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Abstract

The wide adoption of Electronic Health Records (EHR) in hospitals’ information systems has led

to the definition of large databases grouping various types of data such as text clinical notes, longi-

tudinal medical events, and tabular patient information. However, the data records are only filled

during medical consultations or hospital stays that depend on the patient’s health, state, and local

habits. A system that can leverage the different types of data collected at different time scales is

critical for reconstructing the patient’s health trajectory, analyzing his history, and consequently

delivering better clinical care. This thesis work addresses two main challenges of medical data pro-

cessing: a) learning to represent the sequence of medical observations with irregular elapsed time

between consecutive visits and b) optimizing the extraction of medical events from clinical notes.

Our main goal is to design a multimodal representation of the patient’s health trajectory to solve

clinical prediction problems.Our first work built a generic framework for modeling irregular med-

ical time series to evaluate the importance of considering the time gaps between medical episodes

when representing a patient’s health trajectory. To that end, we conducted a comparative study of

sequential neural networks and irregular time representation techniques. The clinical objective was

to predict retinopathy complications for type 1 diabetes patients in the french database CaRéDIAB

(Champagne Ardenne Réseau Diabetes) using their history of HbA1c measurements. The study re-

sults showed that the attention-based model combined with the soft one-hot representation of time

gaps led to theAUROC score of 88.65% (specificity of 85.56%, sensitivity of 83.33%), an improve-

ment of 4.3% when compared to the LSTM-based model. Motivated by these results, we extended

our framework to shorter multivariate time series and predicted in-hospital mortality for critical

care patients of the publicly available MIMIC-III dataset. The proposed architecture, Hierarchical

Time-aware Transformer (HiTT), improved the AUROC score by 5% over the vanilla Transformer

baseline. In the second step, we were interested in extracting relevant medical information from

clinical notes to enrich the patient’s health trajectories. Particularly, Transformer-based architec-

tures have shown encouraging results in medical information extraction tasks. However, these large



models often require a large annotated corpus. This requirement is hard to achieve in the medical

field as it necessitates access to private patient data and high expert annotators. To reduce annota-

tion costs, we explored active learning strategies that have been shown to be effective in many tasks,

including text classification, information extraction, and speech recognition. In addition to existing

methods, we defined a Hybrid Weighted Uncertainty Sampling (HWUS) active learning strategy

that takes advantage of the contextual embeddings learned by the Transformer-based approach

to measuring the representativeness of samples. A simulated study using the publicly available

i2b22010 challenge dataset showed that our proposed metric reduces the annotation cost by 70%

to achieve the same performance score as passive supervised learning.Lastly, we combined multi-

variate medical time series and medical concepts extracted from clinical notes of the MIMIC-III

database to train a multimodal transformer-based architecture. The test results of the in-hospital

mortality task showed an improvement of 5.3% when considering additional text information. This

thesis contributes to patient health trajectory representation by alleviating the burden of episodic

medical records and the manual annotation of free-text notes. In a nutshell, this research has

three practical contributions: (1) Supporting e-Health systems such as reporting, reasoning, and

efficient decision-making to benefit the overall patient management. (2) Benefiting the research

in medical informatics by facilitating the development of state-of-the-art deep learning temporal

models and the collection of rich annotated corpora from clinical free text resources. (3) Aiming at

advancing machine learning research in the medical domain by developing an effective multimodal

Transformer-based architecture for accurate health trajectories representation and an innovative

domain-independent AL query strategy.
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Résumé

L’adoption des dossiers médicaux électroniques (DME) dans les systèmes d’information des hôpitaux

a conduit à la définition de bases de données Big Data regroupant divers types de données telles que

des notes cliniques textuelles, des événements médicaux longitudinaux et des informations tabulaires

sur les patients. Toutefois, les données ne sont renseignées que lors des consultations médicales ou

des séjours hospitaliers. La fréquence de ces visites varie selon l’état de santé du patient et des

habitudes locales. Ainsi, un système capable d’exploiter les différents types de données collectées à

différentes échelles de temps est essentiel pour reconstruire la trajectoire de soin du patient, analyser

son historique et, par conséquent, délivrer des soins plus adaptés.

Ce travail de thèse aborde deux défis principaux du traitement des données médicales : (1)

Représenter la séquence des observations médicales à échantillonnage irrégulier et (2) optimiser

l’extraction des événements médicaux à partir des textes de notes cliniques. Notre objectif principal

est de concevoir une représentation multimodale de la trajectoire de soin du patient afin de résoudre

les problèmes de prédiction clinique.

Notre premier travail porte sur la modélisation des séries temporelles médicales irrégulières

afin d’évaluer l’importance de considérer les écarts de temps entre les visites médicales dans la

représentation de la trajectoire de soin d’un patient donné. À cette fin, nous avons mené une

étude comparative entre les réseaux de neurones récurrents, les modèles basés sur l’architecture

Transformer et les techniques de représentation du temps. De plus, l’objectif clinique était de

prédire les complications de la rétinopathie chez les patients diabétiques de type 1 de la base de

données française CaRéDIAB (Champagne Ardenne Réseau Diabète) en utilisant leur historique

de mesures HbA1c. Les résultats de l’étude ont montré que le modèle Transformer , combiné

à la représentation ‘Soft-One-Hot‘ des écarts temporels a conduit à un score AUROC de 88,65%

(spécificité de 85,56%, sensibilité de 83,33%), soit une amélioration de 4,3% par rapport au modèle

basé sur l’architecture LSTM . Motivés par ces résultats, nous avons étendu notre étude à des

séries temporelles multivariées plus courtes et avons prédit le risque de mortalité à l’hôpital pour



les patients admis en soins intensifs présents dans la base de données MIMIC-III. L’architecture

proposée, Hierarchical Time-aware Transformer (HiTT), a amélioré le score AUC de 5% par rapport

à l’architecture de base Transformer .

Dans la deuxième étape, nous nous sommes intéressés à l’extraction d’informations médicales

pertinentes à partir des comptes rendus médicaux afin d’enrichir la trajectoire de soin du patient.

En particulier, les réseaux de neurones basés sur le module Transformer ont montré des résultats

encourageants dans l’application d’extraction d’informations médicales. Cependant, ces modèles

complexes nécessitent souvent un grand corpus annoté. Cette exigence est difficile à atteindre dans

le domaine médical car elle nécessite l’accès à des données privées de patients et des annotateurs

experts. Pour réduire les coûts d’annotation, nous avons exploré les stratégies d’apprentissage

actif qui se sont avérées efficaces dans de nombreuses tâches, notamment la classification de textes,

l’analyse d’image et la reconnaissance vocale. En plus des méthodes existantes, nous avons défini

une stratégie d’apprentissage actif, nommée Hybrid Weighted Uncertainty Sampling (HWUS), qui

utilise la représentation cachée du texte donnée par le modèle Transformer pour mesurer la

représentativité des échantillons. Une simulation utilisant l’ensemble de données du challenge i2b2-

2010 a montré que la métrique proposée réduit le coût d’annotation de 70% pour atteindre le même

score de performance que l’apprentissage supervisé passif.

Enfin, nous avons combiné des séries temporelles médicales multivariées et des concepts médicaux

extraits des notes cliniques de la base de données MIMIC-III pour entrâıner une architecture multi-

modale. Les résultats du test ont montré une amélioration de 5,3% en considérant des informations

textuelles supplémentaires.
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remercie aussi mon père Hassan, pour m’avoir accompagné durant toutes ces années d’études.
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Chapter 1

Introduction

In recent years, the availability of medical data has increased thanks to the wide adoption of

Electronic Healthcare Records (EHR) in hospitals’ information systems. These records store all

the transactions information between patients and healthcare providers during their visit or stay in

the hospital. EHRs combines three types of features: The first type is structured data (such as the

patient’s age, the admission date, the duration of stay, measurements, and discrete medical codes),

The second class is semi-unstructured data and consists of a short free-text column storing specific

information (such as doctors comments, and the description of other non-standardized conditions

in the database system), and the third type is unstructured data, which refers to narrative clinical

notes written by medical practitioners to report the patient’s state and the medical events occurred

during his stay or visit (including family history, diagnoses, diseases, procedures, and medications).

The first role of electronic records is to provide up-to-date information about the patient in less time

and assist medical practitioners in delivering a higher quality of care by facilitating the information

exchange between health practitioners. Moreover, These centralized systems are often deployed in

one or a group of medical centers over a long period leading to an extensive database of patient

records with several years of medical history. These datasets are a rich source of information for

large-scale statistical analysis and represent an opportunity to bridge the gap between medical
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analysis and machine learning techniques that often require a large set of observations to train and

achieve the best performance. Consequently, several research studies have found a secondary use

of this data for conducting predictive analysis to better understand diseases evolution and build

health monitoring systems helping doctors deliver better care for their patients [1].

In particular, deep learning methods have become a relevant choice for conducting prediction tasks

in various domains such as natural language processing (NLP) [2, 3, 4], image analysis [5, 6] and time

series modelling [7, 8, 9]. Moreover, the construction of large private data warehouses [10, 11, 12]

and the publication of open-source medical databases such as MIMIC III or i2b2 [13, 14] allowed

researchers to adopt and adapt these methods for solving clinical prediction problems such as risk

prediction [15, 16, 17], intervention recommendation [11, 18], disease progression [19, 20] or patient

sub-typing [10, 21]. Majority of these methods focused on modeling one type of input data, either

tabular, textual, longitudinal, or image, whereas other methods [22, 23, 24] combined several types

and showed that a comprehensive patient representation helped achieve higher scores.

1.1 Challenges of medical data

Effective modeling of medical prediction tasks must consider the challenges of processing the highly

variable observational data contained in real-world clinical databases. We summarize these chal-

lenges in six categories: patient privacy-preserving, small and incomplete datasets, cost-effective

annotation process, non-standardized data structures, irregular health trajectories, and multimodal

data. Indeed, EHRs comprise highly sensitive personal information about patients and their con-

ditions. Leveraging these data for research requires a de-identification step that protects patients’

sensitive attributes while sharing informative data relevant to deep learning research studies. Fur-

thermore, the protection of sensitive data and the non-existence of a centralized system collecting

data from multiple medical centers lead to the definition of small datasets specific to each hospital.

These small datasets limit the capacity of research to define high-performance and generalizable

deep learning-based predictive model [25]. One particular requirement of deep learning methods

is the collection of annotated data that guides the supervised learning process of such complex
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models. This process is cost-effective when considering clinical data as it requires high experts with

sufficient medical knowledge leading to even smaller training sets. On the other hand, hospitals use

different standards to organize the medical data in their information systems and different biomed-

ical ontologies [26, 27] to classify the concepts such as diseases, procedures, and treatments. These

systems’ differences represent an additional barrier for designing generic models ready for deploy-

ment in diverse health systems. Even when considering a unified data source, time irregularities

are another common phenomenon of this real-world clinical data. Indeed, the medical observations

are recorded episodically, depending on patient visits to the hospital, producing a history of care

that varies from one patient to another and depends on each patient’s health state and local habits.

Consequently, the produced data includes irregular health trajectories with variable lengths and

different periods between consecutive observations. Lastly, each time point in the health trajectory

represents an episode of care with various types of data (such as text reports, treatment prescrip-

tions, lab test orders, lab results, and records of medical parameters, diagnostics, and administrative

codes) produced by several care providers during the patient’s management. Leveraging all these

various types in one general model is challenging as it requires the design of a multimodal system

capable of learning important information from each entry and avoiding data redundancy.

1.2 Research context

Several research works were published to address medical data challenges when modeling a single

or multiple types of data, either image, text, or longitudinal. To protect the patient’s personal

information, Andrew et al. [28] analyzed a wide range of privacy-preserving techniques (such as

homomorphic encryption and differential privacy) applied to structured EHRs data for computing

deep learning prediction scores. Moreover, preserving the sensitive information within the text

of clinical notes is also an active research area, and yang et al. [29] devised a systematic review

summarizing the deep learning methods proposed for automatic de-identification. To address the

limitation of small datasets, several works proposed techniques based on Transfer Learning [30,

31, 32] to leverage the knowledge learned by a pre-trained model and extend it to the new set of
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data. Another common solution is multi-task learning [31, 33, 34] that improves generalization by

leveraging the domain-specific information contained in the training signals of related tasks.

Re-ordering the information contained within the EHRs data is critical to assess the patient’s

care pathway and to understand the evolution of the disease. The heterogeneity of data and the

irregular health trajectories are two main challenges for defining an accurate temporal representation

of the patient’s timeline. Most of the existing works rely on the longitudinal data in the form of

administrative codes, and numerical values generated at every care episode [10, 35, 36, 33]. Hence,

they defined the timeline as a multivariate time series. At the same time, other works [22, 11, 23]

considered the clinical notes produced during each admission to enrich the patient’s care pathway.

The first group [23, 22] learned an embedding representation of the whole note and added the

resulting vector as an additional feature to the time series to leverage text information. On the

other hand, the second group [11] defined a hybrid model where the first stage is an NLP model

that extracts the medical concepts. These concepts are then added to the time series for the

second-stage learning that represents the patient’s health trajectory. Recent advancement of the

NLP field has led to the definition of robust architectures enabling to learn contextual embeddings

of words and achieve high-performance scores in downstream tasks such as concept extraction.

Especially, ClinicalBERT [37] and BioBERT [38] have adapted the prominent NLP model BERT

[39], which is based on the Transformer architecture [40]. First, they pre-trained the model on

large corpora of medical texts to get the contextual representation of words, then fine-tuned this

pre-trained architecture on various supervised downstream tasks. In particular, these models have

shown improved performance scores in the medical concepts extraction tasks (ranging between 78%

and 94%).

However, defining such performant models relies on the availability of extensive annotated

clinical notes with a consequent number of examples of each class of interest. Research efforts

[41, 42, 43, 44] to build such annotated corpora have been rising during the last decade, and several

works published the annotation guidelines that allow them to produce high-quality labeled data.

This process is time-consuming and costly because it often requires manual annotation by medical
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experts that have limited availability. Active learning [45] is a promising research direction that

has shown its effectiveness in image annotation and was extended to several applications, such as

medical text annotation. The objective is to reduce the amount of training data to be manually

annotated by selecting the examples that accelerate the learning iterations of the deep learning

model. It places the medical expert in the heart of an iterative process by allowing him to cor-

rect the model’s predictions then re-train the model taking into account his feedback. The core

component of the active learning strategy is the definition of a metric, often referred to as utility

function, that ranks the predictions of the model and selects the most informative examples for

the next re-training iteration. The two prominent sampling strategies are uncertainty-based, and

density-based [46, 47, 48].

The reconstructed timeline is episodic, and the time gaps between consecutive observations vary

from one patient to another and even within the health trajectory of the same patient. Most of

the current literature [49, 50, 51, 52] is based on a statistical analysis of periodic snapshots of

longitudinal medical events with a fixed time interval, monthly or semi-annually. These models

require the availability of temporal equally spaced medical events. Consequently, conducting sta-

tistical post-analysis of this data involves imputation methods to fill in the missing values. The

performance of these methods is highly dependent on the completeness of the patients’ times series

and the accuracy of the imputation methods. Instead of using data imputation methods to fill the

gaps between actual observations, irregularity is also valuable information that we should consider

for learning the evolution of the patient’s health status. Following that line of thought, recent

studies [12, 53, 54, 50] took advantage of the advancement made in sequence modeling and used

recurrent neural networks (RNNs) coupled with the representation of the time gap between two

consecutive event points to conduct downstream medical tasks such as risk prediction, procedures

recommendation, and patient phenotyping.
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1.3 Objectives

The main objective of this thesis is to build a multimodal deep learning architecture that leverages

various types of information contained in the EHR data and learns to represent the patient’s

timeline. A subsequent objective is to validate this architecture on real-world clinical application

by considering the challenges of such a setting. Mainly, from the challenges presented in section 1.1,

we focused on designing a framework to represent time irregularity in a patient’s health trajectory

and proposed an active learning strategy to reduce the annotation cost of deep learning-based

medical concept extraction model.

1.4 Research questions

To achieve the presented objectives, this works addresses the following research questions:

• RQ1: How to model irregular time observed in patients’ health trajectories?

• RQ2: Is it possible to design a generic framework for irregular medical time series modeling?

• RQ3: How to represent information within the clinical notes to enrich patients’ health tra-

jectories?

• RQ4: What is the best Active Learning strategy that reduces the annotation cost of the

Transformer-based medical information extraction approach?

• RQ5: How does the multimodal architecture impact the performance of clinical prediction

tasks?

These research questions explore the different ways to represent the patient’s timeline using

neural networks and measure their impact on real-world medical data, considering irregular

recording of events and the cost of medical texts annotation.
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1.5 Contributions

The first part of this thesis work addresses the modeling of irregular timestamps in the clinical

event time series. The main resulting contribution is the implementation of a generic framework

for end-to-end classification of irregular time series. The framework processes numerical

and categorical medical events and supports the patient’s metadata. Besides, it gathers the state of

the art sequential deep learning models and time representation techniques. Using this framework,

we conducted An empirical study of diabetic retinopathy prediction in type 1 diabetes

patients based on a comparative study of 12 temporal neural-based approaches. The data was

gathered from the French database CaRéDIAB [52] and consisted of 1,207 highly variable uni-variate

medical time series of HbA1c records of type 1 diabetic patients.

