
HAL Id: tel-03599456
https://theses.hal.science/tel-03599456v1

Submitted on 7 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seamless development of complex systems : a
multirequirements approach

Florian Galinier

To cite this version:
Florian Galinier. Seamless development of complex systems : a multirequirements approach. Software
Engineering [cs.SE]. Université Paul Sabatier - Toulouse III, 2021. English. �NNT : 2021TOU30130�.
�tel-03599456�

https://theses.hal.science/tel-03599456v1
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

Présentée et soutenue par

Florian GALINIER

Le 8 novembre 2021

Développement sans rupture de systèmes complexes : une
approche basée multi-exigences

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications

Unité de recherche :
IRIT : Institut de Recherche en Informatique de Toulouse

Thèse dirigée par
Jean- ichel BRUEL et Bertrand MEYERM

Jury
Mme Jeanine SOUQUIERES, Rapporteure

M. Richard PAIGE, Rapporteur
Mme Régine LALEAU, Examinatrice
M. Sébastien GÉRARD, Examinateur

Mme Ileana OBER, Examinatrice
M. Jean-Michel BRUEL, Directeur de thèse
M. Bertrand MEYER, Co-directeur de thèse

Mme Sophie Ebersold, Co-encadrante de thèse

Abstract

Proving that a system satisfies its requirements is an important challenge of Requirements Engi-
neering. On the one hand, formal approaches provide a way to express requirements mathematically
and prove that a system satisfies its requirements. However, if formalization offers additional pos-
sibilities such as verification, or even validation, it often proves to be too difficult to use in practice
by the stakeholders involved in the development of systems. On the other hand, in most cases, re-
quirements are written and sometimes traced in Natural Language for communication and mutual
understanding purposes. Moreover, this remains during the whole development process. Thus, it
is necessary to consider the need to address all these stakeholders during the development process.

The main objective of this thesis is to provide a seamless methodology that allows benefiting
from the formalization of requirements while being understandable by all stakeholders. We propose
an approach that considers requirements as parts of the system’s code, which, as such, contributes
to improving quality assessment. In addition, integrating the requirements into the code guarantees
a seamless development. The contributions target three main benefits. First, there is no need to
switch from one tool or environment to another: a single framework supports the development from
analysis to implementation. Second, changes and reversibility become a regular occurrence, directly
supported by the method, language, and tools, facilitating round-trips. Third, the different levels
of abstraction remain inside the object-oriented paradigm.

We apply this vision to the development process itself with the same expected advantages.
The development life-cycle can then benefit from this strong integration of requirements into the
code. These artifacts help in software development by providing support and guidelines for anal-
ysis or decision support and reinforcing the software quality. Besides, reusability, evolutivity, and
maintainability are enhanced. Traceability between requirements and code allows an easy impact
analysis when any of these artifacts evolve.

However, if this paradigm is familiar to developers and even if we put an effort in providing
expressivity, they are not addressed to other stakeholders that used to work with several tools.
Since we also want non-experts to use our approach to validate systems in the early stage of their
development, we propose a Domain-Specific Language: (i) close to natural language and (ii) based
on formal semantics. Using Model-Driven Engineering techniques, this language bridges the gap
between the several stakeholders involved in a project (considering their different backgrounds) and
between the requirements and the code.

We finally put a research effort into defining relationships between requirements. We provide
their formal definitions and properties on the propagation of the satisfaction state. These definitions
can help engineers verify requirements (by checking the validity of the semantics of the relationships
between two requirements) and verify the system compliance (thanks to satisfaction propagation).

This work is a step towards introducing formal semantics into traceability, making it possi-

iii

iv

ble to automatically analyze requirements and use their relationships to verify the corresponding
implementation of the system.

Résumé

Prouver qu’un système satisfait à ses exigences est un défi important de l’ingénierie des exigences.
D’une part, les approches formelles fournissent un moyen d’exprimer les exigences mathémati-
quement et de prouver qu’un système satisfait ses exigences. Cependant, si la formalisation offre
des possibilités supplémentaires telles que la vérification, voire la validation, elle s’avère souvent
trop difficile à utiliser en pratique par les acteurs impliqués dans le développement des systèmes.
D’autre part, dans la plupart des cas, les exigences sont écrites et parfois tracées en langage naturel
à des fins de communication et de compréhension mutuelle. De plus, cela reste le cas tout au long
du processus de développement. Ainsi, il est nécessaire de considérer le besoin de s’adresser à toutes
ces parties prenantes pendant le processus de développement.

L’objectif principal de cette thèse est de fournir une méthodologie sans rupture qui permet
de bénéficier de la formalisation des exigences tout en étant compréhensible par toutes les parties
prenantes. Nous proposons une approche qui considère les exigences comme des parties du code
du système, ce qui, en tant que tel, contribue à améliorer l’évaluation de la qualité. De plus,
l’intégration des exigences dans le code garantit un développement sans rupture. Ces contributions
visent trois avantages principaux. Premièrement, il n’est pas nécessaire de passer d’un outil ou
d’un environnement à un autre : un cadre unique prend en charge le développement de l’analyse
à la mise en œuvre. Deuxièmement, les changements et la réversibilité deviennent un phénomène
régulier, directement pris en charge par la méthode, le langage et les outils, ce qui facilite les
allers-retours. Enfin, les différents niveaux d’abstraction restent dans le cadre du paradigme orienté
objet.

Nous appliquons cette vision au processus de développement lui-même avec les mêmes avantages
attendus. Le cycle de vie du développement peut alors bénéficier de cette forte intégration des
exigences dans le code. Ces artefacts aident au développement du logiciel en fournissant un support
et des lignes directrices pour l’analyse ou l’aide à la décision et en renforçant la qualité du logiciel.
En outre, la réutilisabilité, l’évolutivité et la maintenabilité sont améliorées. La traçabilité entre les
exigences et le code permet une analyse d’impact facile lorsque l’un de ces artefacts évolue.

Cependant, si ce paradigme est familier aux développeurs et même si nous faisons un effort
d’expressivité, il ne s’adresse pas aux autres parties prenantes qui ont l’habitude de travailler avec
d’autres outils. Puisque nous souhaitons également que des non-experts utilisent notre approche
pour valider des systèmes dans la première phase de leur développement, nous proposons un langage
spécifique au domaine : (i) proche du langage naturel et (ii) basé sur une sémantique formelle. En
utilisant les techniques de l’ingénierie dirigée par les modèles, ce langage permet de combler le fossé
entre les différents acteurs impliqués dans un projet (compte tenu de leurs différentes expériences)
et entre les exigences et le code.

Nous avons enfin consacré un effort de recherche à la définition des relations entre les exigences.

v

vi

Nous fournissons leurs définitions formelles et leurs propriétés sur la propagation de l’état de satis-
faction. Ces définitions peuvent aider les ingénieurs à vérifier les exigences (en vérifiant la validité
de la sémantique des relations entre deux exigences) et à vérifier la conformité du système (grâce à
la propagation de la satisfaction).

Ce travail est une étape vers l’introduction de la sémantique formelle dans la traçabilité, permet-
tant d’analyser automatiquement les exigences et d’utiliser leurs relations pour vérifier l’implémen-
tation correspondante du système.

Acknowledgements

Each thesis is a slice of life, and it is appropriate to thank all those who participated in the
development of this project.

I would like to start by thanking Sophie, Jean-Michel and Bertrand. They gave me the oppor-
tunity to work on an exciting project, and helped me by guiding me while letting me explore my
ideas. I learned a lot from them, both from a research and teaching point of view.

Thanks to Sophie for all the discussions, over a whiteboard and a coffee that helped clarify and
advance my work. I really enjoyed working with you, and I hope we can continue to work together
in the future.

Thanks to Jean-Michel, for guiding my research and allowing me to clarify many points that
deserved it. I couldn’t have hoped for a better thesis advisor, whenever I had a question, I knew
that you would be able to answer me or guide me to the person who would have the answer. It was
a very pleasant working environment. Special mention to the trip to RE in Korea with you which
was reduced to a round trip to Shanghai. I was very disappointed not to be able to attend the
biggest conference in our field because of this typhoon, but at least I can say that I made a round
trip to China to eat Chinese food.

Thanks to Bertrand who introduced me to many fields of research at the beginning of my thesis,
through the Vericlub in particular, and for the always constructive criticisms which allowed my
work to evolve. Thank you also for having provided us with an exceptional working environment
during our meetings in Villebrumier.

I also want to thank the Kazan-Toulouse research group. The exchanges are always enriching and
I no longer count the ideas that have emerged from our meetings. Thank you for the proofreading,
for the hard work on the papers that sometimes took a long time to come out, and there is no
doubt that the future works will be as interesting.

Thanks to all the SM@RT team, PhD students or tenured researchers, who gave me precious
advice.

Thanks also to Clément, Jimmy and Manuel. You have supported me during my thesis, and
you will have to support me as your boss in our entrepreneurial adventure. I sometimes wonder if
you have all your head.

Finally, some words are more effective when they are expressed in the language that the target
person understands best. So, I apologize to those who will not be able to read these next words,
addressed to my family, in French.

Merci à mes parents et à mes soeurs, ainsi qu’au reste de ma famille, qui m’ont toujours soutenus,
bien qu’ils n’aient certes pas tous compris ce que je fais exactement !

Merci à mes amis, qui ont été là pour m’aider à décompresser et à décrocher, que ce soit lors
des discussions sur discord ou lors des week-ends du bonheur et autres barbecues. Vous m’avez sans

vii

viii

doute empêché d’exploser en plein vol.
Et bien sûr merci à Marjorie. Tu es devenue ma femme durant cette aventure et tu m’as toujours

soutenu, tu as servi beaucoup trop souvent de support de discussion où tu ne faisais que m’écouter
dire des choses sans doute incompréhensibles. Nul doute que je n’aurai pas pu arriver au bout de
ce travail sans ton aide.

À René, Michel, Virginie, Robert et Marc,
qui ne sont plus là pour voir la fin de cette aventure,

mais qui ont laissé une empreinte indélibile sur mon passé,

À Eyleen,
qui n’était pas là pour voir le début de l’aventure,

mais qui est mon avenir,

Je dédie cette thèse.

Contents

Contents xi

List of Figures xiv

List of Tables xv

I Introduction to the problem 1

1 Introduction 3
1.1 Context of the thesis . 4

1.1.1 What are requirements? . 4
1.1.2 Why are requirements so crucial? . 6

1.2 Issues in Requirements Engineering . 6
1.2.1 Expressing requirements . 7
1.2.2 Improving requirements traceability (and why?) 7
1.2.3 Keep the link with all the stakeholders . 7

1.3 Detailed plan . 8

2 State of the art 9
2.1 Requirements Engineering . 9

2.1.1 What are “good” requirements? . 9
2.1.2 Natural Language-based approaches . 11
2.1.3 Formal approaches for requirements . 16
2.1.4 Natural Language Analysis . 18
2.1.5 Constrained Natural Language . 20
2.1.6 Summary and discussions . 23

2.2 Model-Driven Engineering . 24
2.2.1 Representation of artifacts through several abstractions 24
2.2.2 Addressing multiple viewpoints . 26
2.2.3 Summary and discussions . 28

2.3 Conclusion . 28

ix

x CONTENTS

II Contributions 31

3 The Seamless Integration of Requirements in CODe (SIRCOD) approach 33
3.1 Why use a programming language? . 34
3.2 Overview of the approach . 34
3.3 Requirements: from Natural Language documents to code artifacts 36

3.3.1 From Requirement-in-documentation to Requirement-in-code 36
3.3.2 Linking requirement-in-code and requirement-in-documentation 37
3.3.3 Navigating from requirement-in-code to requirement-in-documentation and

vice versa . 39
3.4 Linking requirements and their formalization . 40

3.4.1 Definitions . 41
3.4.2 The documentation view . 44

3.5 Refining requirements . 46
3.6 Organizing requirements . 48
3.7 Use case: the Landing Gear System . 49

3.7.1 From NL to Eiffel (Step 1) . 50
3.7.2 Formalization (Step 2) . 50
3.7.3 Refinement (Step 3) . 52

3.8 Conclusion . 53

4 RSML: a modeling language for requirements 55
4.1 A requirements meta-model . 56

4.1.1 Domain Knowledge . 57
4.1.2 Requirements . 57

4.2 Requirements Specific Modeling Language (RSML): a constrained language for re-
quirements . 60
4.2.1 Expressing domain knowledge . 61
4.2.2 Requirements in RSML . 62

4.3 A tool-supported language . 63
4.4 A modeling language to link other formalisms . 65

4.4.1 From RSML to textual representation . 65
4.4.2 Transforming RSML to (and from) other languages 67

4.5 Use case: the London Ambulance Service system . 70
4.6 Conclusion . 73

5 A semantics for requirements relationships 75
5.1 Existing relationships related to requirements artifacts 76
5.2 Formal definitions of these relationships . 78

5.2.1 What are the relationships between requirements? 78
5.2.2 Formal definitions of relationships between requirements 80

5.3 How to use semantics of relationships to improve requirements? 86
5.3.1 Propagating satisfaction . 86
5.3.2 Improving SIRCOD and RSML . 90

5.4 Applying this semantics to Eiffel . 95
5.5 Conclusion . 102

CONTENTS xi

III Conclusion 105

6 Conclusion and discussion 107
6.1 Summary of contributions . 107

6.1.1 Intended audience . 108
6.1.2 Traceability . 108
6.1.3 Coverage . 109
6.1.4 Semantic definition . 109
6.1.5 Verifiability . 110

6.2 Perspectives . 110

Appendix 115

A RSML 115
A.1 RSML complete metamodel . 115
A.2 RSML grammar . 116

B Satisfaction propagation 119
B.1 Python implementation of the minimum set algorithm 119

Bibliography 132

List of Abbreviations 135

Résumé long 137
1 Introduction . 137
2 SIRCOD . 138
3 RSML . 144
4 Relations entre exigences . 147
5 Conclusion . 155

xii CONTENTS

List of Figures

1.1 Excerpt of a state diagram representing the “avoid obstacle” requirement 5

2.1 Example of a goal and the requirements refined from this goal in KAOS 13
2.2 Example from [1] of a matching between English and OCL 21
2.3 Example of a smart fridge requirements from [2] . 22

3.1 The four steps of the SIRCOD process . 35
3.2 Detailed steps of the SIRCOD process . 35
3.3 User Requirements Document of the Automatic Delivery Drone 36
3.4 The ”Info” view that allows the user to graphically add a source 38
3.5 EIS link from code to a requirement . 39
3.6 Notification of several affected sources after modification in code 40
3.7 Sample of AutoProof output . 44
3.8 Documentation view of requirement features . 45
3.9 Integration of documentations artifacts into code . 46
3.10 Excerpt of the inheritance hierarchy of the running example 49
3.11 LGS requirements in Eiffel code . 50
3.12 Documentation view of LGS requirements . 51
3.13 Formal representation of requirement 11 bis . 51
3.14 Documentation view of the formal requirement 11 bis 52
3.15 Refinement of requirement 11 bis . 52
3.16 Documentation view of extension sequence feature 53

4.1 Principal parts of the RSML metamodel . 56
4.2 Domain Knowledge definition (i) of the RSML metamodel 57
4.3 Example of an instantiation of part (i) of the RSML metamodel 58
4.4 Requirements definition (ii) of the RSML metamodel 59
4.5 Example of an instantiation of part (ii) of the RSML metamodel 60
4.6 Example of the RSML DSL in practice . 61
4.7 Autocomplete feature in the RSML editor . 64
4.8 Error of duplicated identifier in the RSML editor . 64
4.9 Example of docx document generated from the RSML example in Fig. 4.6 66
4.10 Example of MS-Excel document generated from the RSML example in Fig. 4.6 . . . 67
4.11 SysML representation of requirements from example in Fig. 4.6 68
4.12 Resulting RSML of transformation from SysML of Fig. 4.11 69

xiii

xiv LIST OF FIGURES

4.13 Answers to the survey about RSML . 72

5.1 Example of requirements and relationships between them 87
5.2 Example of satisfaction links for requirements and relationships from Fig. 5.1 88
5.3 Documentation view of the class . 92
5.4 Relationships (iii) added to the RSML metamodel 93

6.1 Part of each contribution to the SIRCOD process . 107

A.1 RSML complete metamodel . 115

C.1 Les quatre étapes du processus SIRCOD . 140
C.2 Étapes détaillées du processus SIRCOD . 140
C.3 La vue ”Info” qui permet à l’utilisateur d’ajouter graphiquement une source 141
C.4 Vue documentaire des caractéristiques de l’exigence 142
C.5 Exemple du DSL RSML en pratique . 146
C.6 Exemple d’exigences et de relations entre elles . 151
C.7 Exemple de liens de satisfaction pour les exigences et les relations de Fig. C.6 152
C.8 Partie de chaque contribution au processus SIRCOD 156

List of Tables

2.1 Summary of the approaches . 23

5.1 Matrix of relationships between constraints and between properties of two require-
ments R1 and R2 . 78

xv

xvi LIST OF TABLES

Part I

Introduction to the problem

1

Chapter 1

Introduction

“The most important single aspect of
software development is to be clear about
what you are trying to build.”

Bjarne Stroustrup

Contents
1.1 Context of the thesis . 4

1.2 Issues in Requirements Engineering . 6

1.3 Detailed plan . 8

How can we ensure that a system is the “right” system? Complex systems, software-intensive
systems, embedded systems are around us every day: smartphones, cars, airplanes, satellites are
among other examples of objects that we use daily, sometimes unconsciously. Thus, these systems’
quality is crucial: how to be confident in such devices? If the question seems minor for smartphones’
applications, we quickly understand that it becomes crucial for machines that can exceed a ton
and be launched at several tens of kilometers per hour. Furthermore, if everyone has now been
confronted with a software bug at one time or another, we probably identified it because the system
was not doing what it was supposed to do.

However, what is the system supposed to do? This is the first step of every system development:
determine what the customer wants the system to do. To rephrase it: what are the customer
requirements for the system? These requirements are the basic bricks used to build the system.
Hence, ensuring that the system is the right system will “simply” be to check that its requirements
are met.

In the next sections, we will first develop the context, and then we will explain why it is not so
“simple” to ensure that a system is the “right” system.

3

4 CHAPTER 1. INTRODUCTION

1.1 Context of the thesis
1.1.1 What are requirements?
According to SWEBOK [3], a requirement is “a property that must be exhibited by something in
order to solve some problem in the real world.” While the SWEBOK is intended to be a reference
work on software engineering, this definition is quite confusing.

First, this definition states that a requirement is “a property” but does not define the scope of
this property (is it a system property? a property of the environment? a property of the project?
something else?).

Secondly, according to this definition, a requirement “must be exhibited by something.” Every
studies made in Requirements Engineering (RE) agree that a requirement must be made explicit
(since implicit requirements can introduce inconsistencies in the development). Besides, there should
be a way to check that a requirement is effectively satisfied. As a consequence, the definition shall
not be prescriptive but only descriptive. Moreover, the vague term something introduces more
ambiguity in the statement than elements of answers.

Finally, the definition is talking about “problem in the real world.” The notion of “the real world”
is never defined elsewhere in the document and is imprecise. This notion can include anything and
cannot be used for a precise definition.

The following sections in the SWEBOK document present some distinctions between categories
of requirements:

• product and process requirements: this section introduces a distinction between requirements
about the product itself (the system, using our vocabulary) and the process (project using our
vocabulary). This section helps to define the scope of property from the previous definition,
but environment properties are still ignored in the SWEBOK definition;

• functional and non-functional requirements: the SWEBOK uses the well-known distinction
between requirements describing the system’s behavior and non-functional ones, which are
requirements that “act to constrain the solution.” The SWEBOK does not include a complete
list of non-functional requirements and refers to several works for these requirements, such as
[4, 5, 6];

• emergent properties of a system, which are requirements according to the SWEBOK defini-
tion. However, such properties are not defined as requirements in standard literature since
requirements are something expected while, by definition, it is not the case for emergent
properties;

• quantifiable requirements: this category is orthogonal to the previous ones: while others
present how to categorize requirements, this section is stating about the need to have a
precise requirement, using quantifiable terms to avoid ambiguity;

• system and software requirements: in this section, the authors of SWEBOK made the dis-
tinction between system requirements that are about the system as a whole and software
requirements that are requirements about software components derived from system require-
ments. This classification is again orthogonal with the previous ones.

Other definitions, such as the definition given in [7], widely cited in the literature, are quite
ambiguous, and there is no strict definition of what a requirement is. In [8], we made an effort to
provide such a definition.

1.1. CONTEXT OF THE THESIS 5

So what is a requirement? We will try to give a descriptive and straightforward definition that we
already used in [8]. As previously said, a requirement is the expression of a stakeholder need. Most of
the time, this expression is made in Natural Language (NL) [9, 10] – in English, French, German, etc.
The sentence “The drone shall avoid obstacles” is thus a requirement, and so is “At any time, the
sensors shall be able to detect an object in less than twice the stopping distance and the drone must
be able to stop in less than a second.” These two requirements express the same idea (the drone shall
be able to detect an obstacle and avoid it) at several levels of abstraction, but both are requirements.
Similarly, requirements can be expressed in several ways. Thus, the requirement “At any time, if the
sensors detect an object less than twice the stopping distance then the drone must be able to stop in
less than a second.”, the expression (sensors range ≥ 2×(speed+ acceleration

2))∧(speed
acceleration < 1),

and Fig. 1.1 are three different representations of requirements, all expressing the same property.

Figure 1.1: Excerpt of a state diagram representing the “avoid obstacle” requirement

A requirement is so the expression of a need. But what is a need? In the sentence “The drone
shall avoid obstacles”, we express the need for the system (the “drone”) to own a property (“avoid
obstacles”). In this case, a requirement is the expression of a (desired) property – a predicate – of
the system. Thus, a need is a direct expression of what a stakeholder wants, while the requirements
we are particularly interested in in this thesis are derived from this need, and are expressed after
defining the scope of the system.

Indeed, in [11], the authors emphasize the need to express requirements regarding the envi-
ronment (i.e., anything that is not the system but can have an effect on it). The environment
is crucial, and in particular in our example, “obstacles” are not objects of our system but of the
environment, and the requirement describes how the system shall react to the environment. The
Problem Frames approach [12] which has influenced many more recent approaches, precisely defined
that each requirement must be related to a specific problem domain, which is an element outside
the system that will propose the solution to that requirement. Moreover, a requirement can even
be represented as a relationship between different artifacts in the environment. Jackson describes

6 CHAPTER 1. INTRODUCTION

a number of problem frames that correspond to these classes of relationships. In the context of
this thesis, we will thus emphasize this need to express a requirement in the context of the system
environment.

Another essential element in system development is the development itself, the project, and
requirements can also be about the project (in [13], such requirements are instead called constraints).
Using these elements, we give the following definition for requirement:

Definition (Requirement). A requirement is the expression of a property of the system, the project,
or the environment.

1.1.2 Why are requirements so crucial?

The criticality of requirements has often been addressed in the literature. Indeed, the ambiguity, the
lack of consistency, and poorly treated requirements can lead to bad design and bad implementation.
In the context of this thesis, we will focus on software-intensive systems – i.e., systems where the
software plays an important part. However, even in this more restricted context, lots of failures
can exist. Even if the consequences of a code issue can be less evident than a structural defect in
the architecture of a bridge, there are more and more software in our lives in everyday objects, and
most of the time, requirements are poorly treated. Moreover, even if issues may seem unimportant
and only minor, failures caused by specification errors are numerous, costly and sometimes, tragic
[14]. In [15], a list of majors and costly failures is given and, if in the better cases the failures only
lead to an economical cost, in most critical systems, these failures can put lives in danger.

This is the case with the Therac-25 incident. This machine was designed for radiation therapy,
but in mid-80s, a failure led to several people’s death, massively irradiated. The investigation
highlighted, among other problems, a defect in the specification and poor traceability to the previous
versions of the software. Not taking into account the user’s real needs and expertise introduced
several biases that led to this tragedy.

Furthermore, even in systems that seem not to have any chance to injure people, the impact
may be difficult to predict. This is the role of risk analysis to detect where are the crucial parts of
systems. However, one can ask why requirements are not systematically treated critically. We will
develop the question in chapter 2, but in a nutshell, it is costly and can take a considerable amount
of time. All the parts of the system cannot be treated as critically as the autopilot mode of a plane.
However, if we can provide tools to process more formally and systematically the requirements, this
can reduce the number of failures in software engineering. In the next section, we will present the
significant issues from our perspective to the requirements engineering.

1.2 Issues in Requirements Engineering

Requirements are the basis of every project and there exists, in one way or another, a set of
requirements (in a Requirements Specification, in Users Stories, in Tickets in a collaborative revision
control system, in emails between stakeholders, etc.). So if these requirements exist, what does
introduce deficiency in a specification? This section will present three of the major issues of the
Requirements Engineering that we want to address in this thesis.

1.2. ISSUES IN REQUIREMENTS ENGINEERING 7

1.2.1 Expressing requirements
First of all, even if the requirements are expressed, it is necessary to emphasize how they are
expressed. Indeed, if the requirements are poorly expressed and are ambiguous, even with a good
requirements management tool, the output system can be different from the one expected by the
customer. When the customer expresses its needs for the system, it is essential, in the elicitation
phase, to provide a complete set of requirements. In chapter 2, we will provide a set of quality
criteria for requirements, but we can emphasize that the way to express requirements is crucial.
Indeed, it is easy to understand that a simple, clear, and unambiguous requirement is preferable to
a more complex and convoluted one.

The language used to express requirements is thus crucial. The language here means the field of
the lexicon used and the grammar, the organization, and the way to write the requirements. From
our point of view, it is essential to provide a clear methodology on how to express requirements
and support this approach by tools. In the context of this thesis, even if we will always take into
account traceability to all kind of requirements and specification, we will more precisely address
system requirements, requirements that describe the system in relation to its environment.

1.2.2 Improving requirements traceability (and why?)
Since critical issues arise from requirements problems, good management of requirements in systems
realization is fundamental [16]. We can consider that, since that is the job of the engineer, he will
do it. However, it does not take into account that there is not one person who will collect the
requirements, design the system, and implement it. Most of the time, a team that works on the
system does not have a complete view of the system. To ensure that all the requirements are met,
it is crucial to link parts of the system with the requirements.

This is one of the objectives of traceability. Many examples of systems crashes emphasized the
necessity of requirements traceability through the whole development process [17] [18]. Traceability
helps to ensure, in one way, that a requirement has been satisfied. On the other way, it helps to
ensure that a part of the system is required to satisfy a requirement. The traceability in software
engineering is, however, at best poorly treated. From our point of view, it remains a significant
effort to do to provide a clear methodology and tools for traceability.

1.2.3 Keep the link with all the stakeholders
In the two previous sections, we emphasize providing tools and methodology for requirements
expression and traceability. Such tools exist. However, they are confronted with the lack of expertise
of users or to the force of the habits. In our opinion, one of the major obstacles for the adoption
of new tools and methodology is that they are not close enough to the stakeholders’ habits, which
do not widely use new approaches. More precisely, most of the tools are either addressed to
engineers or to other non-expert stakeholders. The approach proposed in this thesis aims to involve
engineers in requirements management as early as possible in order to allow an early introduction
of a formalism in the expression of requirements. However, if this approach aims to be anchored in
a classic engineering approach (V-cycle, agile methodology), it is important to keep the approach as
accessible as possible to other stakeholders. Indeed, it is important to remember that requirements
are a communication tool between different stakeholders, and especially with customers, who are not
engineers. Thus, even if the approach presented in this thesis is primarily addressed to engineers,

8 CHAPTER 1. INTRODUCTION

we have emphasized the importance of keeping the representation as readable as possible for non-
expert stakeholders. In particular, it is essential to provide tools that fit on stakeholders’ habits or
link to other standard tools. These three issues will lead us to propose a methodology, as close as
possible to the developers’ habits, providing links to existing tools.

1.3 Detailed plan
To answer the issues raised in section 1.2, this thesis is decomposed into three parts. The current
part (Introduction) introduces the problem (chapter 1) and some good properties for requirements
(chapter 2). We will use these good properties to analyze existing approaches that try to answer to
the identified issues. These approaches will be grouped by categories to compare approaches with
similar objectives, before emphasizing what is, according to us, the best way to provide solutions.
The next part (Contributions) will first detail the SIRCOD approach (chapter 3), introducing
a seamless approach to expressing requirements and tracing them, from the first step of a project
lifecycle to the complete realization of the system. We will then present RSML in chapter 4, a
language and a tool to support the SIRCOD approach and provide all stakeholders with better
means to be as close as possible to the user’s habits. In chapter 3 and chapter 4, while we will
apply to specific use cases, but also to a running example: an automatic delivery drone1. In
chapter 5, we will propose a set of new navigation links, including traceability links, to enrich
the methodology and ease the analysis of requirements. To conclude this chapter, we will apply
the complete approach to our running example. Finally, the Conclusion part will summarize the
contributions and open on the perspectives that remain.

1User Requirements Document of this example can be found here: https://gitlab.com/fgalinier/
rsml-examples/-/blob/master/AutomaticDeliveryDrone.md

https://gitlab.com/fgalinier/rsml-examples/-/blob/master/AutomaticDeliveryDrone.md
https://gitlab.com/fgalinier/rsml-examples/-/blob/master/AutomaticDeliveryDrone.md

Chapter 2

State of the art

“None of us knows that which we know all
together.”

Euripides

Contents
2.1 Requirements Engineering . 9
2.2 Model-Driven Engineering . 24
2.3 Conclusion . 28

In this chapter, we introduce (section 2.1) how RE tries to ensure good quality of systems. We
analyze some advice and good properties of requirements given in the most prominent standards
(section 2.1.1). We also provide a state of the art of approaches that attempt to lead to better
quality requirements, based on NL (section 2.1.2), on formal methods (section 2.1.3), or trying to
bridge the gap between these two worlds (sections 2.1.4 and 2.1.5). Next, we introduce what can be
the benefits of using Model-Driven Engineering (MDE) in the context of RE (section 2.2), giving
approaches that address some of the issues of RE, such as traceability of requirements through
several levels of abstractions (section 2.2.1) or dealing with several stakeholders (section 2.2.2).

2.1 Requirements Engineering
In this section, we survey several RE approaches based on criteria that we define in section 2.1.1.
A complementary work to this section can be found in [19].

2.1.1 What are “good” requirements?
As a first step, it is necessary to define what is a “good” requirement. Indeed, talking about
improving requirements without defining the objective to reach would make little sense. Defining
qualities for requirements has been addressed many times in the literature, both from an academic
and an industrial perspective.

9

10 CHAPTER 2. STATE OF THE ART

Standards such as the often-cited IEEE 830-1993 [20] or the more recent ISO/IEC/IEEE 29148-
2018 [21] defined the characteristics for good requirements. Among these criteria, a particular
emphasis is placed on the need to have a set of requirements that are:

• necessary: all the requirements are needed to describe the system;

• complete: a requirement is sufficient and does not need more information to describe the
desired system property;

• unambiguous: the requirements are simple to understand and do not introduce any ambi-
guity (for example by using pronouns such as ‘it’ or ‘this’);

• singular: a requirement is about a unique property of the system;

• consistent: there are no two requirements stating two contradictory properties;

• feasible: a requirement shall be realistically satisfiable;

• correct: a requirement is a correct transformation of the entity from which it was derived
– these characteristics was linked to the traceable criterion in older version of the IEEE
standard1;

• verifiable: evidence shall be available to prove that a requirement is actually satisfied by the
system.

The International Council on Systems Engineering (INCOSE) also emphasizes in [22] the need
for complete traceability between artifacts from several stakeholders.

These criteria are guidelines to write requirements and apply to the way requirements are ex-
pressed. Indeed, to match these criteria, standards often propose templates to constrain the way
of expressing requirements.

In [23], the authors propose a list of properties for a good requirement language for software-
intensive systems. In their opinion requirements approaches should:

• ease communications between stakeholders (e.g., by providing a graphical modeling way to
express requirements, by being the more human-readable possible, etc.);

• allow to model common relationship existing between requirements themselves and between
requirements and other system artifacts;

• provide common properties of requirements, such as risks, priority, type;

• provides a way to express non-functional requirements;

• respect recommendations from IEEE standard (i.e., requirements should be unambiguous,
consistent, modifiable, correct, complete, and traceable);

• to a lesser extent, be machine-readable and have a strongly defined semantics.
1Actually, the traceability is indeed a tool to check this correctness rather than a real needed characteristic for a

requirement.

2.1. REQUIREMENTS ENGINEERING 11

In [24], Schneider and Buede propose 15 properties for informal requirements, based on an
analysis of properties from several works. They aim to ease the analysis by avoiding overlapping
properties while proposing a sufficient set to provide good requirements.

Another good property for expressing requirements is, according to [25], the use of a unique
formalism. Indeed, “Single Model Principle” should lead to avoiding issues of classical approaches
where different formalisms are used: inconsistencies, semantic gaps, transformation efforts. This
seamless approach aims to link different phases of the development lifecycle, from design to imple-
mentation, to prevent failures [26].

In the context of this thesis, we will focus on the following properties for requirements ap-
proaches:

(a) Intended audience: does the approach require an expertise, or is the approach understandable
by every stakeholder? This shall answer to the properties that require stakeholders to take
position on requirements (is the requirement necessary, complete, feasible?) and reduce the
ambiguity of requirements for stakeholders.

(b) Traceability support: is there a way to link requirements to other artifacts (such as require-
ments or other parts of the system) and what is the type of these links? This property shall
help answer the need of correctness, consistency and absence of ambiguity.

(c) Coverage: what kinds of requirements can be expressed with the approach (all the require-
ments? only functional ones?)? This property is required to state the completeness of the set
of requirements, i.e. all requirements are needed and sufficient to describe the system (not to
be confused with the completeness of a single requirement).

(d) Semantic definition: are the requirements semantically defined in the approach? A semantic
definition shall help avoid ambiguity and check the consistency, correctness, and singularity.
Moreover, the power of formalization allows rigorous management of expressions endowed with
semantics [27].

(e) Verifiability: can a requirement be formally verified? This property aims to answer the need
for verifiability for requirements.

There are mainly two worlds that are confronting nowadays for the expression of requirements:

• in critical systems, formal methodologies, based on a mathematical foundation, are widely
used to prove the safety of a system;

• in other systems, requirements are often expressed as sentences that described users’ needs,
with no real links with the system itself.

To compare these approaches, we analyze them in the following sections through the prism of the
previously defined properties.

2.1.2 Natural Language-based approaches
We present in this section the approaches that are designed to be as close as possible to NL. These
approaches are commonly designed to be as readable as possible by non-specialists and are thus
addressed to several stakeholders. The objectives of such approaches are mainly to involve all the
stakeholders during the system’s lifecycle.

12 CHAPTER 2. STATE OF THE ART

Commercial solutions

Description: There are several industrial approaches that are proposing to express requirements
and to links them (some of them can be found in [28]). Since they are probably the most used ap-
proaches, we cannot talk about tools for requirements without citing the well-known IBM Rational
DOORS [29] or Dassault Systems Reqtify [30]. These tools allow the users to manage requirements,
expressed using several different tools (such as text documents or spreadsheets) and to manage links
between requirements and other artifacts.

These tools do not consider the way that requirements are expressed: they are addressed to non-
specialists and thus are easy to handle. By working with requirements as units – atomic artifacts –
that can be manipulated, these solutions are abstract enough to work with any type of requirements,
expressed in several representations. They are however mainly used with NL requirements and so,
can be used to express all kinds of requirements.

In these approaches, the users can express relationships between requirements, introducing trace-
ability links such as refinement, as well as relationships between requirements and specifications,
such as code (Reqtify allows to create a link between a NL requirement expressed in a Microsoft
Word Document and C code portion).

However, and regardless of their proprietary formats, these tools do not provide a strong se-
mantics for the links. These tools are not formally defined in any way and therefore do not support
verification.

Properties:

(a) Intended audience: These tools are addressed to all stakeholders.

(b) Traceability support: Traceability is the core behavior of these tools.

(c) Coverage: All kinds of requirements can be considered with these tools.

(d) Semantic definition: There is no semantic definition.

(e) Verifiability: There is no verification mechanism.

KAOS

Description: Some of the best-known approaches to requirements are the Goal-Oriented Re-
quirements Engineering (GORE) approaches. These approaches aim to provide a framework to
requirements’ elicitation, expressing in the first time the goal of the stakeholders, to refine in a
second time into sub-goals and finally, requirements that the system has to meet.

The KAOS [31] methodology is one of these approaches (as well as i* [32]). Supported by several
tools, like Objectiver [33], KAOS allows the users to create requirements and to link them to other
artifacts, such as goals they refine, agent that are responsible of them or even to the operation that
implement the requirements (in Fig. 2.1 the requirement “Avoid the obstacles” is refined from the
need “Transport safely the package”).

In the basic form of KAOS, goals and requirements are pieces of NL text and so, both functional
and non-functional requirements can be expressed and are understandable by all stakeholders. Even
if a focus is put on traceability in KAOS, this traceability is more about elicitation artifacts and
does not keep a link in downstream phases. However, there is a current research work (see below

2.1. REQUIREMENTS ENGINEERING 13

in section 2.2.2) that leads to creating traceability between KAOS and textual representation of
requirements.

Figure 2.1: Example of a goal and the requirements refined from this goal in KAOS

If there is a clear semantics definition of KAOS, requirements themselves are expressed in NL
and so, are not semantically defined. Some research works aim to provide a formal semantics to
requirements expressed in KAOS (in LTL [34] or Event-B [35]), but it is not natively supported by
the approach, as well as the verification.

Properties:

(a) Intended audience: These tools are addressed to all stakeholders.

(b) Traceability support: Traceability between elicitation artifacts and to specification docu-
ments.

