
HAL Id: tel-03599535
https://theses.hal.science/tel-03599535v1

Submitted on 7 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conditions nécessaires et suffisantes en contrôle optimal
et applications

Julien Bernis

To cite this version:
Julien Bernis. Conditions nécessaires et suffisantes en contrôle optimal et applications. Optimi-
sation et contrôle [math.OC]. Université de Bretagne occidentale - Brest, 2021. Français. �NNT :
2021BRES0011�. �tel-03599535�

https://theses.hal.science/tel-03599535v1
https://hal.archives-ouvertes.fr


LOIRE MATHSTIC

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE BRETAGNE OCCIDENTALE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Mathématiques et leurs interactions

Par

Julien BERNIS

Conditions Nécessaires et Suffisantes en Contrôle Optimal 
et Applications

Thèse présentée et soutenue à Brest, le 23/02/2021
Unité de recherche : Laboratoire de Mathématiques de Bretagne Atlantique UMR 6205 

Rapporteurs avant soutenance :

Piermarco CANNARSA Professeur, Université de Rome « Tor Vergata »
Peter R. WOLENSKI Professeur, Université d’État de Louisiane

Composition du Jury :

Président :  QUINCAMPOIX Marc Professeur, Université de Bretagne Occidentale
Examinateurs : Giovanni COLOMBO Professeur, Université de Padoue
  Piermarco CANNARSA  Professeur, Université de Rome « Tor Vergata »
  Peter R. WOLENSKI        Professeur, Université d’État de Louisiane
  Carlo MARICONDA  Professeur, Université de Padoue
  Slawomir PLASKACZ  Professeur, Université Nicolas-Copernic Torun
  Daniela TONON  Professeur, Université de Padoue
Dir. de thèse : Piernicola BETTIOL  Professeur, Université de Bretagne Occidentale





If, 1895, Rudyard Kipling, adaptation d’André Maurois

Si tu peux voir détruit l’ouvrage de ta vie

Et sans dire un seul mot te mettre à rebâtir,

Ou perdre en un seul coup le gain de cent parties

Sans un geste et sans un soupir ;

Si tu peux être amant sans être fou d’amour,

Si tu peux être fort sans cesser d’être tendre,

Et, te sentant häı, sans häır à ton tour,

Pourtant lutter et te défendre ;

Si tu peux supporter d’entendre tes paroles

Travesties par des gueux pour exciter des sots,

Et d’entendre mentir sur toi leurs bouches folles

Sans mentir toi-même d’un mot ;

Si tu peux rester digne en étant populaire,

Si tu peux rester peuple en conseillant les rois,

Et si tu peux aimer tous tes amis en frère,

Sans qu’aucun d’eux soit tout pour toi ;

Si tu sais méditer, observer et connaitre,

Sans jamais devenir sceptique ou destructeur,

Rêver, mais sans laisser ton rêve être ton maitre,

Penser sans n’être qu’un penseur ;

Si tu peux être dur sans jamais être en rage,

Si tu peux être brave et jamais imprudent,

Si tu sais être bon, si tu sais être sage,

Sans être moral ni pédant ;

Si tu peux rencontrer Triomphe après Défaite

Et recevoir ces deux menteurs d’un même front,

Si tu peux conserver ton courage et ta tête

Quand tous les autres les perdront,

Alors les Rois, les Dieux, la Chance et la Victoire

Seront à tout jamais tes esclaves soumis,

Et, ce qui vaut mieux que les Rois et la Gloire

Tu seras un homme, mon fils.

Cette thèse est dédiée à ma mère, à mon père, à ma famille.
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Résumé

La partie 1 de cette thèse traite de la programmation dynamique en contrôle optimal. On considère un

problème de Bolza non-autonome en contrôle optimal pour lequel la dynamique et le lagrangien sont continus

en temps seulement presque partout (avec limites à droite et à gauche partout).

Plusieurs caractérisations (proximale, de Dini, et viscosité) de la fonction valeur du problème en tant

qu’unique solution généralisée de l’équation de Hamilton-Jacobi-Bellman (HJB) correspondante sont

démontrées dans la classe des fonctions semi-continues inférieurement.

Le cas où une contrainte d’état est ajoutée au problème précédent est aussi considéré. Des conditions de

compatibilité ad hoc entre l’ensemble des contraintes A et la fonction dictant la dynamique F sont introduites,

ce qui permet d’approximer dans W 1,1 les trajectoires non-faisables par des F -trajectoires faisables et par

suite d’établir différentes caractérisations (proximale, de Dini, et viscosité) de la fonction valeur en tant

qu’unique solution de l’équation (HJB).

La partie 2 de cette thèse traite de résultats obtenus concernant les conditions nécessaires d’optimalité en

calculs de variations et la régularité des minimiseurs. Le problème considéré est celui d’un problème de

Bolza non-autonome d’ordre N dans lequel le lagrangien L est seulement Borel mesurable, et peut prendre

pour valeur +∞.

On établit d’abord les conditions nécessaires d’optimalité sous la forme d’une équation du type Euler-

Lagrange, ainsi que sous la forme d’une équation du type Erdmann – Du Bois-Reymond, sans imposer au

lagrangien la convexité par rapport à sa dernière variable, ni aucune condition de croissance particulière.

En imposant en plus à L une condition de croissance plus générale que la croissance super-linéaire utilisée

habituellement, les conditions nécessaires sont mises à profit afin d’établir que la dernière dérivée d’un

minimiseur de ce problème est essentiellement bornée.

Mots clefs. Optimisation, contrôle optimal, équation de Hamilton-Jacobi-Bellman, fonction valeur, con-

trainte d’état, calcul des variations, analyse non lisse, problème de Bolza, conditions nécessaires d’optimalité,

régularité des minimiseurs.
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Abstract

The part 1 of this thesis focuses on dynamic programming in optimal control. We consider non au-

tonomous Bolza problem in optimal control for which the Lagrangian L and the dynamics F are allowed to

be discontinuous with respect to time on a set of full measure (with left and right limits everywhere).

Several characterizations (Dini, proximal, viscosity) of the value function of the problem as the unique

solution to the corresponding Hamilton-Jacobi-Bellman equation are established in the class of lower semi-

continuous functions.

The case where a state constraint is added to the previous problem is also considered. Some appropriate

compatibility conditions between the state of constraints and the dynamics are introduced. They allow to

establish a W 1,1 neighbouring feasible trajectories result which is then exploited to prove several character-

izations (Dini, proximal, viscosity) of the value function V as the unique generalized solution to (HJB).

Part 2 of this thesis presents results concerning necessary conditions for optimality in the calculus of vari-

ations and the regularity of minimizers. The problem considered is a non autonomous high order Bolza

problem in which the Lagrangian is merely Borel measurable, and is possibly extended valued.

Necessary conditions for optimality in the Euler-Lagrange form and in the Erdmann – Du Bois-Reymond

form are provided, without imposing on the Lagrangian to be convex with respect to the last variable, nor

to have any kind of specific growth behavior.

By adding an extra growth assumption that is more general than the usual superlinearity with respect to the

last variable, the necessary conditions are exploited to establish that the last derivative of a given minimizer

is essentially bounded.

Key words. Optimization, optimal control, Hamilton-Jacobi-Bellman equation, value function, state con-

straint, calculus of variations, nonsmooth analysis, Bolza problem, necessary conditions for optimality, reg-

ularity of minimizers.
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Malgré les difficultés que pouvaient entrâıner mes choix d’orientation professionnelle dans la réalisation de
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Je salue ici mes compagnons de galère, doctorants du LMBA à l’UBO, avec lesquels j’ai eu la chance
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alors que le mien débutait à peine. Merci pour ta gentillesse : tes conseils et ton aide m’ont été précieux.
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1
Introduction

1.1 Optimal control theory

Control theory is a mathematical field in which a dynamical system, commonly modeled by a differential

equation, is monitored by an operant. The inputs of the system, called controls, can be managed in order

to modify the output of the system. A typical mathematical representation for such a system is:
ẋ(s) = f(s, x(s), u(s)), for a.e. s ∈ [S, T ],

u(s) ∈ U(s), for a.e. s ∈ [S, T ]

x(S) = x0.

(1.1)

Here f : [S, T ] × Rn × Rm → Rn describes the dynamics of the system, U : [S, T ]  Rm is a multivalued

function giving the admissible controls at each time t, and u(·) is an admissible control function chosen

among the measurable selections of U . If (x(·), u(·)) satisfies (1.1) then it is called a trajectory-control pair.

ẋ(t) = f(t, x(t), u(t))

x(t) f(t, x(t), U(t))

Figure 1.1: Representation of an f -trajectory and choice of the velocity vector ẋ(t).

Control theory (together with optimal control theory) emerged to answer the need of controlling engineering

devices, for example space shuttles (see [81]). Over the years, they have found many other natural applica-

tions, for instance in the car industry: auto-braking systems or parking assistants. In these two examples,

the system is the car, the controller is the on-board computer, the controls are the acceleration and the

angle(s) of the guide wheels with the longitudinal axis of the car, and the output of the system is the pair
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trajectory/velocity of the car (x, ẋ).

When it is possible to do so, the inputs of the system are chosen to obtain a satisfactory output. A relevant

criterion can, for instance, be whether or not an endpoint constraint is satisfied:
ẋ(s) = f(s, x(s), u(s)), for a.e. s ∈ [S, T ],

u(s) ∈ U(s), for a.e. s ∈ [S, T ],

x(S) = x0,

x(T ) ∈ E,

(1.2)

where E is the set of admissible endpoints for f -trajectories. In our examples, the satisfactory output is

stopping the car before the impact or steering the car into the parking slot.

x(t)
ẋ(t)

E

Figure 1.2: Autobraking: the car must stop in E

To decide between all the controls giving satisfying results, one can add extra requirements by introducing

a cost function J(·) and associating a cost to each trajectory. A convenient definition for J(·) (and the one

we will be using in this thesis) that allows to cover a large number of cases is:

J(x(·)) =

∫ T

S
L(t, x(t), ẋ(t))dt+ g(x(T )),

where

∫ T

S
L(t, x(t), ẋ(t))dt and g(x(T )) are respectively called the running cost and the final cost of the

trajectory x(·). But of course there are as many cost functions as there are control problems.

In the auto-braking system, a relevant running cost function for a trajectory/control pair ((x, ẋ), u) could

be the integral of the deceleration, i.e. L (t, (x, ẋ), (ẋ, ẍ)) = |ẍ|.

When we look, amongst all the admissible trajectories, for the ones that minimize or maximize the functional

J(·), we enter the field of optimal control theory, which can be considered as an extension of calculus of

variations with constraints on the dynamics.Minimize J(x) =

∫ T

S
L(s, x(s), ẋ(s))ds+ g(x(T ))

over arcs (x(·), u(·)) satisfying (1.2).

(1.3)

Note that it can be convenient to include the endpoint constraint x(T ) ∈ E (see (1.2)) into the final cost g(·)

by adding the following function χE(x) =

{
0, if x ∈ E
+∞, if x /∈ E

(in the case of a minimization problem), which
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immediately disqualifies trajectories violating the endpoint constraint. The problem (1.3) hence becomes:

Minimize J(x) =

∫ T

S
L(s, x(s), ẋ(s))ds+ g(x(T ))

over arcs (x(·), u(·)) satisfying (1.1).

(1.4)

In the auto-braking system example, we can take g = χE×{0} where E is the set of all the positions between

the car and the obstacle at the beginning of the braking. Once it is guaranteed that the car is not getting

into an accident and stops, it sounds reasonable to minimize the integral of the deceleration for the sake of

passengers safety, so the cost we want to minimize in this setup is:

∫ T

S
|ẍ|(s)ds+ χE×{0}((x(T ), ẋ(T ))).

Defining a multivalued function F : [S, T ]× Rn  Rn by F (t, x) := f(t, x, U(t)), this problem can alterna-

tively be written using a differential inclusion involving x(·) instead of an ordinary differential equation. We

obtain a new form of the optimal control problem we started with:



Minimize J(x) =

∫ T

S
L(s, x(s), ẋ(s))ds+ g(x(T ))

over arcs x(·) satisfying

ẋ(s) ∈ F (s, x(s)), for a.e. s ∈ [S, T ],

x(S) = x0,

(PS,x0)

where L : [S, T ] × Rn × Rn → R is the Lagrangian of the problem, g : Rn → R ∪ {+∞} is a function and

F : [S, T ]×Rn  Rn a multivalued function. Here, we call F -trajectory on the interval [S, T ] any absolutely

continuous arc x(·) : [S, T ]→ Rn which satisfies the reference differential inclusion ẋ(s) ∈ F (s, x(s)) for a.e.

s ∈ [S, T ].

Another important aspect of minimization problems is the possibility to consider a state constraint on the

trajectories: 

Minimize J(x) =

∫ T

S
L(s, x(s), ẋ(s))ds+ g(x(T ))

over arcs x(·) satisfying

ẋ(s) ∈ F (s, x(s)), for a.e. s ∈ [S, T ],

x(s) ∈ A, for all s ∈ [S, T ],

x(S) = x0,

(SCS,x0)

where A is a closed set giving all the admissible positions for the F -trajectories. If an F -trajectory takes all

of its values in A, it is called a feasible F -trajectory.

In the parking assistant example, a relevant state constraint could be (x(t), ẋ(t)) ∈ A × [−v, v], where A is

the side of the road along which the car is parking (the other side of the road should be reserved to traffic

coming from the opposite direction) and v ≥ 0 is a reasonable speed the car should not exceed to maneuver

safely.
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A

Figure 1.3: Parking assistant and state constraint: the blue car must park without rolling over the other

side of the road (it must stay in A)

Once a problem that has the form (1.4), (PS,x0) or (SCS,x0) is given1, the construction of an optimal

trajectory-control pair (x(·), u(·)) or of an optimal trajectory x(·) naturally arises and has been a topic of

research of topmost importance since the late 50s. Two different approaches were proposed: the necessary

conditions (namely the maximum principle) by Lev Pontryagin initiated in 1956, cf. [73], and the dynamic

programming principle by Richard Ernest Bellman initiated in 1957, cf. [26].

In this thesis, necessary conditions in optimal control theory are only used to derive regularity properties of

minimizers in calculus of variations (Chapter 5), while Chapters 3 and 4 are actually devoted to dynamic

programming applied to optimal control problems with discontinuous data (with respect to time).

1.2 Necessary conditions in Optimal Control

The Pontryagin maximum principle provides a set of conditions that are necessarily satisfied by a (local)

minimizer of a given optimal control problem where the constraint on the dynamics was first expressed as

an ordinary differential equation.

1Many other optimal control problems can be considered: the Mayer problem, the minimal time control problem, infinite

horizon Bolza problem. . .
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Consider first the following Mayer problem in which the data are considered as smooth as needed:

(P )



Minimize g(y(T ))

over the arcs y ∈W 1,1([S, T ],Rn)

and measurable functions u : [S, T ]→ Rm satisfying

ẏ(s) = f(s, y(s), u(s)), for almost every s ∈ [S, T ],

u(s) ∈ U(s), for almost every s ∈ [S, T ],

y(S) = x0.

Here, g is real valued and differentiable. Then if (x∗, u∗) is a W 1,1-local minimizer for (P), then there exists

p ∈ W 1,1([S, T ] × Rn) (we note p in line p(t) = (p1(t), . . . , pn(t)) such that the following conditions are

satisfied:

(i) the nontriviality condition: p 6= 0,

(ii) the adjoint system:

−ṗ(s) = p(s)∇xf(s, x∗(s), u∗(s)),

for almost every s ∈ [S, T ],

(iii) the maximality condition:

p(s)f(s, x∗(s), u∗(s)) = max
v∈U(s)

{p(s)f(s, x∗(s), v)} ,

for almost every s ∈ [S, T ],

(iv) the transversality condition:

−p(T ) = ∇g(x∗(T )).

Even though other methods have been developed through years (second order necessary conditions, dynamic

programming) to solve optimal control problems, necessary conditions remain an excellent source of optimal

control strategies for some practical applications (cf. [11, 65]).

A lot of researchers have contributed to the topic, providing more and more involved versions of the max-

imum principle [44, 41, 62, 85]. The enhancements of the theorem previously mentioned include several

aspects: extensions with less smoothness of the data, the possibility to cover minimization problems for

functionals comprising a running cost, the possibility to cover involved endpoint and starting point con-

straints (y(S), y(T )) ∈ C. . .

Some aspects of this theory could not be dealt with using classical tools coming from smooth analysis. For

instance even in the simple form we presented, how can we state the adjoint inclusion when f is not differ-

entiable with respect to x ? or the transversality condition when g is not differentiable ?

More generally, if we want to study problems including endpoint and starting point constraints (y(S), y(T )) ∈
C, the transversality condition involves normal vectors to C, but in the case C is merely closed (with a pos-

sibly nonsmooth boundary), such vectors must be considered in a general setting.

The mathematical theory allowing to answer these questions is called nonsmooth analysis. It will be outlined

in Section 1.4 and presented with more details in Chapter 2.
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1.3 Dynamic programming in Optimal control

1.3.1 The value function

We proceed to make a brief introduction to the dynamic programming approach. It starts with embedding

our problem (PS,x0) into a family of problems ((Pt,x))(t,x) indexed by the initial data (t, x) ∈ [S, T ]× Rn:

(Pt,x)


Minimize J(y(·)) =

∫ T
t L(s, y(s), ẏ(s))ds+ g(y(T ))

over the arcs y ∈W 1,1([t, T ],Rn) satisfying

ẏ(s) ∈ F (s, y(s)), for almost every s ∈ [t, T ],

y(t) = x.

This leads to the concept of the value function V : [S, T ]×Rn → R∪{+∞}, which, for all (t, x) ∈ [S, T ]×Rn,

is defined taking the infimum cost for (Pt,x):

V (t, x) := inf

®∫ T

t
L(s, y(s), ẏ(s))ds+ g(y(T )), y(·) F -trajectory on [t, T ], y(t) = x

´
.

1.3.2 Hamilton-Jacobi-Bellman equation

An heuristic approach to find the partial differential equation satisfied by V can be presented invoking the

principle of optimality, stating that for each t ∈ [S, T ], the function

φ : s 7→
∫ s

t
L(τ, y(τ), ẏ(τ))dτ + V (s, y(s))

is increasing along F -trajectories y(·) satisfying y(t) = x and is constant if and only if y(·) is a minimizer for

(Pt,x).

Assume that V is differentiable and that (Pt,x) has a minimizer for all (t, x) ∈ [S, T ]×Rn. Fix any v ∈ F (t, x).

We admit the existence of an F -trajectory y(·) such that y(t) = x and ẏ(t) = v. Differentiating φ, the

principle of optimality yields:

∂tV (s, y(s)) + ∂xV (s, y(s)) · ẏ(s) + L(s, y(s), ẏ(s)) ≥ 0,

hence if s = t:

∂tV (t, x) + ∂xV (t, x) · v + L(t, x, v) ≥ 0.

Similarly, if y0(·) is a minimizer for (Pt,x) and if we note v0 = ẏ0(t) ∈ F (t, x), then

∂tV (t, x) + ∂xV (t, x) · v0 + L(t, x, v0) = 0.

This shows that V is a solution to the following Hamilton-Jacobi-Bellman equation:{
∂tϕ(t, x) + infv∈F (t,x){∂xϕ(t, x) · v + L(t, x, v)} = 0

ϕ(T, x) = g(x).
(HJB)

An important feature of the dynamic programming approach is that the value function does provide the

minimum cost for (PS,x0), but solving (HJB) also provides information about minimizers, supplying optimal
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controls in feedback form, that are favored (over open-loop controls) in engineering applications due to their

resilience to perturbations of the system. This is achieved by an analysis of the feedback map:

ψ :

[S, T ]× Rn  Rn

(t, x) 7→
{
v ∈ F (t, x), ∂xV (t, x) · v + L(t, x, v) = min

w∈F (t,x)
[∂xV (t, x) · w + L(t, x, w)]

}
.

and of the differential inclusion:

ẋ(t) ∈ ψ(t, x(t)), for a.e. t ∈ [S, T ].

This type of work is called optimal synthesis and goes beyond the purpose of this thesis.

1.3.3 Non differentiability of the value function

A major issue arises when we want to characterize the value function V as the unique solution to the corre-

sponding Hamilton-Jacobi-Bellman equation, as even for the simplest control problems, the value function

is not differentiable.

We illustrate this fact by an example from this thesis. Consider the following Mayer problem:
Minimize g(x(1))

over arcs x(·) ∈W 1,1([t0, 1],R) such that

ẋ(t) ∈ F (t) for a.e. t ∈ [t0, 1],

x(t0) = x0 ,

where t0 ∈ [0, 1], x0 ∈ R, and F (t) := [0, 1], g(x) :=

{
1, if x 6= 0,

0, if x = 0.

A computation of the value function V : [0, 1]× R→ R,

V (t, x) =

®
0, if x+ 1− t ≥ 0 and x ≤ 0,

1, if x+ 1− t < 0 or x > 0,

shows that it is merely lower semicontinuous, and certainly not differentiable.

To circumvent this issue, a suitable notion of generalized solution to (HJB) has to be introduced: the value

function V should be the unique solution to (HJB) in this new sense. Unfortunately, the distributional

derivatives theory is not suited to strongly unlinear partial differential equations such as the Hamilton-

Jacobi-Bellman equation. This need for differentiating the value function led to innovative techniques. In

this introduction we shall consider the approach provided by the nonsmooth analysis.

As demonstrated here, when we want to penalize or disqualify trajectories that do not respect a given

endpoint constraint, we easily obtain a discontinuous value function. To cover a broad class of optimization

problems, a convenient class of functions to characterize the value function as a unique solution to (HJB)

would be the class of extended valued lower semicontinuous functions.

1.4 Nonsmooth analysis

Nonsmooth analysis was designed to extend notions such as derivatives and normal vectors (to a set with

smooth border) to non-differentiable data. The reason for introducing such extensions was sketched in

Section 1.2 and Subsection 1.3.3.
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C

x2

x1

NP
C (x1)

NP
C (x2)

Figure 1.4: A closed set and the proximal normal cone at two different points.

In this framework, many researchers contributed to the development of nonsmooth analysis and Optimal

control: for instance, see the references [4, 27, 84, 31, 66, 61].

We briefly present some important notions: the proximal normal cone and the associated proximal subdif-

ferential, the limiting normal cone and the associated limiting subdifferential.

Let C ⊂ Rm be a closed set and x̄ ∈ C. The proximal normal cone to C at x̄ is:

NP
C (x̄) :=

{
η ∈ Rm,∃M ≥ 0, ∀x ∈ C, η · (x− x̄) ≤M |x− x̄|2

}
.

The limiting normal cone NC(x) to C ⊂ Rm at x̄ is defined as follows

NL
C (x̄) :=

{
η ∈ Rm, there exists xi

C−→ x̄, ηi → η such that ηi ∈ NP
C (xi), for all i ∈ N

}
.

Let f : Rm → R ∪ {+∞} be a lower semicontinuous function, and x̄ ∈ dom(f). Then the epigraph of f ,

epi f is closed. The notions of normal cones to a closed set hence yields corresponding notions of generalized

derivatives of f .

The proximal subdifferential of f at x̄ is:

∂P f(x̄) :=
¶
ξ ∈ Rm, (ξ,−1) ∈ NP

epi f (x̄, f(x̄))
©
,

while the limiting subdifferential of f at x̄ is:

∂Lf(x̄) :=
¶
ξ ∈ Rm, (ξ,−1) ∈ NL

epi f (x̄, f(x̄))
©
.

Note that the proximal normal cone (resp. the limiting normal cone) to the epigraph of f at (x̄, f(x̄)), is

in general not spanned by ∂P f(x̄)× {−1} (resp. ∂Lf(x̄)× {−1}) because it may contain horizontal vectors

(also called asymptotic vectors) in the form (ξ, 0).

For the function f = 21R∗+ − 1, we have

NP
epi f (0,−1) = {(x, y), x ≥ 0, y ≤ 0} ,
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so ∂P f(0) = [0,+∞[ and the asymptotic proximal subdifferential corresponding to asymptotic vectors,

denoted ∂∞P f(0) is equal to [0,+∞[.

y = 21R∗+(x)− 1

x

NP
epi f (0,−1)

epi f

Figure 1.5: Proximal normal cone to the epigraph of 21R∗+ − 1 at (0,−1).

More details and references about nonsmooth analysis will be provided in Chapter 2. We proceed to show

how nonsmooth analysis allows to develop both the sufficient and necessary conditions in optimal control,

outlining solutions to the problems we itemised in Subsection 1.3.3 and Section 1.2.

1.4.1 Application of nonsmooth analysis to the (HJB) theory

Nonsmooth analysis can be invoked to define appropriate notions of generalized solution to (HJB). We pro-

vide an example in which we put proximal subdifferentials to good use.

In our setup, we say that an extended valued, lower semicontinuous function W : [S, T ]×Rn → R ∪ {+∞}
is a proximal solution to (HJB) if the following conditions are satisfied:

i) for every (t, x) ∈ (]S, T [×Rn) ∩ dom(W )

ξ0 + inf
v∈F (t,x)

[
ξ1 · v + L(t, x, v)

]
= 0, for all (ξ0, ξ1) ∈ ∂PW (t, x),

ii) for every x ∈ Rn,

lim inf
{(t′,x′)→(S,x) | t′>S}

W (t′, x′) = W (S, x),

and

lim inf
{(t′,x′)→(T,x) | t′<T}

W (t′, x′) = W (T, x) = g(x).

More notions of generalized solutions to (HJB) will be detailed in section 1.8 and in this thesis.
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1.4.2 Nonsmooth analysis contribution to the maximum principle

We illustrate how nonsmooth analysis intervenes even in a quite simple version of the maximum principle

[37, 45, 84] for the following optimization problem:

(P2)



Minimize

∫ T

S
L(s, y(s), u(s))ds+ g(y(S), y(T ))

over the arcs y ∈W 1,1([S, T ],Rn)

and measurable functions u : [S, T ]→ Rm satisfying

ẏ(s) = f(s, y(s), u(s)), for almost every s ∈ [S, T ],

u(s) ∈ U(s), for almost every s ∈ [S, T ]

(y(S), y(T )) ∈ C.

Here f : [S, T ] × Rn × Rm → Rn describes the dynamics of the system, U : [S, T ]  Rm is a multivalued

function describing the admissible controls, C ⊂ R2n is closed set. We denote by Hλ : [S, T ]×Rn×Rn×Rm →
R the Hamiltonian function:

Hλ(s, x, p, u) := p · f(s, x, u)− λL(s, x, u).

Then if (x∗, u∗) is a W 1,1-local minimizer for (P2), then there exist p ∈ W 1,1([S, T ],Rn) (the adjoint arc)

and λ ≥ 0 such that the following conditions are satisfied (see [45, Theorem 22.26]:

(i) the nontriviality condition: (p, λ) 6= (0, 0) ,

(ii) the adjoint inclusion:

−ṗ(s) ∈ co ∂LxHλ(s, x∗(s), p(s), u∗(s)),

for almost every s ∈ [S, T ],

(iii) the maximality condition:

Hλ(s, x∗(s), p(s), u∗(s)) = sup
u∈U(s)

Hλ(s, x∗(s), p(s), u),

for almost every s ∈ [S, T ],

(iv) the transversality condition:

(p(S),−p(T )) ∈ λ∂Lg(x∗(S), x∗(T )) +NL
C ((x∗(S), x∗(T )).

In this theorem we resorted no less than three times to nonsmooth analysis to state the adjoint inclusion

and the transversality condition.

Nonsmooth analysis also intervenes in the case we are looking for extensions to the maximum principle in

the case the constraint on the dynamics is expressed as a differential inclusion ẏ(s) ∈ F (s, y(s)). This type

of results is called extended Euler-Lagrange conditions.
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Here, we consider the following control problem :

(P3)


Minimize g(y(S), y(T ))

over the arcs y ∈W 1,1([S, T ],Rn) such that

ẏ(s) ∈ F (s, y(s)), for almost every s ∈ [S, T ]

(y(S), y(T )) ∈ C.

(here the differential equation is replaced by a differential inclusion). We can turn the problem (P3) into a

Bolza problem in the calculus of variations by disqualifying trajectories violating the differential inclusion

on a set of positive measure. This is achieved by adding a penalty running cost to the original cost:
Minimize g(y(S), y(T )) +

∫ T

S
`(s, y(s), ẏ(s))ds

over the arcs y ∈W 1,1([S, T ],Rn)

such that (y(S), y(T )) ∈ C.

where

`(t, x, v) =

{
0, if v ∈ F (t, x),

+∞, if v /∈ F (t, x).

If we could apply the smooth version of the Euler-Lagrange equation (in the calculus of variations) to a

W 1,1 minimizer x∗(·) to derive the new necessary conditions, we would obtain the existence of an adjoint arc

p ∈W 1,1([S, T ],Rn) for which the following conditions are satisfied:

(i) the adjoint inclusion:

(ṗ(s), p(s)) = ∇x,v`(s, x∗(s), ẋ∗(s)),

for almost every s ∈ [S, T ],

(ii) the maximality condition:

p(s) · ẋ∗(s)− `(s, x∗(s), ẋ∗(s)) ≥ p(s) · v − `(s, x∗(s), v),

for all v ∈ Rn and for almost every s ∈ [S, T ],

(iii) the transversality condition:

(p(S),−p(T )) ∈ ∇g(x∗(S), x∗(T )) +NL
C ((x∗(S), x∗(T )).

However, in the adjoint inclusion above, ∇x,v` is ill-defined. This is yet another problem that was solved

using nonsmooth analysis, since under suitable conditions, the following extended Euler-Lagrange conditions

can be obtained (see [45, 84]): there exist p ∈W 1,1([S, T ],Rn) and λ ≥ 0 such that the following conditions

are satisfied

(i) the nontriviality condition: (p, λ) 6= (0, 0) ,

(ii) the adjoint inclusion:

ṗ(s) ∈ co
¶
ξ ∈ Rn, (ξ, p(s)) ∈ NL

Gr(F (s,·))(x∗(s), ẋ∗(s))
©
,

for almost every s ∈ [S, T ],
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(iii) the maximality condition:

p(s) · ẋ∗(s) ≥ p(s) · v,

for all v ∈ F (s, x∗(s)) and for almost every s ∈ [S, T ],

(iv) the transversality condition:

(p(S),−p(T )) ∈ λ∇g(x∗(S), x∗(T )) +NL
C ((x∗(S), x∗(T )).

1.5 The maximum principle and the value function: sensitivity

A missing link between the maximum principle and the dynamic programming approach is given by sensi-

tivity relations, which provide an interpretation of the adjoint arc and the Hamiltonian, evaluated along an

optimal trajectory, in terms of generalized gradients of the value function.

For instance, if (x∗(·), u∗(·)) is an optimal trajectory/control pair for the Mayer problem (P), and p(·) is the

adjoint arc given by the maximum principle, then a smooth version2 of the sensitivity relations is :{
(H(t, x∗(t), p(t)),−p(t)) = ∇V (t, x∗(t)), for all t ∈ [t0, T ], (full sensitivity relation)

−p(t) = ∂xV (t, x∗(t)), for all t ∈ [t0, T ], (partial sensitivity relation).

A specificity of this smooth framework is that the partial sensitivity relation is trivially implied by the full

sensitivity relation and that the adjoint arc p(·) given by the maximum principle is unique.

We mentioned many times that even in the smooth setting, the value function might be non-differentiable,

which (once again) drove researchers to resort to nonsmooth analysis. For instance when the value function is

merely locally Lipschitz continuous, the sensitivity relations were expressed in [30] using (Fréchet) superdif-

ferentials (see Chapter 2). Quite remarkably in this context, the sensitivity relations help provide necessary

and sufficient conditions for optimality. Note that due to the nature of generalized gradients and differentials

in nonsmooth analysis, the full sensitivity relation does not imply in general the partial sensitivity relation.

When the data are not smooth or a state constrained problem is considered, the adjoint arc is not unique,

which makes the proofs of sensitivity relations more elaborate. For the unconstrained case, we refer to

[38] (partial sensitivity relation using Clarke’s generalized gradient), [82, 84] (full sensitivity relation using

limiting subdifferentials) and [32] (partial and full sensitivity relations using superdifferentials and proximal

subgradients). For the state constrained case a recent reference is [20] where the existence of an adjoint

arc satisfying both sensitivity relations at the same time was established. Researchs about second-order

sensitivity relations have also been carried out [33].

1.6 Uniqueness of a solution to (HJB): Invariance/Viability theory

The tools allowing for a notion of generalized solution to (HJB) have been outlined in Subsection 1.4.1.

Another important step of the characterization still has to be dealt with. From the humble experience of a

Ph.D. student, to prove that the value function is a generalized solution to (HJB) (existence of a solution)

is not nearly as challenging as proving it is the unique generalized solution (uniqueness).

2Here the data and the value function are assumed to be smooth.
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Viability theory is a mathematical field that studies the evolution of dynamical systems under constraints

on the system. In the framework of (HJB) equation, viability theory is used in two ways:

� weak invariance theorems also called viability theorems assert the existence of solutions to constrained

differential inclusions that have the following form (here y0 ∈ D):
ẏ(t) ∈ Q(t, y(t)), for a.e. t ∈ [S, T ]

y(t) ∈ D, for all t ∈ [S, T ],

y(S) = y0,

where D is a closed set;

� strong invariance theorems assert that all trajectories starting from some y0 ∈ D that are solutions to

the following differential inclusion{
ẏ(t) ∈ Q(t, y(t)), for a.e. t ∈ [S, T ]

y(S) = y0

,

satisfy the constraint y(t) ∈ D, for all t ∈ [S, T ].

A well-known contribution in order to establish uniqueness of solutions to (HJB) via viability theory is [51]:

viability theory was exploited in order to study the behaviour of F -trajectories evolving in the epigraph of V ,

which yields comparison results for (HJB). As a result, the value function is the unique lower semicontinuous

function satisfying (HJB) in a generalized sense which involves the lower Dini derivative, or, equivalently,

the Fréchet sub/superdifferentials. This was subsequently refined in [42], by a characterization of the value

function as the unique solution to (HJB) in a generalized sense which makes use of proximal subgradients.

Since then, using viability theory to establish uniqueness of solution to Hamilton-Jacobi equations (coming

either from calculus of variations or optimal control) has become both a useful and usual technique (see

[21, 42, 50, 49, 54, 71, 72, 84] and many others).

Let us illustrate how viability can be used to derive comparison results between solutions to (HJB). For

example, if W : [S, T ]× Rn → R ∪ {+∞} is a proximal solution to (HJB) (as defined in Subsection 1.4.1),

we sketch the proof of the fact that V ≤W .

We introduce a multivalued function W : [S, T ]× Rn  Rn × R defined by:

Q(τ, x) :=
{

(1, v,−η) | v ∈ F (τ, x), η ≥ L(τ, x, v)
}
,

Fix (t0, x0) ∈ ]S, T [×Rn. Applying a weak invariance theorem to the following differential inclusion:
(τ̇ , ẋ, ˙̀)(t) ∈ Q(τ(t), x(t)), for a.e. t ∈ [t0, T ],

(τ(t), x(t), `(t)) ∈ epi W, for all t ∈ [t0, T ],

(τ(t0), x(t0), `(t0)) = (t0, x0,W (t0, x0)),

yields the desired inequality.
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The fact that W is a proximal solution helps check that the relevant hypotheses of the viability theorem

are satisfied, in particular the ‘inward pointing condition’: for every (τ, x) ∈ ]S, T [, and every (ξ0, ξ1,−λ) ∈
NP

epiW ((τ, x),W (τ, x)),

min
w∈Q(τ,x)

(ξ0, ξ1,−λ) · w ≤ 0.

This condition somehow means that we can always find velocity vectors in Q(τ, x) pointing towards the

interior of epiW (see figure 2.6 in Chapter 2).

The weak invariance theorem states that there exists (τ(·), x(·), `(·)) ∈ W 1,1([t0, T ],R × Rn × R) satisfying

τ(t) = t and 
(1, ẋ(t), ˙̀(t)) ∈ Q(t, x(t)), for a.e. t ∈ [t0, T ]

x(t0) = x0, `(t0) = W (t0, x0)

`(t) ≥W (t, x(t)), for all t ∈ [t0, T ] .

Taking into account the definition of the multivalued function Q, we deduce that x(·) is an F -trajectory and

that ˙̀(s) ≤ −L(s, x(s), ẋ(s)) for a.e. s ∈ [t0, T ]. Hence we have:

g(x(T )) = W (T, x(T )) ≤ `(T ) = `(t0) +

∫ T

t0

˙̀(s)ds ≤W (t0, x0)−
∫ T

t0

L(s, x(s), ẋ(s))ds,

which implies:

g(x(T )) +

∫ T

t0

L(s, x(s), ẋ(s))ds ≤W (t0, x0),

and then:

V (t0, x0) ≤W (t0, x0).

The inequality

V (t0, x0) ≥W (t0, x0),

could be obtained using a similar analysis together with a strong invariance theorem. Together with the

existence result, this would show that V is the unique solution to (HJB).

1.7 Neighbouring feasible trajectories results

Neighbouring feasible trajectories results allow to approximate F -trajectories evolving possibly outside of

the state constraint A by F -trajectories taking values in A. The estimates between a non feasible trajectory

ỹ(·) and its feasible approximation y(·) can be given using different norms: for instance L∞ (these estimates

are well-suited for Mayer problem) or in W 1,1 (which are more useful for Bolza problems). Moreover, the

distance between these two functions should go to 0 as the violation of the constraint, namely the quantity

maxt∈[S,T ] dA(ỹ(t)) goes to 0. Some references are [18, 19, 22, 29, 56, 57, 75].
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maxt∈[S,T ] dA(ŷ(t)

Figure 1.6: Neighbouring feasible trajectories result. The arc ŷ is not feasible, the ‘neighbour’ arc y starts

from the same point, but then, evolves in the interior of A.

Neighbouring feasible trajectories theorems are useful analytical tools to obtain results for state constrained

problems. Roughly speaking they correspond to constraints removal and in that regard, they allow to invoke

the dynamic programming approach and to develop the Hamilton-Jacobi theory (regularity of the value func-

tion and characterizations of value functions [21, 56]), as well as to deal with delicate aspects of the necessary

conditions theory (see [75] for applications to abnormality) or even to establish sensitivity conditions [57].

A key hypothesis allowing to derive such neighbouring feasible trajectories results is the validity of a compati-

bility condition between the boundary of the constraint A and the dynamics F . Two types of compatibilities,

namely inward pointing and outward pointing conditions can be considered. For instance, a smooth version

of the inward pointing condition is: for all x ∈ ∂A, for all t ∈ [S, T ], there exists v ∈ F (t, x) such that:

nx · v > 0,

where nx is the unit inward normal to A at x.

If A does not have a smooth border, then (inward) normals to A are ill-defined, and nonsmooth analysis

is helpful to generalize these conditions. For instance, using the contingent cone to A (see Chapter 2), the

previous conditions can be reformulated: for all x ∈ ∂A, for all t ∈ [S, T ]:

F (t, x) ∩ intTA(x) 6= ∅.

1.8 Introduction to Part 1: Hamilton-Jacobi-Bellman equation for Op-

timal Control problems

1.8.1 Characterizations of value functions

It is well-known that continuous viscosity solutions for Hamilton-Jacobi equations were introduced in the

viscosity theory context by the mean of test functions [47, 48]. They were named after the vanishing viscosity

technique. This technique consists in adding a small friction term in a partial differential equation (ε∆V )ε>0,

in hopes of applying compactness results to the family of solutions (Vε)ε>0 as ε vanishes (a well-known ilus-

tration of this technique can be found in [31]).

The viscosity solutions were used to study continuous value function related to Mayer’s optimal control

problems, which allowed to establish generalized characterization of (uniformly continuous) value function
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of the Mayer problem [5, 43, 31]. Viscosity solutions also revealed themselves well-suited to characterize

value functions related to optimal control problems with a state constraint (see [71] for the Mayer problem

and [56]). A trade mark of viscosity solutions is that the characterization is expressed using two inequalities

(whether it involves test functions, sub and superdifferentials, or even strict normals to the epigraph and

hypograph), meaning that the candidate function is both a viscosity subsolution and supersolution. Slight

variations of viscosity solutions have also been used to characterize continuous minimum time function for

sweeping process, invoking proximal normals to the epigraph and hypograph instead of strict normals (see

[46]). One can also mention [34], where the asymptotic analysis of constrained viscosity solutions related to

an infinite horizon problem with a vanishing discount was carried out.

The notion of viscosity solution was also extended to deal with less regular (semicontinuous) value functions

[5, 6]. For Hamilton-Jacobi-Bellman equations related to Mayer’s optimal control problems it was shown

that simpler notions of solutions using only subdifferentials [8, 10, 51] could be introduced. In the continuous

case these solutions coincide with viscosity solutions. Similar characterization also hold true when the value

function is related to a state constrained problem (see [53] for the controlled finite horizon Bolza problem

and [54] for the controlled infinite horizon control problem, as well as [56]) or to characterize minimum time

functions (see [25]). We can also mention characterizations for Hamilton-Jacobi equations related to Bolza

problems: [58] where the characterization is given using limiting subgradients, [72] in which subdifferentials

are used, and [49, 50].

Using proximal subdifferentials and lower Dini derivatives is another effective way of characterizing semicon-

tinuous value functions. Characterizations of value functions related to Mayer’s optimal control problems

were first proved when the dynamics are continuous with respect to time (see [42] for a proximal characteriza-

tion and [51] for a Dini characterization). In the case the dynamics are merely measurable some results were

also obtained in [52] (existence and half-characterization) and [52] (full characterization) imposing additional

conditions on the class of functions which are candidate to be solutions. Proximal and Dini characteriza-

tions are provided in the book [84]. Another recent reference dealing with these characterizations is [21]

in the case the dynamics are continuous almost everywhere with respect to time. When it comes to value

functions arising in other problems, a proximal characterization of the lower semicontinuous minimal time

function was provided in [86] while Dini and proximal characterizations of value function related to a non

autonomous Bolza problem in calculus of variations was achieved in [72]. See also [49, 50] for value functions

of autonomous Bolza problem in the calculus of variations.

1.8.2 The stakes of the Chapter 3

Consider the non autonomous Bolza problem in optimal control:

(PS,x0)


Minimize g(x(T )) +

∫ T
S L(t, x(t), ẋ(t))dt

over arcs x ∈W 1,1([S, T ],Rn) satisfying

ẋ(t) ∈ F (t, x(t)) for almost every t ∈ [S, T ],

x(S) = x0,

in which g : Rn → R ∪ {+∞} and L : [S, T ]× Rn × Rn → R+ are given functions, [S, T ] is a given interval,

x0 ∈ Rn is a given point, and F : [S, T ]× Rn  Rn a multivalued function.
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Under appropriate assumptions, the value function of the problem, defined by: for all (t, x) ∈ [S, T ]× Rn,

V (t, x) = inf

®
g(y(T )) +

∫ T

t
L(s, y(s), ẏ(s))ds, y(·) F -trajectory on [t, T ], y(t) = x

´
,

is the unique (generalized) solution to the Hamilton-Jacobi-Bellman equation:{
∂tϕ(t, x) +H(t, x, ∂xϕ(t, x)) = 0

ϕ(T, x) = g(x),
(HJB)

where H(t, x, p) = infv∈F (t,x) {p · v + L(t, x, v)} is the minimized Hamiltonian.

Characterizations of value functions related to Mayer’s optimal control problems (L = 0) have already been

widely studied. Granted that F is continuous with respect to time, the application of viability theory to

characterize lower semicontinuous value functions for optimal control problems with extended valued terminal

costs was first achieved in a paper by Frankowska [51] that, as previously underlined in this thesis (see page

29), had a great influence on the development of the Hamilton-Jacobi theory.

In this paper, it was established that V is the unique extended valued, lower semicontinuous function

satisfying (HJB) in the following generalized sense:

(c1) for every (t, x) ∈ ([S, T [×Rn) ∩ dom(V ),

inf
v∈F (t,x)

D↑V ((t, x), (1, v)) ≤ 0,

(c2) for every (t, x) ∈ (]S, T ]× Rn) ∩ dom(V ),

sup
v∈F (t,x)

D↑V ((t, x), (−1,−v)) ≤ 0,

(c3) for every x ∈ Rn, V (T, x) = g(x).

Here, D↑ϕ(x, d) := lim inf
h↓0
e→d

h−1(ϕ(x+ he)− ϕ(x)) denotes the lower Dini derivative (see Chapter 2).

In the same paper we can also find characterizations using subdifferentials and superdifferentials that are

related to viscosity solutions for continuous value functions.

With the same hypotheses, this characterization was refined using proximal subgradients [42]:

(p1) for every (t, x) ∈ (]S, T [×Rn) ∩ dom(V ), and every (ξ0, ξ1) ∈ ∂PV (t, x),

ξ0 + inf
v∈F (t,x)

ξ1 · v = 0,

(p2) for every vector x ∈ Rn, we have lim inf{(t′,x′)→(S,x), t′>S} V (t′, x′) = V (S, x), and also

lim inf
{(t′,x′)→(T,x), t′<T}

V (t′, x′) = V (T, x) = g(x).

Note that only non asymptotic vectors of the proximal normal cone NP
epiV ((t, x), V (t, x)) are being used in

this characterization. The contribution of horizontal normals can be easily removed when F is continuous

with respect to time, owing to a well-known result by Rockafellar (see Theorem 2.4.15).
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In the case F is merely measurable with respect to time, the problem of the characterization of the value

function as a Dini/contingent solution to (HJB) in an almost everywhere sense was first adressed in [83].

The fact that V is a solution to (HJB) was proven, as well as one comparison result in the class of functions

that are uniformly absolutely continuous with respect to time.

Then a full characterization was obtained in [52], in an almost everywhere sense. More specifically, in the

class of functions whose epigraph is absolutely continuous, V is the unique function satisfying: there exists

a measurable A ⊂ [S, T ] of zero Lebesgue measure for which

(c1’) for every (t, x) ∈ ([S, T [\A × Rn) ∩ dom(V ),

inf
v∈F (t,x)

D↑V ((t, x), (1, v)) ≤ 0,

(c2’) for every (t, x) ∈ (]S, T ] \ A × Rn) ∩ dom(V ),

sup
v∈F (t,x)

D↑V ((t, x), (−1,−v)) ≤ 0,

(c3’) for every x ∈ Rn, V (T, x) = g(x).

Note that the regularity assumption is required to obtain the uniqueness of the solution, which is not achieved

in the class of lower semicontinuous functions (see the introduction of [21]).

An intermediate approach was then suggested in [21]. In the case F is continuous on a set of full measure

and has everywhere left and right limits with respect to time, two characterizations (using lower Dini deriva-

tives and proximal derivatives) were established. Quite noticeably, the epigraph continuity condition could

be removed and the uniqueness was obtained nonetheless, in the class of lower semicontinuous functions.

However, the characterization requires to use two different inequalities involving respectively the left and

right limits of F .

For the Dini/contingent characterization, V is the unique extended valued lower semicontinuous function

satisfying:

(c1”) for every (t, x) ∈ ([S, T [×Rn) ∩ dom(V ),

inf
v∈F (t+,x)

D↑V ((t, x), (1, v)) ≤ 0,

(c2”) for every (t, x) ∈ (]S, T ]× Rn) ∩ dom(V ),

sup
v∈F (t−,x)

D↑V ((t, x), (−1,−v)) ≤ 0,

(c3”) for every x ∈ Rn, V (T, x) = g(x).

On the other hand, the proximal characterization is: V is the unique extended valued lower semicontinuous

function satisfying:

(p1”) for every (t, x) ∈ (]S, T [×Rn) ∩ dom(V ), and every (ξ0, ξ1,−λ) ∈ NP
epiV ((t, x), V (t, x)),

ξ0 + min
v∈F (t+,x)

ξ1 · v ≤ 0.
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(p2”) for every (t, x) ∈ (]S, T [×Rn) ∩ dom(V ), and every (ξ0, ξ1,−λ) ∈ NP
epiV ((t, x), V (t, x)),

ξ0 + min
v∈F (t−,x)

ξ1 · v ≥ 0.

(p3”) for every vector x ∈ Rn, we have lim inf{(t′,x′)→(S,x), t′>S} V (t′, x′) = V (S, x), and also

lim inf
{(t′,x′)→(T,x), t′<T}

V (t′, x′) = V (T, x) = g(x).

Note that this characterization involves asymptotic vectors and that, at the time of the publication of [21], it

was unclear whether or not they could be removed from the characterization in this discontinuous framework.

As far as this thesis is concerned, it aims at answering the following open questions:

(Q1) In the discontinuous framework, is it possible to remove the asymptotic vectors from the proximal

characterization ?

(Q2) In the case of the non autonomous Bolza problem, and in a context in which standing hypotheses don’t

allow to use a state augmentation technique, is it possible to achieve such characterizations of the

value function as the unique lower semicontinuous function solution to (HJB), without requiring an

additional regularity assumption from candidate solutions?

(Q3) In this framework, is it possible to achieve an extended-sense viscosity solution characterization of lower

semicontinuous value functions, employing Fréchet subdifferentials and superdifferentials?

Chapter 3, see page 67, provides positive answers to these questions. In this introduction, only the hypothe-

ses and the main results of the chapter are presented.

The results of this chapter have been published [15].

1.8.3 Hypotheses of Chapter 3

In Chapter 3 the following hypotheses are invoked: for every given positive number R0, there exist functions

cF (·) ∈ L1([S, T ],R+) and kF (·) ∈ L1([S, T ],R+), a modulus of continuity ω(·) : R+ → R+, and constants

c0 > 0, M0 > 0 such that:

(H1): i) The multivalued function F : [S, T ]×Rn ; Rn takes convex, closed, nonempty values. For every

x ∈ Rn, F (·, x) is Lebesgue measurable on [S, T ].

ii) The function g : Rn → R ∪ {+∞} is lower semicontinuous, with nonempty domain.

(H2): i) For almost every t ∈ [S, T ] and x ∈ Rn

F (t, x) ⊂ cF (t)(1 + |x|)B.

ii) For all (t, x) ∈ [S, T ]×R0B
F (t, x) ⊂ c0B.
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(H3): i)

dH(F (t, x′), F (t, x)) ≤ ω(|x− x′|), for all x, x′ ∈ R0B and t ∈ [S, T ].

ii)

F (t, x′) ⊂ F (t, x) + kF (t)|x− x′|B, for all x, x′ ∈ R0B and for a.e. t ∈ [S, T ].

(H4): i) For each x ∈ Rn, s ∈ [S, T [, and t ∈]S, T ] the following limits (in the sense of Kuratowski) exist

and are nonempty

F (s+, x) := lim
s′↓s

F (s′, x) and F (t−, x) := lim
t′↑t

F (t′, x).

ii) For almost every s ∈ [S, T [ and t ∈]S, T ], and every x ∈ Rn we have

F (s+, x) = F (s, x) and F (t−, x) = F (t, x).

(H5): i) The Lagrangian L : [S, T ] × Rn × Rn −→ R is L × Bn+n-measurable. For every t ∈ [S, T ] and

x ∈ Rn, L(t, x, ·) is convex.

ii) L is locally bounded in the following sense

|L(t, x, v)| ≤M0, for all (t, x, v) ∈ [S, T ]×R0B× 2c0B .

(H6): i) |L(t, x′, v)− L(t, x, v)| ≤ ω(|x− x′|), for all x, x′ ∈ R0B, t ∈ [S, T ] and v ∈ c0B.

ii) L(t−, x, v) := limt′↑t L(t′, x, v) exists for every (t, x, v) ∈]S, T ]×R0B× c0B, and

L(t−, x, v) = L(t, x, v) for a.e. t ∈]S, T ] and for all (x, v) ∈ R0B× c0B.

iii) L(s+, x, v) := lims′↓s L(s′, x, v) exists for every (s, x, v) ∈ [S, T [×R0B× c0B, and

L(s+, x, v) = L(s, x, v) for a.e. s ∈ [S, T [ and for all (x, v) ∈ R0B× c0B.

1.8.4 Results of Chapter 3

The following subsection gathers the two main results of Chapter 3, without complementary results, inter-

pretations, remarks or examples. More details are to be found starting from page 73.

Theorem 1.8.1 answers positively to questions (Q1) and (Q2) that were asked page 35. It gives a character-

ization of lower semicontinuous extended valued value function using proximal subdifferentials (not taking

into account the contribution of horizontal proximal normals) and lower Dini derivatives.

Theorem 1.8.2 provides a positive answer to the second question (Q3). If we assume that g is locally bounded

and satisfies some type of regularity property in terms of lower and upper semicontinuous envelopes, the

value function is the unique locally bounded function solution to (HJB) in an extended viscosity sense, using

the Fréchet subdifferential of V and the Fréchet superdifferential of V ∗.

Theorem 1.8.1 Assume (H1)–(H6). Let U : [S, T ] × Rn → R ∪ {+∞} be an extended valued function.

Then the assertions (a), (b) and (c) below are equivalent.

(a) The function U is the value function for (Pt,x): U = V .

36



(b) The function U is lower semicontinuous and satisfies:

i) for every (t, x) ∈ ([S, T [×Rn) ∩ dom(U)

inf
v∈F (t+,x)

[
D↑U((t, x), (1, v)) + L(t+, x, v)

]
≤ 0 ;

ii) for every (t, x) ∈ (]S, T ]× Rn) ∩ dom(U)

sup
v∈F (t−,x)

[
D↑U((t, x), (−1,−v))− L(t−, x, v)

]
≤ 0 ;

iii) for all x ∈ Rn, U(T, x) = g(x).

(c) The function U is lower semicontinuous and satisfies:

i) for every (t, x) ∈ (]S, T [×Rn) ∩ dom(U), (ξ0, ξ1) ∈ ∂PU(t, x),

ξ0 + min
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≤ 0 ;

ii) for every (t, x) ∈ (]S, T [×Rn) ∩ dom(U), (ξ0, ξ1) ∈ ∂PU(t, x),

ξ0 + min
v∈F (t−,x)

[
ξ1 · v + L(t−, x, v)

]
≥ 0 ; (1.5)

iii) for every x ∈ Rn,

lim inf
{(t′,x′)→(S,x), t′>S}

U(t′, x′) = U(S, x),

and

lim inf
{(t′,x′)→(T,x), t′<T}

U(t′, x′) = U(T, x) = g(x).

Theorem 1.8.2 Assume (H1)–(H6). Suppose, in addition, that g is locally bounded and satisfies (g∗)∗ = g.

Let U : [S, T ] × Rn → R be a locally bounded function. Then, the assertions (a), (b) and (c) of Theorem

3.4.1 are equivalent to (d) below.

