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Abstract
Low cost smart sensors, intelligent controllers, and IoT systems constitute
key components to develop smart buildings. These smart systems produce
optimal control strategies by continuous analysis of building performance.
Two major parameters are controlled in the buildings: occupants’ comfort
and heating or cooling load consumption optimization. For such intelligent
controllers applications, it is essential to have building models with high per-
formance accuracy and computational efficiency. The existing building mod-
els range from complete analytical to fully data-driven and hybrid models.
The analytical one is extremely complex to model and computationally in-
efficient, whereas the data-driven models require a large amount of data.
However, in the case of data unavailability, application of data-driven mod-
els become impossible. This work presents, hybrid modeling for heat trans-
fer dynamics of the building using thermal network modeling technique. An
efficient building model is developed by having proper structural knowl-
edge of low-order model and identifying its parameter values. Simplified
low-order systems are developed using 2nd order thermal network models
with optimal thermal resistor and capacitor values. In order to determine
the low-order model parameter values, a specific approach is proposed us-
ing a stochastic particle swarm optimization. This method provides a signifi-
cant approximation of the parameters when compared to the reference model
whilst allowing low-order model to achieve 40% to 50% computational effi-
ciency than the reference analytical model.

Furthermore, extensive simulations are carried out to evaluate the proposed
simplified model with a more advanced complex solar gains model and iden-
tified parameters value. The developed simplified model is afterwards val-
idated with measured data from a case study building where the achieved
results clearly show a high degree of accuracy compared to the actual data.

Finally, a model-based controller is applied for the same case study building
for thermal comfort optimization. Simulation results demonstrate the signif-
icance of the controller in handling the constraints, multi-objective control,
and producing optimal control strategy. The energy optimization results of
the controller have shown 31% of energy consumption reduction compared
to a conventional controller.
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Chapter 1. Introduction

1.1 Background

Currently, buildings are responsible for preeminent amount of world’s en-
ergy consumption and CO2 emission. There are major four sectors of pri-
mary energy consumption: Industry, Transportation, Buildings, and Others.
Although the industry sector alone represents major part of energy consump-
tion, buildings along with services constitute for the larger portion of energy
consumption as show in Figure 1.1. It indicates that buildings sector becomes
the largest consumer of primary energy consumption. According to the Euro-
pean Energy Efficiency Commission (EEEC), buildings in EU represent 40%
of total primary energy consumption [1] and nearly 36% of CO2 emission [2].
The energy generated from fossil fuels contributes considerable CO2 emis-
sion and causes global warming. Consequently, the government authorities,
regulators and policy makers have been influencing people in the direction
of sustainable buildings by introducing energy efficiency policies.

FIGURE 1.1: Total final consumption par sector by European
Union - 28 countries [3].

The International Energy Agency (IEA) specifies: "Globally, the wide deploy-
ment of best available technologies and energy efficiency policies could yield annual
savings in buildings final energy use of roughly 53 exajoules (EJ) by 2050" [4].
This amount is equivalent to cumulative energy consumption by buildings in
China, France, Germany, Russia, the United Kingdom and the United States
in 2012 [5]. Capturing this energy savings potential will offer a variety of
benefits:

• much lesser energy and fuel prices for industries and residential,
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• better reliability in meeting energy demand without expensive infras-
tructure,

• high efficient systems with low energy consumption,

• lower emissions of heat-absorbing greenhouse gases and other contam-
inants that cause damage to human health.

Therefore, optimization of energy consumption is crucial for healthy envi-
ronment and sustainable development. Integration of renewable energies [6]
and intelligent systems [7] to the buildings could achieve the estimated sav-
ings in energy consumption.

In the residential buildings of EU, the end-energy is used for lighting, water
heating, space heating/cooling, cooking, and others. Figure 1.2 shows that
the main use of energy is for space heating/cooling around 64 %, the next
major portion is used for domestic water heating, representing 14.8 %. For
cooking devices, the energy required is 6.1 % of total energy, while lighting
and electrical/electronic appliances represents 14.1 %.

FIGURE 1.2: Final energy consumption in the residential sector
by use, 2018 [3].

Electricity meets 100 % of the energy requirements for space cooling and
lighting in the residential buildings of EU. Gas plays a vital role in terms
of room and water heating and cooking. All available energies from renew-
able have been used for space heating and water heating, it indicates that
the necessity of adapting to renewable energies for others as well. While for
space heating apart from gas and renewable energies, considerable part of
electricity is also used (Figure 1.3).
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FIGURE 1.3: Part of the main energy products in the final en-
ergy consumption in the residential sector for each type of end-

use, 2018 [3].

Considering the above statistics, it is certain that there is a need to reduce
energy consumption from the buildings, mainly the space heating/cooling
requirements. These energy demands are low in energy efficient buildings
that have very high thermal insulation. The properly insulated buildings re-
quire less energy for space heating in winter as the thermal loss is low and in
summer, it prevents from overheating of the indoor environment thus reduc-
ing the space-cooling requirement. Nevertheless, rapid increase in the need
of new buildings due to the population growth and mass migration to the
urban areas accounts for increased energy demand in the buildings. Making
all new buildings as nearly zero-energy buildings (nZEB), and retrofitting
the conventional buildings structurally and operationally will have a greater
impact on the reduction of primary energy consumption [8–10].

There are two key factors influencing space heating energy demand in resi-
dential buildings: the energy performance of the building envelope, and the
occupants number and behavior. Improvements in the energy performance
of the building can be made by taking effective retrofit steps and construct-
ing all new buildings as nearly zero-energy buildings (nZEB). This include
high thermal insulations, air tightness and ventilation maintenance, the re-
placement of current mechanical systems with advanced technology, and the
introduction of renewable energy sources to fulfil the energy demands. On
the other hand, occupants behavior is complex, and has significant impact
on the indoor conditions. To improve overall performance of buildings there
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is a need of systems that can be used to control multi-objectives of the build-
ings [11–13]. A Building Automation System (BAS), or a Building Automa-
tion Control System (BACS), is an intelligent controller installed in building
to provide better understanding of required comfort conditions and occu-
pants behaviors and controlling the HVAC systems optimally to avoid un-
wanted heating/cooling or any other operation based on the habits and be-
havior. Indoor comforts and energy consumption are affected by various
parameters, particularly occupants behavior [14], construction type [15], and
weather conditions [16]. The occupants behavior and environmental condi-
tions are volatile in nature. They cause unexpected changes in indoor com-
fort and could result in excessive energy consumption [17, 18]. Hence, an in-
telligent controller should be able to consider occupancy behavior along with
weather conditions to predict and control indoor comfort while optimizing
energy consumption. A promising controller for BACS is Model Predictive
Control (MPC). MPC applied to Heating, Ventilation, and Air-Conditioning
(HVAC) has shown excellent performance abilities to achieve comfort and
energy optimization in buildings. MPC has the ability to make a better trade-
off between indoor comfort and energy consumption of buildings [19] while
considering constraints (occupants behavior and weather conditions).

The performance efficiency of model-based controllers, such as MPC applied
for HVAC control mainly depends on accuracy and computational efficiency
of the building model [20–22]. The building model (zone model) should
replicate dynamics of the heat transfer dynamics in building, able to predict
zone heat loads/air temperatures as a function of controllable (HVAC sys-
tems) and uncontrollable measurable inputs (weather, internal heat gains, so-
lar gains, etc.), and simplified enough to implement optimization techniques.

These building models can be are of two types: direct (forward) modeling
and inverse modeling [23]. Generally, direct models are analytical models
that begins with complete physical description of the building, materials, and
HVAC systems. Significant amount of buildings data is required to develop
such models. Whereas, inverse models are developed from empirical meth-
ods using data collected from the buildings. Furthermore, building model
performance accuracy is greatly influenced by its system and parameters.
Generally, system parameters are identified using inverse methodology as it
is relatively simple to model and simulate. Typically, a building model is de-
veloped with resistor-capacitor (RC) thermal network model, and values of
these resistors and capacitors are identified using an optimization method by
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minimizing the error between RC thermal network model temperature and
measured temperature data. However, such inverse model methodologies
require measured data from building, data about building geometry, and
HVAC system data. Consequently, developing a model for buildings that
lack of measured data become very difficult, and affects the model perfor-
mance and poor control strategies.

In this regard, this study focuses on proposing a new hybrid methodology,
combination of direct and inverse models to develop building model. For
this model, we need building geometry, materials thermo-physical proper-
ties data. The developed model is used to predict zone temperature or heat-
ing/cooling loads and implemented for controller application for validation.
This thesis looks for new ways of modeling techniques that can be used to
improve performance.

1.2 Thesis Contributions

This thesis presents the buildings different modeling techniques, controlling
methodology, parameters identification methods, HVAC system design and
implementation of these models to predict zone temperature or heating/-
cooling loads to have better supervisory control. The main objective is to
develop simplified building models for retrofit or new buildings that do
not have any measured data, and to improve indoor thermal comfort con-
dition while optimally consuming the energy though intelligent controllers
and HVAC systems. In addition, this work presents design and develop-
ment of air source heat pump-variable refrigerant flow (ASHP-VRF) system
that installed in the case study building to provide thermal comfort.

There have been many works on the development of simplified building
models using hybrid methods. However, these works use complex analyt-
ical model for reference model development and parameters are identified
only by giving step excitation, but the ambient temperature is periodic in na-
ture, it is important to identify parameters by using periodic input. Similarly,
for ASHP-VRF systems there is no standard or generic models for its mod-
eling, hence this study focuses brief introduction on generic modeling tech-
nique. The developed parameters identification methodology is extensively
analyzed by applying it to different wall configurations, validating against
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literature model, and finally implementing on case-study building and vali-
date against the measured values. The major contributions of this thesis are
detailed below:

• A state of the art review in building modeling and controller techniques
for energy and comfort optimization. A critical review was carried out
to investigate recent developments in controller and modeling tech-
niques. A detailed analysis provided on white box models, data driven
black box models, and hybrid gray box models. These models are been
compared and critically reviewed on many different criteria.

• Analysis of the recent developments in lumped parameter thermal model
techniques. Lumped parameter thermal network model development,
different configurations, and its parameters identification techniques
are thoroughly reviewed. Through these review studies, we found that
there is a need of proper investigation of different configurations of
lumped parameter thermal network model and its parameters iden-
tification. The parametric identification techniques in literature have
used either inverse method by using data collected from buildings or
forward method with reference complex analytical model and the pa-
rameters values obtained by step response but ambient temperature is
periodic in nature. These investigations show that there is a need of
simplified model development with its parameters identification meth-
ods.

• Identification of the best performance lumped parameter thermal net-
work model. Various most utilized configurations of thermal network
models are developed, simulated, and compared for their performance
accuracy and computational cost. We found that the 3R2C configura-
tion has shown acceptable accuracy and computational cost. The same
3R2C model for multilayer wall with different values for parameters
has shown different result, it shows that the parameter values have
high influence on the performance of models

• Development of parameters identification approach using stochastic
optimization technique. We proposed a new parametric identification
method using particle swarm optimization (PSO) and a reference Crank-
Nicolson finite difference method (CNFDM). We choose CNFDM be-
cause it is an unconditionally stable method and PSO selected for its
better convergence behavior and robustness. Both reference model and
PSO algorithm are developed using Python programming language.
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The simulations were carried out on three different thermal mass mul-
tilayer walls (ASHRAE standards) for both step and periodic response,
and results are compared with two other models. The comparison
showed 3R2C model with parameters optimal value has shown better
performance accuracy over two other models with different parameter
values.

• Development and validation of a lumped parameter model with iden-
tified parameter value for a case study building. A lumped parameter
thermal network model is developed (using Python programming lan-
guage) to describe the dynamics of building heat transfer under dy-
namic conditions. The model input, construction, thermos-physical
properties data were collected from case study building. The solar ir-
radiance data obtained from the building is of global horizontal irra-
diance, hence we introduced advanced complex Hay Davies Klucher
Reindl (HDKR) using anisotropic sky model. The model is validated
using the operational data collected from the case study building and
is validated for two seasons: winter and summer.

• Development and validation of model predictive controller. A sim-
ple model predictive controller developed for energy and comfort op-
timization in the case study building. The controller is simulated for
one week and the results are compared to the operational data of case
study building. The MPC based on the developed simplified model
has shown greater efficiency compare conventional on/off controller.
We used the Python programming language with CVXOPT solvers for
minimizing the cost function.

• Analysis of air source heat pump variable refrigerant flow (ASHP-VRF)
systems and development of a simulation model. A brief introduction
is given on generic simulation modeling on the ASHP-VRF systems and
presented simulation results for two rooms.

1.3 Thesis outline

This thesis is organized as follows:
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• The chapter 1 presents an introduction to the thesis background, moti-
vations, objective, and contributions. A detailed background informa-
tion is given on energy consumptions by different sectors, different en-
ergy usage in residential buildings in EU. Furthermore, how the build-
ings are impacting environment is detailed. A solution perspective is
provided for improving both energy performance of building envelope
and controllers for building operation and control. In addition, a brief
introduction is given to the lumped parameter thermal network model
and its importance in controller applications.

• In chapter 2, a state of the art review of different controllers and mod-
eling techniques is presented. A comparison is provided for the three
different modeling techniques. Furthermore, suggestions and recom-
mendations are provided in terms of controller selection for different
scenarios and advantages and disadvantages of each controller is de-
tailed. This chapter aims to provide description on thermal behavior of
the building systems and importance of building physical and thermal
properties, occupancy number and behavior, building type, and envi-
ronmental conditions.

• The chapter 3 presents an approach to design and develop building
dynamic thermal models that are of paramount importance for con-
troller application. An efficient building model is developed by hav-
ing proper structural knowledge of low-order model and identifying
its parameter values. Simplified low-order systems can be developed
using thermal network models using thermal resistances and capaci-
tances. In order to determine the low-order model parameter values,
a specific approach is proposed using a stochastic particle swarm opti-
mization. This method provides a significant approximation of the pa-
rameters when compared to the reference model whilst allowing low-
order model to achieve 40% to 50% computational efficiency than the
reference one. Additionally, extensive simulations are carried to eval-
uate the proposed simplified model with solar radiation and identified
model parameters.

• The chapter 4 presents chosen case-study buildings along with the IoT
system installed in it. Different sensors installed in the building are
presented. Furthermore, HVAC systems are detailed and a brief intro-
duction is presented on ASHP-VRF systems and modeling techniques.
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An attempt is made on developing a generic model for ASHP-VRF sys-
tems simulations, and results are presented in this chapter. The model
is implemented for two rooms and in future it will be extended to all
rooms of the building.

• In chapter 5, the developed whole zone model is validated against the
measure data from the case study building (container building). An
analysis is done on the different input models of the building. A com-
plex solar heat gains model presented in this chapter. The model is de-
veloped on the basis of HDKR approach, the results show that HDKR
approach based model has better estimation of the solar heat gains as
compared to the simple conventional models and measured global hor-
izontal radiation. Furthermore, a detailed analysis of importance of oc-
cupants number and behavior is provided in this chapter. The thermal
network model results show that using proposed parametric identifica-
tion method the accuracy of the model can be increased.

• The chapter 6 presents the simple MPC controller applied on the case-
study building to control thermal comfort while reducing the energy
consumption. MPC model implemented in the building for one week
has shown promising results of almost 31% energy savings as com-
pared to the conventional control system installed in the building. Some
discussion is provided on the results.

• Conclusion chapter 7 summarizes the main contributions of this thesis
and makes some recommendations for future research.
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Chapter 2. State of the art review

2.1 Introduction

This chapter reviews the literature papers related to this thesis work. The
first part of this chapter deals with a state of the art review on recent de-
velopments in building energy management system (BEMS) and occupants
comfort, focusing on three model types: white box, black box, and gray box
models. This literature review was done to define the research methodology
and to identify the better suited modeling technique for the thesis work con-
sidering various parameters such as: availability of data, efficiency, adapt-
ability and reliability. In the second part, some observations and discussions
are provided by comparing each modeling technique via literature review.
Third part presents the model predictive control of building heating/cool-
ing systems. In the fourth and final part details on air source heat pump -
variable refrigerant flow systems (ASHP-VRF) and conclusions with some
recommendations are given, respectively.

2.2 Background

In the previous chapter, it was noticed that buildings consume more than 40%
of primary energy and produces more than 36% of CO2. An intelligent con-
troller applied to the buildings for energy and comfort management could
achieve significant reduction in energy consumption while improving occu-
pant’s comfort. Conventional on/off controllers were only able to automate
the tasks in building and not enough suited for energy optimization tasks.
Therefore, building energy management has become a focal point in recent
years, promising the development of various technologies for various sce-
narios.

Integration of renewable energies [6] and intelligent systems [7] to the build-
ings along with intelligent controllers could achieve the greater savings in
energy consumption. However, efficient building energy consumption op-
timization is still a challenging task because of various parameters affecting
the building energy consumption. These influential factors can be divided
into major five types:

1. Building physical and thermal properties (thermal conductivity, spe-
cific heat, thickness, density, etc.) [24].

2. Occupancy behavior (occupancy activities, interaction with the build-
ing, etc.) [25].
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3. Building sector type and building energy policies (type of building, lo-
cation, regional policies, etc.) [26].

4. Population size (number of occupants present, indoor activities) [27].

5. Climatic conditions (outdoor dry bulb temperature, wind speed, out-
door relative humidity, solar radiation, etc.) [4].

Among these five influential factors, building physical properties, climatic
conditions and occupancy behavior have a direct impact on energy consump-
tion. At the same time, other parameters represent slightly minimal effect on
the energy consumption. A study conducted on university buildings to eval-
uate the relationship between energy consumption and population size, user
activities, and demand profiles reveals population size have a minimal im-
pact on electrical energy consumption as compared to other parameters [27].
Generally, people spend 90% of their life in buildings [28], hence the mainte-
nance of comfortable environment is important to assure occupants’ health
and productivity. The quality of occupants’ living is determined by three
comfort parameters: thermal comfort, indoor air quality and visual comfort.
These three comforts are achievable by exploiting Heating, Ventilation and
Air-Conditioning (HVAC) controller and lighting systems with natural re-
sources (day lighting, outside temperature, etc.).

A Building Energy Management System (BEMS) is required to improve en-
ergy performance meanwhile ensuring improved occupants’ comfort. Con-
versely, realization of indoor comfort environments draws more energy to
achieve and maintain the optimal comfort. Therefore, a proper trade-off is
required between energy and indoor comfort [29]. In this context, recent de-
velopments in the BEMS are focusing on smart technologies to address the
gap between energy consumption and occupants’ comfort [30] .

Thermal modeling of the building allows to replicate the actual dynamics of
the real building and to predict its thermal behavior. This prediction can be
well used for scheduling of energy systems, optimizing comfort conditions,
and energy savings. Dynamics of the heat flux has significant impact on per-
formance of the building. Hence, accurate modeling of heat flux dynamics is
essential.
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2.2.1 Heat and mass transfer in buildings

The fundamental thermal properties of building elements are heat storage ca-
pacity and transmissibility. Building components that can store heat include
envelopes, ceilings, floors, multi-glazing windows, and the zone air. The
two factors mainly influence the heat storage in building elements: thermal
mass and specific heat capacity. The stored heat is further transmitted to low
temperature sides (outside or inside). These thermal properties of the build-
ing envelope determines the time lag and decrement factor [31]. Such ther-
mal dynamics can be represented by thermal networks by means of electrical
circuit based on the thermal-electrical analogy. Electrical resistors represent
thermal transmittance, while electrical capacitors represent heat storage. We
use the lumped capacitance method to represent a whole building model’s
thermal dynamics as an electrical circuit based on the analogy. The main
advantage of using electrical circuits is to use effective methods for solving
and simulation. Furthermore, because of their simplicity, computational effi-
ciency, and acceptable accuracy, the models can be used for control purposes.
Despite the fact that such thermal networks fail to consider all heat dynamics
of the building due to the lumped parameter, the results show good accuracy
with real dynamics.

Heat Transfer

The different modes of heat and mass transfer dynamics that occurs in build-
ings is shown in Figure 2.1. There are three types of heat transfer processes
[32]:

• Conduction heat transfer: occur in solids and fluids in which the vibrat-
ing molecules are unable to break free from another molecule due to the
presence of boundary surfaces with a small temperature differential.

• Convection heat transfer: occur in fluids when its molecules are able
to move freely and independently. This occurs due to the phenomenon
of expansion or contraction of the fluids when it is heated or cooled
causing changes in its density.

• Radiation heat transfer: occurs due to the interchange of electromag-
netic waves between surfaces having differing temperatures that are
facing each other.
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Figure 2.1 shows the heat transfer dynamics that occur in buildings. The
room is isolated from the outside environment by an exterior wall and a win-
dow. The room is equipped with an HVAC system which would supply the
room with heating or cooling energy by circulating air. The environmental
conditions, such as the external air temperature and the solar radiance are
some of the most influential parameters of heat transfer processes in build-
ings.

Conduction heat transfer occurs through the building envelope, such as ex-
ternal walls, floor slabs, ceilings, roofs, and internal partitions. Solar ra-
diation transfers through windows and doors, this is an example for ra-
diation heat transfer. Air movement (infiltration) from outside/adjoining
rooms to inside due to temperature difference. Heat and moisture dissipa-
tion from electrical appliances, inhabitants and furniture’s within the room,
and heating or cooling and humidification or dehumidification provided by
the HVAC system [33].

Conduction

Heat conduction is a type of heat transfer, where heat is transferred though a
solid from higher temperature to the lower temperature region. Conduction
occurs through the transfer energy between the particles of the medium and
this transfer is continuous process until the system reached thermal equilib-
rium [32]. This type of heat transfer in buildings mostly occurs through the
walls, ceilings, floors, and windows.

The rate of heat transfer is mainly dependent on the thermal properties of
the material. Thermal conductivity is one of the properties that influence
heat transfer rate. The conduction heat transfer equation is also known as
Fourier’s conduction law. Fourier’s law for one-dimensional heat flow through
a single slab of homogeneous material is shown in Figure 2.1. The heat rate
equation of conduction transfer is given by:

qx = −kAdT
dx

(2.1)

where, qx (W ) is the heat transfer rate in the x direction and is proportional
to the temperature gradient, dT

dx
,

k is the thermal conductivity (W/mK) of the material, and
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the minus sign in the right hand side of the equation 2.1 indicates that heat
is always transferred in the direction of lower temperature. Thus, the loss of
energy from the higher temperature side.

The steady-state heat conduction through a homogeneous wall is given by:

dT

dx
=
Thigh − Tlow

L
(2.2)

qx = kA
Thigh − Tlow

L
(2.3)

FIGURE 2.1: Heat and mass transfer processes involved in
buildings [34]

Convection

Convection occurs in liquids and gases, in which the molecules have free and
independent motion. There two types of convection: natural and forced. In
natural convection, warmer molecules rise and cooler molecules drop, due to
the effects of gravity [32]. In general, HVAC systems use forced convection
to heat/cool the zone space. The heat transfer rate of convention process is
given by:

q = hA(Tsurface − Tfluid) (2.4)

Where q, the convective heat transfer (W ),
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Tsurface is the surface temperature,

Tfluid is the temperature of the fluid in contact with the surface,

h is the convective heat transfer coefficient (W/m2.K),

The equation 2.4, is also known as Newton’s cooling law. The rate of convec-
tive heat transfer mainly depend on the temperature gradient and the con-
vective heat transfer coefficient. In buildings, the convection heat transfer oc-
curs near the surface of walls, floors, windows, roofs, partitions, furnitures,
HVAC systems, and occupants.

Radiation

Radiation heat transfer is the electromagnetic waves emitted by a surface that
is at a finite temperature. All surfaces that are above absolute zero degree
Kelvin (> 0.0K) emit, absorb, reflect, and transmit the thermal radiation [32].
Furthermore, for radiation, a transfer medium is not required unlike other
heat transfers that need a medium to transfer the heat. In fact radiation trans-
fer occurs most efficiently in a vacuum.

The effectiveness of radiation exchange is dependent upon the texture of the
radiating and receiving surfaces. Surface characteristics include: reflectivity
(r), transmissivity (t), absorptivity (α) and emissivity (ε).

A perfect radiator will emit 100% radiation, this is know as black body ra-
diation. The expression for radiation heat transfer between two surfaces is
given by:

q”
rad = εσ(T 4

s − T 4
sur) (2.5)

In the buildings, the radiation heat transfer between internal surfaces is mini-
mal as the difference between surface temperatures is very low. Furthermore,
radiation between internal surfaces introduces non-linearity in the system,
we have shown radiation heat transfer linearization in the next section.

The conductive heat transfer occurs through building envelope, mainly through
external walls. This heat transfer is the result of the convective heat transmit-
ted by the surface on either side of the wall due to the temperature difference
between wall surface and ambient air, and the radiative heat transfer with
other wall surfaces that are facing towards each other and on the external
side the wall is exposed to direct/diffused solar radiation.
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Similarly, the solar radiation heat is transferred inside via the window glasses.
A part of incident solar radiation is transmitted directly to the inside, some
part is reflected back to environment, and remaining part is absorbed by the
glass, thus increasing the glass temperature leading to heat transfer to both
indoor and outdoor through conduction within the glass and convection and
radiation at both the surfaces. The outside surface temperature of the exter-
nal wall varies due to the effect of absorbed solar gains and outdoor temper-
ature, these two parameters are regularly addressed together as ’sol-air tem-
perature’. The sol-air temperature is defined as the outside air temperature
which, in the absence of solar radiation, would give the same temperature
distribution and rate of heat transfer through a wall (or roof) as exists due to
the combined effects of the actual outdoor temperature distribution plus the
incident solar radiation [35, 36].

The solar radiation transmitted through the windows to the indoor, will be-
come a cooling load only after the indoor surfaces absorbing the incident
solar radiation. As a consequence, surface temperatures will increase, result-
ing into convective heat transfer from wall surfaces to indoor air. This phe-
nomenon influences the indoor air temperature and becomes a part of space
cooling load. The magnitude and occurrence of the peak of cooling load dif-
fers from those of the radiant heat gain from the building envelope. This
difference occurs due to the presence of thermal capacitance of the building
envelope.