In the second part, we represented the information contained within the clinical notes and evalu-

ated their importance in predictive modeling. To that end, we conducted a comparative study

between deep learning and conventional machine learning methods for medical text

classification [15]. The results showed the high effectiveness of DL-based methods when applied

to predict the Health Acquired Infection (HAI) from patients’ clinical notes. However, the error

analysis shows that missing positive cases were due the missing of time management in our model.

These findings motivated us to explore information extraction architectures for selecting relevant

medical events from each clinical note to enrich the patient timeline. Those techniques often re-

quire a large amount of labeled data which is highly cost-effective when processing medical reports.

Therefore, our second work aimed to define a Deep Active Learning strategy to reduce the

annotation cost of clinical notes for medical events extraction. Specifically, we evaluated

active learning strategies for transformer-based medical event extraction models.

Finally, the third work consisted of designing a multimodal architecture, Multi-HiTT: Multi-modal

Hierarchical Time-aware Transformer-based. This architecture leverages all information contained

in the patient medical records by combining multivariate event time series, patient static information

and the medical concepts extracted from clinical notes to build an accurate patient representation

for clinical prediction tasks. The main contribution of this work was the design of a hierarchical
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temporal and multi-modal patient representation combining structured features and

free-text medical concepts. Using the implemented temporal framework, we validated the pro-

posed Multi-HiTT architecture by studying the in-hospital mortality prediction of patients

admitted in critical care units. We particularly considered 5120 irregular multivariate time

series provided by the open-source dataset MIMIC-III [13].

1.6 Outline

This thesis is organized into three parts. The first part provides the related work that motivated

our contributions and is organized in two chapters. In the first chapter, we establish a survey on

time-aware deep learning models for representing irregular clinical time series. A survey on neural-

based architectures and active learning strategies for named entity recognition is detailed in the

second chapter. On the other hand, the second part exposes our three main contributions. The

first chapter describes the implemented temporal framework that allows medical research teams

to conduct comparative studies and select the best DL model for classifying IMTS based on their

dataset and prediction task. The second chapter defines a new active learning strategy, Dynamic

Hybrid Weighted Uncertainty Sampling (Dynamic-HWUS), that aims to reduce the annotation cost

of clinical notes for training Transformer-based named entity recognition models. The third chapter

introduces Multi-HiTT architecture that aims to combine the different levels of temporality and

types of input data for building an accurate representation of the patient. Lastly, the third part

includes three studies that validate our proposed methods and use real-world clinical databases,

discusses their results, concludes the thesis work, and introduces recommendations for future work.

1.7 Notations

We note p ∈ P the set of patients considered in a medical study. We define the multivariate medical

time series of patient p as follows:

• Multi-variate time series (xp,t)1≤t≤N consists of a sequence of states xp,t where xp,t ∈ Rq is a
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dense embedding vector that represents the events with different types observed at a discrete

time step t, q is the vector space dimension and N is the number of steps generally equal to

the number of patient’s visits.

• The state vector at a discrete time step t can be represented as a combination of three vectors:

xp,t = [np,t, up,t, zp,t, dp], where np,t is the representation vector of text notes, up,t denotes the

vector of numerical values, zp,t is related to the encoded ids of medical events, dp corresponds

to static patient information such as demographics. For simplifying the notations, we refer to

the patient vectors at timestamp t as xt = [nt, ut, zt, dp]

The purpose of multi-variate medical time series representation learning is to define a dense

embedding Rp ∈ Rd that comprises the temporal dynamics and the relevant medical infor-

mation of (xt)1≤t≤N . This representation is then validated on predictive supervised tasks by

finding optimal f∗ for f∗(Rp) = yp, with yp ∈ Y is the true label to predict for patient p.
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Background and related work
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Chapter 2

Irregular Medical Time Serie

(IMTS)

2.1 Introduction

Our work is inspired by two lines of related research: sequence modeling using deep learning

networks (Section 2.2) and the representation of time irregularity in highly variable and episodic

medical time series (Section 2.3). This chapter describes the different deep-learning based methods

used for modeling sequential data, exposes the differences between these methods and gives an

overview of their application in medical domain. We also describe the published works that have

considered the time-irregularity when applying these methods to highly variable time-series (Table

of Appendix E classifies the existing works according to the data and proposed DL architecture).

2.2 Neural networks for medical time series

Researchers in natural language processing (NLP) have proposed novel deep learning architectures

for language modeling using the sequence of words and inspired many researchers and practitioners
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to use and adapt these methods to event time series modeling [55, 56, 7, 8, 9, 50]. These neural

architectures offer a more flexible end-to-end learning approach when compared with standard time

series and machine learning models. In this section, we present the two most used neural-based

models for event time series representation: recurrent neural networks (RNN) [57] (including long

short-term memory (LSTM) [58] and Gated Recurrent Unit (GRU) [57]) and self-attention based

models so known as Transformer) [40]. They offer the flexibility of processing the raw sequence of

events as input to the model without any feature engineering or aggregation methods. They also

enable processing sequences of multi-dimensional vectors and represent the temporal dynamics and

the information flow in time series.

2.2.1 Recurrent neural networks

The vanilla recurrent neural network is an extension of the hidden Markov model that learns to

represent the hidden state of a given sequence. At each time step t, the hidden representation, ht,

of the event is computed based on its current value and the value of the previous hidden states hj<t

as follow:

ht = g(Wxt + Uht−1),

where g is a smooth activation function such as sigmoid function and W, U are learnable parameters.

This internal state offers the possibility to learn past information dependencies. However, RNN

has limitations on learning and predicting with long sequences as it cannot capture the long-range

dependencies. These problems are often referenced as vanishing, and exploding gradient [59]. The

LSTM [58] addresses these problems by adding to the RNN unit a memory cell state that captures

the relevant information to retain from the past and the output gate that decides by how much

to update the current hidden state of the unit. The update of the internal state is defined in five

steps:

• The forget gate: ft = σ(Wf .[ht−1, xt] + bf )

• The input gate: it = σ(Wi.[ht−1, xt] + bi)
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• The cell sate: ct = ft ∗ Ct−1 + it ∗ C̃t, where C̃t = tanh(Wc.[ht−1, xt] + bf )

• The output gate: ot = σ(Wo.[ht−1, xt] + bo)

• The updated hidden state: ht = ot ∗ tanh(Ct)

GRU [57] is a simplification of LSTM removing the memory cell and introducing two parametric

gates: An ”update gate”, combining the forget and input gates, and a ”reset gate”. The update

process is reduced to three steps that are expressed as follows:

• The update gate: zt = σ(Wz.[ht−1, xt])

• The reset gate: rt = σ(Wr.[ht−1, xt])

• The updated hidden state: ht = (1− zt)ht−1 + zt ∗ h̃t, where h̃t = tanh(W.[rt ∗ ht−1, xt])

The empirical study conducted in [60] showed the advantages of the gating units over the more

traditional recurrent units regarding faster convergence and better performance scores. However,

the comparison results of LSTM and GRU conducted by this work [60] were not conclusive, sug-

gesting that the type of gated units highly depends on the dataset and the prediction task.

We simply denote the updated hidden state at time step t returned by LSTM and GRU as

ht = LSTM(xt, ht−1) and ht = GRU(xt, ht−1), respectively. The patient representation Rp is

then generally set to hN , the hidden representation of the last observation, as it captures the com-

bination between long-range past information observed in the patient health trajectory and the

most recent medical context.

For a better representation of both contexts, left-to-right and right-to-left, in a sequence, Bi-

directional recurrent neural networks learned a forward
−→
hf and backward

←−
hb hidden representa-

tions. The forward RNN reads the input sequence from x1 to xN (old to recent) and calculates a

sequence of forward hidden states
−→
h1, ...,

−→
hN . The backward RNN reads the visit sequence in the

reverse order, i.e., from xN to x1 (recent to old), resulting in a sequence of backward hidden states

←−
h1, ...,

←−
hN . By concatenating the forward hidden state and the backward one, we obtain the final

hidden representation as ht = [
−→
ht ;
←−
ht ].
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2.2.2 Attention mechanism

The patients’ health trajectories often span over several years, and only using the last hidden

state to represent these long sequences leads to information loss and a weak patient representation.

Consequently, aggregating the hidden states produced by the recurrent neural network from all-time

steps to represent the patient’s history offered a promising solution to capture all relevant medical

states:

Rp = Agg(h1, ..., hN ),

where the most straightforward aggregation function Agg is the average pooling. As not all visits

have the same impact on the patient overall health state, learning the importance weight αj of each

time observation xt represented by ht is very crucial for an accurate patient representation that

could be then expressed as

Rp =

N∑
j=1

αjhj

The introduction of the attention mechanism [61] in NLP has shown to be a powerful tool in

developing DL for text classification [62, 63]. In a nutshell, vanilla attention in NLP is defined

as a vector of importance weights of words. To predict the score of the downstream task, the

attention vector estimates how each word is strongly correlated with the given task, and the final

prediction is based on the sum of the representations of the words weighted by their attention scores.

Transposing the attention mechanism to medical time series, the weights αj can be expressed as:

αj =
exp(aj)∑N
k=1 exp(ak)

,

where: aj = score(hj , Q) and Q ∈ Rd is the parametric context vector that can be viewed as

a fixed query asking for the “most informative visits” from the input sequence. Different scores

functions were proposed in NLP [64, 61, 65, 40].

The patient care pathway could be organized in a sequence of visits, in a time-window segment

grouping a set of visits together or by episodes of care defined using medical expert rules. Therefore,
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each subsequence contains a variable amount of clinical information. Using a global attention weight

to determine the importance of the overall sequence could over or underestimate specific medical

events occurring within a particular segment. The hierarchical attention mechanism computes

different levels of importance to address this limitation: inter-subsequence and intra-subsequence.

The inter-subsequence models the global importance of a set of medical events occurring in the same

period on the global patient health state. In comparison, intra-subsequence attention measures the

local importance of each medical event on the near-term evolution of patient health. We note Kj

the number of events recorded at a given timestamp j and γj
i the attention weight of a medical

event xij (such as a numerical lab measurement or diagnosis code), the patient representation is

then expressed as:

Rp =

N∑
j=1

Kj∑
i=1

αjγ
j
i hj

2.2.3 Transformer: self-attention mechanism

Instead of computing absolute importance αj of the position j related to the entire input sequence,

the self-attention mechanism [40], also known as intra-attention, defines a local score. This score

measures the relative importance of the position j taking into account the surrounding context

positions k < j and/or k > j of a single input sequence. Their proposed score function computes

how each position j (value vector vj ∈ Rd) is strongly correlated with the given output at j (query

vector qj ∈ Rd) taking into account all surrounding positions (key matrix K ∈ RN×d). In sequence

modeling, both the keys and values are the neural network hidden states. The score function of

timestamp j returns relative weights overall positions and is formulated as:

aj =
1√
d
qTj K ∈ RN

The Transformer, an encoder-decoder architecture, is entirely built upon self-attention mechanisms

and was proposed by Vaswani et al. [40] as a replacement of recurrent network units. They showed

that the multi-head self-attention mechanism coupled with a residual connection to the input word

embedding representation is sufficient to capture the long-range dependencies between the given
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word and the other contextual positions.

2.2.4 Differences between the RNN and the Transformer architectures

One of the computational bottlenecks suffered by RNNs is the sequential processing of text, and

the computational cost of hidden states updates grows with the increasing length of the sequence.

On the other hand, the Transformer block computes the contextual representation of each word

independently, allowing for more parallelization than RNN, making it possible to efficiently train

huge models on large amounts of data on GPUs. Consequently, a new SOTA of performances is

reached on various NLP downstream tasks using a large stack of transformer blocks [66].

Figure 2.1: Schematic representation showing the difference between the recurrent mechanism that
processes one entry at each step and the self-attention that computes the hidden representation of
all entries in parallel.
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2.3 Modeling temporal mechanisms of irregular medical time

series

Rather than defining the longitudinal medical data as a sequence of time intervals using a finite

time window segmentation, the model should account for the irregular periods between visits as

additional information to the event itself [67]. We categorize the work that considered learning to

represent time into two main categories: (1) Considering time gaps as an additional feature to feed

to the neural method and learn their embedding vector. [68, 69] (2) Extending the original neural

architecture by injecting the time gaps as an additional parameter of the model [69, 53, 50, 70, 71].

2.3.1 Time as an additional input variable

The work [69] introduced two methods for representing the time-gaps and tested it on five datasets

from various domains, among them the MIMIC II dataset that includes 650 sequences of encoded

medical events (204 disease codes) recorded in the intensive care unit. The two representations are

TimeMask: The authors considered the continuous elapsed time as a signal that gives context

information about the medical event. Formally, they transformed the numerical value into a prob-

ability score vector with the same shape as the event vector representation and computed their

element-wise multiplication to contextualize the medical event embeddings.

TimeJoint: Instead of using time as a signal, elapsed time contains relevant information as im-

portant as the event itself. For that reason, they proposed to represent the time as an additional

vector fed to the neural methods, both vectors, the event, and time.

This work shows that none of the methods for using time can improve accuracy on the MIMIC II

dataset. In contrast, for all remaining datasets, TimeJoint enables a significant gain of performance

compared with simply using the scalar value of time in sequential models. We argue that the results

observed on MIMIC-II may suffer from the small size of the dataset, limiting the performance of

more complex architectures. We also noticed that all tested methods returned the same range of

performances.
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2.3.2 Temporal based neural architecture

Instead of considering the elapsed time as an additional variable, studies focused on modeling the

temporal structure of the time series as another channel inherent to the neural architecture. Re-

searchers have proposed temporal-based architectures that we categorize into four classes.

The first group of research considered a time decay formulation to mimic the decrease of acute

conditions’ effect through time. Following that line of thought, C-LSTM [53] and T-GRU [72]

represent time using exponential decay function within the forget and the memory cells of LSTM

and GRU, respectively. The mathematical formulation for irregular time intervals ∆t between

consecutive events is defined as: w∆t = 1
log(e+∆t)

. On the other hand, GRU-D [73] defined the

time decay function as an additional model jointly trained with GRU network. This decay rate is

then used to weight the previous hidden states when computing the current one. It is defined as:

γt = exp−max(0,Wγ∆T+bγ), where Wγ and bγ are learnable parameters.

However, the healthcare trajectories of patients comprise different temporal patterns. In fact, dur-

ing follow-up, the patient could improve the states of some health conditions while others got worse

over time and could also develop chronic diseases. The time decay does not factor in all these

temporal patterns, and C-LSTM proposed a flexible parametric time introduced in the forget

gate to learn the temporal dependencies between these different patterns. Similar to GRU-D, this

trainable parameter is expressed as Qfq∆t and is summed up to the forget gate parameters: Qf is

the weight matrix and q∆t
is a temporal vector derived from time difference ∆t.

The third research direction, temporal structure segmentation, addresses the same problem

exposed in parametric time. Nevertheless, instead of defining one parametric network to learn the

overall temporal structure of longitudinal EHR data, researchers aim to explicitly model each tem-

poral dependency component. Particularly, Lee et al. [50] segmented the temporal trajectory of

patients into three modules: neural abstraction module that captures longer-term distant past, re-

cent context module that embeds the recent event information using a discriminative projection and

finally periodicity mechanism that represents periodic events. We note that the explicit modeling

of these structures requires a pre-processing step that consists of segmenting the medical events at
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a certain temporal granularity (related to temporal window size) and computing the time gaps only

between periodic events.

In the Transformer architecture, a positional encoding vector was introduced and summed up to

the input words’ vectors before computing the self-attention scores to account for the sequential

order of words within the sentence. Motivated by modeling irregularity in time series and lever-

aging the Transformer architectures, recent works [22, 70] focused on defining functional time

representation that replaces the base positional encoding of self-attention to leverage the elapsed

time between observations.
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2.4 Clinical applications

2.4.1 Downstream tasks

Motivated by the advancement of sequence modeling observed in NLP [57, 61, 40, 39] and their

application to time series classification [7, 9], several works were published in the medical do-

main showcasing the efficiency of using sequential-based neural networks to represent the pa-

tient’s healthcare trajectory and conduct predictive clinical studies. RNN-based, Attention-based,

and Transformer-based models have been successfully applied to many clinical events prediction

tasks that we categorized into five major families. The first category is binary classification

[53, 74, 73, 67, 75, 76, 72, 33, 76] where the objective is to predict the presence, the absence

or the future risk of incidence of a given clinical outcome such as heart failure onset [75, 17, 16, 77],

risk of in-hospital mortality [72, 73, 67, 78, 79] and patient readmission [53, 76, 80, 81]. Another

type of classification is the multi-label classification, where the objective is to predict multiple out-

comes such as the categories of the future diagnosis [82], the severity levels of a given disease [83],

and diseases classification [11]. The regression task predicts a real-valued attribute and is used in

the medical domain to estimate the temporal progression of the patient’s health, filling the missing

values of numerical indicators and predicting their future values. For example, the works [84, 22, 23]

estimated the length of hospital stay in days, Qingxiong et al. [72] filled the missing numerical rates

based on surrounding context and Zhengping et al. [73] predicted the future values of multi-variate

continuous outcomes. Another clinical application is medical event prediction [12, 85, 50] that

helps doctors in understanding the evolution of the patient’s health trajectory and anticipating

the occurrence of adverse events for better patient management. Finally, recommendation systems

[86, 18] were proposed to assist health practitioners in selecting the most appropriate treatments

or procedures based on the patient’s history.
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2.4.2 Deep Learning architectures

The RNN-based models (LSTMs and GRU networks) are the most used architectures in modeling

medical time series [12, 78, 80, 73, 83] and have shown very promising results when compared to

conventional machine learning algorithms. Specifically, Choi et al. [17] designed a two-stage process.

