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ABSTRACT

Nowadays, Autonomous Vehicles (AVs) are capable of realizing extraordinary and
complicated tasks. Notwithstanding these amazing achievements, several challenges
arise, one of them is the ability of the autonomous car to perceive its environment in
order to properly evaluate the situation with regards to the road environment. Part of
this situation evaluation is the knowledge about ego-localization. In the broadest sense,
ego-localization is a meaningful concept that can be related to different problematics.
However, one interpretation of ego-localization consists of the knowledge of three key
components: the road on which the vehicle is traveling (Road Level Localization (RLL)),
the ego-lane position (Ego-Lane Level Localization (ELL)), and the lane on which the
vehicle is traveling (LLL). Therefore, a reliable ego-localization system has to fulfill the
localization’s requirement of each of these components.
The objective of this Ph.D. work is to propose a unified, generalized and modular
localization system architecture that tackles every aspect of the localization system. In
addition that, a focus is given on opensource map OpenSteetMap (OSM) to demonstrate
that even a low-cost map can be used to obtain an accurate localization. To do so, an
end-to-end framework composed of several interconnected components is presented.
This framework is responsible of providing a localization solution on a digital map by
developing a robust map-matching algorithm. Furthermore, it permits the localization of
the ego-vehicle with respect to ego-lane by proposing a top-down approach that exploits
the priors of the map in order to detect the lane marking. Finally, it determines the lane
on which the vehicle is traveling by introducing a modular framework that handles the
ambiguities in the lane-level localization. The reliability and the flexibility of the overall
proposed architecture and its elementary components have been intensively validated,
first, individually using different dataset, and secondly, as a whole solution using a
collected dataset in the region of Clermont-Ferrand.

Keywords: Autonomous driving, Localization architecture, Probabilistic framework, Lane detec-
tion, Fusion Framework.
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RÉSUMÉ

De nos jours, les véhicules autonomes (VAs) sont capables de réaliser des tâches
extraordinaires et compliquées. Malgré ces réalisations étonnantes, plusieurs défis se
posent, l’un d’eux étant la capacité de la voiture autonome à percevoir correctement
son environnement afin d’évaluer correctement la situation dans laquelle elle se trouve.
Cette évaluation de la situation repose en partie sur la connaissance de l’égo-localisation.
Au sens large, l’ego-localisation est un concept vaste qui peut être lié à différentes
problématiques. Cependant, une interprétation de l’égo-localisation consiste en la
connaissance de trois éléments clés : la route sur laquelle le véhicule circule (Road
Level Localization (RLL)), la position de du véhciule par rapport aux marquages de
sa voie (Ego-Lane Level Localization (ELL)), et la voie sur laquelle le véhicule circule
(Lane-Level Localization (LLL)). Par conséquent, un système d’ego-localisation fiable
doit répondre aux exigences de localisation de chacun de ces composants. L’objectif
de ce travail de doctorat est de proposer une architecture de système de localisation
unifiée, généralisée et modulaire qui aborde tous les aspects du système de localisation.
En outre, l’accent est mis sur l’utilisation de la carte opensource OpenSteetMap (OSM)
pour démontrer que même une carte à faible coût peut être utilisée pour obtenir une
localisation précise. Pour ce faire, une architecture probabliste dite end-to-end composé
de plusieurs composants interconnectés est présentée. Cette architecture est chargée de
fournir une solution de localisation sur une carte numérique en développant un algorithme
robuste de correspondance de carte (map-matching). De plus elle permet de localiser
l’ego-véhicule par rapport à l’ego-voie en proposant une approche descendante qui
exploite les informations a priori de la carte afin de détecter les marquages de l’ego-
voie. Enfin, elle permet de déterminer la voie sur laquelle le véhicule se déplace en
introduisant une architecture modulaire qui gère les ambiguïtés dans le choix de la bonne
voie. La fiabilité et la flexibilité de l’architecture globale proposée et de ses composants
élémentaires ont été validées , d’abord individuellement à l’aide de différents ensembles
de données, puis en tant que solution globale à l’aide d’un ensemble de données
collectées dans la region de Clermont-Ferrand.

Mots-clés : Véhicules autonomes, architecture de localisation, architecture probabiliste, détection
des voies, architecture de fusion d’information.
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1.1/ BACKGROUND AND MOTIVATION

We live in an age of extraordinary computer machines. Nowadays, computer ma-
chines can simulate complex physical phenomena, beat expert players in games like
AlphaGo [111], and even perform a dance choreography 1. Notwithstanding these amaz-
ing achievements, many tasks that seem easy for humans remain difficult to perform by
robots.
The task of driving a car, for example, not only makes the most sophisticated machines
and computer models fail but also challenges the worldwide research and industrial com-
munity working on Autonomous Vehicles (AVs). What is apparent is that, if AVs are going
to replace traditional cars in every day’s life, they will have to deal with all the uncertainties
and complexities of our dynamic, and often chaotic, world.

1https://www.youtube.com/watch?v=fn3KWM1kuAw
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14 CHAPTER 1. GENERAL INTRODUCTION

1.2/ HISTORY OF THE AUTONOMOUS VEHICLE

The recent advances in technology had led the world to excitement about AVs. Most
of the current AVs have shown promising results dealing and interacting with the world.
However, before getting there, AVs have come a long way. As Theodore Roosevelt said,
"the more you know about the past, the better prepared you are for the future". Therefore,
let’s go down the timeline to when it all started.

1.2.1/ THE DAWN OF THE AUTONOMOUS CAR

The journey of autonomous vehicles (cf. Figure 1.1) has begun since the dawn of auto-
mobiles themselves. It all started in 1925 when Francis Houdina unveiled the first incar-
nation of assisted driving. Houdina’s driverless car, baptized the American Wonder, first
drove “without a pilot” down the streets of New York City [118]. The American Wonder,
chaperoned by an operator with a radio control in nearby, navigated in the streets of New
York City but, ultimately, collided with another vehicle. Ironically, the latter was containing
photographers that came to cover the event. The enthusiasm for autonomous vehicles
continued after the second world war. In the 1950s, General Motors implemented an au-
tomatic system for speed control and variable spacing [4]. Cars with such systems were
capable to navigate on highways with the use of receivers that were able to detect special
tracks installed in the road.
According to the scientific literature, the first automated vehicle was built in Japan in 1977,
within the framework of the CACS (Comprehensive Automobile Traffic Control System)
project. Under the supervision of Professor S. Tsugawa [6, 10], demonstrations were
carried out with a vehicle capable of navigating in a lane on its own while using a camera
that detects lane markings. The vehicle was successfully driven under various road en-
vironments at a speed within 30 Km/h. Nevertheless, it was until 1988, with a European
research initiative that the first autonomous car was developed by Ernst Dickmanns [8].
This initiative paved the way for new research projects, such as PROMETHEUS (PRO-
graMme for a European Traffic of Highest Efficiency and Unprecedented Safety (1987-
1995)), which aimed to develop a fully functional autonomous car. In 1994, the VaMP
driverless car [13] resulting from the PROMETHEUS work managed to drive 1,600km,
out of which 95% were driven autonomously.
Notwithstanding the latest success made toward a fully self-driving car, the latter one
remains problematic and many challenges were still unsolved. Meanwhile, Advanced
Driver-Assistance Systems (ADAS) reached commercial success. Mitsubishi presented
the first distance control system based on LiDAR [14]. Following this momentum, in 1999
Mercedes-Benz implemented the first radar-assisted adaptive cruise control. In the early
2000s, most of the vehicles were equipped with a navigation system (Global Positioning
System (GPS)).

1.2.2/ THE DARPA CHALLENGE: “THE REST IS JUST STAMP COLLECTING”

The Defense Advanced Research Projects Agency (DARPA) Grand Challenges gave a
new impulse to the research in autonomous vehicles and on the design of complex sys-
tem architecture to autonomous driving. The major challenge in comparison to previous
demonstrations is that there was no human intervention during all the races. Whereas
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the 2004 and 2005 DARPA Grand Challenges were intended to demonstrate that au-
tonomous vehicles can travel significant distances, the 2007 DARPA Urban Challenge
(DUC) was designed to promote and spur innovations in autonomous vehicles in clut-
tered urban environments. No winning team was declared in the first DARPA edition
because none of the robot vehicles completed the race. However, a vehicle named Sand-
storm went the farthest and gave a hint on the autonomous vehicle’s capabilities to win
the challenge [24]. Therefore, a second DARPA Grand Challenge event was scheduled
for 2005. In this event, the Stanford’s robot “Stanley” finished the course ahead of all
other vehicles, and was declared the winner of the DARPA Grand Challenge [36]. In that
time, the Stanley team was led by Sebastian Thurn.

Figure 1.2: Levels of driving automation by SAE International’s new standard J3016 (SAE,
2014)

Unlike previous challenges, the 2007 Urban Challenge allowed international participants.
Furthermore, the race required to drive through a town while obeying to traffic rules. The
CMU team won the race, followed by the Stanford team. A noteworthy event is that
the majority of the teams relied on multi-beam LiDAR technology developed by Velo-
dyne. This newly released technology will subsequently give a stimulus to several re-
search works related to occupancy grid map and Simultaneous Localization And Mapping
(SLAM) techniques for localization.
Ernest Rutherford said, "All science is either physics or stamp collecting" (we would not
want to know what he thinks about computer science, would we?), this quote resumes
what happens after the success of the two last editions of the DARPA Challenge (2005,
2007). Indeed, in the common mindset, the majority of the self-driving car challenges
were resolved (including perception, localization, decision-making, and path planning)
and it was up to the industry to figure out how to commercialize the self-driving car.
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However, it was not the classical autonomous manufacturer who took command of the
race for the autonomous vehicle, it was the giant tech industry. In 2009, the tech gi-
ant Google took the lead in the race to get the first autonomous vehicle on the market.
They started their autonomous car program called "the Google car". To achieve this goal,
Google hired renowned scientist that participated in the DARPA challenges (Sebastian
Thrun).
In 2014, the society of automotive engineers (SAE) released their classification of au-
tonomous driving systems into 6 levels of driving delegation [86] as illustrated in Fig-
ure 1.2, it summarizes the standard grading for vehicle automation.
In the same year, Tesla released the first version of its Autopilot 1.0 (which corresponds to
level 2 of autonomy). Following the same strategy adopted by Google in 2009, Uber starts
its own driving car program in 2015 by hiring several researchers from CMU. Ultimately,
both Tesla and Uber witnesses their fatal accidents. In 2016 for Tesla, due to self-driving
system dysfunctional which was related to the perception module, and in 2018 for Uber,
in which a pedestrian was killed by the Uber autonomous vehicle which was lodged by a
driver. In 2018, the google car project became a subsidiary of Google under the name
of Waymo. The Waymo car reached over 10 million miles of autonomous driving in that
year. Nowadays, several companies have joined the race to the autonomous vehicle, i.e,
Nvidia, Daimler, Nio. The latest one is another giant tech Amazon, which has the ambition
to release the self-driving car Zoox.

1.3/ POPULAR VIEWS ON AUTONOMOUS VEHICLE

Now, we present the past and the current AVs system. Let’s discuss (and sweep) some
popular views that may arise from the previous section.

1. The driving task is easy: the underlying belief is that driving is an easy task, that
is solvable. Since humans are capable of doing it every day, it has to be easy to
formalize this task and thus solve it. Maybe the underlying belief is true, but what
if not? A demonstration of a traffic situation in a roundabout that occurs everyday
in thousands of cities is shown in Figure 1.3. This kind of situation is hardly for-
malizable. However, we, as human beings deal with it every day without causing
accidents. How do we do it? With glances between drivers and with intuitions on the
maneuvers of the others, humans are capable of communicating and interpreting
glances, which allow them a fast understanding of the road scene environment. So
maybe the driving task is not that easy.

2. The second belief is to say that the task of perception is easy and has been settled.
The human brain allows us to perceive and understand a scene in split second.
Indeed, nature has had millions of years to make the human brain evolve.
On the other hand, as pointed out by Christian Szegedy, most promising deep neu-
ral networks do achieve high performance on visual and speech recognition prob-
lems. However, the output can be difficult to interpret and can have counter-intuitive
properties [81]. To illustrate these counter-intuitive properties, he added some dis-
tortion to input images that was correctly classified by a neural network (a dog, cf.
Figure 1.4), the addition of the distortion falsified the results (the dog was classified
as an ostrich). In his study, he went further, by doing the same procedure on a bus
image, and the output was again an ostrich. So, No! perception is not an easy task.
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Figure 1.3: A traffic jam situation in a famous roundabout in Paris (place de l’étoile)

Figure 1.4: Left images are correctly predicted sample, the predicted images are a dis-
tortion (in center). All images in the right column are predicted to be an “ostrich" [81]

1.4/ INTELLIGENT VEHICLES ARCHITECTURE

Regardless of the difference between the AVs presented whether, in the industry or in
the research, they all must provide a solution to the autonomous navigation problem. In
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a global manner, this task is divided into four key elements: perception, localization and
mapping, path planning, and control as illustrated in Figure 1.5.

Figure 1.5: The basic navigation loop for AVs

1.4.1/ PERCEPTION

The perception block uses a set of sensors in order to detect relevant features in the
environment such as other traffics participants or road signs. To perform such a task, the
perception block relies on a perception system that comprises all the sensors embedded
in the autonomous car. These sensors can be clustered into two groups: exteroceptive
sensors and proprioceptive sensors.

1.4.1.1/ EXTEROCEPTIVE SENSORS

Exteroceptive sensors are used to collect information from the external environment of
the vehicle. The most widely used sensors are the following:

1. Cameras are the cheapest and most versatile modality for automotive applications
and they provide dense information of the environment. For those reasons, they are
the most attractive and the most deployed sensors for self-driving cars and ADAS.

2. Radar is mainly used to detect obstacles. The technology is based on the mea-
surement of the time of flight between the radar and the object. Since the speed
of sound waves is known, the distance is then computed. RADAR sensors have a
longer working distance than other sensors due to their longer wavelength but at
the cost of reduced accuracy.

3. Lidar uses the same technology as radar involving infrared light. The lidar returns
dense point clouds representing the environment. Furthermore, the reflectance is
also returned by the lidar. Contrary to the radar, the working range of the lidar
is smaller. However, the accuracy obtained in terms of richness of information is
greater.
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The majority of autonomous vehicle systems incorporate data from multiple sensors, al-
lowing them to supplement one while simultaneously solving the limitations of individual
sensors, such as the loss of structure information in cameras or the lack of color informa-
tion in lidar data.

1.4.1.2/ PROPRIOCEPTIVE SENSORS

Proprioceptive sensors provide information about the state of the autonomous car. In-
deed, in order to model the autonomous vehicle’s trajectory, information about its ori-
entation and speed are necessary. To this end, wheel odometry is used to measure
the rotation of a wheel and hereby, is used to estimate the distance covered by the au-
tonomous vehicle.
These proprioceptive sensors are usually low-cost and return uncertain information.
Therefore, this uncertainty must be corrected in order to have a reliable estimation of
the vehicle’s state. Nevertheless, there exists high-accurate proprioceptive sensors; such
as high-accurate Inertial Measurement Unit (IMU) that are used for more sensitive appli-
cations (e.g. military uses, underwater robotics).

1.4.2/ LOCALIZATION AND MAPPING

The localization and mapping block is responsible to locate the vehicle, first, globally on
a map, and then locally on the road.
Global localization is performed with the respect to world coordinates. To this end, Global
Navigation Satellite Systems Global (GNSS) are used in order to compute an absolute
position in terms of longitude, latitude, and altitude. This localization technology is widely
adopted for guidance systems in the automotive industry. Classical Global Positioning
System (GPS) receiver have an accuracy order of 5 m. Nonetheless, considering the
autonomous car, the lane/road understanding demands in terms of precision [89] vary
from one application to another, and therefore, metric precision is not sufficient.
On the other hand, local localization is performed with the respect to the relevant features,
that contain contextual information about the road environment, in order to have a local
representation of the environment with respect to the autonomous car. These features
can be either the outputs of the perception module or they can be stored in digital
maps. These digital road maps provide prior information about the road environment
without being affected by the limitations of the exteroceptive sensors, and hence, provide
information unreachable by these sensors. The range of application of the digital map
varies depending on its degree of details (See Section 4.2.1).

1.4.3/ PATH PLANING AND CONTROL

At a later stage, the path planning block exploits the representation given by the previous
blocks in order to adopt the safest route for the AVs. The instruction given by this high-
level block will depend on the paradigm used for path planning and decision making. But
also, on the type of presentation given by the previous components.
At last, the control component delivers the necessary values of control parameters such
as acceleration and steering angle for an autonomous car in order to follow the selected
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route by the path planning. These two high-level components are out of the scope of this
thesis work.

1.5/ PROBLEM FORMALIZATION

Given the global functional architecture of autonomous vehicles. Several challenges
arise, one of them is the faultless knowledge of the localization of the autonomous car
with regards to the surrounding environment. Depending on the application, the lane/road
understanding demands in terms of precision and false alarm rate [89] vary from one ap-
plication to another. Therefore, a localization system must suits perfectly the localization
requirement for each application. The ubiquity use of digital road maps for AVs paves
the way for new possibilities and helps to reach more accurate localization positioning. In
counterpart, challenges rises on the way to properly use them.
In a global manner, the vehicle’s absolute location alone does not offer much information.
It must be used in combination with a map representation of the environment to be use-
ful. By and large, there exist two paradigms concerning the mapping/localization process.
The first paradigm builds its own road environment representation in a map that stores
the obstacles in the road scene, and also the semantic of the scene. For this paradigm,
post-processing of raw data from sensors has to be performed in order to create an ac-
curate map. This critical procedure is complex and time-consuming. Thereby, the second
paradigm uses a map that is already created. The time process for its creating is then
not a problem. However, in this paradigm, the localization system is tributary to the level
of details of the map used, and the dynamic obstacles have to be detected using other
sensors. Nevertheless, whether one of the two paradigms used, they share the same
problematic concerning the uses of the map. Indeed, the localization system needs real-
time information from the map. To do so, the localization system has to determine its
position regarding the map. To deal with the erroneous data that can be found in both
the positioning system and the map, a robust localization algorithm must be developed.
This problematic is known as map-matching, and it is a crucial process to use the map
properly.
The autonomous car system can not only rely on a map to fulfill its localization require-
ments. Indeed, it must take into account the dynamic nature of the surrounding envi-
ronment. Therefore, the system has to exploit the raw data sensors coming from the
exteroceptive sensors (i.e., camera, lidar) in order to detect relevant features (i.e., lane
marking, other traffic participants). These features gather together will improve the local-
ization accuracy and hence meet the localization requirements needed for higher mod-
ules (i.e, decision-making, path planning). With that background, lane markings are the
most informative features that can be used in order to have a local localization for the
autonomous car. Indeed, these features provide information about the shape of the road
but also about the positioning of the vehicle, which is known as lateral positioning. For
all these reasons, a robust localization algorithm that is based on a perception module
must be developed. The latter has to take into account the uncertainties due to raw data
sensors. In addition to that, it has to be able to resolve ambiguities that can occur when
detecting lane marking (i.e, the lane position with regard to the road). Finally, the system
has to be modular to other sensors’ information, or other detectors’ information as the
number of embedded sensors has been growing strongly in the autonomous industry.
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1.5.1/ OBJECTIVE OF THE THESIS

The objective of this Ph.D. work is to propose a unified, generalized and modular local-
ization system architecture, while accounting for the aforementioned characteristics and
be able to:

1. Provide a localization solution on a digital map by developing a robust map-
matching algorithm that takes into account the uncertainties found in both raw data
sensors and the digital map. Which implies a mathematical formalization for the
uncertainties and ambiguities.

2. Exploits the digital map by building a probabilistic model of the road shape that
integrates the uncertainty of the map. The model is afterward used a prior for the
detection module.

3. Present a top-down approach for ego-lane localization that exploits the priors of
the map in order to reduce the time complexity. The approach has to be indifferent
to the type of sensors used (lidar or camera).

4. An integrity metric that ensures the validity of the model in case of unexpected or
failure of the perception system, which corresponds to incoherence with the proba-
bilistic model.

5. A modular framework that handles the ambiguities in the lane localization. The
framework has to be modular for other sensors’ detection results.

6. Experiments result to validate the effectiveness of each block of the algorithm and
the whole architecture. The validation is performed on data acquired from a real
vehicle and from available datasets.

In this dissertation, we propose an end-to-end architecture that covers all the localiza-
tion requirements mentioned. Furthermore, a particular focus will be given to low-cost
solutions and openSource resources such as OpenSteetMap (OSM).

1.5.2/ CONTEXT OF THIS PHD

This research work is part of a “Convention industrielle de formation par la recherche
(CIFRE)” thesis agreement between Sherpa Engineering and the Institut Pascal. Sherpa
Engineering is already working on several themes related to the autonomous car within its
R&D department and more particularly on ADAS systems (driving assistance systems).
One of the main difficulties in this kind of system lies in the precise localization of the
autonomous car in its environment. Basically, localization is an algorithmic process that
allows the autonomous vehicle to determine precisely where it is in the world. In order to
do so, the exploitation of temporal measurements from different exteroceptive and propri-
oceptive sensors (Camera, Radar, GPS, IMU, Odometer, Lidar...) allows the development
of probabilistic methods (Kalman Filter, Particle Filter, HMM, Bayesian Network...) in or-
der to estimate the state of the object’s position with the highest possible accuracy. This
task is made more difficult because of the imprecision of the sensor data (Camera, Lidar,
GPS...) used in this localization process. Naturally, the literature is teeming with solutions
to deal with this problem. However, the cost of these solutions is often exorbitant.
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It was therefore natural for Sherpa to be interested in the localization methods developed
within the Institut Pascal and more precisely within the PerSyst team, whose work over
the last two decades has enabled the implementation of applied solutions for the local-
ization of autonomous vehicles. These solutions are characterized by the use of low-cost
sensors and OpenSource resources such as OpenStreetMap. Thus, Sherpa’s growing
interest in the solutions developed by the PerSyst team resulted in a partnership in the
form of a CIFRE thesis entitled "Ego-vehicle localization using multi-sensors and Open-
StreetMap data" which started in February 2018.

1.6/ THESIS SCOPE AND CONTRIBUTIONS

The thesis emphasis on localization system for autonomous vehicles. Contrary to other
works, a feedback link is made between the localization and the perception module, max-
imizing the coherence between their outputs. A focus is given on highway road scenarios
that contain several lanes. In addition, in this Ph.D. work, we give a focus on an open-
source map OpenSteetMap (OSM) to demonstrate that even a low-cost map can be used
to obtain an accurate localization.
In this work, we present an end-to-end solution that tackles every aspect of the local-
ization system as presented in the aforementioned section. The end-to-end probabilistic
framework is responsible for:

• Localizing the vehicle on a digital map by handling the uncertainties and the ambi-
guities that occur,

• Exploiting the prior information of the map,

• Localizing the ego-vehicle with respects to the ego-lane marking,

• Monitoring the global coherence of the model,

• Localizing the ego-lane with respect to the road, by introducing a modular proba-
bilistic framework.

Therefore our main contributions are the following:

• A Probabilistic Map Matching Algorithm (PMMA) It is proposed the development
of a map-matching algorithm that takes as input inaccurate GPS information in ad-
dition to uncertain map OSM.

• A probabilistic representation of road model shape using prior from the map,
which will effectively link the global localization with the local perception of the envi-
ronment in limiting the focus of interest in the detection procedure.

• Recursive Information-Driven Algorithm (RIDA) for ego-lane localization is an
adaptation and an upgrade of the existing work based on lane detection at the
Institut Pascal [18] which constitutes the baseline of the used Recursive Information-
Driven Algorithm. The algorithm is enhanced with the entropy features theory in
order to reduce the time complexity and to focus the most informative region in the
sensor space. In addition to that, a new Bayesian Network is presented to keep track
of the coherence of the global model regarding the detection made in a recursive
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fashion. The algorithm outputs an ego-level localization with respect to the ego-lane
marking in addition to an estimation of the road’s parameters. The RIDA has been
used on both camera and lidar sensors data, which proves the genericity of the
proposed algorithm.

• A Modular Probabilistic Framework designed to handle the localization for the
ego-lane in multi-lane ambiguities. It utilizes the output of the RIDA in order to
estimate the position of the ego-lane with the respect to the other lanes. To do so,
the algorithm first extrapolates the possible zone for lane marking and processes a
detection in those regions. Then, a designed Bayesian Network (BN) is used. The
graphical representation of the BN eases the determination of the ego-lane position.
Afterward, an Hidden Markov Model (HMM) is used to constraint the model and to
prevent infeasible outputs by taking into account dynamic constraints of the ego-
vehicle. Finally, the proposed solution have been compared on the same dataset to
the solution presented in [109].

• Experimental evaluation of the end-to-end probabilistic framework The effec-
tiveness of the end-to-end probabilistic framework has been intensively validated
on different datasets. First on collected datasets in the region of Clermont-Ferrand,
and secondly, on available datasets in the literature.

1.7/ MANUSCRIPT OUTLINE

In addition to the general introduction and final conclusions and annexes, the manuscript
is composed of 8 chapters which are decomposed into two parts.

The first part titled “State of the art” corresponds to the state of the art and bibliograph-
ical review on the different localization system architecture and on three building blocks
composing these architectures namely: Road Level Localization (RLL), Ego-Lane Level
Localization (ELL) and Lane-Level Localization (LLL). The objective of this state-of-the-art
part is to lead the reader through the methodologies, concepts, and definitions of several
methods for a localization system. This part is composed of the following chapters:

• Chapter 2: this chapter details the state of the art on the Road Level Localization
(RLL) techniques. Main RLL techniques will be presented and classified.

• Chapter 3: in this chapter, we propose to classify the algorithmic techniques inde-
pendently on the various modalities used (Camera, Lidar, Radar) in order to detect
the Ego-Lane Marking (ELL).

• Chapter 4: in this chapter a survey on the Lane-Level Localization (LLL) methods
is presented

• Chapter 5: this chapter details the datasets available for autonomous vehicles and
how they should get evaluated.

The second part titled “End-to-End Ego-Vehicle Localization using Multi-sensor and
a Low Cost Map” corresponds to the contributions proposed during this Ph.D. thesis.
This part contains four chapters:



1.7. MANUSCRIPT OUTLINE 25

• Chapter 6: this chapter details the Probabilistic Map Matching Algorithm (PMMA)
proposed in this work.

• Chapter 7: in this chapter, the Ego-Lane Level Localization (ELL) proposed is intro-
duced. The whole functioning of the architecture is presented on both camera and
lidar data.

• Chapter 8: in this chapter, the LLL algorithm proposed in this work is detailed.

• Chapter 9: this chapter present the results of the whole end-to-end probabilistic
ego-vehicle localization framework

Each part begins with a global introduction, in which the details of the parts are explained,
and a global conclusion, in which a summary is given for all the previous chapters.
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OVERVIEW

A fundamental aspect of a fully autonomous vehicle system is its ability to properly per-
ceive its environment in order to properly evaluate the situation of ego-vehicle and with
regards to the road environment. Part of this situation evaluation is the knowledge about
ego-localization, which implies the knowledge of some keys localization level compo-
nents.
In the broadest sense, ego-localization is a meaningful concept that has been widely
tackled in the literature in a variety of ways. The current literature is teeming with so-
lutions that address this issue in a variety of manners. However, one interpretation of
ego-localization consists of the knowledge of three key components

I Road Level Localization (RLL): the road on which the vehicle travels.

II Ego-Lane Level Localization (ELL) the position of the vehicle in the lane in terms
of lateral and longitudinal position.

III Lane-Level Localization (LLL) the position of the host lane within the road (the
lane on which the vehicle travels).

For the road level localization, digital maps (Google, OpenSteetMap (OSM), or Waze) are
used to perform this task. Global Navigation Satellite Systems Global (GNSS) receivers
are used to retrieve the geographic (latitude, longitude, and altitude) coordinates, and a
map-matching procedure is performed in order to match the position of the ego-vehicle
with the correct road (‘link’). However, the accuracy of the localization obtained is in the
order of meters. Indeed, according to the Federal Aviation Administration (FAA) GPS Per-
formance Analysis Report [93], the accuracy of a standard GPS device is within 3m with
a 95% confidence, which can not be sufficient for most ADAS that require a more precise
localization.
For some applications like lane-keeping, knowing the road on which the vehicle is travel-
ing is not sufficient. These systems must be informed about the position of the host lane
in the road to provide adequate maneuver instruction and maintain vehicle’s safety.
Further, autonomous vehicle applications need a more accurate localization, which can
be translated by the knowledge of the lateral and longitudinal position of the vehicle in
the ego-lane. For instance, overtaking maneuvers need a faultless knowledge of the lat-
eral position of the ego-vehicle with respect to the ego-lane marking in order to decide
whether the vehicle should overtake the obstacle or not.
The task of vehicle localization is still challenging for an autonomous vehicle, a complete
ego-vehicle localization must perform all the three key components described above.
Thus, in this work, an end-to-end solution for ego-localization from Road Level Local-
ization (RLL) to Lane-Level Localization (LLL) is presented. As a consequence, in this
part, the state of the art related to these three components is detailed.
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2.1/ INTRODUCTION

The ubiquity of positioning devices on the vehicles allows the drivers to know the vehi-
cle’s position. However, this position is incorrect due to the inaccurate nature of these
positioning devices. To address this problem, a correcting procedure is required. One
technique matches the vehicle position with a road network coming from a map. This
technique is called Map-Matching (MM). As stated by Quddus et al. [39], map-matching
not only enables the physical location of the vehicle to be identified but also improves the
positioning accuracy if good spatial road network data are available. This means, that
Road Level Localization knowledge is determined by MM algorithm. The RLL is also a
prerequisite component of several applications (cf Figure 2.1). An exhaustive list of appli-
cations was given by Velaga in his thesis [67]. This chapter details the state of the art and
bibliographical review on the Road Level Localization (RLL) techniques. RLL techniques
will be presented and classified.

2.2/ TERMINOLOGIES

Before presenting the map-matching techniques, we start by formalizing the MM prob-
lematic. The MM problematic have been studied over two decades, thus, several formal-
izations have been proposed. In the following, the definition presented inherits from the
one presented in [157].

29
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Figure 2.1: Map-matching diagram with some applications [90]

Definition. (Trajectory) A trajectory Tr is a sequence of chronologically ordered spatial
points Tr : p1 → p2 → . . . → pn sampled from a continuously moving object. Each point
pi consists of a 2-dimensional coordinate < xi, yi > a timestamp ti, a speed spdi (optional)
and a heading θi (optional). i.e.: pi =< xi, yi, ti, spdi, θi >

Definition. (A map) A map is a directed graph G = (V, E), in which a vertex v = (x, y) ∈ V
represents an intersection or a road end, and an edge e = (s, e, l) is a directed road
starting from vertices s to e with a polyline l represented by a sequence of connected
segment

Definition. (Map-matching) was defined by Quddus [39]: "Map-matching algorithms in-
tegrate positioning data with spatial road network data (roadway centrelines) to identify
the correct link on which a vehicle is traveling and to determine the location of a vehicle
on a link". Mathematically, MM can be defined as fellows [157]: given a road network
G(V, E) and a trajectory Tr, the map-matching finds a route MR(Tr) that represents the
sequence of roads traveled by the trajectory.

