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Abstract

In this dissertation, we take a closer look at the astonishing diversity of input children grow up
hearing all around the globe, and we ask how this diversity matters to language acquisition. For this,
we employ interdisciplinary methods. We consider the type of language and culture as two principal

sources of diversity, and we investigate them in two distinct parts of the dissertation.

Previous studies on language learning have focused mainly on English, and there is much less
information on how other languages are learned. However, languages vary a lot to each other. Across
languages, our first goal is to describe the nature of children’s input and to identify its diversifying
characteristics. For example, children learning Chintang are exposed to a polysynthetic language, with
a particularly rich morphological system. How does this input compare to input from a language with
a simpler morphological system, such as Japanese? Our second goal is to comprehend the relation
between this diversity and learnability. We examine learnability in the context of language
segmentation, a fundamental learning task. We assess how informative input is, and whether learning
is affected by the characteristics described above. We further ask whether some cognitive strategies

are viable across cross-linguistic environments.

To answer these questions, we conduct extensive analyses of ambient input in largely diverse
environments. First, we retrieve this input from databases of longitudinal recordings. One such
database is AcqDiv, which contains longitudinal recordings of caregiver-child interactions across
eight languages differing in morphosyntactic features. We estimate robust descriptive measures of
input quality, such as its lexical and morphosyntactic diversity. Second, we implement artificial
language and modeling experiments. These methods allow us to inspect the learnability properties and
segmentability of different kinds of input speech. We argue that segmentation of words, but also of
other meaningful units, such as morphemes, should be considered when learning language. Moreover,
we investigate whether previously proposed learning strategies for word segmentation perform above

chance and stably for the AcqDiv languages.

In the second part of this dissertation, we look at differences across speech registers, speakers and
cultural norms. Previous studies on early language learning focused mainly on child directed speech,
mother-child interactions and WEIRD cultures. However, this input is not the only one children get
exposed to when learning language. Across cultures, our first goal is to describe the nature of

children’s input and to identify diversifying characteristics. For example, how does input of children



learning Sesotho, who are mostly addressed by other children and receive little child-directed input
from adults, compare to that of French-learning children? How does input overheard by French
children differ from input directed to them? Our second goal is to study the relation between this

diversity and learnability.

To answer these questions, we use data from longitudinal recordings such as the LENA-Lyon, the
Demuth and other CHILDES corpora. First, we quantify the relative contribution of speech registers
and speakers in Sesotho, French and English-learning children’s overall input, and further compare
this input based on corpus statistics. Second, making use of well-established segmentation models, we
provide key insights on the segmentability of French overheard and child-directed input. We assess
how informative child directed input is compared to overheard input, and whether segmentability

differences between the two can be explained by their characteristics.

Résume

Dans ce manuscript, nous examinons de plus prés I'é¢tonnante diversit¢ d’input que les enfants
grandissent en entendant, et nous demandons en quoi cette diversité est importante pour l'acquisition
du langage. Pour cela, nous utilisons des méthodes interdisciplinaires. Nous considérons le type de
langue et de culture comme deux sources principales de diversité, et nous les étudierons dans deux

parties distinctes de cette these.

Des études précédentes se sont principalement concentrées sur l'apprentissage de 1’anglais, et il y a
beaucoup moins d'informations sur comment les autres langues sont apprises. Cependant, les langues
varient étonnamment les unes des autres. Pour des langues différentes, notre premier objectif est
d’identifier les caractéristiques de diversification de I’input. Par exemple, les enfants apprenant le
chintang sont exposés a un langage polysynthétique, avec un systéme morphologique particuliérement
riche. Comment cet input se compare-t-il a I'input dune langue plus simple, comme le japonais? Notre
deuxiéme objectif est de comprendre la relation entre cette diversité et la capacité d'apprentissage.
Nous examinons cette capacité pour la segmentation du langage. Nous évaluons a quel point
l'apprentissage des langues est affecté par ses caractéristiques. Nous nous demandons en outre si

certaines stratégies cognitives sont viables dans des environnements multilingues.

Pour répondre a ces questions, nous consultons I’input de bases de données d'enregistrements
longitudinaux. L'une de ces bases est AcqDiv, avec des interactions soignant-enfant dans huit langues

dont les caractéristiques morphosyntaxiques différent. Nous mesurons la qualit¢ de I’input, sa



diversité lexicale et morphosyntaxique. Deuxiémement, nous mettons en ceuvre des expériences de
langage artificiel et de modélisation. Nous soutenons que la segmentation des mots, mais aussi
d'autres unités significatives, comme les morphémes, devrait étre considérée lors de l'apprentissage.
De plus, nous étudions si des stratégies d'apprentissage statistique précédemment proposées

fonctionnent de maniére stable pour les langues AcqDiv.

Dans la deuxiéme partie de la thése, nous examinons les différences de I’input entre les registres
vocaux, les locuteurs et les normes culturelles. Les études antérieures sur I'apprentissage précoce des
langues se sont concentrées sur la parole dirigée a I'enfant, les interactions mere-enfant et les cultures
WEIRD. Cependant, cet input n'est pas le seul auquel les enfants sont exposés lorsqu'ils apprennent la
langue. A travers les cultures, notre premier objectif est d'identifier les caractéristiques de
diversification. Par exemple, comment l'input des enfants apprenant le sésotho, qui provient
principalement d'autres enfants et pas de la part des adultes, se compare-t-il a celui des enfants
apprenant le frangais? En quoi I’input entendu, mais pas directement adressé aux enfants francais
differe-t-il de I’input qui leur est adressé? Notre deuxiéme objectif est de comprendre la relation entre

cette diversité et la capacité d'apprentissage.

Nous répondons a ces questions par des données issues d'enregistrements longitudinaux tels que
LENA-Lyon, Demuth et autres corpus CHILDES. Premiérement, nous quantifions la contribution des
registres et des locuteurs a I’input total des enfants apprenant le sésotho et le francais, en utilisant des
statistiques de corpus. Deuxiémement, en utilisant des modéles de segmentation bien établis, nous
fournissons des informations clés sur la segmentabilité de 1’input frangais destiné ou pas aux enfants.
Nous comparons des deux, et nouns enquétons si les différences de segmentabilité entre les deux

types d’input peuvent étre expliquées par leurs caractéristiques.
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General Introduction

1. Early Language Acquisition

We begin the dissertation with an overarching chapter, where we present the benchmarks of early
language acquisition, and we introduce some general concepts that will be discussed later on, in Part 1

and 2.

Early language acquisition refers to children’s acquisition of their native language(s). All typically
developing children acquire the ambient language. A careful observer cannot miss their outstanding
learning progress, their increasing ability to comprehend and understand new aspects of their
language. We may say that describing acquisition benchmarks is a view of early language acquisition
from the outside. When we start wondering how this acquisition takes place, what are the processes

that allow is to happen, we may say that we view early language acquisition from the inside.

1.1 From the outside

Language acquisition takes place early on. By the age of 3, children are competent speakers,
producing “novel sentences that involve complicated constructions, words that reference abstract
ideas or absent entities, sound sequences that mark the distinctive contrast of the native language”
(Gierut, 2007, p.1). Observable milestones have been identified for the acquisition of words and

morphemes by English-learning children. We describe some of these below (Figure I).

BENCHMARKS FOR UNIT LEARNING

Years{(l;zlj 0:6 0;7.5 1 2 3

" protolexicon, familiar  frequent  non-freq. bound derivational grammatical
RECOGNITION  ,igme  start attaching content  function  function  dffixes affixes competence
meaning to words words words
words Phones, phonemes, syllables, prosody MLU=2 600 word competent
PRODUCTION productive speaker

vocabulary

Figure 1. Indicative benchmarks proposed to describe English word and morpheme learning during language
acquisition. Green refers to recognition and orange production.

By the end of the first year, children can already parse input speech of their native language
(Pierrehumbert, 2003). They discover its phonemes (Swingley, 2009), phones (Pierrehumbert, 2003)

and syllables (Bijeljac-Babic et al., 1993). They attune their innate sensitivity to acoustic variation to



the language of their environment (Kuhl et al., 1992). They can perceive the prosody of their language
(Christophe et al., 2008) and its phonological phrases (Gout et al., 2004).

During their first year of life, children also start breaking speech into word-like units, in a task often
called word segmentation. This task is challenging, and the fact that they accomplish it fast and
effortless is astonishing for several reasons. First, speech is continuous, with no acoustic correlates to
word boundaries (no ‘white spaces’ between words, as in some writing systems). We can notice that
speech is continuous when we hear someone talking in an unknown language. Second, at the
beginning of acquisition, children do not dispose of a word lexicon and do not know the regularities
of their future language (Blanchard et al., 2009), so they do not have any knowledge specific to the
language ready to help. Third, very few words occur in isolation in speech (Brent & Siskind, 2001),
and, for those words that occur in isolation, there is no proposal on how they could be recognized
(Gambell & Yang, 2006). Most words are never even heard in isolation (determiners for example),

thus children should somehow segment them out of speech.

We can observe traces of segmentation by the age of 7 months, by examining children’s recognition of
words and functional items. For example, children recognize their own names by 4.5 months (Mandel
et al., 1995), and segment familiar content words such as cup and feet from running speech by 7.5
months (Depaolis et al., 2014; Jusczyk & Aslin, 1995). Around their first year and prior to production,
children also recognize frequent functional items (Christophe et al., 2008), such as determiners (by 11
months, (Shi, Werker, et al., 2006) and even less frequent function words (by 13 months, Shi, Cutler,
et al., 2006). Prior to production, and maybe even prior to semantic knowledge, they recognize bound
items such as affixes (Gomez & Gerken, 1999b; Mintz et al., 2002; Mintz, 2013). Briefly, children
seem to build a protolexicon of candidate word-like units (often called “wordforms”) by their first
birthday (Bannard & Matthews, 2008; Ngon et al., 2013), and as they segment units acoustically

similar to each other, they become more attentive to their acoustic details (Swingley & Aslin, 2002).

In this dissertation, we focus on a specific learning task: the segmentation task. However, since
previous work on segmentation is limited, we also briefly refer to production and grammar
acquisition, supposing that both result from a successful segmentation. In general, children
comprehend words and functional items earlier than their age of production (Clark & Hecht, 1983).
Following babbling, production of the first content words occurs at 12-20 months, and increases
rapidly at 16-18 months (Diesendruck, 2007). This increase is often described as a ‘vocabulary spurt’
- but see Bloom (2004) challenging this notion. At around two years, children enter the two-word

production stage (Sakai, 2005). By two and a half years, their productive vocabulary size is about 600



words, and at six years it often exceeds 10,000 words (Goodman et al., 2008). Morphological

elements in production appear within the first year of talking (Clark, 2017).

Before their second birthday, English-learning children grasp the grammatical structure of the
language, its categories, and can differentiate between nouns, adjectives, or even transitive and
intransitive verbs (Booth & Waxman, 2009; Gelman & Taylor, 1984; Gémez & Lakusta, 2004; Hohle
et al., 2004). By the age of 2 years, they master number, earlier for nouns than verbs, and, by the age
of 3 years, they master most tenses (even though some, such as present perfect, are not fully mastered

until 4-5) and derivational affixes.

Children tend to learn forms of words before their meanings (Jusczyk & Hohne, 1997; Swingley,
2007). Although early semantic learning will not be further discussed in this dissertation, we mention
that this is another challenging task they need to tackle, given that there often are numerous
hypotheses for a word’s meaning. English-learning children start attaching candidate referents to
wordforms at about 6 months, mostly for concrete items (Bergelson & Swingley, 2013; Diesendruck,

2007) and they keep refining the concepts based on input (He & Arunachalam, 2017).

1.2 From the inside

Language acquisition can be described as a product of mental processes, which receive as input
information from the linguistic environment and produce as output the mental representation of the
language, as well as the observable ability to comprehend and produce language (Hoff, 2006). Thus,
the output of language acquisition is guided by the input, its availability and properties, as well as the
computational system, its cognitive mechanisms and tools (Mintz et al., 2002). For the sake of this

dissertation, we adopt this definition.

We can infer from this definition that children need to interact with the world (Jiang et al., 2020), and
get exposed to surrounding language input (Morgan & Demuth, 1996), since language learning results
from this exposure. Indeed, across acquisition theories (Chomsky, 1959; Christiansen & Chater, 2008;
Elman, 1996; Gervain & Mehler, 2010; Michael Tomasello, 2001), there is a consensus that input is
essential to acquisition, as it provides information on the language, its vocabulary and structure.
However, before discussing more on language input, we provide below a brief description of the

cognitive mechanisms and tools used in acquisition.
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1.3 Learning mechanisms and cues

Several strategies have been proposed to account for word and morpheme segmentation and learning
in language acquisition (see Figure 2). Contrary to adult language learning, children start learning
language probably based on bottom-up (signal-derived) strategies (Mattys et al., 2005; Mersad &
Nazzi, 2012; Pierrechumbert, 2003) - although they also seem to have prelexical access to some

top-down information (e.g. word order, Gervain et al., 2008).

Traditionally, these strategies have been described to contain both language-general and
language-specific cues. However, depending on different definitions of ‘specificity’ (whether they
refer to the strategy or the content), this classification of cues is not straightforward (e.g. phonotactics,
Blanchard et al., 2010; stress, Endress & Hauser, 2010). Many cues specific to speech are
probabilistic, and could be framed as statistical cues. For instance, phonotactics can be framed as the
probability of one sound following another within the speech stream. Even for stress, a traditionally
language-specific cue, infants need to track the distributional frequencies of stressed syllables

(Johnson & Jusczyk, 2001). For illustrational purposes, we present the cues in Figure 2 avoiding this

distinction.
STRATE‘(‘;}SF OR UNIT SEGMENTATION
BOTTOM UP
Statistical & 3
distributionarl learning Oﬂifr 5 TOP DOWN
v
'/ e Utterance & Bootstrapping acquired knowledge
. TPs Y .
‘ prosodic ¥
« Phonotactics edges
o Allophones e Use of known words
speech o Co-articulation e Use of functional items
e Stress + Syntactic and semantic context

Figure 2: Indicative strategies proposed to account for word and morpheme learning in LA.

It has been suggested that transitional probabilities (TPs) probably provide initial information for the
subsequent use of the speech cues (Junge, 2018; Swingley, 2005); see also Johnson & Jusczyk,
(2001), Thiessen & Saffran (2003) for experimental and Vallabha et al. (2007) for modeling work. In
this dissertation, we test the segmentability of input based on bottom-up cues, using cues such as

TPs, phonotactics and utterance boundaries. We describe these cues below.
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In laboratory experiments, children manage to extract patterns out of linguistic systems (Chambers et
al., 2003; Gerken, 2006; Saffran & Thiessen, 2003), and through some kind of abstraction, they
generalize them to new stimuli (Berko, 1958; Gomez & Gerken, 1999a; Tenenbaum et al., 2011).
These patterns emerge from regularities in input (Conway et al., 2010; Lany & Goémez, 2008;
Romberg & Saffran, 2010). This inductive computation can be understood in probabilistic terms, in
order to capture the uncertainty of the learner; their beliefs are updated as they process the (often

insufficient or ambiguous) input (Gopnik & Tenenbaum, 2007).

Statistical learning refers to this ability of extracting statistical patterns from a stream of perceptual
experiences (Romberg & Saffran, 2010), and is considered a bottom-up strategy. Laboratory
experiments have shown that children can compute basic statistics, such as element frequency, and
their frequency of co-occurrence, based on statistical and distributional regularities. This information
can prove useful across multiple linguistic levels; lexical (Estes et al., 2007; Romberg & Saffran,
2010), semantic (Vouloumanos & Werker, 2009; Yurovsky et al., 2014; Diesendruck, 2007; Gleitman,
1989), phonological (e.g. Maye et al., 2002) and morphosyntactic (e.g. Thompson & Newport, 2007)
-also see Fourtassi & Dupoux (2014) for a model learning parallel linguistic representations based on

statistical learning.

We are specifically interested in the lexical level. Sound sequences occurring within words are more
likely to co-occur than sound sequences occurring incidentally across boundaries, and this can be
measured with transitional probabilities (Aslin et al., 1998). Saffran et al. (1996) demonstrated that,
when hearing an artificial language, English-learning 8-month old children can perceive transitional
probabilities across syllables and use this information to segment words. A similar strategy has been
observed in neonates (Bulf et al., 2011; Teinonen et al., 2009) and in tamarin monkeys (Hauser et al.,

2001).

Even though the validity of statistical learning mechanisms was strongly supported by Pelucchi et al.
(2009), who showed that English-learning 8-month olds could track transitional probabilities in
naturally produced, grammatical stimuli in Italian, E. K. Johnson & Tyler (2010) failed to replicate an
artificial language study when the words of the language had variable length. A meta-analysis of
studies implementing transitional probabilities for segmentation showed a significant but small effect,
whose presence depended on the type of speech used, real or synthetically produced (Black &
Bergmann, 2017). Since the learning experience is necessarily simplified in the lab (Endress et al.,

2009; E. K. Johnson & Seidl, 2009; Pierrehumbert, 2003), the ecological validity of mechanisms
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should be checked by testing their potential usefulness on real-life input (Frank, Goldwater, et al.,

2010; Swingley, 2005).

In previous laboratory experiments, children also made use of phonotactic regularities (Mattys &
Jusczyk, 2001) and allophonic distributions (Gambell & Yang, 2005; Peter W. Jusczyk, Hohne, et al.,
1999) to segment words. They may learn about phonotactics by looking at the distribution of
utterance-final and utterance-initial phone sequences (Chambers et al., 2002, 2003) - also see
Blanchard et al. (2009) and Hayes & Wilson (2008) for modelling phonotactic learning. Conditional
probabilities approximate this learning (e.g. the probability that [d] comes after [p] is very small, so
there may be a boundary). Allophonic distributions can also be informative on word boundaries. For
example, allophone /t/ is aspirated at the beginning of words (e.g. ‘table’) but unaspirated at the end

(e.g. ‘hat”).

Finally, phrase and utterance edges are acoustically salient to children early on (Gout et al., 2004;
Shukla et al., 2011; Tyler & Cutler, 2009). Infants could assume that these edges are also word

boundaries, and use them to segment edge-final and edge-initial words (Seidl & Johnson, 2006).

Last, we briefly mention some top-down segmentation strategies here. In this dissertation, we
test the segmentability of input based on one top-down strategy, the use of known word-like
items (Christophe et al., 1997). Other strategies include the use of semantic and syntactic content
(Gillette et al., 1999; Gleitman, 1990). In early acquisition, very few content words are identifiable,
such as the child’s own name and the appellation for her parents. Functional items, which usually are
frequent, short, and at the borders of prosodic units, are recognized early on (Christophe et al., 2008a;
Shi et al., 1998) and have a similar bootstrapping role. In experimental settings, children already at 8
months use some of them to segment content words (Hallé et al., 2008; Mintz, 2013; Shi & Lepage,
2008; Shi et al., 2006).
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Guide to Chapters

This dissertation is divided into 10 chapters and two parts. We began with an introductory chapter,
where we presented the concept and benchmarks of early language acquisition. Chapters 2-5 are the
first part of the dissertation, where we deal with diversity and learnability across linguistic systems.
Chapter 2 is the introduction of Part 1. In Chapter 2 we mention previous studies looking at
cross-linguistic diversity and learning. We discuss the need for future research and how it gets
adressed in this dissertation. Chapter 3 is a modeling study under review, where we test the
segmentability of input from two languages differing in richness of their morphological features,
Chintang and Japanese. An innovative aspect of this study is the evaluation of segmentation
performance in both words and morphemes. Chapter 4 is a published modeling study, where we test
the cross-linguistic viability of segmentation strategies. We investigate whether they perform above
chance and stably across eight typologically diverse languages. Chapter 5 an ongoing artificial
language study. We ask whether human participants segment words and/or morphemes when
exposed to an artificial language where, just like human languages, words are composed by

morphemes. Chapter 6 is the conclusion to Part 1.

Chapter 7 is the introduction to Part 2. In this chapter, we mention previous studies looking at
diversity and learning from different registers and speakers. Chapter 8 is a corpus study under
review where speech heard by children is compared across two diverse cultures, in Lesotho and in
France. The amount and quality of input is investigated across speech registers. We categorize input
as directed to the target children, other children or adults. Input is also measured across speakers; the
target children’s mothers, other adults and other children. Chapter 9 is a published modeling study,
where we test the segmentability of speech registers from input to French-learning children. We ask
whether performance differences between registers can be explained by their specific characteristics.
Chapter 10 is the conclusion to Part 2. Finally there is is a general discussion, where we discuss

future lines of research and some personal insights about language learning in general.
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Part 1

2. Diversity across languages

Having set down some basic definitions and provided a summary of previous relevant results from
English learners, we start the first main part of the dissertation. In this introductory Chapter 2, we look
at which cross-linguistic characteristics may diversify the input children grow up hearing, and how
these characteristics can affect learnability. In 2.1, we talk about the diverse typological features of
languages around the world. In 2.2, we discuss how different languages are learned, based on previous
experimental and modeling evidence, and we emphasize the need for future research. In Chapters 3, 4
and 5 we address this need with three different studies. In Chapter 6, we provide conclusions based on

our results.

2.1 Input across languages

Several questions can be asked if we want to truly understand language acquisition (Bertolo, 2001);
What is learned during acquisition? What strategies are used to learn? When do we say that learning
has been successful? However, we cannot begin to ask these questions, if we don’t know the linguistic
input children receive. This knowledge will help us restrain hypotheses for all other questions on
language acquisition. What we know for sure is that input of children around the world is extremely
diverse, as languages differ remarkably in their typological features (Norcliffe et al., 2015; Bickel,
2014; Evans & Levinson, 2009).

Already in 1985, Tomasello & Mannle suggested that research should “investigate more thoroughly
the nature and effects of the total range of language models available to language learners” (p. 916).
Several years later, Evans & Levinson (2009) emphasized that the cognitive science community is not
yet aware of the diversity across languages. The realization that language acquisition theories should
explain how al/ languages are learned, and how children cope with this variation, has recently led to

increasing attention towards cross-linguistic work (Stoll & Bickel, 2013).
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2.1.1 Variation in typological features of language input

Inflectional morphology, as will be discussed later on, is a major source of diversity (Penke, 2012).
Traditional linguistics categorize languages as isolating/analytic, synthetic (which can be fusional and
agglutinative) and polysynthetic. Analytic languages have very little affixation, almost no bound
morphemes and no systematic word derivation process (see Mandarin Chinese, Vietnamese).
Synthetic languages have higher morpheme-word ratios and richer morphological systems through
agglutination and fusion; Fusional languages have a small set of bound morphemes and often some
free morphemes, each morpheme marking several grammatical functions (see Greek, Spanish).
Agglutinative languages have a large set of bound morphemes, and each morpheme has one
grammatical function (see Hungarian, Swahili). Finally, polysynthetic languages have large sets of
both agglutinative and fusional morphemes, and they can have more than one stem in a single word,

e.g. by incorporating the subject and object nouns into a verb stem.

This categorization has been challenged by modern linguists, who consider morphological complexity
as more of a continuum. In any case, it is evident that languages can differ maximally. For example, in
English, verb stems only optionally co-occur with only a few, and not necessarily bound, affixes. In
other languages, stems can combine with many affixes, and the combinations also depend on specific
inflectional classes (e.g. German plural has seven shapes, distributed over sixteen inflectional classes),
on allomorphy, exponence, or even the speech context and its participants (e.g. Chintang, Stoll et al.,
2017). According to Stoll et al. (2017), in English, stems appear in the same form frequently and

across contexts, whereas in Chintang, children hear 15.3 times more unique verb forms.

Other than morphology, languages exhibit enormous diversity in phonology (e.g. in their size of
phonemic inventory, Evans & Levinson, 2009, phonemic properties, Pierrehumbert, 2003, word stress
Jusczyk, Houston, et al., 1999), in semantics (e.g. lacking or having elaborate semantic distinctions,
Evans & Levinson, 2009) and in syntax (e.g. in their rules of case government, recursion, Everett,

2005, word order and word classes, Hengeveld, 1992; Dixon & Aikhenvald, 2004).

All this diversity should find a place in our understanding of language acquisition. Actually,
researchers could benefit from linguistic diversity, as it can “provide a natural laboratory of variation
[...] 6000 natural experiments in evolving communicative systems” (Evans & Levinson, 2009, p.432).
A way to do so is by testing how learning mechanisms work across languages, and how features

varying across languages can have effects on learning.
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2.2 Language acquisition across languages

Levinson (2012) said that human cognition is tuned to diversity and flexible to environmental input.
Tomasello (2003) claimed that children’s learning strategies are adapted to extracting information in
any speech environment they happen to grow up in. What we know for sure is that, as far as linguistic
diversity is concerned, children learn each and every one of the 6000 languages (Grimes, 1992).
However, the trajectory and outcome of acquisition might differ (Hoff, 2006), due to different

experiences in the linguistic environment (Fenson et al., 1994; Jones & Rowland, 2017).

Variation in children’s grammatical development has mainly been the focus of previous
cross-linguistic studies (Demuth, 1998; Devescovi et al., 2005; Stoll et al., 2017) - but see Bleses et al.
(2008); Bornstein et al. (2004). Even though lexical development has been less studied across
languages, grammatical and lexical development seem to be correlated (Frank et al., in prep). Since
there is little previous evidence on segmentation across languages, we consider lexical and

grammatical development as evidence of successful segmentation.

Dan Slobin and colleagues, pioneers in building a list of principles for cross-linguistic language
acquisition, developed a field manual for cross-linguistic studies (Slobin, 1967). Since then, several
cross-linguistic studies have been published. However, less than 10% of the world’s languages have
decent descriptions, and language acquisition corpora are still limited: 0.1% of 6000 languages spoken

today (Evans & Levinson, 2009; Jaeger & Norcliffe, 2009).

CHILDES, an open repository, contains acquisition corpora for only a handful of languages, the
majority of which is IndoEuropean. This is problematic because some IndoEuropean features happen
to be rare in other language families (Stoll & Bickel, 2013). Specifically on the acquisition of
agglutinative and polysynthetic languages, very little work has been done (Kelly et al., 2014).
Existing work has often focused on the acquisition of specific linguistic phenomena involving tense,

number and voice, mostly in observational studies not readily comparable with each other.

2.2.1 Analysing previous learning outcomes

While the order in which children acquire meaningful units has been studied in detail for English (e.g.
Brown, 1973), we have little evidence for diverse languages (Clark, 2017). In languages where
uninflected stems are possible words, such as English, first inflected forms are produced around the

two-word production stage (Penke, 2012). In languages where this is not the case, children produce
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their first contrasting morphemes at only two-to-three months after starting to speak, and inflected
forms are produced already in the one word stage (Hungarian, Macwhinney, 1976; Finnish, Toivainen

1990; Italian, Pizzuto & Caselli 1994).

According to Stoll et al. (2017), morphology of Chintang, a polysynthetic language with an elaborate
verb class system, is learned early on. Even children below age two display impressive amounts of
morphological variation, producing 22-40 different affix combinations. English-learning and
Chintang-learning children become competent speakers at approximately the same time, despite huge

differences in structure of the languages.

African Bantu languages have elaborate noun class systems with prefixes formed by optional
consonants. Despite this, children correctly produce these morphemes by two-and-a-half years, and
know about their shape several months before systematic production (Demuth, 1992, 1998). Connelly
(1984) suggests that they are even 6-10 months in advance of their English speaking peers in terms of
producing morphologically elaborate utterances. Demuth (1990) observes that they are more
advanced than English learners in their use of various grammatical constructions. Both Demuth and
Stoll et al. (2017) suggest that increased attention could actually compensate for the complexity of

some languages.

Studies in other morphologically rich languages (such as Inuktitut, Tzeltal) report similar patterns
(Allen & Crago, 1996; Crago & Allen, 1998; Pfeiler, 2003). Fortescue (1984) mentioned that in a
single recording of a child learning West Greenlandic at twenty seven months, the child used 24
derivational and 40 inflectional affixes - a following study on 5 children confirmed this pattern

(Fortescue & Olsen, 1992).

Xanthos et al. (2011) reported a positive correlation between the mean size of inflectional paradigms
and the speed of morphological development in child speech. He concluded that “although early
exposure to a variety of inflectional forms may seem to complicate the learning task for the child, it
may help children exposed to a richly inflected input to focus more on different forms and on
differences in meaning expressed by inflectional means than children exposed to a less richly inflected

input” (p.19).

However, most of these studies are observational, and none looked specifically at segmentation. We
mention next some results from baby experiments and modeling studies with respect to

cross-linguistic segmentation.
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There is experimental evidence that children, already by their first year, can process analytically
words and morphemes in languages such as English (see previous discussion in Chapter 1). There is
much less evidence for children learning languages with richer morphological characteristics. In a
recently published study by Ladanyi et al. (2020), 15-month old children learning Hungarian, an
agglutinative language, could segment words of their language into stems and affixes, especially when
an affix was frequently used in the language. This outcome is in line with other experimental studies

documenting segmentation in early development for English-learning children.

As far as modeling is concerned, previous work has addressed the issue of learnability in diverse
languages for word segmentation (e.g. Goldwater et al., 2009). A review of the literature on infant
word segmentation model performance across languages can be found in the Appendix A. Below is a
sample graph showing the performance accuracy of several models for different languages (Figure 3).
It can be observed that the majority of studies are on English or IndoEuropean data. Most other
languages have only been studied once. In general, performance for English is higher than for other

languages. A brief description of all models is given below, and more details are provided in the

Appendix B.

Previous Research
Observed differenees in morpholagical continuum

—_—— Algorithm
AG
® DiBS
™

—_——

Figure 3. The x axis represents different languages previously modelled for word segmentation: English,
Chinese, Italian, Spanish, Dutch, Polish, German, Farsi, Japanese, Hungarian, Russian, Sesotho, Arabic and
Korean. The best results belong to English, Chinese, Dutch and Polish. The y axis represents F-scores as a
measure of evaluation. When the F-score is 1 then the segmentation is perfect, and when the F-score is 0 the
segmentation failed.
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2.2.2 Linking input to learning outcomes

It has been suggested that factors such as frequency (Ambridge & Lieven, 2011; Endress et al., 2009),
salience (Penke, 2012; Yung Song et al., 2009), and transparency (Callanan & Sabbagh, 2004;
Diesendruck, 2007; Dressler et al., 2010; Penke, 2012) across linguistic levels and especially in
morphology may affect learning (E. Clark, 2017; Goldfield, 1993; Stephany & Voeikova, 2009;
Tatsumi et al., 2018).

For example, more occurrences of a word offer more opportunities to learn the word. Content word
frequency in input correlates with frequency in children’s vocabulary (Swingley & Humphrey, 2018),
even though the effect is not linear and it is stronger for production than for comprehension
(Goodman et al., 2008) - see also (Kurumada et al., 2013), showing that Zipfian, and not equal word
frequency facilitates adult segmentation. In such morphologically rich languages, content word
learning should be challenging, as verb and noun stems obligatorily combine with many, varying units

under adjacency constraints. Each word form would only have few occurrences in speech.

Morphological transparency, in terms of affixation without altering a stem’s phonological form, is also
supposed to affect word learning. Some languages may have a large set of rules to be learned (Stoll et
al., 2012) and some paradigms are less regular than others (Clark, 2017). The form of a morpheme
may vary because of gender and number agreement (one element can have a single form, e.g. Hebrew,
Hungarian, Turkish, or a large number of allomorphs, e.g. Russian, German, SerboCroatian,
Icelandic) (Levy, 1983; Wittek & Tomasello, 2002). Additionally, affixes can consist of discontinuous

morphological elements e.g. a case suffix and a preposition (Bybee, 1995; Clark, 2017; Penke, 2012).

It may be more straightforward to learn the structure of such a language if we reframe the word
learning task as a task of learning meaningful units such as stems and affixes. Specifically for
functional items (function words and affixes), when a functional item combines with different stems
(high type frequency and productivity) and occurs frequently in the input (high token frequency), it
may even trigger the segmentation of inflected words (Plunkett, 1993). Moreover, children seem to
acquire inflectional markers earlier when they are salient, for example due to longer duration (Hsieh

et al., 1999; Peters & Menn, 1993).

It is still unclear at what extent diversifying factors, such as frequency, salience and transparency,
which have been previously suggested to have an impact on segmentation, may affect learning in real

life. These factors are also related to the broader term of complexity. Rich languages are generally
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considered as more complex than others based on their morphological, phonological or syntactic
features (Shosted, 2006). One general and often implicit assumption in language acquisition is that
such languages are more challenging to learn. For example, 8- and 12-month old infants need longer
amounts of processing time to encode more ‘complex’ than simpler stimuli (Hunter et al., 1983).
However, complexity can be defined in many different ways (Gierut, 2007; Miestamo et al., 2008),

and there is no agreement on standard metrics (Kusters & Muysken, 2001; McWhorter, 2001).

When defined as an increase in amount of information, complexity might actually be beneficial for
learning (e.g., Thiessen et al., 2005). This is especially true, when many sources of information
converge (e.g., several cues point to the same units) - also see adult studies by Billman (2007) and
Stadler (1992). Little evidence exists on child language learning, but children could identify units in
complex languages - see studies by Gerken et al. (2005), Gomez (2002), Thiessen & Saffran (2009)
and Teinonen et al. (2009). In this context, less complex would actually make learning more difficult,
because it would provide only partial information about linguistic structure. Moreover, ftoo simple
stimuli may also elicit less interest from infants and thus affect learning (the goldilocks effect, Kidd et

al.,, 2012).

In sum, the relation between complexity and learnability is not linear, and it is still unclear
whether a morphologically elaborate language should be considered more complex, thus more

difficult to learn.

2.2.3 Comparing learning outcomes across languages

Whether an item counts as easy versus difficult is not easily measured, and even less so across

languages, when basic linguistic units such as words are not necessarily comparable.

For example, a child is exposed to a Semitic language where consonants contain the main meaning of
the word, while another child learning an IndoEuropean or Turkic language should take both
consonants and vowels as identifying words (Clark, 2017). Similarly, the universal notion of ‘word’
has been challenged - many ‘word’ cases are not clear-cut, and depend on a language’s
morphosyntactic system. We can easily describe a word as a single, independent unit in isolating
languages such as English, but in other languages, especially morphologically rich ones, learners
recognize morphemes as sub-units within words. On the other side, according to Demuth (1988),
children learning Sesotho, whose nouns belong to fourteen classes marked by prefixes and agreement,

first focus on whole noun phrases, and then on words.
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In sum, segmentation may concern different units than words for some languages. It can be
straightforward for English words, but in the example case of another language, such as Sesotho, it

would not be clear what level to segment first: phrases, words or morphemes.

2.3 Future research

The input children hear entails enormous diversity with respect to its typological features, as was
described above. However, previous evidence on learnability is scarce, and not readily comparable.
One way to investigate this is by testing scaled-up, diverse input through computational modeling, a
useful means of quantifying the effect of diversity on acquisition (e.g. Jones & Rowland, 2017). More
studies are needed in order to study cross-linguistic input in terms of segmentability; we should ask
how informative this input is for detecting word boundaries across all these diverse languages. We
address the issue in Chapters 3 and 4, by modeling the segmentation of input heard by children

in naturalistic settings across languages.

Second, some features were hypothesized above to have an impact on learning, specifically those at
the lower ends of frequency, transparency and salience (Cutler & Carter, 1987). In future studies, we
need to take into account specific features that may affect segmentation, and ask whether they account
or not for segmentability differences. We address this issue in Chapter 3, by testing the predictive
value of a large set of diversifying features (and one complementary study can be found in the

Appendix C). We will also come back to this issue later on, in Chapter 9.

Third, evidence from acquisition of real, diverse languages, even though scarce, suggests that children
tune to the structures of their languages early on (see also Bates & MacWhinney, 1987; Dressler et al.,
2010). Since all typically developing children acquire language, and modeling can inform on the
efficiency of particular strategies in learning, we should ideally be looking for general, universal
learning mechanisms. For example, it has been suggested that statistical learning mechanisms may
provide the child with enough data in order to tune to the specifics of their language (Christiansen &
Chater, 2008; Morgan & Newport, 1981). However, most studies on segmentation strategies have
been based on laboratory experiments, the majority of which involve English-learning children
exposed to controlled input in their own or in an artificial language. We address this issue in
Chapter 4, by looking at the performance viability of several learning mechanisms, using

longitudinal recordings across a diverse set of languages.
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Last, future studies investigating learnability across languages, should take into account the issue of
comparability. Segmentation may concern different units than words for some languages, and some
morphological properties may actually trigger segmentation within inflected words. We address this
in Chapters 3 and 5, by reframing the word segmentation task as a task of segmenting

meaningful units such as morphemes, in a modeling and an artificial language experiment.
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3. Does morphological complexity affect word segmentation?

Evidence from computational modeling*

Abstract: How can infants detect where words or morphemes start and end in the continuous stream
of speech? Previous computational studies have investigated this question mainly for English, where
morpheme and word boundaries often align. Yet many languages are morphologically more complex,

which may present additional difficulties for segmentation.