They first defined the embedding vectors of medical events codes using the skip-gram model [87] then

they fed the sequence of medical event embeddings to a GRU layer and generated the patient hidden

representation for predicting the risk of heart failure. Esteban et al. [83] used an MLP projection

layer to represent constant patient information and model the temporal dynamics of his care history

using a GRU network. Then, they concatenated the two hidden representations, static and dynamic,

and applied a softmax layer to predict the outcomes of the kidney transplantation procedure. [78]

used bi-directional LSTM (BiLSTM) to model the sequence of medical event embeddings and

generate the patient representation from the hidden states. They compared their approach with

other aggregation methods (average and self-attention pooling methods) and showed that using

the hidden representation returned by the BiLSTM yields the best results. More recently, research

teams explored the effectiveness of Transformer-based models [33, 88, 79] for modeling the medical

time series and showed outperforming results over GRU/LSTM based models. Song et al. [33]

represented each episode with a multi-dimensional embedding vector grouping the information of

all medical events. Then, they passed the sequences of embeddings through a Transformer encoder

with causal attention (the observation t can only attend to past information j < t) and a dense

interpolation layer for representing the time gaps between consecutive observations. Tipirneni

[79] proposed a Transformer-based model with a novel Input Triplet Embedding component that

represents the time of the observation t, the features (fj)1≤j≤K observed at t and their values

(vj)1≤j≤K .

2.4.3 Attention mechanism from medical time series

Medical researchers also explored different attention mechanisms proposed in NLP sequence mod-

eling to mimic how doctors attend to a patient’s needs and explore the patient record. Usually,
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there is a focus on specific clinical information (e.g., key risk factors and medical antecedents)

working from the recent events to the further records. The first published works [75, 86, 77, 23]

used global attention to define the patient representation as a weighted average over the set of vis-

its’ embedding vectors returned by the sequential module. Multi-level attention mechanisms were

also proposed to attend to different medical aspects within the same multivariate medical time

series [82, 81, 76]. The multi-head self-attention mechanism can automatically capture all nested

dependencies between events occurring in the same sequence. Consequently, medical researchers

[33, 22, 79] leveraged it for the definition of more fine-grained representation of the patient, achieving

better performances on downstream tasks.

2.4.4 Irregular time modeling of clinical data

According to the outlined medical studies, they aim to develop a deep learning system that accu-

rately represents a patient’s medical history and uses it in various downstream tasks, including risk

prediction, phenotyping, and intervention recommendations. They used sequential deep learning

methods like GRU, LSTM, or Transformer to derive the patient’s health state vector at a specific

point in time, t, by taking into account the evolution of past medical events, such as diseases, proce-

dures, treatments, and numerical indicators. The majority of the proposed works ignored the time

irregularity between consecutive visits, however, the recent studies [12, 53, 74, 73, 75, 84, 54, 76, 72]

that integrated it have demonstrated its importance in capturing the contextual relationships be-

tween visits leading to a better representation of the evolution of the patient. With the exception of

the TAPER architecture [22], all of these methods focus on one type of data (numerical, categorical,

or text) to represent a patient’s timeline. In fact, TAPER [22] included a combination of categorical

medical codes, patient demographics, and clinical notes. A limitation of their work is represent-

ing the whole clinical text as one piece of information and learning a vector representation of it

instead of extracting the relevant concepts that highly impact the downstream clinical application

and therefore suppressing all redundant information such as medical sections titles and hospital

information without affecting the downstream clinical application. In light of this observation, we
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investigated Named Entity Recognition methods to create a deep learning architecture capable of

extracting relevant concepts from clinical notes.
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Chapter 3

Neural-based architectures and

Active Learning strategies for

medical events extraction

3.1 Introduction

The importance of the information contained within the clinical notes motivated researchers to build

systems for extracting the relevant medical concepts. Several methods were proposed, ranging

from rule-based algorithms to complex neural-based architectures. The recent progress made in

NLP with the publication of the Transformer [40] architecture has led to the definition of high-

performing models for medical named entity recognition tasks. However, these models contain

millions of parameters and require a large annotated corpus for training. This requirement is

hard to achieve in the medical field as it necessitates access to private patient data and high

expert annotators. In comparison, an effective Active Learning algorithm can theoretically achieve

exponential acceleration in labeling efficiency and thus reduce the annotation time for medical
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experts. First, we present the neural-based methods proposed to solve NER tasks (Section 3.2) and

the Section 3.3 exposes the existing AL strategies.

3.2 Named Entity Recognition task (NER)

The NER term stands for named entity recognition and entity extraction, a technique used in natural

language processing (NLP) that automatically identifies named entities in a text and categorizes

them into pre-defined categories. In medical domain, named entity recognition is used to organise

unstructured medical text into a form that can be interpreted by downstream computer algorithms.

Examples of downstream applications are automatic extraction of medical codes, build a concise

summary of clinical narratives and disease prediction.

Neural-based architectures for NER

Unlike structured data, most existing data are heterogeneous textual notes created to support

the primary purpose of care. This unstructured data requires additional processing to make it

more suitable for conducting epidemiological research studies or designing administrative support

tools. These clinical notes remain a rich source of relevant information about the patient, such as

symptoms, the reason for diagnoses, illness evolution trajectory, social situation, care timeline, and

medical history. The main objective of Natural Language Processing (NLP) techniques in medicine

is to achieve a good accuracy of automatic extraction of these medical concepts [89, 90, 91, 92].

Due to the strong need for effective information extraction methods in the clinical domain, shared

datasets, such as i2b2, have been developed, leading to the development of new, more efficient

methods for extracting medical information.

Over the last years, NLP researchers have focused on building features from clinical notes

relevant to named entity recognition prediction tasks. The first proposed approach was to develop

a rule-based algorithm that combines syntactic properties of natural language and domain-specific

rules [93, 94, 95, 96]. These methods enabled linguists and clinicians to work together to define each

specific rule, leading to a significant modeling time and requiring a deep understanding of NLP and
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medical domains. Thanks to the marked progression of language modeling methods in the generic

NLP domain, medical teams saw a new alternative for automating the definition of features relevant

to their extraction tasks while requiring less expertise and analyses.

The language modeling task consists of learning high-quality representations of words in a vector

space from a large amount of unstructured text data. These representation vectors are then used as

input features for predictive models of various NLP tasks such as Named Entity Recognition (NER)

[97, 98] or text classification [15, 51, 99] . Mikolov et al. [87] introduced Word2Vec, a single-layer

deep neural network that uses a novel training objective, “Skip-Gram”, to conduct unsupervised

learning of words representations. Specifically, The Skip-Gram uses the surrounding local context

of individual words to update their representation vectors. Following the same line of thoughts,

Joulin et al. [100] developed FastText, which is based on the Word2Vec model but is additionally

learning the representation of the combination of adjacent characters that form the words, called

’n-grams’. These n-grams allow the model to consider all the language variability and build a

robust representation of rare and unseen words. Given the rich and highly variable information

contained within clinical notes, medical research teams pre-trained medical words embeddings and

used them as input features for various medical predictive models [51, 15, 101], leading to significant

improvement of predictive performance. For a more detailed overview of existing approaches and

their benefits in the biomedical domain, Chiu et al. [102] conducted a comprehensive study that

assesses the quality of biomedical embeddings with respect to a set of parameters and various tasks.

In clinical notes, the patient’s condition is often described using abbreviations, fragmented

phrases, and domain-specific jargon. Accordingly, words and abbreviations in clinical records can

differ in meaning depending on their local context and the specific type of the note. For example,

the term ”Cold” could refer to three different things: a temperature, an unfriendly character, or

a symptom. The fixed representation vector fails to comprehend all these meanings in one single

vector as it does not consider the word’s position with respect to its surrounding context. To address

this problem, Peter et al. [103] pre-trained a language model (ELMo) that uses a set of Bidirectional

LSTM layers. They generated the contextualized word representation as a concatenation of the
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input sequence’s left-to-right and right-to-left hidden states. In the medical domain, Yuqi Si et al.

[92] demonstrated the importance of the contextualized embedding vector provided by Elmo in four

medical concept extraction tasks. The F1-score of the four tasks was improved, on average, by 4%.

Based on the results achieved by ELMo’s bidirectional architecture, Devlin et al. [39] introduced

the BERT model, which replaces the sequential LSTM neural network with a stack of Transformer

encoders [40]. In particular, they emphasized the limitation of sequential language modeling, which

cannot combine both left and right contexts simultaneously. In addition, they developed a novel

pre-training objective known as the Masked Language Model (MLM). Using this approach, a subset

of words is randomly selected with a probability of 15% and are replaced with the special symbol

[MASK]. Next, the Transformer stack generates a prediction for the masked words based on both

left and right surrounding context. In brief, BERT is a two-stage training approach that combines,

in a single model, the unsupervised pre-training of contextual embeddings using MLM and the fine-

tuning of model’s parameters with respect to a specific supervised downstream task. In particular,

BERT outperformed ELMo scores on eleven major generic NLP tasks, including named entity

recognition.

As all the relevant information is contained within the pre-trained embeddings, several works

in the medical domain [38, 37, 104] have demonstrated the need for pre-training BERT on domain-

specific datasets to achieve the state of the art scores on medical NLP tasks. Lee et al. [38] were

the first to introduce a biomedical-specific language representation, they called BioBERT. It is a

BERT-based model pre-trained on a large-scale biomedical corpus (4.5 billion PubMed abstracts

and 13.5 billion PMC Full-text articles). They enhanced the performance of three biomedical

NLP tasks: biomedical named entity recognition (0.62% F1-score improvement), biomedical rela-

tion extraction (2.80% F1-score improvement), and biomedical question answering (12.24% MRR

improvement). BioBERT demonstrated the need for pre-training BERT-base models on domain-

specific data through these different comparison studies. As routine clinical data is different from

published biomedical texts, Alsentzer et al. [37] extended the work done by Lee et al. by addi-

tionally pre-training BERT-base and BioBERT models on over two million clinical notes from the
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MIMIC-III database [13]. They demonstrated the utility of using domain-specific BERT model

for a subset of clinical NLP tasks: i2b2 named entity recognition challenge [105] (3.65% F1-score

improvement) and MedNLI natural language inference [106] (5.1% F1-score improvement). Belt-

agy et al. [104] pre-trained a new domain-specific representation model SciBERT using 1.4 million

cross-domain scientific texts: 18% computer science papers and 82% biomedical papers. The major

contribution of SciBERT is the usage of ”SciVocab”, a new WordPiece vocabulary [107] built from

their scientific corpus. The study of the effect of SciVocab demonstrated the importance of using a

domain-specific vocabulary to pre-train contextual representation models.

These works covered building biomedical and clinical-specific BERT resources and applying

these resources to medical information extraction models. However, it is worth noting that the pre-

training time of such domain-specific BERT range from 7 days to 23 days, depending on the GPUs

resources and datasets size. Furthermore, access to a large set of medical notes for pre-training and

an annotated corpus for medical concept detection are the key to defining such performing models.

These two requirements limit the application of similar models in real-world private medical datasets

where the annotations are often missing, and their acquisition cost is nonnegligible. In our work, we

considered the pre-trained ClinicalBert as the core architecture for the medical concept extraction

task and focused on solving the annotation cost by defining a novel active learning sampling strategy

for Transformer-based architectures.

3.3 Review of Active Learning

The key idea behind active learning is to select the training observations that would accelerate the

convergence of the supervised algorithm. In other terms, it controls how a learning algorithm could

perform better with less training data. Active learning is well-motivated in several supervised

learning problems where the acquisition of labeled data is costly. In particular, in the medical

domain where the annotation of clinical notes requires additional expertise. The AL algorithm

relies on the scenario and the query strategy. The scenario builds the pool of unlabeled data from

which the learner is allowed to ask queries. On the other hand, the query strategy defines the
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metric that ranks the observations and selects the samples to visualize to the annotator oracle.

3.3.1 Scenarios

• Membership query synthesis: The learner generates synthetic examples based on its

knowledge and requests the oracle for labels [108]. However, labeling such artificial examples

can be misleading for medical annotators as this data is different from actual human-defined

examples.

• Stream-based sampling: Also known as selective sampling [109]. In this setting, the learner

iterates over the unlabeled dataset. For each example, it decides whether it should be queried

for human annotator validation or not. On the other hand, training complex deep learning

models often requires many samples. Therefore, drawing an instance one at a time from the

data source to prepare the samples of the next iteration is unrealistic and induces a large

training latency.

• Pool-based sampling: Instead of applying the selection strategy to each sample in sequential

order, the pool-based strategy [110] ranks the entire unlabeled pool before selecting the best

queries for annotation. To ensure training efficiency, this scenario is the most common in the

medical concept extraction application [111, 112, 48, 113].

3.3.2 Query strategy techniques

The query step consists of selecting samples based on a pre-defined strategy for a given deep

learning model with parameters θ, applied to an unlabeled pool of data U . The labels are then

collected from the oracle to form a new annotated training set L. Lastly, the set L is used to

update the model’s parameters θ and the pool U simultaneously. This section summarizes the four

most common strategies defined for deep active learning modeling. For a thorough overview of

all proposed approaches to select the most informative samples, we refer the reader to literature

surveys on the topic [114, 115]
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• Random Sampling: This strategy is used as a baseline in almost all scientific researches.

It randomly selects the sample to annotate from the pool U . It is also called passive learning,

as there is no active way of selecting samples at each learning iteration.

• Uncertainty Sampling: It is the most intuitive and common strategy to rank the informa-

tiveness of unlabeled observation [110]. In this setting, the learner queries samples with the

highest uncertainty score. In our work, we used entropy-based uncertainty metric [116]. For

a given probabilistic deep learning classifier with C classes and parameters θ, uncertainty is

measured through the entropy formula:

x∗ = argmax
x

−
C∑
i=1

Pθ(yi|x)log(Pθ(yi|x)),

where Pθ(yi|x) is the probability that the sample x belongs to the class yi. One limitation of

the uncertainty sampling strategy is the sensitivity to select outliers as query samples. Outliers

are likely to have high uncertainty scores but, at the same time, are not ”representative” of

other instances in the distribution. Including them in the training set will not improve the

model accuracy on the data as a whole. Furthermore, it could easily lead to insufficient

diversity of batch query samples (such that the data representation space is not fully queried)

and consequently would not help DL model generalization through training iterations.

• Diversity-based Method: In order to prevent the outlier selection problems, Zhdanov et

al. [117] proposed representiveness sampling strategy that aims to build a batch sample with

diverse examples from all over the feature space. The sampling objective aims to find the

optimal set S ⊆ U and such as:

max
S⊆U

∑
xi∈U

min
xj∈S

d(xi, xj),

Where d(., .) is a distance metric measuring the similarity between two samples. Used in

isolation, diversity sampling methods will often privilege the samples farther away from the
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decision boundary, therefore not selecting items that are likely to be mislabeled.

• Density-Weighted Method: This strategy combines uncertainty and diversity-based ap-

proaches to ensure the exploration-exploitation trade-off. The main idea behind this strategy

is that informative instances should be not only those which are uncertain (good at exploita-

tion) but also those which are ”representative” of the true data distribution (exploration of

the feature space). The strategy metric is defined as follows:

x∗ = argmax
x

ϕu(x) · (
1

U

U∑
u=1

sim(x, xu))

where ϕu(x) represents the informativeness of x according to the uncertainty sampling ap-

proach. The second term calibrates the informativeness of x by its average similarity to all

other instances in the pool set U .
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Methodology
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Chapter 4

Time-aware deep learning

Framework for IMTS classification

4.1 Introduction

Our objective was to design an end-to-end approach that addresses the downstream clinical tasks

related to modeling time series with irregular observations. This approach should address the main

challenges of multivariate medical time series: irregular time modeling, learning the dependencies

between history spans over a long period, representing different evolution of medical states (worsens,

improves, or chronic), and considering variable types of medical observations with multi-event time

points. We designed a 3-step generic approach for end-to-end medical time series classification that

integrates state-of-the-art architectures depicted in Chapter 2. The developed framework (Section

4.1) aims to facilitate the definition of empirical predictive analysis for medical researchers. We also

designed a comparative study pipeline (Section 4.4) that enables research teams to test different

variants of models and select the best architectures based on their dataset and prediction task.
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Figure 4.1: Three-steps modeling of irregular medical time series modelling

4.2 Framework modules

The architecture of our Framework is illustrated in Figure 4.1. The PatientEmbeddingmodule aims

to embed the raw information recorded at each time-stamp t and the related time value (such as

the duration since last visit or the absolute time in days). The output, a sequence of dense vectors,

is passed through the TimeModel component to encode the context and the temporal dynamic

for each visit. The module also combines these hidden states and embeds the patient’s health

trajectory. Finally, the ClassifierHead module, a feed-forward network, is defined to make the

final prediction. We note that the parameters of these three modules are simultaneously adjusted

during the end-to-end supervised training.

