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If, 1895, Rudyard Kipling, adaptation d’André Maurois

Si tu peux voir détruit 'ouvrage de ta vie
Et sans dire un seul mot te mettre a rebatir,
Ou perdre en un seul coup le gain de cent parties

Sans un geste et sans un soupir;

Si tu peux étre amant sans étre fou d’amour,
Si tu peux étre fort sans cesser d’étre tendre,
Et, te sentant hal, sans hair a ton tour,
Pourtant lutter et te défendre;

Si tu peux supporter d’entendre tes paroles
Travesties par des gueux pour exciter des sots,
Et d’entendre mentir sur toi leurs bouches folles

Sans mentir toi-méme d’un mot ;

Si tu peux rester digne en étant populaire,

Si tu peux rester peuple en conseillant les rois,
Et si tu peux aimer tous tes amis en frere,
Sans qu’aucun d’eux soit tout pour toi;

Si tu sais méditer, observer et connaitre,
Sans jamais devenir sceptique ou destructeur,
Réver, mais sans laisser ton réve étre ton maitre,

Penser sans n’étre qu'un penseur ;

Si tu peux étre dur sans jamais étre en rage,
Si tu peux étre brave et jamais imprudent,
Si tu sais étre bon, si tu sais étre sage,

Sans étre moral ni pédant ;

Si tu peux rencontrer Triomphe apres Défaite
Et recevoir ces deux menteurs d’un méme front,
Si tu peux conserver ton courage et ta téte
Quand tous les autres les perdront,

Alors les Rois, les Dieux, la Chance et la Victoire
Seront a tout jamais tes esclaves soumis,

Et, ce qui vaut mieux que les Rois et la Gloire
Tu seras un homme, mon fils.

Cette thése est dédiée a ma meére, a mon pére, a ma famille.
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Résumé

LA partie [I| de cette these traite de la programmation dynamique en contréle optimal. On considére un
probleme de Bolza non-autonome en controle optimal pour lequel la dynamique et le lagrangien sont continus
en temps seulement presque partout (avec limites a droite et & gauche partout).

Plusieurs caractérisations (proximale, de Dini, et viscosité) de la fonction valeur du probleme en tant
qu'unique solution généralisée de l’équation de Hamilton-Jacobi-Bellman (HJB) correspondante sont
démontrées dans la classe des fonctions semi-continues inférieurement.

Le cas ou une contrainte d’état est ajoutée au probleme précédent est aussi considéré. Des conditions de
compatibilité ad hoc entre I’ensemble des contraintes A et la fonction dictant la dynamique F' sont introduites,
ce qui permet d’approximer dans W' les trajectoires non-faisables par des F-trajectoires faisables et par
suite d’établir différentes caractérisations (proximale, de Dini, et viscosité) de la fonction valeur en tant
qu’unique solution de I’équation (HJB).

La partie [2| de cette these traite de résultats obtenus concernant les conditions nécessaires d’optimalité en
calculs de variations et la régularité des minimiseurs. Le probleme considéré est celui d’'un probléeme de
Bolza non-autonome d’ordre N dans lequel le lagrangien L est seulement Borel mesurable, et peut prendre
pour valeur +o0.

On établit d’abord les conditions nécessaires d’optimalité sous la forme d’une équation du type Kuler-
Lagrange, ainsi que sous la forme d’une équation du type Erdmann — Du Bois-Reymond, sans imposer au
lagrangien la convexité par rapport a sa derniere variable, ni aucune condition de croissance particuliere.

En imposant en plus & L une condition de croissance plus générale que la croissance super-linéaire utilisée
habituellement, les conditions nécessaires sont mises a profit afin d’établir que la derniére dérivée d’un
minimiseur de ce probleme est essentiellement bornée.

Mots clefs. Optimisation, contréle optimal, équation de Hamilton-Jacobi-Bellman, fonction valeur, con-
trainte d’état, calcul des variations, analyse non lisse, probleme de Bolza, conditions nécessaires d’optimalité,
régularité des minimiseurs.






Abstract

THE part [1] of this thesis focuses on dynamic programming in optimal control. We consider non au-
tonomous Bolza problem in optimal control for which the Lagrangian L and the dynamics F' are allowed to
be discontinuous with respect to time on a set of full measure (with left and right limits everywhere).
Several characterizations (Dini, proximal, viscosity) of the value function of the problem as the unique
solution to the corresponding Hamilton-Jacobi-Bellman equation are established in the class of lower semi-
continuous functions.

The case where a state constraint is added to the previous problem is also considered. Some appropriate
compatibility conditions between the state of constraints and the dynamics are introduced. They allow to
establish a W' neighbouring feasible trajectories result which is then exploited to prove several character-
izations (Dini, proximal, viscosity) of the value function V' as the unique generalized solution to (HJB).

Part [2] of this thesis presents results concerning necessary conditions for optimality in the calculus of vari-
ations and the regularity of minimizers. The problem considered is a non autonomous high order Bolza
problem in which the Lagrangian is merely Borel measurable, and is possibly extended valued.

Necessary conditions for optimality in the Euler-Lagrange form and in the Erdmann — Du Bois-Reymond
form are provided, without imposing on the Lagrangian to be convex with respect to the last variable, nor
to have any kind of specific growth behavior.

By adding an extra growth assumption that is more general than the usual superlinearity with respect to the
last variable, the necessary conditions are exploited to establish that the last derivative of a given minimizer
is essentially bounded.

Key words. Optimization, optimal control, Hamilton-Jacobi-Bellman equation, value function, state con-
straint, calculus of variations, nonsmooth analysis, Bolza problem, necessary conditions for optimality, reg-
ularity of minimizers.
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Introduction

1.1 Optimal control theory

CONTROL theory is a mathematical field in which a dynamical system, commonly modeled by a differential
equation, is monitored by an operant. The inputs of the system, called controls, can be managed in order
to modify the output of the system. A typical mathematical representation for such a system is:

z(s) = f(s,x(s),u(s)), for a.e. s €[S, T],

u(s) € U(s), for a.e. s € [S,T] (1.1)

z(S) = xo.
Here f : [S,T] x R® x R™ — R™ describes the dynamics of the system, U : [S,T] ~» R™ is a multivalued
function giving the admissible controls at each time ¢, and w(-) is an admissible control function chosen
among the measurable selections of U. If (z(-),u(-)) satisfies then it is called a trajectory-control pair.

x(t f(t,z(t),U(1))

o

- L(t) = f(t,z(t), u(t))
Figure 1.1: Representation of an f-trajectory and choice of the velocity vector &(t).

Control theory (together with optimal control theory) emerged to answer the need of controlling engineering
devices, for example space shuttles (see [81]). Over the years, they have found many other natural applica-
tions, for instance in the car industry: auto-braking systems or parking assistants. In these two examples,
the system is the car, the controller is the on-board computer, the controls are the acceleration and the
angle(s) of the guide wheels with the longitudinal axis of the car, and the output of the system is the pair
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trajectory/velocity of the car (z, ).

When it is possible to do so, the inputs of the system are chosen to obtain a satisfactory output. A relevant

criterion can, for instance, be whether or not an endpoint constraint is satisfied:
z(s) = f(s,x(s),u(s)), for a.e. s €[S, T],
u(s) € U(s ) for a.e. s €[S, T],
x( ) = Zo,

z(T) € E,

(1.2)

where F is the set of admissible endpoints for f-trajectories. In our examples, the satisfactory output is
stopping the car before the impact or steering the car into the parking slot.

O

Figure 1.2: Autobraking: the car must stop in £

To decide between all the controls giving satisfying results, one can add extra requirements by introducing
a cost function J(-) and associating a cost to each trajectory. A convenient definition for J(-) (and the one
we will be using in this thesis) that allows to cover a large number of cases is:

T
J(x() = / L(t,(t), #(8))dt + g(2(T)),

S

T
where / L(t,z(t),z(t))dt and g(x(T)) are respectively called the running cost and the final cost of the
S

trajectory x(-). But of course there are as many cost functions as there are control problems.
In the auto-braking system, a relevant running cost function for a trajectory/control pair ((x,%),u) could
be the integral of the deceleration, i.e. L (t,(z,), (&,%)) = |Z|.

When we look, amongst all the admissible trajectories, for the ones that minimize or maximize the functional
J(+), we enter the field of optimal control theory, which can be considered as an extension of calculus of
variations with constraints on the dynamics.

T
Minimize J(z) = / L(s,z(s),x(s))ds + g(x(T))

S
over arcs (z(-),u(-)) satisfying l}

Note that it can be convenient to include the endpoint constraint 2(T') € E (see (1.2))) into the final cost g(-)
0,ifrek
+oo, ifz ¢ E

(1.3)

by adding the following function xg(z) = { (in the case of a minimization problem), which
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immediately disqualifies trajectories violating the endpoint constraint. The problem ((1.3]) hence becomes:

T

Minimize J(z) = /S L(s, x(s), #(s))ds + g(x(T)) (1.4)

over arcs (z(-),u(-)) satisfying 1}

In the auto-braking system example, we can take g = x gy {0} Where E is the set of all the positions between
the car and the obstacle at the beginning of the braking. Once it is guaranteed that the car is not getting
into an accident and stops, it sounds reasonable to minimize the integral of the deceleration for the sake of
passengers safety, so the cost we want to minimize in this setup is:

T
[ 5105 + xeg0y((@(2). (1),
Defining a multivalued function F' : [S,T] x R™ ~» R™ by F(t,z) := f(t,x,U(t)), this problem can alterna-
tively be written using a differential inclusion involving z(-) instead of an ordinary differential equation. We
obtain a new form of the optimal control problem we started with:

T
Minimize J(z) = /5 L(s, (s), #(s))ds + g(x(T))

over arcs z(-) satisfying (Ps.,)
>0

’w(s) € F(s,z(s)), for a.e. s €S, T],‘

z(8) = zo,

where L : [S,T] x R” x R™ — R is the Lagrangian of the problem, g : R” — R U {400} is a function and
F : [S,T]xR™ ~» R™ a multivalued function. Here, we call F-trajectory on the interval [S, T any absolutely

continuous arc z(-) : [S, 7] — R™ which satisfies the reference differential inclusion #(s) € F(s,z(s)) for a.e.
s € [S,T).

Another important aspect of minimization problems is the possibility to consider a state constraint on the
trajectories:

T
Minimize J(z) = /S L(s, (s), #(s))ds + g(x(T))

over arcs z(-) satisfying

x(s) € F(s,xz(s)), for a.e. s € [S,T], (5Cs,2,)
’:1;(3) € A, forall s €[S, T],‘

z(S) = o,

where A is a closed set giving all the admissible positions for the F-trajectories. If an F-trajectory takes all
of its values in A, it is called a feasible F-trajectory.

In the parking assistant example, a relevant state constraint could be (z(t),z(t)) € A X [—v,v], where A is
the side of the road along which the car is parking (the other side of the road should be reserved to traffic
coming from the opposite direction) and v > 0 is a reasonable speed the car should not exceed to maneuver
safely.
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%1

Figure 1.3: Parking assistant and state constraint: the blue car must park without rolling over the other

side of the road (it must stay in A)

Once a problem that has the form 1 , (]PS@O[) or (]SCS@O[) is giverﬂ the construction of an optimal
trajectory-control pair (x(-),u(-)) or of an optimal trajectory x(-) naturally arises and has been a topic of

research of topmost importance since the late 50s. Two different approaches were proposed: the necessary
conditions (namely the maximum principle) by Lev Pontryagin initiated in 1956, ¢f. [73], and the dynamic
programming principle by Richard Ernest Bellman initiated in 1957, cf. [26].

In this thesis, necessary conditions in optimal control theory are only used to derive regularity properties of
minimizers in calculus of variations (Chapter , while Chapters |[3| and {4| are actually devoted to dynamic
programming applied to optimal control problems with discontinuous data (with respect to time).

1.2 Necessary conditions in Optimal Control

The Pontryagin maximum principle provides a set of conditions that are necessarily satisfied by a (local)
minimizer of a given optimal control problem where the constraint on the dynamics was first expressed as
an ordinary differential equation.

!Many other optimal control problems can be considered: the Mayer problem, the minimal time control problem, infinite
horizon Bolza problem. ..
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Consider first the following Mayer problem in which the data are considered as smooth as needed:

Minimize g(y(T"))

over the arcs y € WH1([S,T],R")

and measurable functions u : [S,7] — R satisfying
y(s) = f(s,y(s),u(s)), for almost every s € [S,T],
u(s) € U(s), for almost every s € [S,T],

Ly(5) = xo.

Here, g is real valued and differentiable. Then if (x4, u.) is a W'!-local minimizer for (P), then there exists
p € WHY([S,T] x R") (we note p in line p(t) = (p1(t),...,pn(t)) such that the following conditions are
satisfied:

(i) the nontriviality condition: p # 0,

(ii) the adjoint system:
—p(s) = p(s) Va [ (s, 24(s), us(s)),
for almost every s € [S, T],

(iii) the maximality condition:

P(s)f(8;24(s), us(s)) = max {p(s)f(s,z«(s),v)},

veU(s)
for almost every s € [S, T1,

(iv) the transversality condition:

—p(T) = Vg(z.(T)).

Even though other methods have been developed through years (second order necessary conditions, dynamic
programming) to solve optimal control problems, necessary conditions remain an excellent source of optimal
control strategies for some practical applications (cf. [I1), 65]).

A lot of researchers have contributed to the topic, providing more and more involved versions of the max-
imum principle [44, 411, [62 85]. The enhancements of the theorem previously mentioned include several
aspects: extensions with less smoothness of the data, the possibility to cover minimization problems for
functionals comprising a running cost, the possibility to cover involved endpoint and starting point con-
straints (y(S5),y(T)) € C...

Some aspects of this theory could not be dealt with using classical tools coming from smooth analysis. For
instance even in the simple form we presented, how can we state the adjoint inclusion when f is not differ-
entiable with respect to « 7 or the transversality condition when g is not differentiable 7

More generally, if we want to study problems including endpoint and starting point constraints (y(S),y(T)) €
C, the transversality condition involves normal vectors to C, but in the case C' is merely closed (with a pos-
sibly nonsmooth boundary), such vectors must be considered in a general setting.

The mathematical theory allowing to answer these questions is called nonsmooth analysis. It will be outlined
in Section [[.4] and presented with more details in Chapter 2]
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1.3 Dynamic programming in Optimal control

1.3.1 The value function
We proceed to make a brief introduction to the dynamic programming approach. It starts with embedding

our problem (Ps | into a family of problems ((Fz))(,.) indexed by the initial data (t,z) € [, T] x R™:

Minimize J(y(-)) = [," L(s,y(s),5(s))ds + g(y(T))

(Br) over the arcs y € WhHi([t, T], R") satisfying
b y(s) € F(s,y(s)), for almost every s € [t, T,

y(t) = .
This leads to the concept of the value function V' : [S,T] x R® — RU{+o0}, which, for all (t,z) € [S,T] xR",
is defined taking the infimum cost for (P ;):

T
V(t,z) :=inf {/t L(s,y(s),y(s))ds + g(y(T)), y(-) F-trajectory on [¢t,T],y(t) = aj} )

1.3.2 Hamilton-Jacobi-Bellman equation

An heuristic approach to find the partial differential equation satisfied by V' can be presented invoking the
principle of optimality, stating that for each ¢ € [S, T], the function

PRIPR / " L(ry(r). 9(r))dr + V(s y(s))

is increasing along F-trajectories y(-) satisfying y(t) = x and is constant if and only if y(-) is a minimizer for
(P t,:fc)-

Assume that V is differentiable and that (P; ;) has a minimizer for all (¢, z) € [S,T]xR". Fix any v € F(t,z).
We admit the existence of an F-trajectory y(-) such that y(t) = = and ¢(t) = v. Differentiating ¢, the
principle of optimality yields:

OtV (s,4(s)) + 02V (s,y(s)) - 9(s) + L(s,y(s),y(s)) = 0,

hence if s = ¢:
OV (t,x)+ 0,V (t,x) v+ L(t,z,v) > 0.

Similarly, if yo(-) is a minimizer for (P; ;) and if we note vy = o(t) € F'(t,z), then
OV (t,x) + 0,V (t,x) vy + L(t,z,v9) = 0.

This shows that V' is a solution to the following Hamilton-Jacobi-Bellman equation:

(HJB)

{@gp(t, )+ inf e peay {0ep(t, ) - v + Lt 2,0)} = 0
(T, z) = g(x).

An important feature of the dynamic programming approach is that the value function does provide the
minimum cost for (Ps g, ), but solving (HJB) also provides information about minimizers, supplying optimal

22



controls in feedback form, that are favored (over open-loop controls) in engineering applications due to their
resilience to perturbations of the system. This is achieved by an analysis of the feedback map:

[S,T] x R™ ~s R®

(t,z) — {v € F(t,x),0,V(t,x) v+ L(t,z,v) = II;I(H )[(%V(t,x) “w L(t,x,w)]}.
weF (t,r

P

and of the differential inclusion:
z(t) € Y(t,z(t)), for a.e. t € [S,T)].

This type of work is called optimal synthesis and goes beyond the purpose of this thesis.

1.3.3 Non differentiability of the value function

A major issue arises when we want to characterize the value function V' as the unique solution to the corre-
sponding Hamilton-Jacobi-Bellman equation, as even for the simplest control problems, the value function
is not differentiable.

We illustrate this fact by an example from this thesis. Consider the following Mayer problem:

Minimize g(z(1))

over arcs x(-) € WhL([tg, 1], R) such that
z(t) € F(t) for a.e. t € [to, 1],

z(to) = o ,

1,if = #0,

0,if = = 0.
A computation of the value function V : [0,1] x R — R,

where tg € [0,1], 0 € R, and F(t) := [0, 1], g(x) := {

0, if x+1—-¢t>0and z <0,
1, ifza+1—-t<Oorax>0,

V(t,x) = {
shows that it is merely lower semicontinuous, and certainly not differentiable.

To circumvent this issue, a suitable notion of generalized solution to (HJB) has to be introduced: the value
function V' should be the unique solution to (HJB) in this new sense. Unfortunately, the distributional
derivatives theory is not suited to strongly unlinear partial differential equations such as the Hamilton-
Jacobi-Bellman equation. This need for differentiating the value function led to innovative techniques. In
this introduction we shall consider the approach provided by the nonsmooth analysis.

As demonstrated here, when we want to penalize or disqualify trajectories that do not respect a given
endpoint constraint, we easily obtain a discontinuous value function. To cover a broad class of optimization
problems, a convenient class of functions to characterize the value function as a unique solution to (HJB)
would be the class of extended valued lower semicontinuous functions.

1.4 Nonsmooth analysis

Nonsmooth analysis was designed to extend notions such as derivatives and normal vectors (to a set with
smooth border) to non-differentiable data. The reason for introducing such extensions was sketched in
Section [[.2] and Subsection
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Figure 1.4: A closed set and the proximal normal cone at two different points.

In this framework, many researchers contributed to the development of nonsmooth analysis and Optimal

control: for instance, see the references [4, 27, [84, [31], [66, [61].

We briefly present some important notions: the proximal normal cone and the associated proximal subdif-
ferential, the limiting normal cone and the associated limiting subdifferential.

Let C C R™ be a closed set and & € C'. The proximal normal cone to C at Z is:
NE(z) == {n ER™IM>0,¥zeC,n-(z—7) < Mz — :z«|2}.
The limiting normal cone N¢(x) to C C R™ at Z is defined as follows
N&(z) = { n € R™, there exists x; g, Z,m; — 1 such that n; € N& (), for all i € N} .

Let f : R™ — RU {400} be a lower semicontinuous function, and z € dom(f). Then the epigraph of f,
epi f is closed. The notions of normal cones to a closed set hence yields corresponding notions of generalized
derivatives of f.

The proximal subdifferential of f at Z is:

opf(z) = {¢ € R™ (¢,-1) € Ny (3, ()} .
while the limiting subdifferential of f at Z is:
O f(z) == {€ € R™,(€,~1) € N&; 1(x, f(2))} .

Note that the proximal normal cone (resp. the limiting normal cone) to the epigraph of f at (z, f(z)), is
in general not spanned by dpf(z) x {—1} (resp. 9* f(Z) x {—1}) because it may contain horizontal vectors
(also called asymptotic vectors) in the form (§,0).

For the function f = 2Ry — 1, we have

NE 4(0,—1) = {(z,y),2 > 0,y < 0},
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so Opf(0) = [0,4o00[ and the asymptotic proximal subdifferential corresponding to asymptotic vectors,
denoted 0% f(0) is equal to [0, 400

Figure 1.5: Proximal normal cone to the epigraph of 2]1R1 —1at (0,-1).

More details and references about nonsmooth analysis will be provided in Chapter 2, We proceed to show
how nonsmooth analysis allows to develop both the sufficient and necessary conditions in optimal control,
outlining solutions to the problems we itemised in Subsection and Section [1.2

1.4.1 Application of nonsmooth analysis to the (HJB) theory

Nonsmooth analysis can be invoked to define appropriate notions of generalized solution to (HJB). We pro-
vide an example in which we put proximal subdifferentials to good use.

In our setup, we say that an extended valued, lower semicontinuous function W : [S,T] x R” — RU {400}
is a proximal solution to (HJB) if the following conditions are satisfied:
i) for every (t,z) € (]S, T[xR"™) N dom(W)

0+ iFn(f : [51 v+ L(t,x,v)] =0, for all (€9, €Y € OpW (¢, z),
veF (t,x

ii) for every x € R",
lim inf Wt 2" =W(S,x),
{(t",z")—(S,x) | t/>S}
and

W', 2"y =W(T,z) = g(x).

lim inf
{(t/,a")=(T\x) | '<T}

More notions of generalized solutions to (HJB) will be detailed in section and in this thesis.
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1.4.2 Nonsmooth analysis contribution to the maximum principle
We illustrate how nonsmooth analysis intervenes even in a quite simple version of the maximum principle
[37, [45], 84] for the following optimization problem:
( T
Mininaize | L(s.y(s), u(s))ds + g(y(S),y(T)
S
over the arcs y € WH([S, T],R")
(P2) and measurable functions u : [S,T] — R satisfying
y(s) = f(s,y(s),u(s)), for almost every s € [S,T],
u(s) € U(s), for almost every s € [S,T]
(y(5),y(T)) € C.

Here f : [S,T] x R™ x R™ — R™ describes the dynamics of the system, U : [S,T] ~» R™ is a multivalued
function describing the admissible controls, C' C R?" is closed set. We denote by H) : [S, T]xR?xR" xR™ —
R the Hamiltonian function:

Hy(s,z,p,u) :==p- f(s,z,u) — AL(s, x,u).

Then if (2, us) is a Whl-local minimizer for (P2), then there exist p € W1I([S, T],R") (the adjoint arc)
and A > 0 such that the following conditions are satisfied (see [45, Theorem 22.26]:

(i) the nontriviality condition: (p,A) # (0,0),

(ii) the adjoint inclusion:
—p(s) € cody Ha(s, 4(s), p(s), us(s)),

for almost every s € [S,T7,

(iii) the maximality condition:

Hi(5,4(5),p(s), ua(s)) = sup Hi (s, (), p(s), ),
uelU(s)

for almost every s € [S,T7,

(iv) the transversality condition:

(p(S), =p(T)) € X0 g(w(S), 2:(T)) + NE((2(S), 2.(T)).

In this theorem we resorted no less than three times to nonsmooth analysis to state the adjoint inclusion
and the transversality condition.

Nonsmooth analysis also intervenes in the case we are looking for extensions to the maximum principle in
the case the constraint on the dynamics is expressed as a differential inclusion y(s) € F(s,y(s)). This type
of results is called extended Euler-Lagrange conditions.
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Here, we consider the following control problem :

Minimize g(y(S), y(T))

over the arcs y € WH1([S, T],R") such that
y(s) € F(s,y(s)), for almost every s € [S,T]
(y(5),y(T)) € C.

(P3)

(here the differential equation is replaced by a differential inclusion). We can turn the problem (P3) into a
Bolza problem in the calculus of variations by disqualifying trajectories violating the differential inclusion
on a set of positive measure. This is achieved by adding a penalty running cost to the original cost:

T
Minimize g(y(S), y(T)) + /S (s, y(s), 9(s))ds
)

over the arcs y € WhH([S, T],R"
such that (y(95),y(T)) € C.

where
0, ifv e F(t,x),

Ut,x,v) = {+oo, if v F(t,z).

If we could apply the smooth version of the Euler-Lagrange equation (in the calculus of variations) to a
W1 minimizer .(-) to derive the new necessary conditions, we would obtain the existence of an adjoint arc
p € WHY([S,T],R") for which the following conditions are satisfied:

(i) the adjoint inclusion:
(B(5), p(s5)) = Val(s, x4(s), 4(s)),

for almost every s € [S, T1,
(ii) the maximality condition:
P(s) - u(s) = Us, 24(5), 84 (3)) = p(s) - v = £(s, 4(s),v),
for all v € R™ and for almost every s € [S,T],

(iii) the transversality condition:
(p(S), =p(T)) € Vg(2u(S), 2(T)) + NE((2:(S), 2 (T)).

However, in the adjoint inclusion above, V, ,¢ is ill-defined. This is yet another problem that was solved
using nonsmooth analysis, since under suitable conditions, the following extended Euler-Lagrange conditions
can be obtained (see [45] [84]): there exist p € WHL([S, T],R™) and A > 0 such that the following conditions
are satisfied

(i) the nontriviality condition: (p, ) # (0,0),
(ii) the adjoint inclusion:
B(s) € co {€ € R™, (§,p(5)) € Ny (w(5), i(5)) }
for almost every s € [S, T7,
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(iii) the maximality condition:
p(s) - (s) = p(s) - v,
for all v € F(s,z«(s)) and for almost every s € [S, T/,

(iv) the transversality condition:

(p(S), =p(T)) € AVg(2(S), 2.(T)) + NG ((2+(8), 24(T)).

1.5 The maximum principle and the value function: sensitivity

A missing link between the maximum principle and the dynamic programming approach is given by sensi-
tivity relations, which provide an interpretation of the adjoint arc and the Hamiltonian, evaluated along an
optimal trajectory, in terms of generalized gradients of the value function.

For instance, if (z.(+), u«(+)) is an optimal trajectory/control pair for the Mayer problem (P), and p(-) is the
adjoint arc given by the maximum principle, then a smooth versionE] of the sensitivity relations is :

(H(t,z(t),p(t)), —p(t)) = VV(t,24(t)), for all t € [ty,T], (full sensitivity relation)
—p(t) = 0,V (t,z4(t)), for all t € [to, T], (partial sensitivity relation).

A specificity of this smooth framework is that the partial sensitivity relation is trivially implied by the full
sensitivity relation and that the adjoint arc p(-) given by the maximum principle is unique.

We mentioned many times that even in the smooth setting, the value function might be non-differentiable,
which (once again) drove researchers to resort to nonsmooth analysis. For instance when the value function is
merely locally Lipschitz continuous, the sensitivity relations were expressed in [30] using (Fréchet) superdif-
ferentials (see Chapter . Quite remarkably in this context, the sensitivity relations help provide necessary
and sufficient conditions for optimality. Note that due to the nature of generalized gradients and differentials
in nonsmooth analysis, the full sensitivity relation does not imply in general the partial sensitivity relation.

When the data are not smooth or a state constrained problem is considered, the adjoint arc is not unique,
which makes the proofs of sensitivity relations more elaborate. For the unconstrained case, we refer to
[38] (partial sensitivity relation using Clarke’s generalized gradient), [82] [84] (full sensitivity relation using
limiting subdifferentials) and [32] (partial and full sensitivity relations using superdifferentials and proximal
subgradients). For the state constrained case a recent reference is [20] where the existence of an adjoint
arc satisfying both sensitivity relations at the same time was established. Researchs about second-order
sensitivity relations have also been carried out [33].

1.6 Uniqueness of a solution to (HJB): Invariance/Viability theory

The tools allowing for a notion of generalized solution to (HJB) have been outlined in Subsection [1.4.1]
Another important step of the characterization still has to be dealt with. From the humble experience of a
Ph.D. student, to prove that the value function is a generalized solution to (HJB) (existence of a solution)
is not nearly as challenging as proving it is the unique generalized solution (uniqueness).

2Here the data and the value function are assumed to be smooth.
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Viability theory is a mathematical field that studies the evolution of dynamical systems under constraints
on the system. In the framework of (HJB) equation, viability theory is used in two ways:

e weak invariance theorems also called viability theorems assert the existence of solutions to constrained
differential inclusions that have the following form (here yo € D):

y(t) € Q(t,y(t)), for a.e. t € [S,T]
y(t) € D, for all t € [S,T],

y(S) = yo,
where D is a closed set;

e strong invariance theorems assert that all trajectories starting from some yo € D that are solutions to
the following differential inclusion

{g)(t) € Q(t,y(t)), for ae. t € [S,T]
y(S) =1%o

satisfy the constraint y(t) € D, for all t € [S,T].

A well-known contribution in order to establish uniqueness of solutions to (HJB) via viability theory is [51]:
viability theory was exploited in order to study the behaviour of F-trajectories evolving in the epigraph of V',
which yields comparison results for (HJB). As a result, the value function is the unique lower semicontinuous
function satisfying (HJB) in a generalized sense which involves the lower Dini derivative, or, equivalently,
the Fréchet sub/superdifferentials. This was subsequently refined in [42], by a characterization of the value
function as the unique solution to (HJB) in a generalized sense which makes use of proximal subgradients.
Since then, using viability theory to establish uniqueness of solution to Hamilton-Jacobi equations (coming
either from calculus of variations or optimal control) has become both a useful and usual technique (see
[211, 42, (501, 49], 54, [71), [72), 84] and many others).

Let us illustrate how viability can be used to derive comparison results between solutions to (HJB). For
example, if W : [S,T] x R" — RU {+o0} is a proximal solution to (HJB) (as defined in Subsection [L.4.1),
we sketch the proof of the fact that V< W.

We introduce a multivalued function W : [S,T] x R™ ~» R"™ x R defined by:
Q(r,2) = {(L,v,—n)|v € F(r,2).n > L(r,,v)},

Fix (tg, o) €]5, T[xR"™. Applying a weak invariance theorem to the following differential inclusion:

(7,4,0)(t) € Q(r(t), z(t)), for a.e. t € [ty,T],
(7(t),x(t),£(t)) € epi W, for all t € [ty,T],
(7(t0), z(t0), £(to)) = (to, zo, W (to, o)),

yields the desired inequality.
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The fact that W is a proximal solution helps check that the relevant hypotheses of the viability theorem
are satisfied, in particular the ‘inward pointing condition’: for every (7,z) €]S,T[, and every (£°,&', —)\) €
Né;iW((Tv l’), W(Tv x))a

: 0 ¢1
min ,E,=A)-w < 0.
pelin (€.6,-N)

This condition somehow means that we can always find velocity vectors in Q(7,z) pointing towards the
interior of epi W (see figure in Chapter .

The weak invariance theorem states that there exists (7(-),z(-),£(+)) € WH([te, T],R x R™ x R) satisfying
7(t) =t and

(1,4(t), £(t)) € Q(t, z(t)), for a.e. t € [to, T)

.I(to) = f.UO,[(tO) = W(to, .To)

0t) > W(t,xz(t)), forall te [ty,T].

Taking into account the definition of the multivalued function @, we deduce that x(-) is an F-trajectory and
that (s) < —L(s,z(s), 2(s)) for a.e. s € [to, T]. Hence we have:

T T
g(x(T)) =W(T,z(T)) < T) = L(ty) —I—/ {(s)ds < W (to,x0) — / L(s,z(s),x(s))ds,

to to
which implies:

T
o((T)) + / L(s, 2(s), i(s))ds < W(to, z0),

to

and then:

V(t[), :C()) S W(t(), xo).

The inequality
V(to, z0) = W (to, x0),

could be obtained using a similar analysis together with a strong invariance theorem. Together with the
existence result, this would show that V' is the unique solution to (HJB).

1.7 Neighbouring feasible trajectories results

Neighbouring feasible trajectories results allow to approximate F-trajectories evolving possibly outside of
the state constraint A by F-trajectories taking values in A. The estimates between a non feasible trajectory
y(+) and its feasible approximation y(-) can be given using different norms: for instance L>° (these estimates
are well-suited for Mayer problem) or in W1 (which are more useful for Bolza problems). Moreover, the
distance between these two functions should go to 0 as the violation of the constraint, namely the quantity
max,e(g,7] da(7(t)) goes to 0. Some references are [18, 19, 22} 29, 56} 57, [75].
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Figure 1.6: Neighbouring feasible trajectories result. The arc ¢ is not feasible, the ‘neighbour’ arc y starts
from the same point, but then, evolves in the interior of A.

Neighbouring feasible trajectories theorems are useful analytical tools to obtain results for state constrained
problems. Roughly speaking they correspond to constraints removal and in that regard, they allow to invoke
the dynamic programming approach and to develop the Hamilton-Jacobi theory (regularity of the value func-
tion and characterizations of value functions [21],[56]), as well as to deal with delicate aspects of the necessary
conditions theory (see [75] for applications to abnormality) or even to establish sensitivity conditions [57].

A key hypothesis allowing to derive such neighbouring feasible trajectories results is the validity of a compati-
bility condition between the boundary of the constraint A and the dynamics F. Two types of compatibilities,
namely inward pointing and outward pointing conditions can be considered. For instance, a smooth version
of the inward pointing condition is: for all z € 9A, for all t € [S,T], there exists v € F(¢,x) such that:

Ng - v >0,

where n, is the unit inward normal to A at z.

If A does not have a smooth border, then (inward) normals to A are ill-defined, and nonsmooth analysis
is helpful to generalize these conditions. For instance, using the contingent cone to A (see Chapter , the
previous conditions can be reformulated: for all x € JA, for all ¢t € [S, T:

F(t,z) Nint Ta(z) # 0.

1.8 Introduction to Part [I; Hamilton-Jacobi-Bellman equation for Op-
timal Control problems

1.8.1 Characterizations of value functions

It is well-known that continuous viscosity solutions for Hamilton-Jacobi equations were introduced in the
viscosity theory context by the mean of test functions [47, 48]. They were named after the vanishing viscosity
technique. This technique consists in adding a small friction term in a partial differential equation (eAV') >0,
in hopes of applying compactness results to the family of solutions (V)s~¢ as € vanishes (a well-known ilus-
tration of this technique can be found in [31]).

The viscosity solutions were used to study continuous value function related to Mayer’s optimal control
problems, which allowed to establish generalized characterization of (uniformly continuous) value function
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of the Mayer problem [5], 43| BI]. Viscosity solutions also revealed themselves well-suited to characterize
value functions related to optimal control problems with a state constraint (see [71] for the Mayer problem
and [56]). A trade mark of viscosity solutions is that the characterization is expressed using two inequalities
(whether it involves test functions, sub and superdifferentials, or even strict normals to the epigraph and
hypograph), meaning that the candidate function is both a viscosity subsolution and supersolution. Slight
variations of viscosity solutions have also been used to characterize continuous minimum time function for
sweeping process, invoking proximal normals to the epigraph and hypograph instead of strict normals (see
[46]). One can also mention [34], where the asymptotic analysis of constrained viscosity solutions related to
an infinite horizon problem with a vanishing discount was carried out.

The notion of viscosity solution was also extended to deal with less regular (semicontinuous) value functions
[5, [6]. For Hamilton-Jacobi-Bellman equations related to Mayer’s optimal control problems it was shown
that simpler notions of solutions using only subdifferentials [8] 10, [51] could be introduced. In the continuous
case these solutions coincide with viscosity solutions. Similar characterization also hold true when the value
function is related to a state constrained problem (see [53] for the controlled finite horizon Bolza problem
and [54] for the controlled infinite horizon control problem, as well as [56]) or to characterize minimum time
functions (see [25]). We can also mention characterizations for Hamilton-Jacobi equations related to Bolza
problems: [58] where the characterization is given using limiting subgradients, [72] in which subdifferentials
are used, and [49, [50].

Using proximal subdifferentials and lower Dini derivatives is another effective way of characterizing semicon-
tinuous value functions. Characterizations of value functions related to Mayer’s optimal control problems
were first proved when the dynamics are continuous with respect to time (see [42] for a proximal characteriza-
tion and [51] for a Dini characterization). In the case the dynamics are merely measurable some results were
also obtained in [52] (existence and half-characterization) and [52] (full characterization) imposing additional
conditions on the class of functions which are candidate to be solutions. Proximal and Dini characteriza-
tions are provided in the book [84]. Another recent reference dealing with these characterizations is [21]
in the case the dynamics are continuous almost everywhere with respect to time. When it comes to value
functions arising in other problems, a proximal characterization of the lower semicontinuous minimal time
function was provided in [86] while Dini and proximal characterizations of value function related to a non
autonomous Bolza problem in calculus of variations was achieved in [72]. See also [49, 50] for value functions
of autonomous Bolza problem in the calculus of variations.

1.8.2 The stakes of the Chapter

Consider the non autonomous Bolza problem in optimal control:

Minimize g(z(T)) + [a L(t,(t),&(t))dt
over arcs x € WH([S, T], R") satisfying
x(t) € F(t,z(t)) for almost every t € [S,T],
z(8) = zo,

(PS,xo)

in which g : R" - RU {400} and L : [S,T] x R™ x R® — R, are given functions, [S, 7] is a given interval,
xo € R™ is a given point, and F : [S,T] X R™ ~» R™ a multivalued function.
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Under appropriate assumptions, the value function of the problem, defined by: for all (¢t,z) € [S,T] x R",

T
V(t,z) = inf {g(y(T)) +/t L(s,y(s),y(s))ds, y(-) F-trajectory on [t,T],y(t) = a:} ,

is the unique (generalized) solution to the Hamilton-Jacobi-Bellman equation:

(HJB)

{&ggo(t,a:) + H(t,z,0p0(t,x)) = 0
o(T,z) = g(=),

where H (t,z,p) = inf,cpq) {p- v + L(t,z,v)} is the minimized Hamiltonian.

Characterizations of value functions related to Mayer’s optimal control problems (L = 0) have already been
widely studied. Granted that F' is continuous with respect to time, the application of viability theory to
characterize lower semicontinuous value functions for optimal control problems with extended valued terminal
costs was first achieved in a paper by Frankowska [51] that, as previously underlined in this thesis (see page
, had a great influence on the development of the Hamilton-Jacobi theory.

In this paper, it was established that V is the unique extended valued, lower semicontinuous function
satisfying (HJB) in the following generalized sense:

(c1) for every (t,z) € ([S,T[xR™) N dom(V),

inf DV ((t,2),(1,v)) <0,
ot DyV((ta), (1,0))

(c2) for every (t,z) € (]S, T] x R™) Nndom(V),

sup DTV((ta $), (_17 _U)) S 07
veF (t,x)

(c3) for every z € R", V(T,z) = g(z).

e—d

Here, Dyo(x,d) := lin}t}j}nf h™(p(z + he) — ¢(x)) denotes the lower Dini derivative (see Chapter .
In the same paper we can also find characterizations using subdifferentials and superdifferentials that are

related to viscosity solutions for continuous value functions.
With the same hypotheses, this characterization was refined using proximal subgradients [42]:
(p1) for every (t,z) € (]S, T[xR™) Ndom(V), and every (£°,&1) € 9pV (¢, z),

Q@+ inf & v=0,
veF (t,x)

(p2) for every vector x € R", we have iminf{ o\ (g4),v>s1 V (', 2") = V(S,z), and also

lim inf Vv t,a ! =V T7 = .
{(t’,x’)in(l’fl,g),tkzr} (t,2) (T, z) = g(x)

Note that only non asymptotic vectors of the proximal normal cone Ncl;v((t, x),V(t,x)) are being used in
this characterization. The contribution of horizontal normals can be easily removed when F' is continuous

with respect to time, owing to a well-known result by Rockafellar (see Theorem [2.4.15]).
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In the case F' is merely measurable with respect to time, the problem of the characterization of the value
function as a Dini/contingent solution to (HJB) in an almost everywhere sense was first adressed in [83].
The fact that V is a solution to (HJB) was proven, as well as one comparison result in the class of functions
that are uniformly absolutely continuous with respect to time.

Then a full characterization was obtained in [52], in an almost everywhere sense. More specifically, in the
class of functions whose epigraph is absolutely continuous, V is the unique function satisfying: there exists
a measurable A C [S,T] of zero Lebesgue measure for which

(c1”) for every (t,x) € ([S,T[\A x R") Nndom(V),

inf  DV((t, ), (1,0)) <0,
it DV(ta), (1,0)

(c2’) for every (t,z) € (]S, T]\ A x R") Ndom(V),

sup DV ((t,x),(—1,—v)) <0,
veF (t,x)

(c3’) for every z € R, V(T,x) = g(x).

Note that the regularity assumption is required to obtain the uniqueness of the solution, which is not achieved
in the class of lower semicontinuous functions (see the introduction of [21]).

An intermediate approach was then suggested in [2I]. In the case F' is continuous on a set of full measure
and has everywhere left and right limits with respect to time, two characterizations (using lower Dini deriva-
tives and proximal derivatives) were established. Quite noticeably, the epigraph continuity condition could
be removed and the uniqueness was obtained nonetheless, in the class of lower semicontinuous functions.
However, the characterization requires to use two different inequalities involving respectively the left and
right limits of F.

For the Dini/contingent characterization, V' is the unique extended valued lower semicontinuous function
satisfying:

(c1”) for every (t,z) € ([S,T[xR™) Ndom(V),

inf D,V ((t,x),(1,v)) <0,
et DVt ), (1,v))

(c2”) for every (t,z) € (]S,T] x R") Nndom(V),

sup D4V ((t,2), (=1, —v)) <0,
vEF(t~,x)

(c3”) for every x € R", V(T,x) = g(x).

On the other hand, the proximal characterization is: V is the unique extended valued lower semicontinuous
function satisfying;:
(p1”) for every (t,z) € (]S, T[xR") N dom(V), and every (£, &1, —\) € Né;iv((t,m), V(t,x)),

0 : 1., < 0.
& veg%zlfg‘l,m) §ovs
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(p2”) for every (¢,z) € (]S, T[xR"™) Ndom(V), and every (£°,&1, —)) € Ne];iv((t,x), V(t,z)),

€@+ min &-v>o0.
veEF(t—,x)

(p3”) for every vector x € R", we have liminfyy »\(s.2),¢v>5y V(t',2") = V (S, 2), and also

lim inf V(.2 =V(T.2) = g(z).
PO L (t' 2" (T,x) = g(x)

Note that this characterization involves asymptotic vectors and that, at the time of the publication of [21], it
was unclear whether or not they could be removed from the characterization in this discontinuous framework.

As far as this thesis is concerned, it aims at answering the following open questions:

(Q1) In the discontinuous framework, is it possible to remove the asymptotic vectors from the prozimal
characterization ¢

(Q2) In the case of the non autonomous Bolza problem, and in a context in which standing hypotheses don’t
allow to use a state augmentation technique, is it possible to achieve such characterizations of the
value function as the unique lower semicontinuous function solution to (HJB), without requiring an
additional reqularity assumption from candidate solutions?

(Q3) In this framework, is it possible to achieve an extended-sense viscosity solution characterization of lower
semicontinuous value functions, employing Fréchet subdifferentials and superdifferentials?

Chapter 3] see page provides positive answers to these questions. In this introduction, only the hypothe-
ses and the main results of the chapter are presented.

The results of this chapter have been published [15].

1.8.3 Hypotheses of Chapter

In Chapter [3| the following hypotheses are invoked: for every given positive number Ry, there exist functions
crp(+) € LY([S,T),Ry) and kp(-) € LY([S,T],R,), a modulus of continuity w(-) : Ry — R, and constants
co > 0, My > 0 such that:

(H1): i) The multivalued function F' : [S,T] x R™ ~» R™ takes convex, closed, nonempty values. For every
x € R", F(-,x) is Lebesgue measurable on [S, T].

ii) The function g : R" — RU {400} is lower semicontinuous, with nonempty domain.
(H2): i) For almost every ¢t € [S,T] and € R"
F(t,z) C cp(t)(1 4 |x|)B.

ii) For all (t,z) € [S,T] x RoB
F(t,z) C coB.
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dy(F(t,2"), F(t,z)) < w(lz — 2'|), for all 2,2’ € RyB and t € [S,T].

i)
F(t,2") C F(t,x) + kp(t)|z — 2'|B, for all x,2" € RyB and for a.e. t € [S, T].

(H4): i) For each z € R", s € [S,T[, and t €]5,T] the following limits (in the sense of Kuratowski) exist

and are nonempty

F(st,z):= hllin F(s',z) and F(t~,z):= ltI/ITltl F(t', z).

ii) For almost every s € [S,T[ and t €]S,T], and every x € R™ we have

F(st,z) = F(s,z) and F(t",z) = F(t,z).

(H5): i) The Lagrangian L : [S,T] x R® x R" — R is £ x B"""™-measurable. For every ¢t € [S,T] and
x € R", L(t,x,-) is convex.

ii) L is locally bounded in the following sense

|L(t,z,v)] < My, forall (t,x,v)€[S,T]x RoB x 2¢oB .

(H6): 1) |L(t,2',v) — L(t,z,v)| < w(|lz —2']), for all x,2’ € RyB, t € [S,T] and v € ¢B.

) = limyy L(t', z,v) exists for every (t,z,v) €]S,T] x RoB x ¢oB, and
,v) = L(t,z,v) for a.e. t €]S,T] and for all (z,v) € RgB X ¢B.

x,v) = limy ;s L(s', z,v) exists for every (s,z,v) € [S,T[xRoB X ¢oB, and
st,z,v) = L(s,z,v) for a.e. s €[S, T and for all (z,v) € RoB x ¢B.

1.8.4 Results of Chapter

The following subsection gathers the two main results of Chapter [3] without complementary results, inter-
pretations, remarks or examples. More details are to be found starting from page

Theorem answers positively to questions (Q1) and (Q2) that were asked page It gives a character-
ization of lower semicontinuous extended valued value function using proximal subdifferentials (not taking
into account the contribution of horizontal proximal normals) and lower Dini derivatives.