2.3/ RELATED WORK

Du to the importance of the RLL, map-matching has been the subject of on-going re-
search since the emergence of Global Positioning System (GPS) in the 1990’s [134].
According to the literature, MM techniques can be divided into two categories, namely,
online and offline modes. In online mode, the MM procedure is performed in a streaming
fashion, which means, that for each point pi a MM is performed. Consequently, the pro-
cedure has to be adequate for real-time application. In contrast, offline MM waits until the
trajectory tr is completed in order to perform the MM on the entire trajectory. Hence, this
procedure does not care about the real-time requirement. In this work, we will focus only
on online MM. Indeed, we want to localize the autonomous vehicle at each sample time.
However, it is brought to the attention of the reader that the majority of the techniques
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which will be presented can be used for both modes.
Considering online map-matching methods, the most complete and cited survey about the
subject was presented by Quddus in [39]. The authors classified the MM techniques from
a methodological perspective into four categories, namely geometric, topology, probabilis-
tic and advanced. However, after several years of research on map-matching methods,
most of the methods mentioned in the paper have been outperformed and new technolo-
gies have emerged. Therefore, this classification is outdated. With a view to bringing
up-to-date map-matching techniques, Kubicka and al propose in [134] a survey that clas-
sifies the MM methods depending on the application. The study is rich in content and
the classification is well organized. However, this study is not very distinctive from the
previous one as it follows the previous categorization. Besides, the choice of classifica-
tion depending on the application does not allow to distinguish between the presented
approaches in terms of methodology. Leafing through the literature, it appears that there
is still no consensus on how to classify the map-matching methods. However, from our
point of view, the classification presented in the survey [157] is the most up-to-date and
the most accomplished one. Indeed, it summarizes most of the existing solutions and
provides guidance to future research. Therefore, we desire to bring our stone to the ed-
ifice and therefore we propose to enhance the proposed classification in [157] with the
modest knowledge we gather from previous works.
Hence, we classify the existing MM methods into two different classes: Deterministic
Model and Probabilistic Model. Each class is composed of sub-classes. In the following,
we will details each category as illustrated in Figure 2.2.

Figure 2.2: Map-Matching (MM) classification based on our review to the literature.

2.3.1/ DETERMINISTIC MODEL APPROACHES

In this approach, the map-matching returns the link that is closest to the trajectory ge-
ometrically and/or topologically. In a perfect world, the vehicle’s trajectory matches the
closest road network topology. Hence, in this model, the main focus is on how to define
closeness.
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2.3.1.1/ GEOMETRIC ALGORITHMS

The geometric algorithms MM are the most commonly used and oldest methods [17].
These methods were introduced in 1996 by Bernstein and Kornhauser in "An Introduction
to Map Matching for Personal Navigation Assistants” [12]. The authors denominate the
methods namely, as point-to-point, point-to-curve, or curve-to-curve (cf, Figure 2.3).

Figure 2.3: The geometric map-matching algorithms. Grey circles denote a position sam-
ple pi, white circles are road network nodes and black dots are the results of the matching
using each method [90]

The most elementary approach, so-called point-to-point, matches each position sample
pi to the nearest node ei. On the other hand, point-to-curves project each position sam-
ple pi to the geometric-closest road. Lastly, curve-to-curve methods match the vehicle’
trajectory tr to geometric-closest/similar link in the road-network.
In [17], White et al.compared four basic MM methods. The first one is the classical point-
to-curve with no consideration of the vehicle state or to the road-network. The second one
is a modified version of the point-to-curve. In this modified version the vehicle’s heading
was taking into account in the matching process. The third method, is an upgrade of
the second one, as it takes into consideration the topology of the road network. The
last one is the curve-to-curve method. The experiment was conducted on four routes,
all the four routes were traveled in the town of Mercer County in New Jersey. Therefore,
none of these routes involves highways or arterials. The results are reported in Table 2.1.
The matching accuracy presented represents the percentage of the correctly matched
samples. For each method, the worst-to-best performance range is noted.

Method Matching Accuracy
point-to-curve 53 − 67%
point-to-curve, considers heading 66 − 85%
point-to-curve, enforces route contiguity 66 − 85%
curve-to-curve 61 − 72%

Table 2.1: Perfomance of four map-matching methods [17]

All the mentioned methods follow the same paradigm. Indeed, the differentiation appears
in the definition of the closeness. In the literature, similarity metrics earned a lot of atten-
tion. Nonetheless, there is one metric that stands out: the Fréchet distance.
The Fréchet distance was first defined in the thesis of Maurice Fréchet “Sur quelques
points du calcul fonctionnel” [1].
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An illustration of the Fréchet distance is the following: imagine a person is walking a
dog on a leash, the person is walking on a certain curve, and the dog on another one.
The assumption is that both have free control over their speeds but are not allowed to
go backward. In this particular case, the Fréchet distance of the curves is the minimal
length of a leash that is required for both of them to cover the curves from start to finish.
Mathematically, the Fréchet distance was defined as follows [1]

δF( f , g) = inf
α,β

max
l∈[0,1]

d( f (α(t)), g(β(t))) (2.1)

With f and g being two parametric curves, and α, β are continuous, monotonic, increasing
reparametrizations. This reparametrization allows the monotonicity and continuity of the
curves. In other words, in order to compute the Fréchet distance, the reparametrization
functions α, β have to be identified.
Alt et al. [21] pioneered the Fréchet distance for MM. They were able to find a route whose
Fréchet distance to the trajectory is minimal. However, they pointed out one of the major
counterparts of the distance. Indeed, if there are outliers to the trajectory, then the so-
lution of the Fréchet distance is not unique, and hence there can be multiple routes that
satisfy the optimization. Moreover, the computational demand of the algorithm was too
high for a real-time application.
Following this work, Brakatsoulas et al. [25] presented a relaxed version of the Fréchet
distance in which the increasing property of the parametric curves α, β, namely, the weak
Fréchet distance. He showed that using the weak Fréchet distance, the algorithm was
able to lower the computational requirements of the Fréchet distance. In the same con-
text, further works have been presented with the objective of speeding up the Fréchet
distance [37][68] [82]. However, none of these works have been able to resolve the sen-
sitivity to outliers, which is the main drawback of this method.

2.3.1.2/ PATTERN-BASED ALGORITHMS

The pattern-based method is well known in the literature. Indeed, it utilizes the historical
resulting of MM to solve new map-matching queries. The assumption is that given a
start and an endpoint, people tend to travel on the same trajectory [76]. In that sense,
giving a pair of a start and endpoint, and taking into account historical MM results, will
lead to finding the most similar trajectories that the vehicle will travel on. Finally, the
algorithm will decide on the optimal route base on a scoring function. Instead of using
a scoring function algorithm, authors in [135] propose the first deep learning approach
that is able to create representations of trajectories. The objective is to capture the
route information of each trajectory. In the same manner, Zhao et al. [154] presented
DeepMM: a deep learning MM system (Cf Figure 2.4). The main drawback noticed in the
pattern-based algorithm, even the machine learning one, is the sparsity and disparity of
the historical data. Indeed, the disparity of the historical data may not cover all the new
query trajectory, which can lead to false MM result.

2.3.2/ PROBABILISTIC MODEL APPROACHES

Although the position data is necessary, it can not be taken as the sole predictor of the
vehicle’s path. Indeed, naively matching this noisy path to the nearest road, using the
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Figure 2.4: Architecture of the DeepMM [154] that takes as input raw GNSSdata in order
to choose the correct road.

deterministic metric (cf Section 2.3.1), will eventually result in irrational paths involving
non-intuitive and bizarre driving behavior. Hence, a MM algorithm has to consider the
reasonableness of a given path in relation to the vehicle dynamics. Therefore, in this
section, the MM presented share the same paradigm, which is the probabilistic reasoning,
whether it is for the reasonableness of the path, or for the vehicle’s dynamic state.

2.3.2.1/ HIDDEN MARKOV MODEL (HMM)

HMM model for MM has been the subject of numerous research studies in connection
with tracking problems. The architecture of the MM made it suitable to model the road
network topology. The craze for the HMM in the MM problematic was initiated by Hum-
mel [30], resulting in dozens of methods using MM. Most of them were designed for
offline map-matching. However, as claimed by Paul Newson and John Krumm in [59],
online map-matching is possible using the sliding window technique.
Before listing all the MM techniques used for map-matching, let us understand why the
HMM model fits particularly well for the map-matching procedure. To comprehend that,
the theory behind the HMM must be presented. Accordingly, a HMM consists of two
stochastic processes, the first one is a Markov Chain to model the change of a state
vector over time, the state vector is finite. In the literature, the Markov Chain is often
graphically visualized with a directed graph. Each node represents a state, and arcs rep-
resent changes between states. This change is governed by a probability that describes
the transit probability over time, which is called the transition probability. The second pro-
cess is called the observation space. Indeed, in a HMM, the states of the chain are not
visible but observable therefore they are called "hidden". Although the elements of the
state vector are hidden, there is a relation between the hidden elements of the state and
the observations, this relation is referred to as an emission probability. A more detailed
explanation of a HMM is given in annex 10.1.
In the context of map-matching, the state of the system describes the list of the road can-
didates for each observation. S t is used to denote the set of routes candidates at time t
S t = {l1, l2, ..., lnt } with nt the number of routes candidate at each time t, S t is a form of
categorical distribution, S t ∼ Cat(ξ).
The state of the vehicle xt is the observation. For each candidate route composing the
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state space, an emission probability is made p(xt|l). A graphic representation of a HMM
can be illustrated (cf Figure 2.5 [30]). In this example, the set of states that represent the
possible road (or link, hence denoted by li) on which the vehicle is located for each es-
timated vehicle’s position (denoted by pi). The transitions between sets are represented
by the arrows. These transitions are governed by the travel possibility between two con-
secutive sets. This connectivity can be affected by several parameters namely, the road
topology, the vehicle’s configuration (speed, heading) with regards to the candidate. All
these features of the HMM make it naturally fit for the MM process. Now the structure of

Figure 2.5: HMM based on Hummel [30]. (a) is a road network situation, (b) is the
corresponding HMM, the arrows between the nodes represent the connectivity of the
network.

the HMM established, the next procedure is to find the most likely road given a trajectory
tr. To perform such a task, the standard method is based on the Viterbi algorithm [3]. The
algorithm runs on O(nm2). With n the number of observations (the vehicle’s estimated
position pi) and m is the number of states (the possible roads li). However, as said ear-
lier, using the sliding window technique can reduce the time complexity. Therefore, the
majority of the studies do not differ in the architecture and the representation of the MM
task using the HMM. However, they do differ in the definition of the emission probability
and the transition probability.
Historically, HMM was first used by Hummel [30] for offline MM. The method presented
starts by identifying the most likely road for each sampled vehicle’s estimated position pi.
The identification was made using a Mahalanobis distance that minimizes the heading
and the distance between the road and the vehicle. Once the set of routes candidates
are identified, the backbone of the HMM is the same as the one presented in Figure 2.5.
Concerning the definition of the transition probability, is distributed uniformly by taking into
account the turn restriction. The method is tributary to the vehicle’s heading estimation,
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which is estimated by taking into account two consecutive GNSS measurements. In the
case of MM with GNSS data, this can be pathological. In particular, when the distance
between two GPS measurements is small, the errors on the vehicle’s heading are signifi-
cantly important [134].
The method was later extended by Pink and Hummel [48] resulting in a more robust
method. A Kalman Filter was introduced to filter the initial trajectory obtained in order to
eliminate outliers. However, the most important contribution was the structuring of the
road network using cubic spline interpolation instead of linear interpolation. The motiva-
tion behind this modeling is to make the method more robust against the heading errors,
which was the main issue with the previous method [30] (cf. Figure 2.6). Besides, it re-
flects the trajectory shapes that normally vehicles follow.

Figure 2.6: Example of an ambiguous map matching situation resolved with the cubic
interpolation (right image). The red arrows represent the vehicle’s heading estimation.
This example was presented originally in [48].

Instead of relying on the vehicle’s heading estimation, Newson et al. [59] propose a HMM
in which the transition probability is governed by a "route distance". The assumption
made by the authors is that the correct route has the smallest difference between two
consecutive estimated vehicle’s positions with the distance along the road-network (cf,
Figure 2.7 [59]). The same method was adapted and extended later by Lou et al. [117].
Jagadeesh et al [112] enhanced a HMM with the concept of "drivers’ route choice". The
authors use a route choice model that was modeled using real-world data in order to
update the paths generated by a HMM-based online MM.

The HMM based MM achieved an accuracy comparable to the state-of-the-art geometric
model [82]. However, HMM based methods suffer from mainly two main drawbacks. The
first one is the the selection bias problem as pointed out by Hunter et al [78], which is
a side effect of the HMM, when giving more weights to the road that are highly discon-
nected. The second one is that these methods are not robust against missing trajectory
samples. In effect, the structure of the transition model in a HMM takes into account
the connectivity, physical, and logic between two consecutive sets of route candidates.
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Figure 2.7: An example of the "route distance". Three road segments, r1, r2, and r3,
and two measured points, zt and zt+1. The first measured point, zt, has candidate road
matches at xt1 and xt3 . Each match candidate results in a route to xt+1,2 , which is a
match candidate for the second measured point, zt+1. These two routes have their own
lengths, as does the great circle path between the two measured points. [59]

However, the discontinuity in position frames will jeopardize the travel possibility between
these route candidates. To overcome these issues, more sophisticated methods have
been developed.

2.3.2.2/ CONDITIONAL RANDOM FIELD (CRF)

Conditional Random Field (CRF) unlike HMM, is a probabilistic framework that is not
restricted by the Markov Independence assumption. Nevertheless, in theory, CRF models
higher-order interactions between more than two states. In other words, it can model the
interactions between the observation at the current state and its predecessor. That is
from a theoretical point of view. However, in the literature, the existing CRFs are confined
to the first-order dependencies between adjacent states.
Hunter et al [78] introduced a CRF for MM as an alternative to the classical HMM. The
overall sophisticated methods model the spatial and temporal relationship as well as the
classical HMM. However, authors integrate the driving behavior in addition to the vehicle
speed. Using the same paradigm, Yang et al [98] characterize a CRF model for MM, an
example of CRF is presented in Figure 2.8.

To verify the effectiveness of the model, the authors performed the MM on a dataset from
Shanghai taxis. Even if the overall accuracy reached was significantly important, the CRF
used considered only first-order dependencies between states. Therefore, CRFs share
the same inability as the HMMs to take into account contextual information. In addition
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Figure 2.8: A CRF for 3 GPS observations. The map on top illustrates the simplified
situation of identifying road states and path states given GPS observations in the road
network. This requires 5 random variables, y1 : {r1, r2} , y2 :

{
p1, p2, p3

}
, y3 : {r3, r4} , y4 :{

p4, p5
}
, y5 : {r5, r6} , to build the CRF for map matching. Thus, nodes y1, y3, y5 linking with

observations (black circles) are point nodes while nodes y2, y4 are path nodes [98]

to that, a learning procedure is required for the CRF in order to model the interactions
between these states, which makes the CRF easy to utilize but heavy to structure.

2.3.2.3/ WEIGHTED GRAPH TECHNIQUE (WGT)

More sophisticated techniques have been developed to take into account the spatial
geometric and topological structures of the road network, in addition to the tempo-
ral/speed constraints. One of these techniques is referred as Weighted Graph Technique
(WGT) [157]. In WGT the matching process is performed through a weighted candidate
graph. Lou et al [58] introduced the st-matching algorithm (cf Figure 2.9) in which the
WGT process is summarized as three steps:
(1) Candidate Preparation: in this step, the candidate graph is initialized. Similar to most
MM techniques, the candidates are selected based on a radius of measurements from
the estimated position (GNSS position).
(2) Spatial and Temporal Analysis: this step is composed of two components. First,
the spatial component analysis, similar to HMM based method, an observation probabil-
ity and a transition probability are emitted to each candidate. These two probabilities are
inferred from a scoring function that takes into account the distance between the position
and the candidate, in addition to the road topology. The second component is a temporal
analysis in which the speed of the vehicle is compared with the typical speed constraints
on each candidate path. The objective of the spatial and temporal analysis is to weigh
edges in the graph.
(3) Result Matching: in this last step, the path is inferred based in the weighted graph
constructed.

Globally, methods that fall into this category, share the same design as the one presented
by Lou et al [58], they only differ in the scoring function in the spatial and temporal analy-
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Figure 2.9: Overview of the st-matching algorithm [58]

sis. Thereupon, Hu et al [103] consider more sophisticated parameters. Indeed, authors
take into consideration the reciprocal effects between adjacent candidates, the reason-
ableness of travel time, and other road characteristics (traffic lights, left turns, etc.).

2.3.2.4/ PARTICLE FILTER (PF)

Instead of dealing with an estimated position as an independent element, some re-
searchers focus their attention on the trajectory of the vehicle. The idea is to filter this tra-
jectory by coupling internal information from the microelectromechanical device (MEMS)
such as gyroscopes and accelerometers, with GNSS. In essence, there exist two types
of filters: linear and non-linear. For the linear type of filter, errors due to the imperfection
of the model and sensors are represented by Gaussian white noises and are linearized
using an approximation of a Taylor series. Based on the assumption of additive Gaussian
white noises, the estimation of these error states can be obtained (for example using an
Extended Kalman Filter(EKF)). In contrast, a non-linear filter does not require lineariza-
tion, therefore, from a theoretical point of view, there are no errors resulting from the
linearization step. In the context of MM, Dmitriev et al. [15] acknowledged that during a
vehicle turn, the posterior distribution of the vehicle position on the road is non-Gaussian.
Because of that, non-linear filtering methods are required to solve this problematic.
In order to tackle this non-linear problematic Particle filter (PF) is used. Initially, PF have
been used as support prior to the MM process, by fusing sensors information to estimate
the vehicle’s state. For example, Toledo-Moreo et al. [60] propose a Lane-level localiza-
tion MM (details we be discussed in Section 4.2.1) whereby he introduced a PF to fuse
sensors information in order to estimate the vehicle a priori position. In general, the PF is
structured as follows. In the initial phase, Nparticle particles are sampled. These particles
represent the different locations of the vehicle and they got the same weight. For each
particle, its weight is updating as soon as a new observation is received. Afterward, a
resampling stage starts. Particles with low weights are likely to be erased, and the ones
with higher weights are used in a vehicle cinematic model in order to feed particles of the
next cycle. Therefore, all the methods that fall into this category share the same strate-
gies [107], they differ in the definition of the weighting function for the particle.
One major drawback of these methods is that they employ a vehicle dynamical model
(e.g., Ackerman model) that does not work for data that have a low sampling rate (e.g.,
over 5 s).
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2.3.2.5/ MULTIPLE HYPOTHESIS TECHNIQUE (MHT)

The Multiple Hypothesis Technique (MHT), as the name suggests, holds a set of candi-
dates or hypotheses during MM. The set of hypotheses is generally initialized based on a
simple geometric metric. Afterward, the set of hypotheses keeps evolving as further ob-
servations are received. According to Kubicka et al. [134], the evolving process for MHT
consists of two processes, namely, hypothesis branching and hypothesis pruning.
A hypothesis is branched (or replaced) when the vehicle travels the candidate and there-
fore arrives at a crossroad. The original parent hypothesis is then replaced by new child
hypotheses. The new child hypotheses are an extension of the parent hypotheses by
taking into account all the directions that the vehicle can take at the crossroad, which
guarantees that there will at least one hypothesis covering the correct candidate in which
the vehicle will travel. An example is illustrated in Figure 2.10. Another advantage of
the method is that some failures are intuitively spotted. If there are no hypotheses, it
necessarily implies that some problem has occurred. Hypothesis pruning consists of the
elimination of the not acceptable hypothesis. The process is based on a pruning crite-
rion. Leafing through the literature, this pruning criteria differ from one author to another.
However, the main idea is to model criteria that allow to keep the most likely hypothesis
and simultaneously eliminate the most unlikely hypothesis.

Figure 2.10: Principle hypothesis branching observed on two consecutive measured po-
sitions.

Historically, MHT was aimed for military tracking aircrafts like airplanes and missiles. In-
deed, in 1979 Donald B. Reid, a U.S. Military engineer, developed a tracking multiple tar-
gets and multiple hypothesis algorithm [5]. The algorithm was adapted by Pyo et al. [19]
into single target tracking with multiple hypotheses. The authors demonstrated that al-
though the initial algorithm was designed for aircraft, it can easily be adapted to MM.
The authors propose a MHT in which each hypothesis is associated with a probability.
The pruning strategy consists of eliminating the hypothesis for which the probability goes
under a certain defined threshold. The authors also consider the hypothesis with the
highest probability and compared it to a predefined threshold to know if the hypothesis is
confirmed. The presented method showed significant result with a range of 4% to 17%
of a miss-match. However, this method is not optimal in the sense that optimal MM does
not require any hand-tuning. Continuing on the same paradigm, Marchal et al. [26] and
Kubička et al. [90] proposed their own version of the MHT. The contributions are essen-
tially based on making the MHT simpler and faster. In addition to that, Kubička et al. [90]
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presented a framework that does not require access to vehicle odometry and gyroscope
data.
Compare to the HMM model, the MHT is more robust for miss matching since the current
MM is not governed by transition state that is related to the previous solution. However,
in worst-case scenarios, the set of hypotheses can grow exponentially, and therefore, the
pruning process is critical. The pruning strategies have to be at a minimum robust to
outlier hypothesis, but, at the same time, it has to be flexible in order to not eliminate the
hypotheses that are likely to be correct. In that regard, the pruning process in a MHT
is more prone to error, if not treated properly. On the other hand, there exists no formal
proof for pruning strategies, or criteria, that ensure the latest condition. However, to over-
come this issue, Quddus [33] introduced the notion of "integrity monitoring", which was
inherited from aerial navigation where it used to verify the reliability of critical aerial nav-
igation systems like satellites and missiles. In the context of MM, the need for "integrity
monitoring" emerges from the fact that correct MM is not always possible when there are
some strong ambiguities and some incongruities between the path and the map. In these
situations, it is necessary to report the reliability of the MM output to the user. To this
end, Jabbour et al. [44] followed by Li et al. [79] proposed different metrics (we invite the
reader to their respective works from more details) to ensure that the output of the MM is
coherent, and more importantly, to report false MM results.

2.4/ CONCLUSION

In the light of the investigated literature, we discuss what are the main requirements that
are need to be necessary addressed by a MM algorithm. Despite more than twenty years
of development on MM, there is not yet a solution that deals with all scenarios. To the
best of the author’s knowledge, there exists no consensus on how MM methods should
be rated. Indeed, the majority of the authors utilize their own dataset. Nevertheless,
according to the literature reviews [157] [134] the majority of the MM algorithm reaches
an accuracy of around 95%. Accordingly, the accuracy of the MM will not be discussed
in detail. Indeed, the major bottleneck in map-matching algorithms development is the
absence of a unanimous agreement on one publicly accepted dataset. For that reason,
the comparison between algorithms is difficult to conduct. One would like to bring to the
intention of the reader that this problematic will be discussed later in the Chapter 5.
With that background we propose a different type of comparison, aspects considered in
the depicted comparison are the most essential MM algorithm namely, uncertainty-proof,
matching break, integrity indicator, and run time.
Uncertainty-Proof is the ability of the MM algorithm to take into account inherent uncer-
tainties that come from the raw data.
Matching Break the MM algorithm has to be able to propose a solution in where there is
a breaking in the GNSS data.
Integrity Indicator is a trust indicator on the validity of the output of the MM algorithm,
which can be relevant for the ambiguous case.
Run Time in order to be used in an autonomous vehicle, the MM algorithm has to fulfill
the real-time requirement.
Based on these criteria, we rate each method based on the previous section and we re-
port the comment on Table 2.2. Further, this table summarized what has been already
said in each part of this chapter. The notion goes from - -, -, 0,+, ++. With - - being the
worst notation, and ++ being the best notation.
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Table 2.2: Summary of MM algorithms in terms of uncertainty-proof, matching break,
integrity indicator and run time.

Methods Matching
Break

Uncertainty-
Proof

Integrity Indica-
tor

Run Time

DETERMINISTIC METHODS

Geometric - - - - - - ++

Pattern-Based - - - - - - ++

PROBABILISTIC METHODS

Hidden Markov
Model (HMM)

0 ++ + +

Conditional Ran-
dom Field (CRF)

+ ++ + 0

Particle filter (PF) - ++ ++ +

Weighted Graph
Technique (WGT)

- - ++ + +

Multiple Hypoth-
esis Technique
(MHT)

+ ++ ++ -

Consequently, deterministic methods are straightforward techniques that do not require
complex computation. As a result, the running time of the algorithms is very low compared
to other methods. However, these methods are very tributary to the quality of the raw data
used. Therefore, they suffer from the incapability to handle uncertainties and ambiguities.
On the other hand, probabilistic methods are analytically different from each other. Nev-
ertheless, they have power in their capability to handle uncertainties and matching break
situations. The backlash is that they are complex and require more computations.
In that sense, a hybrid architecture that includes a preprocessing step based on a deter-
ministic method, and a selection stage based on a probabilistic method, has the utility of
dealing with the limitations raised from each one of the methods. Indeed, the processing
stage is straightforward and does not necessitate extra computations. Therefore, it has
the strength to deal with the majority of the nominal case. On the other side, the ambigu-
ous case can be solved using a probabilistic method, which has the ability to deal with
these situations. By doing so, the complexity of the MM problematic is reduced. Following
a detailed study of the state-of-the-art techniques and taking into account the scope of
the thesis, we conclude that the Hidden Markov Model formalization of the problematic
is the most relevant and the most suited for our use case scenarios. Further, if the good
equilibrium between both approaches, deterministic and probabilistic, is found, we believe
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that this can be the basis of a powerful MM algorithm.
In the next chapters, we investigate local localization methods which constitute among
the main components of a localization architecture. The objective is to underline the main
goal of this work, by presenting the most pioneering solution on that topic.
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3.1/ INTRODUCTION

For some applications like lane-keeping, knowing the road on which the vehicle is trav-
eling is not sufficient. These systems must be informed about the position of the host
lane in the road to provide adequate maneuver instruction and maintain vehicle safety.
Further autonomous vehicle applications need a more accurate localization which can
be translated by the knowledge of the lateral and longitudinal position of the vehicle in
the ego-lane. For instance, overtaking maneuvers need a faultless knowledge of the lat-
eral position of the ego-vehicle with respect to the ego-lane marking in order to decide
whether the vehicle should overtake the obstacle or not.
J.mccall et al. [31] summarize the main objectives of lane position-detection algorithm
systems as illustrated on Figure 3.1. The characteristics of these systems are given as
follows [121]:
(1) Lane-Departure-Warning Systems: for this kind of system it is essential to accu-
rately estimate the position of the vehicle with respect to the ego-lane marking.
(2) Adaptive Cruise Control: for this task, it is important to monitor the driver’s attentive-
ness to the lane-keeping task. Measures such as the smoothness of the lane following
are important for such monitoring tasks.
(3) Lane Keeping or centering: [130] the aim here is to keep or center the vehicle in its
host lane. As a result, a faultless estimation of the lateral position is required.
(4) Lane Change Assist: [131] for this task, it is mandatory to know the position of the
ego-vehicle in its host lane. On the other hand, the lane change has to be done without
the danger of colliding with any object.

44
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Under these considerations, in this chapter, we propose to classify the algorithmic tech-
niques independently on the various modalities used (Camera, Lidar, Radar) in order to
detect the ego-lane marking. Nevertheless, in the following, we will discuss some of the
pertinent works related to the domain. Due to the vastity of the subject (we can write a
thesis about lane marking detection) we will discuss only works that are relevant to us.
Therefore, if some works are not quoted or neglected, the reader is urged to excuse these
omissions.

Figure 3.1: Some lane detection systems [11]: (a) Lane departure warning (b) Adaptive
cruise control (c) Lane keeping or centering (d) Lane change assist. (image credit [121]).

3.2/ RELATED WORK

Leafing through the literature, it appears that most researchers use lane marking detec-
tion to provide an accurate ego-lane level localization. Analyzing this body of literature,
lane marking detection has been an active field of research for the past three decades
and frenetic progress made in the past few years.
It is possible to roughly categorize existing approaches to the lane marking detection into
modular pipelines or model-driven and monolithic end-to-end learning approaches. As
shown in Figure 3.2, both approaches are juxtaposed at a conceptual level. The stan-
dard approach to the lane marking detection is the model-driven approach. The main
concept is to break down the lane marking detection into modules that can be indepen-
dently developed and tested. Modular pipelines have the main advantage of deploying
human-interpretable intermediate representations to understand system failure modes.
A significant drawback to modular methods is that intermediate representations built by
humans are not inherently suitable for tasks such as the identification of lane markers.
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Figure 3.2: Model driven approach (top) vs monolithic learning approach (bottom)

An alternative to modular pipelines is end-to-end learning-based models based on neu-
ral networks. The network parameters can be learned via a training data-set or using a
learning transfer technique from trained networks. These approaches reach significant
accuracy in several computer science domains. However, most networks are trained and
validated on one dataset, which makes the network less generalized to other datasets.
Moreover, as claimed by Janai et al [161] neural network-based approaches are often
hard to interpret as they present themselves as “black boxes” to the user which does not
reveal why a certain error has occurred.

Although, several types of research have been conducted to review the current percep-
tion techniques for AVs [155]. The survey presented by Hillel et al. [89] is more adequate
to the lane marking detection. The authors presented a review of ongoing research on
road and lane detection. The review presented by the authors is widely cited and covers a
large part of the lane marking technique used at that time, in addition to that, the authors
presented the techniques without differentiating on the modality used. Nonetheless, this
study was published in 2014, at a time where the dominance of neural networks was not
as pronounced as it is now. Therefore, the study presented by Hillel et al. [89] is outdated
but can still be used as good support to present the model-driven approaches. Concern-
ing the learning approaches, there has been an enormous amount of effort invested in
deep learning techniques for AVs and especially for the perception task. In that sense,
the survey presented by Fayyad et al [159] covers most of the recent deep learning tech-
niques.
Contrary to the study presented by Hillel et al. [89] and other noteworthy works presented
in [31, 92], the focus and the ambition of this chapter are to emphasize the recent studies
that dealt with lane marking detection, which included deep learning algorithm. On top of
that, the chapter concludes by highlighting and summarizing some of the current trends
approaches in lane marking detection, and a comparison between methods is given.

3.2.1/ MODEL-DRIVEN APPROACHES

Inspection of model-driven lane marking detection literature brings to light that most ap-
proaches share the same functional architecture. Thence, we depict the commonalities
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between all the encountered algorithms into a generic system, whose components are
divided into four steps, namely, a pre-processing step, succeeded by a road marking fea-
ture detection, then a fitting procedure, and finally a tracking procedure. An illustration
of these components are illustrated in the Figure 3.2 (top). We use this generic sys-
tem as a skeleton enabling comparison between different algorithms according to their
functional parts. Naturally, feedback connections also exist between higher modules (e.g
fitting procedure) that guide lower module (e.g, pre-processing).

3.2.1.1/ PRE-PROCESSING

In general, a set of several operations that can be applied to a frame input (we use the
word frame, to embrace both lidar and camera image) before feature extraction is called
pre-processing. In general, it is the first process of lane marking detection. The objec-
tives of pre-processing are to enhance features of interest, reduce clutter, and remove
misleading artifacts. Thereafter, the cleaned image is used for feature extraction. Ac-
cording to [89] the methods that fall under this module’s scope can be clustered into two
classes: handling of lighting-related effects and pruning of non-relevant or misleading
parts of the image.
A robust lane marking should be capable of handling different lighting conditions which
are constantly changing because of the effects of time of day and weather conditions.
These lighting conditions can vary from sunny midday to nighttime artificial illumination.
In addition to these natural changes, the lane marking solution might be confronted with
a drastic lighting switch when entering or exiting a tunnel, or while being under a bridge
that covers the lighting suns. Another illumination phenomenon that has to be brought
seriously to the table is the illumination of the lens flare caused by the sun’s rays hitting
the camera’s Field Of View (FEV). Ergo, Huang et al. [54] use the “absolute calibration”
of the camera allows the computation of solar ephemeris, which allows deducing the sun
location on the image and hence suppression of the line estimates that point toward the
sun location on the image (Cf, Figure 3.3).

Figure 3.3: Use of absolute camera calibration to project real-world quantities, such as
the position of the sun on the image (credit [54]).

