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Abstract

The aim of this thesis is a comparison of the data from direct numerical simulations
(DNS) of a three-dimensional homogeneous isotropic turbulent flow with recent analytical
predictions obtained by means of the functional renormalization group (FRG) approach.
The main results of the thesis concern the spatio-temporal correlation function of velocity,
which is expected to decay as a Gaussian function of time at small time lags and as an
exponential at large time lags. The numerical results show that the two-point correlation
function of the Fourier modes of velocity indeed decays as a Gaussian in time at small
time lags. The same behavior is observed for triple velocity correlations, which can be
linked to the spectral energy transfer function. However, the behavior at large time delays
is indiscernible due to the low-level magnitude of the correlation functions.

Another important result of the thesis concerns the spatio-temporal correlations in
passive scalar turbulence. The simulations of a scalar in a Navier-Stokes velocity field de-
monstrate a Gaussian decay as well for the scalar correlation function at small time delays,
similar to the velocity correlation. The influence of the velocity temporal correlations on
the scalar is studied in simulations with synthetic velocity fields. In the case of a random
white-in-time velocity (also known as Kraichnan’s model), the scalar correlations demons-
trate a purely exponential decay in time. Adding a finite correlation time to the synthetic
velocity leads to the emergence of a portion of Gaussian decay at small time lags in the
scalar correlation function, while it turns to the exponential at time delays larger than
the typical velocity correlation time. These results reveal the crossover between the two
temporal correlation regimes, as predicted by the FRG.

The last part of the thesis presents a preliminary study of the shell model of ran-
dom passive scalar advection with the use of the FRG approach. The normal scaling of
the second-order scalar structure is obtained, and the possible directions for studying the
anomalous scaling are discussed.

Keywords: Fluid mechanics, Turbulence, Numerical simulations
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Résumé

L’objectif de cette thèse est une comparaison des données de simulations numériques
directes (DNS) d’un écoulement turbulent isotrope homogène en trois dimensions avec des
prédictions analytiques récentes obtenues au moyen de l’approche du groupe de renorma-
lisation fonctionnel (FRG). Les principaux résultats de la thèse concernent la fonction de
corrélation spatio-temporelle de la vitesse, qui devrait décroître comme une fonction gaus-
sienne du temps aux petits décalages et exponentiellement aux grands décalages temporels.
Les résultats numériques montrent que la fonction de corrélation à deux points des modes
de Fourier de vitesse décroît effectivement comme une gaussienne dans le temps aux petits
décalages temporels. Le même comportement est observé pour les corrélations triples de la
vitesse, qui peuvent être liées à la fonction de transfert d’énergie spectrale. Cependant, le
comportement aux grands décalages temporels est indiscernable en raison des amplitudes
faibles des fonctions de corrélation.

Un autre résultat important de la thèse concerne les corrélations spatio-temporelles
dans la turbulence du scalaire passif. Les simulations d’une quantité scalaire dans un
champ de vitesse gouverné pas l’équation de Navier-Stokes démontrent également une
décroissance gaussienne pour la fonction de corrélation du scalaire à de petits décalages,
similaire à la corrélation de vitesse. L’influence des corrélations temporelles de vitesse sur
le scalaire est étudiée dans des simulations avec des champs de vitesse synthétiques. Dans
le cas d’une vitesse aléatoire delta-corrélée en temps (également connue sous le nom de
modèle de Kraichnan), les corrélations du scalaire démontrent une décroissance purement
exponentielle dans le temps. L’ajout d’un temps de corrélation fini à la vitesse synthé-
tique conduit à l’émergence d’une partie gaussienne à de petits décalages temporels dans
la décroissance de la fonction de corrélation scalaire, tandis qu’elle devient exponentielle
à des décalages temporels plus grands que le temps de corrélation de vitesse typique. Ces
résultats révèlent la transition entre les deux régimes de corrélation temporelle, comme
prédit par le FRG.

La dernière partie de la thèse présente une étude préliminaire du modèle en couches de
l’advection aléatoire du scalaire passif avec l’utilisation de l’approche FRG. La loi d’échelle
normale dans la fonction de structure de second ordre du scalaire est obtenue, et les direc-
tions possibles d’études des lois d’échelle anormales sont discutées.

Mots clés : Mécanique des fluides, Turbulence, Simulations numériques
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Introduction

T urbulence is a complex and ubiquitous phenomenon. One of its most stunning features
is its universality. At first sight, fluid flows can be drastically different, varying from pla-
netary storms and accretion of galaxies to a jet from the water tap, or a flow behind a
fish - all share some common universal statistical properties at small scales. Universality
is determined by the multiscale dynamics of turbulence in three dimensions: the eddies of
various sizes form a hierarchy of scales, in which the energy cascades from the large scale,
corresponding to the scale of energy injection, towards small scales, at which the viscous
dissipation occurs. If these two typical length scales are strongly separated, there exists
a range of intermediate scales, called the inertial range, over which the energy cascade
develops. The viscous dissipation in the inertial range is negligible, and the large-scale flow
imposed by the energy injection can be considered as slowly varying in space and time,
so the statistical properties in the inertial range become independent on the details of the
mechanisms of energy injection and dissipation, i.e. they become universal. By assuming a
standard scale invariance in the inertial range, Kolmogorov in 1941 proposed a statistical
description of turbulence, which is one of the most important milestones in turbulence
research. In particular, it explains the emergence of power laws in the statistics of velocity
increments, which were observed experimentally.

However, an analytical deduction of the observed power laws from first principles, which
in the case of fluid flow is the Navier-Stokes equation, is still a challenge. Various analytical
approaches describing the statistical properties of turbulence have been developed over the
years (Frisch, 1995 ; Zhou, 2021). Significant advance in this direction has been achieved by
applying the functional renormalization group (FRG) approach to the problem of turbu-
lence. Historically, the renormalization group methods have been largely used in the study
of critical phenomena. Turbulence shares some common features with critical phenomena
such as universality and emergence of power laws. However, early attempts of application
of perturbative RG methods to Navier-Stokes equations encountered obstacles related to
the choice and limitation of a small parameter needed for a perturbative expansion. The
functional reformulation of the RG method allows to avoid this problem as it enables a
non-perturbative analysis. Another significant advantage of FRG is that it provides a sta-
tistical description of turbulent flows in terms of 𝑛-point space-time Eulerian correlation
functions of the hydrodynamic fields.

Although understanding the spatio-temporal statistical properties of turbulence is es-
sential in many problems in fluid mechanics, they are studied much less compared to the
purely spatial properties. They are important, for instance, for developing closure schemes
in statistical and numerical models of turbulence or for data analysis of experimentally
measured turbulent signals. In addition, the knowledge of the space-time correlations is
needed in any problem involving some multiscale dynamics in fluid flows, such as the
propagation of waves in turbulent media or turbulent particle dispersion.

Another important tool in turbulence research are direct numerical simulations (DNS).
The word "direct" here means that the simulation does not rely on any model parametrizing
small-scale dynamics and is based purely on the Navier-Stokes equation solved over a large
span of scales from the forcing scale to the viscous dissipation scale, which is necessary
to obtain an accurate description of a turbulent flow. Its main limitations consist in its
restriction to simple geometries and high computational costs. The maximal Reynolds
number accessible in DNS is mainly limited by the computational resources. However, with
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the recent development of high-performance computing facilities, it is already possible to
reach Reynolds numbers comparable to the ones in laboratory experiments of the developed
turbulent flow. The main advantage of DNS is that it allows to compute a large variety of
statistical properties of a flow, such as spectra, velocity increments, correlation functions,
probability distribution, and others.

The aim of the present thesis is to combine recent theoretical results obtained within
the FRG framework with the numerical data collected from DNS, which is possible thanks
to the computational power of supercomputers. The main results consist in the validation
of the FRG results for the space-time correlation functions with the use of DNS and
establishing the range of applicability of the theoretical results to numerical simulations.

Structure of the manuscript. This manuscript consists of five chapters. The chapter 1
presents a summary of previous works dedicated to the FRG analysis of the spatio-temporal
correlation functions in turbulent flows. It contains a schematic description of the main
steps of the derivation with a particular focus on the points that are essential for un-
derstanding the results and their numerical validation. At the end of the first chapter, an
interpretation of the FRG results in terms of single-particle dispersion is proposed. The
chapter 2 presents the pseudo-spectral DNS solver used in this study. In particular, the me-
thod implemented for the computation and averaging of space-time correlation functions
is described.

The two following chapters contain the results of the numerical simulations representing
the main contribution of this thesis. Chapter 3 concerns the two- and three-point space-time
correlation functions of velocity, which are compared with the FRG prediction. In addition,
the correlation function of the velocity moduli is studied, which is not covered by the
theoretical predictions. The final section of the third chapter is dedicated to the numerical
validation of the FRG result for the kinetic energy spectrum in the near-dissipative range,
which is also estimated within the FRG framework.

The next chapter 4 extends the study of the Eulerian correlation function by adding to
the simulated flow a passive scalar, whose dynamics is governed by the advection-diffusion
equation. The space-time correlation functions of the passive scalar are measured in the
velocity field governed by the Navier-Stokes equations, as well as in random synthetic
velocity fields. The synthetic velocity field is implemented with an approximately white-
in-time covariance, which enables comparison with the theoretical results for Kraichnan’s
model of random advection, and with a correlated-in-time covariance. These two types
of synthetic flow allow to study the influence of the velocity temporal covariance on the
behavior of the scalar space-time correlation functions.

The following chapter 5 contains a preliminary analytical FRG study of the shell model
of random passive advection. It gives a more detailed description of the steps of the FRG
derivation, which is considerably simpler in the case of this shell model compared to the
Navier-Stokes equation, and allows to access the scalar structure functions. Finally, the
main text of the manuscript ends with general conclusions and perspectives.

Part of the results presented in this thesis have been published in the following articles:
— Gorbunova, A., G. Balarac, M. Bourgoin, L. Canet, N. Mordant, and V. Rossetto

(2020). “Analysis of the Dissipative Range of the Energy Spectrum in Grid Turbulence
and in Direct Numerical Simulations”. In: Physical Review Fluids 5.4, 044604.

— Gorbunova, A., G. Balarac, L. Canet, G. Eyink, and V. Rossetto (2021a). “Spatio-
Temporal Correlations in Three-Dimensional Homogeneous and Isotropic Turbu-
lence”. In: Physics of Fluids 33.4, 045114.

— Gorbunova, A., C. Pagani, G. Balarac, L. Canet, and V. Rossetto (2021b). “Eulerian
spatiotemporal correlations in passive scalar turbulence”. In: Physical Review Fluids,
6(12), 124606.

10



Introduction

Introduction (Version française)

La turbulence est un phénomène complexe et omniprésent. L’une de ses caractéristiques
les plus étonnantes est son universalité. À première vue, les écoulements de fluides peuvent
être radicalement différents, allant des tourbillons planétaires et de l’accrétion de galaxies
à un jet du robinet d’eau, ou un sillage derrière un poisson; cependant, tous partagent des
propriétés statistiques universelles communes à petite échelle. L’universalité est déterminée
par la dynamique multi-échelle de la turbulence en trois dimensions : les tourbillons de dif-
férentes tailles forment une hiérarchie, dans laquelle l’énergie cascade de la grande échelle,
correspondant à l’injection d’énergie, vers les petites échelles, auxquelles la dissipation vis-
queuse se produit. Si ces deux échelles caractéristiques sont fortement séparées, il existe une
zone d’échelles intermédiaires, appelée zone inertielle, sur laquelle se développe la cascade
énergétique. La dissipation visqueuse dans la zone inertielle est négligeable, et l’écoule-
ment à grande échelle imposé par l’injection d’énergie peut être considéré comme variant
lentement dans l’espace et le temps, de sorte que les propriétés statistiques dans la zone
inertielle deviennent indépendantes des détails des mécanismes de l’injection et dissipa-
tion de l’énergie, c’est-à-dire qu’elles deviennent universelles. En supposant une invariance
d’échelle standard dans la zone inertielle, Kolmogorov a proposé en 1941 une description
statistique de la turbulence, qui est l’un des jalons les plus importants de la recherche sur
la turbulence. Cette description explique notamment l’émergence de lois de puissance dans
les statistiques des incréments de vitesse, qui ont été observées expérimentalement.

Cependant, une déduction analytique des lois de puissance observées à partir des pre-
miers principes, qui dans le cas de l’écoulement fluide sont les équations de Navier-Stokes,
est toujours un défi. Diverses approches analytiques décrivant les propriétés statistiques
de la turbulence ont été développées au cours des années (Frisch, 1995 ; Zhou, 2021). Des
progrès significatifs dans cette direction ont été réalisés à l’aide de l’approche du groupe
de renormalisation fonctionnelle (FRG). Historiquement, les méthodes du groupes de re-
normalisation ont été largement utilisées dans l’étude des phénomènes critiques. La tur-
bulence partage certaines caractéristiques communes avec des phénomènes critiques telles
que l’universalité et l’émergence de lois de puissance. Cependant, les premières tentatives
d’application des méthodes RG perturbatives aux équations de Navier-Stokes ont rencon-
tré des obstacles liés au choix et à la limitation d’un petit paramètre nécessaire pour une
expansion perturbative. La reformulation fonctionnelle de la méthode RG permet d’éviter
ce problème car elle permet une analyse non perturbative. Un autre avantage significatif
du FRG est le fait qu’il fournit une description statistique des écoulements turbulents en
termes de fonctions de corrélation eulériennes spatio-temporelles de 𝑛-points des champs
hydrodynamiques.

Bien que la compréhension des propriétés statistiques spatio-temporelles de la turbu-
lence soit essentielle dans de nombreux problèmes de mécanique des fluides, elles sont
beaucoup moins étudiées que les propriétés purement spatiales. Or, elles sont importantes,
par exemple, pour développer des schémas de fermeture dans des modèles statistiques et
numériques de turbulence ou pour l’analyse de données de signaux turbulents mesurés ex-
périmentalement. De plus, la connaissance des corrélations spatio-temporelles est nécessaire
dans tout problème impliquant des dynamiques multi-échelles dans les écoulements fluides,
comme la propagation d’ondes dans des milieux turbulents ou la dispersion turbulente de
particules.

Un autre outil important dans la recherche sur la turbulence sont les simulations nu-
mériques directes (DNS). Le mot "direct" signifie ici que la simulation ne repose sur aucun
modèle paramétrant la dynamique à petite échelle et est basée uniquement sur l’équation
de Navier-Stokes résolue sur une large gamme d’échelles allant de l’échelle de forçage à
l’échelle de dissipation visqueuse, qui est nécessaire pour obtenir une description précise
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Introduction

d’un écoulement turbulent. Ses principales limites consistent en sa restriction à des géo-
métries simples et des coûts de calcul élevés. Le nombre de Reynolds maximal accessible
par les simulations DNS est surtout limité par les ressources de calcul. Cependant, avec
le développement récent d’installations de calcul à haute performance, il est déjà possible
d’atteindre des nombres de Reynolds comparables à ceux des expériences de laboratoire de
l’écoulement turbulent développé. Le principal avantage des simulations DNS est qu’elles
permettent de calculer une grande variété de propriétés statistiques d’un écoulement, par
exemple, les spectres, les incréments de vitesse, les fonctions de corrélation, la distribution
de probabilité, etc.

L’objectif de cette thèse est de combiner des résultats théoriques récents obtenus dans
le cadre de FRG avec les données numériques issues des DNS, ce qui est possible grâce à
la puissance des supercalculateurs. Les principaux résultats consistent en la validation des
résultats du FRG pour les fonctions de corrélation spatio-temporelles avec l’utilisation des
simulations DNS et en l’établissement de la plage d’applicabilité des résultats théoriques
aux simulations numériques. Les corrélations spatio-temporelles du scalaire passif sont
également calculées dans le cas de la vitesse régie par les équations de Navier-Stokes, ainsi
que dans les champs de vitesse synthétiques avec des statistiques prescrites, pour analyser
l’influence de la covariance temporelle de vitesse sur les corrélations du scalaire.

Structure du manuscrit. Ce manuscrit est composé de cinq chapitres. Le chapitre 1
présente une synthèse des travaux antérieurs consacrés à l’analyse FRG des fonctions de
corrélation spatio-temporelles dans les écoulements turbulents. Il contient une description
schématique des principales étapes de la dérivation avec un accent particulier sur les points
essentiels à la compréhension des résultats et à leur validation numérique. À la fin du pre-
mier chapitre, une interprétation mécanique des résultats du FRG en termes de dispersion
des particules est proposée. Le chapitre 2 présente le solveur DNS pseudo-spectral utilisé
dans cette étude. En particulier, la méthode mise en œuvre pour le calcul et le moyennage
des fonctions de corrélation espace-temps est décrite.

Les deux chapitres suivants contiennent les résultats des simulations numériques repré-
sentant la principale contribution de cette thèse. Le chapitre 3 concerne les fonctions de
corrélation spatio-temporelles de la vitesse à deux et trois points, qui sont comparées à
la prédiction FRG. De plus, la fonction de corrélation des modules de vitesse est étudiée,
ce qui n’est pas couvert par les prédictions théoriques. La dernière section du troisième
chapitre est consacrée à la validation numérique du résultat FRG pour le spectre d’énergie
cinétique dans le domaine dissipatif-proche, qui est également estimé dans le cadre FRG.

Le chapitre 4, étend l’étude de la fonction de corrélation eulérienne en ajoutant à l’écou-
lement simulé un scalaire passif, dont la dynamique est régie par l’équation d’advection-
diffusion. Les fonctions de corrélation spatio-temporelle du scalaire passif sont mesurées
dans le champ de vitesse régi par les équations de Navier-Stokes, ainsi que dans des champs
de vitesse synthétiques aléatoires. Le champ de vitesse synthétique est implémenté avec une
covariance approximativement bruit-blanc dans le temps, ce qui permet une comparaison
avec les résultats théoriques du modèle d’advection aléatoire de Kraichnan, ainsi qu’avec
une corrélation temporelle. Ces deux types d’écoulement synthétique permettent d’étudier
l’influence de la covariance temporelle de la vitesse sur le comportement des fonctions de
corrélation spatio-temporelles du scalaire.

Le chapitre 5, contient une étude analytique FRG préliminaire du modèle en couches
d’advection passive aléatoire. Il donne une description plus détaillée des étapes de la dé-
rivation FRG, qui est considérablement plus simple dans le cas de ce modèle en couches
par rapport à l’équation de Navier-Stokes, et permet d’accéder aux fonctions de structure
scalaire. Enfin, le texte principal du manuscrit se termine par des conclusions générales et
des perspectives.

12



1
Theoretical framework

The present chapter introduces the theoretical framework of the
functional renormalization group (FRG), which is used to obtain
the analytical results tested numerically in this thesis. A brief
description of the FRG method in application to Navier-Stokes
and advection-diffusion equations is provided, with highlights on
principal results concerning the Eulerian space-time correlation
functions.
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Abstract

This chapter provides a brief summary of the previous works dedicated to the statis-
tical analysis of turbulence within the functional renormalization group (FRG) framework
(Canet et al., 2016 ; Tarpin et al., 2018 ; Pagani and Canet, 2021). Its aim is to present the
motivation behind the application of FRG to turbulence, its main ideas, and the princi-
pal points of the analytical derivation, which are essential for understanding the resulting
expressions for the space-time correlation functions and their numerical validation. For
this reason, a particular focus of this chapter is on the expressions resulting from FRG
and enabling numerical tests, as well as on the range of validity of these expressions and
their fluid-mechanical interpretation. This chapter does not contain any new results, but
defines the theoretical framework and the motivation for the numerical study provided in
the following chapters.

Résumé en français

Ce chapitre fournit un bref résumé des travaux précédents consacrés à l’analyse sta-
tistique de la turbulence dans le cadre de l’approche du groupe de renormalisation fonc-
tionnelle (FRG) (Canet et al., 2016 ; Tarpin et al., 2018 ; Pagani and Canet, 2021). Son
objectif est de présenter la motivation derrière l’application du FRG à la turbulence, ses
idées générales, et les principaux points de la dérivation analytique, qui sont essentiels
pour comprendre les résultats obtenus pour les fonctions de corrélation spatio-temporelle
et leur validation numérique. Pour cette raison, un accent particulier de ce chapitre est
fait sur les expressions résultant du FRG et permettant des tests numériques, ainsi que
sur le domaine de validité de ces expressions et leur interprétation mécanique. Ce chapitre
ne contient pas de résultats nouveaux, mais définit le cadre théorique et la motivation de
l’étude numérique qui sera fournie dans les chapitres suivants.

1.1 Background

Renormalization group (RG). The renormalization group (RG) is a framework largely
used in different branches of physics to study the dynamics of strongly correlated systems
with many degrees of freedom. In the seminal work of Wilson and Kogut, 1974 a modern
formulation of RG has been proposed. The core idea of RG is the progressive integration of
small-scale fluctuations to obtain an effective description at large scales. It is a sequence of
scale-dependent effective models from micro- to macro-scales, as the fluctuations are being
averaged out. This sequence is called RG flow. The RG framework is used in high-energy
physics, quantum many-body systems, and statistical physics. In particular, it appears to
be a very powerful tool for the analysis of critical phenomena such as phase transitions,
for which it explains the universality and allows to compute critical exponents.

Turbulence and RG. Hydrodynamic turbulence shares some particular features with
critical phenomena, such as strong interscale correlations and non-Gaussian fluctuations.
Other remarkable properties of turbulent flows are universality and power laws in the
inertial range, which are the indications of the scale invariance. The hypothesis of scale
invariance is the core assumption in statistical models of turbulence, the most celebrated
of which is the theory of Kolmogorov, 1941.

This similitude between turbulence and critical phenomena thus calls for a theoretical
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study of turbulence within the RG framework. The first works dedicated to the application
of RG to turbulence date back to the eighties (DeDominicis and Martin, 1979 ; Fournier
and Frisch, 1983 ; Yakhot and Orszag, 1986). However, the first applications of RG are
based on perturbative approaches, which require establishing a small parameter for per-
turbative expansion. Finding a suitable small parameter in turbulence is a nontrivial task.
In addition, the condition of the smallness of a parameter puts important limitations on the
applicability and interpretation of the results (Eyink, 1994). The advances and obstacles
in the application of perturbative RG in fluid mechanics are summarized in the reviews
(Smith and Woodruff, 1998 ; Adzhemyan and Antonov, 1998 ; Zhou, 2010).

Functional renormalization group (FRG). The functional renormalization group
(FRG) follows the approach of the Wilsonian RG of progressively averaging fluctuations
and proposes a reformulation in terms of functionals of the fields. It provides a method of
derivation of a flow equation for a scale-dependent "effective action" functional. The "effec-
tive action" functional can be interpreted as a coarse-grained free energy of the fluctuations
at scales smaller than the renormalization scale. The functional formulation enables the
construction of non-perturbative approximations, for this reason in the literature this fra-
mework is also referred to as "non-perturbative RG". The FRG has turned out to be a
powerful tool to compute the properties of strongly correlated systems in a wide range of
applications from high-energy physics, condensed matter, quantum gravity, and statistical
physics (Dupuis et al., 2021).

Turbulence and FRG. The opportunity to develop non-perturbative approximations
makes the FRG a promising analytical approach for the statistical description of tur-
bulence. The FRG approach has been applied to the Navier-Stokes equation (Tomassini,
1997 ; Mejía-Monasterio and Muratore-Ginanneschi, 2012 ; Canet et al., 2015 ; Tarpin et al.,
2018), as well as to the passive scalar advection-diffusion problem (Pagani, 2015 ; Pagani
and Canet, 2021).

One of the most substantial novelties of the FRG results is that it provides access to
generic 𝑛-point space-time correlation functions. Another important feature of the FRG
approach is that it is based purely on the Navier-Stokes equation. It does not require
any strong phenomenological hypothesis and the approximations in the derivation are well
controlled. The FRG provides exact results for the time dependence of multipoint space-
time Eulerian correlation functions in the limit of large wavenumbers for the cases of
3D (Tarpin et al., 2018) and 2D (Tarpin et al., 2019) stationary homogeneous isotropic
turbulence governed by the Navier-Stokes equations.

Results of FRG. The derivation of exact results in the limit of large wavenumbers
appeared to be possible through the exploitation of the extended symmetries of the field
theory associated with Navier-Stokes equation (Canet et al., 2015 ; Canet et al., 2016). The
resulting Eulerian correlation functions of the velocity field (Canet et al., 2017 ; Tarpin et
al., 2018 ; Tarpin, 2018) can be compared with the already known results in turbulence
as well as with new numerical and experimental data. In particular, Kolmogorov 5/3 law
for the inertial range of the spectrum of the kinetic energy is obtained as the leading-
order behavior. In addition, FRG demonstrates clearly that the leading behavior of the
space-time correlation functions of velocity is determined by the sweeping effect, which is
consistent with the available experimental and numerical results, but was not captured by
the perturbative RG models. The new results concern, in particular, the extension of the
dominance of the sweeping effect to 𝑛-point correlation functions and the prediction of a
large-time-lag regime in the space-time correlation functions.
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Structure of the chapter. This chapter serves to introduce the principal features and
steps of the FRG analysis, but is mainly focused on the presentation of the main results
obtained in previous works (Canet et al., 2016 ; Tarpin et al., 2018 ; Pagani and Canet,
2021) for the space-time correlation functions, as these results are tested numerically in the
present thesis. First, the FRG in application to the Navier-Stokes equations is discussed,
and the analytical results for the two- and three-point correlation function of velocity are
presented. Next, in section 1.3, a brief description of the results of FRG analysis of passive
scalar turbulence is presented. Two cases of dynamics of the passive scalar are discussed:
advected by a random Gaussian velocity field and by a turbulent velocity field governed by
the Navier-Stokes equations. The following section 1.4 proposes a physical interpretation of
the FRG results through the problem of single-particle dispersion. The chapter is concluded
by a general summary of the theoretical results.

1.2 Functional renormalization group approach in applica-
tion to Navier-Stokes equations

1.2.1 Field theory for Navier-Stokes equation

The starting point of the FRG analysis are the 3D incompressible Navier-Stokes equa-
tions with external forcing, which in FRG terms correspond to the “microscopic theory”:

𝜕v⃗(x⃗, 𝑡)

𝜕𝑡
+ [v⃗(x⃗, 𝑡) ·∇]v⃗(x⃗, 𝑡) = −∇𝑝(x⃗, 𝑡) + 𝜈∇2v⃗(x⃗, 𝑡) + f⃗(x⃗, 𝑡), (1.1)

∇ · v⃗(x⃗, 𝑡) = 0, (1.2)

where v⃗ is the velocity vector, 𝑝 - pressure, f⃗ - external forcing, 𝜈 is the kinematic viscosity
of the fluid.

The external forcing drives the fluid flow into a stationary state. To study the universal
properties of the flow, which do not depend on the details of the forcing mechanism,
the forcing is considered stochastic, and the flow is studied in terms of averages over
the ensemble of forcing realizations. This random forcing is chosen to have a Gaussian
distribution with zero mean and covariance:⟨

𝑓𝑖(x⃗, 𝑡)𝑓𝑗(x⃗′, 𝑡′)
⟩
= 𝛿𝑖𝑗𝛿(𝑡− 𝑡′)𝑁𝑓 (|x⃗− x⃗′|), (1.3)

where ⟨ · ⟩ denotes the ensemble average. Such a choice of the forcing covariance is local in
time and preserves Galilean invariance. The spatial covariance 𝑁𝑓 (|x⃗− x⃗′|) is assumed to
be concentrated at large scales, so in Fourier space it peaks at the wavenumber 𝑘 = 𝐿−1,
where 𝐿 is the integral length. It can be chosen diagonal in the components, without loss
of generality because of incompressibility.

Path integral. The stochastic NS equation (1.1) can be reformulated in terms of a path
integral following a standard procedure called Martin-Siggia-Rose-Janssen-de Dominicis
(MSRJD) response functional formalism (Martin et al., 1973 ; Janssen, 1976 ; DeDominicis,
1976). The detailed explanation of the MSRJD procedure in application to the stochastic
NS equation can be found in the works of Canet et al., 2015 ; Tarpin, 2018. The goal is
to find the generating functional 𝒵[𝑗] of the correlation functions of the fields 𝜑 (velocity,
pressure, response fields). The expression for the generating functional takes the form:

𝒵
[︁
J⃗,

¯⃗
J, 𝐽𝑝, 𝐽𝑝

]︁
=

∫︁
𝒟
[︀
v⃗, ¯⃗v, 𝑝, 𝑝

]︀
exp

{︂
−𝒮
[︀
v⃗, ¯⃗v, 𝑝, 𝑝

]︀
+

∫︁
d𝑡 dx⃗ 𝑗𝑖𝜑𝑖

}︂
, (1.4)
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where the response fields are denoted with a bar, the letter 𝜑 denotes the fields and the
response fields 𝜑 =

{︀
v⃗, ¯⃗v, 𝑝, 𝑝

}︀
, the letter 𝑗 corresponds to the sources associated with the

fields 𝑗 =
{︁
J⃗,

¯⃗
J, 𝐽𝑝, 𝐽𝑝

}︁
. The symbol 𝒟 denotes the functional measure of integration. The

functional 𝒮[𝜑] represents the action, which for the stochastic Navier-Stokes equation is
given by (Canet et al., 2015):

𝒮
[︀
v⃗, ¯⃗v, 𝑝, 𝑝

]︀
=

∫︁
d𝑡dx⃗ 𝑣𝛼

[︀
𝜕𝑡𝑣𝛼 + 𝑣𝛽𝜕𝛽𝑣𝛼 − 𝜈∇2𝑣𝛼 + 𝜕𝛼𝑝

]︀
− 𝑝𝜕𝛼𝑣𝛼

−
∫︁

d𝑡 dx⃗ dx⃗′ 𝑣𝛼(𝑡, x⃗)𝑁𝑓 (|x⃗− x⃗′|)𝑣𝛼(𝑡, x⃗′). (1.5)

Here the Einstein summation convention is used.
The advantage of this formulation is that it provides a straightforward access to a

𝑛-point space-time correlation function in Eulerian frame of reference. The generating
functional 𝒵 is analogous to the moment-generating function in probability theory: the
𝑛-th functional derivative of the generating functional with respect to the sources 𝑗 gives
the 𝑛-point correlation function, which can be written as:

𝐺(𝑛)
𝛼1,...,𝛼𝑛

(𝑡1, .., 𝑡𝑛, x⃗1, ..., x⃗𝑛) =
𝛿𝑛𝒵[𝑗]

𝛿𝑗𝛼1(𝑡1, x⃗1) ... 𝛿𝑗𝛼𝑛(𝑡𝑛, x⃗𝑛)
. (1.6)

The analogue of the generating functional 𝒵 in statistical mechanics of equilibrium
systems is the partition function. Its logarithm 𝑊 [𝑗] = ln𝒵[𝑗] is the generating functional
of connected correlation functions (equivalent to cumulants). The analogue of the functional
𝑊 [𝑗] in equilibrium systems is the Helmholz free energy.

Regulator. The generating functional (1.4) represents a functional integral which is
impossible to compute via direct integration. At this point, the main idea of the RG comes
into play: to perform the integration over the fluctuations progressively, scale-by-scale,
starting from the microscopic scale up to the large-scale effective model. Within the FRG
approach, this progressive integration of fluctuation modes is achieved by including in
the generating functional 𝒵 a filtering term Δ𝒮𝐾 [𝜑] depending on a running wavenumber
𝐾 which corresponds to the renormalization scale. Now, since the filtering term Δ𝒮𝐾
depends on the renormalization scale 𝐾, the modified partition function also becomes
scale dependent and can be denoted as 𝒵𝐾 :

𝒵𝐾 [𝑗] =

∫︁
𝒟[𝜑] exp

{︂
−𝒮[𝜑]−Δ𝒮𝐾 [𝜑] +

∫︁
d𝑡dx⃗ 𝑗𝑖𝜑𝑖

}︂
. (1.7)

The filtering term ensures the selective integration of the fluctuations over wavenumbers
larger than 𝐾. For this purpose, Δ𝒮𝐾 [𝜑] has to fulfill the following requirements:

— Smooth function.
— Large scales have to be suppressed in the path integral, so the filtering term has to

be large for modes of wavenumbers smaller than the running renormalization scale
|q⃗| . 𝐾.

— Small scales should not be affected, as their contribution is integrated, so the filtering
term has to vanish for modes with |q⃗| & 𝐾.

This filtering term is quadratic in fields. In the case of NS equation, it consists of
two parts, which can be interpreted, respectively, as an effective forcing and an effective
viscosity:

Δ𝒮𝐾 [v⃗, ¯⃗v] = −
∫︁
𝑡,x⃗,x⃗′

𝑣𝛼(𝑡, x⃗)𝑁𝐾(|x⃗− x⃗′|)𝑣𝛼(𝑡, x⃗′) +

∫︁
𝑡,x⃗,x⃗′

𝑣𝛼(𝑡, x⃗)𝑅𝐾(|x⃗− x⃗′|)𝑣𝛼(𝑡, x⃗′).

(1.8)
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The effective forcing is just the forcing term 𝑁𝐾 in the NS action (1.5) where the inverse
integral scale is replaced by the running RG scale 𝐾. The physical forcing is restored when
𝐾 crosses 𝐿−1 such that all nontrivial fluctuations have been integrated over. The most
important property of the regulator functions 𝑁𝐾 and 𝑅𝐾 is that they vanish rapidly at
large wavenumbers |q⃗| > 𝐾. Clearly, there is no unique choice fulfilling these criteria, but
the idea is that the final result does not depend on the details of the regulator, as its
influence disappears when the renormalization scale is moved to 𝐾 → 0.

Effective average action. At the next step, the "effective average action" functional
Γ𝐾 [𝜓] is introduced. It is defined as the Legendre transform of the scale-dependent gene-
rating functional 𝑊𝐾 [𝑗], modified by the filtering term:

Γ𝐾 [𝜓] = −𝑊𝐾 [𝑗] +

∫︁
𝑡,x⃗
𝜓𝑖𝑗𝑖 −

∫︁
𝑡,x⃗,x⃗′

[𝑢̄𝛼𝑅𝐾𝑢𝛼 − 𝑢̄𝛼𝑁𝐾 𝑢̄𝛼], (1.9)

where 𝜓 = ⟨𝜑⟩ denotes the average fields, u⃗ = ⟨v⃗⟩, ¯⃗u =
⟨︀
¯⃗v
⟩︀
and 𝑗 are the corresponding

sources. In terms of statistical physics, Γ𝐾 corresponds to the Gibbs free energy in equili-
brium systems, it is also referred to as the generating functional of one-particle irreducible
(1PI) vertices. The scale-dependent Γ𝐾 gives then the integrated free energy of the small-
scale fluctuations at wavenumbers |q⃗| > 𝐾. Thus, by changing the renormalization (or
filtering) wavenumber 𝐾 from a certain large 𝐾 = Λ, corresponding to the FRG micros-
cale, to the integral scale of the system 𝐾 = 𝐿−1, one can actually perform the progressive
integration of all fluctuations. Instead of the integration of the partition function 𝒵 itself,
one can analyze the evolution of the effective action Γ𝐾 with the renormalization scale
wavenumber 𝐾 approaching zero.

The properties of the filtering term Δ𝒮𝐾 listed above ensure that, at the microscopic
scale 𝐾 = Λ, the effective action coincides with the NS action (1.5), so that Γ𝐾=Λ = 𝒮.
In the opposite limit of large scales 𝐾 → 0, all the fluctuations are averaged out and the
regulator term vanishes, so Γ𝐾=0 becomes the full effective action Γ of the system.

RG flow equation. The effective average action Γ𝐾 obeys an exact differential func-
tional RG equation, which gives its evolution with the RG scale 𝐾 (Wetterich, 1993). In
Fourier space, it takes the form:

𝜕𝐾Γ𝐾 [𝜓] =
1

2
Tr

∫︁
q⃗
𝜕𝐾ℛ𝐾(q⃗)

[︁
Γ
(2)
𝐾 [𝜓] +ℛ𝐾(q⃗)

]︁−1
. (1.10)

The equation is given in matrix form, so [ℛ𝐾 ] is the regulator matrix of size 4× 4 (by the
number of fields), with non-zero elements [ℛ𝐾 ]22 = 𝑁𝐾 and [ℛ𝐾 ]12 = [ℛ𝐾 ]21 = 𝑅𝐾 , the
matrix Γ

(2)
𝐾 is the Hessian matrix, so it contains the second-order functional derivatives of

Γ𝐾 . The integration occurs in the Fourier space.
Taking 𝑛-th functional derivatives of (1.10) with respect to the corresponding fields

provides the exact flow equation of the vertices Γ(𝑛)
𝐾 . Since the effective average action Γ𝐾

and the generating functional 𝑊𝐾 are related through the Legendre transform (1.9), the
solution of the flow equation for Γ

(𝑛)
𝐾 can be transformed into 𝑊 (𝑛)

𝐾 , which is needed for
computation of a 𝑛-point connected correlation function.

Fixed point. If one traces the evolution of the effective average action Γ𝐾 with the
renormalization scale wavenumber 𝐾 changing from the microscale 𝐾 = Λ to small wave-
numbers 𝐾 → 0, once the inverse integral length scale is passed 𝐾 = 𝐿−1, all fluctuations
are averaged out. That also means that the effective average action Γ𝐾 does not vary any-
more at 𝐾 . 𝐿−1, and the solution of the flow equation reaches a fixed point. To compute
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the observables of the physical system, such as correlation functions, one has to obtain the
solution of the flow equation at the fixed point.

This fixed-point solution corresponds to stationary fully developed turbulence in the
presence of large-scale forcing (Canet et al., 2016). The correlation functions evaluated at
the fixed point are thus the universal properties of stationary turbulence.

Closure problem. The RG flow equation (1.10) and equations generated from it by
taking functional derivatives are exact, however, they are not closed. The equation for a
given Γ

(𝑛)
𝐾 contains derivatives Γ(𝑛+1)

𝐾 and Γ
(𝑛+2)
𝐾 , which in their turn are governed by their

own flow equations involving higher-order derivatives and so on. That is to say that one
has to consider actually an infinite hierarchy of flow equations. Thus, some approximations
are needed to simplify or truncate these flow equations. One of the possible approximation
schemes within the FRG is the derivative expansion (Delamotte, 2012), which consists in
an expansion of Γ𝐾 in series of gradients and time derivatives. However, in the case of
hydrodynamic turbulence, the symmetries of the incompressible Navier-Stokes equations
allow to express some vertices Γ

(𝑛)
𝐾 through lower-order vertices or to nullify them, and

therefore to obtain a closure without any truncation in the limit of the large wavenumbers.

Extended symmetries. The symmetries of the NS field theory are the time-dependent
Galilean symmetry and the time-dependent shift of the response fields, unveiled in the
work of Canet et al., 2015. The two symmetries are extended symmetries, in the sense
that the NS action (1.5) is not strictly invariant under these transformations, but has a
variation which is linear in the fields.

The time-dependent Galilean symmetry corresponds to the following infinitesimal trans-
formation:

𝛿𝑣𝛼(x⃗) = −𝜖̇𝛼(𝑡) + 𝜖𝛽(𝑡)𝜕𝛽𝑣𝛼(x⃗), 𝛿𝑝 (x⃗) = 𝜖𝛽(𝑡)𝜕𝛽𝑝(x⃗), (1.11)
𝛿𝑣𝛼(x⃗) = 𝜖𝛽(𝑡)𝜕𝛽𝑣𝛼(x⃗), 𝛿𝑝 (x⃗) = 𝜖𝛽(𝑡)𝜕𝛽𝑝(x⃗). (1.12)

If one sets 𝜖⃗(𝑡) = 𝜖⃗𝑡 it turns into the standard (global) Galilean transformation.
The time-dependent shift symmetry of the response fields corresponds to the following

transformations:
𝛿𝑣𝛼(x⃗) = 𝜖𝛼(𝑡), 𝛿𝑝 (x⃗) = 𝑣𝛽(x⃗)𝜖𝛽(𝑡). (1.13)

Based on these two symmetries, one can derive exact Ward identities providing relations
between the vertex functions. The Ward identities and their derivation can be found in the
works of Canet et al., 2015 ; Tarpin, 2018. The main result that follows from the analysis
of the Ward identities is that all the vertices Γ

(𝑛)
𝐾 (𝜔1, ..., 𝜔𝑛, k⃗1, ..., k⃗𝑛) that have at least

one zero wave-vector k⃗ = 0 vanish or can be expressed exactly through the lower-order
vertices.

Large-wavenumber closure. For turbulence, the flow equations can be simplified with
the use of the Blaizot-Mendez-Galain-Wschebor (BMW) scheme (Blaizot et al., 2006),
which relies essentially on the properties of the regulator. The presence of the derivative
of the regulator 𝜕𝐾ℛ𝐾(q⃗) in the flow equation (1.10) ensures that the integral over the
internal wavenumber q⃗ can be cut to |q⃗| ≤ 𝐾, since the larger wavenumbers simply do
not contribute to the integral, as they are filtered out by the regulator derivative 𝜕𝐾ℛ𝐾 .
Thus, if one considers the limit where all external wavenumbers k⃗𝑖 of the vertices Γ(𝑛)

𝐾 are
significantly larger compared to the renormalization running wavenumber 𝐾, |k⃗𝑖| ≫ 𝐾,
then internal wavenumber (of the integration) is negligible with respect to the external
ones |q⃗| ≪ |k⃗𝑖|. One can thus expand the vertices of the flow equation in powers of |q⃗|.
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Chapter 1. Theoretical framework

The unique feature of the NS field theory, which is related to Ward identities, is that the
vertices with at least one wavenumber equal to zero can be expressed exactly through
the lower-order vertices. As a consequence, the flow equation for any 𝑛-point correlation
function of the NS turbulent fluid can be closed without truncation at the leading order of
the expansion in powers of |q⃗| with the use of the above-mentioned Ward identities. The
vertex expansion resulting from the BMW scheme is rigorously controlled, and it becomes
exact at infinite wavenumbers.

To make the limit of the "large" wavenumbers more precise, the wavevectors k⃗ should
be considered with respect to the integral length scale wavenumber, as at this scale the
RG flow stops, so the limit 𝐾 → 0 can be approximated by 𝐾 ≈ 𝐿−1, and thus the results
obtained in the large-wavenumber limit are valid for the wavevectors |k⃗| ≫ 𝐿−1.

Flow equation for the correlation function. The two-point correlation function of
the velocity in the Eulerian frame of reference in a stationary flow is defined as:

𝐶(2)(𝑡, k⃗) ≡ FT[⟨𝑢𝑖(𝑡0, r⃗0)𝑢𝑖(𝑡0 + 𝑡, r⃗0 + r⃗)⟩] =
⟨
𝑢̂𝑖(𝑡0, k⃗)𝑢̂

*
𝑖 (𝑡0 + 𝑡, k⃗)

⟩
, (1.14)

where FT denotes the spatial Fourier transform, and the brackets denote the averaging
over the statistical ensemble of the forcing realizations. The translational invariance in
space and time of the correlation function follows from the assumptions of homogeneity
and stationarity. Following the described closure scheme based on the NS symmetries and
the assumption of large wavenumbers, one can obtain the closed flow equations for the
scale-dependent version of the two-point correlation function 𝐶𝐾(𝑡, k⃗). The flow equation
then takes the form (Canet et al., 2017 ; Tarpin et al., 2018):

𝐾𝜕𝐾𝐶𝐾(𝑡, k⃗) = −2

3
𝑘2𝐶𝐾(𝑡, k⃗)

∫︁
cos(𝜔𝑡)− 1

𝜔2
𝒥𝐾(𝜔)

d𝜔

2𝜋
, (1.15)

𝒥𝐾(𝜔) = −2

∫︁
d3q⃗

[︀
𝐾𝜕𝐾𝑁𝐾(q⃗)|𝐺𝐾(𝜔, q⃗)|2 −𝐾𝜕𝐾𝑅𝐾(q⃗)𝐶𝐾(𝜔, q⃗)Re [𝐺𝐾(𝜔, q⃗)]

]︀
,

where the function 𝐺𝐾(𝜔, q⃗) is the Fourier transform of the scale-dependent response func-
tion defined as 𝐺𝐾(𝑡, x⃗) ≡

⟨︀
u⃗(𝑡0 + 𝑡, x⃗0 + x⃗) · ¯⃗u(𝑡, x⃗)

⟩︀
𝐾
. Note that this equation becomes

exact in the limit of infinite wavenumbers |k⃗| → ∞.
Similar flow equations can be obtained in the general case of 𝑛-point space-time cor-

relation functions of velocity 𝐶(𝑛)
𝐾 (𝑡1, ..., 𝑡𝑛, k⃗1, ..., k⃗𝑛). These flow equations are linear in

𝐶
(𝑛)
𝐾 (𝑡, k⃗), so they can be solved analytically at the fixed point, which corresponds to the

velocity correlation in a stationary turbulent state. The fixed-point solutions are denoted
by 𝐶(𝑛) without index 𝐾. Moreover, their expressions can be simplified in the limit of
short and large time delays 𝑡. For the case of the two-point correlation function 𝐶(2), the
simplified expressions are provided in the next section.

1.2.2 Eulerian spatio-temporal correlation function of velocity

The general solution of the flow equation (1.15) takes a complicated form, but it can
be simplified if one considers the limits of small and large time lags. The smallness of
the time delays should be considered with respect to the typical integral (or large-scale
eddy-turnover) time scale of the flow 𝜏0 ∼ (𝐿2/𝜖)1/3 ≈ 𝐿/𝑈𝑟𝑚𝑠 where 𝜖 is the mean energy
dissipation rate, 𝑈𝑟𝑚𝑠 - the root-mean-square velocity.
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1.2. Functional renormalization group approach in application to Navier-Stokes equations

Small time lags. At small time lags 𝑡, the expression of the integrand in the right-hand
side of (1.15) can be approximated as [cos(𝜔𝑡)− 1]/𝜔2 ∼ −𝑡2/2. The expression for the
two-point correlation function at the fixed-point solution of the Eq. (1.15) then takes the
form (Tarpin et al., 2018):

𝐶
(2)
𝑆 (𝑡, k⃗) = 𝐶0𝑆𝜖

2/3𝑘−11/3 exp
[︀
−𝛼𝑆(𝐿/𝜏0)2𝑡2𝑘2 +𝒪(𝑘𝐿)

]︀
, 𝑡≪ 𝜏0. (1.16)

The subscript 𝑆 refers to the "short"-time expression. Here, 𝐶0𝑆 and 𝛼𝑆 are non-universal
constants, in the sense that their values depend on the forcing profile (1.3).

The result (1.16) clearly shows that the correlation function depends on the scaling
variable 𝑡𝑘 as a Gaussian function. This scaling is different from the scaling 𝑡𝑘2/3 that
results from dimensional arguments similar to K41 applied to the space-time correlations.
In particular, it means that the characteristic decorrelation time of a velocity Fourier mode
depends on the wavenumber as 𝜏𝐷 ∼ 𝑘−1. Note that the prefactor in the exponential of the
expression (1.16) can be related to the root-mean-square velocity of turbulent fluctuations
as 𝑢𝑅𝑀𝑆 ∼ 𝐿/𝜏0, which is mainly determined by the large-scale velocity field.

This result has been already known phenomenologically as the random "sweeping" ef-
fect, a term introduced by Tennekes, 1975. This scaling arises from the random advection
(or sweeping) of the small-scale eddies of the flow by a slow, random, large-scale velocity
field. This result found its validation in numerical simulations and some experiments, but
a systematic analytical derivation was lacking. The random sweeping effect will be discus-
sed with more details in section 3.1. The numerical results validating the Gaussian time
decorrelation in 𝑡𝑘-variable (1.16) are provided in section 3.2.

Large time lags. Considering the large time lags 𝑡≫ 𝜏0, one can show that Eq. (1.15)
simplifies to the following expression (Tarpin et al., 2018):

𝐾𝜕𝐾𝐶
(2)
𝐾 (𝑡, k⃗) =

1

3
𝒥𝐾(0)𝐶𝐾(𝑡, k⃗)𝑘2|𝑡|. (1.17)

The fixed point solution for the two-point correlation function then takes the form:

𝐶
(2)
𝐿 (𝑡, k⃗) = 𝐶0𝐿𝜖

2/3𝑘−11/3 exp
[︀
−𝛼𝐿(𝐿2/𝜏0)|𝑡|𝑘2 +𝒪(𝑘𝐿)

]︀
, 𝑡≫ 𝜏0. (1.18)

The subscript 𝐿 refers to the "large"-time expression. As previously in the case of small
time lags, 𝐶0𝐿 and 𝛼𝐿 are non-universal constants depending on the forcing profile. The
result (1.18) shows that the two-point correlation function changes its behavior from a
Gaussian of the variable 𝑡𝑘 at small time lags (1.16) to an exponential of a variable 𝑡𝑘2 at
large time lags (1.18).

In the numerical results presented in this thesis, the large-time regime (1.18) was not
captured. The analysis of correlation functions at large time lags is complicated due to the
weak amplitudes of the signals (see section 3.2.2). A similar behavior has been observed in
the correlation function of a passive scalar. The FRG results for the passive scalar advection
are discussed in the next section 1.3, and the numerical result will be provided in chapter 4.
Additionally, a physical interpretation of the exponential decay at large time lags from the
point of view of turbulent particle dispersion is proposed in the final section 1.4 of the
present chapter.

Validity of the approximation. The results for the velocity correlation functions pre-
sented above are obtained in the limit of large wavenumbers. This assumption requires
that all wavenumbers 𝑘𝑖 involved in a given correlation function (and all partial sums of
the wavenumbers) are large compared to the running RG wavenumber 𝐾.
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Chapter 1. Theoretical framework

The physical quantities, such as correlation functions, are obtained from the RG flow at
the fixed point when the running renormalization wavenumber becomes smaller than the
integral-scale wavenumber 𝐾 . 𝐿−1. Thus, a "large wavenumber" in the present analysis
means |k⃗| ≫ 𝐿−1. One can show that the factors in square brackets in Eqs. (1.16), (1.18)
are exact in the limit of the large wavenumber, which implies that the corrections to these
terms are at most of order 𝒪(𝑘𝐿) (Tarpin et al., 2018). In contrast, the terms that multiply
the exponential in Eq. (1.16) are not exact in these expressions, as they can be corrected
by higher-order contributions neglected in the large wavenumber expansion. That is to say
that the exponent 11/3, corresponding to K41 scaling, can be rectified by the next-order
term in the expansion, which would correspond to intermittency corrections.

Spatial spectrum of the kinetic energy. The inertial range of the three-dimensional
spatial spectrum of the kinetic energy can be obtained simply by evaluating the two-point
correlation function (1.16) at equal times (or at zero time lag). Due to the isotropy of the
flow, the energy density function takes form:

𝐸(𝑘) = 4𝜋𝑘2𝐶(𝑡 = 0, k⃗) = 4𝜋𝐶0𝑆𝜖
2/3𝑘−5/3. (1.19)

Therefore, one obtains the well-known K41 5/3 spectrum power law, which can be also
deduced from the dimensional analysis (Frisch, 1995).

Interestingly, if instead of nullifying the time lag 𝑡, one takes a limit of the correlation
function at the time lag tending to a characteristic Kolmogorov’s time scale 𝑡 → 𝜏𝜂 =
(𝜈/𝜖)1/2, and still considering the large-wavenumber limit 𝑘 ≫ 𝐿−1, it is possible to obtain
the spatial spectrum in the near-dissipative range. Under some assumptions, it takes the
form of a stretched exponential function: (Canet et al., 2017):

𝐸𝑑𝑖𝑠𝑠𝑖𝑝(𝑘) = 4𝜋𝑘2𝐶(𝑡→ 𝜏𝜂, k⃗) = 4𝜋𝐶0𝑆𝜖
2/3𝑘−5/3 exp

[︁
−𝜇𝑘2/3

]︁
, (1.20)

where 𝜇 is a non-universal constant.
It should be noted that such an approximation is expected to be valid only in the

near-dissipative range, where there is an interplay between the nonlinear advection and
the viscous diffusion, while in the far-dissipative range the spectrum is regularized by
the viscosity. The form of the kinetic energy spectrum in the near-dissipative range has
been studied numerically and compared with the FRG result, this study is provided in
section 3.5.

Frequency spectrum of the kinetic energy. The frequency spectrum of the kinetic
energy can be estimated by evaluating the temporal Fourier transform of the correlation
function (1.16) at a single point in the physical space, which is equivalent to integrating
over the wavevectors (Canet et al., 2017):

𝐸(𝜔) =

∫︁ ∞

0
d𝑘 4𝜋𝑘2

∫︁ ∞

−∞
d𝑡 𝐶(𝑡, k⃗)𝑒𝑖𝜔𝑡 = 28/3𝜋3/2Γ

(︂
5

6

)︂
𝐶0𝑆𝛼

1/3
𝑆

(︂
𝜖𝐿

𝜏0

)︂2/3

𝜔−5/3. (1.21)

The power law −5/3 and its prefactor (𝜖𝐿/𝜏0)
2/3 ∼ (𝜖𝑢𝑅𝑀𝑆)

2/3 can be also deduced
from the dimensional arguments based on the random sweeping of the small vortices by
large-scale velocity field (Tennekes, 1975).