Our study employed corpora of two languages that differ in the complexity of their morphological
structure, Chintang (Sino-Tibetan) and Japanese. While Japanese displays moderate complexity,
Chintang exhibits high levels of verbal and nominal synthesis. We employed two baselines and three
conceptually diverse word segmentation algorithms, two of which rely purely on sublexical
information using distributional cues, and one that builds a lexicon. The algorithms’ performance was

evaluated on both word- and morpheme-level representations of the corpora.

As predicted, both languages scored lower than previously documented results on English.
Segmentation results for Japanese were better than those for the morphologically more complex
Chintang. The language effect could not be explained by potential confounds, such as segmentation
ambiguity, or by proximal causes, such as word length and lexical diversity. Better performance was
observed when evaluating segmentation on morphemes rather than words in Chintang. Algorithms

exhibited diverse performance patterns, interacting with both language and level.

Overall, our results indicate that languages varying in morphological complexity (assessed by the
number of morphosyntactic features expressed synthetically), could vary in segmentability.
Morphological complexity, however, is not the sole determinant; algorithm type and evaluation level

can also contribute to predicting segmentation scores

*Loukatou, G., Stoll, S., Blasi, D. & Cristia, A. Does morphological complexity affect word

segmentation? Evidence from computational modeling (under review).
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Does morphological complexity affect word segmentation? Evidence from

computational modeling
1 Introduction

Typically-developing children acquire language effortlessly and implicitly in the
first years of their life. They process linguistic material provided by their caregivers and
others around them using robust learning mechanisms that do not require
meta-linguistic awareness. Infants begin learning the building blocks of language, i.e.,
words or morphemes, from very early on, achieving a comprehension vocabulary of
hundreds of words by two years of age (Bates et al., 1994). More precisely, during the
first year of life, infants might build up a proto-lexicon storing candidate phonological
forms (wordforms), which they first have identified based on the available frequency
distributions in the input, before actually attaching meaning to these wordforms (Ngon
et al., 2013). To break up the speech stream, infants can use prosodic cues (Shukla
et al., 2011), co-articulation (Norris et al., 1997), constraints on stranded material
(E. K. Johnson & Jusczyk, 2001), and even language-specific information they have
learned in the past (words: Bortfeld et al., 2005; Mersad and Nazzi, 2012; syllable
sequences: Black and Bergmann, 2017, and phonotactic patterns: Daland and Zuraw,
2013). Here, we report on a series of computational experiments that seek to shed light
on the specific processes that young language learners could potentially be using when
segmenting the incoming speech signal into word-like forms, or more generally smaller
recombinable units.

Young language learners have to learn their language from scratch. In order to
mimic this absence of knowledge, models used in previous computational experiments
are often unsupervised, meaning that they do not have access to any kind of feedback
(i.e., external information on whether they are doing well or poorly). By and large,
three classes of algorithms have been used: lexical, sublexical, and baseline. Algorithms
in the lexical class are often built to find the most economical system of minimal units
needed to reproduce the input. They do so usually by creating a lexicon of chunks that

are frequently encountered in speech. These salient segments could approximate infants’
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first familiar word-like constructions. Algorithms in the sublezical class aim to find local
cues allowing the learner to posit boundaries, detectable for instance by considering
phoneme occurrences at utterance edges or via transitional probabilities. Infant
experimental work suggests both classes are cognitively plausible (Mattys et al., 1999;
Mersad & Nazzi, 2012; Saffran, Aslin et al., 1996). Finally, previous literature has
sometimes used word segmentation baselines to evaluate the performance of algorithms
(Coltekin, 2011; Lignos, 2012; Venkataraman, 2001). Baselines represent the simplest
strategies possible; for example, treating each basic minimal unit (phoneme or syllable)

as words, or treating whole utterances as words.

1.1 Cross-linguistic performance

It has been proposed that language acquisition may not be a homogeneous
process, identical in children regardless of the language they are acquiring, but instead
that the acquisition process may vary across typologically diverse languages as a
function of their grammatical structures (Slobin, 1985). However, the proportion of
languages whose acquisition is represented in the literature is low (e.g. Stoll, 2015; Stoll
and Lieven, 2014), and the majority of papers on first language development are on
English (Slobin, 2014). This sampling bias is problematic because English is not an
“average” language, particularly in terms of the properties that may influence
segmentation. There is no case marking in nouns and only rudimentary morphological
marking in verbal conjugation. Most English words have few or no morphemes other
than the root (Aikhenvald, 2007) and as a consequence, word, morpheme, and syllable
boundaries usually coincide (DeKeyser, 2005). In fact, the maximum number of
morphemes per word in English is 3, which is on the lower end of the typological range
(degree of synthesis, Bickel and Nichols, 2007, 2013b).

Languages vary greatly in their overall morphological complexity (Miestamo,
2008; Nichols, 2009; Sampson et al., 2009). A considerable fraction of languages are
characterized by rich inflectional morphology and often feature multi-morphemic words.

For example, Turkish has a rich concatenative inflectional morphology (Bickel &
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Nichols, 2013a, 2013b; Ketrez & Aksu-Kog, 2009). Others are extremely complex such
as the polysynthetic languages Tzeltal (spoken in Mexico; Brown, 1998) and Chintang
(a Sino-Tibetan language spoken in the Himalayas of Eastern Nepal; Stoll et al., 2017)
or Eskimo-Aleut languages such as Inuktitut (Allen, 1996; Bickel & Nichols, 2013b).
Such languages use morphemes (prefixes, suffixes, circumfixes, and infixes) to code
morphosyntactic features (e.g. gender, person, aspect, tense, or polarity), and/or the
relation between words in a sentence (e.g., case or agreement). So far there is no
common agreement on how to measure morphological complexity cross-linguistically,

but it is undisputed that complexity is a gradient notion.

One of the main questions that arises is whether languages with a larger degree of
morphological synthesis are more challenging to segment than languages with a lower
degree of morphological synthesis, such as English. A number of computational
modeling studies have investigated word segmentation in various languages (Batchelder,
2002; Blanchard et al., 2010; Caines et al., 2019; Daland, 2009; Fleck, 2008; Fourtassi
et al., 2013; Kastner & Adriaans, 2017; Pearl & Phillips, 2018; Saksida et al., 2017).
These results seem to suggest that languages with richer morphological profiles might
be more difficult to segment than those with simpler morphology. In the following, we
review this evidence in detail, grouping studies in terms of the type of segmentation

strategy.

Starting with studies using a lexical approach, Batchelder (2002) compared the
accuracy of a lexical segmentation algorithm (BootLex) on English, Japanese and
Spanish corpora, and found that the algorithm performed best on English. Most other
lexical work has employed versions of Adaptor Grammars (AG), which build a lexicon
based on a hierarchical grammar provided by the user (Goldwater et al., 2009;

M. Johnson, 2008). It finds patterns of frequent phone sequences in the input corpus,
creates a lexicon based on these patterns at specified levels, and then uses the lexicon to
segment the input. Using versions of this system, Boruta et al. (2011) documented
better results for English than French, and better results for French than for Japanese,

which roughly corresponds to the order of morphological complexity (see Fourtassi
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et al., 2013 for convergent results). M. Johnson (2008) found better results for English
than Sesotho, which is morphologically much more complex than English. It should be
mentioned, however, that the data reported by Phillips and Pearl (e.g., Pearl and
Phillips, 2018; Phillips and Pearl, 2014a) differed from other lexicon-based results.
These authors varied the hierarchical grammar, inspecting both unigram and bigram
models. Unigram models are those where the only levels are those of words and
phonemes (i.e., sentences as sequences of words, words as sequences of phonemes), and
the only level at which a lexicon is stored is the word level. Bigram models can also be
defined, by stating that sentences are sequences of phrases, and phrases sequences of
words, with the further possibility that the system will memorize common phrases. For
the unigram version of the algorithm, English was at the bottom of the performance
ranking. However, when a bigram grammar was used, English performed better than
Farsi, Hungarian, and Japanese (Phillips & Pearl, 2014a). However, most work using
lexical algorithms finds cross-linguistic differences in word segmentation performance

that could be explained on the basis of complexity differences.

In general, work using sublexical algorithms also fits this description; differences
in performance can usually be explained by complexity differences. Saksida et al. (2017)
used a set of segmentation algorithms, all of them based on transitional probabilities, on
a range of cross-linguistic corpora. Higher scores were found for English and Dutch than
for Japanese, Polish and Hungarian. Gervain and Erra (2012) received better results for
the less complex Italian than the more complex Hungarian in some cases, although this

language performance was reversed when backward transitional probabilities were used.

Finally, segmentation baselines have rarely been used to compare performance
across languages. Pearl and Phillips (2018) implemented a “random oracle” baseline,
which had prior knowledge of the true probability of a word boundary after each unit in
the corpus (e.g., 0.76 for English). Boundaries were then randomly inserted based on
this probability. Performance differences across languages were observed, with the
English corpus scoring higher than German and both scoring higher than Spanish,

Italian, Farsi, Hungarian, and Japanese. In sum, our reading of the literature suggests



MORPHOLOGICAL COMPLEXITY AND SEGMENTATION 28

that lower segmentation performance is found for corpora of more morphologically
complex languages than simpler ones across all three families of algorithms (lexical,
sublexical, and baseline).

Caines et al. (2019) deserve a special mention, because they used many different
algorithms across many languages in CHILDES, a repository of child-centered
transcriptions (MacWhinney, 2014). Although they don’t specifically discuss
typological features, they attempt to relate lexico-phonological features such as word
length and lexical diversity to segmentation performance. As with the work just

summarized, results were evaluated only in the word level.

1.2 Goal of segmentation

The current standard for modeling studies is to evaluate segmentation algorithms
on the word level (Daland, 2009). Several reasons made us wonder whether evaluation
on the word level alone is optimal.

To begin with, there are at least three notions of “word”: orthographic word,
grammatical word, and prosodic word. According to Haspelmath (2011), orthographic
spaces are to some extent guided by language structure, even though spelling can be
purely conventional in some cases. Grammatical words are units defined by
morphosyntactic criteria, such as cohesiveness, fixed internal order, and conventional
meaning. Finally, phonological words are units defined by phonological criteria, such as
segmental and prosodic features like stress (Dixon & Aikhenvald, 2002). Words are not
the only meaningful, recombinable units that may be found in running speech. On the
contrary, morphemes can be defined as the minimal meaningful units. Moreover,
morphemes and words are not homogeneous classes. For example, functional elements
make up a class that cuts across words and morphemes, containing both function words
(words expressing grammatical or structural relationship with other words in the
sentence) and affixes. Although these definitions seem easy in the abstract, there is no
single, valid, and standard definition across languages of any of these levels (Bickel &

Nichols, 2007; Bickel & Zuniga, 2017).
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Is there evidence that some or other of these units are psychologically valid for
infants? Carefully reading experimental evidence, we found some of it suggests that
infants can segment phonological words (E. K. Johnson & Jusczyk, 2001) as well as
morphemes (Marquis & Shi, 2015; Mintz, 2013) out of running speech. Furthermore,
they can segment functional elements early on (Hallé et al., 2008; Hohle & Weissenborn,
2003; Marquis & Shi, 2015; Mintz, 2013; Shi, Cutler et al., 2006; Shi & Gauthier, 2005;
Shi & Lepage, 2008; Shi, Marquis et al., 2006; Shi et al., 1999). Functional elements
could be used as cues to further bootstrap word segmentation, because of their
distinctive properties (Kim & Sundara, 2015; Shi, Werker et al., 2006; Willits et al.,
2014) and contribute to robust learning, especially for languages with rich

morphological systems.

On the modeling side, most previous work has evaluated segmentation on
orthographic words. Since child-centered corpora are rarely annotated at the level of
morphemes, previous computational work has not quantitatively evaluated performance
on the morpheme level (cf. M. Johnson, 2008). However, there have been qualitative
reports considering morphemes in addition to words (Gervain & Erra, 2012;

M. Johnson, 2008). Specifically, it has been argued that some algorithms tend to
over-segment words (i.e., words would be split up during segmentation). Previous
authors have argued that lower segmentation performance for some morphologically
complex languages would arise from oversegmentation when evaluating on words
(Gervain & Erra, 2012; M. Johnson, 2008). Gervain and Erra (2012) commented that
there may be more oversegmentation in Hungarian, as some of the segmented material
formed real morphemes, which is interesting given that this unsupervised algorithm is
not informed about lexical and morphological composition. Similarly, Fourtassi et al.
(2013) segmented an English and a Japanese corpus using a probabilistic
lexicon-building algorithm. Qualitative inspection showed that the algorithms broke off
morphological affixes, with more oversegmentation cases for Japanese than English.
These observed oversegmentation errors suggest that algorithms might segment out

morphemes, or at least functional elements, including affixes, in addition to or instead
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of some notion of words.

In a nutshell, infant segmentation may target words as well as morphemes (Kim,
2015; Marquis & Shi, 2015), and therefore, if we want to model this segmentation
process, evaluating results at the level of both words and morphemes might be a more

informative approach.

2 The present study

This study investigates whether languages varying in morphological complexity
differ in segmentability (Section 1.1). This question is addressed by assessing
segmentability of two morphologically diverse languages, one of which exhibits an
extreme degree of morphological complexity. In addition, we ask whether specific
language features such as type-token ratio, word length, and utterance length might

account for performance differences.

Moreover, this study examines whether algorithms segment out morphemes
instead of words (Section 1.2). We inquire whether performance varies as a function of
the level of linguistic representation on which segmentation is evaluated, comparing the
algorithms’ performance based on either orthographic words or morphemes. We further

report percentage of under- and oversegmentation on each level.

Regarding the use of orthographic words, it was preferable over other definitions
of wordhood for three reasons. First, it allows comparison with previous computational
work. Second, it was already available in the corpora we were using. Third, it is unclear
that it is much worse or much better than alternative definitions. Phonological and
morphosyntactic criteria for word segmentation are also problematic and cannot decide
controversial cases: Phonological words may not be consistent within and across
languages (Schiering et al., 2010) and they often fail to coincide with morphosyntactic
words (Dixon & Aikhenvald, 2002). For this, and as previous segmentation studies did,

we used the existing orthographic word boundaries for our word level.
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2.1 Languages

In this paper, corpora from two morphologically diverse languages are studied,
Japanese (Japonic) and Chintang (Sino-Tibetan). Both languages were chosen on the
basis of their typological characteristics and are part of the ACQDIV database, which
contains longitudinal corpora of language acquisition for 10 maximally diverse
languages (Moran et al., 2016; Stoll & Bickel, 2013). To create this database, a new
approach of sampling languages was introduced, called the Maximum-Diversity
approach. More than 10 major typological variables that characterize inflectional
marking (grammatical case, exponence, possessor agreement, inflectional compactness,
syncretism, verb position, verb agreement, split ergativity of agreement markers, split
ergativity of case, flexivity, verbal synthesis, nominal synthesis) were considered (Stoll
& Bickel, 2013). Languages were sampled from the two largest typological databases,
WALS (Dryer & Haspelmath, 2013) and AUTOTYP (Bickel et al., 2017; Nichols et al.,
2013), resulting in 5 clusters of maximally diverse languages.

Chintang and Japanese are in two different clusters. The main feature of interest
in the present paper is their difference in the degree of synthesis, which allowed us to
study the effect of morphological complexity. The degree of morphological synthesis was
measured by looking for the maximally inflected verb and noun form, and determining
the number of grammatical and lexical categories (morphosyntactic features) encoded in
that word form.

Chintang, a Sino-Tibetan language of the Kiranti branch (approx. 6000 speakers,
Eastern Nepal), has higher verb and noun synthesis than Japanese (as just mentioned,
measured in number of such categories expressed in the most complex word form;
compare Bickel et al., 2007 for Chintang, and Kuno, 1973; Tsujimura, 1996 for
Japanese), with up to 10 morphemes per word, versus up to 5 for Japanese !. As shown
in Stoll et al. (2017), there are 148 unique grammatical elements that can occur together

with a verb stem in the corpus (120 grammatical markers and 28 secondary verb stems,

! Phonological complexity (phonemic inventory and syllabic structure) is similar across the two

languages (Bickel et al., 2007; Shibatani, 1990; Tsujimura, 1996).
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called V2, that expand the lexical or grammatical meaning of the main verb). Although
some forms of verbs are rarely used, they constitute a part of the adult grammar and
are eventually acquired by children. Here are two sample adult utterances from the

Chintang corpus (CLDLCh1R01502.0044 and CLDLCh1R01502.0057 respectively):

(1) a. ahd hun mi?muy namba-na thok-u-ps-e-kha
no DEM a.little father.in.law-ERG.A dig-3P-PRF-IND.PST-NMLZ

‘The father-in-law has dug it’
b. ba yay  yug-a-yakt-a-kha ni ekchin-a
DEM.PROX ADD sit-PST-IPFV-PST-NMLZ EMPH little.while-NTVZ

ekchin-a-kha
little.while-NTVZ-NMLZ

‘He used to sit sometimes’

Japanese has moderate verb synthesis, expressing categories such as tense, voice,
mood and polarity. A maximally inflected Japanese verb form would include 4-5
categories (Bickel & Nichols, 2013b; Hinds, 1986; Shibatani, 1990). Thus, overall,
Japanese has fewer forms both in its noun and verb paradigms and a smaller number of
morphosyntactic features expressed, especially in the verb. Here are two sample adult
utterances from the Japanese corpus (MYJCu44.1390521 and MY JCu832.1419814

respectively).

(2) a. usagi-chan doko da
rabbit-FAM where be.PRES

‘Where is Missy Rabbit?’

b. ocha mo doozo shi-te

tea too handing over do-IMP

‘Go ahead, make tea again’
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2.2 Data

The Chintang recordings took place in a predefined week every month with several
separated recordings amounting to approximately 4 hours per month involving 6 target
children from 0;6-4;4 (Stoll et al., 2017). During the recordings, which were audiovisual,
the children were mainly playing outside of their houses. Relatives, other children, and
neighbors are part of their daily lives and this was captured in the recordings.

The Japanese data consist of 2 corpora, MiiPro (Miyata & Nisisawa, 2009, 2010;
Nisisawa & Miyata, 2009, 2010) and Miyata (Miyata, 2004a, 2004b, 2004c). Recordings
took place indoors, mostly at home and there was often just one caregiver conversing
with the child. They contain data for 7 Japanese children aged 1;4-5;1 years old. For
the MiiPro corpus, the recordings took place every week from 1;2 to 3;0 and later every
1 or 2 months, and lasted 70 minutes per session. For the Miyata corpus, recordings
took place every week and lasted 40-60 minutes.

After data collection, both corpora were first transcribed orthographically, and
later annotated morphologically. More information on the annotation process for
Chintang can be found in Stoll and Schikowski (in press) and Gaenszle et al. (2005); see
Miyata and Naka (2006) for information on annotation of the Japanese corpora. In the
Chintang corpus, the transcription was done by native speakers and was susceptible to
their impression of what an utterance was. This mainly corresponds to clauses marked
by intonation. As for the Japanese corpus, there is no information on how utterance
boundaries were defined. Documentation suggests the data were transcribed based on
the Wakachi format (Miyata & Naka, 1998). As for the morphological annotation, for
Chintang, most of the corpus was hand segmented and manually annotated for
morphology and parts-of-speech by trained linguistic students. The training took
several weeks and was supervised by an expert in this language. A small part of the
morphological annotation was generated automatically based on a morphological tagger
(Ruzsics & Samardzic, 2017; Samardzic et al., 2015). Japanese morphological tagging
was done with the morphological tagger in CHILDES (JMOR, Miyata and Naka, 2014).

For information on the data, see also the ACQDIV manual (Schikowski et al., 2018).
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2.3 Modeling segmentation

Word segmentation algorithms usually take as input phonological, symbolic
text-like representations such as phonemes or syllables, with few exceptions (e.g.,
Ludusan et al., 2015 and Roy and Pentland, 2002, who applied segmentation algorithms
on raw speech data). There is evidence that even newborns have access to syllables (or
vowels) as perceptual units (Jusczyk et al., 1995), and that representation of phoneme
sequences is available as early as by four months (Seidl et al., 2009). It can be
challenging to represent certain cues in text-like representations, such as coarticulation,
which will therefore not be studied here. Here, we limit our study to phonemized
representations (Moran & Cysouw, 2018), even though it would be possible to study
word-level prosody (Borschinger & Johnson, 2014; Gambell & Yang, 2005a), because
some languages do not have lexical stress, such as French (Dupoux et al., 1997).

So far only a couple of papers have applied more than one algorithm to the same
corpus; when they do, they find widely varying performances across the different
algorithms. By and large, algorithms based on local cues and employing sublexical
information reportedly yielded lower scores than lexically driven ones both in English
(Cristia et al., 2018) and Japanese (Ludusan et al., 2017). In this study, we sought to
directly assess variability in performance across languages and included algorithms of
both types.

Additionally, there can be enormous differences in performance within the same
algorithm depending on the parameters used (e.g., Gervain and Erra, 2012; Saksida
et al., 2017). For example, Saksida et al. (2017) documented that different measures
such as forward transitional probabilities, backward transitional probabilities and
mutual information and especially the threshold parameter (absolute, relative) affect
the results of word segmentation. Given these previous results, we will consider a
diverse set of algorithms and their parametrization below, fully expecting them to vary
in performance.

The computational algorithms used here have been repeatedly used in the past,

and were chosen to represent diverse and cognitively plausible segmentation methods,
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spanning the three main classes mentioned above: lexical, sublexical, and baseline.
More details on the algorithms can be found in Section 4.2, and we therefore provide
only a brief conceptual presentation here.

The lexical representative is a version of the Adaptor Grammar introduced
previously (Goldwater et al., 2009; M. Johnson, 2008). In a nutshell, the hierarchical
grammar we provided was the unigram one, in which sentences are sequences of words
and words are sequences of phones, with the lexicon being composed of frequent phone
sequences. We had two sublexical algorithms, the first one being the Diphone Based
Segmentation algorithm (DiBS). It is based on the intuition that phone bigrams
spanning utterance boundaries probably span word breaks (Daland, 2009; Daland &
Zuraw, 2013). The second sublexical algorithm is actually highly parametrizable: the
Transitional Probabilities algorithm family (TP) assumes that word-internal pairs of
syllables tend to co-occur more frequently than word-external pairs (Saffran, Newport
et al., 1996), with four different versions resulting from the crossing of 2 parameters
with two levels each (Gervain & Erra, 2012; Saksida et al., 2017). In addition, two
baselines were included in this study. The first baseline treats each utterance as a word,
based on findings that children recognize words in isolation before they do so in
sentences (Depaolis et al., 2014). The second baseline treats each syllable as a word,
given that infants might track syllable units from early on (Bertoncini & Mehler, 1981;
Jusczyk et al., 1995).

3 Key Questions and Predictions

The key questions motivating this study are: Do languages which vary in
morphological complexity differ in segmentability? Do algorithms segment out
morphemes in complex languages? And which factors could explain performance
differences in segmentation?

Morphological complexity should affect segmentation through several pathways,
the first being via the distributional properties of the lexicon. Specifically, languages

varying in morphological complexity differ in the frequency of lexical units (words and
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morphemes). Corpora of morphologically rich languages such as Chintang contain fewer
repetitions of each word type, as well as a higher proportion of hapaxes — forms that
occur only once — than languages with little morphology (Stoll et al., 2017). For
example, there was a higher proportion of hapaxes in a Japanese than an English
corpus, and a lower likelihood of correct identification by a lexicon-building algorithm
for hapaxes than words with more repetitions (Boruta et al., 2011). Some algorithms
might thus detect frequently occurring word parts such as morphemes, instead of words
e.g. they could detect a root separately from its suffixes. Lexical approaches, in
particular, tend to recycle existing units, favoring repetition. AG finds the most likely
segmentation using a lexicon, whose types have been assigned probabilities based on
their frequency distributions. Thus, it could break words up into their component
morphemes. This behavior would be rewarded when evaluated on morpheme
boundaries, but penalized when evaluated on word boundaries.

Aside from these factors, which are purely morpholexical, there could be
phonological factors confounded with morphological complexity, such as word length
and segmentation ambiguity.? Languages varying in morphological complexity should
also differ in the length of lexical units. First, morphologically complex languages such
as Chintang usually have longer words and longer sentences. Longer sentences mean a
more challenging segmentation task, because there are more places in which to
erroneously insert a boundary, or miss inserting one. Second, long strings, which can
often be decomposed in a number of different morphemes, may have more alternative
parses than short ones. Consider the Japanese utterance “iruka”, which can have
several different parses (Scherling, 2016), including one in which it is a single word
(“iruka”, meaning “dolphin”); or a phrase (“is it?”, where “iru” is the verb to be and

“ka” is a particle indicating a question). Fourtassi et al. (2013) used the concept of

2 A host of other factors affecting segmentation and varying across languages have been proposed and
studied in the past, such as head direction (Gervain & Erra, 2012) and input representation (Kastner &
Adriaans, 2017). However, these factors are orthogonal to the present study (i.e., they are not
necessarily confounded with morphological complexity). Therefore, they will not be discussed any

further.
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entropy (Shannon, 1948) to estimate the different possible segmentation parses
(segmentation ambiguity), and showed that segmentation score differences they found
for Japanese versus English could be accounted for by that factor.

Thus, lower performance is predicted for Chintang compared to Japanese, the
morphologically less complex language. Algorithms might segment out morphemes, as
they are shorter and more frequent than words. This could lead to oversegmentation
(i.e. splitting a word up) for Chintang, especially within AG. Last, a number of factors
are predicted to affect segmentation performance; unit frequency, unit length, utterance

length and inherent segmentation ambiguity.

4 Methods

In this section, we detail several stages of analysis: corpus preparation,
phonologization, description, segmentation, and evaluation, followed by statistical
analyses of the results. Corpus preparation and phonologization were carried out using
custom scripts written mainly in bash. Corpus statistics, unsupervised word
segmentation, and evaluation employed the WordSeg package (Bernard et al., 2018)3.
The WordSeg package provides a collection of tools for text based word segmentation.
Finally, statistical analyses were performed in R (R Core Team, 2013). All scripts are
available at <anonymized for review>. More details can be found at
https://osf.io/e8d2r/?view only=f9d7b6a307734268bd8a515c55255b69. This OSF page
contains scripts, results including segmentation performance and statistics, and other

supplementary material.

4.1 Corpus preparation

Neither of the two languages exists in open source phonologization or
text-to-speech programs, so we applied grapheme-to-phoneme rules to derive the

phonological representation® (Moran & Cysouw, 2018). We also cleaned the text from

3 Available from https://github.com/bootphon /wordseg,/.

4 Japanese had been transcribed in Latin script.
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any punctuation and annotations. All utterances containing “?7?” (which indicates
incomprehensible speech or impossible morpheme annotation) were removed from both
word- and morpheme-level analyses. We also removed utterances where one of the
morphemes had been transcribed into an abstract, unpronounceable code (such as
FS_ N or kV), from both analyses.

Following Phillips and Pearl (2014b), we syllabified the corpora using the
Maximal Onset Principle. According to this principle, the beginning of a syllable should
be as large as legally possible (Bartlett et al., 2009). We syllabified as follows, for each
language separately. First, we made a list of vowels present in the corpus. Second, we
made a list of all valid word-initial onsets, defined as all consonants up to the first vowel
of the word or morpheme. Third, each utterance was processed from right to left until a
vowel was found, at which point consonants to its left would be clustered to the
maximally large onset appearing in the list just mentioned phillips-syllabifier. Notice
that this procedure does not syllabify over morpheme or word boundaries. Both corpora
are larger than those frequently used for modeling studies (Phillips & Pearl, 2014b;
Saksida et al., 2017). This allowed us to further divide each corpus into ten equal
subsets, based on their length measured in number of utterances, in order to better
estimate the variation in the properties of the segmentation algorithms. After
pre-processing, the entire Japanese corpus was 84518 utterances long and had 155805
word tokens. The Chintang corpus was 152571 utterances long and had 426288 word
tokens. Table 1 gives properties of the subsets after pre-processing. Right before
segmentation, within-utterance word boundaries were removed from the corpora, and

only utterance boundaries remained.
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Mean subset stats Chintang Japanese
4 utt 15257 8451

# wtokens  |42628 (1371)| 15579 (1569)

# wtypes 8194 (690)| 1634 (361)

# whapaxes 5180 (514) 812 (206)

# wtokens/utt 2.79(0.09)| 1.84 (0.19)
# wtypes/utt 0.54 (0.05)| 0.19 (0.04)
# m/utt 472 (0.29)|  1.96 (0.20)

4 syll /utt 5.62 (0.25)| 3.38 (0.41)

# phon /utt 11.87 (0.60)|  6.58 (0.83)

# mtokens/wtokens| 1.69 (0.07)| 1.07 (0.03)
# mtypes/wtypes 0.25 (0.02)| 0.84 (0.03)
# syll/w 2.01 (0.05)| 1.83 (0.07)

# phon/w 4.25 (0.12))| 3.56 (0.15)

# syll/m 1.24 (0.03)| 1.70 (0.04)

# phon/m 2.56 (0.05)| 3.33 (0.09)

Table 1

Corpus features: Means (and standard deviation) across the ten Chintang and Japanese

subsets (see main text for explanation). # stands for amount, “utt” stands for utterance.

” 143 ” ,

“wtokens”, “wtypes”,

whapazxes” stand for word tokens, word types and word hapazes.

“syll” and “phon” stand for morphemes, syllables and phonemes.
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4.2 Algorithms

A brief, cognitively-focused introduction to the five algorithms follows. For
technical details, please refer to the WordSeg documentation (wordseg.readthedocs.io;
Bernard et al., 2018) and the work cited for each algorithm.

The first algorithm, a member of the Adaptor Grammar family, adopts a lexical
approach (Goldwater et al., 2009; M. Johnson & Demuth, 2010; M. Johnson et al.,
2007). The Adaptor Grammar (AG) is a generalized version of probabilistic context-free
grammars (PCGF, M. Johnson et al., 2007). We use a very simple hierarchical
grammar with only a few rules: Sentences are composed of one or more reusable words
(or morphemes), and words/morphemes are composed of one or more phonemes. Each
utterance is parsed as a sequence of words/morphemes, each word/ morpheme is
composed by phonemes, and a given word/morpheme of this sequence would be
generated either by choosing an existing form from a lexicon based on previous
occurrences, or by considering it as a novel item and inserting its phonemic form in the
lexicon. The PCFG regenerates the corpus by repeatedly applying this grammar, which
is a set of rewrite rules with assigned probabilities. The rules fit the corpus based on
how elements have already been written in the past, according to the Pitman-Yor
stochastic process, which favors the reuse of frequently occurring rules (M. Johnson
et al., 2007). This process is conceptually related to Zipf’s Law, a feature of natural
languages, which states that in a large corpus, the frequency of any word is inversely
proportional to its rank in the frequency table (Zipf, 1935). AG would thus tend to
create a lexicon of moderate size comprised mostly of short words (Perfors & Navarro,
2012).

DiBS (Daland, 2009) performs segmentation using phone bigram probabilities.
As a consequence, this algorithm requires that the input be coded as a sequence of
phonemes. The intuition behind this algorithm is that certain sound sequences almost
never occur within words (or morphemes), so if observed they probably indicate a word
boundary. For instance, when [pd] occurs in English, the probability that there is a

word boundary is very high: Pr(#|pd) ~ 1.



MORPHOLOGICAL COMPLEXITY AND SEGMENTATION 41

The unsupervised version (phrasal DiBS) treats utterance edges as a proxy for
word edges, assuming that phone sequences frequently spanning utterance boundaries
likely also span word boundaries. The algorithm estimates the necessary parameters
from data using the Formula 1, where f(x#,y) is the number of [xy| sequences with an
uttterance boundary in the middle and f(zy) is the number of [xy] sequences in any
position, and where x is one phone, y is another phone, (#,) is an utterance boundary

and (#,) is a word boundary:

f(x#, y)
f(xy)

When p(#,|xy) is higher than a threshold parameter, the system breaks the sequence

p(#uwlxy) ~ (1)

by positing a word boundary. This threshold is estimated with Formula 2:

N g
where the total number of words is Nw, the number of phones is Np and the number of
utterances is Nu.

The TP family assumes that “word-internal pairs of syllables tend to co-occur
more frequently than word-external pairs which are relatively unconstrained” (Saffran,
Newport et al., 1996, pp.610), thus the transitional probability between adjacent
syllables is higher word-internally than at word boundaries (cf. Gervain and Erra, 2012
for evidence that this may not be the case). The basic minimal units are syllables and
not phonemes, unlike in the other two algorithms. Forward transitional probabilities
(FTP) are defined as:

f(AB)

FTP(AB) = A (3)

where f(AB) is the frequency of a syllabic sequence AB and f(A) is the frequency of
the syllable A. Backward TP (BTP) is similar, except that the denominator is the

frequency of the second syllable instead.
BTP(AB) = ——~ (4)

Also, algorithms in the TP family require another parameter, namely the

threshold used to decide whether to add a word (or morpheme) boundary or not. One
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possibility is to use TP with a Relative threshold, i.e. BTPr and FTPr, which leads to
placing a word/morpheme boundary wherever the TP value of a syllable pair is lower
than the TP of the neighboring syllable pairs, as follows. Given a syllable sequence
(WABY) where W, A, B, Y stand for syllables, a break will be posited between A and
Bif TP(WA)>TP(AB) and TP(BY) > TP(AB). Another possibility is to use TP
with an Absolute threshold (BTPa and FTPa), which would posit boundaries using a
threshold, that is the sum TP value of all syllable pairs over the number of different
syllable pairs. For example, given a corpus consisting of a syllable sequence (W ABY")
where W, A, B, Y stand for syllables, the absolute threshold is

TPa = TP(WA)+TP(3AB)+TP(BY). A break will be then posited between A and B if

TP(AB) < TPa.

Finally, we applied two segmentation baselines. The baselines capture simple
segmentation strategies. The baseline called Syll=Unit uses p = 1 to cut at all syllable
boundaries, thus treating every syllable as a word (or morpheme). The baseline

Utt=Unit labels only utterance boundaries as word (or morpheme) boundaries (p = 0).

4.3 Evaluation

The output of each algorithm is evaluated using word (or morpheme) token
F-scores, derived from precision and recall, as standard for segmentation algorithm
evaluation (Phillips & Pearl, 2015). Precision (Formula 5) checks how many
words/morphemes in the group of those segmented by the algorithm are correct. Recall
(Formula 6) checks how many words/morphemes in the group of those existing in the
ortginal gold corpus were correctly segmented by the algorithm. True positives are the
words/morphemes segmented by the algorithm which are indeed found in the input
corpus. False positives are the words/morphemes segmented by the algorithm which are
actually not in the input corpus. False negatives are words/morphemes in the input

corpus that were not in fact segmented by the algorithm.

true positives

precision = — —
true positives + false positives

true positives

recall = — -
true positives 4 false negatives
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The token F-score balances how accurate and complete the set of identified
word /morpheme tokens is (Phillips & Pearl, 2015). It is the harmonic mean of precision

and recall, as shown in Formula 7.

2 x precision * recall
F-score =

precision + recall

5 Results

Fig. 1 illustrates the token precision and recall for each subset of the corpora. The
point of this figure is to demonstrate that precision and recall are correlated to a
considerable extent. The correlation between precision and recall emerges because there
is no trade off between false negative and false positive results; when segmenting text, a
given parse results in neither or both kinds of errors. This is because if a boundary is
posited, then if this boundary is correct, it will increase both precision and recall. If the
boundary is incorrect, it will reduce both precision and recall.

Since precision and recall are highly correlated, we focus on the more commonly
reported token F-scores. Fig. 2 shows for each language, word token F-scores within
each of the 10 subsets, as well as results for the entire corpus, which are nearly always
contained in the range of variation of the subsets. The F-scores are presented
numerically in the online supplementary material. Similarly to what we found, Bernard
et al. (2018) documented that variation in corpus size beyond the first 5k utterances
seems to play a negligible role in performance of these segmentation systems, as
replicated here. Fig. 2 suggests that there were strong interactions between the three
factors of interest (language, algorithm, and evaluation level), which are tested
statistically in the next section.

Before proceeding with this statistical evaluation, we perform some descriptive
observations. Average performance across algorithms on the word level was .48 for
Japanese and .33 for Chintang; and on the morpheme level, this was .49 and .41,
respectively. Thus, performance for Japanese was similar across levels, while
performance for Chintang was worse for words than for morphemes, and, on morpheme

level, it was close to Japanese for some of the algorithms.
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Figure 1. Precision and recall across languages and algorithms for each evaluation level.

Algorithms are marked by color. Languages are marked by shape. BTPr, FTPr, BTPa or
FTPa indicate the segmentation result for one of the different versions of TP. AG are the
results of the unigram Adaptor Grammar. Syll=Unit and Utt=Unit are the results of the

baselines. Each dot indicates the results for one of the ten subsets of a given corpus.

To put these descriptive results in the context of the broader literature, we discuss
some observations clustered on the basis of the different algorithms, since previous work
exclusively employed one algorithm. At points, we need to focus on the word level for
this comparison, since previous work has systematically evaluated performance

quantitatively on this level, and this level alone.