Furthermore, a major source of clutter is the shadows cast on the surface of the road.
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Their edge intensity can be ambiguous for some gradient feature extractors. To circum-
vent this illumination-related issue, several researchers tackled the subject and propose
several solutions. In a global manner, color-space transformations are performed on the
image. To name but a few: Hue Saturation Lightness (HSL), Lightness and A and B
(LAB), and The Luma component (Y), the Blue-difference and Red-difference Chroma
Components (YCbCr). The General assumption made for these color manipulations is
that hue information does not change in the shadowed region of the image, implying that
the hue information is not affected by the level of illumination of the image, or that the
effects can be compensated [29, 38, 56].
The second category of image pre-processing techniques includes the pruning of non-
relevant or misleading parts of the input sensor that can miss-lead the lane detection
process. The apparent difficulty of the methods that fall into this category is to insulate
the artifacts in the image sensor. To archive this objective, many studied have been de-
veloped over the years. In that context, objects like cars and pedestrians are treated like
obstacles for lane detection. Therefore, several techniques have been followed in order to
detect them and remove them. Hence, Huang et al. [54] enhance the detection process
with 3D data from lidar, the lidar cloud points facilitating rapid removal and rejection of
off-ground points that are considered as obstacles. One can notice that differentiation
between obstacles is not made, a similar approach was presented in [53, 148]. Using 2D
flow of image points, Yamaguchi et al. [51] propose a method based on the alignment of
two successive images. The Structure-From-Motion technique was applied to infer the
road region depending on the image motion (Cf, Figure 3.4). However, these techniques
were later on abounded due to high false-positive rate [41].

Figure 3.4: The pre-process fro eliminating non-relevant part of the image. (credit [51]).

Furthermore, the most utilized approach for the punning part consists in defining Region
Of Interests (ROI). Hence, only these regions will be focused on the feature extraction.
Thus, several works have addressed the issue of how the determine these ROI. The most
simple technique consists of taking the lower half of the image as ROI [61]. The naivety of
these techniques makes it very limited. Therefore, other researchers use the correlation
between the 3D world model and 2D image in order to delineate the ROI. To achieve this
goal, it is required to know the camera pose with respect to the ground surface. Huang
et al. [54] claimed that the correlation is constant and hence the calibration was made
beforehand. The same idea is shared by Nava et al., [136], the authors propose a ROI
delimitation using the vanishing point of the road. But, as claimed by the authors, this
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method does hold only for small roll angle conditions. However, this strong assumption
does not hold for the curved road. Wherefore, Aufrère et al.[18] propose a probabilistic
road model that links between the geometric of the road, and the uncertainties about
the camera pose. By doing so, the uncertainties about the model define the ROI in
the image (cf, Figure 3.5). This idea was extended in [50]. In the same manner, authors
in [11, 61] use the depth computation. This computation allows to determine the vanishing
point on the image and hereby the delimitation of the ROI. As claimed before, feedback

Figure 3.5: ROI definition using the probabilistic model. (Image credit [18]).

connections do exist between the higher functional block and lower block. To illustrate
that, an interesting approach is presented by Alvarez et al. [83]. It relies on the use of
road priors and contextual information coming from a digital map in order to determine the
shape of the road in the image. Depending on the number of lanes and the width of the
lane, the road skeleton is built and smoothed using cubic interpolation. The retrieved road
skeleton is then projected onto the Bird’ Eye View (BEV) image by taking into account
uncertainties related to the vehicle’s pose. The whole process is shown in Figure 3.6.

Contrary to the previous methods, Caceres et al.[100] emphasize on the collision risk
region, which is extracted taking into account the vehicle speed, and therefore, the ROI
size increases as the speed increases and vice versa. An illustration of the idea is given
in the Figure 3.7.

3.2.2/ FEATURE EXTRACTION

Once the irrelevant part of the input sensor is punned, the remaining relevant part of
the input sensor is supposed to contain some pieces of the lane marking. These pieces
gathered together should contain all the necessary information needed in order to fit the
lane marking. Throughout this work, these pieces are often called primitives or features.
Indeed, feature extraction is a crucial step of lane marking recognition. Hence, in the ma-
jority of the works that fall in the model-driven approach, the fitting procedure is tributary
of the outputs of the feature extraction. Therefore, in case of a momentary failure for the
feature extraction, recovery becomes almost impossible.
Study this corpus of literature, reveals that the majority of the approaches presented rely
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Figure 3.6: Proposed algorithm to estimate road priors using a digital map. (a) Acquisition
of the geometrical information from the digital map database. (b) The modeling of the road
depending on the acquired information. (c) Road shape projection in the BEV (credit [83]

Figure 3.7: ROI estimation (in green) based on the vehicle speed.(Image credit [100]).

on bottom-up feature extraction. Indeed, lane markings are easily discriminated by shape
and color in the image and it is possible to determine whether a lidar beam has inter-
cepted asphalt or road painting regardless of the lighting conditions [87].
Lane marks can be detected either based on their shape, color, or their combination [89].
To that end, several strategies have sprung up. The main assumption made is that lane
markings are distinguished by their appearance from the rest of the road surface. This
assumption leads to a whole family of filters based on gradient detection [18, 34, 35, 47].
However, these techniques can be time-consuming if there exists noise caused by differ-
ent types of markers (e.g, arrows in the middle of the lane). To reduce this kind of noise,
researchers worked on solutions that filter the edges that are not in the vertical direc-
tion. These filters are known as steerable filters [31]. Steerable filters enable to follow
the orientation’s change along the lanes marking in the image by convolution with only
three kernels. Following the same spirit, several hand-crafted filters were proposed to
extract fragments of lane marking, namely, Sobel filters [23], Statistical Hough Transform
(SHT) [64], top-hat filter [132], and histogram-based filter [16]. A comparison of theses
features extractors have been presented by Veit et al. [49], the authors applied different
feature extraction on the same input as shown on figure 3.8.

Regardless of the type of gradient filter used, the kernel of the filter has to be adjusted
before applying it to the image. However, the perspective distortion of the camera makes
these adjustments not suitable for the entire image. To bypass this problem, a com-
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Figure 3.8: Comparison of different features extractors. The first column is the original
image. The second column is for ground truth. Third-eighth columns (from left to right):
global threshold, + - gradients, steerable filters, top-hat filter, local threshold and sym-
metrical local threshold (image credit [49])

mon approach is to transform the image into another perspective called the "inverse-
perspective" [28, 31, 35, 46, 52] image called the bird’s-eye view (an example is giving
in the Figure 3.9). In the bird’s-eye view, the width of the lane markings is equidistant.
This property has a lot of advantages, for example, it is a convenient common space to
fuse multiple sensors information. Moreover, the representation facilitates some fitting
produce that will be discussed below. However, these advantages come with a cost in
terms of computational time and loss of resolution.

Figure 3.9: Result of a BEV image (credit [142]).

When dealing with lidar data, the main assumption made is that lane marking can be
distinguished based on their reflectivity. Therefore, authors in [32] present a threshold in
order to discriminate lane marking. This approach was extended in the work [88]. The
authors presented an Otsu thresholding method that separates the lidar point clouds into



52 CHAPTER 3. EGO-LANE LEVEL LOCALIZATION

asphalt and road marking (Cf Figure 3.10).

3.2.3/ FITTING PROCEDURE

Going down the timeline, preliminary works on lane detection focus on highway scenarios
where the curvature’s change is small enough to be neglected. In that context, pioneering
work on the road model was initially proposed by the group of Prof. Dickmans et al. [7]
in 1986. The latter presumes to build a mathematical 2D model that describes the lane
geometries, yielding to a high-level representation of the lane marking with the use of a
clothoid road model for planar roads. Buoyed by this successful achievement, the group
of Prof. Dickmans extended the approach by using a 3D model lane representation that
included a clothoid parameter and a curvature in the vertical direction [13]. These works
lay the foundations of several works with the objective to know what kind of lane model
can represent accurately the lane marking and which fitting strategies should be adopted
consequently.
By and large, the main objective of this fitting procedure is to extract and high-level repre-
sentation of the path. This high-level representation is the sine qua non to a higher block
of AVs like decision making and control. Thereby, the choice of the type of lane model is
crucial.
In practice, when fitting a model to noisy data there exists a compromise between over-
restrained models that do not tolerate all the existing geometries and under-restrained
models that tend to over-fit on noisy features. Scrutinizing this body of the literature,
the lane model can be clustered into three heterogeneous modeling techniques, namely,
parametric, semi-parametric, and non-parametric. Such classification allows a clear un-
derstanding of the distinctiveness of certain techniques. Furthermore, the assumptions
made for each category help to understand some failures of some of these techniques.

i Parametric model: methods that fall into this category made the strong assump-
tion of a global lane shape (e.g lines, curves, parabola). These models fall when
dealing with non-linear road and lane topologies (merging, splitting, and ending
lanes). Indeed, the geometric restriction imposed by the parametric model does
not tolerate such scenarios. Concerning the fit strategies used, several regres-

Figure 3.10: Feature extraction through a modified version of Otsu method. Blue lines are
the road bounds estimated by curb detector and yellow points correspond to the detected
road marking. (Image credit [87]).
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sion techniques have been used (e.g RANSAC, least-squares optimization, Hough
transform, Kalman filter)

ii Semi-parametric model: contrary to the parametric model, semi-parametric model
do not assume a specific global geometry of the road. On the downside, the fit-
ting model can over-fit or have unrealistic path curvature. The lane marking is
parametrized by several control points. Different spline models with different control
points have been used (e.g, Spline, B-spline, Cubic spline). The appearing com-
plicatedness of these models is in choosing the best control points. Indeed, the
number of these points affects the curve complexity. In addition to that, these points
should be homogeneously distributed along the curve of the lane marking in order
to prevent unrealistic curves (Cf Figure 3.11).

Figure 3.11: Two lane marking models on the same rural scenario. Images (a) present a
3D B-spline model and images (b) illustrates a planar clothoid model(image credit [65]).

iii Non-parametric model it is the less conventional approach. The main prerequisite
needed is continuous but not necessary differentiable. This model has more free-
dom to model the lane marking. Meanwhile, it is more prone to erroneous modeling
leading to unrealistic curves.

In the following, a list of works regarding the three categories is presented in table 3.1

3.2.3.1/ TRACKING PROCEDURE

The vast majority of lane marking detection system integrates a tracking mechanics that
integrate knowledge from the previous frame to improve the knowledge on the present
frame. According to Hillel et al. [89], this mechanics has three major goals: improving the
accuracy of correct detection, reducing the required computation, and correcting erro-
neous detections. A tracking procedure can be used in a lane marking detection system
in two different modes: using the detection results from the previous frame, the tracking
system can enable the definition of ROI in the current frame. By doing so it will reduce
the size of ROI. Aufrère et al [18] used the vehicle’s information in order to update a
probabilistic model, which contains all the ROI delimitation. To do so, authors integrate
these proprioceptives information in an Extended Kalman Filter (EKF). The same idea
was adopted by Wu et al.[50]. These approaches can successfully decrease the signal-
to-noise ratio by updating the ROI after each iteration. However, it should be noticed that
the main assumption made is that the model is capable of capturing the motion between
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Categories Geometric
methods

Fitting method Advantages Disadvantages References

Parametric

Straight lines Hough transform
and its variants

Straightforward approach
shows good approximation
for short range lane marking
and can be valid in highway
scenarios

Unfit for curves roads which is
the cases in most rural roads

[11, 27, 28,
52, 57, 61].

Polynomial model RANSAC, least
squares opti-
mization

The spectrum of application
is greater than the linear
model. In addition Polynomial
models has the ability to es-
timate the parameters of the
road.

Can not handle roads abrupt
change of curvature. In addi-
tion, the geometrical assump-
tion made are not always cor-
rect (e.g, taking 3-3.5m as a
width lane)

[18, 54]

Cloithoid Extended
Kalman filter

Can handle the situation
where there is a abrupt
change of the steering an-
gle. For example, between
the junction of straight and
curved road.

The clothoid model is gener-
ally made of some simplifica-
tions in order to get a viable
model

[22, 63]

Semi-parametric
The whole family
of Spline includ-
ing: Bspline,
Bspline 3D,
Catmull-Rom
spline, and Cubic
Hermit Spline

Energy-based
optimization.

Capable of dealing with a
large range of curved road
using control points if accu-
rately chosen.

The inconvenience of this
model appears in the choice
of the control points. Un-
doubtedly, the position of
these control points will af-
fect the general curve of the
lane. A wrong choice of the-
ses control points leads to un-
realistic road shape.

[45, 51]

Non-parametric
Isolated points Particle filter The model is not governed by

geometric restrains, which al-
lows it to model more chal-
lenging road lane marking.

With no geometric restrains
imposed, the fitted model
can leads to unrealistic road
model.Indeed, geometric cor-
relation between lane mark-
ing are not considered.

[55]

Table 3.1: Various lane fitting models presented in the litterature.

two consecutive frames. At the same time, they assume that the latest detected lane
marking is correct. Hence, no recovery strategy is made.
Alternative approaches consist of fusing lane marking detection and a digital map of the
road that contains the position of the left and right lanes.

3.2.4/ LEARNING APPROACHES

One of the major challenges in estimating the lane marking is the need to have an accu-
rate model that fits the features detected. Unfortunately, providing an accurate model that
covers every road scenario is a complex task due to the singularity of some road scenar-
ios (i.e, merging, splitting, and ending lanes). Moreover, inherent uncertainties coming
from sensor data can not be mathematically modeled in the model-driven pipeline sys-
tem. Along these lines, monolithic end-to-end learning approaches have the advantage to
abstract the mathematical modeling for each functional block as presented in Figure 3.2.
As a consequence, learning approaches if treated properly, are a powerful tool in order
to correctly detect lane marking detection.
On that subject, several studies have been deployed. In their study, Kim et al [45] re-
viewed the performances of classical machine learning methods for features extraction,
namely, Artificial Neural Networks (ANN), Naive Bayesian Classifiers (NBC), and Sup-
port Vector Machines (SVM). Nevertheless, the fitting model was still performed using the
Spline model. On the same topic, Golan et al. [71] introduced a learning-based approach
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based on a boosting algorithm to detect lane markings without requiring a predefined
road model as illustrated in Figure 3.12. The algorithm was validated on several data
collected on daytime and night-time proving that the classical machine learning method
can be useful for lane detection marking.

Figure 3.12: The main pipeline of the proposed Algorithm of Golan et al [71].(credit [71]).

Deep Learning (DL) is the natural upgrading of classical machine learning. DL aims to im-
itate the function of the most successful machine, which is the human brain. Contrary to
the classical machine learning methods, some of DL techniques do not require a motion-
based model. Indeed, the networks are capable of excellent prediction. Historically, the
concept of deep learning was founded in 1943 by Walter Pitts and Warren McCulloch [2].
However, it was until the 2010s with the development of powerful computing machines
with the arrival of Graphics Processing Units (GPUs) combined with the availability of the
“big data” needed to train the models that ignite the emergence of DL techniques. These
days, the scope of application of DL ranges from to finance [120], healthcare(U-net [97]),
and self-driving vehicles [123].
Going back to AVs, several DL algorithms exist that are used for several applications
depending on the properties of the network. However, concerning the lane marking de-
tection, there are two major Deep Learning (DL) architectures that draw the attention:
Convolutional Neural Network (CNN) and Recurrent Neural Networks (RNN). Going back
to the time, CNN gained notorious popularity in 2012 when Krizhevsky et al.proposed
AlexNet [72] and won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC).
A dissection of a CNN reveals that the network is composed of the following layers, as
illustrated in the Figure 3.13:

1. Input layer: this layer contain the input data, for example, an image.

2. Convolution layers: in these layers convolutions operations are performed on the
image

3. Pooling layers: the objective of these layers is to reduce the size of the output from
the convolution layers.

4. Fully connected layer: classifies by connecting all the neurons

5. Output layer: the output of the network, in a CNN it is generally a classification
probability
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Figure 3.13: The general pipeline of a CNN.(credit [159]).

Following the success of CNN in computer science, researchers considered its uses to
tackle lane detection. In that regard, Huaval et al.[96] were the first to use DL technique
to identify pixel locations of the single lane on highways. Their model is based on the
OverFeat (a CNN developed by team of Yann Lecun[80]). They trained their CNN on a
private collected data-set on a highway in San Francisco (USA). The ground truth labels
were generated using a camera, Lidar, Radar, GPS, and human annotations. The net-
work showed successful results in terms of lane detection. But, the CNN was restricted
to the detection of only the ego-lane on which the vehicle was traveling. Indeed, the
general assumption made is that the vehicle is always traveling in the center of the lane.
Building on this success, He et al., [102] proposed a Dual-View Convolutional Neutral
Network (DVCNN) framework for lane detection as illustrated in Figure 3.14. The input of
the network is pre-processed (by a kind of hat filter), then front view and BEV images and
the output of the network are line probabilities which are fed to an optimizer in order to
find the right lane marking. The network shows promising results. However, the method
required image pre-processing and post-processing.

Figure 3.14: The general pipeline of the DVCNN(Image credit [102]).

Companies showed interest in this problematic. In that regard, researchers from Ford
released an end-to-end framework called DeepLanes [101]. Unlike most of the works,
the network detected lanes based on images coming from two laterally-mounted cameras
looking downward onto the lane markers (as shown in Figure 3.15). Notwithstanding the
good results obtained, the network was not widely adopted due to the fact that the network
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was trained on a private database.

Figure 3.15: The setup of the laterally-mounted camera looking downward onto the lane
marking(credit [102]).

Reproducibility, that was the watchword on the lane detection challenge that was held in
CVPR’17 and in which the TuSimple database was released. The winner of the challenge
was Pan et al., [138] with the Spatial Convolutional Neural Network (SCNN), a Deep
Learning technique designed for lane marking detection in traffic scene. The structure of
the SCNN allows it to exploits the spatial information in the image. On the same topic,
authors in [149] proposed a DL network called Line-CNN. The network had slightly better
results than the SCNN, authors adapted the strategy of the regional proposal network
(that exists in Yolo [104], for example) to the lane marking detection, they also trained
their network with an additional dataset which was not publicly proposed. A succession of
neural networks has been released after that. However as pointed out by authors in [169],
many of the published works on DL for lane marking detection do not share their code
in order to reproduce their results [149, 151, 172] therefore it hinders the comparison. In
some cases, their code is only partially public, like the works in [160], and in worst cases,
they do share their code but the reported results are not reproducible (ENet-SAD [145] 1).
The detection of lane marking using deep learning is an ongoing research topic, with
multiple networks released every year dealing with the subject (it would not be a surprise
if other deep learning methods would be released by the end of writing this manuscript).
The majority of these algorithms are benchmarked. Currently, the Tusimple benchmark
(see Table 3.2 for more details) is saturated with high values in accuracy and F1 score
(see appendix for metrics definition), which is explained by the fact that the dataset is
not complex and the metric permissive [169]. In that regard, a database called CULane
was released. The objective of this database is to offer a more complex and more large
public available dataset for lane detection. Considering the abundance of literature on the
subject, tracking every deep learning algorithm proposed for lane detection is beyond the
bounds of possibility. However, a site web called https://paperswithcode.com/ reviews all
the lane marking detection methods that has been benchmarked on either Tusimple or
Culane. In the Table 3.2 and the Table 3.3 it is given an overview of these methods, with
a ranking based on their performances on both benchmarks. The algorithms presented
are the ones with an available code.

1The explanation coming from the authors is that the difference in results is due to some engineering
tricks [169]. However, this was reported neither in the code or in the published work

https://paperswithcode.com/
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3.3/ CONCLUSION

This chapter discussed the major algorithms for ELL. We emphasize methods that are
based on the detection of the ego-lane marking. Accordingly, model-based approaches
have a strong ability to detect the ego-lane marking in various scenarios. The sequential
pipeline of these methods allows a better partition of the ego-lane marking detection task
into blocks. Each block is responsible for a specific task. Therefore, the formalization
of the whole problematic is enhanced and the intermediate block representations allow
a better system failure identification. Furthermore, they have a systematic modular ar-
chitecture that enables them to improve or incorporate new functionalities that were not
supported in the initial design without requiring significant modifications. Regardless of
the method used, a fitting model is required in order to fit the detected feature to a pre-
defined model. As a consequence, the generalization of such methods is complicated
and challenging for highly complex road scenarios. Nevertheless, as claimed by Hillel et
al., [89], the model-based method does perform well in the majority of road scenarios.
On the other side, the monolithic learning approach based on Neural Network reaches a
better accuracy for the detection of lane marking as the majority of benchmarks’ leaders
are deep learning methods (Table 3.2 and Table 3.3). Besides, they perform well when a
model can not be formalized or is not available. The learning approach requires a learning
phase that is performed on an annotated dataset. The procedure is performed outline,
preliminary to the deployment of the network. However, in real-world applications, data
is limited in quantity and is usually gathered for a specific task and for a specific configu-
ration (e.g, same city, same camera). Therefore a change between the dataset and the
validation test leads to a decline in the accuracy obtained. In addition, the learning pro-
cedure is time-consuming and the output can not be predicted in advance. Nonetheless,
the major drawback of the methods based on this paradigm is that the network-based
algorithm is hard to interpret as it is presented by “black boxes” to the user, which does
not reveal why a certain error has occurred [161].
Taking into consideration these limitations, we believe that model-based is the most suited
approach in order to perform the ego-lane detection with the objective to locate the au-
tonomous car in his own lane for mainly two reasons. Indeed, while the deep-learning
techniques for line detection are limited to image mask retrieval and do not provide a us-
able representation in world coordinates, model-based fits a 3D model in order to match
the lane markings in the road. This feature is highly relevant notably in highway scenar-
ios, where the shape of the road and the lane marking, are not randomly modeled. The
second reason is the immutability to change of the deep-learning methods, which does
not allows modification and amelioration by adding new features without changing the
whole architecture of the network and retraining the network on adapted dataset. With
that background and with relation to the previous chapter 2, we believe that a model-
driven method can be enhanced by using a map to provide priors to the detection module
and hence reduce the complexity of the computation.
In the next chapter, we will discuss the later block of the algorithm localization which is
the ELL. In the following chapter, a review of the literature is given by presenting the most
relevant works and the most promising techniques. To conclude, a discussion will be held
in relation to our thesis work.
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Table 3.2: Summary of DL algorithms benchmarked in Tusimple in terms of accuracy and
F1 score

Models Accuracy F1 score Extra
training
data

Paper title

PINet 96.75% 97.20 No Key points estimation and point in-
stance segmentation approach for
lane detection [166] (2020)

ENet-SAD 96.64% 95.92 No Learning lightweight lane detec-
tion cnns by self attention distilla-
tion [145](2019)

HarD-SP 96.58% 96.38 No Towards Lightweight Lane Detec-
tion by Optimizing Spatial Embed-
ding [162](2020)

Spatial CNN 96.53% 95.97 Yes Spatial as deep: Spatial cnn for traffic
scene understanding [138](2018)

Pairwise pixel su-
pervision + FCN

96.50% 94.31 No Learning to cluster for proposal-free
instance segmentation [128](2018)

EL-GAN 96.40% 96.26 No El-gan: Embedding loss driven gener-
ative adversarial networks for lane de-
tection [126](2018)

LaneNet 96.40% 94.80 No Towards end-to-end lane detec-
tion: an instance segmentation
approach [137](2018)

ENet-Label 96.29% 95.23 No Agnostic lane detection [144]

R-34-E2E 96.22% 96.58 No End-to-end lane marker detection via
row-wise classification [172](2020)

R-50-E2E 96.11% 96.37 No End-to-end lane marker detection via
row-wise classification [172](2020)

LaneATT
(ResNet-122)

96.10% 96.06 No Keep your Eyes on the Lane:
Attention-guided Lane Detec-
tion(2020) [170]

ERF-E2E 96.02% 96.25 No End-to-end lane marker detection via
row-wise classification [172](2020)

LaneATT
(ResNet-34)

95.63% 96.77 No Keep your Eyes on the Lane:
Attention-guided Lane Detec-
tion(2020) [170]

LaneATT
(ResNet-18)

95.57% 96.71 No Keep your Eyes on the Lane:
Attention-guided Lane Detec-
tion(2020) [170]

End-to-end
ERFNet

95.24% 90.82 No Lane detection and classification using
cascaded CNNs [152](2019)

PolyLaneNet 93.36% 90.62 No PolyLaneNet: Lane estimation
via deep polynomial regres-
sion [169](2019)
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Table 3.3: Summary of DL algorithms benchmarked in Tusimple in terms of F1 score, the
results showed stands for the total of all classes of the Culane

Models F1 score Extra
training
data

Paper title

LaneATT
(ResNet-122)

77.02 No Keep your Eyes on the Lane: Attention-guided
Lane Detection(2020) [170]

LaneATT
(ResNet-34)

76.68 No Keep your Eyes on the Lane: Attention-guided
Lane Detection(2020) [170]

LaneATT
(ResNet-18)

75.13 No Keep your Eyes on the Lane: Attention-guided
Lane Detection(2020) [170]

PINet 74.40 No Key points estimation and point instance seg-
mentation approach for lane detection [166]
(2020)

ERFNet-E2E 74.00 No End-to-end lane marker detection via row-wise
classification [172](2020)

CurveLane-M 73.50 No CurveLane-NAS: Unifying Lane-Sensitive
Architecture Search and Adaptive Point
Blendin [171](2020)

ERFNet-IntRA-
KD

72.4 No Inter-region affinity distillation for road marking
segmentation [160](2020)

ResNet34-FAST 72.3 No Ultra fast structure-aware deep lane detec-
tion [168](2020)

ResNet-101-E2E 71.90 No End-to-end lane marker detection via row-wise
classification [172](2020)

Spatial CNN 71.60 Yes Spatial as deep: Spatial cnn for traffic scene
understanding [138](2018)

ENet-SAD 70.80 No Learning lightweight lane detection cnns by self
attention distillation [145](2019)

ENet-Label 68.80 No Agnostic lane detection [144](2019)

ResNet18-
UFAST

68.40 No Ultra fast structure-aware deep lane detec-
tion [168](2020)
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4.1/ INTRODUCTION

A fundamental aspect of a fully autonomous vehicle is its ability to properly evaluate the
situation of the ego-vehicle with regards to the road environment. Part of this situation
evaluation is the knowledge about some keys localization level components. In previous
chapters, we presented two keys levels needed, to fully fit this fundamental evaluation:
the road level localization, or the knowledge of which road the vehicle is traveling, and
the ego-lane level localization, or the knowledge of the position of the ego-vehicle in its
lane. For the majority of the Advanced Driver-Assistance Systems (ADAS) presented in
Figure 3.1, a partial understating of the observed road scene is sufficient. Hence, the
knowledge of these two components is sufficient. However, the lane/road understanding
demands in terms of precision and false alarm rate [89] vary from one application to an-
other. Therefore, for some tactical higher-level intelligent safety systems, the knowledge
of the lane on which the vehicle is traveling is critical. Indeed, knowing the host lane
can serve the autonomous navigation system in providing the most adequate instructions
depending on this lane, for example, it can provide a better overtaking strategy.
In the broadest sense, Lane-Level localization is a meaningful concept that can refer to
two distinct topics: it refers to the determination of the ego-lane, which means the lane
on which currently the vehicle is traveling. At the same time, it may refer to the estimation
of the lateral position of the vehicle inside the whole road. While the latter definition is
an estimation problematic and solutions live in R, the first one can be interpreted as a
classification problem and its solutions live in N. The two paradigms lead to the same
knowledge, which is the LLL or the localization of the host lane.
There exist abundant systems that can help the AVs to obtain the LLL: using a GNSS
receiver to locate the ego-vehicle in the road. The lack of accuracy provided by a classic
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GNSS that can be caused by poor satellite signals, high degree dilution of precision, or
multi-path in urban scenes, is first compensated with proprioceptive sensors, such as the
Inertial Measurement Unit (IMU). These methods are well known as Dead Reckoning [73].
Therefore, the position of the host lane is inferred by combining the obtained localization
with a coarse digital map. Unfortunately, the accuracy of the localization obtained is in
the order of meters. Indeed, according to the Federal Aviation Administration (FAA) GPS
Performance Analysis Report [93], the accuracy of a standard GPS device is within 3m
with a 95% confidence, which can not be sufficient for some ADAS that require a more
precise localization. Nevertheless, when a road has multiple lanes the problematic hard-
ens. Indeed, the localization obtained from the Dead Reckoning technique is not enough
precise to tell on what lane the vehicle is traveling. Hence, further information are used in
order to obtain this knowledge, these information can be produced by visual sensors or
by digital maps.

4.2/ RELATED WORK

In order to localize itself, an autonomous vehicle is equipped with a set of sensors in order
to perceive the surrounding world and to collect ambient information. Indeed, the under-
lying objective of a localization system in autonomous vehicles is to collect contextual
information. To this end, the localization system requires an accurate digital representa-
tion of the surrounding world. In practice, localization of an autonomous vehicle can be
done, by locating the vehicle with respect to some visual features such as lane markings,
traffic signs. These visual landmarks can either be detected using on-board sensors, or
be already stored in digital maps.
Concerning the Lane-Level Localization (LLL) the current literature is teeming with solu-
tions that address this issue in a variety of manners. However, two techniques stand out.
The first one depends solely on the detection of visual landmarks such as lane marking
with an on-board sensor. For instance, lane marking systems are used in order to de-
tect all the lanes on the road. Nevertheless, sometimes is not possible to detect all the
lane markings on the road due to occlusions from other vehicles. Contrary to the first
approach, the second approach depends on a more precise map. These maps store the
accurate position of landmarks (e.g, lane marking). Therefore, the system have to match
the detected landmarks with the one obtained with the visual information.

4.2.1/ MAP AIDED APPROACHES

To reduce sensor dependency, digital maps can store contextual information about the
road. The amount of information stored depends on the scale of accuracy and detail
displayed on the road network. Du et al., [42] described three scales, commonly used for
autonomous vehicle system, to cluster the existing maps as illustrated in Figure 4.2:

1. Macroscale map It represents the road network with a metric accuracy. These
maps are used for route-planning problems and high guidance routines. Neverthe-
less, these maps provide the user meta information such as speed limitations or the
number of lanes present on a given road. Besides, the road network is smoothed
using clothoid curves which can give a general intuition on the shape of the road.
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Figure 4.1: Types of maps generally used in intelligent transport system: (a) HERE map
( HERE), (b) OpenStreetMap ( (OpenStreetMap), (c) mesoscale map used in [115].
Details in text.

2. Microscale map It corresponds to the most accurate maps. These maps have cen-
timetric accuracy representing the road network with dense information. Generally,
Lidars are used to gather maximum information. Surprisingly, the fundamental ben-
efit of these maps, which is their great information richness, is also their biggest
disadvantage. Indeed, the density of information makes handling these maps diffi-
cult in order to isolate the point of interest.

3. Mesoscale Mmap McMaster et al., [9] claimed that a map has to provide enough
details about the environment without clutter up the user with unneeded informa-
tion. Applied to previous definitions, microscale maps have to remove unneeded
data, while Macroscale maps have to add more details to their database. This is
where mesoscale maps stand. It is a trade-off between the two types of maps, i.e.,
it provides more accurate information about the road network, e.g., each lane is
represented by a link. Meanwhile, it does not contain all the 3D representations of
the road.

In the context of intelligent transport systems, mesoscale maps are the most used one
(e.g., Lanelets map [85]) since they are the most suitable scale for intelligent vehicles,
as it carries accurate information without being too dense. In addition, mesoscale maps
have the merit of being easier to maintain compared to microscale maps. Therefore, a
strong effort is currently made by the map’s provider in order to meet these requirements.
In order to have access to these contextual information, the autonomous car has to be
located in regard to these maps. In view of the current state of affairs regarding the
compactness of the maps and sensor availability, lane map-matching-based methods are
widely used. Contrary to the research works regarding MM methods studied in Chap-
ter 2, lane map-matching-based methods deal with a bigger amount of computation and
location errors as the map becomes more complex. Indeed, for these techniques, am-
biguous situations are more frequent. Take three-lane road, for example, and we want
to assert the host lane position. In this case, if all the lane marking are stored in the
map, we will have four links instead of one link representing the entire road. Therefore,
in order to eliminate these ambiguities, several lane map-matching-based methods have
been proposed.
In recent decades, several researchers have deeply investigated the idea of using cam-
eras and HD maps to have a successful and precise localization algorithm [99, 139, 150].
Generally speaking, the vision-based map matching localization is a process that aligns
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the perceived environment landmarks, such as lane lines with the stored landmarks in the
map. In this context, Li et al., [114, 115] presented a lane map-matching algorithm using a
mesoscale with lane-level map accuracy. The lane MM method is based on MHT. Never-
theless, no external sensor has been used in order to perform the MM. The experimental
results were conducted in terms of lane MM accuracy. Notwithstanding the significant
results obtained, no number has been given in order to determine the position of the
host lane. Within the same paradigm but in a different way, Kang et al. [163] proposed
a lane map-based algorithm for lane-level localization using a mounted camera on an
autonomous vehicle. The method relies on the detection lane marking the image frame.
The detected lane marking was matched using the GPS trajectory with the map database
that contains the center-line of each lane. The map matching method was based on a
ICP-based rigid map. The results obtained in the experimental sections showed an im-
provement in the accuracy in terms of localization. Indeed, the average error obtained by
the state-of-the-art device and that of the GPS was 2.340 m. This error was reduced to
0.475 m. Yet again, the value of the error obtained is not sufficient to clearly determine
the correct lane on which the vehicle is traveling.

