

Apport d'une station de transfert d'énergie par pompage sur le taux d'intégration des EnR Driada Mitrushi

▶ To cite this version:

Driada Mitrushi. Apport d'une station de transfert d'énergie par pompage sur le taux d'intégration des EnR. Mécanique des fluides [physics.class-ph]. Université Pascal Paoli; Universiteti politeknik i Tiranës. Albanie, 2016. Français. NNT: 2016CORT0007. tel-03601207

HAL Id: tel-03601207 https://theses.hal.science/tel-03601207v1

Submitted on 8 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIVERSITE DE CORSE PASQUALE PAOLI

Ecole Doctorale Environnement et Société UMR CNRS 6134 SPE Faculté des Sciences et Techniques UNIVERSITE POLYTECHNIQUE DE TIRANA Ecole Doctorale de Physique Appliquée

Faculté d'Ingénierie Mathématique et d'Ingénierie Physique

Thèse préparée en cotutelle pour l'obtention du grade de

DOCTEUR EN ENERGETIQUE Mention : Energétique

et

DOCTEUR DE L'UNIVERSITE POLYTECHNIQUE DE TIRANA Mention : Ingénierie physique

Soutenue publiquement par

Driada Mitrushi

le 03 décembre 2016

Apport d'une Station de Transfert d'Energie par Pompage sur le taux d'intégration des EnR

Directeurs :

- M. Gilles Notton, Dr-HDR, Université de Corse
- M. Pellumb Berberi, Professeur, Université Polytechnique de Tirana

Rapporteurs :

- M. Fawaz Massouh, MCF HDR, Arts et Métiers ParisTech
- M. Mithat Sanxhaku, Professeur, Université de Tirana

Jury:

M Fawaz Massouh, MCF HDR, Arts et Métiers ParisTech Mme Marie Laure Nivet, MCF, Université de Corse M Mithat Sanxhaku, Professeur, Université de Tirana M Spiro Thodhorjani, Professeur, Université Polytechnique de Tirana Mme Valbona Muda, As/Professeur, Université Polytechnique de Tirana

Remerciements

Je remercie tout d'abord le Recteur de l'Université Polytechnique de Tirana (Albanie) Monsieur Jorgaq KACANI et le Président de l'Université de Corse Monsieur Paul-Marie ROMANI pour avoir accepté que cette thèse puisse être réalisée en cotutelle entre les deux universités. Mes remerciements vont également au directeur de l'École Doctorale de l'Université de Corse et Doyen de Faculté d'Ingénierie Mathématique et Ingénierie Physique en Tirana, Messieurs Jean COSTA et Ligor NIKOLLA pour m'avoir accueilli en tant que Doctorante.

Je tiens à exprimer mes plus vifs remerciements et ma profonde reconnaissance à mon directeur de thèse Monsieur Gilles NOTTON, pour l'aide et le soutien dans la réalisation de ce travail de thèse. De plus, je le remercie pour l'accueil spécial et son l'aide en Corse durant mes séjours.

Je tiens à à exprimer aussi ma reconnaissance à mon directeur de thèse en Albanie, professeur Pëllumb BERBERI pour tous les conseils et le soutien continu pour la réalisation de cette thèse.

Je tiens à remercier en particulier M. Ludmil STOYANOV, pour son aide sans laquelle ce travail n'aurait pas été possible.

Je suis sensible à l'honneur que me font Monsieur Fawaz MASSOUH (Arts et Métiers ParisTech) et Monsieur Mithat SANXHAKU (Centre de recherche REC, Tirana) en acceptant d'être les rapporteurs de ce travail.

Aussi je remercie Monsieur Spiro THODHORJANI (Université Polytechnique de Tirana) et Madame Marie Laure NIVET (Université de Corse) qui ont accepté de participer à cette Commission d'Examen, mes sincères remerciements pour l'intérêt qu'ils ont bien voulu porter à ce travail.

Je remercie l'Agence Universitaire de Campus France et l'Ambassade Française de Tirana, pour m'avoir attribué une bourse qui m'a permis de réaliser cette thèse en cotutelle. Je remercie en particulier M. Hubert Le FORESTIER et spécialement Madame Valbona NANO qui m'a accueilli chaque fois à l'ambassade française à Tirana.

Je suis reconnaissante à Madame Marie Rose SANTINI pour l'accueil chaleureux en Corse.

Je remercie toutes les personnes formidables que j'ai rencontrées au centre de Vignola à Ajaccio et à l'Université de Corté. Merci pour votre soutien et vos encouragements.

Je ne veux pas oublier mon amie Dalia, avec laquelle j'ai passé mes derniers jours en Corse et je me souviens avec nostalgie de ces moments difficiles en hiver à Corte.

Je remercie également tous mes amis en Albanie qui m'ont encouragé pendant le période de doctorat. J'adresse toute ma gratitude à tous mes ami(e)s et à toutes les personnes qui m'ont aidé dans la réalisation de ce travail.

Enfin, je ne saurais terminer sans remercier l'ensemble de ma famille, pour leur patience, leurs encouragements, et leur soutien de tous les instants. Les mots les plus simples étant les plus forts, j'adresse toute mon affection à ma fille Ilaria.

Table de matières

Introduction Générale	1
Chapitre 1 - Systèmes de stockage d'énergie. Zoom sur les Stations de Transfert d'Energie Pompage-turbinage (STEP)	par 7
1.1 Introduction	9
1.2 Les systèmes de stockage d'énergie électrique	9
1.2.1 Mode de stockage thermique	.10
1.2.2 Mode de stockage électrochimique et électrostatique	.10
1.2.3 Mode de stockage d'énergie magnétique	.11
1.2.4 Mode de stockage thermochimique	.11
1.2.5 Mode de stockage chimique : l'hydrogène	.11
1.2.6 Mode de stockage mécanique	.11
1.3 Systèmes de Transfert d'Energie par Pompage turbinage, les STEP.	.12
1.3.1. Généralités	.12
1.3.2. Les STEP dans le monde	.14
1.4. Énergie éolienne et STEP	.16
1.4.1. Mode de Génération :	.17
1.4.2. Mode de Pompage :	.17
1.4.3. Mode de pompage par l'énergie du réseau :	.17
1.4.4. Mode de génération d'EnR:	.17
1.5 Energie solaire photovoltaïque (PV) et STEP	.20
1.6 Couplage PV – Eolien - STEP	.21
1.7. Les STEP marines	.22
1.8. Techniques d'optimisation de systèmes EnR-STEP	.23
1.9. Conclusion	.27
Chapitre 2 - Modélisation du système hybride éolien/photovoltaïque/STEP. Optimisation fonctionnement du groupe Pompe-Turbine	du .31
2.1. Introduction	.33
2.2. Quelques informations générales sur les systèmes photovoltaïques	.34
2.3. Modélisation des systèmes photovoltaïques	.39
2.3.1. Modélisation du champ photovoltaïque	.39
2.3.1.1. Quelques modèles énergétiques de comportement de modules photovoltaïques	.41
2.3.1.2. Vérification expérimentale et comparaison des modèles	.43
2.3.1.3. Influence de la température ambiante et de l'éclairement solaire	.46
2.3.2. Modélisation des onduleurs	.48
2.3.3. Optimisation du couple Champ photovoltaïque + onduleur	.50

2.4. Les systèmes éoliens	50
2.4.1. Quelques informations générales sur les systèmes éoliens	50
2.4.2. Modélisation des systèmes éoliens	52
2.5. Introduction et généralités sur les STEP et groupes Pompe-Turbine	55
2.5.1. Petite histoire de l'énergie hydraulique et des STEP	55
2.5.2. Les aspects économiques	56
2.5.3. Caractérisation des STEP	57
2.5.3.1. Les différents groupes de Pompage-Turbinage	57
2.5.4. Les turbines hydrauliques	58
2.5.5. Générateur électrique	60
2.5.6. Modélisation du groupe Pompe-Turbine – Conversion Hydraulique-Mécanique	61
2.5.6.1. Les deux modes de fonctionnement	62
2.5.6.2 Informations sur les pompes réversibles	65
2.5.6.3. Conversion hydraulique-mécanique - Equation du rendement mécanique en fonction débit	n du 66
2.5.6.4. Modélisation de la pompe réversible en mode Pompage/turbinage	68
2.5.7. Conversion mécanique – électrique et vice versa – Rendement électrique en fonction o puissance électrique.	de la 68
2.6. Obtention des courbes caractéristiques « Puissance électrique Réduite-Débit Réduit »	70
2.6.1. Méthode d'optimisation de l'utilisation des groupes Pompes-Turbines	72
2.6.2. Méthode appliquée à la pompe réversible en mode turbinage	75
2.7. Conclusion	76
Chapitre 3 - Profil de consommation. Stratégies de fonctionnement du système PV/Eolien/STEP	79
3.1. Introduction	81
3.2. Problématique de l'approvisionnement en électricité	81
3.2.1. Situation énergétique de la Corse	84
3.2.2. Elaboration du profil de charge	90
3.3. Les stratégies de fonctionnement du système hybride PV/Eolien/STEP	95
3.3.1. Stratégie de fonctionnement 1	98
3.3.2. Stratégie de fonctionnement 2	.100
3.3.3. Stratégie de fonctionnement 3	.101
3.4. Illustration des stratégies de fonctionnement	.101
3.4.1. Flux et grandeurs énergétiques	.102
3.4.2. Variation des grandeurs énergétiques sur une période courte	.103
3.5. Conclusion	.111
Chapitre 4 - Influence des caractéristiques du système photovoltaïque/éolien/STEP sur performances énergétiques	ses .113
4.1. Introduction	.115

4.2. Stratégie 1
4.2.1. Influence du volume de stockage115
4.2.2. Influence de la puissance du groupe Pompe/Turbine119
4.2.3. Influence de la puissance installée éolienne123
4.2.4. Influence de la puissance installée photovoltaïque127
4.2.5. Conclusion partielle sur la stratégie 1 avec une pompe/turbine réversible131
4.3. Stratégie 2
4.3.1. Influence du volume de stockage
4.3.2. Influence de la puissance du groupe Pompe/Turbine réversible137
4.3.3. Influence de la puissance installée éolienne140
4.3.4. Influence de la puissance installée photovoltaïque143
4.3.5. Conclusion partielle sur la stratégie 2 avec une pompe/turbine réversible
4.3.5. Conclusion partielle sur la stratégie 2 avec une pompe/turbine réversible1464.4. Relation part énergie perdue/part EnR et part énergie perdue/part de la pointe couverte147
 4.3.5. Conclusion partielle sur la stratégie 2 avec une pompe/turbine réversible
 4.3.5. Conclusion partielle sur la stratégie 2 avec une pompe/turbine réversible
 4.3.5. Conclusion partielle sur la stratégie 2 avec une pompe/turbine réversible
4.3.5. Conclusion partielle sur la stratégie 2 avec une pompe/turbine réversible
4.3.5. Conclusion partielle sur la stratégie 2 avec une pompe/turbine réversible
4.3.5. Conclusion partielle sur la stratégie 2 avec une pompe/turbine réversible
4.3.5. Conclusion partielle sur la stratégie 2 avec une pompe/turbine réversible
4.3.5. Conclusion partielle sur la stratégie 2 avec une pompe/turbine réversible

Liste des figures

Figure 1.1. Différentes applications de stockage en fonction de la puissance requise et du temps de
décharge (donné en secondes, minutes, heures et jours)10
Figure 1.2. Puissances installées de STEP dans le Monde (IEA, 2014)11
Figure 1.3. Distribution géographique des STEP dans le Monde, Avril 2016 (Sandvig, 2016)13
Figure 1.4. Schéma d'une centrale STEP (CDE, 2013)
Figure 1.5. Développement chronologique des STEP en puissance et en nombre de systèmes dans
1'UE
Figure 1.6 Schéma d'un système solaire photovoltaïque couplé à un système de pompage-turbinage
20
Figure 1.7 Micro STEP avec couplage éolien et PV (ADEME 2015) 22
Figure 2.1 Evolution de la canacité installée par an de systèmes PV dans le monde (2000-2014)
(SolarPower Europe 2016) (SolarPower Europe 2016)
Figure 2.2 Evolution de la capacité cumulée de photovoltaïque dans le Monde de 2000 à 2014
(SalarDawar Europa, 2016)
(Solar Ower Europe, 2010)
MW _e) (Euro Observer, 2016e)
$WWC) (EuroObserver, 2010a) \dots 50$
Figure 2.4. Evolution de la puissance solaire raccordee par an et puissance cumulee (RTE, 2015)36
Figure 2.5. Schema d'une installation photovoltaique connectee au reseau
Figure 2.6. Système photovoltaïque autonome
Figure 2.7. Exemple de système photovoltaïque hybride
Figure 2.8. Schéma équivalent une diode d'un module photovoltaïque
Figure 2.9. Caractéristiques Courant-Tension d'un module photovoltaïque Photowatt PWX500 de 50
Wc – Influence de la température et de l'éclairement solaire40
Figure 2.10. Banc de test de système PV (Laboratoire SPE, Université de Corse, Ajaccio)44
Figure 2.11. Résultats expérimentaux pour le rendement de module BP 585F44
Figure 2.12. Comparaison des modèles avec des données expérimentales pour un jour à ciel clair et
partiellement nuageux
Figure 2.13. Variation du rendement des modules en fonction de l'éclairement solaire et de la
température
Figure 2.14. Rendement moyen mensuelle des modules PV selon la technologie PV pour Ajaccio48
Figure 2.15. Modèle d'onduleur utilisé comparé à des onduleurs commerciaux
Figure 2.16. Puissance éolienne cumulée dans le monde depuis 1995 (en MW) (EurObserver, 2016b)
Figure 2.17. Répartition de la puissance éolienne mondiale fin 2015 (EurObserver, 2016b)
Figure 2.18. Répartition des puissances éoliennes installées en Europe (EurObserver, 2016b)
Figure 2 19 Quelques courbes de puissance réduites d'éoliennes de grande puissance sur le marché
53
Figure 2.20 Les deux modèles (linéaire et Pallabazzer) et les courbes de puissance réelles 54
Figure 2.21. Variation du rendement en fonction du débit réduit - Comparatif du rendement pour
nusieurs types de turbines
Figure 2.22. Zones d'application des différentes turbines (Stovenov, 2011 · Wasserkreft, 2006) 60
Figure 2.22. Dones à application des différences du longes (Stoyallov, 2011, Wasserklaft, 2000)00
Figure 2.23. Rendement de generateur asynement en fonction de la puissance reduite
Figure 2.24. Schéma de la chaîne de conversion en mode turbinage
Figure 2.23. Schema de la chaine de conversion en mode Pompage

Figure 2.26. Courbes constructeur - Rendement en fonction de débit (ou du débit réduit) -
caractéristiques énergétiques et rendement d'une pompe réversible (Megnint et al, 2008)
Figure 2.27. Courbes de rendement en fonction de débit caractéristiques pour une pompe réversible
(Chapallaz, 2007)
Figure 2.28. Courbes de rendement en fonction du débit réduit, en prenant comme débit nominal de
référence celui de la turbine
Figure 2.29. Rendement de l'alternateur et du moteur en fonction de la puissance électrique réduite
(machine de 50 MW) (Rizov et Stovanov, 2014) 69
Figure 2.30. Comparaison du modèle (Eq. 2.53) appliqué au moteur
Figure 2.31. Comparaison du modèle (Eq. 2.54) appliqué à l'alternateur
Figure 2.32 Courbes caractéristiques de la machine hydraulique réversible dans les deux modes de
fonctionnement 71
Figure 2.33 Variation du débit remonté en fonction de la configuration choisie nour différentes
nuissances électriques alimentant les nomnes 73
Figure 2.34. Débit réduit optimal pour chaque puissance électrique fournie à la machine hydraulique
composée de 4 nompes de 20 MW
Figure 2.35 Débit réduit optimal pour chaque puissance électrique réduite fournie à la machine
hydroulique composée de 4 nomnes de 20 MW
Figure 2.26 Variation du débit utilisé an fonction de la configuration choisie nour différentes
rigure 2.50. Variation du debit utilise en fonction de la configuration choisie pour utilierentes
Figure 2.27. Débit réduit entinel neur cheque puissence électrique réduite feurnie par le machine
rigure 2.57. Debit reduit optimar pour chaque puissance electrique reduite fourme par la machine
nydraunque composee de 4 turbines
Figure 2.1 Illustration de l'équilibre production/consemption
Figure 3.2. Illustration de la déconnexion partielle ou totale de formes photovolteïques due ou souil
rigure 5.2. Inustration de la deconnexion partiene ou totale de fermes photovoltaiques due au seun
$\frac{1}{1} = \frac{1}{1} = \frac{1}$
Figure 3.3. Repartition territoriale des moyens de production d'électricité en Corse (EDF SEI, 2013)
$\frac{80}{100}$
Figure 3.4. Repartition des moyens de production en puissance installee
Figure 3.5. Mix Energetique en 2012 et 2013 (Repartition en energie produite)
Figure 3.6. Repartition mensuelle des energies produites.
Figure 3.7. Profil de consommation saisonnier pour 2010 et 2012.
Figure 3.8. Puissance installee d'eolien et de PV en Corse
Figure 3.9. Empilement des moyens de production selon la saison en 2012 (EDF SEI, 2013)
Figure 3.10. Empilement des moyens de production pour la journée de consommation maximale
Figure 3.11. Profil de charge avec empilement des moyens de production
Figure 3.12. Profil de charge avec empilement des moyens de production
Figure 3.13. Principe général du système étudié96
Figure 3.14. Schéma général des flux d'énergie au sein du système étudié
Figure 3.15. Algorithme de la Stratégie 1 pour le fonctionnement du système de production
électrique
Figure 3.16. Algorithme de la Stratégie 2 pour le fonctionnement du système de production
électrique100
Figure 3.17. Algorithme de la Stratégie 3 pour le fonctionnement du système de production
électrique101
Figure 3.18. Stratégie 1 – Période hivernale104
Figure 3.19. Stratégie 1 – Période estivale105
Figure 3.20. Stratégie 2 – Période hivernale106
Figure 3.21. Stratégie 2 – Période estivale107
Figure 3.22. Stratégie 3 – Période hivernale108

Figure 3.23. Stratégie 3 –	Période estivale	109

Figure 4.1. Variation des paramètres de performance en fonction du volume d'eau stockée dans le Figure 4.2. Variation des paramètres de performance en fonction de la puissance du groupe Pompe/Turbine dans le cas de la stratégie 1 pour un groupe Turbine/pompe réversible......122 Figure 4.3. Variation des paramètres de performance en fonction de la puissance installée éolienne Figure 4.4. Variation des paramètres de performance en fonction de la puissance installée éolienne dans le cas de la stratégie 1 pour un groupe Turbine/pompe réversible......126 Figure 4.5. Variation des paramètres de performance en fonction de la puissance installée PV pour Figure 4.6. Variation des paramètres de performance en fonction de la puissance installée PV dans le Figure 4.7. Variation des paramètres de performance en fonction du volume d'eau stockée dans le Figure 4.8. Variation des paramètres de performance en fonction de la puissance du groupe Figure 4.9. Variation des paramètres de performance en fonction de la puissance installée éolienne dans le cas de la stratégie 2 pour un groupe Turbine/pompe réversible......142 Figure 4.10. Variation des paramètres de performance en fonction de la puissance installée PV dans Figure 4.11. Part EnR dans la production totale versus Part EnR perdue - Configuration avec Figure 4.12. Part EnR dans la production totale versus Part EnR perdue - Configuration avec Figure 4.13. Part EnR dans la production totale versus Part EnR perdue - Configuration avec Figure 4.14. Part EnR dans la production totale versus Part EnR perdue – Configuration avec volume Figure 4.15. Part du pic couvert versus Part EnR perdue - Configuration avec puissance éolienne variable......153 Figure 4.16. Part du pic couvert versus Part EnR perdue - Configuration avec puissance Figure 4.17. Part du pic couvert versus Part EnR perdue - Configuration avec puissance groupe Figure 4.18. Part du pic couvert versus Part EnR perdue - Configuration avec volume de stockage