Theoremm provides a positive answer to the second question (Q3). If we assume that g is locally bounded
and satisfies some type of regularity property in terms of lower and upper semicontinuous envelopes, the
value function is the unique locally bounded function solution to (HJB) in an extended viscosity sense, using
the Fréchet subdifferential of V' and the Fréchet superdifferential of V*.

Theorem 1.8.1 Assume (H1)-(H6). Let U : [S,T] x R" — RU {400} be an extended valued function.
Then the assertions (a), (b) and (c) below are equivalent.

(a) The function U is the value function for (P, ,): U =V.
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(b) The function U is lower semicontinuous and satisfies:

i) for every (t,x) € ([S, T[xR™) Ndom(U)

inf  [D+U((¢ 1 L(tt <0:
vel*}‘l(li%,x)[ T ((71')7( 7U))+ ( 7$’U)]— >

it) for every (t,x) € (]S,T] x R™) Ndom(U)

sup [DTU((t,CL‘),(—l,—’U)) _L(tiaxav)] < 07
vEF(t~,x)

iii) for allx € R™, U(T, z) = g(x).

(c) The function U is lower semicontinuous and satisfies:

i) for every (t,z) € (]S, T[xR™) Ndom(U), (£°,&Y) € OpU(t,x),

0 : 1 + <0:
4 Bl [ o] <0

i) for every (t,z) € (]S, T[xR™) Ndom(U), (£°,&4) € opU(t, z),

€+  min [fl-v—l—L(t_,x,U)} >0; (1.5)
vEF(t—,x)
iii) for every x € R™,

lim inf Ut 2')=U(S,x),
{(t',")—(S,x),t'>S}

and

liminf  U(t,2') = U(T,z) = g(x).
{(t’vﬂf’)gr(lTl,Ia}),t’<T} (¢, ') (T, z) = g(z)

Theorem 1.8.2 Assume (H1)-(H6). Suppose, in addition, that g is locally bounded and satisfies (g*)« =
Let U : [S,T] x R™ = R be a locally bounded function. Then, the assertions (a), (b) and (c) of Theorem
[3.4-1] are equivalent to (d) below.

(d) U is lower semicontinuous and satisfies:

i) For every (t,x) €]S, T[xR", (¢°,¢') € 0_U(t, ),

0 : 1 + .
+ f -v 4+ L(t <0
¢ UE}%‘?t+,$) [é Y ( 7$”U)] -

i1) for every (t,z) €S, T[xR", (¢%,¢!) € 0.U* (1, ),

€+ it [€ 0k L, 0)] 2 0; (1.6)

iii) for every x € R™,
lim inf Ult,z)=U(S,x),
{(t/,x")—=(S,z) | t/>S}
U(Tax) = g(x)v
and

UNT,z) = g*(x).
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1.8.5 The stakes of Chapter

In Chapter [4, we add a state constraint to the Bolza problem of Chapter

T

Minimize J(z) = / L(s,z(s),x(s))ds + g(x(T))
S

over arcs x(-) satisfying

(5Cs.20) x(s) € F(s,xz(s)), for a.e. s €[S, T],
z(s) € A, for all s € [S,T],
z(S) = xo,

in which g : R® - RU{+o0} and L : [S,T] x R™ x R" — R are given functions, F': [S,T] x R” ~ R" is a

given multivalued function, and A is a given nonempty convex and closed set in R™.

Similarly to Chapter [3] under appropriate assumptions, the value function of the problem, defined by: for
all (t,x) € [S,T] x R™,

T
V(t,z) = inf {g(y(T)) —i—/t L(s,y(s),y(s))ds, y(-) feasible F-trajectory on [¢t,T],y(t) = x} ,

is the unique (generalized) solution to the (HJB) equation. We recall that in this definition, feasible means
that y(s) € A, for all s € [¢,T].

Quite similarly to the unconstrained case, characterizations of value function for problems involving data
that are merely measurable with respect to time have been investigated. This resulted in characterizations
in an ‘almost everywhere’ sense for infinite horizon Lagrange control problems, imposing some additional

regularity to the candidate solutions (cf [9]).

However, until now, the most general known class of time-discontinuous problems allowing to provide ‘every-
where in t’ characterizations of value functions was introduced in [2I, Theorems 4.1 and 4.2] to investigate
Mayer problems (L = 0). In this paper, the multivalued function F' merely has bounded variation with
respect to the time variable, uniformly over the state variable. Two characterizations have been obtained,
which differ according to whether an outward or inward constraint qualification is assumed.

If an outward pointing condition is assumed, namely for each s € [S,T[, t €]S,T] and x € 0A,
F(t,2) N (=int T4(x)) # 0 and F(sT,2) N (=int T4 (x)) # 0, (OPC)
then V can be characterized as the unique generalized solution to (HJB) in a Dini and proximal sense.

More precisely, in [21], the following Dini characterization was shown. The value function V is the unique

extended valued lower semicontinuous function satisfying V(¢,x) = 400 if x ¢ A and :
(cl) for every (t,z) € ([S,T[xA)Ndom(V),

inf DV ((¢ 1 <0;
vef;%"',x) T ((,LE),( ,’U))_ )

(c2) for every (t,z) € (]S, T] x int A) N dom(V),

sup DTV((t’x)7(_17_U)) < 0;
veF(t~,x)
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(c3) for every x € A, liminfyy ) (12),v<roeimsay V(' 2") = V(T,z) = g(x).

On the other hand, the proximal characterization in this context is: V is the unique extended valued lower
semicontinuous function satisfying V (¢, x) = 400 if z ¢ A and :

(p1) for every (t,z) € (]S, T[xA) Ndom(V), and every (£Y,&1, —\) € Ng)iv((t,x), V(t,x)),

0 : 1
4+ min v <0;
¢ vGF(t*,;t)g o

(p2) for every (t,z) € (]S, T[xint A) Ndom(V), and every (£°,&1,—)\) € Né;v((t,x),V(t,x)),

€@+ min &-v>0;
veF (t—,x)

(p3) for every vector x € A, we have liminfyy ) (s0), 55 V(t',2") = V(S, z), and also

lim inf V() =V(T, z) = .
{(t’,m’)ﬁ(T}Bfi’IzT,m’eintA} (#,27) = V(T z) = g(2)

When an inward pointing condition is assumed, that is to say, for each s € [S,T], t €]S,T] and x € 9A,
F(t ,z)NintTa(z) #0 and F(sT,z) Nint Ta(x) # 0, (IPC)

then the characterizations of V' as the unique generalized solution to (HJB) is obtained at the price of more
requirements for the cost function g(-), which is assumed to be continuous on A. With these hypotheses,
V is the unique extended valued lower semicontinuous function satisfying V (t,z) = +oo if 2 ¢ A and :

(c1’) for every (t,z) € ([S,T[xA) Ndom(V),

inf DV ((¢ 1 <0;
UGI}‘I(j:SJF,x) T ((7$)7( 7U))— >

(c2’) for every (t,x) € (]S, T] x int A) N dom(V),

sup DV ((t,x),(—1,—v)) <0;
veF(t~,x)

(c3’) for every z € A, V(T,x) = g(z).

On the other hand, the proximal characterization is: V is the unique extended valued lower semicontinuous
function satisfying V' (t,z) = +oo if x ¢ A and :

(p1’) for every (t,z) € (]S, T[xA) Ndom(V), and every (£°,&1, —)\) € Négiv((t, z), V(t,z)),

0 : 1
+ min v <0;
¢ vEF(t‘*‘,x)g o

(p2’) for every (t,z) € (]S, T[xint A) N dom(V), and every (£0,&1, —\) € Né;iv((t,x), V(t,x)),

€+ min &-v>0;
vEF(t™,x)

(p3’) for every vector x € A, we have liminfyy .1, (54), 0551 V (¥, 2") = V(S,z), and also V(T z) = g(x).
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An important feature here, apart from those that have already been discussed in subsection [I.8.2] is that,
considering the nature of Mayer problem’s cost, a mere L>° ‘distance estimate’ (see [22]) is sufficient to
establish both characterizations of the value function in terms of lower Dini derivatives and proximal subd-

ifferentials.

As previously mentioned, if we are looking for possible extensions of [21] to the case L # 0, we need to have
Wh! distance estimates’ at our disposal. More precisely, if #(-) is a given F-trajectory, possibly not feasible,
then we want to construct a second feasible F-trajectory z(-) which is close to Z(-) with respect to the W11
distance. Usually, such estimates are provided using a suitable modulus of continuity 6(-) evaluated in a
‘state constraint violation’ parameter p. Though linear estimates (6(p) = Kp with K > 0) are the most
valuable, it has been shown (cf. [I6]) that they cannot generally be obtained outside of a very smooth
context. In fact, a later paper [I7] pointed out that estimates of the type 0(p) = Kp|In(p)| with K > 0 are
optimal in some cases (with a constraint A that is not smooth).

For discontinuous time-dependent F’s (with bounded time-variation w.r.t. time), L°°-distance estimates
were obtained in [22]. On the other hand, the paper [29], deals with a convex compact constraint A coupled
with a differential inclusion involving a Lipschitz, time-independent multifunction F', obtaining p|In(p)|
WHl estimates. However, to extend the results of [22] and [29] to W '!-estimates for a class of problems in
which F' depends on time in a possibly discontinuous manner is far from trivial. This is one of the aspect
that has been investigated in this thesis.

Another question raised by the work presentend in [21] is whether or not it is possible to obtain an equivalent
viscosity characterizations (using Fréchet subdifferential and superdifferential). When it comes to the state
constrained case, this type of characterization was established in [56, Theorem 3] in the class of continuous
functions, but only when the data are continuous, and at the cost of a more demanding type of constraint
qualification. Keeping this stronger constraint qualification, but weakening the continuity assumptions on
the data, only partial results have been obtained, like one-side comparison theorems (cf. [56, Theorem 4)).

As far as this thesis is concerned, it aims at answering the following open questions:

(Q1) Provided that A and F satisfy the inward/outward compatibility conditions (IPC)/(OPC) of [21], and
that F' has bounded variations with respect to time (uniformly with respect to the state variable), can
we obtain W distance estimates results. If so, under which additional hypotheses?

(Q2) Once suitable W' distance estimates results are available, in the case of the constrained non au-
tonomous Bolza problem, is it possible to achieve ‘everywhere in t’ characterizations of the value func-
tion as the unique lower semicontinuous function solution to (HJB), without requiring an additional
reqularity assumption from candidate solutions?

(Q3) Is it possible not to resort to asymptotic normals in the proximal characterization of the value function
2

(Q4) In the same framework, is it possible to achieve extended-sense viscosity characterizations of value
functions, employing Fréchet subdifferentials and superdifferentials? If so, which type of constraint
qualifications are required, and which additional hypothesis do we need to impose to g(-)?
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In this introduction, only the hypotheses and the main results of the chapter are presented.

1.8.6 Hypotheses in Chapter

In Chapter [4, the following hypotheses are invoked: for every given positive number Ry, there exist positive
functions cp(-) € LY(S,T) and kp(-) € L>(S,T), a modulus of continuity w(-) : Ry — R, and constant
co > 0, My > 0 such that

(H1): the multivalued function F': [S, T] x R™ ~» R™ takes convex, closed, non-empty values; for every x € R,
F(-,z) is Lebesgue measurable on [S, T7;

(H2): F(t,z) C cp(t)(1+|z|) B for all z € R™ and for a.e. t € [S,T];
(H3): F(t,2") C F(t,x)+kp(t)|lx —2'| B for all z,2’ € RyB and a.e. t € [S,T];

(H4): F(.,z) has bounded variation uniformly over x € RoB, in the following sense: there exists a non-
decreasing bounded variation function 7(-) : [S,T] — [0, 00) such that

(i) for every [s,t] C [S,T] and = € RyB,
dp (F(s,x), F(t,z)) < n(t) —n(s) ;

(ii) for every p > 0 and every [tg,t1] C [S, T] there exists a partition {tg =: g < t1 <2 < ... <ty :=
t1} such that for each k =0,1,..., M — 1 we have
g1 — n(fF
lim MdT <u
el0 Ji, 1e T — 1k

(H5): (i) the Lagrangian L : [S,T] x R® x R® — R is £ x B"""-measurable; for every t € [S,T] and
x € R", L(t,x,-) is convex;

(ii) L is locally bounded in the following sense:

|L(t,z,v)] < My, forall (t,z,v)€[S,T]x RoB x 2¢oB;

(H6): (i) |L(t,2',v) — L(t,z,v)| < w(|z —2']), for all x,2’ € RyB, t € [S,T] and v € ¢B;

(ii) L(t™,@,v) := limyy L(t', 2, v) exists for every (t,z,v) € (S,T] x RoB x ¢oB, and
L(t~,z,v) = L(t,z,v) for a.e. t € (S,T] and for all (x,v) € RoB x ¢B;

(iii) L(s*,z,v) :=limgy s L(s', z,v) exists for every (s,z,v) € [S,T) x RoB x ¢yB, and
L(st,z,v) = L(s,z,v) for a.e. s € [S,T) and for all (x,v) € RogB x c¢B;

(H7): g:R™ — RU {+o0} is lower semicontinuous, with nonempty domain;
(H8): A C R" is convex and closed,;
(OPCQC): for each s € [S,T), t € (S,T] and x € 0A,
F(t7,z)N(—intTa(z)) # 0 and F(st,2)N (—intTa(z)) # 0;
(IPC): for each s € [S,T), t € (S,T] and x € JA,

Ft ,z)NintTa(z) # 0 and F(st,x)NintTa(z) # 0.
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1.8.7 Results of Chapter

The following subsection gathers the five main results of Chapter [d] without complementary results, inter-
pretations, remarks or examples. More details are to be found starting from page [L01

A very early version of these results is published in [I3]. The results proposed in this chapter have been
submitted in their current form.

Chapter [4] provides positive answers to the three questions that were asked page

Theorem [1.8.3] provides a positive answer to (Q1). If we assume that the bounded variation function (see
hypothesis (H4) below) that controls the variations of F' with respect to time satisfies some type of uniform
Dini’s test (see hypothesis (H4) (ii) and the Remark page [108), then we obtain the desired W1 distance

estimates, even when F' is not convex valued.

Theorems and give a positive answer to question (Q2) and (Q3). They provide two ‘everywhere
in ¢’ characterizations of the value function V in the class of lower semicontinuous functions.

The first one holds when g is lower semicontinuous and an outward constraint qualification is satisfied, while
the second deals with a function g that is continuous on A coupled with an inward constraint qualification.
In both cases, the proximal characterization is expressed using only the proximal subdifferential of V', with-
out resorting to asymptotic vectors.

Illustrative examples allow to understand that finding the right coupling between the regularity of g and the
suitable constraint qualification is crucial as characterizations may fail when other hypotheses are tested.

Eventually, Theorems [1.8.6| and [1.8.7] provide extended-sense viscosity characterizations of value functions,

answering positively to question (Q4).

Theorem deals with the case of a lower semicontinuous final cost g whose restriction to A is locally
bounded and satisfies some type of regularity property with respect to the upper/lower semicontinuous
envelopes, coupled with both an inward and outward pointing constraint qualification. It provides a char-
acterization of lower semicontinuous, locally bounded value functions, which is expressed using the Fréchet
subdifferential of V' and, in the interior of A, the Fréchet superdifferential of the upper semicontinous envelope
of V. An example illustrates the fact that even though the outward pointing constraint qualification does
not intervene to prove that V is an extended-sense viscosity solution, it is indispensable to derive uniqueness
of solutions to the associated Hamilton-Jacobi equation.

Theorem deals with the case of a final cost g whose restriction to A is continuous, coupled with an
inward pointing constraint qualification. It provides a characterization of value functions whose restriction
to A are continuous, expressed using the Fréchet subdifferential and superdifferential of V.

Quite noticeably, the theorems presented in chapter [4 are illustrated by an economics example in which the
integral cost is merely continuous w.r.t. the state variable x (and not locally Lipschitz continuous). This
uncommon behaviour is not obtained by an artificial construct since it is due to an inherent fractional sin-
gularity term which is introduced to interpret the production function (cf. [I]). This shows that we do not
invoke hypothesis (H6) (i) for the love of abstraction alone, but also in order to cover practical and tangible
problems.
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Theorem 1.8.3 Fiz g > 0. Assume that, for some positive functions cp(-) € LY(S,T) and kp(-) €
T
L>°(S,T) and for Ry := els cr($)ds(ry 4 1), the following hypothesis

(H1): F :[S,T] x R"® ~ R"™ takes closed, non-empty values, F(-,x) is L-measurable for all x € R",
is satisfied together with (H2), (H3), (Hj) and
(IPC): for each s € [S,T), t € (S,T] and x € RyB N JA,

coF(t™,z)Nint Ta(z) # 0 and  coF(sT,z)Nint Ta(z) # 0.

Then, there exists a constant K > 0 with the following property: given any interval [tg,t1] C [S,T], any
t
F-trajectory &(-) on [to,t1] with Z(tp) € A N (efso er($)ds (g 4 1) — 1)B, and any p > 0 such that

p = max{da(2(t)) |t € [to, 1]} ,
we can find an F-trajectory x(-) on [to, t1] such that x(ty) = &(to),
x(t) € int A for all t € (to,t1]

and

12 = 2llLo (o, < K P (1.7)

12 = &l|L1 o,y < K p(1+[In(p)]) - (1.8)

Theorem 1.8.4 (Characterization of lsc Value Functions - Outward-pointing Condition) Assume
(H1)-(H8) and (OPC). Let U : [S,T] x R = R U {400} be an extended valued function. Then assertions
(a), (b) and (c) below are equivalent:

(a) U is the value function for (SCz), i.e. U=1V.
(b) U is lower semicontinuous on [S,T] x R™, satisfies U(t, ) = 400 whenever x ¢ A and
(i) for all (t,z) € ([S,T) x A)Ndom U

inf  [DyU((¢ 1 L(tT <0:;
UEI‘l{lt+,Jf)|: T ((,IL'),( 7”))"" ( ’x7v>]— ’

(i) for all (t,x) € ((S,T] x int A) N dom U

sup  [DyU((t,2),(—1,—v)) — L(t™,z,v)] <0;
veF (t—,xz)

(iii) for all x € A
lim inf Ut',2")=U(T,z) = g(x).

{#2")—=(T,x) | /<T,z’€int A}

(c) U is lower semicontinuous on [S,T] x R™ U(t,z) = +oo if x ¢ A, and
(i) for all (t,x) € ((S,T) x A)NdomU, (£°,¢Y) € ApU(t,x)

€+ min [fl-v-l-L(t'*',a:?v)]SO;



(ii) for all (t,z) € ((S,T) x int A)Ndom U, (£°,¢1) € dpU(t, x)

0 . 1 —
+ : L(t g Ly 205
E min [ v+ L7, ,0)]

(iii) for all x € A,

fim inf Ut,2')=U(S,x 1.9
{{#,z")—=(S,x) | ¢/>S} ( ) ( ) ( )

and

lim inf Ut ) =U(T = . 1.10
{(t’,x’)%(T,:pl)H\lip<T, a/€int A} (#,2) (T,z) = g(x) (1.10)

Theorem 1.8.5 (Characterization of lsc Value Functions - Inward-pointing Condition) Assume

that (H1)-(H8), (IPC) are satisfied and that g is continuous on A. Let U : [S,T] x R — RU {400} be an
extended valued function. Then the assertions (a), (b) and (c) of Theorem remain equivalent.

Theorem 1.8.6 (Characterization of locally bounded lsc Value Functions - Inward/Outward-
pointing Condition) Assume (H1)-(H8), (OPC) and (IPC). Suppose, in addition, that g 4 is locally
bounded and satisfies ((g)a)*)« = gja- Let U : [S,T] x R* — R U {+o0} be an estended valued function.
Then, the assertions (a), (b) and (c) of Theorem[{.4.1] are equivalent to condition (d) below:

(d) U is lower semicontinuous on [S,T] x R™ and locally bounded on [S,T] x A, satisfies U(t,z) = 400
whenever x ¢ A and

(i) for all (t,z) € (S,T) x A, (£°,¢Y) € 0_U(t,x)

0 : 1, - )
13 +ue;%€r,x) (€' v+ L(tT,z,v)] <0; (1.11)

(i3) for all (t,z) € (S,T) x int A, (€°,&1) € 0,.U*(t, x)

0 : 1, + .
3 +UEP}’I&§‘,I) (€' v+ L(tT,z,v)] >0; (1.12)

(iii) for all x € A

lim inf Ut',2")=U(S,x),
{({#t",")—(S,z) | t/>S}

(Ujsrxa) (T z) = (gja)*(x)  and  U(T,z) = g(x).
Theorem 1.8.7 (Characterization of continuous Value Functions - Inward-pointing Condition)

Assume (H1)-(H8) and (IPC). Suppose, in addition, that g is continuous on A. Let U : [S,T] x R" —

R U {+oc} be an extended valued function. Then, the assertions (a), (b) and (c) of Theorem are
equivalent to condition (d) below:

(d) U is continuous on [S,T] x A, satisfies U(t,x) = +o0o whenever x ¢ A and
(i) for all (t,z) € (S,T) x A, (§%,¢") € 0-U(t, )

0 inf [¢' -0+ L(tT <0; 1.1
3 +oeint (€ v+ LT, z,v)] <0; (1.13)
(i) for all (t,z) € (S,T) x int A, (¢°,¢1) € 0, U(t, x)
0 : 1, + :
€ +v€;%£’m) (€' v+ L(tT,z,v)] >0; (1.14)

(iii) for all x € A

lim inf Ut ,z")=U(S,x),
{({t',z")—=(S,z) | t/>S}

and U(T,z) = g(z).
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1.9 Introduction to Part [2: Applications of Optimal control in Calculus
of Variations

Consider the following classical problem of minimizing a functional:

b
Minimize J(z) := / L(t,z(t), z(t))dt + g(z(a), (D))

over arcs x € Whi([a,b],R").

(CV1)

The function L : [a,b] x R" x R™ — RU {+o0} is referred to as the Lagrangian of the problem. Its variables
are the time variable, the state variable, and the velocity variable: (¢, z,¢). The function g is extended value,
hence any kind of starting point/endpoint constraint is covered.

1.9.1 Bolza problem, existence of minimizers

Sufficient conditions on L that guarantee the existence of a minimizer to (CV1) have been provided by
Tonelli’s existence result (see [84]), namely:

e local boundedness,

e convexity with respect to &,

e uniform local Lipschitz continuity with respect to (z,¢),
e coercivity, also referred to as superlinear growth.

However some variational problems with a Lagrangian L(t, x, £) that is not convex in £ may have a minimizer.
Moreover, discontinuous Lagrangians in the state or in the velocity variable arise often in real life engineering
problems (e.g. fuel consumption). Consequently, it is relevant to study the behavior of potential minimizers
to (CV1), even when L does not satisfy the hypotheses of Tonelli’s existence theorem.

1.9.2 Lavrentiev phenomenon and non Lipschitzianity of minimizer

We say that (CV1) exhibits the Lavrentiev phenomenon when the infimum of J(-) over absolutely continuous
functions is strictly lower than the infimum over Lipschitz continuous functions:

inf {J(z),z € Wh([a,b],R")} <inf {J(z),z € WH!([a,b],R"), 4 € L®([a,b], R™)}.

An historical example of a non autonomous Bolza problem exhibiting the Lavrentiev phenomenon is due to
Mania (cf. [68]).

Take n =1, a = —1,b =1, g = xq-1,1)} and L(t,z,§) = €6[2% — #]2. Then, since L is non negative and
J(t + Jt) = 0, the function ¢ +— /t is a Wll-minimizer and is not Lipschitz continuous, while it can
be shown that any Lipschitz continuous function z(-) satisfies J(z) > 0. On top of that, the Lavrentiev
phenomenon persists even if we slightly enlarge the set of endpoints constraints {(—1,1)} or add a small
perturbations to L (see. [67]).

When L is autonomous, and even when it is merely Borel measurable, the Lavrentiev phenomenon cannot
occur [3]. However, even in that case, some of the minimizers may not be Lipschitz continuous.
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1.9.3 Necessity for establishing the regularity of minimizers

When the Lavrentiev phenomenon occurs, or when some of the minimizers are not Lipschitz, the implemen-
tation of numerical techniques such as finite-element method to solve the problem (CV1) is compromised:
the computation of the infimum for J might be false or some minimizers might never be detected.

Finding minimal conditions for L under which a potential minimizer for (CV1) is necessarily Lipschitz con-
tinuous it therefore essential.

Many researchers have contributed to weakening the required hypotheses in the autonomous case. We
provide a non exhaustive list: Clarke and Vinter [39], Ambrosio, Ascenzi and Buttazo [2] and finally Dal
Maso and Frankowska (cf. [50]). This process led to a very simple and appreciable result: assuming that L
is Borel measurable, locally bounded and superlinear, then the minimizers of (CV1) are Lipschitz continuous.

In the non autonomous case, fewer and less satisfyingE] results were proposed until a recent collaboration
between Bettiol and Mariconda [23], [24]. A more comprehensive presentation of these results will be made

in Subsection [[L10.1l

1.9.4 Erdmann — Du Bois-Reymond, a tool do derive the regularity of minimizers

An efficient way to prove that a given minimizer x.(-) for (CV1) is Lipschitz continuous can be produced
when an Erdmann — Du Bois-Reymond (EDBR) condition is satisfied by x.(-) and L satisfies a suitable
growth condition that somehow quantifies that the (EDBR) condition is violated when || goes to +oo.

To illustrate this fact, assume that L is smooth and that the smooth Erdmann — Du Bois-Reymond equation
is satisfied, i.e. the arc p : [a,b] — R™, defined by
P(t) := L(t, 24(t), T4 (1)) — T4(t) - DeL(t, x4(t), 24(t)), for all t € [a, b],
is absolutely continuous and
P(t) = DiL(t, x4 (), 4 (t)), for almost every ¢ € [a, b].
Assume that the following growth condition is satisfied :

|£‘lim |L(t, x4(t),&) — & - DeL(t, 24(t), &) = 400, uniformly for almost every t € [a, b].
—+00

Then there exists R > 0 and a set of full measure E C [a, b] such that:
|L(t,2.(t), &) — & DeL(t,24(t),&)| > ||p|lLee + 1, for all t € E and |{] > R.

Necessarily, |.(t)| < R for all t € E, since otherwise, for some ¢y € E, we would have:

[Pl +1 < [p(to)| < |[pllLoe-

We just proved the essential boundedness of @,(-) (which yields the Lipschitz continuity of x.(-)) in a very
concise and elegant way. Unfortunately for the need of this proof, we presupposed that we had an Erdmann
— Du Bois-Reymond equation at our disposal, while such equations are not easily found nor expressed for
non-autonomous Lagrangians in the nonsmooth setting.

3Less satisfying in the sense that the additional conditions imposed on L in the non autonomous case were not empty for
autonomous Lagrangians.

46



1.10 Higher order Bolza problem

Consider the following non autonomous, N-th order Bolza problem:

), 22 (s),..., 2N (s))ds

b
Minimize J(x) ::/ L(s,xz(s), zM (s),
' 2 VD)), (e, D) p)) (V)

)

+g ((ZE
over arcs x € WN™([a, b], R),

where N > 1 is an integer, m > 1 is a real number, L : [a,b] x RV T! — RU {+oc0} is a given Borel measur-
able function and g : RN xRN — RU{+o0} is a given extended valued function non identically equal to +oo.

Standard hypotheses for existence of minimizers to (CV) are quite similar to those used in the case N =1
(cf. 76l [77]), namely:

1. (t,(xo,x1,...,xN)) = L(t, o, x1,...,2N) is L X B-measurable,
2. (xo,x1,...,xN) — L(t,x0,x1,...,2N) is lower semicontinuous for each t,
3. L(t,z0,21,..., TN—1, - ) is convex for each (zg,x1,...,2N-1),

4. L is uniformly coercive (superlinear) in the sense that there exists § > 0 and a positive, scalar valued,

monotone function 6 :]0, +00[—]0, +oo[ such that @ — +o00 and
r—+00

L(t,xo,2z1,...,2n) > —pBlzn| + 0(|zn|), for all (¢,z0,...,zN).

However there are problems in the same form as (CV) that admit minimizers even when the existence
assumptions are not satisfied. Moreover, in this higher order framework, it is quite noticeable that the

Lavrentiev phenomenon, i.e.
inf {J(z),z € W¥™([a,0],R")} < inf {J(z),z € WN([a, ], R")}

can occur even for autonomous Lagragians.
For instance, if a =0, b =1,

2
L(t, zo, 21, 29) = |2o|” (320 — 3|21 — 1|* — 2|z — 1]3] ,
and

9= X502}
then (CV) exhibits the Lavrentiev phenomenon [79].

Finding minimal conditions for L under which minimizers are necessarily in W:> for higher order Bolza
problems is as important if not more important than for the case N = 1.

A few references dealing with this higher order problem are [40), [60, 59]. Here, we just detail the results of
the most recent paper [60] to underline the points that have been improved in this thesis.

47



1.10.1 The stakes of Chapter
A result about higher order Bolza problems

Theorem 1.10.1 [Gavriel, Lopes, Vinter, 2011] Let x.(-) be a minimizer for (CV). Assume that

(H1): (t,(zo,21,...,2N)) — L(t,zo,21,...,2N) is L X B-measurable, and L is bounded on bounded sets,
(H2): L(t,zg,21,...,xN) is uniformly coercive/superlinear,
(H3): L(t,zg,z1,..., TN—1," ) 18 convex for each (xg,x1,...,TN-1),

(H4): there exist e, > 0, o, > 0 and a Borel measurable function k(-,-) such that:
t— k(t,0) € L'([a,b],Ry),
and, for a.e. t € [a,b], for all o € [—0x,04], the map:
(s,z0,...,xN—2) — L(s,x0,... ,1'N_27$>(|<N_1)(t), (1+ a)xS‘N)(t)) (1.15)
is Lipschitz continuous on B((t, z«(t), . .. L2V (1), )N ([a, b] xRNV with Lipschitz constant k(t, o).
Then xSKN)(-) is essentially bounded.

Condition (H4) can be interpreted as a condition on partial subdifferentials involving up to the zy_o vari-
able. It means that the partial subdifferentials (proximal and limiting) of L are integrally bounded when

evaluated along the minimizer x,(-).

To establish the N-th derivative essential boundedness of a reference minimizer x,(-) two techniques were

used

1. an analysis of the the set of points ¢ € [a, b] such that xiN)(-) is unbounded near ¢, called Tonelli set

associated with z.(+),

2. the time reparameterization technique that consists in studying an auxiliary Lagrange problem in
optimal control in which the control is the derivative of the time variable, then applying a suitable
version of the maximum principle.

An inspirational result

We now proceed to give insight of Bettiol and Mariconda recent work in the case N = 1 (see [23, 24]).
Indeed, the same approach will be used in this thesis to deal with the higher order Bolza problem.

In the case L : [a,b] x R" x R" — R is real valued and Borel measurable, and z,(-) is a given W1™([a, b], R")
local minimum for (CV1), the following hypotheses (S, ) was invoked:

Hypothesis (S, ).
There exists £, > 0 and a Lebesgue Borel measurable map k : [a, b]x]0, +00[— R such that

k(t,1) € L'([a,b],Ry)
and for a.e. t € [a,b], for all o > 0
|L(to, x«(t), 0@4(t)) — L(t1, 24(t), 0d4(t))| < k(t,0)|ta — t1],
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whenever t1,t2 € [t — &4, t + 4] N [a, b].

This condition is a Lipschitzianity condition of ¢ — L(t, z.(t), 0z« (t)) in a neighborhood of z.(-) for all ¢ > 0.
In particular, the range of ¢ is not limited in this condition.

In the case L : [a,b] x R” x R" — RU {400} is extended valued and Borel measurable, and z.(-) is a given
W™ ([a,b], R™) local minimum for (CV1), the following hypotheses (S°) was invoked:

Hypothesis (52°).

(i) the map (s,&) — L(s,z«(t),£) is lower semicontinuous for each ¢ € [a, b],

(i) there exists a non negligible subset E of [a, b] such that for all ¢ € E, there are 0 < 07 < 1 < 09 such
that
L(t,z4(t),0124(t)) < 400 and L(t, x.(t), 02d«(t)) < 00,

(iii) there exist 3 > 0, A > 0 and a positive function v € L!([a, b], R) such that, for a.e. t € [a, b]:
L(r, 2.(t), 00.(8)) + Al (8)] + (1) > 0,

Opr L(7, 22(t), 04 (0)] < B (L7, 2u(8), 5(8)) + Aolin(5)] + (1),
for all 7 € [a,b] and o > 0 with L(7, z.(t), 0&.(1)).

Using (S, ) or (52°), a directional Weierstrass type condition is obtained (see [24, Theorem 1}), and subse-
quently, the corresponding Erdmann — Du Bois-Reymond type condition is deduced. We give the complete
statement of this theorem:

Theorem 1.10.2 Let z,(-) be a W™ ([a,b],R"™) a local minimum of (CV1). Assume that L satisfies (S, )
(resp. (S°)). Then, there exists an absolutely continuous function p € Wh1([a,b], R™) satisfying

L(t,x(t), 124 () — L(t, s (t), 24 (t)) > (r — 1) (L(t, z4(t), 2£(t)) — p(t)), for a.e. t € [a,b] and all r > 0.

Moreover, for a.e. t € [a,b], if (Sz,) holds then
p(t) € atcL(t’x*(t)aj:*(t))’ (116)

while if (S3°) holds then

5(t) € o {w, (w.p(0) € 0y (1 (5,200, 22 ) ) s_m_l} . (1.17)

[

If (t,2,€) € [a,b] x R™ x R™ is such that L(¢,z,{) < 400, we denote by 0,L(t,z,7{)r=1 the convex subdif-
ferential of the function 0 < r +— L(t,z,7§) at r = 1. Then (W,] can be reformulated:

L(t,z.(t), 24(t)) — p(t) € Op L(t, x4 (t), r@«(t))r=1, for a.e. t € [a,b],

and combining this with equation ((1.16)) or (1.17)), we retrieve the Erdmann — Du Bois-Reymond equation.
Another important feature of this result is that it shows that 0,L(t, z.(t), 7@« (t))r=1 is non empty almost
everywhere. Therefore, this result can be interpreted as a relaxation result, stating that the Lagrangian L
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is convex in the direction of the minimizer x,(-). This explains how the convexity assumption might be lift
to obtain regularity results.

Once the Erdmann — Du Bois-Reymond type condition has been established, to prove the essential bound-
edness of #,(-), it is sufficient to introduce a suitable growth condition that quantifies the violation of the
Erdmann — Du Bois-Reymond equation.

Hypothesis (G5,). Let z.(-) be an absolutely continuous arc on [a,b]. We say that L satisfies (G, ) if, for
every selection Q(t,€) of the set-valued map 0, L(t, z+(t), T«(t))r=1,

Jim L (0),€) - QU ©)] = oo,
Ar L(t,wx (t),r€) pe 1 #0

uniformly for a.e. ¢ € [a, b)].

This growth condition is more general than superlinearity since the class of functions satisfying condition
(G2°) contains some functions with linear growth as, for instance, L(¢) = |¢|—/[¢]. Another involved notion
of generalized growth condition (HJ°) was also introduced in [24], but since it has not been generalized for
higher order problems, we do not give more details about this last condition here.

Theorem 1.10.3 Let x.(:) be a W™ local minimizer for (CV1). Assume that L satisfies either (S.,) or
(S3°). If (Gy,) is satisfied. Then @.(-) is essentially bounded.

Remaining questions

Our analysis of the papers [23, 24], [60] leaves the following questions open:

(Q1) Is it possible to obtain a directional Weierstrass type condition and the corresponding Erdmann — Du
Bois-Reymond type condition for higher order Bolza problems?

(Q2) In order to establish regularity of minimizers of higher order Bolza problems, is it possible (as it was
done in [23,[2]|] in the case N = 1) to weaken the growth assumptions (local boundedness together with
the superlinearity) used in [60]?

(Q3) Is it possible to simplify the structure of the proof of the regularity, using the time reparameterization
technique alone, without studying the Tonelli set associated with z.(-)?

(Q4) Is it possible to drop the convexity assumption (with respect to the last variable) to obtain the essential
boundedness of 2V (1)?

(Q5) Is it possible to find an extension of these results to the case L is extended valued?

Chapter [5| provides answers to these questions. In the introduction of this thesis, only the hypotheses and
the main results of the chapter are presented.

These results have been published in [14].
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1.10.2 Hypotheses in Chapter
In Chapter [5, two different sets of hypotheses on L for a given local W™ local minimizer x.(-) for (CV))

are considered: (S;,) and (S3°).

Hypothesis (S,,) The function
L zo,z1,...,aN-2,TN-1,2N) = L(t,z0,21,...,TN-2,ZN-1,ZN)

takes values in R and is By te-measurable.
There exists £, > 0 and an £ x Bj-measurable function & : [a, b]x ]0, +00[— R4 such that:

t k(t,1) € LY([a,b],Ry),

and, for a.e. t € [a,b], for all o €]0,+00], the map:

{[a, b x RVN-1 & R, (1.18)

(s,zo,...,xN—2) — L(s,x0,...,TN_2, x&N_l)(t),ang)(t)),

is Lipschitz continuous on B((¢, z«(1),. .., V2 (t),e+) N ([a,b] x R¥~1) with Lipschitz constant k(t, o).

Hypothesis (S°) The function
L: (t,xo,x1,...,xN—2,ZN—1,ZN) — L(t,z0,21,...,TN—2, TN-1,TN)

takes values in R U {400} and is By o-measurable.
There exist a measurable set E C [a,b] of full measure, strictly positive constants e, ¢ and A, functions

d, B € L!([a,b],Ry) such that the following conditions are satisfied:
(N—1

i) the function (s,xzq,...,xNn—2,2N) — L(s,z0,...,TN—2,%s )(t),xN) is lower semicontinuous for all
t € [a,b],

ii) for all t € E, we can find 0 < 01(t) < 1 < 02(t) < 400 for which:

L(t,zu(t), ..., 2"V (1), o102V (1) < +o0 (119
L(t,za(t), ..., "0 (8), 02(0)2t™ (1)) < +o0; '
iii) for every t € E, every (8,Zo,...,Tn—2) € B((t,z«(t),... ,x&N_Q)(t)),E) N ([a,b] x R¥=1) and 2y € R,

we have

I <e(1(,21,. o En-2. 2™V O) + L5, To, .. Bz, 2TV (), 2n) + Alan])) +d(t)  (1.20)

(N—-1

for all ¢ € Op,(s,29,....an_0)L(5:T0, -+ -, N2, s )(6), 2n);

iv) for all t € E, there exists ¢; > 0 such that the function

(8,0, ..., xNn—2) — L(s,xo,... ,.TNfQ,iU&Nil)(t),ﬂjN),

is Lipschitz continuous with Lipschitz constant 5(t) on B((, z«(t), Z«(),. .. ,xiNﬂ) (t)),€et), uniformly
with respect to 2y € B(z\™ (1), &) Ndom(L(t, z.(¢),..., =" V@), -)).
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To state the following hypothesis, we introduce an auxiliary Lagrangian L : [a,b] x R x]0, 4+00[ — R, defined
by:
L(t,&,1) == L(t, 2. (t), 24(t), . .., 2N V@), r8), for all (,€,7) € [a,b] x R x |0, +00]. (1.21)

The partial convex subdifferential of L with respect to r at (¢,&, ), which is defined by:
87“L(t’§7TO) = {p eER: L(t,g,’l“) - L(t’§7r0) > p(?" - ’I"[)),\V/T € ]07 +OO[} . (122)

The growth assumption (G,,|). For every selection Q(t,€) of 0,L(t,&, 1),

im  |L(t, 2. (), ..., 2N V1), €) — Q(t, €)] = +o00, uniformly for a.e. t € [a, b], (Ga.)
o Lleem o

which means that for any M > 0, we can find a set £ C [a, b] of full measure, and a real R > 0 satisfying:

V(t€) € E X R, Qt.€) € B L(tE ), €] > R = |L(t,zu(t),..., 2" TV (),6) - Qt.€)| > M.

1.10.3 Results of Chapter

This section gathers the four main results of Chapter |5| together with an extension of [60, Theorem 2.1].
Here we do not give complementary results, nor remarks or examples. More details are to be found starting
from page (148

The expected Weierstrass type condition and the corresponding Erdmann — Du Bois-Reymond type condi-
tion for higher order Bolza problem are given by Theorem |1.10.4] (in the case L is real valued) and Corollary

1.10.6, answering positively to the question (Q1) page

Using the generalized growth condition , the regularity of a given W™ local minimizer for is
established in Theorem answering positively to (Q2). A scrutiny of the proof (see Chapter [5)) will
reveal that we use the time reparameterization technique alone, without studying the Tonelli set associated
with z.(-) (see question (Q3)).

Necessary conditions do not require the convexity assumption with respect to the last variable (Theorems
[1.10.4] and |1.10.5)), nor does the regularity result in the form of Theorem which answers positively to
(Q4). Note that if we assume the convexity of L with respect to the last variable, we can relax hypothesis
(Sz.) which yields a generalization of Theorem from [60] in the sense that the growth condition is
weaker, see Proposition

The extended valued case is also covered in Chapter [5| by Theorem [1.10.5 and Corollary [1.10.6| for the
necessary conditions and by Theorem for the regularity of minimizers. This is a positive answer to

(Q5).

Theorem 1.10.4 Let x,(-) be a W™ local minimizer for (CV)). Assume that L satisfies (Sy,). Then there
are two — mutually non exclusive — cases:

i) The function z.(-) is a polynomial function whose degree is at most N —1 > 1.
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ii) There exists an arc (po,...,pn—1) € WEi([a,b],RY) for which the following Weierstrass type condition
is satisfied: for all u € ]0,+o0[ and for a.e. t € [a,b]:

(N)
L(t,x*(t),...,m> u—L(ta.(t),....a" (1) >

B (W)
(= 1) (pot) + pr(Dau(t) + ... + oy (B2 (1))
Moreover, for a.e. t € [a,b]:
(p()vplapQ + D1, )?N*Z +pN737pN71 +pr2) € 8510,,,,@1\772-[/(1:7 Ly, x‘*a v 7x>(kN)) (123)

Theorem 1.10.5 Let z.(-) € WN™([a,b],RY) be a minimizer for (CV). Assume that L satisfies (S3°).

Then there are two — mutually non exclusive — cases:
i) The function z.(-) is a polynomial function whose degree is at most N —1 > 1.

ii) There exists an arc p := (po,...,pn_1) € WV([a,b],RYN) for which the following Weierstrass type
condition is satisfied: for all u € ]0,4o00] and for a.e. t € [a,b]:

(N)
L(t,x*(t),...,x* (t)> u—L(t,x*(t),...,wSkN)(t)) >

“ (W)
(= 1) (pot) + pr(Du(t) + ... + oy (B2 (1))
Moreover, for a.e. t € [a,b], p(t) belongs to the set:
co{w e RN+ (w+5(),po(t) + 1 (D) () + .. + o1 (D2l V(1)) (1.24)
€ (%eoron s E(s.70, o a2, 2™ V0,2 (0 /0) 1) gy peneco |

u=1

with y(t) == (0,0,p1(t), . .., pv—2(t)) and 2.(t) == (t,2.(t),..., 2" 2 (2)).
Erdmann — Du Bois-Reymond type conditions.

Corollary 1.10.6 Let z.(-) be a WN™ local minimizer for (CV|). Assume that L satisfies (Sp,) (resp.
(85°)). Then there are two — mutually non exclusive — cases:

i) The function z.(-) is a polynomial function whose degree is at most N —1 > 1.

ii) There exists an arc p := (po,...,pn—_1) € WH([a,b],RY) for which the following equation is satisfied:

for all r € 10, +00[ and for a.e. t € [a,b]:
Lt a(t),..., e V@), ra™M (@) - Lt 2a(t), ... 2V (1) >

(=D (L(t2a(®), 2 (0) = (po(t) + 1B (t) + ..+ oy (V@)

where p(-) satisfies (resp. ([1.2]))).

Regularity of minimizers.

(Wr)

Theorem 1.10.7 Let x.(-) be a WN™ local minimizer for (CV)).
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(i) Assume that L satisfies (Sg,) and 1D then 2V € L*°([a,b],R).

(ii) Assume that L satisfies (S3°) and 1} then V) € L*([a,b],R).

If the Lagrangian L is convex with respect to xy, then we can relax the condition (S,,) and invoke a weaker
(merely local in o) version of it. This result provides an extension of [60, Theorem 2.1].

Proposition 1.10.8 Let z.(-) be a W™ local minimizer for (CV)), in which we assume that L : [a,b] x
RN+ & R is Borel measurable and

(H) xy — L(t,x0,21,...,TN—2,ZN—-1,ZN) i convex for every (t,xo,T1,...,TN-2,TN—-1);

(Sz.) There exist 4 > 0, 0. €]0,1[ and a L x Bi-measurable function k : [a,b] x [1 -0, 1+ 0. — Ry such
that:
to k(1) € LY (0,8 R,),

and, for a.e. t € [a,b], for all o € [1 — 04,1+ 0.], the map:

{[a, b) x RN-1 5 R, (1.25)

(Sa Zo, - - - 7$N—2) = L(S7 Ly« y TN-2, xiN_l) (t)? O-:I:S<N) (t))a

is Lipschitz continuous on B((t, z.(t), . .. ,$>(,<N_2) (1)), e:)N([a, b] xRN =1) with Lipschitz constant k(t, o).

Then, the same conclusions of Theorem|1.10.4| are valid. If moreover, L satisfies 1} then xiN)(-) belongs
to L>°([a, b],R).
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Preliminary results

2.1 Abstract of chapter

This chapter gathers most of the notations, definitions, theorems and propositions that will be used in the
rest of this thesis. A great part of these notions are well-known and can be found in the literature but we
reproduce them here for the sake of readability. Proofs of some technical lemmas that are used in other
chapters are also included.

The topic covered here are nonsmooth analysis, multivalued functions and the properties of their trajectories,
and viability theory.