(c) Coverage: All kinds of requirements can be considered.

(d) Semantic definition: Not natively.

(e) Verifiability: There is no verification mechanism.

SysML

Description: The Systems Modeling Language (SysML) [36] extension of Unified Modeling Lan-
guage (UML) [37] is designed to model complex systems. Among the different diagrams of this
extension, the Requirements Diagram allows engineers to represent requirements as artifacts, that
can be connected to other artifacts. These other artifacts can be other specification elements (such
as Block for example) as well as other requirements artifacts, allowing quick and visual traceability.
Requirements’ artifacts themselves are composed of a unique identifier and a text, that contains
the NL requirement.

Both functional and non-functional requirements can be represented only in NL, but cannot be
verified. The SysML model does not integrate links to other paradigms and so, there is no native
possibility in SysML to create relationships with other non-SysML representations of requirements

14 CHAPTER 2. STATE OF THE ART

(contrary to the aforementioned tools). The ReqCycle2 plugin for the PolarSys3 development tool
offers this possibility.

In [23], Soares et al. propose to extend SysML to provide a better-structured way to express
requirements. By adding an explicit relationship between requirements, especially in the require-
ments table, they improve the traceability notion in requirements expression, making explicit (and
semantically defined via metamodel) links between requirements. Indeed, they highlight that the
type of relationships existing between requirements is important to measure the impact change.
The solution proposed still requires human expertise to determine the change effect.

Properties:

(a) Intended audience: Requirements expressed in SysML’s requirements diagram can be un-
derstood by all stakeholders.

(b) Traceability support: Traceability between artifacts of several phases is supported.

(c) Coverage: All kinds of requirements can be considered.

(d) Semantic definition: There is no semantic definition for requirements.

(e) Verifiability: There is no verification mechanism.

URML

Description: User Requirements Modeling Language (URML) [38, 39] is a UML profile. This lan-
guage provides a graphical representation of requirements and other concepts linked to requirements
(such as threats, hazards, mitigations, product lines, and stakeholders). This approach proposes
to add some semantics on links between requirements and other artifacts (e.g., refines, constrains,
etc.). In their work, the authors focused on the existing relationships between requirements and
other elements, not on the way of expressing requirements. Note however that the requirements can
be linked to use cases or processes. These models should introduce a kind of formal representation
of the requirements.

This approach is focused on the elicitation process, considering concepts from feature-oriented,
goal-oriented, process-oriented, risk-oriented approaches (for example, the danger notion is used
to justify the need for some requirements). Even if some semantics is defined on the links, there
are no semantics on requirements themselves and no verification mechanism associated with this
approach.

Properties:

(a) Intended audience: The icon-based notation should be understandable by all stakeholders.

(b) Traceability support: Traceability between concepts is inside the language.

(c) Coverage: All kinds of requirements can be considered.

(d) Semantic definition: There is some semantics on links between artifacts.

(e) Verifiability: There is no verification mechanism.
2https://www.polarsys.org/projects/polarsys.reqcycle
3https://www.polarsys.org/

https://www.polarsys.org/projects/polarsys.reqcycle
https://www.polarsys.org/

2.1. REQUIREMENTS ENGINEERING 15

Note: There exist other UML profiles that extend the notion of requirements. For example, the
Modeling and Analysis of Real Time and Embedded systems (MARTE) [40] profile for real-time
and embedded applications allows using a more refined approach to requirements, introducing in
its Design Model temporal logic elements that can be used to express requirements.

This profile has been used in the methodology proposed by [41] in coordination with SysML
and Electronic Architecture & Software Tools - Architecture Description Language (EAST-ADL2)
– a language to design automotive systems. The approach aims to keep the idea of traceability
between requirements and components proposed by SysML, while they use notions of MARTE to
complete EAST-ADL2.

These approaches are however domain-centric (real-time and embedded applications, automotive
embedded systems) and are thus not detailed here.

URN

Description: User Requirements Notation (URN) is a standard from the International Telecom-
munication Union (ITU-T) [42]. The language and its tool, jUCMNav [43], aim to provide a visual
notation for modeling requirements. The use of a formally defined notation should thus help to
elicit and analyze requirements.

The language itself is composed by two parts: the Goal-oriented Requirement Language (GRL)
and the Use Case Map (UCM). The GRL can be used to express non-functional requirements
and goals, and the very first steps of the requirements elicitation process, while UCM enables to
refine these non-functional requirements and goals into more functional requirements (called System
Requirements), through scenarios. The expressiveness of the language is one of the crucial points
according to the authors, and both of the non-functional and functional requirements are thus
understandable by all the stakeholders. Indeed, the GRL expresses requirements using NL, while
the scenarios that allow the user to formalize functional requirements is a simple way to keep a
kind of expressiveness.

Traceability between artifacts is a concern of the notation. Indeed, it is possible to use several
relationships between the elements (like contribution, correlation, decomposition, etc. for GRL).
Each link can be qualified to give an additional information (for example, it is possible to indicate
if a soft-goal contribute to help or to make another soft-goal). Moreover, the connection between
URN and other languages is made possible by two ways: first, by providing a metamodel of URN,
it is possible to make transformations to other modeling languages, then, the tool allows integrating
URN into DOORS, providing a way to benefit from the traceability to other paradigms.

Properties:

(a) Intended audience: Both non-functional and functional requirements are understandable by
all stakeholders.

(b) Traceability support: Traceability between internal artifacts in the approach is supported.
The external traceability is supported by the tool and integrated into DOORS (and so has
drawbacks of this tool).

(c) Coverage: Non-functional requirements are addressed in GRL while functional ones can be
expressed in UCM.

16 CHAPTER 2. STATE OF THE ART

(d) Semantic definition: While the language syntax is defined in the standard, the semantics is
informal.

(e) Verifiability: No formal verification mechanism.

2.1.3 Formal approaches for requirements
In this section some formal methods used in requirements engineering are presented. Contrary to
the approaches of the previous section, formal approaches aim to be rigorously defined to allow
verifying a design according to requirements. They are addressed to a more expert public, with a
formal background, and are mainly used in industry for critical parts of systems.

VDM

Description: Developed by the IBM laboratory, the Vienna Development Method (VDM) [44]
is one of the oldest formal methods.

It first proposes a Specification Language called VDM-SL [45]. Using this language, the users
can model the system (using modules) at a high level of abstraction and then refine it successively
to a more detailed design (through a reification process).

A more recent version of VDM, VDM++ [46], proposes to use classes and inheritance instead
of the VDM-SL module structure.

Only functional requirements can be expressed using VDM-SL and VDM++ languages, but
such requirements can then be verified through proof-obligation.

Properties:

(a) Intended audience: As a formal method, VDM is addressed to experts.

(b) Traceability support: There is no traceability support.

(c) Coverage: Only functional requirements are considered.

(d) Semantic definition: A formal semantics is available for VDM.

(e) Verifiability: Requirements expressed in VDM can be verified.

Alloy

Description: Alloy [47] is a formal modeling language based on first-order logic, inspired by Z
[48]. The language proposes to specify systems, using a syntax similar to object modeling languages,
such as Object Constraint Language (OCL).

The user can describe data structures in Alloy (using the keyword sig and extends mechanism)
and define relationships to other artifacts, like in classical object-oriented. It is also possible to
express constraints on the model in order to tend towards a correct representation of the system.
These constraints can be used to express the functional requirements of the system.

Specification designed using Alloy can then be automatically checked, using the Alloy Analyzer,
a constraint solver. If the model constraints can be correctly satisfied, the solver can give the user
a valid instance of this specification.

2.1. REQUIREMENTS ENGINEERING 17

Properties:

(a) Intended audience: As a formal method, Alloy is addressed to experts.

(b) Traceability support: There is no traceability support.

(c) Coverage: Only functional requirements are considered.

(d) Semantic definition: A formal semantics is available for Alloy.

(e) Verifiability: Requirements expressed in Alloy can be verified.

Event-B

Description: Event-B [34] is an event-based version of the B formal method [49] that has been
proposed to model a system.

The user can express states of the systems (as sets and functions) and define events that will
affect these states. This specification can be constrained by invariants, used to express functional
requirements.

A valid model is thus a specification that satisfies these invariants. When a model is valid, it can
be refined into a more detailed model (of lower abstraction level) and, using the proof obligations,
ensure that the refinement is correct regarding its invariants. The proof-based refinement thus
ensures that the derived models respect the properties from a higher level of abstraction models.

Properties:

(a) Intended audience: As a formal method, Event-B is addressed to experts.

(b) Traceability support: There is no traceability support.

(c) Coverage: Only functional requirements are considered.

(d) Semantic definition: A formal semantics is available for Event-B.

(e) Verifiability: Requirements expressed in Event-B can be verified.

FORM-L

Description: FORM-L [50] is a language extension for MODELICA [51]. The FORM-L language
proposes a refinement-based process to specify a system, its environment, and its requirements.

In this approach, the system is first considered as a black-box, with goals, that will then be
successively refined into requirements that will be more and more detailed. The system itself
will be detailed, going from a black-box to its components. The mathematical notation and the
refinement process should lead to a correct model of the system. Probabilities are an important
part of this formalism, each element expressing a probability to satisfy a requirement, and each
requirement is expressed with a require probability to be satisfied. The verification process is based
on probabilistic models to check the validity of requirements. There is a current effort to provide a
formalization of the notation to obtain a complete semantics.

Since the approach starts from the goals and goes to the system, there is a support of traceability
from goals to the requirements that shall satisfy these goals. However, the traceability is internal
to FORM-L and there is no traceability to other tools.

18 CHAPTER 2. STATE OF THE ART

Properties:

(a) Intended audience: The notation is addressed to users with a specific training – even if more
affordable than some other formal approaches.

(b) Traceability support: Traceability can be established between formal requirements, informal
requirements and goals.

(c) Coverage: Only functional requirements are considered.

(d) Semantic definition: There is a current effort to define a formal semantics for FORM-L.

(e) Verifiability: Thanks to transformation to Stimulus (see section 2.1.5), model-checking is
possible.

2.1.4 Natural Language Analysis
Some approaches propose to analyze NL requirements and to provide a more formal representa-
tion. Contrary to the aforementioned approaches, approaches presented in this section propose to
bridge the gap between requirements expressed in NL and a more formal representation of these
requirements.

Natural Language Processing (NLP)

Description: Some of the most popular approaches for Natural Language Analysis are Natural
Language Processing (NLP) techniques. Indeed, such techniques allow stakeholders to write re-
quirements in NL and to obtain a formal representation thanks to the processing of NL text. The
aim of this section is not to detail how all these approaches are working, but the basic idea of ap-
proaches such as [52, 53, 54] is to provide tools that allow analyzing NL texts, extracts requirements
(in finer or coarser grain depending on the approach). These requirements can be then expressed
more formally, through ontological representations or in formal mathematical notations. Most of
the time, these works do no go that forward into formalization. For example, in [55], the authors
propose to analyze the compliance of requirements to a requirement template. In [56], the work
of analysis should help to detect what are the requirements into a document. Thus, if these works
allow for better requirements document, most of them do not address the formalization of require-
ments. Moreover, even for the approach that proposed formalized requirements, they co-exist with
the original NL requirements and there is still a gap between both representations since they are
not expressed in the same language and are independent of each other. Note that the analysis of
NL is a quite difficult task, and there is currently a major research effort in this field, trying to
overcome this difficulty.

Properties:

(a) Intended audience: The source documents are addressed to all stakeholders, but the resulting
ones require most of the time specific skills.

(b) Traceability support: There is a direct correspondence between the Natural Language text
and the formalized requirements but, since there are expressed in two different languages, it is
necessary to keep a link between these representations. However, the work on these approaches

2.1. REQUIREMENTS ENGINEERING 19

is focusing on how to analyze and formalize requirements analyzed in such a way, not on the
treatment of requirements after this analysis.

(c) Coverage: Approaches that formalize requirements through ontological representations allow
expressing all kinds of requirements.

(d) Semantic definition: The objective of NLP is to extract semantics from NL.

(e) Verifiability: NLP is an entry point for a formal representation of requirement. It gives
artifacts that are classified and can be used. There is no verification of requirements at NLP
level.

Natural Language Analysis: from NL to STD

Description: The methodology proposed by [57] aims to iteratively transform NL requirements
into State Transition Diagram (STD). Based on the idea that functional requirements can be ex-
pressed as a {state1, transition, state2} triplet, this approach is focusing on functional require-
ments,. It provides a transformation pattern to create, from a requirement, a partial STD that will
be iteratively completed with other requirements.

The analysis of the final STD should lead to detect lacks in requirements (for example if a state
is missing). This representation, even if less understandable by non-specialist, still be very simple
and can be used as communication support for most of the stakeholders. Moreover, STD are quite
common, and since STD are formal, they can be analyzed by states machine verification tools.

Properties:

(a) Intended audience: While the natural language requirements are accessible to every stake-
holder, the STD representation is less affordable.

(b) Traceability support: Relationships between requirements are partially covered, but there is
no upstream and downstream traceability.

(c) Coverage: Thanks to the level of abstraction of requirements, all kinds of requirements can
be expressed.

(d) Semantic definition: There is no strict semantics definition of the approach.

(e) Verifiability: Resulting STD can be analyzed to detect deficiencies in the specification.

Natural Language Analysis: from NL to OWL

Description: In [58], the authors propose a methodology to transform NL requirements into an
ontology based representation in OWL [59]. For this purpose, they introduce an intermediate mod-
eling language to express requirements. This language still be, according to the authors, addressed
to requirements engineers and cannot be used for communication with all stakeholders.

The proposed ontology for requirements integrate notions such as functional goals and quality
goals (respectively functional and non-functional requirements), as well as a domain representation
through the domain assumptions.

20 CHAPTER 2. STATE OF THE ART

Requirements expressed in this ontological representation can be manipulated by tools like
Protégé4 or libraries (such as OwlReady5, owlcpp6, . . .). These requirements, however, cannot be
verified.

Properties:

(a) Intended audience: The use of this approach requires a specific training.

(b) Traceability support: Ontologies can be linked to other ontologies, providing a partial trace-
ability.

(c) Coverage: All kinds of requirements, functional and non-functional, can be addressed.

(d) Semantic definition: OWL semantics only is supported.

(e) Verifiability: There is no support of verifiability.

2.1.5 Constrained Natural Language
In this section, we present some methodologies that propose to express requirements in a kind of NL,
constrained by a grammar. The objective of these approaches is to provide languages quite similar
to NL, easy to understand by all stakeholders, but constrained enough to automatize analysis.

Requirements Grammar

Description: Several grammar have been proposed to requirements. In fact, most of the stan-
dards incite to respect a clear and precise grammar. However, tools and approaches described
in this section constrained the language to obtain a subset of NL, still understandable by all the
stakeholders but easier to analyze, since the grammar is controled. For instance, in [60], the authors
define a context-free grammar for requirements to ease the elicitation process. By positioning their
approach in the upstream phases, Scott and Cook are focusing on the analysis of lexical clauses
to detect inconsistencies. This approach is part of the elicitation phase and aims to ease this
step, removing some ambiguities or inconsistencies, but does not provide a precise semantics to the
requirements and so, does not offer a formal verification mechanism. Therefore, both functional
and non-functional requirements can be represented, as well as domain knowledge, without any
distinction.

Properties:

(a) Intended audience: Every audience can read requirements expressed in the constrained NL.

(b) Traceability support: There is no traceability support.

(c) Coverage: Given the level of abstraction of requirements, all kinds of requirements are ad-
dressed.

(d) Semantic definition: No semantics is associated to the language.
4https://protege.stanford.edu/
5https://pypi.python.org/pypi/Owlready
6http://owl-cpp.sourceforge.net/

https://protege.stanford.edu/
https://pypi.python.org/pypi/Owlready
http://owl-cpp.sourceforge.net/

2.1. REQUIREMENTS ENGINEERING 21

(e) Verifiability: Verifiability is limited to the analysis of the consistency of lexical clauses of
requirements.

NL/OCL

Description: In [1], Hähnle et al. propose to express parts of a systems constraints in a con-
strained NL. These constraints are translated in OCL [61], a constraints formal language for UML.
In the example on Fig. 2.2, the authors present a matching between a constraint on an OCL
operation – an operation that returns the first element of a queue – and its NL translation.

Operation getFirst

OCL: context Queue::getFirst() : Integer
pre: self.size() > 0
post: result = self.asSequence()

->first

English: for the operation getFirst() : Integer of the class Queue, the following precondition should hold:
the size of the queue is greater than zero

and the following postcondition should hold:
the result is equal to the first element of the queue.

Figure 2.2: Example from [1] of a matching between English and OCL

This work is focusing on operational requirements and all the concepts should be related to the
system itself. OCL is a formal language, and there exist approaches for verification [62]. The goal
of the authors is to integrate the approach in the KeY Java-oriented formal verification project [63].

Properties:

(a) Intended audience: Input can be read by all stakeholders, but OCL is addressed to software
engineers.

(b) Traceability support: There are links between requirements and specification, but no specific
support.

(c) Coverage: Only functional requirements are addressed.

(d) Semantic definition: Semantic definition is given in OCL.

(e) Verifiability: OCL verification tools can be used to verify the consistency of requirements.

Relax

Description: The Relax language [2] is a requirements language for Complex Adaptive System
(CAS). As environmental factors are crucial in CAS, Relax proposes to explicitly express both
properties (with ENV keyword) and monitors that can provide these properties (with MON keyword).
Both notions can then be linked through relationships with REL keyword. Another keyword, DEP,
allows creating relationships between requirements. The example Fig. 2.3 let’s appear all these
keywords. The requirement itself is expressed in the first lines and is identified by R1.1’. The other

22 CHAPTER 2. STATE OF THE ART

entries describe environmental knowledge (the food location and the food information) and monitors
that can be used to acquire this knowledge. In the end, relationships with other requirements are
also provided.

R1.1’: The fridge SHALL detect and communicate information
with AS MANY food packages AS POSSIBLE.
ENV: Food locations & food information.
MON: RFID tags; Cameras; Weight sensors.
REL: RFID tags provide food locations/food information; Cam-
eras provide food locations; Weight sensors provide food informa-
tion (whether eaten or not).
DEP: R1.1’ negatively impacts R1.2’; R1.1’ positively impacts
R1.4 and R1.5.

Figure 2.3: Example of a smart fridge requirements from [2]

Both functional and non-functional requirements can be expressed, through the help of temporal
notions. The language itself is semantically defined with Fuzzy Branching Temporal Logic (FBTL)
[64] (a generalization of Propositional Linear Temporal Logic (PLTL)).

Properties:

(a) Intended audience: Relax is close to NL and thus, is readable by all stakeholders.

(b) Traceability support: Relationships between requirements can be established, but there is
no specific traceability support.

(c) Coverage: Only functional requirements are addressed.

(d) Semantic definition: Rigorous definition using FBTL is supported.

(e) Verifiability: Requirements expressed in Relax can be verified using the FBTL semantic
definition.

Stimulus

Description: The approach proposed in the Stimulus7 tool from Argosim also provides a con-
strained NL [65]. Functional requirements and environmental assumptions can be expressed in a
non-specialist understandable way.

This approach is focusing on verification – traceability is not considered. For this purpose,
Argosim based its approach on a programming language, inspired by Lucid Synchrone [66] and
Lutin [67], and verification itself is based on model-checking.

Properties:

(a) Intended audience: Close to NL, Stimulus is readable by all stakeholders.
7http://argosim.com/product-overview/

http://argosim.com/product-overview/

2.1. REQUIREMENTS ENGINEERING 23

(b) Traceability support: Traceability is not addressed in Stimulus.

(c) Coverage: Only functional requirements are addressed.

(d) Semantic definition: There is a precise definition in a programming language inspired by
Lucid Synchrone and Lutin.

(e) Verifiability: System behavior is model-checked by simulating inputs.

2.1.6 Summary and discussions
The table 2.1 summarizes the approaches surveyed in section 2.1. As stated in section 2.1.1, we
can identify that there are two worlds:

• NL-based approaches (DOORS, Reqtify, KAOS, SysML, URML) are focusing on the readabil-
ity of requirements and the traceability, notwithstanding the semantics and the verifiability
of requirements themselves;

• formal approaches (VDM, Alloy, Event-B, FORM-L) provide a strong semantics and mecha-
nism of verification but are not addressing the traceability.

In the table, we analyze for each of the properties if the approach support it (3), does not support
it (8) or partially supports it (∼). For the intended audience, we emphasize if the approach allows
expressing requirements understandable by all stakeholders (A) or only by experts (E). For the
approaches that transform NL to another language, we only take the output language to analyze
this property.

Intended Audience Coverage Traceability support Semantic definition Verifiability
DOORS A 3 3 8 8
Reqtify A 3 3 8 8
KAOS A 3 ∼ 3 8
SysML A 3 ∼ 8 8
URML A 3 ∼ 3 8
URN A 3 3 8 8
VDM E 8 8 3 3
Alloy E 8 8 3 3

Event-B E 8 8 3 3
FORM-L E ∼ ∼ 3 3

NLP E 3 8 3 3
NL to STD E 3 8 8 3
NL to OWL E 3 8 3 8

Requirements grammar A 3 8 8 8
NL to OCL E 8 8 3 3

Relax A 3 ∼ 3 3
Stimulus A 8 8 3 3

Table 2.1: Summary of the approaches

NLP and Constrained NL aim to bridge the gap between these two worlds, but none of them
is covering all the properties. One of the properties that is the most poorly treated is the trace-
ability: (i) approaches that formalize traceability links only consider links between artifacts of
the approaches and (ii) approaches that provide links to other formalisms, do not provide a clear
semantics for these links.

24 CHAPTER 2. STATE OF THE ART

Indeed, traceability in the most popular tools is considered as simple links, connecting to artifacts
of the system, with no specific semantics. While most of the widely used tools are focusing on
traceability, the most formal tools presented in this section do not address this issue. It is, however,
crucial to be able to link several representation of a requirement, in several tools. As IT and
software are more and more present in everyday life, projects often involved stakeholders from
different backgrounds, that are used to work with different tools. It is thus crucial to give a real
importance to these traceability links, and we will analyze how can we do that in the next section.

2.2 Model-Driven Engineering

One of the main issues leading to failure in Requirements Engineering is the need to express require-
ments in several languages. As previously introduced, requirements are most of the time expressed
at first in NL. They are then refined and formalized in a concrete realization. Even if not using
the strict formal representation of requirements, there are several levels of abstractions to express
requirements, and we present in section 2.2.1 how these levels of abstractions can be addressed. In
section 2.2.2, we present approaches that try to overcome not only the problem of using several
levels of abstraction but also the use of different formalisms, specific to different stakeholders.

2.2.1 Representation of artifacts through several abstractions

Development based on waterfall processes or V-model is built around the idea of creating artifacts
that are less and fewer abstracts. The first artifacts give a general idea of what the product shall
be, and own a high level of abstraction, while programs and code are very concrete. Even in more
modern methods like Agile [68, 69], these several levels of abstraction subsist (from user stories that
express requirements to code). Interweaving these several levels is crucial for traceability; indeed,
it is important to keep consistency between these several levels to avoid misconceptions. We will
quickly introduce in two following sections how some of the approaches mentioned in section 2.1 are
considering these several levels of abstraction, and we will then analyze how some other approaches
try to overcome the issue of expressing the same requirements at several levels of abstraction.

Modeling languages

Modeling Languages, such as UML or SysML, is one of the main kinds of approaches that come
to mind when talking about levels of abstractions. These languages provide several diagrams, each
of them addressing a specific design problem. For instance, UML owns several views, with a view
dedicated to express “what” shall be the system (use-case view), while the logical view expresses
how the system shall meet its requirements. Even if several levels of abstractions are expressed in
several diagrams, these diagrams are part of a whole unique model and are thus linked.

It is even clearer in SysML. As was introduced in section 2.1.2, the Requirements Diagram of
SysML allows the user to link requirements artifacts to other model elements. Thus, it is easy to
create a link from a requirement, very abstract, to block elements that describe a specific part of the
system’s behavior. However, as analyzed in section 2.1.6, such links do not own formal semantics
and depending on the approach or the tool used by the development team, a derived link can take
a very different meaning.

2.2. MODEL-DRIVEN ENGINEERING 25

Formal methods

The formal approaches introduced in section 2.1 (such as Event-B or Alloy) also address several
levels of abstractions. Indeed, it would be utopian to expect an engineer to write, from scratch, a
complete and detailed description of the system, even more using formal notations. That is why
formal methods are based on the idea of refinement: the user will express at first a very general
and abstract description of elements of the system, and will gradually introduce less abstract and
more detailed elements.

Contrary to models introduced in the previous section, formal methods are semantically defined
and thus, links between these several levels of abstractions are also defined (and are important to
keep the consistency of the design).

However, in such methods, links to two essential levels of abstraction are missing: the very first
level, the requirements expressed in NL, and the very last one, the code. If most approaches allow
code to be generated from a more detailed design, this generation does not keep a link between
elements of the formal model and the implementation. Any change in the specification thus implies
regenerating the whole code completely.

Behavior-Driven Development

To interweave several levels of abstraction, the Behavior-Driven Development (BDD) approach [70]
aims to express the functionality of the software in natural language and automatically translate
these parts into software fragments. This approach aims to ensure that all expressed requirements
will be implemented in the system. The generation process provides an empty system specification
– that engineers can complete – and tests that will fail at first because of the empty specification.
The first canvas is thus an abstract representation of behavior, in a kind of NL, while the body
written by the developer will be a more concrete representation. By completing the specification,
engineers will satisfy requirements and have traceability on which requirements are not yet satisfied.

Scenar io 1 : Account i s in c r e d i t
Given the account i s in c r e d i t
And the card i s v a l i d
And the d i s pe n s e r conta in s cash
When the customer r e q u e s t s cash
Then ensure the account i s deb i ted
And ensure cash i s d i spensed
And ensure the card i s returned

Listing 2.1: Example of a BDD scenario (taken from [70])

BDD is thus an approach that provides a way to express functional requirements. Each func-
tional requirement is called a scenario that takes part in a story. A story aims to provide objective
and added value of scenarios. A scenario of a functionality is composed of three parts:

• the context, i.e., constraints of the system that must be held to realize the functionality;

• the trigger event of the functionality;

• the action to realize.

26 CHAPTER 2. STATE OF THE ART

In a classical structure of a BDD scenarios, the first part is introduced by Given, the second part
by When, and the last part by Then (see an example in List. 2.1). Contrary to previous approaches,
this approach focuses on implementation and check the realization of requirements by tests. It does
not provide any verification mechanism. Moreover, even if the requirements are not considered as
a textual unit as in NL approaches, the several parts of a BDD scenario are treated as a unit. The
semantics of these units should then be defined by engineers directly into source code.

Multirequirements

The idea of interweaving several levels of abstraction can remind the Single Model Principle [25],
mentioned in section 2.1.1. In the paper, R.F. Paige and J.S. Ostroff argue for an approach that
expresses requirements in the same formalism expressed in NL, in modeling notations, and in code.
This shall lead to reduce the gap that can exist between these several representations.

This idea is taken up in the multirequirements approach introduced by Meyer [71]. In this
approach, a unique programming language, Eiffel, is used to write the requirements, the speci-
fication, and the implementation. The approach proposes to combine specification expressed in
natural language, using code comments, diagrams (embedded into the Eiffel main IDE, EiffelStu-
dio), and design by contracts, to express requirements formally. The implementation itself can then
be expressed through this specification canvas.

One of the main advantages of such an approach is that it uses, like BDD, a paradigm that will
be necessarily used during the development: the programming language. Moreover, expressing it
in a unique paradigm can improve traceability: the user does not have to navigate through several
tools, but only have to use a unique dedicated tool: the language IDE.

Requirements expressed on the form of contracts are formal: they are semantically defined, they
can be analyzed with static verification tools, and can even be used for dynamic verification.

However, the link to other paradigms is not widely explored in this approach: the object-oriented
paradigm is well-known by software engineers, and they can easily understand specification written
with this formalism, but large projects do not only involve software engineers.

It thus lacks some research efforts on how to keep the link between all the stakeholders, including
their usual tools and viewpoints.

2.2.2 Addressing multiple viewpoints
Addressing multiple viewpoints is not an issue specific to RE. Indeed, conciliating several stake-
holders is a common problem in large projects. Such projects imply several stakeholders, with
several tools, and the information can be expressed in several heterogeneous ways. However, it is
important to keep a method to conciliate these several viewpoints; they are all part of the same
system and thus need to be able to be conciliated. There is a large research effort in this domain;
in [72], a systematic review is made and the authors find more than 8600 research papers address-
ing this problem. Similarly, in [73], the authors analyzed some of the most recent and most used
approaches. In this section, we will list some of these approaches used to overcome the issue of
addressing several viewpoints.

Model-based approaches

Model-based provide several mechanisms to create dedicated views on a problem. Indeed, as men-
tioned in section 2.2.1, several diagrams can be used for the same model. Such diagrams can be seen

2.2. MODEL-DRIVEN ENGINEERING 27

as views, dedicated not only for a level of abstraction but also for a specific point of view. Thus,
the SysML requirements diagram can be understood by most of the stakeholders, while the blocks
diagram is more dedicated to engineers. In the same way, the use case diagrams of UML can be
used as a communication tool between the development team and customers, while class diagrams
are addressed to engineers. These several views (or diagrams) are possible due to the distinction
between the abstract syntax and the concrete syntax; while the abstract syntax has to store all the
information of the models, several concrete syntaxes can be linked to the same abstract syntax,
each representing a partial view of the system.

Some tools, such as Sirius [74], allow the user to define concrete syntaxes associated with an
abstract syntax (a model). The user can thus define several views for the same model. However,
the source model still requires to be complete and represent all the project facets. Moreover, this
implies having access to all the data, which can be a problem in industrial projects that involved
several companies (for reasons related to intellectual property protection policy).

The GEMOC initiative [75] aims to globalize the use of model-based tools and methodologies
to ease these approaches’ transition. This interface can be involved to connect different Domain-
Specific Modeling Languages, used to express the specific needs of different stakeholders. These can
thus continue to work with their usual tools and Domain-Specific Languages – languages addressed
to a specific domain –, and models can be used as based artifacts to bridge the gap between the
several DSL. Moreover, the acceptance of this approach can be eased by the growth of interest for
Model-Based Systems Engineering (MBSE) [76] in the systems engineering industry.

EMF approaches

Eclipse Modeling Framework (EMF) is one of the most popular frameworks to express and manip-
ulate models. Since it is one of the most used tools for model manipulation, several approaches
have been designed to integrate this notion of viewpoints into the framework.

In [73], the authors cite EMF Profiles [77] as an approach dedicated to the multiple views
problem. This approach takes the idea of “profile”, widely used in UML world, and integrates
them into EMF. Profiles, in UML, are used to extend models to domain-specific problems. It gives
stereotypes to specific elements; for instance, a class can be stereotyped as a requirement or a goal.
The profile is however stored in a new model (the original one is conserved). A profile for a model
can thus be seen as a specific view of this model, and several profiles applied to a single model as
several views of this model. Such an approach is, however, not primarily addressed to define views
and needs specific dedicated tools.

The EMF Views approach [78] provides a language and a tool to define views, similarly to
database systems. Contrary to EMF Profiles, these views are not new models with a copy of
elements from the original model, but a kind of embedded query language that will ask the original
models. Thus, a view defined with EMF Views does not modify the original metamodel. Several
views can thus be associated with a single model that federates the elements of each view. However,
such an approach still needs the user to define a complete model with the elements of each of the
views.

OpenFlexo

In [79], the authors propose a new method to link specifications expressed in several ways. Contrary
to the traditional MDE approach that proposes using model transformations to change from one
model to another, they propose a ”space” vision. Stakeholders’ models can be seen as technical

28 CHAPTER 2. STATE OF THE ART

spaces, used to express specific needs of a domain, and to compose several subsystems in a common
one, a conceptual space is used to link interfaces of different domains.

They so mapped concepts expressed with several paradigms (EMF, XML, Word documents,
etc.) in a common interface. If a stakeholder chooses to change specifications, the common system
will be impacted, but contrary to the model transformation approach, other stakeholders will not
have to transform models again. They provide open source tools to their methods, grouped in the
Openflexo project8.

In [80, 81], the same authors propose to apply their model federation principle to requirements.
They consider the different ways to express requirements as technological space and link them in
the conceptual space. For example, requirements expressed in a Word Document can be linked to
other requirements expressed in KAOS.

The use of a central interface language, their conceptual space, facilitates the translucence
between several stakeholders. The transparent model transformation mechanism can measure the
change impact from a paradigm to the others.

However, it is needed to implement several technological connectors to bridge the gap between
their virtual models and the technological spaces. Thus, if a technological connector does not exist,
the writing of such a connector is needed. Even if there exists an open-source tool, there is a need
for a software expert to implement it. Another research direction can be to explore automatic
models transformations to deduce technological connectors.

2.2.3 Summary and discussions
MDE gives several solutions to address different points of view, whether for several levels of ab-
stractions or several tools used by users. In order to express several levels of abstractions, most of
the approaches are proposing to use a unique language. However, these approaches are not end-
to-end approaches, and gaps are still existing between some representations of requirements: NL
requirements, for example, are not considered in most of the approaches or, at least, not in their
usual initial form: in textual documents.

Approaches that try to conciliate several points of view are usually considering a unique model
that integrates all the information of the project. The problem of such approaches is that if a new
point of view is added, the model shall be modified with several new information. Openflexo does
not have this problem: new models are plugged to existing ones, creating a common virtual model.
However, this technology is quite new. Moreover, contrary to the classical model transformations,
it is not mastered by many people for now.

2.3 Conclusion
Ensuring the quality of a project by tracing requirements is a main problem of engineering. The
approaches presented in this section all try to provide good requirements and good traceability
between the several points of view that can co-exist.

However, all these approaches are facing the gap existing between:

• NL requirements, affordable and understandable by all stakeholders but, obviously, not formal
and consequently, potentially ambiguous, inconsistent, not complete, etc.;

8https://www.openflexo.org/

https://www.openflexo.org/

2.3. CONCLUSION 29

• and more formal representation of requirements, in a dedicated language, but affordable by
only some experts in the project.

Formal approaches should be considered: the only way to automate the analysis of requirements
will go through the formalization process, either by an end-to-end formal approach or by a trans-
formation from non-formal to formal approach (through NLP or approaches that provide a more
abstract view of the system). However, one can ask why not all engineers use formal approaches?
Indeed, industrial practices usually do not enact formalization of requirements [82], and they use
natural or modeling languages to express requirements and manual processes to trace them from
analysis to implementation through design [83]. An effort shall, however, be made to ease the
acceptance of such methods.

On the one hand, the skills required to work with classical formal methods are not widely known,
and not all the engineers can understand such approaches. On the other hand, approaches based
on the programming language have the advantage of being formal while remaining accessible to
engineers. From a multi-view perspective, these approaches can be used to express several levels
of abstraction in the same language. Moreover, the more-and-more used agile approaches could
include these approaches since they need frequent exchanges with customers and directly impact
source code changes.

Furthermore, the approaches presented in this state of the art are poorly addressing the trace-
ability problem and how a change can impact other artifacts (either requirements or parts of the
system).

There also exists a lack of a bridge between existing approaches and practices. Indeed, it is
utopian to propose a single model for projects. While this may work on fairly simple projects,
in complex systems, where many stakeholders are involved, tools adapted to specific parts of the
system should be proposed. This would require a considerable amount of work, while not providing
tools as adapted as those already existing. Moreover, the various stakeholders’ uses and habits
would undoubtedly hinder the acceptance of a single model. Therefore, it seems more realistic to
propose a model dedicated to requirements engineering while creating bridges to existing tools. The
different stakeholders could thus continue to use their usual tools while benefiting from this model’s
contributions.

30 CHAPTER 2. STATE OF THE ART

Part II

Contributions

31

Chapter 3

The Seamless Integration of
Requirements in CODe (SIRCOD)
approach

“Any fool can write code that a computer
can understand. Good programmers write
code that humans can understand.”

Martin Fowler

Contents
3.1 Why use a programming language? . 34
3.2 Overview of the approach . 34
3.3 Requirements: from Natural Language documents to code artifacts . 36
3.4 Linking requirements and their formalization 40
3.5 Refining requirements . 46
3.6 Organizing requirements . 48
3.7 Use case: the Landing Gear System . 49
3.8 Conclusion . 53

As mentioned in the introduction of this thesis, requirements are the base of an engineering
process. However, while there is a real need to express them in a way that is affordable by all
the stakeholders – after all, everyone has to clearly understand what the developed system is –,
these requirements have to be defined in a way that is clear enough to leave no ambiguity – and
ambiguity is a property of NL. So, the research in RE proposed several ways to try to overcome this
issue: strict syntax for requirements document, analysis tools, formal languages. From our point
of view, the proposed approaches suffer from their quality: either they are not formal enough and
thus, can lead to the introduction of ambiguity, either there are formal enough, but engineers that
are non-expert are reluctant to use such approaches. In this chapter, we propose an intermediate

33

34 CHAPTER 3. THE SIRCOD APPROACH

way: the use of programming language. This shall lead to introducing some formalism affordable
by the software engineers that work on a project.

3.1 Why use a programming language?
Requirements and code are closely linked to the development of software systems. Indeed, each piece
of code should answer a need expressed in a requirement, and each requirement should be satisfied
by (at least) one piece of code. However, most of the time, developers are asked to write code
in dedicated editors, that can provide tools for comments and documentation, but requirements
remain artifacts in other formalisms, disconnected from the written code (Requirements documents
written in Microsoft Word, issues in an issue-tracking manager or even user stories). If a change
is introduced in code or requirements, there is no simple mechanism to analyze and impact this
change.

