegXlaUiWieV  in  inSXW   (CRnZa\  eW  al.,  2010;  Lan\  &  Gyme],  2008;                 

RRmbeUg  &  SaffUan,  2010) .  ThiV  indXcWiYe  cRmSXWaWiRn  can  be  XndeUVWRRd  in  SURbabiliVWic  WeUmV,  in                

RUdeU  WR  caSWXUe  Whe  XnceUWainW\  Rf  Whe  leaUneU;  WheiU  beliefV  aUe  XSdaWed  aV  Whe\  SURceVV  Whe  (RfWen                   

inVXfficienW   RU   ambigXRXV)   inSXW    (GRSnik   &   TenenbaXm,   2007) .    

  

SWaWiVWical  leaUning  UefeUV  WR  WhiV  abiliW\  Rf  e[WUacWing  VWaWiVWical  SaWWeUnV  fURm  a  VWUeam  Rf  SeUceSWXal                 

e[SeUienceV   (RRmbeUg  &  SaffUan,  2010) ,  and  iV  cRnVideUed  a  bRWWRm-XS  VWUaWeg\.  LabRUaWRU\              

e[SeUimenWV  haYe  VhRZn  WhaW  childUen  can  cRmSXWe  baVic  VWaWiVWicV,  VXch  aV  elemenW  fUeTXenc\,  and                

WheiU  fUeTXenc\  Rf  cR-RccXUUence,  baVed  Rn  VWaWiVWical  and  diVWUibXWiRnal  UegXlaUiWieV.  ThiV  infRUmaWiRn              

can  SURYe  XVefXl  acURVV  mXlWiSle  lingXiVWic  leYelV;   le[ical   (EVWeV  eW  al.,  2007;  RRmbeUg  &  SaffUan,                 

2010) ,   semantic   (VRXlRXmanRV  &  WeUkeU,  2009;  YXURYVk\  eW  al.,  2014;   DieVendUXck,  2007;  GleiWman,               

1989 ) ,   phonological  (e.g.   Ma\e  eW  al.,  2002)  and   morphos\ntactic   (e.g.  ThRmSVRn  &  NeZSRUW,  2007)                

-alVR  Vee   FRXUWaVVi  &  DXSRX[  (2014)  fRU  a  mRdel  leaUning  SaUallel  lingXiVWic  UeSUeVenWaWiRnV  baVed  Rn                 

VWaWiVWical   leaUning.     

  

We  aUe  VSecificall\  inWeUeVWed  in  Whe  le[ical  leYel.  SRXnd  VeTXenceV  RccXUUing  ZiWhin  ZRUdV  aUe  mRUe                 

likel\  WR  cR-RccXU  Whan  VRXnd  VeTXenceV  RccXUUing  incidenWall\  acURVV  bRXndaUieV,  and  WhiV  can  be                

meaVXUed  ZiWh  WUanViWiRnal  SURbabiliWieV   (AVlin  eW  al.,  1998) .   SaffUan  eW  al.  (1996)  demRnVWUaWed  WhaW,                

Zhen  heaUing  an  aUWificial  langXage,  EngliVh-leaUning  8-mRnWh  Rld  childUen  can  SeUceiYe  WUanViWiRnal              

SURbabiliWieV  acURVV  V\llableV  and  XVe  WhiV  infRUmaWiRn  WR  VegmenW  ZRUdV.  A  VimilaU  VWUaWeg\  haV  been                 

RbVeUYed  in  neRnaWeV   (BXlf  eW  al.,  2011;  TeinRnen  eW  al.,  2009)  and  in  WamaUin  mRnke\V   (HaXVeU  eW  al.,                    

2001) .   

  

EYen  WhRXgh  Whe  YalidiW\  Rf  VWaWiVWical  leaUning  mechaniVmV  ZaV  VWURngl\  VXSSRUWed  b\   PelXcchi  eW  al.                 

(2009) ,  ZhR  VhRZed  WhaW  EngliVh-leaUning  8-mRnWh  RldV  cRXld  WUack  WUanViWiRnal  SURbabiliWieV  in              

naWXUall\  SURdXced,  gUammaWical  VWimXli  in  IWalian,   E.  K.  JRhnVRn  &  T\leU  (2010)  failed  WR  UeSlicaWe  an                  

aUWificial  langXage  VWXd\  Zhen  Whe  ZRUdV  Rf  Whe  langXage  had  YaUiable  lengWh.  A  meWa-anal\ViV  Rf                 

VWXdieV  imSlemenWing  WUanViWiRnal  SURbabiliWieV  fRU  VegmenWaWiRn  VhRZed  a  VignificanW  bXW  Vmall  effecW,              

ZhRVe  SUeVence  deSended  Rn  Whe  W\Se  Rf  VSeech  XVed,  Ueal  RU  V\nWheWicall\  SURdXced   (Black  &                 

BeUgmann,  2017) .  Since  Whe  leaUning  e[SeUience  iV  neceVVaUil\  VimSlified  in  Whe  lab  (EndUeVV  eW  al.,                 

2009;  E.  K.  JRhnVRn  &  Seidl,  2009;  PieUUehXmbeUW,  2003),  Whe  ecRlRgical  YalidiW\  Rf  mechaniVmV                
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VhRXld  be  checked  b\  WeVWing  WheiU  SRWenWial  XVefXlneVV  Rn  Ueal-life  inSXW   (FUank,  GRldZaWeU,  eW  al.,                 

2010;   SZingle\,   2005) .   

  

In  SUeYiRXV  labRUaWRU\  e[SeUimenWV,  childUen  alVR  made  XVe  Rf  ShRnRWacWic  UegXlaUiWieV   (MaWW\V  &               

JXVc]\k,  2001)  and  allRShRnic  diVWUibXWiRnV   (Gambell  &  Yang,  2005;  PeWeU  W.  JXVc]\k,  HRhne,  eW  al.,                 

1999)  WR  VegmenW  ZRUdV.  The\  ma\  leaUn  abRXW  ShRnRWacWicV  b\  lRRking  aW  Whe  diVWUibXWiRn  Rf                

XWWeUance-final  and  XWWeUance-iniWial  ShRne  VeTXenceV (ChambeUV  eW  al.,  2002,  2003)  -  alVR  Vee               

BlanchaUd  eW  al.  (2009)  and  Ha\eV  &  WilVRn  (2008 )  fRU  mRdelling  ShRnRWacWic  leaUning.  CRndiWiRnal                

SURbabiliWieV  aSSUR[imaWe  WhiV  leaUning  (e.g.  Whe  SURbabiliW\  WhaW   [d]  cRmeV  afWeU  [S]  iV  YeU\  Vmall,  VR                  

WheUe  ma\  be  a  bRXndaU\).  AllRShRnic  diVWUibXWiRnV  can  alVR  be  infRUmaWiYe  Rn  ZRUd  bRXndaUieV.   FRU                 

e[amSle,  allRShRne  /W/  iV  aVSiUaWed  aW  Whe  beginning  Rf  ZRUdV  (e.g.  µWable¶)  bXW  XnaVSiUaWed  aW  Whe  end                   

(e.g.   µhaW¶).     

  

Finall\,   ShUaVe  and  XWWeUance  edgeV  aUe  acRXVWicall\  ValienW  WR  childUen  eaUl\  Rn   (GRXW  eW  al.,  2004;                  

ShXkla  eW  al.,  2011;  T\leU  &  CXWleU,  2009) .  InfanWV  cRXld  aVVXme  WhaW  WheVe  edgeV  aUe  alVR  ZRUd                   

bRXndaUieV,   and   XVe   Whem   WR   VegmenW   edge-final   and   edge-iniWial   ZRUdV    (Seidl   &   JRhnVRn,   2006) .   

  

LDVW,  ZH  EULHIO\  PHQWLRQ  VRPH  WRS-GRZQ  VHJPHQWDWLRQ  VWUDWHJLHV  KHUH.  IQ  WKLV  GLVVHUWDWLRQ,  ZH               

WHVW  WKH  VHJPHQWDELOLW\  RI  LQSXW  EDVHG  RQ  RQH  WRS-GRZQ  VWUDWHJ\,  WKH  XVH  RI  NQRZQ  ZRUG-OLNH                 

LWHPV   (ChUiVWRShe  eW  al.,  1997) .  OWheU  VWUaWegieV  inclXde  Whe  XVe  Rf  VemanWic  and  V\nWacWic  cRnWenW                

(GilleWWe  eW  al.,  1999;  GleiWman,  1990) .  In  eaUl\  acTXiViWiRn,  YeU\  feZ  cRnWenW  ZRUdV  aUe  idenWifiable,                 

VXch  aV  Whe  child¶V  RZn  name  and  Whe  aSSellaWiRn  fRU  heU  SaUenWV.  FXncWiRnal  iWemV,  Zhich  XVXall\  aUe                   

fUeTXenW,  VhRUW,  and  aW  Whe  bRUdeUV  Rf  SURVRdic  XniWV,  aUe  UecRgni]ed  eaUl\  Rn   (ChUiVWRShe  eW  al.,  2008a;                   

Shi  eW  al.,  1998)  and  haYe  a  VimilaU  bRRWVWUaSSing  URle.  In  e[SeUimenWal  VeWWingV,  childUen  alUead\  aW  8                   

mRnWhV  XVe  VRme  Rf  Whem  WR  VegmenW  cRnWenW  ZRUdV   (Hallp  eW  al.,  2008;  MinW],  2013;  Shi  &  LeSage,                    

2008;    Shi   eW   al.,   2006) .   
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GXide   WR   ChaSWeUV   

ThiV  diVVeUWaWiRQ  iV  diYided  iQWR  10  chaSWeUV  aQd  WZR  SaUWV.  We  begaQ  ZiWh  aQ  iQWURdXcWRU\  chaSWeU,                  

ZheUe  Ze  SUeVeQWed  Whe  cRQceSW  aQd  beQchmaUkV  Rf  eaUl\  laQgXage  acTXiViWiRQ.  ChaSWeUV  2-5  aUe  Whe                 

fiUVW  SaUW  Rf  Whe  diVVeUWaWiRQ,  ZheUe  Ze  deal  ZiWh  diYeUViW\  aQd  leaUQabiliW\  acURVV  liQgXiVWic  V\VWemV.                 

Chapter  2  is  the  introduction  of  Part  1 .  IQ  ChaSWeU  2  Ze  meQWiRQ  SUeYiRXV  VWXdieV  lRRkiQg  aW                   

cURVV-liQgXiVWic  diYeUViW\  aQd  leaUQiQg.  We  diVcXVV  Whe  Qeed  fRU  fXWXUe  UeVeaUch  aQd  hRZ  iW  geWV                 

adUeVVed  iQ  WhiV  diVVeUWaWiRQ.   Chapter  3  is  a  modeling  stud\  under  reYieZ ,  ZheUe  Ze  WeVW  Whe                  

VegmeQWabiliW\  Rf  iQSXW  fURm  WZR  laQgXageV  diffeUiQg  iQ  UichQeVV  Rf  WheiU  mRUShRlRgical  feaWXUeV,               

ChiQWaQg  aQd  JaSaQeVe.  AQ  iQQRYaWiYe  aVSecW  Rf  WhiV  VWXd\  iV  Whe  eYalXaWiRQ  Rf  VegmeQWaWiRQ                

SeUfRUmaQce  iQ  bRWh  ZRUdV  aQd  mRUShemeV.   Chapter  4  is  a  published  modeling  stud\,  ZheUe  Ze  WeVW                  

Whe  cURVV-liQgXiVWic  YiabiliW\  Rf  VegmeQWaWiRQ  VWUaWegieV.  We  iQYeVWigaWe  ZheWheU  Whe\  SeUfRUm  abRYe              

chaQce  aQd  VWabl\  acURVV  eighW  W\SRlRgicall\  diYeUVe  laQgXageV.   Chapter  5  an  ongoing  artificial               

language  stud\ .  We  aVk  ZheWheU  hXmaQ  SaUWiciSaQWV  VegmeQW  ZRUdV  aQd/RU  mRUShemeV  ZheQ              

e[SRVed  WR  aQ  aUWificial  laQgXage  ZheUe,  jXVW  like  hXmaQ  laQgXageV,  ZRUdV  aUe  cRmSRVed  b\                

mRUShemeV.    Chapter   6   is   the   conclusion   to   Part   1 .     

Chapter  7  is  the  introduction  to  Part  2 .  IQ  WhiV  chaSWeU,  Ze  meQWiRQ  SUeYiRXV  VWXdieV  lRRkiQg  aW                   

diYeUViW\  aQd  leaUQiQg  fURm  diffeUeQW  UegiVWeUV  aQd  VSeakeUV.   Chapter  8  is  a  corpus  stud\  under                 

reYieZ  ZheUe  VSeech  heaUd  b\  childUeQ  iV  cRmSaUed  acURVV  WZR  diYeUVe  cXlWXUeV,  iQ  LeVRWhR  aQd  iQ                  

FUaQce.  The  amRXQW  aQd  TXaliW\  Rf  iQSXW  iV  iQYeVWigaWed  acURVV  VSeech  UegiVWeUV.  We  caWegRUi]e  iQSXW                 

aV  diUecWed  WR  Whe  WaUgeW  childUeQ,  RWheU  childUeQ  RU  adXlWV.  IQSXW  iV  alVR  meaVXUed  acURVV  VSeakeUV;  Whe                   

WaUgeW  childUeQ¶V  mRWheUV,  RWheU  adXlWV  aQd  RWheU  childUeQ.   Chapter  9  is  a  published  modeling  stud\ ,                 

ZheUe  Ze  WeVW  Whe  VegmeQWabiliW\  Rf  VSeech  UegiVWeUV  fURm  iQSXW  WR  FUeQch-leaUQiQg  childUeQ.  We  aVk                 

ZheWheU  SeUfRUmaQce  diffeUeQceV  beWZeeQ  UegiVWeUV  caQ  be  e[SlaiQed  b\  WheiU  VSecific  chaUacWeUiVWicV.              

Chapter  10  is  the  conclusion  to  Part  2 .  FiQall\  WheUe  iV  iV  a  general  discussion ,  ZheUe  Ze  diVcXVV                    

fXWXUe   liQeV   Rf   UeVeaUch   aQd   VRme   SeUVRQal   iQVighWV   abRXW   laQgXage   leaUQiQg   iQ   geQeUal.     
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PaUW   1     

2.   Diversit\   across   languages   

HaYing  VeW  dRZn  VRme  baVic  definiWiRnV  and  SURYided  a  VXmmaU\  Rf  SUeYiRXV  UeleYanW  UeVXlWV  fURm                 

EngliVh  leaUneUV,  Ze  VWaUW  Whe  fiUVW  main  SaUW  Rf  Whe  diVVeUWaWiRn.  In  WhiV  inWURdXcWRU\  ChaSWeU  2,  Ze  lRRk                    

aW  Zhich  cURVV-lingXiVWic  chaUacWeUiVWicV  ma\  diYeUVif\  Whe  inSXW  childUen  gURZ  XS  heaUing,  and  hRZ                

WheVe  chaUacWeUiVWicV  can  affecW  leaUnabiliW\.  In  2.1,  Ze  Walk  abRXW  Whe  diYeUVe  W\SRlRgical  feaWXUeV  Rf                 

langXageV  aURXnd  Whe  ZRUld.  In  2.2,  Ze  diVcXVV  hRZ  diffeUenW  langXageV  aUe  leaUned,  baVed  Rn  SUeYiRXV                  

e[SeUimenWal  and  mRdeling  eYidence,  and  Ze  emShaVi]e  Whe  need  fRU  fXWXUe  UeVeaUch.  In  ChaSWeUV  3,  4                  

and  5  Ze  addUeVV  WhiV  need  ZiWh  WhUee  diffeUenW  VWXdieV.  In  ChaSWeU  6,  Ze  SURYide  cRnclXViRnV  baVed  Rn                    

RXU   UeVXlWV.     

2.1   IQSXW   acURVV   OaQgXageV   
  

SeYeUal  TXeVWiRnV  can  be  aVked  if  Ze  ZanW  WR  WUXl\  XndeUVWand  langXage  acTXiViWiRn   (BeUWRlR,  2001) ;                 

WhaW  iV  leaUned  dXUing  acTXiViWiRn?  WhaW  VWUaWegieV  aUe  XVed  WR  leaUn?  When  dR  Ze  Va\  WhaW  leaUning                   

haV  been  VXcceVVfXl?  HRZeYeU,  Ze  cannRW  begin  WR  aVk  WheVe  TXeVWiRnV,  if  Ze  dRn¶W  knRZ  Whe  lingXiVWic                   

inSXW  childUen  UeceiYe.  ThiV  knRZledge  Zill  helS  XV  UeVWUain  h\SRWheVeV  fRU  all  RWheU  TXeVWiRnV  Rn                 

langXage  acTXiViWiRn.  WhaW  Ze  knRZ  fRU  VXUe  iV  WhaW  inSXW  Rf  childUen  aURXnd  Whe  ZRUld  iV   e[tremel\                   

diverse ,  aV  langXageV  diffeU  UemaUkabl\  in  WheiU  W\SRlRgical  feaWXUeV   (NRUcliffe  eW  al.,  2015 ;   Bickel,                

2014;   EYanV   &   LeYinVRn,   2009) .   

  

AlUead\  in  1985,   TRmaVellR  &  Mannle  VXggeVWed  WhaW  UeVeaUch  VhRXld  ³inYeVWigaWe  mRUe  WhRURXghl\               

Whe  naWXUe  and  effecWV  Rf  Whe  WRWal  Uange  Rf  langXage  mRdelV  aYailable  WR  langXage  leaUneUV´  (S.  916).                   

SeYeUal  \eaUV  laWeU, EYanV  &  LeYinVRn  (2009)  emShaVi]ed  WhaW  Whe  cRgniWiYe  Vcience  cRmmXniW\  iV  nRW                 

\eW  aZaUe  Rf  Whe  diYeUViW\  acURVV  langXageV.  The  Ueali]aWiRn  WhaW  langXage  acTXiViWiRn  WheRUieV  VhRXld                

e[Slain  hRZ   all  langXageV  aUe  leaUned,  and  hRZ  childUen  cRSe  ZiWh  WhiV  YaUiaWiRn,  haV  UecenWl\  led  WR                   

incUeaVing   aWWenWiRn   WRZaUdV   cURVV-lingXiVWic   ZRUk    (SWRll   &   Bickel,   2013) .     
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2.1.1   VaUiaWiRn   in   W\SRlRgical   feaWXUeV   Rf   langXage   inSXW   
  

InflecWiRnal   morpholog\ ,  aV  Zill  be  diVcXVVed  laWeU  Rn,  iV  a  majRU  VRXUce  Rf  diYeUViW\   (Penke,  2012) .                  

TUadiWiRnal  lingXiVWicV  caWegRUi]e  langXageV  aV  iVRlaWing/anal\Wic,  V\nWheWic  (Zhich  can  be  fXViRnal  and              

agglXWinaWiYe)  and  SRl\V\nWheWic.  Anal\Wic  langXageV  haYe  YeU\  liWWle  affi[aWiRn,  almRVW  nR  bRXnd              

mRUShemeV  and  nR  V\VWemaWic  ZRUd  deUiYaWiRn  SURceVV  (Vee  MandaUin  ChineVe,  VieWnameVe).             

S\nWheWic  langXageV  haYe  higheU  mRUSheme-ZRUd  UaWiRV  and  UicheU  mRUShRlRgical  V\VWemV  WhURXgh             

agglXWinaWiRn  and  fXViRn;  FXViRnal  langXageV  haYe  a  Vmall  VeW  Rf  bRXnd  mRUShemeV  and  RfWen  VRme                 

fUee  mRUShemeV,  each  mRUSheme  maUking  VeYeUal  gUammaWical  fXncWiRnV  (Vee  GUeek,  SSaniVh).             

AgglXWinaWiYe  langXageV  haYe  a  laUge  VeW  Rf  bRXnd  mRUShemeV,  and  each  mRUSheme  haV  Rne                

gUammaWical  fXncWiRn  (Vee  HXngaUian,  SZahili).  Finall\,  SRl\V\nWheWic  langXageV  haYe  laUge  VeWV  Rf              

bRWh  agglXWinaWiYe  and  fXViRnal  mRUShemeV,  and  Whe\  can  haYe  mRUe  Whan  Rne  VWem  in  a  Vingle  ZRUd,                   

e.g.   b\   incRUSRUaWing   Whe   VXbjecW   and   RbjecW   nRXnV   inWR   a   YeUb   VWem.     

ThiV  caWegRUi]aWiRn  haV  been  challenged  b\  mRdeUn  lingXiVWV,  ZhR  cRnVideU  mRUShRlRgical  cRmSle[iW\              

aV  mRUe  Rf  a  cRnWinXXm.  In  an\  caVe,  iW  iV  eYidenW  WhaW  langXageV  can  diffeU  ma[imall\.  FRU  e[amSle,  in                     

EngliVh,  YeUb  VWemV  Rnl\  RSWiRnall\  cR-RccXU  ZiWh  Rnl\  a  feZ,  and  nRW  neceVVaUil\  bRXnd,  affi[eV.  In                  

RWheU  langXageV,  VWemV  can  cRmbine  ZiWh  man\  affi[eV,  and  Whe  cRmbinaWiRnV  alVR  deSend  Rn  VSecific                 

inflecWiRnal  claVVeV  (e.g.  GeUman  SlXUal  haV  VeYen  VhaSeV,  diVWUibXWed  RYeU  Vi[Ween  inflecWiRnal  claVVeV),               

Rn  allRmRUSh\,  e[SRnence,  RU  eYen  Whe  VSeech  cRnWe[W  and  iWV  SaUWiciSanWV  (e.g.  ChinWang,   SWRll  eW  al.,                  

2017 ).  AccRUding  WR   SWRll  eW  al.  (2017 ),  in  EngliVh,  VWemV  aSSeaU  in  Whe  Vame  fRUm  fUeTXenWl\  and                   

acURVV   cRnWe[WV,   ZheUeaV   in   ChinWang,   childUen   heaU   15.3   WimeV   mRUe   XniTXe   YeUb   fRUmV.   

OWheU  Whan  mRUShRlRg\,  langXageV  e[hibiW  enRUmRXV  diYeUViW\  in   phonolog\  (e.g.  in  WheiU  Vi]e  Rf                

ShRnemic  inYenWRU\,   EYanV  &  LeYinVRn,  2009 ,  ShRnemic  SURSeUWieV,   PieUUehXmbeUW,  2003 ,  ZRUd  VWUeVV              

J XVc]\k,  HRXVWRn,  eW  al.,  1999) ,  in   semantics  (e.g.  lacking  RU  haYing  elabRUaWe  VemanWic  diVWincWiRnV,                

EYanV  &  LeYinVRn,  2009)  and  in   s\nta[  (e.g.  in  WheiU  UXleV  Rf  caVe  gRYeUnmenW,  UecXUViRn,   EYeUeWW,                  

2005 ,   ZRUd   RUdeU   and   ZRUd   claVVeV,    HengeYeld,   1992 �    Di[Rn   &   AƱkhenYald,   2004) .     

All  WhiV  diYeUViW\  VhRXld  find  a  Slace  in  RXU  XndeUVWanding  Rf  langXage  acTXiViWiRn.  AcWXall\,                

UeVeaUcheUV  cRXld  benefiW  fURm  lingXiVWic  diYeUViW\,  aV  iW  can  ³SURYide  a  naWXUal  labRUaWRU\  Rf  YaUiaWiRn                 

[...]  6000  naWXUal  e[SeUimenWV  in  eYRlYing  cRmmXnicaWiYe  V\VWemV´   (EYanV  &  LeYinVRn,  2009,  S.432) .               

A  Za\  WR  dR  VR  iV  b\  WeVWing  hRZ  leaUning  mechaniVmV  ZRUk  acURVV  langXageV,  and  hRZ  feaWXUeV                   

YaU\ing   acURVV   langXageV   can   haYe   effecWV   Rn   leaUning.     
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2.2   LaQgXage   acTXiViWiRQ   acURVV   OaQgXageV     

LeYinVRn  (2012)  Vaid  WhaW  hXman  cRgniWiRn  iV  WXned  WR  diYeUViW\  and  fle[ible  WR  enYiURnmenWal  inSXW.                 

TRmaVellR  (2003)  claimed  WhaW  childUen¶V  leaUning  VWUaWegieV  aUe  adaSWed  WR  e[WUacWing  infRUmaWiRn  in               

an\  VSeech  enYiURnmenW  Whe\  haSSen  WR  gURZ  XS  in.  WhaW  Ze  knRZ  fRU  VXUe  iV  WhaW,  aV  faU  aV  lingXiVWic                      

diYeUViW\  iV  cRnceUned,  childUen  leaUn  each  and  eYeU\  Rne  Rf  Whe  6000  langXageV  (GUimeV,  1992).                 

HRZeYeU,  Whe  WUajecWRU\  and  RXWcRme  Rf  acTXiViWiRn  mighW  diffeU   (HRff,  2006) ,  dXe  WR  diffeUenW                

e[SeUienceV   in   Whe   lingXiVWic   enYiURnmenW    (FenVRn   eW   al.,   1994;   JRneV   &   RRZland,   2017) .   

  

VaUiaWiRn  in  childUen¶V  gUammaWical  deYelRSmenW  haV  mainl\  been  Whe  fRcXV  Rf  SUeYiRXV              

cURVV-lingXiVWic  VWXdieV   (DemXWh,  1998;  DeYeVcRYi  eW  al.,  2005;  SWRll  eW  al.,  2017)  -  bXW  Vee   BleVeV  eW  al.                    

(2008);  BRUnVWein  eW  al.  (2004) .  EYen  WhRXgh  le[ical  deYelRSmenW  haV  been  leVV  VWXdied  acURVV                

langXageV,  gUammaWical  and  le[ical  deYelRSmenW  Veem  WR  be  cRUUelaWed  (FUank  eW  al.,  in  SUeS).  Since                 

WheUe  iV  liWWle  SUeYiRXV  eYidence  Rn   segmentation  acURVV  langXageV,  Ze  cRnVideU  le[ical  and               

gUammaWical   deYelRSmenW   aV   eYidence   Rf   VXcceVVfXl   VegmenWaWiRn.   

  

Dan  SlRbin  and  cRlleagXeV,  SiRneeUV  in  bXilding  a  liVW  Rf  SUinciSleV  fRU  cURVV-lingXiVWic  langXage                

acTXiViWiRn,  deYelRSed  a  field  manXal  fRU  cURVV-lingXiVWic  VWXdieV   (SlRbin,  1967) .  Since  When,  VeYeUal               

cURVV-lingXiVWic  VWXdieV  haYe  been  SXbliVhed.  HRZeYeU,  leVV  Whan  10%  Rf  Whe  ZRUld¶V  langXageV  haYe                

decenW  deVcUiSWiRnV,  and  langXage  acTXiViWiRn  cRUSRUa  aUe  VWill  limiWed:  0.1%  Rf  6000  langXageV  VSRken                

WRda\    (EYanV   &   LeYinVRn,   2009;   JaegeU   &   NRUcliffe,   2009) .     

  

CHILDES,  an  RSen  UeSRViWRU\,  cRnWainV  acTXiViWiRn  cRUSRUa  fRU  Rnl\  a  handfXl  Rf  langXageV,  Whe                

majRUiW\  Rf  Zhich  iV  IndREXURSean.  ThiV  iV  SURblemaWic  becaXVe  VRme  IndREXURSean  feaWXUeV  haSSen               

WR  be  UaUe  in  RWheU  langXage  familieV   (SWRll  &  Bickel,  2013) .  SSecificall\  Rn  Whe  acTXiViWiRn  Rf                  

agglXWinaWiYe  and  SRl\V\nWheWic  langXageV,  YeU\  liWWle  ZRUk  haV  been  dRne   (Kell\  eW  al.,  2014) .                

E[iVWing  ZRUk  haV  RfWen  fRcXVed  Rn  Whe  acTXiViWiRn  Rf  VSecific  lingXiVWic  ShenRmena  inYRlYing  WenVe,                

nXmbeU   and   YRice,   mRVWl\   in   RbVeUYaWiRnal   VWXdieV   nRW   Ueadil\   cRmSaUable   ZiWh   each   RWheU.     

  

2.2.1   Anal\Ving   SUeYiRXV   leaUning   RXWcRmeV   
  

While  Whe  RUdeU  in  Zhich  childUen  acTXiUe  meaningfXl  XniWV  haV  been  VWXdied  in  deWail  fRU  EngliVh  (e.g.                   

BURZn,  1973) ,  Ze  haYe  liWWle  eYidence  fRU  diYeUVe  langXageV   (ClaUk,  2017) .  In  langXageV  ZheUe                

XninflecWed  VWemV  aUe  SRVVible  ZRUdV,  VXch  aV  EngliVh,  fiUVW  inflecWed  fRUmV  aUe  SURdXced  aURXnd  Whe                 

WZR-ZRUd  SURdXcWiRn  VWage  (Penke,  2012).  In  langXageV  ZheUe  WhiV  iV  nRW  Whe  caVe,  childUen  SURdXce                 
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WheiU  fiUVW  cRnWUaVWing  mRUShemeV  aW  Rnl\  WZR-WR-WhUee  mRnWhV  afWeU  VWaUWing  WR  VSeak,  and  inflecWed                

fRUmV  aUe  SURdXced  alUead\  in  Whe  Rne  ZRUd  VWage  (HXngaUian,   MacZhinne\,  1976 ;  FinniVh,  TRiYainen                

1990;   IWalian,   Pi]]XWR   &   CaVelli   1994).     

  

AccRUding  WR   SWRll  eW  al.  (2017) ,  mRUShRlRg\  Rf  ChinWang,  a  SRl\V\nWheWic  langXage  ZiWh  an  elabRUaWe                 

YeUb  claVV  V\VWem,  iV  leaUned  eaUl\  Rn.  EYen  childUen  belRZ  age  WZR  diVSla\  imSUeVViYe  amRXnWV  Rf                  

mRUShRlRgical  YaUiaWiRn,  SURdXcing  22-40  diffeUenW  affi[  cRmbinaWiRnV.  EngliVh-leaUning  and           

ChinWang-leaUning  childUen  becRme  cRmSeWenW  VSeakeUV  aW  aSSUR[imaWel\  Whe  Vame  Wime,  deVSiWe  hXge              

diffeUenceV   in   VWUXcWXUe   Rf   Whe   langXageV.     

  

AfUican  BanWX  langXageV  haYe  elabRUaWe  nRXn  claVV  V\VWemV  ZiWh  SUefi[eV  fRUmed  b\  RSWiRnal              

cRnVRnanWV.  DeVSiWe  WhiV,  childUen  cRUUecWl\  SURdXce  WheVe  mRUShemeV  b\  WZR-and-a-half  \eaUV,  and              

knRZ  abRXW  WheiU  VhaSe  VeYeUal  mRnWhV  befRUe  V\VWemaWic  SURdXcWiRn   (DemXWh,  1992,  1998) .   CRnnell\               

(1984)  VXggeVWV  WhaW  Whe\  aUe  eYen  6-10  mRnWhV  in  adYance  Rf  WheiU  EngliVh  VSeaking  SeeUV  in  WeUmV  Rf                    

SURdXcing  mRUShRlRgicall\  elabRUaWe  XWWeUanceV.   DemXWh  (1990)  RbVeUYeV  WhaW  Whe\  aUe  mRUe             

adYanced  Whan  EngliVh  leaUneUV  in  WheiU  XVe  Rf  YaUiRXV  gUammaWical  cRnVWUXcWiRnV.  BRWh  DemXWh  and                

SWRll  eW  al.  (2017)  VXggeVW  WhaW  incUeaVed  aWWenWiRn  cRXld  acWXall\  cRmSenVaWe  fRU  Whe  cRmSle[iW\  Rf                 

VRme   langXageV.   

  

SWXdieV  in  RWheU  mRUShRlRgicall\  Uich  langXageV  (VXch  aV  InXkWiWXW,  T]elWal)  UeSRUW  VimilaU  SaWWeUnV               

(Allen  &  CUagR,  1996;  CUagR  &  Allen,  1998;  PfeileU,  2003) .   FRUWeVcXe  (1984)  menWiRned  WhaW  in  a                  

Vingle  UecRUding  Rf  a  child  leaUning  WeVW  GUeenlandic  aW  WZenW\  VeYen  mRnWhV,  Whe  child  XVed  24                  

deUiYaWiRnal  and  40  inflecWiRnal  affi[eV  -  a  fRllRZing  VWXd\  Rn  5  childUen  cRnfiUmed  WhiV  SaWWeUn                 

(FRUWeVcXe   &   OlVen,   1992) .   

  

XanWhRV  eW  al.  (2011)  UeSRUWed  a  SRViWiYe  cRUUelaWiRn  beWZeen  Whe  mean  Vi]e  Rf  inflecWiRnal  SaUadigmV                 

and  Whe  VSeed  Rf  mRUShRlRgical  deYelRSmenW  in  child  VSeech.  He  cRnclXded  WhaW  ³alWhRXgh  eaUl\                

e[SRVXUe  WR  a  YaUieW\  Rf  inflecWiRnal  fRUmV  ma\  Veem  WR  cRmSlicaWe  Whe  leaUning  WaVk  fRU  Whe  child,  iW                    

ma\  helS  childUen  e[SRVed  WR  a  Uichl\  inflecWed  inSXW  WR  fRcXV  mRUe  Rn  diffeUenW  fRUmV  and  Rn                   

diffeUenceV  in  meaning  e[SUeVVed  b\  inflecWiRnal  meanV  Whan  childUen  e[SRVed  WR  a  leVV  Uichl\  inflecWed                 

inSXW´   (S.19).     

  

HRZeYeU,  mRVW  Rf  WheVe  VWXdieV  aUe  RbVeUYaWiRnal,  and  nRne  lRRked  VSecificall\  aW  VegmenWaWiRn.  We                

menWiRn  ne[W  VRme  UeVXlWV  fURm  bab\  e[SeUimenWV  and  mRdeling  VWXdieV  ZiWh  UeVSecW  WR               

cURVV-lingXiVWic   VegmenWaWiRn.   
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TheUe  iV  e[SeUiPeQWaO  eYideQce  WhaW  chiOdUeQ,  aOUead\  b\  WheiU  fiUVW  \eaU,  caQ  SURceVV  aQaO\WicaOO\                

ZRUdV  aQd  PRUShePeV  iQ  OaQgXageV  VXch  aV  EQgOiVh  (Vee  SUeYiRXV  diVcXVViRQ  iQ  ChaSWeU  1).  TheUe  iV                  

PXch  OeVV  eYideQce  fRU  chiOdUeQ  OeaUQiQg  OaQgXageV  ZiWh  UicheU  PRUShRORgicaO  chaUacWeUiVWicV.  IQ  a               

UeceQWO\  SXbOiVhed  VWXd\  b\   LadiQ\i  eW  aO.  (2020) ,  15-PRQWh  ROd  chiOdUeQ  OeaUQiQg  HXQgaUiaQ,  aQ                

aggOXWiQaWiYe  OaQgXage,  cRXOd  VegPeQW  ZRUdV  Rf  WheiU  OaQgXage  iQWR  VWePV  aQd  affi[eV,  eVSeciaOO\  ZheQ                

aQ  affi[  ZaV  fUeTXeQWO\  XVed  iQ  Whe  OaQgXage.  ThiV  RXWcRPe  iV  iQ  OiQe  ZiWh  RWheU  e[SeUiPeQWaO  VWXdieV                   

dRcXPeQWiQg   VegPeQWaWiRQ   iQ   eaUO\   deYeORSPeQW   fRU   EQgOiVh-OeaUQiQg   chiOdUeQ.   

  

AV  faU  aV  PRdeOiQg  iV  cRQceUQed,  SUeYiRXV  ZRUN  haV  addUeVVed  Whe  iVVXe  Rf  OeaUQabiOiW\  iQ  diYeUVe                  

OaQgXageV  fRU  ZRUd  VegPeQWaWiRQ   (e.g.  GROdZaWeU  eW  aO.,  2009) .  A  UeYieZ  Rf  Whe  OiWeUaWXUe  RQ  iQfaQW                  

ZRUd  VegPeQWaWiRQ  PRdeO  SeUfRUPaQce  acURVV  OaQgXageV  caQ  be  fRXQd  iQ  Whe   ASSeQdi[  A .  BeORZ  iV  a                  

VaPSOe  gUaSh  VhRZiQg  Whe  SeUfRUPaQce  accXUac\  Rf  VeYeUaO  PRdeOV  fRU  diffeUeQW  OaQgXageV  ( Figure  3 ).                

IW  caQ  be  RbVeUYed  WhaW  Whe  PajRUiW\  Rf  VWXdieV  aUe  RQ  EQgOiVh  RU  IQdREXURSeaQ  daWa.  MRVW  RWheU                   

OaQgXageV  haYe  RQO\  beeQ  VWXdied  RQce.  IQ  geQeUaO,  SeUfRUPaQce  fRU  EQgOiVh  iV  higheU  WhaQ  fRU  RWheU                  

OaQgXageV.   A  bUief  deVcUiSWiRQ  Rf  aOO  PRdeOV  iV  giYeQ  beORZ,  aQd  PRUe  deWaiOV  aUe  SURYided  iQ  Whe                    

ASSeQdi[   B .     

  

Figure  3 .  The  [  a[iV  UeSUeVeQWV  diffeUeQW  laQgXageV  SUeYiRXVl\  PRdelled  fRU  ZRUd  VegPeQWaWiRQ:  EQgliVh,               
ChiQeVe,  IWaliaQ,  SSaQiVh,  DXWch,  PRliVh,  GeUPaQ,  FaUVi,  JaSaQeVe,  HXQgaUiaQ,  RXVViaQ,  SeVRWhR,  AUabic  aQd               
KRUeaQ.  The  beVW  UeVXlWV  belRQg  WR  EQgliVh,  ChiQeVe,  DXWch  aQd  PRliVh.  The  \  a[iV  UeSUeVeQWV  F-VcRUeV  aV  a                    
PeaVXUe  Rf  eYalXaWiRQ.  WheQ  Whe  F-VcRUe  iV  1  WheQ  Whe  VegPeQWaWiRQ  iV  SeUfecW,  aQd  ZheQ  Whe  F-VcRUe  iV  0  Whe                      
VegPeQWaWiRQ   failed.   
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2.2.2   Linking   inSXW   WR   leaUning   RXWcRmeV   
  

IW  haV  been  VXggeVWed  WhaW  facWRUV  VXch  aV   frequenc\   (AmbUidge  &  LieYen,  2011;  EndUeVV  eW  al.,  2009) ,                    

salience   (Penke,  2012;  YXng  SRng  eW  al.,  2009) ,   and  transparenc\   (Callanan  &  Sabbagh,  2004;                

DieVendUXck,  2007;  DUeVVleU  eW  al.,  2010;  Penke,  2012)  acURVV  lingXiVWic  leYelV  and  eVSeciall\  in                

mRUShRlRg\  ma\  affecW  leaUning   (E.  ClaUk,  2017;  GRldfield,  1993;  SWeShan\  &  VReikRYa,  2009;               

TaWVXmi   eW   al.,   2018) .   

  

FRU  e[amSle,  mRUe  RccXUUenceV  Rf  a  ZRUd  RffeU  mRUe  RSSRUWXniWieV  WR  leaUn  Whe  ZRUd.  CRnWenW  ZRUd                  

fUeTXenc\  in  inSXW  cRUUelaWeV  ZiWh  fUeTXenc\  in  childUen¶V  YRcabXlaU\   (SZingle\  &  HXmShUe\,  2018) ,               

eYen  WhRXgh  Whe  effecW  iV  nRW  lineaU  and  iW  iV  VWURngeU  fRU  SURdXcWiRn  Whan  fRU  cRmSUehenViRn                  

(GRRdman  eW  al.,  2008)  -  Vee  alVR   (KXUXmada  eW  al.,  2013),  VhRZing  WhaW   ZiSfian,  and  nRW  eTXal  ZRUd                    

fUeTXenc\  faciliWaWeV  adXlW  VegmenWaWiRn.  In  VXch  mRUShRlRgicall\  Uich  langXageV,  cRnWenW  ZRUd             

leaUning  VhRXld  be  challenging,  aV  YeUb  and  nRXn  VWemV  RbligaWRUil\  cRmbine  ZiWh  man\,  YaU\ing  XniWV                 

XndeU   adjacenc\   cRnVWUainWV.   Each   ZRUd   fRUm   ZRXld   Rnl\   haYe   feZ   RccXUUenceV   in   VSeech.     

  

MRUShRlRgical  WUanVSaUenc\,  in  WeUmV  Rf  affi[aWiRn  ZiWhRXW  alWeUing  a  VWem¶V  ShRnRlRgical  fRUm,  iV  alVR                

VXSSRVed  WR  affecW  ZRUd  leaUning.  SRme  langXageV  ma\  haYe  a  laUge  VeW  Rf  UXleV  WR  be  leaUned   (SWRll  eW                     

al.,  2012)  and  VRme  SaUadigmV  aUe  leVV  UegXlaU  Whan  RWheUV   (ClaUk,  2017) .  The  fRUm  Rf  a  mRUSheme                   

ma\  YaU\  becaXVe  Rf  gendeU  and  nXmbeU  agUeemenW  (Rne  elemenW  can  haYe  a  Vingle  fRUm,  e.g.  HebUeZ,                   

HXngaUian,  TXUkiVh,  RU  a  laUge  nXmbeU  Rf  allRmRUShV,  e.g.  RXVVian,  GeUman,  SeUbRCURaWian,              

Icelandic)   (LeY\,  1983;  WiWWek  &  TRmaVellR,  2002) .  AddiWiRnall\,  affi[eV  can  cRnViVW  Rf  diVcRnWinXRXV               

mRUShRlRgical   elemenWV   e.g.   a   caVe   VXffi[   and   a   SUeSRViWiRn    (B\bee,   1995;   ClaUk,   2017;   Penke,   2012) .     

  

IW  ma\  be  mRUe  VWUaighWfRUZaUd  WR  leaUn  Whe  VWUXcWXUe  Rf  VXch  a  langXage  if  Ze  UefUame  Whe  ZRUd                    

leaUning  WaVk  aV  a  WaVk  Rf  leaUning  meaningfXl  XniWV  VXch  aV  VWemV  and  affi[eV.  SSecificall\  fRU                  

fXncWiRnal  iWemV  (fXncWiRn  ZRUdV  and  affi[eV),  Zhen  a  fXncWiRnal  iWem  cRmbineV  ZiWh  diffeUenW  VWemV                

(high  W\Se  fUeTXenc\  and  SURdXcWiYiW\)  and  RccXUV  fUeTXenWl\  in  Whe  inSXW  (high  WRken  fUeTXenc\),  iW                 

ma\  eYen  WUiggeU  Whe  VegmenWaWiRn  Rf  inflecWed  ZRUdV   (PlXnkeWW,  1993) .  MRUeRYeU,  childUen  Veem  WR                

acTXiUe  inflecWiRnal  maUkeUV  eaUlieU  Zhen  Whe\  aUe  ValienW,  fRU  e[amSle  dXe  WR  lRngeU  dXUaWiRn   (HVieh                 

eW   al.,   1999;   PeWeUV   &   Menn,   1993) .     

  

IW  iV  VWill  XncleaU  aW  ZhaW  e[WenW  diYeUVif\ing  facWRUV,  VXch  aV  fUeTXenc\,  Valience  and  WUanVSaUenc\,                 

Zhich  haYe  been  SUeYiRXVl\  VXggeVWed  WR  haYe  an  imSacW  Rn  VegmenWaWiRn,  ma\  affecW  leaUning  in  Ueal                  

life.  TheVe  facWRUV  aUe  alVR  UelaWed  WR  Whe  bURadeU  WeUm  Rf  cRmSle[iW\.  Rich  langXageV  aUe  geneUall\                  
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cRnVideUed  aV  mRUe  comple[  Whan  RWheUV  baVed  Rn  WheiU  mRUShRlRgical,  ShRnRlRgical  RU  V\nWacWic               

feaWXUeV   (ShRVWed,  2006) .   One  geneUal  and  RfWen  imSliciW  aVVXmSWiRn  in  langXage  acTXiViWiRn  iV  WhaW                

VXch  langXageV  aUe  mRUe  challenging  WR  leaUn.  FRU  e[amSle,  8-  and  12-mRnWh  Rld  infanWV  need  lRngeU                  

amRXnWV  Rf  SURceVVing  Wime  WR  encRde  mRUe  µcRmSle[¶  Whan  VimSleU  VWimXli   (HXnWeU  eW  al.,  1983) .                 

HRZeYeU,   cRmSle[iW\  can  be  defined  in  man\  diffeUenW  Za\V   (GieUXW,  2007;  MieVWamR  eW  al.,  2008) ,                 

and   WheUe   iV   nR   agUeemenW   Rn   VWandaUd   meWUicV    (KXVWeUV   &   MX\Vken,   2001;   McWhRUWeU,   2001) .   

  

When  defined  aV  an  incUeaVe  in  amRXnW  Rf  infRUmaWiRn,  cRmSle[iW\  mighW  acWXall\  be  beneficial  fRU                 

leaUning  (e.g.,   ThieVVen  eW  al.,  2005 ).  ThiV  iV  eVSeciall\  WUXe,  Zhen  man\  VRXUceV  Rf  infRUmaWiRn                 

cRnYeUge  (e.g.,  VeYeUal  cXeV  SRinW  WR  Whe  Vame  XniWV)  -  alVR  Vee  adXlW  VWXdieV  b\   Billman  (2007)  and                    

SWadleU  (1992).  LiWWle  eYidence  e[iVWV  Rn  child  langXage  leaUning,  bXW  childUen  cRXld  idenWif\  XniWV  in                 

cRmSle[  langXageV  -  Vee  VWXdieV  b\   GeUken  eW  al.  (2005) ,   Gyme]  (2002) ,   ThieVVen  &  SaffUan  (2009)                  

and   TeinRnen  eW  al.  (2009) .  In  WhiV  cRnWe[W,  leVV  cRmSle[  ZRXld  acWXall\  make  leaUning  mRUe  difficXlW,                  

becaXVe  iW  ZRXld  SURYide  Rnl\  SaUWial  infRUmaWiRn  abRXW  lingXiVWic  VWUXcWXUe.  MRUeRYeU, too  simple               

VWimXli  ma\  alVR  eliciW  leVV  inWeUeVW  fURm  infanWV  and  WhXV  affecW  leaUning  (Wh e  goldilocks  effect,   Kidd  eW                   

al.,   2012) .     

  

IQ  VXP,  WKH  UHODWLRQ  EHWZHHQ  FRPSOH[LW\  DQG  OHDUQDELOLW\  LV  QRW  OLQHDU,  DQG  LW  LV  VWLOO  XQFOHDU                  

ZKHWKHU  D  PRUSKRORJLFDOO\  HODERUDWH  ODQJXDJH  VKRXOG  EH  FRQVLGHUHG  PRUH  FRPSOH[,  WKXV  PRUH              

GLIILFXOW   WR   OHDUQ.   

  

2.2.3   CRmSaUing   leaUning   RXWcRmeV   acURVV   langXageV   
  

WheWheU  an  iWem  cRXnWV  aV  eaV\  YeUVXV  difficXlW  iV  nRW  eaVil\  meaVXUed,  and  eYen  leVV  VR  acURVV                   

langXageV,   Zhen   baVic   lingXiVWic   XniWV   VXch   aV   ZRUdV   aUe   nRW   neceVVaUil\   cRmSaUable.   

  

FRU  e[amSle,  a  child  iV  e[SRVed  WR  a  SemiWic  langXage  ZheUe  cRnVRnanWV  cRnWain  Whe  main  meaning  Rf                   

Whe  ZRUd,  Zhile  anRWheU  child  leaUning  an  IndREXURSean  RU  TXUkic  langXage  VhRXld  Wake  bRWh                

cRnVRnanWV  and  YRZelV  aV  idenWif\ing  ZRUdV   (ClaUk,  2017) .  SimilaUl\,  Whe  XniYeUVal  nRWiRn  Rf  µZRUd¶               

haV  been  challenged  -  man\  µZRUd¶  caVeV  aUe  nRW  cleaU-cXW,  and  deSend  Rn  a  langXage¶V                 

mRUShRV\nWacWic  V\VWem.  We  can  eaVil\  deVcUibe  a  ZRUd  aV  a  Vingle,  indeSendenW  XniW  in  iVRlaWing                 

langXageV  VXch  aV  EngliVh,  bXW  in  RWheU  langXageV,  eVSeciall\  mRUShRlRgicall\  Uich  RneV,  leaUneUV               

UecRgni]e  mRUShemeV  aV  VXb-XniWV  ZiWhin  ZRUdV.  On  Whe  RWheU  Vide,  accRUding  WR   DemXWh  (1988) ,                

childUen  leaUning  SeVRWhR,  ZhRVe  nRXnV  belRng  WR  fRXUWeen  claVVeV  maUked  b\  SUefi[eV  and  agUeemenW,                

fiUVW   fRcXV   Rn   ZhRle   nRXn   ShUaVeV,   and   When   Rn   ZRUdV.     
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IQ  VXP,  VHJPHQWaWLRQ  Pa\  FRQFHUQ  GLIIHUHQW  XQLWV  WKaQ  ZRUGV  IRU  VRPH  OaQJXaJHV.  IW  FaQ  EH                 

VWUaLJKWIRUZaUG  IRU  EQJOLVK  ZRUGV,  EXW  LQ  WKH  H[aPSOH  FaVH  RI  aQRWKHU  OaQJXaJH,  VXFK  aV  SHVRWKR,  LW                  

ZRXOG   QRW   EH   FOHaU   ZKaW   OHYHO   WR   VHJPHQW   ILUVW:   SKUaVHV,   ZRUGV   RU   PRUSKHPHV.  

2.3   FXWXUe   UeVeaUcK     

TKH  LQSXW  FKLOGUHQ  KHaU  HQWaLOV  HQRUPRXV  GLYHUVLW\  ZLWK  UHVSHFW  WR  LWV  W\SRORJLFaO  IHaWXUHV,  aV  ZaV                 

GHVFULEHG  aERYH.  HRZHYHU,  SUHYLRXV  HYLGHQFH  RQ  OHaUQaELOLW\  LV  VFaUFH,  aQG  QRW  UHaGLO\  FRPSaUaEOH.               

OQH  Za\  WR  LQYHVWLJaWH  WKLV  LV  E\  WHVWLQJ  VFaOHG-XS,  GLYHUVH  LQSXW  WKURXJK  FRPSXWaWLRQaO  PRGHOLQJ,  a                 

XVHIXO  PHaQV  RI  TXaQWLI\LQJ  WKH  HIIHFW  RI  GLYHUVLW\  RQ  aFTXLVLWLRQ  (H.J.   JRQHV  &  RRZOaQG,  2017) .  MRUH                  

VWXGLHV  aUH  QHHGHG  LQ  RUGHU  WR  VWXG\  FURVV-OLQJXLVWLF  LQSXW  LQ  WHUPV  RI  VHJPHQWaELOLW\;  ZH  VKRXOG  aVN                  

KRZ  LQIRUPaWLYH  WKLV  LQSXW  LV  IRU  GHWHFWLQJ  ZRUG  ERXQGaULHV  aFURVV  aOO  WKHVH  GLYHUVH  OaQJXaJHV.   We                 

addUeVV  Whe  LVVXe  LQ  ChaSWeUV  3  aQd  4,  b\  PRdeOLQg  Whe  VegPeQWaWLRQ  Rf  LQSXW  heaUd  b\  chLOdUeQ                   

LQ   QaWXUaOLVWLc   VeWWLQgV   acURVV   OaQgXageV.     

  

SHFRQG,  VRPH  IHaWXUHV  ZHUH  K\SRWKHVL]HG  aERYH  WR  KaYH  aQ  LPSaFW  RQ  OHaUQLQJ,  VSHFLILFaOO\  WKRVH  aW                 

WKH  ORZHU  HQGV  RI  IUHTXHQF\,  WUaQVSaUHQF\  aQG  VaOLHQFH   (CXWOHU  &  CaUWHU,  1987) .  IQ  IXWXUH  VWXGLHV,  ZH                  

QHHG  WR  WaNH  LQWR  aFFRXQW  VSHFLILF  IHaWXUHV  WKaW  Pa\  aIIHFW  VHJPHQWaWLRQ,  aQG  aVN  ZKHWKHU  WKH\  aFFRXQW                  

RU  QRW  IRU  VHJPHQWaELOLW\  GLIIHUHQFHV.   We  addUeVV  WhLV  LVVXe  LQ  ChaSWeU  3,  b\  WeVWLQg  Whe  SUedLcWLYe                  

YaOXe  Rf  a  OaUge  VeW  Rf  dLYeUVLf\LQg  feaWXUeV  (aQG  RQH  FRPSOHPHQWaU\  VWXG\  FaQ  EH  IRXQG  LQ  WKH                   

ASSHQGL[   C) .   We   ZLOO   aOVR   cRPe   bacN   WR   WhLV   LVVXe   OaWeU   RQ,   LQ   ChaSWeU   9.     

  

TKLUG,  HYLGHQFH  IURP  aFTXLVLWLRQ  RI  UHaO,  GLYHUVH  OaQJXaJHV,  HYHQ  WKRXJK  VFaUFH,  VXJJHVWV  WKaW  FKLOGUHQ                

WXQH  WR  WKH  VWUXFWXUHV  RI  WKHLU  OaQJXaJHV  HaUO\  RQ   (VHH  aOVR  BaWHV  &  MaFWKLQQH\,  1987;  DUHVVOHU  HW  aO.,                    

2010) .  SLQFH  aOO  W\SLFaOO\  GHYHORSLQJ  FKLOGUHQ  aFTXLUH  OaQJXaJH,  aQG  PRGHOLQJ  FaQ  LQIRUP  RQ  WKH                

HIILFLHQF\  RI  SaUWLFXOaU  VWUaWHJLHV  LQ  OHaUQLQJ,  ZH  VKRXOG  LGHaOO\  EH  ORRNLQJ  IRU  JHQHUaO,  XQLYHUVaO                

OHaUQLQJ  PHFKaQLVPV.  FRU  H[aPSOH,  LW  KaV  EHHQ  VXJJHVWHG  WKaW  VWaWLVWLFaO  OHaUQLQJ  PHFKaQLVPV  Pa\               

SURYLGH  WKH  FKLOG  ZLWK  HQRXJK  GaWa  LQ  RUGHU  WR  WXQH  WR  WKH  VSHFLILFV  RI  WKHLU  OaQJXaJH   (CKULVWLaQVHQ  &                    

CKaWHU,  2008;  MRUJaQ  &  NHZSRUW,  1981) .  HRZHYHU,  PRVW  VWXGLHV  RQ  VHJPHQWaWLRQ  VWUaWHJLHV  KaYH               

EHHQ  EaVHG  RQ  OaERUaWRU\  H[SHULPHQWV,  WKH  PaMRULW\  RI  ZKLFK  LQYROYH  EQJOLVK-OHaUQLQJ  FKLOGUHQ              

H[SRVHG  WR  FRQWUROOHG  LQSXW  LQ  WKHLU  RZQ  RU  LQ  aQ  aUWLILFLaO  OaQJXaJH.   We  addUeVV  WhLV  LVVXe  LQ                   

ChaSWeU  4,  b\  ORRNLQg  aW  Whe  SeUfRUPaQce  YLabLOLW\  Rf  VeYeUaO  OeaUQLQg  PechaQLVPV,  XVLQg               

ORQgLWXdLQaO   UecRUdLQgV   acURVV   a   dLYeUVe   VeW   Rf   OaQgXageV.   
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LaVW,  fXWXUe  VWXdieV  inYeVWigaWing  leaUnabiliW\  acURVV  langXageV,  VhRXld  Wake  inWR  accRXnW  Whe  iVVXe  Rf                

cRmSaUabiliW\ .  SegmenWaWiRn  ma\  cRnceUn  diffeUenW  XniWV  Whan  ZRUdV  fRU  VRme  langXageV,  and  VRme               

mRUShRlRgical  SURSeUWieV  ma\  acWXall\  WUiggeU  VegmenWaWiRn  ZiWhin  inflecWed  ZRUdV.   :H  DGGUHVV  WKLV              

LQ  CKDSWHUV  3  DQG  5,  E\  UHIUDPLQJ  WKH  ZRUG  VHJPHQWDWLRQ  WDVN  DV  D  WDVN  RI  VHJPHQWLQJ                  

PHDQLQJIXO   XQLWV   VXFK   DV   PRUSKHPHV,   LQ   D   PRGHOLQJ   DQG   DQ   DUWLILFLDO   ODQJXDJH   H[SHULPHQW.   
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3.   Does   morphological   complexit\   affect   word   segmentation?   