This power law is also consistent with the experimental measurements of the kinetic
energy spectra in Eulerian frame of reference in experiments (Kit et al., 1995) and numerical
simulations (Chevillard et al., 2005 ; Lévêque et al., 2007). Hence, the FRG provides a
correct prediction of the power laws in the inertial range of frequency and wavenumber
spectra of kinetic energy.
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1.3. Functional renormalization group in application to the advection of a passive scalar

Three-point correlation function. As it has been mentioned above, in the end of
the section 1.2.1, the FRG approach yields a more general result: the spatio-temporal
dependence of any multipoint correlation function of the turbulent velocity field in the
limit of large wavenumbers. The general expression for the 𝑛-point correlation function
can be found in the article of Tarpin et al., 2018. However, in the present work, only
the three-point correlation function is studied, as is it possible to access it in numerical
simulations. A three-point space-time correlation function of a velocity Fourier mode is
defined as follows:

𝐶
(3)
𝛼𝛽𝛾

(︁
𝑡1, k⃗1, 𝑡2, k⃗2

)︁
≡ FT[⟨𝑢𝛼(𝑡0 + 𝑡1, r⃗0 + r⃗1)𝑢𝛽(𝑡0 + 𝑡2, r⃗0 + r⃗2)𝑢𝛾(𝑡0, r⃗0)⟩]

=
⟨
𝑢̂𝛼

(︁
𝑡0 + 𝑡1, k⃗1

)︁
𝑢̂𝛽

(︁
𝑡0 + 𝑡2, k⃗2

)︁
𝑢̂*𝛾

(︁
𝑡0, k⃗1 + k⃗2

)︁⟩
. (1.22)

In the limit where all wavenumbers 𝑘1, 𝑘2, |k⃗1 + k⃗2| are large with respect to 𝐿−1, the
FRG calculation leads to the following form at small time delays 𝑡1 and 𝑡2

𝐶
(3)
𝛼𝛽𝛾

(︁
𝑡1, k⃗1, 𝑡2, k⃗2

)︁
= 𝐶

(3)
𝛼𝛽𝛾

(︁
0, k⃗1, 0, k⃗2

)︁
exp

{︂
−𝛼𝑆(𝐿/𝜏0)2

⃒⃒⃒
k⃗1𝑡1 + k⃗2𝑡2

⃒⃒⃒2}︂
, (1.23)

with 𝛼𝑆 the same constant as in Eq. (1.16). Note that a similar expression as Eq. (1.18) is
also available for large time delays. The simplified case of equal time delays is considered
𝑡 = 𝑡1 = 𝑡2, thus aiming at testing the theoretical form:

𝐶
(3)
𝛼𝛽𝛾

(︁
𝑡, k⃗1, 𝑡, k⃗2

)︁
∼ exp

{︂
−𝛼𝑆(𝐿/𝜏0)2

⃒⃒⃒
k⃗1 + k⃗2

⃒⃒⃒2
𝑡2
}︂
, 𝑡≪ 𝜏0. (1.24)

This expression shows that the three-point correlation function at large wavenumbers is
also a Gaussian function of a variable |k⃗1 + k⃗2|𝑡 for small 𝑡, with the same prefactor 𝛼𝑆 as
in the two-point correlation function.

The fact that the resulting three-point correlation function is a function of the norm of
the wavenumber of wavevectors |k⃗1+ k⃗2| allows to exploit the properties of the convolution
in Fourier space and facilitate the numerical computation of 𝐶(3). Direct computation of
the expression (1.24) in parallelized numerical simulation is a nontrivial task. In this work,
a three-point statistical quantity is obtained by computing the correlation between the
nonlinear term of the NS equation and the filtered velocity fields. To approach the limit
of the large wavenumbers required by the FRG approximation, the velocity fields are
filtered before computation. The method for the numerical estimation of the three-point
correlation function is presented in detail in section 3.3, followed by the results of the
numerical simulations.

1.3 Functional renormalization group in application to the
advection of a passive scalar

This section provides a brief summary of the results of the FRG analysis applied to
the problem of a passive scalar advected by a turbulent velocity flow (Pagani and Canet,
2021).

A scalar quantity 𝜃 is said to be passive if it does not have any back-reaction on the
fluid flow, or its influence on the flow can be neglected. A passive scalar can represent
different physical quantities such as the concentration of chemical species, variations of
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salinity in the ocean, or small fluctuations of temperature or humidity. The evolution of
a passive scalar quantity 𝜃 is governed by the advection-diffusion equation with external
forcing:

𝜕𝑡𝜃(x⃗, 𝑡) + [v⃗(x⃗, 𝑡) ·∇]𝜃(x⃗, 𝑡) = 𝜅∇2𝜃(x⃗, 𝑡) + 𝑓𝜃(x⃗, 𝑡), (1.25)

where 𝜅 is its molecular diffusivity and 𝑓𝜃 is the external forcing (or source) of the scalar.
Similar to the NS equation, the forcing is assumed to be stochastic with Gaussian statistics
and concentrated at large scales with covariance:⟨

𝑓𝜃(x⃗, 𝑡)𝑓𝜃(x⃗′, 𝑡′)
⟩
= 𝛿(𝑡− 𝑡′)𝑁𝜃(|x⃗− x⃗′|). (1.26)

Two cases are considered: a scalar passively advected by a velocity field governed by
the NS equations (1.1) and a scalar advected by a random velocity field with Gaussian
statistics. The principal stages in the FRG analysis are identical to the study of the NS
equation in the previous section. First, the stochastic equation (1.25) is reformulated in
terms of a path integral with the use of MSRJD procedure and the obtained path integral
is modified by a RG filtering term. Next, the symmetries of the equation are explored and
the corresponding Ward identities are obtained, which allows to find relations between
some vertices or to simplify them. The symmetries for the velocity fields are the same
as listed above in the previous section, one has to add the time-dependent Galilean and
shift symmetry for the scalar. Then, the limit of large wavenumbers is applied, enabling a
closure of the hierarchy of the RG flow equations. Lastly, the flow equations are solved, and
the expressions for the scalar correlation functions take simple forms in the limit of small
and large time lags. The full details of the derivation can be found in the article of Pagani
and Canet, 2021. Here, the principal results are provided, which are tested numerically
further in chapter 4.

1.3.1 Flow governed by Navier-Stokes equation

In the case of a passive scalar advected by a velocity field governed by the NS equa-
tion (1.1), the field theory is identical to the one discussed in the previous section, one only
needs to add terms concerning the scalar in the action (1.5), and to take into consideration
the time-dependent shift symmetry of the scalar.

The characteristic length scales of the scalar and forcing are assumed to be comparable,
and similarly, the typical length scales of the fluid viscosity and scalar diffusivity are
assumed to be comparable. That is to say that there exists a range of wavenumbers between
the forcing and dissipation scales, which is referred to as the inertial-convective range, in
which both the NS and the scalar equations are dominated by the advection term. In what
follows, the universal scalar behavior of the inertial-convective range is considered. This
point will be discussed more extensively in the chapter 4 which is dedicated to the passive
scalar advection.

The FRG approach allows to obtain a result for the two-point space-time correlation
in the Fourier space of the scalar in the Eulerian frame defined as:

𝐶
(2)
𝜃 (𝑡, k⃗) ≡

⟨
𝜃
(︁
𝑡0, k⃗

)︁
𝜃
(︁
𝑡0 + 𝑡,−k⃗

)︁⟩
. (1.27)

As it is shown in the work (Pagani and Canet, 2021), the flow equation for the correlation
function 𝐶(2)

𝜃,𝐾 takes the same form as the flow equation for the velocity correlation function
(1.15). Therefore, similarly to the velocity, one can obtain the simplified expression for the
scalar correlation function in the limit of small and large time lags:

𝐶
(2)
𝜃 (𝑡, k⃗) = 𝜖𝜃𝜖

−1/3𝑘−11/3

⎧⎨⎩ 𝐶𝜃𝑆 exp
[︁
−𝛼𝑆 𝐿

2

𝜏20
𝑘2𝑡2 +𝒪(𝑘𝐿)

]︁
, 𝑡≪ 𝜏0,

𝐶𝜃𝐿 exp
[︁
−𝛼𝐿𝐿

2

𝜏0
𝑘2|𝑡|+𝒪(𝑘𝐿)

]︁
, 𝑡≫ 𝜏0,

(1.28)
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where 𝜖 and 𝜖𝜃 are the energy dissipation rates of the velocity and scalar fields, respectively.
The constants 𝐶𝑆,𝐿 are not universal, they depend on the form of the scalar and velocity
forcing profiles. The parameters 𝛼𝑆,𝐿 are identical to the ones obtained for the velocity
correlation function in Eqs. (1.16), (1.18), as the flow equations for scalar and velocity
take the same form. Therefore, the result (1.28) demonstrates that the temporal behavior
of the passive scalar correlation function reproduces the one of the correlation function
of the velocity of the carrier flow. In addition, the evaluation of the two-point correlation
(1.28) at equal times yields a spatial spectrum with the power-law exponent −5/3 that
corresponds to the well-known Obukhov-Corrsin spectrum for the inertial-convective range
of a scalar spectrum (Obukhov, 1949 ; Corrsin, 1951).

The expressions (1.28) have been tested numerically, the results of numerical simula-
tions are provided in the section 4.2. To check the influence of the temporal correlation of
velocity on the scalar space-time correlation, the case of the synthetic velocity field with
prescribed spatial and temporal statistics is also analyzed, which is discussed in the next
section.

1.3.2 Random velocity flow

A simplified scalar advection is considered, in which the velocity is a random Gaus-
sian vector field, characterized by zero mean and prescribed covariance. The covariance of
velocity is taken under the following form:

⟨︀
𝑢𝑖(𝑡, x⃗)𝑢𝑗

(︀
𝑡′, y⃗

)︀⟩︀
= 𝛿
(︀
𝑡− 𝑡′

)︀
𝐷0

∫︁
𝑒𝑖k⃗ · (x⃗−y⃗)𝑃𝑖𝑗(k⃗)

(𝑘2 +𝑚2)
𝑑
2
+ 𝜀

2

d𝑑k⃗

(2𝜋)𝑑
, (1.29)

where 𝑃𝑖𝑗(k⃗) ≡ 𝛿𝑖𝑗 − 𝑘𝑖𝑘𝑗
𝑘2

is the transverse projector which ensures incompressibility, 𝑑 -
dimensionality of the system. The parameter 0 < 𝜀/2 < 1 is the Hölder exponent, describing
the roughness of the velocity field. The wavenumber 𝑚 acts as an infra-red cutoff.

The most essential property of such a velocity flow, enabling simplification, is its white-
in-time covariance. This model was proposed by Kraichnan, 1968 and is often referred
to in the literature as "Kraichnan’s model". This model has been studied extensively
(Kraichnan, 1994 ; Falkovich et al., 2001 ; Adzhemyan and S. V. Novikov, 2006 ; Kupiainen
and Muratore-Ginanneschi, 2007). Even though the velocity in this model has Gaussian
statistics, the passive scalar exhibits anomalous behavior. For this reason, Kraichnan’s
model is particularly interesting for studying and developing methods for the analysis of
intermittency effects. Its simplicity allows to compute some anomalous exponents with
analytical methods. However, the assumption of white-in-time velocity covariance, that
brings simplifications, also poses problems on the extension of the results obtained in
Kraichnan’s model to realistic flows, in which the velocity has some nontrivial finite time
covariance.

The passive scalar advection in Kraichnan’s model has been studied with the FRG
approach in the works of Pagani, 2015 ; Pagani and Canet, 2021. The details on the FRG
derivation can be found in these works. The general scheme of the FRG analysis is still the
same, it is essentially based on the field-theory representation of the stochastic equation of
scalar transport, extended symmetries, and the limit of large wavenumbers. A particular
feature that arises in Kraichnan’s model, thanks to the fact that the velocity temporal
covariance is a delta function and thus does not depend on the frequency, is that the
flow equation can be simplified, and the integration over the internal frequency can be
performed explicitly. The result for the Eulerian two-point spatio-temporal correlation of
the scalar takes the form of an exponentially decaying function of the variable 𝑡𝑘2:

𝐶K

(︁
𝑡, k⃗
)︁
= 𝐹 (𝑘) 𝑒−𝜅ren𝑘

2|𝑡|, (1.30)
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Chapter 1. Theoretical framework

where the equal-time part is separated as 𝐹 (𝑘), which is given by a complicated integral. In
the inertial range, one finds 𝐹 (𝑘) ∼ 𝑘−𝑑−2+𝜀 while in the inertial-diffusive range, 𝐹 (𝑘) ∼
𝑘−𝑑−2−𝜀 (Pagani and Canet, 2021). The decorrelation prefactor in the exponential 𝜅ren
actually represents the renormalized diffusivity. It is computed exactly and takes the form:

𝜅ren = 𝜅+
𝑑− 1

2𝑑

∫︁
𝐷0

(𝑘2 +𝑚2)
𝑑
2
+ 𝜀

2

d𝑑k⃗

(2𝜋)𝑑
. (1.31)

This result suggests that if the fluid velocity is zero, the scalar decorrelation is driven purely
by its molecular diffusivity 𝜅. In the presence of a randomly moving fluid, the temporal
decorrelation is accelerated by the velocity field, and the decorrelation rate is proportional
to the variance of the velocity.

It should be noted that the exponential decay in 𝑡𝑘2 can be derived via several ap-
proaches, such as standard resummation of the self-energy diagrams and FRG calculation
(Pagani and Canet, 2021). A similar expression was obtained in the works (Mitra and
Pandit, 2005 ; Sankar Ray et al., 2008) by deriving a differential equation for the two-point
correlation function.

In the present thesis, the result for the scalar correlation function (1.30) is tested
in the numerical simulation of scalar advection in a synthetic random flow. In addition,
the parameter 𝜅ren of the decorrelation extracted from the correlation functions (1.30) is
compared to the renormalized viscosity evaluated via (1.31). These results can be found in
section 4.3.

It should be noted that the FRG approach can be used in a similar manner in appli-
cation to any flow with known statistical properties of the velocity field, the limitation to
white-in-time velocity covariance is not crucial in the derivation, although it enables sim-
plification. The FRG analysis allows to conclude that as soon as the temporal covariance
(1.29) deviates from the delta function and the velocity field possesses some finite corre-
lation time, the two-point space-time correlation function of the scalar develops a short
time Gaussian regime, followed by an exponential decay at large time lags, similar to the
behavior of the scalar correlation in the NS velocity field (1.28). This conclusion has been
also validated numerically in simulations of scalar advected by a random synthetic field
with a given typical correlation time (see section 4.3.3).

1.4 Interpretation in terms of single-particle dispersion

Eulerian correlations and Lagrangian displacement. An intuitive interpretation of
the short- and large-time regimes of the Eulerian spatio-temporal correlation function can
be drawn from the single-particle turbulent dispersion. As the initial point, let us consider
the pure advection of a scalar 𝜕𝑡𝜃 = −u⃗ ·∇𝜃. Kraichnan, 1964b proposed the following
approximate relation linking the Eulerian scalar field with the Lagrangian displacement:

𝜃(𝑡, x⃗) = exp
[︁
−𝜉(𝑡, x⃗|0) ·∇

]︁
𝜃(0, x⃗), (1.32)

where 𝜉(𝑡, x⃗|𝑠) is the Lagrangian displacement during the time interval from 𝑠 to 𝑡 of
a particle that arrives to the position x⃗ at the time instant 𝑡. If one assumes that the
displacement 𝜉 is mainly dominated by the large-scale motions and varies in space much
more slowly than the gradient of the scalar, the displacement can be considered as statis-
tically homogeneous in space, and its values are determined by the time difference 𝑡 − 𝑠:
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1.4. Interpretation in terms of single-particle dispersion

𝜉(𝑡, x⃗|𝑠) ≈ 𝜉ℎ(𝑡 − 𝑠). Within these assumptions, it is possible to rewrite (1.32) for the
Fourier modes of the scalar:

𝜃(𝑡, k⃗) ≈ exp
[︁
−𝑖𝜉ℎ(𝑡) · k⃗

]︁
𝜃(0, k⃗). (1.33)

By assuming also the statistical independence of the displacement 𝜉ℎ(𝑡) and the initial
distribution of the scalar field at 𝜃(0, x⃗), one can deduce the expression for the space-time
correlation function of the scalar:

𝐶
(2)
𝜃 (𝑡, k⃗) ≈

⟨
exp

[︃
−𝑖𝜉ℎ(𝑡) · k⃗− 𝑖��

�*0
𝜉ℎ(0) · k⃗

]︃⟩⟨
𝜃(0, k⃗)𝜃(0, k⃗)

⟩
. (1.34)

The statistics of the displacement 𝜉ℎ is linked to the statistics of the large-scale velocity
field, which can be assumed as having Gaussian distribution. Therefore, one can perform
the averaging of the exponential, which leads to:

𝐶
(2)
𝜃 (𝑡, k⃗) ≈ exp

[︂
−1

2

⟨
|𝜉ℎ(𝑡)|2

⟩
𝑘2
]︂
𝐶

(2)
𝜃 (0, k⃗). (1.35)

This expression indicates that the temporal decorrelation of the scalar correlation function
occurs through statistical averaging of the complex phases of the scalar Fourier modes,
which are displaced randomly by the large-scale velocity field.

Single particle dispersion problem. The averaged variance of the Lagrangian displa-
cement vector has been studied in the classical work of Taylor, 1922, where it is shown
that the mean squared displacement varies with time as :

⟨
|𝜉ℎ(𝑡)|2

⟩
∼

{︃
𝑈2
𝑅𝑀𝑆𝑡

2, |𝑡| ≪ 𝜏0,

2𝐷|𝑡|, |𝑡| ≫ 𝜏0,
(1.36)

where 𝐷 ≈ 𝑈2
𝑅𝑀𝑆𝜏0 is the eddy viscosity.

The result of Taylor, 1922 comes from the consideration of the displacement as the
integral of Lagrangian velocity 𝜉(𝑡, x⃗|0) =

∫︀ 𝑡
0 u⃗

𝐿(𝑡, x⃗|𝑠) d𝑠. The average of the square of
the displacement can be written as:

⟨
|𝜉ℎ(𝑡)|2

⟩
=

∫︁ 𝑡

0

∫︁ 𝑡

0

⟨︀
u⃗𝐿(𝑡, x⃗|𝑠) · u⃗𝐿(𝑡, x⃗|𝑠′)

⟩︀
d𝑠 d𝑠′ = 𝑈2

𝑟𝑚𝑠

∫︁ 𝑡

0

∫︁ 𝑡

0
𝑅(𝑠− 𝑠′) d𝑠 d𝑠′

= 2𝑈2
𝑟𝑚𝑠

∫︁ 𝑡

0
(𝑡− 𝑠)𝑅(𝑠) d𝑠 , (1.37)

where 𝑅(𝑠− 𝑠′) =
⟨︀
u⃗𝐿(𝑡, x⃗|𝑠) · u⃗𝐿(𝑡, x⃗|𝑠′)

⟩︀
/𝑈2

𝑟𝑚𝑠 is the correlation function of the Lagran-
gian velocity, which is the correlation between velocities at time instants 𝑠 and 𝑠′ of a
fluid particle that passed the point x⃗ at time moment 𝑡. At small time delays 𝑠 − 𝑠′ the
Lagrangian velocity does not change significantly, and the correlation function is 𝑅 ≈ 1,
so at small 𝑡 the integral in the right-hand side of (1.37) behaves as 𝑡2. On the contrary, if
the time 𝑡 is much larger than the integral correlation time, defined as 𝜏𝑐𝑜𝑟𝑟 =

∫︀∞
0 𝑅(𝑠)𝑑𝑠,

the integral behaves as 𝜏𝑐𝑜𝑟𝑟𝑡. In other words, the result (1.36) is just a consequence of the
finite correlation time of the velocity field. The scaling (1.36) has been validated by the
measurements of the Lagrangian displacement in grid turbulence in the experimental work
of Sato and Yamamoto, 1987.
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Chapter 1. Theoretical framework

Ballistic and diffusive dispersion. The result (1.36) of Taylor, 1922 can be understood
intuitively in the following way (Majda and Kramer, 1999, section 3.1.3). At small times
𝑡 ≪ 𝜏0, the averaged square displacement

⟨
𝜉ℎ(𝑡)

2
⟩

grows quadratically in time, which
corresponds to the ballistic regime of the dispersion. The velocity field is felt by a fluid
particle as a coherent movement pushing it in a certain direction. At times 𝑡 > 𝜏0 the large-
scale velocity field decorrelates, and it pushes the particle incoherently. If one observes the
fluid particle over large times 𝑡 ≫ 𝜏0 so that many renewals of the large-scale velocity
field have passed, the particle is moved in different directions by independent pushes, so
the movement of the particle resembles the Brownian motion, and in average exhibits the
diffusive dispersion with the mean square displacement growing linearly in time.

The relation (1.35) allows to project this Lagrangian-displacement picture on the Eu-
lerian correlation function of the scalar and link it with the FRG result (1.28). Indeed, the
ballistic dispersion at the small time lag results in the Gaussian decay in the variable 𝑡𝑘
of the Eulerian correlation function, while the diffusive dispersion at the large time delays
results in the exponential decay of the variable 𝑡𝑘2, which is totally consistent with the
FRG result. Moreover, it also gives a simple explanation of a purely exponential behavior
of the scalar correlation in white-in-time velocity field (1.30). Since the velocity field does
not possess any correlation in time, the ballistic regime of the dispersion vanishes, and one
observes only the Brownian-like dispersion with the linear growth of the mean squared
displacement.

These arguments can also be extended to the statistical moments of higher orders, such
as multipoint correlation functions, under the assumption that the scales are much smaller
than the integral scale of the system 𝐿, which is also the limitation of the FRG result.

From Eulerian correlation to particle dispersion. In the work of Majda and Kramer,
1999, section 3.3 the inverse problem is studied. The statistical properties of the single par-
ticle dispersion in a random velocity field are considered in two dimensions. It is shown that
the regime of the one-particle dispersion depends on the scaling of the typical decorrelation
time 𝜏0(𝑘) ∼ 𝑘−𝑧 and on the spatial spectrum 𝐸(𝑘) ∼ 𝑘1−𝜖 of the random velocity field.
Depending on the assumed values of 𝑧 and 𝜖 one can obtain a diffusive or superdiffusive
regime of the single-particle dispersion.

Correlation of velocity. Similar arguments can be used to explain the small- and large-
time regimes in the Eulerian velocity correlation function resulting from the FRG (1.16),
(1.18). However, it is a little less intuitive for the reason of self-advection of velocity. Such
an interpretation has been proposed by G. Eyink and is provided in the article (Gorbunova
et al., 2021a, section IIB). It can be shown (under certain assumptions) that the Eulerian
velocity correlation can be linked to the Lagrangian displacement in the same way as
(1.35), so the concept of ballistic and diffusive dispersion can be applied for the velocity
correlations as well.

1.5 Summary

This chapter introduces the theoretical framework of functional renormalization group
(FRG) in application to the NS equations and its principal results. The presented results
are studied numerically in the following chapters of the present thesis. The FRG approach
is a powerful method for the analytical study of strongly correlated systems and opens
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1.5. Summary

promising ways in the development of statistical description of hydrodynamic turbulence.
The main feature of the FRG approach is that it gives access to the multipoint correlation
functions of the fields. The functional formulation also allows to obtain the closure of the
RG flow equation without perturbative expansion, by exploiting the symmetries of the
principal equations (Navier-Stokes and advection-diffusion equations) and considering the
limit of large wavenumbers.

The correlation functions resulting from the FRG are consistent with the known beha-
vior of the velocity and scalar fields, such as the 5/3 power law in the spatial and frequency
spectra in Eulerian frame, as well as the dominance of the random sweeping effect in the
space-time correlation function at small time lags. Additionally, the FRG provides new
results, in particular on the large-time behavior of the correlation functions, as well as on
the multipoint correlations, and on the form of the kinetic energy spectrum in the near-
dissipative range. These new results are tested numerically in the chapters 3 and 4 of this
manuscript.

The last chapter 5 of the manuscript also considers the FRG framework in application
to turbulence. In particular, the shell version of Kraichnan’s random advection model is
studied within this approach. In the case of this particular shell model, the derivations
are simplified, and different steps of the FRG analysis are presented in a more detailed
manner.

Résumé en français

Ce chapitre introduit le cadre théorique du groupe de renormalisation fonctionnelle
(FRG) en application aux équations de Navier-Stokes et ses principaux résultats. Les ré-
sultats présentés seront étudiés numériquement dans les chapitres suivants de la thèse.
L’approche FRG est une méthode puissante pour l’étude analytique des systèmes forte-
ment corrélés et ouvre des voies prometteuses dans le développement de la description
statistique de la turbulence hydrodynamique. La principale caractéristique de l’approche
FRG est qu’elle donne accès aux fonctions de corrélation multipoint des champs. La formu-
lation fonctionnelle permet également d’obtenir la fermeture de l’équation du flot RG sans
développement perturbatif, en exploitant les symétries des équations principales (Navier-
Stokes et équations d’advection-diffusion) et en considérant la limite des grands nombres
d’onde.

Les fonctions de corrélation résultant du FRG sont cohérentes avec le comportement
connu des champs de vitesse et scalaires, comme la loi de puissance 5/3 dans les spectres
spatial et fréquentiel dans le cadre eulérien, ainsi que la dominance de l’effet du balayage
aléatoire dans la fonction de corrélation spatio-temporelle à petits décalages temporels.
Par ailleurs, le FRG apporte de nouveaux résultats, notamment sur le comportement en
temps long des fonctions de corrélation, ainsi que sur les corrélations multipoints, et sur
la forme du spectre d’énergie cinétique dans le domaine dissipatif-proche. Ces nouveaux
résultats sont testés numériquement dans les chapitres 3 et 4 de ce manuscrit.

Le dernier chapitre, numéro 5, du manuscrit considère également le cadre FRG en
application à la turbulence. En particulier, la version en couches du modèle d’advection
aléatoire de Kraichnan est étudiée dans cette approche. Dans le cas particulier de ce modèle
en couches, les dérivations sont simplifiées et différentes étapes de l’analyse FRG sont
présentées de manière plus détaillée.

29





2
Direct numerical simulation method

This chapter provides a brief description of the Direct Numerical
Simulation (DNS) method for turbulent flows and the pseudo-
spectral solver. It also describes the method of computation of
space-time correlation of the Fourier modes of velocity, which al-
lows to evaluate and average the correlation function progressi-
vely during the simulation. This approach allows to combine the
simulation with postprocessing and avoid storing large volumes
of data. The computational methods described in this chapter
are used to obtain the numerical results for the velocity correla-
tions (Chapter 3) and passive scalar correlations (Chapter 4).

Contents
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Description of the the pseudo-spectral DNS solver . . . . . . . 33
2.3 Computation of spatio-temporal correlations . . . . . . . . . . . 37
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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Chapter 2. Direct numerical simulation method

Résumé en français

Ce chapitre fournit une brève description de la méthode de simulation numérique directe
(DNS) pour les écoulements turbulents et du solveur pseudo-spectral. Il décrit également
la méthode de calcul de la corrélation spatio-temporelle des modes de Fourier de la vitesse,
qui permet d’évaluer et de moyenner la fonction de corrélation au fur et à mesure de la
simulation. Cette approche permet de combiner la simulation avec le post-traitement et
d’éviter le stockage de gros volumes de données. Le solveur et la procédure de calcul de
corrélation décrits dans ce chapitre sont utilisés pour obtenir les résultats numériques pour
les corrélations de vitesse (Chapitre 3) et les corrélations des scalaires passifs (Chapitre 4).

2.1 Background

Direct numerical simulation (DNS). The main numerical method in the present
study is direct numerical simulation (DNS). It is called "direct" since it is based on the
solution of the Navier-Stokes equation on a large span of scales, ranging from large scales,
at which the energy is injected, to small scales, at which the dissipation occurs. The main
advantage of this approach is its high accuracy, since it resolves directly all scales relevant
to the dynamics of the flow and does not rely on any model parametrizing small scales. The
main limitations of this approach are its high computational cost and restriction to simple
geometries (Pope, 2000). One of the simplest models, accessible by DNS, is a homogeneous
isotropic turbulent flow in a three-dimensional periodic box governed by incompressible
Navier-Stokes equations. For the study of homogeneous isotropic turbulent flows, the main
method of simulation is the pseudo-spectral DNS, pioneered by Orszag and Patterson, 1972
and Rogallo, 1981, and which is used in the present study.

Despite the apparent simplicity of a homogeneous isotropic turbulent flow in a 3D
periodic box, such a flow retains the intrinsic and universal features of turbulence. For
these reasons, the DNS method is mainly applied for the study of the universal statistical
properties of small scales in turbulence, such as spectra of energy and energy fluxes, scaling
exponents of velocity increments and gradients, intermittency effects and others (Ishihara
et al., 2009).

A high computational cost of DNS has been the major limiting factor for performing
DNS at large Reynolds numbers for a long time, but nowadays thanks to the tremendous
development of supercomputers, it is possible to reach Reynolds numbers comparable to
the ones in laboratory experiments. The first pseudo-spectral DNSs in the 1970s were run
on spatial grids with 𝑁3 = 323 points with the Taylor-scale Reynolds number around
𝑅𝜆 ≈ 20. Nowadays, the largest DNS has been performed on a grid with 𝑁3 = 122883

points which allows to reach 𝑅𝜆 ≈ 2000 (Ishihara et al., 2016 ; Buaria and Sreenivasan,
2020). For comparison, the Taylor-scale Reynolds number in the largest sonic wind tunnel
in the world in Modane is 𝑅𝜆 ≈ 500 (Bourgoin et al., 2018).

Numerical test of FRG results. The main purpose of the present study is to test the
FRG results with the use of numerical simulations of homogeneous isotropic turbulence,
and the pseudo-spectral DNS appears to be the most appropriate tool. Indeed, the spec-
tral representation of the numerical method enables a simple bridge with FRG results,
for instance, for the simple computation of the space-time correlation functions in Fourier
space. In addition, the limit of large wavenumbers, on which the FRG results rely, can be
easily accessed in DNS by considering the relevant scales and applying spectral filters to
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the fields. Another important feature of this method is that the modern implementations
of pseudo-spectral DNS can be parallelized, which allows to perform simulations on large
computational grids and reach high Reynolds numbers. The parallelization is possible since
the core of the solver actually represents a sequence of fast Fourier transforms, for which
parallel and efficient algorithms are available in standard libraries. Finally, another impor-
tant particularity of DNS is the relative simplicity of the solver, since it incorporates only
Navier-Stokes equations, which makes possible an easy and quick implementation of the
postprocessing routines adapted for individual research tasks.

However, simulations on fine numerical grids produce a large amount of data which is
not easy to process, and the problem of data storage and treatment becomes especially
sharp when the temporal properties of turbulence are studied. Nowadays, the spatial pro-
perties of turbulence can be accessed with the use of the DNS databases, such as Johns
Hopkins University Turbulence Database (Li et al., 2008). It provides high-quality datasets
for various cases; however, the available datasets containing a long time evolution of the
flow fields are less numerous. In addition, the volume of these datasets requires a lot of
storage space and elaborated techniques for data treatment. For this reason, in the present
study, it was decided to run new DNS simulations, in which space-time correlations and
spectra are computed and averaged during the run, instead of using available databases.
Such an approach allows to benefit from the parallel implementation of the solver for the
data treatment and optimize the data storage.

Structure of the chapter. This chapter provides a brief description of the pseudo-
spectral DNS solver used to obtain the main results of this thesis. The particular features
of the solver configuration are discussed in section 2.2, such as choice of parameters, time
advancement scheme, forcing scheme, and parallel data distribution. Additionally, the im-
plemented method of the computation of space-time correlations is described in section 2.3,
which is adapted to parallel execution. The chapter is concluded by a short summary in
section 2.4.

2.2 Description of the the pseudo-spectral DNS solver

Pseudospectral method. All DNSs in this thesis were performed with the use of the
SCALES software, developed in LEGI. It provides a pseudo-spectral solver with explicit
time advancement of the incompressible Navier-Stokes equation (1.1) in three dimensions.
The code SCALES represents an implementation of the canonical DNS method (Orszag
and Patterson, 1972 ; Rogallo, 1981 ; Canuto, 1988) adapted to parallel execution on high
performance computational clusters. The method is called "pseudo-spectral" as the equa-
tion is solved in the spectral space, except for the treatment of the nonlinear term of the NS
equation. Here, the most essential details on the implementation of the solver are provided.

The computational domain represents a periodic cubic box of side length 2𝜋 with 𝑁3

discretization points. Since the domain is periodic, it is simple to rewrite the Navier-Stokes
equations (1.1),(1.2) for the velocity Fourier modes ^⃗u(𝑡, x⃗) ≡ FT [u⃗(𝑡, x⃗)]:

𝜕𝑡 ^⃗u(𝑡, x⃗) =
^⃗
N(𝑡, x⃗)− 𝜈𝑘2 ^⃗u(𝑡, x⃗) +

^⃗
f(𝑡, x⃗), (2.1)

k⃗ · ^⃗u(𝑡, x⃗) = 0, (2.2)

where ^⃗
N ≡ FT

[︁
−(u⃗ ·∇)u⃗− 1

𝜌∇𝑝
]︁
is the Fourier transform of the pressure gradient and the

advection terms. The pressure can be eliminated from NS equation in Fourier representation
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in case of incompressibility, since its gradient coincides with the projection of the advection
term on the direction parallel to k⃗ (Pope, 2000, Chapter 6). The Fourier transform of the
non-linear term ^⃗

N contains a convolution of velocity:

𝑁̂𝑙(𝑡, k⃗) = −𝑖𝑘𝑛𝑃𝑙𝑚(k⃗)
∑︁
k⃗′

𝑢̂𝑚(𝑡, k⃗)𝑢̂𝑛(𝑡, k⃗− k⃗′), (2.3)

where 𝑃𝑙𝑚(k⃗) ≡ 𝛿𝑙𝑚 − 𝑘𝑙𝑘𝑚
𝑘2

is the operator of projection onto the plane normal to k⃗.
Thanks to the incompressibility condition ∇ · u⃗ = 0, the non-linear term 𝑁̂𝑙(k⃗, 𝑡) can

be taken in its skew-symmetric form, which improves the stability and convergence of the
numerical scheme:

𝑁̂𝑙(𝑡, k⃗) = 𝑃𝑙𝑚(k⃗) FT

[︃
1

2
𝑢𝑛(𝑡, x⃗)

𝜕𝑢𝑚(𝑡, x⃗)

𝜕𝑥𝑛
+

1

2

𝜕[𝑢𝑛(𝑡, x⃗)𝑢𝑚(𝑡, x⃗)]

𝜕𝑥𝑛

]︃
. (2.4)

In the pseudo-spectral method, the spatial derivatives 𝜕/𝜕𝑥𝑛 are computed in the
spectral domain, where it is equivalent to a multiplication by a wavenumber 𝑘𝑛, while the
products 𝑢𝑛𝑢𝑚 and 𝑢𝑛𝜕𝑥𝑛𝑢𝑚 are computed in the physical domain, to avoid the direct
computation of the convolution sums.

Dealiasing. The finite spatial resolution of the discretized computational domain gives
rise to the aliasing error in the estimation of the convolutional sums used in the pseudo-
spectral method. The aliasing error is reduced with the use of the polyhedral truncation
method (Orszag, 1971), (Canuto, 1988, Chapter 7). In this method, the spectral represen-
tations of all fields (velocity and its derivatives) are nullified for all k⃗ outside the region:{︃

|𝑘𝛼| ≤ 𝑁/2, 𝛼 = 1, 2, 3,

|𝑘𝛼 ± 𝑘𝛽| ≤ 2𝑁/3, 𝛼, 𝛽 = 1, 2, 3, 𝛼 ̸= 𝛽.
(2.5)

This region corresponds to a 18-sided polyhedron. The polyhedral truncation allows to
keep more active (not truncated) modes comparing to the spherical truncation, as it takes
into account the discreteness and cubic shape of the computational domain. All fields are
truncated before the computation of the nonlinear term.

Time advancement. The linear term in Eq. (2.2) representing the molecular visco-
sity can be treated with the integrating-factor technique (Canuto, 1988, Chapter 4). The
equation for a component 𝑗 of a velocity Fourier mode can be rewritten in the following
form:

𝑑𝑢̂𝑗
𝑑𝑡

= 𝑁̂𝑗 − 𝜈𝑘2𝑢̂𝑗 + 𝑓𝑗 , (2.6)

𝑑

𝑑𝑡

[︁
𝑒𝜈𝑘

2𝑡𝑢̂𝑗

]︁
= 𝑒𝜈𝑘

2𝑡
[︁
𝑁̂𝑗 + 𝑓𝑗

]︁
. (2.7)

Then, the forward Euler time advancement scheme takes the form:

𝑢̂𝑛+1
𝑗 = 𝑒−𝜈𝑘

2Δ𝑡
[︁
𝑢̂𝑛𝑗 +Δ𝑡𝑁̂𝑗(𝑢̂

𝑛) + Δ𝑡𝑓𝑛+1
𝑗

]︁
, (2.8)

where 𝑛 is the time iteration, Δ𝑡 - time step, 𝑁̂𝑗 is the nonlinear term evaluated with the
solution 𝑢̂𝑛𝑗 obtained at the iteration 𝑛.

The integrating-factor technique allows an unconditionally stable and exact treatment
of the viscous term, and the restrictions on the time advancement step and method are
determined only by the nonlinear and forcing terms.
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2.2. Description of the the pseudo-spectral DNS solver

In this work, the time derivative is approximated with the use of second-order Runge-
Kutta method (RK2) for the spectral velocity fields. Taking into account the integrating
factor for the viscosity term, the RK2 scheme takes form:

𝑢̂
𝑛+ 1

2
𝑗 = 𝑒−𝜈𝑘

2Δ𝑡/2

[︂
𝑢̂𝑛𝑗 +

Δ𝑡

2
𝑁̂𝑗(𝑢̂

𝑛) +
Δ𝑡

2
𝑓
𝑛+ 1

2
𝑗

]︂
, (2.9)

𝑢̂𝑛+1
𝑗 = 𝑒−𝜈𝑘

2Δ𝑡
[︁
𝑢̂𝑛𝑗 +Δ𝑡𝑒𝜈𝑘

2Δ𝑡/2
(︁
𝑁̂𝑗(𝑢̂

𝑛+ 1
2 ) + 𝑓𝑛+1

𝑗

)︁]︁
. (2.10)

The second-order Runge-Kutta scheme requires only one subiteration and one level
of storage of an intermediate result. It was chosen as the most appropriate for the study
of time correlation, which requires the collection of data at high temporal resolution, and
thus, at a sufficiently small time step. The RK2 scheme is stable at the required time steps,
so it provides an optimal balance between accuracy and performance.

The time step is computed based on the Courant-Friedrichs-Lewy (CFL) condition
(Ferziger and Perić, 2002):

Δ𝑡 ≤ 𝐶
Δ𝑥

max(|𝑢𝑥|+ |𝑢𝑦|+ |𝑢𝑧|)
, (2.11)

where Δ𝑥 = 𝐿/𝑁 - spatial discretization size, 𝐶 is the Courant number, taken at 𝐶 = 0.5.

Forcing. To achieve a statistically stationary state, the velocity field is randomly forced
at large scales. The forcing field is randomly renewed at each time step (and subiteration of
RK2 time advancement scheme) of the simulation, and it is uncorrelated with the velocity
field. The detailed description of the forcing scheme can be found in the article of Alvelius,
1999. The forcing vector field is generated in the spectral domain according to

^⃗
f(𝑡, k⃗) = 𝐴ran(𝑡, k⃗) e⃗1(k⃗) +𝐵ran(𝑡, k⃗) e⃗2(k⃗), (2.12)

where e⃗1, e⃗2 are orthogonal unit vectors (in order to ensure zero divergence of f⃗), and the
random coefficients are

𝐴ran(𝑡, k⃗) =

(︂
𝐹 (𝑘)

2𝜋𝑘2

)︂1/2

exp (𝑖𝜃1) sin(𝜑), (2.13)

𝐵ran(𝑡, k⃗) =

(︂
𝐹 (𝑘)

2𝜋𝑘2

)︂1/2

exp (𝑖𝜃2) cos(𝜑), (2.14)

with 𝜃1, 𝜃2, 𝜑 - uniformly distributed random real numbers ∈ [0, 2𝜋] generated at each time
iteration (or sub-iteration) for each Fourier mode k⃗. The function 𝐹 (𝑘) is the force power
spectrum, chosen in the form of a Gaussian centered at a forcing wavenumber 𝑘𝑓 :

𝐹 (𝑘) =

{︃
𝐾 exp

[︀
−𝑐(𝑘 − 𝑘𝑓 )

2
]︀
, 𝑘𝑎 < 𝑘 < 𝑘𝑏,

0, elsewhere,
(2.15)

with the prefactor 𝐾 =
𝑃

Δ𝑡

1∑︀𝑘𝑏
𝑘=𝑘𝑎

exp [−𝑐(𝑘 − 𝑘𝑓 )2]
, where Δ𝑡 is the time step and 𝑃 is

the power input, and the parameter 𝑐 determines the width of the Gaussian function, it
is taken as 𝑐 = 2. The forcing spectrum 𝐹 (𝑘) is limited to the wavenumber band between
𝑘𝑎 = 𝑘𝑓 − 2 and 𝑘𝑏 = 𝑘𝑓 + 1.

The random forcing scheme enables an approximation of the stochastic Gaussian forcing
used in the theoretical framework. In addition, it does not impose any characteristic time
scale arising from the correlation of the forcing, and therefore it is the best option to avoid
any influence of the forcing on temporal statistics.
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Chapter 2. Direct numerical simulation method

Parameters of forcing. The forcing power input 𝑃 and the wavenumber 𝑘𝑓 are deter-
mined by the predefined parameters of the simulation: spatial resolution 𝑁3, Taylor-scale
Reynolds number 𝑅𝜆 and the product of the maximal wavenumber 𝑘𝑚𝑎𝑥 = 𝑁/2 with the
Kolmogorov length scale: 𝐻 = 𝑘𝑚𝑎𝑥𝜂.

It is considered that spatial resolution given by 𝐻 = 1.5 is sufficient for DNS (Pope,
2000, Chapter 9), and this value was taken for most numerical simulations in the present
work (apart from the study of the dissipative range). The parameter 𝐻 fixes the value of
the Kolmogorov length scale as:

𝜂 =
𝐻

𝑘𝑚𝑎𝑥
=

𝐻

𝑁/2
.

Fixing the length scale 𝜂 allows to calculate the power input:

𝑃 =
𝜈3

𝜂4
, (2.16)

as well as the forcing wavenumber for the given Taylor-scale Reynolds number 𝑅𝜆 (Pope,
2000):

𝑘𝑓 =
2𝜋/𝜂(︀
3
20𝑅

2
𝜆

)︀3/4 = 𝜋𝑁

𝐻
(︀

3
20𝑅

2
𝜆

)︀3/4. (2.17)

If 𝑘𝑓 < 1, the forcing wavenumber is outside the numerical domain and the simulation
is impossible. Therefore, the last expression shows that for a fixed 𝐻 and the number of
points 𝑁3 there exists a maximal allowed Reynolds number 𝑅𝜆 to simulate a turbulent
flow in the given configuration. It also shows that the required size of the numerical grid
grows very fast with the Taylor-scale Reynolds number as 𝑁3 ∼ 𝑅

9/2
𝜆 , demonstrating that

the needed spatial resolution grows drastically with the Reynolds number, which is the
major limitation of the DNS method.

Initial conditions. At the beginning of each simulation, the velocity field is initiali-
zed in the Fourier space as a random vector field with Gaussian statistics and with the
wavenumber spectrum:

𝐸𝑖𝑛𝑖𝑡(𝑘) =
3

10
𝑅2
𝜆𝜈

2

(︂
𝑘

𝑘𝑓

)︂4

exp

[︃
−2

(︂
𝑘

𝑘𝑓

)︂2
]︃
. (2.18)

It should be noted that the forcing scheme described above allows to start a simulation
with zero velocity field, but a random filling of large scales with kinetic energy at the
initialization reduces the number of iterations needed to reach the stationary state.

The computation of statics of the turbulent flow is turned on only once the stationary
state is achieved. It is checked by tracing the values of the total kinetic energy (or the total
variance of the scalar) in the computational domain. When the kinetic energy becomes
stable, making small fluctuations around a constant value, the stationary state is conside-
red reached. All statistical measurements from the numerical simulation presented in this
thesis, such as spectra or correlation functions, are collected in the stationary regime

Parallel implementation. For simulations on large numerical grids, the pseudo-spectral
solver in SCALES can be used in parallel by means of the MPI tools (Lagaert et al., 2012).
In case of parallel execution, the three-dimensional computational grid is divided into
partitions along 2 directions: along 𝑌 and 𝑍 in real space and along 𝑋 and 𝑌 in the
spectral space. Each MPI process treats a partition of the computational domain. The 3D
fast Fourier transform (FFT) is performed as a sequence of one-dimensional FFTs. The 1D
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2.3. Computation of spatio-temporal correlations

FFTs do not require any communication between MPI processes and are performed with
the use of FFTW library. The communications are necessary only between the consecutive
1D FFTs to reorganize the data for the Fourier transform in another direction. The same
approach is applied to compute the inverse Fourier transform. It should be noted that in
the described implementation of the pseudo-spectral solver, the MPI communications are
invoked only for FFT, the solver algorithm itself requires only local computations that do
not require any communications. However, additional communications can be needed for
some data analysis operations, such as spatial averaging.

The parallelization of the code allows to run the simulation on high performance com-
puting clusters, which is necessary in case of simulations at high Reynolds numbers on
high-resolution grids. The described data organization is optimized for computations on
large grids, for this reason it was used not only for the solver, but also for the data treat-
ment. In particular, for the computation of space-time correlation functions, which are
the main statistical properties of interest in the present thesis. The adopted method of
computation of the space-time correlation is described in the next section.

2.3 Computation of spatio-temporal correlations

The traditional method of computation of time correlation functions consists in the
evaluation of the autocorrelation functions of the time series. In application to the 3D
simulations of a velocity field, it would mean that one has to gather the time series of
complete Fourier velocity fields (or any other field of interest) containing 𝑁3/2 points.
In addition, the fields have to be recorded at sufficiently high frequency to study the
correlation function at small time delays, and the total observation time must be large
enough, covering at least a few typical integral times 𝜏0 = 𝐿/𝑈𝑟𝑚𝑠 (with 𝐿 - integral
length scale, 𝑈𝑟𝑚𝑠 - root-mean-squared velocity). Although this method can be used in
a straightforward manner in the case of small grid sizes (𝑁 =64 or 128), at high spatial
resolutions, the treatment of the time series of all grid points imposes significant technical
difficulties. At 𝑁 = 1024 a single snapshot of one velocity field component at double
precision reaches approximately 10 GB. In this case, the volume of time series including
1000 field snapshots would be above 10 TB. Writing, storing, and post-processing such
volumes of data requires a lot of resources and elaborated programming techniques.

Computation method. To avoid the storage of large amounts of data and heavy post-
processing, the time correlations of the Fourier fields are evaluated and averaged during
the simulation once the stationary state is reached. Each snapshot of the time evolution
of a flow field is treated immediately once the solver time advancement step is accompli-
shed. To compute the time correlation without the complete time series, the spectral 3D
vector velocity field at a chosen time 𝑡0 is saved in the memory. At the next iteration, all
Fourier modes of the updated velocity field at time instant 𝑡0 + 𝑖Δ𝑡 are multiplied by the
corresponding modes of the velocity field at time 𝑡0, giving the non-averaged two-point
correlation function for all k⃗ at time lag Δ𝑡. The computation is entirely performed in the
spectral space. Since the velocity field is statistically isotropic, the obtained two-point ve-
locity correlation function can be averaged over spherical spectral shells. The wave vectors
k⃗ are divided into the shells 𝑆𝑛 of thickness Δ𝑘 = 1, so that k⃗ ∈ 𝑆𝑛 if 𝑛 − 1 <

⃒⃒
k⃗
⃒⃒
< 𝑛,

where 𝑛 = 1, .., 𝑁/2.
The same computation is repeated on the consequent time iterations, providing an

instantaneous correlation between the current state of the field and the one saved in the
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Chapter 2. Direct numerical simulation method

memory. After a certain number of time iterations, corresponding to a predefined period
𝑇𝑤, the reference time instant 𝑡0 is reset to the current time, and the reference velocity
field saved in the memory is updated. The necessary duration of the time window 𝑇𝑤 is
estimated as the time lag, at which the magnitude of the correlations at all scales of interest
have already decayed close to zero. Ideally, 𝑇𝑤 should be of duration of a few integral time
scales of the flow 𝜏0, but to study the temporal correlation at small time lags 𝑇𝑤 ∼ 𝜏0
appears to be enough. The resulting correlation function is averaged over time windows
with different reference times 𝑡0, and the real part is taken:

𝐶(2)(𝑡, k⃗) =
1

𝑁𝑡

𝑁𝑡∑︁
𝑗=1

1

𝑀𝑛

∑︁
k⃗∈𝑆𝑛

Re
[︁
𝑢̂𝑖(𝑡0𝑗 , k⃗)𝑢̂

*
𝑖 (𝑡0𝑗 + 𝑡, k⃗)

]︁
, (2.19)

where 𝑁𝑡 is the number of time windows in the simulation, 𝑀𝑛 is the number of modes
in the spectral spherical shell 𝑆𝑛, and 𝑘 = 𝑛Δ𝑘, 𝑛 ∈ Z. It allows to obtain a numerical
estimation of the two-point spatio-temporal correlation function 𝐶(2) defined in Eq. (1.14)
with averaging in space (over spectral spherical shells) and time (over observation time
windows).

Data storage. Clearly, this approach provides less data for time averaging compared
to the autocorrelation function extracted from the time series. If one has a complete time
series of a field, it is possible to compute the correlation of all field snapshots between
each other and to average the resulting correlations obtained at the same time lag. The
method proposed here evaluates the correlation between the snapshot at time instant 𝑡0
and following 𝑁𝑡 iterations only, and time average is performed by changing the reference
time 𝑡0. However, this approach can be easily applied to the computational grid of any size,
since the evaluation of the correlation function is parallelized in the same way as the solver,
and it does not require any additional significant amount of storage volume. The computed
spatio-temporal correlation function is stored in memory simply as a two-dimensional table
containing 𝑇𝑤/Δ𝑡 lines (number of iterations in a time window) and 𝑁/2 columns (number
of spectral wave vector shells). The time average is also performed during the simulation
by accumulating the values of the spatially averaged correlations in the table and dividing
it by the number of time windows 𝑁𝑡 before writing the result.

Averaging. The numerical result obtained from Eq. (2.19) depends on the amount of
data collected for spatial and temporal averaging, that is, on the total number of time
windows 𝑁𝑡 and the number of Fourier modes in each individual spectral shell 𝑆𝑛. As
a consequence, this method allows to obtain significantly better averages for high wave
numbers compared to small wavenumbers, since the number of modes in a spherical shell
grows quadratically with the wavenumber 𝑀𝑛 ∝ 𝑘2. In addition, it is easier to access the
correct statistical averages for the correlation function at small time lags, since they require
shorter observation windows 𝑇𝑤, and therefore it is possible to collect more time windows
𝑁𝑡.

Testing. One of the simplest ways to test the numerical result of 𝐶(2)(𝑡, 𝑘) obtained
by the described method is to check its behavior at equal times. The integration of the
correlation function 𝐶(2) over a spherical shell in Eq. (1.14) gives the spectrum of kinetic
energy:

𝐸(𝑘) = 4𝜋𝑘2𝐶(2)(𝑡 = 0, 𝑘) = 𝐶𝐾𝜖
2/3𝑘−5/3. (2.20)

Some examples of the spatial spectra extracted from the numerical evaluation of 𝐶(2)(𝑡, 𝑘)
are provided in Fig. 3.1 (p. 49). The spectra compensated by 𝑘5/3, corresponding to the

38



2.4. Summary

Kolmogorov power law of the inertial range, exhibit an emerging plateau at intermediate
wavenumbers, extending with increase in 𝑅𝜆. The vertical scaling by 𝜖2/3 and horizontal
by 𝜂 makes the curves for various 𝑅𝜆 collapse, and the estimated Kolmogorov constant
𝐶𝐾 is close to 2, which is consistent with the available data for turbulent kinetic energy
spectra from experiments and numerical simulations.

The same approach is used for the computation of space-time correlations between the
Fourier transforms of the velocity and advection fields in Sec. 3.3 and for the passive scalar
correlation function discussed in Chapter 4.

2.4 Summary

The present chapter contains a brief description of the DNS method used in this thesis.
DNS is a powerful tool in modern turbulence research, as it provides an accurate des-
cription of a turbulent flow and gives access to its various statistical properties. With the
development of high-performance computing facilities and parallel computation techniques,
nowadays it is possible to perform DNS at Reynolds numbers comparable to experimental
values.

In the present study, the DNSs are performed for the case of three-dimensional in-
compressible homogeneous isotropic flow with periodic boundaries under random external
forcing. The used method represents a pseudo-spectral solver in space and the Runge-Kutta
scheme for time advancement. The velocity field forcing is random in space and time and is
limited to large scales. The power of the forcing is adjusted to obtain the predefined value
of the Taylor-microscale Reynolds number in the stationary state of the flow.

To study the statistical properties of the stationary turbulence, the correlation functions
are evaluated once the stationary state is reached. The space-time correlation functions are
computed and averaged "on-the-fly" during the simulation. This approach allows avoiding
saving large amounts of data and to benefit from the parallelized computation of DNS for
part of the postprocessing. In addition, the presented method of computation of spatio-
temporal correlation functions scales easily to any grid size and can be used in general for
the analysis of any statistical property containing time-delayed quantities. The results of
the numerical simulations and computed space-time correlation functions are provided and
discussed in the following two chapters.

Résumé en français

Le présent chapitre contient une brève description de la méthode DNS utilisée dans
cette thèse. Le DNS est un outil puissant dans la recherche moderne sur la turbulence, car
il fournit une description précise d’un écoulement turbulent et donne accès à ses diverses
propriétés statistiques. Avec le développement des machines de calcul hautes performances
et de techniques de calcul parallèle, il est aujourd’hui possible d’effectuer des DNS à des
nombres de Reynolds comparables à ces valeurs expérimentales.