4.2.1 PatientEmbedding module

The module can process temporal indicators, either numerical or categorical, as well as static

patient information. It also supports different aggregation of these representations into one single

sequence of health state embeddings. The possible inputs to the module are encoded categorical

variables, normalized numerical values and the time of the observation. The embedding ei ∈ Rq
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of the raw information xi recorded at visit i is computed by aggregating four components: (1)

Categorical embedding ezi , (2) Continuous embedding eui , (3)Time representation eti, and (4) Static

features embedding ed. The aggregation operator, Agg, can be either “concatenation”, “mean” or

‘attention-based average”. The resulting embedding is expressed as: ei = Agg(ezi , e
u
i , e

t
i, e

d). In the

context of deep learning, the embeddings are defined as low-dimensional, learned continuous vector

representations of discrete variables. However, studies [69] extended this definition to continuous

numerical variables. This work defines three methods for representing numerical features (time and

numerical events). The first method is Identity that conserves the original value. The second is

Linear where a shallow one layer multi-perceptron neural network (MLP) [118] converts the single

value to a fixed-length vector. The last technique is Soft One-hot encoding [69] that mimics the

embedding lookup table of categorical variables, except here, each continuous value is a weighted

sum of the entire embedding table instead of a one-hot index lookup. For the time feature, we

included two additional encoding methods: TimeEncode that learns a temporal positional encoding

using a functional kernel [70], and TimeMask [69] that converts the time value to a vector of weights

between 0 and 1 to “contextualize” the medical events.

4.2.2 TimeModel module

The sequence of embedded visits (ei)1≤i≤ are then passed through TimeModel that learns the hidden

representation (hi)1≤i≤N of all visits and aggregates them into one medical context vector Rp ∈ Rd

of the patient p:

Rp = Agg([hi]1≤i≤N ), where : [hi]1≤i≤N = Encode((ei)1≤i≤N )

for the sequence encoder module “Encode”, we integrated five neural-based architectures described

in Chapter 2: GRU [57], LSTM [58], BiLSTM [119], Transformer [40], C-LSTM [53] and Time-

aware transformer [70]. It is worth noting that both architectures, Time-aware transformer and

C-LSTM, requires the time value of each visit as an additional input. The aggregation module

“Agg” is identical to the one used in PatientEmbedding component.
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4.2.3 ClassifierHead module

The module consists of feed-forward neural network [120], combined with a softmax output layer,

to conduct classification tasks. It takes as input the contextual representation Rp and computes

the probability scores over all pre-defined target classes. The output can be expressed as: ŷ =

sigmoid(wT
o Rp + bo). Note that the static features embedding ed can be processed separately from

the time series then concatenated to the the contextual representation Rp right before computing

the classification scores as follow: ŷ = sigmoid(wT
o [Rp, e

d] + bo).

4.3 Technical features of the Framework

The Framework’s design aims to facilitate the definition of deep learning architectures for mod-

eling the irregular sampled multivariate medical time series and allow medical research teams to

quickly test these complex architectures on their private data and specific use cases. To achieve

that goal, the Framework implements three standards features: (1) YAML configuration files

that facilitate the definition of the model architecture and the setting of the argument of training

and hyper-parameters optimization experiments. (2) Python scripts that automatize the set-up

and execution of experiments (3) Logging and file reports that saves experiment’s outputs for

comparing the performances and visualizing predictions

4.3.1 YAML configuration files

For hyper-tuning experiments and training of resulting best models, we designed two structures of

YAML configuration files. For both configurations, five major sections need to be set up: data paths,

training and optimization arguments, patient embeddings modules, temporal model optimization

parameters, and classification head parameters. Appendix outlines an example of this configuration

file.
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4.3.2 Python scripts

We also developed three main scripts to automate the execution of experiments using command-

lines.

• run hyperparam.py: The script processes the YAML file containing the search spaces of the

hyper-parameters and launches Bayesian optimization trials using the Optuna package [121].

It is also linked to the “Weight And Biases” platform [122] to track the evolution of the

performance metrics.

• train model.py: The script processes the YAML file detailing the parameters and instanti-

ates the related model architecture. Then, it runs the training experiments, logs the training

progression, and finally saves the results of test data on disk. The output directory also

includes the model’s checkpoints and training history. Note that the test data can be re-

lated to a fixed set of patients provided by the user or automatically generated if the k-fold

cross-validation option is enabled.

• do test.py: The script takes the path to the trained model’s checkpoints and the set of

test patients, then computes the prediction scores along with metadata such as the attention

weights.

4.3.3 Logging’s reports

To conduct empirical studies and analyze their results, we have defined three types of logging: (1)

A python logger storing the history track of training and testing phases. (2) CSV files storing

the predictions for each cross-validation test set. (3) A pickle file storing the attentions weights

returned by the model for each patient in the test data.
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Figure 4.2: Pipeline of the comparison study proposed by the Temporal Framework. It provides
the necessary modules and tools to efficiently train and compare different sequential models applied
to medical data

4.4 Comparison study

4.4.1 Objective

The purpose of implementing a generic comparison process is to unify the experimental results of

different models and ensure an unbiased comparison. The Figure 4.2 outlines the four steps of

proposed the process. The main question addressed by the pipeline is: What is the best DL model

for classifying IMTS given specific dataset and downstream task?

4.4.2 Algorithms: sequential models and time representations

The first step of the pipeline aims to include all state of the art models proposed for modeling

irregular medical time series. We implemented two deep learning models for sequential inputs,

Transformer (denoted in our experiments by “attention”) and BiLSTM, alone, as well as combined

with different time representation modules: TimeMask, TimeEncode, MLP projection, and Soft

One-hot embeddings. Note that we used a bi-directional variant of LSTM to allow for using in-

formation from both contexts, left-to-right and right-to-left, and to ensure a fair comparison with

Transformer architecture. We also tested a time-based model, C-LSTM, that directly incorporates

48



the timing irregularity in its parameters. For C-LSTM, we defined three ways of representing time

gaps. The first option is forget and is similar to the original implementation. It considers time-gaps

a parametric forgetting matrix that captures the evolution of health conditions and chronic diseases.

However, the C-LSTM was designed for risk prediction in intensive care units and relied on a short

medical history. In our case, we wanted to enable learning to represent the temporal patterns over

a long period of the history of chronic disease and consider the time irregularity as an additional

risk factor for developing health complications. For that purpose, C-LSTM was extended to include

time-irregularity in the output cell as well, and two options were tested: output and forget output.

The first one considers temporal irregularity as a parameter that controls the information flow over

historical data points. While in the second option, time irregularity controls both the forgetting

memory and the output information. In total, the comparison study comprises 12 different models’

variants where each variant is composed of a sequential model and a time representation.

4.4.3 Parameters tuning experiments

Using the Optuna Python package, for each group of experiments with deep learning and a time

representation, the user can perform a bayesian hyperparameter optimization with 100 trials to

optimize a predefined performance score. The hyperparameter tuning process uses 10% fixed val-

idation set from the input data. To track the evolution of trials, the results of hyper-tuning trials

are automatically logged in Weight&Bias platform [122].

4.4.4 Training optimization

To prevent over-fitting, we enabled L2 weight decay regularization to all models. Besides, we defined

weighted cross-entropy loss class for training with imbalanced classes distribution. We also used

once-cycle learning policy from fast.ai library [123].
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4.4.5 Performance scoring

We used AUROC, defined as the area under the ROC curve, to evaluate the quality of predictions.

It quantifies the probability that the classifier will rank a randomly chosen positive example higher

than a random negative one. The advantage of the AUROC over the F1-score is that it considers

all the possible classification thresholds to measure the quality of the model’s positive and negative

predictive values. AUROC also provides a more accurate performance profile of models for imbal-

anced datasets [124]. We note that the F1-score, precision, recall and accuracy metrics are also

implemented in the proposed framework.
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Chapter 5

Hybrid deep active learning

strategy

5.1 Preliminary work

Clinical reports are a rich source of information as they contain detailed descriptions about the

patient’s health state and all the administered treatments along with his hospital visit or stay. Deep

learning methods [15, 101] were proposed to learn clinically meaningful patterns from these texts to

guide clinical decisions, including delaying or preventing disease onset. Particularly, we conducted

an empirical study [15] that compares words embedding techniques [87, 125], classification machine

learning algorithms, and CNN-based deep learning architectures when applied to french clinical

reports for predicting the health-acquired infection onset.

We studied a cohort of 1,531 patients who visited three French university hospitals (Lyon,

Nice, and Rouen) between October 2009 and December 2010. The input data consisted of the

concatenation of all de-identified free-text medical reports of different types (such as discharge

summaries, imaging reports, surgery reports, and consultation reports.) generated during the

patient management. The best performing model was the CNN-based one with an increase of
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14.1% over the best performing machine learning model. This performance gap consolidated the

effectiveness of deep learning methods compared to machine learning ones. Besides, we defined a

metric for the CNN model’s output interpretability. The metric scores showed that 80.2% of the

most important 3-words phrases selected by the model to compute its predictions included clinical

terms relevant to infectious signals. On the other hand, the analysis of the CNN errors showed that

50% of the false positive classifications were due to the absence of temporality management.

The results analysis of our empirical study underlined the importance of taking into account

temporality when modeling the incidence or the evolution of clinical outcomes. Furthermore, it

showed that only a subset of medical concepts is important to downstream clinical tasks. These

findings motivated us to explore information extraction models capable of filtering the relevant

information from the clinical note.

Although active learning methods have been shown to be effective in many tasks, including text

classification, information extraction, and speech recognition [115], there are limited explorations of

AL techniques for clinical and biomedical NLP tasks. Besides, All the strategies proposed for opti-

mizing the medical concept annotation process are applied to conventional machine learning models.

On the other hand, Transformer-based architectures have shown encouraging results in medical in-

formation extraction problems [38, 37]. This finding motivated us to define a Hybrid Weighted

Uncertainty Sampling (HWUS) that takes advantage of the contextual embeddings learned by the

Transformer-based approach to measuring the representativeness of samples. The chapter formu-

lates the problem, defines the proposed metric, and exposes the experiment setup and results.

5.2 Objective

In this chapter, we define our proposed active learning strategy that takes advantage of the con-

textual representations given by the Transformer-based NER models to define the sample repre-

sentiveness strategy. Additionally, we define a decayed control parameter β to enable a dynamic

calibration between uncertainty and sample representiveness based on the AL-based training stage.

The main question addressed by the proposed strategy is: How to optimize annotation cost of
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Transformer-based NER models ?

5.3 Problem Formulation

We define by X the set of all examples x ∈ X , by L ⊆ X the set of labeled data and by U ⊆ X the

set of N remaining unlabeled examples. Every step of active learning consists of selecting relevant

B ≤ N examples from U , collecting their related labels from the human annotator, and further

training of the learning model. The process is iterative until a stopping criterion C is reached. We

denote by S the set of selected examples at each iteration. We refer to the uncertainty score of

a sample x by ϕu(x), and sim(., .) a distance-based metric that computes the similarity between

two vectors. The objective is to define a hybrid sampling strategy for optimizing the training of a

Transformer-based classifier.

5.4 Core Transformer-based architecture

ClinicalBert [37] have reached SoTA results in medical concepts extraction tasks. Therefore, we

used it as the base architecture for our active learning experiments. The architecture consisted of

a stack of L = 12 Transformer blocks, a hidden dimension of d = 768, and A = 12 self attention

heads. A single linear layer is added to the model for concepts classification.

First, we downloaded the publicly available pre-trained embeddings and used them to initialize

our classification model. Then, we fine-tuned the model on the i2b2-2010 task [105]. We note

that we used the same hyper-parameters reported in the original paper. A learning rate lr ∈

{2.10−5, 3.10−5, 5.10−5}, a batch size bs ∈ {16, 32}, and epochs e ∈ {3, 4}. The maximum sequence

length was set to 150.
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5.5 Dynamic Hybrid Weighted Uncertainty Sampling Strat-

egy

Settles et al. [126] proposed an effective active learning strategy for sequence labeling task, called

information density (ID), where the informativeness of a sample x is weighted by its average sim-

ilarity to all other samples, subject to a parameter β that controls the relative importance of the

density term. Following the same line of thought and in order to ensure the trade-off between

uncertainty and diversity of the set S, we formulated the following selection criteria:

x∗ = argmax
x∈U

ϕu(x)× (
1

N

N∑
u=1

sim(hx, hxu))
β ,

where the second term measures the similarity between the hidden representation of x (extracted

from the Transformer-based model) to all other representations of the pool U .

5.5.1 Sample representiveness

The input sample x, a sequence of K tokens, is fed through the ClinicalBert classifier and we

extracted the contextual hidden representations returned by the Transformer block (hi)1≤i≤K .

Then, we set the representiveness hx to the hidden representation hj of the token to be classi-

fied xj . Then, we used the cosine distance to compute the similarity between representations:

sim(hx, hxu
) = 1

d

∑d
i=1 h

i
x.h

i
xu
.

5.5.2 Uncertainty metric

The uncertainty is measured by the entropy of the classifier softmax layer:

x∗ = argmax
x

−
C∑
i=1

Pθ(yi|x)log(Pθ(yi|x)),
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5.5.3 Decayed control parameter

To give more weights to the pre-trained embeddings of the Transformer model, we introduced a

dynamic parameter β based on a step-wise decayed rate that ensures decreasing relative importance

of the density term through AL iterations. The dynamic parameter is formulated as βt = β0

1+kt ,

where β0 ∈ {1, 2, 3} is the value at the initial iteration, k is a hyper-parameter and t is the iteration

number. We ran experiments with three values of k ∈ {0.25, 0.5, 0.75}. Setting a dynamic rate is

motivated by the fact that the initial iterations of the trained model do not ensure high-quality

prediction scores, and thus we privileged the density-based term in the early training stages to

account for the medical knowledge contained within the pre-trained embeddings. Additionally, we

examined a exponentially decayed rate, but our experiment results were inconclusive.
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Chapter 6

Multi-modal Hierarchical

Transformer-based approach for

IMTS classification (Multi-HiTT)

6.1 Motivation and objective

Transformer-based architecture combined with time representation showed promising results for

modeling irregular medical time series with one type of input data. In this work, we aim to design a

hierarchical transformer-based architecture for modeling highly variable multivariate time series and

evaluate the impact of representing the time irregularity between visits on the performance of clinical

prediction tasks. Additionally, we evaluate the effectiveness of combining temporal features, patient

static information, and the extracted medical concepts from clinical notes type on the performance

scores. The main question addressed by the proposed architecture is: How to combine different

types of medical records to improve downstream tasks performance?
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6.2 Model architecture

(a) General architecture of the HiTT model

(b) Architecture of the VisitEncoder sub-module

Figure 6.1: Diagram of the Multi-HiTT architecture
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The architecture of Multi-HiTT is illustrated in Figure 6.1a. The first level of our Multi-HiTT

network is to model the latent correlations among recent observations and importantly improve the

capability of patient’s recent health condition in each hidden state. This modeling process is repre-

sented in the Figure 6.1b . Take the current t-th episode for instance, the objective of the module is

to express the episode as a set of four independent embedding tensors: Vt = [Ut, Xt,p, Xt,d, Nt]. To

that end, VisitEncoder can be decomposed in three components: numerical time series module,

categorical embeddings module and clinical concept extractor module.

The second level of Multi-HiTT is to combine the long-term dependency and patient’s short-term

condition to obtain current patient’s overall health state. The modeling process is illustrated in

the Figure 6.1a. The construction of contextual attention-based hidden state ht is ensured by the

Time-aware Transformer encoder. It takes as inputs the sequence of visits embeddings (Vt)1≤t≤N

and the related time gaps ∆t. Then, it computes temporal position encoding with T, sums it up

to Vt and propagate the information through a stack of self-attention and point-wise feed-forward

layers.

The final patient representation Rp is set to the last hidden state hN . This vector, concatenated

with patient demographics embedding, is passed through a feed-forward network to make the final

prediction.

6.2.1 VisitEncoder module

Numerical Time Series Representation Module

The first component is taking as input the window-based segments of the time series Cu
t , a context

matrix consisting of recent Nwu
numerical values, where wu is the temporal window width (in our

pre-processing wu is equal to 6 hours). Then, it projects the segments into a latent space using

Soft One-hot module and returns a contextual hidden state Ut using a Transformer encoder.
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Categorical Embeddings Module

The second component comprises two embeddings modules DiagEmb and ProcEmb for generating

the Bags of Embeddings related to diagnoses (Xi
t,d) and procedures (Xj

t,d), respectively. Then, it

aggregates them using an attention-based weighted average operator.

Text Representation Module

Figure 6.2: Workflow to prepare the pre-trained embeddings of medical concepts extracted from all
clinical notes generated during a Visit ID

Finally, we defined a text representation module to process the clinical notes (ni
t)1≤i≤k generated

during the visit t. Each note will be fed to the fine-tuned ClinicalBert to extract the medical concepts

phrases (1). Then, each phrase will be presented by the average of contextual words embeddings (2).

The resulting phrases embeddings are then gathered based on their predicted entity class (Problem,

Test, Treatment) (3). Lastly, the three vectors are concatenated with the processed procedures,

problems, and continuous embeddings to form the encoded visit vector Vt (4).

6.3 Baselines models

Previous studies [72, 33] have shown that deep learning methods outperformed conventional machine

learning algorithms for the in-hospital mortality task. Consequently, we compared our model with

the following deep learning-based baselines:
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• Vanilla BiLSTM: The embeddings of medical events within the same episode are averaged

and passed through a BiLSTM to encode the sequence of visits. The patient representation

is set to the last hidden state of the recurrent network and fed to the classifier module.

• Vanilla Transfomer: The model architecture is similar to the first one, but we replace the

sequence encoder “BiLSTM” with a Transformer architecture.

• Hierarchical Transformer - Time: We deactivate the temporal module that represents the

time gaps between consecutive visits. In other terms, we considered the sequence of episodes

as an equal-spaced multivariate time series.