Evidence   from   computational   modeling*     

  
AEVWUDFW:   HRZ  can  infanWV  deWecW  ZheUe  ZRUdV  RU  mRUShemeV  VWaUW  and  end  in  Whe  cRnWinXRXV  VWUeam                  

Rf  VSeech?  PUeYiRXV  cRmSXWaWiRnal  VWXdieV  haYe  inYeVWigaWed  WhiV  TXeVWiRn  mainl\  fRU  EngliVh,  ZheUe               

mRUSheme  and  ZRUd  bRXndaUieV  RfWen  align.  YeW  man\  langXageV  aUe  mRUShRlRgicall\  mRUe  cRmSle[,               

Zhich   ma\   SUeVenW   addiWiRnal   difficXlWieV   fRU   VegmenWaWiRn.     

  

OXU  VWXd\  emSlR\ed  cRUSRUa  Rf  WZR  langXageV  WhaW  diffeU  in  Whe  cRmSle[iW\  Rf  WheiU  mRUShRlRgical                 

VWUXcWXUe,  ChinWang  (SinR-TibeWan)  and  JaSaneVe.  While  JaSaneVe  diVSla\V  mRdeUaWe  cRmSle[iW\,            

ChinWang  e[hibiWV  high  leYelV  Rf  YeUbal  and  nRminal  V\nWheViV.  We  emSlR\ed  WZR  baVelineV  and  WhUee                 

cRnceSWXall\  diYeUVe  ZRUd  VegmenWaWiRn  algRUiWhmV,  WZR  Rf  Zhich  Uel\  SXUel\  Rn  VXble[ical              

infRUmaWiRn  XVing  diVWUibXWiRnal  cXeV,  and  Rne  WhaW  bXildV  a  le[icRn.  The  algRUiWhmV¶  SeUfRUmance  ZaV                

eYalXaWed   Rn   bRWh   ZRUd-   and   mRUSheme-leYel   UeSUeVenWaWiRnV   Rf   Whe   cRUSRUa.     

  

AV  SUedicWed,  bRWh  langXageV  VcRUed  lRZeU  Whan  SUeYiRXVl\  dRcXmenWed  UeVXlWV  Rn  EngliVh.              

SegmenWaWiRn  UeVXlWV  fRU  JaSaneVe  ZeUe  beWWeU  Whan  WhRVe  fRU  Whe  mRUShRlRgicall\  mRUe  cRmSle[               

ChinWang.  The  langXage  effecW  cRXld  nRW  be  e[Slained  b\  SRWenWial  cRnfRXndV,  VXch  aV  VegmenWaWiRn                

ambigXiW\,  RU  b\  SUR[imal  caXVeV,  VXch  aV  ZRUd  lengWh  and  le[ical  diYeUViW\.  BeWWeU  SeUfRUmance  ZaV                 

RbVeUYed  Zhen  eYalXaWing  VegmenWaWiRn  Rn  mRUShemeV  UaWheU  Whan  ZRUdV  in  ChinWang.  AlgRUiWhmV              

e[hibiWed   diYeUVe   SeUfRUmance   SaWWeUnV,   inWeUacWing   ZiWh   bRWh   langXage   and   leYel.     

  

OYeUall,  RXU  UeVXlWV  indicaWe  WhaW  langXageV  YaU\ing  in  mRUShRlRgical  cRmSle[iW\  (aVVeVVed  b\  Whe               

nXmbeU  Rf  mRUShRV\nWacWic  feaWXUeV  e[SUeVVed  V\nWheWicall\),  cRXld  YaU\  in  VegmenWabiliW\.            

MRUShRlRgical  cRmSle[iW\,  hRZeYeU,  iV  nRW  Whe  VRle  deWeUminanW;  algRUiWhm  W\Se  and  eYalXaWiRn  leYel               

can   alVR   cRnWUibXWe   WR   SUedicWing   VegmenWaWiRn   VcRUeV   

  

*LRXNDWRX,   G.,   SWROO,   S.,   BODVL,   D.   &   CULVWLD,   A.   DRHV   PRUSKRORJLFDO   FRPSOH[LW\   DIIHFW   ZRUG   

VHJPHQWDWLRQ?   EYLGHQFH   IURP   FRPSXWDWLRQDO   PRGHOLQJ   (XQGHU   UHYLHZ).     
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Does morphological complexity affect word segmentation? Evidence from

computational modeling

1 Introduction

Typically-developing children acquire language e�ortlessly and implicitly in the

first years of their life. They process linguistic material provided by their caregivers and

others around them using robust learning mechanisms that do not require

meta-linguistic awareness. Infants begin learning the building blocks of language, i.e.,

words or morphemes, from very early on, achieving a comprehension vocabulary of

hundreds of words by two years of age (Bates et al., 1994). More precisely, during the

first year of life, infants might build up a proto-lexicon storing candidate phonological

forms (wordforms), which they first have identified based on the available frequency

distributions in the input, before actually attaching meaning to these wordforms (Ngon

et al., 2013). To break up the speech stream, infants can use prosodic cues (Shukla

et al., 2011), co-articulation (Norris et al., 1997), constraints on stranded material

(E. K. Johnson & Jusczyk, 2001), and even language-specific information they have

learned in the past (words: Bortfeld et al., 2005; Mersad and Nazzi, 2012; syllable

sequences: Black and Bergmann, 2017, and phonotactic patterns: Daland and Zuraw,

2013). Here, we report on a series of computational experiments that seek to shed light

on the specific processes that young language learners could potentially be using when

segmenting the incoming speech signal into word-like forms, or more generally smaller

recombinable units.

Young language learners have to learn their language from scratch. In order to

mimic this absence of knowledge, models used in previous computational experiments

are often unsupervised, meaning that they do not have access to any kind of feedback

(i.e., external information on whether they are doing well or poorly). By and large,

three classes of algorithms have been used: lexical, sublexical, and baseline. Algorithms

in the lexical class are often built to find the most economical system of minimal units

needed to reproduce the input. They do so usually by creating a lexicon of chunks that

are frequently encountered in speech. These salient segments could approximate infants’
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first familiar word-like constructions. Algorithms in the sublexical class aim to find local

cues allowing the learner to posit boundaries, detectable for instance by considering

phoneme occurrences at utterance edges or via transitional probabilities. Infant

experimental work suggests both classes are cognitively plausible (Mattys et al., 1999;

Mersad & Nazzi, 2012; Sa�ran, Aslin et al., 1996). Finally, previous literature has

sometimes used word segmentation baselines to evaluate the performance of algorithms

(Çöltekin, 2011; Lignos, 2012; Venkataraman, 2001). Baselines represent the simplest

strategies possible; for example, treating each basic minimal unit (phoneme or syllable)

as words, or treating whole utterances as words.

1.1 Cross-linguistic performance

It has been proposed that language acquisition may not be a homogeneous

process, identical in children regardless of the language they are acquiring, but instead

that the acquisition process may vary across typologically diverse languages as a

function of their grammatical structures (Slobin, 1985). However, the proportion of

languages whose acquisition is represented in the literature is low (e.g. Stoll, 2015; Stoll

and Lieven, 2014), and the majority of papers on first language development are on

English (Slobin, 2014). This sampling bias is problematic because English is not an

“average” language, particularly in terms of the properties that may influence

segmentation. There is no case marking in nouns and only rudimentary morphological

marking in verbal conjugation. Most English words have few or no morphemes other

than the root (Aikhenvald, 2007) and as a consequence, word, morpheme, and syllable

boundaries usually coincide (DeKeyser, 2005). In fact, the maximum number of

morphemes per word in English is 3, which is on the lower end of the typological range

(degree of synthesis, Bickel and Nichols, 2007, 2013b).

Languages vary greatly in their overall morphological complexity (Miestamo,

2008; Nichols, 2009; Sampson et al., 2009). A considerable fraction of languages are

characterized by rich inflectional morphology and often feature multi-morphemic words.

For example, Turkish has a rich concatenative inflectional morphology (Bickel &
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Nichols, 2013a, 2013b; Ketrez & Aksu-Koç, 2009). Others are extremely complex such

as the polysynthetic languages Tzeltal (spoken in Mexico; Brown, 1998) and Chintang

(a Sino-Tibetan language spoken in the Himalayas of Eastern Nepal; Stoll et al., 2017)

or Eskimo-Aleut languages such as Inuktitut (Allen, 1996; Bickel & Nichols, 2013b).

Such languages use morphemes (prefixes, su�xes, circumfixes, and infixes) to code

morphosyntactic features (e.g. gender, person, aspect, tense, or polarity), and/or the

relation between words in a sentence (e.g., case or agreement). So far there is no

common agreement on how to measure morphological complexity cross-linguistically,

but it is undisputed that complexity is a gradient notion.

One of the main questions that arises is whether languages with a larger degree of

morphological synthesis are more challenging to segment than languages with a lower

degree of morphological synthesis, such as English. A number of computational

modeling studies have investigated word segmentation in various languages (Batchelder,

2002; Blanchard et al., 2010; Caines et al., 2019; Daland, 2009; Fleck, 2008; Fourtassi

et al., 2013; Kastner & Adriaans, 2017; Pearl & Phillips, 2018; Saksida et al., 2017).

These results seem to suggest that languages with richer morphological profiles might

be more di�cult to segment than those with simpler morphology. In the following, we

review this evidence in detail, grouping studies in terms of the type of segmentation

strategy.

Starting with studies using a lexical approach, Batchelder (2002) compared the

accuracy of a lexical segmentation algorithm (BootLex) on English, Japanese and

Spanish corpora, and found that the algorithm performed best on English. Most other

lexical work has employed versions of Adaptor Grammars (AG), which build a lexicon

based on a hierarchical grammar provided by the user (Goldwater et al., 2009;

M. Johnson, 2008). It finds patterns of frequent phone sequences in the input corpus,

creates a lexicon based on these patterns at specified levels, and then uses the lexicon to

segment the input. Using versions of this system, Boruta et al. (2011) documented

better results for English than French, and better results for French than for Japanese,

which roughly corresponds to the order of morphological complexity (see Fourtassi
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et al., 2013 for convergent results). M. Johnson (2008) found better results for English

than Sesotho, which is morphologically much more complex than English. It should be

mentioned, however, that the data reported by Phillips and Pearl (e.g., Pearl and

Phillips, 2018; Phillips and Pearl, 2014a) di�ered from other lexicon-based results.

These authors varied the hierarchical grammar, inspecting both unigram and bigram

models. Unigram models are those where the only levels are those of words and

phonemes (i.e., sentences as sequences of words, words as sequences of phonemes), and

the only level at which a lexicon is stored is the word level. Bigram models can also be

defined, by stating that sentences are sequences of phrases, and phrases sequences of

words, with the further possibility that the system will memorize common phrases. For

the unigram version of the algorithm, English was at the bottom of the performance

ranking. However, when a bigram grammar was used, English performed better than

Farsi, Hungarian, and Japanese (Phillips & Pearl, 2014a). However, most work using

lexical algorithms finds cross-linguistic di�erences in word segmentation performance

that could be explained on the basis of complexity di�erences.

In general, work using sublexical algorithms also fits this description; di�erences

in performance can usually be explained by complexity di�erences. Saksida et al. (2017)

used a set of segmentation algorithms, all of them based on transitional probabilities, on

a range of cross-linguistic corpora. Higher scores were found for English and Dutch than

for Japanese, Polish and Hungarian. Gervain and Erra (2012) received better results for

the less complex Italian than the more complex Hungarian in some cases, although this

language performance was reversed when backward transitional probabilities were used.

Finally, segmentation baselines have rarely been used to compare performance

across languages. Pearl and Phillips (2018) implemented a “random oracle” baseline,

which had prior knowledge of the true probability of a word boundary after each unit in

the corpus (e.g., 0.76 for English). Boundaries were then randomly inserted based on

this probability. Performance di�erences across languages were observed, with the

English corpus scoring higher than German and both scoring higher than Spanish,

Italian, Farsi, Hungarian, and Japanese. In sum, our reading of the literature suggests
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that lower segmentation performance is found for corpora of more morphologically

complex languages than simpler ones across all three families of algorithms (lexical,

sublexical, and baseline).

Caines et al. (2019) deserve a special mention, because they used many di�erent

algorithms across many languages in CHILDES, a repository of child-centered

transcriptions (MacWhinney, 2014). Although they don’t specifically discuss

typological features, they attempt to relate lexico-phonological features such as word

length and lexical diversity to segmentation performance. As with the work just

summarized, results were evaluated only in the word level.

1.2 Goal of segmentation

The current standard for modeling studies is to evaluate segmentation algorithms

on the word level (Daland, 2009). Several reasons made us wonder whether evaluation

on the word level alone is optimal.

To begin with, there are at least three notions of “word”: orthographic word,

grammatical word, and prosodic word. According to Haspelmath (2011), orthographic

spaces are to some extent guided by language structure, even though spelling can be

purely conventional in some cases. Grammatical words are units defined by

morphosyntactic criteria, such as cohesiveness, fixed internal order, and conventional

meaning. Finally, phonological words are units defined by phonological criteria, such as

segmental and prosodic features like stress (Dixon & Aikhenvald, 2002). Words are not

the only meaningful, recombinable units that may be found in running speech. On the

contrary, morphemes can be defined as the minimal meaningful units. Moreover,

morphemes and words are not homogeneous classes. For example, functional elements

make up a class that cuts across words and morphemes, containing both function words

(words expressing grammatical or structural relationship with other words in the

sentence) and a�xes. Although these definitions seem easy in the abstract, there is no

single, valid, and standard definition across languages of any of these levels (Bickel &

Nichols, 2007; Bickel & Zúñiga, 2017).
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Is there evidence that some or other of these units are psychologically valid for

infants? Carefully reading experimental evidence, we found some of it suggests that

infants can segment phonological words (E. K. Johnson & Jusczyk, 2001) as well as

morphemes (Marquis & Shi, 2015; Mintz, 2013) out of running speech. Furthermore,

they can segment functional elements early on (Hallé et al., 2008; Höhle & Weissenborn,

2003; Marquis & Shi, 2015; Mintz, 2013; Shi, Cutler et al., 2006; Shi & Gauthier, 2005;

Shi & Lepage, 2008; Shi, Marquis et al., 2006; Shi et al., 1999). Functional elements

could be used as cues to further bootstrap word segmentation, because of their

distinctive properties (Kim & Sundara, 2015; Shi, Werker et al., 2006; Willits et al.,

2014) and contribute to robust learning, especially for languages with rich

morphological systems.

On the modeling side, most previous work has evaluated segmentation on

orthographic words. Since child-centered corpora are rarely annotated at the level of

morphemes, previous computational work has not quantitatively evaluated performance

on the morpheme level (cf. M. Johnson, 2008). However, there have been qualitative

reports considering morphemes in addition to words (Gervain & Erra, 2012;

M. Johnson, 2008). Specifically, it has been argued that some algorithms tend to

over-segment words (i.e., words would be split up during segmentation). Previous

authors have argued that lower segmentation performance for some morphologically

complex languages would arise from oversegmentation when evaluating on words

(Gervain & Erra, 2012; M. Johnson, 2008). Gervain and Erra (2012) commented that

there may be more oversegmentation in Hungarian, as some of the segmented material

formed real morphemes, which is interesting given that this unsupervised algorithm is

not informed about lexical and morphological composition. Similarly, Fourtassi et al.

(2013) segmented an English and a Japanese corpus using a probabilistic

lexicon-building algorithm. Qualitative inspection showed that the algorithms broke o�

morphological a�xes, with more oversegmentation cases for Japanese than English.

These observed oversegmentation errors suggest that algorithms might segment out

morphemes, or at least functional elements, including a�xes, in addition to or instead
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of some notion of words.

In a nutshell, infant segmentation may target words as well as morphemes (Kim,

2015; Marquis & Shi, 2015), and therefore, if we want to model this segmentation

process, evaluating results at the level of both words and morphemes might be a more

informative approach.

2 The present study

This study investigates whether languages varying in morphological complexity

di�er in segmentability (Section 1.1). This question is addressed by assessing

segmentability of two morphologically diverse languages, one of which exhibits an

extreme degree of morphological complexity. In addition, we ask whether specific

language features such as type-token ratio, word length, and utterance length might

account for performance di�erences.

Moreover, this study examines whether algorithms segment out morphemes

instead of words (Section 1.2). We inquire whether performance varies as a function of

the level of linguistic representation on which segmentation is evaluated, comparing the

algorithms’ performance based on either orthographic words or morphemes. We further

report percentage of under- and oversegmentation on each level.

Regarding the use of orthographic words, it was preferable over other definitions

of wordhood for three reasons. First, it allows comparison with previous computational

work. Second, it was already available in the corpora we were using. Third, it is unclear

that it is much worse or much better than alternative definitions. Phonological and

morphosyntactic criteria for word segmentation are also problematic and cannot decide

controversial cases: Phonological words may not be consistent within and across

languages (Schiering et al., 2010) and they often fail to coincide with morphosyntactic

words (Dixon & Aikhenvald, 2002). For this, and as previous segmentation studies did,

we used the existing orthographic word boundaries for our word level.
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2.1 Languages

In this paper, corpora from two morphologically diverse languages are studied,

Japanese (Japonic) and Chintang (Sino-Tibetan). Both languages were chosen on the

basis of their typological characteristics and are part of the ACQDIV database, which

contains longitudinal corpora of language acquisition for 10 maximally diverse

languages (Moran et al., 2016; Stoll & Bickel, 2013). To create this database, a new

approach of sampling languages was introduced, called the Maximum-Diversity

approach. More than 10 major typological variables that characterize inflectional

marking (grammatical case, exponence, possessor agreement, inflectional compactness,

syncretism, verb position, verb agreement, split ergativity of agreement markers, split

ergativity of case, flexivity, verbal synthesis, nominal synthesis) were considered (Stoll

& Bickel, 2013). Languages were sampled from the two largest typological databases,

WALS (Dryer & Haspelmath, 2013) and AUTOTYP (Bickel et al., 2017; Nichols et al.,

2013), resulting in 5 clusters of maximally diverse languages.

Chintang and Japanese are in two di�erent clusters. The main feature of interest

in the present paper is their di�erence in the degree of synthesis, which allowed us to

study the e�ect of morphological complexity. The degree of morphological synthesis was

measured by looking for the maximally inflected verb and noun form, and determining

the number of grammatical and lexical categories (morphosyntactic features) encoded in

that word form.

Chintang, a Sino-Tibetan language of the Kiranti branch (approx. 6000 speakers,

Eastern Nepal), has higher verb and noun synthesis than Japanese (as just mentioned,

measured in number of such categories expressed in the most complex word form;

compare Bickel et al., 2007 for Chintang, and Kuno, 1973; Tsujimura, 1996 for

Japanese), with up to 10 morphemes per word, versus up to 5 for Japanese 1. As shown

in Stoll et al. (2017), there are 148 unique grammatical elements that can occur together

with a verb stem in the corpus (120 grammatical markers and 28 secondary verb stems,

1 Phonological complexity (phonemic inventory and syllabic structure) is similar across the two

languages (Bickel et al., 2007; Shibatani, 1990; Tsujimura, 1996).
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called V2, that expand the lexical or grammatical meaning of the main verb). Although

some forms of verbs are rarely used, they constitute a part of the adult grammar and

are eventually acquired by children. Here are two sample adult utterances from the

Chintang corpus (CLDLCh1R01S02.0044 and CLDLCh1R01S02.0057 respectively):

(1) a. ahã

no

hun

DEM

miPmuN

a.little

namba-Na

father.in.law-ERG.A

thok-u-Ns-e-kha

dig-3P-PRF-IND.PST-NMLZ

‘The father-in-law has dug it’

b. ba

DEM.PROX

yaN

ADD

yug-a-yakt-a-kha

sit-PST-IPFV-PST-NMLZ

ni

EMPH

ekchin-a

little.while-NTVZ

ekchin-a-kha

little.while-NTVZ-NMLZ

‘He used to sit sometimes’

Japanese has moderate verb synthesis, expressing categories such as tense, voice,

mood and polarity. A maximally inflected Japanese verb form would include 4-5

categories (Bickel & Nichols, 2013b; Hinds, 1986; Shibatani, 1990). Thus, overall,

Japanese has fewer forms both in its noun and verb paradigms and a smaller number of

morphosyntactic features expressed, especially in the verb. Here are two sample adult

utterances from the Japanese corpus (MYJCu44.1390521 and MYJCu832.1419814

respectively).

(2) a. usagi-chan

rabbit-FAM

doko

where

da

be.PRES

‘Where is Missy Rabbit?’

b. ocha

tea

mo

too

doozo

handing_over

shi-te

do-IMP

‘Go ahead, make tea again’
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2.2 Data

The Chintang recordings took place in a predefined week every month with several

separated recordings amounting to approximately 4 hours per month involving 6 target

children from 0;6-4;4 (Stoll et al., 2017). During the recordings, which were audiovisual,

the children were mainly playing outside of their houses. Relatives, other children, and

neighbors are part of their daily lives and this was captured in the recordings.

The Japanese data consist of 2 corpora, MiiPro (Miyata & Nisisawa, 2009, 2010;

Nisisawa & Miyata, 2009, 2010) and Miyata (Miyata, 2004a, 2004b, 2004c). Recordings

took place indoors, mostly at home and there was often just one caregiver conversing

with the child. They contain data for 7 Japanese children aged 1;4-5;1 years old. For

the MiiPro corpus, the recordings took place every week from 1;2 to 3;0 and later every

1 or 2 months, and lasted 70 minutes per session. For the Miyata corpus, recordings

took place every week and lasted 40-60 minutes.

After data collection, both corpora were first transcribed orthographically, and

later annotated morphologically. More information on the annotation process for

Chintang can be found in Stoll and Schikowski (in press) and Gaenszle et al. (2005); see

Miyata and Naka (2006) for information on annotation of the Japanese corpora. In the

Chintang corpus, the transcription was done by native speakers and was susceptible to

their impression of what an utterance was. This mainly corresponds to clauses marked

by intonation. As for the Japanese corpus, there is no information on how utterance

boundaries were defined. Documentation suggests the data were transcribed based on

the Wakachi format (Miyata & Naka, 1998). As for the morphological annotation, for

Chintang, most of the corpus was hand segmented and manually annotated for

morphology and parts-of-speech by trained linguistic students. The training took

several weeks and was supervised by an expert in this language. A small part of the

morphological annotation was generated automatically based on a morphological tagger

(Ruzsics & Samardzic, 2017; Samardzic et al., 2015). Japanese morphological tagging

was done with the morphological tagger in CHILDES (JMOR, Miyata and Naka, 2014).

For information on the data, see also the ACQDIV manual (Schikowski et al., 2018).
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2.3 Modeling segmentation

Word segmentation algorithms usually take as input phonological, symbolic

text-like representations such as phonemes or syllables, with few exceptions (e.g.,

Ludusan et al., 2015 and Roy and Pentland, 2002, who applied segmentation algorithms

on raw speech data). There is evidence that even newborns have access to syllables (or

vowels) as perceptual units (Jusczyk et al., 1995), and that representation of phoneme

sequences is available as early as by four months (Seidl et al., 2009). It can be

challenging to represent certain cues in text-like representations, such as coarticulation,

which will therefore not be studied here. Here, we limit our study to phonemized

representations (Moran & Cysouw, 2018), even though it would be possible to study

word-level prosody (Börschinger & Johnson, 2014; Gambell & Yang, 2005a), because

some languages do not have lexical stress, such as French (Dupoux et al., 1997).

So far only a couple of papers have applied more than one algorithm to the same

corpus; when they do, they find widely varying performances across the di�erent

algorithms. By and large, algorithms based on local cues and employing sublexical

information reportedly yielded lower scores than lexically driven ones both in English

(Cristia et al., 2018) and Japanese (Ludusan et al., 2017). In this study, we sought to

directly assess variability in performance across languages and included algorithms of

both types.

Additionally, there can be enormous di�erences in performance within the same

algorithm depending on the parameters used (e.g., Gervain and Erra, 2012; Saksida

et al., 2017). For example, Saksida et al. (2017) documented that di�erent measures

such as forward transitional probabilities, backward transitional probabilities and

mutual information and especially the threshold parameter (absolute, relative) a�ect

the results of word segmentation. Given these previous results, we will consider a

diverse set of algorithms and their parametrization below, fully expecting them to vary

in performance.

The computational algorithms used here have been repeatedly used in the past,

and were chosen to represent diverse and cognitively plausible segmentation methods,
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spanning the three main classes mentioned above: lexical, sublexical, and baseline.

More details on the algorithms can be found in Section 4.2, and we therefore provide

only a brief conceptual presentation here.

The lexical representative is a version of the Adaptor Grammar introduced

previously (Goldwater et al., 2009; M. Johnson, 2008). In a nutshell, the hierarchical

grammar we provided was the unigram one, in which sentences are sequences of words

and words are sequences of phones, with the lexicon being composed of frequent phone

sequences. We had two sublexical algorithms, the first one being the Diphone Based

Segmentation algorithm (DiBS). It is based on the intuition that phone bigrams

spanning utterance boundaries probably span word breaks (Daland, 2009; Daland &

Zuraw, 2013). The second sublexical algorithm is actually highly parametrizable: the

Transitional Probabilities algorithm family (TP) assumes that word-internal pairs of

syllables tend to co-occur more frequently than word-external pairs (Sa�ran, Newport

et al., 1996), with four di�erent versions resulting from the crossing of 2 parameters

with two levels each (Gervain & Erra, 2012; Saksida et al., 2017). In addition, two

baselines were included in this study. The first baseline treats each utterance as a word,

based on findings that children recognize words in isolation before they do so in

sentences (Depaolis et al., 2014). The second baseline treats each syllable as a word,

given that infants might track syllable units from early on (Bertoncini & Mehler, 1981;

Jusczyk et al., 1995).

3 Key Questions and Predictions

The key questions motivating this study are: Do languages which vary in

morphological complexity di�er in segmentability? Do algorithms segment out

morphemes in complex languages? And which factors could explain performance

di�erences in segmentation?

Morphological complexity should a�ect segmentation through several pathways,

the first being via the distributional properties of the lexicon. Specifically, languages

varying in morphological complexity di�er in the frequency of lexical units (words and
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morphemes). Corpora of morphologically rich languages such as Chintang contain fewer

repetitions of each word type, as well as a higher proportion of hapaxes – forms that

occur only once – than languages with little morphology (Stoll et al., 2017). For

example, there was a higher proportion of hapaxes in a Japanese than an English

corpus, and a lower likelihood of correct identification by a lexicon-building algorithm

for hapaxes than words with more repetitions (Boruta et al., 2011). Some algorithms

might thus detect frequently occurring word parts such as morphemes, instead of words

e.g. they could detect a root separately from its su�xes. Lexical approaches, in

particular, tend to recycle existing units, favoring repetition. AG finds the most likely

segmentation using a lexicon, whose types have been assigned probabilities based on

their frequency distributions. Thus, it could break words up into their component

morphemes. This behavior would be rewarded when evaluated on morpheme

boundaries, but penalized when evaluated on word boundaries.

Aside from these factors, which are purely morpholexical, there could be

phonological factors confounded with morphological complexity, such as word length

and segmentation ambiguity.2 Languages varying in morphological complexity should

also di�er in the length of lexical units. First, morphologically complex languages such

as Chintang usually have longer words and longer sentences. Longer sentences mean a

more challenging segmentation task, because there are more places in which to

erroneously insert a boundary, or miss inserting one. Second, long strings, which can

often be decomposed in a number of di�erent morphemes, may have more alternative

parses than short ones. Consider the Japanese utterance “iruka”, which can have

several di�erent parses (Scherling, 2016), including one in which it is a single word

(“iruka”, meaning “dolphin”); or a phrase (“is it?”, where “iru” is the verb to be and

“ka” is a particle indicating a question). Fourtassi et al. (2013) used the concept of

2 A host of other factors affecting segmentation and varying across languages have been proposed and

studied in the past, such as head direction (Gervain & Erra, 2012) and input representation (Kastner &

Adriaans, 2017). However, these factors are orthogonal to the present study (i.e., they are not

necessarily confounded with morphological complexity). Therefore, they will not be discussed any

further.
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entropy (Shannon, 1948) to estimate the di�erent possible segmentation parses

(segmentation ambiguity), and showed that segmentation score di�erences they found

for Japanese versus English could be accounted for by that factor.

Thus, lower performance is predicted for Chintang compared to Japanese, the

morphologically less complex language. Algorithms might segment out morphemes, as

they are shorter and more frequent than words. This could lead to oversegmentation

(i.e. splitting a word up) for Chintang, especially within AG. Last, a number of factors

are predicted to a�ect segmentation performance; unit frequency, unit length, utterance

length and inherent segmentation ambiguity.

4 Methods

In this section, we detail several stages of analysis: corpus preparation,

phonologization, description, segmentation, and evaluation, followed by statistical

analyses of the results. Corpus preparation and phonologization were carried out using

custom scripts written mainly in bash. Corpus statistics, unsupervised word

segmentation, and evaluation employed the WordSeg package (Bernard et al., 2018)3.

The WordSeg package provides a collection of tools for text based word segmentation.

Finally, statistical analyses were performed in R (R Core Team, 2013). All scripts are

available at <anonymized for review>. More details can be found at

https://osf.io/e8d2r/?view_only=f9d7b6a307734268bd8a515c55255b69. This OSF page

contains scripts, results including segmentation performance and statistics, and other

supplementary material.

4.1 Corpus preparation

Neither of the two languages exists in open source phonologization or

text-to-speech programs, so we applied grapheme-to-phoneme rules to derive the

phonological representation4 (Moran & Cysouw, 2018). We also cleaned the text from

3 Available from https://github.com/bootphon/wordseg/.

4 Japanese had been transcribed in Latin script.
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any punctuation and annotations. All utterances containing “???” (which indicates

incomprehensible speech or impossible morpheme annotation) were removed from both

word- and morpheme-level analyses. We also removed utterances where one of the

morphemes had been transcribed into an abstract, unpronounceable code (such as

FS_N or kV), from both analyses.

Following Phillips and Pearl (2014b), we syllabified the corpora using the

Maximal Onset Principle. According to this principle, the beginning of a syllable should

be as large as legally possible (Bartlett et al., 2009). We syllabified as follows, for each

language separately. First, we made a list of vowels present in the corpus. Second, we

made a list of all valid word-initial onsets, defined as all consonants up to the first vowel

of the word or morpheme. Third, each utterance was processed from right to left until a

vowel was found, at which point consonants to its left would be clustered to the

maximally large onset appearing in the list just mentioned phillips-syllabifier. Notice

that this procedure does not syllabify over morpheme or word boundaries. Both corpora

are larger than those frequently used for modeling studies (Phillips & Pearl, 2014b;

Saksida et al., 2017). This allowed us to further divide each corpus into ten equal

subsets, based on their length measured in number of utterances, in order to better

estimate the variation in the properties of the segmentation algorithms. After

pre-processing, the entire Japanese corpus was 84518 utterances long and had 155805

word tokens. The Chintang corpus was 152571 utterances long and had 426288 word

tokens. Table 1 gives properties of the subsets after pre-processing. Right before

segmentation, within-utterance word boundaries were removed from the corpora, and

only utterance boundaries remained.
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Mean subset stats Chintang Japanese

# utt 15257 8451

# wtokens 42628 (1371) 15579 (1569)

# wtypes 8194 (690) 1634 (361)

# whapaxes 5180 (514) 812 (206)

# wtokens/utt 2.79(0.09) 1.84 (0.19)

# wtypes/utt 0.54 (0.05) 0.19 (0.04)

# m/utt 4.72 (0.29) 1.96 (0.20)

# syll/utt 5.62 (0.25) 3.38 (0.41)

# phon/utt 11.87 (0.60) 6.58 (0.83)

# mtokens/wtokens 1.69 (0.07) 1.07 (0.03)

# mtypes/wtypes 0.25 (0.02) 0.84 (0.03)

# syll/w 2.01 (0.05) 1.83 (0.07)

# phon/w 4.25 (0.12)) 3.56 (0.15)

# syll/m 1.24 (0.03) 1.70 (0.04)

# phon/m 2.56 (0.05) 3.33 (0.09)

Table 1

Corpus features: Means (and standard deviation) across the ten Chintang and Japanese

subsets (see main text for explanation). # stands for amount, “utt” stands for utterance.

“wtokens”, “wtypes”, “whapaxes” stand for word tokens, word types and word hapaxes. “m”,

“syll” and “phon” stand for morphemes, syllables and phonemes.
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4.2 Algorithms

A brief, cognitively-focused introduction to the five algorithms follows. For

technical details, please refer to the WordSeg documentation (wordseg.readthedocs.io;

Bernard et al., 2018) and the work cited for each algorithm.

The first algorithm, a member of the Adaptor Grammar family, adopts a lexical

approach (Goldwater et al., 2009; M. Johnson & Demuth, 2010; M. Johnson et al.,

2007). The Adaptor Grammar (AG) is a generalized version of probabilistic context-free

grammars (PCGF, M. Johnson et al., 2007). We use a very simple hierarchical

grammar with only a few rules: Sentences are composed of one or more reusable words

(or morphemes), and words/morphemes are composed of one or more phonemes. Each

utterance is parsed as a sequence of words/morphemes, each word/ morpheme is

composed by phonemes, and a given word/morpheme of this sequence would be

generated either by choosing an existing form from a lexicon based on previous

occurrences, or by considering it as a novel item and inserting its phonemic form in the

lexicon. The PCFG regenerates the corpus by repeatedly applying this grammar, which

is a set of rewrite rules with assigned probabilities. The rules fit the corpus based on

how elements have already been written in the past, according to the Pitman-Yor

stochastic process, which favors the reuse of frequently occurring rules (M. Johnson

et al., 2007). This process is conceptually related to Zipf’s Law, a feature of natural

languages, which states that in a large corpus, the frequency of any word is inversely

proportional to its rank in the frequency table (Zipf, 1935). AG would thus tend to

create a lexicon of moderate size comprised mostly of short words (Perfors & Navarro,

2012).

DiBS (Daland, 2009) performs segmentation using phone bigram probabilities.

As a consequence, this algorithm requires that the input be coded as a sequence of

phonemes. The intuition behind this algorithm is that certain sound sequences almost

never occur within words (or morphemes), so if observed they probably indicate a word

boundary. For instance, when [pd] occurs in English, the probability that there is a

word boundary is very high: Pr(#|pd) ≈ 1.
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The unsupervised version (phrasal DiBS) treats utterance edges as a proxy for

word edges, assuming that phone sequences frequently spanning utterance boundaries

likely also span word boundaries. The algorithm estimates the necessary parameters

from data using the Formula 1, where f(x#py) is the number of [xy] sequences with an

uttterance boundary in the middle and f(xy) is the number of [xy] sequences in any

position, and where x is one phone, y is another phone, (#p) is an utterance boundary

and (#w) is a word boundary:

p(#w|xy) ≈

f(x#p y)

f(xy)
(1)

When p(#w|xy) is higher than a threshold parameter, the system breaks the sequence

by positing a word boundary. This threshold is estimated with Formula 2:

Nw - Nu

Np - Nu
(2)

where the total number of words is Nw, the number of phones is Np and the number of

utterances is Nu.

The TP family assumes that “word-internal pairs of syllables tend to co-occur

more frequently than word-external pairs which are relatively unconstrained” (Sa�ran,

Newport et al., 1996, pp.610), thus the transitional probability between adjacent

syllables is higher word-internally than at word boundaries (cf. Gervain and Erra, 2012

for evidence that this may not be the case). The basic minimal units are syllables and

not phonemes, unlike in the other two algorithms. Forward transitional probabilities

(FTP) are defined as:

FTP(AB) =
f(AB)

f(A)
(3)

where f(AB) is the frequency of a syllabic sequence AB and f(A) is the frequency of

the syllable A. Backward TP (BTP) is similar, except that the denominator is the

frequency of the second syllable instead.

BTP(AB) =
f(AB)

f(B)
(4)

Also, algorithms in the TP family require another parameter, namely the

threshold used to decide whether to add a word (or morpheme) boundary or not. One
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possibility is to use TP with a Relative threshold, i.e. BTPr and FTPr, which leads to

placing a word/morpheme boundary wherever the TP value of a syllable pair is lower

than the TP of the neighboring syllable pairs, as follows. Given a syllable sequence

(WABY ) where W , A, B, Y stand for syllables, a break will be posited between A and

B if TP (WA) > TP (AB) and TP (BY ) > TP (AB). Another possibility is to use TP

with an Absolute threshold (BTPa and FTPa), which would posit boundaries using a

threshold, that is the sum TP value of all syllable pairs over the number of di�erent

syllable pairs. For example, given a corpus consisting of a syllable sequence (WABY )

where W , A, B, Y stand for syllables, the absolute threshold is

TPa = T P (W A)+T P (AB)+T P (BY )
3

. A break will be then posited between A and B if

TP (AB) < TPa.

Finally, we applied two segmentation baselines. The baselines capture simple

segmentation strategies. The baseline called Syll=Unit uses p = 1 to cut at all syllable

boundaries, thus treating every syllable as a word (or morpheme). The baseline

Utt=Unit labels only utterance boundaries as word (or morpheme) boundaries (p = 0).

4.3 Evaluation

The output of each algorithm is evaluated using word (or morpheme) token

F-scores, derived from precision and recall, as standard for segmentation algorithm

evaluation (Phillips & Pearl, 2015). Precision (Formula 5) checks how many

words/morphemes in the group of those segmented by the algorithm are correct. Recall

(Formula 6) checks how many words/morphemes in the group of those existing in the

original gold corpus were correctly segmented by the algorithm. True positives are the

words/morphemes segmented by the algorithm which are indeed found in the input

corpus. False positives are the words/morphemes segmented by the algorithm which are

actually not in the input corpus. False negatives are words/morphemes in the input

corpus that were not in fact segmented by the algorithm.

precision =
true positives

true positives + false positives
(5)

recall =
true positives

true positives + false negatives
(6)
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The token F-score balances how accurate and complete the set of identified

word/morpheme tokens is (Phillips & Pearl, 2015). It is the harmonic mean of precision

and recall, as shown in Formula 7.

F-score =
2 ∗ precision ∗ recall

precision + recall
(7)

5 Results

Fig. 1 illustrates the token precision and recall for each subset of the corpora. The

point of this figure is to demonstrate that precision and recall are correlated to a

considerable extent. The correlation between precision and recall emerges because there

is no trade o� between false negative and false positive results; when segmenting text, a

given parse results in neither or both kinds of errors. This is because if a boundary is

posited, then if this boundary is correct, it will increase both precision and recall. If the

boundary is incorrect, it will reduce both precision and recall.

Since precision and recall are highly correlated, we focus on the more commonly

reported token F-scores. Fig. 2 shows for each language, word token F-scores within

each of the 10 subsets, as well as results for the entire corpus, which are nearly always

contained in the range of variation of the subsets. The F-scores are presented

numerically in the online supplementary material. Similarly to what we found, Bernard

et al. (2018) documented that variation in corpus size beyond the first 5k utterances

seems to play a negligible role in performance of these segmentation systems, as

replicated here. Fig. 2 suggests that there were strong interactions between the three

factors of interest (language, algorithm, and evaluation level), which are tested

statistically in the next section.

Before proceeding with this statistical evaluation, we perform some descriptive

observations. Average performance across algorithms on the word level was .48 for

Japanese and .33 for Chintang; and on the morpheme level, this was .49 and .41,

respectively. Thus, performance for Japanese was similar across levels, while

performance for Chintang was worse for words than for morphemes, and, on morpheme

level, it was close to Japanese for some of the algorithms.
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Figure 1 . Precision and recall across languages and algorithms for each evaluation level.

Algorithms are marked by color. Languages are marked by shape. BTPr, FTPr, BTPa or

FTPa indicate the segmentation result for one of the different versions of TP. AG are the

results of the unigram Adaptor Grammar. Syll=Unit and Utt=Unit are the results of the

baselines. Each dot indicates the results for one of the ten subsets of a given corpus.

To put these descriptive results in the context of the broader literature, we discuss

some observations clustered on the basis of the di�erent algorithms, since previous work

exclusively employed one algorithm. At points, we need to focus on the word level for

this comparison, since previous work has systematically evaluated performance

quantitatively on this level, and this level alone.

Focusing first on AG, the sizable performance di�erence between the two

languages found on the word level was reversed on morphemes: AG-word had an

average score of .44 for Japanese and .27 for Chintang, whereas for AG-morpheme, the

performance for Chintang was higher than that for Japanese, with an average score of
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Figure 2 . Token F-scores across language (Chintang, Japanese) and level (words,

morphemes). Algorithms are marked by color. BTPr, FTPr, BTPa and FTPa indicate the

segmentation result for the different versions of TP. AG are the results of the unigram

Adaptor Grammar. Syll=Unit and Utt=Unit are the results of the baselines. Filled circles

indicate the results for the corpus segmented as a whole. Each “x” shows the result for one

subset. Jap. stands for Japanese.

.56 versus .49. As for comparisons with previous work, we found that our AG-word

scores were much lower than the .77 documented for English (Fourtassi et al., 2013).

Zooming out for a moment from our key question, we also notice that AG achieved

higher scores than DiBS and TP only in the Chintang morpheme level.

Turning now to TP, absolute-threshold TPa had the highest performance. The

higher scores for TP are not just due to our addition of TPa, since even TPr

outperforms AG. This is a matter that should be investigated further. TP had

relatively smaller language di�erences compared to AG. TPa-morpheme scores were

higher than TPa-word scores, whereas the opposite was true for the relative-threshold
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TPr. Worse performance for morphemes than words for TPr is reasonable in hindsight,

given that in this implementation a boundary can only be posited in relatively long

strings of syllables (see also Gambell and Yang, 2005b). We did not observe much

di�erence between forward and backward alternatives (cf. Gervain and Erra, 2012 for

arguments that this parameter should matter for languages varying in head direction,

and Saksida et al., 2017 for other data showing that it may not). As for other

comparisons with previous work, the best performance for TP in this paper was .63,

well below the .85 recorded for English by Saksida et al. (2017).

DiBS showed a language e�ect that was stable across words and morphemes. For

the word level, our scores were .35 and .51 for Chintang and Japanese respectively, close

to those for English CHILDES corpora (.43, Daland and Pierrehumbert, 2011).

Finally, the baseline scores ranged from .06 (Utt=Unit for Chintang morphemes)

to .71 (Syll=Unit for Chintang morphemes). Both did a better job segmenting Japanese

than Chintang on the word level. However, results were di�erent on the morpheme

level. Chintang morphemes are on average shorter than Japanese ones (see Table 1;

1.24 versus 1.70 syllables per morpheme), whereas the opposite is true for words (2.01

versus 1.83 syllables per word). As a result, on morphemes, performance is very high

when boundaries are systematically posited after every syllable (Syll=Unit), and very

low when no boundary is posited at all (Utt=Unit). This might explain why, on

morphemes, Chintang outperformed Japanese with Syll=Unit, but had a lower score

than Japanese with Utt=Unit.

5.1 Regression on token F-Scores

A regression predicting F-scores from language, level, algorithm, and their

interactions accounted for most variance in the data, R2 = .93 (F (31, 288) = 134.95,

p < .001).5 Even though the presence of significant interactions precluded a direct

5 The function was: lm(token fscores ∼ language ∗ level ∗ algorithm + (1/file), subsets). Token F-scores

are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random

factor. The data frame contains 320 observations (2 languages x 2 levels x 10 subsets x 8 algorithms).
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interpretation of the main e�ects, the regression confirmed an advantage for Japanese,

with a positive coe�cient estimating the language e�ect. Interestingly, the coe�cient

for this language e�ect was smaller than that for evaluation level. Further information

on the regression results can be found in Tables 2 and 3 and more detailed outcomes in

the online supplementary material.

5.2 Proximal causes

In Section 3, we inquired whether specific features related to morphological

complexity would a�ect segmentation. Mean values of such features for the Chintang

(word and morpheme) and Japanese (word and morpheme) subsets are shown in Table

4. The regressions introduced next are ran on the subset versions. One prediction

pertained hapaxes and repetitions. Specifically, we mentioned that a higher proportion

of hapaxes and fewer repetitions of each word token (since each lexeme can have

di�erent surface forms) might lower performance in lexical algorithms.

Therefore, we first searched whether type/token ratios could account for (some of)

our results. We measured the Moving-Average Type-Token Ratio (MATTR) for each of

the 20 subsets (10 for Chintang and 10 for Japanese), in the word and morpheme level

gold versions. WordSeg’s MATTR computes the type-token ratio in a window of 10

units, shifting this window one unit at a time, and returning this moving average. Thus,

it controls for corpus length di�erences. In a regression across subsets predicting

F-scores from MATTR, language, and algorithm (for each subset)6, MATTR had a

non-significant coe�cient of -0.396 (SE= 0.452, p-value=0.383) for the regression on

words, and -1.176 (SE= 0.888, p-value=0.188) for morphemes.

6 The function was: lm(token fscores ∼MATTR* language * algorithm + (1/file) ,

subset=c(level=="words or morphemes"), subsets). Token F-scores are the F-scores to be predicted by

feature (in this example, MATTR), language, and algorithm as fixed effects and subset as random

factor.
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factor SumSq Df F value Pr(>F)

lang 0.06 1 43.61 0

level 0.14 1 91.83 0

algo 0.88 7 84.88 0

lang:level 0.06 1 39.66 0

lang:algo 0.11 7 11.08 0

level:algo 1.88 7 182.23 0

lang:level:algo 0.75 7 72.97 0

Table 2

Analysis of variance (ANOVA type III) for all factors and interactions on a linear regression

with token F-scores as the dependent variable, rounding to two decimals. “lang” stands for

language,“algo” stands for algorithm. “Pr(>F)” stands for the significance probability value

associated with the F value, “SumSq” for sum of square values, “Df” for degrees of freedom.

We also measured the hapax ratio by dividing the amount of hapaxes by the total

number of unit types for each of the 20 subsets, in the word and morpheme level gold

versions. In a regression similar to the one above (with language and algorithm), but

now incorporating hapax ratio as an additional predictor, the coe�cient for the hapax

ratio was also non-significant, -0.682 (SE=1.044, p-value=0.514) for the word-level

regression, and -0.275 (SE=1.18, p-value=0.816) for the morpheme-level regression.

In addition, we had predicted that word length side e�ects of complexity could

also matter. Indeed, morphological complexity is correlated with word length, but not

morpheme length, according to Table 1. We thus measured the average unit (word or

morpheme) length by dividing the total number of phone tokens by the number of unit

tokens, separately in the word and morpheme level gold versions of the subsets. A new

pair of regressions was thus fit across subsets. Token F-scores were predicted from unit

length in addition to language and algorithm, on the word level, and separately on the

morpheme level. The unit length factor had a non-significant coe�cient estimate of

-0.079 (SE =0.084, p=0.35) for the word-level regression; and 0.331 (SE=0.189,

p-value=0.082) for the morpheme-level regression.
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Last, sentence length as operationalized by the number of syllables per utterance

was measured by dividing the total number of syllable tokens by the number of

utterances for each subset. A similar pair of regressions revealed this predictor was not

significant for the word level (estimate=-0.047, SE=0.026, p-value=0.067) but was

significant for the morpheme level (estimate=-0.055, SE=0.024, p-value=0.025). Details

on the percentage of variance explained for all regressions can be found in Table 5.

Factor AG BTPa FTPa BTPr FTPr DiBS Syll=Unit Utt=Unit

lang *** *** *** *** *** *** *** ***

level *** *** *** *** *** *** **

lang:level *** *** ** *** *** ***

Table 3

Analysis of variance (ANOVA type III) significance results for linear regressions where

F-scores are predicted by language, evaluation level, and their interaction within each

algorithm separately. “lang” stands for language. p<0.001=***, p<0.01=**, p<0.05=*.

5.3 Is the language effect due to entropy?

We further investigated whether language e�ects may be due to one potential

confound, in particular the possibility that one of the languages is intrinsically more

ambiguous to segment (sentences having di�erent possible segmentation parses). To this

end, we followed Fourtassi et al. (2013) and estimated the segmentation entropy of the

corpora (Normalized Segmentation Entropy) using WordSeg’s descriptive toolset. In

Fourtassi’s study, English was less ambiguous than Japanese, with entropies of .0021

and .0156 respectively on the word level. The segmentation entropy of our Japanese

ACQDIV corpus was 0.028 (word level), thus close to their Japanese results.

Surprisingly, the segmentation entropy for Chintang was 0.007 - even less ambiguous

than English. We also found overall higher entropy levels when inspecting the

morpheme level, with smaller language di�erences. Even more surprising, in a pair of

regressions where entropy, language and algorithm (for each subset) were included,

entropy failed to explain a significant proportion of the variance, with a coe�cient
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estimate of 11.012 (SE=9.033, p-value=0.225) on the word level, but explained a part of

the variance on the morpheme level: -5.618 (SE=2.237, p-value=0.013).

5.4 Over-, under- and missegmentation

A breakdown of segmentation performance as a function of part of speech and

algorithm is provided in online supplementary materials. Over-, under- and

missegmentation cases are reported in Table 6. In the current study, we operationalize

oversegmentation as the splitting up of a unit in one or more sub-parts (regardless of

whether these are reasonable smaller units or not). We consider undersegmentation the

clustering together of two or more words. All other di�erences from the gold

segmentation were labeled missegmentation. The following example illustrates how they

were measured: If the input sentence “the dog ate the other dog” is returned as “thedog

at ethe other d og”, then the score will be 1/6 correct segmentation, 1/6

over-segmentation (“d og”), 2/6 under-segmentation (one for each input word, “the”

and “dog”), and 2/6 mis-segmentation (“at ethe”).

Factor Chin. w Jap. w. Chin. m. Jap. m.

MATTR 0.866 0.772 0.837 0.774

prop. hapax 0.615 0.512 0.302 0.455

phones/w 4.248 3.569 2.559 3.333

syll/utt 5.615 3.382 5.831 3.341

entropy (NSA) 0.007 0.028 0.036 0.030

Table 4

MATTR, proportion of hapaxes (prop. hapax), phonemes per word (phones/w), syllables per

utterance (syll/utt) and segmentation entropy (NSA) for the entire Chintang word, Chintang

morpheme, Japanese word and Japanese morpheme corpus, rounding to 3 decimals.

As for language e�ects, it was hypothesized in Section 3 that there might be more

cases of word level oversegmentation in a morphologically complex language, because

algorithms would break apart morphological a�xes. As predicted, oversegmentation
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rates were higher for both languages when evaluating on words, and, more precisely,

they were higher for Chintang than Japanese. This is because word level evaluation

considers word oversegmentation an error, but morpheme level evaluation does not

penalize it. However, while oversegmentation was substantially reduced on morphemes,

it did not disappear.

Finally, previous studies suggested that lexical algorithms might break apart

morphological a�xes (Section 1.2). We reasoned that this would lead lexical algorithms

to oversegment more than sublexical ones (Section 3). This was true for our data, where

AG showed distinctive oversegmentation patterns compared to DiBS and TP, and

almost no undersegmentation. As far as sublexical algorithms are concerned, DiBS

exhibited undersegmentation for both levels and languages. TPa-word tended to

oversegment, but TPa-morpheme would undersegment. TPr-morpheme would also

undersegment morpheme sequences, particularly with the Chintang corpus, where 70%

of its tokens were undersegmented. Unsurprisingly, Syll=Unit tended to oversegment,

whereas Utt=Unit was mostly undersegmenting.

Factor R2 Factor w. R2 Factor*lang*algo w. R2 Factor m. R2 Factor*lang*algo m.

MATTR .381 .935 .073 .956

prop. hapax .370 .901 .056 .935

phones/w .402 .941 .051 .961

syll/utt .427 .975 .080 .983

entropy (NSA) .431 .970 -.003 .980

Table 5

Percentage of variance explained (R2) predicting F-scores (word and morpheme level) either

from the factor given in the first column, or from language, algorithm, the factor and all their

interactions in the second column. The R2 for lang x algo alone is .91 for words and .94 for

morphemes (the same for all rows). “lang” stands for language, “algo” for algorithm,

“syll/utt” for syllables per utterance, “w” for words and “m” for morphemes.
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5.5 Summary

In sum, we observed di�erences in language, level, and algorithm type in the

expected directions. Overall word segmentation performance for Japanese was better

than performance for Chintang. However, average Chintang scores improved on the

morpheme level and this reduced the average score di�erence with Japanese.

Surprisingly, factors we had postulated as proximal causes for word segmentability

variation (type/token ratio, hapax ratios, word and utterance length) did not explain

significant variance. The potentially confounded factor of segmentation entropy did not

behave as predicted, suggesting that our original regression (with language, level, and

algorithm) was su�cient. Oversegmentation rates were higher for Chintang than

Japanese in the word level, especially for the lexical algorithm.

algo Chin. words Chin. morph. Jap. words Jap. morph.

ov un mis cor ov un mis cor ov un mis cor ov un mis cor

AG 54 0 7 38 14 10 15 61 39 3 3 55 30 3 7 59

BTPa 28 9 11 53 4 47 2 47 23 13 2 61 19 16 3 62

FTPa 27 11 13 49 5 53 4 38 24 13 3 60 19 17 5 58

BTPr 7 20 29 45 2 70 5 23 9 25 11 55 6 31 11 52

FTPr 7 20 31 42 1 70 7 22 9 21 15 55 6 27 13 53

DiBS 6 47 17 30 7 47 18 27 2 49 6 43 2 51 7 41

Syll=Unit 68 0 0 32 21 0 0 79 53 0 0 47 49 0 0 51

Utt=Unit 0 90 0 10 0 96 0 4 0 68 0 32 0 71 0 29

Table 6

Percentage of oversegmented, undersegmented, missegmented and correctly segmented word

and morpheme tokens for each algorithm, level, and language. “algo” stands for algorithm,

“morph.” stands for morphemes, “Chin.” for Chintang and “Jap.” for Japanese. Also, “ov”

stands for oversegmentation, “un” for undersegmentation, “mis” for missegmentation and

“cor” for correctly segmented.
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6 Discussion

In this study, a set of algorithms was applied to corpora of two morphologically

diverse languages, and the output was assessed against gold standard segmentation at

the word and morpheme level. Given the details of Chintang morphology, it was

hypothesized that such a rich morphology must pose significant problems for the

uninformed learner who is trying to segment the input, but these problems would be

mitigated if we consider morphemes instead if words as a segmentation goal.

Results summarized thus far support the prediction that languages varying in

morphological complexity might vary in segmentability, but several aspects of these

results strongly suggest that the answer is not simple. In our study, the language e�ect

was not the same for all algorithms, and was even reversed when both algorithm and

level were varied. The language e�ect was also smaller than the one for level or

algorithm type. Indeed, performance for Chintang was substantially improved when

evaluating on morphemes. In other words, di�erences within-language (across

algorithms) seem to be more important than those between languages, and

morphological complexity is far from being the sole or major determinant for

segmentation.

To further address our research questions, we consider the results within each

algorithm next. Our strongest predictions pertained to the lexical algorithm, AG, whose

results matched our predictions well. In AG, we observed higher performance for

Japanese than Chintang with words as the gold standard, but this di�erence was

reversed with morphemes. This observation is consistent with the proposal that AG,

and probably lexical algorithms in general, are ideal to recover recombinable units.

Thus, it seems that lexical algorithms might work well for languages like Chintang,

improving performance on the morpheme level.

Turning to the sublexical algorithms, even though DiBS is a purely

phonotactic-based algorithm, it seems to have been a�ected by language di�erences.

The algorithm was robust across evaluation levels, which had no impact on the

segmentation performance. The most complex patterns of results were found for the
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other sublexical algorithm, TP. All four versions of the algorithm (BTPa, FTPa, BTPr,

FTPr) yielded divergent patterns. This is in accordance with previous findings, where

notable di�erences in performance were found depending on the parameters used (e.g.,

Saksida et al., 2017). The language as well as the evaluation level had a significant

e�ect on performance, and an interaction between language and level was observed for

all versions.