2.2 Résumé du chapitre

Ce chapitre rassemble la plupart des notations, définitions, théorémes et propositions qui seront utilisés dans
le reste de cette these. Une grande partie de ces notions est bien connue and peut étre trouvée dans la
littérature, mais nous les rappelons ici pour le confort du lecteur. Les preuves de certains lemmes techniques
sont aussi incluses.

Les sujets traités ici sont 'analyse non lisse, les fonctions multivaluées et les propriétés de leurs trajectoires
ainsi que le théorie de la viabilité.

2.3 Some notations

We write R, the set of non negative real numbers, i.e. {x € R|r > 0}, and B for the closed unit ball in R".

We denote the Lebesgue subsets of [S,T] and the Borel subsets of R™ by £ and B™ respectively. The
(associated) product o-algebra of sets in [S,T] x R™ is written £ x B™. We denote by LP([S,T],R") the
space of LP functions for the Lebesgue measure, that are defined on [S,T], and take values in R™. We write
WHL([S,T],R™), the space of absolutely continuous function for the Lebesgue measure endowed with the

norm:

s
[fllwrr == £ ()] +/ |f(s)lds, for all f € WH([S,T],R").

Let D C R™, we denote by co D, D and ¢o D respectively the convex hull, the closure and the closed convex
hull of D.
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The polar cone D* to a subset D is given by:
D*:={veR"™|Vwe D,v-w < 0}.

For arbitrary nonempty closed sets in R”, C" and C, we denote by d(C, C") the ‘Hausdorff distance’ between
C and C":

dy(C,C") :=inf{B>0|C" Cc C+ BB} Vvinf{8>0|C c C'+ B} .
Take a closed set C' C R™ and z € R™. Then minyec{|z — y|} is the distance of = from the set C' and is

written de(z).

If f:C CR™ — R is a locally bounded function, we denote its lower (resp. upper) semicontinous envelope
by:

fi(x) :==liminf f(y) resp. f*(z) :=limsupf(y) |, for every z € C.

C
y—T ygac

The notation y & & means that we are considering convergent sequences (y;);en such that y; — z, and each
element y; belongs to C.

An increasing function w : Ry — Ry is a modulus of continuity if lims_,gw(s) = 0.

Consider an extended valued function ¢ : R™ — RU {£o0}. We write dom (¢) := {x € R™ | p(z) # Lo},
epi = {(x,7) € R™ | r > p(x)}, and hyp ¢ := {(x,7) € R™ | r < p(2)}.

2.4 Nonsmooth analysis

Nonsmooth analysis allows to treat situations in which differentiability of the data doesn’t necessarily stand.
We will use this field of mathematics as it generalizes some notions that are usually expressed with smooth
data, such as the normal vector to a set with smooth border, or the gradient of a differentiable function.
The necessity for dealing with nonsmooth settings has been illustrated in the introduction, section [1.2| and

subsection [[.3.3]

The concepts and tools coming from nonsmooth analysis are presented with more details in the monographs
14, 311, [43], 45], 66, [84]).

Normal cones.

Definition 2.4.1 The proximal normal cone to a closed set C C R™ at x € C, denoted Ng(x), is defined

by:
NE(x) :={n € R™|3IM >0 such that Yy e C,n-(y—2z) < Mly— z|*}.

Definition 2.4.2 The strict normal cone No(x) to a closed set C C R™ at x is defined as follows

Ne(z) = {neRm\limsup\y—m\_ln-(y—x) SO}.
C

y—=x

Definition 2.4.3 The limiting normal cone Né(:n) to a closed set C C R™ at x is defined as follows

NE(z) = { n e R™ | there exists x; < z,m; — 1 such that n; € NE (x;), for all i € N} .
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Definition 2.4.4 The Bouligand tangent cone, alternatively referred to as contingent cone Tc(x) to a closed
set C' C R™ at x € C is defined by:

To(z) == {U e R™| liminfM = 0} = limsup ¢- L
h—0+ h h—0+
Proposition 2.4.5 We have
Ne(@) = [Te(a)]”
and
NE(z) ¢ Ne(z) € N&(z). (2.1)

An important feature of the limiting normal cone is that it is better suited than proximal and strict normal
cones to limit-taking. Indeed, we have the following proposition, that does not hold for proximal and strict
normal cones.

Proposition 2.4.6 Let C C R™ be a closed set. The set valued map C ~» R™, y — Né(y) has a closed
graph.

Lower Dini derivative.
The lower Dini derivative (alternatively referred to as the contingent epiderivative cf. [4, 31, [61]) plays an
important role in chapter

Definition 2.4.7 Consider an exstended valued function ¢ : R™ — R U {+oo}. Take z € dom (¢) and
d € R™. The lower Dini derivative of ¢ at x in the direction d € R™, denoted Dy¢(x,d), is defined by:

Di(x, d) := lim inf h=t(p(x + he) — ¢(z)).

e—d

The following proposition gives a simplification of D+U when U has two variables and one of which is the
time variable.

Proposition 2.4.8 Let U be an extended valued function defined on [S,T] x R", taking € € {1,—1}, then
for all (t,z) € dom (U), we have:
DyU((t, ), (e,d)) = liminf A~ (U(t + eh,z + he) — U(t, z)).

hl0
e—d

Subdifferential and Superdifferential.

The subdifferential and superdifferential, also referred to as Fréchet subdifferential and superdifferential
are often use to characterize the solutions to the Hamilton-Jacobi-Bellman equation in the viscosity sense,
without invoking test functions [51]. More details about these notions can be found in [66].

Definition 2.4.9 Let ¢ : X C R™ — RU {400} be a lower semicontinuous function and x € dom(¢). The
subdifferential of ¢ at x is defined by:

645(3:) = {p c Rm,liminf ¢(y> — gb((l?) — b (y — x) > 0}

y— ly — |

Similarly, the superdifferential of an upper semicontinuous function ¢ at x € dom(¢) is defined by:
Oy ¢(z) = —0-(—¢)(x).
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Proposition 2.4.10 Let ¢ : X — RU{+00} be a given extended valued lower semicontinuous function and
x € dom(¢). Then

C € 6_¢(a:) g (C? _1) € Nepi¢(x7 ¢(Q?)),
and

(€ 0:(—9)(x) & (—C,1) € Niyp—o(z, —0()).

The proximal subdifferential and superdifferential.

Definition 2.4.11 Let ¢ : X — RU {+oo} be a given extended valued lower semicontinuous function and
x € dom(¢), then the prozimal subdifferential Op¢(x) of ¢ at x is the set of elements ¢ € R™ such that there
exist M > 0 and n > 0 satisfying:

o(y) — ¢(x) + Mly —z|* > ¢ (y — x), for all y € z +1B.

Let ¢ : X — RU{—00} be a given extended valued upper semicontinuous function and x € dom(¢), then
the prozimal superdifferential OF ¢(x) of ¢ at = is defined by :

0"¢(x) = ~0p(~9)(x)

Proposition 2.4.12 Let ¢ : X — RU{+o0} be a given extended valued lower semicontinuous function and
x € dom(¢). Then

¢ € 0pp(a) & (¢, —1) € NLiy(x, 6(2)).

The limiting subdifferential.

Definition 2.4.13 Let ¢ : X — RU {+oo} be a given extended valued lower semicontinuous function and
x € dom(¢), then the limiting subdifferential of ¢ at x € dom(¢) is defined by

OFd(x) ;== {C e RF : Fuy — x,¢ € Opop(x) s.t. p(x;) — dp(x) and & — ¢}

Proposition 2.4.14 Let ¢ : X — RU{400} be a given extended valued lower semicontinuous function and
x € dom(¢). Then

¢ €0 p(x) & (¢, 1) € NL; 4 (2, 0()).

We recall that the proximal normal cone to the epigraph of ¢ at (x,¢(x)), is in general not spanned by
Opo(x) x {—1} because it may contain horizontal vectors in the form (£,0). The corresponding remark
also holds for Fréchet sub/superdifferential. The following theorem, known as the Rockafellar Horizontal
Approximation Theorem (cf. [45, Thm. 11.31], [84, Thm. 4.6.2]), will be particularly useful in Chapters
and [ to deal with these so-called asymptotic vectors.

Theorem 2.4.15 Let ¢ : X C R™ — RU{+0o0} be a given extended valued lower semicontinuous function
and x € dom(¢). Let ( € R™. Then the following conditions are equivalent :

(a) the vector ¢ is such that (¢,0) € NeLpi(b(:L‘, o(x)),
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(b) there ezist sequences (x;);en in R™, (A\)ien in Ry and ((;)ien in R™ such that :

Ty —— T, Ai 40,
i—+00

and
Vi € N, \; ¢ € Opo(s).

The Clarke subdifferential.
An alternative approach of generalized derivatives of locally Lipschitz continuous functions was proposed
by F. Clarke in the 1970s. This approach provides a new representation of subdifferentials that is used in

chapter

Definition 2.4.16 Let ¢ : R™ — R be a given function and assume that ¢ is Lipschitz continuous on a
neighborhood of a point x € R™. Take v € R™. The generalized directional derivative of ¢ at x in the
direction v, written ¢°(x,v) is defined by:

¢°(,v) := limsup h ™' [¢(y + tv) — (y)].
y—x,h]0

Then the Clarke subdifferential of ¢ at x is defined by:
() == {¢C € R™ |¢"(w,v) > C- v}

Remark 2.4.17 Since ¢°(x,0) = 0, the Clarke subdifferential 0 ¢(x) is the subdifferential in the sense of
convexr analysis to the convex function v — ¢°(z,v).

Proposition 2.4.18 Tuke a lower semicontinuous function ¢ : R™ — R that is Lipschitz continuous on a
neighborhood of some point x € R™. Then

9% p(x) = codlo(x).

2.5 Multivalued functions and their trajectories

2.5.1 Kuratowski limits

Let us recall the notion of limit for a multivalued function in the sense of Kuratowski, which plays a role of
topmost importance in chapters [3] and [

Definition 2.5.1 Let F :]S,T[~ R™ a multivalued function. If the sets

lim inf F(s') := {v € R™ | limsup dp(s)(v) = 0},
s'la s'LS

limsup F(s') := {v € R™| hn/lfglf dp(y)(v) = 0}

s'la
are the same, we call this common limit the right Kuratowski limit of F in S, denoted F(S™).
If
liminf F(s") ;= {v € R™| limsup dp(y)(v) = 0},

s'"18 1T
limsup F(s) := {v € R™| liminf d p(g) (v) = 0}
S8 1T

are the same, we call the common limit the left Kuratowski limit of F' in T, denoted F(T ™).
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Examples.
— Define a multivalued function F' :]0,1[~ R by, for all ¢ € R%, F(t) = (1 +¢)B. Then F has a limit in 0

and

F(0") =B.

— Define a multivalued function F' :]0,1[~ R by, for all ¢ €]0,1[, F(t) = (21g(¢) — 1)[0,1/2]. Then F does

not have a limit in 0:

{0} = liminf F(s") # limsup F(s') = [-1/2,1/2].
s'40 510

1/2

—1/2

Figure 2.1: Graph of the function F' = (21¢g(-) — 1)[0,1/2].

2.5.2 Boundedness of F-trajectories and continuity of the support function of F

We now state and prove some useful results about multivalued functions that will be used in chapters |3 and

Al Let us first recall some of the hypotheses that are being used in these chapters.

(H1):

(H2):

(H3):

(H4):

i) The multivalued function F' : [S,T] x R™ ~» R™ takes convex, closed, nonempty values. For every

x € R", F(-,x) is Lebesgue measurable on [S, 7.

i) For almost every t € [S,T] and x € R"

F(t,z) C cp(t)(1+ |z|)B.

ii) For all (t,z) € [S,T] x RoB
F(t,z) C coB.

dy(F(t,2'), F(t,z)) <w(|lz — 2'|), for all z,2' € RyB and t € [S,T].
i)
F(t,a") C F(t,x) + kp(t)|z — 2'|B, for all x,2" € RyB and for a.e. t € [S, T].
i) For each x € R", s € [S,T], and t €]5,T] the following limits (in the sense of Kuratowski) exist
and are nonempty

F(st,z):= lilrle(s',x) and F(t™,x):= lti,%lF(tl’x)‘
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ii) For almost every s € [S,T[ and t €]S,T], and every x € R™ we have
F(st,z) = F(s,x) and F(t,x) = F(t,z).
A priorit uniform boundedness of F-trajectories

We recall Gronwall’s inequality (see [84]).

Proposition 2.5.2 Take any z € WH([S, T],R™). Assume that there exist k(-) and v(-) in L([S,T],R,)
such that for almost every t € [S,T],

‘iz(t)’ < k(D) [2(0)] + v(2).

Then for all t € [S,T] :
|2(t)| < exp (/St k:(a)da) [|z(S)| + /St exp <— /ST k:(a)da) ’U(T)dT} :

Gronwall’s inequality together with hypothesis (H2) guarantee a well-known a priori uniform boundedness
property for the F-trajectories that is consistently being used in chapters [3] and [4]

Lemma 2.5.3 Choose any (t,z) € [S,T] x R™ and an F-trajectory y € Whi([t, T],R") such that y(t) = .
Define Ry := (1 + |x|) exp (fST cF(s)ds) and let ¢1 be any strictly positive constant greater than the constant
co associated with Ry given by hypothesis (H2) ii). Then for every s € [t,T),y(s) € RoB, and for almost
every s € [t,T], y(s) € c1B.

Proof. Fix any (¢,z) € [S, T[xR" and let y € WH([t, T],R") be an F-trajectory such that y(t) = x.
From (H?2) 1), we can pick ¢y € L'([t,T],R,) such that, for almost every s € [t,T] and every y € R™:

F(s,2) € er(s)(1 + [y)B.
Since y(-) is an F-trajectory, it follows:
[9(s)| < ep(s) (1+ |y(s)|), for almost s € [t,T].

Hence, from Gronwall’s inequality, for every s € [t, T:

T T
ry<s>rs<1+|xr>exp( / cF<s>ds)—1s<1+\:c|>exp( / cF<s>ds).

We deduce that y(s) € RoB for every s € [t,T].
From (H2) ii), there exists ¢o € R, associated with Ry, such that:

F(t,y) C coB, for every (t,y) € [S,T] x RoB.

Hence for almost every s € [t,T], 4(s) € F(s,y(s)) C coB. O
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Continuity of s — max,cp(s— y(s)) P v and s — max,ep(s— y(s)) PV

In the following lemma, we show continuity properties for the functions s — max,cp(s— y(s)P - v and s —
MaXye (s y(s)) P * U, Where y(+) is an F-trajectory.

Lemma 2.5.4 Assume (H1), (H3)i) and (H{). Take any (t,z) € [S,T[xR™. Let y € WLI([t,T],R") be an
F-trajectory such that y(t) = x. Then for every ¢ € R, there exists § € RY such that:

F(sT,y(s)) C F(tT,y(t)) + 3eB, for every s € [t,t + 4]

and for every p € R", the function s — maxX,cp(s+ y(s)) P " v @8 Tight continuous at s = t.

Similarly, if y € WHY([S,T],R") is an F-trajectory and t €]S,T], then for every p € R™, the function
§ > MaX,cp(s—y(s)) P V 15 left continuous at s = 1.

Proof. Let us assume there exist n € R , a strictly decreasing sequence (s;);en in [t, 7] that converges to ¢
and a sequence (vj);cy in R” such that: Vj € N,v; € F(s;r,y(sj)), but v; ¢ F(tT,y(t)) + 3nB.

From the definition of F(s;r,y(sj)), for every integer j € N, there exists a strictly decreasing sequence
(sj.i)ien that converges to s;, a sequence (vj;)ien such that:

(vj3) € F(sj4,y(s5)), and v; = lim v;;.
1—+00

This last convergence allows us to extract a sequence (i;);jcn such that for every j € N, and every integer
1 Z 7;]’:

vji C vj +nB.
Let us denote v; = v;;; for every j € N.
From the boundedness of the F-trajectories, we pick ¢y € R’ such that for every j € N, F(s;;;,y(s;)) C coB.
We can extract a subsequence (7, )ren converging to a vector 0. Hence, we can pick ky € N such that for
every integer k > ko,

v € V5, +nB.
Thus, for every k € N, large enough:

v € vj, + 1B C vj, + 2nB.

But we have assumed v;, + 3nB N F(tT,y(t)) = 0, which means ¢ ¢ F(tT, y(t)).
We will prove that the converse is also true.
We pick any € € R% . From the boundedness of the F-trajectories, we can pick Ry € R” such that for every

s € [t,T], y(s) € RoB.
From (H3) i), there exists a modulus of continuity w : Ry — R4 such that for every integer k£ > 0:

A (F (s, y(55,))s F (85, 9(1))) < wlly(ss) —y(B)])-
From the continuity of y(-) at ¢, for every k € N, large enough, we have:
F(sj,y(s5.)) C F(sj,,y(t) +eB.

Let us denote wy, the projection of v;, upon the closed convex set F'(s;, ,y(t)). Since we have limy,_, 1 o ;, = 7,
for every k € N, large enough, we have:

|0 — wi| <0 —vj,| + |vj, —wg| < 2e.
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This shows that o € F(tT,y(t)).
Let p € R". We can assume p # 0 otherwise the right continuity is trivial. Let ¢ € R’ . From the first point
of the proof, we pick § € R such that

Vs € [t, ¢ + 8], F(s*,y(s)) € F(t+,y(t)) + ﬁB

Let v € F(st,y(s)). We write w the projection of v upon the closed convex set F(t*,y(t)). Using Cauchy-
Schwarz inequality we have:

€
pv=p-w+p-(v—w)< max p-v+|p— < max p-v-4e.
( ) VEF(tt,y(t)) | ||19| VEF(tt,y(t))

From that equation we deduce: maxycp(s+ y(s) PV < MaXyep(i+ y(1) PV + €
Switching the roles of F'(tT,y(t)) and F(s*,y(s)), we obtain:

max p-v— max p-v|<eg,
veF(st,y(s)) veF(tt,y(t))
which ends the proof of the right continuity. The left continuity can be proved in a similar fashion. O

2.6 Viability /Invariance Theorems

In this section we recall results from viability theory, referred to as weak invariance/global viability theorems
(cf. [4] or [84]). As stated in the introduction, usually the Hamilton-Jacobi-Bellman theory requires the use
of both a weak and a strong invariance theorems. However the hypotheses in force in chapters [3] and [
made this type of theorem unusable. To circumvent this issue, a Carathéodory’s parametrization argument
is invoked, making it then possible to use a weak invariance theorem alone.

Theorem 2.6.1 (Weak Invariance Theorem) Take a multifunction T' : R* ~» R¥ an interval [S, T| and
a closed set D C R¥. Assume:

i) The graph of T is closed and T'(x) is a nonempty, convex set for each x € RF;

it) there exists ¢ > 0 such that
(z) C c(1+|z))B for all x € R¥;
ii1) for every x € D we have
min ¢-v < 0 forall { € Nh(z).
vel'(z)

Then, given any xog € D, there exists an absolutely continuous function z(-) satisfying

z(t) € T(x(t)) forae te][S,T],
z(S) = o,
xz(t) € D foralltelS,T].

Condition iii) is called inward pointing condition. This condition is crucial when constructing the arc x(-).
It somehow means that we can always find velocity vectors in I'(x) pointing towards the interior of D.
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Figure 2.2: Inward pointing condition

A key role in many proofs of Chapter [5|is played by the following Local Weak Invariance result ([21]):

Theorem 2.6.2 (Local Weak Invariance Theorem) Take an interval [S,T), a multifunction T' : RF ~»
R*, a closed set D C R*, a number e > 0 and a T'-trajectory T on [S,T]. Assume that:

(i) the graph of T is closed and I'(x) is a non-empty, convex set for each x € ([S,T]) + B ;
(ii) there exists a real ¢ > 0 such that
I(xz) C e(1+ |z))B, for all xz € z([S,T]) + cB;
(iii) for each [s,t] C [S,T], the restriction of T to [s,t] is the unique I'-trajectory on [s, t] with initial condition
z(s);
(iv) z(S) € D and for every t € [S,T| and x € D N (Z(t) + B), we have:

min £-w <0, forall £ € Ng(w).
wel(z)

Then
z(t) € D, for allt € [S,T].
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Part 1

Hamilton-Jacobi-Bellman equation for
Optimal Control problems
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Solutions to the Hamilton-Jacobi equa-
tion for Bolza problems with discontinu-
ous time dependent data

The results of this chapter have been published [15].

3.1 Abstract of chapter

THE results of chapter [3| present characterizations of the value function V' of a non autonomous Bolza
problem as the unique solution to (HJB) in three suitable generalized sense : Dini, proximal and viscosity
solutions. There are two aspects by which these results stand out from previous works.

First of all, the Larangian L and the dynamic F are allowed to be discontinuous on a set of full measure.
So far, the majority of previous works dealing with this topic imposed stronger regularity for L and F. For
the few others using weaker regularity for the time variable (e.g. merely measurable with respect to time
cf. [52]), the characterization of V' as the solution to (HJB) becomes restrictive, since it is then necessary
to remove points from the characterization. Moreover, to obtain the uniqueness of the solution to (HJB), it
appears necessary to define generalized solution in a smaller class of functions than usual, losing information
in the process.

On the contrary, our hypotheses allow to give a much more natural characterization of V' as the unique
solution to (HJB), that does not only take all the points into account, but is also given in the class of lower

semicontinuous functions to which V' commonly belongs.

Then, these result improve a previous work in which the regularity with respect to time was exactly the
same (cf. [21]). There, only the case of the Mayer problem (corresponding to the case L = 0 in our setup)
was dealt with. Henceforth, our contribution allows to deal also with the case L # 0. It must be said that
because of a lack of regularity of L with respect to the state variable x, these results could not have been
deduced from those proved in [2I] together with the help of a state augmentation technique. In addition,
the results of this chapter shows that once a suitable definition of extended-sense viscosity solution has been
given, V is the unique viscosity solution to (HJB), while such characterization had not been presented in
[21].
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3.2 Résumé du chapitre

Les travaux du chapitre [3| présentent des caractérisations de la fonction valeur V' d’un probleme de Bolza
non-autonome en tant qu’unique solution de I’équation (HJB) en trois sens généralisés adéquats utlisant :
le gradient proximal, les dérivées de Dini et une notion de solution de viscosité. Ces résultats se distinguent
de ceux ayant été obtenus jusque la de deux manieres.

Tout d’abord, le lagrangien L, et la dynamique F' sont continues seulement presque partout par rapport a
la variable de temps t. Jusque la, la majorité des travaux antérieurs concernant ce sujet imposaient une
régularité plus forte en la variable . Pour les rares autres traitant du cas d’une régularité plus faible en la
variable t (par exemple simplement measurable par rapport a ¢t cf. [52]), la caractérisation de V' en tant
que solution de I'équation (HJB) est alors limitative puisqu’il est nécessaire de restreindre ’ensemble des
points considérés dans la caractérisation. Par ailleurs, afin d’obtenir 'unicité de la solution de I’équation
(HJB) dans une telle configuration, il apparait nécessaire de restreindre la classe de fonctions dans laquelle
les notions de solutions généralisées sont obtenues.

Au contraire, notre jeu d’hypotheses permet de fournir une caractérisation plus naturelle, dans laquelle non
seulement aucun point n’est omis et qui d’autre part permet d’obtenir I'unicité de la solution de (HJB) dans
la classe naturelle de fonctions a laquelle appartient V : les fonctions semi-continues inférieurement.

Ensuite, nos résultats viennent préciser et améliorer un résultat antérieur qui utilisait exactement la méme
régularité en temps des données (cf. [21]). Dans cet article, seul le probleme de Mayer correspondant chez
nous au cas ou L = 0 était traité. Notre contribution permet désormais de traiter aussi le cas ou L n’est
pas nécessairement nul. Il est important de préciser que pour des raisons de régularité de L par rapport a
la variable d’espace z, ces résultats n’auraient pas pu étre déduits de ceux présentés dans [21] & 1’aide d’une
technique d’augmentation du nombre de variables d’états.

Par ailleurs, les travaux de cette theése démontrent que — moyennant une définition adaptée — V' est I'unique
solution de viscosité de (HJB) : caractérisation qui n’avait pas été établie dans [21I], méme dans le cas ol
L=0.

3.3 Introduction

Consider the non autonomous Bolza problem:

Minimize [4 L(t,2(t),#(t))dt + g(z(T))
over arcs © € WHL([S, T], R") satisfying
x(t) € F(t,z(t)) for almost every t € [S, T,
z(S) = o,

(PS,:BO)

in which [S,T] is a given interval, g € R" is a given initial datum, g : R” — RU{+o0} and L : [S,T] x R™ x
R™ — R are given functions, and F' : [S,T] x R™ ~» R™ is a given multivalued function. The reference problem
(Ps.z,) can be embedded in a family of problems (P ;) parametrized by pairs of initial data (t,z) € [S, T]xR".
This leads to the concept of the value function for (P ;), V : [S,T] x R® — R U {400}, which, for all
(t,z) € [S,T] x R™, is defined taking the infimum cost for (P, ,):

T
V(t,x) := inf {/t L(s,z(s),x(s))ds + g(x(T)) | z(-) F-trajectory on [t,T],x(t) = a:} :
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Here, an F-trajectory on the interval [s,t] C [S,7T] is an absolutely continuous arc z(-) : [s,t] — R”
which satisfies the reference differential inclusion #(c) € F(o,z(0)) for a.e. o € [s,t]. We shall consider
characterizations of V(-,-) as the unique solution — in a suitable generalized sense — to the Hamilton-Jacobi
equation:

{&tap(t, r) +infyepr ) {0ep(t, ) - v+ L(t, z,v)} =0 (HJB)

o(T,x) = g(x),

when we may have a discontinuous behavior of F' and L w.r.t. the time variable t. Many techniques
have been employed to characterize the value function as solution to , mainly coming from viscosity
solutions theory and viability theory. In both contexts a lot of work has been done including the case of
discontinuous time dependence problems (see for instance the monographs [5], 43, [31, [84] and the references
therein). In this chapter we employ nonsmooth analysis tools and a viability approach to provide value
function characterizations involving the notions of lower Dini derivative (also called contingent epiderivative),
proximal subdifferential, and Fréchet subdifferential and superdifferential. An important feature is that we
allow the final cost function g to be a lower semicontinuous function, possibly extended valued, incorporating
implicit terminal constraints. As a consequence the natural class of functions in which we study the value
function is the set of lower semicontinuous functions.

In presence of extended terminal costs, the first result, using viability theory, characterizing lower semicon-
tinuous value functions as solutions to (HJBJ) in a generalized sense which involves the lower Dini derivative,
is obtained in [51]. In the same paper we can find also characterizations using (Fréchet) subdifferentials, and
eventually both subdifferentials and superdifferentials leading to a comparison with viscosity solutions for
continuous value functions. These results have been achieved for the Mayer problem (i.e. for L = 0) assuming
velocity sets F' which are continuous in (¢, ). A further significant contribution is [43], in which appropriate
invariance theorems allow to characterize the value function also considering proximal subdifferentials.

Passing to discontinuous time-dependent optimal control problems, the relevance of the role of lower Dini
derivatives to deal with measurable time-dependence was highlighted by [83]. Simple examples illustrate
that the value function might not be the unique lower semicontinuous generalized (according to the concepts
above-mentioned) solution to in an ‘almost everywhere’ sense (cf. the discussion in [21]). However,
uniqueness properties of the solution can be derived for the mere measurable time dependent case imposing
additional conditions on the class of functions which are candidate to be solutions, such as the epigraph of
the candidate solution is absolutely continuous w.r.t. ¢, see [52].

A different perspective has been recently suggested in [2I] for the intermediate case (between the continuous
one and the merely measurable one) when the multifunction ¢ ~» F(¢,x) has everywhere one-sided limits,
for all , and is continuous on the complement of a zero-measure subset of [S,7T] (without necessarily
imposing further a priori regularity conditions such as the absolute continuity of the epigraph of the candidate
solutions). In this context, considering optimal control problems with a final cost term (i.e. L = 0), the value
function turns out to be the unique lower semicontinuous solution to taking into account ‘everywhere
in t’ characterizations which involve the concepts of lower Dini derivative and the proximal subdifferential.
Further important features of the results obtained in [21] are: the presence of left and right limits F(t*,x)
and F(t~,z) (the role of which cannot be exchanged) in the characterizing conditions and the presence of
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the horizontal proximal subdifferentials in the concept of the proximal solution.

The main objective of this chapter is to explore lower semicontinuous characterizations of the value function
in the context of non-autonomous Bolza problems, in which the velocity set F' satisfies the same assumptions
as in [21I]. The Lagrangian L is assumed to have the same behavior in ¢ (L(-, z,v) is continuous on a set of
full measure and has everywhere left and right limits), but is just continuous w.r.t. x. In addition, L satisfies
conditions in v (such as convexity and boundedness on bounded sets). We observe that it would be natural
to invoke a well-known augmentation technique and rewrite the reference Bolza problem (Ps ) in a Mayer

form:
Minimize g(x(T)) + y(T')
over arcs (z,y) € WHL([S, T], R"*1) satisfying
((t),y(t)) € G(t,z(t)) for almost every t € [S,T],
z(S)=xz0, y(S)=0

where G(t,z) := {(v,w) | v € F(t,x), w > L(t,x,v)}. Even if this method provides a good insight of a
correct outcome, previous results on the Mayer problem are not applicable in our case. On the other hand,
keeping the Bolza formulation of the reference problem allows us, for instance, to impose weaker assumptions
on the Lagrangian L, avoiding additional (and more restrictive) Lipschitz continuity conditions of L w.r.t.
the state variable z, that would be otherwise necessary to impose if we passed to the Mayer form, and which
is typically required in previous work for the Mayer problem (cf. [21], [51], [62] and [56]). Therefore, the
mere state augmentation technique does not simplify the task: we would add a step in the analysis and
eventually end up with a (possibly more involved) problem, with exactly the same difficulties as we left the
reference optimal control problem in the Bolza form.

Our first main result (see Theorem below) provides a characterization of lower semicontinuous extended
valued value functions involving both the notions of generalized solution in terms of lower Dini derivatives
and in terms of proximal subdifferentials (confirming that a result consistent with [2I, Theorem 2.2] can
be obtained also for the class of Bolza problems considered here). The second main result of this chapter
gives a positive answer to an important question (highlighted in [2I]): it was not known whether to achieve
an extended-sense viscosity solution characterization of lower semicontinuous value functions would require
employing horizontal Fréchet subderivatives (and superderivatives). Theorem below gives (together
with the examples in Section 1.4) an answer to this issue and represents, at the same time, an extension to
earlier viscosity solutions characterizations such as in [51], [52] (and [56] for the state constraints free case),
to locally bounded lower semicontinuous value functions for Bolza problems with F' and L discontinuous in
t and a discontinuous final cost term g.

To complete the huge picture of this strand, we recall that the viability approach is applicable also to
characterize value functions for state constrained optimal control problems (cf. [55], [84], [56] and [21]). In
this case, the analysis requires some compatibility conditions of the velocity sets F' with the state constraint
(called ‘existence of inward/outward pointing conditions’), which conveys more restrictive assumptions on
F and is based on some distance estimates results. The discussion on these technical aspects together with
the appropriate assumptions which allow to revisit our results in the context of the state constrained Bolza
problems can be found in chapter [4]
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The chapter is organized as follows. In Section we display the invoked assumptions (together with
an hypotheses reduction technique), our main results (Theorem and Theorem accompanied by
some refinements and a discussion based on three illustrative examples. Section [3.5] is dedicated to some
preliminary results. Section [3.6] provides the proof of Theorem [3.4.1] which is split into three main steps.
The proof of Theorem [3.4.2] is provided in Section [3.7

3.4 Main results

3.4.1 Hypotheses

In this chapter we shall invoke the following hypotheses: for every given positive number Ry, there exist
functions cp(-) € LY([S,T],Ry) and kr(-) € LY([S,T],R4), a modulus of continuity w(-) : Ry — R, and
constants ¢y > 0, My > 0 such that:

(H1): i) The multivalued function F' : [S,T] x R™ ~» R™ takes convex, closed, nonempty values. For every
x € R", F(-,x) is Lebesgue measurable on [S,T].
ii) The function g : R — R U {400} is lower semicontinuous, with nonempty domain.
(H2): i) For almost every ¢t € [S,T] and € R"
F(t,z) C cp(t)(1+ |z|)B.

ii) For all (t,z) € [S,T] x RoB
F(t,z) C coB.

(H3): 1)
dy(F(t,2"), F(t,z)) < w(lx — 2'|), for all 2,2’ € RyB and t € [S,T].

if)
F(t,2") C F(t,x) + kp(t)|z — 2'|B, for all z,2" € RyB and for a.e. t € [S, T].

(H4): i) For each z € R", s € [S,T[, and t €]S,T] the following limits (in the sense of Kuratowski) exist
and are nonempty

F(st,z):= h/lin F(s',z) and F(t~,z):= ltlerltl F(t', z).

ii) For almost every s € [S, T and t €]S,T], and every x € R™ we have

F(sT,2) = F(s,z) and F(t",z) = F(t,x).

(H5): i) The Lagrangian L : [S,T] x R" x R" — R is £ x B""™-measurable. For every t € [S,T] and
x € R", L(t,x,-) is convex.

ii) L is locally bounded in the following sense
|L(t,z,v)] < My, forall (t,x,v) € [S,T]x RoB x 2¢oB .
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(H6): 1) |L(t,2',v) — L(t,z,v)| < w(|z — 2']), for all x,2' € RyB, t € [S,T] and v € ¢B.
ii) L(t™,z,v) = limyy L(t', 2, v) exists for every (t,z,v) €]S,T] x RoB x ¢oB, and
L(t™,z,v) = L(t,x,v) for a.e. t €]S,T] and for all (z,v) € RoB x ¢B.
iii) L(sT,z,v) :=limy s L(s', 2, v) exists for every (s,z,v) € [S,T[xRoB x ¢oB, and
L(s*,z,v) = L(s,x,v) for a.e. s €[S, T[and for all (x,v) € RyB x ¢yB.

A priori boundedness and hypotheses reduction technique.

We observe that condition (H2) guarantees a well-known a priori uniform boundedness property for the F-
trajectories. More precisely, if we take initial data (t,x) € [S,T] xR™ and an F-trajectory y € WhL([t, T], R")

such that y(t) = z, then for every s € [t,T],y(s) € (1+]|z|) exp (fg cF(s)ds) B. Set Ry := (1+]x|) exp (fST cF(s)ds),
then, owing to (H2) ii), for almost every s € [t,T], y(s) € coBB. As a consequence, once we fix the initial data
(t,z), using a standard hypotheses reduction argument (cf. [21] or [84]), when we are interested in studying

the behavior of the value function at (¢,x), we can impose much stronger assumptions. More precisely, we
introduce the multifunction F : [S, 7] x R™ ~» R™

il F(s,y) if ly| < Ro
F =
(5:0) { F(s, Roy/lyl) if ly| > Ro,

and the function L : [S,T] x R” x R" — R

E(S U) L L(S,y,’(}) if |y| < Ry
T Ls, Roy/lyl ) i y] > Ro,

The multifunction 1?(, -) and the function E(, -,-) satisfy hypotheses (H1), (H2)*, (H3)*, (H4), (H5)* and
(H6)*, where we denote by (H2)*, (H3)*, (H5)* and (H6)* the global (stronger) version of conditions (H2),
(H3), (H5) and (H6), in which we have removed the constant Rp.

The data of the problem (P, ;) involving either (F, L) or (1? , L) do coincide in a neighborhood of the reference
point (¢, z). It follows that in the forthcoming analysis we can invoke the more restrictive version of conditions
(H1)-(H6) without loss of generality.

3.4.2 Characterizations of lower semicontinuous value functions
We consider the following family of minimization problems indexed by initial data (¢,z) € [S,T] x R™:

Minimize [, L(s,2(s), &(s))ds + g(z(T))

(P2) over the arcs = € WHI([t, T],R") satisfying
t,
’ %(s) € F(s,z(s)), for almost every s € [t,T],

z(t) = .
We recall that the value function V' : [S,T] x R®™ — R U {400} is defined by the infimum cost for (P, ):

V(t,x) =inf(P,,), forall (¢,z)e€[S,T] xR"

The first result provides a characterization of lower semicontinuous extended valued value functions in a
generalized sense involving the concepts of Dini derivative and proximal normal (to the epigraph); these are
sometimes referred to as ‘lower Dini solutions’ and ‘proximal solutions’ (cf. [84] 45]).
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Theorem 3.4.1 (Characterization of Lower Semicontinuous extended valued Value Functions)
Assume (H1)-(H6). Let U : [S,T] x R - RU {+00} be an extended valued function. Then the assertions
(a), (b) and (c) below are equivalent.

(a) The function U is the value function for (P, ,): U =V.

(b) The function U is lower semicontinuous and satisfies:
i) for every (t,x) € ([S, T[xR™) Ndom(U)

inf  [DyU((¢ 1 L(tt <0:
UGPI’E%@)[ T ((,l’),( 7U))+ ( 73371])]— )

ii) for every (t,x) € (]S,T] x R™) N dom(U)

sup  [DyU((t,2), (=1, —v)) — L(t",z,v)] <0; (3.1)
veF (t—,x)

iii) For all x € R™, U(T,x) = g(z).

(c) The function U is lower semicontinuous and satisfies:

i) for every (t,z) € (]S, T[xR™) Ndom(U), (£°,¢Y) € 0pU (¢, z),

0 . 1 + )
£ o min (€' v+ L(tT, z,v)] <0;

ii) for every (t,z) € (]S, T[xR™) Ndom(U), (£°,&Y) € dpU(t,z),

0 . 1 -
+ v+ Lt z,0)] > 0; 3.2
&t min (€ v+ L(t,z,v)] (3.2)
i11) for every r € R™,
lim inf Ut',2")=U(S,x),
{(t",2")=(S,z),t'>S}

and

liminf  U(t,2') = U(T,z) = g(x).
{(t’w’v’)gr(lTl,Ia}),t’<T} (#,27) (T,z) = g(z)

We consider now the case when the final cost is lower semicontinuous and locally bounded. In this case it
is immediate to see that the value function acquires the same properties. In presence of a locally bounded
candidate U to be a solution to an Hamilton-Jacobi equation, a well-known approach in viscosity solutions
theory suggests to consider its lower and upper semicontinuous envelopes and check whether the properties
of supersolution and subsolution in the viscosity sense are satisfied (cf. [5]). From the perspective developed
here, this idea leads to a notion of viscosity solution using the Fréchet subdifferential and superdifferential
of the candidate solution U.

Theorem 3.4.2 (Characterization of Lower Semicontinuous locally bounded Value Functions)
Assume (H1)-(H6). Suppose, in addition, that g is locally bounded and satisfies (%)« = g. Let U
[S,T] x R — R be a locally bounded function. Then, the assertions (a), (b) and (c) of Theorem[3.4.1] are
equivalent to (d) below.
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(d) U is lower semicontinuous and satisfies:

i) For every (t,x) €]S, T[xR", (£°,¢Y) € 0_U(t,x),

0 : 1 .
¢ +U€1*£2£F’:c) [£ 'U+L(t+’$’v)] <0;

ii) for every (t,z) €15, T[xR", (¢%,¢!) € 0.U* (1, ),

O—|— inf L. +L(tT, x >0; 3.3
5 vEI}‘(H-,x) [5 v ( ’ 71})] - ( )
i11) for every x € R,

lim inf U(t',x')=U(S,x),
{(t",z")—(S,z) | t'>S}

U(T,x) = g(x),

and
U*(T,2) = g*(a).

If the condition (¢*). = ¢ in Theorem is removed, then the implication is valid only in one sense:

Proposition 3.4.3 Assume (H1)-(H6) are satisfied and that g is locally bounded. Let U : [S,T] xR" - R
be a locally bounded function. Then, the assertions (a), (b) or (c) of Theorem imply (d) of Theorem

B-4.2

Theorem [3.4.2] can be restated using test functions.

Proposition 3.4.4 Assume (H1)-(HG6). Suppose, in addition, that g is locally bounded and satisfies (g*)« =

g. Let U : [S,T] xR™ — R be a locally bounded function. Then, the assertions (a), (b) and (c) of Theorem

are equivalent to (d’) below.

(d’) U is lower semicontinuous and satisfies:

i) for every (t,x) €]S, T[xR", for every ¢ € C*(]S, T[xR™, R) such that U — o has a local minimum at (t,z),
Opp(t, x) + ve;%ff,x) [Vap(t,z) - v+ LT, z,v)] <0;

ii) for every (t,x) €]S, T[xR", for every o € C*(|S,T[xR™,R) such that U* — ¢ has a local maximum at

(t7 x)?

Orp(t, x) + ve;%f+7x) [Vao(t,z) v+ Lt 2z, v)] > 0;

iii) for every x € R™,
lim inf Ut,2')=U(S,x),
{(t/,x')—=(S,z) | t/>S}
U(T,z) = g(x),
and

UNT,z) = g*(x).
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Imposing the lower semicontinuity of L w.r.t. ¢, we obtain the following result.

Proposition 3.4.5 Assume (H1)-(H6). If, in addition, we suppose that L( -, x,v) is a lower semicontinuous
function for all (x,v) € RoB x coB, then the assertions of Theorem m Theorem and Proposition
remain valid when we replace L(t, x,v) by L(t,x,v) in conditions (b) i), (¢) i) and (d) 7).

Remark 3.4.6 (i) The characterizations (c) and (d) of the value function V (-, -) are expressed in terms of

(i)

(iii)

prozimal subdifferentials, and (Fréchet) subdifferentials and superdifferentials of V(-,-) at points (¢, x)
belonging to the domain of V (-,-). In [21], where the velocity set F' has the same discontinuous behav-
ior, characterizations of the values function are provided by conditions involving the proximal normal
cone, which includes both horizontal and non-horizontal proximal subdifferentials. The contribution of
horizontal normals can be easily removed when ‘F is continuous’ (cf. [51),[84)]) owing to the well-known
(Rockafellar) horizontal approzimation theorem (cf. [43]), and it was not clear whether this simplifica-
tion procedure would be in general applicable in the discontinuous context (cf. the issue raised in [21,
Remark 2.2-(d)]). In this manuscript, we establish that we can still use this technique, at the cost of

some adjustments in the proof.

Conditions in (b), (c) and (d) are formulated taking into account particular left and right limits w.r.t. t
of F and L. For the Mayer problem, in [21] it is shown that the role of the left/right limits is crucial to
characterize the value function, and assertions (b) and (c) become in general false if we try to exchange
the role of those limits. As one may expect, our results for Bolza problems are consistent with [21)]. We
underline the fact that also for the viscosity solutions characterization (d) the role of the right limit
is crucial as illustrated by Example 1 below. Finally we observe that, in (b) i), (c) i) and (d) i) of

Theorems |3.4.1] and |3.4.2 we can avoid consideration of the limits of L w.r.t. t, owing to the lower

semicontinuity of L (in t).

The characterization (d) provided by Theorem concerns lower semicontinuous value functions for
optimal control problems having a terminal cost g which is locally bounded and satisfies the condition
(%)« = g. A natural question would be:

Is that possible to characterize V(-,-) in the sense of Theorem for optimal control problems
removing the conditions ‘g is locally bounded or (¢*). = ¢’?

If g is a lower semicontinuous extended valued function (taking the value +00 at some points), the issue
of interpreting the viscosity subsolution replacing the condition (d)-ii) immediately arises and it is not
clear how we have to interpret U*. Taking the limsup operator we would lose crucial information on the
boundary of dom(V') and the viability approach would not be applicable or give the desired information.
On the other hand, if we consider the smaller (extended valued) upper semicontinuous function bigger
than V' on the domain of V, under some circumstances (such as V is continuous on its domain and
dom(V) is a closed set) we would be induced to end up with the function V'~ which coincides with V
on dom(V') and takes the value —oo on [S,T] x R™ \ dom(V'). The latter technique would not help
either, as clarified by Example 2. Condition (¢g*). = g can be removed if we are interested in proving
that the value function is a viscosity solution in the sense of (d) of Theorem (as established by
Proposition . However, condition (g*). = g becomes far from being just a technical hypothesis
and emerges as crucial if we want a characterization (comparison result) for the value function. This
point is illustrated in Example 3. Condition ‘(g*)« = g’ (or ‘(¢g*)« = g’ when g is not necessarily lower
semicontinuous) is well-known in the viscosity theory context (cf. [7]).
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(iv) The results above are still valid if we start from a slightly more general context in which the Lagrangian
in now extended valued L : [S,T] x R™ x R" — R U {400} and assumption (H5)-ii) is replaced by a
‘local boundedness a.e. in t’ in the following sense: there exists a set of full measure E C [S,T] such
that

|L(t,x,v)] < Mg, forall (t,x,v) € E x RyB x 2¢\B .

Indeed, using the lower semicontinuity of L we can reduce attention to the case in which L is locally
bounded in the sense of (H5), and, then, the analysis remains the same.

(v) Assertions (c¢) and (d) of Theorems|3.4.1] and|3.4.2 can be easily reformulated in terms of an Hamil-
tonian function

Hy(t,z,p) == vei}7rl(£x)[p v+ AL(t, z,0)] .

Observe that under our assumptions H(-,z,p) turns out to be continuous on the complement of a
zero-measure subset of [S, T and has everywhere one-sided limits Hx(t%,z,p) and Hx(t~,x,p).

3.4.3 Examples

Example 1. Consider the optimal control problem

Minimize g(z(1)) + [ L(t, 2(t), & (t))dt
over arcs z(-) € Wh!([to, 1], R) such that

P,
(Proz) @(t) € F(t) for ae. t € [to, 1],
I’(to) = X0,
where tg € [0,1], zo € R,
[-1,1], if 0<t<3,
F(t) :=
[—3.3], if $<t<1,

and

m+t+%, if OStS% and x+t—%>0,

Vit z) = x—i—t—i—%, if OStS% and x—i—t—%go,
’ x %—i—%, if %<t§1 and $+%—%>0,
x—%—i—%, if %<t§1 and x—i—%—%SO.