Figure 4.2: Framework proposed by Kang et al. [163]

In the same manner, Ghallabi et al. [127] presented a similar approach, in which a lane-
level localization is performed using mesoscale map that is composed of many links (lane
markings) in polylines form. The objective of the study is to match a polyline (lane mark-
ing) detected with an onboard sensor to the corresponding lane markings stored in the
map. To perform such a task, a lidar sensor is used to detect the lane marking. Af-
terward, these detected lane markings are matched with the corresponding map. The
map-marking strategy used relies on PF algorithm in which weights functions based on
likelihood functions have been introduced. In terms of evaluation, several experiments
have been conducted and results have been noted. To do so, a cross-track metric has
been used to evaluate the accuracy of the matching strategies. Therefore, the results
obtained represented the error between the matched lane marking in the map and the
ground truth lane marking stored in the map. Finally, the authors come to the conclusion
that the current results are promising and sufficient for Highway use-cases. However,
the authors did not explicitly explain how the errors in lane marking position will affect
the ego-vehicle localization. In addition, the errors that can be stored in the map are not
taken into account which can also affect the accuracy obtained as pointed out by Welte
et al.. [153].
Nevertheless, the majority of the lane-based map-matching techniques only consider the
ego-lane marking lane in order to perform the map-matching. To overcome this issue,
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Schur et al., [105] propose to include all the lane markings in the lane-based-map-
matching algorithms in which a PF is used. The performance of the general solution
is considerably stable even in urban crowed scenarios. Indeed, the experiments con-
ducted in South Korea showed that the average lateral error is about 0.50 m which is
less than the width lane (3 m in Korea) which led the author to conclude that it is suffi-
cient to recognize driving lanes. In the same spirit, Cui et al., [95] propose to incorporate
the lane-type information to the lane-based-map-matching algorithm with the type of lane
marking. Nonetheless, these techniques claim a lane-level localization however, none of
these techniques consider the ego-lane index (ELI) for map matching which is question-
able if we take into consideration that in some cases, typically highway scenarios with
multi-lanes, an ambiguity may exist in distinguishing the true lane. Indeed, all the lane
marking shape are identical which results in increasing the difficulty for choosing the cor-
rect lane since there exists a strong ambiguity on choosing the right lane.
To address this issue, Lee et al., [173] proposed an atypical approach. Indeed, the au-
thors proposed a sequential framework, which is composed of different deep-learning
blocks. The first DL block detects all the lane marking present in the image using Deep-
Road Network. The second block is a LTSM network, the objective of this network is to
identify the lane on which the vehicle is traveling. Finally, the lane information, which is
the output of the latter DL block, is used in a lane-based map-matching, the full pipeline
is clearly illustrated in Figure 4.3).

Figure 4.3: Framework proposed by lee et al., [173]

4.2.2/ LANDMARKS APPROACHES

LLL have been the focus of numerous research over the past decades. In that regard, the
current literature abounds with LLL techniques based on perception methods. In these
approaches, relevant road level features are extracted from images, once these features
extracted, they are fed into a high-level fusion framework.
In that context, Lu et al., [91] estimate the probability of belonging to a lane, using lane
change information and lane-markings detector. In the quest of LLL, Nieto et al., [47] pre-
sented a LLL based from multiple-lanes detection. First, ego-lane detection is performed
in order to detect the ego-lane marking and the lane geometry (curvature and lane width).
Afterward, based on the estimation of the vanishing point, reconstruction of the geometry
of the road is estimated, which gave an indication of the number of lanes. In addition, an
assumption on the geometry of the road is made. This assumption formulates that the
lanes on the same road share the same curvature and the same lane’s width. Taking into
account these considerations, adjacent lanes are hypothesized and tested, as illustrated
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on Figure 4.4. The verification of these hypotheses is performed by a confidence level
analysis, which is based on distance measurement.

Figure 4.4: Framework proposed by Nieto et al., [47]

In the quest of the LLL, Popescu et al., [74] presented a probabilistic formulation of the
problematic, first on intersection [69], then on more general road situations [74]. The
lane marking information, together with some relevant visual landmarks like arrows in the
lane, are fused as observation into a semi-fixed Bayesian Network, which is illustrated on
Figure 4.5. The main objective of this network is to estimate instantaneous probabilities
for each lane position hypothesis. The semi-fixed structure of this Bayesian Network
allows the addition of more observations, e.g., adjacent lane marking and more arrows in
the road. Eventually, the experimental results showed interesting results in identifying the
ego-lane.

Figure 4.5: The semi-fixed Bayesian Network proposed by Popescu et al., [74]

In the same manner, Ballardini et al., [109] propose a LLL based on a Hidden Markov
Model (HMM) to filter the outcome of a marking-lane detector based on stereo images.
To do so, the HMM is modeled based on a lane detector, for which score functions are
introduced depending on the reliability of the detector. Results on real datasets show
very good results. Nevertheless, lane-changing situations have not been addressed. In
addition, the probabilistic HMM calculation and formalization were not explicitly defined,
leading to a non-intuitive definition for the emission and transition probabilities. In addition,
one can notice that the dynamic aspect of the system, which includes the dynamics of the
ego-vehicle, is not considered. Hence, no temporary relation between frames is taken into
account. Furthermore, the major drawback of the previous technique appears when lane
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marking information are not detected due to the presence of obstacles (e.g., vehicles). In
that sense, the presented algorithms do not provide a recovery strategy.
Attempting to overcome the later difficulty. A more recent approach, presented by Volvo
researchers Svensson et al., [106], deals with the surrounding vehicle. The method is
based on a Bayesian Filter that fuses the position of surrounding vehicles detected, a map
that provides the lanes number, and an ego-lane marking that give the ego-lane geometry.
The objective of the Bayesian filter is to infer the position of the ego-lane. The early tests
show promising results. However, the main drawback of this technique is that it is tributary
to the presence of vehicles. An illustration of this limitation is shown in Figure 4.6. As
illustrated, the road is composed of four lanes, which means that four hypotheses exist
for one ego-lane position. However, the detection of an adjacent vehicle (in red) leads
to the elimination of one hypothesis. Indeed, if an adjacent vehicle is detected on the
left then the ego-vehicle is not supposed to travel on the far left. Furthermore, real-world
experimental results are missing to assess the efficiency of the approach especially when
there is no surrounding vehicle.

Figure 4.6: The LLL hypothesis of the ego-vehicle (in blue) and the adjacent vehicles
detected (in red) (image credit [106]).

4.3/ CONCLUSION

In this chapter, literature about Lane-Level Localization has been studied and most rel-
evant works have been presented. In the broadest sense, Lane-Level localization is a
meaningful concept that can be related to two different problematics. The two paradigms
lead to the same knowledge but differ in the methodology. The first is the knowledge
of the lateral position of the autonomous vehicle with respect to the road. Solutions
of this problem live in R and are usually solved using a map-aided approach. In this
paradigm, lane-level map-matching algorithms are used to match the estimated position
of an ego-vehicle, which can be estimated using Bayesian filter (e.g Kalman filter) with the
proprioceptive sensors. This estimated position is then matched with a map. Generally
speaking, the type of map used for this kind of task is the Mesoscale map [114, 115] using
a lane-level map-matching algorithm. Contrary to the map-matching methods presented
in Chapter 2, this kind of algorithm faces more difficult ambiguous cases. Typically for
highway scenarios with multi-lanes, strong ambiguities do exist as all the lane marking
shapes are identical. The second limitation of such a paradigm is in the type of map
used. Indeed, these maps are relatively complex to build and cost-intensive, in addition
to being difficult to use as they are not open-source.
The second paradigm uses a different methodology in order to solve the LLL problematic.
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Indeed, the methods that belong to this group of paradigm articulate the knowledge of
LLL as a classification problem. To do so, these methods rely on the relevant features
that are present in the road scene, especially lane marking and adjacent vehicles. These
relevant features are first detected and then fused in high-level fusion frameworks that
are essentially based on a graphical probabilistic model, namely, Bayesian Network [69]
or Hidden Markov Model (HMM) [109]. These probabilistic frameworks have the power
and the ability to take into consideration uncertainties of the detected relevant features.
Moreover, the physical constraints can be modeled in their network architecture making
them real power tools to solve the problem. Contrary to the first paradigm, these meth-
ods rely solely on the exteroceptive sensors that are embedded in most of autonomous
cars. Furthermore, they do not rely on the utilization of expensive maps. In the light of
these reasons, we believe that the latter paradigm is more suited for the LLL especially for
highway scenarios where the number of lanes can be greater than two. In addition, the
utilization of the high-level fusion framework based on the graphical probabilistic method
is modular to the addition of other sources of information, which enhanced the proposed
output.
Now that all the parts of the ego-localization have been discussed in details, in the follow-
ing chapter, we tackle the problematic of how these algorithms and methods have to be
evaluated.
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5.1/ INTRODUCTION

The global race to develop, evaluate, and deploy algorithms for autonomous vehicles has
significantly heated up. In that sense, datasets have played a crucial role, by providing
use-case scenarios with their respective ground truth. Indeed, in order to achieve relia-
bility and robustness, autonomous vehicle systems have to be widely tested. To do that,
the autonomous vehicle systems have to take into account all possible real-world sce-
narios and be relatively secure, necessitating extremely complex and diverse datasets.
Furthermore, evaluating driving algorithms on real vehicles is often risky, expensive, and
time-consuming. Therefore, the provision of training data that covers all possible real-
world scenarios is crucial to autonomous drivings development and progress.
Thereby, due to their importance, datasets for autonomous vehicles have been widely
studied [146, 161]. In the aforementioned section, and based on the literature, we present
a broad spectrum of the different autonomous driving datasets which have been published
up to date. We emphasize datasets that can be used for localization algorithms. There-
fore, a focus will be given to datasets that are publicly accessible regardless of the type
of sensors available. Indeed, the center of interest is the domain of application in terms
of localization in the sense that was given in this thesis work, i.e., localization on a road
(RLL), localization on a lane (LLL), and localization on the ego-lane (ELL). In the conclu-
sion, a summary of the existing datasets is given specifying for each one their advantages
and disadvantages.
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5.2/ SURVEY ON DATASETS

The spread of autonomous vehicle projects leads to a multiplication of datasets. Each one
is used in a range of applications for a specific block of an autonomous vehicle system. In
the following, we will give a focus on datasets that can be used for a localization system. In
order to identify these, we first define some components that are mostly shared between
the datasets:

1. The sensors used: the type of sensors is highly dependent to the type of applica-
tion test. Indeed, if the dataset contains GPS sensor, then the dataset can be used
for RLL quantification.

2. The environment: typically, in this work we emphasize on road environment, and
more precisely highway scenarios.

3. The ground truth: this component is crucial for providing a comparison between
techniques.

In the context of the autonomous vehicle, KITTI is undoubtedly the most outstanding
dataset and benchmark with the most comprehensive coverage of usage scenarios [146].
The KITTI vision benchmark was introduced by Geiger et al., [70]. The dataset was
collected using a driving plate form equipped with several sensors: 2 grayscale and 2
color cameras, a Velodyne 3D laser, and high precision GPS/IMU (see Figure 5.1). The

Figure 5.1: The recording vehicle used for the KITTI dataset (left). The mounting position
of all the sensors (red) with the respect to the vehicle frame. Heights are noted in green
and transformation in blue (image credit [70]).

datasets cover different road scenarios, i.e., urban, highway. In addition to several traf-
fic densities and several lane configurations, i.e., urban marked, urban unmarked. The
KITTI provides annotated data and therefore has been used to benchmark several dis-
ciplines in the localization, i.e., slam localization, lane detection. The major drawback of
the KITTI is that it is limited in size. Which means, that the datasets can not be utilized for
localization problematic like Lane-Level Localization (LLL). Indeed, the lanes number is
not sufficiently high in order to be relevant to the evaluation. In addition, the lane change
scenario is missing. Therefore, the KITTI dataset is usually used mostly for evaluation
and fine-tuning.
Concerning the lane detection datasets, several projects have launched on that subject.
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However, there is no real consensus on how lane detection datasets can be presented. In-
deed, it can be a special case of object detection or in semantic segmentation, depending
on the type of annotation type used. While the majority of datasets use spline lines to de-
scribe lanes, other datasets use pixel-wise annotation. Culane is a lane datasets released
by the University of Hong-Kong for the academic world. The datasets were recorded in
the city of Beijing on an acquisition vehicle that had 6 different cameras mounted. In total,
133,235 frames have been recorded in various road scenarios including urban and high-
way roads. However, no other sensor data, like lidar, GPS, is available. Lane markings
are either interpreted with cubic splines, or they are occluded by vehicles, the lanes are
also interpreted depending on the context as shown in Figure 5.2.

Figure 5.2: (a) different scenarios for the Culane dataset, (b) proportion of the different
scenarios (image credit [138]

The Universidade Federal do Espırito Santo in Brazil launched the Ego-Lane Analysis
System (ELAS) [110] dataset. It was generated using camera images from over 20 dif-
ferent scenes (over 15,000 frames) and a multitude of scenarios (urban route, highways,
traffic, shadows, and so on). The dataset was manually labeled and made publicly acces-
sible to encourage the scientific community to evaluate a number of algorithms related to
the AVs (i.e., lane estimation; road markings; lane marking type (LMT); crosswalks and
adjacent lanes; etc.) [110].
In the same spirit, the California Institute of Technology launched the Caltech Lanes
dataset [40]. The dataset is composed of 1.2k frames decomposed of different clips. The
frames are recorded using a camera mounted on the vehicle. The datasets do contain
annotation about spline lane marking. However, other than a camera, the dataset does
not provide more sensor data. Another dataset for lane detection is the TuSimple dataset.
The dataset was released for the lane detection challenge that was held in CVPR’17. The
data is collected using a camera in medium and good weather conditions and on different
days time in a highway road that has multiple lanes. Even though the database contains
7k video clips, the length of every video is 1s, which can make the validation of a LLL
algorithm complicated. Regarding of the ground truth, polyline annotation is used for lane
marking.
With the objective of proving one of the largest high-quality lane marker datasets, Bosch
launched the Unsupervised LLAMAS dataset [141] which consists of 350 km recorded
drives images in purely highway scenarios. In addition to the length of the dataset, the
originality of the proposal lies in the label annotation. Contrary to the existing works, the
annotations were auto-generated (as illustrated in Figure 5.3). Furthermore, the anno-
tation ranges from the pixel-level annotations of dashed lane markers to the 2D and 3D
endpoints for each marker. The major weakness of this dataset is the absence of other



72 CHAPTER 5. DATA-SETS FOR AUTONOMOUS VEHICLE

sensors information such as Lidar or GNSS data.

Figure 5.3: (a) represents the labeled lane image produced by the automated labeling
framework. (b-d) shows three representation for the lane marking. (image credit [141]

More recently, Liang et al., [167] presented the TTLane Dataset with more than 10k im-
ages. The main contributions lie in the comprehensive annotation for the type of marking.
Indeed, the TTlane dataset offers a more concise type of marking that covers white solid,
white dash, yellow solid, yellow dash, and double lines. These datasets are highly used
for lane detection challenges.
Moreover, if we consider the lane detection problematic as a sub-task of the ego-vehicle
localization, these datasets do not report a way to obtain a ground truth measure of the
relative pose of the vehicle within the lane. Nevertheless, recently, a study presented
by Cuadrano et al., [158] expresses these concerns. Indeed, the authors presented an
ego-lane localization based on ego-lane marking detection, in which they presented a
dataset that contained ground truth about the position of each line marking in the scene.
Naturally, this task is hardly possible on public roads. Therefore, the authors performed
the experiments on circuit tracks as illustrated in Figure 5.4. The circuit is a simplified en-
vironment of a highway scenario. Indeed, no other vehicle is recorded during the driving
test. However, the database can be used in order to evaluate an ELL algorithm.

Figure 5.4: (a) The two driving test circuits (b) The vehicle used for the experiment (Image
credit [158]

In the same context, recently, major companies have started the race for autonomous ve-
hicles and therefore have started making their own annotated datasets. Baidu launched
the autonomous driving project called "Apollo" in which the AppolloScape dataset was
released [129]. The acquisition platform system is composed of two VUX-1HA laser
scanners, VMX-CS6 camera system (two front cameras are used with resolution 3384 x
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2710 pixels), and IMU/GNSS . The whole system has been mounted on the top of a SUV
as shown in Figure 5.5. The AppolloScape dataset consists of annotated street view im-
ages for semantic (144k images) and instance segmentation (90k images), lane detection
(160k images), car detection (70k), and tracking of traffic participants (100k images). The
dataset allows evaluating the performance of methods in various weather conditions and
at different day times (Figure 5.5). In the same spirit, the company Nutonomy released the
NuScenes dataset [156], which consists of over 1 million camera images. Nevertheless,
both AppolloScape and NuScenes have been recorded in one city limiting the diversity.
Finally, these two datasets are more oriented for vehicle detection than for localization
using lane marking.

Figure 5.5: The recording vehicle used for the AppoloScape dataset (left). In the right,
an example of color image (top), 2D semantic label (middle), and depth map for the static
background (bottom) (image credit [129]).

The list of the datasets that have been published is vast, and by the time this manuscript
we will be finished, other datasets will be published. Therefore, in the Table 5.1 we sum-
marized the existing datasets that are relevant to our work, this list is non-exhaustive.
However, the cited datasets are the one which allows access to their data. Therefore, the
classification is made depending on the sensors available (video camera, lidar, GNSS),
the scenarios covered (urban, highway, and rural), and the ground truth annotation avail-
able (pixel-wise, spline annotation).

5.3/ HOW TO EVALUATE A LOCALIZATION ALGORITHM?

Leafing through the literature, it appears that there exists no real consensus on how a
localization algorithm should be evaluated. Indeed, depending on the application one
evaluation metric can be more relevant to another. Nevertheless, sometimes the most
used metrics are not fitted for all the applications. Therefore, in the following, we will
discuss in detail on what are the features that have to be evaluated in a localization al-
gorithm, and what are the most relevant metrics. Before heading further, we start by
introducing the most known metric used for a localization system which is composed of
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Table 5.1: Data-sets for localization system. Only the relevant datasets related to our
work are presented. The abbreviation used are the following: Vi: Video, Li: LiDAR, U:
Urban, H: Highway, Px: Pixel

Name Sensors Scenarios Annotations
Vi Li GPS U H Ru Px Sp

CalTech Lanes
(2008) [40]

X X X X

Honda Road Marking
(2012) [75]

X X X

KITTI Road (2013) [77] X X X X X X X

VPGNet (2017) [113] X X X X

TuSimple (2017) [122] X X X X

ELAS (2017) [110] X X X X X

A4 Italy (2017) [109] X X X

VPGNet (2017) [113] X X X X X

TRoM (2017) [116] X X X X

ApolloScape
(2018) [129]

X X X X X X X

CULane (2018) [138] X X X X X

BDD (2018) [140] X X X X X X X

Unsupervised Lla-
mas(2019) [141]

X X X X

TTLane dataset
(2020) [167]

X X X X X

NuScenes (2020) [156] X X X X X

three components: RLL, ELL, and LLL.
In computer science, several metrics have been introduced in order to evaluate algo-
rithms. For example, a classification algorithm is trained to perform digit recognition (for
example the number 5) and we want to evaluate its performance. The general idea is
to count the number of times the classifier correctly classified a number as five, which is
called True Positive (TP). But also, the number of times it classified a non-five number
as a non-five-number, which is called True Negative (TN). In addition to that, we have to
count the number of times a non-five number was classified as five (False Positive (FP)),
and the number of times a five number was classified as non-five (False Negative (FN)).
A perfect classifier would have only TP and TN. However, depending on the application
these scores are not sufficient to give an evaluation of an algorithm. Therefore, more so-
phisticated metrics have been introduced, mainly, four quantitative performance metrics,
i.e., Precision, Recall, F1 Score, Accuracy. Naturally, a combination of these metrics can
be found in the literature to obtain new metrics more relevant depending on the applica-
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tion [124].

Definition. (Precision) is the fraction of TP out of the sum of TP and False Positive (FP):

Precision =
T P

T P + FP

Definition. (Recall) or also known as true positive rate, is the fraction of TP out of the
sum of TP and False Negative (FN):

Recall =
T P

T P + FN

Definition. (F1 Score) is the harmonic mean of the recall and the precision:

F1 =
2 × Precision × Recall

Precision + Recall

Definition. (Accuracy) is the fraction between the correct classification TP and True Neg-
ative (TN) out of the sum of all classification:

Accuracy =
T P + T N

T P + T N + FP + FN

The figure 5.6 helps to understand the meaning of these metrics.

Figure 5.6: A graphical illustration to help understand the previous example.(image
credit [143]

Going back to the localization system, these metrics are also used in most benchmarks
that used camera images, i.e., KITTI, Tusimple. However, concerning the detection of
lane marking these metrics are not well suited. Indeed, these metrics are based on
pixel-wise annotation, which means, each pixel is classified: either it is a lane marking or
not. Therefore, the lane detection algorithm has to outputs pixel wises annotation of the
image, which is not always the case. Considering the work presented in [18], the pixel-
level annotation is not suitable. Indeed, the authors have a higher-level representation of
the lane, as the lane is represented as a polynomial. In addition to that, these metrics
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do not take into account the shape and the distance between the detected lane and the
ground truth.
Nevertheless, when dealing with 3D data (e.g., lidar data), the metrics used are different.
Indeed, it is more interesting to use metric errors based on the difference between the
estimated lane marking and the current lane marking, which are more relevant to the field
of the localization system. In that context, several metrics have been studied, namely,
mean squared error (MSE), root-mean-square error (RMSE):

Definition. (MSE) is used to measure the difference between values obtained by a pre-
dicted model and the ground truth values. Mathematically speaking, the RMSE repre-
sents the quadratic mean of the difference.
If a vector Ye is the estimated vector of n components, and Yg the corresponding ground
truth, then the MSE is computed as following:

MS E =
1
n

n∑
1

(Ye − Yg)2

Definition. (RMSE) is also used to measure the difference between values obtained by
a predicted model and the ground truth values. The RMSE the root of the MSE.

RMS E =
√

MS E

These two metrics, and their derivatives, have been widely used for RLL problematics.
In these topics, the ground truth is obtained from a more accurate solution (GPS RTK +
more accurate IMU) and compared to the RLL solution. Considering, the ELL, the dataset
has to contain the ground truth representation in the world coordinate. To the best of the
author’s knowledge, there is no dataset that contains such representation.

5.4/ CONCLUSION

In recent years, the heated competition to deploy self-driving cars has taken a major
turn. The community that embraces researchers, major car manufacturers, as well as
giant tech companies, have started to develop functional algorithm blocks for self-driving
cars. They share the same goal; which is to deploy a completely self-driving car on a
public road. Nevertheless, before getting to this end, they must all test and evaluate their
solutions. As a consequence, the need for a solution to systematically evaluate their algo-
rithms without deploying them on real vehicles has been a critical subject in the field of the
autonomous vehicle. A solution that has been widely adopted is to test and evaluate au-
tonomous algorithms on available public datasets, by doing so researchers can evaluate
their algorithms on real-world scenarios without taking the risk of deploying their solutions
on real cars. In addition to that, researchers can evaluate and compare their techniques
to their colleagues, which creates a constructive and healthy competition among them in
order to finally converge to the best solution to be deployed on the autonomous car.
In this chapter, literature about the datasets available that can serve to evaluate and local-
ization systems has been presented. To realize such a review, we classified the datasets
depending on several criteria, namely, sensors data available (i.e., Lidar, camera images,
GNSS receiver, IMU), the scenarios covered (mainly highway, urban, and rural), the type
of annotation used (pixel-wise, spline). Depending on the application and the type of
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Table 5.2: Requirements needed to evaluate each part of the localization system (RLL,
ELL, and LLL), with the corresponding datasets available with respect to the Table 5.1.
The abbreviation used are the following: U: Urban, H: Highway, R: Rural

Sensors Scenarios Annotations and
Metrics

Datasets that can be
used

RLL GPS+IMU H, U, R
MSE, RMSE and
derivatives

KITTI Road (2013) [77]

ApolloScape
(2018) [129]
A4 Italy (2017) [109]

ELL

Camera or
Lidar + IMU

H, U, R MSE, RMSE and
derivatives

KITTI Road (2013) [77]

Unsupervised Lla-
mas(2019) [141]
ApolloScape
(2018) [129]
ELAS (2017) [110]
VPGNet (2017) [113]
A4 Italy (2017) [109]
TuSimple (2017) [122]
NuScenes (2020) [156]

LLL

Camera or
Lidar + IMU

H F1 score, Accuracy,
Precision, Recall
and derivatives

KITTI Road (2013) [77]

Unsupervised Lla-
mas(2019) [141]
ELAS (2017) [110]
A4 Italy (2017) [109]

annotation used, specific metrics are used. Nevertheless, the most know benchmarks,
KITTI, TuSimple, CuLane, AppoloScape, are dominated by one paradigm of evaluation.
Indeed, for these datasets lane markings are annotated at a pixel level. As consequence
and as pointed out by Cuadrano et al.. [158] none of these datasets contains a world rep-
resentation that can be relevant for AVs control systems. In addition to that, presenting a
dataset that contains this type of annotation and representation is hardly possible unless
privatization of the public road is done.
Concerning the localization components (RLL ELL, and LLL), we summarize the needs
for each component in terms of sensors data available, scenarios covered, and annota-
tion and metric used. The summary of these requirements is noted in Table 5.2. One can
note that this Table takes into consideration the same datasets presented in Table 5.1.
In conclusion, there is no real consensus on how a localization algorithm has to be evalu-
ated. In our work, we will first evaluate each part of the localization solution independently.
Afterward, an evaluation of the whole system is given, due to the sequential nature of our
proposed architecture, the output of our algorithm is based on large datasets that have
been collected on the Clermont-Ferrand region, the latter will be discussed in Chapter 9.



78 CHAPTER 5. DATA-SETS FOR AUTONOMOUS VEHICLE

CONCLUSION

In this part, state-of-the-art review on the different localization system have been
proposed. In chapter 2, review of the localization techniques related to the Road Level
Localization (RLL) have been discussed. Mainly, these techniques rely on MM algorithm.
The objective of these MM algorithms is to match the vehicle localization, which esti-
mated using a GNSS receiver and internal information about the vehicle, with a digital
map. To attain these objectives, diverse approaches have been studied. The most know
methods relies on probabilistic framework, unquestionably the probabilistic reasoning
is suitable for this kind of problematic. Indeed, it allows taking into consideration the
uncertainties that are inherent to GNSS receiver in order to correctly choose the right
road on which the vehicle is traveling.
In the chapter 3, we discussed methods that are used in order to locate the ego-vehicle
in its own lane. The state-of-the-art review conducted showed that this localization
knowledge is achieved by detection of the ego-lane marking. In order to detect these
visual landmarks, two families of approaches exist. The first one, is the "classical"
approach, or the model-driven approach. The methods that fall into this category share
the same architecture. In this architecture, the lane-marking detection is achieved in
sequential fashion via several processing blocks. Each block is responsible for one
unique task (preprocessing, fitting procedure...etc). By decomposing the problematic
into sub-task, this first category is more modular. However, it suffers from its strength,
as some processing block (for example the fitting procedure) are not generalized to all
type of road. In the other hand, the second category called the data-driven approach,
is a monolithic method in which the ego-lane marking is performed in one stroke. Even
if these methods show great results, as they lead the majority of benchmarks. These
methods are presented like black boxes in which the processing steps are "hidden". Fur-
thermore, these methods rely on DL techniques and hence suffer from their limitations:
the availability of the training data, the generalization problematic.
The Chapter 4 discussed the last component of the localization algorithm which is
the Lane-Level Localization (LLL). To perform such a task, the majority of the works
presented follows two distinct paradigms. The first relies on MM methods on more
accurate map (which are commonly denoted as HD maps). The problematic is the same
as the one studied in Chapter 2. However, the richness of the map increases the degree
of complexity of the MM. Indeed, the ambiguous cases are more recurrent compared
to the low quality map. In addition to that, these methods are dependent on the map
and its availability, which is not always the case considering the high cost of building
and updating these type of maps. The second paradigm emphasized on the available
landmarks on the road in order to infer the position of the ego-lane. Mainly, lane marking
and adjacent vehicle are detected. These detected landmarks are then fused in a fusion
framework (for example BN) in order to determine the LLL.
Finally, the last chapter 5 was dedicated to the metrics and the datasets that can and
should be used in order to evaluate a localization algorithm. Due to the heterogeneous
nature of each block compositing the localization algorithm, several metrics have to
be used. Concerning the datasets, a list of available dataset have been presented in
Table 5.1. The objective of this table was to answer the following question: what are the
datasets that can be used in order to evaluate a localization algorithm ? Therefore, to
answer to these questions, several parameters and factors have to be taken into account,
namely, the scenarios studied (highway, Urban), the data available (GNSS data, lidar,
camera) and the availability of the ground truth. As a consequence, there is no dataset
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that satisfy all these requirements. To this end, we will propose our own collected dataset
in Chapter 9.
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OVERVIEW

The state-of-the-art review on localization systems presented in the part 1 led to the con-
clusion that in order to achieve a reliable ego-localization, a localization system has to
satisfy the knowledge of three localization components, namely, Road Level Localization
(RLL), Ego-Lane Level Localization (ELL), and Lane-Level Localization (LLL). As a result,
the contributions to the thesis can be categorized into three parts: the global functional
architecture of the developed system is shown in Figure 5.7.
Chapter 6 details the Road Level Localization (RLL) solution presented, Chapter 7 details
the Ego-Lane Level Localization (ELL) algorithm, and Chapter 8 details the Lane-Level
Localization (LLL) framework presented. Throughout the chapters, demonstrative exam-
ples are shown to validate each part. In order that this dissertation becomes at maximum
self-contained, the main assumption and background work will be given in this section.

Map
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Lane number
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detection
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vehicles
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Network

Hidden
Markov
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Figure 5.7: End-To-End Probabilistic Framework For Ego-Localization proposed in this
work. Each part of the framework are the focus and the main contributions of the Ph.D.
thesis.
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6.1/ PROBLEM FORMULATION

A reliable Map-Matching (MM) algorithm for any localization system, according to [39,
157], requires the ability to solve any road configuration (highway with insertions, exits...)
by taking into consideration the inherent uncertainties resulting from the sensors and the
map. Furthermore, it has to deal with the ambiguous situation caused by unexpected
situations while finding the right balance between accuracy and computational expenses.
The state-of-the-art review on Road Level Localization (RLL) methods, and more pre-
cisely on Map-Matching (MM) methods led to the conclusion that hybrid architecture that
includes both the deterministic method and the probabilistic method comes out to be the
best solution regarding the defined characteristics. Indeed, it has the ability to deal with
the limitations raised from both methods. Therefore, we present a hybrid architecture as
a response to the defined characteristics (Cf. Section 6.3.5).
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The initial map-matching process is performed using the deterministic method. The ob-
jective of this process is to select road segments that fall within a circle-shaped selection
area based on the errors associated with the navigation device, the quality of the map
and the configuration of the vehicle pose. In addition to that, as pointed out by Quddus
et al., [39], the algorithm has to take into consideration road design parameters, such
as turn restrictions, roadway classification (such as one-way, two-way), and the number
of lanes in the MM process. Consequently, our approach takes into consideration these
attributes’ data depending on their availability.
Once the initial map-matching process, the incompatible road segments are eliminated.
For some cases, this initial process step is sufficient to eliminate all the incompatible road
segments. However, in some ambiguous cases, the number of remaining road segments
is greater than one. Therefore, a selection strategy has to be adopted. As discussed
in Chapter 2, the selection strategy has to take into account inaccurate data sensors in-
formation in addition to both geometric and topological errors in the map used. In that
regard, probabilistic approaches come out as the best solution for their well-known ability
to account for uncertainties to select the best road segment. Hence, in this work, we rely
on the use of Hidden Markov Model (HMM) in order to model the road network ambigui-
ties. The trade-off between accuracy and time complexity offered by this type of network
is more relevant to our scope of utilization. Contrary to other works, the modeling of our
HMM is intuitive and comes out directly from the theory. More important, we do not rely
on the Viterbi algorithm to solve the MM problematic as the use of this algorithm is time-
consuming.
The chapter is structured as follows: Section 6.2 introduces the data model of the OSM
geodata. Section 6.3 describes the Map matching algorithm used. Section 6.4 presents
the real-world experimental results.