This study attempted to associate segmentability to language features predicted

to have an impact on segmentation. Word length, utterance length, and even corpus

entropy explained only a small proportion of the structured variance, and none

significantly beyond the factors of language and algorithm. Entropy, in particular, had

been postulated in previous cross-linguistic work comparing English and Japanese

(Fourtassi et al., 2013), languages which diverge both in morphology and phonotactics,

whereas the languages studied here had similar phonotactics. Further work varying

these parameters independently may be needed to pin down the importance of factors

such as word length, utterance length, and corpus entropy (see Caines et al., 2019, for a

similar approach on properties explaining variation in segmentation performance).

One surprising result pertains to the follow-up analyses which investigated the

explanatory value of type/token ratio (measured as MATTR) and hapax ratio, which

we had suggested as potentially proximal causes for segmentability di�erences across

the languages. It seems that, while morphological complexity has an impact on

segmentation, this might not be via the causal paths we had identified, since none could

independently explain away the language e�ect in a multivariate regression. Future

work may need to assess whether such variables jointly could explain away language

di�erences, or whether this e�ect is due to other features that we have not yet

considered (see Loukatou et al., 2019, for a similar result on di�erences between adult-

and child-directed speech).

Before closing, we would like to bring up a number of limitations for this study.

First, the research was conducted using transcriptions of speech spoken around (and not

only to) children varying in age, from a few months to five years old, with the Japanese
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children being in general older than the Chintang children. Further research with more

homogeneous addressees may provide more stable results. Second, two di�erent datasets

compose the ACQDIV Japanese corpus, as mentioned in Section 2.2. This might be the

cause for the ostensively more variable results of the Japanese subsets. Third, many

Japanese utterances had not been morphologically transcribed, so they had to be

excluded.

Moreover, since Chintang is spoken in a multilingual setting, annotators

transcribed all speech including non-Chintang words, either because they are recent

loanwords or because of code-switching into Nepali. Chintang speakers are bilingual in

the morphologically simpler Nepali and children encounter Nepali from early on (Stoll

et al., 2015). In fact, approximately 36% of the Chintang utterances had non-Chintang

single- or multi-word insertions. For our analyses, we chose to report on the results for

the whole corpus, because children born into this community do not come with

information about which words are loanwords or code-switched. However, we also

segmented a version of the corpus consisting of only all-Chintang utterances, where

utterances with non-Chintang insertions had been removed. The performance usually

increased by .01-.06 in token F-scores for the all-Chintang corpus, but did not alter our

conclusions above. Detailed results can be found on the online supplementary material.

Also, speech transcriptions were used for this study. However, other salient

features for segmentation include supra-segmental, speech-related features such as

prosody or intonation. Even though there is some literature looking at word

segmentation from speech (Ludusan et al., 2015), this task remains challenging for

computational modeling.

Additionally, we would like to mention that the algorithms were evaluated on

words, as defined by their conventional orthographic representations. However,

wordhood and morphemehood are debated issues in linguistics and psycholinguistics,

without cross-linguistically valid definitions, as mentioned in Section 1.2.

Finally, we studied two languages which di�er in morphological synthesis,

admittedly considering only one dimension of morphological complexity. We would
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suggest that the level of allomorphy, meaning how many di�erent realizations exist for a

single morpheme, or the fusion of the a�xes with each other, could also a�ect

segmentation. Further research is needed to show the e�ects of these specific

morphological aspects, although this would ideally involve recovery of morphological

paradigms, and not just segmentation as done here.

Clearly, our work barely scratches the surface not only in terms of segmentation

di�erences and similarities across languages, but also in terms of possible evaluation

targets for language acquisition segmentation models. We look forward to further

research incorporating more languages, in order to investigate the impact of di�erent

linguistic traits, and hope future work retains our strategy of employing a range of

plausible algorithms and evaluating on di�erent linguistic levels.
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Abstract

When learning language, infants need to break

down the flow of input speech into minimal

word-like units, a process best described as un-

supervised bottom-up segmentation. Proposed

strategies include several segmentation algo-

rithms, but only cross-linguistically robust al-

gorithms could be plausible candidates for hu-

man word learning, since infants have no ini-

tial knowledge of the ambient language. We

report on the stability in performance of 11

conceptually diverse algorithms on a selec-

tion of 8 typologically distinct languages. The

results are evidence that some segmentation

algorithms are cross-linguistically valid, thus

could be considered as potential strategies em-

ployed by all infants.

1 Introduction

Six-month-old infants can recognize recurrent

words in running speech, even with no mean-

ing available or with experimentally impover-

ished cues to wordhood (Saffran et al., 1996).

Most words do not appear in isolation (Brent and

Siskind, 2001), so infants would need to discover

the form of words in their caregivers’ input before

attaching them to meaning. Since infants do not

know which language(s) will be found in their en-

vironment at the beginning of development, they

would be better off by using segmentation strate-

gies that perform above chance for any language.

In fact, despite the fact that languages vary widely

in a number of dimensions affecting word segmen-

tation, all human languages are learnable for in-

fants (see Discussion for the question of the extent

of variation in human learning).

1.1 Unsupervised bottom-up segmentation

across languages

The problem of learners retrieving words in in-

put has a long history in computational approaches

(e.g., Harris 1955; Elsner et al. 2013; Lee et al.

2015). Most previous computational research has

used as input texts representing phonologized lan-

guage, that is, sequences of phonemes with no

overt word boundaries, and the task is to retrieve

these. Several algorithms inspired by laboratory

research on infant word segmentation are currently

represented in WordSeg, an open source package

(Bernard et al., 2018).

Are such algorithms as robust to cross-linguistic

variation as human infants are? Some previous

work has assessed the generalizability of specific

approaches across different languages, typically

concluding that strong performance differences

arise (Johnson 2008; Daland 2009; Gervain and

Erra 2012; Fourtassi et al. 2013; Saksida et al.

2017; Loukatou et al. 2018, with the possible ex-

ception of Phillips and Pearl 2014a,b).

However, very little previous research compares

the performance of a wide range of algorithms us-

ing diverse and cognitively plausible segmentation

methods within a large set of typologically diverse

languages and closely matched corpora, with uni-

fied coding criteria for linguistic units.

1.2 The present work

In this paper, we sought to fill this gap by employ-

ing a systematic approach that samples both over

the space of algorithms and the space of human

languages. We used 11 segmentation algorithms

included in WordSeg, for improved reproducibil-

ity and transparency.

As for languages, we used the ACQDIV
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lang #chi #sent #words m.syn. %s.com.

Inu 4 13,166 22,045 high 57
Chi 6 160,524 459,585 high 50
Tur 8 249,507 875,349 high 44
Rus 5 468,397 1,302,650 med. 43
Yuc 3 29,795 88,018 med. 51
Ses 4 23,539 62,024 low 55
Ind 10 399,606 1,179,505 low 46
Jap 7 242,774 741,594 low 51

Table 1: Number of children, sentences and word to-

kens for each language corpus. “m.syn.” stands for

morphological synthesis derived from sto: A language

received a “high” here if nominal and verbal complex-

ity were both listed as the highest in that work; and low

if they were both in the lowest levels, and moderate

otherwise. “ % s.com.” stands for syllable complex-

ity, measured as average percentage of vowels per total

phonemes for each word. Languages are represented

by the first three letters of their names.
.

database (Moran et al., 2016), which contains a set

of typologically diverse languages, as explained in

Stoll and Bickel (2013). All corpora were gath-

ered longitudinally and were ecologically valid,

with transcriptions of child-directed and child-

surrounding speech recordings (target children’s

age ranges from 6 months to 6 years).

ACQDIV contains data for eight languages with

large enough data sets to allow for analyses of the

type used here: Chintang (Stoll et al., 2015), In-

donesian (Gil and Tadmor, 2007), Inuktitut (Allen,

1996, Unpublished), Japanese (Miyata, 2012b,a;

Oshima-Takane et al., 1995; Miyata, 1992) , Rus-

sian (Stoll, 2001; Stoll and Meyer, 2008), Sesotho

(Demuth, 1992, 2015), Turkish (Küntay et al., Un-

published), and Yucatec Mayan (Pfeiler, Unpub-

lished).

The present study addresses the following ques-

tions:

1. Do algorithms perform above chance level

for all languages? Algorithms that systemat-

ically perform at or below chance level would

not be plausible strategies for infants.

2. Is the rank ordering of algorithm perfor-

mance similar across languages? That is, is

it the case that the same algorithms perform

poorly or well across languages? If unsu-

pervised word discovery algorithms pick up

on general linguistic properties that are sta-

ble across this typologically diverse sample,

then we expect the rank ordering to be rather

stable. If, conversely, some algorithms pick

up on cues that are useful in one language

but noxious in another, then the rank order-

ing may change.

2 Methods

Phonemization was done using grapheme-to-

phoneme rewrite rules adapted to each language

(Moran and Cysouw, 2018). Only adult-produced

speech was included.

The input to each algorithm was the phonem-

ized transcript, with word boundaries removed.

Sentence boundaries were preserved because in-

fants are sensitive to them from before 6 months of

age (Christophe et al., 2001; Shukla et al., 2011).

Table 1 gives the number of children, sentences,

and words across corpora, as well as a rough met-

ric of morphological and phonological complexity.

For lack of space, we will only briefly describe

the algorithms drawn from WordSeg (see Johnson

and Goldwater 2009; Monaghan and Christiansen

2010; Lignos 2012; Daland and Zuraw 2013; Sak-

sida et al. 2017; Bernard et al. 2018). All algo-

rithms were used with their default parameters.

Baseline algorithms represent the simplest seg-

mentation strategies possible. The first baseline,

p=0, is a learner who treats each whole sentence

as a unit, cutting at 0% of possible points. The

second baseline is a learner (innately) informed

about average word duration, cutting at a proba-

bility level of average word length. Since in the

reduced lexicon expected for child-surrounding

speech, words average 6 phonemes in length in

several languages (Shoemark et al., 2016), p=1/6

was used.

The Diphone Based Segmentation algorithm

(DiBS) is based on phonotactics, and implements

the idea that phoneme sequences that span phrase

boundaries also span word breaks (Daland and

Pierrehumbert, 2011; Daland, 2009). The learner

decides whether there is a boundary in the middle

of a bigram sequence if the probability of the se-

quence with a word boundary is higher than the

probability without the boundary.

Other algorithms are also based on the idea that

sequences with lower statistical coherence tend to

span word breaks, but use backwards or forwards

transitional probabilities (BTP and FTP respec-

tively; in a sequence xy, BTP is the frequency

of xy divided by the frequency of y; FTP by the

frequency of x) or mutual information (MI). MI

is defined as the log base 2 of the frequency of
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algo 0 1/6 % mean % min % max

AG 6/8 7/8 37 7 Rus 65 Ind
DiBS 8/8 8/8 30 25 Jap 41 Inu
FTPa 7/8 8/8 28 17 Inu 36 Ind
MIr 7/8 7/8 27 7 Inu 36 Ind

FTPr 7/8 7/8 25 11 Inu 30 Rus
PUD 6/8 6/8 22 7 Ind 34 Ses
BTPa 6/8 6/8 17 10 Ses 27 Ind
MIa 7/8 8/8 17 15 Jap 25 Inu

BTPr 6/8 5/8 14 9 Inu 22 Yuc

Base0 - 1/8 13 6 Tur 35 Inu
Base6 7/8 - 12 8 Tur 16 Inu

Table 2: Number of languages performing above base-

line p=0 and p=1/6. Columns show the mean, the low-

est and highest percentage of correctly segmented word

tokens for each algorithm and the corresponding lan-

guage. Languages are represented by the first three

letters of their names. “PUD” stands for PUDDLE.

“Base0” and “Base6” stand for baseline p=0 and p=1/6.

xy divided by the product of the frequency of x

and that of y; the version in WordSeg draws from

Saksida’s implementation (Saksida et al., 2017).

Whether to add a word boundary or not depends

on a threshold, which can be based on a local com-

parison (relative, where one cuts if the TP or MI

is lower than that for neighboring sequences); or

a global comparison (absolute, where one cuts

if the transition is lower than the average of all

TP or MI over the sum of different phoneme bi-

grams). It should be noted that previous authors

originally implemented TPs on syllables (Saksida

et al., 2017; Gervain and Erra, 2012), but here

the basic units are phonemes. Combining all of

the above yields 6 versions, namely FTPr, FTPa,

BTPr, BTPa, MIr and MIa.

Johnson and Goldwater (2009) elaborated on

adaptor grammars (AG), which are ideal approx-

imations to the segmentation problem. They as-

sume that learners create a lexicon of minimal, re-

combinable units found in their experience. AG

uses the Pitman-Yor process, a stochastic process

of probability distribution which prefers the reuse

of frequently occurring rules versus creating new

ones to build a lexicon, then uses this lexicon to

parse the input. This process is conceptually re-

lated to Zipf’s Law (Zipf, 1935) and leads to real-

istic word frequency distributions.

Finally, Phonotactics from Utterances Deter-

mine Distributional Lexical Elements (PUDDLE)

is an incremental alternative algorithm (Monaghan

and Christiansen, 2010), where learners build a

lexicon by entering every utterance that cannot be

broken down further, and using such entries to find

lang % mean % min % max

Inuktitut 17 7 MIr 41 DiBS
Chintang 25 9 BTPr 36 AG
Turkish 25 14 PUD 42 AG
Russian 22 7 AG 31 FTPa
Yucatec 27 16 MIa 48 AG
Sesotho 24 9 BTPr 39 AG

Indonesian 29 7 PUD 65 AG
Japanese 26 14 BTPa 43 AG

Table 3: Mean percentage of correctly segmented word

tokens for each language. Languages are listed in

rough order of morphological complexity (see Table

1). Columns show the mean, lowest and highest per-

centage of correctly segmented word tokens per lan-

guage, and the corresponding algorithm. “PUD” stands

for PUDDLE.

subparts in subsequent utterances.

WordSeg was used both for segmentation and

evaluation. Each algorithm returns their input

with spaces where the system hypothesizes a

break.1 Evaluation is done with reference to or-

thographic word boundaries. Scripts used for cor-

pus preprocessing and segmentation as well as re-

sults and supplementary material are available at

https://osf.io/6q5e3/.

3 Results

Results are shown in Tables 2 (reporting on algo-

rithms) and 3 (reporting on languages). Next, we

address our research questions.

1. Do algorithms perform above chance level

for all languages? If chance is defined as

the highest of the two baselines (p=0, 1/6),

1 algorithm performed above chance in all

8 languages (DiBS). However, if we relax

this criterion, AG, FTPa, FTPr, MIr and MIa

also performed above chance for nearly all

languages. No algorithm performed below

chance level for more than half of the lan-

guages.

2. Is the rank ordering of algorithm per-

formance similar across languages? Fig-

ure 1 illustrates the correlation of perfor-

mance order for algorithms across languages.

Spearman correlations (median=.38) sug-

gested that there is a similar rank ordering

1Because of time constraints, only the first 50000 utter-
ances of the three largest corpora, Turkish, Russian and In-
donesian, were segmented by AG. This would play a negligi-
ble role in results, since variation in corpus size beyond the
first 5k utterances does not affect performance of this seg-
mentation system (Bernard et al., 2018).
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of algorithm performance across languages.

Inuktitut and Russian were the only lan-

guages not following the general ordering.

The models’ detailed performance, measured in

percentage of correctly segmented word tokens,

can be found in the online supplementary material

and in this paper’s Appendix. An error analysis

would be beyond the scope of this paper. How-

ever, three categories of incorrect cases have been

measured and can be found online. This analysis

documents cases of oversegmentation (words split

up in their components), undersegmentation (two

or more words segmented as one) and missegmen-

tation (all other errors).

4 Discussion

First, no algorithm performed systematically be-

low chance level in our study. However, we cannot

say that they all performed above chance for all

languages either. This is mainly due to the good

results in baseline p=0, especially salient for mor-

phologically complex languages such as Inuktitut.

This is expected, since in this language a substan-

tial number of sentences are composed by a sin-

gle word (which morphologically encodes what in

other languages would be expressed syntactically

by using several words).

Second, there was some stability in the or-

der of performance for algorithms across this set

of diverse languages, suggesting that these unsu-

pervised word discovery algorithms pick up on

general linguistic properties that are stable across

our sample, and not language-dependent cues that

could potentially not work for some languages.

In this distinct performance ranking, some al-

gorithms were systematically above chance and

among the first in order of performance. These

include DiBS and AG, combining both desider-

ata of cross-linguistic stability and high segmen-

tation performance. DiBS, the one algorithm

in our sample applying a phonotactics strategy,

was robust across languages and not strongly af-

fected by the differences found across these lan-

guages in morphology and phonological complex-

ity (counter previous conclusions based on English

versus Korean, Daland and Zuraw 2013). DiBS

implements an optimal boundary setting based on

the Bayes’ theorem and co-occurrence statistics.

Thus, our results support previous experimental

findings that infants may use such tools to acquire

language.

Figure 1: Correlation matrix of the rank ordering in

algorithms’ performance across languages.

Our study is the first to explore segmentation

differences across both multiple algorithms and

multiple languages. We therefore are in a position

to compare segmentation performance differences

across these two. We found that differences in av-

erage performance across algorithms (min=14 for

BTPr, max= 37 for AG, 23% points) were larger

than differences in performance across languages

(min=17 for Inuktitut, max=24 for Indonesian, 7%

points). This indicates that variation across lan-

guages was comparatively small.

Also, average percentage of correctly seg-

mented words for the more morphologically com-

plex languages (Chintang, Inuktitut and Turkish)

was 19%, only 3% lower than average percentage

for the simpler languages in our sample (Japanese,

Sesotho and Indonesian). This is striking evidence

that in this set of diverse languages, intrinsic dif-

ferences in language structure may not be large

enough to create particular difficulties in segmen-

tation.

To sum up, this study provides evidence that, if

infants do anything similar to one or more of the

algorithms proposed in previous natural language

processing research and investigated here, then

they would be well-equipped to get a head start

in segmenting word-like units regardless of what

their native language is. Experimental evidence

suggests slight variation in the timing of acquisi-

tion of different linguistic features, as a function
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of factors such as the transparency of forms, and

the complexity of paradigms (e.g., Slobin 1985).

Given the small differences found across our unsu-

pervised word segmentation algorithms, such vari-

ation might come from something else, such as

meaning acquisition, which would require algo-

rithms different from the ones we explored here.

Before closing, we would like to acknowledge

some limitations of this work. Defining words can

be obscure (Daland, 2009) and there is no cross-

linguistically valid general definition of ‘word’

(Haspelmath, 2011). Consequently, it would make

sense to also evaluate unsupervised segmenta-

tion algorithms using morpheme edges and at

other definitions of wordhood (Bickel and Zúñiga,

2018). For this, we would need appropriately

annotated data sets, which are currently missing.

What is worse, not every language lends itself to

simple definitions: Some languages in ACQDIV

lack morpheme segmentation simply because this

is not feasible in that language.

In this paper, we focus on correctly segmented

words. An error analysis would not be easily inter-

pretable, because not all corpora have morpheme

annotations. For example, when documenting

oversegmentation errors, we would not be able to

distinguish between reasonable cases where words

are split up into meaningful, morpheme-like com-

ponents, and other cases. Similarly, in an under-

segmentation analysis, we would not be able to

focus on collocations. Future work is invited to

study in more detail such errors in the algorithms’

performance.

Finally, computational models can be informa-

tive proofs of principle, but nothing assures us

they truly represent what infants are doing. To

this end, laboratory experiments (Johnson and

Jusczyk, 2001) and the study of natural variation

(Slobin, 1985) are irreplaceable, even if challeng-

ing to perform, particularly at a large scale and

sampling from many different cultures.
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Appendix

The models’ performance, measured in percentage

of correctly segmented word tokens, can be found

in Table 4.

algo Inu Chi Tur Rus Yuc Ses Ind Jap

AG 20 36 42 7 48 39 65 43
DiBS 41 29 33 26 28 28 30 25
FTPa 17 30 30 31 22 30 36 29
MIr 7 29 29 30 33 25 36 30

FTPr 11 28 27 30 25 25 28 29
PUD 8 33 14 19 31 34 7 33
BTPa 14 12 19 23 20 10 27 14
MIa 25 16 15 21 16 17 16 15

BTPr 9 9 17 15 22 9 17 16

Base0 35 9 6 12 8 11 9 12
Base6 16 11 8 12 11 12 11 13

Table 4: Percentage of correctly segmented word to-

kens for each language and algorithm. Languages are

listed in rough order of morphological complexity (see

Table 1). “PUD” stands for PUDDLE. “Base0” and

“Base6” stand for baseline p=0 and p=1/6. Languages

are represented by the first three letters of their names.
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Abstract

Previous work has documented variation in

word segmentation performance across lan-

guages, with a trend to yield lower scores for

languages with elaborate morphological struc-

ture. However, segmenting smaller chunks

than words, “oversegmenting”, is reasonable

from a computational point of view. We pre-

dict that oversegmentation would be encoun-

tered more often in complex languages. In

this work in progress, we use a dataset of

9 languages varying in complexity and fo-

cus on cognitively-inspired word segmenta-

tion algorithms. Complexity is defined by

Compression-based, Type-Token Ratio and

Word Length metrics. Preliminary results

show that a possible relation between morpho-

logical complexity and oversegmentation can-

not be predicted exactly by none of these met-

rics, but may be best approximated by word

length.

1 Introduction

The issue of word segmentation is open in the NLP

community (e.g., Harris (1955)). Its implemen-

tations include processing languages with no or-

thographic word boundaries, such as Chinese and

Japanese. It is also a key problem humans face

when acquiring language.

Previous work documented variation in the suc-

cess rate of segmentation across languages, and

a trend to yield lower scores for languages with

elaborate morphological structure. This is true for

both cognitively inspired (Johnson, 2008; Four-

tassi et al., 2013; Loukatou et al., 2018)) and other

models (Mochihashi et al., 2009; Zhikov et al.,

2013; Chen et al., 2011). Evaluation is conven-

tionally based on orthographic word boundaries.

Do these models manage to learn more lin-

guistic structure, that what is actually described

in these accuracy scores? Segmenting smaller

meaningful chunks than words is reasonable from

a computational point of view: morphologically

complex languages often feature multimorphemic,

long words, and algorithms might break words

up into component morphemes, treating frequent

morphemes as words. Finding out morphemes

might be useful for later linguistic analysis, espe-

cially for languages with rich morphological sys-

tems , and such morphemes could be used as cues

to further bootstrap segmentation. Thus, a “use-

ful” error in segmentation could be oversegmenta-

tion (Gervain and Erra, 2012; Johnson, 2008), the

percentage of word tokens returned as two or more

subparts in the output.

We thus predict that oversegmentation might be

encountered more often in complex languages. To

test this, we need data from languages varying in

complexity. Since there is no standard way to de-

fine complexity, for this study, three metrics are

used: first, the Moving Average Type-token Ra-

tio (500-word window) (Kettunen, 2014), and sec-

ond, two versions of compression-based complex-

ity (Szmrecsanyi, 2016)1. The two metrics are

normalized (0=least complex, 1=most complex)

and their average score is attributed to each lan-

guage. Third, we look at word length, since, in

general, longer words could attract more division.

2 Methods

We use the ACQDIV database (Moran et al., 2016)

of typologically diverse languages, with transcrip-

tions of infant-directed and -surrounding speech

recordings, from Inuktitut (Allen, 1996), Chintang

(Stoll et al., 2015), Turkish (Küntay et al., Unpub-

11st metric: the size of compressed corpus (gzip) divided
by the size of raw corpus. 2nd metric: systematic distortion
of morphological regularities, so as to estimate the role of
morphological information in the corpus. Each word type is
replaced with a randomly chosen number. The size of the
distorted compressed corpus is then divided by the size of the
originally compressed corpus.
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lang % over % corr % total compr. MATTR w length

Inuktitut 42 17 59 1 0.90 8.56
Chintang 26 25 51 0.56 0.87 4.39
Turkish 26 25 51 0.44 0.86 4.92
Yucatec 19 27 46 0.42 0.92 3.80
Russian 29 22 51 0.41 0.91 4.47
Sesotho 26 24 50 0.31 0.86 4.28

Indonesian 25 29 54 0.28 0.85 4.11
Japanese 20 26 46 0.14 0.87 3.94
English 6 51 57 0.02 0.39 3.04

Table 1: Percentage of average oversegmented, correct

word tokens and their sum are given per language in the

first columns. Complexity scores for the three metrics

are also given.
.

lished), Yucatec (Pfeiler, 2003), Russian (Stoll and

Meyer, 2008), Sesotho (Demuth, 1992), Indone-

sian (Gil and Tadmor, 2007) and Japanese (Miyata

and Nisisawa, 2010; Nisisawa and Miyata, 2010).

In order to compare with a previously studied lan-

guage, we included the English Bernstein corpus

(MacWhinney, 2000).

Several models have been proposed as plausible

strategies used by learners retrieving words from

input. We used a set of these strategies (Bernard

et al., 2018). Two baselines were Base0, treating

each sentence as a word, and Base1, treating each

phoneme as a word. DiBS2 (Daland, 2009) imple-

ments the idea that unit sequences often spanning

phrase boundaries probably span word breaks.

FTP3 (Saksida et al., 2017) measures transitional

probabilities between phonemes and cuts depend-

ing on a local threshold (relative, FTPr) or a global

threshold (absolute, FTPa). Adaptor Grammar

(AG) (Johnson, 2008) assumes that learners cre-

ate a lexicon of minimal, recombinable units and

use it to segment the input. AG implements the

Pitman-Yor process. Finally, PUDDLE4 (Mon-

aghan and Christiansen, 2010) is incremental, and

learners insert in a lexicon an utterance that cannot

be broken down further, and use its entries to find

subparts in subsequent utterances. Before segmen-

tation, spaces between words were removed, leav-

ing the input parsed into phonemes, with utterance

boundaries preserved.

3 Results

Statistics regarding corpora and results are pre-

sented in Table 1. In general, languages had simi-

2Diphone Based Segmentation algorithm
3Forward Transitional Probabilities algorithm
4Phonotactics from Utterances Determine Distributional

Lexical Elements

lar oversegmentation scores, (ranging from 31% to

51% if we exclude English), which did not exactly

follow their complexity ranking. Performance

difference across languages decreased when con-

sidering oversegmented tokens as correctly seg-

mented.

4 Discussion

Word length had the best prediction of overseg-

mentation compared to other metrics, compres-

sion and MATTR. This shows that longer words

have more alternative parses, and this could ex-

plain oversegmentation results better than other

properties inherent to morphologically complex

languages. That said, a possible relation between

morphological complexity and oversegmentation,

could not be exactly explained by none of these

complexity metrics.

It was also observed that there was no absolute

ranking of complexity across languages; on the

contrary, it would change according to the feature

studied. In general, cross-linguistic differences

were small for such a typologically distinct dataset

of languages. Further research might shed light on

whether this behavior is due to linguistic proper-

ties common across languages, or a confound (e.g.

corpus size).

Moreover, discovering meaningful units is of

particular importance to language acquisition

models, such as the ones implemented here. In-

fant word segmentation algorithms are cognitively

plausible only if they are cross-linguistically valid

and offer useful insights to learn all linguistic

structures. It would also be interesting to com-

pare performance of these models to state-of-the-

art NLP algorithms, such as HPYLM (Mochihashi

et al., 2009) or ESA (Chen et al., 2011).

A limitation of this study is that the current im-

plementation of WordSeg does not only look at

oversegmentation cases resulting in meaningful,

morpheme-like sub-parts. A next step would be to

focus on reasonable oversegmentation errors, even

though not all of these corpora have morpheme an-

notations.

Measuring reasonable errors such as overseg-

mentation could shed light on the segmentabil-

ity of morphologically complex languages and the

cross-linguistic applicability of models. Further

research might include over-, but also underseg-

mentation errors, when two or more words in the

input returned as a single unit in the output.
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5.  SegmeQWiQg  ZRUd  aQd  VXb-ZRUd  XQiWV  iQ  aQ  aUWificial  laQgXage            

e[SeUimeQW   *   

      

  

  
AbVWracW:   The  SXUSRVe  Rf  WhLV  VWXd\  LV  WR  LQYeVWLgaWe  VegPeQWaWLRQ  LQ  WZR  PeaQLQgfXO  XQLW  OeYeOV,                 

ZRUdV  aQd  VWePV,  aPRQg  adXOWV  e[SRVed  WR  aQ  aUWLfLcLaO  OaQgXage.  The  VWUXcWXUe  Rf  Whe  OaQgXage  haV                  

SURSeUWLeV  VLPLOaU  WR  WhRVe  Rf  PRVW  QaWXUaO  OaQgXageV;  PeaQLQgfXO  XQLWV  aUe  QRW  RQO\  ZRUdV,  bXW  aOVR                  

VWePV   aQd   affL[eV.   We   aVN   ZheWheU   hXPaQ   adXOWV   caQ   VegPeQW   bRWh   ZRUdV   aQd   VWePV   LQ   WheVe   VeWWLQgV.   

  
  
  
  
  

*LoXkaWoX,  G.  &  CriVWia,  A.  SegmenWing  Zord  and  VXb-Zord  XniWV  in  an  arWificial  langXage                

e[perimenW.   [in   ZriWing]    -    PreregiVWraWion:   hWWpV://oVf.io/fX\dc   
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SegmenWing   ZordV   and   morphemeV   in   an   arWificial   langXage   

  

InWUodXcWion   

HXPaQV  VegPeQW  ZRUd-like  XQiWV  RXW  Rf  cRQWiQXRXV  VWUeaPV  Rf  VSeech  ZheQ  e[SRVed  WR  aUWificial                

laQgXageV.  WRUdV  aUe  iPSRUWaQW  cRPSRQeQWV  Rf  liQgXiVWic  VWUXcWXUe,  bXW  Whe\  aUe  QRW  Whe  RQl\                

PeaQiQgfXl,  UecRPbiQable  XQiWV  iQ  UXQQiQg  VSeech.  IQ  hXPaQ  laQgXageV,  PRUShePeV  aUe  PiQiPal              

PeaQiQgfXl   XQiWV,   aQd   Whe\   alVR   Qeed   WR   be   VegPeQWed   dXUiQg   laQgXage   leaUQiQg.   

  

WRUd  VegPeQWaWiRQ  iV  aQ  iPSRUWaQW  leaUQiQg  WaVk,  ZeUe  ZRUd  bRXQdaUieV  aUe  ideQWified  iQ  cRQWiQXRXV                

VSeech.  AUWificial  laQgXageV  haYe  beeQ  Zidel\  XVed  WR  iQYeVWigaWe  ZRUd  VegPeQWaWiRQ   (e.g.  SaffUaQ  eW                

al.,  1996   aQd  fRllRZ-XS  ZRUk ) .  IW  iV  aVVXPed  WhaW  VRPe  leaUQiQg  PechaQiVPV  aUe  VhaUed  beWZeeQ                 

aUWificial  aQd  QaWXUal  laQgXage  leaUQiQg   (GyPe]  &  GeUkeQ,  2000;  RebeU,  1967) .  WheQ  XVed  aQd                

iQWeUSUeWed  SURSeUl\,  aUWificial  laQgXageV  caQ  helS  RbWaiQ  beWWeU  e[SeUiPeQWal  cRQWURl  RYeU  Whe  iQSXW  WR                

Zhich  leaUQeUV  aUe  e[SRVed   (Fed]echkiQa  eW  al.,  2016;  FRlia  eW  al.,  2010) ,  aQd  iVRlaWe  VSecific  leaUQiQg                  

facWRUV    (Ha\akaZa   eW   al.,   2020) ,   eVSeciall\   fRU   VegPeQWaWiRQ.     

  

The  cXUUeQW  VWaQ daUd  fRU  aUWificial  laQgXage  VWXdieV  RQ  VegPeQWaWiRQ  iV  WR  fRcXV  RQ  ZRUdV  aV  Whe  WaUgeW                   

leYel  Rf  VegPeQWaWiRQ   (e.g.  CXQilleUa  eW  al.,  2010;  EVWeV  &  LeZ-WilliaPV,  2015;  FiQQ  &  HXdVRQ  KaP,                  

2008;  FUaQk  eW  al.,  2013;  JRhQVRQ  &  JXVc]\k,  2001;  KaUX]a  eW  al.,  2013;  KXUXPada  eW  al.,  2013;                   

LeZ-WilliaPV  &  SaffUaQ,  2012;  SaffUaQ  eW  al.,  1997;  ThieVVeQ  &  EUickVRQ,  2013;  T\leU  &  CXWleU,  2009                  

-bXW  Vee  VegPeQWaWiRQ  Rf  PXlWi-ZRUd  XQiWV  b\   SiegelPaQ  &  AUQRQ,  2015 ) .  IQ   PRVW  VWXdieV,  Whe  ZRUdV                  

cRPSRViQg  Whe  aUWificial  laQgXage  haYe  QR  VXb-XQiWV  (VWePV  RU  affi[eV)  WhaW  cRXld  be  fRXQd  ZiWhiQ  RWheU                  

ZRUdV.  PaUWiciSaQWV  VeeP  WR  be  able  WR  VegPeQW  ZRUdV  RXW  Rf  aUWificial  laQgXageV  baVed  RQ  VeYeUal                  

diffeUeQW  cXeV  (WUaQViWiRQa l  SURbabiliWieV  cXeV,   SaffUaQ  eW  al.,  1996 ;  VSeech  cXeV,   JRhQVRQ  &  JXVc]\k,                

2001 ;   PaSSiQg   WR   ZRUd   UefeUeQWV,    CXQilleUa   eW   al.,   2010) .   

  

HRZeYeU,  VRPe  VWXdieV  VXggeVW  WhaW  ZRUd  VegPeQWaWiRQ  iV  QRW  Whe  RQl\  WaVk  SaUWiciSaQWV  dR,  ZheQ                 

e[SRVed   WR  aQ  aUWificial  laQgXage.  The\  caQ  VegPeQW  VSeech,  bXW  alVR  geQeUaliVe  QRQ-adjaceQW               

deSeQdeQcieV   (FURVW  &  MRQaghaQ,  2016) ,  PaS  Whe  ZRUd  fRUPV  WR  ZRUd  UefeUeQWV  ( CXQilleUa  eW  al.,                 

2010 )  RU  leaUQ  Whe  RYeUall  liQgXiVWic  VWUXcWXUe  ( SiegelPaQ  &  AUQRQ,  2015 ).  MRUeRYeU,  SURSeUWieV               

UelaWed  WR  liQgXiVWic  VWUXcWXUe,  VXch  aV  QRQ-adjaceQW  deSeQdeQcieV  aQd  Whe  QXPbeU  Rf  diffeUeQW  ZRUdV                

VeeP   WR   affecW   VegPeQWaWiRQ    (FUaQk   eW   al.,   2010;   FURVW   &   MRQaghaQ,   2016) .   
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TheUe  haV  beeQ  aQ  effRUW  WR  iQYeVWigaWe  ZRUd  VegPeQWaWiRQ  iQ  aUWificial  laQgXage V  ZiWh  VWUXcWXUeV  WhaW                 

UeVePble  PRUe  WhRVe  Rf  QaWXUal  laQgXageV  (e.g.  YaUiable  ZRUd  leQgWh  aQd  fUeTXeQc\, FUaQk  eW  al.,  2010;                  

HRch  eW  al.,  2013;  JRhQVRQ  &  T\leU,  2010;  KXUXPada  eW  al.,  2013;  SchXleU  eW  al.,  2017) .   The  fiQdiQgV                    

VXggeVW  WhaW  ZRUd  VegPeQWaWiRQ  caQ  iQdeed  be  affecWed  b\  PRUShRlRgical  feaWXUeV.  OQe  feaWXUe  WhaW                

Pa\  alVR  affecW  VegPeQWaWiRQ,  iV  Whe  e[iVWeQce  Rf  affi[eV  WhaW  caQQRW  VWaQd  alRQe.  MaQ\  QaWXUal                 

laQgXageV  haYe  WhiV  --  iQ  facW,  EQgliVh  dReV  haYe  a  feZ  affi[eV  WhaW  caQQRW  VWaQd  alRQe,  VXch  aV  "V"  iQ                      

"VWaQdV".  ThiV  cURVV-liQgXiVWicall\  fUeTXeQW  feaWXUe,  cRXld  alVR  be  caSWXUed  b\  aUWificial  laQgXageV,  aQd               

diVcRYeUed  b\  liVWeQeUV  ZheQ  VegPeQWiQg  PeaQiQgfXl  XQiWV.  HRZeYeU,  Ze  aUe  XQaZaUe  Rf  a  VWXd\                

VSecificall\   WeVWiQg   ZheWheU   liVWeQeUV   dR   VegPeQW   RXW   VWePV   VeSaUaWel\   fURP   affi[eV.   

  

PUeYiRXV  liWeUaWXUe  RQ  PRUShePe  leaUQiQg  iV  PRVWl\  baVed  RQ  behaYiRXUal  VWXdieV  QRW  UelaWed  WR                

VegPe QWaWiRQ.  SeYeUal  VWXdieV  VhRZ  WhaW  bRWh  adXlWV  aQd  childUeQ  caQ  SaUVe  QRQ-ZRUdV  cRQWaiQiQg  bRWh                

VWePV  aQd  VXffi[eV   (Fed]echkiQa  eW  al.,  2012;  FiQle\  &  NeZSRUW,  2011;  FiQle\  &  WiePeUV,  2013;                 

HXdVRQ  KaP  &  NeZSRUW,  2009) .  SchRRl-aged  childUeQ   (FiQle\  &  NeZSRUW,  2011)  aQd  adXlWV   (FiQle\                

&  NeZSRUW,  2010)  XVed  diVWUibXWiRQal  iQfRUPaWiRQ  ZiWhiQ  ZRUdV  WR  VegPeQW  WheP  iQWR  VWePV  aQd                

VXffi[eV.  IW  ZaV  VXggeVWed  WhaW  Whe  SaUWiciSaQWV  iQfeUUed  a  SaWWeUQ  ZiWhiQ  ZRUdV,  aQd  did  QRW  ViPSl\                  

PePRUi]e  ZhRle  ZRUdV.  EYeQ  12-PRQWh-Rld  childUeQ  cRXld  diVWiQgXiVh  beWZeeQ  gUaPPaWical  aQd             

XQgUaPPaWical  VeTXeQceV  afWeU  e[SRVXUe  WR  aQ  aUWificial  laQgXage   (GRPe]  &  GeUkeQ,  1999) ,  Zhich               

VXSSRUWV  a  PRUe  geQeUal  SaWWeUQ-baVed  abVWUacWiRQ  iQ  aUWificial  laQgXage  leaUQiQg   (R.  GRPe]  eW  al.,                

2000;  MaUcXV,  1999) .  All  Rf  WhiV  ZRUk  VWURQgl\  VXggeVWV  SaUWiciSaQWV  aUe  aQal\]iQg  Whe  ZRUdV  Whe\  aUe                  

e[SRVed  WR,  bXW  Whe\  Pa\  QRW  be  VegPe QWiQg  iWePV  RXW  VSecificall\  (fRU  iQVWaQce,  Whe\  Pa\  iQVWead                  

calcXlaWe   diVWaQceV   ZiWh   kQRZQ   WRkeQV,   UaWheU   WhaQ   e[WUacWiQg   Whe   SaUWV).   

  

IW  VWaQdV  WR  UeaVRQ  WhaW  leaUQeUV   do   VegPeQW  PRUShePeV.  MRUShePeV,  like  ZRUdV,  aUe  bXildiQg  blRckV                 

Rf  laQgXage  aQd  Whe  abiliW\  WR  e[WUacW  WheP  iV  fXQdaPeQWal.  NRQeWheleVV,  iW  iV  VWill  XQcleaU  ZheWheU                  

hXPaQV  fiUVW  fRcXV  RQ  biggeU  (ZRUdV)  RU  VPalleU  (VWePV  aQd  affi[eV  --  heQcefRUWh  "PRUShePeV")                

blRckV,  RU  ZheWheU  Whe\  SURceVV  bRWh  leYelV  iQ  a  cRPSlePeQWaU\  Za\.  FRU  iQVWaQce,  iQfaQWV  VWaUW                 

VegPeQWiQg  ZRUd-like  XQiWV  iQWR  a  le[icRQ  b\  Whe  age  Rf  6-8  PRQWhV   (BeUgelVRQ  &  SZiQgle\,  2013) ,                  

bXW  Whe\  alVR  VeeP  WR  UecRgQi]e  PRUShePeV  eaUl\  RQ  iQ  VSeech,  iQ  e[SeUiPeQWal  VeWWiQgV.  FRU  e[aPSle,                  

childUeQ  leaUQiQg  FUeQch  caQ  SaUVe  YeUbV  iQWR  VWePV  aQd  VXffi[eV  b\  11  PRQWhV  Rf  age   (MaUTXiV  &  Shi,                    

2015)  aQd  childUeQ  leaUQiQg  EQgliVh  VegPeQW  VXffi[eV  aW  15  PRQWhV  Rf  age  ( MiQW],  2013 ,  Vee  alVR                  

GRPe]  &  GeUkeQ,  1999;   MiQW]  eW  al.,  2002 ).  ChildUeQ  leaUQiQg  HXQgaUiaQ,  aQ  agglXWiQaWiYe  laQgXage                

ZiWh  Uich  PRUShRlRg\,  caQ  decRPSRVe  QeZ  ZRUdV  iQWR  VWePV  aQd  VXffi[eV  b\  15  PRQWhV  Rf  age                  

(LadiQ\i  eW  al.,  2020) .  Th RVe  aXWhRUV  aUgXe  fRU  Whe  UeleYaQce  WR  fRcXV  RQ  PRUShePeV  iQ  eaUl\  laQgXage                   
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leaUQiQg,  aQd  VXggeVW  WhaW  Whe  e[iVWeQce  Rf  a  laUge  QXPbeU  Rf  PRUShePeV  iQ  a  laQgXage  Pa\  eYeQ                   

WUiggeU   a   PRUe   aQal\Wic   SURceVViQg.     

  

DeVSiWe  Whe  ZealWh  Rf  eYideQce  WhaW  PRUShePeV  Pa\  alVR  be  Ueadil\  VegPeQWed,  QR  SUeYiRXV  VWXd\  haV                  

lRRked  aW  bRWh  ZRUd  aQd  PRUShePe  VegPeQWaWiRQ,  eYeQ  WhRXgh  Whe  afRUePeQWiRQed  liWeUaWXUe  VWURQgl\               

VXggeVWV  WhaW  hXPaQV  VhRXld  SURceVV  bRWh  ZRUdV  aQd  PRUShePeV  iQ  laQgXage  leaUQiQg.  CRQVeTXeQWl\,               

iW  iV  VWill  XQcleaU  ZheWheU  hXPaQV  caQ  VegPeQW  PRUShePeV  RXW  Rf  UXQQiQg  VSeech  iQ  aQ  aUWificial                  

laQgXage,  aQd  ZheWheU,  if  e[SRVed  WR  a  laQgXage  ZiWh  bRWh  ZRUdV  aQd  PRUShePeV,  Whe\  ZRXld  VXcceed                  

beWWeU   iQ   VegPeQWiQg   RQe   RU   Whe   RWheU.   

ThiV   VWXd\   

  

The  SXUSRVe  Rf  WhiV  VWXd\  iV  WR  iQYeVWigaWe  VegPeQWaWiRQ  iQ  WZR  PeaQiQgfXl  XQiW  leYelV,  ZRUdV  aQd                  

VWePV,  aPRQg  adXlWV  e[SRVed  WR  aQ  aUWificial  laQgXage.  The  VWUXcWXUe  Rf  Whe  laQgXage  haV  SURSeUWieV                 

ViPilaU  WR  WhRVe  Rf  PRVW  QaWXUal  laQgXageV;  PeaQiQgfXl  XQiWV  aUe  QRW  RQl\  ZRUdV,  bXW  alVR  VWePV  aQd                   

affi[eV  (Zhich  Ze  Zill  call  "PRUShePeV"  heUe).  We  caQ  WheQ  aVk  ZheWheU  hXPaQ  adXlWV  caQ  VegPeQW                  

bRWh  ZRUdV  aQd  VWePV  iQ  WheVe  VeWWiQgV.  The  VWXd\  iV  SUeUegiVWeUed  iQ   hWWSV://RVf.iR/fX\dc .  We  QRWe  WhaW                  

dXe  WR  Whe  COVID-19  cUiViV,  Ze  ZeUe  XQable  WR  cRPSleWe  Whe  VWXd\.  TheUefRUe,  Ze  UeSRUW  fXll\  RQ  Whe                   

deVigQ   aQd   SlaQQed   aQal\VeV,   bXW   RQl\   UeSRUW   UeVXlWV   fRU   WZR   SilRWV.   

  

ThUee   ke\   TXeVWiRQV   Zill   be   addUeVVed   iQ   WhiV   VWXd\:   

1. CaQ  SaUWiciSaQWV  VegPeQW  RXW  ZhRle  ZRUdV  iQ  a  laQgXage  ZheUe  WheUe  aUe  affi[eV?  If                

SaUWiciSaQWV  caQ  VegPeQW  RXW  ZRUdV,  WheQ  Whe\  Zill  chRRVe  ZRUdV  PRUe  WhaQ  QRQ-ZRUdV  --                

iWePV  WhaW  aUe  QRW  VWUXcWXUall\  ZRUdV  RU  PRUShePeV.  If  WheUe  iV  QR  SUefeUeQce  beWZeeQ  Whe  WZR,                  

WhiV   ZRXld   PeaQ   WhaW   SaUWiciSaQWV   dR   QRW   VegPeQW   RXW   ZRUdV.   

2. CaQ  SaUWiciSaQWV  VegPeQW  RXW  VWePV  iQ  a  laQgXage  ZheUe  WheUe  aUe  affi[eV?  If  SaUWiciSaQWV  caQ                 

VegPeQW  RXW  VWePV,  WheQ  Whe\  Zill  chRRVe  VWePV  PRUe  WhaQ  QRQ-VWePV  --  iWePV  WhaW  aUe  QRW                  

VWUXcWXUall\  ZRUdV  RU  PRUShePeV.  If  WheUe  iV  QR  SUefeUeQce  beWZeeQ  Whe  WZR,  WhiV  ZRXld  PeaQ                 

WhaW   SaUWiciSaQWV   dR   QRW   VegPeQW   RXW   PRUShePeV.   

3. Which  XQiWV,  ZRUdV  RU  PRUShePeV,  aUe  beWWeU  VegPeQWed?  If  SaUWiciSaQWV  VegPeQW  ZRUdV  beWWeU               

WhaQ  VWePV,  WheUe  Zill  be  a  diffeUeQce  iQ  Whe  WZR  WeVWV  abRYe  iQ  WeUPV  Rf  SUefeUeQce:  The\  Zill                    

SUefeU   ZRUdV   WR   QRQ-ZRUdV   PRUe   WhaQ   Whe\   SUefeU   VWePV   WR   QRQ-VWePV.   
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PUedicWionV   

The   SUedicWiRQV   Rf   Whe   WhUee   ke\   TXeVWiRQV   aUe   Whe   fRllRZiQg:   

1. We  SUedicW  WhaW   SaUWiciSaQWV  Zill  VegPeQW  RXW  ZRUdV  iQ  a  laQgXage  ZheUe  ZRUdV  aUe  cRPSRVed                 

Rf  PRUShePeV.   ThiV  iV  SUedicWed,  becaXVe  iQ  SUeYiRXV  aUWificial  laQgXage  VWXdieV  ZRUd             

VegPeQWaWiRQ   haV   beeQ   VXcceVVfXl   iQ   RWheU   laQgXageV.   

2. We  SUedicW  WhaW   SaUWiciSaQWV  Zill  VegPeQW  RXW  VWePV  iQ  a  laQgXage  ZheUe  ZRUdV  aUe  cRPSRVed                 

Rf  PRUShePeV.   TheUe  aUe  QR  SUeYiRXV  VWXdieV  RQ  PRUShePe  VegPeQWaWiRQ  Rf  aQ  aUWificial               

laQgXage.   ThiV  SUedicWiRQ  iV  baVed  RQ  SUeYiRXV  fiQdiQgV  VhRZiQg  WhaW  hXPaQV  aUe  VeQViWiYe  WR                

PRUShRlRgical  SURSeUWieV,  iQ  aUWificial  aQd  QaWXUal  laQgXage  VeWWiQgV  (e.g.  laQgXage           

acTXiViWiRQ).   

3. We  SUedicW  WhaW   SaUWiciSaQWV  Zill  VegPeQW  eTXall\  Zell  VWePV  aQd  ZRUdV.  NR  SUeYiRXV  VWXdieV                

haYe  lRRked  aW  VegPeQWaWiRQ  Rf  bRWh  ZRUdV  aQd  PRUShePeV.  ThiV  SUedicWiRQ  iV  baVed  RQ                

SUeYiRXV  fiQdiQgV  WhaW  hXPaQV  caQ  Uel\  RQ  VeYeUal  aYailable  cXeV  WR  XQdeUVWaQd  a  laQgXage,                

VRPeWiPeV   SeUfRUPiQg   PRUe   WhaQ   RQe   WaVk   aW   Whe   VaPe   WiPe.     

  

MeWhodV   

PaUWiciSaQWV  Zill  heaU  VeQWeQceV  Rf  aQ  aUWificial  laQgXage,  ZheUe  ZRUdV  cRQWaiQ  PRUe  WhaQ  RQe                

PRUShePe.  TheiU  SUefeUeQce  fRU  ZRUdV  YeUVXV  QRQ-ZRUdV  aQd  fRU  VWePV  YeUVXV  QRQ-VWePV  Zill  WheQ  be                 

PeaVXUed.   All   PaWeUialV   aQd   VcUiSWV   caQ   be   fRXQd   iQ   OSF   LINK.   

  

BXilding   Whe   langXage   

Each  SaUWiciSaQW  iV  aVVigQed  WR  RQe  Rf  fRXU  aUWificial  laQgXageV,  A,  B,  C  RU  D.  The  laQgXageV  ZeUe                    

geQeUaWed  XViQg  diffeUeQW  RUdeUV  Rf  V\llable  cRQcaWeQaWiRQ,  iQ  RUdeU  WR  cRQWURl  fRU  aQ\  effecWV  WhaW  cRXld                  

UeVXlW  fURP  a  VSecific  cRQcaWeQaWiRQ.  A  cRXQWeUbalaQciQg  SURcedXUe  ZaV  XVed  WR  cUeaWe  Whe  laQgXageV.                

LaQgXage  A  ZaV  geQeUaWed  ZiWh  UaQdRP  cRQcaWeQaWiRQ  Rf  eighWeeQ  V\llableV.  The  V\llableV  ZeUe               

"glX",  "ViQ",  "ga",  "kli",  "WeQ",  "kR",  "blX",  "WXQ",  "PaQ",  "blR",  "Wi",  "gle"  ,"da",  "SXQ",  "gR",  "kaQ",                  

"feQ"  aQd  "bi",  aQd  ZeUe  chRVeQ  VR  WhaW  QR  V\llable  iV  a  ZRUd  iQ  FUeQch.  The  fiUVW  fiYe  V\llableV  ZeUe                      

XVed  WR  cUeaWe  WhUee  QRXQ  VWePV,  Whe  Qe[W  fiYe  V\llableV  ZeUe  XVed  WR  cUeaWe  WhUee  YeUb  VWePV,  aQd  Whe                    

fRllRZiQg  V\llableV  ZeUe  XVed  fRU  Whe  RSWiRQal  elePeQWV,  Whe  QRXQ  aQd  YeUb  ViQgXlaU  aQd  SlXUal  affi[eV                  

aQd   Whe   aVSecW   affi[eV.   Each   V\llable   ZRXld   haYe   RQl\   RQe   XVe   iQ   Whe   YRcabXlaU\.     
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LaQgXage  B  ZaV  geQeUaWed  b\  iQYeUWiQg  Whe  RUdeU  Rf  Whe  V\llableV  (fRU  e[aPSle,  Whe  laVW  V\llable  ³bi´                   

ZRXld  gR  fiUVW,  Whe  VecRQd-WR-laVW  V\llable  ³feQ´  ZRXld  gR  VecRQd).  LaQgXage  C  ZaV  cUeaWed  b\                 

iQYeUWiQg  Whe  RUdeU  Rf  V\llableV  fURP  Whe  Piddle  WR  Whe  begiQQiQg,  aQd  WheQ  fURP  Whe  eQd  WR  Whe  Piddle                     

(fRU  e[aPSle,  Whe  V\llable  ³blR´  ZRXld  gR  fiUVW,  Whe  V\llable  ³PaQ´  VecRQd,  Whe  V\llable  ³Wi´  laVW).                  

LaQgXage  D  ZaV  cUeaWed  b\  VWaUWiQg  fURP  Whe  Piddle  WR  Whe  eQd,  aQd  WheQ  fURP  Whe  begiQQiQg  WR  Whe                     

Piddle   (fRU   e[aPSle,   ³blR´   ZRXld   gR   fiUVW,   ³Wi´   ZRXld   gR   VecRQd,   ³PaQ´   laVW).   

  

The  We[W  ZaV  cRQYeUWed  WR  VSeech  XViQg  Whe  Pac  SSeech  S\QWheViV  WRRl.  SSecificall\,  Whe  Me[icaQ                 

YRice  ZaV  XVed  becaXVe  Whe  YRice  haV  a  flaW  SURVRd\,  aQd  iQ  RUdeU  WR  aYRid  accideQWal  iQVeUWiRQ  Rf                    

SURVRdic   cXeV   iQ   a   laQgXage   Whe   SaUWiciSaQWV   Pa\   be   e[SRVed   WR.   The   VSeed   Rf   VSeech   ZaV   fi[ed   WR   140.   

TUaining   

The  aXdiWRU\  VWiPXli  aUe  SUeVeQWed  aV  XWWeUaQceV  ZiWh  cleaUl\  PaUked  XWWeUaQce  bRXQdaUieV,  aV  cXed                

bRWh  b\  VileQce  aQd  Whe  eQd  Rf  a  VceQe).  WRUdV  aQd  PRUShePeV  haYe  PeaQiQgV.  IQ  RUdeU  WR  XQdeUliQe                    

Whe  e[iVWeQce  Rf  PRUShePeV  iQ  Whe  laQgXage,  PRUShePeV  haYe  PeaQiQgV.  The  SaUWiciSaQW  liVWeQV  WR  a                 

VeQWeQce  Zhile  ZaWchiQg  a  YideR  SRUWUa\iQg  Whe  acWiRQ  deVcUibed  iQ  Whe  VeQWeQce.  FRU  e[aPSle,  if  a                  

VeQWeQce  cRQWaiQV  a  µdRg¶  QRXQ  VWeP,  aQd  a  µZalk¶  YeUb  VWeP,  Whe  YideR  ZRXld  VhRZ  a  dRg  ZalkiQg.                    

The  QRXQ  VWeP  iV  fRllRZed  b\  a  QXPbeU  VXffi[,  aQd  Whe  YideR  VhRZV  RQe  RU  WZR  dRgV.  The  YeUb  VWeP  iV                       

fRllRZed  b\  aQ  aVSecW  VXffi[,  aQd  Whe  YideR  VhRZV  a  dRg  ZalkiQg  cRQWiQXRXVl\  RU  RQce.  PaUWiciSaQWV                  

aUe  QRW  giYeQ  Whe  VeQWeQce  iQ  ZUiWiQg,  QRU  aQ\  bUeakdRZQ  Rf  Whe  VWePV  YeUVXV  VXffi[eV,  QRU  Rf  Whe                    

cRQceSWXal   PRUShePeV   jXVW   PeQWiRQed.     

  

The  VWUXcWXUe  Rf  each  VeQWeQce  iV  SRUWUa\ed  iQ  FigXUe  1.  SceQeV  Rf  Whe  YideRV  aUe  SicWXUed  iQ  FigXUe  2.                     