(d) U is lower semicontinuous and satisfies:

i) For every (t, x) ∈]S, T [×Rn, (ξ0, ξ1) ∈ ∂−U(t, x),

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≤ 0 ;

ii) for every (t, x) ∈]S, T [×Rn, (ξ0, ξ1) ∈ ∂+U
∗(t, x),

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≥ 0 ; (1.6)

iii) for every x ∈ Rn,

lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) = U(S, x),

U(T, x) = g(x),

and

U∗(T, x) = g∗(x).
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1.8.5 The stakes of Chapter 4

In Chapter 4, we add a state constraint to the Bolza problem of Chapter 3:

(SCS,x0)



Minimize J(x) =

∫ T

S
L(s, x(s), ẋ(s))ds+ g(x(T ))

over arcs x(·) satisfying

ẋ(s) ∈ F (s, x(s)), for a.e. s ∈ [S, T ],

x(s) ∈ A, for all s ∈ [S, T ],

x(S) = x0,

in which g : Rn → R ∪ {+∞} and L : [S, T ] × Rn × Rn → R are given functions, F : [S, T ] × Rn ; Rn is a

given multivalued function, and A is a given nonempty convex and closed set in Rn.

Similarly to Chapter 3, under appropriate assumptions, the value function of the problem, defined by: for

all (t, x) ∈ [S, T ]× Rn,

V (t, x) = inf

®
g(y(T )) +

∫ T

t
L(s, y(s), ẏ(s))ds, y(·) feasible F -trajectory on [t, T ], y(t) = x

´
,

is the unique (generalized) solution to the (HJB) equation. We recall that in this definition, feasible means

that y(s) ∈ A, for all s ∈ [t, T ].

Quite similarly to the unconstrained case, characterizations of value function for problems involving data

that are merely measurable with respect to time have been investigated. This resulted in characterizations

in an ‘almost everywhere’ sense for infinite horizon Lagrange control problems, imposing some additional

regularity to the candidate solutions (cf [9]).

However, until now, the most general known class of time-discontinuous problems allowing to provide ‘every-

where in t’ characterizations of value functions was introduced in [21, Theorems 4.1 and 4.2] to investigate

Mayer problems (L = 0). In this paper, the multivalued function F merely has bounded variation with

respect to the time variable, uniformly over the state variable. Two characterizations have been obtained,

which differ according to whether an outward or inward constraint qualification is assumed.

If an outward pointing condition is assumed, namely for each s ∈ [S, T [, t ∈]S, T ] and x ∈ ∂A,

F (t−, x) ∩ (−intTA(x)) 6= ∅ and F (s+, x) ∩ (−intTA(x)) 6= ∅, (OPC)

then V can be characterized as the unique generalized solution to (HJB) in a Dini and proximal sense.

More precisely, in [21], the following Dini characterization was shown. The value function V is the unique

extended valued lower semicontinuous function satisfying V (t, x) = +∞ if x /∈ A and :

(c1) for every (t, x) ∈ ([S, T [×A) ∩ dom(V ),

inf
v∈F (t+,x)

D↑V ((t, x), (1, v)) ≤ 0 ;

(c2) for every (t, x) ∈ (]S, T ]× intA) ∩ dom(V ),

sup
v∈F (t−,x)

D↑V ((t, x), (−1,−v)) ≤ 0 ;
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(c3) for every x ∈ A, lim inf{(t′,x′)→(T,x), t′<T,x′∈intA} V (t′, x′) = V (T, x) = g(x).

On the other hand, the proximal characterization in this context is: V is the unique extended valued lower

semicontinuous function satisfying V (t, x) = +∞ if x /∈ A and :

(p1) for every (t, x) ∈ (]S, T [×A) ∩ dom(V ), and every (ξ0, ξ1,−λ) ∈ NP
epiV ((t, x), V (t, x)),

ξ0 + min
v∈F (t+,x)

ξ1 · v ≤ 0 ;

(p2) for every (t, x) ∈ (]S, T [×intA) ∩ dom(V ), and every (ξ0, ξ1,−λ) ∈ NP
epiV ((t, x), V (t, x)),

ξ0 + min
v∈F (t−,x)

ξ1 · v ≥ 0 ;

(p3) for every vector x ∈ A, we have lim inf{(t′,x′)→(S,x), t′>S} V (t′, x′) = V (S, x), and also

lim inf
{(t′,x′)→(T,x), t′<T,x′∈intA}

V (t′, x′) = V (T, x) = g(x).

When an inward pointing condition is assumed, that is to say, for each s ∈ [S, T [, t ∈]S, T ] and x ∈ ∂A,

F (t−, x) ∩ intTA(x) 6= ∅ and F (s+, x) ∩ intTA(x) 6= ∅, (IPC)

then the characterizations of V as the unique generalized solution to (HJB) is obtained at the price of more

requirements for the cost function g(·), which is assumed to be continuous on A. With these hypotheses,

V is the unique extended valued lower semicontinuous function satisfying V (t, x) = +∞ if x /∈ A and :

(c1’) for every (t, x) ∈ ([S, T [×A) ∩ dom(V ),

inf
v∈F (t+,x)

D↑V ((t, x), (1, v)) ≤ 0 ;

(c2’) for every (t, x) ∈ (]S, T ]× intA) ∩ dom(V ),

sup
v∈F (t−,x)

D↑V ((t, x), (−1,−v)) ≤ 0 ;

(c3’) for every x ∈ A, V (T, x) = g(x).

On the other hand, the proximal characterization is: V is the unique extended valued lower semicontinuous

function satisfying V (t, x) = +∞ if x /∈ A and :

(p1’) for every (t, x) ∈ (]S, T [×A) ∩ dom(V ), and every (ξ0, ξ1,−λ) ∈ NP
epiV ((t, x), V (t, x)),

ξ0 + min
v∈F (t+,x)

ξ1 · v ≤ 0 ;

(p2’) for every (t, x) ∈ (]S, T [×intA) ∩ dom(V ), and every (ξ0, ξ1,−λ) ∈ NP
epiV ((t, x), V (t, x)),

ξ0 + min
v∈F (t−,x)

ξ1 · v ≥ 0 ;

(p3’) for every vector x ∈ A, we have lim inf{(t′,x′)→(S,x), t′>S} V (t′, x′) = V (S, x), and also V (T, x) = g(x).
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An important feature here, apart from those that have already been discussed in subsection 1.8.2, is that,

considering the nature of Mayer problem’s cost, a mere L∞ ‘distance estimate’ (see [22]) is sufficient to

establish both characterizations of the value function in terms of lower Dini derivatives and proximal subd-

ifferentials.

As previously mentioned, if we are looking for possible extensions of [21] to the case L 6= 0, we need to have

W 1,1 ‘distance estimates’ at our disposal. More precisely, if x̂(·) is a given F -trajectory, possibly not feasible,

then we want to construct a second feasible F -trajectory x(·) which is close to x̂(·) with respect to the W 1,1

distance. Usually, such estimates are provided using a suitable modulus of continuity θ(·) evaluated in a

‘state constraint violation’ parameter ρ. Though linear estimates (θ(ρ) = Kρ with K > 0) are the most

valuable, it has been shown (cf. [16]) that they cannot generally be obtained outside of a very smooth

context. In fact, a later paper [17] pointed out that estimates of the type θ(ρ) = Kρ| ln(ρ)| with K > 0 are

optimal in some cases (with a constraint A that is not smooth).

For discontinuous time-dependent F ’s (with bounded time-variation w.r.t. time), L∞-distance estimates

were obtained in [22]. On the other hand, the paper [29], deals with a convex compact constraint A coupled

with a differential inclusion involving a Lipschitz, time-independent multifunction F , obtaining ρ| ln(ρ)|
W 1,1 estimates. However, to extend the results of [22] and [29] to W 1,1-estimates for a class of problems in

which F depends on time in a possibly discontinuous manner is far from trivial. This is one of the aspect

that has been investigated in this thesis.

Another question raised by the work presentend in [21] is whether or not it is possible to obtain an equivalent

viscosity characterizations (using Fréchet subdifferential and superdifferential). When it comes to the state

constrained case, this type of characterization was established in [56, Theorem 3] in the class of continuous

functions, but only when the data are continuous, and at the cost of a more demanding type of constraint

qualification. Keeping this stronger constraint qualification, but weakening the continuity assumptions on

the data, only partial results have been obtained, like one-side comparison theorems (cf. [56, Theorem 4]).

As far as this thesis is concerned, it aims at answering the following open questions:

(Q1) Provided that A and F satisfy the inward/outward compatibility conditions (IPC)/(OPC) of [21], and

that F has bounded variations with respect to time (uniformly with respect to the state variable), can

we obtain W 1,1 distance estimates results. If so, under which additional hypotheses?

(Q2) Once suitable W 1,1 distance estimates results are available, in the case of the constrained non au-

tonomous Bolza problem, is it possible to achieve ‘everywhere in t’ characterizations of the value func-

tion as the unique lower semicontinuous function solution to (HJB), without requiring an additional

regularity assumption from candidate solutions?

(Q3) Is it possible not to resort to asymptotic normals in the proximal characterization of the value function

?

(Q4) In the same framework, is it possible to achieve extended-sense viscosity characterizations of value

functions, employing Fréchet subdifferentials and superdifferentials? If so, which type of constraint

qualifications are required, and which additional hypothesis do we need to impose to g(·)?
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In this introduction, only the hypotheses and the main results of the chapter are presented.

1.8.6 Hypotheses in Chapter 4

In Chapter 4, the following hypotheses are invoked: for every given positive number R0, there exist positive

functions cF (·) ∈ L1(S, T ) and kF (·) ∈ L∞(S, T ), a modulus of continuity ω(·) : R+ → R+, and constant

c0 > 0, M0 > 0 such that

(H1): the multivalued function F : [S, T ]×Rn ; Rn takes convex, closed, non-empty values; for every x ∈ Rn,

F (·, x) is Lebesgue measurable on [S, T ];

(H2): F (t, x) ⊂ cF (t)(1 + |x|) B for all x ∈ Rn and for a.e. t ∈ [S, T ] ;

(H3): F (t, x′) ⊂ F (t, x) + kF (t)|x− x′| B for all x, x′ ∈ R0B and a.e. t ∈ [S, T ] ;

(H4): F (., x) has bounded variation uniformly over x ∈ R0B, in the following sense: there exists a non-

decreasing bounded variation function η(·) : [S, T ]→ [0,∞) such that

(i) for every [s, t] ⊂ [S, T ] and x ∈ R0B,

dH(F (s, x), F (t, x)) ≤ η(t)− η(s) ;

(ii) for every µ > 0 and every [t0, t1] ⊂ [S, T ] there exists a partition {t0 =: t̃0 < t̃1 < t̃2 < . . . < t̃M :=

t1} such that for each k = 0, 1, . . . ,M − 1 we have

lim
ε↓0

∫ t̃k+1

t̃k+ε

η(τ)− η(t̃+k )

τ − t̃k
dτ ≤ µ .

(H5): (i) the Lagrangian L : [S, T ] × Rn × Rn −→ R is L × Bn+n-measurable; for every t ∈ [S, T ] and

x ∈ Rn, L(t, x, ·) is convex;

(ii) L is locally bounded in the following sense:

|L(t, x, v)| ≤M0, for all (t, x, v) ∈ [S, T ]×R0B× 2c0B ;

(H6): (i) |L(t, x′, v)− L(t, x, v)| ≤ ω(|x− x′|), for all x, x′ ∈ R0B, t ∈ [S, T ] and v ∈ c0B;

(ii) L(t−, x, v) := limt′↑t L(t′, x, v) exists for every (t, x, v) ∈ (S, T ]×R0B× c0B, and

L(t−, x, v) = L(t, x, v) for a.e. t ∈ (S, T ] and for all (x, v) ∈ R0B× c0B;

(iii) L(s+, x, v) := lims′↓s L(s′, x, v) exists for every (s, x, v) ∈ [S, T )×R0B× c0B, and

L(s+, x, v) = L(s, x, v) for a.e. s ∈ [S, T ) and for all (x, v) ∈ R0B× c0B;

(H7): g : Rn → R ∪ {+∞} is lower semicontinuous, with nonempty domain;

(H8): A ⊂ Rn is convex and closed;

(OPC): for each s ∈ [S, T ), t ∈ (S, T ] and x ∈ ∂A,

F (t−, x) ∩
(
− intTA(x)

)
6= ∅ and F (s+, x) ∩

(
− intTA(x)

)
6= ∅ ;

(IPC): for each s ∈ [S, T ), t ∈ (S, T ] and x ∈ ∂A,

F (t−, x) ∩ intTA(x) 6= ∅ and F (s+, x) ∩ intTA(x) 6= ∅ .
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1.8.7 Results of Chapter 4

The following subsection gathers the five main results of Chapter 4, without complementary results, inter-

pretations, remarks or examples. More details are to be found starting from page 101.

A very early version of these results is published in [13]. The results proposed in this chapter have been

submitted in their current form.

Chapter 4 provides positive answers to the three questions that were asked page 40.

Theorem 1.8.3 provides a positive answer to (Q1). If we assume that the bounded variation function (see

hypothesis (H4) below) that controls the variations of F with respect to time satisfies some type of uniform

Dini’s test (see hypothesis (H4) (ii) and the Remark page 108), then we obtain the desired W 1,1 distance

estimates, even when F is not convex valued.

Theorems 1.8.4 and 1.8.5 give a positive answer to question (Q2) and (Q3). They provide two ‘everywhere

in t’ characterizations of the value function V in the class of lower semicontinuous functions.

The first one holds when g is lower semicontinuous and an outward constraint qualification is satisfied, while

the second deals with a function g that is continuous on A coupled with an inward constraint qualification.

In both cases, the proximal characterization is expressed using only the proximal subdifferential of V , with-

out resorting to asymptotic vectors.

Illustrative examples allow to understand that finding the right coupling between the regularity of g and the

suitable constraint qualification is crucial as characterizations may fail when other hypotheses are tested.

Eventually, Theorems 1.8.6 and 1.8.7 provide extended-sense viscosity characterizations of value functions,

answering positively to question (Q4).

Theorem 1.8.6 deals with the case of a lower semicontinuous final cost g whose restriction to A is locally

bounded and satisfies some type of regularity property with respect to the upper/lower semicontinuous

envelopes, coupled with both an inward and outward pointing constraint qualification. It provides a char-

acterization of lower semicontinuous, locally bounded value functions, which is expressed using the Fréchet

subdifferential of V and, in the interior of A, the Fréchet superdifferential of the upper semicontinous envelope

of V . An example illustrates the fact that even though the outward pointing constraint qualification does

not intervene to prove that V is an extended-sense viscosity solution, it is indispensable to derive uniqueness

of solutions to the associated Hamilton-Jacobi equation.

Theorem 1.8.7 deals with the case of a final cost g whose restriction to A is continuous, coupled with an

inward pointing constraint qualification. It provides a characterization of value functions whose restriction

to A are continuous, expressed using the Fréchet subdifferential and superdifferential of V .

Quite noticeably, the theorems presented in chapter 4 are illustrated by an economics example in which the

integral cost is merely continuous w.r.t. the state variable x (and not locally Lipschitz continuous). This

uncommon behaviour is not obtained by an artificial construct since it is due to an inherent fractional sin-

gularity term which is introduced to interpret the production function (cf. [1]). This shows that we do not

invoke hypothesis (H6) (i) for the love of abstraction alone, but also in order to cover practical and tangible

problems.
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Theorem 1.8.3 Fix r0 > 0. Assume that, for some positive functions cF (·) ∈ L1(S, T ) and kF (·) ∈
L∞(S, T ) and for R0 := e

∫ T
S cF (s)ds(r0 + 1), the following hypothesis

(H1)′: F : [S, T ]× Rn ; Rn takes closed, non-empty values, F (·, x) is L-measurable for all x ∈ Rn,

is satisfied together with (H2), (H3), (H4) and

(IPC)′: for each s ∈ [S, T ), t ∈ (S, T ] and x ∈ R0B ∩ ∂A,

coF (t−, x) ∩ intTA(x) 6= ∅ and coF (s+, x) ∩ intTA(x) 6= ∅ .

Then, there exists a constant K > 0 with the following property: given any interval [t0, t1] ⊂ [S, T ], any

F -trajectory x̂(·) on [t0, t1] with x̂(t0) ∈ A ∩
(
e
∫ t0
S cF (s)ds(r0 + 1)− 1

)
B, and any ρ > 0 such that

ρ ≥ max{dA(x̂(t)) | t ∈ [t0, t1]} ,

we can find an F -trajectory x(·) on [t0, t1] such that x(t0) = x̂(t0),

x(t) ∈ intA for all t ∈ (t0, t1]

and

‖x̂− x‖L∞([t0,t1]) ≤ K ρ , (1.7)

‖ ˙̂x− ẋ‖L1([t0,t1]) ≤ K ρ(1 + | ln(ρ)|) . (1.8)

Theorem 1.8.4 (Characterization of lsc Value Functions - Outward-pointing Condition) Assume

(H1)–(H8) and (OPC). Let U : [S, T ]× Rn → R ∪ {+∞} be an extended valued function. Then assertions

(a), (b) and (c) below are equivalent:

(a) U is the value function for (SCt,x), i.e. U = V .

(b) U is lower semicontinuous on [S, T ]× Rn, satisfies U(t, x) = +∞ whenever x /∈ A and

(i) for all (t, x) ∈ ([S, T )×A) ∩ domU

inf
v∈F (t+,x)

[
D↑U((t, x), (1, v)) + L(t+, x, v)

]
≤ 0 ;

(ii) for all (t, x) ∈ ((S, T ]× intA) ∩ domU

sup
v∈F (t−,x)

[
D↑U((t, x), (−1,−v))− L(t−, x, v)

]
≤ 0 ;

(iii) for all x ∈ A
lim inf

{(t′,x′)→(T,x) | t′<T,x′∈intA}
U(t′, x′) = U(T, x) = g(x).

(c) U is lower semicontinuous on [S, T ]× Rn U(t, x) = +∞ if x /∈ A, and

(i) for all (t, x) ∈ ((S, T )×A) ∩ domU , (ξ0, ξ1) ∈ ∂PU(t, x)

ξ0 + min
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≤ 0 ;
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(ii) for all (t, x) ∈ ((S, T )× intA) ∩ domU , (ξ0, ξ1) ∈ ∂PU(t, x)

ξ0 + min
v∈F (t−,x)

[
ξ1 · v + L(t−, x, v)

]
≥ 0 ;

(iii) for all x ∈ A,

lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) = U(S, x) (1.9)

and

lim inf
{(t′,x′)→(T,x) | t′<T, x′∈intA}

U(t′, x′) = U(T, x) = g(x). (1.10)

Theorem 1.8.5 (Characterization of lsc Value Functions - Inward-pointing Condition) Assume

that (H1)–(H8), (IPC) are satisfied and that g is continuous on A. Let U : [S, T ]× Rn → R ∪ {+∞} be an

extended valued function. Then the assertions (a), (b) and (c) of Theorem 4.4.1 remain equivalent.

Theorem 1.8.6 (Characterization of locally bounded lsc Value Functions - Inward/Outward-

pointing Condition) Assume (H1)–(H8), (OPC) and (IPC). Suppose, in addition, that g|A is locally

bounded and satisfies ((g|A)∗)∗ = g|A. Let U : [S, T ] × Rn → R ∪ {+∞} be an extended valued function.

Then, the assertions (a), (b) and (c) of Theorem 4.4.1 are equivalent to condition (d) below:

(d) U is lower semicontinuous on [S, T ] × Rn and locally bounded on [S, T ] × A, satisfies U(t, x) = +∞
whenever x /∈ A and

(i) for all (t, x) ∈ (S, T )×A, (ξ0, ξ1) ∈ ∂−U(t, x)

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≤ 0 ; (1.11)

(ii) for all (t, x) ∈ (S, T )× intA, (ξ0, ξ1) ∈ ∂+U
∗(t, x)

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≥ 0 ; (1.12)

(iii) for all x ∈ A
lim inf

{(t′,x′)→(S,x) | t′>S}
U(t′, x′) = U(S, x),

(U|[S,T ]×A)∗(T, x) = (g|A)∗(x) and U(T, x) = g(x).

Theorem 1.8.7 (Characterization of continuous Value Functions - Inward-pointing Condition)

Assume (H1)–(H8) and (IPC). Suppose, in addition, that g is continuous on A. Let U : [S, T ] × Rn →
R ∪ {+∞} be an extended valued function. Then, the assertions (a), (b) and (c) of Theorem 4.4.1 are

equivalent to condition (d)′ below:

(d)′ U is continuous on [S, T ]×A, satisfies U(t, x) = +∞ whenever x /∈ A and

(i) for all (t, x) ∈ (S, T )×A, (ξ0, ξ1) ∈ ∂−U(t, x)

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≤ 0 ; (1.13)

(ii) for all (t, x) ∈ (S, T )× intA, (ξ0, ξ1) ∈ ∂+U(t, x)

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≥ 0 ; (1.14)

(iii) for all x ∈ A
lim inf

{(t′,x′)→(S,x) | t′>S}
U(t′, x′) = U(S, x),

and U(T, x) = g(x).
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1.9 Introduction to Part 2: Applications of Optimal control in Calculus

of Variations

Consider the following classical problem of minimizing a functional:

(CV1)

Minimize J(x) :=

∫ b

a
L(t, x(t), ẋ(t))dt+ g(x(a), x(b))

over arcs x ∈W 1,1([a, b],Rn).

The function L : [a, b]×Rn×Rn → R∪{+∞} is referred to as the Lagrangian of the problem. Its variables

are the time variable, the state variable, and the velocity variable: (t, x, ξ). The function g is extended value,

hence any kind of starting point/endpoint constraint is covered.

1.9.1 Bolza problem, existence of minimizers

Sufficient conditions on L that guarantee the existence of a minimizer to (CV1) have been provided by

Tonelli’s existence result (see [84]), namely:

� local boundedness,

� convexity with respect to ξ,

� uniform local Lipschitz continuity with respect to (x, ξ),

� coercivity, also referred to as superlinear growth.

However some variational problems with a Lagrangian L(t, x, ξ) that is not convex in ξ may have a minimizer.

Moreover, discontinuous Lagrangians in the state or in the velocity variable arise often in real life engineering

problems (e.g. fuel consumption). Consequently, it is relevant to study the behavior of potential minimizers

to (CV1), even when L does not satisfy the hypotheses of Tonelli’s existence theorem.

1.9.2 Lavrentiev phenomenon and non Lipschitzianity of minimizer

We say that (CV1) exhibits the Lavrentiev phenomenon when the infimum of J(·) over absolutely continuous

functions is strictly lower than the infimum over Lipschitz continuous functions:

inf
{
J(x), x ∈W 1,1([a, b],Rn)

}
< inf

{
J(x), x ∈W 1,1([a, b],Rn), ẋ ∈ L∞([a, b],Rn)

}
.

An historical example of a non autonomous Bolza problem exhibiting the Lavrentiev phenomenon is due to

Manià (cf. [68]).

Take n = 1, a = −1, b = 1, g = χ{(−1,1)} and L(t, x, ξ) = ξ6[x3 − t]2. Then, since L is non negative and

J(t 7→ 3
√
t) = 0, the function t 7→ 3

√
t is a W 1,1-minimizer and is not Lipschitz continuous, while it can

be shown that any Lipschitz continuous function x(·) satisfies J(x) > 0. On top of that, the Lavrentiev

phenomenon persists even if we slightly enlarge the set of endpoints constraints {(−1, 1)} or add a small

perturbations to L (see. [67]).

When L is autonomous, and even when it is merely Borel measurable, the Lavrentiev phenomenon cannot

occur [3]. However, even in that case, some of the minimizers may not be Lipschitz continuous.
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1.9.3 Necessity for establishing the regularity of minimizers

When the Lavrentiev phenomenon occurs, or when some of the minimizers are not Lipschitz, the implemen-

tation of numerical techniques such as finite-element method to solve the problem (CV1) is compromised:

the computation of the infimum for J might be false or some minimizers might never be detected.

Finding minimal conditions for L under which a potential minimizer for (CV1) is necessarily Lipschitz con-

tinuous it therefore essential.

Many researchers have contributed to weakening the required hypotheses in the autonomous case. We

provide a non exhaustive list: Clarke and Vinter [39], Ambrosio, Ascenzi and Buttazo [2] and finally Dal

Maso and Frankowska (cf. [50]). This process led to a very simple and appreciable result: assuming that L

is Borel measurable, locally bounded and superlinear, then the minimizers of (CV1) are Lipschitz continuous.

In the non autonomous case, fewer and less satisfying3 results were proposed until a recent collaboration

between Bettiol and Mariconda [23, 24]. A more comprehensive presentation of these results will be made

in Subsection 1.10.1.

1.9.4 Erdmann – Du Bois-Reymond, a tool do derive the regularity of minimizers

An efficient way to prove that a given minimizer x∗(·) for (CV1) is Lipschitz continuous can be produced

when an Erdmann – Du Bois-Reymond (EDBR) condition is satisfied by x∗(·) and L satisfies a suitable

growth condition that somehow quantifies that the (EDBR) condition is violated when |ξ| goes to +∞.

To illustrate this fact, assume that L is smooth and that the smooth Erdmann – Du Bois-Reymond equation

is satisfied, i.e. the arc p : [a, b]→ Rn, defined by

p(t) := L(t, x∗(t), ẋ∗(t))− ẋ∗(t) ·DξL(t, x∗(t), ẋ∗(t)), for all t ∈ [a, b],

is absolutely continuous and

ṗ(t) = DtL(t, x∗(t), ẋ∗(t)), for almost every t ∈ [a, b].

Assume that the following growth condition is satisfied :

lim
|ξ|→+∞

|L(t, x∗(t), ξ)− ξ ·DξL(t, x∗(t), ξ)| = +∞, uniformly for almost every t ∈ [a, b].

Then there exists R > 0 and a set of full measure E ⊂ [a, b] such that:

|L(t, x∗(t), ξ)− ξ ·DξL(t, x∗(t), ξ)| ≥ ‖p‖L∞ + 1, for all t ∈ E and |ξ| ≥ R.

Necessarily, |ẋ∗(t)| ≤ R for all t ∈ E, since otherwise, for some t0 ∈ E, we would have:

‖p‖L∞ + 1 ≤ |p(t0)| ≤ ‖p‖L∞ .

We just proved the essential boundedness of ẋ∗(·) (which yields the Lipschitz continuity of x∗(·)) in a very

concise and elegant way. Unfortunately for the need of this proof, we presupposed that we had an Erdmann

– Du Bois-Reymond equation at our disposal, while such equations are not easily found nor expressed for

non-autonomous Lagrangians in the nonsmooth setting.

3Less satisfying in the sense that the additional conditions imposed on L in the non autonomous case were not empty for

autonomous Lagrangians.

46



1.10 Higher order Bolza problem

Consider the following non autonomous, N -th order Bolza problem:
Minimize J(x) :=

∫ b

a
L(s, x(s), x(1)(s), x(2)(s), . . . , x(N)(s))ds

+g
Ä
(x, x(1), . . . , x(N−1))(a), (x, x(1), . . . , x(N−1))(b)

ä
,

over arcs x ∈WN,m([a, b],R),

(CV)

where N ≥ 1 is an integer, m ≥ 1 is a real number, L : [a, b]×RN+1 → R ∪ {+∞} is a given Borel measur-

able function and g : RN×RN → R∪{+∞} is a given extended valued function non identically equal to +∞.

Standard hypotheses for existence of minimizers to (CV) are quite similar to those used in the case N = 1

(cf. [76, 77]), namely:

1. (t, (x0, x1, . . . , xN )) 7→ L(t, x0, x1, . . . , xN ) is L × B-measurable,

2. (x0, x1, . . . , xN ) 7→ L(t, x0, x1, . . . , xN ) is lower semicontinuous for each t,

3. L(t, x0, x1, . . . , xN−1, · ) is convex for each (x0, x1, . . . , xN−1),

4. L is uniformly coercive (superlinear) in the sense that there exists β > 0 and a positive, scalar valued,

monotone function θ : ]0,+∞[→]0,+∞[ such that θ(r)
r −−−−→r→+∞

+∞ and

L(t, x0, x1, . . . , xN ) ≥ −β|xN |+ θ(|xN |), for all (t, x0, . . . , xN ).

However there are problems in the same form as (CV) that admit minimizers even when the existence

assumptions are not satisfied. Moreover, in this higher order framework, it is quite noticeable that the

Lavrentiev phenomenon, i.e.

inf
¶
J(x), x ∈WN,m([a, b],Rn)

©
< inf

¶
J(x), x ∈WN,∞([a, b],Rn)

©
can occur even for autonomous Lagragians.

For instance, if a = 0, b = 1,

L(t, x0, x1, x2) = |x2|7
[
3x0 − 3|x1 − 1|2 − 2|x1 − 1|3

]2
,

and

g = χ{(0, 5
3

)}×{(1,2)}

then (CV) exhibits the Lavrentiev phenomenon [79].

Finding minimal conditions for L under which minimizers are necessarily in WN,∞ for higher order Bolza

problems is as important if not more important than for the case N = 1.

A few references dealing with this higher order problem are [40, 60, 59]. Here, we just detail the results of

the most recent paper [60] to underline the points that have been improved in this thesis.
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1.10.1 The stakes of Chapter 5

A result about higher order Bolza problems

Theorem 1.10.1 [Gavriel, Lopes, Vinter, 2011] Let x∗(·) be a minimizer for (CV). Assume that

(H1): (t, (x0, x1, . . . , xN )) 7→ L(t, x0, x1, . . . , xN ) is L × B-measurable, and L is bounded on bounded sets,

(H2): L(t, x0, x1, . . . , xN ) is uniformly coercive/superlinear,

(H3): L(t, x0, x1, . . . , xN−1, · ) is convex for each (x0, x1, . . . , xN−1),

(H4): there exist ε∗ > 0, σ∗ > 0 and a Borel measurable function k(·, ·) such that:

t 7→ k(t, 0) ∈ L1([a, b],R+),

and, for a.e. t ∈ [a, b], for all σ ∈ [−σ∗, σ∗], the map:

(s, x0, . . . , xN−2) 7→ L(s, x0, . . . , xN−2, x
(N−1)
∗ (t), (1 + σ)x

(N)
∗ (t)) (1.15)

is Lipschitz continuous on B((t, x∗(t), . . . , x
(N−2)
∗ (t)), ε∗)∩([a, b]×RN−1) with Lipschitz constant k(t, σ).

Then x
(N)
∗ (·) is essentially bounded.

Condition (H4) can be interpreted as a condition on partial subdifferentials involving up to the xN−2 vari-

able. It means that the partial subdifferentials (proximal and limiting) of L are integrally bounded when

evaluated along the minimizer x∗(·).

To establish the N -th derivative essential boundedness of a reference minimizer x∗(·) two techniques were

used

1. an analysis of the the set of points t ∈ [a, b] such that x
(N)
∗ (·) is unbounded near t, called Tonelli set

associated with x∗(·),

2. the time reparameterization technique that consists in studying an auxiliary Lagrange problem in

optimal control in which the control is the derivative of the time variable, then applying a suitable

version of the maximum principle.

An inspirational result

We now proceed to give insight of Bettiol and Mariconda recent work in the case N = 1 (see [23, 24]).

Indeed, the same approach will be used in this thesis to deal with the higher order Bolza problem.

In the case L : [a, b]×Rn×Rn → R is real valued and Borel measurable, and x∗(·) is a given W 1,m([a, b],Rn)

local minimum for (CV1), the following hypotheses (Sx∗) was invoked:

Hypothesis (Sx∗).

There exists ε∗ > 0 and a Lebesgue Borel measurable map k : [a, b]×]0,+∞[→ R such that

k(t, 1) ∈ L1([a, b],R+)

and for a.e. t ∈ [a, b], for all σ > 0

|L(t2, x∗(t), σẋ∗(t))− L(t1, x∗(t), σẋ∗(t))| ≤ k(t, σ)|t2 − t1|,
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whenever t1, t2 ∈ [t− ε∗, t+ ε∗] ∩ [a, b].

This condition is a Lipschitzianity condition of t 7→ L(t, x∗(t), σx∗(t)) in a neighborhood of x∗(·) for all σ > 0.

In particular, the range of σ is not limited in this condition.

In the case L : [a, b]×Rn ×Rn → R ∪ {+∞} is extended valued and Borel measurable, and x∗(·) is a given

W 1,m([a, b],Rn) local minimum for (CV1), the following hypotheses (S∞x∗) was invoked:

Hypothesis (S∞x∗).

(i) the map (s, ξ) 7→ L(s, x∗(t), ξ) is lower semicontinuous for each t ∈ [a, b],

(ii) there exists a non negligible subset E of [a, b] such that for all t ∈ E, there are 0 < σ1 < 1 < σ2 such

that

L(t, x∗(t), σ1ẋ∗(t)) < +∞ and L(t, x∗(t), σ2ẋ∗(t)) < +∞,

(iii) there exist β > 0, A ≥ 0 and a positive function γ ∈ L1([a, b],R+) such that, for a.e. t ∈ [a, b]:

L(τ, x∗(t), σx∗(t)) +Aσ|ẋ∗(t)|+ γ(t) ≥ 0,

|∂P,τL(τ, x∗(t), σẋ∗(t))| ≤ β (L(τ, x∗(t), ẋ∗(t)) +Aσ|ẋ∗(t)|+ γ(t)) ,

for all τ ∈ [a, b] and σ > 0 with L(τ, x∗(t), σẋ∗(t)).

Using (Sx∗) or (S∞x∗), a directional Weierstrass type condition is obtained (see [24, Theorem 1]), and subse-

quently, the corresponding Erdmann – Du Bois-Reymond type condition is deduced. We give the complete

statement of this theorem:

Theorem 1.10.2 Let x∗(·) be a W 1,m([a, b],Rn) a local minimum of (CV1). Assume that L satisfies (Sx∗)

(resp. (S∞x∗)). Then, there exists an absolutely continuous function p ∈W 1,1([a, b],Rn) satisfying

L(t, x∗(t), rẋ∗(t))− L(t, x∗(t), ẋ∗(t)) ≥ (r − 1) (L(t, x∗(t), ẋ∗(t))− p(t)) , for a.e. t ∈ [a, b] and all r > 0.

(Wr)

Moreover, for a.e. t ∈ [a, b], if (Sx∗) holds then

ṗ(t) ∈ ∂Ct L(t, x∗(t), ẋ∗(t)), (1.16)

while if (S∞x∗) holds then

ṗ(t) ∈ co

®
ω, (ω, p(t)) ∈ ∂L(s,v)

Å
L

Å
s, x∗(t),

ẋ∗(t)

v

ã
v

ã
s=t,v=1

´
. (1.17)

If (t, x, ξ) ∈ [a, b] × Rn × Rn is such that L(t, x, ξ) < +∞, we denote by ∂rL(t, x, rξ)r=1 the convex subdif-

ferential of the function 0 < r 7→ L(t, x, rξ) at r = 1. Then (Wr) can be reformulated:

L(t, x∗(t), ẋ∗(t))− p(t) ∈ ∂rL(t, x∗(t), rẋ∗(t))r=1, for a.e. t ∈ [a, b],

and combining this with equation (1.16) or (1.17), we retrieve the Erdmann – Du Bois-Reymond equation.

Another important feature of this result is that it shows that ∂rL(t, x∗(t), rẋ∗(t))r=1 is non empty almost

everywhere. Therefore, this result can be interpreted as a relaxation result, stating that the Lagrangian L
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is convex in the direction of the minimizer x∗(·). This explains how the convexity assumption might be lift

to obtain regularity results.

Once the Erdmann – Du Bois-Reymond type condition has been established, to prove the essential bound-

edness of ẋ∗(·), it is sufficient to introduce a suitable growth condition that quantifies the violation of the

Erdmann – Du Bois-Reymond equation.

Hypothesis (Gx∗). Let x∗(·) be an absolutely continuous arc on [a, b]. We say that L satisfies (Gx∗) if, for

every selection Q(t, ξ) of the set-valued map ∂rL(t, x∗(t), ẋ∗(t))r=1,

lim
|ξ|→+∞

∂rL(t,x∗(t),rξ)r=1 6=∅

|L(t, x∗(t), ξ)−Q(t, ξ)| = +∞,

uniformly for a.e. t ∈ [a, b].

This growth condition is more general than superlinearity since the class of functions satisfying condition

(G∞x∗) contains some functions with linear growth as, for instance, L(ξ) = |ξ|−
√
|ξ|. Another involved notion

of generalized growth condition (H∞x∗) was also introduced in [24], but since it has not been generalized for

higher order problems, we do not give more details about this last condition here.

Theorem 1.10.3 Let x∗(·) be a W 1,m local minimizer for (CV1). Assume that L satisfies either (Sx∗) or

(S∞x∗). If (Gx∗) is satisfied. Then ẋ∗(·) is essentially bounded.

Remaining questions

Our analysis of the papers [23, 24, 60] leaves the following questions open:

(Q1) Is it possible to obtain a directional Weierstrass type condition and the corresponding Erdmann – Du

Bois-Reymond type condition for higher order Bolza problems?

(Q2) In order to establish regularity of minimizers of higher order Bolza problems, is it possible (as it was

done in [23, 24] in the case N = 1) to weaken the growth assumptions (local boundedness together with

the superlinearity) used in [60]?

(Q3) Is it possible to simplify the structure of the proof of the regularity, using the time reparameterization

technique alone, without studying the Tonelli set associated with x∗(·)?

(Q4) Is it possible to drop the convexity assumption (with respect to the last variable) to obtain the essential

boundedness of x
(N)
∗ (·)?

(Q5) Is it possible to find an extension of these results to the case L is extended valued?

Chapter 5 provides answers to these questions. In the introduction of this thesis, only the hypotheses and

the main results of the chapter are presented.

These results have been published in [14].
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1.10.2 Hypotheses in Chapter 5

In Chapter 5, two different sets of hypotheses on L for a given local WN,m local minimizer x∗(·) for (CV)

are considered: (Sx∗) and (S∞x∗).

Hypothesis (Sx∗) The function

L : (t, x0, x1, . . . , xN−2, xN−1, xN ) 7→ L(t, x0, x1, . . . , xN−2, xN−1, xN )

takes values in R and is BN+2-measurable.

There exists ε∗ > 0 and an L × B1-measurable function k : [a, b]× ]0,+∞[→ R+ such that:

t 7→ k(t, 1) ∈ L1([a, b],R+),

and, for a.e. t ∈ [a, b], for all σ ∈ ]0,+∞[, the map:{
[a, b]× RN−1 → R,
(s, x0, . . . , xN−2) 7→ L(s, x0, . . . , xN−2, x

(N−1)
∗ (t), σx

(N)
∗ (t)),

(1.18)

is Lipschitz continuous on B((t, x∗(t), . . . , x
(N−2)
∗ (t)), ε∗) ∩ ([a, b]× RN−1) with Lipschitz constant k(t, σ).

Hypothesis (S∞x∗) The function

L : (t, x0, x1, . . . , xN−2, xN−1, xN ) 7→ L(t, x0, x1, . . . , xN−2, xN−1, xN )

takes values in R ∪ {+∞} and is BN+2-measurable.

There exist a measurable set E ⊂ [a, b] of full measure, strictly positive constants ε, c and λ, functions

d, β ∈ L1([a, b],R+) such that the following conditions are satisfied:

i) the function (s, x0, . . . , xN−2, xN ) 7→ L(s, x0, . . . , xN−2, x
(N−1)
∗ (t), xN ) is lower semicontinuous for all

t ∈ [a, b],

ii) for all t ∈ E, we can find 0 < σ1(t) < 1 < σ2(t) < +∞ for which:{
L(t, x∗(t), . . . , x

(N−1)
∗ (t), σ1(t)x

(N)
∗ (t)) < +∞

L(t, x∗(t), . . . , x
(N−1)
∗ (t), σ2(t)x

(N)
∗ (t)) < +∞;

(1.19)

iii) for every t ∈ E, every (s̄, x̄0, . . . , x̄N−2) ∈ B((t, x∗(t), . . . , x
(N−2)
∗ (t)), ε) ∩ ([a, b] × RN−1), and xN ∈ R,

we have

|ζ| ≤ c
Ä
|(1, x̄1, . . . , x̄N−2, x

(N−1)
∗ (t))|+ L(s̄, x̄0, . . . , x̄N−2, x

(N−1)
∗ (t), xN ) + λ|xN |)

ä
+ d(t) (1.20)

for all ζ ∈ ∂P,(s,x0,...,xN−2)L(s̄, x̄0, . . . , x̄N−2, x
(N−1)
∗ (t), xN );

iv) for all t ∈ E, there exists εt > 0 such that the function

(s, x0, . . . , xN−2) 7→ L(s, x0, . . . , xN−2, x
(N−1)
∗ (t), xN ),

is Lipschitz continuous with Lipschitz constant β(t) on B((t, x∗(t), ẋ∗(t), . . . , x
(N−2)
∗ (t)), εt), uniformly

with respect to xN ∈ B(x
(N)
∗ (t), εt) ∩ dom(L(t, x∗(t), . . . , x

(N−1)
∗ (t), · )).
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To state the following hypothesis, we introduce an auxiliary Lagrangian L : [a, b]×R× ]0,+∞[→ R, defined

by:

L(t, ξ, r) := L(t, x∗(t), ẋ∗(t), . . . , x
(N−1)
∗ (t), rξ), for all (t, ξ, r) ∈ [a, b]× R× ]0,+∞[ . (1.21)

The partial convex subdifferential of L with respect to r at (t, ξ, r0), which is defined by:

∂rL(t, ξ, r0) := {p ∈ R : L(t, ξ, r)− L(t, ξ, r0) ≥ p(r − r0), ∀r ∈ ]0,+∞[ } . (1.22)

The growth assumption (Gx∗). For every selection Q(t, ξ) of ∂rL(t, ξ, 1),

lim
|ξ|→+∞

∂rL(t,ξ,1)6=∅

|L(t, x∗(t), . . . , x
(N−1)
∗ (t), ξ)−Q(t, ξ)| = +∞, uniformly for a.e. t ∈ [a, b], (Gx∗)

which means that for any M > 0, we can find a set E ⊂ [a, b] of full measure, and a real R > 0 satisfying:

∀(t, ξ) ∈ E × R, Q(t, ξ) ∈ ∂rL(t, ξ, 1), |ξ| ≥ R⇒ |L(t, x∗(t), . . . , x
(N−1)
∗ (t), ξ)−Q(t, ξ)| ≥M.

1.10.3 Results of Chapter 5

This section gathers the four main results of Chapter 5 together with an extension of [60, Theorem 2.1].

Here we do not give complementary results, nor remarks or examples. More details are to be found starting

from page 148.

The expected Weierstrass type condition and the corresponding Erdmann – Du Bois-Reymond type condi-

tion for higher order Bolza problem are given by Theorem 1.10.4 (in the case L is real valued) and Corollary

1.10.6, answering positively to the question (Q1) page 50.

Using the generalized growth condition (Gx∗), the regularity of a given WN,m local minimizer for (CV) is

established in Theorem 1.10.7, answering positively to (Q2). A scrutiny of the proof (see Chapter 5) will

reveal that we use the time reparameterization technique alone, without studying the Tonelli set associated

with x∗(·) (see question (Q3)).

Necessary conditions do not require the convexity assumption with respect to the last variable (Theorems

1.10.4 and 1.10.5), nor does the regularity result in the form of Theorem 1.10.7, which answers positively to

(Q4). Note that if we assume the convexity of L with respect to the last variable, we can relax hypothesis

(Sx∗) which yields a generalization of Theorem 1.10.1 from [60] in the sense that the growth condition is

weaker, see Proposition 1.10.8.

The extended valued case is also covered in Chapter 5 by Theorem 1.10.5 and Corollary 1.10.6 for the

necessary conditions and by Theorem 1.10.7 for the regularity of minimizers. This is a positive answer to

(Q5).

Theorem 1.10.4 Let x∗(·) be a WN,m local minimizer for (CV). Assume that L satisfies (Sx∗). Then there

are two – mutually non exclusive – cases:

i) The function x∗(·) is a polynomial function whose degree is at most N − 1 ≥ 1.
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ii) There exists an arc (p0, . . . , pN−1) ∈W 1,1([a, b],RN ) for which the following Weierstrass type condition

is satisfied: for all u ∈ ]0,+∞[ and for a.e. t ∈ [a, b]:

L

(
t, x∗(t), . . . ,

x
(N)
∗ (t)

u

)
u− L

Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
≥

(u− 1)
(
p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t)

)
.

(W)

Moreover, for a.e. t ∈ [a, b]:

(ṗ0, ṗ1, ṗ2 + p1, . . . , ṗN−2 + pN−3, ṗN−1 + pN−2) ∈ ∂Ct,x0,...,xN−2
L(t, x∗, ẋ∗, . . . , x

(N)
∗ ). (1.23)

Theorem 1.10.5 Let x∗(·) ∈ WN,m([a, b],RN ) be a minimizer for (CV). Assume that L satisfies (S∞x∗).

Then there are two – mutually non exclusive – cases:

i) The function x∗(·) is a polynomial function whose degree is at most N − 1 ≥ 1.

ii) There exists an arc p := (p0, . . . , pN−1) ∈ W 1,1([a, b],RN ) for which the following Weierstrass type

condition is satisfied: for all u ∈ ]0,+∞[ and for a.e. t ∈ [a, b]:

L

(
t, x∗(t), . . . ,

x
(N)
∗ (t)

u

)
u− L

Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
≥

(u− 1)
(
p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t)

)
.

(W)

Moreover, for a.e. t ∈ [a, b], ṗ(t) belongs to the set:

co
{
ω ∈ RN :

(
ω + γ(t), p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t)

)
(1.24)

∈
Ä
∂L(s,x0,...,xN−2,u)L

(
s, x0, . . . , xN−2, x

(N−1)
∗ (t), x

(N)
∗ (t)/u

)
u
ä

(s,x0,...,xN−2)=z∗(t)
u=1

}
,

with γ(t) := (0, 0, p1(t), . . . , pN−2(t)) and z∗(t) :=
(
t, x∗(t), . . . , x

(N−2)
∗ (t)

)
.

Erdmann – Du Bois-Reymond type conditions.

Corollary 1.10.6 Let x∗(·) be a WN,m local minimizer for (CV). Assume that L satisfies (Sx∗) (resp.

(S∞x∗)). Then there are two – mutually non exclusive – cases:

i) The function x∗(·) is a polynomial function whose degree is at most N − 1 ≥ 1.

ii) There exists an arc p := (p0, . . . , pN−1) ∈ W 1,1([a, b],RN ) for which the following equation is satisfied:

for all r ∈ ]0,+∞[ and for a.e. t ∈ [a, b]:

L
Ä
t, x∗(t), . . . , x

(N−1)
∗ (t), rx

(N)
∗ (t)

ä
− L
Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
≥

(r − 1)
(
L
Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
− (p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t))

)
,

(Wr)

where p(·) satisfies (1.23) (resp. (1.24)).

Regularity of minimizers.

Theorem 1.10.7 Let x∗(·) be a WN,m local minimizer for (CV).
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(i) Assume that L satisfies (Sx∗) and (Gx∗), then x
(N)
∗ ∈ L∞([a, b],R).

(ii) Assume that L satisfies (S∞x∗) and (Gx∗), then x
(N)
∗ ∈ L∞([a, b],R).

If the Lagrangian L is convex with respect to xN , then we can relax the condition (Sx∗) and invoke a weaker

(merely local in σ) version of it. This result provides an extension of [60, Theorem 2.1].

Proposition 1.10.8 Let x∗(·) be a WN,m local minimizer for (CV), in which we assume that L : [a, b] ×
RN+1 → R is Borel measurable and

(H)′ xN 7→ L(t, x0, x1, . . . , xN−2, xN−1, xN ) is convex for every (t, x0, x1, . . . , xN−2, xN−1);

(Sx∗)
′ There exist ε∗ > 0, σ∗ ∈ ]0, 1[ and a L×B1-measurable function k : [a, b]× [1−σ∗, 1 +σ∗]→ R+ such

that:

t 7→ k(t, 1) ∈ L1([a, b],R+),

and, for a.e. t ∈ [a, b], for all σ ∈ [1− σ∗, 1 + σ∗], the map:{
[a, b]× RN−1 → R,
(s, x0, . . . , xN−2) 7→ L(s, x0, . . . , xN−2, x

(N−1)
∗ (t), σx

(N)
∗ (t)),

(1.25)

is Lipschitz continuous on B((t, x∗(t), . . . , x
(N−2)
∗ (t)), ε∗)∩([a, b]×RN−1) with Lipschitz constant k(t, σ).

Then, the same conclusions of Theorem 1.10.4 are valid. If moreover, L satisfies (Gx∗), then x
(N)
∗ (·) belongs

to L∞([a, b],R).
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2
Preliminary results

2.1 Abstract of chapter 2

This chapter gathers most of the notations, definitions, theorems and propositions that will be used in the

rest of this thesis. A great part of these notions are well-known and can be found in the literature but we

reproduce them here for the sake of readability. Proofs of some technical lemmas that are used in other

chapters are also included.

The topic covered here are nonsmooth analysis, multivalued functions and the properties of their trajectories,

and viability theory.

2.2 Résumé du chapitre 2

Ce chapitre rassemble la plupart des notations, définitions, théorèmes et propositions qui seront utilisés dans

le reste de cette thèse. Une grande partie de ces notions est bien connue and peut être trouvée dans la

littérature, mais nous les rappelons ici pour le confort du lecteur. Les preuves de certains lemmes techniques

sont aussi incluses.

Les sujets traités ici sont l’analyse non lisse, les fonctions multivaluées et les propriétés de leurs trajectoires

ainsi que le théorie de la viabilité.

2.3 Some notations

We write R+ the set of non negative real numbers, i.e. {x ∈ R | r ≥ 0}, and B for the closed unit ball in Rn.

We denote the Lebesgue subsets of [S, T ] and the Borel subsets of Rm by L and Bm respectively. The

(associated) product σ-algebra of sets in [S, T ] × Rm is written L × Bm. We denote by Lp([S, T ],Rn) the

space of Lp functions for the Lebesgue measure, that are defined on [S, T ], and take values in Rn. We write

W 1,1([S, T ],Rn), the space of absolutely continuous function for the Lebesgue measure endowed with the

norm:

‖f‖W 1,1 := |f(α)|+
∫ β

α
|ḟ(s)|ds, for all f ∈W 1,1([S, T ],Rn).

Let D ⊂ Rm, we denote by coD, D and coD respectively the convex hull, the closure and the closed convex

hull of D.
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The polar cone D∗ to a subset D is given by:

D∗ := {v ∈ Rm | ∀w ∈ D, v · w ≤ 0}.

For arbitrary nonempty closed sets in Rn, C ′ and C, we denote by dH(C,C ′) the ‘Hausdorff distance’ between

C and C ′:

dH(C,C ′) := inf{β > 0 |C ′ ⊂ C + βB} ∨ inf{β > 0 |C ⊂ C ′ + βB} .

Take a closed set C ⊂ Rm and x ∈ Rm. Then miny∈C{|x − y|} is the distance of x from the set C and is

written dC(x).

If f : C ⊂ Rm → R is a locally bounded function, we denote its lower (resp. upper) semicontinous envelope

by:

f∗(x) := lim inf
y
C→x

f(y)

Ñ
resp. f∗(x) := lim sup

y
C→x

f(y)

é
, for every x ∈ C.

The notation y
C→ x means that we are considering convergent sequences (yi)i∈N such that yi → x, and each

element yi belongs to C.

An increasing function ω : R+ → R+ is a modulus of continuity if lims→0 ω(s) = 0.

Consider an extended valued function ϕ : Rm → R ∪ {±∞}. We write dom (ϕ) := {x ∈ Rm |ϕ(x) 6= ±∞},
epiϕ := {(x, r) ∈ Rm+1 | r ≥ ϕ(x)}, and hypϕ := {(x, r) ∈ Rm+1 | r ≤ ϕ(x)}.

2.4 Nonsmooth analysis

Nonsmooth analysis allows to treat situations in which differentiability of the data doesn’t necessarily stand.

We will use this field of mathematics as it generalizes some notions that are usually expressed with smooth

data, such as the normal vector to a set with smooth border, or the gradient of a differentiable function.

The necessity for dealing with nonsmooth settings has been illustrated in the introduction, section 1.2 and

subsection 1.3.3.

The concepts and tools coming from nonsmooth analysis are presented with more details in the monographs

[4, 31, 43, 45, 66, 84]).

Normal cones.

Definition 2.4.1 The proximal normal cone to a closed set C ⊂ Rm at x ∈ C, denoted NP
C (x), is defined

by:

NP
C (x) := {η ∈ Rm | ∃M ≥ 0 such that ∀y ∈ C, η · (y − x) ≤M |y − x|2}.

Definition 2.4.2 The strict normal cone N̂C(x) to a closed set C ⊂ Rm at x is defined as follows

N̂C(x) :=
{
η ∈ Rm | lim sup

y
C→x

|y − x|−1 η · (y − x) ≤ 0
}
.

Definition 2.4.3 The limiting normal cone NL
C (x) to a closed set C ⊂ Rm at x is defined as follows

NL
C (x) :=

{
η ∈ Rm | there exists xi

C−→ x, ηi → η such that ηi ∈ NP
C (xi), for all i ∈ N

}
.
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Definition 2.4.4 The Bouligand tangent cone, alternatively referred to as contingent cone TC(x) to a closed

set C ⊂ Rm at x ∈ C is defined by:

TC(x) :=

ß
v ∈ Rm | lim inf

h→0+

dC(x+ hv)

h
= 0

™
= lim sup

h→0+

C − x
h

.

Proposition 2.4.5 We have

N̂C(x) = [TC(x)]∗

and

NP
C (x) ⊂ N̂C(x) ⊂ NL

C (x). (2.1)

An important feature of the limiting normal cone is that it is better suited than proximal and strict normal

cones to limit-taking. Indeed, we have the following proposition, that does not hold for proximal and strict

normal cones.

Proposition 2.4.6 Let C ⊂ Rm be a closed set. The set valued map C  Rm, y 7→ NL
C (y) has a closed

graph.

Lower Dini derivative.

The lower Dini derivative (alternatively referred to as the contingent epiderivative cf. [4, 31, 61]) plays an

important role in chapter 4.

Definition 2.4.7 Consider an extended valued function φ : Rm → R ∪ {±∞}. Take x ∈ dom (φ) and

d ∈ Rm. The lower Dini derivative of φ at x in the direction d ∈ Rm, denoted D↑φ(x, d), is defined by:

D↑φ(x, d) := lim inf
h↓0
e→d

h−1(φ(x+ he)− φ(x)).

The following proposition gives a simplification of D↑U when U has two variables and one of which is the

time variable.