Dans les études présentées dans ce manuscrit, les DNS sont réalisés pour le cas d’un
écoulement isotrope homogène tridimensionnel incompressible avec des conditions aux
bords périodiques sous forçage externe aléatoire. La méthode utilisée représente un solveur
pseudo-spectral dans l’espace et un schéma de Runge-Kutta pour l’avancement temporel.
Le forçage du champ de vitesse est aléatoire dans l’espace et dans le temps et limité aux
grandes échelles. La puissance du forçage est ajustée pour obtenir la valeur prédéfinie du
nombre de Reynolds à l’échelle de Taylor à l’état stationnaire de l’écoulement.
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Pour étudier les propriétés statistiques de la turbulence stationnaire, les fonctions de
corrélations sont évaluées une fois l’état stationnaire atteint. Les fonctions de corrélation
espace-temps sont calculées et moyennées "à la volée" pendant la simulation. Cette ap-
proche permet d’éviter de sauvegarder de grandes quantités de données et également de
bénéficier du parallélisme de l’implémention de DNS pour une partie du post-traitement.
De plus, la méthode de calcul des fonctions de corrélation spatio-temporelle présentée
s’adapte facilement à n’importe quelle taille de grille et peut être utilisée en général pour
l’analyse de toute propriété statistique contenant des quantités retardées. Les résultats des
simulations numériques et des fonctions de corrélation espace-temps calculées sont fournis
et discutés dans les deux chapitres suivants.
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3
Spatio-temporal correlations of velocity

This chapter is dedicated to the study of spatio-temporal corre-
lation functions of velocity in 3D homogeneous isotropic turbu-
lence in Eulerian frame of reference. The conducted numerical
simulations of two-point correlation function at small time lags
are in total agreement with the theoretical FRG prediction. Si-
milar results were obtained for the triple velocity correlations. In
addition, the theoretically predicted kinetic energy spectrum in
the near-dissipation range is observed in numerical simulations
at high Reynolds numbers.
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Chapter 3. Spatio-temporal correlations of velocity

Abstract

The present chapter is devoted to the comparison of the FRG results with the direct nu-
merical simulations of 3D homogeneous isotropic turbulent flow. It is organized as follows:
first, an overview of the existing theoretical prediction for spatio-temporal correlation func-
tions in turbulence is provided, as well as its experimental and numerical measurements.
Next, the results of the numerical simulations are presented. In particular, the two-point
correlation function of the velocity field at small and large time lags is studied, resulting
in good agreement with the FRG prediction. In addition, a triple velocity correlation func-
tion is computed. The link between the triple correlation and the spectral energy transfer
function is discussed. Moreover, the correlations of the velocity norms are considered, al-
though this type of correlation is not covered by the theory yet. A part of these results
have been published in Physics of Fluids (Gorbunova et al., 2021a). The last section of
the chapter is dedicated to the study of the spectrum of velocity in near-dissipative range
and its comparison with the FRG prediction. This result has been published in Physical
Review Fluids (Gorbunova et al., 2020).

Résumé en français

Le présent chapitre est consacré à la comparaison des résultats FRG avec les simu-
lations numériques directes d’écoulement turbulent isotrope homogène tridimensionnel. Il
est organisé de la manière suivante : tout d’abord, un aperçu de la prédiction théorique
existante de la fonction de corrélation spatio-temporelle en turbulence est fourni, ainsi que
ses mesures expérimentales et numériques. Ensuite, les résultats des simulations numé-
riques sont présentés, notamment, la fonction de corrélation à deux points du champ de
vitesse à petits et grands décalages temporels. Ces résultats sont en un bon accord avec la
prédiction FRG. De plus, une fonction de corrélation à trois vitesses est calculée et mise
en relation avec la fonction spectrale de transfert d’énergie. En outre, les corrélations des
normes de vitesse sont considérées, bien que ce type de corrélation ne soit pas couvert par
la théorie. Une partie de ces résultats a été publiée dans Physics of Fluids (Gorbunova
et al., 2021a). L’analyse du spectre de vitesse dans la zone dissipative et sa comparaison
avec la prédiction FRG sont abordés en fin de chapitre. Ces résultats ont été publiés dans
Physical Review Fluids (Gorbunova et al., 2020).

3.1 Background

This section provides an overview of the previous works dedicated to the study of
spatio-temporal correlation functions in turbulence. Firstly, the differences in temporal
decorrelation in Eulerian and Lagrangian frames of reference are discussed on phenome-
nological grounds, and in particular, the presence of the sweeping effect in the Eulerian
frame. The principal works proposing the theoretical explanation of the sweeping effect,
including FRG, are presented, as well as numerical studies related to this problem. The
application of the sweeping hypothesis for models of various usage in fluid mechanics is
also discussed. In addition, previous studies concerning correlation function at large time
delays and multipoint correlations are discussed.

Role of the space-time correlations. Understanding the multipoint spatio-temporal
correlations of velocity is essential for many axes of turbulence research and its applications.
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To begin with, assumptions of the behavior of spatio-temporal correlations lie in the basis
of some statistical theories of turbulence, such as direct-interaction approximation (Kraich-
nan, 1964a), models based on quasi-normal hypothesis, in particular Eddy-Damped-Quasi-
Normal-Markovian (EDQNM) model (Lesieur, 2008), as well as the local-energy-transfer
(LET) model (McComb and Yoffe, 2017). In addition, the advanced comprehension of the
spatio-temporal correlations is crucial for studying and modeling the phenomena of wave
propagation in turbulent media, for instance, sound waves (Zhou and Rubinstein, 1996).
Also, the particle-laden turbulence and turbulent particle diffusion represent a complicated
problem and are often studied by means of simplified kinematic models with "synthetic"
turbulent flows, including certain assumptions on spatio-temporal behavior of the veloci-
ties (Fung et al., 1992). Furthermore, many numerical studies in application to geophysical
and industrial problems rely on the turbulent models, such as large eddy simulation (LES)
models, whose setting also requires physical understanding of spatio-temporal correlations
to make time-accurate predictions (Guo et al., 2012). Apart from that, the knowledge of
the spatio-temporal correlation functions in Eulerian frame of reference is necessary for
experimental data treatment, for instance, in case of mapping between the spatial and
temporal signals of the turbulent flows (G. He et al., 2017).

Lagrangian frame of reference. In the Lagrangian frame, the typical time of velocity
correlation is determined by the evolution of individual turbulent eddies of various scales.
The eddies deform and break down, creating smaller eddies, and these processes form an
energy cascade from large-scale energy injection towards small scales at which the viscous
dissipation occurs. The K41 theory (Kolmogorov, 1941 ; Frisch, 1995) assumes a constant
energy flux throughout the scales in the inertial range. A dimensional analysis based on
K41 arguments leads to a power-law form of the spatial spectrum of the turbulent kinetic
energy 𝐸(𝑘) ∼ 𝑘−5/3. A similar dimensional analysis based on the argument of energy
cascade can be applied to the time scales. The estimation of a typical time of energy
transfer from an eddy of size 𝑘−1 to smaller eddies suggest that is should scale as ∼ 𝑘−2/3,
which is also known as local eddy-turnover characteristic time 𝜏𝑒𝑑𝑑𝑦 (Frisch, 1995). While
studying the flow in the Lagrangian frame, the observer follows an individual eddy in the
flow and will observe the velocity decorrelation of this fluid particle when the eddy breaks
down after the typical time 𝜏𝑒𝑑𝑑𝑦 ∼ 𝑘−2/3. This time scaling was observed in numerical
studies (Matsumoto et al., 2021).

Eulerian frame of reference. However, in the Eulerian frame the picture is different.
In addition to the individual evolution of eddies, one has to take into account the advection
of the small eddies by the large-scale flow that was first suggested by Heisenberg in 1948.
This effect of the large-scale advection is present even in the absence of a mean flow, and
is determined by the velocity fluctuations of large-scale eddies. The large-scale velocity has
a zero mean, but varies randomly in time, in the approximate range [−𝑈𝑟𝑚𝑠,+𝑈𝑟𝑚𝑠]. The
characteristic time of variation of the large-scale velocity field is much larger than the eddy-
turnover time at small scales, or in other words, large-scale eddies evolve slowly comparing
to the small eddies. That is to say, the small eddies are all simultaneously advected by this
slowly varying random large-scale field without any distortion. Therefore, for an observer
in the Eulerian frame of reference attached to a fixed point, an eddy of size 𝑘−1 will be
swept away from this point by a large-scale eddy in a typical time 𝜏𝑠 ∼ (𝑈𝑟𝑚𝑠𝑘)

−1.

Sweeping and straining time scales. The question that naturally arises is which
time scale will be dominant for the Eulerian time correlations: the eddy turn-over 𝜏𝑒𝑑𝑑𝑦 ∼
𝑘−2/3 (also referred as straining) or the random advection time 𝜏𝑠 ∼ 𝑘−1 (also referred
as sweeping). In the work of Tennekes, 1975 these two time scales are estimated and
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compared on the basis of dimensional analysis, and it is concluded that for the Eulerian
time correlation the sweeping effect is dominant. In other words, the eddies are swept faster
than they evolve and get distorted due to the turbulent energy cascade. This conclusion
was also supported by experimental and numerical evidences of the velocity frequency
spectrum in Eulerian frame that takes the form of 𝐸(𝜔) ∼ 𝜔−5/3 (Kit et al., 1995 ; Lévêque
et al., 2007), the power law that arises from the sweeping time scaling. Besides, there
are experimental and numerical evidences of 𝐸𝐿(𝜔) ∼ 𝜔−2 for the Lagrangian frequency
spectrum (Chevillard et al., 2005 ; Lévêque et al., 2007), which is also consistent with the
straining time scaling 𝜏 ∼ 𝑘−2/3.

Kraichnan’s sweeping model. A simple kinematic model to describe the sweeping
effect was proposed by Kraichnan (1964a). It considers a velocity field that can be decom-
posed into a large-scale field U⃗ and the weak small-scale fluctuation u⃗. The velocity U⃗
is assumed to be constant (or slowly varying) in space and time and has a Gaussian and
isotropic distribution, while u⃗ is varying and is small in comparison with U⃗. The fields U⃗
and u⃗ are statistically independent. Then, in the inertial range, where there is no external
forcing and the viscous dissipation can be neglected, the evolution of a velocity Fourier
mode is given by the following equation:

𝜕u⃗(k⃗, 𝑡)

𝜕𝑡
= −𝑖(k⃗ · U⃗)u⃗(k⃗, 𝑡). (3.1)

The solution of the equation is u⃗(k⃗, 𝑡) = u⃗(k⃗, 0)𝑒−𝑖k⃗ · U⃗𝑡, and the Eulerian two-point spatio-
temporal correlation function is then:

𝐶(2)(k⃗, 𝑡) ≡
⟨
u⃗(k⃗, 𝑡0) · u⃗(−k⃗, 𝑡0 + 𝑡)

⟩
= 𝐶(2)(k⃗, 0)

⟨
𝑒−𝑖k⃗ · U⃗𝑡

⟩
=

𝐶(2)(k⃗, 0) exp

{︂
−1

2
𝑈2
𝑟𝑚𝑠𝑘

2𝑡2
}︂
, (3.2)

where 𝑈𝑟𝑚𝑠 is the root-mean-square of U⃗. This result follows from the assumption that
the large-scale velocity component U⃗ has a Gaussian distribution. Therefore, this simple
model leads to a correlation function in the form of a Gaussian function of a variable 𝑘𝑡
with a characteristic decorrelation time 𝜏𝐷 =

√
2/(𝑈𝑟𝑚𝑠𝑘), and thus 𝜏𝐷 ∼ 𝑘−1, which is

very close to the FRG prediction for the velocity correlation function at small time lags
provided by the expression (1.16).

Surely, this result is based on very strong assumptions. The theoretical grounds and
limits of the application of this simplified model are not clear, since it is not evident
when this sort of decomposition into U⃗ and u⃗ can be valid for real turbulent flows, and
to which extension statistical independence of U⃗ and u⃗ can be assumed. However, more
elaborated theoretical approaches (see below), as well as the FRG, lead to similar results:
the velocity correlation function decays as a Gaussian of the variable 𝑡𝑘, which indicates
that the mechanism of random sweeping described by Kraichnan, 1964a remains dominant
in more complicated models.

Besides, this simplified model puts forward an essential point that should be taken
into account in numerical studies: the Gaussian in the correlation function arises from
averaging of the complex phases of correlation over an ensemble of random realizations of
the large-scale velocity field. Relating it to numerical simulations means that the measured
correlation function has to be properly averaged. The ensemble averaging can be replaced
by the temporal average, but the duration of the observation has then to be larger than
the characteristic time of the velocity field variation.
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Theoretical confirmation of the sweeping effect. Although the physical idea behind
the sweeping effect is quite simple, the rigorous derivation of this time scaling on the basis of
the Navier-Stokes equation is not straightforward. The recent article of Zhou, 2021 provides
a large overview on the random sweeping effect in statistical models of turbulence.

The Eulerian spatio-temporal correlation functions were analyzed in the works of
Kaneda, 1993 ; Kaneda et al., 1999 with the use of the Taylor expansion in powers of
time. It shows that the leading-order term of the expansion of the two-point correlation
function at small time delays is equivalent to (3.2). In addition, these works provide an
analysis of the correlation function in Lagrangian frame of reference, resulting in 𝜏 ∼ 𝑘−2/3

scaling for the correlation function. In the work of Kaneda et al., 1999, this approach is
developed further and supported by direct numerical simulations.

On the other hand, the results obtained with the use of the perturbative renormaliza-
tion group (RNG) approach (Yakhot and Orszag, 1986) suggest that the sweeping effect
results in having a minor effect (Yakhot et al., 1989). However, as discussed in the works
(Kraichnan, 1987 ; Chen and Kraichnan, 1989 ; Nelkin and Tabor, 1990), the model used
in the perturbative RG approach developed by Yakhot and Orszag, 1986 actually dis-
cards the sweeping effect in the premises, and its results are physically valid only in a
quasi-Lagrangian sense, apriori free of sweeping.

In a more recent work of Drivas et al., 2017, the Eulerian space-time correlations were
analyzed in a more rigorous way on the basis of a band-pass filtering technique applied to
the Navier-Stokes equation. The results confirm the dominant contribution of the large-
scale sweeping to the Eulerian correlation function at small scales.

The Eulerian space-time correlations were also analyzed within the stretched-spiral
vortex model (O’Gorman and Pullin, 2004), where the turbulent flow is modeled as an
ensemble of tube-like vortices. The sweeping time scale arises in this framework as well, if
the centers of the vortex structures are considered as moving with random velocities.

FRG result. As presented earlier in the Chapter 1, dedicated to the description of the
FRG approach to the NS turbulence, the leading order term in the two-point space-time
Eulerian correlation function of velocity at small time lags (1.16) takes the form of a
Gaussian in the variable 𝑡𝑘, which is similar to the Eq. (3.2) obtained within the simplified
model of random sweeping. In other words, it validates the sweeping scaling at small time
lags in a rigorous and systematic way, since it is based only on the NS equation and
its symmetries. Moreover, it allows to expand the results to multipoint spatio-temporal
correlations and to the large-time-lag regime.

Numerical confirmation of sweeping effect. The typical decorrelation time scaling
𝜏𝐷 ∼ 𝑘−1 has been observed in DNS of homogeneous isotropic turbulence through the
computation of the space-time correlation function of Fourier modes (Orszag and Patter-
son, 1972 ; Sanada and Shanmugasundaram, 1992 ; Gotoh et al., 1993 ; Kaneda et al., 1999 ;
O’Gorman and Pullin, 2004 ; G.-W. He et al., 2004 ; Favier et al., 2010). In addition, nume-
rically computed space-time spectrum of the kinetic energy in 3D homogeneous isotropic
turbulence (Clark di Leoni et al., 2015) demonstrates that the energy is concentrated near
and below the line 𝜔 = 𝑈rms𝑘, where 𝜔 is the angular frequency, which also corresponds
to the sweeping time scaling.

The numerical results for the Eulerian two-point space-time correlation function of
velocity presented in this thesis in section 3.2 also confirm the scaling corresponding to
the random sweeping effect in the space-time correlation function of velocity at small time
lags.
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Sweeping hypothesis in models. An ad hoc assumption of the sweeping hypothesis
appears to be useful in phenomenological models. For instance, it was used to obtain a
model of wavenumber-frequency spectrum of a turbulent flow (Wilczek and Narita, 2012),
resulting in:

𝑅(k⃗, 𝜔) =
𝐸(k⃗)√︀

2𝜋𝑘2𝑈2
𝑟𝑚𝑠

exp

[︃
−(𝜔 − k⃗ · U⃗0)

2

2𝑘2𝑈2
𝑟𝑚𝑠

]︃
, (3.3)

which implies that the mean velocity U⃗0 leads to a Doppler shift in frequency, while
the sweeping, characterized by the fluctuation velocity 𝑈𝑟𝑚𝑠, leads to a broadening in
the frequency spectrum. This model spectrum was used to improve the modeling of wall
turbulence (Wilczek et al., 2015) and atmospheric boundary layers (Wilczek et al., 2014),
and also to predict power fluctuations of wind farms (Liu et al., 2017 ; Lukassen et al.,
2018). Apart from that, this spectrum model appears to be applicable to the case of strong
magnetohydrodynamic turbulence (Perez and Bourouaine, 2020).

The approximated inverse Fourier transform of Eq. (3.3) leads to the elliptic approxi-
mation (G.-W. He and Zhang, 2006) for Eulerian space-time correlation in physical space.
This model suggests a relation between the space-time correlation function 𝑅(⃗r, 𝜏) and the
purely spatial correlations 𝑅(𝑟, 0) in the following form:

𝑅(⃗r, 𝑡) ≡ ⟨u⃗(x⃗, 𝑡0)u⃗(x⃗+ r⃗, 𝑡0 + 𝑡)⟩ = 𝑅
(︁√︀

(𝑟 − 𝑈0𝑡)2 + 𝑈2
𝑟𝑚𝑠𝑡

2, 0
)︁
. (3.4)

One can see that the isolines of the correlation function 𝑅(⃗r, 𝑡) (3.4) on 𝑡−𝑟 plane represent
ellipses. This model provides an inclusion of the sweeping decorrelation effect in the “frozen
flow” model (Taylor, 1938), which is largely used for the mapping between experimentally
measured temporal and spatial signals in turbulent flows with constant convection velocity
𝑈0. The elliptic model provides a reliable method for the time-space signal mapping in
cases when the turbulent fluctuations are large and Taylor’s frozen flow hypothesis is not
valid. It has been tested in numerical simulations (Zhao and G.-W. He, 2009), as well as
in the experimental measurements in turbulent Rayleigh-Bénard convection (X. He and
Tong, 2011). It has also been applied for improving near-wall numerical turbulence models
(T. Wu and G. He, 2021). Details on validation and application of the elliptic model can
be found in the reviews (Wallace, 2014 ; G. He et al., 2017).

Sweeping-free models. It should be mentioned that there are a number of works focu-
sed on the study of temporal correlations “cleaned” from the sweeping effect to understand
the nontrivial temporal dynamics determined by the energy cascade. It can be performed,
for instance, by means of Lagrangian history closure (Kraichnan, 1965), the Lagrangian
renormalized approximation method (Kaneda et al., 1999) or within the quasi-Lagrangian
framework introduced in the work of Belinicher and V. S. L’vov, 1987. The multitime-
multiscale correlation functions within the quasi-Lagrangian framework were studied in
works (V. S. L’vov et al., 1997 ; Biferale et al., 1999 ; Daems et al., 1999 ; Biferale et al.,
2011). In addition, the shell models of turbulence, which are apriori free of sweeping, can
also provide an insight into time correlations in the presence of energy cascade (Kadanoff
et al., 1995 ; Biferale et al., 1999 ; Biferale, 2003 ; Pandit et al., 2008).

However, physical interpretation of results obtained from models without sweeping is
not an easy task. The necessary assumptions and consequences of the elimination of the
sweeping effect are discussed in the work of Gkioulekas, 2007.

Large time delays. It is important to highlight that the aforementioned behavior of
the correlation function as a Gaussian of 𝑡𝑘-variable is expected only for small time lags.
At larger time lags (comparable with the integral typical time 𝜏0), the FRG predicts a
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crossover to a new regime in the temporal behavior of the velocity correlation function:
from the Gaussian in time at small time delays it changes to an exponential decay at large
time delays. As it was discussed in section 1.4, the two regimes of temporal decay in the
velocity Eulerian correlation function can be linked to the ballistic and diffusive regimes of
the single-particle dispersion in turbulent flows. However, such a crossover in the temporal
behavior of the Eulerian correlation function has not been reported before the FRG results.

The importance of understanding of the large-time statistics in turbulence has been
discussed previously, in particular regarding the velocity increments in the Lagrangian
frame of reference (Mordant et al., 2002 ; Chevillard et al., 2005 ; Lévêque et al., 2007).
A crossover to another regime at large time lags was reported in the experimental study
of the modal correlation of the amplitudes of vorticity (Poulain et al., 2006). However,
the correlation of the amplitudes represents completely different type of the correlation
function, which is beyond the scope of the FRG result presented here, but it will be
discussed more in section 3.4.

Multi-point multi-time spatio-temporal correlations. As turbulence does not have
Gaussian statistics at small scales, the knowledge of two-point correlations is not sufficient
to obtain a reliable description. However, much less research has been conducted for multi-
time multipoint statistics of turbulence. In the quasi-Lagrangian framework, the multipoint
correlation functions (V. L’vov and Procaccia, 1996) and multi-time correlation functions
(V. S. L’vov et al., 1997 ; Biferale et al., 2011) were studied. In the work of Biferale et
al., 1999, the multi-point multi-scale correlations are analyzed within the multi-fractal ap-
proach, and in the work of Eyink, 2000 with use of fluctuation-response relations. At the
same time, assumptions on the behavior of the three- and four-point correlations lie in the
core of some closure approximations, such as DIA (Kraichnan, 1964a) or LET (McComb
and Yoffe, 2017).

The FRG approach provides a statistical description of the turbulent flow in terms of
𝑛-point 𝑛-time correlation functions as it is discussed in Chapter 1. In section 3.3 of the
present chapter, the three-point space-time correlation function of velocity is estimated
numerically and compared with the FRG result.

Summary. The fact that the sweeping effect is dominant in the Eulerian space-time
correlations of the velocity field is known from numerical and experimental studies. It also
lies in the core of some models, such as frequency-wavenumber spectrum or the elliptic
model of space-time correlations, which are largely applied in various fields. Despite this,
the theoretical validation of the sweeping effect appears not to be straightforward and even
controversial, although the mechanism behind it is rather trivial.

The validity of the random sweeping hypothesis for Eulerian correlations is supported
by recent results obtained with the FRG approach in application to NS equations. It allows
to conclude that the sweeping contribution to Eulerian velocity decorrelation is dominant,
and this result is based on the NS equation itself and its symmetries and does not require
an additional hypothesis. In addition, it allows to conclude that the dominance of the
sweeping effect extends to 𝑛-point 𝑛-time correlation functions at small time lags. Apart
from that, the FRG indicates a transition to the exponential form of the correlation decay
at large time lags.

In the present thesis, the dominance of the sweeping effect is confirmed for the two- and
three-point correlation functions in Eulerian frame of reference. These results are provided
in the following sections.

Structure of the chapter. In the present chapter, the results of numerical simulation
testing the FRG prediction are provided. In particular, the two-point Eulerian correlation of
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velocity (sec. 3.2) is measured in DNS at various Reynolds numbers, and it is shown that at
small time lags the correlation functions are indeed dominated by the sweeping scaling. The
section (sec. 3.3) is dedicated to the numerical computation of a triple velocity correlation
function, which also has the sweeping scaling at small times as predicted by the FRG. The
results presented here do not allow to capture the behavior of the correlation functions
at large time lags, as the signal becomes too weak and is sensitive to numerical noise.
However, it is possible to observe a transition between short- and large-time regimes in the
correlation function of the velocity norms (sec. 3.4), though this type of correlation function
is not covered by the theoretical prediction. Lastly, the FRG prediction for the spectrum
of kinetic energy in the near-dissipation range (sec. 3.5) has been tested, which results
from taking an appropriate time limit of the two-point space-time correlation function of
velocity. The numerically computed spectra approach the theoretically predicted form with
increasing Reynolds number. The chapter finishes with a list of conclusions coming from
the main results.

3.2 Two-point space-time velocity correlation function

3.2.1 Numerical set-up

The simulations were performed with the use of the direct numerical simulation (DNS)
method. The essential details of the solver are provided in chapter 2. The spatio-temporal
correlations of velocity were studied in simulations at 5 values of the Taylor-scale Rey-
nolds number: 𝑅𝜆 = 40, 60, 90, 160, 250. The corresponding spatial grid sizes are 𝑁3 =
643, 1283, 2563, 5123, 10243. The spatial resolution of all simulations fulfills the condition
𝑘𝑚𝑎𝑥𝜂 ≃ 1.5, where 𝑘𝑚𝑎𝑥 = 𝑁/2 is the maximal wavenumber in the simulation and 𝜂
is the Kolmogorov length scale. Other parameters of the simulations are provided in the
Table 3.1.

𝑅𝜆 N 𝜈 𝑈𝑟𝑚𝑠 𝜏0 Δ𝑡 Δ𝑇𝑤 𝑁𝑡 𝐾𝑐𝐿

40 64 10−4 0.0059 245 0.9 400 1008 14.6

60 128 10−4 0.0147 134 0.1 75 665 23.7

90 256 10−4 0.0375 45.3 0.03 10.0 624 42.5

160 512 10−4 0.0974 19.0 0.005 1.0 322 74.4

250 1024 10−4 0.2482 7.24 0.001 0.2 33 144

Table 3.1 – Parameters of simulations for the analysis of two-point and three-point corre-
lations at small time delays. 𝑅𝜆 - Taylor-scale Reynolds number, 𝑁 - spatial grid resolution,
𝜈 - kinematic viscosity, 𝑈𝑟𝑚𝑠 - root-mean-square velocity, 𝜏0 - eddy-turnover time at the
integral scale, Δ𝑡 - simulation time step, Δ𝑇𝑤 - width of a time window of correlation obser-
vation, 𝑁𝑡 - number of recorded time windows, 𝐾𝑐𝐿- nondimensional cut-off wavenumber
of the scale decomposition.

3.2.2 Results of DNS

Once the stationary state is reached, the spatio-temporal correlations of velocity were
computed following the method described in Sec. 2.3. The compensated spatial spectra
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Figure 3.1 – Compensated spatial spectrum of the kinetic energy obtained from the ave-
raged two-point spatio-temporal correlation function 𝐶(2) at zero time delay according to
Eq. (2.20). Here, 𝜖 is the average energy dissipation rate.

obtained from the averaged two-point spatio-temporal correlation function at zero time
delay are shown in Fig. 3.1. The inertial ranges of these spectra match the Kolmogorov
5/3 power-law decay and are followed by the dissipation range. At the lowest 𝑅𝜆 = 40,
there is no visible inertial range, while at the largest 𝑅𝜆 = 250 it extends over about one
decade of wavenumbers. In addition to kinetic energy spectra, the spectra of dissipation,
energy transfer, and energy flux were computed, they are provided in Appendix A.

To test the FRG prediction (1.16), the numerically computed two-point correlation
functions are averaged in space and time, and their dependence on the time lag 𝑡, wave-
number 𝑘 and Taylor-scale Reynolds number 𝑅𝜆 is analyzed.
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(a) Data from the numerical simulation deno-
ted with dots and its Gaussian fits denoted with
continuous lines.
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Figure 3.2 – Time dependence of the normalized two-point correlation function 𝐶(2)(𝑡, 𝑘)
at different wavenumbers 𝑘 in the simulation at 𝑅𝜆 = 90. Here 𝐿 is the integral length
scale, 𝜏0 is the integral eddy-turnover time scale.

Dependence on time lag. According to the theoretical expression (1.16), a Gaussian
dependence in 𝑡 for small time delays is expected, and it is precisely observed in all si-
mulations. An example of the numerical results for temporal dependence 𝐶(2) at various
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wavenumbers is provided in Fig. 3.2. All data is normalized by the correlation function for
coincident times 𝐶(2)(𝑡 = 0, 𝑘). One can see that all curves display a Gaussian behavior, as
the data matches perfectly the Gaussian fit. Moreover, when plotted as a function of the
variable 𝑡𝑘, as it can be observed in Fig. 3.2b, all the curves collapse into a single Gaus-
sian, as expected from Eq. (1.16). The collapse is observed for curves at all wavenumbers
that are sufficiently separated from the forcing range. The influence of the forcing on the
temporal decorrelation will be discussed in the following section 3.2.3. As it was shown
earlier, the 𝑡𝑘 scaling originates in the random sweeping of the small-scale eddies by slowly
fluctuating large-scale velocity fields. At larger time lags, the data points start deviating
from the Gaussian fit and oscillating around zero, taking negative values. This large-time
behavior is discussed in the end of the present section.

Dependence on wavenumber. The scaling 𝑡𝑘 that appears in the correlation func-
tion can be observed more precisely by analyzing the Gaussian fits. The time correlation
curves at various wavenumbers and various Reynolds numbers were fitted using the non-
linear least-squares method (Levenberg–Marquardt algorithm), with the Gaussian fitting
function: 𝑓𝑠(𝑡) = 𝑐𝑒−(𝑡/𝜏𝑠)2 where 𝜏𝑠 and 𝑐 are the fitting parameters. The fitting range
for all data sets corresponds to the range of non-dimensional variable (𝑡𝑘𝐿/𝜏0) ∈ [0, 2.5].
Within this range, all correlation functions are accurately modeled by the Gaussian 𝑓𝑠(𝑡).
Performing a non-dimensionalization with parameter 𝐿/𝜏0 ≈ 𝑈𝑟𝑚𝑠 renders the correlation
function plots at various Reynolds numbers comparable. It indicates again that the decor-
relation is determined by the random sweeping effect, which is characterized by large-scale
velocity fluctuations. The fitting parameter 𝜏𝑠 is the characteristic time scale of the cor-
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(a) Dependence of the characteristic decorre-
lation time 𝜏𝑠 on the wavenumber.
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(b) Dependence of the decorrelation parameter
𝛼𝑆 in the Eq. (1.16) on the wavenumber.

Figure 3.3 – Dependence of the correlation parameters on the wavenumber. The values of
the parameters are obtained with the Gaussian fit.

relation function, its dependence on the wavenumber 𝑘 is shown in Fig. 3.3a for various
𝑅𝜆. While for small wavenumbers the dependence is not regular, at intermediate and large
wavenumbers, the decorrelation time clearly decays as 𝑘−1. This result concurs with the
collapse in the Fig. 3.2 occurring for the 𝑡𝑘-scaling.

Similarly, one can estimate the coefficient 𝛼𝑆 in the theoretical expression Eq. (1.16)
from the fits: 𝛼𝑆 ≈ (𝜏0/𝜏𝑠𝑘𝐿)

2. The parameter 𝛼𝑆 is expected to be a constant in the
limit of large wavenumbers. Plotting 𝛼𝑆 versus 𝑘 as in Fig. 3.3b shows that the numerical
estimation of 𝛼𝑆 reaches a plateau at large wavenumbers. One can see that the value of 𝑘𝐿
at which 𝛼𝑆 settles to this plateau appears to be dependent on 𝑅𝜆. It should be highlighted
that although the theoretically expected constant value of the prefactor 𝛼𝑆 is established
only at sufficiently high wavenumbers, the Gaussian shape of the correlation function is
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3.2. Two-point space-time velocity correlation function

clearly observed in the whole range of spectral modes, including the forcing range.

50 100 150 200 250
R

0.20

0.25

0.30

0.35

0.40

0.45

s

Figure 3.4 – Dependence of the plateau value of the decorrelation parameter 𝛼𝑆 on Taylor-
scale Reynolds number 𝑅𝜆.

Dependence on the Reynolds number. The plateau values of 𝛼𝑆 in the Fig. 3.3b
appear to be dependent on the Reynolds number. This dependence is displayed in Fig. 3.4,
showing that 𝛼𝑆 grows non-linearly with the Taylor-microscale Reynolds number. At the
same time, the FRG result presented in Sec. 1.2.2 suggests that 𝛼𝑆 is independent from
the Reynolds number at the fixed point of the RG flow equations, which corresponds to
the state of the fully developed stationary turbulence, i.e. at high Reynolds numbers. The
observed dependence of the prefactor 𝛼𝑆 on 𝑅𝜆 can be a consequence of the moderate
values of Reynolds number used in DNS in this work. Based on the results of FRG, it is
expected that with 𝑅𝜆 increasing further, the parameter 𝛼𝑆 will vary weakly and eventually
reach a constant value at sufficiently high 𝑅𝜆.

It is also important to mention that in the FRG result the prefactor 𝛼𝑆 is not universal,
as it depends on the particular choice of the velocity forcing profile. The influence of the
form of forcing profile on the decorrelation parameter 𝛼𝑆 has not been investigated in the
present work.

In all simulations, the forcing location and its width have the same values, although the
spatial resolution of the numerical grid and the amplitude of forcing vary with the Reynolds
number. In addition, the finite size of the computational domain and the proximity of the
forcing length scale to the size of the box can also affect the numerically obtained values
of the decorrelation parameter 𝛼𝑆 , which can imply an additional difference with the
theoretical model.

Deviation from the Gaussian at larger time delays. Although the analysis of the
correlation functions at small time lags allows to see clearly the Gaussian decay and the
sweeping time scale, the analysis of the correlation curves at larger time lags is a much
more difficult problem. As it was shown in the Fig. 3.2b, with increasing time lags, the
correlation curves start deviating from the Gaussian fits and oscillate around zero. These
oscillations impede a straightforward analysis of the correlation behavior at large time lags.
The presence of oscillations can be related to the low level of the signal of the correlation
functions at large time lags, which makes the results more sensitive to numerical errors
and the averaging procedure.

The Fig. 3.5 displays the same data points as Fig. 3.2, with thin continuous lines
representing the numerical data and thick lines highlighting a portion of the curve where
the relative deviation from the Gaussian fit is more than 10% and the magnitude of the
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Figure 3.5 – Illustration of the deviation from the Gaussian fit at larger time lags. The thin
continuous lines represent the numerically computed 𝐶(2) from the simulation at 𝑅𝜆 = 90.
The thick lines indicate the portion of the curves where the deviation from the Gaussian fit
becomes larger than 10%. The dotted lines correspond to the Gaussian fit, the dashed lines
to the exponential fit of the highlighted portions of the curves.
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3.2. Two-point space-time velocity correlation function

correlation function is larger than 0.5% the initial magnitude at 𝑡 = 0 (the second cut-off is
needed to exclude the oscillating part from the analysis). This portion of the data points,
where the curves start deviating from the Gaussian, can be fitted with a linear function in
the 𝑦-logarithmic scaling, therefore, the correlation function decays approximately as an
exponential in this range. It is important to mention that such a portion of data points in
the correlation function is not found for some wavenumbers 𝑘, as some correlation curves
switch to oscillations right after the Gaussian part.

The exponential fits in the form 𝑓(𝑡) = 𝑐 exp−𝑎𝑡 of these data portions are shown in
Fig. 3.5 with dashed lines. According to the FRG prediction in Eq. (1.16), one expects that
the Gaussian decay changes to an exponential exp

{︀
−𝛼𝐿𝑘2𝑡

}︀
. Thus, the dependence of the

fit parameter on the wavenumber is expected to be of the form 𝑎 ∼ 𝑘2. However, as it is
shown in the Fig. 3.6, the resulting dependence does not demonstrate a clear power law in
𝑘. At small 𝑘 the dependence is closer to 𝑎 ∼ 𝑘2, while at large 𝑅𝜆 and large 𝑘 at is rather
𝑎 ∼ 𝑘1, with a large transitional part in between. One can also see that there are a lot of
missing points in the plot, because the used method did not capture any portion of the
correlation time curve corresponding to the given criteria (deviation from Gaussian more
than 10% and amplitude larger than 0.5% of 𝐶(2)(𝑘, 𝑡 = 0)). The fragmented results do not
allow one to draw any clear conclusion on the available data. It should be also noted that
these fits require additional tests on their sensitivity to the fitting range, and the criteria
of the choice of the range for fitting probably have to be reconsidered. For instance, the
dependence of the fitting parameter 𝑎 ∼ 𝑘 can result from the exponential fitting of a data
portion, where the correlation function actually still continues the Gaussian decay, so the
fitting procedure should be improved to exclude such a bias.

Clearly, analysis of the large-time-lag behavior of the correlation function poses much
more stringent requirements on the observation time and amount of data for time averaging.
Collecting more data would allow to average out the oscillations progressively to a certain
degree; however, the adopted method of computation of correlation functions does not
allow to access the large time-lag regime.

3.2.3 Discussion

Influence of forcing on the decorrelation parameter 𝛼𝑆. The deflection of the
decorrelation parameter 𝛼𝑆 from the plateau value at low wavenumbers 𝑘 in Fig. 3.3b can
be attributed to the effect of the forcing in the numerical scheme. This effect can be observed
from the analysis of the direct energy transfer to the modes of the forcing range. Fig. 3.7
shows the rate of energy transfer that occurs between the modes in the forcing range and
the modes in the shell corresponding to the wavenumber 𝑘. These energy transfers were
obtained from shell-to-shell energy transfer computation (Verma, 2019), with the use of a
filtered velocity field; this method will be discussed further in Sec. 3.3.2 and is described
in detail in Appendix B.

The “ideal” numerical simulation would exhibit in Fig. 3.7 a single peak of energy
transfer near the forcing range itself, indicating that all modal exchanges are local, that
is to say that the smaller scales receive energy only from the neighboring scales through
the turbulent energy cascade. However, Fig. 3.7 shows that energy exchanges with the
participation of the forcing modes occur not only in the closest vicinity of the forcing range,
but they are present also at a significant level over a band of wavenumbers, the width of
which depends on 𝑅𝜆. This means that the wavenumbers in this band are subjected not
only to energy exchange due to the turbulent cascade involving neighboring scales only,
but also to direct energy transfer from the forcing range. The occurrence of this type of
energy transfer in DNS can be a consequence of the velocity forcing concentrated in a
narrow spectral band at large scales, as discussed in the work of Kuczaj et al., 2006. The
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Figure 3.7 – Rate of the direct energy transfer from the forcing range to the wavenumbers
𝑘 normalized by the maximal value at various Reynolds numbers. The vertical colored lines
correspond to the cut-off wavenumber 𝐾𝑐 of the filter introduced in Sec. 3.3.2.

intensity and spread of these energy transfers apparently depend on the particular choice
of the forcing amplitude and its spectral profile, therefore, one would expect to observe
some non-universal features in the range of wavenumbers affected by these interactions.
Remarkably, these energy transfers are also present in the simulations at very low Reynolds
number, corresponding to the laminar flows, where the energy cascade is absent (Verma
et al., 2018).

The mentioned direct energy exchanges with the forcing modes slow down the velocity
decorrelation and result in lower values of 𝛼𝑆 at small 𝑘. Matching the horizontal axes of the
figures 3.3b and 3.7 shows that the parameter 𝛼𝑆 reaches a constant value at wavenumbers
where the direct energy exchanges with the forcing modes become negligible. One can
conclude from these observations that the “large wavenumber” regime of the FRG can be
here identified as the values of 𝑘𝐿 such that direct energy transfers from the forcing range
are negligible.

Comparison with other works. The analysis presented in this section concurs with
results from the work of Kaneda, 1993, in which the Eulerian velocity correlation function
is studied by means of a Taylor expansion in powers of time. It is shown that the sweeping
time scaling arises from interactions with modes at much smaller wavenumbers (which cor-
responds to the “sweeping” by a large-scale mode). These interactions are predominant for
𝑘𝐿≫ 1, while for small wavenumbers there is no scale separation for the interacting modes,
and the characteristic decorrelation time is estimated to be smaller. Similar deviations from
the sweeping time scaling at small 𝑘𝐿 were observed in other DNS studies of the velocity
correlation function, although the typical decorrelation time scale can be measured with
different methods. For instance, in the works of Sanada and Shanmugasundaram, 1992 ;
Favier et al., 2010 the characteristic decorrelation time was estimated by integrating the
correlation function, while in the work Kaneda et al., 1999 the characteristic decorrelation
time is measured through the second time derivative of the correlation function.

Role of statistical averaging. As discussed in Sec. 3.1, the simple kinematic model of
sweeping (Kraichnan, 1964a) suggests that the Gaussian form of the time dependence of the
correlation function arises from averaging over rapid oscillations of phases of the velocity
Fourier modes. This implies that in numerical simulations, the correlation function should
be averaged over a large number of realizations of the large-scale field, or in other words,
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3.2. Two-point space-time velocity correlation function

the simulation should run much longer than the large-scale eddy-turnover time 𝜏0 in order
to average out the oscillations correctly. In the present work, in addition to time averaging,
the isotropy of the flow is exploited by averaging the correlation functions in space over
spectral shells, according to Eq. (2.19), which allows to accumulate more statistics for the
results.

It should be mentioned that in the numerical study of Verma et al., 2020 another ave-
raging procedure has been implemented, without spatial averaging. Clearly, if one observes
the temporal evolution and autocorrelation of a single Fourier mode, the observation time
for averaging needs to be very long to achieve the correct averaging. In the mentioned work,
the resulting correlation curves exhibit more oscillatory behavior, and the measured scaling
of the characteristic correlation time differs from the results presented in this chapter. It
highlights the importance of the averaging method for the sweeping effect.

Oscillations in correlation functions. As it was shown in Fig. 3.5, the numerically ob-
tained space-time correlation functions exhibit oscillations at large time lags. The question
of the oscillations in Eulerian space-time correlations is discussed in the work of Rubinstein
and G.-W. He, 2003. In particular, it is shown that even in a simple kinematic sweeping
model proposed by Kraichnan, 1964a and mentioned in Sec. 3.1, changing from the as-
sumption of a purely Gaussian probability density function for the large-scale velocity to a
sub-Gaussian (truncated Gaussian) distribution leads to oscillatory solutions for the two-
point Eulerian correlation function. Certainly, in numerical simulations, even in the case
of a very large amount of statistics in averages, the Gaussian distribution of the large-scale
velocity is always truncated. To reduce the influence of this truncation, it is necessary to
extend the tail of the velocity probability distribution by counting more rare events, thus,
to collect more data. Clearly, the influence of these oscillations becomes more significant
for the large-time part of the correlation function, where the magnitudes of the correlations
are low.

Large time lags. Although the amount of data collected in the simulations to obtain
the statistical averages is enough to study the correlation function at small time lags, the
behavior of the correlation function at large time lags appears to be still oscillatory. After
the small-time Gaussian decay, the temporal correlation curves mainly demonstrate strong
oscillations around zero. The analysis of the fragments of the correlation function which
deviate from the Gaussian fit at large time lags does not allow to determine the form of the
curve and the dependence of its behavior on the wavenumber, since a significant number
of curves turn to oscillations right after the short-time Gaussian part.

The magnitudes of the correlations at large time lags are weak and they are more sub-
jected to numerical and statistical errors compared to the part of the correlation function
at small time lags. A qualitative analysis of the variance of the correlation function at
large time lags demonstrates that the amplitudes of the oscillations tend to decrease when
augmenting the number of temporal observation windows. However, in the data obtained
during the current study, the oscillations are still present and impede the observation and
analysis of the correlation function at large time lags. At the moment, the DNS data avai-
lable in the presented study does not allow to draw any solid conclusion about large-time
regime of the correlation function.

To improve the quality of data at large time lags, one needs to run longer simulations,
which then would cost more computational hours. Another possible way is to improve the
method of computation of correlation functions by adding, for example, more referential
time instants. However, it would require significantly more memory. Another way to im-
prove the large-time correlation data, which appears to be more promising, is to increase
the size of the computational domain. It can be achieved by shifting the peak wavenumber
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of the velocity forcing 𝑘𝑓 to larger values. It would allow to decrease the integral time scale
𝜏0 and thus to accelerate the time averaging. Switching to a larger box would also augment
the amount of spatial statistics for large scales, which in turn would certainly improve the
results of their temporal statistics. However, it also requires more computational resources,
since larger computational grids are needed.

It is worth to mention that the passive scalar in the turbulent flow exhibits the same
behavior in its Eulerian correlation function. As it will be presented in Chapter 4, for passive
scalars, the large-time part of the correlation function remains oscillatory. However, it is
possible to observe the large-time regime and transition to it in case of scalar advection in
a synthetic velocity field, as it will be shown further in Sec. 4.3.

Summary. The two-point spatio-temporal correlation function in the Eulerian frame of
reference has been studied with the use of DNS. The data accurately confirms the theo-
retical expression (1.16) for the two-point spatio-temporal correlations of the turbulent
velocity field for various scales and Reynolds numbers at small time delays. In particular,
the numerical data show that the theoretical parameter 𝛼𝑆 reaches a plateau at large wa-
venumbers, in agreement with the theoretical result. The analysis of the modal interactions
in the forcing range shows that one can consider that the “large-wavenumber” regime in
the DNS, observed as the plateau in 𝛼𝑆 , is reached at wavenumbers which do not receive
energy directly from the forcing modes. The time-correlations at the intermediate wave-
numbers are “polluted” by the additional direct interaction with the forcing, which results
in the slowing down the decorrelation in velocities. This results are also consistent with
previous studies of the Eulerian two-point space-time correlations. Regarding the form of
the space-time correlation function, at large time lags, the presented DNS data does not
allow to draw any firm conclusion. The correlation functions at large times become oscil-
latory and sensitive to numerical and statistical errors. Apparently, another DNS set-up is
required for the study of the large-time regime.

3.3 Triple velocity correlation

This section is dedicated to numerical validation of the form of the three-point spatio-
temporal correlations 𝐶(3) resulting from FRG analysis in DNS. As it was mentioned
in Sec. 3.1, due to the fact that turbulence exhibits non-Gaussian behavior, a two-point
statistical description is not sufficient. For this reason, the multipoint statistical moments
are essential for the statistical study of turbulence. The FRG approach gives a prediction
for a generic 𝑛-point space-time correlation function of velocity, and in this section the
three-point correlation function is studied.

To begin with, one needs to recall the definition of 𝐶(3) that is used many times in this
section:

𝐶
(3)
𝛼𝛽𝛾(𝑡1, k⃗1, 𝑡2, k⃗2) ≡

⟨
𝑢̂𝛼(𝑡0 + 𝑡1, k⃗1)𝑢̂𝛽(𝑡0 + 𝑡2, k⃗2)𝑢̂

*
𝛾(𝑡0, k⃗1 + k⃗2)

⟩
. (3.5)

In contrast to the two-point correlation function 𝐶(2), the product in the expression
(3.5) is not local in the spectral domain, as it includes the velocity field taken at three
different wavevectors. When parallel computation and parallel memory distribution are
used, the access to such non-local quantities requires the implementation of additional
communication operations between the processors during the simulation. This implies a
great increase of computation time and memory.
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To avoid these additional implementation difficulties and computational costs, a local
triple velocity statistical moment is studied, which naturally arises from the Navier-Stokes
equation as the correlation between its nonlinear term (advection) and the velocity. A
similar quantity was already introduced in earlier works (Kraichnan, 1959). It will be
shown in the following section that it corresponds to a specific configuration of space-time
arguments of the general three-point correlation function (3.5).

3.3.1 Advection-velocity correlation function

Definition. The Navier-Stokes equation in the spectral space can be written as:

𝜕𝑡𝑢̂𝑗(𝑡, k⃗) = 𝑁̂𝑗(𝑡, k⃗)− 𝜈𝑘2𝑢̂𝑗(𝑡, k⃗) + 𝑓𝑗(𝑡, k⃗), (3.6)

where 𝑁̂𝑗(𝑡, k⃗) = −𝑖𝑘𝑛𝑃𝑗𝑚
∑︀

𝑘′ 𝑢̂𝑚(𝑡, k⃗
′)𝑢̂𝑛(𝑡, k⃗− k⃗′) is the Fourier transform of the advec-

tion and pressure gradient terms of the Navier-Stokes equation, 𝑃𝑖𝑗 = 𝛿𝑖𝑗 − 𝑘𝑖𝑘𝑗/𝑘
2 is the

projection tensor and 𝑓ℓ is the spectral forcing. Writing Eq. (3.6) at time 𝑡+𝑡0, multiplying
it by the conjugated velocity 𝑢̂*ℓ (𝑡0, k⃗) at a fixed time 𝑡0 and performing an ensemble ave-
rage lead to the following equation for the two-point spatio-temporal correlation function:

(𝜕𝑡 + 𝜈𝑘2)𝐶(2)(𝑡, k⃗) = 𝑇 (𝑡, k⃗) + 𝐹 (𝑡, k⃗), (3.7)

with

𝑇 (𝑡, k⃗) ≡
⟨
𝑁̂𝑖(𝑡+ 𝑡0, k⃗)𝑢̂

*
𝑖 (𝑡0, k⃗)

⟩
, (3.8)

𝐹 (𝑡, k⃗) ≡
⟨
𝑓𝑖(𝑡+ 𝑡0, k⃗)𝑢̂

*
𝑖 (𝑡0, k⃗)

⟩
, (3.9)

where 𝑇 (𝑡, k⃗) is the spatio-temporal correlation of the advection and velocity, and 𝐹 (𝑡, k⃗)
is the spatio-temporal correlation of the spectral forcing and velocity. Note that if the time
delay is set to zero (𝑡 = 0), then Eq. (3.7) simplifies to the well-known equation (Pope,
2000, Chapter 6) of the evolution of the average kinetic energy of a single spectral mode
(after summing together with the complex conjugated equation), which is referred to as
the energy transfer relation (Frisch, 1995, Chapter 6):

𝜕𝑡𝐸𝑘𝑖𝑛(k⃗) =
1

2
Re
[︁
𝑇 (0, k⃗)

]︁
− 𝐷̂(k⃗) +

1

2
Re
[︁
𝐹 (0, k⃗)

]︁
, (3.10)

with 𝐸𝑘𝑖𝑛(k⃗) ≡ 1
2

⟨
𝑢̂(𝑡, k⃗)𝑢̂*(𝑡, k⃗)

⟩
= 1

2𝐶
(2)(0, k⃗) - kinetic energy of a Fourier mode and

𝐷̂(k⃗) ≡ 2𝜈𝑘2𝐸𝑘𝑖𝑛(k⃗) - spectrum of the viscous dissipation rate. The term 1
2Re

[︁
𝑇 (0, k⃗)

]︁
thus corresponds to the nonlinear energy tranfers from all modes in the system to the mode
𝑢̂(k⃗), and the last term corresponds to the forcing power input, which is zero outside the
forcing range.

Link with the three-point correlation function. The advection-velocity correlation
function 𝑇 is a triple correlation, and its link with the three-point correlation function 𝐶(3)

becomes clear if one develops the nonlinear term in the definition of 𝑇 (𝑡, k⃗):

𝑇 (𝑡, k⃗) ≡
⟨
𝑁̂ℓ(𝑡0 + 𝑡, k⃗)𝑢̂*ℓ (𝑡0, k⃗)

⟩
= −𝑖𝑘𝑛𝑃ℓ𝑚

∑︁
𝑘′

⟨
𝑢̂𝑚(𝑡+ 𝑡0, k⃗

′)𝑢̂𝑛(𝑡+ 𝑡0, k⃗− k⃗′)𝑢̂*ℓ (𝑡0, k⃗)
⟩

= −𝑖𝑘𝑛𝑃ℓ𝑚
∑︁
𝑘′

𝐶
(3)
𝑚𝑛ℓ(𝑡, k⃗

′, 𝑡, k⃗− k⃗′). (3.11)
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Hence, the correlation function 𝑇 actually provides a linear combination of three-point
correlation functions. Since the theoretical prediction (1.24) suggests that all correlation
functions 𝐶(3)(𝑡, k⃗′, 𝑡, k⃗− k⃗′) take the form of a Gaussian of the variable 𝑡𝑘 (at small times
and large wavenumbers), the advection-velocity correlation function 𝑇 (𝑡, k⃗) that includes
the sum over 𝐶(3), is expected also to have the same Gaussian dependence in 𝑡𝑘:

𝑇 (𝑡, k⃗) ∼
∑︁
𝑘′

𝐶
(3)
𝑚𝑛ℓ(𝑡, k⃗

′, 𝑡, k⃗− k⃗′) ∼ exp
{︀
−𝛼𝑆(𝐿/𝜏0)2𝑘2𝑡2

}︀
, (3.12)

with 𝑘 = |k⃗|.

Link with the variation of the two-point correlation function. Another useful
property of the correlation function 𝑇 is its link with the two-point correlation function
𝐶(2). Considering a small time delay 𝑡, one can use the expression for the two-point cor-
relation function 𝐶

(2)
𝑆 (𝑡, k⃗) from Eq. (1.16), which also takes the form of a Gaussian in

𝑡𝑘. Inserting this result into Eq. (3.7) leads to an explicit expression for the function 𝑇 at
small time delays (and for wavenumbers outside the forcing range):

𝑇 (𝑡, k⃗) = 𝜈𝑘2𝐶(2)(0, k⃗)

(︂
1− 2𝛼𝑆𝐿

2

𝜏20 𝜈
𝑡

)︂
exp

{︁
− 𝛼𝑆(𝐿/𝜏0)

2𝑘2𝑡2
}︁
=

= 𝐷̂(k⃗)

(︃
1− 2𝛼𝑆𝑅𝑒

𝑡

𝜏0

)︃
exp

{︁
− 𝛼𝑆(𝐿/𝜏0)

2𝑘2𝑡2
}︁
, (3.13)

where 𝐷̂(k⃗) = 𝜈𝑘2𝐶(2)(0, k⃗) is the spectrum of dissipation and 𝑅𝑒 = 𝑈𝑟𝑚𝑠𝐿
𝜈 is the Reynolds

number. Eq. (3.13) indicates that the function 𝑇 is in general not symmetric with respect
to the origin of the 𝑡-axis, and that it can have a minimum and maximum at non-zero time
delays. At the same time, at zero time delay 𝑡 = 0 this expression turns into the simple
equality 𝑇 = 𝐷̂ meaning that the energy transfer of a Fourier mode is balanced by the
viscous dissipation, which is expected in the case of the stationary flow at scales beyond
the forcing range.

Numerical computation of 𝑇 . In the numerical simulations, the computation of the
correlation function 𝑇 (𝑡, k⃗) is performed as the multiplication of each Fourier mode of
the nonlinear term 𝑁̂(𝑡0 + 𝑡, k⃗) by the corresponding modes of the complex conjugated
velocity field 𝑢̂*(𝑡0, k⃗). The nonlinear term 𝑁̂ is evaluated at each time iteration of the
pseudo-spectral solver, and therefore, it is easily accessible. This quantity 𝑇 is local in
the spectral space and the computation does not require significantly more computational
resources.

