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learning Sesotho, who are mostly addressed by other children and receive little child-directed input from adults, compare to that of French-learning children? How does input overheard by French children differ from input directed to them? Our second goal is to study the relation between this diversity and learnability.

To answer these questions, we use data from longitudinal recordings such as the LENA-Lyon, the Demuth and other CHILDES corpora. First, we quantify the relative contribution of speech registers and speakers in Sesotho, French and English-learning children s overall input, and further compare this input based on corpus statistics. Second, making use of well-established segmentation models, we provide key insights on the segmentability of French overheard and child-directed input. We assess how informative child directed input is compared to overheard input, and whether segmentability differences between the two can be explained by their characteristics.

R s m

Dans ce manuscript, nous examinons de plus pr s l' tonnante diversit d input que les enfants grandissent en entendant, et nous demandons en quoi cette diversit est importante pour l'acquisition du langage. Pour cela, nous utilisons des m thodes interdisciplinaires. Nous consid rons le type de langue et de culture comme deux sources principales de diversit , et nous les tudierons dans deux parties distinctes de cette th se. Des tudes pr c dentes se sont principalement concentr es sur l'apprentissage de l anglais, et il y a beaucoup moins d'informations sur comment les autres langues sont apprises. Cependant, les langues varient tonnamment les unes des autres. Pour des langues diff rentes, notre premier objectif est d identifier les caract ristiques de diversification de l input. Par exemple, les enfants apprenant le chintang sont expos s un langage polysynth tique, avec un syst me morphologique particuli rement riche. Comment cet input se compare-t-il l'input d'une langue plus simple, comme le japonais? Notre deuxi me objectif est de comprendre la relation entre cette diversit et la capacit d'apprentissage. Nous examinons cette capacit pour la segmentation du langage. Nous valuons quel point l'apprentissage des langues est affect par ses caract ristiques. Nous nous demandons en outre si certaines strat gies cognitives sont viables dans des environnements multilingues. Pour r pondre ces questions, nous consultons l input de bases de donn es d'enregistrements longitudinaux. L'une de ces bases est AcqDiv, avec des interactions soignant-enfant dans huit langues dont les caract ristiques morphosyntaxiques diff rent. Nous mesurons la qualit de l input, sa

d , and a i ea i f en e ceed 10,000 d (G dman e al., 2008) . M h l gical elemen in d c i n a ea i hin he fi ea f alking (Cla k, 2017). Bef e hei ec nd bi hda , Engli h-lea ning child en g a he g amma ical c e f he lang age, i ca eg ie , and can diffe en ia e be een n n , adjec i e , e en an i i e and in an i i e e b (B h & Wa man, 2009; Gelman & Ta l , 1984; G me & Lak a, 2004; H hle e al., 2004) . B he age f 2 ea , he ma e n mbe , ea lie f n n han e b , and, b he age f 3 ea , he ma e m en e (e en h gh me, ch a e en e fec , a e n f ll ma e ed n il 4-5) and de i a i nal affi e . Child en end lea n f m f d bef e hei meaning (J c k & H hne, 1997; S ingle , 2007) . Al h gh ea l eman ic lea ning ill n be f he di c ed in hi di e a i n, e men i n ha hi i an he challenging a k he need ackle, gi en ha he e f en a e n me h he e f a d meaning. Engli h-lea ning child en a a aching candida e efe en df m a ab 6 m n h , m l f c nc e e i em (Be gel n & S ingle , 2013; Die end ck, 2007) and he kee efining he c nce ba ed n in (He & A nachalam, 2017) . 1.2 F he i ide Lang age ac i i i n can be de c ibed a a d c f men al ce e , hich ecei e a input inf ma i n f m he ling i ic en i nmen and d ce a output he men al e e en a i n f he lang age, a ell a he b e able abili c m ehend and d ce lang age (H ff, 2006) . Th , he f lang age ac i i i n i g ided b he in , i a ailabili and e ie , a ell a he c m a i nal em, i c gni i e mechani m and l (Min e al. , 2002) . F he ake f hi di e a i n, e ad hi defini i n.

We can infe f m hi defini i n ha child en need in e ac i h he ld ( Jiang e al., 2020) , and

Abs rac

In this dissertation, we take a closer look at the astonishing diversity of input children grow up hearing all around the globe, and we ask how this diversity matters to language acquisition. For this, we employ interdisciplinary methods. We consider the type of language and culture as two principal sources of diversity, and we investigate them in two distinct parts of the dissertation.

Previous studies on language learning have focused mainly on English, and there is much less information on how other languages are learned. However, languages vary a lot to each other. Across languages, our first goal is to describe the nature of children s input an d to identify its diversifying characteristics . For example, children learning Chintang are exposed to a polysynthetic language, with a particularly rich morphological system. How does this input compare to input from a language with a simpler morphological system, such as Japanese? Our second goal is to comprehend the relation between this diversity and learnability. We examine learnability in the context of language segmentation, a fundamental learning task. We assess how informative input is, and whether learning is affected by the characteristics described above. We further ask whether some cognitive strategies are viable across cross-linguistic environments.

To answer these questions, we conduct extensive analyses of ambient input in largely diverse environments. First, we retrieve this input from databases of longitudinal recordings. One such database is AcqDiv, which contains longitudinal recordings of caregiver-child interactions across eight languages differing in morphosyntactic features. We estimate robust descriptive measures of input quality, such as its lexical and morphosyntactic diversity. Second, we implement artificial language and modeling experiments. These methods allow us to inspect the learnability properties and segmentability of different kinds of input speech. We argue that segmentation of words, but also of other meaningful units, such as morphemes, should be considered when learning language. Moreover, we investigate whether previously proposed learning strategies for word segmentation perform above chance and stably for the AcqDiv languages.

In the second part of this dissertation, we look at differences across speech registers, speakers and cultural norms. Previous studies on early language learning focused mainly on child directed speech, mother-child interactions and WEIRD cultures. However, this input is not the only one children get exposed to when learning language. Across cultures, our first goal is to describe the nature of children s input an d to identify diversifying characteristics . For example, how does input of children diversit lexicale et morphosyntaxique. Deuxi mement, nous mettons en uvre des exp riences de langage artificiel et de mod lisation. Nous soutenons que la segmentation des mots, mais aussi d'autres unit s significatives, comme les morph mes, devrait tre consid r e lors de l'apprentissage.

De plus, nous tudions si des strat gies d'apprentissage statistique pr c demment propos es fonctionnent de mani re stable pour les langues AcqDiv.

Dans la deuxi me partie de la th se, nous examinons les diff rences de l input entre les registres vocaux, les locuteurs et les normes culturelles. Les tudes ant rieures sur l'apprentissage pr coce des langues se sont concentr es sur la parole dirig e l'enfant, les interactions m re-enfant et les cultures WEIRD. Cependant, cet input n'est pas le seul auquel les enfants sont expos s lorsqu'ils apprennent la langue.

travers les cultures, notre premier objectif est d'identifier les caract ristiques de diversification. Par exemple, comment l'input des enfants apprenant le s sotho, qui provient principalement d'autres enfants et pas de la part des adultes, se compare-t-il celui des enfants apprenant le fran ais? En quoi l input entendu, mais pas directement adress aux enfants fran ais diff re-t-il de l input qui leur est adress ? Notre deuxi me objectif est de comprendre la relation entre cette diversit et la capacit d'apprentissage.

Nous r pondons ces questions par des donn es issues d'enregistrements longitudinaux tels que LENA-Lyon, Demuth et autres corpus CHILDES. Premi rement, nous quantifions la contribution des registres et des locuteurs l input total des enfants apprenant le s sotho et le fran ais, en utilisant des statistiques de corpus. Deuxi mement, en utilisant des mod les de segmentation bien tablis, nous fournissons des informations cl s sur la segmentabilit de l input fran ais destin ou pas aux enfants.

Nous comparons des deux, et nouns enqu tons si les diff rences de segmentabilit entre les deux types d input peuvent tre expliqu es par leurs caract ristiques.
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/ Di e i and lea nabili in ea l lang age acq i i ion: ac o lang age and c l e Gene al In od c ion Ge e a I d c i

Earl Language Acquisition

We begin he di e a i n i h an e a ching cha e , he e e e en he benchma k f ea l lang age ac i i i n, and e in d ce me gene al c nce ha ill be di c ed la e n, in Pa 1 and 2.

Ea l lang age ac i i i n efe child en ac i i i n f hei na i e lang age( ). All icall de el ing child en ac i e he ambien lang age. A ca ef l b e e cann mi hei anding lea ning g e , hei inc ea ing abili c m ehend and nde and ne a ec f hei lang age. We ma a ha de c ibing ac i i i n benchma k i a ie f ea l lang age ac i i i n from the outside . When e a nde ing h hi ac i i i n ake lace, ha a e he ce e ha all i ha en, e ma a ha e ie ea l lang age ac i i i n from the inside .

F he ide

Lang age ac i i i n ake lace ea l n. B he age f 3, child en a e c m e en eake , d cing n el en ence ha in l e c m lica ed c n c i n , d ha efe ence ab ac idea ab en en i ie , nd e ence ha ma k he di inc i e c n a f he na i e lang age (Gie , 2007 , .1). Ob e able mile ne ha e been iden ified f he ac i i i n f d and m heme b Engli h-lea ning child en. We de c ibe me f he e bel ( Figure 1 ). and llable (Bijeljac-Babic e al., 1993) . The a ne hei inna e en i i i ac ic a ia i n he lang age f hei en i nmen (K hl e al., 1992) and, f h e d ha cc in i la i n, he e i n al n h he c ld be ec gni ed (Gambell & Yang, 2006) . M d a e ne e e en hea d in i la i n (de e mine f e am le), h child en h ld meh segment hem f eech.

We In lab a e e imen , child en manage e ac patterns f ling i ic em (Chambe e al., 2003;Ge ken, 2006;Saff an & Thie en, 2003) , and h gh me kind f ab ac i n, he gene ali e hem ne im li (Be k , 1958;G me & Ge ken, 1999a;Tenenba m e al., 2011) . 

G ide Cha e

Thi di e a i i di ided i 10 cha e a d a . We bega i h a i d c cha e , he e e e e ed he c ce a d be chma k f ea l la g age ac i i i . Cha e 2-5 a e he fi a f he di e a i , he e e deal i h di e i a d lea abili ac li g i ic em . he e e e he egme abili f eech egi e f m i F e ch-lea i g child e . We a k he he e f ma ce diffe e ce be ee egi e ca be e lai ed b hei ecific cha ac e i ic .

Chapter 10 is the conclusion to Part 2 . Fi all he e i i a general discussion , he e e di c f e li e f e ea ch a d me e al i igh ab la g age lea i g i ge e al.

Pa 1

Diversit across languages

Ha ing e d n me ba ic defini i n and ided a mma f e i ele an e l f m Engli h lea ne , e a he fi main a f he di e a i n. In hi in d c Cha e 2, e l k a hich c -ling i ic cha ac e i ic ma di e if he in child en g hea ing, and h he e cha ac e i ic can affec lea nabili . In 2.1, e alk ab he di e e l gical fea e f lang age a nd he ld. In 2.2, e di c h diffe en lang age a e lea ned, ba ed n e i e e imen al and m deling e idence, and e em ha i e he need f f e e ea ch. In Cha e 3, 4

and 5 e add e hi need i h h ee diffe en die . In Cha e 6, e ide c ncl i n ba ed n e l . 

Va ia i n in l gical fea e f lang age in

Inflec i nal morpholog , a ill be di c ed la e n, i a maj ce f di e i (Penke, 2012) .

T adi i nal ling i ic ca eg i e lang age a i la ing/anal ic, n he ic ( hich can be f i nal and aggl ina i e) and l n he ic. Anal ic lang age ha e e li le affi a i n, alm n b nd m heme and n ema ic d de i a i n ce ( ee Manda in Chine e, Vie name e).

S n he ic lang age ha e highe m heme-d a i and iche m h l gical em h gh aggl ina i n and f i n; F i nal lang age ha e a mall e f b nd m heme and f en me f ee m heme , each m heme ma king e e al g amma ical f nc i n ( ee G eek, S ani h).

Aggl ina i e lang age ha e a la ge e f b nd m heme , and each m heme ha ne g amma ical f nc i n ( ee H nga ian, S ahili). All hi di e i h ld find a lace in nde anding f lang age ac i i i n. Ac all , e ea che c ld benefi f m ling i ic di e i , a i can ide a na al lab a f a ia i n [...] 6000 na al e e imen in e l ing c mm nica i e em (E an & Le in n, 2009, .432) .

A a d i b e ing h lea ning mechani m k ac lang age , and h fea e a ing ac lang age can ha e effec n lea ning.

La g age ac i i i ac a g age

Le in n (2012) aid ha h man c gni i n i ned di e i and fle ible en i nmen al in .

T ma ell (2003) claimed ha child en lea ning a egie a e ada ed e ac ing inf ma i n in an eech en i nmen he ha en g in. Wha e kn f e i ha , a fa a ling i ic di e i i c nce ned, child en lea n each and e e ne f he 6000 lang age (G ime , 1992).

H e e , he ajec and c me f ac i i i n migh diffe (H ff, 2006) , d e diffe en e e ience in he ling i ic en i nmen (Fen n e al., 1994;J ne & R land, 2017) .

Va ia i n in child en g amma ical de el men ha mainl been he f c f e i c -ling i ic die (Dem h, 1998; 2004) . E en h gh le ical de el men ha been le died ac lang age , g amma ical and le ical de el men eem be c ela ed (F ank e al., in e ). Since he e i li le e i e idence n segmentation ac lang age , e c n ide le ical and g amma ical de el men a e idence f cce f l egmen a i n.

Dan Sl bin and c lleag e , i nee in b ilding a li f inci le f c -ling i ic lang age ac i i i n, de el ed a field man al f c -ling i ic die (Sl bin, 1967) . Since hen, e e al c -ling i ic die ha e been bli hed. H e e , le han 10% f he ld lang age ha e decen de c i i n , and lang age ac i i i n c a a e ill limi ed: 0.1% f 6000 lang age ken da (E an & Le in n, 2009;Jaege & N cliffe, 2009) .

CHILDES, an en e i , c n ain ac i i i n c a f nl a handf l f lang age , he maj i f hich i Ind E ean. Thi i blema ic beca e me Ind E ean fea e ha en be a e in he lang age familie (S ll & Bickel, 2013) . S ecificall n he ac i i i n f aggl ina i e and l n he ic lang age , e li le k ha been d ne (Kell e al., 2014) .

E i ing k ha f en f c ed n he ac i i i n f ecific ling i ic hen mena in l ing en e, n mbe and ice, m l in b e a i nal die n eadil c m a able i h each he .

Anal ing e i lea ning c me

While he de in hich child en ac i e meaningf l ni ha been died in de ail f Engli h (e.g. S die in he m h l gicall ich lang age ( ch a In k i , T el al) e imila a e n (Allen & C ag , 1996;C ag & Allen, 1998;Pfeile , 2003) . F e c e (1984) men i ned ha in a ingle ec ding f a child lea ning We G eenlandic a en e en m n h , he child ed 24 de i a i nal and 40 inflec i nal affi e -a f ll ing d n 5 child en c nfi med hi a e n (F e c e & Ol en, 1992) .

Xan h e al. (2011) e ed a i i e c ela i n be een he mean i e f inflec i nal a adigm and he eed f m h l gical de el men in child eech. He c ncl ded ha al h gh ea l e e a a ie f inflec i nal f m ma eem c m lica e he lea ning a k f he child, i ma hel child en e ed a ichl inflec ed in f c m e n diffe en f m and n diffe ence in meaning e e ed b inflec i nal mean han child en e ed a le ichl inflec ed in ( .19).

H e e , m f he e die a e b e a i nal, and n ne l ked ecificall a egmen a i n. We men i n ne me e l f m bab e e imen and m deling die i h e ec c -ling i ic egmen a i n.

The e i e e i e a e ide ce ha chi d e , a ead b hei fi ea , ca ce a a ica d a d he e i a g age ch a E g i h ( ee e i di c i i Cha e 1). The e i ch e e ide ce f chi d e ea i g a g age i h iche h gica cha ac e i ic . I a ece b i hed d b Lad i e a . (2020) , 15-h d chi d e ea i g H ga ia , a agg i a i e a g age, c d eg e d f hei a g age i e a d affi e , e ecia he a affi a f e e ed i he a g age. Thi c e i i i e i h he e e i e a die d c e i g eg e a i i ea de e e f E g i h-ea i g chi d e .

A fa a de i g i c ce ed, e i ha add e ed he i e f ea abi i i di e e a g age f d eg e a i (e.g. G d a e e a ., 2009) . A e ie f he i e a e i fa d eg e a i de e f a ce ac a g age ca be f d i he A e di A . Be i a a e g a h h i g he e f a ce acc ac f e e a de f diffe e a g age ( Figure 3 ).

I ca be b e ed ha he aj i f die a e E g i h I d E ea da a. M he a g age ha e bee died ce. I ge e a , e f a ce f E g i h i highe ha f he a g age . A b ief de c i i f a de i gi e be , a d e de ai a e ided i he A e di B . M h l gical an a enc , in e m f affi a i n i h al e ing a em h n l gical f m, i al ed affec d lea ning. S me lang age ma ha e a la ge e f le be lea ned (S ll e al., 2012) and me a adigm a e le eg la han he (Cla k, 2017) . The f m f a m heme ma a beca e f gende and n mbe ag eemen ( ne elemen can ha e a ingle f m, e.g. Heb e , H nga ian, T ki h, a la ge n mbe f all m h , e.g. R ian, Ge man, Se b C a ian, Icelandic) (Le , 1983;Wi ek & T ma ell , 2002) . Addi i nall , affi e can c n i f di c n in m h l gical elemen e.g. a ca e ffi and a e i i n (B bee, 1995;Cla k, 2017;Penke, 2012) .

I ma be m e aigh f a d lea n he c e f ch a lang age if e ef ame he d lea ning a k a a a k f lea ning meaningf l ni ch a em and affi e . S ecificall f f nc i nal i em (f nc i n d and affi e ), hen a f nc i nal i em c mbine i h diffe en em

(high e f e enc and d c i i ) and cc f e en l in he in (high ken f e enc ), i ma e en igge he egmen a i n f inflec ed d (Pl nke , 1993) . M e e , child en eem ac i e inflec i nal ma ke ea lie hen he a e alien , f e am le d e l nge d a i n (H ieh e al., 1999;Pe e & Menn, 1993) .

I i ill nclea a ha e en di e if ing fac , ch a f e enc , alience and an a enc , hich ha e been e i l gge ed ha e an im ac n egmen a i n, ma affec lea ning in eal life. The e fac a e al ela ed he b ade e m f c m le i . Rich lang age a e gene all c n ide ed a m e comple han he ba ed n hei m h l gical, h n l gical n ac ic fea e (Sh ed, 2006) . One gene al and f en im lici a m i n in lang age ac i i i n i ha ch lang age a e m e challenging lea n. F e am le, 8-and 12-m n h ld infan need l nge am n f ce ing ime enc de m e c m le han im le im li (H n e e al., 1983) .

H e e , c m le i can be defined in man diffe en a (Gie , 2007;Mie am e al., 2008) ,

and he e i n ag eemen n anda d me ic (K e & M ken, 2001;McWh e , 2001) .

When defined a an inc ea e in am n f inf ma i n, c m le i migh ac all be beneficial f lea ning (e. 

Does morphological complexit affect word segmentation?

Evidence from computational modeling* 

Does morphological complexity affect word segmentation? Evidence from computational modeling 1 Introduction

Typically-developing children acquire language e ortlessly and implicitly in the first years of their life. They process linguistic material provided by their caregivers and others around them using robust learning mechanisms that do not require meta-linguistic awareness. Infants begin learning the building blocks of language, i.e., words or morphemes, from very early on, achieving a comprehension vocabulary of hundreds of words by two years of age [START_REF] Bates | Developmental and stylistic variation in the composition of early vocabulary[END_REF]. More precisely, during the first year of life, infants might build up a proto-lexicon storing candidate phonological forms (wordforms), which they first have identified based on the available frequency distributions in the input, before actually attaching meaning to these wordforms (Ngon et al., 2013). To break up the speech stream, infants can use prosodic cues (Shukla et al., 2011), co-articulation [START_REF] Norris | The possible-word constraint in the segmentation of continuous speech[END_REF], constraints on stranded material (E. K. [START_REF] Johnson | Word segmentation by 8-month-olds: When speech cues count more than statistics[END_REF], and even language-specific information they have learned in the past (words: [START_REF] Bortfeld | Mommy and me: Familiar names help launch babies into speech-stream segmentation[END_REF][START_REF] Mersad | When mommy comes to the rescue of statistics: Infants combine top-down and bottom-up cues to segment speech[END_REF]; syllable sequences: Black and[START_REF] Black | Quantifying infants' statistical word segmentation: A meta-analysis[END_REF]phonotactic patterns: Daland andZuraw, 2013). Here, we report on a series of computational experiments that seek to shed light on the specific processes that young language learners could potentially be using when segmenting the incoming speech signal into word-like forms, or more generally smaller recombinable units.

Young language learners have to learn their language from scratch. In order to mimic this absence of knowledge, models used in previous computational experiments are often unsupervised, meaning that they do not have access to any kind of feedback (i.e., external information on whether they are doing well or poorly). By and large, three classes of algorithms have been used: lexical, sublexical, and baseline. Algorithms in the lexical class are often built to find the most economical system of minimal units needed to reproduce the input. They do so usually by creating a lexicon of chunks that are frequently encountered in speech. These salient segments could approximate infants' first familiar word-like constructions. Algorithms in the sublexical class aim to find local cues allowing the learner to posit boundaries, detectable for instance by considering phoneme occurrences at utterance edges or via transitional probabilities. Infant experimental work suggests both classes are cognitively plausible [START_REF] Mattys | Phonotactic and prosodic e ects on word segmentation in infants[END_REF][START_REF] Mersad | When mommy comes to the rescue of statistics: Infants combine top-down and bottom-up cues to segment speech[END_REF]Sa ran, Aslin et al., 1996). Finally, previous literature has sometimes used word segmentation baselines to evaluate the performance of algorithms [START_REF] Çöltekin | Catching words in a stream of speech: Computational simulations of segmenting transcribed child-directed speech[END_REF]Lignos, 2012;Venkataraman, 2001). Baselines represent the simplest strategies possible; for example, treating each basic minimal unit (phoneme or syllable)

as words, or treating whole utterances as words.

Cross-linguistic performance

It has been proposed that language acquisition may not be a homogeneous process, identical in children regardless of the language they are acquiring, but instead that the acquisition process may vary across typologically diverse languages as a function of their grammatical structures [START_REF] Slobin | The crosslinguistic study of language acquisition: Theoretical issues[END_REF]. However, the proportion of languages whose acquisition is represented in the literature is low (e.g. [START_REF] Stoll | Crosslinguistic approaches to language acquisition[END_REF][START_REF] Stoll | Studying language acquisition cross-linguistically[END_REF], and the majority of papers on first language development are on English [START_REF] Slobin | Before the beginning: The development of tools of the trade[END_REF]. This sampling bias is problematic because English is not an "average" language, particularly in terms of the properties that may influence segmentation. There is no case marking in nouns and only rudimentary morphological marking in verbal conjugation. Most English words have few or no morphemes other than the root [START_REF] Aikhenvald | Typological distinctions in word-formation. Language Typology and Syntactic Description, Volume III: Grammatical Categories and the Lexicon[END_REF] and as a consequence, word, morpheme, and syllable boundaries usually coincide [START_REF] Dekeyser | What makes learning second-language grammar di cult? A review of issues[END_REF]. In fact, the maximum number of morphemes per word in English is 3, which is on the lower end of the typological range (degree of synthesis, Bickel andNichols, 2007, 2013b).

Languages vary greatly in their overall morphological complexity [START_REF] Miestamo | Grammatical complexity in a cross-linguistic perspective[END_REF][START_REF] Nichols | Linguistic complexity: A comprehensive definition and survey[END_REF]Sampson et al., 2009). A considerable fraction of languages are characterized by rich inflectional morphology and often feature multi-morphemic words.

For example, Turkish has a rich concatenative inflectional morphology (Bickel & Nichols, 2013a, 2013b;[START_REF] Ketrez | Early nominal morphology in Turkish: Emergence of case and number[END_REF]. Others are extremely complex such as the polysynthetic languages Tzeltal (spoken in Mexico; [START_REF] Brown | Children's first verbs in Tzeltal: Evidence for an early verb category[END_REF] and Chintang (a Sino-Tibetan language spoken in the Himalayas of Eastern Nepal; [START_REF] Stoll | The acquisition of polysynthetic verb forms in Chintang[END_REF] or Eskimo-Aleut languages such as Inuktitut (Allen, 1996;Bickel & Nichols, 2013b).

Such languages use morphemes (prefixes, su xes, circumfixes, and infixes) to code morphosyntactic features (e.g. gender, person, aspect, tense, or polarity), and/or the relation between words in a sentence (e.g., case or agreement). So far there is no common agreement on how to measure morphological complexity cross-linguistically, but it is undisputed that complexity is a gradient notion.

One of the main questions that arises is whether languages with a larger degree of morphological synthesis are more challenging to segment than languages with a lower degree of morphological synthesis, such as English. A number of computational modeling studies have investigated word segmentation in various languages (Batchelder, 2002;[START_REF] Blanchard | Modeling the contribution of phonotactic cues to the problem of word segmentation[END_REF][START_REF] Caines | The cross-linguistic performance of word segmentation models over time[END_REF]Daland, 2009;[START_REF] Fleck | Lexicalized phonotactic word segmentation[END_REF]Fourtassi et al., 2013;[START_REF] Kastner | Linguistic constraints on statistical word segmentation: The role of consonants in Arabic and English[END_REF][START_REF] Pearl | Evaluating language acquisition models: A utility-based look at Bayesian segmentation[END_REF]Saksida et al., 2017).

These results seem to suggest that languages with richer morphological profiles might be more di cult to segment than those with simpler morphology. In the following, we review this evidence in detail, grouping studies in terms of the type of segmentation strategy.

Starting with studies using a lexical approach, Batchelder (2002) compared the accuracy of a lexical segmentation algorithm (BootLex) on English, Japanese and Spanish corpora, and found that the algorithm performed best on English. Most other lexical work has employed versions of Adaptor Grammars (AG), which build a lexicon based on a hierarchical grammar provided by the user (Goldwater et al., 2009;[START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF]. It finds patterns of frequent phone sequences in the input corpus, creates a lexicon based on these patterns at specified levels, and then uses the lexicon to segment the input. Using versions of this system, [START_REF] Boruta | Testing the robustness of online word segmentation: E ects of linguistic diversity and phonetic variation[END_REF] documented better results for English than French, and better results for French than for Japanese, which roughly corresponds to the order of morphological complexity (see Fourtassi et al., 2013 for convergent results). M. [START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF] found better results for English than Sesotho, which is morphologically much more complex than English. It should be mentioned, however, that the data reported by Phillips and Pearl (e.g., Pearl and Phillips, 2018;Phillips and Pearl, 2014a) di ered from other lexicon-based results.

These authors varied the hierarchical grammar, inspecting both unigram and bigram models. Unigram models are those where the only levels are those of words and phonemes (i.e., sentences as sequences of words, words as sequences of phonemes), and the only level at which a lexicon is stored is the word level. Bigram models can also be defined, by stating that sentences are sequences of phrases, and phrases sequences of words, with the further possibility that the system will memorize common phrases. For the unigram version of the algorithm, English was at the bottom of the performance ranking. However, when a bigram grammar was used, English performed better than Farsi, Hungarian, and Japanese (Phillips & Pearl, 2014a). However, most work using lexical algorithms finds cross-linguistic di erences in word segmentation performance that could be explained on the basis of complexity di erences.

In general, work using sublexical algorithms also fits this description; di erences in performance can usually be explained by complexity di erences. Saksida et al. (2017) used a set of segmentation algorithms, all of them based on transitional probabilities, on a range of cross-linguistic corpora. Higher scores were found for English and Dutch than for Japanese, Polish and Hungarian. [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF] received better results for the less complex Italian than the more complex Hungarian in some cases, although this language performance was reversed when backward transitional probabilities were used.

Finally, segmentation baselines have rarely been used to compare performance across languages. [START_REF] Pearl | Evaluating language acquisition models: A utility-based look at Bayesian segmentation[END_REF] implemented a "random oracle" baseline, which had prior knowledge of the true probability of a word boundary after each unit in the corpus (e.g., 0.76 for English). Boundaries were then randomly inserted based on this probability. Performance di erences across languages were observed, with the English corpus scoring higher than German and both scoring higher than Spanish, Italian, Farsi, Hungarian, and Japanese. In sum, our reading of the literature suggests that lower segmentation performance is found for corpora of more morphologically complex languages than simpler ones across all three families of algorithms (lexical, sublexical, and baseline).

Caines et al. ( 2019) deserve a special mention, because they used many di erent algorithms across many languages in CHILDES, a repository of child-centered transcriptions [START_REF] Macwhinney | The childes project: Tools for analyzing talk, volume ii: The database[END_REF]. Although they don't specifically discuss typological features, they attempt to relate lexico-phonological features such as word length and lexical diversity to segmentation performance. As with the work just summarized, results were evaluated only in the word level.

Goal of segmentation

The current standard for modeling studies is to evaluate segmentation algorithms on the word level (Daland, 2009). Several reasons made us wonder whether evaluation on the word level alone is optimal.

To begin with, there are at least three notions of "word": orthographic word, grammatical word, and prosodic word. According to [START_REF] Haspelmath | The indeterminacy of word segmentation and the nature of morphology and syntax[END_REF], orthographic spaces are to some extent guided by language structure, even though spelling can be purely conventional in some cases. Grammatical words are units defined by morphosyntactic criteria, such as cohesiveness, fixed internal order, and conventional meaning. Finally, phonological words are units defined by phonological criteria, such as segmental and prosodic features like stress [START_REF] Dixon | Word: A cross-linguistic typology[END_REF]. Words are not the only meaningful, recombinable units that may be found in running speech. On the contrary, morphemes can be defined as the minimal meaningful units. Moreover, morphemes and words are not homogeneous classes. For example, functional elements make up a class that cuts across words and morphemes, containing both function words (words expressing grammatical or structural relationship with other words in the sentence) and a xes. Although these definitions seem easy in the abstract, there is no single, valid, and standard definition across languages of any of these levels [START_REF] Bickel | Inflectional morphology [2nd edition[END_REF]Bickel & Zúñiga, 2017).

Is there evidence that some or other of these units are psychologically valid for infants? Carefully reading experimental evidence, we found some of it suggests that infants can segment phonological words (E. K. [START_REF] Johnson | Word segmentation by 8-month-olds: When speech cues count more than statistics[END_REF] as well as morphemes [START_REF] Marquis | The beginning of morphological learning: Evidence from verb morpheme processing in preverbal infants[END_REF][START_REF] Mintz | The segmentation of sub-lexical morphemes in English-learning 15-month-olds[END_REF] out of running speech. Furthermore, they can segment functional elements early on [START_REF] Hallé | Do 11-month-old French infants process articles?[END_REF][START_REF] Höhle | German-learning infants' ability to detect unstressed closed-class elements in continuous speech[END_REF][START_REF] Marquis | The beginning of morphological learning: Evidence from verb morpheme processing in preverbal infants[END_REF][START_REF] Mintz | The segmentation of sub-lexical morphemes in English-learning 15-month-olds[END_REF][START_REF] Shi | Recognition and representation of function words in English-learning infants[END_REF]Shi & Gauthier, 2005;Shi & Lepage, 2008;Shi, Marquis et al., 2006;[START_REF] Shi | Newborn infants' sensitivity to perceptual cues to lexical and grammatical words[END_REF]. Functional elements could be used as cues to further bootstrap word segmentation, because of their distinctive properties [START_REF] Kim | Segmentation of vowel-initial words is facilitated by function words[END_REF][START_REF] Shi | Recognition and representation of function words in English-learning infants[END_REF][START_REF] Willits | Distributional structure in language: Contributions to noun-verb di culty di erences in infant word recognition[END_REF] and contribute to robust learning, especially for languages with rich morphological systems.

On the modeling side, most previous work has evaluated segmentation on orthographic words. Since child-centered corpora are rarely annotated at the level of morphemes, previous computational work has not quantitatively evaluated performance on the morpheme level (cf. M. [START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF]. However, there have been qualitative

reports considering morphemes in addition to words (Gervain & Erra, 2012;[START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF]. Specifically, it has been argued that some algorithms tend to over-segment words (i.e., words would be split up during segmentation). Previous authors have argued that lower segmentation performance for some morphologically complex languages would arise from oversegmentation when evaluating on words (Gervain & Erra, 2012;[START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF]. [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF] commented that there may be more oversegmentation in Hungarian, as some of the segmented material formed real morphemes, which is interesting given that this unsupervised algorithm is not informed about lexical and morphological composition. Similarly, Fourtassi et al. (2013) segmented an English and a Japanese corpus using a probabilistic lexicon-building algorithm. Qualitative inspection showed that the algorithms broke o morphological a xes, with more oversegmentation cases for Japanese than English.