By interweaving requirements and code, approaches based on the Single-Model Principle try
to overcome this issue. The multirequirement approach [71] emphasizes the need to express re-
quirements and code in the same formalism: the programming language. An advantage of such
an approach is allowing the developer to access the requirements when programming in the same
environment.

However, this approach suffers from several issues: first, the relationship between the several
levels of abstraction of requirements (from the requirement itself to the code that realizes it) are
not clearly defined. Then, even if some links can exist between these several representations in the
multirequirement approach, they are not semantically defined. To ease the analysis of the code
regarding the requirement, a semantic link shall exist between them.

This chapter will present the Seamless Integration of Requirements in CODe (SIRCOD) ap-
proach, which proposes exploring the multirequirement principle to overcome the issues mentioned
above. In the following sections, we will present the basis of SIRCOD, developing the methodology
and the tools introduced in the EiffelStudio IDE to support this methodology. This approach aims
to allow developers to link informal requirements and their more and more formal realization, along
with the system’s implementation.

3.2 Overview of the approach
As mentioned in the introduction, requirements are the basic bricks of the system. As such, they are
some of the first artifacts introduced during development. This early introduction leads to several
facts: (i) the first phases involve several stakeholders that are not all experts of requirements or
code, and (ii) requirements can exist in several representations but are, most of the time, expressed
in NL.

Based on that assumption, it should be considered that NL requirements are the entry point
for any development approach. This is why, even if we consider that early formalization is a good
practice (as aforementioned in section 2.1.1), we propose in SIRCOD to start from requirements
documents.

The process presented in Fig. 3.1 is thus quite classical, starting with the extraction of require-
ments and leading to the implementation. However, applying the multirequirement approach (and
the Single Model Principle) means that all these steps are made in the programming language
environment.

3.2. OVERVIEW OF THE APPROACH 35

1. Extraction 2. Formalization 3. Refinement 4. Implementation

Figure 3.1: The four steps of the SIRCOD process

Requirements Engineer

1. Extraction 2. Formalization

Software Engineer

3. Refinement 4. Implementation

Code

Requirements
Document

Eiffel NL
requirements

Eiffel Formal
requirements

Figure 3.2: Detailed steps of the SIRCOD process

In Fig. 3.2, we present the several artifacts that will be implied in the process. SIRCOD thus
start from a requirements document (in NL), and will progressively introduce them into the Eiffel
language, first as NL artifacts and then, as formal artifacts. Finally, the last output is the code
itself.

In the classical processes of RE, the very first step is the elicitation of the requirements. The
purpose of this step is to obtain a first draft of the user’s needs which can then be refined. In the
context of this section, we do not address the elicitation step.

While in classical approaches the requirements will be refined in a system requirements docu-
ment, the idea here is to introduce the Eiffel representation of the requirements as soon as possible,
the refinement process to obtain system requirements taking place in the code. Thus, in a similar
way to formal approaches, refinement will take place in a formal framework and verification and
validation process will take place in the approach. Unlike these approaches, however, there will be
no code generation step, as the use of the programming language itself allows to avoid this step.

In the following sections, we will detail each activity and present the changes we made in the
EiffelStudio environment to support the approach.

36 CHAPTER 3. THE SIRCOD APPROACH

3.3 Requirements: from Natural Language documents to
code artifacts

Requirements Engineer

1. Extraction 2. Formalization

Software Engineer

3. Refinement 4. Implementation

Code

Requirements
Document

Eiffel NL
requirements

Eiffel Formal
requirements

3.3.1 From Requirement-in-documentation to Requirement-in-code
Once the elicitation stage is over, the requirements are most of the time expressed in a user require-
ments document. In the case of the GORE approaches discussed in section 2, which are part of this
elicitation stage, the main tools (such as Objectiver) also allow the generation of a requirements
document. Thus, whether the elicitation is done using classical method or with a GORE approach,
it is necessary to start by extracting these requirements and express them into a programming
language (activity 1.a).

Figure 3.3: User Requirements Document of the Automatic Delivery Drone

The methodology presented in this section supposes a manual extraction of requirements (and
their relationships) and their translation into the chosen programming language. In chapter 4, we
will present the automatic translation of requirements into code and the tool that supports it.

The Fig. 3.3 illustrates a Microsoft Word document containing a set of requirements. The very
first step of SIRCOD consists of creating an Eiffel method (called feature) for each requirement.
These features – that we called requirements features – returns a sentence describing the re-
quirement (e.g., in List. 3.1, the feature requirement 1 1 doc returns the expression in NL of the
corresponding requirement).

feature

3.3. FROM NATURAL LANGUAGE DOCUMENTS TO CODE ARTIFACTS 37

requirement 1 1 doc : STRING
do

Result := ” [
The drone s h a l l p ick up a parce l , go to the d e s t i n a t i o n and drop

i t o f f when ac t i va t ed on the web a p p l i c a t i o n .
] ”

end
Listing 3.1: Eiffel feature describing a requirement

By convention, we named this feature with a suffix doc to differentiate them from other code
artifacts – the doc here, meaning that the feature is for documentation purposes. List. 3.2 gives
the pattern to apply. Even if requirements are still expressed in NL, they are now artifacts of the
programming language and can be used as they are.
feature

<identifier of the requirement> doc : STRING
do

Result := ” [
<text of the requirement>

] ”
end

Listing 3.2: Eiffel pattern for a requirement feature

3.3.2 Linking requirement-in-code and requirement-in-documentation
The second step (activity 1.b) consists of linking the requirement-in-code and its original document
to allow the navigation from one to the other. Thanks to Eiffel Information System (EIS), an
EiffelStudio mechanism, a code element (a feature, for example) can be linked to an external
document. More precisely, it can be linked to a piece of text of this document, thanks to bookmarks.

As shown in Fig. 3.4, the user can choose a bookmark on the document – to ease the addition
of such bookmarks, if some paragraphs of the documents do not have bookmarks, generic ones are
added by the tool.

The selection of a bookmark will add a note to the given feature. Eiffel notes can be used to
enrich the features that express requirements. These notes can be compared to Java annotations
and do not embed any semantics, except the one given by tools using them.

For example, the link between the original source of the requirement of List. 3.1 (the red dashed
underlined sentence in the MS Word document of Fig. 3.4), and the Eiffel requirement feature
(requirement 1 1 doc) is expressed by the note:
EIS: "src=use-case_drone.docx", "bookmark=1.1".

The produced code is given in List. 3.3, and the updated pattern is given in List. 3.4.
feature

requirement 1 1 doc : STRING
note

EIS : ” s r c=use−case drone . docx” , ”bookmark=1.1”
do

Result := ” [

38 CHAPTER 3. THE SIRCOD APPROACH

Figure 3.4: The ”Info” view that allows the user to graphically add a source

The drone s h a l l p ick up a parce l , go to the d e s t i n a t i o n and drop
i t o f f when ac t i va t ed on the web a p p l i c a t i o n .

] ”
end

Listing 3.3: Eiffel feature documenting a requirement

feature
<identifier of the requirement> doc : STRING
note

EIS : ” s r c=<path to source document>” , ”bookmark=<bookmark of the
requirement>”

do
r e s u l t := ” [

<text of the requirement>
] ”

end

Listing 3.4: Eiffel updated pattern for a requirement feature

3.3. NAVIGATING BETWEEN REQUIREMENT IN CODE AND IN DOCUMENTATION 39

3.3.3 Navigating from requirement-in-code to requirement-in-documentation
and vice versa

As introduced in the previous section, we emphasize creating an Eiffel representation of requirements
and a link to the source. If the introduced representation is quite simple and easy to read, it is
utopian to use a unique language to write requirements. First, due to the force of habit, most of the
commonly used representations such as MS Word documents or spreadsheets will probably remain
used for a long time. Then, different representations can be useful to address several stakeholders:
some of them will be more comfortable with natural language, other with graphical representations,
and so on.

Thus, it is important to find a way to keep the links between these representations and the code,
which is supported by EIS. This mechanism that we introduced in section 3.3.2 allows creating links
from (and to) source code to (and from) other documents. These links are encoded directly into
the code, through notes, and take several arguments. The bookmark is one of the most interesting
arguments since it allows the user to define precisely into the document where the referenced extract
is. Since bookmarks can be put at any place in a document’s structure, such a link allows users to
create relationships between any nodes of two trees: the syntax tree of the code and the document’s
tree structure.

Figure 3.5: EIS link from code to a requirement

As already mentioned, it is quite simple to create a link to an existing – or a generated –
bookmark. Thanks to EIS, if one of the end of the link between code and document is modified, the
developer is notified and can check and update the change. Fig. 3.6 gives an example of a change
notification. Since this feature has been modified, the Affected source list (in the hierarchy tree at
the left of the figure) shows the user that he should check the change’s impact on the document.
Similarly, the Affected target list will warn the user when an external source, linked to a part of
code, has been modified.

40 CHAPTER 3. THE SIRCOD APPROACH

Figure 3.6: Notification of several affected sources after modification in code

3.4 Linking requirements and their formalization
Requirements Engineer

1. Extraction 2. Formalization

Software Engineer

3. Refinement 4. Implementation

Code

Requirements
Document

Eiffel NL
requirements

Eiffel Formal
requirements

After expressing the NL requirements in code, thanks to the requirements features, the
second step of the process (activity 2) aims at introducing some formality. This step’s objective
is to ensure that the future system will meet its requirements. The very first step is, in our
opinion, before any other consideration, to enforce the developer to consider the requirement during
development. To this purpose, we based the SIRCOD approach on a refinement process, starting
from the requirements, at the higher level of abstraction, going to the implementation. This is the
common approach in formal methods, from the classical VDM [44] with data reification to more
recent approaches like Event-B [34]. This idea to start from abstract to go to concrete is also
something existing in Object-Oriented programming, and is made possible thanks to the notion of
abstract methods and classes (deferred in Eiffel).

The very first step of formalization is thus to provide, for each requirement, a deferred feature
that is a formal representation of this requirement. The developer who will have to inherit from
the class where the requirements are formalized will have to consider this feature. Otherwise, the
system will not compile (we detailed this below in section 3.5). These formal requirement features
can be obtained by applying the pattern given in List. 3.5.

To keep complete traceability to the original requirements, we created an src note that can be
used to link every code artifacts. Code artifacts are identified as given in List. 3.5: first, the class
where is the requirement feature between brackets ({<class containing the requirement
feature>}), followed by a dot and the identifier of the requirement feature (<identifier of
the requirement> doc).

feature
<identifier of the requirement>

3.4. LINKING REQUIREMENTS AND THEIR FORMALIZATION 41

s r c : ”{<class containing the requirement feature>} . <identifier of the
requirement> doc”

deferred
end

Listing 3.5: Eiffel pattern for a formal requirement feature

By applying this to the requirement 1.1 given in List. 3.3, we thus obtain the formal require-
ment feature in List. 3.6. Note that both features (requirement 1 1 doc and requirement 1 1)
are linked through the src note of List. 3.6.

feature
requirement 1 1
note

s r c : ”{GLOBAL REQUIREMENTS} . requirement 1 1 doc ”
deferred
end

Listing 3.6: Formal representation of a requirement in Eiffel

If this pattern can apply to all the requirements, it is possible to go further in formalizing some
of them. To this end, it is important to define what is a formal requirement. Formal approaches
(such as Event-B [34] or VDM [44]) are based on the idea that a requirement is satisfied if and only
if, given some assumption A, we are able to prove that predicate P expressed by the requirement is
met (that can be formalized as A ` P). A requirement is thus a pair of one set of constraints (the
assumptions) and one set of properties (the predicates).

3.4.1 Definitions
A requirement R is a set of properties, PR = {P1, ..., Pm} (each property Pi is a predicate) that
the system shall meet given a certain context CR = {C1, ..., Cn} (i.e., when all the constraints Ci of
the set of constraints CR are held). To rephrase, a requirement R is satisfied (sat(R) ≡ >) iff all
the properties are met (hold(PR) ≡ ((P1 ≡ >) ∧ ... ∧ (Pm ≡ >))) when all the constraints are held
(hold(CR) ≡ ((C1 ≡ >) ∧ ... ∧ (Cn ≡ >))).

Fundamental property of satisfaction: Using the previous definition, we can formalize the
satisfaction of a requirement R as:

sat(R) ≡ hold(CR)→ hold(PR)

Note: If a requirement R has no constraint, it is a global requirement and the context can be
understood as “always”. So, we can simplify:

sat(R) ≡ (> → hold(PR)) ≡ hold(PR)

On the contrary, a requirement R shall have at least one property (PR 6= ∅), since a requirement
without property makes no sense.

42 CHAPTER 3. THE SIRCOD APPROACH

Comment: Requirements properties are analyzed only when constraints are held. Indeed, the
given definition implies that if the constraints are not held, then the requirements can be satisfied
whether the properties are satisfied or not. For example, a requirement “When the drone is off,
the altitude shall be 0.”, if the drone is on, no matter if the altitude is 0 or more, the requirement
is satisfied in this context. That implies that a requirement is not satisfied only if its properties
are not satisfied when its constraints are held: ¬sat(R) ≡ ¬(hold(CR) → hold(PR)) ≡ hold(CR) ∧
¬hold(PR).

Using this definition of a requirement as a pair of assumptions and assertions to held, we can
match this to the concept of Design By Contracts in programming language as already introduced
in [84] or even [71].

Indeed, introducing preconditions (assumptions) and postconditions (assertions) allows us to
provide a formal way to express requirements while keeping a programming style that shall ease
accepting such an approach. In the same way, it is possible to use invariants to express elements
that will be part of the environment: they will be checked before and after the requirements. Note
that, contrary to what we developed above, the aim here is to provide a formal expression of the
requirement, in addition to the formal representation.

This cannot be applied to all requirements and, for instance, the requirement 1.1 already pre-
sented is a bit too large to be formalized as it is. We thus chose to formally express the requirement
given in List. 3.7. This requirement is in the context of the handling phase of the drone activity.
It states that when a drone is activated, it shall immediately be able to go to work and so, has to
know what is the parcel that it has to take in charge.

feature
requirement 1 2 1 doc : STRING
note

EIS : ” s r c=use−case drone . docx” , ”bookmark =1.2.1 ”
do

Result := ” [
1 . 2 . 1 . When the drone i s a c t i va t ed then p a r c e l and i t s p o s i t i o n

s h a l l be a s s i gned to the drone .
] ”

end
Listing 3.7: Feature requirement of requirement 1.2.1

The constraint and the properties of the requirement are here quite simple to found: the con-
straint requires that the drone is activated, and the properties to check are a parcel is assigned to
the drone and the position of this parcel is known by the drone. We apply the pattern from List. 3.8
to obtain the new formalization.

feature
<identifier of the requirement>

s r c : ”{<class containing the requirement feature>} . <identifier of the
requirement> doc”
require

<FOREACH constraint c DO>
<identifier of c> : <formal expression of c>

<END FOREACH>

3.4. LINKING REQUIREMENTS AND THEIR FORMALIZATION 43

deferred
ensure

<FOREACH property p DO>
<identifier of p> : <formal expression of p>

<END FOREACH>
end

Listing 3.8: Formally expressed requirement in Eiffel

Note that, at this step, the feature is still deferred. Indeed, even if the specification is given, the
implementation here is not yet written. The formalization of requirement 1 2 1 doc is given in
List. 3.9.

feature
requirement 1 2 1
note

s r c : ”{SHIPMENT REQUIREMENTS} . requirement 1 2 1 doc”
require

when drone is activated : (drone status = ac t i va t ed)
deferred
ensure

check ass igned parce l : (a s s i gned parce l /= Void)
check parce l pos i t ion : (p a r c e l po s i t i on /= Void)

end
Listing 3.9: Formal expression of a requirement in Eiffel

The formal requirements thus expressed are limited to state verification. However, in work done
in [85], a way to express timing requirements is given. This work, that has been developed by A.
Naumchev in [86] (where a complete set of Eiffel templates to express requirements based on the
Dwyer patterns [87] is given) can be used to express more formal expression of requirements. Note
that these patterns however imply writing non-deferred features. If this allows for a better expres-
siveness of formal requirements, this prevents applying a refining approach as already described. A
solution is to use two features to express such requirements: the first to express the requirement
itself, and the second to be used as a refining artifact. This is the solution given in List. 3.10.

feature
check <identifier of the requirement>
note

s r c : ”{<class containing the requirement feature>} . <identifier of the
requirement> doc”

do
<Apply the Autoreq pattern to <identifier of the requirement>>

end

<identifier of the requirement>
deferred
end

Listing 3.10: Formally expressed requirement in Eiffel

44 CHAPTER 3. THE SIRCOD APPROACH

This is, however, not a satisfying solution, and more investigation in this field is needed.
Nevertheless, the formal expression of requirements has several advantages, whether using con-

tracts or Autoreq templates. The first advantage of such a representation is to be used as a canvas
for development. Indeed, the developer that will refine and implement the requirement will have to
comply with these contracts. The formal expression avoids any ambiguity, and the link made with
the requirement in natural language makes it possible to keep the expression of the language simple
to understand. Of course, classical design by contracts can be used, and the written contracts will
be used to check the code dynamically.

Moreover, in addition to this dynamic analysis, it is also possible to use static analysis tools, like
the Eiffel prover AutoProof [88]. This tool analyzes the written code and checks if it conforms to
the assertions. The feedback thus obtained (an example is given in Fig. 3.7) can help the developer
detect if the requirement is correctly satisfied.

Figure 3.7: Sample of AutoProof output

3.4.2 The documentation view
Integrating requirements and documentation directly in code shall improve traceability. However,
the readability of requirements written in a programming language is not the best possible, with
the several code artifacts (such as do, end, Result, etc.). The purpose of the documentation view
is to overcome this issue. EiffelStudio already integrates a mechanism of views. For example, the
plain text view is the classical view, with the features of a class, while the flat view integrates all
the elements of the class’ ancestors.

We first added the documentation view as a way to print code documentation available in
another class. The idea was that most of the time, in well-documented class (using notes or other
doc comments), the tangled expression of the code and the documentation does not allow a clear
and simple reading of the code on the one hand and the documentation on the other hand. If the
documentation’s readability can be improved through HTML generation, for example, with a long
excerpt of documentation in code, it can be made difficult to read it. We so decided to extract
code documentation in dedicated classes, in the same way, we split requirement features and formal
requirement features. However, during development, the engineer still needs to have access to the
documentation, and forcing him to switch classes made the task harder.

We thus had a documentation view that allows, in a kind of literate programming way [89],
printing both the documentation and excerpts of code. While the process can be used to document
the code, it seemed to us that it was particularly interesting in the context of SIRCOD. Indeed, it
is thus easy when in a formal requirement feature to switch to the NL representation, improving
the readability and the understandability of requirements while keeping the formality of the code
expression.

In Fig. 3.8, a screenshot of the documentation view for List. 3.1 is given. In the feature
requirement 1 1 doc, only the identifier of the feature, the source of the requirement (EIS
note) and the content of the requirement appear.

3.4. LINKING REQUIREMENTS AND THEIR FORMALIZATION 45

Figure 3.8: Documentation view of requirement features

The text of the source, specified in the EIS note, is retrieved from the docx document and printed.
It so simplifies and relaxes the development by preventing the user from opening an external editor.
In Fig. 3.8, the EIS link to the bookmark 1.1 in the document use-case drone.docx is used to
extract the first sentence of the section 1.1. This view allows better readability by clearing the
editor of all elements that could interfere with reading (like the body of the features).

To ease the navigation, the documentation view is also clickable. This implies that all references
to code elements, like other classes’ features, can be clicked and automatically to open in the editor.
This again contributes to the fluidity of development by preventing the user from searching for
classes in the file system.

In Fig. 3.9, the documentation view for the List. 3.6 gives an example of how the documentation
view can be used by engineers to trace the requirement and the code documentation, putting in
the current context the text of the link. Thus, instead of browsing the requirement’s source, the
user can switch to the documentation view to look at the requirement. This contributes to the
development’s improvement. Let us notice that if the requirement includes a composition, the
documentation view also includes this composition.

Such a view allows for better integration of requirements in both code and documentation. Re-
quirements, code, and documentation are all artifacts of the same model and are linked together by
clickable and bidirectional navigable links. However, to avoid the overload of unnecessary informa-
tion that could impair the readability of the code, in the classical programming view, the elements
of documentation or requirements still exist but are just ”links” to other artifacts that are navigable
but do not print all the unnecessary text for the developer. Details related to requirements or code
documentation are printed in the dedicated view for documentation. This shall ease to handle
the information, hiding details when and where they are unnecessary, and highlighting them when
useful.

46 CHAPTER 3. THE SIRCOD APPROACH

Figure 3.9: Integration of documentations artifacts into code

3.5 Refining requirements
Requirements Engineer

1. Extraction 2. Formalization

Software Engineer

3. Refinement 4. Implementation

Code

Requirements
Document

Eiffel NL
requirements

Eiffel Formal
requirements

As mentioned in section 3.4, formal requirements features can be used as first canvas for a
correct-by-construction development. Since these features are deferred, every class that will inherit
from the class that contains formal requirements features will have to consider these deferred
features: either by implementing them directly or by implementing them in their child classes.

This is done in the third activity, called refinement, which is iterative. This process can be
compared to the well-known approach of refinement in requirements engineering [31, 90]. The
idea is to start from quite simple and abstract requirements and enrich them iteratively, making
them more concrete. Object-Oriented paradigm and Design by Contracts are quite suitable for this
approach. Following the Liskov substitution principle [91], preconditions and postconditions own
the same properties as refinement as defined by Abrial in [34].

class HANDLING CONTROLLER
inherit

SHIPMENT FORMAL REQUIREMENTS
rename

requirement 1 2 1 as on act ivate
end

3.5. REFINING REQUIREMENTS 47

feature
on act ivate
do

as s i gned parce l := Void
pa r c e l po s i t i on := get pos i t i on (as s i gned parce l)

end
end

Listing 3.11: Incorrect implementation of requirement 1 2 1

This methodology ensures that all of the requirements have not only been considered by the
engineer but also satisfied. Indeed, an incorrect specification, like in List. 3.11, will result in an
error during static analysis or else during testing. The implementation feature on activate
of List. 3.11 shall implement the formal requirement feature requirement 1 2 1 declared in
List. 3.6. That means that pre and post-conditions shall be verified. In this example, the assigned
parcel is set to Void, while it is required to have an assigned parcel when activated, according to
requirement 1 2 1. Two cases can happen here: the requirement is badly formalized (or even
expressed in NL), and the engineer can discuss with the other stakeholders to propose a new good
formalization of the requirement, or, more probably, the implementation is false. This is the case for
our example: after setting the assigned parcel to Void, the engineer tries to get such a non-existing
parcel position. This is corrected in List. 3.12.

class HANDLING CONTROLLER
inherit

SHIPMENT FORMAL REQUIREMENTS
rename

requirement 1 2 1 as on act ivate
end

feature
on act ivate
do

as s i gned parce l := get new assigned parcel
pa r c e l po s i t i on := get pos i t i on (as s i gned parce l)

end
end

Listing 3.12: Corrected implementation of requirement 1 2 1

Moreover, it still exists a redefinition link between the formal requirement feature and
the implementation feature. By keeping the link between the different artifacts related to re-
quirements, we ensure traceability from the first NL representation of requirements to their final
implementation. There is moreover a strong dependancy mechanism introduced by this refinement
step, between an implementation feature and a formal requirement feature (and so between
the classes that contains the two features). This implies several things: first, any feature that would
have a dependency on the implementation feature would have by transitivity a dependency on
the formal requirement feature. This is a desired mechanism, as it ensures that any artifact
in the system that depends on a requirement will be impacted by the change of the requirement.
Furthermore, the dependencies that could exist between a formal requirement feature and other

48 CHAPTER 3. THE SIRCOD APPROACH

formal requirement feature will also impact a implementation feature that would redefine
a formal requirement feature. Thus a implementation feature will be dependent on any
formal requirement feature that has a direct link or not, impacting the whole dependency hi-
erarchy in case of change. Finally, an analysis of dependencies will allow to find methods which do
not depend on any formal requirement feature, which can constitute a superfluous function-
ality, or a contrario of the formal requirement feature not redefined, which imply unsatisfied
requirements.

3.6 Organizing requirements
The previous sections present a methodology to integrate requirements into code and documen-
tation. Such an integration shall reduce the gap between requirements and code, improve the
adequacy of code to requirements, ensure traceability and ease the verification mechanism. In
previous sections, we do not emphasize the classes that contain features.

However, in large projects, grouping all the same type features in a single class will not lead to
easy management. First, it will become difficult to find a specific feature in a class and read it,
despite the documentation’s display. Second, the analysis of satisfaction will be complicated.

A solution is to introduce several classes that will address specific parts of the requirements,
in the same way, classes in Object-Oriented Programming addressed several parts of the system.
However, to ease the management, we recommend separating the concerns and not to mix formal
requirements features and implementation features declaration in the same class. These
artifacts stand at two different levels of abstractions, and thus, even if some formal requirements
features can still be implemented in deferred classes of the system, the declaration of such formal
requirements features shall be made in requirements dedicated classes. Furthermore, to ease
the readability of NL requirements in code, it is better to separate requirements features and
formal requirements features into different classes.

Moreover, we advise not to mix classes of requirements (classes that only contain formal re-
quirements features or requirements features) and implementation classes in the same cluster
or package. Using this decomposition, it is possible to provide the following requirements coverage
properties:

• a requirement is satisfied if the formal requirement feature of this requirement is imple-
mented;

• a class of requirements is satisfied if all the formal requirement feature of this class are
satisfied;

• a cluster of classes of requirements is satisfied if all the classes of requirements of the cluster
are satisfied.

A new inheritance tree for our running example can thus be for example the one given in
Fig. 3.10. Requirements are thus grouped into a cluster of requirements classes, and each of the
different classes of requirements are used to separate them, based on their concern.

These definitions, the methodology, and the tool described in previous sections provide a
methodology to a kind of Requirement-Driven development. Requirements are transformed to arti-
facts that shall be implemented, and thus ensure that a system developed according to this canvas
will:

3.7. USE CASE: THE LANDING GEAR SYSTEM 49

FORMAL REQUIREMENTS

GLOBAL_REQUIREMENTS

DELIVERY_REQUIREMENTS SHIPMENT_REQUIREMENTS FLIGHT_REQUIREMENTS BATTERY_REQUIREMENTS

TRANSPORTATION_REQUIREMENTS

GLOBAL_FORMAL_REQUIREMENTS

DELIVERY_FORMAL_REQUIREMENTS SHIPMENT_FORMAL_REQUIREMENTS FLIGHT_FORMAL_REQUIREMENTS BATTERY_FORMAL_REQUIREMENTS

TRANSPORTATION_FORMAL_REQUIREMENTS

REQUIREMENTS

src

SYSTEM

HANDLING_CONTROLLER FLIGHT_CONTROLLER PERFORMANCE_CONTROLLER

AUTOPILOT

DELIVERING_CONTROLLER GRIP_CONTROLLER

DRONE

Figure 3.10: Excerpt of the inheritance hierarchy of the running example

• satisfies all the requirements, using the coverage;

• correctly satisfies the requirements, using the formalism of assertions.

3.7 Use case: the Landing Gear System
In this section, we apply the methodology described in the previous section to an excerpt from the
well-known LGS case study [92]. This case study describes an airplane landing set, composed of

50 CHAPTER 3. THE SIRCOD APPROACH

the landing gear itself, a box that contains the gear, and the doors of the box. The goal here is
not to provide in this section a complete approach to LGS but to focus on a few key requirements
of the door and landing gear deployment system in order to provide a use case from the original
requirements to the implementation.

3.7.1 From NL to Eiffel (Step 1)
The very first step of our methodology is to transpose the natural language requirements, expressed
in a document, directly into source code (step 1.a). The resulting requirements, as shown in
Fig. 3.11, are linked through EIS to the source (with the finest grain available: a bookmark to the
section that contains the requirement – step 1.b) to keep traceability and to prevent user if a change
occurs in the file, thanks to the EIS mechanism. This can be done using the graphical interface of
EIS to reduce the cost of adding such links. These requirements features can now be used as the
other artifacts of the language.

Figure 3.11: LGS requirements in Eiffel code

Moreover, it is possible to switch to the documentation view to ease the readability, as shown
in Fig. 3.12, and to compare to the source of requirement.

Indeed, if there is a change in the source file, the EIS mechanism warn the user to check that
there is no incidence in the REQUIREMENTS class. Using the documentation view, we can see
if there is a modification between the textual source requirement and the requirement feature.

3.7.2 Formalization (Step 2)
The following step of the methodology is to introduce some formality in requirements. In Fig. 3.13,
a formalization of requirement 11 bis is proposed. This feature uses the feature’s preconditions
to state that we are in the context of normal mode and that the handle has been pushed down.
Postconditions shall then ensure that the system meets the requirements (gear extended and doors
closed).

3.7. USE CASE: THE LANDING GEAR SYSTEM 51

Figure 3.12: Documentation view of LGS requirements

Figure 3.13: Formal representation of requirement 11 bis

The feature here is declared deferred, i.e., the class extending the FORMAL REQUIREMENTS
class shall implement this feature. Such an approach aims to ensure requirements coverage. The en-
gineer will have to implement each formalized requirement in the subclasses, ensuring good coverage
of the requirements.

According to the methodology, a note link to the documentation (the feature REQUIREMENTS.
requirement 11 bis) is kept here, allowing the switch to the documentation view (as in Fig. 3.14)
to print the textual requirement. This traceability link thus ensures a good understandability (by
providing a view with a formal representation of requirement and a view with a textual one), but
ensures that the feature is up to date with the requirement.

52 CHAPTER 3. THE SIRCOD APPROACH

Figure 3.14: Documentation view of the formal requirement 11 bis

3.7.3 Refinement (Step 3)
Once requirements have been formalized, the refinement process can be done. Like in Event-B, for
example, the idea is to start from the high-level requirements and refine them into executable code.
This is done through the inheritance mechanism. It thus inscribes the methodology into the classical
object-oriented mechanism, already widely used, reducing the development cost increase that can
be introduced by adding the formalization of requirements. However, a good practice encourages
contracts to ensure the quality of the code, and the writing of a formal version of requirements,
as base classes of the system can be seen as a good way to encourage this kind of development.
Moreover, using the documentation view will allow the users to see the requirements using a single
click, while he had to refer to the source requirements document in a classical development process.

Figure 3.15: Refinement of requirement 11 bis

For example, in Fig. 3.15, requirement 11 bis has been refined into the feature extension
sequence. This feature shall satisfy the requirement 11 bis formal requirement feature (since it
shares the preconditions and postconditions) and, as shown by the documentation in Fig. 3.16, the
extension sequence is decomposed in: opening the doors, extending the landing gear, and closing the
doors. Note that although this is not detailed here, the features opendoors, extendslandinggears
and closedoors are themselves refinements of requirements, notably concerning the pilot interface
(the feature extendslandinggears must, for example, modify the state of a light according to the
position of the gears) or even the electrovalves’ commands.

This is represented by the call to functions that shall realize these operations.

3.8. CONCLUSION 53

Figure 3.16: Documentation view of extension sequence feature

Moreover, thanks to the inheritance mechanism, if a formal requirement is modified, the change
automatically impacts the redefining features contracts. All the features that redefine this require-
ment shall comply with new requirements – otherwise, a static or dynamic analysis will fail to prove
the system correctness. This thus ensures to automatically take into account any change in the
Eiffel requirements on the system.

Since formalized in a programming language, such requirements features can then be reused
in several ways, other projects can easily import requirements (or at least, the relevant part of
requirements). Thus, it is possible to write a library of requirements that can be used for several
projects, thus reducing the cost of writing new requirements in the following projects.

However, we shall note that the increased number of relations between requirements can be
a drawback to the approach: without adapted tooling support, propagating a change to all the
related requirements can be a time-consuming task.

3.8 Conclusion
The use of the SIRCOD approach, if it introduces an increase of work in the beginning (with
the transformation from NL requirements to code and with the formalization of requirements), is
quite similar to a classical Object-Oriented development process from the third stage and does not
introduce an increase in the work effort required. Moreover, we address several of the properties
that we defined in section 2.1.1:

(a) Intended audience: if requirements for the first time are expressed in a NL way, the approach
in the actual form is more addressed to software developers.

(b) Traceability support: the traceability, from the source to the code, passing by the several
refinement processes, is ensured by the approach.

(c) Coverage: NL requirements allow to express all kind of requirements. The formal require-
ments features only allow the user to express the functional parts of the system formally.
However, it is still possible to write an empty formal requirement, linked to non-functional
ones, to express the need to take them into account.

(d) Semantic definition: Using the semantic of the programming language, requirements are
semantically defined once formalized. There is no semantic definition.

(e) Verifiability: Contracts allow to verify that the system is correct regarding the requirements.

SIRCOD thus allows the coverage of a large part of the properties that we aimed to address.
There are, however, some issues that remain to address in the approach. First, the use case allows

54 CHAPTER 3. THE SIRCOD APPROACH

us to see a big effort to be done in the first step of the approach. Translating from NL to Eiffel is
time-consuming. This problem is one of the main issues addressed by NLP, and if we do not pretend
to provide tools that support full automation of this process, we will propose in chapter 4 a way to
ease this step. Then, if traceability from source code to requirements document is ensured, some
links can exist between requirements (that can be found in approaches such as KAOS or SysML,
for example – see section 2) can be used to provide a more fine analysis of requirements. We will
address this issue in chapter 5. Finally, more work should be done on the dependency between a
requirement and its implementation introduced by the inheritance mechanism, and especially on
the impact this can have on the complexity of the code.

Chapter 4

RSML: a modeling language for
requirements

“During the process of stepwise
refinement, a notation which is natural to
the problem in hand should be used as long
as possible.”

Niklaus Wirth

Contents
4.1 A requirements meta-model . 56
4.2 Requirements Specific Modeling Language (RSML): a constrained

language for requirements . 60
4.3 A tool-supported language . 63
4.4 A modeling language to link other formalisms 65
4.5 Use case: the London Ambulance Service system 70
4.6 Conclusion . 73

As mentioned in section 2, several tools are addressed to different stakeholders, depending on
their background and the context. Thus, some stakeholders can prefer to work with textual ap-
proaches, while others can prefer to use mathematical-based approaches. For instance, an electrical
engineer will not work in the same perspective than a lawyer, even if involved in the same project.
As introduced in section 2.2, addressing these several points of view is, however, crucial. We cannot
expect users to work with a given approach without any existing bridge to their existing familiar
approaches.

Some approaches tried to propose a representation for the requirements and the links between
requirements, like ReqIF [93]. However, there is no standard representation of requirements, and
such approaches are not widely used.

To overcome this difficulty, we propose to use MDE and defining a metamodel based on the
semantics that we defined in previous chapters. The advantages of such an approach are multiple: on

55

56 CHAPTER 4. RSML: A MODELING LANGUAGE FOR REQUIREMENTS

the one hand, it allows us to define a DSML based on this metamodel, that we named Requirements-
Specific Modeling Language (RSML), more accessible to non-experts than Eiffel, and on the other
hand, by fitting into the idea of the globalization of modeling languages [75], it can be used to
bridge the gap to other approaches.

In this chapter, we first present in section 4.1 the metamodel defined to fit the semantics proposed
in previous chapters. In a second time, in section 4.2, we describe RSML, the DSML associated
with this metamodel. In section 4.4, we present how the existing MDE tools can be used to bridge
the gap with the existing approaches. Then, in section 4.5, we apply the methodology to a use
case, from [94], to validate our approach, to, finally, conclude in section 4.6. Objectives of such
an approach are multiples: in addition to offering a simple tool to allow transformation to other
paradigms, it allows us to propose a syntax close to NL. Such a syntax will be more understandable
to all stakeholders, especially to non-experts, allowing for a better communication and feedback on
the requirements.

4.1 A requirements meta-model
The RSML metamodel1 (an excerpt is given in Fig. 4.1) is organized in two main parts:

(i) Domain Knowledge (cf. Fig. 4.2);

(ii) Requirements themselves, and the distinction between Natural Language requirements and
formal ones (cf. Fig. 4.4).

Figure 4.1: Principal parts of the RSML metamodel

Each of the metamodel elements is precisely semantically defined. Some of the notions of the
metamodel are linked to the Element concept. This concept is used to define an abstract artifact,
identified by a string, that can be an element of the system or the environment. In the following
sections, we will define what they represent and to which semantics they are matched for each of
these elements.

1The complete metamodel can be found in Appendix A.1

4.1. A REQUIREMENTS META-MODEL 57

4.1.1 Domain Knowledge
In [11], Jackson and Zave made a distinction between the Environment and the System. The
Environment is more precisely composed of two sets: the Requirements and the Domain Properties.
If the first one expresses the needed properties for the System, the Domain Properties are properties
that can impact the system and thus, shall be considered. These Domain Properties will thus be
assumptions that shall be considered while writing the specifications of the system.

Figure 4.2: Domain Knowledge definition (i) of the RSML metamodel

The part (i) of the metamodel given in Fig. 4.2 is used to model these domain properties. It
allows defining the value or the state of an Element, that can be later used during requirements
writing or specification.

Domain knowledge is formalized as assumptions using the semantics that we defined in chapter 3.
Such assumptions shall be considered for all requirements during analysis. It is thus possible to
express them as preconditions required for all the features of the system. If a precondition is a
required state for all features, it is more convenient to express it as an invariant. To allow the use
of these assumptions in the whole system, we place it in a specific class inherited by all the other
classes of the system.

For instance, a law fixing that “the maximal authorized flight altitude for a drone is 150 meters”
can be expressed by instantiating this part of the metamodel (with “the maximal authorized flight
altitude for a drone” an Element of the system) – like in Fig. 4.3. This example will be formalized
by the invariant: maximal authorized flight altitude = 150.