Liste des tableaux

Tableau 1.1. Comparaison de différentes technologies (Ibrahim et Ilinca, 2008). 12 Tableau 1.2. Synthèse des méthodes d'optimisation classiques utilisées dans la littérature. 26 Tableau 1.3. Synthèse des méthodes d'optimisation par intelligence artificielle utilisées dans la littérature. 26 26 26
Tableau 2.1. Valeurs des coefficients dans le modèle de Durisch
nydraulique et debits reduits correspondant (chacune des machines a une puissance electrique nominale de 20 MW)
Tableau 3.1. Caracteristiques des centrales de production d'electricité (Saguan, 2007)
Tableau 4.1. Principaux paramètres pour le système sans la STEP

Liste des symboles

 $A [m^2]$ – Surface du module photovoltaïque AM – Masse relative d'air AM_0 – Masse relative d'air dans les conditions normales $A_r [m^2]$ – Surface balayée par les pâles aSi – Silicium amorphe A_w [m/s] – – Paramètre d'échelle C_I – Constante dans le modèle photovoltaïque C_2 – Constante dans le modèle photovoltaïque CIS - CuInSe₂ (cuivre indium sélénium) - modules photovoltaïques à couche mince *E_{charge}* [Wh] – Energie de la charge Eeole [Wh] – Energie produite par l'éolienne EMA – Erreur moyenne absolue EMR - Erreur moyenne relative ENEL – Compagnie d'électricité italienne EnR – Energie renouvelable EnR_{charge} [Wh/m²] - Part de l'énergie EnR envoyée directement au réseau (production PV et éolien de puissance inférieure aux 30%) *EnR*_{perdue}[Wh/m²] – Part de l'énergie EnR totale produite qui n'a pas été envoyée au réseau EnR_{pompe} [Wh/m²] – Part de l'énergie EnR servant à alimenter les pompes ; *EnR*_{pompe dispo} [Wh/m²] – Part de l'énergie EnR disponible pour alimenter la pompe E_{PV} [Wh] – Energie produite par le système photovoltaïque EQMA – Erreur quadratique moyenne absolue EQMR – Erreur quadratique moyenne relative g [9.81m/s²] – Accélération de la pesanteur $G[W/m^2]$ – Irradiation solaire global sur un plan horizontal G_b [W/m²] – Eclairement solaire horizontal direct $G_{b,\beta}$ [W/m²] – Eclairement solaire direct sur un plan incliné d'un angle β G_d [W/m²] – Eclairement solaire horizontal diffus $G_{\beta,ref}$ [W/m²] – Eclairement solaire dans les conditions standards G_{β} [W/m²] – Eclairement solaire global sur un plan incliné d'un angle β *h* [m] – Hauteur du mât Icc [A] –Courant de court-circuit I_{mp} [A] – Courant à puissance maximale Imp, ref [A] – Courant à puissance maximale du module dans les conditions de référence *Isc,ref* [A] – Courant de court-circuit du module dans les conditions de référence k – Coefficient dans le modèle d'onduleur LCC – Coût de cycle de vie m_{Dur} – Coefficient empirique dans le modèle de Durisch mSi-Silicium monocristallin

N – Nombre de points

 $N_{\text{Cycle, Turb}}$ – Nombre de Cycles de la STEP

NOCT - Normal Operating Cell Température - Température de fonctionnement normal de cellule

p – Puissance électrique réduite de moteur/ alternateur p_0 – Composante des pertes de l'onduleur indépendante de la charge p_{Dur} – Coefficient empirique dans le modèle de Durisch Pelec, Pomp [W] – Puissance électrique de la Pompe Pelec, Turb [W] – Puissance électrique de la Turbine P_{Elec}[W] – Puissance électrique de l'onduleur Pent – Puissance alternative en entrée $P_{\text{hyd,Pomp}}[W]$ – Puissance hydraulique de la Pompe *P*_{hyd,turb} [W] – Puissance hydraulique de la Turbine P_{in} [W] – Puissance de l'onduleur en courant continu en entrée p_{loss} – Pertes électriques réduites de l'onduleur P_m [W] – Puissance mécanique d'entrée P_{mec} [W] – Puissance mécanique sur l'arbre de la turbine éolienne P_{mec,Pomp} [W] – Puissance mécanique de la Pompe *P*_{mec,turb} [W] – Puissance mécanique de la Turbine P_{mp} [W] – Puissance maximale du module photovoltaïque Pmp,ref [W] – Puissance maximale du module dans les conditions de référence Pnom. onduleur [W] – Puissance nominale de l'onduleur Pout [W] – Puissance de sortie de l'onduleur en courant alternatif Pperte [W] – Pertes électriques de l'onduleur *P_{PV}* [kW] – Puissance crête photovoltaïque *P_{rated}* [W] – Puissance nominale de l'éolienne pSi – Silicium polycristallin P_{sort} – Puissance de sortie alternative PV – Photovoltaïque *P_{wind}* [W] – Puissance du vent P_{WT} [kW] – Puissance nominale installée éolienne q – Coefficient empirique dans le modèle de Durisch $Q_{\text{pomp}} [\text{m}^3/\text{s}] - \text{Débit de la pompe}$ Q^0 Turb $[m^3/s]$ – Débit à puissance nominale de la pompe / turbine en mode turbinage $Q_{\text{Turb}} [\text{m}^3/\text{s}] - \text{Débit de la turbine}$ R_{loss} – Rapport des pertes de l'onduleur R_s – Rapport de la puissance crête installée du champ photovoltaïque et la puissance nominale de l'onduleur

 $R_{s,opt}$ – Rapport optimal de R_s

SACOI – SArdinia-COrsica-Italy -Câble à courant continu

SARCO – SArdinia-CORsica -Câble à courant alternatif

*s*_{Dur} – Coefficient empirique dans le modèle de Durisch

SER – Sources d'Énergie Renouvelables

STEP – Système de Transfert d'Énergie par Pompage

TAC – Turbines à combustion

 T_{cell} [°C] – Température de cellule du module

 $T_{cell,ref}$ [°C]– Température de cellule dans les conditions standards

u – Coefficient empirique dans le modèle de Durisch

V[m/s] - Vitesse du vent

V₀ [V] – Tension continue

 V_{I0} [m/s] – Vitesse du vent à une de hauteur 10 m

Vco[V] –Tension à vide

 $V_{coupure}$ [m/s] – Vitesse de vent de déclenchement de l'éolienne

V_{demarrage} [m/s] – Vitesse de vent d'enclenchement de l'éolienne

 V_h [m/s] – Vitesse du vent à hauteur h

 V_{mp} [V] – Tension du photovoltaïque à puissance maximale

Vmp, ref [V] - Tension à puissance maximale du module dans les conditions de référence

V_{nominale} [m/s] – Vitesse de vent à puissance maximale de l'éolienne

 T_a [°C] – Température ambiante

y – Argument qui se trouve entre deux points connus y_i et y_{i+1}

 \overline{y} – Valeur moyenne des données expérimentales

ymod – Valeur modélisée

 α_J – Coefficient de correction de la vitesse de vent

 α – Coefficient de température pour la correction de puissance

 $\alpha_0 \text{ [mA/°C]}$ – Coefficient de variation du courant par rapport à la température du module

 β ' [°C⁻¹] – Coefficient de sensibilité à la température

 $\beta_0 [mV/^{\circ}C]$ – Coefficient de variation de la tension du module par rapport à la température

 γ – Coefficient de sensibilité à l'irradiation solaire

 $\gamma_0 \, [\%/^\circ C] - Coefficient de température pour la puissance du module$

 ΔT [°C] – Variation de la température

 ΔH – Hauteur manométrique

 η_{10} – Rendement de l'onduleur à 10 % de charge

 η_{100} – Rendement de l'onduleur à 100 % de charge

 η_{alt} – Rendement de l'onduleur

 η_{turb} – Rendement mécanique de la turbine hydraulique

 η_{mot} – Rendement du moteur

 η_{Global} – Rendement global de la STEP

 η_{pv} – Rendement du module photovoltaïque

 η_{ref} – Rendement du module dans les conditions standards

 θ [rad] – Angle d'incidence

 $\rho_a \, [\text{kg/m}^3] - \text{Masse volumique de l'air}$

Introduction Générale

Tant l'énergie éolienne que l'énergie photovoltaïque (PV) se caractérisent par leur intermittence, et leur caractère fatal : le producteur ne peut piloter sa production. C'est un handicap réel, car ces sources peuvent ne pas produire au moment de la demande la plus forte, et à l'inverse produisent, aumônent où le réseau n'en a pas besoin, une énergie fatale, excédentaire et au final gênante. Leur potentiel s'en trouve donc réduit, d'autant plus que les solutions de stockage industriel de l'électricité et de substitution d'autres sources sont encore pour la plupart incertaines et coûteuses. Bien entendu, il reste possible de ne pas accepter cette énergie sur le réseau, mais on perd alors une énergie renouvelable (Dambrine *et al*, 2012).

La recherche de l'adéquation entre les productions intermittentes et le profil temporel de la demande, grâce à des possibilités de stockage ou d'écrêtement des pointes, fait l'objet d'importants programmes de R&D dans le monde entier et c'est dans ce cadre que s'inscrivent les travaux que nous présenterons dans ce document.

Les effets de l'intermittence peuvent être partiellement atténués par la mutualisation des moyens de production, au travers du réseau de transport de l'électricité. Par exemple, la France bénéficie de trois régimes de vent différents : au nord, à l'ouest et au sud, le vent ne souffle pas aux mêmes moments. La mise en commun des productions atténue donc partiellement les irrégularités, moyennant le cas échéant des investissements dans les réseaux de transport : les effets de l'intermittence sont marginaux tant que l'éolien, notamment, est peu développé, mais peuvent devenir problématiques au-delà d'un certain seuil.

L'intermittence va par essence à l'encontre d'une production adaptée au profil de la consommation. L'énergie éolienne ou photovoltaïque peut connaître des sautes brutales de production (lorsque le vent dépasse la vitesse maximum acceptable, toute les machines du champ vont s'arrêter au même moment permise en sécurité automatique, arrivée d'une grande couverture nuageuse sur zone étendue pour le PV). Les gestionnaires de réseaux considèrent que ce problème est gérable par les moyens courants tant que l'énergie intermittente ne dépasse pas 30 % de la puissance appelée sur le réseau; certains pays ou régions s'approchent de ce seuil (la Crête), mais la France en est encore loin, sauf dans certaines îles d'outre-mer et en Corse (lieu de notre étude).

Comme le suggèrent Dambrine et al (2012) dans un rapport destiné aux Ministère du redressement productif et à celui de l'écologie, du développement durable et de l'énergie, pour pallier ces problèmes d'intermittence, il convient :

- d'améliorer les conditions de prévision de la production ;
- de convertir des kWh de peu de valeur en kWh de haute valeur ;
- de convertir de la demande coûteuse à satisfaire en demande moins onéreuse.

Il s'agit donc :

- 1. des prévisions météo fines ;
- 2. des techniques de stockage de l'énergie ;
- 3. des techniques d'écrêtement de la demande ;
- 4. de transport et de mutualisation intelligente.

Le thème de ce travail aborde à la fois les points 2 et 3 mais il faut garder à l'esprit qu'aucune des 4 actions proposées ne suffise à elle-seule à résoudre le problème. Seule l'association des 4 actions apportera la solution, et nous reviendrons sur ce point dans la conclusion de ce document.

Si cette problématique est importante en tous points du globe, elle l'est encore plus dans les réseaux insulaires le plus souvent non interconnectés aux grands réseaux de distribution, ce qui complique encore plus le travail de gestionnaire du réseau comme nous le verrons dans le chapitre 2.

Nous avons donc, autant que faire se peut, et en simplifiant certains moyens de production, essayer de nous rapprocher des conditions réelles de fonctionnement du réseau électrique de la Corse.

Nous allons tenter d'estimer l'apport positif sur le bilan énergétique et plus particulièrement sur la puissance des systèmes à sources renouvelables intermittentes à installer, de l'implantation d'une station de transfert d'énergie par pompage.

Mais dimensionner les composants du système incluant un tel stockage d'énergie dans un réseau insulaire est une tâche difficile. Nous proposons dans ce travail de développer un outil de simulation du fonctionnement du système photovoltaïque/éolien/STEP qui permette de représenter aussi bien que possible les principaux flux d'énergie électrique, mais également les débits d'eau qui prennent place au sein du système. L'objectif est également d'étudier l'influence de la taille des différents composants sur les performances énergétiques du système.

Disposer d'un stockage d'énergie est primordiale, mais rien n'est plus inutile que de disposer d'un stockage trop longtemps vide ou plein, il est donc absolument nécessaire de disposer d'une stratégie efficace de gestion des flux d'énergie qui permette d'optimiser l'utilisation du stockage, cette tâche est ardue et difficile à mettre en œuvre dans ce travail mais fait partie d'un programme de recherches plus large nécessitant à la fois prédiction de la production éolienne et photovoltaïque d'une part, et utilisation de réseaux électriques intelligents d'autre part. Nous reviendrons sur ce point dans les perspectives de recherches.

Ainsi, nous utiliserons deux stratégies de fonctionnement (trois au départ, mais la troisième ayant montré des performances médiocres sera abandonnée par la suite) avec des objectif différents, pour la première d'augmenter la part des EnR dans le système général de production d'électricité en diminuant les pertes d'énergies dues à la limitation des 30% et pour la seconde de satisfaire au maximum les pointes de consommation qui actuellement sont supplées par l'utilisation de turbines à combustion, utilisant du fuel léger et dont le coût de production du kWh est prohibitif (nous répondons ainsi au deuxième challenge exposé plus haut, celui de convertir des kWh de peu de valeur en kWh de haute valeur). Bien que ces stratégies ne soient pas optimales, elles permettront d'estimer si les objectifs à atteindre avec l'utilisation de la STEP sont atteints, tout en sachant que les performances du système ne pourront être que meilleures avec une stratégie plus adaptée mais plus complexe à mettre en œuvre.

De nombreux moyens de stockage d'énergie seront présentés dans le premier chapitre de ce travail ; de nombreuses informations sur l'utilisation des STEP couplées à des systèmes de production photovoltaïques et/ou éoliens y seront également données ; une étude bibliographique réalisée à partir de la littérature scientifique existante, nous permettra de réaliser un état de l'art et de déterminer les points qui restent à améliorer ou à vérifier et pour lesquels nous tacherons d'apporter notre contribution.

Le second chapitre décrira les différents modèles de comportement utilisés pour simuler le fonctionnement des systèmes photovoltaïques et des systèmes éoliens. Le fonctionnement du groupe de pompage/turbinage réversible sera également simulé par la mise en place d'équations « innovantes » liant la production d'électricité par turbinage au débit d'eau turbinée et le débit d'eau remontée par les pompes à la puissance électrique disponible par les moyens de production EnR. Une méthode d'optimisation du fonctionnement du groupe pompage/turbinage sera exposée et permettra de faire fonctionner la STEP de manière la plus efficace possible.

Le troisième chapitre présentera plus en détail la problématique de l'électrification des zones insulaires puis sera consacré à la présentation du système de production d'énergie électrique en

Corse qui servira de base à nos travaux. Les deux stratégies de fonctionnement seront détaillées et illustrées en présentant tous les variations de tous les paramètres sur une période de quelques jours.

Le quatrième chapitre présentera l'ensemble des résultats ; l'influence des caractéristiques du système sur ses performances sera analysée et nous déterminerons les configurations les plus performantes.

Enfin, une conclusion générale synthétisera l'ensemble de nos travaux, montrera comment ils s'intègrent dans les recherches entreprises au sein de nos deux laboratoires et ouvrira de nombreuses et riches perspectives pour de futures études.

Chapitre 1 - Systèmes de stockage d'énergie. Zoom sur les Stations de Transfert d'Energie par Pompage-turbinage (STEP)

1.1 Introduction

L'utilisation de sources d'énergie renouvelables (SER) apparaît prometteuse. Cependant, il reste encore d'importantes préoccupations pour certaines d'entre-elles quant à leur mise en œuvre, d'une part, à cause de leur prix d'installation et d'autre part, du fait de leur caractère intermittent et imprévisible qui rend l'énergie produite plus difficile à gérer et à optimiser. Les ressources énergétiques renouvelables, éoliennes et solaires, ne peuvent pas produire l'énergie de façon constante, puisque leur production d'énergie change avec les saisons, mois, jours, heures, etc. Le stockage d'énergie est un facteur déterminant pour le développement des énergies renouvelables (EnR) intermittentes qui fait l'objet actuellement de nombreuses recherches. Les systèmes de stockage d'énergie offrent la possibilité de stocker de l'énergie générée par les systèmes de production en période de faible demande ou de forte production, et de la restituer à des moments de forte demande et/ou de plus faible production.

L'utilisation de systèmes de stockage d'énergie permet de :

- 1. stocker le surplus d'électricité produite durant la nuit (en dehors des périodes de pointe) pour la restituer lorsque la demande est élevée au cours de la journée;
- 2. d'éliminer ou de lisser les pointes de la courbe de la demande au cours de la journée;
- 3. d'éviter les fluctuations et le problème de la régulation de fréquence dans les systèmes de charge;

Il est également considéré que le stockage de l'énergie peut être multi-bénéfique à la fois pour les services publics et leurs clients, car il améliore le rendement de fonctionnement du système, il réduit la consommation de carburant principal, il fournit une sécurité d'approvisionnement énergétique et diminue l'impact environnemental. Le stockage peut être utilisé dans le système d'énergie sous trois différents régimes, charge, stockage et décharge. Dans chacun de ces trois régimes, un bilan équilibré au niveau de la puissance et de l'énergie dans le système doit être maintenu.

En général, les systèmes de stockage d'énergie peuvent être utilisés dans des systèmes thermiques ou des systèmes électriques, voire même mécaniques. Nous ne présenterons dans ce document que les moyens de stockage d'énergie électrique. Les principales technologies de stockage électrique sont:

- systèmes électrochimiques (batteries et des batteries à flux);
- systèmes de stockage d'énergie cinétique comme le stockage à volant d'inertie;
- stockage d'énergie potentiel sous la forme de pompage hydraulique ou de stockage de l'air comprimé.

1.2 Les systèmes de stockage d'énergie électrique

Dans ce paragraphe, nous présentons un aperçu général des technologies les plus importantes de stockage d'énergie, disponibles ou en cours de développement aujourd'hui. Nous présenterons et discuterons les critères importants relatifs à chaque technologie de stockage appropriée pour les applications utilisant les énergies renouvelables (EnR).

La plupart des EnR (à l'exception de la biomasse et de l'hydroélectricité) n'est pas stockable, ou tout au moins, est difficilement stockable. L'électricité est la forme d'énergie préférée pour de nombreuses applications et il n'est donc pas surprenant que les EnR et la production d'électricité soient étroitement liées. L'électricité est transportée facilement sur de longues distances et distribuée aux consommateurs par câble, mais il y a souvent le problème de l'adéquation entre l'offre d'énergie et la demande de la charge. Pour y remédier, le développement et l'utilisation de systèmes de stockage efficaces de l'électricité sont indispensables.

Le stockage d'énergie électrique est la capacité de stocker de l'énergie pour produire de l'électricité et de l'utiliser à d'autres périodes quand le coût est plus avantageux selon les besoins du marché de l'électricité ou lorsqu'un manque d'électricité se fait ressentir. La partie électrique est un élément essentiel des systèmes de stockage d'énergie électrique et est assurée par un système de conversion de puissance. Le système de conversion de puissance peut représenter plus de 25% du coût global d'un système complet.

L'énergie électrique peut être stockée directement ou indirectement avec des méthodes différentes :

- les méthodes mécaniques comme les systèmes à air comprimé, les systèmes de pompage de l'eau, ou les volants d'inertie ;
- les méthodes chimiques sont très connues comme les batteries et les batteries flux et plus récemment les méthodes magnétiques dans des condensateurs ou des aimants supraconducteurs (Figure 1.1) (ESA, 2009 ; IFP, 2016).

Figure 1.1. Différentes applications de stockage en fonction de la puissance requise et du temps de décharge (donné en secondes, minutes, heures et jours).

Quelques généralités sur chacune de ces méthodes de stockage d'énergie ou de tampon de puissance sont données ci-dessous.

1.2.1 Mode de stockage thermique

Le stockage de chaleur concerne principalement le chauffage (ou la climatisation) des bâtiments. Le stockage de chaleur sensible et de chaleur latente sont deux techniques principales pour le stockage d'énergie thermique considérées aujourd'hui pour différentes applications.