These observed oversegmentation errors suggest that algorithms might segment out morphemes, or at least functional elements, including a xes, in addition to or instead of some notion of words.

In a nutshell, infant segmentation may target words as well as morphemes (Kim, 2015;[START_REF] Marquis | The beginning of morphological learning: Evidence from verb morpheme processing in preverbal infants[END_REF], and therefore, if we want to model this segmentation process, evaluating results at the level of both words and morphemes might be a more informative approach.

The present study

This study investigates whether languages varying in morphological complexity di er in segmentability (Section 1.1). This question is addressed by assessing segmentability of two morphologically diverse languages, one of which exhibits an extreme degree of morphological complexity. In addition, we ask whether specific language features such as type-token ratio, word length, and utterance length might account for performance di erences.

Moreover, this study examines whether algorithms segment out morphemes instead of words (Section 1.2). We inquire whether performance varies as a function of the level of linguistic representation on which segmentation is evaluated, comparing the algorithms' performance based on either orthographic words or morphemes. We further report percentage of under-and oversegmentation on each level.

Regarding the use of orthographic words, it was preferable over other definitions of wordhood for three reasons. First, it allows comparison with previous computational work. Second, it was already available in the corpora we were using. Third, it is unclear that it is much worse or much better than alternative definitions. Phonological and morphosyntactic criteria for word segmentation are also problematic and cannot decide controversial cases: Phonological words may not be consistent within and across languages (Schiering et al., 2010) and they often fail to coincide with morphosyntactic words [START_REF] Dixon | Word: A cross-linguistic typology[END_REF]. For this, and as previous segmentation studies did, we used the existing orthographic word boundaries for our word level.

Languages

In this paper, corpora from two morphologically diverse languages are studied, Japanese (Japonic) and Chintang (Sino-Tibetan). Both languages were chosen on the basis of their typological characteristics and are part of the ACQDIV database, which contains longitudinal corpora of language acquisition for 10 maximally diverse languages [START_REF] Moran | The ACQDIV database: Min (d) ing the ambient language[END_REF]Stoll & Bickel, 2013). To create this database, a new approach of sampling languages was introduced, called the Maximum-Diversity approach. More than 10 major typological variables that characterize inflectional marking (grammatical case, exponence, possessor agreement, inflectional compactness, syncretism, verb position, verb agreement, split ergativity of agreement markers, split ergativity of case, flexivity, verbal synthesis, nominal synthesis) were considered (Stoll & Bickel, 2013). Languages were sampled from the two largest typological databases, WALS (Dryer & Haspelmath, 2013) and AUTOTYP (Bickel et al., 2017;[START_REF] Nichols | The AUTOTYP genealogy and geography database: 2013 release[END_REF], resulting in 5 clusters of maximally diverse languages.

Chintang and Japanese are in two di erent clusters. The main feature of interest in the present paper is their di erence in the degree of synthesis, which allowed us to study the e ect of morphological complexity. The degree of morphological synthesis was measured by looking for the maximally inflected verb and noun form, and determining the number of grammatical and lexical categories (morphosyntactic features) encoded in that word form.

Chintang, a Sino-Tibetan language of the Kiranti branch (approx. 6000 speakers, Eastern Nepal), has higher verb and noun synthesis than Japanese (as just mentioned, measured in number of such categories expressed in the most complex word form;

compare Bickel et al., 2007 for Chintang, and[START_REF] Kuno | The structure of the Japanese language[END_REF][START_REF] Tsujimura | An introduction to Japanese linguistics[END_REF] for Japanese), with up to 10 morphemes per word, versus up to 5 for Japanese1 . As shown in [START_REF] Stoll | The acquisition of polysynthetic verb forms in Chintang[END_REF], there are 148 unique grammatical elements that can occur together with a verb stem in the corpus (120 grammatical markers and 28 secondary verb stems, called V2, that expand the lexical or grammatical meaning of the main verb). Although some forms of verbs are rarely used, they constitute a part of the adult grammar and are eventually acquired by children. Here are two sample adult utterances from the Chintang corpus (CLDLCh1R01S02.0044 and CLDLCh1R01S02.0057 respectively):

( categories (Bickel & Nichols, 2013b;Hinds, 1986;[START_REF] Shibatani | Japanese[END_REF]. Thus, overall, Japanese has fewer forms both in its noun and verb paradigms and a smaller number of morphosyntactic features expressed, especially in the verb. Here are two sample adult utterances from the Japanese corpus (MYJCu44.1390521 and MYJCu832.1419814 respectively).

( 'Go ahead, make tea again'

Data

The Chintang recordings took place in a predefined week every month with several separated recordings amounting to approximately 4 hours per month involving 6 target children from 0; 6-4;4 (Stoll et al., 2017). During the recordings, which were audiovisual, the children were mainly playing outside of their houses. Relatives, other children, and neighbors are part of their daily lives and this was captured in the recordings.

The Japanese data consist of 2 corpora, MiiPro (Miyata & Nisisawa, 2009, 2010;Nisisawa & Miyata, 2009, 2010) and Miyata (Miyata, 2004a[START_REF] Miyata | Japanese: Ryo corpus[END_REF][START_REF] Miyata | Japanese: Tai corpus[END_REF]. Recordings took place indoors, mostly at home and there was often just one caregiver conversing with the child. They contain data for 7 Japanese children aged 1;4-5;1 years old. For the MiiPro corpus, the recordings took place every week from 1;2 to 3;0 and later every 1 or 2 months, and lasted 70 minutes per session. For the Miyata corpus, recordings took place every week and lasted 40-60 minutes.

After data collection, both corpora were first transcribed orthographically, and later annotated morphologically. More information on the annotation process for Chintang can be found in Stoll and Schikowski (in press) and [START_REF] Gaenszle | Research report: the Chintang and Puma Documentation Project (CPDP)[END_REF]; see Miyata and Naka (2006) for information on annotation of the Japanese corpora. In the Chintang corpus, the transcription was done by native speakers and was susceptible to their impression of what an utterance was. This mainly corresponds to clauses marked by intonation. As for the Japanese corpus, there is no information on how utterance boundaries were defined. Documentation suggests the data were transcribed based on the Wakachi format [START_REF] Miyata | Wakachigaki Guideline for Japanese: WAKACHI98 v.1.1[END_REF]. As for the morphological annotation, for Chintang, most of the corpus was hand segmented and manually annotated for morphology and parts-of-speech by trained linguistic students. The training took several weeks and was supervised by an expert in this language. A small part of the morphological annotation was generated automatically based on a morphological tagger [START_REF] Ruzsics | Neural sequence-to-sequence learning of internal word structure[END_REF]Samardzic et al., 2015). Japanese morphological tagging was done with the morphological tagger in CHILDES (JMOR, [START_REF] Miyata | JMOR06.2: The Japanese morphological analysis program based on CLAN[END_REF].

For information on the data, see also the ACQDIV manual (Schikowski et al., 2018).

Modeling segmentation

Word segmentation algorithms usually take as input phonological, symbolic text-like representations such as phonemes or syllables, with few exceptions (e.g., Ludusan et al., 2015 and[START_REF] Roy | Learning words from sights and sounds: A computational model[END_REF][START_REF] Roy | Learning words from sights and sounds: A computational model[END_REF], who applied segmentation algorithms on raw speech data). There is evidence that even newborns have access to syllables (or vowels) as perceptual units [START_REF] Jusczyk | Young infants' retention of information about bisyllabic utterances[END_REF], and that representation of phoneme sequences is available as early as by four months (Seidl et al., 2009). It can be challenging to represent certain cues in text-like representations, such as coarticulation, which will therefore not be studied here. Here, we limit our study to phonemized representations [START_REF] Moran | The unicode cookbook for linguists: Managing writing systems using orthography profiles[END_REF], even though it would be possible to study word-level prosody [START_REF] Börschinger | Exploring the role of stress in Bayesian word segmentation using Adaptor Grammars[END_REF]Gambell & Yang, 2005a), because some languages do not have lexical stress, such as French [START_REF] Dupoux | A destressing "deafness" in French?[END_REF].

So far only a couple of papers have applied more than one algorithm to the same corpus; when they do, they find widely varying performances across the di erent algorithms. By and large, algorithms based on local cues and employing sublexical information reportedly yielded lower scores than lexically driven ones both in English (Cristia et al., 2018) and Japanese (Ludusan et al., 2017). In this study, we sought to directly assess variability in performance across languages and included algorithms of both types.

Additionally, there can be enormous di erences in performance within the same algorithm depending on the parameters used (e.g., [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF]Saksida et al., 2017). For example, Saksida et al. (2017) documented that di erent measures such as forward transitional probabilities, backward transitional probabilities and mutual information and especially the threshold parameter (absolute, relative) a ect the results of word segmentation. Given these previous results, we will consider a diverse set of algorithms and their parametrization below, fully expecting them to vary in performance.

The computational algorithms used here have been repeatedly used in the past, and were chosen to represent diverse and cognitively plausible segmentation methods, spanning the three main classes mentioned above: lexical, sublexical, and baseline.

More details on the algorithms can be found in Section 4.2, and we therefore provide only a brief conceptual presentation here.

The lexical representative is a version of the Adaptor Grammar introduced previously (Goldwater et al., 2009;[START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF]. In a nutshell, the hierarchical grammar we provided was the unigram one, in which sentences are sequences of words and words are sequences of phones, with the lexicon being composed of frequent phone sequences. We had two sublexical algorithms, the first one being the Diphone Based Segmentation algorithm (DiBS). It is based on the intuition that phone bigrams spanning utterance boundaries probably span word breaks (Daland, 2009;Daland & Zuraw, 2013). The second sublexical algorithm is actually highly parametrizable: the Transitional Probabilities algorithm family (TP) assumes that word-internal pairs of syllables tend to co-occur more frequently than word-external pairs (Sa ran, Newport et al., 1996), with four di erent versions resulting from the crossing of 2 parameters with two levels each (Gervain & Erra, 2012;Saksida et al., 2017). In addition, two baselines were included in this study. The first baseline treats each utterance as a word, based on findings that children recognize words in isolation before they do so in sentences [START_REF] Depaolis | When do infants begin recognizing familiar words in sentences[END_REF]. The second baseline treats each syllable as a word,

given that infants might track syllable units from early on [START_REF] Bertoncini | Syllables as units in infant speech perception[END_REF][START_REF] Jusczyk | Young infants' retention of information about bisyllabic utterances[END_REF].

Key Questions and Predictions

The key questions motivating this study are: Do languages which vary in morphological complexity di er in segmentability? Do algorithms segment out morphemes in complex languages? And which factors could explain performance di erences in segmentation?

Morphological complexity should a ect segmentation through several pathways, the first being via the distributional properties of the lexicon. Specifically, languages varying in morphological complexity di er in the frequency of lexical units (words and morphemes). Corpora of morphologically rich languages such as Chintang contain fewer repetitions of each word type, as well as a higher proportion of hapaxes -forms that occur only once -than languages with little morphology [START_REF] Stoll | The acquisition of polysynthetic verb forms in Chintang[END_REF]. For example, there was a higher proportion of hapaxes in a Japanese than an English corpus, and a lower likelihood of correct identification by a lexicon-building algorithm for hapaxes than words with more repetitions [START_REF] Boruta | Testing the robustness of online word segmentation: E ects of linguistic diversity and phonetic variation[END_REF]. Some algorithms might thus detect frequently occurring word parts such as morphemes, instead of words e.g. they could detect a root separately from its su xes. Lexical approaches, in particular, tend to recycle existing units, favoring repetition. AG finds the most likely segmentation using a lexicon, whose types have been assigned probabilities based on their frequency distributions. Thus, it could break words up into their component morphemes. This behavior would be rewarded when evaluated on morpheme boundaries, but penalized when evaluated on word boundaries.

Aside from these factors, which are purely morpholexical, there could be phonological factors confounded with morphological complexity, such as word length and segmentation ambiguity. 2 Languages varying in morphological complexity should also di er in the length of lexical units. First, morphologically complex languages such as Chintang usually have longer words and longer sentences. Longer sentences mean a more challenging segmentation task, because there are more places in which to erroneously insert a boundary, or miss inserting one. Second, long strings, which can often be decomposed in a number of di erent morphemes, may have more alternative parses than short ones. Consider the Japanese utterance "iruka", which can have several di erent parses (Scherling, 2016), including one in which it is a single word ("iruka", meaning "dolphin"); or a phrase ("is it?", where "iru" is the verb to be and "ka" is a particle indicating a question). Fourtassi et al. (2013) used the concept of 2 A host of other factors affecting segmentation and varying across languages have been proposed and studied in the past, such as head direction (Gervain & Erra, 2012) and input representation [START_REF] Kastner | Linguistic constraints on statistical word segmentation: The role of consonants in Arabic and English[END_REF]. However, these factors are orthogonal to the present study (i.e., they are not necessarily confounded with morphological complexity). Therefore, they will not be discussed any further.

entropy (Shannon, 1948) to estimate the di erent possible segmentation parses (segmentation ambiguity), and showed that segmentation score di erences they found for Japanese versus English could be accounted for by that factor.

Thus, lower performance is predicted for Chintang compared to Japanese, the morphologically less complex language. Algorithms might segment out morphemes, as they are shorter and more frequent than words. This could lead to oversegmentation (i.e. splitting a word up) for Chintang, especially within AG. Last, a number of factors are predicted to a ect segmentation performance; unit frequency, unit length, utterance length and inherent segmentation ambiguity.

Methods

In this section, we detail several stages of analysis: corpus preparation, phonologization, description, segmentation, and evaluation, followed by statistical analyses of the results. Corpus preparation and phonologization were carried out using custom scripts written mainly in bash. Corpus statistics, unsupervised word segmentation, and evaluation employed the WordSeg package (Bernard et al., 2018) 3 .

The WordSeg package provides a collection of tools for text based word segmentation.

Finally, statistical analyses were performed in R (R Core Team, 2013). All scripts are available at <anonymized for review>. More details can be found at https://osf.io/e8d2r/?view_only=f9d7b6a307734268bd8a515c55255b69. This OSF page contains scripts, results including segmentation performance and statistics, and other supplementary material.

Corpus preparation

Neither of the two languages exists in open source phonologization or text-to-speech programs, so we applied grapheme-to-phoneme rules to derive the phonological representation 4 [START_REF] Moran | The unicode cookbook for linguists: Managing writing systems using orthography profiles[END_REF]. We also cleaned the text from any punctuation and annotations. All utterances containing "???" (which indicates incomprehensible speech or impossible morpheme annotation) were removed from both word-and morpheme-level analyses. We also removed utterances where one of the morphemes had been transcribed into an abstract, unpronounceable code (such as FS_N or kV), from both analyses.

Following [START_REF] Phillips | Bayesian inference as a viable cross-linguistic word segmentation strategy: It's all about what's useful[END_REF], we syllabified the corpora using the Maximal Onset Principle. According to this principle, the beginning of a syllable should be as large as legally possible [START_REF] Bartlett | On the syllabification of phonemes[END_REF]. We syllabified as follows, for each language separately. First, we made a list of vowels present in the corpus. Second, we made a list of all valid word-initial onsets, defined as all consonants up to the first vowel of the word or morpheme. Third, each utterance was processed from right to left until a vowel was found, at which point consonants to its left would be clustered to the maximally large onset appearing in the list just mentioned phillips-syllabifier. Notice that this procedure does not syllabify over morpheme or word boundaries. Both corpora are larger than those frequently used for modeling studies [START_REF] Phillips | Bayesian inference as a viable cross-linguistic word segmentation strategy: It's all about what's useful[END_REF]Saksida et al., 2017). This allowed us to further divide each corpus into ten equal subsets, based on their length measured in number of utterances, in order to better estimate the variation in the properties of the segmentation algorithms. After pre-processing, the entire Japanese corpus was 84518 utterances long and had 155805 word tokens. The Chintang corpus was 152571 utterances long and had 426288 word tokens. Table 1 gives properties of the subsets after pre-processing. Right before segmentation, within-utterance word boundaries were removed from the corpora, and only utterance boundaries remained. Corpus features: Means (and standard deviation) across the ten Chintang and Japanese subsets (see main text for explanation). # stands for amount, "utt" stands for utterance.

"wtokens", "wtypes", "whapaxes" stand for word tokens, word types and word hapaxes. "m", "syll" and "phon" stand for morphemes, syllables and phonemes.

Algorithms

A brief, cognitively-focused introduction to the five algorithms follows. For technical details, please refer to the WordSeg documentation (wordseg.readthedocs.io; Bernard et al., 2018) and the work cited for each algorithm.

The first algorithm, a member of the Adaptor Grammar family, adopts a lexical approach (Goldwater et al., 2009;[START_REF] Johnson | Unsupervised phonemic Chinese word segmentation using Adaptor Grammars[END_REF]M. Johnson et al., 2007). The Adaptor Grammar (AG) is a generalized version of probabilistic context-free grammars (PCGF, M. Johnson et al., 2007). We use a very simple hierarchical grammar with only a few rules: Sentences are composed of one or more reusable words (or morphemes), and words/morphemes are composed of one or more phonemes. Each utterance is parsed as a sequence of words/morphemes, each word/ morpheme is composed by phonemes, and a given word/morpheme of this sequence would be generated either by choosing an existing form from a lexicon based on previous occurrences, or by considering it as a novel item and inserting its phonemic form in the lexicon. The PCFG regenerates the corpus by repeatedly applying this grammar, which is a set of rewrite rules with assigned probabilities. The rules fit the corpus based on how elements have already been written in the past, according to the Pitman-Yor stochastic process, which favors the reuse of frequently occurring rules (M. Johnson et al., 2007). This process is conceptually related to Zipf's Law, a feature of natural languages, which states that in a large corpus, the frequency of any word is inversely proportional to its rank in the frequency table [START_REF] Zipf | The psycho-biology of language: An introduction to dynamic philology[END_REF]. AG would thus tend to create a lexicon of moderate size comprised mostly of short words [START_REF] Perfors | What Bayesian modelling can tell us about statistical learning: What it requires and why it works[END_REF].

DiBS (Daland, 2009) 

p(# w |xy) ≈ f(x# p y) f(xy) (1) 
When p(# w |xy) is higher than a threshold parameter, the system breaks the sequence by positing a word boundary. This threshold is estimated with Formula 2:

Nw -Nu Np -Nu [START_REF] Börschinger | Studying the effect of input size for Bayesian word segmentation on the Providence corpus[END_REF] where the total number of words is Nw, the number of phones is Np and the number of utterances is Nu.

The TP family assumes that "word-internal pairs of syllables tend to co-occur more frequently than word-external pairs which are relatively unconstrained" (Sa ran, Newport et al., 1996, pp.610), thus the transitional probability between adjacent syllables is higher word-internally than at word boundaries (cf. [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF] for evidence that this may not be the case). The basic minimal units are syllables and not phonemes, unlike in the other two algorithms. Forward transitional probabilities (FTP) are defined as:

FTP(AB) = f(AB) f(A) (3) 
where f (AB) is the frequency of a syllabic sequence AB and f (A) is the frequency of the syllable A. Backward TP (BTP) is similar, except that the denominator is the frequency of the second syllable instead.

BTP(AB) = f(AB) f(B) (4) 
Also, algorithms in the TP family require another parameter, namely the threshold used to decide whether to add a word (or morpheme) boundary or not. One possibility is to use TP with a Relative threshold, i.e. BTPr and FTPr, which leads to placing a word/morpheme boundary wherever the TP value of a syllable pair is lower than the TP of the neighboring syllable pairs, as follows. Given a syllable sequence (W ABY ) where W , A, B, Y stand for syllables, a break will be posited between A and B if TP(WA) >TP(AB) and TP(BY ) >TP(AB). Another possibility is to use TP with an Absolute threshold (BTPa and FTPa), which would posit boundaries using a threshold, that is the sum TP value of all syllable pairs over the number of di erent syllable pairs. For example, given a corpus consisting of a syllable sequence (W ABY )

where W , A, B, Y stand for syllables, the absolute threshold is TPa = TP(WA)+TP(AB)+TP(BY )

3

. A break will be then posited between A and B if TP(AB) <TPa.

Finally, we applied two segmentation baselines. The baselines capture simple segmentation strategies. The baseline called Syll=Unit uses p =1to cut at all syllable boundaries, thus treating every syllable as a word (or morpheme). The baseline Utt=Unit labels only utterance boundaries as word (or morpheme) boundaries (p =0).

Evaluation

The output of each algorithm is evaluated using word (or morpheme) token F-scores, derived from precision and recall, as standard for segmentation algorithm evaluation (Phillips & Pearl, 2015). Precision (Formula 5) checks how many words/morphemes in the group of those segmented by the algorithm are correct. Recall (Formula 6) checks how many words/morphemes in the group of those existing in the original gold corpus were correctly segmented by the algorithm. True positives are the words/morphemes segmented by the algorithm which are indeed found in the input corpus. False positives are the words/morphemes segmented by the algorithm which are actually not in the input corpus. False negatives are words/morphemes in the input corpus that were not in fact segmented by the algorithm. precision = true positives true positives + false positives (5) recall = true positives true positives + false negatives [START_REF] Daland | Word segmentation, word recognition, and word learning: A computational model of first language acquisition[END_REF] The token F-score balances how accurate and complete the set of identified word/morpheme tokens is (Phillips & Pearl, 2015). It is the harmonic mean of precision and recall, as shown in Formula 7.

F-score = 2 * precision * recall precision + recall (7)

Results

Fig. 1 illustrates the token precision and recall for each subset of the corpora. The point of this figure is to demonstrate that precision and recall are correlated to a considerable extent. The correlation between precision and recall emerges because there is no trade o between false negative and false positive results; when segmenting text, a given parse results in neither or both kinds of errors. This is because if a boundary is posited, then if this boundary is correct, it will increase both precision and recall. If the boundary is incorrect, it will reduce both precision and recall.

Since precision and recall are highly correlated, we focus on the more commonly reported token F-scores. Fig. 2 shows for each language, word token F-scores within each of the 10 subsets, as well as results for the entire corpus, which are nearly always contained in the range of variation of the subsets. The F-scores are presented numerically in the online supplementary material. Similarly to what we found, Bernard et al. (2018) documented that variation in corpus size beyond the first 5k utterances seems to play a negligible role in performance of these segmentation systems, as replicated here. Fig. 2 suggests that there were strong interactions between the three factors of interest (language, algorithm, and evaluation level), which are tested statistically in the next section.

Before proceeding with this statistical evaluation, we perform some descriptive observations. Average performance across algorithms on the word level was .48 for Japanese and .33 for Chintang; and on the morpheme level, this was .49 and .41, respectively. Thus, performance for Japanese was similar across levels, while performance for Chintang was worse for words than for morphemes, and, on morpheme level, it was close to Japanese for some of the algorithms. To put these descriptive results in the context of the broader literature, we discuss some observations clustered on the basis of the di erent algorithms, since previous work exclusively employed one algorithm. At points, we need to focus on the word level for this comparison, since previous work has systematically evaluated performance quantitatively on this level, and this level alone.
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Focusing first on AG, the sizable performance di erence between the two languages found on the word level was reversed on morphemes: AG-word had an average score of .44 for Japanese and .27 for Chintang, whereas for AG-morpheme, the performance for Chintang was higher than that for Japanese, with an average score of Token F-score .56 versus .49. As for comparisons with previous work, we found that our AG-word scores were much lower than the .77 documented for English (Fourtassi et al., 2013).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • x x x x x x x x BTPr FTPr BTPa FTPa DiBS AG Syll=Unit Utt=Unit
Zooming out for a moment from our key question, we also notice that AG achieved higher scores than DiBS and TP only in the Chintang morpheme level.

Turning now to TP, absolute-threshold TPa had the highest performance. The higher scores for TP are not just due to our addition of TPa, since even TPr outperforms AG. This is a matter that should be investigated further. TP had relatively smaller language di erences compared to AG. TPa-morpheme scores were higher than TPa-word scores, whereas the opposite was true for the relative-threshold TPr. Worse performance for morphemes than words for TPr is reasonable in hindsight, given that in this implementation a boundary can only be posited in relatively long strings of syllables (see also [START_REF] Gambell | Word segmentation: Quick but not dirty[END_REF]. We did not observe much di erence between forward and backward alternatives (cf. [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF] arguments that this parameter should matter for languages varying in head direction, and Saksida et al., 2017 for other data showing that it may not). As for other comparisons with previous work, the best performance for TP in this paper was .63, well below the .85 recorded for English by Saksida et al. (2017).

DiBS showed a language e ect that was stable across words and morphemes. For the word level, our scores were .35 and .51 for Chintang and Japanese respectively, close to those for English CHILDES corpora (.43, Daland and Pierrehumbert, 2011).

Finally, the baseline scores ranged from .06 (Utt=Unit for Chintang morphemes)

to .71 (Syll=Unit for Chintang morphemes). Both did a better job segmenting Japanese than Chintang on the word level. However, results were di erent on the morpheme level. Chintang morphemes are on average shorter than Japanese ones (see Table 1; 1.24 versus 1.70 syllables per morpheme), whereas the opposite is true for words (2.01 versus 1.83 syllables per word). As a result, on morphemes, performance is very high when boundaries are systematically posited after every syllable (Syll=Unit), and very low when no boundary is posited at all (Utt=Unit). This might explain why, on morphemes, Chintang outperformed Japanese with Syll=Unit, but had a lower score than Japanese with Utt=Unit.

Regression on token F-Scores

A regression predicting F-scores from language, level, algorithm, and their interactions accounted for most variance in the data, R 2 = .93 (F (31, 288) = 134.95, p<.001). 5 Even though the presence of significant interactions precluded a direct interpretation of the main e ects, the regression confirmed an advantage for Japanese, with a positive coe cient estimating the language e ect. Interestingly, the coe cient for this language e ect was smaller than that for evaluation level. Further information on the regression results can be found in Tables 2 and3 and more detailed outcomes in the online supplementary material.

Proximal causes

In Section 3, we inquired whether specific features related to morphological complexity would a ect segmentation. Mean values of such features for the Chintang (word and morpheme) and Japanese (word and morpheme) subsets are shown in Table 4. The regressions introduced next are ran on the subset versions. One prediction pertained hapaxes and repetitions. Specifically, we mentioned that a higher proportion of hapaxes and fewer repetitions of each word token (since each lexeme can have di erent surface forms) might lower performance in lexical algorithms.

Therefore, we first searched whether type/token ratios could account for (some of) our results. We measured the Moving-Average Type-Token Ratio (MATTR) for each of the 20 subsets (10 for Chintang and 10 for Japanese), in the word and morpheme level gold versions. WordSeg's MATTR computes the type-token ratio in a window of 10 units, shifting this window one unit at a time, and returning this moving average. Thus, it controls for corpus length di erences. In a regression across subsets predicting F-scores from MATTR, language, and algorithm (for each subset) We also measured the hapax ratio by dividing the amount of hapaxes by the total number of unit types for each of the 20 subsets, in the word and morpheme level gold versions. In a regression similar to the one above (with language and algorithm), but now incorporating hapax ratio as an additional predictor, the coe cient for the hapax ratio was also non-significant, -0.682 (SE=1.044, p-value=0.514) for the word-level regression, and -0.275 (SE=1. 18, p-value=0.816) for the morpheme-level regression.

In addition, we had predicted that word length side e ects of complexity could also matter. Indeed, morphological complexity is correlated with word length, but not morpheme length, according to Table 1. We thus measured the average unit (word or morpheme) length by dividing the total number of phone tokens by the number of unit tokens, separately in the word and morpheme level gold versions of the subsets. A new pair of regressions was thus fit across subsets. Token F-scores were predicted from unit length in addition to language and algorithm, on the word level, and separately on the morpheme level. The unit length factor had a non-significant coe cient estimate of -0.079 (SE =0.084,p=0.35) for the word-level regression; and 0.331 (SE=0.189, p-value=0.082) for the morpheme-level regression.

Last, sentence length as operationalized by the number of syllables per utterance was measured by dividing the total number of syllable tokens by the number of utterances for each subset. A similar pair of regressions revealed this predictor was not significant for the word level (estimate=-0.047, SE=0.026, p-value=0.067) but was significant for the morpheme level (estimate=-0.055, SE=0.024, p-value=0.025). Details on the percentage of variance explained for all regressions can be found in Table 5.

Factor Analysis of variance (ANOVA type III) significance results for linear regressions where F-scores are predicted by language, evaluation level, and their interaction within each algorithm separately. "lang" stands for language. p<0.001=***, p<0.01=**, p<0.05=*.

Is the language effect due to entropy?

We further investigated whether language e ects may be due to one potential confound, in particular the possibility that one of the languages is intrinsically more ambiguous to segment (sentences having di erent possible segmentation parses). To this end, we followed Fourtassi et al. (2013) and estimated the segmentation entropy of the corpora (Normalized Segmentation Entropy) using WordSeg's descriptive toolset. In Fourtassi's study, English was less ambiguous than Japanese, with entropies of .0021

and .0156 respectively on the word level. The segmentation entropy of our Japanese ACQDIV corpus was 0.028 (word level), thus close to their Japanese results.

Surprisingly, the segmentation entropy for Chintang was 0.007 -even less ambiguous than English. We also found overall higher entropy levels when inspecting the morpheme level, with smaller language di erences. Even more surprising, in a pair of regressions where entropy, language and algorithm (for each subset) were included, entropy failed to explain a significant proportion of the variance, with a coe cient estimate of 11.012 (SE=9.033,) on the word level, but explained a part of the variance on the morpheme level: -5.618 (SE=2.237, p-value=0.013).

Over-, under-and missegmentation

A breakdown of segmentation performance as a function of part of speech and algorithm is provided in online supplementary materials. Over-, under-and missegmentation cases are reported in Table 6. In the current study, we operationalize oversegmentation as the splitting up of a unit in one or more sub-parts (regardless of whether these are reasonable smaller units or not). We consider undersegmentation the clustering together of two or more words. All other di erences from the gold segmentation were labeled missegmentation. The following example illustrates how they were measured: If the input sentence "the dog ate the other dog" is returned as "thedog at ethe other d og", then the score will be 1/6 correct segmentation, 1/6 over-segmentation ("d og"), 2/6 under-segmentation (one for each input word, "the" and "dog"), and 2/6 mis-segmentation ("at ethe"). As for language e ects, it was hypothesized in Section 3 that there might be more cases of word level oversegmentation in a morphologically complex language, because algorithms would break apart morphological a xes. As predicted, oversegmentation rates were higher for both languages when evaluating on words, and, more precisely, they were higher for Chintang than Japanese. This is because word level evaluation considers word oversegmentation an error, but morpheme level evaluation does not penalize it. However, while oversegmentation was substantially reduced on morphemes, it did not disappear.

Finally, previous studies suggested that lexical algorithms might break apart morphological a xes (Section 1.2). We reasoned that this would lead lexical algorithms to oversegment more than sublexical ones (Section 3). This was true for our data, where AG showed distinctive oversegmentation patterns compared to DiBS and TP, and almost no undersegmentation. As far as sublexical algorithms are concerned, DiBS exhibited undersegmentation for both levels and languages. TPa-word tended to oversegment, but TPa-morpheme would undersegment. TPr-morpheme would also undersegment morpheme sequences, particularly with the Chintang corpus, where 70% of its tokens were undersegmented. Unsurprisingly, Syll=Unit tended to oversegment, whereas Utt=Unit was mostly undersegmenting. Table 5 Percentage of variance explained (R 2 ) predicting F-scores (word and morpheme level) either from the factor given in the first column, or from language, algorithm, the factor and all their interactions in the second column. The R 2 for lang x algo alone is .91 for words and .94 for morphemes (the same for all rows). "lang" stands for language, "algo" for algorithm, "syll/utt" for syllables per utterance, "w" for words and "m" for morphemes.

Summary

In sum, we observed di erences in language, level, and algorithm type in the expected directions. Overall word segmentation performance for Japanese was better than performance for Chintang. However, average Chintang scores improved on the morpheme level and this reduced the average score di erence with Japanese.