Focusing first on AG, the sizable performance difference between the two
languages found on the word level was reversed on morphemes: AG-word had an
average score of .44 for Japanese and .27 for Chintang, whereas for AG-morpheme, the

performance for Chintang was higher than that for Japanese, with an average score of
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Figure 2. Token F-scores across language (Chintang, Japanese) and level (words,
morphemes). Algorithms are marked by color. BTPr, FTPr, BTPa and FTPa indicate the
segmentation result for the different versions of TP. AG are the results of the unigram
Adaptor Grammar. Syll=Unit and Utt=Unit are the results of the baselines. Filled circles
indicate the results for the corpus segmented as a whole. Each “x” shows the result for one

subset. Jap. stands for Japanese.

.56 versus .49. As for comparisons with previous work, we found that our AG-word
scores were much lower than the .77 documented for English (Fourtassi et al., 2013).
Zooming out for a moment from our key question, we also notice that AG achieved

higher scores than DiBS and TP only in the Chintang morpheme level.

Turning now to TP, absolute-threshold TPa had the highest performance. The
higher scores for TP are not just due to our addition of TPa, since even TPr
outperforms AG. This is a matter that should be investigated further. TP had
relatively smaller language differences compared to AG. TPa-morpheme scores were

higher than TPa-word scores, whereas the opposite was true for the relative-threshold
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TPr. Worse performance for morphemes than words for TPr is reasonable in hindsight,
given that in this implementation a boundary can only be posited in relatively long
strings of syllables (see also Gambell and Yang, 2005b). We did not observe much
difference between forward and backward alternatives (cf. Gervain and Erra, 2012 for
arguments that this parameter should matter for languages varying in head direction,
and Saksida et al., 2017 for other data showing that it may not). As for other
comparisons with previous work, the best performance for TP in this paper was .63,
well below the .85 recorded for English by Saksida et al. (2017).

DiBS showed a language effect that was stable across words and morphemes. For
the word level, our scores were .35 and .51 for Chintang and Japanese respectively, close
to those for English CHILDES corpora (.43, Daland and Pierrehumbert, 2011).

Finally, the baseline scores ranged from .06 (Utt=Unit for Chintang morphemes)
to .71 (Syll=Unit for Chintang morphemes). Both did a better job segmenting Japanese
than Chintang on the word level. However, results were different on the morpheme
level. Chintang morphemes are on average shorter than Japanese ones (see Table 1;
1.24 versus 1.70 syllables per morpheme), whereas the opposite is true for words (2.01
versus 1.83 syllables per word). As a result, on morphemes, performance is very high
when boundaries are systematically posited after every syllable (Syll=Unit), and very
low when no boundary is posited at all (Utt=Unit). This might explain why, on
morphemes, Chintang outperformed Japanese with Syll=Unit, but had a lower score

than Japanese with Utt=Unit.

5.1 Regression on token F-Scores

A regression predicting F-scores from language, level, algorithm, and their
interactions accounted for most variance in the data, R? = .93 (F(31,288) = 134.95,

p < .001).5 Even though the presence of significant interactions precluded a direct

5 The function was: Im(token fscores ~ language * level * algorithm + (1 /file), subsets). Token F-scores
are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random

factor. The data frame contains 320 observations (2 languages x 2 levels x 10 subsets x 8 algorithms).
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interpretation of the main effects, the regression confirmed an advantage for Japanese,
with a positive coefficient estimating the language effect. Interestingly, the coefficient
for this language effect was smaller than that for evaluation level. Further information
on the regression results can be found in Tables 2 and 3 and more detailed outcomes in

the online supplementary material.

5.2 Proximal causes

In Section 3, we inquired whether specific features related to morphological
complexity would affect segmentation. Mean values of such features for the Chintang
(word and morpheme) and Japanese (word and morpheme) subsets are shown in Table
4. The regressions introduced next are ran on the subset versions. One prediction
pertained hapaxes and repetitions. Specifically, we mentioned that a higher proportion
of hapaxes and fewer repetitions of each word token (since each lexeme can have
different surface forms) might lower performance in lexical algorithms.

Therefore, we first searched whether type/token ratios could account for (some of)
our results. We measured the Moving-Average Type-Token Ratio (MATTR) for each of
the 20 subsets (10 for Chintang and 10 for Japanese), in the word and morpheme level
gold versions. WordSeg’s MATTR computes the type-token ratio in a window of 10
units, shifting this window one unit at a time, and returning this moving average. Thus,
it controls for corpus length differences. In a regression across subsets predicting
F-scores from MATTR, language, and algorithm (for each subset)®, MATTR had a
non-significant coefficient of -0.396 (SE= 0.452, p-value=0.383) for the regression on
words, and -1.176 (SE= 0.888, p-value=0.188) for morphemes.

6 The function was: Im(token fscores ~MATTR* language * algorithm + (1/file) ,
subset=c(level=="words or morphemes"), subsets). Token F-scores are the F-scores to be predicted by
feature (in this example, MATTR), language, and algorithm as fixed effects and subset as random

factor.
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factor SumSq | Df | F value|Pr(>F)

lang 0.06 | 1] 43.61 0
level 0.14 | 1] 91.83 0
algo 0.88 | 7| 84.88 0

lang:level 0.06 | 1| 39.66 0
lang:algo 0.11 | 7| 11.08 0
level:algo 1.88 | 7| 182.23 0
lang:level:algo| 0.75 | 7 | 72.97 0

Table 2

Analysis of variance (ANOVA type III) for all factors and interactions on a linear regression
with token F-scores as the dependent variable, rounding to two decimals. “lang” stands for
language, “algo” stands for algorithm. “Pr(>F)” stands for the significance probability value

associated with the F value, “SumSq” for sum of square values, “Df” for degrees of freedom.

We also measured the hapax ratio by dividing the amount of hapaxes by the total
number of unit types for each of the 20 subsets, in the word and morpheme level gold
versions. In a regression similar to the one above (with language and algorithm), but
now incorporating hapax ratio as an additional predictor, the coefficient for the hapax
ratio was also non-significant, -0.682 (SE=1.044, p-value=0.514) for the word-level
regression, and -0.275 (SE=1.18, p-value=0.816) for the morpheme-level regression.

In addition, we had predicted that word length side effects of complexity could
also matter. Indeed, morphological complexity is correlated with word length, but not
morpheme length, according to Table 1. We thus measured the average unit (word or
morpheme) length by dividing the total number of phone tokens by the number of unit
tokens, separately in the word and morpheme level gold versions of the subsets. A new
pair of regressions was thus fit across subsets. Token F-scores were predicted from unit
length in addition to language and algorithm, on the word level, and separately on the
morpheme level. The unit length factor had a non-significant coefficient estimate of
-0.079 (SE =0.084, p=0.35) for the word-level regression; and 0.331 (SE=0.189,

p-value=0.082) for the morpheme-level regression.
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Last, sentence length as operationalized by the number of syllables per utterance
was measured by dividing the total number of syllable tokens by the number of
utterances for each subset. A similar pair of regressions revealed this predictor was not
significant for the word level (estimate=-0.047, SE=0.026, p-value=0.067) but was
significant for the morpheme level (estimate=-0.055, SE=0.024, p-value=0.025). Details

on the percentage of variance explained for all regressions can be found in Table 5.

Factor |AG|BTPa|FTPa|BTPr|FTPr|DiBS|Syll=Unit | Utt=Unit
lang  |HFHK| ek |k |k | sk | ok Kok *okk
leVel k3ksk ok kkok k3ksk kokok kokok %ok
lang:level | ¥ | i *x Kok | ok Kok

Table 3
Analysis of variance (ANOVA type I11) significance results for linear regressions where
F-scores are predicted by language, evaluation level, and their interaction within each

algorithm separately. “lang” stands for language. p<0.001=*** p<0.01=** p<0.05=%*.

5.3 Is the language effect due to entropy?

We further investigated whether language effects may be due to one potential
confound, in particular the possibility that one of the languages is intrinsically more
ambiguous to segment (sentences having different possible segmentation parses). To this
end, we followed Fourtassi et al. (2013) and estimated the segmentation entropy of the
corpora (Normalized Segmentation Entropy) using WordSeg’s descriptive toolset. In
Fourtassi’s study, English was less ambiguous than Japanese, with entropies of .0021
and .0156 respectively on the word level. The segmentation entropy of our Japanese
ACQDIV corpus was 0.028 (word level), thus close to their Japanese results.
Surprisingly, the segmentation entropy for Chintang was 0.007 - even less ambiguous
than English. We also found overall higher entropy levels when inspecting the
morpheme level, with smaller language differences. Even more surprising, in a pair of
regressions where entropy, language and algorithm (for each subset) were included,

entropy failed to explain a significant proportion of the variance, with a coefficient
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estimate of 11.012 (SE=9.033, p-value=0.225) on the word level, but explained a part of

the variance on the morpheme level: -5.618 (SE=2.237, p-value=0.013).

5.4 Over-, under- and missegmentation

A breakdown of segmentation performance as a function of part of speech and
algorithm is provided in online supplementary materials. Over-, under- and
missegmentation cases are reported in Table 6. In the current study, we operationalize
oversegmentation as the splitting up of a unit in one or more sub-parts (regardless of
whether these are reasonable smaller units or not). We consider undersegmentation the
clustering together of two or more words. All other differences from the gold
segmentation were labeled missegmentation. The following example illustrates how they
were measured: If the input sentence “the dog ate the other dog” is returned as “thedog
at ethe other d og”, then the score will be 1/6 correct segmentation, 1/6
over-segmentation (“d og”), 2/6 under-segmentation (one for each input word, “the”

and “dog”), and 2/6 mis-segmentation (“at ethe”).

Factor Chin. w|Jap. w.|Chin. m.|Jap. m.

MATTR 0.866 | 0.772 0.837 0.774
prop. hapax 0.615 | 0.512 0.302 0.455
phones /w 4.248 | 3.569 2.559 3.333
syll/utt 5.615 | 3.382 5.831 3.341

entropy (NSA)| 0.007 | 0.028 0.036 0.030

Table 4
MATTR, proportion of hapazes (prop. hapaz), phonemes per word (phones/w), syllables per
utterance (syll/utt) and segmentation entropy (NSA) for the entire Chintang word, Chintang

morpheme, Japanese word and Japanese morpheme corpus, rounding to 3 decimals.

As for language effects, it was hypothesized in Section 3 that there might be more
cases of word level oversegmentation in a morphologically complex language, because

algorithms would break apart morphological affixes. As predicted, oversegmentation
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rates were higher for both languages when evaluating on words, and, more precisely,
they were higher for Chintang than Japanese. This is because word level evaluation
considers word oversegmentation an error, but morpheme level evaluation does not
penalize it. However, while oversegmentation was substantially reduced on morphemes,

it did not disappear.

Finally, previous studies suggested that lexical algorithms might break apart
morphological affixes (Section 1.2). We reasoned that this would lead lexical algorithms
to oversegment more than sublexical ones (Section 3). This was true for our data, where
AG showed distinctive oversegmentation patterns compared to DiBS and TP, and
almost no undersegmentation. As far as sublexical algorithms are concerned, DiBS
exhibited undersegmentation for both levels and languages. TPa-word tended to
oversegment, but TPa-morpheme would undersegment. TPr-morpheme would also
undersegment morpheme sequences, particularly with the Chintang corpus, where 70%
of its tokens were undersegmented. Unsurprisingly, Syll=Unit tended to oversegment,

whereas Utt=Unit was mostly undersegmenting.

Factor R? Factor w. | R? Factor*lang*algo w.| R? Factor m. | R? Factor*lang*algo m.
MATTR 381 935 .073 .956
prop. hapax .370 .901 .056 .935
phones /w 402 941 .051 961
syll/utt 427 975 .080 .983
entropy (NSA) 431 970 -.003 .980
Table 5

Percentage of variance explained (R?) predicting F-scores (word and morpheme level) either
from the factor given in the first column, or from language, algorithm, the factor and all their
interactions in the second column. The R? for lang = algo alone is .91 for words and .94 for
morphemes (the same for all rows). “lang” stands for language, “algo” for algorithm,

“syll/utt” for syllables per utterance, “w” for words and “m” for morphemes.



MORPHOLOGICAL COMPLEXITY AND SEGMENTATION 52

5.5 Summary

In sum, we observed differences in language, level, and algorithm type in the
expected directions. Overall word segmentation performance for Japanese was better
than performance for Chintang. However, average Chintang scores improved on the
morpheme level and this reduced the average score difference with Japanese.
Surprisingly, factors we had postulated as proximal causes for word segmentability
variation (type/token ratio, hapax ratios, word and utterance length) did not explain
significant variance. The potentially confounded factor of segmentation entropy did not
behave as predicted, suggesting that our original regression (with language, level, and
algorithm) was sufficient. Oversegmentation rates were higher for Chintang than

Japanese in the word level, especially for the lexical algorithm.

algo Chin. words | Chin. morph. Jap. words Jap. morph.

ov|un |mis|cor|ov|un|mis|cor|ov|un|mis|cor|ov|un|mis|cor

AG 594/ 0| 7 | 381410115 |61 (39| 3| 3 |55(30|3 | 7 |59
BTPa |28 9 |11 |53 |4 (47| 2 |47 |23|13| 2 |61 |19(16| 3 |62
FTPa |27|11|13 |49 |5 (53| 4 |38|24|13| 3 [60|19|17| 5 |58
BTPr | 7120129452 |70 5 |23]9 (25|11 |55|6 |31| 11 |52
FTPr 7120031421170 7 [22|9(21|15|55|6 (27|13 |53

DiBS 6 |47 17 |30 | 7 (47| 18 |27 |2 (49| 6 [ 43| 2 |51| 7 |41

Syll=Unit (68| 0 | 0 [ 32(21| 0| 0 [|79(53| 0| O [47(49| 0| 0 |51

Utt=Unit| 0 |90 0 |10 0 |96| O | 4 |0 |68] O |32|0|71| O |29

Table 6

Percentage of oversegmented, undersegmented, missegmented and correctly segmented word
and morpheme tokens for each algorithm, level, and language. “algo” stands for algorithm,
“morph.” stands for morphemes, “Chin.” for Chintang and “Jap.” for Japanese. Also, “ov”
stands for oversegmentation, “un” for undersegmentation, “mis” for missegmentation and

“cor” for correctly segmented.
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6 Discussion

In this study, a set of algorithms was applied to corpora of two morphologically
diverse languages, and the output was assessed against gold standard segmentation at
the word and morpheme level. Given the details of Chintang morphology, it was
hypothesized that such a rich morphology must pose significant problems for the
uninformed learner who is trying to segment the input, but these problems would be
mitigated if we consider morphemes instead if words as a segmentation goal.

Results summarized thus far support the prediction that languages varying in
morphological complexity might vary in segmentability, but several aspects of these
results strongly suggest that the answer is not simple. In our study, the language effect
was not the same for all algorithms, and was even reversed when both algorithm and
level were varied. The language effect was also smaller than the one for level or
algorithm type. Indeed, performance for Chintang was substantially improved when
evaluating on morphemes. In other words, differences within-language (across
algorithms) seem to be more important than those between languages, and
morphological complexity is far from being the sole or major determinant for
segmentation.

To further address our research questions, we consider the results within each
algorithm next. Our strongest predictions pertained to the lexical algorithm, AG, whose
results matched our predictions well. In AG, we observed higher performance for
Japanese than Chintang with words as the gold standard, but this difference was
reversed with morphemes. This observation is consistent with the proposal that AG,
and probably lexical algorithms in general, are ideal to recover recombinable units.
Thus, it seems that lexical algorithms might work well for languages like Chintang,
improving performance on the morpheme level.

Turning to the sublexical algorithms, even though DiBS is a purely
phonotactic-based algorithm, it seems to have been affected by language differences.
The algorithm was robust across evaluation levels, which had no impact on the

segmentation performance. The most complex patterns of results were found for the
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other sublexical algorithm, TP. All four versions of the algorithm (BTPa, FTPa, BTPr,
FTPr) yielded divergent patterns. This is in accordance with previous findings, where
notable differences in performance were found depending on the parameters used (e.g.,
Saksida et al., 2017). The language as well as the evaluation level had a significant
effect on performance, and an interaction between language and level was observed for

all versions.

This study attempted to associate segmentability to language features predicted
to have an impact on segmentation. Word length, utterance length, and even corpus
entropy explained only a small proportion of the structured variance, and none
significantly beyond the factors of language and algorithm. Entropy, in particular, had
been postulated in previous cross-linguistic work comparing English and Japanese
(Fourtassi et al., 2013), languages which diverge both in morphology and phonotactics,
whereas the languages studied here had similar phonotactics. Further work varying
these parameters independently may be needed to pin down the importance of factors
such as word length, utterance length, and corpus entropy (see Caines et al., 2019, for a

similar approach on properties explaining variation in segmentation performance).

One surprising result pertains to the follow-up analyses which investigated the
explanatory value of type/token ratio (measured as MATTR) and hapax ratio, which
we had suggested as potentially proximal causes for segmentability differences across
the languages. It seems that, while morphological complexity has an impact on
segmentation, this might not be via the causal paths we had identified, since none could
independently explain away the language effect in a multivariate regression. Future
work may need to assess whether such variables jointly could explain away language
differences, or whether this effect is due to other features that we have not yet
considered (see Loukatou et al., 2019, for a similar result on differences between adult-

and child-directed speech).

Before closing, we would like to bring up a number of limitations for this study.
First, the research was conducted using transcriptions of speech spoken around (and not

only to) children varying in age, from a few months to five years old, with the Japanese



MORPHOLOGICAL COMPLEXITY AND SEGMENTATION 25

children being in general older than the Chintang children. Further research with more
homogeneous addressees may provide more stable results. Second, two different datasets
compose the ACQDIV Japanese corpus, as mentioned in Section 2.2. This might be the
cause for the ostensively more variable results of the Japanese subsets. Third, many
Japanese utterances had not been morphologically transcribed, so they had to be

excluded.

Moreover, since Chintang is spoken in a multilingual setting, annotators
transcribed all speech including non-Chintang words, either because they are recent
loanwords or because of code-switching into Nepali. Chintang speakers are bilingual in
the morphologically simpler Nepali and children encounter Nepali from early on (Stoll
et al., 2015). In fact, approximately 36% of the Chintang utterances had non-Chintang
single- or multi-word insertions. For our analyses, we chose to report on the results for
the whole corpus, because children born into this community do not come with
information about which words are loanwords or code-switched. However, we also
segmented a version of the corpus consisting of only all-Chintang utterances, where
utterances with non-Chintang insertions had been removed. The performance usually
increased by .01-.06 in token F-scores for the all-Chintang corpus, but did not alter our

conclusions above. Detailed results can be found on the online supplementary material.

Also, speech transcriptions were used for this study. However, other salient
features for segmentation include supra-segmental, speech-related features such as
prosody or intonation. Even though there is some literature looking at word
segmentation from speech (Ludusan et al., 2015), this task remains challenging for

computational modeling.

Additionally, we would like to mention that the algorithms were evaluated on
words, as defined by their conventional orthographic representations. However,
wordhood and morphemehood are debated issues in linguistics and psycholinguistics,

without cross-linguistically valid definitions, as mentioned in Section 1.2.

Finally, we studied two languages which differ in morphological synthesis,

admittedly considering only one dimension of morphological complexity. We would
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suggest that the level of allomorphy, meaning how many different realizations exist for a
single morpheme, or the fusion of the affixes with each other, could also affect
segmentation. Further research is needed to show the effects of these specific
morphological aspects, although this would ideally involve recovery of morphological
paradigms, and not just segmentation as done here.

Clearly, our work barely scratches the surface not only in terms of segmentation
differences and similarities across languages, but also in terms of possible evaluation
targets for language acquisition segmentation models. We look forward to further
research incorporating more languages, in order to investigate the impact of different
linguistic traits, and hope future work retains our strategy of employing a range of

plausible algorithms and evaluating on different linguistic levels.
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4. Is word segmentation child’s play in all languages?*

Abstract: When learning language, infants need to break down the flow of input speech into minimal
word-like units, a process best described as unsupervised bottom-up segmentation. Proposed
strategies include several segmentation algorithms, but only cross-linguistically robust algorithms
could be plausible candidates for human word learning, since infants have no initial knowledge of the
ambient language. We report on the stability in performance of 11 conceptually diverse algorithms on
a selection of 8 typologically distinct languages. The results are evidence that some segmentation
algorithms are cross-linguistically valid, thus could be considered as potential strategies employed by

all infants.

*Loukatou, G., Moran, S., Blasi, D., Stoll, S. & Cristia, A. (2019). Is word segmentation child’s
play in all languages? Proceedings of the 47th Annual Meeting of the Association of

Computational Linguistics (ACL).

*Loukatou, G. (2019). From phonemes to morphemes: relating linguistic complexity to
unsupervised word (over) segmentation. Typology for Polyglot NLP workshop, co-located with the
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Abstract

When learning language, infants need to break
down the flow of input speech into minimal
word-like units, a process best described as un-
supervised bottom-up segmentation. Proposed
strategies include several segmentation algo-
rithms, but only cross-linguistically robust al-
gorithms could be plausible candidates for hu-
man word learning, since infants have no ini-
tial knowledge of the ambient language. We
report on the stability in performance of 11
conceptually diverse algorithms on a selec-
tion of 8 typologically distinct languages. The
results are evidence that some segmentation
algorithms are cross-linguistically valid, thus
could be considered as potential strategies em-
ployed by all infants.

1 Introduction

Six-month-old infants can recognize recurrent
words in running speech, even with no mean-
ing available or with experimentally impover-
ished cues to wordhood (Saffran et al., 1996).
Most words do not appear in isolation (Brent and
Siskind, 2001), so infants would need to discover
the form of words in their caregivers’ input before
attaching them to meaning. Since infants do not
know which language(s) will be found in their en-
vironment at the beginning of development, they
would be better off by using segmentation strate-
gies that perform above chance for any language.
In fact, despite the fact that languages vary widely
in a number of dimensions affecting word segmen-
tation, all human languages are learnable for in-
fants (see Discussion for the question of the extent
of variation in human learning).

1.1 Unsupervised bottom-up segmentation
across languages

The problem of learners retrieving words in in-
put has a long history in computational approaches
(e.g., Harris 1955; Elsner et al. 2013; Lee et al.
2015). Most previous computational research has
used as input texts representing phonologized lan-
guage, that is, sequences of phonemes with no
overt word boundaries, and the task is to retrieve
these. Several algorithms inspired by laboratory
research on infant word segmentation are currently
represented in WordSeg, an open source package
(Bernard et al., 2018).

Are such algorithms as robust to cross-linguistic
variation as human infants are? Some previous
work has assessed the generalizability of specific
approaches across different languages, typically
concluding that strong performance differences
arise (Johnson 2008; Daland 2009; Gervain and
Erra 2012; Fourtassi et al. 2013; Saksida et al.
2017; Loukatou et al. 2018, with the possible ex-
ception of Phillips and Pearl 2014a,b).

However, very little previous research compares
the performance of a wide range of algorithms us-
ing diverse and cognitively plausible segmentation
methods within a large set of typologically diverse
languages and closely matched corpora, with uni-
fied coding criteria for linguistic units.

1.2 The present work

In this paper, we sought to fill this gap by employ-
ing a systematic approach that samples both over
the space of algorithms and the space of human
languages. We used 11 segmentation algorithms
included in WordSeg, for improved reproducibil-
ity and transparency.

As for languages, we used the ACQDIV

69



lang | #chi #sent #words m.syn. | %s.com.
Inu 4 13,166 22,045 high 57
Chi 6 160,524 | 459,585 high 50
Tur 8 249,507 | 875,349 high 44
Rus 5 468,397 | 1,302,650 | med. 43
Yuc 3 29,795 88,018 med. 51
Ses 4 23,539 62,024 low 55
Ind 10 | 399,606 | 1,179,505 low 46
Jap 7 242,774 | 741,594 low 51

Table 1: Number of children, sentences and word to-
kens for each language corpus. “m.syn.” stands for
morphological synthesis derived from sto: A language
received a “high” here if nominal and verbal complex-
ity were both listed as the highest in that work; and low
if they were both in the lowest levels, and moderate
otherwise. ““ % s.com.” stands for syllable complex-
ity, measured as average percentage of vowels per total
phonemes for each word. Languages are represented
by the first three letters of their names.

database (Moran et al., 2016), which contains a set
of typologically diverse languages, as explained in
Stoll and Bickel (2013). All corpora were gath-
ered longitudinally and were ecologically valid,
with transcriptions of child-directed and child-
surrounding speech recordings (target children’s
age ranges from 6 months to 6 years).

ACQDIV contains data for eight languages with
large enough data sets to allow for analyses of the
type used here: Chintang (Stoll et al., 2015), In-
donesian (Gil and Tadmor, 2007), Inuktitut (Allen,
1996, Unpublished), Japanese (Miyata, 2012b,a;
Oshima-Takane et al., 1995; Miyata, 1992) , Rus-
sian (Stoll, 2001; Stoll and Meyer, 2008), Sesotho
(Demuth, 1992, 2015), Turkish (Kiintay et al., Un-
published), and Yucatec Mayan (Pfeiler, Unpub-
lished).

The present study addresses the following ques-
tions:

1. Do algorithms perform above chance level
for all languages? Algorithms that systemat-
ically perform at or below chance level would
not be plausible strategies for infants.

2. Is the rank ordering of algorithm perfor-
mance similar across languages? That is, is
it the case that the same algorithms perform
poorly or well across languages? If unsu-
pervised word discovery algorithms pick up
on general linguistic properties that are sta-
ble across this typologically diverse sample,
then we expect the rank ordering to be rather
stable. If, conversely, some algorithms pick

up on cues that are useful in one language
but noxious in another, then the rank order-
ing may change.

2 Methods

Phonemization was done using grapheme-to-
phoneme rewrite rules adapted to each language
(Moran and Cysouw, 2018). Only adult-produced
speech was included.

The input to each algorithm was the phonem-
ized transcript, with word boundaries removed.
Sentence boundaries were preserved because in-
fants are sensitive to them from before 6 months of
age (Christophe et al., 2001; Shukla et al., 2011).
Table 1 gives the number of children, sentences,
and words across corpora, as well as a rough met-
ric of morphological and phonological complexity.

For lack of space, we will only briefly describe
the algorithms drawn from WordSeg (see Johnson
and Goldwater 2009; Monaghan and Christiansen
2010; Lignos 2012; Daland and Zuraw 2013; Sak-
sida et al. 2017; Bernard et al. 2018). All algo-
rithms were used with their default parameters.

Baseline algorithms represent the simplest seg-
mentation strategies possible. The first baseline,
p=0, is a learner who treats each whole sentence
as a unit, cutting at 0% of possible points. The
second baseline is a learner (innately) informed
about average word duration, cutting at a proba-
bility level of average word length. Since in the
reduced lexicon expected for child-surrounding
speech, words average 6 phonemes in length in
several languages (Shoemark et al., 2016), p=1/6
was used.

The Diphone Based Segmentation algorithm
(DiBS) is based on phonotactics, and implements
the idea that phoneme sequences that span phrase
boundaries also span word breaks (Daland and
Pierrehumbert, 2011; Daland, 2009). The learner
decides whether there is a boundary in the middle
of a bigram sequence if the probability of the se-
quence with a word boundary is higher than the
probability without the boundary.

Other algorithms are also based on the idea that
sequences with lower statistical coherence tend to
span word breaks, but use backwards or forwards
transitional probabilities (BTP and FTP respec-
tively; in a sequence xy, BTP is the frequency
of xy divided by the frequency of y; FTP by the
frequency of x) or mutual information (MI). MI
is defined as the log base 2 of the frequency of
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algo 0 | 1/6 | % mean % min % max
AG 6/8 | 7/8 37 7 | Rus | 65 | Ind
DiBS | 8/8 | 8/8 30 25 | Jap | 41 | Inu
FTPa | 7/8 | 8/8 28 17 | Inu | 36 | Ind
MiIr 7/8 | 7/8 27 7 Inu | 36 | Ind
FTPr | 7/8 | 7/8 25 11 | Inu | 30 | Rus
PUD | 6/8 | 6/38 22 7 | Ind | 34 | Ses
BTPa | 6/8 | 6/8 17 10 | Ses | 27 | Ind
Mla | 7/8 | 8/8 17 15| Jap | 25 | Inu
BTPr | 6/8 | 5/8 14 9 | Inu | 22 | Yuc
Base0 - 1/8 13 6 Tur | 35 | Inu
Base6 | 7/8 - 12 8 Tur | 16 | Inu

Table 2: Number of languages performing above base-
line p=0 and p=1/6. Columns show the mean, the low-
est and highest percentage of correctly segmented word
tokens for each algorithm and the corresponding lan-
guage. Languages are represented by the first three
letters of their names. “PUD” stands for PUDDLE.
“Base(” and “Base6” stand for baseline p=0 and p=1/6.

zy divided by the product of the frequency of x
and that of y; the version in WordSeg draws from
Saksida’s implementation (Saksida et al., 2017).
Whether to add a word boundary or not depends
on a threshold, which can be based on a local com-
parison (relative, where one cuts if the TP or MI
is lower than that for neighboring sequences); or
a global comparison (absolute, where one cuts
if the transition is lower than the average of all
TP or MI over the sum of different phoneme bi-
grams). It should be noted that previous authors
originally implemented TPs on syllables (Saksida
et al., 2017; Gervain and Erra, 2012), but here
the basic units are phonemes. Combining all of
the above yields 6 versions, namely FTPr, FTPa,
BTPr, BTPa, MIr and MlIa.

Johnson and Goldwater (2009) elaborated on
adaptor grammars (AG), which are ideal approx-
imations to the segmentation problem. They as-
sume that learners create a lexicon of minimal, re-
combinable units found in their experience. AG
uses the Pitman-Yor process, a stochastic process
of probability distribution which prefers the reuse
of frequently occurring rules versus creating new
ones to build a lexicon, then uses this lexicon to
parse the input. This process is conceptually re-
lated to Zipf’s Law (Zipf, 1935) and leads to real-
istic word frequency distributions.

Finally, Phonotactics from Utterances Deter-
mine Distributional Lexical Elements (PUDDLE)
is an incremental alternative algorithm (Monaghan
and Christiansen, 2010), where learners build a
lexicon by entering every utterance that cannot be
broken down further, and using such entries to find

lang % mean 9% min % max
Inuktitut 17 7 MIr | 41 | DiBS
Chintang 25 9 | BTPr | 36 AG
Turkish 25 14 | PUD | 42 AG
Russian 22 7 AG 31 | FTPa
Yucatec 27 16 | Mla | 48 AG
Sesotho 24 9 | BTPr | 39 AG
Indonesian 29 7 PUD | 65 AG
Japanese 26 14 | BTPa | 43 AG

Table 3: Mean percentage of correctly segmented word
tokens for each language. Languages are listed in
rough order of morphological complexity (see Table
1). Columns show the mean, lowest and highest per-
centage of correctly segmented word tokens per lan-
guage, and the corresponding algorithm. “PUD” stands
for PUDDLE.

subparts in subsequent utterances.

WordSeg was used both for segmentation and
evaluation. Each algorithm returns their input
with spaces where the system hypothesizes a
break.! Evaluation is done with reference to or-
thographic word boundaries. Scripts used for cor-
pus preprocessing and segmentation as well as re-
sults and supplementary material are available at
https://osf.io/6q5e3/.

3 Results

Results are shown in Tables 2 (reporting on algo-
rithms) and 3 (reporting on languages). Next, we
address our research questions.

1. Do algorithms perform above chance level
for all languages? If chance is defined as
the highest of the two baselines (p=0, 1/6),
1 algorithm performed above chance in all
8 languages (DiBS). However, if we relax
this criterion, AG, FTPa, FTPr, MIr and Mla
also performed above chance for nearly all
languages. No algorithm performed below
chance level for more than half of the lan-
guages.

2. Is the rank ordering of algorithm per-
formance similar across languages? Fig-
ure 1 illustrates the correlation of perfor-
mance order for algorithms across languages.
Spearman correlations (median=.38) sug-
gested that there is a similar rank ordering

"Because of time constraints, only the first 50000 utter-
ances of the three largest corpora, Turkish, Russian and In-
donesian, were segmented by AG. This would play a negligi-
ble role in results, since variation in corpus size beyond the
first Sk utterances does not affect performance of this seg-
mentation system (Bernard et al., 2018).
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of algorithm performance across languages.
Inuktitut and Russian were the only lan-
guages not following the general ordering.

The models’ detailed performance, measured in
percentage of correctly segmented word tokens,
can be found in the online supplementary material
and in this paper’s Appendix. An error analysis
would be beyond the scope of this paper. How-
ever, three categories of incorrect cases have been
measured and can be found online. This analysis
documents cases of oversegmentation (words split
up in their components), undersegmentation (two
or more words segmented as one) and missegmen-
tation (all other errors).

4 Discussion

First, no algorithm performed systematically be-
low chance level in our study. However, we cannot
say that they all performed above chance for all
languages either. This is mainly due to the good
results in baseline p=0, especially salient for mor-
phologically complex languages such as Inuktitut.
This is expected, since in this language a substan-
tial number of sentences are composed by a sin-
gle word (which morphologically encodes what in
other languages would be expressed syntactically
by using several words).

Second, there was some stability in the or-
der of performance for algorithms across this set
of diverse languages, suggesting that these unsu-
pervised word discovery algorithms pick up on
general linguistic properties that are stable across
our sample, and not language-dependent cues that
could potentially not work for some languages.

In this distinct performance ranking, some al-
gorithms were systematically above chance and
among the first in order of performance. These
include DiBS and AG, combining both desider-
ata of cross-linguistic stability and high segmen-
tation performance. DiBS, the one algorithm
in our sample applying a phonotactics strategy,
was robust across languages and not strongly af-
fected by the differences found across these lan-
guages in morphology and phonological complex-
ity (counter previous conclusions based on English
versus Korean, Daland and Zuraw 2013). DiBS
implements an optimal boundary setting based on
the Bayes’ theorem and co-occurrence statistics.
Thus, our results support previous experimental
findings that infants may use such tools to acquire
language.

Inuktitut 1 013 042  -0.08 -0.3 0.18  0.15 -0.28
Chintang 1 0.47 -0.02 0.67 0.98 043  0.87
Turkish 1 025 045 045 093 0.37

Russian 1 -0.18 -0.03 0.32 -0.07

Yucatec 1 0.62 0.52 | 0.85

Sesotho 1 0.38  0.83

Indonesian 1 0.47

Japanese 1

Figure 1: Correlation matrix of the rank ordering in
algorithms’ performance across languages.

Our study is the first to explore segmentation
differences across both multiple algorithms and
multiple languages. We therefore are in a position
to compare segmentation performance differences
across these two. We found that differences in av-
erage performance across algorithms (min=14 for
BTPr, max= 37 for AG, 23% points) were larger
than differences in performance across languages
(min=17 for Inuktitut, max=24 for Indonesian, 7%
points). This indicates that variation across lan-
guages was comparatively small.

Also, average percentage of correctly seg-
mented words for the more morphologically com-
plex languages (Chintang, Inuktitut and Turkish)
was 19%, only 3% lower than average percentage
for the simpler languages in our sample (Japanese,
Sesotho and Indonesian). This is striking evidence
that in this set of diverse languages, intrinsic dif-
ferences in language structure may not be large
enough to create particular difficulties in segmen-
tation.

To sum up, this study provides evidence that, if
infants do anything similar to one or more of the
algorithms proposed in previous natural language
processing research and investigated here, then
they would be well-equipped to get a head start
in segmenting word-like units regardless of what
their native language is. Experimental evidence
suggests slight variation in the timing of acquisi-
tion of different linguistic features, as a function
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of factors such as the transparency of forms, and
the complexity of paradigms (e.g., Slobin 1985).
Given the small differences found across our unsu-
pervised word segmentation algorithms, such vari-
ation might come from something else, such as
meaning acquisition, which would require algo-
rithms different from the ones we explored here.

Before closing, we would like to acknowledge
some limitations of this work. Defining words can
be obscure (Daland, 2009) and there is no cross-
linguistically valid general definition of ‘word’
(Haspelmath, 2011). Consequently, it would make
sense to also evaluate unsupervised segmenta-
tion algorithms using morpheme edges and at
other definitions of wordhood (Bickel and Zuiniga,
2018). For this, we would need appropriately
annotated data sets, which are currently missing.
What is worse, not every language lends itself to
simple definitions: Some languages in ACQDIV
lack morpheme segmentation simply because this
is not feasible in that language.

In this paper, we focus on correctly segmented
words. An error analysis would not be easily inter-
pretable, because not all corpora have morpheme
annotations. For example, when documenting
oversegmentation errors, we would not be able to
distinguish between reasonable cases where words
are split up into meaningful, morpheme-like com-
ponents, and other cases. Similarly, in an under-
segmentation analysis, we would not be able to
focus on collocations. Future work is invited to
study in more detail such errors in the algorithms’
performance.