1.2.2 Mode de stockage électrochimique et électrostatique

Le principe de base est la conversion de l'énergie chimique en énergie électrique et vice versa, il concerne principalement les batteries, piles et accumulateurs et les condensateurs. Les condensateurs sont des composants du stockage électrostatique, direct, considérés comme une source de puissance

dans une certaine mesure, compte tenu de sa grande puissance spécifique et sa densité d'énergie relativement faible.

1.2.3 Mode de stockage d'énergie magnétique

Les bobines supraconductrices (ou SMES : Superconducting Magnetic Energy Storage) sont des éléments de stockage magnétique, direct, considérées comme des sources de puissance très élevée. Le stockage d'énergie magnétique est un des rares moyens de stocker directement l'électricité. L'utilisation d'éléments supraconducteurs SMES est nécessaire pour ce type de stockage.

1.2.4 Mode de stockage thermochimique

Les réactions thermochimiques et les processus d'absorption posent encore des problèmes et nécessitent d'être étudiés. Parmi ces difficultés, on trouve l'identification des matériaux appropriés qui doivent offrir une bonne stabilité thermique et un coût fiable et pas trop élevé.

1.2.5 Mode de stockage chimique : l'hydrogène

Les technologies de stockage à base d'hydrogène ont un grand potentiel pour les applications de stockage à moyen terme, les principaux défis à relever pour leur utilisation massive sont liés à l'incertitude de leur viabilité économique (en raison des coûts du système et de l'efficacité énergétique faible).

1.2.6 Mode de stockage mécanique

Station de transfert d'énergie par pompage, la STEP est une technologie mature nécessitant néanmoins des installations conséquentes et un contexte géographique spécifique. Ce système de stockage repose sur le principe de l'énergie gravitaire. Il représente près de 99 % des capacités de stockage massif d'énergie installées dans le Monde, avec près de 400 STEP pour une capacité totale d'environ 125 GW (IFP, 2016).

Les principales caractéristiques des moyens de stockage d'énergie sont présentées dans le Tableau 1.1 (Ibrahim et Ilinca, 2008).

Nous nous concentrerons dans le reste de ce document sur les STEP, Systèmes de Transfert d'Energie par «Pompage turbinage ». Il s'agit d'une technologie mature et bien maitrisée, bénéficiant d'un rendement de conversion élevé (Figure 1.2).

Figure 1.2. Puissances installées de STEP dans le Monde (IEA, 2014)

Technologie	Volant d'inertie	Condensateurs	SMES	Batteries NaS	STEP	CSEA	H ₂
Puissance(MW)	25	Large	10	<200	30-4000	500-2500	100
Capacité (MWh)	2,5	faible	0,5–5	<1200	500-8000	50-300	1000
Densité énergie (kWh/m ³)	1000	5	2.8	400			
Cycle de vie	20 ans	10 ⁶ cycles	20 ans	4500 cycles en 15 ans	50 ans	40 ans	
Temps de montée en puissance	ms	ms		ms	1-3 min	10 min	
Taux de Décharge	1-10%	10% par jour	Puissance de refroidissement	non	non		
Rendement (%)	90-95	90-95	90-95	80-90	70-85	64-75	30-50
Energie ou Puissance	5 MW /30 min	Sec-minute	haute puissance/ plusieurs secs	Puissance nominale/ qq h ou très forte puissance /qq min	Puissance nominale/ longue période	Puissance nominale/ longue période	Puissance nominale/ longue période
Impact environnement	faible	moyen	faible	moyen	moyen	moyen	moyen
Approprié au solaire	oui	oui	oui	oui	oui	oui	oui
Approprié à l'éolien	oui	oui	oui	oui	oui	oui	oui

Tableau 1.1. Comparaison de différentes technologies (Ibrahim et Ilinca, 2008).

1.3 Systèmes de Transfert d'Energie par Pompage turbinage, les STEP.

1.3.1. Généralités

Le stockage hydraulique est une technologie bien établie et commercialement acceptable, permettant également d'améliorer la stabilité du réseau et de soutenir le déploiement d'autres systèmes à sources renouvelables intermittentes telles que le vent et le soleil. Les STEP stockent l'énergie sous forme d'énergie mécanique potentielle de l'eau qui est pompée à partir d'un réservoir inférieur vers un réservoir supérieur. Il a vu un développement rapide avec l'arrivée de l'énergie électronucléaire avec laquelle il était difficile de moduler la puissance électrique produite. L'énergie électrique à faible coût (aux heures creuses) est utilisée pour faire fonctionner les pompes afin d'élever l'eau du réservoir inférieur vers celui du haut. L'eau stockée est libérée à travers les turbines hydrauliques pour produire de l'énergie électrique aux heures de pointe permettant ainsi, en plus de l'intérêt énergétique, de permettre un gain économique non négligeable. Les STEP se caractérisent par de longues durées de construction et des dépenses d'investissement élevées. Cependant, avec la hausse des prix de l'électricité et une utilisation accrue des sources d'énergie intermittentes, il peut être très économique pour stocker l'électricité pour une utilisation ultérieure.

Les premières installations utilisant le stockage hydraulique par pompage apparaissent à la fin des années 1890 en Italie et en Suisse. En France, la première centrale fonctionnant sur ce principe est celle du Lac Noir située dans les Vosges en bordure de la plaine d'Alsace. Elle utilisait l'énergie de nuit de la première centrale de Kembs établie sur le Rhin. Le stockage d'énergie par pompage a été largement développé dans les années 1970-1990 pour optimiser le fonctionnement des grandes centrales thermiques et nucléaires. De puissantes stations, jusqu'à 3000 MW de puissance installée, ont été construites dans ce but en Europe, aux Etats Unis, au Japon et un peu plus tard en Chine. La plupart de la capacité de production-de pompage installée mondiale se trouve en Asie - qui détient actuellement plus de 60 GW de capacité installée cumulée, puis en Europe et aux Etats Unis (Figure 1.3). Dans le monde, il y a plus de 300 installations d'une capacité totale de 127 GW. Les STEP de grande taille dans le

monde sont de 2000 à 3000 MW de capacités installées. Pourtant les STEP dans la gamme de 1000-1500 MW sont plus communes. Globalement, les dimensions habituelles des turbines sont de l'ordre de 300-400 MW (Katsaprakakis et al, 2008). Le rendement de conversion est d'environ 80 % pour les installations les plus récentes, et dépend des pertes de charges liées aux pompes, aux turbines et aux frottements dans les conduites (ces rendements sont atteints avec des énergies « contrôlables » et seront plus faibles avec l'utilisation de systèmes à sources d'énergie fluctuantes) ; le degré de flexibilité est le critère définissant la capacité de réaction de l'installation vis-à-vis d'une demande d'ajustement rapide de puissance en stockage ou en turbinage. Cela concerne principalement les services systèmes. Les STEP présentent l'énorme avantage d'atteindre leur puissance nominale en quelques secondes permettant ainsi de réagir très rapidement à une variation de la charge ou de la production. On distingue les STEP « pures », où l'apport naturel gravitationnel est négligeable, des STEP mixtes qui sont alimentées par le pompage et des flux d'eau naturels. La taille importante des installations permet des capacités de stockage considérables, de plusieurs GWh, avec des puissances mobilisables en quelques minutes (voire secondes) allant de quelques dizaines à plusieurs centaines de MW (Gimeno-Gutierrez et Lacal-Arantegui, 2015).

Figure 1.3. Distribution géographique des STEP dans le Monde, Avril 2016 (Sandvig, 2016)

Les STEP peuvent se caractériser selon plusieurs critères (Singh et al, 2014; Ren et al, 2013):

- la capacité maximale de stockage, qui dépend de la quantité d'eau stockable et de la différence d'altitude ;
- la puissance mobilisable en stockage et en déstockage, qui dépend des capacités des conduites, des turbines et des pompes ;
- la constante de temps, de l'ordre de la dizaine d'heures, qui représente l'énergie stockable par unité de puissance ;
- le rendement qui est le rapport entre l'énergie électrique délivrée lors de la phase de turbinage et l'énergie électrique consommée lors de la phase de pompage.

Le stockage hydraulique utilise deux réservoirs d'eau qui sont séparés verticalement. En période de surplus d'électricité, souvent en dehors des heures de pointe, l'eau est pompée du réservoir inférieur vers le réservoir supérieur. Lorsque cela est nécessaire, le flux d'eau est inversé et guidé à travers les turbines de production d'électricité. Les turbines réversible et alternateur, ensemble, peuvent agir comme pompe ou turbine. Ce type de stockage a un grand potentiel pour être utilisé comme un support de stockage de l'électricité pour les technologies des énergies renouvelables intermittentes. Si à l'origine, les STEP ont été utilisées pour le stockage de l'énergie provenant de charbon et les centrales nucléaires, la croissance des technologies EnR, éoliennes et solaires, ouvre de nouvelles possibilités pour la technologie de pompage. En raison de la nature intermittente de l'énergie éolienne et solaire, l'électricité est souvent fournie quand elle n'est pas nécessaire. La technologie STEP est capable de stocker le surplus d'électricité pour une utilisation ultérieure. Une telle application favorisera l'implantation des technologies EnR et augmentera leur taux d'intégration dans les réseaux électriques.

Le schéma de principe d'une STEP est présenté sur la Figure 1.4.

Figure 1.4. Schéma d'une centrale STEP (CDE, 2013)

1.3.2. Les STEP dans le monde

Les STEP sont les seuls moyens de stockage d'énergie prouvés à grande échelle (4100 MW) pour le fonctionnement de systèmes électriques (Sivakumar *et al*, 2013). Dans l'Union Européenne (UE), actuellement environ 7400 MW de nouvelles STEP sont proposées pour un coût total d'investissement de 6 Milliards \in ce qui représente environ 20% d'augmentation de la capacité des STEP installées dans l'UE (Punys *et al*, 2013). Dans une autre étude (Yang et Jackson, 2011), les STEP dans l'UE sont analysées à partir d'indicateurs de performance des systèmes, à l'aide du système européen de bases de données hydroélectriques (Anagnostopoulos et Papantonis, 2008). En 2010, dans l'ensemble de l'UE, il y avait environ 140 STEP opérationnelles avec une capacité supérieure à 19,5 GW. Les tendances du développement de cette technologie et l'identification des lieux propices à leur implantation ont été discutées par Deane *et al.* (2010) (Figure 1.5).

Figure 1.5. Développement chronologique des STEP en puissance et en nombre de systèmes dans l'UE

Le potentiel de STEP aux Etats-Unis, est important en particulier pour le couplage avec des SER intermittentes, plus de 1000 GW de puissance (Karsten et Meibom, 2012). Un problème de ces systèmes est l'identification et la sélection des critères pour définir les sites appropriés. Connolly *et al* (2010) ont développé un programme pour identifier les sites propices à la construction de STEP. Les coûts d'investissement requis pour les STEP sont extrêmement élevés et la disponibilité des sites adaptés est maintenant en baisse. Par conséquent, l'identification des sites restants disponibles pour les STEP devient essentielle afin que la localisation la plus avantageuse soit choisie en termes de capacité de production et de rentabilité de coût. En conséquence, leur objectif était de développer un programme informatique analysant les caractéristiques du terrain et d'identifier de potentiels sites pour de nouvelles STEP. Le programme a été utilisé pour évaluer une zone de 20 x 40 km dans le Sud-ouest de l'Irlande. D'après les résultats d'une autre étude (Connolly *et al*, 2012), il apparaît évident que les STEP peuvent augmenter le taux de pénétration de l'énergie éolienne dans le système de distribution Irlandais et en réduire les coûts de fonctionnement. Au total, trois aspects ont été étudiés dans le cadre des STEP: son fonctionnement, sa taille et son coût.

Le potentiel hydroélectrique et éolien de la Turquie a été étudié par Dursun et Alboyaci (2010). En outre, l'importance et la nécessité des STEP couplées avec des éoliennes pour la Turquie ont été examinées. L'utilisation de STEP est divisée en deux catégories selon l'échelle de temps du cycle stockage-déstockage : sur 24 heures et pour un stockage d'énergie plus prolongée de l'ordre de plusieurs jours.

Les schémas d'aides possibles ont été analysés pour les STEP en Croatie, afin de garantir le recouvrement du coût d'investissement avec des tarifs de rachat - par exemple - qui garantiraient un paiement-récompense pour décharger l'énergie éolienne et ainsi stimuler l'intégration des SER (Krajacic *et al*, 2013).

Pour l'Italie et l'Espagne, une évaluation de l'apport des STEP a été étudiée. Le stockage par STEP a été identifié comme la solution la plus efficace au niveau des coûts (Rangoni, 2012). En Grèce (en zones non isolées) différents auteurs (Anagnostopoulos et Papantonis, 2012; Caralis *et al*, 2012) ont indiqué que de nouveaux investissements de stockage par STEP pourraient être planifiés et réalisés progressivement au cours des prochaines années, en parallèle avec le développement de la production des EnR. L'objectif de l'étude d'Anagnostopoulos et Papantonis (2008) a été de déterminer les performances d'une unité de

STEP introduite dans une centrale hydroélectrique classique en Grèce. Les données de l'installation et du réseau électrique sur une période d'un an ont été utilisées pour calculer la variation temporelle de l'entrée d'eau dans le barrage, et estimer les apports de production des EnR selon leur puissance installée. Différents scénarios en fonction du taux d'intégration de la STEP ont été examinés. Le fonctionnement du système est simulé en détail et les résultats ont été analysés en termes d'énergie. En outre, une évaluation économique a été réalisée en fonction des conditions financières actuelles en Grèce. Les résultats ont montré qu'une quantité considérable de surproduction en provenance des EnR pourrait être stockée, mais la viabilité économique de l'investissement dépend de certains paramètres critiques, qui ont été identifiés. Certaines orientations concernant le dimensionnement optimal et la stratégie de fonctionnement du système de stockage par pompage sont finalement extraits. La capacité du système électrique grec à absorber les EnR et la nécessité de systèmes de STEP ont été examinées. La faisabilité de STEP a été discutée selon trois scénarios différents d'intégration des éoliennes et des centrales PV. Les résultats montrent que, pour une augmentation progressive de la part des EnR, les STEP deviennent nécessaires (Caralis *et al*, 2010).

Deux études de cas de STEP ont été étudiées pour une situation d'échange d'énergie entre la Norvège et l'Europe continentale pour compenser la variabilité de l'énergie éolienne. Les performances des contrôleurs primaires et secondaires pour maintenir la qualité de la fréquence du réseau ont été analysées. Le pompage peut être utilisé comme une charge variable dans le système nordique. Avec l'augmentation des SER en Inde (éolien et solaire), le stockage de l'énergie par STEP doit être pris en considération (Farahmanda et Huertas-Hernando, 2013).

Dans l'UE, les régimes favorables de tarifs de rachat ont beaucoup augmenté l'utilisation des SER en Allemagne, Espagne, Portugal, Danemark et dans de nombreux autres pays de l'UE. Malgré ces tarifs de rachat intéressants pour la promotion des SER, dans de nombreux cas, leur pénétration est limitée par les exigences du système électrique lié à leur intermittence et aux capacités techniques des réseaux électriques. Ces problèmes peuvent être résolus par la mise en œuvre de technologies de stockage sous forme de STEP (Steffen, 2012).

Le développement actuel est analysé et le potentiel d'installation de STEP a été évalué ainsi que les obstacles possibles dans le système allemand. Dans l'ensemble, les perspectives pour les nouvelles STEP sont prometteuses, même si la rentabilité reste encore un défi majeur (Krajacic *et al*, 2011).

Plusieurs études analysent les différents aspects des énergies éoliennes et solaires couplées avec des STEP:

- les études qui analysent seulement le stockage hydraulique ;
- les études qui analysent la production éolienne avec stockage hydroélectrique ;
- les études qui analysent la production solaire avec stockage hydroélectrique ;
- les études qui analysent les deux types de production couplés avec un stockage hydroélectrique.

1.4. Énergie éolienne et STEP

Il a été observé dans la littérature que les variables les plus importantes pour la conception du système de pompage sont le volume du réservoir supérieur et la différence de hauteur entre les 2 réservoirs (Kousksou *et al*, 2014). Le concept de base du fonctionnement d'un système de pompage est très similaire à celui d'une installation classique de centrale hydroélectrique. La

puissance générée par le système en mode de génération $\mathbb{F}_{\underline{ren}}$, dépend principalement du débit d'eau Q_{turb} , de la hauteur d'eau ΔH et du rendement de génération $f(Q_{turb})$:

1.4.1. Mode de Génération :

$$P_{Turb} = f(Q_{turb})\rho_{eau}g\Delta HQ_{turb}$$
(1.1)

Dans ce mode, la STEP produit de l'électricité dans le réseau ; les pompes restent au repos.

Dans le mode pompage, la pompe consomme l'énergie éolienne ou photovoltaïque, et l'énergie ainsi utilisée est stockée dans le réservoir supérieur sous la forme d'énergie potentielle.

1.4.2. Mode de Pompage :

$$P_{pomp} = \rho_{eau} g \Delta H Q_{pomp} / f'(Q_{pomp})$$
(1.2)

1.4.3. Mode de pompage par l'énergie du réseau :

Dans ce mode, la STEP utilise le réseau électrique pour actionner la pompe et stocke l'énergie dans le réservoir supérieur. Cette opération se fait à chaque fois que le prix de l'électricité sur le marché est faible.

1.4.4. Mode de génération d'EnR:

Dans ce mode, la STEP fonctionne soit en mode génération ou en mode de pompage, afin de compenser la variation de puissances produites par les SER.

A la différence des énergies traditionnelles disponibles en permanence, de base ou de pointe (hydraulique, nucléaire, thermique), les énergies éoliennes et solaires sont intermittentes et ne peuvent pas produire d'électricité de façon constante. Les périodes de production des SER sont irrégulières, et souvent imprévisibles malgré les prévisions météorologiques. En raison de ce caractère intermittent, les SER peuvent difficilement répondre à la très forte variabilité de la demande de la consommation électrique. De nombreuses études soulignent ce problème d'incertitude de la nature du vent, est proposent de combiner les parcs éoliens avec différents systèmes de stockage d'énergie dont le stockage hydraulique. La capacité de production inutilisée du vent est analysée pour 18 pays européens sur la période 1998 à 2011. Les techniques de prédiction de la vitesse du vent n'étant pas encore assez précises, la prédiction de la production éolienne est un problème important. Le stockage est une option clé pour améliorer l'intégration de l'énergie éolienne. Dans le cadre d'un marché déréglementé, une STEP peut être la solution (Loisel, 2012). En outre, un haut taux d'intégration des SER dans la production d'électricité engendre une grande incertitude dans la production des parcs éoliens : elle diminue la probabilité du système électrique d'être en déficit de puissance, mais augmente la probabilité qu'il soit en surplus de puissance (Hosseini-Firouz, 2013 ; Ummels et al, 2008; Rahimi et al, 2013). Purvins et al (2012) se sont concentrés sur les solutions nécessaires pour gérer la variabilité de la production éolienne et permettre son intégration à grande échelle dans le système d'électricité. Le stockage par STEP est adapté pour l'équilibrage saisonnier de l'énergie éolienne (Hedegaard et Meibom, 2012) . Afin de diminuer les coûts, une opération conjointe entre un parc éolien et une installation d'hydro-pompage a été proposée; la STEP change sa production pour compenser et minimiser les déséquilibres et les erreurs de prédiction d'énergie éolienne dont l'incertitude est modélisée et quantifiée. Une étude de cas réaliste est utilisée pour évaluer la méthode proposée. L'incertitude de prédiction de l'énergie éolienne est incluse dans le problème d'optimisation. Le comportement stochastique du vent et l'incohérence possible entre la variabilité de la demande d'électricité et la production d'énergie éolienne imposent de strictes limites à la pénétration de l'énergie éolienne principalement en raison des obstacles techniques qui protègent les réseaux électriques autonomes d'une éventuelle instabilité. Par conséquent, dans le cadre législatif, il est difficile d'obtenir un pourcentage supérieur à 15% en Grèce pour la contribution de l'énergie éolienne dans les réseaux électriques autonomes (Kabouris et Kanellos, 2010).