Surprisingly, factors we had postulated as proximal causes for word segmentability variation (type/token ratio, hapax ratios, word and utterance length) did not explain significant variance. The potentially confounded factor of segmentation entropy did not behave as predicted, suggesting that our original regression (with language, level, and algorithm) was su cient. Oversegmentation rates were higher for Chintang than

Japanese in the word level, especially for the lexical algorithm. Syll=Unit 68 0 0 32 21 0 0 79 53 0 0 47 49 0 0 51 Utt=Unit 0 90 0 10 0 96 0 4 0 68 0 32 0 71 0 29

Table 6

Percentage of oversegmented, undersegmented, missegmented and correctly segmented word and morpheme tokens for each algorithm, level, and language. "algo" stands for algorithm, "morph." stands for morphemes, "Chin." for Chintang and "Jap." for Japanese. Also, "ov" stands for oversegmentation, "un" for undersegmentation, "mis" for missegmentation and "cor" for correctly segmented.

Discussion

In this study, a set of algorithms was applied to corpora of two morphologically diverse languages, and the output was assessed against gold standard segmentation at the word and morpheme level. Given the details of Chintang morphology, it was hypothesized that such a rich morphology must pose significant problems for the uninformed learner who is trying to segment the input, but these problems would be mitigated if we consider morphemes instead if words as a segmentation goal.

Results summarized thus far support the prediction that languages varying in morphological complexity might vary in segmentability, but several aspects of these results strongly suggest that the answer is not simple. In our study, the language e ect was not the same for all algorithms, and was even reversed when both algorithm and level were varied. The language e ect was also smaller than the one for level or algorithm type. Indeed, performance for Chintang was substantially improved when evaluating on morphemes. In other words, di erences within-language (across algorithms) seem to be more important than those between languages, and morphological complexity is far from being the sole or major determinant for segmentation.

To further address our research questions, we consider the results within each algorithm next. Our strongest predictions pertained to the lexical algorithm, AG, whose results matched our predictions well. In AG, we observed higher performance for Japanese than Chintang with words as the gold standard, but this di erence was reversed with morphemes. This observation is consistent with the proposal that AG, and probably lexical algorithms in general, are ideal to recover recombinable units.

Thus, it seems that lexical algorithms might work well for languages like Chintang, improving performance on the morpheme level.

Turning to the sublexical algorithms, even though DiBS is a purely phonotactic-based algorithm, it seems to have been a ected by language di erences.

The algorithm was robust across evaluation levels, which had no impact on the segmentation performance. The most complex patterns of results were found for the other sublexical algorithm, TP. All four versions of the algorithm (BTPa, FTPa, BTPr, FTPr) yielded divergent patterns. This is in accordance with previous findings, where notable di erences in performance were found depending on the parameters used (e.g., Saksida et al., 2017). The language as well as the evaluation level had a significant e ect on performance, and an interaction between language and level was observed for all versions.

This study attempted to associate segmentability to language features predicted to have an impact on segmentation. Word length, utterance length, and even corpus entropy explained only a small proportion of the structured variance, and none significantly beyond the factors of language and algorithm. Entropy, in particular, had been postulated in previous cross-linguistic work comparing English and Japanese (Fourtassi et al., 2013), languages which diverge both in morphology and phonotactics, whereas the languages studied here had similar phonotactics. Further work varying these parameters independently may be needed to pin down the importance of factors such as word length, utterance length, and corpus entropy (see [START_REF] Caines | The cross-linguistic performance of word segmentation models over time[END_REF], for a similar approach on properties explaining variation in segmentation performance).

One surprising result pertains to the follow-up analyses which investigated the explanatory value of type/token ratio (measured as MATTR) and hapax ratio, which we had suggested as potentially proximal causes for segmentability di erences across the languages. It seems that, while morphological complexity has an impact on segmentation, this might not be via the causal paths we had identified, since none could independently explain away the language e ect in a multivariate regression. Future work may need to assess whether such variables jointly could explain away language di erences, or whether this e ect is due to other features that we have not yet considered (see [START_REF] Loukatou | Is it easier to segment words from infant-than adult-directed speech? Modeling evidence from an ecological French corpus[END_REF], for a similar result on di erences between adultand child-directed speech).

Before closing, we would like to bring up a number of limitations for this study.

First, the research was conducted using transcriptions of speech spoken around (and not only to) children varying in age, from a few months to five years old, with the Japanese children being in general older than the Chintang children. Further research with more homogeneous addressees may provide more stable results. Second, two di erent datasets compose the ACQDIV Japanese corpus, as mentioned in Section 2.2. This might be the cause for the ostensively more variable results of the Japanese subsets. Third, many Japanese utterances had not been morphologically transcribed, so they had to be excluded.

Moreover, since Chintang is spoken in a multilingual setting, annotators transcribed all speech including non-Chintang words, either because they are recent loanwords or because of code-switching into Nepali. Chintang speakers are bilingual in the morphologically simpler Nepali and children encounter Nepali from early on (Stoll et al., 2015). In fact, approximately 36% of the Chintang utterances had non-Chintang single-or multi-word insertions. For our analyses, we chose to report on the results for the whole corpus, because children born into this community do not come with information about which words are loanwords or code-switched. However, we also segmented a version of the corpus consisting of only all-Chintang utterances, where utterances with non-Chintang insertions had been removed. The performance usually increased by .01-.06 in token F-scores for the all-Chintang corpus, but did not alter our conclusions above. Detailed results can be found on the online supplementary material.

Also, speech transcriptions were used for this study. However, other salient features for segmentation include supra-segmental, speech-related features such as prosody or intonation. Even though there is some literature looking at word segmentation from speech (Ludusan et al., 2015), this task remains challenging for computational modeling.

Additionally, we would like to mention that the algorithms were evaluated on words, as defined by their conventional orthographic representations. However, wordhood and morphemehood are debated issues in linguistics and psycholinguistics, without cross-linguistically valid definitions, as mentioned in Section 1.2.

Finally, we studied two languages which di er in morphological synthesis, admittedly considering only one dimension of morphological complexity. We would Is word segmentation child's play in all languages?

Georgia R. 

Abstract

When learning language, infants need to break down the flow of input speech into minimal word-like units, a process best described as unsupervised bottom-up segmentation. Proposed strategies include several segmentation algorithms, but only cross-linguistically robust algorithms could be plausible candidates for human word learning, since infants have no initial knowledge of the ambient language. We report on the stability in performance of 11 conceptually diverse algorithms on a selection of 8 typologically distinct languages. The results are evidence that some segmentation algorithms are cross-linguistically valid, thus could be considered as potential strategies employed by all infants.

Introduction

Six-month-old infants can recognize recurrent words in running speech, even with no meaning available or with experimentally impoverished cues to wordhood (Saffran et al., 1996). Most words do not appear in isolation [START_REF] Brent | The role of exposure to isolated words in early vocabulary development[END_REF], so infants would need to discover the form of words in their caregivers' input before attaching them to meaning. Since infants do not know which language(s) will be found in their environment at the beginning of development, they would be better off by using segmentation strategies that perform above chance for any language. In fact, despite the fact that languages vary widely in a number of dimensions affecting word segmentation, all human languages are learnable for infants (see Discussion for the question of the extent of variation in human learning).

Unsupervised bottom-up segmentation across languages

The problem of learners retrieving words in input has a long history in computational approaches (e.g., [START_REF] Harris | From phoneme to morpheme[END_REF]Elsner et al. 2013;Lee et al. 2015). Most previous computational research has used as input texts representing phonologized language, that is, sequences of phonemes with no overt word boundaries, and the task is to retrieve these. Several algorithms inspired by laboratory research on infant word segmentation are currently represented in WordSeg, an open source package (Bernard et al., 2018).

Are such algorithms as robust to cross-linguistic variation as human infants are? Some previous work has assessed the generalizability of specific approaches across different languages, typically concluding that strong performance differences arise [START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF]Daland 2009;[START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF]Fourtassi et al. 2013;Saksida et al. 2017;Loukatou et al. 2018, with the possible exception of Phillips and Pearl 2014a,b).

However, very little previous research compares the performance of a wide range of algorithms using diverse and cognitively plausible segmentation methods within a large set of typologically diverse languages and closely matched corpora, with unified coding criteria for linguistic units.

The present work

In this paper, we sought to fill this gap by employing a systematic approach that samples both over the space of algorithms and the space of human languages. We used 11 segmentation algorithms included in WordSeg, for improved reproducibility and transparency.

As for languages, we used the ACQDIV Table 1: Number of children, sentences and word tokens for each language corpus. "m.syn." stands for morphological synthesis derived from sto: A language received a "high" here if nominal and verbal complexity were both listed as the highest in that work; and low if they were both in the lowest levels, and moderate otherwise. " % s.com." stands for syllable complexity, measured as average percentage of vowels per total phonemes for each word. Languages are represented by the first three letters of their names.

. database [START_REF] Moran | The ACQDIV database: Min (d) ing the ambient language[END_REF], which contains a set of typologically diverse languages, as explained in [START_REF] Stoll | Capturing diversity in language acquisition research[END_REF]. All corpora were gathered longitudinally and were ecologically valid, with transcriptions of child-directed and childsurrounding speech recordings (target children's age ranges from 6 months to 6 years).

ACQDIV contains data for eight languages with large enough data sets to allow for analyses of the type used here: Chintang (Stoll et al., 2015), Indonesian [START_REF] Gil | The mpi-eva jakarta child language database[END_REF], Inuktitut (Allen, 1996, Unpublished), Japanese (Miyata, 2012b,a;Oshima-Takane et al., 1995;Miyata, 1992) , Russian [START_REF] Stoll | The acquisition of Russian aspect[END_REF][START_REF] Stoll | Audiovisional longitudinal corpus on the acquisition of Russian by 5 children[END_REF], Sesotho (Demuth, 1992[START_REF] Demuth | Demuth Sesotho Corpus[END_REF], Turkish (Küntay et al., Unpublished), and Yucatec Mayan (Pfeiler, Unpublished).

The present study addresses the following questions:

1. Do algorithms perform above chance level for all languages? Algorithms that systematically perform at or below chance level would not be plausible strategies for infants.

2. Is the rank ordering of algorithm performance similar across languages? That is, is it the case that the same algorithms perform poorly or well across languages? If unsupervised word discovery algorithms pick up on general linguistic properties that are stable across this typologically diverse sample, then we expect the rank ordering to be rather stable. If, conversely, some algorithms pick up on cues that are useful in one language but noxious in another, then the rank ordering may change.

Methods

Phonemization was done using grapheme-tophoneme rewrite rules adapted to each language [START_REF] Moran | The unicode cookbook for linguists: Managing writing systems using orthography profiles[END_REF]. Only adult-produced speech was included.

The input to each algorithm was the phonemized transcript, with word boundaries removed. Sentence boundaries were preserved because infants are sensitive to them from before 6 months of age [START_REF] Christophe | Perception of prosodic boundary correlates by newborn infants[END_REF]Shukla et al., 2011). Table 1 gives the number of children, sentences, and words across corpora, as well as a rough metric of morphological and phonological complexity.

For lack of space, we will only briefly describe the algorithms drawn from WordSeg (see [START_REF] Johnson | Improving nonparameteric bayesian inference: experiments on unsupervised word segmentation with adaptor grammars[END_REF]Monaghan and Christiansen 2010;Lignos 2012;[START_REF] Daland | Does Korean defeat phonotactic word segmentation[END_REF]Saksida et al. 2017;Bernard et al. 2018). All algorithms were used with their default parameters.

Baseline algorithms represent the simplest segmentation strategies possible. The first baseline, p=0, is a learner who treats each whole sentence as a unit, cutting at 0% of possible points. The second baseline is a learner (innately) informed about average word duration, cutting at a probability level of average word length. Since in the reduced lexicon expected for child-surrounding speech, words average 6 phonemes in length in several languages [START_REF] Shoemark | Towards robust crosslinguistic comparisons of phonological networks[END_REF], p=1/6 was used.

The Diphone Based Segmentation algorithm (DiBS) is based on phonotactics, and implements the idea that phoneme sequences that span phrase boundaries also span word breaks (Daland and Pierrehumbert, 2011;Daland, 2009). The learner decides whether there is a boundary in the middle of a bigram sequence if the probability of the sequence with a word boundary is higher than the probability without the boundary.

Other algorithms are also based on the idea that sequences with lower statistical coherence tend to span word breaks, but use backwards or forwards transitional probabilities (BTP and FTP respectively; in a sequence xy, BTP is the frequency of xy divided by the frequency of y; FTP by the frequency of x) or mutual information (MI). MI is defined as the log base 2 of the frequency of xy divided by the product of the frequency of x and that of y; the version in WordSeg draws from Saksida's implementation (Saksida et al., 2017).

Whether to add a word boundary or not depends on a threshold, which can be based on a local comparison (relative, where one cuts if the TP or MI is lower than that for neighboring sequences); or a global comparison (absolute, where one cuts if the transition is lower than the average of all TP or MI over the sum of different phoneme bigrams). It should be noted that previous authors originally implemented TPs on syllables (Saksida et al., 2017;[START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF], but here the basic units are phonemes. Combining all of the above yields 6 versions, namely FTPr, FTPa, BTPr, BTPa, MIr and MIa. [START_REF] Johnson | Improving nonparameteric bayesian inference: experiments on unsupervised word segmentation with adaptor grammars[END_REF] elaborated on adaptor grammars (AG), which are ideal approximations to the segmentation problem. They assume that learners create a lexicon of minimal, recombinable units found in their experience. AG uses the Pitman-Yor process, a stochastic process of probability distribution which prefers the reuse of frequently occurring rules versus creating new ones to build a lexicon, then uses this lexicon to parse the input. This process is conceptually related to Zipf's Law [START_REF] Zipf | The psycho-biology of language: An introduction to dynamic philology[END_REF] and leads to realistic word frequency distributions.

Finally, Phonotactics from Utterances Determine Distributional Lexical Elements (PUDDLE) is an incremental alternative algorithm (Monaghan and Christiansen, 2010), where learners build a lexicon by entering every utterance that cannot be broken down further, and using such entries to find subparts in subsequent utterances. WordSeg was used both for segmentation and evaluation. Each algorithm returns their input with spaces where the system hypothesizes a break. 1 Evaluation is done with reference to orthographic word boundaries. Scripts used for corpus preprocessing and segmentation as well as results and supplementary material are available at https://osf.io/6q5e3/.

Results

Results are shown in Tables 2 (reporting on algorithms) and 3 (reporting on languages). Next, we address our research questions.

Do algorithms perform above chance level

for all languages? If chance is defined as the highest of the two baselines (p=0, 1/6), 1 algorithm performed above chance in all 8 languages (DiBS). However, if we relax this criterion, AG, FTPa, FTPr, MIr and MIa also performed above chance for nearly all languages. No algorithm performed below chance level for more than half of the languages.

2. Is the rank ordering of algorithm performance similar across languages? Figure 1 illustrates the correlation of performance order for algorithms across languages. Spearman correlations (median=.38) suggested that there is a similar rank ordering of algorithm performance across languages. Inuktitut and Russian were the only languages not following the general ordering.

The models' detailed performance, measured in percentage of correctly segmented word tokens, can be found in the online supplementary material and in this paper's Appendix. An error analysis would be beyond the scope of this paper. However, three categories of incorrect cases have been measured and can be found online. This analysis documents cases of oversegmentation (words split up in their components), undersegmentation (two or more words segmented as one) and missegmentation (all other errors).

Discussion

First, no algorithm performed systematically below chance level in our study. However, we cannot say that they all performed above chance for all languages either. This is mainly due to the good results in baseline p=0, especially salient for morphologically complex languages such as Inuktitut. This is expected, since in this language a substantial number of sentences are composed by a single word (which morphologically encodes what in other languages would be expressed syntactically by using several words).

Second, there was some stability in the order of performance for algorithms across this set of diverse languages, suggesting that these unsupervised word discovery algorithms pick up on general linguistic properties that are stable across our sample, and not language-dependent cues that could potentially not work for some languages.

In this distinct performance ranking, some algorithms were systematically above chance and among the first in order of performance. These include DiBS and AG, combining both desiderata of cross-linguistic stability and high segmentation performance. DiBS, the one algorithm in our sample applying a phonotactics strategy, was robust across languages and not strongly affected by the differences found across these languages in morphology and phonological complexity (counter previous conclusions based on English versus Korean, [START_REF] Daland | Does Korean defeat phonotactic word segmentation[END_REF]. DiBS implements an optimal boundary setting based on the Bayes' theorem and co-occurrence statistics. Thus, our results support previous experimental findings that infants may use such tools to acquire language. Our study is the first to explore segmentation differences across both multiple algorithms and multiple languages. We therefore are in a position to compare segmentation performance differences across these two. We found that differences in average performance across algorithms (min=14 for BTPr, max= 37 for AG, 23% points) were larger than differences in performance across languages (min=17 for Inuktitut, max=24 for Indonesian, 7% points). This indicates that variation across languages was comparatively small. Also, average percentage of correctly segmented words for the more morphologically complex languages (Chintang, Inuktitut and Turkish) was 19%, only 3% lower than average percentage for the simpler languages in our sample (Japanese, Sesotho and Indonesian). This is striking evidence that in this set of diverse languages, intrinsic differences in language structure may not be large enough to create particular difficulties in segmentation.

To sum up, this study provides evidence that, if infants do anything similar to one or more of the algorithms proposed in previous natural language processing research and investigated here, then they would be well-equipped to get a head start in segmenting word-like units regardless of what their native language is. Experimental evidence suggests slight variation in the timing of acquisition of different linguistic features, as a function of factors such as the transparency of forms, and the complexity of paradigms (e.g., [START_REF] Slobin | The crosslinguistic study of language acquisition: Theoretical issues[END_REF]. Given the small differences found across our unsupervised word segmentation algorithms, such variation might come from something else, such as meaning acquisition, which would require algorithms different from the ones we explored here.

Before closing, we would like to acknowledge some limitations of this work. Defining words can be obscure (Daland, 2009) and there is no crosslinguistically valid general definition of 'word' [START_REF] Haspelmath | The indeterminacy of word segmentation and the nature of morphology and syntax[END_REF]. Consequently, it would make sense to also evaluate unsupervised segmentation algorithms using morpheme edges and at other definitions of wordhood [START_REF] Bickel | The 'word'in polysynthetic languages: Phonological and syntactic challenges[END_REF]. For this, we would need appropriately annotated data sets, which are currently missing. What is worse, not every language lends itself to simple definitions: Some languages in ACQDIV lack morpheme segmentation simply because this is not feasible in that language.

In this paper, we focus on correctly segmented words. An error analysis would not be easily interpretable, because not all corpora have morpheme annotations. For example, when documenting oversegmentation errors, we would not be able to distinguish between reasonable cases where words are split up into meaningful, morpheme-like components, and other cases. Similarly, in an undersegmentation analysis, we would not be able to focus on collocations. Future work is invited to study in more detail such errors in the algorithms' performance.

Finally, computational models can be informative proofs of principle, but nothing assures us they truly represent what infants are doing. To this end, laboratory experiments [START_REF] Johnson | Word segmentation by 8-month-olds: When speech cues count more than statistics[END_REF] and the study of natural variation [START_REF] Slobin | The crosslinguistic study of language acquisition: Theoretical issues[END_REF] are irreplaceable, even if challenging to perform, particularly at a large scale and sampling from many different cultures. Table 4: Percentage of correctly segmented word tokens for each language and algorithm. Languages are listed in rough order of morphological complexity (see Table 1). "PUD" stands for PUDDLE. "Base0" and "Base6" stand for baseline p=0 and p=1/6. Languages are represented by the first three letters of their names.
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Abstract

Previous work has documented variation in word segmentation performance across languages, with a trend to yield lower scores for languages with elaborate morphological structure. However, segmenting smaller chunks than words, "oversegmenting", is reasonable from a computational point of view. We predict that oversegmentation would be encountered more often in complex languages. In this work in progress, we use a dataset of 9 languages varying in complexity and focus on cognitively-inspired word segmentation algorithms. Complexity is defined by Compression-based, Type-Token Ratio and Word Length metrics. Preliminary results show that a possible relation between morphological complexity and oversegmentation cannot be predicted exactly by none of these metrics, but may be best approximated by word length.

Introduction

The issue of word segmentation is open in the NLP community (e.g., [START_REF] Harris | From phoneme to morpheme[END_REF]). Its implementations include processing languages with no orthographic word boundaries, such as Chinese and Japanese. It is also a key problem humans face when acquiring language. Previous work documented variation in the success rate of segmentation across languages, and a trend to yield lower scores for languages with elaborate morphological structure. This is true for both cognitively inspired [START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF]Fourtassi et al., 2013;Loukatou et al., 2018)) and other models (Mochihashi et al., 2009;Zhikov et al., 2013;[START_REF] Chen | A simple and effective unsupervised word segmentation approach[END_REF]. Evaluation is conventionally based on orthographic word boundaries. Do these models manage to learn more linguistic structure, that what is actually described in these accuracy scores? Segmenting smaller meaningful chunks than words is reasonable from a computational point of view: morphologically complex languages often feature multimorphemic, long words, and algorithms might break words up into component morphemes, treating frequent morphemes as words. Finding out morphemes might be useful for later linguistic analysis, especially for languages with rich morphological systems , and such morphemes could be used as cues to further bootstrap segmentation. Thus, a "useful" error in segmentation could be oversegmentation [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF][START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF], the percentage of word tokens returned as two or more subparts in the output.

We thus predict that oversegmentation might be encountered more often in complex languages. To test this, we need data from languages varying in complexity. Since there is no standard way to define complexity, for this study, three metrics are used: first, the Moving Average Type-token Ratio (500-word window) (Kettunen, 2014), and second, two versions of compression-based complexity (Szmrecsanyi, 2016) 1 . The two metrics are normalized (0=least complex, 1=most complex) and their average score is attributed to each language. Third, we look at word length, since, in general, longer words could attract more division.

Methods

We use the ACQDIV database [START_REF] Moran | The ACQDIV database: Min (d) ing the ambient language[END_REF] of typologically diverse languages, with transcriptions of infant-directed and -surrounding speech recordings, from Inuktitut (Allen, 1996), Chintang (Stoll et al., 2015) 1: Percentage of average oversegmented, correct word tokens and their sum are given per language in the first columns. Complexity scores for the three metrics are also given.

. lished), Yucatec (Pfeiler, 2003), Russian [START_REF] Stoll | Audiovisional longitudinal corpus on the acquisition of Russian by 5 children[END_REF], Sesotho (Demuth, 1992), Indonesian [START_REF] Gil | The mpi-eva jakarta child language database[END_REF] and Japanese [START_REF] Miyata | Japanese-MiiPro-Tomito Corpus[END_REF][START_REF] Nisisawa | Japanese-MiiPro-ArikaM Corpus[END_REF].

In order to compare with a previously studied language, we included the English Bernstein corpus (MacWhinney, 2000).

Several models have been proposed as plausible strategies used by learners retrieving words from input. We used a set of these strategies (Bernard et al., 2018). Two baselines were Base0, treating each sentence as a word, and Base1, treating each phoneme as a word. DiBS 2 (Daland, 2009) implements the idea that unit sequences often spanning phrase boundaries probably span word breaks. FTP 3 (Saksida et al., 2017) measures transitional probabilities between phonemes and cuts depending on a local threshold (relative, FTPr) or a global threshold (absolute, FTPa). Adaptor Grammar (AG) [START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF] assumes that learners create a lexicon of minimal, recombinable units and use it to segment the input. AG implements the Pitman-Yor process. Finally, PUDDLE 4 (Monaghan and Christiansen, 2010) is incremental, and learners insert in a lexicon an utterance that cannot be broken down further, and use its entries to find subparts in subsequent utterances. Before segmentation, spaces between words were removed, leaving the input parsed into phonemes, with utterance boundaries preserved.

Results

Statistics regarding corpora and results are presented in Table 1. In general, languages had simi-2 Diphone Based Segmentation algorithm 3 Forward Transitional Probabilities algorithm 4 Phonotactics from Utterances Determine Distributional Lexical Elements lar oversegmentation scores, (ranging from 31% to 51% if we exclude English), which did not exactly follow their complexity ranking. Performance difference across languages decreased when considering oversegmented tokens as correctly segmented.

Discussion

Word length had the best prediction of oversegmentation compared to other metrics, compression and MATTR. This shows that longer words have more alternative parses, and this could explain oversegmentation results better than other properties inherent to morphologically complex languages. That said, a possible relation between morphological complexity and oversegmentation, could not be exactly explained by none of these complexity metrics.

It was also observed that there was no absolute ranking of complexity across languages; on the contrary, it would change according to the feature studied. In general, cross-linguistic differences were small for such a typologically distinct dataset of languages. Further research might shed light on whether this behavior is due to linguistic properties common across languages, or a confound (e.g. corpus size).

Moreover, discovering meaningful units is of particular importance to language acquisition models, such as the ones implemented here. Infant word segmentation algorithms are cognitively plausible only if they are cross-linguistically valid and offer useful insights to learn all linguistic structures. It would also be interesting to compare performance of these models to state-of-theart NLP algorithms, such as HPYLM (Mochihashi et al., 2009) or ESA [START_REF] Chen | A simple and effective unsupervised word segmentation approach[END_REF].

A limitation of this study is that the current implementation of WordSeg does not only look at oversegmentation cases resulting in meaningful, morpheme-like sub-parts. A next step would be to focus on reasonable oversegmentation errors, even though not all of these corpora have morpheme annotations.

Measuring reasonable errors such as oversegmentation could shed light on the segmentability of morphologically complex languages and the cross-linguistic applicability of models. Further research might include over-, but also undersegmentation errors, when two or more words in the input returned as a single unit in the output. 
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T aining

The O e e i e e i ha i g he a e f a i i al babili ie (TP ) be ee for completing the corresponding part of the stud . The duration of the action in the videos with progressive actions was increased. However, the latter effect persisted for some participants in the second pilot, so we have now added a "narrator" figure next to the videos.

We e e e a a al i f he a i a i e e l f he ec d il . Fig e 1 

Concl sions

Wi h hese hree s dies, e a emp ed o con rib e o he li era re of cross-ling is ic learnabili .

Firs , e sed inp from longi dinal recordings of pologicall di erse lang ages for modeling e perimen s in Chap ers 3 and 4. We also crea ed a lang age inspired b fea res of morphologicall rich lang ages for an ar ificial lang age e perimen in Chap er 5.

Second, e iden ified specific di ersif ing fea res across lang ages in he morphole ical le el e.g.

ord oken freq enc . We arg ed ha hese fea res sho ld affec ord segmen a ion. In Chap er 3, e obser ed ha af er selec ion of o lang ages in heor er di erse in erms of morphological s n hesis, Chin ang and Japanese, he be een-corp s differences of rele an fea res, s ch as morpheme o ord ra io, ere smaller han e pec ed. This is e idence ha heore ical comple i of a s s em does no necessaril manifes in he same a in e er da speech, and e en less, probabl , hen his speech is direc ed o children. Child-direc ed speech has long been considered a simplified regis er (e.g. Geno ese e al., 2020) , here le icall and s n ac icall comple elemen s are less freq en . Th s, differences across ling is ic s s ems ma ge a en a ed i hin child-direc ed speech.

F re research sho ld address his b q an if ing differences be een e er da o erheard speech ers s speech direc ed o children. We look a his in de ail in Par 2.

Moreo er, he fea res e iden ified did no e plain a a he effec of lang age in Chap er 3. This is e idence ha in na ral lang age, s ch fac ors ma be confo nded i h o her ling is ic aspec s, and h s heir impor ance is less per inen han ha o ld be fo nd in a caref ll con rolled e perimen es ing a specific fea re. One o her in erpre a ion of he res l s is ha morphological di ersi , as e pressed b hese charac eris ics, is simpl no a fac or for segmen a ion. F re research sho ld consider incl ding more pological fea res acco n ing for di ersi , s ch as phonological and s n ac ic proper ies, as ell as in erac ions be een hem.

Third, in he same chap er, e fo nd ha differences across models are larger han differences across lang ages. This is an impor an finding in i self and in i es for f r her research, as i sho s ha In Chap er 4, e iden ified hree specific cri eria of e al a ion for he performance of o r segmen a ion s ra egies. Firs , he models sho ld be cross-ling is icall s able. Do he perform rela i el ell or badl across lang ages? Second, he models sho ld ha e a high segmen a ion performance, hich e defined as performing abo e chance. Third, e incl ded he concep of error pla sibili , i h respec o o er-and nder-segmen a ion. We belie e ha hese cri eria are indica i e of a iable learning model, and he ma be sed for e al a ion in f re modeling s dies.

Mos models respec ed he iabili cri eria, hich is s ppor ing e idence for he performance of se eral segmen a ion s ra egies in cross-ling is ic, na ralis ic inp . Ho e er, performance for o lang ages, R ssian and In k i , di erged compared o he res of he lang ages. This is a ma er ha sho ld be in es iga ed f r her. One possible e plana ion is he e is ence of a corp s ar efac : Perhaps hese o corpora ha e some par ic lari ies hich ca se he fail re of he models, regardless of lang age. F re research co ld reprod ce his s d sing parallel corpora ( a collec ion of corpora, each of hom is he ransla ion of he o her) -his a , e can make s re he her his di ergence is d e o he challenging s r c res of hese par ic lar lang ages or no .

Moreo er, in Chap ers 3 and 4 e made se of corpora hose lang ages ere s pposed o be ma imall differen in specific aspec s. We belie e ha cross-ling is ic comparison in f re s dies sho ld ideall happen nder hese erms. This a , e can iden if he main so rce(s) of difference be een lang ages. Cross-ling is ic comparisons incl ding an lang age, risk o ield nderinforma i e and no easil in erpre able res l s.

Fo r h, in Chap ers 3 and 5, e addressed he iss e of comparabili . In Chap er 3, e asked he her difference in segmen abili across lang ages is mi iga ed hen e reframe he concep of ord segmen a ion as segmen a ion of meaningf l ni s. For his, e cond c ed a modeling s d . Res l s from he firs s d sho ed ha lang age differences are indeed red ced hen segmen a ion is no s ric l based on one le el. We f r her arg ed ha considering morphemes as ell as ords ma be beneficial for earl lang age learning, especiall for morphologicall rich lang ages.

In In his sec ion, e ill look a q an i a i e and q ali a i e differences in inp speech across c l res.

The iss e of q an i of speech has recei ed a grea deal of a en ion in recen li era re, and ill be Ne , e men ion some differences across c l res i h respec o q ali of inp . , 2010) . Similarl , college-ed ca ed mo her inp is more in q an i , le icall and s n ac icall richer, and con ains more q es ions han inp from high-school ed ca ed mo hers (Hoff-Ginsberg, 1991) .

The n mber of siblings is ano her fac or. Firs born children seem o recei e more speech from heir mo hers han la er borns (Hoff-Ginsberg, 1998;Oshima-Takane & Robbins, 2003;Sno , 1972) , and more comple speech han la er borns (Hoff-Ginsberg, 1998) . Ho e er, Woolle (1986) no es ha lang age en ironmen s for a o nger sibling sho ld be s im la ing for learning; speech be een older siblings and he mo her is er in erac i e, freq en l referring o e en s, objec s, or he o nger sibling. Th s, s ch en ironmen s co ld pro ide de elopmen all comple and salien models of lang age.

Las , he abo e men ioned aspec s of cross-c l ral di ersi rela e o he iss e of d adic s dies. We s ill kno er li le abo ha children hear in di erse c l res, and e idence on learning o comes in acq isi ion across c l res is also limi ed. Of hese s dies, e en fe er s dies ha e looked a differences in segmen a ion o comes, since pre io s research has foc sed on differences in le ical and s n ac ic de elopmen hro gh prod c ion. For e ample, one hing ha aries as a f nc ion of c l re seems o be he amo n and con en of children s prod c i e ocab lar (Hoff, 2006;Tardif e al., 1999) .

Moreo er, mos cross-c l ral ork deri es from e hnographic s dies and is an hropologicall -orien ed, i h li le s s ema ic research on lang age learning. Some lang age informa ion pro ided ma some imes be q ali a i e obser a ions of he in es iga ors. 

Linking input to learning outcomes

We disc ss here some ariables of inp speech pre io sl men ioned o acco n for le ical and morphos n ac ic de elopmen , and hich ma differ cross-c l rall . The o erall q an i of CDS is Long erances and q es ions in CDS con rib e o s n ac ic de elopmen (Choi & Gopnik, 1995;Hoff-Ginsberg, 1998;H enlocher e al., 2010) . We h po hesi e ha some of hese or o her fea res of CDS ma also predic segmen a ion, being one of he firs asks children need o ackle.

Ne er heless, CDS also has ords, so nds and sen ences hich are ra her comple (CVC s llabic forms, so nd seq ences, ) (Gier , 2007) 

Comparing learning outcomes across cultures

Cross-c l ral o comes sho ld be e al a ed i h ca ion. An e hnocen ric bias hindering comparabili has been bro gh p in he field, as meas res of affec ion are some imes adj s ed o Wes ern a s of hinking (Rogoff, 2003;Ro hba m e al., 2000) . For e ample, Q ich CDS ma no ha e some fea res freq en l fo nd in English CDS, b i has eigh differen special fea res, incl ding hispering, ini ial-s llable dele ion, a erbal s ffi appearing onl in CDS, and fi ed ord order (P e, 1986) . We ecificall a k, f b h c mm ni ie :

The

The presen s d

1. H d diffe en eake c n ib e he ling i ic in hea d b he child?

2. H m ch in hea d b child en i di ec ed hem, and h m ch i di ec ed he child en and ad l , hen diffe en eake a e aken in acc n ? 