• Hierarchical BiLSTM: We replace the two Transformer encoders with “BiLSTM” ones and

use the “Linear” embedding module to represent the time gaps between consecutive visits.

6.4 Variant of Multi-HiTT architectures

Besides, for isolating the performance gain of each representation module defined within the VisitEncoder,

we defined four variants of the Multi-HiTT architecture:

• HiTT - continuous: Removing the continuous module that learns to represent multivariate

time series.

• HiTT - diagnoses: Removing the DiagEmb module that learns to represent categorical

embeddings of diagnoses codes.

• HiTT - procedures: Removing the ProcEmb module that learns to represent categorical

embeddings of procedures codes.

• HiTT + text: Adding text representation module that represents the medical concepts

described in the clinical notes.
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Part III

Experiments and Results Analysis
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Chapter 7

Medical sources

7.1 Introduction

This chapter presents two real-world clinical databases used to validate the proposed temporal

framework (Section 7.2) and the Multi-HiTT architecture (Section 7.3). The Section 7.4 describes

the i2b2-2010 challenge task we used for building the simulation study of active learning strategies.

7.2 Regional database of diabetic patients - CaRéDIAB

7.2.1 Database description

In the Champagne Ardenne area and since 2003, the database CaRéDIAB [52] (Champagne Ar-

denne Réseau Diabetes) stores clinical and paraclinical data of diabetic patients, regardless of their

diabetes type. In particular, it includes more than 2000 adults and children with type 1 diabetes.

The number of followed patients makes it a valuable database with rich structured follow-up data.

It allows simultaneous access to the HbA1c as a marker of diabetes control, diabetes complications,

and many other medical variables.

The data is collected during medical and paramedical consultations or hospital stays. Some

62



patients also benefit from retinopathy screening, using a mobile imaging unit, with a distance

reading of the fundus photographs by an ophthalmologist. As with all real-life databases, there is

some irregularity between visits, with some patients having periods without follow-up.

A Clinical Research Associate based at the Reims University Hospital ensures the update of the

history of medical records. The database has obtained the agreement of the National Commission

for Data Processing and Individual Liberties (CNIL; Commission Nationale Informatique et Lib-

ertés), number 1434306. All professionals certified by the network are subject to a confidentiality

agreement, and patients signed the informed consent to include them in the database [52].

At each patient visit, the clinician registers the HbA1c rate, leading to a varying sequence of

measurements depending on the frequency of patients’ appointments and blood tests (B.2 visual-

izes the different time series profiles). The presence or absence of diabetic retinopathy is assessed

from the screening performed within the CaRéDIAB network, on fundus photography, during hos-

pitalization, or by their usual ophthalmologist. The criteria for retinopathy are defined by the

international ETDRS criteria, as recommended by the French guidelines [127].

7.2.2 Target variable definition

Our database stores the information about retinopathy status in different columns depending on

the report source (consultation, hospitalization, ophthalmologist). Therefore, a pre-processing step

was necessary to aggregate these features and accurately fill in the target variable for the patients

considered in the study. We conducted an iterative process with two steps: First, the medical

experts defined the annotation rules based on eye-screening results to determine the retinopathy

status. Then we generated the related algorithm and selected a random set of patients to validate

the results. After three iterations, we fixed the rule-based algorithm (detailed in Appendix B.1).

This problem is posed as a binary classification one, and true retinopathy labels were created by

checking the retinopathy status at the following visit.
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Figure 7.1: Schematic representation of the follow-up of different patients: example of three patients
with type 1 diabetes and different follow-up durations and frequencies. We note that the interval
between observations varies between patients but also within the follow-up of the same patient.
Lastly, not all patients have diabetic retinopathy.

7.2.3 Data pre-processing

The analysis of the HbA1c records shows some data redundancy of the HbA1c levels taken within

a time window of seven days. These redundancies were found for hospitalizations recorded before

2018 and are related to the system allowing different caregivers’ to fill in the same data record.

Since then, the information system has been updated to avoid duplicates. We grouped all HbA1c

levels occurring within seven days to process duplicates by taking the most recent one. Then, we

computed the sequence of time gaps between consecutive records. In addition to the sequential

features, we defined the patient metadata as a list of three features: the non-follow-up duration,

the sex of the patient, and age at onset of diabetes. Finally, all numerical values were normalized

to meet the input format requirement for deep learning models.
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7.2.4 Data statistics

The Table 7.1 describes the population of study (mean ± standard deviation). The total number of

patients included in the study was 1207 patients. We noticed an imbalanced distribution between

the positive class (presence of retinopathy) and the negative (absence of retinopathy). The age at

the discovery of diabetes was the same for both classes. However, the duration of follow-up and non-

follow-up were twice as long for patients that developed a retinopathy complication. Furthermore,

those patients also had a more irregular history of records emphasized by longer time gaps between

consecutive records and higher HbA1c rates.

Table 7.1: Preprocessed dataset statistics: Distribution between the patients with a retinopathy
complication and those without.

Variable Without retinopathy With retinopathy
Patients (sex : M / F) 967 (M=476, F=491 ) 240 (M=126, F=114 )
Number of HbA1c 21.87 ± 16.92 21.41 ± 17.36

Age of onset of diabetes (years) 17.72 ± 14.91 17.89 ± 13.27
Follow-up duration (months) 124.01 ± 87.92 247.65 ± 133.44

Duration without follow-up (months) 43.89 ± 94.47 94.55 ± 135.50
Median of time-gaps between records (days) 98.72 ± 71.90 123.85 ± 132.42

Median of HbA1c level (%) 7.89 ± 1.29 8.57 ± 1.54

7.3 Medical Information Mart for Intensive Care (MIMIC-

III)

7.3.1 Database description

MIMIC-III [13] is a publicly available database generated from de-identified real-world EHR data

and contains medical records of about 46k critical care patients admitted in Beth Israel Deaconess

Medical Center between 2001 and 2012. As visualized in Figure 7.2, the database contains rich

information about various medical events during the patient’s stay. The features could be related to

vital signs, medications, laboratory measurements, observations and notes written by care providers,

fluid balance, procedure codes, diagnostic codes, imaging reports, hospital length stay, and survival

data. The database covers the health information of 38,597 adult patients and 49,785 hospital
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admission. This dataset exhibits the typical challenges of any large-scale clinical data, including

varying-length sequences, skewed distributions, missing values, episodic visits, and highly variable

time intervals between successive visits.

Figure 7.2: Schematic representation of two critical care patients with different duration of follow-
up and records frequencies. Note that certain physiological variables are not examined at some
visits, causing missing values
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To prepare data for machine learning and deep learning studies, Huang et al. [128] derived

from this database a public benchmark that includes four different clinical prediction tasks: in-

hospital mortality, physiologic decompensation, length of stay (LOS), and phenotype classification.

The resulting benchmark defined multivariate numerical time series and the related sequences of

diagnoses from more than 42,000 intensive care unit (ICU) stays. It also created the associated labels

for the four pre-defined tasks. Their work enabled the publication of novel modeling techniques

that follow a rigorous evaluation process and a fair comparison with other existing approaches. We

extended their pre-processing step to include the sequence of procedures and clinical notes generated

at each stay for our experiment. We used the MIMIC-III mortality prediction task as an example

of a classification task with multivariate time series. We also restricted our study to the seven

most frequent numerical parameters: Diastolic blood pressure, Glucose, Heart Rate, Mean blood

pressure, Oxygen saturation, Respiratory rate, and Temperature. Besides, we selected the patients

with at least two visits and computed the time gaps between consecutive ones. For the IHM task,

we ensure that the last visit lasts more than 24h. The dataset comprises 13718 hospital admissions,

177483 diagnoses with 4114 unique ICD-9 codes, and 51536 procedures with 1250 unique ICD-9

codes of 5120 patients.

7.3.2 Clinical objective

Mortality prediction is vital during rapid triage and risk/severity assessment. The IHM could be

defined as the outcome of whether a patient dies during the hospital stay or lives to be discharged.

7.3.3 Target variable definition

This problem is posed as a binary classification one, and true mortality labels were created by

comparing the date of death with hospital admission and discharge times.

67



7.3.4 Data pre-processing

This section explains the pre-processing steps for preparing the irregular sampled multivariate time

series for the in-hospital mortality binary prediction task. We defined each visit as a sequence

of three dynamic variables: sequence of diagnoses codes xt,d ∈ Ed, sequence of procedures codes

xt,p ∈ Ep, and a matrix of seven time series ut ∈ R7. We also define patient-level static vector

dp containing the following demographic data: ethnicity, gender, age. The categorical events were

transformed using Label Encoding that maps the medical code to an integer value between 1 and the

cardinality of events set: ed = |Ed| for diagnoses and ep = |Ep| for procedures. Finally, all numerical

time series were normalized to meet the input format requirement for deep learning models.

7.3.5 Data statistics

The Table 7.2 describes the population of in-hospital mortality prediction study. We reported the

averaged features in the format of “mean ± std” and specify the interquartile range of the median

values. We noticed an imbalanced distribution between the positive class (occurrence of IHM) and

negative (absence of IHM). The age at last admission is skewed for patients deceased during the

hospital stay. However, the duration of follow-up is similar for both populations. Furthermore,

the patients with in-hospital mortality stayed longer with more procedures and diagnoses. Those

patients also had a more irregular history of records emphasized by longer time gaps between

consecutive records.

Table 7.2: Preprocessed dataset statistics: Distribution between the patients with positive in-
hospital mortality and those without

Variable No IHM (74.9%) IHM (15.1%)
Patients (sex : M / F) 4346 (M=2386, F=1960 ) 774 (M=442, F=332)

Median Number of Visits 2 (IQR=1) 2 (IQR=1)
Average age at last admission (years) 66.16 ± 16.73 89.25 ± 16.12
Average follow-up duration (days) 586.87 ± 768.23 598.44 ± 744.55

Average length of stay per visit (days) 3.63 ± 5.32 5.43 ± 7.90
Median number of diagnoses per visit 12 (IQR=9) 13 (IQR=9)
Median number of procedures per visit 3 (IQR=4) 5 (IQR=5)

Average of time-gaps between visits (days) 420.77 ± 577.79 499.08 ± 659.72

68



7.4 I2b2-2010 NER Challenge

Figure 7.3: Annotated sentences with medical concepts defined in i2b2-2010 challenge

7.4.1 Challenge description

The 2010 i2b2/VA NLP challenge defined a medical concept extraction task and comprises 349

clinical documents with 20,423 unique sentences. Each sentence was annotated based on three

types of medical entities: problem, treatment, and test (Fig. 7.3).

7.4.2 Clinical Objective

The vast majority of clinical data available in the EHRs takes the form of narratives written in

natural language. While free text is practical to describe complex medical states, it is difficult

to use for medical decision support systems, clinical research studies and statistical analysis. The

goal of the i2b2-2010 Challenge is to develop NLP approaches to automatically extract key medical
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concepts from clinical notes and reuse them in downstream tasks. They defined three categories of

concepts: Problem, Test and Treatment.

7.4.3 Data Pre-processing

Pre-processing is necessary to prepare data for building supervised machine learning models since

clinical narratives are frequently unstructured and fragmented. Tokenization and sentence segmen-

tation are the two most important preprocessing steps. Sentence segmentation consists of detecting

the sentence boundary and convert a document or a text-paragraph to a list of independent sen-

tences. Tokenization is the process of breaking down each sentence into smaller chunks, usually

words.

7.4.4 Data statistics

Table 7.3: Statistical description (counts of sentences, words, and entities, average words per sen-
tence, average entities per sentence) of the test set and the pool of querying data using i2b2-2010
challenge data

Pool data Test data Total
Sentence count 18681 3808 22489
Word count 265092 55195 320287
Entity count 39687 7999 47686

Average words per sentence 20.5632 20.8953 -
Average entities per sentence 2.1244 2.1005 -
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Chapter 8

Retinopathy Prediction Use Case

8.1 Introduction

To validate our proposed framework, we conducted a comparative study to predict the retinopathy

complication, using 1207 highly variable medical time series of HbA1c gathered from the French

database CARéDIAB. This chapter outlines the experiment’s details, the analysis of the obtained

results showcasing the relevance of applying temporal deep learning methods for retinopathy pre-

diction.

8.2 Background

Several research studies [49, 129, 130, 131, 132, 133, 131, 134, 135] have focused on analyzing EHR

data to detect and diagnose diabetes complications, mainly in patients with type 2 diabetes. They

applied machine learning models, mostly Random Forest, Support Vector Machine (SVM), Logistic

Regression (LR), and Artificial Neural Network (ANN), to conduct uni-label classification. The task

consisted of predicting the outcome separately or using multi-label classification [136] to consider

the correlation between these outcomes. All studies used tabular features as input to machine

learning models, including risk factors, patient demographics, and comorbidities status. They used
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aggregation methods such as general computing statistics (min, mean, max) or generating rolling

window statistics for finer temporal granularity to define temporal-based risk factors. The subset of

works [135, 137, 138, 49, 134] that studied EHR data for detecting diabetic retinopathy (DR) have

reached an AUROC score ranging from 0.726 to 0.802. Particularly, HbA1c rates were a strong

predictor of DR in all predictive models that included them as risk factor [52, 139, 130, 140]. On the

other hand, a recent review of deep learning methods applied to diabetes [141] showed that most

related research has focused on the analysis of medical imaging to detect and diagnose multiple

diabetes complications. The most used architecture is the convolution neural network (CNN) and

its derivatives. While the only work taking advantage of longitudinal data [53] used a C-LSTM

model to predict unplanned readmission and to recommend the next intervention. Finally, among

all diabetes complication studies, only a few have modeled type 1 diabetes as outlined by the recent

review [142] where authors have concluded that there is a gap in knowledge regarding the prediction

of microvascular complications specifically for T1D patients.

8.3 Objective

Our work aims to combine sequential neural networks and time irregularity representations to model

the series of HbA1c levels and their variability (short and long-term variability) observed for T1D

patients with different disease duration for predicting diabetic retinopathy. As previous work [52]

demonstrated the impact of distant past HbA1c features on the development of retinopathy, we did

not include time-decay-based temporal architectures (GRU-D and T-GRU), and we focused on the

parametric approach “C-LSTM”.

8.4 Experiment Set-up

8.4.1 Partitioning and Cross-validation

To measure the trade-off between the number of patients and the length of the sequence of records,

we defined four groups of patients based on the number of HbA1c measures. Each group X includes
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Figure 8.1: The distribution of the patients in cross-validation sets with respect to patients groups.
The sets GroupA, GroupB , GroupC , and GroupD include patients with at least 3, 5, 10, and 15
records respectively. The validation set is fixed and used to fine-tune the hyper-parameters. In
contrast, the Test set is dynamically computed during the nested 5-fold cross-validation iterations
applied to the remaining patients not included in the validation.

patients with at least X values recorded during their follow-up history. For example, one patient

with more than 15 records will be present in the four groups. Finally, we applied the cross-validation

protocol defined previously to each group.

8.4.2 Performance metrics

We used the performances metrics defined in (Section 4.4.5): The area under the ROC curve

(AUROC) and the F1-score.
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8.4.3 Setup + Hyper-parameter tuning

We optimized the hyper-parameters of each model using the Optuna Python package [121]; we

report the search space and the best parameters in the Appendix B.3. The results of hyper-tuning

trials were logged in Weight&Bias platform [122]. To prevent over-fitting, we applied L2 weight

decay regularization to all models. Besides, we used a weighted cross-entropy loss for training to

consider class imbalance. The weight decay and the weight of classes were also included in the

hyper-parameters optimization step. We used a V-100 GPU with 32GB of memory to conduct all

the experiments.

8.5 Results analysis

The hyper-parameters fine-tuning results in Fig. 8.2 show that the attention mechanism models

are outperforming recurrent neural architectures for the group of patients with a minimum of 3

records. However, we observe that both approaches lead to similar performance for the other

groups. The group of patients with a minimum of 3 records was the largest one. Therefore, we could

hypothesize that attention-based models outperform RNN-based methods when a larger dataset is

available. Furthermore, C-LSTM models are under-performing the other models for all groups,

while the gap decreases for the set of patients with at least 15 records. The hyper-parameters
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Figure 8.2: Hyper-parameters optimization results with respect to the minimum length of HbA1c
history. Each algorithm corresponds to the pair (sequential model, time representation technique)
that we denote by “sequential model type + time representation”. The figure shows the trade-off
between training with more patients and the time series length.

tuning experiment demonstrated that the best architectures reach the highest performance score

for the most extensive data set. Therefore, we focused the rest of our analysis on GroupA and ran

the nested 5-fold cross-validation protocol using the best models returned by the hyper-parameter

tuning (the table of results can be found at B.4). The objective of this second experiment was

to test the generalizability and the stability of the models over new sets of patients. Similar to

validation results, Fig.8.3 shows the same relative ranking of the performance of the algorithms.

Furthermore, it shows that the attention-based model combined with the soft one-hot representation

of the time reaches the highest score. However, it is more variable than the LSTM model with the

time concatenation or the temporal-based attention-based model (attention + time encode). This

variance could be explained by the training sample size (965 patients) as Transformer-based are

shown to be more efficient with the increasing scale of data [143].

75



Figure 8.3: AUROC scores (mean ± std) for all the pairs (sequential model, time representation)
when applied to the nested cross-validation sets of the GroupA corresponding to patients with at
least 3 past HbA1c observations.