As a result of a routine analysis, one can see that conditions (b)-(c) of Theorem and condition (d) of
Theorem are satisfied by V. Here, we only display some calculations at the point (¢g,z) = (%, %),
which is of particular interest since it carries information about the discontinuous behavior of the data F', L
and g at the same time. Consider, for instance, (d) ii) of Theorem We have:

o4 V* (;i) = {(f%l) ¢8> 1,61 > €% -0+ 21 —2< 0} :

76



Consistently with condition (d) ii) in Theorem the value function satisfies:

1\2 1
&+ miln1 {511}—1—[(0—{—) +21}:§0—€+220,
Ue[—§,§ 2 2

for every (€°,¢1) € 9, V* (%, %)
On the other hand, switching the roles of F' (%Jr) and F' (%_) in the analysis above, we would not obtain
the validity of condition (d) ii) since, taking the vector (—2,1) € 0;V* (3, 1), we obtain:

—§+ min <v+ <v+1>2+2 ——§+§——}<0
2 wel-11] 2 2 4 4T

Similarly, switching the roles of L (%, 0, v) and L ((%)‘*‘,xm U) for the same normal vector, we would not
obtain condition (d) ii) either:

N W

7
——Z<O.

—§+ min {v+(v+1)2}: —%

’UG[*E,E
Even if we switched limits for both L and F', condition (d) ii) would not be satisfied since we have:

3 9 3 5
_2 i Nl=-S_1=-2<0.
7+, anin, vt (v+1)°} 5 5 <
This example shows that condition (d) ii) must involve the right limits F(¢t*,z) and L(t",z,v), for, if the
limits were taken from the other side, the assertion would be false in general. Similar considerations show

the fundamental significance of the right limits also in condition (d) i) of Theorem

Theorem provides a characterization for the class of lower semicontinuous functions which are also
locally bounded. One might wonder whether this result can be generalized to the class of lower semicontinuous
extended valued functions, like for the characterization provided by Theorem [3.4.1] The major difficulty
comes from interpreting the concept of viscosity subsolution (which would correspond to condition (d) ii))
on the boundary of the domain of the candidate to be value function. The notion of viscosity subsolution used
in this chapter involves consideration of the upper semicontinuous envelope V*, which has a clear meaning
if V' is locally bounded. On the other hand, if V' were extended valued (with a closed nonempty domain),
one might be tempted to take into account the upper semicontinuous extended valued function V ~:

V(t,z), if (t,z) € dom(V),
—00, elsewhere.

V= (t,x) = {

The following simple example shows that this would not provide the desired effect, even if F' is continuous
and the value function V' is continuous on dom(V).

Example 2. Consider the optimal control problem:

Minimize g(z(1))

over arcs z(-) € Whi([tg, 1], R) such that
(t) € F(t) forae. t € [to,1],

:L‘(to) = X9,

where ty € [0,1], zp € R,
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(2) = 400, if x>0,
g T oz, if x <0,

and for all (¢,z,v) € [0,1] x R x R,
F(t) :=[-1,1].

The value function V : [0,1] x R - RU {+o0} is:

400, ifz+t—1>0,
r+t—1, if z+t—1<0.

V(t,x) = {

Then
—00, if z+t—1>0,
r+t—1, f z+t—1<0.

V7 (t,x) = {
Let us consider (¢g,z¢) €]0,1[xXR such that zg + to + 1 = 0. We have:

0LV (to, o) = {(€%,€") [N € Ry, €0 <1}
However if we use (—1,—1) € 9;V~ (tg, zo), then condition (d) ii) is violated since:

-1 i —v}=-2<0.
oy

Example 3. Consider the Mayer problem:

Minimize g(z(1))
over arcs z(-) € Whi([to, 1], R) such that
x(t) € F(t) fora.e. t € [to,1],

z(ty) = zo,
where tg € [0,1], 2o € R,
1, if x #0,
9(@) = {o, if 2 =0,
and for all (¢,z) € [0,1] x R,
F(t) :=10,1].

The value function V' : [0,1] x R — R is:

0, ifx+1—-t>0and z <0,
1, ifz+1—t<0Oora>0.

Vt,x) = {

One can easily check that V' is a viscosity solution, i.e. satisfies (d) i)-iii). Consider the function U :
[0,1] xR — R:

0, ifzxz=0,
U(t,x) = %, if x40,z +1—t>0and x <0,
1, ifx+1—t<Ooraxz>0.

Then U is also a viscosity solution in the sense of condition (d). This shows that, if we do not have the
property (¢g*). = g, we do not obtain the uniqueness of the viscosity solution in the sense of (d).
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3.5 Preliminary results

We observe that, under our reference assumptions (H1)-(H6) (or under their more restrictive form provided
by the a priori boundedness argument), for every (¢,x) € [S,T] x R", the problem

T
inf J(a()) = / L(s,2(s), #(s))ds + g(a(T))
z(-) F-trajectory on [t,T], z(t)=z t
has a minimizer. This is due to the fact that, with respect to the W1 topology, the set of F-trajectories
{z(-) F-trajectory on [t,T], z(t) = x} is compact (cf. [45l Theorem 6.39] or [84, Theorem 2.5.3]) and the
functional J(-) is lower semicontinuous.
Taking into account (H5)*, we can state a local Lipschitz regularity lemma for the function L(s,y, ) (locally
uniformly with respect to (s,y)), the proof of which is based on standard arguments on convex functions. We
observe that the role of the number 2¢y (instead of the simpler ¢y) allows to deduce the Lipschitz regularity
of L in v in a ball with the smaller radius ¢g.

Lemma 3.5.1 Assume (H5)*. Then, there exists a positive constant ki, such that for every (s,y) € [S,T] x
R"™, and v,v" € coB:
|L(s,y,v) — L(s,y,v")| < kplv—1']. (3.4)

Proof. There exists My € R? such that:
|L(t,z,v)] < My, for all (t,z,v) € [S,T] x RoB x 2RB.

Take v1 and v in RB such that v1 # ve, and set:

V3 = U2 + (’02—1)1).

lvg — v1]

Observe that v3 € 2RB and:

_ R v ”1)2 — Ul‘ .
lvg —vi|+ R ! |vg —vi|+ R 3

V2

Therefore, by the convexity of L(t,x,-):

R ‘1}2 —’1)1’

L(t,z,v) < —————=L(t,z,v1) + ——————
( 2) |v2—v1]+R( 1 lvg —vi| + R

L(t,z,v3).

And so, if (t,z) is in [S,T] x rB, we obtain:

vz — vy
L(t,z,v9) — L(t,x,v1) < ————  (L(t,z,v3) — L(t,x,v
(h,) = Lt w,00) € P2 (L) = Ltz 0)
2My
< T|U2 - Ul’-
Exchanging the roles of v; and vy, we obtain that L(¢,z, ) is 2]\1%40 -Lipschitz on RB, uniformly with respect
to (t,x) € [S,T] x rB. O

In the following lemma we establish a further (uniform) regularity property of the Lagrangian, which we will
invoke several times in our analysis.
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Lemma 3.5.2 i) Assume that L satisfies (H5)" i), (H6)* i) and (H6)* iii) . Let t € [S,T[ and z € R"™.
Then, for every e > 0, there exists 6 > 0 such that, for every y € x + 0B, for every real s €]t,t + 0] N [S,T],
and every u € coB:

L(s,y,u) > L(t",z,u) — ¢. (3.5)

ii) Assume that L satisfies (H5)* i) and (H6)* i)-ii). Lett €]S,T| and x € R™. Then, for every ¢ > 0, there
exists 6 > 0 such that, for every y € x + 6B, for every s € [t — 6,t[N[S,T], and every u € cyB:

L(s,y,u) > L(t",z,u) — €. (3.6)

iii) Assume that L satisfies (H5)* and (H6)* i), and that L(-,x,v) is lower semicontinuous for all (x,v) €
RoB x ¢oB. Let t € [S,T| and x € R™. Then, for every ¢ > 0, there exists § > 0 such that, for every
y € x + B, for every s € [t —6,t+ 5] N [S,T], and for every u € coB:

L(s,y,u) > L(t,z,u) — ¢. (3.7)
Proof. We start proving i). Fix any ¢ > 0. Take any v € ¢oB. Invoking (H6)* iii), there exists 0 < §1(v,¢) <

1 such that, for all s €]t,t + d1(v,e)] N [S, T], we have

L(s,x,v) > L(t",z,v) — Z (3.8)

Invoking Lemma we also know that, for all 7 € [S,T] and v, u € ¢B,
|L(T,z,v) — L(1,z,u)| < kp|u—v| . (3.9)

Set 02(v, €) := min{d1(v,€); g7 }(> 0). Then, combining inequalities (3.8) and (3.9) (this is used twice, i.e.
for 7 = t* and 7 = s) yields: for every s €]t,t+ d2(v, )] N[S, T], and every u € (v+ d2(v,£)B) N B we have

L(s,x,u) > L(t",x,u) — Za (3.10)

o o

Using the compactness of ¢gB, from the open cover of the set ¢gB C UvecOIB v+ (v, )B (B is the open unit
ball) we can extract a finite subcover:

N
coB C U vj + (52(vj,5)1§5.
j=1
Define d3 := minj—;,_ n d2(v;,e). We obtain:

L(s,,u) > L(t", 2, u) Ze, (3.11)

for all s €t,t + 93] N [S,T], and every u € ¢yBB. From (H6)* i), we know that there exists 0 < § < d3 such
that w(d) < e, and so

1
|L(s,y,u) — L(s,z,u)| < 1 for all y € = + 0B.

As a consequence, from this inequality and from (3.11), we deduce the validity of (3.5). The proofs of ii)
and iii) follow along the same lines. Indeed, in the first step of the proof, we can use respectively (H6)* ii)
and the lower semicontinuity of L(-,z,v) instead of (H6)* iii) to obtain (3.8]) on the suitable time interval.

a
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We now introduce the auxiliary Lagrangian L~ which will be used as a technical tool in the characterization
of solutions to the Hamilton-Jacobi equation. Take any (¢,z) €]S,7] x R". We consider the following
modulus of continuity of F' with respect to time (from the left) 6, : [0,t —S] — R, defined by: for every
h €0,t— 9],

su —s<n dyg(F(s,y), F(t—,x)), if h #0,
0, (h) == plng\cho}h #(Fs,9), F ) 7 (3.12)
0, otherwise.

Write K := exp (fST kF(s)ds>. If we take also a vector v € F(t~,x), we define the following set:
Z(t,z,v) := {z(-) F-trajectory on [S,t] | z(t) = (3.13)
and ||z + (- = t)v — 2(-) |Loo (t—h,g,rn) < KO, (R)h, for all h € [0, — S]}.
The Lagrangian L™ : ]S, T] x R" x R" — RU{+o0} is defined as follows: for every (¢, x,v) €]5,T] x R” x R",

t
liminfh—ljnf{/ L(s, z(s), 2(s))ds zEZt,x,v},ifUEFt_,x,
L™ (t,z,v) := [ o (s, 2(s5), 2(s)) ( ) ( )

L(t~,x,v), otherwise .

(3.14)

The map L~ arises in a somehow natural way in some crucial steps of our analysis (cf. the proofs of
Proposition and Theorem below). A similar auxiliary Lagrangian function was introduced in
[49, [50] to investigate characterization of solutions to Hamilton-Jacobi equations in the context of calculus
of variations. In our framework the expression of L~ is more involved since we have to take account of the
velocity constraint given by the differential inclusion 2(s) € F(s, z(s)) and the possible different (from the
left and from the right) limit behavior of F' w.r.t. ¢.

Proposition 3.5.3 Suppose that (H1), (H2)*, (H3)*, (H4) and (H5)* are satisfied.
i) Then, for all (t,z,v) € ]S,T] x R™ x R", we have L~ (t,xz,v) € R and

L(t™,x,v) < L™ (t,z,v). (3.15)
i) If, in addition, L satisfies (H6)* i)-ii), then for every (t,z,v) € ]S, T] x R™ x R™ we also obtain

L™ (t,x,v) < L(t™,z,v). (3.16)

Proof. i) Consider (¢, z) € ]S, T]xR"™. We can assume that v € F(t~,x), since otherwise the stated inequality
immediately follows from the definition of L™. Using Filippov existence theorem (cf. [84, Theorem 2.4.3]),
we have Z(t,z,v) # (. As a consequence, we obtain inf {ff_h L(s, z(s),2(s))ds |z € Z(t,x,v)} # 00, for
all h €]0,t — S].

Invoking the a priori uniform boundedness of the F-trajectories, it is straightforward to see that all the arcs
in Z(t,x,v) are uniformly bounded and uniformly Lipschitz continuous. Since L is bounded in the sense of
condition (H5)*, we deduce that there exists a constant My > 0 such that, for every z(-) € Z(t, z,v),

|L(s, 2(s), 2(s))| < My, for almost every s € [S,t].

It follows that, for all h €0, — S]: (inf LI Lis,2(s), 2(s))ds | = € Z(t,x,v)}‘ < hMp, which implies that
|L~(t,z,v)| < My, and therefore L~ (t,z,v) € R.
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We now establish (3.15)). Let € > 0. For every h €]0,¢ — S], small enough, we choose 2z, € W1i([S,t],R")
an ch-minimizer for the following Lagrange problem:

inf {/jh L(s, 2(s), (s))ds ] 2 e Z(t,z, v)} .

Invoking again the a priori boundedness of F-trajectories, the family (Z) helot—s] 1s bounded in L by co.
Using (3.6)) of Lemma and Jensen’s inequality, we obtain for all A €]0,¢ — S]:

1 [t I I

/ L(s, zp(s), 2n(s))ds > / L(t™,x, 2p(s))ds —e > L (t,x, / z‘h(s)ds> — €.
h Ji—n h Ji—n h Ji—n
From standard analysis, we also know that limy,|o % ftt—h Zp(s)ds = v. Passing to the limit inferior in the last
equation, we have:

e+ L™ (t,z,v) > L(t",x,v) —e.

which confirms (3.15)) since ¢ is arbitrary.

ii) Consider (t,z) €]S,T] x R™. Again, we can restrict attention to the case v € F(t~, z), since otherwise
the assertion easily follows from the definition of L™, and claim that

L™ (t,z,v) <lim sup L(s,y,v). (3.17)
hl0 o<t—s<h
le—y|<coh

Indeed, using Filippov existence theorem, we can find an F-trajectory z € WH1([S, ], R™), such that z(t) =
and for every h € [0, — S]:

t
Iz — (2 + (- — £)0) | (pngzm) < / J2(s) = vlds < KO (1), (3.18)
t_

where K = exp (fST kF(s)ds). From Lemmal3.5.1} there exists kz, > 0 such that for every (¢, 2) € [S, T]xR",
v,V € ¢oB:

|L(t' 2", v) — L', 2", 0")| < kplv — ')
As a consequence, for every h €]0,t — S|, we have:
t

inf {/tt L(s, z(s),2(s))ds |z € Z(t,h,v)} < / L(s, z(s), 2(s))ds,

—h t—h

g/tt L(s,z(s),v)ds+/t kil 2(s) — vlds

—h t—h

<h sup L(s,y,v)+ hkr K6, (h).
0<t—s<h
lz—y|<coh

Dividing across by h, passing to the limit inferior as h goes to 0, yields (3.17)). If L satisfies satisfies also
(H6)* 1)-ii), then:
L_(t,x,v) Shm sSup L(87y7v) :L(t_,x,v),

hl0 o<t—s<n
lz—y|<cgh

which confirms (3.16)).
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3.6 Proof of Theorem [3.4.1]

The proof has the following structure: we first show that the value function satisfies property (b) of Theorem
We subsequently prove that condition (b) implies condition (c). Finally, if a lower semicontinuous
function U satisfies (c) then we show that it coincides with the value function. Each step is highlighted by
a proposition or a theorem statement.

3.6.1 The value function satisfies (b) of Theorem [3.4.1]

Proposition 3.6.1 Assume (H1)-(H6). Let V. : [S,T] x R® — RU {+o0} be the value function of the
problem. Then V satisfies (b) i)-iii) of Theorem|3.4. 1.

Proof. From the definition of V' it immediately follows that V(T,-) = g(:) confirming (b) iii). The lower
semicontinuity of V' can be deduced by standard arguments (see for instance |64, Theorem 1.1]). We have
to prove that V satisfies (b) i) and (b) ii) of Theorem

Step 1 The first part of this step is somewhat standard (cf. [84] 21]). We briefly reproduce this analysis
since, in the second part of this step, it has to be properly combined with suitable properties on the La-
grangian L, mainly described by Lemma [3.5.2

Take (t,x) € ([S, T[xR") N dom(V). Let y € WLi([t, T],R™) be a minimizing F-trajectory for (P ), whose
existence is guaranteed by our assumptions on F' and L (see Section . Using the principle of optimality,
for every 6 €]0,T — t], we have:

t

Vit+4,yt+9)) —V(t,x) = /t+5 L(s,y(s),y(s))ds.

From the fundamental theorem of calculus we also have for every ¢ € ]0,T — ¢]:

t+6
5 (y(t + 8) — y(t) = 6! / 3(s)ds

Let (6;)ien be a strictly decreasing sequence of positive real numbers that converges to 0. For every integer

1 € N, let us define v; € R" by:
t+9;
v; = (5;1/ y(s)ds
t

From the a priori boundedness of the F-trajectories guaranteed by the hypotheses reduction of Section
[9(s)| < ¢o for almost every s € [t,T]. From this inequality, we deduce that the sequence (v;);en is bounded

by co. Then, there exists a vector v € cgB such that, up to a subsequence, v; — v.
1—+400

Take any p € R"™ and i € N. Since F(s1,y(s)) = F(s,y(s)) almost everywhere for each i € N, we have:

t+5 t+6;
Z—é s)d <6 -vds. 3.19

But since the function s — max,cp(s+ y(s)) P - v is Tight continuous at s = ¢, letting ¢ go to +oc in equation

(3.19), we have:

o< max <.
prv= v€F(t+,y(t))p
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Employing the characterization of the closed convex hull of a set by the support function [78, Thm 13.1], we
deduce that v € F(t1,y(t)) = F(t*, z).

Using the definition of D4V ((¢,2), (1,7)) and the principle of optimality, we obtain:

D4V ((t,2), (1,0)) + L(t",z,0) < liminf §; '(V(t+ &, y(t + &) — V(t,2)) + L(t", 2, v),
71— 00

1—00

t
= liminf §; ! / L(s,y(s),y(s))ds + L(t", z,v),

t+0;
t+6;
= liminf —4; ! L(s,y(s),9(s))ds + L(t*, z, ). (3.20)
1—00 t

Fix any € > 0. We consider the constant . > 0 given by Lemma i) for the reference pair (¢,z) €
[S, T[xR™. Since v; — v and L(t",x,-) is continuous, there exists Ny € N such that:
1

—+00
‘L(t+7x7vi) - L(tJr?xaT))’ < g, for all ¢ > No,

and from the continuity of the F-trajectory y(-), we can choose an integer N > Ny such that for every integer
i > N: §; < 0, and for all s € [t,t + ], |y(s) — x| < d.. Since for almost every s € [¢t,T], |y(s)| < cp, Lemma
3.5.2| guarantees that for almost every s € [t, ¢t + d¢] N [¢, T,

L(Say(s)vy(s)) > L(t+7$vy(8)) —¢&.

Thus, for any integer i > N:

t+9; t+6
51-_1/ L(s,y(s),y(s))ds > 6, / y(s))ds — e.
t

Applying Jensen’s inequality to the convex function L(t,x,-), we also obtain:

t+6 t+6;
0; / toa, (s ))ds>L(t+ x,0; / ds)—ezL(t*’,x,m)—e.

We deduce that —9; ft+§l L(s ,9(s))ds + L(tT, z,v) < 2¢ for every integer i > N, and so, from 1}
we obtain:

D4V ((t, ), (1,0)) + L(t*, z,0) < 2e.

Since ¢ is arbitrary, this confirms (b)-i).

Step 2 Let (t,z) € dom(V)N]S,T] x R™. Let v € F(t~,z). For every s € [S,t], set y(s) = x + (s — t)0.
Hypotheses on the multifunction F' allow us to use the Filippov existence theorem: there exists an F-
trajectory Z(-) that satisfies Z(¢) = z, such that for every h €]0,t — 5],

t
12 = yllLoo (t—n,rm) < K (/t_h dF(s,y(s))(ﬁ)d‘S) < K0, (h)h,

where K = exp ( f g kp(s ds) and 0, is the modulus of continuity deﬁned in (3.12)). Recalling the hypotheses
reduction and definition of Z(¢,x,v) given in 3) (see Section [3.4), it follows that Z(:) € Z(t,z, ) # 0.
For any h €]0,t — S], there exists an h> minimizer zh() € Z(t,z,0) of the Lagrange problem:

inf {/tth(s 2(s), 5(s ))ds’z c Z(t,:c,f;)}
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For any h €]0,t — S], we write vy, := h™(z — z,(t — h)). We obtain:
|0 —on| = h™Hzn(t — h) — y(t — h)| < K67 ().

We deduce vy, — 0.
hl0

Using the principle of optimality applied to the F-trajectories zp(-), we also have:
t
V(t—h,z— hvy) —V(t,z) < / L(s, zn(s), 21(s))ds, for every h €]0,t — S].
t—h
It follows that for every h €]0,t — S|,

t

RNV (t — h,x — hoy) — V(t,x)) < h~Vinf {/ L(s,2(s),2(s))ds |z € Z(t,x,@)} + h.

t—h

Hence, passing to the limit inferior when h goes to 0 and recalling the definition of L™ in ([3.14)),

D+V((t,2), (—=1,-0)) < liminf b~ (V(t — b,z — hvy) — V(t,x)) < L™ (t,z,9).

h—0

As a consequence, owing to ii) of Proposition we obtain:
DAV((t,2), (~1,~0)) < Lt 2,5),

which establishes the validity of (b)-ii), concluding the proof of Proposition [3.6.1]

3.6.2 The value function is a proximal solution

In this subsection we prove that any lower semicontinous function U : [S,T] x R" — R U {+o0} satisfying
condition (b) from Theorem also verifies condition (c) from Theorem i.e. is a proximal solution.

Proposition 3.6.2 Assume (H1)-(H6) and let U : [S,T] x R — R U {400} be a lower semicontinuous
function satisfying (b) i)—iii) from Theorem|[3.4.1. Then U is a prozimal solution to (HJB), i.e. satisfies (c)

i)—iii).

We shall make use of two technical lemmas, which provide consequences of properties (b) i) and (b) ii) of

Theorem B.4.11

Lemma 3.6.3 Let U : [S,T] x R" — R U {+o0} be a lower semicontinous function. Take any (t,z) €
([S, T[xR™) Ndom(U). Then, there exists v € F(t*,x), a sequence (v;)ien n R™ converging to v, and a
strictly decreasing sequence (h;)i;en in Ry, converging to 0 as i goes to +o00, such that:

lim h; YUt + hiyz + hvy) — Ul(t,z)) = ( inf  DyU((t,2),(1,w)) + L(t", z, w)) — L(tT, z,v).

i—+o0 weF(t+,z)
Assume, in addition, that U satisfies (b) i). Then we have:

lim Ay YUt + hiy2 + hv) = U(t,z)) < —L(tT, 2,0). (3.21)

1——+00
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Proof. Fix any (t,z) € ([S,T[xR") N dom(U). Write A := inf, e p+ ) DyU((t, x), (1,w)) + L(tT, z,w).
Let (gj)jen in Ry be a strictly decreasing sequence that converges to 0. For any j € N, there exists a vector
v; € F(t*,z) such that:

A < D:U((t,z), (1,v)) + Lt 2,0) <A +¢j.

Since F(t*,z) is compact, there exists ¢ in F'(t1, z) for which, up to a subsequence, (v;)jen converges to 0.
By definition of the limit inferior, for each j € N, there exists a sequence (vj;);en in R™ converging to v; and
a strictly decreasing sequence (h;;)icn in R4 converging to 0 such that:

lim h 3 (U(t+ hji, @ + hjivj) — U(t,2)) = liminf B7NU(E+ B2+ ') = U, x)).

i——+00 v'—v;,h' 0
It follows that we can construct a sequence (¢(j))jen for which the subsequence (h;,(;))jen is strictly
decreasing, converges to 0, and such that for every j € N*:
[v5 = V()| < €5
h;;(])(U(t + hj,go(j) , T+ hj,go(j)vj,go(j)) — U(t, a:)) S [A —&; — L(tJr, X, ’Uj), A+ 28]‘ — L(tJr, X, Uj)]. (3.22)

e(j) for each j € N*. As a consequence, we have lim; 1 0; = 0 and

limj_,+00 hj = 0. Moreover, using the continuity of L(¢t*,z,-), we obtain lim L(t*,z,v;) = L(t",z,0).

J—+oo
Therefore, letting j go to +o00 in (3.22)) yields:

Write ﬁj = hj,@(j) and v; = v;

lim AN U(t+ hy, x4+ hjoy) — U(t,z)) = A — L(tT, 2, 9).

J—+oo

If U satisfies (b) i), we have A < 0, which implies

lim A (U(t+ hj, o+ hv;) — U(t,x)) < —L(tT, z,9),

Jj—+oo
and concludes the proof of the lemma.

a

Lemma 3.6.4 Let U : [S,T] xR" — RU{+o0} be a lower semicontinous function. Assume that U satisfies
(b) ii). Let (t,z) € (]S, T] x R") Ndom(U). Then for every v € F(t™,x), there exists a sequence (v;)ien in
R™ converging to v and a decreasing sequence (h;)ien in Ry which converges to 0, such that:

dim b NU(t — hyyx — hyv) — U(t,x)) < L(t, 2,v). (3.23)

Proof. Consider any (t,z) € (]S,T] x R") Ndom(U) and v € F(t~,z). We have:
DTU((ta l‘), (_]-7 _U)) < L(t_,fb, /U)‘

Using the definition of DU, there exists a sequence (v;);cy in R™ converging to v and a decreasing sequence
(hi)ien in R4, converging to 0, such that:

liminf A=Y (U(t — h,t — hoy) = U(t,2)) = lim h; ' (U(t — hi, t — hjv) = U(t,2)) < L(t™, 2,v),

hl0,vp—v i——+00

which concludes the proof.
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We are now ready to prove Proposition [3.6.2] The proof is split into three steps.

Step 1 We first claim that (c) i) from Theorem holds: for every (t,z) € (]S,T[xR") N dom(U),
(€9,¢1) € OpU(t, x), we have

0 . 1 +
4+ min v+ L(tT,x,v) <0.
¢ vGF(t*,x)g ( )

Take any (t,x) € (]S, T[xR") N dom(U) and (£°,¢') € 9pU(t,z). From the definition of the proximal
subdifferential, there exist M > 0 and € > 0 such that

QW —t)+& (' —x) < UW,2)-Ult,z)+ M(|t' —t)* + |2’ — z|*) (3.24)
for all (¢',2') € (t,z) + €B.

From Lemma there exists v € F(tT,x), a sequence (v;);en in R™ that converges to v and a strictly
decreasing sequence (h;);en in Ry, converging to 0, such that:

lim h; YUt + hiy2 + hivy) — U(t,z)) < —L(tT, z,0).

i——+00

Taking the particular values (t + h;, z + h;v;) for (¢, 2') in (3.24), and dividing across by h;, for every i € N
sufficiently large, we obtain:

O+ et v <N U+ hiy o+ hivg) — U(t, @) + Mhi(1 + [vi]?).

Letting the integer i go to +o00, we have: €%+ &1 v = lim; 4400 (€° + &1 - v;) < —L(t+, z,v), and thus we
obtain: £0 4+ min, e p(i+ ) [¢' v+ L(t*, z,v)] <0, which confirms the claim of step 1.

Step 2 We now prove that (c) ii) is satisfied: for every (t,x) € (]S, T[xR"™) Ndom(U), for every proximal
vector (£0,&1) € OpU(t, x), we have

0 i Lo+ Lt ,z,v)] >0.
g +v€lr7‘r(lllf{l,m) [5 v ( JT'U)] -

Consider any (¢,z) € (]S, T[xR") N dom(U) and (£°, &%) € OpU (¢, ).

Take any v € F(t7,z). Owing to Lemma we can find two sequences (v;);eny and (h;);en satisfying
(3.23). Employing the same arguments used in the first step, there exist M > 0, ¢ > 0 such that for every
i € N, sufficiently large:

—(&" + &) <hTHU(t = hiyz — hyvy) = U(t, @) + Mhi(1 + [v]?).
Bearing in mind , letting ¢ go to +00, we obtain:
—( &t w) < Lt z,v).
Thus we have € + &1 v + L(t~,2,v) > 0 and consequently:

0 inf 1. AL(t™, z,w)] > 0.
5 +w€1}_‘I(1t*,m) [6 W ( . W)] -

Step 3 To conclude the proof we have to consider the boundary conditions (c) iii). Take any x € R". Using
the lower semicontinuity of U, we have:

lim inf U(t',2') > U(S,z), and lim inf Ut,«') > U(T,z).
{(t',z")—(S,z) | t'>S} {(t/,a")—=(T,x) | !<T}
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If (S,z) ¢ dom(U), then we immediately obtain:

lim inf Ut',2") <U(S,z) = <.
{{#",2")—=(S,z) | '>S}

If (S,z) € dom(U), then using Lemma we can find v € F(S™,x), a sequence (v;);eny in R converging
to v, and a strictly decreasing sequence (h;);en in Ry converging to 0, such that (3.21)) holds at ¢t = S.
As a consequence limsup;_, o, U(S + hj, z + hjv;) < U(S,x). Thus we have:

U(S,z) < lim inf U, 2"y <liminf U(S + hi, x + hyv;) < U(S, x),
((#",2)—(S,x) | #'>S) i—+o00

which gives the first equality in (c) iii) from Theorem [3.4.1]

If (T,x) ¢ dom(U), clearly we have: liminfyy o) (12) | <1} U(t';2") < U(T,x), so we consider the case
when (T,z) € dom(U). Then fix any v € F(T—,z). Using Lemma we deduce the existence of a
sequence (v;)ien in R™ converging to v and a decreasing sequence (h;);cn in Ry, that converges to 0, such

that (3.23]) holds at t = T.
Since L(t~, z,v) is finite, from (3.23) we deduce that limsup;_, . U(T — h;,x — h;jv;) < U(T, ). It follows
that

UT,z) < lim inf Ut',2") <liminf U(T — hy, x — hiv;) < U(T, z).
{{#2")—=(T,x) | ¢/<T} i—400

Using the relation U (T, x) = g(x), given by the fact U satisfies (b) iii), we obtain the last desired boundary
condition at t = T. OJ

3.6.3 A proximal solution coincides with the value function: comparison results

We display the last part of the proof which consists in showing that if a lower semicontinuous function
U : [S,T] x R" - RU {400} satisfies (c) of Theorem then it coincides with the value function for
(P;z). We observe that for the inequality V (¢, z) < U(t, z) conditions (H6) ii) and iii) are not necessary, but
they are required for the opposite inequality. More precisely we will prove the following result.

Theorem 3.6.5 Assume (H1)-(H5) and (H6) i). Let U : [S,T] x R — RU {400} be a lower semiconti-
nous function.

i) Suppose that U satisfies (c) i), and that, for all x € R,

U(T,z) = d lim inf Ut ') =U(S, x).
(T,z) = g(z) an PO (t',z") (S, z)

Then V (t,x) < U(t,z) for any (t,z) € ([S,T] x R™) Ndom(U).

it) Assume, in addition, that L satisfies (H6) i) and ). Suppose that U satisfies (c) ii), and for all z € R™

limn inf Uit 2 — U(T.a) — |
(et V@) = U 2) = ()

Then V (t,x) > U(t,z) for any (t,z) € ([S,T] x R™) Ndom(U).
Theorem above contains two ‘comparison results’ establishing the last part of the proof of Theorem3.4.1
with the implication ‘(¢) = (a)’. Combined with Propositions and it provides uniqueness result

for the characterization of the value function in the class of lower semicontinuous functions, as summarized
in the Corollary below.
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Corollary 3.6.6 Assume that (H1)-(H6) are satisfied. Then the value function V is the unique lower
semicontinuous function solution to (HJB) in the sense of (b)-(c) of Theorem|3.4.1|

Proof of Theorem i). In order to establish the first comparison result, bearing in mind the hypotheses
reduction of Section we introduce an auxiliary multivalued function: @ : [S,7] x R" ~ R™ x R defined
by:

{(Ua—ﬁ)\UGF(S+7$)7MoZnZL(S+7x,v)}, it =2,
Q(r,x) = CO{(’U,—’I?HUG{F(T_,QS)UF(T+7$)},MQ27725(7’,1‘,1))}, if 7e€l5,T],
{(Ua—ﬁ)\U€F(T_,I),M0EnzL(T_,x,v)}, if 7=T,

where L(7,z,v) := min{L(r+,z,v), L(r~,z,v)}. A routine analysis allows to verify that the multifunction
Q takes as values nonempty convex sets with elements which are (uniformly) bounded by ¢ := \/c3 + MZ;
moreover the graph of @ is closed.

Take any (tg, zo) € (]S, T[xR™) Ndom(U). The crucial point of Theorem i) is establishing the applica-
bility of the Weak Invariance Theorem for the following differential inclusion:

(7,2, 0)(t) € (T(t),:):( ), £(t)), fora.e. t € [to, T,
(1(t), z(t),£(t)) € epi for all t € [to, T,
(7(to), z(to), £(to)) = (to, 0, U(to, 20))-

where T': [S,T] x R*""! ~s R"2 is defined by
o ({(0,0,0)} U ({1} x Q(S,2))), if =25,
D(r,z,0) = {1} x Q(7, z), it 7€]9,1],
o ({(0,0,0)}U({1} xQ(T,z))), if 7=T.
Clearly the multifunction I' inherits the following properties from @Q: the graph of I' is closed, for all

(1,2,0) € [S,T] x R*™! (1,2, £) is nonempty convex set and I'(7,z,¢) C (c+ 1)B.

It remains to check that ‘inward pointing condition’ of the Weak Invariance Theorem (Theorem [2.6.1)) is also
satisfied: take any (7,,f) € epi U and any (£°,&1,—)\) € N, epi P (1,2, 0), we must show

: 0 ¢1
LN w < 0. 3.25
wein (65,6, =) w (3.25)

If 7 = S, T, then it is immediately verified (taking w = 0 that belongs to both I'(S, z, ¢) and T'(T, z, ¢)).
Suppose then that S < 7 < T'. Observe that, by the nature of proximal normals to epigraph sets, we know
that A > 0 and we need to check (3.25)) only when ¢ = U(7,z). We shall show

0 . 1. +
13 +veF(rfg)18F(T+,m)§ v+ AL(TT,z,v) < 0. (3.26)

This will confirm the inward pointing condition, indeed it implies

M 0 1 0 . 1 +
NN < . AL , X, < 0.
petin (=N S iy & VAL )

To check ([3.26) we need to consider two cases.
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Case 1: A > 0. In this case ((1/A\)E%, (1/A)€L, —1) € Né;i U

((1/)‘)507 (1/)‘)61) € 8PU(7-7 (L’)
But then, by (c)(i), (1/A) (&% + minyepir+ (€' - v+ AL(7T, 2,0)]) < 0. This implies .

Case 2: X\ = 0. In this case, we know from the Rockafellar Horizontal Approximation Theorem (see Theorem
2.4.15)) that there exist (€2,&1) — (€9,¢1), X\; | 0 and (¢;, ;) — (7, ) such that, for each i,

((r,2z),U(r,x)). It follows that

()\;160 )\71&) S apU(ti,l‘i) .

[
But then, by condition (c)(i), there exists v; € F(t;, z;) such that
520 “rfll - U4 +)\iL(T+,.%','Ui) <0.

But (v;)ien is a bounded sequence. We can therefore arrange, by extracting a subsequence, that v; — v, for
some v € R™. Since (t,x) ~ F(t~,z) U F(t*,z) is an upper semi-continuous multifunction, it follows that
ve F(r—,z) UF(r",z). So, recalling also that L is bounded on bounded sets, in the limit as i — oo, we
obtain

0>+l 540x L(rT,z,0) >0+ min v
VEF(T,2)UF (17T x)

We have confirmed (3.26]) in this case too.

Then, the Weak Invariance Theorem is applicable and there exists (7(-), z(-),£(-)) € W ([to, T],R x
R™ x R) satisfying 7(¢) = ¢t and

((t),£(t)) € Q(t, z(t)), for a.e. t € [to, T)
z(to) = wo, £(to) = Ulto, o)
0t) > U(t,z(t)) forall tefty,T].
Taking into account the definition of the multivalued function @) and the hypotheses on both F' and L, we

deduce that z(-) is an F-trajectory and that /(s) < —L(s, z(s), @(s)) for a.e. s € [to, T]. Hence we have:

T T
g(x(T)) =U(T,z(T)) < UT) = L(to) +/ l(s)ds < U(to,x0) — / L(s,x(s), x(s))ds,

to to

which implies:

T
g(z(T)) +/ L(s,z(s),x(s))ds < Ulto, xo).

to
Thus we obtain:
V(to, :L'o) S U(to, :L'o).

If (S, zp) belongs to dom(U), we pick a decreasing sequence (h;);cn in Ry that converges to 0 and a sequence
(yi)ien in R™ that converges to xg such that:

lim U(S + hi,yi) = lir%in Ut',2") = U(S,z0).

f
i—+00 {ta)=(Sz) | '>S}
From what precedes, for every integer i € N, we have:
Passing to the limit inferior in that last equation yields:

V (S, zo) {(t',m'}glgégg\t/>s} V(th ') < 1i1_>m+11010fV(S + hi,yi) < Z_l)leroO U(S + hi,yi) = U(S, xo).

Note that we also have g(zo) = V (T, z9) < U(T,x0) = g(x0).
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Proof of Theorem ii). Pick (£,2) € ([S,T] x R") Nndom(U) and let x € WHi([t,T],R") be an
F-trajectory such that x(t) = z. We want to prove:

We can assume that g(x(7T)) < +oo, otherwise we automatically have the desired inequality. Using the
fact that liminfyy o (12 | very U, 2") = U(T,x) = g(x), we can find a sequence of points (7},y;) in
|6, T[xR™ such that lim;_, oo (T;,v:) = (T, 2(T)) and lim;_ 100 U(T},y:) = U(T,2(T)). Invoking Filippov’s
Existence Theorem and arguing as in [21], we obtain a subsequence of F-trajectories ;(-) on [t, T| such that
z;i(T;) = y;, for all 4, and ||z;(-) — ()| — 0 as i — +oo.

The multivalued function F satisfies the assumptions which allow to apply Carathéodory’s parametrization
theorems [4, Theorems 9.6.2 and 9.7.2]. Hence there exists a measurable function:

f:[S,T] xR" x B — R",

such that:
For every (t,z) € [S,T] x R", F(t,x) = f(t,z,B);
For every (z,u) € R" x B, f(-,z,u) is measurable; (3.27)
For every (t,u) € [S,T] x B, f(t,-,u) is 10nkp(t)-Lipschitz; '
For every (t,il]) € [57 T] x R", (uv ul) € Bzv ’f(ta .’L',U) - f(tvxa u/)| < on maXyeF(t,x) |UHU - ’U,/’.

Under our hypotheses, for all (s,z,u) €]5, T[xR" x B, we have (cf. [21]):

lim f(s,2',u') € F(s™,x) and lim f(s', 2/ u') e F(sT,x).

s'ls, ! —zu —u s'ts, ! —zu' —u

Fix ¢ > 0. Since z;(+) is an F-trajectory, for almost every ¢ € [t,T:

i(t) € f(t,zi(t), B).

and, using Filippov’s selection theorem (cf. [84] Theorem 2.3.13]), there exists a measurable selection wu; :
[¢,T] — B such that:
z;(t) = f(t,2;i(t),u;(t)), for almost every ¢ € [t,T].

Let € > 0. Lusin’s theorem (cf. [45, Proposition 6.14]) allows us to find a pair of functions (xf, ;) defined
on [t,T] such that x5 (T;) = x;(T;) and
5 (t) = f(t,25(t), us(t)) for almost every t € [t,T7];

the control u$ is continuous;
(3.28)

|z — 2|l (517,87 < €5
meas ({t € [t,T] | u;(t) — u5(t) #0}) <e.

For every (t,z) € [t,T] x R™, we write vt (¢t,z) := f(t1,z,ui(t)), v (t,z) = f(t,z,u5(t)). We define
two multivalued functions Ff : [t,T;] x R™ ~ R™, Af : [{,T;] x R" ~ R by the relations: for every
(t,x) € [t, T;] x R™:

Ff(t,x) :=co{v (t,z),v"(t,2)},
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NSty ) 1= co {L(t™ 2,0~ (1,2)), Lt 2, 0F (1, 2))}.
Then we set a new multifunction I'; : [0,7; —¢ ] x R” X R ~ R x R" x R defined for every (t,z,¢) €
[0,T; —t] x R" x R:

TE(t 2, 0) = o {(0,0,0) U {1} x —Fe(f,z) x As(f,z)}, ift =T; —¥,
U —FA(T — t0) X AS(T = ), ifte [0,T;—1].

The multivalued function I'j is convex, compact valued and has closed graph. We consider the following
differential inclusion:

(F(1), 9(1), £(t)) € TE(r(8), y(t), £(t)), for ace. t € [0,T; — L],
7(0) = 0,y(0) = 25(T3) = z:(T3), €(0) = U(T;, z(T7)), (3.29)
0t) > U(T; — 7(t),y(t)), for all t € [0,T; — 1.

We define the arc
t
o (E(0, 050, 6(0) 1= (89783 = 0. U (T () + [ DT = 5,071 = ,65(T — 5))ds ).
0

The arc (77, y5,¢5) is the unique I'(-trajectory with initial condition (0, z(T3), U(T;, z;(13))). Owing to the

1

‘hypotheses reduction’ argument of Section H we deduce that there exists a constant ¢ := y/c3 + Mg such
that I'S (¢, z,£) C (c+ 1)B, for every (t,z, /).

For every (r,z) € [0,T; — t] x R™, we set ﬁ(7,$) := U(T; — 7,x). Therefore the last condition in (3.29)
can be interpreted as the inclusion (7(¢),y(t),4(t)) € epiU for all t € [0,T; — t]. We claim that the Weak
Invariance Theorem is applicable to the differential inclusion . We have already observed that
the assumptions i) and ii) of this theorem are satisfied. We show now that I'; also satisfies the last (‘inward

pointing’) condition iii). That is, for every pair (7,x) € ([0,7; — t[xR™) N dom(ﬁ) and every (> U(r,z):

lgn(in Z)(go,gl,—x) ~w <0, for all (€2,¢, -\ € NP s((1,2),0). (3.30)
wels (7,2,

Indeed, let (7,z) € ([0,T; — [xR™) Ndom(U) and (€2, ¢, —\) € NP 5((7,2), U(r,x)) (we recall that we can
always reduce to the case { = 5(7’, x)), which is equivalent to say:

(_507517_ ) NeplU((T —T,l’),U(T& -, ZL‘))

We consider two different cases.
Case 1 A > 0. Then A\~ }(—¢%,¢) € 9pU((T; — 7, x)). Hence, since the vector v~ (T; — 7,2) € Ff(T; —7,2) N
F((T; — )7, z), condition (c) ii) implies:

(v (T - 1) + AL(T - )T v (T - 7,2))) 20,

which gives:
_50 + 51 ' U_(TIL' - 7-737) + )‘L((T’Z - T)_,ZL‘,’U_(Ti - 7-733)) > 0.

Hence we can confirm (3.30)) by choosing w = (1, —v™(T; — 7,2), L(T; — 7) ", z, v (T; — 7, 2))).

Case 2 A\ = 0. Then invoking the Rockafellar Horizontal Approximation Theorem (see Theorem [2.4.15]),
there exist sequences (— fk,fk) ( €061, A\p L 0 and (sg, 7) k—> (T; — 7, x) such that, for each k:
—400

(=X NLEL) € OpU (sp, ).
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But then, by condition (c) ii), for each k, we have:
—52 + f,i v (8, k) + M L(sy , xp, v (sg,21)) > 0.
By extracting a subsequence we can arrange that, either s < T; — 7 for all k, or s > T; — 7 for all k.
If s < T; — 7 for all k, then since (sg,xp) —— (T; — 7,x), v~ (Sk,xx) — v~ (T; — 7,2), and, in
1—+00 1—+00

consequence of the hypotheses (H3), (H4)(i), (H5) and (H6), we can pass to the limit as k& — 400 in the
preceding relation to obtain
—&'+¢ v (L - 72) 20,

If s, > T; — 7 for all k, this time, the passage to the limit gives v~ (sx, zx) — v (T; — 7,2) and
—O o™ (T — 1) > 0.
In any case, we are able to confirm (3.30)).

As a consequence we can apply the Weak Invariance Theorem obtaining that the arc (77(-),y:(+), €5(+)) is
the solution to (3.29). For t = T; — ¢, by a change of variable, we have:

U(T;, z(Ty)) + /th' L(s, x5 (s), 25 (s))ds > U(t,x;(t)), for all . (3.31)

Invoking condition (H2)*, for all ¢ € [t, T, max,c gz, (1)) |v| < co- So, for almost every s € [t,T] we have:

— f(s,2i(s), ui(s))]
— f(s,wi(s), ui ()| + | (s, mi(s), ui (s)) = f (s, wi(s), ui(s))|

< 10nkp(s)|zi(s) — zi(s)| +5n  max  |v||ui(s) — ui(s)]
vEF(s,xi(s))

< 10nkp(s)e + bneolu§(s) — ui(s))-
Since meas ({t € [t,T]| u;(t) — u5(t) # 0}) < e and ||u; — uf||L~ < 2, this implies that

e L'(ETIR™)
e—0

As a consequence, up to a subsequence, @5 (-) converges to ;(-) almost everywhere in [¢,T]. Using (H6)* and
(3.4), we can apply Lebesgue’s dominated convergence theorem, and we obtain:

Ti Ti
/ L(s,z5(s),&;(s))ds — L(s,zi(s), z;i(s))ds.
t

e—0 I

Passing to the limit inferior in (3.31)), bearing in mind that z5(¢) — xi(t), and U is lower semicontinuous,
E—

we obtain T
U(T;, xi(T3;)) +/ L(s,zi(s),%;(s))ds > U(t, x;(t)), for all i.
Then, as ¢ — 400, t
o(2(T)) + /T L(s, 2(s), (s))ds > U(Z, 7).
Since x(-) was an arbitrary F-trajectory satitsfying x(t) = &, we deduce that
V(t,z) > U(t,z).