Me hod
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Se h c
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Da a Prepara ion

Res l s

We l ked a in c m i i n i h e ec i eake , af e ca eg i ing he in a child-di ec ed and e hea d, and f he l king a he add e ee f e hea d in ( he child en ad l ).

Q an i a i e fea e f in

We a ked h m ch diffe en ca egi e c n ib e he e all ling i ic eech hea d b he child, b h di ec ed and e hea d ( ee Table 1). F he Se h -lea ning child en, m eech came f m he child en. The ca eg he child en c n ain all he child en e en in he ling i ic en i nmen f he ke child en: ibling , c in , la ma e , e c.

S eech f m he ad l a ied; f ne Se h -lea ning child in a ic la , Hl b hang, he ad l eech ( he g andm he ) a m e ab ndan han m he eech.

F ench-lea ning child en ecei ed m f hei in f m m he , and he child en had he malle c n ib i n e all in . The e a a ia i n in in f m he ad l .

T 

A can be een in T able 3, CDS a m l d ced b he child en f he

Se h -lea ning child en. F he F ench-lea ning child en, he m he a he main ce f CDS. Inf ma i n n OCDS and ADS eake can be f nd in he A endi , Table A1 . La , e anal ed me in e ac i nal e ie f eech elici a i n ( Fig e 3). F Se h , l c l indica e eake , ad l eake in ed, m he in bl e and he child en eake in g een, and he -a i indica e he egi e , CDS a he lef , OCDS a he middle and ADS a he igh .

Child

Disc ssion

In he h e f inf ming he a e li e a e n an i a i e and ali a i e de c i i n f child en' in ac la i n , he c en d incl de a de ailed anal i f in and a nd F ench-and Se h -lea ning child en g ing in e diffe en c l al e ing . We ed he ame de c i i e me ic , in de c m ehen i el d c men he ling i ic in F ench and Se h -lea ning child en ecei e f m a en and he e le.

We de c ibed he am n and ali ( he m h n ac ic, le ical and in e ac i nal fea e f eech) f ling i ic in ken b m he , he ad l and child en, e a a el f child-di ec ed eech, eech di ec ed he child en and eech di ec ed ad l . We 

Introduction

Infants acquire language early on, building a vocabulary of several hundred word forms by 11 months of life (Ngon et al., 2013). Since most word forms do not appear in isolation (Brent & Siskind, 2001), much previous work studies how infants segment (i.e., pull out) forms from their caregivers' running input. A close look at this input shows that it is not homogeneous, but instead contains some speech addressed to the infants themselves (infant-directed speech or IDS) and some speech overheard by infants which is addressed to others, including adults (adult-directed speech or ADS). These two speech registers differ along many dimensions, including some that may impact word segmentation. Broadly, IDS has been claimed to present properties that would facilitate language acquisition, with IDS being phonologically, syntactically, and semantically simplified [START_REF] Soderstrom | Beyond babytalk: Re-evaluating the nature and content of speech input to preverbal infants[END_REF]. Other characteristics are more relevant to word segmentation. First, IDS may have a higher proportion of single-word phrases (Brent & Siskind, 2001), and phrases might be shorter in length [START_REF] Newport | Mother, id rather do it myself: Some effects and non-effects of maternal speech style[END_REF] than in ADS. In shorter phrases, more words would occur at phrase edges, which should improve segmentation: Phrase edges, easily perceptible, are word boundaries provided "for free". Indeed, infants may be more successful at recognizing and segmenting phrasefinal words (E. [START_REF] Johnson | The edge factor in early word segmentation: utterance-level prosody enables word form extraction by 6-month-olds[END_REF]. Additionally, shorter phrases entail that the set of possible segmentations for each phrase is smaller, lowering segmentation ambiguity. For instance, Fourtassi, Börschinger, Johnson, and Dupoux (2013) showed that ADS might be more ambiguous to segment, when comparing an ADS to an IDS corpus. Second, words may be shorter [START_REF] Ma | Word learning in infant-and adult-directed speech[END_REF], which should mean that word, morphemes, and syllable boundaries coincide more often and there are fewer places to posit or miss positing a boundary. Third, there may be more repetitions, therefore fewer hapaxes (words uttered only once), and overall less lexical diversity [START_REF] Soderstrom | Beyond babytalk: Re-evaluating the nature and content of speech input to preverbal infants[END_REF]. Low lexical diversity means fewer target words need to be found. There might be more cues to help segment out frequently repeated words, than words that appear rarely or once. Indeed, one computational modeling study found that artificially reducing phrase length and increasing word repetition in a corpus improved word segmentation with one word segmentation model [START_REF] Batchelder | Computational evidence for the use of frequency information in discovery of the infant's first lexicon[END_REF]. Based on these hypotheses and previous work, we predict that the task of recovering wordforms is easier in IDS than ADS.

Naturally, IDS features may not be the same across infant ages. IDS addressed to very young infants may differ from that addressed to older infants, possibly resembling ADS more as infants get older. For example, IDS features may become less accentuated as the infant grows up; repetitions might decrease, utterance length and lexical diversity increase with age [START_REF] Henning | Maternal speech to infants at 1 and 3 months of age[END_REF][START_REF] Soderstrom | Beyond babytalk: Re-evaluating the nature and content of speech input to preverbal infants[END_REF]. According to the hypotheses explained above, IDS addressed to younger infants should be "easier" to segment than IDS to older infants.

In this paper, we aim to address the question of whether it is easier to segment wordforms from IDS than ADS, using multiple word segmentation models, and taking into account changes with infants' age. In the next section, we review previous modeling work more thoroughly, before introducing our own approach.

Previous studies

Some studies tested whether infants learn more from IDS than ADS in an experimental situation. However, improvements for IDS compared to ADS could be due to the fact that infants pay more attention when they listen to IDS, and thus learn more from it. This method cannot reveal whether, above and beyond this attentional effect, there are intrinsic in f ormational differences that affect segmentability. Fortunately, there is a complementary method to approach this question with a colder eye, which builds on computational models of word segmentation. The input to such word segmentation models is usually speech transcriptions, in order to control for differences such as attention capture and acoustic implementation. Segmentation models used for this method are based on findings by experimental studies that infants might make use of statistical cues. Computational models of infant word segmentation can be grouped into two conceptual classes: lexical and sublexical. Sublexical models segment based on local cues, such as transitional probabilities and phonotactics. Lexical models build a lexicon based on recurrent chunks of speech identified with Bayesian probabilities or by memorizing isolated words.

Little previous modeling work has specifically compared IDS and ADS. Four representative studies are summarized in Table 1. For these four studies, improved segmentation performance was found for IDS than ADS: 15% for Batchelder (2002), 5-8% for Fourtassi et al. (2013), 2-10% for Ludusan, Mazuka, Bernard, Cristia, and Dupoux (2017) and 3-10% for Daland and Pierrehumbert (2011). A recent paper critiqued this previous work as follows (Cristia, Dupoux, Ratner, & Soderstrom, 2018). IDS mainly involved caregivers addressing their infants during predefined tasks (e.g., a play session in the laboratory) or in short visits to the child's home. In the former case, by constraining the context, the structure and lexicon of caregivers might have been limited and adapted to that task. And in both cases, being observed could affect caregivers' behavior, who might produce less spontaneous and more formal speech. Moreover, ADS was mostly addressed to an unfamiliar person (experimenter). These conversations are likely more formal than ADS between caregivers in daily life, and could increase the complexity of the speech. As shown by E. [START_REF] Johnson | A multimodal corpus of speech to infant and adult listeners[END_REF], IDS differs more from ADS to unfamiliar adults, than ADS to familiar adults. This could result in increased qualitative differences between registers and probably overestimated differences in segmentability.

Indeed, Cristia et al. (2018) recently documented a considerably smaller IDS advantage when modeling segmentation on an ecological English IDS and ADS corpus. The corpus consisted of transcriptions from excerpts of day-long recordings; thus infants' linguistic environment was recorded while they were going on with their daily lives, resulting in realistic IDS and ADS. Across a wide range of lexical and sublexical models, the IDS advantage ranged from -2% to 8%, with only 3 models providing evidence of an advantage greater than a measure of error. Interestingly, the difference between registers was further reduced when IDS was matched to ADS in corpus length.

The present study

We contribute to this literature in three main ways. First, we specifically describe IDS-ADS differences using various corpus description tools. We compare the registers in: phrase length, word length, ratio of single word phrases, intrinsic segmentation ambiguity (using segmentation entropy), lexical diversity (using Moving Average Type-Token Ratio -MATTR-, so as to control for corpus size), and ratio of hapaxes. Some, but not all of these features have been separately looked at in previous studies (i.e. Fourtassi et al., 2013 measured segmentation ambiguity and Batchelder, 1997 measured word and phrase length, repetitiveness). This is the first study to systematically investigate a plurality of language features on the same IDS-ADS corpus. We test whether IDS is simpler than ADS, as far as these features are concerned. Moreover, following Batchelder (2002), we further investigate whether variation in these features can actually account for the segmentability of a register.

Second, IDS corpora coming from a wide infant age range have been used by previous research, but IDS addressed to infants of different ages were, most of the times, merged together. One exception is [START_REF] Batchelder | Computational evidence for the use of frequency information in discovery of the infant's first lexicon[END_REF], who documented that IDS to younger children (13-18 months) produced more successful results than IDS to older children (22-25 months), whereas ADS results from mothers of younger versus older infants didn't differ. In this paper, we specifically ask whether some IDS features interact with infant age and whether segmentability of IDS might actually be affected by age. For that, we include IDS and ADS from a wide age range, and further investigate possible correlations between features, segmentation scores, and infant age.

Third, we follow Cristia et al. (2018) by analyzing a completely ecological child-centered corpus, based on excerpts of day-long recordings, and which thus contains natural ADS and IDS as the child hears over the course of the day. The results of our study would provide more evidence to the question whether differences in home-recorded IDS and ADS are smaller than those between less controlled IDS-ADS contrasts (see Table 1).

In addition to these three main contributions, we extend the range of languages studied to European French.

Methods

We segmented IDS and ADS of each infant separately. Scripts used for corpus preprocessing, phonologization, and segmentation as well as results and supplementary material are available at https://osf.io/6vwse/?view only= 0bc4f6c0e23040cbbb92e26d414d4a7a. Statistical analyses were carried out in R (R Core Team, 2013).

Table 1: Summary of design in previous modeling studies comparing IDS and ADS segmentation. In Language(s), Eng stands for English, Jap for Japanese, Span for Spanish. Under IDS and ADS, we describe the corpora. The specific corpora used were: R= RIKEN; H= Hamasaki; C= Spontaneous Japanese; BR= Bernstein Ratner; B= Buckeye; D= Deuchar & Clark 1992, Marrero; M= Miyata 1995; novel= Moon and the Sixpense; short stories were written by Alejandro Dolina [START_REF] Macwhinney | The childes system[END_REF]. Under model, we note the type of model used: lex for lexical and sublex for sublexical.

Study

Language(s) Infant age(s) IDS ADS model Batchelder (2002) Eng. 

Corpus

Sixteen typically developing native French-speaking infants (eight girls, eight boys; ages 3-48 months, M=20, SD=13), whose families were highly educated, were included. Two of the infants were recorded at two different ages. Each child was recorded 10-16 hours per day, three days a week, in their natural environments. The original recordings are available online (Canault, Le Normand, Foudil, Loundon, & Thai-Van, 2016a[START_REF] Canault | Reliability of the language environment analysis system (lena TM ) in european french[END_REF][START_REF] Vandam | Homebank: An online repository of daylong child-centered audio recordings[END_REF]. Next, 18 10-min samples, totaling 3 hours per child (1 hour per day), were selected for orthographic transcription by two native French speakers, as detailed in [START_REF] Canault | Reliability of the language environment analysis system (lena TM ) in european french[END_REF]. The main criteria for selection reported was that a number of activities were sampled, and that there be a high number of productions by the child and the adult. For the present project, the transcriptions of the first day for all infants were corrected by a native French speaker, who made sure that the definition of utterance was stable (and corrected any other errors, such as misattributions or orthographic errors). The coder annotated whether an adult caregiver's utterance was directed to the target child, an adult, or other, using content and context. Utterances addressed to the target child constituted the IDS corpus and those directed to an adult were the ADS corpus.

Pre-processing

Pre-processing was carried out using custom scripts written mainly in bash and in python, available from https://github.com/georgialoukatou/ French ADS IDS segmentation Lyon.

All extraneous codes (such as punctuation marks or "xxx", the code indicating that what was said could not be understood by the transcriber) were removed, leaving only the orthographic representation of the adults' speech. The corpora were phonologized with the French voice of the espeak TTS system [START_REF] Duddington | espeak text to speech[END_REF], using the phonemizer wrapper [START_REF] Bernard | Phonemizer [Computer software manual[END_REF], which further syllabifies according to the Maximum Onset Principle.

Before segmentation, all spaces between words were removed, leaving the input parsed into minimal units. The mini-mal units were either phones or syllables. Both phonemes and syllables were tested with all models. Utterance boundaries were preserved as such, since they are supposedly salient to infants (Shukla, White, & Aslin, 2011). This constitutes the input to the model. After preprocessing, the 18 infant-directed corpora contained M=487 (SD 350) utterances (range 84 to 1,172 utterances). The 18 adult-directed corpora contained M=238 (SD 230) utterances (range 15 to 780 utterances).

For comparability with previous work, we evaluate the models' performance using lexical token F-scores, measured by comparing the original version of the input (with spaces between words) against the one returned by the model (with spaces in the hypothesized breaks).

Segmentation

Both corpus description and segmentation were carried out using the WordSeg package (Bernard et al., 2018), available from https://github.com/bootphon/wordseg/. Due to space limits, the algorithms are only briefly described here. Full technical details can be found in https://wordseg .readthedocs.io/. All algorithms are unsupervised, and inspired in infant experimental work.

We used two representatives of the sublexical word segmentation class contains, called DIBS and TP for short. The Diphone Based Segmentation algorithm (DiBS; Daland & Pierrehumbert, 2011) is based on the idea than a phoneme sequence often spanning phrase boundaries would probably span word breaks.

The Transitional Probabilities algorithm family (TP; Saksida, Langus, & Nespor, 2017) is based on the concept that syllable pairs with lower statistical coherence tend to span word breaks. Forward TP (FTP) measures the frequency of occurrence of the syllabic sequence AB given the frequency of occurrence of the syllable A. Backward TP (BTP) measures the frequency of occurrence of the syllabic sequence AB given the frequency of occurrence of the syllable B. The Relative versions (FTPr or BTPr) threshold TPs against that of neighboring sequences. The Absolute versions We used two representatives of the lexical class as well: AG and PUDDLE. Adaptor Grammar (AG) uses the Pitman-Yor process, a stochastic process of probability distribution which prefers the reuse of frequently occurring rules versus creating new ones to build a lexicon, then uses that lexicon to parse the input (M. [START_REF] Johnson | Adaptor grammars: A framework for specifying compositional nonparametric bayesian models[END_REF].

Phonotactics from Utterances Determine Distributional Lexical Elements (PUDDLE, Monaghan & Christiansen, 2010) treats each utterance as a lexical item, unless an already stored item is part of this utterance, and the remainders are phonotactically legal. If so, it breaks up the utterance into segments, and the segments would enter the lexicon as new lexical items.

Finally, two baselines were included: Syll=Word treats each syllable as a word and Utt=Word treats each utterance as a word.

Results

We first investigated whether IDS is simpler than ADS in terms of six corpus features that could affect word segmentation, as described in the reasoning above. The results of paired t-tests comparing the registers for each feature are in Table 2, which shows that four out of six features fit our predictions.

We also noticed that IDS size corpus (M=487, SD=350 per child) was significantly larger than the ADS one (M=238, SD=230), based on a t-test with t(17)=2.63, p=0.02. This may mean that these infants were exposed to more IDS than ADS, similar to what Cristia et al. (2018) found for English.

The performance of all segmentation algorithms for both registers is captured in Figure 1. IDS is easier to segment than ADS when points are above the dotted diagonal line. There was a small IDS advantage for most algorithms, although some showed the opposite effect (DiBSs, Unit=Words, Unit=Wordp, FTPrp). We also observe that in many cases the pseudo-confidence intervals cross the diagonal line, suggesting that performance difference is within the range of error. Thus, only FTPrs, BTPrs, Utt=Wordp, PUDDLEp and PUDDLEs showed a clear advantage of IDS. We then tested for overall effects in a linear mixed effect regression model [START_REF] Bates | Fitting linear mixed-effects models using lme4[END_REF] predicting token F-scores from register (IDS or ADS) as a fixed effect, where subject and algorithm (AGs, AGp, DiBSs, DiBSp...) were random effect variables. Register significantly affected token F-scores (χ 2 (1)=50.87, p<.05, Type II Anova), IDS having a performance advantage of .03 ± .004 (standard error).

Next, we tested whether this performance advantage was due to one of the above-mentioned corpus properties. To see whether performance differences were due to the artifactual difference in corpus length, we also included the number of utterances as a register feature. Thus, 7 new models, each including one of the features as an additional fixed effect, were fit. We then measured the significance of register and features in the new models with a Type II Anova test [START_REF] Fox | An R companion to applied regression[END_REF].

If the advantage of IDS was entirely due to one feature, then register would no longer be significant in these addi-Table 3: Corpus features predict segmentation scores, but do not replace register. β feat stands for the estimated coefficient of that feature; β rgstr for that of register in the new model (which should be compared to 0.03 at the simple model). p features shows whether feature was significant in new model. p rgst shows whether register remained significant in the new model. N. utts stands for number of utterances. 3) showed that phrase length, segmentation entropy, MATTR, and corpus size accounted for variance in the results, but no single feature rendered register effects non-significant. Next, we investigated whether IDS features change with infant age, with IDS becoming more ADS like as infants age. Spearman correlation tests between properties and infant age for each register separately (Table 4) did not confirm our predictions: Only word length and entropy ( neither of which had emerged as register properties on Table 2) correlated with age in IDS; entropy and phrase length did so for ADS. We have no plausible explanation for these effects.

Feature

Two infants were recorded twice at different ages, one at 31 and 38 months, the other at 32 and 40 months. Following a recommendation from a reviewer, we inspected these two infants as case studies. An inspection of IDS features demonstrated that phrase length and % of 1-w phrases were the only features having small changes with age, but only the latter would change in the same direction for both infants, increasing by 6% and 1% from the first to the second recording. A few ADS features also changed slightly with age, such as % of 1-w phrases, word length and entropy, but only phrase length changed in the same direction for both infants, decreasing by 1.18 and 1.66 phonemes.

Finally, we created a new model predicting token F-scores register (IDS or ADS) and infant age in months as fixed effects (and model and participant as random effects, as before), and their interaction. Both main effects and the interaction were significant (Age χ 2 (1)=4.31, p<.05; Register χ 2 (1)=53.14, p<.5; Age:register χ 2 (1)=28.81, p<.05). A follow-up analysis separating the registers indicated that ADS scores decreased by .002 ± .0005 (standard error) with age, whereas there was no significant change with age for IDS.

Discussion

In this modeling study, we assessed whether there are informational differences affecting word segmentation between IDS and ADS drawn from the same ecological corpus. First, we investigated whether this naturalistic corpus had IDS-ADS differences in textual features that would make segmentation easier in the former than the latter. We found most features fit our predictions: Phrases were longer, there were more single-word phrases, lexical diversity was lower, and there were fewer hapaxes in IDS than ADS. No significant effect was found for word length and ambiguity. This result contributes to the growing literature documenting IDS features, with the important advantage that current work draws from fully ecological IDS and ADS.

Next, we investigated the segmentability of the corpora using a large set of both lexical and sublexical segmentation models. Although scores varied a great deal across algorithms and some algorithms showed the opposite effect, IDS was overall slightly easier to segment than ADS. The mean difference across registers (CDS minus ADS, in each algorithm separately) was 3%, ranging from -4% to 10%. This effect is smaller than that found in most previous studies, but similar to the one reported by Cristia et al. (2018), who were also drawing from a naturalistic IDS-ADS corpus. This is evidence that previously documented IDS-ADS segmentability differences (as in Table 1) are not representative of what infants actually hear. It is important to note that corpus length across registers was not matched in the present study for practical reasons, but, based on findings by Cristia et al. (2018), we suspect that controling for corpus size would have reduced the IDS advantage even further.

Next, we asked whether some of the above-mentioned textual features uniquely explained segmentability differences across registers. Phrase length, segmentation entropy, and repetitiveness explained significant variance in segmentation scores, above and beyond the effects of register. However, none of the features uniquely explained away the effect of the register, which remained significant in all cases. This means that register effects on segmentability cannot be reduced to any one of these features. Since we only had 18 children's data, we could not fit a model with all 6 features at once for fear of overfitting, but future work with higher power may be able to assess whether these features jointly explain away reg-ister, or whether there are other textual features that we have not yet considered. Furthermore, [START_REF] Canault | Reliability of the language environment analysis system (lena TM ) in european french[END_REF]'s corpus allowed us to address a question that has been seldom asked, namely IDS-ADS differences across infant ages. Results of correlations between textual features and age, and a regression model on token F-scores did not support our prediction that IDS would become more like ADS as children aged, and thus the IDS-ADS segmentability gap would close. On the contrary, we found that ADS scores dropped with child age. Although further work is needed, we believe this mainly reflects the lower availability of ADS in children's environment as they age. Indeed, replicating a pattern that had been documented in North American English children [START_REF] Bergelson | What do north american babies hear? a large-scale cross-corpus analysis[END_REF], we found the number of ADS utterances dropped for older, compared to younger, children.

Before closing, we would like to acknowledge some limitations of this work. Corpus size was overall small (which may lead to inconsistencies in results; Bernard et al., 2018) and, due to the work involved in collecting daylong recordings and annotating fully spontaneous speech, infant sample size was 18 infants. Moreover, data scarcity was correlated with registers and ages: While only 3 of the 18 IDS corpora contained fewer than 100 utterances, 7 did for ADS, and 4 of those belonged to infants older than 31 months. A decrease of ADS quantities with infant age in such day-long recordings has been documented in previous work on North American English [START_REF] Bergelson | What do north american babies hear? a large-scale cross-corpus analysis[END_REF], so it may not be an artifact of the current sample selection. Nonetheless, this trend may entail that if we want to control corpus size, we should over-sample ADS at later ages. However, that may not be necessary for our data, where corpus size failed to explain away the register effect, even though it accounted for some variance beyond registers.

Last, speech transcriptions were used for this study, in an attempt to look for intrinsic informational differences across registers. However, some of the most salient features of IDS are speech-related, such as prosody or intonation and acoustic properties, which might also predict ease of segmentation. Although there is a small literature looking at word segmentation from speech, including comparing IDS and ADS (Ludusan, Seidl, Dupoux, & Cristia, 2015), this task remains extremely challenging for computational modelers, with only one open source model (instantiating a single segmentation strategy) exists, which further limits the value of such a line of research.

In sum, we identified several simplicity features more prevalent in IDS than ADS drawn from an ecological French corpus. We further found a small but significant IDS segmentation advantage, contributing to a recurrent question on the learnability properties of IDS. We showed that the IDS segmentation advantage could not be explained away by any one of those simplicity features, and its size changed with infant age in unexpected directions. M e e f c m ehe i ha c llec c m a able da a ac la g age a d c l e ma be de el ed a d im leme ed, beca e c m ehe i da a h ld be m e i f ma i e ea l ac i i i e , ch a he e di c ed he e, egme a i f eech.

C cl i

I f e die , I am la i g e a e i i g ich ce f da a, he MacA h - M e e , a he begi i g f hi di e a i , I defi ed i a ambie la g age a child i e ed

. I i im a , h gh, kee i mi d f f e die ha la g age ac i i i a ie e ime, a d ha i i ac all i e ac i be ee child e a d ca egi e ( ), i h a i g P e i li e a e li g i ic de el me ha a el ake he c e a i al d amic f real-life i e ac i i acc , i ce i m l c i i da a ga he ed i mall, c lled lab a die . H e e , i ce lea i g eme ge h gh i e ac i , me lea i g i a i ma be be e La , I belie e ha de a di g h di e i affec lea i g i c cial f ma ea . Fi , i i ece a if e a g a b ade i e i ac i i i . F e am le, ce hi di e i i ake i acc , ha i lef ca be died f e i c g i i e bia e a d i a e e . Sec d, de a di g he ela i be ee di e i a d lea i g ca c ib e m i g heal h lea i g e i me , a d d c i e me h d f lea i g f all child e ( he e i al ead me eff b ild i e e i ba ed e i die , e.g. W g e al., 2020) . Thi k ledge ca ha e im a im lica i e e al a ea (ed ca i , a e i g, ch l g a d e e a ificial i ellige ce -ch a i al lea i g c m a i f child e ).
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Akh a , N. ( 2005). The b e f lea i g h gh e hea i g. One of the key tasks facing the language learning infant involves finding the minimal recombinable units present in the input. Since there are no systematic silences between words or morphemes, learners may need to carve them out from the running speech, a process known as segmentation. To do this, they may use a few universal and unambiguous cues (such as lengthy pauses), as well as a host of probabilistic cues. The latter can be classified into sublexical (e.g., which sound sequences tend to be found at word edges, and seldom within words) and lexical (e.g., certain words are more likely to follow each other than expected by chance).

A number of computational algorithms building on subsets of such cues have been proposed, and several have been implemented in a variety of computer languages and applied to corpora so as to model infants' word form discovery processes. Typically, these models take as input a text-based, phonological representation of the input. To mimic the word discovery process, known word or morpheme boundaries are removed, and the algorithm is applied to try to make decisions on where breaks may occur, which are then compared against the original (gold) boundaries. These studies are informative for a host of learnability questions, such as to test the sheer feasibility of a proposed word segmentation solution [START_REF] Gambell | Word segmentation: Quick but not dirty[END_REF], to compare alternative algorithms [START_REF] Goldwater | A Bayesian framework for word segmentation: Exploring the effects of context[END_REF][START_REF] Pearl | Online learning mechanisms for Bayesian models of word segmentation[END_REF], to see whether languages differ in their intrinsic segmentability [START_REF] Fourtassi | Whyisenglishsoeasytosegment. Proceedings of CMCL[END_REF], or whether child-directed speech is intrinsically easier to segment than adult-directed speech [START_REF] Ludusan | The role of prosody and speech register in word segmentation: A computational modelling perspective[END_REF]. Additionally, there is emergent evidence suggesting computational word segmentation results may also be relevant for infant psycholinguistics, by predicting the contents of infants' long-term vocabulary better than lexical status [START_REF] Ngon | non) words, (non) words, (non) words: Evidence for a protolexicon during the first year of life[END_REF] or pure frequency [START_REF] Larsen | Relating unsupervised word segmentation to reported vocabulary acquisition[END_REF]. These results provide initial validation to the cognitive modeling approaches to word segmentation that have enjoyed a fair amount of attention for the last several decades (e.g., [START_REF] Brent | Distributional regularity and phonotactic constraints are useful for segmentation[END_REF][START_REF] Gambell | Word segmentation: Quick but not dirty[END_REF][START_REF] Goldwater | A Bayesian framework for word segmentation: Exploring the effects of context[END_REF][START_REF] Harris | From phoneme to morpheme[END_REF], as they reveal that the latter may be close enough to infants' segmentation to make predictions that can be validated via direct experimental or correlational tests. In this context, it becomes crucial for the field to standardize segmentation methodology, so as to better explore the phenomenon of segmentation and make empirically informed predictions for infant experimental work.

In this paper, we present WordSeg, a software package conceived to allow this field of research to do cumulative science. The last few decades have seen a surge of interest in open science methods, where researchers' choices are rendered transparent, enabling others to replicate and extend results more easily. One could imagine this is even easier for computational modeling than, say, live experimentation, since typically modeling involves the creation of scripts which can be run time and again, are blind to the person executing them, and seem more contextindependent than animals. And yet, recent articles continue to alert us on the unavailability of key research materials (including code) even of modeling work [START_REF] Gundersen | State of the art: Reproducibility in artificial intelligence[END_REF]. The first step towards cumulative science is thus to favor open source code, that is, code that is both available publicly and tagged for public re-use. But this is not enough. Even if the source code is made publicly available, it is often not set up to run in some other machine or operating system; and it is not sufficiently documented that it can be launched by some other user in an informed fashion so as to reproduce the original results [START_REF] Stodden | An empirical analysis of journal policy effectiveness for computational reproducibility[END_REF]. Thus, the second step towards cumulative science involves providing appropriate documentation as well as taking steps to make sure reproducibility can be achieved outside the native context. The final ingredient is to enable other researchers to directly build on previous work in a cumulative fashion.

With all of these considerations in mind, we created a tool that has a modular architecture (see Figure 1), combining a set of corpora description routines, several algorithms varying in complexity and cognitive assumptions, and a rich evaluation package, all integrated into a seamless pipeline. We have made our package openly accessible, and complemented it with supplementary materials allowing readers to reproduce every result in the current paper, as well as detailed online instructions further enabling them to go beyond what we have done. With this, we meet the first desideratum. Additionally, the whole system can be installed using Docker, ensuring that the environment will be stable across operating systems [START_REF] Hung | Guidock: using docker containers with a common graphics user interface to address the reproducibility of research[END_REF] -a requirement for reproducibility. Finally, by virtue of its modular architecture (and by clearly restricting and documenting e.g., input and output formats), the suite can work as an open source platform, to which researchers can add their own segmentation algorithms. This allows algorithm developers to benchmark their results against previously available segmentation algorithms, and should greatly facilitate making their own segmentation algorithm public -thus fitting the last desideratum, cumulativity. We believe this approach is extremely novel in our field: We cannot name one tool in psycholinguistics (or in another subfield of psychology) that attempts to provide a framework for every researcher to integrate and test their own model against others'. The exception is the segmentation, where multiple segmentation processes are possible (parametric variation not shown).

Segment
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We see two main use cases. The first involves fellow modelers, who are developing alternative unsupervised word segmentation algorithms. As just mentioned, our package can serve as a common platform that standardizes input and evaluation, and provides a set of alternative algorithms against which developers can benchmark their own tool. Moreover, they can then profit from the effort that has gone into making this package widely deployable by simply adapting their tool to the WordSeg architecture and adding it as a new WordSeg module. The second set of users are linguists and other cognitive scientists interested in early language acquisition. This second group would not develop additional code, but rather make use of the standardized user interface to describe and analyze their child language corpora, or respond to specific scientific questions. For instance, a user may be curious about the ease of segmentation of social words (such as "mommy" and the baby's name) in different languages. This user could apply all segmentation algorithms, and then estimate with what frequency these words appear as such (i.e., are not obscured by under-or over-segmentation) in the segmented output. Such WordSeg uses are extremely straightforward for anyone who knows how to interact with a terminal (and for readers who do not, we recommend Software Carpentry's introduction http://swcarpentry.github.io/shell-novice/).

Previous computational modeling work

It is beyond the scope of the present article to provide a comprehensive review on computational models of infant word segmentation, and thus we refer interested readers to [START_REF] Daland | Word segmentation, word recognition, and word learning: A computational model of first language acquisition[END_REF] for a fuller introduction to the basic issues surrounding computational models of infant word form segmentation, [START_REF] Brent | Speech segmentation and word discovery: A computational perspective[END_REF] for a historical classification of models, and [START_REF] Phillips | The role of empirical evidence in modeling speech segmentation[END_REF] for a recent literature review on the topic. It suffices here to state that this phenomenon has garnered considerable attention, but researchers have used varying methodologies in a way that compromises comparability. Section 2.1 lays out the main approaches that are currently represented in the package. Our package sought to also systematize "irrelevant" variation, as explained in Section 2.2.

Classes of algorithms currently represented in the package

A systematic literature review1 of 46 journal articles or theses that contained modeling results on word form segmentation published between 1993 and 2015 revealed that there are more postulated algorithms than papers, particularly when free parameters are taken into account. Thus, it was simply impossible to attempt to incorporate all previous algorithms. Our selection aimed at representing a few key dimensions of variation across open source algorithms, and it was constrained by the availability of code and quality of the documentation.

One key distinction among included models pertains to whether they rely purely on local cues for word segmentation such as transitional probabilities between sounds or syllables. We will call this class sublexical. The lexical alternative involves aiming to reparse the input stream in terms of minimal recombinable units, or, put otherwise, building the lexicon that would be ideal to generate the corpus. This conceptual distinction does not prevent the existence of models that are hybrid. For instance, one of the models included in the suite is PUDDLE [START_REF] Monaghan | Words in puddles of sound: modelling psycholinguistic effects in speech segmentation[END_REF], which uses both lexical and phonotactic cues (see Section 3.5.4).