Each  VeQWeQce  cRQViVWV  Rf  a  QRXQ  VWeP  ZiWh  iWV  QXPbeU  affi[  aQd  Rf  a  YeUb  VWeP  ZiWh  aQ  aVSecW  affi[                      

aQd  a  QXPbeU  affi[  (QRW  Whe  VaPe  RQe  aV  fRU  Whe  QRXQ).  The  VeQWeQce  caQ  haYe  RQe   RSWiRQal  elePeQW                     

(akiQ  WR  aQ  adYeUb  becaXVe  iW  caQ  RccXU  aW  Whe  begiQQiQg  RU  Whe  eQd,  bXW  haYiQg  QR  PeaQiQg) .   The                     

WUaiQiQg  ShaVe  cRQWaiQV  iQ  WRWal  96  VeQWeQceV.   The  cRQWeQW  Rf  Whe  VeQWeQceV  iV  bXilW  WR  allRZ  fRU  ceUWaiQ                    

UeTXiUePeQWV   WR   be   UeVSecWed   dXUiQg   Whe   WeVW   ShaVe.     
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OQe  UeTXiUePeQW  iV  haYiQg  Whe  VaPe  VXP  Rf  WUaQViWiRQal  SURbabiliWieV  (TPV)  beWZeeQ  V\llableV  fRU  bRWh                 

iWePV  iQ  a  WeVW  WUial.  SWaWiVWical  leaUQiQg  XViQg  TPV  iV  a  SUiPaU\  VRXUce  Rf  eYideQce  fRU  VegPeQWaWiRQ  iQ                    

labRUaWRU\  e[SeUiPeQWV  fRU  iQfaQWV   (EVWeV  &  LeZ-WilliaPV,  2015;  R.  L.  GRPe],  2012;  PelXcchi  eW  al.,                 

2009;  RRPbeUg  &  SaffUaQ,  2010)  aQd  adXlWV   (FUaQk  eW  al.,  2010;  PeUUXcheW  &  DeVaXlW\,  2008;  TRUR  eW                   

al.,   2005) .   IQ   WhRVe   VWXdieV,   SaUWiciSaQWV   VegPeQW   RXW   ZRUdV   baVed   RQ   TPV.     

  

HRZeYeU,  ViQce  iQ  WhiV  e[SeUiPeQW  Ze  dR  QRW  WeVW  Whe  Zell-eVWabliVhed  XVe  Rf  TPV  iQ  VegPeQWaWiRQ,  Whe                   

TP  iQfRUPaWiRQ  VhRXld  be  cRQWURlled  fRU  iQ  Whe  WeVW.  TR  WhiV  eQd,  Ze  adjXVWed  Whe  cRPbiQaWiRQ  Rf  VWePV                    

aQd  affi[eV  dXUiQg  WUaiQiQg.  SWePV  haYe  TP=1.  WheQ  cRPSaUiQg  a  VWeP  WR  a  QRQ-VWeP,  VRPe                 

PeaQiQgleVV  SaiU  Rf  V\llableV  aSSeaUiQg  Qe[W  WR  each  RWheU  VhRXld  alVR  haYe  TP=1.  ThiV  haSSeQV  b\                  

SUeVeQWiQg  VRPe  YeUb  VWeP  ZiWh  Whe  VaPe  aVSecW  affi[.  FRU  e[aPSle,  Whe  QRXQ  VWeP  (µdRg¶)  aSSeaUV                  

V\VWePaWicall\  iQ  ViQgXlaU,  aQd  Whe  QRXQ  VWeP  (µVheeS¶)  aSSeaUV  V\VWePaWicall\  iQ  SlXUal.  SiPilaUl\,  Whe                

YeUb  VWeP  (µfliS¶)  aSSeaUV  V\VWePaWicall\  ZiWh  a  QRQ-SURgUeVViYe  affi[,  aQd  Whe  YeUb  (µjXPS¶)  ZiWh  a                 

SURgUeVViYe  affi[.  FRU  WheVe  WZR  QRXQ  aQd  YeUb  VWePV,  TP  beWZeeQ  VWeP  aQd  affi[  eTXalV  1.  The  QRXQ                    

(µcaW¶)  aQd  YeUb  (µZalk¶)  aSSeaU  ZiWh  all  cRPbiQaWiRQV  Rf  affi[eV  aQd  iQ  Whe  VaPe  QXPbeU  Rf  WiPeV  fRU                    

each  affi[.  FRU  WheP,  TP  beWZeeQ  VWeP  aQd  affi[  eTXalV  0.5.  The  aYeUage  TP  beWZeeQ  a  QRXQ  affi[  fRU                     

QXPbeU   aQd   Whe   fiUVW   V\llable   Rf   a   YeUb   VWeP   iV   0.33.   
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TeVWing   

IQ  WRWal,  Whe  WeVW  ShaVe  cRQViVWV  Rf  30  SaiUed-fRUced-chRice  WUialV.  VideRV  aUe  QRW  VhRZQ  dXUiQg  Whe  WeVW                   

ShaVe,  aQd  VWiPXli  aUe  SUeVeQWed  SXUel\  aXdiWRUil\.  FRXUWeeQ  WUialV  haYe  ZRUd  aQd  QRQ-ZRUd  SaiUV  (Vi[                 

QRXQV  YeUVXV  QRQ-QRXQV  +  eighW  YeUbV  YeUVXV  QRQ-YeUbV).  Si[WeeQ  WUialV  haYe  VWeP  aQd  QRQ-VWeP  SaiUV                 

(eighW  QRXQ  VWePV  YeUVXV  QRQ-QRXQ  VWePV  +  eighW  YeUb  VWePV  YeUVXV  QRQ-YeUb  VWePV).  A  QRXQ  ZRUd  iV                   

a  QRXQ  VWeP  ZiWh  aQ  affi[  iQdicaWiQg  QXPbeU.  A  YeUb  ZRUd  iV  a  YeUb  VWeP  ZiWh  aQ  affi[  iQdicaWiQg                     

aVSecW   aQd   aQ   affi[   iQdicaWiQg   QXPbeU.   SWePV   aUe   SUeVeQWed   baUe.     

  

OQce  Whe  faPiliaUi]aWiRQ  SeUiRd  iV  RYeU,  SaUWiciSaQWV  aUe  aVked  Whe  fRllRZiQg:  µVRXV  alle]  PaiQWeQaQW                

eQWeQdUe  2  VRQV.  QXel  VRQ  UeVVePble  le  SlXV  j  la  laQgXe  TXe  YRXV  YeQe]  d'eQWeQdUe?  Ne  UpflpchiVVe]                   

SaV  WURS  eW  alle]-\  aYec  YRWUe  iQVWiQcW!"  (³YRX  aUe  QRZ  gRiQg  WR  heaU  WZR  VRXQdV,  Zhich  RQe  VRXQdV                   

beWWeU  fRU  Whe  laQgXage  \RX  jXVW  heaUd?  DRQ¶W  RYeUWhiQk  iW  aQd  fRllRZ  \RXU  gXW´).  The\  WheQ  Qeed  WR                    

SUeVV  a  bXWWRQ  afWeU  heaUiQg  each  WUial:  Whe  lefW  bXWWRQ  if  Whe\  WhiQk  WhaW  Whe  fiUVW  iWeP  ZRUkV  beWWeU,  RU                      

Whe   UighW   bXWWRQ   fRU   Whe   VecRQd   VRXQd.     

AW  each  WUial,  Whe  SaUWiciSaQW  heaUV  a  cRUUecW  aQd  a  falVe  VWiPXlXV.  SeYeUal  cRQdiWiRQV  aUe  UeVSecWed                  

dXUiQg  Whe  WeVW.  Each  WeVW  iWeP  haV  aW  leaVW  2  V\llableV,  WR  aYRid  PiVViQg  RU  PiVheaUiQg  a  (YeU\  VhRUW)                     

VRXQd.  BRWh  iWePV  haYe  Whe  VaPe  leQgWh,  bXW  alVR  UeVXlW  iQ  Whe  VaPe  VXP  Rf  (fRUZaUd)  TUaQViWiRQal                   

PURbabiliWieV,  aQd  haYe  Whe  VaPe  fUeTXeQc\  (RU,  UaUel\,  Whe  iQcRUUecW  RSWiRQ  haV  a  laUgeU  fUeTXeQc\  WhaQ                  

Whe  cRUUecW  RSWiRQ).  ThiV  Za\,  QR  RWheU  cXe  cRXld  affecW  Whe  SUefeUeQce  Rf  RQe  YeUVXV  Whe  RWheU  iWeP,                    

RWheU   WhaQ   Whe   SUefeUeQce   fRU   a   PeaQiQgfXl   YeUVXV   a   PeaQiQgleVV   XQiW.     

  

PaUWicipanWV   

PaUWiciSaQWV  VhRXld  be  aW  leaVW  18  \eaUV  Rld,  ZiWh  FUeQch  aV  WheiU  QaWiYe  laQgXage.  The  e[SeUiPeQW  laVWV                   

20  PiQXWeV  aQd  Whe\  Zill  be  Said  fRU  SaUWiciSaWiRQ.  The  VWXd\  ZaV  iQiWiall\  deVigQed  WR  be  WeVWed  iQ  Whe                     

lab,  hRZeYeU,  dXe  WR  Whe  cXUUeQW  VaQiWaU\  ViWXaWiRQ,  iW  Zill  be  XSdaWed  fRU  RQliQe  WeVWiQg.  OXU  WaUgeW  Vi]e                    

iV  52  SaUWiciSaQWV.  We  eVWiPaWed  WhaW  WhiV  ZRXld  be  a  VXfficieQW  QXPbeU  Rf  SaUWiciSaQWV,  giYeQ  WhaW                  

SUeYiRXV  ViPilaU  VWXdieV  XV iQg  aUWificial  laQgXage  VegPeQWaWiRQ  e[SeUiPeQWV  ZiWh  adXlWV  fRXQd  aQd              

aYeUage  effecW  Vi]e  Rf  0.46   (CXQilleUa  eW  al.,  2010;  FURVW  &  MRQaghaQ,  2016;  HRch  eW  al.,  2013;                   

PeUUXcheW  &  DeVaXlW\,  2008;  TRUR  eW  al.,  2005;  T\leU  &  CXWleU,  2009) .  Eligible  fRU  iQclXViRQ  aUe  all                   

VXbjecWV  ZhR  cRPSleWe  Whe  e[SeUiPeQW  (PeaQiQg  WhaW  Whe\  aQVZeU  all  WeVW  TXeVWiRQV)  aQd  aUe  QRW                 

iQWeUUXSWed  b\  aQ  e[WeUQal  facWRU  ( fRU  e[aPSle  VRPeRQe  eQWeUV  Whe  URRP)  dXUiQg  Whe  e[SeUiPeQW.  IQ  Whe                  
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RQliQe  YeUViRQ  Rf  Whe  e[SeUiPeQW,  a  WeVW  fRU  aWWeQWiRQ  Zill  be  iQclXded.  OXWlieUV  Zill  QRW  be  e[clXded  iQ                    

Whe   aQal\ViV.     

SWaWiVWical   Anal\ViV   

FRU  Whe  aQal\ViV,  Ze  Zill  fiW  a  geQeUali]ed  liQeaU  Pi[ed  effecW  PRdel  XViQg  Whe  lPe4  libUaU\  iQ  R (R                    1

VWXdiR  WeaP,  2015).  The  SaUWiciSaQWV¶  aQVZeUV  (cRUUecW/ZURQg)  aUe  Whe  deSeQdeQW  YaUiable,  Whe  leYel               

(VWeP/ZRUd)  aQd  QXPbeU  Rf  WUial  (1VW,  2Qd«)  aUe  fi[ed  YaUiableV.  The  UaQdRP  effecW  Rf  Whe  SaUWiciSaQW                  

iV   iQclXded,   ZiWh   leYel   aQd   QXPbeU   Rf   WUial   aV   UaQdRP   VlRSeV.     

ReVXlWV   

PUiRU  WR  Whe  RQVeW  Rf  Whe  COVID-19  cUiViV,  WZR  SilRW  VWXdieV  ZeUe  cRQdXcWed,  each  ZiWh  eleYeQ                  

SaUWiciSaQWV.  The  fiUVW  SilRW  iQdicaWed  WhUee  iVVXeV  ZiWh  Whe  VWXd\.  FiUVW,  PaQ\  SaUWiciSaQWV  UeSRUWed  WhaW                 

Whe  VXcceVViYe  SUeVeQWaWiRQ  Rf  ViPilaU  VRXQdV  dXUiQg  Whe  WeVW  ShaVe  ZaV  diVWUacWiQg.  SecRQd,  VRPe                

SaUWiciSaQWV  felW  WhaW  Whe  faPiliaUi]aWiRQ  SeUiRd  ZaV  WRR  lRQg.  ThiUd,  VRPe  SaUWiciSaQWV  did  QRW  QRWice  a                  

diffeUeQce  iQ  YeUb  aVSecW  iQ  Whe  YideRV,  e.g.  Whe\  cRQVideUed  Whe  µZalk¶  aQd  µZalkiQg¶  YideRV  aV                  

deVcUibiQg  Whe  e[acW  VaPe  acWiRQ.  We  addUeVVed  all  iVVXeV  iQ  a  VecRQd  SilRW.  The  UeSeWiWiRQ  Rf  Whe  VaPe                    

VWiPXlXV  RU  Rf  a  VWiPXlXV  ZiWh  Whe  VaPe  VWePV  iV  QRZ  aYRided  iQ   successive  trials.  A  message  to  the                     

participant  appears  in  the  screen  after  completing  25%,  50%  and  75%  of  the  training,  congratulating  them                  

for  completing  the  corresponding  part  of  the  stud\.  The  duration  of  the  action  in  the  videos  with                   

progressive  actions  was  increased.  However,  the  latter  effect  persisted  for  some  participants  in  the  second                 

pilot,   so   we   have   now   added   a   "narrator"   figure   next   to   the   videos.     

  

We  SUeVeQW  Qe[W  aQ  aQal\ViV  Rf  Whe  TXaQWiWaWiYe  UeVXlWV  Rf  Whe  VecRQd  SilRW.  FigXUe  1  aQd  2  VhRZ  Whe                     

diVWUibXWiRQ  Rf  cRUUecW  aQd  ZURQg  aQVZeUV  fRU  Whe  WZR  leYelV  (ZRUd  aQd  VWeP).  ViVXaliVaWiRQ  Rf  Whe                  

UeVXlWV  VhRZV  WhaW  WheUe  ZeUe  PRUe  cRUUecW  WhaQ  ZURQg  aQVZeUV  fRU  bRWh  leYelV.   WiWh  UeVSecW  WR  Whe                   

WhUee   ke\   TXeVWiRQV,   Ze   RbVeUYe   WhaW:     

1. BaVed  RQ  Whe  iQWeUceSW  iQ  a  UegUeVViRQ  ZiWh  Whe  ZRUd  leYel  aV  baVeliQe,  Whe  ZRUd  WUial                  

cRefficieQW  iV  0.83  (SE=0.436,  S-YalXe=0.057).  ThXV,  UecRgQiWiRQ  Rf  ZRUdV  iV  PaUgiQall\             

VigQificaQW   iQ   WhiV   SilRW.   

2. BaVed  RQ  Whe  iQWeUceSW  Rf  a  UegUeVViRQ  ZiWh  Whe  VWeP  leYel  aV  baVeliQe,  Whe  VWeP  WUial  cRefficieQW                   

iV  0.633  (SE=0.342,  S-YalXe=0.064).  ThXV,  UecRgQiWiRQ  Rf  VWePV  iV  PaUgiQall\  VigQificaQW  iQ              

WhiV   SilRW.   

1   glmer(formula=   thisresplog   a     level   +   numberoftrial   +(1   +   level+   numberoftrial_uniqueid),    control   
=   glmerControl(optimi]er   =   "bob\qa"),   famil\   =   binomial(link   =   "logit"),    data   =   pilot_long_log)   
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3. BaVed  RQ  Whe  leYel  aV  a  fi[ed  effecW  iQ  a  UegUeVViRQ  ZiWh  Whe  VWeP  leYel  aV  baVeliQe,  Whe                    

cRefficieQW  fRU  leYel  iV  0.197  (SE=0.261,  S-YalXe=0.451).  ThXV,  UecRgQiWiRQ  Rf  ZRUdV  YeUVXV              

VWePV  iV  QRW  VigQificaQWl\  diffeUeQW  iQ  WhiV  SilRW.  The  WUeQd  iV  fRU  PRUe  accXUaWe  UeVSRQVeV  fRU                  

ZRUd   WUialV   WhaQ   VWeP   WUialV.   

  

  

  

  

  

IQ  a  fXUWheU  e[SlRUaWRU\  aQal\ViV,  Ze  aVk  ZheWheU  WheUe  iV  a  diffeUeQce  iQ  VegPeQWaWiRQ  beWZeeQ  YeUbV                  

aQd  QRXQV.  VeUbV  PighW  be  PRUe  difficXlW  WR  VegPeQW  WhaQ  QRXQV,  fRU  e[aPSle  dXe  WR  Whe  SUeVeQce  Rf                    

PRUe  PRUShePeV  SeU  ZRUd  RQ  aYeUage.  We  iQYeVWigaWe  WhiV  b\  iQclXdiQg  W\Se  (QRXQ  /YeUb)  aV  a  fi[ed                   

effecW  YaUiable  aQd  aV  a  UaQdRP  VlRSe.  IQ  Whe  SilRW  UeVXlWV,  Whe  W\Se  cRefficieQW  iV  -0.268  (SE=0.407,                   

S-YalXe=0.51).   IW   VeePV   WhaW   QRXQV   aQd   YeUbV   haYe   a   ViPilaU   leYel   Rf   difficXlW\.   
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DiVcXVVion   

BefRUe  aQal\ViQg  Whe  UeVXlWV,  Ze  Qeed  WR  ePShaVi]e  WhaW  RQl\  eleYeQ  VXbjecWV  SaUWiciSaWed  iQ  Whe  SilRW                  

VWXd\  aQal\]ed.  CRQVeTXeQWl\,  WhiV  aQal\ViV  iV  XQdeUSRZeUed.  We  aiP  WR  UeVRlYe  WhiV  iVVXe  iQ  Whe  PaiQ                  

VWXd\.   NeYeUWheleVV,   Ze   aWWePSW   a   WeQWaWiYe   iQWeUSUeWaWiRQ   Rf   Whe   SUeliPiQaU\   UeVXlWV   belRZ.     

  

BaVed  RQ  Whe  UeVXlWV  fRU  Whe  fiUVW  ke\  TXeVWiRQ  Rf  Whe  VWXd\,  Ze  RbVeUYed  WhaW  SaUWiciSaQWV  WeQd  WR  SUefeU                     

ZRUdV  WR  QRQ-ZRUdV,  PeaQiQg  WhaW  Whe\  VegPeQW  ZRUdV  RXW  Rf  UXQQiQg  VSeech  iQ  WhiV  aUWificial                 

laQgXage.  TheVe  UeVXlWV  agUee  ZiWh  RXU  SUedicWiRQV.  HRZeYeU,  ZhaW  PakeV  Whe  diffeUeQce  ZiWh  SUeYiRXV                

VWXdieV  iV  WhaW  SaUWiciSaQWV  ZeUe  QRW  baVed  RQ  TP  RU  RWheU  VSecific  cXeV  (e.g.  leQgWh,  fUeTXeQc\)  WR                   

chRRVe  Whe  cRUUecW  aQVZeU,  aV  bRWh  ZRUdV  aQd  QRQ-ZRUdV  iQ  each  WeVW  WUial  had  Whe  VaPe  cXeV.  The                    

SaUWiciSaQWV  ZRXld  RQl\  be  able  WR  VegPeQW  ZRUdV  aQd  PRUShePeV  RXW  Rf  VSeech  afWeU  ideQWif\iQg  WheP                  

aV  PeaQiQgfXl  XQiWV  Rf  Whe  laQgXage,  WhURXgh  a  PRUe  abVWUacW  SURceVV  Rf  SaWWeUQ  UecRgQiWiRQ  aQd/RU                 

aVVRciaWiRQ   ZiWh   PeaQiQg.    

  

BaVed  RQ  Whe  UeVXlWV  fRU  Whe  VecRQd  ke\  TXeVWiRQ  Rf  Whe  VWXd\,  Ze  alVR  RbVeUYed  WhaW  SaUWiciSaQWV  WeQd                    

WR  SUefeU  VWePV  WR  QRQ-VWePV,  PeaQiQg  WhaW  Whe\  VegPeQW  PRUShePeV  RXW  Rf  UXQQiQg  VSeech  iQ  WhiV                  

aUWificial  laQgXage.  TheVe  UeVXlWV  agUee  ZiWh  RXU  SUedicWiRQV.  SiPilaUl\  aV  abRYe,  SaUWiciSaQWV  cRXld  QRW                

haYe  beeQ  baVed  RQ  TP  RU  RWheU  VSecific  cXeV  dXUiQg  Whe  WeVW,  ViQce  WheVe  cXeV  ZeUe  cRQWURlled  fRU.  ThiV                     

UeVXlW  iV  cRQViVWeQW  ZiWh  Whe  idea  WhaW  SaUWiciSaQWV  cRQVideU  PiQiPal  PeaQiQgfXl  (RU  aW  leaVW                

UecRPbiQable)   XQiWV   ZheQ   heaUiQg   aQ   XQkQRZQ   laQgXage.   

  

IPSRUWaQWl\,  Whe  UeVXlWV  fRU  Whe  WhiUd  ke\  TXeVWiRQ  Rf  Whe  VWXd\  VhRZ  WhaW,  ZheQ  SaUWiciSaQWV  geW                  

(bUiefl\)  e[SRVed  WR  aQ  aUWificial  laQgXage,  Whe\  fRcXV  RQ  aW  leaVW  WZR  leYelV,  ZRUdV  aQd  PRUShePeV,  iQ                   

RUdeU  WR  e[WUacW  PeaQiQgfXl  XQiWV  Rf  Whe  laQgXage.  ThiV  cRUUeVSRQdV  WR  SUeYiRXV  RbVeUYaWiRQV  WhaW                

hXPaQV  e[SRVed  WR  laQgXageV  ZiWh  QaWXUal  laQgXage  chaUacWeUiVWicV  aQd  WhXV  Uich  VWUXcWXUe,  caQ               

SeUfRUP  PRUe  WhaQ  RQe  WaVk  ViPXlWaQeRXVl\,  aQd  Pa\  Wake  adYaQWage  Rf  Whe  Uich  PRUShRVePaQWic                

iQfRUPaWiRQ  Rf  a  laQgXage,  iQ  RUdeU  WR  deciSheU  Whe  iQSXW.  SiPilaU  fiQdiQgV  aUe  cUXcial  fRU  laQgXage                  

acTXiViWiRQ,  aV  childUeQ  aUe  alVR  fUeTXeQWl\  e[SRVed  WR  QaWXUal  laQgXageV  ZiWh  Uich  VWUXcWXUe.  If  hXPaQV                 

aUe  caSable  Rf  aWWeQdiQg  WR  PRUe  WhaQ  RQe  leYel  aQd  VegPeQWiQg  RXW  PRUShePeV,  WheQ  childUeQ  ZRXld                  

alVR   haYe   a   head   VWaUW   ZheQ   e[SRVed   WR   VXch   QaWXUal   laQgXageV.     

  

LaVW,  QR  VigQificaQW  diffeUeQceV  ZeUe  fRXQd  ZheQ  VegPeQWiQg  QRXQV  RU  YeUbV,  VhRZiQg  WhaW  Whe  WZR                 

ZRUd  claVVeV  ZeUe  RYeUall  SURceVVed  iQ  a  ViPilaU  Za\.  HRZeYeU,  YiVXaliVaWiRQ  Rf  Whe  UeVXlWV  VhRZV                 

laUgeU  YaUiaQce  iQ  aQVZeUV  fRU  Whe  ZRUd  WhaQ  Whe  PRUShePe  leYel.  ThiV  VhRXld  be  iQYeVWigaWed  fXUWheU                  
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iQ  Whe  PaiQ  VWXd\.  MRUeRYeU,  if  Whe  PaiQ  VWXd\  cRQfiUPV  Whe  SaWWeUQV  RbVeUYed  iQ  Whe  SilRW,  Ze  SlaQ  WR                     

cRQdXcW  fXWXUe  VWXdieV,  iQ  RUdeU  WR  fXUWheU  WeVW  ZheWheU  SaUWiciSaQWV  VXcceVVfXll\  aVVRciaWe  XQiW  fRUPV                

ZiWh  WheiU  UefeUeQWV  iQ  Whe  YideR,  aQd  ZheWheU  SaUWiciSaQWV  caQ  VXcceVVfXll\  VegPeQW  RXW  PRUShePeV                

aQd  ZRUdV  afWeU  addiWiRQ  Rf  PRUe  PRUShePeV.  If  Whe  PaiQ  VWXd\  diVSURYeV  Whe  SaWWeUQV  RbVeUYed  iQ  Whe                   

SilRW,  Ze  SlaQ  WR  faciliWaWe  Whe  WaVk,  b\  UePRYiQg  VRPe  PRUShePeV.  PlaQQed  cRQdiWiRQV  Rf  Whe  PaiQ                  

VWXd\  alVR  iQclXde  checkiQg  Whe  UeleYaQce  Rf  PeaQiQg  iQ  VegPeQWaWiRQ,  b\  UePRYiQg  Whe  YideRV  (aQd                 

all   WheiU   VePaQWic   iQfRUPaWiRQ)   aQd   SUeVeQWiQg   Whe   laQgXage   iQ   aQ   aXdiR-RQl\   cRQdiWiRQ.   

  

LaVW,  VRPe  liPiWaWiRQV  Rf  Whe  VWXd\  VhRXld  be  PeQWiRQed.  OXU  aUWificial  laQgXage,  eYeQ  WhRXgh  iQVSiUed                 

b\  QaWXUal  laQgXage  chaUacWeUiVWicV,  iV  ViPSle  eQRXgh  WR  be  leaUQable  afWeU  a  VhRUW  e[SRVXUe.  The  gRal                  

Rf  WhiV  VWXd\  iV  WR  iQfRUP  TXeVWiRQV  cRQceUQiQg  Whe  UelaWiRQVhiS  beWZeeQ  laQgXage  VegPeQWaWiRQ  aQd                

laQgXage  VWUXcWXUe,  aQd  WR  iQYiWe  fRU  fXUWheU  UeVeaUch  RQ  bRWh  PRUShePe  aQd  ZRUd  VegPeQWaWiRQ,  iQ                 

bRWh  aUWificial  aQd  QaWXUal  laQgXage  VeWWiQgV.  MRUeRYeU,  Ze  cRXld  PeaVXUe  Whe  leaUQiQg  RXWSXW  afWeU                

e[SRVXUe  WR  Whe  laQgXage,  bXW  Ze  caQQRW  be  VXUe  ZhaW  PechaQiVPV  ZeUe  XVed  b\  Whe  SaUWiciSaQWV  WR                   

VegPeQW  iW.  FXUWheU  UeVeaUch  caQ  fRcXV  RQ  WhiV  aVSecW,  fRU  e[aPSle  b\  PRdeliQg  laQgXage  leaUQiQg  ZiWh                  

VSecific   VegPeQWaWiRQ   PechaQiVPV,   iQ   RUdeU   WR   cRPSaUe   Whe   UeVXlWV.      
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6.   ConclXsions   

WiWh  Whese  Whree  sWXdies,  Ze  aWWempWed  Wo  conWribXWe  Wo  Whe  liWeraWXre  of  cross-lingXisWic  learnabiliW\.                

FirsW,  Ze  Xsed  inpXW  from  longiWXdinal  recordings  of  W\pologicall\  diYerse  langXages  for  modeling               

e[perimenWs  in  ChapWers  3  and  4.  We  also  creaWed  a  langXage  inspired  b\  feaWXres  of  morphologicall\                  

rich   langXages   for   an   arWificial   langXage   e[perimenW   in   ChapWer   5.     

  

Second,  Ze  idenWified  specific  diYersif\ing  feaWXres  across  langXages  in  Whe  morphole[ical  leYel  e.g.               

Zord  Woken  freqXenc\.  We  argXed  WhaW  Whese  feaWXres  shoXld  affecW  Zord  segmenWaWion.  In  ChapWer  3,                 

Ze  obserYed  WhaW  afWer  selecWion  of  WZo  langXages  in  Wheor\  Yer\  diYerse  in  Werms  of  morphological                  

s\nWhesis,  ChinWang  and  Japanese,  Whe  beWZeen-corpXs  differences  of  releYanW  feaWXres,  sXch  as              

morpheme  Wo  Zord  raWio,  Zere  smaller  Whan  e[pecWed.  This  is  eYidence  WhaW  WheoreWical  comple[iW\  of  a                  

s\sWem  does  noW  necessaril\  manifesW  in  Whe  same  Za\  in  eYer\da\  speech,  and  eYen  less,  probabl\,                  

Zhen  Whis  speech  is  direcWed  Wo  children.  Child-direcWed  speech  has  long  been  considered  a  simplified                 

regisWer   (e.g.  GenoYese  eW  al.,  2020) ,  Zhere  le[icall\  and  s\nWacWicall\  comple[  elemenWs  are  less                

freqXenW.  ThXs,  differences  across  lingXisWic  s\sWems  ma\  geW  aWWenXaWed  ZiWhin  child-direcWed  speech.              

FXWXre  research  shoXld  address  Whis  b\  qXanWif\ing  differences  beWZeen  eYer\da\  oYerheard  speech              

YersXs   speech   direcWed   Wo   children.   We   look   aW   Whis   in   deWail   in   ParW   2.   

  

MoreoYer,  Whe  feaWXres  Ze  idenWified  did  noW  e[plain  aZa\  Whe  effecW  of  langXage  in  ChapWer  3.  This  is                    

eYidence  WhaW  in  naWXral  langXage,  sXch  facWors  ma\  be  confoXnded  ZiWh  oWher  lingXisWic  aspecWs,  and                 

WhXs  Wheir  imporWance  is  less  perWinenW  Whan  ZhaW  ZoXld  be  foXnd  in  a  carefXll\  conWrolled  e[perimenW                  

WesWing  a  specific  feaWXre.  One  oWher  inWerpreWaWion  of  Whe  resXlWs  is  WhaW  morphological  diYersiW\,  as                 

e[pressed  b\  Whese  characWerisWics,  is  simpl\  noW  a  facWor  for  segmenWaWion.  FXWXre  research  shoXld                

consider  inclXding  more  W\pological  feaWXres  accoXnWing  for  diYersiW\,  sXch  as  phonological  and              

s\nWacWic   properWies,   as   Zell   as   inWeracWions   beWZeen   Whem.   

  

Third,  in  Whe  same  chapWer,  Ze  foXnd  WhaW  differences  across  models  are  larger  Whan  differences  across                  

langXages.  This  is  an  imporWanW  finding  in  iWself  and  inYiWes  for  fXrWher  research,  as  iW  shoZs  WhaW                   

diYersiW\  in  segmenWabiliW\  Zas  mainl\  noW  dXe  Wo  Whe  differing  inpXW,  bXW  dXe  Wo  Whe  sWraWegies  WhaW                   

Zere  Xsed  Wo  process  iW.  Also,  Whe  oXWcome  of  Whis  sWXd\  Zas  indicaWiYe  of  some  order  of  performance                    

across  sWraWegies:  some  models  performed  beWWer  Whan  oWhers  for  Whe  WZo  langXages,  and  seemed  Wo  be                  

more  affecWed  b\  Whe  langXage  effecW  Whan  oWhers  (aW  leasW  b\  Whe  morphological  effecW,  as  Zas  sWXdied                   

here).  We  decided  Wo  inYesWigaWe  Whis  maWWer  fXrWher,  b\  WesWing  more  langXages,  Zhich  Ze  did  in                  

ChapWer   4.   
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In  ChapWer  4,  Ze  idenWified  Whree  specific  criWeria  of  eYalXaWion  for  Whe  performance  of  oXr                 

segmenWaWion  sWraWegies.  FirsW,  Whe  models  shoXld  be  cross-lingXisWicall\  sWable.  Do  Whe\  perform              

relaWiYel\  Zell  or  badl\  across  langXages?  Second,  Whe  models  shoXld  haYe  a  high  segmenWaWion                

performance,  Zhich  Ze  defined  as  performing  aboYe  chance.  Third,  Ze  inclXded  Whe  concepW  of  error                 

plaXsibiliW\,  ZiWh  respecW  Wo  oYer-  and  Xnder-segmenWaWion.  We  belieYe  WhaW  Whese  criWeria  are  indicaWiYe                

of   a   Yiable   learning   model,   and   Whe\   ma\   be   Xsed   for   eYalXaWion   in   fXWXre   modeling   sWXdies.     

  

MosW  models  respecWed  Whe  YiabiliW\  criWeria,  Zhich  is  sXpporWing  eYidence  for  Whe  performance  of                

seYeral  segmenWaWion  sWraWegies  in  cross-lingXisWic,  naWXralisWic  inpXW.  HoZeYer,  performance  for  WZo             

langXages,  RXssian  and  InXkWiWXW,  diYerged  compared  Wo  Whe  resW  of  Whe  langXages.  This  is  a  maWWer  WhaW                   

shoXld  be  inYesWigaWed  fXrWher.  One  possible  e[planaWion  is  Whe  e[isWence  of  a  corpXs  arWefacW:  Perhaps                 

Whese  WZo  corpora  haYe  some  parWicXlariWies  Zhich  caXse  Whe  failXre  of  Whe  models,  regardless  of                 

langXage.  FXWXre  research  coXld  reprodXce  Whis  sWXd\  Xsing  parallel  corpora  ( a  collecWion  of  corpora,                

each  of  Zhom  is  Whe  WranslaWion  of  Whe  oWher)  -  Whis  Za\,  Ze  can  make  sXre  ZheWher  Whis  diYergence  is                      

dXe   Wo   Whe   challenging   sWrXcWXres   of   Whese   parWicXlar   langXages   or   noW.     

  

MoreoYer,  in  ChapWers  3  and  4  Ze  made  Xse  of  corpora  Zhose  langXages  Zere  sXpposed  Wo  be                   

ma[imall\  differenW  in  specific  aspecWs.  We  belieYe  WhaW  cross-lingXisWic  comparison  in  fXWXre  sWXdies               

shoXld  ideall\  happen  Xnder  Whese  Werms.  This  Za\,  Ze  can  idenWif\  Whe  main  soXrce(s)  of  difference                  

beWZeen  langXages.  Cross-lingXisWic  comparisons  inclXding   an\  langXage,  risk  Wo  \ield            

XnderinformaWiYe   and   noW   easil\   inWerpreWable   resXlWs.   

  

FoXrWh,  in  ChapWers  3  and  5,  Ze  addressed  Whe  issXe  of  comparabiliW\.  In  ChapWer  3,  Ze  asked  ZheWher                    

difference  in  segmenWabiliW\  across  langXages  is  miWigaWed  Zhen  Ze  reframe  Whe  concepW  of  Zord                

segmenWaWion  as  segmenWaWion  of  meaningfXl  XniWs.  For  Whis,  Ze  condXcWed  a  modeling  sWXd\.  ResXlWs                

from  Whe  firsW  sWXd\  shoZed  WhaW  langXage  differences  are  indeed  redXced  Zhen  segmenWaWion  is  noW                 

sWricWl\  based  on  one  leYel.  We  fXrWher  argXed  WhaW  considering  morphemes  as  Zell  as  Zords  ma\  be                   

beneficial   for   earl\   langXage   learning,   especiall\   for   morphologicall\   rich   langXages.     

  

In  ChapWer  5,  parWicipanWs  goW  e[posed  Wo  an  arWificial  langXage  Zhere  segmenWaWion  coXld  happen                

across  a  Zord  and  a  sXb-Zord  leYel.  Preliminar\  oXWcomes  are  eYidence  WhaW  adXlW  parWicipanWs  adapW                 

fasW  Wo  Whe  parWicXlariWies  of  Whe  lingXisWic  sWrXcWXre,  and  consider  boWh  minimal  meaningfXl  XniWs  and                 

Zords  Zhen  lisWening  Wo  an  XnknoZn  langXage.  Words  ma\  WhXs  noW  be  considered  as  a  XniqXe  (or                   
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eYen  sWandard)  segmenWaWion  leYel  across  langXages.  FXWXre  research  on  \oXnger  parWicipanWs  is  needed               

in   order   Wo   confirm   ZheWher   Whis   holds   WrXe   dXring   earl\   langXage   learning.     

  

Finall\,  Whe  Xse  of  ecological  inpXW  from  differenW  langXages  aXWomaWicall\  meanW  WhaW  Ze  ZoXld  Xse                 

inpXW  also  from  differenW  cXlWXres  and  Xpbringing  seWWings.  This  aspecW  of  diYersiW\  becomes  obYioXs                

Zhen  Ze  compare  inpXW  from  ChinWang  and  Japanese:  a  considerable  parW  of  inpXW  heard  b\                 

ChinWang-learning  children  is  eiWher  oYerheard,  or  addressed  Wo  Whem  b\  oWher  children,  and  noW  adXlWs.                 

On  Whe  conWrar\,  inpXW  heard  b\  Japanese-learning  children  is  mosWl\  direcWed  Wo  Whem  b\  Wheir  oZn                  

parenWs.  This  can  be  problemaWic,  as  inpXW  ma\  differ  depending  on  Whe  speech  regisWer  and  Whe                  

speaker,  eYen  ZiWhin  Whe  same  langXage.  ThXs,   cross-lingXisWic  aspecWs  in  acqXisiWion  inWeracW  ZiWh               

cross-cXlWXral  aspecWs .  We  WhXs  decided  Wo  address  Whis  issXe  in  Whe  ne[W  parW  of  Whe  disserWaWion,  ParW  2.                    

Are  Where  differences  in  inpXW  from  differenW  regisWers  and  speakers?  HoZ  large  are  Whese  differences                 

cross-cXlWXrall\?   And   are   Whe\   releYanW   Wo   segmenWaWion?     
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PaUW   2   

7.   DiYersit\   across   cXltXres   

WhaW  is  heard  b\  children  in  NorWh  American  or  EXropean  middle  class  families  is  onl\  one  Za\                   

children  are  Walked  Wo.  As  noWed  b\ Ochs  &  Schieffelin  (1984) ,  ³Whe  general  paWWerns  of  ZhiWe                  

middle-class  caregiYing  WhaW  haYe  been  described  in  Whe  ps\chological  liWeraWXre  are  characWerisWic              

neiWher  of  all  socieWies  nor  of  all  social  groXps´  (p.283).  GiYen  Whis  YariaWion,  iW  is  sXrprising  WhaW  mosW                    

research  pXblished  in  langXage  acqXisiWion  joXrnals  is  draZn  from  one  specific  sample:  WesWern,               

EdXcaWed,  IndXsWriali]ed,  Rich  and  DemocraWic  (WEIRD)  commXniWies   (DiesendrXck,  2007) .           

Generali]aWion   of   WEIRD   findings   Wo   oWher   popXlaWions   is   noW   obYioXs    (Nielsen   eW   al.,   2017 ).     

  

In  Whis  secWion,  Ze  are  going  Wo  look  aW  cross-cXlWXral  diYersiW\.  Child  inpXW  Yaries  enormoXsl\  ZiWhin                  

and  across  cXlWXres   (FoXWs  eW  al.,  2012;  LoZ  &  SWocker,  2005) .  The  difference  in  Whe  e[WenW  and                   

manner  of  adXlWs¶  Walk  Wo  children   (Hoff,  2006) ,  can  be  foXnd  across  man\  dimensions  (e.g.  nXmber  of                  

siblings,  rXral  Ys  Xrban  place,  liWerac\,  mXlWilingXalism,  income  and  socioeconomic  sWaWXs,  parenWal              

edXcaWion),  as  Ze  deWail  in  ChapWer  7.1.  The  dimensions  can  be  so  man\,  WhaW  Whe  acron\m  WEIRD  /                    

non-WEIRD  ma\  in  facW  be  Woo  absWracW  Wo  capWXre  cXlWXral  diYersiW\  in  some  cases.  In  7.2,  Ze  WXrn  Wo                     

eYidence   from   acqXisiWion.   These   Yariables   seW   Whe   sWage   for   Whe   inYesWigaWions   in   ChapWers   8   and   9.     

7.1   IQSXW   acURVV   cXlWXUeV     

7.1.1.   Variation   in   quantitative   and   qualitative   features   of   language   input   

In  Whis  secWion,  Ze  Zill  look  aW  qXanWiWaWiYe  and  qXaliWaWiYe  differences  in  inpXW  speech  across  cXlWXres.                 

The  issXe  of  qXanWiW\  of  speech  has  receiYed  a  greaW  deal  of  aWWenWion  in  recenW  liWeraWXre,  and  Zill  be                     

described  in  Whis  paragraph.   Hoff  (2006)  considers  WhaW  Whe   amoXnW  aW  Zhich  adXlWs  engage  children  in                  

commXnicaWiYe  inWeracWion  is  a  cXlWXral  YariaWion  in  inpXW.  NorWh  American  moWhers  Walk  Wo  Wheir                

children  since  birWh   (SnoZ,  1977) .  In  oWher  cXlWXres,  sXch  as  Whe  Ma\ans  of  Me[ico   (Casillas  eW  al.,                   

2019) ,  caregiYers  rarel\  address  Wheir  children.  YXcaWec  Ma\an  children  hear  less  speech,  onl\  a  small                

amoXnW   of   Zhich   is   direcWl\   addressed   Wo   Whem    (Shneidman   &   Goldin MeadoZ,   2012) .     

  

Ne[W,  Ze  menWion  some  differences  across  cXlWXres  ZiWh  respecW  Wo   qXaliW\  of  inpXW.  Speech  addressed                 

Wo  children  is  freqXenWl\  discXssed,  dXe  Wo  iWs  specific  speech  feaWXres  obserYed  in  EXro-American                

families.  CaregiYers  Xse  µbab\  langXage¶,  or  else  child-direcWed  speech  (CDS),  Zhich  seems  Wo  be                
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lingXisWicall\  adapWed  for  children  and  prefered  b\  Whem   (SodersWrom,  2007) .  IW  has  redXced               

YocabXlar\,  shorWer  XWWerances,  longer  paXses,  more  repeWiWions  and  rephrasings  Whan  adXlW  direcWed              

speech   (Hoff,   2006).     

  
EYen  WhoXgh  Whese  CDS  feaWXres  haYe  been  deWecWed  in  seYeral  langXages,  sXch  as  French,  German,                 

IWalian,  Japanese,  BriWish  and  American  English,  some  appear  more  e[Wreme  in  American  English  Whan                

in  oWher  langXages   (Fernald  eW  al.,  1989) ;  CDS  is  sXbjecW  Wo  cross-cXlWXral  YariabiliW\.  For  e[ample,  in                  

InXiW  Yillages,  bab\  langXage  is  noW  a  desirable  speech  regisWer  aW  all   (Crago  eW  al.,  1993) .  CDS  from                    

adXlWs  Wo  \oXng  children  is  far  from  XniYersall\  Xniform   (LieYen,  1994) .  This  sXbjecW  Zill  be  fXrWher                  

discXssed  in  ChapWer  8.  Cross-cXlWXral  diYersiW\  has  also  been  idenWified  in  Whe  sXbjecWs  of                

conYersaWion.  For  e[ample,  EXroAmerican  parenWs  seem  Wo  proYide  more  informaWion  aboXW  objecWs              

Whan   African   American   or   Japanese   parenWs    (LaZrence   &   Shiple\,   1996;   Toda   eW   al.,   2009) .     

7.1.2.   Tracing   the   sources   of   input   variation   across   and   within   cultures   

OYerall,  cross-cXlWXral  diYersiW\  is  correlaWed  Wo  facWors  ZiWhin  cXlWXres,  sXch  as  socioeconomic  sWaWXs               

(SES)  and  parenWal  edXcaWion.  These  facWors  Zill  noW  be  dealW  ZiWh  in  Whis  disserWaWion,  bXW  Ze  describe                   

Whem  briefl\  here.   HarW  &  Risle\  (1995)  docXmenWed  WhaW  2-\ear-old  children  groZing  Xp  in  American                 

English  high-SES  families  heard  more  Zords  Whan  Whose  in  loZ-SES  families.  SES  differences  haYe                

also  been  foXnd  in  YocabXlar\  (more  Zord  W\pes  and  Wokens  in  high  SES  speech,  HarW  &  Risle\,                   

1995),  and  s\nWa[   (HXWWenlocher  eW  al.,  2010) .  Similarl\,  college-edXcaWed  moWher  inpXW  is  more  in                

qXanWiW\,  le[icall\  and  s\nWacWicall\  richer,  and  conWains  more  qXesWions  Whan  inpXW  from  high-school               

edXcaWed   moWhers    (Hoff-Ginsberg,   1991) .     

  

The  nXmber  of  siblings  is  anoWher  facWor.  FirsWborn  children  seem  Wo  receiYe  more  speech  from  Wheir                  

moWhers  Whan  laWer  borns   (Hoff-Ginsberg,  1998;  Oshima-Takane  &  Robbins,  2003;  SnoZ,  1972) ,  and               

more  comple[  speech  Whan  laWer  borns   (Hoff-Ginsberg,  1998) .  HoZeYer,  WoolleWW  (1986)  noWes  WhaW               

langXage  enYironmenWs  for  a  \oXnger  sibling  shoXld  be  sWimXlaWing  for  learning;  speech  beWZeen  older                

siblings  and  Whe  moWher  is  Yer\  inWeracWiYe,  freqXenWl\  referring  Wo  eYenWs,  objecWs,  or  Whe  \oXnger                 

sibling.  ThXs,  sXch  enYironmenWs  coXld  proYide  deYelopmenWall\  comple[  and  salienW  models  of              

langXage.     

  

LasW,  Whe  aboYe  menWioned  aspecWs  of  cross-cXlWXral  diYersiW\  relaWe  Wo  Whe  issXe  of  d\adic  sWXdies.                 

PreYioXs  liWeraWXre  has  focXsed  on  moWher-child  inWeracWions   (bXW  see  Weisner  eW  al.,  1977;  WoolleWW,                

1986) ,  despiWe  Whe  facW  WhaW  mosW  children  aroXnd  Whe  Zorld  groZ  Xp  in  pol\adic  siWXaWions,  and                  

nonparenWal  careWaking  is  common  across  socieWies   (LieYen,  1994) .  CaregiYing  in  diYerse  cXlWXres              
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relies  heaYil\  on  e[Wended  famil\   (e.g.  DilZorWh-Anderson,  1992) ,  WhXs  lingXisWic  inpXW  ma\  noW               

necessaril\  come  from  Whe  moWher.  In  IndigenoXs  AXsWralian  commXniWies,  for  e[ample,  older  children               

look  afWer  \oXnger  children.  In  Arnhem  Land,  children  enWer  a  peer  groXp  since  Whe\  are  WZo  \ears  old                    

(HamilWon,  1981) .   Connell\  (1984)  obserYed  WhaW,  in  some  LesoWho  Yillages,  siblings  and  peers  as                

\oXng  as  2;1  \ears  old  haYe  caregiYing  roles,  speaking  Wo  Whe  \oXnger  child  ZiWh  simplified  speech                  

(also  see  DemXWh,  1992) .  This  inpXW  is  likel\  Wo  differ  from  parenWal  inpXW   (Loakes  eW  al.,  2013) ,  bXW                    

Where   are   hardl\   an\   sWXdies   on   iWs   naWXre.   We   fXrWher   address   Whis   issXe   in   ChapWer   8.     

  

7.2   LaQgXage   acTXiViWiRQ   acURVV   cXlWXUeV   

7.2.1   Anal\sing   previous   learning   outcomes   
  

We  sWill  knoZ  Yer\  liWWle  aboXW  ZhaW  children  hear  in  diYerse  cXlWXres,  and  eYidence  on  learning                  

oXWcomes  in  acqXisiWion  across  cXlWXres  is  also  limiWed.  Of  Whese  sWXdies,  eYen  feZer  sWXdies  haYe                 

looked  aW  differences  in  segmenWaWion  oXWcomes,  since  preYioXs  research  has  focXsed  on  differences  in                

le[ical  and  s\nWacWic  deYelopmenW  WhroXgh  prodXcWion.  For  e[ample,  one  Whing  WhaW  Yaries  as  a                

fXncWion  of  cXlWXre  seems  Wo  be  Whe  amoXnW  and  conWenW  of  children¶s  prodXcWiYe  YocabXlar\   (Hoff,                 

2006;   Tardif   eW   al.,   1999) .     

  

MoreoYer,  mosW  cross-cXlWXral  Zork  deriYes  from  eWhnographic  sWXdies  and  is            

anWhropologicall\-orienWed,  ZiWh  liWWle  s\sWemaWic  research  on  langXage  learning.  Some  langXage            

informaWion   proYided   ma\   someWimes   be   qXaliWaWiYe   obserYaWions   of   Whe   inYesWigaWors.     

  

One  e[cepWion  is  a  recenW  longiWXdinal  paper  WhaW  sWXdied  langXage  learning  of  TselWal  Ma\an  children                 

(Casillas  eW  al.,  2019) .  These  children  are  infreqXenWl\  addressed  and  hear  liWWle  adXlW  CDS.  EYen                 

WhoXgh  Whe  aXWhors  e[pecWed  a  diYergence  in  le[ical  deYelopmenW,  compared  Wo  middle-class  English              

norms,  TselWal  children  learned  langXage  earl\  on  and  prodXced  Wheir  firsW  Zords  aW  Whe  same  age  as                   

English  children.  ObYioXsl\,  Whese  children  e[WracW  enoXgh  informaWion  from  Whe  lingXisWic             

enYironmenW,  eYen  WhoXgh  Whe\  are  noW  direcWl\  addressed  Wo.  Similar  resXlWs  Zere  reporWed  b\                

Shneidman  &  Goldin MeadoZ  (2012) .  InWeresWingl\,  Whese  aXWhors  foXnd  WhaW  children¶s  earl\  Zords              

Zere  predicWed  b\  adXlW  CDS  (and  noW  oYerheard  speech  or  speech  b\  oWher  children),  eYen  WhoXgh                  

Whe\   heard   Yer\   liWWle   of   iW   (compared   Wo   inpXW   of   middle-class   EXro-American   children).   

  

WhaW  preYioXs  eWhnographic  Zork  e[isWs,  shoZs  similar  paWWerns  of  langXage  acqXisiWion;  children              

learn  langXage  earl\  on  despiWe  hearing  liWWle  CDS   (BroZn  &  Gaskins,  2014;  Lis]koZski  eW  al.,  2012 ;                  
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Ochs  &  Schieffelin,  1984).  Crago  eW  al.  (1997)  argXed  WhaW  InXiW  children,  Zho  receiYe  liWWle  direcWed                  

inpXW,  acqXire  InXkWiWXW  aW  ages  comparable  Wo  middle  class  NorWh  American  children.   LieYen  (1994)                

also   obserYed   WhaW   across-cXlWXres   children   Wend   Wo   learn   langXage   aW   aroXnd   Whe   same   Wime.     

  

A  Za\  WhaW  children  ma\  e[WracW  informaWion  is  from  non-direcWed/oYerheard  speech,  b\  lisWening  Wo                

nearb\  speech  addressed  Wo  oWher  people.  Children  seem  Wo  be  good  aW  obserYing  and  learning  from  Whe                   

inWeracWions  and  behaYiors  Waking  place  aroXnd  Whem   (Leyn,  2011;  Rogoff,  2003) .  According  Wo               

behaYioral  e[perimenWs,  WZo-\ear  olds  learn  referenWs  presenWed  in  a  Whird  parW\  conYersaWion   (AkhWar               

eW  al.,  2001) ,  eYen  if  Whe\  are  simXlWaneoXsl\  engaged  in  anoWher  acWiYiW\,  or  if  Whe  label  is  in  a  non                      

salienW  posiWion  in  Whe  senWence   (AkhWar,  2005) .   DXnn  &  ShaW]  (1989)  proYided  naWXralisWic  eYidence                

WhaW  WZo-\ear-old  children  XndersWand  mXch  of  Whe  conYersaWions  Whe\  oYerhear.  According  Wo  BarWon               

&  Tomasello  (1991),  19-monWh-old  English-speaking  children  are  capable  of  parWicipaWing  in             

moWher-sibling-child  conYersaWions.  Children  Zere  as  likel\  Wo  respond  Wo  commenWs  direcWed  Wo              

anoWher  person  as  Whe\  Zere  Wo  Whose  direcWed  Wo  WhemselYes.  MoreoYer,  in  arWificial  langXage  sWXdies,                 

children   also   impliciWl\   acqXire   aW   leasW   some   comple[   sWrXcWXres    (Finn   eW   al.,   2014) .   

7.2.2   Linking   input   to   learning   outcomes   
  

We  discXss  here  some  Yariables  of  inpXW  speech  preYioXsl\  menWioned  Wo  accoXnW  for  le[ical  and                 

morphos\nWacWic  deYelopmenW,  and  Zhich  ma\  differ  cross-cXlWXrall\.  The  oYerall  qXanWiW\  of  CDS  is               

one  of  Whem;  more  inpXW  seems  Wo  lead  Wo  fasWer  YocabXlar\  groZWh  for  English-learning  children                 

(DiesendrXck,  2007;  HarW  &  Risle\,  1995;  Wei]man  &  SnoZ,  2001) ,  accoXnWing  for  16%  of  Whe                 

Yariance  in  2-\ear-old  children¶s  XWWerance  lengWh  groZWh  oYer  Whe  folloZing  9  monWhs   (Barnes  eW  al.,                 

1983) .     

  

CDS  is  sXpposed  Wo  faciliWaWe  earl\  Zord  learning  in  English-speaking   (Bakermans-KranenbXrg  eW  al.,               

2004;  CarWmill  eW  al.,  2013;  RoZe,  2008)  and  Spanish-speaking  families   (Weisleder  &  Fernald,  2013) ,                

b\  proYiding  a  simple-Wo-learn  langXage  model.  Specificall\,  XWWerance  repeWiWions  are  posiWiYe             

predicWors  of  English-learning  children¶s  grammaWical  deYelopmenW,  predicWing  18-40%  of  Yariance            

( Hoff-Ginsberg,  1986) ,  and  freqXenc\  and  diYersiW\  of  Yerb  frames  in  inpXW  predicW  child  Yerb  Xse                 

(Naigles  &  Hoff-Ginsberg,  1998) .  The  nXmber  of  Zord  W\pes  prodXced  b\  moWhers  predicW  Whe  nXmber                 

of  Zord  W\pes  of  Wheir  WZo-\ear-olds  Wen  Zeeks  laWer   (Hoff  &  Naigles,  2002;  Hoff-Ginsberg,  1986) .                 

Long  XWWerances  and  qXesWions  in  CDS  conWribXWe  Wo  s\nWacWic  deYelopmenW   (Choi  &  Gopnik,  1995;                

Hoff-Ginsberg,  1998;  HXWWenlocher  eW  al.,  2010) .  We  h\poWhesi]e  WhaW  some  of  Whese  or  oWher  feaWXres                 

of   CDS   ma\   also   predicW   segmenWaWion,   being   one   of   Whe   firsW   Wasks   children   need   Wo   Wackle.     
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NeYerWheless,  CDS  also  has  Zords,  soXnds  and  senWences  Zhich  are  raWher  comple[  (CVC  s\llabic                

forms,  soXnd  seqXences,  «) (GierXW,  2007) .   Fernald  &  McRoberWs  (1996)  docXmenWed  WhaW  boXndar\              

markers  in  English  CDS  are  noW  reliable  enoXgh  for  booWsWrapping,  as  XWWerances  ofWen  haYe                

non-canonical  sWrXcWXres.   LXdXsan  eW  al.  (2015)  shoZed  a  loZer  recall  and  clXsWer  collocaWion  in                

English  CDS  Whan  adXlW-direcWed  speech  (ADS),  eYen  WhoXgh  iW  had  beWWer  prosodic  boXndar\               

informaWion  Whan  ADS.  These  oXWcomes  are  inconsisWenW  ZiWh  Whe  YieZ  WhaW  IDS  is  clearer  and  simpler                  

Whan   ADS,   aW   leasW   as   far   as   segmenWaWion   is   concerned.     

  

WiWh  respecW  Wo  modeling  segmenWaWion,  some  Zork  has  addressed  Whe  issXe  of  learnabiliW\  in  diYerse                 

regisWers.  L XdXsan  eW  al.  (2017) ,  based  on  Japanese  CDS  and  ADS  laboraWor\-collecWed  daWa,  foXnd  a                 

smaller  difference  in  segmenWabiliW\  beWZeen  Whese  WZo  regisWers  Whan  preYioXsl\  reporWed   (BaWchelder,             

2002) .  A  smaller  and  eYen  reYersed  difference  in  segmenWabiliW\  Zas  foXnd  for  ecological  CDS  and                 

ADS   of   English-speaking   families    (CrisWia   eW   al.,   2019) .   