The conduction heat transfer responsible for higher percentage of heat trans-
fer compare to the other two processes. The building envelopes plays major
role in conduction heat transfer and the most significant thermal properties
of building envelope are thermal capacitance and thermal resistance of the
materials. Thermal capacity (C) is the property of a material to absorb heat
when it is heated and to release heat when it is cooled [37]. It is defined by:

Q = Cth (TH − TC) (2.6)

where Q - the heat absorbed or released by a material (J)

Cth = m× C - the thermal mass of the material

m - mass of the material (kg)

C - specific heat capacity of the material (J/(kg.K))

TH − TC - the temperature difference (K)
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Thermal resistance is a building envelope’s material property and refers to
that material’s ability to resist the flow of heat. It is inverse of thermal con-
ductance. It is defined by:

R = l/k (2.7)

where R - the thermal resistance per unit area of the piece of a material
(m2K/W )

l - the thickness of the material (m)

k - the conductivity of the material (W/mK)

The heat transfer through building envelope under steady state conditions
is only affected by the temperature difference between indoor and outdoor,
and the thermal resistance of the building envelope. However, under dy-
namic conditions, the thermal capacitance plays an important role, its ability
to store heat and transfer it later significantly affects the phenomenon of the
heat transfer. The ability of storing heat by the building envelope is called as
thermal mass. Thermal mass depends on the specific heat capacity and the
density of the material.

When air moves into and out of the indoor space, heat and moisture will
be taken into or out of the room if the air entering the space is thermody-
namically different from the indoor air. Air movements can be measured by
the difference in pressure between the space and the adjacent rooms and the
outdoor, due to the influence of wind or stack, or the imbalance in the flow
rate of supply and extraction air maintained by the ventilation system. The
thermodynamic state of the air inside the room will vary from the net heat
and moisture gain encountered by the room air resulting from the heat and
moisture exchange with the enclosure surfaces, the transfer of air into or out
of the room, taking with it heat and moisture, heat and moisture from the
room’s sources, and supplying heat, cooling, humidification or dehumidifi-
cation. These heat and moisture transfer processes will have to be modeled
in order to predict the indoor air condition or the rate of heating or cooling,
and the humidification or dehumidification needed to sustain the indoor air
condition at the specified state.
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2.2.2 Thermal – Electrical System Analogy

Thermal Resistance

As we have seen in above section 2.2.1, the analogy between thermal to elec-
trical system is significant in the building modelling. In electrical system,
the resistance is the measure of opposition to electricity conduction, likewise
thermal resistance is the measure of opposition to heat conduction in thermal
systems. The electrical resistance is given Ohm’s law:

Re =
V1 − V2

I
=

L

σA
(2.8)

Likewise, the thermal resistance from the above section 2.2.1 for a conduction
heat transfer in plane wall is given as:

Rt,cond =
Thigh − Tlow

qx
=

L

kA
(2.9)

Similarly, the analogy between the convection thermal resistance (1/hA) and
electrical resistance can be made. The convection heat transfer equation is
given by:

q = hA(Ts − T∞) (2.10)

the thermal resistance for convection that is inverse of the convective heat
transfer coefficient and surface area is then,

Rt,conv =
Tsurface − Tair

q
=

1

hA
(2.11)

An example can be seen below representing a simple plane wall with single
layer. The two modes of heat transfers, conduction and convection are con-
sidered here. The equivalent thermal network for the wall is shown in Figure
2.2. The corresponding heat transfer dynamics are derived as follows:

qx =
Tair,out − Ts,out

1
h1A

=
Ts,out − Ts,in

L
kA

− Ts,in − Tair,in
1

h2A

(2.12)

The overall heat transfer rate can be also expressed as:
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FIGURE 2.2: Heat transfer through a plane wall. Temperature
distribution and equivalent thermal circuit.

qx =
Tair,out − Tair,in

Req

(2.13)

Just like electrical resistances in series are summed, similarly, in thermal net-
work the conduction and convection resistances are in series, hence they can
be summed.

Req =
1

h1A
+

L

kA
+

1

h2A
(2.14)

Thermal Capacitance

The thermal dynamics that are derived above are suitable for the steady-
state system. However, we are interested in transient heat transfer in the
buildings. The internal energy of the materials is temperature and time de-
pendent during transient conditions. Thermal capacitance or heat capacity is
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the capacity of a body to store heat. It is typically measured in units of (J/◦C)

or (J/K) (which are equivalent).

In the buildings, envelopes thermal mass opposes the temperature fluctua-
tions by thermal inertia, it is also known as thermal flywheel effect. During
the daytime, thermal mass flatten out the temperature fluctuation effect on
indoor conditions. During this process, it stores the heat and releases it later
to the cooler environment. The time taken to release the heat is called as
time-lag and the ratio between the fluctuation on outer and inner tempera-
ture is known as decrement factor. The thermal mass can be used for passive
heating to reduce active heating energy consumption.

For a single layer wall, the thermal mass is simply the mass of the materi-
als times the specific heat capacity of the material. However, for multilayer
walls, the cumulative of heat capacities can be considered for the thermal
mass calculation. In the multilayer, each layer has different thermal capaci-
tance, hence it is essential to consider the effect of each layer on the transient
heat transfer. However, this may increase complexity of the whole model
and results in poor computational efficiency.

2.3 Building Thermal Modelling Approach

There are several approaches and models for energy performance analysis
in buildings. No single approach is universally suitable for all buildings.
Rather, the choice of best model selection decision depends on what you
choose to quantify and what data is available. However, these various mod-
els can be broadly categorized into two types:

1. Steady state models

2. Dynamic/Transient models

Steady state approaches appeal to simplicity, and lack of data prevents more
detailed and precise transient analysis. Steady state analysis simplifies the
calculations by neglecting thermal capacitance, dynamic temperature changes,
occupants influence on the system, and heat sources. Steady state modeling
is useful when there is not much data available and for long duration energy
analysis. There are various steady state analysis methods [38]:

• Degree-day method,

• Modified degree-day method,
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FIGURE 2.3: Building thermal modeling approaches.

• Variable-base degree-day method,

• Bin method,

• Modified bin method

However, in this thesis only transient state models are considered and re-
viewed as it’s quite obvious that the heat transfer process in building is tran-
sient (dynamic). Hence, in this thesis building energy modeling indicates
only dynamic modeling. Three main approaches have been used for build-
ing energy management systems (see Figure 2.4): white box models, black
box models and gray box models.

• White box models [40, 41] are a physical modelling approach relying
on thermodynamic and/or mathematical equations and engineering
methods for energy modelling, analysis and control. White box-based
modelling approach examples are the building energy analysis sim-
ulation software such as: EnergyPlus [42], Transient System Simula-
tion Tool (TRNSYS) [43], eQuest [44], etc. These software tools basi-
cally are used during building planning and designing phases, prior
to the building construction. They calculate overall energy consump-
tion [45], HVAC design [46], operation scheduling, lighting informa-
tion [47], etc., based on the detailed building physical properties [48],
occupancy schedule, geographical conditions, and type of building and
climatic parameters. However, availability of such precise data for the
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FIGURE 2.4: behavior of white box, black box, and gray box
approaches [39].

simulation is troublesome and in some cases impossible to obtain. In
addition, due to the non-linear behavior of building parameters, white
box models are suitable for simple models and as when applied to com-
plex buildings, the model tends to be thermodynamically complex.

• Black box models are data driven building energy models, which are
built on data basis [49–52] often considered as easy to model over physics-
based white box models. Generally, black box models are applied for
prediction of energy consumption [51], HVAC operation scheduling
[53], and adaptive control systems [54]. Black box models methods
examples are Artificial Neural Networks (ANNs), Support Vector Ma-
chine (SVM), Genetic Algorithms (GAs), Reinforcement Learning (RL),
deep machine learning [55], etc. Aside from the ease to apply, black box
models require large input data to train the model [56]. This data may
not be available in buildings in which sensors are not installed, thereby
limiting their application to the few buildings with installed sensors.

• To overcome white box and black box models drawbacks, hybrid mod-
els were introduced [57]. Hybrid models (gray box models) are com-
bination of physics-based models (white box models) and statistical
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methods (black box models). Gray box modelling is found out as ro-
bust and accurate for building systems modelling and in building per-
formance improvement [57].

2.3.1 Indoor Comfort Parameters

People spend most of their time in buildings. Maintenance of indoor com-
fort parameters is therefore significant to improve occupant’s productivity,
health, and comfort feeling [58]. Thermal comfort in indoor environment is
the principal component for ensuring indoor environment quality. Thermal
comfort is generally expressed as the satisfaction of thermal environment,
usually referred as psychological sensation of thermal environment [59]. Vi-
sual comfort is another parameter affecting the indoor environment quality.
Proper illumination level is essential for commercial, institutional, and in-
dustrial buildings to preserve inhabitants working efficiency.

2.4 Building Energy Management Systems—BEMS

BEMS are generally installed in buildings to monitor and control indoor com-
fort conditions and energy consumption [45]. These systems are mainly based
on sensors, actuators, software, and hardware networks [7, 60]. Normally,
buildings with few occupants (residential, and office buildings) may permit
to interact with BEMS technologies via a human machine interface (HMI) [61]
to control electrical appliances and HVAC system operation [62]. These inter-
actions could be restricted in institutional, commercial, and industrial build-
ings because of the large number of occupants, where each may possess a
unique set point, resulting in higher energy consumption. Hence, HVAC sys-
tem operating values are set to a standard range to maintain indoor comfort
in such buildings. However, heterogeneous parameters affecting building
energy and comfort hinder the performance of BEMS models.

2.4.1 White Box Models

White box models are thermal dynamics modelling, which are based on fun-
damental laws of physics, thermodynamics, and heat transfer, which require
a greater amount of data about building [48]. Various types of white-box
models can be found in both steady state and dynamic models, such as:
linear, non-linear models, differentiable, continuous, non-continuous mod-
els (see Table 2.1). The performance of white-box method does not depend
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on time in static models. While in dynamic models, the performance varies
based on the dynamic thermal balance of time evolution. Usually, these com-
plex white-box models are represented by differential equations. However,
their mathematical representation also relies on the relationship between the
parameters. These relationships may be ordinary, partial, linear and non-
linear differential equations [39].

TABLE 2.1: Examples of different equation types of white-box
model [39]

Type Example Application

Static linear equations q = R(T − Ta)− AsI + ε Transmission though component
q̇ = hA(T2 − T1)

Static non-linear equations q̇ = εσA(T 4
2 − T 4

1 ) Building simulation radiation
exchange (walls and ceilings)

Dynamic linear equation C dT
dt

= U(T − Ta) Passive/active
Ordinary differential equation Energy storage

Dynamic linear equation ∂u(x,t)
∂t

= k ∂
2u(x,t)
∂t2

Dynamic heat flux
Partial linear

Due to the diversified and heterogeneous behavior of building parameters,
complexity of hardware network (sensors, and actuators), and occupants in-
teraction with buildings, it is difficult to carry out full-scale experiments.
Hence, software tools are affordable and ease-to-use platforms that can be
used for building dynamics evaluation and analysis. Numerous software
tools have been developed over the last few decades for the analysis of en-
ergy consumption, HVAC design, operation scheduling, lighting informa-
tion, renewable energies, etc., Regular up-gradation is performed on these
simulation tools to improve the performance efficiency and decreasing com-
putational cost. The list of US Department of Energy (DOE) organization
approved building simulation tools is available in [63].

EnergyPlus is a building energy performance analysis simulation software
and console-based program that reads inputs and writes outputs in text files,
developed based on DOE-2 [64] and the Building Loads Analysis and Sys-
tem Thermodynamics (BLAST) by National Renewable Energy Laboratory
(NREL) and U.S. DOE Building Technologies Office (BTO) [42]. Zhao et
al. [65] used EnergyPlus to procure raw data for commercial building to per-
form overall energy performance and dynamic pricing by using Cyber Physi-
cal Systems (CPS)—enabled BEMS [66]. Furthermore, a fuzzy logic controller
(FLC) is initially designed based on the data probation from EnergyPlus and
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a GA method applied to FLC for evolution of improved member functions
population for improved comfort control energy optimization of a food ser-
vice center. The results were compared with stand-alone EnergyPlus output
and investigated that the GA-FLC-based method resulted notable decrease in
energy consumption during both cooling and heating [67]. This shows that
EnergyPlus lacks interactive control optimization techniques and would be
coupled with other dynamic computational software (Matlab, Modelica [68])
via co-simulation software building controls virtual test bed (BCVTB). Kim et
al. [46] used EnergyPlus for training ANNs and coupled GA for optimization
of integrated daylighting and HVAC systems. This was performed to ensure
large database available for training ANNs in less time, otherwise 3 months
would have been needed to procure data from sensors. A multi-objective
optimization strategy is validated using non-dominated sorting genetic algo-
rithm (NSGA), implemented in the GenOpt [69] optimization engine through
the Java genetic algorithms package, to instruct the EnergyPlus simulation
tool [29]. Meanwhile, Huh et al. [70] developed a system to generate pre-
dicted real-time weather data for 24 h duration using EnergyPlus coupled
with GenOpt through BCVTB [71]. This approach improves the building en-
ergy control optimization based on real time prediction control.

TRNSYS (Transient systems simulation program) is a dynamic computational
software for building energy performance analysis [43]. It is incorporated
with Matlab for database generation to train 2 ANNs used for predictive
and adaptive approach applied to hotel building. The developed model effi-
ciently improved thermal comfort and building energy optimization during
summer season resulting in 18–38% energy savings over the simulation pe-
riod [54]. TRNSYS was used for determining building cooling load needed
from the chiller plant, Later, these data were fed to Matlab for performing
optimization analysis [72].

BCVTB is used for coupling various simulation tools for co-simulation and
co-simulation to hardware. Refs. [40, 67, 73] used BCVTB to ease the sim-
ulation process by coupling EnergyPlus, Matlab in their model for build-
ing energy performance analysis. Meanwhile, BCVTB was coupled with
EnergyPlus to generate real-time weather data file for energy consumption
prediction in one day [70]. Figure 2.5 shows the process of generating a
weather data file based on the forecasted weather using BCVTB as a cou-
pling platform between EnergyPlus and other tools. The weather elements

47



Chapter 2. State of the art review

from weather forecast by national weather station, calculated weather pa-
rameters, measured weather elements, and default parameters are coupled
in BCVTB platform for generating weather forecast.

FIGURE 2.5: Process of generating a weather data file based on
the forecasted weather [70].

Although simulation tools are the first choice for building energy perfor-
mance analysis because of accuracy and effectiveness, they require proper
data of building, weather parameters, and physical properties. However, col-
lecting appropriate data is always difficult and in some cases these data are
not available. This is the major challenge in retrofitting existing buildings.
In addition, these tools lack controller development flexibility and absence
of high performance controller systems in their libraries yields difficulty to
develop and integrate in practical application/implementation [74].

2.4.2 Black Box Models

These are also known as data-driven models and are developed based on
statistical models by quantifying historical data parameters and correlating
between building performance and data to find optimal pattern. Data-driven
model approach is often considered as less complex with high accuracy and
low computational cost. However, the inner process is mostly unknown,
leading to reduced control flexibility of the overall process. The primary re-
quirement of black box models are pre-collected data. These can be obtained
from following sources:
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• Real data collected from existing building through sensors, smart me-
ters, and other smart systems [75].

• Simulated data collected from the simulation tools such as EnergyPlus,
BCVTB, etc., [56].

• Standard data available in public benchmark datasets such as ASHRAE’s
data [50].

Black box models are known for prediction techniques and gained huge con-
sideration over last decade. Commonly, these models are used in prediction
of building energy consumption [50,51,76], indoor temperature [75,77], heat-
ing/cooling load demand, HVAC parameters, occupancy [78,79], and energy
generation from RES. Some major algorithms of these models are ANNs [80],
SVM [81], GAs [82], decision trees [83], and other statistical machine learning
methods.

Indoor comforts are influenced by various parameters, especially weather
conditions (e.g., wind speed, air temperature, and humidity) that are volatile
in nature. In such conditions, indoor thermal comfort can be rapidly af-
fected and could cause excessive energy consumption to maintain tempera-
ture range. To maintain indoor thermal comfort under a given range despite
of rapid changes in influential parameters, a prediction model and tempera-
ture controller is introduced by Marvuglia et al. [75]. In this framework, out-
door temperature, air relative humidity, wind speed, and indoor temperature
data are used to train artificial neural network with external inputs (NNARX)
model and predicted values fed to fuzzy logic controller to maintain indoor
temperature in a given range. Results show good efficiency of predictions
and temperature controller. Mararulla et al. [53] implemented ANN-based
predictive controller to a commercial building energy management system
for operation of boilers in buildings, shown in Figure 2.6. This method re-
sulted in around 20% reduction in energy required to heat the building. The
ANN implementation is illustrated in Figure 2.6, where data obtained from
the simulation tool are fed to the ANN with 10 neurons in each hidden layer
and predicted results are given to BEMS for optimal operation.

In 2016, Ascione et al. [49] used feed-forward multilayer perceptron (MLP)
ANN structure to predict building energy and thermal behavior in retrofit
scenarios, which produced significant prediction values. Furthermore, the
authors indicated that the number of hidden layers highly influences the
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FIGURE 2.6: Artificial neural network implementation [53].

ANN performance. Additionally, the importance of training data size is dis-
cussed in [56, 84], both concluded that larger the training data sample is, the
better the performance of ANN model.

Normally, residential buildings have non-constant occupancy and mainte-
nance of thermal comfort for whole day leads energy wastage. Hence pre-
diction of unoccupied hours was performed by [54] by using ANN algo-
rithm and prediction of time required for restoration of indoor temperature
to set-point temperature using another ANN model. Multi-Objective Ge-
netic Algorithm (MOGA) controller have been efficient technologies in at-
taining balance between energy consumption and thermal comfort [85] and
with hybrid MOGA author achieved around 31.6% energy management ef-
ficiency and 71.8% comfort index efficiency. Triple objective controller us-
ing particle swarm optimization (PSO) has been developed by [48], which
achieved 19.8–33.3% decrease in annual cooling energy, while increasing in
annual heating and lighting: 1.7–4.8% and 0.5–2.6% respectively. Final opti-
mization resulted 1.6–11.3% reduction in annual electricity consumption for
four climate regions in Iran. Whereas, O’Neill et al. [86] developed Bayesian
networks (BNs) [87] model to predict hourly building energy performance
with associated uncertainties. The BNs-based building energy performance
prediction system can be applied in various scenarios: (1) Retrofitting build-
ings; (2) Model-based optimization systems; and (3) Energy diagnostics.

Occupancy’s thermal comfort sensation of hot or cold mainly depends on
subjective parameters (metabolic rate and clothing insulation) and physical
ones (mean radiant temperature, air temperature, air velocity, and relative
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TABLE 2.2: Overview on black-box models [39].

Type of model Model structure Parameter estimation Example

Linear Linear function Linear regression Energy signature of weekly
(Least Squares method) values

Steady-state
Polynomials Linear regression

Non-linear (Least Squares method) Pump curve
Any non-linear function Iterative process,

Levenberg Marquardt

Transfer function models Linear regression Heat flow through
Linear (ARMA, ARMAX, etc.) (Least Squares method), a plane wall

an iterative procedure

Neural networks Damped gauss-Newton
Dynamic (sigmoid, wavelet, radial basis networks) back-propagation Arbitrary non-linear systems

Non-linear
Polynomials (Wiener Linear regression Linear systems with steady-state

/Hammerstein model, (Least Squares method) non-linearities at the input or output
Volterra model) (control element with saturation

behavior)

humidity) as described by Fanger’s predicted mean vote (PMV) and pre-
dicted percentage of dissatisfied (PPD) model-ISO 7730. This method was
developed in 1960–1970 and is still used as a baseline model for comfort
measurement. Fanger’s base model advancements over the last 40 years
are critically reviewed in [88]. An existing HVAC system can optimize PMV
index with conventional controller, however, a fuzzy logic-based system is
integrated to existing HVAC system to maintain PMV, CO2, and energy con-
sumption for efficient building performance [89]. This fuzzy logic’s mem-
ber function together with rule selection were then tuned by multi-objective
evolutionary algorithms (MOEA-GA) to minimize number of rules and thus
maximizing system performance. This proved to be the best combination
for FLC’s with reduced number of rules to maintain PMV and optimizing
energy consumption. Table 2.3 gives the standard values for thermal sensa-
tion scale of PMV in which +3 being very hot and −3 being very cold. It is
always suggested that the PMV value should be maintained within −0.5 to
+0.5 to achieve better thermal comfort. The comfort classification based on
relationship between PMV and PPD is shown in Table 2.4 [90]. Chen et al. [91]
developed data-driven state-space Weiner model to evaluate the dynamic re-
lation between dry bulb temperature variation and occupant thermal sensa-
tion. Later they compared developed model to dynamic thermal sensation
(DTS). The DTS model is a reactive thermal comfort system with constantly
changing its values based on the dynamic variation of weather conditions
and occupant preferred thermal sensation votes delivered by an extended
Kalman filer (EKF) with feedback system. Furthermore, predicted mean vote
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and dynamic thermal sensation models were compared by developing MPC-
DTS and MPC-PMV. Results indicated that the MPC-DTS achieved better
thermal comfort and energy optimisation than the MPC-PMV model, but
both efficiently maintained thermal comfort compared to the baseline model
using proportional integral (PI) controller. However, they assumed that there
is a feedback system in BEMS, which actually is not the case. Later, Chen et
al. [92] conducted the same experiment to investigate the performance dif-
ference between MPC-DTS and MPC-PMV with real time actual mean vote
feedback values, in addition, authors detailed the probable reasons for per-
formance difference.

The above-mentioned researches mainly focus on optimization techniques
used to achieve comfort measurement. However, the accuracy of subjective
and physical parameters measurement taken from sensors has a significant
impact on the PMV index evaluation. These measurement uncertainties can
be evaluated using efficient tools such as: Monte Carlo analysis (MCA) [93],
guide to the expression of uncertainty in measurement (GUM) [94], and sen-
sitivity analysis (SA) [90]. These studies show that the proper handling of
measurement uncertainties is essential in PMV index model.

TABLE 2.3: Thermal sensation scale of PMV.

PMV Sensation
+3 Hot
+2 Warm
+1 Slightly warm
0 Neutral
−1 Slightly cool
−2 cool
−3 cold

TABLE 2.4: Comfort classification based on ISO-7730.

Class Percentage of Dissatisfied (%) Predicted Mean Vote
A <6 −0.20 < PMV < 0.20
B <10 −0.50 < PMV < 0.50
C <15 −0.70 < PMV < 0.70
- >15 PMV < −0.70 or PMV > 0.70

Black box models are less complex, does not need complete data of building
physical parameters, efficient performance, and easy to build. Nevertheless,
they require huge building operational and environmental parameter data
for training in order to have efficient prediction values. These data are how-
ever difficult to obtain, while low quality data can cause huge prediction
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error. Even though, these models are accurate and less complex, the lack
of knowledge/explanation of the inner processes from the point of view of
physics, there is some reluctance towards black box model implementation
over physics-based model.

2.4.3 Gray Box Models

The third category of BEMS is known as gray box models. These are hybrid
ones combining simplified physics-based models and data-driven ones. In
a gray box model, the process is expressed in mathematical expression that
may be based on the physics and/or thermodynamics laws. They consist ex-
pressions that have physical explanation (e.g., resistor capacitance network)
and a part of the model may be obtained through regression from the avail-
able data.

A gray box model is a balanced model between the white box model and
black box model. This combination ensures that the non-linearities in white
box model can be handled using black box models and lack of laws of physics
reasoning in black model can be represented through white box models, but
extra effort is required to design and develop these models. However, se-
lection of suitable gray box model structure for developing a good perfor-
mance system is still a difficult task. Bacher and Madsen, ref. [24] proposed
an approach to find appropriate heat dynamics of a building. Indeed, a set
of different RC network models have been configured and compared using
likelihood ratio tests. The study concludes that significant improvements
can be obtained as the model order increases, while no further notable im-
provements can be expected beyond a model order of 3. Široký et al. [95]
proposed an experimental analysis of a heating system using lumped capac-
itance network in a university building and analysis was carried out for two
months. Through this approach they were able to achieve around 15% and
28% energy savings. The experimental analysis not only investigated the per-
formance of MPC but also detailed the issues that can be encountered in its
application.

Figure 2.7 illustrates the basic principle of MPC model structure [95], the in-
puts of the systems are time varying parameters: energy price can be taken
from energy market, comfort conditions set by the occupants, occupancy pre-
diction, and environmental parameters. The MPC system formulates the op-
timization of an objective function by using building dynamic model, a cost-
function and constraints. After each time sample formulation, feedback from
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occupants and weather conditions are fed back to MPC for the formulation
of next time sample, which ensures that unanticipated disturbances are taken
in consideration through feedback loop.

FIGURE 2.7: Basic principle of model predictive control for
buildings [95].

A simplified low order gray box modelling has been introduced in [96]. The
study considered a whole building as single zone building (Figure 2.8) ne-
glecting the inter-zone heat exchange. Most of the studies in literature did not
take account of inter-zone thermal interactions as it increases the complexity
of the model and includes numerous uncertainties. In addition, the model
perform-ability declines with the increase of the number of zone. However,
Cai and Braun [97] proposed a resistance capacitance thermal network model
for multi-zone buildings (Figure 2.9) with a unique three-step estimation ap-
proach to reduce the complexity of the model and thus improving the per-
formance of BEMS system, through:

• De-grouping weakly linked zones and grouping strongly linked zones.

• Sensitivity analysis to identify and eliminate non-influential variables.

• Correlation analysis to eliminate Non-correlated variables.

Performance of BEMS system is significantly increased because of the above-
considered three steps, which have simplified the estimation problem by
eliminating non-influential parameters. In general, gray box models can be
used for predictions of energy consumption, thermal comfort conditions, oc-
cupancy, and heating/cooling load of buildings. These applications leads
to use gray box modelling to building in smart Grid context for dynamic
load management and energy storage. The reduced order gray box model
for buildings connected to smart Grid was investigated in [57], where it is
applied on two buildings types (insulated and uninsulated). Furthermore,
Sharma et al. [98] presented a study of MPC controller implementation for
buildings in centralized energy management system framework (CEMS). In
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FIGURE 2.8: RC thermal network for single zone building [96].

FIGURE 2.9: Resistor capacitance thermal network for multi-
zone building [97].

addition, the insulated buildings opens the possibilities of enabling demand-
side management (DSM) by exploiting heat capacity flexibility in building
thermal wall mass. Harb et al. [99] developed gray-box models for forecast-
ing the building thermal response. The analysis was conducted on four gray
box models and data from three building. Building areas varied from 3000
to 30,000 m2 and data duration from 39 to 110 days. To determine thermal
behavior of the building, three forcing functions were used in this paper:

• Radiative building environment is expressed as the solar irradiation.
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• Building thermal environment is represented by the outdoor air dry
temperature.