This concludes the proof.
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3.7 Proofs of Theorem (3.4.2, and Propositions |3.4.3| and |3.4.5|

Proof of Theorem The proof is organized as follows: in Step 1 we show that, assuming hypotheses
(H1)-(H6), the value function V' is a viscosity solution in the sense of condition (d) of Theorem In
Step 2, we prove that if a lower semicontinuous function U satisfies (d) i) and (d) iii) of Theorem
then V' < U. In Step 3 we prove that if we impose the additional assumption (¢g*), = g, then any lower

semicontinuous function U satisfying (d) ii) and (d) iii) satisfies U < V.

Step 1: The value function V satisfies (d) i)-iii).
Assume that hypotheses (H1)-(H6) are satisfied. We first observe that, from the a priori boundedness of

the F-trajectories, and the local boundedness of g and L, it immediately follows that V' is locally bounded.
Let (t,z) €]9, T[xR". Take any (£°,¢1) € O_V(t,x). Then,

Ot —t)+& (' —x) < V({E,2")=V(t,z) +o(|(t' —t, 2’ —x)]) for all (,2) (3.32)

in which o(-) : RT — RT is a function satisfying o(e)/e - 0. From Lemma [3.6.3] we can find sequences
€—>

hi L 0 and v; — v, for some v € F(t*,z), such that

lim A YV (t+ hi,x + ho) = V(t,z)) < —L(tT, 2,0).

i——+00

Taking (t',2") = (t + hi,  + h;v;) in (3.32)), and dividing across by h;, we obtain, for 7 sufficiently large,

O+ el v <h YV (E+ hyyx + hivy) = V(t, ) + R to <hi\/ 1+ \%’\2) .
Therefore, in the limit as ¢ — oo, it follows that

Ef+ inf [¢hu+ Lttt zw)] < Lo+ LT, 2,0) <0,
vEF(tt,z)

which confirms (d) i).

Let (t,x) €]S,T[xR™ and v € F(t*,z). There exists a sequence (t;,x;)ien in ]S, T[xR"™ \ {(¢,z)} that
converges to (t,x) such that:

lim V(t,x) = V*(t, x).

1—-+00
We claim that we can extract a subsequence such that ¢; > ¢ for all ¢ € N. Let us assume that ¢; < t for every
i € N and take a strictly decreasing sequence (7;);en in ]t, T that converges to t. Fix any ¢ € N, and take an

F-trajectory x;(-) € WHi([t;, T],R™) such that x;(;) = x;. Using the principle of optimality, we obtain:

Vit 2s) — /t L(s, 2:(s), d4(s))ds < V (i, 2:()).

i

Using the local boundedness of L given by condition (H5)*, there exists My > 0 such that for every i € N:
V(ti, :Ez) - M0|7—'i - ti‘ S V(TZ,CL‘Z(TZ))
Passing to the limit superior and using the upper semicontinuity of V*, we obtain:

V*(t,x) = limsup V(t;, ;) < limsup V (7, z;(1;)) < limsup V¥ (7, zi(1)) < V*(¢, x).

1—+00 1—+00 1——+00
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Hence limsup;_, , o V (7, z;(73)) = V*(t,2) and there exists a subsequence (i )ren for which:

V(Ti, 2i, (Tiy) P Vi(t, x).
Fix any © € F(t*,z). Then for every i € N, there exists v; € F' (tj, x;) such that lim;_, 4~ v; = 0. For every
1 € N, we consider the arc
yi(s) == x; + (s — t;)v;, for all s € [t;, T).

Using the Filippov existence theorem, for every i € N there exists an F-trajectory z;(-) that satisfies z;(t;) =
z; and such that for every h €]0,T — t;]

ti+h
12i = YillLoo (fti,ti+n) Ry < K </t dF(s,yi(s))(vi)ds) ;

i

where K = exp (fST /cp(s)ds). From the a priori boundedness of F-trajectories, we can pick Ry > 0
such that, for every i € N, |y;(s)| < Ry for every s € [t;, T]. Observe also that |g;(s)| < cg, for any i €
N and for almost every s € [t;, T.
For every i € N, we define §; = max{|V (t;, x;) —V*(t, x)|, |x; — x|, |t; —t|}. Take a strictly decreasing sequence
(hi)ien that converges to 0 such that h; > /9.

1 [tith

Fix any i € N, and set w; = 77 /""" Zi(s)ds. Note that we have:

tith;
lvi —wi| < K (/t dF(s,yi(s))(vi)dtS) < K0;(hi),

where

sup o<s—t;<n A (F(s,y), F(tj_, x;)), if h # 0,
Qi(h) = lzi—yl<coh
0, otherwise.

There exists 7 € [t;, t; + h;] and z € R™ verifying |z; — z| < ¢oh; such that:

1
0;(h;) < dp(F(1,2), F(tF, z; S
(hi) <dp(F(r,2), F(t; 56))+Z.+1
Hence we obtain:

Hz(hz) < dH(F<T, Z),F(tJr,JZ)) + dH(F(tJr,a:),F(t;L,xi)) —+ m

We notice that:
Tt < (T —t)+ (ti —t) < hi+h? and |z — 2| < |z — x| + |z — x| < hico + R

This yields:

b(h)< s du(Fls,y). F(Eh,2) + swp  dg(F(tFa), F(s,y)) + —

< —
0<s—t<h;+h2 0<s—t<h? 1+
ly—=|<cqhi+h? ly—=|<h?

which implies that 6;(h;) — 0. Recalling that for every i € N, |0 — w;| < 6;(h;) + |v; — 0|, we obtain:

1——+00

w; — V.
1——+00
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For every i € N, we define: ¢; := 1— t;tl and w; := w; — *3°%, and immediately notice that lim; oo (e, 0;) =

(1,). This yields:

limsup h; ' [V*(t + hies, @ + hab;) — V*(t,2)] > limsup by ' [V*(t; + hy, 2 + haw;) — V(¢ 2)]

1——400 i——400

= lim sup h;l [V (ti + hi, zi + hjw;) — V*(t,x)].

1——+00

Fix ¢+ € N. We have:
V(L‘i + h;,x; + hiwi) — V*(t, .Z‘) > V(ti + hi,x; + hiwi) — V(ti, :UZ) — ;. (3.33)

Using the principle of optimality, we obtain:
i+h
V(ti + h;,x; + hiwi) — V(ti, 561) > —/ L(S, zi(s), Zi(s))ds.
t;

Hence, dividing across equation (3.33]) by h;, passing to the limit superior in this inequality while recalling
% < +/4;, we obtain:

1 t+h
limsup ;' [V*(t 4 hies, @ + hyb;) — V*(t,2)] > — lim inf — / L(s, zi(s), 2i(s))ds. (3.34)
i—+00 1—=>+00 Ny Jy
We recall that from Lemma there exists kz, > 0 such that for every (¢, 2') € [S,T] xR", and v,v" € ¢oB:
|L(t', 2’ v) — L(t', 2’ v")| < kplo—2).

As a consequence, for every ¢ € N we have:

tit+hi ti +h ti+hi
/ L(s, zi(s) / (s, zi(s),v)ds —|—/ kr|zi(s) — olds,
t; t;
hi

sup L(s,2,0) + h; kp,(K6;(h;) + ‘UZ' —’5‘).
|z—x|<cqh; +h2
0<s—t§hi+h?

| /\

IN

Dividing across by h;, passing to the limit inferior as ¢ goes to +oo gives:

t+h
lim inf /t L(s, %(s), 2i(s))ds < L(tt, 2, ). (3.35)

i—+o00 N

Combining (3.34) and - we obtain:

limsup h; ' [V*(t + hies, @ + haby) — V*(t,2)] > —L(tT, 2, 7).

i——+00
Now, take any (£%,&1) € 9, V*(¢, 7). Then,

V) =Vt x) Ot —t) ¢t (2 —x) < o(|( —t,2' —x)]) for all (¢,2) (3.36)

where o(-) : RT — R is a function such that o(e)/e — 0 Setting (', 2') = (t + hiei, @ + hyw;) in (3.36),
e—

and dividing across by h;, we have

h;l(V*(t + hiei,x + hﬂz}l) — V*(t,l‘)) - 5067; — 51 . ﬂ)l S h;lo(hl\(ez,ﬁh)\)
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From these relations, in the limit as i — oo, it follows that
—L(tt,z,0) - —¢v < 0.
This relation being valid for all v € F(t*, ), we obtain:

0 : 1 =~ + ~
+ <0+ L(t s Ly Z 07
SR, (€ o e

which confirms (d) ii).

To prove that V satisfies (d) iii), only the assertion V*(T),-) = g*(-) remains to be proved. Since V(T -) = g(-),
it is obvious that V*(T,x) > ¢g*(z) for every € R™. We prove that the converse inequality is also satisfied.
Fix any « € R™. There exists a sequence (t;, z;);en in [S,T] x R™\ {(T,z)} converging to (T, x) such that:

lim V(tj,x;) = limsup V(t,y) =V*(T,x).
oo (t.y)—=(T'x)

For every i € N there exists an F-trajectory z;(-) € Whi([t;, T],R™) such that x;(t;) = x;. By the principle
of optimality:

V(ti,x;) — /tL(s,xi(s),a'ci(s))ds < V(t,z(t)), for all t € [t;, T].
123
Using again condition (H5)*, we know that there exists a constant My > 0 such that for every i € N:
V(ti, wi) = Mo|T — ti| < V(T,2i(T)) = g(ai(T)).
Using the fact lim; 1o 2;(T) = z, we pass to the limit superior as i tends to +oo and obtain:

VAT, z) < limsup g(z;(T)) < limsupg(y) = g" (),

i—+o00 Yy—x

which achieves to show that V' satisfies (d) iii).

Step 2 We show that if U satisfies (d) i) and (d) iii), then for every (¢,Z) € [S,T] x R™ we have V(¢,z) <
U(t, 7).

Since OpU(t,x) C O_U(t,x), it is not difficult to see that we can use the analysis employed in the proof of
Theorem i) to obtain the desired inequality.

Step 3 We prove that if U satisfies (d) ii) and (d) iii), then for every (¢,z) € [S,T] x R™ we have U(¢,7) <
V(t,z).

Using (d) iii), we can restrict attention to the case when (£,7) €]S, T[xR". Let x € WbH([t, T],R") be an
F-trajectory such that x(¢) = Z. We want to prove prove that:

We can find a sequence (§;);en+ in R”, converging to 2(7"), such that:

lim g"(&5) = (97)(=(T)).

j—+oo

Applying Carathéodory’s parametrization theorem and Filippov’s selection theorem, we can find a measur-
able function wu(-) such that #(t) = f(t,x(t),u(t)) for almost every t € [t,T], for a Lipschitz continuous
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parametrization f of F' satisfying (3.27). Applying Lusin’s theorem, for every j € N* we construct a pair of

functions (z;,u;) defined on [t,T] such that
(t)) for almost every ¢ € [t,T] and z;(t) = z(¢)

2j(t) = f(t, 2;(t), u;(t
the control u; is continuous;
12 = 2jllLes (71, Rm) < 55

meas ({t € [S,7] | u(t) - u;(t) # 0}) < L.

WHL([0,T — ], R™) as the solution to the following differential equation

(3.37)

For every j € N*, we define y;(-)
{Z)(é’) =—f(T —s,y(T -
y(0) =¢&;-.

s),uj(T — s)) for a.e. s €[0,T —t],

T —t) and define z;(-) € WhHL([¢, T],R") by:

= y](T - 8)7

For every j € N*, we note Z; := y;
xj(s) ==

which implies that x;(-) is the solution to the following differential equation

{g)(s) = f(s,y(s),u;(s)) for a.e. s € [£,T],

Owing to the Lipschitz continuity of f and the properties of (u;);jen+ we have
lz; — 2llwra g rry ——— 0.

Jj—+oo
[£,7] x RY, we write v+ (t,2) = £(t%,,u5(t)), v~ () i= (7, u5(1)).
Joo [ T] xR~ R, Aj ¢ [t,T] x R" ~ R by the relations: for

For every (t,z) €
We then define two multivalued functions F.

[t, T] x R™:
Fy(t,x) == co{v™(t,z),v"(t,z)},

every (t,z) €
“(t,x)), L(tT, z,vT (¢, 2))}.

Aj(t,z) == —co{L(t",z,v
[t, T]xR" xR ~» RxR"™ xR defined for every (¢, x,¢) € [t,T]xR" xR:

Then we set a new multifunction I';
1 F;(t, Ai(t,x), ifte [t,T],
ity o {1 X i) X 45000 itee 1.7

co {(0,0,0) U{1} x F;(T,x) x Aj(T,x)}, if t =

Observe that the multivalued function I'; is convex, compact valued and has closed graph

We consider the following differential inclusion

(7(1),9(t),£(t)) €
T(t) =t,y(t) = z;,L(t) = U*(t, 7;),
(T(¢),y(t),£(t)) € hypU*, for all t € [¢,T].

Observe that the last condition in (3.38) means that ¢(t) < U*(7(t),y(t)), for all t € [¢,T]

We define the arc on [t, T
o (50,00, 65(0) = (825007 () = [ Loy (5), 561 ).
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Observe that (7;,xj,£;) is the unique I'j-trajectory with initial condition (¢,z;, U*(t, Z;)).
Assumptions i) and ii) of Weak Invariance Theorem are satisfied from the discussion above and from
the fact that the ‘hypotheses reduction’ of Section guarantee also that I'j(7,2,¢) C (¢ + 1)B, for every

(1,2, 0), where ¢ := \/c3 + M2.

The ‘inward pointing’ condition iii) is also satisfied, we prove the validity of the following property: for every
pair (1,z) €t, T [xR™ and every ¢ < U*(1,x)

Im(m Z)(—go, &8 A) - w <0, for all (=&, —¢",\) € N, o+ (1, 2), 0). (3.39)
wel';(r,z,

Let (1,2) € [t,T[xR"*, ¢ < U*(t,z) and (=% —€L1)\) € N}fyp v+ ((1,2),U*(1,2)) (we recall that we can
always reduce to the case £ = U*(7,z)). Depending on the value of A\ we can consider two distinct cases.
Case 1: A > 0. Then A\7*(£%,¢&Y) € 0,U*(, ). We notice that v (r,x) € Fj(r,2) N F(rT,z) and, bearing
in mind that U satisfies condition (d) ii), we deduce that:

&+ vt (ma) + ALY 20t (7, 2)) 2 0,

and then:
—0— ¢l vt(r,2) — AL(tT, 2,0 (1,7)) <0,

So (3.39) is confirmed since (1,v" (7, ), —L(7",z, v (7,2))) € Tj(r, 2, U*(7, x)).

Case 2: A > 0. Then invoking the Rockafellar Horizontal Approximation Theorem (see Theorem [2.4.15)),
there exist sequences (£2,,¢L) ——— (€9,¢1), A, L 0 and (sy, 2n) ——— (7, 2) such that, for each m,
m—r4-00 m—s+o00

(A;Llé.'f"]rl’ A;"Llé‘%@) € 6+U*(Sm, xm) :
By condition (d) ii), we obtain, for each m:
&+ & v (Sms @) + AmL((8m) T, T 07 (S, 7)) > 0.

By extracting suitable subsequences and arguing as in the proof of Theorem ii) we can confirm (3.39).

As a consequence, the Weak Invariance Theorem is applicable to the differential inclusion ([3.38)), and
we can conclude that the arc (75, x;,¢;) is a solution to the constrained differential inclusion (3.38]). It follows
that at t =T

T
U*(t,z;) —/t L(s,z;(s),&j(s))ds < U*(T,x;(T)) = g*(x;(T)), for every j. (3.40)

Since ||z; — ||w1.1 (g r,Rr) — 0, by Lebesgue’s dominated convergence theorem we have:
B j—+o0

T T
/ L(sx;(s),d5(s)ds —— | L(s, a(s), #(s))ds.
7 jotoe g
Since U < U*, and U is lower semicontinuous, passing to the limit inferior in (3.40)) yields:
- T
U(t,z) < liminf g*(&;) + / L(s,x(s),x(s))ds.
t

J—+o0
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Recalling that lim; 4~ ¢*(&;) = (¢%)«(«(T)) and (g*)« = g, we obtain:

which implies

and concludes the proof.

Proof of Proposition The proof immediately follows from the proof of Theorem observing
that condition (¢g*). = g is used only in Step 3.

Proof of Proposition The proof of Proposition follows along the same lines as the proof of
Theorem and Theorem replacing L with L in the definition of the the multivalued function Q
(steps ‘(c¢) = (a)’, ‘(d) = (a)’, and proof of Theorem i)), and taking into account that, when L is
lower semicontinuous with respect to the time variable, we have L(t,x,v) < L(tT,x,v), for all (t,z,v) €
[S,T[x R™ x R™ (steps ‘(a) = (b)’, ‘(b) = (c)’ and ‘(a) = (d)’).
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Solutions to the Hamilton-Jacobi equa-
tion for Bolza problems with discontinu-
ous time dependent data and state con-
straint

A very early version of these results is published in [I3]. The results proposed in this chapter have been
submitted.

4.1 Abstract of chapter

CHAPTER is quite similar to chapter [3} It deals with the case of the Hamilton-Jacobi-Bellman equation
that is associated to the non autonomous Bolza problem with a state constraint:

T
Minimize / L(s,y(s),y(s))ds + g(y(T))
S
over arcs y € W1([S, T],R") satisfying
y(s) € F(s,y(s)), for almost every s € [S, T],
y(S) = Zo,
’y(t) € A, foralltelS, T]‘

The Lagrangian L and the multivalued function F' are allowed to be discontinuous on a set of full measure
with respect to time (they still have left and right limits everywhere).

Some appropriate constraint qualifications conditions between the state of constraints A and the function
controlling the dynamic F are introduced. They allow for W'! continuous distance estimates, making it
then possible to establish several characterizations of the value function V' as the unique generalized solution
to (HJB), using the lower Dini derivative, the proximal subdifferential, and the Fréchet sub/superdifferential.
These results complete the ones from [2I] (that applied to the Mayer problem), but they also include new
features such as generalized viscosity characterizations of V.
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4.2 Résumé du chapitre

Le chapitre [4] est similaire au chapitre Il traite du cas ou I’équation de Hamilton-Jacobi-Bellman est
associée au probleme de Bolza non-autonome avec dynamique contrélée auquel on a cette fois ajouté une
contrainte d’état :

T
Minimiser / L(s,y(s),y(s))ds + g(y(T))
S
parmi les arcs y € WHL([S,T], R") qui satisfont
y(s) € F(s,y(s)), pour presque tout s € [S,T],

y(S) = o,
‘y(t) € A, pour tout t € [S,T]. ‘

Le lagrangien L et la fonction multivaluée F' sont discontinues presque partout par rapport au temps (elles
ont toutefois des limites & droite et a gauche partout).

Des conditons de compatibilité ad hoc entre I’ensemble des contraintes A et la fonction multivaluée de la
dynamique F sont introduites, ce qui permet d’approximer dans W11 les F-trajectoires violant la contrainte
d’état par des F-trajectoires la respectant, et par suite, d’établir différentes caractérisations de la fonction V'
en tant qu’unique solution de I’équation (HJB), en ayant recours aux dérivées de Dini, & la sous-différentiel
proximale et aux différentiels de Fréchet. Ces résultats viennent d’une part compléter ceux obtenus dans [21]
pour le probleme de Mayer, et s’en distinguent puisque nous présentons dans ce contexte des caractérisations
de V au sens des solutions de viscosité qui n’avaient pas été établies dans [21].

4.3 Introduction

We consider the following state constrained Bolza problem with initial data (¢,x) € [S,T] x R™:

T
Minimize /t L(s,x(s),x(s))ds + g(x(T))

over arcs z(-) € Whi([t, T],R") satisfying
(SCtz) Q.

&(s) € F(s,z(s)) fora.e. se[t,T],
z(s) € A foralls e [t,T],
z(t) = x,

in which g : R” - RU {400} and L : [S,T] x R” x R" — R are given functions, F : [S,T] x R™ ~» R" is
a given multivalued function, and A is a given nonempty closed set in R™. An F-trajectory on the interval
[to,t1] C [S,T] is an absolutely continuous arc = : [to,t1] — R™ which satisfies the reference differential
inclusion 4 (s) € F(s,z(s)) for a.e. s € [to,t1]. We say that an F-trajectory x € WhHi([tg,t1],R") is feasible
on [to,t1] if z(s) € A for all s € [t,t1]. The value function V' : [S,T] x R" — R U {+o0} is defined by the
infimum cost of (SC,):

V(t,z) :=inf(SC; ),

interpreting ‘400’ the cost of F-trajectories which are not feasible (that clearly includes the case when = ¢ A)
and the cost of feasible F-trajectories z(-)’s such that g(z(7T")) = +oc.

The aim of this chapter is to characterize V as the unique solution in the class of lower semicontinuous
(Isc) functions, in a suitable generalized sense, to the Hamilton-Jacobi equation associated with (SCj.).
More precisely the notions of solution, that shall be considered here, will involve the lower Dini derivative
(also referred to as contingent derivative), the proximal subdifferentials, and the Fréchet subdifferentials

102



and superdifferentials (in which we take into account additional information provided by the ‘horizontal’
gradients). The characterization of the value function as a generalized solution to the Hamilton-Jacobi
equation associated with a reference optimal control problem is a long-standing research topic and a lot of
work has been done in this context. The present contribution is in the strand which employs nonsmooth
analysis and viability theory techniques (cf. widely-known references as [511 [43],[84] [45], and the recent papers
[56] 21] for an overview), rather than the tools which are typical in the viscosity solutions theory framework,
cf. [7,5].

In this chapter we shall consider ‘everywhere in t’ characterizations of the value function for optimal control
problems in which F' and L may have a discontinuous behaviour w.r.t. the time variable ¢. The most general
known class of time-discontinuous problems, which allows to provide an ‘everywhere in ¢’ characterization,
was introduced in [21] to investigate value functions for optimal control Mayer problems (L = 0). In this class
of problems the time-dependent data are time-discontinuous in the following sense: they have everywhere
one-sided limits in ¢ and are continuous on the complement of a zero-measure subset of [S, 7. For this class
of optimal control problems we highlight the following peculiarities of the value characterization: the role
of the limits F(¢t~,x) and F(t*,z) (which cannot be exchanged) in the characterization conditions and the
presence of the horizontal proximal subdifferentials in the proximal solution.

A crucial feature, in the context of this chapter, is the possibility to have at hand a Wb ‘distance estimate’
which has a continuous behaviour w.r.t. a parameter which quantifies the F'-trajectories ‘constraint violation’:
this is an important analytical tool which allows to construct, from an arbitrary F-trajectory, a feasible F-
trajectory having, in our case, a suitable W'l-distance from the reference F-trajectory. We recall that
limiting attention to the case L = 0 (Mayer problems) an L* distance estimate result would be enough
to provide an ‘everywhere in t’ characterization of value function in terms of the lower Dini derivative and
the proximal subdifferentials (see [2I, Theorems 4.1 and 4.2]). We underline that, in this chapter, the
Lagrangian L is merely continuous w.r.t. the state variable z and is not necessarily of bounded variation
w.r.t. t. Moreover, we do not impose any a priori regularity condition on the epigraph of the candidate
solutions (as in [9, 52]). As a consequence, the class of Bolza problems that we consider here is not covered
by previous work; in particular a state augmentation technique would not reduce the difficulties and would
not allow to employ, for instance, the results obtained in [2I), 56] (which might be taken into account to
derive just some parts of the results of these chapter only if L had stronger properties such as Lipschitz
regularity in « and a bounded variation w.r.t. t).

In the state constraint-free case, when the data F', L and g satisfy particular continuity properties (which
yield also that the value function V' is continuous on [S, T] x R"™), it is well known that V' can be characterized
also in terms of the Fréchet subdifferentials and superdifferentials (also called ‘strict’ or ‘viscosity’ sub/super-
differentials), cf. [43] 45| [51]. Passing to the state constrained case, this ‘equivalent’ characterization was
proved in [56, Thm. 3] in the class of continuous functions (as set of candidate solutions), still when the
data are continuous, and imposing a stronger version of the ‘standard’ inward pointing conditions. Keeping
this stronger constraint qualification, but weakening these continuity assumptions on the data, only partial
results are known providing, for instance, just one-side comparison theorems (cf. [56]).

Therefore natural questions are:

(Q1) Is that possible to provide an ‘everywhere in ¢’ characterization of the value function V(-,-) (in an
equivalent way) in terms of lower Dini derivative, the proximal subdifferentials, and the Fréchet subdif-
ferentials and superdifferentials for optimal control problems which may have also a time-discontinuous
behaviour of F' and L in the sense of [21] (i.e. we have everywhere left and right limits, but we allow
a time-discontinuous behaviour on a zero-measure set)?
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(Q2) And what happens if we merely impose the ‘standard’ constraint qualifications for nonsmooth sets
(rather than imposing stronger versions of them)?

In this chapter, we consider ‘standard’ constraint qualifications as in [21], and, first, we provide an extension
of [21, Theorems 4.1 and 4.2] to the context of Bolza problems: so Theorem [£.4.1|below deals with the case of
a lower semicontinuous (on A) final cost function g assuming an ‘outward pointing’ constraint qualification;
while Theorem [4.4.2| concerns the case in which g is continuous on A and an ‘inward pointing’ constraint
qualification is satisfied. Subsequently, we provide positive answers to questions (Q1) and (Q2) above with
Theorems [4.4.3 and [4.4.4] for problems involving respectively a locally bonded lower semicontinuous final cost
coupled with an ‘inward/outward pointing’ constraint qualification, and a continuous final cost associated
with a mere ‘inward pointing’ constraint qualification.

An important contribution of this work is that horizontal normal vectors to the epigraph can be removed to
characterize the value function: this is a crucial aspect in the value characterization when the data of the
problem are continuous, and can be obtained involving a suitable approximation technique of proximal nor-
mals to an epigraph set by non-horizontal proximal normals; it is shown that this approximation technique
is still applicable even in presence of discontinuous time dependent data (in the sense specified above).

The notion of generalized solution used here involves (for discontinuous value functions) the concepts of
lower and upper semicontinuous envelopes.

This appears to be a reasonable feature bearing in mind that a well-known approach in viscosity solutions
theory suggests, in presence of a locally bounded candidate V' to be a solution to an Hamilton-Jacobi equa-
tion, to comnsider its lower and upper semicontinuous envelopes and check whether the properties of being
supersolution and subsolution in the viscosity sense are satisfied (cf. [7, [5]).

We emphasize the fact that the right coupling between ‘regularity of ¢’ and ‘constraint qualification’ plays
a crucial role in these results and is far to be merely a matter of adding technical assumptions: if g is just
lower semicontinuous, for instance, a bad constraint qualification (‘inward pointing’ in this case) would not
yield the desired characterization; this aspect is clearly illustrated by Example below, in which the
value function V' is not a generalized solution in the ‘proximal’ or ‘lower Dini’ sense of Theorem but
it is a (non-unique) solution in terms of the ‘viscosity sense’ of Theorem An important aspect of our
characterization involving Fréchet sub/super-differentials is the presence of the condition ((g4)*)« = g4 for
the (locally bounded Isc) final cost g, that we comment now (here, ((gj4)*)« is the lower semicontinuous
envelope of the upper semicontinuous envelope of g, A)-

As highlighted in Chapter |3] this condition becomes crucial if we want a characterization result (including
a uniqueness/comparison property) for the value function and in the state constraint-free case (with lsc
final cost g) adding condition ‘(¢g*). = ¢’ the characterization in terms of Fréchet sub/super-differentials is
equivalent to the Dini and proximal solutions (see Chapter . A maybe surprising feature is that the same
conclusion is not, in general, true for state constrained problems and a crucial role is played by the validity
of both inward and outward pointing constraint qualifications.

Indeed even if, when the inward pointing constraint qualification is in force, the value V is a solution in the
sense of the Fréchet sub/super-differentials (and this is a general fact, see Proposition below), we have
an uniqueness (comparison) result only when also an outward pointing constraint qualification is satisfied at
the same time.

To clarify this point we provide a simple example (Example below) in which only an inward pointing
condition is satisfied and the value function is a solution to the associated Hamilton-Jacobi equation in the
‘viscosity sense’ described by Theorem [£.4.3] but it is not unique.
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We apply our theory to an illustrative economics example in which the integral cost is merely continuous
w.r.t. the state variable x: this is due an inherent fractional singularity term which is introduced to interpret
the production function (cf. [1]).

A further contribution of this work is a W1 distance estimate result (Theorem below) which extends
to the case of time-dependent multifunctions F' the result obtained by [29] for the time-independent Lipschitz
continuous F'. We observe that the distance estimate in [29] is not applicable in our context since our aim is
to investigate Bolza problems with discontinuous time-dependent data in the sense specified above. For our
Wh! distance estimate we consider a closed convex set A (as in [29]), but a multifunction F(¢,x) which has
a regularity similar to [21, Theorems 4.1 and 4.2] and [22] (where an L>° distance estimate is provided for
merely closed domains), allowing F' to have a bounded variation (possibly discontinuous) regularity w.r.t.
the time variable. As far as the state constraint qualification is concerned, we consider a ‘standard’ inward
pointing condition (as in [29, 22]) avoiding imposing stronger version of it. (For a discussion on W and L>°
distance estimate results, illustrative examples, and the possible issues arising when we pass from smooth to
nonsmooth sets A we refer the reader to the papers [16] (I8, 22] and the references therein.)

4.4 Characterizations of the Value function for Bolza problems

In this chapter we shall invoke the following hypotheses. For every Ry > 0, there exist positive functions
cr(-) € LYS,T) and kp(-) € L*°(S,T), a modulus of continuity w(-) : Ry — R, and constant ¢y > 0,
Mgy > 0 such that

(H1): the multivalued function F' : [S,T]xR™ ~» R™ takes convex, closed, non-empty values; for every z € R",
F(-,z) is Lebesgue measurable on [S,T7;

(H2): F(t,z) C cp(t)(1+|z|) B for all z € R™ and for a.e. t € [S,T];
(H3): F(t,2') C F(t,x)+kp(t)|lx —2'| B for all z,2’ € RyB and a.e. t € [S,T];

(H4): F(.,z) has bounded variation uniformly over x € RyB, in the following sense: there exists a non-
decreasing bounded variation function 7(-) : [S,T] — [0, 00) such that

(i) for every [s,t] C [S,T] and x € RyB,

dH<F(S,.%'),F(t, x)) < 77(15) - 77(5) )

(ii) for every p > 0 and every [to,t1] C [S, T] there exists a partition {tg =:tq < t1 <ty < ... <ty :=
t1} such that for each k =0,1,..., M — 1 we have

y Bt (1) — n(E)
11m —_—=—

= dr <pu
€l0 £k+€ T — tk

(H5): (i) the Lagrangian L : [S,T] x R® x R® — R is £ x B"""-measurable; for every t € [S,T] and
x € R", L(t,x,-) is convex;

(ii) L is locally bounded in the following sense:
|L(t,z,v)] < My, forall (t,z,v)€[S,T]x RoB X 2cB;
(H6): (i) |L(t,2',v) — L(t,z,v)| < w(|z — 2']), for all x,2’ € RyB, t € [S,T] and v € c¢B;
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(i) L(t™,z,v) = limyyy L(t', 2, v) exists for every (t,z,v) €]5,T] x RyB x coB, and
L(t™,z,v) = L(t,z,v) for a.e. t € (5,T] and for all (z,v) € RoB x ¢B;

(iii) L(sT,z,v) :=limy s L(s', 2, v) exists for every (s,z,v) € [S,T[xRoB x ¢oB, and
L(st,z,v) = L(s,x,v) for a.e. s €[S,T) and for all (x,v) € RyB x cyB;

(H7): g:R™ — RU {+o0} is lower semicontinuous, with nonempty domain;
(H8): A C R™ is convex and closed;
(OPC): for each s € [S,T[, t €]5,T] and = € JA,
F(t7,z) N (—intTa(z)) # 0 and F(st,2)N (—intTa(z)) # 0;
(IPC): for each s € [S,T[, t €]S,T] and x € A,
Ft ,z)NintTa(z) # 0 and  F(sT,2)Nint Ta(z) # 0.

Theorem 4.4.1 (Characterization of Isc Value Functions - Outward-pointing Condition) Assume

(H1)-(H8) and (OPC). Let U : [S,T] x R® = R U {400} be an extended valued function. Then assertions
(a), (b) and (c) below are equivalent:

(a) U is the value function for (SCiz), i.e. U =1V.
(b) U is lower semicontinuous on [S,T] x R", satisfies U(t,x) = +o00 whenever x ¢ A and
(1) for all (t,z) € ([S,T[xA)NdomU

et [DyU((t,2), (1,v)) + L(t", z,0)] <0;

(ii) for all (t,x) € (]S, T] x int A) Ndom U

sup [DTU((t,l‘),(—l,—U)) _L(t_axvv)] SO,
veF (t—,x)

(iii) for all x € A

lim inf Ut ,2)=U(T,z) = .
{(t’,z’)a(T,9gn|11{’1<T,:Jc’€intA} (£.2) (T,2) = g(x)

(c) U is lower semicontinuous on [S,T] x R" U(t,z) = 400 if x ¢ A, and
(i) for all (t,z) € ((S,T) x A) NdomU, (£°,&%) € OpU(t,x)

0 . 1. + )
£ o emin (€8 v+ L(tT,z,v)] <0;

(ii) for all (t,z) €]S,T[xint A) Ndom U, (£°,¢Y) € OpU(t, x)

0 : 1 —
+ v+ Lt 2,0)] > 0;
f UE;I%IISI},QC) [§ v ( v U)]

(iii) for all x € A,

fim inf U(t',2') =U(S,z 4.1
{{#,z")—=(S,x) | >S} ( ) ( ) ( )

and

lim inf U{,2)=U(T = . 4.2
{(t’,a:’)ﬁ(T,acl)H\l}f?<T, a/€int A} (t.2) (T,2) = g(x) (42)
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Theorem 4.4.2 (Characterization of lsc Value Functions - Inward-pointing Condition) Assume
that (H1)-(H8), (IPC) are satisfied and that g is continuous on A. Let U : [S,T] x R" — R U {+o0} be an
extended valued function. Then the assertions (a), (b) and (c) of Theorem remain equivalent.

Theorem 4.4.3 (Characterization of locally bounded lIsc Value Functions - Inward/Outward-
pointing Condition) Assume (H1)-(H8), (OPC) and (IPC). Suppose, in addition, that g 4 is locally
bounded and satisfies ((g)a)*)« = gja- Let U : [S,T] x R* — R U {+o0} be an estended valued function.
Then, the assertions (a), (b) and (c) of Theorem[{.4.1] are equivalent to condition (d) below:

(d) U is lower semicontinuous on [S,T] x R™ and locally bounded on [S,T]| x A, satisfies U(t,z) = +00
whenever x ¢ A and

(i) for all (t,z) € (S,T) x A, (£°,¢Y) € 0_U(t,x)

0 . 1 + .
13 +v€};2€r’z) (€' v+ L(tT,z,v)] <0; (4.3)

(ii) for all (t,z) € (S,T) x int A, (£%,¢&%) € . U*(t,x)

0 ; 1 + .
3 +v€}<}‘2€£,m) (€ v+ L(tT, z,0)] >0; (4.4)

(iii) for all x € A
lim inf Ut',2") =U(S,x),
{(t",x")—(S,z) | t/>S}
(Uisrxa)* (T z) = (ga)"(x)  and  U(T,r) = g(x).
Theorem 4.4.4 (Characterization of continuous Value Functions - Inward-pointing Condition)
Assume (H1)-(H8) and (IPC). Suppose, in addition, that g is continuous on A. Let U : [S,T] x R" —

R U {+o0} be an extended valued function. Then, the assertions (a), (b) and (¢) of Theorem are
equivalent to condition (d) below:

(d) U is continuous on [S,T] x A, satisfies U(t,z) = +o00 whenever xz ¢ A and
(i) for all (t,z) € (S,T) x A, (£°,¢Y) € 0_U(t,x)

0 : 1 + .
13 +v€£‘2‘£‘,x) (€' v+ L(tT, z,v)] <0; (4.5)

(i) for all (t,z) € (S,T) x int A, (€°,¢) € 0, U(t, x)

0 . 1 + )
3 +v€Py&§’z) (€ v+ L(tT, z,v)] >0; (4.6)

(iii) for all x € A
lim inf Ut',2")=U(S,x),
{{#,2")—=(S,x) | >S5S}
and U(T,z) = g(z).

Comments and Examples. Before passing to the proof of the value function characterizations we comment
our results and give two illustrative examples.
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Remark 4.4.5 1. Hypotheses (H1), (H2) and (H4)(i) implies that: we can always find ¢ > 0 such that
F(t,x) C ¢ B for all (t,x) € [S,T]| x RyB; moreover, for each s € [S,T) and t € (S,T| the following
limits (in the sense of Kuratowski) exist and are nonempty

F(st,z) :==1limF(s',2) and F(t ,x) := ltlgél F(t',x), for all z € R",

s'ls
and for almost every s € [S,T[ and t €]S,T] we have

F(sT,x) = F(s,z) and F(t",z) = F(t,x), for allz € R™.

2. Condition (H4)(ii) means that the function of bounded variation n satisfies a sort of uniform Dini’s
test. Since n has right limit at each point s € [S,T), Dini’s criterion establishes that the Fourier series
associated with the periodic extension of n(-) (out of [S,T)) converges to n(s™). Assumption (H4)(ii)
is satisfied, for instance, when n(-) —n(s™) has a uniform linear growth over s € [S,T).

3. Observe that the conclusions of Theorems[[.4.1,[1.4.9, [1.4.5, [1.4.4] remain valid if A is only a closed
set (instead of a convex set as requested in (H8)) with nonempty interior, if F(t,-) is locally uniformly
continuous, (H3) is satisfied with kr € LY(S,T) (in place of kr € L>®(S,T)), and the constraint
qualifications (OPC) and (IPC) are substituted by the following conditions given in terms of the distance
estimates (in place of the data of the problem):

(CQ)pw: for any 1o > 0, there exists a modulus of continuity 0(-), such that given any interval [so,s1] C
0,7 — S, any F-trajectory (-) on [so, s1] with §(sg) € A N (eftfo er($)ds (g 4 1) — 1)B, and any
p > 0 such that p > max{da(y(t))|s € [so,s1]}, we can find an F-trajectory y(-) on [so, s1] such
that y(so) = 9(so0), y(s) € int A for all s € (so, s1] and

19 — yllwra(so.sa) < 0(p). (4.7)

(Here, F(s,y) = —F(T —s,y) for all s € [0,T — S].)

(CQ)rpw: for any ro > 0, there exists a modulus of continuity 0(-), such that given any interval [to,t1] C
[S,T)], any F-trajectory (-) on [to,t1] with Z(ty) € A N (eféo cr()dt(pg 4 1) — 1)B, and any p > 0
such that p > max{da(z(t))|t € [to,t1]}, we can find an F-trajectory x(-) on [to,t1] such that
x(to) = Z(to), z(t) € int A for allt € (to,t1] and

12 — /w11 ([so,517) < O(p)- (4.8)

Observe that if hypotheses (H1)-(Hj) and (H8) are in force together with (IPC) (resp. (OPC)), then
owing to Theorem below, (CQ)pw (resp. (CQ)pw) is satisfied with 0(p) := Kp(1 + |In(p)|)
for some constant K > 0 (resp. 0(p) := Kp(1 + |1In(p)|)). It is well-known that it is not possible
to obtain in general linear W' distance estimates (i.e. 0(p) = Kp) when A is nonsmooth and the
‘simple’ inward pointing condition (IPC) is satisfied; and different W1l distance estimate results can be
obtained imposing additional assumptions, such as reqularity of the state constraint or stronger inward
pointing conditions (cf. [16}, (19, [56]).

4. Conditions (c), (d) and (d) of Theorems|4.4.1, |4.4.2 |4.4.3, |4.4.4| can be easily reformulated in terms

of an Hamiltonian function

Hy(t,z,p) == veiFn(gx)[p v+ AL(t, z,0)]
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5. The examples below show that the right coupling between the ‘reqularity of g’ and the ‘constraint qual-
ification’ ((IPC) or (OPC)) plays a crucial role to obtain the characterizations provided by Theorems
\/.4. 1, {4.4.214.4.8 and|4.4.4. In particular, we point out the following important facts: condition (OPC)
cannot be replaced by (IPC) in Theorem ' the continuity of g cannot be dropped in Theorems
and[4.4.4]: the validity of both (IPC) and (OPC) is required for Theorem[4.4.3 We highlight also that,
if conditions (H1)-(HS) and (IPC) alone are in force (without (OPC) and condition ((9j4)")« = gj4”)
then the value function does satisfy property (d) of Theorem (even if it may fail to meet all the
requirements of (c) or (b)): this is a general fact as stated by Pmposz’tz’on proved in Section .

Example 4.4.6 Consider the case in which n = 1, [S,T] = [0,1], A = {z € R,x > 0}, F(t,z) = [0,1],

L =0, and
—x—2, ifr <0
g(x) = ,
—x, ifx >0
Observe that all the assumptions in Theorem are satisfied except (OPC), since we have 0A = {0} and
T4(0) =R4. On the other hand, (IPC) is valid. The value function is, for all (t,x) € [0,1] x R

t—x—1, if >0,
Vit,z) = ¢ -2, if ©=0,
400, if = <O0.

Notice that liminfyy o110 |>0y V(F,2") = 0 # V(1,0) = —2. Therefore, the value function does not
satisfy condition (iii) of (b) and (c). Observe also that all the hypotheses of Theorem are satisfied,
except the continuity of g on A. The consequence is that still (b) and (c) cannot be used to characterize
the value function. Moreover, V satisfies (d) of Theorem but it not the unique, indeed the following
function W (# V') satisfies condition (d) as well:

t—x—1, if >0,

-3/2, if v=0andt#1,
Wit =
BO=N o e =)
+00, if x<O.

The data of Example do not satisfy all the hypotheses of Theorem in two respects: the ‘outward
pointing condition’ and condition ‘((gj4)*)« = g|4” are not valid. It is well-known that condition ‘((gj4)*)« =
9|4 is crucial for the uniqueness of the solution (in terms of (d)) even for the state constraint-free case
(see Chapter [3). The following example shows that, even if ‘((gj4)*)« = g|4’ is satisfied, the absence of one
constraint qualification ((OPC) in this case) might compromise the characterization of the value function in
the sense of (d) of Theorem [1.4.3]

Example 4.4.7 Taken =1, [S,T] =1[0,1], A={z € R,z >0}, L =0,

[0,1], if t < 3 0, if x <
F = d =
Q {[1/2,1], ift >3 o 9() {1, if x>

I

Then for all (t,z) € [0,1] x R, the Value function is

0, if a;anndtS%,

1, if x>0andt§%,
Vit,z) =< 0, if 0<z<i-landt>1,

1, if m>%—i(mdt>%,

400, if x<0.
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We observe that all the assumptions in Theoremm are satisfied except (OPC), and the value function V
satisfies (d) of Theorem m However, also the following function satisfies (d)

, if x:(]andt<%,
x>0andt<%,
J:S%—landtz
) if x>%—iandt2
400, if x <O.

L=

W(t,x) =

— JO — o=
<

Consequently, V' is not the unique solution to the Hamilton-Jacobi equation in the sense of (d) in Theorem

G-£3

4.5 Economics Example

The following ‘growth versus consumption’ problem arises in neo-classical macro-economics:

Maximize [ (1 — u(t))z®(t)dt
subject to
(t) = —ax(t) + bu(t)z*(t) for a.e. t €[0,T],

() u(t) € 10,1] for a.e. t € (0,77,
x(t) >0 for all t € [0,T7,
z(0) = xo.

\

Data: constants @ > 0, b >0, T > 0 and « € (0, 1), and initial point z¢ > 0.

It has the following interpretation: x denotes (aggregated) economic output. The (normalized) rate of
financial return r(x) from economic output z is modelled by the production function r(x) = x®. The
problem is to choose the proportion u of rate of return for investment and for expenditure, over a given time
horizon [0, 7], to maximize total expenditure over the time horizon [0, T].

The cost function and underlying dynamic model in (GC) provides a (finite horizon) example of a class of
utility and macro economic growth models studied in Solow’s classic paper [80, [I]. The dynamic model was
elaborated in subsequent decades, most notably as the Ramsey Cass Koopmans growth model [I2] which
incorporates a more precise description of savings behavior.

From a variational analysis point of view, an unusual feature of this optimal control problem is the presence
of a fractional singularity introduced by the production function r(x) = x®, with 0 < o < 1. This is not an
artificial construct; a singularity is inherent to such problems, where, typically, the production function is
required to satisfy the Inanda conditions [1], which include an ‘infinite slope’ condition at the origin.

Proposition 4.5.1 Denote by V : [0,7]x]0,4+00[— R the value function for (GC) and let ¢ : [0, co[—
[0, +o0[ be the mapping
Y(x) =217 for all z € [0, +oo]. (4.9)

Then
Vt,z) = (Wo (Id,y)) (t,x), for all (t,z) € [0,T]x]0,4o0], (4.10)

where W : [0,T] x R — R U {—o0} is the unique upper semicontinuous function such that W(t,y) = —oo
whenever y < 0 and

(i) for all (t,y) € (0,T) x [0, +oc[, (€°,¢") € "W (t,y)

"+ sup (51 (—a(l—a)y+ (1 —a)bu) + (1 — u)yﬁ> > 0;
u€[0,1]
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(ii) for all (t,y) € (0,T)x]0, +o0[, (£%,") € 0" W (t,y)

€+ sup (€' (=a(1 = a)y+ (1 - a)bu) + (1 - u)y™™= ) <0;
u€(0,1]
(i11) for all y € [0, 400
lim sup W,y =wW(0,y)
{(t' )= (0.y) |'>0}
and
lim sup W', y')=W(T,y) =0.
{(t"y")—=(T)x) | t'<T, y' >0}
(In conditions (i) and (i), 0P W (t,y) denotes the proximal superdifferential of W at (¢,7).)