Finally, computational models can be informa-
tive proofs of principle, but nothing assures us
they truly represent what infants are doing. To
this end, laboratory experiments (Johnson and
Jusczyk, 2001) and the study of natural variation
(Slobin, 1985) are irreplaceable, even if challeng-
ing to perform, particularly at a large scale and
sampling from many different cultures.
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Appendix

The models’ performance, measured in percentage
of correctly segmented word tokens, can be found
in Table 4.

algo | Inu | Chi | Tur | Rus | Yuc | Ses | Ind | Jap
AG | 20 | 36 | 42 7 48 | 39 | 65 | 43
DiBS | 41 | 29 | 33 | 26 | 28 | 28 | 30 | 25
FTPa | 17 | 30 | 30 | 31 | 22 | 30 | 36 | 29
MIr 712929 30 | 33 | 25|36 30
FTPr | 11 | 28 | 27 | 30 | 25 | 25 | 28 | 29
PUD | 8 |33 | 14| 19 | 31 | 34| 7 | 33
BTPa | 14 | 12 | 19 | 23 | 20 | 10 | 27 | 14
Mla | 25 | 16 | 15 | 21 16 | 17 | 16 | 15
BTPr | 9 9 17 | 15 | 22 9 17 | 16
BaseO | 35 | 9 6 12 8 111 9 | 12
Base6 | 16 | 11 8 12 | 11 12 | 11 | 13

Table 4: Percentage of correctly segmented word to-
kens for each language and algorithm. Languages are
listed in rough order of morphological complexity (see
Table 1). “PUD” stands for PUDDLE. “Base0” and
“Base6” stand for baseline p=0 and p=1/6. Languages
are represented by the first three letters of their names.



From phonemes to morphemes: relating linguistic complexity to
unsupervised word over-segmentation

Georgia Loukatou
Laboratoire de sciences cognitives et de psycholinguistique, Département d’études cognitives
ENS, EHESS, CNRS, PSL University
georgialoukatou@gmail.com

Abstract

Previous work has documented variation in
word segmentation performance across lan-
guages, with a trend to yield lower scores for
languages with elaborate morphological struc-
ture. However, segmenting smaller chunks
than words, “oversegmenting”, is reasonable
from a computational point of view. We pre-
dict that oversegmentation would be encoun-
tered more often in complex languages. In
this work in progress, we use a dataset of
9 languages varying in complexity and fo-
cus on cognitively-inspired word segmenta-
tion algorithms. Complexity is defined by
Compression-based, Type-Token Ratio and
Word Length metrics. Preliminary results
show that a possible relation between morpho-
logical complexity and oversegmentation can-
not be predicted exactly by none of these met-
rics, but may be best approximated by word
length.

1 Introduction

The issue of word segmentation is open in the NLP
community (e.g., Harris (1955)). Its implemen-
tations include processing languages with no or-
thographic word boundaries, such as Chinese and
Japanese. It is also a key problem humans face
when acquiring language.

Previous work documented variation in the suc-
cess rate of segmentation across languages, and
a trend to yield lower scores for languages with
elaborate morphological structure. This is true for
both cognitively inspired (Johnson, 2008; Four-
tassi et al., 2013; Loukatou et al., 2018)) and other
models (Mochihashi et al., 2009; Zhikov et al.,
2013; Chen et al., 2011). Evaluation is conven-
tionally based on orthographic word boundaries.

Do these models manage to learn more lin-
guistic structure, that what is actually described
in these accuracy scores? Segmenting smaller

meaningful chunks than words is reasonable from
a computational point of view: morphologically
complex languages often feature multimorphemic,
long words, and algorithms might break words
up into component morphemes, treating frequent
morphemes as words. Finding out morphemes
might be useful for later linguistic analysis, espe-
cially for languages with rich morphological sys-
tems , and such morphemes could be used as cues
to further bootstrap segmentation. Thus, a “use-
ful” error in segmentation could be oversegmenta-
tion (Gervain and Erra, 2012; Johnson, 2008), the
percentage of word tokens returned as two or more
subparts in the output.

We thus predict that oversegmentation might be
encountered more often in complex languages. To
test this, we need data from languages varying in
complexity. Since there is no standard way to de-
fine complexity, for this study, three metrics are
used: first, the Moving Average Type-token Ra-
tio (500-word window) (Kettunen, 2014), and sec-
ond, two versions of compression-based complex-
ity (Szmrecsanyi, 2016)!. The two metrics are
normalized (O=least complex, 1=most complex)
and their average score is attributed to each lan-
guage. Third, we look at word length, since, in
general, longer words could attract more division.

2 Methods

We use the ACQDIV database (Moran et al., 2016)
of typologically diverse languages, with transcrip-
tions of infant-directed and -surrounding speech
recordings, from Inuktitut (Allen, 1996), Chintang
(Stoll et al., 2015), Turkish (Kiintay et al., Unpub-

"1st metric: the size of compressed corpus (gzip) divided
by the size of raw corpus. 2nd metric: systematic distortion
of morphological regularities, so as to estimate the role of
morphological information in the corpus. Each word type is
replaced with a randomly chosen number. The size of the
distorted compressed corpus is then divided by the size of the
originally compressed corpus.
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lang % over|% corr|% total|compr. MATTR |w length

Inuktitut | 42 17 59 1 0.90 8.56
Chintang | 26 25 51 0.56 | 0.87 4.39
Turkish 26 25 51 0.44 | 0.86 4.92
Yucatec 19 27 46 042 | 092 3.80
Russian 29 22 51 041 | 091 4.47
Sesotho 26 24 50 0.31 | 0.86 4.28
Indonesian| 25 29 54 0.28 0.85 4.11
Japanese | 20 26 46 0.14 | 0.87 3.94
English 6 51 57 0.02 | 0.39 3.04

Table 1: Percentage of average oversegmented, correct
word tokens and their sum are given per language in the
first columns. Complexity scores for the three metrics
are also given.

lished), Yucatec (Pfeiler, 2003), Russian (Stoll and
Meyer, 2008), Sesotho (Demuth, 1992), Indone-
sian (Gil and Tadmor, 2007) and Japanese (Miyata
and Nisisawa, 2010; Nisisawa and Miyata, 2010).
In order to compare with a previously studied lan-
guage, we included the English Bernstein corpus
(MacWhinney, 2000).

Several models have been proposed as plausible
strategies used by learners retrieving words from
input. We used a set of these strategies (Bernard
et al., 2018). Two baselines were Base0, treating
each sentence as a word, and Basel, treating each
phoneme as a word. DiBS? (Daland, 2009) imple-
ments the idea that unit sequences often spanning
phrase boundaries probably span word breaks.
FTP? (Saksida et al., 2017) measures transitional
probabilities between phonemes and cuts depend-
ing on a local threshold (relative, FTPr) or a global
threshold (absolute, FTPa). Adaptor Grammar
(AG) (Johnson, 2008) assumes that learners cre-
ate a lexicon of minimal, recombinable units and
use it to segment the input. AG implements the
Pitman-Yor process. Finally, PUDDLE* (Mon-
aghan and Christiansen, 2010) is incremental, and
learners insert in a lexicon an utterance that cannot
be broken down further, and use its entries to find
subparts in subsequent utterances. Before segmen-
tation, spaces between words were removed, leav-
ing the input parsed into phonemes, with utterance
boundaries preserved.

3 Results

Statistics regarding corpora and results are pre-
sented in Table 1. In general, languages had simi-

Diphone Based Segmentation algorithm

3Forward Transitional Probabilities algorithm

“Phonotactics from Utterances Determine Distributional
Lexical Elements

lar oversegmentation scores, (ranging from 31% to
51% if we exclude English), which did not exactly
follow their complexity ranking. Performance
difference across languages decreased when con-
sidering oversegmented tokens as correctly seg-
mented.

4 Discussion

Word length had the best prediction of overseg-
mentation compared to other metrics, compres-
sion and MATTR. This shows that longer words
have more alternative parses, and this could ex-
plain oversegmentation results better than other
properties inherent to morphologically complex
languages. That said, a possible relation between
morphological complexity and oversegmentation,
could not be exactly explained by none of these
complexity metrics.

It was also observed that there was no absolute
ranking of complexity across languages; on the
contrary, it would change according to the feature
studied. In general, cross-linguistic differences
were small for such a typologically distinct dataset
of languages. Further research might shed light on
whether this behavior is due to linguistic proper-
ties common across languages, or a confound (e.g.
corpus size).

Moreover, discovering meaningful units is of
particular importance to language acquisition
models, such as the ones implemented here. In-
fant word segmentation algorithms are cognitively
plausible only if they are cross-linguistically valid
and offer useful insights to learn all linguistic
structures. It would also be interesting to com-
pare performance of these models to state-of-the-
art NLP algorithms, such as HPYLM (Mochihashi
et al., 2009) or ESA (Chen et al., 2011).

A limitation of this study is that the current im-
plementation of WordSeg does not only look at
oversegmentation cases resulting in meaningful,
morpheme-like sub-parts. A next step would be to
focus on reasonable oversegmentation errors, even
though not all of these corpora have morpheme an-
notations.

Measuring reasonable errors such as overseg-
mentation could shed light on the segmentabil-
ity of morphologically complex languages and the
cross-linguistic applicability of models. Further
research might include over-, but also underseg-
mentation errors, when two or more words in the
input returned as a single unit in the output.
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5. Segmenting word and sub-word units in an artificial language

experiment *

Abstract: The purpose of this study is to investigate segmentation in two meaningful unit levels,
words and stems, among adults exposed to an artificial language. The structure of the language has
properties similar to those of most natural languages; meaningful units are not only words, but also

stems and affixes. We ask whether human adults can segment both words and stems in these settings.

*Loukatou, G. & Cristia, A. Segmenting word and sub-word units in an artificial language

experiment. [in writing] - Preregistration: https://osf.io/fuydc
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Segmenting words and morphemes in an artificial language

Introduction

Humans segment word-like units out of continuous streams of speech when exposed to artificial
languages. Words are important components of linguistic structure, but they are not the only
meaningful, recombinable units in running speech. In human languages, morphemes are minimal

meaningful units, and they also need to be segmented during language learning.

Word segmentation is an important learning task, were word boundaries are identified in continuous
speech. Artificial languages have been widely used to investigate word segmentation (e.g. Saffran et
al.,, 1996 and follow-up work). It is assumed that some learning mechanisms are shared between
artificial and natural language learning (Goémez & Gerken, 2000; Reber, 1967). When used and
interpreted properly, artificial languages can help obtain better experimental control over the input to
which learners are exposed (Fedzechkina et al., 2016; Folia et al., 2010), and isolate specific learning

factors (Hayakawa et al., 2020), especially for segmentation.

The current standard for artificial language studies on segmentation is to focus on words as the target
level of segmentation (e.g. Cunillera et al., 2010; Estes & Lew-Williams, 2015; Finn & Hudson Kam,
2008; Frank et al., 2013; Johnson & Jusczyk, 2001; Karuza et al., 2013; Kurumada et al., 2013;
Lew-Williams & Saffran, 2012; Saffran et al., 1997; Thiessen & Erickson, 2013; Tyler & Cutler, 2009
-but see segmentation of multi-word units by Siegelman & Arnon, 2015). In most studies, the words
composing the artificial language have no sub-units (stems or affixes) that could be found within other
words. Participants seem to be able to segment words out of artificial languages based on several
different cues (transitional probabilities cues, Saffran et al., 1996; speech cues, Johnson & Jusczyk,

2001; mapping to word referents, Cunillera et al., 2010).

However, some studies suggest that word segmentation is not the only task participants do, when
exposed to an artificial language. They can segment speech, but also generalise non-adjacent
dependencies (Frost & Monaghan, 2016), map the word forms to word referents (Cunillera et al.,
2010) or learn the overall linguistic structure (Siegelman & Arnon, 2015). Moreover, properties
related to linguistic structure, such as non-adjacent dependencies and the number of different words

seem to affect segmentation (Frank et al., 2010; Frost & Monaghan, 2016).
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There has been an effort to investigate word segmentation in artificial languages with structures that
resemble more those of natural languages (e.g. variable word length and frequency, Frank et al., 2010;
Hoch et al., 2013; Johnson & Tyler, 2010; Kurumada et al., 2013; Schuler et al., 2017). The findings
suggest that word segmentation can indeed be affected by morphological features. One feature that
may also affect segmentation, is the existence of affixes that cannot stand alone. Many natural
languages have this -- in fact, English does have a few affixes that cannot stand alone, such as "s" in
"stands". This cross-linguistically frequent feature, could also be captured by artificial languages, and

discovered by listeners when segmenting meaningful units. However, we are unaware of a study

specifically testing whether listeners do segment out stems separately from affixes.

Previous literature on morpheme learning is mostly based on behavioural studies not related to
segmentation. Several studies show that both adults and children can parse non-words containing both
stems and suffixes (Fedzechkina et al., 2012; Finley & Newport, 2011; Finley & Wiemers, 2013;
Hudson Kam & Newport, 2009). School-aged children (Finley & Newport, 2011) and adults (Finley
& Newport, 2010) used distributional information within words to segment them into stems and
suffixes. It was suggested that the participants inferred a pattern within words, and did not simply
memorize whole words. Even 12-month-old children could distinguish between grammatical and
ungrammatical sequences after exposure to an artificial language (Gomez & Gerken, 1999), which
supports a more general pattern-based abstraction in artificial language learning (R. Gomez et al.,
2000; Marcus, 1999). All of this work strongly suggests participants are analyzing the words they are
exposed to, but they may not be segmenting items out specifically (for instance, they may instead

calculate distances with known tokens, rather than extracting the parts).

It stands to reason that learners do segment morphemes. Morphemes, like words, are building blocks
of language and the ability to extract them is fundamental. Nonetheless, it is still unclear whether
humans first focus on bigger (words) or smaller (stems and affixes -- henceforth "morphemes")
blocks, or whether they process both levels in a complementary way. For instance, infants start
segmenting word-like units into a lexicon by the age of 6-8 months (Bergelson & Swingley, 2013),
but they also seem to recognize morphemes early on in speech, in experimental settings. For example,
children learning French can parse verbs into stems and suffixes by 11 months of age (Marquis & Shi,
2015) and children learning English segment suffixes at 15 months of age (Mintz, 2013, see also
Gomez & Gerken, 1999; Mintz et al., 2002). Children learning Hungarian, an agglutinative language
with rich morphology, can decompose new words into stems and suffixes by 15 months of age

(Ladanyi et al., 2020). Those authors argue for the relevance to focus on morphemes in early language
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learning, and suggest that the existence of a large number of morphemes in a language may even

trigger a more analytic processing.

Despite the wealth of evidence that morphemes may also be readily segmented, no previous study has
looked at both word and morpheme segmentation, even though the aforementioned literature strongly
suggests that humans should process both words and morphemes in language learning. Consequently,
it is still unclear whether humans can segment morphemes out of running speech in an artificial
language, and whether, if exposed to a language with both words and morphemes, they would succeed

better in segmenting one or the other.

This study

The purpose of this study is to investigate segmentation in two meaningful unit levels, words and
stems, among adults exposed to an artificial language. The structure of the language has properties
similar to those of most natural languages; meaningful units are not only words, but also stems and
affixes (which we will call "morphemes" here). We can then ask whether human adults can segment

both words and stems in these settings. The study is preregistered in https://osf.io/fuydc. We note that

due to the COVID-19 crisis, we were unable to complete the study. Therefore, we report fully on the

design and planned analyses, but only report results for two pilots.

Three key questions will be addressed in this study:

1. Can participants segment out whole words in a language where there are affixes? If
participants can segment out words, then they will choose words more than non-words --
items that are not structurally words or morphemes. If there is no preference between the two,
this would mean that participants do not segment out words.

2. Can participants segment out stems in a language where there are affixes? If participants can
segment out stems, then they will choose stems more than non-stems -- items that are not
structurally words or morphemes. If there is no preference between the two, this would mean
that participants do not segment out morphemes.

3. Which units, words or morphemes, are better segmented? If participants segment words better
than stems, there will be a difference in the two tests above in terms of preference: They will

prefer words to non-words more than they prefer stems to non-stems.
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Predictions

The predictions of the three key questions are the following:

1. We predict that participants will segment out words in a language where words are composed
of morphemes. This is predicted, because in previous artificial language studies word
segmentation has been successful in other languages.

2. We predict that participants will segment out stems in a language where words are composed
of morphemes. There are no previous studies on morpheme segmentation of an artificial
language. This prediction is based on previous findings showing that humans are sensitive to
morphological properties, in artificial and natural language settings (e.g. language
acquisition).

3. We predict that participants will segment equally well stems and words. No previous studies
have looked at segmentation of both words and morphemes. This prediction is based on
previous findings that humans can rely on several available cues to understand a language,

sometimes performing more than one task at the same time.

Methods

Participants will hear sentences of an artificial language, where words contain more than one
morpheme. Their preference for words versus non-words and for stems versus non-stems will then be

measured. All materials and scripts can be found in OSF LINK.

Building the language

Each participant is assigned to one of four artificial languages, A, B, C or D. The languages were
generated using different orders of syllable concatenation, in order to control for any effects that could
result from a specific concatenation. A counterbalancing procedure was used to create the languages.

Language A was generated with random concatenation of eighteen syllables. The syllables were

" n N "

glu", "sin",

nn nn

ga", "kli", "ten", "ko", "blu", "tun", "man", "blo", "ti", "gle" ,"da", "pun", "go", "kan",
"fen" and "bi", and were chosen so that no syllable is a word in French. The first five syllables were
used to create three noun stems, the next five syllables were used to create three verb stems, and the
following syllables were used for the optional elements, the noun and verb singular and plural affixes

and the aspect affixes. Each syllable would have only one use in the vocabulary.



84

Language B was generated by inverting the order of the syllables (for example, the last syllable “bi”
would go first, the second-to-last syllable “fen” would go second). Language C was created by
inverting the order of syllables from the middle to the beginning, and then from the end to the middle
(for example, the syllable “blo” would go first, the syllable “man” second, the syllable “ti” last).
Language D was created by starting from the middle to the end, and then from the beginning to the

middle (for example, “blo” would go first, “ti” would go second, “man” last).

The text was converted to speech using the mac Speech Synthesis tool. Specifically, the Mexican
voice was used because the voice has a flat prosody, and in order to avoid accidental insertion of

prosodic cues in a language the participants may be exposed to. The speed of speech was fixed to 140.

Training

The auditory stimuli are presented as utterances with clearly marked utterance boundaries, as cued
both by silence and the end of a scene). Words and morphemes have meanings. In order to underline
the existence of morphemes in the language, morphemes have meanings. The participant listens to a
sentence while watching a video portraying the action described in the sentence. For example, if a
sentence contains a ‘dog’ noun stem, and a ‘walk’ verb stem, the video would show a dog walking.
The noun stem is followed by a number suffix, and the video shows one or two dogs. The verb stem is
followed by an aspect suffix, and the video shows a dog walking continuously or once. Participants
are not given the sentence in writing, nor any breakdown of the stems versus suffixes, nor of the

conceptual morphemes just mentioned.

The structure of each sentence is portrayed in Figure 1. Scenes of the videos are pictured in Figure 2.
Each sentence consists of a noun stem with its number affix and of a verb stem with an aspect affix
and a number affix (not the same one as for the noun). The sentence can have one optional element
(akin to an adverb because it can occur at the beginning or the end, but having no meaning). The
training phase contains in total 96 sentences. The content of the sentences is built to allow for certain

requirements to be respected during the test phase.

Nounstem + numberN Verbstem + aspectV + numberV
/ \ singular  plural / \ progreéi> s‘ingué plural
non progressive
Nounstem! = “dog” Nounstem3 = “cat”  Verbsteml = “flip”

Verbstem3 = “walk”

Nounstem2 = “sheep” Verbstem2 ="“jump”

Figure 1. The utterance structure.
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One requirement is having the same sum of transitional probabilities (TPs) between syllables for both
items in a test trial. Statistical learning using TPs is a primary source of evidence for segmentation in
laboratory experiments for infants (Estes & Lew-Williams, 2015; R. L. Gomez, 2012; Pelucchi et al.,
2009; Romberg & Saffran, 2010) and adults (Frank et al., 2010; Perruchet & Desaulty, 2008; Toro et

al., 2005). In those studies, participants segment out words based on TPs.

However, since in this experiment we do not test the well-established use of TPs in segmentation, the
TP information should be controlled for in the test. To this end, we adjusted the combination of stems
and affixes during training. Stems have TP=1. When comparing a stem to a non-stem, some
meaningless pair of syllables appearing next to each other should also have TP=1. This happens by
presenting some verb stem with the same aspect affix. For example, the noun stem (‘dog’) appears
systematically in singular, and the noun stem (‘sheep’) appears systematically in plural. Similarly, the
verb stem (‘flip’) appears systematically with a non-progressive affix, and the verb (‘jump’) with a
progressive affix. For these two noun and verb stems, TP between stem and affix equals 1. The noun
(‘cat’) and verb (‘walk’) appear with all combinations of affixes and in the same number of times for
each affix. For them, TP between stem and affix equals 0.5. The average TP between a noun affix for

number and the first syllable of a verb stem is 0.33.

1.4
1.%

Figure 2. Above: Videos after the pilots. In the first video, a cat walks. In the second video, two cats are walking.
Below: The same videos before the pilots.

1.4
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Testing

In total, the test phase consists of 30 paired-forced-choice trials. Videos are not shown during the test
phase, and stimuli are presented purely auditorily. Fourteen trials have word and non-word pairs (six
nouns versus non-nouns + eight verbs versus non-verbs). Sixteen trials have stem and non-stem pairs
(eight noun stems versus non-noun stems + eight verb stems versus non-verb stems). A noun word is
a noun stem with an affix indicating number. A verb word is a verb stem with an affix indicating

aspect and an affix indicating number. Stems are presented bare.

Once the familiarization period is over, participants are asked the following: ‘Vous allez maintenant
entendre 2 sons. Quel son ressemble le plus a la langue que vous venez d'entendre? Ne réfléchissez
pas trop et allez-y avec votre instinct!" (“You are now going to hear two sounds, which one sounds
better for the language you just heard? Don’t overthink it and follow your gut”). They then need to
press a button after hearing each trial: the left button if they think that the first item works better, or

the right button for the second sound.

At each trial, the participant hears a correct and a false stimulus. Several conditions are respected
during the test. Each test item has at least 2 syllables, to avoid missing or mishearing a (very short)
sound. Both items have the same length, but also result in the same sum of (forward) Transitional
Probabilities, and have the same frequency (or, rarely, the incorrect option has a larger frequency than
the correct option). This way, no other cue could affect the preference of one versus the other item,

other than the preference for a meaningful versus a meaningless unit.

Participants

Participants should be at least 18 years old, with French as their native language. The experiment lasts
20 minutes and they will be paid for participation. The study was initially designed to be tested in the
lab, however, due to the current sanitary situation, it will be updated for online testing. Our target size
is 52 participants. We estimated that this would be a sufficient number of participants, given that
previous similar studies using artificial language segmentation experiments with adults found and
average effect size of 0.46 (Cunillera et al., 2010; Frost & Monaghan, 2016; Hoch et al., 2013;
Perruchet & Desaulty, 2008; Toro et al., 2005; Tyler & Cutler, 2009). Eligible for inclusion are all
subjects who complete the experiment (meaning that they answer all test questions) and are not

interrupted by an external factor (for example someone enters the room) during the experiment. In the
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online version of the experiment, a test for attention will be included. Outliers will not be excluded in

the analysis.

Statistical Analysis

For the analysis, we will fit a generalized linear mixed effect model using the Ime4 library in R'(R
studio team, 2015). The participants’ answers (correct/wrong) are the dependent variable, the level
(stem/word) and number of trial (1st, 2nd...) are fixed variables. The random effect of the participant

is included, with level and number of trial as random slopes.

Results

Prior to the onset of the COVID-19 crisis, two pilot studies were conducted, each with eleven
participants. The first pilot indicated three issues with the study. First, many participants reported that
the successive presentation of similar sounds during the test phase was distracting. Second, some
participants felt that the familiarization period was too long. Third, some participants did not notice a
difference in verb aspect in the videos, e.g. they considered the ‘walk’ and ‘walking’ videos as
describing the exact same action. We addressed all issues in a second pilot. The repetition of the same
stimulus or of a stimulus with the same stems is now avoided in successive trials. A message to the
participant appears in the screen after completing 25%, 50% and 75% of the training, congratulating them
for completing the corresponding part of the study. The duration of the action in the videos with
progressive actions was increased. However, the latter effect persisted for some participants in the second

pilot, so we have now added a "narrator" figure next to the videos.

We present next an analysis of the quantitative results of the second pilot. Figure 1 and 2 show the
distribution of correct and wrong answers for the two levels (word and stem). Visualisation of the
results shows that there were more correct than wrong answers for both levels. With respect to the
three key questions, we observe that:

1. Based on the intercept in a regression with the word level as baseline, the word trial
coefficient is 0.83 (SE=0.436, p-value=0.057). Thus, recognition of words is marginally
significant in this pilot.

2. Based on the intercept of a regression with the stem level as baseline, the stem trial coefficient
is 0.633 (SE=0.342, p-value=0.064). Thus, recognition of stems is marginally significant in
this pilot.

' glmer(formula= thisresplog ~ level + numberoftrial +(1 + level+ numberofirial|luniqueid), control
= glmerControl(optimizer = "bobyqa"), family = binomial(link = "logit"), data = pilot long log)
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3. Based on the level as a fixed effect in a regression with the stem level as baseline, the
coefficient for level is 0.197 (SE=0.261, p-value=0.451). Thus, recognition of words versus
stems is not significantly different in this pilot. The trend is for more accurate responses for

word trials than stem trials.

150-

100 - Response
. correct
[] wrong

50

Number of trials

word stem
Level
Figure 3. Number of total correct and wrong answers per level for all participants. There are slightly

more trials for stems than words (14 word trials and 16 stem trials per participant).
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(=]

.

stem word
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Figure 4. Proportion of correct answers per level and participant.

In a further exploratory analysis, we ask whether there is a difference in segmentation between verbs
and nouns. Verbs might be more difficult to segment than nouns, for example due to the presence of
more morphemes per word on average. We investigate this by including type (noun /verb) as a fixed
effect variable and as a random slope. In the pilot results, the type coefficient is -0.268 (SE=0.407,

p-value=0.51). It seems that nouns and verbs have a similar level of difficulty.
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Discussion

Before analysing the results, we need to emphasize that only eleven subjects participated in the pilot
study analyzed. Consequently, this analysis is underpowered. We aim to resolve this issue in the main

study. Nevertheless, we attempt a tentative interpretation of the preliminary results below.

Based on the results for the first key question of the study, we observed that participants tend to prefer
words to non-words, meaning that they segment words out of running speech in this artificial
language. These results agree with our predictions. However, what makes the difference with previous
studies is that participants were not based on TP or other specific cues (e.g. length, frequency) to
choose the correct answer, as both words and non-words in each test trial had the same cues. The
participants would only be able to segment words and morphemes out of speech after identifying them
as meaningful units of the language, through a more abstract process of pattern recognition and/or

association with meaning.

Based on the results for the second key question of the study, we also observed that participants tend
to prefer stems to non-stems, meaning that they segment morphemes out of running speech in this
artificial language. These results agree with our predictions. Similarly as above, participants could not
have been based on TP or other specific cues during the test, since these cues were controlled for. This
result is consistent with the idea that participants consider minimal meaningful (or at least

recombinable) units when hearing an unknown language.

Importantly, the results for the third key question of the study show that, when participants get
(briefly) exposed to an artificial language, they focus on at least two levels, words and morphemes, in
order to extract meaningful units of the language. This corresponds to previous observations that
humans exposed to languages with natural language characteristics and thus rich structure, can
perform more than one task simultaneously, and may take advantage of the rich morphosemantic
information of a language, in order to decipher the input. Similar findings are crucial for language
acquisition, as children are also frequently exposed to natural languages with rich structure. If humans
are capable of attending to more than one level and segmenting out morphemes, then children would

also have a head start when exposed to such natural languages.

Last, no significant differences were found when segmenting nouns or verbs, showing that the two
word classes were overall processed in a similar way. However, visualisation of the results shows

larger variance in answers for the word than the morpheme level. This should be investigated further
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in the main study. Moreover, if the main study confirms the patterns observed in the pilot, we plan to
conduct future studies, in order to further test whether participants successfully associate unit forms
with their referents in the video, and whether participants can successfully segment out morphemes
and words after addition of more morphemes. If the main study disproves the patterns observed in the
pilot, we plan to facilitate the task, by removing some morphemes. Planned conditions of the main
study also include checking the relevance of meaning in segmentation, by removing the videos (and

all their semantic information) and presenting the language in an audio-only condition.

Last, some limitations of the study should be mentioned. Our artificial language, even though inspired
by natural language characteristics, is simple enough to be learnable after a short exposure. The goal
of this study is to inform questions concerning the relationship between language segmentation and
language structure, and to invite for further research on both morpheme and word segmentation, in
both artificial and natural language settings. Moreover, we could measure the learning output after
exposure to the language, but we cannot be sure what mechanisms were used by the participants to
segment it. Further research can focus on this aspect, for example by modeling language learning with

specific segmentation mechanisms, in order to compare the results.
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6. Conclusions

With these three studies, we attempted to contribute to the literature of cross-linguistic learnability.
First, we used input from longitudinal recordings of typologically diverse languages for modeling
experiments in Chapters 3 and 4. We also created a language inspired by features of morphologically

rich languages for an artificial language experiment in Chapter 5.

Second, we identified specific diversifying features across languages in the morpholexical level e.g.
word token frequency. We argued that these features should affect word segmentation. In Chapter 3,
we observed that after selection of two languages in theory very diverse in terms of morphological
synthesis, Chintang and Japanese, the between-corpus differences of relevant features, such as
morpheme to word ratio, were smaller than expected. This is evidence that theoretical complexity of a
system does not necessarily manifest in the same way in everyday speech, and even less, probably,
when this speech is directed to children. Child-directed speech has long been considered a simplified
register (e.g. Genovese et al., 2020), where lexically and syntactically complex elements are less
frequent. Thus, differences across linguistic systems may get attenuated within child-directed speech.
Future research should address this by quantifying differences between everyday overheard speech

versus speech directed to children. We look at this in detail in Part 2.

Moreover, the features we identified did not explain away the effect of language in Chapter 3. This is
evidence that in natural language, such factors may be confounded with other linguistic aspects, and
thus their importance is less pertinent than what would be found in a carefully controlled experiment
testing a specific feature. One other interpretation of the results is that morphological diversity, as
expressed by these characteristics, is simply not a factor for segmentation. Future research should
consider including more typological features accounting for diversity, such as phonological and

syntactic properties, as well as interactions between them.

Third, in the same chapter, we found that differences across models are larger than differences across
languages. This is an important finding in itself and invites for further research, as it shows that
diversity in segmentability was mainly not due to the differing input, but due to the strategies that
were used to process it. Also, the outcome of this study was indicative of some order of performance
across strategies: some models performed better than others for the two languages, and seemed to be
more affected by the language effect than others (at least by the morphological effect, as was studied
here). We decided to investigate this matter further, by testing more languages, which we did in

Chapter 4.
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In Chapter 4, we identified three specific criteria of evaluation for the performance of our
segmentation strategies. First, the models should be cross-linguistically stable. Do they perform
relatively well or badly across languages? Second, the models should have a high segmentation
performance, which we defined as performing above chance. Third, we included the concept of error
plausibility, with respect to over- and under-segmentation. We believe that these criteria are indicative

of a viable learning model, and they may be used for evaluation in future modeling studies.

Most models respected the viability criteria, which is supporting evidence for the performance of
several segmentation strategies in cross-linguistic, naturalistic input. However, performance for two
languages, Russian and Inuktitut, diverged compared to the rest of the languages. This is a matter that
should be investigated further. One possible explanation is the existence of a corpus artefact: Perhaps
these two corpora have some particularities which cause the failure of the models, regardless of
language. Future research could reproduce this study using parallel corpora (a collection of corpora,
each of whom is the translation of the other) - this way, we can make sure whether this divergence is

due to the challenging structures of these particular languages or not.

Moreover, in Chapters 3 and 4 we made use of corpora whose languages were supposed to be
maximally different in specific aspects. We believe that cross-linguistic comparison in future studies
should ideally happen under these terms. This way, we can identify the main source(s) of difference
between languages. Cross-linguistic comparisons including any language, risk to yield

underinformative and not easily interpretable results.

Fourth, in Chapters 3 and 5, we addressed the issue of comparability. In Chapter 3, we asked whether
difference in segmentability across languages is mitigated when we reframe the concept of word
segmentation as segmentation of meaningful units. For this, we conducted a modeling study. Results
from the first study showed that language differences are indeed reduced when segmentation is not
strictly based on one level. We further argued that considering morphemes as well as words may be

beneficial for early language learning, especially for morphologically rich languages.

In Chapter 5, participants got exposed to an artificial language where segmentation could happen
across a word and a sub-word level. Preliminary outcomes are evidence that adult participants adapt
fast to the particularities of the linguistic structure, and consider both minimal meaningful units and

words when listening to an unknown language. Words may thus not be considered as a unique (or
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even standard) segmentation level across languages. Future research on younger participants is needed

in order to confirm whether this holds true during early language learning.

Finally, the use of ecological input from different languages automatically meant that we would use
input also from different cultures and upbringing settings. This aspect of diversity becomes obvious
when we compare input from Chintang and Japanese: a considerable part of input heard by
Chintang-learning children is either overheard, or addressed to them by other children, and not adults.
On the contrary, input heard by Japanese-learning children is mostly directed to them by their own
parents. This can be problematic, as input may differ depending on the speech register and the
speaker, even within the same language. Thus, cross-linguistic aspects in acquisition interact with
cross-cultural aspects. We thus decided to address this issue in the next part of the dissertation, Part 2.
Are there differences in input from different registers and speakers? How large are these differences

cross-culturally? And are they relevant to segmentation?
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Part 2

7. Diversity across cultures

What is heard by children in North American or European middle class families is only one way
children are talked to. As noted by Ochs & Schieffelin (1984), “the general patterns of white
middle-class caregiving that have been described in the psychological literature are characteristic
neither of all societies nor of all social groups” (p.283). Given this variation, it is surprising that most
research published in language acquisition journals is drawn from one specific sample: Western,
Educated, Industrialized, Rich and Democratic (WEIRD) communities (Diesendruck, 2007).
Generalization of WEIRD findings to other populations is not obvious (Nielsen et al., 2017).

In this section, we are going to look at cross-cultural diversity. Child input varies enormously within
and across cultures (Fouts et al., 2012; Low & Stocker, 2005). The difference in the extent and
manner of adults’ talk to children (Hoff, 2006), can be found across many dimensions (e.g. number of
siblings, rural vs urban place, literacy, multilingualism, income and socioeconomic status, parental
education), as we detail in Chapter 7.1. The dimensions can be so many, that the acronym WEIRD /
non-WEIRD may in fact be too abstract to capture cultural diversity in some cases. In 7.2, we turn to

evidence from acquisition. These variables set the stage for the investigations in Chapters 8 and 9.
7.1 Input across cultures

7.1.1. Variation in quantitative and qualitative features of language input

In this section, we will look at quantitative and qualitative differences in input speech across cultures.
The issue of quantity of speech has received a great deal of attention in recent literature, and will be
described in this paragraph. Hoff (2006) considers that the amount at which adults engage children in
communicative interaction is a cultural variation in input. North American mothers talk to their
children since birth (Snow, 1977). In other cultures, such as the Mayans of Mexico (Casillas et al.,
2019), caregivers rarely address their children. Yucatec Mayan children hear less speech, only a small

amount of which is directly addressed to them (Shneidman & Goldin—Meadow, 2012).

Next, we mention some differences across cultures with respect to quality of input. Speech addressed
to children is frequently discussed, due to its specific speech features observed in Euro-American

families. Caregivers use ‘baby language’, or else child-directed speech (CDS), which seems to be
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linguistically adapted for children and prefered by them (Soderstrom, 2007). It has reduced
vocabulary, shorter utterances, longer pauses, more repetitions and rephrasings than adult directed

speech (Hoff, 2006).

Even though these CDS features have been detected in several languages, such as French, German,
Italian, Japanese, British and American English, some appear more extreme in American English than
in other languages (Fernald et al., 1989); CDS is subject to cross-cultural variability. For example, in
Inuit villages, baby language is not a desirable speech register at all (Crago et al., 1993). CDS from
adults to young children is far from universally uniform (Lieven, 1994). This subject will be further
discussed in Chapter 8. Cross-cultural diversity has also been identified in the subjects of
conversation. For example, EuroAmerican parents seem to provide more information about objects

than African American or Japanese parents (Lawrence & Shipley, 1996; Toda et al., 2009).

7.1.2. Tracing the sources of input variation across and within cultures

Overall, cross-cultural diversity is correlated to factors within cultures, such as socioeconomic status
(SES) and parental education. These factors will not be dealt with in this dissertation, but we describe
them briefly here. Hart & Risley (1995) documented that 2-year-old children growing up in American
English high-SES families heard more words than those in low-SES families. SES differences have
also been found in vocabulary (more word types and tokens in high SES speech, Hart & Risley,
1995), and syntax (Huttenlocher et al., 2010). Similarly, college-educated mother input is more in
quantity, lexically and syntactically richer, and contains more questions than input from high-school

educated mothers (Hoff-Ginsberg, 1991).