4.1.2 Requirements
Requirements themselves are expressed in part (ii) of the metamodel, given in Fig. 4.4. They
are divided into two categories: natural language requirements and formal requirements. This

58 CHAPTER 4. RSML: A MODELING LANGUAGE FOR REQUIREMENTS

Figure 4.3: Example of an instantiation of part (i) of the RSML metamodel

distinction allows expressing formal requirements while keeping possible to express some of the
requirements in a NL way (for those that cannot be formalized). Indeed, the classical distinction is
made between functional and non-functional requirements. While the first ones can – more or less
– easily be formalized, the formalization of non-functional ones is harder. As we already mentioned
in chapter 3, it is hard to write as assumptions and assertions requirements like “The system shall
be efficient”. This kind of requirement will most of the time be derived into others, easier to analyze
(e.g., “The consumption of the battery shall be less than 700 mAh”). However, it is crucial to keep
a trace of the original requirement, and even more crucial when no other requirements have .g.,
been derived from this one. To this purpose, in RSML, whether or not they have been formalized,
all requirements have to be identified by a unique identifier to ease the traceability.

The NL requirements are similar to SysML requirements or KAOS goals: they have a free text
attribute. They will be formalized as NL requirements in section 3: as features with no body nor
contracts, linked to textual documentation. Based on SIRCOD, the user will have to consider them,
even if they are not automatically formalized.

Formal requirements are used to express properties the system has to hold. As detailed in
section 3, requirements are expressed as assertions to be verified in a given context. The context is
expressed by Constraints, which are the assumptions of the requirements (e.g., preconditions). The
Properties are treating about Elements and are compared to Values. A Value can be a primitive
value (a number or a string), a state, or a reference to another Element. In the metamodel, two
intermediate classes respectively named ConstraintsDisjunction and PropertiesDisjunction are used
to represent the logical or. Indeed, by default, we assume that every assertion is to hold when all
the constraints are satisfied. These artifacts (ConstraintsDisjunction and PropertiesDisjunction)
are thus introduce to ease the composition using an or structure. This, however, imposes to express
these constraints and assertions as conjunctive normal forms. It simplifies the bridge to the Eiffel
semantics since it is the most natural way to express sets of contracts in Eiffel: a contract can be
composed by a disjunction of predicates, while the conjunction of all contracts has to be satisfied.

Let us give an example. A formal requirement stating that “In flight mode, the drone altitude

4.1. A REQUIREMENTS META-MODEL 59

Figure 4.4: Requirements definition (ii) of the RSML metamodel

must be less or equal to the maximal authorized flight altitude.” will be formalized by Fig. 4.5,
semantically defined by:

• an assumption stating that the drone is in flight mode (the Constraint): mode = flight mode;

• an assertion verifying that the altitude is less or equal to the previously defined maximum
altitude (the Property): altitude <= maximal authorized flight altitude.

The Requirements are grouped in RequirementsSet that are used as packages of requirements
to group them, given a structural context. Contrary to the context of Formal Requirement, this
context gives information on how to organize requirements (allowing, for example, to group all
requirements for a specific subsystem in a given context).

60 CHAPTER 4. RSML: A MODELING LANGUAGE FOR REQUIREMENTS

Figure 4.5: Example of an instantiation of part (ii) of the RSML metamodel

To summarize, requirements and domain knowledge can be expressed using the RSML meta-
model. This shall help to give a complete representation of the Environment elements, according
to the Jackson-Zave definition.

The semantics definition leads to a complete requirements validation environment:

• requirements themselves, if formal, can be used in the validation process using a prover or
tests;

• using relationships and their semantics, the correctness of the relationship can be detected.

4.2 Requirements Specific Modeling Language (RSML): a
constrained language for requirements

As previously said, the metamodel defined in section 4.1 supports the expression of domain knowl-
edge, requirements, and relationships between requirements. The most natural way to write re-
quirements still be, in most of the case, the textual writing. To ease the use of the metamodel,
MDE give appropriate tools: the DSL and more specifically, DSML.

In this section we present RSML, a DSML close to NL2. Such a language can be used to allow
non-specialists to express requirements in a similar way to Behavior-Driven Development (BDD)
[95] tools such as Cucumber [96]. Contrary to these tools, RSML is semantically defined. All the
artifacts described in this section match the semantics given in the previous chapter.

In Fig. 4.6, an RSML sample is given. This illustrates how RSML can be used to express domain
knowledge, NL requirements, and formal requirements. Requirements document in RSML are,
for their part, composed of two elements (that will be detailed below):

• the environment, that contains the domain knowledge;

• the requirements set, that contains requirements and their relationships.
2The language was developed in the GEMOC(http://gemoc.org/studio.html) environment [75],

http://gemoc.org/studio.html

4.2. RSML: A CONSTRAINED LANGUAGE FOR REQUIREMENTS 61

Figure 4.6: Example of the RSML DSL in practice

The root of the grammar of the language is thus:

〈requirements document〉 ::= 〈environment〉? 〈requirements set〉*

In the next section, we detail how these elements can be expressed, developing each of the parts
as in the metamodel section.

4.2.1 Expressing domain knowledge
Elements of the domain knowledge are expressed in a list introduced by the Environment (or its
shorten version Env) keyword, followed by a colon (:) and a newline. Each element is introduced
by a dash (-). The example given in section 4.1 is thus expressed as “Max authorized flight altitude
is equal to 150 [m].”. This statement follows the grammar rule:

〈environment〉 ::= (‘Env’ | ‘Environment’) ‘:’ 〈newline〉 〈domain knowledge〉+

〈domain knowledge〉 ::= ‘-’ (〈simple definition〉 | 〈interval definition〉 | 〈range definition〉) ‘.’
〈newline〉

〈simple definition〉 ::= 〈element〉 〈comparison operator〉 〈value〉 (‘[’ 〈unit〉 ‘]’)?

〈interval definition〉 ::= 〈element〉 (‘is in’ | ‘is out’) 〈value〉 ‘and’ 〈value〉

〈range definition〉 ::= 〈element〉 ‘can be’ 〈value〉 (‘,’ 〈value〉)*

〈element〉 ::= 〈word〉+

〈comparison operator〉 ::= ‘is’ (‘equal to’)?
| ‘less than’
| ‘less or equal to’
| ‘greater than’
| ‘greater or equal to’
| ‘different to’

62 CHAPTER 4. RSML: A MODELING LANGUAGE FOR REQUIREMENTS

〈value〉 ::= 〈number〉 | 〈state〉 | 〈element〉

〈unit〉 ::= 〈word〉 (‘ˆ’ 〈number〉)? (‘/’ 〈unit〉)?

The Elements are referenced using a noun phrase (excluding the reserved keywords of RSML).
The articles are filtered to allow some variation of the formulation, and these Elements are case-
insensitive.

The domain knowledge thus allows the users to define for a state:

• the relative value (equal, greater, less, different);

• an interval the value shall be in or out;

• a list of possible values.

These definitions can then be used in other parts of the RSML document.

4.2.2 Requirements in RSML
We will develop below how are expressed NL and formal requirements. As introduced in the meta-
model, each requirement is uniquely identified to ease the traceability. This identifier is introduce
in the grammar using square brackets ([and]):

〈requirement〉 ::= ‘[’ 〈id〉 ‘]’ (〈natural language requirement〉 | 〈formal requirement〉) 〈newline〉

〈id〉 ::= 〈digit〉 (‘.’ 〈id〉)?

As previously said in the introduction of this section, requirements are grouped in requirements
set. These requirements sets are identified by a unique identifier that the user-defined (using a list of
words). This shall ease the analysis of requirements, allowing to group them by semantics proximity
(or by any other classification used by the user). The grammar for these sets are:

〈requirements set〉 ::= 〈word〉+ ‘:’ 〈newline〉 〈requirement〉+

Natural Language Requirements

They are one of the two kinds of requirements of the metamodel. They are only composed, in
addition to the identifier, by the text of the NL requirement itself. In RSML, we let the user
the possibility to express NL requirements in a single line (surrounded by double-quotes), or in
multi-line (surrounded by "[and]"). This is described in the following grammar:

〈natural language requirement〉 ::= 〈single line text〉 | 〈multiline text〉

〈single line text〉 ::= ‘"’ .* ‘"’

〈multiline text〉 ::= ‘"[’ (. | 〈newline〉)* ‘]"’

In Fig. 4.6, there are three examples of NL requirements: requirements 1, 2 and 3. Requirements
1 and 2 are multiline, while requirement 3 is a single line natural language requirement.

4.3. A TOOL-SUPPORTED LANGUAGE 63

Formal Requirements

They are the other kind of requirements of the metamodel. They allow expressing constraints (the
context of a requirement) and properties to be satisfied (the requirement itself). In RSML, we chose
to use for them a syntax similar to cucumber:

• constraints are introduced by when,

• while properties are introduced by then (not mandatory if there are no constraints).

Moreover, each property has an attached priority, introduced by a modal (must, should, could
or would).

In [85], a semantics is given to allow expressing temporal and timing properties in Eiffel. We
thus let the possibility to add timing constraints in the requirements. When there is at least one
constraint in the requirement, the user must specify if the requirement shall be met immediately
or eventually. If the requirement is met eventually, the user can be precise in what interval the
requirement shall be met with the keyword within, followed by the duration (number + time unit).

This is summarized in the following grammar:

〈formal requirement〉 ::= (〈properties disjunction〉 (‘and’ 〈properties disjunction〉)?) ‘.’
| ‘When’ 〈constraints disjunction〉 (‘and’ 〈constraints disjunction〉)? ‘then’

‘immediately’ 〈properties disjunction〉 (‘and’ 〈properties disjunction〉)? ‘.’
| ‘When’ 〈constraints disjunction〉 (‘and’ 〈constraints disjunction〉)? ‘then’

‘eventually’ 〈properties disjunction〉 (‘and’ 〈properties disjunction〉)?
(‘within’ 〈integer〉 ‘[’ 〈Unit〉 ‘]’)?) ‘.’

〈constraints disjunction〉 ::= 〈constraint〉 (‘or’ 〈constraint〉)?

〈constraint〉 ::= 〈element〉 〈comparison operator〉 〈value〉 (‘[’ 〈unit〉 ‘]’)?

〈properties disjunction〉 ::= 〈property〉 (‘or’ 〈property〉)?

〈property〉 ::= 〈element〉 〈priority〉 〈modal comparison operator〉 〈value〉 (‘[’ 〈unit〉 ‘]’)?

〈modal comparison operator〉 ::= ‘be equal to’
| ‘be less than’
| ‘be greater than’
| ‘be less or equal to’
| ‘be greater or equal to’
| ‘be not equal to’

4.3 A tool-supported language
The example introducing the previous section (Fig. 4.6) is a screenshot of the environment developed
for the RSML language. Using the Gemoc studio, a complete Integrated Development Environment
(IDE) dedicated to RSML has been realized3. This IDE proposes several functionalities that we
will detail now.

3The tool is available at: https://gitlab.com/fgalinier/RSML.

https://gitlab.com/fgalinier/RSML

64 CHAPTER 4. RSML: A MODELING LANGUAGE FOR REQUIREMENTS

First of all, the RSML editor itself gives a syntax highlighting to ease RSML documents’ writing.
An autocomplete menu is also available to propose to the user the best elements to complete an
expression. In Fig. 4.7, for instance, the autocomplete menu proposes to the user the several
comparison operators existing in RSML that can be inserted.

Figure 4.7: Autocomplete feature in the RSML editor

The editor also raises errors that can appear: grammar errors (in Fig. 4.7, since the formal
requirement is not complete, a syntax error is raised), or errors when duplicating an identifier for
example (see on Fig. 4.8, an example of such an error).

Figure 4.8: Error of duplicated identifier in the RSML editor

In addition to these editor’s facilities, the environment allows the automatic transformation
of the requirements expressed in RSML to the semantics of the requirements (in Eiffel), that is
accessible in the src-gen directory. Other transformations can be possible (as detailed in section 4.4).

For example, the requirement 2.1 in Fig. 4.6 is formalized as given in List. 4.1.
when drone battery is less or equal to 10 then immediately
mode must be recovery
note

4.4. A MODELING LANGUAGE TO LINK OTHER FORMALISMS 65

EIS : ” s r c=drone . rsml ” , ” r e f = [2 . 1] ” , ” type=t ra c e ”
Desc r ip t i on : ” [

[2 . 1] When the drone batte ry i s l e s s or equal to 10
[percent] then immediately mode must be equal to
recovery .

] ”
require

when drone battery is less or equal to 10 percent :
drone battery <= 10

deferred
ensure

check mode must be equal to recovery : mode = recovery
end

Listing 4.1: Eiffel semantics of requirement 2.1

We can find in this formalization several elements introduced in the previous chapters: the
EIS link to the source (here, the RSML document), the required constraint of the requirement
(the precondition), and the property to ensure (the postcondition). A class that will contain a
requirement in an Eiffel project will be based on the requirements sets. A class will thus model
each set of requirements.

In List. 4.2, the set of requirements called “drone” is transformed in class DRONE REQUIREMENTS
– the REQUIREMENTS suffix is systematically added to ease the distinction of classes of requirements.
Moreover, all the classes generated by the editor inherit from the DOMAIN KNOWLEDGE class, which
contains the environment definitions.

class DRONE REQUIREMENTS
inherit DOMAIN KNOWLEDGE

Listing 4.2: Eiffel context for requirements 2.1 and 2.1.1

4.4 A modeling language to link other formalisms
Using a modeling language provides a way to transform from a model to another easily [97]. This
can be done using dedicated languages, like ATL [98] or Kermeta [99], or even programmatically,
using EMF4. Example transformation from this section has been done using Xtend5 language with
the EMF API. In the context of requirements, as introduced in section 1.1, this can help provide a
bridge to different existing approaches, often used by the several stakeholders implied in a project.

In the context of RSML, we propose several transformations, from and to other languages, to
ease the adoption of such an approach. Since the metamodel is built using EMF, it is possible to
use the several approaches presented before (ATL, Kermeta, etc.) to realize these transformations.

4.4.1 From RSML to textual representation
Despite the several approaches proposed to express requirements, the most used ones remain NL
textual representations, and more specifically, Microsoft Word and Excel files. This can be explained

4http://www.eclipse.org/modeling/emf/
5http://www.eclipse.org/xtend/

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/xtend/

66 CHAPTER 4. RSML: A MODELING LANGUAGE FOR REQUIREMENTS

by the apparent simplicity of such notations that can be handle by all stakeholders, or even for
contractual reasons.

As mentioned in the introduction to this section, several tools allow transformations from a
model to another. We present here some transformations from RSML to docx and excel files.
Most of the representations used in these formats are specific to companies, so we propose possible
representations for these formats. These representations can easily be adapted with some slight
change in the transformations rules.

Figure 4.9: Example of docx document generated from the RSML example in Fig. 4.6

In the representation given in Fig. 4.9, RSML artifacts are matched to node of the docx docu-
ment.

Both requirements (NL ones and formal ones) are written in their textual representations, each
in a different paragraph introduced by their identifier. For example, in List. 4.3, a NL requirement
is transformed into a paragraph in the docx document, inserting a bookmark to be able to link the
requirement in the SIRCOD approach. The different requirements set are introduced by a section
title, named by the identifier of the set. The domain knowledge is introduced in the first section,
called Definitions, that lists all the environment definitions.

public void compi le (f ina l NLRequirement r) {
Paragraph p1 = new Paragraph () ;
// . . .
BookmarkStart bookmarkStart = new BookmarkStart () ;
bookmarkStart . setName (bookmarkName) ;
bookmarkStart . add (bookmarkText) ;
BookmarkEnd bookmarkEnd = new BookmarkEnd () ;
bookmarkEnd . setName (bookmarkName) ;
p1 . add (bookmarkStart) ;
p1 . add (bookmarkEnd) ;
// . . .
p1 . add (requirementId + ” − ”) ;
i f (r . g e tRe l a t i on s () . s i z e () > 0) {

p1 . add (” (”) ;

4.4. A MODELING LANGUAGE TO LINK OTHER FORMALISMS 67

boolean f i r s t = true ;
EList<Trace> r e l a t i o n s = r . g e tRe l a t i on s () ;
for (f ina l Trace r e l : r e l a t i o n s) {
{

i f ((! f i r s t)) {
p1 . add (” and ”) ;

} else {
f i r s t = fa l se ;

}
this . compi le (r e l , p1) ;

}
}
p1 . add (”) ”) ;

}
// . . .
p1 . add (requirementText) ;
p1 . s e t S t y l e (” gtext ”) ;
this . doc . getBody () . add (p1) ;

}
Listing 4.3: Excerpt of the xtend function that transform NLRequirement to a docx paragraph

Figure 4.10: Example of MS-Excel document generated from the RSML example in Fig. 4.6

In the same way, in Fig. 4.10, requirements from RSML are presented in a spreadsheet. This
representation emphasizes the relationships, listing all of them and their targets of the relationships
in different cells. Moreover, the requirements’ priority is also printed (using the priority of the
highest priority property if a requirement owns several properties).

These two transformations are example of how the use of RSML can be matched to standard
practices. Using RSML to write first requirements can thus be used to ensure a clear semantics for
these requirements – and this semantics can be used in the following stages of projects, as introduced
in section 3 – while allowing non-experts stakeholders to analyze and works with requirements in
tools they used to work with.

4.4.2 Transforming RSML to (and from) other languages
Textual representations are certainly the most used support for requirements. However, some other
tools presented in section 2.1 provides facilities in requirements analysis or even in design using
requirements. It can thus be useful to provide bridges to (and from) these tools. For example, ones

68 CHAPTER 4. RSML: A MODELING LANGUAGE FOR REQUIREMENTS

can want to elicit requirements using a GORE approach, such as KAOS, and then switch to RSML
to analyze the elicited requirements. Similarly, system engineers that are used to design systems
with SysML can need to switch from an RSML representation to SysML.

We present in this section an example of transformation from RSML to a target modeling
language: SysML. However, in the same way, several companies can use several standards for their
requirements documents, the semantics of SysML is not the same depending on tools or even on
the project.The proposed transformation is thus an example and shall be adapted to the team’s
current habits by a modeling expert that can change the transformations rules.

It is thus possible to write transformations from Fig. 4.6 to the SysML requirements diagram
given in Fig. 4.11. In this case, each requirement is transformed into a requirement artifact in

Figure 4.11: SysML representation of requirements from example in Fig. 4.6

SysML, composed by its identifier and its textual representation – no matter if it is a NL requirement
or a formal one. In List. 4.4, the xtend function that allow transforming a NL requirement to a
SysML requirement is given.

public void compi le (f ina l NLRequirement r) {
// . . .
St r ing reqId = RSMLRequirementId ;
S t r ing className = (”req ” + reqId) ;
org . e c l i p s e . uml2 . uml . Class c l = this . model . createOwnedClass (

className , fa l se) ;
EObject app lyStereotype = UMLUtil . S t e r eo typeApp l i ca t i onHe lper .

g e t In s tance (null) . app lyStereotype (c l , RequirementsPackage .
eINSTANCE. getRequirement ()) ;

org . e c l i p s e . papyrus . sysml14 . requ i rements . Requirement req = ((org .
e c l i p s e . papyrus . sysml14 . requ i rements . Requirement)
applyStereotype) ;

req . s e t I d (RSMLRequirementId) ;
req . setText (RSMLRequirementIdText) ;
this . model . getPackagedElements () . add (c l) ;
this . r e s ou r c e . getContents () . add (req) ;

}
Listing 4.4: Excerpt of the xtend function that transform NLRequirement to a SysML requirement

4.4. A MODELING LANGUAGE TO LINK OTHER FORMALISMS 69

Nevertheless, formal requirements can be transformed into more formal diagrams, such as state
diagrams. Constraints can be seen as guards to reach a state, while the state is the property to
satisfy – as proposed in [57], described in section 2.1.4.

An other advantage of a model representation is to allow transformation not only from RSML,
but also to RSML. The level of details of requirements that we can obtain depends on the source’s
level of details. For example, if we take the requirements diagram of SysML, requirements are
only textual. Consequently, we can only generate NL requirements. Relationships, however, are
preserved by the transformation – assuming that the semantics of relationships in RSML have been
aligned with those of SysML. Given the previous example in Fig. 4.11, we can obtain the RSML
model in Fig. 4.12.

Figure 4.12: Resulting RSML of transformation from SysML of Fig. 4.11

Since requirements are not split into clusters or sets in SysML, the decomposition does not ap-
pear in the resulting model. Moreover, domain knowledge elements are not part of the requirements
diagram of SysML and, thus, do not appear in the resulting model either. SysML requirements id
and text have been matched to the corresponding field in RSML.

Such requirements are all translated in NL requirements; indeed requirements in SysML re-
quirements diagram are all textual. NLP approaches can be seen as a possible improvement of such
transformation; the text analysis can help transform textual requirements to formal ones, at least
for those of the form “when this then do that”. This is, however, out of the scope of the current
thesis.

Note that it is possible to easily transform requirements 2.1 and 2.1.1 from the example in
formal requirements, by removing the quotation marks, since they respect the grammar of such
requirements. A possible improvement should thus be to provide tools that allow modeling SysML
requirements diagram, with a constrained editor for the requirements’ text attributes.

There are several advantages to use a modeling language that allows its models to be transformed
into other languages: first, as already mentioned, it allows users to work with their usual tools, even
with requirements first expressed in RSML. Then, transforming from other languages to RSML can
lead to work with the more adapted tool for specific parts – it is more convenient, for instance, to
create relationships between requirements and use a graphical notation SysML or even KAOS. The
transformation to RSML can then help verify the validity and the consistency of such links, using
OCL rules or the semantics presented in the previous chapter. Finally, using a modeling language

70 CHAPTER 4. RSML: A MODELING LANGUAGE FOR REQUIREMENTS

can help integrate such an approach in more global use of modeling languages, easing the bridges
to other approaches.

4.5 Use case: the London Ambulance Service system
We applied RSML on the already cited use cases. However, the two previous ones were embedded
systems examples, and we want to confirm that the approach is domain-independent by applying
it to an information system. In his thesis [94], E. Letier applied a GORE formal approach on the
London Ambulance Service (LAS) system. This system shall manage ambulances and dispatch
them to an emergency that is encoded in the system.

The first goal of this system, as defined by E. Letier is:

«For every urgent call reporting an incident, there should be an ambulance at the scene
of the incident within 14 minutes.»

From this goal, one higher level goal is deduced, which is:

«Every incident requiring emergency service is eventually resolved.»

Starting from this new high goal, two other sub-goals are refined:

«Every incident requiring emergency service is eventually reported to the LAS.»

«An incident is resolved by the intervention of a single ambulance.»

The satisfaction of the goal “Every incident requiring emergency service is eventually resolved.”
is thus satisfied by the realization of the report, ambulance mobilization and intervention goal.

The aim is not to develop a complete and precise system, but to start from these goals and
refine them into a framework that could be used to develop the system.

The first step is thus to write these goals in RSML, that is done in List. 4.5.

[1] ”Every i n c i d e n t r e q u i r i n g emergency s e r v i c e i s eventually r e s o l v e d
. ”

[1 . 1] (par t s o f [1]) ”Every i n c i d e n t r e q u i r i n g emergency s e r v i c e i s
eventually repor ted to the LAS. ”

Listing 4.5: First RSML requirements of the LAS

At first, to validate that this approach is domain-independent, we applied it to different well-
known use cases such as the Landing Gear System (LGS) [92] and the London Ambulance Service
(LAS) system [94]. These RSML case studies are publicly available6. In both cases, we noted that
the available editor of RSML leads users to express requirements easily. Non-specialist users wrote
the RSML version of requirements that were given in NL.

The formalizations that have been deduced were checked with AutoProof. It was used to control
the specification of the system, and leads us to detect validation and verification errors:

6https://gitlab.com/fgalinier/rsml-examples.

https://gitlab.com/fgalinier/rsml-examples

4.5. USE CASE: THE LONDON AMBULANCE SERVICE SYSTEM 71

• In the LAS, the issue revealed by AutoProof pointed out that a requirement was misunder-
stood and had to be corrected to obtain a set of valid requirements [100]: the formalization
of the requirement "An ambulance shall not be available when it is allocated" was
interpreted as "After being allocated, an ambulance shall not be available". This
formalization proved to be such that it was impossible to write a correct specification. The
requirement rather means that the ambulance cannot be at the same time available and
allocated. Once the correction is made, the system specification became correct regarding
the new requirements7. This kind of validation still requires human expertise to understand
why the requirement cannot be fulfilled, but the formal representation points to the require-
ment that needs to be further analyzed. Therefore, this case study allows us to validate the
requirements of the system.

• In the LGS case study, the use of Autoreq led us to detect errors in an existing Abstract State
Machine specification of the system [85]. Thus, the use of RSML semantics and AutoProof
permit the verification of the system itself, regarding the requirements.

Secondly, we conducted a study to validate the usability of RSML itself. We worked with 11
users. Most of them were industrial users from a company like Airbus, Thales, Capgemini, or Orange
(other practitioners from small startups). They usually express requirements in NL languages or
modeling languages such as SysML. We asked them to express requirements in RSML, and we
collected their feedback. Requirements were about a drone system and were described in NL in a
document8. We provided the users with some explanations of the tool support and the syntax of
RSML9. The feedback and the users’ backgrounds were collected in a form. Among the testers:

• 81% were industrial engineers, the others 19% were academics (seniors or Ph.D. students);

• 54% were used to read requirements (every week), 46% less often;

• 18% were used to write requirements frequently, 63% once a month, 19% never;

• All agree on the fact that poorly formulated requirements have slowed down their work (63%
sometimes, 27% often, 10% rarely).

• Only 27% answered that a misunderstanding of requirements did not (or rarely) led to quality
problems in their work (for 18% it is often, 54% sometimes).

• Only 28% used requirements specific approaches (such as Gherkin, User Stories, . . .).

• Finally, less than 10% used dedicated tools for requirements.

About the usability of RSML and its tool support, we asked for feedback on ease of use, quality of
requirements obtained, prospects for adopting RSML. The grade range was from 0 (totally disagree)
to 5 (totally agree).

The ease of write RSML requirements got a majority of 3s, while the ease of read RSML re-
quirements got a majority of 4s. A majority of users stated that it is easier to write and read RSML
requirements than formal ones. They generally admitted that they had learned to use RSML fairly

7The system specification is available here: https://gitlab.com/fgalinier/LAS.
8Cf. https://gitlab.com/fgalinier/RSML/blob/master/use-case/ADDE.md.
9Cf. https://gitlab.com/fgalinier/RSML/blob/master/README.md.

https://gitlab.com/fgalinier/LAS
https://gitlab.com/fgalinier/RSML/blob/master/use-case/ADDE.md
https://gitlab.com/fgalinier/RSML/blob/master/README.md

72 CHAPTER 4. RSML: A MODELING LANGUAGE FOR REQUIREMENTS

R
equirem

en
ts are easy to w

rite using R
S

M
L.

R
equirem

en
ts w

ritten in R
S

M
L are easy to rea

d.

It is easier to w
rite R

S
M

L requirem
en

ts than form
al on

es.

It is easier to read
 R

S
M

L requirem
e

nts than form
al ones.

I learned
 how

 to use it quickly.

I am
 confident in the requirem

ents that I w
rote in R

S
M

L.

I understand
 the difference

 betw
een re

quire
m

ents and con
texts.

I used N
atural Languag

e requirem
e

nts to com
plete the docu

m
entation

 of m
y requirem

ents.

I used relatio
nships to link requirem

ents.

It w
as easy to identify requirem

e
nts by their id.

I clearly unde
rstood the difference

 betw
een all kinds of relatio

nships.

In m
y w

ork, w
riting requ

irem
ents w

ith R
S

M
L can help m

e to be m
ore effective.

In m
y w

ork, w
riting requ

irem
ents w

ith R
S

M
L can help m

e to be m
ore productive.

In m
y w

ork, w
riting requ

irem
ents w

ith R
S

M
L can help m

e to ensure the qua
lity of system

s.

In
m

y
job,Ican

save
tim

e
by

w
ritin

g
requ

irem
ents

w
ith

R
S

M
L

.

9 %

18 %

9 %

27 %

9 %

9 %

9 %

9 %

9 %

18
%

36 %

9 %

36 %

18 %

27 %

18 %

9 %

27 %

27 %

27 %

27 %

9 %

36
%

18 %

18 %

9 %

55 %

45 %

45 %

18 %

9 %

9 %

9 %

27 %

18 %

36 %

18 %

27
%

36 %

45 %

45 %

45 %

27 %

27 %

27 %

45 %

18 %

36 %

18 %

36 %

18 %

55 %

9
%

55 %

27 %

45 %

18 %

36 %

9 %

9 %

9 %

9 %

9 %

18 %

9 %

18 %

9 %

18 %

9
%

0
1

2
3

4
5

I n
e
e
d

e
d

 to
 u

se
 N

a
tu

ra
l La

n
g

u
a
g

e
 re

q
u
ire

m
e
n
ts to

 e
x
p

re
ss so

m
e
 re

q
u
ire

m
e
n
ts b

e
ca

u
se

I co

u
ld

n
't e

x
p

re
ss th

e
m

 u
sin

g
 th

e
 «

 fo
rm

a
l sy

n
ta

x
 »

.

Figure
4.13:

A
nswers

to
the

survey
about

R
SM

L

4.6. CONCLUSION 73

quickly. They generally admitted that they were quite confident in the quality of the requirements
they wrote. A large majority understood the difference between requirements and contexts. At
the question: “In my work, writing requirements with RSML can help me to be more effective”
they answered 3 at 80%. At the “In my work, writing requirements with RSML can help me to be
more productive” one, the average answer was 3. They found at 60% that “In my work, writing
requirements with RSML can help me ensure the quality of systems.”

About the quality of the RSML description of the drone system sent by the testers, we can say
that compared to a description we made10, the results were satisfying at 80%.

Finally, the results obtained are encouraging as users accustomed to working with requirements
found the approach satisfactory and occasional users of requirements or accustomed to working in
natural language (1) do not have any major difficulty in using the approach, and (2) thought it
provides them an interesting level of formalization. We now intend to apply our approach to an
industrial case study, the AIDA system, recently made available as open-source at the IRT Saint
Exupéry’s public forge11.

Then, once our ongoing work on requirements relationships formalization is completed, we intend
to validate the usefulness of translating such relationships into other approaches relationships. We
want to use an existing SysML requirements diagram to translate it in RSML and proceed to its
analysis to check it.

4.6 Conclusion
The approach proposed in this chapter leads to the easier use of formal representation of require-
ments. We propose RSML, a requirements dedicated language that is close to NL while supporting
formal semantics. RSML is based on a metamodel of requirements allowing their expression in
both NL and formal language. Since RSML is semantically defined on SIRCOD, RSML expressions
can be used and analyzed, as introduced in chapter 3. Therefore, non-experts can benefit from the
inherent formality of RSML.

Using the techniques and tools of MBSE, we also propose some bridges to existing languages
such as SysML or MSWord/MSExcel, to allow engineers to work with their usual tools. We treat
several requirements engineering issues, providing a way to transform usual requirements expressions
both to and from RSML. RSML can then be seen as a pivot between various expression spaces.
It is also a pivot between formal and not formal fields. RSML aims to integrate into a seamless
approach, reduce the gap between NL requirements and formal representations, and provide ways
to address several kinds of stakeholders (being modeling tools users, NL users, or even more formal
approaches users). We are adding new transformations to other approaches, like KAOS, to confirm
our approach’s scalability in a more global context.

The first experiments gave us good feedback. Using RSML on case studies showed to be useful
for several reasons:

1. It is easily usable by stakeholders used to working with NL.

2. It allows obtaining a formal expression for requirements and their validation through a prover.

3. It allows systems verification regarding their requirements.
10Cf. https://gitlab.com/fgalinier/RSML/blob/master/use-case/drone.rsml
11Cf. http://www.irt-saintexupery.com/wp-content/uploads/2019/02/Annual_Report_2018_Web.pdf.

https://gitlab.com/fgalinier/RSML/blob/master/use-case/drone.rsml
http://www.irt-saintexupery.com/wp-content/uploads/2019/02/Annual_Report_2018_Web.pdf

74 CHAPTER 4. RSML: A MODELING LANGUAGE FOR REQUIREMENTS

This approach and its tool support will be used by more people, with various RE and industrial
case studies. This would validate the approach scalability in terms of: number and confidentiality
of stakeholders, number and types of requirements, and number and types of relationships between
them.

Chapter 5

A semantics for requirements
relationships

“Incorrect documentation is often worse
than no documentation.”

Bertrand Meyer

Contents
5.1 Existing relationships related to requirements artifacts 76
5.2 Formal definitions of these relationships 78
5.3 How to use semantics of relationships to improve requirements? . . . 86
5.4 Applying this semantics to Eiffel . 95
5.5 Conclusion . 102

Relationships between requirements and other artifacts (including other requirements) are quite
common in RE. Formal methods like Event-B emphasize the need to refine high-level requirements
to lower-level requirements, more complex but more precise and closer to the solution. GORE
approaches are also based on the relationships between these artifacts, and the most widely used
tools in the industry are tools providing traceability [83].

In a classical development process, it is necessary to distinguish traceability and other relation-
ships. While traceability is used between artifacts from several development steps (e.g., between a
requirement and a piece of code), relationships are addressed to artifacts from the same step. Most
of the research effort has been made in providing tools and methodology for traceability, with some
automatic tools ([101] or [102]), but most of them still require human expertise to check traceability
[103]. Moreover, there is a real need to clearly defined traceability. In [104], the authors reviewed
several works on traceability and advocate to provide a standard metamodel for traceability. In-
deed, it is all the more critical that in a classical context, it is important to be able to keep the
traceability information when transforming one model into another (e.g., design to code). A certain
amount of work has thus been done to try to automate and keep a coherent traceability between
models. To do this, it is necessary to define a common definition for the traceability relations

75

76 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

[105, 106], i.e. to classify these relations.
If in the context of a seamless approach the problem of transformation does not arise, the classi-

fication of the internal relations to the requirements is important, even if it can be simplified (thus,
the ”satisfy” relation of SysML does not apply within the framework of the approach SIRCOD, an
element of the system satisfying a requirement being a refinement). However, since we advocate
an approach that considers all elements as parts of a single model (within the constraints of a real
project), we need to consider all the internal relationships that exist between the artifacts of this
single model that need to be analyzed.

As already said in the introduction of this section, several approaches have defined a set of
requirements relationships, and the objective of this thesis is not to claim that we invent the
relationships. Rather, we are trying to provide a more generic classification of these relationships,
based on the existing, and provide some semantics to use them as a base tool for engineers.

In this chapter, we will first present in section 5.1 the classification that we propose, to give
then in section 5.2 a formal definition of these relationships. In section 5.3, we present how these
relationships can be used to ease the development of a system. In section 5.4, we apply the presented
relationships to use cases to analyze the impact of such an approach, and in section 5.5, we will
conclude on the benefits and the remaining tasks on this work.

5.1 Existing relationships related to requirements artifacts
As already mentioned, the more common language for requirements is the NL. It is thus important
to put effort into the analysis of this kind of requirement. This is the work done in [8].

To try to provide a complete set of requirements relationships possible, we analyzed NL doc-
uments. During this analysis, we defined several categories for requirements and relationships
between requirements. We presented this work several times during workshops to validate this
work, allowing us to change the classification to the current list incrementally.

The goal here is not to criticize the quality of the requirements document. Such criticism
can be interesting; indeed, if some objectives arguments can be used to judge a requirements
document, they can be used to improve this document. However, it is necessary to analyze existing
requirements documents without any prescription to state how they are. Based on this analysis, the
second step of the work will propose some tools or methodology on how to use such a classification
to improve existing or new requirements documents.

We finally defined ten categories for requirements (and 12 derived categories). Note that we
consider each part of a requirement document as a requirement in the context of this work. We will
not develop here this classification (the purpose of this section is mainly to present relationships),
but here is a quick overview of the categories (for a more detailed version, please refer to [8]):

1. Component: a property that describes a part of the system, the environment or the project;

2. Goal: an objective of the project or the system;

3. Behavior: a property of an operation of a component (or the whole system);

4. Task: an activity of the project;

5. Product: an artifact created by a task of the project;

5.1. EXISTING RELATIONSHIPS RELATED TO REQUIREMENTS ARTIFACTS 77

6. Constraint: a property of the environment that affect a part of the system (of or its behavior)
or of the project;

7. Role: a responsibility for a task or a behavior;

8. Limit: a property that the system, the project or the environment does not include;

9. Lack: a property not defined in the requirements document, but that should be;

10. Metarequirement: a property of a requirement.

Using these categories, we defined several relationships that can exist between requirements.
In a similar way to categories for requirements, we have incrementally obtained nine relationships,
listed here:

1. Disjoins: two requirements R1 and R2 are disjoint iff they are unrelated;

2. Belongs: a requirement R1 belongs another requirement R2 iff R1 is a subrequirement of R2;

3. Repeats: a requirement R1 repeats a requirement R2 iff R1 specifies the same property as
R2;

4. Contradicts: a requirement R1 contradicts a requirement R2 iff the properties specified by
the requirements are not compatible;

5. Follows: a requirement R1 follows a requirement R2 iff R1 is a consequence of R2;

6. Extends: a requirement R1 extends a requirement R2 iff R1 assumes R2 and specifies a new
property;

7. Excepts: a requirement R1 excepts a requirement R2 iff R1 modify a specific property of R2
in a specific context;

8. Constrains: a requirement R1 constrains a requirement R2 iff R1 specifies a constraint on a
property specified in R2;

9. Characterizes: a requirement R1 characterizes a requirement R2 iff R1 is a metarequirement
of R2.

As for requirements categories, several derived relationships were added. The details relation-
ships is thus a derived case of the extends relations; in this case, the requirement that extends the
other requirement only add detail in a specific property and does not add a new property.