Le stockage par STEP a été considéré comme une solution adéquate pour améliorer la qualité de la puissance électrique issue d'une production éolienne (Hedegaard et Meibom, 2012) mais son utilisation s'accompagne de nombreuses contraintes géographiques. La recherche actuelle est la plupart du temps appliquée à des systèmes d'énergie dans des régions isolées comme les îles et les zones montagneuses où, en général, le potentiel éolien est favorable (Kaldellis *et al*, 2012). De nombreuses études se sont concentrées sur l'aspect économique des STEP couplées à l'éolien mais les aspects techniques ne sont pas bien considérés (Purvins *et al*, 2012). Le stockage est utilisé pour combler les manques créés par l'énergie éolienne au cours du déséquilibre du réseau électrique. En ce qui concerne la complémentarité du vent et des autres énergies, il a été montré que la combinaison du soleil et du vent produit moins de variabilité dans la production (Hoicka et Rowlands, 2011). L'énergie éolienne et le stockage hydraulique intégrés dans les réseaux électriques sont connus pour être très économiques et être une technologie techniquement compétitive (Zafirakis *et al*, 2013 ; Connolly *et al*, 2012 ; Tuohy et O' Malley, 2011).

La production d'énergie hydro-éolienne semble être une solution intéressante pour les réseaux électriques isolés et autonomes afin d'augmenter la pénétration de l'énergie éolienne et sa rentabilité. Des solutions utilisant différentes types de stockage, dont les STEP, pour les applications dans les îles ont été examinées (Rodrigues *et al*, 2014). Les solutions énergétiques pour les îles et les zones isolées et le développement des énergies renouvelables intermittentes dans certaines îles européennes ont été passés en revue (Chen *et al*, 2007). Les paramètres techniques tels que la taille des turbines, la puissance et le nombre de pompes, le diamètre de la conduite forcée et son épaisseur, ainsi que la capacité des réservoirs ont été étudiés ; certains paramètres financiers ont été également considérés comme critiques dans cette étude.

Une méthodologie pour le dimensionnement et la conception de ces systèmes a été proposée et utilisée pour les îles grecques autonomes. L'objectif était de réaliser une étude de préfaisabilité de STEP dans les îles grecques autonomes. Les résultats montrent qu'il y a un marché important en Grèce et que le coût de développement des STEP avec de systèmes éoliens est concurrentiel par rapport au coût de production des centrales locales dans ces îles autonomes. Anagnostopoulos et Papantonis (2008) ont présenté une méthodologie numérique pour le dimensionnement optimal des différents composants d'une STEP. L'algorithme a été appliqué à un cas pratique en utilisant les données de production de parcs éoliens installés dans l'île de Crète, Grèce.

Un avantage majeur des centrales hybrides est l'amélioration de la sécurité dynamique des systèmes électriques non interconnectés grâce à l'introduction des turbines hydrauliques. La combinaison de l'énergie éolienne et du stockage hydraulique est considérée comme un moyen d'exploiter le potentiel éolien abondant, d'augmenter la capacité éolienne installée et de combler la pointe de consommation. Jusqu'à présent, le dimensionnement optimal de STEP dans des applications similaires a été le sujet de nombreuses études. (Katsaprakakis *et al*, 2012 ; Brown *et al*, 2008; Bueno et Carta, 2005a, 2005b, 2006 ; Kaldellis, 2010a, 2010b ; Papaefthymiou et Papathanassiou, 2014 ; Dursun *et*

al, 2012 ; Caralis *et al*, 2010 ; Brown *et al*, 2008 ; Kaldellis, 2008 ; Patlitzianas et Christos, 2012 ; Padrón, 2011).

Katsaprakakis *et al* (2012) ont optimisé la taille d'un système combiné de stockage hydroéolien pour un système isolé de Karpathos-Kasos. Le dimensionnement du système était basé sur la nécessité de garantir la pointe de consommation sur une base quotidienne. Kapsali *et al* (2012) ont présenté en détail une STEP pour récupérer l'énergie produite par les parcs éoliens dans les îles grecques non-interconnectées de Lesbos et de Crète. Anagnostopoulos et Papantonis (2012), pour l'interconnexion de réseau d'électricité de Grèce, ont considéré un cas de STEP combinée à une grande centrale hydroélectrique existante ; ils ont étudié la capacité du système électrique grecque à absorber la production des SER et ont montré la nécessité d'utilisation de STEP. Connolly *et al* (2012) ont étudié à grande échelle l'intégration de stockage d'énergie pour compenser les fluctuations des EnR pour le système énergétique irlandais, trois aspects ont été étudiés pour les STEP: leur fonctionnement, leur taille et leur coût. Ils ont montré que les STEP permettent d'augmenter la pénétration des éoliennes dans le réseau irlandais et de réduire également les coûts d'exploitation.

Une façon de réduire le coût de production de l'électricité est d'augmenter la contribution des SER en particulier grâce au développement de l'énergie éolienne économiquement rentable et respectueuse de l'environnement (Weisser et Garcia, 2005).

Huajie Ding *et al* (2012) ont conclu que la combinaison d'éoliennes et de STEP peut grandement atténuer l'effet négatif des variations de la production éolienne sur le réseau électrique et ainsi en augmenter le profit.

Endegnanew *et al* (2013) ont étudié un scénario de parcs éoliens en mer couplés à une STEP. La STEP peut être utilisée comme une charge variable dans le système électrique nordique à cause des grandes variations de production des parcs éoliens en mer du Nord et de la qualité de la fréquence.

Varkani *et al* (2011) ont montré que l'intégration de STEP avec des parcs éoliens en Espagne a augmenté la rentabilité du système intégré et minimisé les pertes d'énergie éolienne. Une technique de réseaux de neurones artificiels a été utilisée pour prédire l'énergie du vent un jour à l'avance pour une gestion efficace de la STEP.

Le fonctionnement d'un système hybride éolien/hydroélectrique (avec pompe réversible) visant à produire l'électricité à faible coût a été analysé pour l'île d'Ikaria en Grèce. Le programme de simulation, basé sur le comportement stochastique des paramètres météorologiques, utilise comme données d'entrée la distribution mensuelle de la vitesse du vent. La faisabilité de ces applications dans les îles grecques et l'économie d'énergie électrique engendrée ont été démontrées (Papaefthymiou *et al*, 2010).

Une méthodologie de dimensionnement optimal de systèmes éolien-STEP a été développée et appliquée à plusieurs îles de mer Egée. Les calculs numériques étaient basés sur des données réelles (vitesse du vent, charge électrique, caractéristiques opérationnelles des composants du système) (Kaldellis et Kavadias, 2001).

Les concepts de rendement électrique et de rendement total du système et la valeur du taux de pénétration des SER ont été utilisés par Kaldellis *et al* (2009).Ils ont étudié successivement :

- 1. l'influence de la taille du parc éolien ;
- 2. l'influence de la taille du réservoir d'eau ;
- 3. l'influence de la taille de la pompe.

Parmi les principales conclusions, la plus importante est la dépendance de l'autonomie énergétique du système avec le nombre d'éoliennes. En outre, on peut souligner l'effet dominant du potentiel local de vent sur la qualité de la solution obtenue, l'influence croissante de la taille du réservoir d'eau et du rendement électrique. L'autonomie énergétique est facilitée par l'utilisation de petites pompes à eau.

Le dimensionnement optimal d'une STEP installée dans une île a été analysée (tailles des turbines, pompes, parcs éoliens, réservoirs), en adoptant le point de vue soit de l'investisseur (maximiser le retour d'investissement de la STEP), soit le point de vue du système (maximiser la pénétration des EnR avec maintien du coût le plus bas possible de la production électrique).

Des algorithmes génétiques ont été appliqués à une île isolée à Hong Kong, (Ma *et al*, 2014a) et sa faisabilité technique a été ensuite examinée. Outre le fait que la nature intermittente des EnR peut être compensée par l'introduction d'une STEP, le couplage EnR-STEP est une solution technique idéale pour atteindre l'autonomie énergétique de 100% dans les collectivités éloignées.

1.5 Energie solaire photovoltaïque (PV) et STEP

L'énergie solaire a également une nature instable et n'est disponible que pendant la journée, contrairement à l'éolien. En raison de son intermittence, l'énergie solaire ne peut répondre à elle seule aux besoins énergétiques et doit être accompagnée par d'autres sources énergétiques: centrales thermiques, nucléaires, hydrauliques. Le couplage de systèmes PV avec des STEP est l'une des utilisations les plus populaires et plus performantes de l'énergie solaire (Kaldellis *et al*, 2009). Un exemple de ce type de système est présenté sur la Figure 1.6.

Figure 1.6. Schéma d'un système solaire photovoltaïque couplé à un système de pompage-turbinage
La puissance produite par les panneaux PV est transmise au réseau électrique et la puissance supplémentaire produite pendant les heures creuses est utilisée pour pomper l'eau d'un réservoir inférieur à un réservoir supérieur. L'eau du réservoir supérieur est libérée à travers des turbines hydrauliques pour produire de l'énergie pendant les heures de pointe.

Ce paragraphe présente une synthèse non exhaustive des études théoriques rapportées dans la littérature sur les systèmes PV-STEP.

Pour le problème d'électrification des zones autonomes, une méthodologie de dimensionnement optimal du couplage PV-STEP a été développée (Kaldellis *et al*, 2010a).

Ma *et al* (2015) ont étudié un système PV-STEP pour de petits systèmes autonomes en zones isolées. Les auteurs ont développé des modèles mathématiques pour chaque composant principal du système, pour estimer la fiabilité du système, pour déterminer des critères économiques et optimiser le dimensionnement. Le modèle et l'algorithme d'optimisation proposé sont efficaces et peuvent être utilisés pour d'autres études similaires à l'avenir. La différence de hauteur entre les deux réservoirs avait été fixée à 60 m et la mer jouait le rôle de réservoir inférieur. Ainsi, seul le volume du réservoir supérieur et la taille des pompes et des turbines ont été déterminés au cours du processus de dimensionnement et d'optimisation du système. Dans les deux modes de fonctionnement des systèmes, les rendements des pompes et des turbines sont considérés comme constants.

Margeta et Glasnovic (2012) ont proposé un système hybride PV-STEP pour fournir une énergie continue dans le réseau électrique. Dans une autre étude, les mêmes auteurs (Margeta et Glasnovic, 2011) ont analysé la possibilité d'améliorer la centrale hydroélectrique avec un générateur solaire photovoltaïque. Margeta et Glasnovic (2010) ont utilisé l'exemple de la centrale hydroélectrique de Zavrelje, Dubrovnik en Croatie. Ils ont analysé un système PV-STEP qui peut fournir de l'énergie électrique continue et ont étudié les possibilités de sa mise en œuvre en Europe dans des zones à climat similaire. Ils ont mis au point un modèle mathématique permettant de sélectionner la taille optimale de la centrale PV, comme l'élément essentiel permettant d'estimer la faisabilité technique d'une solution en général. Les résultats ont clairement montré une large gamme d'implémentation de systèmes PV-STEP pour les climats relativement froids. Margeta (2014) a également présenté les caractéristiques d'un système PV-STEP pour réaliser une production d'énergie électrique sans impact négatif sur l'environnement.

Ma *et al* (2014b) ont présenté une étude de système PV-STEP pour de petits systèmes autonomes en régions éloignées.

Kaldelis *et al* (2009a, 2010a) ont présenté une étude pour analyser le problème d'électrification des réseaux électriques autonomes. Pour ce faire, une méthodologie de dimensionnement optimal de systèmes PV-STEP a été développée.

Manolakos *et al* (2004) ont étudié le remplacement partiel d'un système de stockage par batteries par une STEP dans un système PV.

1.6 Couplage PV – Eolien - STEP

Il n'y a pas beaucoup d'études sur des systèmes hybrides éoliens-PV-STEP. Certains de ces systèmes sont utilisés pour le dessalement d'eau de mer (Kalogirou, 2005 ; Garcia, 2003).

La Figure 1.7 illustre ce type de système.

Figure 1.7. Micro STEP avec couplage éolien et PV (ADEME, 2015)

Combiner les énergies hydrauliques, solaires et éoliennes est l'objectif de Tri'Nerzh, une société bretonne développée pour stocker sous forme d'eau, l'électricité intermittente produite par une centrale solaire et une ferme éolienne dans le Finistère (Guillaume, 2015).

Ardizzon *et al* (2014) ont présenté de nouvelles stratégies pour optimiser la capacité de stockage et pour maximiser la rentabilité du système sur le marché déréglementé de l'énergie. Les progrès et les défis futurs dans la conception des parcs éoliens, la planification des installations et la gestion sont proposés. Les systèmes éoliens-PV-STEP sont présentés et discutés, ainsi que les limites et les particularités des nouvelles stratégies de conception.

Une étude d'optimisation de systèmes Eolien-PV-STEP en mode autonome pour un micro réseau isolé de quelques centaines de kW a été réalisée sur la base d'une évaluation technicoéconomique (Ma *et al*, 2014c). L'analyse du bilan énergétique indique que le rendement global de la STEP est de 52,5%. L'analyse de sensibilité montre que la contribution clé au niveau du coût du système est la demande de la charge. En conclusion, ce type de système pourrait fournir une puissance de sortie stable et continue pour les régions éloignées.

Spyrou et Anagnostopoulos (2010) ont examiné en détail la stratégie de conception et de fonctionnement optimal d'un système hybride de dessalement capable de satisfaire la demande d'eau fraîche d'une île ou d'autres régions côtières isolées. Le système se compose d'une unité de dessalement par osmose inverse alimentée par un système Eolien-PV-STEP. Un algorithme spécifique a été développé pour simuler le fonctionnement de la centrale entière et pour en évaluer l'investissement.

Des algorithmes génétiques ont été également appliqués pour l'optimisation de ces systèmes pour l'alimentation d'une île isolée (Papaefthymiou *et al*, 2014, 2015).

1.7. Les STEP marines

Il n'y a actuellement qu'une seule STEP marine dans le monde, située sur la côte nord de l'île d'Okinawa, au Japon. Cette STEP a commencé à fonctionner en 1999 et a le potentiel de générer jusqu'à 30 MW de puissance ; elle permet un stockage de 180 MWh (Fujihara *et al*, 1998).

A Glinsk en Irlande, il y a un projet de STEP marine de 480 MW capable d'accepter environ un tiers de l'électricité excessive générée par le parc éolien de 5000 MW, il est prévu que cette STEP soit mise en service d'ici 2020 selon le plan énergétique de l'Irlande (O'Driscoll, 2015).

Une étude fondamentale de STEP marine a été réalisée par Katsaprakakis et Christakis (2014). Malgré les conditions défavorables, le dimensionnement et l'évaluation financière du système a donné des résultats satisfaisants. La production d'électricité par le parc éolien et le STEP dépasse 50% de la consommation annuelle d'électricité de l'île. Le système proposé semble avoir des impacts financiers favorables sur le marché. L'installation d'une double conduite forcée augmente le taux de pénétration annuel des EnR de plus de 10% (par rapport à l'utilisation d'une seule conduite forcée), et améliore sensiblement les indices financiers de l'investissement.

Dans une autre étude réalisée par Pina (2008), un modèle d'optimisation économique a été appliqué à une STEP marine pour augmenter la pénétration des EnR et a analysé divers scénarios.

Le stockage hydraulique avec l'eau de la mer est vu comme une bonne option pour les systèmes PV ou les centrales thermiques solaires, situés dans des endroits appropriés à proximité de la ligne de côte. Différents modes de fonctionnement de la pompe (vitesse fixe ou variable) ont été considérés, le dimensionnement préliminaire du réservoir et du champ PV a été effectuée sur la base d'une année de fonctionnement. Les résultats montrent que le PV couplé avec une STEP, même s'il n'est pas rentable dans la situation actuelle du marché italien de l'électricité, est efficace pour réduire la charge sur le réseau de transport, et serait peut-être intéressant à l'avenir, pour des applications hors réseau (Manfrida et Secchi, 2014).

L'utilisation d'une STEP marine a été analysée par McLean et Kearney (2014) le coût d'investissement d'une telle STEP pourrait être récupéré après un certain nombre d'années pour une capacité de stockage de 320 MWh.

1.8. Techniques d'optimisation de systèmes EnR-STEP

Les STEP sont la technologie la plus adaptée d'un point de vue économique pour de petits réseaux insulaires autonomes. Le rendement énergétique de ces systèmes varie en pratique entre 70% et 80% et certains d'entre eux atteignent même 87%. Il a été démontré de manière réaliste qu'introduire une STEP dans les systèmes insulaires est une excellente solution (Bayón *et al*, 2013 ; Ding *et al*, 2012).

La plupart des études présentent un couplage entre un parc éolien et une STEP et ont donné des résultats prometteurs en termes de réduction des coûts d'exploitation et d'augmentation de la sécurité du système.

De nombreuses études (Zafirakis *et al*, 2013 ; Santhosha *et al*, 2014 ; Muche, 2009 ; Malakar *et al*, 2014 ; Kanakasabapathy et Shanti Swarup, 2010) ont conclu que le stockage hydraulique intégré au réseau peut être la meilleure solution pour une production plus lisse à des coûts réduits et suggèrent d'investir dans ces systèmes pour une intégration à grande échelle de l'énergie éolienne.

Les déséquilibres dans la production d'énergie éolienne pourraient être totalement évités par l'action des stations d'hydro-pompage (Castronuovo et Pecas Lopes, 2012).

Bayon *et al* (2013) voient ces systèmes comme la solution pour minimiser les déséquilibres dus aux erreurs dans la prévision et à l'incertitude de la production d'énergie éolienne. Ils permettent également de minimiser les pertes financières inhérentes à ces déséquilibres.

Les systèmes électriques isolés où le coût de production est très élevé ont intérêt à intégrer des STEP. Le critère d'optimisation dans l'étude de Katsaprakakis *et al* (2008) est la minimisation du coût de production.

Pour examiner l'impact de la STEP, le système a été simulé, dans le cas d'un fort taux de pénétration d'éoliennes, avec et sans STEP, afin de juger de son apport en termes de flexibilité et de capacité à réduire les restrictions en utilisant un modèle stochastique (Tuohy et O'Malley, 2011).

Varkani *et al* (2011) ont examiné les tendances actuelles de fonctionnement des STEP. La stratégie utilisée d'auto-planification est basée sur des techniques de programmation stochastiques. Ils ont mis en évidence le rôle important du stockage par STEP au niveau du taux de pénétration de l'énergie éolienne à la fois dans des contextes de marché déréglementé et centralisé.

La procédure numérique utilisée par Anagnostopoulos et Papantonis (2008) combinent un algorithme d'évaluation qui simule en détail le fonctionnement de la STEP sur une période de 12 mois, et un logiciel d'optimisation automatisée basée sur les algorithmes évolutionnaires. L'analyse économique utilise des méthodes d'évaluation dynamiques et la possibilité d'atteindre divers objectifs est examinée en utilisant des méthodes d'optimisations simples ou multi-objectifs. En outre, l'outil numérique développé est utilisé pour effectuer plusieurs études paramétriques et divers tests de sensibilité afin d'analyser en profondeur l'influence des paramètres les plus importants sur le fonctionnement de système et sur l'impact économique. Les résultats ont montré qu'une conception bien optimisée peut être cruciale pour la viabilité technique et économique du système.

Les objectifs principaux des aspects économiques de l'étude bibliographique décrite dans cette section sont le fonctionnement optimal de la STEP, les coûts de fonctionnement, la maximisation de l'efficacité ou du rendement énergétique, la maximisation du profit et les problèmes de déséquilibre des coûts.

Plusieurs études se concentrent sur l'aspect économique du fonctionnement du stockage hydraulique couplé à l'énergie éolienne (Varkani *et al*, 2011 ; Santhosha *et al*, 2014 ; Krajacic *et al*, 2013 ; Siahkali et Vakilian, 2009 ; Jiang *et al*, 2012 ; Kanakasabapathy, 2013 ; Benitez *et al*, 2008 ; Muche, 2009 ; Ding *et al*, 2012).

Crampes et Moreaux (2010) ont analysé, tout d'abord, l'utilisation efficace de la technologie de stockage. Ils ont déterminé la frontière entre le stockage et les solutions sans stockage et sa sensibilité aux variations de coûts. Ma *et al* (2014b) ont examiné, pour une île isolée alimentée par des EnR, le coût de cycle de vie (LCC) des régimes de stockage par batteries et l'ont comparé avec les systèmes de stockage par STEP. L'analyse de sensibilité a montré que les STEP seraient encore compétitives si le nombre de jours d'autonomie de stockage augmentait. Le stockage par STEP combiné avec un système de batteries serait la solution optimale. Une STEP appropriée peut fonctionner avec une pompe-turbine réversible, mais il n'est pas facile de trouver un produit mature et ayant fait ses preuves sur le marché (Fonseca et Schlueter, 2013).