  

FXWXUe  VWXdieV  need  Wo  inYeVWigaWe  Whe  feaWXUeV  of  CDS,  and  qXanWif\  WheiU  e[acW  impacW  on                 

leaUnabiliW\.  HoZeYeU,  iW  iV  impoUWanW  Wo  do  Vo  conVideUing  WhaW,  cUoVV-cXlWXUall\,  CDS  feaWXUeV               

YaU\;  CDS  ma\  be  pUodXced  b\  diffeUenW  VpeakeUV,  and  conViVW  of  YeU\  diffeUenW  qXaliWaWiYe                

feaWXUeV.     

7.2.3   Comparing   learning   outcomes   across   cultures     
  

Cross-cXlWXral  oXWcomes  shoXld  be  eYalXaWed  ZiWh  caXWion.  An  eWhnocenWric  bias  hindering             

comparabiliW\  has  been  broXghW  Xp  in  Whe  field,  as  measXres  of  affecWion  are  someWimes  adjXsWed  Wo                 

WesWern  Za\s  of  Whinking   (Rogoff,  2003;  RoWhbaXm  eW  al.,  2000) .  For  e[ample,  QXichp  CDS  ma\  noW                  

haYe  some  feaWXres  freqXenWl\  foXnd  in  English  CDS,  bXW  iW  has  eighW  differenW  special  feaWXres,                 

inclXding  Zhispering,  iniWial-s\llable  deleWion,  a  Yerbal  sXffi[  appearing  onl\  in  CDS,  and  fi[ed  Zord                

order    (P\e,   1986) .     

The  Xse  of  sWandardi]ed  WesWs  (e.g.  reading  and  YocabXlar\  WesWs)  has  also  raised  issXes  of                 

comparabiliW\.  For  e[ample,  children  speaking  African  American  English  (AAE)  receiYe  Whe  same              

langXage  WesWs  as  oWher  American  English-learning  children,  bXW  Wheir  free  pla\  consisWs  mosWl\  of                

code-sZiWch,  comple[  s\nWacWic  forms  and  a  special  Xse  of  semanWics   (Craig  &  WashingWon,  2004) .                

InWeresWingl\,  some  children  shifW  Wo  Xsing  feZer  AAE  feaWXres  once  aW  school,  and  Whese  children                 

oXWperform   Wheir   peers   Zho   do   noW   shifW   Wo   AAE   on   sWandardi]ed   WesWs.     
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One  oWher  issXe  concerns  objecW-orienWed  and  high-densiW\  CDS  acWiYiWies  sXch  as  book  reading,  Zhich                

are  rare  in  some  commXniWies.  IW  can  be  challenging  Wo  compare  speech  Wo  children  across  differenW                  

acWiYiWies,  and  in  differenW,  cXlWXrall\-appropriaWe  roXWines.   WoolleWW  (1986)  reporWed  WhaW  moWher  Wo              

child  inWeracWions  are  largel\  dependenW  on  conWe[W.   Goldfield  (1993)  docXmenWed  WhaW  Wo\  pla\  inciWes                

Whe  prodXcWion  of  more  noXns  Whan  Yerbs,  Zhereas  Whe  opposiWe  happens  dXring  non-Wo\  pla\  (ph\sical                 

pla\).  Similar  paWWerns  haYe  been  reporWed  for  English  and  Mandarin  Chinese   (Tardif  eW  al.,  1999) ,                 

Korean   (Choi  &  Gopnik,  1995)  and  Japanese-learning  children   (OgXra  eW  al.,  2006) .  The  acqXired                

YocabXlar\  WhXs  depends  on  caregiYer-child   inWeracWion   norms .  Whereas  for  English-learning            

children,  mXch  Wime  spenW  ZiWh  caregiYers  consisWs  in  naming  objecWs,  and  man\  Zords  acqXired  are                 

basic-leYel   objecW   noXns,   Whis   ma\   noW   be   Whe   case   across   commXniWies.   

LasW,  researchers  W\picall\  record  one  or  a  feZ  hoXrs  of  a  child¶s  inpXW.  HoZeYer,  Whe  inpXW  of  a  child                     

ma\  differ  depending  on  Whe  Wime  of  Whe  da\   (Casillas  eW  al.,  2019;  SodersWrom  &  WiWWebolle,  2013;                   

VanDam  eW  al.,  2016) .  Recordings  aW  specific  Wimes  reflecW  Wemporar\  condiWions,  sXch  as  a  parWicXlar                 

conYersaWion  dXring  Whe  session   (HXWWenlocher  eW  al.,  2010) .  FeZ  sessions  cannoW  fXll\  capWXre  Whe                

diYersiW\   of   inpXW   and   prodXcWion,   someWimes   eYen   dXe   Wo   corpXs   arWefacWs   and   conWe[Ws.   

7.3   FXWXUe   UeVeaUch   

MonWag  eW  al.  (2018)  emphasi]es  WhaW  Where  is  a  loW  Ze  don¶W  knoZ  aboXW  langXage  learning,  and  WhaW                    

³Ze  need  Wo  XndersWand  all  Whis  if  Ze  are  Wo  Well  parenWs  hoZ  Whe\  shoXld  Walk  Wo  Wheir  children´  (p.22)  -                       

also  see   Leffel  &  SXskind,  (2013)  and  RoberWs  &  Kaiser  (2011) .   Casillas  eW  al.  (2019)  conclXdes  WhaW                   

more  qXanWiWaWiYe  and  reprodXcible  meWhods  in  diYerse  conWe[Ws  are  needed,  in  order  Wo  learn  more                 

aboXW  langXage  learning.  One  Za\  Wo  inYesWigaWe  differenW  conWe[Ws  is  b\  WesWing  scaled-Xp,  diYerse                

inpXW.  QXanWiWaWiYe  meWrics  ma\  inclXde  corpXs  anal\sis,  a  XsefXl  means  of  qXanWif\ing  diYersiW\  in                

inpXW,  and  modeling. In  ChapWeUV  8  and  9,  Ze  addUeVV  WheVe  b\  implemenWing  VegmenWaWion                

modeling   and   coUpXV   anal\VeV   in   diYeUVe,   naWXUaliVWic   VeWWingV.     

  

DXe  Wo  Whe  WEIRD  bias  and  oWher  meWhodological  issXes  of  preYioXs  sWXdies  discXssed  aboYe,  iW  is  sWill                   

Xnclear  ZhaW  inpXW  is  heard  across  cXlWXres.  PreYioXs  eYidence,  WhoXgh,  sXggesWs  WhaW  Where  is  no                 

sWandard  Za\  WhaW  children  are  addressed  Wo.  In  parWicXlar,  Whe  amoXnW  of  direcWed  inpXW  Yaries  and  Whe                   

role  of  CDS  is  noW  obYioXs  Zhen  Ze  look  aW  langXage  learning  aW  scale   (GierXW,  2007) .  In  differenW                    

enYironmenWs,  CDS  is  rare,  or  iW  does  noW  haYe  faciliWaWing  feaWXres.  HoZeYer,  children  groZing  Xp  in                  

Whese  enYironmenWs  somehoZ  learn  langXage.  MoreoYer,  Where  is  sWill  liWWle  informaWion  on  oWher               

speech  regisWers  ofWen  presenW  in  children¶s  ambienW  inpXW,  sXch  as  oYerheard  speech.   In  ChapWeUV  8                 

and  9,  Ze  addUeVV  WhiV  b\  compaUing  child-diUecWed  and  child-oYeUheaUd  Vpeceh,  aV  Whe\  ZeUe                
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heaUd  b\  childUen  in  a  non-WEIRD  and  a  WEIRD  cXlWXUe.  We  aWWempW  a  compaUiVon  of  Vpecific                  

feaWXUeV,   and   aVk   ZheWheU   Whe\   can   e[plain   aZa\   VegmenWabiliW\   diffeUenceV   in   ChapWeU   9.   

  

Finall\,  acqXisiWion  does  noW  alZa\s  happen  WhroXgh  a  moWher-child  d\adic  inWeracWion,  and  Whe  role  of                 

differenW  speakers  shoXld  also  be  Waken  inWo  consideraWion,  especiall\  in  cross-cXlWXral  sWXdies.  LiYing               

in  hoXseholds  ZiWh  more  people  Whan  a  W\pical  NorWh  American  famil\  mighW  sXggesW  WhaW  children                 

coXld  geW  enoXgh  langXage  inpXW,  eYen  if  iW  does  noW  come  from  Whe  direcW  famil\.  For  e[ample,  oWher                   

children  and  adXlWs  ofWen  haYe  prominenW  caregiYing  roles.  We  addUeVV  WhiV  b\  compaUing  Whe                

conWUibXWion  of  oWheU  VpeakeUV¶  child-diUecWed  and  oYeUheaUd  inpXW  in  a  non-WEIRD  and  a               

WEIRD   cXlWXUe,   in   ChapWeU   8.   
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8.   Child-diUecWed   aQd   RYeUheaUd   iQSXW   fURm   diffeUeQW   VSeakeUV   iQ   WZR   

ma[imall\   diVWiQcW   cXlWXUeV   *   

  
  
  

AbVWracW :   MRWKeU-cKLOd  d\ad  VSeecK  KaV  ORQJ  beeQ  WKe  fRcXV  Rf  eaUO\  LQSXW  VWXdLeV,  deVSLWe  eYLdeQce                 

VXJJeVWLQJ  WKaW  QRQ-PaWeUQaO  LQSXW  caQ  be  LPSRUWaQW  fRU  OaQJXaJe  RXWcRPeV.  AddLWLRQaOO\,  LQ  PaQ\               

cRPPXQLWLeV  (SaUWLcXOaUO\  QRQ-WEIRD  RQeV),  LQWeUacWLRQ  RccXUV  ZLWK  PXOWLSOe  VSeaNeUV  UaWKeU  WKaQ             

PRVWO\  WKe  PRWKeU.  YeW,  feZ  VWXdLeV  deVcULbe  CDS  fURP  YaULRXV  VSeaNeUV,  aQd  eYeQ  feZeU  LQYeVWLJaWe                 

WKLV   acURVV   cXOWXUeV.     

  

IQ  WKLV  VWXd\,  Ze  aQaO\]e  VSeecK  SURdXced  aURXQd  aQd  WR  cKLOdUeQ  b\  WKeLU  PRWKeU,  RWKeU  cKLOdUeQ  aQd                   

adXOWV,  LQ  WZR  dLYeUVe  cXOWXUeV.   We  aVN  ZKR  SURdXceV  WKe  LQSXW ,  aQd  KRZ  PXcK  Rf  LW  LV  cKLOd-dLUecWed.                    

We  aOVR  aVN  ZKeWKeU  dLffeUeQW  VSeaNeUV  YaU\  LQ  WeUPV  Rf  XWWeUaQce  OeQJWK,  fXQcWLRQ  (UaWLR  Rf  TXeVWLRQV)                  

aQd  Oe[LcaO  dLYeUVLW\.  TR  aQVZeU  WKeVe  TXeVWLRQV,  Ze  aQQRWaWed  WKUee  cRUSRUa.  TKe  QRQ-WEIRD               

DePXWK  cRUSXV  LQ  WKe  SeVRWKR  OaQJXaJe  ZaV  UecRUded  LQ  QRQ-LQdXVWULaO  SRXWK  AfULc aQ   LeVRWKR.  We                

aOVR  aQQRWaWed  UecRUdLQJV  fURP  WKe  WEIRD  L\RQ  aQd  PaULV  cRUSRUa  fRU  WKUee  cKLOdUeQ-  WKRVe  ZLWK                 

VLbOLQJV,   aQd   WKe   VaPe   aJe   UaQJe   aV   LQ   WKe   DePXWK   cRUSXV.     

  

CDS  LV  VLJQLfLcaQWO\  SUeYaOeQW  RYeU  RYeUKeaUd  VSeecK  fRU  bRWK  VeWWLQJV.  HRZeYeU,  WKe   LQSXW               

cRPSRVLWLRQ  LV  dUaPaWLcaOO\  dLffeUeQW;  PaWeUQaO  LQSXW  LV  PRUe  dRPLQaQW  LQ  WKe  WEIRD  cRUSRUa               

cRPSaUed  WR  WKe  QRQ-WEIRD  RQe.  IQ  WKe  OaWWeU,  RWKeU  cKLOdUeQ'V  LQSXW  LV  PRUe  SUeYaOeQW  WKaQ  PaWeUQaO                  

LQSXW.  IQWeUeVWLQJO\,  LQ  WeUPV  Rf  VSeecK  TXaOLW\,  RWKeU  cKLOdUeQ¶V  aQd  adXOWV¶  CDS  SUeVeQW  VLPLOaULWLeV                

ZLWK  PaWeUQaO  VSeecK  ZLWKLQ  eacK  cXOWXUe.  TKeVe  UeVXOWV  LQYLWe  fXUWKeU  cURVV-cXOWXUaO  eaUO\  LQSXW               

UeVeaUcK,  LQ  RUdeU  WR  cKecN  Lf  WKeVe  VSeecK  cRPSRVLWLRQV  aQd  TXaOLWLeV  aUe  UeSUeVeQWaWLYe  Rf  WEIRD                 

aQd  QRQ-WEIRD  TXaQWLfLabOe  dLVWLQcWLRQV,  aQd  WKe  LPSacW  WKeVe  PLJKW  KaYe  fRU  OaQJXaJe              

deYeORSPeQW.   

  
  
  

*LoXkaWoX,  G.,  Scaff,  C.,  DemXWh,  K.,  CriVWia,  A.  &  HaYron,  N.  Child-direcWed  and  oYerheard                

inpXW   from   differenW   VpeakerV   in   WZo   ma[imall\   diVWincW   cXlWXreV.   (Xnder   reYieZ)   
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Child-diUecWed   and   oYeUheaUd   inSXW   fUom   diffeUenW   

VSeakeUV   in   WZo   ma[imall\   diVWincW   cXlWXUeV   

  

The  amRXnW  and  TXaliW\  Rf  eaUl\  langXage  inSXW  aUe  facWRUV  affecWing  childUen¶V  langXage               

deYelRSmenW,  and  haYe  dUaZn  VXbVWanWial  aWWenWiRn  in  UeVeaUch   (e.g.  HaUW  &  RiVle\,  1995;  HRff                

&  NaigleV,  2002) .  FRU  e[amSle,  VRme  UeVeaUch  VhRZV  WhaW  childUen¶V  YRcabXlaU\  VkillV              

cRUUelaWe  ZiWh  Whe  amRXnW  and  TXaliW\  Rf  inSXW  VSeech  WhaW  mRWheUV  RffeU  childUen  dXUing                

da\-WR-da\  inWeUacWiRnV   (HRff,  2003 ;   HRff  &  NaigleV,  2002 ;   HaUW  &  RiVle\,  1995) .  HRZeYeU,               

SUeYiRXV  liWeUaWXUe  haV  mRVWl\  fRcXVed  Rn   maWeUnal  inSXW.  RelaWiYel\  liWWle  aWWenWiRn  haV  been               

deYRWed  WR  inSXW  fURm  RWheU  childUen  and  adXlWV.  In  WhiV  SaSeU,  Ze  Zill  deVcUibe  inSXW  fURm                  

cRUSRUa   ZheUe   RWheU   VSeakeUV,   in   addiWiRn   WR   mRWheUV,   Walk   WR   childUen.     

  

MRVW  SUeYiRXV  VWXdieV  Rn  langXage  inSXW  aUe  baVed  Rn  familieV  liYing  in  middle-claVV               

EXUR-AmeUican  cRmmXniWieV.  Indeed,   HenUich  eW  al.  (2010)  RbVeUYed  WhaW  mRVW   SaUWiciSanWV  in              

SV\chRlRgical  VWXdieV  cRme  fURm   a   WeVWeUn,   EdXcaWed,  IndXVWUiali]ed,  Rich  and  DemRcUaWic             

(WEIRD)   SRSXlaWiRn  VamSle,  and  WhiV  biaV  iV  alVR  RbYiRXV  in  deYelRSmenWal  VWXdieV  (NielVen               

eW  al.,  2017).   R ecenW  eYidence  SRinWV  WR  Whe  facW  WhaW  inSXW  diffeUV  deSending  Rn  Whe  cXlWXUe  Rf                   

Whe  famil\   (e.g.  CUiVWia  eW  al.,  2019) .  WhaW  limiWed  liWeUaWXUe  e[iVWV  VXSSRUWV  Wh e  idea  WhaW                 

diffeUenW   SRSXlaWiRnV   alVR   haYe   diffeUenW   nRUmV   abRXW   ZhR   iV   e[SecWed   WR   VSeak   WR   childUen.     

SoXrceV   of   inpXW   

In  mRVW   middle-claVV  EXUR-AmeUican   familieV,  SaUenWV  aUe  e[SecWed  WR  haYe  abVRlXWe             

UeVSRnVibiliW\  RYeU  WheiU  childUen.  CRnVeTXenWl\,  mRVW  VWXdieV  fRcXV  Rn  SaUenWal  inSXW,  UaWheU              
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Whan  inSXW  fURm  nRn-SaUenWal  VSeakeUV   (e.g.  BakeUmanV-KUanenbXUg  eW  al.,  2004;  HXWWenlRcheU             

eW  al.,  2010;  IVSa  eW  al.,  2004;  Pan  eW  al.,  2005) .  MRUeRYeU,  in  WheVe  familieV,  Whe  mRWheU                   

W\Sicall\  haV  Whe  URle  Rf  SUimaU\  caUegiYeU   (e.g.  RRRSnaUine  eW  al.,  2005) .  AV  a  UeVXlW,                 

mRWheU-child   d\ad   VSeech   haV   lRng   been   emShaVi]ed   in   eaUl\   inSXW   VWXdieV.   

  

HRZeYeU, Whe  fRcXV  Rn  Whe  mRWheU  aV  Whe  SUimaU\  caUegiYeU  mighW  nRW  UeflecW  XniYeUVal  hXman                 

WendencieV.   The Ue  iV  eYidence  VXggeVWing  WhaW  mRWheUV  aUe  nRW  alZa\V  Whe  VRle,  RU  eYen                

SUinciSal  caUeWakeUV   (e.g.  Shneidman  &  GRldin MeadRZ,  2012;  WeiVneU  eW  al.,  1977) .             

CaUeWaking  Rf  a  child  b\  an  indiYidXal  ZhR  iV  nRW  Whe  mRWheU  iV  UefeUUed  WR  aV  allRmaWeUnal                   

caUe.  ReVSRnVibiliW\  fRU  caUe  can  be  VhaUed  amRng  a  ciUcle  Rf  indiYidXalV,  kin  and  nRn-kin,                 

RldeU  ViblingV,  SeeUV  RU  cRXVinV,   aV  SaUW  Rf  cRmmRn  dail\  URXWine  aURXnd  Whe  ZRUld   (FRXWV  eW                  

al.,  2012) .  EYen  i n   middle-claVV  EXUR-AmeUican   familieV,   ViblingV  mighW  Sla\  VRme  caUeWaking              

URle.  FRU  inVWance,  in  an  e[SeUimenWal  VeWWing  ZiWh  57  AmeUican  mRWheUV  and  WheiU  SUeVchRRl                

childUen,   SWeZaUW  &  MaUYin  (1984)  fRXnd  WhaW  Zhen  Whe  mRWheU  lefW  Whe  URRm,  51%  Rf  RldeU                  

ViblingV  engaged  in  caUeWaking  acWiYiWieV.  Sibling  caUeWaking  haV  alVR  been  dRcXmenWed   in  blXe               

cRllaU  AfUica n-AmeUican  and  LaWinR  familieV,  ZheUe  mRVW  Sla\  alVR  haSSenV  amRng  ViblingV              

(ZXkRZ-GRldUing,  2002) .  LRZeU  incRme  EXUR-AmeUican  familieV  alVR  Veem  WR  Uel\  mRUe  Whan              

middle   incRme   familieV   Rn   e[Wended   kin   fRU   child   caUe    (HRffeUWh,   1995) .    

  

AcURVV  diYeUVe  cXlWXUeV,  Whe  need  WR  VWXd\  mRUe  VSeakeUV  Whan  Whe  mRWheU  iV  eYen  mRUe                 

eYidenW.  UVing  an  eWhnRgUaShicall\-deWailed  VamSle  Rf  186  VRcieWieV,   BaUU\  &  Pa[VRn  (1971)              

fRXnd  WhaW  Rnl\  46.2%  Rf  Whe  VRcieWieV  had  mRWheUV  aV  SUinciSal  caUeWakeUV.  AfWeU  infanc\,  WhiV                 

SURSRUWiRn  decUeaVed  b\  anRWheU  19.4%  (Vee  alVR   WeiVneU  eW  al.,  1977) .  DXUing  infanc\,  adXlW                

famil\  membeUV  aUe  Whe  SUinciSal  cRmSaniRnV  RU  caUeWakeUV  in  39.8%  Rf  Whe  VRcieWieV  (32.3%                
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aUe  mRWheUV  RU  RWheU  femaleV),  childUen  Uank  VecRnd  (16.7%  femaleV,  24.8%  RYeUall)  and  RWheU                

femaleV,   inclXding   emSlR\eeV,   WhiUd   (9.1%).   

  

MRUe  geneUall\,  anWhURSRlRgical  eYiden ce  findV  WhaW  Vibl ingV  aUe  fUeTXenW  allRmaWeUnal  caUeUV             

acURVV  cXlWXUeV,  fRU  e[amSle  in  NgRni  Rf  MalaZi,  ( Read,  1968) ;  DXVXn  Rf  Mala\Via,               

(WilliamV,  1971) ;  JaYa,   (GeeUW],  1989) ;  KZRma  Rf  NeZ  GXinea   (WhiWing,  1941) ;  PRl\neVia              

(MaUWini  &  KiUkSaWUick,  1992) .  In  HaZaiian  familieV,  caUeWaking  iV  VhaUed  amRng  SaUenWV,              

neighbRUV,  kin,  and  almRVW  alZa\V  childUen   (GallimRUe  eW  al.,  1974) .  TheVe  UeVXlWV  alVR  UelaWe                

WR  hRXVehRld  Vi]e,  aV  laUgeU  hRXVehRld  Vi]e  meanV  mRUe  RSSRUWXniWieV  fRU  allRmRWheUing.  FRU               

e[amSle,  Whe  WRWal  nXmbeU  Rf  ViblingV  and  incidence  Rf  Vibling  caUeWaking  Veem  WR  cRUUelaWe  in                 

HaZaiian-AmeUican  familieV   (GallimRUe  eW  al.,  1974) .  FamilieV  Wend  WR  be  laUgeU             

cURVV-cXlWXUall\   Whan   iV   Whe   caVe   fRU   Whe   UniWed   SWaWeV    (BXUch,   1970,   1979) .   

  

EYen  Zhen  childUen  in  Whe  enYiURnmenW  aUe  nRW  allRmaWeUnal  caUeUV,  Whe\  ma\  Sla\  ZiWh  Whe                 

\RXngeU  child,  and  WheUefRUe  haYe  an  RSSRUWXniW\  WR  SURYide  lingXiVWic  inSXW.  Pla\  in  childUen                

gURXSV  Rf  Whe  Vame  RU  mi[ed  age  iV  anRWheU  Za\  WR  e[SRVe  RneVelf  WR  langXage.  ChildUen                  

gURZing  XS  in  middle-claVV  EXUR-AmeUican  familieV  inWeUacW  in  gURXSV  Rf  RWheU  childUen  Rn               

man\  RccaViRnV,  VXch  aV  in  SUeVchRRl  and  kindeUgaUWen  (eYen  WhRXgh  WheVe  inWeUacWiRnV  aUe               

XVXall\  mRniWRUed  b\  adXlWV).  AccRUding  WR   O¶ShanneVV\  (2013) ,  in  man\            

AXVWUalian-IndigenRXV  cRmmXniWieV,  childUen  VSend  a  gUeaW  deal  Rf  Wime  inWeUacWing  ZiWh  RWheU              

childUen.  In  AUnhem  Land,  childUen  aUe  abVRUbed  inWR  SeeU  gURXSV  b\  Whe  age  Rf  WZR  \eaUV                  

(HamilWRn,  1981) .  In  GXaWemala,  childUen  aW  Whe  age  Rf  WZR  \eaUV  VWaUW  VSending  WheiU  Wime                 

ZiWh   RWheU   childUen   and   VeldRm   lRRk   fRU   adXlW   aWWenWiRn    (RRgRff,   1981) .   
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OWheU  adXlWV  VhRXld  alVR  be  cRnVideUed  aV  a  SRWenWiall\  imSRUWanW  VRXUce  Rf  inSXW.  FRU                

e[amSle,  accRUding  WR  Whe  CenVXV  2000   (SimmRnV  &  D\e,  2003) ,  5.8  milliRn  gUandSaUenWV  in                

Whe  UniWed  SWaWeV  ZeUe  eiWheU  SUimaU\  caUegiYeUV  UaiVing  gUandchildUen,  RU  liYing  aV              

cRUeVidenWV  and  helSing  WR  caUe  fRU  gUandchildUen  (Vee  alVR   SWanding  eW  al.,  2007) .  CaUegiYing                

b\  RWheU  adXlWV,  VXch  aV  gUandmRWheUV,  iV  cRmmRn  in  man\  cXlWXUeV,  inclXding  man\  AfUican                

cRmmXniWieV    (e.g.   ThXSa\agale TVhZeneagae,   2008) .   

  

DeVSiWe  WheVe  facWV,  feZ  VWXdieV  deVcUibe  inSXW  WR  childUen  SURdXced  b\  RWheU  famil\  membeUV                

VXch  aV   ViblingV   (bXW  Vee  HRff-GinVbeUg  &  KUXegeU,  1991;  WeSSelman  eW  al.,  2003) ,  and  RWheU                 

adXlWV   (bXW  Vee  ShXWe  &  Wheldall,  1999,  2001) .  OXU  VWXd\  Zill  Wake  a  VWeS  inWR  filling  WhiV  gaS                    

b\  anal\]ing  Whe  amRXnW  and  TXaliW\  Rf  inSXW  VSeech  childUen  UeceiYe  in  diYeUVe  cRmmXniWieV                

b\   mRWheUV,   RWheU   childUen,   and   adXlWV.   

QXanWiW\   of   inpXW   

AcURVV  cXlWXUeV,  Whe  WRWal  amRXnW  Rf  inSXW  diUecWed  WR  childUen  diffeUV.  ChildUen  ma\  be                

addUeVVed  b\  WheiU  caUegiYeUV  Rnl\  UaUel\,  VRmeWimeV  becaXVe  Whe\  aUe  nRW  Veen  aV               

cRmmXnicaWiYe  SaUWneUV   (LieYen,  1994) .  ThiV  haV  been  nRWed,  fRU  e[amSle,  in  GXVii  mRWheUV               

in  Ken\a   (Richman  eW  al.,  1992) ,  GaSXneUV  in  PaSXa  NeZ  GXinea   (KXlick,  1992) ,  KalXli  in                 

PaSXa  NeZ  GXinea   (OchV  &  Schieffelin,  1994) ,  SamRanV  in  WeVWeUn  SamRa   (OchV  &               

Schieffelin,  1994)  and  JaYaneVe  VSeakeUV  in  EaVW  JaYa   (WRlff  &  PRedjRVRedaUmR,  1984) .   ThiV               

diffeUence  mighW  be  eVSeciall\  UeleYanW  Zhen  VWXd\ing  Whe  URle  Rf  diffeUenW  VSeakeUV,  becaXVe,               

aV   menWiRned   abRYe,   cXlWXUeV   YaU\   in   ZhR   VSendV   Wime   ZiWh   Whe   child.     
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A  VWXd\  baVed  Rn  da\lRng  UecRUdingV  fRXnd  WhaW  TVelWal  Ma\an  childUen  aUe  Rnl\  infUeTXenWl\                

diUecWl\  VSRken  WR  b\  adXlWV:  a  da\-Zide  aYeUage  Rf  3.63  min  SeU  hU   (CaVillaV  eW  al.,  2019) ,                   

Zhich  iV  aSSUR[imaWel\  a  WhiUd  Rf  ZhaW  fRXnd  fRU  NRUWh  AmeUican  childUen  (11.36  min  SeU  hU,                  

BeUgelVRn  eW  al.,  2019) ,  bXW  iV  cRmSaUable  WR  WhaW  fRU  TVimane  childUen   (CUiVWia  eW  al.,  2019)                  

and  YXcaWec  Ma\an  childUen   (Shneidman  &  GRldin MeadRZ,  2012) .  MeanZhile,  TVelWal            

childUen  heaU  a  lRW  Rf  RWheU-diUecWed  VSeech  (ODS),  aYeUaging  21.05  min  SeU  hU,  Zhich  iV  mRUe                  

Whan   haV   been   SUeYiRXVl\   UeSRUWed   fRU   RWheU   cXlWXUal   VeWWingV   (e.g.,    BeUgelVRn   eW   al.,   2019 ).     

  

Child-diUecWed  VSeech  iV  nRW  an  e[clXViYe  VRXUce  Rf  inSXW,  and  WheVe  VWXdieV  dR  nRW  UXle  RXW                  

WhaW  RWheU  UegiVWeUV  and  VSeech  fURm  RWheU  VSeakeUV  mighW  alVR  cRnWUibXWe  WR  Whe  child¶V  inSXW                 

(SRdeUVWURm,  2007) .   EYen  WhRXgh  Whe\  aUe  nRW  diUecWl\  addUeVVed  b\  adXlWV,  TVelWal  childUen               

VRmehRZ  e[WUacW  enRXgh  infRUmaWiRn  WR  SURdXce  canRnical  babbling,  fiUVW  ZRUdV,  and  ZRUd              

cRmbinaWiRnV  aW  aSSUR[imaWel\  Whe  Vame  ageV  WhaW  NRUWh  AmeUican  EngliVh-leaUning  childUen             

dR (CaVillaV  eW  al.,  2019) .  SRme  UeVeaUcheUV  aUgXe  WhaW  aW  leaVW  VRme  amRXnW  Rf  eaUl\  langXage                  

leaUning  mXVW  be  baVed  Rn  RYeUheaUd,  UaWheU  Whan  child-diUecWed  VSeech  (e.g.   OchV  &               

Schieffelin,  1994 ).   LieYen  (1994 )  VXggeVWV  WhaW  Whe  child-cenWeUed  VW\le  Rf  VSeaking  iV  Rne               

Za\  Rf  enabling  childUen  WR  leaUn  langXage,  bXW  iW  iV  nRW  eVVenWial,  and  cRnclXdeV  WhaW  childUen                  

aURXnd  Whe  glRbe  Wend  WR  leaUn  langXage  aW  aSSUR[imaWel\  Whe  Vame  Wime,  deVSiWe  Whe  man\                 

diYeUVe   Za\V   Rf   VSeaking   WR   (and   aURXnd)   Whem.     

  

Indeed,  childUen  aUe  gRRd  aW  RbVeUYing  and  leaUning  fURm  inWeUacWiRnV  Waking  Slace  aURXnd               

Whem  (e.g.   RRgRff,  2003  -  Vee  alVR  behaYiRUal  e[SeUimenWV  fURm   AkhWaU,  2005  and  naWXUaliVWic                

eYidence  fURm   BaUWRn  &  TRmaVellR,  1991  and  DXnn  &  ShaW],  1989) .  We  VhRXld  alVR  cRnVideU                 

Whe  facW  WhaW  ODS  iV  nRW  neceVVaUil\  VSeech  diUecWed  WR  adXlWV,  bXW  iW  can  alVR  be  diUecWed  WR                    
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RWheU  childUen,  eVSeciall\  in  cRmmXniWieV  ZheUe  childUen  VSend  a  lRW  Rf  Wime  WRgeWheU.  SSeech                

diUecWed  WR  RWheU  childUen,  eYen  WhRXgh  RYeUheaUd,  ma\  be  eaVieU  WR  fRllRZ  and  Rf  higheU                 

UeleYance   WR   Whe   child   Whan   VSeech   diUecWed   WR   adXlWV.   

  

WheUeaV  in  US  familieV,  ViblingV  Veem  WR  addUeVV  WheiU  \RXngeU  ViblingV  mXch  leVV  Whan  WheiU                 

mRWheUV  dR   (OVhima-Takane  &  RRbbinV,  2003) ,  a  VWXd\  Rn  Whe  TVimane             

fRUageU-hRUWicXlWXUaliVW  VRcieW\  in  BRliYia  fRXnd  WhaW  Zhile  42%  Rf  child-diUecWed  VSeech  came              

fURm  Whe  mRWheU,  37%  came  fURm  RWheU  childUen,  and  Whe  UeVW  fURm  RWheU  adXlWV  (Scaff  eW  al.,  in                    

SUeS.).  AccRUding  WR   Shneidman  &  GRldin MeadRZ  (2012 ),  Whe  amRXnW  Rf  XWWeUanceV  VSRken              

b\  RWheU  childUen  ZaV  higheU  in  a  YXcaWec  Ma\an  Yillage  Whan  in  ChicagR  (68%  YV.  10%  aW  24                    

mRnWhV),  and  Xnlike  in  ChicagR,  a  Vibling  Walked  WR  Whe  WaUgeW  child  mRUe  Whan  an  adXlW  ZRXld.                   

YakanaUUa  childUen  inWeUlRcXWRUV  alVR  addUeVV  maUkedl\  mRUe  inSXW  WR  \RXngeU  inWeUlRcXWRUV             

Whan  RldeU  inWeUacWanWV  dR   (LRakeV  eW  al.,  2013) .  MRWheUV  ZeUe   noW  Whe  majRU  VRXUce  Rf                 

langXage   inSXW   fRU   LXR,   KR\a   and   SamRan   childUen    (SnRZ   &   FeUgXVRn,   1979) .     

  

   QXaliW\   of   inpXW   

QXanWiW\  iV  nRW  Whe  Rnl\  aVSecW  Rf  inSXW  WhaW  maWWeUV.  The   TXaliW\  Rf  inSXW  (heUe,  iWV                  

mRUShRV\nWacWic,  le[ical  and  inWeUacWiRnal  SURSeUWieV)  iV  imSRUWanW.  The  inSXW  addUeVVed  WR  a              

child  iV  called  child-diUecWed  VSeech  (CDS).  CDS  iV  SUefeUUed  b\  childUen  WR  adXlW-diUecWed               

VSeech  (ADS)   (The  Man\BabieV  CRnVRUWiXm  eW  al.,  2020) ,  iW  VeemV  WR  SURmRWe  langXage               

leaUning    (SRdeUVWURm,   2007)    and   can   diffeU   in   TXaliW\   fURm   ADS   alRng   man\   aVSecWV.     

  

SRme  Rf  Whe  eaUlieVW   ZRUk  Rn  CDS  UeSRUWed  WhaW  iW  iV  a  UegiVWeU  adjXVWed  WR  child  liVWeneUV,                   

e[hibiWing  V\nWacWic,  ShRnRlRgical  and  le[ical  VimSlificaWiRn.  SSecificall\,  maWeUnal  CDS  iV            
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chaUacWeUi]ed  b\  a  laUge  nXmbeU  Rf  TXeVWiRnV   (e.g.  KUXSeU  &  UågiUiV,  1987;  TRda  eW  al.,  1990) ,                  

UeSeWiWiRnV   (e.g.  HRff,  2006) ,  VhRUWeU  XWWeUanceV  and  lRZ  W\Se-WRken  UaWiR   (e.g.  Henning  eW  al.,                

2005) .  CDS  ma\  alVR  be  helSfXl  fRU  ZRUd  leaUning,  dXe  WR  a  SUeSRndeUance  Rf  Vingle  ZRUd                  

XWWeUanceV    (e.g.   BUenW   &   SiVkind,   2001) .   

  

AlWhRXgh  AmeUican  EngliVh  iV  Whe  mRVW  VWXdied  langXage  ZiWh  UeVSecW  WR  CDS,  WheUe  iV                

eYidence  fRU  VRme  SURSeUWieV  Rf  CDS  in  a  YaUieW\  Rf  langXageV,  inclXding  FUench   (LRXkaWRX                

eW  al.,  2019;  Vene]ianR  &  PaUiVVe,  2010) ,  GeUman   (FeUnald  &  SimRn,  1984) ,  JaSaneVe               

(FeUnald  &  MRUikaZa,  1993) ,  SSaniVh   (WeiVledeU  &  Wa[man,  2010) ,  HebUeZ   (Adi-BenVaid             

eW  al.,  2015) ,  TXUkiVh  and  MandaUin  ChineVe   (Shi  eW  al.,  1998) ,  BUiWiVh  EngliVh   (ShXWe  &                 

Wheldall,  1999) ,  and  AXVWUalian  EngliVh   (Lee  eW  al.,  2014) .  CD S  ZRUd  WRkenV  and  W\SeV  aUe  a                  

beWWeU  SUedicWRU  Rf  YRcabXlaU\  acTXiViWiRn  Whan  RYeUall  heaUd  WRkenV  and  W\SeV   (BUenW  &               

SiVkind,   2001;   Shneidman   &   GRldin MeadRZ,   2012) .     

  

CURVV  cXlWXUal  diffeUenceV  aUe  fRXnd  nRW  Rnl\  fRU  Whe  RYeUall  amRXnW  Rf  VSeech  aURXnd  Whe                 

child,  Whe  SURSRUWiRn  Rf  CDS  acURVV  cXlWXUeV,  and  Whe  VSeakeUV  ZhR  VSeak  aURXnd  Whe  child,                 

bXW  alVR  in  Whe   Za\  VSeakeUV  addUeVV  childUen.  SRme  diVWingXiVhing  feaWXUeV  Rf  CDS  can  be                 

fRXnd  acURVV  cXlWXUeV.  FRU  e[amSle,  Ngaan\aWjaUUa  childUen  in  IndigenRXV  AXVWUalia  aUe             

addUeVVed  ZiWh  ShRnRlRgicall\  VimSlified  CDS,  ZiWh  UeSeWiWiRnV  and  VlRZeU  VSeech  UaWe   (e.g.              

KUal  &  ElliV,  2008) .   HaUkneVV  (1977)  RbVeUYed  WhaW  KiSVigiV  caUegiYeUV  in  Ken\a  adjXVW  Whe                

lengWh  and  cRmSle[iW\  Rf  WheiU  XWWeUanceV  WR  WheiU  childUen¶V  lengWh  Rf  XWWeUance.   FiVheU  &                

TRkXUa  (1996)  UeSRUWed  WhaW  JaSaneVe-  and  EngliVh-VSeaking  mRWheUV  add  SURVRdic  cXeV  aW              

XWWeUance   edgeV,   and   alWeU   ShRneWic   cXeV   UeleYanW   WR   WheiU   langXage.     
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HRZeYeU,  VSeech  addUeVVed  WR  childUen  iV  nRW  alZa\V  VimSlified.  FRU  e[amSle,  cRnWUaU\  WR               

VWXdieV  in  middle-claVV  EXUR-AmeUican  cRmmXniWieV,  JaYaneVe  childUen  aUe  VSRken  WR  ZiWh             

cRmSle[  hRnRUific  fRUmV  WhaW  Whe\  aUe  VXSSRVed  WR  XVe  in  RUdeU  WR  Walk  WR  WheiU  VXSeUiRUV,  and                   

ZiWh  lRngeU  and  mRUShRlRgicall\  mRUe  cRmSle[  XWWeUanceV  Whan  XVed  in  ADS   (SmiWh-HefneU,              

1988) .  SimilaUl\,  KalXli  a nd  SamRan  caUegiYeUV  dR  nRW  engage  in  mRUShRV\nWacWic             

VimSlificaWiRn   (OchV  &  Schieffelin,  1994) ,  and  liWWle  langXage  inSXW  in  InXkWiWXW-VSeaking             

cRmmXniWieV  iV  mRUShRV\nWacWicall\  VimSlified   (Allen  &  CUagR,  1997) .  QXiche�  Ma\an  CDS             

dReV  nRW  haYe  VRme  Rf  Whe  SURSeUWieV  nRWed  in  AmeUican  EngliVh  CDS;  bXW  QXiche�-Ma\an                

mRWheUV  XVe  RWheU  feaWXUeV  nRW  fRXnd  in  EngliVh  CDS,  VXch  aV  ZhiVSeUing,  iniWial-V\llable               

deleWiRn  and  a  VXffi[  Rnl\  fRXnd  in  CDS   (P\e,  1986) .  ThXV,  WheUe  VeemV  WR  be  cURVV-cXlWXUal                  

YaUiaWiRn  Rf  feaWXUeV  ZiWhin  CDS.  IW  iV  nRWed  WhaW,  deVSiWe  leVV  VimSlificaWiRn  in  CDS,  WheUe  iV                  

VRme  dRcXmenWaWiRn  WhaW  KalXli,  InXkWiWXW  and  SamRan  childUen  leaUn  langXage  ZiWhin  Whe              

Uange   Rf   nRUmal   deYelRSmenWal   YaUiaWiRn    (Allen   &   CUagR,   1997;   OchV   &   Schieffelin,   1994) .     

  

While  VRme  cXlWXUeV  haYe  been  maSSed  ZiWh  UeVSecW  WR  WheiU  diVWingXiVhing  TXaliWieV  Rf  CDS,                

leVV  iV  knRZn  abRXW  Whe  Za\  diffeUenW   VSeakeUV   XVe  CDS.  ThaW  iV,  dR  RWheU  childUen  and  adXlWV                   

alVR  engage  in  VXch  TXaliWaWiYe  mRdificaWiRnV  Rf  VSeech?  AUe  Whe  chaUacWeUiVWicV  Rf  CDS               

VimilaU  fRU  nRn-maWeUnal  VSeakeUV  acURVV  VRcieWieV?  FRU  e[amSle,  YeU\  feZ  VWXdieV  haYe              

inYeVWigaWed  CDS  SURdXced  b\  RWheU  childUen.  WiWh  UeVSecW  WR  ViblingV  in  US  familieV,   DXnn                

&  KendUick  (1982)  and  ShaW]  &  Gelman  (1973)  UeSRUWed  WhaW  ViblingV  adjXVWed  WheiU  VSeech                

Zhen  Walking  WR  WheiU  \RXngeU  ViblingV.  The\  XVed  VhRUW  VenWenceV,  VimSle  YeUb  WenVeV,  and                

UeSeaWed  WheiU  VenWenceV  WZice  aV  mXch  aV  Zhen  Whe\  ZeUe  Walking  WR  WheiU  mRWheUV.  In                 

LeVRWhR,   CRnnell\  (1984)  RbVeUYed  WhaW  eYen  WZR-\eaU-Rld  SeVRWhR-leaUning  childUen           

VSeaking  WR  \RXngeU  childUen  adjXVW  WheiU  VSeech,  WhRXgh   DemXWh  (1986)  UeSRUWed  WhaW              
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SeVRWhR-VSeaking  ViblingV  leaUn  cRmSle[  lingXiVWic  fRUmV,  VXch  aV  UelaWiYe  claXVeV  (e.g.,             

³BUing  WhaW  Whing  \RX  fRXnd´),  mRUe  fURm  ViblingV  Whan  fURm  adXlWV.  FXUWheUmRUe,  i n  a                

WaVk-RUienWed  VWXd\  ZheUe  VeYen-WR-eighW-\eaU  Rld  ViblingV  fURm  US  familieV  Sla\ed  ZiWh  WheiU              

WRddleU  ViblingV  XVing  WR\V,  Whe\  ZeUe  fRXnd  WR  be  leVV  adeSW  Whan  WheiU  mRWheUV  in  adjXVWing                  

VSeech  WR  WheiU  \RXngeU  ViblingV   (HRff-GinVbeUg  &  KUXegeU,  1991) .  OWheU  VWXdieV  haYe              

cRnfiUmed  WhiV,  VhRZing  WhaW  SUeVchRRl  childUen  cRUUecW  WheiU  ViblingV¶  V\nWa[  leVV  RfWen  Whan               

WheiU  SaUenWV  dR,  aVk  feZeU  TXeVWiRnV,  and  SURYide  feZeU  cRUUecWiYe  UeSeWiWiRnV   (DXnn  &               

KendUick,   1982;   Mannle   eW   al.,   1991;   SWUaSS,   1999) .     

  

Like  mRWheUV,  faWheUV  and  gUandmRWheUV  Veem  WR  adRSW  a  VimSlified  VSeech  UegiVWeU  WRZaUdV               

childUen  in   FUench,  IWalian,  GeUman,  JaSaneVe,  BUiWiVh  and  AmeUican  EngliVh   (FeUnald  eW  al.,               

1989) .  BRWh  VimilaUiWieV  and  diffeUenceV  in  VSeech  haYe  been  RbVeUYed  beWZeen  mRWheU  and               

RWheU  adXlW  VSeakeUV  in  AmeUican  EngliVh  and  FUench   (PancVRfaU  &  VeUnRn-FeaganV,  2006;              

RRndal,  1980) .  In  FeUnald  eW  al.  (1989),   bRWh  faWheUV  and  mRWheUV  XVed  VhRUWeU  XWWeUanceV                

Zhen  VSeaking  WR  WheiU  childUen  Whan  Zhen  VSeaking  WR  an  adXlW.   FaWheUV'  VSeech  aW  24  mRnWhV                  

ZaV  SUedicWiYe  Rf  childUen'V  langXage  deYelRSmenW  aW  36  mRnWhV  in  AmeUican  EngliVh              

(TamiV LeMRnda,  2004) .  HRZeYeU,  in  a  VWXd\  b\   RRndal  (1980) ,  FUench  faWheUV¶  VSeech  ZaV               

mRUe  le[icall\  diYeUVe  and  cRnWained  lRngeU  XWWeUanceV  Whan  mRWheU¶V  VSeech,  and             

McLaXghlin  eW  al.  (1983 )  fRXnd  WhaW  mRWheUV  WXne  WheiU  langXage  (AmeUican  EngliVh)  mRUe  WR                

Whe   child'V   lingXiVWic   abiliWieV   Whan   faWheUV   dR.     

The   presenW   sWXd\   

AV  WhiV  bUief  VXmmaU\  hRSefXll\  illXVWUaWeV,  WheUe  aUe  VWill  laUge  gaSV  in  RXU  knRZledge  abRXW                 

Whe  naWXUe  Rf  langXage  inSXW  acURVV  cXlWXUeV.  TheUe  iV  VWURng  eYidence  WhaW  CDS  fURm  mRWheUV                 
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iV  cUXcial  WR  acTXiViWiRn.  AW  Whe  Vame  Wime,  in  EXUR-AmeUican  familieV,  and  eVSeciall\  in                

leVV-VWXdied  diYeUVe  cXlWXUeV,  lingXiVWic  inSXW  ma\  cRme  fURm  RWheU  SeRSle,  YeU\  RfWen              

childUen.  IW  iV  VWill  XnknRZn  ZhaW  SURSeUWieV  chaUacWeUi]e  WhiV  kind  Rf  inSXW,  and  ZheWheU  iW  iV                  

helSfXl  fRU  acTXiViWiRn.  ReVeaUch  iV  WhXV  needed  WR  SURYide  anVZeUV  abRXW  ZheWheU  Whe  child  iV                 

eYen  addUeVVed  in  WheVe  cRnWe[WV  (RU  iV  Rnl\  e[SRVed  WR  VXUURXnding  VSeech),  ZhR  Whe                

VSeakeUV  aUe,  and  hRZ  VimilaU  WheiU  VSeech  iV  WR  maWeUnal  VSeech.  ThiV  VhRXld  be  inYeVWigaWed                 

bRWh  fRU  cXlWXUeV  ZheUe  Whe  mRWheU  iV  cRnVideUed  Whe  SUimaU\  caUegiYeU,  and  fRU  cXlWXUeV                

ZheUe  childUen  VSend  mRVW  Rf  WheiU  Wime  ZiWh  RWheU  SeRSle.  OXU  ZRUk  Zill  WhXV  fRcXV  Rn  Whe                   

diVWUibXWiRn  and  feaWXUeV  Rf  child  diUecWed  and  RWheU  diUecWed  VSeech  SURdXced  b\  diffeUenW               

VSeakeUV   in   naWXUaliVWic,   cURVV-cXlWXUal   UecRUdingV.     

  

In  WhiV  VWXd\,  Ze  Wake  a  VWeS  WRZaUdV  deVcUibing  childUen¶V  inSXW  acURVV  cXlWXUeV.  We  deVcUibe                 

childUen'V  inSXW  in  middle-claVV  EXURSean  familieV  in  WZR  ciWieV  in  FUance,  and  WhaW  Rf  a                 

nRn-indXVWUial  VRXWheUn  AfUican  cRmmXniW\  in  LeVRWhR,  ZheUe  iW  haV  been  dRcXmenWed  WhaW              

childUen  inWeUacW  ZiWh  mRUe  VSeakeUV  Whan  jXVW  Whe  SaUenWV.  We  XVe  Whe  Vame  deVcUiSWiYe                

meWUicV  in  RUdeU  WR  cRmSUehenViYel\  dRcXmenW  Whe  lingXiVWic  inSXW  childUen  UeceiYe  in  bRWh               

kindV  Rf  cRmmXniWieV,  fURm  SaUenWV  and  RWheU  SeRSle.  We  deWail  Whe  amRXnW  and  TXaliW\  (heUe,                 

Whe  mRUShRV\nWacWic,  le[ical  and  inWeUacWiRnal  feaWXUeV  Rf  VSeech)  Rf  lingXiVWic  inSXW  VSRken              

b\   diffeUenW   SeRSle,   VeSaUaWel\   fRU   child-diUecWed   VSeech,   and   VSeech   diUecWed   WR   RWheUV.   

  

We   VSecificall\   aVk,   fRU   bRWh   cRmmXniWieV:     

1.   HRZ   dR   diffeUenW   VSeakeUV   cRnWUibXWe   WR   Whe   lingXiVWic   inSXW   heaUd   b\   Whe   child?     

2.   HRZ   mXch   inSXW   heaUd   b\   childUen   iV   diUecWed   WR   Whem,   and   hRZ   mXch   iV   diUecWed   WR   RWheU   

childUen   and   adXlWV,   Zhen   diffeUenW   VSeakeUV   aUe   Waken   inWR   accRXnW?     

  



/

116   

3.WhaW   aUe   Whe   TXaliWaWiYe   SURSeUWieV   Rf   WhiV   inSXW,   and   hRZ   dR   Whe\   diffeU   acURVV   VSeakeUV   and   

cXlWXUeV?    

AccRUding  WR   DemXWh  (1986) ,  UXUal  familieV  in  LeVRWhR  RfWen  liYed  in  e[Wended  famil\  XniWV,                

ZiWh  allRmaWeUnal  caUeUV  SaUWiciSaWing  in  Whe  caUegiYing  Rf  Whe  child.  Man\  SeVRWhR-VSeaking             

men  ZeUe  emSlR\ed  in  SRXWh  AfUica  and  ZeUe  UaUel\  aW  hRme.  SiblingV  W\Sicall\  haYe  a                 

WZR-and-a-half  \eaUV  age  diffeUence,  and  childUen  aV  \RXng  aV  2;1  RfWen  VSend  Wime  in  SeeU                 

gURXSV   and   ZiWh   \RXngeU   ViblingV    (DemXWh,   1992) .   

  

DemXWh  UecRUded  VSRnWaneRXV  inWeUacWiRnV  Rf  childUen  in  UXUal  LeVRWhR  (Whe  DemXWh  SeVRWhR              

CRUSXV).  AccRUding  WR  heU  RbVeUYaWiRnV   (DemXWh,  1986,  1992) ,  Weaching  langXage  WR  Whe  child               

ZaV  an  imSRUWanW  UeVSRnVibiliW\  Rf  Whe  cRmmXniW\,  and  eYen  childUen  Veemed  WR  adjXVW  WheiU                

VSeech  Zhen  Walking  WR  \RXngeU  childUen,  mRdif\ing  iWV  ShRnRlRg\  and  V\nWa[.  The  UecRUded               

cRUSXV  ZaV  XVed  b\  Whe  inYeVWigaWRU  in  RUdeU  WR  VWXd\  gUammaWical  ShenRmena,  fRcXVing  Rn                

Whe   WaUgeW   childUen¶V   SURdXcWiRn   and   Whe   XVe   Rf   SURmSWV   b\   caUegiYeUV.     

  

In  WhiV  VWXd\,  Ze  make  XVe  Rf  Whe  Vame  cRUSXV,  WRgeWheU  ZiWh  WZR  FUench  cRUSRUa  (Whe  PaUiV                   

and  L\Rn  cRUSXV),  in  RUdeU  WR  inYeVWigaWe  RXU  UeVeaUch  TXeVWiRnV.  We  annRWaWed  WheVe  cRUSRUa                

in  RUdeU  WR  TXanWif\  Whe  cRnWUibXWiRn  Rf  diffeUenW  VSeakeUV  WR  Whe  RYeUall  inSXW,  and  WR  anal\Ve                  

Whe  TXanWiW\  Rf  diUecWed  and  RYeUheaUd  UegiVWeUV,  and  VSecific  TXaliWaWiYe  VSeech  SURSeUWieV  fRU               

each  UegiVWeU  and  VSeakeU.  SeVViRnV  ZiWh   VimilaU  UecRUding  meWhRdV  and  WaUgeW  childUen  ZiWh               

RldeU  Vibling(V)  and  Whe  Vame  age  Uange  ZeUe  chRVen  fRU  bRWh  cRUSRUa,  and  ZeUe  annRWaWed  b\                  

naWiYe   FUench   and   SURficienW   EngliVh   VSeakeUV.   
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MeWhod   

DaWa   

SeVRWhR   cRUSXV     

The  DemXWh  SeVRWhR  CRUSXV  ZaV  UecRUded  in  a  UXUal  cRmmXniW\  in  VRXWheUn  AfUica.  IW  ZaV                 

cRmSiled  b\  KaWheUine  DemXWh  in  Whe  cRXnWU\  Rf  LeVRWhR  in  1980-1982   (DemXWh,  1992) .               

DaWa  ZeUe  cRllecWed  in  a  LeVRWhR  mRXnWain  Yillage  Rf  550  SeRSle  in  Whe  diVWUicW  Rf                 

MRkhRWlRng.  The  langXage  VSRken  iV  SeVRWhR  (alVR  called  SRWhR,  RU  SRXWheUn  SRWhR),  a               

VRXWheUn  BanWX  langXage  XVed  b\  WhUee  milliRn  VSeakeUV.  The  cRUSXV  can  be  fRXnd  Rn                

CHILDES    (MacWhinne\,   2000) .   

  

The  SeVRWhR  cRUSXV  iV  a  lRngiWXdinal  VWXd\  Rf  WhUee  WaUgeW  childUen  aV  Whe\  inWeUacWed  ZiWh                 

WheiU  caUegiYeUV.  The  childUen  ZeUe  aged  fURm  2;1  WR  3;2  fRU  HlRbRhang  (bR\,  11,221  inSXW                 

XWWeUanceV  afWeU  e[clXding  WaUgeW  child  and  inYeVWigaWRU  VSeech),  2;1-3;0  fRU  LiWlhaUe  (giUl,              

12,669  inSXW  XWWeUanceV  afWeU  e[clXding  WaUgeW  child  and  inYeVWigaWRU  VSeech)  and  2;1-3;2,  fRU               

µNeXRe  (giUl,  10,502  inSXW  XWWeUanceV  afWeU  e[clXding  WaUgeW  child  and  inYeVWigaWRU  VSeech).              

ThUee-WR-fRXU-  hRXU  UecRUdingV  Rf  VSRnWaneRXV  VSeech  WRRk  Slace  eYeU\  mRnWh  fRU  each  child               

ZiWh  Whe  SUeVence  Rf  Whe  inYeVWigaWRU.  HlRbRhang  and  µNeXRe  each  had  an  RldeU  cRXVin  in  Whe                  

Vame  hRXVehRld,  and  LiWhlaUe  had  an  RldeU  bURWheU.  The  WUanVcUiSWiRnV  ZeUe  mRUShRlRgicall\              

cRded   and   WUanVlaWed   WR   EngliVh   ZiWh   Whe   helS   Rf   Whe   childUen¶V   mRWheUV   and   gUandmRWheUV.   
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FUench   cRUSXV   

In  RUdeU  WR  RbWain  daWa  cRmSaUable  WR  Whe  SeVRWhR  cRUSXV  in  Vi]e,  nXmbeU  Rf  WaUgeW  childUen,                  

WaUgeW  child  age,  and  SUeVence  Rf  ViblingV,  Ze  meUged  UecRUdingV  fURm  WZR  FUench  cRUSRUa,                

Whe  PaUiV  cRUSXV   (MRUgenVWeUn  &  PaUiVVe,  2012)  and  Whe  L\Rn  cRUSXV   (DemXWh  &  TUembla\,                

2008) .  BRWh  cRUSRUa  aUe  Rn  CHILDES   (MacWhinne\,  2000) .  The  need  fRU  WZR  cRUSRUa  iV  dXe                 

WR  Whe  facW  WhaW  mRVW  WaUgeW  childUen  in  WheVe  cRUSRUa  ZeUe  fiUVW-bRUn  and  ZeUe  WhXV  e[clXded                  

fRU  Whe  SUeVenW  SXUSRVeV,  Zhich  aimed  WR  lRRk  aW  inSXW  in  cRnWe[WV  ZheUe  WheUe  ZeUe  mRUe                  

SeRSle  Whan  jXVW  Whe  mRWheU.  FamilieV  ZiWh  mRUe  Whan  Rne  child  aUe  nRW  cRnVideUed  aW\Sical  in                  

FUance;  in  2013,  6  RXW  Rf  10  familieV  had  mRUe  Whan  Rne  child   (INSEE,  2013) .  The  FUench                   

cRUSRUa   ZeUe   UecRUded   ZiWh   a   VimilaU   meWhRd   WR   Whe   SeVRWhR   cRUSXV,   aV   deVcUibed   belRZ.   