The velocity-advection correlation functions 𝑇 are collected and averaged during the
run-time of the simulation with the use of the same method as for the two-point correlation
function, as described in in the Sec. 2.3. However, in this case, since the two quantities
in the correlation function are different, the correlation function is not expected to be
symmetrical relative to the axis 𝑡 = 0 in the general case, so it becomes necessary to take
into account the sign of the time delay: the negative time delays 𝑡 correspond to time
instants before the reference time 𝑡0, while the positive ones to the time instants after 𝑡0.
The advection-velocity correlation function 𝑇 at negative time delays can be computed
just by switching the time instants of the fields in the following way:

𝑇 (𝑡, k⃗) =

⎧⎨⎩
⟨
𝑁̂𝑖(𝑡0 + |𝑡|, k⃗)𝑢̂*𝑖 (𝑡0, k⃗)

⟩
, 𝑡 > 0,⟨

𝑁̂𝑖(𝑡0, k⃗)𝑢̂
*
𝑖 (𝑡0 + |𝑡|, k⃗)

⟩
, 𝑡 < 0.

(3.14)
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3.3. Triple velocity correlation

Hence, to compute the correlation 𝑇 (𝑡, k⃗) at negative time delays during the simulation
one only needs to store the spectral advection field at one reference time 𝑡0.

Summary. The advection-velocity correlation function 𝑇 is a local triple statistical quan-
tity in spectral space, as it implies the multiplication of the advection and velocity fields
at the same wave vector k⃗, and it represents a linear combination of three-point velocity
correlation functions in a particular configuration. The equivalence of the function 𝑇 at
zero time delay with the spectral energy transfer function and its link with the two-point
spatio-temporal correlation function Eq. (3.7) facilitate the testing of the numerical method
and the interpretation of the results in the following.

Note that an equation similar to Eq. (3.7) is also used in the Direct Interaction Ap-
proximation scheme (DIA) (Kraichnan, 1959), where a time dependent triple statistical
quantity similar to 𝑇 is introduced. Moreover, the equation Eq. (3.7) lies in the core of
the local energy transfer (LET) closure. The recent work (McComb and Yoffe, 2017) ex-
tends the LET approach to two-time statistics and investigates a two-time triple statistical
moment, equivalent to 𝑇 .

3.3.2 Scale decomposition and link to spectral energy transfer function

Although the advection-velocity correlation function 𝑇 provides a triple statistical
quantity that can be easily accessed in numerical simulations, it contains a summation
coming from the convolution in the advection term Eq. (3.11). Contributions from all
possible wavevector triads {k⃗′, k⃗ − k⃗′, k⃗} of any scale are thus summed up. However, the
FRG prediction Eq. (1.23) is valid in the limit where all three wavenumbers are large. One
hence needs to refine this sum to eliminate contributions from the triads containing small
wavenumbers.

Velocity filtering. The simplest way to solve this issue is to perform a scale decompo-
sition of the velocity fields. A threshold wavenumber 𝐾𝑐 is set, so that all wavevectors of
smaller norm |k⃗| < 𝐾𝑐 are considered as "large" scales and are denoted with a superscript
𝐿, whereas the modes with higher wavenumbers are considered as "small scales" and deno-
ted with 𝑆. The velocity field is decomposed into small- and large-scale parts u⃗ = u⃗𝐿+ u⃗𝑆 .
In the spectral domain, the decomposition is performed by a simple box-filtering operation:

𝑢̂𝐿𝑖 (k⃗, 𝑡) =

{︃
𝑢̂𝑖(k⃗, 𝑡), |k⃗| < 𝐾𝑐

0, |k⃗| ≥ 𝐾𝑐

𝑢̂𝑆𝑖 (k⃗, 𝑡) =

{︃
0, |k⃗| < 𝐾𝑐

𝑢̂𝑖(k⃗, 𝑡), |k⃗| ≥ 𝐾𝑐

(3.15)

The velocity field scale decomposition leads to a decomposition of the advection-velocity
correlation function 𝑇 into four terms. (the derivation of this decomposition from the NS
equations is provided in Appendix C). Here, the energy transfer function is written for a
wavevector k⃗ belonging to the small-scale range:

𝑇 (k⃗, 𝑡) =
[︁
𝑇𝑆𝑆𝑆 + 𝑇𝑆𝐿𝑆 + 𝑇𝑆𝑆𝐿 + 𝑇𝑆𝐿𝐿

]︁
(k⃗, 𝑡), (3.16)

with 𝑇𝑋𝑌 𝑍(k⃗, 𝑡, 𝑡0) = −[𝑢̂𝑋𝑖 ]
*(k⃗, 𝑡0) FT[𝑢𝑌𝑗 𝜕𝑗𝑢

𝑍
𝑖 ](k⃗, 𝑡0 + 𝑡) where 𝑋,𝑌, 𝑍 stand for 𝑆 or 𝐿.

A similar decomposition at equal times has been used in studies of the energy transfer
function (Frisch, 1995 ; Verma, 2019). The complete expressions for the various terms of
the scale decomposition are provided in Appendix C.

Notations. Using the terminology of the book of Verma, 2019, the energy transfer terms
are written as 𝑇𝑋𝑌 𝑍 . Each superscript 𝑋,𝑌, 𝑍 can be either 𝑆 ("small" scale) or 𝐿 ("large"
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Chapter 3. Spatio-temporal correlations of velocity

scale). The first superscript 𝑋 is related to the mode that receives energy in a triadic
interaction process (it is actually the mode k⃗ for which the equation (3.16) is written), the
intermediate superscript 𝑌 denotes the mediator mode and the last superscript 𝑍 is related
to the giver mode that sends the energy to the receiver mode k⃗. The mediator mode does
not loose nor receive energy in the interaction, it corresponds to the velocity field which
comes as a prefactor of the operator nabla in the nonlinear term of the Navier-Stokes
equation, so one can term it the "advecting" field.

Interpretation. The term 𝑇𝑆𝑆𝑆 gathers all triadic interactions where the three modes
belong to the small scale. The term 𝑇𝑆𝐿𝑆 contains the energy transfers between two small
scales mediated by large-scale modes, which thus represent the triads involved in the swee-
ping. Both energy exchanges 𝑇𝑆𝑆𝑆 and 𝑇𝑆𝐿𝑆 occur between small scales, and are thus
local in spectral space, so they form the turbulent energy cascade. The terms 𝑇𝑆𝑆𝐿 and
𝑇𝑆𝐿𝐿 denote the energy transfers from large-scale modes to small-scale ones, thus they are
nonlocal and are expected to be small compared to the local ones. In what follows, only
the results concerning the all-small-scale term 𝑇𝑆𝑆𝑆 are presented and discussed, as this
term corresponds to the limit of large wavenumbers on which the theoretical prediction
relies. It is also compared with the total non-filtered correlation 𝑇 to highlight the role
of filtering in the result. The other terms of decomposition 𝑇𝑆𝐿𝑆 and 𝑇𝑆𝑆𝐿 + 𝑇𝑆𝐿𝐿 were
also analyzed, these results are provided in Appendix C, where one can find in particular
the comparison of the contribution of each term of the decomposition to the total energy
transfer (see Fig. C.1).

Choice of the filter cut-off wavenumber. The cut-off wavenumber 𝐾𝑐 of the filter in
the Eq. (3.15) is chosen in such a way that at 𝑘 & 𝐾𝑐 the direct energy transfer between the
forcing range and small-scale modes becomes negligible. The rate of energy exchange with
the forcing range is computed with the method of shell-to-shell energy transfer, based on
the method described in the book of Verma, 2019 and briefly summarized in Appendix B,
where also the full matrices of shell-to-shell energy transfers computed in DNS are presented
(see. Fig.B.2). The direct energy exchanges with the forcing range correspond to a single
line of the energy transfer matrix at a fixed wavenumber of the giver mode, located in the
forcing range (see Fig. B.3). The dependence of these energy transfers on the wavenumber
of the receiving mode for different Reynolds numbers are shown in the Fig. 3.7 (p. 54). The
chosen filtering wavenumber 𝐾𝑐 is indicated as a vertical line of the corresponding color.
It is expected that the dynamics of the modes at 𝑘 & 𝐾𝑐 does not depend directly on the
forcing mechanism and the correlation functions approach the universal behavior predicted
by the theory. The numerical value of 𝐾𝑐𝐿 used for each simulation is provided in Table 3.1
(p. 48). As discussed in Sec. 3.2.3, the wavenumbers 𝑘 & 𝐾𝑐 approximately correspond to
the range of validity of the theoretical prediction for the two-point correlation function at
large wavenumbers (see Fig. 3.3).

3.3.3 Results of DNS

The data presented in this section is obtained from the same set of simulations used
for the analysis of the two-point correlation function at small time delays in Sec. 3.2 and
described in Table 3.1.

Difference between filtered and non-filtered 𝑇 . The results for the time dependence
of 𝑇 at different wavenumbers 𝑘 & 𝐾𝑐 are shown in Fig. 3.8. One observes that the total
(non-filtered) advection-velocity correlation function 𝑇 (Fig. 3.8a) is not symmetric with
respect to the time origin and takes negative values. This form is in qualitative agreement
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Figure 3.8 – The non-filtered and filtered advection-velocity spatio-temporal correla-
tion functions 𝑇 (𝑡, 𝑘) versus time at selected values of wavenumbers 𝑘/𝐾𝑐 from simu-
lation 𝑅𝜆 = 160, 𝑁 = 512. The curves are normalized by the spectrum of dissipation
𝐷̂(𝑘) = 𝜈𝑘2𝐶(2)(0, 𝑘).

with the form of the Eq. (3.13). In contrast, the filtered term 𝑇𝑆𝑆𝑆 , which only contains
contributions from small scale modes to the correlation function 𝑇 , significantly changes
shape (Fig. 3.8b).

For the wavenumbers close to the cut-off wavenumber 𝐾𝑐, the curves are affected by
the filter. To explain this, one should recall that at zero time delay 𝑇𝑆𝑆𝑆(𝑡 = 0, k⃗) is equal
to the local nonlinear energy transfer between small-scale modes. At wavenumbers close
to the filter cut-off 𝐾𝑐, some spectral modes participating in local energy transfers are
suppressed by the filter. Thus, the modes close to the filter cut-off transmit the energy to
smaller scales, but they do not receive energy from the nullified larger scales, which results
in a negative energy balance.
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(b) Normalization by 𝑇 (0, 𝑘) and in horizontal
scaling ∼ 𝑡𝑘.

Figure 3.9 – The small-scale-only advection-velocity correlation function 𝑇𝑆𝑆𝑆 versus 𝑡𝑘
at large wavenumbers 𝑘 & 2𝐾𝑐, for 𝑅𝜆 = 160, 𝑁 = 512. The same data is presented in two
different scalings. The numerical data is denoted with dots, the continuous lines correspond
to fit with the function 𝑓(𝑡) from the Eq. (3.17).

For the larger wavenumbers 𝑘 & 2𝐾𝑐, the curves of the filtered correlation 𝑇𝑆𝑆𝑆 deform
towards the expected Gaussian and the negative part becomes indiscernible, as it can be
seen in Fig. 3.9a. Moreover, when plotting 𝑇𝑆𝑆𝑆 versus the scaling variable 𝑡𝑘 in semi
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Figure 3.10 – Numerical estimation of the decorrelation parameters 𝜏𝑎 and 𝛼𝑆 obtai-
ned from the small scale advection-velocity correlation 𝑇𝑆𝑆𝑆 (continuous lines), compared
with the result for the two-point correlation function 𝐶(2) (dashed lines). Both estimations
converge to a similar value, as expected from the theory. The result of the fitting for the total
advection-velocity correlation 𝑇 𝑡𝑜𝑡𝑎𝑙 is also indicated with dotted lines for completeness.

logarithmic scale as in Fig. 3.9b, all the curves collapse into a single Gaussian. This is in
plain agreement with the theoretical result (1.23) for the three-point correlation function.
This behavior is very similar to the one for the two-point correlation function presented in
Fig. 3.2.

All curves for various advection-correlation functions 𝑇 were fitted with a function re-
presenting the product of a linear function and a Gaussian, similar to the expression (3.13),
corresponding to the expected behavior of the non-filtered 𝑇 :

𝑓(𝑡) = 𝑐

(︂
1− 𝑡

𝜏𝑏

)︂
⏟  ⏞  
linear part

𝑒−(𝑡/𝜏𝑎)2⏟  ⏞  
Gaussian part

, (3.17)

where 𝜏𝑎, 𝜏𝑏 and 𝑐 are the parameters. Both correlation functions 𝑇 and 𝑇𝑆𝑆𝑆 accurately
match the fitting function (3.17). It can be seen in the Fig. 3.9 where the resulting fits
are shown as continuous lines together with the numerical data points. The dependence of
the parameter 𝜏𝑎, corresponding to the Gaussian part of the fitting function, and of the
the parameter 𝜏𝑏, corresponding to the linear part, on the wavenumber 𝑘 are discussed in
the following paragraphs. Note that both parameters 𝜏𝑎 and 𝜏𝑏 have units of time, which
simplifies the interpretation.

Gaussian part. The fitting parameter 𝜏𝑎 for both functions is proportional to 𝑘−1 in
simulations at various Reynolds numbers, as displayed in Fig. 3.10a. This result is in
agreement with the theoretical prediction Eq. (1.23) and corresponds to the sweeping time
scale. The fit allows as well to estimate the decorrelation parameter 𝛼𝑆 introduced in
Eq. (1.24) as 𝛼𝑆 = 𝜏0/(𝜏𝑎𝑘

2𝐿2). The result is shown in Fig. 3.10b which allows to compare
the correlation parameter of the Gaussian part extracted from fits of the filtered small-
scale-only function 𝑇𝑆𝑆𝑆 and the non-filtered 𝑇 𝑡𝑜𝑡𝑎𝑙, as well as the one from the fit of
the two-point correlation function that has been already presented in Fig. 3.3b. One can
see that at sufficiently large wavenumbers, the values of 𝛼𝑆 extracted from both filtered
function 𝑇𝑆𝑆𝑆 and from total 𝑇 are comparable. Furthermore, they match the values
obtained from 𝐶(2), presented in the previous section. This result is in agreement with the
theoretical prediction, which indicates that the decorrelation parameter 𝛼𝑆 is the same for
the two- and three-point correlation functions. The small discrepancy between the values
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of 𝛼𝑆 from 𝐶(2) and from 𝑇𝑆𝑆𝑆 could be attributed to the influence of the filter cut-off. In
addition, the filtered quantity suffers from a loss of accuracy, since the magnitude of the
filtered signal is much weaker, so it is more sensitive to the noise in numerical results.
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(a) Characteristic decorrelation time 𝜏𝑏, nor-
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Figure 3.11 – Dependence of the parameter 𝜏𝑏 of the fitting function Eq. (3.17) on the
wavenumber for the small scale advection-velocity correlation 𝑇𝑆𝑆𝑆 (continuous) and for
the total 𝑇 (dotted lines).

Linear part. The fit (3.17) provides also an estimation of the parameter 𝜏𝑏 that cha-
racterizes the time scale of the linear part of the function. For the non-filtered 𝑇 𝑡𝑜𝑡𝑎𝑙

the time scale 𝜏𝑏 can be also estimated through Eq. (3.13), which was obtained from the
Navier-Stokes equation assuming that the two-point correlation function 𝐶(2) is a Gaussian
function, bringing the following expression:

𝜏𝑏 =
𝜏0

2𝛼𝑆𝑅𝑒
. (3.18)

Fig. 3.11a shows the dependence of the non-dimensional parameter 2𝛼𝑆𝑅𝑒𝜏𝑏/𝜏0 on the
wavenumber. The values of 𝛼𝑆 are taken from the fit of the two-point correlation function
𝐶(2) analyzed in Sec. 3.2. As expected, for the total (non-filtered) advection-velocity cor-
relation function 𝑇 the values from all simulations are close to one independently of the
wavenumber, which is consistent with Eq. (3.18). At the same time, the points correspon-
ding to the filtered function 𝑇𝑆𝑆𝑆 deviate significantly from unity.

This fact can be also observed from the Fig. 3.11b showing the ratio between the
two time scales 𝜏𝑎 and 𝜏𝑏. For 𝑇𝑆𝑆𝑆 the relation time scale 𝜏𝑎/𝜏𝑏 is at least one order of
magnitude smaller than for the total 𝑇 . This means that for 𝑇𝑆𝑆𝑆 the time scale of the
linear part 𝜏𝑏 of the function (3.17) becomes much larger than the time scale 𝜏𝑎 of the
Gaussian part. In other words, the Gaussian part decays fast and the correlation function
already approaches zero before the slower linear part comes into play, which results in the
Gaussian-like shapes of 𝑇𝑆𝑆𝑆 in the figures 3.8 and 3.9b. On the contrary, for the total
(non-filtered) function 𝑇 the time scale 𝜏𝑏 is smaller than 𝜏𝑎 and the shape of the total 𝑇
is dominated by the linear part at short times, resulting in a non-symmetric shape.

3.3.4 Discussion

Link with the energy transfer. An interpretation of these results can be proposed
based on the identification of the advection-velocity correlation function 𝑇 at 𝑡 = 0 as
the spectral energy transfer function. The simulations show that a significant part of the
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energy exchanges between the small scales in 3D turbulence occurs in spectral triads with
the participation of a large-scale mode as a mediator (the term 𝑇𝑆𝐿𝑆 in the decomposi-
tion (3.16) - see Appendix C). The same conclusion can be found in other studies (Verma,
2019 ; Domaradzki and Rogallo, 1990 ; Ohkitani and Kida, 1992). However, as discussed in
the work of Aluie and Eyink, 2009, although the triads of this type have significant indi-
vidual contributions to energy transfer, they are much less numerous than the fully local
triads formed of small-scale modes (the term 𝑇𝑆𝑆𝑆 in the decomposition), because there
are fewer large-scale modes. In the limit of large Reynolds number and large wavenumbers,
the fully local triads become numerous and dominate in the turbulent energy cascade.

Non-filtered 𝑇 . The detailed analysis of the contributions in the decomposition (3.16)
shows that the nonsymmetric behavior in time of the total correlation 𝑇 is also inherited
from the contribution of 𝑇𝑆𝐿𝑆 (See Fig. C.2b). The occurrence of the maximal and minimal
values of the non-filtered advection-velocity correlation 𝑇 at non-zero time delays (see
the top panel of the Fig. 3.8) implies that there is some coherence between two small-
scale vortices simultaneously advected by a large slowly varying vortex. The origin of this
coherence can be through an alignment of turbulent stress and large-scale strain rate. The
dynamics of the alignment between time-delayed filtered strain rate and the stress tensor,
as well as its link with the energy flux between scales, has been recently analyzed in the
work of Ballouz et al., 2020, where the alignment also displays an asymmetrical behavior
in time and is peaked at scale-dependent time delays. The product of stress and strain rate
also represents a triple statistical quantity of velocity, as well as the energy transfer, so it
would be natural to expect that it exhibits a temporal behavior similar to the advection-
velocity correlation 𝑇 .

Small-scale-only 𝑇𝑆𝑆𝑆. In the case of the purely small-scale correlation function 𝑇𝑆𝑆𝑆 ,
the characteristic time scales of all modes in the triad are comparable, and the mediator
mode cannot impose any coherence on the interacting modes, as all three modes decorrelate
fast before any alignment can occur. This results in a symmetric, close to Gaussian form
of the small-scale correlation functions 𝑇𝑆𝑆𝑆 . Note that all three modes in 𝑇𝑆𝑆𝑆 are still
transported simultaneously by the random large-scale velocity field. This mechanism that
is responsible for the Gaussian time dependence of 𝑇𝑆𝑆𝑆 and of 𝐶(2) is the same random
sweeping effect as for the two-point correlation function.

Summary. Spatio-temporal correlation function between the velocity and advection fields
constitutes a triple statistical quantity easily accessible in numerical simulations. The appli-
cation of the scale decomposition to this correlation is a necessary refinement to approach
the regime of large wavenumbers of the FRG result. The refined advection-velocity cor-
relation gives an insight into the statistics of the three-point spatio-temporal correlation
function with a particular configuration of wave vectors. One observes a Gaussian with the
same time and wavenumber dependence as in the theoretical result (1.23). Moreover, this
analysis provides a further nontrivial quantitative validation, since the correlation parame-
ter 𝛼𝑆 is found to be the same for the two-point and three-point correlations. Therefore, the
numerical results confirm with good accuracy the FRG prediction for Eulerian three-point
space-time correlation function of velocity.
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3.4 Spatio-temporal correlation function of velocity norms

As it has been shown, at large time delays, the numerical analysis of the two-point
correlation function of the velocity represents a challenging task since its values become
very low and are drowned in the oscillations. However, it is possible to analyze another
type of correlation function, in particular the correlation function of the velocity modulus.
By definition, this correlation function is different from the real part of the complex cor-
relation function that was discussed previously in section 3.2. It is important to note that
the correlation function of velocity norms cannot be interpreted through the averaging of
the complex phases of the velocity perturbed randomly by the large-scale motions, as all
information about the complex phase is wiped out when the modulus is computed, so the
interpretation proposed in section 1.4 is not applicable in this case. The correlations of this
kind are not covered by the FRG either; however, their numerical computation does not
represent any difficulty. In this section it is shown that for this quantity, the large time
regime turns out to be observable. The data treatment of the signal of velocity moduli
appears to be simpler, since the magnitudes of the correlation function at large time lags
are not as low as in the previous case, and the moduli do not take negative values.

Definition. The connected two-point correlation function of the velocity modulus in
spectral space is defined as:

𝐶(2)
𝑛 (𝑡, k⃗) =

⟨⃒⃒⃒
^⃗u(𝑡0, k⃗)

⃒⃒⃒⃒⃒⃒
^⃗u(𝑡0 + 𝑡, k⃗)

⃒⃒⃒⟩
−
⟨⃒⃒⃒

^⃗u(𝑡0, k⃗)
⃒⃒⃒⟩ ⟨⃒⃒⃒

^⃗u(𝑡0 + 𝑡, k⃗)
⃒⃒⃒⟩
, (3.19)

with spatial and time averaging identical to Eq. (2.19) ⟨...⟩ = 1
𝑁𝑡

1
𝑀𝑛

∑︀𝑁𝑡
𝑗=1

∑︀
k⃗∈𝑆𝑛

(...).
As it was mentioned, the complex phases of velocity are eliminated from the com-

putation by definition. The modulus of the velocity can be related to the kinetic energy⃒⃒⃒
^⃗u(𝑡0, k⃗)

⃒⃒⃒
=

√︁
2𝐸𝑘(𝑡0, k⃗), so the measured correlation function of the velocity moduli is

physically related to the autocorrelation of the kinetic energy of a Fourier mode.
During the simulations, the first term in (3.19) is calculated with the use of the me-

thod described in section 2.3. Simultaneously, the average of the moduli is computed⟨⃒⃒⃒
^⃗u(𝑡0 + 𝑡, k⃗)

⃒⃒⃒⟩
. It is averaged in the same manner as the correlation function: over sphe-

rical spectral shells and over time windows. The average modulus is kept in memory under
the same form: as a table where columns correspond to the spectral shells 𝑘, and rows to
various discrete time lags 𝑡0+𝑡. The first row of this table then corresponds to

⟨⃒⃒⃒
^⃗u(𝑡0, k⃗)

⃒⃒⃒⟩
.

Therefore, the multiplication of each row of the table with the first one gives the second
term of the expression (3.19). The subtraction of the two terms is performed during the
post-processing of the data obtained in simulations.

Parameters of the simulations. To access large time lags, another set of simulations
with a larger width of the time window has been performed. The simulation parameters
are detailed in Table 3.2. Only the time window for the computation of the correlation
functions has been modified, the rest of the parameters are identical to the ones used for
the simulations presented in section 3.2.

Results of DNS. An example of the correlation function computed according to Eq. (3.19)
for 𝑅𝜆 = 60 is presented in Fig. 3.12. Similarly to the two-point correlation studied in
Sec. 3.2, one observes at short time delays the Gaussian decay in time and the curves at
different wavenumbers collapse in the 𝑡𝑘-scaling. However, Fig. 3.12 reveals a crossover to
another regime at larger time delays: a slower decorrelation in time that can visually be
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𝑅𝜆 N 𝜈 𝑈𝑟𝑚𝑠 𝜏0 Δ𝑡 Δ𝑇𝑤 𝑁𝑡

40 64 10−4 0.0059 245 0.9 500 1219

60 128 10−4 0.0147 134 0.2 300 907

90 256 10−4 0.0375 45.3 0.03 49 477

160 512 10−4 0.0974 19.0 0.005 12 133

Table 3.2 – Parameters of simulations for analysis of correlations of velocity norms: 𝑅𝜆
- Taylor-scale Reynolds number, 𝑁 - spatial grid resolution, 𝜈 - kinematic viscosity, 𝑈𝑟𝑚𝑠
- root mean square velocity, 𝜏0 - eddy turnover time scale at the integral scale, Δ𝑡 - time
step, Δ𝑇𝑤- width of a time window of correlation observation, 𝑁𝑡 - number of recorded
time windows.
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Figure 3.12 – Time dependence of the normalized two-point correlation function of the
velocity norms 𝐶(2)

𝑛 (𝑡, 𝑘) at 𝑅𝜆 = 60 for different wavenumbers 𝑘 in semi-logarithmic scales.
The numerical data is denoted with dots, the exponential fit is denoted with the dashed lines.
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estimated as exponential. The curves at various wavenumbers no longer collapse in the hori-
zontal scaling 𝑡𝑘, and the slope of this decay appears to be steeper for larger wavenumbers.
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Figure 3.13 – The normalized time derivative 𝐷1 defined in Eq. (3.20) calculated nume-
rically with the data from the simulation at 𝑅𝜆 = 60. The linear part of 𝐷1, highlighted by
green shades, corresponds to the Gaussian decay at small time delays, and the approxima-
tely constant part of 𝐷1, highlighted by purple shades, corresponds to the exponential time
correlation at large time delays.

Crossover. The transition between these two temporal regimes of the correlation func-
tion can be identified more clearly through the time derivative of the logarithm of 𝐶(2)

𝑛 (𝑡, 𝑘):

𝐷1(𝑡, 𝑘) =
𝜕 log

[︁
𝐶

(2)
𝑛 (𝑡, 𝑘)

]︁
𝜕𝑡

. (3.20)

If the correlation function 𝐶(2)
𝑛 is a Gaussian, the time derivative 𝐷1 is linear with a slope

equal to −2/𝜏2𝑠 , and if the correlation function is an exponential function, the function
𝐷1 becomes a constant. The derivative 𝐷1 is represented in Fig. 3.13 for 𝑅𝜆 = 60. At
small time delays, 𝐷1 is a linear function with a negative slope. It then displays a non-
monotonous transition before approximately reaching a constant value at large time delays.
The crossover time delay 𝑡 can be defined as the location of the minimum of the derivative
𝐷1. This crossover time at different Reynolds numbers is shown in the Fig. 3.14. It depends
on the wavenumber as 𝜏𝑐 ∼ 𝑘−1. The crossover time can be also defined through the second
derivative of the correlation function. It was also checked that this 𝑘−1 behavior does not
depend on the precise definition chosen for the crossover time.

Discussion. It is important to emphasize that the correlation function of the velocity
norms introduced in Eq. (3.19) is not related in any simple way to the standard real part
of the correlation function (1.14) computed theoretically in the FRG approach. Moreover,
as the phases play no role in these correlations, the sweeping argument based on phase
averaging cannot explain this behavior. The decorrelation must ensue a priori from another
physical mechanism, yet to be identified. However, the results of the numerical simulation
show that the correlation of the velocity modulus and the real part of the complex velocity
correlation function at small time delays (the Gaussian decay) are similar, and exhibit
close values for the characteristic decorrelation time. In addition, at large time delays the
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Figure 3.14 – Typical crossover time scale for the two-point correlations of the velocity
norms 𝐶(2)

𝑛 between the small time and large time regimes as a function of the wavenumber
𝑘, estimated from the minimum of 𝐷1.

correlations of the velocity modulus exhibit a crossover to an exponential decay in time,
analogous to the one expected for the real part of the correlation function.

A very similar picture is observed in the work of Biferale et al., 1999 in numerical
simulations of a shell model of turbulence. The single-scale two-time correlation function is
considered in two definitions: as the correlation of velocity norms equivalent to Eq. (3.19),
but also as the real part of the complex velocity modes. The correlation of velocity norms
shows a fast decay at small time lags and a much slower decay at large time lags, while the
real part of the correlation of complex velocities has only small-time decay and at larger
time lags oscillates around zero. Interestingly, the shell models are free from the sweeping
effect discussed in the beginning of this chapter, so the mechanism of the decorrelation
of velocity fields in shell models is completely different. Probably, a similar mechanism is
the reason of the observed behavior of the correlation function of the velocity norms in
Navier-Stokes turbulence.

Additionally, the results of the experimental work of Poulain et al., 2006 can be relevant
to the problem. Extracted from the measurements of an air jet, the temporal decay of the
two-point correlation function of the amplitude of the vorticity field exhibits a crossover
from a 𝑡𝑘 Gaussian decay to a slower exponential one. The crossover time between these
two regimes is found to scale as 𝑘−1 as observed in our simulations.

The correlation of the velocity norms could be linked to the correlation of the energy of
Fourier modes. In a recent work of Khurshid et al., 2021 the time-delayed statistics of the
spectral energy and energy transfer was studied numerically, with a focus on the crossed
correlation between large and small scales. In particular, the difference is highlighted bet-
ween the behaviors of the correlations of slow and fast components of energy fluctuations,
which could also be relevant to the observed regimes in the correlation of velocity norms.

Summary. In this section, the temporal behavior of the correlation function of velocity
norms is discussed. The correlation functions demonstrate a Gaussian decorrelation at small
time lags and switch to a slow exponential-like decorrelation at large time lags. The typical
time of crossover between these two regimes scales as 𝜏𝑐 ∼ 𝑘−1. The correlation function
of the velocity norms defined in Eq. (3.19) is completely different from the real part of the
correlation of the complex velocities discussed in Sec. 3.2. A straightforward interpretation
through the sweeping mechanism based on the random phase averaging cannot be applied
to velocity norms, since all information about the phases is wiped out in this quantity.
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3.5. Kinetic energy spectrum in the near-dissipative range

This type of correlation function has not been calculated within the FRG approach, and
to our knowledge there is no theoretical explanation regarding these correlations in the
existing literature. Interpretation and theoretical explanation of these results require more
investigation.

3.5 Kinetic energy spectrum in the near-dissipative range

One of the remarkable consequences of the FRG result for the two-point space-time
correlation function of velocity is the computation of the form of the kinetic energy spatial
spectrum in the near-dissipative range. In the work of Canet et al., 2017, it was shown that
taking an appropriate limit 𝑡 → 0 in the expression for the two-point correlation function
leads to a spatial spectrum decaying as a power law multiplied by a stretched exponential at
large wavenumbers, and the value of the stretched exponent is 𝛼 = 2/3. This result concerns
only the near-dissipative range, since the far-dissipative range is dominated by the viscosity
term and is not controlled by the same RG fixed point. Although the turbulent kinetic
energy spectrum has been measured in numerous experiments and numerical simulations,
there is no agreement on the form of its decay in the dissipation range. To compare the
numerical spectra with the FRG prediction, a set of DNS with well-resolved near-dissipation
range has been performed.

This section provides firstly an overview of the previous studies on the form of the
spectrum in the dissipation range, followed by the section containing the description of the
simulations, numerical results, and their treatment. Lastly, the obtained results are discus-
sed and compared with the FRG prediction, as well as with other studies and experimental
data. Part of the results presented in this section has been published in Physical Review
Fluids (Gorbunova et al., 2020).

3.5.1 Background

According to Kolmogorov’s first hypothesis of similarity (Kolmogorov, 1941) at high
Reynolds numbers the small-scale statistics of turbulence is determined by the scale 𝑘−1,
the mean dissipation rate ⟨𝜀⟩ and the viscosity 𝜈. By dimensional argument, one can obtain
a universal form for the energy spectrum of the turbulent fluctuations (Frisch, 1995):

𝐸(𝑘) = 𝜀2/3𝑘−5/3𝐹 (𝜂𝑘), (3.21)

with 𝐹 (𝜂𝑘) - a universal dimensionless function of a dimensionless argument.
In the inertial range (at 𝑘𝜂 ≪ 1) according to K41, the spectrum depends only on 𝑘

and 𝜖, but not on 𝜂, thus, the function 𝐹 (𝑘𝜂) tends to a positive constant (Kolmogorov
constant). The power law 𝑘−5/3 is supported by experimental and numerical data. At the
same time, there is no agreement on the universal form of the spectrum, or in other words,
the form of 𝐹 (𝑘𝜂) at high wavenumbers 𝑘 ∼ 𝜂−1 (in the dissipation range).

Theoretical models. The first attempts to find a form of the equation for 𝐸(𝑘) at small
scales are summarized in the book of Monin and Yaglom, 2007, Chapter 7, Sec 17 (see
also Ref. Davidson, 2004, Chapter 8). They are mainly based on dimensional arguments
making a link between the energy spectrum function and the spectral energy flux, or
in other words, finding a closure hypothesis allowing to integrate the equations for the
variation of the spectrum function 𝐸(𝑘). Within this approach, a dimensionally consistent
functional relation between the energy spectrum and the energy flux has to be found,
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ensuring the 5/3 law in the inertial range. The main point is to extend the found result to
the dissipation range, thus, the method consists in extrapolating the results obtained for
the inertial range to the dissipation range. These closure models are also called algebraic.
They include, among others, hypotheses of Kovasznay, Obukhov, Heisenberg, and Karman.
However, these models lead to some non-physical results, such as modes with zero energy
and only twice differentiable velocity (Monin and Yaglom, 2007, Chapter 7, Sec 17).

Additionally, there are a number of works suggesting that the spectrum function is a
power law multiplied by a (stretched) exponential:

𝐸(𝑘) = 𝑐𝑜𝑛𝑠𝑡 · 𝑘−𝛽 exp(−𝜇𝑘𝛼). (3.22)

Different values for 𝛼 have been proposed, for instance 𝛼 = 1/2 (Tatarskii, 1967), 𝛼 = 3/2
(Uberoi and Wallis, 1969), 𝛼 = 4/3 (Pao, 1965) or 𝛼 = 2 (Townsend and Taylor, 1951 ;
E. A. Novikov, 1961 ; Gurvich and Yaglom, 1967), 𝛼 = 3/5 (Bershadskii, 2016). These
results are obtained within simplified analytical models, based on physical considerations,
or approximate fits of experimental data (Uberoi and Wallis, 1969). For instance, one of
the most referred models is the Pao’s closure, which is based on two assumptions: locality
of the energy transfer in spectral space and a power-law dependence of the energy flux
on the energy spectrum function. Only dimensionally consistent closure leads to 𝛼 = 4/3
(Pao, 1965).

In other works, a purely exponential spectrum decay 𝛼 = 1 on the limit of large
𝑘 is suggested, based on different theoretical approaches, such as the Direct Interaction
Approximation (Kraichnan, 1959), asymptotic expansions (Foias et al., 1990 ; Sirovich et
al., 1994 ; Bershadskii, 2008). This result can be understood as a consequence of regularity
at very small spatial scales for small but finite viscosity, which can be assumed in the limit
𝑘 → ∞, that is in the far-dissipative range. Besides, a purely exponential decay is also
shown to characterize the spectra at very low Reynolds numbers, corresponding to laminar
flows (Verma et al., 2018).

Experimental studies. The behavior of the spectrum in the dissipative range has been
extensively studied in experiments. However, accurate experimental measurements of the
spectrum at small scales are difficult to obtain, because of the limitations of the measu-
ring instruments. Several fits of the spectrum in the dissipative range have been propo-
sed, for instance, pure exponential functions with 𝛼 = 1 but on two successive separate
ranges (Sreenivasan, 1985), or a single pure exponential but with different coefficients 𝜇
(Saddoughi and Veeravalli, 1994 ; Manley, 1992). Conversely, the analysis of Smith and
Reynolds, 1991 concluded that an exponential with 𝛼 = 2 was the best fit for the existing
experimental data. In the book of Pope, 2000, section 6.5.3 another fitting function with a
more complicated exponential function is proposed, which is in better agreement with the
available experimental data compared to the pure exponential or Pao’s spectrum.

Numerical simulations. On the other hand, numerical simulations can provide more
accurate data for the kinetic energy spectrum. However, as discussed in 2.2, because of
the high computational cost, the DNS studies of the dissipation range are limited to low
Reynolds numbers (Chen et al., 1993 ; Martínez et al., 1997 ; Schumacher, 2007 ; Verma et
al., 2018), or to low spectral resolution, which do not allow to get an extended dissipation
range (Sanada, 1992 ; Ishihara et al., 2003 ; Ishihara et al., 2005). Most of these works
lead to the conclusion that the purely exponential form with 𝛼 = 1 does not describe
accurately the entire dissipative range, and is valid rather for the far-dissipation range
(Chen et al., 1993 ; Domaradzki, 1992 ; Martínez et al., 1997 ; Schumacher, 2007). In the
work of Verma et al., 2018, it is demonstrated that neither Pao’s nor Pope’s model of
spectra match the results of DNS, while the purely exponential decay is observed only in
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spectra of laminar flows. In the work of Ishihara et al., 2005, it is shown that the results
of fitting the numerical spectra with a function in the form of (3.22) depend significantly
on the range of wavenumbers chosen for fitting. Another difficulty of the analysis of the
spectra is the strongly nonlinear functional dependence, which makes the fitting procedure
very sensitive to the input data and its accuracy (Schumacher, 2007).
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Figure 3.15 – Schematic representation of the inertial, near- and far-dissipative ranges
in the spectrum of kinetic energy.

Near- and far-dissipation ranges. Although different behaviors were predicted in
earlier studies, the work of Khurshid et al., 2018 based on high-resolution DNS delimits
the two ranges in the energy spectrum: the near-dissipative range for 0.2 . 𝑘𝜂 . 4 and
the far-dissipative range for 𝑘𝜂 & 4 (see a sketch of a spectrum in Fig. 3.15). In the near-
dissipative range, the numerical spectra have 𝛼 < 1, while in the far-dissipative range, the
decay of the spectrum is well described by a pure exponential (𝛼 = 1). This finding may
explain the failure of previous attempts to describe the whole dissipative range as a pure
exponential with various power laws.

FRG result. It is shown in the work of Canet et al., 2017 that the behavior of the
energy spectrum in the dissipative range can also be probed in the FRG framework, by
taking the appropriate 𝑡 → 0 limit, accounting for the existence of the Kolmogorov scale,
or equivalently of the Kolmogorov time-scale 𝜏𝐾 . Under the additional assumption that
the scaling variable 𝑡𝑘2/3 saturates in this limit, that is 𝜖1/3𝑡𝑘2/3 → 𝜖𝜏𝐾𝐿

−2/3 = (𝜂/𝐿)2/3

when 𝑡→ 0, one obtains

𝐸(𝑘) ≡ lim
𝑡→0

4𝜋𝑘2𝐶(𝑡, 𝑘) = 𝐴′ 𝜖2/3(𝑘𝜂)−𝛽 exp (−𝜇(𝑘𝜂)𝛼) , (3.23)

with 𝛽 = 5/3 and 𝛼 = 2/3 and where 𝜇 = 𝛾(𝜂/𝐿)2/3 is a (positive) non-universal constant
and 𝐴′ = 4𝜋𝐴𝜂5/3. It is important to highlight that this behavior is valid at large wave-
numbers, but which are still controlled by the RG fixed point. That is to say that this
result is expected to describe correctly the near-dissipative range, since the far-dissipative
range, totally dominated by the viscosity, is controlled by another fixed point.

This value for the stretched exponent 𝛼 = 2/3 in the near-dissipative range was then
shown to match the spectra obtained in DNS (Canet et al., 2017), and also in experiments
of von Kármán turbulent swirling flow (Debue et al., 2018). The presence of the portion
of spectrum with 𝛼 = 2/3 in the near-dissipation range was also shown in numerical study
of Buaria and Sreenivasan, 2020.
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Applications. Despite the fact that the kinetic energy spectrum is measured in nume-
rous numerical and experimental studies of turbulence, the results regarding the form of
the dissipative range of the spectrum are controversial. Yet the knowledge of the form of
the turbulent kinetic energy spectrum is essential for many problems, such the generation
of turbulent-like fields (X. Wu, 2017) or large-eddy-scale (LES) models. For instance, early
LES approaches were based on integrating Pao’s spectrum (Piomelli and Balaras, 2002),
although recent experimental and DNS results demonstrate that the Pao’s hypothesis is
not consistent (Pope, 2000 ; Verma et al., 2018). Better understanding of universal fea-
tures and a more accurate description of the dissipative range would allow to improve the
existing numerical models of turbulence.

Objective. The goal of the study presented in this section is to analyze the kinetic energy
spectra in the dissipative range using the DNS data and compare it with the FRG predic-
tion (3.23). The spectra obtained from DNS are treated by computing three consecutive
numerical logarithmic derivatives, allowing to extract the local exponent 𝛼 without the
contribution of other parameters. Tracing the local stretched exponent with the proposed
method provides a more precise estimation of the form of the spectrum and the limits of the
near- and far- dissipation ranges than in the previous works on this subject. This approach
allows as well to evaluate the range of wavenumbers corresponding to the near-dissipative
range where the FRG result is expected to be valid. These results were published in Phy-
sical Review Fluids (Gorbunova et al., 2020). The article provides in addition the results
for the form of spectra in the dissipative range from experimental data of grid turbulence
in Modane wind tunnel.

3.5.2 Description and results of DNS

Challenges. The principal challenge of the numerical study of the dissipative range by
means of DNS is its high computational cost. As discussed in Sec. 2.2, increasing the
Reynolds number requires higher spatial resolution. Moreover, one also needs to extend
the resolved velocity spectrum to larger wavenumbers to study the spectrum further into
the dissipative range, in comparison with the traditional DNS configurations. In the solver,
it is regulated by the choice of the parameter 𝐻 = 𝑘𝑚𝑎𝑥𝜂. Here, it is important to increase
the parameter 𝐻 as high as possible, which requires higher spatial resolution as well. The
choice of parameters is a compromise between the necessity of high Reynolds numbers,
spectrum extension, and computational cost.

Another issue is the necessity of computation of time averages of the spectra. The
simulations have to be sufficiently long to acquire enough data for correct averaging, which
increases again the computational costs. Lastly, the strongly nonlinear functional form
of the spectra in the dissipation range complicates data treatment and requires adapted
techniques for post-processing.

Parameters of the simulations. The simulation parameters are determined by the
Taylor-scale Reynolds number 𝑅𝜆 and the value of 𝐻 = 𝑘max𝜂. To obtain accurate spec-
tra in the dissipation range, a sequence of simulations with fixed 𝑅𝜆 and increasing grid
resolution was performed. In the first run, the computational grid size is chosen to ensure
at least 𝐻 = 1.5 which is commonly accepted as an adequate spatial resolution for DNS
(Pope, 2000, Chapter 9). In the following runs, the solution obtained in the previous simu-
lations is transferred to a finer computational grid with resolution 𝑁 → 2𝑁 , while 𝑅𝜆 and
the forcing scales are unchanged. By doing so, the value of 𝐻 can be increased twofold,
and therefore one gets access to smaller scales in the dissipative range of the turbulence
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spectrum. The values of the Taylor-scale Reynolds number, size of the computational grid,
and the associated value of 𝐻 used in the simulations are presented in the Table 3.3.

HH
HHH𝑁
𝑅𝜆 60 90 160 240

256 3.0 1.5 - -

512 6.0 3.0 1.5 -

1024 12.0 6.0 3.0 1.5

2048 - 12.0 6.0 3.0

Table 3.3 – Parameters of the simulations for analysis of the dissipation range of spectra:
Maximal wave-number 𝐻 = 𝑘max𝜂 as a function of the Taylor microscale Reynolds number
𝑅𝜆 and the grid resolution 𝑁 .
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Figure 3.16 – Kinetic energy spectra for dissipation range analysis, obtained from the
set of simulations with the Taylor-scale Reynolds numbers 𝑅𝜆 and resolutions 𝑁 given in
Table 3.3.

Kinetic energy spectra. Once the stationary state is reached, the spectra of the kinetic
energy spectra are computed. The spectra are averaged over spectral spherical shells and
in time:

𝐸(𝑘) =
1

𝑁𝑡

𝑁𝑡∑︁
𝑗=1

1

𝑀𝑛

∑︁
k⃗∈𝑆𝑛

1

2
𝑢̂𝑖(k⃗, 𝑡𝑗)𝑢̂

*
𝑖 (k⃗, 𝑡𝑗), (3.24)

where 𝑁𝑡 is the number of time snapshots at which the spectra are computed, and 𝑀𝑛 is
the number of modes in a shell.

In this study, the spherical shells for averaging have logarithmic spacing so that the
𝑛-th shell is defined as 𝑆𝜆𝑛 =

{︁
k⃗ ∈ R3

⃒⃒⃒
𝜆𝑛 ≤ |k⃗| < 𝜆𝑛+1

}︁
. The value of the basis of the

exponential function is set to 𝜆 = 1.21, as it is estimated as the minimal value that
does not lead to the appearance of shells with no modes (Stepanov et al., 2014). The use
of the exponentially spaced shells allows to avoid some biases in the spectra, like kinks,
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that appear because of the cubical discretization of the computational grid, and it gives
significantly better results while computing the log-log derivatives of the spectra.

The spectra obtained for each 𝑅𝜆 and resolution, averaged over space and time, are
displayed in Fig. 3.16. The spectra are compensated by 𝜀−2/3𝑘5/3, so that in the inertial
range there is a plateau with approximate value 1.5 (the dashed black line), which cor-
responds to the Kolmogorov constant for the three-dimensional energy-spectrum function
(Sreenivasan, 1995 ; Pope, 2000). It shows that in the inertial range, the spectra decay
as power-laws with K41 exponent −5/3 approximately up to 𝑘𝜂 ≈ 0.4. In the following
section, the near-dissipation zone of the spectra at 𝑘𝜂 & 0.4 is analyzed.

3.5.3 Analysis of the numerical spectra in the near-dissipative range

The detection of the stretched exponential form of the kinetic energy spectrum in the
near-dissipation range predicted by the FRG given in Eq. (3.23) is not a trivial task, as
the function is strongly nonlinear. The attempts to perform a 4-parameter nonlinear fit
with the given form did not lead to any conclusive result. Parameters resulting from the
fitting procedure appear to be extremely sensitive to small variations in the input data.
Moreover, in certain cases, the Jacobian matrix calculated within the nonlinear fitting
procedure becomes poorly conditioned, leading to numerical instabilities.

Another approach, more suitable for strongly nonlinear functions, consists in the conse-
cutive analysis of the first, second, and third derivatives. Since the function in Eq. (3.23)
contains a power law, it is more convenient to use the log-log derivatives. The deriva-
tives are computed from the DNS averaged spectra with the use of a central second-order
difference scheme. Note that the use of exponentially spaced shells for spatial averaging
provides relatively smooth numerical log-log derivatives, which is not the case if linearly
distanced shells are used.
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Figure 3.17 – First logarithmic derivative 𝐷1 of the kinetic energy spectra, defined by
Eq. (3.25). The inset shows a zoom in the near-dissipative range to illustrate the curvature
increasing with 𝑅𝜆. For the sake of clarity, only the curves for the highest resolution 𝑁 for
each 𝑅𝜆 are shown.
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3.5. Kinetic energy spectrum in the near-dissipative range

First derivative. The first logarithmic derivative of the spectrum is defined as:

𝐷1(𝑘𝜂) =
𝑑 ln(𝐸)

𝑑 ln(𝑘𝜂)
= −𝛽 − 𝜇𝛼(𝑘𝜂)𝛼, (3.25)

where the general form (3.23) for 𝐸(𝑘) is used in the second equality. This function is
still nonlinear and contains 3 unknown parameters, so it is still not easy to apply a fitting
procedure. However, the visual evaluation of the form of 𝐷1 can already provide some
information. For instance, if the exponent 𝛼 = 1, the function 𝐷1 becomes linear, and the
behavior of the spectrum according to (3.23) is purely exponential in the dissipative range
(multiplied by the power law 𝑘−𝛽). Thus, the nonlinear form of 𝐷1 can at least indicate
that the spectrum deviates from a purely exponential function.

The result of numerical estimation of the first derivative is shown in the Fig. 3.17.
Firstly, one can notice that only the curve corresponding to the smallest 𝑅𝜆 = 60 visually
appears to be linear, while other curves exhibit a slight curvature, and this curvature is
getting more visible as 𝑅𝜆 increases. The curvature can be seen a little more clearly from
the inset of the Fig. 3.17. The fact that the curvature is convex indicates that 𝛼 < 1 in this
region. Moreover, the curves do not collapse at very large wavenumbers, suggesting that
this behavior is not universal and depends on the Reynolds number. Secondly, although
there are not many points for high 𝑘𝜂 > 4, one can distinguish two qualitatively different
regimes: the near-dissipative range up to 𝑘𝜂 ≈ 4, and the far-dissipative range extending
beyond this value. It appears that in the far dissipative range, the curves of 𝐷1 have a
linear form in log-log scale, indicating a pure exponential decay 𝛼 ≃ 1.

The first logarithmic derivative 𝐷1 has been used for analysis of the dissipation range
in other works as well (Martínez et al., 1997 ; Ishihara et al., 2005 ; Khurshid et al., 2018 ;
Buaria and Sreenivasan, 2020). The results presented here are consistent with the mentio-
ned studies.
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Figure 3.18 – Second logarithmic derivative of the kinetic energy spectra, defined by
Eq. (3.26). Only the curves for the highest resolution for each 𝑅𝜆 are shown for clarity.
The colored dashed lines denote the linear fits of the data points. The lines with slope 2/3
(dashed black) and 1 (purple dotted-dashed) are provided for a visual comparison of the
slope.

Second derivative. Since the first derivative 𝐷1 does not provide a straightforward
way to estimate the exponent 𝛼, one can go further and evaluate the second logarithmic
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derivative:
𝐷2(𝑘𝜂) =

𝑑(−𝐷1)

𝑑 ln(𝑘𝜂)
= 𝜇𝛼2(𝑘𝜂)𝛼. (3.26)

When plotting 𝐷2 in log-log scale, it is expected to be a straight line with a slope 𝛼 and
intercept ln

[︀
𝜇𝛼2

]︀
in the dissipative range.

The derivative 𝐷2 extracted from the numerical spectra is presented in Fig. 3.18. It is
clear that the linear fit matches well the data for the points 𝑘𝜂 < 3 (the near-dissipation
range). The slope of the lines varies from 𝛼 ≈ 1 to 𝛼 ≈ 2/3 with increasing 𝑅𝜆.
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Figure 3.19 – The exponent 𝛼 calculated as the third logarithmic derivative 𝐷3, defined
by Eq. (3.27). The inset shows a zoom in the dissipative range (corresponding to the area
highlighted in blue in the main figure).
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Figure 3.20 – Dependence of the near-dissipation range exponent 𝛼 on Reynolds number.
The values are estimated as the plateau values from Fig. 3.19. The error bars correspond
to the standard deviation between the data and the plateau value. Only points for the simu-
lations at the best resolution are shown.

Third derivative. Taking another log-log derivative gives 𝐷3, one expects to find a
constant in the dissipative range with value 𝛼:

𝐷3(𝑘𝜂) =
𝑑 ln(𝐷2)

𝑑 ln(𝑘𝜂)
= 𝛼. (3.27)
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3.5. Kinetic energy spectrum in the near-dissipative range

The result for the third derivative is displayed in Fig. 3.19. The derivative 𝐷3 appears
to be noisy in the inertial range, but clearly exhibits a plateau in the near-dissipative range
for wavenumbers 0.2 . 𝑘𝜂 . 2.5. The range of wavenumbers corresponding to the plateau
of 𝛼 appears independent of the 𝑅𝜆.

The inset gives a zoomed view of the dissipative range (the area highlighted in blue
in the main plot), which allows to see that 𝛼 is close to 1 at the smallest 𝑅𝜆 = 60 and
approaches the value 𝛼 ≈ 2/3 as 𝑅𝜆 increases. The dependence of the plateau values of 𝛼
on the Reynolds number is shown in Fig. 3.20.

One can also observe in Fig. 3.19 that at large wavenumbers 𝑘𝜂 > 3.5 the curves for
𝑅𝜆 = 60, 90 deviate and start growing, which can be an indication of the transition to
the far-dissipation range, where the purely exponential behavior with 𝛼 = 1 is expected.
However, the provided spectra do not allow to draw any solid conclusion regarding the
far-dissipative range, as the data is not sufficient.

3.5.4 Discussion

Near-dissipative range. To our knowledge, there is no rigorous definition of the thre-
shold wavenumbers delimiting the near- and far-dissipative ranges. In the present work,
the near-dissipation range of the kinetic energy spectrum is identified as the zone of a pla-
teau of the third log-log derivative, which is equal to the exponent 𝛼. The near-dissipation
range approximately spans from 𝑘𝜂 = 0.2 to 2.5, which is in agreement with the work of
Khurshid et al., 2018, where the near-dissipation range is estimated as 𝑘𝜂 . 3. The work
of Khurshid et al., 2018 does not provide an exact evaluation of 𝛼; however, it concludes
that 𝛼 < 1 in the near-dissipative range from the form of curvature of 𝐷1.

It is important to mention that the stretched exponential form of the kinetic energy
spectrum was independently studied in the work of Buaria and Sreenivasan, 2020, where
higher Reynolds numbers were reached in DNS. Remarkably, the exponent 𝛼 = 2/3, predic-
ted by the FRG, is also observed in the near-dissipation range. The spectra are analyzed
with the use of the first logarithmic derivative 𝐷1. However, the range of wavenumbers
corresponding to the stretched exponential with 𝛼 = 2/3 is estimated to be much shorter
(only until 𝑘𝜂 < 1) than in the present study. This range is evaluated simply as a range
where the derivative 𝐷1 plotted in log-log scale behaves as a straight line with a slope
2/3. However, as one can see from the equation (3.25), such an evaluation based on 𝐷1

only can be contaminated by the power-law exponent 𝛽, which can make 𝐷1 deviate from
the straight line in log-log scale, even if 𝛼 = 2/3. The dependence of 𝛽 on wavenumber
and the Reynolds number is not known. According to FRG, in the leading order term,
the power-law exponent is 𝛽 = 5/3; however, it can be modified by sub-leading terms and
change its value in the dissipative range. In contrast, the method of estimation of 𝛼 from
the derivatives 𝐷2 and 𝐷3, proposed in this Section, allows to get rid of the unknown
contribution of 𝛽 and provides a more accurate estimation of 𝛼.