Nazari *et al* (2010) ont étudié un stockage par pompage couplé à une unité thermique avec des considérations d'optimisation liées à des contraintes environnementales. Le système de stockage hydraulique peut réduire les coûts totaux (carburant, démarrage et les coûts d'émission).

Un modèle déterministe de programmation dynamique (Foley *et al*, 2015) est utilisé pour optimiser les mix de production, les coûts du système et les émissions de dioxyde de carbone.

La principale conclusion de cette étude est d'inciter à renforcer la capacité de stockage par STEP pour augmenter la part de l'énergie éolienne.

Une technique « mixed-integer non linear programming » a été développée pour permettre le fonctionnement optimal d'une STEP (Catalãoa et al, 2012). Une analyse en détail a été réalisée sur le fonctionnement des installations. L'objectif est de réduire la quantité d'énergie éolienne qui ne peut pas être transformée en énergie hydraulique en raison des limites de fonctionnement des pompes. Lorsque la puissance produite par la ferme éolienne est supérieure à la puissance maximale d'un certain nombre de pompes, la pompe supplémentaire ne démarrera que si la puissance supplémentaire est supérieure à sa limite de fonctionnement inférieure. Le fonctionnement de l'installation pendant une période d'un an est simulée par un algorithme d'évaluation globale, qui effectue également une analyse économique détaillée de la centrale en utilisant des méthodes d'évaluation dynamiques. L'utilisation d'une pompe à vitesse variable constitue la solution la plus efficace et rentable (Anagnostopoulos et Papantonis, 2008). Malakar et al (2014) ont proposé un algorithme d'optimisation (résolu en utilisant un «Bee Colony algorithme») afin de maximiser le bénéfice opérationnel. Les simulations ont également été réalisées pour étudier l'impact des volumes initiaux du réservoir de stockage sur la performance du système hybride. Un niveau optimal du réservoir de stockage peut maximiser le profit économique.

Les algorithmes génétiques sont appliqués pour l'optimisation d'une situation réelle d'une île isolée du système d'alimentation électrique (Papaefthymiou *et al*, 2014, 2015). Katsaprakakis *et al* (2012) ont étudié la faisabilité de maximiser l'utilisation de l'énergie éolienne en combinaison avec une centrales thermique existante et de parcs éoliens en ajoutant un système de stockage hydroélectrique dans les îles isolées de Karpathos et Kassos situées dans le Sudest de la mer Egée.

Dans la littérature, deux types de méthodes d'optimisation sont utilisée (Dhillon et al, 2014) :

- techniques d'optimisation classiques pour les systèmes EnR-STEP ;
- techniques d'optimisation par intelligence artificielle.

Dans les techniques classiques d'optimisation examinées, différentes études (Castronuovo *et al*, 2014 ; Brown *et al*, 2008 ; Ummels *et al*, 2008) ont essayé de minimiser les coûts d'exploitation et de maximiser le profit des systèmes Eolien- STEP. Ding *et al* (2012) ont proposé une nouvelle stratégie de fonctionnement du parc éolien et de la STEP basée sur des prévisions de production éolienne. Un programme «Mixed Integer Programming (MIP)» (Programmation Mixte en Nombres Entiers) a été développé pour maximiser le profit attendu de l'opération conjointe des éoliennes et de la STEP.

Méthode d'optimisation par méthodes d'intelligence artificielle des systèmes Eolien-STEP : Différentes techniques d'optimisation ont été utilisées dans la littérature : « Particle Swarm Optimization (PSO) » (Optimisation par essaims particulaires), Algorithme Evolutionniste, (EA), Algorithmes Génétiques (GA), Logique Floue, Mixed Integer Non-Linear programming (MINLP) (Programmation Mixte non linéaire en nombres entiers). Ces techniques sont utilisées par différents auteurs avec pour objectifs d'optimiser le couplage éolien et STEP. Une synthèse des méthodes d'optimisation est décrite dans les Tableaux 1.2 et 1.3.

Types	Techniques	Objectifs	Validité	Marché	Stockage	Tech	
d'optimisation	1	- · · J ~		Electricite		Prévision	Ref
Problème non	Méthode du point	Maximisation	Meilleure	Iles	STEP	Monte	(Duque et al,
lineaire	intérieur	du profit	stratégie pour	autonomes		Carlo	2011)
d'optimisation		_	Eolien-STEP				
Programmation	Programmation	Minimisation	Considérant la	Iles	STEP	Logique	(Brown et al,
linéaire	linéaireCLP	des coûts de	sécurité	autonomes		floue	2008)
	solveur	fonctionnement	dynamique				
Programmation	Programmation	Maximisation	Meilleur	Marché	STEP	Modèle	(Ummels et al,
stochastiqueen 2	intégrée linéaire	du profit	investissement	journalier		Markov	2008)
étapes	mixte						
Optimisation	Algorithme	Minimisation	Maximum	Iles	STEP,	Interpolati	(Garcia-
multicritère	heuristique	des coûts de	énergie	autonomes	CAES	on des	Gonzalez et al,
		fonctionnement	éolienne			vitesses	2008)
						du vent	
Programmation	Algorithme de	Minimisation	Réduction	Marché	STEP	Distributi	(Jian <i>et al</i> ,
stochastique à 2	Monte Carlo	coûts de	incertitudes	journalier		on	2012)
étapes		fonctionnement	liées au vent			Probabilis	
						te	
Programmation	Programmation	Minimisation	Réduction du	Iles	STEP	Extrapolat	(Faia et al,
linéaire mixte	linéaire mixte	coûts de	problème de	autonomes		ion	2012)
		fonctionnement	vent				
Programmation	Programmation	Minimisation	Minimiser	Iles	STEP		(Diaz-Gonzalez
linéaire mixte	linéaire mixte	coûts de	l'effet de serre	autonomes			et al, 2012)
		fonctionnement					

Tableau 1.2. Synthèse des méthodes d'optimisation o	classiques utilisées dans la littérature.
---	---

Tableau 1.3. Synthèse des méthodes d'optimisa	tion par intelligence artificielle utilisées dans la littérature.

Туре	Techniques	Objectifs	Validité	Marché	Stockage	Technique	Ref
d'optimisation				Electricite		Prévision	
Optimisation		Minimisation	Meilleure	Iles	STEP	Distribution	(Duque et al, 2011)
non linéaire	MIPSO	coûts de	stratégie pour	autonomes		de Weibull	
		fonctionnement	couplage				
			Eolien-STEP				
Optimisation	Algorithme	Maximisation	Maintien	Iles	STEP	Technique de	(Brown et al, 2008)
multi objectifs	"évolutionnaire"	du profit	sécurité	autonomes		réduction	
			dynamique				
Modèle	PSO	Minimisation	réduction	Marché	STEP		(Anagnostopoulos
stochastique		coûts de	erreurs	journalier			et Papantonis,
		fonctionnement	stochastiques				2008)
Programmation	SO	Maximisation	Profit et	Iles	STEP		(Pappala et al,
Mixte Non		du profit	contraintes	autonomes			2008)
Linéaire à							
nombres entiers							
Programmation	GP ACPSO	Minimisation	Méthode de	Iles	STEP		(Siahkali, 2011)
Mixte Non		coûts de	calcul plus	autonomes			
Linéaire à		fonctionnement	rapide				
nombres entiers							
Optimisation	Algorithme	Minimisation	Système PV-	Iles	STEP		(Siahkali et
multi objectif	Génétique	coûts de	Eolien-STEP	autonomes			Vakilian, 2009)
		fonctionnement					
Optimisation	Approche	Maximisation	Application à	Iles	STEP		(Xiaoyu et al,
linéaire	« Fuzzy	du profit	la vitesse du	autonomes			2012)
	Clustering »		vent				
Programmation		Maximisation	profit et	Iles	STEP		(Li-Jie et al, 2012)
Mixte Non	MINLP	du profit	contraintes	autonomes			
Linéaire à							
nombres entiers							
Programmation	Algorithme	Maximisation	Stabilité de	Iles	STEP		(Yan et al, 2011)
Mixte Non	Génétique	du profit	système	autonomes			
Linéaire à							
nombres entiers							

1.9. Conclusion

Afin de parvenir à une gestion optimale du couplage entre des systèmes de production d'énergie utilisant des sources renouvelables intermittentes (solaire et éolien) et des stations de transfert d'énergie par pompage-turbinage, il est nécessaire de tenir compte des informations sur l'incertitude des prévisions de l'énergie éolienne et photovoltaïque et d'utiliser des outils performants d'optimisation. La prédiction des vitesses de vent était jusqu'à récemment considérée uniquement pour la prédiction météorologique. Maintenant avec l'augmentation des taux de pénétration de la production éolienne et photovoltaïque dans les systèmes électriques, cette prédiction a vu son intérêt croître et s'étendre à des applications énergétiques.

Les risques de déséquilibre entre production et consommation dans un réseau électrique sont d'autant plus élevés que le taux d'intégration de systèmes éoliens et photovoltaïques est élevé ; leur introduction dans le réseau nécessite de disposer de réserves de puissance supplémentaires pour le bon fonctionnement du système électrique. Pour cette raison, des nouveaux outils sont nécessaires pour fournir des informations fiables sur la production à divers horizons temporels des parcs éoliens et photovoltaïques, et de compenser les déséquilibres. Pour pallier ces problèmes de déséquilibre, l'introduction de moyens de stockage d'énergie électrique fiables et performants est nécessaire afin de récupérer la part de la production en provenance des sources renouvelables intermittentes qui n'a pas pu être injectée dans le réseau électrique du fait des contraintes de sécurité imposées par le gestionnaire du réseau.

L'utilisation conjointe des énergies renouvelables intermittentes et des STEP s'accompagne des contraintes suivantes :

- la disponibilité du réseau électrique ;
- la mise en place de nouveaux incitateurs économiques pour leur développement;
- la nécessité de disposer d'un site approprié pour la construction d'une STEP ou de disposer d'une centrale hydraulique susceptible d'être transformée en STEP totalement ou partiellement;
- la mise en œuvre d'un dimensionnement optimal du système de production-STEP ;
- les problèmes opérationnels (stabilité du réseau électrique, contrôle de fréquence, etc.).
- les problèmes environnementaux ;
- le problème de cout d'installation d'un tel système.

Sur la base de l'étude bibliographique réalisée, il ressort que de nombreuses recommandations et suggestions ont été proposées pour améliorer le développement des STEP couplées à des systèmes à EnR intermittentes. Un développement fort de la recherche est nécessaire pour résoudre les problèmes liés à l'intégration des EnR intermittentes dans les réseaux électriques notamment lorsque le pourcentage de participation de ces énergies non maîtrisables est élevé.

De nouveaux systèmes de STEP doivent être explorés avec l'utilisation de cavernes souterraines ou de réservoirs en mer pour l'application hydro-pompage en zones non montagneuses. La technologie des STEP s'accompagne de l'utilisation de pompes-turbines modernes efficaces et réversibles, de turbines à vitesse variable et nécessite d'améliorer les méthodes de construction des tunnels souterrains et des réservoirs de stockage. La complexité de ces systèmes impose de nombreuses contraintes qui doivent être considérées simultanément telles que les variations de fréquence, la stabilité de la tension, le déséquilibre de puissance, les capacités de stockage à mettre en œuvre, le rendement du système, les coûts

de fonctionnement et la fiabilité de fonctionnement de la STEP. D'autres facteurs liés aux marchés internationaux de l'électricité doivent être mis en place pour développer une nouvelle structure du marché de l'énergie tenant compte de l'introduction des systèmes renouvelables-STEP

La bibliographie est riche sur le couplage des énergies renouvelables intermittentes, éoliennes et/ou photovoltaïques avec les systèmes de pompage turbinage. Ce couplage est de plus en plus envisagé et suscite un intérêt grandissant dans le secteur de l'énergie en raison de sa grande flexibilité à changer sa puissance de sortie rapidement et à suivre et compenser les variations à court terme de la production EnR.

La littérature a examiné le couplage de l'énergie éolienne et photovoltaïque avec les STEP, en tenant compte du concept de base, des avantages, de la croissance et de l'état actuel du marché, des contraintes de fonctionnement, des défis à relever et des possibilités de développement dans un marché déréglementé de l'électricité.

Les différentes techniques utilisées pour optimiser le fonctionnement des systèmes hybrides ont révélé que cette optimisation est souvent confrontée à un conflit fondamental entre la précision, la fiabilité et le temps de calcul tout en trouvant une solution optimale globale à une problématique multi objectifs complexe pour laquelle la prise de décision et l'évaluation des risques sont compliquées.

Le stockage d'énergie par pompage et turbinage hydraulique est amené à continuer son développement au niveau international, en lien avec la poursuite du développement des énergies solaires et éoliennes. Il représente en effet la moins chère des solutions de stockage d'énergie électriques et bénéficie d'un très bon rendement énergétique. Pour apporter aux réseaux la flexibilité dont ont besoin les systèmes électriques, le stockage d'énergie est en concurrence avec les moyens de production de pointe produisant des gaz à effet de serre et des gaz dont l'impact négatif sur la santé n'est plus à démontrer. La poursuite du développement du stockage d'énergie passe par la valorisation économique des nombreux services qu'ils rendent aux systèmes électriques :

- report des heures creuses vers les heures pleines et complément des énergies intermittentes, qui sont les motivations premières pour développer le stockage ;
- réglage de la fréquence et de la tension sur le réseau ;
- disponibilité d'une énergie en secours à des problèmes réseau, etc.

Il ressort principalement de l'étude bibliographique qui vient d'être réalisée que :

- l'utilisation de systèmes PV-STEP, Eolien-STEP, ou PV-Eolien-STEP permet de maximiser l'utilisation des EnR et de réduire l'excès d'énergie produit ne pouvant pas être envoyé sur le réseau électrique en vertu des contraintes de sécurité pour l'équilibre production/consommation; ainsi les sources d'énergie renouvelables intermittentes peuvent être utilisées de manière optimale.
- un grand nombre d'études ont montré que l'énergie éolienne et les STEP intégrés sur les réseaux électriques sont les technologies les plus économiquement et techniquement compétitives pour différentes zones géographiques, en particulier dans les zones isolées et les zones avec une autonomie électrique. Parmi toutes les technologies de stockage existantes, la STEP est la plus appropriée pour les petits réseaux insulaires.

- les systèmes de STEP utilisant l'eau de mer ne sont pas opérationnelles, il existe actuellement une seule centrale de ce type opérationnelle au Japon) ; seuls quelques projets sont actuellement au stade de l'étude à travers le Monde ;
- les STEP couplées à des centrales photovoltaïques sont peu nombreuses et très souvent de petite échelle. Dans la littérature, on trouve quelques études de modélisation du couplage PV avec les systèmes de pompage hydraulique.
- plusieurs études traitent de la pénétration accrue de l'énergie éolienne dans les réseaux électriques au niveau mondial et des contraintes que cela impose au gestionnaire du réseau ; ces études montrent l'intérêt primordial d'utiliser des STEP pour résoudre même partiellement le problème de sécurité induit par l'utilisation de productions intermittentes et aléatoires ;
- les techniques d'optimisation telles que celles utilisées dans la littérature, peuvent être utilisées avec efficacité pour trouver une solution optimale globale aux problèmes de calcul complexes pour l'exploitation optimale des STEP.
- de très nombreuses publications traitent de l'application de ces systèmes EnR-STEP aux cas particuliers des réseaux insulaires

Les quelques points à prendre en compte dans la suite de ce travail et qui permettront d'une part, de montrer l'intérêt de nos travaux et d'autre part, de les distinguer de ceux préalablement réalisés et d'apporter une plus-value scientifique sont:

Pour ce qui est de l'intérêt de l'étude :

- il a été montré dans cette étude bibliographique, même non exhaustive, que l'intégration de STEP dans les système de production et distribution d'électricité permettait de lisser les productions intermittentes des EnR et d'atteindre des taux d'intégration des fermes éoliennes et PV plus élevés et ce, en particulier dans les réseaux insulaires très souvent non interconnectés (beaucoup de cas traités en Grèce) ; nous utiliserons dans ce travail des données de consommation du système énergétique insulaire Corse ;
- il sera également envisagé que l'utilisation de la STEP permettent l'écrêtage des pointes de consommation en remplacement des turbines à combustion dont le coût de production du kWh est très élevé ;

Pour ce qui est des originalités de nos travaux par rapport à ceux préalablement réalisés et retranscrits dans la littérature :

- les études relatives au couplage d'une STEP avec à la fois des systèmes éoliens et PV ne sont pas nombreuses et de plus, lorsqu'elles existent, le rôle de chaque source renouvelable n'est pas réellement étudié ; *nous étudierons l'intégration d'une STEP dans un contexte insulaire avec couplage à la fois avec des systèmes PV et éolien ; qui plus est, quelques autres moyens de production seront pris en compte tels que les câbles permettant l'apport d'électricité du continent italien et de Sardaigne et les centrales thermiques au fuel. Dans nos travaux, nous tenterons de nous approcher le plus possible des conditions réelles de production en Corse.*
- dans la littérature, la stratégie de fonctionnement de la STEP est souvent unique ; plusieurs stratégies de fonctionnement du système PV-Eolien-STEP seront envisagées et décrites dans les paragraphes ultérieurs ;

- dans la littérature, les calculs d'optimisation sont très souvent basés sur des valeurs moyennes de consommation et de production : *dans notre étude, les simulations de fonctionnement des moyens de production et de stockages seront établies et réalisées sur la base de données horaires de consommation, d'irradiation solaire et de vent (et de température ambiante intervenant sur le rendement de conversion PV)*;
- dans la littérature les rendements sont toujours considérés comme constants or en réalité ils ne le sont jamais, la forte variabilité des productions éoliennes et PV implique que les puissances produites et envoyées au réseau ou aux pompes de relevage ne sont pas constantes; les rendements des pompes, des turbines, des onduleurs raccordés aux champs PV dépendent des puissances entrantes ou sortante de manière importante; *dans notre étude, les rendements des pompes réversibles, modules PV et éolienne dépendront des charges, les hypothèses utilisées seront donc beaucoup plus réalistes*;
- dans la littérature, le système de pompage-turbinage se compose le plus souvent d'une seule machine qui présentera un mauvais rendement lorsqu'elle travaillera en faible charge; dans notre étude, nous envisagerons l'utilisation de 4 groupes machines en parallèle dont le démarrage, l'arrêt et le régime de fonctionnement dépendront des conditions de production et de consommation chaque heure; cela permettra d'augmenter les performances de la STEP.

Nous essayerons, tant que faire se peut, de nous rapprocher le plus possible des conditions réelles de fonctionnement du système de production électrique étudié afin de présenter des résultats proches de ceux auxquels nous pourrions nous attendre dans les conditions réelles de fonctionnement.

Chapitre 2

Modélisation du système hybride éolien/photovoltaïque/STEP

Optimisation du fonctionnement du groupe Pompe-Turbine

2.1. Introduction

Développer les énergies renouvelables est devenue l'une des tâches les plus importantes dans le domaine de la science et de l'ingénierie moderne. L'énergie produite par des sources renouvelables, comme l'énergie solaire, éolienne, hydraulique et biomasse, est de plus en plus exploitée pour répondre aux besoins énergétiques grandissant de la planète, pallier l'épuisement des réserves en combustibles fossiles et diminuer les impacts environnementaux liés à l'utilisation des énergies « carbone ». Les EnR sont donc considérées comme des solutions possibles pour faire face au dilemme énergétique grave et aux problèmes environnementaux que subissent à la fois les pays « développés » et en « voie de développement ».

Parmi les sources renouvelables d'énergie, l'énergie solaire est considérée comme le candidat le plus prometteur et devrait être le fondement d'une économie de l'énergie durable, les systèmes solaires photovoltaïques devraient avoir un avenir plus prometteur que pour les autres systèmes de production d'électricité par EnR parce qu'ils produisent en silence avec peu de besoins en maintenance, sans pollution directe et sans épuisement des ressources ; ainsi l'énergie solaire PV se développe plus rapidement que toute autre forme de technologies renouvelables et est bien adaptée à une production d'électricité à grande échelle.