The other derived relationships come from the question of the desirability of the repeat. As
detailed in the introduction, the objective is not to be prescriptive, and so the presence (or not) of
a repeat is not analyzed as such. However, to ease future prescriptive work, and since this is one
of the major problem addressed to us during our presentations, we detailed the repeat into three
other relations:

• the shares, when two requirements own a common sub-requirement (or two sub-requirements
that are repeating);

• the explains when two requirements are repeating but are not of the same type (e.g., text
and image or text and UML diagram);

78 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

• the duplicates when two requirements are repeating and are of the same type.

To complete this analysis, we also analyzed how formal requirements can be related to each
other.

5.2 Formal definitions of these relationships
In section 3.4, we introduced a formal definition of requirements themselves. We also define the
requirements’ satisfaction since it is the property we want to trace to ensure systems compliance.
These definitions are used in this section to define relationships between requirements formally. As
a reminder, we defined a requirement as a pair of one set of constraints CR and one set of properties
PR with CR ` PR. We thus obtained the equivalence:

sat(R) ≡ hold(CR)→ hold(PR)

We give here two new definitions that we will use in the next sections to complete this definition.

Definition 1

Two requirements R1 and R2 share a same context iff CR1 = CR2 .

Definition 2

An atomic requirement R is a requirement where |PR| = 1 (a requirement with a unique property).
Using these definitions, we can define relationships between requirements.

5.2.1 What are the relationships between requirements?
To construct the set of relationships between requirements, we considered two requirements R1 and
R2, their constraints (CR1 and CR2) and their properties (PR1 and PR2). We analyzed what could
be the relationships between constraints and between properties of both requirements. The matrix
given in Tab. 5.1 shows the deduced relationships.

Table 5.1: Matrix of relationships between constraints and between properties of two requirements
R1 and R2

PR1 = PR2 PR1 ⊆ PR2 PR2 ⊆ PR1 PR1 ∩ PR2 = ∅
CR1 = CR2 R1 repeat R2 R2 is an addition

to R1

R1 is an addition
to R2

R1 and R2 can
contradict 1

CR1 ⊆ CR2 R2 constrains R1 R1 is a part of R2 R1 refines R2 R1 and R2 can
contradict 1

CR2 ⊆ CR1 R2 refines R1 R2 refines R1 R2 is a part of R1 R1 and R2 can
contradict 1

CR1 ∩ CR2 = ∅ / / / /

We identified six one-to-one relationships:
1If a property Pi of R1 can be expressed as ¬Pj , with Pj a property of R2, R1 contradicts R2 (more details in

section 5.2.2).

5.2. FORMAL DEFINITIONS OF THESE RELATIONSHIPS 79

• repetition

• addition

• contradiction

• constraint

• partition

• refinement

Before entering into their details, let us explain why we limited ourselves to those six relation-
ships:

(i) From our point of view, if two requirements apply in two different contexts, we cannot say
anything formal about the relationships between these requirements. That is why the last line of
Tab. 5.1 (where CR1 ∩ CR2 = ∅) does not let appear any relations. However, we must note that
traceability links could link such requirements. In SysML, for example one could use rationale
to express traces (for example reading a requirement help to understand another one). Since we
cannot attach a formal definition to this trace relationship, we do not treat it in this thesis’ scope.

(ii) To be complete about traceability, we also have to talk about relationships between re-
quirements and other development artifacts. Actually, some approaches such as KAOS or i* [32]
link requirements to stakeholders (that will be in charge of these requirements), or even to part
of the system that should satisfy a requirement (operationalization in KAOS or satisfy in SysML
[36]). SysML moreover, can be used to express that a requirement is verified by a test case. Both
last relationships should be taken into account for validation. The semantics of such links can be
expressed as:

• if an predicate V of the project verifies a requirement R, it will have to check the validity of
PR (hold(PR) ≡ >), assuming the constraints are hold (hold(CR) ≡ >). To rephrase, sat(R)
will be equal to the boolean value of V ;

• if an element E of the system satisfies a requirement R, any predicate V that verifies R will
have to control E; i.e., a verifier V have to control if hold(PR) ≡ >, assuming (hold(CR ≡ >),
given the behavior of E.

Note that CR1 ⊆ CR2 can mean that:

• ∀Ci ∈ CR1 , Ci ∈ CR2 (classical subset relation); but also that

• ∀Ci ∈ CR1 , ∃Cj ∈ CR2 , Ci = Cj ∨ x since P1 ∧ ...∧Pm ∧ ...∧Pn ∧ (P1 ∨ x)∧ ...∧ (Pm ∨ x) ≡
P1 ∧ ... ∧ Pm ∧ ... ∧ Pn, {P1 ∨ x, ..., Pm ∨ x} ⊂ {P1, ..., Pm, ..., Pn}.

So, a requirement R1 is less constrained than R2 (the context is larger) if R1 applies with less
constraints than R2 or if R1 applies with constraints of R2 that are weakened. This formulation
will demonstrate satisfaction’s propagation on refinement and is commonly used in literature about
refinement.

80 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

5.2.2 Formal definitions of relationships between requirements
In this section, we will consider each of the relationships listed below. We will give an example,
provide a semantic definition, formalize the satisfaction propagation, and demonstrate it. In the
following, we will consider:

• R0, R1, R2, Ri, ..., Rn, requirements;

• CR0 , CR1 , CR2 , CRi
, ..., CRn

, constraints;

• and PR0 , PR1 , PR2 , PRi , ..., PRi , properties.

Note: For each relationship, we do not express any value judgments about them. For example,
the contradiction is not something that is desired in a requirements set. However, it is interesting
to detect this kind of link, and it corresponds to a reality that we have to handle. This is also the
case for repetition. Repetitions do not add information about the system and can be sources of
ambiguity – if two requirements are not clearly expressed as a repeat, one can ask the difference
between them – and engineers want to avoid repetition. Furthermore, if a requirement changes and
not the other one, inconsistency will be introduced in the system. However, sometimes repetition
can be needed. For example, engineers may want to use a requirement expressed elsewhere (in
another part of the system or even in another project) and to be informed if it changes. So we have
to propose a way to support repetitions.

While we aim to support the management of these relationships (e.g., applying good principles,
detecting unwanted relationships, etc.), we do not deeply analyze their usage and implications in
this chapter.

Repetition

Example: “When activated, the drone shall take over a parcel (pick it in the warehouse and
deliver it)” repeats “The drone shall pick up a parcel, go to the destination and drop it off when
activated on the web application”.

Definition: A requirement repeats another one if they are the same – i.e., a requirement is
a repetition of another one if they share the same context and if their properties are equals: R1
repeats R2 iff CR1 = CR2 and PR1 = PR2 .

Satisfaction’s propagation : sat(R1) ≡ sat(R2)

Demonstration: By construction.

Note: These repetitions can be detected by simplifying constraints and properties to conjunc-
tive normal form.

Constraint

5.2. FORMAL DEFINITIONS OF THESE RELATIONSHIPS 81

Example: “When delivery order is given and when the battery is low (< 10%), the drone
shall send a notification and stay in the charge pad” is a constrained version of “When the battery
is under 10%, the drone shall stay in charge and a notification of battery status shall be available
for the user”.

Definition: A requirement is a constrained version of another one if the first one owns more
constraints:

R1 is a constraint of R0 if PR0 = PR1 and CRO
⊆ CR1 .

Satisfaction’s propagation : sat(R0)→ sat(R1)

Demonstration: Let’s say CR1 = {C1, ..., Cm, ..., Cn} and CR0 = {C1, ..., Cm}.

sat(R1) ≡ hold(CR1)→ hold(PR1)
≡ (C1 ∧ ... ∧ Cm ∧ ... ∧ Cn)→ hold(PR1)
≡ (C1 ∧ ... ∧ Cm ∧ C1 ∧ ... ∧ Cm ∧ ... ∧ Cn)→ hold(PR1)
≡ (hold(CR0) ∧ hold(CR1))→ hold(PR1)
≡ (hold(CR0)→ hold(PR1)) ∨ (hold(CR1)→ hold(PR1))
≡ sat(R0) ∨ sat(R1)

So we have:

sat(R1)⇔ sat(R0) ∨ sat(R1)
≡ (sat(R1)→ (sat(R0) ∨ sat(R1)))∧

((sat(R0) ∨ sat(R1))→ sat(R1))
≡ ((sat(R1)→ sat(R0)) ∨ (sat(R1)→ sat(R1)))∧

((sat(R0)→ sat(R1)) ∧ (sat(R1))→ sat(R1))
≡ ((sat(R1)→ sat(R0)) ∨ >) ∧ ((sat(R0)→ sat(R1)) ∧ >
≡ sat(R0)→ sat(R1)

Addition

Example: “The drone shall retrieve destination of handled parcel from an existing web service
and transport it to this destination” is an addition to “When a parcel is handled by the drone, the
drone shall transport it to its destination”.

Definition: A requirement is an addition version of another one if they share the same context
and the first one has more properties:

R1 is an addition of R0 if PR0 ⊆ PR1 and CR0 = CR1 (Let’s note that if the constraints are
different, this is not an addition but just a different requirement).

82 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

Satisfaction’s propagation : sat(R1)→ sat(R0)

Demonstration: Let’s say PR1 = {P1, ..., Pm, ..., Pn} and PR0 = {P1, ..., Pm}.

sat(R1) ≡ hold(CR1)→ hold(PR1)
≡ hold(CR1)→ (P1 ∧ ... ∧ Pm ∧ ... ∧ Pn)
≡ hold(CR1)→ (P1 ∧ ... ∧ Pm ∧ P1 ∧ ... ∧ Pm ∧ ... ∧ Pn)
≡ hold(CR1)→ (hold(PR0) ∧ hold(PR1))
≡ (hold(CR1 → hold(PR0)) ∧ (hold(CR1 → hold(PR1))
≡ sat(R0) ∧ sat(R1)

So we have:

sat(R1)⇔ sat(R0) ∧ sat(R1)
≡ (sat(R1)→ (sat(R0) ∧ sat(R1)))∧

((sat(R0) ∧ sat(R1))→ sat(R1))
≡ ((sat(R1)→ sat(R0)) ∧ (sat(R1)→ sat(R1)))∧

((sat(R0)→ sat(R1)) ∨ (sat(R1))→ sat(R1))
≡ ((sat(R1)→ sat(R0)) ∧ >) ∧ ((sat(R0)→ sat(R1)) ∨ >)
≡ sat(R1)→ sat(R0)

Partition

Example: “When the distance to warehouse is more than 500 meters and when the drone
battery is under 10%, then the drone shall switch to recovery mode, send a location message and
land quickly” can be partitioned into

• “When the battery is under 10% then the drone shall switch to recovery mode” and “When
the battery is under 10% then the drone shall land quickly and send a location message”;

• or even into “When the distance to warehouse is more than 500 meters then the drone shall
send a position message” and “When the battery is under 10% then the drone shall switch to
recovery mode and land quickly”.

Definition: A requirement can be split into other requirements that will together participate
to the satisfaction of the original one.

R0 (non-atomic) is partitioned into {R1, ..., Rn} where all requirements Ri in {R1, ..., Rn} own
a set of properties PRi

with PRi
⊆ PR0 .

To ensure that all properties of the original requirement will be met, the partition has to be
complete, i.e., the set of all requirements part of the original one have to cover the original one
(
⋃n

i=1 PRi = PR0).The constraints of these requirements can be a subset of the constraints of the
original one (CRi

⊆ CR0).

5.2. FORMAL DEFINITIONS OF THESE RELATIONSHIPS 83

Satisfaction’s propagation : sat(R0) ≡ (sat(R11) ∨ ... ∨ sat(R1m)) ∧ ... ∧ (sat(Rn1) ∨ ... ∨
sat(Rnm)) with:

• |CR0 | = m and |PR0 | = n;

• for all i ∈ [1; n] and j ∈ [1; m], CRij ∈ CR0 and PRij ∈ PR0 ;

• for all i ∈ [1; n], and for all j, k ∈ [1; m], PRij = PRik
;

• for all i ∈ [1; n],
⋃m

j=1 CRij = CR0 .

Demonstration:

sat(R0) ≡ hold(CR0)→ hold(PR0)
≡ (C1 ∧ ... ∧ Cx)→ (P1 ∧ ... ∧ Py)
≡ (hold(CR1) ∧ ... ∧ hold(CRm

))
→ (hold(PR1) ∧ ... ∧ hold(PRn

))
≡ ((hold(CR1) ∧ ... ∧ hold(CRm

))→ (hold(PR1)) ∧ ...∧
((hold(CR1) ∧ ... ∧ hold(CRm

))→ hold(PRn
))

≡ ((hold(CR1)→ hold(PR1)) ∨ ...∨
(hold(CRm

)→ hold(PR1))) ∧ ...∧
((hold(CR1)→ hold(PRn

)) ∨ ...∨
hold(CRm

)→ hold(PRn
))

≡ (sat(R11) ∨ ... ∨ sat(R1m) ∧ ...∧
(sat(Rn1) ∨ ... ∨ sat(Rnm))

Refinement

Example: “When the drone handle a parcel, then it shall transport it carefully” can be refined
in “At any time, the drone shall avoid obstacles, fly at the minimum safe height and be able to stop
in less than 1 second.”.

Definition: A requirement is a refinement of an other one if it introduces a new property
and/or if it relax the context (the constraints are weaken):

R1 refines R0 if PR0 ⊆ PR1 and CR0 ≡ CR1 ∨ C′
R0

(where C′
R0

is another set of constraints).

Satisfaction’s propagation : sat(R1)→ sat(R0).

Demonstration: Let’s consider two requirements R0 and R1, with CR0 = {C1, ..., Cm} and
CR1 = {C1 ∨ Cn, ..., Cm ∨ Cn}, PR1 = {P1, ..., Pm, ..., Pn} and PR0 = {P1, ..., Pm}.

84 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

sat(R1) ≡ hold(CR1)→ hold(PR1)
≡ ((C1 ∨ Cn) ∧ ... ∧ (Cm ∨ Cn))→ (P1 ∧ ... ∧ Pm ∧ ... ∧ Pn)
≡ ((C1 ∧ ... ∧ Cm) ∨ Cn)→ (P1 ∧ ... ∧ Pm ∧ ... ∧ Pn)
≡ ((C1 ∧ ... ∧ Cm) ∨ (C1 ∧ ... ∧ Cm) ∨ Cn)
→ (P1 ∧ ... ∧ Pm ∧ P1 ∧ ... ∧ Pm ∧ ... ∧ Pn)

≡ (hold(CR0) ∨ hold(CR1))→ (hold(PR0) ∧ hold(PR1))
≡ (hold(CR0)→ (hold(PR0) ∧ hold(PR1))
∧ (hold(CR1)→ (hold(PR0) ∧ hold(PR1))

≡ (hold(CR0)→ hold(PR0)) ∧ (hold(CR0)→ hold(PR1))
∧ (hold(CR1)→ hold(PR0)) ∧ (hold(CR1)→ hold(PR1))

≡ sat(R0) ∧ (hold(CR0)→ hold(PR1))∧
(hold(CR1)→ hold(PR0)) ∧ sat(R1)

However, hold(CR0) → hold(PR1) is an addition R′
1 to R1 and hold(CR1) → hold(PR0) is a

constraint R′
0 to R0. So we have:

sat(R1) ≡ sat(R0) ∧ sat(R′
1) ∧ sat(R′

0) ∧ sat(R1)
≡ sat(R0) ∧ (sat(R0) ∧ sat(R1))∧

(sat(R0) ∨ sat(R1)) ∧ sat(R1)
≡ sat(R0) ∧ sat(R1)

Using the same properties than in addition, we can thus deduce sat(R1)→ sat(R0).

Note: The addition relation is a particular case of the refinement (a refinement with C′
R0

= ∅,
i.e., without constraints weakening).

Contradiction

Example: “At any time, the drone shall avoid obstacles, fly at the minimum safe height and
be able to stop in less than 1 second” contradicts “When the battery is under 10% then the drone
shall switch to recovery mode and land quickly”.

Definition: A requirement is a contradiction of another one if when one of them is satisfied,
the other cannot be satisfied. Especially, when considering R1 and R2 with CR1 ⊆ CR2 , if there is
a property P in PR1 and ¬P in PR2 , then R1 and R2 are contradictory.

Satisfaction’s propagation : R1 contradicts R2 if sat(R1)∧sat(R2) cannot be true in a given
context. That can also be expressed as: hold(PR1)→ ¬hold(PR2) and hold(PR2)→ ¬hold(PR1),

5.2. FORMAL DEFINITIONS OF THESE RELATIONSHIPS 85

Demonstration: Let’s take two requirements R1 and R2 with CR1 ⊆ CR2 and PR1 = {P1, ..., P, ..., Pn}
and PR2 = {P ′

1, ...,¬P, ..., P ′
n}.

Let’s try to satisfy both requirements in the context of R2 (sat(R1) ∧ sat(R2) ∧ hold(CR2)).

sat(R1) ∧ sat(R2) ∧ hold(CR2)
≡ (hold(CR1)→ hold(PR1)) ∧ (hold(CR2)→ hold(PR2)) ∧ hold(CR2)
≡ ((C1 ∧ ... ∧ Cm)→ (P1 ∧ ... ∧ P ∧ ... ∧ Pm))∧

((C1 ∧ ... ∧ Cm ∧ ... ∧ Cn)→ (P ′
1 ∧ ... ∧ ¬P ∧ ... ∧ P ′

m))∧
(C1 ∧ ... ∧ Cm ∧ ... ∧ Cn)

≡ (C1 ∧ ... ∧ Cm ∧ ... ∧ Cn)∧
(P1 ∧ ... ∧ P ∧ ... ∧ Pm) ∧ (P ′

1 ∧ ... ∧ ¬P ∧ ... ∧ P ′
m)

≡ ⊥

Thus, we cannot have sat(R1) ∧ sat(R2) in the context of R2. Let us try now to satisfy both
requirements in the context of R1.

sat(R1) ∧ sat(R2) ∧ hold(CR1)
≡ (hold(CR1)→ hold(PR1)) ∧ (hold(CR2)→ hold(PR2)) ∧ hold(CR1)
≡ ((C1 ∧ ... ∧ Cm)→ (P1 ∧ ... ∧ P ∧ ... ∧ Pm))∧

((C1 ∧ ... ∧ Cm ∧ ... ∧ Cn)→ (P ′
1 ∧ ... ∧ ¬P ∧ ... ∧ P ′

m))∧
(C1 ∧ ... ∧ Cm)

≡ ((C1 ∧ ... ∧ Cm) ∧ (P1 ∧ ... ∧ P ∧ ... ∧ Pm)∧
¬(C1 ∧ ... ∧ Cm ∧ ... ∧ Cn)) ∨ ((C1 ∧ ... ∧ Cm)∧
(P1 ∧ ... ∧ P ∧ ... ∧ Pm) ∧ (P ′

1 ∧ ... ∧ ¬P ∧ ... ∧ P ′
m))

≡ ((C1 ∧ ... ∧ Cm) ∧ (P1 ∧ ... ∧ P ∧ ... ∧ Pm)∧
¬(C1 ∧ ... ∧ Cm ∧ ... ∧ Cn)) ∨ ⊥

≡ hold(CR1) ∧ ¬hold(CR2) ∧ hold(PR1)

This result means that, in the context of R1, if we want to have sat(R1) ∧ sat(R2), we need to
be strictly in the context of R1 (hold(CR1) ∧ ¬hold(CR2)) and so, R2 won’t be satisfied (since we
have ¬hold(CR2)).

Note: The given definition of contradiction must not be limited to the case CR1 ⊆ CR2 and
P in PR1 and ¬P in PR2 . This relation does not express anything about two totally unrelated
requirements. For example, we can consider that both requirements The system shall be cheap
and The system shall be safe are contradictory even if they does not deal with the same property.
Contradiction can thus be used to detect simple contradictions, or to highlight contradictions in a
set of requirements and to propagate the information.

86 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

5.3 How to use semantics of relationships to improve re-
quirements?

The semantic definition of relationships between requirements has several advantages. First of all,
it allows us to remove ambiguity about the meaning of these relations. Thus, the work done in the
first part of this chapter (on the definition of relations between requirements in natural language) is
completed by this semantic definition. As a reminder, in [8], we had defined nine relations. Of these
nine relations, two can be left out of the semantic definition: the relation disjoins and the relation
characterizes. The first one is that there is no semantic link between two disjoint requirements due
to its nature. The second because the notion of metarequirement implies not a relation between
requirements but a relation on the properties on which a requirement is based (the property is a
predicate on another requirement and not on the system).

This reduces the set of relations to six. Among them, some are trivial to align with the relations
we have deduced from the semantic combinations of properties and constraints: the repeat corre-
sponds to the repeats, the contradiction corresponds to the contradicts, the constraint corresponds
to the constrains and the partition corresponds to the belongs. The extends can be aligned with
two relations whose semantics we have defined: the addition but also the refinement. That makes
sense, since addition is only a special case of refinement.

Two relationships of the work done in [8] cannot be aligned with the semantic definition work
done here. Indeed, the follows implies that one requirement is a consequence of another requirement.
This consequence, as understood in [8], is not a logical implication, but rather that a R1 requirement
exists because of the existence of a R2 requirement. The last relation, the excepts, implies that
the contexts are different and, therefore, cannot be defined with the semantics we propose in this
chapter.

That said, this work already provides additional tools. We will detail them in the following
sections.

5.3.1 Propagating satisfaction
Since we defined the implication of satisfaction, it is thus possible, given a set of requirements,
to propagate the satisfaction of requirements. Such propagation can lead to two benefits: on the
one hand, it is possible, given a set of satisfied requirements and the relationships between the
requirements, to emphasize what are the requirements already satisfied. On the other hand, it is
possible to go the other way around and isolate the requirements that are needed to be satisfied
and the requirements that will be satisfied by propagating.

We can thus define satisfaction links between requirements from these relationships, forming a
directed graph. A example is given in Fig. 5.1 (with an emphasize on the minimum set to satisfy
the whole requirements set).

A set of requirements and the relationships between them is given. Using the semantics defined
in the previous sections, it is thus possible to provide satisfaction links between requirements, as
given in Fig. 5.2. A simple graph traversal algorithm can do this (see algorithm 1) that will return
a new directed graph with satisfaction links, given the semantics of the relationships.

For the example given in Fig. 5.1, we thus obtain the directed graph illustrated in Fig. 5.2 (with
an emphasize on the minimum set to satisfy the whole requirements set).

The resulting graph can be used in (at least) two ways: firstly, it is possible to propagate a
requirement’s satisfaction through the graph. For instance, if the requirement R0 is satisfied, it

5.3. HOW TO USE SEMANTICS OF RELATIONSHIPS TO IMPROVE REQUIREMENTS? 87

R0

R2

adds

R3

adds

R5

constraints

adds

R4

adds

refines

R1

adds

R7

parts of

R8

parts of

R9

repeats

R6

constraints

R12

adds

R81

refines

R82

refines

Figure 5.1: Example of requirements and relationships between them

88 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

R0

R2

satisfies

R3

satisfies

satisfies

R4

satisfies

R6

satisfies

R1

satisfies

R5

satisfies

satisfiesR7

satisfies

R8

satisfies

R9

satisfiessatisfies

R12

satisfies

R81

satisfies

R82

satisfies

Figure 5.2: Example of satisfaction links for requirements and relationships from Fig. 5.1

5.3. HOW TO USE SEMANTICS OF RELATIONSHIPS TO IMPROVE REQUIREMENTS? 89

Algorithm 1: Compute satisfaction links given requirements and relationships between
them

Input: A directed graph R = (V, E) of requirements (r ∈ V) and relationships between
requirements ((r1, r2, relation) ∈ E; where r1 is linked to r2 by a relation of kind
relation).

Output: A directed graph O = (X, S) of requirements (r ∈ V) and satisfaction
propagation links ((r1, r2) ∈ S).

X ← V
S ← {}
foreach r1 ∈ V do

foreach (r1, ri, rel) ∈ E do
switch rel do

case addition do
S ← S ∪ {(r1, ri)}

end
case repetition do

S ← S ∪ {(r1, ri); (ri, r1)}
end
case constraint do

S ← S ∪ {(ri, r1)}
end
case partition do

S ← S ∪ {(r1, ri)}
end
case refinement do

S ← S ∪ {(r1, ri)}
end

end
end

end
return (X, S)

is possible to deduce that the requirements R2, R3, R4, and R6 are also satisfied by propagation.
Finally, it is also possible to find the minimum subset of requirements that must be met to satisfy
the complete set of requirements. This can be done by finding the sources in the directed set, as
given in algorithm 2. However, this naive approach does not take into account the case of a cycle
that can appear (especially with repetitions) – a smarter implementation is available in gitlab1.

In Fig. 5.1 and Fig. 5.2, requirements that are in this minimal set are shaded. Since such a
semantic definition can give advantages, even at a very early stage of research, we found it interesting
to support this kind of relationship in SIRCOD and RSML. Moreover, such an approach, linked
to the strong dependency between requirements and code implied by SIRCOD, allows to detect
the impact of requirements change directly in the code. This can be compared to impact analysis
algorithms [107], since it allows computing where a change in requirements can effect the code, by

1https://gitlab.com/fgalinier/minimumset

90 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

Algorithm 2: Find sources of the directed graph containing the requirements and satis-
faction links between them

Input: A directed graph O = (X, S) of requirements (r ∈ X) and satisfaction propagation
links ((r1, r2) ∈ S).

Output: A set M of requirements r ∈ X that are sources
M ← {}
foreach r ∈ X do

if @(ri, r) ∈ S then
M ←M ∪ {r}

end
end
return M

propagation. Moreover, combined with such algorithms, it allows developers to see exactly what
are all the part of code that are impacted by a change, and not only the code directly linked to the
study requirement.

5.3.2 Improving SIRCOD and RSML
Relationships in SIRCOD

In section 5.4, a possible formal representation of the relationships will be detailed in Eiffel. How-
ever, even without going into this detail level, it is interesting to introduce such relationships in
the SIRCOD approach. Using the previously defined algorithms (and assuming that the relation-
ships are well defined) can help decrease the number of requirements to analyze, decreasing the
complexity of such an analysis.

We introduced this notion of relationships between requirements in the same way that we
traced the source of requirements: using the notes’ mechanism. In List. 5.1, the feature of
List. 5.1 is enriched with a adds note, that gives the information that requirement 5 1 doc is
an extension of requirement 1 1 3 docs. Such relationships can then be used to trace require-
ments and to check that all requirements are correctly satisfied. In the example of List. 5.1,
since requirement 5 1 doc is an addition of requirement 1 1 3 doc, it is expected that if
requirement 5 1 doc is satisfied, requirement 1 1 3 doc is satisfied too.

feature
requirement 5 1 doc : STRING

note
EIS : ” s r c=use−case drone . docx” , ”bookmark=5.1”
adds : ”{DELIVERY REQUIREMENTS} . requirement 1 1 3 doc”

do
Result := ” [

[5 . 1] (i s an add i t i on o f [1 . 1 . 3]) When drone
l o c a t i o n i s equal to d e s t i n a t i o n then
even tua l l y attached p a r c e l s h a l l be equal to

n u l l and drop l o c a t i o n s t a t u s s h a l l be
equal to conf irmed .

5.3. HOW TO USE SEMANTICS OF RELATIONSHIPS TO IMPROVE REQUIREMENTS? 91

] ”
end

Listing 5.1: Relationships note between requirement 5 1 doc and requirement 1 1 3 doc

These notes are added by applying the pattern given in List. 5.2.

feature
<identifier of the requirement> doc : STRING
note

EIS : ” s r c=<path to source document>” , ”bookmark=<bookmark of the
requirement>”

<FOREACH relation rel of the requirement DO>
<Type of rel> : <target of rel>

<END FOREACH>
do

r e s u l t :=
<FOREACH addition a of the requirement DO>

<target of a> +
<END FOREACH>

” [
<text of the requirement>

] ”
end

Listing 5.2: Eiffel pattern for a requirement feature with relationships

We do not add the refinement note since, as we already present in chapter 3, the refinement is
represented in SIRCOD using the redefinition mechanism. The addition of relationships nevertheless
impacts the SIRCOD process. Indeed, we have now to consider the relationships during all the steps.

Requirements Engineer

1. Extraction 2. Formalization

Software Engineer

3. Refinement 4. Implementation

Code

Requirements
Document

1'. Write
relationships

Eiffel NL
requirements

Eiffel Formal
requirements

This is represented in Fig. 5.3.2. The process now includes the writing of the relationships, in
parallel with the three first steps. Thus, the engineer must also identify and create links between
requirements.

However, this new activity is not only in parallel with the extraction activity. Indeed, since the
formalization and refinement activities may give rise to new requirements, it becomes necessary to
check if the requirements are linked to other requirements.

92 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

To support the addition of new notes for relationships, the documentation view has been
updated to let appear these relationships and print the related requirement. Thus, in Fig. 5.3,
requirement 5 1 doc includes the text of requirement 1 1 3 doc, since it is an addition of
this requirement feature (expressed by: adds: "{DELIVERY_REQUIREMENTS}.requirement_1_1_3_doc").

Figure 5.3: Documentation view of the class

Moreover, thanks to these relationships and the EIS mechanism, it is possible to propagate the
change. If a change is detected, the developer can see in EIS what feature is potentially impacted
by a change and, using links between features, find if some other features can be concerned. On the
other hand, after modifying these other features, the user can check again by using the EIS links if
the changes he introduced are adequate to the source document’s textual requirements.

Relationships in RSML

The semantics propose in this chapter and the addition of relationships to SIRCOD led us to
propose an extension to the RSML metamodel. As detailed in previous sections, it allows an easier
requirement analysis and reduces the set of requirements to verify. Moreover, NL requirements are
only treated as units, with no specific semantics on the requirements themselves. These relationships
can thus be used to give some information about the satisfaction of these requirements too.

This horizontal traceability between requirements is expressed by the reification of the relation
between two requirements. This reification is done through the Trace artifacts. The trace does not
own any semantics as it, and shall be specialized by one of the six relationships that we defined,
based on the semantics proposed in section 5:

• addition: the requirement R1 add a property to the target requirement R2;

• containment: the requirement R1 contains the target requirement R2;

• refine: the requirement R1 refines the target requirement R2;

• contradiction: the requirement R1 and the target requirement R2 cannot be satisfied in the
same time;

• repetition: the requirement R1 is a repetition of the target requirement R2;

• constraint: the requirement R1 constrains the context of the target requirement R2.

We can, however, specify some OCL constraints on these relationships using these semantics.
The constraints are limited to the case where the source and target of the relationships are Formal
Requirements; indeed, it is not possible to analyze the semantics of Natural Language Requirements
in this context. Of course, this rule does not consider the semantics of properties and constraints
themselves, and two different properties (resp. constraints) can be semantically identical. In this
case, the OCL rule will report a bad usage of a relation. While this may initially seem problematic,

5.3. HOW TO USE SEMANTICS OF RELATIONSHIPS TO IMPROVE REQUIREMENTS? 93

Figure 5.4: Relationships (iii) added to the RSML metamodel

it should be noted that the use of different formulations for the same predicate (the use of synonyms)
is one of the biases that lead to ambiguity. This reduces ambiguity by forcing the user to use the
same formulation.

Addition implies that the two Formal Requirements share the same context and the target re-
quirement properties is a subset of the source requirement properties, that can be verified by:

context Addit ion inv :
(s e l f . source . oclIsTypeOf (FormalRequirement) and s e l f . t a r g e t .

oc lIsTypeOf (FormalRequirement)) implies (
s e l f . t a r g e t . c o n s t r a i n t s = s e l f . source . c o n s t r a i n t s and
s e l f . source . p rope r t i e s −>i n c l u d e s A l l (s e l f . t a r g e t . p r o p e r t i e s)

)

Containment is an addition, with the exception that the union of the properties of all the sub-
requirements Ri shall be equal to the set of properties of the container R1, that can be verified
by:

context Containment inv :
(s e l f . source . oclIsTypeOf (FormalRequirement) and s e l f . t a r g e t .

oc lIsTypeOf (FormalRequirement)) implies (
s e l f . t a r g e t . c o n s t r a i n t s = s e l f . source . c o n s t r a i n t s and
s e l f . source . p rope r t i e s −>i n c l u d e s A l l (s e l f . t a r g e t . p r o p e r t i e s) and
s e l f . source . p rope r t i e s −>f o r A l l (

p | s e l f . source . r e l a t i o n s −>e x i s t s (

94 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

r | r . oc lIsTypeOf (Containment) and
r . t a r g e t . p rope r t i e s −>i n c l u d e s (p))

)

Refine implies that the properties of the target requirement (refined) are a subset of the source
requirement (refining) and the constraints of the refined requirement are more restrictive than the
constraints of the refining requirements. That can be model by:
context Ref ine inv :

(s e l f . source . oclIsTypeOf (FormalRequirement) and s e l f . t a r g e t .
oc lIsTypeOf (FormalRequirement)) implies (

s e l f . source . p rope r t i e s −>i n c l u d e s A l l (s e l f . t a r g e t . p r o p e r t i e s) and
s e l f . t a r g e t . c o n s t r a i n t s −>f o r A l l (

c1 | s e l f . source . c o n s t r a i n t s −>e x i s t s (
c2 | c2 . elements−>i n c l u d e s A l l (c1 . e lements)))

)

Constraint implies that the two Formal Requirements share the same properties, and the target
requirement constraints are a subset of the source requirement constraints, that can be verified by:
context Constra int inv :

(s e l f . source . oclIsTypeOf (FormalRequirement) and s e l f . t a r g e t .
oc lIsTypeOf (FormalRequirement)) implies (

s e l f . t a r g e t . p r o p e r t i e s = s e l f . source . p r o p e r t i e s and
s e l f . source . c o n s t r a i n t s −>i n c l u d e s A l l (s e l f . t a r g e t . c o n s t r a i n t s)

)

Alternative implies that the properties of the source requirement are a subset of the properties
of the target requirement and the same for the constraints. That can be verified by:
context Al t e rna t i v e inv :

(s e l f . source . oclIsTypeOf (FormalRequirement) and s e l f . t a r g e t .
oc lIsTypeOf (FormalRequirement)) implies (

s e l f . t a r g e t . p r o p e r t i e s . i n c l u d e s A l l (s e l f . source . p r o p e r t i e s) and
s e l f . t a r g e t . c o n s t r a i n t s −>i n c l u d e s A l l (s e l f . source . c o n s t r a i n t s)

)

Repetition implies that the properties and the constraints of the two requirements are identical;
that can be verified by:
context Repet i t i on inv :

(s e l f . source . oclIsTypeOf (FormalRequirement) and s e l f . t a r g e t .
oc lIsTypeOf (FormalRequirement)) implies (

s e l f . t a r g e t . p r o p e r t i e s = s e l f . source . p r o p e r t i e s and
s e l f . t a r g e t . c o n s t r a i n t s = s e l f . source . c o n s t r a i n t s

)

5.4. APPLYING THIS SEMANTICS TO EIFFEL 95

Contradiction implies that the two requirements share the same context, while the properties
are incompatible. OCL rule can only check that one of the two requirements constraints set is a
subset of the other (i.e., the two requirements are considered in the same context) since we do not
analyze the semantics of the properties themselves in the metamodel:

context Contrad ic t ion inv :
(s e l f . source . oclIsTypeOf (FormalRequirement) and s e l f . t a r g e t .

oc lIsTypeOf (FormalRequirement)) implies (
s e l f . t a r g e t . c o n s t r a i n t s . i n c l u d e s A l l (s e l f . source . c o n s t r a i n t s) or

s e l f . source . c o n s t r a i n t s . i n c l u d e s A l l (s e l f . t a r g e t . c o n s t r a i n t s)
)

These OCL constraints shall ensure that the relationships defined in this metamodel are seman-
tically well defined regarding the semantics.

RSML metamodel allows the expression of relationships that can exist in requirements. These
relationships can so be expressed in RSML. They are attached to the sources of the relationships
and are introduced between parenthesis (‘(’ and ‘)’), with a keyword for each kind of relationship,
the target being identified by the requirement identifier. All kinds of requirements can be linked
using this kind of relationship.

The grammar of requirement is modified as follows:

〈requirement〉 ::= ‘[’ 〈id〉 ‘]’ (‘(’ 〈relationships〉‘)’)?
(〈natural language requirement〉 | 〈formal requirement〉) 〈newline〉

〈relationships〉 ::= 〈relationship kind〉 〈id〉 (‘and’ 〈relationships〉)?

〈relationship kind〉 ::= ‘refines’
| ‘part of’
| ‘is an addition of’
| ‘is a constrained version of’
| ‘contradicts’
| ‘repeats’
| ‘is an alternative of’
| ‘trace’

5.4 Applying this semantics to Eiffel
In [85], a representation of requirements using routines of the Eiffel language is proposed. This
allows the enactment of requirements on the one hand, and on the other hand, the proof of the
requirements’ satisfaction by the system, thanks to the theorem prover Autoproof [88]. Indeed, by
providing a representation of requirements in Eiffel, the users can specify (and even implement) the
system in a seamless way [108] in a unique language and execute the theorem prover to verify if the
system is compliant with its requirements.

In this section, we propose to extend this approach by mapping the relationships defined in
section 5.2 above to the concepts of object-oriented programming languages. Thanks to the formal
representation of requirements and relationships section 5.2.2, we show how we can propagate
satisfaction between requirements through their relationships.

96 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

Note that we do not pretend to be exhaustive in the list below (since we can use several ways
to express the addition, for example), but our objective is to provide a simple way to express the
relationships considered in section 5.2 formally.

To map formal representation of requirements to Eiffel concepts, we consider that a requirement
R is a feature of a class, a constraint CR of R a precondition of this feature and a property PR a
postcondition. Autoproof will use preconditions as assumptions to prove that postconditions are
true or not.