Proposition 2.4.8 Let U be an extended valued function defined on [S, T ] × Rn, taking ε ∈ {1,−1}, then

for all (t, x) ∈ dom (U), we have:

D↑U((t, x), (ε, d)) = lim inf
h↓0
e→d

h−1(U(t+ εh, x+ he)− U(t, x)).

Subdifferential and Superdifferential.

The subdifferential and superdifferential, also referred to as Fréchet subdifferential and superdifferential

are often use to characterize the solutions to the Hamilton-Jacobi-Bellman equation in the viscosity sense,

without invoking test functions [51]. More details about these notions can be found in [66].

Definition 2.4.9 Let φ : X ⊂ Rm → R ∪ {+∞} be a lower semicontinuous function and x ∈ dom(φ). The

subdifferential of φ at x is defined by:

∂−φ(x) :=

ß
p ∈ Rm, lim inf

y→x

φ(y)− φ(x)− p · (y − x)

|y − x|
≥ 0

™
Similarly, the superdifferential of an upper semicontinuous function φ at x ∈ dom(φ) is defined by:

∂+φ(x) = −∂−(−φ)(x).
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Proposition 2.4.10 Let φ : X → R∪{+∞} be a given extended valued lower semicontinuous function and

x ∈ dom(φ). Then

ζ ∈ ∂−φ(x)⇔ (ζ,−1) ∈ N̂epiφ(x, φ(x)),

and

ζ ∈ ∂+(−φ)(x)⇔ (−ζ, 1) ∈ N̂hyp−φ(x,−φ(x)).

The proximal subdifferential and superdifferential.

Definition 2.4.11 Let φ : X → R ∪ {+∞} be a given extended valued lower semicontinuous function and

x ∈ dom(φ), then the proximal subdifferential ∂Pφ(x) of φ at x is the set of elements ζ ∈ Rm such that there

exist M ≥ 0 and η > 0 satisfying:

φ(y)− φ(x) +M |y − x|2 ≥ ζ · (y − x), for all y ∈ x+ ηB.

Let φ : X → R ∪ {−∞} be a given extended valued upper semicontinuous function and x ∈ dom(φ), then

the proximal superdifferential ∂Pφ(x) of φ at x is defined by :

∂Pφ(x) = −∂P (−φ)(x)

Proposition 2.4.12 Let φ : X → R∪{+∞} be a given extended valued lower semicontinuous function and

x ∈ dom(φ). Then

ζ ∈ ∂Pφ(x)⇔ (ζ,−1) ∈ NP
epiφ(x, φ(x)).

The limiting subdifferential.

Definition 2.4.13 Let φ : X → R ∪ {+∞} be a given extended valued lower semicontinuous function and

x ∈ dom(φ), then the limiting subdifferential of φ at x ∈ dom(φ) is defined by

∂Lφ(x) := {ζ ∈ Rk : ∃xi → x, ζi ∈ ∂Pφ(xi) s.t. φ(xi)→ φ(x) and ζi → ζ}.

Proposition 2.4.14 Let φ : X → R∪{+∞} be a given extended valued lower semicontinuous function and

x ∈ dom(φ). Then

ζ ∈ ∂Lφ(x)⇔ (ζ,−1) ∈ NL
epiφ(x, φ(x)).

We recall that the proximal normal cone to the epigraph of φ at (x, φ(x)), is in general not spanned by

∂Pφ(x) × {−1} because it may contain horizontal vectors in the form (ξ, 0). The corresponding remark

also holds for Fréchet sub/superdifferential. The following theorem, known as the Rockafellar Horizontal

Approximation Theorem (cf. [45, Thm. 11.31], [84, Thm. 4.6.2]), will be particularly useful in Chapters 3

and 4 to deal with these so-called asymptotic vectors.

Theorem 2.4.15 Let φ : X ⊂ Rm → R ∪ {+∞} be a given extended valued lower semicontinuous function

and x ∈ dom(φ). Let ζ ∈ Rm. Then the following conditions are equivalent :

(a) the vector ζ is such that (ζ, 0) ∈ NL
epiφ(x, φ(x)),
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(b) there exist sequences (xi)i∈N in Rm, (λi)i∈N in R+ and (ζi)i∈N in Rm such that :

xi −−−−→
i→+∞

x, λi ↓ 0,

and

∀i ∈ N, λ−1
i ζi ∈ ∂Pφ(xi).

The Clarke subdifferential.

An alternative approach of generalized derivatives of locally Lipschitz continuous functions was proposed

by F. Clarke in the 1970s. This approach provides a new representation of subdifferentials that is used in

chapter 5.

Definition 2.4.16 Let φ : Rm → R be a given function and assume that φ is Lipschitz continuous on a

neighborhood of a point x ∈ Rm. Take v ∈ Rm. The generalized directional derivative of φ at x in the

direction v, written φ0(x, v) is defined by:

φ0(x, v) := lim sup
y→x,h↓0

h−1[φ(y + tv)− φ(y)].

Then the Clarke subdifferential of φ at x is defined by:

∂Cφ(x) := {ζ ∈ Rm |φ0(x, v) ≥ ζ · v}.

Remark 2.4.17 Since φ0(x, 0) = 0, the Clarke subdifferential ∂Cφ(x) is the subdifferential in the sense of

convex analysis to the convex function v 7→ φ0(x, v).

Proposition 2.4.18 Take a lower semicontinuous function φ : Rm → R that is Lipschitz continuous on a

neighborhood of some point x ∈ Rm. Then

∂Cφ(x) = co ∂Lφ(x).

2.5 Multivalued functions and their trajectories

2.5.1 Kuratowski limits

Let us recall the notion of limit for a multivalued function in the sense of Kuratowski, which plays a role of

topmost importance in chapters 3 and 4.

Definition 2.5.1 Let F : ]S, T [ Rm a multivalued function. If the sets

lim inf
s′↓α

F (s′) := {v ∈ Rm | lim sup
s′↓S

dF (s′)(v) = 0},

lim sup
s′↓α

F (s′) := {v ∈ Rm | lim inf
s′↓S

dF (s′)(v) = 0}

are the same, we call this common limit the right Kuratowski limit of F in S, denoted F (S+).

If

lim inf
s′↑β

F (s′) := {v ∈ Rm | lim sup
s′↑T

dF (s′)(v) = 0},

lim sup
s′↑β

F (s′) := {v ∈ Rm | lim inf
s′↑T

dF (s′)(v) = 0}

are the same, we call the common limit the left Kuratowski limit of F in T , denoted F (T−).
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Examples.

– Define a multivalued function F : ]0, 1[ R by, for all t ∈ R∗+, F (t) = (1 + t)B. Then F has a limit in 0

and

F (0+) = B.

– Define a multivalued function F : ]0, 1[ R by, for all t ∈]0, 1[, F (t) = (21Q(t) − 1)[0, 1/2]. Then F does

not have a limit in 0:

{0} = lim inf
s′↓0

F (s′) 6= lim sup
s′↓0

F (s′) = [−1/2, 1/2].

−1/2

1/2

Q

R \Q

Figure 2.1: Graph of the function F = (21Q(·)− 1)[0, 1/2].

2.5.2 Boundedness of F -trajectories and continuity of the support function of F

We now state and prove some useful results about multivalued functions that will be used in chapters 3 and

4. Let us first recall some of the hypotheses that are being used in these chapters.

(H1): i) The multivalued function F : [S, T ]×Rn ; Rn takes convex, closed, nonempty values. For every

x ∈ Rn, F (·, x) is Lebesgue measurable on [S, T ].

(H2): i) For almost every t ∈ [S, T ] and x ∈ Rn

F (t, x) ⊂ cF (t)(1 + |x|)B.

ii) For all (t, x) ∈ [S, T ]×R0B
F (t, x) ⊂ c0B.

(H3): i)

dH(F (t, x′), F (t, x)) ≤ ω(|x− x′|), for all x, x′ ∈ R0B and t ∈ [S, T ].

ii)

F (t, x′) ⊂ F (t, x) + kF (t)|x− x′|B, for all x, x′ ∈ R0B and for a.e. t ∈ [S, T ].

(H4): i) For each x ∈ Rn, s ∈ [S, T [, and t ∈]S, T ] the following limits (in the sense of Kuratowski) exist

and are nonempty

F (s+, x) := lim
s′↓s

F (s′, x) and F (t−, x) := lim
t′↑t

F (t′, x).
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ii) For almost every s ∈ [S, T [ and t ∈]S, T ], and every x ∈ Rn we have

F (s+, x) = F (s, x) and F (t−, x) = F (t, x).

A priori uniform boundedness of F -trajectories

We recall Grönwall’s inequality (see [84]).

Proposition 2.5.2 Take any z ∈ W 1,1([S, T ],Rm). Assume that there exist k(·) and v(·) in L1([S, T ],R+)

such that for almost every t ∈ [S, T ], ∣∣∣∣ d

dt
z(t)

∣∣∣∣ ≤ k(t)|z(t)|+ v(t).

Then for all t ∈ [S, T ] :

|z(t)| ≤ exp

Å∫ t

S
k(σ)dσ

ãï
|z(S)|+

∫ t

S
exp

Å
−
∫ τ

S
k(σ)dσ

ã
v(τ)dτ

ò
.

Grönwall’s inequality together with hypothesis (H2) guarantee a well-known a priori uniform boundedness

property for the F -trajectories that is consistently being used in chapters 3 and 4.

Lemma 2.5.3 Choose any (t, x) ∈ [S, T ]× Rn and an F -trajectory y ∈ W 1,1([t, T ],Rn) such that y(t) = x.

Define R0 := (1 + |x|) exp
Ä∫ T
S cF (s)ds

ä
and let c1 be any strictly positive constant greater than the constant

c0 associated with R0 given by hypothesis (H2) ii). Then for every s ∈ [t, T ], y(s) ∈ R0B, and for almost

every s ∈ [t, T ], ẏ(s) ∈ c1B.

Proof. Fix any (t, x) ∈ [S, T [×Rn and let y ∈W 1,1([t, T ],Rn) be an F -trajectory such that y(t) = x.

From (H2) i), we can pick cF ∈ L1([t, T ],R+) such that, for almost every s ∈ [t, T ] and every y ∈ Rn:

F (s, x) ⊂ cF (s)(1 + |y|)B.

Since y(·) is an F -trajectory, it follows:

|ẏ(s)| ≤ cF (s) (1 + |y(s)|), for almost s ∈ [t, T ].

Hence, from Grönwall’s inequality, for every s ∈ [t, T ]:

|y(s)| ≤ (1 + |x|) exp

Ç∫ T

t
cF (s)ds

å
− 1 ≤ (1 + |x|) exp

Ç∫ T

S
cF (s)ds

å
.

We deduce that y(s) ∈ R0B for every s ∈ [t, T ].

From (H2) ii), there exists c0 ∈ R∗+, associated with R0, such that:

F (t,y) ⊂ c0B, for every (t,y) ∈ [S, T ]×R0B.

Hence for almost every s ∈ [t, T ], ẏ(s) ∈ F (s, y(s)) ⊂ c0B. �

61



Continuity of s 7→ maxv∈F (s−,y(s)) p · v and s 7→ maxv∈F (s−,y(s)) p · v

In the following lemma, we show continuity properties for the functions s 7→ maxv∈F (s−,y(s)) p · v and s 7→
maxv∈F (s−,y(s)) p · v, where y(·) is an F -trajectory.

Lemma 2.5.4 Assume (H1), (H3) i) and (H4). Take any (t, x) ∈ [S, T [×Rn. Let y ∈W 1,1([t, T ],Rn) be an

F -trajectory such that y(t) = x. Then for every ε ∈ R∗+, there exists δ ∈ R∗+ such that:

F (s+, y(s)) ⊂ F (t+, y(t)) + 3εB, for every s ∈ [t, t+ δ]

and for every p ∈ Rn, the function s 7−→ maxv∈F (s+,y(s)) p · v is right continuous at s = t.

Similarly, if y ∈ W 1,1([S, T ],Rn) is an F -trajectory and t ∈]S, T ], then for every p ∈ Rn, the function

s 7−→ maxv∈F (s−,y(s)) p · v is left continuous at s = t.

Proof. Let us assume there exist η ∈ R∗+, a strictly decreasing sequence (sj)j∈N in [t, T ] that converges to t

and a sequence (vj)j∈N in Rn such that: ∀j ∈ N, vj ∈ F (s+
j , y(sj)), but vj /∈ F (t+, y(t)) + 3ηB.

From the definition of F (s+
j , y(sj)), for every integer j ∈ N, there exists a strictly decreasing sequence

(sj,i)i∈N that converges to sj , a sequence (vj,i)i∈N such that:

(vj,i) ∈ F (sj,i, y(sj)), and vj = lim
i→+∞

vj,i.

This last convergence allows us to extract a sequence (ij)j∈N such that for every j ∈ N, and every integer

i ≥ ij :
vj,i ⊂ vj + ηB.

Let us denote ṽj = vj,ij for every j ∈ N.

From the boundedness of the F -trajectories, we pick c0 ∈ R∗+ such that for every j ∈ N, F (sj,ij , y(sj)) ⊂ c0B.

We can extract a subsequence (ṽjk)k∈N converging to a vector ṽ. Hence, we can pick k0 ∈ N such that for

every integer k ≥ k0,

ṽ ∈ ṽjk + ηB.

Thus, for every k ∈ N, large enough:

ṽ ∈ ṽjk + ηB ⊂ vjk + 2ηB.

But we have assumed vjk + 3ηB ∩ F (t+, y(t)) = ∅, which means ṽ /∈ F (t+, y(t)).

We will prove that the converse is also true.

We pick any ε ∈ R∗+. From the boundedness of the F -trajectories, we can pick R0 ∈ R∗+ such that for every

s ∈ [t, T ], y(s) ∈ R0B.

From (H3) i), there exists a modulus of continuity ω : R+ → R+ such that for every integer k ≥ 0:

dH(F (sjk , y(sjk)), F (sjk , y(t))) ≤ ω(|y(sjk)− y(t)|).

From the continuity of y(·) at t, for every k ∈ N, large enough, we have:

F (sjk , y(sjk)) ⊂ F (sjk , y(t)) + εB.

Let us denote wk the projection of vjk upon the closed convex set F (sjk , y(t)). Since we have limk→+∞ ṽjk = ṽ,

for every k ∈ N, large enough, we have:

|ṽ − wk| ≤ |ṽ − vjk |+ |vjk − wk| ≤ 2ε.
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This shows that ṽ ∈ F (t+, y(t)).

Let p ∈ Rn. We can assume p 6= 0 otherwise the right continuity is trivial. Let ε ∈ R∗+. From the first point

of the proof, we pick δ ∈ R∗+ such that

∀s ∈ [t, t+ δ], F (s+, y(s)) ⊂ F (t+, y(t)) +
ε

|p|
B.

Let v ∈ F (s+, y(s)). We write w the projection of v upon the closed convex set F (t+, y(t)). Using Cauchy-

Schwarz inequality we have:

p · v = p · w + p · (v − w) ≤ max
v∈F (t+,y(t))

p · v + |p| ε
|p|
≤ max

v∈F (t+,y(t))
p · v + ε.

From that equation we deduce: maxv∈F (s+,y(s)) p · v ≤ maxv∈F (t+,y(t)) p · v + ε.

Switching the roles of F (t+, y(t)) and F (s+, y(s)), we obtain:∣∣∣∣ max
v∈F (s+,y(s))

p · v − max
v∈F (t+,y(t))

p · v
∣∣∣∣ ≤ ε,

which ends the proof of the right continuity. The left continuity can be proved in a similar fashion. �

2.6 Viability/Invariance Theorems

In this section we recall results from viability theory, referred to as weak invariance/global viability theorems

(cf. [4] or [84]). As stated in the introduction, usually the Hamilton-Jacobi-Bellman theory requires the use

of both a weak and a strong invariance theorems. However the hypotheses in force in chapters 3 and 4

made this type of theorem unusable. To circumvent this issue, a Carathéodory’s parametrization argument

is invoked, making it then possible to use a weak invariance theorem alone.

Theorem 2.6.1 (Weak Invariance Theorem) Take a multifunction Γ : Rk ; Rk, an interval [S, T ] and

a closed set D ⊂ Rk. Assume:

i) The graph of Γ is closed and Γ(x) is a nonempty, convex set for each x ∈ Rk;

ii) there exists c > 0 such that

Γ(x) ⊂ c(1 + |x|)B for all x ∈ Rk;

iii) for every x ∈ D we have

min
v∈Γ(x)

ζ · v ≤ 0 for all ζ ∈ NP
D (x).

Then, given any x0 ∈ D, there exists an absolutely continuous function x(·) satisfying
ẋ(t) ∈ Γ(x(t)) for a.e. t ∈ [S, T ],

x(S) = x0,

x(t) ∈ D for all t ∈ [S, T ].

Condition iii) is called inward pointing condition. This condition is crucial when constructing the arc x(·).
It somehow means that we can always find velocity vectors in Γ(x) pointing towards the interior of D.
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D (x)

x

x+ Γ(x)

x0

Figure 2.2: Inward pointing condition

A key role in many proofs of Chapter 5 is played by the following Local Weak Invariance result ([21]):

Theorem 2.6.2 (Local Weak Invariance Theorem) Take an interval [S, T ], a multifunction Γ : Rk ;
Rk, a closed set D ⊂ Rk, a number ε > 0 and a Γ-trajectory x̄ on [S, T ]. Assume that:

(i) the graph of Γ is closed and Γ(x) is a non-empty, convex set for each x ∈ x̄([S, T ]) + εB ;

(ii) there exists a real c > 0 such that

Γ(x) ⊂ c(1 + |x|)B, for all x ∈ x̄([S, T ]) + εB ;

(iii) for each [s, t] ⊂ [S, T ], the restriction of x̄ to [s, t] is the unique Γ-trajectory on [s, t] with initial condition

x̄(s) ;

(iv) x̄(S) ∈ D and for every t ∈ [S, T ] and x ∈ D ∩ (x̄(t) + εB), we have:

min
w∈Γ(x)

ξ · w ≤ 0, for all ξ ∈ NP
D (x).

Then

x̄(t) ∈ D, for all t ∈ [S, T ].
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Part 1

Hamilton-Jacobi-Bellman equation for

Optimal Control problems
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3
Solutions to the Hamilton-Jacobi equa-

tion for Bolza problems with discontinu-

ous time dependent data

The results of this chapter have been published [15].

3.1 Abstract of chapter 3

The results of chapter 3 present characterizations of the value function V of a non autonomous Bolza

problem as the unique solution to (HJB) in three suitable generalized sense : Dini, proximal and viscosity

solutions. There are two aspects by which these results stand out from previous works.

First of all, the Larangian L and the dynamic F are allowed to be discontinuous on a set of full measure.

So far, the majority of previous works dealing with this topic imposed stronger regularity for L and F . For

the few others using weaker regularity for the time variable (e.g. merely measurable with respect to time

cf. [52]), the characterization of V as the solution to (HJB) becomes restrictive, since it is then necessary

to remove points from the characterization. Moreover, to obtain the uniqueness of the solution to (HJB), it

appears necessary to define generalized solution in a smaller class of functions than usual, losing information

in the process.

On the contrary, our hypotheses allow to give a much more natural characterization of V as the unique

solution to (HJB), that does not only take all the points into account, but is also given in the class of lower

semicontinuous functions to which V commonly belongs.

Then, these result improve a previous work in which the regularity with respect to time was exactly the

same (cf. [21]). There, only the case of the Mayer problem (corresponding to the case L = 0 in our setup)

was dealt with. Henceforth, our contribution allows to deal also with the case L 6= 0. It must be said that

because of a lack of regularity of L with respect to the state variable x, these results could not have been

deduced from those proved in [21] together with the help of a state augmentation technique. In addition,

the results of this chapter shows that once a suitable definition of extended-sense viscosity solution has been

given, V is the unique viscosity solution to (HJB), while such characterization had not been presented in

[21].
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3.2 Résumé du chapitre 3

Les travaux du chapitre 3 présentent des caractérisations de la fonction valeur V d’un problème de Bolza

non-autonome en tant qu’unique solution de l’équation (HJB) en trois sens généralisés adéquats utlisant :

le gradient proximal, les dérivées de Dini et une notion de solution de viscosité. Ces résultats se distinguent

de ceux ayant été obtenus jusque là de deux manières.

Tout d’abord, le lagrangien L, et la dynamique F sont continues seulement presque partout par rapport à

la variable de temps t. Jusque là, la majorité des travaux antérieurs concernant ce sujet imposaient une

régularité plus forte en la variable t. Pour les rares autres traitant du cas d’une régularité plus faible en la

variable t (par exemple simplement measurable par rapport à t cf. [52]), la caractérisation de V en tant

que solution de l’équation (HJB) est alors limitative puisqu’il est nécessaire de restreindre l’ensemble des

points considérés dans la caractérisation. Par ailleurs, afin d’obtenir l’unicité de la solution de l’équation

(HJB) dans une telle configuration, il apparâıt nécessaire de restreindre la classe de fonctions dans laquelle

les notions de solutions généralisées sont obtenues.

Au contraire, notre jeu d’hypothèses permet de fournir une caractérisation plus naturelle, dans laquelle non

seulement aucun point n’est omis et qui d’autre part permet d’obtenir l’unicité de la solution de (HJB) dans

la classe naturelle de fonctions à laquelle appartient V : les fonctions semi-continues inférieurement.

Ensuite, nos résultats viennent préciser et améliorer un résultat antérieur qui utilisait exactement la même

régularité en temps des données (cf. [21]). Dans cet article, seul le problème de Mayer correspondant chez

nous au cas où L = 0 était traité. Notre contribution permet désormais de traiter aussi le cas où L n’est

pas nécessairement nul. Il est important de préciser que pour des raisons de régularité de L par rapport à

la variable d’espace x, ces résultats n’auraient pas pu être déduits de ceux présentés dans [21] à l’aide d’une

technique d’augmentation du nombre de variables d’états.

Par ailleurs, les travaux de cette thèse démontrent que – moyennant une définition adaptée – V est l’unique

solution de viscosité de (HJB) : caractérisation qui n’avait pas été établie dans [21], même dans le cas où

L = 0.

3.3 Introduction

Consider the non autonomous Bolza problem:

(PS,x0)


Minimize

∫ T
S L(t, x(t), ẋ(t))dt+ g(x(T ))

over arcs x ∈W 1,1([S, T ],Rn) satisfying

ẋ(t) ∈ F (t, x(t)) for almost every t ∈ [S, T ],

x(S) = x0,

in which [S, T ] is a given interval, x0 ∈ Rn is a given initial datum, g : Rn → R∪{+∞} and L : [S, T ]×Rn×
Rn → R are given functions, and F : [S, T ]×Rn  Rn is a given multivalued function. The reference problem

(PS,x0) can be embedded in a family of problems (Pt,x) parametrized by pairs of initial data (t, x) ∈ [S, T ]×Rn.

This leads to the concept of the value function for (Pt,x), V : [S, T ] × Rn → R ∪ {+∞}, which, for all

(t, x) ∈ [S, T ]× Rn, is defined taking the infimum cost for (Pt,x):

V (t, x) := inf

®∫ T

t
L(s, x(s), ẋ(s))ds+ g(x(T ))

∣∣∣x(·) F -trajectory on [t, T ], x(t) = x

´
.
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Here, an F -trajectory on the interval [s, t] ⊂ [S, T ] is an absolutely continuous arc x(·) : [s, t] → Rn

which satisfies the reference differential inclusion ẋ(σ) ∈ F (σ, x(σ)) for a.e. σ ∈ [s, t]. We shall consider

characterizations of V (·, ·) as the unique solution – in a suitable generalized sense – to the Hamilton-Jacobi

equation: {
∂tϕ(t, x) + infv∈F (t,x){∂xϕ(t, x) · v + L(t, x, v)} = 0

ϕ(T, x) = g(x),
(HJB)

when we may have a discontinuous behavior of F and L w.r.t. the time variable t. Many techniques

have been employed to characterize the value function as solution to (HJB), mainly coming from viscosity

solutions theory and viability theory. In both contexts a lot of work has been done including the case of

discontinuous time dependence problems (see for instance the monographs [5, 43, 31, 84] and the references

therein). In this chapter we employ nonsmooth analysis tools and a viability approach to provide value

function characterizations involving the notions of lower Dini derivative (also called contingent epiderivative),

proximal subdifferential, and Fréchet subdifferential and superdifferential. An important feature is that we

allow the final cost function g to be a lower semicontinuous function, possibly extended valued, incorporating

implicit terminal constraints. As a consequence the natural class of functions in which we study the value

function is the set of lower semicontinuous functions.

In presence of extended terminal costs, the first result, using viability theory, characterizing lower semicon-

tinuous value functions as solutions to (HJB) in a generalized sense which involves the lower Dini derivative,

is obtained in [51]. In the same paper we can find also characterizations using (Fréchet) subdifferentials, and

eventually both subdifferentials and superdifferentials leading to a comparison with viscosity solutions for

continuous value functions. These results have been achieved for the Mayer problem (i.e. for L = 0) assuming

velocity sets F which are continuous in (t, x). A further significant contribution is [43], in which appropriate

invariance theorems allow to characterize the value function also considering proximal subdifferentials.

Passing to discontinuous time-dependent optimal control problems, the relevance of the role of lower Dini

derivatives to deal with measurable time-dependence was highlighted by [83]. Simple examples illustrate

that the value function might not be the unique lower semicontinuous generalized (according to the concepts

above-mentioned) solution to (HJB) in an ‘almost everywhere’ sense (cf. the discussion in [21]). However,

uniqueness properties of the solution can be derived for the mere measurable time dependent case imposing

additional conditions on the class of functions which are candidate to be solutions, such as the epigraph of

the candidate solution is absolutely continuous w.r.t. t, see [52].

A different perspective has been recently suggested in [21] for the intermediate case (between the continuous

one and the merely measurable one) when the multifunction t ; F (t, x) has everywhere one-sided limits,

for all x, and is continuous on the complement of a zero-measure subset of [S, T ] (without necessarily

imposing further a priori regularity conditions such as the absolute continuity of the epigraph of the candidate

solutions). In this context, considering optimal control problems with a final cost term (i.e. L = 0), the value

function turns out to be the unique lower semicontinuous solution to (HJB) taking into account ‘everywhere

in t’ characterizations which involve the concepts of lower Dini derivative and the proximal subdifferential.

Further important features of the results obtained in [21] are: the presence of left and right limits F (t+, x)

and F (t−, x) (the role of which cannot be exchanged) in the characterizing conditions and the presence of
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the horizontal proximal subdifferentials in the concept of the proximal solution.

The main objective of this chapter is to explore lower semicontinuous characterizations of the value function

in the context of non-autonomous Bolza problems, in which the velocity set F satisfies the same assumptions

as in [21]. The Lagrangian L is assumed to have the same behavior in t (L(·, x, v) is continuous on a set of

full measure and has everywhere left and right limits), but is just continuous w.r.t. x. In addition, L satisfies

conditions in v (such as convexity and boundedness on bounded sets). We observe that it would be natural

to invoke a well-known augmentation technique and rewrite the reference Bolza problem (PS,x0) in a Mayer

form: 
Minimize g(x(T )) + y(T )

over arcs (x, y) ∈W 1,1([S, T ],Rn+1) satisfying

(ẋ(t), ẏ(t)) ∈ G(t, x(t)) for almost every t ∈ [S, T ],

x(S) = x0, y(S) = 0

where G(t, x) := {(v, w) | v ∈ F (t, x), w ≥ L(t, x, v)}. Even if this method provides a good insight of a

correct outcome, previous results on the Mayer problem are not applicable in our case. On the other hand,

keeping the Bolza formulation of the reference problem allows us, for instance, to impose weaker assumptions

on the Lagrangian L, avoiding additional (and more restrictive) Lipschitz continuity conditions of L w.r.t.

the state variable x, that would be otherwise necessary to impose if we passed to the Mayer form, and which

is typically required in previous work for the Mayer problem (cf. [21], [51], [52] and [56]). Therefore, the

mere state augmentation technique does not simplify the task: we would add a step in the analysis and

eventually end up with a (possibly more involved) problem, with exactly the same difficulties as we left the

reference optimal control problem in the Bolza form.

Our first main result (see Theorem 3.4.1 below) provides a characterization of lower semicontinuous extended

valued value functions involving both the notions of generalized solution in terms of lower Dini derivatives

and in terms of proximal subdifferentials (confirming that a result consistent with [21, Theorem 2.2] can

be obtained also for the class of Bolza problems considered here). The second main result of this chapter

gives a positive answer to an important question (highlighted in [21]): it was not known whether to achieve

an extended-sense viscosity solution characterization of lower semicontinuous value functions would require

employing horizontal Fréchet subderivatives (and superderivatives). Theorem 3.4.2 below gives (together

with the examples in Section 1.4) an answer to this issue and represents, at the same time, an extension to

earlier viscosity solutions characterizations such as in [51], [52] (and [56] for the state constraints free case),

to locally bounded lower semicontinuous value functions for Bolza problems with F and L discontinuous in

t and a discontinuous final cost term g.

To complete the huge picture of this strand, we recall that the viability approach is applicable also to

characterize value functions for state constrained optimal control problems (cf. [55], [84], [56] and [21]). In

this case, the analysis requires some compatibility conditions of the velocity sets F with the state constraint

(called ‘existence of inward/outward pointing conditions’), which conveys more restrictive assumptions on

F and is based on some distance estimates results. The discussion on these technical aspects together with

the appropriate assumptions which allow to revisit our results in the context of the state constrained Bolza

problems can be found in chapter 4.
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The chapter is organized as follows. In Section 3.4 we display the invoked assumptions (together with

an hypotheses reduction technique), our main results (Theorem 3.4.1 and Theorem 3.4.2) accompanied by

some refinements and a discussion based on three illustrative examples. Section 3.5 is dedicated to some

preliminary results. Section 3.6 provides the proof of Theorem 3.4.1, which is split into three main steps.

The proof of Theorem 3.4.2 is provided in Section 3.7.

3.4 Main results

3.4.1 Hypotheses

In this chapter we shall invoke the following hypotheses: for every given positive number R0, there exist

functions cF (·) ∈ L1([S, T ],R+) and kF (·) ∈ L1([S, T ],R+), a modulus of continuity ω(·) : R+ → R+, and

constants c0 > 0, M0 > 0 such that:

(H1): i) The multivalued function F : [S, T ]×Rn ; Rn takes convex, closed, nonempty values. For every

x ∈ Rn, F (·, x) is Lebesgue measurable on [S, T ].

ii) The function g : Rn → R ∪ {+∞} is lower semicontinuous, with nonempty domain.

(H2): i) For almost every t ∈ [S, T ] and x ∈ Rn

F (t, x) ⊂ cF (t)(1 + |x|)B.

ii) For all (t, x) ∈ [S, T ]×R0B
F (t, x) ⊂ c0B.

(H3): i)

dH(F (t, x′), F (t, x)) ≤ ω(|x− x′|), for all x, x′ ∈ R0B and t ∈ [S, T ].

ii)

F (t, x′) ⊂ F (t, x) + kF (t)|x− x′|B, for all x, x′ ∈ R0B and for a.e. t ∈ [S, T ].

(H4): i) For each x ∈ Rn, s ∈ [S, T [, and t ∈]S, T ] the following limits (in the sense of Kuratowski) exist

and are nonempty

F (s+, x) := lim
s′↓s

F (s′, x) and F (t−, x) := lim
t′↑t

F (t′, x).

ii) For almost every s ∈ [S, T [ and t ∈]S, T ], and every x ∈ Rn we have

F (s+, x) = F (s, x) and F (t−, x) = F (t, x).

(H5): i) The Lagrangian L : [S, T ] × Rn × Rn −→ R is L × Bn+n-measurable. For every t ∈ [S, T ] and

x ∈ Rn, L(t, x, ·) is convex.

ii) L is locally bounded in the following sense

|L(t, x, v)| ≤M0, for all (t, x, v) ∈ [S, T ]×R0B× 2c0B .
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(H6): i) |L(t, x′, v)− L(t, x, v)| ≤ ω(|x− x′|), for all x, x′ ∈ R0B, t ∈ [S, T ] and v ∈ c0B.

ii) L(t−, x, v) := limt′↑t L(t′, x, v) exists for every (t, x, v) ∈]S, T ]×R0B× c0B, and

L(t−, x, v) = L(t, x, v) for a.e. t ∈]S, T ] and for all (x, v) ∈ R0B× c0B.

iii) L(s+, x, v) := lims′↓s L(s′, x, v) exists for every (s, x, v) ∈ [S, T [×R0B× c0B, and

L(s+, x, v) = L(s, x, v) for a.e. s ∈ [S, T [ and for all (x, v) ∈ R0B× c0B.

A priori boundedness and hypotheses reduction technique.

We observe that condition (H2) guarantees a well-known a priori uniform boundedness property for the F -

trajectories. More precisely, if we take initial data (t, x) ∈ [S, T ]×Rn and an F -trajectory y ∈W 1,1([t, T ],Rn)

such that y(t) = x, then for every s ∈ [t, T ], y(s) ∈ (1+|x|) exp
Ä∫ T
S cF (s)ds

ä
B. SetR0 := (1+|x|) exp

Ä∫ T
S cF (s)ds

ä
,

then, owing to (H2) ii), for almost every s ∈ [t, T ], ẏ(s) ∈ c0B. As a consequence, once we fix the initial data

(t, x), using a standard hypotheses reduction argument (cf. [21] or [84]), when we are interested in studying

the behavior of the value function at (t, x), we can impose much stronger assumptions. More precisely, we

introduce the multifunction “F : [S, T ]× Rn ; Rn“F (s, y) :=

®
F (s, y) if |y| ≤ R0

F (s,R0y/|y|) if |y| > R0 ,

and the function L̃ : [S, T ]× Rn × Rn −→ R

L̂(s, y, v) :=

®
L(s, y, v) if |y| ≤ R0

L(s,R0y/|y|, v) if |y| > R0 ,

The multifunction “F (·, ·) and the function L̂(·, ·, ·) satisfy hypotheses (H1), (H2)∗, (H3)∗, (H4), (H5)∗ and

(H6)∗, where we denote by (H2)∗, (H3)∗, (H5)∗ and (H6)∗ the global (stronger) version of conditions (H2),

(H3), (H5) and (H6), in which we have removed the constant R0.

The data of the problem (Pt,x) involving either (F,L) or (“F , L̂) do coincide in a neighborhood of the reference

point (t, x). It follows that in the forthcoming analysis we can invoke the more restrictive version of conditions

(H1)-(H6) without loss of generality.

3.4.2 Characterizations of lower semicontinuous value functions

We consider the following family of minimization problems indexed by initial data (t, x) ∈ [S, T ]× Rn:

(Pt,x)


Minimize

∫ T
t L(s, x(s), ẋ(s))ds+ g(x(T ))

over the arcs x ∈W 1,1([t, T ],Rn) satisfying

ẋ(s) ∈ F (s, x(s)), for almost every s ∈ [t, T ],

x(t) = x.

We recall that the value function V : [S, T ]× Rn → R ∪ {+∞} is defined by the infimum cost for (Pt,x):

V (t, x) = inf(Pt,x), for all (t, x) ∈ [S, T ]× Rn.

The first result provides a characterization of lower semicontinuous extended valued value functions in a

generalized sense involving the concepts of Dini derivative and proximal normal (to the epigraph); these are

sometimes referred to as ‘lower Dini solutions’ and ‘proximal solutions’ (cf. [84, 45]).
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Theorem 3.4.1 (Characterization of Lower Semicontinuous extended valued Value Functions)

Assume (H1)–(H6). Let U : [S, T ]× Rn → R ∪ {+∞} be an extended valued function. Then the assertions

(a), (b) and (c) below are equivalent.

(a) The function U is the value function for (Pt,x): U = V .

(b) The function U is lower semicontinuous and satisfies:

i) for every (t, x) ∈ ([S, T [×Rn) ∩ dom(U)

inf
v∈F (t+,x)

[
D↑U((t, x), (1, v)) + L(t+, x, v)

]
≤ 0 ;

ii) for every (t, x) ∈ (]S, T ]× Rn) ∩ dom(U)

sup
v∈F (t−,x)

[
D↑U((t, x), (−1,−v))− L(t−, x, v)

]
≤ 0 ; (3.1)

iii) For all x ∈ Rn, U(T, x) = g(x).

(c) The function U is lower semicontinuous and satisfies:

i) for every (t, x) ∈ (]S, T [×Rn) ∩ dom(U), (ξ0, ξ1) ∈ ∂PU(t, x),

ξ0 + min
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≤ 0 ;

ii) for every (t, x) ∈ (]S, T [×Rn) ∩ dom(U), (ξ0, ξ1) ∈ ∂PU(t, x),

ξ0 + min
v∈F (t−,x)

[
ξ1 · v + L(t−, x, v)

]
≥ 0 ; (3.2)

iii) for every x ∈ Rn,

lim inf
{(t′,x′)→(S,x), t′>S}

U(t′, x′) = U(S, x),

and

lim inf
{(t′,x′)→(T,x), t′<T}

U(t′, x′) = U(T, x) = g(x).

We consider now the case when the final cost is lower semicontinuous and locally bounded. In this case it

is immediate to see that the value function acquires the same properties. In presence of a locally bounded

candidate U to be a solution to an Hamilton-Jacobi equation, a well-known approach in viscosity solutions

theory suggests to consider its lower and upper semicontinuous envelopes and check whether the properties

of supersolution and subsolution in the viscosity sense are satisfied (cf. [5]). From the perspective developed

here, this idea leads to a notion of viscosity solution using the Fréchet subdifferential and superdifferential

of the candidate solution U .

Theorem 3.4.2 (Characterization of Lower Semicontinuous locally bounded Value Functions)

Assume (H1)–(H6). Suppose, in addition, that g is locally bounded and satisfies (g∗)∗ = g. Let U :

[S, T ] × Rn → R be a locally bounded function. Then, the assertions (a), (b) and (c) of Theorem 3.4.1 are

equivalent to (d) below.
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(d) U is lower semicontinuous and satisfies:

i) For every (t, x) ∈]S, T [×Rn, (ξ0, ξ1) ∈ ∂−U(t, x),

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≤ 0 ;

ii) for every (t, x) ∈]S, T [×Rn, (ξ0, ξ1) ∈ ∂+U
∗(t, x),

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≥ 0 ; (3.3)

iii) for every x ∈ Rn,

lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) = U(S, x),

U(T, x) = g(x),

and

U∗(T, x) = g∗(x).

If the condition (g∗)∗ = g in Theorem 3.4.2 is removed, then the implication is valid only in one sense:

Proposition 3.4.3 Assume (H1)–(H6) are satisfied and that g is locally bounded. Let U : [S, T ]×Rn → R
be a locally bounded function. Then, the assertions (a), (b) or (c) of Theorem 3.4.1 imply (d) of Theorem

3.4.2.

Theorem 3.4.2 can be restated using test functions.

Proposition 3.4.4 Assume (H1)–(H6). Suppose, in addition, that g is locally bounded and satisfies (g∗)∗ =

g. Let U : [S, T ]×Rn → R be a locally bounded function. Then, the assertions (a), (b) and (c) of Theorem

3.4.1 are equivalent to (d’) below.

(d’) U is lower semicontinuous and satisfies:

i) for every (t, x) ∈ ]S, T [×Rn, for every ϕ ∈ C1(]S, T [×Rn,R) such that U −ϕ has a local minimum at (t, x),

∂tϕ(t, x) + inf
v∈F (t+,x)

[
∇xϕ(t, x) · v + L(t+, x, v)

]
≤ 0 ;

ii) for every (t, x) ∈ ]S, T [×Rn, for every ϕ ∈ C1(]S, T [×Rn,R) such that U∗ − ϕ has a local maximum at

(t, x),

∂tϕ(t, x) + inf
v∈F (t+,x)

[
∇xϕ(t, x) · v + L(t+, x, v)

]
≥ 0 ;

iii) for every x ∈ Rn,

lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) = U(S, x),

U(T, x) = g(x),

and

U∗(T, x) = g∗(x).
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Imposing the lower semicontinuity of L w.r.t. t, we obtain the following result.

Proposition 3.4.5 Assume (H1)–(H6). If, in addition, we suppose that L( · , x, v) is a lower semicontinuous

function for all (x, v) ∈ R0B × c0B, then the assertions of Theorem 3.4.1, Theorem 3.4.2 and Proposition

3.4.3 remain valid when we replace L(t+, x, v) by L(t, x, v) in conditions (b) i), (c) i) and (d) i).

Remark 3.4.6 (i) The characterizations (c) and (d) of the value function V (·, ·) are expressed in terms of

proximal subdifferentials, and (Fréchet) subdifferentials and superdifferentials of V (·, ·) at points (t, x)

belonging to the domain of V (·, ·). In [21], where the velocity set F has the same discontinuous behav-

ior, characterizations of the values function are provided by conditions involving the proximal normal

cone, which includes both horizontal and non-horizontal proximal subdifferentials. The contribution of

horizontal normals can be easily removed when ‘F is continuous’ (cf. [51, 84]) owing to the well-known

(Rockafellar) horizontal approximation theorem (cf. [43]), and it was not clear whether this simplifica-

tion procedure would be in general applicable in the discontinuous context (cf. the issue raised in [21,

Remark 2.2-(d)]). In this manuscript, we establish that we can still use this technique, at the cost of

some adjustments in the proof.

(ii) Conditions in (b), (c) and (d) are formulated taking into account particular left and right limits w.r.t. t

of F and L. For the Mayer problem, in [21] it is shown that the role of the left/right limits is crucial to

characterize the value function, and assertions (b) and (c) become in general false if we try to exchange

the role of those limits. As one may expect, our results for Bolza problems are consistent with [21]. We

underline the fact that also for the viscosity solutions characterization (d) the role of the right limit

is crucial as illustrated by Example 1 below. Finally we observe that, in (b) i), (c) i) and (d) i) of

Theorems 3.4.1 and 3.4.2 we can avoid consideration of the limits of L w.r.t. t, owing to the lower

semicontinuity of L (in t).

(iii) The characterization (d) provided by Theorem 3.4.2 concerns lower semicontinuous value functions for

optimal control problems having a terminal cost g which is locally bounded and satisfies the condition

(g∗)∗ = g. A natural question would be:

Is that possible to characterize V (·, ·) in the sense of Theorem 3.4.2 for optimal control problems

removing the conditions ‘g is locally bounded or (g∗)∗ = g’?

If g is a lower semicontinuous extended valued function (taking the value +∞ at some points), the issue

of interpreting the viscosity subsolution replacing the condition (d)-ii) immediately arises and it is not

clear how we have to interpret U∗. Taking the lim sup operator we would lose crucial information on the

boundary of dom(V ) and the viability approach would not be applicable or give the desired information.

On the other hand, if we consider the smaller (extended valued) upper semicontinuous function bigger

than V on the domain of V , under some circumstances (such as V is continuous on its domain and

dom(V ) is a closed set) we would be induced to end up with the function V − which coincides with V

on dom(V ) and takes the value −∞ on [S, T ] × Rn \ dom(V ). The latter technique would not help

either, as clarified by Example 2. Condition (g∗)∗ = g can be removed if we are interested in proving

that the value function is a viscosity solution in the sense of (d) of Theorem 3.4.2 (as established by

Proposition 3.4.3). However, condition (g∗)∗ = g becomes far from being just a technical hypothesis

and emerges as crucial if we want a characterization (comparison result) for the value function. This

point is illustrated in Example 3. Condition ‘ (g∗)∗ = g’ (or ‘ (g∗)∗ = g’ when g is not necessarily lower

semicontinuous) is well-known in the viscosity theory context (cf. [7]).
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(iv) The results above are still valid if we start from a slightly more general context in which the Lagrangian

in now extended valued L : [S, T ] × Rn × Rn −→ R ∪ {+∞} and assumption (H5)-ii) is replaced by a

‘local boundedness a.e. in t’ in the following sense: there exists a set of full measure E ⊂ [S, T ] such

that

|L(t, x, v)| ≤M0, for all (t, x, v) ∈ E ×R0B× 2c0B .

Indeed, using the lower semicontinuity of L we can reduce attention to the case in which L is locally

bounded in the sense of (H5), and, then, the analysis remains the same.

(v) Assertions (c) and (d) of Theorems 3.4.1 and 3.4.2 can be easily reformulated in terms of an Hamil-

tonian function

Hλ(t, x, p) := inf
v∈F (t,x)

[p · v + λL(t, x, v)] .

Observe that under our assumptions Hλ(·, x, p) turns out to be continuous on the complement of a

zero-measure subset of [S, T ] and has everywhere one-sided limits Hλ(t+, x, p) and Hλ(t−, x, p).

3.4.3 Examples

Example 1. Consider the optimal control problem

(Pt0,x0)


Minimize g(x(1)) +

∫ 1
0 L(t, x(t), ẋ(t))dt

over arcs x(·) ∈W 1,1([t0, 1],R) such that

ẋ(t) ∈ F (t) for a.e. t ∈ [t0, 1],

x(t0) = x0 ,

where t0 ∈ [0, 1], x0 ∈ R,

F (t) :=

{
[−1, 1], if 0 ≤ t ≤ 1

2 ,

[−1
2 ,

1
2 ], if 1

2 < t ≤ 1,

g(x) :=

{
1 + x, if x > 0,

x, if x ≤ 0,

and

L(t, x, v) :=

{
(v + 1)2, if 0 < t ≤ 1

2 ,

(v + 1
2)2 + 2, if 1

2 < t ≤ 1.

The value function V : [0, 1]× R→ R is

V (t, x) =


x+ t+ 5

4 , if 0 ≤ t ≤ 1
2 and x+ t− 3

4 > 0,

x+ t+ 1
4 , if 0 ≤ t ≤ 1

2 and x+ t− 3
4 ≤ 0,

x− 3t
2 + 5

2 , if 1
2 < t ≤ 1 and x+ t

2 −
1
2 > 0,

x− 3t
2 + 3

2 , if 1
2 < t ≤ 1 and x+ t

2 −
1
2 ≤ 0.

As a result of a routine analysis, one can see that conditions (b)-(c) of Theorem 3.4.1 and condition (d) of

Theorem 3.4.2 are satisfied by V . Here, we only display some calculations at the point (t0, x0) = (1
2 ,

1
4),

which is of particular interest since it carries information about the discontinuous behavior of the data F , L

and g at the same time. Consider, for instance, (d) ii) of Theorem 3.4.2. We have:

∂+V
∗
Å

1

2
,
1

4

ã
=

ß
(ξ0, ξ1) | ξ1 ≥ 1, ξ1 ≥ ξ0,−ξ0 +

ξ1

2
− 2 ≤ 0

™
.
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Consistently with condition (d) ii) in Theorem 3.4.2, the value function satisfies:

ξ0 + min
v∈[− 1

2
, 1
2

]

®
ξ1v +

ñÅ
v +

1

2

ã2

+ 2

ô´
= ξ0 − ξ1

2
+ 2 ≥ 0,

for every (ξ0, ξ1) ∈ ∂+V
∗ (1

2 ,
1
4

)
.

On the other hand, switching the roles of F
Ä

1
2

+
ä

and F
Ä

1
2

−ä
in the analysis above, we would not obtain

the validity of condition (d) ii) since, taking the vector (−3
2 , 1) ∈ ∂+V

∗ (1
2 ,

1
4

)
, we obtain:

−3

2
+ min
v∈[−1,1]

®
v +

ñÅ
v +

1

2

ã2

+ 2

ô´
= −3

2
+

5

4
= −1

4
< 0.

Similarly, switching the roles of L
(

1
2 , x0, v

)
and L

(
(1

2)+, x0, v
)

for the same normal vector, we would not

obtain condition (d) ii) either:

−3

2
+ min
v∈[− 1

2
, 1
2

]

¶
v + (v + 1)2

©
=

3

2
− 1

4
= −7

4
< 0.

Even if we switched limits for both L and F , condition (d) ii) would not be satisfied since we have:

−3

2
+ min
v∈[−1,1]

¶
v + (v + 1)2

©
= −3

2
− 1 = −5

2
< 0.

This example shows that condition (d) ii) must involve the right limits F (t+, x) and L(t+, x, v), for, if the

limits were taken from the other side, the assertion would be false in general. Similar considerations show

the fundamental significance of the right limits also in condition (d) i) of Theorem 3.4.2.

Theorem 3.4.2 provides a characterization for the class of lower semicontinuous functions which are also

locally bounded. One might wonder whether this result can be generalized to the class of lower semicontinuous

extended valued functions, like for the characterization provided by Theorem 3.4.1. The major difficulty

comes from interpreting the concept of viscosity subsolution (which would correspond to condition (d) ii))

on the boundary of the domain of the candidate to be value function. The notion of viscosity subsolution used

in this chapter involves consideration of the upper semicontinuous envelope V ∗, which has a clear meaning

if V is locally bounded. On the other hand, if V were extended valued (with a closed nonempty domain),

one might be tempted to take into account the upper semicontinuous extended valued function V −:

V −(t, x) :=

®
V (t, x), if (t, x) ∈ dom(V ),

−∞, elsewhere.

The following simple example shows that this would not provide the desired effect, even if F is continuous

and the value function V is continuous on dom(V ).

Example 2. Consider the optimal control problem:
Minimize g(x(1))

over arcs x(·) ∈W 1,1([t0, 1],R) such that

ẋ(t) ∈ F (t) for a.e. t ∈ [t0, 1],

x(t0) = x0 ,

where t0 ∈ [0, 1], x0 ∈ R,
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g(x) :=

®
+∞, if x > 0,

x, if x ≤ 0,

and for all (t, x, v) ∈ [0, 1]× R× R,

F (t) := [−1, 1].

The value function V : [0, 1]× R→ R ∪ {+∞} is:

V (t, x) =

®
+∞, if x+ t− 1 > 0,

x+ t− 1, if x+ t− 1 ≤ 0.

Then

V −(t, x) =

®
−∞, if x+ t− 1 > 0,

x+ t− 1, if x+ t− 1 ≤ 0.

Let us consider (t0, x0) ∈ ]0, 1[×R such that x0 + t0 + 1 = 0. We have:

∂+V
− (t0, x0) =

{
(ξ0, ξ0) |λ ∈ R+, ξ

0 ≤ 1
}
.

However if we use (−1,−1) ∈ ∂+V
− (t0, x0), then condition (d) ii) is violated since:

−1 + min
v∈[−1,1]

{−v} = −2 < 0.

Example 3. Consider the Mayer problem:
Minimize g(x(1))

over arcs x(·) ∈W 1,1([t0, 1],R) such that

ẋ(t) ∈ F (t) for a.e. t ∈ [t0, 1],

x(t0) = x0 ,

where t0 ∈ [0, 1], x0 ∈ R,

g(x) :=

®
1, if x 6= 0,

0, if x = 0,

and for all (t, x) ∈ [0, 1]× R,

F (t) := [0, 1].

The value function V : [0, 1]× R→ R is:

V (t, x) =

®
0, if x+ 1− t ≥ 0 and x ≤ 0,

1, if x+ 1− t < 0 or x > 0.

One can easily check that V is a viscosity solution, i.e. satisfies (d) i)–iii). Consider the function U :

[0, 1]× R→ R:

U(t, x) :=


0, if x = 0,
1
2 , if x 6= 0, x+ 1− t ≥ 0 and x ≤ 0,

1, if x+ 1− t < 0 or x > 0.

Then U is also a viscosity solution in the sense of condition (d). This shows that, if we do not have the

property (g∗)∗ = g, we do not obtain the uniqueness of the viscosity solution in the sense of (d).
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3.5 Preliminary results

We observe that, under our reference assumptions (H1)-(H6) (or under their more restrictive form provided

by the a priori boundedness argument), for every (t, x) ∈ [S, T ]× Rn, the problem

inf
x(·)F -trajectory on [t,T ], x(t)=x

J(x(·)) :=

∫ T

t
L(s, x(s), ẋ(s))ds+ g(x(T ))

has a minimizer. This is due to the fact that, with respect to the W 1,1 topology, the set of F -trajectories

{x(·)F -trajectory on [t, T ], x(t) = x} is compact (cf. [45, Theorem 6.39] or [84, Theorem 2.5.3]) and the

functional J(·) is lower semicontinuous.

Taking into account (H5)∗, we can state a local Lipschitz regularity lemma for the function L(s, y, ·) (locally

uniformly with respect to (s, y)), the proof of which is based on standard arguments on convex functions. We

observe that the role of the number 2c0 (instead of the simpler c0) allows to deduce the Lipschitz regularity

of L in v in a ball with the smaller radius c0.

Lemma 3.5.1 Assume (H5)∗. Then, there exists a positive constant kL such that for every (s, y) ∈ [S, T ]×
Rn, and v, v′ ∈ c0B:

|L(s, y, v)− L(s, y, v′)| ≤ kL|v − v′|. (3.4)

Proof. There exists M0 ∈ R∗+ such that:

|L(t, x, v)| ≤M0, for all (t, x, v) ∈ [S, T ]×R0B× 2RB.

Take v1 and v2 in RB such that v1 6= v2, and set:

v3 = v2 +
R

|v2 − v1|
(v2 − v1).

Observe that v3 ∈ 2RB and:

v2 =
R

|v2 − v1|+R
v1 +

|v2 − v1|
|v2 − v1|+R

v3.

Therefore, by the convexity of L(t, x, ·):

L(t, x, v2) ≤ R

|v2 − v1|+R
L(t, x, v1) +

|v2 − v1|
|v2 − v1|+R

L(t, x, v3).

And so, if (t, x) is in [S, T ]× rB, we obtain:

L(t, x, v2)− L(t, x, v1) ≤ |v2 − v1|
|v2 − v1|+R

(L(t, x, v3)− L(t, x, v1))

≤ 2M0

R
|v2 − v1|.

Exchanging the roles of v1 and v2, we obtain that L(t, x, ·) is 2M0
R -Lipschitz on RB, uniformly with respect

to (t, x) ∈ [S, T ]× rB. �

In the following lemma we establish a further (uniform) regularity property of the Lagrangian, which we will

invoke several times in our analysis.
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Lemma 3.5.2 i) Assume that L satisfies (H5)∗ i), (H6)∗ i) and (H6)∗ iii) . Let t ∈ [S, T [ and x ∈ Rn.