L'énergie éolienne, technologie plus mature, a été l'objet d'un développement important ; à ce jour, les puissances nominales des machines disponibles sur le marché ont souvent atteint 3 à 5 MW. Si le soleil est « partout » présent, le vent, quant à lui, peut varier de manière importante sur des distances courtes, rendant plus difficile la recherche des sites d'implantation et demandant donc des études préalables à l'implantation plus longues et plus couteuses. Un bon point pour l'éolien par rapport au solaire est la possibilité de produire également pendant la nuit.

La nature complémentaire des ressources solaires et éoliennes a été examinée dès 1981 par Aspliden (1981) et plus récemment dans des travaux sur les systèmes hybrides éolien/solaire (Katti et Khedkar, 2007; Reichling et Kulacki, 2008; Mahmoudi *et al*, 2008; Gilau et Small, 2008, Stoyanov *et al*, 2015).

Le caractère aléatoire et imprévisible des sources d'énergie éolienne et solaire rend leur utilisation complexe et impose que nous nous intéressions au potentiel énergétique que chacune de ces sources peut nous apporter. Comme l'a précisé Ozdamar *et al* (2005), le plus grand problème d'utiliser séparément les deux sources renouvelables vient du fait qu'un système solaire seul ne peut pas fournir une énergie de manière continue à cause de sa faible disponibilité en hiver et de son absence nocturne, de même un système éolien seul ne peut satisfaire une charge constante du fait de sa forte variabilité. Ainsi, pour atteindre une plus grande disponibilité nécessaire à certaines applications il faut sur-dimensionner les générateurs induisant ainsi des coûts de production parfois prohibitifs.

L'utilisation d'un système hybride, tant en alimentation autonome qu'en connecté réseau, permet de remédier en partie à ce problème mais complique la gestion de l'énergie et le dimensionnement du système est rendu plus complexe que pour un système utilisant une source seule car un plus grand nombre de paramètres et de variables doivent être prises en compte. Enfin, ce type d'optimisation doit être réalisé sur une période de temps suffisamment longue pour qu'elle puisse être statistiquement valable et doit inclure des objectifs économiques afin de réaliser un compromis idéal entre performances et coût.

De nombreux logiciels ont été développés pour simuler le comportement des systèmes PV ou éoliens, pour optimiser leur production ou dimensionner les différents organes qui les

constituent. Beaucoup de ces logiciels sont spécialisés dans l'une ou l'autre de ces deux énergies :

Pour le photovoltaïque : les technologies de modules photovoltaïques ont beaucoup évolué et les outils pour simuler leur fonctionnement aussi ;

- les logiciels de simulation les plus connus sont : TRNSYS, INSEL, HOMER, PV-Design Pro ;
- ceux pour l'évaluation des coûts et des différentes données économiques sont SOLinvest, RETScreen ;
- pour l'analyse et la planification des systèmes, on trouve PV F-Chart, Laplace System, PVSOL, PVcad, PVSYST, PV Professionnal, Kerychip, Tetti FV;
- certains d'entre eux sont destinés à l'industrie comme APOS Photovoltaic Statlab, PV Cost Simulation Tool ;
- pour le contrôle des systèmes installés, il y a par exemple Meteocontrol, SPYCE et pour l'évaluation des sites : ECOTECT, Shadow Analyzer, Shadows, GOSOL, METEONORM, Horizon, Sombrero) ;
- il existe également des outils disponibles en ligne, tels que Solar design tool, PV Potential Estimation Utility, Logiciel CalSol, Panel Shading.

Pour l'éolien : comme pour le solaire photovoltaïque, il existe maintenant un bon nombre de logiciels :

- pour l'analyse des données de gisement éolien comme Windographer ;
- pour la conception et le c design d'éolienne : Focus 6 et GH Bladed ;
- ou encore pour l'évaluation de sites comme windNavigator ;
- pour l'optimisation des systèmes : HOMER ;
- pour le calcul des coûts et d'autres données économiques : RETScreen ; pour la conception et la planification de projets éoliens dans leur ensemble ;
- WindPro. pour l'analyse de fermes éoliennes comme WindFarm, OpenWind, GH WindFarmer et WindSim.

Dans ce chapitre, après avoir donné quelques informations succinctes sur les systèmes éoliens et photovoltaïques, nous présenterons les modèles utilisés dans ce travail pour décrire le comportement des générateurs photovoltaïques et éoliens

2.2. Quelques informations générales sur les systèmes photovoltaïques

L'énergie solaire est reconnue comme l'une des sources les plus prometteuses d'énergie renouvelable. Le photovoltaïque (PV), est actuellement reconnue comme le moyen le plus important pour convertir l'énergie solaire en électricité, du fait de son impact neutre sur l'environnement et de sa disponibilité partout dans le monde. Il est bien connu que la majeure partie du rayonnement solaire absorbée par un module PV est convertie en électricité mais contribue également à augmenter la température du module, réduisant ainsi le rendement électrique (du fait de l'augmentation du gap des semi-conducteurs). Avec la croissance rapide des applications de l'énergie solaire photovoltaïque, une meilleure compréhension des performances opérationnelles PV est devenue un sujet essentiel de la recherche.

Historiquement, l'Allemagne, les Etats-Unis et le Japon sont les 3 pays pionniers pour le développement de l'énergie photovoltaïque. Jusqu'en 2007, ils restent d'ailleurs les trois premières puissances mondiales en cumulant à eux trois, 72% de la puissance installée. Le marché photovoltaïque européen est devenu le premier marché mondial en 2004, entraîné par l'Allemagne. Bien que la puissance raccordée au réseau cumulée européenne continue d'être

la plus importante, son marché annuel est en décroissance, depuis 2012. En 2015, la Chine et le Japon ont raccordé plus de puissance photovoltaïque que l'Europe toute entière. En 2015, la Chine prend la première place en terme de puissance photovoltaïque raccordée avec près de 43 GW, reléguant l'Allemagne à la deuxième place avec 40 GW (SolarPower Europe, 2016) (Figures 2.1 et 2.2). La puissance photovoltaïque raccordée dans le monde a augmenté de 25% par rapport à 2014, atteignant près de 50 GW.

Figure 2.1. Evolution de la capacité installée par an de systèmes PV dans le monde (2000-2014) (SolarPower Europe, 2016)

Figure 2.2. Evolution de la capacité cumulée de photovoltaïque dans le Monde de 2000 à 2014 (SolarPower Europe, 2016).

L'Europe représente 42 % de la puissance photovoltaïque au niveau mondial avec presque 100 GW raccordée sur son réseau. Cette part ne cesse de décroître, puisqu'en 2014, l'Europe avait encore 50% de la puissance totale raccordée ; la répartition des puissances PV installées en Europe est présentée sur la Figure 2.3.

En France, après une belle embellie du marché PV, on a noté une baisse des puissances installées après 2012 due à des modifications des tarifs de rachat du kWh photovoltaïque (Figure 2.4). Cette variation incessante des coûts de rachat du kWh PV rend les investisseurs frileux.

Figure 2.3. Puissance photovoltaïque connectée et cumulée dans l'Union européenne en 2015 (en MWc) (EuroObserver, 2016a)

Figure 2.4. Evolution de la puissance solaire raccordée par an et puissance cumulée (RTE, 2015)

L'estimation de la puissance de sortie du module PV dans des conditions météorologiques réelles est d'une grande importance pour les concepteurs de systèmes et la sélection des modules PV les plus adaptés. De même, il est essentiel pour les ingénieurs d'évaluer les performances opérationnelles des systèmes PV. Par conséquent, disposer d'un modèle de production solaire précis et fiable est d'une importance cruciale (Brano, 2012). Au cours des dernières années, un nombre important de travaux a été mené pour développer spécifiquement des modèles de simulation pour les systèmes photovoltaïques. Cependant, la faible précision et la complexité de ces modèles ne sont pas encore suffisants pour une application pratique et nécessite une étude approfondie afin de développer un modèle de simulation du rendement photovoltaïque se composent de plusieurs composants : les modules PV composés de plusieurs cellules, des connexions mécaniques et électriques ainsi que des moyens de régulation et/ou de transformation de puissance électrique. Ces systèmes sont caractérisés par leur puissance crête exprimée en kilowatts crête (kWc) qui est la puissance électrique que

fournirait le système dans des conditions normalisées d'ensoleillement de 1000 W/m², sous une température ambiante de 25°C et une vitesse de vent de 1 m/s.

L'unité de base d'un système photovoltaïque est la cellule photovoltaïque. Des dizaines de cellules photovoltaïques sont reliés entre elle en série afin d'atteindre la tension de circuit ouvert désirée. Chaque groupe en série est ensuite généralement connecté en série ou parallèle puis encapsulé pour produire un module photovoltaïque. Les modules sont reliés le plus souvent en série pour augmenter la tension du système (lors d'une connexion réseau, diminuant ainsi le courant et améliorant les performances des onduleurs connectés). Un générateur photovoltaïque est alors constitué d'un certain nombre de modules. Dans le cas d'un système connecté réseau (sans stockage), le champ PV est alors relié à un onduleur (convertisseur électrique DC/AC) qui transforme le courant continu produit par le générateur photovoltaïque en courant alternatif ; l'optimisation du couplage PV/onduleur est également un aspect important (Notton *et al*, 2010).

Différentes configurations et types de systèmes photovoltaïques existent:

- les systèmes photovoltaïques connectés au réseau : un système PV connecté réseau est relié à un grand réseau indépendant qui, dans la plupart des cas est le réseau public d'électricité ; il produit alors directement la puissance électrique qu'il envoie sur le réseau électrique. La taille de ces systèmes est variable de quelques kWc pour le résidentiel jusque plusieurs dizaines de GWc pour les centrales solaires. Ce sont ces systèmes qui seront introduits dans le système de production d'électricité que nous étudierons dans ce travail. Ces systèmes fonctionnent le plus souvent au fil du soleil c'est-à-dire qu'ils ne disposent pas de stockage et ne produise qu'en présence de soleil ;
- les systèmes photovoltaïques non connectés au réseau dit systèmes autonomes (Off-grid) qui doivent pouvoir produire 24h/24 et 7 jours/7 et qui nécessitent donc l'utilisation d'un moyen de stockage d'énergie, le plus souvent sous forme de batteries électrochimiques.
- les systèmes PV hydrides : une ou plusieurs autres sources d'énergies sont couplées au système photovoltaïque lui-même; ces sources peuvent être renouvelables comme l'éolien ou la biomasse, voire la micro hydraulique, soit fossiles comme les groupes électrogènes.

Les systèmes photovoltaïques connectés au réseau (Figure 2.5), représentent la quasi-totalité des systèmes PV installés dans le Monde. Les capteurs PV sont installés sur un ouvrage neuf ou existant ou sur une surface au sol. Ces champs PV sont destinés à être physiquement raccordés au réseau de distribution pour le soutirage (consommation d'électricité du réseau) et/ou pour l'injection de la production photovoltaïque. L'énergie ainsi produite est:

- soit intégralement vendue au réseau ;
- soit partiellement injectée au réseau ;
- soit utilisée intégralement en autoconsommation, ce qui permet de diminuer l'énergie appelée du réseau.

Figure 2.5. Schéma d'une installation photovoltaïque connectée au réseau.

Deux types de systèmes photovoltaïques non connectés au réseau existent : les systèmes dits «Stand-alone», (SAPV system: Stand-Alone PhotoVoltaic system) ou autonome et le système photovoltaïque hybride. Dans la majeure partie des cas, le mode de production d'appui est constitué d'un ou plusieurs groupes électrogènes diesels. Les systèmes photovoltaïques non connectés au réseau sont principalement utilisés dans les zones où le réseau électrique est très peu dense en raison du coût de raccordement prohibitif. La part du marché photovoltaïque Off-grid est actuellement faible.

Du fait de la dé-corrélation entre production photovoltaïque et alimentation des charges du consommateur, un système de stockage est utilisé en tampon, celui-ci étant rechargé en cas de surplus de production et déchargé en cas de surconsommation. Un régulateur de charge protège le stockage d'une surcharge ou d'une décharge trop profonde et préjudiciable à la durée de vie du stockage. Un schéma d'un système photovoltaïque autonome est représenté sur la Figure 2.6.

Figure 2.6. Système photovoltaïque autonome

Dans les systèmes photovoltaïques autonomes hybrides, un second producteur d'énergie (le plus souvent un Groupe Électrogène) est utilisé pour pallier les insuffisances de la production photovoltaïque. L'idée étant de faire appel à l'énergie de ce producteur lorsque le système n'est plus en mesure de subvenir aux besoins du consommateur et/ou que l'état de charge de l'accumulateur est trop faible.

L'avantage de ce type de système est que, théoriquement, le consommateur ne se trouve jamais en situation d'être délesté, le groupe électrogène assurant la fourniture d'énergie lorsque la production PV est insuffisante (sauf dans le cas où le réservoir du groupe électrogène est vide). Les coûts d'investissement des panneaux photovoltaïques et du système de stockage peuvent être minimisés ; par contre, les coûts de fonctionnement principalement liés au prix du combustible du groupe électrogène sont plus importants que pour un système autonome non hybride.

Dans notre étude, nous allons utiliser un système hybride Photovoltaïque/Éolien, système dans lesquels la complémentarité de la production d'énergie d'origine photovoltaïque et éolienne est recherchée et permet notamment de réduire le coût global, en particulier les besoins en stockage. La Figure 2.7 représente une architecture possible d'un système photovoltaïque autonome hybride.

En prenant en considération le comportement stochastique de vent et du rayonnement solaire, et l'incohérence possible entre la variabilité de la demande d'électricité et la production d'énergie éolienne et photovoltaïque, les systèmes de stockage d'énergie (autonomes networks) sont une solution nécessaire et efficace. Le système d'énergie renouvelable hybride à long terme (HRES) est utilisé pour décrire tout système énergétique avec plus d'un type de générateur normalement un générateur classique alimenté par le diesel, et une source d'énergie renouvelable telles que PV, éolienne et PV/éolienne.

Figure 2.7. Exemple de système photovoltaïque hybride

2.3. Modélisation des systèmes photovoltaïques

Les centrales ou fermes photovoltaïques dont nous simulerons le fonctionnement au cours de notre étude sont connectés au réseau de distribution. Comme nous l'avons vu précédemment, un tel système se compose principalement d'un champ de modules PV couplé à un ou plusieurs onduleurs lui-même ou eux-mêmes connectés au réseau électrique. Nous allons passer en revue successivement la modélisation du champ de photopiles, puis celle de l'onduleur et enfin nous présenterons l'optimisation du couplage entre ces deux sous-systèmes qui a fait l'objet de travaux préalables réalisé par L. Stoyanov (2011) au sein du même laboratoire de recherches dans le cadre de travaux de doctorat.

2.3.1. Modélisation du champ photovoltaïque

Dans la littérature, on trouve deux types de modèles pour décrire le comportement des modules photovoltaïques : les modèles électriques et énergétiques. Le modèle électrique est appelé modèle équivalent à une diode (Figure 2.8) ou deux diodes (plus complexe). Dans cette approche, le courant fourni et la tension aux bornes du module sont calculés à partir de

l'éclairement solaire incidente, de la température ambiante et parfois de la vitesse du vent (Rosell et Ibarñez, 2006, Hamidat et Benyoucef, 2008; Ai *et al*, 2003; Nfah *et al*, 2007). Il peut être appliqué dans des études de processus de courte durée, lorsqu'il est nécessaire de connaître les grandeurs électriques ou de calculer la puissance de sortie du système photovoltaïque. Ces modèles permettent de connaître en fonction des conditions météorologiques la caractéristique courant-tension d'une cellule PV et d'un module PV (connexion en série et parallèle de cellules PV) (Figure 2.9). Ces caractéristiques courant-tension varient en fonction de la température de cellule et de l'éclairement solaire comme il est possible de le voir sur la Figure 2.9.

Figure 2.8. Schéma équivalent une diode d'un module photovoltaïque.

Figure 2.9. Caractéristiques Courant-Tension d'un module photovoltaïque Photowatt PWX500 de 50 Wc – Influence de la température et de l'éclairement solaire.

Le courant de court-circuit (Icc) croît proportionnellement avec l'éclairement, alors que la tension à vide (Vco) varie très peu (environ 0,5 V). La température a une influence considérable sur le comportement de la cellule et donc sur son rendement. Cette influence se traduit principalement par une diminution de la tension générée (et une très légère augmentation du courant). Suivant les modèles, ce comportement induit, par degré, une perte de 0.5 % du rendement par rapport au rendement maximum de la cellule.

Les modèles énergétiques utilisent la notion de rendement de conversion. Ces modèles ne peuvent être utilisés que pour des études énergétiques de l'installation photovoltaïque, parce qu'ils permettent de déterminer la puissance de sortie mais pas la tension et le courant individuellement (Perlman *et al*, 2005; Sukamongkol *et al*, 2002, Tina *et al*, 2005). Certains

auteurs simplifient les calculs en utilisant une valeur fixe du rendement (Shaahid et Elhadidy, 2003).

Quel que soit le modèle choisi, il doit tenir compte de l'influence de l'éclairement solaire et de la température ambiante. Cette influence est observée par différents auteurs (Mohring *et al*, 2004; Armani *et al*, 2007; Smiley *et al*, 2000; Ramsome, 2007; Bucher, 1997).

Notre objectif n'étant pas de connaître les grandeurs électriques de notre système d'une part, et d'autre part, étant donnée la complexité des modèles électriques tant par leur formulation implicite que par la détermination de nombreuses grandeurs caractéristiques, nous utiliserons dans la suite de ce travail un modèle énergétique que nous allons maintenant décrire.

2.3.1.1. Quelques modèles énergétiques de comportement de modules photovoltaïques

Le modèle le plus connu de comportement du rendement d'un module photovoltaïque est :

$$\eta_{pv} = \eta_{ref} \left[1 - \beta' \left(T_{cell} - T_{cell,ref} \right) + \gamma Log \left(\frac{G_{\beta}}{G_{\beta,ref}} \right) \right]$$
(2.1)

où T_{cell} est la température de cellule, η_{ref} est le rendement du module dans les conditions standards (éclairement solaire sur le plan du module $G_{\beta,ref} = 1000 \text{ W/m}^2$ et température des cellules $T_{cell,ref}=25 \text{ °C}$) et γ et β 'sont respectivement les coefficients de l'éclairement solaire et de la température. Les paramètres pour les conditions standards ($T_{cell,ref}$ et η_{ref}) et les coefficients γ et β 'sont fournis par les producteurs de modules PV. Certain auteurs (Evans, 1981) utilisent $\beta'=0.0048 \text{ °C}^{-1}$ et $\gamma=0.12$ pour les modules en silicium monocristallin. Le plus souvent dans l'équation (2.1) on prend $\gamma=0$ (Evans et Florschuetz, 1977). D'autre auteurs (Hegazy, 2000; Bergene et Lovik, 1995) utilisent pour γ et β' les valeurs respectives de 0 et 0.004 °C⁻¹.

La température des cellules est calculée le plus fréquemment en utilisant la notion de NOCT (Normal Operating Cell Temperature) (Nolay, 1987) donnée par les producteurs des modules photovoltaïques et définie par l'équation (2.2) :

$$T_{cell} = T_a + \left(NOCT - 20^{\circ}C\right) \left(\frac{G_{\beta}}{800}\right)$$
(2.2)

Cette méthode donne des résultats satisfaisants sauf dans le cas de modules intégrés dans les toits de bâtiments. La NOCT est définie dans les conditions suivantes : vitesse de vent v=1 m/s, température ambiante $T_a = 20^{\circ}$. Cet éclairement solaire $G_{\beta} = 800$ W/m² (ASTM, 1998; Myers *et al*, 2002).

Le modèle de Paatero et Lund (2007) peut être également utilisé (2.3) :

$$\eta_{pv} = \eta_{ref} \left[1 - \alpha \left(\frac{G_{\beta}}{18} + T_a - 20 \right) \right]$$
(2.3)

Où $\alpha = 0,0042$ est le coefficient de température pour la correction de puissance.