Selecting the model leading to the highest score “attention + time concat soft” (AUROC of

88.65%), we chose the cut-off threshold based on the ROC curve, such as maximizing the True

Positive Rate while ensuring a low level of false alarms. The resulting F1-score is 0.8512 (a specificity

of 85.56%, a sensitivity of 83.33%), and the confusion matrix shows (Fig E.3) a strong ability of

the model to retrieve patients with the risk of developing retinopathy. Furthermore, we visualized

the model’s performance based on the sequence length of HbA1c levels. We observed that the F1

score increases when the sequence gets longer. This result suggests that the model is more confident

about its predictions for patients with a longer series of HbA1c records.
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(a) The ROC curve and the area under curve score
(AUROC)

(b) Evolution of F-1 score with respect to patient’s
history length

(c) The confusion matrix of best attention model

Figure 8.4: Performances of the model attention + time concat soft : Fig (8.4a) visualizes the ROC
curve showcasing the trade-off between sensitivity and specificity for each possible cut-off. Fig (8.4b)
displays the evolution of F1-score with respect to the number of HbA1c records in the patients’
history. Fig (8.4c) zooms in the predictions of the model and exhibits the correct predictions of
each class (the diagonal), the false positives (top-right), and the false negatives (bottom-left)

We also tested the impact of the patient-level information, age at diabetes onset, sex, and the

non-follow-up-duration, by removing them from the input time series. In Fig. 8.5, we report the
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results of the best performing model of each group, with and without patient-level information.

We noticed that for groups A, B, and C, the relative gain of performance is 21.1%, 16.5%, and

20%, respectively. While the patient information helps get a higher score, the gap is less significant

(6.5%) for the group D with more than 15 records.

Finally, we measured the execution time of the best performing BiLSTM and Self-Attention

models. B.5 shows the execution profile of the training loop. We can observe that the attention-

based model was 1.4 times faster. This improvement is mainly due to optimized callback. The

time difference is related to the backward optimization step of BiLSTM that updates the historical

states iteratively due to the recurrence mechanism. In contrast, the attention-based model’s states

are updated in parallel.

Figure 8.5: The impact of adding side-information: non-follow-up duration, age at onset, and the
sex of the patient on best performing algorithm for each group of patients.
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Chapter 9

Simulated Active Learning Study

9.1 Introduction

To validate our proposed active learning strategy (Dynamic-HWUS), we conducted a simulated

experiments using the annotated corpus of the i2b2-2010 [46] challenge and the pre-trained Clini-

calBERT model [37]. This chapter outlines the background of applying active learning strategies

to medical concepts extraction, the description of the simulation study, and the analysis of the

obtained results.

9.2 Objective

We aim to compare different active learning strategies with passive learning in terms of down-

stream performance (F1-scores) and the size of annotated data needed to reach a fixed performance

threshold.
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9.3 Background

The requirement of large annotated clinical notes to train machine learning NER models and the

high costs and constraints associated with obtaining annotations in this domain have motivated

research works to explore the application of active learning strategies. Romer et al. [144] combined

active learning strategy and semi-supervised learning [145] to reduce the annotation cost required to

train a Naive Bayes classifier [146]. Their approach maximized mutual information and leveraged

the distribution of unlabeled and labeled data in selecting the following iteration samples. In

particular, they showed that the method could be applied for fine-tuning a general model to a

more specific one. A specification that is needed when applying a pre-trained model to data from

another medical site. On the other hand, Kholghi et al. [147] benefited from the availability of large

medical ontologies and terminologies and incorporated this external knowledge into the AL sampling

strategy. Specifically, they weighted the informativeness-based metric by a domain knowledge-

based importance term. This importance is expressed as a function of the concepts contained

in the sequence. They showed that training a CRF model with the additional external knowledge

outperformed state-of-the-art strategy by 14% in terms of annotation cost reduction. These findings

highlighted the promise of integrating domain knowledge within active learning query strategies.

However, these studies assumed that the annotation cost of all sentences is the same. To address this

limitation, Chen et al. [112] linked the annotation cost of a sentence to its length and numbers of

medical concepts. Following that assumption, they developed new AL cost-aware query strategies

belonging to uncertainty-based and diversity-based approaches. Additionally, they conducted a

comprehensive empirical evaluation of their proposed and well-established AL approaches using the

CRF machine learning model. They discovered that uncertainty-based methods lead to a significant

reduction of annotation effort compared to the diversity-based ones. Notably, their results showed

that uncertainty sampling saved 66% and 42% of the whole number of sentences and tokens required

annotation to reach the extraction F-measure of 0.80.

The presented studies have demonstrated the effectiveness of uncertainty and diversity-based

methods using simulated experiments. These experiments were based on the corpus developed for
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the i2b2/VA 2010 challenge [105], and the active learning process was simulated by incrementally

training on the gold standard dataset. More recent studies ran simulations and real-life experiments

to effectively estimate the actual annotation cost and compare the methods in both settings. Chen

et al. [48] proposed a hybrid AL strategy, they called CAUSE, that combines the uncertainty of the

model and the representativeness of the input sentence. They proposed a clustering method using

Latent Dirichlet Allocation (LDA) [148] to get the sentence’s feature representation and ensured

a diverse sampling batch by selecting sentences from different clusters. They compared simulated

experiments using Area under Learning Curve (ALC) score, and they also conducted a real-world

annotation study collected from two nurses over three weeks. Their results showed a significant

reduction in cost using their proposed method compared to passive learning. Interestingly, the

real-life experiment results showed that AL did not guarantee less annotation time than random

sampling across different users, suggesting that the sampling strategy should additionally estimate

the annotation time. Following that line of thought, [113] Wei et al. modeled the annotation cost

in their proposed AL strategy, called Cost-CAUSE, using a regression model. They ran a simulated

study and an actual user study with nine annotators to validate their approach. Furthermore, they

compared their method against random, uncertainty, and CAUSE strategies. The user study results

showed a time reduction ranging between 20% and 30%.

These proposed approaches were applied to machine learning-based models such as CRF, SVM,

and Naive Bayes classifiers. To the best of our knowledge, our study, introduced in chapter 5, is

the first to apply AL approaches to train a Transformer-based clinical NER model incrementally.

We also propose a novel hybrid strategy that dynamically calibrates the uncertainty and diversity

informativeness of a given sample based on the fine-tuning stage of the model.
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9.4 Simulation experiment

9.4.1 Baseline AL strategies

We set two baselines for comparing our proposed AL strategy. First, we fine-tuned the ClinicalBert

model using random sampling to set the baseline of the active learning experiment. Furthermore,

an active ClinicalBert with uncertainty sampling is defined as a traditional active learning strategy.

9.4.2 Named Entity Recognition task

We formulated the NER task as a sequence tagging problem using the BIO format where ”B”

represents the tag for the beginning of an entity, ”I” for inside the entity, and ”O” for outside the

entity. As the task includes three types of entities, we had seven classification labels: ”B-problem”,

”B-treatment”, ”B-test”, ”I-problem”, ”I-treatment”, ”I-test”, and ”O”. For each token in the

input sentence, the model estimates the probability of belonging to a given class.

9.4.3 Performance Metric

Following previous studies on medical NER [147, 149, 48], we evaluated the active learning strategies

using learning curves that plot F-measure of the model versus number of annotated sentences. We

also computed the area under the learning curve (ALC) as a global score to compare the methods.

9.4.4 Active Learning iterations

In the real-world AL context, human annotations are employed after each training iteration to

assign labels to the pre-selected samples; in this study, we simulated this process based on the

pre-annotated corpus of the i2b2-2010 challenge. The corpus consists of two sets of training and

testing. During the AL process, the train set is used as the unlabeled pool of data from which

samples are selected and labelled iteratively. The human annotations were replaced with the true

labels provided by the challenge. The test set was used to evaluate the performance of the model

built at each iteration of AL.
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9.4.5 Experiment setup

We reserved 20% of sentences as test data and used the remaining sentences as the pool of data

to be queried U . We initially fine-tuned the ClinicalBert model using 5% of training data then ran

three AL experiments. For all the three strategies, we iteratively selected a sample U with 5% to

update the model parameters and measure the performance scores on the test sample. Table 7.3

shows the characteristics of the pool and test sets.

9.5 Result Analysis

We ran a supervised learning experiment with the 80% of training data using a cross-validation

protocol. The best F1-measure score of 0.8102 was obtained with a batch size of 16, a learning rate

of 5.10−5 and 4 epochs. Furthermore, the best ALC score of dynamic-HWUS was reached using

k = 0.25 and β0 = 2.

In Figure 9.1 and Table 9.1, we observed that all active learning algorithms performed better

than passive learning, indicating the promise of combining AL and Transformer-based architecture

in medical concept extraction. Furthermore, using an active learning strategy benefited the early

stage training of the model and accelerated the learning curve to reach high-performance scores

with fewer data samples.

Interestingly, the uncertainty method outperformed the hybrid weighted strategy with static β =

1 in the early stage training. We argue that the contextual embeddings learned by the pre-trained

ClinicalBert are general and do not capture the specificities of the concept extraction task. Indeed,

as part of the extraction task, ambiguity, polysemy, synonymy (including abbreviations), and word

order variations should be addressed. However, a clinical narrative often presents unstructured,

Table 9.1: Area under learning curve (ALC) scores of the four AL strategies: Random sampling
(RS), Uncertainty sampling (US), HWUS with β = 1 (Static-HWUS) and HWUS with decayed
rate β (Dynamic-HWUS)

RS US Static-HWUS Dynamic-HWUS
ALC score 0.7070 0.7297 0.7259 0.7339
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Figure 9.1: Simulated learning curves with 5% iteration step for random sampling (Random sam-
pling), entropy-based (Uncertainty), static HWUS with constant β and dynamic HWUS with de-
cayed β to select sampled batch

grammatically incorrect, and unorganized information. Therefore, it is crucial to fine-tune the

embedded vector space based on highly variable clinical notes to learn how to represent words within

the context of the medical concept extraction task. Following that line of thought, we introduced the

decayed parameter β in our HWUS strategy to give more importance to uncertainty sampling at

the beginning of fine-tuning while iteratively increasing the density-based calibration term. Figure

9.1 shows that HWUS performed similarly to uncertainty methods in the two first iterations before

reaching higher accuracy in the following iterations, taking advantage of the calibration term in

selecting effective samples.

To summarize, the simulated study demonstrated that the three approaches, Uncertainty-based,

static HWUS, and Dynamic HWUS, have reduced the number of samples needed to reach the F1-

measure of 0.81 by 60%, 55%, and 70%, respectively compared to passive learning.
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Chapter 10

In-Hospital Mortality Use Case

(IHM)

10.1 Introduction

Transformer-based architecture combined with time representation showed promising results for

the diabetic retinopathy application (Chapter 8.1). In this task, the input data sample consisted of

a univariate numerical time series (HbA1C measurements) that spans over a long period (average

of 124 months). In this third experiments, we wanted to validate these results when applied to

multivariate time series that span over a shorter period (20 months) using our proposed Multi-

HiTT architecture. To that end, we used the in-hospital mortality task defined from MIMIC-III

[13]. Section 7.3 gives detail about the task and the input features. A subsequent motivation

is to showcase the utility of our framework in multiple clinical applications with various types of

temporal inputs.
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10.2 Objective

The objective was to validate the effectiveness of considering multi-modal patient timelines with

hierarchical temporal structure on solving clinical prediction tasks. Our workflow primarily makes

use of the multi-HiTT architecture and the implemented temporal framework.

10.3 Experiment setup

10.3.1 Cross-validation

we defined 80% and 10% of stratified sets of patients (i.e., ensuring the same distribution between

positive and negative classes) for training and validating the model, respectively, during the hyper-

parameters optimization step. The remaining 10% set of patients is reserved for the k-fold cross-

validation step.

10.3.2 Performance metrics

We used the same performances metrics like the ones defined for the task of diabetic retinopathy

prediction (Section 4.4.5): The area under the ROC curve (AUROC) and the F1-score.

10.3.3 Setup + Hyper-parameter tuning

We ran a Bayesian hyper-parameter optimization with 100 trials to maximize the AUROC score

and computed the final scores using nested 5-fold cross-validation. Appendix D lists the parameters

search space for our proposed architecture and the baselines. We applied L2-weight decay regu-

larization to all models to prevent over-fitting and used a weighted cross-entropy loss for training.

The experiments were run on a V-100 GPU with 32GB of memory.
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10.4 Results analysis

The predictive performance of Hierarchical Transformer and baselines are presented in Table 10.1.

The results shown are based on predicting in-hospital mortality after 24h of the admission and using

a window of 6 hours to construct the sub-sequences of each visit with a maximum of 5 visits history.

According to Table 10.1, the Transformer-based models are generally capable of achieving higher

prediction performance in terms of AUROC. Our proposed architecture, Hierarchical Transformer,

achieves the best performance, improving the AUROC by 5 % over the best vanilla baseline. The

second-best performing model is the Hierarchical BiLSTM that shares the same architecture but

with a different sequence encoder. This shows that our design choices of hierarchical architecture,

attention-based sequence aggregator, and time gaps representation enable our model to learn su-

perior representations. Like retinopathy application results, ignoring the time gaps between visits

hurts the model’s predictive power. This validates the importance of considering time information

when modeling medical time series. Lastly, the Transformer-based encoder leads to better results

than the BiLSTM one, suggesting that the self-attention encoder is a strong candidate for modeling

short sequences as well.

Table 10.1: Test results: Mean and std of AUROC using 5 cross-validation sets of 512 patients.

Model ROC - AUROC - mean ROC - AUROC - std
Vanilla BiLSTM 0.852 0.096

Vanilla Transfomer 0.863 0.022
Hierarchical BiLSTM 0.885 0.008

Hierarchical Transformer - No Time 0.881 0.013
Hierarchical Transformer 0.906 0.002

On the other hand, Table 10.2 reports the average AUROC score over the 5-fold nested cross-

validation for the five best architecture of Multi-HiTT variants. Taking away the diagnoses recorded

during patient visits hurts the model’s performance the most. Conversely, ignoring the procedures

embeddings slightly decreased the prediction score. Meanwhile, when considering all available

information, including text embeddings, we reached the highest score of 0.953. We could conclude

that multi-modal representation of the patient health trajectory helped to improve the performance

of the IHM predictive task. Although we argue that the choice of information to include highly
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depends on the classification task and the input dataset.

Table 10.2: Area under ROC curve (AUROC) scores of the five variants of HiTT architectures for
in-hospital mortality prediction task

HiTT HiTT - continuous HiTT - diagnoses HiTT - procedures HiTT + text
AUROC score 0.906 0.875 0.851 0.898 0.953
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Discussion

Time irregularity as additional information

Modeling the irregular time gaps between consecutive medical visits is critical for representing

the patient’s health trajectory as real-world data always contains such patterns. Moreover, these

patterns are often valuable for understanding the disease evolution. However, most conventional

statistical and machine learning methods require the aggregation of the temporal indicators using

a time window segmentation, leading to information loss.

Our work considered time irregularities as additional information, arguing that it is relevant

to the medical prediction tasks. We also kept the original sequences oh historical observations

without using time-based aggregation or data imputation techniques. To represent the time between

consecutive events, we compared two approaches: learning to express the time as an additional

input to the neural method and injecting time information as an additional parameter of the

neural architecture. To our knowledge, this is the first work that compares models from the two

approaches when applied to highly variable real-world medical time series. Our experiment results

of the retinopathy prediction use-case (Fig. 8.2) suggest that representing time as an additional

input feature leads to better performance. We argue that the second parametric approach is defining

a more complex architecture with more parameters to optimize and therefore requires more data

points to stabilize. To validate the latter point, we plan to collect more data in our future work to

validate if such patterns are persistent when learning with a larger dataset.

On the other hand, the C-LSTM variants that include the time as part of their learning pa-
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rameters show that the model needs patients with long-history profiles to reach higher performance

scores. A result that consolidates the original work findings: ”DeepCare is more powerful with long

trajectories of many episodes” [53].

Besides, Fig. 8.3 plots the models variability with respect to the cross-validation folds. We

observe that architectures not leveraging the information of time gaps are less stable than those

using the same architecture but with the temporal representation technique. Indeed, both the

attention-based and bidirectional-LSTM models are reaching the highest scores when combined

with time concat mlp and time concat soft representation. Furthermore, injecting the time in the

attention-based model’s positional encoding layer leads to a higher score. On the other hand, the

time-mask technique has a comparable score to the no-time models suggesting that learning to

contextualize the event using a temporal mask is not enough to leverage the information contained

in the temporal irregularity.

Lastly, Multi-HiTT architecture leverages the time irregularity in two levels: time-series recorded

within the visit and time-gaps between consecutive visits. Decoupling the representation of these

short and long-term temporal dependencies improved the model’s performances by 5%, suggest-

ing that time modeling should be considered at the visit-level and patient timeline-level. This

hierarchical structure was not leverage in the different DL proposed methods for IMTS [72, 68, 22].

This analysis concludes that the temporal irregularity and the hierarchical attention-based tem-

poral weights are crucial to accurately represent the highly variable sequence of medical observations

and highlights its impact on the prediction of retinopathy complications and in-hospital mortality.