Then, for every ε > 0, there exists δ > 0 such that, for every y ∈ x+ δB, for every real s ∈ ]t, t+ δ] ∩ [S, T ],

and every u ∈ c0B:

L(s, y, u) ≥ L(t+, x, u)− ε. (3.5)

ii) Assume that L satisfies (H5)∗ i) and (H6)∗ i)-ii). Let t ∈ ]S, T ] and x ∈ Rn. Then, for every ε > 0, there

exists δ > 0 such that, for every y ∈ x+ δB, for every s ∈ [t− δ, t[∩[S, T ], and every u ∈ c0B:

L(s, y, u) ≥ L(t−, x, u)− ε. (3.6)

iii) Assume that L satisfies (H5)∗ and (H6)∗ i), and that L( · , x, v) is lower semicontinuous for all (x, v) ∈
R0B × c0B. Let t ∈ [S, T [ and x ∈ Rn. Then, for every ε > 0, there exists δ > 0 such that, for every

y ∈ x+ δB, for every s ∈ [t− δ, t+ δ] ∩ [S, T ], and for every u ∈ c0B:

L(s, y, u) ≥ L(t, x, u)− ε. (3.7)

Proof. We start proving i). Fix any ε > 0. Take any v ∈ c0B. Invoking (H6)∗ iii), there exists 0 < δ1(v, ε) <

1 such that, for all s ∈ ]t, t+ δ1(v, ε)] ∩ [S, T ], we have

L(s, x, v) ≥ L(t+, x, v)− ε

4
. (3.8)

Invoking Lemma 3.5.1 we also know that, for all τ ∈ [S, T ] and v, u ∈ c0B,

|L(τ, x, v)− L(τ, x, u)| ≤ kL|u− v| . (3.9)

Set δ2(v, ε) := min{δ1(v, ε); ε
4kL
}(> 0). Then, combining inequalities (3.8) and (3.9) (this is used twice, i.e.

for τ = t+ and τ = s) yields: for every s ∈ ]t, t+ δ2(v, ε)]∩ [S, T ], and every u ∈ (v+ δ2(v, ε)B)∩ c0B we have

L(s, x, u) ≥ L(t+, x, u)− 3

4
ε. (3.10)

Using the compactness of c0B, from the open cover of the set c0B ⊂
⋃
v∈c0B v + δ2(v, ε)B̊ (B̊ is the open unit

ball) we can extract a finite subcover:

c0B ⊂
N⋃
j=1

vj + δ2(vj , ε)B̊.

Define δ3 := minj=1,...,N δ2(vj , ε). We obtain:

L(s, x, u) ≥ L(t+, x, u)− 3

4
ε, (3.11)

for all s ∈ ]t, t + δ3] ∩ [S, T ], and every u ∈ c0B. From (H6)∗ i), we know that there exists 0 < δ ≤ δ3 such

that ω(δ) ≤ 1
4ε, and so

|L(s, y, u)− L(s, x, u)| ≤ 1

4
ε, for all y ∈ x+ δB.

As a consequence, from this inequality and from (3.11), we deduce the validity of (3.5). The proofs of ii)

and iii) follow along the same lines. Indeed, in the first step of the proof, we can use respectively (H6)∗ ii)

and the lower semicontinuity of L( · , x, v) instead of (H6)∗ iii) to obtain (3.8) on the suitable time interval.

2
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We now introduce the auxiliary Lagrangian L− which will be used as a technical tool in the characterization

of solutions to the Hamilton-Jacobi equation. Take any (t, x) ∈ ]S, T ] × Rn. We consider the following

modulus of continuity of F with respect to time (from the left) θ−t : [0, t− S] → R+, defined by: for every

h ∈ [0, t− S],

θ−t (h) :=

sup 0<t−s≤h
|x−y|≤c0h

dH(F (s, y), F (t−, x)), if h 6= 0,

0, otherwise.
(3.12)

Write K := exp
Ä∫ T
S kF (s)ds

ä
. If we take also a vector v ∈ F (t−, x), we define the following set:

Z(t, x, v) := {z(·) F -trajectory on [S, t] | z(t) = x (3.13)

and ‖x+ (· − t)v − z(·)‖L∞([t−h,t],Rn) ≤ Kθ−t (h)h, for all h ∈ [0, t− S]}.

The Lagrangian L− : ]S, T ]×Rn×Rn → R∪{+∞} is defined as follows: for every (t, x, v) ∈]S, T ]×Rn×Rn,

L−(t, x, v) :=

lim inf
h↓ 0

h−1 inf

ß∫ t

t−h
L(s, z(s), ż(s))ds

∣∣∣ z ∈ Z(t, x, v)

™
, if v ∈ F (t−, x),

L(t−, x, v), otherwise .

(3.14)

The map L− arises in a somehow natural way in some crucial steps of our analysis (cf. the proofs of

Proposition 3.5.3 and Theorem 3.4.1 below). A similar auxiliary Lagrangian function was introduced in

[49, 50] to investigate characterization of solutions to Hamilton-Jacobi equations in the context of calculus

of variations. In our framework the expression of L− is more involved since we have to take account of the

velocity constraint given by the differential inclusion ż(s) ∈ F (s, z(s)) and the possible different (from the

left and from the right) limit behavior of F w.r.t. t.

Proposition 3.5.3 Suppose that (H1), (H2)∗, (H3)∗, (H4) and (H5)∗ are satisfied.

i) Then, for all (t, x, v) ∈ ]S, T ]× Rn × Rn, we have L−(t, x, v) ∈ R and

L(t−, x, v) ≤ L−(t, x, v). (3.15)

ii) If, in addition, L satisfies (H6)∗ i)-ii), then for every (t, x, v) ∈ ]S, T ]× Rn × Rn we also obtain

L−(t, x, v) ≤ L(t−, x, v). (3.16)

Proof. i) Consider (t, x) ∈ ]S, T ]×Rn. We can assume that v ∈ F (t−, x), since otherwise the stated inequality

immediately follows from the definition of L−. Using Filippov existence theorem (cf. [84, Theorem 2.4.3]),

we have Z(t, x, v) 6= ∅. As a consequence, we obtain inf
¶∫ t

t−h L(s, z(s), ż(s))ds | z ∈ Z(t, x, v)
©
6= +∞, for

all h ∈ ]0, t− S].

Invoking the a priori uniform boundedness of the F -trajectories, it is straightforward to see that all the arcs

in Z(t, x, v) are uniformly bounded and uniformly Lipschitz continuous. Since L is bounded in the sense of

condition (H5)∗, we deduce that there exists a constant M0 > 0 such that, for every z(·) ∈ Z(t, x, v),

|L(s, z(s), ż(s))| ≤M0, for almost every s ∈ [S, t].

It follows that, for all h ∈]0, t − S]:
∣∣∣inf
¶∫ t

t−h L(s, z(s), ż(s))ds | z ∈ Z(t, x, v)
©∣∣∣ ≤ hM0, which implies that

|L−(t, x, v)| ≤M0, and therefore L−(t, x, v) ∈ R.
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We now establish (3.15). Let ε > 0. For every h ∈ ]0, t − S], small enough, we choose zh ∈ W 1,1([S, t],Rn)

an εh-minimizer for the following Lagrange problem:

inf

ß∫ t

t−h
L(s, z(s), ż(s))ds

∣∣∣ z ∈ Z(t, x, v)

™
.

Invoking again the a priori boundedness of F -trajectories, the family (żh)h∈]0,t−S] is bounded in L∞ by c0.

Using (3.6) of Lemma 3.5.2 and Jensen’s inequality, we obtain for all h ∈ ]0, t− S]:

1

h

∫ t

t−h
L(s, zh(s), żh(s))ds ≥ 1

h

∫ t

t−h
L(t−, x, żh(s))ds− ε ≥ L

Å
t−, x,

1

h

∫ t

t−h
żh(s)ds

ã
− ε.

From standard analysis, we also know that limh↓0
1
h

∫ t
t−h żh(s)ds = v. Passing to the limit inferior in the last

equation, we have:

ε+ L−(t, x, v) ≥ L(t−, x, v)− ε.

which confirms (3.15) since ε is arbitrary.

ii) Consider (t, x) ∈ ]S, T ] × Rn. Again, we can restrict attention to the case v ∈ F (t−, x), since otherwise

the assertion easily follows from the definition of L−, and claim that

L−(t, x, v) ≤ lim
h↓0

sup
0<t−s≤h
|x−y|≤c0h

L(s, y, v). (3.17)

Indeed, using Filippov existence theorem, we can find an F -trajectory z ∈W 1,1([S, t],Rn), such that z(t) = x

and for every h ∈ [0, t− S]:

‖z − (x+ (· − t)v)‖L∞([t−h,t],Rn) ≤
∫ t

t−h
|ż(s)− v|ds ≤ Kθ−t (h)h, (3.18)

where K = exp
Ä∫ T
S kF (s)ds

ä
. From Lemma 3.5.1, there exists kL > 0 such that for every (t′, x′) ∈ [S, T ]×Rn,

v, v′ ∈ c0B:

|L(t′, x′, v)− L(t′, x′, v′)| ≤ kL|v − v′|.

As a consequence, for every h ∈ ]0, t− S], we have:

inf

ß∫ t

t−h
L(s, z(s), ż(s))ds | z ∈ Z(t, h, v)

™
≤
∫ t

t−h
L(s, z(s), ż(s))ds,

≤
∫ t

t−h
L(s, z(s), v)ds+

∫ t

t−h
kL|ż(s)− v|ds

≤ h sup
0<t−s≤h
|x−y|≤c0h

L(s, y, v) + h kLKθ
−
t (h).

Dividing across by h, passing to the limit inferior as h goes to 0, yields (3.17). If L satisfies satisfies also

(H6)∗ i)-ii), then:

L−(t, x, v) ≤ lim
h↓0

sup
0<t−s≤h
|x−y|≤c0h

L(s, y, v) = L(t−, x, v),

which confirms (3.16).

2
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3.6 Proof of Theorem 3.4.1

The proof has the following structure: we first show that the value function satisfies property (b) of Theorem

3.4.1. We subsequently prove that condition (b) implies condition (c). Finally, if a lower semicontinuous

function U satisfies (c) then we show that it coincides with the value function. Each step is highlighted by

a proposition or a theorem statement.

3.6.1 The value function satisfies (b) of Theorem 3.4.1

Proposition 3.6.1 Assume (H1)– (H6). Let V : [S, T ] × Rn → R ∪ {+∞} be the value function of the

problem. Then V satisfies (b) i)–iii) of Theorem 3.4.1.

Proof. From the definition of V it immediately follows that V (T, ·) = g(·) confirming (b) iii). The lower

semicontinuity of V can be deduced by standard arguments (see for instance [64, Theorem 1.1]). We have

to prove that V satisfies (b) i) and (b) ii) of Theorem 3.4.1.

Step 1 The first part of this step is somewhat standard (cf. [84, 21]). We briefly reproduce this analysis

since, in the second part of this step, it has to be properly combined with suitable properties on the La-

grangian L, mainly described by Lemma 3.5.2.

Take (t, x) ∈ ([S, T [×Rn) ∩ dom(V ). Let y ∈W 1,1([t, T ],Rn) be a minimizing F -trajectory for (Pt,x), whose

existence is guaranteed by our assumptions on F and L (see Section 3.5). Using the principle of optimality,

for every δ ∈ ]0, T − t], we have:

V (t+ δ, y(t+ δ))− V (t, x) =

∫ t

t+δ
L(s, y(s), ẏ(s))ds.

From the fundamental theorem of calculus we also have for every δ ∈ ]0, T − t]:

δ−1(y(t+ δ)− y(t)) = δ−1

∫ t+δ

t
ẏ(s)ds.

Let (δi)i∈N be a strictly decreasing sequence of positive real numbers that converges to 0. For every integer

i ∈ N, let us define vi ∈ Rn by:

vi := δ−1
i

∫ t+δi

t
ẏ(s)ds.

From the a priori boundedness of the F -trajectories guaranteed by the hypotheses reduction of Section 3.4,

|ẏ(s)| ≤ c0 for almost every s ∈ [t, T ]. From this inequality, we deduce that the sequence (vi)i∈N is bounded

by c0. Then, there exists a vector v̄ ∈ c0B such that, up to a subsequence, vi −−−−→
i→+∞

v̄.

Take any p ∈ Rn and i ∈ N. Since F (s+, y(s)) = F (s, y(s)) almost everywhere for each i ∈ N, we have:

p · vi = δ−1
i

∫ t+δi

t
p · ẏ(s)ds ≤ δ−1

i

∫ t+δi

t
max

v∈F (s+,y(s))
p · v ds. (3.19)

But since the function s 7−→ maxv∈F (s+,y(s)) p · v is right continuous at s = t, letting i go to +∞ in equation

(3.19), we have:

p · v̄ ≤ max
v∈F (t+,y(t))

p · v.
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Employing the characterization of the closed convex hull of a set by the support function [78, Thm 13.1], we

deduce that v̄ ∈ F (t+, y(t)) = F (t+, x).

Using the definition of D↑V ((t, x), (1, v̄)) and the principle of optimality, we obtain:

D↑V ((t, x), (1, v̄)) + L(t+, x, v̄) ≤ lim inf
i→∞

δ−1
i (V (t+ δi, y(t+ δi))− V (t, x)) + L(t+, x, v̄),

= lim inf
i→∞

δ−1
i

∫ t

t+δi

L(s, y(s), ẏ(s))ds+ L(t+, x, v̄),

= lim inf
i→∞

−δ−1
i

∫ t+δi

t
L(s, y(s), ẏ(s))ds+ L(t+, x, v̄). (3.20)

Fix any ε > 0. We consider the constant δε > 0 given by Lemma 3.5.2 i) for the reference pair (t, x) ∈
[S, T [×Rn. Since vi −−−−→

i→+∞
v̄ and L(t+, x, ·) is continuous, there exists N0 ∈ N such that:

|L(t+, x, vi)− L(t+, x, v̄)| ≤ ε, for all i ≥ N0,

and from the continuity of the F -trajectory y(·), we can choose an integer N ≥ N0 such that for every integer

i ≥ N : δi < δε, and for all s ∈ [t, t+ δi], |y(s)− x| ≤ δε. Since for almost every s ∈ [t, T ], |ẏ(s)| ≤ c0, Lemma

3.5.2 guarantees that for almost every s ∈ [t, t+ δε] ∩ [t, T ],

L(s, y(s), ẏ(s)) ≥ L(t+, x, ẏ(s))− ε.

Thus, for any integer i ≥ N :

δ−1
i

∫ t+δi

t
L(s, y(s), ẏ(s))ds ≥ δ−1

i

∫ t+δi

t
L(t+, x, ẏ(s))ds− ε.

Applying Jensen’s inequality to the convex function L(t, x, ·), we also obtain:

δ−1
i

∫ t+δi

t
L(t+, x, ẏ(s))ds ≥ L

Ç
t+, x, δ−1

i

∫ t+δi

t
ẏ(s)ds

å
− ε = L

(
t+, x, vi

)
− ε.

We deduce that −δ−1
i

∫ t+δi
t L(s, y(s), ẏ(s))ds+ L(t+, x, v̄) ≤ 2ε for every integer i ≥ N , and so, from (3.20)

we obtain:

D↑V ((t, x), (1, v̄)) + L(t+, x, v̄) ≤ 2ε.

Since ε is arbitrary, this confirms (b)-i).

Step 2 Let (t, x) ∈ dom(V )∩ ]S, T ] × Rn. Let ṽ ∈ F (t−, x). For every s ∈ [S, t], set y(s) = x + (s − t)ṽ.

Hypotheses on the multifunction F allow us to use the Filippov existence theorem: there exists an F -

trajectory z̃(·) that satisfies z̃(t) = x, such that for every h ∈]0, t− S],

‖z̃ − y‖L∞([t−h,t],Rn) ≤ K
Å∫ t

t−h
dF (s,y(s))(ṽ)ds

ã
≤ Kθ−t (h)h,

where K = exp
Ä∫ T
S kF (s)ds

ä
and θ−t is the modulus of continuity defined in (3.12). Recalling the hypotheses

reduction and definition of Z(t, x, ṽ) given in (3.13) (see Section 3.4), it follows that z̃(·) ∈ Z(t, x, ṽ) 6= ∅.
For any h ∈ ]0, t− S], there exists an h2 minimizer zh(·) ∈ Z(t, x, ṽ) of the Lagrange problem:

inf

ß∫ t

t−h
L(s, z(s), ż(s))ds

∣∣∣ z ∈ Z(t, x, ṽ)

™
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For any h ∈ ]0, t− S], we write vh := h−1(x− zh(t− h)). We obtain:

|ṽ − vh| = h−1|zh(t− h)− y(t− h)| ≤ Kθ−t (h).

We deduce vh −−→
h↓0

ṽ.

Using the principle of optimality applied to the F -trajectories zh(·), we also have:

V (t− h, x− hvh)− V (t, x) ≤
∫ t

t−h
L(s, zh(s), żh(s))ds, for every h ∈]0, t− S].

It follows that for every h ∈]0, t− S[,

h−1(V (t− h,x− hvh)− V (t, x)) ≤ h−1 inf

ß∫ t

t−h
L(s, z(s), ż(s))ds

∣∣∣ z ∈ Z(t, x, ṽ)

™
+ h.

Hence, passing to the limit inferior when h goes to 0 and recalling the definition of L− in (3.14),

D↑V ((t, x), (−1,−ṽ)) ≤ lim inf
h→0

h−1 (V (t− h, x− hvh)− V (t, x)) ≤ L−(t, x, ṽ).

As a consequence, owing to ii) of Proposition 3.5.3, we obtain:

D↑V ((t, x), (−1,−ṽ)) ≤ L(t−, x, ṽ),

which establishes the validity of (b)-ii), concluding the proof of Proposition 3.6.1.

2

3.6.2 The value function is a proximal solution

In this subsection we prove that any lower semicontinous function U : [S, T ] × Rn → R ∪ {+∞} satisfying

condition (b) from Theorem 3.4.1 also verifies condition (c) from Theorem 3.4.1, i.e. is a proximal solution.

Proposition 3.6.2 Assume (H1)– (H6) and let U : [S, T ] × Rn → R ∪ {+∞} be a lower semicontinuous

function satisfying (b) i)–iii) from Theorem 3.4.1. Then U is a proximal solution to (HJB), i.e. satisfies (c)

i)–iii).

We shall make use of two technical lemmas, which provide consequences of properties (b) i) and (b) ii) of

Theorem 3.4.1.

Lemma 3.6.3 Let U : [S, T ] × Rn → R ∪ {+∞} be a lower semicontinous function. Take any (t, x) ∈
([S, T [×Rn) ∩ dom(U). Then, there exists v ∈ F (t+, x), a sequence (vi)i∈N in Rn converging to v, and a

strictly decreasing sequence (hi)i∈N in R+, converging to 0 as i goes to +∞, such that:

lim
i→+∞

h−1
i (U(t+ hi, x+ hivi)− U(t, x)) =

Å
inf

w∈F (t+,x)
D↑U((t, x), (1, w)) + L(t+, x, w)

ã
− L(t+, x, v).

Assume, in addition, that U satisfies (b) i). Then we have:

lim
i→+∞

h−1
i (U(t+ hi, x+ hivi)− U(t, x)) ≤ −L(t+, x, v). (3.21)
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Proof. Fix any (t, x) ∈ ([S, T [×Rn) ∩ dom(U). Write ∆ := infw∈F (t+,x)D↑U((t, x), (1, w)) + L(t+, x, w).

Let (εj)j∈N in R+ be a strictly decreasing sequence that converges to 0. For any j ∈ N, there exists a vector

vj ∈ F (t+, x) such that:

∆ ≤ D↑U((t, x), (1, vj)) + L(t+, x, vj) ≤ ∆ + εj .

Since F (t+, x) is compact, there exists ṽ in F (t+, x) for which, up to a subsequence, (vj)j∈N converges to ṽ.

By definition of the limit inferior, for each j ∈ N, there exists a sequence (vj,i)i∈N in Rn converging to vj and

a strictly decreasing sequence (hj,i)i∈N in R+ converging to 0 such that:

lim
i→+∞

h−1
j,i (U(t+ hj,i, x+ hj,ivj,i)− U(t, x)) = lim inf

v′→vj ,h′↓0
h′−1(U(t+ h′, x+ h′v′)− U(t, x)).

It follows that we can construct a sequence (ϕ(j))j∈N for which the subsequence (hj,ϕ(j))j∈N is strictly

decreasing, converges to 0, and such that for every j ∈ N∗:

|vj − vj,ϕ(j)| ≤ εj ,

h−1
j,ϕ(j)(U(t+ hj,ϕ(j) , x+ hj,ϕ(j)vj,ϕ(j))− U(t, x)) ∈ [∆− εj − L(t+, x, vj),∆ + 2εj − L(t+, x, vj)]. (3.22)

Write h̃j := hj,ϕ(j) and ṽj := vj,ϕ(j) for each j ∈ N∗. As a consequence, we have limj→+∞ ṽj = ṽ and

limj→+∞ h̃j = 0. Moreover, using the continuity of L(t+, x, ·), we obtain lim
j→+∞

L(t+, x, vj) = L(t+, x, ṽ).

Therefore, letting j go to +∞ in (3.22) yields:

lim
j→+∞

h̃−1
j (U(t+ h̃j , x+ h̃j ṽj)− U(t, x)) = ∆− L(t+, x, ṽ).

If U satisfies (b) i), we have ∆ ≤ 0, which implies

lim
j→+∞

h̃−1
j (U(t+ h̃j , x+ h̃j ṽj)− U(t, x)) ≤ −L(t+, x, ṽ),

and concludes the proof of the lemma.

2

Lemma 3.6.4 Let U : [S, T ]×Rn → R∪{+∞} be a lower semicontinous function. Assume that U satisfies

(b) ii). Let (t, x) ∈ (]S, T ]× Rn) ∩ dom(U). Then for every v ∈ F (t−, x), there exists a sequence (vi)i∈N in

Rn converging to v and a decreasing sequence (hi)i∈N in R+ which converges to 0, such that:

lim
i→+∞

h−1
i (U(t− hi, x− hivi)− U(t, x)) ≤ L(t−, x, v). (3.23)

Proof. Consider any (t, x) ∈ (]S, T ]× Rn) ∩ dom(U) and v ∈ F (t−, x). We have:

D↑U((t, x), (−1,−v)) ≤ L(t−, x, v).

Using the definition of D↑U , there exists a sequence (vi)i∈N in Rn converging to v and a decreasing sequence

(hi)i∈N in R+, converging to 0, such that:

lim inf
h↓0,vh→v

h−1(U(t− h, t− hvh)− U(t, x)) = lim
i→+∞

h−1
i (U(t− hi, t− hivi)− U(t, x)) ≤ L(t−, x, v),

which concludes the proof.

2
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We are now ready to prove Proposition 3.6.2. The proof is split into three steps.

Step 1 We first claim that (c) i) from Theorem 3.4.1 holds: for every (t, x) ∈ (]S, T [×Rn) ∩ dom(U),

(ξ0, ξ1) ∈ ∂PU(t, x), we have

ξ0 + min
v∈F (t+,x)

ξ1 · v + L(t+, x, v) ≤ 0.

Take any (t, x) ∈ (]S, T [×Rn) ∩ dom(U) and (ξ0, ξ1) ∈ ∂PU(t, x). From the definition of the proximal

subdifferential, there exist M > 0 and ε > 0 such that

ξ0(t′ − t) + ξ1 · (x′ − x) ≤ U(t′, x′)− U(t, x) +M(|t′ − t|2 + |x′ − x|2) (3.24)

for all (t′, x′) ∈ (t, x) + εB.

From Lemma 3.6.3, there exists v ∈ F (t+, x), a sequence (vi)i∈N in Rn that converges to v and a strictly

decreasing sequence (hi)i∈N in R+, converging to 0, such that:

lim
i→+∞

h−1
i (U(t+ hi, x+ hivi)− U(t, x)) ≤ −L(t+, x, v).

Taking the particular values (t+ hi, x+ hivi) for (t′, x′) in (3.24), and dividing across by hi, for every i ∈ N
sufficiently large, we obtain:

ξ0 + ξ1 · vi ≤ h−1
i (U(t+ hi, x+ hivi)− U(t, x)) +Mhi(1 + |vi|2).

Letting the integer i go to +∞, we have: ξ0 + ξ1 · v = limi→+∞(ξ0 + ξ1 · vi) ≤ −L(t+, x, v), and thus we

obtain: ξ0 + minv∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≤ 0, which confirms the claim of step 1.

Step 2 We now prove that (c) ii) is satisfied: for every (t, x) ∈ (]S, T [×Rn) ∩ dom(U), for every proximal

vector (ξ0, ξ1) ∈ ∂PU(t, x), we have

ξ0 + min
v∈F (t−,x)

[
ξ1 · v + L(t−, x, v)

]
≥ 0.

Consider any (t, x) ∈ (]S, T [×Rn) ∩ dom(U) and (ξ0, ξ1) ∈ ∂PU(t, x).

Take any v ∈ F (t−, x). Owing to Lemma 3.6.4, we can find two sequences (vi)i∈N and (hi)i∈N satisfying

(3.23). Employing the same arguments used in the first step, there exist M > 0, ε > 0 such that for every

i ∈ N, sufficiently large:

−(ξ0 + ξ1 · vi) ≤ h−1
i (U(t− hi, x− hivi)− U(t, x)) +Mhi(1 + |vi|2).

Bearing in mind (3.23), letting i go to +∞, we obtain:

−(ξ0 + ξ1 · v) ≤ L(t−, x, v).

Thus we have ξ0 + ξ1 · v + L(t−, x, v) ≥ 0 and consequently:

ξ0 + inf
w∈F (t−,x)

[
ξ1 · w + λL(t−, x, w)

]
≥ 0.

Step 3 To conclude the proof we have to consider the boundary conditions (c) iii). Take any x ∈ Rn. Using

the lower semicontinuity of U , we have:

lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) ≥ U(S, x), and lim inf
{(t′,x′)→(T,x) | t′<T}

U(t′, x′) ≥ U(T, x).
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If (S, x) /∈ dom(U), then we immediately obtain:

lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) ≤ U(S, x) = +∞.

If (S, x) ∈ dom(U), then using Lemma 3.6.3, we can find v ∈ F (S+, x), a sequence (vi)i∈N in Rn converging

to v, and a strictly decreasing sequence (hi)i∈N in R+ converging to 0, such that (3.21) holds at t = S.

As a consequence lim supi→+∞ U(S + hi, x+ hivi) ≤ U(S, x). Thus we have:

U(S, x) ≤ lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) ≤ lim inf
i→+∞

U(S + hi, x+ hivi) ≤ U(S, x),

which gives the first equality in (c) iii) from Theorem 3.4.1.

If (T, x) /∈ dom(U), clearly we have: lim inf{(t′,x′)→(T,x) | t′<T} U(t′, x′) ≤ U(T, x), so we consider the case

when (T, x) ∈ dom(U). Then fix any v ∈ F (T−, x). Using Lemma 3.6.4, we deduce the existence of a

sequence (vi)i∈N in Rn converging to v and a decreasing sequence (hi)i∈N in R+, that converges to 0, such

that (3.23) holds at t = T .

Since L(t−, x, v) is finite, from (3.23) we deduce that lim supi→+∞ U(T − hi, x− hivi) ≤ U(T, x). It follows

that

U(T, x) ≤ lim inf
{(t′,x′)→(T,x) | t′<T}

U(t′, x′) ≤ lim inf
i→+∞

U(T − hi, x− hivi) ≤ U(T, x).

Using the relation U(T, x) = g(x), given by the fact U satisfies (b) iii), we obtain the last desired boundary

condition at t = T . �

3.6.3 A proximal solution coincides with the value function: comparison results

We display the last part of the proof which consists in showing that if a lower semicontinuous function

U : [S, T ] × Rn → R ∪ {+∞} satisfies (c) of Theorem 3.4.1, then it coincides with the value function for

(Pt,x). We observe that for the inequality V (t, x) ≤ U(t, x) conditions (H6) ii) and iii) are not necessary, but

they are required for the opposite inequality. More precisely we will prove the following result.

Theorem 3.6.5 Assume (H1)–(H5) and (H6) i). Let U : [S, T ]× Rn → R ∪ {+∞} be a lower semiconti-

nous function.

i) Suppose that U satisfies (c) i), and that, for all x ∈ Rn,

U(T, x) = g(x) and lim inf
{(t′,x′)→(S,x), t′>S}

U(t′, x′) = U(S, x).

Then V (t, x) ≤ U(t, x) for any (t, x) ∈ ([S, T ]× Rn) ∩ dom(U).

ii) Assume, in addition, that L satisfies (H6) ii) and iii). Suppose that U satisfies (c) ii), and for all x ∈ Rn

lim inf
{(t′,x′)→(T,x), t′<T}

U(t′, x′) = U(T, x) = g(x).

Then V (t, x) ≥ U(t, x) for any (t, x) ∈ ([S, T ]× Rn) ∩ dom(U).

Theorem 3.6.5 above contains two ‘comparison results’ establishing the last part of the proof of Theorem 3.4.1

with the implication ‘(c) ⇒ (a)’. Combined with Propositions 3.6.1 and 3.6.2, it provides uniqueness result

for the characterization of the value function in the class of lower semicontinuous functions, as summarized

in the Corollary below.
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Corollary 3.6.6 Assume that (H1)–(H6) are satisfied. Then the value function V is the unique lower

semicontinuous function solution to (HJB) in the sense of (b)-(c) of Theorem 3.4.1.

Proof of Theorem 3.6.5 i). In order to establish the first comparison result, bearing in mind the hypotheses

reduction of Section 3.4, we introduce an auxiliary multivalued function: Q : [S, T ]× Rn ; Rn × R defined

by:

Q(τ, x) :=



{
(v,−η) | v ∈ F (S+, x),M0 ≥ η ≥ L(S+, x, v)

}
, if τ = S,

co
{

(v,−η) | v ∈ {F (τ−, x) ∪ F (τ+, x)} ,M0 ≥ η ≥ L̃(τ, x, v)
}
, if τ ∈ ]S, T [,{

(v,−η) | v ∈ F (T−, x),M0 ≥ η ≥ L(T−, x, v)
}
, if τ = T ,

where L̃(τ, x, v) := min{L(τ+, x, v), L(τ−, x, v)}. A routine analysis allows to verify that the multifunction

Q takes as values nonempty convex sets with elements which are (uniformly) bounded by c :=
»
c2

0 +M2
0 ;

moreover the graph of Q is closed.

Take any (t0, x0) ∈ (]S, T [×Rn)∩ dom(U). The crucial point of Theorem 3.6.5 i) is establishing the applica-

bility of the Weak Invariance Theorem 2.6.1 for the following differential inclusion:
(τ̇ , ẋ, ˙̀)(t) ∈ Γ(τ(t), x(t), `(t)), for a.e. t ∈ [t0, T ],

(τ(t), x(t), `(t)) ∈ epi U, for all t ∈ [t0, T ],

(τ(t0), x(t0), `(t0)) = (t0, x0, U(t0, x0)).

where Γ : [S, T ]× Rn+1 ; Rn+2 is defined by

Γ(τ, x, `) :=


co ({(0, 0, 0)} ∪ ({1} ×Q(S, x))), if τ = S,

{1} ×Q(τ, x), if τ ∈ ]S, T [,

co ({(0, 0, 0)} ∪ ({1} ×Q(T, x))), if τ = T .

Clearly the multifunction Γ inherits the following properties from Q: the graph of Γ is closed, for all

(τ, x, `) ∈ [S, T ]× Rn+1, Γ(τ, x, `) is nonempty convex set and Γ(τ, x, `) ⊂ (c+ 1)B.

It remains to check that ‘inward pointing condition’ of the Weak Invariance Theorem (Theorem 2.6.1) is also

satisfied: take any (τ, x, `) ∈ epi U and any (ξ0, ξ1,−λ) ∈ NP
epi U (τ, x, `), we must show

min
w∈Γ(τ,x,`)

(ξ0, ξ1,−λ) · w ≤ 0 . (3.25)

If τ = S, T , then it is immediately verified (taking w = 0 that belongs to both Γ(S, x, `) and Γ(T, x, `)).

Suppose then that S < τ < T . Observe that, by the nature of proximal normals to epigraph sets, we know

that λ ≥ 0 and we need to check (3.25) only when ` = U(τ, x). We shall show

ξ0 + min
v∈F (τ−,x)∪F (τ+,x)

ξ1 · v + λL(τ+, x, v) ≤ 0 . (3.26)

This will confirm the inward pointing condition, indeed it implies

min
w∈Γ(τ,x,`)

(ξ0, ξ1,−λ) · w ≤ ξ0 + min
v∈co{F (τ−,x)∪F (τ+,x)}

ξ1 · v + λL(τ+, x, v) ≤ 0 .

To check (3.26) we need to consider two cases.
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Case 1: λ > 0. In this case ((1/λ)ξ0, (1/λ)ξ1,−1) ∈ NP
epi U ((τ, x), U(τ, x)). It follows that

((1/λ)ξ0, (1/λ)ξ1) ∈ ∂PU(τ, x).

But then, by (c)(i), (1/λ)
(
ξ0 + minv∈F (τ+,x)[ξ

1 · v + λL(τ+, x, v)]
)
≤ 0 . This implies (3.26).

Case 2: λ = 0. In this case, we know from the Rockafellar Horizontal Approximation Theorem (see Theorem

2.4.15) that there exist (ξ0
i , ξ

1
i )→ (ξ0, ξ1), λi ↓ 0 and (ti, xi)→ (τ, x) such that, for each i,

(λ−1
i ξ0

i , λ
−1
i ξi) ∈ ∂PU(ti, xi) .

But then, by condition (c)(i), there exists vi ∈ F (t+i , xi) such that

ξ0
i + ξ1

i · vi + λiL(τ+, x, vi) ≤ 0 .

But (vi)i∈N is a bounded sequence. We can therefore arrange, by extracting a subsequence, that vi → v̄, for

some v̄ ∈ Rn. Since (t, x)  F (t−, x) ∪ F (t+, x) is an upper semi-continuous multifunction, it follows that

v̄ ∈ F (τ−, x) ∪ F (τ+, x). So, recalling also that L is bounded on bounded sets, in the limit as i → ∞, we

obtain

0 ≥ ξ0 + ξ1 · v̄ + 0× L(τ+, x, v̄) ≥ ξ0 + min
v∈F (τ−,x)∪F (τ+,x)

ξ1 · v.

We have confirmed (3.26) in this case too.

Then, the Weak Invariance Theorem 2.6.1 is applicable and there exists (τ(·), x(·), `(·)) ∈ W 1,1([t0, T ],R ×
Rn × R) satisfying τ(t) = t and

(ẋ(t), ˙̀(t)) ∈ Q(t, x(t)), for a.e. t ∈ [t0, T ]

x(t0) = x0, `(t0) = U(t0, x0)

`(t) ≥ U(t, x(t)) for all t ∈ [t0, T ] .

Taking into account the definition of the multivalued function Q and the hypotheses on both F and L, we

deduce that x(·) is an F -trajectory and that ˙̀(s) ≤ −L(s, x(s), ẋ(s)) for a.e. s ∈ [t0, T ]. Hence we have:

g(x(T )) = U(T, x(T )) ≤ `(T ) = `(t0) +

∫ T

t0

˙̀(s)ds ≤ U(t0, x0)−
∫ T

t0

L(s, x(s), ẋ(s))ds,

which implies:

g(x(T )) +

∫ T

t0

L(s, x(s), ẋ(s))ds ≤ U(t0, x0).

Thus we obtain:

V (t0, x0) ≤ U(t0, x0).

If (S, x0) belongs to dom(U), we pick a decreasing sequence (hi)i∈N in R+ that converges to 0 and a sequence

(yi)i∈N in Rn that converges to x0 such that:

lim
i→+∞

U(S + hi, yi) = lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) = U(S, x0).

From what precedes, for every integer i ∈ N, we have:

V (S + hi, yi) ≤ U(S + hi, yi).

Passing to the limit inferior in that last equation yields:

V (S, x0) = lim inf
{(t′,x′)→(S,x)|t′>S}

V (t′, x′) ≤ lim inf
i→+∞

V (S + hi, yi) ≤ lim
i→+∞

U(S + hi, yi) = U(S, x0).

Note that we also have g(x0) = V (T, x0) ≤ U(T, x0) = g(x0).
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2

Proof of Theorem 3.6.5 ii). Pick (t̄, x̄) ∈ ([S, T ] × Rn) ∩ dom(U) and let x ∈ W 1,1([t̄, T ],Rn) be an

F -trajectory such that x(t̄ ) = x̄. We want to prove:

U(t̄, x̄) ≤ g(x(T )) +

∫ T

t̄
L(s, x(s), ẋ(s))ds.

We can assume that g(x(T )) < +∞, otherwise we automatically have the desired inequality. Using the

fact that lim inf{(t′,x′)→(T,x) | t′<T} U(t′, x′) = U(T, x) = g(x), we can find a sequence of points (Ti, yi) in

]t̄, T [×Rn such that limi→+∞(Ti, yi) = (T, x(T )) and limi→+∞ U(Ti, yi) = U(T, x(T )). Invoking Filippov’s

Existence Theorem and arguing as in [21], we obtain a subsequence of F -trajectories xi(·) on [t̄, T ] such that

xi(Ti) = yi, for all i, and ‖xi(·)− x(·)‖W 1,1 → 0 as i→ +∞.

The multivalued function F satisfies the assumptions which allow to apply Carathéodory’s parametrization

theorems [4, Theorems 9.6.2 and 9.7.2]. Hence there exists a measurable function:

f : [S, T ]× Rn × B→ Rn,

such that:
For every (t, x) ∈ [S, T ]× Rn, F (t, x) = f(t, x,B) ;

For every (x, u) ∈ Rn × B, f(·, x, u) is measurable ;

For every (t, u) ∈ [S, T ]× B, f(t, ·, u) is 10nkF (t)-Lipschitz ;

For every (t, x) ∈ [S, T ]× Rn, (u, u′) ∈ B2, |f(t, x, u)− f(t, x, u′)| ≤ 5nmaxv∈F (t,x) |v||u− u′|.

(3.27)

Under our hypotheses, for all (s, x, u) ∈]S, T [×Rn × B, we have (cf. [21]):

lim
s′↓s,x′→x,u′→u

f(s′, x′, u′) ∈ F (s−, x) and lim
s′↑s,x′→x,u′→u

f(s′, x′, u′) ∈ F (s+, x).

Fix i ≥ 0. Since xi(·) is an F -trajectory, for almost every t ∈ [t̄, T ]:

ẋi(t) ∈ f(t, xi(t),B).

and, using Filippov’s selection theorem (cf. [84, Theorem 2.3.13]), there exists a measurable selection ui :

[t̄, T ]→ B such that:

ẋi(t) = f(t, xi(t), ui(t)), for almost every t ∈ [t̄, T ].

Let ε > 0. Lusin’s theorem (cf. [45, Proposition 6.14]) allows us to find a pair of functions (xεi , u
ε
i ) defined

on [t̄, T ] such that xεi (Ti) = xi(Ti) and
ẋεi (t) = f(t, xεi (t), u

ε
i (t)) for almost every t ∈ [t̄, T ] ;

the control uεi is continuous ;

‖xi − xεi‖L∞([t̄,T ],Rn) ≤ ε ;

meas ({t ∈ [t̄, T ] |ui(t)− uεi (t) 6= 0}) ≤ ε.

(3.28)

For every (t, x) ∈ [t̄, T ] × Rn, we write v+(t, x) := f(t+, x, uεi (t)), v
−(t, x) := f(t−, x, uεi (t)). We define

two multivalued functions F εi : [t̄, Ti] × Rn ; Rn, Λεi : [t̄, Ti] × Rn ; R by the relations: for every

(t, x) ∈ [t̄, Ti]× Rn:

F εi (t, x) := co {v−(t, x), v+(t, x)},

91



Λεi (t, x) := co {L(t−, x, v−(t, x)), L(t+, x, v+(t, x))}.

Then we set a new multifunction Γεi : [0, Ti − t̄ ] × Rn × R ; R × Rn × R defined for every (t, x, `) ∈
[0, Ti − t̄ ]× Rn × R:

Γεi (t, x, `) =

{
co {(0, 0, 0) ∪ {1} × −F εi (t̄, x)× Λεi (t̄, x)} , if t = Ti − t̄,
{1} × −F εi (Ti − t, x)× Λεi (Ti − t, x), if t ∈ [0, Ti − t̄ [ .

The multivalued function Γεi is convex, compact valued and has closed graph. We consider the following

differential inclusion: 
(τ̇(t), ẏ(t), ˙̀(t)) ∈ Γεi (τ(t), y(t), `(t)), for a.e. t ∈ [0, Ti − t̄ ],

τ(0) = 0, y(0) = xεi (Ti) = xi(Ti), `(0) = U(Ti, x(Ti)),

`(t) ≥ U(Ti − τ(t), y(t)), for all t ∈ [0, Ti − t̄ ].

(3.29)

We define the arc

t 7→ (τ εi (t), yεi (t), `
ε
i (t)) :=

Å
t, xεi (Ti − t), U(Ti, xi(Ti)) +

∫ t

0
L(Ti − s, xεi (Ti − s), ẋεi (Ti − s))ds

ã
.

The arc (τ εi , y
ε
i , `

ε
i ) is the unique Γεi -trajectory with initial condition (0, x(Ti), U(Ti, xi(Ti))). Owing to the

‘hypotheses reduction’ argument of Section 3.4, we deduce that there exists a constant c :=
»
c2

0 +M2
0 such

that Γεi (t, x, `) ⊂ (c+ 1)B, for every (t, x, `).

For every (τ, x) ∈ [0, Ti − t̄ ] × Rn, we set ‹U(τ, x) := U(Ti − τ, x). Therefore the last condition in (3.29)

can be interpreted as the inclusion (τ(t), y(t), `(t)) ∈ epi‹U for all t ∈ [0, Ti − t̄ ]. We claim that the Weak

Invariance Theorem 2.6.1 is applicable to the differential inclusion (3.29). We have already observed that

the assumptions i) and ii) of this theorem are satisfied. We show now that Γεi also satisfies the last (‘inward

pointing’) condition iii). That is, for every pair (τ, x) ∈ ([0, Ti − t̄ [×Rn) ∩ dom(‹U) and every ` ≥ ‹U(τ, x):

min
w∈Γεi (τ,x,`)

(ξ0, ξ1,−λ) · w ≤ 0, for all (ξ0, ξ1,−λ) ∈ NP
epi‹U ((τ, x), `). (3.30)

Indeed, let (τ, x) ∈ ([0, Ti− t̄ [×Rn)∩dom(‹U) and (ξ0, ξ1,−λ) ∈ NP
epi‹U ((τ, x),‹U(τ, x)) (we recall that we can

always reduce to the case ` = ‹U(τ, x)), which is equivalent to say:

(−ξ0, ξ1,−λ) ∈ NP
epiU ((Ti − τ, x), U(Ti − τ, x)).

We consider two different cases.

Case 1 λ > 0. Then λ−1(−ξ0, ξ1) ∈ ∂PU((Ti− τ, x)). Hence, since the vector v−(Ti− τ, x) ∈ F εi (Ti− τ, x)∩
F ((Ti − τ)−, x), condition (c) ii) implies:

λ−1
(
−ξ0 + ξ1 · v−(Ti − τ, x) + λL((Ti − τ)−, x, v−(Ti − τ, x))

)
≥ 0,

which gives:

−ξ0 + ξ1 · v−(Ti − τ, x) + λL((Ti − τ)−, x, v−(Ti − τ, x)) ≥ 0.

Hence we can confirm (3.30) by choosing w = (1,−v−(Ti − τ, x), L((Ti − τ)−, x, v−(Ti − τ, x))).

Case 2 λ = 0. Then invoking the Rockafellar Horizontal Approximation Theorem (see Theorem 2.4.15),

there exist sequences (−ξ0
k, ξ

1
k) −−−−→

k→+∞
(−ξ0, ξ1), λk ↓ 0 and (sk, xk) −−−−→

k→+∞
(Ti− τ, x) such that, for each k:(

−λ−1
k ξ0

k, λ
−1
k ξ1

k

)
∈ ∂PU(sk, xk).
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But then, by condition (c) ii), for each k, we have:

−ξ0
k + ξ1

k · v−(sk, xk) + λkL(s−k , xk, v
−(sk, xk)) ≥ 0.

By extracting a subsequence we can arrange that, either sk ≤ Ti − τ for all k, or sk > Ti − τ for all k.

If sk ≤ Ti − τ for all k, then since (sk, xk) −−−−→
i→+∞

(Ti − τ, x), v−(sk, xk) −−−−→
i→+∞

v−(Ti − τ, x), and, in

consequence of the hypotheses (H3), (H4)(i), (H5) and (H6), we can pass to the limit as k → +∞ in the

preceding relation to obtain

−ξ0 + ξ1 · v−(Ti − τ, x) ≥ 0.

If sk > Ti − τ for all k, this time, the passage to the limit gives v−(sk, xk)→ v+(Ti − τ, x) and

−ξ0 + ξ1 · v+(Ti − τ, x) ≥ 0.

In any case, we are able to confirm (3.30).

As a consequence we can apply the Weak Invariance Theorem obtaining that the arc (τ εi (·), yεi (·), `εi (·)) is

the solution to (3.29). For t = Ti − t̄, by a change of variable, we have:

U(Ti, xi(Ti)) +

∫ Ti

t̄
L(s, xεi (s), ẋ

ε
i (s))ds ≥ U(t̄, xεi (t̄)), for all ε. (3.31)

Invoking condition (H2)∗, for all t ∈ [t̄, T ], maxv∈F (t,xi(t)) |v| ≤ c0. So, for almost every s ∈ [t̄, T ] we have:

|ẋεi (s)− ẋi(s)| = |f(s, xεi (s), u
ε
i (s))− f(s, xi(s), ui(s))|

≤ |f(s, xεi (s), u
ε
i (s))− f(s, xi(s), u

ε
i (s))|+ |f(s, xi(s), u

ε
i (s))− f(s, xi(s), ui(s))|

≤ 10nkF (s)|xεi (s)− xi(s)|+ 5n max
v∈F (s,xi(s))

|v||uεi (s)− ui(s)|

≤ 10nkF (s)ε+ 5nc0|uεi (s)− ui(s)|.

Since meas ({t ∈ [t̄, T ] |ui(t)− uεi (t) 6= 0}) ≤ ε and ‖ui − uεi‖L∞ ≤ 2, this implies that

ẋεi
L1([t̄,T ],Rn)−−−−−−−→

ε→0
ẋi.

As a consequence, up to a subsequence, ẋεi (·) converges to ẋi(·) almost everywhere in [t̄, T ]. Using (H6)∗ and

(3.4), we can apply Lebesgue’s dominated convergence theorem, and we obtain:∫ Ti

t̄
L(s, xεi (s), ẋ

ε
i (s))ds −−−→

ε→0

∫ Ti

t̄
L(s, xi(s), ẋi(s))ds.

Passing to the limit inferior in (3.31), bearing in mind that xεi (t̄) −−−→ε→0
xi(t̄), and U is lower semicontinuous,

we obtain

U(Ti, xi(Ti)) +

∫ Ti

t̄
L(s, xi(s), ẋi(s))ds ≥ U(t̄, xi(t̄)), for all i.

Then, as i→ +∞,

g(x(T )) +

∫ T

t̄
L(s, x(s), ẋ(s))ds ≥ U(t̄, x̄).

Since x(·) was an arbitrary F -trajectory satisfying x(t̄) = x̄, we deduce that

V (t̄, x̄) ≥ U(t̄, x̄).

This concludes the proof.

2
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3.7 Proofs of Theorem 3.4.2, and Propositions 3.4.3 and 3.4.5

Proof of Theorem 3.4.2. The proof is organized as follows: in Step 1 we show that, assuming hypotheses

(H1)-(H6), the value function V is a viscosity solution in the sense of condition (d) of Theorem 3.4.2. In

Step 2, we prove that if a lower semicontinuous function U satisfies (d) i) and (d) iii) of Theorem 3.4.2,

then V ≤ U . In Step 3 we prove that if we impose the additional assumption (g∗)∗ = g, then any lower

semicontinuous function U satisfying (d) ii) and (d) iii) satisfies U ≤ V .

Step 1: The value function V satisfies (d) i)–iii).

Assume that hypotheses (H1)-(H6) are satisfied. We first observe that, from the a priori boundedness of

the F -trajectories, and the local boundedness of g and L, it immediately follows that V is locally bounded.

Let (t, x) ∈ ]S, T [×Rn. Take any (ξ0, ξ1) ∈ ∂−V (t, x). Then,

ξ0(t′ − t) + ξ1 · (x′ − x) ≤ V (t′, x′)− V (t, x) + o(|(t′ − t, x′ − x)|) for all (t′, x′) (3.32)

in which o(·) : R+ → R+ is a function satisfying o(ε)/ε −−→
ε→0

0. From Lemma 3.6.3, we can find sequences

hi ↓ 0 and vi → v̄, for some v̄ ∈ F (t+, x), such that

lim
i→+∞

h−1
i (V (t+ hi, x+ hivi)− V (t, x)) ≤ −L(t+, x, v̄).

Taking (t′, x′) = (t+ hi, x+ hivi) in (3.32), and dividing across by hi, we obtain, for i sufficiently large,

ξ0 + ξ1 · vi ≤ h−1
i (V (t+ hi, x+ hivi)− V (t, x)) + h−1

i o
(
hi
»

1 + |vi|2
)
.

Therefore, in the limit as i→∞, it follows that

ξ0 + inf
v∈F (t+,x)

[ξ1 · v + L(t+, x, v)] ≤ ξ0 + ξ1 · v̄ + L(t+, x, v̄) ≤ 0,

which confirms (d) i).

Let (t, x) ∈ ]S, T [×Rn and ṽ ∈ F (t+, x). There exists a sequence (ti, xi)i∈N in ]S, T [×Rn \ {(t, x)} that

converges to (t, x) such that:

lim
i→+∞

V (ti, xi) = V ∗(t, x).

We claim that we can extract a subsequence such that ti > t for all i ∈ N. Let us assume that ti ≤ t for every

i ∈ N and take a strictly decreasing sequence (τi)i∈N in ]t, T ] that converges to t. Fix any i ∈ N, and take an

F -trajectory xi(·) ∈W 1,1([ti, T ],Rn) such that xi(ti) = xi. Using the principle of optimality, we obtain:

V (ti, xi)−
∫ τi

ti

L(s, xi(s), ẋi(s))ds ≤ V (τi, xi(τi)).

Using the local boundedness of L given by condition (H5)∗, there exists M0 > 0 such that for every i ∈ N:

V (ti, xi)−M0|τi − ti| ≤ V (τi, xi(τi)).

Passing to the limit superior and using the upper semicontinuity of V ∗, we obtain:

V ∗(t, x) = lim sup
i→+∞

V (ti, xi) ≤ lim sup
i→+∞

V (τi, xi(τi)) ≤ lim sup
i→+∞

V ∗(τi, xi(τi)) ≤ V ∗(t, x).
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Hence lim supi→+∞ V (τi, xi(τi)) = V ∗(t, x) and there exists a subsequence (ik)k∈N for which:

V (τik , xik(τik)) −−−−→
k→+∞

V ∗(t, x).

Fix any ṽ ∈ F (t+, x). Then for every i ∈ N, there exists vi ∈ F (t+i , xi) such that limi→+∞ vi = ṽ. For every

i ∈ N, we consider the arc

yi(s) := xi + (s− ti)vi, for all s ∈ [ti, T ].

Using the Filippov existence theorem, for every i ∈ N there exists an F -trajectory zi(·) that satisfies zi(ti) =

xi and such that for every h ∈ ]0, T − ti]

‖zi − yi‖L∞([ti,ti+h],Rn) ≤ K
Ç∫ ti+h

ti

dF (s,yi(s))(vi)ds

å
,

where K = exp
Ä∫ T
S kF (s)ds

ä
. From the a priori boundedness of F -trajectories, we can pick R0 > 0

such that, for every i ∈ N, |yi(s)| ≤ R0 for every s ∈ [ti, T ]. Observe also that |ẏi(s)| ≤ c0, for any i ∈
N and for almost every s ∈ [ti, T ].

For every i ∈ N, we define δi = max{|V (ti, xi)−V ∗(t, x)|, |xi−x|, |ti−t|}. Take a strictly decreasing sequence

(hi)i∈N that converges to 0 such that hi ≥
√
δi.

Fix any i ∈ N, and set wi = 1
hi

∫ ti+hi
ti

żi(s)ds. Note that we have:

|vi − wi| ≤ K
Ç∫ ti+hi

ti

dF (s,yi(s))(vi)ds

å
≤ Kθi(hi),

where

θi(h) :=

sup 0<s−ti≤h
|xi−y|≤c0h

dH(F (s, y), F (t+i , xi)), if h 6= 0,

0, otherwise.

There exists τ ∈ [ti, ti + hi] and z ∈ Rn verifying |xi − z| ≤ c0hi such that:

θi(hi) ≤ dH(F (τ, z), F (t+i , xi)) +
1

i+ 1
.

Hence we obtain:

θi(hi) ≤ dH(F (τ, z), F (t+, x)) + dH(F (t+, x), F (t+i , xi)) +
1

i+ 1
.

We notice that:

τ − t ≤ (τ − ti) + (ti − t) ≤ hi + h2
i and |x− z| ≤ |z − xi|+ |xi − x| ≤ hic0 + h2

i .

This yields:

θi(hi) ≤ sup
0<s−t≤hi+h2

i
|y−x|≤c0hi+h2

i

dH(F (s, y), F (t+, x)) + sup
0<s−t≤h2

i
|y−x|≤h2

i

dH(F (t+, x), F (s+, y)) +
1

1 + i
,

which implies that θi(hi) −−−−→
i→+∞

0. Recalling that for every i ∈ N, |ṽ − wi| ≤ θi(hi) + |vi − ṽ|, we obtain:

wi −−−−→
i→+∞

ṽ.

95



For every i ∈ N, we define: ei := 1− t−ti
hi

and w̃i := wi− x−xi
hi

, and immediately notice that limi→+∞(ei, w̃i) =

(1, ṽ). This yields:

lim sup
i→+∞

h−1
i [V ∗(t+ hiei, x+ hiw̃i)− V ∗(t, x)] ≥ lim sup

i→+∞
h−1
i [V ∗(ti + hi, xi + hiwi)− V ∗(t, x)] ,

= lim sup
i→+∞

h−1
i [V (ti + hi, xi + hiwi)− V ∗(t, x)] .

Fix i ∈ N. We have:

V (ti + hi, xi + hiwi)− V ∗(t, x) ≥ V (ti + hi, xi + hiwi)− V (ti, xi)− δi. (3.33)

Using the principle of optimality, we obtain:

V (ti + hi, xi + hiwi)− V (ti, xi) ≥ −
∫ ti+hi

ti

L(s, zi(s), żi(s))ds.

Hence, dividing across equation (3.33) by hi, passing to the limit superior in this inequality while recalling
δi
hi
≤
√
δi, we obtain:

lim sup
i→+∞

h−1
i [V ∗(t+ hiei, x+ hiw̃i)− V ∗(t, x)] ≥ − lim inf

i→+∞

1

hi

∫ t+hi

ti

L(s, zi(s), żi(s))ds. (3.34)

We recall that from Lemma 3.5.1, there exists kL > 0 such that for every (t′, x′) ∈ [S, T ]×Rn, and v, v′ ∈ c0B:

|L(t′, x′, v)− L(t′, x′, v′)| ≤ kL|v − v′|.