• Various heat sources consists of heating elements.

From the above a three-function input vector is constructed:

U = [Ta Qirrad φh]
T (2.15)

where Ta—outdoor dry bulb temperature, Qirrad—global solar radiation on
horizontal surface, and φh—Building thermal consumption.

Four gray box model structures were developed in this paper: (1) 1R1C—
the simplest structure characterizes the whole building into a single param-
eter (Figure 2.10); (2) 3R2C—consists of three resistors and two capacitors.
Three resistors indicate convective and radiative heat exchange, and heat ex-
change between interior to environment, two capacitor indicates interior and
exterior thermal mass (Figure 2.10); (3) 4R2C—extension of the 3R2C struc-
ture with additional indoor node (Figure 2.11); and (4) 8R3C-extension of the
4R2C considering all type of heat exchanges between interior, exterior, heat-
ing elements, and indoor air (Figure 2.11).

FIGURE 2.10: Building thermal structures—1R1C and 3R2C
[99].

The achieved results show that the 1R1C model produced more harmonics
in the prediction values due to its simple structure, the 3R2C have produced
similar disturbances in indoor air temperature prediction, due to the lack of
consideration of heat exchange between indoor and outdoor air temperature.
The 4R2C produced accurate prediction in daily indoor temperature predic-
tion, due to the consideration of heat exchange between various parameters.

56



2.4. Building Energy Management Systems—BEMS

FIGURE 2.11: Building thermal structures—4R2C and 8R3C
[99].

The 8R3C produced similar accurate prediction values with no significant im-
provements in the results despite the detailed model. The 4R2C model can
thus be considered as the suitable structure for implementation because of its
accuracy and low complexity. From the achieved results, it can be concluded
that the addition of indoor air temperature node (4R2C and 8R3C) provides
stable prediction values compared to model without indoor air temperature
node (1R1C and 3R2C).

Meanwhile, application of MPC systems for building energy and comfort
management has gained larger attention, Sturzenegger et al. [100] applied
MPC strategy on commercial building of 6000 m2 area for energy and com-
fort control. The results are later compared with existing rule-based control
systems. The analysis of MPC implementation proved that energy savings
were around 17% with an improved comfort level.

The above-described studies have shown that gray box models are robust,
accurate, and applicable to complex buildings. However, these models pos-
sess high computational cost making them only profitable in applications for
commercial buildings. Further investigations are needed to ensure adapt-
ability and application for small buildings.

2.4.4 Building Models Comparative Analysis

The three modeling techniques comparison analysis has been performed based
on reviewed papers for different scenarios. Furthermore, some assumptions
are made for this analysis:

• Buildings in the context of smart-grid are considered as residential ones.
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• Apartments with large commercial space are considered as non-residential
buildings.

• Grid is considered to be a supply source for papers without specific
indication on the supply source.

• Demand side management and load shifting are considered as dynamic
pricing.

Based on the above-given assumptions, the following observations have been
made. The carried out review shows that research majority is conducted
on non-residential buildings, around 66%, and residential ones, being 34%
(Figure 2.12). Non-residential buildings include: institutional, public, office,
swimming pool, hospital, and hotel buildings. This lack of research may be
due to the unavailability of data or controller systems. Figure 2.13 illustrates
control strategies applied for both building types, where black box models
are dominating with 74% and 67% of the overall applied controllers for res-
idential and non-residential buildings, respectively. Significant researches
have therefore been conducted on black box models due to their ease of ap-
plication. Around 21% and 27% gray box models were applied to residential
and non-residential building, respectively, while gray box models were less
used in residential cases compared to non-residential ones mainly because of
their high computational and design costs. Simulation tools combined with
other control strategies are used for building energy performance analysis
but the stand-alone use is low because of their complexity and high data ac-
quisition cost.

Residential

34.0%

Non-residential

66.0%

FIGURE 2.12: Research conducted on type of building.

In the context of comfort parameters, thermal comfort acquired more im-
portance in both non-residential and residential buildings, whereas, other
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FIGURE 2.13: Controller application on both type of buildings.

parameters are taken into consideration in few papers (Figure 2.14). This
indicates the significance of thermal comfort in overall indoor comfort sensa-
tion and optimization of thermal energy leads great amount of overall energy
consumption reduction in comparison to other comfort variables energy con-
sumption optimization. There is a major lack in consideration of indoor air
quality and lighting control. However, regulations and standards urge main-
tenance of CO2 and luminance level in order to keep occupants good health
and productivity, hence more research on this topic is necessary. Only 5% of
the papers have developed controller for all four comfort parameters control.
This shows the difficulties in implementation of controller for overall indoor
comfort management.
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FIGURE 2.14: Controller application on comfort parameters.

Towards sustainable development, installation of renewable energies are im-
portant. This factor has also been considered in the literature review. The lit-
erature review highlights 16% and 23% renewable energies integration into
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FIGURE 2.15: Renewable energy sources integration in both
type of buildings.
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FIGURE 2.16: Controller used for demand response application
in non-residential and residential buildings.
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FIGURE 2.17: Controller used for renewable energy sources in-
tegration in non-residential and residential buildings.
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non-residential and residential buildings, respectively (Figure 2.15). Most
of RES integration is observed in smart grid and in big buildings context.
The dynamic response in energy consumption by loads is an effective way
of maintaining grid balance, grid durability, and cost optimization. Around
22% of non-residential and 25% of residential buildings have adopted DR.
In Figure 2.16, it can be noticed the controller types used for DR application
in both building types. Gray box modelling has higher implementation per-
centage because of the high flexibility for multi-objective optimization. Con-
trollers used for RES integration are shown in Figure 2.17, where it should
be noticed that black box models have higher percentage of implementation
in residential buildings and gray box modelling in non-residential ones. This
difference can be justified as follows: (1) Gray box models are characterized
by high accuracy and higher computational cost that limit their usage only
for large buildings; while (2) black box models are characterized by high ac-
curacy and lower flexibility of MIMO that limit their application to multi-
objective optimization purpose. In the literature review, it had been found
that black box models includes controllers such as fuzzy logic, artificial neu-
ral networks, genetic algorithms, decision trees, particle swarm optimization,
reinforced learning, etc., while gray box models includes lumped capacitance
model, model predictive controller, hybrid systems, etc.

2.5 Model Predictive Control

2.5.1 Introduction

Most of the existing buildings are equipped with simple set-point temper-
ature control building management systems, without giving importance to
reducing the energy consumption, leading to waste huge amount of energy
for maintaining thermal comfort. A promising solution for building energy
management and comfort control is Model Predictive Control (MPC) [101–
103], developed based on the building models. MPC has the capabilities
to handle multi-objective control, with consideration of weather parameters,
occupancy schedule, dynamic pricing for thermal comfort control. It also
optimizes the energy consumption while maintaining the required temper-
ature, and able to handle the constraints on input, output, and states of the
system. MPC is the only control methodology that can systematically take
into account future predictions during the controller design stage while sat-
isfying the system operating constraints [103]. These features of MPC make
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it ideal for building energy management systems.

MPC offers an attractive framework for model-based optimal control of dy-
namical systems. MPC allows optimizing a cost function subject to state and
input constraints. In the context of optimal control of building, we are inter-
ested in optimizing the cost function being the energy consumption or cost
of energy and constraints are imposed on states such as room temperature,
and on inputs such as air mass flow and operational limitations of HVAC
components.

MPC General Form

MPC is a multi-objective controller that is based on the system model and
used to obtain sequence of control signals to minimize/maximize the cost/ob-
jective function by considering applied constraints.

A finite horizon optimal control problem is formulated and solved over a
finite future window during each sampling interval. The final result is a fu-
ture trajectory of inputs and states that respects the building’s dynamics and
constraints while optimizing the given objectives. In the context of buildings,
the control signal trajectory is obtained for future finite horizon at the current
control step. Apart from inputs the predicted disturbances, dynamical costs,
and input and state constraints can be included in the optimization.

A generic framework is given by the following finite-horizon optimization
problem:

min
u

j=N−1∑
j=0

Q(xt+j|t, ut+j|t, dt+j|t) (2.16)

subject to xt+j|t = f(xt+j|t, ut+j|t, dt+j|t), ∀j = 0, 1, ..., N − 1, (2.17)

yt+j|t = g(xt+j|t, ut+j|t, dt+j|t), ∀j = 0, 1, ..., N, (2.18)

ut+j|t ∈ U, ∀j = 0, 1, ..., N − 1, (2.19)

yt+j|t ∈ Y, ∀j = 0, 1, ..., N (2.20)

where xt+j|t is read as "the state variable x at time t + j predicted at time t",
N is the prediction horizon, x is the system state vector, u is the controllable
input variables vector, d is the uncontrollable inputs vector, i.e., disturbances
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of the system, f(x, u, d) is the function allows to predict the building states
based on the current conditions of x, u, and d,

Each component of the MPC formulation is essential and how they influ-
ence the performance are detailed below. For more insights on the MPC for-
mulations, components applicability, and their influence on the performance
readers can refer [104].

Objective Function

The main purpose of the objective function is to guarantee the stability of the
system while achieving minimum/maximum cost (Equation 2.21).

• Stability: The structure of the objective function is commonly chosen
so that the optimal cost forms a Lyapunov function for the closed loop
system, guaranteeing stability. In the context of buildings, which have
slow dynamics, the cost is purely determined based on the performance.

• Performance target: This the objective of the function. Generally, in
buildings, the objective will be to optimize energy consumption while
maintaining the comfort.

Q(xt+j|t, ut+j|t, dt+j|t) = (yt − yr,t)TQt(yt − yr,t) +Rtut (2.21)

Dynamics The system model is an essential part of the MPC controller. It is
the mathematical model of the building. A LTI model is always preferred as
the system model. These system dynamics from the thermal network model
can be represented using the state-space formulation.

X(k + 1) = AX(k) +Bu(k) +B1d(k)

y(k) = CX(k) +Du(k) +D1d(k) (2.22)

Here the real matrices A, B, B1, C, D, D1 are so called system matrices and
are of appropriate dimensions. This is the most common model type and
the only one that will result in a convex and easily solvable optimization
problem.

Constraints The MPC controller’s major advantage is the ability handle the
given constraints. These can be applied on both the states and the output, as
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well as the input. The most frequent sort of constraint is a linear constraint,
which is used to set upper and lower boundaries on system variables.

umin,t ≤ ut ≤ umax,t, (2.23)

or generally formulated as
Gtut ≤ gt (2.24)

The constraints can be similarly defined for system states and outputs.

The objective function 2.17 allows to minimize the energy consumption for
given set of operational constraints. A large amount of research studies has
been demonstrated MPC applied for efficient building management/control.
MPC controllers significant advantage is taking into consideration measur-
able disturbances (weather, occupancy, uncontrollable heating systems, etc.),
and then producing the optimal control strategy, while better handling con-
straints impacting operating conditions [105]. MPC can be applied to spe-
cific parameter of building systems such as: building cooling systems [103],
indoor air quality [106], heating systems [107], ventilation [108], and energy
management [109].

2.5.2 HVAC Systems

In the previous sections, it was noticed that thermal comfort is essential for
both residential and commercial buildings to keep occupants’ healthy and
productive. In general, the HVAC systems are centralized and have same air
conditioning in the whole building. There has been gradual development of
HVAC systems from complete building to individual zones independent of
other zones in the same building. Such systems (called as "multi-split air con-
ditioning systems") focuses on zone specific comfort management, the over-
all comfort conditions increase significantly at the same time reducing the en-
ergy consumption from the zones in which heating is not required [110–112].

Air-Conditioning System

The air-conditioning system is consisted of a central constant volume supply
fan that supplies conditioned air to all the local variable air volume terminal
boxes through a network of ducts. Quantity and temperature of the mixture
of the air which is delivered to each room is designed based on the room
sensible load, the quantity and temperature of the outdoor air in the mixture,
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and space thermostat setting. Additional part of the air that is not needed for
conditioning each space is bypassed into a common return air path and after
getting mixed with the return air from all the other spaces goes back to the
air handling unit as return air stream usually with the help of a return/ex-
haust fan. Terminal units are also equipped with hot water reheat coils or
electrical strips that are designed for either heating or dehumidification of
the discharged air to each space.

The cooling or heating capacity, Q, is the product of airflow, times the dif-
ference in temperature between the supply air to the zone and the return air
from the zone.

Q = ṁs,aircpa(Ts,air − Tzone) (2.25)

Where ṁs,air is the air mass flow through the ducts into zone, cpa is the spe-
cific heat of air, Ts,air is the temperature of the chilled air or hot air that comes
into the zone through the ducts, and Tzone is the zone temperature.

Heating System - Air Source Heat Pump - Variable Refrigerant Flow Sys-
tems

A multi-split air conditioning system consist of one outdoor unit and multi-
ple indoor units, the refrigerant flowing in the system varies flow rate (vari-
able refrigerant flow - VRF) based on the heating or cooling load requirement
of each zone with the help of variable speed compressor and electronic ex-
pansion valves (EEVs). There are many different heat pumps available in the
market based on their type of thermodynamic cycle (type of refrigerant liq-
uid) and type of source. There are mainly three types of source available in
the nature:

• Air source heat pumps (ASHP),

• Ground source heat pumps (GSHP), and

• Water source heat pumps (WSHP).

The most common and widely used heat pump is air source heat pump and
it generally follows the principle of the reversed Carnot cycle [113]. In ASHP,
heat is absorbed from the surrounding air and then transports it into the
indoors during winter season for heating and reverses its operation from in-
door to outdoor during summer for cooling purposes. The major benefit of
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using an ASHP is that useful heat is is extracted from air, which is abun-
dant in nature and free. ASHP implemented with variable refrigerant flow
is called ASHP-VRF system. A typical ASHP-VRF system having multiple
indoor units and one outdoor unit is presented in Figure 2.18.

FIGURE 2.18: ASHP-VRF system with multiple indoor units
[110].

This system can be used for both cooling and heating purposes by reversing
its operation. In the heating mode, the heat absorbed from the outdoor unit
increases the temperature of the refrigerant and converts into superheated
vapor at low-pressure thus acting as evaporator, this superheated refriger-
ant enters compressor and leaves at high-pressure. The discharged high-
pressure refrigerant enters the indoor unit heat exchanger to heat up the
room (used as condenser). Then, the low temperature, high-pressure refrig-
erant passes through electronic expansion valves (EEV) to obtain low tem-
perature, low-pressure refrigerant. This is again fed back to evaporators, and
the cycle completes [114–116]. In ASHP-VRF system, the refrigerant flow is
controlled by the variable compressor speed, thus changing its mass flow rate
to match the required heating/cooling loads of all indoor units. Although,
with many benefits of ASHP-VRF systems, there is only a limited number
of studies can de noticed in the open literature. The high variation in loads
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from different indoor units, operational conditions, and operational param-
eters greatly influence modeling difficulty and complexity. In general, the
performances of the simulated systems greatly differed from the measured
values [117]. Many studies have been carried out to develop a generic model
by considering the indoor temperature as constant and steady-state simula-
tion techniques [118]. In addition, there is no standard simulation tool to
use for VRF performance analysis. Considering this huge gap in literature,
this study attempts to design and develop a generic model for ASHP-VRF
systems.

2.6 Conclusions

This chapter has dealt with a state of the art review of recent developments
on building energy and comfort management, and the related control. The
carried out investigations includes explanation of conventional controllers
and their up-gradation to the current challenging applications and new meth-
ods viz., black and gray box modelling. These models have been compared
and critically reviewed on the basis of comfort conditions, RES integration,
DR application, and building type. The proposed critical review depicts in-
depth representation of the methodologies and will be helpful in selection
of suitable controller methods for BEMS model based on various conditions.
In addition, the following observations, comments, and recommendations
should be helpful.

• All the comfort parameters (thermal, visual, air quality, and relative
humidity) need to be controlled in the building to ensure occupants’
health and productivity. However, thermal comfort control remains
dominant as the other parameters have a minimal impact on energy
consumption. In addition, these parameters inclusion may introduce
complexity in the controller model and leads to poor performance.

• White box models have been investigated as preliminary models for
building energy performance analysis and were found to be used for
low scale application. However, the white box application is restricted
only for initial analysis and is not efficient to implementation due to its
limitations.

• Black box models have high accuracy, low computational cost, and
higher flexibility for building non-linearities. These models have gained
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significant attention in recent years. Constant developments of new al-
gorithms ensures the improved efficiency and suitable for multi-objective
applications. Nevertheless, these applications have restricted imple-
mentation due to lack of physics-laws explanation and huge amount of
data is required for model training.

• Gray box models are found out to be more feasible for multi-objective
optimization, predictive/adaptive, and cost-optimization applications.

• Finally, the heat pump and VRF models are detailed and the operation
principle is presented.

Based on the findings, model predictive controller based on gray box model
implementation looks feasible in our case due its advantages over other mod-
els in the case of data unavailability. The first step in this work is to develop a
model to replicate the heat transfer dynamics of the building. The selection of
models for representing the whole-building and its parametric identification
is detailed in the following chapters.
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The objective of this chapter is to provide a brief introduction on the en-
ergy/heat transfer dynamics in buildings and its behavior. Different heat
transfer methods that are used in developing simulation tools, modeling
techniques, and control purposes are discussed here. This chapter contains
review on the different modelling techniques and building climate control
strategies. Some comments on adaptability, implementability, and advan-
tages and disadvantages of these modeling techniques are given.

The chapter divided into two parts, first part is introduction to the impor-
tance of the lumped parameter thermal network models and some review of
various studies from the literature. A physical model based on heat balance
equation was presented using its equivalent analogy to electrical systems.
Furthermore, we discussed on different configurations of thermal network
models that are well-established, this section was the basis for selection 3R2C
model for our thesis. Later, we have also introduced analytical and numer-
ical methods to solve heat equation. A comparison has been given between
analytical and numerical model, in order to develop reference model for pa-
rameters identification we selected numerical Crank-Nicolson FDM because
of its simplicity, stability, and accuracy over other FDM and analytical mod-
els.

Finally, the simulations were carried for different configurations of compos-
ite walls and their parameters identified using PSO, the optimal model is
compared against other two models. The comparison models have different
R and C values. It has been observed that the model with optimal value
performed well and followed the dynamics of the reference model. The pro-
posed method is then validated against an analytical model from literature.

3.1 Introduction

In the literature review (Chapter 2), it was highlighted that the grey box
models are dominant in the case of multi-objective controller applications.
The most used models for these controllers were lumped parameter thermal
network models (LPTNM), due to their simplified reduced order, computa-
tional efficiency, reliability, and acceptable accuracy. These characteristics of
the LPTNM reduces enormous amount of simulation complexity over the
simulation tools, these models also offer best solution for short time period
controller application [11, 19, 22, 33, 119, 120]. The thermal network meth-
ods help to obtain simplified/reduced state space models of the buildings
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thermal dynamics model. Building reduced models are often developed on
the basis of linear networks with lumped parameters [121–125]. The prin-
ciple idea is to have an analogy between two different domains, which can
be described by the equivalent mathematical equations. Applying this anal-
ogy, building models with the help of lumped parameters are expressed as
electrical circuits and state-space equations are deduced from these circuits.
The LPTNM can be mathematically modeled by using Ordinary Differential
Equations (ODE). Thermal - Electrical system analogy is given in Table 3.1.

TABLE 3.1: Thermal to Electrical system analogy.

Thermal System Electrical System

Source Temperature (T ) Voltage (V )
Heat flux (φ) Current (I)

Element
Thermal conductivity (k) Conductivity (σ)
Thermal resistance (R) Electrical resistance (R)
Thermal capacity (C) Electrical capacitance (C)

The equivalent thermal network circuit of a zone is determined by incorpo-
rating models of building envelope such as: walls, windows, and internal
mass, etc. In thermal RC network model, the building is split into a net-
work of nodes with interconnecting paths, through which the energy flows
[126, 127]. The application of this method differs primarily based on the
choice of nodes on which energy balance is applied. These models can be
developed for two categories:

1. Model for a building envelope (walls, floors, roofs, etc.). These models
are then used to develop complete zone model.

2. Model for a complete zone.

Whilst, there is not huge difference between two methods, the model for a
complete zone is developed by aggregating the individual envelope models
into a single model. Whereas, the specific model for building envelope are
significant in knowing surface temperatures, analysis of individual envelope
dynamics, etc.
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3.2 Lumped Parameter Thermal Network Model

(LPTNM)

In most of the cases, the simulation of the thermal model response of the
building must be performed at high time resolution. For example, exper-
iments on the transient response of HVAC plant; study of control system
responses; control system optimization; and design analysis of smart con-
trollers. Previous approaches (analytical and numerical approaches), while
suitable for longer-term studies related to heating/cooling load prediction,
but these are usually not well suited for models that require short-time re-
sponse. An approach that offers reasonable accuracy over short time hori-
zon simulations and, by its simplicity, exhibits low computational demands,
can be accomplished by considering each building element as one or a small
number of ’lumps’ in which a uniform thermal response is assumed.

The LPTNM approach is used to simplify the complex modeling of building
dynamics, and to obtain reduced order simplified models of the buildings
based on state-space equations. Lorenz and Masy [128] proposed among the
early implementations of a thermal network model of configuration 2R1C
(two resistors and one capacitor) to represent building envelope. The model
also includes various heat sources, such as space heating (Qheating), heat gains
from solar radiations (Qs−sur andQs−air, and the gains from occupancy (Qoccu).
The energy grains from the occupancy includes gains from electrical appli-
ances and occupants. The thermal network proposed in this study is pre-
sented in Figure 3.1.

Tamb
Rea,1 Rea,2 Te

CeQs−sur Ci Qs−air Qoc Qheat

Ria

Ti

FIGURE 3.1: Thermal network model for whole building [128].

Davies [129] proposed lumped parameter methodology for single layer and
multi-layer walls. In this paper for a single layer two resistors and one capac-
itor model is selected (see Figure 3.2), where Tr, Tw, and To represent room,
wall, and outside air temperature, respectively. The thermal resistance is
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equally divided into two rr and thermal capacitance is represented as C. The
corresponding mathematical equations can be described as follows:

(To − Tw)/r = C
dTw
dt

+ (Tw − Tr)/r (3.1)

C = ρCpLA (3.2)

R = L/kA (3.3)

They have proposed four resistors three capacitor (4R3C) model for seven
layer wall. They concluded that proposed methodology is comparatively
simple and direct, and the results are very close to those found using the
frequency domain method.

To
rr rrTw

C

Tr

FIGURE 3.2: Simplified thermal network model - 2R1C [129].

Gouda et al. [21] proposed improvised model of configuration 3R2C to ob-
tain accurate models by non-linear optimization. The paper presented multi-
order models from 2R1C to 21R20C. The model parameters were determined
using an optimization technique by fitting the thermal response of 2nd order
model (3R2C) with the reference 20th order model (21R20C). The results of
3R2C model is more accurate than the 2R1C model with the slightly more
computational cost. The paper concluded that 3R2C model with proper pa-
rameter values is best suited for practical applications in comparison with
2R1C model.

Fraisse et al. [19], proposed a technique to evaluate resistors and capacitors
values analytically, and then analyzed the performance of various RC combi-
nations (2R1C, 1R2C, 3R2C, and 3R4C). These parameter values can be used
to develop a reduced order model to realize thermal behavior of buildings
while considering radiative and convective loads from the internal and ex-
ternal sources. The models were compared in time and frequency domains
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FIGURE 3.3: Simplified thermal network model - 3R2C.

and results were analyzed. Among all models, the 3R4C model is more re-
liable since it considers the thermal inertia of the inside surface of the wall.
The 3R4C model was then added to the zone model that consists of windows,
roof, floor, internal walls and partition walls.

Harb et al. [119] developed models for forecasting the building thermal re-
sponse. The analysis was conducted on four models and data from three
building. Building areas varied from 3000 to 30,000 m2 and data duration
from 39 to 110 days. To determine thermal behavior of the building, three
forcing functions were used in this paper:

• Radiative building environment is expressed as the solar irradiation.

• Building thermal environment is represented by the outdoor air dry
temperature.

• Various heat sources consists of heating elements.

From the above a three-function input vector is constructed:

U = [Ta Qirrad φh]
T (3.4)

where Ta—outdoor dry bulb temperature, Qirrad—global solar radiation on
horizontal surface, and φh—Building thermal consumption.

Four model structures were developed in this paper: (1) 1R1C—the simplest
structure characterizes the whole building into a single parameter (Figure
3.4); (2) 3R2C—consists of three resistors and two capacitors. Three resistors
indicate convective and radiative heat exchange, and heat exchange between
interior to environment, two capacitor indicates interior and exterior thermal
mass (Figure 3.4); (3) 4R2C—extension of the 3R2C structure with additional
indoor node (Figure 3.5); and (4) 8R3C-extension of the 4R2C considering all
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type of heat exchanges between interior, exterior, heating elements, and in-
door air (Figure 3.5).

FIGURE 3.4: Building thermal structures—1R1C and 3R2C
[119].

FIGURE 3.5: Building thermal structures—4R2C and 8R3C
[119].

The achieved results show that the 1R1C model produced more harmonics
in the prediction values due to its simple structure, the 3R2C have produced
similar disturbances in indoor air temperature prediction, due to the lack of
consideration of heat exchange between indoor and outdoor air temperature.
The 4R2C produced accurate prediction in daily indoor temperature predic-
tion, due to the consideration of heat exchange between various parameters.
The 8R3C produced similar accurate prediction values with no significant im-
provements in the results despite the detailed model. The 4R2C model can
thus be considered as the suitable structure for implementation because of its
accuracy and low complexity. From the achieved results, it can be concluded
that the addition of indoor air temperature node (4R2C and 8R3C) provides
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stable prediction values compared to model without indoor air temperature
node (1R1C and 3R2C).

FIGURE 3.6: Thermal Network for Overall Building Model
[130].