The number of siblings is another factor. Firstborn children seem to receive more speech from their
mothers than later borns (Hoff-Ginsberg, 1998; Oshima-Takane & Robbins, 2003; Snow, 1972), and
more complex speech than later borns (Hoff-Ginsberg, 1998). However, Woollett (1986) notes that
language environments for a younger sibling should be stimulating for learning; speech between older
siblings and the mother is very interactive, frequently referring to events, objects, or the younger
sibling. Thus, such environments could provide developmentally complex and salient models of

language.

Last, the above mentioned aspects of cross-cultural diversity relate to the issue of dyadic studies.
Previous literature has focused on mother-child interactions (but see Weisner et al., 1977; Woollett,
1986), despite the fact that most children around the world grow up in polyadic situations, and

nonparental caretaking is common across societies (Lieven, 1994). Caregiving in diverse cultures
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relies heavily on extended family (e.g. Dilworth-Anderson, 1992), thus linguistic input may not
necessarily come from the mother. In Indigenous Australian communities, for example, older children
look after younger children. In Arnhem Land, children enter a peer group since they are two years old
(Hamilton, 1981). Connelly (1984) observed that, in some Lesotho villages, siblings and peers as
young as 2;1 years old have caregiving roles, speaking to the younger child with simplified speech
(also see Demuth, 1992). This input is likely to differ from parental input (Loakes et al., 2013), but

there are hardly any studies on its nature. We further address this issue in Chapter 8.

7.2 Language acquisition across cultures

7.2.1 Analysing previous learning outcomes

We still know very little about what children hear in diverse cultures, and evidence on learning
outcomes in acquisition across cultures is also limited. Of these studies, even fewer studies have
looked at differences in segmentation outcomes, since previous research has focused on differences in
lexical and syntactic development through production. For example, one thing that varies as a
function of culture seems to be the amount and content of children’s productive vocabulary (Hoff,

2006; Tardif et al., 1999).

Moreover, most cross-cultural work derives from ethnographic studies and is
anthropologically-oriented, with little systematic research on language learning. Some language

information provided may sometimes be qualitative observations of the investigators.

One exception is a recent longitudinal paper that studied language learning of Tseltal Mayan children
(Casillas et al., 2019). These children are infrequently addressed and hear little adult CDS. Even
though the authors expected a divergence in lexical development, compared to middle-class English
norms, Tseltal children learned language early on and produced their first words at the same age as
English children. Obviously, these children extract enough information from the linguistic
environment, even though they are not directly addressed to. Similar results were reported by
Shneidman & Goldin-Meadow (2012). Interestingly, these authors found that children’s early words
were predicted by adult CDS (and not overheard speech or speech by other children), even though

they heard very little of it (compared to input of middle-class Euro-American children).

What previous ethnographic work exists, shows similar patterns of language acquisition; children

learn language early on despite hearing little CDS (Brown & Gaskins, 2014; Liszkowski et al., 2012;
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Ochs & Schieffelin, 1984). Crago et al. (1997) argued that Inuit children, who receive little directed
input, acquire Inuktitut at ages comparable to middle class North American children. Lieven (1994)

also observed that across-cultures children tend to learn language at around the same time.

A way that children may extract information is from non-directed/overheard speech, by listening to
nearby speech addressed to other people. Children seem to be good at observing and learning from the
interactions and behaviors taking place around them (Ledn, 2011; Rogoff, 2003). According to
behavioral experiments, two-year olds learn referents presented in a third party conversation (Akhtar
et al., 2001), even if they are simultaneously engaged in another activity, or if the label is in a non
salient position in the sentence (Akhtar, 2005). Dunn & Shatz (1989) provided naturalistic evidence
that two-year-old children understand much of the conversations they overhear. According to Barton
& Tomasello (1991), 19-month-old English-speaking children are capable of participating in
mother-sibling-child conversations. Children were as likely to respond to comments directed to
another person as they were to those directed to themselves. Moreover, in artificial language studies,

children also implicitly acquire at least some complex structures (Finn et al., 2014).

7.2.2 Linking input to learning outcomes

We discuss here some variables of input speech previously mentioned to account for lexical and
morphosyntactic development, and which may differ cross-culturally. The overall quantity of CDS is
one of them; more input seems to lead to faster vocabulary growth for English-learning children
(Diesendruck, 2007; Hart & Risley, 1995; Weizman & Snow, 2001), accounting for 16% of the
variance in 2-year-old children’s utterance length growth over the following 9 months (Barnes et al.,

1983).

CDS is supposed to facilitate early word learning in English-speaking (Bakermans-Kranenburg et al.,
2004; Cartmill et al., 2013; Rowe, 2008) and Spanish-speaking families (Weisleder & Fernald, 2013),
by providing a simple-to-learn language model. Specifically, utterance repetitions are positive
predictors of English-learning children’s grammatical development, predicting 18-40% of variance
(Hoff-Ginsberg, 1986), and frequency and diversity of verb frames in input predict child verb use
(Naigles & Hoff-Ginsberg, 1998). The number of word types produced by mothers predict the number
of word types of their two-year-olds ten weeks later (Hoff & Naigles, 2002; Hoff-Ginsberg, 1986).
Long utterances and questions in CDS contribute to syntactic development (Choi & Gopnik, 1995;
Hoff-Ginsberg, 1998; Huttenlocher et al., 2010). We hypothesize that some of these or other features

of CDS may also predict segmentation, being one of the first tasks children need to tackle.
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Nevertheless, CDS also has words, sounds and sentences which are rather complex (CVC syllabic
forms, sound sequences, ...)(Gierut, 2007). Fernald & McRoberts (1996) documented that boundary
markers in English CDS are not reliable enough for bootstrapping, as utterances often have
non-canonical structures. Ludusan et al. (2015) showed a lower recall and cluster collocation in
English CDS than adult-directed speech (ADS), even though it had better prosodic boundary
information than ADS. These outcomes are inconsistent with the view that IDS is clearer and simpler

than ADS, at least as far as segmentation is concerned.

With respect to modeling segmentation, some work has addressed the issue of learnability in diverse
registers. Ludusan et al. (2017), based on Japanese CDS and ADS laboratory-collected data, found a
smaller difference in segmentability between these two registers than previously reported (Batchelder,
2002). A smaller and even reversed difference in segmentability was found for ecological CDS and

ADS of English-speaking families (Cristia et al., 2019).

Future studies need to investigate the features of CDS, and quantify their exact impact on
learnability. However, it is important to do so considering that, cross-culturally, CDS features
vary; CDS may be produced by different speakers, and consist of very different qualitative

features.

7.2.3 Comparing learning outcomes across cultures

Cross-cultural outcomes should be evaluated with caution. An ethnocentric bias hindering
comparability has been brought up in the field, as measures of affection are sometimes adjusted to
Western ways of thinking (Rogoff, 2003; Rothbaum et al., 2000). For example, Quiché CDS may not
have some features frequently found in English CDS, but it has eight different special features,
including whispering, initial-syllable deletion, a verbal suffix appearing only in CDS, and fixed word

order (Pye, 1986).

The use of standardized tests (e.g. reading and vocabulary tests) has also raised issues of
comparability. For example, children speaking African American English (AAE) receive the same
language tests as other American English-learning children, but their free play consists mostly of
code-switch, complex syntactic forms and a special use of semantics (Craig & Washington, 2004).
Interestingly, some children shift to using fewer AAE features once at school, and these children

outperform their peers who do not shift to AAE on standardized tests.
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One other issue concerns object-oriented and high-density CDS activities such as book reading, which
are rare in some communities. It can be challenging to compare speech to children across different
activities, and in different, culturally-appropriate routines. Woollett (1986) reported that mother to
child interactions are largely dependent on context. Goldfield (1993) documented that toy play incites
the production of more nouns than verbs, whereas the opposite happens during non-toy play (physical
play). Similar patterns have been reported for English and Mandarin Chinese (Tardif et al., 1999),
Korean (Choi & Gopnik, 1995) and Japanese-learning children (Ogura et al., 2006). The acquired
vocabulary thus depends on caregiver-child interaction norms. Whereas for English-learning
children, much time spent with caregivers consists in naming objects, and many words acquired are

basic-level object nouns, this may not be the case across communities.

Last, researchers typically record one or a few hours of a child’s input. However, the input of a child
may differ depending on the time of the day (Casillas et al., 2019; Soderstrom & Wittebolle, 2013;
VanDam et al., 2016). Recordings at specific times reflect temporary conditions, such as a particular
conversation during the session (Huttenlocher et al., 2010). Few sessions cannot fully capture the

diversity of input and production, sometimes even due to corpus artefacts and contexts.

7.3 Future research

Montag et al. (2018) emphasizes that there is a lot we don’t know about language learning, and that
“we need to understand all this if we are to tell parents how they should talk to their children” (p.22) -
also see Leffel & Suskind, (2013) and Roberts & Kaiser (2011). Casillas et al. (2019) concludes that
more quantitative and reproducible methods in diverse contexts are needed, in order to learn more
about language learning. One way to investigate different contexts is by testing scaled-up, diverse
input. Quantitative metrics may include corpus analysis, a useful means of quantifying diversity in
input, and modeling. In Chapters 8 and 9, we address these by implementing segmentation

modeling and corpus analyses in diverse, naturalistic settings.

Due to the WEIRD bias and other methodological issues of previous studies discussed above, it is still
unclear what input is heard across cultures. Previous evidence, though, suggests that there is no
standard way that children are addressed to. In particular, the amount of directed input varies and the
role of CDS is not obvious when we look at language learning at scale (Gierut, 2007). In different
environments, CDS is rare, or it does not have facilitating features. However, children growing up in
these environments somehow learn language. Moreover, there is still little information on other
speech registers often present in children’s ambient input, such as overheard speech. In Chapters 8

and 9, we address this by comparing child-directed and child-overheard speceh, as they were
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heard by children in a non-WEIRD and a WEIRD culture. We attempt a comparison of specific

features, and ask whether they can explain away segmentability differences in Chapter 9.

Finally, acquisition does not always happen through a mother-child dyadic interaction, and the role of
different speakers should also be taken into consideration, especially in cross-cultural studies. Living
in households with more people than a typical North American family might suggest that children
could get enough language input, even if it does not come from the direct family. For example, other
children and adults often have prominent caregiving roles. We address this by comparing the
contribution of other speakers’ child-directed and overheard input in a non-WEIRD and a

WEIRD culture, in Chapter 8.
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8. Child-directed and overheard input from different speakers in two

maximally distinct cultures *

Abstract: Mother-child dyad speech has long been the focus of early input studies, despite evidence
suggesting that non-maternal input can be important for language outcomes. Additionally, in many
communities (particularly non-WEIRD ones), interaction occurs with multiple speakers rather than
mostly the mother. Yet, few studies describe CDS from various speakers, and even fewer investigate

this across cultures.

In this study, we analyze speech produced around and to children by their mother, other children and
adults, in two diverse cultures. We ask who produces the input, and how much of it is child-directed.
We also ask whether different speakers vary in terms of utterance length, function (ratio of questions)
and lexical diversity. To answer these questions, we annotated three corpora. The non-WEIRD
Demuth corpus in the Sesotho language was recorded in non-industrial South African Lesotho. We
also annotated recordings from the WEIRD Lyon and Paris corpora for three children- those with

siblings, and the same age range as in the Demuth corpus.

CDS is significantly prevalent over overheard speech for both settings. However, the input
composition is dramatically different; maternal input is more dominant in the WEIRD corpora
compared to the non-WEIRD one. In the latter, other children's input is more prevalent than maternal
input. Interestingly, in terms of speech quality, other children’s and adults’ CDS present similarities
with maternal speech within each culture. These results invite further cross-cultural early input
research, in order to check if these speech compositions and qualities are representative of WEIRD
and non-WEIRD quantifiable distinctions, and the impact these might have for language

development.

*Loukatou, G., Scaff, C., Demuth, K., Cristia, A. & Havron, N. Child-directed and overheard

input from different speakers in two maximally distinct cultures. (under review)
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Child-directed and overheard input from different

speakers in two maximally distinct cultures

The amount and quality of early language input are factors affecting children’s language
development, and have drawn substantial attention in research (e.g. Hart & Risley, 1995; Hoff
& Naigles, 2002). For example, some research shows that children’s vocabulary skills
correlate with the amount and quality of input speech that mothers offer children during
day-to-day interactions (Hoff, 2003; Hoff & Naigles, 2002; Hart & Risley, 1995). However,
previous literature has mostly focused on maternal input. Relatively little attention has been
devoted to input from other children and adults. In this paper, we will describe input from

corpora where other speakers, in addition to mothers, talk to children.

Most previous studies on language input are based on families living in middle-class
Euro-American communities. Indeed, Henrich et al. (2010) observed that most participants in
psychological studies come from a Western, Educated, Industrialized, Rich and Democratic
(WEIRD) population sample, and this bias is also obvious in developmental studies (Nielsen
et al., 2017). Recent evidence points to the fact that input differs depending on the culture of
the family (e.g. Cristia et al., 2019). What limited literature exists supports the idea that

different populations also have different norms about who is expected to speak to children.

Sources of input

In most middle-class Euro-American families, parents are expected to have absolute

responsibility over their children. Consequently, most studies focus on parental input, rather
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than input from non-parental speakers (e.g. Bakermans-Kranenburg et al., 2004; Huttenlocher
et al., 2010; Ispa et al., 2004; Pan et al., 2005). Moreover, in these families, the mother
typically has the role of primary caregiver (e.g. Roopnarine et al., 2005). As a result,

mother-child dyad speech has long been emphasized in early input studies.

However, the focus on the mother as the primary caregiver might not reflect universal human
tendencies. There is evidence suggesting that mothers are not always the sole, or even
principal caretakers (e.g. Shneidman & Goldin-Meadow, 2012; Weisner et al., 1977).
Caretaking of a child by an individual who is not the mother is referred to as allomaternal
care. Responsibility for care can be shared among a circle of individuals, kin and non-kin,
older siblings, peers or cousins, as part of common daily routine around the world (Fouts et
al., 2012). Even in middle-class Euro-American families, siblings might play some caretaking
role. For instance, in an experimental setting with 57 American mothers and their preschool
children, Stewart & Marvin (1984) found that when the mother left the room, 51% of older
siblings engaged in caretaking activities. Sibling caretaking has also been documented in blue
collar African-American and Latino families, where most play also happens among siblings
(Zukow-Goldring, 2002). Lower income Euro-American families also seem to rely more than

middle income families on extended kin for child care (Hofferth, 1995).

Across diverse cultures, the need to study more speakers than the mother is even more
evident. Using an ethnographically-detailed sample of 186 societies, Barry & Paxson (1971)
found that only 46.2% of the societies had mothers as principal caretakers. After infancy, this
proportion decreased by another 19.4% (see also Weisner et al., 1977). During infancy, adult

family members are the principal companions or caretakers in 39.8% of the societies (32.3%
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are mothers or other females), children rank second (16.7% females, 24.8% overall) and other

females, including employees, third (9.1%).

More generally, anthropological evidence finds that siblings are frequent allomaternal carers
across cultures, for example in Ngoni of Malawi, (Read, 1968); Dusun of Malaysia,
(Williams, 1971); Java, (Geertz, 1989); Kwoma of New Guinea (Whiting, 1941); Polynesia
(Martini & Kirkpatrick, 1992). In Hawaiian families, caretaking is shared among parents,
neighbors, kin, and almost always children (Gallimore et al., 1974). These results also relate
to household size, as larger household size means more opportunities for allomothering. For
example, the total number of siblings and incidence of sibling caretaking seem to correlate in
Hawaiian-American families (Gallimore et al., 1974). Families tend to be larger

cross-culturally than is the case for the United States (Burch, 1970, 1979).

Even when children in the environment are not allomaternal carers, they may play with the
younger child, and therefore have an opportunity to provide linguistic input. Play in children
groups of the same or mixed age is another way to expose oneself to language. Children
growing up in middle-class Euro-American families interact in groups of other children on
many occasions, such as in preschool and kindergarten (even though these interactions are
usually monitored by adults). According to O’Shannessy (2013), in many
Australian-Indigenous communities, children spend a great deal of time interacting with other
children. In Arnhem Land, children are absorbed into peer groups by the age of two years
(Hamilton, 1981). In Guatemala, children at the age of two years start spending their time

with other children and seldom look for adult attention (Rogoff, 1981).
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Other adults should also be considered as a potentially important source of input. For
example, according to the Census 2000 (Simmons & Dye, 2003), 5.8 million grandparents in
the United States were either primary caregivers raising grandchildren, or living as
coresidents and helping to care for grandchildren (see also Standing et al., 2007). Caregiving
by other adults, such as grandmothers, is common in many cultures, including many African

communities (e.g. Thupayagale-Tshweneagae, 2008).

Despite these facts, few studies describe input to children produced by other family members
such as siblings (but see Hoft-Ginsberg & Krueger, 1991; Weppelman et al., 2003), and other
adults (but see Shute & Wheldall, 1999, 2001). Our study will take a step into filling this gap
by analyzing the amount and quality of input speech children receive in diverse communities

by mothers, other children, and adults.

Quantity of input

Across cultures, the total amount of input directed to children differs. Children may be
addressed by their caregivers only rarely, sometimes because they are not seen as
communicative partners (Lieven, 1994). This has been noted, for example, in Gusii mothers
in Kenya (Richman et al., 1992), Gapuners in Papua New Guinea (Kulick, 1992), Kaluli in
Papua New Guinea (Ochs & Schieffelin, 1994), Samoans in Western Samoa (Ochs &
Schieftelin, 1994) and Javanese speakers in East Java (Wolff & Poedjosoedarmo, 1984). This
difference might be especially relevant when studying the role of different speakers, because,

as mentioned above, cultures vary in who spends time with the child.
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A study based on daylong recordings found that Tseltal Mayan children are only infrequently
directly spoken to by adults: a day-wide average of 3.63 min per hr (Casillas et al., 2019),
which is approximately a third of what found for North American children (11.36 min per hr,
Bergelson et al., 2019), but is comparable to that for Tsimane children (Cristia et al., 2019)
and Yucatec Mayan children (Shneidman & Goldin-Meadow, 2012). Meanwhile, Tseltal
children hear a lot of other-directed speech (ODS), averaging 21.05 min per hr, which is more

than has been previously reported for other cultural settings (e.g., Bergelson et al., 2019).

Child-directed speech is not an exclusive source of input, and these studies do not rule out
that other registers and speech from other speakers might also contribute to the child’s input
(Soderstrom, 2007). Even though they are not directly addressed by adults, Tseltal children
somehow extract enough information to produce canonical babbling, first words, and word
combinations at approximately the same ages that North American English-learning children
do (Casillas et al., 2019). Some researchers argue that at least some amount of early language
learning must be based on overheard, rather than child-directed speech (e.g. Ochs &
Schieffelin, 1994). Lieven (1994) suggests that the child-centered style of speaking is one
way of enabling children to learn language, but it is not essential, and concludes that children
around the globe tend to learn language at approximately the same time, despite the many

diverse ways of speaking to (and around) them.

Indeed, children are good at observing and learning from interactions taking place around
them (e.g. Rogoft, 2003 - see also behavioral experiments from Akhtar, 2005 and naturalistic
evidence from Barton & Tomasello, 1991 and Dunn & Shatz, 1989). We should also consider

the fact that ODS is not necessarily speech directed to adults, but it can also be directed to
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other children, especially in communities where children spend a lot of time together. Speech
directed to other children, even though overheard, may be easier to follow and of higher

relevance to the child than speech directed to adults.

Whereas in US families, siblings seem to address their younger siblings much less than their
mothers do (Oshima-Takane & Robbins, 2003), a study on the Tsimane
forager-horticulturalist society in Bolivia found that while 42% of child-directed speech came
from the mother, 37% came from other children, and the rest from other adults (Scaff et al., in
prep.). According to Shneidman & Goldin—Meadow (2012), the amount of utterances spoken
by other children was higher in a Yucatec Mayan village than in Chicago (68% vs. 10% at 24
months), and unlike in Chicago, a sibling talked to the target child more than an adult would.
Yakanarra children interlocutors also address markedly more input to younger interlocutors
than older interactants do (Loakes et al., 2013). Mothers were not the major source of

language input for Luo, Koya and Samoan children (Snow & Ferguson, 1979).

Quality of input

Quantity is not the only aspect of input that matters. The quality of input (here, its
morphosyntactic, lexical and interactional properties) is important. The input addressed to a
child is called child-directed speech (CDS). CDS is preferred by children to adult-directed
speech (ADS) (The ManyBabies Consortium et al., 2020), it seems to promote language

learning (Soderstrom, 2007) and can differ in quality from ADS along many aspects.

Some of the earliest work on CDS reported that it is a register adjusted to child listeners,

exhibiting syntactic, phonological and lexical simplification. Specifically, maternal CDS is
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characterized by a large number of questions (e.g. Kruper & UZgiris, 1987; Toda et al., 1990),
repetitions (e.g. Hoff, 2006), shorter utterances and low type-token ratio (e.g. Henning et al.,
2005). CDS may also be helpful for word learning, due to a preponderance of single word

utterances (e.g. Brent & Siskind, 2001).

Although American English is the most studied language with respect to CDS, there is
evidence for some properties of CDS in a variety of languages, including French (Loukatou
et al.,, 2019; Veneziano & Parisse, 2010), German (Fernald & Simon, 1984), Japanese
(Fernald & Morikawa, 1993), Spanish (Weisleder & Waxman, 2010), Hebrew (Adi-Bensaid
et al., 2015), Turkish and Mandarin Chinese (Shi et al., 1998), British English (Shute &
Wheldall, 1999), and Australian English (Lee et al., 2014). CDS word tokens and types are a
better predictor of vocabulary acquisition than overall heard tokens and types (Brent &

Siskind, 2001; Shneidman & Goldin-Meadow, 2012).

Cross cultural differences are found not only for the overall amount of speech around the
child, the proportion of CDS across cultures, and the speakers who speak around the child,
but also in the way speakers address children. Some distinguishing features of CDS can be
found across cultures. For example, Ngaanyatjarra children in Indigenous Australia are
addressed with phonologically simplified CDS, with repetitions and slower speech rate (e.g.
Kral & Ellis, 2008). Harkness (1977) observed that Kipsigis caregivers in Kenya adjust the
length and complexity of their utterances to their children’s length of utterance. Fisher &
Tokura (1996) reported that Japanese- and English-speaking mothers add prosodic cues at

utterance edges, and alter phonetic cues relevant to their language.
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However, speech addressed to children is not always simplified. For example, contrary to
studies in middle-class Euro-American communities, Javanese children are spoken to with
complex honorific forms that they are supposed to use in order to talk to their superiors, and
with longer and morphologically more complex utterances than used in ADS (Smith-Hefner,
1988). Similarly, Kaluli and Samoan caregivers do not engage in morphosyntactic
simplification (Ochs & Schieffelin, 1994), and little language input in Inuktitut-speaking
communities is morphosyntactically simplified (Allen & Crago, 1997). Quiche” Mayan CDS
does not have some of the properties noted in American English CDS; but Quiche’-Mayan
mothers use other features not found in English CDS, such as whispering, initial-syllable
deletion and a suffix only found in CDS (Pye, 1986). Thus, there seems to be cross-cultural
variation of features within CDS. It is noted that, despite less simplification in CDS, there is
some documentation that Kaluli, Inuktitut and Samoan children learn language within the

range of normal developmental variation (Allen & Crago, 1997; Ochs & Schieffelin, 1994).

While some cultures have been mapped with respect to their distinguishing qualities of CDS,
less is known about the way different speakers use CDS. That is, do other children and adults
also engage in such qualitative modifications of speech? Are the characteristics of CDS
similar for non-maternal speakers across societies? For example, very few studies have
investigated CDS produced by other children. With respect to siblings in US families, Dunn
& Kendrick (1982) and Shatz & Gelman (1973) reported that siblings adjusted their speech
when talking to their younger siblings. They used short sentences, simple verb tenses, and
repeated their sentences twice as much as when they were talking to their mothers. In
Lesotho, Connelly (1984) observed that even two-year-old Sesotho-learning children

speaking to younger children adjust their speech, though Demuth (1986) reported that
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Sesotho-speaking siblings learn complex linguistic forms, such as relative clauses (e.g.,
“Bring that thing you found”), more from siblings than from adults. Furthermore, in a
task-oriented study where seven-to-eight-year old siblings from US families played with their
toddler siblings using toys, they were found to be less adept than their mothers in adjusting
speech to their younger siblings (Hoff-Ginsberg & Krueger, 1991). Other studies have
confirmed this, showing that preschool children correct their siblings’ syntax less often than
their parents do, ask fewer questions, and provide fewer corrective repetitions (Dunn &

Kendrick, 1982; Mannle et al., 1991; Strapp, 1999).

Like mothers, fathers and grandmothers seem to adopt a simplified speech register towards
children in French, Italian, German, Japanese, British and American English (Fernald et al.,
1989). Both similarities and differences in speech have been observed between mother and
other adult speakers in American English and French (Pancsofar & Vernon-Feagans, 2006;
Rondal, 1980). In Fernald et al. (1989), both fathers and mothers used shorter utterances
when speaking to their children than when speaking to an adult. Fathers' speech at 24 months
was predictive of children's language development at 36 months in American English
(Tamis-LeMonda, 2004). However, in a study by Rondal (1980), French fathers’ speech was
more lexically diverse and contained longer utterances than mother’s speech, and
McLaughlin et al. (1983) found that mothers tune their language (American English) more to

the child's linguistic abilities than fathers do.

The present study

As this brief summary hopefully illustrates, there are still large gaps in our knowledge about

the nature of language input across cultures. There is strong evidence that CDS from mothers
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is crucial to acquisition. At the same time, in Euro-American families, and especially in
less-studied diverse cultures, linguistic input may come from other people, very often
children. It is still unknown what properties characterize this kind of input, and whether it is
helpful for acquisition. Research is thus needed to provide answers about whether the child is
even addressed in these contexts (or is only exposed to surrounding speech), who the
speakers are, and how similar their speech is to maternal speech. This should be investigated
both for cultures where the mother is considered the primary caregiver, and for cultures
where children spend most of their time with other people. Our work will thus focus on the
distribution and features of child directed and other directed speech produced by different

speakers in naturalistic, cross-cultural recordings.

In this study, we take a step towards describing children’s input across cultures. We describe
children's input in middle-class European families in two cities in France, and that of a
non-industrial southern African community in Lesotho, where it has been documented that
children interact with more speakers than just the parents. We use the same descriptive
metrics in order to comprehensively document the linguistic input children receive in both
kinds of communities, from parents and other people. We detail the amount and quality (here,
the morphosyntactic, lexical and interactional features of speech) of linguistic input spoken

by different people, separately for child-directed speech, and speech directed to others.

We specifically ask, for both communities:
1. How do different speakers contribute to the linguistic input heard by the child?
2. How much input heard by children is directed to them, and how much is directed to other

children and adults, when different speakers are taken into account?
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3.What are the qualitative properties of this input, and how do they differ across speakers and
cultures?

According to Demuth (1986), rural families in Lesotho often lived in extended family units,
with allomaternal carers participating in the caregiving of the child. Many Sesotho-speaking
men were employed in South Africa and were rarely at home. Siblings typically have a
two-and-a-half years age difference, and children as young as 2;1 often spend time in peer

groups and with younger siblings (Demuth, 1992).

Demuth recorded spontaneous interactions of children in rural Lesotho (the Demuth Sesotho
Corpus). According to her observations (Demuth, 1986, 1992), teaching language to the child
was an important responsibility of the community, and even children seemed to adjust their
speech when talking to younger children, modifying its phonology and syntax. The recorded
corpus was used by the investigator in order to study grammatical phenomena, focusing on

the target children’s production and the use of prompts by caregivers.

In this study, we make use of the same corpus, together with two French corpora (the Paris
and Lyon corpus), in order to investigate our research questions. We annotated these corpora
in order to quantify the contribution of different speakers to the overall input, and to analyse
the quantity of directed and overheard registers, and specific qualitative speech properties for
each register and speaker. Sessions with similar recording methods and target children with
older sibling(s) and the same age range were chosen for both corpora, and were annotated by

native French and proficient English speakers.
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Method

Data

Sesotho corpus

The Demuth Sesotho Corpus was recorded in a rural community in southern Africa. It was
compiled by Katherine Demuth in the country of Lesotho in 1980-1982 (Demuth, 1992).
Data were collected in a Lesotho mountain village of 550 people in the district of
Mokhotlong. The language spoken is Sesotho (also called Sotho, or Southern Sotho), a
southern Bantu language used by three million speakers. The corpus can be found on

CHILDES (MacWhinney, 2000).

The Sesotho corpus is a longitudinal study of three target children as they interacted with
their caregivers. The children were aged from 2;1 to 3;2 for Hlobohang (boy, 11,221 input
utterances after excluding target child and investigator speech), 2;1-3;0 for Litlhare (girl,
12,669 input utterances after excluding target child and investigator speech) and 2;1-3;2, for
‘Neuoe (girl, 10,502 input utterances after excluding target child and investigator speech).
Three-to-four- hour recordings of spontaneous speech took place every month for each child
with the presence of the investigator. Hlobohang and ‘Neuoe each had an older cousin in the
same household, and Lithlare had an older brother. The transcriptions were morphologically

coded and translated to English with the help of the children’s mothers and grandmothers.
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French corpus

In order to obtain data comparable to the Sesotho corpus in size, number of target children,
target child age, and presence of siblings, we merged recordings from two French corpora,
the Paris corpus (Morgenstern & Parisse, 2012) and the Lyon corpus (Demuth & Tremblay,
2008). Both corpora are on CHILDES (MacWhinney, 2000). The need for two corpora is due
to the fact that most target children in these corpora were first-born and were thus excluded
for the present purposes, which aimed to look at input in contexts where there were more
people than just the mother. Families with more than one child are not considered atypical in
France; in 2013, 6 out of 10 families had more than one child (INSEE, 2013). The French

corpora were recorded with a similar method to the Sesotho corpus, as described below.

The Lyon corpus was co-created by Katherine Demuth and Harriet Jisa in order to study the
acquisition of morphophonological elements in French. It was compiled by Jisa and
colleagues at the University of Lyon 2. The corpus contains longitudinal audio recordings of
monolingual, typically developing French-speaking children from one to three years of age,
and focuses on spontaneous interactions. Recordings from Anais (girl, 7,022 utterances after
excluding target child speech and investigator speech) and Theotime (boy, 4,062 utterances
after excluding target child speech and investigator speech) were included in this study, to
obtain an age range comparable to the Sesotho corpus. Each child was recorded for one hour
every two weeks. Anais had two older sisters, and Theotime one older sister. Although the
research assistant was not always present during recordings, we only kept the recordings
where the assistant was present, in order to increase comparability with the Sesotho corpus.

The sessions were recorded with a small video recorder placed on a tripod. The child wore a
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wireless microphone, and its radio transmitter was placed inside a child pack worn by the

child. The sessions were transcribed at the Dynamique du Langage Laboratory.

The Paris corpus was co-created by Aliyah Morgenstern and Chistophe Parisse. The corpus
was used to study the presence of pragmatic cues in speech, such as prosody and gestures,
and grammatical development. The corpus contains longitudinal audio recordings of
monolingual, typically developing French-speaking children. One child in our study comes
from this corpus, Anaé (girl, 7,247 utterances after excluding target child speech and
investigator speech). The child was videotaped in her home once a month for an hour, in
spontaneous interactions, and the data were then transcribed by the investigators. The chosen

recordings also span the Sesotho age range. Ana¢ has two older brothers.

Data Preparation

For both the Sesotho and the French corpus, we quantified the contribution of different
speakers to the overall input by measuring the total number of utterances produced by each
speaker for the whole corpus, as well as the average number of utterances per recording hour
and per session. Speech produced by or addressed to the investigator during the sessions,
though generally rare, was excluded from the analysis. We take into account local norms
regarding family units. In the Sesotho corpus studied in the current study, for example, one
target child (‘Neuoe) was growing up in the same household with her cousin, and was being

taken care of by her aunt, whom we consider as a mother for the sake of this study.

The target children were selected by the criteria described above (having older ‘sibling(s)’,

same age range, and sessions with similar recording methods) and annotated for speaker and
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interlocutor by a native French (for the French corpus) and a proficient English speaker (for
the Sesotho corpus, using the English translation). Although the corpora had already been
transcribed, indicating who was speaking and what they were saying, the transcriptions did
not contain information on who was being spoken to. Therefore, we added this layer of
annotation. Our annotators were asked to read the transcriptions of a session, and try to
understand who is being spoken to for each utterance. When available, they were provided
with descriptions of the situation and comments of the authors and previous annotators. The
annotators were instructed to add an addressee annotation only if they were confident (more
than 70% sure), indicating whether a sentence is addressed to a target child, or another
specific addressee or group of addresses. Specifically for the French corpus, some parts of the
recordings had not been transcribed by the original transcribers (usually parts where the
target child did not participate in the conversation). Therefore, the annotators also transcribed

the missing sections after consulting the videos.

To check accuracy of the addressee annotation, 20% of these annotations were
double-checked by a second annotator. For Sesotho, the two annotators agreed in 89% of the
cases. Where they did not agree, this often was because one coder made a decision and the
other was under 70% sure (57% of disagreements). A further reliability check was then
performed by Demuth, who was present during the original data collection, and any questions
resolved. For French, the two annotators agreed in 96% of the cases. Since the reliability
check between the first annotator and the second annotator (the one annotating 20% of the
corpus) were high, we took into account the annotations of only the first annotator, excluding

utterances where this annotator was uncertain.
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Last, we studied the quality of speech input to children, using a corpus analysis. All scripts
related to corpus processing and analysis can be found in this OSF link:

https://osf.io/mws9g/?view_only=b116b0c6bb5c48508a547dbc955461bl. We  measured

lexical diversity by counting the moving average type-token ratio (MATTR) and the ratio of
hapaxes (words found only once). MATTR gives the mean total number of unique words
(types) divided by the total number of words (tokens) per chunk of 10 (and 100) words, thus
controlling for differences in corpus size. Ratio of hapaxes gives the ratio of hapax words in

the corpus, by dividing the number of hapaxes with the total number of word tokens.

We measured morphosyntactic complexity, by counting the preponderance of single word
utterances, by dividing the number of utterances containing only one word with the total
number of utterances, and by counting the mean utterance length (MLU) in words (and in
morphemes for Sesotho). It should be noted that, unlike French, Sesotho contains
multi-morphemic prosodic words, since prefixes to the verbs (subject and object
person-number-agreement forms and tense markers) and noun-class prefixes are written
together as one ‘word’. The average number of morphemes per word in the corpus is
approximately 1.9. We deal with this difference in three ways: (1) We tried to make our
French corpus ‘more similar’ to the Sesotho, by combining determiners with the following
nouns as one prosodic word (details on Demuth & Tremblay, 2008). Nonetheless, the
multimorphemic Sesotho ‘verb’ ke-tla-mo-otla “I-will-him-hit” was counted as one ‘word’,
whereas the same phrase was counted as four words in French (“Je vais le frapper”). (2) We
provide a supplementary metric for Sesotho and French counting the mean utterance length in
morphemes (see Appendix). We do this because MLU might not be as comprehensive a

matrix to language complexity in Sesotho as it is in French, and mean utterance length in
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morphemes might be a better measure. (3) Since the two languages differ across these
aspects, we only focus on language-internal comparisons - we never compare which language
uses longer utterances of more morphemes per word, but we do compare between speakers

and registers within each language.

Last, we measured speech elicitation by looking at the ratio of questions divided by the total
number of utterances, and by looking at the ratio of conversational turns. We considered as a
conversational turn each utterance followed by an utterance produced by the person initially
addressed to. We then divided the number of these utterances by the total number of
utterances. The results of the above metrics were descriptively compared across different

speakers and speech registers.

Results

We looked at input composition with respect to its speakers, after categorizing the input as
child-directed and overheard, and further looking at the addressee of overheard input (other

children or adults).

Quantitative features of input

We asked how much different caregivers contribute to the overall linguistic speech heard by
the child, both directed and overheard (see Table 1). For the Sesotho-learning children, most
speech came from other children. The category “other children” contains all other children
present in the linguistic environment of the key children: siblings, cousins, playmates, etc.
Speech from other adults varied; for one Sesotho-learning child in particular, Hlobohang,

other adult speech (the grandmother) was more abundant than mother’s speech.
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French-learning children received most of their input from mothers, and other children had

the smallest contribution to overall input. There was variation in input from other adults.

Child Mother % Adults % Children %
Sesotho Hlobohang 14.67 40.29 45.03
Sesotho Litlhare 41.68 2.81 55.51
Sesotho ‘Neuoe 22.10 11.82 66.08
French Anaé 83.47 1.0 15.53
French Anais 67.80 28.34 3.86
French Theotime 93.47 - 6.53

Table 1. Percentage of the total number of utterances produced by mothers, other adults and children

for each child. The largest number in each row is in bold.

Second, we asked how much input heard by children was directed to them, how much was

overheard, and how child-directed versus overheard speech was distributed across speakers.