As a consequence, for every i ∈ N we have:∫ ti+hi

ti

L(s, zi(s), żi(s))ds ≤
∫ ti+hi

ti

L(s, zi(s), ṽ)ds+

∫ ti+hi

ti

kL|żi(s)− ṽ|ds,

≤ hi sup
|z−x|≤c0hi+h2

i
0<s−t≤hi+h2

i

L(s, z, ṽ) + hi kL(Kθi(hi) + |vi − ṽ|).

Dividing across by hi, passing to the limit inferior as i goes to +∞ gives:

lim inf
i→+∞

1

hi

∫ t+hi

ti

L(s, zi(s), żi(s))ds ≤ L(t+, x, ṽ). (3.35)

Combining (3.34) and (3.35) we obtain:

lim sup
i→+∞

h−1
i [V ∗(t+ hiei, x+ hiw̃i)− V ∗(t, x)] ≥ −L(t+, x, ṽ).

Now, take any (ξ0, ξ1) ∈ ∂+V
∗(t, x). Then,

V ∗(t′, x′)− V ∗(t, x)− ξ0(t′ − t)− ξ1 · (x′ − x) ≤ o(|(t′ − t, x′ − x)|) for all (t′, x′) (3.36)

where o(·) : R+ → R+ is a function such that o(ε)/ε −−−→
ε→0

0. Setting (t′, x′) = (t + hiei, x + hiw̃i) in (3.36),

and dividing across by hi, we have

h−1
i (V ∗(t+ hiei, x+ hiw̃i)− V ∗(t, x))− ξ0ei − ξ1 · w̃i ≤ h−1

i o(hi|(ei, w̃i)|).
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From these relations, in the limit as i→∞, it follows that

−L(t+, x, ṽ)− ξ0 − ξ1 · ṽ ≤ 0.

This relation being valid for all v ∈ F (t+, x), we obtain:

ξ0 + min
v∈F (t+,x)

[
ξ1 · ṽ + L(t+, x, ṽ)

]
≥ 0,

which confirms (d) ii).

To prove that V satisfies (d) iii), only the assertion V ∗(T, ·) = g∗(·) remains to be proved. Since V (T, ·) = g(·),
it is obvious that V ∗(T, x) ≥ g∗(x) for every x ∈ Rn. We prove that the converse inequality is also satisfied.

Fix any x ∈ Rn. There exists a sequence (ti, xi)i∈N in [S, T ]× Rn \ {(T, x)} converging to (T, x) such that:

lim
i→+∞

V (ti, xi) = lim sup
(t,y)→(T,x)

V (t, y) = V ∗(T, x).

For every i ∈ N there exists an F -trajectory xi(·) ∈ W 1,1([ti, T ],Rn) such that xi(ti) = xi. By the principle

of optimality:

V (ti, xi)−
∫ t

ti

L(s, xi(s), ẋi(s))ds ≤ V (t, xi(t)), for all t ∈ [ti, T ].

Using again condition (H5)∗, we know that there exists a constant M0 > 0 such that for every i ∈ N:

V (ti, xi)−M0|T − ti| ≤ V (T, xi(T )) = g(xi(T )).

Using the fact limi→+∞ xi(T ) = x, we pass to the limit superior as i tends to +∞ and obtain:

V ∗(T, x) ≤ lim sup
i→+∞

g(xi(T )) ≤ lim sup
y→x

g(y) = g∗(x),

which achieves to show that V satisfies (d) iii).

Step 2 We show that if U satisfies (d) i) and (d) iii), then for every (t̄, x̄) ∈ [S, T ]× Rn we have V (t̄, x̄) ≤
U(t̄, x̄).

Since ∂PU(t, x) ⊂ ∂−U(t, x), it is not difficult to see that we can use the analysis employed in the proof of

Theorem 3.6.5 i) to obtain the desired inequality.

Step 3 We prove that if U satisfies (d) ii) and (d) iii), then for every (t̄, x̄) ∈ [S, T ]× Rn we have U(t̄, x̄) ≤
V (t̄, x̄).

Using (d) iii), we can restrict attention to the case when (t̄, x̄) ∈ ]S, T [×Rn. Let x ∈ W 1,1([t̄, T ],Rn) be an

F -trajectory such that x(t̄ ) = x̄. We want to prove prove that:

U(t̄, x̄) ≤ g(x(T )) +

∫ T

t̄
L(s, x(s), ẋ(s))ds.

We can find a sequence (ξj)j∈N∗ in Rn, converging to x(T ), such that:

lim
j→+∞

g∗(ξj) = (g∗)∗(x(T )).

Applying Carathéodory’s parametrization theorem and Filippov’s selection theorem, we can find a measur-

able function u(·) such that ẋ(t) = f(t, x(t), u(t)) for almost every t ∈ [t̄, T ], for a Lipschitz continuous
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parametrization f of F satisfying (3.27). Applying Lusin’s theorem, for every j ∈ N∗ we construct a pair of

functions (zj , uj) defined on [t̄, T ] such that:
żj(t) = f(t, zj(t), uj(t)) for almost every t ∈ [t̄, T ] and zj(t̄) = x(t̄) ;

the control uj is continuous ;

‖x− zj‖L∞([t̄,T ],Rn) ≤ 1
j ;

meas ({t ∈ [S, T ] |u(t)− uj(t) 6= 0}) ≤ 1
j .

(3.37)

For every j ∈ N∗, we define yj(·) ∈W 1,1([0, T − t̄ ],Rn) as the solution to the following differential equation:{
ẏ(s) = −f(T − s, y(T − s), uj(T − s)) for a.e. s ∈ [0, T − t̄ ],

y(0) = ξj .

For every j ∈ N∗, we note x̄j := yj(T − t̄) and define xj(·) ∈W 1,1([t̄, T ],Rn) by:

xj(s) := yj(T − s),

which implies that xj(·) is the solution to the following differential equation:{
ẏ(s) = f(s, y(s), uj(s)) for a.e. s ∈ [t̄, T ],

y(0) = x̄j .

Owing to the Lipschitz continuity of f and the properties of (uj)j∈N∗ we have:

‖xj − x‖W 1,1([t̄,T ],Rn) −−−−→
j→+∞

0.

For every (t, x) ∈ [t̄, T ]× Rn, we write v+(t, x) := f(t+, x, uj(t)), v
−(t, x) := f(t−, x, uj(t)).

We then define two multivalued functions Fj : [t̄, T ]× Rn ; Rn, Λj : [t̄, T ]× Rn ; R by the relations: for

every (t, x) ∈ [t̄, T ]× Rn:

Fj(t, x) := co {v−(t, x), v+(t, x)},

Λj(t, x) := −co {L(t−, x, v−(t, x)), L(t+, x, v+(t, x))}.

Then we set a new multifunction Γj : [t̄, T ]×Rn×R ; R×Rn×R defined for every (t, x, `) ∈ [t̄, T ]×Rn×R:

Γj(t, x, `) :=

{
{1} × Fj(t, x)× Λj(t, x), if t ∈ [t̄, T [,

co {(0, 0, 0) ∪ {1} × Fj(T, x)× Λj(T, x)} , if t = T.

Observe that the multivalued function Γj is convex, compact valued and has closed graph.

We consider the following differential inclusion:
(τ̇(t), ẏ(t), ˙̀(t)) ∈ Γj(τ(t), y(t), `(t)), for a.e. t ∈ [t̄, T ],

τ(t̄) = t̄, y(t̄) = x̄j , `(t̄) = U∗(t̄, x̄j),

(τ(t), y(t), `(t)) ∈ hypU∗, for all t ∈ [t̄, T ].

(3.38)

Observe that the last condition in (3.38) means that `(t) ≤ U∗(τ(t), y(t)), for all t ∈ [t̄, T ].

We define the arc on [t̄, T ]

t 7→ (τj(t), xj(t), `j(t)) :=

Å
t, xj(t), U

∗(t̄, x̄j)−
∫ t

t̄
L(s, xj(s), ẋj(s))ds

ã
.
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Observe that (τj , xj , `j) is the unique Γj-trajectory with initial condition (t̄, x̄j , U
∗(t̄, x̄j)).

Assumptions i) and ii) of Weak Invariance Theorem 2.6.1 are satisfied from the discussion above and from

the fact that the ‘hypotheses reduction’ of Section 3.4 guarantee also that Γj(τ, x, `) ⊂ (c + 1)B, for every

(τ, x, `), where c :=
»
c2

0 +M2
0 .

The ‘inward pointing’ condition iii) is also satisfied, we prove the validity of the following property: for every

pair (τ, x) ∈ ]t̄, T [×Rn and every ` ≤ U∗(τ, x)

min
w∈Γj(τ,x,`)

(−ξ0,−ξ1, λ) · w ≤ 0, for all (−ξ0,−ξ1, λ) ∈ NP
hypU∗((τ, x), `). (3.39)

Let (τ, x) ∈ [t̄, T [×Rn, ` ≤ U∗(t, x) and (−ξ0,−ξ1, λ) ∈ NP
hypU∗((τ, x), U∗(τ, x)) (we recall that we can

always reduce to the case ` = U∗(τ, x)). Depending on the value of λ we can consider two distinct cases.

Case 1: λ > 0. Then λ−1(ξ0, ξ1) ∈ ∂+U
∗(τ, x). We notice that v+(τ, x) ∈ Fj(τ, x)∩F (τ+, x) and, bearing

in mind that U satisfies condition (d) ii), we deduce that:

ξ0 + ξ1 · v+(τ, x) + λL(τ+, x, v+(τ, x)) ≥ 0,

and then:

−ξ0 − ξ1 · v+(τ, x)− λL(τ+, x, v+(τ, x)) ≤ 0,

So (3.39) is confirmed since (1, v+(τ, x),−L(τ+, x, v+(τ, x))) ∈ Γj(τ, x, U
∗(τ, x)).

Case 2: λ > 0. Then invoking the Rockafellar Horizontal Approximation Theorem (see Theorem 2.4.15),

there exist sequences (ξ0
m, ξ

1
m) −−−−−→

m→+∞
(ξ0, ξ1), λm ↓ 0 and (sm, xm) −−−−−→

m→+∞
(τ, x) such that, for each m,

(λ−1
m ξ0

m, λ
−1
m ξ1

m) ∈ ∂+U
∗(sm, xm) .

By condition (d) ii), we obtain, for each m:

ξ0
m + ξ1

m · v+(sm, xm) + λmL((sm)+, xm, v
+(sm, xm)) ≥ 0.

By extracting suitable subsequences and arguing as in the proof of Theorem 3.6.5 ii) we can confirm (3.39).

As a consequence, the Weak Invariance Theorem 2.6.1 is applicable to the differential inclusion (3.38), and

we can conclude that the arc (τj , xj , `j) is a solution to the constrained differential inclusion (3.38). It follows

that at t = T :

U∗(t̄, x̄j)−
∫ T

t̄
L(s, xj(s), ẋj(s))ds ≤ U∗(T, xj(T )) = g∗(xj(T )), for every j. (3.40)

Since ‖xj − x‖W 1,1([t̄,T ],Rn) −−−−→
j→+∞

0, by Lebesgue’s dominated convergence theorem we have:

∫ T

t̄
L(s, xj(s), ẋj(s))ds −−−−→

j→+∞

∫ T

t̄
L(s, x(s), ẋ(s))ds.

Since U ≤ U∗, and U is lower semicontinuous, passing to the limit inferior in (3.40) yields:

U(t̄, x̄) ≤ lim inf
j→+∞

g∗(ξj) +

∫ T

t̄
L(s, x(s), ẋ(s))ds.
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Recalling that limj→+∞ g
∗(ξj) = (g∗)∗(x(T )) and (g∗)∗ = g, we obtain:

U(t̄, x̄) ≤ g(x(T )) +

∫ T

t̄
L(s, x(s), ẋ(s))ds,

which implies

U(t̄, x̄) ≤ V (t̄, x̄),

and concludes the proof.

2

Proof of Proposition 3.4.3. The proof immediately follows from the proof of Theorem 3.4.2, observing

that condition (g∗)∗ = g is used only in Step 3.

2

Proof of Proposition 3.4.5. The proof of Proposition 3.4.5 follows along the same lines as the proof of

Theorem 3.4.1 and Theorem 3.4.2, replacing L̃ with L in the definition of the the multivalued function Q

(steps ‘(c) ⇒ (a)’, ‘(d) ⇒ (a)’, and proof of Theorem 3.6.5 i)), and taking into account that, when L is

lower semicontinuous with respect to the time variable, we have L(t, x, v) ≤ L(t+, x, v), for all (t, x, v) ∈
[S, T [×Rn × Rn (steps ‘(a) ⇒ (b)’, ‘(b) ⇒ (c)’ and ‘(a) ⇒ (d)’).

2
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4
Solutions to the Hamilton-Jacobi equa-

tion for Bolza problems with discontinu-

ous time dependent data and state con-

straint

A very early version of these results is published in [13]. The results proposed in this chapter have been

submitted.

4.1 Abstract of chapter 4

Chapter 4, is quite similar to chapter 3. It deals with the case of the Hamilton-Jacobi-Bellman equation

that is associated to the non autonomous Bolza problem with a state constraint:

Minimize

∫ T

S
L(s, y(s), ẏ(s))ds+ g(y(T ))

over arcs y ∈W 1,1([S, T ],Rn) satisfying

ẏ(s) ∈ F (s, y(s)), for almost every s ∈ [S, T ],

y(S) = x0,

y(t) ∈ A, for all t ∈ [S, T ].

The Lagrangian L and the multivalued function F are allowed to be discontinuous on a set of full measure
with respect to time (they still have left and right limits everywhere).

Some appropriate constraint qualifications conditions between the state of constraints A and the function

controlling the dynamic F are introduced. They allow for W 1,1 continuous distance estimates, making it

then possible to establish several characterizations of the value function V as the unique generalized solution

to (HJB), using the lower Dini derivative, the proximal subdifferential, and the Fréchet sub/superdifferential.

These results complete the ones from [21] (that applied to the Mayer problem), but they also include new

features such as generalized viscosity characterizations of V .
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4.2 Résumé du chapitre 4

Le chapitre 4 est similaire au chapitre 3. Il traite du cas où l’équation de Hamilton-Jacobi-Bellman est

associée au problème de Bolza non-autonome avec dynamique contrôlée auquel on a cette fois ajouté une

contrainte d’état : 

Minimiser

∫ T

S
L(s, y(s), ẏ(s))ds+ g(y(T ))

parmi les arcs y ∈W 1,1([S, T ],Rn) qui satisfont

ẏ(s) ∈ F (s, y(s)), pour presque tout s ∈ [S, T ],

y(S) = x0,

y(t) ∈ A, pour tout t ∈ [S, T ].

Le lagrangien L et la fonction multivaluée F sont discontinues presque partout par rapport au temps (elles

ont toutefois des limites à droite et à gauche partout).

Des conditons de compatibilité ad hoc entre l’ensemble des contraintes A et la fonction multivaluée de la

dynamique F sont introduites, ce qui permet d’approximer dans W 1,1 les F -trajectoires violant la contrainte

d’état par des F -trajectoires la respectant, et par suite, d’établir différentes caractérisations de la fonction V

en tant qu’unique solution de l’équation (HJB), en ayant recours aux dérivées de Dini, à la sous-différentiel

proximale et aux différentiels de Fréchet. Ces résultats viennent d’une part compléter ceux obtenus dans [21]

pour le problème de Mayer, et s’en distinguent puisque nous présentons dans ce contexte des caractérisations

de V au sens des solutions de viscosité qui n’avaient pas été établies dans [21].

4.3 Introduction

We consider the following state constrained Bolza problem with initial data (t, x) ∈ [S, T ]× Rn:

(SCt,x)



Minimize

∫ T

t
L(s, x(s), ẋ(s))ds+ g(x(T ))

over arcs x(·) ∈W 1,1([t, T ],Rn) satisfying

ẋ(s) ∈ F (s, x(s)) for a.e. s ∈ [t, T ],

x(s) ∈ A for all s ∈ [t, T ],

x(t) = x,

in which g : Rn → R ∪ {+∞} and L : [S, T ] × Rn × Rn → R are given functions, F : [S, T ] × Rn ; Rn is

a given multivalued function, and A is a given nonempty closed set in Rn. An F -trajectory on the interval

[t0, t1] ⊂ [S, T ] is an absolutely continuous arc x : [t0, t1] → Rn which satisfies the reference differential

inclusion ẋ(s) ∈ F (s, x(s)) for a.e. s ∈ [t0, t1]. We say that an F -trajectory x ∈ W 1,1([t0, t1],Rn) is feasible

on [t0, t1] if x(s) ∈ A for all s ∈ [t0, t1]. The value function V : [S, T ] × Rn → R ∪ {+∞} is defined by the

infimum cost of (SCt,x):

V (t, x) := inf(SCt,x),

interpreting ‘+∞’ the cost of F -trajectories which are not feasible (that clearly includes the case when x /∈ A)

and the cost of feasible F -trajectories x(·)’s such that g(x(T )) = +∞.

The aim of this chapter is to characterize V as the unique solution in the class of lower semicontinuous

(lsc) functions, in a suitable generalized sense, to the Hamilton-Jacobi equation associated with (SCt,x).

More precisely the notions of solution, that shall be considered here, will involve the lower Dini derivative

(also referred to as contingent derivative), the proximal subdifferentials, and the Fréchet subdifferentials
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and superdifferentials (in which we take into account additional information provided by the ‘horizontal’

gradients). The characterization of the value function as a generalized solution to the Hamilton-Jacobi

equation associated with a reference optimal control problem is a long-standing research topic and a lot of

work has been done in this context. The present contribution is in the strand which employs nonsmooth

analysis and viability theory techniques (cf. widely-known references as [51, 43, 84, 45], and the recent papers

[56, 21] for an overview), rather than the tools which are typical in the viscosity solutions theory framework,

cf. [7, 5].

In this chapter we shall consider ‘everywhere in t’ characterizations of the value function for optimal control

problems in which F and L may have a discontinuous behaviour w.r.t. the time variable t. The most general

known class of time-discontinuous problems, which allows to provide an ‘everywhere in t’ characterization,

was introduced in [21] to investigate value functions for optimal control Mayer problems (L = 0). In this class

of problems the time-dependent data are time-discontinuous in the following sense: they have everywhere

one-sided limits in t and are continuous on the complement of a zero-measure subset of [S, T ]. For this class

of optimal control problems we highlight the following peculiarities of the value characterization: the role

of the limits F (t−, x) and F (t+, x) (which cannot be exchanged) in the characterization conditions and the

presence of the horizontal proximal subdifferentials in the proximal solution.

A crucial feature, in the context of this chapter, is the possibility to have at hand a W 1,1 ‘distance estimate’

which has a continuous behaviour w.r.t. a parameter which quantifies the F -trajectories ‘constraint violation’:

this is an important analytical tool which allows to construct, from an arbitrary F -trajectory, a feasible F -

trajectory having, in our case, a suitable W 1,1-distance from the reference F -trajectory. We recall that

limiting attention to the case L = 0 (Mayer problems) an L∞ distance estimate result would be enough

to provide an ‘everywhere in t’ characterization of value function in terms of the lower Dini derivative and

the proximal subdifferentials (see [21, Theorems 4.1 and 4.2]). We underline that, in this chapter, the

Lagrangian L is merely continuous w.r.t. the state variable x and is not necessarily of bounded variation

w.r.t. t. Moreover, we do not impose any a priori regularity condition on the epigraph of the candidate

solutions (as in [9, 52]). As a consequence, the class of Bolza problems that we consider here is not covered

by previous work; in particular a state augmentation technique would not reduce the difficulties and would

not allow to employ, for instance, the results obtained in [21, 56] (which might be taken into account to

derive just some parts of the results of these chapter only if L had stronger properties such as Lipschitz

regularity in x and a bounded variation w.r.t. t).

In the state constraint-free case, when the data F , L and g satisfy particular continuity properties (which

yield also that the value function V is continuous on [S, T ]×Rn), it is well known that V can be characterized

also in terms of the Fréchet subdifferentials and superdifferentials (also called ‘strict’ or ‘viscosity’ sub/super-

differentials), cf. [43, 45, 51]. Passing to the state constrained case, this ‘equivalent’ characterization was

proved in [56, Thm. 3] in the class of continuous functions (as set of candidate solutions), still when the

data are continuous, and imposing a stronger version of the ‘standard’ inward pointing conditions. Keeping

this stronger constraint qualification, but weakening these continuity assumptions on the data, only partial

results are known providing, for instance, just one-side comparison theorems (cf. [56]).

Therefore natural questions are:

(Q1) Is that possible to provide an ‘everywhere in t’ characterization of the value function V (·, ·) (in an

equivalent way) in terms of lower Dini derivative, the proximal subdifferentials, and the Fréchet subdif-

ferentials and superdifferentials for optimal control problems which may have also a time-discontinuous

behaviour of F and L in the sense of [21] (i.e. we have everywhere left and right limits, but we allow

a time-discontinuous behaviour on a zero-measure set)?

103



(Q2) And what happens if we merely impose the ‘standard’ constraint qualifications for nonsmooth sets

(rather than imposing stronger versions of them)?

In this chapter, we consider ‘standard’ constraint qualifications as in [21], and, first, we provide an extension

of [21, Theorems 4.1 and 4.2] to the context of Bolza problems: so Theorem 4.4.1 below deals with the case of

a lower semicontinuous (on A) final cost function g assuming an ‘outward pointing’ constraint qualification;

while Theorem 4.4.2 concerns the case in which g is continuous on A and an ‘inward pointing’ constraint

qualification is satisfied. Subsequently, we provide positive answers to questions (Q1) and (Q2) above with

Theorems 4.4.3 and 4.4.4 for problems involving respectively a locally bonded lower semicontinuous final cost

coupled with an ‘inward/outward pointing’ constraint qualification, and a continuous final cost associated

with a mere ‘inward pointing’ constraint qualification.

An important contribution of this work is that horizontal normal vectors to the epigraph can be removed to

characterize the value function: this is a crucial aspect in the value characterization when the data of the

problem are continuous, and can be obtained involving a suitable approximation technique of proximal nor-

mals to an epigraph set by non-horizontal proximal normals; it is shown that this approximation technique

is still applicable even in presence of discontinuous time dependent data (in the sense specified above).

The notion of generalized solution used here involves (for discontinuous value functions) the concepts of

lower and upper semicontinuous envelopes.

This appears to be a reasonable feature bearing in mind that a well-known approach in viscosity solutions

theory suggests, in presence of a locally bounded candidate V to be a solution to an Hamilton-Jacobi equa-

tion, to consider its lower and upper semicontinuous envelopes and check whether the properties of being

supersolution and subsolution in the viscosity sense are satisfied (cf. [7, 5]).

We emphasize the fact that the right coupling between ‘regularity of g’ and ‘constraint qualification’ plays

a crucial role in these results and is far to be merely a matter of adding technical assumptions: if g is just

lower semicontinuous, for instance, a bad constraint qualification (‘inward pointing’ in this case) would not

yield the desired characterization; this aspect is clearly illustrated by Example 4.4.6 below, in which the

value function V is not a generalized solution in the ‘proximal’ or ‘lower Dini’ sense of Theorem 4.4.1, but

it is a (non-unique) solution in terms of the ‘viscosity sense’ of Theorem 4.4.3. An important aspect of our

characterization involving Fréchet sub/super-differentials is the presence of the condition ((g|A)∗)∗ = g|A for

the (locally bounded lsc) final cost g, that we comment now (here, ((g|A)∗)∗ is the lower semicontinuous

envelope of the upper semicontinuous envelope of g|A).

As highlighted in Chapter 3, this condition becomes crucial if we want a characterization result (including

a uniqueness/comparison property) for the value function and in the state constraint-free case (with lsc

final cost g) adding condition ‘(g∗)∗ = g’ the characterization in terms of Fréchet sub/super-differentials is

equivalent to the Dini and proximal solutions (see Chapter 3). A maybe surprising feature is that the same

conclusion is not, in general, true for state constrained problems and a crucial role is played by the validity

of both inward and outward pointing constraint qualifications.

Indeed even if, when the inward pointing constraint qualification is in force, the value V is a solution in the

sense of the Fréchet sub/super-differentials (and this is a general fact, see Proposition 4.9.1 below), we have

an uniqueness (comparison) result only when also an outward pointing constraint qualification is satisfied at

the same time.

To clarify this point we provide a simple example (Example 4.4.7 below) in which only an inward pointing

condition is satisfied and the value function is a solution to the associated Hamilton-Jacobi equation in the

‘viscosity sense’ described by Theorem 4.4.3, but it is not unique.
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We apply our theory to an illustrative economics example in which the integral cost is merely continuous

w.r.t. the state variable x: this is due an inherent fractional singularity term which is introduced to interpret

the production function (cf. [1]).

A further contribution of this work is a W 1,1 distance estimate result (Theorem 4.6.1 below) which extends

to the case of time-dependent multifunctions F the result obtained by [29] for the time-independent Lipschitz

continuous F . We observe that the distance estimate in [29] is not applicable in our context since our aim is

to investigate Bolza problems with discontinuous time-dependent data in the sense specified above. For our

W 1,1 distance estimate we consider a closed convex set A (as in [29]), but a multifunction F (t, x) which has

a regularity similar to [21, Theorems 4.1 and 4.2] and [22] (where an L∞ distance estimate is provided for

merely closed domains), allowing F to have a bounded variation (possibly discontinuous) regularity w.r.t.

the time variable. As far as the state constraint qualification is concerned, we consider a ‘standard’ inward

pointing condition (as in [29, 22]) avoiding imposing stronger version of it. (For a discussion on W 1,1 and L∞

distance estimate results, illustrative examples, and the possible issues arising when we pass from smooth to

nonsmooth sets A we refer the reader to the papers [16, 18, 22] and the references therein.)

4.4 Characterizations of the Value function for Bolza problems

In this chapter we shall invoke the following hypotheses. For every R0 > 0, there exist positive functions

cF (·) ∈ L1(S, T ) and kF (·) ∈ L∞(S, T ), a modulus of continuity ω(·) : R+ → R+, and constant c0 > 0,

M0 > 0 such that

(H1): the multivalued function F : [S, T ]×Rn ; Rn takes convex, closed, non-empty values; for every x ∈ Rn,

F (·, x) is Lebesgue measurable on [S, T ];

(H2): F (t, x) ⊂ cF (t)(1 + |x|) B for all x ∈ Rn and for a.e. t ∈ [S, T ] ;

(H3): F (t, x′) ⊂ F (t, x) + kF (t)|x− x′| B for all x, x′ ∈ R0B and a.e. t ∈ [S, T ] ;

(H4): F (., x) has bounded variation uniformly over x ∈ R0B, in the following sense: there exists a non-

decreasing bounded variation function η(·) : [S, T ]→ [0,∞) such that

(i) for every [s, t] ⊂ [S, T ] and x ∈ R0B,

dH(F (s, x), F (t, x)) ≤ η(t)− η(s) ;

(ii) for every µ > 0 and every [t0, t1] ⊂ [S, T ] there exists a partition {t0 =: t̃0 < t̃1 < t̃2 < . . . < t̃M :=

t1} such that for each k = 0, 1, . . . ,M − 1 we have

lim
ε↓0

∫ t̃k+1

t̃k+ε

η(τ)− η(t̃+k )

τ − t̃k
dτ ≤ µ .

(H5): (i) the Lagrangian L : [S, T ] × Rn × Rn −→ R is L × Bn+n-measurable; for every t ∈ [S, T ] and

x ∈ Rn, L(t, x, ·) is convex;

(ii) L is locally bounded in the following sense:

|L(t, x, v)| ≤M0, for all (t, x, v) ∈ [S, T ]×R0B× 2c0B;

(H6): (i) |L(t, x′, v)− L(t, x, v)| ≤ ω(|x− x′|), for all x, x′ ∈ R0B, t ∈ [S, T ] and v ∈ c0B;

105



(ii) L(t−, x, v) := limt′↑t L(t′, x, v) exists for every (t, x, v) ∈ ]S, T ]×R0B× c0B, and

L(t−, x, v) = L(t, x, v) for a.e. t ∈ (S, T ] and for all (x, v) ∈ R0B× c0B;

(iii) L(s+, x, v) := lims′↓s L(s′, x, v) exists for every (s, x, v) ∈ [S, T [×R0B× c0B, and

L(s+, x, v) = L(s, x, v) for a.e. s ∈ [S, T ) and for all (x, v) ∈ R0B× c0B;

(H7): g : Rn → R ∪ {+∞} is lower semicontinuous, with nonempty domain;

(H8): A ⊂ Rn is convex and closed;

(OPC): for each s ∈ [S, T [, t ∈ ]S, T ] and x ∈ ∂A,

F (t−, x) ∩
(
− intTA(x)

)
6= ∅ and F (s+, x) ∩

(
− intTA(x)

)
6= ∅ ;

(IPC): for each s ∈ [S, T [, t ∈ ]S, T ] and x ∈ ∂A,

F (t−, x) ∩ intTA(x) 6= ∅ and F (s+, x) ∩ intTA(x) 6= ∅ .

Theorem 4.4.1 (Characterization of lsc Value Functions - Outward-pointing Condition) Assume

(H1)–(H8) and (OPC). Let U : [S, T ]× Rn → R ∪ {+∞} be an extended valued function. Then assertions

(a), (b) and (c) below are equivalent:

(a) U is the value function for (SCt,x), i.e. U = V .

(b) U is lower semicontinuous on [S, T ]× Rn, satisfies U(t, x) = +∞ whenever x /∈ A and

(i) for all (t, x) ∈ ([S, T [×A) ∩ domU

inf
v∈F (t+,x)

[
D↑U((t, x), (1, v)) + L(t+, x, v)

]
≤ 0 ;

(ii) for all (t, x) ∈ ( ]S, T ]× intA) ∩ domU

sup
v∈F (t−,x)

[
D↑U((t, x), (−1,−v))− L(t−, x, v)

]
≤ 0 ;

(iii) for all x ∈ A
lim inf

{(t′,x′)→(T,x) | t′<T,x′∈intA}
U(t′, x′) = U(T, x) = g(x).

(c) U is lower semicontinuous on [S, T ]× Rn U(t, x) = +∞ if x /∈ A, and

(i) for all (t, x) ∈ ((S, T )×A) ∩ domU , (ξ0, ξ1) ∈ ∂PU(t, x)

ξ0 + min
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≤ 0 ;

(ii) for all (t, x) ∈ ]S, T [×intA) ∩ domU , (ξ0, ξ1) ∈ ∂PU(t, x)

ξ0 + min
v∈F (t−,x)

[
ξ1 · v + L(t−, x, v)

]
≥ 0 ;

(iii) for all x ∈ A,

lim inf
{(t′,x′)→(S,x) | t′>S}

U(t′, x′) = U(S, x) (4.1)

and

lim inf
{(t′,x′)→(T,x) | t′<T, x′∈intA}

U(t′, x′) = U(T, x) = g(x). (4.2)
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Theorem 4.4.2 (Characterization of lsc Value Functions - Inward-pointing Condition) Assume

that (H1)–(H8), (IPC) are satisfied and that g is continuous on A. Let U : [S, T ]× Rn → R ∪ {+∞} be an

extended valued function. Then the assertions (a), (b) and (c) of Theorem 4.4.1 remain equivalent.

Theorem 4.4.3 (Characterization of locally bounded lsc Value Functions - Inward/Outward-

pointing Condition) Assume (H1)–(H8), (OPC) and (IPC). Suppose, in addition, that g|A is locally

bounded and satisfies ((g|A)∗)∗ = g|A. Let U : [S, T ] × Rn → R ∪ {+∞} be an extended valued function.

Then, the assertions (a), (b) and (c) of Theorem 4.4.1 are equivalent to condition (d) below:

(d) U is lower semicontinuous on [S, T ] × Rn and locally bounded on [S, T ] × A, satisfies U(t, x) = +∞
whenever x /∈ A and

(i) for all (t, x) ∈ (S, T )×A, (ξ0, ξ1) ∈ ∂−U(t, x)

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≤ 0 ; (4.3)

(ii) for all (t, x) ∈ (S, T )× intA, (ξ0, ξ1) ∈ ∂+U
∗(t, x)

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≥ 0 ; (4.4)

(iii) for all x ∈ A
lim inf

{(t′,x′)→(S,x) | t′>S}
U(t′, x′) = U(S, x),

(U|[S,T ]×A)∗(T, x) = (g|A)∗(x) and U(T, x) = g(x).

Theorem 4.4.4 (Characterization of continuous Value Functions - Inward-pointing Condition)

Assume (H1)–(H8) and (IPC). Suppose, in addition, that g is continuous on A. Let U : [S, T ] × Rn →
R ∪ {+∞} be an extended valued function. Then, the assertions (a), (b) and (c) of Theorem 4.4.1 are

equivalent to condition (d)′ below:

(d)′ U is continuous on [S, T ]×A, satisfies U(t, x) = +∞ whenever x /∈ A and

(i) for all (t, x) ∈ (S, T )×A, (ξ0, ξ1) ∈ ∂−U(t, x)

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≤ 0 ; (4.5)

(ii) for all (t, x) ∈ (S, T )× intA, (ξ0, ξ1) ∈ ∂+U(t, x)

ξ0 + inf
v∈F (t+,x)

[
ξ1 · v + L(t+, x, v)

]
≥ 0 ; (4.6)

(iii) for all x ∈ A
lim inf

{(t′,x′)→(S,x) | t′>S}
U(t′, x′) = U(S, x),

and U(T, x) = g(x).

Comments and Examples. Before passing to the proof of the value function characterizations we comment

our results and give two illustrative examples.
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Remark 4.4.5 1. Hypotheses (H1), (H2) and (H4)(i) implies that: we can always find c > 0 such that

F (t, x) ⊂ c B for all (t, x) ∈ [S, T ] × R0B; moreover, for each s ∈ [S, T ) and t ∈ (S, T ] the following

limits (in the sense of Kuratowski) exist and are nonempty

F (s+, x) := lim
s′↓s

F (s′, x) and F (t−, x) := lim
t′↑t

F (t′, x), for all x ∈ Rn,

and for almost every s ∈ [S, T [ and t ∈]S, T ] we have

F (s+, x) = F (s, x) and F (t−, x) = F (t, x), for all x ∈ Rn.

2. Condition (H4)(ii) means that the function of bounded variation η satisfies a sort of uniform Dini’s

test. Since η has right limit at each point s ∈ [S, T ), Dini’s criterion establishes that the Fourier series

associated with the periodic extension of η(·) (out of [S, T )) converges to η(s+). Assumption (H4)(ii)

is satisfied, for instance, when η(·)− η(s+) has a uniform linear growth over s ∈ [S, T ).

3. Observe that the conclusions of Theorems 4.4.1, 4.4.2, 4.4.3, 4.4.4 remain valid if A is only a closed

set (instead of a convex set as requested in (H8)) with nonempty interior, if F (t, ·) is locally uniformly

continuous, (H3) is satisfied with kF ∈ L1(S, T ) (in place of kF ∈ L∞(S, T )), and the constraint

qualifications (OPC) and (IPC) are substituted by the following conditions given in terms of the distance

estimates (in place of the data of the problem):

(CQ)BW : for any r0 > 0, there exists a modulus of continuity θ̃(·), such that given any interval [s0, s1] ⊂
[0, T − S], any F̃ -trajectory ŷ(·) on [s0, s1] with ŷ(s0) ∈ A ∩

(
e
∫ s0
0 cF (s)ds(r0 + 1)− 1

)
B, and any

ρ > 0 such that ρ ≥ max{dA(ŷ(t)) | s ∈ [s0, s1]}, we can find an F̃ -trajectory y(·) on [s0, s1] such

that y(s0) = ŷ(s0), y(s) ∈ intA for all s ∈ (s0, s1] and

‖ŷ − y‖W 1,1([s0,s1]) ≤ θ̃(ρ). (4.7)

(Here, F̃ (s, y) := −F (T − s, y) for all s ∈ [0, T − S].)

(CQ)FW : for any r0 > 0, there exists a modulus of continuity θ(·), such that given any interval [t0, t1] ⊂
[S, T ], any F -trajectory x̂(·) on [t0, t1] with x̂(t0) ∈ A ∩

(
e
∫ t0
S cF (t)dt(r0 + 1)− 1

)
B, and any ρ > 0

such that ρ ≥ max{dA(x̂(t)) | t ∈ [t0, t1]}, we can find an F -trajectory x(·) on [t0, t1] such that

x(t0) = x̂(t0), x(t) ∈ intA for all t ∈ (t0, t1] and

‖x̂− x‖W 1,1([s0,s1]) ≤ θ(ρ). (4.8)

Observe that if hypotheses (H1)-(H4) and (H8) are in force together with (IPC) (resp. (OPC)), then

owing to Theorem 4.6.1 below, (CQ)FW (resp. (CQ)BW ) is satisfied with θ(ρ) := Kρ(1 + | ln(ρ)|)
for some constant K > 0 (resp. θ̃(ρ) := Kρ(1 + | ln(ρ)|)). It is well-known that it is not possible

to obtain in general linear W 1,1 distance estimates (i.e. θ(ρ) = Kρ) when A is nonsmooth and the

‘simple’ inward pointing condition (IPC) is satisfied; and different W 1,1 distance estimate results can be

obtained imposing additional assumptions, such as regularity of the state constraint or stronger inward

pointing conditions (cf. [16, 19, 56]).

4. Conditions (c), (d) and (d)′ of Theorems 4.4.1, 4.4.2, 4.4.3, 4.4.4 can be easily reformulated in terms

of an Hamiltonian function

Hλ(t, x, p) := inf
v∈F (t,x)

[p · v + λL(t, x, v)] .
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5. The examples below show that the right coupling between the ‘regularity of g’ and the ‘constraint qual-

ification’ ((IPC) or (OPC)) plays a crucial role to obtain the characterizations provided by Theorems

4.4.1, 4.4.2, 4.4.3 and 4.4.4. In particular, we point out the following important facts: condition (OPC)

cannot be replaced by (IPC) in Theorem 4.4.1; the continuity of g cannot be dropped in Theorems 4.4.2

and 4.4.4; the validity of both (IPC) and (OPC) is required for Theorem 4.4.3. We highlight also that,

if conditions (H1)-(H8) and (IPC) alone are in force (without (OPC) and condition ‘((g|A)∗)∗ = g|A’)

then the value function does satisfy property (d) of Theorem 4.4.3 (even if it may fail to meet all the

requirements of (c) or (b)): this is a general fact as stated by Proposition 4.9.1 proved in Section 4.9.

Example 4.4.6 Consider the case in which n = 1, [S, T ] = [0, 1], A = {x ∈ R, x ≥ 0}, F (t, x) ≡ [0, 1],

L = 0, and

g(x) =

{
−x− 2, if x ≤ 0

−x, if x > 0

Observe that all the assumptions in Theorem 4.4.1 are satisfied except (OPC), since we have ∂A = {0} and

TA(0) = R+. On the other hand, (IPC) is valid. The value function is, for all (t, x) ∈ [0, 1]× R

V (t, x) =


t− x− 1, if x > 0,

−2, if x = 0,

+∞, if x < 0.

Notice that lim inf{(t′,x′)→(1,0) |x′>0} V (t′, x′) = 0 6= V (1, 0) = −2. Therefore, the value function does not

satisfy condition (iii) of (b) and (c). Observe also that all the hypotheses of Theorem 4.4.2 are satisfied,

except the continuity of g on A. The consequence is that still (b) and (c) cannot be used to characterize

the value function. Moreover, V satisfies (d) of Theorem 4.4.3 but it not the unique, indeed the following

function W ( 6= V ) satisfies condition (d) as well:

W (t, x) :=


t− x− 1, if x > 0,

−3/2, if x = 0 and t 6= 1,

−2, if (t, x) = (1, 0),

+∞, if x < 0.

The data of Example 4.4.6 do not satisfy all the hypotheses of Theorem 4.4.3 in two respects: the ‘outward

pointing condition’ and condition ‘((g|A)∗)∗ = g|A’ are not valid. It is well-known that condition ‘((g|A)∗)∗ =

g|A’ is crucial for the uniqueness of the solution (in terms of (d)) even for the state constraint-free case

(see Chapter 3). The following example shows that, even if ‘((g|A)∗)∗ = g|A’ is satisfied, the absence of one

constraint qualification ((OPC) in this case) might compromise the characterization of the value function in

the sense of (d) of Theorem 4.4.3.

Example 4.4.7 Take n = 1, [S, T ] = [0, 1], A = {x ∈ R, x ≥ 0}, L = 0,

F (t) =

{
[0, 1], if t ≤ 1

2

[1/2, 1], if t > 1
2

and g(x) =

{
0, if x ≤ 1

4

1, if x > 1
4 .

Then for all (t, x) ∈ [0, 1]× R, the Value function is

V (t, x) =



0, if x = 0 and t ≤ 1
2 ,

1, if x > 0 and t ≤ 1
2 ,

0, if 0 ≤ x ≤ t
2 −

1
4 and t > 1

2 ,

1, if x > t
2 −

1
4 and t > 1

2 ,

+∞, if x < 0.
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We observe that all the assumptions in Theorem 4.4.3 are satisfied except (OPC), and the value function V

satisfies (d) of Theorem 4.4.3. However, also the following function satisfies (d)

W (t, x) =



1
2 , if x = 0 and t < 1

2 ,

1, if x > 0 and t < 1
2 ,

0, if x ≤ t
2 −

1
4 and t ≥ 1

2 ,

1, if x > t
2 −

1
4 and t ≥ 1

2 ,

+∞, if x < 0.

Consequently, V is not the unique solution to the Hamilton-Jacobi equation in the sense of (d) in Theorem

4.4.3.

4.5 Economics Example

The following ‘growth versus consumption’ problem arises in neo-classical macro-economics:

(GC)



Maximize
∫ T

0 (1− u(t))xα(t)dt

subject to

ẋ(t) = −ax(t) + bu(t)xα(t) for a.e. t ∈ [0, T ],

u(t) ∈ [0, 1] for a.e. t ∈ [0, T ] ,

x(t) ≥ 0 for all t ∈ [0, T ] ,

x(0) = x0.

Data: constants a > 0, b > 0, T > 0 and α ∈ (0, 1), and initial point x0 ≥ 0.

It has the following interpretation: x denotes (aggregated) economic output. The (normalized) rate of

financial return r(x) from economic output x is modelled by the production function r(x) = xα . The

problem is to choose the proportion u of rate of return for investment and for expenditure, over a given time

horizon [0, T ], to maximize total expenditure over the time horizon [0, T ].

The cost function and underlying dynamic model in (GC) provides a (finite horizon) example of a class of

utility and macro economic growth models studied in Solow’s classic paper [80, 1]. The dynamic model was

elaborated in subsequent decades, most notably as the Ramsey Cass Koopmans growth model [12] which

incorporates a more precise description of savings behavior.

From a variational analysis point of view, an unusual feature of this optimal control problem is the presence

of a fractional singularity introduced by the production function r(x) = xα, with 0 < α < 1. This is not an

artificial construct; a singularity is inherent to such problems, where, typically, the production function is

required to satisfy the Inanda conditions [1], which include an ‘infinite slope’ condition at the origin.

Proposition 4.5.1 Denote by V : [0, T ]× ]0,+∞[→ R the value function for (GC) and let ψ : [0,∞[→
[0,+∞[ be the mapping

ψ(x) := x1−α for all x ∈ [0,+∞[ . (4.9)

Then

V (t, x) = (W ◦ (Id, ψ)) (t, x), for all (t, x) ∈ [0, T ]× ]0,+∞[ , (4.10)

where W : [0, T ] × R → R ∪ {−∞} is the unique upper semicontinuous function such that W (t, y) = −∞
whenever y < 0 and

(i) for all (t, y) ∈ (0, T )× [0,+∞[, (ξ0, ξ1) ∈ ∂PW (t, y)

ξ0 + sup
u∈[0,1]

(
ξ1 · (−a(1− α)y + (1− α)bu) + (1− u)y

α
1−α

)
≥ 0;
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(ii) for all (t, y) ∈ (0, T )× ]0,+∞[, (ξ0, ξ1) ∈ ∂PW (t, y)

ξ0 + sup
u∈[0,1]

(
ξ1 · (−a(1− α)y + (1− α)bu) + (1− u)y

α
1−α

)
≤ 0;

(iii) for all y ∈ [0,+∞[

lim sup
{(t′,y′)→(0,y) | t′>0}

W (t′, y′) = W (0, y)

and

lim sup
{(t′,y′)→(T,x) | t′<T, y′>0}

W (t′, y′) = W (T, y) = 0.

(In conditions (i) and (ii), ∂PW (t, y) denotes the proximal superdifferential of W at (t, y) .)

Proof: Problem (GC) does not immediately fit into the Hamilton Jacobi framework of this paper, but can

be made to do so by means of the transformation ψ (see (4.9)) of the state variable. Notice, however, that

for any s ∈ [0, T ], x0 > 0 and state trajectory/control pair (x, u) on [s, T ], we have that x(t) > 0 for all

t ∈ [s, T ] and the transformed state trajectory y(t) = ψ(x(t)) is such that y(t) > 0 for all t ∈ [s, T ] and

satisfies the differential equation

dy

dt
(t) = (1− α)x−α(t)(−ax(t)) + bxα(t)u(t)) = −a(1− α)y(t) + (1− α)bu(t) .

Furthermore,

∫ T

s
(1−u(t))xα(t)dt =

∫ T

s
(1−u(t))y

α
1−α (t)dt. The same final expressions for the transformed

problem can be employed also when x0 = 0: indeed an admissible state trajectory x(·) might stay on the

boundary of the state constraint ‘x ≥ 0’, but as soon as we have x(t′) > 0 for some t′ ∈ (s, T ), then x(t) > 0

for all t ∈ [t′, T ]. Write s0 := inf{t′ | x(t′) > 0}. Then, the transformed trajectory/control pair is (y, ũ)

where (y = 0, ũ = 0) on [s, s0] and (y(·) = ψ(x(·)), ũ(·) = u(·)) on (s0, T ].

Take W : [0, T ]× R→ R the value function for the transformed optimal control problem

(T )



Maximize
∫ T

0 (1− u(t))y
α

1−α (t)dt

subject to

ẏ(t) = −a(1− α)y(t) + (1− α)bu(t) for a.e. t ∈ [0, T ],

y(t) ≥ 0,

u(t) ∈ [0, 1] for a.e. t. ∈ [0, T ] ,

y(0) = y0 ,

in which y0 ≥ 0. It follows from the preceding remarks that the value functions of (GC) and (T) are related

by (4.10). The proof is completed by noting that the data for (T) satisfies the hypotheses of Thm. 4.4.2.

We deduce that the value function W is characterized as in the proposition statement. (Observe that Thm.

4.4.2 must be applied in a modified form, since (T) is a maximization problem.)

2

In a similar way, using Thm. 1.4, we can characterize the value function also in the viscosity sense.

Proposition 4.5.2 Denote by V : [0, T ]× ]0,+∞[→ R the value function for (GC) and let ψ : [0,+∞[→
[0,+∞) be the mapping defined in (4.9). Then

V (t, x) = (W ◦ (Id, ψ)) (t, x), for all (t, x) ∈ [0, T ]× ]0,+∞[ ,

where W : [0, T ] × R → R ∪ {−∞} is the unique upper semicontinuous function such that W is continuous

on [0, T ]× [0,+∞[, W (t, y) = −∞ whenever y < 0 and
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(i) for all (t, y) ∈ ]0, T [×[0,+∞[, (ξ0, ξ1) ∈ ∂+W (t, y)

ξ0 + sup
u∈[0,1]

(
ξ1 · (−a(1− α)y + (1− α)bu) + (1− u)y

α
1−α

)
≥ 0;

(ii) for all (t, y) ∈ ]0, T [× ]0,+∞[, (ξ0, ξ1) ∈ ∂−W (t, y)

ξ0 + sup
u∈[0,1]

(
ξ1 · (−a(1− α)y + (1− α)bu) + (1− u)y

α
1−α

)
≤ 0;

(iii) for all y ∈ [0,+∞[

lim sup
{(t′,y′)→(0,y) | t′>0}

W (t′, y′) = W (0, y)

and

W (T, y) = 0.

The usefulness of this exercise can be described as follows. Solutions to growth model optimal control

problems akin to (GC) are typically studied in the economics literature by means of the Pontryagin Maximum

Principle (PMP). (See, e.g. [1].) But the PMP, which is merely a necessary condition of optimality, provides

only putative minimizers (referred to as ‘extremals’) for (GC). Optimality can be confirmed by constructing a

field of extremals and evaluating the extremal cost function Ṽ , that is the cost of each extremal, parameterized

by its initial data.

Problem (GC) was studied and, applying a non-standard verification technique, completely solved in [70] for

the ‘soft’ state constraint ‘x(t) > 0’ (with initial data x0 > 0). When we consider the (full) state constrained

problem (GC) (i.e. with ‘x(t) ≥ 0’), our theory tells us that this procedure will be successful, if we can show

that W̃ := Ṽ ◦ (Id, ψ−1) is a proximal solution (resp. viscosity solution) to the Hamilton Jacobi equation in

the sense of the Proposition 4.5.1 (resp. Proposition 4.5.2).

4.6 W 1,1 distance estimate, preliminary results and hypotheses reduction

In this chapter we shall make use of some important analytical tools the first of which is a W 1,1 distance

estimate theorem. If x̂(·) is an F -trajectory starting from (t0, x0) ∈ [S, T ] × A, the real number ρ̂ :=

maxt∈[t0,T ] dA(x̂(t)) can be interpreted as a measure of the ‘state constraint violation’ of x̂(·). A key point

in our analysis is the possibility to construct a second feasible F trajectory x(·) which satisfies particular

properties including the fact that x(·) is close to x̂(·) w.r.t. W 1,1-distance: the obtained estimate is provided

in terms of a suitable modulus of continuity which depends on the ‘state constraint violation’ parameter.

The following theorem is valid even if F is not convex (so we shall consider (H1)′ below in place of (H1)).

Theorem 4.6.1 Fix r0 > 0. Assume that, for some positive functions cF (·) ∈ L1(S, T ) and kF (·) ∈
L∞([S, T ]) and for R0 := e

∫ T
S cF (s)ds(r0 + 1), the following hypothesis

(H1)′: F : [S, T ]× Rn ; Rn takes closed, non-empty values, F (·, x) is L-measurable for all x ∈ Rn,

is satisfied together with (H2), (H3), (H4) and

(IPC)′: for each s ∈ [S, T [, t ∈ ]S, T ] and x ∈ R0B ∩ ∂A,

coF (t−, x) ∩ intTA(x) 6= ∅ and coF (s+, x) ∩ intTA(x) 6= ∅ .
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Then, there exists a constant K > 0 with the following property: given any interval [t0, t1] ⊂ [S, T ], any

F -trajectory x̂(·) on [t0, t1] with x̂(t0) ∈ A ∩
(
e
∫ t0
S cF (s)ds(r0 + 1)− 1

)
B, and any ρ > 0 such that

ρ ≥ max{dA(x̂(t)) | t ∈ [t0, t1]} ,

we can find an F -trajectory x(·) on [t0, t1] such that x(t0) = x̂(t0),

x(t) ∈ intA for all t ∈ (t0, t1]

and

||x̂− x||L∞([t0,t1]) ≤ K ρ , (4.11)

|| ˙̂x− ẋ||L1([t0,t1]) ≤ K ρ(1 + | ln(ρ)|) . (4.12)

The proof of Theorem 4.6.1 is provided in Section 4.11.

Remark 4.6.2 Theorem 4.6.1 can be reformulated in an equivalent way (as in [29], where this result is

proved for a time-independent Lipschitz continuous F ), in which the reference ‘violating’ F -trajectory does

not necessarily start from the state constraint A; this alternative formulation can be immediately deduced

making use of Filippov’s Existence Theorem.

We observe that the analysis is simplified employing a standard hypotheses reduction argument (cf. [21]

or [84]), which allows us to invoke (without loss of generality) hypotheses (H1), (H2), (H3)∗, (H4)∗, (H5)∗

and (H6)∗, where by (H3)∗, (H4)∗, (H5)∗ and (H6)∗ we denote the global (stronger) version of conditions

(H3), (H4), (H5) and (H6) in which we have removed the constant R0. This is due to the fact that (H2),

(H3) and (H4)(i) yield an a priori uniform boundedness of F -trajectories. Indeed, given an initial data

(t, x) ∈ [S, T ] × Rn and an F -trajectory y ∈ W 1,1([t, T ],Rn) such that y(t) = x, for every s ∈ [t, T ], y(s) ∈
(1 + |x|) exp

Ä∫ T
S cF (τ)dτ

ä
B. Set R0 := (1 + |x|) exp

Ä∫ T
S cF (τ)dτ

ä
, then, owing to (H3) and (H4)(i) there

exists c0 > 0 such that, for almost every s ∈ [t, T ], ẏ(s) ∈ c0B. So we consider a new multifunction“F : [S, T ]× Rn ; Rn and a new function L̃ : [S, T ]× Rn × Rn −→ R, defined by“F (s, y) :=

®
F (s, y) if |y| ≤ R0

F (s,R0y/|y|) if |y| > R0 ,
L̂(s, y, v) :=

®
L(s, y, v) if |y| ≤ R0

L(s,R0y/|y|, v) if |y| > R0 .

The data (“F , L̂) satisfy hypotheses (H1), (H2), (H3)∗, (H4)∗, (H5)∗ and (H6)∗. But, in a neighbourhood of

the given point (t, x), the data of the problem (Pt,x) involving either (F,L) or (“F , L̂) do coincide. Therefore,

in the forthcoming analysis we can invoke the more restrictive version of conditions (H3)-(H6) without loss

of generality.

We shall invoke an useful Carathéodory’s Parametrization Result ([4, Theorems 9.6.2 and 9.7.2]):

Proposition 4.6.3 Assume that (H1), (H2) and (H3)∗. Then, there exists a measurable function: f :

[S, T ]× Rn × B→ Rn, such that:
For every (t, x) ∈ [S, T ]× Rn, F (t, x) = f(t, x,B) ;

For every (x, u) ∈ Rn × B, f(·, x, u) is mesurable ;

For every (t, u) ∈ [S, T ]× B, f(t, ·, u) is 10nkF (t)-Lipschitz ;

For every (t, x) ∈ [S, T ]× Rn, (u, u′) ∈ B2, |f(t, x, u)− f(t, x, u′)| ≤ 5nmaxv∈F (t,x) |v||u− u′|.