6.2/ OPENSTREETMAP DATASET

The unavoidable element to perform the MM is the map. By definition a map is a directed
graph G = (V, E), in which a vertex v = (x, y) ∈ V represents an intersection or a road end,
and an edge e = (s, e, l) ∈ E is a directed road starting from vertices s to e with a polyline
l represented by a sequence of connected segments[157]. The latter definition stands
for the majority of the map presented in the literature. For our work, we solely utilize the
OpenSteetMap (OSM). Therefore, for the sake of clarity, a brief description of this map is
given. The elements that composed this map as well as the main features that have been
utilized are presented.
OpenStreetMap (http://www.openstreetmap.org/) is a collaborative project that aims to
create a free global geographic database. Its ultimate objective is to compile a database
that contains all the possible geographic features of the earth. While the project began
by recording roads and streets it has since expanded to include houses, rivers, pipelines,
woods, beaches, postboxes, and even individual trees [62].
The default format for representing the data model is XML, and it can be only down-
loaded data from the OpenStreetMap server in that format. For local sections of the
planet, a XML file containing the latest revision of the OSM map can be downloaded from
the official website of OpenStreetMap. Furthermore, regular updates of the geodata are
available on that website.
The data model is made up of three basic primitives. Each of them is tagged to contain
key-value pairs, the geographical features they represent can be identified. The OSM

http://www.openstreetmap.org/
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data model follows the definition of a classical map. Indeed, taking the mathematical
definition, the OSM data model is a directed graph, it consists of vertices and edges. De-
pending on what features in the real world they’re modeling, these parts of the graph can
be related or separated.
Concerning the three basic primitives that compose the whole OSM database, there are
defined in Nodes, Ways, and Relations.

6.2.1/ NODES

Nodes ni are point-shaped geometric elements which are used to represent space points
in terms of latitude (lat) and longitude (lon). Moreover, Nodes are the only primitives with
position information. Therefore, all other primitives depend on Nodes to locate them-
selves; for example, Nodes are the basic points to represent the geometry of the Way.

6.2.2/ WAYS

Ways are a list of Nodes that are arranged in a certain order. A Way has to have at least
2 Nodes. The distribution of the Nodes is not uniform in the Way. Hence the distance
between two consecutive Nodes is variable. Ways are used to model line-shaped geo-
metric objects like roads, railways, pedestrian roads. Throughout this work, a single Way
is defined as follows:

W = (idw,Nw,Tw) (6.1)

Where idw denotes a unique identification number of the Way. In addition, the set Nw

regroup the m Nodes ni representing the geometry of the Way as follows:

Nw = {n1, n2, ..., nm} (6.2)

To specify the semantic of each Way, a subset Tw of n tags is related to the Way. The tags
contain the meta-information about the nature of the way, i.e, the lanes number, the type
of road, the speed limitation. According to the OSM specifications, each Way can have
up to 255 tags. These tags are defined as follows:

Tn = {t1, t2, ..., tn} (6.3)

where ti indicates a single tag. Each tag consists of two elements, a key k and the
corresponding value v :

ti = (k, v) (6.4)

As illustrated in Figure 6.1 an example of an OSM Way with its corresponding tags.

6.2.3/ RELATIONS

The element relation describes the relationship between Nodes as well as Ways. This
element is not used in this thesis. For more information, we invite the reader to refer
to [43].
Now the OSM database model has been presented, the following section introduced our
proposed MM solution algorithm.
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.

Figure 6.1: Example of an OSM Way with its corresponding tags, keys and values.

Table 6.1: Used OSM tags

Description Key Value
road speed limit in km/h maxspeed number
total number of physical lanes of the Way lanes number

6.3/ PROPOSED SOLUTION

The overall MM architecture proposed is illustrated in the figure 6.2. The component
blocks structuring the proposed algorithm are the following:

• Inputs: two main sources of information are used, namely, the GPS data com-
ing from a classical, and hence inaccurate GNSS receiver, and the OSM geodata,
which are retrieved from the OSM dataset.

• Processing blocks: composed of three parts, the preprocessing part, the discrim-
ination stage, and the selection stage. These three combined blocks are the core
of the PMMA.

• Outputs: the algorithm outputs the Way on which the vehicle is traveling in addition
to all the meta-information that is stored in the tags composing this Way.

In the following section a description of each component block is given.

6.3.1/ PRE-PROCESSING

As presented earlier the OSM database is composed of mainly three elements: nodes,
ways, and relations. The ways are a set of order nodes that can represent geometric
features like roads, but also other elements like railways and pedestrian roads. This
abundance of data is the strength of OSM. However, if we consider the Ways in which
the vehicle can not travel, i.e., railways, pedestrian roads, the MM task would be complex,
and the outputs will be jeopardized by the multitude of choice for the Ways. Therefore, the
objective of the pre-processing stage is to reduce the complexity of the MM procedure by
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Figure 6.2: Flowchart of the proposed PMMA [164]. The inputs are highlighted in yellow,
the outputs in green, and the processing stages are in blue.

reducing the size of the OSM database by eliminating the Ways on which the vehicle can
not travel. To do so, we used the set of tags provided by the OSM database in order to
eliminated ways that do not represent roads. The list of the used tags listed in Table 6.1.
An example of an output of a discrimination stage is illustrated in Figure 6.3, as shown
the density of ways in Figure 6.3(a) is highly reduced as shown in Figure 6.3(b)

(a) Before preprocessing (b) After preprocessing

Figure 6.3: OSM map before preprocessing stage Figure 6.3a and after preprocessing
stage (elimination of the ways that does not represent roads on which the ego-vehicle
can travel) Figure 6.3b
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6.3.2/ DISCRIMINATION

Now the pre-processing step is performed, the output map is composed of a set of Ways,
which are composed of a list of nodes. Each Way can either be composed of two nodes,
or more nodes. Therefore, the geometric representation of the Ways is not homogeneous.
In order to have a homogeneous representation of the Ways, in our work, we represent
each Way by a set of segments S w with each Way composed at least of one segment. As
a consequence, the Equation 6.1 is then rewritten as follows:

W = (idw, S w,Tw) (6.5)
S w = {s1, s2, ..., sm} (6.6)

si = (ni1, ni2)T (6.7)

si being each segment composing the Ways. One can note that two consecutive seg-
ments (e.g., s1 and s2 share one node). This modeling allows a homogeneous repre-
sentation of the map and simplifies the MM procedure. Indeed, to perform the MM it is
necessary to select the right segment. In other words, belonging to a segment is equiv-
alent to belonging to an OSM Way. So the map matching task can be reformulated as
matching an estimated vehicle position with a segment. In the remaining sections, words
segment and way are switchable.
After this modeling is completed, the map now is made up of a list of segments that have
the characteristics of Ways (in terms of tags) but have a homogeneous representation.
Accordingly, the objective of the discrimination stage is to remove all the ways which are
not suitable for map matching depending on several factors:

• distance to road,

• angle difference,

• speed difference

6.3.2.1/ DISTANCE TO ROAD

The smallest distance dmin between a geographical object in 2D space p and a segment
s, with s = (n1, n2), n1 = (x1, y1)T , n2 = (x2, y2)T , and p = (xp, yp)T is illustrated in Figure 6.4.

In order to calculate this distance dmin, we look for the point belonging to the segment s
which is closest to the point p, this point is denoted p′.
To begin, we compute p′ on the line (s) parametrized by the real number t such that
p′ = n1 + t.s and:

t =
−−→n1 p · −−−→n1n2

|n1 p||n1n2|
(6.8)

"·" being the dot product of two vectors. We ascertain that the point p′ belongs to the
segment s, i.e. that means t ∈ [0; 1]. If p′ does not belong to the segment, we bring it
back to the nearest end:

t = min(max(0, t), 1) (6.9)



6.3. PROPOSED SOLUTION 89

Figure 6.4: Closest distance between a geographical object p and a segment s = (n1, n2).

Finally, we obtain the distance between p and s by computing the distance between p and
p′ with :

p′ = n1 + t.n1n2 (6.10)

dmin =

√
(xp − xp′)2 + (yp − yp′)2 (6.11)

Afterward, segments that have a bigger distance than a fixed threshold distance dthreshmin

are eliminated and the remaining are picked as Way candidates.

6.3.2.2/ ANGLE DIFFERENCE

As shown in Figure 6.5, we compute the angle difference between the GPS trace and the
Way. We retain Ways that have an angle difference lower than 90◦.

Figure 6.5: Difference of angles α1, α2 between GPS trace and Ways W1, W2

6.3.2.3/ SPEED DIFFERENCE

Quddus et al., [39] stated the MM algorithm has to take into account the road design
parameters. In our work, the OSM provides meta-information about the Ways. One of
this information consists of the speed limits which can be retrieved using the value for
the tag "MaxSpeed". Hence, we compare the speed information of the ego vehicle to the
value of the "MaxSpeed" tag. If the speed of the vehicle is greater than a threshold then
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the Way is eliminated. The threshold is defined as the sum of the limitation speed, from
the tag "MaxSpeed", plus a threshold, the value of this threshold allows the ego-vehicle
to exceed the speed limit in a reasonable manner.

Once the discrimination stage is completed, if the number of candidate segments is higher
than one, we proceed to the selection of the correct segment.

6.3.3/ SELECTION STAGE

The previous criteria are not always sufficient to select the right segment. There might
still be ambiguity on choosing the right segment.
In order to choose the right segment, we define the state of ego-vehicle at time t as
xt = (x, y, θ)T . The selection procedure can be formulated as finding the highest condi-
tional probability of belonging to a segment si knowing the pose of the ego-vehicle x at
each time t:

arg max p(si|xt) (6.12)

The main goal of this formulation is to select the correct segment on which the vehicle
is traveling. Consequently, a selection criterion must be introduced to determine the
correct segment. As response to the equation (6.12), three probabilistic criteria [133]
were developed:

• Cd: Criterion based on Euclidean distance.

• Cm: Criterion based on Mahalanobis distance.

• Cp: Criterion based on the probability of belonging to a segment.

6.3.3.1/ PROBABILISTIC CRITERION BASED ON EUCLIDEAN DISTANCE

This criterion uses only the GPS measurement in order to choose the correct segment
and do not need the vehicle pose estimation. Therefore, for this criterion, the map match-
ing task can be formulated as the calculation of the highest posterior probability of a GPS
measurement zk belonging to a segment si:

arg max
i

p(si|zk) (6.13)

By assuming the uniformly distributed prior probability for the segments p(si) and using
Bayes formula [30], we get:

arg max
i

p(si|zk) = arg max
i

(
p(zk|si)(si)

p(zk)
) (6.14)

Since p(zk) is constant for each segment candidate, then we have:

arg max
i

p(si|zk) ≡ arg max
i

(p(zk|si)p(si)) (6.15)

Since p(si) is uniformly distributed, we get:

arg max
i

p(si|zk) ≡ arg max
i

p(zk|si) (6.16)
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The probability p(zk|si) is modeled by two random independent variables :

• The minimum distance to a segment dmin (cf. Subsection 6.3.2.1) is modeled as zero
mean, normally distributed random variable with standard deviation σdmin described
as follows:

σdmin = ε × DOP1 (6.17)

Due to the uncertainty of the GPS data (between 2 and 6 m) and the OSM map
(between 6-9 m [62]), the theoretical error in distance ε was chosen to covert the
two uncertainties. In this work it has been fixed at 15 m.

• The angle difference θdi f f is modeled as zero mean, normally distributed random
variable with standard deviation σθdi f f defined as being inversely proportional to the
speed of the vehicle v:

σθdi f f ∝
1
v

(6.18)

As a consequence, we rewrite (6.16) as follows:

Cd = arg max
i

p(si|zk) = arg min
i

d2(zk, si)
σ2

d

+
θ2(zk, si)
σ2
θ

 (6.19)

Finally, the probabilistic criterion Cd is calculated for every way candidate, the Way having
the smallest criterion is chosen among the Way candidates (segment candidate).
This selection criterion relies only on GPS measurement, it does not take into account the
correlation between the position of the vehicle in x and y directions and the vehicle head-
ing θ. In addition, the heading of the vehicle is calculated from the GPS trace, leading to
an estimation that is dependent on the accuracy of the GPS receiver, which is metric. As
a consequence, the estimation of the heading of the vehicle is not optimal.
In order to address these issues, one solution would be to take into account the propri-
oceptive information of the ego-vehicle in order to estimate its pose. This can be done
using an extended Kalman-Filter (EKF). Moreover, the uses of the EKF will allow us to
get the uncertainty matrix related to the pose of the vehicle.

6.3.3.2/ PROBABILISTIC CRITERION BASED ON MAHALANOBIS DISTANCE

In order to estimate the uncertainty related to the pose of the vehicle and depending on
the sensors’ information available, a Kalman filter is introduced. The primary objective of
this filter is to estimate the uncertainty related to the pose of the vehicle, i.e., having an
estimation of the covariance matrix, denoted as Σx, x associate with the vehicle’ pose at
each time frame, denoted as x = (x, y, θ)T .
Using the covariance matrix associated with the pose of the vehicle Σx, we compute the
Mahalanobis distance for each Way candidate. To this end, we calculate the orthogonal
projections of the vehicle position onto every Way candidate, as illustrated in Figure 6.6.

• xs = (xs, ys, θs)> the vector representing the orthogonal projection on the segment .

1Dilution of precision
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Figure 6.6: Example of calculation of the Mahalanobis distance. x = (x, y, θ)T the current
state vector, and xs = (xs, ys, θs)> is the vector representing the orthogonal projection on
the segment.

Afterward, the criterion based on the Mahalanobis distance Cm is calculated as follows:

Cm =

√
(x − xs)T Σ−1

x (x − xs) (6.20)

With the difference between the normalized angles θ ∈ [0, 2π) and θs ∈ [0, 2π) noted ∆θ is
calculated as follows:

∆θ = min(2π − |θ − θs|, |θ − θs|) (6.21)

The segment with the smallest Cm is then chosen.

6.3.3.3/ PROBABILISTIC CRITERION BASED ON THE PROBABILITY OF BELONGING TO A

SEGMENT

The idea behind this probabilistic criterion is to compute the probability of a segment
si = (n1i,n2i)> defined by n1i = (x1, y1)> and n2i = (x2, y2)> to belong to the expected area of
the presence of the ego-vehicle. This area is delimited by the covariance matrix Σx. To do
so, first, we envelop the segment with an ellipse defined by a Gaussian of dimension n (as
illustrated in Figure 6.7). To dimension this ellipse, we rely on the canonical representation
of Gaussian to compute its covariance matrix Σs. As result the covariance matrix Σs is
defined as follows:

µs =

(x2 + x1)/2
(y2 + y1)/2

 (6.22)

Σs = VLV−1 (6.23)

V =

x2 − x1 y1 − y2
y2 − y1 x2 − x1

 (6.24)

L =

λ1 0
0 λ2

 =

 |s|
2

4 0

0 Th2
s

4

 (6.25)
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With Ths being the thickness of every segment, λ1 and λ2 the eigenvalues of the matrix
V. Thus, the probability we are looking for is defined as follows:

Cp =
1
p

exp(g1 + g2 +
1
2
µTΣ−1µ) (6.26)

with:

Figure 6.7: Illustration of the probability of the segment (in red) to belong to the expected
area of presence of the ego-vehicle, the blue area corresponds to the probability we are
looking to compute.

• Σ = [Σ−1
x + Σ−1

s ]−1

• µ = [Σ−1
x + Σ−1

s ]−1[Σ−1
x x + Σ−1

s µs]

• p = log [(2π)−n/2|Σ|−1/2]

• g1 = log [(2π)n/2|Σx|
−1/2] − 1

2 xTΣµ
−1x

• g2 = log [(2π)n/2|Σs|
−1/2] − 1

2µ
TΣs

−1µ

The details of the computation are presented in Annex 10.3.
The segment with the highest probability Cp is chosen.

6.3.4/ FUNCTIONING OF THE ALGORITHM

In the following, a canonical example that helps to understand the functioning of the
algorithm is illustrated. In all figures, the vehicle is represented by a rectangle box, and
the uncertainty about its position is represented with a green ellipse. All the steps of the
PMMA are given and are accompanied by graphical illustrations.

Initialization stage In this initial stage, the OSM data around the measured GPS posi-
tion of the vehicle are retrieved as illustrated in Figure 6.8a The data retrieved are in the
form of Ways. Each Way can be either a road or other geographical road object. The
Ways collected from the OSM database are represented in red in the Figure 6.8b.
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(a) (b)

Figure 6.8: Initialization step for the MM algorithm. Red lines represent the Way extracted
from OSM.

Preprocessing The global aim of this module is to reduce the complexity problem of the
MM by eliminating Ways that do not represent roads on which the vehicle can potentially
travel. In other words, eliminate Ways that have not the "Highway" tags value. The results
of this preprocessing stage are illustrated in Figure 6.9. As we can see Ways that do not
represent roads (as illustrated in Figure 6.8a) are eliminated.

Figure 6.9: Preprocessing step with the elimination of roads that are not suitable for MM.

Discrimination stage Now that only Ways representing roads remain, the objective of
the discrimination stage is to eliminate ways that are not suitable to perform the MM. In
other words, Ways that do not correspond to the vehicle’s configuration. Therefore, we
eliminate Ways depending on two factors: the distance to the estimated position of the
vehicle as illustrated in Figure 6.10(a) and the angle difference between the Way and the
vehicle heading as illustrated in Figure 6.10(b). The remaining Ways are considered as
compatible with the vehicle’s configuration.
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Figure 6.10: Discrimination stage depending on the distance (a) and the orientation of
the vehicle (b).

Selection stage Depending on the number of Ways candidate remaining, the selection
is performed using one of the criteria introduced in the preceding section as illustrated in
Figure 6.11

Figure 6.11: Selection of the right Way in blue.

6.3.5/ THE ENHANCED PROBABILISTIC MAP MATCHING ALGORITHM (PMMA)

The PMMA proposed in the previous sections does not take into consideration the nav-
igation history and the topology connection that may exist between Ways. A solution to
take into account these considerations is to model the MM task using a Hidden Markov
Model (HMM).
By definition a HMM consists of two stochastic processes, the first one is a Markov Chain
to model the change of a state vector over time. This change is governed by a proba-
bility that describes the "transition probability" over time. In the HMM, the states of the
chain are not visible but observable, for this reason, they are called “hidden”. The second
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process is called the "observation space", it produces the emission of the observation at
each time. Although the elements of the state vector are hidden, there is a relation be-
tween the hidden elements of the state and the observations, this relation is referred to as
an emission probability. Figure 6.12 describes the proposed HMM for the map-matching
task.

Figure 6.12: Modeling of the Hidden Markov model Map-Matching (HMM-MM) algorithm,
with S ct the state space at time t, st the segment candidate at time t and Ot the observa-
tions at time t. Note that the number of candidate segments at each time may vary.

Accordingly, in order to model the HMM, three components must be defined:
State space: the state of the system describes the list of the candidate segments for
each observation. We will use S ct to denote the set of candidate segments at time t
S ct = {s1, s2, ..., snt } with nt the number of candidate segments at each time t.
Observation space: for each candidate segment composing the state space, an emis-
sion probability is made. This emission probability is directly calculated from the multi-
criteria algorithm. For each segment candidate si the emission probability Pe(si) is calcu-
lated as follows:

Pe(si) =
Ck(si)∑

j ∈ S ci

Ck(s j)
(6.27)

where Ck is one of the probabilistic criterion used with k ∈ {d,m, p}.
Transition probability: the transition probability reflects the probability that a state will
move from one state to another. In the map matching procedure, the topology of the
network is used in order to determine the transition matrix. Indeed, the vehicle can only
move on Ways that are physically connected.
We will refer to Pt(st

i, s
τ
j) as the transition probability from a segment st

i to a segment sτj
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Table 6.2: Transition matrix for example shown on Figure 6.13

s1 s2 s3 s4 s5
s1 λs

11 λn λc
13 λn λc

15
s2 λn λs

22 λn λn λn

s3 λ31 λn λs
33 λc

34 λc
35

s4 λn λn λc
43 λs

44 λn

s5 λc
51 λn λc

53 λn λs
55

given the state space S ct and S cτ for time t and τ:

Pt(st
i, s

τ
j) =

λi∑
j ∈ S ct

λ j
(6.28)

Where λi is a criterion calculated for each segment, this criterion obeys some rules de-
fined as follows:

1. λi = λn if the segment st
i and sτj are not connected;

2. λi = λs if the segment st
i and sτj are the same;

3. λi = λc if the segment st
i and sτj are connected.

Figure 6.13: Example of road network to illustrate the transition probability calculation. In
this example the number of Way candidates is the same between two consecutive frames

Figure 6.13 shows a simplified road network to illustrate the transition matrix probability.
These probabilities are shown in Table 6.2. It can be noticed that in this example the
number of Ways is the same for two connected states, which is not always the case.
Indeed, the number of Ways may vary from two consecutive frames.

• The transition probability λn is used if the two segments are not connected, in this
case the probability of transition is equal to zero. Indeed, the vehicle can not travel
if two segments are not connected. Naturally, this assumption holds only for small-
time interval between two measurements.

• The transition probability λs is used whenever the two segments are the same, in
other words, they belong to the set S ct and S ct+1. Let P = (x, y)T be the vector
describing the Cartesian coordinates of the ego-vehicle in the Universal Transverse
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Mercator coordinate system frame (UTM), we note P′ the projection of the point P
on the segment and ψ the segment’s heading, the segment s is composed of two
nodes n1, n2. One can note that the computation of the point P′ follows the same
strategy adopted in the Subsection 6.3.2.1.
The probability to change the segment will be smaller if the vehicle is located in
the middle of the segment, and vice versa it will be greater if the vehicle is within
the limits of the segment. Mathematically this probability is linked to the Gaussian
distance between the point P′ and the middle of the segment s as illustrated in
figure 6.14. Thus, it is calculated as follows:

λs = e
−

1
2

 t − u0

σ0

2

(6.29)

With P′ = t.n1n2, u0 = 0 and we take σ0 = 0.25. This value allows us to cover the
middle of the segment, without covering the ends of the segment.

Figure 6.14: Illustration of calculation for transition probability λs, the vehicle is illustrated
by the box with black triangle, ψ represents the segment heading, θ the vehicle’s heading,
and P′ is the projection of the vehicle position on the segment s = [n1, n2].

• The transition probability λc is used whenever the segment si and s j are connected.
In this case we use a similar criterion to the one presented by lue et al.[117]. This cri-
terion depends on the difference between the vehicle’s heading and the segment’s
heading :

λc = e−β|∆θ−∆ψ| (6.30)

with ∆θ being the vehicle’s heading change over time, ∆ψ the segment’s heading
change between the two segments si and s j and β a chosen coefficient.

Now that the observation model and the transition model are set, the skeleton of the
proposed HMM is completed, and therefore the MM procedure can be performed.
In the following section, experimental results are given for the functioning of the PMMA

6.4/ RESULTS AND DISCUSSION

In order to show the effectiveness of our proposed solution, real-world experiments have
been conducted. To this end, a dataset contains GPS data frame were collected in the
region of Paris for a total of 6596 GPS frames. The GPS receiver used for the experiment
provides a decametric accuracy measurement of the longitudinal and lateral coordinates.
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Furthermore, signal losses occur several times during the experiment. The GPS data
are received with a frequency of 1Hz. The ground truth is obtained from the video of a
camera installed in front of the vehicle, the route traveled is shown in the Figure 6.15.
In order to assess the presented RLL algorithm, the first part of the discussion will focus

2.26 2.28 2.30 2.32 2.34 2.36 2.38 2.40
longitude

48.65

48.70

48.75

48.80

48.85

48.90
la

tit
ud

e

Figure 6.15: The route traveled in the region of Paris illustrated with blue color in OSM.
Around 100 km have been traveled for a total of 6596 GPS frames.

on comparing the MM accuracy provided by each criterion defined in Section 6.3.3(Cd,Cm,

and Cp), then we test the enhanced version of the algorithm (with the addition of the
HMM). The latter will be presented in Chapter 9.
Nevertheless, the comparison between the three criteria (Cd,Cm, and Cp) will be done
regarding the lanes number estimation. Indeed, the nature of the dataset used (the deca-
metric accuracy of the GPS and the loss of signal) makes it hard to manually chose the
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correct way in which the vehicle is traveling. As consequence, the number of lanes esti-
mation results are summarized in Table 6.3 and illustrated in Figure 6.16. The incorrect
number of lanes estimations are divided into two groups. The first one "Zero estimations"
denotes the absence of information about the number of lanes from the OSM geodata.
In this case, the algorithm provides zero for lane number estimation. The second one
"Wrong estimations" indicates the false estimations that are different from the "zero esti-
mation" group.

Figure 6.16: Lanes estimation compared to ground truth for every criterion used in the
map matching [133].

In order to prove it, we run the same algorithm with the same data sets on a different
period (April 2018). During the time interval between the two runs, the OSM map has
been updated, and therefore the map should provide more information about the lanes
number. The results obtained in Table 6.4 support our argument, as we expected the zero
estimations has decreased for each criterion used. In addition, the wrong estimations
have also decreased, meaning that the wrong estimations are not only due to a wrong
map matching. Based on these results, we believe that there are three reasons for the
lanes number estimation to be false:

Table 6.3: Results for the accuracy rate on lanes number estimation for every criterion
(February 2018)

Cd Cm Cp

Correct estimations 79% 82.95% 81.58%
Wrong estimations 13.89% 11.37% 9.72%
Zero estimations 7.11% 5.68% 8.70%
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• The map matching is correct but the tag "lanes" does not exist for the selected Way
(the zero estimation)

• The map matching is correct but the information "number of lanes" is wrong or has
not being updated.

• The map matching is false because the wrong Way was selected

For the first and second cases, the results of the lanes number estimation depend on
the quality of the OSM map as explained in the previous paragraph. However, it is more
difficult to distinguish between the second and the third cases when the number of lanes
estimated is wrong. Nevertheless, after investigating situations where our lanes number
estimation is incorrect because of a wrong map matching, we figured out that these cases
happen when an exit lane occurs as illustrated in Figure 6.17. In these situations, having
the history navigation of the selected Ways candidate will ultimately result in having better
accuracy in choosing the right segment.
To sum up, this experiment leads to two major conclusions, the first one is that the criterion
based on the Mahalanobis distance Cm is more robust than the other two criteria. Indeed,
for this criterion, no threshold parameters are needed. The second conclusion is that it is
necessary to keep the history navigation of the MM procedure. Therefore, results with the
addition of the HMM will be presented in Chapter 9.The work presented in this chapter
have been published in the IEEE International Conference on Intelligent Transportation
System (ITSC18) [133].

Figure 6.17: Scenarios where the map matching algorithm selects the wrong segment
and leads to a false lanes number estimation

Table 6.4: Results for the accuracy rate on lanes number estimation for every criterion
(April 2018)

Cd Cm Cp

Correct estimations 79.85% 83.64% 83.14%
Wrong estimations 13.18% 11.47% 8.51 %
Zero estimations 6.97% 4.89% 8.35%
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6.5/ CONCLUSION

In this chapter, a Road Level Localization (RLL) solution is proposed based on Probabilis-
tic Map Matching Algorithm (PMMA). This architecture assembles several interconnected
designed modules that are responsible for MM procedure while taking into account un-
certainties that comes from raw inputs sensors data. The PMMA is mainly composed of
two blocks.
In the first block, a probabilistic framework is designed to match the correct road on which
the vehicle is traveling. A first module is responsible for eliminating all the roads which are
not compatible with the vehicle configuration in terms of distance and orientation. In addi-
tion, road design parameters, such as turn restrictions, speed limitation have been taken
into account in this discrimination stage. Following this stage, a selection strategy based
on three probabilistic criteria have been used. The mathematical formalizing of each cri-
terion have been justified. Finally, comparison between criteria in terms of methodology
and in terms of results have been given, leading to the conclusion that this probabilistic
framework is not sufficiently robust to deal with ambiguous scenarios.
Furthermore, based on the output of the first block a second complementary block have
been introduced in order to clear up ambiguous situations. It benefits from the architec-
tural strength of the HMM in order to model the road topology and the vehicle’s cinematic.
The modeling is accomplished by defining transition and emission state probabilities that
match the road topology while taking into account of the vehicle’s cinematic.
In addition to the details given about the main blocks and their interactions composing
the proposed PMMA, experimental results have been conducted. The proposed algo-
rithm have been tested on a dataset and results were shown in this chapter to validate
the overall architecture. Further results concerning this part will be given in Chapter 9.
In the next chapter, the second part of the proposed end-to-end localization framework is
introduced. It corresponds to the Ego-Lane Level Localization (ELL) algorithm proposed
in this P.h.D work.
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7.1/ PROBLEM FORMULATION

Ego-Lane Level Localization (ELL) has been an active field of research due to the
importance of this localization knowledge in the majority of the ADAS applications [121]
like Lane-Departure-Warning Systems, Adaptive Cruise Control, and Lane Change
Assist. For this kind of ADAS application, knowing the position of the ego-vehicle with
respect to its lane is mandatory. As a consequence, an ELL algorithm that guaran-
tees this requirement is a critical part of any localization system. By and large, the
state-of-the-art review conducted in Chapter 3 leads to the conclusion that this task is
carried out primarily through the identification of ego-lane markings. In recent years,
ego-lane marking detection systems have been the subject of various research topics,
using several input data such as camera or lidar sensors. However, the majority of the

103
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discussed techniques are limited to image mask retrieval and do not provide a usable
representation of the detected lane marking in world coordinates. Hence, they are unfit
to perform the ELL. In addition to that, an ELL algorithm based on ego-lane marking
detection has to fit the detected patterns to a model that suits the road’s shape. However,
all the roads do not share the same skeleton, and finding a unified road model is still
an ongoing field of study. On the other hand, highway road models have been widely
studied, and mathematical models that suit the road’s shape have been proposed. In
that sense, when dealing with highway roads, the ELL solution has to take into account
the global shape of the roads in its detection process.
Under the light of these considerations, we propose an information-driven method for
ELL that takes into account inaccurate prior geometry of the road from OSM to perform
ego-lane marking detection. In addition to that, the method allows a world coordinate
representation that can be used for ADAS application. Furthermore, the proposed
method works on both lidar and camera images.