We applied these relationships to the example given in section 5.2.

Repetition

In Eiffel, expressing a repetition means that we want to represent a requirement that owns
the same pre and postconditions than another one. The call mechanism can be used to do that, as
presented in List. 5.3.

Req 1
note

req : ” [
When act ivated , the drone s h a l l take over a p a r c e l (p ick i t in

the warehouse and d e l i v e r i t)
] ”

do
Req 2

end

Req 2
note

req : ” [
The drone s h a l l p ick up a parce l , go to the d e s t i n a t i o n and

drop i t o f f when ac t i va t ed
] ”

do
−− . . .

end
Listing 5.3: Representation of a repetition in Eiffel

In this listing, Req 1 is a repetition of Req 2 – an analysis of the system will have to prove
that Req 2 is correct (the postconditions are true when the preconditions are held) to prove that
Req 1 is correct, and nothing else.

Constraint

To constrain a requirement R, we need to add a new precondition to the Eiffel representation
of R. To keep the trace that a requirement R4 is only a constrained version of a requirement R3, we
can use the call mechanism. Thus, Req 4 will be a routine adding some new constraints to check,
just calling Req 3, as seen in List. 5.4.

Req 3

5.4. APPLYING THIS SEMANTICS TO EIFFEL 97

note
req : ” [

When the bat te ry i s under 10%, the drone s h a l l s tay in charge
and a n o t i f i c a t i o n o f bat te ry s t a t u s s h a l l be a v a i l a b l e f o r
the user

] ”
require

battery low : ba t t e ry l eve l < 0 .1
do
ensure

charge : i s in charge
n o t i f i c a t i o n : app . n o t i f i c a t i o n l o g . s i z e > 0

end

Req 4
note

req : ” [
When d e l i v e r y order i s g iven and when the bat te ry i s low (<10%)

, the drone s h a l l send a n o t i f i c a t i o n and stay in the
charge pad

] ”
require

de l ive ry order r ece ived : has de l ivery order
do

Req 3
end

Listing 5.4: Representation of a constraint in Eiffel

A static analysis of this code will have to prove that Req 4 is true by proving Req 3, when adding
its new preconditions.

If Req 3 can be proved as itself, Req 4 will be proved true too, but if Req 3 cannot be proved,
Req 4 can however be proved using the introduced assumptions (that correspond to the property
of constraint sat(R3)→ sat(R4)).

Addition

In a similar way than constraint, to handle addition we can add new properties by adding new
postconditions. Thus, a requirement R6 is an addition to a requirement R5 if R6 owns the same
body than R5 with new postconditions. In a similar way than in constraint, in List. 5.5 feature
Req 6 is a call to Req 5 with new postconditions.

Req 5
note

req : ” [
When a p a r c e l i s handled by the drone , the drone s h a l l

t r anspor t i t to i t s d e s t i n a t i o n
] ”

98 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

require
parcel handled : p a r c e l /= Void

do
ensure

t ranspor t to des t inat ion : l o c a t i o n = p a r c e l . d e s t i n a t i o n and p a r c e l
= Void

end

Req 6
note

req : ” [
The drone s h a l l r e t r i e v e d e s t i n a t i o n o f handled p a r c e l from an

e x i s t i n g webserv ice and t ranspor t i t to t h i s d e s t i n a t i o n
] ”

do
Req 5

ensure
dest inat ion from webserv ice : l o c a t i o n = webserv ice . d e s t i n a t i o n (

p a r c e l)
end

Listing 5.5: Representation of an addition in Eiffel

The satisfaction’s propagation of addition is preserved; indeed, Req 6 can be proved only if
Req 5 is proved too.

Partition

The partition can be expressed using the same mechanism as decomposition. Thus, a re-
quirement R0 partitioned in several requirements R1, ..., Rn can be seen as the composition of the
preconditions and postconditions of R1, ..., Rn. In List. 5.6, Req 10 is partitioned into Req 11
and Req 12.

Req 10
note

req : ” [
When the d i s t ance to warehouse i s more than 500 meters and when

the drone batte ry i s under 10%, then the drone s h a l l switch
to recovery mode , send a l o c a t i o n message and land qu i ck ly

] ”
require

distance more than 500 : d i s t ance (l o ca t i on , warehouse . l o c a t i o n) >
500 −− m

battery low : ba t t e ry l eve l < 0 .1
do

Req 11
Req 12

ensure

5.4. APPLYING THIS SEMANTICS TO EIFFEL 99

message sent : app . n o t i f i c a t i o n l o g . s i z e > 0
recovery mode : mode = recovery
land : a l t i t u d e < 0 .01 −− m

end

Req 11
note

req : ” [
When the d i s t ance to warehouse i s more than 500 meters then the

drone s h a l l send a p o s i t i o n message
] ”

require
distance more than 500 : d i s t ance (l o ca t i on , warehouse . l o c a t i o n) >

500 −− m
do
ensure

message sent : app . n o t i f i c a t i o n l o g . s i z e > 0
end

Req 12
note

req : ” [
When the bat te ry i s under 10% then the drone s h a l l switch to

recovery mode and land qu i ck ly
] ”

require
battery low : ba t t e ry l eve l < 0 .1

do
ensure

recovery mode : mode = recovery
land : a l t i t u d e < 0 .01 −− m

end
Listing 5.6: Representation of a partition in Eiffel

To prove Req 10, verifiers will have to prove that all Req 11 and Req 12 are correct.

Refinement

There is only one object-oriented relationship that allows for the weakening of preconditions
and the strengthening of postconditions: redefinition. Indeed, since the Liskov principle (applied to
redefinition in design by contracts) is an extension of the Hoare logic, the definition of refinement
given by Abrial follows the same principle. Thus, in Eiffel, the refined requirement Req 13 will be
expressed as usually in a class A (see List. 5.7).

class A
feature

Req 13

100 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

note
req : ” [

When the drone handle a parce l , then i t s h a l l t r an spo r t i t
c a r e f u l l y

] ”
require

parcel handled : p a r c e l /= Void
do
−− no ensure s i n c e the concept o f ” c a r e f u l l y ” i s too a b s t r a c t
end

end
Listing 5.7: Representation of a requirement Req 13 in Eiffel

A correct refinement of Req 13 will be Req 14 in List. 5.8.

class B
inherit A

redefine
Req 13 as Req 14

end
feature

Req 14
note

req : ” [
At any time , the drone s h a l l avoid obs ta c l e s , f l y at the

minimum s a f e he ight and be ab le to stop in l e s s than 1
second .

] ”
require else

any time : True
do
ensure then

avo id obstac le : in range (2) = Void −− No o b s t a c l e s in a range
o f 2 meters

min safe height : a l t i t u d e = {DOMAIN KNOWLEDGE} .
minimum safe height

stop in less than 1 second : current speed / −max accelerat ion <
1

end
end

Listing 5.8: Representation of refinement of Req 13 from List. 5.7 in Eiffel

To prove Req 14, verifiers will also use preconditions and postconditions of Req 13 (based on
the composition mechanism of redefinition). If the verifier can prove Req 14, it is necessarily able
to prove Req 13. This corresponds to the satisfaction propagation expressed in section 5.2.2.

5.4. APPLYING THIS SEMANTICS TO EIFFEL 101

Note: Using this representation, we can define a refined requirement with the same constraints
as the original one, i.e., an addition.

Contradiction

Writing the specification of Req 14 and Req 12 (given in List. 5.9), we noticed that an
analysis of the system could not simultaneously proved both requirements.

Indeed, on the one hand, Req 14 expresses the need to prove that min safe height: altitude
= DOMAIN KNOWLEDGE.minimum safe height at any time. On the other hand, Req 12 expresses
the need to prove that land: altitude < 0.01 -- m. Since we can consider that DOMAIN
KNOWLEDGE.minimum safe height > 0.01, both requirements cannot be proved at the same time.

Req 14
note

req : ” [
At any time , the drone s h a l l avoid obs ta c l e s , f l y at the

minimum s a f e he ight and be ab le to stop in l e s s than 1
second .

] ”
require else

any time : True
do
ensure then

avo id obstac le : in range (2) = Void −− No o b s t a c l e s in a range o f 2
meters

min safe height : a l t i t u d e = {DOMAIN KNOWLEDGE} . minimum safe height
stop in less than 1 second : current speed / −max accelerat ion < 1

end

Req 12
note

req : ” [
When the bat te ry i s under 10% then the drone s h a l l switch to

recovery mode and land qu i ck ly
] ”

require
battery low : ba t t e ry l eve l < 0 .1

do
ensure

recovery mode : mode = recovery
land : a l t i t u d e < 0 .01 −− m

end
Listing 5.9: Representation of two contradictory requirements Req 14 and Req 12 in Eiffel

The contradiction relationship between both requirements is not expressed here and is, in this
case, not desired. However, if we want to express that these two requirements R14 and R12 shall

102 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

not be met at the same time, it is possible to create a verifier that will try to prove R14 ∧ R12, as
in List. 5.10:

Req 14 contradict Req 12
do

Req 14
Req 12

end
Listing 5.10: Using the composition mechanism to express the contradiction

Proof by contradiction shall fail to assume Req 14 contradict Req 12, since at least one of the
two requirements can not be proved.

5.5 Conclusion
This chapter provides formal definitions of requirements and their relationships that improve the
system compliance checking process by a mechanism based on traceability. This mechanism relies
on the propagation of requirements’ satisfaction through formal requirements relationships.

We define requirements as pairs of (i) a set of constraints, and (ii) a set of properties that have
to be satisfied when constraints are held. By making combinations of requirements constraints
sets and requirements properties sets on the one hand, and by considering commonly used n-
ary relations of KAOS on the other hand, we identify eight different relationships that can be
established between requirements. These relationships are formally defined, and we demonstrate
how satisfaction is propagated from one requirement to another through the relationship that links
them. According to the provided formalization, we show that requirements and their relationships
can be implemented in languages that come with theorem provers (here the Eiffel language).

In the current status of our proposed formalization, some basic verifications can be done on
requirements, using the semantics of their relationships. Here are some tracks on how this semantics
can help:

• By adding relationships between requirements, we can find ill-formed requirements. Indeed, if
the semantics of one given relationship cannot be respected, this can denote two things: (i) this
relationship should not exist, or (ii) this requirement should be linked with this relationship
but is not well formalized, or else (iii) this requirement is not correct.

• Considering a set of requirements, and thanks to their semantics definition, we can (i) deduce
relationships and highlight traceability links that were not expressed before or even (ii) identify
relationships such as repetitions or contradictions that reveal an issue.

• Analyzing the number of relationships linked to a requirement can help to find problems: (i)
a requirement with no relationships, for example, can be a requirement that has not been
correctly analyzed, (ii) too many or too few relationships of a given kind can reveal a bad
analysis of requirements (too many repetitions, contradictions, not enough refinements, . . .).

Future work in the verification process would provide a methodology and analytic tools to detect
inconsistencies between requirements and support their verification.

Verifying that a requirement is satisfied is done by analyzing its relationships and spreading
satisfaction to other related requirements.

5.5. CONCLUSION 103

Even with a non-formal representation of requirements, the semantics of relationships help ana-
lyze the coverage of requirements. For example, it can help engineers to complete matrix compliance
by propagating the satisfaction. It can also help verify informal requirements by clarifying the se-
mantics of the relationships (for example, by asking engineers: ”Are you sure that satisfy R1 will
necessary satisfy R2?). To ease the acceptance of the proposed semantics, another future work
would be to integrate them into traceability tools.

We finally made this work practical by improving SIRCOD and RSML, and providing tools to
analyze the trace links.

The work presented in this chapter is thus a step in the introduction of formal semantics into
traceability, making possible to analyze requirements (detecting inconsistencies and possible simpli-
fications) automatically and to use their relationships to reduce the set of requirements that need
to be proven satisfied using classical validation approaches such as tests or human assessments.

104 CHAPTER 5. A SEMANTICS FOR REQUIREMENTS RELATIONSHIPS

Part III

Conclusion

105

Chapter 6

Conclusion and discussion

Contents
6.1 Summary of contributions . 107
6.2 Perspectives . 110

6.1 Summary of contributions
In this thesis, we propose an approach to better integrate the requirements in code. This thesis
was split into three contributions (as seen in Fig. 6.1):

• First (1), we introduced the SIRCOD approach, a seamless development approach that inte-
grates requirements as code artifacts, allowing a strong traceability through the inheritance
mechanism;

• Then (2), we improve the first steps of the process by providing RSML, a language and a tool
that shall address all the stakeholders’ needs;

• Finally (3), we defined relationships and their semantics to support the analysis of require-
ments, thereby improving the two other contributions.

SIRCOD

RSML
Relationships

1

3

2

1. Extraction 2. Formalization 3. Refinement 4. Implementation

Figure 6.1: Part of each contribution to the SIRCOD process

107

108 CHAPTER 6. CONCLUSION AND DISCUSSION

This seamless and lean approach aims at introducing more formality in the treatment of re-
quirements in development. Indeed, as developed in chapter 1, formality helps reduce the number
of failures in software systems. In chapter 2 (and more specifically in section 2.1.1), we defined
properties that shall be taken into account for good requirements approaches:

(a) intended audience;

(b) traceability support;

(c) coverage;

(d) semantics definition;

(e) and verifiability.

The following section will analyze each of these properties and discuss how the contributions
answer to the issues related to these properties.

6.1.1 Intended audience
While most of the approaches are dedicated either for the general user, with no required skills,
or expert users, we have sought to address all the stakeholders. In chapter 3, we introduced
the SIRCOD approach. Based on the work made on SOOR [86], SIRCOD aims to provide an
easier way to introduce formal requirements in the development life cycle. Indeed, by using of
a programming language, engineers can work with formalized requirements that are expressed in
a formalism they are familiar with. Besides, by keeping a link and providing tools to switch to
requirements expressed in NL, we ensure that the developers can still have access to a less-formal
but more affordable representation of the requirements.

However, SIRCOD does not take into account the stakeholders with no programming skills
involved in RE. To overcome this issue, we propose in chapter 4 a tool and a language. RSML
allows non-experts to express requirements in a constrained NL, in the same way than RELAX
or Stimulus. It thus provides an interface between all the stakeholders that are involved in a
project. The semantics of the language is given by SIRCOD, giving a simple way to formally
express requirements (and to be sure that they are all effectively formalized).

Moreover, the use of MDE makes it possible to bridge the gap to other approaches, allowing
more stakeholders to be involved in the project by providing a way to transform their usual tools
in RSML (for example, we can transform SysML requirements in RSML).

6.1.2 Traceability
The traceability has been one of our main objectives throughout this thesis. In SIRCOD, a strong
emphasis has been put on the need to keep the vertical traceability, from the original requirements
(which we call NL requirements) to the implementation. To improve the classical traceability, we
applied the well-known refinement process to the approach, providing links between formal repre-
sentations of requirements. We also keep a link between NL requirements and formal requirements
(with the src links, for example), to be able to compare, at any time, a formal requirement with
its source. Some tools have been updated to improve the way to link features in Eiffel with the
source, that can come from a docx document for example.

6.1. SUMMARY OF CONTRIBUTIONS 109

In RSML, the distinction between NL requirements and formal requirements are thinner. Indeed,
an RSML formal requirement still is expressed in a kind of NL way. Traceability is, however, kept
in the semantics transformation of requirements. Indeed, according to SIRCOD enactment, each
RSML element is formalized in Eiffel by two features: a NL one, repeating the text as it is in
RSML, and a formal one with a formal representation when it is possible, and always linked by a
src relation to the NL one. Certainly, the traceability between Eiffel and RSML is always taken
into account, using EIS, to keep a trace of the original source.

In chapter 5, we further explore the kind of relationships that can exist between requirements.
This work aims to improve horizontal traceability, providing a better organization of requirements.
Using these kinds of relationships and their semantics, we also ensure that if a change occurred, it
will impact all the requirements that shall be considered – e.g., if a requirement is composed by
another requirement that changed, the first requirement shall take the change into account. We
also slightly modified SIRCOD and RSML to introduce this semantics of relationships.

6.1.3 Coverage
One of the major issues that we observed in chapter 2 is that formal approaches are often considering
some kinds of requirements only. This is something understandable since it is difficult to formalize
all the requirements, first because of the effort needed to introduce a formal approach to a whole
system, then because some of the requirements cannot be formalized as is. E.g., “The system must
be efficient” is difficult to formalize and, most of the time, it will be refined into other requirements
that can be formalized.

This is why, to provide an approach that covers as many requirements as possible, in chapter 3,
we emphasize the need to represent all requirements in Eiffel, including non-formalized ones. For
those that cannot be formalized easily, we chose to represent them as deferred features, with no pre
and postconditions. Even if all the developer has to do is redefine the functionality, we still require
that the existence of this requirement to be taken into account during the development process.

A similar way to answer to this question is in chapter 4. Indeed, we provide a way to express NL
requirements, without any control on the semantics. The user can thus express in NL requirements
that he cannot express in another way. However, such requirements still are formalized, as defined
in SIRCOD, with a deferred feature that needs to be redefined later, for a full implementation of
the system.

One of the objectives of chapter 5 was also to provide a way to better integrate non-formalized
requirements. We took the position to accept that we cannot formalize all the requirements, espe-
cially in RSML, but even if requirements are not formalized, we consider that they can be related
to other requirements. So we can say that a requirement is satisfied, even if not formalized, because
it is linked to several requirements that are formalized and so participate to its satisfaction. This
is made thanks to the satisfaction propagation algorithm, based on the semantics of relationships,
that we developed. A strong emphasis is thus put on the need to keep such relationships between
requirements, not only for validation purposes but also to verify non-formal requirements.

6.1.4 Semantic definition
As we introduced in the previous section, we aimed to provide a semantic definition to each part of
our contribution, to ease as much as possible the analysis of requirements. The objective of chapter 5
is to introduce semantics in requirements relationships. We do this by analyzing how two formal

110 CHAPTER 6. CONCLUSION AND DISCUSSION

requirements can be linked and thus provide a set of semantically defined relationships. Using such
a semantic definition, it is easier to provide tools like the satisfaction propagation algorithm, and
even they are some perspectives to explore in this work, the introduction of such semantics in the
early phase of development should help to produce better software.

In chapter 3, we thus improved the approach proposed in SOOR [86] not only by providing new
traceability mechanisms and tools but also by using the formal definition of the refinement and
by applying it to the object-oriented development. We proposed a refinement process in SIRCOD,
applied to a programming language, using the semantics of both inheritance and redefinition to
provide an implementation that satisfies the original requirements. The work done in chapter 4 is
also based on this semantics.

6.1.5 Verifiability
Chapter 3 aims to ease the adoption of formal approaches. We targeted this objective because of
the importance, in our point of view, of the verifiability of requirements. Indeed, a formal definition
of requirements, even in a programming language, with appropriate tools, shall help to avoid major
failures. This is done in SIRCOD by using Autoproof, which analyzes assumptions and assertions
in Eiffel to prove that the system is correct. Moreover, since it is based on the already semantically
defined inheritance mechanism, the refinement process is supported by such tools. The use of
redefinition to ensure that requirements are satisfied also contributes to the verifiability, at a lower
level, by ensuring that the system considers the requirement (otherwise, the software could not be
compiled).

As already introduced (especially in section 6.1.3), the semantic definition of relationships con-
tributes for two points to the verifiability:

• First, even non-formalized requirements can be verified at some point using their relation-
ships; if a requirement is the union of two other requirements, verifying the two requirements
participate in verifying the first requirement.

• Then, using the satisfaction propagation algorithm, we provide a subset of requirements.
Even if it is not possible to automatically verify the entire set, the amount of work needed is
reduced to a subset of requirements that have to be analyzed.

Moreover, the ongoing work on the classification of NL requirements and their relationships shall
lead to an easier first step of SIRCOD, providing a way to answer the question of completeness.

6.2 Perspectives
If the work done in this thesis contributes to the issues that we raised in chapter 1, there is still
much more work to be done on the generalization of formal approaches.

The first perspective is on the SIRCOD approach itself. If the approach has been applied
several times during this research work and is quite intuitive to developers since it uses mechanism
already mastered by engineers, we need to improve the evaluation by applying it to a wide industrial
use-case.

Several tools (RSML, improvement of the EIS mechanism of EiffelStudio, propagation algorithm)
have been created during the research work, but it is necessary to improve them to provide a wider
use of the approach. Some of them are partially implemented and still require human intervention.

6.2. PERSPECTIVES 111

At the same time, it is possible to automate some processes (e.g., when creating a traceability
link between a feature and a document, user have to know the bookmark related to a part of the
document – the possibility to select a specific part in a visual editor shall ease this step).

The SIRCOD approach was developed in the context of Eiffel and the EiffelStudio IDE. Besides
the work needed on other IDE to integrate the developed tools, consideration should be given to
how the approach fits into other programming languages. In particular, the redefinition mechanism
of SIRCOD was thought for Eiffel, that allows multiple inheritance, and it would be interesting
to see how to integrate it in object approaches that do not allow this multiple inheritance. This
perspective would help to wider use of the approach.

Furthermore, the verification process is for now based on proof tools and design by contracts.
Nevertheless, it is indisputable that the most widely used verification approaches in the industry
are tests, regardless of their form. One of the most important remaining work in our perspective is
analyzing how we can integrate tests to SIRCOD, including test generation.

One of the avenues we are currently exploring is integrating the approach in a DevOps approach
(and, more specifically, into continuous integration). Indeed, since we provide artifacts than can
be used to verify the system, it seems logical for us to explore ways to integrate the approach in
existing workflows.

From the RSML point of view, the language itself can be improved to provide better abstractions.
Indeed, for now, formal requirements are still very close to state expressions, while other existing
languages such as Stimulus provide a better abstraction. Supplying ways to customize the language
and to encapsulate the formality into expressions, shall lead to a wider acceptance of the this
approach. In the context of this thesis, the work done by Antoine Gambier was to improve RSML
by analyzing existing requirements set to find the habits and integrate them in RSML. However, a
wider study should be done to provide more complete results.

Another improvement can be made on the bridges from and to other paradigms. If only several
ones were developed in this thesis’s context, more transformations (and more complete ones) should
ease integrating the approach in existing tools. For instance, we plan to add transformations to
other approaches, like KAOS or Event-B, to confirm our approach’s scalability in a more global
context. Adding new bridges is relatively simple, thanks to the tools of MDE, but the alignment of
models themselves can be quite difficult. However, since the representation of requirements in the
form of pairs of assumptions and assertions is quite common, we hope that such a model alignment
will not be too daunting as a task.

Moreover, there are still many perspectives in the transformation from textual requirements
document to more formal approaches, such as RSML. The use of NLP can (and shall) be explored
for this purpose. By considering a textual document has a model, we have to define a precise syntax
of requirements document to ease the generation of artifacts. This perspective could also benefit
RSML itself, by extending the language throuh some kind of standard, like EARS.

Finally, the work done on relationships is still preliminary. Their semantics shall be further
explored. For instance, we consider in this work that a requirement is satisfied or not. However,
there may be nuances, and it can be interesting to analyze how this can be propagated through
relationships.

Using the existing semantics, one of the perspectives that we will explore is detecting existing re-
lationships. Indeed, since we defined semantics for the relationships based on the interdependencies
between requirements, it is possible to deduce relationships when they are not explicit.

These perspectives, which are still numerous, highlight the work remaining in RE to propose
an approach that would be perfectly integrated into users’ habits. This is all the more difficult

112 CHAPTER 6. CONCLUSION AND DISCUSSION

since it is not in developers’ habits to rigorously analyze requirements (except, thankfully, in the
case of critical systems). Therefore, our job is to provide tools that are increasingly accessible to
developers and encourage best practices, especially through education.

Appendix

113

Appendix A

RSML

Contents
A.1 RSML complete metamodel . 115

A.2 RSML grammar . 116

A.1 RSML complete metamodel

Figure A.1: RSML complete metamodel

115

116 APPENDIX A. RSML

A.2 RSML grammar
〈requirements document〉 ::= 〈environment〉? 〈requirements set〉*

〈environment〉 ::= (‘Env’ | ‘Environment’) ‘:’ 〈newline〉 〈domain knowledge〉+

〈domain knowledge〉 ::= ‘-’ (〈simple definition〉 | 〈interval definition〉 | 〈range definition〉) ‘.’ 〈newline〉

〈simple definition〉 ::= 〈element〉 〈comparison operator〉 〈value〉 (‘[’ 〈unit〉 ‘]’)?

〈interval definition〉 ::= 〈element〉 (‘is in’ | ‘is out’) 〈value〉 ‘and’ 〈value〉

〈range definition〉 ::= 〈element〉 ‘can be’ 〈value〉 (‘,’ 〈value〉)*

〈element〉 ::= 〈word〉+

〈comparison operator〉 ::= ‘is’ (‘equal to’)?
| ‘less than’
| ‘less or equal to’
| ‘greater than’
| ‘greater or equal to’
| ‘different to’

〈value〉 ::= 〈number〉 | 〈state〉 | 〈element〉

〈unit〉 ::= 〈word〉 (‘ˆ’ 〈number〉)? (‘/’ 〈unit〉)?

〈requirements set〉 ::= 〈word〉+ ‘:’ 〈newline〉 〈requirement〉+

〈requirement〉 ::= ‘[’ 〈id〉 ‘]’ (‘(’ 〈relationships〉‘)’)?
(〈natural language requirement〉 | 〈formal requirement〉) 〈newline〉

〈id〉 ::= 〈digit〉 (‘.’ 〈id〉)?

〈natural language requirement〉 ::= 〈single line text〉 | 〈multiline text〉

〈single line text〉 ::= ‘"’ .* ‘"’

〈multiline text〉 ::= ‘"[’ (. | 〈newline〉)* ‘]"’

〈formal requirement〉 ::= (〈properties disjunction〉 (‘and’ 〈properties disjunction〉)?) ‘.’
| ‘When’ 〈constraints disjunction〉 (‘and’ 〈constraints disjunction〉)? ‘then’

‘immediately’ 〈properties disjunction〉 (‘and’ 〈properties disjunction〉)? ‘.’
| When’ 〈constraints disjunction〉 (‘and’ 〈constraints disjunction〉)? ‘then’

‘eventually’ 〈properties disjunction〉 (‘and’ 〈properties disjunction〉)?
(‘within’ 〈integer〉 ‘[’ 〈Unit〉 ‘]’)?) ‘.’

〈constraints disjunction〉 ::= 〈constraint〉 (‘or’ 〈constraint〉)?

A.2. RSML GRAMMAR 117

〈constraint〉 ::= 〈element〉 〈comparison operator〉 〈value〉 (‘[’ 〈unit〉 ‘]’)?

〈properties disjunction〉 ::= 〈property〉 (‘or’ 〈property〉)?

〈property〉 ::= 〈element〉 〈priority〉 〈modal comparison operator〉 〈value〉 (‘[’ 〈unit〉 ‘]’)?

〈modal comparison operator〉 ::= ‘be equal to’
| ‘be less than’
| ‘be greater than’
| ‘be less or equal to’
| ‘be greater or equal to’
| ‘be not equal to’

〈relationships〉 ::= 〈relationship kind〉 〈id〉 (‘and’ 〈relationships〉)?

〈relationship kind〉 ::= ‘refines’
| ‘part of’
| ‘is an addition of’
| ‘is a constrained version of’
| ‘contradicts’
| ‘repeats’
| ‘is an alternative of’
| ‘trace’

118 APPENDIX A. RSML

Appendix B

Satisfaction propagation

Contents
B.1 Python implementation of the minimum set algorithm 119

B.1 Python implementation of the minimum set algorithm

#!/ usr / b in /env python3
import os

class Requirement :
def init (s e l f , r i d) :

s e l f . r i d = r i d
s e l f . adds = []
s e l f . c o n s t r a i n t s = []
s e l f . r epea t s = []
s e l f . canBeDecomposedInto = []
s e l f . par t s = []
s e l f . r e f i n e s = []
s e l f . c o n t r a d i c t s = []
s e l f . a l t e r n a t i v e s = []
s e l f . s a t = []
s e l f . satBy = []
s e l f . s a t i s f i a b l e B y O t h e r = False

def str (s e l f) :
r e t= ”\tR”+str (s e l f . r i d)+” ;\n”
for r in s e l f . adds :

r e t+= ”\tR”+str (s e l f . r i d)+” −> R”+str (r . r i d)+”
[l a b e l =\”adds \ ”] ; \ n”

119

120 APPENDIX B. SATISFACTION PROPAGATION

for r in s e l f . c o n s t r a i n t s :
r e t+= ”\tR”+str (s e l f . r i d)+” −> R”+str (r . r i d)+”

[l a b e l =\” c o n s t r a i n t s \ ”] ; \ n”
for r in s e l f . r epea t s :

r e t+= ”\tR”+str (s e l f . r i d)+” −> R”+str (r . r i d)+”
[l a b e l =\” r epea t s \ ”] ; \ n”

for r in s e l f . canBeDecomposedInto :
r e t+= ”\tR”+str (r . r i d)+” −> R”+str (s e l f . r i d)+”

[l a b e l =\” par t s o f \ ”] ; \ n”
for r in s e l f . par t s :

r e t+= ”\tR”+str (r . r i d)+” −> R”+str (s e l f . r i d)+”
[l a b e l =\” par t s o f \ ”] ; \ n”

for r in s e l f . r e f i n e s :
r e t+= ”\tR”+str (s e l f . r i d)+” −> R”+str (r . r i d)+”

[l a b e l =\” r e f i n e s \ ”] ; \ n”
for r in s e l f . c o n t r a d i c t s :

r e t+= ”\tR”+str (s e l f . r i d)+” −> R”+str (r . r i d)+”
[l a b e l =\” c o n t r a d i c t s \ ”] ; \ n”

for r in s e l f . a l t e r n a t i v e s :
r e t+= ”\tR”+str (r . r i d)+” −> R”+str (s e l f . r i d)+”

[l a b e l =\” a l t e r n a t i v e to \ ”] ; \ n”
return r e t

def computeSat (s e l f , r eq s) :
for r in s e l f . adds :

i f not r in s e l f . s a t :
s e l f . addSat (r)

for r in s e l f . r epea t s :
i f not r in s e l f . s a t :

s e l f . addSat (r)
i f not s e l f in r . sa t :

r . addSat (s e l f)
for r in s e l f . c o n s t r a i n t s :

i f not s e l f in r . sa t :
r . addSat (s e l f)

decomposed = []
for r in s e l f . canBeDecomposedInto :

i f not r in s e l f . s a t :
r . addSat (s e l f)

i f not r in decomposed :
decomposed . append (r)

r i d = ””
for r in s e l f . par t s :

i f not r in s e l f . s a t :
s e l f . addSat (r)

for r in s e l f . r e f i n e s :

B.1. PYTHON IMPLEMENTATION OF THE MINIMUM SET ALGORITHM 121

i f not r in s e l f . s a t :
s e l f . addSat (r)

for r in s e l f . a l t e r n a t i v e s :
i f not s e l f in r . s a t :

r . addSat (s e l f)

def addSat (s e l f , r) :
i f not r in s e l f . s a t :

s e l f . s a t . append (r)
i f not s e l f in r . satBy :

r . satBy . append (s e l f)

######################## Compute minimum s e t #########################

def naiveMinimumSat (reqs , verb=False) :
for r in r eqs :

i f r . satBy != [] :
r . s a t i s f i a b l e B y O t h e r = True

r e t = []
for r in r eqs :

i f not r . s a t i s f i a b l e B y O t h e r :
r e t . append (r)

return r e t

def mininumSat (reqs , verb=False) :
r e t = l e a f S a t (r eqs)
e l iminateUnnecessaryReqs (ret , r eqs)
return r e t

def l e a f S a t (r eqs) :
for r in r eqs :

i f not r . s a t i s f i a b l e B y O t h e r : # I t has a l r e a d y been
v i s i t e d

v i s i t (r , [r])
return [entry for entry in r eqs i f not entry . s a t i s f i a b l e B y O t h e r

]

def v i s i t (r , a l r e a d y V i s i t e d) :
for s in r . sa t :

i f not s in a l r e a d y V i s i t e d :
s . s a t i s f i a b l e B y O t h e r = True
v i s i t (s , a l r e a d y V i s i t e d + [s])

def e l iminateUnnecessaryReqs (ret , r eqs) :
toRemove = []

122 APPENDIX B. SATISFACTION PROPAGATION

for r in r e t :
i f len (r . sa t) == 1 :

i f r in r . s a t [0] . a l t e r n a t i v e s :
for r s in r . sa t [0] . satBy :

i f r s . s a t i s f i a b l e B y O t h e r or not
r s in toRemove :

toRemove . append (r)
for r in toRemove :

i f r in r e t :
r e t . remove (r)

######################### P r i n t i n g in Dot #########################

def dotSat (r eqs) :
r e t = ” digraph RequirementsPropagation {\n”
for r in r eqs :

r e t += ”\tR”+str (r . r i d)+” ;\n”
for s in r . sa t :

r e t += ”\tR”+str (r . r i d)+” −> R”+str (s . r i d)+” [
l a b e l =\” s a t i s f i e s \ ”] ; \ n”

for r in mininumSat (r eqs) :
r e t += ”\tR” + str (r . r i d)+ ” [s t y l e =\”bold , f i l l e d \” ,

f i l l c o l o r =\”gray \ ”] ; \ n”
return r e t+”}”

def dot (r eqs) :
r e t = ” digraph Requirements {\n”
for r in r eqs :

r e t += str (r)
for r in mininumSat (r eqs) :

r e t += ”\tR” + str (r . r i d)+ ” [s t y l e =\”bold , f i l l e d \” ,
f i l l c o l o r =\”gray \ ”] ; \ n”

return r e t+”}”

######################### Main #########################

r0 = Requirement (0)
r1 = Requirement (1)
r2 = Requirement (2)
r3 = Requirement (3)
r4 = Requirement (4)
r5 = Requirement (5)
r6 = Requirement (6)
r7 = Requirement (7)
r8 = Requirement (8)
r9 = Requirement (9)

B.1. PYTHON IMPLEMENTATION OF THE MINIMUM SET ALGORITHM 123

r10 = Requirement (10)
r11 = Requirement (11)
r12 = Requirement (12)
r13 = Requirement (13)
r14 = Requirement (14)
r81 = Requirement (81)
r82 = Requirement (82)

reqs = [r0 , r1 , r2 , r3 , r4 , r5 , r6 , r7 , r8 , r9 , r10 , r12 , r13 , r14 , r81
, r82]

r0 . adds . append (r2)
r0 . adds . append (r3)
r2 . adds . append (r3)
r2 . adds . append (r4)
r1 . adds . append (r4)
r1 . canBeDecomposedInto . append (r7)
r1 . canBeDecomposedInto . append (r8)
r0 . c o n s t r a i n t s . append (r5)
r6 . c o n s t r a i n t s . append (r2)
r5 . r e f i n e s . append (r2)
r81 . r e f i n e s . append (r8)
r82 . r e f i n e s . append (r8)
r8 . r epea t s . append (r9)
r7 . r epea t s . append (r14)
r12 . adds . append (r2)
r11 . adds . append (r10)
r10 . adds . append (r13)
r13 . adds . append (r11)

for r in r eqs :
r . computeSat (r eqs)

print (dot (r eqs))

m f i l e = open(’ requirementsDot . dot ’ , ’w ’)
m f i l e . wr i t e (dot (r eqs))
m f i l e . c l o s e ()
os . system (” dot −Tps requirementsDot . dot −o requirementsDot . pdf ”)

m f i l e = open(’ requ i rementsSat . dot ’ , ’w ’)
m f i l e . wr i t e (dotSat (r eqs))
m f i l e . c l o s e ()

os . system (” dot −Tps requi rementsSat . dot −o requi rementsSat . pdf ”)

124 APPENDIX B. SATISFACTION PROPAGATION

print (” [”)
for r in mininumSat (reqs , True) :

print (” − R”+str (r . r i d))
print (”] ”)

Bibliography

[1] Reiner Hähnle, Kristofer Johannisson, and Aarne Ranta. An Authoring Tool for Informal
and Formal Requirements Specifications. In Ralf-Detlef Kutsche and Herbert Weber, editors,
Fundamental Approaches to Software Engineering, number 2306 in Lecture Notes in Computer
Science, pages 233–248. Springer Berlin Heidelberg, April 2002. DOI: 10.1007/3-540-45923-
5 16.

[2] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean-Michel Bruel. RE-
LAX: Incorporating Uncertainty into the Specification of Self-Adaptive Systems. In 2009 17th
IEEE International Requirements Engineering Conference, pages 79–88, 2009.

[3] Pierre Bourque and Richard E. Fairley, editors. Guide to the Software Engineering Body of
Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer Society Press, 3rd edition, 2014.

[4] Richard E Fairley. Managing and leading software projects. John Wiley & Sons, 2011.

[5] IEEE Computer Society Software Engineering Standards Committee and IEEE-SA Standards
Board. IEEE Standard for Software Reviews and Audits. IEEE Std 1028-2008 (Revision of
IEEE Std 1028-1998), 2008.

[6] ISO/IEC International Standard - Software Engineering – Software Life Cycle Processes –
Maintenance. ISO/IEC 14764:2006, 2006.

[7] IEEE Computer Society Software Engineering Standards Committee and IEEE-SA Stan-
dards Board. ISO/IEC/IEEE International Standard - Systems and Software Engineering –
Vocabulary. IEEE Std 24765-2010, 2010.

[8] Bertrand Meyer, Jean-Michel Bruel, Sophie Ebersold, Florian Galinier, and Alexandr Naum-
chev. Towards an anatomy of software requirements. In Manuel Mazzara, Jean-Michel Bruel,
Bertrand Meyer, and Alexander Petrenko, editors, Software Technology: Methods and Tools,
pages 10–40, Cham, 2019. Springer International Publishing.