Les modèles, exprimés par les équations (2.1) et (2.3) ne peuvent être utilisés que pour des modules en silicium cristallin (mono et poly) ce qui limite leur application, car pour des modules en silicium amorphe et à couche mince l'influence de la température sur le rendement est beaucoup plus faible. Dans le cas de silicium amorphe, l'influence est positive et négligeable, tandis que pour les modules à couche mince, elle est négative et négligeable.

Ces différences impliquent la recherche d'un modèle, qui reflète non seulement la dépendance du rendement avec la température et l'irradiation solaire, mais tient compte aussi du type de technologie utilisée. Un tel modèle a été développé de manière empirique par Durisch *et al* (2007) (2.4) :

$$\eta_{pv} = p_{Dur} \left[q \frac{G_{\beta}}{G_{\beta,ref}} + \left(\frac{G_{\beta}}{G_{\beta,ref}} \right)^{m_{Dur}} \right] \times \left[1 + r \frac{T_{cell}}{T_{cell,ref}} + s_{Dur} \frac{AM}{AM_0} + \left(\frac{AM}{AM_0} \right)^{u} \right]$$
(2.4)

où les conditions normales de l'éclairement solaire $G_{\beta,ref}$ et la température des cellules $T_{cell,ref}$ ont les mêmes valeurs que pour les autres modèles (1000 W/m²et 25 °C), AM est la masse relative d'air, définie par (2.5) (Kasten et Young, 1989) et dont la valeur en conditions normales est $AM_0=1,5$.

$$AM = \frac{1}{\cos \theta_Z + 0.50572 (96,07995 - \theta_Z)^{-1,6364}}$$
(2.5)

où l'angle zénithal θ_z est en degrés.

Les coefficients p_{Dur} , q, m_{Dur} , r, s_{Dur} et u sont déterminés pour 4 technologies de modules PV : mSi (Si monocristallin), pSi (Silicium polycristallin), aSi (Silicium amorphe) et CIS (Cuivre, Indium Selenium) ; les modules testés pour déterminer ces coefficients ont été m-Si (BP585F), p-Si (Kyocera LA361K51S), a-Si (UniSolarUPMUS-30) et Siemens (CISST40) (Durisch *et al*, 2007). La température de cellule est calculée par la formule de Ross (Durisch *et al*, 2007; Ross, 1976) (2.6) :

$$T_{cell} = T_a + h_R G_\beta \tag{2.6}$$

Le coefficient h_R dépend de la technologie. Les valeurs des différents coefficients sont présentées dans le Tableau 2.1. (Durisch *et al*, 2007).

Module	p_{Dur}	q	m_{Dur}	r	<i>S</i> _{Dur}	и	h_R
BP 585F m-Si	23,62	0,2983	0,1912	0,09307	0,9795	0,9865	0,028
LA361K51S p-Si	15,39	0,1770	0,0794	0,09736	0,8998	0,9324	0,026
UPM US-30 a-Si	36,02	0,7576	0,6601	0,02863	1,1432	1,0322	0,022
CIS ST40 CIS	18,55	0,3288	0,2612	0,10039	0,9678	0,9864	0,032

Tableau 2.1. Valeurs des coefficients dans le modèle de Durisch

Le calcul du rendement du module a pour objectif de déterminer la puissance maximale P_{mp} à la sortie du module en utilisant (2.7) :

$$P_{mp} = \eta_{pv} G_{\beta} A \tag{2.7}$$

oùA est la surface du module photovoltaïque en m².

Cette puissance peut être également déterminée à partir d'une expression directe ou en utilisant des équations pour la tension et le courant au point de puissance maximale (V_{mp} et I_{mp}) par l'équation (2.8) :

$$P_{mp} = I_{mp} \times V_{mp} \tag{2.8}$$

Le comportement de deux modèles est testé. Le premier est une expression directe pour la puissance en utilisant une formule empirique (Labbé, 2006) (2.9) :

$$P_{max} = \frac{G_{\beta}}{G_{\beta,ref}} \left[P_{mp,ref} + \gamma_0 \left(T_{cell} - T_{cell,ref} \right) \right]$$
(2.9)

Où γ_0 est le coefficient de température pour la puissance du module et $P_{mp,ref}$ est sa puissance nominale.

Le second modèle calcule le courant et la tension et utilise l'équation (2.8). Il a été développé par Borowy et Salameh (1994; 1996). Pour le courant, on utilise l'équation (2.10) :

$$I_{mp} = I_{sc,ref} \left\{ 1 - C_1 \left[exp\left(\frac{V_{mp,ref}}{C_2 V_{oc,ref}} \right) - 1 \right] \right\} + \Delta I$$
(2.10)

où $I_{sc,ref}$ est le courant nominal de court-circuit du module, $V_{mp,ref}$ est la tension nominale à puissance maximale et $V_{oc,ref}$ est la tension nominale en circuit ouvert. Les constantes C_1 et C_2 se calculent respectivement par les équations (2.11) et (2.12) :

$$C_{1} = \left(1 - \frac{I_{mp,ref}}{I_{sc,ref}}\right) exp\left(-\frac{V_{mp,ref}}{C_{2}V_{oc,ref}}\right)$$

$$(2.11)$$

$$C_{2} = \frac{\left(\frac{V_{mp,ref}}{V_{oc,ref}} - 1\right)}{ln\left(1 - \frac{I_{mp,ref}}{I_{sc,ref}}\right)}$$
(2.12)

Où *I_{mp,ref}*est le courant nominal à puissance maximale.

La variation du courant ΔI se détermine par l'équation (2.13) :

$$\Delta I = \alpha_0 \Delta T \frac{G_\beta}{G_{\beta,ref}} + \left(\frac{G_\beta}{G_{\beta,ref}} - 1\right) I_{sc,ref}$$
(2.13)

 $o\dot{u}\alpha_0$ est le coefficient de la température du courant du module et la variation de la température ΔT est calculée par l'équation (2.14) :

$$\Delta T = T_{cell} - T_{cell,ref} \tag{2.14}$$

La tension à puissance maximale est calculée par l'équation (2.15) :

$$V_{mp} = V_{mp,ref} \left[1 + 0.0539 \log_{10} \left(\frac{G_{\beta}}{G_{\beta,ref}} \right) \right] + \beta_0 \Delta T$$
(2.15)

Où β_0 est le coefficient de température de la tension du module.

Pour l'étude des régimes établis du comportement des systèmes photovoltaïques, il est nécessaire de choisir un de ces modèles. Cette sélection se fera après une comparaison avec des données expérimentales disponibles au laboratoire SPE.

2.3.1.2. Vérification expérimentale et comparaison des modèles

Un système photovoltaïque composé de 9 modules monocristallins de 85Wc BP-585F connectés à un onduleur Sunny Boy SMA 700 W qui ajuste automatiquement la charge afin

de travailler au point maximal de puissance (MPPT) est installé sur le site du laboratoire d'Ajaccio (Figure 2.10). Chaque minute, cinq données sont collectées : tension et courant du champ de modules PV, éclairement solaire sur la plan des modules, température des cellules PV et température ambiante. Comme le montre la Figure 2.11, le rendement expérimental du champ PV est reporté en fonction de l'éclairement solaire pour différentes températures ambiantes. Une diminution du rendement est observée pour les faibles éclairements (audessous d'environ 200 W/m²) et pour des éclairements élevés comme le prédit la littérature (Mohring *et al*, 2004; Armani *et al*, 2007; Smiley *et al*, 2000; Ramsome, 2007; Bucher, 1997). Ce phénomène de diminution de rendement doit être pris en compte par le modèle utilisé.

Figure 2.10. Banc de test de système PV (Laboratoire SPE, Université de Corse, Ajaccio)

Figure 2.11. Résultats expérimentaux pour le rendement de module BP 585F

La vérification expérimentale des modèles consiste à comparer les puissances calculées avec les puissances expérimentales. Les résultats expérimentaux sont comparés avec les valeurs calculées par les cinq modèles précédemment décrits. Les seules données utilisées sont l'éclairement solaire et la température. La température du module pour tous les modèles a été calculée par l'équation (2.2) utilisant la NOCT. On considère que les pertes de connexion entre les cellules dans les modules et des modules dans le champ sont de 5 %. Sur la Figure 2.12 sont représentés les résultats des cinq modèles et les données expérimentales pour deux jours particuliers – à ciel clair et partiellement nuageux. Dans le Tableau 2.2, sont reportées

les valeurs relatives et absolues des erreurs moyennes (EMR et EMA), ainsi que des erreurs quadratiques moyennes (EQMR et EQMA) pour les deux journées représentées sur la graphique, ainsi que ces mêmes erreurs calculées sur une année de données expérimentales. (Stoyanov, 2011). La définition de ces erreurs est donnée par les équations (2.16) à (2.19).

Figure 2.12. Comparaison des modèles avec des données expérimentales pour un jour à ciel clair et partiellement nuageux.

Pour quantifier la qualité d'un modèle, nous pouvons utiliser différents paramètres statistiques dites également erreurs. Ces paramètres peuvent être exprimés en valeur absolue, ils ont alors la même dimension que la variable utilisée ou en valeur relative en divisant cette valeur absolue par la valeur moyenne des grandeurs expérimentales. Dans ce travail, on a utilisé les erreurs suivantes :

• l'erreur moyenne (en anglais, Mean Bias Error) permet de savoir si un modèle surestime ou sous-estime la réalité expérimentale. L'erreur moyenne absolue EMA s'exprime par :

$$EMA = \frac{\sum_{i=1}^{N} \mathcal{Y}_{med,i} - \mathcal{Y}_{exp,i,i}}{N}$$
(2.16)

où y_{exp} est la valeur expérimentale et y_{mod} est la valeur modélisée. N est le nombre des valeurs.

• l'erreur moyenne relative EMR s'exprime par :

$$EMR = \frac{\sum_{l=1}^{N} (y_{mcd,l} - y_{exp,l})}{\frac{N}{y_{exp}}}$$
(2.17)

Où yexe est la valeur moyenne des données expérimentales.

• l'erreur quadratique moyenne (en anglais, Root Mean Square Error) permet de juger de la qualité du modèle. L'erreur quadratique moyenne absolue EQA est déterminée par :

$$EQMA = \frac{\sum_{i=1}^{N} y_{modei} - y_{segula}^{2}}{N}$$
(2.18)

• l'erreur quadratique moyenne relative EQMR s'exprime par :

$$EQME = \sqrt{\frac{\sum_{l=1}^{N} (y_{mod,l} - y_{exp,l})^2}{\frac{N y_{exp}}{2}}}$$
(2.19)

		EMR	FMΔ	FOMR	FOMA	Rang
		2/viix %	W	2000 %	W	Rang
sur deux jours		70		/0		
M. 1)1. 12E	Jour 1	-0,24	-0,81	3,29	11,97	2
Modele d Evans	Jour 2	-0,04	-0,12	4,27	13,11	2
Madèla da Dastara	Jour 1	4,53	15,45	6,24	22,71	4
Modele de Paalero	Jour 2	4,03	12,37	5,83	17,90	4
Madèla da Duriash	Jour 1	0,53	1,81	3,03	11,01	1
Modele de Durisch	Jour 2	0,07	0,22	4,22	12,96	1
Madèla da Parava	Jour 1	-6,86	-23,39	6,85	24,91	5
Widdele de Bolowy	Jour 2	-8,02	-23,63	9,40	28,87	5
Madèla da Labbé	Jour 1	1,08	3,69	4,46	16,23	3
	Jour 2	-0,16	-0,49	4,44	13,65	3
Sur un an de mesures						
Modèle d'Evans		0,12	0,43	8,65	29,74	2
Modèle de Paatero		4,60	15,81	10,03	34,47	4
Modèle de Durisch		0,63	2,18	8,62	29,63	1
Modèle de Borowy		-6,38	-21,93	11,13	38,25	5
Modèle de Labbé		1,11	3,83	9,14	31,40	3

 Tableau 2.2. Ecarts des modèles dans la comparaison avec les données expérimentales

Le choix du modèle est réalisé sur la base de la meilleure erreur quadratique moyenne parce qu'elle reflète réellement la précision du modèle. Les modèles de Durisch et d'Evans donnent des résultats similaires avec un léger avantage pour celui de Durisch. Le modèle de Durisch a l'avantage décisif de distinguer les quatre technologies de modules PV les plus répandues – le silicium mono et poly cristallin et amorphe et les modules CIS.

Nous utiliserons donc dans la suite de ces travaux le modèle de Durish pour simuler le comportement du champ photovoltaïque.

2.3.1.3. Influence de la température ambiante et de l'éclairement solaire

Sur la base du modèle de Durish, nous avons voulu observer l'influence de la température et de l'éclairement solaire. Sur la Figure 2.1313, on note que le rendement croît rapidement avec l'augmentation de l'éclairement solaire (valeurs faibles – à gauche des figures), puis diminue pour les valeurs importantes de l'éclairement. Ceci est dû à l'influence combinée de G_{β} , qui intervient à la fois dans l'équation sur la température de cellules (2.6) et dans l'équation pour le rendement (2.4). La variation du rendement est bien celle observée avec nos résultats expérimentaux obtenus à partir du banc d'essai à Ajaccio et aux études théoriques (Mohring *et al*, 2004; Armani *et al*, 2007; Smiley *et al*, 2000; Ramsome, 2007; Bucher, 1997). On peut observer également l'influence de la température ambiante. Son augmentation diminue le

rendement des modules photovoltaïques. La diminution varie selon la technologie, elle est importante pour toutes les technologies à l'exception de celle du silicium amorphe.

Figure 2.13. Variation du rendement des modules en fonction de l'éclairement solaire et de la température

Pour observer l'amplitude des variations du rendement, nous avons calculé le rendement moyen mensuel pour les 4 technologies de modules PV à partir de données météorologiques horaires expérimentales d'Ajaccio (Figure 2.14). Pour chaque mois sont représentées les valeurs de la température ambiante, de l'irradiation solaire et du rendement moyen pour chaque technologie. Les variations de rendement des modules produits pour le silicium monoet poly-cristallin sont quasi identiques et présentent un maximum en hiver lorsque les températures de l'air sont faibles et un minimum en été, lorsque les températures sont hautes. Ce comportement est dû à l'influence négative de la température sur le rendement. Pour le CIS, la variation de l'efficacité au cours des mois est plus faible. Les modules en silicium amorphe ont un comportement complètement différent des trois autres technologies parce que le rendement maximal est obtenu en été, alors qu'en hiver les valeurs sont plus faibles. De plus, l'écart entre les rendements maximum et minimum obtenus avec l'aSi est plus élevé (26%). Pour les autres technologies, cet écart est inférieur à dix pourcent – mSi – 6,3%, pSi – 9,2% et CIS – 5,54%. Ce comportement du rendement, calculé par le modèle de Durisch, correspond à la réalité car il est confirmé par les résultats obtenus à partir de données expérimentales de Loughborough au Royaume Uni par Williams et al (2004). Ils trouvèrent une augmentation du rendement des modules utilisant pSi de 10%, tandis que les calculs donnent une variation de 9,2%. Pour le silicium amorphe en Angleterre la différence observée est de 30%, et celle obtenue par les calculs est de 26%.

Figure 2.14. Rendement moyen mensuelle des modules PV selon la technologie PV pour Ajaccio.

2.3.2. Modélisation des onduleurs

L'onduleur convertit la puissance électrique continue (DC) en sortie du champ photovoltaïque, en une puissance alternative (AC) transmise au réseau électrique. Le rendement du convertisseur η_{ond} dépend de la puissance de sortie alternative P_{sort} . Ainsi, le rendement d'un onduleur est donné en fonction de la puissance réduite de sortie de la machine \mathbb{F}_{gort} . \mathbb{F}_{nom} , avec P_{nom} la puissance nominale de l'onduleur. Pour le convertisseur DC/AC, on connaît la puissance en courant continu d'entrée (qui est celle produite par les modules PV) et non la puissance de sortie. Par conséquent, il est nécessaire d'exprimer le rendement en fonction de la puissance d'entrée. Cela a été proposé par Schmid et Von Dincklage (1988) et Schmid et Schmidt (1991). Les pertes électriques réduites p_{perte} peuvent être exprimées avec une précision satisfaisante par une composante constante, indépendante de la charge, p_0 (%) et une autre dépendante de la charge. L'expression est présentée dans l'équation (2.20) :

$$p_{perte} = \frac{P_{perte}}{P_{nom}} = p_0 + k.p^2$$
(2.20)

où P_{perte} sont les pertes électriques, p_0 et k sont des coefficients calculés à partir des données fournies par le constructeur par les équations (2.21) et (2.22) :

$$p_0 = \frac{1}{99} \left(\frac{10}{\eta_{10}} - \frac{1}{\eta_{100}} - 9 \right)$$
(2.21)

$$k = \left(\frac{1}{\eta_{100}}\right) - p_0 - 1 \tag{2.22}$$

Où η_{10} et η_{100} sont les rendements à 10 et 100% de la puissance nominale et fournis par le constructeur. La puissance réduite *p* s'exprime par :

$$p = \frac{P_{sort}}{P_{nom}}$$
(2.23)

Où P_{sort} est la puissance en sortie de l'onduleur.

Les pertes électriques sont la différence entre la puissance continue d'entrée P_{in} et la puissance alternative en sortie:

$$P_{loss} = P_{ent} - P_{out} \tag{2.24}$$

En combinant l'équation (2.20) et (2.24) on obtient (2.25) :

$$\left(p_0 + kp^2\right)P_{nom} = P_{ent} - P_{sort}$$
(2.25)

La puissance d'entrée s'exprime aussi à partir de la puissance de sortie et du rendement:

$$P_{ent} = \frac{P_{sort}}{\eta_{ond}}$$
(2.26)

Ainsi après substitution de (2.26) dans (2.25) et en utilisant (2.23) on obtient (2.27) :

$$p_0 + kp^2 = \frac{p}{\eta_{ond}} - p \tag{2.27}$$

D'où on exprime le rendement de l'onduleur par:

$$\eta_{ond} = \frac{p}{p + p_0 + kp^2}$$
(2.28)

On a réalisé un inventaire non exhaustif des onduleurs disponibles sur le marché à partir de documentations techniques fournies par différents producteurs et par l'Agence Internationale de l'Energie (International Energy Agency - IEA) (Ishikawa, 2002).

Mondol *et al* (2006) utilisent trois types d'onduleurs appelés onduleurs à faible, moyen et haut rendement. De nos jours, des technologies de circuits électroniques sophistiquées sont utilisées et permettent de réduire les pertes de câblage, de conduction dans les dispositifs de commutation à semi-conducteurs et de commutation. Quelques onduleurs avaient de faibles rendements mais leur efficacité a bien été améliorée ces dernières années. Nous avons choisi d'utiliser dans la suite de notre travail un des trois onduleurs proposés par Mondol *et al* (2006) dont les caractéristiques sont :

$$\begin{array}{ll} \eta_{10} & 0,87 \\ \eta_{100} & 0,945 \\ p_0 & 0,0145 \\ k & 0,0437 \end{array}$$

Les courbes de rendement des 21 modèles commerciaux et le modèle d'onduleur choisi dans ce travail (en trait plein) sont présentés sur la Figure 2.15. On peut considérer que le modèle proposé représente bien la variation du rendement de l'onduleur en fonction de sa charge.

Figure 2.15. Modèle d'onduleur utilisé comparé à des onduleurs commerciaux.

2.3.3. Optimisation du couple Champ photovoltaïque + onduleur

La connaissance du rendement de l'onduleur est nécessaire à cause de son influence sur la productivité du système photovoltaïque (Burger et Ruther, 2005;2006). Le surdimensionnement et le sous-dimensionnement de l'onduleur par rapport à la puissance crête du champ photovoltaïque mèneront à une utilisation plus fréquente du convertisseur électronique à charge faible ou respectivement élevée, et donc sera plus favorables pour un type d'onduleur que pour un autre.

Notton *et al* (2010) ont déterminé pour différents sites, différentes inclinaisons de modules PV, différentes modèles d'onduleurs et pour les 4 technologies de modules PV (mSi, pSi, aSi et CIS) la taille optimale de l'onduleur quand celui-ci est connecté à un champ photovoltaïque de puissance et de technologie données. Le rapport Rs définie par l'équation (2.29) optimal, pour le modèle d'onduleur choisi dans cette étude, est :

- Rs= 1,14 pour mSi, pSi et CIS
- Rs = 1,04 pour aSi

$$R_s = \frac{P_{PV}}{P_{nom,onduleur}}$$
(2.29)

La puissance de l'onduleur est donc légèrement inférieure à celle du champ photovoltaïque ; dans la suite de cette étude, le système PV (couplage champ PV + onduleur) sera ainsi dimensionné.