Proof: Problem (GC) does not immediately fit into the Hamilton Jacobi framework of this paper, but can
be made to do so by means of the transformation 1 (see ) of the state variable. Notice, however, that
for any s € [0,7], o > 0 and state trajectory/control pair (x,u) on [s,T], we have that z(¢) > 0 for all
t € [s,T] and the transformed state trajectory y(t) = ¢(x(t)) is such that y(¢) > 0 for all ¢ € [s,T] and
satisfies the differential equation

%(t) = (1 —a)xz™(t)(—ax(t)) + bz (t)u(t)) = —a(l — a)y(t) + (1 — a)bu(t) .

T T
Furthermore, / (I —u(t))z*(t)dt = / (1— u(t))yﬁ (t)dt. The same final expressions for the transformed
problem can bé employed also when afo = 0: indeed an admissible state trajectory x(-) might stay on the
boundary of the state constraint ‘z > 0’, but as soon as we have z(t') > 0 for some t' € (s,T), then z(t) > 0
for all ¢ € [t/,T]. Write s := inf{t' | z(t') > 0}. Then, the transformed trajectory/control pair is (y,u)
where (y = 0,2 = 0) on [s, so] and (y(-) = ¥ (z()),a(:) = u(-)) on (s, T].
Take W : [0, 7] x R — R the value function for the transformed optimal control problem

Maximize [ (1 —u(t))y™a (t)dt
subject to
(T) y(t) = —a(l — a)y(t) + (1 — a)bu(t) for a.e. t € [0,T],
y(t) >0,
u(t) € [0,1] for a.e. t. € [0,7T],
[ ¥(0) =yo,

in which yo > 0. It follows from the preceding remarks that the value functions of (GC) and (T) are related
by . The proof is completed by noting that the data for (T) satisfies the hypotheses of Thm.
We deduce that the value function W is characterized as in the proposition statement. (Observe that Thm.
4.4.2l must be applied in a modified form, since (T) is a maximization problem.)

In a similar way, using Thm. 1.4, we can characterize the value function also in the viscosity sense.

Proposition 4.5.2 Denote by V : [0,T]x |0, +oo[— R the value function for (GC) and let ¢ : [0, +o0[—
[0, +00) be the mapping defined in (@) Then

V(t,z) = (W o (Id,v)) (t,x), for all (t,x) € [0,T]x]0,+o0l,

where W : [0,T] x R — R U {—o0} is the unique upper semicontinuous function such that W is continuous
on [0,T] x [0, +oo[, W(t,y) = —oo whenever y < 0 and
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(i) for all (t,y) €]0,T[x[0, +o0], (£%,¢") € 0+ W (t,y)

€+ sup (€' (=a(1 = a)y+ (1 - a)bu) + (1 - u)y™™= ) > 0;
u€e(0,1]

(ii) for all (t,y) €10, T[x]0,+ool, (£°,&Y) € O_W (t,y)

€+ sup (€' (=a(1 = a)y+ (1 - a)bu) + (1 - u)y™™= ) <0;
u€e(0,1]

(11i) for all y € [0, +00[
lim sup W(t',y') =W(0,y)
{("y")—(0,y) |t'>0}
and

W(T,y) =0.

The usefulness of this exercise can be described as follows. Solutions to growth model optimal control
problems akin to (GC) are typically studied in the economics literature by means of the Pontryagin Maximum
Principle (PMP). (See, e.g. [1].) But the PMP, which is merely a necessary condition of optimality, provides
only putative minimizers (referred to as ‘extremals’) for (GC). Optimality can be confirmed by constructing a
field of extremals and evaluating the extremal cost function V, that is the cost of each extremal, parameterized
by its initial data.

Problem (GC) was studied and, applying a non-standard verification technique, completely solved in [70] for
the ‘soft’ state constraint ‘x(t) > 0’ (with initial data xo > 0). When we consider the (full) state constrained
problem (GC) (i.e. with ‘@(t) > 0’), our theory tells us that this procedure will be successful, if we can show
that W :=V o (Id,~!) is a proximal solution (resp. viscosity solution) to the Hamilton Jacobi equation in
the sense of the Proposition m (resp. Proposition .

4.6 W distance estimate, preliminary results and hypotheses reduction

In this chapter we shall make use of some important analytical tools the first of which is a W11 distance
estimate theorem. If Z(-) is an F-trajectory starting from (tg,z9) € [S,T] x A, the real number p :=
maxyc(s, 7] dA(Z(f)) can be interpreted as a measure of the ‘state constraint violation’ of Z(-). A key point
in our analysis is the possibility to construct a second feasible F' trajectory x(-) which satisfies particular
properties including the fact that z(-) is close to (-) w.r.t. Wll-distance: the obtained estimate is provided
in terms of a suitable modulus of continuity which depends on the ‘state constraint violation’ parameter.
The following theorem is valid even if F' is not convex (so we shall consider (H1)" below in place of (H1)).

Theorem 4.6.1 Fiz ro > 0. Assume that, for some positive functions cp(-) € LY(S,T) and kr(:) €
T
L>°([S,T)) and for Ry := els F()45(ry 4 1), the following hypothesis

(H1): F :[S,T] x R" ~ R" takes closed, non-empty values, F(-,z) is L-measurable for all x € R",
is satisfied together with (H2), (H3), (Hj) and
(IPC): for each s € [S,T], t €]S,T] and x € RyBN JA,
coF(t™,z)Nint Ta(z) # 0 and  coF(sT,x)Nint Ta(z) # 0.
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Then, there exists a constant K > 0 with the following property: given any interval [to,t1] C [S,T], any
1,
F-trajectory &(-) on [to, t1] with &(to) € A N (e s er(s)ds(pg 4 1) — 1)B, and any p > 0 such that

p = max{da(z(t))[t € [to, 1]} ,
we can find an F-trajectory x(-) on [to,t1] such that x(ty) = &(to),
x(t) € int A for all t € (to,t1]

and
% — Lo (o)) < K p s (4.11)

12 = @l oy < K p(1+[In(p)]) - (4.12)
The proof of Theorem [4.6.1] is provided in Section [£.11]
Remark 4.6.2 Theorem can be reformulated in an equivalent way (as in [29], where this result is

proved for a time-independent Lipschitz continuous F'), in which the reference ‘violating’ F-trajectory does
not necessarily start from the state constraint A; this alternative formulation can be immediately deduced
making use of Filippov’s Existence Theorem.

We observe that the analysis is simplified employing a standard hypotheses reduction argument (cf. [21]
r [84]), which allows us to invoke (without loss of generality) hypotheses (H1), (H2), (H3)*, (H4)*, (H5)*
and (H6)*, where by (H3)*, (H4)*, (H5)* and (H6)* we denote the global (stronger) version of conditions
(H3), (H4), (H5) and (H6) in which we have removed the constant Ry. This is due to the fact that (H2),
(H3) and (H4)(i) yield an a priori uniform boundedness of F-trajectories. Indeed, given an initial data
(t,x) € [S,T] x R" and an F-trajectory y € W1i([t, T],R") such that y(t) = z, for every s € [t,T],y(s) €
(14 |z|)exp (fs cr(T dT) B. Set Ry := (1 + |z|)exp (fST cF(T)dT), then, owing to (H3) and (H4)(i) there
exists ¢co > 0 such that, for almost every s € [t,T], y(s) € coB. So we consider a new multifunction
F :[S,T] x R® ~» R" and a new function L : [S,T] x R" x R" — R, defined by

) F(s,y lfy < Ry T L(s,y,v lfy < Ry
F(s,y):z{F( ) .f‘ | L(s,gov) = | L0 .f’ |
(s, Roy/lyl) if [y| > Ro, L(s, Roy/lyl,v) if ly| > Ro.

The data (ﬁ, L) satisfy hypotheses (H1), (H2), (H3)*, (H4)*, (H5)* and (H6)*. But, in a neighbourhood of
the given point (¢, z), the data of the problem (P ) involving either (F, L) or (F L) do coincide. Therefore,
in the forthcoming analysis we can invoke the more restrictive version of conditions (H3)-(H6) without loss
of generality.
We shall invoke an useful Carathéodory’s Parametrization Result ([4, Theorems 9.6.2 and 9.7.2]):
Proposition 4.6.3 Assume that (H1), (H2) and (H3)*. Then, there exists a measurable function: f :
[S,T] x R™ x B — R", such that:

For every (t,x) € [S,T] x R", F(t,x) = f(t,z,B);

For every (x,u) € R" x B, f(-,x,u) is mesurable;

For every (t,u) € [S,T] x B, f(t,-,u) is 10nkg(t)-Lipschitz;

For every (t,x) € [S,T] x R", (u,u) € B?, | f(t,2,u) — f(t,2,u)| < 5bnmax,epq [v]|u — v/,

(s,z,u) € (S,T) x R" x B:

Moreover, for all

i f(s',2' W) € F(s™,z) and lim f(s 2/ ') € F(st,z). (4.13)
s'ls, k! —xu'—u s'ts,x’ —xu' —u

(Inclusions (4.13) do not appear in [4], but are a consequence of the construction of the parametrization f

of F, which is based on the Steiner selection argument used in [4], see [21] for a detailed discussion on this

point.)

113



4.7 Proof of Theorem [4.4.1]

We assume that hypotheses (H1), (H2), (H3)*, (H4)*, (H5)*, (H6)* and (H7) are satisfied together with
property (CQ)pw (of Remark [4.4.5) which is valid owing to (H8) and Theorem with 6(p) := Kp(1 +
|In(p)|) for some constant K > 0. We know that the value function is lower semicontinuous (cf. [84, Chapter
12]).

‘(a) = (b)’. This implication can be proved using the principle of optimality for the value function and the
analysis does not change in presence of state constraints and is the same of the state constraint-free case (cf.
[21] and, for the details with a Lagrangian satisfying (H6), see Chapter [3)), except for condition (b)(iii), for
which property (CQ)pw turns out to be useful. (At this stage we actually do not need a distance estimate
involving necessarily a W! norm: an L* distance estimate is enough and the proof is as in [21].)

‘(b) = (c)’. Consider a lower semicontinuous function U satisfying (b). Then condition (c)(iii) is an easy
consequence of the definition of D4U (cf. [84, Prop. 12.3.4]). Now, take (¢,z) € ((S,T) x R") Ndom U and
(€9,6Y) € OpU(t,z). Then, there exist M > 0 and € > 0 such that
' =)+ (2 —2) < UW ) = Ut ) + M(t' —t]” + |2’ —2]) (4.14)
for all (t',2) € (t,x) + €B.
Since U satisfies (b) and F(t*,x) is compact, there exist sequences h; | 0 and (v;);en in R™ such that
v; — v for some v € F(t*,z) and (cf. [I5, Lemma 3.3] for Bolza problems with L satisfying (H6))

i——400

lim h; Y (Ut + hiyx + hivy) — Ut 2)) < —L(tT, z,0).

i——400
Setting (t',2") = (t + hi, x + h;v;), and dividing across by h;, we obtain that, for 7 sufficiently large,
50 + 51 cy < h;l(U(t + hi,x + hzvl) — U(t, ZL‘)) + Mhz(l + |’U¢|2).

Since v; — ¥ and ¥ € F(t", z), we have, in the limit as i — oo, that
1—+00

O+ inf o< P4 o =€+ lim ¢y < LT, 2,0).
veF (tt+,x) 1—+00

On the other hand, for any given v € F(t™,x), since U satisfies (b), there exist sequences h; | 0 and (v;);en

in R™, such that v; —— v and
i—400

lim A N (U(t — hi,x — hyvy) = U(t,z)) < Lt ,z,0).

i—r+00
According to the notion of dpU (¢, x), setting (¢, 2) = (t — h;, x — h;v;), we obtain
—(+ &) < WU = hiyx — hivy) — U(t,2)) + Mhi(1+ |oi]*),

for ¢ sufficiently large. Since v; T) v, we deduce from these relations that
1—+00

O retw > —L(t,x,v).
Since v was an arbitrary element in F'(¢7, z), we have shown that

inf [+ v+ Lt ,z,0)] > 0.
veF(t~,x)
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We deduce that U satisfies (c).

‘(c) = (a)’. A first step consists in showing that if U satisfies (c)(i) and (c)(iii), then V(¢t,z) < U(t,x)
for any (t,z) € [S,T] x A; more precisely one can show that ftT L(s,x(s),2(s))ds + g(z(T)) < U(t,x)
for some feasible F-trajectory x(-) on [¢t,T] such that z(¢) = x. This can be derived invoking well-known
weak invariance results, and the analysis does not differ from the state constraint-free case used in Chapter
However, we show here that, as for the continuous time dependent case, we can eliminate the horizontal

subdifferentials in the characterization of the value function. We introduce an auxiliary multivalued function:
Q : [S,T] x R" ~ R™ x R defined by:

{(Ua—ﬂ)\UGF(5+,$),M0ZUZL(SJF,H:,U)}, if 7=28,
Qlr,z) = co{(’u,—n)]ve{F(T’,:U)UF(TJF,J:)},MOZUZE(T,x,v)}, it relS T,
{(Ua—ﬂ)\UGF(Tim),MoZWZL(T’,m,v)}, if =T,

where E(T,[E, v) := min{L(7",z,v), L(77,z,v)}. A routine analysis allows to verify that the multifunction
Q takes as values non-empty convex sets with elements which are (uniformly) bounded by ¢ := /¢ + Mg ;
moreover the graph of @ is closed.

Take any (¢,Z) € ((S,T) x A) Ndom(U). Our aim is to apply the Viability/Weak Invariance Theorem (cf.
Theorem to the following differential inclusion:

(7,2, 0)(t) € T(r(t),z(t),£(t)), fora.e. teltT),
(7(t),x(t),£(t)) € epiU, forallteltT], (4.15)
(T(t_)’w(t_)aﬁ(ﬂ) = (E’j’ (fa j))

where T': [S,T] x R ~s R"2 is defined by

co ({(0,0,0)} U ({1} x Q(S,z))), if T=25,
L(r,z,0) = {1} x Q(7,z), if T €18,T],
co ({(0,0,0)}U ({1} x Q(T,x))), if T=T.

Clearly the multifunction I' inherits the following properties from @Q: the graph of T" is closed, for all
(1,2,0) € [S,T] x R*" T'(7,2,/) is nonempty convex set and I'(7,z,¢) C (c+ 1)B. It remains to check that
‘inward pointing condition’ of the Weak Invariance Theorem is also satisfied: take any (7,z,¢) € epi U and

any (607517 _)‘) € NP

epi y (7,2, ¢), we must show

: 0 (1
LN w < 0. 4.16
wen (65,85, =4) -w (4.16)

If 7 = S,T, then it is immediately verified (taking w = 0 that belongs to both I'(S,z,¢) and I'(T,x,¥)).
Suppose then that S < 7 < T. Observe that, by the nature of proximal normals to epigraph sets, we know
that A > 0 and we need to check (4.16]) only when ¢ = U(7,z). We shall show

0 . 1. +
13 +’L)€F(T71,B)18F(T+,(E)£ v+ AL(TT,z,v) < 0. (4.17)

This will confirm the inward pointing condition, indeed it implies

min (€%, &1, -\ w < €0+ min v AL(r T, z,0) < 0.

wel(r,z,0) vEco{F(r—,z)UF(rt+,z)}
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To check (4.17) we need to consider two cases.

Case 1: )\ > 0. In this case ((1/0)€0, (1/\)¢h, —1) € Nel; U

((1/NE", (A/Ngh) € opU(r,2) .
But then, by (c)(i), (1/A) (&° + minyepir+ (€' - v+ AL(7T, 2,0)]) < 0. This implies .

Case 2: A = 0. In this case, we know from the Rockafellar Horizontal Approximation Theorem (cf. Theorem
2.4.15) that there exist (£9,&}) — (€°,€1), i J 0 and (¢, ;) — (7,z) such that, for each i,

((1,2),U(7,x)). It follows that

A A1) € 9pU (ti, i) -
But then, by condition (c)(i), there exists v; € F(t], z;) such that
&)+l v+ ML, z,) 0.

But (v;)sen is a bounded sequence. We can therefore arrange, by extracting a subsequence, that v; —— 7,
1—+00

for some v € R™. Since (t,x) ~ F(t~,x) U F(tT,z) is an upper semi-continuous multifunction, it follows
that ¥ € F(t7,2) U F(77,x). So, recalling also that L is bounded on bounded sets, in the limit as i — oo,
we obtain

0>+ 540xLrT,2,0) >+ inf eow.
vEF (17 ,x)UF(11,z)

We have confirmed (4.17)) in this case too.
Then, the Weak Invariance Theorem is applicable to system (4.15)). We deduce that there exists (7(-), z(-),¢(+)) €

WULL([E, T],R x R" x R) satisfying 7(t) = t and

((t),£(t)) € Q(t,x(t)),for a.e. t € [t,T)]
x(t) = z,0(t) = U(t, 7)
0t) > U(t,z(t)) forall telt,T].

Taking into account the definition of the multivalued function @) and the hypotheses on both F' and L, we
it follows that z(-) is an F-trajectory and that ¢(s) < —L(s,z(s),2(s)) for a.e. s € [t,T]. Hence we have:

T - T
g(x(T)) =U(T,z(T)) < UT) = £(t) —l—/t l(s)ds < U(t,x) —/t L(s,x(s),x(s))ds,

which implies:

T
g(z(T)) -l—/t L(s,z(s),z(s))ds < U(t, z).

Thus we obtain:
V(t,z) <U(t, ).

It remains to investigate the case in which ¢t = S: if (S, Z) belongs to dom(U), then from (c)(iii) we can take
a sequence (S;, z;) — (S, Z) as i — oo such that S; | S and lim; o, U(S;, z;) = U(S, Z). For each i > 0, from
the previous argument we know that there exists an F-trajectory y;(-) such that

U(S;,xi) > g(y:(T)) . (4.18)

Extending y;(+) to all [S, T] by constant extrapolation from the right on [S, S;], with the help of the Compact-
ness of Trajectories Theorem (cf. [84, Thm. 2.5.3]) we can arrange, by extracting a suitable subsequence,
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that y;(+) T> g(+) uniformly, for some F-trajectory (-) such that ¢(f) = Z. Therefore, since g is lower
1—+00
semicontinuous, in the limit, as i — oo from (4.18)) we deduce that
U(S,z) = liminf U(S;, ;) > liminf g(y;(T)) > g(y(T)) -
71— 00 1—00

This completes the first step.

We consider now the second step of the implication ‘(c) = (a)’, where a W distance estimate is required:
if U satisfies (c)(ii) and (c)(iii), then V(¢t,z) > U(t,x) for any (t,z) € [S,T] x R™. This can be achieved
showing that, given any arbitrary point (¢,Z) € [S,T] x A, and any feasible F-trajectory z(-) on [t,T] such
that z(f) = Z, we have ffT L(s,z(s),x(s))ds + g(z(T)) < U(t,z). We can assume that g(z(T)) < +oo,
otherwise we automatically have the desired inequality.

Since U satisfies (4.2)), we can pick sequences (¢;);>1 in (£,T) and (§;);>1 in int A such that (t;,;) € dom(U)
for every j > 1,¢; 1 T and & — =(T) as j — +o0, and

lim Ul(t;,&) = lim inf U(t,a') = U(T,(T)) = g(=(T)). 4.19
Jm U8) = dmint gy U2 = U 2(T) = g(2(T)) (4.19)

We write s; := T —t; and p; := exp(kp|T — S|)|x(t;) — &;|; clearly limj 1« s; = 0 and limj_ 1 p; = 0.
Using Filippov’s Existence Theorem, for each j > 1, we can find an F-trajectory gi(+) on [s;,T — t] such
that 7;(s;) = §; and:
[9; () = (T = )lwra (s, r—8) < pj-

(F : [0,7 — S] x R™ ~» R™ is the multivalued function defined by F(s,y) :== —F(T —s,y).) Observe that, for
every j > 1, since z(-) is feasible we have max {da(g;(s))|s € [s;,T —t]} < p;. Now, we can use property
(CQ)pw (with 6(p) := Kp(1+ |In(p)|) owing to Theorem and deduce that, for any j > 1, there exists
a feasible F-trajectory z;(-) on [s;, T — #], such that zj(s;) = &;, zj(s) € int A for all s € (s;, T — ] and

155 = zllwra sy o7y < 6 (p5) -
This implies that
(T =) = 2w sy -7y < 0 (p5) + pj-
For each j > 1 consider the arc x;(t) := z;(T —t), for t € [t,t;]. Then each z;(-) is an F-trajectory on [t,t;]

that can be extended to [t, T| using Filippov’s Existence Theorem in such a manner that each extension, still
written z;(-), satisfies the estimate

lz = 2jllwrr ey < 0(p5) + pje (4.20)

Using the fact z;(s) € int A for all s €]s;,T — t], we can find sequences (7;);>1 in (¢;,T) and (d;);>1 such
that 7; 77T and ¢; | 0 as j — +o0 and

zj(t) + ;B Cint A, for all t € [t, 7]

Let f : [S,T] xR™ xB — R"™ be the parametrization of F' given by Propositionm Using Filippov’s Selec-
tion Theorem (cf. [84, Theorem 2.3.13]), for every j > 1, there exists a measurable selection u; : [t,¢;] — B
such that &;(t) = f(t,x;(t), u;(t)). for a.e. t € [t,t;].

Fix any j > 1. Take any ¢ € N such that ¢ > 5%. Lusin’s Theorem guarantees the existence of a continuous
function u} : [f,¢;] — B such that
1

meas ({t € [{, ;]| u;(t) — u(t) #0}) < -

Z (4.21)
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and the corresponding solution :cé() to system

{Jb(t) = f(t, x(t),ul(t), for ae. t € [£,t]]
x(ty) = & (= z5(ty))

satisfies 1
lz; — jH]LOO () < = (4.22)

i
For every (t,z) € [t,t;] x R™, we write vt (¢, ) := f(¢tT,z,u’ ( ), v~ (t,x) = f(t‘,:z:,u?-(t)). We define two
multivalued functions Fj; : [t,¢;]xR™ ~ R™and A;; : [t,t;] XR ~ R as follows: for every (¢, z) € [t,t;] xR"
Fji(t,x) :==co{v (t,z),v" (¢, z)},
Aji(t,x) == co{L(t ,x,v" (t,2)), L{tT,z, vt (t,2))}.
We define the arc (7,%,€) on [0,t; — t]:

~ . S . .
54 (760, 260, 006)) = (5,25 = 910660 + [ 205 =l = . ar).
and the function U defined by U, i(s,y) :=U(t; — s,y), for any s € [0,¢; —¢] and y € R™.

We introduce also the multifunction I'j; : [0,¢; =] x R" X R~ R x R™ x R defined as

co {(0,0,0) U {1} X —Fjvi(f,a;) X AjJ(f, :z:)}, if 7= t]‘ — t_,
{1} x =Fj(t; — 7,2) x Aj;(t; — 7, x), if 7€0,t; —1).

Fj’i(’l', Z, ﬁ) = {

Clearly, I';; takes convex, nonempty values, has a closed graph, and owing to our ‘hypotheses reduction’
(of Section , Lji(t,z,0) C (1+ |c[)B where ¢ := y/c2 + M2 for every (t,z,0) € [0,t; — ] x R" x R.
Observe that the arc (7,%,f) is a T'j;-trajectory such that (7,%,£)(0) = (0,&;,U(t;,&;)), and for every
interval [s1,s2] C [0,t; — t], the restriction of (7,Z2,£) to [s1,s2] is the unique I'j;-trajectory with initial
condition (7(s1), 2(s1),£(s1)). Consider the state constrained differential inclusion:

(#(5),9(s), £(s)) € Tja(7(s),y(s), £(s)) for a.e. s € [0,¢; —¢],
7(0) = 0,5(0) = &,4(0) = U(t;,&) (= U;(0,€))), (4.23)
(1(s),y(s),2(s)) € eplU for all s € [0,t; — ¢ ].

We claim that (7, 2,@) is a solution to , i.e. the constraint (7, é,g) € epi@- is also satisfied. Indeed, all
the necessary conditions for the applicability of the Local Weak Invariance Theorem (Theorem have
already been discussed above, except the local inward pointing condition ((iv) of Theorem which in
our case takes the form: for any (7,z,/) € epi ﬁj N((7,2,0)([0,t; — 7)) + 1B):

Fmi(n g (€%,61, —X\) <0, forall (¢,¢!,-\) € NP ASEE0L (4.24)
wel'; (1,2,

Take any (1,2,/) € epi@ N((7,2,0)([0,t; — T]) + 1B) and any normal vector (£°,¢!, —X) € NP ((T x), ).
By construction of I'j;, the inward pointing condition is easily verified if 7 = t; — ¢, so we assume that
T < tj —t. Notice that from well-known properties of the proximal cone to the epigraph, we can restrict
attention to the case ¢ = @(7, x), and we know that A > 0 and

(_50’51’_ ) € NplU(( -7, $)7U(tj - T, l‘))
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We also have v™(t; — 7,2) € Fj;(t; —7,2) N F((t; —7)~,z) and if z € (1) + 1B then z € (1) + %IB% C int A.
We continue considering two possible situations. In the first case A > 0. Then, A™1(—¢%, &) € 9pU (¢ — 7, 2)
and so, condition (c)(ii) implies

&+ vty — ) + AL((t — 7) 7,0 (t — 7, 2)) >0,

which confirms (4.24) taking w = (1, —v~(t; — 7,2), L((t; — 7)",z,v~(t; — 7,2))). On the other hand, if
A =0, then there exist sequences (—&0,&1) — (—€%,&Y), Ay L 0 and (sg, xx) — (tj — 7, ) such that, for each
k,
(=2 MR N L) € OpU (sgy ) -
But then, by condition (c)(ii),
— &+ & v sk k) + M L((s1) s @, v (s ) = 60+ inf (G v+ A L((sk) 7 2k, v) > 0. (4.25)
vEF(s;,xk)
By extracting a subsequence we can arrange that, either s; < ¢; — 7 for all k, or s > t; — 7 for all k. If
sk < tj — 7 for all k, then since (si, ) — (t; — 7,2), v (Sk, xx) = v~ (t; — 7,2), and, in consequence of the
hypotheses (H3), (H4)(i), (H5) and (H6), we can pass to the limit as & — oo in the preceding relation to

obtain
—& 4+ v(ty—7,2) > 0.

If s > t; — 7 for all k, passage to the limit gives v~ (sy, 1) — vT(¢; — 7,2) and
&+ vt —ma) > 0.

In either case then, (4.24)) is verified.

Since all the hypotheses of the Local Weak Invariance Theorem (Theorem [2.6.2) are verified, we conclude
that for every t € [0,t; — ] (7,%,£)(t) € epiU;. Our claim is confirmed.

Therefore, bearing in mind the definition of the arc (7, 2,!7), we deduce that for that for any j > 1 and any
1 € N such that 7 > 5%:

tj . .
Ul(t, xé(f)) < U(t},&) —G—/{ L(s,z%(s), 5(s))ds. (4.26)

Since U is lower semicontinuous and a:é — (), in the limit as ¢ — 400, we obtain:
i—+00

_ 4 , A

U, a,(B) < Uty &) +Liminf/ L(s, 2i(s), #i(s))ds, for all j > 1.
1—+oo Ji

From condition (H2)*, for every integer j > 1 and every ¢ € [¢,T], we have maX,cp(;q,(r) [v| < co, and so,

using (4.22]) and the regularity properties of f (Proposition [4.6.3), we deduce that, for a.e. s € [¢,t;],

|#5(s) = @5(s)| = £ (s, 25(s), uj(5)) = f(5,25(s), u;(5))|
< | f(s.25(5), uj(s)) — f(s,a5(5), uj(s))] + [ f(s,25(5), uj(s)) — f(s.25(5),1;(s))]
< 10nkp|z}(s) — z;(s)| + 5n UGFI(I;%E);(S)) |v]|uf(s) — u;(s)] (4.27)

10n ;
< TkF + 5neoluj(s) — uj(s)l.

We also know that ||u; — U;HLoo(f’tj) < 2, then from |i and 1’ it follows that

.q Ll(fvt') .
; S (4.28)

1—+00
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Moreover, from (H5)* we can easily derive the local Lipschitz regularity of L(s,y, ), uniformly with respect
o (s,y). Hence using (H6)(i), (4.22)), (4.28)), and the Lebesgue Dominated Convergence Theorem (possibly

taking a subsequence), we obtain:

_ t
U(t,z;(t) < U(t;, &) +/ L(s,xj(s), 2;(s))ds, for all j > 1.
t
Invoking now (4.20)), (4.19), and the lower semicontinuity of U, in the limit as j — +oo we have

U(t,z) =U(t,z(t)) < U(T,z(T)) + liminf/t_ ' L(s,zj(s), x;j(s))ds.

J—r+oo

We once again make use of (4.20) and of the Lebesgue’s Dominated Convergence Theorem (possibly taking
a subsequence), deducing:

U,

&Kl

T
)< alal) + [ Lisals). i)

4.8 Proof of Theorem [4.4.2l

The implications ‘(a) = (b)’ and ‘(b) = (c)’ and the relation ‘V(¢,z) < U(t,z)’ of the implication ‘(c) =
(a)’, can be proved arguing as in the proof of Theorem except for the boundary condition which now
immediately follows from the continuity of the value function, which, making use of the distance estimate
(CQ)rw (with 0(p) := Kp(1 + |In(p)|), owing to Theorem can be deduced from the continuity of g.

It remains to show that, if U satisfies (c)(ii) and (c)(iii) of Theorem then V(t,z) > U(¢, ) for all
(t,z) € [S,T] x A. Take any feasible F-trajectory x(-) on [t,T] such that z:(f) = Z. (We can assume that
g(xz(T)) < +00). Using property (CQ)prw (with 0(p) = Kp(1 + |In(p)])), there exists a sequence of feasible
F-trajectories (z;)j>1 on [¢,T] such that, for every j > 1, z;(t) = Z, z;(t) € int A for all t € (¢,7T], and:

| =

|z = @jllwraay < < (4.29)

<

Take a strictly decreasing sequence (¢;);>1 in |, T[ that converges to ¢t. For every j > 1, there exists §; > 0
such that:

xj(t) +6;B Cint A, for all ¢t € [t;,T].

Let f : [S,T] x R" x B — R" be the Carathéodory parametrization given by Proposition Applying
Filippov’s Selection Theorem for every j > 1, we can find a measurable control w; : [t;,T] — B such that
'Ctj(t) = f(tv .%'j(t), Uj(t)), for a.e. t € [tj7 T]

Fix any j > 1. From the first relation of condition (c)(iii) we know that there exist a sequence ( (T;, f;-))izl
such that |(77,&7) — (T, 2;(T))| < 1/ifor all i > 1 and U(T},&;) — U(T,z;(T)) (= g(x;(T))) as i — +oo.
Now, invoking Lusin’s Theorem and employing arguments (including the application of the Local Weak
Invariance Theorem [2.6.2)) similar to those of the proof of Theorem we arrive at a sequence of feasible
F-trajectories (2%)ien on [t;, T] such that z3(T}) = &, |lzj — 5 |lwee (1, 1)) < 1 and

. o T3 4 .
Uty ai(t)) SUTLE) + [ Lis.ai(s). 5 (s)ds.

tj
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Since U is lower semicontinuous, ac;(t]) — z(t;) and U(T;,f;) — U(T,z;(T)) (= g(x;(T))) as i = o0,
arguing as in the proof of Theorem in the limit as i — +oo, for each j > 1, we obtain:

T
Ut 25(t5)) < gla;(T)) + / L(s,;(s), 5 (s))ds.

J

Since z;(T") % z(T), g is continuous on A and U is lower semicontinuous, recalling (4.29)) and passing
j——+oo

to the limit as j — +o00, with the help again of Lebesgue’s Dominated Convergence Theorem we deduce (for
a subsequence if necessary)

T
U(t,z) = U(t,z(t)) <lminf U(t;,z;(t;)) < g(z(T)) + lim inf /t L(s,xz;(s),%;(s))ds.

Jj—+oo Jj—+oo

and, owing to the lower semicontinuity of U, we deduce:

T
UGE) = UEa(D) < glalT) + lmint / L, 5(s),5(5))ds (4.30)
T
< gla(T) + / L(s, 2(s), (s))ds. (4.31)

Since x(-) was an arbitrary feasible F-trajectory such that z(tf) = t, we conclude that:

U(t,z) < V(t,T).

4.9 Proof of Theorem [4.4.3

Since from Theorem we already know that conditions (a), (b) and (c) are equivalent, we proceed to
show the implications ‘(a) = (d)’ and ‘(d) = (a)’.

The first relation ‘(a) = (d)’ is actually valid even if the outward pointing constraint qualification and
condition ‘((gj4)*)« = g4’ are not in force. This is established by the following proposition.

Proposition 4.9.1 Assume (H1)-(H8) and (IPC). Suppose, in addition, that g 4(-) is locally bounded. Then
the value function V' satisfies (d) of Theorem .

Proof. We observe that, from the a priori boundedness of the F-trajectories, and the local boundedness of
9)a(+) and L, it immediately follows that V|jg 7]« 4 is locally bounded. Let (t,z) € (S,T) x A.

Take any (£°,¢1) € 0_V (t,z). Then,
Ot —t)+& (2 —x) < V({E,2")—V(t,z) +o(|(t' —t,2’ —x)]) forall (',2) (4.32)

in which o(+) : R™ — R™ is a function satisfying o(€)/e — 0 as € | 0. Arguing as in the proof of Theorem

4.4.1) we can find sequences h; | 0 and v; —— 9, for some ¥ € F(t", z), such that
1——+00

i AV b )~ V() € LG5,

1—>+00

Taking (t',2") = (t + h;, x + h;v;) in (4.32)), and dividing across by h;, we obtain, for i sufficiently large,
&+ &0 <hTHV(E+ by + hyvy) = V(E,2)) + hi to(hiy/ 1+ [vif?).
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Therefore, in the limit as i — oo, it follows that

§0+ inf [51 -v—f—L(t"‘,x,v)] < £0+§1 '1_)+L(t+7$71_)) < 0.
veEF(tt,z)

Let (t,z) €]S,T[xint A and take ¢ > 0 such that x + B C int A. There exists a sequence ((t;, z;))ien in
(S,T) xint A\ {(¢,z)} that converges to (¢, x) such that

lim V(t;,z;) = (Viigrxa) (t,2) (= V*(t,2)).

i——+00

We claim that, extracting a subsequence if necessary (we do not relabel), we have ¢; | t as i — +o00. Indeed,
if t; < t for every ¢ > ig for some ig € N, then we proceed as follows. We take a strictly decreasing sequence
(7i)i>i, in Jt,T] that converges to t as i — +oo. We can assume that for all 7 > ig, x; € z + 5B and
-t < % Fix any i > ¢, and take a feasible F-trajectory g;(-) on [t;, 7] such that g;(¢;) = x;. Using the
principle of optimality, we obtain:

V(ti,x;) — /tT L(s,§i(s), 4i(s))ds < V (73, Gi(73)).-
Using the local boundedness of L (cf. condition (H5)*), there exists My > 0 such that for every i > ig:
V(ti, ;) — Mo|mi — ti] <V (7,5i(73))-
Passing to the limit to both sides and using the upper semicontinuity of (V\[S,T]x )%, we obtain:

(Viis,myxa)™ (¢, z) = limsup V (¢, z;) < limsup V (7, 5i(7:)) + .1i+m Molt; — i
1—+00

i——400 i——400

< limsup(Viis r1xa) (76, 5i(1:)) < (Vjism)xa)* (t, ).

1——+00

Thus limsup;_, o V(7i, 5i(7:)) = (V]js,71x4)* (¢, ) and there exists a subsequence (i )ren for which
V(i Uiy, (731,)) m Mis,ryxa)*(t, o).

This confirms our claim.

Now, fix any @ € F(tT,z). Then, there exists a sequence of vectors (v;);en such that v; € F(t], z;) for all 4,

and lim;_, ~ v; = 9. For each ¢, we consider the arc
yi(s) == x; + (s — t;)v;, for all s € [t;, T1.

Using Filippov’s Existence Theorem, there exists an F-trajectory z;(-) that satisfies z;(¢;) = x; and such that
for every h € (0,1 — t;]

ti+h
12i = YillLeo (b tin) < K (/ dF(s,yi(s))(Ui)ds) ,
where K = exp(kp|T — S|). From the a priori boundedness of F-trajectories, we can pick Ry > 0 such that,
for each i, |z;(s)| < Ry for every s € [t;, T] and |2;(s)| < cp, for almost every s € [t;, T]. Observe that we can
find h > 0 such that, for all i > 1, we have t;+h < T and z;(s) € x+cB C int A for every s € [t;, t;+h]. More-
over, since property (CQ)pw is valid (owing to Theorem guarantees that each z;(-) can be extended
to a feasible F-trajectory on [t;, T]. For every i € N, define §; := max{|V (¢;, z;) — V*(t,2)|, |x; — x|, [t; — t|}.
Extracting a subsequence, we can find a strictly decreasing sequence (h;);en that converges to 0 such that
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h; € [\/(TZ,B]

For any i € N we define w; := hi ﬁi+hi Zi(s)ds, e, :=1— tth
w; T> 0. Observe also that (¢t + hse;, x + hjw;) € (S,T) x int A and lim;—, ;o (€;,w;) = (1,0). Therefore
1—>+00

recalling also that (t,z) € [S,T] x int A, we deduce that

and w; := w; — 5. One can easily prove that
£

limsup h; t [V*(t 4 hies, & + hab;) — V*(t, )] = limsup hy * [V*(t; + hy, 2 + hiw;) — V*(t, 2)]

1——+00 1——+00

> limsup h; [V (t; + hi, 2 + howi) — V(¢ 2)].

i——400

For all ¢+ € N, we have:
V(ti + hi, x; + hzwl) — V*(t, $) > V(tl + hi, i+ hzwz) — V(ti, 372) — 62 (433)

We have arranged z;(-) to be feasible for all i € N, so the principle of optimality yields:

ti+h;
V(b + hay i+ haws) — V(ts,25) > —/ L(s, (s), 2(s))ds, for all i € N.
t;
Hence, dividing across the inequality 1} by h;, passing to the limit superior and recalling that % <V,
we deduce:

1 ti+h;

limsup h; " [V*(t 4 hies, x + hab;) — V*(t,2)] > — lim inf — / L(s, zi(s), 2i(s))ds. (4.34)
i—+o00 vrtoo Ny Jy

From (H5)* one can easily show that there exists k;, > 0 such that v — L(s, z,v) is kr-Lipschitz continuous

on ¢oB (uniformly w.r.t. s and z), and so, for every i, we have:

ti+h; ti+h; tith
/ L(s, zi(s), 2i(s))ds < / L(s, zi(s), v)ds +/ kr|(s) — olds
t; t; 4
< h; sup L(s,2,0) + h; kp (K0;(h;) + |v; — 7)), (4.35)
\Z*Z\Scohﬁrh?
0<5*t§hi+hl2

where 6; is defined by

sup o<s—t;<n dp(F(s,y), F(tj_, x;)), it h # 0,
0;(h) = jai—v|Scoh
0, otherwise,

and satisfies 0;(h;) — 0 (¢f. [15]). Dividing across by h; in (4.35) and passing to the limit as i — +o0,

i—+00
it follows that:

1 t+h;
lim inf / L(s, zi(s), #(s))ds < L(t", z,9). (4.36)
t;

i—4-00 hz
Combining (4.34) with (4.36) we obtain:

limsup bt [V*(t 4 hies, x + hab;) — V*(t,2)] > —L(tT, 2, 0).

i—r+00
Now, take any (£°,¢1) € 0, V*(t,z). Then,
V2 = V*(t,x) = —t) - & (' —x) < o(|(tf —t, 2’ —x)|) forall (t,2) (4.37)
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where o(+) : RT — R is a function such that o(e)/e — 0 as € | 0. Setting (¢,2') = (¢t + hse;, z + hjw;) in
(4.37), and dividing across by h;, we have

h;l(V*(t + hiei,x + hﬂz}l) — V*(t,l‘)) - 5067; — 51 . ﬂ)Z S h;lo(hl\(ez,ﬁh)\)
From these relations, in the limit as i — oo, it follows that
—L(tT,z,9) - —¢o < 0.

This relation being valid for all o € F(tT, ), we obtain (d)(ii).

Concerning condition (d)(iii), the first condition, liminfyy »\—(s.2), 53 V(H,2") = V (S, 2), as in the proof
of Theorem can be easily deduced from the fact that V satisfies (b)(i).

It remains to prove that \EFS,T]xA(T7 ) = 9\*14(‘)' Since Vjjg11xa(T,-) = gja(-), we immediately deduce that
(Viisyxa)™ (T, z) > (gj4)*(x) for all x € A. We prove that the converse inequality is also satisfied. Fix any
x € A. There exists a sequence ((t;, z;))ien in [S,T] x A\ {(T, z)} converging to (7', z) such that:

dim V(t,2) = limsup — V(t,y) = Vg qxa(T’2).
100 {(t,y)—=(T,x),yc A} ’

Using (CQ)rw, we know that, for every i, there exists a feasible F-trajectory x;(-) on [t;,T] such that
x;(t;) = x;. By the principle of optimality:

T
Vit x;) — /t L(s,zi(s),zi(s))ds < V(T,z;(T)), for all i € N.

Using condition (H5)*, we know that there exists a constant My > 0 such that for every i € N:
Vi(ti, xi) = Mo|T — ts| < V(T 24(T)) = g(2:(T)).
Using the fact lim;_, o 2;(T) = z, passing to the limit as i — +o00, we obtain:

(Viismyxa)™ (T, z) < limsup g(x;(T)) < limsup g(y) = (9,4)" ().
i——+00 A
y—x

Therefore V' satisfies (d)(iii).

g

Since 0pU(t,z) C 0_U(t,x), it is not difficult to see that the proof of (A) can be reduced to the analysis
employed in the proof of Theorem On the other hand, the proof of (B) requires a different construction
of several sequences of arcs, taking into account the new conditions involved, and the notions of lower /upper
semicontinuous envelopes.
So here we provide details of the proof of (B). Take any point (¢,Z) € [S,T] x A and any feasible F-trajectory
x(-) on [t,T] such that x(t) = z. Since ((9j4)*)«(z(T)) = gja(z(T)), there exists a sequence ({;)jen in A
such that lim;_, & = (7T") and

lim (g4)*(&) = ga(2(T)). (4.38)

Jj—+oo

Consider a decreasing sequence (t;);ey in ]¢, T] that converges to ¢. Since we are assuming that the outward
pointing constraint qualification is satisfied, we can employ the same construction in the proof of Theorem
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obtaining, for each j > 1, the existence of a feasible F-trajectory z;(-) on [t;,T] such that z;(T) = &;,
z;j(t) € int A for all t € [t;,T] and:

[l (-) — 2 O)llwrr g,y < 0005) + pis

where p; := exp(kp|T — S|)|¢; — 2(T)| and 0(p) = Kp(1 + | In(p)|) for some constant K > 0.
Fix any j € N. We can take an increasing sequence (t;;);>1 in ]t;,T[, converging to 7', and a sequence
(wji)i>1 in int A, converging to &; such that:

1 tii,wii) = lim inf ., z). 4.
Jim (Upsryxa)” (84, wii) {(t,7m,)_>(T7é?)llltr,l<T7w,€intA}(UHS,T]XA) (t',2") (4.39)

Invoking the same argument above, now with the base points (¢;;,w; ), for each integer i > 1, we can find
a feasible F-trajectory z;;(-) on [tj,t;;] such that z;;(t;;) = wji, x;:(t) € int A for all ¢t € [t;,¢;,] and:
25 (-) — 2O llwra g .0 < 0(pii) + pis

where pj; := exp(kp|T — S|)|&; — wj4|. It is not difficult to see that, using Filippov’s Existence Theorem,
each z;;(-) can be extended on [t;, T] obtaining the estimate (we do not relabel)

25, () — 25O llwra g, < 0(pja) + pji-
Since x;;(t) € int A for all t € [t;,t;;], there exist sequences (d;;)i>1 and (7;,)i>1 with 7;; € |¢;;,T[ such
that 0;; } 0 and 7;; T T as ¢ — 400, and

a:j7z~(s) + (5]‘71']]33 Cint A, for all s € [t_j,Tj,i].

Let f : [S,T] xR™ xB — R", be the Carathéodory parametrization (see Proposition [3.27)). Using Filippov’s
Selection Theorem, for each ¢ > 1, there exists a measurable selection wu;; : [t;,T] — B such that ;;(t) =
St w5i(t), uji(t)) for ae. t € [t;, T].

Fix any 7 > 1 and any j > 1. Take k € N such that k¥ > 5=. Invoking a now familiar argument based on
Lusin’s Theorem, we can find a continuous control uj’z [t T] — B and an arc ac ;¢ [tj,t5:] — R™ such that:
a;(8) = f(t,25;(t), uf;(t)), for ae. t €[t 1],
|25 — ngJLOO (F,T) = % and 7 z(tjl> = xj,i(tj4) = wji,
meas ({t € [£;, T] |uji(t) — uf ,(t) # 0}) < 1.
For every (t,x) € [t;, T] x R", we write v*(t,2) := f(t*, z,uf; (1)), v™(t,2) == f(t7, 2, uf;(1)).