The reduced order modeling methodology for the buildings using the LPTNM
has been well suited for buildings. Cases of low-energy buildings for which
thermal insulation and mass delivery are improved have been studied. Hazyuk
et al. [131] developed a thermal network model for whole building and the
envelope is represented by 2R1C configuration. The resistance value of wall
in equally distributed to the two resistors and they have proposed a 2R1C
thermal network for slab as well. Parameters values are identified by inverse
method. Xu and Wang [127] presented a study of an alternative simplified
building energy model that combines both lumped parameter model of con-
figuration 2R2C with the conduction transfer function (CTF) model. Where,
the envelope models were represented by CTF and internal mass model was
represented by 2R2C. Same authors [132] proposed another method to de-
velop 3R2C building envelope model based on frequency response mod-
els and the parameters of this model were identified and optimized using
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genetic algorithm with short-term monitored operation data. Braun and
Chaturvedi [130] proposed an inverse model development, they used 3R2C
thermal network configuration to represent each of the building elements
and represented whole building linking each 3R2C network of each element,
such as external walls, roof, slab, and internal partitions (see Figure 3.6).
Similarly, Ramallo et al. [133] proposed 3R2C model with dominant layer
approach. This method does not require complex numerical operations, but
is obtained using a simple analysis of the relative influence of the different
layers within a construction on its overall dynamic behavior.

Despite the robustness, reliability, and modeling simplicity of the thermal
network models. There are great difficulties in development of such models
as its performance mainly depends on the optimal values of network pa-
rameters: resistors and capacitors. Composite walls have multi-layers with
different thermo-physical characteristics, hence positing of resistors and ca-
pacitors with proper values is complex task. The parametric values can be
identified using three ways:

• Direct method: These methods are similar to white box models. The
parameter values are identified using analytical methods such as: CTF,
response factor, etc.

• Inverse method: These methods are similar to black box models. The
parameter values are identified by curve fitting method. The collected
data from the building is used to identify the parameter values.

• Hybrid method: In this method, the parameter values are identified
using curve fitting. However, data collected from the building is not
required for curve fitting. The data can be obtained from the reference
models such as: analytical methods, and numerical method.

Parametric identification from analytical approach is complex in designing
and simulation. Whereas, inverse methods are simple to use. The param-
eters values identified using inverse method can over estimate the value as
compared to the values calculated using thermo-physical properties. This
overestimation can cause reduction in the performance accuracy. However,
the accuracy of these models are still under acceptable range hence inverse
methods are mostly used where performance data from the building is avail-
able.

In the case of developing building model to analyze the performance of the
new buildings, such performance data will not be available to implement

77



Chapter 3. Lumped Parameter Thermal Network Modeling

inverse method. To overcome this problem, hybrid models are developed.
These models use reference models to replicate the thermal dynamics of the
building using the thermo-physical values of the materials. Reference mod-
els can be analytical or numerical methods. As described in the previous sec-
tion, solving heat transfer dynamics analytically becomes complex. Whereas,
the numerical methods are efficient and easy to implement to solve heat
transfer dynamics. These numerical methods are computationally inefficient,
but the parameter values identified once and same values are used for rest of
thermal network simulations hence these methods can considered for devel-
oping reference models.

This section summarizes that the development of thermal network model
methodology for building thermal response simulations are well-established
and the most of the building elements are represented by 3R2C thermal model
network. It has been observed that this 3R2C model is more accurate and
computationally efficient only with the optimized parameter values. Many
studies have proposed the inverse modeling method but in the case of con-
ventional buildings where data is not collected application of such models
become difficult. Furthermore, many of the studies, which have shown for-
ward method have used analytical models as reference models. In analyt-
ical approach, the parametric values will be obtained by using set of alge-
braic equations and in numerical methods, an approximation of RC values
are achieved by using optimization techniques. Numerical approaches have
shown greater accuracy than the analytical approach because of their opti-
mization techniques and limitation of analytical approaches for few combi-
nations.

3.3 Building Envelope Modeling

Heat transfer through building envelope includes several heat and mass trans-
fer processes. Conduction, convection, and radiation heat transfer through
buildings are some major factors to be considered in model development.
One of most important types of heat transfer in buildings is heat conduction
through building envelope mainly through walls, floors, and roofs.

The conduction heat transfer in a wall under steady-state conditions can be
defined using Fourier’s law of heat conduction [134]:

Q̇cond = −kAdT
dx

(W ) (3.5)
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where Q̇cond—conduction heat transfer through building envelope (W),

k—thermal conductivity of the material (W/m·K),

T—temperature (K),

A—surface area of the wall (m2), and

x—spatial coordinate (m)

Δx Δx Δx Δx

Indoor temperature,
            Tin

Outdoor temperature, 
          Tout

i = 0 i = 1 i = 2 i = N-1 i = N

Solar radiation

Reflected  radiation

Convection

Convection

Longwave 
radiation

L

Layer1 Layer2 Layer 3

FIGURE 3.7: Heat flow through wall.

The thermal energy flow through multilayer homogeneous wall is shown in
Figure 3.7. Equation for the heat transfer through building envelope can be
obtained by making these assumptions:

• Thermal energy flow is considered in only spatial x coordinate, because
the ratio between height and thickness is very large that results in neg-
ligible amount of thermal flow along other directions, i.e., y and z di-
rections [135],

• There is no heat source or sink within the wall,

• Effects of thermal bridge are neglected, and

• Thermal energy distribution in the material is isotropic in nature and
thermal properties are temperature independent.

The temperature at any given point is the function of space x and time t,
i.e., T = T (x, t). By making above assumptions the heat transfer Equation
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(3.5) becomes:

∂T (x, t)

∂t
= α

∂2T (x, t)

∂x2
for 0 < x < L, t > 0, (3.6)

where α = k
ρCp

—thermal diffusivity (m2/s),

L—thickness of the wall (m),

k—thermal conductivity of the material (W/m·K),

ρ—density (kg/m3),

Cp—heat capacity of the material (J/kg·K).

Equation (3.6), requires to be solved with boundary conditions at two sur-
faces of the envelope, and initial conditions. Due to the effect of movement
of air near the wall surfaces results in convective heat transfer, hence convec-
tive boundaries are formulated as follows:

k

(
∂T

∂x

)
x=0

= hc[Ts(t)− Tx=0(t)]

k

(
∂T

∂x

)
x=L

= hc[Tx=L(t)− Ti(t)] (3.7)

The partial differential equation (PDE) (3.6), along with convective boundary
conditions (3.7), can be solved analytically, by using well-established meth-
ods [33, 136, 137]: Laplace transforms or Separation of variables or others.
Nevertheless, heat transfers in buildings are time dependent and are gen-
erally difficult to model by analytical methods. Numerical approaches are
therefore preferred to approximate solutions, because of their complexity
handling capabilities.

3.3.1 Numerical Modeling

The analytical methods have sound intuitive appeal and are computation-
ally efficient, but they can seriously complicate the smooth solution of the
building space model, which may require both heat and mass transfer, forced
and natural convection with field-dependent laminar and turbulent charac-
teristics, and contact with the plant. An alternative solution is to consider
the transient thermal conduction equation as a nodal problem and to solve
it numerically, thereby allowing this each node of the problem to partici-
pate as part of a larger building envelope problem. Consideration is then
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provided to the treatment of heat exchange on room surfaces, including the
treatment of long-wave and short-wave radiant exchanges, followed by the
closing of surface, source and room air exchanges resulting in room space
heat exchange.

The development of high-speed digital computers has greatly improved the
use of computational methods in various fields of science and engineering.
Many complex problems can now be overcome at a relatively low cost even
in a very limited period using the available computational resources. Presently,
the finite difference method (FDM), the finite volume method (FVM), and the
finite-element method (FEM) are widely used for the solution of partial dif-
ferential equations of heat, mass, and momentum transfer [138].

There is a great deal of research on the use of these approaches to solve heat
transfer problems. Each approach has its benefits, depending on the design
of the physical problem to be solved, but there is no perfect way to solve all
the problems. For eg, the dimension of the problem is an significant aspect
that needs some attention, since an efficient approach for one-dimensional
problems cannot be so appropriate for two-or three-dimensional problems.

FDMs are easy to formulate and can quickly be generalized to two-or three-
dimensional problems. In addition, FDM is very straightforward to learn
and refers to the solution of partial differential equations found in the simu-
lation of engineering problems with basic geometries. Whereas, In the case
of problems containing irregular geometries in the solution domain, the FEM
is proven more compact since the area near the boundary can easily be sep-
arated into sub-regions. The main drawback of FDM used to be its difficul-
ties in efficiently solving problems over arbitrary complex geometries due
to the interpolation between the boundary and the inner point, in order to
develop finite differences of expression for nodes next to the boundary. Re-
cently, with the emergence of numerical grid generation approaches, FDM
has become equivalent to FEM in the handling of irregular geometries, while
retaining the flexibility of standard FDM [138–141]. In this thesis, FDM is
used for solving conduction heat transfer equation because of its simplicity
and reliability.

3.3.2 Finite Difference Method

The FDM for solving a differential equation is based on the assumption that
when the spatial and temporal domains are divided into a uniform finite
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number of slices and uniform finite time steps, respectively, at a specific time
step, the state of the temperature, within each slice can be expressed by the
state at the same time. In addition, the variation of the state between each
pair of adjoining slices is assumed to be linear, as shown in Figure 3.7. Mainly
three methods can be used to derive the finite difference equations for de-
scribing the time evolution of the nodal temperatures.

1. Explicit (Forward difference) FDM

2. Implicit (Backward difference) FDM

3. Crank-Nicolson (Combined) FDM

Factors such as stability and convergence are critical in determining the suit-
able FDM method. The simple explicit FDM method is very simple com-
putationally for solving one-dimensional heat equation. However, during
stability analysis it was observed that it has some restrictions with respect to
maximum size of the time step. The solution became unstable with increas-
ing the time step. If calculations are to be carried out over a long period of
time, the amount of steps — hence the amount of calculations — needs can
become prohibitively high. In order to minimize this complexity, a finite dif-
ference scheme has been established that is not restrictive of the scale of the
time step ∆t. That method is implicit FDM.

As compared to the explicit FDM, each time step required further calculation
using the implicit FDM. The implicit finite difference approximation is stable
for all values of the time step ∆t. However, ∆t must be kept significantly
fine to obtain results sufficiently close to the exact solution of the conduction
heat equation. This has increased number of time steps and computational
cost. Hence, Crank and Nicolson [142] proposed an alternative solution of
combining the both implicit and explicit methods to form a single method.
In Crank-Nicolson FDM (CNFDM), there was speed of convergence of ex-
plicit method and stability of implicit method. The finite difference Crank-
Nicolson method is therefore implemented to approximate solutions at finite
time and space, due to its proven ability to solve PDEs and its unconditional
stability.

In order to formulate heat transfer model using CNFDM , the multilayer wall
of Figure 3.7 is discretized into equal segments of spatial width ∆x along its
thickness. Therefore, a set of algebraic equations are developed by discretiz-
ing the governing Equations (3.6) and (3.7) corresponding boundary condi-
tions, using unconditionally stable CNFDM. The general form of CNFDM is
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detailed as follows:

T
(t+∆t)
i − T (t)

i =Ψ[(T
(t+∆t)
i−1 − 2T

(t+∆t)
i + T

(t+∆t)
i+1 ) + (T

(t)
i−1 − 2T

(t)
i + T

(t)
i+1)] (3.8)

Ψ =k∆t/2ρC∆x2

Equation (3.8) applied for interior nodes is expressed as:

(2 + 2Ψl)T
(t+∆t)
i = (2− 2Ψl)T

(t)
i + Ψl(T

(t)
i−1 + T

(t)
i+1 + T

(t+∆t)
i−1 + T

(t+∆t)
i+1 ) (3.9)

where Ψl = kl∆t/2ρlCl∆x
2 for sublayers l = 1, 2, 3, 4...n, discretized equal

segments of the wall. Nodes at the boundary of two intermediate layers
(node between i = 2 and i = 3 in Figure 3.7), the thermo-physical properties
of these two material layers have an impact on the transient heat transfer.
The corresponding equations from CNFDM approach are as follows:

(2 + Ψl1 + 2Ψl2)T
(t+∆t)
i =(2−Ψl1 − 2Ψl2)T

(t)
i + Ψl1T

(t)
i−1 + Ψl2T

(t)
i+1 (3.10)

+ Ψl1T
(t+∆t)
i−1 + Ψl2T

(t+∆t)
i+1

Ψl1 =
λl1∆t

(ρl1Cl1 + ρl2Cl2)∆x2
(3.11)

Ψl2 =
λl2∆t

(ρl1Cl1 + ρl2Cl2)∆x2
(3.12)

The convection boundary conditions at node x = 0 and x = L are formulated
as listed below:

(2 + 2Ψ + 2H)T
(t+∆t)
1 =(2− 2Ψ− 2H)T

(t)
1 + 2Ψ(T

(t)
2 + T

(t+∆t)
2 ) +H(T (t)

e + T (t+∆t)
e )

(3.13)

(2 + 2Ψ + 2H)T
(t+∆t)
N =(2− 2Ψ− 2H)T

(t)
N + 2Ψ(T

(t)
N−1 + T

(t+∆t)
N−1 ) +H(T (t)

e + T (t+∆t)
e )

(3.14)

H = hc∆t/ρC∆x (3.15)

Te = ambient temperature for boundary at x = 0, and zone air temperature
for boundary at x = L.
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The set of CNFDM equations of energy conservation can be expressed in
tridiagonal matrix.

AT
(t+∆t)
1..n = BT

(t)
1..n (3.16)

where A is the matrix with future values and B is the matrix with present
values with respect to time coefficients (t+ ∆t) and (t), respectively. T is the
temperature vector at (t) and (t + ∆t). By applying Thomas algorithm with
the given initial and boundary conditions, the future temperature values can
be determined [143].

3.4 Optimization Techniques

The application and brief introduction was given in the Introduction chapter
Section 2.4. In this section, a constrained optimization technique capable of
identifying optimal parameters of the thermal network model is described.

Parameters R and C identification through optimization techniques will en-
hance the performance of the building 3R2C thermal network model-based
controllers. The heat conduction through composite wall with multilayer
materials, which have different thermo-physical properties is expected to be-
have as the reference model (building envelope real behavior). Hence, it is
important to obtain proper distributed values for each resistor and capacitor
of the 3R2C model matching the building envelope real dynamics.

The optimization theory formed from a series of analytical and numerical
approaches aimed at identifying the right candidate within a group of alter-
natives without the need to analyze any of these choices. In certain cases,
optimization problems are presented as the optimal search for functions, i.e.
the search for the values of the variables that make the function find its global
minimum or maximum value. The function to be optimized is called the ob-
jective or cost function, and the variables are the decision variables. Some of
the optimization algorithms are:

• Genetic algorithms

• Particle Swarm optimization algorithms

• Artificial immune systems

• Evolutionary algorithms, etc.

In this thesis, a Particle Swarm optimization (PSO) algorithm is applied for
parameter values identification of a building thermal network model. PSO is
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a population-based stochastic algorithm [144–146], and is suitable for discon-
tinuous non-linear systems with convergence behavior and robustness as key
features. The particles of PSO update themselves with the velocity, they even
have a memory of the preceding location. In addition, PSO particles have
individual best position and move towards global best position by sharing
information with other particles. This characteristics makes PSO to converge
faster compared to other algorithms for example GA (crossover) [147]. There-
fore, PSO can be found well suited to parametric optimization processes
when compared to other evolutionary algorithms.

3.4.1 Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm is a population-based search
algorithm based on the simulation of the social behavior of birds within a
flock. The original purpose of the particle swarm idea was to graphically
model the graceful and chaotic choreography of the bird flock, with the goal
of finding patterns that rule the ability of birds to fly synchronously, and to
spontaneously change direction by regrouping in an optimum configuration.
From this initial goal, the idea has developed into a simple and effective op-
timization algorithm.

In PSO, individuals, referred to as particles, are “flown” through hyper-dimensional
search space. Changes to the position of particles within the search space are
based on the socio-psychological propensity of individuals to imitate the per-
formance of others. Therefore, modifications to a particle inside the swarm
are affected by the experience or awareness of its neighbors. Thus, a parti-
cle’s search activity is influenced by that of other particles inside the swarm
(PSO is therefore a kind of cooperative symbiotic algorithm). The effect of
modeling this social behavior is that the search process is such that particles
return to previously successful regions in the search space stochastically.

A PSO algorithm maintains a particle swarm, where a possible solution is
represented by each particle. A swarm is similar to a population in contrast
to evolutionary computing concepts, while a particle is similar to an entity.
Simply stated, the particles are ’flown’ into a multidimensional search space
where, according to their own knowledge and that of their neighbors, the
location of each particle is adapted. Let xi(t) denote the position of particle i
in the search space at time step t. The position of the particle is changed by
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adding a velocity, vi(t), to the current position, i.e.

xt+1
i,j = xti,j + vt+1

i,j (3.17)

It is the velocity vector that drives the optimization process, and reflects both
the experiential knowledge of the particle and socially exchanged informa-
tion from the particle’s neighborhood. The experiential knowledge of a parti-
cle is generally referred to as the cognitive component, which is proportional
to the distance of the particle from its own best position (referred to as the
particle’s personal best position) found since the first time step. The socially
exchanged information is referred to as the social component of the velocity
equation. The PSO can search for local best lbest and global best gbest.

For the global best PSO, or gbest PSO, the neighborhood for each particle is
the entire swarm. The social network employed by the gbest PSO reflects
the star topology. For the star neighborhood topology, the social component
of the particle velocity update reflects information obtained from all the par-
ticles in the swarm. In this case, the social information is the best position
found by the swarm, referred to as Gbest(t).

vt+1
i,j = wvti,j + c1r1(lbestti,j − xti,j) + c2r2(Gbesttj − xti,j) (3.18)

where vti,j is the velocity of particle i in dimension j = 1, ..., nx at time step
t, xti,j is the position of particle i in dimension j at time step t, c1 and c2 are
positive acceleration constants used to scale the contribution of the cognitive
and social components respectively, and r1, r2 are random values in the range
[0, 1], sampled from a uniform distribution. These random values introduce
a stochastic element to the algorithm. The velocity calculation as given in
equation 3.18 consists of three terms:

• Previous velocity, vi(t), which acts as a memory of the previous direc-
tion, i.e. acceleration in the immediate past. This memory concept can
be seen as a momentum that stops the particle from dramatically shift-
ing direction and from bias against the current direction. The compo-
nent is often referred to as the inertia component.

• The cognitive component, c1r1(lbestti,j − xti,j), which quantifies the per-
formance of particle i relative to past performances. The result of this
term is that the particles are attracted back to their own better positions,
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resembling the propensity of individuals to return to circumstances or
areas that have most pleased them in the past.

• The social component, c2r2(Gbesttj − xti,j), which quantifies the perfor-
mance of particle i relative to a group of particles, or neighbors. Con-
ceptually, the social component resembles a group rule or ideal that
individuals seek to accomplish. The consequence of the social aspect is
that each particle is therefore drawn to the best location in the vicinity
of the particle.

The PSO to find gbest is summarized in below algorithm 1:

Algorithm 1: PSO gbest algorithm.
Create and initialize an nx-dimensional swarm;
repeat

for each particle i = 1, ..., ns do
//set the personal best position if f(xi) < f(lbest) then

lbest = xi;
end
//set the global best position if f(lbest) < f(gbest) then

gbest = lbest;
end

end
for each particle i = 1, ..., ns do

update the velocity; update the position;
end

until stopping condition is true;

The Figure 3.8, shows the position updates with reference to the task of mini-
mizing a two-dimensional function with variables x1 and x2 using gbest PSO.
The global minimum is at the origin, indicated by theX symbol. In the Figure
3.8(a), the initial position of eight particles are shown along with the global
best particle’s position. In the Figure 3.8(b), the particles have moved in the
direction of global minimum and attaining new global best position.

PSO can handle constraints optimally by rejecting infeasible solutions. A
constrained PSO will not allow infeasible particles to be selected as personal
best or neighborhood global best solutions. In reality, infeasible particles can
never affect other particles in the swarm. Infeasible particles are, however,
pushed back to workable space due to the fact that the best personal and
neighborhood locations are in feasible space. This method will only be use-
ful if there is a combination of amount of infeasible particles to viable par-
ticles are thin. If this ratio is too high, the swarm will not have enough

87



Chapter 3. Lumped Parameter Thermal Network Modeling

FIGURE 3.8: Multi-particle gbest PSO Illustration [148].

diversity to efficiently fill (feasible) space. An alternative to the above so-
lution is by replacing infeasible particles with their feasible personal best po-
sitions [149]. By doing so, the infeasible particles are brought back feasible
space efficiently.

3.5 Building Envelope Model Development and Pa-

rameters Identification

This section proposes a method for parametric identification of thermal net-
work model (3R2C) by using constrained particle swarm optimization (PSO)
algorithm [150].

3.5.1 Thermal Network Model Comparison

Based on the thermal balance equation and different configurations from lit-
erature study, we modeled our envelope as a first order (2R1C), a second
order (3R2C), and a third order (4R3C) lumped parameter thermal network
model. Furthermore, the results from these models are compared with each
other. For this analysis, only heat load from heating system is given. The
multi-layer wall data and corresponding input and output temperatures data
are obtained from Hensen’s model [151].
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TABLE 3.2: Thermo-physical properties of the wall.

Material Thickness (mm) Density (kgm−3) Conductivity (Wm−1K1) Specific heat capacity (Jkg−1K−1)
Plasterboard 13 720 0.16 840

Concrete block 100 2096 1.63 920
Insulation 50 91 0.04 840

Air gap 20 1 0.11 1005
Brick 100 1920 0.87 800

First Order Model - 2R1C

The first order lumped parameter model consist of two resistors and one
capacitor (1R1C), the model is shown in Figure 3.9. The value of Cth is the
total thermal capacitance of the wall and R1 are identified using the above
given parametric identification method.

To
R1 R2Tw

C

Tr

FIGURE 3.9: First order lumped parameter model - 2R1C

Second Order Model - 3R2C

The second order lumped parameter model consist of three resistors and two
capacitors (3R2C), the model is shown in Figure 3.10. The parameters R1,
R2, and R3 are resistors of wall thermal resistivity, and C1 and C2 are capaci-
tors representing thermal capacitances of the composite wall. Same paramet-
ric identification method used to obtain the parameters values. Similarly, a
third-order model is developed for comparison purposes.

R1

C1

R2

C2

R3TC1 TC2

Toutdoor Tindoor

FIGURE 3.10: Simplified thermal network model - 3R2C.
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In order to select the best suitable lumped parameter model, we firstly sim-
ulated above three different configuration models for a five layer composite
wall. The simplification of these thermal networks is done through state-
space equations. The values of RC values are unknown parameters and ob-
tained from the parametric identification method detailed in the following
section. These different models output is compared with each other and with
the reference model [151].

RC Models Comparison Analysis

The above given models are simulated by using same input and initial con-
ditions. The simulation is performed for 7 days and compared with the ref-
erence model output data.
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FIGURE 3.11: Comparison of simulated heat load from RC
models and reference model.

Figure 3.11 presents the simulated output from three different RC models
are compared with reference model. All three models have good fitting and
follows the dynamics of the reference model. The first order model output
has higher deviation compared to the other two models, the low R1 value
obtained from the parameter optimization method has higher influence on
the heat load prediction. Furthermore, it is noticed that prediction accuracy
is increased as the model order is increased. The symmetric mean absolute
percentage error (sMAPE) between the RC models and reference model is
given in Table 3.3.
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All three models have similar prediction behavior since it is a simple model
applied for just one wall. The 2R1C model has high computational efficiency
and good fitting with the reference model. This model can be used for simple
building because of its simplicity. However, considering the sMAPE error cri-
teria, 3R2C and 4R3C model are more accurate than the 2R1C model. Among
the 3R2C and 4R3C models, the 4R3C model has the best accuracy. Further-
more, the difference between these two models is very low (≈ 0.1%). How-
ever, the computational cost of 3R2C is greater than 6% compared to 4R3C
model. Therefore, simulating multiple zone building models with 4R3C model
will constitute for high computational cost and increases the design complex-
ity.

From this comparison, it can be concluded that the 3R2C model has the ac-
ceptable range accuracy and high computational efficiency. However, if ac-
curacy is the main concern 4R3C model can be used for such purposes.

It is important to notice that 4R3C model has very low sMAPE, however
difference between 3R2C and 4R3C model is also very low and 3R2C model
accuracy is in acceptable range. All three models have high computational
cost for one wall simulation.

TABLE 3.3: Symmetric mean absolute percentage error
(sMAPE) between reference and RC models.

RC model sMAPE Run time

First-order model 0.03716 4.86 (ms)
Second-order model 0.02008 4.97 (ms)
Third-order model 0.01891 5.2 (ms)

3.5.2 Simulation Model

A simplified model (3R2C) is developed to represent building envelope for
predicting its thermal response. As discussed in the previous sections the
model parameters can be determined using two ways: analytical and nu-
merical. In our study, we selected numerical stochastic optimization algo-
rithm (PSO) to identify optimal parameter values. The constrained PSO can
be adapted to find parameters by finding the global minimum error value be-
tween the two models: 3R2C thermal network model and a reference model.
A reference model is developed using well-established Crank-Nicolson fi-
nite difference method (detailed in section 3.3.2) to represent the energy flow
through the building envelope [138].
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In literature, parameters are identified by comparing simplified model with
the reference model response for a step excitation of input variables [125,130,
132, 133]. However, in reality the input variables vary dynamically, for ex-
ample the output temperature varies periodically. Therefore, in this study,
a step and a periodic input excitation given and responses are then com-
pared between reference model and second-order thermal network models.
Subsequently, PSO algorithm is applied to minimize the root mean square
error (RMSE) between the reference and thermal network models.