Trade off between training data size and patient’s sequence length

Our proposed experiment of retinopathy prediction defined four datasets where we filtered pa-

tients based on the number of HbA1c measurements. Then, we executed the pipeline of hyper-

parameter tuning, training, and evaluation of all considered algorithms for each group. Our goal

was to assess the trade-off between the size of training data and the length of the patient’s his-

tory when comparing performance. Fig. 8.2 suggests that experiments conducted on Group ≥ 3
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(patients with at least three records) lead to the best-performing model as rich training data with

different profiles help the model generalizability [150]. Whereas the prediction analysis of the per-

forming model (Fig. 8.4b) showed that F1-score was higher for patients with a more significant

number of records. We could conclude that the model benefits from training with extensive data

containing variable patient profiles to represent the sequence inputs better. However, the model is

more confident about the predicted risk score for patients with sufficient data records.

Therefore, the real-life application of such models should consider the observed trade-off. First,

the medical research team needs to efficiently build large train datasets, including variable profiles

of patients, to get a high-performance trained model. Nevertheless, integrating such a model into

clinical decision support tools must compute those scores only for patients with sufficient records

(the cut-off in our experiments was eight records).

Most efficient architecture for retinopathy prediction based on the conducted compar-

ative study

Most models presented in the literature (presented in section 8.2) used conventional machine

learning methods requiring a feature engineering step that derives input attributes from the original

sequence of medical observations. Our work achieves higher scores (an improvement of 7.7% and

8.1% compared to the closest related works [136], and [151] respectively) by applying deep learning

methods to the original sequence of HbA1c records, considering the temporal irregularity and three

patient-level features. These promising results show how we can quickly test our clinical hypothesis

using our developed deep learning framework. We could also achieve higher scores than conventional

machine learning methods while using a smaller set of features, integrating temporal variables, and

keeping the original data to avoid loss of information.

Figure. 8.1 shows that Transformer-based and Bidirectional-LSTM models combined with time

feature representations lead to higher scores. However, selecting the best appropriate algorithm

among these five models is challenging as they all lead to comparable performance scores. One

could argue that the best model is attention + time encode as it has a minor variance, while others
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would instead select the model attention + time concat soft as it leads to the highest score. These

results raise the question of choosing the relevant algorithm for a specific clinical application and

available dataset without the models’ comparison done in this work.

A good practice for such clinical studies is to run the following pipeline: pre-process input data,

build the models’ architectures, find the best hyperparameters for each model, and evaluate using

the cross-validation protocol. Our implemented framework integrates all those steps and includes

the latest temporal representation techniques and sequential neural networks, aiming to facilitate

the experiment’s workflow for medical researchers. Furthermore, our framework supports the pro-

cessing of contextual information such as patient-level features. The results of Fig. 8.5 show that

the patient’s side information helped the best performing neural network models to achieve higher

prediction scores when we included patients with few numbers of HbA1c measures. Lastly, the

faster execution time of attention-based models can be an argument to use those types of architec-

tures when large datasets and access to GPU computing power are available.

Medical benefits of deep learning-based methods for complication predictions Our work

aims to reduce this gap by studying a cohort of type 1 diabetes as a recent review [142] outlined the

lack of studies predicting complications of patients with type 1 diabetes. To our knowledge, this is

the first work to apply deep learning models to longitudinal clinical data for retinopathy prediction.

We used HbA1c routines tests combined with three demographic features to define our models.

All these features are recorded during the following up of diabetic patients, making our trained

model easily deployable in every monitoring system to assist doctors in managing higher-risk pa-

tients.

Collection of high-quality annotated clinical notes Our simulation study showed that the

model achieved 80% F1-score with 70% fewer data than passive supervised learning when us-

ing Dynamic-HWUS active learning. Based on this result, we can show the validity of training

Transformer-based NER classifiers using Active Learning. As well, it demonstrates a good poten-
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tial for applying state-of-the-art NLP models that were published in the general domain to complex

real-life medical data. An active-learning platform would allow doctors to annotate large amounts

of clinical notes quickly and easily, and to prepare high-quality training data for downstream use.

We believe the adoption of Active Learning should be at the core of collecting complex annotated

medical data.
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Chapter 11

Conclusion and Future Works

11.1 Conclusion

Unlike general domains such as Image Analysis and Natural Language Processing, real-world medi-

cal data is very challenging and requires additional processing to represent the patient’s history and

build solid predictive models. Considering these challenges when defining the deep learning-based

representation model is crucial for accurate medical studies.

In our first work, we tackled the time-irregularity of episodic medical visits, tested various archi-

tecture to model the sequence of a patient’s health history, and included functional representations

of the irregular time gaps between consecutive observations. The developed generic framework

allowed us to consolidate the importance of temporality management in two clinical settings: pre-

dicting diabetic retinopathy using a long-span chronic medical time series and estimating the risk

of in-hospital mortality using short critical care time series.

Second, an overview of existing methods for medical concept extraction suggested that Transformer-

based architecture is the most performant architecture reaching SOTA scores in all the i2b2 medical

extraction challenges. These architectures contain a large number of parameters and thus require

large annotated corpora to converge. In real-world clinical settings, annotations are often unavail-
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able, limiting the application of such deep learning models. We proposed a novel active learning

strategy that enables incremental training of Transformer-based architectures. The simulated study

showed promising results as the model reached an 80% extraction score with 70% fewer data than

passive supervised learning. Our results proved the validity of training a Transformer-based NER

classifier using the Active Learning strategy. Such a technique would reduce the gap between

research models’ results and their application to supporting e-Health systems in practice.

Lastly, the key to building accurate and comprehensive patient representations is combining

all forms of clinical information gathered during patient visits. The proposed multi-modal HiTT

architecture offers a novel structure to combine the different levels of sequential information: visit-

level and patient-level. Additionally, it supports any type of data integration, including continuous,

categorical, and textual. The end-to-end training of such an architecture provided SOTA results

for predicting in-hospital mortality.

11.2 Future directions

Open-source English databases such as MIMIC-III and i2b2 challenges have led to numerous re-

search works that advanced the application of deep learning models to real-world medical data

and allowed research teams to ensure their work’s reproducibility and comparison against existing

methods. Meanwhile, there are relatively fewer published studies that use french clinical databases.

We argue that the main reason is the limited access to a large-scale medical dataset and the absence

of publicly available research databases. We believe that developing such databases could be highly

beneficial to the French research teams.

While datasets’ availability enables efficient models, the research teams should consider their

applicability in real-world clinical systems designed for doctors. To achieve that, those models

should account for all the challenges of medical data stated in the introduction of this work. We

believe that designing an end-to-end system that encapsulates optimized modules tackling the

different challenges could bridge the gap between the definition of the state-of-the-art deep learning

methods and their integration in routine monitoring systems used by doctors.
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Our preliminary work presented in the first part showed the effectiveness of temporal-based

deep learning-based methods in clinical predictions. Before deploying such algorithms in clinical

settings, we need to ensure the following points:

1. Model’s explainability: conduct a prediction analysis to evaluate the impact of each con-

sidered variable. To understand the predictability of such complex models, it is also necessary

to visualize the attention scores learned by the models. Eventually, it will allow us to detect

patterns in the time series that correlate with a higher risk.

2. Higher generalizability power: consider a more comprehensive set of training data in

terms of the number of patients. Our goal is to verify whether the temporal patterns and

important factors observed in this study can be generalized.

3. Unit and integration tests: extend the framework to include automatic testing of the

model definition and deployments workflows to ensure the stability of the deployed model

performances. The trained model should go through a rigorous validation process before

integrating it into a routine monitoring system used by doctors.

4. Dynamic training: Design an efficient pipeline that integrates new records and dynami-

cally updates the models’ parameters using time-window-based training. Indeed, incremental

training [152, 153] would allow for continuously learning new knowledge from new patient’s

observations while existing past knowledge is maintained.

For more clinically relevant application, we plan to extend and test our framework to temporal

window-based predictions to estimate the clinical outcome in a more distant future step, allowing

doctors to intervene ahead of time and better manage their patients. Transparency and explain-

ability play a crucial role in adopting Artificial Intelligence (AI) models into clinical systems, as

incorrect predictions could significantly impact patients’ health [154, 155]. Therefore, another re-

finement we intend to study is the predictions analysis to explain such black-box models. Finally,

once validated, these models could be integrated into a decision-support tool of numerous medical

information systems as they only require routine data.
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In the second part, we proposed Hybrid Weighted Uncertainty Sampling (HWUS) that considers

the context embedding learned by the Transformer-based approach to measuring the representa-

tiveness of samples. This work has diverse notable limitations. First, our simulation study assumed

that the annotation cost for each sentence was the same. In practice, this hypothesis does not hold

[156, 113], which limits the generalization of the obtained results to real-time experiments [157]

with medical experts. Second, we used as base architecture the ClinicalBert model, pre-trained on

English clinical notes from the MIMIC-III database. Transposing these AL experiments to french

data would require an additional step of pre-training the contextual embeddings using a large set of

medical notes. Efforts [158, 159] have already been made to publish contextual embeddings trained

on general french texts, reaching high-performance scores in various NLP tasks. These models can

serve as a base to learn clinical embeddings using french medical notes. Lastly, the effectiveness of

active learning for clinical NER needs to be evaluated with real-world experiments. As future work,

we aim to conduct these user studies based on a cost-aware active learning-enabled annotation

interface and to involve medical experts.

The study presented in the last chapter of the second part showed that it would be beneficial

to integrate clinical narratives with the sequential patient representation since unstructured text

provides highly valuable information. Nevertheless, our work has three main limitations that need

to be addressed. First, we trusted the fine-tuned ClinicalBert extractor to gather the medical

concepts. A post-processing step to evaluate the extraction performance of the model on MIMIC-

III is required to validate the considered outputs. Second, we used fixed pre-trained embeddings as

input to our HiTT architecture. A potential scenario to test in the future is the possibility of fine-

tuning these embeddings during the IHM training step, as it would lead to task-aware embeddings

and thus improve performance. Finally, we would like to run similar experiments using a french

clinical database to validate the generalizability of our multimodal architecture. In particular, we

are interested in building French ClinicalBert pre-trained embeddings using a large set of clinical

notes and publicly available medical courses materials.

Specifically, a future direction we would like to explore is the development of an end-to-end
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system that combines the active learning-based annotation tool MAP (The design of the interface

is detailed in Appendix C) and the temporal model HiTT. We aim to conduct a real-life experiment

using a French clinical database and evaluate the effectiveness of building such an end-to-end system.
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Appendix A

YAML configuration of the

temporal Framework

name: 'time_concat_soft'

# Specify paths to data and results directory

data_directory: ./modelisation_hba1c_retino_v3/dictionaries/

validation_file_name: "121_patients_min_3_seq_infos_Valid.sav"

train_file_name: "965_patients_min_3_seq_infos_Train.sav"

test_file_name: "121_patients_min_3_seq_infos_Test.sav"

min_measurement: 3

use_time_info: True

use_patient_info: True

result_dir: /home/dataset/temporal_hba1c/results

side_info: ['duree_non_suivi_norm']

# Training info

cycle_len: 30

batch_size: 16
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val_bs: 121

device: cuda

n_workers: 4

class_weight: [0.6, 0.4]

max_len: 151

#optim info

optimizer: radam

weight_decay: 0.000007751

max_lr: 0.001261

monitor: auc_score

mode: max

# patient module

patient_config:

representation_type: mlp

num_inputs: 1

hidden_dims: [32]

activation: 'gelu'

output_dim: 56

# time module config

time_config:

representation_type: soft-one-hot

hidden_dims: None

projection_size: 12

activation: 'gelu'

output_dim: 56

embeddings_init_std: 0.2

# event module config
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event_config:

categoricals: []

continuous: ['seq_hba1c']

categorical_representation: mlp

continuous_representation: mlp

categorical_embeddings: []

continuous_hidden_dims: [16]

continuous_output_dim: 40

tf_activation: 'relu'

#model info

aggregation_mode: concat

model_type: attention

temporal_model:

input_size : None

hidden_size : None

dropout : None

bidirectional : False

model_time : None

timedecay_size : None

num_layers : 4

pad_value : -0.2

attn_heads : None

hidden_dropout_prob : 0.1

feed_forward_hidden : 56

hidden_act : 'gelu'

attn_dropout_prob : 0

num_input : 1
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output_self_attention : True

use_position_embedding: True

# classification head

classifier:

input_dim: None

hidden_dim: 24

output_dropout: 0.5

num_classes: 2

use_patient_info: False

patient_embedding_dim: None
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Appendix B

Diabetic retinopathy prediction:

Additional materials

B.1 Rule-based algorithm for retinopathy target definition

We define the presence or absence of retinopathy based on different features related to records filed

either by the ophthalmologist during visits or diabetologist during hospitalizations. Particularly,

we label the presence of retinopathy based on five checks in the following order :

1. The fundus result shows retinopathy.

2. The patient has been administered one of the following retinopathy treatments: laser, pan

photocoagulation, or vitrectomy.

3. The patient had a complication of retinopathy (intravitreal hemorrhage, neovessels).

4. The presence of fundus abnormalities.

Generally, the ophthalmologist fills in the date of onset of retinopathy in the corresponding reports.

In other cases, the diabetologist manually fills in the information when it is available.
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B.2 HbA1c profiles in CaRéDIAB

(a) Profile with 3 records (b) Profile with 14 records

(c) Profile with 35 records (d) Profile with 151 records

Figure B.1: The history profile of HbA1c records for four diabetic patients: we note that the
number of records, the HbA1c levels, and the duration of follow-up are highly variable between
these patients. Patient (a) have a short duration of follow-up. On the other hand, the patient (d)
has good glycemic control throughout 40 years of follow-up. We note that good glycemic control is
defined by HbA1c level ≤ 7%.

124



B.3 Hyper parameter fine-tuning results for Diabetic retinopa-

thy prediction

This appendix presents the search space of the hyper-parameters required for the model training,

the patient representation module, the time representation module, the event representation mod-

ule, the sequential temporal module, and the classification module. The results of the Bayesian

optimization for the 12 models tested on patients of “group ≥ 3” are reported in our online appendix:

https://github.com/sararb/Temporal-Deep-Learning-for-Medical-time series/blob/main/Appendix-

A.md

Table B.1: The search space of hyper-parameters for the Bayesian optimization

Module Hyper-parameter Search space distribution
Training cycle len [5, 40] discrete with step size of 5
Training batch size [4, 32] discrete with step size of 4
Training class weight [0.1, 0.7] discrete uniform with step size of 0.05
Training optimizer [radam, adam, sgd] categorical choice
Training max lr [1e-4, 1e-2] logarithmic uniform
Training weight decay [1e-6, 1e-4] logarithmic uniform

patient model hidden dims [4, 32] discrete with step size of 4
patient model activation [tanh, relu, gelu] categorical choice
patient model output dim [8, 64] discrete with step size of 8
time model hidden dims [4, 32] discrete with step size of 4
time model projection size [4, 32] discrete with step size of 4
time model output dim [8, 64] discrete with step size of 8
event model continuous hidden dims [4, 32] discrete with step size of 4
event model tf activation [tanh, relu, gelu] categorical choice
event model continuous output dim [8, 64] discrete with step size of 8

temporal model hidden size [8, 64] discrete with step size of 8
temporal model num layers [1, 10] discrete with step size of 1
temporal model dropout [0, 0.5] discrete uniform with step size of 0.1
temporal model attn dropout prob [0, 0.5] discrete uniform with step size of 0.1
temporal model hidden dropout prob [0, 0.5] discrete uniform with step size of 0.1
temporal model feed forward hidden [8, 64] discrete with step size of 8
temporal model hidden act [tanh, relu, gelu] categorical choice
temporal model timedecay size [1, 5] discrete with step size of 1
classifier model hidden dim [8, 64] discrete with step size of 8
classifier model output dropout [0, 0.5] discrete uniform with step size of 0.1
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B.4 Table of retinopathy prediction results for group of pa-

tients with at least three records

Table B.2: Test results: Mean and std of AUROC using 5 cross-validation sets of 121 patients.

Model Time representation AUROC - mean AUROC - std
attention no time 0.7105 0.0969
attention time concat mlp 0.8358 0.02286
attention time concat soft 0.8399 0.0353
attention time mask 0.7679 0.0715
attention time encode 0.8336 0.0143
BiLSTM no time 0.8187 0.0254
BiLSTM time concat mlp 0.8363 0.0199
BiLSTM time concat soft 0.8350 0.03152
BiLSTM time mask 0.8097 0.0385
clstm forget 0.7413 0.0852
clstm output 0.6362 0.01682
clstm forget output 0.6308 0.02146
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B.5 Profiles of the execution of the model training loop in-

cluding data-loading, and optimization steps

(a) Execution time of BiLSTM model

(b) Execution time of Self-Attention model
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Appendix C

MAP: AL-empowered medical

annotator interface

C.1 User Interface standards

We aimed to design a user-interface Web-App for efficiently collecting manual annotations from

clinical text. To achieve that, our interface should meet the following requirements :

1. Including multi-project and multi-user management for efficiently gathering annotations from

different annotators and taking advantage of previous projects.

2. Optimizing the visualisation of text information to help the medical expert on focusing on

relevant information related to the annotation sub-task objective.

3. Querying and selecting the set of samples to annotate based on active learning strategy

through a Python API.

4. Optimizing the visualization of automatic annotations for medical expert validation.

5. Including metrics for evaluating the annotation cost of each annotator.
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6. Visualizing the evolution of performances and saving trained supervised methods in the sys-

tem.

C.2 Data model

Figure C.1: EER diagram of MAP tool

We defined the data model, detailed in figure C.1, to ensure all the standards detailed in section

C.1. The resulting database model includes five main classes:

1. System tables: user, status, project, files. These tables handle the creation and management

of different users and projects and the storage of data files loaded by the medical expert.