Additionally, some previous work has argued strongly for algorithms that process information incrementally, compared to others that do so in a batch mode (e.g., [START_REF] Monaghan | Words in puddles of sound: modelling psycholinguistic effects in speech segmentation[END_REF]). Although we believe that, to a certain extent, the dichotomy can be ill-posed, our sampling reflects both batch and incremental learners. We return to this topic in the discussion.

Two additional classes of models are not represented in the WordSeg suite. Unsupervised segmentation models that use raw speech as input and can fully parse a corpus are uncommon in the speech technology literature [START_REF] Versteegh | The Zero Resource Speech Challenge[END_REF], and not at all represented in work modeling infant word segmentation. The only exceptions we know of are closer to keyword discovery than full segmentation (e.g., [START_REF] Ludusan | Bridging the gap between speech technology and natural language processing: an evaluation toolbox for term discovery systems[END_REF]). Additionally, neural network type models are not represented either, mainly because this is an area of rapid technological development as neural networks are increasingly used for natural language processing in a wide range of applications including word segmentation (e.g., [5]).

Keeping other aspects constant

Most previous work uses only one or a very limited set of models, so that to decide which model performs better one often needs to compare performance across papers. However, our systematic review revealed a host of dimensions that varied across papers, and which prevent direct comparison across published work. Most saliently, it is not uncommon to observe extremely large variations in the size of the corpus used as input (e.g., [START_REF] Saksida | Co-occurrence statistics as a language-dependent cue for speech segmentation[END_REF] based on around 10,000 words versus [START_REF] Daland | Learning diphone-based segmentation[END_REF] drawing on 750,000 words). Moreover, previous work investigating the effect of input quantity among Adaptor Grammars found effects that were non-linear and dependent on the grammar itself [START_REF] Börschinger | Studying the effect of input size for Bayesian word segmentation on the Providence corpus[END_REF], making it all the more difficult to compare model performance across studies (see also [START_REF] Daland | Learning diphone-based segmentation[END_REF][START_REF] Johnson | Modelling function words improves unsupervised word segmentation[END_REF][START_REF] Monaghan | Words in puddles of sound: modelling psycholinguistic effects in speech segmentation[END_REF], for further discussions of corpus size effects).

In early modeling work, it was not uncommon to use artificial corpora, and even in some current work the input consists of transcripts from broadcast speech or adult-directed speech (such as the Buckeye corpus [START_REF] Pitt | The Buckeye corpus of conversational speech: Labeling conventions and a test of transcriber reliability[END_REF]). Using such input is no longer warranted, since corpora on the CHILDES [START_REF] Macwhinney | The CHILDES Project part 2: The database[END_REF] repository contain hundreds of transcriptions that are child-centered. These are likely to be ecologically valid, because recordings were gathered in children's natural environments, and often with a recording device worn by the child, thus capturing both child-directed and child-overheard speech available to the child.

For studies using CHILDES corpora, there are some sources of variation whose impact has not been sufficiently considered. Although it would seem that corpora are sure to be homogeneous if drawn from the CHILDES repository, different contributors actually use different criteria to define sentences. We have noticed that some corpus contributors are probably using a "breath group" or even "conversational turn" definition, since there may be 10-20 words in a given sentence. In contrast, others are probably using a syntactically or prosodically defined sentence, with overall shorter utterances, averaging 3 words in length. Additionally, researchers studying word segmentation often mix together various corpora from children of diverse ages without controlling for the possibility that the length and complexity of sentences and the lexical diversity in them varies as a function of the child's age. Despite the fact that they probably explain variation in segmentation performance, such characteristics are seldom thoroughly reported.

An additional source of variation relates to whether phones or syllables are the basic units at the phonological level. For example, Phillips and Pearl [START_REF] Phillips | The utility of cognitive plausibility in language acquisition modeling: Evidence from word segmentation[END_REF] report better performance when the basic units were syllables, rather than phones, and argued in favor of syllables on plausibility grounds. Evaluating plausibility is not within the scope of the present paper. As for performance, Larsen and colleagues fully crossed basic unit against algorithm drawing from the sublexical, lexical, and hybrid types, and although in general F-scores were higher for syllables than phones, some exceptions remained [START_REF] Larsen | Relating unsupervised word segmentation to reported vocabulary acquisition[END_REF]. Moreover, ranking across algorithms also depended on representational unit.

Finally, nearly every research paper on computational models of infant word segmentation contains arguments for and against the range of evaluation metrics that are typically used, prioritizing precision over recall, arguing that type statistics are more interesting than token statistics -or vice versa.

All of this variation seriously impedes direct comparison across published studies, and makes it difficult for researchers to decide how to set up their preprocessing and analysis pipelines to optimize comparability with previous work.

The WordSeg suite

The WordSeg suite allows the use of several algorithms drawn from previous literature in a controlled environment that standardizes input and allows users to easily report the full range of input and output statistics allowing cross-paper comparison. The overall process is represented in Figure 1. Detailed instructions for use are available as online materials, which are updated as issues arise (https: //wordseg.readthedocs.io). The version used for the current work is 0.7.12 .

Technical characteristics

The package is distributed from https://github.com/bootphon/wordseg, with a GPL-3.0 re-use license, from where it can be cloned or downloaded as a zip. In all cases, WordSeg requires several additional pieces of software (e.g., Python 3) to function. Installation instructions are provided covering how to download and install this ancillary software, as well as how to install WordSeg itself. The user can install WordSeg such that it will be available anywhere within the system, or only in a virtual environment via the use of Docker TM [START_REF] Hung | Guidock: using docker containers with a common graphics user interface to address the reproducibility of research[END_REF]. WordSeg has been thoroughly tested in a Linux environment, and less so in UNIX and Windows. WordSeg has native support for Linux and has been thoroughly tested on MacOS and Windows. Once the system is installed, users can use WordSeg as a command line interface from a Bash terminal or as a library from Python, with both series of commands described and exemplified in the online documentation https:// wordseg.readthedocs.io. The code contained in WordSeg is mostly Python and C++, with variability being mainly due to the included segmentation algorithms.

Input selection, cleaning, and phonologization

The suite does not directly support full pre-processing and phonologization of corpora, but we provide some pointers for users. For most researchers, the starting stage will be a CHILDES style .cha file, which contains comments as well as transcribed content. These first stages of cleaning will be dependent on the particular corpus because they vary somewhat across CHILDES corpora, and on the research question, since researchers may want to include or exclude specific speakers or utterances. Sample scripts we have used in the past can serve as inspiration (see the /data/cha/ section of the package). Additionally, the WordSeg suite assumes that the input has already been phonemized and syllabified. For corpora in which this has not been done, we recommend readers look into the Phonemizer package (https://github.com/bootphon/phonemizer), which provides tools to convert text to phonemes. Another option is the WebMaus automatic segmentation tool (https://www.clarin-d.net/en/webmaus-basic-), which converts text files to phonemic transcriptions based on trained statistical models. For languages with a transparent orthography, hand-crafted rules can be used to derive the phonemic representation of words. Examples are provided in the /data/phonorules/ section. Finally, users may want to employ a syllabification routine using the Maximize Onset Principle, a rule of thumb whereby a sequence of phones will be parsed such that the onset cluster will be as heavy as the language allows. For instance, the sequence /estra/ will be broken up into /es.tra/ in Spanish and /e.stra/ in English. We have adapted perl code that does so from [START_REF] Phillips | The utility of cognitive plausibility in language acquisition modeling: Evidence from word segmentation[END_REF] and provide examples in the /data/syllabification/ section and the wordseg-syll tool.

Preparing the input

For the rest of the processes, the package assumes that the input file contains only the transcribed utterances in phonological form, one utterance per line. Additionally, it is assumed that word boundaries and basic units are coded in the input text. The input text can have one or both of the following basic units: phones, syllables.

The wordseg-prep tool in the package allows users to convert the input text from the input form where syllable and word boundaries are tagged to the input to be provided to the models. This tool outputs a unitized version and a gold version of the text. A unitized version contains spaces between phones or syllables (as chosen by the user). The gold version only has spaces between words. The gold text will be used later to evaluate the output of segmentation.

Describing the corpus

The package also contains wordseg-stats, a tool to describe the input corpora. This description tool prints out the number of all of the following units: sentences or lines, single-word utterances, and number of tokens, types, and hapaxes (i.e., types with token frequency of exactly one) for words, syllables, and phones. Additionally, a measure of lexical diversity that controls for corpus length is extracted, namely a moving average type to token ratio similar to that available in 1: Segmentation algorithm families currently included in WordSeg. We say "families" because each has a set of parameters that allows further variation. Class indicates the main class the algorithm belongs to; Processing whether the input is processed in batch or incrementally; and Key units the crucial representations that the algorithm uses for segmentation.

the CHILDES tools [START_REF] Macwhinney | The CHILDES Project part 1: The CHAT transcription format[END_REF], where a window of 10 word tokens are considered at a time, moved one token at a time. Finally, wordseg-stats returns a measure of entropy, i.e. the intrinsic ambiguity found in a text (see [START_REF] Fourtassi | Whyisenglishsoeasytosegment. Proceedings of CMCL[END_REF] for details). In a nutshell, given a set of utterances and the lexicon found in the gold segmentation, this measure of entropy assesses to what extent there are many versus few possible parses of the utterances (i.e., in a corpus with 2 sentences, "ice cream" and "icecream", both utterances are ambiguous between "ice cream" and "icecream" segmentations).

Segmenting

All of the algorithms are called with variants of wordseg-X, where X is the short name for the algorithm (as shown on Table 1), together with the necessary parameters and ancillary files, both of which depend on the specific algorithm. The input for all algorithms is plain text as built by wordseg-prep, where only unit tokens (syllables or phonemes) are available and separated by single spaces (that is, the word boundaries have been removed), but some of them additionally require a training set or a configuration file. In the rest of this section, we provide a general description of each algorithm, parametrization and required files. We have not incorporated standardized measurements of memory requirements or length of processing, because these, we believe, could largely relate to details of implementation which may not affect fundamentally the results found.

Baseline

Researchers might be interested in comparing baseline results to those of the word segmentation algorithms. The WordSeg package provides tools for word segmentation baselines based on the insertion of word boundaries in random positions in the text, explained for instance by Lignos [START_REF] Lignos | Infant word segmentation: An incremental, integrated model[END_REF]. The Random Baseline assigns word boundaries with a probability parameter p specified by the researcher. By default, a random segmentation consists in adding word boundaries with p = 0.5 to each unit token. The user can specify a random seed, to ensure reproducibility. Alternatively, the researcher can choose p = 0 to generate an "Utterance Baseline", considering each utterance as a single word; and p = 1, to insert all possible boundaries and treat each unit token (phones or syllables) as a word. The researcher can also inspect the statistics mentioned in Section 3.4 to calculate the true p of word boundaries given the basic unit (e.g., for a corpus unitized into syllables, p = nw ns , where nw is number of words and ns is number of syllables). This number can then be provided by the user as the p parameter, in which case, this would be an Oracle Random Baseline [START_REF] Lignos | Infant word segmentation: An incremental, integrated model[END_REF] ("oracle" because it is given the true p by the researcher; random because it will insert the correct number of boundaries to match p, without knowing where they should occur).

Diphone Based Segmenter (DiBS)

Daland's DiBS (short for Diphone-Based Segmentation, [START_REF] Daland | Learning diphone-based segmentation[END_REF]) uses phone bigram probabilities to decide whether a specific sequence is likely to span a word boundary (typically because the phone bigram is rare) or not. A DiBS model is any model which assigns, for each phrase-medial phone bigram, a value between 0 and 1 inclusive, representing the probability the model assigns that there is a word boundary between the two phones. In practice, these probabilities are mapped to hard decisions (break or no break).

Making these decisions requires knowing the chunk-initial and chunk-final probability of each phone, as well as all phone bigram probabilities; and additionally the probability of a sentence-medial word boundary. In our package, these 4 sets of probabilities are estimated from a training corpus also provided by the user, where word boundaries are marked. Please note we say chunk-initial and chunk-final because the precise chunk depends on the type of DiBS used, as explained in the next paragraph.

Three versions of DiBS are available. DiBS-gold is supervised in that "chunks" are the gold words. It is thus supposed to represent the optimal performance possible. DIBS-phrasal uses phrases (sentences) as chunks. Finally, DIBS-lexical uses as chunks the components of a seed lexicon provided by the user (who may want to input e.g. high frequency words, or words often said in isolation, or words known by young infants).

By default, the sentence-medial probability of word boundary is calculated in the same way for all three DiBS, and it is the actual gold probability (i.e., the number of words minus number of sentences, divided by the number of phones minus number of sentences). Via a parameter, users can also provide the algorithm with a probability of word boundary calculated in some other way they feel is more intuitive.

DiBS was initially designed with phones as basic units. However, for increased flexibility we have rendered it possible to use syllables as input.

Transitional Probabilities (TP)

Like DiBS, the next family of algorithms attempts to distinguish between more or less internally cohesive phone/syllable sequences. In the implementation we have adopted [START_REF] Saksida | Co-occurrence statistics as a language-dependent cue for speech segmentation[END_REF], transitional probabilities (TPs) are calculated in one of three ways:

-Forward TPs for XY are defined as the frequency of the sequence XY divided by the frequency of X;

-Backward TPs for XY are defined as the frequency of the sequence XY divided by the frequency of Y; -Mutual information for XY is the log (base 2) of the frequency of the sequence XY divided by the product of frequency of X and that of Y This direction parameter is crossed with another, defining a cut-off for how low TPs must be to signal a boundary, and which also has two settings. In the first, a boundary is posited when a relative dip in TP is found. That is, given the syllable or phone sequence WXYZ, there will be a boundary posited between X and Y if the TP for XY is lower than both that for WX and that for YZ. The second setting uses the average of the TP over the whole corpus as the threshold. Notice that both of these are unsupervised: Knowledge of word boundaries is not necessary to compute any of the parameters.

TP was initially designed with syllables as basic units, but has been adapted to accept either phones or syllables as input in this package.

PUDDLE

PUDDLE stands for Phonotactics from Utterance Determines Distributional Lexical Elements. This algorithm was proposed by Monaghan and Christiansen [31]; the original awk rendering (shared with us by Monaghan) was reimplemented in Python for this package. PUDDLE takes the opposite strategy of algorithms such as DiBS and TPs that focus on local events to posit breaks. In contrast, PUD-DLE takes in whole utterances and tries to break them apart into relatively large chunks. The system has three long-term storage units: a "lexicon", a set of onset bigrams, and a set offset bigrams. At the beginning, all three are empty. The lexicon will be fed as a function of input utterances, and the bigrams will be fed by extracting onset and offset bigrams from the lexicon. The algorithm is incremental, as follows.

The model scans each utterance, one at a time and in the order of presentation, looking for a match between every possible sequence of units in the utterance and items in the lexicon. We can view this step as a search made by the learner as he tries to retrieve from memory a word to match it against the input. If, for a considered sequence of phones, a match is found, then the model checks whether the two units preceding and following the candidate match belong to the list of ending and beginning bigrams, respectively. Imagine a target utterance like "thisisacutebaby", unitized at the phone level; a lexicon containing the item "this"; possible bigrams thus being "th" for onsets and "is" for offsets. Although "this" is found in the target utterance, the utterance will not be split because the remainder, "isacutebaby", does not begin with a permissible onset. It should be born in mind that this constraint is crucial for the model to avoid over-segmentation: If not applied, the model will ultimately segment the corpus to the basic unit level (e.g., phones). If a substring match is not found, then the utterance is stored in the long-term lexicon as it is, and its onset and offset bigrams will be added to the relevant buffers. Thus, in the running example, the lexicon will end up containing two items "this"and "thisisacutebaby"; the onset buffer will have the item "th" with a frequency of 2; and the offset buffer will have "is" and "by", each with a frequency of 1.

In our implementation of PUDDLE, we have rendered it more flexible by assuming that users may want to use syllables, rather than phones, as basic units.

Additionally, users may want to set the length of the onset and offset n-grams. Some may prefer to use trigrams rather than bigrams; conversely, when syllables are the basic unit, it may be more sensible to use unigrams for permissible onsets and offsets.

Adaptor Grammars (AG)

In the adaptor grammar framework [START_REF] Goldwater | A Bayesian framework for word segmentation: Exploring the effects of context[END_REF][START_REF] Johnson | Improving nonparameteric bayesian inference: experiments on unsupervised word segmentation with adaptor grammars[END_REF], parsing a corpus involves inferring the probabilities with which a set of rewrite rules (a "grammar") may have been used in the generation of that corpus. The WordSeg suite natively contains the capacity to generate one grammar, the most basic and universal one. Users can also create their own and/or change extant ones to fit the characteristics of the language they are studying (see the /data/ag/ section of the package for more examples).

The simplest grammar, automatically generated with the call wordseg-ag, can be conceived as having one rewrite rule to the effect that "sentences are one or more words", one rewrite rule to the effect that "words are one or more basic units", and a set of rewrite rules that spell out basic units into all of the possible terminals. Imagine a simple language with only the sounds a and b, the abstract rules would then be:

-Sentence → Word (Word)+ -Word → Sound (Sound)+ -Sound → a -Sound → b
A key aspect of adaptor grammar is that it can also generate subrules that are stocked and re-used. For instance, imagine "ba ba abab", a corpus in the abovementioned simple language. As usual, we remove word boundaries, resulting in "babaabab" as the input to the system. A parse of that input using the rules above might create a stored subrule "Word → ba"; or even two of them, as the system allows homophones. The balance between creating such subrules and reusing them is governed by a Pittman-Yor process, which can be controlled by the user by setting additional parameters. For instance, one of these parameters, often called "concentration," determines whether subrules are inexpensive and thus many of them are created, or whether they are costly and therefore the system will prefer reusing rules and subrules rather than creating new ones.

The process of segmenting a corpus with this algorithm will in fact contain three distinct subprocesses. The first, as described above, is to parse a corpus given a set of rules and a set of generated subrules. This will be repeated a number of times ("sweeps"), as sometimes the parse will be uneconomical or plain wrong, and therefore the first and last sweeps in a given run will be pruned, and among the rest one in a few will be stored and the rest discarded.

The second subprocess involves applying the parses that were obtained in the first subprocess onto the corpus again, which can be thought of as an actual segmentation process. Remember that in some parses of the "ba ba abab" corpus (inputted as "babaabab"), the subrule "Word → ba" might have been created 0, 1, or 2 times. Moreover, even if we ignore this source of variation, the subrules may be re-used or not, thus yielding multiple possible segmentations ("baba abab" with no subrule, "ba ba a ba b" with one "Word → ba" subrule or the same with 3 "Word → ba" subrules, etc.)

The third and final subprocess involves choosing among these alternative solutions. To this end, Minimum Bayes Risk is used to find the most common sample segmentations.

As this description shows, there are many potential free parameters, some that are conceptually crucial (concentration) and others that are closer to implementation (number of sweeps). By default, all of these parameters are set to values that were considered as reasonable for experiments (on English, Japanese, and French adult and child corpora [START_REF] Fourtassi | Whyisenglishsoeasytosegment. Proceedings of CMCL[END_REF][START_REF] Johnson | Modelling function words improves unsupervised word segmentation[END_REF]) running at the time the package started emerging, and that we thus thought would be a fair basis for other general users. The full list can be accessed by typing wordseg-ag --help. The following is a selection based on what is often reported in adaptor grammar papers:

number of runs: 8 -number of sweeps per run: 2000 -number of sweeps that are pruned: 100 at the beginning and end, 9 in every 10 in between -Pittman Yor a parameter: 0.0001 -Pittman Yor b parameter: 10000 -Rule probability (theta) is estimated using Dirichlet prior

Evaluation

An objective way to measure the performance of word segmentation algorithms is to compare the segmented corpus with the gold one, which corresponds to a perfect segmentation as would be done by a literate adult. This comparison can be done at different levels: word token, word type, and boundary. We provide two boundary scores, one counting utterance edges and the other not counting edges (since these will always be correct, by definition).

At a particular level, the evaluation looks at two different criteria: precision, the probability that a segmented boundary/token/type is correct; and recall, the probability a correct boundary/token/type has been segmented. Concretely, the precision P and recall R are calculated as follows: 

The harmonic mean between precision and recall is computed to give the F1, which we will call F-score.

To take an example, imagine a corpus 'the dog bites the dog'; the segmented output is 'the dog bites thedog'. This will yield the following performance:

token precision: 0.75, recall: 0.6, F-score: 0.67 -type precision: 0.75, recall: 

Our evaluation actually provides the Adjusted Rand Index, where both numerator and denominator have been adjusted for chance agreement via resampling. Second, some readers may be specifically interested in finding out which lexical items come to be correctly segmented, or else segmented incorrectly in one of these three ways: undersegmented (i.e., joined with a neighboring word); oversegmented (i.e., broken down into subparts); or plain mis-segmented. An optional parameter yields an evaluation summary file being returned which contains all words in the gold corpus and the number of times with which they were found in each of those 4 groups.

One important consideration pertains to incremental algorithms, in which performance is changing throughout the corpus. To make their evaluation comparable to that of the others, we implemented a system of corpus folding, with a default of 5 folds (which can be parametrized by the user). For the first fold, a given algorithm is run in the whole corpus. Next, the final 20% of the corpus is moved to the onset of the corpus, and the algorithm is run again, such that this time the final 20% will in fact be the utterances that start at the 60% point in the corpus and end at the 80% point. This process repeats for the remaining 3 folds (40-60%, 20-40%, 0-20%). At this point, the final 20% of the corpora outputted in each of the 5 runs is concatenated in the right order, and the whole is evaluated. Please note that this is not an instance of cross-validation, since the models may continue learning over the last 20%.

Examples of use

This section has three goals. First and foremost, we aim to illustrate the package and show its flexibility. This example allows users to have a benchmark when they themselves use the package. Since we expect that we and others will continue improving it, however, we recommend users check https://github.com/ alecristia/wordseg-brm-analyses for an up-to-date version of these results as well as reproducible code. Second, we would like to inform researchers working on this domain on the impact of key methodological and conceptual decisions, such as what input and evaluation units are used. Finally, we try to assess the conditions in which performance is stable and replicable.

Crucially, we would like to make it clear from the start that the goal is not to compare performance across algorithms to find the best-performing one. Best performance against orthographic standards does not mean that the algorithm represents human performance, let alone infant performance. For instance, [START_REF] Larsen | Relating unsupervised word segmentation to reported vocabulary acquisition[END_REF] found essentially a zero correlation between algorithms' F-scores against adult segmentation and the proportion of variance explained in infant word knowledge in an English sample. Thus, we consider that, at present, there is insufficient evidence to determine which algorithm best captures human (infant and adult) performance, and that they may all be valuable and informative to the computational modeler interested in the psychological phenomena surrounding word form segmentation. We want to provide the research community with an array of algorithms which, given the uncertainty regarding the information that infants and other learners incorporate, has a high likelihood of capturing at least some behaviors, or at the very least allows the researcher to focus on findings that are true regardless of which algorithm is used as a proxy.

Methods

Corpus

We used the Providence corpus [START_REF] Börschinger | Studying the effect of input size for Bayesian word segmentation on the Providence corpus[END_REF][START_REF] Demuth | Word-minimality, epenthesis and coda licensing in the early acquisition of English[END_REF], available from CHILDES [START_REF] Macwhinney | The CHILDES Project part 2: The database[END_REF] because it is commonly used and large enough to allow us to break it down into several subparts, and apply inferential statistics to assess whether certain factors truly explain significant proportions of variance. It contains transcriptions of recordings gathered from 6 American English-speaking children. Recordings started when children spoke at least 4 words according to parental report, which happened when they were around one year of age. About one hour of child-context interactions were recorded every 1-2 weeks until they were around 3 years of age. For the present study, we focus on the 74 transcripts (from 5 children) meeting the following desiderata:

children were two years of age or younger there was only one adult present (which lowers the likelihood of including adult-directed speech) -there were at least 300 utterances spoken by the adult These transcripts were cleaned using custom bash scripts, which removed all comment lines and all sentences uttered by children. The resulting orthographic representations were phonologized using FESTIVAL [START_REF] Taylor | The architecture of the FESTIVAL speech synthesis system[END_REF], which yields a representation including syllable boundaries. FESTIVAL uses a dictionary look-up system, complemented with grapheme-to-phoneme conversion rules for words not in the dictionary. The following is an example of the resulting "Tags" representation, which contains spaces to mark phone boundaries, ;s for syllable boundaries, and ;w for word boundaries.

1. Orthographic: you wanna sit with mommy 2. Tags: y uw ;s ;w w aa ;s n ax ;s ;w s ih t ;s ;w w ih dh ;s ;w m aa ;s m iy ;s ;w 3. Gold: yuw waanax siht wihdh maamiy

Processing with WordSeg

We generated the results for all the experiments below with a single Bash script (although we could have used Python instead). The following is a version of that Bash script, simplified for ease of inspection: -All algorithms are fed with a phone-unitized version of the corpus, -The baseline is that which segments at utterance level only, -For TP version uses the forward TP (default), with a relative threshold, -The version of DiBS chosen in this example is the phrasal type, using the full corpus to extract phone bigram statistics, -For AG, since no grammar was provided, the simple one mentioned above is automatically generated, -For PUDDLE, we used bigrams (window of 2)

The full script can be retrieved from https://github.com/alecristia/wordseg-brm-analyses/ blob/master/do_prov.sh. It actually feeds all algorithms with both phone-and syllable-unitized input, contains 3 baselines (cut at utterance boundary, at every unit boundary, and at half of them); and TP is run with both an absolute and a relative threshold.

Corpus statistics

Our call to wordseg-stats allowed us to describe the analyzed transcripts. Table 2 shows means and SDs of various corpus characteristics that are calculated by the statistics package, as well as some that can be derived from the former. The most important message we would like to convey here is that the standard deviations are quite high, particularly for sentence length. This is despite the fact that we focused on a single corpus, and further restricted inclusion to transcripts collected when children were younger than 2 years of age. Nonetheless, there are sizable changes in average sentence length, which may impact segmentation performance. 

Effects of processing unit and algorithm

As mentioned above, we have analyzed each transcript within a subset of the Providence corpus separately, encoded in terms of phones and syllables, with a set of algorithms. In this section, we report on analyses aimed at assessing to what extent performance is affected by these two factors and their interaction. As shown in Supplementary Materials (https://github.com/alecristia/ wordseg-brm-analyses/blob/master/supmat.pdf), all performance metrics are highly correlated with each other. Therefore, we focus here exclusively on token F-scores. Figure 2 shows that performance varies enormously as a function of algorithm and basic unit, with important interactions between the two. Next, we highlight aspects of these results relevant to our three goals for Section 4.

The first result that may attract readers' attention is that performance varies greatly across algorithms. For instance, as has been discussed elsewhere [START_REF] Gambell | Word segmentation: Quick but not dirty[END_REF][START_REF] Swingley | Statistical clustering and the contents of the infant vocabulary[END_REF], excellent scores can be achieved in English infant-directed speech samples like this one by simply segmenting every syllable, our Baseline with p = 1 algorithm. Above and beyond the specific explanation, this observation highlights the usefulness of WordSeg's included baseline algorithms.

A second conclusion is that algorithm and unit interact. The reason is obvious for two cases: TP (absolute versus relative), and PUDDLE. For TP, performance is higher for syllable-as-unit than phone-as-unit when using an absolute threshold, but the opposite for a relative threshold. The reason is probably that the relative threshold algorithm requires at least 4 units in a row to be able to find a local dip [START_REF] Gambell | Word segmentation: Quick but not dirty[END_REF]. Therefore, no boundary can be postulated in short sentences, with fewer than 4 syllables. In contrast, a boundary can be postulated in short sentences Figure 3 portrays performance on Naima's transcripts. Since variation across children's data was very low, we have only included there results from one child to facilitate readers' visual inspection of results (see full figure in the online supplementary materials). All algorithms exhibit strong changes (upwards or downwards) in the 0-3k region, which may be associated to peculiarities of some of these transcripts, since they are visible even in the baselines. Afterwards, most algorithms remain fairly stable with very slight linear changes (if any), with one exception: PUDDLE. Indeed, we notice that PUDDLE-phones exhibits a non-linear pattern, with performance increasing rapidly between 1k and 4k sentences; peaking at 5-7k sentences; and slowly dropping (by little) thereafter. PUDDLE-syllables increases slowly and linearly throughout the range. In general terms, then, performance is stable for all algorithm-unit combinations (except for PUDDLE-syllables) in the 5k-15k region.

We investigated the effects of corpus size more precisely by fitting a linear regression taking the last data point for each child (i.e., the concatenation of all the transcripts associated with that child). As before, the dependent measure was token F-score and the predictors were the algorithm in interaction with the unit (blocked within child). This regression explained 99.2% of the variance; addition of number of words in interaction with algorithm increased this to 99.3% (which was not significant in a chi-square test).

In short, we have found that for most algorithm-unit combinations, performance is stable across a wide range of corpora sizes (roughly between 5,000 and 15,000 word tokens), and furthermore that corpora size affected performance very minimally once algorithm-unit effects were taken into account.

Discussion

This paper presents a package that allows the systematization of several key steps in the study of word form segmentation by infants and other agents. One of the strengths of our package is that it contains a tool to describe the input. Our analyses of a CHILDES corpus demonstrates that there is wide variability in the input to children even within 1-2 years of age in terms of sentence length and lexical properties which may impact segmentation performance. The package also provides all basic performance measures. Our analyses suggest that these are by and large correlated.

Another key strength of the package is the presence of a tool to unitize this input into phones or syllables as basic phonological units, and a third is that the package contains a range of conceptually diverse algorithms. Our analyses demonstrate that the crossing of these two factors (basic representational unit, and algorithm) has enormous effects on segmentation performance. In contrast, segmentation performance was rather stable across a wide range of corpus sizes, particularly for batch algorithms.

Limitations and future directions

The first direction in which we think the WordSeg suite should be improved is by providing users with solutions for phonologizing their texts, and facilitating in-formed choices for data selection from CHILDES. Previous researchers have used a range of pre-processing pipelines, making choices that could affect segmentation results. Some researchers remove repetition or mumbling within sentences, which obscures any dependence which may have been present previously. For instance, "she xxx baby girl" would become "she baby girl" (since xxx indicates untranscribed spoken material in the CHAT format), which misrepresents the sequence of words produced by the speaker. Sometimes material tagged as non-lexical or onomatopeic (with the CHAT tags &hey and choochoo@o, respectively) are similarly deleted from the input. Some go so far as dropping words that are not part of the finite dictionary being used. Since child-directed speech will often contain onomatopeia and other forms of non-standard words, such an analytic decision unduly simplifies the task of the word segmenter. The latter problem can be removed by using a text-to-speech system (or grapheme to phoneme conversion rules in languages with transparent orthography) on all potential child input. Such systems may also help make some strides towards making the phonologized input more realistic via the application of phonological processes of e.g. assimilation and reduction.

Although not illustrated in the examples above, the package is flexible enough to allow evaluation of segmentation at linguistic levels other than the word level. For instance, some users may desire to evaluate on morphemes rather than words [START_REF] Börschinger | Studying the effect of input size for Bayesian word segmentation on the Providence corpus[END_REF][START_REF] Phillips | The utility of cognitive plausibility in language acquisition modeling: Evidence from word segmentation[END_REF]. It has been previously discussed [START_REF] Phillips | The utility of cognitive plausibility in language acquisition modeling: Evidence from word segmentation[END_REF] that error evaluation based on the gold word standard might not be optimal when modeling infant segmentation of useful linguistic units. Evaluation on the morpheme level should also be considered, since segmenting out the constituent morphemes of a word could actually help infants acquire more lexical elements of their language [START_REF] Kim | 6-month-olds' segmentation and representation of morphologically complex words[END_REF][START_REF] Shi | Recognition and representation of function words in English-learning infants[END_REF]. Similarly, one can imagine extensions assessing segmentations of yet other levels of the prosodic hierarchy, such as syllables, or syntactic units, such as phrases. A somewhat related issue is how to deal with plausible segmentation errors due to undersegmentation of sequences of words that are often produced together (collocations). To avoid penalizing for these, the user can simply create a version of the gold where word boundaries are removed in high frequency phrases. These extensions are all possible and easy to implement in WordSeg, since both the preparation and the evaluation steps allow the user to provide the code used in their text as separators. However, they all require that the user has exhaustively tagged morpheme boundaries (or whatever other unit they want to evaluate). Future developments could integrate a morphological parser to help users who lack this level of annotation, perhaps building on extant open source, multilingual tools (e.g., CLAN, [START_REF] Macwhinney | The CHILDES Project part 2: The database[END_REF]).