Moreover, for all (s, x, u) ∈ (S, T )× Rn × B:

lim
s′↓s,x′→x,u′→u

f(s′, x′, u′) ∈ F (s−, x) and lim
s′↑s,x′→x,u′→u

f(s′, x′, u′) ∈ F (s+, x). (4.13)

(Inclusions (4.13) do not appear in [4], but are a consequence of the construction of the parametrization f

of F , which is based on the Steiner selection argument used in [4], see [21] for a detailed discussion on this

point.)
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4.7 Proof of Theorem 4.4.1

We assume that hypotheses (H1), (H2), (H3)∗, (H4)∗, (H5)∗, (H6)∗ and (H7) are satisfied together with

property (CQ)BW (of Remark 4.4.5) which is valid owing to (H8) and Theorem 4.6.1 with θ̃(ρ) := Kρ(1 +

| ln(ρ)|) for some constant K > 0. We know that the value function is lower semicontinuous (cf. [84, Chapter

12]).

‘(a) ⇒ (b)’. This implication can be proved using the principle of optimality for the value function and the

analysis does not change in presence of state constraints and is the same of the state constraint-free case (cf.

[21] and, for the details with a Lagrangian satisfying (H6), see Chapter 3), except for condition (b)(iii), for

which property (CQ)BW turns out to be useful. (At this stage we actually do not need a distance estimate

involving necessarily a W 1,1 norm: an L∞ distance estimate is enough and the proof is as in [21].)

‘(b) ⇒ (c)’. Consider a lower semicontinuous function U satisfying (b). Then condition (c)(iii) is an easy

consequence of the definition of D↑U (cf. [84, Prop. 12.3.4]). Now, take (t, x) ∈ ((S, T )× Rn) ∩ domU and

(ξ0, ξ1) ∈ ∂PU(t, x). Then, there exist M > 0 and ε > 0 such that

ξ0(t′ − t) + ξ1 · (x′ − x) ≤ U(t′, x′)− U(t, x) +M(|t′ − t|2 + |x′ − x|2) (4.14)

for all (t′, x′) ∈ (t, x) + εB.

Since U satisfies (b) and F (t+, x) is compact, there exist sequences hi ↓ 0 and (vi)i∈N in Rn such that

vi −−−−→
i→+∞

v̄ for some v̄ ∈ F (t+, x) and (cf. [15, Lemma 3.3] for Bolza problems with L satisfying (H6))

lim
i→+∞

h−1
i (U(t+ hi, x+ hivi)− U(t, x)) ≤ −L(t+, x, v̄).

Setting (t′, x′) = (t+ hi, x+ hivi), and dividing across by hi, we obtain that, for i sufficiently large,

ξ0 + ξ1 · vi ≤ h−1
i (U(t+ hi, x+ hivi)− U(t, x)) + Mhi(1 + |vi|2).

Since vi −−−−→
i→+∞

v̄ and v̄ ∈ F (t+, x), we have, in the limit as i→∞, that

ξ0 + inf
v∈F (t+,x)

ξ1 · v ≤ ξ0 + ξ1 · v̄ = ξ0 + lim
i→+∞

ξ1 · vi ≤ L(t+, x, v̄).

On the other hand, for any given v ∈ F (t−, x), since U satisfies (b), there exist sequences hi ↓ 0 and (vi)i∈N
in Rn, such that vi −−−−→

i→+∞
v and

lim
i→+∞

h−1
i (U(t− hi, x− hivi)− U(t, x)) ≤ L(t−, x, v).

According to the notion of ∂PU(t, x), setting (t′, x′) = (t− hi, x− hivi), we obtain

−(ξ0 + ξ1 · vi) ≤ h−1
i (U(t− hi, x− hivi)− U(t, x)) + Mhi(1 + |vi|2),

for i sufficiently large. Since vi −−−−→
i→+∞

v, we deduce from these relations that

ξ0 + ξ1 · v ≥ −L(t−, x, v).

Since v was an arbitrary element in F (t−, x), we have shown that

inf
v∈F (t−,x)

[ ξ0 + ξ1 · v + L(t−, x, v)] ≥ 0.
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We deduce that U satisfies (c).

‘(c) ⇒ (a)’. A first step consists in showing that if U satisfies (c)(i) and (c)(iii), then V (t, x) ≤ U(t, x)

for any (t, x) ∈ [S, T ] × A; more precisely one can show that
∫ T
t L(s, x(s), ẋ(s))ds + g(x(T )) ≤ U(t, x)

for some feasible F -trajectory x(·) on [t, T ] such that x(t) = x. This can be derived invoking well-known

weak invariance results, and the analysis does not differ from the state constraint-free case used in Chapter

3. However, we show here that, as for the continuous time dependent case, we can eliminate the horizontal

subdifferentials in the characterization of the value function. We introduce an auxiliary multivalued function:

Q : [S, T ]× Rn ; Rn × R defined by:

Q(τ, x) :=



{
(v,−η) | v ∈ F (S+, x),M0 ≥ η ≥ L(S+, x, v)

}
, if τ = S,

co
{

(v,−η) | v ∈ {F (τ−, x) ∪ F (τ+, x)} ,M0 ≥ η ≥ L̃(τ, x, v)
}
, if τ ∈ ]S, T [,{

(v,−η) | v ∈ F (T−, x),M0 ≥ η ≥ L(T−, x, v)
}
, if τ = T ,

where L̃(τ, x, v) := min{L(τ+, x, v), L(τ−, x, v)}. A routine analysis allows to verify that the multifunction

Q takes as values non-empty convex sets with elements which are (uniformly) bounded by c :=
»
c2

0 +M2
0 ;

moreover the graph of Q is closed.

Take any (t̄, x̄) ∈ ((S, T ) × A) ∩ dom(U). Our aim is to apply the Viability/Weak Invariance Theorem (cf.

Theorem 2.6.1) to the following differential inclusion:
(τ̇ , ẋ, ˙̀)(t) ∈ Γ(τ(t), x(t), `(t)), for a.e. t ∈ [t̄, T ],

(τ(t), x(t), `(t)) ∈ epi U, for all t ∈ [t̄, T ],

(τ(t̄), x(t̄), `(t̄)) = (t̄, x̄, U(t̄, x̄)).

(4.15)

where Γ : [S, T ]× Rn+1 ; Rn+2 is defined by

Γ(τ, x, `) :=


co ({(0, 0, 0)} ∪ ({1} ×Q(S, x))), if τ = S,

{1} ×Q(τ, x), if τ ∈ ]S, T [,

co ({(0, 0, 0)} ∪ ({1} ×Q(T, x))), if τ = T .

Clearly the multifunction Γ inherits the following properties from Q: the graph of Γ is closed, for all

(τ, x, `) ∈ [S, T ]×Rn+1, Γ(τ, x, `) is nonempty convex set and Γ(τ, x, `) ⊂ (c+ 1)B. It remains to check that

‘inward pointing condition’ of the Weak Invariance Theorem is also satisfied: take any (τ, x, `) ∈ epi U and

any (ξ0, ξ1,−λ) ∈ NP
epi U (τ, x, `), we must show

min
w∈Γ(τ,x,`)

(ξ0, ξ1,−λ) · w ≤ 0 . (4.16)

If τ = S, T , then it is immediately verified (taking w = 0 that belongs to both Γ(S, x, `) and Γ(T, x, `)).

Suppose then that S < τ < T . Observe that, by the nature of proximal normals to epigraph sets, we know

that λ ≥ 0 and we need to check (4.16) only when ` = U(τ, x). We shall show

ξ0 + min
v∈F (τ−,x)∪F (τ+,x)

ξ1 · v + λL(τ+, x, v) ≤ 0 . (4.17)

This will confirm the inward pointing condition, indeed it implies

min
w∈Γ(τ,x,`)

(ξ0, ξ1,−λ) · w ≤ ξ0 + min
v∈co{F (τ−,x)∪F (τ+,x)}

ξ1 · v + λL(τ+, x, v) ≤ 0 .

115



To check (4.17) we need to consider two cases.

Case 1: λ > 0. In this case ((1/λ)ξ0, (1/λ)ξ1,−1) ∈ NP
epi U ((τ, x), U(τ, x)). It follows that

((1/λ)ξ0, (1/λ)ξ1) ∈ ∂PU(τ, x) .

But then, by (c)(i), (1/λ)
(
ξ0 + minv∈F (τ+,x)[ξ

1 · v + λL(τ+, x, v)]
)
≤ 0 . This implies (4.17).

Case 2: λ = 0. In this case, we know from the Rockafellar Horizontal Approximation Theorem (cf. Theorem

2.4.15) that there exist (ξ0
i , ξ

1
i )→ (ξ0, ξ1), λi ↓ 0 and (ti, xi)→ (τ, x) such that, for each i,

(λ−1
i ξ0

i , λ
−1
i ξi) ∈ ∂PU(ti, xi) .

But then, by condition (c)(i), there exists vi ∈ F (t+i , xi) such that

ξ0
i + ξ1

i · vi + λiL(τ+, x, vi) ≤ 0 .

But (vi)i∈N is a bounded sequence. We can therefore arrange, by extracting a subsequence, that vi −−−−→
i→+∞

v̄,

for some v̄ ∈ Rn. Since (t, x) ; F (t−, x) ∪ F (t+, x) is an upper semi-continuous multifunction, it follows

that v̄ ∈ F (τ−, x) ∪ F (τ+, x). So, recalling also that L is bounded on bounded sets, in the limit as i → ∞,

we obtain

0 ≥ ξ0 + ξ1 · v̄ + 0× L(τ+, x, v̄) ≥ ξ0 + inf
v∈F (τ−,x)∪F (τ+,x)

ξ1 · v.

We have confirmed (4.17) in this case too.

Then, the Weak Invariance Theorem is applicable to system (4.15). We deduce that there exists (τ(·), x(·), `(·)) ∈
W 1,1([t̄, T ],R× Rn × R) satisfying τ(t) = t and

(ẋ(t), ˙̀(t)) ∈ Q(t, x(t)), for a.e. t ∈ [t̄, T ]

x(t̄) = x̄, `(t̄) = U(t̄, x̄)

`(t) ≥ U(t, x(t)) for all t ∈ [t̄, T ] .

Taking into account the definition of the multivalued function Q and the hypotheses on both F and L, we

it follows that x(·) is an F -trajectory and that ˙̀(s) ≤ −L(s, x(s), ẋ(s)) for a.e. s ∈ [t̄, T ]. Hence we have:

g(x(T )) = U(T, x(T )) ≤ `(T ) = `(t̄) +

∫ T

t̄

˙̀(s)ds ≤ U(t̄, x̄)−
∫ T

t̄
L(s, x(s), ẋ(s))ds,

which implies:

g(x(T )) +

∫ T

t̄
L(s, x(s), ẋ(s))ds ≤ U(t̄, x̄).

Thus we obtain:

V (t̄, x̄) ≤ U(t̄, x̄).

It remains to investigate the case in which t̄ = S: if (S, x̄) belongs to dom(U), then from (c)(iii) we can take

a sequence (Si, xi)→ (S, x̄) as i→∞ such that Si ↓ S and limi→∞ U(Si, xi) = U(S, x̄). For each i ≥ 0, from

the previous argument we know that there exists an F -trajectory yi(·) such that

U(Si, xi) ≥ g(yi(T )) . (4.18)

Extending yi(·) to all [S, T ] by constant extrapolation from the right on [S, Si], with the help of the Compact-

ness of Trajectories Theorem (cf. [84, Thm. 2.5.3]) we can arrange, by extracting a suitable subsequence,
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that yi(·) −−−−→
i→+∞

ȳ(·) uniformly, for some F -trajectory ȳ(·) such that ȳ(t̄ ) = x̄. Therefore, since g is lower

semicontinuous, in the limit, as i→∞ from (4.18) we deduce that

U(S, x̄) = lim inf
i→∞

U(Si, xi) ≥ lim inf
i→∞

g(yi(T )) ≥ g(ȳ(T )) .

This completes the first step.

We consider now the second step of the implication ‘(c) ⇒ (a)’, where a W 1,1 distance estimate is required:

if U satisfies (c)(ii) and (c)(iii), then V (t, x) ≥ U(t, x) for any (t, x) ∈ [S, T ] × Rn. This can be achieved

showing that, given any arbitrary point (t̄, x̄) ∈ [S, T ]× A, and any feasible F -trajectory x(·) on [t̄, T ] such

that x(t̄) = x̄, we have
∫ T
t̄ L(s, x(s), ẋ(s))ds + g(x(T )) ≤ U(t̄, x̄). We can assume that g(x(T )) < +∞,

otherwise we automatically have the desired inequality.

Since U satisfies (4.2), we can pick sequences (tj)j≥1 in (t̄, T ) and (ξj)j≥1 in intA such that (tj , ξj) ∈ dom(U)

for every j ≥ 1, tj ↑ T and ξj → x(T ) as j → +∞, and

lim
j→+∞

U(tj , ξj) = lim inf
{(t′,x′)→(T,x(T )) | t′<T,x′∈intA}

U(t′, x′) = U(T, x(T )) = g(x(T )). (4.19)

We write sj := T − tj and ρj := exp(kF |T − S|)|x(tj) − ξj |; clearly limj→+∞ sj = 0 and limj→+∞ ρj = 0.

Using Filippov’s Existence Theorem, for each j ≥ 1, we can find an F̃ -trajectory ỹj(·) on [sj , T − t̄ ] such

that ỹj(sj) = ξj and:

‖ỹj(·)− x(T − ·)‖W 1,1([sj ,T−t̄ ]) ≤ ρj .

(F̃ : [0, T −S]×Rn ; Rn is the multivalued function defined by F̃ (s, y) := −F (T − s, y).) Observe that, for

every j ≥ 1, since x(·) is feasible we have max {dA(ỹj(s)) | s ∈ [sj , T − t̄ ]} ≤ ρj . Now, we can use property

(CQ)BW (with θ̃(ρ) := Kρ(1 + | ln(ρ)|) owing to Theorem 4.6.1) and deduce that, for any j ≥ 1, there exists

a feasible F̃ -trajectory zj(·) on [sj , T − t̄], such that zj(sj) = ξj , zj(s) ∈ intA for all s ∈ (sj , T − t̄ ] and

‖ỹj − zj‖W 1,1([sj ,T−t̄ ]) ≤ θ̃ (ρj) .

This implies that

‖x(T − ·)− zj(·)‖W 1,1([sj ,T−t̄ ]) ≤ θ̃ (ρj) + ρj .

For each j ≥ 1 consider the arc xj(t) := zj(T − t), for t ∈ [t̄, tj ]. Then each xj(·) is an F -trajectory on [t̄, tj ]

that can be extended to [t̄, T ] using Filippov’s Existence Theorem in such a manner that each extension, still

written xj(·), satisfies the estimate

‖x− xj‖W 1,1([t̄,T ]) ≤ θ̃ (ρj) + ρj . (4.20)

Using the fact zj(s) ∈ intA for all s ∈ ]sj , T − t̄ ], we can find sequences (τj)j≥1 in (tj , T ) and (δj)j≥1 such

that τj ↑ T and δj ↓ 0 as j → +∞ and

xj(t) + δjB ⊂ intA, for all t ∈ [t̄, τj ].

Let f : [S, T ]×Rn×B→ Rn be the parametrization of F given by Proposition 4.6.3. Using Filippov’s Selec-

tion Theorem (cf. [84, Theorem 2.3.13]), for every j ≥ 1, there exists a measurable selection uj : [t̄, tj ]→ B
such that ẋj(t) = f(t, xj(t), uj(t)). for a.e. t ∈ [t̄, tj ].

Fix any j ≥ 1. Take any i ∈ N such that i ≥ 2
δj

. Lusin’s Theorem guarantees the existence of a continuous

function uij : [t̄, tj ]→ B such that

meas
(
{t ∈ [t̄, tj ] |uj(t)− uij(t) 6= 0}

)
≤ 1

i
(4.21)
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and the corresponding solution xij(·) to system{
ẋ(t) = f(t, x(t), uij(t)), for a.e. t ∈ [t̄, tj ]

x(tj) = ξj (= xj(tj))

satisfies

‖xj − xij‖L∞([t̄,tj ]) ≤
1

i
. (4.22)

For every (t, x) ∈ [t̄, tj ] × Rn, we write v+(t, x) := f(t+, x, uij(t)), v
−(t, x) := f(t−, x, uij(t)). We define two

multivalued functions Fj,i : [t̄, tj ]×Rn ; Rn and Λj,i : [t̄, tj ]×Rn ; R as follows: for every (t, x) ∈ [t̄, tj ]×Rn

Fj,i(t, x) := co {v−(t, x), v+(t, x)},

Λj,i(t, x) := co {L(t−, x, v−(t, x)), L(t+, x, v+(t, x))}.

We define the arc (τ̃ , z̃, ˜̀) on [0, tj − t̄ ]:

s 7→ (τ̃(s), z̃(s), ˜̀(s)) :=

Å
s, xij(tj − s), U(tj , ξj) +

∫ s

0
L(tj − r, xij(tj − r), ẋij(tj − r))dr

ã
,

and the function ‹Uj defined by ‹Uj(s, y) := U(tj − s, y), for any s ∈ [0, tj − t̄ ] and y ∈ Rn.

We introduce also the multifunction Γj,i : [0, tj − t̄ ]× Rn × R ; R× Rn × R defined as

Γj,i(τ, x, `) :=

{
co {(0, 0, 0) ∪ {1} × −Fj,i(t̄, x)× Λj,i(t̄, x)} , if τ = tj − t̄,
{1} × −Fj,i(tj − τ, x)× Λj,i(tj − τ, x), if τ ∈ [0, tj − t̄ ).

Clearly, Γj,i takes convex, nonempty values, has a closed graph, and owing to our ‘hypotheses reduction’

(of Section 4.6), Γj,i(t, x, `) ⊂ (1 + |c|)B where c :=
»
c2

0 +M2
0 for every (t, x, `) ∈ [0, tj − t̄ ] × Rn × R.

Observe that the arc (τ̃ , z̃, ˜̀) is a Γj,i-trajectory such that (τ̃ , z̃, ˜̀)(0) = (0, ξj , U(tj , ξj)), and for every

interval [s1, s2] ⊂ [0, tj − t̄ ], the restriction of (τ̃ , z̃, ˜̀) to [s1, s2] is the unique Γj,i-trajectory with initial

condition (τ̃(s1), z̃(s1), ˜̀(s1)). Consider the state constrained differential inclusion:
(τ̇(s), ẏ(s), ˙̀(s)) ∈ Γj,i(τ(s), y(s), `(s)) for a.e. s ∈ [0, tj − t̄ ],

τ(0) = 0, y(0) = ξj , `(0) = U(tj , ξj) (= ‹Uj(0, ξj)),
(τ(s), y(s), `(s)) ∈ epi‹Uj for all s ∈ [0, tj − t̄ ].

(4.23)

We claim that (τ̃ , z̃, ˜̀) is a solution to (4.23), i.e. the constraint (τ̃ , z̃, ˜̀) ∈ epi‹Uj is also satisfied. Indeed, all

the necessary conditions for the applicability of the Local Weak Invariance Theorem (Theorem 2.6.2) have

already been discussed above, except the local inward pointing condition ((iv) of Theorem 2.6.2) which in

our case takes the form: for any (τ, x, `) ∈ epi‹Uj ∩ ((τ̃ , z̃, ˜̀)([0, tj − t̄ ]) + 1
iB):

min
w∈Γj,i(τ,x,`)

w · (ξ0, ξ1,−λ) ≤ 0, for all (ξ0, ξ1,−λ) ∈ NP
epi‹Uj (τ, x, `). (4.24)

Take any (τ, x, `) ∈ epi‹Uj ∩ ((τ̃ , z̃, ˜̀)([0, tj − t̄ ]) + 1
iB) and any normal vector (ξ0, ξ1,−λ) ∈ NP

epi‹Uj ((τ, x), `).

By construction of Γj,i, the inward pointing condition is easily verified if τ = tj − t̄, so we assume that

τ < tj − t̄. Notice that from well-known properties of the proximal cone to the epigraph, we can restrict

attention to the case ` = ‹Uj(τ, x), and we know that λ ≥ 0 and

(−ξ0, ξ1,−λ) ∈ NP
epiU ((tj − τ, x), U(tj − τ, x)).
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We also have v−(tj − τ, x) ∈ Fj,i(tj − τ, x)∩F ((tj − τ)−, x) and if x ∈ z̃(τ) + 1
iB then x ∈ z̃(τ) +

δj
2 B ⊂ intA.

We continue considering two possible situations. In the first case λ > 0. Then, λ−1(−ξ0, ξ1) ∈ ∂PU(tj− τ, x)

and so, condition (c)(ii) implies

−ξ0 + ξ1 · v−(tj − τ, x) + λL((tj − τ)−, x, v−(tj − τ, x)) ≥ 0,

which confirms (4.24) taking w = (1,−v−(tj − τ, x), L((tj − τ)−, x, v−(tj − τ, x))). On the other hand, if

λ = 0, then there exist sequences (−ξ0
k, ξ

1
k)→ (−ξ0, ξ1), λk ↓ 0 and (sk, xk)→ (tj − τ, x) such that, for each

k,

(−λ−1
k ξ0

k, λ
−1
k ξ1

k) ∈ ∂PU(sk, xk) .

But then, by condition (c)(ii),

− ξ0
k + ξ1

k · v−(sk, xk) + λkL((sk)
−, xk, v

−(sk, xk)) ≥ −ξ0
k + inf

v∈F (s−k ,xk)
[ξ1
k · v + λkL((sk)

−, xk, v) ≥ 0. (4.25)

By extracting a subsequence we can arrange that, either sk ≤ tj − τ for all k, or sk > tj − τ for all k. If

sk ≤ tj − τ for all k, then since (sk, xk)→ (tj − τ, x), v−(sk, xk)→ v−(tj − τ, x), and, in consequence of the

hypotheses (H3), (H4)(i), (H5) and (H6), we can pass to the limit as k → ∞ in the preceding relation to

obtain

−ξ0 + ξ1 · v−(tj − τ, x) ≥ 0.

If sk > tj − τ for all k, passage to the limit gives v−(sk, xk)→ v+(tj − τ, x) and

−ξ0 + ξ1 · v+(tj − τ, x) ≥ 0.

In either case then, (4.24) is verified.

Since all the hypotheses of the Local Weak Invariance Theorem (Theorem 2.6.2) are verified, we conclude

that for every t ∈ [0, tj − t̄ ]: (τ̃ , z̃, ˜̀)(t) ∈ epi‹Uj . Our claim is confirmed.

Therefore, bearing in mind the definition of the arc (τ̃ , z̃, ˜̀), we deduce that for that for any j ≥ 1 and any

i ∈ N such that i ≥ 2
δj

:

U(t̄, xij(t̄)) ≤ U(tj , ξj) +

∫ tj

t̄
L(s, xij(s), ẋ

i
j(s))ds. (4.26)

Since U is lower semicontinuous and xij −−−−→
i→+∞

xj(t̄), in the limit as i→ +∞, we obtain:

U(t̄, xj(t̄)) ≤ U(tj , ξj) + lim inf
i→+∞

∫ tj

t̄
L(s, xij(s), ẋ

i
j(s))ds, for all j ≥ 1.

From condition (H2)∗, for every integer j ≥ 1 and every t ∈ [t̄, T ], we have maxv∈F (t,xj(t)) |v| ≤ c0, and so,

using (4.22) and the regularity properties of f (Proposition 4.6.3), we deduce that, for a.e. s ∈ [t̄, tj ],

|ẋij(s)− ẋj(s)| = |f(s, xij(s), u
i
j(s))− f(s, xj(s), uj(s))|

≤ |f(s, xij(s), u
i
j(s))− f(s, xj(s), u

i
j(s))|+ |f(s, xj(s), u

i
j(s))− f(s, xj(s), uj(s))|

≤ 10nkF |xij(s)− xj(s)|+ 5n max
v∈F (s,xj(s))

|v||uij(s)− uj(s)|

≤ 10n

i
kF + 5nc0|uij(s)− uj(s)|.

(4.27)

We also know that ‖uj − uij‖L∞(t̄,tj) ≤ 2, then from (4.21) and (4.27) it follows that

ẋij
L1(t̄,tj)−−−−→
i→+∞

ẋj . (4.28)
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Moreover, from (H5)∗ we can easily derive the local Lipschitz regularity of L(s, y, ·), uniformly with respect

to (s, y). Hence using (H6)(i), (4.22), (4.28), and the Lebesgue Dominated Convergence Theorem (possibly

taking a subsequence), we obtain:

U(t̄, xj(t̄)) ≤ U(tj , ξj) +

∫ tj

t̄
L(s, xj(s), ẋj(s))ds, for all j ≥ 1.

Invoking now (4.20), (4.19), and the lower semicontinuity of U , in the limit as j → +∞ we have

U(t̄, x̄) = U(t̄, x(t̄)) ≤ U(T, x(T )) + lim inf
j→+∞

∫ tj

t̄
L(s, xj(s), ẋj(s))ds.

We once again make use of (4.20) and of the Lebesgue’s Dominated Convergence Theorem (possibly taking

a subsequence), deducing:

U(t̄, x̄) ≤ g(x(T )) +

∫ T

t̄
L(s, x(s), ẋ(s))ds.

2

4.8 Proof of Theorem 4.4.2

The implications ‘(a) ⇒ (b)’ and ‘(b) ⇒ (c)’ and the relation ‘V (t, x) ≤ U(t, x)’ of the implication ‘(c) ⇒
(a)’, can be proved arguing as in the proof of Theorem 4.4.1 except for the boundary condition which now

immediately follows from the continuity of the value function, which, making use of the distance estimate

(CQ)FW (with θ(ρ) := Kρ(1 + | ln(ρ)|), owing to Theorem 4.6.1) can be deduced from the continuity of g.

It remains to show that, if U satisfies (c)(ii) and (c)(iii) of Theorem 4.4.2, then V (t̄, x̄) ≥ U(t̄, x̄) for all

(t̄, x̄) ∈ [S, T ] × A. Take any feasible F -trajectory x(·) on [t̄, T ] such that x(t̄) = x̄. (We can assume that

g(x(T )) < +∞). Using property (CQ)FW (with θ(ρ) = Kρ(1 + | ln(ρ)|)), there exists a sequence of feasible

F -trajectories (xj)j≥1 on [t̄, T ] such that, for every j ≥ 1, xj(t̄) = x̄, xj(t) ∈ intA for all t ∈ (t̄, T ], and:

‖x− xj‖W 1,1([t̄,T ]) ≤
1

j
. (4.29)

Take a strictly decreasing sequence (tj)j≥1 in ]t̄, T [ that converges to t̄. For every j ≥ 1, there exists δj > 0

such that:

xj(t) + δjB ⊂ intA, for all t ∈ [tj , T ].

Let f : [S, T ] × Rn × B → Rn be the Carathéodory parametrization given by Proposition 4.6.3. Applying

Filippov’s Selection Theorem for every j ≥ 1, we can find a measurable control uj : [tj , T ] → B such that

ẋj(t) = f(t, xj(t), uj(t)), for a.e. t ∈ [tj , T ].

Fix any j ≥ 1. From the first relation of condition (c)(iii) we know that there exist a sequence ((T ij , ξ
i
j))i≥1

such that |(T ij , ξij) − (T, xj(T ))| ≤ 1/i for all i ≥ 1 and U(T ij , ξ
i
j) → U(T, xj(T )) (= g(xj(T ))) as i → +∞.

Now, invoking Lusin’s Theorem and employing arguments (including the application of the Local Weak

Invariance Theorem 2.6.2) similar to those of the proof of Theorem 4.4.1 we arrive at a sequence of feasible

F -trajectories (xij)i∈N on [tj , T ] such that xij(T
i
j ) = ξij , ‖xj − xij‖L∞([tj ,T ]) ≤ 1

i and

U(tj , x
i
j(tj)) ≤ U(T ij , ξ

i
j) +

∫ T ij

tj

L(s, xij(s), ẋ
i
j(s))ds.
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Since U is lower semicontinuous, xij(tj) → xj(tj) and U(T ij , ξ
i
j) → U(T, xj(T )) (= g(xj(T ))) as i → +∞,

arguing as in the proof of Theorem 4.4.1, in the limit as i→ +∞, for each j ≥ 1, we obtain:

U(tj , xj(tj)) ≤ g(xj(T )) +

∫ T

tj

L(s, xj(s), ẋj(s))ds.

Since xj(T )
A−−−−→

j→+∞
x(T ), g is continuous on A and U is lower semicontinuous, recalling (4.29) and passing

to the limit as j → +∞, with the help again of Lebesgue’s Dominated Convergence Theorem we deduce (for

a subsequence if necessary)

U(t̄, x̄) = U(t̄, x(t̄)) ≤ lim inf
j→+∞

U(tj , xj(tj)) ≤ g(x(T )) + lim inf
j→+∞

∫ T

tj

L(s, xj(s), ẋj(s))ds.

and, owing to the lower semicontinuity of U , we deduce:

U(t̄, x̄) = U(t̄, x(t̄)) ≤ g(x(T )) + lim inf
j→+∞

∫ T

tj

L(s, xj(s), ẋj(s))ds (4.30)

≤ g(x(T )) +

∫ T

t̄
L(s, x(s), ẋ(s))ds. (4.31)

Since x(·) was an arbitrary feasible F -trajectory such that x(t̄) = t̄, we conclude that:

U(t̄, x̄) ≤ V (t̄, x̄).

2

4.9 Proof of Theorem 4.4.3

Since from Theorem 4.4.1 we already know that conditions (a), (b) and (c) are equivalent, we proceed to

show the implications ‘(a) ⇒ (d)’ and ‘(d) ⇒ (a)’.

The first relation ‘(a) ⇒ (d)’ is actually valid even if the outward pointing constraint qualification and

condition ‘((g|A)∗)∗ = g|A’ are not in force. This is established by the following proposition.

Proposition 4.9.1 Assume (H1)–(H8) and (IPC). Suppose, in addition, that g|A(·) is locally bounded. Then

the value function V satisfies (d) of Theorem 4.4.3.

Proof. We observe that, from the a priori boundedness of the F -trajectories, and the local boundedness of

g|A(·) and L, it immediately follows that V|[S,T ]×A is locally bounded. Let (t, x) ∈ (S, T )×A.

Take any (ξ0, ξ1) ∈ ∂−V (t, x). Then,

ξ0(t′ − t) + ξ1 · (x′ − x) ≤ V (t′, x′)− V (t, x) + o(|(t′ − t, x′ − x)|) for all (t′, x′) (4.32)

in which o(·) : R+ → R+ is a function satisfying o(ε)/ε → 0 as ε ↓ 0. Arguing as in the proof of Theorem

4.4.1, we can find sequences hi ↓ 0 and vi −−−−→
i→+∞

v̄, for some v̄ ∈ F (t+, x), such that

lim
i→+∞

h−1
i (V (t+ hi, x+ hivi)− V (t, x)) ≤ −L(t+, x, v̄).

Taking (t′, x′) = (t+ hi, x+ hivi) in (4.32), and dividing across by hi, we obtain, for i sufficiently large,

ξ0 + ξ1 · vi ≤ h−1
i (V (t+ hi, x+ hivi)− V (t, x)) + h−1

i o(hi
»

1 + |vi|2).
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Therefore, in the limit as i→∞, it follows that

ξ0 + inf
v∈F (t+,x)

[ξ1 · v + L(t+, x, v)] ≤ ξ0 + ξ1 · v̄ + L(t+, x, v̄) ≤ 0.

Let (t, x) ∈ ]S, T [×intA and take ε > 0 such that x + εB ⊂ intA. There exists a sequence ((ti, xi))i∈N in

(S, T )× intA \ {(t, x)} that converges to (t, x) such that

lim
i→+∞

V (ti, xi) = (V|[S,T ]×A)∗(t, x) (= V ∗(t, x)).

We claim that, extracting a subsequence if necessary (we do not relabel), we have ti ↓ t as i→ +∞. Indeed,

if ti < t for every i ≥ i0 for some i0 ∈ N, then we proceed as follows. We take a strictly decreasing sequence

(τi)i≥i0 in ]t, T ] that converges to t as i → +∞. We can assume that for all i ≥ i0, xi ∈ x + ε
3B and

τi − ti ≤ ε
3c0

. Fix any i ≥ i0, and take a feasible F -trajectory ỹi(·) on [ti, τi] such that ỹi(ti) = xi. Using the

principle of optimality, we obtain:

V (ti, xi)−
∫ τi

ti

L(s, ỹi(s), ˙̃yi(s))ds ≤ V (τi, ỹi(τi)).

Using the local boundedness of L (cf. condition (H5)∗), there exists M0 > 0 such that for every i ≥ i0:

V (ti, xi)−M0|τi − ti| ≤ V (τi, ỹi(τi)).

Passing to the limit to both sides and using the upper semicontinuity of (V|[S,T ]×A)∗, we obtain:

(V|[S,T ]×A)∗(t, x) = lim sup
i→+∞

V (ti, xi) ≤ lim sup
i→+∞

V (τi, ỹi(τi)) + lim
i→+∞

M0|ti − τi|

≤ lim sup
i→+∞

(V|[S,T ]×A)∗(τi, ỹi(τi)) ≤ (V|[S,T ]×A)∗(t, x).

Thus lim supi→+∞ V (τi, ỹi(τi)) = (V|[S,T ]×A)∗(t, x) and there exists a subsequence (ik)k∈N for which

V (τik , ỹik(τik)) −−−−→
k→+∞

(V|[S,T ]×A)∗(t, x).

This confirms our claim.

Now, fix any ṽ ∈ F (t+, x). Then, there exists a sequence of vectors (vi)i∈N such that vi ∈ F (t+i , xi) for all i,

and limi→+∞ vi = ṽ. For each i, we consider the arc

yi(s) := xi + (s− ti)vi, for all s ∈ [ti, T ].

Using Filippov’s Existence Theorem, there exists an F -trajectory zi(·) that satisfies zi(ti) = xi and such that

for every h ∈ (0, T − ti]

‖zi − yi‖L∞(ti,ti+h) ≤ K
Ç∫ ti+h

ti

dF (s,yi(s))(vi)ds

å
,

where K = exp(kF |T −S|). From the a priori boundedness of F -trajectories, we can pick R0 > 0 such that,

for each i, |zi(s)| ≤ R0 for every s ∈ [ti, T ] and |żi(s)| ≤ c0, for almost every s ∈ [ti, T ]. Observe that we can

find h̄ > 0 such that, for all i ≥ 1, we have ti+h̄ < T and zi(s) ∈ x+εB ⊂ intA for every s ∈ [ti, ti+h̄]. More-

over, since property (CQ)FW is valid (owing to Theorem 4.6.1) guarantees that each zi(·) can be extended

to a feasible F -trajectory on [ti, T ]. For every i ∈ N, define δi := max{|V (ti, xi)− V ∗(t, x)|, |xi − x|, |ti − t|}.
Extracting a subsequence, we can find a strictly decreasing sequence (hi)i∈N that converges to 0 such that
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hi ∈ [
√
δi, h̄ ].

For any i ∈ N we define wi := 1
hi

∫ ti+hi
ti

żi(s)ds, ei := 1− t−ti
hi

and w̃i := wi− x−xi
hi

. One can easily prove that

wi −−−−→
i→+∞

ṽ. Observe also that (t+ hiei, x+ hiw̃i) ∈ (S, T )× intA and limi→+∞(ei, w̃i) = (1, ṽ). Therefore

recalling also that (t, x) ∈ [S, T ]× intA, we deduce that

lim sup
i→+∞

h−1
i [V ∗(t+ hiei, x+ hiw̃i)− V ∗(t, x)] = lim sup

i→+∞
h−1
i [V ∗(ti + hi, xi + hiwi)− V ∗(t, x)]

≥ lim sup
i→+∞

h−1
i [V (ti + hi, xi + hiwi)− V ∗(t, x)] .

For all i ∈ N, we have:

V (ti + hi, xi + hiwi)− V ∗(t, x) ≥ V (ti + hi, xi + hiwi)− V (ti, xi)− δi. (4.33)

We have arranged zi(·) to be feasible for all i ∈ N, so the principle of optimality yields:

V (ti + hi, xi + hiwi)− V (ti, xi) ≥ −
∫ ti+hi

ti

L(s, zi(s), żi(s))ds, for all i ∈ N.

Hence, dividing across the inequality (3.33) by hi, passing to the limit superior and recalling that δi
hi
≤
√
δi,

we deduce:

lim sup
i→+∞

h−1
i [V ∗(t+ hiei, x+ hiw̃i)− V ∗(t, x)] ≥ − lim inf

i→+∞

1

hi

∫ ti+hi

ti

L(s, zi(s), żi(s))ds. (4.34)

From (H5)∗ one can easily show that there exists kL > 0 such that v 7→ L(s, z, v) is kL-Lipschitz continuous

on c0B (uniformly w.r.t. s and z), and so, for every i, we have:∫ ti+hi

ti

L(s, zi(s), żi(s))ds ≤
∫ ti+hi

ti

L(s, zi(s), ṽ)ds+

∫ ti+hi

ti

kL|żi(s)− ṽ|ds

≤ hi sup
|z−x|≤c0hi+h2

i
0<s−t≤hi+h2

i

L(s, z, ṽ) + hi kL(Kθi(hi) + |vi − ṽ|),
(4.35)

where θi is defined by

θi(h) :=

sup 0<s−ti≤h
|xi−y|≤c0h

dH(F (s, y), F (t+i , xi)), if h 6= 0,

0, otherwise,

and satisfies θi(hi) −−−−→
i→+∞

0 (cf. [15]). Dividing across by hi in (4.35) and passing to the limit as i→ +∞,

it follows that:

lim inf
i→+∞

1

hi

∫ t+hi

ti

L(s, zi(s), żi(s))ds ≤ L(t+, x, ṽ). (4.36)

Combining (4.34) with (4.36) we obtain:

lim sup
i→+∞

h−1
i [V ∗(t+ hiei, x+ hiw̃i)− V ∗(t, x)] ≥ −L(t+, x, ṽ).

Now, take any (ξ0, ξ1) ∈ ∂+V
∗(t, x). Then,

V ∗(t′, x′)− V ∗(t, x)− ξ0(t′ − t)− ξ1 · (x′ − x) ≤ o(|(t′ − t, x′ − x)|) for all (t′, x′) (4.37)
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where o(·) : R+ → R+ is a function such that o(ε)/ε → 0 as ε ↓ 0. Setting (t′, x′) = (t + hiei, x + hiw̃i) in

(4.37), and dividing across by hi, we have

h−1
i (V ∗(t+ hiei, x+ hiw̃i)− V ∗(t, x))− ξ0ei − ξ1 · w̃i ≤ h−1

i o(hi|(ei, w̃i)|).

From these relations, in the limit as i→∞, it follows that

−L(t+, x, ṽ)− ξ0 − ξ1 · ṽ ≤ 0.

This relation being valid for all ṽ ∈ F (t+, x), we obtain (d)(ii).

Concerning condition (d)(iii), the first condition, lim inf{(t′,x′)→(S,x), t′>S} V (t′, x′) = V (S, x), as in the proof

of Theorem 4.4.1, can be easily deduced from the fact that V satisfies (b)(i).

It remains to prove that V ∗|[S,T ]×A(T, ·) = g∗|A(·). Since V|[S,T ]×A(T, ·) = g|A(·), we immediately deduce that

(V|[S,T ]×A)∗(T, x) ≥ (g|A)∗(x) for all x ∈ A. We prove that the converse inequality is also satisfied. Fix any

x ∈ A. There exists a sequence ((ti, xi))i∈N in [S, T ]×A \ {(T, x)} converging to (T, x) such that:

lim
i→+∞

V (ti, xi) = lim sup
{(t,y)→(T,x), y∈A}

V (t, y) = V ∗|[S,T ]×A(T, x).

Using (CQ)FW , we know that, for every i, there exists a feasible F -trajectory xi(·) on [ti, T ] such that

xi(ti) = xi. By the principle of optimality:

V (ti, xi)−
∫ T

ti

L(s, xi(s), ẋi(s))ds ≤ V (T, xi(T )), for all i ∈ N.

Using condition (H5)∗, we know that there exists a constant M0 > 0 such that for every i ∈ N:

V (ti, xi)−M0|T − ti| ≤ V (T, xi(T )) = g(xi(T )).

Using the fact limi→+∞ xi(T ) = x, passing to the limit as i→ +∞, we obtain:

(V|[S,T ]×A)∗(T, x) ≤ lim sup
i→+∞

g(xi(T )) ≤ lim sup
A

y→x

g(y) = (g|A)∗(x).

Therefore V satisfies (d)(iii).

2

Since ∂PU(t, x) ⊂ ∂−U(t, x), it is not difficult to see that the proof of (A) can be reduced to the analysis

employed in the proof of Theorem 4.4.1. On the other hand, the proof of (B) requires a different construction

of several sequences of arcs, taking into account the new conditions involved, and the notions of lower/upper

semicontinuous envelopes.

So here we provide details of the proof of (B). Take any point (t̄, x̄) ∈ [S, T ]×A and any feasible F -trajectory

x(·) on [t̄, T ] such that x(t̄) = x̄. Since ((g|A)∗)∗(x(T )) = g|A(x(T )), there exists a sequence (ξj)j∈N in A

such that limj→+∞ ξj = x(T ) and

lim
j→+∞

(g|A)∗(ξj) = g|A(x(T )). (4.38)

Consider a decreasing sequence (t̄j)j∈N in ]t̄, T ] that converges to t̄. Since we are assuming that the outward

pointing constraint qualification is satisfied, we can employ the same construction in the proof of Theorem
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4.4.1 obtaining, for each j ≥ 1, the existence of a feasible F -trajectory xj(·) on [t̄j , T ] such that xj(T ) = ξj ,

xj(t) ∈ intA for all t ∈ [t̄j , T [ and:

‖xj(·)− x(·)‖W 1,1([t̄j ,T ]) ≤ θ̃(ρj) + ρj ,

where ρj := exp(kF |T − S|)|ξj − x(T )| and θ̃(ρ) = Kρ(1 + | ln(ρ)|) for some constant K > 0.

Fix any j ∈ N. We can take an increasing sequence (tj,i)i≥1 in ]t̄j , T [, converging to T , and a sequence

(ωj,i)i≥1 in intA, converging to ξj such that:

lim
i→+∞

(U|[S,T ]×A)∗(tj,i, ωj,i) = lim inf
{(t′,x′)→(T,ξj) | t′<T,x′∈intA}

(U|[S,T ]×A)∗(t′, x′). (4.39)

Invoking the same argument above, now with the base points (tj,i, ωj,i), for each integer i ≥ 1, we can find

a feasible F -trajectory xj,i(·) on [t̄j , tj,i] such that xj,i(tj,i) = ωj,i, xj,i(t) ∈ intA for all t ∈ [t̄j , tj,i] and:

‖xj,i(·)− xj(·)‖W 1,1([t̄j ,tj,i]) ≤ θ̃(ρj,i) + ρj,i,

where ρj,i := exp(kF |T − S|)|ξj − ωj,i|. It is not difficult to see that, using Filippov’s Existence Theorem,

each xj,i(·) can be extended on [t̄j , T ] obtaining the estimate (we do not relabel)

‖xj,i(·)− xj(·)‖W 1,1([t̄j ,T ]) ≤ θ̃(ρj,i) + ρj,i.

Since xj,i(t) ∈ intA for all t ∈ [t̄j , tj,i], there exist sequences (δj,i)i≥1 and (τj,i)i≥1 with τj,i ∈ ]tj,i, T [ such

that δj,i ↓ 0 and τj,i ↑ T as i→ +∞, and

xj,i(s) + δj,iB ⊂ intA, for all s ∈ [t̄j , τj,i].

Let f : [S, T ]×Rn×B→ Rn, be the Carathéodory parametrization (see Proposition 3.27). Using Filippov’s

Selection Theorem, for each i ≥ 1, there exists a measurable selection uj,i : [t̄j , T ] → B such that ẋj,i(t) =

f(t, xj,i(t), uj,i(t)) for a.e. t ∈ [t̄j , T ].

Fix any i ≥ 1 and any j ≥ 1. Take k ∈ N such that k ≥ 2
δj,i

. Invoking a now familiar argument based on

Lusin’s Theorem, we can find a continuous control ukj,i : [t̄j , T ]→ B and an arc xkj,i : [t̄j , tj,i]→ Rn such that:
ẋkj,i(t) = f(t, xkj,i(t), u

k
j,i(t)), for a.e. t ∈ [t̄j , T ] ,

‖xj,i − xkj,i‖L∞([t̄j ,T ]) ≤ 1
k and xkj,i(tj,i) = xj,i(tj,i) = ωj,i ,

meas
Ä
{t ∈ [t̄j , T ] |uj,i(t)− ukj,i(t) 6= 0}

ä
≤ 1

k .

For every (t, x) ∈ [t̄j , T ]× Rn, we write v+(t, x) := f(t+, x, ukj,i(t)), v
−(t, x) := f(t−, x, ukj,i(t)).

We then define the multivalued functions F kj,i : [t̄j , T ] × Rn ; Rn, Λkj,i : [t̄j , T ] × Rn ; R and Γkj,i :

[t̄j , T ]× Rn × R ; R× Rn × R by the relations:

F kj,i(t, x) := co {v−(t, x), v+(t, x)},

Λkj,i(t, x) := −co {L(t−, x, v−(t, x)), L(t+, x, v+(t, x))},

Γkj,i(t, x, `) :=

{
{1} × F kj,i(t, x)× Λkj,i(t, x), if t ∈ [t̄j , tj,i ),

co
¶

(0, 0, 0) ∪ {1} × F kj,i(tj,i, x)× Λkj,i(tj,i, x)
©
, if t = tj,i.

Consider the arc (τkj,i, x
k
j,i, `

k
j,i) on [t̄j , T ] defined by

t 7→ (τkj,i(t), x
k
j,i(t), `

k
j,i(t)) :=

Ç
t, xkj,i(t), (U|[S,T ]×A)∗(t̄j , x

k
j,i(t̄j))−

∫ t

t̄j

L(s, xkj,i(s), ẋ
k
j,i(s))ds

å
.
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Observe that [t̄j , tj,i] ⊂ ]S, T [ and

xkj,i(t) +
δj,i
2

B ⊂ xj,i(t) + δj,iB ⊂ intA, for all t ∈ [t̄j , tj,i].

Now, our aim is to apply the Local Weak Invariance (Theorem 2.6.2) to the constrained differential inclusion:
(τ̇(t), ẏ(t), ˙̀(t)) ∈ Γkj,i(τ(t), y(t), `(t)), for a.e. t ∈ [t̄j , tj,i],

τ(t̄j) = t̄j , y(t̄j) = xkj,i(t̄j), `(t̄j) = (U|[S,T ]×A)∗(t̄j , x
k
j,i(t̄j)),

(τ(t), y(t), `(t)) ∈ hyp (U|[S,T ]×A)∗, for all t ∈ [t̄j , tj,i],

(4.40)

with the reference arc (τkj,i, x
k
j,i, `

k
j,i). We discuss here only the validity of the inward pointing condition

(iv) of Theorem 2.6.2 since it is easy to see that, as in the proof of Theorem 4.4.1, all the assumptions are

satisfied. Observe that along a ‘
δj,i
2 -tube’ around the arc (τkj,i, x

k
j,i, `

k
j,i) we have (U|[S,T ]×A)∗ = U∗. Therefore

the required inward pointing condition to check is: for any (τ, x, `) ∈ hypU∗∩ ((τkj,i, x
k
j,i, `

k
j,i)([t̄j , tj,i])+

δj,i
2 B)

we have

min
w∈Γkj,i(τ,x,`)

w · (−ξ0,−ξ1, λ) ≤ 0, for all (−ξ0,−ξ1, λ) ∈ NP
hypU∗(τ, x, `). (4.41)

Take any (τ, x, `) ∈ hypU∗ ∩ ((τkj,i, x
k
j,i, `

k
j,i)([t̄j , tj,i]) +

δj,i
2 B) and any (−ξ0,−ξ1, λ) ∈ NP

hypU∗(τ, x, `) (⊂
N̂hypU∗(τ, x, `)). We have λ ≥ 0. Since (4.41) is clearly verified when τ = tj,i, we assume that τ ∈ [t̄j , tj,i[.

We can also restrict attention to the case ` = U∗(τ, x).

Depending on the value of λ we can consider two distinct cases.

If λ > 0, then λ−1(ξ0, ξ1) ∈ ∂+U
∗(τ, x) and so, from condition (d)(ii), we deduce that

ξ0 + ξ1 · v+(τ, x) + λL(τ+, x, v+(τ, x)) ≥ 0.

This confirms (4.41) with w = (1, v+(τ, x),−L(τ+, x, v+(τ, x))).

If λ = 0, then invoking Theorem 2.4.15, there exist sequences (ξ0
m, ξ

1
m) −−−−−→

m→+∞
(ξ0, ξ1), λm ↓ 0 and

(sm, xm) −−−−−→
m→+∞

(τ, x) such that, for each m,

(λ−1
m ξ0

m, λ
−1
m ξ1

m) ∈ ∂+U
∗(sm, xm) .

By (d)(ii), we obtain

ξ0
m + ξ1

m · v+(sm, xm) + λmL((sm)+, xm, v
+(sm, xm)) ≥ 0.

By extracting suitable subsequences and arguing as in the proof of Theorem 4.4.1 we deduce that (4.41) is

verified.

Observe that the last condition in (4.40) means that `kj,i(t) ≤ (U|[S,T ]×A)∗(τkj,i(t), x
k
j,i(t)), for all t ∈ [t̄j , tj,i].

It follows that at t = tj,i:

(U|[S,T ]×A)∗(t̄j , x
k
j,i(t̄j))−

∫ tj,i

t̄j

L(s, xkj,i(s), ẋ
k
j,i(s))ds ≤ (U|[S,T ]×A)∗(tj,i, ωj,i), for every k, i and j.
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Applying Lebesgue’s dominated convergence, taking a subsequence if necessary and without relabeling, in

the limit as k → +∞ we obtain

U(t̄j , xj,i(t̄j)) ≤ lim inf
k→+∞

U(t̄j , x
k
j,i(t̄j)) ≤ lim inf

k→+∞
(U|[S,T ]×A)∗(t̄j , x

k
j,i(t̄j))

≤ (U|[S,T ]×A)∗(tj,i, ωj,i) +

∫ tj,i

t̄j

L(s, xj,i(s), ẋj,i(s))ds, for every i and j.

Then, taking the limit as i→ +∞, we have

U(t̄j , xj(t̄j)) ≤ lim inf
i→+∞

U(t̄j , xj,i(t̄j))

≤ lim
i→+∞

U∗|[S,T ]×A(tj,i, ωj,i) +

∫ T

t̄j

L(s, xj(s), ẋj(s))ds, for every j ≥ 1.
(4.42)

From (4.39) and the upper semicontinuity of (U|[S,T ]×A)∗ it follows that

lim inf
{(t′,x′)→(T,ξj) | t′<T,x′∈intA}

(U|[S,T ]×A)∗(t′, x′) ≤ lim sup
{(t′,x′)→(T,ξj),x′∈A}

(U|[S,T ]×A)∗(t′, x′) ≤ (U|[S,T ]×A)∗(T, ξj).

Using these relations and the fact that (U|[S,T ]×A)∗(T, ·) = (g|A)∗(·) (from (4.42)), we deduce that

U(t̄j , xj(t̄j)) ≤ (g|A)∗(ξj) +

∫ T

t̄j

L(s, xj(s), ẋj(s))ds, for every j ≥ 1.

Recalling that the sequence (ξj)j∈N satisfies (4.38) and that U is lower semicontinuous, passing to the limit

as j → +∞ we obtain:

U(t̄, x(t̄)) ≤ lim inf
j→+∞

U(t̄j , xj(t̄j)) ≤ g|A(x(T )) +

∫ T

t̄
L(s, x(s), ẋ(s))ds,

which concludes the proof since x(·) was an arbitrary feasible F -trajectory such that x(t̄) = t̄.

2

4.10 Proof of Theorem 4.4.4

We observe that, if the inward pointing constraint qualification is in force and g is continuous on A, we

obtain that V|[S,T ]×A is continuous too, and so, in view of Theorem 4.4.2 and Proposition 4.9.1 we obtain

that (a), (b) and (c) are equivalent and ‘(a) ⇒ (d)′’ ((d)′ is the simplified version of (d) which appears in

Theorem 4.4.4 statement). As a consequence, we can restrict attention to the implication ‘(d)′ ⇒ (a)’. To

this aim, we assume (H1)-(H7) and take an extended valued function U : [S, T ]×Rn → R∪{+∞} such that

U|[S,T ]×A is continuous and U(t, x) = +∞ when x /∈ A, and employing a consolidated approach we divide

the proof of the desired property into two steps:

(A)′ if U satisfies (d)′(i) and U(T, x) = g(x) for all x ∈ A, then V (t, x) ≤ U(t, x) for any (t, x) ∈ [S, T ]×A.

(B)′ if, in addition, (H8) and (OPC) hold, and U satisfies (d)′(ii) and (d)′(iii), then V (t, x) ≥ U(t, x) for

any (t, x) ∈ [S, T ]×A.
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Since (A)′ can be easily deduced as in step (A) of the proof of Theorem 4.4.3, consider here only (B)′.

Take (t̄, x̄) ∈ [S, T ] × A, and a feasible F -trajectory x(·) on [t̄, T ] such that x(t̄) = x̄. With the help of

property (CQ)FW (with θ(ρ) = Kρ(1 + | ln(ρ)|)), we can find a sequence of feasible F -trajectories (xj)j≥1

on [t̄, T ] such that, for every j ≥ 1, xj(t̄) = x̄, xj(t) ∈ intA for all t ∈ ]t̄, T ], and:

‖x− xj‖W 1,1([t̄,T ]) ≤
1

j
. (4.43)

Take a sequence (tj)j≥1 in ]t̄, T [ such that tj ↓ t̄. A now routine analysis reveals that, for each j, we can find

a sequence of F -trajectories (xij)i∈N on [tj , T ] such that

‖xj − xij‖W 1,1([tj ,T ]) ≤
1

i
and xij(tj) = xj(tj), (4.44)

and the arc (τ̃ , x̃, ˜̀) on [tj , T ] defined by

t 7→ (τ̃ , x̃, ˜̀)(t) :=

Ç
t, xij(t), U(tj , x

i
j(tj))−

∫ t

tj

L(s, xij(s), ẋ
i
j(s))ds

å
,

is such that {
τ(tj) = tj , y(tj) = xij(tj), `(tj) = U(tj , x

i
j(tj)),

(τ(t), y(t), `(t)) ∈ hypU, for all t ∈ [tj , T ].
(4.45)

The last condition in (4.45) yields ˜̀(t) ≤ U(t, xij(t)), for all t ∈ [tj , T ]. It follows that for t = T :

U(tj , x
i
j(tj))−

∫ T

tj

L(s, xij(s), ẋ
i
j(s))ds ≤ U(T, xij(T )). (4.46)

Bearing in mind (4.44), and passing to the limit in (4.46) as i→ +∞, we obtain

U(tj , xj(tj)) ≤ U(T, xj(T )) +

∫ T

tj

L(s, xj(s), ẋj(s))ds, for every j ≥ 1.