  

The  L\Rn  cRUSXV  ZaV  cR-cUeaWed  b\  KaWheUine  DemXWh  and  HaUUieW  JiVa  in  RUdeU  WR  VWXd\  Whe                  

acTXiViWiRn  Rf  mRUShRShRnRlRgical  elemenWV  in  FUench.  IW  ZaV  cRmSiled  b\  JiVa  and              

cRlleagXeV  aW  Whe  UniYeUViW\  Rf  L\Rn  2.  The  cRUSXV  cRnWainV  lRngiWXdinal  aXdiR  UecRUdingV  Rf                

mRnRlingXal,  W\Sicall\  deYelRSing  FUench-VSeaking  childUen  fURm  Rne  WR  WhUee  \eaUV  Rf  age,              

and  fRcXVeV  Rn  VSRnWaneRXV  inWeUacWiRnV.  RecRUdingV  fURm  AnawV  (giUl,  7,022  XWWeUanceV  afWeU              

e[clXding  WaUgeW  child  VSeech  and  inYeVWigaWRU  VSeech)  and  TheRWime  (bR\,  4,062  XWWeUanceV              

afWeU  e[clXding  WaUgeW  child  VSeech  and  inYeVWigaWRU  VSeech)  ZeUe  inclXded  in  WhiV  VWXd\,  WR                

RbWain  an  age  Uange  cRmSaUable  WR  Whe  SeVRWhR  cRUSXV.  Each  child  ZaV  UecRUded  fRU  Rne  hRXU                  

eYeU\  WZR  ZeekV.  AnawV  had  WZR  RldeU  ViVWeUV,  and  TheRWime  Rne  RldeU  ViVWeU.  AlWhRXgh  Whe                 

UeVeaUch  aVViVWanW  ZaV  nRW  alZa\V  SUeVenW  dXUing  UecRUdingV,  Ze  Rnl\  keSW  Whe  UecRUdingV               

ZheUe  Whe  aVViVWanW  ZaV  SUeVenW,  in  RUdeU  WR  incUeaVe  cRmSaUabiliW\  ZiWh  Whe  SeVRWhR  cRUSXV.                

The  VeVViRnV  ZeUe  UecRUded  ZiWh  a  Vmall  YideR  UecRUdeU  Slaced  Rn  a  WUiSRd.  The  child  ZRUe  a                   
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ZiUeleVV  micURShRne,  and  iWV  UadiR  WUanVmiWWeU  ZaV  Slaced  inVide  a  child  Sack  ZRUn  b\  Whe                 

child.   The   VeVViRnV   ZeUe   WUanVcUibed   aW   Whe   D\namiTXe   dX   Langage   LabRUaWRU\.   

  

The  PaUiV  cRUSXV  ZaV  cR-cUeaWed  b\  Ali\ah  MRUgenVWeUn  and  ChiVWRShe  PaUiVVe.  The  cRUSXV               

ZaV  XVed  WR  VWXd\  Whe  SUeVence  Rf  SUagmaWic  cXeV  in  VSeech,  VXch  aV  SURVRd\  and  geVWXUeV,                  

and  gUammaWical  deYelRSmenW.  The  cRUSXV  cRnWainV  lRngiWXdinal  aXdiR  UecRUdingV  Rf            

mRnRlingXal,  W\Sicall\  deYelRSing  FUench-VSeaking  childUen.  One  child  in  RXU  VWXd\  cRmeV             

fURm  WhiV  cRUSXV,  Anap  (giUl,  7,247  XWWeUanceV  afWeU  e[clXding  WaUgeW  child  VSeech  and               

inYeVWigaWRU  VSeech).  The  child  ZaV  YideRWaSed  in  heU  hRme  Rnce  a  mRnWh  fRU  an  hRXU,  in                  

VSRnWaneRXV  inWeUacWiRnV,  and  Whe  daWa  ZeUe  When  WUanVcUibed  b\  Whe  inYeVWigaWRUV.  The  chRVen               

UecRUdingV   alVR   VSan   Whe   SeVRWhR   age   Uange.   Anap   haV   WZR   RldeU   bURWheUV.     

DaWa   PreparaWion   

FRU  bRWh  Whe  SeVRWhR  and  Whe  FUench  cRUSXV,  Ze  TXanWified  Whe  cRnWUibXWiRn  Rf  diffeUenW                

VSeakeUV  WR  Whe  RYeUall  inSXW  b\  meaVXUing  Whe  WRWal  nXmbeU  Rf  XWWeUanceV  SURdXced  b\  each                 

VSeakeU  fRU  Whe  ZhRle  cRUSXV,  aV  Zell  aV  Whe  aYeUage  nXmbeU  Rf  XWWeUance V  SeU  UecRUding  hRXU                  

and  SeU  VeVViRn.  SSeech  SURdXced  b\  RU  addUeVVed  WR  Whe  inYeVWigaWRU  dXUing  Whe  VeVViRnV,                

WhRXgh  geneUall\  UaUe,  ZaV  e[clXded  fURm  Whe  anal\ViV.  We  Wake  inWR  accRXnW  lRcal  nRUmV                

UegaUding  famil\  XniWV.  In  Whe  SeVRWhR  cRUSXV  VWXdied  in  Whe  cXUUenW  VWXd\,  fRU  e[amSle,  Rne                 

WaUgeW  child  (µNeXRe)  ZaV  gURZing  XS  in  Whe  Vame  hRXVehRld  ZiWh  heU  cRXVin,  and  ZaV  being                  

Waken   caUe   Rf   b\   heU   aXnW,   ZhRm   Ze   cRnVideU   aV   a   mRWheU   fRU   Whe   Vake   Rf   WhiV   VWXd\.   

  

The  WaUgeW  childUen  ZeUe  VelecWed  b\  Whe  cUiWeUia  deVcUibed  a bRYe  (haYing  RldeU  µVibling(V)¶,               

Vame  age  Uange,  and  VeVViRnV  ZiWh  VimilaU  UecRUding  meWhRdV)  and  annRWaWed  fRU  VSeakeU  and                
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inWeUlRcXWRU  b\  a  naWiYe  FUench  (fRU  Whe  FUench  cRUSXV)  and  a  SURficienW  EngliVh  VSeakeU  (fRU                 

Whe  SeVRWhR  cRUSXV,  XVing  Whe  EngliVh  WUanVlaWiRn).  AlWhRXgh  Whe  cRUSRUa  had  alUead\  been               

WUanVcUibed,  indicaWing  ZhR  ZaV  VSeaking  and  ZhaW  Whe\  ZeUe  Va\ing,  Whe  WUanVcUiSWiRnV  did               

nRW  cRnWain  infRUmaWiRn  Rn  ZhR  ZaV  being  VSRken  WR.  TheUefRUe,  Ze  added  WhiV  la\eU  Rf                 

annRWaWiRn.  OXU  annRWaWRUV  ZeUe  aVked  WR  Uead  Whe  WUanVcUiSWiRnV  Rf  a  VeVViRn,  and  WU\  WR                 

XndeUVWand  ZhR  iV  being  VSRken  WR  fRU  each  XWWeUance.  When  aYailable,  Whe\  ZeUe  SURYided                

ZiWh  deVcUiSWiRnV  Rf  Whe  ViWXaWiRn  and  cRmmenWV  Rf  Whe  aXWhRUV  and  SUeYiRXV  annRWaWRUV.  The                

annRWaWRUV  ZeUe  inVWUXcWed  WR  add  an  addUeVVee  annRWaWiRn  Rnl\  if  Whe\  ZeUe  cRnfidenW  (mRUe                

Whan  70%  VXUe),  indicaWing  Zhe WheU  a  VenWence  iV  addUeVVed  WR  a  WaUgeW  child,  RU  anRWheU                 

VSecific  addUeVVee  RU  gURXS  Rf  addUeVVeV.  SSecificall\  fRU  Whe  FUench  cRUSXV,  VRme  SaUWV  Rf  Whe                 

UecRUdingV  had  nRW  been  WUanVcUibed  b\  Whe  RUiginal  WUanVcUibeUV  (XVXall\  SaUWV  ZheUe  Whe               

WaUgeW  child  did  nRW  SaUWiciSaWe  in  Whe  cRnYeUVaWiRn).  TheUefRUe,  Whe  annRWaWRUV  alVR  WUanVcUibed               

Whe   miVVing   VecWiRnV   afWeU   cRnVXlWing   Whe   YideRV.     

  

TR  check  accXUac\  Rf  Whe  addUeVVee  annRWaWiRn,  20%  Rf  WheVe  annRWaWiRnV  ZeUe              

dRXble-checked  b\  a  VecRnd  annRWaWRU.  FRU  SeVRWhR,  Whe  WZR  annRWaWRUV  agUeed  in  89%  Rf  Whe                 

caVeV.  WheUe  Whe\  did  nRW  agUee,  WhiV  RfWen  ZaV  becaXVe  Rne  cRdeU  made  a  deciViRn  and  Whe                   

RWheU  ZaV  XndeU  70%  VXUe  (57%  Rf  diVagUeemenWV).   A  fXUWheU  UeliabiliW\  check  ZaV  When                

SeUfRUmed  b\  DemXWh,  ZhR  ZaV  SUeVenW  dXUing  Whe  RUiginal  daWa  cRllecWiRn,  and  an\  TXeVWiRnV                

UeVRlYed.  FR U  FUench,  Whe  WZR  annRWaWRUV  agUeed  in  96%  Rf  Whe  caVeV.  Since  Whe  UeliabiliW\                 

check  beWZeen  Whe  fiUVW  annRWaWRU  and  Whe  VecRnd  annRWaWRU  (Whe  Rne  annRWaWing  20%  Rf  Whe                 

cRUSXV)  ZeUe  high,   Ze  WRRk  inWR  accRXnW  Whe  annRWaWiRnV  Rf  Rnl\  Whe  fiUVW  annRWaWRU,  e[clXding                 

XWWeUanceV   ZheUe   WhiV   annRWaWRU   ZaV   XnceUWain.     
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LaVW,  Ze   VWXdied  Whe  TXaliW\  Rf  VSeech  inSXW  WR  childUen,  XVing  a  cRUSXV  anal\ViV.  All  VcUiSWV                  

UelaWed  WR  cRUSXV  SURceVVing  and  anal\ViV  can  be  fRXnd  in  WhiV  OSF  link:               

hWWSV://RVf.iR/mZV9g/?YieZ_Rnl\=b116b0c6bb5c48508a547dbc955461b1 .  We  meaVXUed     

le[ical  diYeUViW\   b\  cRXnWing  Whe  mRYing  aYeUage  W\Se-WRken  UaWiR  (MATTR)  and  Whe  UaWiR  Rf                

haSa[eV   (ZRUdV  fRXnd  Rnl\  Rnce) .  MATTR  giYeV  Whe  mean   WRWal  nXmbeU  Rf  XniTXe  ZRUdV                

(W\SeV)  diYided  b\  Whe  WRWal  nXmbeU  Rf  ZRUdV  (WRkenV)  SeU  chXnk  Rf  10  (and  100)  ZRUdV,  WhXV                   

cRnWURlling  fRU  diffeUenceV  in  cRUSXV  Vi]e.  RaWiR  Rf  haSa[eV  giYeV  Whe  UaWiR  Rf  haSa[  ZRUdV  in                  

Whe   cRUSXV,   b\   diYiding   Whe   nXmbeU   Rf   haSa[eV   ZiWh   Whe   WRWal   nXmbeU   Rf   ZRUd   WRkenV.     

  

We  meaVXUed   moUShoV\nWacWic  comSle[iW\ ,  b\  cRXnWing  Whe  SUeSRndeUance  Rf  Vingle  ZRUd             

XWWeUanceV,  b\  diYiding  Whe   nXmbeU  Rf  XWWeUanceV  cRnWaining  Rnl\  Rne  ZRUd  ZiWh  Whe  WRWal                

nXmbeU  Rf  XWWeUanceV,  and   b\  cRXnWing  Whe  mean  XWWeUance  lengWh  (MLU)  in  ZRUdV  (and  in                 

mRUShemeV  fRU  SeVRWhR).   IW  VhRXld  be  nRWed  WhaW,  Xnlike  FUench,  SeVRWhR  cRnWainV              

mXlWi-mRUShemic  SURVRdic  ZRUdV,  Vince  SUefi[eV  WR  Whe  YeUbV  (VXbjecW  and  RbjecW             

SeUVRn-nXmbeU-agUeemenW  fRUmV  and  WenVe  maUkeUV)  and  nRXn-claVV  SUefi[eV  aUe  ZUiWWen            

WRgeWheU  aV  Rne  µZRUd¶.   The  aYeUage  nXmbeU  Rf  mRUShemeV  SeU  ZRUd  in  Whe  cRUSXV  iV                 

aSSUR[imaWel\  1.9.   We  deal  ZiWh  WhiV  diffeUence  in  WhUee  Za\V:  (1)  We  WUied  WR  make  RXU                  

FUench  cRUSXV  µmRUe  VimilaU¶  WR  Whe  SeVRWhR,  b\  cRmbining  deWeUmineUV  ZiWh  Whe  fRllRZing               

nRXnV  aV  Rne  SURVRdic  ZRUd  (deWailV  Rn  DemXWh  &  TUembla\,  2008).  NRneWheleVV,  Whe               

mXlWimRUShemic  SeVRWhR  µYeUb¶   ke-Wla-mo-oWla   ³ I-Zill-him-hiW´   ZaV  cRXnWed  aV  Rne  µZRUd¶,            

ZheUeaV  Whe  Vame  ShUaVe  ZaV  cRXnWed  aV  fRXU  ZRUdV  in  FUench  (³Je  YaiV  le  fUaSSeU´).  (2)  We                   

SURYide  a  VXSSlemenWaU\  meWUic  fRU  SeVRWhR  and  FUench  cRXnWing  Whe  mean  XWWeUance  lengWh  in                

mRUShemeV  (Vee  ASSendi[).  We  dR  WhiV  becaXVe  MLU  mighW  nRW  be  aV  cRmSUehenViYe  a                

maWUi[  WR  langXage  cRmSle[iW\  in  SeVRWhR  aV  iW  iV  in  FUench,  and  mean  XWWeUance  lengWh  in                  
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mRUShemeV  mighW  be  a  beWWeU  meaVXUe.  (3)  Since  Whe  WZR  langXageV  diffeU  acURVV  WheVe                

aVSecWV,   Ze  Rnl\  fRcXV  Rn  langXage-inWeUnal  cRmSaUiVRnV  -  Ze  neYeU  cRmSaUe  Zhich  langXage               

XVeV  lRngeU  XWWeUanceV  Rf  mRUe  mRUShemeV  SeU  ZRUd,  bXW  Ze  dR  cRmSaUe  beWZeen  VSeakeUV                

and   UegiVWeUV   ZiWhin   each   langXage.     

  

LaVW,  Ze  meaVXUed   VSeech  eliciWaWion  b\  lRRking  aW  Whe  UaWiR  Rf  TXeVWiRnV  diYided  b\  Whe  WRWal                  

nXmbeU  Rf  XWWeUanceV,  and  b\  lRRking  aW  Whe  UaWiR  Rf  cRnYeUVaWiRnal  WXUnV.  We   cRnVideUed  aV  a                  

cRnYeUVaWiRnal  WXUn  each  XWWeUance  fRllRZed  b\  an  XWWeUance  SURdXced  b\  Whe  SeUVRn  iniWiall\               

addUeVVed  WR.  We  When  diYided  Whe  nXmbeU  Rf  WheVe  XWWeUanceV  b\  Whe  WRWal  nXmbeU  Rf                 

XWWeUanceV.  The  UeVXlWV  Rf  Whe  abRYe  meWUicV  ZeUe  deVcUiSWiYel\  cRmSaUed  acURVV  diffeUenW              

VSeakeUV   and   VSeech   UegiVWeUV.   

ResXlWs     

We  lRRked  aW  inSXW  cRmSRViWiRn  ZiWh  UeVSecW  WR  iWV  VSeakeUV,  afWeU  caWegRUi]ing  Whe  inSXW  aV                 

child-diUecWed  and  RYeUheaUd,  and  fXUWheU  lRRking  aW  Whe  addUeVVee  Rf  RYeUheaUd  inSXW  (RWheU               

childUen   RU   adXlWV).     

  

   QXanWiWaWiYe   feaWXUeV   Rf   inSXW   

We  aVked  hRZ  mXch  diffeUenW  caUegiYeUV  cRnWUibXWe  WR  Whe  RYeUall  lingXiVWic  VSeech  heaUd  b\                

Whe  child,  bRWh  diUecWed  and  RYeUheaUd  (Vee  Table  1).  FRU  Whe  SeVRWhR-leaUning  childUen,  mRVW                

VSeech  came  fURm  RWheU  childUen.   The  caWegRU\  ³RWheU  childUen´  cRnWainV  all  RWheU  childUen               

SUeVenW  in  Whe  lingXiVWic  enYiURnmenW  Rf  Whe  ke\  childUen:  ViblingV,  cRXVinV,  Sla\maWeV ,  eWc.               

SSeech  fURm  RWheU  adXlWV  YaUied;  fRU  Rne  SeVRWhR-leaUning  child  in  SaUWicXlaU,  HlRbRhang,              

RWheU  adXlW  VSeech  (Whe  gUandmRWheU)  ZaV  mRUe  abXndanW  Whan  mRWheU¶V  VSeech.             
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FUench-leaUning  childUen  UeceiYed  mRVW  Rf  WheiU  inSXW  fURm  mRWheUV,  and  RWheU  childUen  had               

Whe   VmalleVW   cRnWUibXWiRn   WR   RYeUall   inSXW.   TheUe   ZaV   YaUiaWiRn   in   inSXW   fURm   RWheU   adXlWV.     

  

T able   1.   PeUcenWage   Rf   Whe   WRWal   nXmbeU   Rf   XWWeUanceV   SURdXced   b\   mRWheUV,   RWheU   adXlWV   and   childUen   
fRU   each   child.   The   laUgeVW   nXmbeU   in   each   URZ   iV   in   bRld.     
  

SecRnd,  Ze  aVked  hRZ  mXch  inSXW  heaUd  b\  childUen  ZaV  diUecWed  WR  Whem,  hRZ  mXch  ZaV                  

RYeUheaUd,  and  hRZ  child-diUecWed  YeUVXV  RYeUheaUd  VSeech  ZaV  diVWUibXWed  acURVV  VSeakeUV.             

CDS  iV  VSeech  diUecWed  WR  Whe  child.  OYeUheaUd  VSeech  inclXdeV  VSeech  diUecWed  WR  RWheU                

childUen  (OCDS),  and  WR  adXlWV  (ADS).  The  majRUiW\  Rf  inSXW  ZaV  child-diUecWed  fRU  bRWh                

FUench-leaUning  and  SeVRWhR-leaUning  childUen,  e[ceSW  fRU  µNeXRe,  ZhR  ZaV  Whe  cRXVin  in  Whe               

famil\  ZiWh  RWheU  childUen,  and  mRVW  VSeech  aURXnd  heU  ZaV  OCDS.  MRU e  deWailV  can  be                 

fRXnd   in   Table   2.     

  

  

  

  

Child   MRWheU   %   AdXlWV   %   ChildUen   %   

SeVoWho    HlRbRhang   14.67   40.29   45.03   

SeVoWho    LiWlhaUe   41.68   2.81   55.51   

SeVoWho    µNeXRe   22.10   11.82   ��.0�   

FUench    Anap   �3.4�   1.0   15.53   

FUench    AnaiV   ��.�0   28.34   3.86   

FUench    TheRWime   �3.4�   -   6.53   
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Table   2.   PeUcenWage   Rf   Whe   WRWal   nXmbeU   Rf   XWWeUanceV   WhaW   ZaV   CDS,   OCDS   RU   ADS   fRU   each   child.   
The   laUgeVW   nXmbeU   in   each   URZ   iV   in   bRld.   TheVe   WhUee   dR   nRW   add   XS   WR   100%   becaXVe   Whe   UeVW   Rf   Whe   
XWWeUanceV   ZeUe   XnclaVVified   in   WeUmV   Rf   addUeVVee.   
  
  

AV  can  be  Veen  in  T able  3,  CDS  ZaV  mRVWl\  SURdXced  b\  RWheU  childUen  fRU  Whe                  

SeVRWhR-leaUning  childUen.  FRU  Whe  FUench-leaUning  childUen,  Whe  mRWheU  ZaV  Whe  main  VRXUce              

Rf   CDS.   InfRUmaWiRn   Rn   OCDS   and   ADS   VSeakeUV   can   be   fRXnd   in   Whe   ASSendi[,   Table   A1 .     

  

  

  

Child   CDS   %   OCDS   %   ADS   %   

SeVoWho    HlRbRhang   ��.�3   6.81   3.33   

SeVoWho    LiWlhaUe   �0.�5   5.36   3.28   

SeVoWho    µNeXRe   27.0   50.2�   22.04   

FUench    Anap   ��.04   6.28   5.55   

FUench    AnaiV   �4.2�   2.44   3.03   

FUench    TheRWime   �1.�0   4.06   3.50   

  CDS     

MOT   ADU   OCHI   

SeVoWho    HlRbRhang   13.74   37.08   3�.01   

SeVoWho    LiWlhaUe   40.25   2.06   4�.�4   

SeVoWho    µNeXRe   4.89   5.49   1�.�1   



/

125   

Table  3.  PeUcenWage  Rf  VSeech  SURdXced  b\  mRWheUV  (MOT),  RWheU  adXlWV  (ADU)  and  RWheU  childUen                 
(OCHI)  cRmSUiVing  CDS  fRU  each  child.  The  nXmbeUV  fRU  µNeXRe  aUe  Vmall  becaXVe  mRVW  VSeech                 
aURXnd   Whe   child   ZaV   nRW   CDS.   The   laUgeVW   nXmbeU   in   each   UegiVWeU-baVed   gURXS   Rf   cellV   iV   in   bRld.   
  

   QXaliWaWiYe   feaWXUeV   Rf   inSXW   

Ne[W,  Ze  aVked  ZhaW  Whe  TXaliWaWiYe  SURSeUWieV  Rf  inSXW  aUe,  and  hRZ  Whe\  diffeU  acURVV                 

VSeakeUV  and  cXlWXUeV.  We  fRcXVed  Rn  mRUShRV\nWacWic,  le[ical  and  inWeUacWiRnal  SURSeUWieV             

VeSaUaWel\.  The  UaZ  daWa  can  be  fRXnd  in  Whe  Rnline  VXSSlemenWaU\  maWeUial.  MRUShRV\nWacWic               

SURSeUWieV  aUe  VhRZn  in  FigXUe  1.  The  MLU  meaVXUed  in  mRUShemeV  iV  in  Whe  ASSendi[                 

(FigXUe  A1).  FRU  bRWh  SeVRWhR  and  FUench,  CDS  haV  Whe  VhRUWeU  MLU,  fRllRZed  b\  OCDS                 

and  ADS.  In  SeVRWhR,  WheUe  ZeUe  VlighWl\  mRUe  Vingle  ZRUd  XWWeUanceV  in  CDS  Whan  in  OCDS                  

and   in   ADS.   In   FUench,   WheUe   ZeUe   nR   laUge   diffeUenceV   beWZeen   UegiVWeUV.   

  

WiWhin   SeVRWhR  CDS  and  OCDS,  WheUe  ZeUe  nR  laUge  diffeUenceV  beWZeen  VSeakeUV.  WiWhin               

SeVRWhR  ADS,  RWheU  child  VSeech  had  Whe  VhRUWeVW  MLU  and  higheVW  SURSRUWiRn  Rf  Rne  ZRUd                 

XWWeUanceV.  WiWhin  FUench  CDS  and  OCDS,  WheUe  alVR  ZeUe  nR  laUge  diffeUenceV  beWZeen               

VSeakeUV.  We  RbVeUYe  WhaW  mRWheUV¶  VSeech  had  Whe  lRngeVW  MLU  and  leaVW  Vingle  ZRUd                

XWWeUanceV.   OYeUall,  OCDS  iV  mRUe  VimilaU  WR  CDS  Whan  ADS,  and  diffeUenW  VSeakeUV  SURYide                

inSXW   Rf   VimilaU   TXaliWaWiYe   feaWXUeV   ZiWhin   each   UegiVWeU.   

  

  

FUench    Anap   ��.��   .15   7.01   

FUench    AnaiV   �5.3�   27.40   1.51   

FUench    TheRWime   �0.3�   -   1.43   
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We  When  an al\Ved  le[ical  SURSeUWieV  (FigXUe  2).  The  MATTR  ZiWh  a  VmalleU  ZRUd  ZindRZ                

RffeUV  Whe  adYanWage  Rf  accRXnWing  fRU  mRUe  daWa.  The  MATTR  ZiWh  a  laUgeU  ZindRZ  iV  mRUe                  

VWable,  bXW  iV  baVed  Rn  feZeU  VeVViRnV  (Whe  RneV  ZiWh  a  lRW  Rf  VSeech).  The  VmalleU  ZindRZ                   

MATTR  iV  diVSla\ed  heUe,  ZheUeaV  Whe  laUgeU  ZindRZ  MATTR  can  be  fRXnd  in  Whe  ASSendi[                 

(FigXUe  A2).  The  SURSeUWieV  ZeUe  meaVXUed  Rn  Whe  enWiUeW\  Rf  Whe  le[icRn  (clRVed  claVV  ZRUdV                 

inclXded).  FRU  bRWh  SeVRWhR  and  FUench,  CDS  ZaV  Whe  leaVW  le[icall\  diYeUVe  UegiVWeU  and  Whe                 

UegiVWeU  ZiWh  Whe  lRZeVW  haSa[  UaWiR,  fRllRZed  b\  OCDS  and  When  b\  ADS.  In  SeVRWhR  CDS                  

and  OCDS,  WheUe  ZeUe  Vmall  diffeUenceV  beWZeen  VSeakeUV.  In  FUench  CDS,  diffeUenceV              

beWZeen  VSeakeUV  ZeUe  laUgeU  Whan  in  SeVRWhR,  maWeUnal  VSeech  being  Whe  mRVW  le[icall\               

diYeUVe,   and   ZiWh   Whe   lRZeVW   haSa[   UaWiR   Rf   all   VSeakeUV.   

  

LaVW,  Ze  anal\Ved  VRme  inWeUacWiRnal  SURSeUWieV  f RU  VSeech  eliciWaWiRn  ( FigXUe  3).  FRU  SeVRWhR,               

Whe  higheVW  SURSRUWiRn  Rf  TXeVWiRnV  and  cRnYeUVaWiRnal  WXUnV  (Zhen  an  XWWeUance  ZaV  fRllRZed               

b\  an  XWWeUance  SURdXced  b\  Whe  SeUVRn  SUeYiRXVl\  addUeVVed  WR)  ZaV  fRXnd  RYeUall  in  CDS,                 

fRllRZed  b\  OCDS,  and  When  ADS.  FRU  FUench,  VimilaU  UaWiRV  Rf  TXeVWiRnV  and  cRnYeUVaWiRnal                

WXUnV   ZeUe   fRXnd   RYeUall   in   CDS   and   OCDS.     

  

WiWhin  SeVRWhR  CDS  and  OCDS,  RWheU  adXlWV  and  mRWheUV  had  higheU  TXeVWiRn  UaWiRV  Whan                

RWheU  childUen.  FRU  ADS,  adXlWV  had  Whe  higheVW  TXeVWiRn  UaWi RV.  TheUe  ZeUe  nR  laUge                

diffeUenceV  beWZeen  VSeakeUV  ZiWh  UeVSecW  WR  cRnYeUVaWiRnal  WXUn  UaWiRV  fRU  CDS.  WiWhin              

FUench  CDS,  RWheU  adXlWV  and  mRWheUV  alVR  had  higheU  TXeVWiRn  UaWiRV  Whan  RWheU  childUen,  bXW                 

Ze  Vee  a  diffeUence  beWZeen  cRUSRUa  in  WeUmV  Rf  cRnYeUVaWiRnal  WXUnV,  ZiWh  higheU  UaWiRV  fRU                

RWh eU   adXlWV   in   FUench   bXW   leVV   VR   in   SeVRWhR.  
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FigXUe  1.  Mean  lengWh  Rf  XWWeUance  in  ZRUdV  (bRWWRm)  and  Vingle  ZRUd  XWWeUance  UaWiR  (WRS)  fRU  SeVRWhR                   
(lefW)  and  FUench  (UighW).  Each  SRinW  iV  a  VeVViRn  (ZheUe  Whe  cRUUeVSRnding  VSeakeU  SURdXced  aW  leaVW                  
Rne  XWWeUance).  BR[SlRW  cRlRUV  indicaWe  VSeakeUV,  adXlW  VSeakeUV  in  Ued,  mRWheUV  in  blXe  and  RWheU                 
childUen  VSeakeUV  in  gUeen,  and  bR[SlRW  gURXSV  indicaWe  Whe  UegiVWeU,  CDS  aW  Whe  lefW,  OCDS  aW  Whe                   
middle   and   ADS   aW   Whe   UighW.     
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FigXUe  2.  T\Se-WRken  UaWiR  (bRWWRm)  and  haSa[  UaWiR  (WRS)  fRU  SeVRWhR  (lefW)  and  FUench  (UighW).  Each                  
SRinW  iV  a  VeVViRn  (ZheUe  Whe  cRUUeVSRnding  VSeakeU  SURdXced  aW  leaVW  Rne  XWWeUance).  BR[SlRW  cRlRUV                 
indicaWe  VSeakeUV,  adXlW  VSeakeUV  in  Ued,  mRWheUV  in  blXe  and  RWheU  childUen  VSeakeUV  in  gUeen,  and                  
bR[SlRW   gURXSV   indicaWe   Whe   UegiVWeU,   CDS   aW   Whe   lefW,   OCDS   aW   Whe   middle   and   ADS   aW   Whe   UighW.   
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FigXUe  3.  QXeVWiRn  UaWiR  (bRWWRm)  and  UaWiR  Rf  cRnYeUVaWiRnal  WXUnV  (WRS)  fRU  SeVRWhR  (lefW)  and  FUench                  
(UighW).  Each  SRinW  iV  a  VeVViRn  (ZheUe  Whe  cRUUeVSRnding  VSeakeU  SURdXced  aW  leaVW  Rne  XWWeUance).                 
BR[SlRW  cRlRUV  indicaWe  VSeakeUV,  adXlW  VSeakeUV  in  Ued,  mRWheUV  in  blXe  and  RWheU  childUen  VSeakeUV  in                  
gUeen,   and   Whe   [-a[iV   indicaWeV   Whe   UegiVWeU,   CDS   aW   Whe   lefW,   OCDS   aW   Whe   middle   and   ADS   aW   Whe   UighW.   
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DiscXssion   

In  Whe  hRSe  Rf  infRUming  Whe  VSaUVe  liWeUaWXUe  Rn  TXanWiWaWiYe  and  TXaliWaWiYe  deVcUiSWiRnV  Rf                

childUen'V  inSXW  acURVV  SRSXlaWiRnV,  Whe  cXUUenW  VWXd\  inclXdeV  a  deWailed  anal\ViV  Rf  inSXW  WR                

and  aURXnd  FUench-  and  SeVRWhR-leaUning  childUen  gURZing  XS  in  WZR  YeU\  diffeUenW  cXlWXUal               

VeWWingV.  We  XVed  Whe  Vame  deVcUiSWiYe  meWUicV,  in  RUdeU  WR  cRmSUehenViYel\  dRcXmenW  Whe               

lingXiVWic  inSXW  FUench  and  SeVRWhR-leaUning  childUen  UeceiYe  fURm  SaUenWV  and  RWheU  SeRSle.              

We  deVcUibed  Whe  amRXnW  and  TXaliW\  (Whe  mRUShRV\nWacWic,  le[ical  and  inWeUacWiRnal  feaWXUeV              

Rf  VSeech)  Rf  lingXiVWic  inSXW  VSRken  b\  mRWheUV,  RWheU  adXlWV  and  childUen,  VeSaUaWel\  fRU                

child-diUecWed  VSeech,  VSeech  diUecWed  WR  RWheU  childUen  and  VSeech  diUecWed  WR  adXlWV.  We               

fRXnd   VRme   diffeUenceV   acURVV   cXlWXUeV,   bXW   alVR   a   gUeaW   deal   Rf   VimilaUiW\.   

  

The   cRmSRViWiRn  Rf  inSXW   diffeUed  dUamaWicall\  beWZeen  cXlWXUeV .  MaWeUnal  inSXW  ZaV  mRUe              

dRminanW  in  Whe  FUench  cRUSXV  cRmSaUed  WR  Whe  SeVRWhR  Rne.  In  Whe  laWWeU,  RWheU  childUen'V                 

inSXW  ZaV  mRUe  SUeYalenW  Whan  maWeUnal  inSXW  (Vee  Shneidman  and  GRldin-MeadRZ,  2012  fRU               

a  VimilaU  RbVeUYaWiRn  in  a  Ma\an  Yillage).  GiYen  WhaW  all  WaUgeW  childUen  had  RldeU  ViblingV,   Whe                  

lRZeU  SURSRUWiRn  Rf  VSeech  fURm  RWheU  childUen  in  FUench  indicaWeV  WhaW  FUench  childUen  ma\                

haYe  feZeU  RSSRUWXniWieV  WR  heaU  VSeech  SURdXced  b\  RWheU  childUen  cRmSaUed  WR  SeVRWhR               

childUen.  ThiV  diffeUence  in  cRmSRViWiRn  iV  alVR  cRnViVWenW  ZiWh  RbVeUYaWiRnV  WhaW  mRWheUV              

haYe  mRUe  childUen  WR  aWWend  WR  in  LeVRWhR,  and  childUen  aUe  VXUURXnded  b\  mRUe  childUen  -  aW                   

leaVW  in  Whe  UXUal  Yillage  cRnWe[W  -  Whan  in  XUban  FUance.  ThiV  iV  deVSiWe  Whe  facW  WhaW  bRWh  Whe                     

SeVRWhR  cRUSXV  and  Whe  L\Rn  cRUSXV  ZeUe  µdeVigned¶  WR  eliciW  VSRnWaneRXV  VSeech  inWeUacWiRnV               

beWZeen  mRWheU  and  WaUgeW  child;  WhiV  becRmeV  mRUe  challenging  in  LeVRWhR  fURm  Whe  age  Rf                 
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2;6,  eiWheU  dXe  WR  Whe  biUWh  Rf  anRWheU  Vibling,  RU  Whe  incUeaVing  indeSendence  Rf  Whe  child  b\                   

WhiV   ageV,   faciliWaWing   inWeUacWiRnV   ZiWh   Whe   laUgeU   SeeU   gURXS.   

  

ThXV,  RWheU  childUen  aUe  an  imSRUWanW  VRXUce  Rf  inSXW  fRU  man\  leaUneUV  Rf  SeVRWhR.  ThiV                 

inYiWeV  fXUWheU  UeVeaUch  Rn  hRZ  VSeech  fURm  RWheU  VSeakeUV  cRnWUibXWeV  WR  childUen¶V  inSXW               

(Vee   SSeUU\  eW  al.,  2019  fRU  a  VimilaU  VXggeVWiRn) ,  hRZ  eVVenWial  inSXW  iV  fURm  e[SeUW  (i.e.,                  

adXlW)  VSeakeUV,  and  ZhaW  amRXnWV  Rf  adXlW  VSeech  aUe  neceVVaU\  fRU  langXage  acTXiViWiRn.               

ThaW  Vaid,  maWeUnal  VSeech  iV  SURSRUWiRnall\  imSRUWanW  in  bRWh  cRUSRUa,  and  RWheU  child  VSeech                

iV  nRW  SUeYalenW  in  Whe  FUench  cRUSRUa.  TheVe  UeVXlWV  aUe  in  line  ZiWh  SUeYiRXV  findingV  fRU  US                   

familieV,  dRcXmenWing  WhaW  ViblingV  addUeVV  WheiU  \RXngeU  ViblingV  mXch  leVV  fUeTXenWl\  Whan              

ZhaW   WheiU   mRWheUV   and   RWheU   adXlWV   dR   (e.g.    OVhima-Takane   &   RRbbinV,   2003 ).     

  

In  eYeU\  RWheU  UeVSecW,  maUked  VimilaUiWieV  beWZeen  cXlWXUeV  ZeUe  RbVeUYed.  TR  begin  ZiWh,               

CDS  ZaV  Whe  mRVW  SUeYalenW  UegiVWeU  in  bRWh  cXlWXUeV.  All  WaUgeW  childUen  in  FUench  VeWWingV                 

ZeUe  mRVWl\  e[SRVed  WR  VSeech  diUecWed  WR  Whem.  TZR  RXW  Rf  WhUee  SeVRWhR-leaUning  childUen                

ZeUe  mRVWl\  e[SRVed  WR  CDS,  Whe  WhiUd  liVWening  mRVWl\  WR  OCDS.  ThiV  again  SRinWV  WR  Whe                  

need  WR  VWXd\  diYeUVe  cXlWXUeV;  WheUe  aUe  nRW  Rnl\  diffeUenceV  beWZeen  indXVWUial  XUban  and               

nRn-indXVWUial  UXUal  cRmmXniWieV,  bXW,  giYen  Whe  liWWle  CDS  fRXnd  in  VRme  nRn-indXVWUial              

cXlWXUeV,   WheUe   aUe   alVR   laUge   diffeUenceV   beWZeen   diffeUenW   nRn-indXVWUial   UXUal   cRmmXniWieV.   

  

AnRWheU  cleaU  cRnYeUgence  acURVV  cRUSRUa  iV  WhaW  CDS  VeemV  WR  haYe  VRme  VimilaU  feaWXUeV                

(e.g.  UaWiR  Rf  TXeVWiRnV,  W\Se-WRken  UaWiR)  in  bRWh  FUench  and  SeVRWhR .  ThiV  agUeeV  ZiWh                

SUeYiRXV  ZRUk  VhRZing  WhaW  CDS  iV  a  VimSlified  UegiVWeU  adjXVWed  WR  child  liVWeneUV.  HRZeYeU,                

WhiV  SaWWeUn  Rf  VimSlificaWiRn  iV  nRW  e[hibiWed  acURVV  all  feaWXUeV.  FRU  e[amSle,  Ze  fRXnd  a                 
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high  UaWiR  Rf  TXeVWiRnV  in  SeVRWhR.  ThiV  agUeeV  ZiWh  SUeYiRXV  RbVeUYaWiRnV  (DemXWh,  1992;               

1995;   Kline  &  DemXWh,  2010 ).  MRUeRYeU,  fRU  bRWh  cXlWXUeV,  OCDS  VeemV  WR  be  mRUe                

VimSlified  Whan  ADS,  and  haV  mRUe  VimilaU  SaWWeUnV  WR  CDS  Whan  ZhaW  ADS  dReV.  ThiV                 

VXggeVWV  WhaW  VSeech  diUecWed  WR  bRWh  WaUgeW  and  RWheU  childUen  fURm  all  VSeakeUV,  haV                

CDS-like  chaUacWeUiVWicV  in  bRWh  VRcieWieV.  AV  a  UeVXlW,  iW  iV  cRnceiYable  WhaW  childUen  ZhR  aUe                 

e[SRVed  WR  a  gUeaW  deal  Rf  OCDS  cRXld  leaUn  mRUe  fURm  WhiV  W\Se  Rf  RYeUheaUd  VSeech  Whan                   

fURm  ADS.  SXch  a  finding  SRinWV  WR  a  need  WR  VWXd\  Whe  chaUacWeUiVWicV  Rf  OCDS  in  diYeUVe                   

cXlWXUeV,  childUen'V  SUefeUence  fRU  OCDS  RYeU  ADS,  and  ZheWheU  childUen  leaUn  mRUe  fURm               

OCDS   Whan   fURm   ADS.     

  

In  VXm,  mRUe  cURVV-cXlWXUal  diffeUenceV  ZeUe  fRXnd  ZiWh  UeVSecW  WR   Zho  addUeVVeV  Whe  ke\                

childUen,  Whan  ZiWh  UeVSecW  WR   hoZ  Whe\  addUeVV  Whem.  Child  VSeakeUV  Rf  CDS  in  bRWh  cXlWXUeV                  

XVe  a  UegiVWeU  VimilaU  WR  mRWheUV¶  VSeech,  eVSeciall\  in  iWV  mRUShRV\nWacWic  and  le[ical               

feaWXUeV  (bXW  WhiV  iV  nRW  Whe  caVe  fRU   haSa[  UaWiR  i n  FUench).   ThiV  VXggeVWV  WhaW  RWheU  childUen                   

alVR   adjXVW   WheiU   VSeech   Zhen   Walking   WR   \RXngeU   childUen.     

  

HRZeYeU,  Ze  cRXld  nRW  Va\  Whe  Vame  ZiWh  UeVSecW  WR  VSeech-eliciWing  feaWXUeV.  ChildUen  in                

bRWh  FUench  and  SeVRWhR  haYe  a  lRZeU  UaWiR  Rf  TXeVWiRnV  Whan  Whe  mRWheUV,  in  line  ZiWh                  

SUeYiRXV  RbVeUYaWiRnal  UeVXlWV  (e.g.   DXnn  &  KendUick,  1982;  Mannle  eW  al.,  1991 ).  MRWheUV               

and  adXlWV  haYe  a  higheU  UaWiR  Rf  cRnYeUVaWiRnal  WXUnV  Whan  RWheU  childUen  in  FUench.                

InWeUeVWingl\,  WhiV  SaWWeUn  dReV  nRW  aSSeaU  in  SeVRWhR;  mRWheUV  and  adXlWV  haYe  VimilaU  UaWiRV                

Rf   cRnYeUVaWiRnal   WXUnV   WR   WhaW   Rf   RWheU   childUen.     
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OWheU  adXlWV  alVR  XVe  child-diUecWed  VSeech  Zhen  Walking  WR  childUen,  cRnfiUming  VRme              

SUeYiRXV  UeVXlWV  (e.g.   ShXWe  &  Wheldall,  1999,  2001 ).  AdXlW  VSeech  addUeVVed  WR  childUen               

VeemV   WR   be   leVV   le[icall\   diYeUVe   Whan   WhaW   addUeVVed   WR   RWheU   adXlWV   fRU   bRWh   langXageV.     

  

In  VXm,  baVed  Rn  Whe  UeVXlWV  Rf  RXU  anal\ViV,  all  WaUgeW  childUen  gURZ  XS  in  enYiURnmenWV                  

ZheUe  Whe\  aUe  RfWen  diUecWl\  addUeVVed,  eiWheU  b\  WheiU  mRWheU,  RU  b\  childUen  and  RWheU                 

adXlWV,  and  WhaW  inSXW  fURm  diffeUenW  VSeakeUV  iV  nRW  dUamaWicall\  diffeUenW  in  TXaliWaWiYe  WeUmV,                

aW  leaVW  fRU  Whe  majRUiW\  Rf  Whe  feaWXUeV  VWXdied  heUe.  ThiV  indicaWeV  WhaW  bRWh  FUench-  and                  

SeVRWhR-leaUning  childUen  gURZ  XS  in  VWimXlaWing  enYiURnmenWV  fRU  lingXiVWic  deYelRSmenW,  in             

agUeemenW   ZiWh   SUeYiRXV   anWhURSRlRgical   VWXdieV   (e.g.    CRnnell\,   1984) .     

  

BefRUe  clRVing,  Ze  ZRXld  like  WR  menWiRn  VRme  limiWaWiRnV  Rf  Whe  VWXd\.   ThiV  UeVeaUch  iV                 

baVed  Rn  e[iVWing  cRUSRUa  fURm  SUeYiRXV  VWXdieV  ZheUe  Whe  nXmbeU  Rf  WaUgeW  childUen  UecRUded                

ZaV  limiWed,  dXe  WR  Whe  labRU-inWenViYe,  lRngiWXdinal  ZRUk  inYRlYed  in  cRllecWing  da\lRng              

UecRUdingV  and  annRWaWing  fXll\  VSRnWaneRXV  VSeech.  A  laUgeU  nXmbeU  Rf  WaUgeW  childUen  mighW               

haYe  enabled  XV  WR  cRndXcW  VWaWiVWical  WeVWV  Rn  diffeUenceV  beWZeen  UegiVWeUV,  VSeakeUV  and               

cXlWXUeV,   ZheUeaV   Whe   cXUUenW   VWXd\   ma\   Uemain   deVcUiSWiYe.  

  

O XU  annRWaWRUV  alVR  VXVSecWed  WhaW  VSeech  fURm  RWheU  childUen  ma\  be  XndeUeVWimaWed  in               

FUench  UecRUdingV,  Vince  RldeU  ViblingV  VRmeWimeV  Veemed  diVcRXUaged  fURm  VSeaking  dXUing             

Whe  UecRUding.  HeUe  iV  an  e[amSle  fURm  Anap¶V  UecRUding  VeVViRn  020804:  Zhen  Whe  RldeU                

bURWheU  cRmeV  in  Whe  URRm,  Whe  mRWheU  Va\V  WR  him  ³TRi  WX  cRmmenceV  SaV.  (=DRn¶W  VWaUW.)´                  

and  afWeU  a  Zhile  Vhe  Va\V  ³TRi  WX  We  WaiV  V¶il  We  SlavW.  (=  DRn¶W  VSeak  SleaVe.)´.  IW  iV  SRVVible                      

WhaW  ViblingV  inWeUacW  mRUe  ZiWh  each  RWheU  Zhen  Whe\  aUe  nRW  UecRUded,  bXW  iW  iV  alVR  SRVVible                   
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WhaW  Whe  Vame  W\SeV  Rf  inWeUacWiRnV  haSSen  Zhen  familieV  aUe  nRW  UecRUded,  Zhich  ZRXld  mean                 

WhaW  WheVe  aUe  genXine  cXlWXUal  diffeUenceV.  IW  ma\  be  Whe  caVe  WhaW  FUench  SaUenWV  XVXall\  Vend                  

aZa\  a  nRiV\  RU  agiWaWed  child  Zhen  WU\ing  WR  fRcXV  Rn  anRWheU  child  ZheUeaV  SeVRWhR  SaUenWV                  

dR  nRW,  Zhich  ZRXld  SaUWiall\  e[Slain  Zh\  SeVRWhR-leaUning  childUen  UeceiYe  mRUe  VSeech              

fURm   RWheU   childUen   Whan   FUench-leaUning   childUen.     

  

LaVW,  aV  e[Slained  abRYe,  Whe  SeVRWhR  VeVViRnV  ZeUe  UecRUded  in  Whe  SUeVence  Rf  Whe                

inYeVWigaWRU  and  fRU  cRmSaUabiliW\  UeaVRnV,  Ze  chRVe  WR  annRWaWe  VeVViRnV  Rf  FUench  cRUSRUa               

ZheUe  Whe  inYeVWigaWRU  ZaV  alVR  SUeVenW  dXUing  Whe  UecRUdingV.  SSeech  SURdXced  b\  RU               

addUeVVed  WR  Whe  inYeVWigaWRU  ZaV  UemRYed  in  bRWh  cRUSRUa  fRU  WhiV  anal\ViV.  FXWXUe  VWXdieV                

mighW  be  able  WR  XVe  UecRUding  deYiceV  ZheUe  Whe  inYeVWigaWRU  iV  nRW  SUeVenW,  Vince  Whe                 

inYRlYemenW   Rf   a   VWUangeU   in   Whe   UecRUding   SURceVV   mighW   change   familieV¶   behaYiRXU.     

  

FRU  WhiV  VWXd\,  Ze  fRcXVed  Rn  Whe  UaWiR  Rf  TXeVWiRnV  aV  a  VSeech  eliciWing  feaWXUe.  HRZeYeU,                  

addiWiRnal  VSeech-eliciWing  feaWXUeV  and  VenWence  W\SeV  can  be  fRXnd  in  VSeech,  VXch  aV               

imSeUaWiYeV.  FXWXUe  VWXdieV  ma\  ZanW  WR  inclXde  Whe  UaWiR  Rf  imSeUaWiYeV  in  Whe  anal\VeV.  AlVR,                 

in  SeVRWhR,  RWheU  adXlWV  ZeUe  mRVWl\  gUandmRWheUV  and  neighbRUV,  ZheUeaV  in  FUench  Whe\               

ZeUe  mRVWl\  faWheUV.  In  SeVRWhR,  child  membeUV  ZeUe  a  mi[ed-age  gURXS  Rf  ViblingV,  SeeUV                

and  RWheU  childUen,  ZheUeaV  in  FUench  child  membeUV  ZeUe  mainl\  RldeU  ViblingV,  ZiWh  ageV                

Uanging  fURm  fiYe  WR  Wen  \eaUV.  FXWXUe  VWXdieV  ma\  fRcXV  Rn  VSeech  VeSaUaWel\  fRU  WheVe                 

diffeUenW  VSeakeU  URleV,  lRRking  aW  VimilaUiWieV  and  diffeUenceV  beWZeen  e.g.  Vibling  and  SeeU               

VSeech,  RU  faWheU  and  gUandmRWheU  VSeech.  LaVW,  Ze  XVed  daWa-dUiYen  meaVXUemenWV,  VXch  aV               

lengWh  Rf  XWWeUance  and  le[ical  diYeUViW\  fRU  WhiV  VWXd\.  HRZeYeU,  langXage  alVR  cRnViVWV  Rf                

VRcial  SaWWeUnV  and  iV  VenViWiYe  WR  cRnWe[W.  FRU  WhiV  UeaVRn,  fXWXUe  VWXdieV  ma\  need  WR  inclXde                  
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mRUe  cRmSUehenViYe  anal\VeV,  Waking  inWR  cRnVideUaWiRn  mRUe  feaWXUeV  Rf  engagemenW            

beWZeen   SaUWneUV,   and   Whe   familieV¶   chaUacWeUiVWicV.   

  

We  lRRk  fRUZaUd  WR  fXUWheU  UeVeaUch  incRUSRUaWing  mRUe  cXlWXUeV,  in  RUdeU  WR  inYeVWigaWe  Whe                

imSacW  Rf  nRn-SaUenWal  caUegiYeUV,  and  WR  check  ZheWheU  VSeech  cRmSRViWiRn  and  TXaliWieV              

VXch   aV   Whe   RneV   fRXnd   heUe   aUe   UeSUeVenWaWiYe   Rf   TXanWifiable   diVWincWiRnV   in   RWheU   cXlWXUeV.   
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Appendix     

  

Table  A1.  PeUcenWage  Rf  VSeech  SURdXced  b\  mRWheUV  (MOT),  RWheU  adXlWV  (ADU)  and  RWheU  childUen                 
(OCHI)  cRmSUiVing  CDS,  OCDS  and  ADS  fRU  each  child.  The  laUgeVW  nXmbeU  in  each  UegiVWeU-baVed                 

  

  CDS     OCDS     ADS     

MOT   ADU   OCHI   MOT   ADU   OCHI   MOT   ADU   OCHI   

Sesotho    HlRbRhang  13.�4   3�.0�   3�.01   1.02   3.01   2.��   .21   .�4   2.5�   

Sesotho    LiWlhaUe   40.2�   2.0�   4�.�4   2.��   0.23   2.5�   .3�   .3�   2.55   

Sesotho    NeXRe   4.��   �.4�   1�.�1   1�.��   �.12   24.�1   .2�    .1�    21.�0   

French     Anap   ��.��   .1�   �.01   5.5�   .22   .4�   .44   .3�   4.�3   

French    AnaiV   �5.3�   2�.40   1.�1   2.42   -   .01   .41   .24   2.3�   

French    TheRWime   �0.3�   -   1.43   4.0�   -   -   .12   -   3.3�   



/

145   

gURXS  Rf  cellV  iV  in  bRld.  We  RbVeUYe  WhaW  CDS,  OCDS  and  ADS  ZeUe  mRVWl\  SURdXced  b\  RWheU                    
childUen  fRU  all  SeVRWhR-leaUning  childUen,  e[ceSW  fRU  HlRbRhang,  fRU  ZhRm  RWheU  adXlWV  and  RWheU                
childUen  cRnWUibXWed  almRVW  eTXall\  WR  Whe  WRWal  OCDS.  FRU  Whe  FUench-leaUning  childUen,  Whe  mRWheU                
ZaV   Whe   main   VRXUce   Rf   CDS   and   OCDS,   and   RWheU   childUen   ZeUe   Whe   main   VRXUce   Rf   ADS.   
  

  

  

FigXUe  A1.   Mean  XWWeUance  lengWh   iQ  PRUShePeV  fRU  SeVRWhR  (WRS)  and  FUench  (dRZn).               
MRUShRlRgical  anal\ViV  fRU  FUench  ZaV  geneUaWed  ZiWh  CLAN  (MacWhinne\,  2000).  FRU  e[amSle,  Whe               
SeVRWhR  YeUb  µ ke-Wla-mR-RWla¶  iV  cRXnWed  aV  fRXU  mRUShemeV  µke  Wla  mR  RWla¶.  The  Vame  ShUaVe  in                  
FUench  µJe  YaiV  le  fUaSSeU¶  iV  cRXnWed  aV  fiYe  mRUShemeV  µJe  YaiV  le  fUaSS  eU¶).   Each  SRinW  iV  a  VeVViRn.                      
BR[SlRW  cRlRUV  indicaWe  VSeakeUV,  adXlW  VSeakeUV  in  Ued,  mRWheUV  in  blXe  and  RWheU  childUen  VSeakeUV  in                  
gUeen,   and   Whe   [-a[iV   indicaWeV   Whe   UegiVWeU,   CDS   aW   Whe   lefW,   OCDS   aW   Whe   middle   and   ADS   aW   Whe   UighW.   
  
    

FigXUe   A2.   MRYing   aYeUage   W\Se   WRken   UaWiR   fRU   SeVRWhR   (lefW)   and   FUench   (UighW)   ZiWhin   a    ZiQdRZ   Rf   
100   ZRUdV .     
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�.    IV   iW   eaVieU   WR   VegPeQW   ZRUdV   fURP   iQfaQW-   WhaQ   adXlW-diUecWed   VSeech?   

MRdeliQg   eYideQce   fURP   aQ   ecRlRgical   FUeQch   cRUSXV   *   

  

  

AbsWracW :  InfanWs  learn  langXage  b\  e[posXre  Wo  sWreams  of  speech  prodXced  b\  Wheir  caregiYers.  Earl\                 

on,  Whe\  manage  Wo  segmenW  Zord  forms  oXW  of  Whis  conWinXoXs  inpXW,  Zhich  is  eiWher  direcWl\                  

addressed  Wo  Whem,  or  direcWed  Wo  oWher  adXlWs,  WhXs  oYerheard.  IW  has  been  sXggesWed  WhaW                 

infanW-direcWed  speech  is  simplified  and  coXld  faciliWaWe  langXage  learning.  This  sWXd\  aimed  Wo               

inYesWigaWe  ZheWher  feaWXres  sXch  as  XWWerance  lengWh,  segmenWaWion  enWrop\  and  le[ical  diYersiW\  coXld               

accoXnW  for  an  adYanWage  in  segmenWabiliW\  of  infanW-direcWed  speech.  A  large  seW  of  Zord                

segmenWaWion  algoriWhms  Zas  Xsed  on  an  ecologicall\  Yalid  corpXs,  consisWing  of  18  seWs  of  recordings                 

gaWhered  from  French-learning  infanWs  aged  3-48  monWhs.  A  series  of  We[WXal  anal\ses  confirmed               

seYeral  simpliciW\  feaWXres  of  infanW-,  compared  Wo  adXlW-direcWed  speech.  A  small  segmenWaWion              

adYanWage  Zas  also  docXmenWed,  Zhich  coXld  noW  be  aWWribXWed  Wo  an\  of  Whose  corpXs  feaWXres.  Some                  

parWicXlariWies   of   Whe   daWa   inYiWe   fXrWher   research   on   more   corpora.     