We then define the multivalued functions F]kl : [tj,T] x R™ ~ R™, Afz : [t;,T] x R" ~ R and Ffl :
[t;,T] x R" x R~ R x R"™ x R by the relations:

Fffi(t, x) :=co{v (t,z),v" (¢, 1)},
Aii(t, x) = —co{L(t",x, v (t,2)), L(t",z,vT(t,2))},

k k 3 Foof..
gy o (X Ehlt2) X S (), ifte [ t5),
’ co {(0,0,0) U {1} x FF(tjs2) x A (tj5, )}, if t =t

Consider the arc (7 jkz, fz,ﬁfl) on [tj,T] defined by

l— (Tjkz(t>7 ]z( )76961( )) (tvx]z( )7 (Ul[S,T]XA) (t]7$j z(z )) »/t L(vaégz(s)?i?,i(s))ds> .

J
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Observe that [t;,t;;] C|S,T[ and

0 _
xfyi(t) + %B C l’j’i(t) + (5]'72'183 Cint A, forall t € [tj, tjﬂ'].

Now, our aim is to apply the Local Weak Invariance (Theorem [2.6.2)) to the constrained differential inclusion:
(F(), (1), £(t)) € T, (r(1), y(1), £(1)), for ave. t € [L, 4],

7(t;) = &5, y(t) = o5, (8), €(t) = (Uys,rxa)* (G, 25,(8)), (4.40)

(t),y(t),£(t)) € hyp (Ujisxa)*, for all t € [t}, 1],

(7

with the reference arc (sz, ? z,ﬁé“z) We discuss here only the validity of the inward pointing condition

(iv) of Theorem since it is easy to see that, as in the proof of Theorem all the assumptions are
satisfied. Observe that along a ‘JJ _tube’ around the arc (75, ¥ Ek ;) we have (Ujis7xa)* = U*. Therefore

Tjir g0
the required inward pointing cond1t1on to check is: for any (7,z,¢) € hypU*N ((T]kl, fz, E;“l)([fj, tji])+ %IB%)
we have
min ~ w- (=£% —£' X) <0, for all (—&°,—¢",\) € N, o+ (7,2, ). (4.41)

welﬂ?’i (1,2,0)

‘ - B
Take any (r,z,) € hypU* N (74, ;z,e;fz)([tj?tj,m + %9B) and any (—€°,—€',0) € NE, 1. (7,,0) (C
Niypv+(7,2,¢)). We have A > 0. Since is clearly verified when 7 = t;;, we assume that 7 € [t;,¢;,[.

We can also restrict attention to the case E =U*(t,x).

Depending on the value of A we can consider two distinct cases.
If A > 0, then A71(¢0,¢%) € 9,U*(7,z) and so, from condition (d)(ii), we deduce that
€+ vt (r,2) + AL(TT, 2,0 (7, 2)) > 0.

This confirms (4.41) with w = (1,0 (7,2), —L(7", z,v " (1, 2))).

If A = 0, then invoking Theorem [2.4.15, there exist sequences (£9,¢&L) ——— (€9,¢1), Ay | 0 and

m~>+

(Sm, Tm) —— (7, z) such that, for each m,
m—r+00

A & A &) € DU (8, ) -
By (d)(ii), we obtain
€0 el (s 2m) + A L((Sm) T s 0 (S ) = 0.

By extracting suitable subsequences and arguing as in the proof of Theorem we deduce that (4.41)) is
verified.

Observe that the last condition in (4.40) means that Kfl(t) < (U|[S,T]xA)*(7'fi(t)>wﬁi(t)% for all t € [t;,t;].
It follows that at t = t;;:

- t],z . .
(Uyisyxa) (B 2 () — / L(s,2%:(s), &5 (s))ds < (Uyisryxa)* (£, wji), for every k,i and j.
t

J
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Applying Lebesgue’s dominated convergence, taking a subsequence if necessary and without relabeling, in
the limit as £ — +o0o we obtain
e T .. - kT . T+ kT
U F,3E7)) < liminf U (5, (7)) < i inf (Ui 4)” (5, 252(5)
tji

< (Uysryxa)*(thi, wji) +/ L(s,xj:(s),%j:(s))ds, for every i and j.

b
Then, taking the limit as ¢ — 400, we have

U(tj,zj(t;)) <lminf U(t;, x;i(t;))

1——+00
T (4.42)
< Am Ugsryxa(tiiwii) +/ L(s,zj(s), &j(s))ds, for every j > 1.
1—+00 ’ fj
From (4.39) and the upper semicontinuity of (Ujjs7jxa)* it follows that
lim inf (Ujsrxa)*(t',2) < lim sup (Uisrixa)*(t', 2") < (Ujsryxa) (T, &)

{({t",&")=(T,&;) | t'<T,x'€int A} {(t'2")—(T&;) ' €A}
Using these relations and the fact that (Ujgrxa)*(T,-) = (9j4)"(:) (from (4.42))), we deduce that

_ _ T
U(tj,z;(t;) < (94)" (&) + / L(s,z;(s),@;(s))ds, for every j > 1.

tj

Recalling that the sequence (;);cn satisfies (4.38) and that U is lower semicontinuous, passing to the limit
as j — +oo we obtain:

T
U(Fa(D) < Iminf U(E,(5)) < ga(e(T) + [ Ls.a(s).(5)ds.

Jj—+oo

which concludes the proof since z(-) was an arbitrary feasible F-trajectory such that x(t) = t.

4.10 Proof of Theorem [4.4.4]

We observe that, if the inward pointing constraint qualification is in force and g is continuous on A, we
obtain that Vjig7)x4 is continuous too, and so, in view of Theorem and Proposition we obtain
that (a), (b) and (c) are equivalent and ‘(a) = (d)” ((d)’ is the simplified version of (d) which appears in
Theorem statement). As a consequence, we can restrict attention to the implication ‘(d)’ = (a)’. To
this aim, we assume (H1)-(H7) and take an extended valued function U : [S,T]xR™ — RU{+4o00} such that
Ujis;r)x4 is continuous and U(t, z) = +oo when x ¢ A, and employing a consolidated approach we divide
the proof of the desired property into two steps:

(A) if U satisfies (d)'(i) and U(T, z) = g(z) for all x € A, then V(t,z) < U(t,x) for any (¢,z) € [S,T] x A.

(B)" if, in addition, (H8) and (OPC) hold, and U satisfies (d)’(ii) and (d)'(iii), then V(t,z) > U(t,z) for
any (t,z) € [S,T] x A.
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Since (A)’ can be easily deduced as in step (A) of the proof of Theorem consider here only (B)'.
Take (t,Z) € [S,T] x A, and a feasible F-trajectory z(-) on [t,T] such that z(f) = Z. With the help of
property (CQ)rw (with 0(p) = Kp(1+ |In(p)|)), we can find a sequence of feasible F-trajectories (z;);>1
on [t,T] such that, for every j > 1, z;(t) = Z, z;(t) € int A for all ¢t €]¢, T, and:

1

|z = 2jllwi g < i (4.43)

Take a sequence (t;);>1 in |, T[ such that ¢; | £. A now routine analysis reveals that, for each j, we can find
a sequence of F-trajectories (l’é)ieN on [tj,T] such that

i 1 i
lz; = jllwraqe,my < 7 and 25(85) = 25(t), (4.44)

and the arc (7,2,¢) on [t;,T] defined by

t— (7,2,0)(t) = (t, :E;(t),U(tj,SU;(tj)) —/t L(s,x?(s),a&?(s))ds) ,

J

is such that

() = tj, y(ty) = a4(t;), L(t;) = U(ty, 2%(t5)), (4.45)
(1(t),y(t),£(t)) € hyp U, for all t € [t;,T].
The last condition in yields £(t) < U(t, x;(t)), for all t € [t;,T)]. It follows that for t =T
. T . . .
U(t]‘,l‘;(tj)) — /t L(s,w}(s),jc;(s))ds < U(T, wz(T)) (4.46)

J

Bearing in mind (4.44]), and passing to the limit in (4.46)) as i — +o00, we obtain

T
U(tj,z;(ty) <U(T,x;(T)) +/ L(s,z;(s),&j(s))ds, for every j > 1.
tj
Now invoking (4.43)), the feasibility of () and the continuity of U on [S,T] x A, and condition (d)’(iii), we
take the limit as j — 400 in the previous inequality deducing:

— . T .
U(3) < T Ulta,(t) < o) + [ Lisals).a()ds
This shows that:

U(t,z) <V(t,T).

4.11 Proof of Theorem 4.6.1]

The proof of Theorem is inspired by techniques proposed in two papers: [22] and [29]. The first one
provides linear IL°° distance estimates for general closed sets A and differential inclusions with bounded time
variation. On the other hand, [29] deals with convex compact sets A coupled with differential inclusions
involving Lipschitz (time-independent) multifunctions F' obtaining p|In(p)|-W!?! estimates. However, our
proof gives a p|In(p)|-W! estimate for convex sets A with bounded time variation multifunction F', nec-
essarily differs in many points from [22] and [29] and, for this reason, we provide it in detail, referring to
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previous work only for some technical lemmas.

We start providing some technical lemmas, which we shall employ in our analysis. The first one (a proof of
which can be found in [22] Lemma 5]) summarises implications of the inward pointing condition (IPC)’.

Lemma 4.11.1 Suppose the multifunction F : [S,T] x R™ ~ R™ and the closed set A satisfy hypotheses
(H1), (H2), (H3), (H4)(i) and assumption (IPC) (for some Ry > 0). Then there exist M > 0, ¢ > 0,77 > 0
and a finite time set {7;}jc; C [S,T] with the following property: for any (t,x) € [S,T]x ((0A+7B)NRoBNA),
there exists

coF(t,x) N MB if t € {7j}jes

(RS

COF(t+,$)ﬂMB ifte{?j}jej ,

such that
y+[0,ej(v+eB) C A

forally € (x+eB)N A.
The next lemma represents an useful ‘hypotheses reduction’ result, a proof of which can be obtained following
the argument of [22, Lemma 4], the statement of which differs from Lemma4.11.2 below in three respects:
it concerns merely L>°-estimates, it reduces attention to the case in which ‘F(¢,x) is convex for all (¢, z)’,
and condition (iv) of Lemmal.11.2]is not considered. We observe that the same analysis of the proof of [22]
Lemma 4] can be employed here to derive W!'!-estimates (which is what we need to prove Theorem ,
except the fact that, at this stage, we cannot reduce to the situation where F' is convex valued. Condition
(iv) of Lemma does not appear in [22, Lemma 4], but can be easily deduced for multifunctions F

satisfying (H1)’, (H2), (H3) and in particular the bounded time variation hypothesis (H4)(i) (cf. discussion
on [211 22]).

Lemma 4.11.2 Assume that, for § > 0, p > 0 and v > 0 sufficiently small, the assertions of Theorem
are valid under hypotheses (H1), (H2), (H3), (H4) and (IPC), and when the following conditions are
imposed on the reference F-trajectory &(-) : [to, t1] — R", with &(tg) € AN (e s cr($)ds (g 4 1) — 1)B, and
the positive number p > max{da(&(t)) |t € [to,t1]}:

(i): p < p;

(i1): t1 —to < 9;

(iii): nto) —n(tr) < 7;

(iv): there exist co > 0 and krp > 0 such that

F(to,z) = F(t,x) for all z € RoB,

F(t,z) C co B forall (t,x) € [S,T] x RoB, and
F(t,a") C F(t,z) + kp|lr —2'| B for all z,2' € RyB and t € [S,T],
where Ry = els er($)ds (1 4 1),

Then the assertions are valid under (H1)', (H2), (H3), (H4) and (IPC) alone, and without conditions (i) —
(iv).
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The third lemma guarantees the existence of solutions to a differential inclusion & € G(t, z), where the velocity
set G is obtained modifying the reference multivalued function F' intersecting it with a ball with a (¢, z)-
dependent radius and centred at v(¢) where v is a measurable selection of a perturbation of F' evaluated along
a given continuous arc ¢. Lemma below extends [29, Lemma 3] (which deals with time-independent
Lipschitz continuous F') providing an existence result when bounded time variation multifunctions F' are
involved. It will be coupled with a ’convexification argument’ which is based on a Lyapunov type Theorem.
(We refer the reader to [36, Chapter 16] for a proof and for a discussion on Lyapunov type Theorems; the
application of these results to derive distance estimates results was first suggested in [29].)

Lemma 4.11.3 Consider a multifunction F satisfying (H1), (H2), (H3), (H4)(i) and condition (iv) of
Lemmal4.11.2. Given an interval [to,t1] C [S,T] and measurable functions w, ¢ : [to,t1] — R"™, we consider
a multifunction G : [tg,t1] X R™ ~ R™ defined as follows:

Glta) m {(w(t) T 2kplz — o)+ a®)int B) N F(t,z) if |z — ¢(t)] + a(t) > 0 (4.47)

{w(®)} if lv = o(t)] + a(t) =0,

where « : [to, t1] — Ry is a measurable function such that (w(t) + [2ko|lz — ¢(t)| + a(t)|int B) N F(t,x) # 0
whenever |x — ¢(t)| + a(t) > 0. Then

(i) G takes non-empty compact values in coB and is ‘Scorza-Dragoni lower semicontinuous’ on [tg, t1] x R™,
and

(ii) for every xo € R™, the differential inclusion

{:b(t) € G(t,x(t)), for allt € [to,t1], (4.48)

x(to) = X,

admits at least a solution.

Proof. Making use of an existence result by Bressan [28] on solutions to differential inclusions involving
merely ‘Scorza-Dragoni lower semicontinuous’ multifunctions, property (ii) becomes an immediate conse-
quence of (i). So we prove (i) recalling that the multifunction G : [to, 1] x R™ ~» R™ is Scorza-Dragoni lower
semicontinuous if for every e > 0 there exists a compact set J. C [to,?1] with meas (J.) > t; — ty — & such
that G is lower semicontinuous when restricted to J. x R™.

Fix ¢ > 0. From Lusin’s Theorem, we can find a compact set J. C [to, t1] such that meas(J;) >t —tg — ¢
and such that w(-), ¢(-), a(-) and n(-) are continuous on J.. Let O C R"™ be an open set. Our aim is to
show that the set G=1(O) N (Je x R?) = {(t,z) € J. x R* | G(t,#) N O # 0} is open in J. x R™. Take any
(t,7) € G71(O) N (J. x R"). Then there exists w € G(£,z) N O. We distinguish two situations.

(a): |Z — ()| + a(t) = 0. It means that w = w(f) € O. Since O is open, there exist r > 0 and § € (0, )
such that w(t) + rB C O and

n@®) —n@® <<, wlt) —w@) < 3, alt) @) < o, o) — o) < %7 (4.49)

ool 3
ool 3
| 3

for all t € J. with [f—#| < §. Then it is easy to see that for all (t,z) € J. x R" with [f—t| < § and |Z—x| <,
we obtain that 3
G(t,z) Cw(f)#—ETIB% cO.
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(b): |Z — ¢()] + a(t) > 0. In this case we observe that @w € F(t, ) is such that it belongs also to the open
set (w(t) + [2kr|T — ¢(f)| + a(t))int B) N O. Then, again we can find r > 0 and § € (0, gy ) such that
is satisfied and

W+ 2rB C (w(t) + [2kp|Z — ¢(t)| + a(t)]int B) N O.

It follows that for all (t,z) € J. x R™ with | —t| < § and |z — 2| < §, we have
(W+rB)NF(t,z) #0 and w+rB C (w(t) + [2kr|x — ¢(t)| + a(t)]int B) N O.
Then in both situations (Z,) belongs to the relative interior of G1(0) N (J. x R™).

|

Proof of Theorem Fix 79 > 0. Assume that the multifunction F' and the set A in the theorem
statement satisfy (H1), (H2), (H3), (H4) and (IPC) with functions cr € L*(S,T) and kr € L>°(S,T), for
Ry := els o(5)45(1 4 rp). (Observe that the constant Ry bounds the magnitude of the F-trajectories z(-) on
subintervals of [S, T originating in 7¢B.)

Let n(-) be modulus of variation appearing in (H4). Recall that Lemma establishes the existence
of constants M > 0, € > 0, 7 > 0 and a finite time set {7;};je; C [S,T] such that, given any (t,z) €
[S,T] x ((0A+7B) N RoB N A), we can find

coF(t,z) "NMB  ift ¢ {7j}jecs
RS
coF(tt,z)NMB ift € {7}jes,

with the following property:
2 +[0,e](v+eB) C A (4.50)

for all 2’ € (x + B) N A.

To validate the theorem statement we will show that there exists a constant K > 0 such that, for any
t

interval [to, t1] C [S,T], any F-trajectory &(-) on [to,t1] with &(tp) € AN (efso er($)ds(pg 4 1) — 1)B, and any

p > 0 satisfying p > max{da(&(t)) |t € [to,t1]}, we can find a feasible F-trajectory z(-) on [to,t1] such that

z(to) = 2(to),

x(t) € int A for all t € (to, 1] (4.51)
| = e o) < K. (452)

and
16— sy < K p(1+ (o)) (4.53)

Lemma allows us to restrict attention, without loss of generality, to the case when
(i): p < p;
(ii): t1 —to < ¢ and, if 7 € [to, 1] for some j € J, then either 7; =ty or 7; = t1;

(iil): n(t1) —n(to) < v;
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F(to,x) = F(ty,x) forallz € RyB,
F(t,z) C co B for all (t,z) € [S,T] x RoB , and
F(t,2") C F(t,x) + kp|lr —2'| B for all z,2" € RyB and t € [S,T]

for § > 0, p > 0 and v > 0 sufficiently small, and ¢y > 0 and kp > 0 sufficiently large. Since we can assume
that F(tg,z) = F(tJ,z) for all z € RyB, we can also replace () by the non-decreasing bounded variation
0 if t=t

n(t) —n(ty) i t€Jtota]

Observe that, increasing the size of ¢y > 0 and, then, reducing the size of § > 0, p > 0 and vy > 0, if necessary,

function ng : [S,T] — [0,00) defined by the relation ny(t) := {

we can also ensure that

COZM(Z 1)7 6<17 5§67 kFCO(S—i_’YS%a ﬁ+2605<67 p<-—, ﬁgﬁa (454)
and

16¢0 <77, €[1/44 3kp(1+ deo/€)0 + 3/ + /e + (p/€) x |In(4p/e)|| <

Here p > 0 is the number appearing in assumption (H4)(ii).
Let {tqg =:tg <t <13 < ... <ty :=t1} be a partition of [tg, 1] such that for each k = 0,1,..., M — 1 we
have : B
e [ () = )
im — 7 k7
el0 Ji, 1e T — 1t

dr <pu

Observe that, employing a standard argument which allows to concatenate a finite number of intervals, it is
not restrictive to assume the case when to = to and t; = t;.
Set k := 2.

Notice that, if Z(tg) € (AN (eféo cr(9)ds(ry +1)—1)B) \ (A + IB), then from the first condition in (4.55) and
(ii) above we deduce that x(-) = Z(-) is a feasible F-trajectory having the required properties. Therefore, it
is not restrictive to impose also that 2 (ty) € (9A+ IB)N AN (efsto er($)ds(pg 4 1) — 1)B. From the definition
of Ry is follows that

#(to) € (DA + gIB%) N RoB N A.

Owing to Lemma [4.11.1) and (iv) above we can take a vector v € co F(to, 4 (tp)) = co F(t{, #(to)) such that
|v| < ¢g and property (4.50) holds for (¢,x) = (to,Z(tg)). Then, we consider the arc y(-) : [to, t1] — R™ such
that y(to) = &(tp) and

v ift e [to, (to + kp) A tl]
W= sy s-st o\ i) (4:56)
ﬁﬁﬁ‘(l—ﬁ) .T(t) 1ft€]t0+kp,t1] .
Observe that
.f?(t(]) + (t - t(])U ift e [t(], (t(] + kp) A tl]
y(t) = (457)

i(to) + kpv + (1 — £2) (&(t) — &(to)) if t € Jto + kp, ta] .
Therefore, for all ¢t € (to, (to + kp) A t1], since t —tg < 0 < ¢, it follows from (4.50]) that
y(t) + (t —to)eB = 2(to) + (t —to)(v+€B) C A.
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Moreover, whenever tg + kp < t1, for all t € [tg + kp, t1], from (4.57) we deduce that
(t) — (o)

[y(#) = ()] < cokp+ ko= < 2cokp, (4.58)
— 1o
and
kp . kp R .
y(t) = — z(to) + (1 — — Z(t) + kpv € A+ kpv + pB, (4.59)
— o — 1o

where p := max{da(z(t)) |t € [to,t1]}. Write g(¢) the projection on A of ¢t — y(¢). As a consequence, from
(4.50), (4.54) and (4.59) and bearing in mind that p > p and that k = 4/e, for all ¢ € [ty + kp,t1] we have

y(t)+2pB C g(t) + 4?p <v + Zd@) C g(t)+e(v+eB) C A. (4.60)

From (4.56) and condition (iv) it follows that (it is not restrictive to suppose that to + kp < t1):

. to+kp ) t1 ko #(t) — 7 .
ok , ; p () —2(o) | kp )
.y < t—xtdt+/ ( + i) ) at
=l < [ 0= does [ (G E R i)

t1 1

< QCOkp—i—QCokp/ dt
to+kp =10

< Kopx (1+[Inp]), (4.61)

where Kj := 2¢pk(1 + Ink). On the other hand, from (4.57) and (4.58|) we easily arrive at
|y = 2l[Lee ((t0,1]) < cokp < Kop. (4.62)

Let {7 }x>1 be a strictly decreasing sequence such that 7 := (to + kp) A t1, limy_, 4o 7% = to and

Tk — to
T — Tyl < €. 4.63
k= Th < T (4.63)
Since v € co F'(to, Z(t9)), owing to Carathéodory’s Theorem, we can find vectors v, ...,vn4+1 € F(to, Z(t0))

and numbers Aq,...,\,+1 € [0,1] such that Z?:Jrll A =1and v = Z?:Jrll Aiv;. For each integer k > 1,
we consider a partition of the interval |11, 7k|(C [to, (fo + kp) A t1]) into n + 1 subintervals I ; such
that meas(Iy;) = Ni(Tg41 — 7x), for all i = 1,...,n + 1. Set I; := [J{>] It (which is a measurable set) and
w(t) == Z?jll vixr, (t)(xr, () is the indicator function of I;.) Let z(-) be a solution to the following differential

equation

{z'(t) =w(t) ae. telty, ],
2(to) = Z(to)-

Consider the multivalued function G : [tg, 1] x R™ ~» R™ defined as

Gt ) = {<w<t> + 2kplz — 2 (to)[ + no(O]int B) N F(t, ) if |z — & (to)| + no(t) > 0 (464)
{w(®)} if [z — &(to)| +mo(t) = 0.
and the associated differential inclusion
{:t(t) € Gi(t,z(t)) for ae. tE€ [to, T, (4.65)
l'(to) = i‘(to).

Since w(-) is measurable and ¢ — 7g(t) is a measurable (increasing) function such that (w(t) + [2kp|z —
Z(to)| +no(t)]int B) N F(t,z) # 0, when |x — &(to)| + no(t) > 0, we can apply Lemma [4.11.3| (with ¢ = (o)
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and «a(-) = no(+)), obtaining the existence of a solution z(-) to (4.65)). Observe that for all t € [tg, 1] we
have:

[2(t) — 2(8)] < 2kpl(t) — zol + mo(t) < 2kpco(t — to) + 10(t).
From Gronwall’s Inequality and (4.54) it follows that, for all ¢ € [ty, 7],

w(t) — 2(t)| < k:Fc()(t—to)z—l—/t no(s)ds < kco(t — t0)% +(t — o)
p

< (t—to)lkrcod +9] < 1okp (= ). (4.66)

Recalling that, for all £ > 1, we have z(7) = y(7%), using (4.63)) we deduce that , for all ¢ € [41, %],

€ €
2(6) ~ y(H)] < 2eolric ~ ] < (7~ t0) < hp (=5 (4.67)

Moreover, we also obtain that z(7;) = Z(t9) + (7% — to)v and, bearing in mind (4.66) and (4.63)), that for all
t € [Tht1, Tk

x(t) € x(1) + co|Tk — T2 /B C 2(7%) + (76 — to)[krcod + v]B + co|Tk — Trr1|B

A~

C &(to) + (1 — to)(v + [krcod + v + €/4]B)

1
C &(tog) + e(v+ 56183).
As a consequence, owing to (4.50)), it follows that

x(t) € int A for all t € (to,to + kp]. (4.68)

Recalling (4.62)), (4.66|) and (4.67), we obtain:

|z = 2o ((to,m1]) < 1T = 2llLoe(fto,m]) T 12 = YllLoo(t0,m)) + 1Y = ZllLoe ([to,m1])5

p P
<P+ Py K 4,
<+t Kop, (4.69)

< (1+ Ko)p.

On the other hand it is straightforward to see that
12 = &l (jrg,m)) < 2c0kp < Kop. (4.70)

If to + kp > t1 (that is 71 = t1), then the F-trajectory z(.) satisfies all the required properties (4.51)), (4.52)
and (4.53)). Then we continue our analysis assuming that ty + kp < t1. Set Tg := z(to + kp).

Observe that the function 7g(-) can be decomposed into the sum of a continuous functions n§(-) on [to, 1]
and a countable family of step functions {t;(-)} satisfying, for each j > 1,

1 ift>0'j
0 ift<0'j,

Yi(t) = aj x {

in which {0} is a sequence of distinct points in [t,?1] and {a;} is a sequence of non-negative numbers. (In
the analysis to follow, we do not have to take account of the value of v;(-) at its ‘jump’ time o0;.) Take
o € (0,0 A f5) such that we can ensure that

P
3200]{7};‘

(') —m5(s') <
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for all subinterval [s',¢'] C [to,?1] such that ¢’ — s < §y We also know that the sequence {a;} is necessarily
such that };a; < oo. Then, there exists a finite index set Jo C {1,2,...} such that

Z 4 3260kF

J¢Jo
Take 8 € }0, %}. Notice that there exist N positive numbers by, b1, ...,by_1 and a partition of
[to + kp,t1], S:={to+kp=:50 <51 <s2<...<sn:=t1},suchthat S D {o; | 0j € [to + kp,t1] and j €
Jo}, Sky1 —sp < B forall k=0,1,...,N — 1, and, for each k =0,1,...,N — 1,

|(cokr(s —to) +m0(s)) — bi| < g, for all s € (sk, sp41), (4.71)
which yields
N-1 Skg1 o
Z / |(Cok¢F(S — to) + 770(8)) — bk‘ds < §(t1 — to). (4.72)
k=0

Observe that for every t € [tg + kp,t1] we have:

z(t) — a(t 1 t,
( i t( 0) _ / #(s)ds € co[F(tg,#(to)) + (kpeo(t — to) + no(t))B].
— 1o t—1to Jy,
From Carathéodory’s Theorem, for each £ =0,..., N — 1, we can choose vectors

Uk 1y Vkntl € F(ta_, i‘(to)) + (kFCO(Sk — to) + UO(Sk))E = F(to,i(to)) + (kFCO(Sk — t()) + ﬁo(Sk))IB
and numbers A 1,..., App41 in [0,1] such that:

( n+1 n+1

Z)\klvk, and Z)\;“— 1.

Fix k € {0,..., N —1}. We apply the Lyapunov Theorem (cf. [36, Theorem 16.1.v]) on the reference interval

Sk—to

Sk, Sk+1] with the n + 2 integrable vector functions fi o(-) = (), fea() = vk, fent1(c) = Vg pg1, and
the n + 2 weight functions py o(s) :==1 — Sﬁio, Pr(s) == Skto X1y« s Phnt1(S) i= i—iox\kmﬂ. We obtain a
decomposition of [sj, si41] into disjoint measurable subsets Ey o, Ek1,..., Exnt1 C [Sk, Sk+1], satisfying
Sk+1
meas(Ey ;) = / pri(s)ds, foreachi=0,1,...,n+1, (4.73)
sk
and
n+1 Skl n+1
Z/ Fri(8)pr(s ds—z Frils (4.74)
i=0 7Sk El,i

From these relations it easily follows that

/E y #(s)ds = / h (1 - - ’j”m) i(s)ds. (4.75)

Sk

Now we provide an extension of the F trajectory z(-) above on [tg+kp, t1] considering the following differential

inclusion

{a‘:(t) € Ga(t, x(t)) a.e.t € [to+kp,til, (4.76)

x(to + kp) = Zo
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where the multivalued function Gy : [tg + kp,t1] x R™ ~» R™ is defined as

Golt. ) = {(wQ(t) + [2kp|x — 2(t)| + a2(t)|int B) N F(t,z) if |z — &(to)| + no(t) > (4.77)

0
{wa(t)} if |z — 2(to)| +no(t) = 0.

in which wa(t) = 2(t)xm,(t) + Zi\;_ol Sl VkiXE,,; (1), Eo = Up o Ero, and as(t) == 2[kreo(t — to) +
no(t)]Xu;jf o (t). All the hypotheses of Lemma [4.11.3| are satisfied, then there exists a solution to 1 ,
which is also an F-trajectory extending the F-trajectory z(-) previously constructed on [tg, tg+kp|: we write
z(+) the obtained F-trajectory on all [tg,¢1].

Consider the arc ¢ : [to + kp,t1] — R™ such that

{gj(t) =wy(t) for ae. t € [tg+ kp,t1]
Y(to +kp) = y(to + kp) = &(to) + kpv .
Since y(to + kp) = y(to + kp), using and (4.75), for all ¥’ € {0,1,...,N — 1}, we have

k-1

> / () — ) ds

k=
/5k+1 (i’(s) _ i’(to) B :i‘(sk) — i(t0)>d8
s —tp

s —1p s — to

ly(se) —9(sw)| <

k' —

(1) + 5c)

(kp)?
Therefore, taking into account also the fact that, for all k € {0,1,..., N — 1} and for all s € [sg, Sk+1]

<

—0.

o(s) = wtsw)] < EOUEZ 5 [g(0) — )] < cos,

for our choice of 3 it follows that

1y — Glloc to4kptr) < (4.78)

On the other hand, from and ( - we also know that fo
i(t) —g(t)] < 2kpla(t) — 2(t)] + az(t)

< 2kp(lz(t) — 9@+ [9(t) —y(@)] + |y(t) — 2(@)]) + a2(?)
< 2kp|z(t) — 9(t)] + 2kp(1/4 4 cok)p + aa(t).

'-s »-Jk\b

a.e. t € [to+ kp, t1]

Then, recalling that §(to + kp) = z(to + kp) from (4.66) we have |x(tg + kp) — §(to + kp)| < p/4, and so
making use of Gronwall’s Inequality, and bearing in mind (4.54)), (4.71) and (4.72)), we deduce that for all
t € [to + kp, t1]

, o2krd SR
lz(t) —g(t)] < " [p/4 +2kp(1/4 + cok)op + 2 Z / [krco(s —to) + no(s)]xu?:fEk,i(s)ds]
< o2k [p/4 + 2k (1/4 + cok)op + p/4 + cokrkdp
t1 _ +
—l—kp/ Mds + kp?/8| ln(kp)]}
to+kp s—tp
kPO [1/4 + 3kp(1 4 4cg/e)d + 6 /4 +4p/e + (p/e) x |In(4p/e)|] p
< Zp. (4.79)
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From (4.78)) and (4.79), it follows that

ly — 2llLoe (jto+hpt]) < P (4.80)
and, recalling also , we deduce that
x(t) + pB C A, for all ¢ € [to + kp, t1],
which yields, with , . A further consequence of , together with , is
12 = 2||lLoo (fto+-kp.t]) < (Ko + 1)p. (4.81)

It remains to derive an estimate for ||& — 2|1 (ty4+kp,e,])- TO see this we consider

/tlkp |i(s) — 2(s)|ds = /E |i:(s) — @ (s)|ds +/ () — @ (s)|ds,

[to+kp,t1]\Eo

§/ 2kp|x(s) —i“(s)]ds—i—/ 2cods.
Ey [to+kp,t1]\Eo

Thus, using also (4.54)), (4.73) and (4.81)), we obtain

t1 k
. )
12 = 2L (tgkpta)) < 2kr (Ko + 1)dp + 260/
to+kp S — to

< (Ko+1)p+ Kop(1 + | In(p)))-

ds,

This estimate and (4.70]) confirm (4.53)) taking K := 2(Ky + 1). From (4.69)) and (4.69)), clearly also (4.52)
is validated with the same choice for K.
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Part 2

Applications of Optimal control in
Calculus of Variations
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Higher order problems in the Calculus of
Variations : Du Bois-Reymond inclusion
and regularity of minimizers

The results of this chapter have been published [14].

5.1 Abstract of chapter

THE problem considered in chapter [5|is a non autonomous N-order Bolza problem

Minimize I(z) := /bL(&x(S)ax(l)(8)7x(2)(3)7 ™ (s))ds
’ +v ((:U, 2V aWN (), (@, 2D, ,a:(Nfl))(b)) , (CV)

over arcs x € W™ ([a, b], R),

where L is merely Borel measurable, and is possibly extended valued. Two different types of result are
presented.

Imposing the integrable boundedness of the partial proximal subgradients (up to the (N — 2)-order variable)
along a neighborhood of a local minimizer x,(-), necessary conditions for optimality in the Euler-Lagrange
form and, for the first time for higher order problems, in the Erdmann — Du Bois-Reymond form are pro-
vided. Quite noticeably, these results are obtained without imposing on L to be convex with respect to the
last variable, nor to have any kind of specific growth behavior.

By adding an extra growth assumption that is more general than the usual superlinearity with respect to
the last variable, the necessary conditions we obtained are exploited to establish that the last derivative of

(N

the minimizer z.(-), that is to say = )(-), is essentially bounded.

The important contributions of this work compared with the most recent article dealing with this problem
[60] are the following: the possibility to consider an extended-value Lagrangian, a more general growth
condition for L, necessary conditions expressed in the Erdmann — Du Bois-Reymond form, as well as a
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simplification of the proof of the regularity of the minimizers, invoking a time reparameterization argument
alone instead of combining it with the study of the Tonelli set of z.(-).

5.2 Résumé du chapitre

Le probleme considéré dans le chapitre [5| est celui d’un probleme de Bolza non-autonome d’ordre N :

b
Minimiser I(z) ::/ L(s,z(s),zM(s), s (s),..., ™) (s))ds

+v ((a:, 2V WD), (@, 2D, ,a:(N_l))(b)) , (CV)
parmi les arcs * € WN™([a, b], R),

dans lequel le lagrangien L est seulement Borel mesurable, et peut prendre pour valeur +oo. Les travaux
présentés dans le chapitre [5] sont de deux natures.

En imposant que le gradient proximal de L par rapport a ses (N — 2) premieres variables soit borné dans
! au voisinage d’un minimiseur local (), on établit les conditions nécessaires d’optimalité sous la forme
d’une équation du type Euler-Lagrange, ainsi que sous la forme d’une équation du type Erdmann — Du Bois-
Reymond, ce qui est une contribution nouvelle pour les problemes d’ordre N a la connaissance des auteurs. 1l
est notable que ces résultats soient obtenus sans imposer a L la convexité par rapport a sa derniere variable,
ni aucune condition de croissance particuliere.

En imposant en plus & L une condition de croissance plus générale que la croissance super-linéaire utilisée
habituellement dans les autres articles concernant ce sujet, les conditions nécessaires obtenues sont mises
a profit afin d’établir que la derniere dérivée du minimiseur z.(-), c’est-a-dire ng)(-), est essentiellement
bornée.

Les contributions essentielles de ce travail par rapport & I’article le plus récent concernant ce sujet [60] sont les
suivantes : la possibilité de considérer un lagrangien prenant pour valeur 400, une hypothese de croissance
sur L plus générale, une condition nécessaire d’optimalité exprimée sous la forme d’une équation du type
Erdmann — Du Bois-Reymond, ainsi que la simplification de la preuve de la régularité des minimiseurs qui
fait seulement appel a un argument de reparamétrisation du temps plutét que de combiner cet argument

avec I’étude de I'ensemble de Tonelli de ().
5.3 Introduction
In this chapter, we consider the following calculus of variations problem:

Minimize I(x) := /bL(3, (s), x(l)(s), x(2)(s), . ,x(N)(s))ds
’ 4+ ((:U,x(l),...,x(Nfl))(a)a(xyx(l)w”73;(1\7*1))(1))) 7 (CV)

over arcs x € W™ ([a, b], R),

where N > 1is an integer, m > 1 is a real number, L : [a,b] xRV ! — RU{+00} is a given Borel measurable
function and ¥ : RY x RV — R U {+o0} is a given extended valued function non identically equal to -+oo.
Here, 2(F)(-) is the k-th derivative of the function = € W™!([a,b],R) (interpreting (V) (-) = z(-)), and we
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sometimes write Z(-) or %x(-) for the first derivative 2()(-) to simplify notation.

It is well known that the problem has a solution if (zg,z1,...,2zNx) — L(t,x0,21,...,2xN) is lower
semicontinuous, zy — L(t,x0,21,...,2N_1,2N) is convex and uniformly coercive (cf. [40]). A classical
issue in this context concerns the possibility to establish the conditions needed, in addition to the existence
hypotheses above, to obtain the essential bounded N-th order derivative of a reference minimizer. The
significance of a positive answer to this question is explained by the fact that the N-th order derivative
essential boundedness allows to derive first order necessary conditions and to use numerical methods to
detect minimizers, which in general would not be valid if the mere existence hypotheses are in force.

The case when N = 1 corresponds to establish Lipschitz regularity of minimizers and has been extensively
studied in the literature for a broad class of problems involving vector valued arcs z(-), covering even
situations in which L is not necessarily convex or coercive in &, cf. [23| 35 41 39, 44, 45, 69, 84] and the
references therein (for an advanced result in the theory of necessary optimality conditions, we also refer to
the recent paper by Ioffe [63]). For higher (N > 1) order problems the N-th derivative essential boundedness
of a reference minimizer x,(-) was demonstrated in [40] analyzing the ‘Tonelli set’ associated with x,(-)
(i.e. the set of points ¢t € [a, b] such that xSkN)(‘) is unbounded near t), when, in addition to the existence
hypotheses, the Lagrangian is real valued and satisfies the following assumptions:

(A1) L is locally bounded, (zg,z1,...,zN) — L(t,z0,21,...,zy) is locally Lipschitz continuous (uniformly
in t),
(A2) The partial limiting subdifferential 8(L

o $N71)L is integrally bounded when evaluated along the min-

imizer.
This result remains true when N = 2 for autonomous Lagrangians when we replace (A2) by a less restrictive
condition, see [59]:

(A2)" The partial limiting subdifferential 8£0L is integrally bounded when evaluated along the minimizer.

(Observe that 0 = N — 2 in this case, and it is not necessary to evaluate the limiting subdifferential of L
also w.r.t. the xn_; variable as in (A2).)

The question whether a condition on partial subdifferentials involving only up to the xy_o variable could
take the place of (A2) also for general N (including the case N > 2) was investigated in [60], substituting
(A2) with

(A2)" The partial subdifferential 8(12 o $N72)L is integrally bounded when evaluated along the minimizer.

The higher order regularity result of [60] was obtained for problems involving real valued arcs z(+), combining
two main approaches used for regularity analysis: the Tonelli set theory (mentioned above) and a time
reparameterization.

The major contribution of this work is to show that higher order regularity results can be derived employing
the time reparameterization alone, and for a wide class of Lagrangians, including possibly extended valued
L’s. The two main sets of hypotheses that we consider can be summarized as follows:
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(a) The finite case: L is a Borel measurable real valued function and satisfies a (generalized) growth

P
(t,l‘o,...,.Z‘N_Q)

condition, the partial proximal subdifferentia]l] 0 L is integrally bounded in a neighborhood

of the reference minimizer, uniformly on xp;

(b) The extended valued case: L is a lower semicontinuous (w.r.t. all variables except possibly zxy_1) and
P

satisfy a (generalized) growth condition, the partial proximal subdifferential 8( b 20N )

L is integrally
bounded (uniformly on x ).

Another important feature is that we provide not only first order necessary conditions in the Euler-Lagrange
form together with a Weierstrass type condition, but also, without requiring any kind of growth condition
nor convexity, an Erdmann — Du Bois-Reymond condition which can be expressed in terms of a (partial)

convex subdifferential. It turns out, in particular, that L(t, xi(t), ... ,xiN_l)(t), : ) is convex in the direction

2V (t). These are an extension to N > 2 (for scalar problems) of the results obtained in [23], 24] established
there for N =1 (for vectorial problems).

The generalized growth condition considered in this chapter is more general than the superlinearity of
xn — L(t,xp,...,zn) and represents a sort of violation of the Erdmann — Du Bois-Reymond condition
when |zy| — 400.

Notation.
Given an extended valued function ¢(-,-) of two vector variables (x,y) and a point (Z,y) € dom(¢), we de-
note the proximal (resp. limiting, Clarke) partial subdifferential of ¢(-, ) at & by 0L ¢(z, 7) (resp. dLé(z,7),
0 B(Z, ).

For a given minimizer x.(-) of (CV]), we introduce an auxiliary Lagrangian A : [a,b] x R x |0, 400 — R,
defined by:

A(t,&,7) == L(t, 2 (), 4(1), ..., 2N (), 7€), for all (t,€,7) € [a,b] x R x |0, +00]. (5.1)

We shall make use of partial convex subdifferential of A with respect to r at (¢,£,rg), which is defined
by:

aTA(tagv T‘o) = {p eER: A(tv‘fa T) - A(tvé.a TO) > p(?” - ’l“()),V?" S ]07 +OO[} : (52)

The space of absolutely continuous functions defined on [a,b], taking values in R*, with derivative in
L™ ([a,b], R¥) is written W™ ([a, b], R¥) and endowed with the norm:

£ lwm = [ flloo + 11 FllLm-

We denote by W™ ([a, b], R¥) the space of functions defined on [a, b], taking values in R* which are N — 1
times continuously differentiable and whose (N — 1)-th derivative belongs to W™ ([a, b], R¥). We endow this
space with the following norm:

N-2
1w =D 1F Do + 1SN lprm.
=0

We shall often write L<t,:(:*, . xSFN_l),:ciN)) instead of L(t, zi(t), ... ,a:ka_l)(t),xiN)(t)) to simplify no-

tation.

!Note that the notation for the convex subdifferential is different in Part [2] of this thesis (the P went from subscript to
superscript). Even though 9% denotes the proximal superdifferential, it is much more convenient to reserve the subscript for the
variables with respect to which we differentiate the function.
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5.4 Hypotheses

We shall consider two different sets of hypotheses on L for a given local W™ local minimizer z,(-) for

(CV]: (Sz.) and (S32).
Hypothesis (S;,) The function

L: (t,xo,x1,...,xN—2,ZN—1,ZN) — L(t,z0,21,...,TN-2, TN-1,TN)

takes values in R and is By 4o-measurable.
There exists e, > 0 and an £ x Bj-measurable function & : [a, b]x |0, +oo[— R4 such that:

t k(t,1) € LY([a,b],R,),

and, for a.e. t € [a,b], for all o €]0,+00], the map:

{[a, b x RVN=1 5 R, (5.3)

(s,20,...,xN—2) — L(s,x0,...,TN_2, ac&N_l)(t),oxS‘N)(t)),

is Lipschitz continuous on B((¢, z«(1),. .., V2 (t)),e4) N ([a,b] x RN=1) with Lipschitz constant k(t, o).

Remark 5.4.1 Making use of hypothesis (S, ), we deduce that for a.e. t € |a,b], if ( is a vector in
agwoj'“@N_Q)L(t,x*(t),...,:EgN)(t)), then |¢| < k(t,1). Notice also that (Sy,) is satisfied whenever L de-
pends only on xn_1 and Ty .

Hypothesis (S°) The function
L: (t,zo,r1,...,2N—2,2N-1,7N) + L(t,20,%1,..., TN 2,TN_1,TN)

takes values in RU {+o00} and is By4o-measurable.
There exist a measurable set E C [a,b] of full measure, strictly positive constants €, ¢ and A, functions

d, B € L(]a,b],R;) such that the following conditions are satisfied:
i) the function (s,zg,...,zny—2,2N) — L(s,xo,.. .,xN_g,xSﬂN_l)(t),xN) is lower semicontinuous for all
t € [a,b],

ii) for all t € E, we can find 0 < 01(t) < 1 < 02(t) < 400 for which:

Ltz (t), ..., 2 V@), o1 ()2 (1) < +oo 5.4)
L(t,zu(t), ..., a0 (1), 02(D)2t™ (1)) < +o0; '
iii) for every ¢ € E, every (5,0, ...,Zn_2) € B((t,2:(t), ..., 2" 2 (#)),e) N ([a,b] x RV=1), and zy € R,

we have
< e (1@, avea, 2TV @)| + L5, 70, . av—a, 2V (1), 2n) + Maw])) +d(t)  (5.5)
forall (€0l L(5F0,.. . En-2as D (t),an);

145



iv) for all t € E, there exists ¢; > 0 such that the function

(s,20,...,xNn—2) — L(s,x0,...,TN_2, azsﬁNfl)(t), TN),
is Lipschitz continuous with Lipschitz constant B(t) on B((t, z4(t), Z«(1),. .. ,xSFN_Q) (t)),et), uniformly
with respect to xy € B(:L‘iN) (t),er) Ndom(L(t, x«(t),. .. ,xka_l)(t), ).
The growth assumption (G,,[). For every selection Q(t,£) of 9,A(t,&,1),

mliril |L(t, z(t), ... ,xSkN_l)(t),f) — Q(t,&)| = +o0, uniformly for a.e. t € [a,b], (Gg.)
rA(1,6,1)£0

which means that for any M > 0, we can find a set £ C [a, b] of full measure, and a real R > 0 satisfying:

V(t.€) € E X R, Q(t.€) € OA(LE ), [€] > R = |L(t au(t), ..., "D (1),6) - Q(t.€) > M.

Observe that condition (G,,)) is satisfied independently of a minimizer x.(-) when for every selection Q(¢, xo, ..., znN—-1,&)

of (8,L(t,x0,...,xN-1,7E)),_, and for every compact set K C RY, we have:
|5\1L11100 |L(t,.’1,’0, DRI xN—lvé-) - Q(t,.’lf(), ey $N_1,§)| - +OO7

(BrL(t,:cO ,,,,, :cNil,rﬁ))rzl#(b

uniformly for a.e. t € [a,b] and for all (zg,...,zny_1) € K.