The thermal network model approach is used to simplify the complex mod-
eling of building dynamics, and to obtain reduced order simplified models
of the buildings based on state-space equations. The 3R2C network model
consists of three R and two C representing resistances and capacitances of
composite homogeneous wall, respectively. The application of 3R2C model
can be seen regularly in the literature due to its performance accuracy and
low computational cost. In 3R2C model (see Figure 3.10), R1, R2, and R3 are
resistors of wall thermal resistivity, and C1 and C2 are capacitors represent-
ing thermal capacitances of the composite homogeneous wall. The degree
of differential equations is equal to the number of capacitors in the network.
Consequently, second-order differential Equations (3.19) and (3.20) are ob-
tained from 3R2C model.

dTc1
dt

=
Tout
R1C1

− Tc1
R1C1

− Tc1
R2C1

+
Tc2
R2C1

(3.19)

dTc2
dt

=
Tc1
R2C2

− Tc2
R2C2

− Tc2
R3C2

+
Tin
R3C2

+
Qin

C2

(3.20)

The overall thermal capacitance per unit, Ctotal is calculated by adding ther-
mal capacitance (3.24) of each layer of the wall, similarly overall thermal
resistance, Rtotal is calculated by summing thermal resistance (3.22) of each
layer of the wall.
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Rtotal =
M∑
j=1

Rlayer,m (3.21)

Rlayer =
l

kA
(3.22)

Ctotal =
M∑
j=1

Clayer,m (3.23)

Clayer = ρ.Cp.l.A (3.24)

where

l—thickness of the material layer (m),

m—number of layers of the wall,

k—thermal conductivity of the material (W/m·K),

ρ—density (kg/m3),

Cp—heat capacity of the material (J/kg·K), and

A—surface area of the wall (m2)

To obtain a simplified 3R2C network model, the overall thermal resistance to
be distributed appropriately between R1, R2, and R3 and the overall thermal
capacitance between two capacitors C1 and C2.

R1 = x1Rtotal (3.25)

R2 = x2Rtotal (3.26)

R3 = x3Rtotal (3.27)

x3 = 1− x1 − x2 (3.28)

C1 = x4Ctotal (3.29)

C2 = x5Ctotal (3.30)

x5 = 1− x4 (3.31)

The coefficients x1, x2, x3, x5 and x4 values are important for the model per-
formance accuracy, these values are optimally obtained from the optimiza-
tion technique given in the following section. The second-order differential
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equations can be expressed using state-space formulation and simulated us-
ing Python programming language:

Ṫ = AT +BU

y = CT +DU (3.32)

where

T is the temperature vector,

U is the input vector,

y is the output vector,

A is the state matrix coefficients related to state vector,

B is the input matrix values related to input vector,

C is the output matrix values related to state vector, and

D is the direct transition matrix.

A constrained PSO algorithm (detailed in section 3.4.1) was developed to
identify model parameter values by minimizing the RMSE between reference
and 3R2C thermal network models. The two inputs of the system model,
Tambient and Tindoor, are excited with sinusoidal periodic and unit step func-
tions. Internal and external surface temperatures are predicted from refer-
ence CNFDM model and are compared with 3R2C model. The RMSE is min-
imized by using objective function (3.33) of the constrained PSO algorithm.

minf(x1, x2, x4) =

√∑n
k=1(Tfdmk − Tsimk)2

n
(3.33)

subject to constraints:

x1 + x2 + x3 = 1; x1, x2, x3 > 0

x4 + x5 = 1; x4, x5 > 0;

1− (x1 + x2) > 0; 1− x4 > 0 (3.34)
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R and C values of 3R2C model are obtained from below expressions:

R1 = x1Rtotal, R2 = x2Rtotal, R3 = x3Rtotal,

C1 = x4Ctotal, C2 = x5Ctotal

Rtotal =
M∑
j=1

Rlayer,m , Ctotal =
M∑
j=1

Clayer,m (3.35)

where Rtotal is the total resistance and Ctotal is the total capacitance values of
composite wall, f(x1, x2, x4) = fitness function to be minimized, Tfdmk and
Tsimk = step and periodic input response temperature at interval of (k).

We have evaluated our model with different accuracy measure method (error
calculation) methods.

• Root mean square error (RMSE)

RMSE =

√√√√ N∑
i=1

(ymeasured,i − ypredicted,i)2

N
(3.36)

• Mean absolute error (MAE)

MAE =
1

N

N∑
i=1

|(ypredicted,i − ymeasured,i)| (3.37)

• Absolute percentage error (APE)

APE =

∣∣∣∣(ymeasured,i − ypredicted,i)ymeasured,i

∣∣∣∣× 100% (3.38)

• Mean absolute percentage error (MAPE)

MAPE =
1

N

N∑
i=1

|ypredicted,i − ymeasured,i|
ymeasured,i

× 100% (3.39)

• Symmetric mean absolute percentage error (MAPE)

sMAPE =
1

N

N∑
i=1

|ypredicted,i − ymeasured,i|
(ypredicted,i + ymeasured,i)/2

× 100% (3.40)
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where N is the number of values, ymeasured,i is the ith measured temperature
value or the reference model temperature value and ypredicted,i is the ith pre-
dicted one.

3.5.3 Simulation Results of Parametric Identification

In this study, three types of building envelope datasets are used to demon-
strate the suitability of proposed parametric identification approach. These
datasets are light, medium, and heavy weight/thermal mass composite walls.
Low thermal mass construction walls typically consist of either steel or tim-
ber layers with insulating materials. Typically, low mass wall systems are at
least partly pre-assembled off-site this indicates that they are pre-fabricated
in an industry/factory. With this option, we can construct building quicker
than the heavy mass walls, as the construction work is less weather depen-
dent. Low mass walls have lower amount of heat storage ability. Whereas,
heavy mass walls generally built of precast concrete or concrete blocks. Prop-
erly insulated heavy mass walls can store significant amount of heat from
sun, thus minimizing cooling and heating load while enhancing indoor com-
fort. Many of the conventional buildings are built using heavy mass walls.
New buildings are recently using low mass walls. Therefore, the parameters
identification approach is applied to different thermal mass walls.

The multilayer wall layer’s thermo-physical properties and wall composition
details are provided in Table 3.7. These thermo-physical properties and com-
position of layers data are obtained from the ASHRAE Handbook of Fun-
damentals [23]. In order to identify the parameter values of thermal net-
work model and to validate the its dynamics, a reference model is developed.
In addition, two other thermal network models (model (I) and (II)) are devel-
oped for comparison purposes. The resistors and capacitors values of model
(I) are assigned in such a way that the total resistance and capacitance values
are allocated equally for R1, R2, R3, C1, and C2 parameters. Whereas, the val-
ues of resistors and capacitors of model (II) are assigned same as the building
envelope layer’s thermal resistance and capacitance meaning that the layer
(outside) value is assigned to resistor R1. Capacitors C1 and C2 values are
allocated in the same way.

Furthermore, the CNFDM-based reference model is divided into 80 equal
segments to have higher accuracy with initial conditions T (x, t) = 0 at t =

0, ∀x ∈ [0, L], boundary conditions T (x, t) = u(t) ∀t > 0, at x = 0 and
x = L, T (x, t) = Te(t), ∀t > 0. A unit step and periodic input is given to
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the models (optimized 3R2C model, model (I), and model (II)) and output
indoor temperature is measured.

The minimization of the objective function by PSO algorithm is shown in
Figure 3.12. The minimized fitness function value is plotted against the par-
ticle generations in which each generation consists of 100 particles. Initial
particles are randomly generated within the bounded values, hence few par-
ticles in first few iterations have violated the given constraints, and those are
omitted in the plot.
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FIGURE 3.12: Minimized value of objective function for
medium weight wall.

The simulation results of PSO in the Figure 3.13 shows the influence of the
resistor and capacitor values on the performance accuracy. The global mini-
mum values are obtained by using the PSO. Furthermore, small variation of
the x1 coefficient of R1 is greatly affecting the accuracy. Whereas, the capaci-
tor value is varied for almost 50 % but has the impact on accuracy as same as
the resistor value. This observation show that optimal parameter values are
essential for performance accuracy, particularly the resistor values.

The developed models were simulated in Python using the following compu-
tational facilities: Intel Core i5-7300U, CPU 2.60 GHz and 8 GB (RAM) under
operating. Accordingly, the average execution time of PSO algorithm is 30.33
seconds (1000 maximum iterations). The 3R2C thermal network model was
around 40% to 50% computationally faster over reference model.
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FIGURE 3.13: Optimized values of R1, R2, and C1 coefficients (
x1, x2, and x4) with PSO algorithm.

The comparison between temperature responses of heat conduction transfer
of the reference model and the thermal network model with optimal param-
eter values for for different thermal mass walls is shown in Figures 3.14–
3.18. For the better understanding and validation of the developed model,
we have chosen to compare with other two models ((I) and (II)) that were
used in the literature. For model (I), the resistor values are chosen such that
the R1 and R2 are 33% of the total thermal resistance, and R3 is 34% of the to-
tal thermal resistance. Capacitors C1 and C2, each are given 50% of the total
thermal capacitance value.

Similarly, the parameter values of the model (II) is chosen such that the R1,
R2, and R3 value taken as same value as the wall layer resistance value. This
condition is implemented for the walls with three layers but for the four and
more layers the R1 and R3 are equal to resistance value of first and last layer
and R2 is the cumulative value of the middle layers. Capacitors C1 and C2,
each are given 50% of the total thermal capacitance value.

Low Thermal Mass Wall

Low thermal mass wall indicate the walls with low weight materials such as:
wooden walls, partition walls with plaster and insulation. The simulation
results of this wall is shown in Figure 3.14. The model simulated for 2 days,
the results show that model with optimal parameter values has great fitness
to the reference model characteristics. The model (II) has acceptable accu-
racy but underestimated the dynamics. However, it reached steady-state just
after the optimal model. Whereas, model (I) dynamics took more time to
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reach steady-state with big difference in response as compared to the refer-
ence model, hence produces large error in real application.

Meanwhile, the model (II) of the low thermal mass wall has shown relatively
good accuracy with reference model. The parameter values of the model (II)
are same as of the 3 layers in the low mass wall. The results show that for
low thermal mass model (II) can be applied in real time applications due to
its acceptable performance.
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FIGURE 3.14: Temperature dynamics of reference, optimized and comparison models for light weight wall.
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FIGURE 3.15: Evolution of APE of the low thermal mass wall.

The different error methods are used to verify the model performance accu-
racy. The evolution of APE is shown in Figure 3.15. This method is used to
validate the accordance of the model with the reference model. We studied
models with both step and periodic inputs. The values APE are much big-
ger in the beginning due to the fast dynamics of the thermal network model
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as compared to the reference model. The maximum error is noticed in the
model (II). There is ±5 % difference between the optimized parameter val-
ues obtained for thermal network model when both step and periodic input
function applied. However, we observed that there is small difference in
error values between step and periodic input model performance. For low
thermal mass walls, the values obtained for step or periodic input models
can be used in the modeling. Both the models are well under the accepted
accuracy. Their corresponding MAE, MAPE, and sMAPE are given in Table
3.4.

TABLE 3.4: Low thermal mass wall performance evaluation re-
sults.

Input methods Models MAE MAPE (%) sMAPE (%)

step input
Optimized 0.00102 6.11 3.69
Model (I) 0.05907 22.54 25.09
Model (II) 0.04215 17.33 23.64

periodic input
Optimized 0.00210 6.86 4.34
Model (I) 0.15257 59.11 56.12
Model (II) 0.15900 65.26 61.32

Medium Thermal Mass Wall

Medium thermal mass wall indicate the walls with medium weight materials
such as: brick walls, partition walls with plaster, brick, and insulation. We
obtained optimal parameters for the thermal network model representing the
medium thermal mass wall by using the PSO optimization. The performance
of the model is compared with the reference model and other two models:
model (I) and model (II). Figure 3.16 illustrate the thermal dynamics of all
three models in comparison with reference model. The temperature response
of model with optimal parameter values has best fitting with the reference
model response in both step and periodic input methods. Other two models
have poor fitting with the reference model, model (II) underestimated the
temperature, whereas model (I) is slow and steady-state is not reached in 4
days.
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FIGURE 3.16: Temperature dynamics of reference, optimized and comparison models for medium weight wall.
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FIGURE 3.17: Evolution of APE of the medium thermal mass
wall.

The APE evolution of these two models and optimized model is depicted in
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Figure 3.17. Similar to low thermal mass results, at the beginning there is
greater difference between reference and other models. The optimized pa-
rameter model has maximum APE of 10 % at the beginning, and sMAPE of
3.94 %. The error is high in the periodic input method as compared to the step
input method. Moreover, model (I) has worst performance accuracy and its
error increasing at every successive period in the periodic input method. It
shows the importance of the parameter values on the thermal network model
performance and the need of the optimized parameters model. Other error
methods are listed in Table 3.5.

TABLE 3.5: Medium thermal mass wall performance evaluation
results.

Input methods Models MAE MAPE (%) sMAPE (%)

step input
Optimized 0.00101 7.48 3.94
Model (I) 0.11753 49.32 68.23
Model (II) 0.10083 43.84 67.71

periodic input
Optimized 0.00188 8.29 4.58
Model (I) 0.13530 47.98 62.98
Model (II) 0.14796 61.09 74.46

Heavy Thermal Mass Wall

We studied the application of thermal network model with optimal param-
eter values for heavy thermal mass wall. The dynamics of optimized model
along with models (I) and (II) are compared with that of reference model
(Figure 3.18). The chosen multi-layer wall has 4 layers. Similar to the low and
medium thermal mass walls, the optimized model has good fitting with the
reference model dynamics. Whereas, model (II) reach steady-state within
2 days but it underestimated the dynamics. The model (I) has poor perfor-
mance accuracy and does not reach steady-state within 4 days. However,
there is great difference between the performance accuracy of the optimized
model for step and periodic input.
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FIGURE 3.18: Temperature dynamics of reference, optimized and comparison models for heavy weight wall.
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FIGURE 3.19: Evolution of APE of the heavy thermal mass wall.

The APE evolution for heavy thermal mass wall is shown in Figure 3.18.
Model (I) has the poor performance among other models, model (II) under-
estimated the temperature response. Performance of the optimized model
in step input method has best fitting, however the error is more in periodic
input method. The values of the step input for heavy thermal mass provides
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false representation of the performance. Therefore, validating models with
the periodic input method is essential to enhance the performance accuracy.
The root mean square error (RMSE) for different construction class walls are
given in Table 3.8 and other error evaluations are given in Table 3.6.

Furthermore, the temperature response of model with optimized parame-
ter values has closely followed the reference model response dynamics in
both cases of step and periodic excitation. In this context, the proposed 3R2C
model with optimal parameter values is strongly recommended because of
its increased accuracy and computational efficiency.

The Figures 3.14–3.18 shows that the time-lag difference between the differ-
ent thermal mass walls, the time response of the model is less in low mass
wall compare to other two walls. The time-lag in the heavy mass wall is
almost 2 days to reach the steady state.

TABLE 3.6: Heavy thermal mass wall performance evaluation
results.

Input methods Models MAE MAPE (%) sMAPE (%)

step input
Optimized 0.00139 15.48 9.43
Model (I) 0.06944 70.59 57.91
Model (II) 0.05482 66.57 39.53

periodic input
Optimized 0.0139 28.81 17.14
Model (I) 0.07389 80.73 60.32
Model (II) 0.05990 63.9 39.75
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TABLE 3.7: Multilayer wall classification, thermal properties, and optimized R and C values.

Construction Class

Thermal Properties
Parametric Values R (m2·K/W and C (kJ/m2·K)

Thickness Conductivity Density Specific Heat

mm W/(m·K) kg/m3 kJ/(kg·K) Rtotal Ctotal R1 R2 R3 C1 C2

Light-weight (LW)

3.1498 76.852 0.29477 2.7812 0.07383 20.694 56.157Stucco 25.00 0.692 1858 0.84
Insulation (batt) 125.00 0.043 91 0.96
Plaster/Gypsum 20.00 0.727 1602 0.84

Medium-weight (MW)

3.8238 183.724 0.0937 3.6735 0.0565 69.664 114.059
Brick 101.60 0.89 1920 0.79
Insulation board 50.80 0.03 43 1.21
Air space 50.00 0.02514 1.205 1.00
Gypsum 20.00 0.727 1602 0.84

Heavy-weight (HW)

2.1917 402.102 0.1417 1.9018 0.1481 205.196 196.906
Brick 101.60 0.89 1920 0.79
Heavyweight concrete 203.2 0.53 1280 0.84
Insulation board 50.80 0.03 43 1.21
Gypsum 20.00 0.727 1602 0.84
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TABLE 3.8: Root mean square error (RMSE) between reference
and simplified thermal network model.

Construction Class Step Excitation Periodic Excitation

Light-weight(LW) 1.239 × 10−3 1.651 × 10−2

Medium-weight(MW) 1.311 × 10−3 1.365 × 10−2

Heavy-weight(HW) 1.495 × 10−3 2.208 × 10−2

As expected and observed in the PSO results (Figure 3.13) the middle resistor
dominated the resistance values obtained from the optimization technique,
this is largely due to the presence of high thermal resistance insulation in-
ner layers as compared low resistance outer layers. It was noticed (Figure
3.13) that the resistor values variation has greater influence on the thermal
network model accuracy. In order to know the influence of each parameter
on the model performance, we performed a sensitivity analysis on the 3R2C
model parameters using SALib Python library [152].

The sensitivity analysis is done for both first-order and total-order indexes.
The influence of each parameter on the model performance is given in Table
3.9. The resistance values have much higher influence on the performance
than capacitance values. Particularly, the R2 and R3 resistors have greater
influence on the model. The influence of resistors are almost 70 % - 80 %,
whereas capacitors have 2 % - 10 % of influence on the model performance.
This indicates that the using of proposed optimization technique is essential
to obtain optimal value of all high influential parameters value.

TABLE 3.9: Sensitivity analysis results of the 3R2C model pa-
rameters.

Parameters First-order index Total-order index
R1 0.023846 0.161070
R2 0.185691 0.387125
R3 0.137046 0.291419
C1 0.000245 0.016622
C2 0.007953 0.023883

3.5.4 Comparison with Conduction Transfer Function (CTF)

Model

There are various methods to simulate the performance of a building. These
methods can be put into two categories: (1) Analytical, and (2) Numerical.
In this paper, numerical finite difference method has been chosen to develop
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reference model. Many simulation tools are developed based on the finite
difference approach [135]. However, many recent well-established simula-
tion tools (EnergyPlus, TRNSYS, etc.) use analytical conduct transfer func-
tion (CTF) method to perform calculations.
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FIGURE 3.20: Comparison between CTF and simplified thermal
network model.

The parameters of simplified thermal network model are identified by com-
paring it with the finite difference model. Furthermore, a comparison sim-
ulation has been conducted to compare thermal network performance with
the analytical conduction transfer function method. The CTF method was
introduced by Mitalas and Stephenson [136]. A transient conduction calcu-
lations performed on multilayer wall using CTF method is detailed in [151],
all coefficients for this wall was provided along with cooling load output,
and input outdoor and indoor temperatures. Applying the parameters iden-
tification technique detailed in Section 3.5.3 on example wall, the resistor and
capacitor values are obtained. The simplified thermal network model is then
developed for the example wall and compared with the CTF model in Fig-
ure 3.20. A very good agreement can be noticed between optimized thermal
network and CTF model. The symmetric mean absolute percentage error
(sMAPE) between the both models was found to be 0.02008 (≈2%). The de-
veloped parametric identification method based on CNFDM, presents very
good prediction accuracy when compared with CTF model.
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3.6 Conclusion

The objective of this chapter was to establish a lumped parameter thermal
network model for a composite wall consists of multi-layers including high
insulation layer. An improved method for the simplified thermal network
modelling for thermal response of building envelope elements was proposed
and validated against the reference model. The thermal network model se-
lected was 2nd-order model, it consists of three resistors and two capacitors
(3R2C). An unconditionally stable reference Crank-Nicolson model is devel-
oped for the heat conduction equation with convective and radiative bound-
ary conditions. The model parameter values have significant impact its per-
formance. A stochastic constrained PSO algorithm has been adopted to de-
termine the parameters set that provides the optimal approximation of the
proposed low-order model dynamics with respect to the reference model dy-
namics. The constraints for the PSO algorithm were chosen such that the
parameter values are not more than the total material resistance and capac-
itance. The temperature inputs are excited stepwise and periodically. The
developed model has been verified for three different wall configurations.
The performance of the simplified thermal model with optimized parame-
ters has computational efficiency 40% to 50% higher compared to reference
model.

The chapter is divided into two parts, in the first part, we have introduced
the importance of the lumped parameter thermal network models and some
review of various studies from the literature. A physical model based on
heat balance equation was presented using its equivalent analogy to electri-
cal systems. Furthermore, we discussed on different configurations of ther-
mal network models that are well-established, this section was the basis for
selection 3R2C model for our thesis. Later, we have also introduced analyt-
ical and numerical methods to solve heat equation. A comparison has been
given between analytical and numerical model, in order to develop reference
model for parameters identification we selected numerical Crank-Nicolson
FDM because of its simplicity, stability, and accuracy over other FDM and
analytical models.

Finally, the simulations were carried for different configurations of composite
walls and their parameters identified using PSO, the optimal model is com-
pared against other 2 models. The 2 other models have differentR and C val-
ues. It has been observed that the model with optimal value performed well
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and followed the dynamics of the reference model. The proposed method is
then validated against an analytical model from literature.
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4.1 Introduction

In the chapter 1 we detailed fundamentals of building models, types of differ-
ent models and compared each model with their advantages and disadvan-
tage. This gave insights into the building’s thermal modeling, factors influ-
encing building performance, occupants comfort parameters, and intelligent
control systems for buildings. In Chapter 2 appropriate modeling techniques,
difference between envelope and whole building modeling were presented.
Furthermore, we have detailed how to select thermal network model, their
parameters identification, and development of a thermal network model for
composite wall. In the next chapter, we validate the proposed methodology
of simplified thermal network with parameters identification with the mea-
sured data from a container building. In order to validate the model, first
the whole building model has to be developed using thermal networks of
building elements. The objective of this chapter given as follows:

• Introduction of the off-site container building, the developed model is
validated with the measured data from this building,

• To present a the HVAC system of the building, and

• To detail the scheduling and the data collection methods.

This chapter provides a brief detail on selected case-study building, its mate-
rials, HVAC systems, and scheduling.

4.2 Case Study Building Description

The CESI smart container building is a multi-purpose building, the rooms
are used as classrooms and laboratories, located in the CESI Campus of Nan-
terre, France (see Figure 4.1). This building is constructed under the program
French Programmes d’Investissement d’Avenir (PIA-France). The building
meets the French energy standard BBC (Bâtiment à Basse Consommation)
[153].

Figure 4.2 shows the CESI smart building (Nanterre, France). It is an intel-
ligent and connected building built in partnership with companies CISCO,
Philips Lighting and Vinci Energies. The 200 m2 building is constructed us-
ing 16 recycled maritime containers. The Smart Building integrates different
technologies and data sensors to detect various physical parameters. These
include LED lights powered and controlled by POE (Power Over Ethernet),
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FIGURE 4.1: Building site top view.

opening sensors, POE temperature and humidity sensors in each room, POE
cameras and the presence of a weather station on the roof.

FIGURE 4.2: CESI smart building.

Thus, the demonstrator allows the collection of data on brightness, tempera-
ture, humidity, presence, sash opening, energy consumption and occupancy.
The server is capable of controlling the systems and modifying the thermal
and luminous ambiances. The heating and cooling energy is supplied to in-
doors through installed heat pump and ventilation system. The building is
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FIGURE 4.3: CESI smart building and the case study room.

south facing with a door opening, and south wall is almost covered with
windows. Table 4.1 lists physical dimensions of each room of the reference
building. The zone in the case-study building are all of the same dimension.
However, two classrooms at the first floor have small offices within them.
For our study, a classroom was selected as a case study room (see Figure 4.3).
The objective is to develop a simplified thermal network model using the
parametric identification and validate it against the measured temperature
values. Similar approach can be applied to other rooms, as they are similar
to the case study one.
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TABLE 4.1: Building wall and windows physical dimensions.

Zone Height Direction Wall surface Window surface volume
(m) (m2) (m2) (m3)

4 zones 2.6

East 15.756 -

61.917West 15.756 -
North 6.344 -
South 16.200 9.17

4.2.1 Data Collection

Temperature Data Collection

The building is equipped with advanced technology sensors. TO measure
zone temperature, each room is equipped with the wall mount thermome-
ter. This device can measure both temperature and humidity. This sensor is
mounted on the north wall of the case-study room (shown in Figure 4.4). The
range of this temperature sensor is −10 to 80◦C and has accuracy of ±0.8◦C.
Similarly, the accuracy for humidity measurement is ±5%.

FIGURE 4.4: Wall mount temperature installed in the building.

Weather Station

An outdoor meteo station is installed on the roof of the building. This meteo
station is used to measure environmental parameters such as: outdoor dry
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FIGURE 4.5: Measured solar radiation incident on wall sur-
faces.

bulb temperature, humidity, solar radiation, luminosity levels, wind speed,
and wind direction. Pyrometer is capable of measuring the overall solar ra-
diation on different walls (Figure 4.5). A sampling time of 60 seconds and
3600 seconds chosen to collect all the data from the weather station (Figure
4.6).

The measurement ranges and associated error ranges of the installed sensors
are listed in Table 4.2.

TABLE 4.2: Measurement and associated error ranges of sen-
sors.

Sensors Measurement Range Error Range
Outdoor temperature −40 to +75 ±1
Indoor temperature −10 to +80 ±1
Indoor illuminance 50 lx to 20,000 lx ±20%
Relative humidity 5% to 95% ±5%

HVAC Systems

The building is also equipped with the sensors such as: occupancy sensor,
electrical power consumption meter, sash opening sensors, and indoor lumi-
nosity sensors. To meet the building heating/cooling load two HVAC sys-
tems are installed: VRF system and ventilation system. All these systems
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4.2. Case Study Building Description

FIGURE 4.6: Installed weather station and VRF system heat
pump setup on the building.

along with the sensors are connected to server and these systems are con-
trolled by human machine interface (HMI) (Figure 4.7). However, the build-
ing is used as classrooms, standard schedules are applied and only autho-
rized persons can change the set parameters. The HMI is used for displaying
present condition of the room.

We have collected all data from the building. However, data regarding oc-
cupancy was not available due to the malfunction of the system. We have
considered occupancy based on the time-table of the case-study room. When
the class took place in the room, we considered occupants number as per
strength of the class and if the class strength is more than room capacity, we
considered occupancy to the limit of the room occupancy 18 students plus
one teacher. The ventilation system power consumption for each room is
shown in Figure 4.8. Similarly, heat gains from the occupants are calculated
and shown in Figure 4.9
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FIGURE 4.7: HMI installed in each room of the building.
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FIGURE 4.8: Power consumed by the ventilation system.
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FIGURE 4.9: Heat gains from the occupants.