[9] Mich Luisa, Franch Mariangela, and Novi Inverardi Pierluigi. Market research for require-
ments analysis using linguistic tools. Requirements Engineering, 9(1):40–56, 2004.

[10] Mohamad Kassab, Colin Neill, and Phillip Laplante. State of practice in requirements engi-
neering: contemporary data. Innovations in Systems and Software Engineering, 10(4):235–
241, 2014.

125

126 BIBLIOGRAPHY

[11] Michael Jackson and Pamela Zave. Deriving specifications from requirements: an example.
In 1995 17th Int. Conf. on Software Engineering, pages 15–15. IEEE, 1995.

[12] M. Jackson. Problem Frames: Analyzing and Structuring Software Development Problems.
Addison-Wesley., 2001.

[13] Ian Sommerville and Pete Sawyer. Requirements engineering: a good practice guide. John
Wiley & Sons, Inc., 1997.

[14] Axel Van Lamsweerde. Requirements engineering: From system goals to UML models to
software, volume 10. Chichester, UK: John Wiley & Sons, 2009.

[15] Matt Lake. Epic failures: 11 infamous software bugs — Computerworld, 09/2010.

[16] Joseph P. Elm, Dennis Goldenson, Khaled El Emam, Nichole Donitelli, and Angelica Neisa.
A survey of systems engineering effectiveness. Technical Report CMU/SEI-2008-SR-034,
National Defense Industrial Association, Carnegie mellon, 2008.

[17] Matthias Jarke. Requirements Tracing. Commun. ACM, 41(12):32–36, December 1998.

[18] Francisco AC Pinheiro. Requirements traceability. In Perspectives on software requirements,
pages 91–113. Springer, 2004.

[19] Jean-Michel Bruel, Sophie Ebersold, Florian Galinier, Manuel Mazzara, Alexandr Naumchev,
and Bertrand Meyer. The role of formalism in system requirements. ACM Comput. Surv.,
54(5), May 2021.

[20] IEEE Computer Society Software Engineering Standards Committee and IEEE-SA Standards
Board. IEEE Recommended Practice for Software Requirements Specifications. Institute of
Electrical and Electronics Engineers, 1998.

[21] Iso/iec/ieee international standard - systems and software engineering – life cycle processes –
requirements engineering. ISO/IEC/IEEE 29148:2018(E), pages 1–104, Nov 2018.

[22] INCOSE. SE Vision 2025. 2014.

[23] Michel dos Santos Soares, Jos Vrancken, and Alexander Verbraeck. User Requirements Mod-
eling and Analysis of Software-intensive Systems. J. Syst. Softw., 84(2):328–339, 2011.

[24] Richard E. Schneider and Dennis M. Buede. 6.3.1 Properties of a High Quality Informal
Requirements Document. INCOSE International Symposium, 10(1):352–359, 2000.

[25] R. Paige and J. Ostroff. The Single Model Principle. In Proceedings of the Fifth IEEE
International Symposium on Requirements Engineering, RE ’01, pages 292–, Washington,
DC, USA, 2001. IEEE Computer Society.

[26] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu. Seamless Model-
Based Development: From Isolated Tools to Integrated Model Engineering Environments.
Proceedings of the IEEE, 98(4):526–545, April 2010.

[27] Jean-Marc Jézéquel and Bertrand Meyer. Design by contract: The lessons of ariane. Com-
puter, 30(1):129–130, 1997.

BIBLIOGRAPHY 127

[28] J. M. Carrillo de Gea, J. Nicolás, J. L. F. Alemán, A. Toval, C. Ebert, and A. Vizcáıno.
Requirements Engineering Tools. IEEE Software, 28(4):86–91, 2011.

[29] IBM. Rational Doors. 2015.

[30] Dassault Systems. Catia Reqtify. 2016.

[31] Axel van Lamsweerde. Goal-oriented requirements engineering: a guided tour. In Proc. 5th
IEEE Int. Symposium on Requirements Engineering, pages 249–262, 2001.

[32] Eric SK Yu. Towards modelling and reasoning support for early-phase requirements engineer-
ing. In Requirements Engineering, 1997, Proc. of the 3rd IEEE Int. Symposium on, pages
226–235. IEEE, 1997.

[33] Respect-it. Objectiver V3. 2011.

[34] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

[35] Abderrahman Matoussi, Frédéric Gervais, and Régine Laleau. An Event-B formalization
of KAOS goal refinement patterns. Technical Report Tech. Rep. TRLACL-2010-1, LACL,
University of Paris-Est, 2010.

[36] Object Management Group. OMG Systems Modeling Language (OMG SysML™), V1.0,
2007. OMG Document Number: formal/2007-09-01 Standard document URL: http://www.
omg.org/spec/SysML/1.0/PDF.

[37] Object Management Group (OMG). UML 2.5, March 2015.
http://www.omg.org/spec/UML/2.5/.

[38] Jonas Helming, Maximilian Koegel, Florian Schneider, Michael Haeger, Christine Kaminski,
Bernd Bruegge, and Brian Berenbach. Towards a unified Requirements Modeling Language. In
2010 5th Int. Workshop on Requirements Engineering Visualization, pages 53–57, September
2010.

[39] B. Berenbach, F. Schneider, and H. Naughton. The use of a requirements modeling lan-
guage for industrial applications. In 2012 20th IEEE International Requirements Engineering
Conference (RE), pages 285–290, September 2012.

[40] Object Management Group (OMG). MARTE 1.1, June 2011.
http://www.omg.org/spec/MARTE/1.1/.

[41] A. Albinet, S. Begoc, J. L. Boulanger, O. Casse, I. Dal, H. Dubois, F. Lakhal, D. Louar,
M. A. Peraldi-Frati, Y. Sorel, and others. The MeMVaTEx methodology: from requirements
to models in automotive application design. In 4th European Congress ERTS (Embedded Real
Time Software), Toulouse, France, 2008.

[42] International Telecommunication Union (ITU-T). Z.151 : User Requirements Notation (URN)
- Language definition.

[43] jUCMNav, 2017.

http://www.omg.org/spec/SysML/1.0/PDF
http://www.omg.org/spec/SysML/1.0/PDF

128 BIBLIOGRAPHY

[44] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer-Verlag, 1978.

[45] overturetool.org. Overture tool: Formal modelling in vdm.

[46] E. Durr and J. van Katwijk. Vdm++, a formal specification language for object-oriented
designs. In CompEuro 1992 Proceedings Computer Systems and Software Engineering, pages
214–219, May 1992.

[47] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2006.

[48] Jean-Raymond Abrial, Stephen Schuman, and Bertrand Meyer. A specification language. In
On the Construction of Programs, pages 343–410. Cambridge University Press, 1980.

[49] Jean-Raymond Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, 2005.

[50] Thuy Nguyen. Verification of Behavioural Requirements for Complex Systems with FORM-L,
a MODELICA Extension. In 26th International Conference on Software & Systems Engineer-
ing and their Applications, EDF R&D, 6 quai Watier, 78110 Chatou, FRANCE, 2015.

[51] Sven Erik Mattsson, Hilding Elmqvist, and Martin Otter. Physical system modeling with
Modelica. Control Engineering Practice, 6(4):501–510, 1998.

[52] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. Extracting do-
main models from natural-language requirements: approach and industrial evaluation. In
Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems, pages 250–260. ACM, 2016.

[53] Mohd Ibrahim and Rodina Ahmad. Class diagram extraction from textual requirements using
natural language processing (nlp) techniques. In 2010 Second International Conference on
Computer Research and Development, pages 200–204. IEEE, 2010.

[54] MG Ilieva and Olga Ormandjieva. Automatic transition of natural language software require-
ments specification into formal presentation. In Int. Conf. on Application of Natural Language
to Information Systems, pages 392–397. Springer, 2005.

[55] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer. Automated checking of conformance to
requirements templates using natural language processing. IEEE Transactions on Software
Engineering, 41(10):944–968, 2015.

[56] S. Abualhaija, C. Arora, M. Sabetzadeh, L. C. Briand, and E. Vaz. A machine learning-
based approach for demarcating requirements in textual specifications. In 2019 IEEE 27th
International Requirements Engineering Conference (RE), pages 51–62, 2019.

[57] D. Aceituna, H. Do, G. S. Walia, and S. W. Lee. Evaluating the use of model-based re-
quirements verification method: A feasibility study. In Workshop on Empirical Requirements
Engineering (EmpiRE 2011), pages 13–20, 2011.

BIBLIOGRAPHY 129

[58] Feng-Lin Li, Jennifer Horkoff, Alexander Borgida, Giancarlo Guizzardi, Lin Liu, and John
Mylopoulos. From Stakeholder Requirements to Formal Specifications Through Refinement.
In Samuel A. Fricker and Kurt Schneider, editors, Requirements Engineering: Foundation for
Software Quality, Lecture Notes in Computer Science, pages 164–180. Springer International
Publishing, March 2015. DOI: 10.1007/978-3-319-16101-3 11.

[59] Sean Bechhofer. OWL: Web Ontology Language. In LING LIU and M. TAMER ÖZSU,
editors, Encyclopedia of Database Systems, pages 2008–2009. Springer US, 2009. DOI:
10.1007/978-0-387-39940-9 1073.

[60] William Scott and S. C. Cook. A Context-free Requirements Grammar to Facilitate Automatic
Assessment. PhD thesis, UniSA, 2004.

[61] Object Management Group (OMG). OCL 2.4, February 2014.
http://www.omg.org/spec/OCL/2.4/.

[62] Jordi Cabot, Robert Clarisó, and Daniel Riera. UMLtoCSP: A Tool for the Formal Verification
of UML/OCL Models Using Constraint Programming. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineering, ASE ’07, pages
547–548, New York, NY, USA, 2007. ACM.

[63] W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle, W. Menzel, and P. H.
Schmitt. The Key Tool. Software & Systems Modeling, 4(1):32–54, 2005.

[64] Seong-ick Moon, Kwang H. Lee, and Doheon Lee. Fuzzy branching temporal logic. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 34(2):1045–1055, April 2004.

[65] Bertrand Jeannet and Fabien Gaucher. Debugging real-time systems requirements: simulate
the “what” before the “how”. In Embedded World Conf., Nürnberg, Germany, 2015.

[66] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A Conservative Extension of Syn-
chronous Data-flow with State Machines. In Proc. of the 5th ACM Int. Conference on Em-
bedded Software, EMSOFT ’05, pages 173–182, New York, NY, USA, 2005. ACM.

[67] Pascal Raymond, Yvan Roux, and Erwan Jahier. Specifying and Executing Reactive Scenarios
With Lutin. Electronic Notes in Theoretical Computer Science, 203(4):19–34, 2008.

[68] Martin Fowler and Jim Highsmith. The agile manifesto. Software Development, 9(8):28–35,
2001.

[69] Bertrand Meyer. Agile!: The Good, the Hype and the Ugly. Springer Science & Business
Media, 2014.

[70] Dan North and others. Introducing BDD. Better Software, March, 2006.

[71] Bertrand Meyer. Multirequirements. Modelling and Quality in Requirements Engineering
(Martin Glinz Festscrhift), 2013.

[72] Antonio Cicchetti, Federico Ciccozzi, and Alfonso Pierantonio. Multi-view approaches for
software and system modelling: a systematic literature review. Software & Systems Modeling,
pages 1–27, 2019.

130 BIBLIOGRAPHY

[73] Hugo Bruneliere, Erik Burger, Jordi Cabot, and Manuel Wimmer. A feature-based survey of
model view approaches. Software & Systems Modeling, 18(3):1931–1952, 2019.

[74] Eclipse Foundation. Sirius.

[75] Benoit Combemale, Julien Deantoni, Benoit Baudry, Robert B. France, Jean-Marc Jézéquel,
and Jeff Gray. Globalizing Modeling Languages. Computer, pages 10–13, June 2014.

[76] A Wayne Wymore. Model-based systems engineering, volume 3. CRC press, 2018.

[77] Philip Langer, Konrad Wieland, Manuel Wimmer, Jordi Cabot, et al. EMF Profiles: A
Lightweight Extension Approach for EMF Models. Journal of Object Technology, 11(1):1–29,
2012.

[78] Hugo Bruneliere, Jokin Garcia Perez, Manuel Wimmer, and Jordi Cabot. EMF Views: A View
Mechanism for Integrating Heterogeneous Models. In International Conference on Conceptual
Modeling, pages 317–325. Springer, 2015.

[79] Fahad R. Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guerin, and Christophe Guy-
chard. Addressing Modularity for Heterogeneous Multi-model Systems Using Model Federa-
tion. In Companion Proceedings of the 15th International Conference on Modularity, MOD-
ULARITY Companion 2016, pages 206–211, New York, NY, USA, 2016. ACM.

[80] Fahad R. Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guerin, and Christophe Guy-
chard. Continuous Requirements Engineering using Model Federation. RE:Next! Track at
24th IEEE International Requirements Engineering Conference 2016, 2016.

[81] Fahad Rafique Golra, Fabien Dagnat, Jeanine Souquières, Imen Sayar, and Sylvain Guerin.
Bridging the gap between informal requirements and formal specifications using model fed-
eration. In International Conference on Software Engineering and Formal Methods, pages
54–69. Springer, 2018.

[82] Ernst Sikora, Bastian Tenbergen, and Klaus Pohl. Industry needs and research directions
in requirements engineering for embedded systems. Requirements Engineering, 17(1):57–78,
Mar 2012.

[83] Gauthier Fanmuy, Anabel Fraga, and Juan Llorens. Requirements verification in the industry.
In Omar Hammami, Daniel Krob, and Jean-Luc Voirin, editors, Complex Systems Design &
Management, pages 145–160, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[84] Jonathan S. Ostroff and Faraz Ahmadi Torshizi. Testable Requirements and Specifications.
In Yuri Gurevich and Bertrand Meyer, editors, Tests and Proofs, number 4454 in Lecture
Notes in Computer Science, pages 17–40. Springer Berlin Heidelberg, February 2007. DOI:
10.1007/978-3-540-73770-4 2.

[85] Alexandr Naumchev, Bertrand Meyer, Manuel Mazzara, Florian Galinier, Jean-Michel Bruel,
and Sophie Ebersold. AutoReq: Expressing and verifying requirements for control systems.
Journal of Computer Languages, 51:131 – 142, 2019.

[86] Alexandr Naumchev. Exigences orientées objets dans un cycle de vie continu. PhD thesis,
Université de Toulouse, Université Toulouse III-Paul Sabatier, 2019.

BIBLIOGRAPHY 131

[87] Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in property specifi-
cations for finite-state verification. In Proceedings of the 1999 International Conference on
Software Engineering (IEEE Cat. No. 99CB37002), pages 411–420. IEEE, 1999.

[88] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Nadia Polikarpova. AutoProof: Auto-
Active Functional Verification of Object-Oriented Programs. In Christel Baier and Cesare
Tinelli, editors, Tools and Algorithms for the Construction and Analysis of Systems, number
9035 in Lecture Notes in Computer Science, pages 566–580. Springer, April 2015.

[89] Donald Ervin Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.

[90] Pamela Zave and Michael Jackson. Four dark corners of requirements engineering. ACM
Trans. Softw. Eng. Methodol., 6(1):1–30, January 1997.

[91] Barbara H Liskov and Jeannette M Wing. A behavioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 16(6):1811–1841, 1994.

[92] Frédéric Boniol and Virginie Wiels. The Landing Gear System Case Study. In Frédéric
Boniol, Virginie Wiels, Yamine Ait Ameur, and Klaus-Dieter Schewe, editors, ABZ 2014:
The Landing Gear Case Study, number 433 in Communications in Computer and Information
Science, pages 1–18. Springer International Publishing, June 2014.

[93] Christof Ebert and Michael Jastram. Reqif: Seamless requirements interchange format be-
tween business partners. IEEE software, 29(5):82–87, 2012.

[94] Emmanuel Letier. Reasoning about agents in goal-oriented requirements engineering. PhD
thesis, PhD thesis, Université catholique de Louvain, 2001.

[95] Carlos Solis and Xiaofeng Wang. A study of the characteristics of behaviour driven develop-
ment. In Software Engineering and Advanced Applications (SEAA), 2011 37th EUROMICRO
Conference, pages 383–387. IEEE, 2011.

[96] Matt Wynne, Aslak Hellesoy, and Steve Tooke. The cucumber book: behaviour-driven devel-
opment for testers and developers. Pragmatic Bookshelf, 2017.

[97] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation approaches.
In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of
the Model Driven Architecture, volume 45, pages 1–17. USA, 2003.

[98] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A model transfor-
mation tool. Science of computer programming, 72(1-2):31–39, 2008.

[99] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. Model driven language engineering
with kermeta. In International Summer School on Generative and Transformational Tech-
niques in Software Engineering, pages 201–221. Springer, 2009.

[100] Florian Galinier. A DSL for Requirements in the Context of a Seamless Approach. In Proceed-
ings of the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, pages 932–935, New York, NY, USA, 2018. ACM.

132 BIBLIOGRAPHY

[101] Hazeline U Asuncion, Arthur U Asuncion, and Richard N Taylor. Software traceability with
topic modeling. In 2010 ACM/IEEE 32nd International Conference on Software Engineering,
volume 1, pages 95–104. IEEE, 2010.

[102] Wentao Wang, Nan Niu, Hui Liu, and Zhendong Niu. Enhancing automated requirements
traceability by resolving polysemy. In 2018 IEEE 26th International Requirements Engineer-
ing Conference (RE), pages 40–51. IEEE, 2018.

[103] Salome Maro, Jan-Philipp Steghöfer, Jane Hayes, Jane Cleland-Huang, and Miroslaw Staron.
Vetting automatically generated trace links: what information is useful to human analysts?
In 2018 IEEE 26th International Requirements Engineering Conference (RE), pages 52–63.
IEEE, 2018.

[104] Neta Aizenbud-Reshef, Brian T Nolan, Julia Rubin, and Yael Shaham-Gafni. Model trace-
ability. IBM Systems Journal, 45(3):515–526, 2006.

[105] Richard F Paige, Nikolaos Drivalos, Dimitrios S Kolovos, Kiran J Fernandes, Christopher
Power, Goran K Olsen, and Steffen Zschaler. Rigorous identification and encoding of trace-
links in model-driven engineering. Software & Systems Modeling, 10(4):469–487, 2011.

[106] Stale Walderhaug, Ulrik Johansen, Erlend Stav, and Jan Aagedal. Towards a generic solution
for traceability in mdd. In ECMDA Traceability Workshop (ECMDA-TW), pages 41–50.
Citeseer, 2006.

[107] Alessandro Orso, Taweesup Apiwattanapong, James Law, Gregg Rothermel, and Mary Jean
Harrold. An empirical comparison of dynamic impact analysis algorithms. In Proceedings.
26th International Conference on Software Engineering, pages 491–500. IEEE, 2004.

[108] Florian Galinier, Jean-Michel Bruel, Sophie Ebersold, and Bertrand Meyer. Seamless integra-
tion of multirequirements in complex systems. In 2017 IEEE 25th International Requirements
Engineering Conference Workshops (REW), pages 21–25. IEEE, 2017.

List of Abbreviations

BDD Behavior-Driven Development 25, 26

CAS Complex Adaptive System 21

DSL Domain Specific Language 27, 60,
144

DSML Domain Specific Modeling Language 27, 56,
60, 142,
144

EAST-ADL2 Electronic Architecture & Software Tools - Ar-
chitecture Description Language

15

EIS Eiffel Information System 37–39,
107,
139

EMF Eclipse Modeling Framework 27, 65,
145

FBTL Fuzzy Branching Temporal Logic 22

GORE Goal-Oriented Requirements Engineering 12, 67,
68, 73,
145

GRL Goal-oriented Requirement Language 15

IDE Integrated Development Environment 63
INCOSE International Council on Systems Engineering 10

LAS London Ambulance Service 68

MARTE Modeling and Analysis of Real Time and Em-
bedded systems

15

MBSE Model-Based Systems Engineering 27

133

134 List of Abbreviations

MDE Model-Driven Engineering 9, 27,
28, 55,
56, 60,
106,
109,
155

NL Natural Language 5, 9,
11–13,
15, 18–
26, 28,
33–36,
40, 44,
46, 47,
52, 53,
57, 58,
60, 62,
65–67,
74,
106–
108,
138,
142

NLP Natural Language Processing 18, 19,
23, 29,
53, 67,
109,
136,
155

OCL Object Constraint Language 16, 21,
93

PLTL Propositional Linear Temporal Logic 22

RE Requirements Engineering 4, 9,
26, 33,
73, 106,
109,
137,
145

List of Abbreviations 135

RSML Requirements-Specific Modeling Language 56, 58,
60, 62,
64, 67,
87, 90,
93, 101,
106,
109,
142,
144,
151,
153,
154

SIRCOD Seamless Integration of Requirements in CODe 34–36,
40, 44,
52, 53,
58, 87–
90, 101,
105–
109,
137,
138,
140–
143,
151,
153,
154

STD State Transition Diagram 19
SysML Systems Modeling Language 13, 15,

24, 67,
68

UCM Use Case Map 15
UML Unified Modeling Language 13, 14,

21, 24,
27

URML User Requirements Modeling Language 14
URN User Requirements Notation 15

VDM Vienna Development Method 16

136 List of Abbreviations

Résumé long

1 Introduction
Comment s’assurer qu’un système est le “bon” système ? Les systèmes complexes, les systèmes
à forte complogicielle, les systèmes embarqués nous entourent tous les jours : smartphones, voi-
tures, avions, satellites sont autant d’exemples d’objets que nous utilisons quotidiennement, parfois
inconsciemment. La qualité de ces systèmes est donc cruciale : comment avoir confiance en ces
appareils ? Si la question semble mineure pour les applications des smartphones, on comprend vite
qu’elle devient cruciale pour des engins qui peuvent dépasser la tonne et être lancés à plusieurs
dizaines de kilomètres par heure. Par ailleurs, si tout le monde a été confronté un jour ou l’autre
à un bug logiciel, nous l’avons probablement identifié parce que le système ne faisait pas ce qu’il
était censé faire.

Mais que doit faire le système ? C’est la première étape de tout développement de système :
déterminer ce que le client veut que le système fasse. En d’autres termes, quelles sont les exigences
du client à l’égard du système ? Ces exigences sont les briques de base utilisées pour construire le
système. Par conséquent, pour s’assurer que le système est le bon, il faut ”simplement” vérifier que
ses exigences sont satisfaites.

Par ailleurs, la criticité des exigences a souvent été abordée dans la littérature. En effet, l’am-
bigüıté, le manque de cohérence, et les exigences mal traitées peuvent conduire à une mauvaise
conception et une mauvaise implémentation. Dans le contexte de cette thèse, nous nous concentre-
rons sur les systèmes à forte intensité logicielle – c’est-à-dire les systèmes où le logiciel joue un rôle
important. Cependant, même dans ce contexte plus restreint, de nombreuses défaillances peuvent
exister. Même si les conséquences d’un problème de code peuvent être moins évidentes qu’un défaut
structurel dans l’architecture d’un pont, il y a de plus en plus de logiciels dans nos vies, dans les
objets du quotidien, et la plupart du temps, les exigences sont mal traitées. De plus, même si les
problèmes peuvent sembler insignifiants et mineurs, les échecs causés par des erreurs de spécification
sont nombreux, coûteux et parfois, tragiques.

Pour cette raison, en nous basant sur l’état de l’art, dans le contexte de cette thèse, nous nous
avons défini un certain nombre de propriétés importantes pour les approches des exigences :

(a) Public visé : l’approche nécessite-t-elle une expertise, ou est-elle compréhensible par toutes les
parties prenantes ? Cela répond aux propriétés qui exigent que les parties prenantes prennent
position sur les exigences (l’exigence est-elle nécessaire, complète, faisable ?) et réduit l’ambigüıté
des exigences pour les parties prenantes.

(b) Support de la traçabilité : existe-t-il un moyen de lier les exigences à d’autres artefacts
(tels que les exigences ou d’autres parties du système) et quel est le type de ces liens ? Cette

137

138 RÉSUMÉ LONG

propriété doit aider à répondre aux besoins de correction, consistance et absence d’ambigüıté.

(c) Couverture : quels types d’exigences peuvent être exprimés avec l’approche (toutes les exi-
gences ? seulement les exigences fonctionnelles ?) ? Cette propriété est nécessaire pour indiquer
la complétude des exigences.

(d) Définition sémantique : les exigences sont-elles définies sémantiquement dans l’approche ?
Une définition sémantique permet d’éviter l’ambigüıté et de vérifier la consistance, la correc-
tion et l’unicité. De plus, la puissance de la formalisation permet une gestion rigoureuse des
expressions dotées de sémantique.

(e) Verifiabilité : une exigence peut-elle être formellement vérifiée ? Cette propriété vise à répondre
au besoin de verifiabilité des exigences.

Deux mondes se confrontent principalement de nos jours pour l’expression des exigences :

• dans les systèmes critiques, les méthodologies formelles, basées sur une base mathématique,
sont largement utilisées pour prouver la sécurité d’un système ;

• dans les autres systèmes, les exigences sont souvent exprimées sous forme de phrases décrivant
les besoins des utilisateurs, sans lien réel avec le système lui-même.

Il existe ainsi un fossé entre :

• des exigences en langue naturelle, abordables et compréhensibles par toutes les parties pre-
nantes mais, évidemment, non formelles et par conséquent, potentiellement ambiguës, in-
cohérentes, non complètes, etc ;

• et une représentation plus formelle des exigences, dans un langage dédié, mais abordable par
seulement certains experts du projet.

Les approches formelles doivent être considérées : la seule façon d’automatiser l’analyse des
exigences passera par le processus de formalisation, soit par une approche formelle de bout en bout,
soit par une transformation d’une approche non formelle à une approche formelle (par le biais de
NLP ou d’approches qui fournissent une vue plus abstraite du système).

Cependant, les compétences requises pour travailler avec les méthodes formelles classiques ne
sont pas accessibles à tous, et tous les ingénieurs ne peuvent pas comprendre ces approches. Les
approches basées sur le langage de programmation ont l’avantage d’être formelles tout en restant
accessibles aux ingénieurs. Dans une perspective multi-vues, ces approches peuvent être utilisées
pour exprimer plusieurs niveaux d’abstraction dans le même langage. De plus, les approches agiles
de plus en plus utilisées pourraient inclure ces approches puisqu’elles nécessitent des échanges
fréquents avec les clients et impactent directement les modifications du code source.

Il semble donc plus réaliste de proposer un modèle dédié à l’ingénierie des exigences tout en
créant des passerelles vers les outils existants. Les différents acteurs pourront ainsi continuer à
utiliser leurs outils habituels tout en bénéficiant des apports de ce modèle.

2 SIRCOD
Comme mentionné dans l’introduction, les exigences sont la base d’un processus d’ingénierie. Ce-
pendant, bien qu’il y ait un réel besoin de les exprimer d’une manière qui soit abordable par toutes

2. SIRCOD 139

les parties prenantes – après tout, tout le monde doit comprendre clairement ce qu’est le système
développé –, ces exigences doivent être définies d’une manière suffisamment claire pour ne laisser
aucune ambigüıté – et l’ambigüıté est une propriété de la langue naturelle. Ainsi, la recherche en
RE a proposé plusieurs moyens pour tenter de surmonter ce problème : une syntaxe stricte pour
le document des exigences, des outils d’analyse, des langages formels. De notre point de vue, les
approches proposées souffrent de leur qualité : soit elles ne sont pas assez formelles et donc, peuvent
conduire à l’introduction d’ambigüıté, soit elles sont assez formelles, mais les ingénieurs non experts
sont réticents à utiliser de telles approches. Nous proposons par conséquent une voie intermédiaire :
l’utilisation d’un langage de programmation. Cela permettra d’introduire un formalisme abordable
par les ingénieurs logiciels qui travaillent sur un projet.

En effet, les exigences et le code sont étroitement liés au développement de systèmes logiciels.
Chaque morceau de code doit répondre à un besoin exprimé dans une exigence, et chaque exigence
doit être satisfaite par (au moins) un morceau de code. Cependant, la plupart du temps, on demande
aux développeurs d’écrire du code dans des éditeurs dédiés, qui peuvent fournir des outils de com-
mentaires et de documentation, mais les exigences restent des artefacts dans d’autres formalismes,
déconnectés du code écrit (documents d’exigences écrits dans Microsoft Word, problèmes dans un
gestionnaire de suivi des problèmes ou même user stories). Si un changement est introduit dans le
code ou les exigences, il n’y a pas de mécanisme simple pour analyser et impacter ce changement.

En imbriquant les exigences et le code, les approches basées sur le principe du modèle unique
tentent de surmonter ce problème. L’approche multi-exigences met l’accent sur la nécessité d’expri-
mer les exigences et le code dans le même formalisme : le langage de programmation. L’avantage
d’une telle approche est de permettre au développeur d’accéder aux exigences lorsqu’il programme
dans le même environnement.

Cependant, cette approche souffre de plusieurs problèmes : tout d’abord, les relations entre les
différents niveaux d’abstraction des exigences (de l’exigence elle-même au code qui la réalise) ne
sont pas clairement définies. Ensuite, même si certains liens peuvent exister entre ces différentes
représentations dans l’approche multi-exigences, ils ne sont pas sémantiquement définis. Pour faci-
liter l’analyse du code concernant l’exigence, un lien sémantique doit exister entre eux.

L’approche SIRCOD propose d’explorer le principe de multirequirement pour surmonter les
problèmes mentionnés ci-dessus. Comme mentionné dans l’introduction, les exigences sont les briques
de base du système. En tant que telles, elles font partie des premiers artefacts introduits au cours
du développement. Cette introduction précoce conduit à plusieurs faits : (i) les premières phases
impliquent plusieurs acteurs qui ne sont pas tous experts en exigences ou en code, et (ii) les exi-
gences peuvent exister sous plusieurs représentations mais sont, la plupart du temps, exprimées en
langue naturelle.

En partant de cette hypothèse, il faut considérer que les exigences en langue naturelle sont
le point d’entrée de toute approche de développement. C’est pourquoi, même si nous considérons
que la formalisation précoce est une bonne pratique, nous proposons dans SIRCOD de partir des
documents d’exigences.

Le processus présenté dans Fig. C.1 est donc assez classique, commençant par l’extraction des
exigences et aboutissant à la mise en œuvre. Cependant, l’application de l’approche multi-exigences
(et du principe du modèle unique) signifie que toutes ces étapes sont réalisées dans l’environnement
du langage de programmation.

Dans Fig. C.2, nous présentons les différents artefacts qui seront impliqués dans le processus.
SIRCOD partent donc d’un document d’exigences (en langue naturelle), et les introduiront pro-
gressivement dans le langage Eiffel, d’abord en tant qu’artefacts en langue naturelle puis, en tant

140 RÉSUMÉ LONG

1. Extraction 2. Formalization 3. Refinement 4. Implementation

Figure C.1 : Les quatre étapes du processus SIRCOD

Requirements Engineer

1. Extraction 2. Formalization

Software Engineer

3. Refinement 4. Implementation

Code

Requirements
Document

Eiffel NL
requirements

Eiffel Formal
requirements

Figure C.2 : Étapes détaillées du processus SIRCOD (en anglais)

qu’artefacts formels. Enfin, le dernier résultat est le code lui-même.

De l’exigence dans la documentation à l’exigence dans le code
Il existe plusieurs types de documents d’exigences. Ils peuvent être appelés ”document d’exi-
gences utilisateur” (URD), ”spécification d’exigences système” (SRS), ou même plus simplement
”spécifications”. La première étape de l’approche présentée ici (activité 1.a) consiste à extraire ces
exigences et à les exprimer dans un langage de programmation. La méthodologie présentée dans
cette section suppose une extraction manuelle des exigences (et de leurs relations) et leur traduc-
tion dans le langage de programmation choisi. Dans la section 3, nous présenterons la traduction
automatique des exigences en code et l’outil qui la supporte.

La toute première étape de SIRCOD consiste à créer une méthode Eiffel (appelée feature) pour
chaque exigence. Ces fonctionnalités – que nous avons appelées requirements features – renvoient
une phrase décrivant l’exigence (par exemple, dans List. C.1, la fonctionnalité requirement 1 1 doc
renvoie l’expression en NL de l’exigence correspondante).

feature
requirement 1 1 doc : STRING
do

Result := ” [
The drone s h a l l p ick up a parce l , go to the d e s t i n a t i o n and drop

i t o f f when ac t i va t ed on the web a p p l i c a t i o n .
] ”

2. SIRCOD 141

end
Listing C.1 : Fonctionnalité Eiffel décrivant une exigence

Lier l’exigence en code et l’exigence en documentation

La deuxième étape (activité 1.b) consiste à lier l’exigence dans le code et son document d’origine
pour permettre la navigation de l’un à l’autre. Grâce à EIS, un mécanisme d’EiffelStudio, un élément
de code (une fonctionnalité, par exemple) peut être lié à un document externe. Plus précisément,
il peut être lié à un morceau de texte de ce document, grâce à des signets.

L’utilisateur peut choisir graphiquement dans EiffelStudio (voir Fig. C.3) un signet sur le do-
cument – pour faciliter l’ajout de tels signets, si certains paragraphes des documents n’ont pas
de signets, des signets génériques sont ajoutés par l’outil – ou ajouter manuellement une note
à l’élément donné. Les notes Eiffel peuvent être utilisées pour enrichir les fonctionnalités qui ex-
priment des exigences. Ces notes peuvent être comparées à des annotations Java et n’intègrent
aucune sémantique, sauf celle donnée par les outils qui les utilisent.

Figure C.3 : La vue ”Info” qui permet à l’utilisateur d’ajouter graphiquement une source

Par exemple, le lien entre la source originale de l’exigence de List. 3.1 et la caractéristique
d’exigence Eiffel (requirement 1 1 doc) est exprimé par la note :
EIS : "src=use-case_drone.docx", "bookmark=1.1".

142 RÉSUMÉ LONG

Vue documentation
L’intégration des exigences et de la documentation directement dans le code doit améliorer la
traçabilité. Cependant, la lisibilité des exigences écrites dans un langage de programmation n’est
pas la meilleure possible, avec les nombreux artefacts de code (tels que do, end, Result, etc.).
L’objectif de la vue de documentation est de surmonter ce problème. EiffelStudio intègre déjà un
mécanisme de vues. Par exemple, la vue plain text est la vue classique, avec les caractéristiques
d’une classe, tandis que la flat view intègre tous les éléments des ancêtres de la classe.

Nous avons d’abord ajouté la vue documentation comme un moyen d’imprimer la documentation
du code disponible dans une autre classe. L’idée était que la plupart du temps, dans une classe
bien documentée (à l’aide de notes ou autres commentaires de doc), l’expression enchevêtrée du
code et de la documentation ne permet pas une lecture claire et simple du code d’une part et de la
documentation d’autre part. Si la lisibilité de la documentation peut être améliorée par la génération
de HTML, par exemple, avec un long extrait de documentation en code, sa lecture peut être rendue
difficile. Nous avons donc décidé d’extraire la documentation du code dans des classes dédiées, de
la même manière, nous avons séparé les caractéristiques des exigences et les caractéristiques des
exigences formelles. Cependant, pendant le développement, l’ingénieur doit toujours avoir accès à
la documentation, et le forcer à changer de classe lui rendait la tâche plus difficile.

Nous avons donc obtenu une vue de la documentation qui permet d’imprimer à la fois la docu-
mentation et des extraits de code. Bien que le procédé puisse être utilisé pour documenter le code,
il nous a semblé qu’il était particulièrement intéressant dans le contexte de SIRCOD. En effet, il est
ainsi facile lorsqu’on est dans une fonctionnalité d’exigence formelle de passer à la représentation
en langue naturelle, améliorant la lisibilité et la compréhensibilité des exigences tout en gardant la
formalité de l’expression du code.

Dans Fig. C.4, une capture d’écran de la vue de documentation pour List. C.1 est donnée.
Dans la fonctionnalité requirement 1 1 doc, seuls l’identifiant de la fonctionnalité, la source de
l’exigence (note EIS) et le contenu de l’exigence apparaissent.

Figure C.4 : Vue documentaire des caractéristiques de l’exigence

Le texte de la source, spécifié dans la note EIS, est récupéré dans le document docx et imprimé.
Cela simplifie et détend ainsi le développement en empêchant l’utilisateur d’ouvrir un éditeur ex-

2. SIRCOD 143

terne. Dans Fig. C.4, le lien EIS vers le signet 1.1 dans le document use-case drone.docx est
utilisé pour extraire la première phrase de la section 1.1. Cette vue permet une meilleure lisibilité
en débarrassant l’éditeur de tous les éléments qui pourraient gêner la lecture (comme le corps des
caractéristiques).

Pour faciliter la navigation, la vue de la documentation est également cliquable. Cela implique
que toutes les références aux éléments de code, comme les fonctionnalités des autres classes, peuvent
être cliquées et automatiquement ouvertes dans l’éditeur. Cela contribue à nouveau à la fluidité du
développement en évitant à l’utilisateur de rechercher des classes dans le système de fichiers.

Raffiner les exigences
Après avoir exprimé les exigences en langue naturelle dans le code, grâce aux features requi-
rements, la deuxième étape du processus (activité 2) vise à introduire un certain formalisme.
L’objectif de cette étape est de s’assurer que le futur système répondra à ses exigences. La toute
première étape est, avant toute autre considération, d’obliger le développeur à prendre en compte
l’exigence pendant le développement. À cette fin, nous avons basé l’approche SIRCOD sur un
processus de raffinement, en partant des exigences, au niveau d’abstraction le plus élevé, jusqu’à
l’implémentation. Cette idée de partir de l’abstrait pour aller vers le concret existe également dans
la programmation orientée objet, et est rendue possible grâce à la notion de méthodes et de classes
abstract (deferred dans Eiffel).