2. Data tables: patient, clinical note, section and sentence. These tables store the raw text

data of medical reports and patient ids from the file loaded by the expert. It also stores the

medical sections and sentences automatically derived from the clinical note text.
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3. Annotation tables: medical event, timex, me crtime, me te and rank. These tables store

manual and automatic annotations extracted from the text for the 5 sub-tasks.

4. Automatic annotation configurations: classes event, classes, active learning, strategy.

These tables store the configuration of entity classes and the active learning stategy to use

for selecting the samples to be annotated.

5. Performance tables: iteration, scores task. The two tables store the performance of the

supervised model at each AL-iteration.

C.3 Interface design

(a) Configuration
(b) Manual annotation

(c) Automatic annotation validation

Figure C.2: Active annotation process of the sub-module ”Medical Event Extraction”

- We divided the annotation process into three steps:
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1. Configuration: The expert select the sampling strategy and the performance threshold for

exporting annotated data and trained model.

2. Manual annotation: The expert manually annotates the visualized text with respect to

the task objective. For example, in Figure C.2b, the expert highlights the part of text corre-

sponding to a medical event and selects its class.

3. Automatic annotation: the annotations are automatically computed from the supervised

model and are visualized for expert validation.
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Appendix D

Hyperparameters for variants of

HiTT architecture

D.1 The search space of HiTT architecture’s parameters
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Table D.1: The search space of hyper-parameters for the Bayesian optimization of HiTT architec-
tures

Module Hyper-parameter Search space distribution
Training cycle len [5, 40] discrete with step size of 5
Training batch size [4, 32] discrete with step size of 4
Training class weight [0.1, 0.7] discrete uniform with step size of 0.05
Training optimizer [radam, adam, sgd] categorical choice
Training max lr [1e-4, 1e-2] logarithmic uniform
Training weight decay [1e-6, 1e-4] logarithmic uniform

VisitEncoder procedures embed dim [4, 48] discrete with step size of 4
VisitEncoder procedures attention hidden [8, 64] discrete with step size of 8
VisitEncoder diagnoses embed dim [4, 48] discrete with step size of 4
VisitEncoder diagnoses attention hidden [8, 64] discrete with step size of 8
VisitEncoder soft projection size [4, 32] discrete with step size of 4
VisitEncoder continuous embed dim [4, 48] discrete with step size of 4
VisitEncoder activation [tanh, relu, gelu] categorical choice
VisitEncoder transformer hidden size [8, 64] discrete with step size of 8
VisitEncoder transformer n layers [1, 10] discrete with step size of 1
VisitEncoder attn dropout prob [0, 0.5] discrete uniform with step size of 0.1
VisitEncoder hidden dropout prob [0, 0.5] discrete uniform with step size of 0.1

Time-aware Transformer transformer hidden size [8, 64] discrete with step size of 8
Time-aware Transformer transformer n layers [1, 10] discrete with step size of 1
Time-aware Transformer attn dropout prob [0, 0.5] discrete uniform with step size of 0.1
Time-aware Transformer hidden dropout prob [0, 0.5] discrete uniform with step size of 0.1

classifier model hidden dim [8, 64] discrete with step size of 8
classifier model output dropout [0, 0.5] discrete uniform with step size of 0.1

D.2 The best hyper-parameters of HiTT architectures
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Table D.2: Best hyper-parameters results of HiTT architectures

Module Hyper-parameter HiTT HiTT + text HiTT - continuous HiTT - diagnoses HiTT - procedures HiTT - Time
Training cycle len 30 40 20 25 15 25
Training batch size 8 4 32 8 16 32
Training class weight 0.65 0.55 0.55 0.6 0.5 0.45
Training optimizer adam adam adam radam adam sgd
Training max lr 0.000323 0.000135 0.000523 0.000897 0.000214 0.000534
Training weight decay 1.70E-06 3.45E-06 2.37E-06 1.23E-06 1.93E-05 2.23E-05
VisitEncoder procedures embed dim 16 12 24 16 - 24
VisitEncoder procedures attention hidden 56 56 24 16 - 48
VisitEncoder diagnoses embed dim 32 24 48 - 16 32
VisitEncoder diagnoses attention hidden 32 48 24 - 16 32
VisitEncoder soft projection size 8 12 - 4 8 4
VisitEncoder continuous embed dim 20 32 - 16 20 24
VisitEncoder activation gelu gelu - gelu tanh relu
VisitEncoder transformer hidden size 56 56 - 32 48 64
VisitEncoder transformer n layers 3 4 - 3 2 2
VisitEncoder attn dropout prob 0.2 0.2 - 0.4 0.2 0.1
VisitEncoder hidden dropout prob 0.1 0.3 - 0 0.1 0
Time-aware Transformer transformer hidden size 56 56 32 48 56 32
Time-aware Transformer transformer n layers 3 5 3 2 4 4
Time-aware Transformer attn dropout prob 0.2 0 0.2 0.3 0.1 0.3
Time-aware Transformer hidden dropout prob 0.1 0.2 0.2 0.3 0.1 0.2
classifier model hidden dim 16 24 16 24 24 32
classifier model output dropout 0.4 0.5 0.2 0.4 0.3 0.2

134



Appendix E

Review of deep learning methods

for medical time series modeling
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Table E.1: An overview of the DL-based models used for medical time series applications

Year Core-architecture Task ML task Datasets Reference

2021 Transformer + Attention in-hospital mortality Next event prediction
MIMIC III
PhysioNet

[79]

2021 RNN + Time clinical event time series next-event prediction MIMIC-III [50]

2020 RNN + Attention
in- hospital mortality
length of hospital stay

readmission
Binary Classification + regression MIMIC-III [22]

2020 RNN + Time in-hospital mortality Binary Classification
MIMIC- III

eICU
[72]

2020 RNNs + Time in-hospital mortality Binary Classification

MIMIC-III
CINC2012
CINC2019
COVID-19

[67]

2020 Transformer + LSTM + Time
Unplanned Re-admission
In-Hopital Mortality

Binary Classification MIMIC [160]

2019 RNN
predict future medication

procedures/lab tests
physiological signals

Next event prediction MIMIC [85]

2019 CNN + Hierarchial attention myotonic dystrohpy diagnosis Binary Classification Private data [161]

2019 RNN + Hierarchial attention
Mortality prediction

ICU admission prediction
Binary Classification MIMIC-III [76]

2019 RNN + Time
in-hospital mortality
length of hospital stay

Binary Classification + regression MIMIC-III [84]

2019 RNN ICU mortality risk Binary Classification MIMIC III [78]

2018 RNN + Attention
In-Hospitality Mortality

Readmission Rate
Length of Stay

Binary Classification + regression Private EHR datamarts [23]

2018 RNN + Time In Hospital Mortality Binary Classification MIMIC III + PhysioNet [73]

2018 Transformer + Time In Hospital Mortality Binary Classification MIMIC-III [33]

2018 RNN + Hierarchial attention Future Hospitalization Binary Classification Private EHR data [81]



Year Core-architecture Task ML task Datasets Reference

2018 RNN + Attention + Time Heart Failure onset Binary Classification SNOW + EMRbots [75]

2018 RNN Prediction of Cystic Fibrosis Binary Classification Private EHR data [162]

2018 RNN + Time In Hospital Mortality Binary Classification MIMIC III + PhysioNet [73]

2018 Transformer + Time In Hospital Mortality Binary Classification MIMIC-III [33]

2017 LSTM
Unplanned Re-admission

Disease Progression
Binary Classification Private EHR data [53]

2017 RNN + Attention Treatment Recommendation seq2seq prediction MIMIC + Sutter [86]

2017 Graph + Attention Heart Failure onset Binary Classification MIMIC + Sutter [77]

2017 SkipGram + RNN Heart Failure onset Binary Classification Sutter [17]

2017 RNN + Time Diabetes Mellitus prediction Binary Classification Synthetic data + PPMI [74]

2017 RNN + Hierarchial attention Category of next visit diagnoses multi-label classification Medicaid + Diabetes claim [82]

2017 LSTM + T-SNE Patient Subtyping Clustering PPMI [21]

2017 RNN Unplanned Re-admission Binary Classification Private EHR data [80]

2016 RNN + Hierarchial attention Next diagnoses Next event prediction MIMIC-III [12]

2016 CNN
Congestive Heart Failure (CHF)

Chronic Obstructive Pulmonary Disease (COPD)
Binary Classification Private EHR data . [16]

2016 RNN Medication Prescriptions multi-label classification Sutter [19]

2016 RNN Medication Prescriptions multi-label classification Private EHR data [163]

2016 Denoising Auto Encoder Disease classification multi-label classification [11]

2016 RNN 3 clinical outcomes of kidney transplantation multi-label classification Private EHR data [83]



Abbreviations

AL Active Learning

ALC Area under Learning Curve

ANN Artificial Neural Networks

AUROC Area under ROC curve

BERT Bidirectional Encoder Representations from Transformers

BiLSTM Bidirectional Long Short Term Memory

C-LSTM Contextual Long Short Term Memory

CAUSE Clustering And Uncertainty Sampling Engine

CNIL Clustering And Uncertainty Sampling Engine

CNN Convolutional Neural Network

CRF Conditional Random Fields

CV Cross Validation

DL Deep Learning

DR Diabetic Retinopathy



EER Enhanced entity-relationship

EHR Electronic Health Records

ETDRS Early Treatment Diabetic Retinopathy Study

GRU Gated Recurrent Unit

GRU-D Gated Recurrent Unit with Decay

HAI Health Acquired Infection

HBA1c Hemoglobin A1C

HiTT Hierarchical Time-aware Transformer

HWUS Hierarchical Time-aware Transformer

ICD-9 International Classification of Diseases, Ninth Revision

ICU Intensive Care Unit

IHM In Hospital Mortality

IMTS Irregular Medical Time Series

LDA Latent Dirichlet Allocation

LOS Length Of Stay

LR Logistic Regression

LSTM Long Short Term Memory

MAP Medical Annotation Process

MIMIC-III Medical Information Mart for Intensive Care

MLM Masked Language Modeling



MLP Multi Layer Preceptron

NER Named Entity Recognition

NLP Natural Language Processing

RNN Recurrent Neural Network

RS Random Sampling

SOTA State Of The Art

SVM Suport Vector Machine

T-GRU Time-aware Gated Recurrent Unit

T1D Type-1 Diabetes
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Résumé : L’adoption des dossiers médicaux
électroniques (DME) dans les systèmes d’informa-
tion des hôpitaux a conduit à la définition de bases
de données Big Data regroupant divers types de
données telles que des notes cliniques textuelles,
des événements médicaux longitudinaux et des in-
formations tabulaires sur les patients. Toutefois, les
données ne sont renseignées que lors des consul-
tations médicales ou des séjours hospitaliers. La
fréquence de ces visites varie selon l’état de santé
du patient et des habitudes locales. Ainsi, un système
capable d’exploiter les différents types de données
collectées à différentes échelles de temps est essen-
tiel pour reconstruire la trajectoire de soin du patient,
analyser son historique et, par conséquent, délivrer
des soins plus adaptés. Ce travail de thèse aborde
deux défis principaux du traitement des données
médicales : (1) Représenter la séquence des ob-
servations médicales à échantillonnage irrégulier et
(2) optimiser l’extraction des événements médicaux
à partir des textes de notes cliniques. Notre objec-
tif principal est de concevoir une représentation mul-
timodale de la trajectoire de soin du patient afin de
résoudre les problèmes de prédiction clinique. Notre
premier travail porte sur la modélisation des séries
temporelles médicales irrégulières afin d’évaluer l’im-
portance de considérer les écarts de temps entre
les visites médicales dans la représentation de la
trajectoire de soin d’un patient donné. À cette fin,
nous avons mené une étude comparative entre les
réseaux de neurones récurrents, les modèles basés
sur l’architecture “Transformer” et les techniques de
représentation du temps. De plus, l’objectif clinique
était de prédire les complications de la rétinopathie
chez les patients diabétiques de type 1 de la base
de données française CaRéDIAB (Champagne Ar-
denne Réseau Diabète) en utilisant leur historique
de mesures HbA1c. Les résultats de l’étude ont
montré que le modèle “Transformer”, combiné à la
représentation ‘Soft-One-Hot‘ des écarts temporels a
conduit à un score AUROC de 88,65% (spécificité de
85,56%, sensibilité de 83,33%), soit une amélioration

de 4,3% par rapport au modèle basé sur l’architec-
ture “LSTM”. Motivés par ces résultats, nous avons
étendu notre étude à des séries temporelles multi-
variées plus courtes et avons prédit le risque de mor-
talité à l’hôpital pour les patients admis en soins in-
tensifs présents dans la base de données MIMIC-
III. L’architecture proposée, Hierarchical Time-aware
Transformer (HiTT), a amélioré le score AUC de
5% par rapport à l’architecture de base “Transfor-
mer”. Dans la deuxième étape, nous nous sommes
intéressés à l’extraction d’informations médicales per-
tinentes à partir des comptes rendus médicaux afin
d’enrichir la trajectoire de soin du patient. En par-
ticulier, les réseaux de neurones basés sur le mo-
dule “Transformer” ont montré des résultats encou-
rageants dans l’application d’extraction d’informa-
tions médicales. Cependant, ces modèles complexes
nécessitent souvent un grand corpus annoté. Cette
exigence est difficile à atteindre dans le domaine
médical car elle nécessite l’accès à des données
privées de patients et des annotateurs experts. Pour
réduire les coûts d’annotation, nous avons exploré les
stratégies d’apprentissage actif qui se sont avérées
efficaces dans de nombreuses tâches, notamment la
classification de textes, l’analyse d’image et la recon-
naissance vocale. En plus des méthodes existantes,
nous avons défini une stratégie d’apprentissage ac-
tif, nommée Hybrid Weighted Uncertainty Sampling
(HWUS), qui utilise la représentation cachée du texte
donnée par le modèle “Transformer” pour mesurer
la représentativité des échantillons. Une simulation
utilisant l’ensemble de données du challenge i2b2-
2010 a montré que la métrique proposée réduit le
coût d’annotation de 70% pour atteindre le même
score de performance que l’apprentissage super-
visé passif. Enfin, nous avons combiné des séries
temporelles médicales multivariées et des concepts
médicaux extraits des notes cliniques de la base de
données MIMIC-III pour entraı̂ner une architecture
multimodale. Les résultats du test ont montré une
amélioration de 5,3% en considérant des informations
textuelles supplémentaires.
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Abstract : The wide adoption of Electronic Health Re-
cords in hospitals’ information systems has led to the
definition of large databases grouping various types
of data such as textual notes, longitudinal medical
events, and tabular patient information. However, the
records are only filled during consultations or hospital
stays that depend on the patient’s state, and local ha-
bits. A system that can leverage the different types of
data collected at different time scales is critical for re-
constructing the patient’s health trajectory, analyzing
his history, and consequently delivering more adapted
care. This thesis work addresses two main challenges
of medical data processing: learning to represent the
sequence of medical observations with irregular elap-
sed time between consecutive visits and optimizing
the extraction of medical events from clinical notes.
Our main goal is to design a multimodal represen-
tation of the patient’s health trajectory to solve clini-
cal prediction problems. Our first work built a frame-
work for modeling irregular medical time series to eva-
luate the importance of considering the time gaps bet-
ween medical episodes when representing a patient’s
health trajectory. To that end, we conducted a compa-
rative study of sequential neural networks and irregu-
lar time representation techniques. The clinical objec-
tive was to predict retinopathy complications for type
1 diabetes patients in the french database CaRéDIAB
(Champagne Ardenne Réseau Diabetes) using their
history of HbA1c measurements. The study results
showed that the attention-based model combined with
the soft one-hot representation of time gaps led to AU-
ROC score of 88.65% (specificity of 85.56%, sensiti-
vity of 83.33%), an improvement of 4.3% when com-
pared to the LSTM-based model. Motivated by these

results, we extended our framework to shorter multi-
variate time series and predicted in-hospital mortality
for critical care patients of the MIMIC-III dataset. The
proposed architecture, HiTT, improved the AUC score
by 5% over the Transformer baseline. In the second
step, we focused on extracting relevant medical infor-
mation from clinical notes to enrich the patient’s health
trajectories. Particularly, Transformer-based architec-
tures showed encouraging results in medical informa-
tion extraction tasks. However, these complex models
require a large, annotated corpus. This requirement
is hard to achieve in the medical field as it necessi-
tates access to private patient data and high expert
annotators. To reduce annotation cost, we explored
active learning strategies that have been shown to
be effective in tasks such as text classification, in-
formation extraction, and speech recognition. In addi-
tion to existing methods, we defined a Hybrid Weigh-
ted Uncertainty Sampling active learning strategy that
takes advantage of the contextual embeddings lear-
ned by the Transformer-based approach to measu-
ring the representativeness of samples. A simulated
study using the i2b2-2010 challenge dataset showed
that our proposed metric reduces the annotation cost
by 70% to achieve the same score as passive lear-
ning. Lastly, we combined multivariate medical time
series and medical concepts extracted from clinical
notes of the MIMIC-III database to train a multimodal
transformer-based architecture. The test results of the
in-hospital mortality task showed an improvement of
5.3% when considering additional text data. This the-
sis contributes to patient health trajectory representa-
tion by alleviating the burden of episodic medical re-
cords and the manual annotation of free-text notes.
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