7.2/ PROPOSED SOLUTION

Once the RLL has been performed, the Ego-Lane Level Localization (ELL) is initiated.
We choose to start the ELL before the Lane-Level Localization (LLL) for several reasons:
the first is that the ego-lane marking is, for the most part, the easiest one to detect. The
second one is due to the use of the information-driven approach. Indeed, when the ELL
is completed we have an estimate of the ego vehicle’s lateral position in its lane. So,
knowing the lane’s width and the lane’s number allows us to interpolate research zones
for other lane marking.
In that regard, we present the Recursive Information-Driven Algorithm (RIDA) that works
on both camera and lidar data. In contrast to what is described in most of the works avail-
able for ego-lane detection, we present an informational-driven approach that is inspired
by the work of [18] for camera images. The concept is based on a focusing algorithm to
detect the ego-lane marking. To do so, we take advantage of a probabilistic model that
captures the road’s shape prior information coming from OSM in order to limit the search
areas for the ego-lane marking detection process. Once the search area is created, we
divide this zone into nroi Region Of Interests (ROI) that has the same height. Afterward,
we propose a selection strategy based on a Bayesian Network (BN) coupled with the
entropic features to choose the most informative ROI, which means the ROI where we
have the best chance to detect a pattern (a segment) of the ego lane marking. After each
detection, we update the probabilistic model which leads to a new searching area, and
accordingly reduces the size of the ROI.
One of the main advantages of this method appears in the case of the wrong detec-
tion of a segment. This wrong detection will produce an update to a wrong probabilistic
model. Hence, the resulting ROI will no longer cover the ego-lane marking. If this sce-
nario happens, the recursive nature of the proposed method allows us to downgrade to
the previous probabilistic methods (before detecting the wrong segment). These steps
are repeated until an entropic criterion is achieved indicating that the ego-lane marking
has been detected.
This algorithm has been firstly introduced by Aufrère et al. [18] in order to detect lane
marking using a camera. However, we propose an enhanced version of this algorithm
with the addition of the entropic selection strategy. Furthermore, we extend its uses to the
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lidar data. Globally, the general architecture of the proposed solution remains the same
with slight change due to the nature of the data. The overall pipeline of the proposed
architecture is shown in Figure 7.1, it follows the global architecture of the model-driven
approaches defined in Figure 3.2. Therefore, it is composed of the following parts:

• Initialization stage: in this stage, initialization of the road model is performed.

• Selection of the best ROI: the objective of this stage is to select the most informa-
tive ROI in terms of accuracy and probability of successful detection

• Detection: in this stage a detection of a primitive is performed in the selected ROI.

• Update: depending on the result of the detection, the model is updated and the
confidence in the global model is also updated.

• End: to end the recognition process, we define an entropic criterion that must be
satisfied.

Initialization

Selection of
the best ROI

Detection Update
Lane

marking
detected?

End

Yes

No

Yes

No

Figure 7.1: All different steps of the Recursive Information-Driven Algorithm (RIDA) for
ego-lane marking detection.

7.3/ RECURSIVE INFORMATION-DRIVEN ALGORITHM (RIDA)

In the following sections, details about the aforementioned parts are given. In addition to
that, a parallel between the functioning of the algorithm on both lidar data and camera
images is given. The objective is to illustrate the difference in the functioning of the RIDA
between the two sensors.

7.3.1/ INITIALIZATION STAGE

In this stage, the road model is transposed in the sensor frame (lidar or camera). However,
before it must be modeled on the vehicle’s frame (xv, yv). Contrary to the work of Alvarez
et al.[83], only the skeleton of the road will be projected in the vehicle’s frame. Indeed,
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the objective is to detect the lane marking and not the entire road (asphalt). Therefore,
the road model is defined as a cubic polynomial [108][119] as shown on Figure 7.2

y(x) =
1
6

c′ x3 +
1
2

c0 x2 + ψ x + y0 (7.1)

Figure 7.2: The robot navigates on the lane of width Lw modeled as a polynomial equa-
tion y(x). The left and right borders of the lane are respectively approximated with the
polynomials yl(x) and yr(x).

The parameter c′ is the curvature’s derivative of the road, c0 the curvature of the road,
ψ the vehicle’s heading with respect to the tangent of the road, y0 the lateral shift of the
ego-vehicle in relation to the road model. For a lane of width Lw, the left or right ego-lane
markings denoted by yl,r

yl,r(x) = y(x) ±
1
2

Lw√
1 + y′(x)2

, (7.2)

where y′(x) = d
dx y(x). One can note that the equation for the markings is not polynomial.

However, as the curvature of the road is small on the highways and most marked roads,
the derivative y′(x) can be neglected for small x. The equation simplifies to

yl,r(x) ≈ y(x) ±
1
2

Lw (7.3)

In practice, the approximation even holds for large x, being accurate enough up to 50 m.
Furthermore and as discussed in Section 6.2, the OSM map does not provide information
about the accuracy of its data. However, it is well known that OSM is a collaborative
project in which volunteers provide the geospatial data. If we consider that most of the
volunteers have a classic GNSS receiver, the accuracy of the OSM is thus metric.
To encompass these uncertainties for each ego-lane marking, we define a probabilistic
model composed of a state vector xl,r and its associated covariance matrix Σxl,r . The
state vector xl,r contains the mean values of the parameters of the roads presented in
Equation 7.1. The objective of this state vector is to capture the priors about the road’s
shape. Therefore, it is defined as follows:

xl,r = [µc′ , µc0 , µψ, µy0 , µLw]T , (7.4)

with µ refereeing to a mean value. The values (µc′ , µc0) are taken from OSM. The polyno-
mial representation of the road (Equation 7.1) will be affected by the unknown accuracy
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of the OSM data. For the parameters c′ and c0, they represent the shape of the road.
Given that we are working mostly with highway roads, their values will not be affected by
the inaccurate geospatial accuracy of the OSM dataset. Hence, their value can be used
directly from Equation 7.1. In contrast, the parameters ψ, y0, Lw are more sensitive to inac-
curacy of the OSM, and its value will be affected. That being said, the values µψ, µy0 , µLw

are initialized using global knowledge about the road configuration and the vehicle pose.
Globally, a vehicle has a tendency to drive in the center of its lane and its heading is
parallel to the tangent of the road. Concerning the width of lanes Lw, depending on the
legislation of the country, this value is set for all the roads that fall in the same category
(i.e., 3.5 m in France for highway).
As a consequence, these parameters are used as priors to define the vector xl,r, and are
initialized as follows

µc′ = c′

µc0 = c0

µψ = 0

µy0 = 0

µLw = 3.5m

The inaccuracy of the values contained in the vector xl,r are counterbalanced using the
co-variance matrix Σxl,r which is initialized as

Σxl,r =



σ2
c′ 0 0 0 0

0 σ2
c0

0 0 0
0 0 σ2

ψ 0 0
0 0 0 σ2

y0
0

0 0 0 0 σL2
w


. (7.5)

σ2 indicates the variance associated with each parameter of the vector xl,r. This matrix
expresses the allowed dispersion around these parameters. The greater these σs are the
less accurate the values of vector xl,r are.
Now that the probabilistic model (xl,r,Σxl,r ) set, we want to see how this model is reflected
on the sensor frame. In other words, we want to compute the covariance matrix associ-
ated with the transformation of the polynomial representation in the sensor space.

Lidar Data Before the initialization of the probabilistic road model in the lidar space, a
preprocessing stage is performed. Indeed, the lidar frames are rich in information. How-
ever, one single lidar frame is not sufficiently dense to correctly perform the ego-lane
recognition. To overcome this drawback, we integrate the previous lidar frames into one
frame based on the odometry information of the vehicle. For this work, we took the last 5
frames into account. Figure 7.3(a) and Figure 7.3(b) show the difference in the spareness
of the lidar pointclouds.
We apply then a threshold on reflectivity. Since we are looking for the ego-lane marking,
points cloud with high reflectivity will be chosen. Thereafter, we transform the probabilistic
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Lidar data IMU data

(a) Pointcloud (b) Accumulated Pointcloud

Figure 7.3: Overall algorithm for the proposed ego-lane detection. (a) The lidar provides
pointclouds. (b) Using an IMU, several pointclouds are accumulated.

model (xl,r,Σxl,r ) on the lidar frame in order to get the uncertainty about the cubic polyno-
mial. To do so we compute the Jacobian matrix Jyl,r of the polynomials yl,r(x). Hence, the
covariance matrix associated to the vector space xl,r in the lidar space is computed as
follows:

Σyl,r = Jyl,rΣxl,r J
>
yl,r

(7.6)

With:

Jyl,r =

(
∂yl,r

∂c′
∂yl,r

∂c0

∂yl,r

∂ψ

∂yl,r

∂y0

∂yl,r

∂Lw

)
(7.7)

The resulting model (yl,r,Σyl,r ) is transformed into the lidar space as illustrated in Fig-
ure 7.4 with Σyl,r representing the uncertainties around the polynomial lane marking rep-
resentation.
To reduce the computational complexity of the task, the vector yl,r is composed of a mul-
titude of connected segments. This procedure allows dividing the sensor’s research zone
into Region Of Interests (ROI) on which the detection process can be performed. These
zones are delimited by the uncertainties from the covariance matrix Σyl,r as shown in
Figure 7.4 with the blue rectangles.

Camera Data When dealing with camera data, the polynomial model has to be pro-
jected into the image space (u, v). According to [18] the projection of the road model for
the left and right ego-lane marking in the image frame (ui, vi) is defined as follows:

ui = eu

(( evZ0

(vi − evα)

)2 c′

6
−

evZ0

2(vi − evα)
c0 +

vi − evα

evZ0
(y0 ±

Lw

2
) − ψ

)
(7.8)

where eu = f /du, ev = f /dv, f is the focal distance of the camera, du and dv are the width
and height of a pixel in the image, Z0 is the height of the camera, y0 the lateral distance
of the ego-vehicle with respect to the ego-lane marking, the ± sign indicates whether the
ego-marking is right (+) or left (−), α is the camera tilt angle and Lw is the road width.
i = 1, ..., nRoi with nRoi the number of Region Of Interest (ROI) for each lane marking.
Using equation 7.8, we can express the probabilistic model (xl,r,Σxl,r ) into the image
space. This model will be note as (u′,Σu′), with u′ being the average values for the pixel
in the image and Σu′ its corresponding covariance matrix.
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Figure 7.4: Intensity image of the lidar points with the model initialization of the presented
ego-lane marking model. The green line is used for the mean value of the probabilistic
model represented by the vectors yl,r, and the blue rectangles are used to represent the
uncertainty Σyl,r .

Hence, to project this probabilistic model into the camera space, we follow the same strat-
egy adopted for the lidar data and discussed in the section. Accordingly, the Jacobian
matrix related to this projection using the Equation 7.8:

Ju =



∂u1

∂c′
.

∂u1

∂x0
. . .

. . .
∂un

∂c′
.

∂un

∂x0


(7.9)

As consequence, the covariance matrix Σu′ is calculated as follows:

Σu′ = JuΣxl,r JT
u (7.10)

The resulting projection of the Equation 7.8 is shown in Figure 7.5. Taking into account
the prior about the road geometry allows focalizing the zones of research in a Top-Down
process fashion. Indeed, not all the image is used to perform the detection process.
Consequently, the recognition process is faster, and subject to less noise considering it
takes into account only the regions in the image that most likely contains a lane marking.

7.3.2/ SELECTION OF THE BEST REGION OF INTEREST (ROI)

Once the probabilistic model is defined, we proceed to the selection of the most informa-
tive ROI in the sensor space in a Top-Down process. This selection strategy answers
the following questions: what is the ROI in which the algorithm will have the best proba-
bility to detect a pattern (a piece of the lane marking), and at the same time, what is the
ROI that will reduce by the greatest value the model uncertainties ?
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Figure 7.5: Projection of the initial probabilistic model (u′,Σu′) on the image. The mean
values of the lane marking u′ are presented in red, blue illustrates the dispersion around
these values (1 σ). Finally, green boxes are the ROI for each lane marking, in this example
the number of ROI is 9 for each lane marking.

To respond to these questions, we defined a unified criterion that is responsible for choos-
ing the most suitable ROI in an a priori way. In our work, this criterion is based on the
information theory and particularly on the Shannon entropy. Indeed, there is a strong
correlation between entropy and uncertainty. The entropy is inversely proportional to the
size of the quantity of uncertainties. Another way to look at it is to consider the size of the
co-variance matrix. This means that a successful detection in the most informative ROI
will lead to the smallest covariance matrix among the other ROI, for example; choosing
the largest ROI. Nevertheless, choosing the most informative ROI in terms of precision
(i.e, reducing the uncertainties) is not sufficient. Indeed, we have to make sure that the
detection in this ROI has the highest probability of success. If we choose the largest
ROI it will potentially cause false detections, which are due to the presences of outliers.
Therefore, we must look to the probability to detect the right pattern (segment) in this
chosen ROI.
As consequence, we adopted an a priori selection strategy based on an entropic criterion
Hsel inspired by the work of Delobel et al. [125]. The idea is to choose the ROI that will
maximize the entropy gain between the current’ state entropy noted as H−v , and the en-
tropy when we simulate a successful detection (and update) H∗v . Hence, for each ROI we
will simulate a successful detection, and we will calculate the entropic selection criterion
Hsel as follows:

Hsel , H−v − H∗v (7.11)

= P(Dk = 1,Db = 1).
1
2

[
log|2π eΣ−x | − log|2π eΣ∗x|

]
with:

• x− The state vector before simulation of the detection,

• Σ−x Covariance matrix before simulation of the detection,

• x∗ The state vector after simulation of the detection,

• Σ∗x Covariance matrix after simulation of the detection.

• P(Dk) The probability to detect a primitive (a segment) in the ROI,

• P(Db) The probability to detect the right pattern (segment) in the ROI,
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Therefore, the ROI with the highest value of Hsel will be chosen. Considering this entropic
criterion, it is composed of two parts. The first part P(Db), P(Dk) is responsible for the se-
lection of the ROI on which the detection has more probability to succeed. On the other

hand, the second part
1
2

[log|2π e Σ−x | − log|2π eΣ∗x] is responsible for choosing the ROI that
will reduce the uncertainty of the model.
For the probabilities, P(Db), P(Dk), a BN is introduced. The presented nodes are an adap-
tation of the BN presented in [84]. The paradigm used in order to construct this network
is therefore the same, and we invite the reader to refer to the thesis of Aynaud [94] on
which a detailed section is given on how to construct such a network.
The scheme of the network is illustrated in Figure 7.6. Events modeled in the BN are the
following:

• Xk− , the confidence before the detection is attempted

• Z0, the chosen landmark (the white strip) is observable in the ROI

• Dk, a landmark is detected in the focal zone,

• Db, the correct landmark has been detected (which manages landmark ambiguity)

• Xk+
, the confidence after the detection is attempted (success or failure)

Z0

Dk

Xk−

Db

Xk+

Figure 7.6: Bayesian Network used for the confidence estimation. The yellow nodes are
the input nodes, the purple nodes are the nodes we are seeking to estimate.

This BN can take into account several uncertainties: the detector’s performances in the
node Dk, the observability of the segment in the ROI modeled in the node Z0, the ambi-
guity in detecting the right segment (the one that belong to a lane marking) is modeled
in the node Db. Besides, this network has two main uses, the first one is to calculate
the a priori probabilities P(Dk) and P(Db) for the entropic criterion Hsel.The second one
is to determine the confidence P(Xk+

) obtained after proceeding to a detection. This
probability will be kept updated in this network across all the detection processes, and
it will be used as an integrity monitoring metric that will ensure that the global model
and the detected segments are coherent to the road’s shape. Further application of this
probability will be discussed in the end-stage. Finally, to avoid encumbering this part, all
the computation related to the BN are presented in Annex 10.2.
The high-level representation in the architecture of the proposed BN allows the abstrac-
tion to the type of data sensors used. Hence, the same BN architecture is used for both
lidar and camera sensors.
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7.3.3/ DETECTION

Once the most informative ROI is chosen, we proceed to the detection process. The
objective of this procedure is to find a segment corresponding to a part of the ego-lane
marking in this chosen ROI.
When dealing with lidar data, the points cloud that are stored in the ROI are considered
to be a part of the ego-lane marking. Therefore, a segment is fitted on those points. On
the other hand, when dealing with the camera image we have to find the patterns that
are considered as part of the ego-lane marking. As discussed in the state-of-the-art part,
there exist several filters that have been introduced to detect these kinds of primitives. In
our work, the implemented method is based on a row filter. The idea is to compute the
gradient of the image row by row with the aim to find pixels that correspond to the lane
marking. Once the patterns have been selected for the complete ROI, a fitting procedure
has to be made to fit a segment on the collected patterns.
In our work, we use an extended version of the Ransac method [18]. The strategy is
to detect a segment in the corresponding zone.The selected segment must satisfy two
requirements in terms of the position of the middle of the segment with respect to the
ROI, and the slope of the segment. If the number of patterns extracted is not sufficient,
or if the selected segment does not satisfy these requirements, the detection process is
considered as failure and hence the algorithm returns to the selection stage and selects
the second most informative ROI. Meanwhile, the confidence in the model P(Xk+) is
updated by inferring the node Dk (failure) in the BN.

On the other hand, if the selected segment satisfies the requirements, two updates are
performed. First, the confidence in the model P(Xk+) is updated by inferring the node
Dk (successful) in the BN. Second, an update of the probabilistic model is performed.
Thus, for each ROI two points p1(u1, v1) and p2(u2, v2) that define the selected segment
are defined. For these two points, a state vector xp = (u1, u2)> is defined, we associate
covariance matrix Σxp :

Σxp =

σ2
u1

0
0 σ2

u2

 (7.12)

With σ2
uu

representing the error in the detected segment.
In order to update the probabilistic model, we use a Kalman filter [18] as follows:u+ = u− + Ku

[
x̂p − xp

]
Σ+

u = Σ−u −KuCuΣxp

(7.13)

Ku being the Kalman Gain, (u−,Σ−u ) is the model before detection and (u+,Σ+
u ) is the

model after detection, Cu is the matrix linking the vector xp to the vector u′. Nevertheless,
these equations hold for both lidar and camera, only notations will change (Σ+

uand Σ−u will
be replaced by Σy

+
l,r and Σy

−
l,r respectively).

7.3.4/ END

After each successful detection and update; we want to know if the ego-lane detection
recognition is achieved. To perform this operation we rely on the features of the entropy
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as presented in Subsection 7.3.2.
The idea is to know if enough information has been gained in comparison with the initial
configuration. In other words, we compute the entropy improvement between the initial
stage (the initial covariance matrix) and the actual stage (the actual covariance matrix
after a successful update). However, taking into account only the entropy improvement is
not sufficient. Indeed, we have to ensure that the global model used and the correspond-
ing detected segment are coherent. To verify this coherence we rely on the probability
calculated in the Bayesian network P

(
Xk+

)
. Consequently, we define an entropic criterion

Hgain that gather the entropy improvement between the initial covariance state Σu′ and the
current covariance state Σu+ , and takes into account the confidence in the current state
expressed by the probability P (Xk+). Thus, for the camera data, Hgain is computed as
follows

Hgain = P
(
Xk+

)
.
1
2

[
log|2πeΣ+

u | − log|2πeΣ
′

u|
]
, (7.14)

We would like to emphasize that the definition of the entropic criterion Hgain remains the
same when dealing with lidar pointcloud, only the covariance matrix Σu′and Σu+ will be
replaced by Σy′l,r and Σy+

l,r
respectively.

Now, this entropy improvement is calculated, we want to compare it to a certain value
to know if the recognition process is finished. In our work, we compare this criterion to
the maximum entropic criterion that can be achieved. Put it another way, the entropy
improvement obtained if successful detections have been in all the ROI. We define this
quantity as Hmax. Under the light of these considerations, the ego-lane marking has been
detected if the following condition is satisfied :

Hgain > λHmax, (7.15)

with λ a fixed coefficient (< 1). If the condition is satisfied, it means that enough detec-
tions have been attempted successfully, and these successful detections have lead to
a new probabilistic model which is coherent to the initialized model. In addition, it also
means that the current probabilistic model is sufficiently precise to consider the ego-lane
recognition finished.
If this condition is not satisfied, the ego-lane recognition process is repeated. Hence, the
algorithm goes to the selection stage and chooses the second most informative ROI is
selected. On the other hand, if a detection process has been tested on all the ROI re-
maining and the condition is still not satisfied, then it means that the current probabilistic
model is not coherent and does not cover the lane marking. In these cases, the recur-
sive nature of the algorithm allows it to go backward and backs the previous probabilistic
model, which means the one before the update.
Finally, if the condition is satisfied then the ego-lane marking detection is completed and
hence the recognition process is finished, it also indicates the end of the ego-lane level
localization. Indeed, the update of the probabilistic model in the sensor frame leads to
the update of the road model defined by (xl,r,Σxl,r ). Consequently, an estimation of all the
road parameters is performed, and hence the lateral position y0 of the ego-vehicle with
respect to the ego-lane is computed.

7.3.5/ TRACKING STEP

Once the ego-lane recognition process is finished, a tracking procedure is performed.
The objective of this process is to provide a smaller confidence interval for the next frame
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(k + 1) than the one provided by the initial probabilistic model (cf. subsection 7.3.1). This
implies smaller values for the covariance matrix Σyl,r for lidar, and Σu for camera image.As
a consequence, it also reduces the required computation needed for recognition frame.
To do so, we define a general vector xall. When dealing with lidar data, this vector
which contains the 2D vector yl,r and the road’s parameter vector xl,r defined as follows
xall = (xl,r, yl,r)>. On the other hand, when dealing with camera images, the vector xall

contains the pixel polynomial representation u and the road’s parameter vector xl,r. In the
same logic its covariance matrix Σxall is defined. The initial value of this newly defined
probabilistic model (xall(0),Σxall(0)) can be easily computed using the same strategy pre-
sented in Subsection 7.3.1. Thus, we start computing the evolution of the model (xl,r,Σxl,r )
as follows[18]: xl,r (k + 1) = M xl,r(k) + Wt

Σxl,r (k + 1) = M Σxl,r (k) MT + Q
(7.16)

This equation is linear and holds for small time interval. Hence, M is the evolution matrix
that includes the displacement and the angle difference. The matrix Q represents the
error in the evolution matrix. Thereafter, we update the new model (xall(k + 1),Σxall(k + 1))
using the model (yl,r(k),Σyl,r (k)) that we get from the recognition step (for the lidar data)

xall(k + 1) = xall(0) + Kt
[
xl,r(k + 1) − xl,r(0)

]
Σxall(k + 1) = Σxall(0) −KtCtΣxall(0)

Kt = Σxall(0)CT
t

[
CtΣxall(0)CT

t + Σxl,r (k + 1)
]−1

xl,r = Ctxall

(7.17)

With (xl,r(0),Σxl,r (0)) being the initialized model from subsection 7.3.1. After this update,
the vector yl,r(k + 1) and its covariance matrix Σyl,r (k + 1), contained in the model (xall(k +

1),Σxall(k +1)) define a new confidence interval for the next frame. The previous equations
hold for the lidar data. However, the same equations are used when dealing with the
camera image, the vector u(k) and the matrix Σu(k) will replace the vector (yl,r(k) and the
matrix Σyl,r (k))

7.3.6/ CANONICAL EXAMPLE

In the following, an example of the functioning of the algorithm on an image is presented.
Graphical illustration is given as a support for each step of the RIDA in Figure 7.6 in which
the confidence in the model and the entropy improvement are shown at each step:

• Figure 7.6a Illustrates the initialization stage on which the probabilistic model
(u′,Σu

′) is projected in the image space and the initial confidence about the model
is set. The mean values of the lane marking contained in the vector u′ are shown
in blue, and the uncertainties coming from the covariance matrix Σu

′ are shown in
red. Once the probabilistic model is set, the area of research are divided into ROI
(in this example, 9 regions for each edge). Afterward, the most informative ROI is
chosen (illustrated in yellow) and detection is attempted in this ROI

• Figure 7.6b The detection attempted was successfully leading to an update to the
probabilistic model and hence reducing the ROI area. Although, even if the detec-
tion was successful, the confidence in the model goes lower. Indeed, the shrinkage
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of the uncertainties’ area leads to a loss of integrity. In contrast, the entropy gain
goes higher. Afterward, the next most informative ROI is chosen and detection is
attempted.

• Figure 7.6c to Figure 7.6i the procedure of selection, detection, and update is re-
peated until the entropic gain exceeds the threshold λ Hmax. Once the entropic gain
is superior to this threshold, the lane marking detection is considered as finished as
illustrated in Figure 7.6j

(a) (b)

(c) (d)



116 CHAPTER 7. EGO-LANE LEVEL LOCALIZATION SOLUTION

(e) (f)

(g) (h)

(i) (j)

Figure 7.6: All steps for the RIDA. In the upper part of each image, red is used for the
confidence about the probabilistic model, blue for the entropic gain, and the green line
represents the threshold for which the recognition is considered finished. In the lower
parts of each image the lane marking are illustrated in blue, the uncertainties about these
marking is show in red, green is used for theROI and yellow for the selected ROI. Details
about each image are given in text.
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7.4/ RESULTS AND DISCUSSION

In order to show the effectiveness of our algorithm several experimental results have been
conducted on both camera images and lidar data. However, as discussed in Chapter 3
the evaluation of the majority of lane marking algorithms for camera images is made on
the pixel level. This type of evaluation is not suitable for our case, since we do not take
into account all the pixels of the image that belong to the lane marking, but we model the
curvature of the road with a polynomial curve. In addition, the metrics that are used in the
literature have the downside of not capturing the global coherence of the detected lane
marking, which is translated in the shape of the ego-lane. However, qualitative results in
the form of videos can be found following this link:shorturl.at/ajpG7.
Under these circumstances, we tested our algorithm on lidar data.

7.4.1/ THE DATASETS

Therefore, to illustrate the effectiveness of our lidar-based lane detection system, we in-
vestigate the available datasets for autonomous vehicles. We focus our attention on the
datasets suitable for lane marking detection in highway scenarios. Taking into account
these considerations, it appears that most of the available datasets are not suitable to
qualify the effectiveness of our algorithm, mainly for two reasons. The first one is that
most of the datasets do not provide lidar data. The second one is the type of annotation
for the Ground Truth. As highlighted in Chapter 3, there does not appear to be a con-
sensus among the autonomous driving community on the type of annotation for ego-lane
marking. In reality, most datasets use pixel-wise annotation (e.g, KITTI [70], Ego-Lane
Analysis System (ELAS) [110], Unsupervised Llamas [141]). This pixel-level annotation is
not suitable for us. Indeed, we have a higher-level representation of the lane, as we repre-
sent the ego-lane marking as a polynomial. Of course, someone may point out the Carina
datasets [88]. However, to the author’s knowledge, these datasets are still not available.
The absence of suitable ground truth to analyze the effectiveness of our lidar-based lane
detection system brought us to build our own annotation using the KITTI datasets [70].

7.4.2/ CONSTRUCTION OF THE DATASET

In order to evaluate our ELL algorithm, we have to build the ground truth from the KITTI
datasets by manually annotating the lidar points to determine the ego-lane. The strategy
adopted is to transform the lidar pointcloud into a Bird’s Eye View image as illustrated in
Figure 7.7 . This transformation allows us to get an image on which we can perform pixel
annotation for the lane marking. In our experiments, the image has a dimension of 240
x 600 pixels with each pixel has a size of 0.05 x 0.05 m. This procedure is repeated for
all the two highway sequences from the KITTI datasets noted as "2011_09_26/0027" and
"2011_09_26/0028".
Once the BEV images available, we annotate the ground truth for the ego-lane as illus-
trated in Figure 7.7. Therefore, all the evaluations will be conducted in this BEV space.

shorturl.at/ajpG7
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Figure 7.7: Process for the evaluation of the detection lane, first a BEV (Bird’s Eye View)
image is produced with its associated ground truth in blue (a), the result of the detection
is transposed in the BEV image in green (b).

7.4.3/ QUANTITATIVE RESULTS

In order to quantify evaluate the effectiveness of our algorithm, statistical analyses have
to be made for the detection performances. Thereby metrics have to be chosen. In that
context, several metrics are used in the literature [124]. However, as it has been con-
cluded in Chapter 3, the majority of these metrics are not suitable to be used to evaluate
our algorithm. Indeed, we need a metric that enables us to distinguish between an error
of 1 cm and one of 1 m. For that reason, we use Root mean squared error (RMSE). In-
deed, the BEV representation allows us to have a metric representation of the ego-lane
marking. Furthermore, the RMSE metric has the benefit of penalizing large errors. Nev-
ertheless, in order to accomplish this evaluation, parameters related to our probabilistic
model have to be defined. These parameters are shown in Table 7.1. The authors would
like to emphasize that these parameters were set by hand and no extensive hand tuning
was performed. In addition, these parameters are means values that represent global
knowledge about road’s shape model and are suitable for highway scenarios. The cor-

variable definition value

nroi number of ROIs 20
µx0 mean value for distance to center line 0 m
µpsi mean value for ψ 0 rad
µLw mean value for lane width 3.5 m
σc′ standard deviation for the curvature’s derivative 10−5m−2

σc0 standard deviation for the curvature 10−4m−1

σx0 standard deviation for distance to center line 0.25 m
σpsi standard deviation for ψ 0.1 rad
σLw standard deviation for lane width 0.5 m

Table 7.1: Parameters used for our experiments

responding results for the RMSE are summarized in Figure 7.8. The average values for
the whole sequences are presented in Table 7.2. The results presented testify about the
effectiveness of our proposed algorithm. Accordingly, by taking into account the RMSE in
Figure 7.8, we found that more than 97.80% of the time the detection error is below 0.15 m
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Metrics Sequence 27 Sequence 28

RMSE (mean) 0.07 m 0.11 m
RMSE (median) 0.06 m 0.10 m
RMSE (max) 0.40 m 0.48 m

Table 7.2: Results of RMSE for our experiments on the KITTI dataset.

for sequence 27 and 80.61% for sequence 28. Nevertheless, in the worst cases, the max-
imum values in Table 7.2 are 0.40 m and 0.48 m which shows that even when incorrect
detections happen, the error is still acceptable.

0.00 0.04 0.08 0.12 0.16 0.20
error in m

Figure 7.8: RMSE of the sequence 27 and of the sequence 28. The color code used is
the follow: Orange stands for sequence 27 and Blue for sequence 28

Furthermore, when these incorrect detections occur, the outcome result is still coherent
as shown in Figure 7.9. By investigating these cases we found that these scenarios
happen when the density of the lidar is not enough sufficient for a good ego-lane marking
detection.

7.4.4/ QUALITATIVE RESULTS

Some qualitative results concerning ego-lane detection are presented in Figure 7.9. For
a visual comparison, the ego-lane marking detected was projected on the image and a
camera-based detection solution was added.
The presented results show that the proposed Lidar-based solution is suitable to detect
the ego-lane marking. In Figure 7.9(b) an illustration of a case where the high brightness
makes the detection of the ego-lane marking difficult for the camera. However, it is not the
case when using the ego-lane marking algorithm with the lidar data. The most remarkable
attribute of the proposed algorithm appears when a miss-match happens, as illustrated in
Figure 7.9(d). Indeed, the outcome is still coherent, the geometry of the lane is preserved.
This feature is due to the probabilistic model (yl,r,Σyl,r ), as we take into consideration the
shape of the road from OSM as prior. As a result, even if a miss-match occurs, the result
of the detection is still coherent, which is not the case when using a traditional data-driven
approach. In [124] when miss-matches occur, it results in a cross-shaped lane marking
that is not coherent to the shape of a road, ultimately this kind of method can not be solely
used for an autonomous vehicle application. Besides our solution shows good results
when detecting the ego-lane marking, it guarantees that even if the detecting process



120 CHAPTER 7. EGO-LANE LEVEL LOCALIZATION SOLUTION

(a) (b)

(c) (d)

Figure 7.9: Some examples of detections using the lidar, the results were projected into
the image for a visual comparison with a camera solution. (a) shows a case where the
lidar and camera solution correctly detects the ego lane, (b) shows a case where the
camera fails due to high brightness, (c) the lidar fails where the camera does not, in (d)
both of the solution fail. The color code used is as follows: green for the mean value of
the ego-lane marking using lidar and blue for camera. An additional video is provided
in shorturl.at/bktvE

goes wrong, the outcome will be still coherent and acceptable. The work presented in
this chapter have been published in ICARCV 2020 : 16th International Conference on
Control, Automation, Robotics and Vision (ICARCV20) [165] and have been selected for
the Best Student Paper (5 candidates).