4.3 Air Source Heat Pump - Variable Refrigerant

Flow Heating System Model

In the chapter 2, we have given brief introduction to ASHP-VRF systems. In
this section, an attempt has been made to develop a generic model for sim-
ulation of ASHP-VRF systems. The system model is cumulative of major in-
dividual subsystem models such as compressor, condenser, EEVs, and evap-
orator. This method of designing increases the complexity, however model
reduction studies will be carried out once after developing a quasi-accurate
model. We have considered only two rooms for the modeling purposes.

Variable Speed Compressor

In general, a polytropic process and steady-state compression is considered
for the compressor modeling, as the compressor transient characteristics can
be neglected as compared to a condenser and evaporator [154,155]. The com-
pressor speed is considered to be reaching its desired speed instantly. In this
study, scroll compressor is considered, because this motor is used in the in-
stalled VRF system of the building. The modeling is majorly adapted from
the studies [154–157]. The mass flow rate of the compressor is represented
as:

mcom =
nηcomVs,th

γr1
(4.1)
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where

n is the rotational speed,

ηcom is the volumetric efficiency,

Vs,th is the swept volume, and

γr1 is the refrigerant specific volume of the suction vapor.

The volumetric efficiency of the variable speed compressors, the ratio of ac-
tual volume of the refrigerant entering the compressor to the geometric dis-
placement of the compressor. In the scroll compressors, we can consider that
the volumetric efficiency to be 100 % as there is almost negligible leakage in
the scrolls. There the above equation becomes:

mcom =
nVs,th
γr1

(4.2)

The values of the Vs,th and n are obtained from the data sheet from the manu-
facturer. The electrical work of the variable speed scroll compressor is given
by:

Pe,compressor =
mcom(h3− h2)

ηiso
+ (∆P )mcomvreal (4.3)

where

h3 and h2 are enthalpy values at point 2 and 3 in the log(p, h) Figure 4.10,

∆P is the difference between exhaust pressure and suction pressure,

ηiso is the isentropic efficiency, and

vreal is the actual volume at the point 3 in Figure 4.10.

Evaporator

The evaporator is a type of heat exchanger, in our study, we considered it as
fin-tube type with counter flow heat exchanger. The low-pressure refrigerant
liquid enters evaporator and leaving refrigerant is superheated before enter-
ing compressor. The evaporator model is divided into two sections: super-
heated and two-phase. The two-phase section is further divided into many
control volumes.

In general, the evaporator model can be developed using three approaches:
lumped-parameter model [158], distributed-parameter model and multi-zone
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FIGURE 4.10: Thermodynamic process log(p, h) diagram [154].

model. The lumped parameter model is the most simple modeling approach
but it fails to consider various heat transfers at various points of the thermo-
dynamic process, therefore the error between predicted and the real models
is high. Whereas, distributed-parameter model is complex, and design and
computational costs are high [159, 160]. In our study, we used multi-zone
model for evaporator modeling, because of the convergence and computa-
tional efficiency [157]. However, for the model simplicity, the control vol-
umes of the two-phase section are modeled using lumped parameter model.

Before deriving equations for each section, some assumptions are made:

• Refrigerant flow is in one direction,

• Axial heat conduction is ignored,

• Refrigerant fluid and air thermal properties are considered homoge-
neous in any cross-section,

• The refrigerant liquid and vapor are i thermodynamic equilibrium in
each control volume.

For refrigerant side, the equations are given as follows [157]:
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The mass and energy balances for each control volume is given by:

mr∆h−Qr = 0 (4.4)

Qr = αrAcv(Tw − Trm) (4.5)

where

mr is the mass flow of refrigerant,

Acv is the internal heat exchange area,

∆h is the enthalpy difference between leaving and entering refrigerant, and

αr is the convective heat transfer coefficient.

For the better performance of the model, fluid properties (R410A), heat trans-
fer coefficients, and pressure drop in both air and refrigerant sides are essen-
tial. The R410a type refrigerant fluid is used in the installed VRF system in
building. The properties of the fluid is calculated using open-source plat-
form CoolProp [161] Python library. The convective heat transfer coefficient
in single-phase refrigerant is given by [157]:

αr,sp = 0.023Re0.8
r,spPr

0.4
r,sp

σr,sp
Di

(4.6)

Re0.8
r,sp =

(1− x)wr,spρr,spDi

µr,sp
(4.7)

wr,sp =
mr,sp

πD2
i

4
ρr,sp

(4.8)

Similarly, two-phase refrigerant convective heat transfer coefficient is given
by:

αr,tp =
3.0

X
2/3
tt

αr,sp (4.9)

where

Pr is Prandtl number,

Xtt is Martinelli number [162],

x is the refrigerant vapor mass ratio,

m is the refrigerant mass flow,

µ is viscosity of the refrigerant,
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Airside of the evaporator can be modelled the same way as the refrigerant
side model with some changes in correlation methods [157].

Electronic Expansion Valve (EEV)

Generally, EEVs are controlled by stepper motors. The low temperature high-
pressure refrigerant enters the EEV and leaving out as low temperature low-
pressure refrigerant. The refrigerant mass flow through EEV is represented
by using its opening diameter and pressure differences [163]:

meev = ceevAf

√
2ρeev,in(Pin − Pout) (4.10)

Af =
πD2

4
(4.11)

ceev = 0.02005
√
ρeev,in + 0.634veev,out (4.12)

where

ceev is the correlation coefficient,

D is the orifice diameter,

veev,out is the volume of refrigerant leaving EEV, and

Pin and Pout are the refrigerant pressures at EEV inlet and outlet.

Condenser Model

In the multi-split VRF system outdoor unit and indoor units work as both
evaporator and condenser based on the seasons, therefore the model for
evaporator can be readily used for condensers except there is no dehumidifi-
cation in the airside.

The VRF system coefficient of performance is improvised by sub-cooling the
refrigerant exiting from condenser. Therefore, refrigerant in condenser is di-
vided into three regions: two-phase, vapor, and subcooled region. The vapor
and subcooled belongs to the single-phase region, hence single-phase calcu-
lations of evaporator model can be used here.

4.3.1 VRF System Model - Results

To validate the system model performance, a simulation is performed and
compared with the measured data from the case study building. It is imple-
mented for two rooms, each having heating and cooling capacity of 2.5kW
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FIGURE 4.11: VRF system installed in the case study building.

and 2.12kW , respectively. The installed VRF system configuration is shown
in Figure 4.11.

The compressor, heat exchangers, and EEV physical dimensions data, power
ratings data, and operational data is collected from the data sheet from the
manufacturer. Fluid properties are calculated directly from CoolProp library.
The cooling load of the two rooms are calculated from the building model,
internal heat gains, solar gains, and electrical equipment gains are given to
the model. The room set temperature is 22°C for both the rooms.

Figure 4.12, presents the predicted power output of indoor units. The pre-
dicted power is well under the rated cooling capacity. Both of the rooms have
similar trajectory of cooling capacity, this is due to the rooms are identically
built. The COP of the simulated model is slightly lesser than the manufac-
turer’s COP value. We have obtained average COP of 4.34. From simulation
results, we can observe that during the time period between 7-8, the com-
pressor is running in low speed thus low power consumed as there was low
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FIGURE 4.12: Cooling load output and electricity consumption
of the VRF system.

cooling load required. Similarly, during mid-day the room heats up drasti-
cally due to the excessive solar gains. The compressor model is running in
high speed to maintain room temperature under set temperature. In addi-
tion, the dynamicity of the predicted cooling load indicates the compressor
is fast reactive to the load requirements.
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FIGURE 4.13: Comparison of room temperatures from VRF sys-
tem with measured values.
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Furthermore, the simulated room temperature for both the rooms are in fig-
ure 4.13. The predicted temperature for room 1 has followed the same tra-
jectory as measured temperature, whereas room 1 model has high error be-
tween the predicted and the measured temperature values. In both the rooms
there is difference of almost 2°C between predicted and the simulated, this
may be due to the location of temperature sensor. The temperature sensors
are installed on the wall that faces the window. Although the pipe losses are
neglected in the simulation the COP of the model is lower than the actual
COP and the system model of room 1 did not follow the trajectory in begin-
ning. Therefore, there is a need of further study on this model, it has to be
validated for more rooms and longer duration.

4.4 Conclusion

The objective of this chapter was to present development of thermal network
model for whole building. Building elements were represented using 3R2C
thermal network that we have simplified and validated in the previous chap-
ter. Model thermal parameters resistor and capacitor values are determined
using the method proposed in the previous chapter using constrained PSO.

In this chapter, we have validated our model with the measured temperature
values of CESI LINEACT container building. The model was applied to a
case study room but it can well extended to complete building. A model is
developed and validated with the data of case study building. The model
validation result has shown a second order thermal network model produce
exact thermal behavior with a better accuracy. In this study, we observed that
the presence of occupants and their activities has significant influence on the
thermal performance of building. When occupants were present in the case
study room, there was high variations in the predicted temperature profile,
however, when the same room is simulated without occupants has shown
much less variations. We have also proposed a well established but complex
solar model for modeling solar gains. The isotropic model is straightforward
and calculation of radiation on tilted surfaces becomes simple. However, it
fails to take account of circumsolar diffuse and/or horizon brightening com-
ponents on an inclined surface, this results in the underestimation of solar
radiation (around 10 to 15%).

Finally, we established that the developed 3R2C network model is well suited
for model-based controller application. A simple MPC model is implemented
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for indoor thermal comfort control. The MPC has shown the ability to multi-
objective control under given constraints, the average indoor temperature is
always maintained within the lower and upper limits.

The energy consumption of the HVAC system for thermal comfort man-
agement during the 6 days was performed. The results indicate that the
MPC system produces optimal control strategy, and offering reduced energy
consumption in comparison, while the conventional controller is seen to be
wasting energy and performing poorly. The presented MPC application has
shown almost 31% of energy saving compared to the conventional controller.
Indeed, it has reduced system states number, it is computationally efficient,
and can be adapted to any type of buildings.
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Results

5.1 Introduction

In the chapter 1, we detailed fundamentals of building models, types of dif-
ferent models and compared each model with their advantages and disad-
vantage. This gave insights into the building’s thermal modeling, factors
influencing building performance, occupants comfort parameters, and in-
telligent control systems for buildings. In Chapter 2 appropriate modeling
techniques, difference between envelope and whole building modeling were
presented. Furthermore, we have detailed how to select thermal network
model, their parameters identification, and development of a thermal net-
work model for composite wall. In this chapter, we validate the proposed
methodology of simplified thermal network with parameters identification
with the measured data from a container building.

In order to validate the model, first the whole building model has to be de-
veloped using thermal networks of building elements. The objective of this
chapter given as follows:

• Introduction of the off-site container building, the developed model is
validated with the measured data from this building,

• To present a methodology to develop complete building model,

• To linearize the building model because the building model is non-
linear when we take account radiative heat transfer between walls,

• Finally, to discuss the results of the developed model,

This chapter provides a brief detail on development of whole building model
using the already developed building envelope model and its parameters
identification method.

5.2 Thermal Network Model—CESI Smart Build-

ing

The heterogeneous nature of buildings and parameters that influence its per-
formance makes modeling of a zone (case study room) highly complex. Par-
ticularly, modeling of building using analytical approach is infeasible be-
cause of its non-linear behavior.

The thermal network approach discretize the complex building into multi-
ple zone, where each zone is assumed to have properly mixed well and the
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building walls have uniform temperatures throughout its volume. The zones
are then modeled by means of the network of nodes with interconnecting
heat flow paths. The heat transfer can occur through conduction, convection,
and radiation. Heat gains from different means: internal, solar radiation, etc.,
are lumped in the thermal network nodes, and the heat storage in building
thermal mass is in thermal capacitances. Temperature and heat flows be-
tween the nodes are determined by energy balance approach as described in
Chapter 3. The resultant formulations are a set of coupled ordinary differen-
tial and algebraic equations that can be solved using the state space equation.

The simplified thermal network model was developed by making the follow-
ing assumptions:

• heat conduction occurs through the building envelope,

• convective heat transfer at building envelope surfaces and floors,

• solar gains through windows and solar radiation absorption in external
walls,

• radiation heat transfer within the zone walls,

• effect of thermal bridge is neglected,

• heat storage is not considered in windows, and

• impact of wind velocity variation on the convective heat exchange coef-
ficient of the wall surface is neglected, hence the convective resistances
are considered constant.

The CESI container building external walls are built using variety of materi-
als for different sides: east, west, north and south. Therefore, 3R2C model is
developed individually for each side of external walls, floor, and roof.

Considering all the above hypothesis, a thermal model is developed with 6
sets of 3R2C networks and the equations obtained by energy balance at each
node from the schematic shown in Figure 5.1:

135



Chapter 5. Thermal Network Model for Whole Building and Simulation
Results

R15,out

R151

C151

Ts1,15

R152

C152

Ts2,15

R153

R15,in

R12,inR123

C122

Ts2,12

R122

C121

Ts1,12

R121R12,out R14,in R143

C142

Ts2,14

R142

C141

Ts1,14

R141 R14,out

Rwindow

R13,out

R131 C131

Ts1,13

R132 C132

Ts2,13

R133

R
13,in

Qsol,window

Qsol,wall

Qsol,wall

Qsol,wall

Toutdoor Troom

Qin

Tzone

Czone

External wall

Internal wall

External wall

External wall

FIGURE 5.1: Equivalent thermal network model of the case
study building.
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=
7∑
j=2

Ts2,1j − Tz
R1j,cin

+
Tout − Tz
Rwindow

+ Q̇in + Q̇s,wi + Q̇heat (5.13)

where, Cz - the zone air capacitance,

C1j2 - the wall capacitance indoor side,

C1j1 - capacitance at outdoor side of the wall,

Tout - ambient temperature,

Q̇heat,pump - heating or cooling energy supplied from heat pump,

Q̇vent - heating or cooling energy supplied from ventilation system,

Q̇in - heat gains from occupants and electrical appliances,

Q̇s,wi - solar gains through windows,

Q̇1j - solar gains from the building external walls,
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Q̇heat - total supplied energy from Q̇heat,pump and Q̇vent,

Tsj,12 - surface temperatures for north facing wall,

Tsj,13 - surface temperatures for south facing wall,

Tsj,14 - surface temperatures for west facing wall,

Tsj,15 - surface temperatures for east facing wall,

Tsj,16 - surface temperatures for roof,

Tsj,17 - surface temperatures for floor,

R1j,cin = R1j3 +Rconvection,in, and

R1j,cout = R1j1 +Rconvection,out.

The equation 5.13 represents the zone temperature, which interacts with the
inside surface temperature of the walls, heat gain from the occupants, heat
systems, and direct solar gains through windows. The resistor and capacitor
values of these equations are determined by using optimization technique
presented in the previous chapters. These values are determined only once
and they are time and temperature independent, this helps is increasing the
computational efficiency.

The system equations from 5.1 to 5.13 have various inputs to the system.
These inputs are outdoor dry bulb temperature Tout, solar heat gains from the
surface of the walls and through windows Q̇1j and Q̇s,wi, respectively, heat
gains from the occupants and electrical appliances Q̇in, and heat gains from
the heating system Q̇heat. The model consists of overall 13 nodes: two nodes
for each envelope wall, floor, roof and a zone node. The installed lighting
appliances in the room is low energy consumption hi-tech light systems, thus
the gains from these light systems are neglected. However, heat gains from
student’s laptop is considered during the simulation.

The formulation of the thermal network model of the building in state-space
representation is given as follows.

X(k + 1) = AX(k) +Bu(k) +B1d(k)

y(k) = CX(k) +Du(k) +D1d(k) (5.14)

where, state-vector X is :
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X =



Ts1,12

Ts2,12

Ts1,13

Ts2,13

Ts1,14

Ts2,14

Ts1,15

Ts2,15

Ts1,16

Ts2,16

Ts1,17

Ts2,17

Tz



(5.15)

Input vector u represents only the controllable inputs, in our case-study build-
ing only ventilation system is controllable :

u =
[
Q̇vent

]
(5.16)

The ventilation system Q̇vent is equal to:

Q̇vent = ṁcp(Tset − Tz) (5.17)

The vector d represents the uncontrollable inputs (or disturbances) of the sys-
tem :

139



Chapter 5. Thermal Network Model for Whole Building and Simulation
Results

d =



Tout

Q̇12

Q̇13

Q̇15

Troom

Troom,top

Q̇in

Q̇heatpump,vrf

Q̇s,wi


(5.18)

5.2.1 Model Inputs

The data of model inputs of both controllable and uncontrollable are col-
lected from the case-study building using the sensors. However, some of
the measurable but uncontrollable inputs are easily measurable (directly)
or readily available concerning to the building location such as: ambient
temperature. However, other inputs such as solar irradiation are not read-
ily available or measured as global horizontal irradiance. Hence, a detailed
analysis on the solar irradiation incident on the building envelope is essen-
tial. To calculate the total irradiation energy on the building envelope, it is
needed to obtain radiation energy on each surface. These total irradiation
thus can be used to estimate the total solar gains on the walls and through
the windows using equation 5.19.

Q̇s,w =αw Aw q”
rad (5.19)

where, Q̇wall = solar radiation on walls,

αw = solar absorptance of the surface (between 0 and 1),

Aw = surface area of the wall, and

q”
rad = total irradiation incident on the wall.

The total irradiation incident on the wall is essential in estimating the zone
temperature and heating/cooling loads. In our study, we compared different
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models to have better estimation of the solar irradiation. We found solar ir-
radiation model proposed by Hay–Davies–Klucher–Reindl (HDKR) has near
accurate estimation than other models.

Solar Heat Gains Model

In the literature, many studies were conducted to calculate the solar irra-
diation incident on the tilted surface by taking account of the isotropic dif-
fuse sky model. In isotropic diffuse sky model, three components of radia-
tions are considered: isotropic diffuse, diffused radiation reflected from the
ground, and beam radiation [164]. The isotropic model is straightforward
and calculation of radiation on tilted surfaces becomes simple. However, it
fails to take account of circumsolar diffuse and/or horizon brightening com-
ponents on a inclined surface, this results in the underestimation of solar ra-
diation (around 10 to 15%). More advanced approaches like Hay–Davies–Klucher–Reindl
(HDKR) uses anisotropic sky models that consist three components: isotropic,
circumsolar diffuse and horizon brightening [165–167]. Figure 5.2 shows the
distribution of all parts of solar radiation on a tilted surface.

Considering an anisotropic sky model, the incident solar radiation on a tilted
surface based on HDKR model, is calculated by [166]:

ITotal =(Ib + IdAi)Rb + Id(1− Ai)
(

1 + cosβ

2

)
×
[
1 + fsin3(

β

2
)

]
+ Ighρg

(
1− cosβ

2

)
(5.20)

where Ib = beam radiation,

Id = diffuse radiation,

Rb = geometric factor,

θ = angle of incidence,

γ = surface azimuth angle,

β = angle between tilted surface and the horizontal plane,

Igh = total radiation on horizontal surface,

ρg = ground albedo (0.3).

The angles under consideration and other solar angles are illustrated by Fig-
ure 5.2b.
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FIGURE 5.2: Solar sky models and solar angles diagram.

Anisotropy index (Ai) in Equation (5.20), is a function of the transmittance
of the atmosphere for beam radiation. It is the ratio of beam radiation on a
horizontal ground surface to extraterrestrial radiation (Io).

Ai =
Ib
Io

(5.21)
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The modulating factor f in the correction factor is to account for cloudiness.

f =

√
Ib
I

(5.22)

The angle θ is the incidence angle of the beam radiation on tilted surface,
and the angle θT is the incidence angle of the beam radiation on the inclined
surface. These angles are calculated by:

Rb =
cos θ

cos θz
(5.23)

cos θ = sin δ sinφ cos β − sin δ cosφ sin β cos γ + cos δ cosφ cos β cosω

+ cos δ sinφ sin β cos γ cosω + cos δ sin β sin γ sinω (5.24)

cos θz = sinφ sin δ + cos δ cosφ cosω (5.25)

Since, building envelope walls are perpendicular to the horizontal plane,
the β angle between the plane of the surface and the horizontal is 90 The (5.25),
then becomes:

cos θ =− sin δ cosφ cos γ + cos δ sinφ cos γ cosω + cos δ sin γ sinω (5.26)

the total solar radiation on a surface is given by:

ITotal =(Ib + IdAi)Rb + Id(1− Ai)(1 + 0.3535f)/2 + Ighρg/2 (5.27)

The total solar radiation for complete building envelope is calculated as fol-
lows:

Q̇sol =
4∑
j=1

IT iSiαi (5.28)

The sums of hourly solar radiation incident on a south facing wall for 5 days
in May in Nanterre, France are shown in Figure 5.3. The solar radiation calcu-
lated for isotropic and anisotropic sky models. These two calculated sums of
the radiations are compared with the data procured from the weather station
on horizontal surface. The ground albedo is considered as 0.2.
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FIGURE 5.3: Hourly solar irradiation sums on south facade of
the building.

Internal Heat Gains

The internal heat gain Q̇in is the sum of all internal gains (inhabitants and
electrical equipment) and Q̇heat is the sum of energy supplied from heating
equipment (heat pump and ventilation system). Internal gains from the oc-
cupants can be exploited to heat the zone. The heat gains from the occupants
is dynamic and it depends on many parameters such as: occupants activity,
physical dimension, clothing, building type, season, etc. Since, the chosen
room is a classroom, the students (adults) will be mostly sitting and read-
ing. We have considered body surface area to be 1.2 m2, Table 5.1 represents
average body surface area for occupants in different types of building.

Based on the body surface area and the activity we have assumed the heat
gains from one adult student is equal to 116 W in summer and 114 W in
winter (Table 5.2 and 5.3) [23, 168].

Similarly, for the heat gains from electrical appliances, the assumed heat
gains from one laptop equaled 30 W [23], and there are no other electrical sys-
tems installed in the classroom. Furthermore, the selected controllable input
and measurable disturbances are: outside air temperature, internal free gains
and solar gains. Heating system is the only controllable input in the model.
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TABLE 5.1: Standard data of average body surface area of occu-
pants in different types of building [168].

Building type Body surface area (m2)
Detached house 1.80
Apartment building 1.80
Office building 1.80
Department store 1.80
Hotel 1.80
Restaurant 1.80
Sport, terminal, theatre 1.80
School 1.68
Daycare center (2–4 yr) 0.66
Kinder garden (5–6 yr) 0.77
Hospital 1.80

TABLE 5.2: Heat loss from the occupants during summer [168].

Building type Metabolic rate (met) Qconvection (W ) Qradiation (W ) Qvapor (W ) Qsweat (W )
Detached house 1.2 44.1 38.7 25.9 9.7
Apartment building 1.2 44.1 38.7 25.9 9.7
Office building 1.2 44.1 38.7 25.9 9.7
Department store 1.6 41.7 36.0 27.8 52.4
Hotel 1.2 44.1 38.7 25.9 9.7
Restaurant 1.2 44.1 38.7 25.9 9.7
Sport, terminal, theatre 1.6 41.7 36.0 27.8 52.4
School 1.2 39.6 32.7 25.2 19.4
Daycare center (2–4 yr) 1.0 16.1 13.4 9.5 0.0
Kinder garden (5–6 yr) 1.39 17.6 14.4 11.9 18.1
Hospital 1.2 44.1 38.7 25.9 9.7

TABLE 5.3: Heat loss from the occupants during winter [168].

Building type Metabolic rate (met) Qconvection (W ) Qradiation (W ) Qvapor (W ) Qsweat (W )
Detached house 1.2 38.3 39.5 33.4 7.1
Apartment building 1.2 38.3 39.5 33.4 7.1
Office building 1.2 38.3 39.5 33.4 7.1
Department store 1.6 36.9 37.3 35.9 47.6
Hotel 1.2 38.3 39.5 33.4 7.1
Restaurant 1.2 38.3 39.5 33.4 7.1
Sport, terminal, theatre 1.6 36.9 37.3 35.9 47.6
School 1.2 37.8 38.9 32.9 7.2
Daycare center (2–4 yr) 1.0 15.1 15.8 12.5 0.0
Kinder garden (5–6 yr) 1.39 17.1 17.4 15.7 11.9
Hospital 1.2 38.3 39.5 33.4 7.1

This thermal network model can be used for real-time HVAC control appli-
cations. For example, model predictive controller is applied for comfort and
energy optimization based on the simplified thermal network model [19].
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5.3 Simulation Results - Whole Building Model

The simplified thermal network model of the zone is validated against the
measured data from case-study classroom of the CESI smart building. The
data was collected from the building for almost 8 months. However, there
were some discrepancies in the collected data due to malfunction of the sys-
tem for few days in 8 months. These discrepancies treated while data-preprocessing
stage. We studied the model performance analysis for the two seasons: sum-
mer and winter. The duration of the simulation is considered two months in
each season.

The developed model is simulated for two months in different seasons, win-
ter (see Figure 5.4) and summer (see Figure 5.5). The model dynamics follow
the trajectory of the measured temperature dynamics of the real building.
The model was trained for seven days before the simulating for two months
in summer and winter. Furthermore, we have analyzed our model with dif-
ferent error methods for its validation.

From the simulation results, several key observations are noted here, during
the summer the model has less variation in temperature output as compared
to the response of the same in winter season. Many factors have influence on
the performance, particularly the data of occupant numbers and their activ-
ities were not available precisely, and these activities have influence on the
performance. Moreover, students were on holidays during the summer pe-
riod thus the summer simulation is without occupants. Whereas, students
were present most of the days in the classroom during the winter season.
Their unpredicted indoor activities, door/windows openings, varying inter-
nal gains and air infiltration have influenced for higher variations in the re-
sponse.

The occupants are students in the selected case study building. The data
received from the building on occupancy that they considered maximum oc-
cupancy when that particular room was used for classes. Hence, the high
variation in the temperature profile. Nevertheless, the dynamics follow the
tendency of the measured data. There need to be a fine-tuning of the model
in order to get more accuracy in prediction.

In the selected summer period, the building was mostly unoccupied due to
the summer holidays. Therefore, there is less variation in the response and in
both the model outputs, zone temperature follows the dynamics of the actual
measured temperature of the zone. Furthermore, in summer (see Figure 5.5)
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FIGURE 5.4: Validation of simplified thermal network model
with measured zone temperature data (winter).