AA(t, &)

P(t,&) E ¢ra(0) 7

P(ta 52) ’

Figure 5.1: Condition (Gg,)

Remark 5.4.2 (Interpretation of (G,,)) Assume that L(t,x.(t), ...,xiN_l)(t),f) < +oo and let Q(t,€) €

OrA(t,€,1). Then

A(t, &, 1)) > o(r) == AL, &) + Q(t,&)(r — 1), forallr >0
and P(t,€) := ¢(0) = A(t,£,1) — Q(t,€) is the intersection with the z axis of the ‘tangent’ line z = ¢(r) to
0<re—=A(E&r) atr=1.
Condition (G, ) thus means that the ordinate P(t,£) of the above intersection point goes to oo as |£| goes to
00, for those points & where 0 < r+— A(t,&,7) has a nonempty convex subdifferential at r = 1.
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Remark 5.4.3 1) If L is smooth in the last variable, becomes

AL (a0, 2 0,€) = € Oy Lt ), 2T (0, 6] = e,

—+o0

uniformly for a.e. t € [a,b].

2) If L is convex in the last variable, is satisfied whenever for every selection ¢(t,&) of the convex

subdifferential O¢L(t, x4(t), . .. ,xSFN*l) (t),€), we have

lim |L(t, 2. (t),... ,xiN_l)(t),f) — & ¢(t,&)| = 400, uniformly for a.e. t € [a,b].
[€|—+o0
Condition , which was considered in the case N = 1 in [24], extends analogous conditions considered
in [35, [69] in the autonomous case. This growth condition is satisfied in the superlinear case. More
precisely, assume that L satisfies both conditions below:
a) L(s,xq,...,xnN) is bounded on an annulus along z,(-): there exist p > 0, and M > 0 such that, for
almost every t € [a,b] we have:

lonl = p = Lt 2a(),..., o V() 2n) < M. (B..)
b) L is uniformly coercive along x.(-) w.r.t. the last variable: there exists a function § : Ry — R
0
satisfying lim b(r) = 400, such that for a.e. t € [a,b] and every zy € R:
r—4+oo 1

L(t, zu(D), . .. ,xiN—”(t),xN) > 0(|zy]). (C.)

(This also covers hypothesis (H3) used in [60], where 6(-) is taken positive valued and L satisfies the following
estimation L(t,z.(t),... ,ng_l)(t),xN) > 0(|xn|) — Blzn]|, where 5 > 0.) Then it may be shown as in [24]
Proposition 2] that is valid.

Notice however that there are Lagrangians that have just a linear growth with respect to v but nonetheless

satisfy (G.,)), for example L(t,z0...,2x) = |zn| — /]zN].

Remark 5.4.4 Assume that L is bounded on bounded sets in the following sense: For every bounded set
K C RY, the following property is satisfied: there exist p > 0 and My > 0 such that, for almost every
t € [a,b], every (xo,...,zn_1) € K and any xn € R:

lzn| = p= L(t,z0,...,2n-1,2n) < Mk.
Assume additionally that L is uniformly coercive in the following sense: there exist an increasing function
0
0 : Ry — R such that hI—E ﬁ = +00, a function h : RN — R that is bounded on bounded sets, and
r——4oo r

a constant a > 0, for which the following property holds: for all (t,xo,...,zN) € [a,b] x RVNT! satisfying
len| > al(zo, ..., zN—1)]|:

L(t,xo,...,xNn-1,2N) = 0(|lzn| — a|(x0, ..., xN-1)|) — h(z0, ..., ZN—1).

Then L satisfies the conditions and above for any function x.(-) € WN1([a,b],R), and it yields
that the growth condition is also valid for any function x.(-) € WN-([a, ], R).

5.5 Main results

We establish here a new necessary condition and a subsequent regularity result for minimizers of (CV)).
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5.5.1 Necessary conditions

Weierstrass type conditions.

Theorem 5.5.1 Let z.(-) be a W™N™ local minimizer for (CV|). Assume that L satisfies (Syz,). Then there

are two — mutually non exclusive — cases:

i) The function z. is a polynomial function whose degree is at most N —1 > 1.

ii) There exists an arc (po,...,pn—1) € Wh([a, b, RYN) for which the following Weierstrass type condition
is satisfied: for all u € ]0,+o0[ and for a.e. t € [a,b]:

(™)
L(t,x*(t), L M) w—L(tw(t),...,a™M ) >

u
(= 1) (pot) + pr (Dt + ... + oy (D2 (1))
Moreover, for a.e. t € [a,b]:
(p07p17]52 +p1,- - 7pN—2 +pN—37pN—1 +pN—2) S 8tc7’m07,,_,xN72L(t7 L, i‘*, cee 7x>(kN)) (56)

Theorem 5.5.2 Let z,(-) € W™ ([a,b],RY) be a minimizer for (CV|). Assume that L satisfies (S3°). Then
there are two — mutually non exclusive — cases:

i) The function x. is a polynomial function whose degree is at most N —1 > 1.

ii) There exists an arc p := (po,...,pn_1) € WVi([a,b],RY) for which the following Weierstrass type
condition is satisfied: for all u € ]0,+o0[ and for a.e. t € [a,b]:

(N)
L(t,x*(t),...,x*N(t)> u—L(ta.(t),....a" (1) >

" (W)
(= 1) (pot) + pr(Dau(t) + ... + oy (B2 (1))
Moreover, for a.e. t € [a,b], p(t) belongs to the set:
co {w e RV . (w (1), po(t) + pr(B)in(t) + ... + pN_l(t);ciN—”(t)) (5.7)

N— N
€ (aéwoy---,mNﬂ,u)L(S’ L0y« -+ TN-2; xi Y (t), ”TSF )(t)/u)u) (8,202 N _2)=2x(t) }’
u=1
with 7(t) := (0,0,p1(2), ..., prn—a(t)) and z.(t) == (t, 2. (t), ..., "2 (1)).

Remark 5.5.3 1) We observe that the inequality (W) of Theorems [5.5.1 and [5.5.9 is a Weierstrass type
condition which is an extension (to the case N > 2) of the results [23, Theorem 4.1] and [23, Theorem 4.3].
2) Assume that L is of class C* with respect to t,zq,...,xn_2. Then we have

. N . N
agmow,xN_QL(t,x*,x*,...,g;,(k )) = {Vt7xo7...7xN72L<t,a;*,a:*,...,g;£ ))}7

hence the arc p := (po,...,pN-1) satisfies the following equations: for all s € [a, b

pos) = pola) + / P CPRE NI P

p1<3> :pl(a)+/ 6$0L<7',.7}*,.7‘J*,...7$5<N))d7'7
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and for a.e. s € [a,b], for alli=2,...,N —1,
pi(s) = —pi—1(s) + 8zi_1L(S,$*,i'*, o xSFN)).

Erdmann — Du Bois-Reymond type conditions. The change of variable » = 1/u in yields the
following equivalent version of Theorems and

Corollary 5.5.4 Let z.(-) be a W™™ local minimizer for (CV|). Assume that L satisfies (Sz.) (resp. (S)).

Then there are two — mutually non exclusive — cases:
i) The function z. is a polynomial function whose degree is at most N —1 > 1.

ii) There exists an arc p := (po,...,pn—1) € WH([a,b],RY) for which the following equation is satisfied:
for all r € 10, +00[ and for a.e. t € [a,b]:
Lt a(t),..., 2™ V@), re™M @) - Lt 2u(t), .2V (1) >

(r—1) (L(t, zo(t), 2 (®) = (pot) + pr(B)a () + ...+ pN_l(t)xiN—”(t))) :

where p satisfies (@ (resp. )

Remark 5.5.5 Condition s a sort of variational form of an Erdmann — Du Bois-Reymond equation.
Indeed, if L is smooth and satisfies (Sz, ), Corollary implies that:

(Wr)

xSFN)(t) “Opn L (t,x*, . ,xiN)> =
Lt aa, o ot™) = (po(t) + pr(8)an () + ...+ pyoa ()2l Y (1)),

where p satisfies the conditions expressed in Remark 2). Whereas, under the (nonsmooth) more general
hypotheses of Corollary we obtain that for a.e. t € [a,b]

Ltz (t),..., 2™ @) = o) + pr(Oa(t) + ...+ pvar (D2 V(1) € 9A(E 2V (1), 1),

where A and 0, A are defined in and .
Condition is also a relaxation type result, namely the convezity of L(t,x.(t),... ,xSﬂN_l)(t), -) along

the direction %) (t).
5.5.2 Regularity Results
Here, the additional growth conditions (G,,|) and (C,,)) play a central role.

Theorem 5.5.6 Let z.(-) be a W™ local minimizer for (CV)).
(i) Assume that L satisfies (S;,) and lb then 2" € L ([a,b],R).
(11) Assume that L satisfies (S3°) and (D then 2% € L*°([a,b],R).

An immediate consequence of Theorem and the discussion about the above-mentioned conditions (B,,))
and (C,,)) is the following corollary.

Corollary 5.5.7 Let x,(-) be a W™ local minimizer for (CV)).
(i) Assume that L satisfies (Sz,), () and {D then 2V € L*°([a,b],R).
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(it) Assume that L satisfies (S3°), 1) and |D then 2V € L*°([a,b],R).

Next proposition shows that, if the Lagrangian L is convex w.r.t. 2y, then we can relax the condition (S, )
and invoke a weaker (merely local in o) version of it. This result provides an extension of [60, Theorem 2.1].

Proposition 5.5.8 Let z.(-) be a W™ local minimizer for (CV)), in which we assume that L : [a,b] x
RN*1 5 R is Borel measurable and

(H) any — L(t,x0,21,...,TN—-2,TN—-1,ZN) i convex for every (t,xo,T1,...,TN-2,TN—-1);

(Sz.) There exist 4 > 0, o, €]0,1[ and a L x Bi-measurable function k : [a,b] x [1 -0, 1+ 0. — Ry such
that:

t k(t,1) € L([a,b],Ry),

and, for a.e. t € [a,b], for all o € [1 — 04,1+ 04], the map:

{[a, b x RVN-1 5 R, (5.8)

(8,20, ..., TN_2) > L(8, 70, ..., an—2, 2" (1), 0™ (1)),

is Lipschitz continuous on B((t, z«(t), . .. L2V (1)), )N ([a, b] xRN =YY with Lipschitz constant k(t, ).

Then, the same conclusions of Theorem are valid. If moreover, L satisfies |) then xSﬂN)(-) belongs
to L>°([a, b], R).

5.6 Proofs of Theorem and Proposition |5.5.8

We shall make use of the following technical lemma, which has been used and proved in [23, Lemma 7.1].

Lemma 5.6.1 Let (21)ren be a sequence of invertible functions in Wt ([a,b],R) that satisfies the following
properties:

a) for all k € N, zi(a) = a and z,(b) =,
b) there exists a > 0 such that 2;(t) > «, for all k € N and for a.e. t € [a,b],
c) the sequence (zj)ren converges to Id in Wht([a,b],R), where Id : t + t.

Then for all x € W™ ([a, b],R), there exists a subsequence of (zoz; ' )ken that converges to x in W™ ([a, b], R)
as k goes to 4o00.

5.6.1 An auxiliary control problem ((CP)

We consider the following extension L of L to the whole space RNT2: for all (¢, 2o, ..., zn) € RNT2,
L(a,xq,...,xN), if t <a,
L(t, 20, ..., oN) == L(t,xg,...,zN), if t € [a, ], (5.9)

L(b,xo,...,l'N), if ¢ > b.
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We introduce also the auxiliary Lagrangian £ : [a,b] x RY x R — R, which is defined by: for all (¢, z,u) €
[a,b] x RV x R

- (N)
L <z 2N 1)( t), ZT(t)> u, if xka)(t) is defined and u > 0,
0t z,u) :=

0, otherwise.
where z = (20,21, ., 2N-1)-
Fix any integer j > 2. We shall consider the following control problem:
b
Minimize J(z,u) := / 0(s, 2(s),u(s))ds,
a

over the arcs z € Wh1([a,b], RY)

and £ — measurable controls u : [a,b] — R such that:

2(s) = f(s,z(s),u(s)), for a.e. s € [a,b], (CP)
u(s) € [J,j} for a.e. s € [a, b],

z(a) = <a zi(a), x*(a)j...,xSkN 2)(a) ,
| 2(0) = (b 2. (b), a:*(b),...,x,(kN_z)(b)>,

where f : [a,b] x RN x R — R¥ is defined by:

f(s,z,u) = uAynz + ubn(s), for (s, z,u) € [a,b] x RY x R,

with by (s) := 1 if N =1, by(s) := (1,0,...,0,28" "V (s)) if N > 1, and Ay :=0if N =1,2 and

0 0 :
00 1 0 -
00010 - -
Ay:=1|- - - - - - | if N>2.
.- - .0 10
-0 1
0
We say that a trajectory/control pair (z, u) is admissible for the problem (CP)) whenever 2(s) = f(s, z(s), u(s))

and u(s) € [%,j} for a.e. s € [a,b], together with z(a) = (a,a:*(a),j:*(a), . ,a:gN_Q)(a)) and also z(b) =

(b2 (0), (1), ., a2 (0)).
Observe that the differential equation Z(s) = f(s, 2(s),u(s)), can be rewritten in an extended form (in the
case N > 2): for a.e. s € [a,b]

0(s) = u(s),
51(s) = u(s)za(s),
9(s) = u(s)zs(s),

(5.10)

Zn—2(s) = u(s)zn—-1(s),
in_1(s) = u(s)zN " V(s).

Moreover any solution (z,u) to the control system in 1} satisfies 29 = u > % a.e., hence zy ! exists and is

Lipschitz continuous with Lipschitz constant bounded above by j.
Using the fact that z, is a minimizer for the problem (CV]), we can deduce that a natural minimizer to the
control problem (CP)) is the trajectory/control pair (zy,us) defined by:

ux(s) :=1 and z.(s) := (s,x*(s),m‘*(s), . ,xiN_z)(s)), for all s € [a, b].
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Lemma 5.6.2 For alle > 0, there exists p > 0 such that, for any admissible pair (z,u) € Whi([a,b],RN)x L

for (CP|) we have:

2 = zellwns < p = lz10 55" — @l < e, (5.11)
mn which z1 = x4 if N = 1.

Proof. The case N =1 is an immediate consequence of Lemma [5.6.1] so we continue considering N > 2.
Assuming that (5.11) is not satisfied, then we can find g9 > 0 and a sequence of admissible pairs for the

control system in 1) say (2F, uF)pen, 2F = (z(’)“, .. ,zf\,_l) such that:

1
2% — zu|lwis < ——  and ||2F o (z8)7! — 2u|lyywam > €0 (5.12)
k+1
We define y* := 2% o (2§)7! and we write yv* = (y&,v¥, ..., vk ).
For each k € N, we have (yf)®) = zF, o (25)~! forall i = 0,..., N — 2, and (y¥)V =1 = 2V (z5)~1 As

a consequence if ¢ < N — 3, we obtain:

kN (2 i k k\— k k )
5D = 28910 < 1|25 0 ()7 = 2Ei lloo + 11251 — 287l oo

1
< sup [ () — 2 ()] + Pl
t—t'|<3ig
M+1
< 1
~ k+17 (5.13)
where M := max{||:v>(j)||OO +1,i=1,...,N —2}.
On the other hand, for i = N — 2, we have:
_ N—2 _ N-2
R Y€ I [
t
< sup [ () o) - 20
tefa,b] Ja
<pp—a sup [V NV,
lt—t'|<
Therefore by uniform continuity of x&N_l)(-) we deduce that:
H) ™2 — 2V —— 0. (5.14)
k—4o00
We now claim that
IH ™Y = lyrm —— 0, (5.15)
k——+o0

Ilc)(N—l) _ xiN—l) o k

(possibly for a subsequence we do not relabel). Since (y 2%)~1, this is equivalent to prove

that:

12V o (B = 2N Y ——— 0.
k——+oo

The sequence (z:é€ )ren satisfies all the hypotheses of Lemma Applying it to the reference arc x = Q:Skal)

confirms the claim.
From (j5.13)), (5.14) and (5.15)), we deduce that for all k£ € N:

21 © (26) " = wllwrm = llyf = @sllwwim ——— 0,
k—+o00

which contradicts (5.12)). O
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Proposition 5.6.3 The trajectory/control pair (z«,u.) is a local WYt -minimizer for (CP)), i.e. there erists
p > 0, such that, for any admissible pair (z,u) for (CP)), we have:

Iz = zllwir < p = J(z,u) = J (20 us).

Proof. Let ¢ > 0 such that z,(-) is an e-minimizer for the W™ topology. We invoke Lemma m to
obtain a real p > 0 such that (5.11)) is satisfied.

Take any admissible pair (z,u) for (CP) such that ||z — 2|11 < p, and define y € Wh([a,b],RY) by

=zo 20_1.
. N.m . . (N-1)
We claim that y; € W™ ([a,b],R) is a solution of the reference problem 1’ Indeed, we have y,; =
x&N_l) o z&l and ylz = Yi+1 = Zi+1 O zal forallz=1,..., N — 2. Recalling the conditions satisfied by z at

a and b, in particular z; '(a) = a, 25 *(b) = b, we obtain:

(yl, . ,y%N_1)> (a) = <3:*, . ,:USKN_I)> (a), <y1, . ,y%N_l)) (b) = <:1:*, . ,mSKN_l)> (D). (5.16)

Using the change of variable ¢ = zy(s), we obtain:

b b xiN) s
/ (s, 2(s), u(s))ds = / L <z<s>,xiN‘”<s>, ”) u(s)ds
b~
= / L (y(0), 2 V(251 0)), 201 (1) 2™ (251 (1)) dt
b
_ / L (L@, V0, @) .

We recall that, from (5.11]), we have ||y1 — z«||y~n.m < €. Since x,(-) in a e-minimizer for the problem (CV)).
It follows from ([5.16)) that:

/bL(t,yl(t),gl(t),...,y§N><t))dtz/bL(t,x*(t),:z;*(t),...,xim(t))dt.

We deduce that:

which concludes the proof.

5.6.2 Application of the maximum principle to (CP)

We shall employ the maximum principle [45, Theorem 22.26] to the optimal control problem (CP)) and the
reference minimizer (z,,us). In our case it is easy to see that all the assumptions of [45] Theorem 22.26|
are satisfied and the only detail which requires particular attention is to prove the appropriate Lipschitz
regularity of £.
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Lemma 5.6.4 Ife, >0 and k : [a,b]x |0, +00o[— Ry are given by hypothesis (S, ), then for a.e. t € [a,b]
and for all o €0, +0o0[, the application:

R x RVN-1 5 R,
V- ™) (5.17)

(s,acg,...,acN_g)Hz(s,xo,...,xN_g,x* 1)(t),ax* (1)),

is Lipschitz continuous on B((t, Tu(t), ...y N2 (1)), 5*> with Lipschitz constant k(t, o).

Proof. Take o €]0,+oc[ and any t € [a,b] such that (S;,) is satisfied and two vectors z, w in the ball
B((t, z«(t), . .. ,mSkN_Q) (t)),ex). We can always assume that zy < wy.
Using (S, ), if both z¢ and wy are in [a, b], the inequality is easily verified.

If 29 < wg < a. We have:

’E <z, 2N (1), o™ (t)) _y (w, 2N (1), o™ (t))

= ‘L(a, 21y ZN—1, x&Nfl)(t), inN) (t)) — L(a, Wi, .v o, WN_1, x&Nﬁl)(t), U$5<N) (t))

< k(t,O’)’(CL, 21y - ')ZNfl) - (a)wla s 7/wN71)|)
< k(t,o)|z —w|.

)

)

If zog < a <wy < b, we have:

)E(z, 2N V@), gz (t)> - Z(w, 2N V@), gzl (t))

i

= ‘L(a, Z1 e ZN—1, x&Nﬁl)(t), Ua:SkN)(t)) — L(wo, Wiy en, WN_1, xiNfl)(t), ngN) (t))

< k(tva)‘((% 21y - ')ZNfl) - (w07w17 s 7/wN71)|7
< k(t,o)|z —w|.

If 2o < a < b < wy, we have:

’E (z, xSKN_l) (1), UxiN) (t)) - L (w, xiN—1) (1), JwiN) (t)) l,

= )L(a, 2., zN_l,xSkN_l)(t),aa:&N)(t)) — L(b,wl, S WN—1, x&N_l)(t),aa:S‘N)(tD ‘,
< k(t, a)|(a,21, ‘e ,ZN,1) — (b, Wiy ... ,wN,1)|,
< k(t,o)lz —w|.

The cases a < 29 < b < wp and a < b < 2y < wp can be proved in a similar way.

We are now ready to show the required Lipschitz regularity of /.

Lemma 5.6.5 There exists a L X Bi-measurable function k [a,b] x [%,j} such that t — %(t,l) €
L([a,b],Ry), and for almost every t € |a,b], we have:

21,729 € B(2u (), e0),u € R = [U(t, 29,u) — (¢, 21, u)| < k(t,u)|z2 — 21].

Proof. Define: .
k(t, ::k:<t,) .
(tu) o= k(t )
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The function k is £ x Bj-measurable and ¢ — k(t,1) = k (t,1) is in L!([a, b], R}.) by hypothesis (S, ).
Take any 21, z2 in B(24(t),£4) = B<(t,x*(t), . ,:L“&N*Q)(t)),e*) and u € [%,]} Pick any ¢ € [a,b] at which
the Lipschitz continuity of (S,,) holds. From Lemma we have:

: <Zz’x(N_1)(t): x(ji)(t)) ~L (zl,x(N‘”(t), x(N;(t)> ‘

1 ~
< k(tj)u |21 — 29| < k(t,u) |22 — 21
u

’e(ta ZQau) - g(t7z17u)| <u

For n > 0, we define the Hamiltonian of the problem (CP)):
H''(t,z,p,u) =p- f(t,z,u) —nl(t, z,u)
(N—1

= U(po + p12z2 + P223 + ... PN—22N-1 + PN-1Tx )(t)) —nl(t, z,u).

Applying [45, Theorem 22.26] for each integer j > 2, there exist an arc p/ = (pg, e va</-1) € Whi([a,b], RY),
a scalar n7 € {0,1} and a set of full measure E; C [a,b] such that the following properties are satisfied:

i) The nontriviality condition: (n7,p’(t)) # 0, for all t € [a, b],
ii) The adjoint inclusion:

—pI(t) € OTH(t, -, p? (t),us(t)) o=z, (), for all t € Ej, (5.18)

iii) The maximality condition:

H (t, 2,(), p? (), ua () = sup H" (L, z.(t),p’ (t),u), for all t € E;. (5.19)

ue[5.d]

(Note that for this problem, the transversality condition (p7(a), —p7(b)) € R?¥ does not provide useful

information.)
From the maximality condition (|5.19)), for all u € H, j] and every t € F; we have:

u

(N)
u@d () + p{ (. (8) + ..+ Pl (02D (0) - f(tz*<>“h <w> <
P + ] (Od2(6) + ..+ P}, (0200 — e (820,247 0)

which implies that for any u € [Jl, j] and every t € Ej:

(V)
niL (t,x*(t),...,w> WL (taa(t),.... 2N (0) >

u

(5.20)

(u = 1)(pg (1) + pl (O)ae(t) + .. + phy_ (D2 D (1)),

Proof of Theorem [5.5.11
We need a lemma which allows us to handle the abnormality phenomenon (77 = 0) that can arise when we

apply the maximum principle.
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Lemma 5.6.6 Assume that there exists an arc p = (po,...,pn_1) € WHi([a,b],RY) such that:

p(t) #0, for allt € [a,b], (5.21)
p(t) - f(t,z«(t),1) =0, for a.e. t € [a,b], (5.22)
—p(t) = ALp(t), for a.e. t € [a,b], (5.23)

where AL, is the transpose of the matriz Ay. Then N > 2, and z.(-) is a polynomial function with degree at
most N — 1.

Proof. We introduce the following control system, in which v(:) is a control function in L!([a, b], R):

{u')(s) = Anw(s) +v(s)f (s, 2(s), 1) for a.e. s € [a, b], (5.24)

w(a) = 0.
Take any solution (w,, ) to (5.24). For almost every s € [a, b], we have:
wy(s) - p(s) = Axwy(s) - p(s) +v(s)f (s, 2(5), 1) - p(s),

Using successively (5.23]) and (5.22)) gives us:

wy(s) - p(s) = Avwy(s) - p(s) = —w,(s) - p(s), for a.e. s € [a,b].

This implies that %(p -w,) = 0 a.e. and since w,(a) =0, p-w, =0 in [a, b]. Since p(s) # 0 for all s € [a, b],
for any v € L'([a, b], R) the arc w,(-) remains in the hyperplane {w € RY : w - p(s) = 0}, for all s € [a, b].
Therefore system is not reachable at any time s € [a, b].

Solving system , the reachable set at time b is:

L b (b—s)ANn . 1
R(b) = {/ U(s)e F(5,2(5),1)ds : v €L ([a,b],R)}.

a

From what precedes, p(b) # 0 and for any v € L'([a, b],R),

b
[0 -0 g5, 5.05), s = 0.
In particular, choosing v : s+ p(b) - e®=)AN f(s, 2,(s),1) yields:
p(b) - P4 f(5 2.(5),1) = 0, for all s € [a, b]. (5.25)

If N = 1, by definition, we have e®=41 f(s, 2,(s),1) = 1 and (5.25) gives that p(b) = 0, which is a
contradiction. If N = 2, by definition, e®=®42 f(s, z,(s),1) = (1,4,(s)) for all s € [a,b]. From we
have that:

po(b) + p1(b)z.(s) =0, for all s € [a,b].

Since p(b) # 0, this implies that p;(b) # 0. We obtain i.(s) = _5(1)%23 for all s € [a,b], which implies that

Z4(+) is a polynomial function with degree 0 or 1.
Assume now that N > 2. A standard development of the exponential function e(’=5)4~ shows that for every
s € [a,b]:

N-2, N=3 g
-9 (s, 2,(3),1) = (1, by, 3 ¢ x£k+2><s>,...,x£’v‘”<s>> -
k=0 ' k=0 '



From equation ([5.25)), we first deduce that (pi(b),...,pn—1(b)) # 0 since p(b) # 0. Moreover, differentiating
both sides in ([5.25)), we obtain that for almost every s € [a, b]:

(b—s)N—3

_ N2
(Pl(b)(b)! +P2(b)m

(N —2) + o+ pv—2(b)(b - 5) +pN1(b)> 2N (s) = 0.

(N

Observe that the term that multiplies x; )(s) is a linear combination of linearly independent polynomials

(N

with coefficients which cannot be all simultaneously zero. This implies that x; )(s) = 0 for almost every
s € [a,b], hence z,(-) is a polynomial function whose degree is less or equal to N — 1.

a

Assume first that, for some jo > 2, 770 = 0. Then by nontriviality, p7°(¢) # 0 for all ¢ € [a,b]. Using (5.18)),
we have that:
—pPo(t) = ALp7o(t) for all t € Ej.

The maximality condition (5.20) in the abnormal case combined with the continuity of the functions
» . N-1 .
po(),dn(), ..V () gives:

piO(t) - f(t, z(t),1) = 0, for all t € [a, b).

Then invoking Lemma we deduce that z.(-) is a polynomial function whose degree is at most N — 1.

We now assume that 7 = 1 for all j > 2 and to complete the proof of Theorem we employ a compactness
argument. For every integer j > 2, we denote a; := (|[p?]|oc + 1) and define (p7,77) = a;l(pj,nj). From
Remark we deduce that for a.e. t € [a, b]:

97 ()] < [AND? (0)] + o 'k (t, 1) < [[An ]| + K(t, 1), for all j > 2, (5.26)

where || An| is the matrix norm induced by the vector norm ||(po,...,pn—1)| = max;—o_. ~N—1 |pil-

Estimate shows that the sequence (ﬁj)jzz is equi-integrable. Then there exists (p,7) € Wb ([a, b], RV)x
[0,1] such that, for a subsequence we do not relabel, (57);>2 converges to p in L*°([a, b], RY), (f)j)jzg con-
verges to p weakly in L'([a,b],RY) and (777);52 converges to 7. We define (p,n) := (p,0) if 7 = 0 and
(p,n) == (7~'p,1) if 7 > 0. We also define & := mj22 E;, which is a set of full measure as an intersection of
such sets.

Fix any ¢t € £ and u €]0, 4+00[. There exists jo > 2 such that, for all j > jo, u € [1/4,j]. Then for all j > jo:

(N)

n’L (t,x*(t), e T u(t)) u—niL (t,$*(t),...,x£N)(t)) >

(u—1)(pg(8) + 0] ()i (t) + ...+ pf_ (DN (1)),

Multiplying both sides of the inequality by 04]-_1 and passing to the limit as j goes to 400, we deduce that:

A0

iL (t,x*(t),..., )u—ﬁL (tau(t),.... 2V (1) =

(5.27)
(w = 1)(Fo(t) + pr()ia(t) + ... + Py—1 (D)2t (2)).
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If 7 =0, gives
ﬁ(t) ’ f(t, Z*(t)v 1) = 0. (528)

If 7 # 0, dividing both terms in (5.27) by 7, we deduce that (p,n) satisfies the maximality condition ([5.20))
for all t € £ and every u €]0, +00].
It remains to prove that the adjoint inclusion is also satisfied by (p, 7). Define the function r;(t) := |a; ' —

J
7|k(t,1), and note that (5.18)) gives:
pI(t) € =0T H(t, 2 (t), 57 (1), 1) + B(0,75(t)), for ae. t € [a,b],

with |7} e 0. Invoking [84, Thm 2.5.3], we deduce that p(t) € —9CH(t, z.(t), p(t),1) for a.e.
J—+0o0

t € [a,b], implying that p satisfies (5.6)). If 7 # 0, we divide this differential inclusion by 7 and we obtain
that (5.18) is satisfied by the pair (p,n), for a.e. t € [a,b]. Dividing by 7 both terms in (5.27)), we conclude
that is satisfied for all u €10, +oco[ and a.e. t € [a, b].

If ) = 0, then p satisfies p(s) = —ALp(s) for a.e. s € [a,b] and ||p||oo = 1, which implies that p(s) = p(s) # 0
for all s € [a,b]. Recalling (5.28]), we invoke Lemma and deduce that x.(-) is a polynomial function
whose degree is less or equal to N — 1.

Proof of Proposition [5.5.8

The proof of Proposition follows along the same lines of the proof of Theorem [5.5.1] except that,
when we apply the maximum principle to the auxiliary optimal control problem, the maximality condition
H%*’ =] (from (S,.)"). The extension of this property to the set {u €]0,+oo[} is a
consequence of (H) invoking a well known convexity argument (cf. [60] [84]).

is valid only for u € |

5.7 Proof of Theorem [5.5.2

5.7.1 An auxiliary control problem (CP2)

Employing a standard ‘truncation argument’ which allows to extend local properties of a given function to
global ones (cf. [84]), we introduce the Lagrangian L : [a,b] x RY x R — R U {+o0},

E(Sa Zo, .-+, TN-2, xiN_l) (t)7 xN)v
. N-2
206, (5,501 2-5)s o) = (3,20, ) — (120,22 0) < 2
z<7r(s, X0y .oy TN—2), xka_l)(t), xN), otherwise,
_ (N-2) (5,20, —2) = (b2 (8),t” ~ 2 (1) ot
where m(s,zg,...,xn—2) := (t,z(t),..., 25 ) +e¢ ey is the projection of
(5,20, @ N —2) = (t2 (£) oo™ 7 (1))
(s,xq,...,xN_2) over the sphere of center (¢, z«(t),... ,wka_2)(t)) with radius ¢, and L is the extension of the
Lagrangian L to RV*2 defined as in 1) The function L is clearly Borel measurable, (s, zg,...,TN_2,ZN) —
L(t,(s,x0,...,2N—2),xN) is lower semicontinuous for all ¢ € [a,b]. Moreover L satisfies a global (stronger)
version of condition (S3°) iii). More precisely, for every (¢, (5, Zo,...,Zn—2),2N) € E X RN x R, we have
_ _ N-— o _
|g| §C<‘(1ax17"'7$N—27$>(k 1)(t))|+L(t7 (87x077$N—2)1xN)+)\|xN|)) +d(t) (529)
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for all ¢ € O L(t, (5, %o, ..., EN_2), TN).

(5,205--»TN—2)

Fix any integer j > 2. We set £ : [a,b] x RN x R = R U {+00} by: for all (¢,z,u) € [a,b] x RN x R,

~ (N)
~ L (t, z, u(t)) u, if az(kN)(t) is defined and u € [1/4, j],
0t z,u) ==

400, otherwise.

We also consider the following control problem, which differs from (CPJ) since it allows to consider extended

valued Lagrangians and incorporates the ‘control constraint’ in the integral term:

(

b/\
Minimize J(z,u) ::/ 0(s, z(s),u(s))ds,

over arcs z € Whi([a, ], RY)

and L-measurable functions u : [a,b] — R such that: (CP2)
2(s) = f(s,z(s),u(s)), for a.e. s € [a,b],
2(a) = (a,2+(a), ix(a), . .., 2N "D(a)),

2(b) = (b, 2, (b), 2.(b), ..., 2N "D (b)),

Observe that 7 is an extended valued function (the value 0o might arise for some t € [a,b], even if u €
[1/4,7]), so we cannot invoke [45, Theorem 22.26]. However, the structure of the function f allows us to
employ the hybrid maximum principle [44, Theorem 5.3.1].

The definition of ¢ has the following consequence: any admissible trajectory/control pair (z,u) to with
a finite cost is also an admissible trajectory/control pair for . This gives the same minimizing property

to the pair (2, u) for the problem (CP2).
Lemma 5.7.1 The pair (z,us) is a local Wt-minimizer for (CP2)).

We check that all the relevant hypotheses of [44, Theorem 5.3.1] are satisfied. First of all, we observe that the
function f is Lebesgue measurable in the time variable ¢, and continuously differentiable with respect to (z, u).
We claim that | (t,-,-) is lower semicontinuous for all ¢ € [a, b].

Fix any t € [a,b]. We can assume that :cgN)(t) exists otherwise the lower semicontinuity is an immediate
consequence of the definition of £. Take any z = (20,...,2v_1) € RY and v € R. Assume first that

u €] —o00,1/j[ or u €]j,+o0o[. Since | — 00, 1/j] and ]j, +oo[ are open subsets, the definition of 7 yields:

~ ~

400 = lim mf g(t, Z,, Ul) Z E(tv Z, U) = +00.
(2" u)—=(z,u)

Now assume that u € [1/4, 5] and zg € ]a, b[. Recalling that L satisfies (S53°) i), we have:

~ ~

liminf £(¢,2',u') > lim inf 0t 2 ),
(#'u)—=(2,u) {(&"u") = (z,u) 1w €[1/5,5]}
(N)

~ Wt
= lim inf Lt 7, L/() o,
{(Z W)= (zu) v €ll/5,5]} u

~ (V)
u




On the other hand, if u € [1/4,] and 2o < a or 2y > b, then using the definition of L and (82°) i), we once
again obtain that:

hmlnf K(tz u') > Z(t,z,u),

confirming the claim.

We proceed to check that the appropriate growth conditions are satisfied by f and ?. From the global version
of (S2°) iii) (see (5.29)), there exist strictly positive constants ¢, A and d € L'([a,b], Ry) such that, for all
(t7 (§’j07' : 'aijQ)vl‘N) € Ex RN X R?

~

|C| < C<|(17,’f17 B 7jN727I>(kN71)(t))’ + L(t’ (57 Zo, - - - ,i’N,Q),.TN) + )\|.’EN|> + d(t)’ (530)

for any ( € 0 sxo’ N 2E(t, (5,Zo,. .., TN-2),TN).
Take a bounded subset K of RY. Let (¢, z,u) € [a,b] x K x R such that £(t,z,u) < +00. We have:

IV=f(t 2, u)]| = ul[An]] < G AN]-
We claim that there exist cx > 0 and d € L!([a, b],R), such that, for all (v,) € 8(12 U)E(t z,u), we have:

(L4 [Vuf(t 2, u)])
1+ (4]

< ek (If(t 2 w)] + 0t 2,u) + di (1))

Observe that it is enough to prove that for all v € ﬁfZ(t, z,u):
(L + [ Vaf (2 w)ll) < cxc (1f(E 2 0)] + 0t 2, u) + dk (1)) (5.31)

(N

Fix any v € 0P(t,z,u). We can find ¢ € 8 L o QZ(t,z,x* )(t)/u> such that v = u¢. Moreover, from

(5.30) we obtain (recall that z = (zp,...,2N—-1 ))
’C‘ < C(’ (17Z2> <oy AN-1, 1:5<N71)(t)> ’ +

~

(5.32)
L(t, (20, o), 2Vt )/u) + %m&m(t)y) +d(t).

Note that since z € K and 2" " (+) is bounded on [a, b], for some constant ¢ > 0, we also have:

L4 [Vuf (2,0 = 1+ [Anz + b)) < 1+(1, 25, ano1, 28" V()] <@

Hence from ([5.32)) we have:

I+ 1906zl < 2 (17, 20)] + 20020 + N2 @)+ Lds)).

Recalling that ¢ — )\|$£N) (t)] is in LY ([a, b], R) since z, € WN™([a, b],R), we define df (-) := % (- )+)\|:1:(N)( )|
and cg := ¢c, confirming (|5.31)).

To better handle the abnormal case that can arise from the maximum principle, we need some information
about the first coordinate of 8é’§u)£(t, 2«(t),1) and 8(LZ u)ﬁ(t,z*(t), 1), which are provided by the following
lemma.

Lemma 5.7.2 1) For a.e. t €]a,b|, if (v,9)) € o, U)E(t z«(t),1) then v = 0.

2) For a.e. t €la,b|, if (v,¢) € 8{; u)ﬁ(t 24(t), 1) then |v| < B(t).
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Proof. 1) Recalling the characterization [84, Theorem 4.6.2] of asymptotic limiting subgradients, there exist

a sequence (z°,u;);en such that £(t,2%,u;) < +oco for all i € N and (2%, u;) P (24(t),1), a sequence
1—+00

(h;)ien of positive real numbers such that h; | 0, and a sequence (v;,1;)ien in RVT! for which the following

property is satisfied:

Vi € N, by H(vi, i) € 0F Ut 2 w) and (v,10) —— (v,9)).

i——+00

~ . (N)
For each i € N, there exists a vector ¢; € 9% L (t, 2, x*T(t)) such that hi_lui = u;(;. Also, from

(871'07'“’1:]\772)

the definition of L and hypothesis (83°) iv) for L, there exists 7; € N for which:
ICi] < B(t), for all i > .

Hence we obtain:
|v| < limsup u;h;|¢;| < limsupu;h;5(t) =0,

1——+00 1——+00

which implies v = 0.

2) There exist a sequence (2%, u;)ien such that (2%,u;) — (2.(t),1) and £(t, 2%,u;) —— 0(t, z4(t), 1)
1—400 1—400

and a sequence (v;,¥;)ien in RVT! satisfying:

o~

(vi, ;) —— (v, v) and (v, ;) € 8(1;u) (t, zi,ui), for all 7 € N.

1——+00

~ . (N)
As in the proof of 1), for all i € N, there exists (; € 8(P L (t, 2t W) such that v; = u;(;. From

5,20, TN —2) Us

(S3°) iv), there exists i; € N for which:
ICi] < B(t), for all i > iy.

Hence we obtain:
lv] = lim uG| < B(2),
1—+00

which concludes the proof of Lemma

For n > 0, we define the Hamiltonian of the problem (CP2):

—~ ~

Hn(thvpvu) =Dp- f(t,z,u) - nf(ta'zyu)

N—1
= U(Po + p12o + P23+ ... PN_2ZN_1 + prlek )(t)) —nl(t, z,u).

Applying [44, Theorem 5.3.1] to 1' for each j > 2, there exist an arc p/ = (pg, .. 7p]{771) € Whi([a,b],RY),
a scalar n7 € {0,1} and a set of full measure E; C [a, b] such that the following conditions hold:

i) The nontriviality condition: (n7,p’(t)) # 0, for all t € [a, b],
ii) The maximality condition: for all u € [1/7, j] s.t. L(t, z«(t),..., xgkN_l)(t), 2V (t)/u) < 400,
H (8, 2.(t), p7 (£), ux(£)) < H" (¢, 24(8),p? (t), ), for all t € B}, (5.33)
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iii) The adjoint inclusion: for all ¢t € Ej;,
5 N T i i L
pI(t) € co {w RV . (w + ATpI(E), f(t, 20 (),1) - p (t))) € O It 2 (1), 1)} : (5.34)

where 917" U(t, 2,(), 1) = 92 ) Ut 2u(t), 1) if 07 = 0, 9 U(t, (1), 1) if 7 = 1.

In particular from (5.33)), we obtain the following equation: for a.e. ¢t € E; and every u € [1/7, j] such that
L(t, 2@, a0, 2™ (1) /u) < 400,

u

nIL <t z.(t), ..., ( )> u—nIL(tza(t), ..o (1) > (5.35)

(u—1)(pd(t) + Pl (D)a(t) + ... + P (D2 V(8)).

Observe that condition l} can be expressed using L instead of L since, from the definition of E, we have
7 (N=2) 0y 2V @) (N=1) ) V(1)
that L(t, (t,2z(t),..., a5 7(t), == ) = L t,zu(t), ..., 2 (8), = ).

5.7.2 Compactness argument

Let I be the set I := {j > 2,77 = 0}. Two cases may occur: I is either infinite or finite.

Assume first that I is infinite. Then we can extract a subsequence (we do not relabel) such that (p?,n7);>2

satisfies n; = 0 for all j > 2. Then by nontriviality, p?(¢) # 0 for all j > 2 and all ¢ € [a,b]. For all j > 2,

we define p7(t) := H’;éﬁ&. Using (5.34) and property 1) of Lemma [5.7.2) we have that:

157 (t)] < |ANHI ()] < || An]| for all j > 2 and for all t € £,

where € := ;>0 Ej is a set of full measure. This implies that the sequence (p7)j>2 is equi-integrable. Then
there exists (p,7) € W1([a, b], RY) x {0} such that, for a subsequence we do not relabel, (57);>2 converges
to p in L®([a,b],RY), (p7);>9 converges to p weakly in L'([a,b],RY) and (777);52 converges to 0. Since
p7(t) = —ALpI(t) for all j > 2 and a.e. t € [a,b], we invoke [84, Thm 2.5.3] and obtain that p(t) = —ALp(t)
for a.e. t € [a,b]. Recalling that ||p|lcc = 1, this implies that p(¢) # 0 for all ¢ € [a, b].

Passing to the limit in , we have that for almost every t € [a, b],

(e 250)
(u—1)(p(t) - f(t,24(¢),1)) <0, for all u €]0, 400 s.t. L|t,z(t),..., | <t

Then, invoking hypothesis (S3°) ii), we obtain p(t) - f(t, 2.(t),1) = 0 for a.e. t € [a,b], and by continuity
of p(+), x«(+), .. .,x&Nﬁl)(-), we derive that p(t) - f(t,24(t),1) = 0 for all ¢t € [a,b]. Using Lemma we
deduce that z.(-) is a polynomial function whose degree is less or equal to N — 1.

Assume now that I is finite. Extracting a subsequence if so needed, we can assume that n; = 1 for all j > 2.
We define aj := ||p?||oc + 1 for all j > 2 and (p7(t),77) :== ozj_l(pj(t),nj). We obtain that, for a.e. ¢ € [a, ]

~

(1) € co {w e RY + (w+ AR (1), f(t, 2(0),1) - 57(1))) € o 0k 01t 2 (), D)}
As a consequence of property 2) of Lemma we deduce that:
/(O] < 1ANI + o' B() < [[AN] + B(2), for ace. ¢ € [a,b].
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This implies that the sequence (p7);>2 is equi-integrable. Then there exists a pair (p,7) € W ([a,b],RY) x
[0,1] such that, for a subsequence (we do not relabel), (57);>2 converges to p in L>®([a,b],RY), (p7);>2
converges to p weakly in L' ([a,b],RY) and (777);>2 converges to 7.

Employing a standard argument (cf. [84) pages 250-251]), we obtain that for a.e. t € [a, b]:

B(t) € co {w e RN+ (w+ ATp(1), f(t,2(0),1) - 5()) ) € 70,0t 24(8), 1)}

If 7 = 0, we proceed as in the first case, and conclude by Lemma that z.(-) is a polynomial function
whose degree is less or equal to N — 1. If 77 > 0, then p := 777 !5 satisfies (5.7) and of the theorem.

5.8 Proof of Theorem [5.5.6

Regularity of the minimizer. From Theorem [5.5.1]or we deduce that x,(-) is a polynomial function
or that the Weierstrass condition is satisfied. If z.(+) is a polynomial function, then a:,(kN)(-) is obviously
essentially bounded on [a,b]. We therefore assume without restriction that condition is valid for an
arc (po,...,pn—1) € Whl([a,b],RY). From Corollary m condition is satisfied for the same arc

<p07 <. 7PN—1)-

Recalling the definition of A and 9, A, implies that for a.e. t € [a, b]:

Ltz (t),...a™ (1) = (po(t) + pr()ire() + ...+ py_1(DaN V(1) € 9,A(2, 2 (1), 1). (5.36)

Let @ : [a,b] x R — R be a map such that for a.e. ¢t € [a, ]

Q(t, 2™ (1) = L(t,zu(®)..... 2™ (1)) = (po(t) + pr(B)a(t) + ...+ py_a (B2l Y (B)).

We set M :=1+ ||po + p1&« + . .. +pN,1:c>(kN71)||oo. From the growth condition 1) we can find a set of
full measure £ C [a, b], and a constant R > 0 satisfying:

V(t,§) € E xR, Q(t,€) € 0, A&, 1), [€] = R = |L(t, (1), ....§) — Q&) = M,
that is to say:

V(t,€) € £ X R,Q(t,€) € OA(LE D), €] = R = |po(t) + pr(D)in(t) + ...+ pyoa (Bl (1) > M.
From the definition of M, we immediately deduce that |:E>(,<N)(t)| < R for a.e. t € [a,b], which concludes the
proof of the theorem.
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