Averaging. Another important remark concerns the role of statistical averaging in the
analysis of spectra. The FRG prediction is applicable for the kinetic energy spectra com-
puted in the sense of ensemble average. In DNS, the spectra for averaging are collected
when a stationary state of the flow is reached. Spectra are saved every 100 iterations and
averaged in the phase of post-processing. Clearly, sufficiently long simulations are needed
for correct averaging.

However, going “deeper” into the dissipation range requires much more temporal sta-
tistics for averaging. In the beginning of data acquisition, the tails of the spectra strongly
fluctuate. This is due to non-Gaussianity of the fluctuations at small scales. The time se-
ries of modal kinetic energy at large wavenumbers show the presence of intermittent high
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peaks, the same behavior is reported in the work of Khurshid et al., 2018. The amplitude
of extreme peaks in the kinetic energy time series increases with wavenumber and Reynolds
number. The spectra must be computed by averaging over a sufficiently long time series,
such that enough extreme events are taken into account in the averages to build correct
statistics.

Comparison with experimental data. Unfortunately, it was impossible to reach hi-
gher Reynolds numbers in this DNS study due to high computational costs. However, it is
possible to access higher Reynolds numbers in experiments of grid turbulence. The size of
the S1MA wind tunnel of ONERA in Modane allows to reach high Reynolds number and
still obtain data with the dissipation scales resolved enough for the analysis of the spectra
in dissipation range (Bourgoin et al., 2018). The comparison of the experimental spectra
with the theoretical prediction (3.23) is provided in the paper (Gorbunova et al., 2020), it
states 𝛼 ≃ 0.68± 0.19, which is consistent with the value obtained for 𝛼 in DNS for high
Reynolds number.

Summary. In this section, a numerical study of the kinetic energy spectrum in the
dissipative range is presented. The form of the averaged spectra is analyzed by computing
numerical log-log derivatives. The results show that the dependence of the spectra on
the wavenumber in the dissipative range can be described by a power law multiplied by
a stretched exponential. The value of the stretched exponent is estimated through the
third derivative, which reaches a plateau in the near-dissipative range. The plateau spans
approximately 0.2 . 𝑘𝜂 . 2.5, which estimates the near-dissipation range limits. The value
of 𝛼 appears to be dependent on Reynolds number. It is 𝛼 ≈ 1 at the smallest 𝑅𝜆 = 60,
and 𝛼 ≈ 2/3 for the highest 𝑅𝜆 = 240, approaching the value predicted by FRG. These
results are also in agreement with the experimental data obtained in grid turbulence in
Modane wind tunnel.

3.6 Conclusions

In this chapter, results of the numerical study of the spatio-temporal correlation func-
tion of velocity in Eulerian frame of reference are presented. It is shown that the two-point
space-time correlation function takes the form of a Gaussian function of the variable 𝑡𝑘,
where 𝑡 is the time lag and 𝑘 is the wavenumber. This behavior is in agreement with the
FRG prediction for small time lags. This observation thus allows to confirm the dominance
of the sweeping time scaling in the Eulerian frame, which is in agreement with the existing
experimental and numerical studies.

In addition, the dominance of the sweeping effect is demonstrated for the filtered triple
correlation function, computed as space-time correlation between the advection and ve-
locity fields. Applying a filtering procedure that nullifies all large-scale modes makes it
possible to link the numerically computed triple correlation with the FRG prediction for
the three-point velocity correlation function. The triple correlation behaves also as a Gaus-
sian of 𝑡𝑘 variable, its temporal behavior is identical to the one of the two-point correlation,
which is also in agreement with FRG.

Unfortunately, the transition to another form of the decay in the correlation function at
large time lags, predicted by FRG, was not captured in DNS. The analysis of the correlation
functions at large time lags represents a challenging task due to the low magnitude of the
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correlation function and strong sensitivity to the amount of data collected for averaging.
However, two different regimes are observed for another type of correlation function -
correlation of the velocity vector norms. The FRG approach does not cover this type of
correlation function. The observed behavior of the correlation of velocity norms requires
further theoretical and numerical investigation.

Lastly, the form of the kinetic energy spectrum in the dissipative range is analyzed.
According to FRG, taking an appropriate limit 𝑡→ 0 in the two-point correlation function
leads to a result for the spectrum in the near-dissipative range in the form of a power law
multiplied by a stretched exponential function with an exponent 𝛼 = 2/3. The analysis of
the spectra by means of logarithmic derivatives demonstrates that the stretching exponent
indeed approaches the theoretically predicted value at high Reynolds numbers. Moreover,
this approach allows to estimate the wavenumbers delimiting the near-dissipative range.
These results are in agreement with the stretched exponents extracted from experimental
data collected in grid turbulence. Parts of the results presented in this chapter are published
in articles (Gorbunova et al., 2020 ; Gorbunova et al., 2021a).

At this point, the part of the thesis dedicated to the correlation of velocity is over. The
remaining two chapters concern the statistical properties of the passive scalar. The next
chapter 4 continues the numerical study presented in this section by including into the
analysis the space-time correlation of an advected scalar. The influence of the temporal
covariance of the velocity field on the scalar correlation function is studied in simulations
of a scalar advected by a random synthetic flow, as well as by a homogeneous isotropic
turbulent flow governed by the Navier-Stokes equations.

Conclusions en français

Ce chapitre présente les résultats de l’étude numérique de la fonction de corrélation
spatio-temporelle de la vitesse dans le cadre de référence eulérien. On montre que la fonction
de corrélation spatio-temporelle à deux points prend la forme d’une fonction gaussienne de
la variable 𝑡𝑘, où 𝑡 est le décalage temporel et 𝑘 est le nombre d’onde. Ce comportement est
en accord avec la prédiction FRG pour les petits décalages temporels. Cette observation
permet ainsi de confirmer la dominance de la loi d’échelle de balayage dans le cadre eulérien,
ce qui est en accord avec les études expérimentales et numériques existantes.

De plus, la dominance de l’effet de balayage est démontrée pour la fonction de triple
corrélation basée sur les champs filtrés, calculée comme corrélation spatio-temporelle entre
les champs d’advection et de vitesse. L’application d’une procédure de filtrage qui annule
tous les modes à grande échelle permet de lier la triple corrélation calculée numériquement
avec la prédiction FRG pour la fonction de corrélation de vitesse à trois points. La triple
corrélation se comporte également comme une gaussienne de variable 𝑡𝑘, son comportement
temporel est identique à celui de la corrélation à deux points, qui est également en accord
avec FRG.

Malheureusement, la transition vers l’autre forme de décroissance de la fonction de
corrélation avec des décalages temporels larges, prédite par FRG, n’a pas été observée
dans les simulations. L’analyse des fonctions de corrélation avec des décalages temporels
importants représente une tâche difficile en raison des faibles amplitudes de la fonction
de corrélation et de la forte sensibilité à la quantité de données collectées pour le calcul
de la moyenne. Cependant, deux régimes différents sont observés pour un autre type de
fonction de corrélation - la corrélation des normes du vecteur vitesse. Pour le moment,
l’approche FRG ne couvre pas ce type de fonction de corrélation. Le comportement observé
de la corrélation des normes de vitesse nécessite une étude théorique et numérique plus
approfondie.

Enfin, la forme du spectre d’énergie cinétique dans le domaine dissipatif est analysée.
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Selon FRG, prendre une limite appropriée 𝑡 → 0 dans la fonction de corrélation à deux
points conduit à un résultat pour le spectre dans la zone dissipative-proche sous la forme
d’une loi de puissance multipliée par une fonction exponentielle étirée avec un exposant
𝛼 = 2/3. L’analyse des spectres au moyen de dérivées logarithmiques démontre que l’ex-
posant d’étirement se rapproche bien de la valeur théoriquement prédite à des nombres de
Reynolds élevés. De plus, cette approche permet d’estimer les nombres d’onde délimitant
la zone dissipative-proche. Ces résultats sont en accord avec les exposants étirés extraits
des données expérimentales recueillies dans la turbulence de grille. Une partie des résultats
présentés dans ce chapitre est publiée dans les articles (Gorbunova et al., 2020 ; Gorbunova
et al., 2021a).

Ce chapitre conclut la partie de la thèse consacrée à la corrélation des vitesses. Les
deux chapitres restants concernent les propriétés statistiques du scalaire passif. Le cha-
pitre suivant 4 poursuit l’étude numérique présentée dans cette section en incluant dans
l’analyse la corrélation spatio-temporelle d’un scalaire advecté passivement. L’influence de
la covariance temporelle du champ de vitesse sur la fonction de corrélation d’un scalaire
est étudiée dans des simulations d’un scalaire advecté par un écoulement synthétique aléa-
toire, ainsi que par un écoulement turbulent isotrope homogène régi par les équations de
Navier-Stokes.
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4
Spatio-temporal correlations of passive scalar

In this chapter, the two-point spatio-temporal correlation func-
tion of a passive scalar in Eulerian frame of reference is stu-
died. The results are obtained from numerical simulations of
the advection-diffusion equation of a scalar in Navier-Stokes
and synthetic velocity fields. The influence of the temporal co-
variance of the random velocity field on scalar correlations is
studied numerically in a white-in-time velocity field and a time-
correlated one. In the last case, the crossover between Gaussian
and exponential decays in the scalar correlation is observed.
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Abstract

This chapter is dedicated to the numerical study of the correlation functions of a passive
scalar in a turbulent flow. The term “passive scalar” means a scalar quantity, which can
be modeled as a continuous field and does not have any back-reaction on the carrier flow.
The passive scalar approximation is used in many applications, for instance, transport of
a non-reacting admixture, small fluctuations of temperature, humidity, or salinity (Monin
and Yaglom, 2007).

In particular, the Eulerian two-point space-time correlation functions of a passive scalar
are discussed. Firstly, in section 4.1 a general background and literature overview on scalar
correlation functions is provided. Next, two cases of flow are considered: a scalar advected
by a turbulent flow governed by Navier-Stokes equation (Sec. 4.2) and scalar advected in a
synthetic random velocity field (Sec. 4.3) with a prescribed covariance in space and time.
The results of the numerical simulations for the two cases are presented and compared
with the FRG results presented previously in Sec. 1.3 (page 23). Lastly, in Sec. 4.4, the
main conclusions of the chapter are listed. A part of the results presented in this chapter
is also published in Physical Review Fluids (Gorbunova et al., 2021b).

Résumé en français

Ce chapitre est consacré à l’étude numérique des fonctions de corrélation d’un scalaire
passif dans un écoulement turbulent. Le terme “scalaire passif” désigne une quantité scalaire
qui peut être modélisée comme un champ continu et qui n’a aucune réaction en retour sur le
champs de vitesse porteur. L’approximation scalaire passive est utilisée dans de nombreuses
applications, par exemple, le transport d’un mélange non réactif, de petites fluctuations de
température, d’humidité ou de salinité (Monin and Yaglom, 2007).

En particulier, les fonctions de corrélation espace-temps eulériennes à deux points d’un
scalaire passif sont discutées. Tout d’abord, la section 4.1 donne un aperçu général de
l’historique et de la littérature sur les fonctions de corrélation scalaire. Ensuite, deux cas
d’écoulement sont considérés : un scalaire advecté par un écoulement turbulent régi par
les équations de Navier-Stokes (Sec. 4.2) et un scalaire advecté dans un champ de vitesse
aléatoire synthétique (Sec. 4.3) avec une covariance prescrite dans l’espace et le temps.
Les résultats des simulations numériques pour les deux cas sont présentés et comparés
aux résultats FRG présentés précédemment dans la section 1.3 (page 23). Enfin, dans la
section 4.4, les principales conclusions du chapitre sont répertoriées. Une partie des résultats
présentés dans ce chapitre est également publiée dans Physical Review Fluids (Gorbunova
et al., 2021b).

4.1 Background

The statistics of a scalar advected by a turbulent flow has been extensively studied
in various works, summarized in reviews (Warhaft, 2000 ; Shraiman and Siggia, 2000 ;
Falkovich et al., 2001 ; Sreenivasan, 2019). In this section, a brief summary of the known
results on the scalar correlation function is provided.

Two-point equal-time statistics of the scalar. The wavenumber spectrum of scalar
variance is a two-point equal-time statistical property of the scalar field, and it is essential
to discuss it before moving to the two-time two-point correlation function.
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4.1. Background

Let us consider a turbulent velocity flow of a fluid with viscosity 𝜈, governed by Navier-
Stokes equation (1.1), and a passive scalar field with diffusivity 𝜅, governed by the diffusion-
advection equation (1.25). The ratio between the viscosity of the fluid and diffusivity of the
scalar gives a non-dimensional parameter called Schmidt number 𝑆𝑐 ≡ 𝜈/𝜅. This number
is also referred to as Prandl number if the passive scalar represents temperature, and 𝜅 is
thermal conductivity. The velocity field is characterized by the Kolmogorov length scale,
at which the viscous dissipation becomes dominant over the advection: 𝜂 = (𝜈3/𝜀)1/4, with
𝜀 the average dissipation rate of velocity. Similarly, for the passive scalar, there exists a
characteristic length scale 𝑟𝑑, at which the molecular diffusion process becomes faster than
the advection. Depending on the value of the Schmidt number, which is also linked with
the ratio between the two length scales 𝜂 and 𝑟𝑑, one can distinguish different regimes of
dynamics of the passive scalar (Lesieur, 2008 ; Sreenivasan, 2019).

In the case where viscosity and diffusivity are comparable, so the Schmidt number is
𝑆𝑐 ∼ 1, the dissipative length scales are comparable 𝜂 ≈ 𝑟𝑑. The range of wavenumbers
1/𝐿≪ 𝑘 ≪ 1/𝜂 ≈ 1/𝑟𝑑, where neither scalar diffusivity nor viscosity play a role, is called
inertial-convective. For this range, the phenomenology of Kolmogorov (1941) is applicable,
and the velocity spectrum exhibits the power-law decay 𝐸(𝑘) = 𝐶𝐾𝜖

2/3𝑘−5/3. An exten-
sion of Kolmogorov’s theory to passive scalar turbulence was first proposed by Obukhov
(1949) and Corrsin (1951). The dimensional argument behind is similar to K41: far from
the forcing and dissipative scales, the scalar dynamics solely determined by the constant
spectral flux of scalar variance, which leads to the same 5/3 power-law spatial spectrum:

𝐸𝜃(𝑘) = 𝐶𝑂𝐶𝜀𝜃𝜖
−1/3𝑘−5/3 (4.1)

with 𝜀𝜃 = 2𝜅 ⟨∇𝜃 ·∇𝜃⟩ - average dissipation rate of scalar, and 𝐶𝑂𝐶 - the Obukhov-Corrsin
constant.

The situation changes if the fluid viscosity is considerably larger than the scalar dif-
fusivity, in other words, when 𝑆𝑐 ≫ 1, which also implies that 𝑟𝑑 ≪ 𝜂. In this case, the
diffusive length scale 𝑟𝑑 is also referred to as the Batchelor length scale 𝜂𝐵, and it is related
to the Kolmogorov length scale as 𝜂𝐵 = 𝑟𝑑 = 𝑆𝑐−1/2𝜂. There exists a range of wavenumbers
1/𝜂 ≪ 𝑘 ≪ 1/𝜂𝐵 at which the viscosity becomes important while the diffusivity effects
are still negligible, called viscous-convective range. The scalar exhibits in this range the
Batchelor spectrum with the power law 𝐸𝜃(𝑘) ∼ 𝑘−1. In the opposite case, when 𝑆𝑐 ≪ 1
and thus 𝑟𝑑 ≫ 𝜂, the scalar diffusivity starts acting at scales which are not sensitive to
viscosity, which brings to emergence of an inertial-diffusive (or inertial-conductive) range
which is expected to have the Batchelor-Howells-Townsend spectrum with the power law
𝑘−17/3.

In the present work, the advection of a scalar is considered in the inertial-convective
regime with 𝑆𝑐 ∼ 1. In this regime, for both velocity and scalar, the advection term is
dominant for the range of wavenumbers 1/𝐿 ≪ 𝑘 ≪ 1/𝜂 ≈ 1/𝑟𝑑. Therefore, one expects
to observe the Obukhov-Corrsin power law 𝑘−5/3 in the scalar spectrum in the mentioned
subrange.

Two-point space-time correlation function of the scalar. In certain problems, it
is necessary to know not only the spatial statistics of the scalar field, but also its temporal
correlations, in particular space-time Eulerian correlation functions. Its comprehension is
essential, for instance, for the development of time-accurate numerical models parametri-
zing small-scale motions (G. He et al., 2017), or experimental data treatment (X. He and
Tong, 2011) for space-time mapping of signals. In addition, the assumptions on space-time
scalar correlation functions lie at the basis of certain approaches used in turbulent diffusion
problems (Mazzino, 1997 ; Majda and Kramer, 1999).
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Chapter 4. Spatio-temporal correlations of passive scalar

Since we consider the inertial-convective range, where the advection term is dominating,
one may intuitively suppose that the temporal properties of Eulerian correlation functions
of the scalar in a turbulent flow are determined by the large-scale velocity field where most
of the kinetic energy is concentrated, by analogy with the velocity correlation discussed
in Chapter 3. Therefore, one should expect the appearance of the random sweeping effect
in the temporal behavior of the correlation functions of scalars, with the typical time of
decorrelation scaling as 𝜏𝐷 ∼ 𝑘−1. The analogy between the sweeping effect in velocity and
scalar fields is discussed in the work of Chen and Kraichnan (1989), where the straining
of scalar threads is compared to the straining of thin vortical tubes, so that both are
determined by the large-scale velocity and thus sweeping.

The dominance of the sweeping effect in two-time statistics of passive scalars has
been observed in numerical simulations. In work of P. K. Yeung and Sawford (2002) it
is shown through measuring the frequency spectrum of the passive scalar, which results to
be 𝐸(𝜔) ∼ 𝜔−5/3. Moreover, in the work of O’Gorman and Pullin (2004), the scalar space-
time correlations are computed in DNS for scalar at 𝑆𝑐 = 0.7 and compared with results of
the stretched-spiral vortex model. The resulting temporal correlations of the scalar Fourier
modes collapse when plotted against 𝑡𝑘 variable, which validates the sweeping scaling. In
addition, it is shown that the characteristic times of decorrelation for the velocity and
scalar fields are very close.

Apart from that, the evidence supporting the dominance of sweeping in scalar corre-
lations were obtained from the experimentally measured space-time correlation of tempe-
rature in turbulent Rayleigh-Bénard convection (X. He and Tong, 2011 ; X. He and Tong,
2014). The sweeping hypothesis appears to be applicable as well for magnetic field in
strong magnetohydrodynamic turbulence (Perez and Bourouaine, 2020) and in solar wind
(Matthaeus et al., 2016 ; Perschke et al., 2016). However, despite the existing evidence, a
rigorous theoretical justification was missing.

Model of scalar advection in random velocity field. A lot of important results were
obtained by means of the analysis of simplified models of scalar turbulence, such as the
model proposed by Kraichnan (1968). The simplification consists in replacing the velocity
field by a random vector field with a white-in-time Gaussian statistics and a prescribed
power law for the spatial covariance. This model represents a particular interest as it
shows the emergence of an anomalous scaling in the scalar structure functions even when
the velocity field has Gaussian statistics and therefore provides a simplified framework for
the study of intermittency. Additionally, thanks to the simplification of velocity covariance,
it allows to obtain closed equations for the scalar structure functions. Explicit analytical
calculations of the anomalous scaling exponents of the structure functions were obtained by
means of different approaches (Chertkov et al., 1996 ; Kraichnan, 1994 ; Frisch and Wirth,
1997 ; Adzhemyan and S. V. Novikov, 2006 ; Kupiainen and Muratore-Ginanneschi, 2007 ;
Pagani, 2015). Furthermore, the temporal dependence of the scalar correlation function
has been also studied, see the works of Mitra and Pandit (2005) and Sankar Ray et al.
(2008). However, the assumption of white-in-time velocity prevents one from relating the
model to real scalar turbulence in Navier-Stokes field, which has a non-trivial space-time
dependent velocity covariance.

FRG results. Within the FRG framework, one can derive an approximated form of the
spatio-temporal Eulerian two-point correlation function of the scalar field advected by NS
flows and in Kraichnan’s model (Pagani and Canet, 2021). These results were discussed in
the section 1.3. According to FRG, the spatio-temporal dependence of the Eulerian two-
point correlation function of the scalar exhibits two distinct time regimes in the stationary
state depending on the time lag. If one considers the time lags smaller or comparable
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to the typical correlation time of the velocity field, the correlation function of the scalar
takes the form of a Gaussian function in the variable 𝑡𝑘, which justifies the dominance
of the sweeping effect. At time lags larger than the velocity correlation time scale, the
correlation function of the scalar switches to an exponential decay in the variable 𝑡𝑘2.
In the case of the Kraichnan’s random advection model, the characteristic time of the
velocity correlation vanishes, and according to the FRG, only the exponential part of the
correlation function decay remains. Therefore, the FRG result demonstrates the crucial
role of the temporal correlation of velocity on Eulerian space-time correlations of passive
scalars. These results can be tested in numerical simulations of scalars in NS velocity field
and in random synthetic fields.

Objective. The present work aims to study the Eulerian space-time correlations of a
passive scalar by means of DNS and compare it with the FRG results. In particular, to
test the influence of the velocity field temporal correlation, three cases of velocity fields are
studied: a turbulent flow governed by the Navier-Stokes equation, a random velocity flow
with white-in-time covariance and a random velocity flow with a finite correlation time.
For the white-in-time velocity one expects to observe a purely exponential decay in scalar
correlation functions, while for the case of Navier-Stokes velocity field and the synthetic
velocity with finite correlation time, the two-regime decay is expected: a Gaussian at small
time lags and the exponential at large time lags. The results for the scalar correlation
function from the DNS in these three cases are presented in the following two sections.

4.2 Passive scalar advection in Navier-Stokes turbulent velo-
city field

4.2.1 Configuration of simulations.

In the simulations described in this section, in addition to the Navier-Stokes equation
(1.1), the advection-diffusion for a passive scalar (1.25) is solved numerically with the use
of the pseudo-spectral method. The solver for the scalar is totally identical to the velocity
solver presented in Sec. 2.2 (p. 33). Since the scalar is passive, there is no need of two-way
coupling between velocity and scalar, and the scalar is simply computed at each iteration
once the computation of the velocity field is finished.

Parameters of simulations. The direct numerical simulations of the Navier-Stokes
equation for the turbulent velocity field and the advection-diffusion equation for the passive
scalar are performed at various resolutions, Reynolds numbers, and diffusivities (see Table
4.1). Schmidt number is the ratio between the fluid viscosity and scalar diffusivity: 𝑆𝑐 =
𝜈/𝜅; the Péclet number is the ratio between the typical advection and diffusive times of
the scalar and is thus high for an advection-dominant flow:

𝑃𝑒 =
𝐿 𝑈𝑟𝑚𝑠
𝜅

= 𝑅𝑒 𝑆𝑐 (4.2)

In the present work, two velocity fields with different Taylor-scale Reynolds numbers
𝑅𝜆 = 70 and 90 are considered. For the case with the lower 𝑅𝜆 = 70 the scalars were
simulated at 5 different values of Schmidt numbers from 𝑆𝑐 = 1 to 64. In all cases, the
Péclet numbers are 𝑃𝑒≫ 1, in order to reach regimes where the advection dominates over
the diffusion in scalar dynamics.
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Simulation 𝑅𝜆 𝑁𝑣 𝑆𝑐 𝑁𝑠 𝑃𝑒 Δ𝑡/𝜏0 Δ𝑇𝑤/𝜏0 𝑁𝑤

1 70 160 1 160 426 5.0× 10−4 0.60 82

2 70 160 4 320 1706 2.5× 10−4 0.30 24

3 70 160 9 480 3840 1.2× 10−4 0.30 12

4 70 160 16 640 6827 1.0× 10−5 0.03 72

5 70 160 36 960 15362 4.1× 10−5 0.03 9

6 90 256 0.7 256 484 6.2× 10−4 1.7 50

Table 4.1 – Parameters of DNS of scalar advection in Navier-Stokes velocity field. 𝑅𝜆
- Taylor-scale Reynolds number, 𝑁𝑠 - spatial grid resolution for velocity, 𝑆𝑐 - Schmidt
number, 𝑁𝑠 - spatial grid resolution for scalar, 𝑃𝑒 - Péclet number, 𝜏0 - integral eddy-
turnover time, Δ𝑡 - simulation time step, Δ𝑇𝑤 - width of a time window of correlation
measurement, 𝑁𝑤 - number of recorded time windows for time correlation.

At 𝑆𝑐 = 1 the spatial resolutions for scalar and velocity are equivalent, since the cor-
responding typical dissipation scales are close 𝜂 ≈ 𝜂𝐵. When switching to higher Schmidt
numbers, the scalars are simulated on finer computational grids, while the velocity reso-
lution is kept the same. The necessary spatial resolution for the scalar is evaluated as
𝑁𝑠 = 𝑁𝑣

√
𝑆𝑐, which follows from the ratio between the Kolomogov and Batchelor length

scales 𝜂 and 𝜂𝐵 (Gotoh and P. Yeung, 2012). When computing the advection term of the
scalar on a finer grid, the velocity field is rediscretized to the scalar grid size in spectral
space by padding the velocity field at large wavenumbers 𝑁𝑣/2 < 𝑘 < 𝑁𝑠/2 with zeros.

Scalar forcing. To reach a stationary state of the scalar evolution, the scalar field has to
be forced. In the present study, the forcing (or source) term for the scalar 𝑓𝜃 in Eq. (1.25) is
chosen to be a random field peaked at large scales, homogeneous and isotropic. This forcing
ensures the symmetries assumed in the theoretical model. The forcing field is updated
at every iteration, each new realization is uncorrelated with the previous one. The peak
wavenumber of scalar forcing is close to the one of velocity.

4.2.2 Results of DNS.

The section presents the data collected in simulations of scalars advected by Navier-
Stokes velocity field. The results for spatial spectra and two-point space-time correlation
functions for both velocity and scalar are presented and discussed.

Fields and spectra of scalar and velocity. Examples of instantaneous 2D cuts of the
velocity and scalar fields are displayed in Fig. 4.1, for the spatial resolution 𝑁3 = 2563,
the Taylor-scale Reynolds number 𝑅𝜆 = 90 and the Schmidt number 𝑆𝑐 = 0.7. The view
of the scalar field shows the presence of intense mixing due to advection.

The figure 4.2 shows the kinetic energy spectrum of the velocity and variance of the sca-
lar fields. The spatial spectra correspond to the same case as the fields presented in Fig. 4.1.
One can see that both spectra exhibit approximately one decade of the inertial-convective
range with the power law 𝑘−5/3, before switching to rapid decay in the dissipation range.

Space-time correlation function. The correlation function of the scalar field is com-
puted in the stationary state and is averaged in time and in space, over spherical spectral
shells 𝑆𝑛 of thickness Δ𝑘 = 1. The method is completely identical to the computation
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4.2. Passive scalar advection in Navier-Stokes turbulent velocity field

Figure 4.1 – Instantaneous 2D snapshots of the scalar field and of the 𝑥-component of
the velocity field, obtained from the DNS of the Navier-Stokes equation at Taylor-scale
Reynolds number 𝑅𝜆 = 90 on a grid of size 𝑁3 = 2563, with the Schmidt number of the
scalar 𝑆𝑐 = 0.7.
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Figure 4.2 – Spectra and compensated spectra of the velocity kinetic energy and scalar
variance from DNS at Taylor-scale Reynolds number 𝑅𝜆 = 90 on a grid of size 𝑁3 = 2563,
with the Schmidt number of the scalar 𝑆𝑐 = 0.7.
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of the velocity correlation function described in Sec. 2.3 (page 37). For the scalar, the
computation formula is written as:

𝐶(𝑡, k⃗) =
1

𝑁𝑤

𝑁𝑤∑︁
𝑗=1

1

𝑀𝑛

∑︁
k⃗∈𝑆𝑛

Re
[︁
𝜃(𝑡0𝑗 , k⃗)𝜃

*(𝑡0𝑗 + 𝑡, k⃗)
]︁
, (4.3)

where 𝑁𝑤 is the number of time windows in the simulation, and 𝑀𝑛 is the number of
modes in the spectral spherical shell 𝑆𝑛. During the simulations, both scalar and velocity
correlations are computed simultaneously.
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Figure 4.3 – Normalized averaged two-point correlation function 𝐶(𝑡, k⃗) of a scalar in
the NS velocity field at various wavenumbers 𝑘 from simulation at 𝑅𝜆 = 90 and 𝑆𝑐 = 0.7.
Points correspond to the numerical data and continuous lines represent the Gaussian fits.
On the right panel: the same data in 𝑡𝑘 horizontal scaling to demonstrate the collapse of
the curves.

The Fig. 4.3 gives an example of the typical behavior in time of the correlation function
of a passive scalar at various wavenumbers. Note that the picture is similar to the correla-
tion function of velocity shown in Fig. 3.2 (page 49). When plotted against the 𝑡𝑘 variable
(right panel of Fig. 4.3), all curves collapse into a single one, indicating the sweeping scaling
predicted by FRG. The data points also accurately follow the Gaussian fit (denoted with
continuous lines), calculated in the form 𝑔(𝑡) = 𝐶 exp{−𝑎𝑡2} with two parameters: 𝑎 and
𝐶. In all figures, the wavenumbers are non-dimensionalized by the integral length scale 𝐿,
and the times by the integral turn-over time 𝜏0 = 𝐿/𝑈rms with 𝑈rms the root mean square
velocity.

Typical decorrelation time of the scalar. The typical decorrelation time is estimated
through the fitting parameter 𝑎 as 𝜏𝐷 = 1/

√
𝑎. The dependence of the decorrelation time on

the wavenumber is shown in Fig. 4.4a. One can see that all curves exhibit a decay 𝜏𝐷 ∼ 𝑘−1

corresponding to the sweeping scaling. In addition, the decorrelation times of the scalar
and velocity are very close. The decorrelation time at the two considered Reynolds numbers
𝑅𝜆 = 70 and 90 also almost coincide.

The value of the fitting parameter 𝑎 can also provide a numerical estimation of the
decorrelation parameter 𝛼𝑆 in the theoretical expression (1.28) as 𝛼𝑆 = 𝑎 (𝜏0/𝐿𝑘)

2. The
dependence of the estimated parameter 𝛼𝑆 on the wavenumber is displayed in Fig. 4.4b,
showing that both the velocity and scalar reach a plateau beyond the forcing range. This
observation is in agreement with the theoretical short-time expression in Eq. (1.28). Mo-
reover, the numerical values of 𝛼𝑆 for the scalar and velocity fields are very close, which is
also in agreement with the theoretical result, according to which the parameter 𝛼𝑆 is solely
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Figure 4.4 – Dependence of the decorrelation time scale 𝜏𝐷 and the decorrelation para-
meter 𝛼𝑆 on the wavenumber 𝑘 for the scalar and velocity fields. 𝜏𝐷 and 𝛼𝑆 are estimated
with the use of the parameter 𝑎 of the Gaussian fitting of numerical data in the form
𝑔(𝑡) = 𝐶𝑒−𝑎𝑡

2.

determined by the properties of the velocity statistics and is the same for the velocity and
for the scalar.

Dependence on the Schmidt number. As one can see from the Fig. 4.4a, the change
of Schmidt number from 𝑆𝑐 = 1 to 𝑆𝑐 = 36 does not lead to significant changes in the
typical decorrelation time. However, one can notice that the decorrelation time slightly
tends to decrease with growing Schmidt numbers. It can also be seen from Fig. 4.4b, where
the parameter 𝛼𝑆 for the larger Schmidt numbers appears to be a little higher. However,
to draw a solid conclusion, a larger span of Schmidt numbers is needed. It should also be
noticed that a similar decrease in the typical decorrelation time with Schmidt number was
observed in the numerical study of P. K. Yeung and Sawford, 2002, although this time
scale was evaluated as the one characterizing the rate of change of the scalar at Taylor
microscale.

Scalar correlation at large time lags. The behavior of the scalar correlation function
at large time lags is hindered by oscillations around zero after the Gaussian decay. This
effect is identical to the oscillations in the correlations of velocity, discussed in Sec. 3.2.2.
For this reason, the presented numerical data does not allow to observe the transition from
the Gaussian to the exponential decay in the scalar correlation function at large time lags,
predicted by FRG.

Summary. In this section, we report the numerically computed Eulerian two-point spatio-
temporal correlation function of a passive scalar advected by a velocity field governed by
NS equation. At small time lags, the correlation function behaves as a Gaussian function
in the variable 𝑡𝑘, similar to the correlation function of velocity discussed in the previous
chapter. This time scaling is related to the process of sweeping of the passive scalar by
the random large-scale velocity field. Moreover, it is shown that the typical decorrelation
times for velocity and scalar almost coincide, which is in agreement with the FRG result.
Unfortunately, at large time lags, the correlation function is too oscillatory and does not
enable analysis. However, both regimes appear clearly in the case of scalars advected by
synthetic velocity fields. It is shown in the following section.
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4.3 Scalar advection in synthetic velocity field

As it was discussed in Sec. 1.3, the FRG approach shows that in the case of the random
white-in-time velocity field (corresponding to Kraichnan’s model), the temporal depen-
dence of the two-point space-time correlation function of the scalar takes the form of an
exponentially decaying function of the variable 𝑡𝑘2. In the present section, we aim to test
this dependence on the time lag 𝑡 and the wavenumber 𝑘. In addition, the FRG provides
an exact form for the prefactor of the exponential, which is equal to the renormalized
diffusivity 𝜅ren, given in Eq. (1.31). The theoretical renormalized diffusivity 𝜅ren depends
on the microscopic molecular diffusivity of the scalar 𝜅 and parameters of the synthetic
velocity field (amplitude of its variance, its Hölder exponent, spectral cut-off). In addition,
the integral defining 𝜅ren in Eq. (1.31) can be estimated numerically, and thus by varying
the parameters of the synthetic velocity field, one can numerically validate the theoretical
prediction for the prefactor in the exponential of the correlation function. For this reason,
4 sets of simulations have been performed to test the dependence on various parameters.

In the case of a velocity field which is correlated in time, the FRG predicts that for time
lags smaller than the velocity correlation time, the scalar correlation function behaves as a
Gaussian (equivalent to the behavior in NS field discussed above), and then switches to the
exponential decay, equivalent to the one characterizing the scalar correlation functions in
Kraichnan’s model. This result is also tested in DNS by generating a velocity field that is
kept as constant over a certain number of temporal iterations of the solver. Slowing down
the velocity field update allows to get the velocity fields correlated in time. The number
of iterations between the updates imposes the typical correlation time of the velocity field.
Moreover, since this correlation time is controlled by the parameters of a simulation, it
is relatively easy to adjust the parameters to observe the two regimes in the correlation
function of the scalar.

This section is organized in the following way. Firstly, details about the method of velo-
city field generation and the choice of parameters are provided. Next, the results obtained
from simulations with random velocity fields are presented. The cases of white-in-time
velocity field and a velocity correlated over a certain time span are discussed. The scalar
two-point spatio-temporal correlations are computed in both cases and compared with the
FRG results.

4.3.1 Description of simulations

Since the velocity field is generated as a random vector field, there is no need to solve the
Navier-Stokes equation. The solver for velocity is replaced by the random field generator.
Only the equation for the scalar dynamics (1.25) is solved with the use of the pseudo-
spectral solver. It makes the computation significantly less expensive.

Random velocity field generation. To approximate the stochastic white-in-time self-
similar velocity field of Kraichnan’s model (1.29), a synthetic velocity field generator has
been implemented. The generated velocity field must ensure the following variance:

⟨
𝑢̂𝑖(𝑡0, k⃗)𝑢̂

*
𝑗 (𝑡0 + 𝑡, k⃗)

⟩
=

⎧⎨⎩
𝐷0

𝑇𝑒

(︀
𝑘2 +𝑚2

)︀−3−𝜀
2 𝑃𝑖𝑗(k⃗), 𝑡 < 𝑇𝑒,

0, 𝑡 > 𝑇𝑒,

where 𝑇𝑒 is the existence time of an individual realization of the velocity field, which is
calculated as 𝑇𝑒 = 𝑛Δ𝑡, where 𝑛 is the number of time iterations before a new velocity
field is generated. The wavenumber 𝑚 is set to 1 in all simulations.
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The velocity field is generated in Fourier space as a random vector field:

^⃗𝑢(𝑡, k⃗) =

√︃
2𝐷0(𝑘

2 +𝑚2)
−3−𝜀

2

𝑇𝑒
𝜂⃗(𝑡, k⃗), (4.4)

where 𝜂⃗ is a unit random complex vector fulfilling the requirements of zero-divergence
and isotropy. The velocity field is characterized by the root-mean-square velocity 𝑈𝑟𝑚𝑠 =√︀
2𝐸𝑘/3, with 𝐸𝑘 the total kinetic energy. The RMS velocity is linked to the parameter 𝐷0

through 𝑈𝑟𝑚𝑠 =
√︁
𝐴 𝐷0

2𝑇𝑒
, where 𝐴 = 1

3

∑︀
k⃗

(︀
𝑘2 +𝑚2

)︀−3−𝜀
2 is the constant coming from the

numerical estimation of the integral of the power law in the spatial velocity spectrum. The
velocity field in the simulation is thus determined by the four principal parameters: the
Hölder exponent 𝜀/2, the variance amplitude 𝐷0, the renewal period 𝑇𝑒 and the infra-red
cut-off 𝑚 (set everywhere to 1).

Update frequency of velocity field. The random velocity field is generated in the
spectral space every 𝑛 iterations and is totally uncorrelated with the previous realizations.
If 𝑇𝑒 is small compared to the dynamical time scales of the flow (advection time scale
𝜏𝐴 ∼ Δ𝑥/𝑈rms and diffusion time scale 𝜏𝜅 ∼ (Δ𝑥)2/𝜅, with Δ𝑥 spatial grid cell), the
velocity field can be considered as approximately white-in-time. Note also that the update
time 𝑇𝑒 is limited also by the step of time discretization of the numerical scheme 𝑇𝑒 ≥ Δ𝑡.

The parameter 𝑇𝑒 is varied in the present study. Firstly, a numerical approximation of
white-in-time velocity field is considered, so the update period is set to be small 𝑇𝑒 ≪ 𝜏𝐴.
This case corresponds to the numerical approximation of the Kraichnan’s random advection
model. In the following subsection, the update period 𝑇𝑒 is increased to 𝑇𝑒 ∼ 𝜏𝐴, allowing
to switch to velocity fields correlated in time. It will be shown that this parameter controls
the form of the scalar time correlation function.

Roughness of velocity field. The spatial properties of the velocity field are controlled
by its roughness, which is determined by the parameter 𝜀. Its half value 𝜀/2 gives the
Hölder exponent of the velocity field. In other words, the small values 𝜀→ 0 correspond to
rough velocity fields, while the large values 𝜀→ 2 correspond to smooth fields. To illustrate
this, instantaneous snapshots of the velocity fields at various 𝜀 are shown in the first row
of Fig. 4.5 (p. 95). Also, the parameter 𝜀 coincides with the power-law exponent of the
second-order structure function of velocity. The physical value of the parameter is 𝜖 = 4/3,
at which the prefactor 𝐷0 has dimensional units of the energy power (Adzhemyan and
S. V. Novikov, 2006).

In the present work, five values of this parameter are used: 𝜀 = 0.1, 0.5, 1.0, 1.5, 2.0.
It should be noted that the case with 𝜀 = 2 is not trivial. This limiting case corresponds
to the Batchelor regime of Kraichnan’s model, where the velocity gradients are constant
(Falkovich et al., 2001). In this case, the integral of the kinetic energy diverges in the
analytical model. However, numerically there is no divergence due to the finite size of the
computational domain, so the simulations at 𝜀 = 2 do not correspond to a completely
smooth velocity field, but allow at least to approach this regime.

Forcing of scalar. The scalar field is subjected to a large-scale random forcing. The
forcing term 𝑓𝜃 is generated at each iteration in spectral space within a narrow wavenumber
band 3 < 𝑘𝑓 < 4 corresponding to large scales. The amplitude of the forcing is the same in
all simulations. Spectral forcing has been chosen to ensure the isotropy of the scalar fields.
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set 𝑁 𝜅 · 103 𝜀 𝐷0 · 103 𝑛 𝑇𝑒

𝜏0
· 103 Δ𝑡 · 103 𝑈𝑟𝑚𝑠 𝜏0 𝑃𝑒 𝐴 𝑁𝑤 𝜅ren · 103

1

256 6 0.1 0.418 6 2.35 0.24 2.87 0.62 1.45 14.56 8 12.2

256 1.70 0.5 2.09 6 3.46 0.24 4.22 0.42 6.54 6.28 10 14.8

384 0.17 1.0 4.18 9 2.9 0.16 3.54 0.51 85.7 2.96 17 12.5

384 0.025 1.5 6.27 9 2.7 0.16 3.32 0.54 793 1.72 17 10.8

256 0.014 2.0 16.7 6 2.53 3.09 0.58 1836 1.12 9 1.08

2

192 100 0.1 0.418 6 2.65 0.32 2.42 0.74 0.09 13.81 26 105.8

192 100 0.5 2.09 6 3.39 0.32 3.62 0.49 0.11 6.16 5 112.9

192 100 1.0 4.18 6 3.88 0.32 3.55 0.50 0.15 2.96 5 112.3

192 100 1.5 6.27 6 3.63 0.32 3.32 0.54 0.20 1.72 5 110.8

192 100 2.0 16.7 6 3.38 0.32 3.09 0.58 0.26 1.12 9 110.8

3

64 2 1.0 0.0 - - 0.98 0.0 - 0.0 - 440 2

64 2 1.0 2.09 2 3.1 0.98 2.86 0.62 2.5 2.86 440 8

96 2 1.0 3.14 3 3.3 0.65 3.05 0.58 3.76 2.91 318 11

128 2 1.0 4.18 4 3.8 0.49 3.23 0.50 5.02 2.93 266 14

192 2 1.0 6.28 6 4.7 0.32 4.34 0.41 7.52 2.95 95 20

256 2 1.0 8.37 8 5.5 0.24 5.03 0.35 10.04 2.97 49 26

384 2 1.0 12.55 12 6.7 0.16 6.16 0.29 22.52 2.97 35 39

512 2 1.0 16.75 16 7.7 0.12 7.12 0.25 30.03 2.98 35 51

768 2 1.0 25.10 32 9.5 0.06 8.74 0.20 45.05 2.98 39 76

4 128

0.05

1.0 8.36 4 6.7 0.49 3.23 0.29

0.30

2.93 34

62

20 0.75 32

13 1.12 25

10 1.50 22

5 3.00 17

3.3 4.50 15

2 7.51 14

5 384 2 1.0 12.55 24 13.4 0.16 4.36 0.29 22.52 2.97 258 39

Table 4.2 – Parameters of simulations of scalars in synthetic velocity fields. 𝑁 - spatial
resolution of the computational grid, 𝜅 - scalar diffusivity, 𝜀/2 - Hölder exponent of the
velocity field, 𝐷0 - amplitude of the velocity covariance, 𝑛 - number of iterations between
velocity field updates, 𝑇𝑒/𝜏0 - velocity update period normalized by the typical large-scale
time 𝜏0, Δ𝑡 - simulation time step, 𝑈𝑟𝑚𝑠 - root-mean-square velocity, 𝜏0 - large-scale time
defined as 𝜏0 = 𝐿/𝑈𝑟𝑚𝑠, 𝑃𝑒 - Péclet number, 𝐴 - sum of the velocity spectrum, 𝑁𝑤 -
numbers of time windows for correlations averaging, 𝜅ren - numerical estimation of the
renormalized diffusivity estimated according to Eq. (4.5).
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4.3. Scalar advection in synthetic velocity field

Parameters of simulations. The dynamics of the scalar can be characterized by a non-
dimensional parameter analogous to the Péclet number 𝑃𝑒 = 𝐷′

0𝐿
𝜀/𝜅, where 𝐷′

0 = 𝐷0/𝜀,
and 𝐿 corresponds to the scalar integral length scale 𝐿 = 2𝜋/𝑘𝑓 . The Péclet number is
defined as the ratio between the advective and diffusive terms at the forcing length scale
(Falkovich et al., 2001).

The main parameters to be determined for the initialization of a simulation are: scalar
diffusivity 𝜅, velocity field Hölder exponent 𝜀/2, the prefactor of velocity covariance 𝐷0 and
the number of iteration between velocity fields renewals 𝑛. The time step Δ𝑡 is dictated by
the numerical stability of the solver, in particular by the choice of the time advancement
scheme and CFL number.

In the present study, the parameters are chosen based on consideration of the separa-
tion between time scales. Firstly, to approach the white-in-time velocity field, the period
of velocity generation 𝑇𝑒 = 𝑛Δ𝑡 must be much smaller compared to the typical advection
time scale 𝜏𝐴. Secondly, if one is interested in the turbulent regime dominated by advec-
tion, the typical advection time 𝜏𝐴 must be considerably smaller in comparison with the
characteristic diffusion time scale 𝜏𝜅. This is to say, the separation between the three time
scales 𝑇𝑒 ≪ 𝜏𝐴 ≪ 𝜏𝜅 needs to be respected.

The initial estimation of the parameters of the simulation was done on the basis of
the parameters used in the numerical study of Chen and Kraichnan (1998). Although
that study covers only 2D flows, and the method of velocity field generation is different,
the proposed parameters appear to be useful as a starting point. The parameters of all
simulations are provided in Table 4.2 (p. 92).

Simulation sets. As one can see in Table 4.2, the simulations are divided into four sets.
Sets 1 and 2 contain simulations at various 𝜀 with the parameter 𝐷′

0 = 𝐷0𝜀 kept constant.
In set 1, the diffusivities 𝜅 were chosen small to reach the inertial regime, dominated by
the advection (𝑃𝑒 > 1). In set 2, the diffusivity is fixed at a higher value, so that 𝑃𝑒 ∼ 0.1.
In this case, the scalar transport is dominated by diffusion but is still strongly affected by
the advection. For this reason we refer to this regime as inertial-diffusive. The snapshots
of the scalar fields for data sets 1 and 2 are provided in Fig. 4.5 in second and third rows,
respectively.

Set 3 aims to test the dependence of the scalar correlation on the velocity covariance
amplitude 𝐷0. It consists of simulations with a fixed value of diffusivity 𝜅 and 𝜀 = 1 and
gradually increasing parameter 𝐷0. The first simulation at 𝐷0 = 0 corresponds to the
purely diffusive case.

The dependence on the scalar molecular diffusivity 𝜅 is tested in set 4. It consists of a
single simulation in which 7 scalars with various diffusivities are transported simultaneously
by the same velocity field, so the velocity field is identical for all scalars with 𝜀 = 1 and
fixed 𝐷0.

The last set 5 consists of only one simulation with a larger velocity update, this case
is discussed in subsection 4.3.3.

Renormalized diffusivity. According to the FRG, the prefactor in the correlation func-
tion coincides with the renormalized diffusivity 𝜅ren, which is given in Eq. (1.31). For nume-
rical estimation, the integration in the theoretical result can be replaced by a summation
over the discrete computational grid, so the renormalized scalar diffusivity is evaluated
according to:

𝜅ren = 𝜅+
1

3

∑︁
k⃗

𝐷0

(𝑘2 +𝑚2)
3+𝜀
2

= 𝜅+𝐴𝐷0. (4.5)
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It should be noted that the expression in (4.5) depends only on the scalar diffusivity and
properties of the velocity field. It can be computed just on the basis of the initialization
parameters, it does not require solving the equation of the scalar transport. The numerical
estimations of 𝜅ren for each simulation are provided in the last column of the Table 4.2.

Summary. A generator of synthetic velocity field has been implemented. The obtained
velocity fields fulfill the conditions of homogeneity and isotropy. The intensity of the ve-
locity field is defined by the amplitude of the covariance 𝐷0, its roughness in space is
determined by the Hölder exponent 𝜀/2, and its temporal covariance is regulated by the
update period 𝑇𝑒. These three parameters are the input parameters for the velocity field
generator. They are chosen based on the consideration of the separation between the time
scales.

The simulations are divided in 4 data sets, in which the parameters 𝐷0, 𝜀 and 𝜅 are
varied, which allows to check the influence of these parameters on the decorrelation of the
scalar and compare it with the FRG prediction.

In addition, the proposed implementation of the random field generator allows to ea-
sily change the renewal period of the velocity field. Therefore, one can study the scalar
correlation function in quickly changing velocity fields, which corresponds to a numerical
approximation of Kraichnan’s model, as well as in slowly changing velocity fields. It allows
determining the influence of the temporal covariance of velocity on scalar correlations.

4.3.2 Scalar two-point spatio-temporal correlation function in white-in-
time velocity field

Firstly, the results of DNS of scalar advection in synthetic flows with fast velocity
renewal are presented. The period of velocity field generation is much smaller than the
advection and diffusive time scales of the flow. We expect in this case to obtain a numerical
approximation of the Kraichnan random advection model with corresponding power laws in
scalar spatial spectra and with scalar correlations matching the FRG prediction presented
in section 1.3.2 (p. 25).

Snapshots of the scalar and velocity fields. Two-dimensional cuts on the instanta-
neous three-dimensional synthetic velocity fields at various exponents 𝜀 are shown in the
first row of Fig. 4.5. One can see that the velocity field looks rough at smaller 𝜀 and rather
smooth at 𝜀 = 2. On the contrary, the field of the passive scalar in the inertial regime is
smooth at small 𝜀 and becomes rough with growing 𝜀 (see the second row Fig. 4.5). It is
in agreement with the known fact for the Kraichnan model: the degrees of roughness for
scalar and velocity are complementary (Falkovich et al., 2001).

The fields of the scalar in the inertial-diffusive regime are shown in the last row of
Fig. 4.5, corresponding to higher values of the molecular diffusivity 𝜅. One can see that the
fields are smoothed by the effect of diffusivity, and one cannot distinguish between various
𝜀 just by visual inspection of scalar fields.

Spatial spectra of the passive scalar. Figure 4.6 displays the spectra, i.e., the equal-
time correlation functions for the velocity and the scalar field in set 1, which is the inertial
(turbulent) regime, and in set 2, which is the inertial-diffusive (or weakly nonlinear) regime.
The curves corresponding to set 1 (the second column in Fig. 4.6) match quite accurately
the power-law 𝑘−5+𝜀. This power law corresponds to the inertial range and can be deduced
from dimensional arguments (Falkovich et al., 2001). This power law has been also obtained
in numerical simulations of 2D random scalar advection in works of Chen and Kraichnan
(1998) and Fairhall et al. (1997).
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4.3. Scalar advection in synthetic velocity field

Figure 4.5 – Two-dimensional instantaneous cuts at various 𝜖 of the 𝑥-component of the
synthetic velocity (first row), and the passive scalar field in the inertial (second row) and
inertial-diffusive (third row) regimes. The inertial regime corresponds to the set 1, and the
inertial-diffusive to set 2 of Table 4.2.
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Figure 4.6 – Upper row: equal-time two-point correlation functions of the velocity and
scalars from data set 1 (inertial regime) and set 2 (inertial-diffusive regime). The points
correspond to the numerical data, the dashed lines to the theoretical power law. The bottom
row shows the same data but compensated by the theoretically predicted power law.
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Note, that the curve 𝜀 = 2 does not follow the expected power law. This deviation can
be attributed to the finite-size effect of the computational domain. The corrections due to
finite size become more significant at 𝜀→ 0 and 𝜀→ 2, since these cases limit the integral
convergence. In other words, putting 𝜀 = 2 in numerical simulations actually corresponds
to a 𝜀 . 2 analytical model, which explains why the exponent of the power law observed
numerically is less than −5 + 𝜀.

The plots in the second column present spectra obtained from simulations of set 2
corresponding to the inertial-diffusive regime, in which the diffusivity becomes dominant.
The numerically obtained spectra accurately match the power law 𝑘−5−𝜀 for all values of 𝜀.
It is in agreement with previous works (Frisch and Wirth, 1996 ; Frisch and Wirth, 1997),
where this power law for Kraichnan’s model is shown to be analog of the Batchelor-Howells-
Townsend scalar spectrum with 𝑘−17/3 law in Navier-Stokes turbulence. In the recent work
of Pagani and Canet, 2021, it is also demonstrated that by considering the advection term
as a perturbation, this power law can be obtained within different approaches.

Therefore, the obtained spatial spectra of the scalars presented in Fig. 4.6 are in agree-
ment with known theoretical results for Kraichnan’s model. It allows to conclude that the
implemented numerical model captures correctly the equal-time statistics of the scalar in
random velocity fields.

0.00 0.05 0.10 0.15 0.20
t/ 0

0.0

0.2

0.4

0.6

0.8

1.0

C(
t,

k)
/C

(0
,k

)

(a) Linear scaling

0 500 1000 1500 2000 2500 3000 3500 4000
t(kL)2/ 0

10 4

10 3

10 2

10 1

100

kL
16.3
44.9
73.6
102.3
131.1

(b) Horizontal variable 𝑡𝑘2 and 𝑦-logarithmic
scaling.

Figure 4.7 – Two-point correlation function 𝐶𝜃(𝑡, k⃗) at various wavenumbers 𝑘 of a passive
scalar in 3D of Kraichnan’s random advection model for 𝜀 = 1 (simulation at 𝑁 = 92 of
set 3). All curves collapse onto a single exponential when plotted against the variable 𝑡𝑘2.
The continuous lines correspond to the exponential fit in the form 𝑔𝐾(𝑡) = 𝐶0 exp {−𝑏𝑡}.