2019-07-08

2019-07-15

2019-07-22

2019-07-29

2019-08-01

2019-08-08

2019-08-15

2019-08-22

2019-08-29

Time (Days)

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Te
m

pe
ra

tu
re

 (°
C)

Validated for period of 2 months
(2019-03-01 to 2019-04-30)

Temperature profile
T_measured
T_simulated_model

FIGURE 5.5: Validation of simplified thermal network model
with measured zone temperature data (summer).

the raise in indoor temperature reaching almost 30◦C is due to non-operation
of the HVAC system during holidays. The HVAC systems are scheduled to
operate only during the office hours. The comparison between the winter
and summer model show that the occupancy activities does have high influ-
ence in the properly insulated buildings.

We observed that there is maximum of ±2◦C difference between the pre-
dicted and the measured temperature data. However, the RMSE error for
summer period is ≈ 0.6◦C. This indicates the better fitting of our model with
optimized parameter values.
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Similarly, for both summer and winter simulations, we have analyzed model
performance with different error methods (given in Table 5.4).

TABLE 5.4: Model performance evaluation for summer and
winter simulations.

Season MAE (◦ C) RMSE (◦ C) MAPE (%) sMAPE (%)
Summer 0.52 0.61 4.71 5.37
Winter 0.59 0.69 6.53 5.84
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FIGURE 5.6: Measured inputs of the model: ambient and adja-
cent zones temperatures, solar irradiation, and occupant num-

bers (winter).

Measurable but uncontrollable inputs for the system: outdoor dry bulb, ad-
jacent room, and top floor room temperatures, occupancy presence, solar ir-
radiation (using HDKR model), internal gains, and heat from HVAC system.
Figure 5.6 represents some of these inputs used for our simulation. How-
ever, in Figure 5.7 we have shown two inputs because for most of the time
HVAC system was turned off and occupancy were not present at the build-
ing. Nevertheless, in both seasons the model reproduces the dynamics of
zone temperature of the building efficiently. The results show that the sim-
plified thermal network model with parameter identification is well-suited
approach to model the building thermal dynamics, and the models can be
used for the controller purpose.
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FIGURE 5.7: Measured inputs of the model: ambient and adja-
cent zones temperatures, and solar irradiation (summer).

5.4 Conclusion

The objective of this chapter was to present development of thermal network
model for whole building. Building elements were represented using 3R2C
thermal network that we have simplified and validated in the previous chap-
ters. Model thermal parameters resistor and capacitor values are determined
using the method proposed in the previous chapter using constrained PSO.

In this chapter, we have presented model development for the case-study
building. We have developed the input models that are essential in increas-
ing the model performance accuracy. The model has 13 set of first order
ODE’s, which are represented using the state-space representation. We have
divided our inputs as controllable and uncontrollable but measurable inputs.
In general, the solar irradiation measured using Pyrometer is the horizontal
diffused solar radiation, we have noticed that these values are underestima-
tion of the actual solar irradiance value. Thus, we incorporated HDKR model
with complex anisotropic sky conditions to have better estimation of the so-
lar irradiation on the vertical wall. The results show that using this method
we can estimate around 10% 15% better than the isotropic sky model and
measured global horizontal radiation.
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We have developed the model and validated with the data of case study
building. The model validation result has shown a second order thermal net-
work model produce exact thermal behavior with a better accuracy. In this
study, we observed that the presence of occupants and their activities has
significant influence on the thermal performance of building. When occu-
pants were present in the case study room, there was high variations in the
predicted temperature profile, however, when the same room is simulated
without occupants has shown much less variations. We evaluated our model
performance using different evaluation methods. The model RMSE error is
around 0.6 ◦C for summer and 0.7 ◦C for winter. Furthermore, sMAPE shows
that error between predicted and measured data is around 5%, which is un-
der the acceptable range.

The presented method is applied for model development of one zone, how-
ever the same can be applied for multi-zonal model development.
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6.1 Model Predictive Controller

Model Predictive Control (MPC) produces a sequence of controller variable
input strategy by using a system model to optimize an objective function
(minimizing energy consumption) of system model behavior based on a quadratic
performance objective, subject to equality or inequality constraints on states,
inputs, and outputs over a future time horizon.

The classical objective function for the MPC has the following quadratic for-
mulation:

J(tk) =

Np∑
j=N1

δ(j)[ŷ(tk + j)− ysp(tk + j)]2

+
Nc∑
j=1

λ(j)[u(tk + j)− u(tk + j − 1)]2 (6.1)

s.t.

Xt+k+1|t = AXt+k|t +But+k|t +B1dt+k|t (6.2)

Mu ≤ γ (6.3)

where, ŷ and ysp are the predicted output and set-point temperatures, re-
spectively. u is the control variable. In this model the control variable is
(ṁfa(tk)ca[Tsp(tk)−1/2(Tz(tk)+T0(tk))]), the input air flow is controlled through
MPC while satisfying the constraints matrix M. However, the objective func-
tion tracks only the set-point (ysp) temperature, which forces the building
controllers to reach single set point temperature, and curtails the optimal
control strategy, leading to a poor energy optimization. Hence, adding slack
variables to the set-point variables gives extra freedom of controllability in
the MPC. Slack variables are useful in making the output variable to keep
within a certain range by penalizing for any violation in the range [169].
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The new proposed formulation is given as follows:

min

Np−1∑
j=0

|ṁfa(tj)ca[Tsp(tj)−
(Tz(tj) + T0(tj)

2
]|

+ β(|sj|+ |sj|) (6.4)

s.t.

Xt+j+1|t = AXt+j|t +But+j|t +B1dt+j|t (6.5)

Mu ≤ γ (6.6)

Tlb − slb,t+j|t ≤ Tzone,t+j|t ≤ Tub,t+j|t + sub,t+j|t (6.7)

slb,t+j|t&sub,t+j|t ≥ 0 (6.8)

where, β is penalty factor, s is slack variable, Tsp is the temperature of the
supply air from the ducts to room, Tz is zone temperature, Tlb and Tub are
lower and upper values of temperature, respectively. Similarly, the inequality
constraints are applied to the input and rate of change inputs.

In order to solve the objective function (10), the state-space model needs to
be represented in the predictive model form [170]:

ŷ = Fx(k) + φ1u+ φ2d (6.9)

where,

F =



CA

CA2

CA3

.

.

CANp


φ1 =



CB 0 .. 0

CAB CB .. 0

CA2B CAB .. 0

.

.

CANp−1B CANp−2B .. CAB



φ2 =



CB1 0 .. 0

CAB1 CB1 .. 0

CA2B1 CAB1 .. 0

.

.

CANp−1B1 CANp−2B1 .. CAB1


ŷ =

[
ŷT (k + 1) ŷT (k + 2) .. ŷT (k +Np)

]T
u =

[
uT (k + 1) uT (k + 2) .. uT (k +Np − 1)

]T
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d =
[
dT (k + 1) dT (k + 2) .. dT (k +Np − 1)

]T
The matrices F , φ1, and φ2 are constants of the system model. Hence, these
are computed only once, thus reducing the computational cost for every con-
trol time step. Therefore, the formulated objective function (10) with con-
straints are solved in the MPC framework. For MPC simulation, the Python
programming language is used with CVXOPT [171] solvers for minimizing
the cost function.

6.1.1 Linearization of Thermal Network Model

Furthermore, in the most cases the radiative heat transfer between walls is
neglected or taken as constant after linearizing it to near equilibrium point
[172]. The developed model induces non-linearities due to the radiative heat
transfer (6) between the walls.

Q̇rad = ε σ (T 4
hot − T 4

cold) (6.10)

where,

ε = surface emissivity of the material,

σ = Stefan-Boltzmann constant,

T = wall surface temperatures in Kelvin degrees.

Since, the temperature difference between walls is low and the temperature
relationship is in absolute temperature in (6), thus the temperature differ-
ence between walls are relatively small as compared to absolute temperature
value. Hence, the radiative heat transfer coefficient is considered to be a con-
stant value by linearizing it using the Taylor’s series expansion.

Furthermore, from the model dynamics in the previous chapter in equation
5.17 the control input ṁ is multiplied by the state Xi, which makes the dy-
namics of the system non-linear. However, we have split our input vector
into controllable and disturbance inputs, therefore the non-linear term is
present only in the controllable vector. With this, we reduce the complexity
of linearization process by only applying on controllable input and the state
vector. There are some techniques such as feedback linearization including
input/output Linearization or Input/State Linearization techniques, which
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can be used to deal with the non-linearities of the system. However, these
linearization techniques produce highly complicated mathematical model
when applied to high order systems. This may lead to increase in the sys-
tem complexity.

Furthermore, the conventional techniques like Jacobian linearization has proven
to be efficient when the system has small range of variation. Jacobian lin-
earization is method used to linearize non-linear systems at the equilibrium
points. Since building has small range of temperatures, we chose to linearize
our model using Jacobian technique (Appendix A.2 [173]).

To use this strategy, we must first determine the system’s equilibrium points.
Fixing the input, ū, and then solving for x̄ produces the equilibrium positions
of the states. There are infinite equilibrium points in the system that may be
reached by assuming various equilibrium inputs. However, in the context
of buildings, we have only few equilibrium points around that the building
normally operates. Setting the temperature of the room to the set-point tem-
perature specified by the occupants (building users), and then solving for the
equilibrium temperature of the walls and the equilibrium inputs, produces
the equilibrium point. The equilibrium point is achieved only by setting the
non-linear differential state equation equal to zero. In our case, we have con-
sidered equilibrium point near the set-point Tsetpoint = 25 ◦C. By solving the
equation we find the equilibrium points to be

Xke =



Ts1,12

Ts2,12

Ts1,13

Ts2,13

Ts1,14

Ts2,14

Ts1,15

Ts2,15

Ts1,16

Ts2,16

Ts1,17

Ts2,17

Tz



=



0.0029

1.75× 10−5

0.0083

1.16× 10−5

0.00055

7.683× 10−5

0.00055

7.683× 10−5

7.64× 10−4

2.606× 10−4

7.64× 10−4

2.606× 10−4

22.03



uke =
[
0.0036

]
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Now we can find the linearized system by evaluating the matrices A and B
from state space equation. We have validated the linearized model with the
measured values of the case-study building. The model is validated for 6
days in February as it is one of the coldest months in Nanterre.

Figure 6.1a and 6.1b shows the temperature profile of the classroom where
the system non-linear model quite accurately follows the building thermal
dynamics. On the other hand, the linearized model is also closely following
the dynamics of the system, but slightly less accurately. It should be taken
into account that the non-linear model computational cost is higher that the
linearized one, while the error between the two models is low. In this case,
the linearized model is considered acceptable and therefore adopted.

The interesting observation is that the first peak of disturbance load does not
cause as much temperature increase in the room as opposed to the second
disturbance peak. The reason is that in the morning the walls which repre-
sent the slow-dynamic masses in the system are cold due to low temperature
at night. Therefore, part of the heating load, earlier in the day, goes toward
warming up the slow-dynamic thermal masses in the building (e.g. walls
and furniture). However, in the afternoon the slow-dynamic thermal masses
absorb heat at a slower rate and therefore, cause faster increase to the tem-
perature of the fast-dynamic thermal mass of the system, which is the air in
the room.

6.1.2 Simulation Results

To demonstrate the optimal control strategy of the MPC for multi-objective
control within given constraints, a comparison is performed between the
MPC and conventional controller for building temperature control in the
presence of measurable disturbances.

The simulations are carried out for 6 days (01/02/2019 to 07/02/2019) to
calculate the energy consumption during heating season. The MPC imple-
mentations are performed with hourly time step for prediction horizon of
one day. The lower and upper limits for zone temperature is set to 19°C and
23°C, respectively.

The conventional controller does not predict the future control strategies as
compare to MPC controller, it works based on the current state of the system.
On the contrary, MPC controller predicts the future control strategies, while
satisfying the given constraints.
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FIGURE 6.1: Validation of developed model against the mea-
sured room temperature.

The results are shown in Figure 6.2, it can be noticed that the temperature
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FIGURE 6.2: Comparison of results of the MPC and conven-
tional controller.

profile of MPC controller based model clearly satisfies the objective of meet-
ing comfort criteria, while the conventional controller violates the standard
indoor temperature range. As per the characteristic of MPC it’s more reactive
and it can be seen in the results that temperature is forced to reach around
21°C - 22°C in order to not to violate the set temperature boundaries. The
ventilation airflow is controlled optimally and efficiently. However, due to
hard constraints implied on the MPC such as the system operating timings,
initial stage temperature control always took more time to reach set temper-
ature range.
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The multi-objective control, and considerations of measurable disturbances
of MPC has shown good control strategy, but the conventional controller
without having consideration of disturbances, supplied heat energy even-
though the zone temperature reached the upper limit, it shows poor perfor-
mance of the conventional controller. The measurable inputs for the system
are shown in Figure 6.3. The conventional controller is a rule-based controller
and it works based on the occupancy presence detection. Furthermore, the
airflow is always constant irrespective of the heat load requirements.
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FIGURE 6.3: Measurable disturbances of the system: solar radi-
ation, adjacent rooms temperature, and ambient temperature.

From Figure 6.2, we have analyzed that by applying MPC controller we can
reduce significant amount of energy consumed by the HVAC system. The
estimated energy consumption required to for maintaining thermal comfort
is estimated for a 6-day period. The energy consumed by the conventional
controller is almost equal all days due to the operating schedule and not inte-
grating dynamic operation. Whereas, HVAC controlled from MPC has con-
sumed more energy when the outside temperature is low. The first and fifth
day outside temperatures were high in those six days. This influenced in the
room peak temperature of first and fifth day. The conventional controlled
has not considered this effect while MPC has considered this influence thus
reducing the energy consumption in both the days. The cumulative energy
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for the conventional controller control is 42.23 kWh, while it is 29.55 kWh for
the MPC one, resulting in almost 31% reduction in energy consumption.

6.2 Conclusion

In this chapter, we have presented the MPC general formulation, controller
developments, and system model linearization. A building model that devel-
oped in the previous chapter had a non-linearity for controlling ventilation
airflow. We have linearized it using Jacobian linearization approach. The
linearized model is then validated against the measured data, the results of
linearized model is within the acceptable range of accuracy, and thus it was
used to implement a controller.

A simple MPC model is implemented for indoor thermal comfort control.
The MPC has shown the ability to multi-objective control under given con-
straints, the average indoor temperature is always maintained within the
lower and upper limits.

The energy consumption of the HVAC system for thermal comfort man-
agement during the 6 days was performed. The results indicate that the
MPC system produces optimal control strategy, and offering reduced energy
consumption in comparison, while the conventional controller is seen to be
wasting energy and performing poorly. The presented MPC application has
shown almost 31% of energy saving compared to the conventional controller.
Indeed, it has reduced system states number, it is computationally efficient,
and can be adapted to any type of buildings.
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Conclusions

The aim this dissertation was to investigate the different modeling techniques
for developing a model-based controller and to analyze the models that can
be used for retrofitting buildings in the case of lack of availability of data.
This work presented various modeling methods for building dynamic mod-
eling, factors that influence the performance of buildings. It was observed
from the simulations results that the occupants’ number and activities has
high influence in well-insulated buildings.

The energy consumption from the buildings is very high and the occupants
spend almost 90% of their life in closed environment, such as residential
building, commercial buildings, and industrial buildings. Hence, manage-
ment of indoor comfort has huge impact on the occupant’s health and pro-
ductivity. These two objectives are to be achieved through implementing
intelligent controllers. The controllers, which are implemented, should be
able to handle multi-objectives. We have properly reviewed different tech-
niques that are used for modeling and controlling purposes. Mainly three
techniques are reviewed critically and have been compared for their suitabil-
ity, adaptability, and for various application scenarios. This give the insights
on the controllers and modeling methods.

Most of the well-established intelligent controller’s performance efficiency
depends on accuracy and computational efficiency of the building model.
The building model should replicate dynamics of the heat transfer in build-
ing, able to predict zone heat loads/air temperatures as a function of con-
trollable (HVAC systems) and uncontrollable measurable inputs (weather,
internal heat gains, solar gains, etc.), and simplified enough to connect to
optimization techniques.

The well-established software tools are not suitable for quick reactive con-
troller applications and another method data-driven models need handful
amount of data to train the model, hence gray box models are well suited for
controller applications where there is lack of availability of data. The gray
box model lumped parameter thermal network models have proven to be
feasible for dynamic thermal response simulation of buildings. These models
produce acceptable accuracy results with superior computational efficiency
over other models. Accordingly, this work greatly focused on the building
thermal dynamic modeling, which are the essential part of above mentioned
controller application.
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In the chapter 2, we presented simplified thermal modeling technique par-
ticularly for retrofitting buildings. We compared different thermal network
configurations and from results we noticed that 3R2C models have high ac-
curacy and are computationally efficient. It was observed that the parameter
values have most significant impact on efficiency of 2nd order 3R2C thermal
network model. The method proposed in this work successfully considers
constraints and searches for global optimal solution for identifying the pa-
rameters value. The constrained PSO is better than conventional optimiza-
tion techniques because of its diverse search space and convergence rate to
solution.

The proposed method was applied on various types of building envelope
types and validated the model against the reference model. This method
provides a significant approximation of the parameters when compared to
the reference model whilst allowing low-order model to achieve 40% to 50%
computational efficiency than the reference one. In the chapter 3, the pro-
posed method was validated with the measured data. Furthermore, we have
proposed a well-established but complex solar model for modeling solar
gains. The conventional isotropic model is straightforward and calculation
of radiation on tilted surfaces becomes simple. However, it fails to take ac-
count of circumsolar diffuse and/or horizon brightening components on an
inclined surface, this results in the underestimation of solar radiation (around
10 to 15%). Furthermore, we made an attempt to model ASHP-VRF systems,
we simulated our model for two rooms and compared it with the measured
values of the real building. The model has shown good fitting with the mea-
sured values, however authors believe that there needs to be further research
on the modeling.

In general, proposed method is simple, accurate, and adaptable to all type
building modeling. The developed model can be well implement for the
MPC controller applications, we have presented a simple MPC that is applied
for thermal comfort optimization based on the developed model for the case
study building. MPC model implemented in the building for one week has
shown promising results of almost 31% energy savings as compared to the
conventional control system installed in the building. The developed 3R2C
network model is well suited for model-based controller application. Indeed,
it has reduced system states number, it is computationally efficient, and can
be adapted to any type of buildings.
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Future Perspectives

This work presents an alternative approach for simplified model develop-
ment for building design. Despite the models have been validated for vari-
ous types of construction elements, there is still need more concrete verifica-
tion and the methods needs to be examined before directly applying to the
other buildings.

The simplified model is applied for only single zone with the different build-
ing envelope materials for each side. The modeling approach proposed in
this paper will be further extended to model multi-zone buildings, consid-
ering inter-zonal heat transfer. Furthermore, it will be used to predict other
comfort parameters such as humidity.

The HVAC systems of the building to be modeled to predict the energy be-
havior with inclusion of electrical appliances and radiators model as well.
This will be interesting for residential and commercial buildings. Authors
strongly believe that there is a need of further research on ASHP-VRF model
to validate it with more indoor units and for longer duration.

Integrating occupancy model to the controller model to efficiently manage
comfort condition. Analysis of their behavior and study on prediction model
of number of occupants present in the building. A more advanced MPC con-
trolled to be applied for building for longer simulation period.

Finally, consideration of integrating BIM and building model. The data from
BIM model used for building performance simulation, analysis of their inter-
operability, limitations, and operational benefits.
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3.4 Linearization of nonlinear state space models

The formulas for linearizing nonlinear discrete-time state space models are
presented without derivation below. They can be derived in the same way
as for linearizing nonlinear continuous-time models [1]. In the formulas
below it assumed a second order system. I guess it is clear how the
formulas can be generalized to higher orders.

Given the following discrete-time nonlinear state space model

x1(k + 1) = f1[x1(k), x2(k), u1(k), u2(k)]

x2(k + 1) = f2[x1(k), x2(k), u1(k), u2(k)]
(3.9)

y1(k) = g1[x1(k), x2(k), u1(k), u2(k)]

y2(k) = g2[x1(k), x2(k), u1(k), u2(k)]
(3.10)

where f1 and f2 are nonlinear functions. The corresponding linear model,
which defines the system’s dynamic behaviour about a specific operating
point, is

∆x1(k + 1) = ∂f1
∂x1

¯̄̄
op
∆x1(k) +

∂f1
∂x2

¯̄̄
op
∆x2(k) +

∂f1
∂u1

¯̄̄
op
∆u1(k) +

∂f1
∂u2

¯̄̄
op
∆u2(k)

∆x2(k + 1) = ∂f2
∂x1

¯̄̄
op
∆x1(k) +

∂f2
∂x2

¯̄̄
op
∆x2(k) +

∂f2
∂u1

¯̄̄
op
∆u1(k) +

∂f2
∂u2

¯̄̄
op
∆u2(k)

(3.11)

∆y1(k) = ∂g1
∂x1

¯̄̄
op
∆x1(k) +

∂g1
∂x2

¯̄̄
op
∆x2(k) +

∂g1
∂u1

¯̄̄
op
∆u1(k) +
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∂u2

¯̄̄
op
∆u2(k)

∆y2(k) = ∂g2
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¯̄̄
op
∆x1(k) +

∂g2
∂x2

¯̄̄
op
∆x2(k) +

∂g2
∂u1

¯̄̄
op
∆u1(k) +

∂g2
∂u2

¯̄̄
op
∆u2(k)

(3.12)
or

∆x(k + 1) = A∆x(k) +B∆u(k) (3.13)

∆y(k) = C∆x(k) +D∆u(k) (3.14)

where

∆x(k) =

 ∆x1(k)...
∆x2(k)

 (3.15)

A.2 Jacobian Linearization
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and similarly for ∆u(k) and ∆y(k). The system matrices are1

A =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


¯̄̄̄
¯̄̄
op

=
∂f

∂xT

¯̄̄̄
op

(3.16)

B =
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∂u1

∂f1
∂u2

∂f2
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¯̄̄̄
¯̄̄
op
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(3.17)

C =

 ∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2


¯̄̄̄
¯̄̄
op

=
∂g
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(3.18)

D =

 ∂g1
∂u1

∂g1
∂u2

∂g2
∂u1

∂g2
∂u2


¯̄̄̄
¯̄̄
op

=
∂g

∂uT

¯̄̄̄
op

(3.19)

In the formulas above the subindex op is for operating point, which is a
particular set of values of the variables. Often, the operating point is
assumed to be an equilibrium (or static) operating point, which means
that all variables have constant values there.

Example 1 Linearization

Given the following non-linear state-space model:

x1(k + 1) = ax1(k) + bx1(k)x2(k) + cx1(k)u1(k)| {z }
f1

(3.20)

x2(k + 1) = dx2(k)| {z }
f2

(3.21)

y1(k) = x1(k)| {z }
g1

(3.22)

The system matrices of the corresponding linear model are

A =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


¯̄̄̄
¯̄̄
op

=

 a+ bx2(k) + cu1(k) bx1(k)

0 d

¯̄̄̄¯̄
op

(3.23)

1Partial derivative matrices are denoted Jacobians.
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B =

 ∂f1
∂u1

∂f2
∂u1


¯̄̄̄
¯̄̄
op

=

 cx1(k)

0

¯̄̄̄¯̄
op

(3.24)

C =
h

∂g1
∂x1

∂g1
∂x2

i¯̄̄
op
=
£
1 0

¤
(3.25)

D =
h

∂g1
∂u1

i¯̄̄
op
=
£
0
¤

(3.26)

[End of Example 1]

3.5 Calculating responses in discrete-time state
space models

3.5.1 Calculating dynamic responses

Calculating responses in discrete-time state space models is quite easy.
The reason is that the model is the algorithm! For example, assume that
Euler’s forward method has been used to get the following discrete-time
state space model:

x(k) = x(k − 1) + hf(k − 1) (3.27)

This model constitutes the algorithm for calculating the response x(k).

3.5.2 Calculating static responses

The static response is the response when all input variables have constant
values and all output variables have converged to constant values. Assume
the following possibly nonlinear state space model:

x(k + 1) = f1 [x(k), u(k)] (3.28)

where f1 is a possibly nonlinear function of x and u. Let us write xs and
us for static values. Under static conditions (3.28) becomes

xs = f1 [xs, us] (3.29)

which is an algebraic equation from which we can try to solve for unknown
variables.

If the model is linear:

x(k + 1) = Ax(k) +Bu(k) (3.30)
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Gateway for monitor and control Mitsubishi Electric City 
Multi Air Conditioning systems from any Modbus master 
device TCP or RTU (BMS, PLC, SCADA, HMI, TouchPanel…)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This integration requires the Mitsubishi Electric City Multi AC system be equipped with the Mitsubishi 
Electric G-50A, GB-50A o AG-150A gateway. This gateway from Mitsubishi Electric offers the signals of 
the City Multi AC system through XML protocol. Every G50 (G-50A, GB-50A o AG-150A) allows access to 
the signals of up to 50 City Multi internal units and 50 groups, no matter the number of external units 
installed. In the G50, the group is the control unit, every group can have from 1 to 16 associated internal 
units. This integration supervises and control groups, not internal units, although if only one internal unit is 
associated to every group then you can supervise and control internal units individually. This G50 
gateway is supplied by Mitsubishi Electric. Contact your nearest Mitsubishi Electric distributor for details. 
 
IntesisBox® can “talk” to up to 2 Mitsubishi Electric G50s using XML protocol, 
and offers the signals of all these City Multi groups through its Modbus slave 
interface, each signal in a predefined fixed Modbus address. The AG-150A can be 
used with Expansions Cards as explained in the section IntesisBox capacity 
 
The Modbus interface of IntesisBox can be freely configured as RTU RS232, RTU 
RS485 or TCP.   
 
The commissioning of IntesisBox® is almost plug & play, only IP parameters of 
the box and of G50s have to be configured using LinkBoxMB, a friendly software 
configuration tool for WindowsTM supplied along with IntesisBox with no 
additional cost. 
 

IntesisBox®  
Modbus Server - Mitsubishi Electric G50  

Master 
Modbus 

RTU 

G50 

RS232/RS485 Ethernet 

IntesisBox 

LinkBoxMB 
Configuration 

Software Only needed for configuration 

G50 

Master 
Modbus 

TCP 

RS232 

LAN / WAN 
 

Modbus 
TCP 

XML 

Modbus 
RTU 

Mitsubishi 
Electric 

City Multi 

Mitsubishi 
Electric 

City Multi 

A.3. Sensor Data Collection System

A.3 Sensor Data Collection System

185



IntesisBox®  Modbus Server - Mitsubishi Electric G50         Datasheet  r15 eng 
 

 

TRADEMARKS:   Todas las marcas y nombres utilizados en este documento se reconocen como marcas registradas de sus respectivos propietarios. 2 / 11 
© Intesis Software S.L. - Todos los derechos reservados 
La información de este documente puede cambiar sin previo aviso. 
 