  

  

* LRXkaWRX,  G.,  Le  NRUmaQd,  M.-T.  &  CUiVWia,  A.  (2019).  IV  iW  eaVieU  WR  VegmeQW  ZRUdV  fURm                  

iQfaQW-diUecWed  VSeech?  MRdeliQg  eYideQce  fURm  aQ  ecRlRgical  FUeQch  cRUSXV.   ProceedingV  of  Whe  41VW               

Conference   of   CogniWiYe   Science   SocieW\ .     
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Abstract

Infants learn language by exposure to streams of speech pro-
duced by their caregivers. Early on, they manage to segment
word forms out of this continuous input, which is either di-
rectly addressed to them, or directed to other adults, thus over-
heard. It has been suggested that infant-directed speech is sim-
plified and could facilitate language learning. This study aimed
to investigate whether features such as utterance length, seg-
mentation entropy and lexical diversity could account for an
advantage in segmentability of infant-directed speech. A large
set of word segmentation algorithms was used on an ecolog-
ically valid corpus, consisting of 18 sets of recordings gath-
ered from French-learning infants aged 3-48 months. A se-
ries of textual analyses confirmed several simplicity features
of infant-, compared to adult-directed speech. A small seg-
mentation advantage was also documented, which could not
be attributed to any of those corpus features. Some particular-
ities of the data invite further research on more corpora.

Keywords: language acquisition; infant-directed speech;
computational modeling; word segmentation; unsuper-
vised learning

Introduction

Infants acquire language early on, building a vocabulary of

several hundred word forms by 11 months of life (Ngon et

al., 2013). Since most word forms do not appear in isolation

(Brent & Siskind, 2001), much previous work studies how

infants segment (i.e., pull out) forms from their caregivers’

running input. A close look at this input shows that it is not

homogeneous, but instead contains some speech addressed

to the infants themselves (infant-directed speech or IDS) and

some speech overheard by infants which is addressed to oth-

ers, including adults (adult-directed speech or ADS). These

two speech registers differ along many dimensions, including

some that may impact word segmentation.

Broadly, IDS has been claimed to present properties

that would facilitate language acquisition, with IDS be-

ing phonologically, syntactically, and semantically simpli-

fied (Soderstrom, 2007). Other characteristics are more rel-

evant to word segmentation. First, IDS may have a higher

proportion of single-word phrases (Brent & Siskind, 2001),

and phrases might be shorter in length (Newport, Gleit-

man, & Gleitman, 1977) than in ADS. In shorter phrases,

more words would occur at phrase edges, which should im-

prove segmentation: Phrase edges, easily perceptible, are

word boundaries provided “for free”. Indeed, infants may

be more successful at recognizing and segmenting phrase-

final words (E. Johnson, Seidl, & Tyler, 2014). Additionally,

shorter phrases entail that the set of possible segmentations

for each phrase is smaller, lowering segmentation ambiguity.

For instance, Fourtassi, Börschinger, Johnson, and Dupoux

(2013) showed that ADS might be more ambiguous to seg-

ment, when comparing an ADS to an IDS corpus. Second,

words may be shorter (Ma, Golinkoff, Houston, & Hirsh-

Pasek, 2011), which should mean that word, morphemes, and

syllable boundaries coincide more often and there are fewer

places to posit or miss positing a boundary. Third, there may

be more repetitions, therefore fewer hapaxes (words uttered

only once), and overall less lexical diversity (Soderstrom,

2007). Low lexical diversity means fewer target words need

to be found. There might be more cues to help segment out

frequently repeated words, than words that appear rarely or

once. Indeed, one computational modeling study found that

artificially reducing phrase length and increasing word repe-

tition in a corpus improved word segmentation with one word

segmentation model (Batchelder, 1997). Based on these hy-

potheses and previous work, we predict that the task of recov-

ering wordforms is easier in IDS than ADS.

Naturally, IDS features may not be the same across in-

fant ages. IDS addressed to very young infants may dif-

fer from that addressed to older infants, possibly resembling

ADS more as infants get older. For example, IDS features

may become less accentuated as the infant grows up; repe-

titions might decrease, utterance length and lexical diversity

increase with age (Henning, Striano, & Lieven, 2005; Soder-

strom, 2007). According to the hypotheses explained above,

IDS addressed to younger infants should be “easier” to seg-

ment than IDS to older infants.

In this paper, we aim to address the question of whether

it is easier to segment wordforms from IDS than ADS, using

multiple word segmentation models, and taking into account

changes with infants’ age. In the next section, we review
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previous modeling work more thoroughly, before introducing

our own approach.

Previous studies

Some studies tested whether infants learn more from IDS

than ADS in an experimental situation. However, improve-

ments for IDS compared to ADS could be due to the fact

that infants pay more attention when they listen to IDS, and

thus learn more from it. This method cannot reveal whether,

above and beyond this attentional effect, there are intrinsic

in f ormational differences that affect segmentability. For-

tunately, there is a complementary method to approach this

question with a colder eye, which builds on computational

models of word segmentation. The input to such word seg-

mentation models is usually speech transcriptions, in order to

control for differences such as attention capture and acoustic

implementation. Segmentation models used for this method

are based on findings by experimental studies that infants

might make use of statistical cues. Computational models

of infant word segmentation can be grouped into two con-

ceptual classes: lexical and sublexical. Sublexical models

segment based on local cues, such as transitional probabili-

ties and phonotactics. Lexical models build a lexicon based

on recurrent chunks of speech identified with Bayesian prob-

abilities or by memorizing isolated words.

Little previous modeling work has specifically compared

IDS and ADS. Four representative studies are summarized in

Table 1. For these four studies, improved segmentation per-

formance was found for IDS than ADS: 15% for Batchelder

(2002), 5-8% for Fourtassi et al. (2013), 2-10% for Ludusan,

Mazuka, Bernard, Cristia, and Dupoux (2017) and 3-10% for

Daland and Pierrehumbert (2011). A recent paper critiqued

this previous work as follows (Cristia, Dupoux, Ratner, &

Soderstrom, 2018). IDS mainly involved caregivers address-

ing their infants during predefined tasks (e.g., a play session

in the laboratory) or in short visits to the child’s home. In the

former case, by constraining the context, the structure and

lexicon of caregivers might have been limited and adapted to

that task. And in both cases, being observed could affect care-

givers’ behavior, who might produce less spontaneous and

more formal speech. Moreover, ADS was mostly addressed

to an unfamiliar person (experimenter). These conversations

are likely more formal than ADS between caregivers in daily

life, and could increase the complexity of the speech. As

shown by E. Johnson, Lahey, Ernestus, and Cutler (2013),

IDS differs more from ADS to unfamiliar adults, than ADS

to familiar adults. This could result in increased qualitative

differences between registers and probably overestimated dif-

ferences in segmentability.

Indeed, Cristia et al. (2018) recently documented a consid-

erably smaller IDS advantage when modeling segmentation

on an ecological English IDS and ADS corpus. The corpus

consisted of transcriptions from excerpts of day-long record-

ings; thus infants’ linguistic environment was recorded while

they were going on with their daily lives, resulting in realistic

IDS and ADS. Across a wide range of lexical and sublexical

models, the IDS advantage ranged from -2% to 8%, with only

3 models providing evidence of an advantage greater than a

measure of error. Interestingly, the difference between regis-

ters was further reduced when IDS was matched to ADS in

corpus length.

The present study

We contribute to this literature in three main ways. First, we

specifically describe IDS-ADS differences using various cor-

pus description tools. We compare the registers in: phrase

length, word length, ratio of single word phrases, intrinsic

segmentation ambiguity (using segmentation entropy), lex-

ical diversity (using Moving Average Type-Token Ratio –

MATTR–, so as to control for corpus size), and ratio of ha-

paxes. Some, but not all of these features have been sepa-

rately looked at in previous studies (i.e. Fourtassi et al., 2013

measured segmentation ambiguity and Batchelder, 1997 mea-

sured word and phrase length, repetitiveness). This is the first

study to systematically investigate a plurality of language fea-

tures on the same IDS-ADS corpus. We test whether IDS

is simpler than ADS, as far as these features are concerned.

Moreover, following Batchelder (2002), we further investi-

gate whether variation in these features can actually account

for the segmentability of a register.

Second, IDS corpora coming from a wide infant age range

have been used by previous research, but IDS addressed to

infants of different ages were, most of the times, merged to-

gether. One exception is Batchelder (1997), who documented

that IDS to younger children (13-18 months) produced more

successful results than IDS to older children (22-25 months),

whereas ADS results from mothers of younger versus older

infants didn’t differ. In this paper, we specifically ask whether

some IDS features interact with infant age and whether seg-

mentability of IDS might actually be affected by age. For

that, we include IDS and ADS from a wide age range, and fur-

ther investigate possible correlations between features, seg-

mentation scores, and infant age.

Third, we follow Cristia et al. (2018) by analyzing a com-

pletely ecological child-centered corpus, based on excerpts

of day-long recordings, and which thus contains natural ADS

and IDS as the child hears over the course of the day. The

results of our study would provide more evidence to the ques-

tion whether differences in home-recorded IDS and ADS are

smaller than those between less controlled IDS-ADS con-

trasts (see Table 1).

In addition to these three main contributions, we extend the

range of languages studied to European French.

Methods

We segmented IDS and ADS of each infant separately.

Scripts used for corpus preprocessing, phonologization, and

segmentation as well as results and supplementary mate-

rial are available at https://osf.io/6vwse/?view only=

0bc4f6c0e23040cbbb92e26d414d4a7a. Statistical analyses

were carried out in R (R Core Team, 2013).
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Table 1: Summary of design in previous modeling studies comparing IDS and ADS segmentation. In Language(s), Eng stands

for English, Jap for Japanese, Span for Spanish. Under IDS and ADS, we describe the corpora. The specific corpora used

were: R= RIKEN; H= Hamasaki; C= Spontaneous Japanese; BR= Bernstein Ratner; B= Buckeye; D= Deuchar & Clark 1992,

Marrero; M= Miyata 1995; novel= Moon and the Sixpense; short stories were written by Alejandro Dolina (MacWhinney,

1996). Under model, we note the type of model used: lex for lexical and sublex for sublexical.

Study Language(s) Infant age(s) IDS ADS model

Batchelder (2002) Eng. 1;1-1;9 play session (BR) novel 1 lex

Batchelder (2002) Span. 1;8-8;0 CHILDES (D) short story 1 lex

Batchelder (2002) Jap. 1;3-3;1 home play session (M) science book 1 lex

Daland et al. (2011) Eng. various all CHILDES interview (B) 1 sublex

Fourtassi et al. (2013) Eng. 1;1-1;9 play session (BR) interview (B) 1 lex

Fourtassi et al. (2013) Jap. 2;2-3;7 play session (H) lecture (C) 1 lex

Ludusan et al. (2017) Jap. 1;6-2;0 play session (R) lecture (C) 1 lex, 3 sublex

Corpus

Sixteen typically developing native French-speaking infants

(eight girls, eight boys; ages 3-48 months, M=20, SD=13),

whose families were highly educated, were included. Two of

the infants were recorded at two different ages. Each child

was recorded 10-16 hours per day, three days a week, in their

natural environments. The original recordings are available

online (Canault, Le Normand, Foudil, Loundon, & Thai-Van,

2016a, 2016b; VanDam et al., 2016). Next, 18 10-min sam-

ples, totaling 3 hours per child (1 hour per day), were selected

for orthographic transcription by two native French speakers,

as detailed in Canault et al. (2016b). The main criteria for se-

lection reported was that a number of activities were sampled,

and that there be a high number of productions by the child

and the adult. For the present project, the transcriptions of

the first day for all infants were corrected by a native French

speaker, who made sure that the definition of utterance was

stable (and corrected any other errors, such as misattributions

or orthographic errors). The coder annotated whether an adult

caregiver’s utterance was directed to the target child, an adult,

or other, using content and context. Utterances addressed to

the target child constituted the IDS corpus and those directed

to an adult were the ADS corpus.

Pre-processing

Pre-processing was carried out using custom scripts

written mainly in bash and in python, available

from https://github.com/georgialoukatou/

French ADS IDS segmentation Lyon. All extraneous

codes (such as punctuation marks or “xxx”, the code indi-

cating that what was said could not be understood by the

transcriber) were removed, leaving only the orthographic

representation of the adults’ speech. The corpora were

phonologized with the French voice of the espeak TTS

system (Duddington, 2012), using the phonemizer wrapper

(Bernard, 2018), which further syllabifies according to the

Maximum Onset Principle.

Before segmentation, all spaces between words were re-

moved, leaving the input parsed into minimal units. The mini-

mal units were either phones or syllables. Both phonemes and

syllables were tested with all models. Utterance boundaries

were preserved as such, since they are supposedly salient

to infants (Shukla, White, & Aslin, 2011). This consti-

tutes the input to the model. After preprocessing, the 18

infant-directed corpora contained M=487 (SD 350) utter-

ances (range 84 to 1,172 utterances). The 18 adult-directed

corpora contained M=238 (SD 230) utterances (range 15 to

780 utterances).

For comparability with previous work, we evaluate the

models’ performance using lexical token F-scores, measured

by comparing the original version of the input (with spaces

between words) against the one returned by the model (with

spaces in the hypothesized breaks).

Segmentation

Both corpus description and segmentation were carried out

using the WordSeg package (Bernard et al., 2018), available

from https://github.com/bootphon/wordseg/. Due to

space limits, the algorithms are only briefly described here.

Full technical details can be found in https://wordseg

.readthedocs.io/. All algorithms are unsupervised, and

inspired in infant experimental work.

We used two representatives of the sublexical word seg-

mentation class contains, called DIBS and TP for short. The

Diphone Based Segmentation algorithm (DiBS; Daland &

Pierrehumbert, 2011) is based on the idea than a phoneme

sequence often spanning phrase boundaries would probably

span word breaks.

The Transitional Probabilities algorithm family (TP;

Saksida, Langus, & Nespor, 2017) is based on the concept

that syllable pairs with lower statistical coherence tend to

span word breaks. Forward TP (FTP) measures the fre-

quency of occurrence of the syllabic sequence AB given the

frequency of occurrence of the syllable A. Backward TP

(BTP) measures the frequency of occurrence of the syllabic

sequence AB given the frequency of occurrence of the syl-

lable B. The Relative versions (FTPr or BTPr) threshold TPs

against that of neighboring sequences. The Absolute versions
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Table 2: Paired t-tests measuring feature differences across

IDS and ADS. Word length is measured in phonemes. % 1-

w phrase stands for ratio of single word phrases. % hapaxes

stands for percent of hapaxes. IDS gives the mean values of

each feature on the IDS corpus, with standard deviation in

parentheses. ADS shows the mean values of each feature on

the ADS corpus with standard deviation in parentheses. The

window size for MATTR is 10 words. “p” gives the p-value

of the t-test.

Feature IDS ADS p

Word length 2.86 (.08) 2.80 (.11) .071

Phrase length 5.89 (.85) 6.73 (.86) *

% 1-w phrase .18 (.06) .13 (.05) **

Entropy .02 (.004) .03 (.01) .31

MATTR .89 (.03) .93 (.02) ***

% hapaxes .39 (.22) .48 (.27) ***

(FTPa or BTPa) instead threshold on the average of all TPs

over the sum of different syllable bigrams.

We used two representatives of the lexical class as well:

AG and PUDDLE. Adaptor Grammar (AG) uses the Pitman-

Yor process, a stochastic process of probability distribution

which prefers the reuse of frequently occurring rules versus

creating new ones to build a lexicon, then uses that lexicon to

parse the input (M. Johnson, Griffiths, & Goldwater, 2007).

Phonotactics from Utterances Determine Distributional

Lexical Elements (PUDDLE, Monaghan & Christiansen,

2010) treats each utterance as a lexical item, unless an al-

ready stored item is part of this utterance, and the remainders

are phonotactically legal. If so, it breaks up the utterance into

segments, and the segments would enter the lexicon as new

lexical items.

Finally, two baselines were included: Syll=Word treats

each syllable as a word and Utt=Word treats each utterance

as a word.

Results

We first investigated whether IDS is simpler than ADS in

terms of six corpus features that could affect word segmen-

tation, as described in the reasoning above. The results of

paired t-tests comparing the registers for each feature are in

Table 2, which shows that four out of six features fit our pre-

dictions.

We also noticed that IDS size corpus (M=487, SD=350 per

child) was significantly larger than the ADS one (M=238,

SD=230), based on a t-test with t(17)=2.63, p=0.02. This

may mean that these infants were exposed to more IDS than

ADS, similar to what Cristia et al. (2018) found for English.

The performance of all segmentation algorithms for both

registers is captured in Figure 1. IDS is easier to seg-

ment than ADS when points are above the dotted diago-

nal line. There was a small IDS advantage for most algo-

rithms, although some showed the opposite effect (DiBSs,

Figure 1: Token F-scores obtained by each algorithm for IDS

as function of that for ADS. The final “s” in the model’s name

means that the basic unit of the corpus was syllables (PUD-

DLWs, Utt=Words, Unit=Words, DiBSs, FTPas, FTPrs, BT-

Pas, BTPrs, AGs). The final “p” in the model’s name means

that the basic unit of the corpus was phones (PUDDLWp,

Utt=Wordp, Unit=Wordp, DiBSp, FTPap, FTPrp, BTPap,

BTPrp, AGp). Error bars show two standard deviations over

the 18 corpora.

Unit=Words, Unit=Wordp, FTPrp). We also observe that in

many cases the pseudo-confidence intervals cross the diag-

onal line, suggesting that performance difference is within

the range of error. Thus, only FTPrs, BTPrs, Utt=Wordp,

PUDDLEp and PUDDLEs showed a clear advantage of IDS.

We then tested for overall effects in a linear mixed effect re-

gression model (Bates, Mächler, Bolker, & Walker, 2015)

predicting token F-scores from register (IDS or ADS) as a

fixed effect, where subject and algorithm (AGs, AGp, DiBSs,

DiBSp...) were random effect variables. Register signifi-

cantly affected token F-scores (χ2(1)=50.87, p<.05, Type II

Anova), IDS having a performance advantage of .03 ± .004

(standard error).

Next, we tested whether this performance advantage was

due to one of the above-mentioned corpus properties. To see

whether performance differences were due to the artifactual

difference in corpus length, we also included the number of

utterances as a register feature. Thus, 7 new models, each in-

cluding one of the features as an additional fixed effect, were

fit. We then measured the significance of register and features

in the new models with a Type II Anova test (Fox & Weisberg,

2011).

If the advantage of IDS was entirely due to one feature,

then register would no longer be significant in these addi-
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Table 3: Corpus features predict segmentation scores, but do

not replace register. β feat stands for the estimated coefficient

of that feature; β rgstr for that of register in the new model

(which should be compared to 0.03 at the simple model). p

features shows whether feature was significant in new model.

p rgst shows whether register remained significant in the new

model. N. utts stands for number of utterances.

Feature Feature Register

Feature β p β p

Word length .02 .48 .03 ***

Phrase length .01 *** .04 ***

% 1-w phrase .06 .29 .03 ***

Entropy -1.58 *** .03 ***

MATTR .5 *** .05 ***

% hapaxes .03 .18 .03 ***

N. utts .00005 *** .02 ***

Table 4: Correlation tests (Spearman) of corpus features and

infant age for each register. “coef.” stands for correlation co-

efficient.% 1-w phrase stands for ratio of single word phrases.

% hapaxes is the ratio of hapaxes.

Feature IDS coef. ADS coef.

Word length .50* .06

Phrase length .34 -.56*

% 1-w phrase -.37 .12

Entropy -.50* .70**

TTR .44 -.37

% hapaxes .01 .30

tional analyses. Results (in Table 3) showed that phrase

length, segmentation entropy, MATTR, and corpus size ac-

counted for variance in the results, but no single feature ren-

dered register effects non-significant.

Next, we investigated whether IDS features change with

infant age, with IDS becoming more ADS like as infants age.

Spearman correlation tests between properties and infant age

for each register separately (Table 4) did not confirm our pre-

dictions: Only word length and entropy ( neither of which had

emerged as register properties on Table 2) correlated with age

in IDS; entropy and phrase length did so for ADS. We have

no plausible explanation for these effects.

Two infants were recorded twice at different ages, one at

31 and 38 months, the other at 32 and 40 months. Follow-

ing a recommendation from a reviewer, we inspected these

two infants as case studies. An inspection of IDS features

demonstrated that phrase length and % of 1-w phrases were

the only features having small changes with age, but only the

latter would change in the same direction for both infants, in-

creasing by 6% and 1% from the first to the second recording.

A few ADS features also changed slightly with age, such as

% of 1-w phrases, word length and entropy, but only phrase

length changed in the same direction for both infants, de-

creasing by 1.18 and 1.66 phonemes.

Finally, we created a new model predicting token F-scores

register (IDS or ADS) and infant age in months as fixed ef-

fects (and model and participant as random effects, as be-

fore), and their interaction. Both main effects and the in-

teraction were significant (Age χ2(1)=4.31, p<.05; Regis-

ter χ2(1)=53.14, p<.5; Age:register χ2(1)=28.81, p<.05). A

follow-up analysis separating the registers indicated that ADS

scores decreased by .002 ± .0005 (standard error) with age,

whereas there was no significant change with age for IDS.

Discussion

In this modeling study, we assessed whether there are in-

formational differences affecting word segmentation between

IDS and ADS drawn from the same ecological corpus. First,

we investigated whether this naturalistic corpus had IDS-

ADS differences in textual features that would make segmen-

tation easier in the former than the latter. We found most

features fit our predictions: Phrases were longer, there were

more single-word phrases, lexical diversity was lower, and

there were fewer hapaxes in IDS than ADS. No significant

effect was found for word length and ambiguity. This result

contributes to the growing literature documenting IDS fea-

tures, with the important advantage that current work draws

from fully ecological IDS and ADS.

Next, we investigated the segmentability of the corpora us-

ing a large set of both lexical and sublexical segmentation

models. Although scores varied a great deal across algo-

rithms and some algorithms showed the opposite effect, IDS

was overall slightly easier to segment than ADS. The mean

difference across registers (CDS minus ADS, in each algo-

rithm separately) was 3%, ranging from –4% to 10%. This

effect is smaller than that found in most previous studies, but

similar to the one reported by Cristia et al. (2018), who were

also drawing from a naturalistic IDS-ADS corpus. This is ev-

idence that previously documented IDS-ADS segmentability

differences (as in Table 1) are not representative of what in-

fants actually hear. It is important to note that corpus length

across registers was not matched in the present study for prac-

tical reasons, but, based on findings by Cristia et al. (2018),

we suspect that controling for corpus size would have reduced

the IDS advantage even further.

Next, we asked whether some of the above-mentioned tex-

tual features uniquely explained segmentability differences

across registers. Phrase length, segmentation entropy, and

repetitiveness explained significant variance in segmentation

scores, above and beyond the effects of register. However,

none of the features uniquely explained away the effect of the

register, which remained significant in all cases. This means

that register effects on segmentability cannot be reduced to

any one of these features. Since we only had 18 children’s

data, we could not fit a model with all 6 features at once for

fear of overfitting, but future work with higher power may be

able to assess whether these features jointly explain away reg-
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ister, or whether there are other textual features that we have

not yet considered.

Furthermore, Canault et al. (2016b)’s corpus allowed us to

address a question that has been seldom asked, namely IDS-

ADS differences across infant ages. Results of correlations

between textual features and age, and a regression model on

token F-scores did not support our prediction that IDS would

become more like ADS as children aged, and thus the IDS-

ADS segmentability gap would close. On the contrary, we

found that ADS scores dropped with child age. Although fur-

ther work is needed, we believe this mainly reflects the lower

availability of ADS in children’s environment as they age. In-

deed, replicating a pattern that had been documented in North

American English children (Bergelson et al., 2019), we found

the number of ADS utterances dropped for older, compared

to younger, children.

Before closing, we would like to acknowledge some lim-

itations of this work. Corpus size was overall small (which

may lead to inconsistencies in results; Bernard et al., 2018)

and, due to the work involved in collecting daylong record-

ings and annotating fully spontaneous speech, infant sample

size was 18 infants. Moreover, data scarcity was correlated

with registers and ages: While only 3 of the 18 IDS corpora

contained fewer than 100 utterances, 7 did for ADS, and 4

of those belonged to infants older than 31 months. A de-

crease of ADS quantities with infant age in such day-long

recordings has been documented in previous work on North

American English (Bergelson et al., 2019), so it may not be

an artifact of the current sample selection. Nonetheless, this

trend may entail that if we want to control corpus size, we

should over-sample ADS at later ages. However, that may

not be necessary for our data, where corpus size failed to ex-

plain away the register effect, even though it accounted for

some variance beyond registers.

Last, speech transcriptions were used for this study, in an

attempt to look for intrinsic informational differences across

registers. However, some of the most salient features of IDS

are speech-related, such as prosody or intonation and acous-

tic properties, which might also predict ease of segmenta-

tion. Although there is a small literature looking at word seg-

mentation from speech, including comparing IDS and ADS

(Ludusan, Seidl, Dupoux, & Cristia, 2015), this task remains

extremely challenging for computational modelers, with only

one open source model (instantiating a single segmentation

strategy) exists, which further limits the value of such a line

of research.

In sum, we identified several simplicity features more

prevalent in IDS than ADS drawn from an ecological French

corpus. We further found a small but significant IDS segmen-

tation advantage, contributing to a recurrent question on the

learnability properties of IDS. We showed that the IDS seg-

mentation advantage could not be explained away by any one

of those simplicity features, and its size changed with infant

age in unexpected directions.
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10.   CRQclXViRQV   
  

WiWh  WheVe  WZR  VWXdieV,  Ze  aWWemSWed  WR  cRQWUibXWe  WR  Whe  liWeUaWXUe  Rf  leaUQabiliW\  acURVV  cXlWXUeV.  We                  

XVed  iQSXW  fURm  ecRlRgical,  lRQgiWXdiQal  UecRUdiQgV  Rf  diYeUVe  cXlWXUeV,  a  SeVRWhR-VSeakiQg             

cRmmXQiW\  iQ  LeVRWhR  aQd  FUeQch-VSeakiQg  cRmmXQiWieV  iQ  FUaQce,  fRU  cRUSXV  aQal\ViV  iQ  ChaSWeU  8,                

ZiWh  VeYeUal  cRQfRXQdV  cRQWURlled  fRU.  AV  Ze  meQWiRQed  abRYe  fRU  cURVV-liQgXiVWic  VWXdieV,  Ze  belieYe                

WhaW  cURVV-cXlWXUal  cRmSaUiVRQ  iQ  fXWXUe  VWXdieV  ma\  ideall\  haSSeQ  XQdeU  WheVe  WeUmV,  iQ  RUdeU  WR                 

ideQWif\  Whe  maiQ  VRXUce(V)  Rf  diffeUeQce  beWZeeQ  laQgXageV.  We  alVR  mRdelled  Whe  VegmeQWabiliW\  Rf                

child-   aQd   adXlW-diUecWed   VSeech   iQ   a   FUeQch-VSeakiQg   cRmmXQiW\   iQ   ChaSWeU   9.     

  

TheUe  ZeUe  VigQificaQW  diffeUeQceV  iQ  mRUShRV\QWacWic  aQd  le[ical  feaWXUeV  Rf  child-  aQd  adXlW-               

diUecWed  VSeech,  iQ  bRWh  FUeQch  aQd  SeVRWhR  cXlWXUeV.  HRZeYeU,  WZR  VSecific  SRiQWV  dUeZ  RXU                

aWWeQWiRQ.  FiUVW,  WheUe  ZeUe  QR  flagUaQW  diffeUeQceV  iQ  feaWXUeV  WhaW  cRXld  affecW  VegmeQWaWiRQ               

SeUfRUmaQce  beWZeeQ  Whe  WZR  UegiVWeUV.  ThiV  mighW  meaQ  WhaW,  eYeQ  WhRXgh  CDS  aQd  ADS  diffeU,  Whe\                  

dRQ¶W  diffeU  iQ  aVSecWV  WhaW  QeceVVaUil\  affecW  VegmeQWabiliW\.  ThiV  iV  alVR  eYideQce  WhaW  eYeU\da\                

adXlW-diUecWed  VSeech,  like  Whe  RQe  VSRkeQ  beWZeeQ  SaUeQWV  aW  hRme,  ma\  be  mRUe  VimilaU  WR                 

child-diUecWed  VSeech  WhaQ  aQ\  RWheU  kiQd  Rf  adXlW-diUecWed  VSeech  (iQclXdiQg  Walk  WR  Whe  iQYeVWigaWRU,                

RU   iQ   Whe   lab).     

  

SecRQd,  VSecificall\  iQ  ChaSWeU  9,  Whe  feaWXUeV  Ze  ideQWified  did  QRW  e[SlaiQ  aZa\  Whe  (Vmall)  effecW  Rf                   

UegiVWeU  iQ  VegmeQWaWiRQ.  OQe  VimSle  iQWeUSUeWaWiRQ  Rf  Whe  UeVXlWV  iV  WhaW  UegiVWeU  diYeUViW\,  aV  e[SUeVVed                 

b\  WheVe  chaUacWeUiVWicV,  iV  VimSl\  QRW  a  facWRU  fRU  VegmeQWaWiRQ.  FXWXUe  UeVeaUch  VhRXld  fXUWheU                

cRmSaUe  daWa  Rf  Whe  WZR  UegiVWeUV,  cRllecWed  iQ  ecRlRgical  VeWWiQgV  iQ  RUdeU  WR  caSWXUe  Ueal-life                 

diffeUeQceV,  aQd  VhRXld  cRQVideU  iQclXdiQg  mRUe  feaWXUeV  UeVSRQVible  fRU  diYeUViW\,  VXch  aV              

ShRQRlRgical,   VemaQWic   aQd   V\QWacWic   RQeV,   aV   Zell   aV   Whe   iQWeUacWiRQV   beWZeeQ   Whem.   

  

FXUWheUmRUe,  iQ  ChaSWeU  8,  Ze  cRmSaUed  child-diUecWed,  adXlW-diUecWed,  bXW  alVR  RYeUheaUd             

child-diUecWed  VSeech,  WhaW  iV,  VSeech  addUeVVed  WR  RWheU  childUeQ  iQ  Whe  eQYiURQmeQW.  IQWeUeVWiQgl\,               

RYeUheaUd  child-diUecWed  VSeech  iV  VimilaU  WR  child-diUecWed  VSeech.  ThiV  UeVXlW  iQYiWeV  fXUWheU  UeVeaUch.               

We  ma\  h\SRWheVi]e  WhaW  childUeQ  aUe  mRUe  iQWeUeVWed  iQ  VSeech  addUeVVed  WR  RWheU  childUeQ,  WhaQ                 

VSeech  addUeVVed  WR  adXlWV.  If  WhiV  VSeech  iV  alVR  VimilaU  WR  VSeech  diUecWed  WR  Whem,  dR  childUeQ  beQefiW                    

fURm   RYeUheaUd   RWheU-child-diUecWed   VSeech   mRUe   WhaQ   Whe\   dR   fRU   RYeUheaUd   adXlW-diUecWed   VSeech?     
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LaVW,  iQ  Whe  Vame  ChaSWeU,  iQSXW  UecRUded  iQ  WEIRD  VeWWiQgV  Rf  FUeQch  familieV  ZaV  maiQl\  SURdXced                  

b\  Whe  QXcleaU  famil\,  aQd  mRVWl\  b\  Whe  mRWheU.  IQ  cRQWUaVW,  iQSXW  UecRUded  iQ  QRQ-WEIRD  VeWWiQgV                  

ZaV  SURdXced  b\  Whe  e[WeQded  famil\,  iQclXdiQg  gUaQdmRWheUV,  QeighbRUV  aQd  RWheU  adXlWV.  HRZeYeU,               

Whe  majRUiW\  Rf  iQSXW  RUigiQaWed  fURm  RWheU  childUeQ.  We  fXUWheU  aQal\]ed  WheVe  UeVXlWV,  cRmSaUiQg                

child-diUecWed  VSeech  SURdXced  b\  RWheU  adXlWV  aQd  RWheU  childUeQ.  The  WZR  kiQdV  Rf  VSeech  ZeUe  alVR                  

VimilaU  acURVV  a  laUge  VeW  Rf  YaUiableV,  e[ceSW  fRU  Whe  UaWiR  Rf  TXeVWiRQV.  IQ  VXm,  WheVe  UeVXlWV  Vhed  lighW                     

RQ  Whe  YaVW  diffeUeQceV  iQ  Whe  VeWWiQgV  Rf  laQgXage  acTXiViWiRQ  beWZeeQ  cXlWXUeV,  aQd  iQYiWe  fRU  mRUe                  

cRmSUeheQViYe,   laUge-Vcale,   ecRlRgical   UeVeaUch.   

DiVcXVVion   

IQ  WhiV  RYeUaUchiQg  diVcXVViRQ,  I  Zill  Walk  abRXW  VRme  SeUVRQal  WhRXghWV,  fXWXUe  UeVeaUch  aQd                

limiWaWiRQV  Rf  m\  VWXdieV.  If  Ze  ZaQWed  WR  RQl\  UemembeU  a  ShUaVe  fURm  WhiV  diVVeUWaWiRQ,  iW  ZRXld  be                    

WhaW  \eV,  diYeUViW\  iV  hXge,  bXW  alVR  leaUQiQg  aSSeaUV  WR  be  URbXVW  acURVV  mRVW  Rf  iW.  WheQ  I  VWaUWed                     

ZRUkiQg  ZiWh  WheVe  hXgel\  diYeUVe  iQSXW  daWa,  I  e[SecWed  WR  fiQd  mXch  mRUe  diffeUeQce  bRWh  acURVV                  

WheiU   cRUSXV   feaWXUeV   aQd   acURVV   WheiU   VegmeQWabiliW\,   WhaQ   ZhaW   I   acWXall\   fRXQd.     

  

While  ZRUkiQg  acURVV  laQgXageV  aQd  cXlWXUeV,  I  RbVeUYed  Whe  beQefiWV  Rf  laUge-Vcale  VWXdieV.  SWXd\iQg                

laQgXage  acTXiViWiRQ  aW  Vcale  iV  a  SURmiViQg  Za\  WR  caSWXUe   YaUiabiliW\  iQ  iQSXW,  meaVXUe  Zhich                 

mechaQiVmV  aQd  facWRUV  accRXQW  fRU  ZRUd  leaUQiQg,  hRZ  Whe\  iQWeUacW,  aQd  hRZ  mXch  leaUQiQg  Whe\                 

e[SlaiQ  RYeUall.  The  field  Rf  laQgXage  acTXiViWiRQ  QeedV  mRUe  TXaQWifiable  aQd  cRmSaUable  meWhRdV  WR                

VWXd\  Whe  iQSXW  aQd  iWV  eQYiURQmeQW.   AV  WechQRlRgical  deYelRSmeQW  iQ  cRUSXV  baVed  liQgXiVWicV  gURZV,                

VR   Zill   RXU   chaQceV   WR   XVe   ecRlRgical   daWa,   iQ   RUdeU   WR   addUeVV   acTXiViWiRQ   aQd   leaUQabiliW\   iVVXeV.     

  

SimilaUl\,  Whe  field  Rf  laQgXage  acTXiViWiRQ  QeedV  mRUe  daWa.  While  diVcXVViQg  SUeYiRXV  VWXdieV,               

VRmeWimeV  RbVeUYaWiRQV  RQ  SURdXcWiRQ  ZeUe  m\  maiQ  VRXUce  Rf  iQfRUmaWiRQ.  HRZeYeU,  SURdXcWiRQ              

cRUUelaWeV  ZiWh  e[WeUQal  facWRUV,  iW  iV  cXlWXUall\  deSeQdeQW,  aQd  deSeQdV  RQ  Whe  ShRQeWic  VWUXcWXUe.                

MRUe  WeVWV  Rf  cRmSUeheQViRQ  WhaW  cRllecW  cRmSaUable  daWa  acURVV  laQgXageV  aQd  cXlWXUeV  ma\  be                

deYelRSed  aQd  imSlemeQWed,  becaXVe  cRmSUeheQViRQ  daWa  VhRXld  be  mRUe  iQfRUmaWiYe  RQ  eaUl\              

acTXiViWiRQ   VWeSV,   VXch   aV   Whe   RQe   diVcXVVed   heUe,   VegmeQWaWiRQ   Rf   VSeech.     

  

IQ  fXWXUe  VWXdieV,  I  am  SlaQQiQg  WR  XVe  aQ  e[iVWiQg  Uich  VRXUce  Rf  daWa,  Whe  MacAUWhXU-BaWeV                  

CRmmXQicaWiYe  DeYelRSmeQW  IQYeQWRUieV  (CDIV)  aggUegaWed  ZiWhiQ  Whe   WRUdbaQk  PURjecW   ( FUaQk  eW             

al.,  2017) .  CDIV  aUe  SaUeQWal  UeSRUWV  RQ  WheiU  childUeQ¶V  le[ical  deYelRSmeQW,  SURYeQ  WR  be  Ueliable                 

iQdicaWRUV  Rf  a  child¶V  laQgXage,  aQd  Whe\  ma\  SURYide  YalXable  iQfRUmaWiRQ  RQ  eaUl\  laQgXage                
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cRmSUeheQViRQ.  I  Zill  XVe  WheVe  daWa  WR  VWXd\  Whe  XSWake  Rf   laQgXage  iQSXW  b\  childUeQ,  iQYeVWigaWiQg                  

iWV   leaUQiQg   facWRUV   aQd   iWV   cRmSXWaWiRQal   mechaQiVmV.     

  

MRUeRYeU,  aW  Whe  begiQQiQg  Rf  WhiV  diVVeUWaWiRQ,  I  defiQed  iQSXW  aV  ambieQW  laQgXage  a  child  iV  e[SRVed                   

WR.  IW  iV  imSRUWaQW,  WhRXgh,  WR  keeS  iQ  miQd  fRU  fXWXUe  VWXdieV  WhaW  laQgXage  acTXiViWiRQ  YaUieV  RYeU                   

Wime,  aQd  WhaW  iQSXW  iV  acWXall\  iQWeUacWiRQV  beWZeeQ  childUeQ  aQd  caUegiYeU(V),  ZiWh  YaU\iQg               

cRmmXQicaWiYe  aQd  cRRUdiQaWiQg  gRalV.  The  iQSXW  childUeQ  UeceiYe  iV  chaUacWeUi]ed  b\  cRQYeUVaWiRQal              

d\QamicV,  aQd  childUeQ  leaUQ  ZRUdV  iQ  cRmmXQicaWiYe  cRQWe[WV,   interacting  ZiWh  VSeakeUV.   PaQ  eW  al.                

(2005)  SRiQWed  RXW  WhaW  cRmmXQicaWiRQ  ZiWh  \RXQg  childUeQ  iV  ³a  WRWal  Sackage  Rf  YeUbal  aQd                 

QRQYeUbal,  liQgXiVWic  aQd  emRWiRQal  iQWeUacWiRQ´  (S.778).  B\  WalkiQg  abRXW  iQWeUacWiRQV,  Ze  Qeed  WR               

acceSW   a   VRcial-SUagmaWic   accRXQW   Rf   acTXiViWiRQ    (BaldZiQ   &   Me\eU,   2007;   DieVeQdUXck,   2007) .     

  

PUeYiRXV  liWeUaWXUe  RQ  liQgXiVWic  deYelRSmeQW  haV  UaUel\  WakeQ  Whe  cRQYeUVaWiRQal  d\QamicV  Rf   real-life               

iQWeUacWiRQV  iQWR  accRXQW,  ViQce  iW  mRVWl\  cRQViVWV  iQ  daWa  gaWheUed  iQ  Vmall,  cRQWURlled  labRUaWRU\                

VWXdieV.  HRZeYeU,  ViQce  leaUQiQg  emeUgeV  WhURXgh  iQWeUacWiRQV,  VRme  leaUQiQg  ViWXaWiRQV  ma\  be  beWWeU               

WhaQ  RWheUV,  iQclXdiQg  ViWXaWiRQV  ZiWh  eQgagiQg  RbVeUYaWiRQal  aQd  VRcial  cRQWe[W  (e.g.  eQWiWieV  aQd               

acWiRQV   RbVeUYable   iQ   Whe   VceQe)    (He   &   AUXQachalam,   2017) .     

  

IQ  fXWXUe  VWXdieV,  I  am  WhXV  SlaQQiQg  WR  aQal\]e  Whe  UaQge  Rf  iQWeUacWiRQV  childUeQ  SaUWiciSaWe  iQ  XViQg                   

laUge-Vcale,  ecRlRgical  VWXdieV,  aQd  WR  TXaQWif\  ZheWheU  diffeUeQW  eYeU\da\  ViWXaWiRQV  (eaWiQg,             

Sla\iQg...)  haYe  VimilaU  eQgagiQg  feaWXUeV  aQd  SUedicWiYe  SRZeU  iQ  acTXiViWiRQ.  SSecificall\  iQ  Whe               

dRmaiQ  Rf  cRQYeUVaWiRQal  aQal\ViV,  Whe  field  Rf  QaWXUal  laQgXage  SURceVViQg  haV  imSURYed              

dUamaWicall\,  ZiWh  imSRUWaQW  iQdXVWUial  aSSlicaWiRQV  (e.g.,  chaWbRWV,  SeUVRQal  aVViVWaQWV).  I  Zill  XVe              

WheVe   WRRlV   WR   aQal\Ve   Whe   QaWXUe   Rf   iQWeUacWiRQV   iQ   cRUSRUa   Rf   eaUl\   child-caUegiYeU   iQWeUacWiRQV.     

  

FXUWheUmRUe,  iQ  WhiV  diVVeUWaWiRQ,  I  XVed  a  VeW  Rf  VegmeQWaWiRQ  mRdelV,  mRVW  Rf  Zhich  aUe  baVed  RQ                   

VimSle  VWaWiVWicV  aQd  baWch  SURceVViQg,  ZiWh  QR  SUiRU  biaVeV  iQ  leaUQiQg.  The  facW  WhaW  VXch  mRdelV                  

maQage  WR  meeW  Whe  eYalXaWiRQ  cUiWeUia  Rf  Whe  fiUVW  chaSWeUV  iV  acWXall\  a  gRRd  VigQ.  I  VXVSecW  WhaW  a                     

mRdel  eTXiSSed  ZiWh  le[ical  cRQVWUaiQWV  (aV  childUeQ  haYe  fURm  eaUl\  RQ  iQ  deYelRSmeQW,   MaUkmaQ  eW                 

al.,  2003) ,  SaUVimRQ\  biaV   (FUaQk  eW  al.,  2010)  aQd  XVe  Rf  mRUe  WhaQ  RQe  VegmeQWaWiRQ  cXe  (childUeQ                   

XVe  VeYeUal  cXeV  fRU  VegmeQWaWiRQ  fURm  eaUl\  RQ  iQ  deYelRSmeQW   (MeUVad  &  Na]]i,  2012) ,  cRXld  \ield                  

UeVXlWV  clRVeU  WR  ZhaW  iV  fiUVW  VegmeQWed  b\  childUeQ.  AWWeQWiRQ  aQd  memRU\  iQ  childUeQ¶V  leaUQiQg  aUe                  

alVR  QRW  mRdeled,  bXW  SURbabl\  Sla\  a  URle  iQ  leaUQiQg.  HRZeYeU,  µVimSleU¶  mRdelV,  VXch  aV  Whe  RQeV                   

imSlemeQWed  iQ  ChaSWeUV  3,  4  aQd  8,  QRQeWheleVV  eQabled  me  WR  addUeVV  m\  SUimaU\  TXeVWiRQ  RQ  Whe                   

iQfRUmaWiYiW\   Rf   iQSXW   acURVV   eQYiURQmeQWV.     
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IQ  fXWXUe  VWXdieV,  I  am  SlaQQiQg  WR  bXild  a  cRmSUeheQViYe  liVW  Rf  mRdelV  ZiWh  diffeUeQW  imSlemeQWaWiRQ                  

VWUaWegieV,  VXch  aV  leaUQiQg  iQcUemeQWall\  b\  e[SRVXUe  WR  RQe  XWWeUaQce  afWeU  aQRWheU  (iQcUemeQWal),               

iQVWead  Rf  SURceVViQg  all  iQfRUmaWiRQ  aW  RQce  (baWch),  SeUfRUmiQg  ViQgle  RU  jRiQW  WaVkV  aQd  e[hibiWiQg                 

memRU\  limiWaWiRQV.  I  Zill  aVVeVV  Whe  YiabiliW\  Rf  WheVe  mRdelV  iQ  a  cRmSaUaWiYe  Za\,  emSlR\iQg  Whe                  

SlaXVibiliW\   WeVWV   iQWURdXced   iQ   ChaSWeU   4.   

  

AddiWiRQall\,  leaUQabiliW\  iV  aQ  iVVXe  WhaW  cRQceUQV  QRW  RQl\  VegmeQWaWiRQ,  bXW  alVR  VeYeUal  RWheU                

aVSecWV  Rf  laQgXage.  We  cRXld  Walk  abRXW  leaUQabiliW\  Rf  V\QWa[,  VemaQWicV,  RU  mRUShRlRg\.  IQ  fXWXUe                 

VWXdieV,  I  am  SlaQQiQg  WR  cRQdXcW  a  mRUe  cRmSUeheQViYe  UeVeaUch  RQ  leaUQabiliW\  Rf  diffeUeQW  aVSecWV.                 

IW  ma\  be  Whe  caVe  WhaW  VRme  aVSecWV  aUe  mRUe  affecWed  b\  Whe  iQSXW  WhaQ  RWheUV.  FRU  e[amSle,                    

YRcabXlaU\  cRXld  be  dUiYeQ  b\  iQSXW  (Whe  SaUWicXlaU  ZRUdV  a  child  iV  e[SRVed  WR)  mRUe  WhaQ  RWheU                   

aVSecWV   Rf   laQgXage,   Zhich   Uel\   mRUe   RQ   cRgQiWiYe   facWRUV.   

  

BefRUe  clRViQg,  I  ZRXld  like  WR  meQWiRQ  WZR  VRXUceV  Rf  diYeUViW\  WhaW  ZeUe  QRW  SUeVeQWed  iQ  WhiV                   

diVVeUWaWiRQ.  The  fiUVW  RQe  iV  diYeUViW\  acURVV  childUeQ.  NR  WZR  childUeQ  leaUQ  laQgXage  iQ  aQ  ideQWical                  

Za\   (e.g.  BURZQ,  1973;  Pi]]XWR  &  CaVelli,  1992) .  ThiV  VhRXld  be  WakeQ  iQWR  cRQVideUaWiRQ  fRU  VWXdieV                  

ZheUe  RQl\  a  haQdfXl  Rf  childUeQ  ZeUe  WaUgeWed  fRU  each  laQgXage  RU  cXlWXUe  (VXch  aV  Whe  RQeV                   

deVcUibed  iQ  WhiV  diVVeUWaWiRQ),  aQd  iW  caQ  be  fUamed  iQ  laUge-Vcale  VWXdieV,  ZiWh  a  cRQVideUable  QXmbeU                  

Rf  WaUgeW  childUeQ.  The  VecRQd  RQe  iV  mXlWiliQgXaliVm.  Half  Rf  Whe  ZRUld¶V  childUeQ  liYe  iQ  mXlWiliQgXal                  

eQYiURQmeQWV   (CeQR]  &  GeQeVee,  1998) .  ChildUeQ  iQ  mXlWiliQgXal  cRmmXQiWieV  haYe  WR  leaUQ  -aW  leaVW-                

WZR  diffeUeQW  laQgXageV  aQd  alVR  aSSURSUiaWe  cRde-VZiWchiQg  beWZeeQ  Whem   (LRakeV  eW  al.,  2013) .  FRU                

e[amSle,  IQdigeQRXV  AXVWUaliaQ  childUeQ  heaU  aQd  leaUQ  aW  leaVW  3  laQgXageV:  WUadiWiRQal  laQgXageV,               

KUiRl   RU   AbRUigiQal   EQgliVh,   aQd   VRme   leYel   Rf   SWaQdaUd   AXVWUaliaQ   EQgliVh).   

  

LaVW,  I  belieYe  WhaW  XQdeUVWaQdiQg  hRZ  diYeUViW\  affecWV  leaUQiQg  iV  cUXcial  fRU  maQ\  UeaVRQV.  FiUVW,  iW  iV                   

QeceVVaU\  if  Ze  ZaQW  WR  gUaVS  bURadeU  iVVXeV  iQ  acTXiViWiRQ.  FRU  e[amSle,  RQce  WhiV  diYeUViW\  iV  WakeQ                   

iQWR  accRXQW,  ZhaW  iV  lefW  caQ  be  VWXdied  fRU  TXeVWiRQV  RQ  cRgQiWiYe  biaVeV  aQd  iQQaWeQeVV.  SecRQd,                  

XQdeUVWaQdiQg  Whe  UelaWiRQ  beWZeeQ  diYeUViW\  aQd  leaUQiQg  caQ  cRQWUibXWe  WR  SURmRWiQg  healWh\              

leaUQiQg  eQYiURQmeQWV,  aQd  SURdXcWiYe  meWhRdV  Rf  leaUQiQg  fRU  all  childUeQ  (WheUe  iV  alUead\  VRme                

effRUW  WR  bXild  iQWeUYeQWiRQV  baVed  RQ  SUeYiRXV  VWXdieV,  e.g.   WRQg  eW  al.,  2020) .  ThiV  kQRZledge  caQ                  

haYe  imSRUWaQW  imSlicaWiRQV  RQ  VeYeUal  aUeaV  (edXcaWiRQ,  SaUeQWiQg,  SV\chRlRg\  aQd  eYeQ  aUWificial              

iQWelligeQce   -VXch   aV   YiUWXal   leaUQiQg   cRmSaQiRQV   fRU   childUeQ).   
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Appendi[   A   

Litterature   RevieZ     

HeUe ( hWWSV://dRcV.gRRgle.cRm/dRcXmeQW/d/1J\NI\X_KYMIj[KW[fh4ImGG7iUjR6T08XVHDmjUB4h8/ 

ediW?XVS=VhaUiQg )  iV  a  UeYieZ  Rf  SaSeUV  ZiWh  cRmSXWaWiRQal  mRdelV  lRRkiQg  aW  ZRUd/mRUSheme              

VegmeQWaWiRQ  fURm  UXQQiQg  VSeech  UeSUeVeQWed  aV  We[W  WUaQVcUiSWV.  HXmaQ  e[SeUimeQWV  aQd             

VegmeQWaWiRQ  fURm  aXdiR  ZaV  e[clXded.  The  SaSeUV  VhRXld  cRQWaiQ  iQfRUmaWiRQ  RQ  WZR  RU  mRUe                

laQgXageV  ZiWhiQ  Whe  Vame  SaSeU  aQd/RU  be  cRmSaUable  WR  aQRWheU  aUWicle  (i.e.,  e[acW  Vame  algRUiWhm                 

ZiWh  Whe  e[acW  Vame  SaUameWeUV).  PaSeUV  ZiWh  a  ViQgle  laQgXage  RU  iQcRmSaUable  ZeUe  e[clXded.  The                 

VeaUch  ZaV  dRQe  XViQg  gRRgle  VchRlaU,  aQd  Whe  ke\ZRUdV  ZeUe  ³cURVV-liQgXiVWic  iQfaQW  ZRUd               

VegmeQWaWiRQ  cRmSXWaWiRQal  mRdelV  WUaQViWiRQal  SURbabiliWieV  adaSWRU  gUammaU  miQimXm          

deVcUiSWiRQ´.     
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1 Introduction

One of the key tasks facing the language learning infant involves finding the mini-
mal recombinable units present in the input. Since there are no systematic silences
between words or morphemes, learners may need to carve them out from the run-
ning speech, a process known as segmentation. To do this, they may use a few
universal and unambiguous cues (such as lengthy pauses), as well as a host of
probabilistic cues. The latter can be classified into sublexical (e.g., which sound
sequences tend to be found at word edges, and seldom within words) and lexical
(e.g., certain words are more likely to follow each other than expected by chance).
A number of computational algorithms building on subsets of such cues have been
proposed, and several have been implemented in a variety of computer languages
and applied to corpora so as to model infants’ word form discovery processes. Typ-
ically, these models take as input a text-based, phonological representation of the
input. To mimic the word discovery process, known word or morpheme boundaries
are removed, and the algorithm is applied to try to make decisions on where breaks
may occur, which are then compared against the original (gold) boundaries.

These studies are informative for a host of learnability questions, such as to
test the sheer feasibility of a proposed word segmentation solution [12], to com-
pare alternative algorithms [13,33], to see whether languages differ in their intrin-
sic segmentability [10], or whether child-directed speech is intrinsically easier to
segment than adult-directed speech [25]. Additionally, there is emergent evidence
suggesting computational word segmentation results may also be relevant for in-
fant psycholinguistics, by predicting the contents of infants’ long-term vocabulary
better than lexical status [32] or pure frequency [22]. These results provide initial
validation to the cognitive modeling approaches to word segmentation that have
enjoyed a fair amount of attention for the last several decades (e.g., [4,12,13,
15], as they reveal that the latter may be close enough to infants’ segmentation
to make predictions that can be validated via direct experimental or correlational
tests. In this context, it becomes crucial for the field to standardize segmentation
methodology, so as to better explore the phenomenon of segmentation and make
empirically informed predictions for infant experimental work.

In this paper, we present WordSeg, a software package conceived to allow
this field of research to do cumulative science. The last few decades have seen a
surge of interest in open science methods, where researchers’ choices are rendered
transparent, enabling others to replicate and extend results more easily. One could
imagine this is even easier for computational modeling than, say, live experimen-
tation, since typically modeling involves the creation of scripts which can be run
time and again, are blind to the person executing them, and seem more context-
independent than animals. And yet, recent articles continue to alert us on the
unavailability of key research materials (including code) even of modeling work
[14]. The first step towards cumulative science is thus to favor open source code,
that is, code that is both available publicly and tagged for public re-use. But this
is not enough. Even if the source code is made publicly available, it is often not
set up to run in some other machine or operating system; and it is not sufficiently
documented that it can be launched by some other user in an informed fashion so
as to reproduce the original results [39]. Thus, the second step towards cumulative
science involves providing appropriate documentation as well as taking steps to
make sure reproducibility can be achieved outside the native context. The final
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ingredient is to enable other researchers to directly build on previous work in a
cumulative fashion.

With all of these considerations in mind, we created a tool that has a modular
architecture (see Figure 1), combining a set of corpora description routines, several
algorithms varying in complexity and cognitive assumptions, and a rich evaluation
package, all integrated into a seamless pipeline. We have made our package openly
accessible, and complemented it with supplementary materials allowing readers to
reproduce every result in the current paper, as well as detailed online instructions
further enabling them to go beyond what we have done. With this, we meet the
first desideratum. Additionally, the whole system can be installed using Docker,
ensuring that the environment will be stable across operating systems [17] – a
requirement for reproducibility. Finally, by virtue of its modular architecture (and
by clearly restricting and documenting e.g., input and output formats), the suite
can work as an open source platform, to which researchers can add their own
segmentation algorithms. This allows algorithm developers to benchmark their
results against previously available segmentation algorithms, and should greatly
facilitate making their own segmentation algorithm public – thus fitting the last
desideratum, cumulativity. We believe this approach is extremely novel in our field:
We cannot name one tool in psycholinguistics (or in another subfield of psychology)
that attempts to provide a framework for every researcher to integrate and test
their own model against others’.

Segment

wordseg-

baseline

Scores

Segmented 

corpusPrepare

wordseg-prep

wordseg-stats

Corpus 

statistics

Unitized 

corpus

Gold 

corpus

wordseg-

dibs
wordseg-ag

wordseg-

puddle

wordseg-tp

Describe
+grammar

wordseg-eval

Evaluate

Phonol. 

corpus

Fig. 1: Overview of the WordSeg suite. Black boxes represent input from the
user; other boxes represent the output of a given stage; arrows represent the general
description of procedures, most of which are implemented with a single command.
The exception is the segmentation, where multiple segmentation processes are
possible (parametric variation not shown).