The two-point two-time correlation function of the scalar The spatio-temporal
correlation function of the scalar has been measured numerically for all sets. The time
dependence of the normalized correlation function 𝐶K(𝑡, k⃗)/𝐶K(0, k⃗) at fixed wavenumbers
is always exponential, as illustrated in Fig. 4.7. Moreover, when plotted as a function of 𝑡𝑘2,
all the curves collapse onto a single exponential, which confirms the theoretically predicted
form (1.30). For a more detailed analysis, all curves were fitted with the two-parameter
exponential function 𝑔𝐾(𝑡) = 𝐶0 exp[−𝑏𝑡]. The obtained fitting exponential functions are
shown in Fig. 4.7 as continuous lines.

As one can see from Fig. 4.8a, the fitting parameter 𝑏 is proportional to 𝑘2, and this
behavior is independent of the parameter 𝐷0. For the sake of clarity, only the results from
simulations of set 3 are shown, but similar results were obtained for all data sets. It can
be seen more clearly in Fig. 4.8b showing that the fitting parameter 𝑏 compensated by

96



4.3. Scalar advection in synthetic velocity field

100 101 102

k

10 3

10 2

10 1

100

101

102

103
b k2

(a) Fitting parameter 𝑏 versus 𝑘.

100 101 102

k

0.00

0.02

0.04

0.06

0.08

0.10

b/
k2

N =  64, D0 = 0
N =  64, D0 = 0.0042
N =  96, D0 = 0.0063
N = 128, D0 = 0.0084
N = 192, D0 = 0.013
N = 256, D0 = 0.017
N = 384, D0 = 0.025
N = 512, D0 = 0.033
N = 768, D0 = 0.05
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Figure 4.8 – Dependence of the fitting parameter 𝑏 on the wavenumber 𝑘 of the fitting
function 𝑔𝐾(𝑡) = 𝐶0 exp {−𝑏𝑡} for simulations of the Set 3. The parameter 𝑏 appears to
depend on the wavenumber as 𝑘2, so the compensated value 𝑏/𝑘2 gives a constant over a
large span of wavenumbers. The colored dashed lines in figure 𝑏) correspond to the plateau
values used for the subsequent data analysis.

𝑘2 takes an approximately constant value in a large range of wavenumbers. These results
demonstrate that the correlation functions 𝐶K(𝑡, k⃗) indeed take the expected form (1.30)
of an exponential in time with the rate of decay proportional to 𝑘2. One can also observe
that the plateau value of 𝑏/𝑘2 appears to grow monotonously with 𝐷0.
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Figure 4.9 – Decorrelation parameter 𝑏/𝑘2 of the exponential fit of the scalar correlation
function versus its theoretical estimate 𝜅ren based on the Eq. (1.31) for 4 data sets. The
error bars correspond to doubled standard deviation of 𝑏/𝑘2 from the estimated plateau
value, shown in Fig. 4.8b with dashed lines.

Prefactor in the exponential. The theoretical prediction (1.30) gives the exact form
for the prefactor in the exponent of the correlation function, it coincides with the renor-
malized diffusivity 𝜅ren. The renormalized diffusivity is defined in Eq. (1.31): it depends
on the scalar molecular diffusivity 𝜅 and the details of velocity statistics (in particular,
on the amplitude 𝐷0, Hölder exponent 𝜀/2 and the spectral cut-offs). In DNS, 𝜅ren has
been evaluated at the initialization of each simulation using the approximated form (4.5)
where the integral is replaced by a numerical summation over the discrete modes of the
computational grid. Its values are provided in Table 4.2.
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One can also estimate the prefactor of the exponential of the scalar correlation function
on the basis of the fit by taking simply the plateau value of 𝑏/𝑘2 (indicated with dashed
lines in Fig. 4.8b). Moreover, it is possible to compare it with the theoretically predicted
prefactor, which is equal to the renormalized diffusivity 𝜅ren. This comparison is shown in
Fig. 4.9a. It shows that the two quantities are equal for all data sets. It can be seen more
clearly from Fig. 4.9b showing the ratio between the parameter 𝑏/(𝑘2 𝜅ren) versus 𝜅ren.
Results are close to 1 with good accuracy for simulations of all data sets.

It brings us to the conclusion that the prefactor in the exponential of the scalar cor-
relation function extracted from the fit of the numerical data as 𝑏/𝑘2 is equal to the
renormalized diffusivity 𝜅ren evaluated with the use of expression (4.5). The computation
of these two quantities is totally independent. Therefore, we obtain a numerical confir-
mation of the FRG results for the temporal dependence of the scalar correlation function
(1.30) up to the precise form of the prefactor in the exponential.

It is worth mentioning that Fig. 4.9 demonstrates that the temporal dependence pre-
dicted by FRG is valid for all data sets. It means that the time dependence of the scalar
correlation function is identical for the inertial (set 1) and inertial-diffusive regimes (set
2), as for sets 3 and 4 containing mixed regimes, while its equal-time correlation function
has different power laws as it is shown in Fig. 4.6.

Another important remark: the obtained results are tested for values of 𝜀 spanning
from 0.1 up to 2.0. It indicates that the obtained results are valid for different degrees of
roughness of the velocity field, and thus the FRG approach is also applicable for high 𝜀,
which is not the case of the perturbative approaches limited by the assumption of smallness
of 𝜀 (Adzhemyan et al., 1998).

Summary. Simulations of scalar advection in a random velocity field were performed.
The numerical model represents an approximation of a white-in-time velocity field, which
is referred to in the literature as Kraichnan’s random advection model. The spatial spectra
of scalar variance in the inertial and inertial-diffusive regimes match the theoretically pre-
dicted power laws, which allows to conclude that the applied numerical method provides
correct results for two-point equal-time statistics of the scalar.

The analysis of the scalar two-point space-time correlation function shows that it be-
haves as an exponential function of the variable 𝑡𝑘2, in total agreement with the FRG
prediction. Moreover, even the prefactor in the exponential, which depends on details on
the velocity statistics, is in quantitative agreement with the theoretical expression. The
obtained exponential time dependence of the scalar correlation function appears to be
universal and is recovered in different regimes of scalar advection.

4.3.3 Scalar two-point spatio-temporal correlation function in correlated-
in-time velocity field.

Simulation configuration. To study the scalar dynamics in the case of a random ve-
locity field with non-delta-in-time covariance, a simulation with a larger renewal period
𝑇𝑒 of the velocity field has been performed. Extending the update period 𝑇𝑒 means that
we increase the number of time iterations during which the scalar is evolving in a “frozen”
velocity field, before a new velocity field is generated. For this purpose, the configuration of
the simulation from set 5 of Table 4.2 is taken. This configuration is similar to the one with
𝑁 = 384 from set 3, but the number of iterations between two velocity updates is increased
twofold up to 𝑛 = 24. This number is taken as it makes the update period 𝑇𝑒 comparable
to the typical decorrelation time of the scalar, computed in the previous subsection for the
case of the white-in-time velocity.

However, larger values of 𝑇𝑒 impose a temporal periodicity on the flow related to this
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time scale, and therefore on the scalar correlation. To avoid the impact of this periodicity
on the measured scalar time statistics, the method of computation of temporal correlations
was slightly modified by adding a random delay between the records of consecutive time
windows of the correlation curves. After the record of one temporal correlation curve is
finished, the algorithm waits a random number of iterations before starting the next record.
The randomization of the initial time instants of correlation recording allows to avoid the
overlapping of the periodical velocity field generation with periodical scalar correlation
computation. At the same time, the duration 𝑇𝑒 should be kept not very large, so that
more time statistics can be collected during the simulation.
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Figure 4.10 – Crossover in the correlation function of the scalar: Scalar correlation
𝐶K(𝑡, 𝑘) and time derivative of its logarithm at time scales comparable to the velocity field
renewal period 𝑇𝑒 for various wavenumbers 𝑘. The dashed lines correspond to the Gaussian
fit fit of 𝐶K at 𝑡 < 𝑇𝑒, while the dotted lines correspond to the exponential fit at 𝑡 > 𝑇𝑒. The
curves at various wavenumbers are rescaled vertically by 𝑘2 which leads to their collapse.
The black vertical line corresponds to 𝑡 = 𝑇𝑒 which also matches to the crossover time.

Crossover from Gaussian to exponential decay in scalar correlations. According
to FRG results, in this case, since the velocity field is not white-in-time anymore, the scalar
correlation function is expected to decay as a Gaussian in 𝑡𝑘 variable at small time lags,
similarly to the scalar in the NS flow discussed in the sec. 4.2, and to switch to the
exponential decay at large time lags, as in the case of white-in-time velocity field.

Indeed, this is the picture observed in the numerically computed correlations of the
scalar as it is shown in Fig. 4.10a. At small times 𝑡 < 𝑇𝑒, the correlation function 𝐶K(𝑡, k⃗)
behaves as a Gaussian. To demonstrate this, the Gaussian fits of this portion of the data are
shown in Fig. 4.10a with continuous lines. Then, at larger time lags 𝑡 > 𝑇𝑒, the correlation
curves significantly deviate from the Gaussian and take an exponential form, similar to the
ones obtained in the case of white-in-time velocity and presented before in Fig. 4.7.

The transition between the small- and large-time decays can also be visualized through
the time derivative of log𝐶K(𝑡, k⃗). According to the FRG result (1.28) for the two-point
scalar correlation function, this derivative takes the form:

1

𝑘2
𝜕 log𝐶K(𝑡, k⃗)

𝜕𝑡
=

{︃
−2𝛼𝑆

𝐿2

𝜏20
𝑡, 𝑡≪ 𝜏0,

−𝛼𝐿𝐿
2

𝜏0
, 𝑡≫ 𝜏0.

(4.6)

In other words, when the correlation function of the scalar 𝐶K(𝑡, k⃗) is a Gaussian, this
derivative decreases linearly, whereas when 𝐶K(𝑡, k⃗) is an exponential, the derivative of its
logarithm is a negative constant.
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The derivative of log𝐶K(𝑡, k⃗) is displayed in Fig. 4.10b. One can see that it indeed
exhibits the expected crossover from a linear decay to a constant. Moreover, the vertical
rescaling of the derivatives by a factor proportional to 1/𝑘2 leads to a collapse of all
curves. It demonstrates that the Gaussian and the exponential parts of the decorrelation
both possess a 𝑘2-dependence on the wavenumber, as expected from Eq. (1.28). It also
demonstrates clearly that the typical time of crossover is approximately equal to 𝑇𝑒, thus,
to the correlation time of the velocity field, which is in agreement with the FRG result.

Comparison with NS flows. At high wavenumbers, the scalar in the time-correlated
velocity field decorrelates significantly faster due to the ∼ 𝑘2 dependence in the Gaussian,
and the correlation function 𝐶K(𝑡, k⃗) falls down to near-zero values at relatively small time
lags 𝑡. In these cases, the correlation curves turn to be oscillatory after the Gaussian decay,
and the large-time regime becomes indiscernible. The constant portion of the derivative of
log𝐶K(𝑡, k⃗), corresponding to the exponential decay, exhibits random oscillations, spoiling
the detection of the crossover and the analysis of the decay. A similar effect hinders the
large-time regime in scalar correlations in NS flows. In the case of a synthetic velocity
field, its correlation time scale can be chosen arbitrarily, so the crossover time between
the small- and large-time behaviors in scalar correlations can be adjusted to make both
types of decays observable. However, in NS flows, the decorrelation time of the velocity
field cannot be adjusted so simply. In addition, the decorrelation time of velocity in real
turbulent flows is scale-dependent.

Summary. A small modification in the simulation configuration consisting in an increase
of the period of the velocity update leads to the emergence of a portion of Gaussian tempo-
ral decay in scalar correlations at small time lags. The observed scalar correlation function
with a Gaussian decay at small time lags and an exponential at large time lags is in agree-
ment with the FRG prediction. The crossover time between these two regimes of correlation
decay matches the velocity correlation time scale. The behavior of the correlation function
at high wavenumbers becomes oscillatory, similarly to the scalar correlations in NS velocity
field.

4.4 Conclusions

The work presented in this chapter is dedicated to the numerical study of the two-point
Eulerian spatio-temporal correlation function of a passive scalar in a 3D homogeneous
isotropic turbulent flow. The numerical methods of computation of the scalar correlation
function and generation of synthetic velocity field with prescribed spatial and temporal
covariance are implemented. The main conclusions are:

1. In the case of the velocity field governed by the Navier-Stokes equation for inertial-
convective regime:

(a) The correlation function of the scalar at small time lags takes the form of a
Gaussian function of variable 𝑡𝑘, where 𝑡 is the time lag and 𝑘 is the wavenumber,
as predicted by FRG approach. This scaling also corresponds to the large-scale
random sweeping effect, known phenomenologically from previous works.

(b) The coefficient characterizing the Gaussian temporal decay rate of the passive
scalar field is approximately the same as the one of the velocity field. In other
words, the correlation function of scalar repeats the one of the velocity field.
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(c) The increase of Schmidt number from 𝑆𝑐 = 1 to 36 does not lead to signifi-
cant changes in the decorrelation time of the scalar, although there is a slight
tendency towards its decrease.

(d) At large time lags, the numerically computed correlation functions of passive
scalars are oscillatory. The large-time-lag exponential decay predicted by FRG
is indiscernible in DNS of the proposed configuration because of the oscillations.

2. In the case of the random synthetic velocity field with white-in-time covariance
(Kraichnan’s random advection model):

(a) The equal-time two-point correlation function of the scalar exhibits a power law
matching the analytical results for Kraichnan’s model in inertial and inertial-
diffusive regimes.

(b) The two-time two-point correlation function of the scalar behaves as an expo-
nential function of the variable 𝑡𝑘2 for simulations at various parameters, in
total agreement with the FRG prediction.

(c) The constant prefactor of the exponential in the scalar correlation function
coincides with good accuracy with the renormalized diffusivity, also confirming
the validity of the FRG results.

3. In the case of the random synthetic velocity field with a finite-time correlation:

(a) Switching to a random synthetic velocity field, which is kept constant over a
time period of duration 𝑇𝑒, reveals a crossover between the Gaussian and the
exponential temporal decay in the scalar correlation function.

(b) At small time lags 𝑡 < 𝑇𝑒 the scalar correlation takes the form of a Gaussian
function of 𝑡𝑘 variable, similar to its behavior in Navier-Stokes velocity field. At
large-time lags 𝑡 > 𝑇𝑒 the correlation function turns purely exponential identical
to the one in the white-in-time velocity field. This result is in agreement with
the FRG prediction.

(c) The crossover between the two regimes occurs at time 𝑇𝑒 which is actually the
imposed characteristic time of the velocity field correlation. In other words, at
small time lags when the velocity field can be considered as correlated with
itself at 𝑡 = 0, the scalar exhibits a Gaussian decay, while at large time lags,
when the velocity field becomes uncorrelated, the scalar correlation switches to
an exponential decay.

(d) According to the FRG, a similar crossover should also be present in the case of
scalar fields advected by Navier-Stokes flows, although it could not be detected
in our simulations. Contrarily to the synthetic velocity field, it is impossible to
easily manipulate the velocity correlation time, so it is more challenging to find
a DNS configuration in which the large-time part of the scalar correlation would
be appreciable.

These results are totally consistent with the interpretation of the two regimes in the
scalar Eulerian space-time correlation function with the single-particle dispersion (sec. 1.4).
Indeed, in the case of white-in-time synthetic velocity field, a fluid particle is rapidly
displaced by the velocity in random directions, which results in Brownian-type dispersion,
in which the mean squared displacement grows linearly in time, and the Eulerian correlation
function decays exponentially. Modifying the synthetic velocity field by increasing the time
of its update implies that during the period between two velocity updates, a fluid particle
is moved by the velocity field coherently. Averaging over many particles results in a ballistic
regime of the particle dispersion with the mean squared displacement growing quadratically
in time, and the scalar Eulerian correlation function decays as a Gaussian function in time.
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Clearly, the last case is also valid for the scalars advected in the Navier-Stokes velocity field,
since the large-scale velocity in a real turbulent flow also possesses a finite correlation time.
The large-time regime of the Eulerian correlation function of the scalar is not accessible in
DNS in the described configurations.

The main conclusion of this chapter is that the behavior of the Eulerian spatio-temporal
correlation function of a passive scalar is determined by the temporal covariance of the
velocity field, as it is demonstrated by the FRG approach. Therefore, for studies of passive
scalar dynamics, the choice of assumptions on the temporal correlations of velocity plays
a crucial role. It is essential, for instance, for designing physically valid models of the
synthetic velocity field, which are largely used in studies of turbulent particle dispersion
and mixing, or for developing time-accurate numerical models of parametrization of small-
scale dynamics.

Conclusions en français

Le travail présenté dans ce chapitre est consacré à l’étude numérique de la fonction de
corrélation spatio-temporelle eulérienne à deux points d’un scalaire passif dans un écoule-
ment turbulent isotrope homogène 3D. Les méthodes numériques de calcul de la fonction
de corrélation scalaire et de génération de champ de vitesse synthétique avec une covariance
spatiale et temporelle prescrite sont mises en œuvre. Les principales conclusions sont :

1. Dans le cas du champ de vitesse régi par l’équation de Navier-Stokes pour le régime
inertiel-convectif :

(a) La fonction de corrélation du scalaire aux petits décalages prend la forme d’une
fonction gaussienne de variable 𝑡𝑘, où 𝑡 est le décalage temporel et 𝑘 est le
nombre d’onde, comme prédit par l’approche FRG. Cette loi d’échelle corres-
pond également à l’effet de balayage aléatoire à grande échelle, connu phéno-
ménologiquement à partir de travaux antérieurs.

(b) Le coefficient caractérisant le taux de décroissance temporelle gaussien du champ
scalaire passif est approximativement le même que celui du champ de vitesse. En
d’autres termes, la fonction de corrélation du scalaire reproduit celle du champ
de vitesse.

(c) L’augmentation du nombre de Schmidt de 𝑆𝑐 = 1 à 36 n’entraîne pas de chan-
gements significatifs dans le temps de décorrélation du scalaire, bien qu’il y ait
une légère tendance à sa diminution.

(d) Aux grands décalages temporels, les fonctions de corrélation calculées numéri-
quement des scalaires passifs sont oscillatoires. La décroissance exponentielle à
retard important prédite par FRG est indiscernable dans le DNS de la configu-
ration proposée en raison des oscillations.

2. Dans le cas du champ de vitesse synthétique aléatoire avec covariance blanche dans
le temps (modèle d’advection aléatoire de Kraichnan) :

(a) La fonction de corrélation à deux points à temps égal du scalaire présente une loi
de puissance correspondant aux résultats analytiques du modèle de Kraichnan
en régimes inertiel et inertiel-diffusif.

(b) La fonction de corrélation à deux temps et à deux points du scalaire se comporte
comme une fonction exponentielle de la variable 𝑡𝑘2 pour les simulations à divers
paramètres, en accord total avec la prédiction FRG.

(c) Le préfacteur constant de l’exponentielle dans la fonction de corrélation scalaire
coïncide avec une bonne précision avec la diffusivité renormalisée, confirmant
également la validité des résultats FRG.
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3. Dans le cas du champ de vitesse synthétique aléatoire avec une corrélation en temps
fini :

(a) Le passage à un champ de vitesse synthétique aléatoire, qui est maintenu constant
sur une période de temps de durée 𝑇𝑒, fait apparaître une transition entre la dé-
croissance temporelle gaussienne et exponentielle dans la fonction de corrélation
scalaire.

(b) Aux petits décalages 𝑡 < 𝑇𝑒 la corrélation scalaire prend la forme d’une fonction
gaussienne de la variable 𝑡𝑘, similaire à son comportement dans le champ de
vitesse de Navier-Stokes. Aux grands décalages temporels 𝑡 > 𝑇𝑒, la fonction
de corrélation devient purement exponentielle, identique à celle du champ de
vitesse aléatoire sans corrélations temporelles. Ce résultat est en accord avec la
prédiction FRG.

(c) La transition entre les deux régimes se produit approximativement au temps 𝑇𝑒
qui est en fait le temps caractéristique imposé par la corrélation du champ de
vitesse. En d’autres termes, aux petits décalages, lorsque le champ de vitesse
est corrélé à lui-même à 𝑡 = 0, le scalaire présente une décroissance gaussienne,
tandis qu’aux grands décalages, lorsque le champ de vitesse n’est plus corrélé,
la corrélation scalaire bascule à une décroissance exponentielle.

(d) Selon le FRG, une transition similaire devrait également être présente dans le cas
de champs scalaires advectés par les écoulements Navier-Stokes, bien qu’il n’ait
pas pu être détecté dans nos simulations. Contrairement au champ de vitesse
synthétique, il est impossible de manipuler facilement le temps de corrélation
de la vitesse, il est donc plus difficile de trouver une configuration DNS dans
laquelle la partie exponentielle de la corrélation scalaire serait visible.

Ces résultats sont tout à fait cohérents avec l’interprétation des deux régimes de fonc-
tion de corrélation espace-temps scalaire eulérienne par la dispersion des particules uniques
(sec. 1.4). En effet, dans le cas d’un champ de vitesse synthétique avec bruit blanc en temps,
une particule fluide est rapidement déplacée par le champ de vitesse dans des directions
aléatoires, ce qui entraîne une dispersion de type diffusif, dans laquelle le déplacement
quadratique moyen croît comme la racine carrée avec le temps, et la fonction de corréla-
tion eulérienne décroît de façon exponentielle. Modifier le champ de vitesse synthétique
en augmentant le temps de sa mise à jour implique que pendant la période entre deux
mises à jour de vitesse, une particule de fluide est déplacée par le champ de vitesse de
manière cohérente. Le calcul de la moyenne sur de nombreuses particules donne un régime
balistique de la dispersion des particules avec le déplacement quadratique moyen crois-
sant linéairement avec le temps, et la fonction de corrélation eulérienne du scalaire décroît
comme une fonction gaussienne du temps. Clairement, le dernier cas est aussi valable pour
les scalaires advectés dans le champ de vitesse de Navier-Stokes, puisque la vitesse à grande
échelle dans un écoulement turbulent réel possède également un temps de corrélation fini.
Le régime à grand temps dans la fonction de corrélation eulérienne du scalaire n’est pas
accessible en DNS dans les configurations décrites.

La principale conclusion de ce chapitre est que le comportement de la fonction de cor-
rélation spatio-temporelle eulérienne d’un scalaire passif est déterminé par la covariance
temporelle du champ de vitesse, comme cela est démontré par l’approche FRG. Par consé-
quent, pour les études de dynamique scalaire passive, le choix des hypothèses sur les cor-
rélations temporelles des vitesses joue un rôle crucial. Il est essentiel, par exemple, pour
concevoir des modèles physiquement valides du champ de vitesse synthétique, qui sont
largement utilisés dans les études de dispersion et de mélange turbulent des particules, ou
pour développer des modèles numériques précis dans le temps des paramétrisations de la
dynamique à petite échelle.
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5
Shell model of scalar random advection

This chapter is dedicated to the analytical study of the shell
model of random advection of a passive scalar by means of the
FRG approach. The main idea is to illustrate the main steps
of a FRG calculation on the basis of simple model. A simplest
ansatz is constructed, which allows to obtain the second-order
structure function of the scalar.
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Abstract

This chapter provides a preliminary analytical study of the shell model of random ad-
vection of a passive scalar by means of the FRG approach. It contains a detailed description
of the principal steps of FRG derivation: from formulation of the shell model equations
in terms of path integral to the solution of the flow equations and the computation of
structure functions. A simplest ansatz for truncation of the flow equations is considered.
The obtained flow equations were solved numerically. Numerical solution shows that the
system reaches a fixed point, and at this fixed point the scalar structure functions exhibit
a power law corresponding to the normal scaling known from previous studies.

The considered problem serves as a good illustration of the application of FRG method
to turbulence thanks to its simplicity. However, the presented analysis also represents the
initial step in the study of anomalous scaling within the FRG approach, which possibly
can be done with the use of a more elaborated ansatz.

Résumé en français

Ce chapitre propose une étude analytique préliminaire du modèle en couches d’advec-
tion aléatoire d’un scalaire passif au moyen de l’approche FRG. Il contient une description
détaillée des principales étapes de la dérivation FRG : à partir de la formulation des équa-
tions du modèle en couches en termes d’intégrales de chemin jusqu’à la résolution des
équations du flot et au calcul des fonctions de structure. L’ansatz le plus simple pour la
troncature des équations du flot est considéré. La solution numérique des équations du flot
montre que le système atteint un point fixe, et à ce point fixe les fonctions de structure
scalaire présentent une loi de puissance correspondant à la loi d’échelle normale connue
des études précédentes.

Le problème considéré illustre bien l’application de la méthode FRG à la turbulence
grâce à sa simplicité. Cependant, l’analyse présentée représente également la première étape
de l’étude des lois d’échelle anormales dans l’approche FRG, ce qui peut éventuellement
être fait avec l’utilisation d’un ansatz plus élaboré.

5.1 Background

The shell models are largely used in turbulence research as they provide significant
simplification while keeping some important features of the turbulent dynamics. The main
idea of shell models is to represent a flow field as a set of complex amplitudes 𝑢𝑛(𝑡) labeled
by an index 𝑛 = 0, 1, 2, ..., 𝑁 . Each amplitude 𝑢𝑛(𝑡) corresponds to an integrated velocity
in a shell characterized by the wavenumber 𝑘𝑛 = 𝑘0𝜆

𝑛 where 𝜆 is usually set equal to 2.
That is to say that the wavenumber space is discretized into 𝑁 spherical shells with a
power-law spacing, and the velocity field of each shell is characterized by a single complex
number 𝑢𝑛(𝑡). The evolution of the system is thus given by a set of 𝑁 coupled nonlinear
ordinary differential equations describing the dynamics of each individual shell. Replacing
partial differential equations such as NS or advection-diffusion equations by a set of coupled
ordinary differential equations allows a significant simplification of the problem.

In this chapter, the shell model of a randomly advected scalar is considered. This model
represents a shell version of Kraichnan’s model for the scalar advection (see Sec. 1.3.2 and
sec. 4.3), as it is also based on the assumption of a random Gaussian velocity field. The
specific simplification implemented in this shell model consists in the limitation of the
advection term to local interactions. However, even in such a simplified case, this model
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leads to anomalous scaling in the scalar structure function.
The first version of this model was introduced in the work of Jensen et al., 1992, and

developed further in the work of Wirth and Biferale, 1996. The work of Benzi et al., 1997
provides a modified version of Kraichnan’s shell model with fewer interaction terms which
still gives rise to the anomalous behavior. In the article of Biferale and Wirth, 1997 it
is referred to as “minimal intermittency model of a passive scalar”. In these works, it is
shown analytically and numerically that the second-order structure function of the scalar
is non-anomalous as it behaves according to the dimensional analysis, while starting from
the fourth-order structure function the intermittent deviation of the scaling exponent is
already observed.

For this reason, Kraichnan’s shell model appears to be a good candidate for a toy model
to study intermittency effects by means of the FRG method, as it contains all essential
ingredients for intermittency, while its simplicity allows to explore various approaches.

Structure of the chapter. The present chapter provides a preliminary analytical study
of Kraichnan’s shell model with the use of the FRG approach, already introduced in the
Chapter 1, but giving more details on the application of the method. Firstly, the stochastic
differential equation of the passive scalar shell model is introduced and reformulated in
terms of a path integral. Next, the FRG method is applied to the problem. A simple ansatz
for the scale-dependent effective average action is proposed, and the RG flow equation for
the two-point functions is obtained. Solving the flow equations allows to obtain the scalar
structure functions in the first approximation. The results for the second-order structure
function are compared with the previous studies and with the behavior of the structure
function in continuous Kraichnan’s model, already discussed in Sections 1.3.2 and 4.3.

5.2 Problem statement

Following the work of Benzi et al., 1997, the equation of the dynamics of the Fourier
amplitude of a passive scalar 𝜃 in a shell with index 𝑛 = 1, ..., 𝑁 is given by the following
differential equation:[︂

𝑑

𝑑𝑡
+ 𝜅𝑘2𝑛

]︂
𝜃𝑛(𝑡) = 𝑖

[︀
𝑘𝑛+1𝜃

*
𝑛+1(𝑡)𝑢

*
𝑛(𝑡)− 𝑘𝑛𝜃

*
𝑛−1(𝑡)𝑢

*
𝑛−1(𝑡)

]︀⏟  ⏞  
𝐵𝑛(𝜃,𝜃*,𝑢,𝑢*)

+𝑓𝑛(𝑡), (5.1)

in which 𝜅 denotes the molecular diffusivity of the scalar and 𝑓𝑛(𝑡) is the external forcing
of the scalar in the shell 𝑛. The star symbol * denotes complex conjugation. One can
see that the shell model (5.1) share some similarities with the advection-diffusion partial
differential equation (1.25). In particular, it is linear in 𝜃, the diffusion term has a prefactor
proportional to 𝑘2, and the advection is modeled by a term bilinear in 𝜃 and 𝑢. It should
be noted that the choice of prefactors in the advection term is not unique. The prefactors
𝑘𝑛+1 and 𝑘𝑛 used in (5.1) give one of the possible configurations ensuring the scalar energy
conservation. As there are no diagonal terms proportional to 𝑢𝑛𝜃𝑛, the phase space volume
is conserved.

As it has been mentioned before, the shell model is constructed with the assumption
of the locality of nonlinear interactions in the wavenumber space. In Eq. (5.1) the locality
of the interactions is manifested by the dependence of the amplitude of shell 𝑛 on the
amplitudes of the nearest shells 𝑛− 1 and 𝑛+ 1 only.
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Velocity field. Similarly to the continuous version of Kraichnan’s behavior of random
advection, the velocity in (5.1) is a random field with delta-in-time correlation and a spatial
spectrum with power-law decay:⟨︀

𝑢𝑚(𝑡)𝑢
*
𝑛(𝑡

′)
⟩︀
= 2𝛿(𝑡− 𝑡′)𝛿𝑚𝑛𝐷

𝑣
𝑚, (5.2)

𝐷𝑣
𝑚 = 𝐷𝑣

0𝑘
−𝜀
𝑚 , (5.3)

where the parameter 𝐷𝑣
0 is linked to the kinetic energy of the flow, and 𝜀 is the parameter

defining the power law of the spatial covariance of velocity. The probability distribution of
the velocity is assumed to be Gaussian:

𝑃𝑢 [𝑢, 𝑢
*] = 𝑁𝑢 exp

{︃
−1

2

∫︁
d𝑡
∑︁
𝑛

(𝐷𝑣
𝑛)

−1|𝑢𝑛(𝑡)|2
}︃
. (5.4)

Forcing. The forcing term 𝑓𝑛(𝑡) in Eq. (5.1) is also assumed to be white-in-time with
Gaussian distribution:⟨︀

𝑓𝑚(𝑡)𝑓
*
𝑛(𝑡

′)
⟩︀
= 2𝛿(𝑡− 𝑡′)𝛿𝑚𝑛𝐷

𝑓
𝑛, (5.5)

𝑃𝑓 [𝑓, 𝑓
*] = 𝑁𝑓 exp

{︃
−1

2

∫︁
d𝑡
∑︁
𝑛

(𝐷𝑓
𝑛)

−1|𝑓𝑛(𝑡)|2
}︃
. (5.6)

In the original model (Benzi et al., 1997) the forcing term is set to be nonzero in the first
shell to model a large-scale forcing. However, for this work this limitation is not necessary,
a more general forcing can be considered, with some arbitrary dependence of the forcing
power 𝐷𝑓

𝑛 on the shell index.

Initial and boundary conditions. Since the scalar evolution equation is forced, one
can take as the initial condition a uniform scalar amplitude 𝜃𝑛(𝑡 = 0) = 0. As the boundary
condition, one can set that the scalar amplitudes in the boundary shells with indices 𝑛 = 0
and 𝑛 = 𝑁 + 1 to zero.

Structure functions. The main quantities of interest in Kraichnan’s shell model are
the scalar structure functions 𝑆𝑝 and their scaling exponents 𝜁𝑝, defined as:

𝑆𝑝(𝑘𝑚) =
⟨
(𝜃𝑚𝜃

*
𝑚)

𝑝/2
⟩
∝ 𝑘

−𝜁𝑝
𝑚 . (5.7)

The normal scaling, resulting from a dimensional analysis, corresponds to the linear de-
pendence of the exponent 𝜁𝑝 on the order 𝑝, that is 𝜁2𝑝 = 𝑝𝜁2, while deviations from it
correspond to anomalous scaling. In previous works, it has been shown that the second-
order structure function 𝑆2 exhibits normal scaling with the exponent 𝜁2 = 2 − 𝜀, while
the structure functions of the fourth-order and higher have anomalous scaling (Wirth and
Biferale, 1996 ; Benzi et al., 1997).

Arbitrary correlation functions, including structure functions, can be accessed through
the Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD) approach. As discussed in sec-
tion 1.2.1, this method provides the generating functional of the correlation functions. The
idea is to reformulate the original stochastic differential equation (5.1) in terms of a path
integral and to construct a generating functional, whose functional derivatives give the
correlation functions of the scalar field. The MSRJD procedure in application to the shell
version of Kraichnan’s model is described in the next section.
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5.3 Action and correlation functions

The aim is to compute the average of an observable 𝑂 depending on the scalar 𝜃 over
a history of realizations of the random velocity 𝑢 and forcing 𝑓 :

⟨𝑂(𝜃𝑚, 𝜃
*
𝑚)⟩𝑢,𝑓 =

∫︁
𝒟[𝑓 ]𝑃𝑓 [𝑓, 𝑓

*]𝒟[𝑢]𝒟[𝑢*]𝑃𝑢[𝑢, 𝑢
*]𝑂(𝜃𝑚, 𝜃

*
𝑚). (5.8)

The condition that the scalar dynamics is governed by the Eq. (5.1) is imposed through
integrating a functional delta:

1 =

∫︁
𝒟[𝜃]𝒟[𝜃*]

∏︁
𝑚

∏︁
𝑡

𝛿(2)
[︀
(𝜕𝑡 + 𝜅𝑘2𝑚)𝜃𝑚 − 𝑖𝐵𝑚(𝜃, 𝜃

*, 𝑢, 𝑢*)− 𝑓𝑚
]︀
, (5.9)

where the symbol 𝛿(2) serves to distinguish the complex delta functional. The next step
consists in replacing the 𝛿-functional by its functional integral representation 𝛿(2)[𝑧(𝑥)] =∫︀
d[𝑧] exp{−𝑖𝑧(𝑥)𝑧(𝑥)}, or, for 𝑧 ∈ C the following representation is adopted:

𝛿(2)[𝑧(𝑥)] = 𝛿[Re 𝑧]𝛿[Im 𝑧] =

∫︁
d[Re 𝑧]d[Im 𝑧] exp{−𝑖Re 𝑧 Re 𝑧 − 𝑖Im 𝑧 Im 𝑧}. (5.10)

Similar replacement of the 𝛿-functional can be made in Eq. (5.9), by introducing Martin-
Siggia-Rose auxiliary fields (Täuber, 2014, Chapter 4), or also referred to as the response
fields 𝜃 and 𝜃*, or equivalently Re 𝜃 and Im 𝜃.

𝛿(2)
[︀
(𝜕𝑡 + 𝜅𝑘2𝑚)𝜃𝑚 − 𝑖𝐵𝑚(𝜃, 𝜃

*, 𝑢, 𝑢*)− 𝑓𝑚
]︀
=

=

∫︁
𝒟
[︀
Re 𝜃

]︀
𝒟
[︀
Im 𝜃

]︀
exp

{︀
−𝑖Re 𝜃𝑚 Re

[︀
(𝜕𝑡 + 𝜅𝑘2𝑚)𝜃𝑚 − 𝑖𝐵𝑚(𝜃, 𝜃

*, 𝑢, 𝑢*)− 𝑓𝑚
]︀

− 𝑖Im 𝜃𝑚 Im
[︀
(𝜕𝑡 + 𝜅𝑘2𝑚)𝜃𝑚 − 𝑖𝐵𝑚(𝜃, 𝜃

*, 𝑢, 𝑢*)− 𝑓𝑚
]︀}︀
. (5.11)

Inserting the integral from (5.11) into (5.9) and then into (5.8) leads to:

⟨𝑂(𝜃𝑚, 𝜃
*
𝑚)⟩𝑢,𝑓 =

∫︁
𝒟𝑓𝑃𝑓 [𝑓, 𝑓*]𝒟𝑢𝒟𝑢*𝑃𝑢[𝑢, 𝑢*]𝑂(𝜃𝑚, 𝜃

*
𝑚)𝒟𝜃𝒟𝜃*𝒟

[︀
Re 𝜃

]︀
𝒟
[︀
Im 𝜃

]︀
× exp

{︃
−𝑖
∑︁
𝑚

∫︁
d𝑡Re 𝜃𝑚 Re

[︀
(𝜕𝑡 + 𝜅𝑘2𝑚)𝜃𝑚 − 𝑖𝐵𝑚(𝜃, 𝜃

*, 𝑢, 𝑢*)− 𝑓𝑚
]︀

− 𝑖
∑︁
𝑚

∫︁
d𝑡 Im 𝜃𝑚 Im

[︀
(𝜕𝑡 + 𝜅𝑘2𝑚)𝜃𝑚 − 𝑖𝐵𝑚(𝜃, 𝜃

*, 𝑢, 𝑢*)− 𝑓𝑚
]︀}︃

, (5.12)

where the integration over the random forcing can be done explicitly, as the probability
distribution of forcing 𝑃𝑓 [𝑓, 𝑓*] is given in (5.6):

∫︁
𝒟𝑓𝑃𝑓 [𝑓, 𝑓*] exp

{︃
𝑖
∑︁
𝑚

∫︁
d𝑡
[︀
Re 𝜃𝑚 Re 𝑓𝑚 + Im 𝜃𝑚 Im 𝑓𝑚

]︀}︃

=

∫︁
𝒟[Re 𝑓 ]𝒟[Im 𝑓 ]𝑁𝑓 exp

{︃
−1

2

∫︁
d𝑡
∑︁
𝑚

(𝐷𝑓
𝑚)

−1
[︀
(Re 𝑓𝑚)2 + (Im 𝑓𝑚)

2
]︀}︃

× exp

{︃
𝑖
∑︁
𝑚

∫︁
d𝑡
[︀
Re 𝜃𝑚 Re 𝑓𝑚 + Im 𝜃𝑚 Im 𝑓𝑚

]︀}︃
= exp

{︃
−
∫︁

d𝑡
∑︁
𝑚

𝐷𝑓
𝑚|𝜃𝑚|2

2

}︃
. (5.13)
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The simplification is obtained by separating and integrating the Gaussian part of the
expression:∫︁

𝑁𝑓𝒟[Re 𝑓 ] exp

{︃∫︁
d𝑡
∑︁
𝑚

− 1

2𝐷𝑓
𝑚

(︁
Re 𝑓𝑚 − 𝑖𝐷𝑓

𝑚Re 𝜃𝑚
)︁2}︃

×𝒟[Im 𝑓 ] exp

{︃∫︁
d𝑡
∑︁
𝑚

− 1

2𝐷𝑓
𝑚

(︁
Im 𝑓𝑚 − 𝑖𝐷𝑓

𝑚Im 𝜃𝑚

)︁2}︃
= 1. (5.14)

The expression for the observable in Eq. (5.12) takes then the form:

⟨𝑂(𝜃𝑚, 𝜃
*
𝑚)⟩𝑢,𝑓 =

∫︁
𝒟𝑢𝒟𝑢*𝑂(𝜃𝑚, 𝜃

*
𝑚)𝒟𝜃𝒟𝜃*𝒟𝜃𝒟𝜃*

× exp

{︃∫︁
d𝑡
∑︁
𝑚

−𝑖Re 𝜃𝑚 Re
[︀
(𝜕𝑡 + 𝜅𝑘2𝑚)𝜃𝑚 − 𝑖𝐵𝑚(𝜃, 𝜃

*, 𝑢, 𝑢*)
]︀

−𝑖Im 𝜃𝑚 Im
[︀
(𝜕𝑡 + 𝜅𝑘2𝑚)𝜃𝑚 − 𝑖𝐵𝑚(𝜃, 𝜃

*, 𝑢, 𝑢*)
]︀
− 𝐷𝑓

𝑚|𝜃𝑚|2

2
− |𝑢𝑚|2

2𝐷𝑣
𝑚

}︃
.

To eliminate the imaginary unit and create a prefactor 2 in the exponential, the real and
imaginary parts of the response scalar field can be redefined as Re 𝜃 → 2

𝑖Re 𝜃 and Im 𝜃 →
2
𝑖 Im 𝜃. In addition, the combination of real and imaginary parts can be rewritten using
the property Re𝐴 Re𝐵 + Im𝐴 Im𝐵 = 1

2 [𝐴
*𝐵 +𝐴𝐵*] = Re [𝐴*𝐵]. Then, by inserting

the expression for the velocity distribution 𝑃𝑢[𝑢, 𝑢
*] from (5.4), one gets an equivalent

expression for the observable:

⟨𝑂(𝜃𝑚, 𝜃
*
𝑚)⟩𝑢,𝑓 =

∫︁
𝒟𝑢𝒟𝑢*𝑂(𝜃𝑚, 𝜃

*
𝑚)𝒟𝜃𝒟𝜃*𝒟𝜃𝒟𝜃*

× exp

{︃∫︁
d𝑡
∑︁
𝑚

−2Re [𝜃*𝑚
(︀[︀
𝜕𝑡 + 𝜅𝑘2𝑚

]︀
𝜃𝑚 − 𝑖𝐵𝑚

)︀
] + 2𝐷𝑓

𝑚|𝜃𝑚|2 −
|𝑢𝑚|2

2𝐷𝑣
𝑚

}︃
. (5.15)

The probability distribution of the passive scalar is then:

𝑃𝜃[𝜃, 𝜃
*] = 𝐶−1

∫︁
𝒟𝑢𝒟𝑢*𝒟𝜃𝒟𝜃* exp

{︀
−𝒮
[︀
𝜃, 𝜃*, 𝜃, 𝜃*, 𝑢, 𝑢*

]︀}︀
, (5.16)

where the functional 𝒮 is the action. The normalization 𝐶−1 can be absorbed in the
functional measure of the response fields 𝒟𝜃, 𝒟𝜃*. The resulting action takes the form:

𝒮
[︀
𝜃, 𝜃*, 𝜃, 𝜃*, 𝑢, 𝑢*

]︀
=

∫︁
d𝑡
∑︁
𝑚

2Re
[︁
𝜃*𝑚

(︁[︀
𝜕𝑡 + 𝜅𝑘2𝑚

]︀
𝜃𝑚−𝑖[𝑘𝑚+1𝜃

*
𝑚+1𝑢

*
𝑚−𝑘𝑚𝜃*𝑚−1𝑢

*
𝑚−1]

)︁]︁
− 2𝐷𝑓

𝑚|𝜃𝑚|2 +
|𝑢𝑚|2

2𝐷𝑣
𝑚

. (5.17)

Generating functional of correlation functions. From (5.16) one can construct the
generating functional of the correlation functions (analogue of the partition function) by
introducing source terms 𝐽 for each field 𝜑 ∈

{︀
𝜃, 𝜃*, 𝜃*, 𝜃, 𝑢, 𝑢*

}︀
:

𝑍[𝐽 ] =

∫︁
𝒟𝑢𝒟𝑢*𝒟𝜃𝒟𝜃*𝒟𝜃𝒟𝜃* exp{−𝒮[𝜑]}

× exp

{︃∫︁
d𝑡
∑︁
𝑚

𝐽𝜃𝑚𝜃𝑚 + 𝐽𝜃*𝑚𝜃
*
𝑚 + 𝐽𝜃𝑚𝜃𝑚 + 𝐽𝜃*𝑚𝜃

*
𝑚 + 𝐽𝑢𝑚𝑢𝑚 + 𝐽𝑢*𝑚𝑢

*
𝑚

}︃
. (5.18)
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The expression 𝒮[𝜑] denotes the action provided in Eq. (5.17). The first functional deriva-
tive of 𝑍 with respect to a source 𝐽𝜑(𝑡) give the average of the field 𝜑.

The functional derivatives of the generating functional 𝑍[𝐽 ] with respect to the sources
𝐽 give the expressions for the statistical moments of the fields. For instance, the average
of the scalar can be computed through the first functional derivative:

⟨𝜃𝑚(𝑡)⟩ =
𝛿𝑍[𝐽 ]

𝛿𝐽𝜃𝑚(𝑡)
. (5.19)

As it was already introduced in the chapter 1, the two-time correlation function of the
scalar is computed by taking two functional derivatives of 𝑍:

⟨︀
𝜃𝑚(𝑡)𝜃

*
𝑛(𝑡

′)
⟩︀
=

1

𝑍

𝛿2𝑍[𝐽 ]

𝛿𝐽𝜃𝑚(𝑡) 𝛿𝐽𝜃*𝑛(𝑡
′)

(5.20)

The higher-order statistical moments are obtained in a similar way by taking appropriate
higher order functional derivatives of 𝑍.

Taking a logarithm of 𝑍[𝐽 ] gives the generating functional 𝑊 [𝐽 ] = log𝑍[𝐽 ] of the
connected correlation functions. The connected two-time correlation function of the scalar
is then computed as:

⟨︀
𝜃𝑚(𝑡)𝜃

*
𝑛(𝑡

′)
⟩︀
− ⟨𝜃𝑚(𝑡)⟩

⟨︀
𝜃*𝑛(𝑡

′)
⟩︀
=

𝛿2𝑊 [𝐽 ]

𝛿𝐽𝜃𝑚(𝑡) 𝛿𝐽𝜃*𝑛(𝑡
′)

(5.21)

Therefore, reformulating the problem in terms of a path integral with the use of the
MSRJD method provides a framework for a systematic computation of Eulerian correlation
functions. In the next section, the implementation of the functional renormalization group
approach in this framework is presented.

5.4 Functional renormalization group formalism

The main idea of the renormalization group approach is to achieve a progressive inte-
gration of the small-scale fluctuations in the system. In such a way, a set of scale-dependent
models for varying wavenumber 𝐾 is constructed, by progressive averaging of the fluctua-
tions at wavenumbers larger than 𝐾. It is done by adding to the action of the system 𝒮 a
scale-dependent term Δ𝒮𝐾 [𝜑]. This term aims to filter out the modes with wavenumbers
𝑘 < 𝐾 from the integration (Delamotte, 2012). The modified (scale-dependent) generating
functionals of the correlation functions 𝑍𝐾 and 𝑊𝐾 then take the form:

𝑍𝐾 [𝐽 ] = 𝑒𝑊𝐾 [𝐽 ] =

∫︁
𝒟𝜑 exp

⎧⎨⎩−𝒮[𝜑]−Δ𝒮𝐾 [𝜑] +

∫︁
d𝑡
∑︁
𝑚

∑︁
𝜑

𝐽𝜑𝜑

⎫⎬⎭. (5.22)

Here, the summation
∑︀

𝜑 occurs over all fields 𝜑 ∈
{︀
𝜃, 𝜃*, 𝜃*, 𝜃, 𝑢, 𝑢*

}︀
, as it is written in a

full form in Eq. 5.18.

5.4.1 Effective average action

As it was introduced in the first chapter, the scale-dependent models are described by
a single functional, called the effective average action functional Γ𝐾 [⟨𝜑⟩], which is defined
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as the Legendre transform of the generating functional 𝑊𝐾 [⟨𝜑⟩] (Delamotte, 2012):

Γ𝐾 [𝜓] = −𝑊𝐾 [𝐽𝜓] +

∫︁
d𝑡
∑︁
𝑚

∑︁
𝜓

𝐽𝜓𝜓 −Δ𝒮𝐾 [𝜓], (5.23)

where the average fields are denoted with 𝜓 = ⟨𝜑⟩ =
{︀
⟨𝜃⟩ ,

⟨︀
𝜃*
⟩︀
, ⟨𝜃*⟩ ,

⟨︀
𝜃
⟩︀
, ⟨𝑢⟩ , ⟨𝑢*⟩

}︀
.

The term Δ𝒮𝐾 [𝜓] has to ensure the following properties of the effective average action:
If the microscale of the problem is characterized by a wavenumber Λ, the effective average
action at𝐾 = Λ coincides with the microscopic action Γ𝐾=Λ[𝜓] = 𝒮[𝜓], as no fluctuation is
averaged yet. At large scales 𝐾 → 0 all fluctuations need to be integrated, so Δ𝒮𝐾 [𝜓] = 0,
and one restores the true properties of the initial model. To satisfy these conditions, the
filtering term Δ𝒮𝐾 [𝜓] can be chosen as quadratic in fields:

Δ𝒮𝐾 [𝜓] =
1

2

∫︁
d𝑡
∑︁
𝑚1,𝑚2

⟨𝜓𝑚1 |ℛ𝐾,𝑚1,𝑚2 |𝜓𝑚2⟩ , (5.24)

where |𝜓𝑚⟩ denotes a vector-column containing 6 fields
(︀
𝜃𝑚, 𝜃*𝑚, 𝜃

*
𝑚, 𝜃𝑚, 𝑢𝑚, 𝑢

*
𝑚

)︀
, while

⟨𝜓𝑚| denotes the same vector-row. ℛ𝐾,𝑚1,𝑚2 represents a matrix consisting of the corres-
ponding regulator functions. All elements of the matrix 𝑅𝐾 ∈ ℛ𝐾,𝑚 have to be suitable
cut-off functions, which means that they have to keep the small scales unaffected so that
𝑅𝐾(𝑘𝑚 > 𝐾) ≃ 0, vanish at 𝐾 → 0 and also “freeze” all fluctuations at 𝐾 → Λ so that
𝑅𝐾=0 = 0, 𝑅𝐾=Λ ∼ Λ2 ∀𝑘𝑚.

Notations. The following notation for functional derivatives is used:

Γ
(𝜓1,𝜓2,..,𝜓𝑛)
𝐾,𝑚1,𝑚2,...,𝑚𝑛

(𝜔1, 𝜔2, ..., 𝜔𝑛) =
𝛿𝑛Γ𝐾 [𝜓]

𝛿𝜓1,𝑚1(𝜔1) 𝛿𝜓2,𝑚2(𝜔2) ... 𝛿𝜓𝑛,𝑚𝑛(𝜔𝑛)

⃒⃒⃒⃒
⃒
𝜓=0

. (5.25)

The superscript of Γ denotes the field relative to which the functional derivative is taken.
All derivatives are evaluated at zero average field 𝜓 = 0. Note that the effective average
action is a functional of the averaged fields Γ𝐾 [𝜓] = Γ𝐾 [⟨𝜃⟩ ,

⟨︀
𝜃*
⟩︀
, ⟨𝜃*⟩ ,

⟨︀
𝜃
⟩︀
, ⟨𝑢⟩ , ⟨𝑢*⟩], but

to shorten the notations, the averaging brackets ⟨ · ⟩ are omitted in the following.

RG flow equations. The dependence of the effective average action on the scale 𝐾 is
governed by the exact RG flow equation (Wetterich, 1993). This equation has been already
given in (1.10), and with the notations introduced in this chapter it takes the form:

𝜕𝑠Γ𝐾 [𝜓] =
1

2
Tr

∫︁
d𝜔

2𝜋

∑︁
𝑚𝑖

[︂
𝜕𝑠ℛ𝐾,𝑚1,𝑚2

(︁
Γ
(2)
𝐾,𝑚2,𝑚1

[𝜓] +ℛ𝐾,𝑚2,𝑚1

)︁−1
]︂
, (5.26)

where the differentiation variable is 𝑠 ≡ log(𝐾/Λ). Note that the flow equation is written for
the Fourier transforms of Γ(2)

𝐾 and ℛ. The same notation is kept for the Fourier transforms
for simplicity.

From the definition (5.23) of the Legendre transform, the connected two-point cor-
relation functions 𝑊 (2) are obtained as the inverse of the sum of the second functional
derivative of the effective average action Γ and the regulator ℛ. The correlation functions
𝑊 (2) are also referred to as the propagators and are denoted with 𝐺:

𝐺
(𝜓1,𝜓2)
𝐾,𝑚1,𝑚2

(𝜔1, 𝜔2) =
(︁
Γ
(𝜓1,𝜓2)
𝐾,𝑚1,𝑚2

(𝜔1, 𝜔2) +ℛ(𝜓1,𝜓2)
𝐾,𝑚1,𝑚2

)︁−1
. (5.27)
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The flow equations can be obtained for higher order functional derivatives of the effec-
tive average action Γ. Taking two functional derivatives of the flow equation (5.26) with
respect to the fields 𝜓𝑎 and 𝜓𝑏 leads to the following equation:

𝜕𝑠Γ
(𝜓𝑎,𝜓𝑏)
𝐾,𝑚𝑎,𝑚𝑏

(Ω,−Ω) = 𝜕𝑠
𝛿2Γ𝐾 [𝜓]

𝛿𝜓𝑎,𝑚𝑎(Ω)𝛿𝜓𝑏,𝑚𝑏
(−Ω)

=
∑︁
𝜙𝑖

∫︁
d𝜔

2𝜋

∑︁
𝑚𝑖

𝜕𝑠ℛ(𝜙1,𝜙2)
𝐾,𝑚1,𝑚2

×

𝐺
(𝜙2,𝜙3)
𝐾,𝑚2,𝑚3

(𝜔,−𝜔)Γ(𝜓𝑎,𝜙3,𝜙4)
𝐾,𝑚𝑎,𝑚3,𝑚4

(Ω, 𝜔,−Ω− 𝜔)𝐺
(𝜙4,𝜙5)
𝐾,𝑚4,𝑚5

(Ω + 𝜔,−Ω− 𝜔)×

Γ
(𝜓𝑏,𝜙5,𝜙6)
𝐾,𝑚𝑏,𝑚5,𝑚6

(−Ω, 𝜔 +Ω,−𝜔)𝐺(𝜙6,𝜙1)
𝐾,𝑚6,𝑚1

(𝜔,−𝜔)− 1

2

∑︁
𝜙𝑖

∫︁
d𝜔

2𝜋

∑︁
𝑚𝑖

𝜕ℛ(𝜙1,𝜙2)
𝐾,𝑚1,𝑚2

×

𝐺
(𝜙2,𝜙3)
𝐾,𝑚2,𝑚3

(𝜔,−𝜔)Γ(𝜓𝑎,𝜓𝑏,𝜙3,𝜙4)
𝐾,𝑚𝑎,𝑚𝑏,𝑚3,𝑚4

(Ω,−Ω, 𝜔,−𝜔)𝐺(𝜙4,𝜙1)
𝐾,𝑚4,𝑚1

(𝜔,−𝜔), (5.28)

where the translational invariance in time has been used. To simplify the reading of the
flow equation, the letter 𝜓 denotes the external fields, while 𝜙 denotes the internal fields
upon which the summation in the right-hand side occurs. Similarly, the capital Ω always
corresponds to the external frequency, and the small 𝜔 to the integration frequency.