IntesisBox® es una marca registrada de Intesis Software SL 

 

 

URL 
email 

tel 

 

http://www.intesis.com                                          
info@intesis.com 
+34 938047134 

  

1. IntesisBox capacity 
 
Element 
 

Max. Notes 

Num. of G50 2 Number of independent G50 interfaces 
2 x G-50A / GB-50A 
2 x AG150 (without Expansion Controllers) 
1 x AG150 (with 2 Expansion Controllers) 

 
Number of City Multi groups: 
(Number of G50s X 50) 
 

100 Maximum number of groups 

 
Number of variables per group 
 

19 Modbus addresses 

 
Number of variables per G50 
 

951 Modbus addresses 

 
Maximum number of variables 
 

1.902 Modbus addresses 

 
There are 2 different models of IntesisBox® Modbus server - Mitsubishi Electric G50 with different 
capacity every one of them. The table above shows the capacity for the top model (with maximum 
capacity). 
 
The 2 different models allow integrating respectively: 1 or 2 G50s. 
 
And their order codes are: 
 

• ME-AC-MBS-50. Model supporting up to 1 G50 and 50 City Multi groups. 
• ME-AC-MBS-100. Model supporting up to 2 G50s and 100 City Multi groups. 

 
 

 
NOTE: Please, remember that Mitsubishi Electric AG-150A requires a 
software license, PC-Monitoring license (SW-Mon), that has to be purchased 
together with the AG-150A gateway. 

! 
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2. Sample applications 
 
Integration of Mitsubishi Electric City Multi Air Conditioning systems equipped with the interface 
G50 into Modbus control systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control system with Modbus master 
interface: 
 
• BMS. 
• SCADA. 
• PLC. 
• DDC. 
• Home Automation. 
• AMX, Crestron… 
• … 
 

 

Typical Mitsubishi Electric Air 
Conditioning systems equipped with G50 
interface: 
 
• City Multi model  
• G-50A (version of G50 with display and 

keypad), GB-50A (version of G50 with 
blind cover), and AG-150A (new version 
of G50 with touch-display) are all 
supported, no difference from IntesisBox's 
point of view. 

• 50 City Multi indoor units or 50 groups per 
G50 

• Every group can have from 1 to 16 
associated indoor units  

• … 
 

System supervising / controlling System under 
supervision / control 

Full supervision  
and control MODBUS 

 

 

Master 
Modbus 

RTU 

G50 

RS232/RS485 Ethernet 

IntesisBox 

G50 

Master 
Modbus 

TCP 

LAN / WAN 
 

Modbus 
TCP 

XML 

Modbus 
RTU 

Mitsubishi 
Electric 

City Multi 

Mitsubishi 
Electric 

City Multi 
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3. Typical applications 
 
Integration of Mitsubishi Electric Air Conditioning into Modbus systems. 
 
For this application, Mitsubishi Air Conditioning system must be equipped with G-50A, GB-50A or        
AG-150A Gateway. For more information about these devices contact Mitsubishi Electric. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Indoor units 

…… 

Outdoor 
unit 

G-50A, GB-50A or 
AG-150A. 
(with XML option)  
 

 

    

Bus M-Net 

     Ethernet 
     (crossed cable) 

 

Modbus network 

 

 
IntesisBox® 

 
ME-AC-MBS-50  

 

 
Modbus Master 

TCP / RTU 
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4. Modbus interface  
 
General   
Max. Number of 
Mitsubishi Elec.G50s  

Up to two G50s can be supported.  

Virtual signals • One communication error virtual signal per every G50 device defined. 
• One communication error virtual signal per every group into the G50 device. 
• One virtual signal per every group into the G50 device to enable/disable this 

group in the polling process. 
All these virtual signals can be read/written from Modbus. 

Modbus interface  
Device type Slave. 
Modbus modes 
supported 

TCP, RTU RS232 or RS485. 

Modbus TCP 
configuration  
parameters 

• IP address. 
• Subnet mask. 
• Default gateway address. 
• TCP port. 

Modbus RTU 
configuration 
parameters 

• RS232/RS485. 
• Baud rate. 
• Parity. 
• Slave number. 

Points    
Configuration No point configuration needs to be done, all the Mitsubishi Electric G50 

signals are automatically associated to predefined fixed Modbus Addresses. 
Modbus function 
codes supported 

Read functions: 
• 3- Read holding registers. 
• 4- Read input registers. 
 
Write functions: 
• 6- Write single register. 
• 16- Write multiple registers. 
 
If poll records are used to read/write multiple records, the range of addresses requested must contain 
valid addresses, if not the corresponding Modbus error code will be responded. 
 

Modbus data coding  All the point's values are coded in 2 bytes registers (even if their possible values 
are 0 and 1) and expressed in MSB..LSB. 
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4.1 Extract of the predefined Modbus address table 
 
Modbus 
Address 

G50 Group Property  Modbus 
Address 

G50 Group Property 

1 1  0 Error Com. G50  2 2  0 Error Com. G50 
101 1 1 1 Drive  5101 2 1 1 Drive 
102 1 1 2 Mode  5102 2 1 2 Mode 
103 1 1 3 SetTemp  5103 2 1 3 SetTemp 
104 1 1 4 AirDirection  5104 2 1 4 AirDirection 
105 1 1 5 FanSpeed  5105 2 1 5 FanSpeed 
106 1 1 6 RemoCon  5106 2 1 6 RemoCon 
107 1 1 7 DriveItem  5107 2 1 7 DriveItem 
108 1 1 8 ModeItem  5108 2 1 8 ModeItem 
109 1 1 9 SetTempItem  5109 2 1 9 SetTempItem 
110 1 1 10 FilterItem  5110 2 1 10 FilterItem 
111 1 1 11 Ventilation  5111 2 1 11 Ventilation 
112 1 1 12 FilterSign  5112 2 1 12 FilterSign 
113 1 1 13 ErrorSign  5113 2 1 13 ErrorSign 
114 1 1 14 InletTemp  5114 2 1 14 InletTemp 
115 1 1 15 FilterSignReset  5115 2 1 15 FilterSignReset 
116 1 1 16 ErrorSignReset  5116 2 1 16 ErrorSignReset 
117 1 1 17 Error Com. Group  5117 2 1 17 Error Com. Group 
118 1 1 18 Polling Active  5118 2 1 18 Polling Active 

  . 
. 
. 

      . 
. 
. 

 

Modbus 
Address 

G50 Group Property  Modbus 
Address 

G50 Group Property 

5001 1 50 1 Drive  10001 2 50 1 Drive 
5002 1 50 2 Mode  10002 2 50 2 Mode 
5003 1 50 3 SetTemp  10003 2 50 3 SetTemp 
5004 1 50 4 AirDirection  10004 2 50 4 AirDirection 
5005 1 50 5 FanSpeed  10005 2 50 5 FanSpeed 
5006 1 50 6 RemoCon  10006 2 50 6 RemoCon 
5007 1 50 7 DriveItem  10007 2 50 7 DriveItem 
5008 1 50 8 ModeItem  10008 2 50 8 ModeItem 
5009 1 50 9 SetTempItem  10009 2 50 9 SetTempItem 
5010 1 50 10 FilterItem  10010 2 50 10 FilterItem 
5011 1 50 11 Ventilation  10011 2 50 11 Ventilation 
5012 1 50 12 FilterSign  10012 2 50 12 FilterSign 
5013 1 50 13 ErrorSign  10013 2 50 13 ErrorSign 
5014 1 50 14 InletTemp  10014 2 50 14 InletTemp 
5015 1 50 15 FilterSignReset  10015 2 50 15 FilterSignReset 
5016 1 50 16 ErrorSignReset  10016 2 50 16 ErrorSignReset 
5017 1 50 17 Error Com. Group  10017 2 50 17 Error Com. Group 
5018 1 50 18 Polling Active  10018 2 50 18 Polling Active 

  . 
. 
. 

        

 
There are also a series of signals that indicate an Alarm Code in any of the devices present in the M-Net 
Mitsubishi network. To obtain the Modbus address, you must apply following formula: 
  

  ADRESS MODBUS = (20000+ (Numb.G50x1000)) + M-Net Add 
 

where M-Net Add is 0 for the G50 device, 1 to 50 for Indoor Units, 51 to 100 for Outdoor Unit, 101 to 200 for Remote 
Controllers and 200 to 250 for System Controllers.   

 
For more information contact Mitsubishi Electric 
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5. Mitsubishi Electric G50 interface 
 
 
Mitsubishi Electric 
G50 interface 

 

Device type Client. 
Configuration  
Parameters 

Polling interval (1..600 seconds). 
 
Per every G50 defined: 
• Descriptive name. 
• IP address. 
• TCP port. 
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5.1 Signals available per every Mitsubishi Electric City Multi AC indoor unit or 
group of indoor units 

 
Property Description / Status 
Drive Start/Stop 

Read/Write: ON, OFF 
Mode1 AC Mode 

Read/Write: COOL, DRY, FUN, HEAT, AUTO, HEAT RECOVERY, 
LC_AUTO, BYPASS 
Read: AUTO HEAT, AUTO COOL 

SetTemp1 Temperature Set Point (only integer numbers allowed) 
Read/Write: For COOL or DRY mode:19..30 ºC, for HEAT mode: 17..28 ºC, for 
AUTO mode:19..28 ºC) 

AirDirection Air output direction 
Read/Write: HORIZONTAL, MID1, MID2, VERTICAL, SWING 

FanSpeed AC fan speed or LOSSNAY 
Read/Write: HIGH, MIDH, MIDL, LOW 

RemoCon Prohibition for General control from the local panel 
Read/Write: PROHIBIT, PERMIT 

DriveItem Prohibition for ON/OFF control from the local panel 
Read/Write: CHK_ON, CHK_OFF 

ModeItem Prohibition for Mode control from the local panel 
Read/Write: CHK_ON, CHK_OFF 

SetTempItem Prohibition for Set Point control from the local panel 
Read/Write: CHK_ON, CHK_OFF 

FilterItem Prohibition for Filter Reset control from the local panel 
Read/Write: CHK_ON, CHK_OFF 

Ventilation Operational status for LOSSNAY or OA 
Read/Write: HIGH, LOW, OFF 

FilterSign Status for Filter Dirty 
Read: ON, OFF 
Write: RESET 

ErrorSign Error status 
Read: ON, OFF 
Write: RESET 

InletTemp Ambient Temperature 
Read: 0.0 to 99.9 

G50 Communication 
Error 

Communication error with G50 
Virtual signal generated by IntesisBox to indicate the status of the 
communication with the G50. 

Group 
Communication Error 

Group communication error 
Virtual signal generated by IntesisBox to indicate that the group is not 
configured into the G50. 

Polling Active Polling active 
Virtual signal to indicate or set if the Group is active or not active during the 
polling process. 

Alarm Code Group Alarm Code 
This signal provides a value. Each value has an associated alarm that has 
occurred in the group (0 means no alarm). 

 

                                                           
1 PWFY units have a different mode and setTemp map explained in the signals column in LinkBoxEIB (section 3.4 
in the User Manual) 
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6. Configuration tool 
 
LinkBoxMB • Visual engineering tool, easy of use, for gateway’s configuration and 

supervision compatible with Microsoft Windows operating systems, supplied 
with the gateway free of charge. 

• Multi-window tool allowing to supervise simultaneously the communication 
activity with both protocols (systems), real time values for all the signals 
allowing to modify any value (very useful for test purposes), console window 
showing debug and working status messages, and configuration windows to 
configure all the gateway’s parameters and signals. 

• Signals configuration in plain text files (tab separated) for easy and quick 
configuration using Microsoft Excel (very useful in projects with a lot of points). 

• Allows configuring the gateway’s parameters and signals while in off-line (not 
connected to the gateway). 

• Connection to the gateway for download the configuration and supervision by 
using serial COM port of the PC (serial cable supplied with the gateway). 

• Allows configuring all the external protocols available for IntesisBox® Modbus 
Server series. 

• Upgrades for this software tool available free of charge whenever a new 
protocol is added to the IntesisBox® Modbus Server series. 

• Multi-project tool allowing having in the engineer’s PC the configuration for all 
the sites with different IntesisBox® Modbus Server series gateways. 

• Multi-language tool, all the language-dependent strings are in a plain text file 
(tab separated) for easy modification or addition of new languages. 

• A list of system commands is available to send to the gateway for debugging 
and adjust purposes (Reset, Date/time consultation/adjust, Firmware version 
request…). 

 
 
 

7. 
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Mechanical & Electrical characteristics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Envelope Plastic type PC (UL 94 V-0). Size: 107mm x 105mm x 58mm. 
Color Grey. RAL 7035. 
Power 9 to 30VDC +/-10% 1.4W. 

24VAC +/-10% 1.4VA. 
Power connector is a 2 pole plug-in screw terminal bloc. 

Mounting options Wall 
DIN rail EN60715 TH35. 

Modbus RTU ports 1 x Serial RS232 (DB9 male DTE). 
1 x Serial RS485 (Plug-in screw terminal block 2 poles). 

Modbus TCP & 
Mitsubishi Elec.G50 
port 

1 x Ethernet 10BT RJ45 connector. 

LED indicators 1 x Power. 
2 x Ethernet port link and activity (LNK, ACT). 
2 x Modbus RTU port activity (Tx, Rx). 

Console port RS232. DB9 female connector (DCE). 
Configuration Via console port.1  
Firmware Allows upgrades via console port.  
Operational 
temperature range 

0°C to +70°C 
 

Operational humidity 
range 

5% to 95%, non condensing 

Protection  IP20 (IEC60529). 
RoHS conformity Compliant with RoHS directive (2002/95/CE). 
Certifications CE 
 
1     Along with the device it is also supplied a standard DB9 male - DB9 female 1.8 m. cable for configuring and monitoring the 

device using a PC via serial COM port. The configuration software, compatible with MS Windows® operating systems, is also 
supplied. 
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8. Dimensions 
 

  
  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recommended available space for its installation into a cabinet (wall or DIN rail mounting), with space 
enough for external connections: 
 

115 mm 
130 mm 

100 mm 

 

Power 
+ 

Ethernet port 

107 mm 105 mm 

58 mm 

Modbus RTU 
RS232/485 

Console  
port 
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Product Information

PUMY-P140YKM2

Heat Pump Outdoor UnitAir Conditioning

PUMY - OutDOOR uNIt PUMY-P140YKM2 DIMENSIONS

CAPACITy (kW) Heating (nominal)

   Cooling (nominal)

   Heating (UK)

   Cooling (UK)

POWER  INPUT (kW) Heating (nominal)

   Cooling (nominal)

   Heating (UK)

   Cooling (UK)

COP / EER (nominal)

SCOP / SEER (system)

Max no. OF  CONNECTABLE INDOOR  UNITS

MAX CONNECTABLE CAPACITy                                       

AIRFLOW (m3/min)

PIPE  SIZE mm (in) Gas

   Liquid                             

SOUND  PRESSURE  LEVEL (dBA)

WEIGHT (kg)

DIMENSIONS (mm) Width

   Depth

   Height

ELECTRICAL SUPPLy

PHASE

STARTING CURRENT (A)

NOMINAL  SySTEM RUNNING CURRENT (A)*  

Heating / Cooling [MAX]

GUARANTEED OPERATING RANGE (ºC) Heating / Cooling

FUSE  RATING (BS88) - HRC (A)

MAINS  CABLE  No. Cores

18.0

15.5

14.9

14.3

4.47

4.52

3.98

3.03

4.03 / 3.43

3.61 / 5.60

12

50-130% OU Capacity

110

15.88 (5/8”)

9.52 (3/8”)

51

125

1050

330+30

1338

380-415v, 50Hz

Three

5

6.79 / 6.87 [13.0]

-20~15 / -5~46

1 x 16

4 + earth

UNITED KINGDOM Mitsubishi Electric Europe Living Environmental Systems Division

Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, England   General Enquiries Telephone: 01707 282880   Fax: 01707 278881

IRELAND Mitsubishi Electric Europe Westgate Business Park, Ballymount, Dublin 24, Ireland

Telephone: Dublin (01) 419 8800   Fax: Dublin (01) 419 8890   International code: (003531)

Telephone: 01707 282880
email: air.conditioning@meuk.mee.com web: www.airconditioning.mitsubishielectric.co.uk

Country of origin: United Kingdom – Japan – Thailand – Malaysia.  ©Mitsubishi Electric Europe 2015.  Mitsubishi and Mitsubishi Electric are trademarks of Mitsubishi Electric Europe B.V.  The company reserves the
right to make any variation in technical specification to the equipment described, or to withdraw or replace products without prior notification or public announcement.  Mitsubishi Electric is constantly developing
and improving its products.  All descriptions, illustrations, drawings and specifications in this publication present only general particulars and shall not form part of any contract.  All goods are supplied subject to
the Company’s General Conditions of Sale, a copy of which is available on request.  Third-party product and brand names may be trademarks or registered trademarks of their respective owners.

 
 

Installation Feet

2-U Shaped notched holes
(Foundation Bolt M10)

2-12×36 Oval holes
(Foundation Bolt M10)

Side Air Intake

Rear Air Intake

Air Discharge

70
42

56

41
7

225

25
33

0

600 225

28
19

37
0

53

56
33
0

 

 

 

 

 

 

 
 

 

   
  

  
  

  

  

 

 

 

 

 

Service panel

362

1050

26

13
38

 4
26 51
0

10
62

36
9

63
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Note: The fuse rating is for guidance only. Please refer to the relevant databook for detailed specification. It is the responsibility of a qualified

electrician/electrical engineer to select the correct cable size and fuse rating based on current regulation and site specific conditions.

Mitsubishi Electric’s air conditioning and heat pump systems contain fluorinated greenhouse gases R410A, R407C and R134a. Effective as of April 2015
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Les  installateurs

-   Dimensions compactes pour une discrétion maximum

-  Traitement efficace en périmétrie des locaux recevant 
du public

- 3 vitesses de ventilation

- Pression statique disponible jusqu’à 60 Pa

Les  utilisateurs

-    Intégration adaptée aux intérieurs décorés

PFFY-P VLRMM-E
Console non carrossée avec pression

PFFY-P VLRMM-E

Selon modèle

Compatible

R407C
R22

Garantie

3 ans
pièces 

Haut 

639 mm

Pression 
statique
20 à 

60 Pa
27dB(A)

Seulement

Hall d’accueil, bureaux décorés, restaurants, résidentiel…

R410A

Selon modalités 
des CGV

UNITÉS INTÉRIEURES DRV

PFFY-P(…) VLRMM-E 20 25 32 40 50 63

Puissance nominale froid kW 2.2 2.8 3.6 4.5 5.6 7.1

Puissance absorbée totale nominale (1) W 40 40 40 50 50 70

Puissance nominale chaud kW 2.5 3.2 4.0 5.0 6.3 8.0

Puissance absorbée totale nominale (1) W 40 40 40 50 50 70

Caractéristiques techniques

Unités extérieures compatibles -
PUMY-P-V/YKM(2)    PUHY-P-Y(S)KB    PUHY-EP-Y(S)LM    PUHY-HP-Y(S)HM

PURY-(E)P-Y(S)LM   PQHY/PQRY-P-Y(S)LM    PUHY/PURY-RP-Y(S)JM    PUCY-P-Y(S)KA

U
ni

té
s 

in
té

ri
eu

re
s

Débit d’air en Froid  PV

 MV 

 GV

m3/h

270 270 390 480 600 660

330 330 450 570 720 780

390 390 540 660 840 930

Pression statique disponible

[réglage usine] 

Pa

[20] [20] [20] [20] [20] [20]

40 40 40 40 40 40

60 60 60 60 60 60

- - - - - -

- - - - - -

Pression acoustique PV

en Froid à 1,5 m (2) MV 

[20] Pa GV

dB(A)

31 31 27 30 32 35

36 36 32 36 37 40

40 40 37 40 41 44

Dimensions Hauteur

 Largeur 

 Profondeur

mm

639

886

220

639

886

220

639

1006

220

639

1006

220

639

1246

220

639

1246

220

Poids net kg 18,5 18,5 20 21 25 27

Diamètres des condensats mm 26 26 26 26 26 26

Fr
ig

o Diamètre liquide flare pouce 1/4 " 1/4 " 1/4 " 1/4 " 1/4 " 3/8 "

Diamètre gaz flare pouce 1/2 " 1/2 " 1/2 " 1/2 " 1/2 " 5/8 "

El
ec

Alimentation électrique V~Hz 230V - 1  P + N + T

Intensité maxi A 0.59 0.59 0.69 0.78 0.80 0.93

Conditions nominales :  Mode FROID : intérieur : 27°C TS / 19°C TH - extérieur : 35°C TS / 24°C TH - Mode CHAUD : intérieur : 20°C TS / 15°C TH - extérieur : 7°C TS/6°C TH - Longueur tubes : 7.5 m

PV = Petite Vitesse - MV = Moyenne Vitesse - GV = Grande Vitesse - (1) Donnée en Grande Vitesse  - (2) Pression acoustique mesurée en chambre anéchoïque

A.5. Heat Exchanger Indoor Unit
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Titre :  Bâtiments Eco-Energétiques : Modélisation Dynamique Hybride pour l'Analyse et le Contrôle 

Mots clés :  Modèle de bâtiment, simulation dynamique de bâtiment, modèle de réseau thermique, identification des 

paramètres, optimisation par essaim de particules, commande prédictive (MPC), gestion de l'énergie du bâtiment, 
confort thermique. 
Résumé :  Ces travaux de thèse proposent une approche 
alternative pour une modélisation simplifiée du modèle de 
réseau thermique des bâtiments. Ces travaux sont motivés 
par la nécessité de réduire la complexité de la modélisation 
des bâtiments et d’améliorer ainsi les performances tout en 
réduisant le coût calculatoire.  Les différentes techniques 
de modélisation pour le développement d’un contrôleur 
basé sur un modèle ont été étudiées et analysés pour 
déterminer les modèles qui peuvent être utilisés pour la 
modernisation des bâtiments en cas de manque de 
données. Nous avons ainsi présenté différentes méthodes 
pour la modélisation dynamique des bâtiments y compris 
les facteurs influençant les performance d’un bâtiment. La 
mise en œuvre de contrôleurs intelligents permet de gérer 
correctement la consommation d’énergie et le confort dans 
les bâtiments. Ces contrôleurs doivent être réactifs pour 
envoyer les signaux de contrôle nécessaires.  Dans ce 
contexte, le contrôleur a besoin d’un modèle de faible ordre, 
efficace sur le plan calculatoire et précis pour tendre vers 
de meilleurs performances. Des systèmes d’ordre inférieur 
simplifiés sont développés en utilisant des modèles de 
réseau thermique d’ordre 2 avec une valeur optimale des 
résistances thermiques et des condensateurs.  Afin de 
déterminer les valeurs ces paramètres, une approche 
spécifique est proposée en utilisant une optimisation 
stochastique des essaims de particules. 
. 

Cette méthode fournit une approximation significative des 
paramètres par rapport au modèle de référence tout en 
permettant au modèle d’ordre inférieur d’atteindre une 
efficacité calculatoire de 40 à 50% par rapport au modèle 
de référence. En outre, un nombre considérable de 
simulations sont réalisées pour évaluer les performances 
du modèle simplifié proposé par rapport à un modèle 
complexe plus avancé de gains solaires. Le modèle 
simplifié développé est ensuite validé avec des données 
mesurées dans un bâtiment réel (notre cas d’étude) où les 
résultats obtenus montrent clairement un haut degré de 
précision par rapport aux données réelles.  Enfin, un 
contrôleur MPC (commande prédictive) est appliqué pour le 
bâtiment cas d’étude pour l’optimisation du confort 
thermique. Les résultats de simulations obtenus 
démontrent l’importance du contrôleur MPC dans la gestion 
des contraintes, le contrôle multi-objectifs et la génération 
d’une stratégie de contrôle optimale. Les résultats de 
l’optimisation énergétique montrent une réduction de 31% 
de la consommation d’énergie par rapport à un contrôleur 
conventionnel. 
 

Title : On Energy-Efficient Buildings : Hybrid Dynamic Modeling for Analysis and Control 

Keywords :  Building model,  dynamic building simulation,  thermal network model,  parameters identification,  particle 

swarm optimization,  Model Predictive Control (MPC),  building energy management,  thermal comfort. 

Abstract : Low cost smart sensors, intelligent controllers, 
and IoT systems constitute key components to develop 
develop smart buildings. These smart systems produce 
optimal control strategies by continuous analysis of building 
performance. Two major parameters are controlled in the 
building: occupants’ comfort and heating or cooling load 
consumption optimization. For such intelligent controllers 
applications, it is essential to have building model with high 
performance accuracy and computational efficiency. The 
existing building models range from complete analytical to 
fully data-driven and hybrid models. The analytical model is 
extremely complex to model and computationally inefficient, 
whereas the data-driven models require a large amount of 
data. However, in the case of data unavailability, application 
of datadriven models become impossible. This work 
presents, hybrid modeling for heat transfer dynamics of the 
building using lumped parameter thermal network modeling 
technique. An efficient building model is developed by 
having proper structural knowledge of low-order model and 
identifying its parameter values.  Simplified low-order 
systems are developed using 2nd order thermal network 
models with optimal thermal resistors and capacitors value. 

In order to determine the low-order model parameter 
values, a specific approach is proposed using a stochastic 
particle swarm optimization. This method provides a 
significant approximation of the parameters when  
compared to the reference model whilst allowing low-order 
model to achieve 40% to 50% computational efficiency than 
the reference analytical model. 
Furthermore, extensive simulations are carried out to 
evaluate the proposed simplified model with a more 
advanced complex solar gains model and identified 
parameters value. The developed simplified model is 
afterward validated with measured data from a case study 
building where the achieved results clearly show a high 
degree of accuracy compared to the actual data.  Finally, 
an MPC controller is applied for the same case study 
building for thermal comfort optimization. Simulation results 
demonstrate the significance of the MPC controller in 
handling the constraints, multi-objective control, and 
producing optimal control strategy. The energy optimization 
results of the MPC have shown 31% of energy consumption 
reduction compared to a conventional controller. 
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