Now invoking (4.43), the feasibility of xj(·) and the continuity of U on [S, T ]×A, and condition (d)′(iii), we

take the limit as j → +∞ in the previous inequality deducing:

U(t̄, x̄) ≤ lim
j→+∞

U(tj , xj(tj)) ≤ g(x(T )) +

∫ T

t̄
L(s, x(s), ẋ(s))ds.

This shows that:

U(t̄, x̄) ≤ V (t̄, x̄).

2

4.11 Proof of Theorem 4.6.1

The proof of Theorem 4.6.1 is inspired by techniques proposed in two papers: [22] and [29]. The first one

provides linear L∞ distance estimates for general closed sets A and differential inclusions with bounded time

variation. On the other hand, [29] deals with convex compact sets A coupled with differential inclusions

involving Lipschitz (time-independent) multifunctions F obtaining ρ| ln(ρ)|-W 1,1 estimates. However, our

proof gives a ρ| ln(ρ)|-W 1,1 estimate for convex sets A with bounded time variation multifunction F , nec-

essarily differs in many points from [22] and [29] and, for this reason, we provide it in detail, referring to
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previous work only for some technical lemmas.

We start providing some technical lemmas, which we shall employ in our analysis. The first one (a proof of

which can be found in [22, Lemma 5]) summarises implications of the inward pointing condition (IPC)′.

Lemma 4.11.1 Suppose the multifunction F : [S, T ] × Rn ; Rn and the closed set A satisfy hypotheses

(H1)′, (H2), (H3), (H4)(i) and assumption (IPC)′ (for some R0 ≥ 0). Then there exist M > 0, ε > 0, η̄ > 0

and a finite time set {τ̄j}j∈J ⊂ [S, T ] with the following property: for any (t, x) ∈ [S, T ]×
(
(∂A+η̄B)∩R0B∩A

)
,

there exists

v ∈

 coF (t, x) ∩MB if t /∈ {τ̄j}j∈J

coF (t+, x) ∩MB if t ∈ {τ̄j}j∈J ,

such that

y + [0, ε](v + εB) ⊂ A

for all y ∈ (x+ εB) ∩A.

The next lemma represents an useful ‘hypotheses reduction’ result, a proof of which can be obtained following

the argument of [22, Lemma 4], the statement of which differs from Lemma4.11.2 below in three respects:

it concerns merely L∞-estimates, it reduces attention to the case in which ‘F (t, x) is convex for all (t, x)’,

and condition (iv) of Lemma4.11.2 is not considered. We observe that the same analysis of the proof of [22,

Lemma 4] can be employed here to derive W 1,1-estimates (which is what we need to prove Theorem 4.6.1),

except the fact that, at this stage, we cannot reduce to the situation where F is convex valued. Condition

(iv) of Lemma 4.11.2 does not appear in [22, Lemma 4], but can be easily deduced for multifunctions F

satisfying (H1)′, (H2), (H3) and in particular the bounded time variation hypothesis (H4)(i) (cf. discussion

on [21, 22]).

Lemma 4.11.2 Assume that, for δ > 0, ρ̄ > 0 and γ > 0 sufficiently small, the assertions of Theorem

4.6.1 are valid under hypotheses (H1)′, (H2), (H3), (H4) and (IPC), and when the following conditions are

imposed on the reference F -trajectory x̂(·) : [t0, t1] → Rn, with x̂(t0) ∈ A ∩
(
e
∫ t0
S cF (s)ds(r0 + 1) − 1

)
B, and

the positive number ρ ≥ max{dA(x̂(t)) | t ∈ [t0, t1]}:

(i): ρ ≤ ρ̄;

(ii): t1 − t0 ≤ δ;

(iii): η(t0)− η(t1) ≤ γ;

(iv): there exist c0 > 0 and kF > 0 such that

F (t0, x) = F (t+0 , x) for all x ∈ R0B,

F (t, x) ⊂ c0 B for all (t, x) ∈ [S, T ]×R0B, and

F (t, x′) ⊂ F (t, x) + kF |x− x′| B for all x, x′ ∈ R0B and t ∈ [S, T ],

where R0 = e
∫ T
S cF (s)ds(r0 + 1).

Then the assertions are valid under (H1)′, (H2), (H3), (H4) and (IPC) alone, and without conditions (i) –

(iv).
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The third lemma guarantees the existence of solutions to a differential inclusion ẋ ∈ G(t, x), where the velocity

set G is obtained modifying the reference multivalued function F intersecting it with a ball with a (t, x)-

dependent radius and centred at v(t) where v is a measurable selection of a perturbation of F evaluated along

a given continuous arc φ. Lemma 4.11.3 below extends [29, Lemma 3] (which deals with time-independent

Lipschitz continuous F ) providing an existence result when bounded time variation multifunctions F are

involved. It will be coupled with a ’convexification argument’ which is based on a Lyapunov type Theorem.

(We refer the reader to [36, Chapter 16] for a proof and for a discussion on Lyapunov type Theorems; the

application of these results to derive distance estimates results was first suggested in [29].)

Lemma 4.11.3 Consider a multifunction F satisfying (H1)′, (H2), (H3), (H4)(i) and condition (iv) of

Lemma 4.11.2. Given an interval [t0, t1] ⊂ [S, T ] and measurable functions w, φ : [t0, t1]→ Rn, we consider

a multifunction G : [t0, t1]× Rn ; Rn defined as follows:

G(t, x) :=

{
(w(t) + [2kF |x− φ(t)|+ α(t)]intB) ∩ F (t, x) if |x− φ(t)|+ α(t) > 0

{w(t)} if |x− φ(t)|+ α(t) = 0,
(4.47)

where α : [t0, t1] → R+ is a measurable function such that (w(t) + [2k0|x − φ(t)| + α(t)]intB) ∩ F (t, x) 6= ∅
whenever |x− φ(t)|+ α(t) > 0. Then

(i) G takes non-empty compact values in c0B and is ‘Scorza-Dragoni lower semicontinuous’ on [t0, t1]×Rn,

and

(ii) for every x0 ∈ Rn, the differential inclusion{
ẋ(t) ∈ G(t, x(t)), for all t ∈ [t0, t1],

x(t0) = x0,
(4.48)

admits at least a solution.

Proof. Making use of an existence result by Bressan [28] on solutions to differential inclusions involving

merely ‘Scorza-Dragoni lower semicontinuous’ multifunctions, property (ii) becomes an immediate conse-

quence of (i). So we prove (i) recalling that the multifunction G : [t0, t1]×Rn ; Rn is Scorza-Dragoni lower

semicontinuous if for every ε > 0 there exists a compact set Jε ⊂ [t0, t1] with meas (Jε) > t1 − t0 − ε such

that G is lower semicontinuous when restricted to Jε × Rn.

Fix ε > 0. From Lusin’s Theorem, we can find a compact set Jε ⊂ [t0, t1] such that meas(Jε) > t1 − t0 − ε
and such that w(·), φ(·), α(·) and η(·) are continuous on Jε. Let O ⊂ Rn be an open set. Our aim is to

show that the set G−1(O) ∩ (Jε × Rn) = {(t, x) ∈ Jε × Rn | G(t, x) ∩ O 6= ∅} is open in Jε × Rn. Take any

(t̄, x̄) ∈ G−1(O) ∩ (Jε × Rn). Then there exists w̄ ∈ G(t̄, x̄) ∩ O. We distinguish two situations.

(a): |x̄− φ(t̄)|+ α(t̄) = 0. It means that w̄ = w(t̄) ∈ O. Since O is open, there exist r > 0 and δ̄ ∈ (0, r
8kF

)

such that w(t̄) + rB ⊂ O and

|η(t)− η(t̄)| ≤ r

8
, |w(t)− w(t̄)| ≤ r

8
, |α(t)− α(t̄)| ≤ r

8
, |φ(t)− φ(t̄)| ≤ r

8kF
, (4.49)

for all t ∈ Jε with |t̄− t| ≤ δ̄. Then it is easy to see that for all (t, x) ∈ Jε×Rn with |t̄− t| ≤ δ̄ and |x̄−x| ≤ δ̄,
we obtain that

G(t, x) ⊂ w(t̄) +
3

4
r B ⊂ O .
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(b): |x̄ − φ(t̄)| + α(t̄) > 0. In this case we observe that w̄ ∈ F (t̄, x̄) is such that it belongs also to the open

set (w(t̄) + [2kF |x̄− φ(t̄)|+ α(t̄)]intB) ∩O. Then, again we can find r > 0 and δ̄ ∈ (0, r
8kF

) such that (4.49)

is satisfied and

w̄ + 2rB ⊂ (w(t̄) + [2kF |x̄− φ(t̄)|+ α(t̄)]intB) ∩ O.

It follows that for all (t, x) ∈ Jε × Rn with |t̄− t| ≤ δ̄ and |x̄− x| ≤ δ̄, we have

(w̄ + rB) ∩ F (t, x) 6= ∅ and w̄ + rB ⊂ (w(t) + [2kF |x− φ(t)|+ α(t)]intB) ∩ O.

Then in both situations (t̄, x̄) belongs to the relative interior of G−1(O) ∩ (Jε × Rn).

2

Proof of Theorem 4.6.1 Fix r0 > 0. Assume that the multifunction F and the set A in the theorem

statement satisfy (H1)′, (H2), (H3), (H4) and (IPC) with functions cF ∈ L1(S, T ) and kF ∈ L∞(S, T ), for

R0 := e
∫ T
S c(s)ds(1 + r0). (Observe that the constant R0 bounds the magnitude of the F -trajectories x(·) on

subintervals of [S, T ] originating in r0B.)

Let η(·) be modulus of variation appearing in (H4). Recall that Lemma 4.11.1 establishes the existence

of constants M > 0, ε > 0, η̄ > 0 and a finite time set {τ̄j}j∈J ⊂ [S, T ] such that, given any (t, x) ∈
[S, T ]×

(
(∂A+ η̄B) ∩R0B ∩A

)
, we can find

v ∈

 coF (t, x) ∩MB if t /∈ {τ̄j}j∈J

coF (t+, x) ∩MB if t ∈ {τ̄j}j∈J ,

with the following property:

x′ + [0, ε](v + εB) ⊂ A (4.50)

for all x′ ∈ (x+ εB) ∩A.

To validate the theorem statement we will show that there exists a constant K > 0 such that, for any

interval [t0, t1] ⊂ [S, T ], any F -trajectory x̂(·) on [t0, t1] with x̂(t0) ∈ A ∩
(
e
∫ t0
S cF (s)ds(r0 + 1)− 1

)
B, and any

ρ > 0 satisfying ρ ≥ max{dA(x̂(t)) | t ∈ [t0, t1]}, we can find a feasible F -trajectory x(·) on [t0, t1] such that

x(t0) = x̂(t0),

x(t) ∈ intA for all t ∈ (t0, t1] (4.51)

‖x̂− x‖L∞([t0,t1]) ≤ K ρ , (4.52)

and

‖ ˙̂x− ẋ‖L1([t0,t1]) ≤ K ρ(1 + | ln(ρ)|) . (4.53)

Lemma 4.11.2 allows us to restrict attention, without loss of generality, to the case when

(i): ρ ≤ ρ̄ ;

(ii): t1 − t0 ≤ δ and, if τ̄j ∈ [t0, t1] for some j ∈ J , then either τ̄j = t0 or τ̄j = t1 ;

(iii): η(t1)− η(t0) ≤ γ ;

131



(iv):

F (t0, x) = F (t+0 , x) for all x ∈ R0B ,

F (t, x) ⊂ c0 B for all (t, x) ∈ [S, T ]×R0B , and

F (t, x′) ⊂ F (t, x) + kF |x− x′| B for all x, x′ ∈ R0B and t ∈ [S, T ]

for δ > 0, ρ̄ > 0 and γ > 0 sufficiently small, and c0 > 0 and kF > 0 sufficiently large. Since we can assume

that F (t0, x) = F (t+0 , x) for all x ∈ R0B, we can also replace η(·) by the non-decreasing bounded variation

function η0 : [S, T ]→ [0,∞) defined by the relation η0(t) :=

®
0 if t = t0
η(t)− η(t+0 ) if t ∈ ]t0, t1]

.

Observe that, increasing the size of c0 > 0 and, then, reducing the size of δ > 0, ρ̄ > 0 and γ > 0, if necessary,

we can also ensure that

c0 ≥M(≥ 1), ε < 1, δ ≤ ε, kF c0δ + γ ≤ ε

16
, ρ̄+ 2c0δ < ε, ρ̄ <

δε

4
, ρ̄ ≤ η̄, (4.54)

and

4δc0 ≤ η̄, e2kF δ
[
1/4 + 3kF (1 + 4c0/ε)δ + δ/4 + 4µ/ε+ (ρ̄/ε)× | ln(4ρ̄/ε)|

]
≤ 3

4
. (4.55)

Here µ > 0 is the number appearing in assumption (H4)(ii).

Let {t0 =: t̃0 < t̃1 < t̃2 < . . . < t̃M := t1} be a partition of [t0, t1] such that for each k = 0, 1, . . . ,M − 1 we

have

lim
ε↓0

∫ t̃k+1

t̃k+ε

η(τ)− η(t̃+k )

τ − t̃k
dτ ≤ µ .

Observe that, employing a standard argument which allows to concatenate a finite number of intervals, it is

not restrictive to assume the case when t̃0 = t0 and t̃1 = t1.

Set k := 4
ε .

Notice that, if x̂(t0) ∈
(
A∩

(
e
∫ t0
S cF (s)ds(r0 +1)−1

)
B
)
\ (∂A+ η̄

2B), then from the first condition in (4.55) and

(ii) above we deduce that x(·) = x̂(·) is a feasible F -trajectory having the required properties. Therefore, it

is not restrictive to impose also that x̂(t0) ∈ (∂A+ η̄
2B)∩A∩

(
e
∫ t0
S cF (s)ds(r0 + 1)− 1

)
B. From the definition

of R0 is follows that

x̂(t0) ∈ (∂A+
η̄

2
B) ∩R0B ∩A.

Owing to Lemma 4.11.1 and (iv) above we can take a vector v ∈ coF (t0, x̂(t0)) = coF (t+0 , x̂(t0)) such that

|v| ≤ c0 and property (4.50) holds for (t, x) = (t0, x̂(t0)). Then, we consider the arc y(·) : [t0, t1]→ Rn such

that y(t0) = x̂(t0) and

ẏ(t) =

 v if t ∈ [t0, (t0 + kρ) ∧ t1]

kρ
t−t0

x̂(t)−x̂(t0)
t−t0 +

Ä
1− kρ

t−t0

ä
˙̂x(t) if t ∈ ]t0 + kρ, t1] .

(4.56)

Observe that

y(t) =

 x̂(t0) + (t− t0)v if t ∈ [t0, (t0 + kρ) ∧ t1]

x̂(t0) + kρv +
Ä
1− kρ

t−t0

ä
(x̂(t)− x̂(t0)) if t ∈ ]t0 + kρ, t1] .

(4.57)

Therefore, for all t ∈ (t0, (t0 + kρ) ∧ t1], since t− t0 ≤ δ ≤ ε, it follows from (4.50) that

y(t) + (t− t0)εB = x̂(t0) + (t− t0)(v + εB) ⊂ A .
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Moreover, whenever t0 + kρ < t1, for all t ∈ [t0 + kρ, t1], from (4.57) we deduce that

|y(t)− x̂(t)| ≤ c0kρ+ kρ
x̂(t)− x̂(t0)

t− t0
≤ 2c0kρ, (4.58)

and

y(t) =
kρ

t− t0
x̂(t0) +

Å
1− kρ

t− t0

ã
x̂(t) + kρv ∈ A+ kρv + ρ̂B, (4.59)

where ρ̂ := max{dA(x̂(t)) | t ∈ [t0, t1]}. Write ỹ(t) the projection on A of t 7→ y(t). As a consequence, from

(4.50), (4.54) and (4.59) and bearing in mind that ρ ≥ ρ̂ and that k = 4/ε, for all t ∈ [t0 + kρ, t1] we have

y(t) + 2ρB ⊂ ỹ(t) +
4ρ

ε

Å
v +

3

4
εB
ã
⊂ ỹ(t) + ε(v + εB) ⊂ A . (4.60)

From (4.56) and condition (iv) it follows that (it is not restrictive to suppose that t0 + kρ < t1):

‖ẏ − ˙̂x‖L1(t0,t1) ≤
∫ t0+kρ

t0

|ẏ(t)− ˙̂x(t)|dt+

∫ t1

t0+kρ

Å
kρ

t− t0
x̂(t)− x̂(t0)

t− t0
+

kρ

t− t0
| ˙̂x(t)|

ã
dt

≤ 2c0kρ+ 2c0kρ

∫ t1

t0+kρ

1

t− t0
dt

≤ K0ρ× (1 + | ln ρ|), (4.61)

where K0 := 2c0k(1 + ln k). On the other hand, from (4.57) and (4.58) we easily arrive at

‖y − x̂‖L∞([t0,t1]) ≤ c0kρ ≤ K0ρ. (4.62)

Let {τk}k≥1 be a strictly decreasing sequence such that τ1 := (t0 + kρ) ∧ t1, limk→+∞ τk = t0 and

τk − τk+1 <
τk − t0

4c0
ε. (4.63)

Since v ∈ coF (t0, x̂(t0)), owing to Carathéodory’s Theorem, we can find vectors v1, . . . , vn+1 ∈ F (t0, x̂(t0))

and numbers λ1, . . . , λn+1 ∈ [0, 1] such that
∑n+1

i=1 λi = 1 and v =
∑n+1

i=1 λivi. For each integer k ≥ 1,

we consider a partition of the interval [τk+1, τk](⊂ [t0, (t0 + kρ) ∧ t1]) into n + 1 subintervals Ik,i such

that meas(Ik,i) = λi(τk+1 − τk), for all i = 1, . . . , n+ 1. Set Ii :=
⋃+∞
k=1 Ik,i (which is a measurable set) and

w(t) :=
∑n+1

i=1 viχIi(t)(χIi(·) is the indicator function of Ii.) Let z(·) be a solution to the following differential

equation {
ż(t) = w(t) a.e. t ∈ [t0, τ1],

z(t0) = x̂(t0).

Consider the multivalued function G1 : [t0, τ1]× Rn ; Rn defined as

G1(t, x) :=

{
(w(t) + [2kF |x− x̂(t0)|+ η0(t)]intB) ∩ F (t, x) if |x− x̂(t0)|+ η0(t) > 0

{w(t)} if |x− x̂(t0)|+ η0(t) = 0.
(4.64)

and the associated differential inclusion{
ẋ(t) ∈ G1(t, x(t)) for a.e. t ∈ [t0, τ1],

x(t0) = x̂(t0).
(4.65)

Since w(·) is measurable and t 7→ η0(t) is a measurable (increasing) function such that (w(t) + [2kF |x −
x̂(t0)|+ η0(t)]intB) ∩ F (t, x) 6= ∅, when |x− x̂(t0)|+ η0(t) > 0, we can apply Lemma 4.11.3 (with φ = x̂(t0)
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and α(·) = η0(·)), obtaining the existence of a solution x(·) to (4.65). Observe that for all t ∈ [t0, τ1] we

have:

|ẋ(t)− ż(t)| ≤ 2kF |x(t)− x0|+ η0(t) ≤ 2kF c0(t− t0) + η0(t).

From Gronwall’s Inequality and (4.54) it follows that, for all t ∈ [t0, τ1],

|x(t)− z(t)| ≤ kF c0(t− t0)2 +

∫ t

t0

η0(s)ds ≤ kF c0(t− t0)2 + γ(t− t0)

≤ (t− t0)[kF c0δ + γ] ≤ ε

16
kρ (=

ρ

4
). (4.66)

Recalling that, for all k ≥ 1, we have z(τk) = y(τk), using (4.63) we deduce that , for all t ∈ [τk+1, τk],

|z(t)− y(t)| ≤ 2c0|τk − τk+1| ≤
ε

2
(τk − t0) ≤ ε

16
kρ (=

ρ

4
). (4.67)

Moreover, we also obtain that z(τk) = x̂(t0) + (τk − t0)v and, bearing in mind (4.66) and (4.63), that for all

t ∈ [τk+1, τk]

x(t) ∈ x(τk) + c0|τk − τk+1|B ⊂ z(τk) + (τk − t0)[kF c0δ + γ]B + c0|τk − τk+1|B
⊂ x̂(t0) + (τk − t0)(v + [kF c0δ + γ + ε/4]B)

⊂ x̂(t0) + ε(v +
1

2
εB).

As a consequence, owing to (4.50), it follows that

x(t) ∈ intA for all t ∈ (t0, t0 + kρ]. (4.68)

Recalling (4.62), (4.66) and (4.67), we obtain:

‖x− x̂‖L∞([t0,τ1]) ≤ ‖x− z‖L∞([t0,τ1]) + ‖z − y‖L∞([t0,τ1]) + ‖y − x̂‖L∞([t0,τ1]),

≤ ρ

4
+
ρ

4
+K0ρ,

< (1 +K0)ρ.

(4.69)

On the other hand it is straightforward to see that

‖ẋ− ˙̂x‖L1([t0,τ1]) ≤ 2c0kρ ≤ K0ρ. (4.70)

If t0 + kρ ≥ t1 (that is τ1 = t1), then the F -trajectory x(.) satisfies all the required properties (4.51), (4.52)

and (4.53). Then we continue our analysis assuming that t0 + kρ < t1. Set x̄0 := x(t0 + kρ).

Observe that the function η0(·) can be decomposed into the sum of a continuous functions ηc0(·) on [t0, t1]

and a countable family of step functions {ψj(·)} satisfying, for each j ≥ 1,

ψj(t) = aj ×
®

1 if t > σj
0 if t < σj ,

in which {σj} is a sequence of distinct points in [t0, t1] and {aj} is a sequence of non-negative numbers. (In

the analysis to follow, we do not have to take account of the value of ψj(·) at its ‘jump’ time σj .) Take

δ0 ∈ (0, δ ∧ ρ
4δ ) such that we can ensure that

ηc0(t′)− ηc0(s′) <
ρ

32c0kF
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for all subinterval [s′, t′] ⊂ [t0, t1] such that t′ − s′ ≤ δ0 We also know that the sequence {aj} is necessarily

such that
∑

j aj < ∞ . Then, there exists a finite index set J0 ⊂ {1, 2, . . .} such that∑
j /∈J0

aj <
ρ

32c0kF
.

Take β ∈
ó
0, k2ρ3

12(2c0+|x̂(t0)|)

ó
. Notice that there exist N positive numbers b0, b1, . . . , bN−1 and a partition of

[t0 + kρ, t1], S := {t0 + kρ =: s0 < s1 < s2 < . . . < sN := t1}, such that S ⊃ {σj | σj ∈ [t0 + kρ, t1] and j ∈
J0}, sk+1 − sk ≤ β for all k = 0, 1, . . . , N − 1, and, for each k = 0, 1, . . . , N − 1,

|(c0kF (s− t0) + η0(s))− bk| ≤
ρ

8
, for all s ∈ (sk, sk+1), (4.71)

which yields
N−1∑
k=0

∫ sk+1

sk

|(c0kF (s− t0) + η0(s))− bk|ds ≤
ρ

8
(t1 − t0). (4.72)

Observe that for every t ∈ [t0 + kρ, t1] we have:

x̂(t)− x̂(t0)

t− t0
=

1

t− t0

∫ t

t0

˙̂x(s)ds ∈ co
[
F (t+0 , x̂(t0)) + (kF c0(t− t0) + η0(t))B

]
.

From Carathéodory’s Theorem, for each k = 0, . . . , N − 1, we can choose vectors

vk,1, . . . , vk,n+1 ∈ F (t+0 , x̂(t0)) + (kF c0(sk − t0) + η0(sk))B = F (t0, x̂(t0)) + (kF c0(sk − t0) + η0(sk))B

and numbers λk,1, . . . , λk,n+1 in [0, 1] such that:

x̂(sk)− x̂(t0)

sk − t0
=

n+1∑
i=1

λk,ivk,i and
n+1∑
i=1

λk,i = 1.

Fix k ∈ {0, . . . , N−1}. We apply the Lyapunov Theorem (cf. [36, Theorem 16.1.v]) on the reference interval

[sk, sk+1] with the n + 2 integrable vector functions fk,0(·) = ˙̂x(·), fk,1(·) ≡ vk,1, . . . , fk,n+1(·) ≡ vk,n+1, and

the n+ 2 weight functions pk,0(s) := 1− kρ
s−t0 , pk,1(s) := kρ

s−t0λk,1, . . . , pk,n+1(s) := kρ
s−t0λk,n+1. We obtain a

decomposition of [sk, sk+1] into disjoint measurable subsets Ek,0, Ek,1, . . . , Ek,n+1 ⊂ [sk, sk+1], satisfying

meas(Ek,i) =

∫ sk+1

sk

pk,i(s)ds, for each i = 0, 1, . . . , n+ 1, (4.73)

and
n+1∑
i=0

∫ sk+1

sk

fk,i(s)pk,i(s)ds =

n+1∑
i=0

∫
Ek,i

fk,i(s)ds. (4.74)

From these relations it easily follows that∫
Ek,0

˙̂x(s)ds =

∫ sk+1

sk

Å
1− kρ

s− t0

ã
˙̂x(s)ds. (4.75)

Now we provide an extension of the F trajectory x(·) above on [t0+kρ, t1] considering the following differential

inclusion {
ẋ(t) ∈ G2(t, x(t)) a.e. t ∈ [t0 + kρ, t1],

x(t0 + kρ) = x̄0

(4.76)
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where the multivalued function G2 : [t0 + kρ, t1]× Rn ; Rn is defined as

G2(t, x) :=

{
(w2(t) + [2kF |x− x̂(t)|+ α2(t)]intB) ∩ F (t, x) if |x− x̂(t0)|+ η0(t) > 0

{w2(t)} if |x− x̂(t0)|+ η0(t) = 0.
(4.77)

in which w2(t) := ˙̂x(t)χE0(t) +
∑N−1

k=0

∑n+1
i=1 vk,iχEk,i(t), E0 := ∪N−1

k=0 Ek,0, and α2(t) := 2[kF c0(t − t0) +

η0(t)]χ∪n+1
i=1 Ek,i

(t). All the hypotheses of Lemma 4.11.3 are satisfied, then there exists a solution to (4.76),

which is also an F -trajectory extending the F -trajectory x(·) previously constructed on [t0, t0 +kρ]: we write

x(·) the obtained F -trajectory on all [t0, t1].

Consider the arc ŷ : [t0 + kρ, t1]→ Rn such that{
˙̂y(t) = w2(t) for a.e. t ∈ [t0 + kρ, t1]

ŷ(t0 + kρ) = y(t0 + kρ) = x̂(t0) + kρv .

Since y(t0 + kρ) = ŷ(t0 + kρ), using (4.73) and (4.75), for all k′ ∈ {0, 1, . . . , N − 1}, we have

|y(sk′)− ŷ(sk′)| ≤
k′−1∑
k=0

∣∣∣∣∫ sk+1

sk

(ẏ(s)− ˙̂y(s))ds

∣∣∣∣
=

k′−1∑
k=0

∣∣∣∣∫ sk+1

sk

kρ

s− t0

( x̂(s)− x̂(t0)

s− t0
− x̂(sk)− x̂(t0)

sk − t0

)
ds

∣∣∣∣
≤ 2(|x̂(t0)|+ δc0)

(kρ)2
β.

Therefore, taking into account also the fact that, for all k ∈ {0, 1, . . . , N − 1} and for all s ∈ [sk, sk+1]

|y(s)− y(sk)| ≤
|x̂(t0)|+ 2δc0

kρ
β and |ŷ(s)− ŷ(sk)| ≤ c0β,

for our choice of β it follows that

‖y − ŷ‖L∞(t0+kρ,t1) ≤
ρ

4
. (4.78)

On the other hand, from (4.62) and (4.78) we also know that for a.e. t ∈ [t0 + kρ, t1]

|ẋ(t)− ˙̂y(t)| ≤ 2kF |x(t)− x̂(t)|+ α2(t)

≤ 2kF (|x(t)− ŷ(t)|+ |ŷ(t)− y(t)|+ |y(t)− x̂(t)|) + α2(t)

≤ 2kF |x(t)− ŷ(t)|+ 2kF (1/4 + c0k)ρ+ α2(t).

Then, recalling that ŷ(t0 + kρ) = z(t0 + kρ) from (4.66) we have |x(t0 + kρ) − ŷ(t0 + kρ)| ≤ ρ/4, and so

making use of Gronwall’s Inequality, and bearing in mind (4.54), (4.71) and (4.72), we deduce that for all

t ∈ [t0 + kρ, t1]

|x(t)− ŷ(t)| ≤ e2kF δ
[
ρ/4 + 2kF (1/4 + c0k)δρ+ 2

N−1∑
k=0

∫ sk+1

sk

[kF c0(s− t0) + η0(s)]χ∪n+1
i=1 Ek,i

(s)ds
]

≤ e2kF δ
[
ρ/4 + 2kF (1/4 + c0k)δρ+ δρ/4 + c0kFkδρ

+kρ

∫ t1

t0+kρ

η(s)− η(t+0 )

s− t0
ds+ kρ2/8| ln(kρ)|

]
< e2kF δ [1/4 + 3kF (1 + 4c0/ε)δ + δ/4 + 4µ/ε+ (ρ/ε)× | ln(4ρ/ε)|] ρ

≤ 3

4
ρ. (4.79)
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From (4.78) and (4.79), it follows that

‖y − x‖L∞([t0+kρ,t1]) ≤ ρ, (4.80)

and, recalling also (4.60), we deduce that

x(t) + ρB ⊂ A, for all t ∈ [t0 + kρ, t1],

which yields, with (4.68), (4.51). A further consequence of (4.80), together with (4.62), is

‖x̂− x‖L∞([t0+kρ,t1]) ≤ (K0 + 1)ρ. (4.81)

It remains to derive an estimate for ‖ẋ− ˙̂x‖L1([t0+kρ,t1]). To see this we consider∫ t1

t0+kρ
|ẋ(s)− ˙̂x(s)|ds =

∫
E0

|ẋ(s)− ˙̂x(s)|ds+

∫
[t0+kρ,t1]\E0

|ẋ(s)− ˙̂x(s)|ds,

≤
∫
E0

2kF |x(s)− x̂(s)|ds+

∫
[t0+kρ,t1]\E0

2c0ds.

Thus, using also (4.54), (4.73) and (4.81), we obtain

‖ẋ− ˙̂x‖L1([t0+kρ,t1]) ≤ 2kF (K0 + 1)δρ+ 2c0

∫ t1

t0+kρ

kρ

s− t0
ds,

≤ (K0 + 1)ρ+K0ρ(1 + | ln(ρ)|).

This estimate and (4.70) confirm (4.53) taking K := 2(K0 + 1). From (4.69) and (4.69), clearly also (4.52)

is validated with the same choice for K.

2
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Part 2

Applications of Optimal control in

Calculus of Variations
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5
Higher order problems in the Calculus of

Variations : Du Bois-Reymond inclusion

and regularity of minimizers

The results of this chapter have been published [14].

5.1 Abstract of chapter 5

The problem considered in chapter 5 is a non autonomous N-order Bolza problem
Minimize I(x) :=

∫ b

a
L(s, x(s), x(1)(s), x(2)(s), . . . , x(N)(s))ds

+Ψ
Ä
(x, x(1), . . . , x(N−1))(a), (x, x(1), . . . , x(N−1))(b)

ä
,

over arcs x ∈WN,m([a, b],R),

(CV)

where L is merely Borel measurable, and is possibly extended valued. Two different types of result are

presented.

Imposing the integrable boundedness of the partial proximal subgradients (up to the (N − 2)-order variable)

along a neighborhood of a local minimizer x∗(·), necessary conditions for optimality in the Euler-Lagrange

form and, for the first time for higher order problems, in the Erdmann – Du Bois-Reymond form are pro-

vided. Quite noticeably, these results are obtained without imposing on L to be convex with respect to the

last variable, nor to have any kind of specific growth behavior.

By adding an extra growth assumption that is more general than the usual superlinearity with respect to

the last variable, the necessary conditions we obtained are exploited to establish that the last derivative of

the minimizer x∗(·), that is to say x
(N)
∗ (·), is essentially bounded.

The important contributions of this work compared with the most recent article dealing with this problem

[60] are the following: the possibility to consider an extended-value Lagrangian, a more general growth

condition for L, necessary conditions expressed in the Erdmann – Du Bois-Reymond form, as well as a
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simplification of the proof of the regularity of the minimizers, invoking a time reparameterization argument

alone instead of combining it with the study of the Tonelli set of x∗(·).

5.2 Résumé du chapitre 5

Le problème considéré dans le chapitre 5 est celui d’un problème de Bolza non-autonome d’ordre N :
Minimiser I(x) :=

∫ b

a
L(s, x(s), x(1)(s), x(2)(s), . . . , x(N)(s))ds

+Ψ
Ä
(x, x(1), . . . , x(N−1))(a), (x, x(1), . . . , x(N−1))(b)

ä
,

parmi les arcs x ∈WN,m([a, b],R),

(CV)

dans lequel le lagrangien L est seulement Borel mesurable, et peut prendre pour valeur +∞. Les travaux

présentés dans le chapitre 5, sont de deux natures.

En imposant que le gradient proximal de L par rapport à ses (N − 2) premières variables soit borné dans

L1 au voisinage d’un minimiseur local x∗(·), on établit les conditions nécessaires d’optimalité sous la forme

d’une équation du type Euler-Lagrange, ainsi que sous la forme d’une équation du type Erdmann – Du Bois-

Reymond, ce qui est une contribution nouvelle pour les problèmes d’ordre N à la connaissance des auteurs. Il

est notable que ces résultats soient obtenus sans imposer à L la convexité par rapport à sa dernière variable,

ni aucune condition de croissance particulière.

En imposant en plus à L une condition de croissance plus générale que la croissance super-linéaire utilisée

habituellement dans les autres articles concernant ce sujet, les conditions nécessaires obtenues sont mises

à profit afin d’établir que la dernière dérivée du minimiseur x∗(·), c’est-à-dire x
(N)
∗ (·), est essentiellement

bornée.

Les contributions essentielles de ce travail par rapport à l’article le plus récent concernant ce sujet [60] sont les

suivantes : la possibilité de considérer un lagrangien prenant pour valeur +∞, une hypothèse de croissance

sur L plus générale, une condition nécessaire d’optimalité exprimée sous la forme d’une équation du type

Erdmann – Du Bois-Reymond, ainsi que la simplification de la preuve de la régularité des minimiseurs qui

fait seulement appel à un argument de reparamétrisation du temps plutôt que de combiner cet argument

avec l’étude de l’ensemble de Tonelli de x∗(·).

5.3 Introduction

In this chapter, we consider the following calculus of variations problem:
Minimize I(x) :=

∫ b

a
L(s, x(s), x(1)(s), x(2)(s), . . . , x(N)(s))ds

+Ψ
Ä
(x, x(1), . . . , x(N−1))(a), (x, x(1), . . . , x(N−1))(b)

ä
,

over arcs x ∈WN,m([a, b],R),

(CV)

where N ≥ 1 is an integer, m ≥ 1 is a real number, L : [a, b]×RN+1 → R∪{+∞} is a given Borel measurable

function and Ψ : RN × RN → R ∪ {+∞} is a given extended valued function non identically equal to +∞.

Here, x(k)(·) is the k-th derivative of the function x ∈ WN,1([a, b],R) (interpreting x(0)(·) = x(·)), and we
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sometimes write ẋ(·) or d
dsx(·) for the first derivative x(1)(·) to simplify notation.

It is well known that the problem (CV) has a solution if (x0, x1, . . . , xN ) 7→ L(t, x0, x1, . . . , xN ) is lower

semicontinuous, xN 7→ L(t, x0, x1, . . . , xN−1, xN ) is convex and uniformly coercive (cf. [40]). A classical

issue in this context concerns the possibility to establish the conditions needed, in addition to the existence

hypotheses above, to obtain the essential bounded N -th order derivative of a reference minimizer. The

significance of a positive answer to this question is explained by the fact that the N -th order derivative

essential boundedness allows to derive first order necessary conditions and to use numerical methods to

detect minimizers, which in general would not be valid if the mere existence hypotheses are in force.

The case when N = 1 corresponds to establish Lipschitz regularity of minimizers and has been extensively

studied in the literature for a broad class of problems involving vector valued arcs x(·), covering even

situations in which L is not necessarily convex or coercive in ẋ, cf. [23, 35, 41, 39, 44, 45, 69, 84] and the

references therein (for an advanced result in the theory of necessary optimality conditions, we also refer to

the recent paper by Ioffe [63]). For higher (N > 1) order problems the N -th derivative essential boundedness

of a reference minimizer x∗(·) was demonstrated in [40] analyzing the ‘Tonelli set’ associated with x∗(·)
(i.e. the set of points t ∈ [a, b] such that x

(N)
∗ (·) is unbounded near t), when, in addition to the existence

hypotheses, the Lagrangian is real valued and satisfies the following assumptions:

(A1) L is locally bounded, (x0, x1, . . . , xN ) 7→ L(t, x0, x1, . . . , xN ) is locally Lipschitz continuous (uniformly

in t),

(A2) The partial limiting subdifferential ∂L(x0,...,xN−1)L is integrally bounded when evaluated along the min-

imizer.

This result remains true when N = 2 for autonomous Lagrangians when we replace (A2) by a less restrictive

condition, see [59]:

(A2)′ The partial limiting subdifferential ∂Lx0
L is integrally bounded when evaluated along the minimizer.

(Observe that 0 = N − 2 in this case, and it is not necessary to evaluate the limiting subdifferential of L

also w.r.t. the xN−1 variable as in (A2).)

The question whether a condition on partial subdifferentials involving only up to the xN−2 variable could

take the place of (A2) also for general N (including the case N > 2) was investigated in [60], substituting

(A2) with

(A2)′′ The partial subdifferential ∂L(t,x0,...,xN−2)L is integrally bounded when evaluated along the minimizer.

The higher order regularity result of [60] was obtained for problems involving real valued arcs x(·), combining

two main approaches used for regularity analysis: the Tonelli set theory (mentioned above) and a time

reparameterization.

The major contribution of this work is to show that higher order regularity results can be derived employing

the time reparameterization alone, and for a wide class of Lagrangians, including possibly extended valued

L’s. The two main sets of hypotheses that we consider can be summarized as follows:
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(a) The finite case: L is a Borel measurable real valued function and satisfies a (generalized) growth

condition, the partial proximal subdifferential1 ∂P(t,x0,...,xN−2)L is integrally bounded in a neighborhood

of the reference minimizer, uniformly on xN ;

(b) The extended valued case: L is a lower semicontinuous (w.r.t. all variables except possibly xN−1) and

satisfy a (generalized) growth condition, the partial proximal subdifferential ∂P(t,x0,...,xN−2)L is integrally

bounded (uniformly on xN ).

Another important feature is that we provide not only first order necessary conditions in the Euler-Lagrange

form together with a Weierstrass type condition, but also, without requiring any kind of growth condition

nor convexity, an Erdmann – Du Bois-Reymond condition which can be expressed in terms of a (partial)

convex subdifferential. It turns out, in particular, that L
(
t, x∗(t), . . . , x

(N−1)
∗ (t), ·

)
is convex in the direction

x
(N)
∗ (t). These are an extension to N ≥ 2 (for scalar problems) of the results obtained in [23, 24] established

there for N = 1 (for vectorial problems).

The generalized growth condition considered in this chapter is more general than the superlinearity of

xN 7→ L(t, x0, . . . , xN ) and represents a sort of violation of the Erdmann – Du Bois-Reymond condition

when |xN | → +∞.

Notation.

Given an extended valued function φ(·, ·) of two vector variables (x, y) and a point (x̄, ȳ) ∈ dom(φ), we de-

note the proximal (resp. limiting, Clarke) partial subdifferential of φ(·, ȳ) at x̄ by ∂Px φ(x̄, ȳ) (resp. ∂Lx φ(x̄, ȳ),

∂Cx φ(x̄, ȳ)).

For a given minimizer x∗(·) of (CV), we introduce an auxiliary Lagrangian Λ : [a, b] × R × ]0,+∞[ → R,

defined by:

Λ(t, ξ, r) := L(t, x∗(t), ẋ∗(t), . . . , x
(N−1)
∗ (t), rξ), for all (t, ξ, r) ∈ [a, b]× R× ]0,+∞[ . (5.1)

We shall make use of partial convex subdifferential of Λ with respect to r at (t, ξ, r0), which is defined

by:

∂rΛ(t, ξ, r0) := {p ∈ R : Λ(t, ξ, r)− Λ(t, ξ, r0) ≥ p(r − r0), ∀r ∈ ]0,+∞[ } . (5.2)

The space of absolutely continuous functions defined on [a, b], taking values in Rk, with derivative in

Lm([a, b],Rk) is written W 1,m([a, b],Rk) and endowed with the norm:

‖f‖W 1,m := ‖f‖∞ + ‖ḟ‖Lm .

We denote by WN,m([a, b],Rk) the space of functions defined on [a, b], taking values in Rk which are N − 1

times continuously differentiable and whose (N −1)-th derivative belongs to W 1,m([a, b],Rk). We endow this

space with the following norm:

‖f‖WN,m :=

N−2∑
i=0

‖f (i)‖∞ + ‖f (N−1)‖W 1,m .

We shall often write L
(
t, x∗, . . . , x

(N−1)
∗ , x

(N)
∗

)
instead of L

(
t, x∗(t), . . . , x

(N−1)
∗ (t), x

(N)
∗ (t)

)
to simplify no-

tation.
1Note that the notation for the convex subdifferential is different in Part 2 of this thesis (the P went from subscript to

superscript). Even though ∂P denotes the proximal superdifferential, it is much more convenient to reserve the subscript for the

variables with respect to which we differentiate the function.

144



5.4 Hypotheses

We shall consider two different sets of hypotheses on L for a given local WN,m local minimizer x∗(·) for

(CV): (Sx∗) and (S∞x∗).

Hypothesis (Sx∗) The function

L : (t, x0, x1, . . . , xN−2, xN−1, xN ) 7→ L(t, x0, x1, . . . , xN−2, xN−1, xN )

takes values in R and is BN+2-measurable.

There exists ε∗ > 0 and an L × B1-measurable function k : [a, b]× ]0,+∞[→ R+ such that:

t 7→ k(t, 1) ∈ L1([a, b],R+),

and, for a.e. t ∈ [a, b], for all σ ∈ ]0,+∞[, the map:{
[a, b]× RN−1 → R,
(s, x0, . . . , xN−2) 7→ L(s, x0, . . . , xN−2, x

(N−1)
∗ (t), σx

(N)
∗ (t)),

(5.3)

is Lipschitz continuous on B((t, x∗(t), . . . , x
(N−2)
∗ (t)), ε∗) ∩ ([a, b]× RN−1) with Lipschitz constant k(t, σ).

Remark 5.4.1 Making use of hypothesis (Sx∗), we deduce that for a.e. t ∈ [a, b], if ζ is a vector in

∂C(t,x0,...,xN−2)L(t, x∗(t), . . . , x
(N)
∗ (t)), then |ζ| ≤ k(t, 1). Notice also that (Sx∗) is satisfied whenever L de-

pends only on xN−1 and xN .

Hypothesis (S∞x∗) The function

L : (t, x0, x1, . . . , xN−2, xN−1, xN ) 7→ L(t, x0, x1, . . . , xN−2, xN−1, xN )

takes values in R ∪ {+∞} and is BN+2-measurable.

There exist a measurable set E ⊂ [a, b] of full measure, strictly positive constants ε, c and λ, functions

d, β ∈ L1([a, b],R+) such that the following conditions are satisfied:

i) the function (s, x0, . . . , xN−2, xN ) 7→ L(s, x0, . . . , xN−2, x
(N−1)
∗ (t), xN ) is lower semicontinuous for all

t ∈ [a, b],

ii) for all t ∈ E, we can find 0 < σ1(t) < 1 < σ2(t) < +∞ for which:{
L(t, x∗(t), . . . , x

(N−1)
∗ (t), σ1(t)x

(N)
∗ (t)) < +∞

L(t, x∗(t), . . . , x
(N−1)
∗ (t), σ2(t)x

(N)
∗ (t)) < +∞;

(5.4)

iii) for every t ∈ E, every (s̄, x̄0, . . . , x̄N−2) ∈ B((t, x∗(t), . . . , x
(N−2)
∗ (t)), ε) ∩ ([a, b] × RN−1), and xN ∈ R,

we have

|ζ| ≤ c
Ä
|(1, x̄1, . . . , x̄N−2, x

(N−1)
∗ (t))|+ L(s̄, x̄0, . . . , x̄N−2, x

(N−1)
∗ (t), xN ) + λ|xN |)

ä
+ d(t) (5.5)

for all ζ ∈ ∂P(s,x0,...,xN−2)L(s̄, x̄0, . . . , x̄N−2, x
(N−1)
∗ (t), xN );
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iv) for all t ∈ E, there exists εt > 0 such that the function

(s, x0, . . . , xN−2) 7→ L(s, x0, . . . , xN−2, x
(N−1)
∗ (t), xN ),

is Lipschitz continuous with Lipschitz constant β(t) on B((t, x∗(t), ẋ∗(t), . . . , x
(N−2)
∗ (t)), εt), uniformly

with respect to xN ∈ B(x
(N)
∗ (t), εt) ∩ dom(L(t, x∗(t), . . . , x

(N−1)
∗ (t), · )).

The growth assumption (Gx∗). For every selection Q(t, ξ) of ∂rΛ(t, ξ, 1),

lim
|ξ|→+∞

∂rΛ(t,ξ,1)6=∅

|L(t, x∗(t), . . . , x
(N−1)
∗ (t), ξ)−Q(t, ξ)| = +∞, uniformly for a.e. t ∈ [a, b], (Gx∗)

which means that for any M > 0, we can find a set E ⊂ [a, b] of full measure, and a real R > 0 satisfying:

∀(t, ξ) ∈ E × R, Q(t, ξ) ∈ ∂rΛ(t, ξ, 1), |ξ| ≥ R⇒ |L(t, x∗(t), . . . , x
(N−1)
∗ (t), ξ)−Q(t, ξ)| ≥M.

Observe that condition (Gx∗) is satisfied independently of a minimizer x∗(·) when for every selectionQ(t, x0, . . . , xN−1, ξ)

of (∂rL(t, x0, . . . , xN−1, rξ))r=1 and for every compact set K ⊂ RN , we have:

lim
|ξ|→+∞

(∂rL(t,x0,...,xN−1,rξ))r=1
6=∅

|L(t, x0, . . . , xN−1, ξ)−Q(t, x0, . . . , xN−1, ξ)| = +∞,

uniformly for a.e. t ∈ [a, b] and for all (x0, . . . , xN−1) ∈ K.

rξ

Λ(t, ξ, r)

P (t, ξ1) = φt,ξ1(0)

P (t, ξ2)

ξ1 ξ2

Figure 5.1: Condition (Gx∗)

Remark 5.4.2 (Interpretation of (Gx∗)) Assume that L(t, x∗(t), ..., x
(N−1)
∗ (t), ξ) < +∞ and let Q(t, ξ) ∈

∂rΛ(t, ξ, 1). Then

Λ(t, ξ, r)) ≥ φ(r) := Λ(t, ξ, r) +Q(t, ξ)(r − 1), for all r > 0

and P (t, ξ) := φ(0) = Λ(t, ξ, 1) −Q(t, ξ) is the intersection with the z axis of the ‘tangent’ line z = φ(r) to

0 < r 7→ Λ(t, ξ, r) at r = 1.

Condition (Gx∗) thus means that the ordinate P (t, ξ) of the above intersection point goes to ∞ as |ξ| goes to

∞, for those points ξ where 0 < r 7→ Λ(t, ξ, r) has a nonempty convex subdifferential at r = 1.
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Remark 5.4.3 1) If L is smooth in the last variable, (Gx∗) becomes

lim
|ξ|→+∞

|L
(
t, x∗(t), . . . , x

(N−1)
∗ (t), ξ

)
− ξ · ∂xNL(t, x∗(t), . . . , x

(N−1)
∗ (t), ξ)| = +∞,

uniformly for a.e. t ∈ [a, b].

2) If L is convex in the last variable, (Gx∗) is satisfied whenever for every selection ϕ(t, ξ) of the convex

subdifferential ∂ξL
(
t, x∗(t), . . . , x

(N−1)
∗ (t), ξ

)
, we have

lim
|ξ|→+∞

|L(t, x∗(t), . . . , x
(N−1)
∗ (t), ξ) − ξ · ϕ(t, ξ)| = +∞, uniformly for a.e. t ∈ [a, b].

Condition (Gx∗), which was considered in the case N = 1 in [24], extends analogous conditions considered

in [35, 69] in the autonomous case. This growth condition (Gx∗) is satisfied in the superlinear case. More

precisely, assume that L satisfies both conditions below:

a) L(s, x0, . . . , xN ) is bounded on an annulus along x∗(·): there exist ρ > 0, and M > 0 such that, for

almost every t ∈ [a, b] we have:

|xN | = ρ⇒ L
(
t, x∗(t), . . . , x

(N−1)
∗ (t), xN

)
≤M. (Bx∗)

b) L is uniformly coercive along x∗(·) w.r.t. the last variable: there exists a function θ : R+ → R

satisfying lim
r→+∞

θ(r)

r
= +∞, such that for a.e. t ∈ [a, b] and every xN ∈ R:

L
(
t, x∗(t), . . . , x

(N−1)
∗ (t), xN

)
≥ θ(|xN |). (Cx∗)

(This also covers hypothesis (H3) used in [60], where θ(·) is taken positive valued and L satisfies the following

estimation L(t, x∗(t), . . . , x
(N−1)
∗ (t), xN ) ≥ θ(|xN |)− β|xN |, where β > 0.) Then it may be shown as in [24,

Proposition 2] that (Gx∗) is valid.

Notice however that there are Lagrangians that have just a linear growth with respect to xN but nonetheless

satisfy (Gx∗), for example L(t, x0 . . . , xN ) = |xN | −
√
|xN |.

Remark 5.4.4 Assume that L is bounded on bounded sets in the following sense: For every bounded set

K ⊂ RN , the following property is satisfied: there exist ρ > 0 and MK > 0 such that, for almost every

t ∈ [a, b], every (x0, . . . , xN−1) ∈ K and any xN ∈ R:

|xN | = ρ⇒ L(t, x0, . . . , xN−1, xN ) ≤MK .

Assume additionally that L is uniformly coercive in the following sense: there exist an increasing function

θ : R+ → R such that lim
r→+∞

θ(r)

r
= +∞, a function h : RN → R that is bounded on bounded sets, and

a constant α > 0, for which the following property holds: for all (t, x0, . . . , xN ) ∈ [a, b] × RN+1 satisfying

|xN | ≥ α|(x0, . . . , xN−1)|:

L(t, x0, . . . , xN−1, xN ) ≥ θ(|xN | − α|(x0, . . . , xN−1)|)− h(x0, . . . , xN−1).

Then L satisfies the conditions (Bx∗) and (Cx∗) above for any function x∗(·) ∈WN,1([a, b],R), and it yields

that the growth condition (Gx∗) is also valid for any function x∗(·) ∈WN,1([a, b],R).

5.5 Main results

We establish here a new necessary condition and a subsequent regularity result for minimizers of (CV).
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5.5.1 Necessary conditions

Weierstrass type conditions.

Theorem 5.5.1 Let x∗(·) be a WN,m local minimizer for (CV). Assume that L satisfies (Sx∗). Then there

are two – mutually non exclusive – cases:

i) The function x∗ is a polynomial function whose degree is at most N − 1 ≥ 1.

ii) There exists an arc (p0, . . . , pN−1) ∈W 1,1([a, b],RN ) for which the following Weierstrass type condition

is satisfied: for all u ∈ ]0,+∞[ and for a.e. t ∈ [a, b]:

L

(
t, x∗(t), . . . ,

x
(N)
∗ (t)

u

)
u− L

Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
≥

(u− 1)
(
p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t)

)
.

(W)

Moreover, for a.e. t ∈ [a, b]:

(ṗ0, ṗ1, ṗ2 + p1, . . . , ṗN−2 + pN−3, ṗN−1 + pN−2) ∈ ∂Ct,x0,...,xN−2
L(t, x∗, ẋ∗, . . . , x

(N)
∗ ). (5.6)

Theorem 5.5.2 Let x∗(·) ∈WN,m([a, b],RN ) be a minimizer for (CV). Assume that L satisfies (S∞x∗). Then

there are two – mutually non exclusive – cases:

i) The function x∗ is a polynomial function whose degree is at most N − 1 ≥ 1.

ii) There exists an arc p := (p0, . . . , pN−1) ∈ W 1,1([a, b],RN ) for which the following Weierstrass type

condition is satisfied: for all u ∈ ]0,+∞[ and for a.e. t ∈ [a, b]:

L

(
t, x∗(t), . . . ,

x
(N)
∗ (t)

u

)
u− L

Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
≥

(u− 1)
(
p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t)

)
.

(W)

Moreover, for a.e. t ∈ [a, b], ṗ(t) belongs to the set:

co
{
ω ∈ RN :

(
ω + γ(t), p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t)

)
(5.7)

∈
Ä
∂L(s,x0,...,xN−2,u)L

(
s, x0, . . . , xN−2, x

(N−1)
∗ (t), x

(N)
∗ (t)/u

)
u
ä

(s,x0,...,xN−2)=z∗(t)
u=1

}
,

with γ(t) := (0, 0, p1(t), . . . , pN−2(t)) and z∗(t) :=
(
t, x∗(t), . . . , x

(N−2)
∗ (t)

)
.

Remark 5.5.3 1) We observe that the inequality (W) of Theorems 5.5.1 and 5.5.2 is a Weierstrass type

condition which is an extension (to the case N ≥ 2) of the results [23, Theorem 4.1] and [23, Theorem 4.3].