Note that at this stage the flow equation (5.28) is exact. However, its right-hand side
contains the vertices Γ(3) and Γ(4), which in their turn are governed by the next-order flow
equations, resulting from the third- and fourth-order derivatives of Eq. (5.26). The flow
equations for the vertices Γ(3) and Γ(4) depend on the higher order vertices. Repeating
this procedure for higher-order derivatives thus leads to an infinite hierarchy of equations
for Γ(𝑛). A standard approximation within the FRG framework consists in truncating the
hierarchy of flow equations to a given order 𝑛 by simply neglecting the higher-order vertices
(Dupuis et al., 2021). This strategy is implemented in the following section.

It is important to emphasize that this approach is completely different from the large-
wavenumber expansion, which underlies all FRG results on Navier-Stokes and scalar tur-
bulence presented in Chapter 1. Within the large-wavenumber expansion, no truncation
is performed, it does not rely on the use of an ansatz, but rather on an expansion of the
vertices in the limit of large wavenumbers.

5.4.2 Ansatz

A simple ansatz is chosen in which only the third-order vertices are kept. Within this
approximation, only the first term will be considered in Eq. (5.28), as the fourth-order ver-
tices Γ(4)

𝐾 are neglected. At the same time, the second-order derivatives Γ(2)
𝐾 are considered

in a general form, that is to say, dependent both on the renormalization scale 𝐾 and the
shell index 𝑚. In practice, it means that one has to replace the molecular diffusivity 𝜅 and
the forcing power spectrum 𝐷𝑓

𝑚 in the bare action 𝒮 in Eq. (5.17) by unknown functions
𝐹 𝜅𝐾,𝑚 and 𝑑𝑓𝐾,𝑚 depending on the renormalization scale 𝐾 and the shell index 𝑚:

𝜅 ↦→𝐹 𝜅𝐾,𝑚,

𝐷𝑓
𝑚 ↦→𝐷𝑓

0𝑓
𝑑
𝐾,𝑚,

where 𝐷𝑓
0 is a constant parameter related to the forcing power. At the microscale, cha-

racterized by the wavenumber 𝐾 = Λ, the renormalized diffusivity 𝐹 𝜅𝐾,𝑚 is equal to the
molecular diffusivity of the scalar 𝐹 𝜅𝐾=Λ,𝑚 = 𝜅 ∀ 𝑚, and there is the renormalized forcing
is set to 𝑓𝑑𝐾=Λ,𝑚 = 0 ∀ 𝑚, since the forcing is entirely contained in the regulator 𝑁𝜅 (see
below).
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Chapter 5. Shell model of scalar random advection

The ansatz is thus given by the following effective average action:

Γ[𝜓] =

∫︁
d𝑡
∑︁
𝑚

2Re
[︁
𝜃*𝑚

(︁[︀
𝜕𝑡 + 𝐹 𝜅𝐾,𝑚𝑘

2
𝑚

]︀
𝜃𝑚 − 𝑖[𝑘𝑚+1𝜃

*
𝑚+1𝑢

*
𝑚 − 𝑘𝑚𝜃

*
𝑚−1𝑢

*
𝑚−1]

)︁]︁
− 2𝐷𝑓

0𝑓
𝑑
𝐾,𝑚|𝜃𝑚|2 +

|𝑢𝑚|2

2𝐷𝑣
𝑚

. (5.29)

One can show that the velocity sector is not renormalized, so the velocity amplitude pa-
rameter 𝐷𝑣

𝑚 is kept in the initial form (5.4) and does not depend on the renormalization
scale 𝐾.

The flow equation (5.28) can be projected onto this ansatz (5.29) yielding two flow
equations for the functions 𝐹 𝜅𝐾,𝑚 and 𝑓𝑑𝐾,𝑚. To compute this flow, one needs to specify the
regulator ℛ, and to establish the expression for the propagator 𝐺 and vertices Γ(3), which
is done in the following section.

Matrix notations. To simplify the writing of the flow equations (5.28), it is rewritten
in the matrix form. The matrix of the second functional derivatives of the effective average
action Γ

(2)
𝐾 is written as follows:

Γ
(2)
𝐾,𝑚1,𝑚2

(𝜔1, 𝜔2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Γ
(𝜃,𝜃*)
𝐾,𝑚1,𝑚2

0 0 0 0(︁
Γ
(𝜃,𝜃*)
𝐾,𝑚1,𝑚2

)︁*
0 0 Γ

(𝜃*,𝜃)
𝐾,𝑚1,𝑚2

0 0

0 0 0 Γ
(𝜃*,𝜃)
𝐾,𝑚1,𝑚2

0 0

0
(︁
Γ
(𝜃*,𝜃)
𝐾,𝑚1,𝑚2

)︁* (︁
Γ
(𝜃*,𝜃)
𝐾,𝑚1,𝑚2

)︁*
0 0 0

0 0 0 0 0 Γ
(𝑢,𝑢*)
𝐾,𝑚1,𝑚2

0 0 0 0
(︁
Γ
(𝑢,𝑢*)
𝐾,𝑚1,𝑚2

)︁*
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(5.30)
The indices in the superscript of a matrix element indicate with respect to which field the
derivatives are taken. The rows and columns of the matrix correspond to different fields,
and the order of the fields is always

(︀
𝜃, 𝜃*, 𝜃*, 𝜃, 𝑢, 𝑢*

)︀
. The elements of the matrix Γ(2)

are computed as the Fourier transform (from time domain 𝑡 to the frequency domain 𝜔)
of the second-order functional derivatives of the ansatz Γ[𝜓] from Eq. (5.29) evaluated at
zero fields 𝜓 = 0. The expressions for the matrix elements after the Fourier transform take
the following form:

Γ
(𝜃,𝜃*)
𝐾,𝑚1,𝑚2

(𝜔1, 𝜔2) = FT

[︃
𝛿2Γ

𝛿𝜃𝑚1(𝑡1) 𝛿𝜃
*
𝑚2(𝑡2)

]︃
= 2𝜋𝛿(𝜔1 + 𝜔2)𝛿𝑚1𝑚2

(︀
𝑖𝜔1 + 𝐹 𝜅𝐾,𝑚1

𝑘2𝑚1

)︀
,

Γ
(𝜃*,𝜃)
𝐾,𝑚1,𝑚2

(𝜔1, 𝜔2) = FT

[︃
𝛿2Γ

𝛿𝜃*𝑚1(𝑡1) 𝛿𝜃𝑚2(𝑡2)

]︃
= 2𝜋𝛿(𝜔1 + 𝜔2)𝛿𝑚1𝑚2

(︁
−2𝐷𝑓

0𝑓
𝑑
𝐾,𝑚1

)︁
,

Γ
(𝜃*,𝜃)
𝐾,𝑚1,𝑚2

(𝜔1, 𝜔2) = FT

[︃
𝛿2Γ

𝛿𝜃*𝑚1
(𝑡1) 𝛿𝜃𝑚2(𝑡2)

]︃
= 2𝜋𝛿(𝜔1 + 𝜔2)𝛿𝑚1𝑚2

(︀
𝑖𝜔1 + 𝐹 𝜅𝐾,𝑚1

𝑘2𝑚1

)︀
,

Γ
(𝑢,𝑢*)
𝐾,𝑚1,𝑚2

(𝜔1, 𝜔2) = FT

[︃
𝛿2Γ

𝛿𝑢𝑚1(𝑡1) 𝛿𝑢
*
𝑚2

(𝑡2)

]︃
= 2𝜋𝛿(𝜔1 + 𝜔2)𝛿𝑚1𝑚2

(︃
1

2𝐷𝑣
𝑚1

)︃
.

Since all second derivative terms Γ
(2)
𝐾,𝑚1,𝑚2

(𝜔1, 𝜔2) include the delta function of the
frequency sum 𝛿(𝜔1 + 𝜔2) and the Kronecker delta 𝛿𝑚1𝑚2 , it can be represented as a
function of a single frequency 𝜔 and single shell index 𝑚. The second derivatives Γ

(2)
𝐾
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5.4. Functional renormalization group formalism

simplified by the two deltas and the 2𝜋-prefactor will be denoted as Γ̄(2)
𝐾 , so that:

Γ
(2)
𝐾,𝑚1,𝑚2

(𝜔1, 𝜔2) = 2𝜋𝛿(𝜔1 + 𝜔2)𝛿𝑚1𝑚2Γ̄
(2)
𝐾,𝑚1

(𝜔1) = 2𝜋𝛿(𝜔1 + 𝜔2)𝛿𝑚1𝑚2Γ̄
(2)
𝐾,𝑚2

(−𝜔2).
(5.31)

Therefore, the ansatz (5.29) leads to the following expressions for the two-point functions:

Γ̄
(𝜃,𝜃*)
𝐾,𝑚 (𝜔) = Γ̄

(𝜃*,𝜃)
𝐾,𝑚 (𝜔) = 𝑖𝜔 + 𝑘2𝑚𝐹

𝜅
𝐾,𝑚, (5.32)

Γ̄
(𝜃*,𝜃)
𝐾,𝑚 (𝜔) = −2𝐷𝑓

0𝑓
𝑑
𝐾,𝑚, (5.33)

Γ̄
(𝑢,𝑢*)
𝐾,𝑚 (𝜔) =

1

2𝐷𝑣
𝑚

=
𝑘𝜀𝑚
2𝐷𝑣

0

. (5.34)

The velocity is not renormalized, so the derivative Γ̄(𝑢,𝑢*) does not depend on the renor-
malization scale 𝐾.

5.4.3 Regulator, propagator and vertices

As it was mentioned above, to compute the flow equation of the two-point functions
Γ
(2)
𝐾 (5.28), one needs to specify the regulator functions of the matrix ℛ𝐾 , as well as to

find the expressions for the propagator 𝐺𝐾 and vertices within the chosen ansatz (5.29).

Regulator matrix. Since the two-point functions Γ(2) are diagonal in the shell index
𝑚𝑖, the regulator matrix can also be chosen diagonal in the following way:

ℛ𝐾,𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑅𝐾,𝑚 0 0 0 0

𝑅𝐾,𝑚 0 0 −2𝑁𝐾,𝑚 0 0

0 0 0 𝑅𝐾,𝑚 0 0

0 −2𝑁𝐾,𝑚 𝑅𝐾,𝑚 0 0 0

0 0 0 0 0 1
2𝑅

𝑣
𝐾,𝑚

0 0 0 0 1
2𝑅

𝑣
𝐾,𝑚 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.35)

with the functions:

𝑅𝐾,𝑚 = 𝜅𝑘2𝑚 𝑟

(︂
𝑘𝑚
𝐾

)︂
, (5.36)

𝑁𝐾,𝑚 = 𝐷𝑓
0 𝑛

(︂
𝑘𝑚
𝐾

)︂
, (5.37)

𝑅𝑣𝐾,𝑚 =
𝐾𝜖

𝐷𝑣
0

. (5.38)

The cut-off functions 𝑟 and 𝑛 have to provide the filtering properties discussed in Sec. 5.4
in order to decouple the large scales from the small ones. One of the possible choices is the
following:

𝑟(𝑦) =
1

𝑒𝑦2 − 1
; 𝑛(𝑦) = 𝑦2𝑒−𝑦

2
. (5.39)

It should be noted here that the resulting solution is expected to be independent of the
precise form of the cut-off functions 𝑟 and 𝑛.
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Propagator. The propagator 𝐺𝐾,𝑚 is defined as the inverse of the Hessian (Γ
(2)
𝐾 +ℛ𝐾),

as it was introduced in Eq. (5.27). Since the matrix (Γ
(2)
𝐾 +ℛ𝐾) is diagonal in frequency

and shell index, the inverse in the definition of the propagator is simply a matrix inverse.
Hence, inverting the sum of the matrix (5.30) of Γ(2)

𝐾 and the matrix (5.35) for ℛ𝐾 leads
to the propagator matrix:

𝐺𝐾,𝑚(𝜔) =
(︁
Γ̄
(2)
𝐾,𝑚(𝜔) +ℛ𝐾,𝑚

)︁−1
=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝐺
(𝜃,𝜃*)
𝐾,𝑚 (𝜔) 𝐺

(𝜃,𝜃*)
𝐾,𝑚 (𝜔) 0 0 0(︁

𝐺
(𝜃,𝜃*)
𝐾,𝑚 (𝜔)

)︁*
0 0 0 0 0(︁

𝐺
(𝜃,𝜃*)
𝐾,𝑚 (𝜔)

)︁*
0 0 𝐺

(𝜃*,𝜃)
𝐾,𝑚 (𝜔) 0 0

0 0
(︁
𝐺

(𝜃*,𝜃)
𝐾,𝑚 (𝜔)

)︁*
0 0 0

0 0 0 0 0 𝐺
(𝑢,𝑢*)
𝐾,𝑚 (𝜔)

0 0 0 0
(︁
𝐺

(𝑢,𝑢*)
𝐾,𝑚 (𝜔)

)︁*
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(5.40)

with the resulting expressions for the components of the propagator matrix:

𝐺
(𝜃,𝜃*)
𝐾,𝑚 (𝜔) = 𝐺

(𝜃*,𝜃)
𝐾,𝑚 (𝜔) =

1

𝑖𝜔 + 𝑘2𝑚

(︁
𝐹 𝜅𝐾,𝑚 + 𝜅 𝑟(𝑘𝑚/𝐾)

)︁, (5.41)

𝐺
(𝜃,𝜃*)
𝐾,𝑚 (𝜔) =

2𝐷𝑓
0

(︁
𝑓𝑑𝐾,𝑚 + 𝑛(𝑘𝑚/𝐾)

)︁
𝜔2 + 𝑘4𝑚

(︁
𝐹 𝜅𝐾,𝑚 + 𝜅 𝑟(𝑘𝑚/𝐾)

)︁2, (5.42)

𝐺
(𝑢,𝑢*)
𝐾,𝑚 (𝜔) =

2𝐷𝑣
0

𝑘𝜀𝑚 +𝐾𝜀
. (5.43)

It is important to highlight here that the propagator 𝐺𝑢𝑢*𝐾 is independent of the fre-
quency. This is the consequence of the white-in-time velocity field assumed in the Kraich-
nan’s shell model (5.4).

Vertices Γ
(3)
𝐾 . The ansatz Γ𝐾 in (5.29), as well as the microscale action 𝒮 given in (5.17),

have only two nonzero third-order derivatives: with respect to the fields 𝜃*, 𝜃*, 𝑢* and the
corresponding complex conjugated term with respect to the fields 𝜃, 𝜃, 𝑢, taking the form:

Γ
(𝜃*,𝜃*,𝑢*)
𝐾,𝑚1,𝑚2,𝑚3

(𝜔1, 𝜔2, 𝜔3) = FT

[︃
𝛿3Γ𝐾

𝛿𝜃*𝑚1(𝑡1) 𝛿𝜃
*
𝑚2

(𝑡2) 𝛿𝑢*𝑚3
(𝑡3)

]︃
= 2𝜋𝛿(𝜔1 + 𝜔2 + 𝜔3)(−𝑖)(𝑘𝑚1+1𝛿𝑚3,𝑚1𝛿𝑚2,𝑚1+1 − 𝑘𝑚1𝛿𝑚3,𝑚1−1𝛿𝑚2,𝑚1−1), (5.44)

Γ
(𝜃,𝜃,𝑢)
𝐾,𝑚1,𝑚2,𝑚3

(𝜔1, 𝜔2, 𝜔3) = FT

[︃
𝛿3Γ𝐾

𝛿𝜃𝑚1(𝑡1) 𝛿𝜃𝑚2(𝑡2) 𝛿𝑢𝑚3(𝑡3)

]︃
= 2𝜋𝛿(𝜔1 + 𝜔2 + 𝜔3)𝑖(𝑘𝑚1𝛿𝑚2,𝑚1−1𝛿𝑚3,𝑚1−1 − 𝑘𝑚1+1𝛿𝑚2,𝑚1+1𝛿𝑚3,𝑚1). (5.45)

Within the chosen approximation, the third-order derivatives of the effective action do not
depend on the renormalization scale 𝐾, so Γ

(3)
𝐾 = 𝒮(3).
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5.4.4 Flow equations

After choosing an ansatz and establishing the form for the functional derivatives of
the effective average action Γ𝜅 and regulator matrix ℛ𝐾 , there are all ingredients to com-
pute the flow equation (5.28) for Γ

(2)
𝐾 . Plugging the vertices Γ

(3)
𝜅 and propagators from

Eqs. (5.41)-(5.43) into the flow equation (5.28) for Γ
(2)
𝜅 leads to a set of ordinary diffe-

rential equations for the two functions 𝐹 𝜅𝐾,𝑚 and 𝑓𝑑𝐾,𝑚 corresponding to different shells.
Solving these equations allows to find the form of the two-point functions Γ̄(2) in the fixed
point limit 𝐾 → 0, which in turn lead to a solution for the structure function of the scalar.

The truncated flow equation (5.28) for Γ̄(2) with respect to the fields 𝜓𝑎 and 𝜓𝑏 takes
the following form:

𝜕𝑠Γ̄
(𝜓𝑎,𝜓𝑏)
𝐾,𝑚 (Ω) =

∑︁
𝜙𝑖

∑︁
𝑚𝑖

∫︁
d𝜔

2𝜋
𝜕𝑠ℛ(𝜙1,𝜙2)

𝐾,𝑚1
𝐺

(𝜙2,𝜙3)
𝐾,𝑚1

(𝜔)Γ
(𝜓𝑎,𝜙3,𝜙4)
𝐾,𝑚,𝑚1,𝑚2

(Ω, 𝜔,−𝜔 − Ω)

×𝐺(𝜙4,𝜙5)
𝑚2

(𝜔 +Ω)Γ
(𝜓𝑏,𝜙5,𝜙6)
𝐾,𝑚,𝑚2,𝑚1

(−Ω, 𝜔 +Ω,−𝜔)𝐺(𝜙6,𝜙1)
𝑚1

(𝜔), (5.46)

where the summation over the fields 𝜙𝑖 means that each of the fields 𝜙𝑖 with 𝑖 = 1, ..6 runs
over all possible of six average fields 𝜙𝑖 ∈

{︀
𝜃, 𝜃*, 𝜃*, 𝜃, 𝑢, 𝑢*

}︀
. That is to say, that one has

to compute a product of six matrices in 36 configurations of the set 𝜙𝑖. However, most of
these terms vanish. One can easily find the nonzero configurations with the diagrammatic
method. For this purpose, the following notations are introduced: continuous lines corres-
pond to the scalar field 𝜃, dashed lines - to the response field 𝜃 and waved lines - to the
velocity field 𝑢. The doubled lines denote the complex conjugated fields. The diagramma-
tic representations of the propagators 𝐺𝐾 , regulators ℛ𝐾 and vertices Γ(3) are shown in
Fig. 5.1.

𝐺
(𝜃,𝜃*)
𝐾

𝐺
(𝜃*,𝜃)
𝐾

𝐺
(𝜃,𝜃*)
𝐾

𝐺
(𝑢,𝑢*)
𝐾

ℛ(𝜃,𝜃*)
𝐾 = 𝑅𝐾 ⊕

ℛ(𝜃*,𝜃)
𝐾 = 𝑅𝐾 ⊕

ℛ(𝜃*,𝜃)
𝐾 = 𝑁𝐾 ⊕

ℛ(𝑢,𝑢*)
𝐾 = 𝑅𝑣𝐾 ⊕

Γ(𝜃,𝜃,𝑢)

Γ(𝜃*,𝜃*,𝑢*)

Figure 5.1 – Diagrammatic representation of the propagators, regulators and vertices.

Figure 5.2 – General diagrammatic scheme of the right-hand side of the flow equation for
the second derivatives of the effective action Γ(2) in the approximation of Eq. (5.46).

The diagrammatic representation of the right-hand side of the truncated flow equation
(5.46) is shown in the Fig. 5.2. Finding all possible configurations of this loop diagram
with elements from the Fig. 5.1 gives the non-vanishing terms remaining after summation
over the fields 𝜙𝑖 in Eq. (5.46).
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(a) (b)

Figure 5.3 – All diagrams for the right-hand side of the flow equation (5.47) for Γ
(𝜃,𝜃*)
𝐾 .

Flow equation for Γ
(𝜃,𝜃*)
𝐾

The flow equation (5.28) for the functional derivative Γ̄
(2)
𝐾,𝑚 with respect to the fields 𝜃

and 𝜃* has two nonzero terms which can be represented diagrammatically as in Fig. 5.3.
The non-vanishing terms in of the Eq. (5.46) for the flow of Γ𝜃𝜃* are thus:

𝜕𝑠Γ̄
(𝜃,𝜃*)
𝐾,𝑚 (Ω) =

∑︁
𝑚𝑖

∫︁
d𝜔

2𝜋
𝜕𝑠ℛ(𝜃*,𝜃)

𝐾,𝑚1
𝐺

(𝜃*,𝜃)
𝐾,𝑚1

(𝜔)Γ
(𝜃,𝜃,𝑢)
𝐾,𝑚,𝑚1,𝑚2

(Ω, 𝜔,−𝜔 − Ω)

×𝐺(𝑢,𝑢*)
𝑚2

(𝜔 +Ω)Γ
(𝜃*,𝑢*,𝜃*)
𝐾,𝑚,𝑚2,𝑚1

(−Ω, 𝜔 +Ω,−𝜔)𝐺(𝜃*,𝜃)
𝐾,𝑚1

(𝜔)

+
∑︁
𝑚𝑖

∫︁
d𝜔

2𝜋
𝜕𝑠ℛ(𝑢,𝑢*)

𝐾,𝑚1
𝐺

(𝑢*,𝑢)
𝐾,𝑚1

(𝜔)Γ
(𝜃,𝑢,𝜃)
𝐾,𝑚,𝑚1,𝑚2

(Ω, 𝜔,−𝜔 − Ω)

×𝐺
(𝜃,𝜃*)
𝐾,𝑚2

(𝜔 +Ω)Γ
(𝜃*,𝜃*,𝑢*)
𝐾,𝑚,𝑚2,𝑚1

(−Ω, 𝜔 +Ω,−𝜔)𝐺(𝑢*,𝑢)
𝐾,𝑚1

(𝜔). (5.47)

Inserting the expressions forℛ𝐾 ,𝐺𝐾 and Γ
(3)
𝐾 from Eqs. (5.32)-(5.43) into the Eq. (5.47)

and subsequent summations over the indices𝑚1,𝑚2,𝑚3 and integration over the frequency
𝜔 lead to the following equation for the renormalized diffusivity 𝐹 𝜅𝐾,𝑚:

𝑘2𝑚𝐾
d𝐹 𝜅𝐾,𝑚
d𝐾

= −𝐷𝑣
0𝜀𝐾

𝜀

(︃
𝑘2𝑚

(𝐾𝜀 + 𝑘𝜀𝑚−1)
2
+

𝑘2𝑚+1

(𝐾𝜀 + 𝑘𝜀𝑚)
2

)︃
. (5.48)

The frequency integration of the first term in Eq. (5.47) is zero, so only the integration
over the frequency in the second term, corresponding to the second diagram in Fig. 5.3,
contributes to the flow of Γ(𝜃,𝜃*)

𝐾 . This integration over the frequency has to be performed
in terms of Cauchy principal value.

As it has been mentioned above, at microscale 𝐾 = Λ the renormalized diffusivity 𝐹 𝜅𝐾,𝑚
coincides with the molecular diffusivity 𝜅 of the scalar. It provides the initial conditions
𝐹 𝜅𝐾=Λ(𝑘𝑚) = 𝜅 ∀𝑚 for the set of ODEs (5.48). Due to the fact that the velocity is not
renormalized, this equation appears to be simple enough to be integrated analytically.
Integrating the equations with the given initial conditions leads to:

𝐹 𝜅𝐾,𝑚 = 𝜅+
𝐷𝑣

0

𝑘2𝑚

[︂
𝑘2𝑚

𝐾𝜀 + 𝑘𝜀𝑚−1

− 𝑘2𝑚
Λ𝜀 + 𝑘𝜀𝑚−1

+
𝑘2𝑚+1

𝐾𝜀 + 𝑘𝜀𝑚
−

𝑘2𝑚+1

Λ𝜀 + 𝑘𝜀𝑚

]︂
. (5.49)

One can see from this expression that for shells of scales much larger than the microscale
𝑘𝑚 ≪ Λ and with integrating out all fluctuation (𝐾 → 0), the approximate expression for
the renormalized viscosity takes the form:

lim
𝐾→0

𝐹 𝜅𝐾,𝑚 ≈ 𝜅+
𝐷𝑣

0

𝑘𝜀𝑚
. (5.50)
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This means that for the wavenumbers 𝑘𝑚 ≪ (𝐷𝑣
0/𝜅)

1/𝜀 the renormalized viscosity behaves
as a power law 𝐹 𝜅𝐾,𝑚 ∼ 𝐷𝑣

0𝑘
−𝜀
𝑚 , while at large wavenumbers 𝑘𝑚 ≫ (𝐷𝑣

0/𝜅)
1/𝜀 it is mainly

determined by the molecular diffusivity 𝐹 𝜅𝐾,𝑚 ≈ 𝜅.

Flow equation for Γ
(𝜃,𝜃*)
𝐾

(a) (b)

(c) (d)

Figure 5.4 – All diagrams of the right-hand side of the flow equation (5.51) for Γ
(𝜃,𝜃*)
𝐾 .

A similar analysis can be performed for the flow of the effective action derivative
Γ(𝜃,𝜃*)𝐾 . The four diagrams that may contribute to 𝜕𝑠Γ(𝜃,𝜃*) are shown in the Fig. 5.4.
The right-hand side of the flow equation thus contains 4 terms:

𝜕𝑠Γ̄
(𝜃,𝜃*)
𝐾,𝑚 (Ω) =

∑︁
𝑚𝑖

∫︁
d𝜔

2𝜋
𝜕𝑠ℛ(𝜃,𝜃*)

𝐾,𝑚1
𝐺

(𝜃*,𝜃)
𝐾,𝑚1

(𝜔)Γ
(𝜃,𝜃,𝑢)
𝐾,𝑚,𝑚1,𝑚2

(Ω, 𝜔,−𝜔 − Ω)

×𝐺(𝑢,𝑢*)
𝑚2

(𝜔 +Ω)Γ
(𝜃*,𝑢*,𝜃*)
𝐾,𝑚,𝑚2,𝑚1

(−Ω, 𝜔 +Ω,−𝜔)𝐺(𝜃*,𝜃)
𝐾,𝑚1

(𝜔)

+
∑︁
𝑚𝑖

∫︁
d𝜔

2𝜋
𝜕𝑠ℛ(𝜃,𝜃*)

𝐾,𝑚1
𝐺

(𝜃*,𝜃)
𝐾,𝑚1

(𝜔)Γ
(𝜃,𝜃,𝑢)
𝐾,𝑚,𝑚1,𝑚2

(Ω, 𝜔,−𝜔 − Ω)

×𝐺
(𝑢,𝑢*)
𝐾,𝑚2

(𝜔 +Ω)Γ
(𝜃*,𝑢*,𝜃*)
𝐾,𝑚,𝑚2,𝑚1

(−Ω, 𝜔 +Ω,−𝜔)𝐺(𝜃*,𝜃)
𝐾,𝑚1

(𝜔)

+
∑︁
𝑚𝑖

∫︁
d𝜔

2𝜋
𝜕𝑠ℛ(𝜃,𝜃*)

𝐾,𝑚1
𝐺

(𝜃*,𝜃)
𝐾,𝑚1

(𝜔)Γ
(𝜃,𝜃,𝑢)
𝐾,𝑚,𝑚1,𝑚2

(Ω, 𝜔,−𝜔 − Ω)

×𝐺
(𝑢,𝑢*)
𝐾,𝑚2

(𝜔 +Ω)Γ
(𝜃*,𝑢*,𝜃*)
𝐾,𝑚,𝑚2,𝑚1

(−Ω, 𝜔 +Ω,−𝜔)𝐺(𝜃*,𝜃)
𝑚1

(𝜔)

+
∑︁
𝑚𝑖

∫︁
d𝜔

2𝜋
𝜕𝑠ℛ(𝑢,𝑢*)

𝐾,𝑚 𝐺
(𝑢*𝑢)
𝐾,𝑚1

(𝜔)Γ
(𝜃,𝑢,𝜃)
𝐾,𝑚,𝑚1,𝑚2

(Ω, 𝜔,−𝜔 − Ω)

×𝐺
(𝜃,𝜃*)
𝐾,𝑚2

(𝜔 +Ω)Γ
(𝜃*,𝜃*,𝑢*)
𝐾,𝑚,𝑚2,𝑚1

(−Ω, 𝜔 +Ω,−𝜔)𝐺(𝑢*,𝑢)
𝐾,𝑚1

(𝜔). (5.51)

After substitution of the propagators, regulators, and vertices, followed by the summa-
tion over indices 𝑚 and integration over the frequency 𝜔, one obtains the following set of
ODEs for the renormalized forcing functions 𝑓𝐷𝐾,𝑚 corresponding to different shells with
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indices 𝑚:

𝜕𝑠𝑓
𝑑
𝐾,𝑚 = −

𝑘2𝑚𝐺
(𝑢,𝑢*)
𝐾,𝑚−1

4𝐷𝑓
0𝜌

2
𝐾,𝑚−1

[︁
𝜌𝐾,𝑚−1

(︁
Δ𝐾,𝑚−1𝐺

(𝑢,𝑢*)
𝐾,𝑚−1𝜕𝑠𝑅

𝑣
𝐾,𝑚−1 − 2𝜕𝑠𝑁𝐾,𝑚−1

)︁

+ 2𝜕𝑠𝑅𝐾,𝑚−1Δ𝐾,𝑚−1

]︁
−
𝑘2𝑚+1𝐺

(𝑢,𝑢*)
𝐾,𝑚

4𝐷𝑓
0𝜌

2
𝐾,𝑚+1

[︁
𝜌𝐾,𝑚+1

(︁
Δ𝐾,𝑚+1𝐺

(𝑢,𝑢*)
𝐾,𝑚 𝜕𝑠𝑅

𝑣
𝐾,𝑚

− 2𝜕𝑠𝑁𝐾,𝑚+1

)︁
+ 2𝜕𝑠𝑅𝐾,𝑚+1Δ𝐾,𝑚+1

]︁
. (5.52)

Here the following notations are introduced to shorten down the equation and simplify the
integration over the frequency:

𝜌𝐾,𝑚 ≡ 𝑘2𝑚
(︀
𝐹 𝜅𝐾,𝑚 + 𝜅 𝑟(𝑘𝑚/𝐾)

)︀
, (5.53)

Δ𝐾,𝑚 ≡ 𝐷𝑓
0

(︁
𝑓𝑑𝐾,𝑚 + 𝑛(𝑘𝑚/𝐾)

)︁
. (5.54)

The set of equations for 𝑓𝑑𝐾,𝑚 (5.51) is more complicated than the one for 𝐹 𝜅. The
equations for different shells are coupled, and this set of equations does not allow for an
analytical solution. However, it is rather simple to solve numerically. The results of the
numerical solutions are provided in the following section 5.5.

Two-point correlation function of the scalar

As discussed in the Sec. 5.3, the generating functional of the connected correlation
function 𝑊 [𝐽𝜓] can be found as the Legendre transform of the effective average action
functional Γ𝐾 [𝜓] (5.23). When the flow equations are solved and the functions 𝑓𝑑𝐾,𝑚, 𝐹

𝜅
𝐾,𝑚

at the fixed point at 𝐾 → 0 are known, the two-point equal-time correlation function𝑊 (2)

of the scalar can be found as the propagator 𝐺(𝜃,𝜃*) integrated over the frequency:

𝑆2(𝑘𝑚) ≡ ⟨𝜃(𝑘𝑚)𝜃*(𝑘𝑚)⟩ = lim
𝐾→0

∫︁
𝐺

(𝜃,𝜃*)
𝐾,𝑚 (𝜔)

d𝜔

2𝜋
=

∫︁
2𝐷𝑓

0𝑓
𝑑
𝐾→0,𝑚

𝜔2 + 𝑘4𝑚(𝐹
𝜅
𝐾→0,𝑚)

2

d𝜔

2𝜋

=
𝐷𝑓

0𝑓
𝑑
𝐾→0,𝑚

𝑘2𝑚𝐹
𝜅
𝐾→0,𝑚

.

(5.55)

The expression (5.55) shows that the form of the second-order structure function in
this approximation is determined by the behavior of the functions 𝑓𝑑 and 𝐹 𝜅 at the fixed
points 𝐾 → 0. If both functions appear to be power laws of the shell wavenumber 𝑘𝑚, so
is the structure function 𝑆2.

It should be noted that even though the vertices Γ(𝑛) of order 𝑛 > 4 are neglected in
the adopted ansatz (5.29), the higher-order correlation functions and structure functions
𝑆𝑛 with 𝑛 > 4 do not vanish. The fixed-point solution of the flow equations also allows
to compute any higher-order structure function 𝑆3, 𝑆4, 𝑆5 and so on, in the similar way
through the generating functional of the correlation functions (5.23).

5.5 Numerical solution

Using the exact analytical solution for the functions 𝐹 𝜅𝐾,𝑚 from Eq. (5.49) one can solve
numerically the set of coupled ODEs for 𝑓𝑑𝐾,𝑚 from Eq. (5.52).
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5.5. Numerical solution

Parameters. For numerical solution, the following numerical values of the model para-
meters are used: number of shells 𝑁 = 100, molecular diffusivity 𝜅 = 1, velocity variance
amplitude 𝐷𝑣

0 = 1, velocity spatial covariance exponent 𝜀 = 0.5, 1.0, 1.5, 2.0, the wave-
numbers of the shells 𝑘𝑚 = 𝑘0𝜆

𝑚 with 𝜆 = 2, 𝑘0 = 0.01, 𝑚 = {𝑚1, ...,𝑚𝑁}, 𝑚1 = −70,
𝑚𝑁 = 29, the microscale wavenumber Λ = 108, the forcing amplitude 𝐷𝑓

0 = 1. The set of
ODEs (5.52) is integrated over the variable 𝑠 = ln(𝐾/Λ) from 𝑠 = 0 to 𝑠 = −100, which
is equivalent to integrating over 𝐾 from 𝐾 = Λ to 𝐾 = Λ𝑒−100. The initial conditions at
𝑠 = 0 (or 𝐾 = Λ) are 𝑓𝑑𝐾=0,𝑚 = 0 ∀𝑚. The boundary conditions for the limiting shells
are 𝑓𝑑𝐾,𝑚1−1 = 0, 𝑓𝑑𝐾,𝑚𝑁+1 = 0. The system of equations (5.52) has been solved with the
fourth-order Runge-Kutta scheme implemented in scipy library (Jones et al., 2001), with
the maximal step limited to Δ𝑠 < 0.1.

To avoid the over- and underflow errors when computing expressions of the regulators,
the functions from Eq. (5.39) are replaced by the following piecewise-defined functions:

𝑟(𝑦) =

⎧⎪⎨⎪⎩
0, 𝑦 > 10

1

𝑒𝑦2−1
, 10−4 < 𝑦 < 10

𝑦−2, 𝑦 < 10−4

; 𝑛(𝑦) =

{︃
0, 𝑦 > 10

𝑦2𝑒−𝑦
2
, 𝑦 < 10

(5.56)

Figure 5.5 – Analytical solution of the flow equation 𝐹 𝜅 and the numerical one for 𝑓𝑑

evolving with the renormalization scale 𝑠 = ln(𝐾/Λ) for various shells with indices 𝑚 for
the case with 𝜀 = 1.5. The solution of 𝑓𝑑 for all shells reaches to a plateau with decreasing
𝑠, which indicates that the fixed point of the flow equation is reached in the solution.

Solution of the flow equations. The flow equations have to be integrated up to a
sufficiently large renormalization scale 𝐾, which is equivalent to reaching large negative
values of the variable 𝑠. The evolution of the functions 𝐹 𝜅 and 𝑓𝑑 with the scale variable 𝑠
is shown in Fig. 5.5. The solution for 𝐹 𝜅 is obtained simply by evaluation of the analytical
expression (5.49) at various values of 𝑠 and shell indices 𝑚, while the solution for 𝑓𝑑 is
obtained numerically with the Runge-Kutta method. The curves in Fig. 5.5 saturate at
constant levels at large negative 𝑠, indicating that the solutions of the flow equations reach
the fixed point when the renormalization wavenumber 𝐾 is small enough. These plateau
values of the functions 𝐹 𝜅 and 𝑓𝑑 are needed for the computation of the observables, such
as structure functions.

The dependence of the solutions at the fixed point on the shell wavenumber 𝑘𝑚 is
shown in Fig. 5.6. As previously discussed, the renormalized viscosity at the fixed point
has a power-law dependence 𝐹 𝜅𝐾→0,𝑚 ∼ 𝑘−𝜀𝑚 at wavenumbers 𝑘𝑚 < (𝐷𝑣

0/𝜅)
1/𝜀 = 1 and then

switches to a constant value equal to the molecular viscosity 𝜅 at 𝑘𝑚 > 1. The function
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(a) Analytical solution for 𝐹𝜅
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(b) Numerical solution for 𝑓𝑑

Figure 5.6 – Dependence of 𝐹 𝜅 and 𝑓𝑑 on the shell wavenumber 𝑘𝑚 at 𝑠 = −100 cor-
responding to the fixed point of the flow equations. The dashed lines show the slope of the
power law 𝑘−𝜀𝑚 . Both curves change their behavior in the vicinity of 𝑘𝑚 = (𝐷𝑣

0/𝜅)
1/𝜀 = 1.
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Figure 5.7 – Left-panel: second-order structure functions of the scalar for the case 𝜀 = 1.5
computed according to Eq. (5.55) with the functions 𝑓𝑑 and 𝐹 𝜅 shown in Fig. 5.6. Right
panel: the local power-law exponent of 𝑆2 evaluated through numerical log-log derivative:
the structure function 𝑆2 exhibits two zones with distinct power laws.
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Figure 5.8 – Local power-law exponent of the second order structure function at various
𝜀. In all cases, the exponent of 𝑆2 takes the value −2+ 𝜀 at 𝑘𝑚 . 1 and −2− 𝜀 at 𝑘𝑚 & 1.
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𝑓𝑑 at the fixed point also changes its shape in the vicinity of 𝑘𝑚 = 1: from the constant at
𝑘𝑚 < 1 to the power law 𝑘−𝜀𝑚 at large wavenumbers.

Structure functions of the scalar. Once the fixed-point solutions of the functions 𝐹 𝜅

and 𝑓𝑑 are known, one can calculate the second-order structure function of the scalar with
the use of the expression (5.55). The resulting dependence of the structure function 𝑆2 on
the shell wavenumber 𝑘𝑚 is shown in the left panel Fig. 5.7. It shows that the function 𝑆2(𝑘)
exhibits two distinct power laws. The right panel of Fig. 5.7 displays the local power-law
exponents of 𝑆2 estimated through taking the numerical log-log derivative. The dependence
of the power-law exponent on 𝜀 was tested in four cases 𝜀 = 0.5, 1.0, 1.5, 2.0, the results
for 𝑆2(𝑘) in all four cases are shown in Fig. 5.8. One can see that at 𝑘𝑚 . 1 the structure
function possesses the exponent −2 + 𝜀, while at 𝑘𝑚 . 1 the exponent takes the value
−2− 𝜀.

The third-order structure function 𝑆3 results to be zero, as it is expected for any odd-
order structure function. The numerical evaluation of the fourth-order structure function
𝑆4 shows that within the chosen ansatz it also takes the form of a power law with respect
to 𝑘𝑚. At 𝑘𝑚 . 1, its exponent is −4 + 2𝜀, which is two-fold larger than the one of 𝑆2. At
higher wavenumbers 𝑘𝑚 & 1, the power-law exponent of 𝑆4 takes the value −4− 3𝜀.

Discussion. Regarding 𝑆2, the power law 𝑘−2+𝜀
𝑚 at wavenumbers 𝑘𝑚 . 1 can actually be

deduced from the dimensional considerations of the initial shell model equation. It coincides
with the power law in the inertial range of the spectrum of the scalar in the continuous
Kraichnan’s model (see Sec. 1.3.2) in the case of zero dimension 𝑑 = 0. The same power
law has been obtained analytically for 𝑆2 and observed in numerical solutions of the initial
stochastic differential equation of Kraichnan’s shell model (Wirth and Biferale, 1996).

Regarding the large wavenumbers, the power law 𝑘−2−𝜀
𝑚 of the second-order structure

function 𝑆2 at large wavenumbers 𝑘𝑚 & 1 is identical to the power law of the intertial-
diffusive range of the passive scalar in continuous Kraichnan’s model with zero dimension
(section 1.3.2). However, this power law has not been reported previously in the works de-
dicated to the shell model of random passive advection. It can be related to an insufficient
number of shells in numerical modeling in previous works. It could also be a consequence
of a different implementation of the scalar forcing in the original shell model in the FRG
analysis that has been developed in this chapter. This question requires further investiga-
tion.

The fixed point solution allows in addition the computation of the higher order structure
functions. The numerical solution for 𝑆4 shows that at 𝑘 . 1 it behaves as a power law
with an exponent twofold greater than the one for 𝑆2, which corresponds to the normal
scaling in Kraichnan’s shell model (5.7). However, it is known from previous works that 𝑆4
power law exhibits a small deviation from the normal scaling, which is the intermittency
correction. Therefore, the simplest ansatz, adopted in the present study, contains only the
normal scaling of the model. The further study of this model within FRG approach will
be focused on developing a more complex ansatz and checking whether it allows observing
the intermittency correction for 𝑆4 and higher-order structure functions.
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Chapter 5. Shell model of scalar random advection

5.6 Conclusions

In this chapter, the initial steps of the FRG study of the shell model of random advection
of a passive scalar are provided. As a first step, the stochastic differential equation of the
advection-diffusion shell model was transformed to a corresponding path integral with the
use of MSRJD procedure. The advantage of switching to the path integral formalism is
that it yields multipoint Eulerian correlation functions. Then, a scale-dependent effective
average action functional is constructed by adding a regulator functional to the previously
found action of the initial stochastic differential equation. This regulator decouples the
large-scale modes from the small-scale ones. This approach allows to build a family of
scale-dependent models described by the effective average action. The dependence of the
effective action on the renormalization scale is governed by an exact flow equation.

Solving the flow equation consists in integrating the fluctuations progressively moving
from the known microscale model towards the effective large-scale model. However, since
the flow equations are complicated, an appropriate ansatz is needed. In the present chapter,
the shell model has been studied within the simplest ansatz: it is assumed that the fourth-
order derivatives of the action are negligible and that only the second-order derivatives
depend on the renormalization scale. In this assumption, only two flow equations have to
be solved: for the renormalized diffusivity 𝐹 𝜅𝐾,𝑚 and the renormalized forcing parameter
𝑓𝑑𝐾,𝑚, both being functions of the renormalization scale 𝐾 and the shell index 𝑚. Thanks
to the white-in-time velocity field, the ordinary differential equation for the renormalized
diffusivity 𝐹 𝜅𝐾,𝑚 can be solved analytically within the chosen ansatz. The set of ODEs for
the forcing-related function 𝑓𝑑𝐾,𝑚 can be solved numerically. Both solutions reach a fixed
point when the renormalization wavenumber 𝐾 goes to 0.

The fixed point solutions of the flow equations allow to compute observables such as
scalar structure functions. In this chapter, results for the second-order structure function
𝑆2 are provided. In the inertial range, 𝑆2 exhibits a power law 𝑆2 ∼ 𝑘−2+𝜀, which matches
with the power law resulting from dimensional arguments, and is in agreement with the
previous analytical and numerical studies of Kraichnan’s shell model. In addition, another
power law at high wavenumbers 𝑆2 ∼ 𝑘−2−𝜀 is observed, which can be analog to the inertial-
diffusive range in the continuous version of Kraichnan’s model. However, this result should
be tested with different implementations of the forcing in the model.

Regarding the fourth-order structure function 𝑆4, the simplest ansatz used for the ana-
lysis in this chapter allows to recover the normal scaling. However, it is known from previous
studies that this shell model possesses anomalous scaling for the structure functions of the
order higher that 4. It would be interesting to see whether taking a more precise ansatz
with the non-vanishing fourth-order derivatives of the action would give rise to the cor-
rection terms in 𝑆4, corresponding to anomalous exponents. This problem is particularly
interesting since it can give a clue about the minimal ansatz for FRG that allows to ob-
serve the anomalous corrections. Furthermore, this result can be useful in the application
of FRG to study anomalous scaling in models more complicated than Kraichnan’s shell
model.

Conclusions en français

Dans ce chapitre, les premières étapes de l’étude FRG du modèle en couches d’advection
aléatoire d’un scalaire passif sont présentées. D’abord, l’équation différentielle stochastique
du modèle en couches d’advection-diffusion a été transformée en une intégrale de chemin
grâce à la procédure MSRJD. L’avantage de passer au formalisme de l’intégrale de chemin
est qu’il produit des fonctions de corrélation eulériennes multipoints. Ensuite, une fonc-
tionnelle d’action effective moyenne dépendant de l’échelle est construite en ajoutant une
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fonctionnelle de régularisation à l’action de l’équation différentielle stochastique initiale
trouvée précédemment. Ce régulateur découple les modes à grande échelle des modes à
petite échelle. Cette approche permet de construire une famille de modèles dépendant de
l’échelle et décrits par l’action effective moyenne. La dépendance de l’action effective sur
l’échelle de renormalisation est régie par une équation de flot exacte.

La résolution de l’équation de flot consiste à intégrer les fluctuations, passant ainsi
progressivement du modèle microscopique connu vers le modèle à grande échelle effectif.
Cependant, comme les équations de flot sont compliquées, un ansatz approprié est néces-
saire. Dans le présent chapitre, le modèle en couches a été étudié au sein de l’ansatz le
plus simple : on suppose que les dérivées du quatrième ordre de l’action sont négligeables
et que seules les dérivées du second ordre dépendent de l’échelle de renormalisation. Dans
cette hypothèse, seules deux équations de flot doivent être résolues : celle de la diffusivité
renormalisée 𝐹 𝜅𝐾,𝑚 et celle du paramètre de forçage renormalisé 𝑓𝑑𝐾,𝑚, les deux étant des
fonctions de l’échelle de renormalisation 𝐾 et de l’indice de couche 𝑚. Grâce au champ
de vitesse qui a le comportement d’un bruit blanc en temps, l’équation différentielle ordi-
naire pour la diffusivité renormalisée 𝐹 𝜅𝐾,𝑚 peut être résolue analytiquement dans l’ansatz
choisi. L’ensemble des équations differentielles ordinaires pour la fonction liée au forçage
𝑓𝑑𝐾,𝑚 peut être résolu numériquement. Les deux solutions atteignent un point fixe lorsque
le nombre d’onde de renormalisation 𝐾 tend vers 0.

Les solutions au point fixe des équations de flot permettent de calculer des observables
telles que des fonctions de structure scalaire. Dans ce chapitre, les résultats pour la fonction
de structure du second ordre 𝑆2 sont fournis. Dans le domaine inertiel, 𝑆2 présente une
loi de puissance 𝑆2 ∼ 𝑘−2+𝜀, qui correspond à la loi de puissance résultant des arguments
dimensionnels, et est en accord avec les études analytiques et numériques précédentes du
modèle en couches de Kraichnan. De plus, une autre loi de puissance aux nombres d’onde
élevés 𝑆2 ∼ 𝑘−2−𝜀 est observée, qui peut être analogue à la gamme inertielle-diffusive dans
la version continue du modèle de Kraichnan. Cependant, ce résultat devra être testé avec
différentes implémentations du forçage dans le modèle.

Concernant les fonctions de structure de l’ordre quatre 𝑆4, l’ansatz le plus simple utilisé
pour l’analyse dans ce chapitre permet de retrouver la loi d’échelle normale. Cependant, il
est connu d’après des études antérieures que ce modèle en couches possède une loi d’échelle
anormale pour les fonctions de structure d’ordre 4 et supérieur.

Il serait intéressant de voir si un ansatz plus précis avec les dérivées du quatrième ordre
non nulles donnerait lieu aux termes de correction en 𝑆4, correspondant aux exposants
anormaux. Ce problème est particulièrement intéressant parce qu’il peut donner un indice
sur l’ansatz minimal pour FRG permettant d’observer les corrections anormales. De plus,
ce résultat peut être utile dans l’application de FRG pour étudier la loi d’échelle anormale
dans des modèles plus compliqués que le modèle en couches de Kraichnan.
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Conclusions and perspectives

The main objective of the study presented in this thesis is the numerical validation of
new theoretical results obtained within the FRG approach for spatio-temporal Eulerian
correlation functions in turbulent flows. In particular, the main conclusions regarding the
velocity correlation functions are the following:

— The two-point correlation function of velocity at small time lags, measured in the
numerical simulations, decays as a Gaussian function of the 𝑡𝑘-variable, which is in
agreement with the FRG prediction. This result also shows that the typical time
of the decorrelation of a velocity Fourier mode scales as 𝜏𝐷 ∼ 𝑘−1 which can be
explained by the dominance of the random sweeping effect in the Eulerian temporal
correlation.

— The same Gaussian decay is also observed for the triple velocity correlation function
at large wavenumbers, which was evaluated through the advection-velocity corre-
lation of filtered velocity fields. This result can be linked to the FRG result for
the three-point correlation function, predicting the same Gaussian form. Moreover,
the quantitative results for the decorrelation parameters of the Gaussian decay for
two- and three-point correlations are very close, which is also in agreement with the
theoretical results. To our knowledge, the temporal behavior of the triple velocity
correlation in Fourier space has not been studied before, so these results represent a
nontrivial quantitative check of the FRG prediction.

— Besides, the correlation function of the velocity moduli has been measured, although
such a correlation is not covered by the FRG analysis. The numerical results show
that the correlation function of moduli also decays as a Gaussian in 𝑡𝑘 at small time
lags and switches to a slower decay at large time lags.

— The results from another set of numerical simulations on finer grids allow to conclude
that the spectrum of the turbulent kinetic energy takes the form of a stretched expo-
nential in the near-dissipative range, and the value of the stretch exponent approaches
the one predicted by the FRG at high Reynolds numbers.

The analysis of the space-time correlations of a passive scalar in the inertial-convective
range allows to conclude that they are determined by the temporal covariance of the
velocity field. More precisely, the results allow to come to the following conclusions:

— In a turbulent velocity field governed by the Navier-Stokes equations, the space-
time correlation function of the scalar reproduces the form of the velocity correlation
function, decaying as a Gaussian at small time lags.

— In a random velocity field with approximately white-in-time covariance, the scalar
field decorrelates as an exponential of the variable 𝑡𝑘2, which is in agreement with
the FRG result for Kraichnan’s model of random advection.

— Adding a finite correlation time to the synthetic velocity field leads to the emergence
of a Gaussian decay at small time lags in the scalar correlation function, while at
time lags larger than the characteristic decorrelation time of velocity, the scalar
decorrelates as an exponential, identical to the one observed in the simulations of
Kraichnan’s model.
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— These results can be interpreted from the point of view of a single particle dispersion,
or more precisely through the (approximate) link of the Eulerian correlation function
with the Lagrangian displacements. The Gaussian decay of the scalar correlation
function can be related to the ballistic regime of the particle dispersion, when the
mean square displacement of a fluid particle grows quadratically in time. At large
time lags, the scalar correlation decays as an exponential, which can be linked to
the diffusive regime of the particle dispersion with the mean squared displacement
growing linearly in time.

— The analytical study of the shell model of a randomly advected scalar shows that
the FRG derivation for the structure functions for this model is considerably simpler
compared to the continuous models. The simplest ansatz described in this thesis
allows to build a set of renormalization group flow equations which reach a fixed point.
The scalar structure functions corresponding to the fixed point solution behave as a
power law matching the normal scaling of the model. These results are in agreement
with previous studies and represent the initial step for a more advanced FRG analysis
of this model.

The presented results demonstrate that the FRG predictions for the space-time cor-
relation functions are consistent with the numerical data. Therefore, the FRG provides
reliable results that can be mapped to numerical data, which makes the FRG approach a
promising framework for more advanced studies of statistical properties of turbulence. It
should be also mentioned that the presented predictions of the spatio-temporal correlation
functions can serve for the development of the closure of statistical models of turbulence
or to improve the numerical models parametrizing small-scale motions. Another example
of a direct application of the presented results for Eulerian space-time correlation is the
generation of synthetic velocity fields with realistic temporal behavior, which are largely
used for studies of particle dispersion of wave propagation in turbulent media.

However, in the direction of comparison of DNS results with the FRG predictions, there
are a lot of questions to explore, for instance:

— Study the large-time regime of the correlation functions. A possible way to reduce the
oscillations in the tail of the correlation functions and to improve the data quality at
large time lags is to increase the size of the computational domain or, equivalently,
to shift the peak wavenumber of velocity forcing to larger values. In such a way,
the simulation box fits more spatial integral scales, therefore the spatial large-scale
statistics has more realizations over the box, which clearly has an influence on the
temporal statistics on the large scales as well. Preliminary data obtained from simu-
lations of the scalar advection in NS velocity field in larger boxes show the presence
of a portion of exponential-like data at large time lags, while in the simulation of
the same scalar in a small box this range of time lags is already polluted by oscilla-
tions. However, the extension of DNS to larger boxes requires more computational
resources.

— Another interesting question, partly related to the previous question, is the influence
of the form of the forcing profile on the decorrelation parameters of the velocity
and scalar space-time correlation functions. The shell-to-shell analysis of the energy
transfer mentioned in this manuscript can be also used for a deeper understanding
of the influence of forcing on the energy transfers and correlation functions in DNS
data.