We see two main use cases. The first involves fellow modelers, who are devel-
oping alternative unsupervised word segmentation algorithms. As just mentioned,
our package can serve as a common platform that standardizes input and evalu-
ation, and provides a set of alternative algorithms against which developers can
benchmark their own tool. Moreover, they can then profit from the effort that has
gone into making this package widely deployable by simply adapting their tool to
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the WordSeg architecture and adding it as a new WordSeg module. The second
set of users are linguists and other cognitive scientists interested in early language
acquisition. This second group would not develop additional code, but rather make
use of the standardized user interface to describe and analyze their child language
corpora, or respond to specific scientific questions. For instance, a user may be
curious about the ease of segmentation of social words (such as “mommy” and
the baby’s name) in different languages. This user could apply all segmentation
algorithms, and then estimate with what frequency these words appear as such
(i.e., are not obscured by under- or over-segmentation) in the segmented output.
Such WordSeg uses are extremely straightforward for anyone who knows how to
interact with a terminal (and for readers who do not, we recommend Software
Carpentry’s introduction http://swcarpentry.github.io/shell-novice/).

2 Previous computational modeling work

It is beyond the scope of the present article to provide a comprehensive review on
computational models of infant word segmentation, and thus we refer interested
readers to [6] for a fuller introduction to the basic issues surrounding computa-
tional models of infant word form segmentation, [3] for a historical classification of
models, and [34] for a recent literature review on the topic. It suffices here to state
that this phenomenon has garnered considerable attention, but researchers have
used varying methodologies in a way that compromises comparability. Section 2.1
lays out the main approaches that are currently represented in the package. Our
package sought to also systematize “irrelevant” variation, as explained in Section
2.2.

2.1 Classes of algorithms currently represented in the package

A systematic literature review1 of 46 journal articles or theses that contained
modeling results on word form segmentation published between 1993 and 2015
revealed that there are more postulated algorithms than papers, particularly when
free parameters are taken into account. Thus, it was simply impossible to attempt
to incorporate all previous algorithms. Our selection aimed at representing a few
key dimensions of variation across open source algorithms, and it was constrained
by the availability of code and quality of the documentation.

One key distinction among included models pertains to whether they rely
purely on local cues for word segmentation such as transitional probabilities be-
tween sounds or syllables. We will call this class sublexical. The lexical alternative
involves aiming to reparse the input stream in terms of minimal recombinable
units, or, put otherwise, building the lexicon that would be ideal to generate the
corpus. This conceptual distinction does not prevent the existence of models that
are hybrid. For instance, one of the models included in the suite is PUDDLE [31],
which uses both lexical and phonotactic cues (see Section 3.5.4).

1 The last author performed a search with the terms infant “word segmentation” “compu-

tational model” in scholar.google.com on August 10, 2015. The top 220 items were extracted
automatically using Zotero. They were thereafter inspected manually, excluding as off-topic
174 on the basis of title, abstract, or full-text.



182 Bernard et al.

Additionally, some previous work has argued strongly for algorithms that pro-
cess information incrementally, compared to others that do so in a batch mode
(e.g., [31]). Although we believe that, to a certain extent, the dichotomy can be
ill-posed, our sampling reflects both batch and incremental learners. We return to
this topic in the discussion.

Two additional classes of models are not represented in the WordSeg suite.
Unsupervised segmentation models that use raw speech as input and can fully
parse a corpus are uncommon in the speech technology literature [43], and not at
all represented in work modeling infant word segmentation. The only exceptions
we know of are closer to keyword discovery than full segmentation (e.g., [26]).
Additionally, neural network type models are not represented either, mainly be-
cause this is an area of rapid technological development as neural networks are
increasingly used for natural language processing in a wide range of applications
including word segmentation (e.g., [5]).

2.2 Keeping other aspects constant

Most previous work uses only one or a very limited set of models, so that to
decide which model performs better one often needs to compare performance across
papers. However, our systematic review revealed a host of dimensions that varied
across papers, and which prevent direct comparison across published work. Most
saliently, it is not uncommon to observe extremely large variations in the size
of the corpus used as input (e.g., [37] based on around 10,000 words versus [7]
drawing on 750,000 words). Moreover, previous work investigating the effect of
input quantity among Adaptor Grammars found effects that were non-linear and
dependent on the grammar itself [2], making it all the more difficult to compare
model performance across studies (see also [7,18,31], for further discussions of
corpus size effects).

In early modeling work, it was not uncommon to use artificial corpora, and
even in some current work the input consists of transcripts from broadcast speech
or adult-directed speech (such as the Buckeye corpus [36]). Using such input is no
longer warranted, since corpora on the CHILDES [28] repository contain hundreds
of transcriptions that are child-centered. These are likely to be ecologically valid,
because recordings were gathered in children’s natural environments, and often
with a recording device worn by the child, thus capturing both child-directed and
child-overheard speech available to the child.

For studies using CHILDES corpora, there are some sources of variation whose
impact has not been sufficiently considered. Although it would seem that corpora
are sure to be homogeneous if drawn from the CHILDES repository, different con-
tributors actually use different criteria to define sentences. We have noticed that
some corpus contributors are probably using a “breath group” or even “conver-
sational turn” definition, since there may be 10-20 words in a given sentence. In
contrast, others are probably using a syntactically or prosodically defined sen-
tence, with overall shorter utterances, averaging 3 words in length. Additionally,
researchers studying word segmentation often mix together various corpora from
children of diverse ages without controlling for the possibility that the length and
complexity of sentences and the lexical diversity in them varies as a function of the
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child’s age. Despite the fact that they probably explain variation in segmentation
performance, such characteristics are seldom thoroughly reported.

An additional source of variation relates to whether phones or syllables are the
basic units at the phonological level. For example, Phillips and Pearl [35] report
better performance when the basic units were syllables, rather than phones, and
argued in favor of syllables on plausibility grounds. Evaluating plausibility is not
within the scope of the present paper. As for performance, Larsen and colleagues
fully crossed basic unit against algorithm drawing from the sublexical, lexical,
and hybrid types, and although in general F-scores were higher for syllables than
phones, some exceptions remained [22]. Moreover, ranking across algorithms also
depended on representational unit.

Finally, nearly every research paper on computational models of infant word
segmentation contains arguments for and against the range of evaluation met-
rics that are typically used, prioritizing precision over recall, arguing that type
statistics are more interesting than token statistics – or vice versa.

All of this variation seriously impedes direct comparison across published stud-
ies, and makes it difficult for researchers to decide how to set up their preprocessing
and analysis pipelines to optimize comparability with previous work.

3 The WordSeg suite

The WordSeg suite allows the use of several algorithms drawn from previous lit-
erature in a controlled environment that standardizes input and allows users to
easily report the full range of input and output statistics allowing cross-paper
comparison. The overall process is represented in Figure 1. Detailed instructions
for use are available as online materials, which are updated as issues arise (https:
//wordseg.readthedocs.io). The version used for the current work is 0.7.12.

3.1 Technical characteristics

The package is distributed from https://github.com/bootphon/wordseg, with a
GPL-3.0 re-use license, from where it can be cloned or downloaded as a zip. In
all cases, WordSeg requires several additional pieces of software (e.g., Python 3)
to function. Installation instructions are provided covering how to download and
install this ancillary software, as well as how to install WordSeg itself. The user
can install WordSeg such that it will be available anywhere within the system, or
only in a virtual environment via the use of DockerTM [17]. WordSeg has been
thoroughly tested in a Linux environment, and less so in UNIX and Windows.
WordSeg has native support for Linux and has been thoroughly tested on MacOS
and Windows. Once the system is installed, users can use WordSeg as a command
line interface from a Bash terminal or as a library from Python, with both series
of commands described and exemplified in the online documentation https://

wordseg.readthedocs.io. The code contained in WordSeg is mostly Python and
C++, with variability being mainly due to the included segmentation algorithms.

2 https://zenodo.org/record/1471532,https://github.com/bootphon/wordseg/

releases/tag/v0.7.1
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3.2 Input selection, cleaning, and phonologization

The suite does not directly support full pre-processing and phonologization of cor-
pora, but we provide some pointers for users. For most researchers, the starting
stage will be a CHILDES style .cha file, which contains comments as well as tran-
scribed content. These first stages of cleaning will be dependent on the particular
corpus because they vary somewhat across CHILDES corpora, and on the research
question, since researchers may want to include or exclude specific speakers or ut-
terances. Sample scripts we have used in the past can serve as inspiration (see
the /data/cha/ section of the package). Additionally, the WordSeg suite assumes
that the input has already been phonemized and syllabified. For corpora in which
this has not been done, we recommend readers look into the Phonemizer pack-
age (https://github.com/bootphon/phonemizer), which provides tools to con-
vert text to phonemes. Another option is the WebMaus automatic segmentation
tool (https://www.clarin-d.net/en/webmaus-basic-), which converts text files
to phonemic transcriptions based on trained statistical models. For languages with
a transparent orthography, hand-crafted rules can be used to derive the phonemic
representation of words. Examples are provided in the /data/phonorules/ section.
Finally, users may want to employ a syllabification routine using the Maximize On-
set Principle, a rule of thumb whereby a sequence of phones will be parsed such
that the onset cluster will be as heavy as the language allows. For instance, the
sequence /estra/ will be broken up into /es.tra/ in Spanish and /e.stra/ in English.
We have adapted perl code that does so from [35] and provide examples in the
/data/syllabification/ section and the wordseg-syll tool.

3.3 Preparing the input

For the rest of the processes, the package assumes that the input file contains only
the transcribed utterances in phonological form, one utterance per line. Addition-
ally, it is assumed that word boundaries and basic units are coded in the input
text. The input text can have one or both of the following basic units: phones,
syllables.

The wordseg-prep tool in the package allows users to convert the input text
from the input form where syllable and word boundaries are tagged to the input
to be provided to the models. This tool outputs a unitized version and a gold
version of the text. A unitized version contains spaces between phones or syllables
(as chosen by the user). The gold version only has spaces between words. The gold
text will be used later to evaluate the output of segmentation.

3.4 Describing the corpus

The package also contains wordseg-stats, a tool to describe the input corpora.
This description tool prints out the number of all of the following units: sen-
tences or lines, single-word utterances, and number of tokens, types, and hapaxes
(i.e., types with token frequency of exactly one) for words, syllables, and phones.
Additionally, a measure of lexical diversity that controls for corpus length is ex-
tracted, namely a moving average type to token ratio similar to that available in
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Acronym Class Processing Key units
baseline sublexical batch units
dibs sublexical batch unit bigrams
tp sublexical batch unit bigrams
puddle hybrid incremental unit n-grams, words
ag lexical batch words

Table 1: Segmentation algorithm families currently included in WordSeg. We say
“families” because each has a set of parameters that allows further variation. Class
indicates the main class the algorithm belongs to; Processing whether the input
is processed in batch or incrementally; and Key units the crucial representations
that the algorithm uses for segmentation.

the CHILDES tools [27], where a window of 10 word tokens are considered at a
time, moved one token at a time. Finally, wordseg-stats returns a measure of
entropy, i.e. the intrinsic ambiguity found in a text (see [10] for details). In a nut-
shell, given a set of utterances and the lexicon found in the gold segmentation,
this measure of entropy assesses to what extent there are many versus few possi-
ble parses of the utterances (i.e., in a corpus with 2 sentences, “ice cream” and
“icecream”, both utterances are ambiguous between “ice cream” and “icecream”
segmentations).

3.5 Segmenting

All of the algorithms are called with variants of wordseg-X, where X is the short
name for the algorithm (as shown on Table 1), together with the necessary pa-
rameters and ancillary files, both of which depend on the specific algorithm. The
input for all algorithms is plain text as built by wordseg-prep, where only unit
tokens (syllables or phonemes) are available and separated by single spaces (that
is, the word boundaries have been removed), but some of them additionally re-
quire a training set or a configuration file. In the rest of this section, we provide a
general description of each algorithm, parametrization and required files. We have
not incorporated standardized measurements of memory requirements or length
of processing, because these, we believe, could largely relate to details of imple-
mentation which may not affect fundamentally the results found.

3.5.1 Baseline

Researchers might be interested in comparing baseline results to those of the word
segmentation algorithms. The WordSeg package provides tools for word segmen-
tation baselines based on the insertion of word boundaries in random positions in
the text, explained for instance by Lignos [24].

The Random Baseline assigns word boundaries with a probability parameter p
specified by the researcher. By default, a random segmentation consists in adding
word boundaries with p = 0.5 to each unit token. The user can specify a random
seed, to ensure reproducibility. Alternatively, the researcher can choose p = 0 to
generate an “Utterance Baseline”, considering each utterance as a single word;
and p = 1, to insert all possible boundaries and treat each unit token (phones or
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syllables) as a word. The researcher can also inspect the statistics mentioned in
Section 3.4 to calculate the true p of word boundaries given the basic unit (e.g.,
for a corpus unitized into syllables, p = nw

ns
, where nw is number of words and ns

is number of syllables). This number can then be provided by the user as the p

parameter, in which case, this would be an Oracle Random Baseline [24] (“oracle”
because it is given the true p by the researcher; random because it will insert the
correct number of boundaries to match p, without knowing where they should
occur).

3.5.2 Diphone Based Segmenter (DiBS)

Daland’s DiBS (short for Diphone-Based Segmentation, [7]) uses phone bigram
probabilities to decide whether a specific sequence is likely to span a word bound-
ary (typically because the phone bigram is rare) or not. A DiBS model is any
model which assigns, for each phrase-medial phone bigram, a value between 0 and
1 inclusive, representing the probability the model assigns that there is a word
boundary between the two phones. In practice, these probabilities are mapped to
hard decisions (break or no break).

Making these decisions requires knowing the chunk-initial and chunk-final
probability of each phone, as well as all phone bigram probabilities; and addi-
tionally the probability of a sentence-medial word boundary. In our package, these
4 sets of probabilities are estimated from a training corpus also provided by the
user, where word boundaries are marked. Please note we say chunk-initial and
chunk-final because the precise chunk depends on the type of DiBS used, as ex-
plained in the next paragraph.

Three versions of DiBS are available. DiBS-gold is supervised in that “chunks”
are the gold words. It is thus supposed to represent the optimal performance
possible. DIBS-phrasal uses phrases (sentences) as chunks. Finally, DIBS-lexical
uses as chunks the components of a seed lexicon provided by the user (who may
want to input e.g. high frequency words, or words often said in isolation, or words
known by young infants).

By default, the sentence-medial probability of word boundary is calculated
in the same way for all three DiBS, and it is the actual gold probability (i.e.,
the number of words minus number of sentences, divided by the number of phones
minus number of sentences). Via a parameter, users can also provide the algorithm
with a probability of word boundary calculated in some other way they feel is more
intuitive.

DiBS was initially designed with phones as basic units. However, for increased
flexibility we have rendered it possible to use syllables as input.

3.5.3 Transitional Probabilities (TP)

Like DiBS, the next family of algorithms attempts to distinguish between more or
less internally cohesive phone/syllable sequences. In the implementation we have
adopted [37], transitional probabilities (TPs) are calculated in one of three ways:

– Forward TPs for XY are defined as the frequency of the sequence XY divided
by the frequency of X;
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– Backward TPs for XY are defined as the frequency of the sequence XY divided
by the frequency of Y;

– Mutual information for XY is the log (base 2) of the frequency of the sequence
XY divided by the product of frequency of X and that of Y

This direction parameter is crossed with another, defining a cut-off for how
low TPs must be to signal a boundary, and which also has two settings. In the
first, a boundary is posited when a relative dip in TP is found. That is, given the
syllable or phone sequence WXYZ, there will be a boundary posited between X
and Y if the TP for XY is lower than both that for WX and that for YZ. The
second setting uses the average of the TP over the whole corpus as the threshold.
Notice that both of these are unsupervised: Knowledge of word boundaries is not
necessary to compute any of the parameters.

TP was initially designed with syllables as basic units, but has been adapted
to accept either phones or syllables as input in this package.

3.5.4 PUDDLE

PUDDLE stands for Phonotactics from Utterance Determines Distributional Lex-
ical Elements. This algorithm was proposed by Monaghan and Christiansen [31];
the original awk rendering (shared with us by Monaghan) was reimplemented in
Python for this package. PUDDLE takes the opposite strategy of algorithms such
as DiBS and TPs that focus on local events to posit breaks. In contrast, PUD-
DLE takes in whole utterances and tries to break them apart into relatively large
chunks. The system has three long-term storage units: a “lexicon”, a set of onset
bigrams, and a set offset bigrams. At the beginning, all three are empty. The lex-
icon will be fed as a function of input utterances, and the bigrams will be fed by
extracting onset and offset bigrams from the lexicon. The algorithm is incremental,
as follows.

The model scans each utterance, one at a time and in the order of presentation,
looking for a match between every possible sequence of units in the utterance
and items in the lexicon. We can view this step as a search made by the learner
as he tries to retrieve from memory a word to match it against the input. If,
for a considered sequence of phones, a match is found, then the model checks
whether the two units preceding and following the candidate match belong to the
list of ending and beginning bigrams, respectively. Imagine a target utterance like
“thisisacutebaby”, unitized at the phone level; a lexicon containing the item “this”;
possible bigrams thus being ”th” for onsets and “is” for offsets. Although “this” is
found in the target utterance, the utterance will not be split because the remainder,
“isacutebaby”, does not begin with a permissible onset. It should be born in mind
that this constraint is crucial for the model to avoid over-segmentation: If not
applied, the model will ultimately segment the corpus to the basic unit level (e.g.,
phones). If a substring match is not found, then the utterance is stored in the
long-term lexicon as it is, and its onset and offset bigrams will be added to the
relevant buffers. Thus, in the running example, the lexicon will end up containing
two items “this”and “thisisacutebaby”; the onset buffer will have the item ”th”
with a frequency of 2; and the offset buffer will have “is” and “by”, each with a
frequency of 1.

In our implementation of PUDDLE, we have rendered it more flexible by as-
suming that users may want to use syllables, rather than phones, as basic units.
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Additionally, users may want to set the length of the onset and offset n-grams.
Some may prefer to use trigrams rather than bigrams; conversely, when syllables
are the basic unit, it may be more sensible to use unigrams for permissible onsets
and offsets.

3.5.5 Adaptor Grammars (AG)

In the adaptor grammar framework [13,19], parsing a corpus involves inferring the
probabilities with which a set of rewrite rules (a “grammar”) may have been used
in the generation of that corpus. The WordSeg suite natively contains the capacity
to generate one grammar, the most basic and universal one. Users can also create
their own and/or change extant ones to fit the characteristics of the language they
are studying (see the /data/ag/ section of the package for more examples).

The simplest grammar, automatically generated with the call wordseg-ag, can
be conceived as having one rewrite rule to the effect that “sentences are one or
more words”, one rewrite rule to the effect that “words are one or more basic
units”, and a set of rewrite rules that spell out basic units into all of the possible
terminals. Imagine a simple language with only the sounds a and b, the abstract
rules would then be:

– Sentence → Word (Word)+
– Word → Sound (Sound)+
– Sound → a
– Sound → b

A key aspect of adaptor grammar is that it can also generate subrules that are
stocked and re-used. For instance, imagine “ba ba abab”, a corpus in the above-
mentioned simple language. As usual, we remove word boundaries, resulting in
“babaabab” as the input to the system. A parse of that input using the rules above
might create a stored subrule “Word → ba”; or even two of them, as the system
allows homophones. The balance between creating such subrules and reusing them
is governed by a Pittman-Yor process, which can be controlled by the user by
setting additional parameters. For instance, one of these parameters, often called
“concentration,” determines whether subrules are inexpensive and thus many of
them are created, or whether they are costly and therefore the system will prefer
reusing rules and subrules rather than creating new ones.

The process of segmenting a corpus with this algorithm will in fact contain
three distinct subprocesses. The first, as described above, is to parse a corpus given
a set of rules and a set of generated subrules. This will be repeated a number of
times (“sweeps”), as sometimes the parse will be uneconomical or plain wrong,
and therefore the first and last sweeps in a given run will be pruned, and among
the rest one in a few will be stored and the rest discarded.

The second subprocess involves applying the parses that were obtained in the
first subprocess onto the corpus again, which can be thought of as an actual
segmentation process. Remember that in some parses of the “ba ba abab” corpus
(inputted as “babaabab”), the subrule “Word → ba” might have been created 0,
1, or 2 times. Moreover, even if we ignore this source of variation, the subrules
may be re-used or not, thus yielding multiple possible segmentations (“baba abab”
with no subrule, “ba ba a ba b” with one “Word → ba” subrule or the same with
3 “Word → ba” subrules, etc.)
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The third and final subprocess involves choosing among these alternative solu-
tions. To this end, Minimum Bayes Risk is used to find the most common sample
segmentations.

As this description shows, there are many potential free parameters, some that
are conceptually crucial (concentration) and others that are closer to implementa-
tion (number of sweeps). By default, all of these parameters are set to values that
were considered as reasonable for experiments (on English, Japanese, and French
adult and child corpora [10,18]) running at the time the package started emerging,
and that we thus thought would be a fair basis for other general users. The full list
can be accessed by typing wordseg-ag --help. The following is a selection based
on what is often reported in adaptor grammar papers:

– number of runs: 8
– number of sweeps per run: 2000
– number of sweeps that are pruned: 100 at the beginning and end, 9 in every

10 in between
– Pittman Yor a parameter: 0.0001
– Pittman Yor b parameter: 10000
– Rule probability (theta) is estimated using Dirichlet prior

3.6 Evaluation

An objective way to measure the performance of word segmentation algorithms
is to compare the segmented corpus with the gold one, which corresponds to a
perfect segmentation as would be done by a literate adult. This comparison can
be done at different levels: word token, word type, and boundary. We provide two
boundary scores, one counting utterance edges and the other not counting edges
(since these will always be correct, by definition).

At a particular level, the evaluation looks at two different criteria: precision,
the probability that a segmented boundary/token/type is correct; and recall, the
probability a correct boundary/token/type has been segmented. Concretely, the
precision P and recall R are calculated as follows:

P =
True positives

True positives + False positives
(1)

R =
True positives

True positives + False negatives
(2)

The harmonic mean between precision and recall is computed to give the F1, which
we will call F-score.

To take an example, imagine a corpus ‘the dog bites the dog’; the segmented
output is ‘the dog bites thedog’. This will yield the following performance:

– token precision: 0.75, recall: 0.6, F-score: 0.67
– type precision: 0.75, recall: 1, F-score: 0.86
– boundary precision: 1, recall: 0.83, F-score: 0.91
– boundary no edge precision: 1, recall: 0.75, F-score: 0.86
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Two additional evaluation outputs are provided at the user’s request. First,
users can obtain the Rand Index RI, which captures both true positives and
negatives. It is calculated as follows:

RI =
True positives + True negatives

True positives + True negatives + False positives + False negatives
(3)

Our evaluation actually provides the Adjusted Rand Index, where both numerator
and denominator have been adjusted for chance agreement via resampling.

Second, some readers may be specifically interested in finding out which lexical
items come to be correctly segmented, or else segmented incorrectly in one of these
three ways: undersegmented (i.e., joined with a neighboring word); oversegmented
(i.e., broken down into subparts); or plain mis-segmented. An optional parameter
yields an evaluation summary file being returned which contains all words in the
gold corpus and the number of times with which they were found in each of those
4 groups.

One important consideration pertains to incremental algorithms, in which per-
formance is changing throughout the corpus. To make their evaluation comparable
to that of the others, we implemented a system of corpus folding, with a default
of 5 folds (which can be parametrized by the user). For the first fold, a given
algorithm is run in the whole corpus. Next, the final 20% of the corpus is moved
to the onset of the corpus, and the algorithm is run again, such that this time the
final 20% will in fact be the utterances that start at the 60% point in the corpus
and end at the 80% point. This process repeats for the remaining 3 folds (40-60%,
20-40%, 0-20%). At this point, the final 20% of the corpora outputted in each of
the 5 runs is concatenated in the right order, and the whole is evaluated. Please
note that this is not an instance of cross-validation, since the models may continue
learning over the last 20%.

4 Examples of use

This section has three goals. First and foremost, we aim to illustrate the pack-
age and show its flexibility. This example allows users to have a benchmark when
they themselves use the package. Since we expect that we and others will con-
tinue improving it, however, we recommend users check https://github.com/

alecristia/wordseg-brm-analyses for an up-to-date version of these results as
well as reproducible code. Second, we would like to inform researchers working on
this domain on the impact of key methodological and conceptual decisions, such as
what input and evaluation units are used. Finally, we try to assess the conditions
in which performance is stable and replicable.

Crucially, we would like to make it clear from the start that the goal is not
to compare performance across algorithms to find the best-performing one. Best
performance against orthographic standards does not mean that the algorithm rep-
resents human performance, let alone infant performance. For instance, [22] found
essentially a zero correlation between algorithms’ F-scores against adult segmen-
tation and the proportion of variance explained in infant word knowledge in an
English sample. Thus, we consider that, at present, there is insufficient evidence to
determine which algorithm best captures human (infant and adult) performance,
and that they may all be valuable and informative to the computational modeler
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interested in the psychological phenomena surrounding word form segmentation.
We want to provide the research community with an array of algorithms which,
given the uncertainty regarding the information that infants and other learners
incorporate, has a high likelihood of capturing at least some behaviors, or at the
very least allows the researcher to focus on findings that are true regardless of
which algorithm is used as a proxy.

4.1 Methods

4.1.1 Corpus

We used the Providence corpus [2,8], available from CHILDES [28] because it
is commonly used and large enough to allow us to break it down into several
subparts, and apply inferential statistics to assess whether certain factors truly
explain significant proportions of variance. It contains transcriptions of recordings
gathered from 6 American English-speaking children. Recordings started when
children spoke at least 4 words according to parental report, which happened when
they were around one year of age. About one hour of child-context interactions were
recorded every 1-2 weeks until they were around 3 years of age. For the present
study, we focus on the 74 transcripts (from 5 children) meeting the following
desiderata:

– children were two years of age or younger
– there was only one adult present (which lowers the likelihood of including

adult-directed speech)
– there were at least 300 utterances spoken by the adult

These transcripts were cleaned using custom bash scripts, which removed all
comment lines and all sentences uttered by children. The resulting orthographic
representations were phonologized using FESTIVAL [41], which yields a represen-
tation including syllable boundaries. FESTIVAL uses a dictionary look-up system,
complemented with grapheme-to-phoneme conversion rules for words not in the
dictionary. The following is an example of the resulting “Tags” representation,
which contains spaces to mark phone boundaries, ;s for syllable boundaries, and
;w for word boundaries.

1. Orthographic: you wanna sit with mommy
2. Tags: y uw ;s ;w w aa ;s n ax ;s ;w s ih t ;s ;w w ih dh ;s ;w m aa ;s m iy ;s ;w
3. Gold: yuw waanax siht wihdh maamiy

4.1.2 Processing with WordSeg

We generated the results for all the experiments below with a single Bash script
(although we could have used Python instead). The following is a version of that
Bash script, simplified for ease of inspection:

#!/bin/bash

# segment independent transcripts

FOLDER="/Providence/"

for tag in $FOLDER/*tags.txt; do
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# compute statistics on the unitized input text

cat $tag | wordseg-stats --json > ${tag}_stats.json

# prepare the input for segmentation and generate the gold text

cat $tag | wordseg-prep --unit $unit --gold gold.txt > prep.txt

# segment the prepared text with different algorithms

# sublexical

cat prep.txt | wordseg-baseline --probability 0.0 > ${tag}_seg.base00.txt

cat prep.txt | wordseg-tp --threshold relative > ${tag}_seg.tprel.txt

cat prep.txt | wordseg-dibs --type phrasal --unit $unit $tags > ${tag}_seg.dibs.txt

# lexical

cat prep.txt | wordseg-ag > ${tag}_seg.AGu.txt

# hybrid

cat prep.txt | wordseg-puddle --window 2 > ${tag}_seg.puddle.txt

# evaluate against the gold file

for segmented in ${tag}_seg.*.txt; do

algo=$(echo $segmented | sed ’s/.*seg.//’ | sed ’s/.txt//’)

cat $segmented | wordseg-eval gold.txt > ${tag}_out.${algo}.txt

done

done

The sample script above represents the following conceptual decisions:

– All algorithms are fed with a phone-unitized version of the corpus,
– The baseline is that which segments at utterance level only,
– For TP version uses the forward TP (default), with a relative threshold,
– The version of DiBS chosen in this example is the phrasal type, using the full

corpus to extract phone bigram statistics,
– For AG, since no grammar was provided, the simple one mentioned above is

automatically generated,
– For PUDDLE, we used bigrams (window of 2)

The full script can be retrieved from https://github.com/alecristia/wordseg-brm-analyses/

blob/master/do_prov.sh. It actually feeds all algorithms with both phone- and
syllable-unitized input, contains 3 baselines (cut at utterance boundary, at every
unit boundary, and at half of them); and TP is run with both an absolute and a
relative threshold.

4.2 Corpus statistics

Our call to wordseg-stats allowed us to describe the analyzed transcripts. Table 2
shows means and SDs of various corpus characteristics that are calculated by the
statistics package, as well as some that can be derived from the former. The most
important message we would like to convey here is that the standard deviations
are quite high, particularly for sentence length. This is despite the fact that we
focused on a single corpus, and further restricted inclusion to transcripts collected
when children were younger than 2 years of age. Nonetheless, there are sizable
changes in average sentence length, which may impact segmentation performance.
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Characteristics Mean SD
N phone tokens 11,463.22 3,414.43
N phone types 39.62 0.51
N syllable tokens 4,581.11 1,350.05
N syllable types 688.54 163.65
N words tokens 3,720.28 1,075.26
N words types 670.99 178.71
N word hapax 293.15 93.43
MATTR 0.89 0.04
Entropy 0.018 0.002
N SWU 102.81 55.33
N utts 700.27 200.38

Derived metrics
Prop. SWU 0.14 0.04
Prop. hapax 0.43 0.04
Avg. phones/word 3.08 0.08
Avg. syllables/word 1.23 0.03
Avg. words/utt 5.38 0.93

Table 2: Corpus characteristics of individual transcripts. Tokens refers to
unique instances, types to abstract units. Hapax stands for types that occur exactly
once. MATTR stands for Moving Average Type to Token Ratio, a TTR calculated
over 10 consecutive words so as to control for overall corpus size. Entropy is a
measure of ambiguity in segmentability; a higher number means more ambiguity.
Utt(s) stands for utterances; SWU for Single Word Utterance.

4.3 Effects of processing unit and algorithm

As mentioned above, we have analyzed each transcript within a subset of the
Providence corpus separately, encoded in terms of phones and syllables, with
a set of algorithms. In this section, we report on analyses aimed at assessing
to what extent performance is affected by these two factors and their interac-
tion. As shown in Supplementary Materials (https://github.com/alecristia/
wordseg-brm-analyses/blob/master/supmat.pdf), all performance metrics are
highly correlated with each other. Therefore, we focus here exclusively on token
F-scores. Figure 2 shows that performance varies enormously as a function of al-
gorithm and basic unit, with important interactions between the two. Next, we
highlight aspects of these results relevant to our three goals for Section 4.

The first result that may attract readers’ attention is that performance varies
greatly across algorithms. For instance, as has been discussed elsewhere [12,40],
excellent scores can be achieved in English infant-directed speech samples like this
one by simply segmenting every syllable, our Baseline with p = 1 algorithm. Above
and beyond the specific explanation, this observation highlights the usefulness of
WordSeg’s included baseline algorithms.

A second conclusion is that algorithm and unit interact. The reason is obvious
for two cases: TP (absolute versus relative), and PUDDLE. For TP, performance
is higher for syllable-as-unit than phone-as-unit when using an absolute threshold,
but the opposite for a relative threshold. The reason is probably that the relative
threshold algorithm requires at least 4 units in a row to be able to find a local
dip [12]. Therefore, no boundary can be postulated in short sentences, with fewer
than 4 syllables. In contrast, a boundary can be postulated in short sentences
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Fig. 2: Token F-scores as a function of unit and algorithm. Each point is
the performance of a segmentation experiment on one of the 74 transcripts, using
either phones (circles, left) or syllables (crosses, right) in combination with one
of the 8 algorithms (distinguished by position on the x-axis as well as color). In
baselines, b-00 stands for p = 0; b-05 for p = 0.5; b-10 for p = 1.

when these are represented in phones, because a local dip can be established when
there are few syllables (provided these contain at least 4 phones).

A similar conclusion can be drawn from the PUDDLE performance, which
was higher for phones than syllables. By setting the window for onset and offset
buffers uniformly at 2, we effectively prevented the algorithm from breaking up
more utterances when unitizing with syllables than with phones.

A third conclusion is that performance is enormously affected by unit and
algorithm. To investigate this more precisely, we fit a regression with token F-
scores as dependent measure, unit and algorithm as well as their interaction as
fixed effects, and transcript identity as blocking factor.3 This model explained 98%
of the variance in performance, with both main effects and their interaction being
highly significant.

4.4 Effects of corpus length

Although the analysis in the previous section showed that nearly all the variance
in performance across transcripts was explained by algorithm, unit, and their
interaction, it remains possible that transcript characteristics do affect word seg-
mentation performance. As discussed in Section 2.2, a good candidate for a factor
that would affect performance is corpus length. Preliminary analyses revealed that
PUDDLE’s performance was changing as a function of corpus length within the
sample studied in the previous subsection. Therefore, we carried out an additional
experiment to extend the length coverage. We followed previous work [2,7,31] by

3 This regression was preferred over a mixed model because there is disagreement as to how
to estimate proportion of variance explained in the latter.
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submitting concatenated versions of the transcripts to our segmentation proce-
dure. That is, we first analyzed the first transcript; then, we concatenated the
first two by pasting the second transcript after the first and analyzed the resulting
combined corpus; and proceeded in this manner until all included transcripts had
been concatenated. Children vary in the number of included transcripts both be-
cause some were visited more regularly and from an earlier age (e.g., Naima), and
because a different proportion of transcripts were excluded (due to being too short
or containing more than one adult, see 4.1.1; e.g., only 4 out of 40 transcripts for
William are included here).
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Fig. 3: Token F-scores as a function of unit and algorithm in cumulative

transcripts. Each point is the performance of a segmentation experiment on
a transcript that is the result of the concatenation of a given transcript and all
preceding transcripts for a given child. Since variation across children was low, only
Naima’s data are shown here; see supplementary materials for the other curves.
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Figure 3 portrays performance on Naima’s transcripts. Since variation across
children’s data was very low, we have only included there results from one child to
facilitate readers’ visual inspection of results (see full figure in the online supple-
mentary materials). All algorithms exhibit strong changes (upwards or downwards)
in the 0-3k region, which may be associated to peculiarities of some of these tran-
scripts, since they are visible even in the baselines. Afterwards, most algorithms
remain fairly stable with very slight linear changes (if any), with one exception:
PUDDLE. Indeed, we notice that PUDDLE-phones exhibits a non-linear pattern,
with performance increasing rapidly between 1k and 4k sentences; peaking at 5-7k
sentences; and slowly dropping (by little) thereafter. PUDDLE-syllables increases
slowly and linearly throughout the range. In general terms, then, performance is
stable for all algorithm-unit combinations (except for PUDDLE-syllables) in the
5k-15k region.

We investigated the effects of corpus size more precisely by fitting a linear
regression taking the last data point for each child (i.e., the concatenation of all
the transcripts associated with that child). As before, the dependent measure was
token F-score and the predictors were the algorithm in interaction with the unit
(blocked within child). This regression explained 99.2% of the variance; addition
of number of words in interaction with algorithm increased this to 99.3% (which
was not significant in a chi-square test).

In short, we have found that for most algorithm-unit combinations, perfor-
mance is stable across a wide range of corpora sizes (roughly between 5,000 and
15,000 word tokens), and furthermore that corpora size affected performance very
minimally once algorithm-unit effects were taken into account.

5 Discussion

This paper presents a package that allows the systematization of several key steps
in the study of word form segmentation by infants and other agents. One of the
strengths of our package is that it contains a tool to describe the input. Our
analyses of a CHILDES corpus demonstrates that there is wide variability in the
input to children even within 1-2 years of age in terms of sentence length and
lexical properties which may impact segmentation performance. The package also
provides all basic performance measures. Our analyses suggest that these are by
and large correlated.

Another key strength of the package is the presence of a tool to unitize this
input into phones or syllables as basic phonological units, and a third is that
the package contains a range of conceptually diverse algorithms. Our analyses
demonstrate that the crossing of these two factors (basic representational unit,
and algorithm) has enormous effects on segmentation performance. In contrast,
segmentation performance was rather stable across a wide range of corpus sizes,
particularly for batch algorithms.

5.1 Limitations and future directions

The first direction in which we think the WordSeg suite should be improved is
by providing users with solutions for phonologizing their texts, and facilitating in-
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formed choices for data selection from CHILDES. Previous researchers have used
a range of pre-processing pipelines, making choices that could affect segmentation
results. Some researchers remove repetition or mumbling within sentences, which
obscures any dependence which may have been present previously. For instance,
“she xxx baby girl” would become “she baby girl” (since xxx indicates untran-
scribed spoken material in the CHAT format), which misrepresents the sequence
of words produced by the speaker. Sometimes material tagged as non-lexical or
onomatopeic (with the CHAT tags &hey and choochoo@o, respectively) are simi-
larly deleted from the input. Some go so far as dropping words that are not part
of the finite dictionary being used. Since child-directed speech will often contain
onomatopeia and other forms of non-standard words, such an analytic decision
unduly simplifies the task of the word segmenter. The latter problem can be re-
moved by using a text-to-speech system (or grapheme to phoneme conversion rules
in languages with transparent orthography) on all potential child input. Such sys-
tems may also help make some strides towards making the phonologized input
more realistic via the application of phonological processes of e.g. assimilation and
reduction.

Although not illustrated in the examples above, the package is flexible enough
to allow evaluation of segmentation at linguistic levels other than the word level.
For instance, some users may desire to evaluate on morphemes rather than words
[2,35]. It has been previously discussed [35] that error evaluation based on the gold
word standard might not be optimal when modeling infant segmentation of use-
ful linguistic units. Evaluation on the morpheme level should also be considered,
since segmenting out the constituent morphemes of a word could actually help
infants acquire more lexical elements of their language [20,38]. Similarly, one can
imagine extensions assessing segmentations of yet other levels of the prosodic hi-
erarchy, such as syllables, or syntactic units, such as phrases. A somewhat related
issue is how to deal with plausible segmentation errors due to undersegmentation
of sequences of words that are often produced together (collocations). To avoid
penalizing for these, the user can simply create a version of the gold where word
boundaries are removed in high frequency phrases. These extensions are all possible
and easy to implement in WordSeg, since both the preparation and the evaluation
steps allow the user to provide the code used in their text as separators. However,
they all require that the user has exhaustively tagged morpheme boundaries (or
whatever other unit they want to evaluate). Future developments could integrate
a morphological parser to help users who lack this level of annotation, perhaps
building on extant open source, multilingual tools (e.g., CLAN, [28]).

All this said, most readers will agree with us that performance against the
gold standard is not necessarily the ultimate goal of research on infant word seg-
mentation. We have begun to investigate how the output of word segmentation
algorithms may be related to human performance more directly. Specifically, we
have been using parental reports of infant word comprehension as the variable to
be predicted [22]. This code, although available from [21], has not been prepared
for public re-use as extensively as the WordSeg code has. Additionally, there is con-
siderable conceptual and methodological work needed to extrapolate the method
to corpora of other languages (see [1] for a first attempt). We hope others will find
ways of employing the WordSeg package output to relate word segmentation re-
sults from computational models to human performance, and similarly document
and share their code.
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Another conceptual development we foresee involves breaking down the cur-
rently incorporated algorithms into recombinable modules. We have opted to reuse
extant algorithms to allow users to connect with previous literature. Nonetheless,
as word segmentation research advances, it would be ideal to reflect on the fact
that some extant algorithms represent a set of conceptual choices, each of which
is potentially combinable with others. For example, PUDDLE [31] incorporates a
strategy that profits from single-word utterances or chunks. In that model, utter-
ances that have not been segmented are encoded directly into long-term memory,
and later used to break up new utterances. We could imagine a model that encodes
phonotactics like DiBS does (i.e., not with a list of permissible phone bigrams but
rather as a probability distribution of the transition) together with a chunk mem-
orization module as found in PUDDLE. It would also be interesting to explore
parameters that have similarly been confounded with other design options, such
as whether the model should treat differently phenomena occurring at utterance
edges than utterance middles [42], or saliently whether the processing is batch or
incremental.

Finally, the modular architecture of WordSeg as well as the fact that it is open
source should facilitate its integration with other systems focusing on unsuper-
vised learning of language structure at other levels. Recent research has begun to
investigate word segmentation from raw speech [43], an interesting development
given infant psycholinguistic research strongly suggesting young infants may build
their earliest proto-lexicon using acoustic representations (e.g., [16]). Although
there are very few public corpora of child-directed speech with phonological tran-
scriptions that are aligned well enough to be usable for this process, some recent
work has made great strides towards standardizing and facilitating forced align-
ment [29], including on CHILDES corpora [9,11]. As to the integration of systems
working on other levels of acquisition, it would be worthwhile to explore parsers
allowing the discovery of morphological structure within words (such as the open
source Linguistica, see [23], section 5.2) as well as others that succeed in acquiring
multi-word dependencies (and thus a form of shallow syntax, e.g., [30]).

It is not feasible for us to promise to implement all such developments. For-
tunately, having opted for a modular, open-source structure makes it easy for
others to contribute these and other algorithms. As more and more cognitive sci-
entists and psychologists use computational modeling, more and more students
and researchers will have the necessary computer skills to make contributions
via the GitHub system. These users would fork our repository from github.com/

bootphon/wordseg, add their tool in the wordseg/algos section, and then either
keep this improved version in their own repositories, or do a pull request so that
the standard WordSeg comes to include their tool. Notice incidentally that the use
of readthedocs.com allows us to harvest help sections from within python code,
thus inviting tool developers to include statements of use that directly become
available to WordSeg users. For readers who find this idea appealing but do not
have previous experience with git, we recommend the excellent introduction to git
offered by Software Carpentry (https://swcarpentry.github.io/git-novice/,
followed by GitHub’s tutorials for forking (https://help.github.com/articles/
fork-a-repo/ and creating pull requests (https://help.github.com/articles/
creating-a-pull-request-from-a-fork/). We provide further information in a
dedicated section of our documentation https://wordseg.readthedocs.io/en/

latest/contributing.html#contributing-to-the-code.
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In conclusion, the present version of WordSeg greatly facilitates research on un-
supervised wordform segmentation by integrating multiple previous contributions
into a modular architecture. We look forward to further improvements, inviting
feedback and development.
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Follow-up studies for Chapter 3

In Chapter 3, we compared two languages, Chintang and Japanese, represented by

two naturalistic corpora that may differ across several factors. For example, Chintang

parents could by chance produce longer utterances, and this would affect our results. It

is impossible to control for this in naturalistic corpora. We cannot be certain that the

differences we observe are due to the specific factor that led us to choose these two

languages or to any extraneous factor in the corpora and/or to other uncontrolled

characteristics of the languages. We considered extending this approach to other

natural child-centered corpora, for instance by looking at 10-20 corpora of languages

varying in morphological complexity. This turned out not to be feasible, since

morphological segmentation is typically not available in child-centered corpora.

Moreover, there would always have been the possibility that uncontrolled differences

caused, or obscured, any result that we were to find.

We have thus performed additional experiments with artificial languages, to study

the effects of morphological complexity on segmentability in a more controlled fashion.

Artificial languages allow us to study specific properties of languages and their effect

under tightly controlled conditions. Once everything else was controlled for via artificial

languages, the effect of morphological complexity was clear and could not be attributed

to any confounds.

5 Experiment 2: Artificial languages varying in the number of affixes

In this experiment, we study whether languages varying in morphological

complexity differ in segmentability by assessing segmentability of five morphologically

diverse artificial languages, which exhibit a gradual range of morphological complexity.

We make sure that the number of words per sentence are matched across corpora, and

the languages only differ on this specific aspect of morphological complexity.

We focus on the factor of morphological synthesis, keeping all other variables

stable. In order to study the effects of morphological synthesis on segmentability, we

track changes in segmentation while modifying the ratio of morphemes per word. In
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Experiment 1, the mean number of grammatical affixes accompanying the stem was

about 1.69 for Chintang and 1.07 for Japanese. In Experiment 2, we increase the

variability of this feature, ranging from 0 to 4.

The same questions asked above are revisited in this controlled experiment. First,

do languages varying in morphological complexity differ in segmentability? Based on

the key predictions above, languages with a smaller number of morphemes within words

should be easier to segment than languages where words have multiple morphemes.

Also, based on the key predictions above, both lexical and sublexical algorithms should

yield lower word segmentation scores for more complex languages, as they are more

likely to break up the stream at morpheme boundaries.

Second, how large is this effect, compared to differences across algorithms and

evaluation level? We inquire whether performance varies as a function of algorithm (the

specific algorithm employed during segmentation) and the level of linguistic

representation on which segmentation is evaluated (words or morphemes). We

concluded in Experiment 1 that morphology-related differences across languages were

relatively small, but this conclusion could be curtailed by the fact that the range of

variation covered with these two natural languages may be small. Experiment 2 allows

us to better measure these effects by studying them in isolation, and increasing the

range of linguistic variation covered.

5.1 Methods

5.1.1 Languages. Languages were created using a script in R. First, a set of

consonant-vowel syllables were composed through every combination of the consonants

"z", "r", "t", "y", "p", "q", "s", "d", "f", "g", and "h" and the vowels "a","e","i","o",and "u".

We then composed a lexicon of 1,000 words. Function words constituted 1% of this

lexicon, and they were always one syllable in length. The rest of the lexicon were

content word stems, which varied in length between 1 and 4 syllables. Content words

were randomly split into two classes, A and B (which may be thought of as nouns and

verbs), and which selected affixes from two different paradigms. All of these aspects



MORPHOLOGICAL COMPLEXITY AND SEGMENTATION 204

were fixed across languages.

Languages varying in complexity thus differed only on the next step. The base

language (0) had no affixes; the next language (1) had one affix per content word (with

different affixes for class A and B stems); and so on, for up to 4 affixes (4). All affixes

were one syllable long.

Mean subset stats 0 1 2 3 4

# utt 5000 5000 5000 5000 5000

# wtokens 12528 (55) 12528 (55) 12528 (55) 12528 (55) 12528 (55)

# wtypes 791 (8) 4695 (36) 7125 (31) 7482 (23) 7520 (21)

# whapaxes 1.5 (0.71) 2807 (43) 6733 (38) 7428 (26) 7506 (20)

# phtokens 50535 (460) 65515 (376) 80581 (525) 95570 (518) 110556 (490)

# mortokens 12528 (55) 20044 (75) 27560 (93) 35073 (114) 42582 (129)

Table 7

Corpus features: Means (and standard deviation) across the ten subsets of artificial languages

0, 1, 2, 3, and 4 (see main text for explanation). # stands for number, “utt” stands for

utterance. “wtokens”, “wtypes”, “whapaxes” stand for word tokens, word types and word

hapaxes. “phtokens” stands for phoneme tokens and “mortokens” stands for morpheme tokens.

The final step was also in common across languages, and consisted in creating a

corpus of 5000 sentences that were between 1 and 4 words in length. Previous

methodological work suggests algorithms’ performance is stable by about 5000 sentences

(Bernard et al., 2018). Sentence lengths of 1-4 seem reasonable for child-directed

speech, according to previous descriptive studies (Loukatou, Le Normand et al., 2019).

Sentences one word in length had only a stem (and, for more complex languages, its

affixes); sentences with two words had a function word and a stem (and affixes);

three-word sentences had a function word and two stems (and their affixes); and

four-word sentences had a function word, a stem (and its affixes), a function word, and

a stem (and its affixes). For clarity in the code, each sentence sampled from the lexicon

for each language separately.

To make this more concrete, here is the first sentence in the five languages’



MORPHOLOGICAL COMPLEXITY AND SEGMENTATION 205

corpora in one run, containing always three words (a function word followed by two

stems with their eventual affixes, depending on the language); words are separated by

spaces, morphemes by dashes:

• 0: "pi rotu rodezira"

• 1: "yu so-se qofeharu-se"

• 2: "tu yosoreda-ga-yi foyo-gi-su"

• 3: "pi ruza-to-re-pu gori-di-re-ra"

• 4: "fe zi-pa-yo-ye-gi ho-fa-ge-ye-te"

And the following are sample sentences containing the stem "rodezira", which was

one of the stems in the lexicon in that run, appearing in sentences of the same word

length across the five languages:

• 0: "pi rotu rodezira" (3 words, 3 morphemes)

• 1: "di rodezira-ge reyoha-qi" (3 words, 5 morphemes)

• 2: "yi tohegipu-ga-ga rodezira-sa-yu" (3 words, 7 morphemes)

• 3: "tu rodezira-de-ro-pa gitopide-pe-re-qu" (3 words, 9 morphemes)

• 4: "gu rodezira-fa-ho-fu-qo deguqaso-ge-ri-re-hu" (3 words, 11 morphemes)

This whole process was repeated 10 times, to create 10 corpora, each 5,000

sentences in length, for each of the five different languages. Table 3 shows some basic

statistics of these languages.

5.1.2 Segmentation. The same procedures were used as in Experiment 1.
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Figure 3 . The y axis shows token F-scores across languages. The languages in the x axis are

0 (stems take no affixes), 1 (stems take one affix), 2 (stems take two affixes), 3 (stems take

three affixes) and 4 (stems take four affixes). Evaluation levels are marked by shape (open

circle for morphemes, cross for words). Color reflects algorithms (which are also used to group

the data into boxes, see main title of each box).

5.2 Results and discussion

Results for Experiment 2 are shown in Fig. 3. Our first goal was to answer

whether languages varying in morphological complexity, as defined by the number of

morphemes per word, differ in segmentability. A regression predicting F-scores from

language, level, algorithm, and their interactions accounted for most variance in the

data, R2 = .99 (F (63, 568) = 720, p < .001).11 Even though the presence of significant

interactions precluded a direct interpretation of the main effects, the regression

confirmed a disadvantage for the most morphologically complex languages, with

negative coefficients estimating the language effect (-0.05 for language 4, -0.04 for 3,

-0.02 for 2). Thus, the answer to our first research question is that there are significant

effects on segmentability of varying complexity across languages.

In response to our second research goal, how large the language effect is compared

to differences across algorithms and evaluation level, we observed that language effects

appeared to be relatively small, since the F-value for language is several times smaller

than that of level and of algorithm . More detailed outcomes are provided in the online

11 The function was: lm(token fscores ∼ language ∗ level ∗ algorithm + (1/file), subsets). Token F-scores

are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random

factor. The data frame contains 640 observations (4 languages x 2 levels x 10 subsets x 8 algorithms).
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supplementary material, but two aspects of the results apparent in Fig. 3 are worth

pointing out. Morpheme level scores for languages where words contain two, three, four

and five morphemes, were in general higher than word level results for the same

language. We also observed some interactions. For example, AG and DiBS

morpheme-level results increased with language complexity, reaching and even

surpassing the results for the language with no affixes.

In sum, similarly to what was found in Experiment 1, we observed the expected

differences in performance as a function of language, level, and algorithm type. The

results of Experiment 2 support our conclusions from Experiment 1: Languages varying

in morphological complexity vary in segmentability. Overall word segmentation

performance for the simplest language where words and morphemes coincide was better

than performance for the other languages, which contain 1-4 affixes per stem. However,

the strength of the language effect varied across algorithms, and was even reversed in

some conditions, exactly as we observed in Experiment 1. The language effect was again

smaller than the effects found for the other two factors, namely level and algorithm

type, even though the range of variance here was huge, much larger than that found in

Experiment 1’s natural language corpora.

6 Experiment 3: Artificial languages varying in the distribution of affix

number

We implemented one more set of artificial languages in order to observe the effect

of morphological complexity in controlled environments. One limitation of Experiment

2 is that languages were more internally homogeneous in terms of complexity than

human languages typically are: There is no human language in which each and every

content word in the language must always have exactly three affixes. We relaxed this

assumption while maintaining differences in complexity in our Experiment 3.

Specifically, the languages in this experiment were created to differ in the distribution of

affix numbers, with all artificial languages having words that contain between zero and

four affixes but varying in how frequent different affix numbers were. In our baseline
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language, the probability distribution was flat, with 20% probability for each option

(zero to four affixes). In a simpler language, more mass was allocated to lower number

of affixes. Finally, a more complex language was created with more mass allocated to

higher number of affixes.

The same questions and predictions given in Experiments 1 and 2 are revisited in

this experiment: We ask whether languages varying in morphological complexity differ

in segmentability, and how large this effect is when compared to differences across

algorithms and evaluation level.

6.1 Methods

Mean subset stats S B C

# utterances 5000 5000 5000

# word tokens 12470 (106) 12518 (69) 12532 (64)

# word types 5336 (47) 6481 (43) 7174 (25)

# word hapaxes 4467 (51) 5903 (65) 6922 (27)

# phoneme tokens 70240 (676) 80574 (809) 90452 (645)

# morpheme tokens 22576 (141) 27598 (233) 32452 (195)

Table 8

Corpus features: Means (and standard deviation) across the ten subsets of artificial languages

S (simpler), B (base) and C (more complex). # stands for number.

6.1.1 Languages. As in Experiment 2, we created languages with a lexicon of

1,000 items, of which 1% were one-syllable long function words, and the remaining were

stems one- to four-syllables in length, randomly split into two types that selected

different affix paradigms. The syllable inventory, distribution of sentence length (1-4

words), length of corpora (5,000 sentences), were also kept constant, and 10 subsets

were generated for each language.

Unlike in Experiment 2, however, all languages had some affixes, meaning that

stems could take between 0 and 4 affixes. The three languages we created varied in

terms of the distribution of the number of affixes a stem took. In the base language (B),
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it was equally likely for stems to have 0 to 4 affixes (i.e., 20% of chances for each). In

the simpler language (S), the distribution was tilted towards fewer affixes: 35%

likelihood of having 0 affixes, 25% of having 1, 20% of having 2, 10% of having 3, and

10% of having 4 affixes. The more complex language (C) had the opposite trend: 10%

likelihood of having 0 affixes, 10% of having 1, 20% of having 2, 25% of having 3, and

35% of having 4 affixes. Table 4 shows some basic statistics of the languages.

6.1.2 Segmentation. The same procedures were used as in Experiment 1.

6.2 Results and discussion
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Figure 4 . The y axis contains token F-scores across languages. The languages in the x axis

are S(imple), B(ase) and C(omplex). Evaluation levels are marked by shape (open circle for

morphemes, cross for words). Color reflects algorithms (which are also used to group the data

into boxes, see main title of each box).

Results for Experiment 3 are shown in Fig. 4. In general, more similarities in

segmentability across languages were found here than in Experiment 2. This may be

due to the fact that the languages were more similar to each other here than in

Experiment 2.

Bearing on our first research question, a regression predicting F-scores from

language (S, B and C), level, algorithm, and their interactions accounted for most

variance in the data, R2 = .99 (F (47, 945) = 432, p < .001).12 Even though the presence

12 The function was: lm(token fscores ∼ language ∗ level ∗ algorithm + (1/file), subsets). Token F-scores

are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random

factor. The data frame contains 480 observations (3 languages x 2 levels x 10 subsets x 8 algorithms).
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of significant interactions precluded a direct interpretation of the main effects, the

regression confirmed a disadvantage for the more morphologically complex languages,

with negative coefficients estimating the language effect (-0.06 for C and -0.03 for B).

Regarding our second research goal, we observed that language effects are

relatively small, since the F-value for language is half the size of level and a quarter of

that for algorithm . More detailed outcomes are provided in the online supplementary

material, but two further aspects of the results are worth pointing out. As in

Experiment 2, scores for all three languages improved when evaluating on the

morpheme level across algorithms. Also, similarly to Experiment 2, AG and DiBS

morpheme scores increased with language complexity.

7 Summary

In the context of our artificial languages, where languages differ maximally in

morphological complexity (more than what any human natural languages could differ),

the effect of morphological complexity remained small, and certainly smaller than that

of level and algorithm. The artificial language results were also informative on the

general performance of the algorithms; the performance range of the algorithms was

similar across all three experiments, highlighting the relevance of our artificial language

results for broader generalization to natural languages. Additionally, this suggested that

differences across algorithms are massive – even when corpora are perfectly controlled.
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