CDS is speech directed to the child. Overheard speech includes speech directed to other

children (OCDS), and to adults (ADS). The majority of input was child-directed for both

French-learning and Sesotho-learning children, except for ‘Neuoe, who was the cousin in the

family with other children, and most speech around her was OCDS. More details can be

found in Table 2.



Child CDS % OCDS % ADS %
Sesotho Hlobohang 89.83 6.81 3.33
Sesotho Litlhare 90.95 5.36 3.28
Sesotho ‘Neuoe 27.0 50.29 22.04
French Anaé 87.04 6.28 5.55
French Anais 94.28 2.44 3.03
French Theotime 91.80 4.06 3.50

Table 2. Percentage of the total number of utterances that was CDS, OCDS or ADS for each child.
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The largest number in each row is in bold. These three do not add up to 100% because the rest of the

utterances were unclassified in terms of addressee.

As can be seen in Table 3, CDS was mostly produced by other children for the

Sesotho-learning children. For the French-learning children, the mother was the main source

of CDS. Information on OCDS and ADS speakers can be found in the Appendix, Table Al.

CDS
MOT ADU OCHI
Sesotho Hlobohang 13.74 37.08 39.01
Sesotho Litlhare 40.25 2.06 48.64
Sesotho ‘Neuoe 4.89 5.49 16.61
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French Anaé 79.88 15 7.01
French Anais 65.37 27.40 1.51
French Theotime 90.37 - 1.43

Table 3. Percentage of speech produced by mothers (MOT), other adults (ADU) and other children
(OCHI) comprising CDS for each child. The numbers for ‘Neuoe are small because most speech
around the child was not CDS. The largest number in each register-based group of cells is in bold.

Qualitative features of input

Next, we asked what the qualitative properties of input are, and how they differ across
speakers and cultures. We focused on morphosyntactic, lexical and interactional properties
separately. The raw data can be found in the online supplementary material. Morphosyntactic
properties are shown in Figure 1. The MLU measured in morphemes is in the Appendix
(Figure Al). For both Sesotho and French, CDS has the shorter MLU, followed by OCDS
and ADS. In Sesotho, there were slightly more single word utterances in CDS than in OCDS

and in ADS. In French, there were no large differences between registers.

Within Sesotho CDS and OCDS, there were no large differences between speakers. Within
Sesotho ADS, other child speech had the shortest MLU and highest proportion of one word
utterances. Within French CDS and OCDS, there also were no large differences between
speakers. We observe that mothers’ speech had the longest MLU and least single word
utterances. Overall, OCDS is more similar to CDS than ADS, and different speakers provide

input of similar qualitative features within each register.
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We then analysed lexical properties (Figure 2). The MATTR with a smaller word window
offers the advantage of accounting for more data. The MATTR with a larger window is more
stable, but is based on fewer sessions (the ones with a lot of speech). The smaller window
MATTR is displayed here, whereas the larger window MATTR can be found in the Appendix
(Figure A2). The properties were measured on the entirety of the lexicon (closed class words
included). For both Sesotho and French, CDS was the least lexically diverse register and the
register with the lowest hapax ratio, followed by OCDS and then by ADS. In Sesotho CDS
and OCDS, there were small differences between speakers. In French CDS, differences
between speakers were larger than in Sesotho, maternal speech being the most lexically

diverse, and with the lowest hapax ratio of all speakers.

Last, we analysed some interactional properties for speech elicitation (Figure 3). For Sesotho,
the highest proportion of questions and conversational turns (when an utterance was followed
by an utterance produced by the person previously addressed to) was found overall in CDS,
followed by OCDS, and then ADS. For French, similar ratios of questions and conversational

turns were found overall in CDS and OCDS.

Within Sesotho CDS and OCDS, other adults and mothers had higher question ratios than
other children. For ADS, adults had the highest question ratios. There were no large
differences between speakers with respect to conversational turn ratios for CDS. Within
French CDS, other adults and mothers also had higher question ratios than other children, but
we see a difference between corpora in terms of conversational turns, with higher ratios for

other adults in French but less so in Sesotho.
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Figure 1. Mean length of utterance in words (bottom) and single word utterance ratio (top) for Sesotho
(left) and French (right). Each point is a session (where the corresponding speaker produced at least
one utterance). Boxplot colors indicate speakers, adult speakers in red, mothers in blue and other
children speakers in green, and boxplot groups indicate the register, CDS at the left, OCDS at the
middle and ADS at the right.
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Figure 2. Type-token ratio (bottom) and hapax ratio (top) for Sesotho (left) and French (right). Each
point is a session (where the corresponding speaker produced at least one utterance). Boxplot colors
indicate speakers, adult speakers in red, mothers in blue and other children speakers in green, and
boxplot groups indicate the register, CDS at the left, OCDS at the middle and ADS at the right.
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Figure 3. Question ratio (bottom) and ratio of conversational turns (top) for Sesotho (left) and French
(right). Each point is a session (where the corresponding speaker produced at least one utterance).
Boxplot colors indicate speakers, adult speakers in red, mothers in blue and other children speakers in
green, and the x-axis indicates the register, CDS at the left, OCDS at the middle and ADS at the right.
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Discussion

In the hope of informing the sparse literature on quantitative and qualitative descriptions of
children's input across populations, the current study includes a detailed analysis of input to
and around French- and Sesotho-learning children growing up in two very different cultural
settings. We used the same descriptive metrics, in order to comprehensively document the
linguistic input French and Sesotho-learning children receive from parents and other people.
We described the amount and quality (the morphosyntactic, lexical and interactional features
of speech) of linguistic input spoken by mothers, other adults and children, separately for
child-directed speech, speech directed to other children and speech directed to adults. We

found some differences across cultures, but also a great deal of similarity.

The composition of input differed dramatically between cultures. Maternal input was more
dominant in the French corpus compared to the Sesotho one. In the latter, other children's
input was more prevalent than maternal input (see Shneidman and Goldin-Meadow, 2012 for
a similar observation in a Mayan village). Given that all target children had older siblings, the
lower proportion of speech from other children in French indicates that French children may
have fewer opportunities to hear speech produced by other children compared to Sesotho
children. This difference in composition is also consistent with observations that mothers
have more children to attend to in Lesotho, and children are surrounded by more children - at
least in the rural village context - than in urban France. This is despite the fact that both the
Sesotho corpus and the Lyon corpus were ‘designed’ to elicit spontaneous speech interactions

between mother and target child; this becomes more challenging in Lesotho from the age of
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2;6, either due to the birth of another sibling, or the increasing independence of the child by

this ages, facilitating interactions with the larger peer group.

Thus, other children are an important source of input for many learners of Sesotho. This
invites further research on how speech from other speakers contributes to children’s input
(see Sperry et al., 2019 for a similar suggestion), how essential input is from expert (i.e.,
adult) speakers, and what amounts of adult speech are necessary for language acquisition.
That said, maternal speech is proportionally important in both corpora, and other child speech
is not prevalent in the French corpora. These results are in line with previous findings for US
families, documenting that siblings address their younger siblings much less frequently than

what their mothers and other adults do (e.g. Oshima-Takane & Robbins, 2003).

In every other respect, marked similarities between cultures were observed. To begin with,
CDS was the most prevalent register in both cultures. All target children in French settings
were mostly exposed to speech directed to them. Two out of three Sesotho-learning children
were mostly exposed to CDS, the third listening mostly to OCDS. This again points to the
need to study diverse cultures; there are not only differences between industrial urban and
non-industrial rural communities, but, given the little CDS found in some non-industrial

cultures, there are also large differences between different non-industrial rural communities.

Another clear convergence across corpora is that CDS seems to have some similar features
(e.g. ratio of questions, type-token ratio) in both French and Sesotho. This agrees with
previous work showing that CDS is a simplified register adjusted to child listeners. However,

this pattern of simplification is not exhibited across all features. For example, we found a
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high ratio of questions in Sesotho. This agrees with previous observations (Demuth, 1992;
1995; Kline & Demuth, 2010). Moreover, for both cultures, OCDS seems to be more
simplified than ADS, and has more similar patterns to CDS than what ADS does. This
suggests that speech directed to both target and other children from all speakers, has
CDS-like characteristics in both societies. As a result, it is conceivable that children who are
exposed to a great deal of OCDS could learn more from this type of overheard speech than
from ADS. Such a finding points to a need to study the characteristics of OCDS in diverse
cultures, children's preference for OCDS over ADS, and whether children learn more from

OCDS than from ADS.

In sum, more cross-cultural differences were found with respect to who addresses the key
children, than with respect to #ow they address them. Child speakers of CDS in both cultures
use a register similar to mothers’ speech, especially in its morphosyntactic and lexical
features (but this is not the case for hapax ratio in French). This suggests that other children

also adjust their speech when talking to younger children.

However, we could not say the same with respect to speech-eliciting features. Children in
both French and Sesotho have a lower ratio of questions than the mothers, in line with
previous observational results (e.g. Dunn & Kendrick, 1982; Mannle et al., 1991). Mothers
and adults have a higher ratio of conversational turns than other children in French.
Interestingly, this pattern does not appear in Sesotho; mothers and adults have similar ratios

of conversational turns to that of other children.
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Other adults also use child-directed speech when talking to children, confirming some
previous results (e.g. Shute & Wheldall, 1999, 2001). Adult speech addressed to children

seems to be less lexically diverse than that addressed to other adults for both languages.

In sum, based on the results of our analysis, all target children grow up in environments
where they are often directly addressed, either by their mother, or by children and other
adults, and that input from different speakers is not dramatically different in qualitative terms,
at least for the majority of the features studied here. This indicates that both French- and
Sesotho-learning children grow up in stimulating environments for linguistic development, in

agreement with previous anthropological studies (e.g. Connelly, 1984).

Before closing, we would like to mention some limitations of the study. This research is
based on existing corpora from previous studies where the number of target children recorded
was limited, due to the labor-intensive, longitudinal work involved in collecting daylong
recordings and annotating fully spontaneous speech. A larger number of target children might
have enabled us to conduct statistical tests on differences between registers, speakers and

cultures, whereas the current study may remain descriptive.

Our annotators also suspected that speech from other children may be underestimated in
French recordings, since older siblings sometimes seemed discouraged from speaking during
the recording. Here is an example from Anaé’s recording session 020804: when the older
brother comes in the room, the mother says to him “Toi tu commences pas. (=Don’t start.)”
and after a while she says “Toi tu te tais s’il te plait. (= Don’t speak please.)”. It is possible

that siblings interact more with each other when they are not recorded, but it is also possible
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that the same types of interactions happen when families are not recorded, which would mean
that these are genuine cultural differences. It may be the case that French parents usually send
away a noisy or agitated child when trying to focus on another child whereas Sesotho parents
do not, which would partially explain why Sesotho-learning children receive more speech

from other children than French-learning children.

Last, as explained above, the Sesotho sessions were recorded in the presence of the
investigator and for comparability reasons, we chose to annotate sessions of French corpora
where the investigator was also present during the recordings. Speech produced by or
addressed to the investigator was removed in both corpora for this analysis. Future studies
might be able to use recording devices where the investigator is not present, since the

involvement of a stranger in the recording process might change families’ behaviour.

For this study, we focused on the ratio of questions as a speech eliciting feature. However,
additional speech-eliciting features and sentence types can be found in speech, such as
imperatives. Future studies may want to include the ratio of imperatives in the analyses. Also,
in Sesotho, other adults were mostly grandmothers and neighbors, whereas in French they
were mostly fathers. In Sesotho, child members were a mixed-age group of siblings, peers
and other children, whereas in French child members were mainly older siblings, with ages
ranging from five to ten years. Future studies may focus on speech separately for these
different speaker roles, looking at similarities and differences between e.g. sibling and peer
speech, or father and grandmother speech. Last, we used data-driven measurements, such as
length of utterance and lexical diversity for this study. However, language also consists of

social patterns and is sensitive to context. For this reason, future studies may need to include
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more comprehensive analyses, taking into consideration more features of engagement

between partners, and the families’ characteristics.

We look forward to further research incorporating more cultures, in order to investigate the
impact of non-parental caregivers, and to check whether speech composition and qualities

such as the ones found here are representative of quantifiable distinctions in other cultures.
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Appendix

CDS OCDS ADS

MOT |ADU |OCHI | MOT |ADU |[OCHI | MOT [ADU | OCHI

Sesotho Hlobohang | 13.74 | 37.08 |39.01 |1.02 3.01 2.77 21 .54 2.58

Sesotho Litlhare 40.25 |2.06 48.64 | 2.55 0.23 2.58 .39 .35 2.55

Sesotho Neuoe 4.89 5.49 16.61 | 18.55 7.12 24.61 .29 .16 21.60
French Anaé 79.88 | .15 7.01 5.59 22 47 44 37 4.73
French Anais 65.37 |27.40 1.51 2.42 - .01 41 24 2.38
French Theotime | 90.37 |- 1.43 4.06 - - 12 - 3.37

Table Al. Percentage of speech produced by mothers (MOT), other adults (ADU) and other children
(OCHI) comprising CDS, OCDS and ADS for each child. The largest number in each register-based
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group of cells is in bold. We observe that CDS, OCDS and ADS were mostly produced by other
children for all Sesotho-learning children, except for Hlobohang, for whom other adults and other
children contributed almost equally to the total OCDS. For the French-learning children, the mother
was the main source of CDS and OCDS, and other children were the main source of ADS.
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Figure Al. Mean utterance length in morphemes for Sesotho (top) and French (down).
Morphological analysis for French was generated with CLAN (MacWhinney, 2000). For example, the
Sesotho verb ‘ke-tla-mo-otla’ is counted as four morphemes ‘ke tla mo otla’. The same phrase in
French ‘Je vais le frapper’ is counted as five morphemes ‘Je vais le frapp er’). Each point is a session.
Boxplot colors indicate speakers, adult speakers in red, mothers in blue and other children speakers in
green, and the x-axis indicates the register, CDS at the left, OCDS at the middle and ADS at the right.
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Figure A2. Moving average type token ratio for Sesotho (left) and French (right) within a window of
100 words.
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9. Is it easier to segment words from infant- than adult-directed speech?

Modeling evidence from an ecological French corpus *

Abstract: Infants learn language by exposure to streams of speech produced by their caregivers. Early
on, they manage to segment word forms out of this continuous input, which is either directly
addressed to them, or directed to other adults, thus overheard. It has been suggested that
infant-directed speech is simplified and could facilitate language learning. This study aimed to
investigate whether features such as utterance length, segmentation entropy and lexical diversity could
account for an advantage in segmentability of infant-directed speech. A large set of word
segmentation algorithms was used on an ecologically valid corpus, consisting of 18 sets of recordings
gathered from French-learning infants aged 3-48 months. A series of textual analyses confirmed
several simplicity features of infant-, compared to adult-directed speech. A small segmentation
advantage was also documented, which could not be attributed to any of those corpus features. Some

particularities of the data invite further research on more corpora.

*Loukatou, G., Le Normand, M.-T. & Cristia, A. (2019). Is it easier to segment words from
infant-directed speech? Modeling evidence from an ecological French corpus. Proceedings of the 41st

Conference of Cognitive Science Society.
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Abstract

Infants learn language by exposure to streams of speech pro-
duced by their caregivers. Early on, they manage to segment
word forms out of this continuous input, which is either di-
rectly addressed to them, or directed to other adults, thus over-
heard. It has been suggested that infant-directed speech is sim-
plified and could facilitate language learning. This study aimed
to investigate whether features such as utterance length, seg-
mentation entropy and lexical diversity could account for an
advantage in segmentability of infant-directed speech. A large
set of word segmentation algorithms was used on an ecolog-
ically valid corpus, consisting of 18 sets of recordings gath-
ered from French-learning infants aged 3-48 months. A se-
ries of textual analyses confirmed several simplicity features
of infant-, compared to adult-directed speech. A small seg-
mentation advantage was also documented, which could not
be attributed to any of those corpus features. Some particular-
ities of the data invite further research on more corpora.

Keywords: language acquisition; infant-directed speech;
computational modeling; word segmentation; unsuper-
vised learning

Introduction

Infants acquire language early on, building a vocabulary of
several hundred word forms by 11 months of life (Ngon et
all|2013). Since most word forms do not appear in isolation
(Brent & Siskind] 2001)), much previous work studies how
infants segment (i.e., pull out) forms from their caregivers’
running input. A close look at this input shows that it is not
homogeneous, but instead contains some speech addressed
to the infants themselves (infant-directed speech or IDS) and
some speech overheard by infants which is addressed to oth-
ers, including adults (adult-directed speech or ADS). These
two speech registers differ along many dimensions, including
some that may impact word segmentation.

Broadly, IDS has been claimed to present properties
that would facilitate language acquisition, with IDS be-
ing phonologically, syntactically, and semantically simpli-
fied (Soderstroml, 2007). Other characteristics are more rel-
evant to word segmentation. First, IDS may have a higher
proportion of single-word phrases (Brent & Siskind, 2001)),
and phrases might be shorter in length (Newport, Gleit-
man, & Gleitman, [1977) than in ADS. In shorter phrases,

more words would occur at phrase edges, which should im-
prove segmentation: Phrase edges, easily perceptible, are
word boundaries provided “for free”. Indeed, infants may
be more successful at recognizing and segmenting phrase-
final words (E. Johnson, Seidl, & Tyler, 2014). Additionally,
shorter phrases entail that the set of possible segmentations
for each phrase is smaller, lowering segmentation ambiguity.
For instance, [Fourtassi, Borschinger, Johnson, and Dupoux
(2013) showed that ADS might be more ambiguous to seg-
ment, when comparing an ADS to an IDS corpus. Second,
words may be shorter (Ma, Golinkoff, Houston, & Hirsh-
Pasek, 201 1)), which should mean that word, morphemes, and
syllable boundaries coincide more often and there are fewer
places to posit or miss positing a boundary. Third, there may
be more repetitions, therefore fewer hapaxes (words uttered
only once), and overall less lexical diversity (Soderstroml
2007). Low lexical diversity means fewer target words need
to be found. There might be more cues to help segment out
frequently repeated words, than words that appear rarely or
once. Indeed, one computational modeling study found that
artificially reducing phrase length and increasing word repe-
tition in a corpus improved word segmentation with one word
segmentation model (Batchelder, [1997). Based on these hy-
potheses and previous work, we predict that the task of recov-
ering wordforms is easier in IDS than ADS.

Naturally, IDS features may not be the same across in-
fant ages. IDS addressed to very young infants may dif-
fer from that addressed to older infants, possibly resembling
ADS more as infants get older. For example, IDS features
may become less accentuated as the infant grows up; repe-
titions might decrease, utterance length and lexical diversity
increase with age (Henning, Striano, & Lieven, 2005} |Soder-
strom, 2007). According to the hypotheses explained above,
IDS addressed to younger infants should be “easier” to seg-
ment than IDS to older infants.

In this paper, we aim to address the question of whether
it is easier to segment wordforms from IDS than ADS, using
multiple word segmentation models, and taking into account
changes with infants’ age. In the next section, we review
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previous modeling work more thoroughly, before introducing
our own approach.

Previous studies

Some studies tested whether infants learn more from IDS
than ADS in an experimental situation. However, improve-
ments for IDS compared to ADS could be due to the fact
that infants pay more attention when they listen to IDS, and
thus learn more from it. This method cannot reveal whether,
above and beyond this attentional effect, there are intrinsic
informational differences that affect segmentability. For-
tunately, there is a complementary method to approach this
question with a colder eye, which builds on computational
models of word segmentation. The input to such word seg-
mentation models is usually speech transcriptions, in order to
control for differences such as attention capture and acoustic
implementation. Segmentation models used for this method
are based on findings by experimental studies that infants
might make use of statistical cues. Computational models
of infant word segmentation can be grouped into two con-
ceptual classes: lexical and sublexical. Sublexical models
segment based on local cues, such as transitional probabili-
ties and phonotactics. Lexical models build a lexicon based
on recurrent chunks of speech identified with Bayesian prob-
abilities or by memorizing isolated words.

Little previous modeling work has specifically compared
IDS and ADS. Four representative studies are summarized in
Table[I] For these four studies, improved segmentation per-
formance was found for IDS than ADS: 15% for |Batchelder
(2002), 5-8% for [Fourtassi et al.|(2013)), 2-10% for [Ludusan,
Mazuka, Bernard, Cristia, and Dupoux|(2017) and 3-10% for
Daland and Pierrehumbert| (2011)). A recent paper critiqued
this previous work as follows (Cristia, Dupoux, Ratner, &
Soderstrom, 2018). IDS mainly involved caregivers address-
ing their infants during predefined tasks (e.g., a play session
in the laboratory) or in short visits to the child’s home. In the
former case, by constraining the context, the structure and
lexicon of caregivers might have been limited and adapted to
that task. And in both cases, being observed could affect care-
givers’ behavior, who might produce less spontaneous and
more formal speech. Moreover, ADS was mostly addressed
to an unfamiliar person (experimenter). These conversations
are likely more formal than ADS between caregivers in daily
life, and could increase the complexity of the speech. As
shown by |[E. Johnson, Lahey, Ernestus, and Cutler| (2013)),
IDS differs more from ADS to unfamiliar adults, than ADS
to familiar adults. This could result in increased qualitative
differences between registers and probably overestimated dif-
ferences in segmentability.

Indeed, |Cristia et al.[(2018) recently documented a consid-
erably smaller IDS advantage when modeling segmentation
on an ecological English IDS and ADS corpus. The corpus
consisted of transcriptions from excerpts of day-long record-
ings; thus infants’ linguistic environment was recorded while
they were going on with their daily lives, resulting in realistic
IDS and ADS. Across a wide range of lexical and sublexical

models, the IDS advantage ranged from -2% to 8%, with only
3 models providing evidence of an advantage greater than a
measure of error. Interestingly, the difference between regis-
ters was further reduced when IDS was matched to ADS in
corpus length.

The present study

We contribute to this literature in three main ways. First, we
specifically describe IDS-ADS differences using various cor-
pus description tools. We compare the registers in: phrase
length, word length, ratio of single word phrases, intrinsic
segmentation ambiguity (using segmentation entropy), lex-
ical diversity (using Moving Average Type-Token Ratio —
MATTR-, so as to control for corpus size), and ratio of ha-
paxes. Some, but not all of these features have been sepa-
rately looked at in previous studies (i.e. [Fourtassi et al.| 2013
measured segmentation ambiguity and|Batchelder, | 1997/ mea-
sured word and phrase length, repetitiveness). This is the first
study to systematically investigate a plurality of language fea-
tures on the same IDS-ADS corpus. We test whether IDS
is simpler than ADS, as far as these features are concerned.
Moreover, following |[Batchelder| (2002), we further investi-
gate whether variation in these features can actually account
for the segmentability of a register.

Second, IDS corpora coming from a wide infant age range
have been used by previous research, but IDS addressed to
infants of different ages were, most of the times, merged to-
gether. One exception is|Batchelder|(1997), who documented
that IDS to younger children (13-18 months) produced more
successful results than IDS to older children (22-25 months),
whereas ADS results from mothers of younger versus older
infants didn’t differ. In this paper, we specifically ask whether
some IDS features interact with infant age and whether seg-
mentability of IDS might actually be affected by age. For
that, we include IDS and ADS from a wide age range, and fur-
ther investigate possible correlations between features, seg-
mentation scores, and infant age.

Third, we follow |Cristia et al.| (2018) by analyzing a com-
pletely ecological child-centered corpus, based on excerpts
of day-long recordings, and which thus contains natural ADS
and IDS as the child hears over the course of the day. The
results of our study would provide more evidence to the ques-
tion whether differences in home-recorded IDS and ADS are
smaller than those between less controlled IDS-ADS con-
trasts (see Table 1).

In addition to these three main contributions, we extend the
range of languages studied to European French.

Methods

We segmented IDS and ADS of each infant separately.
Scripts used for corpus preprocessing, phonologization, and
segmentation as well as results and supplementary mate-
rial are available at https://osf.10/6vwse/?view_only=
Obcdf6c0e23040cbbb92e26d414d4aTal Statistical analyses
were carried out in R (R Core Team, 2013)).
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Table 1: Summary of design in previous modeling studies comparing IDS and ADS segmentation. In Language(s), Eng stands
for English, Jap for Japanese, Span for Spanish. Under IDS and ADS, we describe the corpora. The specific corpora used
were: R= RIKEN; H= Hamasaki; C= Spontaneous Japanese; BR= Bernstein Ratner; B= Buckeye; D= Deuchar & Clark 1992,
Marrero; M= Miyata 1995; novel= Moon and the Sixpense; short stories were written by Alejandro Dolina (MacWhinney},
1996). Under model, we note the type of model used: lex for lexical and sublex for sublexical.

Study Language(s) Infant age(s) IDS ADS model

" [Batchelder] (2002)) Eng. 1;1-1;9 play session (BR) novel 1 lex
Batchelder| (2002) Span. 1;8-8;0 CHILDES (D) short story 1 lex
Batchelder| (2002) Jap. 1;3-3:1 home play session (M) science book 1 lex
Daland et al. (2011) Eng. various all CHILDES interview (B) 1 sublex
Fourtassi et al.|(2013)  Eng. 1;1-1;9 play session (BR) interview (B) 1 lex
Fourtassi et al.|(2013)  Jap. 2:2-3;7 play session (H) lecture (C) 1 lex
Ludusan et al. (2017)  Jap. 1;6-2;0 play session (R) lecture (C) 1 lex, 3 sublex

Corpus

Sixteen typically developing native French-speaking infants
(eight girls, eight boys; ages 3-48 months, M=20, SD=13),
whose families were highly educated, were included. Two of
the infants were recorded at two different ages. Each child
was recorded 10-16 hours per day, three days a week, in their
natural environments. The original recordings are available
online (Canault, Le Normand, Foudil, Loundon, & Thai-Van,
20164l 2016b; [VanDam et al.| [2016). Next, 18 10-min sam-
ples, totaling 3 hours per child (1 hour per day), were selected
for orthographic transcription by two native French speakers,
as detailed in|Canault et al.| (2016b). The main criteria for se-
lection reported was that a number of activities were sampled,
and that there be a high number of productions by the child
and the adult. For the present project, the transcriptions of
the first day for all infants were corrected by a native French
speaker, who made sure that the definition of utterance was
stable (and corrected any other errors, such as misattributions
or orthographic errors). The coder annotated whether an adult
caregiver’s utterance was directed to the target child, an adult,
or other, using content and context. Utterances addressed to
the target child constituted the IDS corpus and those directed
to an adult were the ADS corpus.

Pre-processing

Pre-processing was carried out using custom scripts
written mainly in bash and in python, available
from https://github.com/georgialoukatou/
French_ADS_IDS_segmentation_Lyon. All extraneous
codes (such as punctuation marks or “xxx”, the code indi-
cating that what was said could not be understood by the
transcriber) were removed, leaving only the orthographic
representation of the adults’ speech. The corpora were
phonologized with the French voice of the espeak TTS
system (Duddington, [2012), using the phonemizer wrapper
(Bernard, 2018)), which further syllabifies according to the
Maximum Onset Principle.

Before segmentation, all spaces between words were re-
moved, leaving the input parsed into minimal units. The mini-

mal units were either phones or syllables. Both phonemes and
syllables were tested with all models. Utterance boundaries
were preserved as such, since they are supposedly salient
to infants (Shukla, White, & Aslin, 2011). This consti-
tutes the input to the model. After preprocessing, the 18
infant-directed corpora contained M=487 (SD 350) utter-
ances (range 84 to 1,172 utterances). The 18 adult-directed
corpora contained M=238 (SD 230) utterances (range 15 to
780 utterances).

For comparability with previous work, we evaluate the
models’ performance using lexical token F-scores, measured
by comparing the original version of the input (with spaces
between words) against the one returned by the model (with
spaces in the hypothesized breaks).

Segmentation

Both corpus description and segmentation were carried out
using the WordSeg package (Bernard et al.| [2018), available
from https://github.com/bootphon/wordseqg/. Due to
space limits, the algorithms are only briefly described here.
Full technical details can be found in https://wordseqg
.readthedocs.1io/. All algorithms are unsupervised, and
inspired in infant experimental work.

We used two representatives of the sublexical word seg-
mentation class contains, called DIBS and TP for short. The
Diphone Based Segmentation algorithm (DiBS; |Daland &
Pierrehumbert] [2011) is based on the idea than a phoneme
sequence often spanning phrase boundaries would probably
span word breaks.

The Transitional Probabilities algorithm family (TP;
Saksida, Langus, & Nespor}, 2017) is based on the concept
that syllable pairs with lower statistical coherence tend to
span word breaks. Forward TP (FTP) measures the fre-
quency of occurrence of the syllabic sequence AB given the
frequency of occurrence of the syllable A. Backward TP
(BTP) measures the frequency of occurrence of the syllabic
sequence AB given the frequency of occurrence of the syl-
lable B. The Relative versions (FTPr or BTPr) threshold TPs
against that of neighboring sequences. The Absolute versions
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Table 2: Paired t-tests measuring feature differences across
IDS and ADS. Word length is measured in phonemes. % 1-
w phrase stands for ratio of single word phrases. % hapaxes
stands for percent of hapaxes. IDS gives the mean values of
each feature on the IDS corpus, with standard deviation in
parentheses. ADS shows the mean values of each feature on
the ADS corpus with standard deviation in parentheses. The
window size for MATTR is 10 words. “p” gives the p-value
of the t-test.

Feature IDS ADS p
Word length  2.86 (.08) 2.80(.11) .071
Phrase length  5.89 (.85) 6.73(.86) *

% 1-w phrase .18 (.06) .13 (.05) *k
Entropy .02 (.004) .03(01) .31
MATTR .89 (.03) 93(.02)  kE*
% hapaxes .39 (.22) A48 (27)  kEE

(FTPa or BTPa) instead threshold on the average of all TPs
over the sum of different syllable bigrams.

We used two representatives of the lexical class as well:
AG and PUDDLE. Adaptor Grammar (AG) uses the Pitman-
Yor process, a stochastic process of probability distribution
which prefers the reuse of frequently occurring rules versus
creating new ones to build a lexicon, then uses that lexicon to
parse the input (M. Johnson, Gritfiths, & Goldwater, [2007).

Phonotactics from Utterances Determine Distributional
Lexical Elements (PUDDLE, Monaghan & Christiansen,
2010) treats each utterance as a lexical item, unless an al-
ready stored item is part of this utterance, and the remainders
are phonotactically legal. If so, it breaks up the utterance into
segments, and the segments would enter the lexicon as new
lexical items.

Finally, two baselines were included: Syll=Word treats
each syllable as a word and Utt=Word treats each utterance
as a word.

Results

We first investigated whether IDS is simpler than ADS in
terms of six corpus features that could affect word segmen-
tation, as described in the reasoning above. The results of
paired t-tests comparing the registers for each feature are in
Table 2] which shows that four out of six features fit our pre-
dictions.

We also noticed that IDS size corpus (M=487, SD=350 per
child) was significantly larger than the ADS one (M=238,
SD=230), based on a t-test with t(17)=2.63, p=0.02. This
may mean that these infants were exposed to more IDS than
ADS, similar to what|Cristia et al.| (2018]) found for English.

The performance of all segmentation algorithms for both
registers is captured in Figure [l IDS is easier to seg-
ment than ADS when points are above the dotted diago-
nal line. There was a small IDS advantage for most algo-
rithms, although some showed the opposite effect (DiBSs,

0.7
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Figure 1: Token F-scores obtained by each algorithm for IDS
as function of that for ADS. The final “s” in the model’s name
means that the basic unit of the corpus was syllables (PUD-
DLWs, Utt=Words, Unit=Words, DiBSs, FTPas, FTPrs, BT-
Pas, BTPrs, AGs). The final “p” in the model’s name means
that the basic unit of the corpus was phones (PUDDLWp,
Utt=Wordp, Unit=Wordp, DiBSp, FTPap, FTPrp, BTPap,
BTPrp, AGp). Error bars show two standard deviations over
the 18 corpora.

Unit=Words, Unit=Wordp, FTPrp). We also observe that in
many cases the pseudo-confidence intervals cross the diag-
onal line, suggesting that performance difference is within
the range of error. Thus, only FTPrs, BTPrs, Utt=Wordp,
PUDDLEp and PUDDLEs showed a clear advantage of IDS.
We then tested for overall effects in a linear mixed effect re-
gression model (Bates, Machler, Bolker, & Walker, [2015)
predicting token F-scores from register (IDS or ADS) as a
fixed effect, where subject and algorithm (AGs, AGp, DiBSs,
DiBSp...) were random effect variables. Register signifi-
cantly affected token F-scores (3>(1)=50.87, p<.05, Type II
Anova), IDS having a performance advantage of .03 £ .004
(standard error).

Next, we tested whether this performance advantage was
due to one of the above-mentioned corpus properties. To see
whether performance differences were due to the artifactual
difference in corpus length, we also included the number of
utterances as a register feature. Thus, 7 new models, each in-
cluding one of the features as an additional fixed effect, were
fit. We then measured the significance of register and features
in the new models with a Type II Anova test (Fox & Weisberg,
2011).

If the advantage of IDS was entirely due to one feature,
then register would no longer be significant in these addi-

150



Table 3: Corpus features predict segmentation scores, but do
not replace register. B feat stands for the estimated coefficient
of that feature; [ rgstr for that of register in the new model
(which should be compared to 0.03 at the simple model). p
features shows whether feature was significant in new model.
p rgst shows whether register remained significant in the new
model. N. utts stands for number of utterances.

Feature Feature Register
Feature B p B p

Word length .02 A48 | .03 wEx
Phrase length | .01 wRE )04 Rk
% 1-w phrase | .06 20 | .03 sk
Entropy -1.58 hE | Q3 wEE
MATTR 5 wHE 05 EEE
% hapaxes .03 A8 | .03 wEE
N. utts .00005  **E |02 kX

Table 4: Correlation tests (Spearman) of corpus features and
infant age for each register. “coef.” stands for correlation co-
efficient.% 1-w phrase stands for ratio of single word phrases.
% hapaxes is the ratio of hapaxes.

Feature IDS coef. ADS coef.
Word length ~ .50%* .06
Phrase length .34 -.56*

% 1-w phrase -.37 12
Entropy -.50* 10%*
TTR 44 =37

% hapaxes .01 .30

tional analyses. Results (in Table [B)) showed that phrase
length, segmentation entropy, MATTR, and corpus size ac-
counted for variance in the results, but no single feature ren-
dered register effects non-significant.

Next, we investigated whether IDS features change with
infant age, with IDS becoming more ADS like as infants age.
Spearman correlation tests between properties and infant age
for each register separately (Table[) did not confirm our pre-
dictions: Only word length and entropy ( neither of which had
emerged as register properties on Table 2) correlated with age
in IDS; entropy and phrase length did so for ADS. We have
no plausible explanation for these effects.

Two infants were recorded twice at different ages, one at
31 and 38 months, the other at 32 and 40 months. Follow-
ing a recommendation from a reviewer, we inspected these
two infants as case studies. An inspection of IDS features
demonstrated that phrase length and % of 1-w phrases were
the only features having small changes with age, but only the
latter would change in the same direction for both infants, in-
creasing by 6% and 1% from the first to the second recording.
A few ADS features also changed slightly with age, such as
% of 1-w phrases, word length and entropy, but only phrase

length changed in the same direction for both infants, de-
creasing by 1.18 and 1.66 phonemes.

Finally, we created a new model predicting token F-scores
register (IDS or ADS) and infant age in months as fixed ef-
fects (and model and participant as random effects, as be-
fore), and their interaction. Both main effects and the in-
teraction were significant (Age x2(1)=4.31, p<.05; Regis-
ter x2(1)=53.14, p<.5; Age:register x>(1)=28.81, p<.05). A
follow-up analysis separating the registers indicated that ADS
scores decreased by .002 £ .0005 (standard error) with age,
whereas there was no significant change with age for IDS.

Discussion

In this modeling study, we assessed whether there are in-
formational differences affecting word segmentation between
IDS and ADS drawn from the same ecological corpus. First,
we investigated whether this naturalistic corpus had IDS-
ADS differences in textual features that would make segmen-
tation easier in the former than the latter. We found most
features fit our predictions: Phrases were longer, there were
more single-word phrases, lexical diversity was lower, and
there were fewer hapaxes in IDS than ADS. No significant
effect was found for word length and ambiguity. This result
contributes to the growing literature documenting IDS fea-
tures, with the important advantage that current work draws
from fully ecological IDS and ADS.

Next, we investigated the segmentability of the corpora us-
ing a large set of both lexical and sublexical segmentation
models. Although scores varied a great deal across algo-
rithms and some algorithms showed the opposite effect, IDS
was overall slightly easier to segment than ADS. The mean
difference across registers (CDS minus ADS, in each algo-
rithm separately) was 3%, ranging from —4% to 10%. This
effect is smaller than that found in most previous studies, but
similar to the one reported by Cristia et al.| (2018), who were
also drawing from a naturalistic IDS-ADS corpus. This is ev-
idence that previously documented IDS-ADS segmentability
differences (as in Table 1) are not representative of what in-
fants actually hear. It is important to note that corpus length
across registers was not matched in the present study for prac-
tical reasons, but, based on findings by |Cristia et al.| (2018),
we suspect that controling for corpus size would have reduced
the IDS advantage even further.