7.5/ CONCLUSION

This chapter details the ELL solution proposed in this P.h.D work. The global architecture
proposed allows the detection of ego-lane marking for both lidar and camera images.
The proposed framework relies on an information-driven approach and is designed to
benefits from inaccurate inputs that represent priors on road’s geometry from OSM. To
do so, a probabilistic model was introduced in order to restrict the region of interest in
the sensor domain (camera or lidar). Moreover, this probabilistic model ensures the co-
herence of the results of the ego-lane detection, since it takes into account the geometry
restriction of the lane. Furthermore, the presented framework guarantees that the out-
come of the detection is coherent to the road geometry, as the shape of the detected
ego-lane marking is coherent even if miss-matches occur.
For the recognition process, we proposed a Recursive Information-Driven Algorithm
(RIDA) that uses entropy features in order to select the most information area of research
to reduce the space complexity. The mathematical formalizing of each block composing
the RIDA have been justified. In addition to that, the robustness of the proposed method
is proven on real datasets and statistical metrics are used to highlight our method’s effi-
ciency.

shorturl.at/bktvE
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In the next chapter, the third part of the proposed end-to-end localization framework is
introduced. It corresponds to the LLL algorithm proposed in this P.h.D work.
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8.1/ PROBLEM FORMULATION

Knowing the position of the host lane can be utilized by the autonomous navigation sys-
tem to provide the most adequate instructions. The navigation system may be required
to recommend lane change to driver in order to maintain the driver’s safety. Therefore, an
accurate but also reliable Lane-Level Localization (LLL) is needed.
The state-of-the-art review in Chapter 4 presented the existing solutions in order to per-
form the LLL. In the broadest sense, LLL can be performed in two distinct ways. The first
category relies on a high-definition map that contains landmarks of the road scene. The
methods that fall into this category are highly tributary to the quality of the map used. In
contrast, the second category relies on the detection of landmarks by on-board sensors.
Contrary to the first category, these methods do not suffer from the HD map’s exorbitant
cost to build and maintain. Therefore, we present a Modular Probabilistic Framework for
lane level localization that relies on on-board sensors, ELL and lanes number informa-
tion from OSM. The novelty relies upon the probabilistic framework developed, as we
introduce a modular BN to infer the ego-lane position from multiple inaccurate informa-
tion sources. The flexibility of the BN is proven, by first, using only information from
surrounding lane-marking detection, and second, by adding adjacent vehicles’ detection

122
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information. Afterward, we design a HMM to temporarily filter the outcome of the BN us-
ing the lane change information. The effectiveness of the algorithm is tested are validated
on challenging scenarios and compared to an existing method, whose authors made their
datasets public. In the following sections, details about the proposed LLL are given.

8.2/ MODULAR PROBABILISTIC FRAMEWORK FOR LANE LEVEL

LOCALIZATION

Once the ego-lane localization is estimated, we have to perform the lane-level localization
in order to correctly choose the right lane on which the vehicle travels. To do so, we
propose a probabilistic framework that is split into three stages.
In the first stage, we extrapolate adjacent lanes by assuming that lanes in the same road
have the same width Lw and same curvature’s parameters c′, c0. The second step consists
of a Bayesian Network (BN), that takes as input the results of the hypothesized adjacent
lane-marking detection, whether these detections succeed or fail in order to determine
the ego-lane localization. Furthermore, since the proposed BN is modular, we also use
an adjacent vehicle detector that will serve to solve some ambiguous situations. The third
step includes a filtering process, using a Hidden Markov Model (HMM) in order to take
into account physical constraints of the ego-vehicle.

8.2.1/ ADJACENT LANES EXTRAPOLATION

The adjacent lanes are extrapolated by taking advantage of the estimated ego-lane local-
ization and the number of lanes from OSM. Thus, each adjacent lane is described by a
probabilistic model {xa,Σxa}, where xa contains the parameters (c′, c0, ψ, Lw, y0)T described
in Chapter 7 and Σxa refers to the corresponding covariance matrix. The assumption
made is that the curvature and lane width stay constant for all the lanes in the same road.
Thereby, the value of the vector xl remains the same as xl,r, only the value of y0 will be
shifted by a (±iLw) with (−i) indicates that the edge is on the right of the ego-lane and
(+i) on the left. The number of adjacent lanes extrapolated is equal to the lanes number,
which is assumed to be known from OSM (cf. Chapter 6).
Thus, from a perspective view, the hypothesized lanes are shown in Figure 8.1.

Following the same strategy adopted in Chapter 7, the probabilistic model {xa,Σxa} can be
transferred to the model image {ua,Σua}. As a consequence, ua represents the horizontal
pixel of the edges in the image and Σua its interval confidence. In Figure 8.2, the adja-
cent lane regions of interest resulting from the extrapolation are shown on the image. In
addition to focusing the detection on a specific region of the image, this procedure allows
us to keep the global coherence between the adjacent lane marking and the ego-lane
marking detected before.

For each adjacent lane marking, a detection process is performed. The results of this de-
tection, or in other words, the Boolean that indicates if the detection has been successful
or not, is fed into a designed Bayesian Network (BN). The events modeled in this network,
as well as the network’s objective, are described in more detail below.
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Figure 8.1: Perspective view, ego-lane in solid lines and hypothesized edges in dotted
lines (case three lanes road)

Figure 8.2: Confidence intervals for adjacent hypothesized edges for a two lanes road.
Green represents the estimated edges of the ego-lane and blue illustrates the confidence
intervals for the possible positions of the adjacent lanes marking.

8.2.2/ BAYESIAN NETWORK FOR EGO-LANE DETERMINATION

The BN proposed is designed to be flexible and modular for other detection results that
may arrive from any type of sensors, i.e. vehicle detector, guardrail detector. As a con-
sequence, its architecture is similar to the one presented by Nieto et al.[47]. The idea to
have a semi-fixed BN in which the addition of other detection results will not lead to the
reshaping of the network. Towards this end, a strong assumption is made. Indeed, in
this network, the detection results from the different detectors are considered indepen-
dent. Although this assumption is not always guaranteed. Indeed, some detections can
be correlated (i.e., the non-detection of a lane marking can be caused by the presence
of a vehicle). However, it allows the modality and flexibility of the proposed BN. As con-
sequence, the general architecture of the BN used is illustrated in Fig 8.3. The nodes
described are the following:
- Zki: The element i is observable, this element can represent any element of the road
scene: {vehicles, lane-marking, traffic signs...},
- Dki: The detection of the element i is successful,
- Lbn: The lane on which the ego-vehicle is traveling Lbn = {l1, ..., ln}, where l1 indicates
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the leftmost lane and n the lanes number.
A deep look into this architecture, there exists similarities between this BN and the Bayes
naive classifier architecture that are used for classification problematic. The likeness does
not limit itself on the graphical representation. In the Bayes naive classifier, the nodes are
considered as independent. However, the Bayes naive classifier is considered one of the
most powerful classifiers in the machine learning domain. For those reasons, we think
that this assumption will not hurt the accuracy provided by our solution. Furthermore, in

Zk1

Dk1

Zk2

Dk2

Zk3

Dk3

. . .

. . .

Zkn

Dkn

LBN

Figure 8.3: Graphic representation of the general architecture of the Bayesian Network
used for the ego-lane determination

order to show the flexibility of the BN, we will first use only adjacent lanes’ detection to
determine the ego-lane, then, we will introduce an adjacent vehicle detector based on
Deep Learning solution available in the literature (YOLO [104]).
Depending on the results of the detection, we infer the probability to belong to a lane
{l1, l2, ..., ln} as follows:

p(Lbn=li) = p(Lbn=li |Dk1,Zk1, ...,Dkn,Zkn) (8.1)

8.2.2.1/ BAYESIAN NETWORK USING ONLY ADJACENT LANES DETECTION (BN+ALD)

To start, we only use the adjacent lanes detections as input into our BN. Thus, the ego-
lane determination will be determined considering the result of these detections, whether
these succeed or fail. Figure 8.4 shows results of the corresponding BN. As illustrated,
there are some cases where the BN is unable to overcome the ambiguity to locate the
ego-lane. Indeed, this happens when the adjacent edges are not detected or wrongly
detected.
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Figure 8.4: Results of ego-lane determination using the BN with only the adjacent lanes’
detection. In (a) the BN success as the marking are correctly detected, in (b) and (c)
the adjacent lanes are not detected, which leads to a false result. In all figures, green
represents ego-lane marking and yellow represents adjacent lanes marking detected

8.2.2.2/ BAYESIAN NETWORK WITH THE ADDITION OF THE ADJACENT VEHICLE DETEC-
TOR (BN+ALD+AVD)

As mentioned before, the BN proposed is aimed to be modular for other detectors. Thus,
we use the same BN architecture presented earlier and add the information about the
adjacent vehicles’ detection.
The final Bayesian Network used is illustrated in Figure 8.5, where Dli indicates whether
the detection of adjacent lane i is successful. Concerning Dv j, it indicates whether the
detection of the adjacent vehicle j is successful. Knowing that this detection is performed
in the regions of the image bounded by the neighboring marking lanes.

Figure 8.5: BN with adjacent lanes and vehicles detection (case 4 lanes road)

As a result of this addition, the determination of the ego-lane is affected as shown on
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Figure 8.6.

Figure 8.6: Results of ego-lane determination using the BN with the adjacent lanes and
vehicle detection. For the case (a), the addition of the vehicle detector does not change
the result, since no vehicle is detected. However, in (b) and (c) the vehicle detector leads
to a correct determination of the ego-lane. In all figures, cyan indicates the bounding box
of vehicles detected on the image.

8.2.3/ HIDDEN MARKOV MODEL LANE-LEVEL LOCALIZATION

The BN proposed in the section before is applied on a per-frame basis. However, the
dynamic relationship between two consecutive frames is not taken into account. Indeed,
the BN does not take into consideration the dynamic constraints of the ego-vehicle (i.e,
the ego-vehicle can only change lane to an adjacent lane). In order to take into account
these constraints, we filter the output of the BN by a Dynamic Bayesian Network which is
the Hidden Markov Model (HMM).
We will use Lt to denote the set of ego-lane state variables at time t, which depends
on the lanes number nlanes and which are assumed to be observable. et denotes the
observable evidence variable. The aim of the filter algorithm is to estimate the probability
P(Lt+1|e1:t+1). According to [66], this probability can be formulated as follows:

P(Lt+1|e1:t+1) = P(Lt+1|e1:t, et+1) (dividing up the evidence) (8.2)
= αP(et+1|Lt+1, e1:t)P(Lt+1|et+1) (Baye’s rule) (8.3)

= αP(et+1|Lt+1)P(Lt+1|et+1) (Markov assumption) (8.4)

Where α denotes a normalizing constant to make the sum of probabilities equal to 1. By
arranging Equation 8.4:

P(Lt+1|e1:t+1) = αP(et+1|Lt+1)
∑

lt

P(Lt+1|Lt, e1:t)P(Lt, e1:t)

= αP(et+1|Lt+1)
∑

lt

P(Lt+1|Lt)P(Lt, e1:t) (8.5)
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The probability P(et+1|Lt+1) comes from the observation model, hence in this work from
the BN described previously, thus:

P(et+1|Lt+1) = P(Lbn) (8.6)

With regard to the probability P(Lt+1|lt), it comes from the transition model. It expresses
the probability of the ego-lane to change its current state, which is the lane change prob-
ability.

Finally, the third term P(Lt, e1:t) expresses the current state distribution. Graphically, we
can illustrate the corresponding HMM as in Figure 8.7.

l1 l2 l3 . . . ln−1 ln

LBN

P (Cr)

P (Cr)−Pcl P (Cr)−P (Cl)P (Cr)−P (Cl) P (Cl)
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P (Cl)
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P (Cl)

P (Cr)

P (Cl)

e1
e2
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en−1 en

Figure 8.7: Hidden Markov Model for n lanes case, with L = {l1, l2, ..., ln} being the set of
hidden states and O = {e1, e2, ..., en} being the set of observations resulting from the BN.

With the recursive formulation obtained in Equation 8.5, we can estimate the current ego-
lane state given the observation obtained from the BN. But before, we have to compute
the lane change probability.

8.2.4/ TRANSITION PROBABILITY (LANE CHANGE PROBABILITY)

To calculate the lane change probability, we model the lateral position y0 estimated in
Chapter 7 as normal distribution with mean µy0 and variance σ2

y0
:

y0 ∼ N(µy0 , σ
2
y0

) (8.7)

The value µy0 and variance σ2
y0

are obtained from the estimated probabilistic model cal-
culated by the ELL algorithm (cf. Chapter 7), as illustrated in Figure 8.8.

Starting from this estimation, we predict the lateral position y0 at tk+1 using the proprio-
ceptive information of the ego-vehicle. Accordingly, the lane-change probability as shown
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(a) (b) (c)

Figure 8.8: Estimation of the lateral shift µy0 and its variance σy0 (3 σ) in case of lane
change.

on Figure 8.9, is calculated as follows:

P(Cr) =

∫ ∞

Lw/2

1

σy0

√
2π

e
−

(x−µy0 )2

2σ2
y0 dx (8.8)

P(Cl) =

∫ −Lw/2

−∞

1

σy0

√
2π

e
−

(x−µy0 )2

2σ2
y0 dx (8.9)

With P(Cr) the probability to right change lane and P(Cl) the probability to left change
lane.

Figure 8.9: Lane change probability, with the blue area representing the right change
probability.

Now, that we have designed the HMM, we will introduce the real-world experimental re-
sults on the following section.
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8.3/ REAL-WORLD EXPERIMENTAL RESULTS

In order to evaluate our proposed method, we tested our algorithm on real driving
data sets. The first one was collected in the region of Clermont-Ferrand in France,
where we drove our vehicle on a two lanes road on the national highway for a total of
838 frames. Given the number of frames, these datasets were only used to show the
effectiveness of the algorithm. In addition, we wanted to compare the performances of
our algorithm to the literature on more challenging scenarios. Naturally, we turned our
attention to the KITTI datasets [77]. However, these datasets contain only few lanes and
few lane-changing scenarios. Thus, we tested our algorithm on some datasets refereed
in [109] 1. Unfortunately, all the data were not ready yet. But, we were able to test on
some of them, noted as the A4-Highway Italy, for a total of 9528 frames. The collected
datasets were manually annotated in a per-frame basis in order to determine the correct
ego-lane classification. In the following, we will refer to our datasets as "2-lanes" and the
A4-Highway Italy as "4-lanes".

To show the increment of each component added, we first determined the ego-lane using
the BN with adjacent lanes’ detection only. In the second instance, we introduced the
adjacent vehicles’ detection in the BN. In all instances, we filtered the outcome of the BN
with the HMM.

8.3.1/ QUANTITATIVE RESULTS

To evaluate our algorithm we compare the output of our LLL with the position of the
ego-lane marking in the road. Accordingly, all the results obtained are summarized in
Table 8.1.
The increment given by each module is clearly illustrated. Indeed, altogether cases the
BN+ALD+AVD classification is more precise than the BN+ALD, implying that the addition
of another information source will also increase the obtained accuracy. Furthermore, the
HMM increases classification accuracy significantly in all cases as compared to the BN
result. This is due to the model’s inclusion of temporal cohesion. For example, the vehicle
cannot shift from the leftmost to the rightmost lane in two successive frames. Another in-
teresting point is the classification accuracy achieved for the 2-lanes datasets. We notice
that the accuracy achieved with the BN+ALD+HMM is the same as the one achieved with
the BN+ALD+AVD+HMM, which shows that the HMM was sufficiently robust in the first
place and the addition of the adjacent vehicle’s detector did not affect the results. More-
over, there are certain situations where vehicle detection is irrelevant, such as where the
detected vehicle is on a nearby road. To solve this problem, we would have to determine
the localization of the detected vehicle relative to the ego-vehicle, which is currently not
the case since we use solely images as input.
Following further research into the incorrect results, it appears that the BN+ALD’s false
classifications was attributed to two major reasons:

• The lanes markings are not detected this can be explained if the lanes marking are
missing or hidden by an object.

1The authors would like to acknowledge the authors of [109] for their help with the datasets
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BN + ALD BN + ALD + HMM BN + ALD + AVD BN + ALD + AVD + HMM

2 − lanes 91.89% 99.00% 93.60% 99.00%
4 − lanes 67.36% 78.36% 74.67% 85.35%

Table 8.1: Classification accuracy for ego-lane determination. bn + ALD refers to the
BN fed with the adjacent lanes’ detection, bn+ALD+HMM indicates the HMM with the
corresponding BN, bn+ALD+AVD refers to the BN feed with adjacent lanes and vehicles
detection and bn+ALD+AVD+HMM refers to the HMM with the corresponding BN.

• The lanes markings are wrongly detected. For those cases, it shows the limitation
of the used lane marking detector.

Finally, we manage to outperform the authors of work of [109] on the same datasets.
Indeed, they achieved 77% correct classifications, where we were able to reach 85.35%
on 9528 frames.

8.3.2/ QUALITATIVE RESULTS

In addition to the quantitative results presented, we present some qualitative results of
the proposed LLL. In Figure 8.10 correct classification of the LLL is shown on different
example images. As illustrated the output is coherent to the detection results. In the
other hand, Figure 8.10 shows incorrect classification of the LLL. Taking into account
these results:

1. In Figure 8.10e the lane marking of the leftmost lane has been not detected. In
addition to that, no cars were detected in the left. Given these inputs, the LLL,
chooses the second lane which is not incoherent.

2. In Figure 8.10f the lane marking of the exit lane have been detected misleading the
output of LLL,

3. In Figure 8.10g and Figure 8.10h similar to the previous case, the lane marking for
the exit lane has been detected leading to a false classification

In essence, even if the output of the proposed LLL is incoherent it is still coherent when
taking into account the outputs. The work presented in this chapter have been published
in IEEE Intelligent Vehicles Symposium (IV’19) [147].

8.4/ CONCLUSION

In this chapter, the problematic of LLL have been tackled, and a solution has been pre-
sented. The proposed solution is based on a probabilistic framework that is composed
of two blocks. First, a modular BN is used to infer the ego-lane position from multiple
inaccurate information sources. The flexibility of this BN is proven, by first, using only
information from surrounding lane-marking detection, after, by adding adjacent vehicles
detection information from a well-known DL network (YOLO [104]). Second, a designed
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HMM is used to temporarily filter the outcome of the proposed BN. Indeed, this HMM
translates the physical constraints of the vehicle when changing lanes. for example; the
vehicle can not change lanes if these two lanes are not adjacent. Taking these consider-
ations and exploiting the estimated ELL from Chapter 7, the HMM is able to enhance the
proposed BN for lane determination.
Furthermore, real-world experimental results have been conducted to show the effec-
tiveness of our algorithm. First, the algorithm has been tested on recorded images of
national highway in the region of Clermont-Ferrand, where the roads have two lanes.
Then, the performances were validated on more challenging scenarios and compared to
an existing method, whose authors made their datasets public. Naturally, for each test we
highlighted the modularity of the proposed framework by showing the increment provided
by each block (BN+ lane detection, then BN+ vehicle detection +BN+HMM). In sum, our
algorithm outperform the solution proposed by Ballardini et al. [109] since it provides more
accurate classification (LLL 85.35% compared to 77%).
The next chapter will be dedicated to the validation of the end-to-end architecture on
recorded datasets. The objective is to show the coherence of our proposed end-to-end
solution in a real-world case.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.10: Examples of correct and incorrect ego-lane determination on the 4-lanes
datasets.The first row only correct classification are given. On the other hand, the second
row shows incorrect classification. In all cases, the ego-lane marking is shown in green
and the adjacent vehicle are shown in Blue, finally, the yellow is used for the adjacent
lane marking detected. An additional video is provided in shorturl.at/fjD06
.

shorturl.at/fjD06
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The ego-localization problematic have been dissected into three parts: Road Level Lo-
calization (RLL), Ego-Lane Level Localization (ELL), and Lane-Level Localization (LLL).
For each part, a solution has been proposed to address the localization requirements of
each one. Furthermore, the proposed solutions are flexible and modular. Hence, each
solution block can be used independently. Nevertheless, these solutions answer different
localization’s problematic. As a consequence, the way in which they are evaluated differs.
Indeed, as stated in Chapter 5, there exist no datasets or metrics that can be used to
evaluate at a stroke the whole end-to-end localization algorithm.

For these reasons, the strategy adopted in this work was to conduct from one side exper-
iments validating the functioning of each proposed solution as well as their robustness to
imperfect input data using real-world datasets. This first stage was done at the end of
each chapter: in Section 6.4, Section 7.4, and Section 8.3.

On the other side, the overall end-to-end architecture is validated on two datasets that
were collected in the region of Clermont-Ferrand. This chapter describes these datasets
and the tools used to collect them. Finally, the end-to-end algorithm is evaluated using
these datasets.
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9.1/ USED ACQUISITION PLATFORM

Following its experience in the PROMETHEUS project (completed in December 1994)
and its desire to develop an ambitious research program in the field of car driving, L’Institut
Pascal (IP ex LASMEA) has been equipped since 1998 with an experimental vehicle
named VELAC (Véhicule Expérimental du LASMEA pour l’Aide à la Conduite). The vehi-
cle is a Citroën Evasion type. In addition to that, several sensors are mounted in VELAC
to obtain information about the ego-vehicle and the environment (cf. Figure 9.1). The
main sensors used for experiments are the following:

1. GPS receiver: a classical GPS receiver placed in the middle of the rear track

2. Gray Scale Camera: placed behind the rear-view mirror to capture the scene in
front of the vehicle.

3. Inertial Measurement Unit (IMU): to capture the linear and angular velocities.

4. Wheel encoders: to estimate the distance traveled by the ego-vehicle.

(a) (b)

Figure 9.1: The vehicle used VELAC in Figure 9.1a, and the mounted sensor for the
experiment in Figure 9.1b

9.2/ OVERVIEW OF THE DATASET

The experiment was conducted in the region of Clermont-Ferrand, more precisely on a
highway containing 3 lanes. The choice of this road allows us to test every single block
of our proposed algorithm. Furthermore, the road drove contains roads that have 3 lanes
and contains more lane-changing scenarios comparing to other datasets (KITTI [70]).
Therefore, the lane-level localization is more relevant and complex on this path since it
contains more lanes and more lanes change.
The path traveled during this experiment is shown on the map as illustrated in Figure 9.2.
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Figure 9.2: Path traveled in blue for a total of 5 km (image taken from Google)

9.2.1/ STRUCTURE OF THE DATASET

During this drive, the acquisition of all the data sensors provided by VELAC was done
using the middleware ROS. The objective was to capture all the data recorded in the
format that allows us to playback and visualize it. Hence, the dataset acquired is in the
form of a bag. The bag is a file format in ROS which is used to store ROS message
data. These message data are stored in different Topics that depend on the type of data.
Furthermore, ROS offers also several tools for both recording and playback these data.
As illustrated in Figure 9.3, a visualization of all topics that have been recorded in the bag
file containing the dataset.

9.3/ PERFORMED EXPERIMENTS

The proposed end-to-end algorithm and each of the proposed modules (i.e, RLL, ELL,
and LLL) have been implemented using Python. ROS provides a library Rospy that allows
bridging between the Python code and the rosbag. This bridge allows us to test and
evaluate the whole end-to-end algorithm on the real-world dataset and hence meet the
specifications of this Ph.D.
The experiments performed concern all the three-components presented, namely, the
RLL module, the ELL module, and the LLL module. In addition to that, we emphasize on
the whole coherence between these modules and their interactions.
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Figure 9.3: Topics stored in the bag using rqt_bag. Relevant topics are highlighted in red.

To summarize, the following evaluations have been performed:

• The road on which the vehicle is traveling (cf. the OSM Way), which has been
manually annotated for each GPS frame,

• The lateral shift position of the ego-vehicle regarding its own lane. Although, no
quantitative evaluation have been performed due to the lack of ground truth, quali-
tative evaluation have been performed, by tracking the lateral shift position over the
time.

• The lane level localization evaluation, for which the position of the ego-lane have
been manually annotated for each image frame.

In the following outcome of each block (RLL, ELL, and LLL) are presented.

9.4/ RESULTS AND DISCUSSION

Before presenting the outputs of our end-to-end algorithm, we start by presenting all the
steps of the algorithm. These steps are supported by graphics that help to understand all
the functioning of the algorithm.

9.4.1/ FUNCTIONING OF THE END-TO-END ALGORITHM

In the following algorithm’s flow is presented on a canonical example:
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1. first step is to locate the vehicle on the road using the low cost GPS. To do so, we
start by retrieving the OSM’s ways from the database with the adequate query using
the Overpass API. The outcome is illustrated in Figure 9.4,

Figure 9.4: First step of the RLL with the display of the ways from OSM database. The
drawing have been centered around the estimated vehicle position.

2. thereafter, the PMMA that has been presented in Chapter 6 is used in order to select
the right way as presented in Figure 9.5. In addition to that, an estimation of the
lanes number from OSM is performed,

Figure 9.5: Selection of the Way on which the vehicle travels using the PMMA algorithm
presented in Chapter 6.
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3. once the road chosen, the road’s parameter are estimated from the map. To do so,
the road is projected in the vehicle space and fitted to the third degree polynomial.
Hereafter, the ELL process starts by projecting the polynomial model into the sensor
space (hence the camera image since no lidar is available in VELAC). The model
projected take into account the uncertainties about the value of the parameters of
the road, and is projected as illustrated in Figure 9.6,

Figure 9.6: Projection of the polynomial model into the image space. The means values
are represented in red, the interval of research in blue and the ROI in green.

4. subsequently, the RIDA algorithm is launched in order to detect the lane marking
and hence estimate the road’s parameter and the vehicle’s state. The algorithm
have been detailed in Section 7.3. Eventually, the ego-lane marking are detected
as illustrated in Figure 9.7,

Figure 9.7: Detection of the ego-lane marking in blue, and estimation of the road’s pa-
rameters.

5. once the ELL finished, the RLL algorithm is initiated. Beginning with adjacent lane
detection, this detection benefits from the knowledge of the lanes width and the
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number of lanes, in order to restrict the area of research in the sensor space as
shown in Figure 9.8,

Figure 9.8: Area of research for the adjacent lane marking in red in which the detection
will be performed.

6. meanwhile, a vehicle detector is launched in order to detect adjacent vehicle, in this
work it relies on a YOLO network (cf. Section 8.2.2). The output of the both the
adjacent lanes detection and vehicle detection is fed into a Bayesian Network that
will infer the lane position in the road as shown in Figure 9.9.

7. for the next frame, a tracking step is performed on the estimated ego-lane marking
and the probability to change lane is computed,

8. this probability is introduced in a HMM that will filter the output of the Bayesian
network for the next LLL.

These steps are repeated for each frame of the collected dataset.

9.4.2/ RESULTS

The first result shown in this section corresponds to the output of the whole end-to-end
algorithm (cf. Figure 9.10). The road in which the vehicle is traveling is shown on the
upper left side of the figure. The ego-lane marking is shown with the red color and the
lateral shift is kept tracked in the lower left side of the figure. Furthermore, adjacent lanes
marking (correct or false) are shown in cyan, and the detected vehicles with the orange
colors.

The second results shown corresponds to a sequence of outputs that highlights the func-
tioning of the dynamic function of the algorithm (cf. Figure 9.11), which is one of the main
contributions of this work. For clarity’s sake, the images do not sequence in time. In other
words, the time between the images is not the same. Indeed, the objective is to illustrate
the behavior of the end-to-end algorithm on a sequence of the frame, and we want to
empathize on key moments such as lane change.
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Figure 9.9: LLL performed taking into account the adjacent lane detection results in cyan,
and the detector failure rate. The leftmost lane is noted Lane1, while the rightmost lane is
noted Lane3

As illustrated in the mentioned figure, the ego-lane marking is kept tracked and the lane
determination is correctly determined sequentially. For the first one, it is due to the track-
ing procedure that has been presented in Section 7.3.5. Concerning the change in lanes,
it is governed by the modular probabilistic framework and especially the HMM designed
in Section 8.2.3. In addition to that, the estimated lateral position allows us to determine
lane change maneuvers that had occurred during the drive.
Nevertheless, in addition to these visual outputs, quantitative results have been noted.
In Table 9.1 the reported results concern the RLL. Comparison between the addition of
the HMM in the PMMA algorithms have been reported. The main goal is to point out the
increment of this component in the proposed framework. As highlighted, the PMMA with
the addition of the HMM improves the overall accuracy precision. This can be explained
by the inclusion of the topology of the road network in the HMM. Indeed, the transition
states are governed by the connectivity between roads.

Concerning the LLL, the results have been reported in Table 9.2. Furthermore, the
increment provided by each detector (adjacent lane, vehicle detector) and the increment
provided by the HMM is clearly highlighted in terms of accuracy. Indeed, altogether
cases the addition of the HMM provides more accurate classification than the BN alone.
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Figure 9.10: Example output of the proposed end-to-end algorithm. The RLL output is
presented in the upper left of the image, the lateral shift of the vehicle in the lower left of
the image, and the LLL in the right side of the image

3-lanes
Number of frames 205

Correct MM Without HMM 99.51 %
Correct MM with HMM 100 %

Table 9.1: Map Matching results on the entire datasets without and with the HMM

BN + ALD BN + ALD + HMM BN + ALD + AVD BN + ALD + AVD + HMM
3-lanes 78.8% 86.8% 81.30% 90.90%

Table 9.2: Classification accuracy for LLL. BN+ALD refers to the BN feed with the ad-
jacent lanes detection, BN+ALD+HMM indicates the HMM with the corresponding BN,
BN+ALD+AVD refers to the BN feed with adjacent lanes and vehicles detection and
BN+ALD+AVD+HMM refers to the HMM with the BN

Concerning the time execution, the presented results have been carried using Python 3.7
under a Dell G3 3579 Core i7 8th generation equipped with a NVIDIA GeForce GTX 1050
Ti. The computation time results presented in Figure 9.12 show that even if the entire
algorithm was coded in Python, real-time implementation is possible. Indeed, the sum
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(a) (b)

(c) (d)

Figure 9.11: A sequence of outputs of the proposed end-to-end algorithm in a lane
change scenario. In Figure 9.11a the vehicle is traveling in the third lane (the right-
most lane). In Figure 9.11b the vehicle starts the left lane change, as a consequence
the estimated lateral position go to −Lw/2. In Figure 9.11c and Figure 9.11d the vehicles
completes the lane change and is now traveling the lane number 2.

of all parts of the ego-localization algorithm is under 500 ms (446.95 ms on average). In
addition, if we glance in-depth at the time consumed in the RLL, we found that on average,
it takes 238.16 ms to query the local server containing the OSM data. Furthermore, from
the 143.67 ms dedicated to the LLL, 65.60 ms are spent on the YOLO detector. These
results lead us to assume that implementation on C/C++ will divide the calculation time
by 10 and hence will be relevant for real-time application. It is to be noted that the results
of the experiment stated above are available through this link : shorturl.at/mGKT4.

shorturl.at/mGKT4
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Figure 9.12: Computation time in ms for each part of the presented algorithm: RLL in
Light-blue, ELL in pink and LLL in light-green, with mean values of 244.53ms for the RLL,
58.74ms for the ELL and 143.68ms for the LLL. Since the computation time for the ELL
and LLL depends on the observability conditions of the markings lanes in the image, the
dispersion in time is much bigger than the RLL.