All this said, most readers will agree with us that performance against the gold standard is not necessarily the ultimate goal of research on infant word segmentation. We have begun to investigate how the output of word segmentation algorithms may be related to human performance more directly. Specifically, we have been using parental reports of infant word comprehension as the variable to be predicted [START_REF] Larsen | Relating unsupervised word segmentation to reported vocabulary acquisition[END_REF]. This code, although available from [START_REF] Larsen | Wordseg comprehension[END_REF], has not been prepared for public re-use as extensively as the WordSeg code has. Additionally, there is considerable conceptual and methodological work needed to extrapolate the method to corpora of other languages (see [START_REF] Baudet | Xlingcorrelation[END_REF] for a first attempt). We hope others will find ways of employing the WordSeg package output to relate word segmentation results from computational models to human performance, and similarly document and share their code.

Another conceptual development we foresee involves breaking down the currently incorporated algorithms into recombinable modules. We have opted to reuse extant algorithms to allow users to connect with previous literature. Nonetheless, as word segmentation research advances, it would be ideal to reflect on the fact that some extant algorithms represent a set of conceptual choices, each of which is potentially combinable with others. For example, PUDDLE [START_REF] Monaghan | Words in puddles of sound: modelling psycholinguistic effects in speech segmentation[END_REF] incorporates a strategy that profits from single-word utterances or chunks. In that model, utterances that have not been segmented are encoded directly into long-term memory, and later used to break up new utterances. We could imagine a model that encodes phonotactics like DiBS does (i.e., not with a list of permissible phone bigrams but rather as a probability distribution of the transition) together with a chunk memorization module as found in PUDDLE. It would also be interesting to explore parameters that have similarly been confounded with other design options, such as whether the model should treat differently phenomena occurring at utterance edges than utterance middles [START_REF] Venkataraman | A statistical model for word discovery in transcribed speech[END_REF], or saliently whether the processing is batch or incremental.

Finally, the modular architecture of WordSeg as well as the fact that it is open source should facilitate its integration with other systems focusing on unsupervised learning of language structure at other levels. Recent research has begun to investigate word segmentation from raw speech [START_REF] Versteegh | The Zero Resource Speech Challenge[END_REF], an interesting development given infant psycholinguistic research strongly suggesting young infants may build their earliest proto-lexicon using acoustic representations (e.g., [START_REF] Houston | The role of talker-specific information in word segmentation by infants[END_REF]). Although there are very few public corpora of child-directed speech with phonological transcriptions that are aligned well enough to be usable for this process, some recent work has made great strides towards standardizing and facilitating forced alignment [START_REF] Mcauliffe | Montreal Forced Aligner: Trainable text-speech alignment using Kaldi[END_REF], including on CHILDES corpora [START_REF] Elsner | An automatically aligned corpus of child-directed speech[END_REF][START_REF] Frermann | Prosodic features from large corpora of child-directed speech as predictors of the age of acquisition of words[END_REF]. As to the integration of systems working on other levels of acquisition, it would be worthwhile to explore parsers allowing the discovery of morphological structure within words (such as the open source Linguistica, see [START_REF] Lee | Linguistica 5: Unsupervised learning of linguistic structure[END_REF], section 5.2) as well as others that succeed in acquiring multi-word dependencies (and thus a form of shallow syntax, e.g., [START_REF] Mccauley | Computational investigations of multiword chunks in language learning[END_REF]).

It is not feasible for us to promise to implement all such developments. Fortunately, having opted for a modular, open-source structure makes it easy for others to contribute these and other algorithms. As more and more cognitive scientists and psychologists use computational modeling, more and more students and researchers will have the necessary computer skills to make contributions via the GitHub system. These users would fork our repository from github.com/ bootphon/wordseg, add their tool in the wordseg/algos section, and then either keep this improved version in their own repositories, or do a pull request so that the standard WordSeg comes to include their tool. Notice incidentally that the use of readthedocs.com allows us to harvest help sections from within python code, thus inviting tool developers to include statements of use that directly become available to WordSeg users. For readers who find this idea appealing but do not have previous experience with git, we recommend the excellent introduction to git offered by Software Carpentry (https://swcarpentry.github.io/git-novice/, followed by GitHub's tutorials for forking (https://help.github.com/articles/ fork-a-repo/ and creating pull requests (https://help.github.com/articles/ creating-a-pull-request-from-a-fork/). We provide further information in a dedicated section of our documentation https://wordseg.readthedocs.io/en/ latest/contributing.html#contributing-to-the-code.

In conclusion, the present version of WordSeg greatly facilitates research on unsupervised wordform segmentation by integrating multiple previous contributions into a modular architecture. We look forward to further improvements, inviting feedback and development.

Follow-up studies for Chapter 3

In Chapter 3, we compared two languages, Chintang and Japanese, represented by two naturalistic corpora that may differ across several factors. For example, Chintang parents could by chance produce longer utterances, and this would affect our results. It is impossible to control for this in naturalistic corpora. We cannot be certain that the differences we observe are due to the specific factor that led us to choose these two languages or to any extraneous factor in the corpora and/or to other uncontrolled characteristics of the languages. We considered extending this approach to other natural child-centered corpora, for instance by looking at 10-20 corpora of languages varying in morphological complexity. This turned out not to be feasible, since morphological segmentation is typically not available in child-centered corpora.

Moreover, there would always have been the possibility that uncontrolled differences caused, or obscured, any result that we were to find.

We have thus performed additional experiments with artificial languages, to study the effects of morphological complexity on segmentability in a more controlled fashion.

Artificial languages allow us to study specific properties of languages and their effect under tightly controlled conditions. Once everything else was controlled for via artificial languages, the effect of morphological complexity was clear and could not be attributed to any confounds.

Experiment 2: Artificial languages varying in the number of affixes

In this experiment, we study whether languages varying in morphological complexity differ in segmentability by assessing segmentability of five morphologically diverse artificial languages, which exhibit a gradual range of morphological complexity.

We make sure that the number of words per sentence are matched across corpora, and the languages only differ on this specific aspect of morphological complexity.

We focus on the factor of morphological synthesis, keeping all other variables stable. In order to study the effects of morphological synthesis on segmentability, we track changes in segmentation while modifying the ratio of morphemes per word. In were fixed across languages.

Languages varying in complexity thus differed only on the next step. The base language (0) had no affixes; the next language (1) had one affix per content word (with different affixes for class A and B stems); and so on, for up to 4 affixes [START_REF] Brent | Distributional regularity and phonotactic constraints are useful for segmentation[END_REF]. All affixes were one syllable long. # wtypes 791 ( 8) 4695 ( 36) 7125 ( 31) 7482 ( 23) 7520 ( 21)

# whapaxes 1.5 (0.71) 2807 ( 43) 6733 ( 38) 7428 ( 26) 7506 [START_REF] Kim | 6-month-olds' segmentation and representation of morphologically complex words[END_REF] # phtokens 50535 ( 460) 65515 ( 376) 80581 ( 525) 95570 ( 518) 110556 (490)

# mortokens 12528 ( 55) 20044 ( 75) 27560 ( 93) 35073 ( 114) 42582 (129)

Table 7

Corpus features: Means (and standard deviation) across the ten subsets of artificial languages 0, 1, 2, 3, and 4 (see main text for explanation). # stands for number, "utt" stands for utterance. "wtokens", "wtypes", "whapaxes" stand for word tokens, word types and word hapaxes. "phtokens" stands for phoneme tokens and "mortokens" stands for morpheme tokens.

The final step was also in common across languages, and consisted in creating a corpus of 5000 sentences that were between 1 and 4 words in length. Previous methodological work suggests algorithms' performance is stable by about 5000 sentences (Bernard et al., 2018). Sentence lengths of 1-4 seem reasonable for child-directed speech, according to previous descriptive studies [START_REF] Loukatou | Is it easier to segment words from infant-than adult-directed speech? Modeling evidence from an ecological French corpus[END_REF].

Sentences one word in length had only a stem (and, for more complex languages, its affixes); sentences with two words had a function word and a stem (and affixes); three-word sentences had a function word and two stems (and their affixes); and four-word sentences had a function word, a stem (and its affixes), a function word, and a stem (and its affixes). For clarity in the code, each sentence sampled from the lexicon for each language separately.

To make this more concrete, here is the first sentence in the five languages' corpora in one run, containing always three words (a function word followed by two stems with their eventual affixes, depending on the language); words are separated by spaces, morphemes by dashes:

• 0: "pi rotu rodezira"

• 1: "yu so-se qofeharu-se"

• 2: "tu yosoreda-ga-yi foyo-gi-su"

• 3: "pi ruza-to-re-pu gori-di-re-ra"

• 4: "fe zi-pa-yo-ye-gi ho-fa-ge-ye-te"

And the following are sample sentences containing the stem "rodezira", which was one of the stems in the lexicon in that run, appearing in sentences of the same word length across the five languages:

• 0: "pi rotu rodezira" (3 words, 3 morphemes)

• 1: "di rodezira-ge reyoha-qi" (3 words, 5 morphemes)

• 2: "yi tohegipu-ga-ga rodezira-sa-yu" (3 words, 7 morphemes)

• 3: "tu rodezira-de-ro-pa gitopide-pe-re-qu" (3 words, 9 morphemes)

• 4: "gu rodezira-fa-ho-fu-qo deguqaso-ge-ri-re-hu" (3 words, 11 morphemes) This whole process was repeated 10 times, to create 10 corpora, each 5,000 sentences in length, for each of the five different languages. Table 3 shows some basic statistics of these languages.

Segmentation.

The same procedures were used as in Experiment 1.

language, the probability distribution was flat, with 20% probability for each option (zero to four affixes). In a simpler language, more mass was allocated to lower number of affixes. Finally, a more complex language was created with more mass allocated to higher number of affixes.

The same questions and predictions given in Experiments 1 and 2 are revisited in this experiment: We ask whether languages varying in morphological complexity differ in segmentability, and how large this effect is when compared to differences across algorithms and evaluation level. Corpus features: Means (and standard deviation) across the ten subsets of artificial languages S (simpler), B (base) and C (more complex). # stands for number.

Methods

Mean

Languages.

As in Experiment 2, we created languages with a lexicon of 1,000 items, of which 1% were one-syllable long function words, and the remaining were stems one-to four-syllables in length, randomly split into two types that selected different affix paradigms. The syllable inventory, distribution of sentence length (1-4 words), length of corpora (5,000 sentences), were also kept constant, and 10 subsets were generated for each language.

Unlike in Experiment 2, however, all languages had some affixes, meaning that stems could take between 0 and 4 affixes. The three languages we created varied in terms of the distribution of the number of affixes a stem took. In the base language (B), it was equally likely for stems to have 0 to 4 affixes (i.e., 20% of chances for each). In the simpler language (S), the distribution was tilted towards fewer affixes: 35% likelihood of having 0 affixes, 25% of having 1, 20% of having 2, 10% of having 3, and 10% of having 4 affixes. The more complex language (C) had the opposite trend: 10% likelihood of having 0 affixes, 10% of having 1, 20% of having 2, 25% of having 3, and 35% of having 4 affixes. Table 4 shows some basic statistics of the languages.

Segmentation.

The same procedures were used as in Experiment 1. 

Results and discussion

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

S B C

BTPr Results for Experiment 3 are shown in Fig. 4. In general, more similarities in segmentability across languages were found here than in Experiment 2. This may be due to the fact that the languages were more similar to each other here than in Experiment 2.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • S B C FTPr • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • S B C BTPa • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • S B C FTPa • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • S B C DiBS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • S B C AG • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • S B C Syll=Unit • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • S B C Utt=Unit
Bearing on our first research question, a regression predicting F-scores from language (S, B and C), level, algorithm, and their interactions accounted for most variance in the data, R 2 = .99 (F (47, 945) = 432, p < .001). 12 Even though the presence of significant interactions precluded a direct interpretation of the main effects, the regression confirmed a disadvantage for the more morphologically complex languages, with negative coefficients estimating the language effect (-0.06 for C and -0.03 for B).

Regarding our second research goal, we observed that language effects are relatively small, since the F-value for language is half the size of level and a quarter of that for algorithm . More detailed outcomes are provided in the online supplementary material, but two further aspects of the results are worth pointing out. As in Experiment 2, scores for all three languages improved when evaluating on the morpheme level across algorithms. Also, similarly to Experiment 2, AG and DiBS morpheme scores increased with language complexity.

Summary

In the context of our artificial languages, where languages differ maximally in morphological complexity (more than what any human natural languages could differ), the effect of morphological complexity remained small, and certainly smaller than that of level and algorithm. The artificial language results were also informative on the general performance of the algorithms; the performance range of the algorithms was similar across all three experiments, highlighting the relevance of our artificial language results for broader generalization to natural languages. Additionally, this suggested that differences across algorithms are massive -even when corpora are perfectly controlled.
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  g., Thie en e al., 2005 ). Thi i e eciall e, hen man ce f inf ma i n c n e ge (e.g., e e al c e in he ame ni ) -al ee ad l die b Billman (2007) and S adle (1992). Li le e idence e i n child lang age lea ning, b child en c ld iden if ni in c m le lang age -ee die b Ge ken e al. (2005) , G me (2002) , Thie en & Saff an (2009) and Tein nen e al. (2009) . In hi c n e , le c m le ld ac all make lea ning m e diffic l , beca e i ld ide nl a ial inf ma i n ab ling i ic c e. M e e , too simple im li ma al elici le in e e f m infan and h affec lea ning ( h e goldilocks effect,

  i nal die ha e in e iga ed hi e i n mainl f Engli h, he e m heme and d b nda ie f en align. Ye man lang age a e m h l gicall m e c m le , hich ma e en addi i nal diffic l ie f egmen a i n. O d em l ed c a f lang age ha diffe in he c m le i f hei m h l gical c e, Chin ang (Sin -Tibe an) and Ja ane e. While Ja ane e di la m de a e c m le i , Chin ang e hibi high le el f e bal and n minal n he i . We em l ed ba eline and h ee c nce all di e e d egmen a i n alg i hm , f hich el el n ble ical inf ma i n ing di ib i nal c e , and ne ha b ild a le ic n. The alg i hm e f mance a e al a ed n b h d-and m heme-le el e e en a i n f he c a. A edic ed, b h lang age c ed l e han e i l d c men ed e l n Engli h.

  to sit sometimes' Japanese has moderate verb synthesis, expressing categories such as tense, voice, mood and polarity. A maximally inflected Japanese verb form would include 4-5

Figure 1 .

 1 Figure 1 . Precision and recall across languages and algorithms for each evaluation level. Algorithms are marked by color. Languages are marked by shape. BTPr, FTPr, BTPa or FTPa indicate the segmentation result for one of the different versions of TP. AG are the results of the unigram Adaptor Grammar. Syll=Unit and Utt=Unit are the results of the baselines. Each dot indicates the results for one of the ten subsets of a given corpus.
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 2 Figure 2 . Token F-scores across language (Chintang, Japanese) and level (words, morphemes). Algorithms are marked by color. BTPr, FTPr, BTPa and FTPa indicate the segmentation result for the different versions of TP. AG are the results of the unigram Adaptor Grammar. Syll=Unit and Utt=Unit are the results of the baselines. Filled circles indicate the results for the corpus segmented as a whole. Each "x" shows the result for one subset. Jap. stands for Japanese.
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  i n child la in all lang age ?* Ab ac : When learning language, infants need to break down the flow of input speech into minimal word-like units, a process best described as unsupervised bottom-up segmentation. Proposed strategies include several segmentation algorithms, but onl cross-linguisticall robust algorithms could be plausible candidates for human word learning, since infants have no initial knowledge of the ambient language. We report on the stabilit in performance of 11 conceptuall diverse algorithms on a selection of 8 t pologicall distinct languages. The results are evidence that some segmentation algorithms are cross-linguisticall valid, thus could be considered as potential strategies emplo ed b all infants. *L ka , G., M a , S., B a i, D., S , S. & C i ia, A.
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 1 Figure 1: Correlation matrix of the rank ordering in algorithms' performance across languages.

  a di i li a e e e ed a e a ce i h clea l a ked e a ce b da ie , a c ed b h b ile ce a d he e d f a ce e). W d a d he e ha e ea i g . I de de li e he e i e ce f he e i he la g age, he e ha e ea i g . The a ici a li e a e e ce hile a chi g a ide a i g he ac i de c ibed i he e e ce. F e a le, if a e e ce c ai a d g e , a d a alk e b e , he ide ld h a d g alki g. The e i f ll ed b a be ffi , a d he ide h e d g . The e b e i f ll ed b a a ec ffi , a d he ide h a d g alki g c each e e ce i a ed i Fig e 1. Sce e f he ide a e ic ed i Fig e 2. Each e e ce c i f a e i h i be affi a d f a e b e i h a a ec affi a d a be affi ( he a e e a f he ). The e e ce ca ha e e i al ele e (aki a ad e b beca e i ca cc a he begi i g he e d, b ha i g ea i g) . The ai i g ha e c ai i al 96 e e ce . The c e f he e e ce i b il all f ce ai e i e e be e ec ed d i g he e ha e.
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  glmer(formula= thisresplog level + numberoftrial +(1 + level+ numberoftrial uniqueid), control = glmerControl(optimi er = "bob qa"), famil = binomial(link = "logit"), data = pilot_long_log) / 3. Ba ed he le el a a fi ed effec i a eg e i i h he e le el a ba eli e, he c efficie f le el i 0.197 (SE=0.261, -al e=0.451). Th , ec g i i f d e e i ig ifica l diffe e i hi il . The e d i f e acc a e e e f d ial ha e ial . I a f he e l a a al i , e a k he he he e i a diffe e ce i eg e a i be ee e . We i e iga e hi b i cl di g e ( / e b) a a fi ed effec a iable a d a a a d l e. I he il e l , he e c efficie i -0.268 (SE=0.407, -al e=0.51). I ee ha a d e b ha e a i ila le el f diffic l . / Di c ion Bef e a al i g he e l , e eed e ha i e ha l ele e bjec a ici a ed i he il d a al ed. C e e l , hi a al i i de e ed. We ai e l e hi i e i he ai d . Ne e hele , e a e a e a i e i e e a i f he eli i a e l bel .

  di ersi in segmen abili as mainl no d e o he differing inp , b d e o he s ra egies ha ere sed o process i . Also, he o come of his s d as indica i e of some order of performance across s ra egies: some models performed be er han o hers for he o lang ages, and seemed o be more affec ed b he lang age effec han o hers (a leas b he morphological effec , as as s died here). We decided o in es iga e his ma er f r her, b es ing more lang ages, hich e did in Chap er 4.

2 7. 1 .

 21 Chap er 5, par icipan s go e posed o an ar ificial lang age here segmen a ion co ld happen across a ord and a s b-ord le el. Preliminar o comes are e idence ha ad l par icipan s adap fas o he par ic lari ies of he ling is ic s r c re, and consider bo h minimal meaningf l ni s and ords hen lis ening o an nkno n lang age. Words ma h s no be considered as a niq e (or e en s andard) segmen a ion le el across lang ages. F re research on o nger par icipan s is needed in order o confirm he her his holds r e d ring earl lang age learning.Finall , he se of ecological inp from differen lang ages a oma icall mean ha e o ld se inp also from differen c l res and pbringing se ings. This aspec of di ersi becomes ob io s hen e compare inp from Chin ang and Japanese: a considerable par of inp heard b Chin ang-learning children is ei her o erheard, or addressed o hem b o her children, and no ad l s.On he con rar , inp heard b Japanese-learning children is mos l direc ed o hem b heir o n paren s. This can be problema ic, as inp ma differ depending on he speech regis er and he speaker, e en i hin he same lang age. Th s, cross-ling is ic aspec s in acq isi ion in erac i h cross-c l ral aspec s . We h s decided o address his iss e in he ne par of he disser a ion, Par 2. Are here differences in inp from differen regis ers and speakers? Ho large are hese differences cross-c l rall ? And are he rele an o segmen a ion? Pa Di ersit across c lt res Wha is heard b children in Nor h American or E ropean middle class families is onl one a children are alked o. As no ed b Ochs & Schieffelin (1984) , he general pa erns of hi e middle-class caregi ing ha ha e been described in he ps chological li era re are charac eris ic nei her of all socie ies nor of all social gro ps (p.283). Gi en his aria ion, i is s rprising ha mos research p blished in lang age acq isi ion jo rnals is dra n from one specific sample: Wes ern, Ed ca ed, Ind s riali ed, Rich and Democra ic (WEIRD) comm ni ies (Diesendr ck, 2007) . Generali a ion of WEIRD findings o o her pop la ions is no ob io s (Nielsen e al., 2017 ). In his sec ion, e are going o look a cross-c l ral di ersi . Child inp aries enormo sl i hin and across c l res (Fo s e al., 2012; Lo & S ocker, 2005) . The difference in he e en and manner of ad l s alk o children (Hoff, 2006) , can be fo nd across man dimensions (e.g. n mber of siblings, r ral s rban place, li erac , m l iling alism, income and socioeconomic s a s, paren al ed ca ion), as e de ail in Chap er 7.1. The dimensions can be so man , ha he acron m WEIRD / non-WEIRD ma in fac be oo abs rac o cap re c l ral di ersi in some cases. In 7.2, e rn o e idence from acq isi ion. These ariables se he s age for he in es iga ions in Chap ers 8 and 9. Variation in quantitative and qualitative features of language input

  described in his paragraph.Hoff (2006) considers ha he amo n a hich ad l s engage children in comm nica i e in erac ion is a c l ral aria ion in inp . Nor h American mo hers alk o heir children since bir h(Sno , 1977) . In o her c l res, s ch as he Ma ans of Me ico (Casillas e al., 2019) , caregi ers rarel address heir children. Y ca ec Ma an children hear less speech, onl a small amo n of hich is direc l addressed o hem(Shneidman & Goldin Meado , 2012) .
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 12 Tracing the sources of input variation across and within cultures O erall, cross-c l ral di ersi is correla ed o fac ors i hin c l res, s ch as socioeconomic s a s (SES) and paren al ed ca ion. These fac ors ill no be deal i h in his disser a ion, b e describe hem briefl here. Har & Risle (1995) doc men ed ha 2-ear-old children gro ing p in American English high-SES families heard more ords han hose in lo -SES families. SES differences ha e also been fo nd in ocab lar (more ord pes and okens in high SES speech, Har & Risle , 1995), and s n a (H enlocher e al.

  one of hem; more inp seems o lead o fas er ocab lar gro h for English-learning children(Diesendr ck, 2007; Har & Risle , 1995; Wei man & Sno , 2001) , acco n ing for 16% of he ariance in 2-ear-old children s erance leng h gro h o er he follo ing 9 mon hs (Barnes e al., 1983) . CDS is s pposed o facili a e earl ord learning in English-speaking (Bakermans-Kranenb rg e al., 2004; Car mill e al., 2013; Ro e, 2008) and Spanish-speaking families (Weisleder & Fernald, 2013) , b pro iding a simple-o-learn lang age model. Specificall , erance repe i ions are posi i e predic ors of English-learning children s gramma ical de elopmen , predic ing 18-40% of ariance ( Hoff-Ginsberg, 1986) , and freq enc and di ersi of erb frames in inp predic child erb se (Naigles& Hoff-Ginsberg, 1998) . The n mber of ord pes prod ced b mo hers predic he n mber of ord pes of heir o-ear-olds en eeks la er(Hoff & Naigles, 2002; Hoff-Ginsberg, 1986) .

  in e iga e he fea e of CDS, and q an if hei e ac impac on lea nabili . Ho e e , i i impo an o do o con ide ing ha , c o -c l all , CDS fea e a ; CDS ma be p od ced b diffe en peake , and con i of e diffe en q ali a i e fea e .

  Mon ag e al. (2018) emphasi es ha here is a lo e don kno abo lang age learning, and ha e need o nders and all his if e are o ell paren s ho he sho ld alk o heir children (p.[START_REF] Larsen | Relating unsupervised word segmentation to reported vocabulary acquisition[END_REF])also seeLeffel & S skind, (2013) and Rober s & Kaiser(2011) . Casillas e al. (2019) concl des ha more q an i a i e and reprod cible me hods in di erse con e s are needed, in order o learn more abo lang age learning. One a o in es iga e differen con e s is b es ing scaled-p, di erse inp . Q an i a i e me rics ma incl de corp s anal sis, a sef l means of q an if ing di ersi in inp , and modeling. In Chap e 8 and 9, e add e he e b implemen ing egmen a ion modeling and co p anal e in di e e, na ali ic e ing . D e o he WEIRD bias and o her me hodological iss es of pre io s s dies disc ssed abo e, i is s ill nclear ha inp is heard across c l res. Pre io s e idence, ho gh, s gges s ha here is no s andard a ha children are addressed o. In par ic lar, he amo n of direc ed inp aries and he role of CDS is no ob io s hen e look a lang age learning a scale (Gier , 2007) . In differen en ironmen s, CDS is rare, or i does no ha e facili a ing fea res. Ho e er, children gro ing p in hese en ironmen s someho learn lang age. Moreo er, here is s ill li le informa ion on o her speech regis ers of en presen in children s ambien inp , s ch as o erheard speech. In Chap e 8 and 9, e add e hi b compa ing child-di ec ed and child-o e hea d peceh, peaker in o ma imall di inc c l re . ( nder re ie ) Child-di ec ed and o e hea d in f om diffe en eake in o ma imall di inc c l e The am n and ali f ea l lang age in a e fac affec ing child en lang age de el men , and ha e d a n b an ial a en i n in e ea ch (e.g. Ha & Ri le , 1995; H ff & Naigle , 2002) . F e am le, me e ea ch h ha child en cab la kill c ela e i h he am n and ali f in eech ha m he ffe child en d ing da --da in e ac i n (H ff, 2003 ; H ff & Naigle , 2002 ; Ha & Ri le , 1995) . H e e ,e i li e a e ha m l f c ed n ma e nal in . Rela i el li le a en i n ha been de ed in f m he child en and ad l . In hi a e , e ill de c ibe in f m c a he e he eake , in addi i n m he , alk child en. M e i die n lang age in a e ba ed n familie li ing in middle-cla E -Ame ican c mm ni ie . Indeed, Hen ich e al. (2010) b e ed ha m a ici an in ch l gical die c me f m a We e n, Ed ca ed, Ind iali ed, Rich and Dem c a ic (WEIRD) la i n am le, and hi bia i al b i in de el men al die (Niel en e al., 2017). R ecen e idence in he fac ha in diffe de ending n he c l e f he famil (e.g. C i ia e al., 2019) . Wha limi ed li e a e e i h e idea ha diffe en la i n al ha e diffe en n m ab h i e ec ed eak child en. So rce of inp In m middle-cla E -Ame ican familie , a en a e e ec ed ha e ab l e e n ibili e hei child en. C n e en l , m die f c n a en al in , a he han in f m n n-a en al eake (e.g. Bake man -K anenb g e al., 2004; H enl che e al., 2010; I a e al., 2004; Pan e al., 2005) . M e e , in he e familie , he m he icall ha he le f ima ca egi e (e.g. R na ine e al., 2005) . A a e l , m he -child d ad eech ha l ng been em ha i ed in ea l in die . H e e , he f c n he m he a he ima ca egi e migh n eflec ni e al h man endencie . The e i e idence gge ing ha m he a e n al a he le, e en inci al ca e ake (e.g. Shneidman & G ldin Mead , 2012; Wei ne e al., 1977) . Ca e aking f a child b an indi id al h i n he m he i efe ed a all ma e nal ca e. Re n ibili f ca e can be ha ed am ng a ci cle f indi id al , kin and n n-kin, lde ibling , ee c in , a a f c mm n dail ine a nd he ld (F e al., 2012) . E en i n middle-cla E -Ame ican familie , ibling migh la me ca e aking le. F in ance, in an e e imen al e ing i h 57 Ame ican m he and hei e ch l child en, S e a & Ma in (1984) f nd ha hen he m he lef he m, 51% f lde ibling engaged in ca e aking ac i i ie . Sibling ca e aking ha al been d c men ed in bl e c lla Af ica n-Ame ican and La in familie , he e m la al ha en am ng ibling (Z k -G ld ing, 2002) . L e inc me E -Ame ican familie al eem el m e han middle inc me familie n e ended kin f child ca e (H ffe h, 1995) . Ac di e e c l e , he need d m e eake han he m he i e en m e e iden . U ing an e hn g a hicall -de ailed am le f 186 cie ie , Ba & Pa n (1971) f nd ha nl 46.2% f he cie ie had m he a inci al ca e ake . Af e infanc , hi i n dec ea ed b an he 19.4% ( ee al Wei ne e al., 1977) . D ing infanc , ad l famil membe a e he inci al c m ani n ca e ake in 39.8% f he cie ie (32.3% a e m he he female ), child en ank ec nd (16.7% female , 24.8% e all) and he female , incl ding em l ee , hi d (9.1%). M e gene all , an h l gical e iden ce find ha ibl ing a e f e en all ma e nal ca e ac c l e , f e am le in Ng ni f Mala i, ( Read, 1968) ; D n f Mala ia, (William , 1971) ; Ja a, (Gee , 1989) ; K ma f Ne G inea (Whi ing, 1941) ; P l ne ia (Ma ini & Ki k a ick, 1992) . In Ha aiian familie , ca e aking i ha ed am ng a en , neighb , kin, and alm al a child en (Gallim e e al., 1974) . The e e l al ela e h eh ld i e, a la ge h eh ld i e mean m e ni ie f all m he ing. F e am le, he al n mbe f ibling and incidence f ibling ca e aking eem c ela e in Ha aiian-Ame ican familie (Gallim e e al., 1974) . Familie end be la ge c -c l all han i he ca e f he Uni ed S a e(B ch, 1970, 1979) .E en hen child en in he en i nmen a e n all ma e nal ca e , he ma la i h he nge child, and he ef e ha e an ni ide ling i ic in . Pla in child en g f he ame mi ed age i an he a e e ne elf lang age. Child en g ing in middle-cla E -Ame ican familie in e ac in g f he child en n man cca i n , ch a in e ch l and kinde ga en (e en h gh he e in e ac i n ie , child en end a g ea deal f ime in e ac ing i h he child en. In A nhem Land, child en a e ab bed in ee and hel ing ca e f g andchild en ( ee al S anding e al., 2007) . Ca egi ing b he ad l , ch a g andm he , i c mm n in man c l e , incl ding man Af ican c mm ni ie (e.g. Th a agale T h eneagae, 2008) . De i e he e fac , fe die de c ibe in child en d ced b he famil membe ch a ibling (b ee H ff-Gin be g & K ege , 1991; We elman e al., 2003) , and he ad l (b ee Sh e & Wheldall, 1999, 2001) . O d ill ake a e in filling hi ga b anal ing he am n and ali f in eech child en ecei e in di e e c mm ni ie b m he , he child en, and ad l . Q an i of inp Ac c l e , he al am n f in di ec ed child en diffe . Child en ma be add e ed b hei ca egi e nl a el , me ime beca e he a e n een a c mm nica i e a ne (Lie en, 1994) . Thi ha been n ed, f e am le, in G ii m he in Ken a (Richman e al., 1992) , Ga ne in Pa a Ne G inea (K lick, 1992) , Kal li in Pa a Ne G inea (Och & Schieffelin, 1994) , Sam an in We e n Sam a (Och & Schieffelin, 1994) and Ja ane e eake in Ea Ja a (W lff & P edj eda m , 1984) . Thi diffe ence migh be e eciall ele an hen d ing he le f diffe en eake , beca e, a men i ned ab e, c l e a in h end ime i h he child. A d ba ed n da l ng ec ding f nd ha T el al Ma an child en a e nl inf e en l di ec l ken b ad l : a da -ide a e age f 3.63 min e h (Ca illa e al., 2019) , hich i a ima el a hi d f ha f nd f N h Ame ican child en (11.36 min e h , Be gel n e al., 2019) , b i c m a able ha f T imane child en (C i ia e al., 2019) and Y ca ec Ma an child en (Shneidman & G ldin Mead , 2012) . Mean hile, T el al child en hea a l f he -di ec ed eech (ODS), a e aging 21.05 min e h , hich i m e han ha been e i l e ed f he c l al e ing (e.g., Be gel n e al., 2019 ). Child-di ec ed eech i n an e cl i e ce f in , and he e die d n le ha he egi e and eech f m he eake migh al c n ib e he child in (S de m, 2007) . E en h gh he a e n di ec l add e ed b ad l , T el al child en meh e ac en gh inf ma i n d ce can nical babbling, fi d , and d c mbina i n a a ima el he ame age ha N h Ame ican Engli h-lea ning child en d (Ca illa e al., 2019

A

  hi b ief mma h ef ll ill a e , he e a e ill la ge ga in kn ledge ab he na e f lang age in ac c l e . The e i ng e idence ha CDS f m m he i c cial ac i i i n. A he ame ime, in E -Ame ican familie , and e eciall in le -died di e e c l e , ling i ic in ma c me f m he e le, e f en child en. I i ill nkn n ha e ie cha ac e i e hi kind f in , and he he i i hel f l f ac i i i n. Re ea ch i eech. Thi h ld be in e iga ed b h f c l e he e he m he i c n ide ed he ima ca egi e , and f c l e he e child en end m f hei ime i h he e le. O k ill h f c n he di ib i n and fea e f child di ec ed and he di ec ed eech d ced b diffe en eake in na ali ic, c -c l al ec ding . ican c mm ni in Le h , he e i ha been d c men ed ha child en in e ac i h m e eake han j he a en . We e he ame de c i i e me ic in de c m ehen i el d c men he ling i ic in child en ecei e in b h kind f c mm ni ie , f m a en and he e le. We de ail he am n and ali (he e, he m h n ac ic, le ical and in e ac i nal fea e f eech) f ling i ic in ken b diffe en e le, e a a el f child-di ec ed eech, and eech di ec ed he .