— The role of forcing in the temporal statistical properties of scalars and velocity can
also be analyzed through the numerical computation of the response function. In
the most basic approach, it can be evaluated as a correlation between the forcing
field with a time-shifted velocity field (or scalar). Moreover, the response functions
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have also a representation in the FRG derivation, so it can provide an additional
method for comparison with the FRG predictions. Numerically computed response
functions can be additionally compared with the linear response theory of turbulence,
summarized in the recent review of Kaneda, 2020.

— Concerning the passive scalar turbulence, it would also be interesting to study other
ranges in the passive scalar spectrum, for example, the viscous-convective range,
which is expected to have the power law 𝑘−1. In particular, one can check whe-
ther significant changes in the scalar Schmidt numbers lead to modification of the
characteristic decorrelation time of the scalar.

— Regarding the shell model of random scalar advection, this model is known to be the
simplest one exhibiting intermittency effects. Therefore, the shell version of Kraich-
nan’s passive scalar model is a good toy model for testing and exploring the FRG
method to compute the intermittency effects. It would be interesting to see whether
a more complicated FRG ansatz could give rise to intermittency corrections. One of
the possible ways to check it is to include the next-order (fourth-order) vertices in
the ansatz and recalculate structure functions. Finding the minimal order of vertices
that contribute to the intermittency effects can serve also for the development of
FRG approach in more complicated models.
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Conclusions et perspectives en français

L’objectif principal de l’étude présentée dans cette thèse est la validation numérique de
nouveaux résultats théoriques obtenus dans le cadre de l’approche FRG pour les fonctions
de corrélation eulériennes spatio-temporelles dans les écoulements turbulents. En particu-
lier, les principales conclusions concernant les fonctions de corrélation de vitesse sont les
suivantes :

— La fonction de corrélation à deux points de la vitesse à de petits décalages tem-
porels, mesurée dans les simulations numériques, se comporte comme une fonction
gaussienne de la variable 𝑡𝑘, ce qui est en accord avec la prédiction FRG. Ce résultat
montre également que le temps typique de la décorrélation d’un mode de Fourier
vitesse s’échelonne comme 𝜏𝐷 ∼ 𝑘−1 ce qui peut s’expliquer par la dominance de
l’effet de balayage aléatoire dans la corrélation temporelle eulérienne.

— La même décroissance gaussienne est également observée pour la fonction de corréla-
tion de vitesse triple aux grands nombres d’onde, qui a été évaluée par la corrélation
advection-vitesse des champs de vitesse filtrés. Ce résultat peut être lié au résultat
FRG pour la fonction de corrélation à trois points, prédisant la même forme gaus-
sienne. De plus, les résultats quantitatifs pour les paramètres de décorrélation de la
décroissance gaussienne pour les corrélations à deux et trois points sont très proches,
ce qui est également en accord avec les résultats théoriques. A notre connaissance,
le comportement temporel de la triple corrélation de vitesse dans l’espace de Fou-
rier n’a pas été étudié auparavant, donc ces résultats représentent une vérification
quantitative non triviale de la prédiction FRG.

— Par ailleurs, la fonction de corrélation des modules de vitesse a été mesurée, bien
qu’une telle corrélation ne soit pas couverte par l’analyse FRG. Les résultats numé-
riques montrent que la fonction de corrélation des modules décroît également comme
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une gaussienne en 𝑡𝑘 à de petits décalages temporels et passe à une décroissance plus
lente à de grands décalages temporels.

— Les résultats d’un autre ensemble de simulations numériques sur des mailles plus
fines permettent de conclure que le spectre de l’énergie cinétique turbulente prend
la forme d’une exponentielle étirée dans le domaine dissipatif-proche, et la valeur de
l’exposant d’étirement se rapproche de celle prédite par le FRG à des nombres de
Reynolds élevés.

L’analyse des corrélations spatio-temporelles d’un scalaire passif dans le domaine inertiel-
convectif permet de conclure qu’elles sont déterminées par la covariance temporelle du
champ de vitesse. Plus précisément, les résultats permettent de tirer les conclusions sui-
vantes :

— Dans un champ de vitesse turbulent gouverné par les équations de Navier-Stokes,
la fonction de corrélation espace-temps du scalaire reproduit la forme de la fonction
de corrélation de vitesse, décroissant comme une gaussienne à de petits décalages
temporels.

— Dans un champ de vitesse aléatoire avec une covariance approximativement blanche
en temps, le champ scalaire est décorrélé comme une exponentielle de la variable 𝑡𝑘2,
ce qui est en accord avec le résultat FRG pour le modèle d’advection aléatoire de
Kraichnan.

— L’ajout d’un temps de corrélation fini au champ de vitesse synthétique conduit à
l’émergence d’une décroissance gaussienne à de petits décalages temporels dans la
fonction de corrélation scalaire, tandis qu’à des décalages temporels supérieurs au
temps de décorrélation caractéristique de la vitesse, le scalaire décorrèle comme une
exponentielle, identique à celui observé dans les simulations du modèle de Kraichnan.

— Ces résultats peuvent être interprétés du point de vue de la dispersion d’une seule
particule, ou plus précisément à travers le lien (approximatif) de la fonction de cor-
rélation eulérienne avec les déplacements lagrangiens. La décroissance gaussienne de
la fonction de corrélation scalaire peut être liée au régime balistique de la dispersion
des particules, lorsque le déplacement quadratique moyen d’une particule fluide croît
de façon linéaire dans le temps. À de grands décalages temporels, la corrélation sca-
laire décroît comme une exponentielle, ce qui peut être lié au régime diffusif de la
dispersion des particules avec le déplacement quadratique moyen croissant comme la
racine carrée du temps.

— L’étude analytique du modèle en couches d’un scalaire à advection aléatoire montre
que la dérivation FRG pour les fonctions de structure pour ce modèle est considéra-
blement plus simple que les modèles continus. L’ansatz le plus simple décrit dans cette
thèse permet de construire un ensemble d’équations de flux de groupe de renormali-
sation qui atteignent un point fixe. Les fonctions de structure scalaires correspondant
à la solution du point fixe se comportent comme une loi de puissance correspondant
à la loi d’échelle normale du modèle. Ces résultats sont en accord avec les études
précédentes et représentent la première étape d’une analyse FRG plus avancée de ce
modèle.

Les résultats présentés démontrent que les prédictions FRG pour les fonctions de corré-
lation espace-temps sont cohérentes avec les données numériques. Par conséquent, le FRG
fournit des résultats fiables qui correspondent à des données numériques, ce qui fait de l’ap-
proche FRG un cadre prometteur pour des études plus avancées des propriétés statistiques
de la turbulence. Il convient également de mentionner que les prédictions des fonctions
de corrélation spatio-temporelles présentées peuvent servir pour le développement de la
fermeture de modèles statistiques de turbulence ou pour améliorer les modèles numériques
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paramétrant les mouvements à petite échelle. Un autre exemple d’application directe des
résultats présentés pour la corrélation spatio-temporelle eulérienne est la génération de
champs de vitesse synthétiques avec un comportement temporel réaliste, qui sont large-
ment utilisés pour les études de dispersion des particules et de propagation des ondes dans
les milieux turbulents.

Cependant, il reste de nombreuses questions à explorer dans le cadre de la comparaison
des résultats DNS avec les prédictions FRG, par exemple :

— Étudier le régime en temps grand des fonctions de corrélation. Une manière possible
de réduire les oscillations dans la queue des fonctions de corrélation consiste à aug-
menter la taille du domaine de calcul en déplaçant le nombre d’onde du forçage de
vitesse vers des valeurs plus grandes. De cette manière, la boîte de simulation contient
plusieurs échelles intégrales spatiales, donc les statistiques spatiales à grande échelle
ont plus de réalisations sur la boîte, ce qui aurait clairement une influence sur les
statistiques temporelles aux grandes échelles également. Les données préliminaires
obtenues à partir de simulations de l’advection scalaire dans le champ de vitesse
NS dans des boîtes plus grandes montrent la présence d’une partie de données de
type exponentielle à de grands décalages temporels, tandis que dans la simulation
du même scalaire dans une petite boîte, cette plage de décalages temporels est déjà
pollué par les oscillations. Cependant, l’extension du DNS à des boîtes plus grands
nécessite plus de ressources de calcul.

— Une autre question intéressante est l’influence de la forme du profil de forçage sur
les paramètres de décorrélation des fonctions de vitesse et de corrélation espace-
temps scalaire. L’analyse "shell-to-shell" du transfert d’énergie mentionnée dans ce
manuscrit peut également être utilisée pour une compréhension plus approfondie de
l’influence du forçage sur les transferts d’énergie et les fonctions de corrélation dans
les données DNS.

— Le rôle du forçage dans les propriétés statistiques temporelles des scalaires et de la
vitesse peut également être analysé par le calcul numérique de la fonction de réponse.
Dans l’approche la plus basique, il peut être évalué comme une corrélation entre le
champ de forçage avec un champ de vitesse (ou scalaire) décalé dans le temps. De
plus, les fonctions de réponse ont également une représentation dans la dérivation
FRG, de sorte qu’elles peuvent fournir une méthode supplémentaire de comparaison
avec les prédictions FRG. Les fonctions de réponse calculées numériquement peuvent
également être comparées aux théories de réponse linéaire de la turbulence, résumées
dans la récente revue de Kaneda, 2020.

— Concernant la turbulence scalaire passive, il serait également intéressant d’étudier
d’autres domaines du spectre scalaire passif, par exemple le domaine visqueux-convectif,
qui devrait avoir la loi de puissance 𝑘−1. En particulier, on peut vérifier si des chan-
gements significatifs des nombres de Schmidt scalaires conduisent à une modification
du temps de décorrélation caractéristique du scalaire.

— En ce qui concerne le modèle en couches d’advection scalaire aléatoire, ce modèle est
connu pour être le plus simple présentant des effets d’intermittence. Par conséquent,
la version en couches du modèle scalaire passif de Kraichnan est un bon modèle pour
tester et explorer la méthode FRG pour calculer les effets d’intermittence. Il serait
intéressant de voir si un ansatz FRG plus compliqué pourrait donner lieu à des correc-
tions d’intermittence. L’une des façons possibles de le vérifier est d’inclure les vertex
d’ordre supérieur (quatrième ordre) dans l’ansatz et de recalculer les fonctions de
structure. Trouver l’ordre minimal des vertex qui contribuent aux effets d’intermit-
tence peut également servir au développement de l’approche FRG dans des modèles
plus compliqués.
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A
Spectra of energy dissipation, transfer and flux

This appendix provides additional spectra obtained within DNS
such as spectra of energy dissipation, energy transfer function,
and energy flux. These spectra allow to have additional infor-
mation about the turbulent energy cascade in numerical simu-
lations, and in particular to evaluate the width of the inertial
range. The resulting spectra are compared with previous nume-
rical studies with the use of DNS method.
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Figure A.1 – Averaged spectra of dissipation, energy transfer function and energy flux
from numerical simulations at various Reynolds numbers.

To complete the spectra of kinetic energy shown in Fig. 3.1, this Appendix provides the
spectra of dissipation, nonlinear energy transfer, and energy flux (Fig A.1). The parameters
of the simulations are detailed in Table 3.1 (p. 48).

Spectral dissipation. The spectra of 𝐷̂ is computed as:

𝐷̂(k⃗) = 2𝜈𝑘2𝐸𝑘𝑖𝑛(k⃗), (A.1)

where 𝜈 is the kinematic viscosity and 𝐸𝑘𝑖𝑛 is the kinetic energy spectrum. Note that the
use of vertical scaling (𝜂2𝜈9𝜖)−1/4 and horizontal scaling 𝜂 makes the curves at various
Reynolds numbers collapse at wavenumbers beyond the forcing range. The maximum of
dissipation occurs in the vicinity of 𝑘𝜂 ≈ 0.2. The summation of the spectral dissipation
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Appendix A. Spectra of energy dissipation, transfer and flux

over all Fourier modes gives the total dissipation rate in the flow so that 𝜖 =
∑︀

k⃗
𝐷̂(k⃗).

These results are in agreement with previous DNS studies (Wang et al., 1996 ; P. K. Yeung
and Zhou, 1997 ; Ishihara et al., 2003).

Spectral energy transfer function. The energy transfer function 𝒯 is computed as:

𝒯 (k⃗) = −
⟨
Re
[︁
𝑁𝑗(k⃗, 𝑡)𝑢̂

*
𝑗 (k⃗, 𝑡)

]︁⟩
, (A.2)

where 𝑁𝑗(k⃗, 𝑡) = 𝑖𝑘𝑖
∑︀

𝑘′ 𝑢̂𝑗(k⃗
′, 𝑡)𝑢̂𝑖(k⃗− k⃗′, 𝑡) = FT[(𝑢𝑖𝜕𝑖)𝑢𝑗+∇𝑝](k⃗, 𝑡) - Fourier transform

of the advection and pressure gradient terms. The averaging is performed in spectral space
over spherical shells and in time over all iterations in simulation. The energy transfer
function gives the amount of energy that a Fourier mode k⃗ receives from all other modes
in the system. For the modes belonging to the forcing range, the energy transfer function is
negative, because these modes only send energy to smaller-scale modes through nonlinear
interactions and do not receive any energy. In the present study, it has been checked that
the total sum of energy transfers

∑︀
k⃗
𝒯 (k⃗) ≈ 0, which is expected since the nonlinear

interactions neither add nor drain energy from the system, they only redistribute the
energy between scales.

In addition, for the modes outside the forcing range, the energy transfer 𝒯 (k⃗) becomes
equal to the spectral dissipation 𝐷̂(k⃗). It expresses the balance between these two terms of
the energy transfer relation (3.10), which is expected in the case of stationary flow. These
results are also coherent with other numerical studies (Domaradzki and Rogallo, 1990 ;
Aoyama et al., 2005).

Spectral energy flux. The spectral energy flux at a wavenumber 𝑘 is computed as a
sum of the energy transfer function over smaller wavenumbers:

Π(𝑘) =
∑︁

|k⃗′|≤𝑘

𝒯 (k⃗′) (A.3)

The function Π(𝑘) gives the flux of energy passing through the scale 𝑘 from large scales
to the smaller ones. According to K41 theory, for scales which are far enough from both
forcing and dissipation scales, the energy flux is constant and approaches the total average
dissipation rate 𝜖 (Frisch, 1995), which in the case of stationary flow is also equal to the
forcing power input. That is to say that in the inertial range, relation Π(k⃗)/𝜖 ≈ 1, which
is indeed observed in DNS, as it can be seen from the last plot of Fig. A.1. In this way, the
spectral energy flux allows to estimate the width of the inertial range in each simulation.
One can see that the inertial range becomes more pronounced with increasing Reynolds
number. At the highest 𝑅𝜆 = 240, the inertial range extends approximately over one
decade.
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B
Shell-to-shell energy transfers and filtering

threshold

This appendix describes the shell-to-shell energy transfer func-
tion and the numerical algorithm of its computation. The ma-
trices of shell-to-shell energy transfers obtained from DNS and
their interpretation are provided. These matrices give a more
detailed picture of the energy cascade and allow to evaluate,
in particular, the influence of the forcing modes on the energy
transfer. These considerations served for establishing the thre-
shold wavenumber for the small-scale filter in this thesis.

B.1 Numerical method of computation of shell-to-shell energy
transfers

This appendix provides a schematic description of the method of computation of shell-
to-shell energy transfers in DNS. It is described and discussed in detail in the book of
Verma, 2019. Here only the principal steps are listed. The starting point of the derivation
of shell-to-shell energy transfer is the equation of variation of the kinetic energy of a single
Fourier mode of velocity, also known as the energy transfer relation (Frisch, 1995):

𝜕𝑡𝐸̂(k⃗, 𝑡) = −Re
⟨
𝑁𝑗(k⃗, 𝑡)𝑢𝑗

*(k⃗, 𝑡)
⟩

⏟  ⏞  
𝒯 −energy transfer

− 2𝜈𝑘2𝐸̂(k⃗, 𝑡)⏟  ⏞  
𝐷̂−dissipation

+
⟨
𝑓𝑗(k⃗, 𝑡)𝑢𝑗

*(k⃗, 𝑡)
⟩

⏟  ⏞  
𝑃−forcing power

. (B.1)

The energy transfer can be developed as:

𝒯 (k⃗, 𝑡) = −Re
⟨
𝑁̂𝑗(k⃗, 𝑡)𝑢̂

*
𝑗 (k⃗, 𝑡)

⟩
= −Re

⟨
𝑢̂*𝑗 (k⃗, 𝑡) 𝑖𝑘𝑙

∑︁
𝑘′

𝑢̂𝑗(k⃗
′, 𝑡)𝑢̂𝑙(k⃗− k⃗′, 𝑡)

⟩
. (B.2)

The energy transfer function 𝒯 (k⃗, 𝑡) corresponds to the energy that all other Fourier modes
transfer to the mode with wavevector k⃗.
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Appendix B. Shell-to-shell energy transfers and filtering threshold

To get the energy transfer function related to a single spectral shell, the shell filter is
introduced (see Fig. B.1).

𝑢̂𝐴𝑖 (k⃗
′, 𝑡) =

{︃
𝑢̂𝑖(k⃗

′, 𝑡), if k⃗′ ∈ shell A,
0, otherwise.

(B.3)

B

A
TAB

Figure B.1 – Schematic representation of the spectral shells.

Then, one can deduce that the total amount of energy transfers that all modes of shell
𝐵 receive from all modes of the shell 𝐴 has the following expression:

𝑇𝐴𝐵(k⃗, 𝑡) = −Re

⟨∑︁
𝑘∈𝐵

𝑖𝑘𝑙𝑢𝑗
*(k⃗, 𝑡)

∑︁
𝑘′∈𝐴

𝑢𝑗
𝐴(k⃗′, 𝑡)𝑢𝑙(k⃗− k⃗′, 𝑡)

⟩

= −Re

⟨∑︁
𝑘∈𝐵

𝑢𝑗
*(k⃗, 𝑡) FT

[︀
(𝑢𝑙𝜕𝑙)𝑢

𝐴
𝑗

]︀⏟  ⏞  
in physical space

(k⃗, 𝑡)

⟩
. (B.4)

Therefore, to compute the matrix of shell-to-shell energy transfers, one needs to perform
the following steps:

1. Apply the spectral shell filtering to the velocity field 𝑢̂𝑖(k⃗′, 𝑡) over the shell A.
2. Compute the advection term 𝑁𝐴

𝑗 = (𝑢𝑙𝜕𝑙)𝑢
𝐴
𝑗 in the physical space. Note that only

the advected velocity field is filtered, the advecting velocity field is not.
3. Compute the Fourier transform of the filtered advection term 𝑁𝐴.
4. Compute the local product of the filtered advection 𝑁̂𝐴

𝑗 with the velocity field 𝑢̂𝑗 in
the spectral space .

5. Average the resulting product in space over spectral shells, which is also equivalent
to applying filtering over shell B (each spectral shell is an individual shell B).

6. Repeat the same for other shells 𝐴.

B.2 Results of DNS

The resulting averaged-in-time matrices of shell-to-shell energy transfers are presented
in Fig. B.2. It is noticeable that most of the energy transfers are concentrated along the
diagonal of the matrix, which indicates the dominance of the local energy exchanges, or
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Figure B.2 – Matrices representing shell-to-shell energy transfers for various Reynolds
number. The abscissa corresponds to the wavenumber of the receiving mode in the transfer;
the ordinate corresponds to the wavenumber of the giving mode.
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Figure B.3 – Choice of the filter cut-off wavenumber from shell-to-shell energy transfer
matrix. The highlighted line on the left corresponds to the energy transfers where the forcing
shell is a giver. The plot on the right corresponds to the highlighted line and displays the
dependence of the energy transfer between the forcing shell and a shell characterized by the
wavenumber 𝑘𝐵. The blue vertical lines on the right plot correspond to typical length scales
of the flow: the integral scale 𝐿, the Taylor scale 𝜆 and the Kolmogorov scale 𝜂. The red
vertical line shows the cut-off wavenumber 𝐾𝑐𝑢𝑡−𝑜𝑓𝑓 which is chosen from the considerations
that the direct energy transfers from the forcing shell becomes negligible.
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Appendix B. Shell-to-shell energy transfers and filtering threshold

in other words, the most intense energy exchanges occur between the neighboring shells,
which is the signature of the turbulent energy cascade. The main diagonal is zero (colored
in white), indicating that in average the energy exchanges between the modes within a
spectral shell balance each other, which is expected in stationary turbulence. The fact that
the negative energy exchanges (blue squares) are above the positive ones (red squares)
indicates the main direction of the energy cascade: a shell-receiver with index 𝑖 gets energy
from the shell-giver with index 𝑖− 1 (red square) and sends energy to the shell 𝑖+ 1 (blue
square). It shows that the energy cascade is direct, meaning that the energy is cascading
from large scales to the small ones.

These results are consistent with the matrices of shell-to-shell energy transfers provided
in the book of Verma, 2019. This method provides a clear visualization of the energy
cascade in turbulence. As one can see from Fig. B.2, the cascade becomes more pronounced
at higher Reynolds numbers.

Another important feature that these matrices make clear: at small wavenumbers close
to the forcing wavenumber 𝑘𝑓 there are non-diagonal cells with non-zero energy transfer.
It means that the modes in the shell containing the forcing range interact directly with
several following shells, not only with the neighboring ones. In other words, there is a range
of shells, whose Fourier modes receive the kinetic energy not only through the turbulent
cascade (diagonal lines in the plots), but also through direct interactions with the forcing
modes (straight lines in the plots).

B.3 Choice of the filtering wavenumber

The matrices of the shell-to-shell energy transfers allow to evaluate the contribution
of the direct, not-cascade energy transfers from the forcing range to a certain shell 𝐵
(see Fig. B.3). The most useful application of this plot is that it allows to find a minimal
wavenumber, at which these direct interactions with the forcing modes become negligible,
and the turbulent cascade becomes the main mechanism of the energy transfer from large
scales to small ones. In other words, it serves to estimate the range of wavenumbers which
are not affected directly by the forcing, and thus which are expected to exhibit universal
behavior. This approach was used to find the filtering wavenumber 𝐾𝑐 for computing the
filtered velocity-advection correlation function in section 3.3.
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C
Filtered advection-velocity correlation

This appendix provides Navier-Stokes equations written for the
small-scale filtered velocity field in physical and in spectral
spaces. It also contains the full expressions for the energy trans-
fer of filtered fields and their interpretation. The numerical re-
sults for different terms of the decomposition of the spectral
energy transfer function and of the advection-velocity correla-
tion function are provided.

C.1 Scale decomposition and Navier-Stokes equation

In physical space

Navier-Stokes equations in the physical space read as:

𝜕𝑡𝑢𝑖 + (𝑢𝑗𝜕𝑗)𝑢𝑖 = −𝜕𝑖𝑝+ 𝜈∇2𝑢𝑖 + 𝑓𝑖. (C.1)

One can decomposition of the physical velocity field into large-scale and small-scale
parts (following the idea from the book of Frisch, 1995, section 2.4) :

𝑢𝑖(𝑥⃗, 𝑡) = 𝑢𝐿𝑖 (𝑥⃗, 𝑡) + 𝑢𝑆𝑖 (𝑥⃗, 𝑡), (C.2)

where the components can be determined with the use of the sharp spectral filter:

𝑢̂𝐿𝑖 (k⃗, 𝑡) =

⎧⎨⎩𝑢̂𝑖(k⃗, 𝑡), if
⃒⃒⃒
k⃗
⃒⃒⃒
< 𝐾𝑐𝑢𝑡−𝑜𝑓𝑓

0, if
⃒⃒⃒
k⃗
⃒⃒⃒
≥ 𝐾𝑐𝑢𝑡−𝑜𝑓𝑓

; 𝑢̂𝑆𝑖 (k⃗, 𝑡) =

⎧⎨⎩0, if
⃒⃒⃒
k⃗
⃒⃒⃒
< 𝐾𝑐𝑢𝑡−𝑜𝑓𝑓

𝑢̂𝑖(k⃗, 𝑡), if
⃒⃒⃒
k⃗
⃒⃒⃒
≥ 𝐾𝑐𝑢𝑡−𝑜𝑓𝑓

.

(C.3)
A similar decomposition can be performed for the forcing and pressure fields.

The operator 𝒮 denotes the operator of small-scale pass filter : 𝒮[𝑢𝑖] = 𝑢𝑆𝑖 . The appli-
cation of the operator 𝒮 to the NS equation gives (assuming that there is no forcing at
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Appendix C. Filtered advection-velocity correlation

small scales):

𝜕𝑡𝑢
𝑆
𝑖 + 𝒮[(𝑢𝐿𝑗 + 𝑢𝑆𝑗 )𝜕𝑗(𝑢

𝐿
𝑖 + 𝑢𝑆𝑖 )] = −𝜕𝑖𝑝𝑆 + 𝜈∇2𝑢𝑆𝑖 +��𝑓

𝑆
𝑖 . (C.4)

One can multiply both sides of the equation by 𝑢𝑆𝑖 . Then it is not necessary anymore to
put the operator 𝒮 in front of the advection term, since the multiplication by 𝑢𝑆𝑖 implies
also filtering. One obtains:

𝜕𝑡

⃒⃒
𝑢𝑆
⃒⃒2

2
+ 𝑢𝑆𝑖 [(𝑢

𝐿
𝑗 + 𝑢𝑆𝑗 )𝜕𝑗(𝑢

𝐿
𝑖 + 𝑢𝑆𝑖 )] = −𝑢𝑆𝑖 𝜕𝑖𝑝𝑆 + 𝜈𝑢𝑆𝑖 ∇2𝑢𝑆𝑖 . (C.5)

As the next step, one can apply the operator of averaging over the periodic box, which will
be denoted as ⟨...⟩. The periodicity implies that ⟨𝜕𝑖𝑓⟩ = 0 and ⟨(𝜕𝑖𝑓)𝑔⟩ = ⟨𝑓𝜕𝑖𝑔⟩ for any
𝑓, 𝑔.

𝜕𝑡

⟨⃒⃒
𝑢𝑆
⃒⃒2

2

⟩
+
⟨︀
𝑢𝑆𝑖 [(𝑢

𝐿
𝑗 + 𝑢𝑆𝑗 )𝜕𝑗(𝑢

𝐿
𝑖 + 𝑢𝑆𝑖 )]

⟩︀⏟  ⏞  
−𝒯 𝑆

= −
⟨︀
𝑢𝑆𝑖 𝜕𝑖𝑝

𝑆
⟩︀
+ 𝜈

⟨︀
𝑢𝑆𝑖 ∇2𝑢𝑆𝑖

⟩︀
. (C.6)

The term containing pressure vanishes on average due to the incompressibility condi-
tion. The energy transfer term can be developed into four terms:

𝒯 𝑆 = −
⟨︀
𝑢𝑆𝑖 [(𝑢

𝐿
𝑗 + 𝑢𝑆𝑗 )𝜕𝑗(𝑢

𝐿
𝑖 + 𝑢𝑆𝑖 )]

⟩︀
=

= −
[︀⟨︀
𝑢𝑆𝑖 𝑢

𝐿
𝑗 (𝜕𝑗𝑢

𝐿
𝑖 )
⟩︀
+
⟨︀
𝑢𝑆𝑖 𝑢

𝑆
𝑗 (𝜕𝑗𝑢

𝐿
𝑖 )
⟩︀
+
⟨︀
𝑢𝑆𝑖 𝑢

𝐿
𝑗 (𝜕𝑗𝑢

𝑆
𝑖 )
⟩︀
+
⟨︀
𝑢𝑆𝑖 𝑢

𝑆
𝑗 (𝜕𝑗𝑢

𝑆
𝑖 )
⟩︀]︀
. (C.7)

The last two terms can be simplified with the use of the properties of the averaging operator:⟨︀
𝑢𝑆𝑖 𝑢

𝐿
𝑗 (𝜕𝑗𝑢

𝑆
𝑖 )
⟩︀
=
��

���
��⟨︀

𝜕𝑗(𝑢
𝑆
𝑖 𝑢

𝐿
𝑗 𝑢

𝑆
𝑖 )
⟩︀
−
⟨︀
(𝜕𝑗𝑢

𝑆
𝑖 )𝑢

𝐿
𝑗 𝑢

𝑆
𝑖

⟩︀
−
��

���
��⟨︀

𝑢𝑆𝑖 (𝜕𝑗𝑢
𝐿
𝑗 )𝑢

𝑆
𝑖

⟩︀
⇒
⟨︀
𝑢𝑆𝑖 𝑢

𝐿
𝑗 (𝜕𝑗𝑢

𝑆
𝑖 )
⟩︀
= 0.⟨︀

𝑢𝑆𝑖 𝑢
𝑆
𝑗 (𝜕𝑗𝑢

𝑆
𝑖 )
⟩︀
=
���

���
�⟨︀

𝜕𝑗(𝑢
𝑆
𝑖 𝑢

𝑆
𝑗 𝑢

𝑆
𝑖 )
⟩︀
−
⟨︀
(𝜕𝑗𝑢

𝑆
𝑖 )𝑢

𝑆
𝑗 𝑢

𝑆
𝑖

⟩︀
−
���

���
�⟨︀

𝑢𝑆𝑖 (𝜕𝑗𝑢
𝑆
𝑗 )𝑢

𝑆
𝑖

⟩︀
⇒
⟨︀
𝑢𝑆𝑖 𝑢

𝑆
𝑗 (𝜕𝑗𝑢

𝑆
𝑖 )
⟩︀
= 0.

The vanishing term
⟨
𝑢𝑆𝑖 𝑢

𝐿
𝑗 (𝜕𝑗𝑢

𝑆
𝑖 )
⟩
means that the process of advection of small-scale

velocity fields 𝑢𝑆 by the large-scale field 𝑢𝐿 does not change the average (or total over the
box) energy of the small-scale motions. The vanishing term

⟨
𝑢𝑆𝑖 𝑢

𝑆
𝑗 (𝜕𝑗𝑢

𝑆
𝑖 )
⟩
means that the

internal energy exchanges between the small scales are in total zero.
The remaining non-zero terms of the average energy transfer can be written as:

𝒯 𝑆 = −
⟨︀
𝑢𝑆𝑖 𝑢

𝐿
𝑗 (𝜕𝑗𝑢

𝐿
𝑖 )
⟩︀
−
⟨︀
𝑢𝑆𝑖 𝑢

𝑆
𝑗 (𝜕𝑗𝑢

𝐿
𝑖 )
⟩︀
= −

⟨︀
𝑢𝑆𝑖 𝑢𝑗(𝜕𝑗𝑢

𝐿
𝑖 )
⟩︀
. (C.8)

This expression signifies that the average non-zero energy transfer towards small scales
occurs only due to interactions with the large scale motions. This picture is rather simple
and intuitively clear, and it will guide the interpretation in the spectral space.

In spectral space

Equation (C.4) can be rewritten in Fourier space:

𝜕𝑡𝑢̂
𝑆
𝑖 (k⃗, 𝑡) + FT

[︀
𝒮[(𝑢𝐿𝑗 + 𝑢𝑆𝑗 )𝜕𝑗(𝑢

𝐿
𝑖 + 𝑢𝑆𝑖 )]

]︀
(k⃗, 𝑡) = −𝑖𝑘𝑖𝑝𝑆(k⃗, 𝑡)− 𝜈𝑘2𝑢̂𝑆𝑖 (k⃗, 𝑡). (C.9)

Multiplying both sides of this equation by the velocity field [𝑢̂𝑆𝑖 ]
*
(k⃗, 𝑡0) gives:

[𝑢̂𝑆𝑖 ]
*
(k⃗, 𝑡0)𝜕𝑡𝑢̂

𝑆
𝑖 (k⃗, 𝑡) + [𝑢̂𝑆𝑖 ]

*
(k⃗, 𝑡0) FT[(𝑢𝐿𝑗 + 𝑢𝑆𝑗 )𝜕𝑗(𝑢

𝐿
𝑖 + 𝑢𝑆𝑖 )](k⃗, 𝑡) =

= −(((((
(((

(((
𝑖𝑘𝑖𝑝

𝑆(k⃗, 𝑡)[𝑢̂𝑆𝑖 ]
*
(k⃗, 𝑡0)− 𝜈𝑘2𝑢̂𝑆𝑖 (k⃗, 𝑡)[𝑢̂

𝑆
𝑖 ]

*
(k⃗, 𝑡0). (C.10)
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C.1. Scale decomposition and Navier-Stokes equation

The second term in the left-hand side of this equation represents the energy transfer func-
tion for small-scale modes. One can see that it consists of four terms, which actually are
the decomposition terms 𝑇 introduced in the main text in Eq. 3.16. Following the nota-
tions proposed in the book of of Verma, 2019 for energy transfers, the first superscript of
𝑇𝑋𝑌 𝑍 is related to the receiver mode, the intermediate superscript denotes the mediator
mode, and the last superscript is related to the giver mode. The complete definitions of
the decomposition terms are:

— 𝑇𝑆𝑆𝑆(k⃗, 𝑡, 𝑡0) - energy transfer with participation of only small-scale modes.

𝑇𝑆𝑆𝑆(k⃗, 𝑡, 𝑡0) =
⟨
−[𝑢̂𝑆𝑖 ]

*
(k⃗, 𝑡0) FT[𝑢𝑆𝑗 𝜕𝑗𝑢

𝑆
𝑖 ](k⃗, 𝑡)

⟩
=

⟨
−𝑖𝑘𝑗 [𝑢̂𝑆𝑖 ]

*
(k⃗, 𝑡0)

∑︁
k⃗′

𝑢̂𝑆𝑗 (k⃗− k⃗′, 𝑡)𝑢̂𝑆𝑖 (k⃗
′, 𝑡)

⟩

=

⟨
−𝑖𝑘𝑗 [𝑢̂𝑆𝑖 ]

*
(k⃗, 𝑡0)

∑︁
|𝑘′|≥𝐾𝑐

|k⃗−k⃗′|≥𝐾𝑐

𝑢̂𝑗(k⃗− k⃗′, 𝑡)𝑢̂𝑖(k⃗
′, 𝑡)

⟩
, for

⃒⃒⃒
k⃗
⃒⃒⃒
≥ 𝐾𝑐𝑢𝑡−𝑜𝑓𝑓 .

(C.11)

From the previous consideration in the physical space, it is already known that at
𝑡 = 𝑡0 the average over the periodic box nullifies the term

∑︀
𝑘 𝑇

𝑆𝑆𝑆(k⃗, 𝑡0, 𝑡0) = 0.
— 𝑇𝑆𝐿𝑆(k⃗, 𝑡, 𝑡0) - energy transfers between two small-scale modes with a large-scale

advecting mode.

𝑇𝑆𝐿𝑆(k⃗, 𝑡, 𝑡0) = −
⟨
[𝑢̂𝑆𝑖 ]

*
(k⃗, 𝑡0) FT[𝑢𝐿𝑗 𝜕𝑗𝑢

𝑆
𝑖 ](k⃗, 𝑡)

⟩
= −

⟨
𝑖𝑘𝑗 [𝑢̂

𝑆
𝑖 ]

*
(k⃗, 𝑡0)

∑︁
𝑘′

𝑢̂𝐿𝑗 (k⃗− k⃗′, 𝑡)𝑢̂𝑆𝑖 (k⃗
′, 𝑡)

⟩

= −

⟨
𝑖𝑘𝑗 [𝑢̂

𝑆
𝑖 ]

*
(k⃗, 𝑡0)

∑︁
|𝑘′|≥𝐾𝑐

|k⃗−k⃗′|<𝐾𝑐

𝑢̂𝑗(k⃗− k⃗′, 𝑡)𝑢̂𝑖(k⃗
′, 𝑡)

⟩
, for

⃒⃒⃒
k⃗
⃒⃒⃒
≥ 𝐾𝑐𝑢𝑡−𝑜𝑓𝑓 .

(C.12)

The average of this term over the periodic box is also zero:
∑︀

𝑘 𝑇
𝑆𝐿𝑆(k⃗, 𝑡0, 𝑡0) = 0,

meaning that the advection (or sweeping) of small scales by large scales does not
change the total energy of small-scale field. It should be also noted that if one writes
the same equation for the large-scale velocity field 𝑢̂𝐿𝑖 , it does not contain explicitly
the term 𝑇𝑆𝐿𝑆 , which means that the large scales do not lose nor gain energy directly
in this type of interaction, the large-scale mode acts only as a mediator in the energy
exchange between two small-scale modes, with:

— 𝑇𝑆𝐿(k⃗, 𝑡, 𝑡0) = 𝑇𝑆𝑆𝐿(k⃗, 𝑡, 𝑡0) + 𝑇𝑆𝐿𝐿(k⃗, 𝑡, 𝑡0) - energy transfers between the small
and large scales.

𝑇𝑆𝑆𝐿(k⃗, 𝑡, 𝑡0) = −
⟨
[𝑢̂𝑆𝑖 ]

*
(k⃗, 𝑡0) FT[𝑢𝑆𝑗 𝜕𝑗𝑢

𝐿
𝑖 ](k⃗, 𝑡)

⟩
=

−

⟨
𝑖𝑘𝑗 [𝑢̂

𝑆
𝑖 ]

*
(k⃗, 𝑡0)

∑︁
𝑘′

𝑢̂𝑆𝑗 (k⃗− k⃗′, 𝑡)𝑢̂𝐿𝑖 (k⃗
′, 𝑡)

⟩
=

−

⟨
𝑖𝑘𝑗 [𝑢̂

𝑆
𝑖 ]

*
(k⃗, 𝑡0)

∑︁
|𝑘′|<𝐾𝑐

|k⃗−k⃗′|≥𝐾𝑐

𝑢̂𝑗(k⃗− k⃗′, 𝑡)𝑢̂𝑖(k⃗
′, 𝑡)

⟩
, for

⃒⃒⃒
k⃗
⃒⃒⃒
≥ 𝐾𝑐𝑢𝑡−𝑜𝑓𝑓 . (C.13)
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𝑇𝑆𝐿𝐿(k⃗, 𝑡, 𝑡0) = −
⟨
[𝑢̂𝑆𝑖 ]

*
(k⃗, 𝑡0) FT[𝑢𝐿𝑗 𝜕𝑗𝑢

𝐿
𝑖 ](k⃗, 𝑡)

⟩
=

−

⟨
𝑖𝑘𝑗 [𝑢̂

𝑆
𝑖 ]

*
(k⃗, 𝑡0)

∑︁
𝑘′

𝑢̂𝐿𝑗 (k⃗− k⃗′, 𝑡)𝑢̂𝐿𝑖 (k⃗
′, 𝑡)

⟩
=

−

⟨
𝑖𝑘𝑗 [𝑢̂

𝑆
𝑖 ]

*
(k⃗, 𝑡0)

∑︁
|𝑘′|<𝐾𝑐

|k⃗−k⃗′|<𝐾𝑐

𝑢̂𝑗(k⃗− k⃗′, 𝑡)𝑢̂𝑖(k⃗
′, 𝑡)

⟩
, for

⃒⃒⃒
k⃗
⃒⃒⃒
≥ 𝐾𝑐𝑢𝑡−𝑜𝑓𝑓 . (C.14)

These terms represent the energy transfer between the small and large scales, the first
term combines the energy exchanges with a small-scale mediator, while the second
one - with the large-scale mediator. The equation for large scales would contain
identical terms with the opposite sign.

Regarding the term 𝑇𝑆𝐿𝐿, it is important to notice that although both velocity fields
inside the convolution are large-scale pass filtered (with 𝐿 superscript), this convo-
lution can have a non-zero contribution to the mode k⃗ belonging to the small-scale
range. In other words, the convolution over filtered fields can generate a contribution
to the modes outside the filter-pass range. Another important feature of this term
is that it is exactly zero at

⃒⃒⃒
k⃗
⃒⃒⃒
> 2𝐾𝑐, which follows from the triangle inequality:⃒⃒⃒

k⃗
⃒⃒⃒
=
⃒⃒⃒
k⃗′ + k⃗

⃒⃒⃒
<
⃒⃒⃒
k⃗′
⃒⃒⃒
+
⃒⃒⃒
k⃗− k⃗′

⃒⃒⃒
< 2𝐾𝑐. It signifies that the influence of this type

of energy exchanges vanishes when one considers large wavenumbers which are far
enough from the filter cut-off threshold so that 𝑘 > 2𝐾𝑐𝑢𝑡−𝑜𝑓𝑓 .

Link with the two-point correlation function. These energy transfer terms can be
related to the two-point spatio-temporal correlation function 𝐶2(k⃗, 𝑡, 𝑡0) =

⟨
𝑢̂𝑖(k⃗, 𝑡0)𝑢̂

*
𝑖 (k⃗, 𝑡)

⟩
.

Using the notations introduced above, one can rewrite the equation (C.10) (here and
after the superscript 𝑆 is omitted, but one should keep in mind that it is valid for the
small-scale part of the velocity field

⃒⃒⃒
k⃗
⃒⃒⃒
≥ 𝐾𝑐):

𝜕𝑡𝐶2(k⃗, 𝑡, 𝑡0) =
[︁
𝑇𝑆𝑆𝑆 + 𝑇𝑆𝐿𝑆 + 𝑇𝑆𝑆𝐿 + 𝑇𝑆𝐿𝐿

]︁
(k⃗, 𝑡, 𝑡0)− 𝜈𝑘2𝐶2(k⃗, 𝑡, 𝑡0) (C.15)

𝑇 𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑆𝑆𝑆 + 𝑇𝑆𝐿𝑆 + 𝑇𝑆𝑆𝐿 + 𝑇𝑆𝐿𝐿 (C.16)

In the assumption of statistical stationarity, implying that the statistical quantities
must depend only on the time difference Δ𝑡 = 𝑡− 𝑡0, the equation can be rewritten:

(︀
𝜕Δ𝑡+𝜈𝑘

2
)︀
𝐶2(k⃗,Δ𝑡) =

[︁
𝑇𝑆𝑆𝑆 + 𝑇𝑆𝐿𝑆 + 𝑇𝑆𝑆𝐿 + 𝑇𝑆𝐿𝐿

]︁
(k⃗,Δ𝑡) (C.17)

It should be noticed that the values of individual 𝑇 -terms on the right-hand side depend
on the choice of the filter cut-off wavenumber 𝐾𝑐, while the two-point correlation function
on the left-hand side does not depend on the choice of filter. The change of the filter only
leads to a redistribution of the decomposition terms on the right-hand side.
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C.2 Numerical results for the filtered velocity-advection cor-
relation function

Energy transfers (zero time lag)

During the simulations, three different energy transfer terms were calculated:

1. 𝑇 𝑡𝑜𝑡𝑎𝑙 - the total energy transfer without any filter applied, which is equivalent to the
sum of all four transfer functions of the right side in the equation (C.17);

2. 𝑇𝑆𝑆 - the energy transfer between the small scales, where the advection field is not
filtered, which is equivalent to sum if two terms 𝑇𝑆𝑆 = 𝑇𝑆𝑆𝑆 + 𝑇𝑆𝐿𝑆 ;

3. 𝑇𝑆𝑆𝑆 - the energy transfer computed with the use of all three fields filtered.
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Figure C.1 – Filtered and non-filtered energy transfer functions versus wavenumber 𝑘. The
curves 𝑇𝑆𝑆𝑆 , 𝑇𝑆𝐿𝑆 , 𝑇𝑆𝐿 denote different filtered energy transfers according to definitions
in the Sec. 3.3.2, while 𝑇 𝑡𝑜𝑡𝑎𝑙 is the total transfer without any filter applied. The curve
𝐷̂ denotes the dissipation spectrum, the black continuous line gives the sum of the total
energy transfer summed over all 𝑘, which is zero. The vertical lines show the filter cut-off
wavenumber 𝐾𝑐 and its doubled value. Left panel: the data in linear 𝑦 scaling, right panel:
the same in the logarithmic, so the zero and negative point are omitted.

Results for these energy transfers allow to construct data for the other decomposition
terms:

— 𝑇𝑆𝐿 = 𝑇 𝑡𝑜𝑡𝑎𝑙 − 𝑇𝑆𝑆 - direct energy transfer from large scales to small ones, which
would be non-local if we consider wavenumbers far enough from the cut-off filter
value 𝐾𝑐𝑢𝑡−𝑜𝑓𝑓 (in this case, it is impossible distinguish the contributions of 𝑇𝑆𝑆𝐿

and 𝑇𝑆𝐿𝐿, but we know that 𝑇𝑆𝐿𝐿 = 0 for 𝑘 > 2𝐾𝑐𝑢𝑡−𝑜𝑓𝑓 );

— 𝑇𝑆𝐿𝑆 = 𝑇𝑆𝑆 − 𝑇𝑆𝑆𝑆 - the energy transfer between two small scales with mediation
of a large-scale mode.

In general, this type of decomposition does not allow to observe the cascade as clearly
as the matrix of energy transfers between spectral shells as it is shown in Appendix B.
However, it allows to estimate the contributions from different types of triads to energy
transfer. The results presented in this section are obtained from the simulation on the
grid of resolution 𝑁3 = 5123, at Taylor Reynolds number 𝑅𝑒𝜆 = 160 with spectral spatial
resolution 𝑘𝑚𝑎𝑥𝜂 = 1.5. The time dependency curves are averaged over 16 time windows.
The filtering wavenumber is set at𝐾𝑐 = 40 which is close to the wavenumber corresponding
to the Taylor length scale (the cut-off wavenumber was chosen with the use of the energy
transfer matrix from Fig. B.3: it corresponds to the receiver wavenumber which interacts
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negligibly weakly with the forcing modes, which means that the filtered field is free from
the direct interactions with the forcing modes - see Appendix B).

Term 𝑇𝑆𝐿𝑆 - "sweeping interactions". From the plot of the energy transfer function
in the Fig. C.1 one can conclude that in the dissipation range, most of the energy is
transferred by 𝑇𝑆𝐿𝑆 term, meaning that the local energy transfers between small scales
with a large-scale mode mediator are dominating, which is in agreement with previous
studies (Domaradzki and Rogallo, 1990). It indicated that most of the energy transfers
between two small scales occurs through the mediation of a mode of the large-scale velocity
field, which advects both small scales.

Term 𝑇𝑆𝐿 - non-local transfers. The term 𝑇𝑆𝐿 denoting the direct energy transfer
from the large-scale field towards the small-scale one, appears to be very large close to the
cut-off wavenumber 𝐾𝑐, which is clear since in this zone the interaction between the two
fields is local. At larger wavenumbers, this term measures non-local direct energy transfers.
Note that at 𝑘 > 𝐾𝑐 only one type of triad is involved in this term: 𝑇𝑆𝐿 = 𝑇𝑆𝑆𝐿 (large-scale
mode as sender and a small-scale mode as a mediating advecting field). From the spectrum
one can see that this term is very small compared to the local transfers 𝑇𝑆𝐿𝑆 , and can
even become negative, which indicates the presence on a backward energy transfer from
small to large scales, also known as backscattering (Piomelli et al., 1991). Apparently, this
type of triads was also observed in the numerical simulations in the work of Ohkitani and
Kida, 1992. The occurrence of backward non-local energy transfer has been also observed
in the work of Domaradzki and Rogallo, 1990, and it is mentioned that this weak inverse
energy transfer was also predicted by EDQNM theory.

Term 𝑇𝑆𝑆𝑆 - small-scale-only interactions. The interactions involving the small
scales only 𝑇𝑆𝑆𝑆 are also relatively weak. This term is negative close to the cut-off fre-
quency, which results from the fact that part of the local interactions with positive contri-
bution in this zone is filtered out (the modes giving energy to the modes of this part of the
spectrum are nullified by the filtering procedure), while the negative contribution due to
energy transfer towards the smaller scales stays full. In other words, the disblance in local
interactions close to the cut-off wavenumber is due to filtering. At wavenumbers 𝑘 > 𝐾𝑐

the term 𝑇𝑆𝑆𝑆 is positive. At 𝑘 > 2𝐾𝑐 one can consider that the effects of the filtering
become minor.

The term 𝑇𝑆𝑆𝑆 corresponds to a triadic interaction in which all three modes have large
wavenumbers, thus, they are the only one possible to compare with the FRG prediction
for the three-point correlation function (see section 3.3).

Time-dependent filtered advection-velocity correlation function (non-zero time
lag).

Considering the terms of the decomposition (C.16) with a non-zero time lag allows to see
the temporal dependence of the terms of the decomposition of 𝑇 . The results for the non-
filtered 𝑇 𝑡𝑜𝑡𝑎𝑙 and and small-scale-only tetm 𝑇𝑆𝑆𝑆 are provided in the main text in section
3.3. Here, in Fig. C.2 the examples of behaviors of the remaining two decomposition terms
are shown. On the left panel, Fig. C.2a, the time dependence of the decomposition term
𝑇𝑆𝐿 is shown which gathers the contributions of the non-local energy exchanges. One can
see that this type of correlation function tends to a symmetrical Gaussian form, but with a
negative peak value, which indicates again the presence of the backscattering. On the right
panel, Fig. C.2b, the time dependence of the decomposition term 𝑇𝑆𝐿𝑆 is shown, which
has the largest contribution to the energy transfer at zero-time lags. As it was mentioned
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Figure C.2 – Time dependence of the filtered advection-velocity correlation functions
𝑇𝑆𝐿𝑆 , 𝑇𝑆𝐿 at various wavenumbers, from the simulation 𝑅𝜆 = 160, 𝑁 = 512.

above, these triads contain two small-scale modes, exchanging energy and one large-scale
mode which plays the role of the mediator by advecting the two small-scale modes. One
can see that the time dependence of this term is non-symmetrical and has clear maximum
and minimum values. This result shows that the non-symmetrical temporal behavior of the
non-filtered correlation function 𝑇 𝑡𝑜𝑡𝑎𝑙 (see Fig. 3.8a) is determined by the contribution of
the decomposition term 𝑇𝑆𝐿𝑆 , and thus, by the sweeping of small scales by slowly varying
in space and time large-scale velocity fields.
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Fonctions de corrélation en turbulence
Simulations numériques et comparaison avec l’analyse par
le groupe de renormalisation fonctionnel

Correlation functions in turbulence
Numerical simulations and comparison with the functional
renormalization group analysis

Résumé
L’objectif de cette thèse est une comparaison des données de simulations numériques di-
rectes (DNS) d’un écoulement turbulent isotrope homogène en trois dimensions avec des
prédictions analytiques récentes obtenues au moyen de l’approche du groupe de renormali-
sation fonctionnel (FRG). Les principaux résultats de la thèse concernent la fonction de cor-
rélation spatio-temporelle de la vitesse, qui devrait décroître comme une fonction gaussienne
du temps aux petits décalages et exponentiellement aux grands décalages temporels. Les
résultats numériques montrent que la fonction de corrélation à deux points des modes de
Fourier de vitesse décroît effectivement comme une gaussienne dans le temps aux petits
décalages temporels. Le même comportement est observé pour les corrélations triples de la
vitesse, qui peuvent être liées à la fonction de transfert d’énergie spectrale. Cependant, le
comportement aux grands décalages temporels est indiscernable en raison des amplitudes
faibles des fonctions de corrélation.
Un autre résultat important de la thèse concerne les corrélations spatio-temporelles dans
la turbulence du scalaire passif. Les simulations d’une quantité scalaire dans un champ de
vitesse gouverné pas l’équation de Navier-Stokes démontrent également une décroissance
gaussienne pour la fonction de corrélation du scalaire à de petits décalages, similaire à la
corrélation de vitesse. L’influence des corrélations temporelles de vitesse sur le scalaire est
étudiée dans des simulations avec des champs de vitesse synthétiques. Dans le cas d’une
vitesse aléatoire delta-corrélée en temps (également connue sous le nom de modèle de
Kraichnan), les corrélations du scalaire démontrent une décroissance purement exponen-
tielle dans le temps. L’ajout d’un temps de corrélation fini à la vitesse synthétique conduit à
l’émergence d’une partie gaussienne à de petits décalages temporels dans la décroissance
de la fonction de corrélation scalaire, tandis qu’elle devient exponentielle à des décalages
temporels plus grands que le temps de corrélation de vitesse typique. Ces résultats révèlent
la transition entre les deux régimes de corrélation temporelle, comme prédit par le FRG.
La dernière partie de la thèse présente une étude préliminaire du modèle en couches de
l’advection aléatoire du scalaire passif avec l’utilisation de l’approche FRG. La loi d’échelle
normale dans la fonction de structure de second ordre du scalaire est obtenue, et les direc-
tions possibles d’études des lois d’échelle anormales sont discutées.

Mots-clés : Mécanique des fluides, Turbulence, Simulations numériques

Abstract
The aim of this thesis is a comparison of the data from direct numerical simulations (DNS) of
a three-dimensional homogeneous isotropic turbulent flow with recent analytical predictions
obtained by means of the functional renormalization group (FRG) approach. The main results
of the thesis concern the spatio-temporal correlation function of velocity, which is expected
to decay as a Gaussian function of time at small time lags and as an exponential at large
time lags. The numerical results show that the two-point correlation function of the Fourier
modes of velocity indeed decays as a Gaussian in time at small time lags. The same be-
havior is observed for triple velocity correlations, which can be linked to the spectral energy
transfer function. However, the behavior at large time delays is indiscernible due to the low-
level magnitude of the correlation functions. Another important result of the thesis concerns
the spatio-temporal correlations in passive scalar turbulence. The simulations of a scalar in a
Navier-Stokes velocity field demonstrate a Gaussian decay as well for the scalar correlation
function at small time delays, similar to the velocity correlation. The influence of the velocity
temporal correlations on the scalar is studied in simulations with synthetic velocity fields. In
the case of a random white-in-time velocity (also known as Kraichnan’s model), the scalar
correlations demonstrate a purely exponential decay in time. Adding a finite correlation time
to the synthetic velocity leads to the emergence of a portion of Gaussian decay at small time
lags in the scalar correlation function, while it turns to the exponential at time delays larger
than the typical velocity correlation time. These results reveal the crossover between the two
temporal correlation regimes, as predicted by the FRG. The last part of the thesis presents a
preliminary study of the shell model of random passive scalar advection with the use of the
FRG approach. The normal scaling of the second-order scalar structure is obtained, and the
possible directions for studying the anomalous scaling are discussed.

Keywords : Fluid mechanics, Turbulence, Numerical simulations
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