9.5/ CONCLUSION

In this chapter, the end-to-end localization algorithm has been validated and evaluated on
a collected data. This collected dataset is made available for other research through this
link: shorturl.at/lAR28. In addition to that, for the different experimentation conducted,
videos are available through this link: https://shorturl.at/gHRT7.
The evaluation of the proposed end-to-end localization algorithm conducted on the
dataset attested to its effectiveness. Furthermore, this chapter aimed to emphasize on
the global coherence of the proposed solution from RLL to the LLL modules. Indeed,
these modules have been separately evaluated and tested (cf. Section 6.4, Section 7.4,
and Section 8.3). Nevertheless, the global coherence of the proposed architecture has
well illustrated in Section 9.3.
Moreover, even if experiments shown in this work have validated several aspects of the
proposed end-to-end localization algorithm, it remains several aspects that could be im-
proved. Indeed, the time computation has to full-fit real-time application. To do so, a C++
implementation has to be done. Besides, the presented dataset do not contain a lidar
sensor. Hence, it will be interesting to test the whole architecture on a vehicle equipped
with this type of sensors. Finally, it will be interesting to test the presented architecture
on more challenging roads (i.e., highways in North American country with 6 lanes and
more). Further perspectives are cited in the following chapter.

shorturl.at/lAR28
https://shorturl.at/gHRT7


GENERAL CONCLUSION AND
PERSPECTIVES

GENERAL CONCLUSION

This Ph.D. thesis work addresses several aspects related to the localization of an au-
tonomous vehicle, mostly in highway scenarios. This localization has been partitioned
into three components, namely the Road Level Localization (RLL) which is the knowl-
edge of the road on which the vehicle is traveling on, the Ego-Lane Level Localization
(ELL) which is related to the lateral position of the ego-vehicle in his own lane, and Lane-
Level Localization (LLL) which is the knowledge of the lane’s index on which the vehicle
is traveling on. For each component, an appropriate solution have been proposed that
satisfies the localization’s requirement of each component. Furthermore, these solutions
are the cornerstone of a unified sequential framework entitled "end-to-end probabilistic
framework for ego-localization" which is the main contribution of this Ph.D. thesis. In the
following, a recapitulation of the main subjects discussed in each of the chapters com-
posing this manuscript.
A global introduction on the past and present of the autonomous vehicle in addition to the
current and future challenges that are still unsolved for autonomous vehicles have been
given. With that background, context and motivation of our research work have been dis-
cussed in Chapter 1. The main objective is to propose a unified localization framework
for ego-vehicle localization that covers all the localization requirements from RLL to LLL.
Under these considerations, the first part of the manuscript was dedicated to state-of-the-
art review related to the autonomous vehicle localization. Subsequently, this review has
been divided into four parts, each part was studied in a chapter.
Starting with Chapter 2, on which literature about Road Level Localization (RLL) systems
have been reviewed. Accordingly, the majority of the RLL techniques relies on Map-
Matching (MM) methods. These methods are clustered to whether they are deterministic
or probabilistic. Deterministic methods are straightforward techniques that do not require
complex computation. As a result, the running time of the algorithms falling into this cate-
gory is very low compared to other methods. However, these methods are very tributary
to the quality of the raw data used. On the other hand, probabilistic have power in their
capability to handle uncertainties and matching break situations. The backlash is that
they are complex and require more computations. These conclusions suggested that a
hybrid architecture will benefit from the strength of the two approaches.
Afterward, Chapter 3 was dedicated to ELL literature review. A focus was given to ELL
techniques that are based on the detection of the ego-lane marking. Accordingly, these
techniques are grouped into two categories. The first category is the model-based ap-
proaches. This has a strong ability to detect the ego-lane marking in various scenarios.
The sequential pipeline architecture of the methods that fall under this category allows a
better partition of the ego-lane marking detection, with each part being responsible for a
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specific task. Furthermore, it allows better system failure identification and enables them
to improve or incorporate new functionalities that were not supported in the initial design
without requiring significant modifications. However, the generalization of such methods
is complicated and challenging for highly complex road scenarios. On the other side,
the second category called the monolithic learning approach is based on Neural Network
perform better when a model can not be formalized or is not available. Nevertheless,
these methods require a learning phase preliminary to the deployment of the network.
Therefore, their capabilities are highly affected to the quality of the data which is limited
in quantity and is usually gathered for a specific task and for a specific configuration (e.g,
same city, same camera, same weather condition). Taking under account these consid-
erations, we came out that model-driven approaches are more relevant to our range of
application, which is the highway roads scenarios.
Thereafter, Chapter 4 reviewed techniques related to LLL. Accordingly, two paradigms
are used. The first one is the knowledge of the lateral position of the autonomous vehicle
with respect to the road. In this paradigm, lane-level map-matching algorithms are used to
match the estimated position of an ego-vehicle with a map. Generally speaking, the type
of map used for this kind of task is the Mesoscale map. Contrary to the map-matching
methods presented in Chapter 2, the lane-level map-matching algorithm is more robust
since they deal with more complex and ambiguous scenarios. Moreover, this paradigm
suffers from its dependency on the availability of this kind of map. Indeed, these maps
are cost-intensive and not open-source. The second paradigm articulates the LLL as
a classification problem. Therefore, it relies solely on the detection of visual landmark,
these detections are then fed into high-level fusion frameworks that will infer the lane lo-
calization of the ego-vehicle. In that sens, this paradigm is independent of the utilization
of sophisticated maps, and hence is more compatible with a solution that relies purely
on an open-source map. The last chapter (cf. Chapter 5) of this part was dedicated to
the existing ways to evaluate such algorithms. It appears that most researchers use col-
lected datasets to evaluate their algorithms. By doing so researchers can evaluate their
algorithms on real-world scenarios without taking the risk of deploying their solutions on
real cars. In addition to that, researchers can evaluate and compare with each other their
techniques, which creates a constructive and healthy competition among them. There-
fore, a literature review of the different available datasets that can serve to evaluate the
end-to-end localization algorithm have been presented. In addition to that, metrics that
are used in the majority of benchmarks have been discussed. This study leads us to the
conclusion that there exist no real dataset that can be used in order to evaluate the full
pipeline of our proposed solution.
In the second part of the manuscript, the proposed approach noted as "end-to-end prob-
abilistic framework for ego-localization" have been detailed and evaluated.
The first chapter of this part (cf. Chapter 6) introduced an architecture that combines
two constructed modules to determine the RLL. The first module is in charge of remov-
ing any roads that are incompatible with the vehicle configuration in terms of distance
and orientation criteria. Furthermore, a speed limit criterion was taken into consideration.
Thereupon, if the number of roads candidates is greater than one, a selection strategy
is designed. Accordingly, three probabilistic criteria were investigated in order to model
this selection strategy. The mathematical formalization has been given for each of these.
Furthermore, a second supplementary block has been added based on the output of
the first block in order to clear up ambiguous situations and account for history naviga-
tion. In that sens, a HMM was designed to model the road topology and the vehicle’s
cinematic. Details about its modeling has been given. In the second chapter of this
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part (cf. Chapter 7), an ELL solution has been detailed based on the detection of ego-
lane marking for both lidar and camera images. The proposed framework is based on
information-driven approach in which the objective guide the recognition process. There-
fore, a Recursive Information-Driven Algorithm (RIDA) has been described in detail. To
minimize the computation’s complexity, this algorithm uses entropy features to select the
most relevant data in the sensor space. Furthermore, the mathematical formalization of
each RIDA component has been explained. Afterward, in Chapter 8 a probabilistic frame-
work that solves the LLL problematic was presented. It is composed of two blocks. First,
multiple inaccurate information sources are used to infer the ego-lane location using a
modular semi-fixed BN. The flexibility of this BN is proven, by first, using only information
from nearby lane-marking detection and then incorporating adjacent vehicle detection in-
formation. Second, the BN’s output is temporarily filtered using a designed HMM. This
HMM does also translate the vehicle’s physical restrictions when shifting lanes. Indeed,
the vehicle would not be able to change lanes if the two lanes are not adjacent. Tak-
ing this consideration and exploiting the estimated ELL from Chapter 7, this problematic
framework is able to correctly identify the lane on which the vehicle is traveling. Moreover,
real-world experimental results on different datasets justifying the effectiveness of each
block RLL, ELL, and LLL have been given in the end of each chapter. Finally, the last
chapter (cf. Chapter 9) was intended to illustrate the behavior of the whole end-to-end
localization algorithm. In addition to that, a collected dataset, that is made available for
other research through this link: shorturl.at/lAR28, has been presented. Further to that,
an evaluation of the proposed end-to-end localization algorithm on this dataset was given.
It attested on the global coherence of the interconnected module composing the whole
algorithm. In addition to that, metrics have been used to illustrate the effectiveness of the
latter.

PERSPECTIVES

The research work outlined in this dissertation has shown promising results considering
the overall end-to-end localization architecture presented and problematics solved by the
latter. Motivated by these promising results, we believe that it remains several aspects
that could be improved and other to be investigated. The following is a list of the most
relevant future works.

Improve the overall architecture Notwithstanding the advantages of the proposed
end-to-end ego-localization algorithm, it remains several aspects that can be improved:

• There exists no recovery strategy or feedback between modules, which means that
the RLL modules influences the ELL which influence the LLL. However, the latest
modules do not question the higher modules. For future work, a monitoring module
should be added to enhance the proposed framework.

• The RLL module (cf. Chapter 6) is highly dependent on the estimated vehicle’s
heading. Indeed, the nature of our PMMA algorithm depends on a good estimation
of the vehicle heading for choosing the right Way. In addition to that, the uncertainty
of the GPS receiver are modeled with a Gaussian distribution. This modeling does
not always cover the uncertainties of the GPS that may come with a bias error due to

shorturl.at/lAR28
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non-white noises. Therefore, a better modeling of such error should be considered
in future works.

• In the ELL part (cf. Chapter 7), the polynomial representation of the road is very
efficient for highway roads. However, this representation does not hold for large
value of curvature. Hence, this model will not suit perfectly the ego-lane marking to
sharp curves (roads that has ’S’ shape). Therefore, non-parametric model should
be taken into account for these kinds of situations.

• In the LLL part (cf. Chapter 8), the vehicle detector is used in 2d image space.
Hence, no 3D representation of the adjacent vehicle are utilized. It will be interesting
to use a 3D representation (i.e, Lidar data)

• Finally, for future work it would be interesting to add detectors from different sensors,
i.e., lidar, radar to enhance the proposed framework. Indeed, the modular nature of
the proposed algorithm allows such addition.

Enhanced the existing with DL techniques DL are de facto the main solutions used
in computer science and especially in AVs. Indeed, these methods that use these tech-
niques have been widely adopted for task like object recognition (i.e, lane marking, vehi-
cle). Although, we did use a vehicle detector for the LLL, we believe that there is room
for more DL to be incorporated in a localization system for AVs. The idea is to fuse the
power of the DL for low-level tasks like lane detection, vehicle detection, with the ability
of the model-driven approach to model the physical constraints of the real-world. The
fuse of the two worlds will allow a better detection of traffic road object, while keeping the
global coherence of the road scene. The concept of this new architecture is illustrated in
Figure 9.13

Figure 9.13: Concept of the addition of DL with model-based technique in order to have
a better road scene representation and hence a better ego-localization.

Real time experiments Although several experiments have been conducted and pre-
sented in this manuscript (cf. Chapter 9), real time experiments may be the Achilles’ heel
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of the validation phase of the proposed framework. However, the Institut Pascal recently
acquired two Renault Zoé vehicles (as illustrated in Figure 9.14). One of them, will serve
as an acquisition vehicle in order to collect dataset, while the other one will be robotized
in order to test control/command framework. In that sens, it will be interesting to test our
algorithm on these vehicles. However, before performing such a task, the portability of
the algorithm to C++ have to be done. This task has already been started by an intern in
2020. Nevertheless, the algorithm’s performance could be evaluated in more challenging
weather conditions (i.e, snow, rain).

Figure 9.14: The new experimental vehicle acquired by Insitut Pascal

Extend the range of application of the overall localization architecture In this the-
sis work, we emphasize on highway and national roads have been treated. Thereupon, it
would be worthwhile to investigate other scene scenarios in order to validate the portabil-
ity of the proposed localization system. Therefore, the following is a list of some relevant
road scene scenarios:

• Urban scenarios: it would be interesting to test the algorithm in urban scenarios.
Indeed, in such cases the roads are crowded with cars, which make the detection
of lane marking hard. In addition to that, the RLL part is also complicated by the
GNSS errors due to the multiple path.

• Rural roads: In which there is no lane marking. For these scenarios, the difficulty
appears when detecting lane marking. Indeed, for some rural roads, there is no
paint on the asphalt.

• Roundabout, intersections, and toll stations.
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ANNEX

10.1/ HIDDEN MARKOV MODEL(HMM)

This section introduces the HMM, with application related to our work, those classifica-
tions are based on work of Russel et al. [66].
Hidden Markov model or HMM is a temporal probabilistic model in which the state of the
process is described by a single discrete random variable. The possible values of the
variable are the possible states of the world.
The HMM belongs to the family of Dynamic Bayesian Network (DBN). In order to construct
a HMM (or a DBN) we have to specify three components:

• the prior distribution over the state variables P(X0)

• the transition model, which specifies the probability distribution over the latest state
variables, given the previous values, that is, P(Xt|X0:t1). However, a problem arises
when the set X0:t1 is unbounded. To solve this problem, the Markov Assumption is
made. This assumption states that the current state depends only on a finite number
of previous states. In the simplest case is the first-order Markov process, in which
the state depends only on the precedent state, meaning that P(Xt|X0:t1) = P(Xt|Xt1) .
This conditional probability is called Transition probability

• the sensor model P(Et|Xt) or the observation model. Even though the states of a
HMM not visible, they are observable. Therefore, there is a relation between the
hidden elements of the state and the observations, this relation is referred to as an
emission probability P(Et|Xt)

With that, we have a specification of the HMM we can perform several tasks like [66]:
filtering, prediction, smoothing, most likely explanation, and learning. In our work, we are
mostly interested with filtering process.
Rather than going back thought the whole history of observations after each update, a
useful filtering algorithm must keep a current state estimation and update it. In other
words, given the filtering results at time t, the filter algorithm has to compute the results
for t+1 using new observations (evidences) et+1. This task is called recursive estimation
where the objective is to find some function f that satisfies the following formula:

P
(
Xt+1 | e1:t+1

)
= f

(
et+1,P

(
Xt | e1:t

))
(10.1)
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By arranging this formula we can have :

P
(
Xt+1 | e1:t+1

)
= P

(
Xt+1 | e1:t, et+1

)
(dividing up the evidence)

= αP
(
et+1 | Xt+1, e1:t

)
P

(
Xt+1 | e1:t

)
(using Bayes’rule)

= αP
(
et+1 | Xt+1

)
P

(
Xt+1 | e1:t

)
(by the sensor Markov assumption).

(10.2)

With α is a normalizing constant used to make probabilities sum up to 1. The term
P(Xt+1|e1:t) represents a one-step prediction of the next state, and the first term updates
this with the new evidence. The term P(et+1|Xt+1) is directly obtainable sensor model
(emission model). Now we obtain the one-step prediction for the next state by condition-
ing on the current state Xt:

P
(
Xt+1 | e1:t+1

)
= αP

(
et+1 | Xt+1

)∑
xt P

(
Xt+1 | xt, e1:t

)
P

(
xt | e1:t

)
= αP

(
et+1 | Xt+1

)∑
xt P

(
Xt+1 | xt

)
P

(
xt | e1:t

)
(Markov assumption). (10.3)

This formulation gives us the desired recursive formulation. In order to show the function-
ing of this formulation an example is given.
Imagine a security guard assigned to a top-secret underground facility. He want to know if
it’s rainy outside, but his only access to the outer world is when he sees the director come
in with or without an umbrella each morning. For each day t, the set Et thus contains a
single evidence variable Ut (whether the umbrella appears), and the set Xt contains a sin-
gle state variable Rt (whether it is raining). A graphical illustration is given in Figure 10.1.

Figure 10.1: Example of the umbrella example, the transition model is P(Raint|Raint1) and
the sensor model is P(Umbreallat|Raint) (image credit [66]

To illustrate the filtering process we compute P(R2|u1:2) as follows:

• On day 0, there are no observations, therefore an equiprobability of chance of rain-
ing, that is, P

(
R2 | u1:2

)
• day 1, the director appears with an umbrella, so U1 = true. Therefore P(R1) is

computed as follows:

P (R1) =
∑
r0

P
(
R1 | r0

)
P (r0) (10.4)

= 〈0.7, 0.3〉 × 0.5 + 〈0.3, 0.7〉 × 0.5 = 〈0.5, 0.5〉 (10.5)
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Then the update step simply multiplies by the probability of the evidence for t = 1
and normalizes:

P
(
R1 | u1

)
= αP

(
u1 | R1

)
P (R1) = α〈0.9, 0.2〉〈0.5, 0.5〉 (10.6)

= α〈0.45, 0.1〉 ≈ 〈0.818, 0.182〉 (10.7)

• day 2,the director appears with an umbrella, so U2 = true. Following the same
strategy:

P
(
R2 | u1

)
=

∑
r1

P
(
R2 | r1

)
P

(
r1 | u1

)
(10.8)

= 〈0.7, 0.3〉 × 0.818 + 〈0.3, 0.7〉 × 0.182 ≈ 〈0.627, 0.373〉 (10.9)

updating it with the evidences from t = 2:

P
(
R2 | u1, u2

)
= αP

(
u2 | R2

)
P

(
R2 | u1

)
= α〈0.9, 0.2〉〈0.627, 0.373〉 (10.10)

= α〈0.565, 0.075〉 ≈ 〈0.883, 0.117〉 (10.11)

10.2/ BAYESIAN NETWORK (BN)

In this appendix a summary of Bayesian Network is given. Before, a quick introduction
to the probability theory must be given. In all cases, this annex is based on the work of
Russel et al. [66].

10.2.1/ PROBABILITY PROPERTIES

According to Russel et al. [66], a probability is a measure over a set of events that satisfies
three axioms:

• The measure of each event is between 0 and 1. That being said, it is written as
follows 0 ≤ P (X = xi) ≤ 1, with X being a random variable representing the event
and xi are the possible value of this random variable X. In most works, random
variable are denoted by uppercase and their values by lowercase letters.

• The measure of the whole set is 1 i.e.,
∑n

i=1 P (X = xi) = 1.

• The probability of a union of independent events is the sum of the probabilities of
these individual events. We can write P (X = x1 ∨ X = x2) = P (X = x1) + P (X = x2).

Generally, P(X) is used to denote the vector of values 〈P (X = x1) , . . . , P (X = xn)〉. In addi-
tion, we use P(xi) to denote P(X = xi) and

∑
x P(x). for

∑n
i=1 P(X = xi).

The joint probability for two random variables A and B denoted P(A, B) is defined as fol-
lows:

P(A,B) = P(A)P(B) (10.12)

On the other hand, their conditional probabilityP(B|B), also defined as the posterior prob-
ability (or just “posterior” for short) is mathematically defined as follows:

P(A|B) =
P(A,B)

P(B)
(10.13)
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This definition of conditional probability can be written in a different form called the prod-
uct rule:

P(A, B) = P(A|B)P(B) (10.14)

Taking into account these definitions, two random variables A and B are said to be inde-
pendent, ifif:

P(A|B) = P(A) or P(B|A) = P(B) or P(A, B) = P(A)P(B) (10.15)

10.2.1.1/ BAYES’ RULE

The more general case of Bayes’ rule for multi-valued variables can be written as follows:

P(B|A) =
P(A|B)P(B)

P(A)
(10.16)

Many modern AI schemes for probabilistic inference are based on this simple equation.
On the surface, this Bayes’ rule does not seem very useful. Indeed, it computes the
single term P(B|A) in terms of three parts: P(A|B), P(B) and P(A), Which seems to be
a step backwards. However, in practice there are many cases where we do have good
probability estimates for these three numbers and need to compute the fourth. Often, we
perceive as evidence the effect of some unknown cause and we would like to determine
that cause. In that case, Bayes’ rule becomes:

P( cause | effect ) =
P( effect | cause )P( cause )

P( effect )
(10.17)

The conditional probability P( effect | cause ) quantifies the relationship in the causal di-
rection, whereas P( cause | effect ) describes the diagnostic direction.
In medical diagnosis, for example, conditional probability on causal correlations are often
used, implying that the doctor is aware of the relationship P( symptoms | disease ) and
want to derive a diagnosis, P(disease | symptoms ).
Furthermore, Bayes’ rule is also useful dealing with combining independent evidence.
Imagine having one cause for several effect. As a result, the full joint distribution can be
written as follows:

P
(

Cause , Effect1, . . . , Effectn
)

= P( Cause)
∏

i

P
(
Efecti| Cause

)
(10.18)

10.2.2/ BAYESIAN NETWORKS

A Bayesian network is a Directed Acyclic Graph (DAG) in which the quantitative probability
information is annotated to each node. The full specification is:

• Each node is a random variable, which could be discrete or continuous.

• A set of links or arrows are directed to connect pairs of nodes. If the arrow is from
the node X to node Y, it is said that X is Y’s parent. The intuitive meaning of an
arrow is typically that X has a direct influence on Y.

• Each node Xi has a conditional probability distribution P(Xi|Parents(Xi)) that quanti-
fies the effect of the parents on the node
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Viewed as a piece of “syntax”, a Bayesian network is a DAG with some numeric parame-
ters attached to each node. For example, you have recently mounted a new burglar alarm
system in your house. It is reasonably effective at detecting a break-in, but it also reacts
to small earthquakes on occasion. John and Mary, two of your neighbors, have offered
to contact you at work if they hear the alarm. When John sees the alarm, he most often
calls, but he sometimes confuses the phone ringing with the alarm.Mary, on the other
hand, enjoys noisy music and often ignores the alarm. We’d like to quantify the likelihood
of a robbery based on the facts of who has or has not called. This example is illustrated
on Figure 10.2.

Figure 10.2: Example of a Bayesian network, showing both the topology and the con-
ditional probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for
Burglary, Earthquake, Alarm, JohnCalls, and MaryCalls, respectively (image credit [66]

The conditional probabilities of a node Xi noted as: P
(
Xi|Parents (Xi)

)
are summarized in

a Conditional Probability Table (CPT) like the one illustrated in Figure 10.2. One way of
defining what the network is about is to describe how it reflects a specific joint distribution
across the entire Variables defined as fellows::

P (x1, . . . , xn) =

n∏
i=1

P
(
xi|parents (Xi)

)
(10.19)

This equation governs what a Bayesian Network means. Using this equation and the
previous equations allows us to calculate all the probability of each node presented in the
Network.

10.3/ PRODUCT OF THE GAUSSIAN

The objective is as follows: Let’s assume that we have an area of presence of a given
robot or vehicle, this in the form of a pose X centered on X and its covariance Cx, such
that X ∼ N(X,Cx). In addition to that, let’s assume we have a known segment [AB].The
objective is to compute the probability that the segment belongs to this Gaussian zone
(cf. Figure 10.3).

To do so, we represent the segment [AB] by an ellipse itself defined by a covariance
matrix Cs.
By definition, a covariance matrix C has the following properties:
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Figure 10.3: We want to know the probability that the segment [AB] belongs to the Gaus-
sian zone

• the eigenvectors of this matrix are the axes of the ellipse,

• for a one standard deviation ellipse, the square roots of the eigenvalues of the matrix
are the lengths of the axes of this ellipse

The objective is to find the covariance matrix so that its principal eigenvector is the con-
sidered segment.
Given a matrix A with eigenvalues λi and eigenvectors Vi with i ∈ [1,N] (N is the dimen-
sion of the matrix). Because of the properties of the eigenvectors and eigenvalues, we
have for a pair (λi,Vi):

AVi = λiVi

If we put all these vectors in a matrix V and the eigenvalues in a matrix L such that

V = V1, ...,VN and L =


λ1 0 ... 0
0 λ2 0 ...

... ... ... ...

0 ... ... λN


Thus:

AV = VL (10.20)

Therefore, we can find the matrix A knowing its eigenvectors and eigenvalues:

A = VLV−1

To determine of a covariance matrix from a segment [AB] with points A = (xA, yA)T and
B = (xB, yB)T . The vector AB will be given by :

AB =

xb − xa

yb − ya

 =

xAB

yAB


Therefore the covariance matrix Cs has to satisfies the following:

• Cs has principal eigenvector (largest eigenvalue) AB. Thus:

V1 = AB
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• the eigenvalue corresponding to this vector AB will be the square of half the length
AB of the segment [AB]. Thus

λ1 =
AB2

4

• the second eigenvector V2 must be orthogonal to V1, so we will choose :

V2 =

−yAB

xAB


• the eigenvalue λ2 corresponding to V2 will correspond to half the thickness ths of the

segment, we will give it a small value. Hence:

V =

 xAB −yAB

yAB xAB

 and L =

 λ1 0
0 λ2

 =


AB2

4
0

0
th2

s

4


We will therefore consider that the segment [AB] corresponds to a random vector S AB
following a normal distribution defined by :

S AB ∼ N
(
S̄ AB,CAB

)
with S̄ AB =

 (xA + xB) /2(
yA + yB

)
/2

 and CAB = VLV−1

After calculation, the matrix CAB est defined as follows:

CAB =


e2

syAB
2

4
(
y2

AB + x2
AB

) +
xAB

2

4
xAByAB

4
−

es
2xAByAB

4
(
yAB + xAB

2
)

xAByAB

4
−

es
2xAByAB

4
(
yAB + xAB

) es
2xAB

2

4
(
y2

AB + xAB
2
) +

yAB
2

4


Now that we represent the segment [AB] with a random vector, we are looking for the
probability PAB of intersection between the segment and the probable area of presence
of the robot. It is therefore necessary to calculate the following relation:

PAB =

∫
N

(
X̄,Cx

)
N

(
S̄ AB,CAB

)
dX (10.21)

The product of two Gaussians is another Gaussian defined as follows:

N
(
X,Cx

)
N

(
S̄ AB,CAB

)
= kN(µ,C)

This new Gaussian will be denormalized by the parameter k. It can be written as follows:

PAB =

∫
N

(
X̄,Cx

)
N

(
S̄ AB,CAB

)
dX =

∫
kN(µ,C)d = k

In order to compute this probability we will use the canonical representation of Gaussians
as presented by Murphy et al.[20]. Lets us consider a probability density function of
parameter x (of dimension n) N(x, µ,C) We can then define its canonical representation
as follows:

N(µ,C) = φ(g, h,K) (10.22)

= exp(g + xTµ −
1
2

xT Kx) (10.23)
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• K = C−1

• h = C−1µ

• g = log(p) −
1
2
µT Kµ

• p = log[(2π)−n/2|C|−1/2]

To find the parameters of the Gaussian from the canonical form, we use the following
formulas:

φ(g′, h,K) = kN(µ,C) (10.24)

with :

• C = K−1

• µ = C.h

• k =
1
p

exp(g′ +
1
2
µT Kµ)

• p = log[(2π)−n/2|C|−1/2]

• g′ = log(kp) −
1
2
µT Kµ

This canonical representation simplifies the product of two Gaussians N(µ1,C1) and
N(µ2,C2):

φ
(
g1, h1,K1

)
× φ

(
g2, h2,K2

)
= φ

(
g1 + g2, h1 + h2,K1 + K2

)
with

K1 = C−1
1 , h1 = C−1

1 µ1,K2 = C−1
2 et h2 = C−1

2 µ2

Hence, the product of two Gaussians N(µ1,C1) and N(µ2,C2) will be a non-normalized
Gaussian:

N
(
µ1,C1

)
× N

(
µ2,C2

)
= kN(µ,C)

with
C =

[
C−1

1 + C−1
2

]−1

µ =
[
C−1

1 + C−1
2

]−1 [
C−1

1 µ1 + C−1
2 µ2

]
and the parameter k is defined as follows

k =
1
p

exp
(
g1 + g2 +

1
2
µT C−1µ

)


p = log
[
(2π)−n/2|C|−1/2

]
g1 = log

(
p1

)
− 1

2µ
T
1 C−1

1 µ1

p1 = log
[
(2π)−n/2

∣∣∣C1
∣∣∣−1/2

g2 = log
(
p2

)
− 1

2µ
T
2 C−1

2 µ2

p2 = log
[
(2π)−n/2

∣∣∣C2
∣∣∣−1/2

]
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Going back to our problematic, the probability PAB is then defined as follows:

PAB = k =
1
p

exp
(
g1 + g2 +

1
2
µT C−1µ

)
(10.25)

with:

• C =
[
C−1

X + C−1
AB

]−1

• µ =
[
C−1

X + C−1
AB

]−1 [
C−1

X X + C−1
ABS̄ AB

]
• p = log

[
(2π)−n/2|C|−1/2

]
• g1 = log(2π)n/2

∣∣∣CX
∣∣∣−1/2

− 1
2 X1C−1

X X̄

• g2 = log
[
(2π)n/2

∣∣∣CAB
∣∣∣−1/2

]
− 1

2 S̄ T
ABC−1

ABS̄ AB
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Abstract:

Nowadays, Autonomous Vehicles (AVs) are capable of realizing extraordinary and complicated tasks. Notwithstanding these amazing
achievements, several challenges arise, one of them is the ability of the autonomous car to perceive its environment in order to properly
evaluate the situation with regards to the road environment. Part of this situation evaluation is the knowledge about ego-localization. In
the broadest sense, ego-localization is a meaningful concept that can be related to different problematics. However, one interpretation of
ego-localization consists of the knowledge of three key components: the road on which the vehicle is traveling (Road Level Localization
(RLL)), the ego-lane position (Ego-Lane Level Localization (ELL)), and the lane on which the vehicle is traveling (LLL). Therefore, a reliable
ego-localization system has to fulfill the localization’s requirement of each of these components.
The objective of this Ph.D. work is to propose a unified, generalized and modular localization system architecture that tackles every
aspect of the localization system. In addition that, a focus is given on opensource map OpenSteetMap (OSM) to demonstrate that even
a low-cost map can be used to obtain an accurate localization. To do so, an end-to-end framework composed of several interconnected
components is presented. This framework is responsible of providing a localization solution on a digital map by developing a robust
map-matching algorithm. Furthermore, it permits the localization of the ego-vehicle with respect to ego-lane by proposing a top-down
approach that exploits the priors of the map in order to detect the lane marking. Finally, it determines the lane on which the vehicle is
traveling by introducing a modular framework that handles the ambiguities in the lane-level localization. The reliability and the flexibility of
the overall proposed architecture and its elementary components have been intensively validated, first, individually using different dataset,
and secondly, as a whole solution using a collected dataset in the region of Clermont-Ferrand.

Keywords: Autonomous driving, Localization architecture, Probabilistic framework, Lane detection, Fusion Framework.

Résumé :
De nos jours, les véhicules autonomes (VAs) sont capables de réaliser des tâches extraordinaires et compliquées. Malgré ces réalisations

étonnantes, plusieurs défis se posent, l’un d’eux étant la capacité de la voiture autonome à percevoir correctement son environnement
afin d’évaluer correctement la situation dans laquelle elle se trouve. Cette évaluation de la situation repose en partie sur la connaissance
de l’égo-localisation. Au sens large, l’ego-localisation est un concept vaste qui peut être lié à différentes problématiques. Cependant,
une interprétation de l’égo-localisation consiste en la connaissance de trois éléments clés : la route sur laquelle le véhicule circule (Road
Level Localization (RLL)), la position de du véhciule par rapport aux marquages de sa voie (Ego-Lane Level Localization (ELL)), et la voie
sur laquelle le véhicule circule (Lane-Level Localization (LLL)). Par conséquent, un système d’ego-localisation fiable doit répondre aux
exigences de localisation de chacun de ces composants. L’objectif de ce travail de doctorat est de proposer une architecture de système
de localisation unifiée, généralisée et modulaire qui aborde tous les aspects du système de localisation. En outre, l’accent est mis sur
l’utilisation de la carte opensource OpenSteetMap (OSM) pour démontrer que même une carte à faible coût peut être utilisée pour obtenir
une localisation précise. Pour ce faire, une architecture probabliste dite end-to-end composé de plusieurs composants interconnectés est
présentée. Cette architecture est chargée de fournir une solution de localisation sur une carte numérique en développant un algorithme
robuste de correspondance de carte (map-matching). De plus elle permet de localiser l’ego-véhicule par rapport à l’ego-voie en proposant
une approche descendante qui exploite les informations a priori de la carte afin de détecter les marquages de l’ego-voie. Enfin, elle
permet de déterminer la voie sur laquelle le véhicule se déplace en introduisant une architecture modulaire qui gère les ambiguïtés dans
le choix de la bonne voie. La fiabilité et la flexibilité de l’architecture globale proposée et de ses composants élémentaires ont été validées ,
d’abord individuellement à l’aide de différents ensembles de données, puis en tant que solution globale à l’aide d’un ensemble de données
collectées dans la region de Clermont-Ferrand.

Mots-clés : Véhicules autonomes, architecture de localisation, architecture probabiliste, détection des voies, architecture de fusion
d’information.
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