  Dem h Se h C a ec ded in a al c mm ni in he n Af ica. I a c m iled b Ka he ine Dem h in he c n f Le h in 1980-1982 (Dem h, 1992) . Da a e e c llec ed in a Le h m n ain illage f 550 e le in he di ic f M kh l ng. The lang age ken i Se h (al called S h , S he n S h ), a he n Ban lang age ed b h ee milli n eake . The c can be f nd n CHILDES (MacWhinne , 2000) . The Se h c i a l ngi dinal d f h ee a ge child en a he in e ac ed i h hei ca egi e . The child en e e aged f m 2;1 3;2 f Hl b hang (b , 11,221 in e ance af e e cl ding a ge child and in e iga eech), 2;1-3;0 f Li lha e (gi l, 12,669 in e ance af e e cl ding a ge child and in e iga eech) and 2;1-3;2, f Ne e (gi l, 10,502 in e ance af e e cl ding a ge child and in e iga eech). Th ee--f -h ec ding f n ane eech k lace e e m n h f each child i h he e ence f he in e iga . Hl b hang and Ne e each had an lde c in in he ame h eh ld, and Li hla e had an lde b he . The an c i i n e e m h l gicall c ded and an la ed Engli h i h he hel f he child en m he and g andm he . j he m he . Familie i h m e han ne child a e n c n ide ed a ical in F ance; in 2013, 6 f 10 familie had m e han ne child (INSEE, 2013) . The F ench c a e e ec ded i h a imila me h d he Se h c , a de c ibed bel . The L n c a c -c ea ed b Ka he ine Dem h and Ha ie Ji a in de d he ac i i i n f m h h n l gical elemen in F ench. I a c m iled b Ji a and c lleag e a he Uni e i f L n 2. The c c n ain l ngi dinal a di ec ding f m n ling al, icall de el ing F ench-eaking child en f m ne h ee ea f age, and f c e n n ane in e ac i n . Rec ding f m Ana (gi l, 7,022 e ance af e e cl ding a ge child eech and in e iga eech) and The ime (b , 4,062 e ance af e e cl ding a ge child eech and in e iga eech) e e incl ded in hi d and The ime ne lde i e . Al h gh he e ea ch a i an a n al a e en d ing ec ding , e nl ke he ec ding he e he a i an a e en , in de inc ea e c m a abili i h he Se h c . The e i n e e ec ded i h a mall ide ec de laced n a i d. The child e a i ele mic h ne, and i adi an mi e a laced in ide a child ack n b he child. The e i n e e an c ibed a he D nami e d Langage Lab a . The Pa i c a c -c ea ed b Ali ah M gen e n and Chi he Pa i e. The c a ed d he e ence f agma ic c e in eech, ch a d and ge e , and g amma ical de el men . The c c n ain l ngi dinal a di ec ding f m n ling al, icall de el ing F ench-eaking child en. One child in d c me f m hi c , Ana (gi l, 7,247 e ance af e e cl ding a ge child eech and in e iga eech). The child a ide a ed in he h me nce a m n h f an h , in n ane in e ac i n , and he da a e e hen an c ibed b he in e iga . The ch en ec ding al an he Se h age ange. Ana ha lde b he .

F 9 .

 9 b h he Se h and he F ench c , e an ified he c n ib i n f diffe en eake he e all in b mea ing he al n mbe f e ance d ced b each eake f he h le c , a ell a he a e age n mbe f e ance e ec ding h and e e i n. S eech d ced b add e ed he in e iga d ing he e i n , h gh gene all a e, a e cl ded f m he anal i . We ake in acc n l cal n m ega ding famil ni . In he Se h c died in he c en d , f e am le, ne a ge child ( Ne e) a g ing in he ame h eh ld i h he c in, and a being aken ca e f b he a n , h m e c n ide a a m he f he ake f hi d . The a ge child en e e elec ed b he c i e ia de c ibed a b e (ha ing lde ibling( ) , ame age ange, and e i n i h imila ec ding me h d ) and ann a ed f c ed add an add e ee ann a i n nl if he e e c nfiden (m e han 70% e), indica ing he he a en ence i add e ed a a ge child, an he ecific add e ee g f add e e . S ecificall f he F ench c , me a f he ec ding had n been an c ibed b he iginal an c ibe ( all a he e he a ge child did n a ici a e in he c n e a i n). The ef e, he ann a al an c ibed he mi ing ec i n af e c n l ing he ide . T check acc ac f he add e ee ann a i n, 20% f he e ann a i n e e d ble-checked b a ec nd ann a . F Se h , he ann a ag eed in 89% f he ca e . Whe e he did n ag ee, hi f en a beca e ne c de made a deci i n and he he a nde 70% e (57% f di ag eemen ). A f he eliabili check a hen e f med b Dem h, h a e en d ing he iginal da a c llec i n, and an e i n e l ed. F F ench, he ann a ag eed in 96% f he ca e . Since he eliabili check be een he fi ann a and he ec nd ann a ( he ne ann a ing 20% f he c ) e e high, e k in acc n he ann a i n f nl he fi ann a , anal i can be f nd in hi OSF link: h :// f.i /m 9g/? ie _ nl =b116b0c6bb5c48508a547dbc955461b1 . We mea ed le ical di e i b c n ing he m ing a e age e-ken a i (MATTR) and he a i f ha a e ( d f nd nl nce) . MATTR gi e he mean al n mbe f ni e d ( e ) di ided b he al n mbe f d ( ken ) e ch nk f 10 (and 100) d , h c n lling f diffe ence in c i e. Ra i f ha a e gi e he a i f ha a d in he c , b di iding he n mbe f ha a e i h he al n mbe f d ken . We mea ed mo ho n ac ic com le i , b c n ing he e nde ance f ingle d e ance , b di iding he n mbe f e ance c n aining nl ne d i h he al n mbe f e ance , and b c n ing he mean e ance leng h (MLU) in d (and in m heme f Se h ). I h ld be n ed ha , nlike F ench, Se h c We deal i h hi diffe ence in h ee a : (1) We ied make F ench c m e imila he Se h , b c mbining de e mine i h he f ll ing n n a ne dic d (de ail n Dem h & T embla , 2008). N ne hele , he m l im hemic Se h e b ke-la-mo-o la I-ill-him-hi a c n ed a ne d , he ea he ame h a e a c n ed a f d in F ench ( Je ai le f a e ). (2) We ide a lemen a me ic f Se h and F ench c n ing he mean e ance leng h in m heme ( ee A endi ). We d hi beca e MLU migh n be a c m ehen i e a ma i lang age c m le i in Se h a i i in F ench, and mean e ance leng h in m heme migh be a be e mea e. (3mea ed eech elici a ion b l king a he a i f e i n di ided b he al n mbe f e ance , and b l king a he a i f c n e a i nal n . We c n ide ed a a c n e a i nal n each e ance f ll ed b an e ance d ced b he e n ini iall add e ed . We hen di ided he n mbe f he e e ance b he al n mbe f e ance . The e l f he ab e me ic e e de c i i el c m a ed ac diffe en eake and eech egi e .

  e i n and c n e a i nal n ( hen an e ance a f ll ed b an e ance d ced b he e n e i l add e ed ) a f nd e all in CDS, f ll ed b OCDS, and hen ADS. F F ench, imila a i f e i n and c n e a i nal n e e f nd e all in CDS and OCDS. Wi hin Se h CDS and OCDS, he ad l and m he had highe e i n a i han he child en. F ADS, ad l had he highe e i n a i . The e e e n la ge diffe ence be een eake i h e ec c n e a i nal n a i f CDS. Wi hin F ench CDS, he ad l and m he al had highe e i n a i han he child en, b e ee a diffe ence be een c a in e m f c n e a i nal n , i h highe a i f h e ad l in F ench b le in Se h .

Fig e 1 .

 1 Fig e 1. Mean leng h f e ance in d (b m) and ingle d e ance a i ( ) f Se h (lef ) and F ench ( igh ). Each in i a e i n ( he e he c e nding eake d ced a lea ne e ance). B l c l indica e eake , ad l eake in ed, m he in bl e and he child en eake in g een, and b l g indica e he egi e , CDS a he lef , OCDS a he middle and ADS a he igh .

Fig e 2 .

 2 Fig e 2. T e-ken a i (b m) and ha a a i ( ) f Se h (lef ) and F ench ( igh ). Each in i a e i n ( he e he c e nding eake d ced a lea ne e ance). B l c l indica e eake , ad l eake in ed, m he in bl e and he child en eake in g een, and b l g indica e he egi e , CDS a he lef , OCDS a he middle and ADS a he igh .

Fig e 3 .

 3 Fig e 3. Q e i n a i (b m) and a i f c n e a i nal n ( ) f Se h (lef ) and F ench ( igh ). Each in i a e i n ( he e he c e nding eake d ced a lea ne e ance). Bl c l indica e eake , ad l eake in ed, m he in bl e and he child en eake in g een, and he -a i indica e he egi e , CDS a he lef , OCDS a he middle and ADS a he igh .

f

  nd me diffe ence ac c l e , b al a g ea deal f imila i . The c m i i n f in diffe ed d ama icall be een c l e . Ma e nal in a m e d minan in he F ench c c m a ed he Se h ne. In he la e , he child en' in a m e e alen han ma e nal in ( ee Shneidman and G ldin-Mead , 2012 f a imila b e a i n in a Ma an illage). Gi en ha all a ge child en had lde ibling , he l e i n f eech f m he child en in F ench indica e ha F ench child en ma ha diffe ence in c m i i n i al c n i en i h b e a i n ha m he ha e m e child en a end in Le h , and child en a e nded b m e child en -a lea in he al illage c n e -han in ban F ance. Thi i de i e he fac ha b he and a ge child; hi bec me m e challenging in Le h f m he age f 2;6, ei he d e he bi h f an he ibling, he inc ea ing inde endence f he child b hi age , facili a ing in e ac i n i h he la ge ee g he F ench c a. The e e l a e in line i h e i finding f US familie , d c men ing ha ibling add e hei nge ibling m ch le f e en l han ha hei m he and he ad l d (e.g. O hima-Takane & R bbin , 2003 ). In e e he e ec , ma ked imila i ie be een c l e e e b e ed. T begin i h, CDS a he m e alen egi e in b h c l e . All a ge child en in F ench e hi d li ening m l OCDS. Thi again in he need d di e e c l e ; he e a e n nl diffe ence be een ind ial ban and n n-ind ial al c mm ni ie , b , gi en he li le CDS f nd in me n n-ind ial c l e , he e a e al la ge diffe ence be een diffe en n n-ind ial al c mm ni ie . ha CDS i a im lified egi e adj ed child li ene . H e e , hi a e n f im lifica i n i n e hibi ed ac all fea e . F e am le, e f nd a high a i f e i n in Se h . Thi ag ee i h e i b e a i n (Dem h, 1992; 1995; Kline & Dem h, 2010 ). M e e , f b h c l e , OCDS eem be m e im lified han ADS, and ha m e imila a e n CDS han ha ADS d e . Thi gge ha eech di ec ed b h a ge and he child en f m all eake , ha CDS-like cha ac e i ic in b h cie ie . A a e l , i i c ncei able ha child en h a e e ed a g ea deal f OCDS c ld lea n m e f m hi e f e hea d eech han f m ADS. S ch a finding in a need d he cha ac e i ic f OCDS in di e e c l e , child en' efe ence f OCDS e ADS, and he he child en lea n m e f m OCDS han f m ADS. In m, m e c -c l al diffe ence e e f nd i h e ec ho add e e he ke child en, han i h e ec ho he add e hem. Child eake f CDS in b h c l e e a egi e imila m he eech, e eciall in i m h n ac ic and le ical fea e (b hi i n he ca e f ha a a i i n F ench). Thi gge ha he child en al adj hei eech hen alking nge child en. H e e , e c ld n a he ame i h e ec eech-elici ing fea e . Child en in b h F ench and Se h ha e a l e a i f e i n han he m he , in line i h e i b e a i nal e l (e.g. D nn & Kend ick, 1982; Mannle e al., 1991 ). M he and ad l ha e a highe a i f c n e a i nal n han he child en in F ench. In e e ingl , hi a e n d e n a ea in Se h ; m he and ad l ha e imila a icall di e e han ha add e ed he ad l f b h lang age . In m, ba ed n he e l f anal i , all a ge child en g in en i nmen he e he a e f en di ec l add e ed, ei he b hei m he , b child en and he ad l , and ha in f m diffe en eake i n d ama icall diffe en in ali a i e e m , a lea f he maj i f he fea e died he e. Thi indica e ha b h F ench-and Se h -lea ning child en g in im la ing en i nmen f ling i ic de el men , in ag eemen i h e i an h l gical die (e.g. C nnell , 1984) . Bef e cl ing, e ld like men i n me limi a i n f he d . Thi e ea ch i ba ed n e i ing c a f m e i die he e he n mbe f a ge child en ec ded a limi ed, d e he lab -in en i e, l ngi dinal k in l ed in c llec ing da l ng ec ding and ann a ing f ll n ane eech. A la ge n mbe f a ge child en migh ha e enabled c nd c a i ical e n diffe ence be een egi e , eake and c l e , he ea he c en d ma emain de c i i e. O ann a al ec ed ha eech f m he child en ma be nde e ima ed in F ench ec ding , ince lde ibling me ime eemed di c aged f m eaking d ing he ec ding. He e i an e am le f ibling in e ac m e i h each he hen he a e n ec ded, b i i al ible ha he ame e f in e ac i n ha en hen familie a e n ec ded, hich ld mean ha he e a e gen ine c l al diffe ence . I ma be he ca e ha F ench a en all end a a a n i agi a ed child hen ing f c n an he child he ea Se h a en d n , hich ld a iall e lain h Se h -lea ning child en ecei e m e eech f m he child en han F ench-lea ning child en. La , a e lained ab e, he Se h e i n e e ec ded in he e ence f he in e iga and f c m a abili ea n , e ch e ann a e e i n f F ench c a he e he in e iga a al e en d ing he ec ding . S eech d f c ed n he a i f e i n a a eech elici ing fea e. H e e , addi i nal eech-elici ing fea e and en ence e can be f nd in eech, ch a im e a i e . F e die ma an incl de he a i f im e a i e in he anal e . Al , in Se h , he ad l e e m l g andm he and neighb , he ea in F ench he e e m l fa he . In Se h , child membe e e a mi ed-age g f ibling , ee and he child en, he ea in F ench child membe e e mainl lde ibling , king a imila i ie and diffe ence be een e.g. ibling and ee eech, fa he and g andm he eech. La , e ed da a-d i en mea emen , ch a leng h f e ance and le ical di e i f hi d . H e e , lang age al c n i f cial a e n and i en i i e c n e . F hi ea n, f e die ma need incl de m e c m ehen i e anal e , aking in c n ide a i n m e fea e f engagemen be een a ne , and he familie cha ac e i ic . We l k f a d f he e ea ch inc a ing m e c l e , in de in e iga e he im ac f n n-a en al ca egi e , and check he he eech c m i i n and ali ie ch a he ne f nd he e a e e e en a i e f an ifiable di inc i n in he c l e .

  Fig e A1. Mean e ance leng h i he e fSe h ( ) and F ench (d n). M h l gical anal i f F ench a gene a ed i h CLAN(MacWhinne , 2000). F e am le, he Se h e b ke-la-m -la i c n ed a f m heme ke la m la . The ame h a e in F ench Je ai le f a e i c n ed a fi e m heme Je ai le f a e ). Each in i a e i n. B l c l indica e eake , ad l eake in ed, m he in bl e and he child en eake in g een, and he -a i indica e he egi e , CDS a he lef , OCDS a he middle and ADS a he igh .

Figure 1 :

 1 Figure 1: Token F-scores obtained by each algorithm for IDS as function of that for ADS. The final "s" in the model's name means that the basic unit of the corpus was syllables (PUD-DLWs, Utt=Words, Unit=Words, DiBSs, FTPas, FTPrs, BT-Pas, BTPrs, AGs). The final "p" in the model's name means that the basic unit of the corpus was phones (PUDDLWp, Utt=Wordp, Unit=Wordp, DiBSp, FTPap, FTPrp, BTPap, BTPrp, AGp). Error bars show two standard deviations over the 18 corpora.

  l gical, l gi di al ec di g f di e e c l e , a Se h -eaki g c mm i i Le h a d F e ch-eaki g c mm i ie i F a ce, f c a al i i Cha e 8, i h e e al c f d c lled f . A e me i ed ab e f c -li g i ic die , diffe e ce be ee la g age . We al m delled he egme abili f child-a d ad l -di ec ed eech i a F e ch-eaki g c mm i i Cha e 9. The e e e ig ifica diffe e ce i m h ac ic a d le ical fea e f child-a d ad ldi ec ed eech, i b h F e ch a d Se h c l e . H e e , ecific i d e a e i . Fi , he e e e flag a diffe e ce i fea e ha c ld affec egme a i e f ma ce be ee he egi e . Thi migh mea ha , e e h gh CDS a d ADS diffe , he d diffe i a ec ha ece a il affec egme abili . Thi i al e ide ce ha e e da ad l -di ec ed eech, like he e ke be ee a e a h me, ma be m e imila child-di ec ed eech ha a he ki d f ad l -di ec ed eech (i cl di g alk he i e iga , i he lab). Sec d, ecificall i Cha e 9, he fea e e ide ified did e lai a a he ( mall) effec f egi e i egme a i . O e im le i e e a i f he e l i ha egi e di e i , a e e ed b he e cha ac e i ic , i im l a fac f egme a i . F e e ea ch h ld f he c m a e da a f he egi e , c llec ed i ec l gical e i g i de ca e eal-life diffe e ce , a d h ld c ide i cl di g m e fea e e ible f di e i , ch a h l gical, ema ic a d ac ic e , a ell a he i e ac i be ee hem. F he m e, i Cha e 8, e c m a ed child-di ec ed, ad l -di ec ed, b al e hea d child-di ec ed eech, ha i , eech add e ed he child e i he e i me . I e e i gl , e hea d child-di ec ed eech i imila child-di ec ed eech. Thi e l i i e f he e ea ch. hea d he -child-di ec ed eech m e ha he d f e hea d ad l -di ec ed eech? La , i he ame Cha e , i ec ded i WEIRD e i g f F e ch familie a mai l d ced b he clea famil , a d m l b he m he . he e e ded famil , i cl di g g a dm he , eighb a d he ad l . H e e , he maj i f i igi a ed f m he child e . We f he a al ed he e e l , c m a i g child-di ec ed eech d ced b he ad l a d he child e . The ki d f eech e e al imila ac a la ge e f a iable , e ce f he a i f e i . I m, he e e l hed ligh he a diffe e ce i he e i g f la g age ac i i i be ee c l e , a d i i e f m e c m ehe i e, la ge-cale, ec l gical e ea ch. Di c ion I hi e a chi g di c i , I ill alk ab me e al h gh , f e e ea ch a d limi a i f m die . If e a ed l emembe a h a e f m hi di e a i , i ld be ha e , di e i i h ge, b al lea i g a ea be b ac m f i . Whe I a ed ki g i h he e h gel di e e i da a, I e ec ed fi d m ch m e diffe e ce b h ac hei c fea e a d ac hei egme abili , ha ha I ac all f d. While ki g ac la g age a d c l e , I b e ed he be efi f la ge-cale die . S d The field f la g age ac i i i eed m e a ifiable a d c m a able me h d d he i a d i e i me . A ech l gical de el me i c ba ed li g i ic g , ill cha ce e ec l gical da a, i de add e ac i i i a d lea abili i e .Simila l , he field f la g age ac i i i eed m e da a. While di c i g e

c

  mm ica i e a d c di a i g g al . The i child e ecei e i cha ac e i ed b c e a i al d amic , a d child e lea d i c mm ica i e c e , interacting i h eake . Pa e al. li g i ic a d em i al i e ac i ( .778). B alki g ab i e ac i , e eed acce a cial-agma ic acc f ac i i i (Bald i & Me e , 2007; Die e d ck, 2007) .

  ...) ha e imila e gagi g fea e a d edic i e e i ac i i i . S ecificall i he d mai f c e a i al a al i , he field f a al la g age ce i g ha im ed d ama icall , i h im a i d ial a lica i (e.g., cha b , e al a i a ). I ill e he e l a al e he a e f i e ac i i c a f ea l child-ca egi e i e ac i . F he m e, i hi di e a i , I ed a e f egme a i m del , m f hich a e ba ed im le a i ic a d ba ch ce i g, i h i bia e i lea i g. The fac ha ch m del ma age mee he e al a i c i e ia f he fi cha e i ac all a g d ig . le i lea i g. H e e , im le m del , ch a he e im leme ed i Cha e 3, 4 a d 8, e hele e abled me add e I am la i g b ild a c m ehe i e li f m del i h diffe e im leme a i a egie , ch a lea i g i c eme all b e e e e a ce af e a he (i c eme al), i ead f ce i g all i f ma i a ce (ba ch), e f mi g i gle j i a k a d e hibi i g mem limi a i . I ill a e he iabili f he e m del i a c m a a i e a , em l i am la i g c d c a m e c m ehe i e e ea ch lea abili f diffe e a ec . I ma be he ca e ha me a ec a e m e affec ed b he i ha he . F e am le, cab la c ld be d i e b i ( he a ic la d a child i e ed ) m e ha he a ec f la g age, hich el m e c g i i e fac . df l f child e e e a ge ed f each la g age c l e ( ch a he e de c ibed i hi di e a i ), a d i ca be f amed i la ge-cale die , i h a c ide able mbe f a ge child e . The ec d e i m l ili g ali m. Half f he ld child e li e i m l ili g al e i me (Ce & Ge e ee, 1998) . Child e i m l ili g al c mm i ie ha e lea -a leadiffe e la g age a d al a ia e c de-i chi g be ee hem (L ake e al., 2013) . F e am le, I dige A alia child e hea a d lea a lea 3 la g age : adi i al la g age , K i l Ab igi al E gli h, a d me le el f S a da d A alia E gli h).

  C g i i e Scie ce S cie . Bla cha d, D., Hei , J., & G li k ff, R. (2009). Modeling the contribution of phonotactic cues to the problem of d egme a i . Journal of child language , 37 (3), 487-511. Bla cha d, D., Hei , J., & G li k ff, R. (2010). M deli g i . Journal of Child Language , 37 (3), 487 511. h ://d i. g/10.1017/S030500090999050X Ble e , D., Vach, W., Sl , M., Wehbe g, S., & Th m e , P. (2008). Earl vocabular development in Danish and other languages: A CDI-ba ed c m a i . Journal of child language , 35 (3), 619-650. Bl m, P. (2004). M h f W d Lea i g. I Weaving a le icon ( . 205 224). MIT P e . B h, A. E., & Wa ma , S. R. (2009). A H e f a Diffe e C l : S ecif i g Wi h P eci i I fa Ma i g f N el N a d Adjec i e . Child Development , 80 (1), 15 22. h ://d i. g/10.1111/j.1467-8624.2008.01242. B ei , M. H., C e, L. R., Mai al, S., Pai e , K., Pa k, S.-Y., Pa c al, L., Peche , M.-G., R el, J., Ve i, P., & V , A. (2004). C -Li g i ic A al i f V cab la i Y g Child e : S a i h, D ch, F e ch, Heb e , I alia , K ea , a d Ame ica E gli h. Child Development , 75 (4), 1115 1139. h ://d i. g/10.1111/j.1467-8624.2004.00729. B e , M. R., & Si ki d, J. M. (2001

Fig. 1 :

 1 Fig.1: Overview of the WordSeg suite. Black boxes represent input from the user; other boxes represent the output of a given stage; arrows represent the general description of procedures, most of which are implemented with a single command. The exception is the segmentation, where multiple segmentation processes are possible (parametric variation not shown).

#

  !/bin/bash # segment independent transcripts FOLDER="/Providence/" for tag in $FOLDER/*tags.txt; do # compute statistics on the unitized input text cat $tag | wordseg-stats --json > ${tag}_stats.json # prepare the input for segmentation and generate the gold text cat $tag | wordseg-prep --unit $unit --gold gold.txt > prep.txt # segment the prepared text with different algorithms # sublexical cat prep.txt | wordseg-baseline --probability 0.0 > ${tag}_seg.base00.txt cat prep.txt | wordseg-tp --threshold relative > ${tag}_seg.tprel.txt cat prep.txt | wordseg-dibs --type phrasal --unit $unit $tags > ${tag}_seg.dibs.txt # lexical cat prep.txt | wordseg-ag > ${tag}_seg.AGu.txt # hybrid cat prep.txt | wordseg-puddle --window 2 > ${tag}_seg.puddle.txt # evaluate against the gold file for segmented in ${tag}_seg.*.txt; do algo=$(echo $segmented | sed 's/.*seg.//' | sed 's/.txt//') cat $segmented | wordseg-eval gold.txt > ${tag}_out.${algo}.txt done done The sample script above represents the following conceptual decisions:

Figure 4 .

 4 Figure 4 . The y axis contains token F-scores across languages. The languages in the x axis are S(imple), B(ase) and C(omplex). Evaluation levels are marked by shape (open circle for morphemes, cross for words). Color reflects algorithms (which are also used to group the data into boxes, see main title of each box).
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 1 

Table 2

 2 

	6 , MATTR had a

Table 3

 3 

Table 4

 4 

	MATTR, proportion of hapaxes (prop. hapax), phonemes per word (phones/w), syllables per
	utterance (syll/utt) and segmentation entropy (NSA) for the entire Chintang word, Chintang
	morpheme, Japanese word and Japanese morpheme corpus, rounding to 3 decimals.
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Table 2 :

 2 Number of languages performing above baseline p=0 and p=1/6. Columns show the mean, the lowest and highest percentage of correctly segmented word tokens for each algorithm and the corresponding language. Languages are represented by the first three letters of their names. "PUD" stands for PUDDLE. "Base0" and "Base6" stand for baseline p=0 and p=1/6.

	algo	0	1/6 % mean	% min	% max
	AG	6/8 7/8	37	7	Rus 65 Ind
	DiBS 8/8 8/8	30	25 Jap 41 Inu
	FTPa 7/8 8/8	28	17 Inu 36 Ind
	MIr	7/8 7/8	27	7	Inu 36 Ind
	FTPr	7/8 7/8	25	11 Inu 30 Rus
	PUD	6/8 6/8	22	7	Ind 34 Ses
	BTPa 6/8 6/8	17	10 Ses 27 Ind
	MIa	7/8 8/8	17	15 Jap 25 Inu
	BTPr 6/8 5/8	14	9	Inu 22 Yuc
	Base0	-	1/8	13	6	Tur 35 Inu
	Base6 7/8	-	12	8	Tur 16 Inu

Table 3 :

 3 Mean percentage of correctly segmented word tokens for each language. Languages are listed in rough order of morphological complexity (see Table1). Columns show the mean, lowest and highest percentage of correctly segmented word tokens per language, and the corresponding algorithm. "PUD" stands for PUDDLE.

	lang	% mean	% min	% max
	Inuktitut	17	7	MIr	41 DiBS
	Chintang	25	9	BTPr 36	AG
	Turkish	25	14 PUD 42	AG
	Russian	22	7	AG	31 FTPa
	Yucatec	27	16	MIa	48	AG
	Sesotho	24	9	BTPr 39	AG
	Indonesian	29	7	PUD 65	AG
	Japanese	26	14 BTPa 43	AG

  SusanneMiyata. 1992. Wh-questions of the third kind;The strange use of wa-question in Japanese children.Bulletin of Aichi Shukutoku Junior College, 31:151-155.

	Susanne Miyata. 2012a. CHILDES nihongoban: Ni-
	hongoyoo CHILDES manyuaru 2012. [Japanese algo Inu Chi Tur Rus Yuc Ses Ind Jap CHILDES: The 2012 CHILDES manual for AG 20 36 42 7 48 39 65 43 Japanese. DiBS 41 29 33 26 28 28 30 25
	Susanne Miyata. 2012b. FTPa 17 30 30 MIr 7 29 29 hatsuwachō) no gaidorain: Jiritsugo MLU oyobi 31 22 30 36 29 Nihongo MLU (heikin 30 33 25 36 30 FTPr 11 28 27 30 25 25 28 29
	keitaiso MLU no keisanhō [Guideline for Japanese PUD 8 33 14 19 31 34 7 33
	MLU: How to compute MLUw and MLUm]. Kenkō BTPa 14 12 19 23 20 10 27 14
	Iryō Kagaku 2, 1-15. MIa 25 16 15	21	16	17 16 15
	BTPr	9	9	17	15	22	9	17 16
	Padraic Monaghan and Morten H Christiansen. 2010. Base0 35 9 6 12 8 11 9 12
	Words in puddles of sound: Modelling psycholin-Base6 16 11 8 12 11 12 11 13
	guistic effects in speech segmentation. Journal of
	Child Language, 37(3):545-564.		
	Steven Moran and Michael Cysouw. 2018.	The
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. Improving nonparameteric Bayesian inference: experiments on unsupervised word segmentation with adaptor grammars. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 317-325. Association for Computational Linguistics. Aylin C. Küntay, Dilara Koc ¸bas ¸, and Süleyman Sabri Tas ¸c ¸ı. Unpublished. Koc ¸university longitudinal language development database on language acquisition of 8 children from 8 to 36 months of age. Chia-ying Lee, Timothy J O'donnell, and James Glass. 2015. Unsupervised lexicon discovery from acoustic input. Transactions of the Association for Computational Linguistics, 3:389-403. Constantine Lignos. 2012. Infant word segmentation: An incremental, integrated model. In Proceedings of the West Coast Conference on Formal Linguistics, volume 30, pages 13-15. Georgia R. Loukatou, Sabine Stoll, Damian Blasi, and Alejandrina Cristia. 2018. Modeling infant segmentation of two morphologically diverse languages. In Proceedings of TALN, pages 47-60. Steven Moran, Robert Schikowski, Danica Pajović, Cazim Hysi, and Sabine Stoll. 2016. The ACQDIV database: Min(d)ing the ambient language. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris, France. European Language Resources Association (ELRA). Yuriko Oshima-Takane, Brian MacWhinney, Hidetoshi Shirai, Susanne Miyata, and Norio Naka. 1995. CHILDES manual for Japanese. Montreal: McGill University. Barbara Pfeiler. Unpublished. Pfeiler Yucatec Child Language Corpus. Lawrence Phillips and Lisa Pearl. 2014a. Bayesian inference as a cross-linguistic word segmentation strategy: Always learning useful things. In Proceedings of the Computational and Cognitive models of Language Acquisition and Language Processing Workshop. Lawrence Phillips and Lisa Pearl. 2014b. Bayesian inference as a viable cross-linguistic word segmentation strategy: It's all about what's useful. In Proceedings of the 36th annual conference of the Cognitive Science Society, pages 2775-2780, Quebec City, CA. Cognitive Science Society. Jenny R Saffran, Elissa L Newport, and Richard N Aslin. 1996. Word segmentation: The role of distributional cues. Journal of Memory and Language, 35(4):606-621. Amanda Saksida, Alan Langus, and Marina Nespor. 2017. Co-occurrence statistics as a languagedependent cue for speech segmentation. Developmental Science, 20(3):1-11.