Next, we asked whether some of the above-mentioned tex-
tual features uniquely explained segmentability differences
across registers. Phrase length, segmentation entropy, and
repetitiveness explained significant variance in segmentation
scores, above and beyond the effects of register. However,
none of the features uniquely explained away the effect of the
register, which remained significant in all cases. This means
that register effects on segmentability cannot be reduced to
any one of these features. Since we only had 18 children’s
data, we could not fit a model with all 6 features at once for
fear of overfitting, but future work with higher power may be
able to assess whether these features jointly explain away reg-
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ister, or whether there are other textual features that we have
not yet considered.

Furthermore, |Canault et al.{(2016b)’s corpus allowed us to
address a question that has been seldom asked, namely IDS-
ADS differences across infant ages. Results of correlations
between textual features and age, and a regression model on
token F-scores did not support our prediction that IDS would
become more like ADS as children aged, and thus the IDS-
ADS segmentability gap would close. On the contrary, we
found that ADS scores dropped with child age. Although fur-
ther work is needed, we believe this mainly reflects the lower
availability of ADS in children’s environment as they age. In-
deed, replicating a pattern that had been documented in North
American English children (Bergelson et al., 2019)), we found
the number of ADS utterances dropped for older, compared
to younger, children.

Before closing, we would like to acknowledge some lim-
itations of this work. Corpus size was overall small (which
may lead to inconsistencies in results; [Bernard et al., [2018))
and, due to the work involved in collecting daylong record-
ings and annotating fully spontaneous speech, infant sample
size was 18 infants. Moreover, data scarcity was correlated
with registers and ages: While only 3 of the 18 IDS corpora
contained fewer than 100 utterances, 7 did for ADS, and 4
of those belonged to infants older than 31 months. A de-
crease of ADS quantities with infant age in such day-long
recordings has been documented in previous work on North
American English (Bergelson et al.l 2019), so it may not be
an artifact of the current sample selection. Nonetheless, this
trend may entail that if we want to control corpus size, we
should over-sample ADS at later ages. However, that may
not be necessary for our data, where corpus size failed to ex-
plain away the register effect, even though it accounted for
some variance beyond registers.

Last, speech transcriptions were used for this study, in an
attempt to look for intrinsic informational differences across
registers. However, some of the most salient features of IDS
are speech-related, such as prosody or intonation and acous-
tic properties, which might also predict ease of segmenta-
tion. Although there is a small literature looking at word seg-
mentation from speech, including comparing IDS and ADS
(Ludusan, Seidl, Dupoux, & Cristia, [2015)), this task remains
extremely challenging for computational modelers, with only
one open source model (instantiating a single segmentation
strategy) exists, which further limits the value of such a line
of research.

In sum, we identified several simplicity features more
prevalent in IDS than ADS drawn from an ecological French
corpus. We further found a small but significant IDS segmen-
tation advantage, contributing to a recurrent question on the
learnability properties of IDS. We showed that the IDS seg-
mentation advantage could not be explained away by any one
of those simplicity features, and its size changed with infant
age in unexpected directions.
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10. Conclusions

With these two studies, we attempted to contribute to the literature of learnability across cultures. We
used input from ecological, longitudinal recordings of diverse cultures, a Sesotho-speaking
community in Lesotho and French-speaking communities in France, for corpus analysis in Chapter 8,
with several confounds controlled for. As we mentioned above for cross-linguistic studies, we believe
that cross-cultural comparison in future studies may ideally happen under these terms, in order to
identify the main source(s) of difference between languages. We also modelled the segmentability of

child- and adult-directed speech in a French-speaking community in Chapter 9.

There were significant differences in morphosyntactic and lexical features of child- and adult-
directed speech, in both French and Sesotho cultures. However, two specific points drew our
attention. First, there were no flagrant differences in features that could affect segmentation
performance between the two registers. This might mean that, even though CDS and ADS differ, they
don’t differ in aspects that necessarily affect segmentability. This is also evidence that everyday
adult-directed speech, like the one spoken between parents at home, may be more similar to
child-directed speech than any other kind of adult-directed speech (including talk to the investigator,
or in the lab).

Second, specifically in Chapter 9, the features we identified did not explain away the (small) effect of
register in segmentation. One simple interpretation of the results is that register diversity, as expressed
by these characteristics, is simply not a factor for segmentation. Future research should further
compare data of the two registers, collected in ecological settings in order to capture real-life
differences, and should consider including more features responsible for diversity, such as

phonological, semantic and syntactic ones, as well as the interactions between them.

Furthermore, in Chapter 8, we compared child-directed, adult-directed, but also overheard
child-directed speech, that is, speech addressed to other children in the environment. Interestingly,
overheard child-directed speech is similar to child-directed speech. This result invites further research.
We may hypothesize that children are more interested in speech addressed to other children, than
speech addressed to adults. If this speech is also similar to speech directed to them, do children benefit

from overheard other-child-directed speech more than they do for overheard adult-directed speech?
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Last, in the same Chapter, input recorded in WEIRD settings of French families was mainly produced
by the nuclear family, and mostly by the mother. In contrast, input recorded in non-WEIRD settings
was produced by the extended family, including grandmothers, neighbors and other adults. However,
the majority of input originated from other children. We further analyzed these results, comparing
child-directed speech produced by other adults and other children. The two kinds of speech were also
similar across a large set of variables, except for the ratio of questions. In sum, these results shed light
on the vast differences in the settings of language acquisition between cultures, and invite for more

comprehensive, large-scale, ecological research.

Discussion

In this overarching discussion, I will talk about some personal thoughts, future research and
limitations of my studies. If we wanted to only remember a phrase from this dissertation, it would be
that yes, diversity is huge, but also learning appears to be robust across most of it. When I started
working with these hugely diverse input data, I expected to find much more difference both across

their corpus features and across their segmentability, than what I actually found.

While working across languages and cultures, I observed the benefits of large-scale studies. Studying
language acquisition at scale is a promising way to capture variability in input, measure which
mechanisms and factors account for word learning, how they interact, and how much learning they
explain overall. The field of language acquisition needs more quantifiable and comparable methods to
study the input and its environment. As technological development in corpus based linguistics grows,

so will our chances to use ecological data, in order to address acquisition and learnability issues.

Similarly, the field of language acquisition needs more data. While discussing previous studies,
sometimes observations on production were my main source of information. However, production
correlates with external factors, it is culturally dependent, and depends on the phonetic structure.
More tests of comprehension that collect comparable data across languages and cultures may be
developed and implemented, because comprehension data should be more informative on early

acquisition steps, such as the one discussed here, segmentation of speech.

In future studies, I am planning to use an existing rich source of data, the MacArthur-Bates
Communicative Development Inventories (CDIs) aggregated within the Wordbank Project (Frank et
al., 2017). CDIs are parental reports on their children’s lexical development, proven to be reliable

indicators of a child’s language, and they may provide valuable information on early language
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comprehension. I will use these data to study the uptake of language input by children, investigating

its learning factors and its computational mechanisms.

Moreover, at the beginning of this dissertation, I defined input as ambient language a child is exposed
to. It is important, though, to keep in mind for future studies that language acquisition varies over
time, and that input is actually interactions between children and caregiver(s), with varying
communicative and coordinating goals. The input children receive is characterized by conversational
dynamics, and children learn words in communicative contexts, interacting with speakers. Pan et al.
(2005) pointed out that communication with young children is “a total package of verbal and
nonverbal, linguistic and emotional interaction” (p.778). By talking about interactions, we need to

accept a social-pragmatic account of acquisition (Baldwin & Meyer, 2007; Diesendruck, 2007).

Previous literature on linguistic development has rarely taken the conversational dynamics of real-life
interactions into account, since it mostly consists in data gathered in small, controlled laboratory
studies. However, since learning emerges through interactions, some learning situations may be better
than others, including situations with engaging observational and social context (e.g. entities and

actions observable in the scene) (He & Arunachalam, 2017).

In future studies, I am thus planning to analyze the range of interactions children participate in using
large-scale, ecological studies, and to quantify whether different everyday situations (eating,
playing...) have similar engaging features and predictive power in acquisition. Specifically in the
domain of conversational analysis, the field of natural language processing has improved
dramatically, with important industrial applications (e.g., chatbots, personal assistants). I will use

these tools to analyse the nature of interactions in corpora of early child-caregiver interactions.

Furthermore, in this dissertation, I used a set of segmentation models, most of which are based on
simple statistics and batch processing, with no prior biases in learning. The fact that such models
manage to meet the evaluation criteria of the first chapters is actually a good sign. I suspect that a
model equipped with lexical constraints (as children have from early on in development, Markman et
al., 2003), parsimony bias (Frank et al., 2010) and use of more than one segmentation cue (children
use several cues for segmentation from early on in development (Mersad & Nazzi, 2012), could yield
results closer to what is first segmented by children. Attention and memory in children’s learning are
also not modeled, but probably play a role in learning. However, ‘simpler’ models, such as the ones
implemented in Chapters 3, 4 and 8, nonetheless enabled me to address my primary question on the

informativity of input across environments.
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In future studies, | am planning to build a comprehensive list of models with different implementation
strategies, such as learning incrementally by exposure to one utterance after another (incremental),
instead of processing all information at once (batch), performing single or joint tasks and exhibiting
memory limitations. I will assess the viability of these models in a comparative way, employing the

plausibility tests introduced in Chapter 4.

Additionally, learnability is an issue that concerns not only segmentation, but also several other
aspects of language. We could talk about learnability of syntax, semantics, or morphology. In future
studies, I am planning to conduct a more comprehensive research on learnability of different aspects.
It may be the case that some aspects are more affected by the input than others. For example,
vocabulary could be driven by input (the particular words a child is exposed to) more than other

aspects of language, which rely more on cognitive factors.

Before closing, I would like to mention two sources of diversity that were not presented in this
dissertation. The first one is diversity across children. No two children learn language in an identical
way (e.g. Brown, 1973; Pizzuto & Caselli, 1992). This should be taken into consideration for studies
where only a handful of children were targeted for each language or culture (such as the ones
described in this dissertation), and it can be framed in large-scale studies, with a considerable number
of target children. The second one is multilingualism. Half of the world’s children live in multilingual
environments (Cenoz & Genesee, 1998). Children in multilingual communities have to learn -at least-
two different languages and also appropriate code-switching between them (Loakes et al., 2013). For
example, Indigenous Australian children hear and learn at least 3 languages: traditional languages,

Kriol or Aboriginal English, and some level of Standard Australian English).

Last, I believe that understanding how diversity affects learning is crucial for many reasons. First, it is
necessary if we want to grasp broader issues in acquisition. For example, once this diversity is taken
into account, what is left can be studied for questions on cognitive biases and innateness. Second,
understanding the relation between diversity and learning can contribute to promoting healthy
learning environments, and productive methods of learning for all children (there is already some
effort to build interventions based on previous studies, e.g. Wong et al., 2020). This knowledge can
have important implications on several areas (education, parenting, psychology and even artificial

intelligence -such as virtual learning companions for children).
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Appendix A

Litterature Review

Here(https://docs.google.com/document/d/1JyNIyu KvMIjxKtxfh4ImGG7iUjR6TOSXVHDmjrB4h8/

edit?usp=sharing) is a review of papers with computational models looking at word/morpheme
segmentation from running speech represented as text transcripts. Human experiments and
segmentation from audio was excluded. The papers should contain information on two or more
languages within the same paper and/or be comparable to another article (i.e., exact same algorithm
with the exact same parameters). Papers with a single language or incomparable were excluded. The
search was done using google scholar, and the keywords were “cross-linguistic infant word
segmentation computational models transitional probabilities adaptor grammar minimum

description”.
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1 Introduction

One of the key tasks facing the language learning infant involves finding the mini-
mal recombinable units present in the input. Since there are no systematic silences
between words or morphemes, learners may need to carve them out from the run-
ning speech, a process known as segmentation. To do this, they may use a few
universal and unambiguous cues (such as lengthy pauses), as well as a host of
probabilistic cues. The latter can be classified into sublexical (e.g., which sound
sequences tend to be found at word edges, and seldom within words) and lexical
(e.g., certain words are more likely to follow each other than expected by chance).
A number of computational algorithms building on subsets of such cues have been
proposed, and several have been implemented in a variety of computer languages
and applied to corpora so as to model infants’ word form discovery processes. Typ-
ically, these models take as input a text-based, phonological representation of the
input. To mimic the word discovery process, known word or morpheme boundaries
are removed, and the algorithm is applied to try to make decisions on where breaks
may occur, which are then compared against the original (gold) boundaries.

These studies are informative for a host of learnability questions, such as to
test the sheer feasibility of a proposed word segmentation solution [12], to com-
pare alternative algorithms [I3}33], to see whether languages differ in their intrin-
sic segmentability [I0], or whether child-directed speech is intrinsically easier to
segment than adult-directed speech [25]. Additionally, there is emergent evidence
suggesting computational word segmentation results may also be relevant for in-
fant psycholinguistics, by predicting the contents of infants’ long-term vocabulary
better than lexical status [32] or pure frequency [22]. These results provide initial
validation to the cognitive modeling approaches to word segmentation that have
enjoyed a fair amount of attention for the last several decades (e.g., [AI2LI3]
5], as they reveal that the latter may be close enough to infants’ segmentation
to make predictions that can be validated via direct experimental or correlational
tests. In this context, it becomes crucial for the field to standardize segmentation
methodology, so as to better explore the phenomenon of segmentation and make
empirically informed predictions for infant experimental work.

In this paper, we present WordSeg, a software package conceived to allow
this field of research to do cumulative science. The last few decades have seen a
surge of interest in open science methods, where researchers’ choices are rendered
transparent, enabling others to replicate and extend results more easily. One could
imagine this is even easier for computational modeling than, say, live experimen-
tation, since typically modeling involves the creation of scripts which can be run
time and again, are blind to the person executing them, and seem more context-
independent than animals. And yet, recent articles continue to alert us on the
unavailability of key research materials (including code) even of modeling work
[14]. The first step towards cumulative science is thus to favor open source code,
that is, code that is both available publicly and tagged for public re-use. But this
is not enough. Even if the source code is made publicly available, it is often not
set up to run in some other machine or operating system; and it is not sufficiently
documented that it can be launched by some other user in an informed fashion so
as to reproduce the original results [39]. Thus, the second step towards cumulative
science involves providing appropriate documentation as well as taking steps to
make sure reproducibility can be achieved outside the native context. The final
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ingredient is to enable other researchers to directly build on previous work in a
cumulative fashion.

With all of these considerations in mind, we created a tool that has a modular
architecture (see Figure, combining a set of corpora description routines, several
algorithms varying in complexity and cognitive assumptions, and a rich evaluation
package, all integrated into a seamless pipeline. We have made our package openly
accessible, and complemented it with supplementary materials allowing readers to
reproduce every result in the current paper, as well as detailed online instructions
further enabling them to go beyond what we have done. With this, we meet the
first desideratum. Additionally, the whole system can be installed using Docker,
ensuring that the environment will be stable across operating systems [I7] — a
requirement for reproducibility. Finally, by virtue of its modular architecture (and
by clearly restricting and documenting e.g., input and output formats), the suite
can work as an open source platform, to which researchers can add their own
segmentation algorithms. This allows algorithm developers to benchmark their
results against previously available segmentation algorithms, and should greatly
facilitate making their own segmentation algorithm public — thus fitting the last
desideratum, cumulativity. We believe this approach is extremely novel in our field:
We cannot name one tool in psycholinguistics (or in another subfield of psychology)
that attempts to provide a framework for every researcher to integrate and test
their own model against others’.

Gold
corpus
Phonol. Unitized JEN Segmented
Prepare . o—> Sggr‘r.\ent corpus
wordseg-prep wordseg- h wordseg-tp
baseline .-’ +grammar e
Describe . wordseg- Evaluate
wordseg- wordseg-ag puddle
dibs
wordseg-stats wordseg-eval
Co_rpl_Js Scores
statistics

Fig. 1: Overview of the WordSeg suite. Black boxes represent input from the
user; other boxes represent the output of a given stage; arrows represent the general
description of procedures, most of which are implemented with a single command.
The exception is the segmentation, where multiple segmentation processes are
possible (parametric variation not shown).

We see two main use cases. The first involves fellow modelers, who are devel-
oping alternative unsupervised word segmentation algorithms. As just mentioned,
our package can serve as a common platform that standardizes input and evalu-
ation, and provides a set of alternative algorithms against which developers can
benchmark their own tool. Moreover, they can then profit from the effort that has
gone into making this package widely deployable by simply adapting their tool to
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the WordSeg architecture and adding it as a new WordSeg module. The second
set of users are linguists and other cognitive scientists interested in early language
acquisition. This second group would not develop additional code, but rather make
use of the standardized user interface to describe and analyze their child language
corpora, or respond to specific scientific questions. For instance, a user may be
curious about the ease of segmentation of social words (such as “mommy” and
the baby’s name) in different languages. This user could apply all segmentation
algorithms, and then estimate with what frequency these words appear as such
(i-e., are not obscured by under- or over-segmentation) in the segmented output.
Such WordSeg uses are extremely straightforward for anyone who knows how to
interact with a terminal (and for readers who do not, we recommend Software
Carpentry’s introduction http://swcarpentry.github.io/shell-novice/)).

2 Previous computational modeling work

It is beyond the scope of the present article to provide a comprehensive review on
computational models of infant word segmentation, and thus we refer interested
readers to [0] for a fuller introduction to the basic issues surrounding computa-
tional models of infant word form segmentation, [3] for a historical classification of
models, and [34] for a recent literature review on the topic. It suffices here to state
that this phenomenon has garnered considerable attention, but researchers have
used varying methodologies in a way that compromises comparability. Section 2.1
lays out the main approaches that are currently represented in the package. Our
package sought to also systematize “irrelevant” variation, as explained in Section
2.2

2.1 Classes of algorithms currently represented in the package

A systematic literature reviewEl of 46 journal articles or theses that contained
modeling results on word form segmentation published between 1993 and 2015
revealed that there are more postulated algorithms than papers, particularly when
free parameters are taken into account. Thus, it was simply impossible to attempt
to incorporate all previous algorithms. Our selection aimed at representing a few
key dimensions of variation across open source algorithms, and it was constrained
by the availability of code and quality of the documentation.

One key distinction among included models pertains to whether they rely
purely on local cues for word segmentation such as transitional probabilities be-
tween sounds or syllables. We will call this class sublexical. The lexical alternative
involves aiming to reparse the input stream in terms of minimal recombinable
units, or, put otherwise, building the lexicon that would be ideal to generate the
corpus. This conceptual distinction does not prevent the existence of models that
are hybrid. For instance, one of the models included in the suite is PUDDLE [31],
which uses both lexical and phonotactic cues (see Section 3.5.4).

1 The last author performed a search with the terms infant “word segmentation” “compu-

tational model” in scholar.google.com on August 10, 2015. The top 220 items were extracted
automatically using Zotero. They were thereafter inspected manually, excluding as off-topic
174 on the basis of title, abstract, or full-text.
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Additionally, some previous work has argued strongly for algorithms that pro-
cess information incrementally, compared to others that do so in a batch mode
(e.g., [31]). Although we believe that, to a certain extent, the dichotomy can be
ill-posed, our sampling reflects both batch and incremental learners. We return to
this topic in the discussion.

Two additional classes of models are not represented in the WordSeg suite.
Unsupervised segmentation models that use raw speech as input and can fully
parse a corpus are uncommon in the speech technology literature [43], and not at
all represented in work modeling infant word segmentation. The only exceptions
we know of are closer to keyword discovery than full segmentation (e.g., [26]).
Additionally, neural network type models are not represented either, mainly be-
cause this is an area of rapid technological development as neural networks are
increasingly used for natural language processing in a wide range of applications
including word segmentation (e.g., [5]).

2.2 Keeping other aspects constant

Most, previous work uses only one or a very limited set of models, so that to
decide which model performs better one often needs to compare performance across
papers. However, our systematic review revealed a host of dimensions that varied
across papers, and which prevent direct comparison across published work. Most
saliently, it is not uncommon to observe extremely large variations in the size
of the corpus used as input (e.g., [37] based on around 10,000 words versus [7]
drawing on 750,000 words). Moreover, previous work investigating the effect of
input quantity among Adaptor Grammars found effects that were non-linear and
dependent on the grammar itself [2], making it all the more difficult to compare
model performance across studies (see also [7[I83T], for further discussions of
corpus size effects).

In early modeling work, it was not uncommon to use artificial corpora, and
even in some current work the input consists of transcripts from broadcast speech
or adult-directed speech (such as the Buckeye corpus [36]). Using such input is no
longer warranted, since corpora on the CHILDES [28] repository contain hundreds
of transcriptions that are child-centered. These are likely to be ecologically valid,
because recordings were gathered in children’s natural environments, and often
with a recording device worn by the child, thus capturing both child-directed and
child-overheard speech available to the child.

For studies using CHILDES corpora, there are some sources of variation whose
impact has not been sufficiently considered. Although it would seem that corpora
are sure to be homogeneous if drawn from the CHILDES repository, different con-
tributors actually use different criteria to define sentences. We have noticed that
some corpus contributors are probably using a “breath group” or even “conver-
sational turn” definition, since there may be 10-20 words in a given sentence. In
contrast, others are probably using a syntactically or prosodically defined sen-
tence, with overall shorter utterances, averaging 3 words in length. Additionally,
researchers studying word segmentation often mix together various corpora from
children of diverse ages without controlling for the possibility that the length and
complexity of sentences and the lexical diversity in them varies as a function of the
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child’s age. Despite the fact that they probably explain variation in segmentation
performance, such characteristics are seldom thoroughly reported.

An additional source of variation relates to whether phones or syllables are the
basic units at the phonological level. For example, Phillips and Pearl [35] report
better performance when the basic units were syllables, rather than phones, and
argued in favor of syllables on plausibility grounds. Evaluating plausibility is not
within the scope of the present paper. As for performance, Larsen and colleagues
fully crossed basic unit against algorithm drawing from the sublexical, lexical,
and hybrid types, and although in general F-scores were higher for syllables than
phones, some exceptions remained [22]. Moreover, ranking across algorithms also
depended on representational unit.

Finally, nearly every research paper on computational models of infant word
segmentation contains arguments for and against the range of evaluation met-
rics that are typically used, prioritizing precision over recall, arguing that type
statistics are more interesting than token statistics — or vice versa.

All of this variation seriously impedes direct comparison across published stud-
ies, and makes it difficult for researchers to decide how to set up their preprocessing
and analysis pipelines to optimize comparability with previous work.

3 The WordSeg suite

The WordSeg suite allows the use of several algorithms drawn from previous lit-
erature in a controlled environment that standardizes input and allows users to
easily report the full range of input and output statistics allowing cross-paper
comparison. The overall process is represented in Figure [I] Detailed instructions
for use are available as online materials, which are updated as issues arise (https:
//wordseg.readthedocs.io)). The version used for the current work is 0.7.

3.1 Technical characteristics

The package is distributed from https://github.com/bootphon/wordseg, with a
GPL-3.0 re-use license, from where it can be cloned or downloaded as a zip. In
all cases, WordSeg requires several additional pieces of software (e.g., Python 3)
to function. Installation instructions are provided covering how to download and
install this ancillary software, as well as how to install WordSeg itself. The user
can install WordSeg such that it will be available anywhere within the system, or
only in a virtual environment via the use of Docker™ [I7]. WordSeg has been
thoroughly tested in a Linux environment, and less so in UNIX and Windows.
WordSeg has native support for Linux and has been thoroughly tested on MacOS
and Windows. Once the system is installed, users can use WordSeg as a command
line interface from a Bash terminal or as a library from Python, with both series
of commands described and exemplified in the online documentation https://
wordseg.readthedocs.iol The code contained in WordSeg is mostly Python and
C++, with variability being mainly due to the included segmentation algorithms.

2 https://zenodo.org/record/1471532, https://github. com/bootphon/wordseg/
releases/tag/v0.7.1
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3.2 Input selection, cleaning, and phonologization

The suite does not directly support full pre-processing and phonologization of cor-
pora, but we provide some pointers for users. For most researchers, the starting
stage will be a CHILDES style .cha file, which contains comments as well as tran-
scribed content. These first stages of cleaning will be dependent on the particular
corpus because they vary somewhat across CHILDES corpora, and on the research
question, since researchers may want to include or exclude specific speakers or ut-
terances. Sample scripts we have used in the past can serve as inspiration (see
the /data/cha/ section of the package). Additionally, the WordSeg suite assumes
that the input has already been phonemized and syllabified. For corpora in which
this has not been done, we recommend readers look into the Phonemizer pack-
age (https://github.com/bootphon/phonemizer]), which provides tools to con-
vert text to phonemes. Another option is the WebMaus automatic segmentation
tool (https://www.clarin-d.net/en/webmaus-basic-)), which converts text files
to phonemic transcriptions based on trained statistical models. For languages with
a transparent orthography, hand-crafted rules can be used to derive the phonemic
representation of words. Examples are provided in the /data/phonorules/ section.
Finally, users may want to employ a syllabification routine using the Maximize On-
set Principle, a rule of thumb whereby a sequence of phones will be parsed such
that the onset cluster will be as heavy as the language allows. For instance, the
sequence /estra/ will be broken up into /es.tra/ in Spanish and /e.stra/ in English.
We have adapted perl code that does so from [35] and provide examples in the
/data/syllabification/ section and the wordseg-syll tool.

3.3 Preparing the input

For the rest of the processes, the package assumes that the input file contains only
the transcribed utterances in phonological form, one utterance per line. Addition-
ally, it is assumed that word boundaries and basic units are coded in the input
text. The input text can have one or both of the following basic units: phones,
syllables.

The wordseg-prep tool in the package allows users to convert the input text
from the input form where syllable and word boundaries are tagged to the input
to be provided to the models. This tool outputs a unitized version and a gold
version of the text. A unitized version contains spaces between phones or syllables
(as chosen by the user). The gold version only has spaces between words. The gold
text will be used later to evaluate the output of segmentation.

3.4 Describing the corpus

The package also contains wordseg-stats, a tool to describe the input corpora.
This description tool prints out the number of all of the following units: sen-
tences or lines, single-word utterances, and number of tokens, types, and hapaxes
(i.e., types with token frequency of exactly one) for words, syllables, and phones.
Additionally, a measure of lexical diversity that controls for corpus length is ex-
tracted, namely a moving average type to token ratio similar to that available in
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Acronym Class Processing Key units
baseline sublexical batch units

dibs sublexical batch unit bigrams

tp sublexical batch unit bigrams
puddle hybrid incremental  unit n-grams, words
ag lexical batch words

Table 1: Segmentation algorithm families currently included in WordSeg. We say
“families” because each has a set of parameters that allows further variation. Class
indicates the main class the algorithm belongs to; Processing whether the input
is processed in batch or incrementally; and Key units the crucial representations
that the algorithm uses for segmentation.

the CHILDES tools [27], where a window of 10 word tokens are considered at a
time, moved one token at a time. Finally, wordseg-stats returns a measure of
entropy, i.e. the intrinsic ambiguity found in a text (see [I0] for details). In a nut-
shell, given a set of utterances and the lexicon found in the gold segmentation,
this measure of entropy assesses to what extent there are many versus few possi-
ble parses of the utterances (i.e., in a corpus with 2 sentences, “ice cream” and
“icecream”, both utterances are ambiguous between “ice cream” and “icecream”
segmentations).

3.5 Segmenting

All of the algorithms are called with variants of wordseg-X, where X is the short
name for the algorithm (as shown on Table , together with the necessary pa-
rameters and ancillary files, both of which depend on the specific algorithm. The
input for all algorithms is plain text as built by wordseg-prep, where only unit
tokens (syllables or phonemes) are available and separated by single spaces (that
is, the word boundaries have been removed), but some of them additionally re-
quire a training set or a configuration file. In the rest of this section, we provide a
general description of each algorithm, parametrization and required files. We have
not incorporated standardized measurements of memory requirements or length
of processing, because these, we believe, could largely relate to details of imple-
mentation which may not affect fundamentally the results found.

3.5.1 Baseline

Researchers might be interested in comparing baseline results to those of the word
segmentation algorithms. The WordSeg package provides tools for word segmen-
tation baselines based on the insertion of word boundaries in random positions in
the text, explained for instance by Lignos [24].

The Random Baseline assigns word boundaries with a probability parameter p
specified by the researcher. By default, a random segmentation consists in adding
word boundaries with p = 0.5 to each unit token. The user can specify a random
seed, to ensure reproducibility. Alternatively, the researcher can choose p = 0 to
generate an “Utterance Baseline”, considering each utterance as a single word;
and p = 1, to insert all possible boundaries and treat each unit token (phones or
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syllables) as a word. The researcher can also inspect the statistics mentioned in
Section to calculate the true p of word boundaries given the basic unit (e.g.,
for a corpus unitized into syllables, p = %, where nw is number of words and ns
is number of syllables). This number can then be provided by the user as the p
parameter, in which case, this would be an Oracle Random Baseline [24] ( “oracle”
because it is given the true p by the researcher; random because it will insert the
correct number of boundaries to match p, without knowing where they should

occur).

3.5.2 Diphone Based Segmenter (DiBS)

Daland’s DiBS (short for Diphone-Based Segmentation, [7]) uses phone bigram
probabilities to decide whether a specific sequence is likely to span a word bound-
ary (typically because the phone bigram is rare) or not. A DiBS model is any
model which assigns, for each phrase-medial phone bigram, a value between 0 and
1 inclusive, representing the probability the model assigns that there is a word
boundary between the two phones. In practice, these probabilities are mapped to
hard decisions (break or no break).

Making these decisions requires knowing the chunk-initial and chunk-final
probability of each phone, as well as all phone bigram probabilities; and addi-
tionally the probability of a sentence-medial word boundary. In our package, these
4 sets of probabilities are estimated from a training corpus also provided by the
user, where word boundaries are marked. Please note we say chunk-initial and
chunk-final because the precise chunk depends on the type of DiBS used, as ex-
plained in the next paragraph.

Three versions of DiBS are available. DiBS-gold is supervised in that “chunks”
are the gold words. It is thus supposed to represent the optimal performance
possible. DIBS-phrasal uses phrases (sentences) as chunks. Finally, DIBS-lexical
uses as chunks the components of a seed lexicon provided by the user (who may
want to input e.g. high frequency words, or words often said in isolation, or words
known by young infants).

By default, the sentence-medial probability of word boundary is calculated
in the same way for all three DiBS, and it is the actual gold probability (i.e.,
the number of words minus number of sentences, divided by the number of phones
minus number of sentences). Via a parameter, users can also provide the algorithm
with a probability of word boundary calculated in some other way they feel is more
intuitive.

DiBS was initially designed with phones as basic units. However, for increased
flexibility we have rendered it possible to use syllables as input.

3.5.8 Transitional Probabilities (TP)

Like DiBS, the next family of algorithms attempts to distinguish between more or
less internally cohesive phone/syllable sequences. In the implementation we have
adopted [37], transitional probabilities (TPs) are calculated in one of three ways:

— Forward TPs for XY are defined as the frequency of the sequence XY divided
by the frequency of X;
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— Backward TPs for XY are defined as the frequency of the sequence XY divided
by the frequency of Y;

— Mutual information for XY is the log (base 2) of the frequency of the sequence
XY divided by the product of frequency of X and that of Y

This direction parameter is crossed with another, defining a cut-off for how
low TPs must be to signal a boundary, and which also has two settings. In the
first, a boundary is posited when a relative dip in TP is found. That is, given the
syllable or phone sequence WXYZ, there will be a boundary posited between X
and Y if the TP for XY is lower than both that for WX and that for YZ. The
second setting uses the average of the TP over the whole corpus as the threshold.
Notice that both of these are unsupervised: Knowledge of word boundaries is not
necessary to compute any of the parameters.

TP was initially designed with syllables as basic units, but has been adapted
to accept either phones or syllables as input in this package.

3.5.4 PUDDLE

PUDDLE stands for Phonotactics from Utterance Determines Distributional Lex-
ical Elements. This algorithm was proposed by Monaghan and Christiansen [31];
the original awk rendering (shared with us by Monaghan) was reimplemented in
Python for this package. PUDDLE takes the opposite strategy of algorithms such
as DiBS and TPs that focus on local events to posit breaks. In contrast, PUD-
DLE takes in whole utterances and tries to break them apart into relatively large
chunks. The system has three long-term storage units: a “lexicon”, a set of onset
bigrams, and a set offset bigrams. At the beginning, all three are empty. The lex-
icon will be fed as a function of input utterances, and the bigrams will be fed by
extracting onset and offset bigrams from the lexicon. The algorithm is incremental,
as follows.

The model scans each utterance, one at a time and in the order of presentation,
looking for a match between every possible sequence of units in the utterance
and items in the lexicon. We can view this step as a search made by the learner
as he tries to retrieve from memory a word to match it against the input. If,
for a considered sequence of phones, a match is found, then the model checks
whether the two units preceding and following the candidate match belong to the
list of ending and beginning bigrams, respectively. Imagine a target utterance like
“thisisacutebaby”, unitized at the phone level; a lexicon containing the item “this”;
possible bigrams thus being ”th” for onsets and “is” for offsets. Although “this” is
found in the target utterance, the utterance will not be split because the remainder,
“isacutebaby”, does not begin with a permissible onset. It should be born in mind
that this constraint is crucial for the model to avoid over-segmentation: If not
applied, the model will ultimately segment the corpus to the basic unit level (e.g.,
phones). If a substring match is not found, then the utterance is stored in the
long-term lexicon as it is, and its onset and offset bigrams will be added to the
relevant buffers. Thus, in the running example, the lexicon will end up containing
two items “this”and “thisisacutebaby”; the onset buffer will have the item ”th”
with a frequency of 2; and the offset buffer will have “is” and “by”, each with a
frequency of 1.

In our implementation of PUDDLE, we have rendered it more flexible by as-
suming that users may want to use syllables, rather than phones, as basic units.
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Additionally, users may want to set the length of the onset and offset n-grams.
Some may prefer to use trigrams rather than bigrams; conversely, when syllables
are the basic unit, it may be more sensible to use unigrams for permissible onsets
and offsets.

3.5.5 Adaptor Grammars (AG)

In the adaptor grammar framework [I3l[I9], parsing a corpus involves inferring the
probabilities with which a set of rewrite rules (a “grammar”) may have been used
in the generation of that corpus. The WordSeg suite natively contains the capacity
to generate one grammar, the most basic and universal one. Users can also create
their own and/or change extant ones to fit the characteristics of the language they
are studying (see the /data/ag/ section of the package for more examples).

The simplest grammar, automatically generated with the call wordseg-ag, can
be conceived as having one rewrite rule to the effect that “sentences are one or
more words”, one rewrite rule to the effect that “words are one or more basic
units”, and a set of rewrite rules that spell out basic units into all of the possible
terminals. Imagine a simple language with only the sounds a and b, the abstract
rules would then be:

— Sentence — Word (Word)+
Word — Sound (Sound)+
Sound — a

Sound — b

A key aspect of adaptor grammar is that it can also generate subrules that are
stocked and re-used. For instance, imagine “ba ba abab”, a corpus in the above-
mentioned simple language. As usual, we remove word boundaries, resulting in
“babaabab” as the input to the system. A parse of that input using the rules above
might create a stored subrule “Word — ba”; or even two of them, as the system
allows homophones. The balance between creating such subrules and reusing them
is governed by a Pittman-Yor process, which can be controlled by the user by
setting additional parameters. For instance, one of these parameters, often called
“concentration,” determines whether subrules are inexpensive and thus many of
them are created, or whether they are costly and therefore the system will prefer
reusing rules and subrules rather than creating new ones.

The process of segmenting a corpus with this algorithm will in fact contain
three distinct subprocesses. The first, as described above, is to parse a corpus given
a set of rules and a set of generated subrules. This will be repeated a number of
times (“sweeps”), as sometimes the parse will be uneconomical or plain wrong,
and therefore the first and last sweeps in a given run will be pruned, and among
the rest one in a few will be stored and the rest discarded.

The second subprocess involves applying the parses that were obtained in the
first subprocess onto the corpus again, which can be thought of as an actual
segmentation process. Remember that in some parses of the “ba ba abab” corpus
(inputted as “babaabab”), the subrule “Word — ba” might have been created 0,
1, or 2 times. Moreover, even if we ignore this source of variation, the subrules
may be re-used or not, thus yielding multiple possible segmentations (“baba abab”
with no subrule, “ba ba a ba b” with one “Word — ba” subrule or the same with
3 “Word — ba” subrules, etc.)
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The third and final subprocess involves choosing among these alternative solu-
tions. To this end, Minimum Bayes Risk is used to find the most common sample
segmentations.