2) Assume that L is of class C2 with respect to t, x0, . . . , xN−2. Then we have

∂Ct,x0,...,xN−2
L
(
t, x∗, ẋ∗, . . . , x

(N)
∗

)
=
{
∇t,x0,...,xN−2L

(
t, x∗, ẋ∗, . . . , x

(N)
∗

)}
,

hence the arc p := (p0, . . . , pN−1) satisfies the following equations: for all s ∈ [a, b]
p0(s) = p0(a) +

∫ s

a
∂tL
(
τ, x∗, ẋ∗, . . . , x

(N)
∗

)
dτ ,

p1(s) = p1(a) +

∫ s

a
∂x0L

(
τ, x∗, ẋ∗, . . . , x

(N)
∗

)
dτ ,
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and for a.e. s ∈ [a, b], for all i = 2, . . . , N − 1,

ṗi(s) = −pi−1(s) + ∂xi−1L
(
s, x∗, ẋ∗, . . . , x

(N)
∗

)
.

Erdmann – Du Bois-Reymond type conditions. The change of variable r = 1/u in (W) yields the

following equivalent version of Theorems 5.5.1 and 5.5.2.

Corollary 5.5.4 Let x∗(·) be a WN,m local minimizer for (CV). Assume that L satisfies (Sx∗) (resp. (S∞x∗)).

Then there are two – mutually non exclusive – cases:

i) The function x∗ is a polynomial function whose degree is at most N − 1 ≥ 1.

ii) There exists an arc p := (p0, . . . , pN−1) ∈ W 1,1([a, b],RN ) for which the following equation is satisfied:

for all r ∈ ]0,+∞[ and for a.e. t ∈ [a, b]:

L
Ä
t, x∗(t), . . . , x

(N−1)
∗ (t), rx

(N)
∗ (t)

ä
− L
Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
≥

(r − 1)
(
L
Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
− (p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t))

)
,

(Wr)

where p satisfies (5.6) (resp. (5.7)).

Remark 5.5.5 Condition (Wr) is a sort of variational form of an Erdmann – Du Bois-Reymond equation.

Indeed, if L is smooth and satisfies (Sx∗), Corollary 5.5.4 implies that:

x
(N)
∗ (t) · ∂xNL

Ä
t, x∗, . . . , x

(N)
∗
ä

=

L
Ä
t, x∗, . . . , x

(N)
∗
ä
− (p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t)),

where p satisfies the conditions expressed in Remark 5.5.3 2). Whereas, under the (nonsmooth) more general

hypotheses of Corollary 5.5.4, we obtain that for a.e. t ∈ [a, b]

L
Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
− (p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t)) ∈ ∂rΛ(t, x

(N)
∗ (t), 1),

where Λ and ∂rΛ are defined in (5.1) and (5.2).

Condition (Wr) is also a relaxation type result, namely the convexity of L(t, x∗(t), . . . , x
(N−1)
∗ (t), · ) along

the direction x
(N)
∗ (t).

5.5.2 Regularity Results

Here, the additional growth conditions (Gx∗) and (Cx∗) play a central role.

Theorem 5.5.6 Let x∗(·) be a WN,m local minimizer for (CV).

(i) Assume that L satisfies (Sx∗) and (Gx∗), then x
(N)
∗ ∈ L∞([a, b],R).

(ii) Assume that L satisfies (S∞x∗) and (Gx∗), then x
(N)
∗ ∈ L∞([a, b],R).

An immediate consequence of Theorem 5.5.6 and the discussion about the above-mentioned conditions (Bx∗)

and (Cx∗) is the following corollary.

Corollary 5.5.7 Let x∗(·) be a WN,m local minimizer for (CV).

(i) Assume that L satisfies (Sx∗), (Cx∗) and (Bx∗), then x
(N)
∗ ∈ L∞([a, b],R).
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(ii) Assume that L satisfies (S∞x∗), (Cx∗) and (Bx∗), then x
(N)
∗ ∈ L∞([a, b],R).

Next proposition shows that, if the Lagrangian L is convex w.r.t. xN , then we can relax the condition (Sx∗)

and invoke a weaker (merely local in σ) version of it. This result provides an extension of [60, Theorem 2.1].

Proposition 5.5.8 Let x∗(·) be a WN,m local minimizer for (CV), in which we assume that L : [a, b] ×
RN+1 → R is Borel measurable and

(H)′ xN 7→ L(t, x0, x1, . . . , xN−2, xN−1, xN ) is convex for every (t, x0, x1, . . . , xN−2, xN−1);

(Sx∗)
′ There exist ε∗ > 0, σ∗ ∈ ]0, 1[ and a L×B1-measurable function k : [a, b]× [1−σ∗, 1 +σ∗]→ R+ such

that:

t 7→ k(t, 1) ∈ L1([a, b],R+),

and, for a.e. t ∈ [a, b], for all σ ∈ [1− σ∗, 1 + σ∗], the map:{
[a, b]× RN−1 → R,
(s, x0, . . . , xN−2) 7→ L(s, x0, . . . , xN−2, x

(N−1)
∗ (t), σx

(N)
∗ (t)),

(5.8)

is Lipschitz continuous on B((t, x∗(t), . . . , x
(N−2)
∗ (t)), ε∗)∩([a, b]×RN−1) with Lipschitz constant k(t, σ).

Then, the same conclusions of Theorem 5.5.1 are valid. If moreover, L satisfies (Gx∗), then x
(N)
∗ (·) belongs

to L∞([a, b],R).

5.6 Proofs of Theorem 5.5.1 and Proposition 5.5.8

We shall make use of the following technical lemma, which has been used and proved in [23, Lemma 7.1].

Lemma 5.6.1 Let (zk)k∈N be a sequence of invertible functions in W 1,1([a, b],R) that satisfies the following

properties:

a) for all k ∈ N, zk(a) = a and zk(b) = b,

b) there exists α > 0 such that żk(t) ≥ α, for all k ∈ N and for a.e. t ∈ [a, b],

c) the sequence (zk)k∈N converges to Id in W 1,1([a, b],R), where Id : t 7→ t.

Then for all x ∈W 1,m([a, b],R), there exists a subsequence of (x◦z−1
k )k∈N that converges to x in W 1,m([a, b],R)

as k goes to +∞.

5.6.1 An auxiliary control problem (CP)

We consider the following extension L̃ of L to the whole space RN+2: for all (t, x0, . . . , xN ) ∈ RN+2,

L̃(t, x0, . . . , xN ) :=


L(a, x0, . . . , xN ), if t ≤ a,
L(t, x0, . . . , xN ), if t ∈ [a, b],

L(b, x0, . . . , xN ), if t ≥ b.

(5.9)
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We introduce also the auxiliary Lagrangian ` : [a, b] × RN × R → R, which is defined by: for all (t, z, u) ∈
[a, b]× RN × R

`(t, z, u) :=

L̃
Å
z, x

(N−1)
∗ (t), x

(N)
∗ (t)
u

ã
u, if x

(N)
∗ (t) is defined and u > 0,

0, otherwise.

where z = (z0, z1, . . . , zN−1).

Fix any integer j ≥ 2. We shall consider the following control problem:

Minimize J(z, u) :=

∫ b

a
`(s, z(s), u(s))ds,

over the arcs z ∈W 1,1([a, b],RN )

and L −measurable controls u : [a, b]→ R such that:

ż(s) = f(s, z(s), u(s)), for a.e. s ∈ [a, b],

u(s) ∈
î

1
j , j
ó
, for a.e. s ∈ [a, b],

z(a) =
(
a, x∗(a), ẋ∗(a), . . . , x

(N−2)
∗ (a)

)
,

z(b) =
(
b, x∗(b), ẋ∗(b), . . . , x

(N−2)
∗ (b)

)
,

(CP)

where f : [a, b]× RN × R→ RN is defined by:

f(s, z, u) := uANz + ubN (s), for (s, z, u) ∈ [a, b]× RN × R,

with bN (s) := 1 if N = 1, bN (s) := (1, 0, . . . , 0, x
(N−1)
∗ (s)) if N > 1, and AN := 0 if N = 1, 2 and

AN :=


0 0 · · · · ·
0 0 1 0 · · ·
0 0 0 1 0 · ·
· · · · · · ·
· · · · 0 1 0

· · · · · 0 1

· · · · · · 0

 if N > 2.

We say that a trajectory/control pair (z, u) is admissible for the problem (CP) whenever ż(s) = f(s, z(s), u(s))

and u(s) ∈
î

1
j , j
ó

for a.e. s ∈ [a, b], together with z(a) =
(
a, x∗(a), ẋ∗(a), . . . , x

(N−2)
∗ (a)

)
and also z(b) =(

b, x∗(b), ẋ∗(b), . . . , x
(N−2)
∗ (b)

)
.

Observe that the differential equation ż(s) = f(s, z(s), u(s)), can be rewritten in an extended form (in the

case N > 2): for a.e. s ∈ [a, b] 

ż0(s) = u(s),

ż1(s) = u(s)z2(s),

ż2(s) = u(s)z3(s),
...

żN−2(s) = u(s)zN−1(s),

żN−1(s) = u(s)x
(N−1)
∗ (s).

(5.10)

Moreover any solution (z, u) to the control system in (CP) satisfies ż0 = u ≥ 1
j a.e., hence z−1

0 exists and is

Lipschitz continuous with Lipschitz constant bounded above by j.

Using the fact that x∗ is a minimizer for the problem (CV), we can deduce that a natural minimizer to the

control problem (CP) is the trajectory/control pair (z∗, u∗) defined by:

u∗(s) := 1 and z∗(s) :=
(
s, x∗(s), ẋ∗(s), . . . , x

(N−2)
∗ (s)

)
, for all s ∈ [a, b].
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Lemma 5.6.2 For all ε > 0, there exists ρ > 0 such that, for any admissible pair (z, u) ∈W 1,1([a, b],RN )×L
for (CP) we have:

‖z − z∗‖W 1,1 ≤ ρ⇒ ‖z1 ◦ z−1
0 − x∗‖WN,m ≤ ε, (5.11)

in which z1 = x∗ if N = 1.

Proof. The case N = 1 is an immediate consequence of Lemma 5.6.1, so we continue considering N ≥ 2.

Assuming that (5.11) is not satisfied, then we can find ε0 > 0 and a sequence of admissible pairs for the

control system in (CP), say (zk, uk)k∈N, zk := (zk0 , . . . , z
k
N−1) such that:

‖zk − z∗‖W 1,1 ≤
1

k + 1
and ‖zk1 ◦ (zk0 )−1 − x∗‖WN,m > ε0. (5.12)

We define yk := zk ◦ (zk0 )−1 and we write yk = (yk0 , y
k
1 , . . . , y

k
N−1).

For each k ∈ N, we have (yk1 )(i) = zki+1 ◦ (zk0 )−1 for all i = 0, . . . , N − 2, and (yk1 )(N−1) = x
(N−1)
∗ ◦ (zk0 )−1. As

a consequence if i ≤ N − 3, we obtain:

‖(yk1 )(i) − x(i)
∗ ‖∞ ≤ ‖zki+1 ◦ (zk0 )−1 − zki+1‖∞ + ‖zki+1 − x

(i)
∗ ‖∞,

≤ sup
|t−t′|≤ 1

k+1

|zki+1(t)− zki+1(t′)|+ 1

k + 1
,

≤ M + 1

k + 1
, (5.13)

where M := max{‖x(i)
∗ ‖∞ + 1, i = 1, . . . , N − 2}.

On the other hand, for i = N − 2, we have:

‖(yk1 )(N−2) − x(N−2)
∗ ‖∞ = ‖zkN−1 ◦ (zk0 )−1 − x(N−2)

∗ ‖∞,

≤ sup
t∈[a,b]

∫ t

a
|x(N−1)
∗ ((zk0 )−1(s))− x(N−1)

∗ (s)|ds,

≤ |b− a| sup
|t−t′|≤ 1

k+1

|x(N−1)
∗ (t)− x(N−1)

∗ (t′)|.

Therefore by uniform continuity of x
(N−1)
∗ (·) we deduce that:

‖(yk1 )(N−2) − x(N−2)
∗ ‖∞ −−−−→

k→+∞
0. (5.14)

We now claim that

‖(yk1 )(N−1) − x(N−1)
∗ ‖W 1,m −−−−→

k→+∞
0, (5.15)

(possibly for a subsequence we do not relabel). Since (yk1 )(N−1) = x
(N−1)
∗ ◦ (zk0 )−1, this is equivalent to prove

that:

‖x(N−1)
∗ ◦ (zk0 )−1 − x(N−1)

∗ ‖W 1,m −−−−→
k→+∞

0.

The sequence (zk0 )k∈N satisfies all the hypotheses of Lemma 5.6.1. Applying it to the reference arc x = x
(N−1)
∗

confirms the claim.

From (5.13), (5.14) and (5.15), we deduce that for all k ∈ N:

‖zk1 ◦ (zk0 )−1 − x∗‖WN,m = ‖yk1 − x∗‖WN,m −−−−→
k→+∞

0,

which contradicts (5.12). �
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Proposition 5.6.3 The trajectory/control pair (z∗, u∗) is a local W 1,1-minimizer for (CP), i.e. there exists

ρ > 0, such that, for any admissible pair (z, u) for (CP), we have:

‖z − z∗‖W 1,1 ≤ ρ⇒ J(z, u) ≥ J(z∗, u∗).

Proof. Let ε > 0 such that x∗(·) is an ε-minimizer for the WN,m topology. We invoke Lemma 5.6.2 to

obtain a real ρ > 0 such that (5.11) is satisfied.

Take any admissible pair (z, u) for (CP) such that ‖z − z∗‖W 1,1 ≤ ρ, and define y ∈ W 1,1([a, b],RN ) by

y = z ◦ z−1
0 .

We claim that y1 ∈ WN,m([a, b],R) is a solution of the reference problem (CV). Indeed, we have y
(N−1)
1 =

x
(N−1)
∗ ◦ z−1

0 and y
(i)
1 = yi+1 = zi+1 ◦ z−1

0 for all i = 1, . . . , N − 2. Recalling the conditions satisfied by z at

a and b, in particular z−1
0 (a) = a, z−1

0 (b) = b, we obtain:(
y1, . . . , y

(N−1)
1

)
(a) =

(
x∗, . . . , x

(N−1)
∗

)
(a),

(
y1, . . . , y

(N−1)
1

)
(b) =

(
x∗, . . . , x

(N−1)
∗

)
(b). (5.16)

Using the change of variable t = z0(s), we obtain:

∫ b

a
`(s, z(s), u(s))ds =

∫ b

a
L̃

(
z(s), x

(N−1)
∗ (s),

x
(N)
∗ (s)

u(s)

)
u(s)ds

=

∫ b

a
L̃
Ä
y(t), x

(N−1)
∗ (z−1

0 (t)), ż−1
0 (t) x

(N)
∗ (z−1

0 (t))
ä

dt

=

∫ b

a
L
Ä
t, y1(t), ẏ1(t), . . . , y

(N−1)
1 (t), y

(N)
1 (t)

ä
dt.

We recall that, from (5.11), we have ‖y1 − x∗‖WN,m ≤ ε. Since x∗(·) in a ε-minimizer for the problem (CV).

It follows from (5.16) that:∫ b

a
L
Ä
t, y1(t), ẏ1(t), . . . , y

(N)
1 (t)

ä
dt ≥

∫ b

a
L
Ä
t, x∗(t), ẋ∗(t), . . . , x

(N)
∗ (t)

ä
dt.

We deduce that:

J(z, u) =

∫ b

a
`(s, z(s), u(s))ds ≥

∫ b

a
`(s, z∗(s), u∗(s))ds = J(z∗, u∗),

which concludes the proof.

2

5.6.2 Application of the maximum principle to (CP)

We shall employ the maximum principle [45, Theorem 22.26] to the optimal control problem (CP) and the

reference minimizer (z∗, u∗). In our case it is easy to see that all the assumptions of [45, Theorem 22.26]

are satisfied and the only detail which requires particular attention is to prove the appropriate Lipschitz

regularity of `.
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Lemma 5.6.4 If ε∗ > 0 and k : [a, b]× ]0,+∞[→ R+ are given by hypothesis (Sx∗), then for a.e. t ∈ [a, b]

and for all σ ∈ ]0,+∞[, the application:{
R× RN−1 → R,
(s, x0, . . . , xN−2) 7→ L̃(s, x0, . . . , xN−2, x

(N−1)
∗ (t), σx

(N)
∗ (t)),

(5.17)

is Lipschitz continuous on B
(

(t, x∗(t), . . . , x
(N−2)
∗ (t)), ε∗

)
with Lipschitz constant k(t, σ).

Proof. Take σ ∈ ]0,+∞[ and any t ∈ [a, b] such that (Sx∗) is satisfied and two vectors z, w in the ball

B((t, x∗(t), . . . , x
(N−2)
∗ (t)), ε∗). We can always assume that z0 ≤ w0.

Using (Sx∗), if both z0 and w0 are in [a, b], the inequality is easily verified.

If z0 ≤ w0 ≤ a. We have:∣∣∣L̃(z, x(N−1)
∗ (t), σx

(N)
∗ (t)

)
− L̃

(
w, x

(N−1)
∗ (t), σx

(N)
∗ (t)

)∣∣∣,
=
∣∣∣L(a, z1 . . . , zN−1, x

(N−1)
∗ (t), σx

(N)
∗ (t)

)
− L

(
a,w1, . . . , wN−1, x

(N−1)
∗ (t), σx

(N)
∗ (t)

)∣∣∣,
≤ k(t, σ)|(a, z1, . . . , zN−1)− (a,w1, . . . , wN−1)|,
≤ k(t, σ)|z − w|.

If z0 ≤ a ≤ w0 ≤ b, we have:∣∣∣L̃(z, x(N−1)
∗ (t), σx

(N)
∗ (t)

)
− L̃

(
w, x

(N−1)
∗ (t), σx

(N)
∗ (t)

)∣∣∣,
=
∣∣∣L(a, z1 . . . , zN−1, x

(N−1)
∗ (t), σx

(N)
∗ (t)

)
− L

(
w0, w1, . . . , wN−1, x

(N−1)
∗ (t), σx

(N)
∗ (t)

)∣∣∣,
≤ k(t, σ)|(a, z1, . . . , zN−1)− (w0, w1, . . . , wN−1)|,
≤ k(t, σ)|z − w|.

If z0 ≤ a < b ≤ w0, we have:∣∣∣L̃(z, x(N−1)
∗ (t), σx

(N)
∗ (t)

)
− L̃

(
w, x

(N−1)
∗ (t), σx

(N)
∗ (t)

)
|,

=
∣∣∣L(a, z1 . . . , zN−1, x

(N−1)
∗ (t), σx

(N)
∗ (t)

)
− L

(
b, w1, . . . , wN−1, x

(N−1)
∗ (t), σx

(N)
∗ (t)

)∣∣∣,
≤ k(t, σ)|(a, z1, . . . , zN−1)− (b, w1, . . . , wN−1)|,
≤ k(t, σ)|z − w|.

The cases a ≤ z0 ≤ b ≤ w0 and a < b ≤ z0 ≤ w0 can be proved in a similar way.

2

We are now ready to show the required Lipschitz regularity of `.

Lemma 5.6.5 There exists a L × B1-measurable function k̃ : [a, b] ×
î

1
j , j
ó

such that t 7→ k̃(t, 1) ∈
L1([a, b],R+), and for almost every t ∈ [a, b], we have:

z1, z2 ∈ B(z∗(t), ε∗), u ∈ R⇒ |`(t, z2, u)− `(t, z1, u)| ≤ k̃(t, u)|z2 − z1|.

Proof. Define:

k̃(t, u) := k

Å
t,

1

u

ã
u.
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The function k̃ is L × B1-measurable and t 7→ k̃(t, 1) = k (t, 1) is in L1([a, b],R+) by hypothesis (Sx∗).

Take any z1, z2 in B(z∗(t), ε∗) = B
(

(t, x∗(t), . . . , x
(N−2)
∗ (t)), ε∗

)
and u ∈

î
1
j , j
ó
. Pick any t ∈ [a, b] at which

the Lipschitz continuity of (Sx∗) holds. From Lemma 5.6.4, we have:

|`(t, z2, u)− `(t, z1, u)| ≤ u
∣∣∣∣∣L̃
Ç
z2, x

(N−1)(t),
x(N)(t)

u

å
− L̃
Ç
z1, x

(N−1)(t),
x(N)(t)

u

å∣∣∣∣∣
≤ k
Å
t,

1

u

ã
u |z1 − z2| ≤ k̃(t, u) |z2 − z1|.

2

For η ≥ 0, we define the Hamiltonian of the problem (CP):

Hη(t, z, p, u) = p · f(t, z, u)− η`(t, z, u)

= u
(
p0 + p1z2 + p2z3 + . . . pN−2zN−1 + pN−1x

(N−1)
∗ (t)

)
− η`(t, z, u).

Applying [45, Theorem 22.26] for each integer j ≥ 2, there exist an arc p j = (p j0 , . . . , p
j
N−1) ∈W 1,1([a, b],RN ),

a scalar η j ∈ {0, 1} and a set of full measure Ej ⊂ [a, b] such that the following properties are satisfied:

i) The nontriviality condition: (η j , p j(t)) 6= 0, for all t ∈ [a, b],

ii) The adjoint inclusion:

− ṗ j(t) ∈ ∂Cz Hη(t, · , p j(t), u∗(t))|z=z∗(t), for all t ∈ Ej , (5.18)

iii) The maximality condition:

Hη j (t, z∗(t), p
j(t), u∗(t)) = sup

u∈
î

1
j
,j
óHη j (t, z∗(t), p

j(t), u), for all t ∈ Ej . (5.19)

(Note that for this problem, the transversality condition (p j(a),−p j(b)) ∈ R2N does not provide useful

information.)

From the maximality condition (5.19), for all u ∈
î

1
j , j
ó

and every t ∈ Ej we have:

u(p j0 (t) + p j1 (t)ẋ∗(t) + . . .+ p jN−1(t)x
(N−1)
∗ (t))− η j`

(
t, z∗(t),

x
(N)
∗ (t)

u

)
≤

p j0 (t) + p j1 (t)ẋ∗(t) + . . .+ p jN−1(t)x
(N−1)
∗ (t)− η j`

Ä
t, z∗(t), x

(N)
∗ (t)

ä
,

which implies that for any u ∈
î

1
j , j
ó

and every t ∈ Ej :

η jL

(
t, x∗(t), . . . ,

x
(N)
∗ (t)

u

)
u− η jL

Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
≥

(u− 1)(p j0 (t) + p j1 (t)ẋ∗(t) + . . .+ p jN−1(t)x
(N−1)
∗ (t)).

(5.20)

Proof of Theorem 5.5.1.

We need a lemma which allows us to handle the abnormality phenomenon (η j = 0) that can arise when we

apply the maximum principle.
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Lemma 5.6.6 Assume that there exists an arc p = (p0, . . . , pN−1) ∈W 1,1([a, b],RN ) such that:

p(t) 6= 0, for all t ∈ [a, b], (5.21)

p(t) · f(t, z∗(t), 1) = 0, for a.e. t ∈ [a, b], (5.22)

− ṗ(t) = ATNp(t), for a.e. t ∈ [a, b], (5.23)

where ATN is the transpose of the matrix AN . Then N ≥ 2, and x∗(·) is a polynomial function with degree at

most N − 1.

Proof. We introduce the following control system, in which ν(·) is a control function in L1([a, b],R):{
ẇ(s) = ANw(s) + ν(s)f(s, z∗(s), 1) for a.e. s ∈ [a, b],

w(a) = 0.
(5.24)

Take any solution (wν , ν) to (5.24). For almost every s ∈ [a, b], we have:

ẇν(s) · p(s) = ANwν(s) · p(s) + ν(s)f(s, z∗(s), 1) · p(s),

Using successively (5.23) and (5.22) gives us:

ẇν(s) · p(s) = ANwν(s) · p(s) = −wν(s) · ṗ(s), for a.e. s ∈ [a, b].

This implies that d
dt(p ·wν) = 0 a.e. and since wν(a) = 0, p ·wν = 0 in [a, b]. Since p(s) 6= 0 for all s ∈ [a, b],

for any ν ∈ L1([a, b],R) the arc wν(·) remains in the hyperplane {w ∈ RN : w · p(s) = 0}, for all s ∈ [a, b].

Therefore system (5.24) is not reachable at any time s ∈ [a, b].

Solving system (5.24), the reachable set at time b is:

R(b) :=

®∫ b

a
ν(s) e(b−s)AN f(s, z∗(s), 1)ds : ν ∈ L1([a, b],R)

´
.

From what precedes, p(b) 6= 0 and for any ν ∈ L1([a, b],R),∫ b

a
ν(s) p(b) · e(b−s)AN f(s, z∗(s), 1)ds = 0.

In particular, choosing ν : s 7→ p(b) · e(b−s)AN f(s, z∗(s), 1) yields:

p(b) · e(b−s)AN f(s, z∗(s), 1) = 0, for all s ∈ [a, b]. (5.25)

If N = 1, by definition, we have e(b−a)A1f(s, z∗(s), 1) = 1 and (5.25) gives that p(b) = 0, which is a

contradiction. If N = 2, by definition, e(b−a)A2f(s, z∗(s), 1) = (1, ẋ∗(s)) for all s ∈ [a, b]. From (5.25) we

have that:

p0(b) + p1(b)ẋ∗(s) = 0, for all s ∈ [a, b].

Since p(b) 6= 0, this implies that p1(b) 6= 0. We obtain ẋ∗(s) = −p0(b)
p1(b) for all s ∈ [a, b], which implies that

x∗(·) is a polynomial function with degree 0 or 1.

Assume now that N > 2. A standard development of the exponential function e(b−s)AN shows that for every

s ∈ [a, b]:

e(b−s)AN f(s, z∗(s), 1) =

(
1,
N−2∑
k=0

(b− s)k

k!
x

(k+1)
∗ (s),

N−3∑
k=0

(b− s)k

k!
x

(k+2)
∗ (s), . . . , x

(N−1)
∗ (s)

)
.
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From equation (5.25), we first deduce that (p1(b), . . . , pN−1(b)) 6= 0 since p(b) 6= 0. Moreover, differentiating

both sides in (5.25), we obtain that for almost every s ∈ [a, b]:Ç
p1(b)

(b− s)N−2

(N − 2)!
+ p2(b)

(b− s)N−3

(N − 3)!
+ . . .+ pN−2(b)(b− s) + pN−1(b)

å
x

(N)
∗ (s) = 0.

Observe that the term that multiplies x
(N)
∗ (s) is a linear combination of linearly independent polynomials

with coefficients which cannot be all simultaneously zero. This implies that x
(N)
∗ (s) = 0 for almost every

s ∈ [a, b], hence x∗(·) is a polynomial function whose degree is less or equal to N − 1.

2

Assume first that, for some j0 ≥ 2, η j0 = 0. Then by nontriviality, p j0(t) 6= 0 for all t ∈ [a, b]. Using (5.18),

we have that:

−ṗ j0(t) = ATNp
j0(t) for all t ∈ Ej0 .

The maximality condition (5.20) in the abnormal case combined with the continuity of the functions

p j0(·), ẋ∗(·), . . . , x(N−1)
∗ (·) gives:

p j0(t) · f(t, z∗(t), 1) = 0, for all t ∈ [a, b].

Then invoking Lemma 5.6.6, we deduce that x∗(·) is a polynomial function whose degree is at most N − 1.

We now assume that η j = 1 for all j ≥ 2 and to complete the proof of Theorem 5.5.1 we employ a compactness

argument. For every integer j ≥ 2, we denote αj := (‖p j‖∞ + 1) and define (p̃ j , η̃ j) := α−1
j (p j , η j). From

Remark 5.4.1, we deduce that for a.e. t ∈ [a, b]:

| ˙̃p j(t)| ≤ |ATN p̃ j(t)|+ α−1
j k(t, 1) ≤ ‖AN‖+ k(t, 1), for all j ≥ 2, (5.26)

where ‖AN‖ is the matrix norm induced by the vector norm ‖(p0, . . . , pN−1)‖ = maxi=0,...,N−1 |pi|.

Estimate (5.26) shows that the sequence ( ˙̃p j)j≥2 is equi-integrable. Then there exists (p̃, η̃) ∈W 1,1([a, b],RN )×
[0, 1] such that, for a subsequence we do not relabel, (p̃ j)j≥2 converges to p̃ in L∞([a, b],RN ), ( ˙̃p j)j≥2 con-

verges to ˙̃p weakly in L1([a, b],RN ) and (η̃ j)j≥2 converges to η̃. We define (p, η) := (p̃, 0) if η̃ = 0 and

(p, η) := (η̃−1p̃, 1) if η̃ > 0. We also define Ẽ :=
⋂
j≥2Ej , which is a set of full measure as an intersection of

such sets.

Fix any t ∈ Ẽ and u ∈ ]0,+∞[. There exists j0 ≥ 2 such that, for all j ≥ j0, u ∈ [1/j, j]. Then for all j ≥ j0:

η jL

(
t, x∗(t), . . . ,

x
(N)
∗ (t)

u

)
u− η jL

Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
≥

(u− 1)(p j0 (t) + p j1 (t)ẋ∗(t) + . . .+ p jN−1(t)x
(N−1)
∗ (t)).

Multiplying both sides of the inequality by α−1
j and passing to the limit as j goes to +∞, we deduce that:

η̃L

(
t, x∗(t), . . . ,

x
(N)
∗ (t)

u

)
u− η̃L

Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
≥

(u− 1)(p̃0(t) + p̃1(t)ẋ∗(t) + . . .+ p̃N−1(t)x
(N−1)
∗ (t)).

(5.27)
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If η̃ = 0, (5.27) gives

p̃(t) · f(t, z∗(t), 1) = 0. (5.28)

If η̃ 6= 0, dividing both terms in (5.27) by η̃, we deduce that (p, η) satisfies the maximality condition (5.20)

for all t ∈ Ẽ and every u ∈ ]0,+∞[.

It remains to prove that the adjoint inclusion is also satisfied by (p, η). Define the function rj(t) := |α−1
j −

η̃|k(t, 1), and note that (5.18) gives:

˙̃p j(t) ∈ −∂Cz H η̃(t, z∗(t), p̃
j(t), 1) + B(0, rj(t)), for a.e. t ∈ [a, b],

with ‖rj‖L1 −−−−→
j→+∞

0. Invoking [84, Thm 2.5.3], we deduce that ˙̃p(t) ∈ −∂Cz H η̃(t, z∗(t), p̃(t), 1) for a.e.

t ∈ [a, b], implying that p satisfies (5.6). If η̃ 6= 0, we divide this differential inclusion by η̃ and we obtain

that (5.18) is satisfied by the pair (p, η), for a.e. t ∈ [a, b]. Dividing by η̃ both terms in (5.27), we conclude

that (W) is satisfied for all u ∈ ]0,+∞[ and a.e. t ∈ [a, b].

If η̃ = 0, then p̃ satisfies ˙̃p(s) = −ATN p̃(s) for a.e. s ∈ [a, b] and ‖p̃‖∞ = 1, which implies that p(s) = p̃(s) 6= 0

for all s ∈ [a, b]. Recalling (5.28), we invoke Lemma 5.6.6, and deduce that x∗(·) is a polynomial function

whose degree is less or equal to N − 1.

2

Proof of Proposition 5.5.8.

The proof of Proposition 5.5.8 follows along the same lines of the proof of Theorem 5.5.1, except that,

when we apply the maximum principle to the auxiliary optimal control problem, the maximality condition

is valid only for u ∈ [ 1
1+σ∗

, 1
1−σ∗ ] (from (Sx∗)

′). The extension of this property to the set {u ∈ ]0,+∞[} is a

consequence of (H)′ invoking a well known convexity argument (cf. [60, 84]).

2

5.7 Proof of Theorem 5.5.2

5.7.1 An auxiliary control problem (CP2)

Employing a standard ‘truncation argument’ which allows to extend local properties of a given function to

global ones (cf. [84]), we introduce the Lagrangian L̂ : [a, b]× RN × R −→ R ∪ {+∞},

L̂(t, (s, x0, . . . , xN−2), xN ) :=


L̃(s, x0, . . . , xN−2, x

(N−1)
∗ (t), xN ),

if |(s, x0, . . . , xN−2)− (t, x∗(t), . . . , x
(N−2)
∗ (t))| ≤ ε,

L̃
(
π(s, x0, . . . , xN−2), x

(N−1)
∗ (t), xN

)
, otherwise,

where π(s, x0, . . . , xN−2) := (t, x∗(t), . . . , x
(N−2)
∗ (t)) + ε

(s,x0,...,xN−2)−(t,x∗(t),...,x
(N−2)
∗ (t))

|(s,x0,...,xN−2)−(t,x∗(t),...,x
(N−2)
∗ (t))|

is the projection of

(s, x0, . . . , xN−2) over the sphere of center (t, x∗(t), . . . , x
(N−2)
∗ (t)) with radius ε, and L̃ is the extension of the

Lagrangian L to RN+2 defined as in (5.9). The function L̂ is clearly Borel measurable, (s, x0, . . . , xN−2, xN ) 7→
L̂(t, (s, x0, . . . , xN−2), xN ) is lower semicontinuous for all t ∈ [a, b]. Moreover L̂ satisfies a global (stronger)

version of condition (S∞x∗) iii). More precisely, for every (t, (s̄, x̄0, . . . , x̄N−2), xN ) ∈ E × RN × R, we have

|ζ| ≤ c
Ä
|(1, x̄1, . . . , x̄N−2, x

(N−1)
∗ (t))|+ L̂(t, (s̄, x̄0, . . . , x̄N−2), xN ) + λ|xN |)

ä
+ d(t) (5.29)
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for all ζ ∈ ∂P(s,x0,...,xN−2)L̂(t, (s̄, x̄0, . . . , x̄N−2), xN ).

Fix any integer j ≥ 2. We set ̂̀ : [a, b]× RN × R→ R ∪ {+∞} by: for all (t, z, u) ∈ [a, b]× RN × R,

̂̀(t, z, u) :=

L̂
Å
t, z, x

(N)
∗ (t)
u

ã
u, if x

(N)
∗ (t) is defined and u ∈ [1/j, j],

+∞, otherwise.

We also consider the following control problem, which differs from (CP) since it allows to consider extended

valued Lagrangians and incorporates the ‘control constraint’ in the integral term:

Minimize J(z, u) :=

∫ b

a

̂̀(s, z(s), u(s))ds,

over arcs z ∈W 1,1([a, b],RN )

and L-measurable functions u : [a, b]→ R such that:

ż(s) = f(s, z(s), u(s)), for a.e. s ∈ [a, b],

z(a) = (a, x∗(a), ẋ∗(a), . . . , x
(N−2)
∗ (a)),

z(b) = (b, x∗(b), ẋ∗(b), . . . , x
(N−2)
∗ (b)),

(CP2)

Observe that ̂̀ is an extended valued function (the value +∞ might arise for some t ∈ [a, b], even if u ∈
[1/j, j]), so we cannot invoke [45, Theorem 22.26]. However, the structure of the function f allows us to

employ the hybrid maximum principle [44, Theorem 5.3.1].

The definition of ̂̀has the following consequence: any admissible trajectory/control pair (z, u) to (CP2) with

a finite cost is also an admissible trajectory/control pair for (CP). This gives the same minimizing property

to the pair (z∗, u∗) for the problem (CP2).

Lemma 5.7.1 The pair (z∗, u∗) is a local W 1,1-minimizer for (CP2).

We check that all the relevant hypotheses of [44, Theorem 5.3.1] are satisfied. First of all, we observe that the

function f is Lebesgue measurable in the time variable t, and continuously differentiable with respect to (z, u).

We claim that ̂̀(t, ·, ·) is lower semicontinuous for all t ∈ [a, b].

Fix any t ∈ [a, b]. We can assume that x
(N)
∗ (t) exists otherwise the lower semicontinuity is an immediate

consequence of the definition of ̂̀. Take any z = (z0, . . . , zN−1) ∈ RN and u ∈ R. Assume first that

u ∈ ]−∞, 1/j[ or u ∈ ]j,+∞[. Since ]−∞, 1/j[ and ]j,+∞[ are open subsets, the definition of ̂̀yields:

+∞ = lim inf
(z′,u′)→(z,u)

̂̀(t, z′, u′) ≥ ̂̀(t, z, u) = +∞.

Now assume that u ∈ [1/j, j] and z0 ∈ ]a, b[. Recalling that L̂ satisfies (S∞x∗) i), we have:

lim inf
(z′,u′)→(z,u)

̂̀(t, z′, u′) ≥ lim inf
{(z′,u′)→(z,u) : , u′∈[1/j,j]}

̂̀(t, z′, u′),
= lim inf
{(z′,u′)→(z,u) : , u′∈[1/j,j]}

L̂

(
t, z′,

x
(N)
∗ (t)

u′

)
u′,

≥ L̂

(
t, z,

x
(N)
∗ (t)

u

)
u,

= ̂̀(t, z, u).
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On the other hand, if u ∈ [1/j, j] and z0 ≤ a or z0 ≥ b, then using the definition of L̂ and (S∞x∗) i), we once

again obtain that:

lim inf
(z′,u′)→(z,u)

̂̀(t, z′, u′) ≥ ̂̀(t, z, u),

confirming the claim.

We proceed to check that the appropriate growth conditions are satisfied by f and ̂̀. From the global version

of (S∞x∗) iii) (see (5.29)), there exist strictly positive constants c, λ and d ∈ L1([a, b],R+) such that, for all

(t, (s̄, x̄0, . . . , x̄N−2), xN ) ∈ E × RN × R,

|ζ| ≤ c
(
|(1, x̄1, . . . , x̄N−2, x

(N−1)
∗ (t))|+ L̂(t, (s̄, x̄0, . . . , x̄N−2), xN ) + λ|xN |

)
+ d(t), (5.30)

for any ζ ∈ ∂Ps,x0,...,xN−2
L̂(t, (s̄, x̄0, . . . , x̄N−2), xN ).

Take a bounded subset K of RN . Let (t, z, u) ∈ [a, b]×K × R such that ̂̀(t, z, u) < +∞. We have:

‖∇zf(t, z, u)‖ = u‖AN‖ ≤ j‖AN‖.

We claim that there exist cK > 0 and dK ∈ L1([a, b],R), such that, for all (ν, ψ) ∈ ∂P(z,u)
̂̀(t, z, u), we have:

|ν|(1 + ‖∇uf(t, z, u)‖)
1 + |ψ|

≤ cK
Ä
|f(t, z, u)|+ ̂̀(t, z, u) + dK(t)

ä
.

Observe that it is enough to prove that for all ν ∈ ∂Pz ̂̀(t, z, u):

|ν|(1 + ‖∇uf(t, z, u)‖) ≤ cK
Ä
|f(t, z, u)|+ ̂̀(t, z, u) + dK(t)

ä
. (5.31)

Fix any ν ∈ ∂Pz ̂̀(t, z, u). We can find ζ ∈ ∂Ps,x0,...,xN−2
L̂
(
t, z, x

(N)
∗ (t)/u

)
such that ν = uζ. Moreover, from

(5.30) we obtain (recall that z = (z0, . . . , zN−1)):

|ζ| ≤ c
(∣∣∣(1, z2, . . . , zN−1, x

(N−1)
∗ (t)

)∣∣∣+

L̂
(
t, (z0, . . . , zN−1), x

(N)
∗ (t)/u

)
+
λ

u
|x(N)
∗ (t)|

)
+ d(t).

(5.32)

Note that since z ∈ K and x
(N−1)
∗ (·) is bounded on [a, b], for some constant c̃ > 0, we also have:

1 + ‖∇uf(t, z, u)‖ = 1 + |ANz + b(t)| ≤ 1 + |(1, z2, . . . , zN−1, x
(N−1)
∗ (t))| ≤ c̃.

Hence from (5.32) we have:

|ν|(1 + ‖∇uf(t, z, u)‖) ≤ c̃c
Å
|f(t, z, u)|+ ̂̀(t, z, u) + λ|x(N)

∗ (t)|+ j

c
d(t)

ã
.

Recalling that t 7→ λ|x(N)
∗ (t)| is in L1([a, b],R) since x∗ ∈WN,m([a, b],R), we define dK(·) := j

cd(·)+λ|x(N)
∗ (·)|

and cK := c̃c, confirming (5.31).

To better handle the abnormal case that can arise from the maximum principle, we need some information

about the first coordinate of ∂∞(z,u)
̂̀(t, z∗(t), 1) and ∂L(z,u)

̂̀(t, z∗(t), 1), which are provided by the following

lemma.

Lemma 5.7.2 1) For a.e. t ∈ ]a, b[, if (ν, ψ) ∈ ∂∞(z,u)
̂̀(t, z∗(t), 1) then ν = 0.

2) For a.e. t ∈ ]a, b[, if (ν, ψ) ∈ ∂L(z,u)
̂̀(t, z∗(t), 1) then |ν| ≤ β(t).
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Proof. 1) Recalling the characterization [84, Theorem 4.6.2] of asymptotic limiting subgradients, there exist

a sequence (zi, ui)i∈N such that ̂̀(t, zi, ui) < +∞ for all i ∈ N and (zi, ui) −−−−→
i→+∞

(z∗(t), 1), a sequence

(hi)i∈N of positive real numbers such that hi ↓ 0, and a sequence (νi, ψi)i∈N in RN+1 for which the following

property is satisfied:

∀i ∈ N, h−1
i (νi, ψi) ∈ ∂P(z,u)

̂̀(t, zi, ui) and (νi, ψi) −−−−→
i→+∞

(ν, ψ).

For each i ∈ N, there exists a vector ζi ∈ ∂P(s,x0,...,xN−2)L̂

Å
t, zi, x

(N)
∗ (t)
ui

ã
such that h−1

i νi = uiζi. Also, from

the definition of L̂ and hypothesis (S∞x∗) iv) for L, there exists it ∈ N for which:

|ζi| ≤ β(t), for all i ≥ it.

Hence we obtain:

|ν| ≤ lim sup
i→+∞

uihi|ζi| ≤ lim sup
i→+∞

uihiβ(t) = 0,

which implies ν = 0.

2) There exist a sequence (zi, ui)i∈N such that (zi, ui) −−−−→
i→+∞

(z∗(t), 1) and ̂̀(t, zi, ui) −−−−→
i→+∞

̂̀(t, z∗(t), 1)

and a sequence (νi, ψi)i∈N in RN+1 satisfying:

(νi, ψi) −−−−→
i→+∞

(ν, ψ) and (νi, ψi) ∈ ∂P(z,u)
̂̀(t, zi, ui), for all i ∈ N.

As in the proof of 1), for all i ∈ N, there exists ζi ∈ ∂P(s,x0,...,xN−2)L̂

Å
t, zi, x

(N)
∗ (t)
ui

ã
such that νi = uiζi. From

(S∞x∗) iv), there exists it ∈ N for which:

|ζi| ≤ β(t), for all i ≥ it.

Hence we obtain:

|ν| = lim
i→+∞

ui|ζi| ≤ β(t),

which concludes the proof of Lemma 5.7.2.

2

For η ≥ 0, we define the Hamiltonian of the problem (CP2):“Hη(t, z, p, u) = p · f(t, z, u)− η̂̀(t, z, u)

= u
(
p0 + p1z2 + p2z3 + . . . pN−2zN−1 + pN−1x

(N−1)
∗ (t)

)
− η̂̀(t, z, u).

Applying [44, Theorem 5.3.1] to (CP2) for each j ≥ 2, there exist an arc p j = (p j0 , . . . , p
j
N−1) ∈W 1,1([a, b],RN ),

a scalar η j ∈ {0, 1} and a set of full measure Ej ⊂ [a, b] such that the following conditions hold:

i) The nontriviality condition: (η j , p j(t)) 6= 0, for all t ∈ [a, b],

ii) The maximality condition: for all u ∈ [1/j, j] s.t. L(t, x∗(t), . . . , x
(N−1)
∗ (t), x

(N)
∗ (t)/u) < +∞,“Hη j (t, z∗(t), p

j(t), u∗(t)) ≤ “Hη j (t, z∗(t), p
j(t), u), for all t ∈ Ej , (5.33)
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iii) The adjoint inclusion: for all t ∈ Ej ,

ṗ j(t) ∈ co
{
ω ∈ RN :

(
ω +ATNp

j(t), f(t, z∗(t), 1) · p j(t))
)
∈ ∂L,η

j

(z,u)
̂̀(t, z∗(t), 1)

}
, (5.34)

where ∂L,η
j

(z,u)
̂̀(t, z∗(t), 1) = ∂∞(z,u)

̂̀(t, z∗(t), 1) if η j = 0, ∂L(z,u)
̂̀(t, z∗(t), 1) if η j = 1.

In particular from (5.33), we obtain the following equation: for a.e. t ∈ Ej and every u ∈ [1/j, j] such that

L
(
t, x∗(t), . . . , x

(N−1)
∗ (t), x

(N)
∗ (t)/u

)
< +∞,

η jL

(
t, x∗(t), . . . ,

x
(N)
∗ (t)

u

)
u− η jL

Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
≥

(u− 1)
(
p j0 (t) + p j1 (t)ẋ∗(t) + . . .+ p jN−1(t)x

(N−1)
∗ (t)

)
.

(5.35)

Observe that condition (5.35) can be expressed using L instead of L̂ since, from the definition of L̂, we have

that L̂
(
t,
(
t, x∗(t), . . . , x

(N−2)
∗ (t)

)
, x

(N)
∗ (t)
u

)
= L

Å
t, x∗(t), . . . , x

(N−1)
∗ (t), x

(N)
∗ (t)
u

ã
.

5.7.2 Compactness argument

Let I be the set I := {j ≥ 2, η j = 0}. Two cases may occur: I is either infinite or finite.

Assume first that I is infinite. Then we can extract a subsequence (we do not relabel) such that (p j , η j)j≥2

satisfies ηj = 0 for all j ≥ 2. Then by nontriviality, p j(t) 6= 0 for all j ≥ 2 and all t ∈ [a, b]. For all j ≥ 2,

we define p̃ j(t) := p j(t)
‖p j‖∞ . Using (5.34) and property 1) of Lemma 5.7.2, we have that:

| ˙̃p j(t)| ≤ |ATN p̃ j(t)| ≤ ‖AN‖ for all j ≥ 2 and for all t ∈ Ẽ ,

where Ẽ :=
⋂
j≥2Ej is a set of full measure. This implies that the sequence ( ˙̃p j)j≥2 is equi-integrable. Then

there exists (p̃, η̃) ∈W 1,1([a, b],RN )× {0} such that, for a subsequence we do not relabel, (p̃ j)j≥2 converges

to p in L∞([a, b],RN ), ( ˙̃p j)j≥2 converges to ṗ weakly in L1([a, b],RN ) and (η̃ j)j≥2 converges to 0. Since
˙̃p j(t) = −ATN p̃ j(t) for all j ≥ 2 and a.e. t ∈ [a, b], we invoke [84, Thm 2.5.3] and obtain that ˙̃p(t) = −ATN p̃(t)
for a.e. t ∈ [a, b]. Recalling that ‖p̃‖∞ = 1, this implies that p̃(t) 6= 0 for all t ∈ [a, b].

Passing to the limit in (5.35), we have that for almost every t ∈ [a, b],

(u− 1)(p(t) · f(t, z∗(t), 1)) ≤ 0, for all u ∈ ]0,+∞[ s.t. L

(
t, x∗(t), . . . ,

x
(N)
∗ (t)

u

)
< +∞.

Then, invoking hypothesis (S∞x∗) ii), we obtain p(t) · f(t, z∗(t), 1) = 0 for a.e. t ∈ [a, b], and by continuity

of p(·), x∗(·), . . . , x(N−1)
∗ (·), we derive that p(t) · f(t, z∗(t), 1) = 0 for all t ∈ [a, b]. Using Lemma 5.6.6, we

deduce that x∗(·) is a polynomial function whose degree is less or equal to N − 1.

Assume now that I is finite. Extracting a subsequence if so needed, we can assume that ηj = 1 for all j ≥ 2.

We define αj := ‖p j‖∞ + 1 for all j ≥ 2 and (p̃ j(t), η̃ j) := α−1
j (p j(t), η j). We obtain that, for a.e. t ∈ [a, b]

˙̃p j(t) ∈ co
{
ω ∈ RN :

(
ω +ATN p̃

j(t), f(t, z∗(t), 1) · p̃ j(t))
)
∈ α−1

j ∂L(z,u)
̂̀(t, z∗(t), 1)

}
.

As a consequence of property 2) of Lemma 5.7.2, we deduce that:

| ˙̃p j(t)| ≤ ‖AN‖+ α−1
j β(t) ≤ ‖AN‖+ β(t), for a.e. t ∈ [a, b].
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This implies that the sequence ( ˙̃p j)j≥2 is equi-integrable. Then there exists a pair (p̃, η̃) ∈W 1,1([a, b],RN )×
[0, 1] such that, for a subsequence (we do not relabel), (p̃ j)j≥2 converges to p̃ in L∞([a, b],RN ), ( ˙̃p j)j≥2

converges to ˙̃p weakly in L1([a, b],RN ) and (η̃ j)j≥2 converges to η̃.

Employing a standard argument (cf. [84, pages 250-251]), we obtain that for a.e. t ∈ [a, b]:

˙̃p(t) ∈ co
{
ω ∈ RN :

(
ω +ATN p̃(t), f(t, z∗(t), 1) · p̃(t))

)
∈ η̃∂L(z,u)

̂̀(t, z∗(t), 1)
}
.

If η̃ = 0, we proceed as in the first case, and conclude by Lemma 5.6.6 that x∗(·) is a polynomial function

whose degree is less or equal to N − 1. If η̃ > 0, then p := η̃−1p̃ satisfies (5.7) and (W) of the theorem.

5.8 Proof of Theorem 5.5.6

Regularity of the minimizer. From Theorem 5.5.1 or 5.5.2, we deduce that x∗(·) is a polynomial function

or that the Weierstrass condition (W) is satisfied. If x∗(·) is a polynomial function, then x
(N)
∗ (·) is obviously

essentially bounded on [a, b]. We therefore assume without restriction that condition (W) is valid for an

arc (p0, . . . , pN−1) ∈ W 1,1([a, b],RN ). From Corollary 5.5.4, condition (Wr) is satisfied for the same arc

(p0, . . . , pN−1).

Recalling the definition of Λ and ∂rΛ, (Wr) implies that for a.e. t ∈ [a, b]:

L
Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
−
(
p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t)

)
∈ ∂rΛ(t, x

(N)
∗ (t), 1). (5.36)

Let Q : [a, b]× R→ R be a map such that for a.e. t ∈ [a, b]

Q(t, x
(N)
∗ (t)) = L

Ä
t, x∗(t), . . . , x

(N)
∗ (t)

ä
−
(
p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x

(N−1)
∗ (t)

)
.

We set M := 1 + ‖p0 + p1ẋ∗ + . . .+ pN−1x
(N−1)
∗ ‖∞. From the growth condition (Gx∗), we can find a set of

full measure E ⊂ [a, b], and a constant R > 0 satisfying:

∀(t, ξ) ∈ E × R, Q(t, ξ) ∈ ∂rΛ(t, ξ, 1), |ξ| ≥ R ⇒ |L(t, x∗(t), . . . , ξ)−Q(t, ξ)| ≥M,

that is to say:

∀(t, ξ) ∈ E × R, Q(t, ξ) ∈ ∂rΛ(t, ξ, 1), |ξ| ≥ R ⇒ |p0(t) + p1(t)ẋ∗(t) + . . .+ pN−1(t)x
(N−1)
∗ (t)| ≥M.

From the definition of M , we immediately deduce that |x(N)
∗ (t)| ≤ R for a.e. t ∈ [a, b], which concludes the

proof of the theorem.

2
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Titre : Conditions Nécessaires et Suffisantes en Contrôle Optimal et Applications

Mots-clés : Contrôle optimal, équation de Hamilton-Jacobi-Bellman, fonction valeur, conditions
nécessaires d’optimalité, régularité des minimiseurs.

Résumé : La partie 1 de cette thèse traite
d’un problème de Bolza non-autonome en
contrôle optimal pour lequel la dynamique et le
lagrangien sont continus en temps seulement
presque partout.

Plusieurs caractérisations (proximale,
contingente et viscosité) de la fonction va-
leur du problème en tant qu’unique solution
généralisée de l’équation de Hamilton-Jacobi-
Bellman correspondante sont démontrées
dans la classe des fonctions semi-continues
inférieurement.

Le cas d’un problème avec contrainte
d’état est aussi considéré. Des conditions
de compatibilité ad hoc entre l’ensemble des
contraintes et la dynamique sont introduites,
ce qui permet d’approximer les trajectoires
violant la contrainte d’état par des trajectoires
faisables et par suite d’établir des caractérisa-
tions (proximale, contingente et viscosité) de
la fonction valeur en tant qu’unique solution de

l’équation de Hamilton-Jacobi-Bellman.

La partie 2 de cette thèse traite d’un pro-
blème de Bolza non-autonome d’ordre N dans
lequel le lagrangien est seulement Borel me-
surable, et peut prendre pour valeur +∞.
On établit d’abord les conditions nécessaires
d’optimalité sous la forme d’une équation du
type Euler-Lagrange et d’une équation du type
Erdmann – Du Bois-Reymond, sans imposer
au lagrangien la convexité par rapport à sa
dernière variable, ni aucune condition de crois-
sance particulière.
En imposant en plus au lagrangien une condi-
tion de croissance plus générale que la crois-
sance super-linéaire utilisée habituellement,
les conditions nécessaires sont mises à profit
afin d’établir que la dernière dérivée d’un mi-
nimiseur de ce problème est essentiellement
bornée.

Title: Necessary and Sufficient Conditions in Optimal control and Applications

Keywords: Optimal control, Hamilton-Jacobi-Bellman equation, value function, necessary
conditions for optimality, regularity of minimizers.

Abstract: The part 1 of this thesis focuses on
a non autonomous Bolza problem in optimal
control for which the Lagrangian L and the
dynamics F are allowed to be discontinuous
with respect to time on a set of full measure
(with left and right limits everywhere). Sev-
eral characterizations (contingent, proximal,
viscosity) of the value function of the problem
as the unique solution to the corresponding
Hamilton-Jacobi-Bellman equation are estab-
lished in the class of lower semicontinuous
functions.
The state-constrained case is also considered.
Some appropriate compatibility conditions be-
tween the state of constraints and the dynam-
ics are introduced. They allow to establish a
W 1,1 neighbouring feasible trajectories result
which is then exploited to prove several char-
acterizations (contingent, proximal, viscosity)
of the value function V as the unique general-

ized solution to the Hamilton-Jacobi equation.

Part 2 of this thesis presents results con-
cerning a non autonomous high order Bolza
problem in which the Lagrangian is merely
Borel measurable, and is possibly extended
valued.
Necessary conditions for optimality in the
Euler-Lagrange form and in the Erdmann –
Du Bois-Reymond form are provided, without
imposing on the Lagrangian to be convex with
respect to the last variable, nor to have any
kind of specific growth behavior.
By adding an extra growth assumption that
is more general than the usual superlinearity
with respect to the last variable, the necessary
conditions are exploited to establish that the
last derivative of a given minimizer is essen-
tially bounded.
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