  , Turkish (Küntay et al., Unpub-

	lang	% over % corr % total compr. MATTR w length
	Inuktitut	42	17	59	1	0.90	8.56
	Chintang	26	25	51	0.56	0.87	4.39
	Turkish	26	25	51	0.44	0.86	4.92
	Yucatec	19	27	46	0.42	0.92	3.80
	Russian	29	22	51	0.41	0.91	4.47
	Sesotho	26	24	50	0.31	0.86	4.28
	Indonesian 25	29	54	0.28	0.85	4.11
	Japanese	20	26	46	0.14	0.87	3.94
	English	6	51	57	0.02	0.39	3.04
	Table						

  Segmen ing ord and morpheme in an ar ificial lang age

	The e ha bee a eff lea i g, a d gge ha he e i e ce f a la ge i e iga e d eg e a i i a ificial la g age i h be f he e i a la g age a e e c e ha
	5. Segme i g e e ble e h e f a al la g age (e.g. a iable d a d b-d igge a e a al ic ce i g. H ch e al., 2013; J h & T le , 2010; K ada e al., 2013; Sch le e al., 2017) . The fi di g d le g h a d f e e c , F a k e al., 2010; i i a a ificial la g age e e ime * gge ha d eg e a i ca i deed be affec ed b h l gical fea e . O e fea e ha De i e he eal h f e ide ce ha he e a al be eadil eg e ed, e i d ha In od c ion a al affec eg e a i , i he e i e ce f affi e ha ca a d al e. Ma a al l ked a b h d a d he e eg e a i , e e h gh he af e e i ed li e a e gl
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	Ab rac : The d a d e , a e e a e a d aff e . We a e f h g ad h e f he he h a ad d e ed a a f c a a g age. The e ga e eg e a a a a g age ; ea gf ca eg e b h d a d e ea gf c e f he a g age ha e e , a e d , b a he e e g . W d eg e a i i a i a lea i g a k, e e d b P e i li e a e he e lea i g i l ba ed beha i al die ela ed Thi d da ie a e ide ified i c i eech. A ificial la g age ha e bee idel ed i e iga e eg e a i . Se e al die h ha b h ad l a d child e ca a e -d c ai i g b h d eg e a i (e.g. Saff a e al., 1996 a d f ll -k ) . I i a ed ha e lea i g echa i a e ha ed be ee e a d ffi e (Fed echki a e al., 2012; Fi le & Ne , 2011; Fi le & Wie e , 2013; H d Ka & Ne , 2009) . Sch l-aged child e (Fi le & Ne The e f hi d i i e iga e eg e a i i ea i gf l i le el , d a d , 2011) a d ad l (Fi le & Ne , 2010) ed di ib i al i f a i i hi d eg e he i e e , a g ad l e ed a a ificial la g age. The c e f he la g age ha e ie a d ffi e . I a gge ed ha he a ici a i fe ed a a e i hi d , a d did i l i ila h e f a al la g age ; ea i gf l i a e l d , b al e a d
	e	i e h le	d . E e 12-	h-ld child e c ld di i g i h be ee g a	a ical a d
	The c e le el f eg e a i (e.g. C ille a e al., 2010; E e & Le -Willia , 2015; Fi & H d a da d f a ificial la g age die eg e a i i f c d a he a ge g a a ical e e ce af e e e a a ificial la g age (G e & Ge ke , 1999) , hich a e f ll he e ge e al a e -ba ed ab ac i i a ificial la g age lea i g (R. G e e al., 2000; Ma c , 1999) . All f hi k gl gge a ici a a e a al i g he d he a e de ig a d la ed a al e , b l e e l f il . Ka , 2008; F a k e al., 2013; J h & J c k, 2001; Ka a e al., 2013; K ada e al., 2013; Le -Willia & Saff a , 2012; Saff a e al., 1997; Thie e & E ick , 2013; T le & C le , 2009 -b ee eg e a i f l i-d i b Siegel a & A , 2015 ) . I die , he e ed , b he a be eg e i g i e ecificall (f i a ce, he a i ead calc la e di a ce i h k Th ee ke e i ill be add e ed i hi d : ke , a he ha e ac i g he a ). 1. Ca a ici a eg e h le d i a la g age he e he e a e affi e ? If d c i g he a ificial la g age ha e b-i ( e affi e ) ha c ld be f d i hi he d . Pa ici a ee be able eg e d f a ificial la g age ba ed e e al diffe e c e ( a i i a l babili ie c e , Saff a e al., 1996 ; eech c e , J h & J c k, 2001 ; a i g d efe e , C ille a e al., 2010) . H e e , e die gge ha d eg e a i i he l a k a ici a d , he e ed a a ificial la g age. The ca eg e eech, b al ge e ali e -adjace de e de cie (F & M agha , 2016) , a he d f d efe e ( C ille a e al., 2010 ) lea he e all li g i ic c e ( Siegel a & A , 2015 ). M e e , e ie ela ed li g i ic c e, ch a -adjace de e de cie a d he be f diffe e d I a d ea ha lea e do eg e he e . M he e , like a ici a ca eg e d , he he ill ch e d e ha -d --d , a e b ildi g bl ck f la g age a d he abili i e ha a e c all d he e . If he e i efe e ce be ee he , e ac he i f da e al. N e hele , i i ill clea he he h a fi f c bigge ( d ) alle ( e a d affi e --he cef h " hi ld ea ha a ici a d eg e d . he e ") bl ck , he he he ce b h le el i a c le e a a . F i a ce, i fa 2. Ca a ici a eg e e i a la g age he e he e a e affi e ? If a ici a ca a eg e i g d-like i i a le ic b he age f 6-8 h (Be gel eg e e , he he ill ch e e e ha -e --i e ha a e & S i gle , 2013) , b he al ee ec g i e he e ea l i c all d he e . If he e i efe e ce be ee he , hi ld ea eech, i e e i e al e i g . F e a le, child e lea i g F e ch ca a e e b i e a d ffi e b 11 ha a ici a d eg e he e . h f age (Ma i & Shi, 2015) a d child e lea i g E gli h eg e ffi e a 15 3. Which i , d he e , a e be e eg e ed? If a ici a eg e d be e h f age ( Mi , 2013 , ee al G e & Ge ke , 1999; Mi ha e , he e ill be a diffe e ce i he e ab e i e f efe e ce: The ill e al., 2002 ). Child e lea i g H ga ia , a aggl i a i e la g age i h ich h l g , ca dec e e d i e a d ffi e b 15 h f age efe d -d e ha he efe e -e .
	ee	affec eg e a i (F a k e al., 2010; F	& M agha , 2016) .

*Lo ka o , G. & Cri ia, A. Segmen ing ord and b-ord ni in an ar ificial lang age e perimen . [in ri ing] -Preregi ra ion: h p ://o f.io/f dc / 0 a ificial a d a al la g age lea i g (G e & Ge ke , 2000; Rebe , 1967) . Whe ed a d i e e ed e l , a ificial la g age ca hel b ai be e e e i e al c l e he i hich lea e a e e ed (Fed echki a e al., 2016; F lia e al., 2010) , a d i la e ecific lea i g fac (Ha aka a e al., 2020) , e eciall f eg e a i . (Lad i e al., 2020) . Th e a h a g e f he ele a ce f c he e i ea l la g age affi e ( hich e ill call " he e " he e). We ca he a k he he h a ad l ca eg e b h d a d e i he e e i g . The d i e egi e ed i h :// f.i /f dc . We e ha d e he COVID-19 c i i , e e e able c le e he d . The ef e, e

  Journal of Memor and Language , 35 (4), 606 621. de i a a ificial la g age. Journal of Memor and Language , 85 , 60 75. h ://d i. g/10.1016/j.j l.2015.07.003 Thie e , E. D., & E ick , L. C. (2013). Be d W d Seg e a i : A T -P ce Acc f S a i ical Lea i g. Current Directions in Ps chological Science , 22 (3), 239 243.
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  icall adap ed for children and prefered b hem(Soders rom, 2007) . I has red ced ocab lar , shor er erances, longer pa ses, more repe i ions and rephrasings han ad l direc ed speech(Hoff, 2006).E en ho gh hese CDS fea res ha e been de ec ed in se eral lang ages, s ch as French, German, I alian, Japanese, Bri ish and American English, some appear more e reme in American English han in o her lang ages (Fernald e al., 1989) ; CDS is s bjec o cross-c l ral ariabili . For e ample, in In i illages, bab lang age is no a desirable speech regis er a all (Crago e al., 1993) . CDS from ad l s o o ng children is far from ni ersall niform (Lie en, 1994) . This s bjec ill be f r her disc ssed in Chap er 8. Cross-c l ral di ersi has also been iden ified in he s bjec s of con ersa ion. For e ample, E roAmerican paren s seem o pro ide more informa ion abo objec s han African American or Japanese paren s (La rence & Shiple , 1996; Toda e al., 2009) .

Speech addressed o children is freq en l disc ssed, d e o i s specific speech fea res obser ed in E ro-American families. Caregi ers se bab lang age , or else child-direc ed speech (CDS), hich seems o be ling is

  Pre io s li era re has foc sed on mo her-child in erac ions (b seeWeisner e al., 1977; Woolle , il on e ended famil (e.g. Dil or h-Anderson, 1992) , h s ling is ic inp ma no necessaril come from he mo her. In Indigeno s A s ralian comm ni ies, for e ample, older children look af er o nger children. In Arnhem Land, children en er a peer gro p since he are o ears old(Hamil on, 1981) .Connell (1984) obser ed ha , in some Leso ho illages, siblings and peers as o ng as 2;1 ears old ha e caregi ing roles, speaking o he o nger child i h simplified speech (also seeDem h, 1992) . This inp is likel o differ from paren al inp (Loakes e al., 2013) , b here are hardl an s dies on i s na re. We f r her address his iss e in Chap er 8.

	7.2 La g age ac i i i ac	c l e
	7.2.1 Anal sing previous learning outcomes

1986) , despi e he fac ha mos children aro nd he orld gro p in pol adic si a ions, and nonparen al care aking is common across socie ies

(Lie en, 1994) 

. Caregi ing in di erse c l res relies hea

  One e cep ion is a recen longi dinal paper ha s died lang age learning of Tsel al Ma an children (Casillas e al., 2019) . These children are infreq en l addressed and hear li le ad l CDS. E en ho gh he a hors e pec ed a di ergence in le ical de elopmen , compared o middle-class English norms, Tsel al children learned lang age earl on and prod ced heir firs ords a he same age as English children. Ob io sl , hese children e rac eno gh informa ion from he ling is ic en ironmen , e en ho gh he are no direc l addressed o. Similar res l s ere repor ed b Ochs & Schieffelin, 1984). Crago e al. (1997) arg ed ha In i children, ho recei e li le direc ed inp , acq ire In k i a ages comparable o middle class Nor h American children. Lie en (1994) also obser ed ha across-c l res children end o learn lang age a aro nd he same ime. A a ha children ma e rac informa ion is from non-direc ed/o erheard speech, b lis ening o nearb speech addressed o o her people. Children seem o be good a obser ing and learning from he in erac ions and beha iors aking place aro nd hem (Le n, 2011; Rogoff, 2003) . According o beha ioral e perimen s, o-ear olds learn referen s presen ed in a hird par con ersa ion (Akh ar e al., 2001) , e en if he are sim l aneo sl engaged in ano her ac i i , or if he label is in a non salien posi ion in he sen ence (Akh ar, 2005) . D nn & Sha (1989) pro ided na ralis ic e idence ha o-ear-old children nders and m ch of he con ersa ions he o erhear. According o Bar on & Tomasello (1991), 19-mon h-old English-speaking children are capable of par icipa ing in mo her-sibling-child con ersa ions. Children ere as likel o respond o commen s direc ed o ano her person as he ere o hose direc ed o hemsel es. Moreo er, in ar ificial lang age s dies, children also implici l acq ire a leas some comple s r c res (Finn e al., 2014) .

	Shneidman & Goldin Meado (2012) . In eres ingl , hese a hors fo nd ha children s earl	ords
	ere predic ed b ad l CDS (and no o erheard speech or speech b o her children), e en ho gh
	he heard er li le of i (compared o inp of middle-class E ro-American children).	

Wha pre io s e hnographic ork e is s, sho s similar pa erns of lang age acq isi ion; children learn lang age earl on despi e hearing li le CDS

(Bro n & Gaskins, 2014; Lis ko ski e al., 2012 ; 

  . Fernald & McRober s (1996) doc men ed ha bo ndar markers in English CDS are no reliable eno gh for boo s rapping, as erances of en ha e non-canonical s r c res. L d san e al. (2015) sho ed a lo er recall and cl s er colloca ion in English CDS han ad l -direc ed speech (ADS), e en ho gh i had be er prosodic bo ndar informa ion han ADS. These o comes are inconsis en i h he ie ha IDS is clearer and simpler han ADS, a leas as far as segmen a ion is concerned. Wi h respec o modeling segmen a ion, some ork has addressed he iss e of learnabili in di erse regis ers. L d san e al. (2017) , based on Japanese CDS and ADS labora or -collec ed da a, fo nd a smaller difference in segmen abili be een hese o regis ers han pre io sl repor ed(Ba chelder, 2002) . A smaller and e en re ersed difference in segmen abili as fo nd for ecological CDS and ADS of English-speaking families (Cris ia e al., 2019) .

  se of s andardi ed es s (e.g. reading and ocab lar es s) has also raised iss es of comparabili . For e ample, children speaking African American English (AAE) recei e he same lang age es s as o her American English-learning children, b heir free pla consis s mos l of code-s i ch, comple s n ac ic forms and a special se of seman ics(Craig & Washing on, 2004) .In eres ingl , some children shif o sing fe er AAE fea res once a school, and hese children o perform heir peers ho do no shif o AAE on s andardi ed es s.One o her iss e concerns objec -orien ed and high-densi CDS ac i i ies s ch as book reading, hich are rare in some comm ni ies. I can be challenging o compare speech o children across differen ac i i ies, and in differen , c l rall -appropria e ro ines.Woolle (1986) repor ed ha mo her o child in erac ions are largel dependen on con e . Goldfield (1993) doc men ed ha o pla inci es he prod c ion of more no ns han erbs, hereas he opposi e happens d ring non-o pla (ph sical pla ). Similar pa erns ha e been repor ed for English and Mandarin Chinese (Tardif e al., 1999) ,Korean (Choi & Gopnik, 1995) and Japanese-learning children(Og ra e al., 2006) . The acq ired ocab lar h s depends on caregi er-child in erac ion norms . Whereas for English-learning children, m ch ime spen i h caregi ers consis s in naming objec s, and man ords acq ired are basic-le el objec no ns, his ma no be he case across comm ni ies. Las , researchers picall record one or a fe ho rs of a child s inp . Ho e er, he inp of a child ma differ depending on he ime of he da (Casillas e al., 2019; Soders rom & Wi ebolle, 2013;

[START_REF] Vandam | Homebank: An online repository of daylong child-centered audio recordings[END_REF] 

. Recordings a specific imes reflec emporar condi ions, s ch as a par ic lar con ersa ion d ring he session

(H enlocher e al., 2010) 

. Fe sessions canno f ll cap re he di ersi of inp and prod c ion, some imes e en d e o corp s ar efac s and con e s.

Table 2 .

 2 Pe cen age f he al n mbe f e ance ha a CDS, OCDS ADS f each child.

	Sec nd, e a ked h	m ch in	hea d b child en a di ec ed	hem, h	m ch a
	e hea d, and h	child-di ec ed e	e hea d eech a di ib ed ac	eake .
	CDS i	eech di ec ed	he child. O e hea d eech incl de	eech di ec ed	he
	child en (OCDS), and	ad l (ADS). The maj i	f in	a child-di ec ed f b h
	F ench-lea ning and Se h -lea ning child en, e ce f Ne e, h a he c in in he
	famil	i h he child en, and m		eech a nd he a OCDS. M e de ail can be
	f nd in Table 2.			

able 1. Pe cen age f he al n mbe f e ance d ced b m he , he ad l and child en f each child. The la ge n mbe in each i in b ld. The la ge n mbe in each i in b ld. The e h ee d n add 100% beca e he e f he e ance e e ncla ified in e m f add e ee.

Table 3

 3 

		F ench Ana	.	.15	7.01
		F ench Anai	5.3	27.40	1.51
		F ench The ime	0.3	-	1.43
		. Pe cen age f eech	d ced b m he (MOT), he ad l (ADU) and he child en
	(OCHI) c m i ing CDS f each child. The n mbe f	Ne e a e mall beca e m	eech
	a nd he child a n CDS. The la ge n mbe in each egi e -ba ed g	f cell i in b ld.
	Q ali a i e fea e f in	
	Ne , e a ked ha he ali a i e	e ie f in	a e, and h	he diffe ac
		eake and c l e . We f c ed n m h n ac ic, le ical and in e ac i nal	e ie
	e a a el . The a da a can be f nd in he nline	lemen a ma e ial. M h n ac ic
	Se h ADS, he child eech had he h e MLU and highe	i n f ne	d
		e ance . Wi hin F ench CDS and OCDS, he e al	e e n la ge diffe ence be een
		eake . We b e e ha m he	eech had he l nge MLU and lea ingle	d
		e ance . O e all, OCDS i m e imila	CDS han ADS, and diffe en eake	ide
	in	f imila	ali a i e fea e i hin each egi e .

e ie a e h n in Fig e 1. The MLU mea ed in m heme i in he A endi (Fig e A1). F b h Se h and F ench, CDS ha he h e MLU, f ll ed b OCDS and ADS. In Se h , he e e e ligh l m e ingle d e ance in CDS han in OCDS and in ADS. In F ench, he e e e n la ge diffe ence be een egi e .

Wi hin Se h CDS and OCDS, he e e e n la ge diffe ence be een eake . Wi hin
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Appendix

Table

A1

. Pe cen age f eech d ced b m he (MOT), he ad l (ADU) and he child en (OCHI) c m i ing CDS, OCDS and ADS f each child. The la ge n mbe in each egi e -ba ed

Table 2 :

 2 Paired t-tests measuring feature differences across IDS and ADS. Word length is measured in phonemes. % 1w phrase stands for ratio of single word phrases. % hapaxes stands for percent of hapaxes. IDS gives the mean values of each feature on the IDS corpus, with standard deviation in parentheses. ADS shows the mean values of each feature on the ADS corpus with standard deviation in parentheses. The window size for MATTR is 10 words. "p" gives the p-value of the t-test.

	Feature	IDS	ADS	p
	Word length	2.86 (.08) 2.80 (.11) .071
	Phrase length 5.89 (.85) 6.73 (.86) *
	% 1-w phrase .18 (.06)	.13 (.05)	**
	Entropy	.02 (.004) .03 (.01)	.31
	MATTR	.89 (.03)	.93 (.02)	***
	% hapaxes	.39 (.22)	.48 (.27)	***

(FTPa or BTPa) instead threshold on the average of all TPs over the sum of different syllable bigrams.

Table 4 :

 4 Correlation tests (Spearman) of corpus features and infant age for each register. "coef." stands for correlation coefficient.% 1-w phrase stands for ratio of single word phrases. % hapaxes is the ratio of hapaxes.

		Feature	Register
	Feature	β	p	β	p
	Word length	.02	.48 .03 ***
	Phrase length .01	*** .04 ***
	% 1-w phrase .06	.29 .03 ***
	Entropy	-1.58	*** .03 ***
	MATTR	.5	*** .05 ***
	% hapaxes	.03	.18 .03 ***
	N. utts	.00005 *** .02 ***
	Feature	IDS coef. ADS coef.
	Word length	.50*		.06	
	Phrase length .34		-.56*	
	% 1-w phrase -.37		.12	
	Entropy	-.50*		.70**	
	TTR	.44		-.37	
	% hapaxes	.01		.30	
	tional analyses. Results (in Table		
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Table

  

	Acronym	Class	Processing	Key units
	baseline	sublexical	batch	units
	dibs	sublexical	batch	unit bigrams
	tp	sublexical	batch	unit bigrams
	puddle	hybrid	incremental	unit n-grams, words
	ag	lexical	batch	words

  Two additional evaluation outputs are provided at the user's request. First, users can obtain the Rand Index RI, which captures both true positives and negatives. It is calculated as follows:

	RI =	True positives + True negatives True positives + True negatives + False positives + False negatives
		1, F-score: 0.86
	-boundary precision: 1, recall: 0.83, F-score: 0.91
	-boundary no edge precision: 1, recall: 0.75, F-score: 0.86

Table 2 :

 2 Corpus characteristics of individual transcripts. Tokens refers to unique instances, types to abstract units. Hapax stands for types that occur exactly once. MATTR stands for Moving Average Type to Token Ratio, a TTR calculated over 10 consecutive words so as to control for overall corpus size. Entropy is a measure of ambiguity in segmentability; a higher number means more ambiguity. Utt(s) stands for utterances; SWU for Single Word Utterance.

	Characteristics	Mean	SD
	N phone tokens	11,463.22	3,414.43
	N phone types	39.62	0.51
	N syllable tokens	4,581.11	1,350.05
	N syllable types	688.54	163.65
	N words tokens	3,720.28	1,075.26
	N words types	670.99	178.71
	N word hapax	293.15	93.43
	MATTR	0.89	0.04
	Entropy	0.018	0.002
	N SWU	102.81	55.33
	N utts	700.27	200.38
	Derived metrics	
	Prop. SWU	0.14	0.04
	Prop. hapax	0.43	0.04
	Avg. phones/word	3.08	0.08
	Avg. syllables/word	1.23	0.03
	Avg. words/utt	5.38	0.93

Table 8
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Phonological complexity (phonemic inventory and syllabic structure) is similar across the two languages(Bickel et al., 

2007;[START_REF] Shibatani | Japanese[END_REF][START_REF] Tsujimura | An introduction to Japanese linguistics[END_REF].

Available from https://github.com/bootphon/wordseg/.

The function was: lm(token fscores ∼ language * level * algorithm +(1/file),s u b s e t s ). Token F-scores are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random factor. The data frame contains 320 observations (2 languages x 2 levels x 10 subsets x 8 algorithms).

The function was: lm(token fscores ∼MATTR* language * algorithm + (1/file) , subset=c(level=="words or morphemes"), subsets). Token F-scores are the F-scores to be predicted by feature (in this example, MATTR), language, and algorithm as fixed effects and subset as random factor.

suggest that the level of allomorphy, meaning how many di erent realizations exist for a single morpheme, or the fusion of the a xes with each other, could also a ect segmentation. Further research is needed to show the e ects of these specific morphological aspects, although this would ideally involve recovery of morphological paradigms, and not just segmentation as done here.Clearly, our work barely scratches the surface not only in terms of segmentation di erences and similarities across languages, but also in terms of possible evaluation targets for language acquisition segmentation models. We look forward to further research incorporating more languages, in order to investigate the impact of di erent linguistic traits, and hope future work retains our strategy of employing a range of plausible algorithms and evaluating on di erent linguistic levels.

Because of time constraints, only the first 50000 utterances of the three largest corpora, Turkish, Russian and Indonesian, were segmented by AG. This would play a negligible role in results, since variation in corpus size beyond the first 5k utterances does not affect performance of this segmentation system(Bernard 

et al., 2018).

Micha Elsner, Sharon Goldwater, Naomi Feldman, and Frank Wood. 2013. A joint learning model of word segmentation, lexical acquisition, and phonetic variability. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 42-54.

1st metric: the size of compressed corpus (gzip) divided by the size of raw corpus.

2nd metric: systematic distortion of morphological regularities, so as to estimate the role of morphological information in the corpus. Each word type is replaced with a randomly chosen number. The size of the distorted compressed corpus is then divided by the size of the originally compressed corpus.

The last author performed a search with the terms infant "word segmentation" "computational model" in scholar.google.com on August 10

, 2015. The top 220 items were extracted automatically using Zotero. They were thereafter inspected manually, excluding as off-topic 174 on the basis of title, abstract, or full-text.

https://zenodo.org/record/1471532,https://github.com/bootphon/wordseg/ releases/tag/v0.7.1

This regression was preferred over a mixed model because there is disagreement as to how to estimate proportion of variance explained in the latter.

The function was: lm(token fscores ∼ language * level * algorithm + (1/file), subsets). Token F-scores are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random factor. The data frame contains 640 observations (4 languages x 2 levels x 10 subsets x 8 algorithms).

The function was: lm(token fscores ∼ language * level * algorithm + (1/file), subsets). Token F-scores are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random factor. The data frame contains 480 observations (3 languages x 2 levels x 10 subsets x 8 algorithms).
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Appendix

The models' performance, measured in percentage of correctly segmented word tokens, can be found in Table 4.

hea d b child en in a non-WEIRD and a WEIRD c l e. We a emp a compa i on of pecific fea e , and a k he he he can e plain a a egmen abili diffe ence in Chap e 9.

Finall , acq isi ion does no al a s happen hro gh a mo her-child d adic in erac ion, and he role of differen speakers sho ld also be aken in o considera ion, especiall in cross-c l ral s dies. Li ing in ho seholds i h more people han a pical Nor h American famil migh s gges ha children co ld ge eno gh lang age inp , e en if i does no come from he direc famil . For e ample, o her children and ad l s of en ha e prominen caregi ing roles. We add e hi b compa ing he con ib ion of o he peake child-di ec ed and o e hea d inp in a non-WEIRD and a WEIRD c l e, in Chap e 8.
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WordSeg: Standardizing unsupervised word form segmentation from text Mathieu Bernard 1 , 2 , Roland Thiolliere 1 , Amanda Saksida 3 , Georgia R. Loukatou Received: date / Accepted: date

Abstract A basic task in first language acquisition likely involves discovering the boundaries between words or morphemes in input where these basic units are not overtly segmented. A number of unsupervised learning algorithms have been proposed in the last 20 years for these purposes, some of which have been implemented computationally, but whose results remain difficult to compare across papers. We created a tool that is open source, enables reproducible results, and encourages cumulative science in this domain. WordSeg has a modular architecture: It combines a set of corpora description routines, multiple algorithms varying in complexity and cognitive assumptions (including several that were not publicly available, or insufficiently documented), and a rich evaluation package. In the paper, we illustrate the use of this package by analyzing a corpus of child-directed speech in various ways, which further allows us to make recommendations for experimental design of follow-up work. Supplementary materials allow readers to reproduce every result in this paper, and detailed online instructions further enable them to go beyond what we have done. Moreover, the system can be installed within container software that ensures a stable and reliable environment. Finally, by virtue of its modular architecture and transparency, WordSeg can work as an open source platform, to which other researchers can add their own segmentation algorithms.

Keywords Unsupervised word discovery when these are represented in phones, because a local dip can be established when there are few syllables (provided these contain at least 4 phones).

A similar conclusion can be drawn from the PUDDLE performance, which was higher for phones than syllables. By setting the window for onset and offset buffers uniformly at 2, we effectively prevented the algorithm from breaking up more utterances when unitizing with syllables than with phones.

A third conclusion is that performance is enormously affected by unit and algorithm. To investigate this more precisely, we fit a regression with token Fscores as dependent measure, unit and algorithm as well as their interaction as fixed effects, and transcript identity as blocking factor. 3 This model explained 98% of the variance in performance, with both main effects and their interaction being highly significant.

Effects of corpus length

Although the analysis in the previous section showed that nearly all the variance in performance across transcripts was explained by algorithm, unit, and their interaction, it remains possible that transcript characteristics do affect word segmentation performance. As discussed in Section 2.2, a good candidate for a factor that would affect performance is corpus length. Preliminary analyses revealed that PUDDLE's performance was changing as a function of corpus length within the sample studied in the previous subsection. Therefore, we carried out an additional experiment to extend the length coverage. We followed previous work [START_REF] Börschinger | Studying the effect of input size for Bayesian word segmentation on the Providence corpus[END_REF][START_REF] Daland | Learning diphone-based segmentation[END_REF][START_REF] Monaghan | Words in puddles of sound: modelling psycholinguistic effects in speech segmentation[END_REF] by submitting concatenated versions of the transcripts to our segmentation procedure. That is, we first analyzed the first transcript; then, we concatenated the first two by pasting the second transcript after the first and analyzed the resulting combined corpus; and proceeded in this manner until all included transcripts had been concatenated. Children vary in the number of included transcripts both because some were visited more regularly and from an earlier age (e.g., Naima), and because a different proportion of transcripts were excluded (due to being too short or containing more than one adult, see 4.1.1; e.g., only 4 out of 40 transcripts for William are included here). 

N word tokens

Token F-score

• phone syllable ag baseline-00 baseline-05 baseline-10 dibs puddle tpabs tprel Fig. 3: Token F-scores as a function of unit and algorithm in cumulative transcripts. Each point is the performance of a segmentation experiment on a transcript that is the result of the concatenation of a given transcript and all preceding transcripts for a given child. Since variation across children was low, only Naima's data are shown here; see supplementary materials for the other curves.

Appendi C A ificial lang age e e imen -C m lemen a d Cha e 3

This study is part of the Appendix because, even though relevant to the thesis project in Chapter 3, it was finali ed after the date of the defense.

Experiment 1, the mean number of grammatical affixes accompanying the stem was about 1.69 for Chintang and 1.07 for Japanese. In Experiment 2, we increase the variability of this feature, ranging from 0 to 4.

The same questions asked above are revisited in this controlled experiment. First, do languages varying in morphological complexity differ in segmentability? Based on the key predictions above, languages with a smaller number of morphemes within words should be easier to segment than languages where words have multiple morphemes.

Also, based on the key predictions above, both lexical and sublexical algorithms should yield lower word segmentation scores for more complex languages, as they are more likely to break up the stream at morpheme boundaries.

Second, how large is this effect, compared to differences across algorithms and evaluation level? We inquire whether performance varies as a function of algorithm (the specific algorithm employed during segmentation) and the level of linguistic representation on which segmentation is evaluated (words or morphemes). We concluded in Experiment 1 that morphology-related differences across languages were relatively small, but this conclusion could be curtailed by the fact that the range of variation covered with these two natural languages may be small. Experiment 2 allows us to better measure these effects by studying them in isolation, and increasing the range of linguistic variation covered.

Methods

Languages.

Languages were created using a script in R. First, a set of consonant-vowel syllables were composed through every combination of the consonants "z", "r", "t", "y", "p", "q", "s", "d", "f", "g", and "h" and the vowels "a","e","i","o",and "u".

We then composed a lexicon of 1,000 words. Function words constituted 1% of this lexicon, and they were always one syllable in length. The rest of the lexicon were content word stems, which varied in length between 1 and 4 syllables. Content words were randomly split into two classes, A and B (which may be thought of as nouns and verbs), and which selected affixes from two different paradigms. All of these aspects

. The y axis shows token F-scores across languages. The languages in the x axis are 0 (stems take no affixes), 1 (stems take one affix), 2 (stems take two affixes), 3 (stems take three affixes) and 4 (stems take four affixes). Evaluation levels are marked by shape (open circle for morphemes, cross for words). Color reflects algorithms (which are also used to group the data into boxes, see main title of each box).

Results and discussion

Results for Experiment 2 are shown in Fig. 3. Our first goal was to answer whether languages varying in morphological complexity, as defined by the number of morphemes per word, differ in segmentability. A regression predicting F-scores from language, level, algorithm, and their interactions accounted for most variance in the data, R 2 = .99 (F (63, 568) = 720, p < .001). 11 Even though the presence of significant interactions precluded a direct interpretation of the main effects, the regression confirmed a disadvantage for the most morphologically complex languages, with negative coefficients estimating the language effect (-0.05 for language 4, -0.04 for 3, -0.02 for 2). Thus, the answer to our first research question is that there are significant effects on segmentability of varying complexity across languages.

In response to our second research goal, how large the language effect is compared to differences across algorithms and evaluation level, we observed that language effects appeared to be relatively small, since the F-value for language is several times smaller than that of level and of algorithm . More detailed outcomes are provided in the online supplementary material, but two aspects of the results apparent in Fig. 3 are worth pointing out. Morpheme level scores for languages where words contain two, three, four and five morphemes, were in general higher than word level results for the same language. We also observed some interactions. For example, AG and DiBS morpheme-level results increased with language complexity, reaching and even surpassing the results for the language with no affixes.

In sum, similarly to what was found in Experiment 1, we observed the expected differences in performance as a function of language, level, and algorithm type. The results of Experiment 2 support our conclusions from Experiment 1: Languages varying in morphological complexity vary in segmentability. Overall word segmentation performance for the simplest language where words and morphemes coincide was better than performance for the other languages, which contain 1-4 affixes per stem. However, the strength of the language effect varied across algorithms, and was even reversed in some conditions, exactly as we observed in Experiment 1. The language effect was again smaller than the effects found for the other two factors, namely level and algorithm type, even though the range of variance here was huge, much larger than that found in Experiment 1's natural language corpora.

Experiment 3: Artificial languages varying in the distribution of affix number

We implemented one more set of artificial languages in order to observe the effect of morphological complexity in controlled environments. One limitation of Experiment 2 is that languages were more internally homogeneous in terms of complexity than human languages typically are: There is no human language in which each and every content word in the language must always have exactly three affixes. We relaxed this assumption while maintaining differences in complexity in our Experiment 3.

Specifically, the languages in this experiment were created to differ in the distribution of affix numbers, with all artificial languages having words that contain between zero and four affixes but varying in how frequent different affix numbers were. In our baseline