La toute première étape de la formalisation consiste donc à fournir, pour chaque exigence, une
deferred feature qui est une représentation formelle de cette exigence. Le développeur qui devra
hériter de la classe où les exigences sont formalisées devra prendre en compte cette fonctionnalité.
Sinon, le système ne compilera pas.

En appliquant ceci à l’exigence 1.1 nous obtenons donc la formal requirement feature dans
List. C.2. Notez que les deux caractéristiques (requirement 1 1 doc et requirement 1 1) sont
liées par la note src de List. 3.6.

feature
requirement 1 1
note

s r c : ”{GLOBAL REQUIREMENTS} . requirement 1 1 doc ”
deferred
end

Listing C.2 : Représentation formelle d’une exigence en Eiffel

Si ce modèle peut s’appliquer à toutes les exigences, il est possible d’aller plus loin dans la
formalisation de certaines d’entre elles. Une exigence étant une paire composée d’un ensemble de
contraintes (les hypothèses) et d’un ensemble de propriétés (les prédicats), il est possible de les
exprimer à l’aide des pré et postconditions. Puisque ces features sont abstraites, chaque classe qui
héritera de la classe qui contient des formal requirements features devra prendre en compte
ces features abstraites : soit en les implémentant directement, soit en les implémentant dans leurs
classes filles.

Cela se fait dans la troisième activité, appelée raffinement, qui est itérative. L’idée est de partir
d’exigences très simples et abstraites et de les enrichir de manière itérative, en les rendant plus
concrètes. Le paradigme orienté objet et la conception par contrats sont tout à fait adaptés à cette
approche.

144 RÉSUMÉ LONG

Conclusion
L’utilisation de l’approche SIRCOD, si elle introduit une augmentation du travail au début (avec la
transformation des NL exigences en code et avec la formalisation des exigences), est assez similaire
à un processus classique de développement orienté objet à partir de la troisième étape et n’introduit
pas d’augmentation de l’effort de travail requis. De plus, nous abordons plusieurs des propriétés
que nous avons définies :

(a) Public visé : si les exigences sont exprimées pour la première fois en langue naturelle, l’ap-
proche sous sa forme actuelle s’adresse davantage aux développeurs de logiciels.

(b) Support de la traçabilité : la traçabilité, de la source au code, en passant par les différents
processus de raffinement, est assurée par l’approche.

(c) Couverture : Les exigences en langue naturelle permettent d’exprimer tous les types d’exi-
gences. Les formal requirements features permettent uniquement à l’utilisateur d’exprimer
les parties fonctionnelles du système de manière formelle. Cependant, il est toujours possible
d’écrire une exigence formelle vide, liée à des exigences non fonctionnelles, pour exprimer la
nécessité de les prendre en compte.

(d) Définition sémantique : En utilisant la sémantique du langage de programmation, les exi-
gences sont définies sémantiquement une fois formalisées.

(e) Vérifiabilité : Les contrats permettent de vérifier que le système est correct vis à vis des
exigences.

3 RSML
Certaines parties prenantes impliquées dans un projet peuvent préférer travailler avec des approches
textuelles, tandis que d’autres peuvent préférer utiliser des approches mathématiques. Par exemple,
un ingénieur électricien ne travaillera pas dans la même optique qu’un avocat, même s’il est impliqué
dans le même projet. Il est pourtant crucial de tenir compte de ces différents points de vue. Nous
ne pouvons pas nous attendre à ce que les utilisateurs travaillent avec une approche donnée sans
qu’il n’existe de passerelle avec leurs approches habituelles existantes.

Pour surmonter cette difficulté, nous proposons d’utiliser d’ingénierie dirigée par les modèles
et de définir un métamodèle basé sur la sémantique que nous avons définie dans les chapitres
précédents. Les avantages d’une telle approche sont multiples : d’une part, elle nous permet de
définir un DSML basé sur ce métamodèle, que nous avons nommé RSML, plus accessible aux non-
experts que Eiffel, et d’autre part, en s’inscrivant dans l’idée de la globalisation des langages de
modélisation, elle peut être utilisée pour faire le pont avec d’autres approches.

Un méta-modèle d’exigences
Le métamodèle RSML1 est organisé en deux parties principales :

(i) les connaissances du domaine ;
1Le métamodèle complet se trouve en annexe A.1

3. RSML 145

(ii) les exigences elles-mêmes, et la distinction entre les exigences en langage naturel et les exigences
formelles.

Chacun des éléments du métamodèle est précisément défini sémantiquement.

Connaissances du domaine

La partie (i) du métamodèle est utilisée pour modéliser ces propriétés de domaine. Elle permet de
définir la valeur ou l’état d’un Element, qui peut être utilisé ultérieurement lors de la rédaction ou
de la spécification des exigences.

La connaissance du domaine est formalisée sous forme d’hypothèses en utilisant la sémantique
que nous avons définie dans la section 2. Ces hypothèses doivent être considérées pour toutes les
exigences pendant l’analyse. Il est donc possible de les exprimer comme des préconditions requises
pour toutes les fonctionnalités du système. Cependant, si une précondition est un état requis pour
toutes les fonctionnalités, il est plus pratique de l’exprimer comme un invariant. Pour permettre
l’utilisation de ces hypothèses dans l’ensemble du système, nous les plaçons dans une classe spécifique
héritée par toutes les autres classes du système.

Exigences

Les exigences elles-mêmes sont exprimées dans la partie (ii) du métamodèle. Elles sont divisées en
deux catégories : les exigences en langue naturelle et les exigences formelles. Cette distinction permet
d’exprimer des exigences formelles tout en gardant la possibilité d’exprimer certaines des exigences
en langue naturelle (pour celles qui ne peuvent pas être formalisées). En effet, la distinction classique
est faite entre les exigences fonctionnelles et non fonctionnelles. Alors que les premières peuvent
- plus ou moins - facilement être formalisées, la formalisation des exigences non fonctionnelles est
plus difficile.

Les exigences en langue naturelle sont similaires aux exigences SysML ou aux objectifs KAOS :
elles ont un attribut de texte libre. Elles seront formalisées comme des exigences langue naturelle :
comme des features sans corps ni contrat, liées à une documentation textuelle. Sur la base de
SIRCOD, l’utilisateur devra les prendre en compte, même si elles ne sont pas formalisées automa-
tiquement.

Les exigences formelles sont utilisées pour exprimer les propriétés que le système doit posséder.
Le contexte est exprimé par les Constraints, qui sont les hypothèses des exigences (par exemple, les
préconditions). Les Properties traitent des Elements et sont comparées aux Values. Une Value peut
être une valeur primitive (un nombre ou une châıne), un état ou une référence à un autre Element.
Dans le métamodèle, deux classes intermédiaires respectivement nommées ConstraintsDisjunction
et PropertiesDisjunction sont utilisées pour représenter le ou logique. En effet, par défaut, nous
supposons que chaque assertion doit se vérifier lorsque toutes les constraints sont satisfaites. Ces
artefacts (ConstraintsDisjunction et PropertiesDisjunction) sont donc introduits pour faciliter la
composition en utilisant une structure ou. Cela impose cependant d’exprimer ces contraintes et
assertions sous forme de formes normales conjonctives. Cela simplifie le passage à la sémantique
Eiffel puisque c’est la manière la plus naturelle d’exprimer des ensembles de contrats en Eiffel : un
contrat peut être composé par une disjonction de prédicats, tandis que la conjonction de tous les
contrats doit être satisfaite.

146 RÉSUMÉ LONG

Le langage contraint RSML
Comme indiqué précédemment, le métamodèle prend en charge l’expression des connaissances du do-
maine, des exigences et des relations entre les exigences. La manière la plus naturelle d’écrire des exi-
gences reste, dans la plupart des cas, l’écriture textuelle. Pour faciliter l’utilisation du métamodèle,
l’ingénierie dirigée par les modèles fournit des outils appropriés : les DSL et plus particulièrement,
les DSML.

RSML est un DSML proche de la langue naturelle. Un tel langage peut être utilisé pour
permettre à des non-spécialistes d’exprimer des exigences d’une manière similaire aux outils de
développement piloté par le comportement (BDD) tels que Cucumber. Cependant, contrairement
à ces outils, RSML est défini sémantiquement. Tous les éléments du métamodèle peuvent ainsi être
exprimé dans ce DSML, et un outil est fourni pour exprimer celui-ci.

Figure C.5 : Exemple du DSL RSML en pratique

L’exemple Fig. C.5 illustre comment RSML peut être utilisé pour exprimer la connaissance du
domaine, les exigences NL et les exigences formelles. Les documents d’exigences en RSML sont
composés de deux éléments :

• l’environnement, qui contient la connaissance du domaine ;

• les exigences, qui contient les exigences et leurs relations.

Les éléments de l’environnement sont exprimés dans une liste introduite par le mot-clé Envi-
ronment (ou sa version abrégée Env), suivi de deux points (:) et d’une nouvelle ligne. Chaque
élément est introduit par un tiret (-). Les exigences quand à elles sont introduites par un identi-
fiant, entre crochets ([]), suivi soit d’une exigence en langue naturelle, entre guillemets (”), soit
d’une exigences formalisées, dont la syntaxe est plus contraintes. La grammaire complète peut être
trouvée chapter A.2.

Transformer vers d’autres formalismes
L’utilisation d’un langage de modélisation permet de passer facilement d’un modèle à un autre.
Cela peut être fait en utilisant des langages dédiés, comme ATL ou Kermeta, ou même de manière

4. RELATIONS ENTRE EXIGENCES 147

programmatique, en utilisant EMF2. Dans le contexte des exigences, cela peut aider à fournir un
pont vers différentes approches existantes, souvent utilisées par les différentes parties prenantes
impliquées dans un projet.

Dans le contexte de RSML, nous proposons plusieurs transformations, depuis et vers d’autres
langages, pour faciliter l’adoption d’une telle approche. Comme le métamodèle est construit en
utilisant EMF, il est possible d’utiliser les différentes approches présentées précédemment (ATL,
Kermeta, etc.) pour réaliser ces transformations.

Nous avons ainsi fourni des transformations depuis et vers SysML, mais aussi vers des représentations
parmi les plus répandues pour les exigences : Microsoft Word et Excel.

Conclusion
Dans cette section, nous présentons RSML, un langage dédié aux exigences qui est proche de la
langue naturelle tout en supportant la sémantique formelle. RSML est basé sur un méta-modèle
d’exigences permettant leur expression à la fois en langue naturelle et en langage formel. Puisque
RSML est sémantiquement défini sur SIRCOD, les expressions RSML peuvent être utilisées et
analysées, comme introduit dans la section 2. Par conséquent, les non-experts peuvent bénéficier de
la formalité inhérente au RSML.

En utilisant les techniques et les outils du MBSE, nous proposons également des passerelles vers
des langages existants tels que SysML ou MSWord/MSExcel, pour permettre aux ingénieurs de
travailler avec leurs outils habituels. Nous traitons plusieurs questions d’ingénierie des exigences,
en fournissant un moyen de transformer les expressions d’exigences habituelles vers et depuis le
RSML. Le RSML peut alors être considéré comme un pivot entre divers espaces d’expression. C’est
également un pivot entre les espaces formels et non formels. RSML vise à s’intégrer dans une
approche sans rupture, à réduire l’écart entre les exigences NL et les représentations formelles, et à
fournir des moyens de s’adresser à plusieurs types de parties prenantes (qu’il s’agisse d’utilisateurs
d’outils de modélisation, d’utilisateurs de NL, ou même d’utilisateurs d’approches plus formelles).
Nous avons pour ambition d’ajouter de nouvelles transformations à d’autres approches, comme
KAOS, pour confirmer l’évolutivité de notre approche dans un contexte plus global.

Les premières expériences nous ont donné de bons résultats. L’utilisation de RSML sur des
études de cas s’est avérée utile pour plusieurs raisons :

1. Il est facilement utilisable par les intervenants habitués à travailler avec la langue naturelle.

2. Il permet d’obtenir une expression formelle pour les exigences et leur validation à travers un
outil de preuve.

3. Il permet la vérification des systèmes par rapport à leurs exigences.

4 Relations entre exigences
Les relations entre les exigences et d’autres artefacts (y compris d’autres exigences) sont assez
courantes en RE. Les méthodes formelles comme Event-B soulignent la nécessité de raffiner les
exigences de haut niveau en exigences de plus bas niveau, plus complexes mais plus précises et
plus proches de la solution. Les approches GORE sont également basées sur les relations entre ces
artefacts, et les outils les plus utilisés dans l’industrie sont des outils fournissant une traçabilité.

2http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

148 RÉSUMÉ LONG

Dans un processus de développement classique, il est nécessaire de distinguer la traçabilité
des autres relations. Alors que la traçabilité est utilisée entre les artefacts de plusieurs étapes de
développement (par exemple, entre une exigence et un morceau de code), les relations sont adressées
aux artefacts de la même étape. La plupart des efforts de recherche ont été faits pour fournir des
outils et une méthodologie pour la traçabilité, avec quelques outils automatiques mais la plupart
d’entre eux nécessitent toujours une expertise humaine pour vérifier la traçabilité. De plus, dans une
approche sans rupture, cette distinction ne peut pas être utilisée de la même manière. Puisque nous
préconisons une approche qui considère tous les éléments comme des parties d’un modèle unique
(dans les limites des contraintes d’un projet réel), toutes les relations sont entre les artefacts de ce
modèle unique et doivent être analysées, pas seulement les liens de traçabilité.

Relations existantes liées aux artefacts d’exigences
Comme déjà mentionné, le langage le plus courant pour les exigences est la langue naturelle. Il est
donc important de faire des efforts pour l’analyse de ce type d’exigences.

Pour essayer de fournir un ensemble complet de relations d’exigences possibles, nous avons
analysé un certain nombre de documents d’exigences. Au cours de cette analyse, nous avons défini
plusieurs catégories pour les exigences et les relations entre les exigences. Le but ici n’est pas de
critiquer la qualité du document d’exigences. Une telle critique peut être intéressante ; en effet,
si des arguments objectifs peuvent être utilisés pour juger un document d’exigences, ils peuvent
être utilisés pour améliorer ce document. Cependant, il est nécessaire d’analyser les documents
d’exigences existants sans prescription pour dire comment ils sont. Sur la base de cette analyse, la
deuxième étape du travail proposera des outils ou une méthodologie sur la façon d’utiliser une telle
classification pour améliorer les documents d’exigences existants ou nouveaux. Nous avons présenté
ce travail à plusieurs reprises lors d’ateliers afin de le valider, ce qui nous a permis de modifier
progressivement la classification jusqu’à la liste actuelle.

Nous avons finalement défini dix catégories pour les exigences (et 12 catégories dérivées). No-
tez que nous considérons chaque partie d’un document d’exigences comme une exigence dans le
contexte de ce travail. Nous ne développerons pas ici cette classification (le but de cette section
est principalement de présenter les relations), mais voici un aperçu rapide des catégories (pour une
version plus détaillée, veuillez vous référer à [8]) :

1. Composant : une propriété qui décrit une partie du système, de l’environnement ou du
projet ;

2. But : un objectif du projet ou du système ;

3. Comportement : une propriété d’une opération d’un composant (ou de l’ensemble du
système) ;

4. Tâche : une activité du projet ;

5. Produit : un artefact créé par une tâche du projet ;

6. Contrainte : une propriété de l’environnement qui affecte une partie du système (de ou son
comportement) ou du projet ;

7. Role : une responsabilité pour une tâche ou un comportement ;

4. RELATIONS ENTRE EXIGENCES 149

8. Limite : une propriété que le système, le projet ou l’environnement n’inclut pas ;

9. Manque : une propriété non définie dans le cahier des charges, mais qui devrait l’être ;

10. Meta-exigence : une propriété d’une exigence.

En utilisant ces catégories, nous avons défini plusieurs relations qui peuvent exister entre les exi-
gences. De manière similaire aux catégories pour les exigences, nous avons obtenu progressivement
neuf relations, énumérées ici :

1. Disjonction : deux exigences R1 et R2 sont disjointes si elles ne sont pas liées ;

2. Appartenance : une exigence R1 appartient à une autre exigence R2 si R1 est une sous-
exigence de R2 ;

3. Répétition : a requirement R1 repeats a requirement R2 iff R1 specifies the same property
as R2 ;

4. Contradiction : une exigence R1 contredit une exigence R2 si les propriétés spécifiées par
les exigences ne sont pas compatibles ;

5. Conséquence : une exigence R1 suit une exigence R2 si R1 est une conséquence de R2 ;

6. Extension : une exigence R1 étend une exigence R2 si R1 assume R2 et spécifie une nouvelle
propriété ;

7. Exception : une exigence R1 excepte une exigence R2 si R1 modifie une propriété spécifique
de R2 dans un contexte spécifique ;

8. Contrainte : une exigence R1 contraint une exigence R2 si R1 spécifie une contrainte sur une
propriété spécifiée dans R2 ;

9. Caracterisation : une exigence R1 caractérise une exigence R2 si R1 est une méta-exigence
de R2.

Pour compléter cette analyse, nous avons également analysé comment les exigences formelles
peuvent être reliées entre elles.

Définitions formelles de ces relations
Nous avons précédement introduit une définition formelle des exigences elles-mêmes. Nous définissons
également la satisfaction des exigences puisqu’il s’agit de la propriété que nous voulons tracer pour
assurer la conformité des systèmes. Ces définitions sont utilisées dans cette section pour définir
formellement les relations entre les exigences. Pour rappel, nous avons défini une exigence comme
une paire d’un ensemble de contraintes CR et d’un ensemble de propriétés PR avec CR ` PR. Nous
avons ainsi obtenu l’équivalence :

sat(R) ≡ hold(CR)→ hold(PR)

Nous donnons ici deux nouvelles définitions que nous utiliserons dans les sections suivantes pour
compléter cette définition.

150 RÉSUMÉ LONG

Définition 1

Deux exigences R1 et R2 partagent un même contexte si CR1 = CR2 .

Définition 2

Une exigence atomique R est une exigence où |PR| = 1 (une exigence avec une propriété unique).
En utilisant ces définitions, nous pouvons définir les relations entre les exigences. Pour construire

l’ensemble des relations entre exigences, nous avons considéré deux exigences R1 et R2, leurs
contraintes (CR1 et CR2) et leurs propriétés (PR1 et PR2). Nous avons analysé quelles pouvaient
être les relations entre les contraintes et entre les propriétés. Grâce à cette analyse, nous avons
défini six relations pour lesquelles nous avons défini une sémantique précise :

• répétition

• addition

• contradiction

• contrainte

• partition

• raffinement

La définition sémantique des relations entre les exigences présente plusieurs avantages. Tout
d’abord, elle permet de lever toute ambigüıté sur la signification de ces relations. Par ailleurs,
puisque nous avons défini l’implication de la satisfaction, il est donc possible, étant donné un
ensemble d’exigences, de propager la satisfaction des exigences. Une telle propagation peut conduire
à deux avantages : d’une part, il est possible, étant donné un ensemble d’exigences satisfaites et
les relations entre les exigences, de mettre en évidence quelles sont les exigences déjà satisfaites.
D’autre part, il est possible de faire l’inverse et d’isoler les exigences qu’il est nécessaire de satisfaire
et les exigences qui seront satisfaites par la propagation.

On peut ainsi définir des liens de satisfaction entre exigences à partir de ces relations, formant un
graphe dirigé. Un exemple est donné dans Fig. C.6 (une emphase est mise sur l’ensemble minimum
pour satisfaire l’ensemble des exigences).

Un ensemble d’exigences et de relations entre elles est donné. En utilisant la sémantique définie,
il est donc possible de fournir des liens de satisfaction entre les exigences, comme indiqué dans
Fig. C.7. Un simple algorithme de traversée de graphe peut le faire et retournera un nouveau
graphe dirigé avec des liens de satisfaction, étant donné la sémantique des relations.

Amélioration de SIRCOD et RSML
Relations dans SIRCOD

Nous avons introduit cette notion de relations entre les exigences de la même manière que nous
avons retracé la source des exigences : en utilisant le mécanisme des notes. Dans List. C.3, la feature
de List. C.3 est enrichie d’une note adds, qui donne l’information que requirement 5 1 doc est
une extension de requirement 1 1 3 docs. De telles relations peuvent ensuite être utilisées pour
tracer les exigences et vérifier que toutes les exigences sont correctement satisfaites. Dans l’exemple

4. RELATIONS ENTRE EXIGENCES 151

R0

R2

adds

R3

adds

R5

constraints

adds

R4

adds

refines

R1

adds

R7

parts of

R8

parts of

R9

repeats

R6

constraints

R12

adds

R81

refines

R82

refines

Figure C.6 : Exemple d’exigences et de relations entre elles

152 RÉSUMÉ LONG

R0

R2

satisfies

R3

satisfies

satisfies

R4

satisfies

R6

satisfies

R1

satisfies

R5

satisfies

satisfiesR7

satisfies

R8

satisfies

R9

satisfiessatisfies

R12

satisfies

R81

satisfies

R82

satisfies

Figure C.7 : Exemple de liens de satisfaction pour les exigences et les relations de Fig. C.6

4. RELATIONS ENTRE EXIGENCES 153

de List. C.3, puisque requirement 5 1 doc est un ajout de requirement 1 3 doc, on s’attend
à ce que si requirement 5 1 doc est satisfaite, requirement 1 3 doc l’est aussi.

feature
requirement 5 1 doc : STRING

note
EIS : ” s r c=use−case drone . docx” , ”bookmark=5.1”
adds : ”{DELIVERY REQUIREMENTS} . requirement 1 1 3 doc”

do
Result := ” [

[5 . 1] (i s an add i t i on o f [1 . 1 . 3]) When drone
l o c a t i o n i s equal to d e s t i n a t i o n then
even tua l l y attached p a r c e l s h a l l be equal to

n u l l and drop l o c a t i o n s t a t u s s h a l l be
equal to conf irmed .

] ”
end

Listing C.3 : Relations note entre l’exigence 5 1 doc et l’exigence 1 1 3 doc

Nous n’ajoutons pas la relation de raffinement puisque le raffinement est représenté dans SIR-
COD à l’aide du mécanisme de redéfinition. L’ajout de relations a néanmoins un impact sur le
processus SIRCOD. En effet, nous devons maintenant considérer les relations pendant toutes les
étapes.

Requirements Engineer

1. Extraction 2. Formalization

Software Engineer

3. Refinement 4. Implementation

Code

Requirements
Document

1'. Write
relationships

Eiffel NL
requirements

Eiffel Formal
requirements

Ceci est représenté dans Fig. 4. Le processus comprend maintenant l’écriture des relations, en
parallèle avec les trois premières étapes. Ainsi, l’ingénieur doit également identifier et créer des liens
entre les exigences.

Cependant, cette nouvelle activité n’est pas seulement parallèle à l’activité d’extraction. En effet,
puisque les activités formalisation et raffinement peuvent donner lieu à de nouvelles exigences, il
devient nécessaire de vérifier si les exigences sont liées à d’autres exigences.

Relations dans RSML

La sémantique proposée dans cette section et l’ajout des relations à SIRCOD nous ont conduit à
proposer une extension au métamodèle RSML. Comme détaillé dans les sections précédentes, cela

154 RÉSUMÉ LONG

permet une analyse plus facile des exigences et réduit l’ensemble des exigences à vérifier. De plus, les
exigences en langue naturelle ne sont traitées que comme des unités, sans sémantique spécifique sur
les exigences elles-mêmes. Ces relations peuvent donc être utilisées pour donner des informations
sur la satisfaction de ces exigences également.

Cette traçabilité horizontale entre les exigences est exprimée par la réification de la relation
entre deux exigences. Cette réification est effectuée par le biais des artefacts Trace. La trace ne
possède pas de sémantique en tant que telle, et doit être spécialisée par l’une des six relations que
nous avons définies, sur la base de la sémantique proposée dans cette section :

• addition : l’exigence R1 ajoute une propriété à l’exigence cible R2 ;

• contenance : l’exigence R1 contient l’exigence cible R2 ;

• raffinement : l’exigence R1 raffine l’exigence cible R2 ;

• contradiction : l’exigence R1 et l’exigence cible R2 ne peuvent pas être satisfaites en même
temps ;

• répétition : l’exigence R1 est une répétition de l’exigence cible R2 ;

• contrainte : l’exigence R1 contraint le contexte de l’exigence cible R2.

Conclusion
Ce chapitre fournit des définitions formelles des exigences et de leurs relations qui améliorent le
processus de vérification de la conformité du système par un mécanisme basé sur la traçabilité. Ce
mécanisme repose sur la propagation de la satisfaction des exigences à travers les relations formelles
des exigences.

Nous définissons les exigences comme des paires (i) d’un ensemble de contraintes, et (ii) d’un
ensemble de propriétés qui doivent être satisfaites lorsque les contraintes sont tenues. En faisant
des combinaisons d’ensembles de contraintes et d’ensembles de propriétés des exigences d’une part,
nous identifions six relations différentes qui peuvent être établies entre les exigences. Ces relations
sont formellement définies, et nous démontrons comment la satisfaction est propagée d’une exigence
à une autre à travers la relation qui les lie.

Dans l’état actuel de la formalisation que nous proposons, certaines vérifications de base peuvent
être effectuées sur les exigences, en utilisant la sémantique de leurs relations. Voici quelques pistes
sur la façon dont cette sémantique peut aider :

• En ajoutant des relations entre les exigences, nous pouvons trouver des exigences mal formées.
En effet, si la sémantique d’une relation donnée ne peut être respectée, cela peut indiquer deux
choses : (i) cette relation ne devrait pas exister, ou (ii) cette exigence devrait être liée à cette
relation mais n’est pas bien formalisée, ou encore (iii) cette exigence n’est pas correcte.

• En considérant un ensemble d’exigences, et grâce à leur définition sémantique, nous pouvons
(i) déduire des relations et mettre en évidence des liens de traçabilité qui n’étaient pas exprimés
auparavant ou encore (ii) identifier des relations telles que des répétitions ou des contradictions
qui révèlent un problème.

5. CONCLUSION 155

• l’analyse du nombre de relations liées à une exigence peut aider à trouver des problèmes : (i)
une exigence sans relations, par exemple, peut être une exigence qui n’a pas été correctement
analysée, (ii) trop ou trop peu de relations d’un type donné peuvent révéler une mauvaise
analyse des exigences (trop de répétitions, de contradictions, pas assez de raffinements, . . .).

Les travaux futurs dans le processus de vérification fourniraient une méthodologie et des outils
analytiques pour détecter les incohérences entre les exigences et soutenir leur vérification.

La vérification de la satisfaction d’une exigence se fait par l’analyse de ses relations et la pro-
pagation de la satisfaction à d’autres exigences connexes.

Même avec une représentation non formelle des exigences, la sémantique des relations aide
à analyser la couverture des exigences. Par exemple, elle peut aider les ingénieurs à compléter
la conformité de la matrice en propageant la satisfaction. Elle peut également aider à vérifier
des exigences informelles en clarifiant la sémantique des relations (par exemple, en demandant
aux ingénieurs : ” Êtes-vous sûr que satisfaire R1 nécessitera de satisfaire R2 ? ”). Pour faciliter
l’acceptation de la sémantique proposée, un autre travail futur serait de l’intégrer dans les outils de
traçabilité.

Nous avons finalement rendu ce travail pratique en améliorant SIRCOD et RSML, et en four-
nissant des outils pour analyser les liens de traçabilité.

Le travail présenté dans cette section est donc une étape dans l’introduction de la sémantique
formelle dans la traçabilité, permettant d’analyser les exigences (en détectant les incohérences et les
simplifications possibles) automatiquement et d’utiliser leurs relations pour réduire l’ensemble des
exigences qui doivent être prouvées satisfaites en utilisant des approches de validation classiques
comme les tests ou les évaluations humaines.

5 Conclusion
Dans cette thèse, nous proposons une approche pour mieux intégrer les exigences dans le code.
Cette thèse a été divisée en trois contributions (comme on le voit dans Fig. C.8) :

• Tout d’abord (1), nous avons présenté l’approche SIRCOD, une approche de développement
sans rupture qui intègre les exigences en tant qu’artefacts de code, permettant une forte
traçabilité grâce au mécanisme d’héritage ;

• Ensuite (2), nous améliorons les premières étapes du processus en fournissant RSML, un
langage et un outil qui répondent à tous les besoins des parties prenantes ;

• Enfin (3), nous avons défini les relations et leur sémantique pour soutenir l’analyse des exi-
gences, améliorant ainsi les deux autres contributions.

Cette approche transparente et lean vise à introduire plus de formalité dans le traitement des
exigences dans le développement. En effet, comme développé dans la section 1, la formalité permet
de réduire le nombre de défaillances des systèmes logiciels. Dans la section 1, nous avons défini les
propriétés qui doivent être prises en compte pour les bonnes approches des exigences :

(a) public visé ;

(b) support de traçabilité ;

(c) couverture ;

156 RÉSUMÉ LONG

SIRCOD

RSML
Relationships

1

3

2

1. Extraction 2. Formalization 3. Refinement 4. Implementation

Figure C.8 : Partie de chaque contribution au processus SIRCOD

(d) définition de la sémantique ;

(e) et verifiabilité.

Si le travail effectué dans cette thèse contribue aux questions que nous avons soulevées dans la
section 1, il reste encore beaucoup de travail à faire sur la généralisation des approches formelles.

La première perspective concerne l’approche SIRCOD elle-même. Si l’approche a été appliquée
à plusieurs reprises au cours de ce travail de recherche et qu’elle est assez intuitive pour les
développeurs puisqu’elle utilise des mécanismes déjà mâıtrisés par les ingénieurs, nous devons
améliorer son évaluation en l’appliquant à un large cas d’utilisation industriel.

Plusieurs outils (RSML, amélioration du mécanisme EIS d’EiffelStudio, algorithme de propa-
gation) ont été créés au cours de ce travail de recherche, mais il est nécessaire de les améliorer
pour permettre une utilisation plus large de l’approche. Certaines d’entre elles sont partiellement
mises en œuvre et nécessitent encore une intervention humaine. En même temps, il est possible
d’automatiser certains processus (par exemple, lors de la création d’un lien de traçabilité entre une
fonctionnalité et un document, l’utilisateur doit connâıtre le signet lié à une partie du document - la
possibilité de sélectionner une partie spécifique dans un éditeur visuel devrait faciliter cette étape).

L’approche SIRCOD a été développée dans le contexte d’Eiffel et de l’IDE EiffelStudio. Outre
le travail nécessaire sur d’autres IDE pour intégrer les outils développés, il convient d’examiner
comment l’approche s’adapte à d’autres langages de programmation. En particulier, le mécanisme
de redéfinition de SIRCOD a été pensé pour Eiffel, qui permet l’héritage multiple, et il serait
intéressant de voir comment l’intégrer dans des approches objets qui ne permettent pas cet héritage
multiple. Cette perspective aiderait à une utilisation plus large de l’approche.

Par ailleurs, le processus de vérification est pour l’instant basé sur des outils de preuve et
de conception par contrats. Néanmoins, il est indiscutable que les approches de vérification les
plus utilisées dans l’industrie sont les tests, quelle que soit leur forme. L’un des travaux les plus
importants qui restent à faire dans notre perspective est d’analyser comment nous pouvons intégrer
les tests à SIRCOD, y compris la génération de tests.

L’une des pistes que nous explorons actuellement est l’intégration de l’approche dans une
démarche DevOps (et, plus précisément, dans l’intégration continue). En effet, puisque nous four-
nissons des artefacts qui peuvent être utilisés pour vérifier le système, il semble logique pour nous
d’explorer les moyens d’intégrer l’approche dans les flux de travail existants.

Du point de vue du RSML, le langage lui-même peut être amélioré pour fournir de meilleures
abstractions. En effet, pour l’instant, les exigences formelles sont encore très proches des expressions
d’état, alors que d’autres langages existants tels que Stimulus fournissent une meilleure abstraction.

5. CONCLUSION 157

Fournir des moyens de personnaliser le langage et d’encapsuler la formalité dans des expressions,
conduira à une acceptation plus large de cette approche. Dans le contexte de cette thèse, le travail
effectué par Antoine Gambier était d’améliorer RSML en analysant les exigences existantes pour
trouver les habitudes et les intégrer dans RSML. Cependant, une étude plus large devrait être faite
pour fournir des résultats plus complets.

Une autre amélioration peut être faite sur les ponts depuis et vers d’autres paradigmes. Si
seulement quelques unes ont été développées dans le cadre de cette thèse, plus de transformations
(et plus complètes) devraient faciliter l’intégration de l’approche dans les outils existants. Par
exemple, nous envisageons d’ajouter des transformations à d’autres approches, comme KAOS ou
Event-B, pour confirmer l’évolutivité de notre approche dans un contexte plus global. L’ajout de
nouveaux ponts est relativement simple, grâce aux outils de MDE, mais l’alignement des modèles
eux-mêmes peut être assez difficile. Cependant, étant donné que la représentation des exigences
sous la forme de paires d’hypothèses et d’assertions est assez courante, nous espérons qu’un tel
alignement de modèles ne sera pas une tâche trop ardue.

De plus, il existe encore de nombreuses perspectives dans la transformation d’un document
d’exigences textuel en approches plus formelles, telles que RSML. L’utilisation de NLP peut (et
doit) être explorée à cette fin. En considérant qu’un document textuel a un modèle, nous devons
définir une syntaxe précise du document d’exigences pour faciliter la génération d’artefacts. Cette
perspective pourrait également bénéficier au RSML lui-même, en étendant le langage par le biais
d’une sorte de norme, comme EARS.

Enfin, le travail effectué sur les relations est encore préliminaire. Leur sémantique doit être
explorée plus avant. Par exemple, nous considérons dans ce travail qu’une exigence est satisfaite ou
non. Cependant, il peut y avoir des nuances, et il peut être intéressant d’analyser comment cela
peut être propagé par les relations.

En utilisant la sémantique existante, une des perspectives que nous allons explorer est la
détection des relations existantes. En effet, puisque nous avons défini une sémantique pour les
relations basée sur les interdépendances entre les exigences, il est possible de déduire des relations
lorsqu’elles ne sont pas explicites.

	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Part I Introduction to the problem
	Chapter 1 Introduction
	Contents
	1.1 Context of the thesis
	1.1.1 What are requirements?
	1.1.2 Why are requirements so crucial?

	1.2 Issues in Requirements Engineering
	1.2.1 Expressing requirements
	1.2.2 Improving requirements traceability (and why?)
	1.2.3 Keep the link with all the stakeholders

	1.3 Detailed plan

	Chapter 2 State of the art
	Contents
	2.1 Requirements Engineering
	2.1.1 What are "good'' requirements?
	2.1.2 Natural Language-based approaches
	2.1.3 Formal approaches for requirements
	2.1.4 Natural Language Analysis
	2.1.5 Constrained Natural Language
	2.1.6 Summary and discussions

	2.2 Model-Driven Engineering
	2.2.1 Representation of artifacts through several abstractions
	2.2.2 Addressing multiple viewpoints
	2.2.3 Summary and discussions

	2.3 Conclusion

	Part II Contributions
	Chapter 3 The Seamless Integration of Requirements in CODe (SIRCOD) approach
	Contents
	3.1 Why use a programming language?
	3.2 Overview of the approach
	3.3 Requirements: from Natural Language documents to code artifacts
	3.3.1 From Requirement-in-documentation to Requirement-in-code
	3.3.2 Linking requirement-in-code and requirement-in-documentation
	3.3.3 Navigating from requirement-in-code to requirement-in-documentation and vice versa

	3.4 Linking requirements and their formalization
	3.4.1 Definitions
	3.4.2 The documentation view

	3.5 Refining requirements
	3.6 Organizing requirements
	3.7 Use case: the Landing Gear System
	3.7.1 From NL to Eiffel (Step 1)
	3.7.2 Formalization (Step 2)
	3.7.3 Refinement (Step 3)

	3.8 Conclusion

	Chapter 4 RSML: a modeling language for requirements
	Contents
	4.1 A requirements meta-model
	4.1.1 Domain Knowledge
	4.1.2 Requirements

	4.2 Requirements Specific Modeling Language (RSML): a constrained language for requirements
	4.2.1 Expressing domain knowledge
	4.2.2 Requirements in RSML

	4.3 A tool-supported language
	4.4 A modeling language to link other formalisms
	4.4.1 From RSML to textual representation
	4.4.2 Transforming RSML to (and from) other languages

	4.5 Use case: the London Ambulance Service system
	4.6 Conclusion

	Chapter 5 A semantics for requirements relationships
	Contents
	5.1 Existing relationships related to requirements artifacts
	5.2 Formal definitions of these relationships
	5.2.1 What are the relationships between requirements?
	5.2.2 Formal definitions of relationships between requirements

	5.3 How to use semantics of relationships to improve requirements?
	5.3.1 Propagating satisfaction
	5.3.2 Improving SIRCOD and RSML

	5.4 Applying this semantics to Eiffel
	5.5 Conclusion

	Part III Conclusion
	Chapter 6 Conclusion and discussion
	Contents
	6.1 Summary of contributions
	6.1.1 Intended audience
	6.1.2 Traceability
	6.1.3 Coverage
	6.1.4 Semantic definition
	6.1.5 Verifiability

	6.2 Perspectives

	Appendix
	Appendix A RSML
	Contents
	A.1 RSML complete metamodel
	A.2 RSML grammar

	Appendix B Satisfaction propagation
	Contents
	B.1 Python implementation of the minimum set algorithm

	Bibliography
	List of Abbreviations
	Résumé long
	1 Introduction
	2 SIRCOD
	3 RSML
	4 Relations entre exigences
	5 Conclusion