As this description shows, there are many potential free parameters, some that
are conceptually crucial (concentration) and others that are closer to implementa-
tion (number of sweeps). By default, all of these parameters are set to values that
were considered as reasonable for experiments (on English, Japanese, and French
adult and child corpora [I0[18]) running at the time the package started emerging,
and that we thus thought would be a fair basis for other general users. The full list
can be accessed by typing wordseg-ag --help. The following is a selection based
on what is often reported in adaptor grammar papers:

— number of runs: 8

— number of sweeps per run: 2000

— number of sweeps that are pruned: 100 at the beginning and end, 9 in every
10 in between

— Pittman Yor a parameter: 0.0001

— Pittman Yor b parameter: 10000

— Rule probability (theta) is estimated using Dirichlet prior

3.6 Evaluation

An objective way to measure the performance of word segmentation algorithms
is to compare the segmented corpus with the gold one, which corresponds to a
perfect segmentation as would be done by a literate adult. This comparison can
be done at different levels: word token, word type, and boundary. We provide two
boundary scores, one counting utterance edges and the other not counting edges
(since these will always be correct, by definition).

At a particular level, the evaluation looks at two different criteria: precision,
the probability that a segmented boundary/token/type is correct; and recall, the
probability a correct boundary/token/type has been segmented. Concretely, the
precision P and recall R are calculated as follows:

True positives

(1)

~ True positives + False positives

_ True positives
" True positives + False negatives

(2)

The harmonic mean between precision and recall is computed to give the F'1, which
we will call F-score.

To take an example, imagine a corpus ‘the dog bites the dog’; the segmented
output is ‘the dog bites thedog’. This will yield the following performance:

— token precision: 0.75, recall: 0.6, F-score: 0.67

— type precision: 0.75, recall: 1, F-score: 0.86

— boundary precision: 1, recall: 0.83, F-score: 0.91

— boundary no edge precision: 1, recall: 0.75, F-score: 0.86
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Two additional evaluation outputs are provided at the user’s request. First,
users can obtain the Rand Index RI, which captures both true positives and
negatives. It is calculated as follows:

_ True positives + True negatives
" True positives + True negatives + False positives + False negatives

RI

3)

Our evaluation actually provides the Adjusted Rand Index, where both numerator
and denominator have been adjusted for chance agreement via resampling.

Second, some readers may be specifically interested in finding out which lexical
items come to be correctly segmented, or else segmented incorrectly in one of these
three ways: undersegmented (i.e., joined with a neighboring word); oversegmented
(i.e., broken down into subparts); or plain mis-segmented. An optional parameter
yields an evaluation summary file being returned which contains all words in the
gold corpus and the number of times with which they were found in each of those
4 groups.

One important consideration pertains to incremental algorithms, in which per-
formance is changing throughout the corpus. To make their evaluation comparable
to that of the others, we implemented a system of corpus folding, with a default
of 5 folds (which can be parametrized by the user). For the first fold, a given
algorithm is run in the whole corpus. Next, the final 20% of the corpus is moved
to the onset of the corpus, and the algorithm is run again, such that this time the
final 20% will in fact be the utterances that start at the 60% point in the corpus
and end at the 80% point. This process repeats for the remaining 3 folds (40-60%,
20-40%, 0-20%). At this point, the final 20% of the corpora outputted in each of
the 5 runs is concatenated in the right order, and the whole is evaluated. Please
note that this is not an instance of cross-validation, since the models may continue
learning over the last 20%.

4 Examples of use

This section has three goals. First and foremost, we aim to illustrate the pack-
age and show its flexibility. This example allows users to have a benchmark when
they themselves use the package. Since we expect that we and others will con-
tinue improving it, however, we recommend users check https://github.com/
alecristia/wordseg-brm-analyses for an up-to-date version of these results as
well as reproducible code. Second, we would like to inform researchers working on
this domain on the impact of key methodological and conceptual decisions, such as
what input and evaluation units are used. Finally, we try to assess the conditions
in which performance is stable and replicable.

Crucially, we would like to make it clear from the start that the goal is not
to compare performance across algorithms to find the best-performing one. Best
performance against orthographic standards does not mean that the algorithm rep-
resents human performance, let alone infant performance. For instance, [22] found
essentially a zero correlation between algorithms’ F-scores against adult segmen-
tation and the proportion of variance explained in infant word knowledge in an
English sample. Thus, we consider that, at present, there is insufficient evidence to
determine which algorithm best captures human (infant and adult) performance,
and that they may all be valuable and informative to the computational modeler
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interested in the psychological phenomena surrounding word form segmentation.
We want to provide the research community with an array of algorithms which,
given the uncertainty regarding the information that infants and other learners
incorporate, has a high likelihood of capturing at least some behaviors, or at the
very least allows the researcher to focus on findings that are true regardless of
which algorithm is used as a proxy.

4.1 Methods
4.1.1 Corpus

We used the Providence corpus [21], available from CHILDES [28] because it
is commonly used and large enough to allow us to break it down into several
subparts, and apply inferential statistics to assess whether certain factors truly
explain significant proportions of variance. It contains transcriptions of recordings
gathered from 6 American English-speaking children. Recordings started when
children spoke at least 4 words according to parental report, which happened when
they were around one year of age. About one hour of child-context interactions were
recorded every 1-2 weeks until they were around 3 years of age. For the present
study, we focus on the 74 transcripts (from 5 children) meeting the following
desiderata:

— children were two years of age or younger

— there was only one adult present (which lowers the likelihood of including
adult-directed speech)

— there were at least 300 utterances spoken by the adult

These transcripts were cleaned using custom bash scripts, which removed all
comment lines and all sentences uttered by children. The resulting orthographic
representations were phonologized using FESTIVAL [41], which yields a represen-
tation including syllable boundaries. FESTIVAL uses a dictionary look-up system,
complemented with grapheme-to-phoneme conversion rules for words not in the
dictionary. The following is an example of the resulting “Tags” representation,
which contains spaces to mark phone boundaries, ;s for syllable boundaries, and
;w for word boundaries.

1. Orthographic: you wanna sit with mommy
2. Tags: y uw ;s ;w w aa ;s n ax ;s ;w s ih t ;s ;w w ih dh ;s ;w m aa ;s m iy ;s ;w
3. Gold: yuw waanax siht wihdh maamiy

4.1.2 Processing with WordSeg

We generated the results for all the experiments below with a single Bash script
(although we could have used Python instead). The following is a version of that
Bash script, simplified for ease of inspection:

#!/bin/bash

# segment independent transcripts
FOLDER="/Providence/"

for tag in $FOLDER/*tags.txt; do
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# compute statistics on the unitized input text
cat $tag | wordseg-stats --json > ${tagl}_stats.json
# prepare the input for segmentation and generate the gold text
cat $tag | wordseg-prep --unit $unit --gold gold.txt > prep.txt
# segment the prepared text with different algorithms
# sublexical
cat prep.txt | wordseg-baseline --probability 0.0 > ${tag}_seg.base00.txt
cat prep.txt | wordseg-tp --threshold relative > ${tag}_seg.tprel.txt
cat prep.txt | wordseg-dibs --type phrasal --unit $unit $tags > ${tagl_seg.dibs.txt
# lexical
cat prep.txt | wordseg-ag > ${taglt_seg.AGu.txt
# hybrid
cat prep.txt | wordseg-puddle --window 2 > ${tag}_seg.puddle.txt
# evaluate against the gold file
for segmented in ${taglt_seg.*.txt; do
algo=$(echo $segmented | sed ’s/.*seg.//’ | sed ’s/.txt//’)
cat $segmented | wordseg-eval gold.txt > ${tagl_out.${algo}.txt
done
done

The sample script above represents the following conceptual decisions:

— All algorithms are fed with a phone-unitized version of the corpus,

— The baseline is that which segments at utterance level only,

— For TP version uses the forward TP (default), with a relative threshold,

— The version of DiBS chosen in this example is the phrasal type, using the full
corpus to extract phone bigram statistics,

— For AG, since no grammar was provided, the simple one mentioned above is
automatically generated,

— For PUDDLE, we used bigrams (window of 2)

The full script can be retrieved from https://github.com/alecristia/wordseg-brm-analyses/
blob/master/do_prov.sh. It actually feeds all algorithms with both phone- and
syllable-unitized input, contains 3 baselines (cut at utterance boundary, at every
unit boundary, and at half of them); and TP is run with both an absolute and a
relative threshold.

4.2 Corpus statistics

Our call to wordseg-stats allowed us to describe the analyzed transcripts. Table
shows means and SDs of various corpus characteristics that are calculated by the
statistics package, as well as some that can be derived from the former. The most
important message we would like to convey here is that the standard deviations
are quite high, particularly for sentence length. This is despite the fact that we
focused on a single corpus, and further restricted inclusion to transcripts collected
when children were younger than 2 years of age. Nonetheless, there are sizable
changes in average sentence length, which may impact segmentation performance.
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Characteristics Mean SD

N phone tokens 11,463.22  3,414.43
N phone types 39.62 0.51
N syllable tokens 4,581.11 1,350.05
N syllable types 688.54 163.65
N words tokens 3,720.28 1,075.26
N words types 670.99 178.71
N word hapax 293.15 93.43
MATTR 0.89 0.04
Entropy 0.018 0.002
N SWU 102.81 55.33
N utts 700.27 200.38

Derived metrics

Prop. SWU 0.14 0.04
Prop. hapax 0.43 0.04
Avg. phones/word 3.08 0.08
Avg. syllables/word 1.23 0.03
Avg. words/utt 5.38 0.93

Table 2: Corpus characteristics of individual transcripts. Tokens refers to
unique instances, types to abstract units. Hapax stands for types that occur exactly
once. MATTR stands for Moving Average Type to Token Ratio, a TTR calculated
over 10 consecutive words so as to control for overall corpus size. Entropy is a
measure of ambiguity in segmentability; a higher number means more ambiguity.
Utt(s) stands for utterances; SWU for Single Word Utterance.

4.3 Effects of processing unit and algorithm

As mentioned above, we have analyzed each transcript within a subset of the
Providence corpus separately, encoded in terms of phones and syllables, with
a set of algorithms. In this section, we report on analyses aimed at assessing
to what extent performance is affected by these two factors and their interac-
tion. As shown in Supplementary Materials (https://github.com/alecristia/
wordseg-brm-analyses/blob/master/supmat.pdf)), all performance metrics are
highly correlated with each other. Therefore, we focus here exclusively on token
F-scores. Figure [2] shows that performance varies enormously as a function of al-
gorithm and basic unit, with important interactions between the two. Next, we
highlight aspects of these results relevant to our three goals for Section 4.

The first result that may attract readers’ attention is that performance varies
greatly across algorithms. For instance, as has been discussed elsewhere [I21[0)],
excellent scores can be achieved in English infant-directed speech samples like this
one by simply segmenting every syllable, our Baseline with p = 1 algorithm. Above
and beyond the specific explanation, this observation highlights the usefulness of
WordSeg’s included baseline algorithms.

A second conclusion is that algorithm and unit interact. The reason is obvious
for two cases: TP (absolute versus relative), and PUDDLE. For TP, performance
is higher for syllable-as-unit than phone-as-unit when using an absolute threshold,
but the opposite for a relative threshold. The reason is probably that the relative
threshold algorithm requires at least 4 units in a row to be able to find a local
dip [12]. Therefore, no boundary can be postulated in short sentences, with fewer
than 4 syllables. In contrast, a boundary can be postulated in short sentences
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Fig. 2: Token F-scores as a function of unit and algorithm. Each point is
the performance of a segmentation experiment on one of the 74 transcripts, using
either phones (circles, left) or syllables (crosses, right) in combination with one
of the 8 algorithms (distinguished by position on the x-axis as well as color). In
baselines, b-00 stands for p = 0; b-05 for p = 0.5; b-10 for p = 1.

when these are represented in phones, because a local dip can be established when
there are few syllables (provided these contain at least 4 phones).

A similar conclusion can be drawn from the PUDDLE performance, which
was higher for phones than syllables. By setting the window for onset and offset
buffers uniformly at 2, we effectively prevented the algorithm from breaking up
more utterances when unitizing with syllables than with phones.

A third conclusion is that performance is enormously affected by unit and
algorithm. To investigate this more precisely, we fit a regression with token F-
scores as dependent measure, unit and algorithm as well as their interaction as
fixed effects, and transcript identity as blocking factorEl This model explained 98%
of the variance in performance, with both main effects and their interaction being
highly significant.

4.4 Effects of corpus length

Although the analysis in the previous section showed that nearly all the variance
in performance across transcripts was explained by algorithm, unit, and their
interaction, it remains possible that transcript characteristics do affect word seg-
mentation performance. As discussed in Section 2.2, a good candidate for a factor
that would affect performance is corpus length. Preliminary analyses revealed that
PUDDLE’s performance was changing as a function of corpus length within the
sample studied in the previous subsection. Therefore, we carried out an additional
experiment to extend the length coverage. We followed previous work [2l[731] by

3 This regression was preferred over a mixed model because there is disagreement as to how
to estimate proportion of variance explained in the latter.
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submitting concatenated versions of the transcripts to our segmentation proce-
dure. That is, we first analyzed the first transcript; then, we concatenated the
first two by pasting the second transcript after the first and analyzed the resulting
combined corpus; and proceeded in this manner until all included transcripts had
been concatenated. Children vary in the number of included transcripts both be-
cause some were visited more regularly and from an earlier age (e.g., Naima), and
because a different proportion of transcripts were excluded (due to being too short
or containing more than one adult, see|4.1.1} e.g., only 4 out of 40 transcripts for
William are included here).

|

0.6

e phone

* syllable puadle

0.5
|

tprel

0.4

Token F-score

0.3
|

0.2

0.1

0.0

I I I
5000 10000 15000 20000

N word tokens

Fig. 3: Token F-scores as a function of unit and algorithm in cumulative
transcripts. Each point is the performance of a segmentation experiment on
a transcript that is the result of the concatenation of a given transcript and all
preceding transcripts for a given child. Since variation across children was low, only
Naima’s data are shown here; see supplementary materials for the other curves.
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Figure [3| portrays performance on Naima’s transcripts. Since variation across
children’s data was very low, we have only included there results from one child to
facilitate readers’ visual inspection of results (see full figure in the online supple-
mentary materials). All algorithms exhibit strong changes (upwards or downwards)
in the 0-3k region, which may be associated to peculiarities of some of these tran-
scripts, since they are visible even in the baselines. Afterwards, most algorithms
remain fairly stable with very slight linear changes (if any), with one exception:
PUDDLE. Indeed, we notice that PUDDLE-phones exhibits a non-linear pattern,
with performance increasing rapidly between 1k and 4k sentences; peaking at 5-Tk
sentences; and slowly dropping (by little) thereafter. PUDDLE-syllables increases
slowly and linearly throughout the range. In general terms, then, performance is
stable for all algorithm-unit combinations (except for PUDDLE-syllables) in the
5k-15k region.

We investigated the effects of corpus size more precisely by fitting a linear
regression taking the last data point for each child (i.e., the concatenation of all
the transcripts associated with that child). As before, the dependent measure was
token F-score and the predictors were the algorithm in interaction with the unit
(blocked within child). This regression explained 99.2% of the variance; addition
of number of words in interaction with algorithm increased this to 99.3% (which
was not significant in a chi-square test).

In short, we have found that for most algorithm-unit combinations, perfor-
mance is stable across a wide range of corpora sizes (roughly between 5,000 and
15,000 word tokens), and furthermore that corpora size affected performance very
minimally once algorithm-unit effects were taken into account.

5 Discussion

This paper presents a package that allows the systematization of several key steps
in the study of word form segmentation by infants and other agents. One of the
strengths of our package is that it contains a tool to describe the input. Our
analyses of a CHILDES corpus demonstrates that there is wide variability in the
input to children even within 1-2 years of age in terms of sentence length and
lexical properties which may impact segmentation performance. The package also
provides all basic performance measures. Our analyses suggest that these are by
and large correlated.

Another key strength of the package is the presence of a tool to unitize this
input into phones or syllables as basic phonological units, and a third is that
the package contains a range of conceptually diverse algorithms. Our analyses
demonstrate that the crossing of these two factors (basic representational unit,
and algorithm) has enormous effects on segmentation performance. In contrast,
segmentation performance was rather stable across a wide range of corpus sizes,
particularly for batch algorithms.

5.1 Limitations and future directions

The first direction in which we think the WordSeg suite should be improved is
by providing users with solutions for phonologizing their texts, and facilitating in-
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formed choices for data selection from CHILDES. Previous researchers have used
a range of pre-processing pipelines, making choices that could affect segmentation
results. Some researchers remove repetition or mumbling within sentences, which
obscures any dependence which may have been present previously. For instance,
“she xxx baby girl” would become “she baby girl” (since xxx indicates untran-
scribed spoken material in the CHAT format), which misrepresents the sequence
of words produced by the speaker. Sometimes material tagged as non-lexical or
onomatopeic (with the CHAT tags &hey and choochoo@o, respectively) are simi-
larly deleted from the input. Some go so far as dropping words that are not part
of the finite dictionary being used. Since child-directed speech will often contain
onomatopeia and other forms of non-standard words, such an analytic decision
unduly simplifies the task of the word segmenter. The latter problem can be re-
moved by using a text-to-speech system (or grapheme to phoneme conversion rules
in languages with transparent orthography) on all potential child input. Such sys-
tems may also help make some strides towards making the phonologized input
more realistic via the application of phonological processes of e.g. assimilation and
reduction.

Although not illustrated in the examples above, the package is flexible enough
to allow evaluation of segmentation at linguistic levels other than the word level.
For instance, some users may desire to evaluate on morphemes rather than words
[2,35]. It has been previously discussed [35] that error evaluation based on the gold
word standard might not be optimal when modeling infant segmentation of use-
ful linguistic units. Evaluation on the morpheme level should also be considered,
since segmenting out the constituent morphemes of a word could actually help
infants acquire more lexical elements of their language [20[38]. Similarly, one can
imagine extensions assessing segmentations of yet other levels of the prosodic hi-
erarchy, such as syllables, or syntactic units, such as phrases. A somewhat related
issue is how to deal with plausible segmentation errors due to undersegmentation
of sequences of words that are often produced together (collocations). To avoid
penalizing for these, the user can simply create a version of the gold where word
boundaries are removed in high frequency phrases. These extensions are all possible
and easy to implement in WordSeg, since both the preparation and the evaluation
steps allow the user to provide the code used in their text as separators. However,
they all require that the user has exhaustively tagged morpheme boundaries (or
whatever other unit they want to evaluate). Future developments could integrate
a morphological parser to help users who lack this level of annotation, perhaps
building on extant open source, multilingual tools (e.g., CLAN, [28]).

All this said, most readers will agree with us that performance against the
gold standard is not necessarily the ultimate goal of research on infant word seg-
mentation. We have begun to investigate how the output of word segmentation
algorithms may be related to human performance more directly. Specifically, we
have been using parental reports of infant word comprehension as the variable to
be predicted [22]. This code, although available from [2I], has not been prepared
for public re-use as extensively as the WordSeg code has. Additionally, there is con-
siderable conceptual and methodological work needed to extrapolate the method
to corpora of other languages (see [I] for a first attempt). We hope others will find
ways of employing the WordSeg package output to relate word segmentation re-
sults from computational models to human performance, and similarly document
and share their code.
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Another conceptual development we foresee involves breaking down the cur-
rently incorporated algorithms into recombinable modules. We have opted to reuse
extant algorithms to allow users to connect with previous literature. Nonetheless,
as word segmentation research advances, it would be ideal to reflect on the fact
that some extant algorithms represent a set of conceptual choices, each of which
is potentially combinable with others. For example, PUDDLE [31]] incorporates a
strategy that profits from single-word utterances or chunks. In that model, utter-
ances that have not been segmented are encoded directly into long-term memory,
and later used to break up new utterances. We could imagine a model that encodes
phonotactics like DiBS does (i.e., not with a list of permissible phone bigrams but
rather as a probability distribution of the transition) together with a chunk mem-
orization module as found in PUDDLE. It would also be interesting to explore
parameters that have similarly been confounded with other design options, such
as whether the model should treat differently phenomena occurring at utterance
edges than utterance middles [42], or saliently whether the processing is batch or
incremental.

Finally, the modular architecture of WordSeg as well as the fact that it is open
source should facilitate its integration with other systems focusing on unsuper-
vised learning of language structure at other levels. Recent research has begun to
investigate word segmentation from raw speech [43], an interesting development
given infant psycholinguistic research strongly suggesting young infants may build
their earliest proto-lexicon using acoustic representations (e.g., [16]). Although
there are very few public corpora of child-directed speech with phonological tran-
scriptions that are aligned well enough to be usable for this process, some recent
work has made great strides towards standardizing and facilitating forced align-
ment [29], including on CHILDES corpora [9L[IT]. As to the integration of systems
working on other levels of acquisition, it would be worthwhile to explore parsers
allowing the discovery of morphological structure within words (such as the open
source Linguistica, see [23], section 5.2) as well as others that succeed in acquiring
multi-word dependencies (and thus a form of shallow syntax, e.g., [30]).

It is not feasible for us to promise to implement all such developments. For-
tunately, having opted for a modular, open-source structure makes it easy for
others to contribute these and other algorithms. As more and more cognitive sci-
entists and psychologists use computational modeling, more and more students
and researchers will have the necessary computer skills to make contributions
via the GitHub system. These users would fork our repository from |github.com/
bootphon/wordseg, add their tool in the wordseg/algos section, and then either
keep this improved version in their own repositories, or do a pull request so that
the standard WordSeg comes to include their tool. Notice incidentally that the use
of readthedocs.com allows us to harvest help sections from within python code,
thus inviting tool developers to include statements of use that directly become
available to WordSeg users. For readers who find this idea appealing but do not
have previous experience with git, we recommend the excellent introduction to git
offered by Software Carpentry (https://swcarpentry.github.io/git-novice/,
followed by GitHub’s tutorials for forking (https://help.github.com/articles/
fork-a-repo/ and creating pull requests (https://help.github.com/articles/
creating-a-pull-request-from-a-fork/)). We provide further information in a
dedicated section of our documentation https://wordseg.readthedocs.io/en/
latest/contributing.html#contributing-to-the-code.
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In conclusion, the present version of WordSeg greatly facilitates research on un-
supervised wordform segmentation by integrating multiple previous contributions
into a modular architecture. We look forward to further improvements, inviting
feedback and development.
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Appendix C

Artificial language experiments - Complementary study to Chapter 3

This study is part of the Appendix because, even though relevant to the thesis project in Chapter 3, it
was finalized after the date of the defense.
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Follow-up studies for Chapter 3

In Chapter 3, we compared two languages, Chintang and Japanese, represented by
two naturalistic corpora that may differ across several factors. For example, Chintang
parents could by chance produce longer utterances, and this would affect our results. It
is impossible to control for this in naturalistic corpora. We cannot be certain that the
differences we observe are due to the specific factor that led us to choose these two
languages or to any extraneous factor in the corpora and/or to other uncontrolled
characteristics of the languages. We considered extending this approach to other
natural child-centered corpora, for instance by looking at 10-20 corpora of languages
varying in morphological complexity. This turned out not to be feasible, since
morphological segmentation is typically not available in child-centered corpora.
Moreover, there would always have been the possibility that uncontrolled differences
caused, or obscured, any result that we were to find.

We have thus performed additional experiments with artificial languages, to study
the effects of morphological complexity on segmentability in a more controlled fashion.
Artificial languages allow us to study specific properties of languages and their effect
under tightly controlled conditions. Once everything else was controlled for via artificial
languages, the effect of morphological complexity was clear and could not be attributed

to any confounds.

5 Experiment 2: Artificial languages varying in the number of affixes

In this experiment, we study whether languages varying in morphological
complexity differ in segmentability by assessing segmentability of five morphologically
diverse artificial languages, which exhibit a gradual range of morphological complexity.
We make sure that the number of words per sentence are matched across corpora, and
the languages only differ on this specific aspect of morphological complexity.

We focus on the factor of morphological synthesis, keeping all other variables
stable. In order to study the effects of morphological synthesis on segmentability, we

track changes in segmentation while modifying the ratio of morphemes per word. In
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Experiment 1, the mean number of grammatical affixes accompanying the stem was
about 1.69 for Chintang and 1.07 for Japanese. In Experiment 2, we increase the
variability of this feature, ranging from 0 to 4.

The same questions asked above are revisited in this controlled experiment. First,
do languages varying in morphological complexity differ in segmentability? Based on
the key predictions above, languages with a smaller number of morphemes within words
should be easier to segment than languages where words have multiple morphemes.
Also, based on the key predictions above, both lexical and sublexical algorithms should
yield lower word segmentation scores for more complex languages, as they are more

likely to break up the stream at morpheme boundaries.

Second, how large is this effect, compared to differences across algorithms and
evaluation level? We inquire whether performance varies as a function of algorithm (the
specific algorithm employed during segmentation) and the level of linguistic
representation on which segmentation is evaluated (words or morphemes). We
concluded in Experiment 1 that morphology-related differences across languages were
relatively small, but this conclusion could be curtailed by the fact that the range of
variation covered with these two natural languages may be small. Experiment 2 allows
us to better measure these effects by studying them in isolation, and increasing the

range of linguistic variation covered.

5.1 Methods

5.1.1 Languages. Languages were created using a script in R. First, a set of
consonant-vowel syllables were composed through every combination of the consonants
7'ty "pt, g, st dY, ' "g", and "h" and the vowels "a","e","i","0",and "u".
We then composed a lexicon of 1,000 words. Function words constituted 1% of this
lexicon, and they were always one syllable in length. The rest of the lexicon were
content word stems, which varied in length between 1 and 4 syllables. Content words

were randomly split into two classes, A and B (which may be thought of as nouns and

verbs), and which selected affixes from two different paradigms. All of these aspects
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were fixed across languages.

Languages varying in complexity thus differed only on the next step. The base
language (0) had no affixes; the next language (1) had one affix per content word (with
different affixes for class A and B stems); and so on, for up to 4 affixes (4). All affixes

were one syllable long.

Mean subset stats 0 1 2 3 4
# utt 5000 5000 5000 5000 5000

# wtokens 12528 (55) | 12528 (55)| 12528 (55)| 12528 (55)| 12528 (55)

# wtypes 791 (8)| 4695 (36)| 7125 (31)| 7482 (23) 7520 (21)

# whapaxes 1.5 (0.71)| 2807 (43)| 6733 (38)| 7428 (26) 7506 (20)

# phtokens 50535 (460) | 65515 (376) | 80581 (525) [95570 (518) | 110556 (490)

# mortokens 12528 (55) | 20044 (75)| 27560 (93)|35073 (114)| 42582 (129)

Table 7
Corpus features: Means (and standard deviation) across the ten subsets of artificial languages
0, 1, 2, 3, and 4 (see main text for explanation). # stands for number, “utt” stands for
2 11 2 @

utterance. “wtokens”, “wtypes”, “whapazres” stand for word tokens, word types and word

hapazes. “phtokens” stands for phoneme tokens and “mortokens” stands for morpheme tokens.

The final step was also in common across languages, and consisted in creating a
corpus of 5000 sentences that were between 1 and 4 words in length. Previous
methodological work suggests algorithms’ performance is stable by about 5000 sentences
(Bernard et al., 2018]). Sentence lengths of 1-4 seem reasonable for child-directed
speech, according to previous descriptive studies (Loukatou, Le Normand et al., [2019).
Sentences one word in length had only a stem (and, for more complex languages, its
affixes); sentences with two words had a function word and a stem (and affixes);
three-word sentences had a function word and two stems (and their affixes); and
four-word sentences had a function word, a stem (and its affixes), a function word, and
a stem (and its affixes). For clarity in the code, each sentence sampled from the lexicon
for each language separately.

To make this more concrete, here is the first sentence in the five languages’
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corpora in one run, containing always three words (a function word followed by two
stems with their eventual affixes, depending on the language); words are separated by

spaces, morphemes by dashes:

e 0: "pi rotu rodezira'

o 1: "yu so-se qofeharu-se'

e 2: "tu yosoreda-ga-yi foyo-gi-su"

e 3: "pi ruza-to-re-pu gori-di-re-ra'

e 4: 'fe zi-pa-yo-ye-gi ho-fa-ge-ye-te'

And the following are sample sentences containing the stem 'rodezira", which was
one of the stems in the lexicon in that run, appearing in sentences of the same word

length across the five languages:

 0: "pi rotu rodezira' (3 words, 3 morphemes)

 1: 'di rodezira-ge reyoha-qi' (3 words, 5 morphemes)

e 2: "yi tohegipu-ga-ga rodezira-sa-yu" (3 words, 7 morphemes)

e 3: "tu rodezira-de-ro-pa gitopide-pe-re-qu" (3 words, 9 morphemes)

e 4: "gu rodezira-fa-ho-fu-qo deguqaso-ge-ri-re-hu" (3 words, 11 morphemes)

This whole process was repeated 10 times, to create 10 corpora, each 5,000
sentences in length, for each of the five different languages. Table 3 shows some basic

statistics of these languages.

5.1.2 Segmentation. The same procedures were used as in Experiment 1.



MORPHOLOGICAL COMPLEXITY AND SEGMENTATION 206

BTPr FTPr BTPa FTPa DiBS AG Syll=Unit Utt=Unit

0.8
0.6 : - - - - . O

0.4-‘0 : ; 10 - - - *
0.2-%- %‘m ] ] | +_|__“_+_

0.01 - : - - - : 1, 0000

01234 01234 01234 01234 01234 01234 01234 012314

Figure 3. The y axis shows token F-scores across languages. The languages in the x axis are
0 (stems take no affixes), 1 (stems take one affix), 2 (stems take two affixes), 3 (stems take
three affixes) and 4 (stems take four affixes). Evaluation levels are marked by shape (open
circle for morphemes, cross for words). Color reflects algorithms (which are also used to group

the data into boxes, see main title of each box).

5.2 Results and discussion

Results for Experiment 2 are shown in Fig. 8] Our first goal was to answer
whether languages varying in morphological complexity, as defined by the number of
morphemes per word, differ in segmentability. A regression predicting F-scores from
language, level, algorithm, and their interactions accounted for most variance in the
data, R? = .99 (F(63,568) = 720, p < .001)[] Even though the presence of significant
interactions precluded a direct interpretation of the main effects, the regression
confirmed a disadvantage for the most morphologically complex languages, with
negative coefficients estimating the language effect (-0.05 for language 4, -0.04 for 3,
-0.02 for 2). Thus, the answer to our first research question is that there are significant
effects on segmentability of varying complexity across languages.

In response to our second research goal, how large the language effect is compared
to differences across algorithms and evaluation level, we observed that language effects
appeared to be relatively small, since the F-value for language is several times smaller

than that of level and of algorithm . More detailed outcomes are provided in the online

11 The function was: lm(token fscores ~ language * level * algorithm + (1/file), subsets). Token F-scores
are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random

factor. The data frame contains 640 observations (4 languages x 2 levels x 10 subsets x 8 algorithms).
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supplementary material, but two aspects of the results apparent in Fig. 3 are worth
pointing out. Morpheme level scores for languages where words contain two, three, four
and five morphemes, were in general higher than word level results for the same
language. We also observed some interactions. For example, AG and DiBS
morpheme-level results increased with language complexity, reaching and even
surpassing the results for the language with no affixes.

In sum, similarly to what was found in Experiment 1, we observed the expected
differences in performance as a function of language, level, and algorithm type. The
results of Experiment 2 support our conclusions from Experiment 1: Languages varying
in morphological complexity vary in segmentability. Overall word segmentation
performance for the simplest language where words and morphemes coincide was better
than performance for the other languages, which contain 1-4 affixes per stem. However,
the strength of the language effect varied across algorithms, and was even reversed in
some conditions, exactly as we observed in Experiment 1. The language effect was again
smaller than the effects found for the other two factors, namely level and algorithm
type, even though the range of variance here was huge, much larger than that found in

Experiment 1’s natural language corpora.

6 Experiment 3: Artificial languages varying in the distribution of affix

number

We implemented one more set of artificial languages in order to observe the effect
of morphological complexity in controlled environments. One limitation of Experiment
2 is that languages were more internally homogeneous in terms of complexity than
human languages typically are: There is no human language in which each and every
content word in the language must always have exactly three affixes. We relaxed this
assumption while maintaining differences in complexity in our Experiment 3.
Specifically, the languages in this experiment were created to differ in the distribution of
affix numbers, with all artificial languages having words that contain between zero and

four affixes but varying in how frequent different affix numbers were. In our baseline
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language, the probability distribution was flat, with 20% probability for each option
(zero to four affixes). In a simpler language, more mass was allocated to lower number
of affixes. Finally, a more complex language was created with more mass allocated to
higher number of affixes.

The same questions and predictions given in Experiments 1 and 2 are revisited in
this experiment: We ask whether languages varying in morphological complexity differ
in segmentability, and how large this effect is when compared to differences across

algorithms and evaluation level.

6.1 Methods

Mean subset stats S B C

# utterances 5000 5000 5000

# word tokens | 12470 (106)| 12518 (69)| 12532 (64)

# word types 5336 (47)| 6481 (43)| 7174 (25)

# word hapaxes 4467 (51)| 5903 (65)| 6922 (27)

# phoneme tokens | 70240 (676) 80574 (809) [90452 (645)

# morpheme tokens [22576 (141) | 27598 (233) | 32452 (195)

Table 8
Corpus features: Means (and standard deviation) across the ten subsets of artificial languages

S (simpler), B (base) and C (more complex). # stands for number.

6.1.1 Languages. As in Experiment 2, we created languages with a lexicon of
1,000 items, of which 1% were one-syllable long function words, and the remaining were
stems one- to four-syllables in length, randomly split into two types that selected
different affix paradigms. The syllable inventory, distribution of sentence length (1-4
words), length of corpora (5,000 sentences), were also kept constant, and 10 subsets
were generated for each language.

Unlike in Experiment 2, however, all languages had some affixes, meaning that

stems could take between 0 and 4 affixes. The three languages we created varied in

terms of the distribution of the number of affixes a stem took. In the base language (B),
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it was equally likely for stems to have 0 to 4 affixes (i.e., 20% of chances for each). In
the simpler language (S), the distribution was tilted towards fewer affixes: 35%
likelihood of having 0 affixes, 25% of having 1, 20% of having 2, 10% of having 3, and
10% of having 4 affixes. The more complex language (C) had the opposite trend: 10%
likelihood of having 0 affixes, 10% of having 1, 20% of having 2, 25% of having 3, and
35% of having 4 affixes. Table 4 shows some basic statistics of the languages.

6.1.2 Segmentation. The same procedures were used as in Experiment 1.

6.2 Results and discussion
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Figure 4. The y axis contains token F-scores across languages. The languages in the x axis
are S(imple), B(ase) and C(omplex). Evaluation levels are marked by shape (open circle for
morphemes, cross for words). Color reflects algorithms (which are also used to group the data

into boxes, see main title of each box).

Results for Experiment 3 are shown in Fig. [l In general, more similarities in
segmentability across languages were found here than in Experiment 2. This may be
due to the fact that the languages were more similar to each other here than in
Experiment 2.

Bearing on our first research question, a regression predicting F-scores from
language (S, B and C), level, algorithm, and their interactions accounted for most

variance in the data, R? = .99 (F(47,945) = 432, p < .001)[]] Even though the presence

12 The function was: lm(token fscores ~ language * level * algorithm + (1/file), subsets). Token F-scores
are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random

factor. The data frame contains 480 observations (3 languages x 2 levels x 10 subsets x 8 algorithms).
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of significant interactions precluded a direct interpretation of the main effects, the
regression confirmed a disadvantage for the more morphologically complex languages,
with negative coefficients estimating the language effect (-0.06 for C and -0.03 for B).
Regarding our second research goal, we observed that language effects are
relatively small, since the F-value for language is half the size of level and a quarter of
that for algorithm . More detailed outcomes are provided in the online supplementary
material, but two further aspects of the results are worth pointing out. As in
Experiment 2, scores for all three languages improved when evaluating on the
morpheme level across algorithms. Also, similarly to Experiment 2, AG and DiBS

morpheme scores increased with language complexity.

7 Summary

In the context of our artificial languages, where languages differ maximally in
morphological complexity (more than what any human natural languages could differ),
the effect of morphological complexity remained small, and certainly smaller than that
of level and algorithm. The artificial language results were also informative on the
general performance of the algorithms; the performance range of the algorithms was
similar across all three experiments, highlighting the relevance of our artificial language
results for broader generalization to natural languages. Additionally, this suggested that

differences across algorithms are massive — even when corpora are perfectly controlled.



RESUME

La langue est acquise par les enfants du monde entier, mais en fonction de l'input fourni,
'acquisition a probablement des différentes voies de développement, des rythmes
différents et des résultats variables. Dans ce manuscrit, nous examinons de plus prées
I'étonnante diversité d'input que les enfants grandissent en entendant, et nous
demandons en quoi cette diversité est importante pour I'acquisition du langage. Pour
cela, nous utilisons des méthodes hautement interdisciplinaires. Nous considérons le
type de langue et de culture comme deux sources principales de diversite, et nous les
étudierons dans deux parties distinctes de cette thése.
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ABSTRACT

Language is acquired by children all around the globe, but probably along different
developmental paths, at varying rates and with varying outcomes, depending on the input
provided. In this dissertation, we take a closer look at the astonishing diversity of input
children grow up hearing, and we ask how this diversity matters to language acquisition.
For this, we employ highly interdisciplinary methods and involve several projects. We
consider the type of language and culture as two principal sources of diversity, and we
will investigate them in two distinct parts of this dissertation.
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