Dans le cadre de notre travail, nous ne considérerons que des modules de type monocristallin mSi et considérerons alors le couplage optimal correspondant avec l'onduleur.

2.4. Les systèmes éoliens

2.4.1. Quelques informations générales sur les systèmes éoliens.

La formidable ascension du marché éolien chinois, qui a vu le raccordement d'au moins 30,5 GW, a propulsé le niveau mondial d'installation à 62,7 GW en 2015, soit 22 % de plus qu'en 2014 ! Les marchés américain et allemand ont également affiché de belles performances, le premier du fait du maintien de son crédit d'impôt, le second grâce au raccordement de

nombreuses fermes offshore en mer du Nord. La puissance éolienne mondiale s'établit désormais à 432,6 GW, soit une croissance du parc mondial de l'ordre de 17 %. L'évolution de la puissance installée de fermes éoliennes dans le monde est impressionnante (EurObserver, 2016b)

Figure 2.16. Puissance éolienne cumulée dans le monde depuis 1995 (en MW) (EurObserver, 2016b) La répartition par continent des 423 560 kW est présentée sur la Figure 2.17 (EurObserver, 2016b).

Figure 2.17. Répartition de la puissance éolienne mondiale fin 2015 (EurObserver, 2016b).

La répartition des puissances éoliennes installées en Europe est présentée sur la Figure 2.18.

Les différentes configurations de systèmes utilisant des éoliennes sont identiques à celles décrites dans le paragraphe 1 pour les systèmes PV; nous ne donnerons donc pas plus d'informations.

Dans ce travail, nous ne prendrons en compte que des éoliennes raccordées au réseau de distribution, très différentes des petites éoliennes utilisées dans les systèmes autonomes.

Figure 2.18. Répartition des puissances éoliennes installées en Europe (EurObserver, 2016b)

2.4.2. Modélisation des systèmes éoliens

Comme pour les modules photovoltaïques, il existe deux types de modèles décrivant le comportement d'une éolienne. Il est possible d'utiliser également la puissance mécanique sur l'arbre de la turbine éolienne déterminée à partir de la vitesse du vent v, de la surface balayée A par les pâles et par le coefficient de puissance C_p .

$$P_{mec} = \frac{1}{2}c_p A \rho_a v^3 \tag{2.30}$$

 ρ_a est la masse volumique de l'air.

Mais, pour l'objectif qui est le nôtre, calculer la puissance électrique produite en fonction de la vitesse du vent, il est souvent plus facile d'utiliser la courbe de puissance caractéristique. Cette courbe permet de connaître la puissance produite à partir de la vitesse du vent. Elle est spécifique pour chaque aérogénérateur. Il y a deux approches différentes pour la modélisation des éoliennes, à savoir l'application d'un modèle de courbe de puissance disponible dans la littérature d'une part ou l'utilisation de courbes réelles auxquelles on applique une méthode d'interpolation d'autre part. Dans la suite, nous présentons trois méthodes de modélisation de la courbe de puissance. Les paramètres caractéristiques de chaque courbe de puissance sont :

- *v_{démar}* vitesse d'enclenchement ;
- *v_{nominale}* vitesse pour laquelle la puissance nominale est obtenue ;
- *v_{coupure}* vitesse de déclenchement ;
- *P_{nominale}* puissance nominale.

Nous présentons ici divers modèles pour lesquels la puissance a été réduite c'est-à-dire divisée par la puissance nominale afin de rendre cette étude plus universelle puisque indépendante de la puissance de la machine. Il sera ainsi possible de modifier la puissance nominale de la machine sans changer son profil. Le choix d'un modèle approprié est très important pour la simulation de puissance de l'éolienne.

La Figure 2.19 montre les courbes de puissance de quelques éoliennes de grande puissance sur le marché. Toutes ces courbes ont été tracées en puissances réduites afin de les rendre adimensionnelles.

Figure 2.19. Quelques courbes de puissance réduites d'éoliennes de grande puissance sur le marché. On note qu'il y a trois intervalles de vitesses du vent :

$$v \le v_{demar}$$

$$v_{demar} < v \le v_{no \min ale}$$

$$v_{no \min ale} < v < v_{coupure}$$
(2.31)

Avant v_{demar} , aucune puissance électrique n'est produite, dans l'intervalle $v_{iemar} < v \leq v_{nominale}$, la puissance fournie par l'éolienne est fonction de la vitesse du vent (c'est dans cette intervalle que différents modèles existent), dans l'intervalle $v_{nominale} < v \leq v_{soupure}$, la puissance fournie est constante est égale à la puissance nominale de la machine, au-delà de $v_{coupure}$, la puissance électrique est nulle.

Différents modèles existent dans la littérature pour représenter la variation de la puissance électrique produite par l'éolienne dans la zone variable comprise entre la vitesse du vent de démarrage et celle de puissance nominale. Parmi eux, les plus couramment utilisés sont présentés ci-dessous.

Le modèle linéaire est le plus simple et suppose que la variation de la puissance entre v_{demar} et $v_{nominale}$ est linéaire. Ainsi la courbe de la puissance réduite est exprimée par trois équations (2.32) :

$$\begin{cases} p = 0 & v \le v_{demar} \\ p = a + bv & v_{demar} < v \le v_{no \min ale} \\ p = l & v_{no \min ale} < v < v_{coupure} \end{cases}$$
(2.32)

où les coefficients a et b s'obtiennent par (2.33) :

$$\begin{cases} a = \frac{-v_{demar}}{v_{no \min ale} - v_{demar}} \\ b = \frac{1}{v_{no \min ale} - v_{demar}} \end{cases}$$
(2.33)

Des études ont montré une surestimation de la productivité des générateurs éoliens (Powell, 1981), mais malgré cela ce modèle est souvent utilisé (Gabler et Luther, 1988).

Le modèle de Pallabazzer (Pallabazzer et Gabow, 1992; Pallabazzer, 1995) diffère du modèle linéaire par la forme non linéaire de la courbe entre la vitesse d'enclenchement et celle pour laquelle on obtient la puissance nominale. Dans cette partie, la puissance réduite s'exprime par (2.34) :

$$p = \left(\frac{v^2 - v_{demar}^2}{v_{no\,min\,ale}^2 - v_{demar}^2}\right) \tag{2.34}$$

Les courbes de puissance correspondantes aux deux modèles sont présentées sur la Figure 2.20 (Stoyanov, 2011). Nous avons tracé ces deux modèles (bleu pour le modèle linéaire et rouge pour celui de Pallabazzer) au milieu des courbes de puissance réelles qui ont été présentées sur la Figure 2.20.

Figure 2.20. Les deux modèles (linéaire et Pallabazzer) et les courbes de puissance réelles.

Nous retiendrons dans notre étude le modèle de Pallabazzer. On note que ce modèle a tendance à sous-estimer la puissance produite dans la zone où la puissance varie en fonction de la vitesse du vent.

Selon la puissance de l'éolienne choisie, la hauteur du moyeu varie. La puissance moyenne d'une éolienne dépasse aujourd'hui 2 MW, contre 0,5 MW en 2000. Nous ferons varier la puissance nominale de la ferme éolienne en considérant qu'elle est constituée de machine de

l'ordre de 2 MW. Cette taille de machine est donc aujourd'hui courante, envisager des puissances plus élevées est difficile car dans les territoires insulaires, il peut être difficile d'installer des éoliennes de tailles plus grandes.

La hauteur du moyeu d'une éolienne de 2 MW peut varier globalement entre 60 et 140 m selon les constructeurs et le potentiel éolien du site d'implantation. Il nous a semblé judicieux de choisir une hauteur moyenne de 90 mètres pour le moyeu.

Il reste donc à corriger les vitesses du vent ; celles-ci sont mesurées en général à une hauteur de 10 m et il convient de les transformer en vitesse du vent à la hauteur du moyeu.

La vitesse du vent augmente avec l'altitude par rapport au sol (Hladik, 1994). Les vitesses de vent à 10 m, v_{10} , sont converties en vitesses de vent à la hauteur de moyeu h, v_h , par la relation de Justus (1978) :

$$v_h = v_{10} \left(\frac{h}{10}\right)^{\alpha_J} \tag{2.8}$$

Où α_J est le coefficient de correction souvent considéré comme étant égal à 0,15. Sa valeur dépend de la nature du terrain. Les valeurs habituelles sont montrées dans Tableau 2.3.

Nature du terrain	$lpha_J$
Surface de l'eau	0,1
Plaine herbeuse	0,15
Cultures agricultures	0,2
Végétation avec peu d'arbres	0,2
Bois	0,25
Plusieurs bâtiments	0,25
Terrain accidenté, montagneux	0,25

Tableau 2.3. Valeurs du coefficient de correction

Nous considérerons dans ce travail une valeur du coefficient de correction de 0,15.

2.5. Introduction et généralités sur les STEP et groupes Pompe-Turbine

2.5.1. Petite histoire de l'énergie hydraulique et des STEP

Les premières machines transformant l'énergie hydraulique en énergie mécanique étaient les roues à eau qui furent utilisées jusqu'au siècle dernier. Il fallut attendre le XIX^{ème} siècle pour voir apparaître en 1827 la première turbine hydraulique, réalisée par Benoît Fourneyron, et installée à Pont-sur-Orgeon en Haute-Saône. Cette turbine développait une puissance de 6 chevaux et avait un rendement de 80 %. Les années suivantes virent apparaître de nombreux autres types de turbines qui prirent le nom de leur inventeur : Francis, Pelton, et Kaplan. (Perrin, 2013).

La technique de pompage-turbinage est une technologie éprouvée connue depuis la fin du XIX^{ème} siècle. Les turbines hydrauliques sont avant tout utilisées dans les centrales électriques pour la production d'énergie électrique. On utilise à cet effet l'énergie potentielle gravitationnelle de l'eau contenue dans les retenue de fleuves ou dans les barrages, appelée également énergie de pression ou énergie potentielle.

Utilisant cette technique, les Stations de Transfert d'Energie par Pompage (STEP) permettent d'éviter le gaspillage d'énergie pendant les heures creuses (nuit, week-end) et de pallier l'intermittence de la production électrique du secteur éolien et solaire. Parmi les solutions pour le stockage de très grandes capacités (de l'ordre du GWh), les systèmes par pompageturbinage hydraulique tiennent une des meilleures places grâce à leur simplicité technique, leur sûreté, leur propreté et à leurs avantages économiques. Le principe est d'accumuler de l'énergie sous forme d'énergie potentielle hydraulique entre un bassin en hauteur et un réservoir d'eau inférieur. L'eau du réservoir inférieur peut être ainsi pompée vers le bassin supérieur en période d'excès d'énergie et être ensuite turbinée vers le réservoir inférieur en période de demande d'énergie (Gabathuler *et al*, 2015). Pour contrôler encore plus finement les mouvements d'énergie et utiliser pleinement la capacité des lacs d'accumulation, il peut être intéressant de disposer d'une capacité de pompage permettant de stocker l'énergie électrique excédentaire sous forme d'énergie potentielle dans ces lacs.

Les premières STEP ont pris naissance au début du XX^{ème} siècle dans le contexte de systèmes électriques locaux, non interconnectés, souvent constitués d'une ville-centrale hydroélectrique. Il s'agissait de répondre aux pics de demande électrique des villes, en pompant la nuit pour restituer de l'énergie sur le réseau en heures de pointe. La première STEP pourrait avoir été celle de Ruppoldingen en Suisse, sur l'Aar, en 1902. La première STEP en Allemagne serait celle de Niederwartha, mise en service en 1929. La STEP des Lacs Blanc et Noir, dans les Vosges, a été construite en 1933-34, en liaison avec l'usine hydroélectrique de Kembs sur le Rhin, pour les besoins de la ville de Mulhouse ; sa mise en service a été retardée jusqu'en 1938 à cause d'un accident. Une seconde vague de développement des STEP se situe dans les années 1970-1990, en lien avec les constructions des grandes centrales de production d'électricité, nucléaires ou centrales à charbon, qu'il est plus intéressant de faire fonctionner le plus longtemps possible, comme toutes les installations ayant un coût d'investissement élevé. La STEP en est alors le complément. Les STEP de Ludington (États-Unis, 1976), Dinorwig (Royaume Uni, 1984), Guanzhou (Chine, 2000) ont été construites pour répondre à ce besoin. Une troisième vague de développement a commencé au début du XXIe siècle, la STEP répondant aux besoins de flexibilité des systèmes électriques, et le stockage d'énergie se trouvant susceptible de favoriser ou même rendre possible l'intégration des énergies renouvelables intermittentes (Tournery, 2016).

2.5.2. Les aspects économiques

L'équation économique est également une question délicate. En effet, le concurrent direct d'un projet de nouvelle STEP est celui d'un autre moyen de production flexible, turbine à combustion par exemple. Le coût de construction dépend beaucoup de l'ampleur des travaux de génie civil, surtout s'il faut construire des barrages ou des digues. Le coût d'investissement global se situe entre 0,5 et 2 millions d'euros par MW de puissance installée. Il est souvent plus économique d'augmenter la capacité d'une installation existante que de construire une nouvelle station. Les coûts de fonctionnement comprennent le coût de l'énergie utilisée pour le pompage, les coûts de maintenance et d'exploitation usuels, et les taxes, dont la taxe d'accès au réseau. Dans certains pays, le coût d'accès au réseau n'est appliqué que sur la différence entre l'énergie consommée par pompage et l'énergie produite par turbinage. En France, il est appliqué à chacune d'elles, ce qui désavantage cette technologie. La vente de l'électricité turbinée ne peut rapporter un bénéfice brut que si le rapport entre les prix de l'électricité heure creuse / heure pleine est inférieur au rendement global de la STEP. Les produits d'exploitation proviennent de la vente de l'électricité turbinée, mais aussi de la rémunération des différents services rendus au système électrique, qu'il est important de valoriser de facon adéquate (EDF R&D, 2013).
2.5.3. Caractérisation des STEP

Les paramètres qui caractérisent une STEP sont :

- l'énergie maximale stockée sous forme d'énergie potentielle qui varie de quelques GWh à plusieurs centaines de GWh ;
- la puissance installée en mode turbinage et en mode pompage, l'évolution allant vers des unités de forte puissance dépassant les 1000 MWe ;
- la constante de temps qui est le rapport de l'énergie maximale stockable à la puissance maximale en mode turbinage ;
- le volume de leurs réservoirs ;
- le rendement sur un cycle complet qui est le rapport entre l'énergie produite en turbinage et l'énergie consommée en pompage ;
- le degré de flexibilité qui est lié aux caractéristiques des pompes et turbines ;
- la capacité propre à chaque installation de fournir des services au système électrique pour permettre d'assurer la sécurité des réseaux: réglage de la fréquence, de la tension, adaptation de la puissance.

2.5.3.1. Les différents groupes de Pompage-Turbinage

Les turbines hydrauliques font partie des turbomachines. Elles convertissent l'énergie potentielle de l'eau en énergie mécanique. Pour ce faire, l'énergie potentielle gravitationnelle est tout d'abord convertie en énergie cinétique. L'eau en écoulement est accélérée à une vitesse la plus élevée possible à l'intérieur d'un distributeur ou d'une buse. L'impulsion du fluide est rendue exploitable comme force périphérique en le déviant dans une roue.

Trois types d'architecture de groupes de pompage-turbinage peuvent équiper ces nouvelles centrales :

- des groupes ternaires regroupant sur un même arbre mécanique une turbine, un moteur-générateur électrique et une pompe.
- des groupes réversibles regroupant une pompe-turbine réversible accouplée à un moteur-générateur.
- des groupes isogyres.

Les groupes ternaires: Les STEP de première génération étaient équipées de groupes ternaires à axe horizontal, puis l'augmentation des puissances, donc du poids des machines, a nécessité de passer à une disposition à axe vertical. Dans cette configuration la turbine est une Pelton obligatoirement calée au-dessus du niveau aval maximal, sauf à utiliser un dispositif permettant de maintenir l'écoulement libre sous la roue par contre-pression (Tournery, 2016). Quant à la pompe, les conditions de non cavitation nécessitent son enfoncement sous le niveau aval minimal ce qui conduit à une ligne d'arbre de grande hauteur nécessaire à l'empilement des trois machines, de la pivoterie, des paliers et du dispositif de couplage. L'avantage de cette architecture est de pouvoir concevoir chacune des deux machines, pompe et turbine, pour leur domaine propre de fonctionnement optimal.

L'alternateur-moteur tournant dans le même sens de rotation pour les deux modes de fonctionnement, la turbine permet le démarrage en mode pompe directement sans nécessiter une machine auxiliaire spécifique ou de procédures particulières pour diminuer le couple au démarrage. Sans contraintes lies au démarrage, il est possible de concevoir la pompe avec un nombre d'étages et des caractéristiques hydrauliques les mieux adaptées à son domaine pour un fonctionnement en sécurité.

L'architecture d'un groupe ternaire est a priori plus coûteuse que celle d'un groupe réversible, mais présente l'avantage de pouvoir concevoir chacune des deux machines hydrauliques, la pompe et la turbine, de manière optimale pour leurs domaines de fonctionnement respectifs et ainsi profiter des meilleurs rendements possible dans chacun des deux modes. La machine électrique tourne quant à elle toujours dans le même sens, aussi bien en mode générateur qu'en mode moteur, ce qui facilite la conception de son refroidissement. Par ailleurs, la turbine permet de démarrer directement en mode pompe sans nécessiter un système d'entraînement électrique spécifique ni une procédure de dénoyage/remplissage de la pompe. Ce dernier aspect est important, car il permet de concevoir la pompe avec le nombre d'étages nécessaires à une caractéristique hydraulique adaptée au domaine de fonctionnement tout en minimisant les effets de coups de bélier lors des déclenchements accidentels. En effet, la caractéristique hydraulique d'une pompe, c'est-à-dire la relation débit-vitesse de rotation et la relation couple- vitesse de rotation pour une chute déterminée, est définie par la vitesse spécifique.

Les groupes réversibles: Dans ce type d'architecture, la pompe et la turbine ne constituent qu'une seule machine réversible. La pompe turbine est équipée de roues de type Francis dont le tracé résulte d'un compromis acceptable entre les rendements optimum en pompe et en turbine. La majorité des installations actuellement en service sont des groupes non réglables avec moteur-alternateur synchrone. L'architecture d'un groupe de pompage turbinage réversible est nettement plus compacte que celle d'un groupe ternaire; elle implique une pompe pouvant fonctionner en turbine accouplée à un moteur générateur réversible. La simplicité du concept se heurte néanmoins au problème du démarrage du groupe en mode pompe: à la différence du groupe ternaire, il n'y a plus de turbine disponible pour soulager le moteur électrique qui doit donc fournir tout le couple de démarrage. Ceci implique un entraînement électrique dont le coût et la dimension dépendent de la puissance de démarrage requise par la pompe. En démarrant la pompe vanne fermée, la valeur de cette puissance peut être limitée à environ 50 % de la puissance maximale.

Les groupes isogyres: Synthèse des deux précédents, dans ce groupe, le rotor, unique, est divisé en deux parties, chacune de celles-ci étant spécialisée, l'une pour le pompage, l'autre pour le turbinage.

2.5.4. Les turbines hydrauliques

Différents types de systèmes hydrauliques existent et se distinguent par la variation du rendement pour diverses valeurs du débit. L'efficacité (ou rendement) de la conversion hydraulique/mécanique dépend du débit réduit et du type de turbine comme l'illustrent les Figure 2.21 (Hydro Power, 2006) et 2.22.

La turbine d'une installation hydroélectrique ne sera efficace que si l'énergie hydroélectrique lui parvient correctement. La puissance hydroélectrique à l'entrée de la turbine est dépendante des pertes de charges et vitesses de déplacement dans les organes de l'installation. Le choix de la turbine dépend du cas d'étude et prend en compte l'aspect économique et les coûts d'exploitation.

Figure 2.21. Variation du rendement en fonction du débit réduit - Comparatif du rendement pour plusieurs types de turbines.

Selon la combinaison du débit disponible et de la hauteur manométrique en amont de la turbine, la turbine la plus adéquate pour le site d'installation est choisie. La sélection s'effectue sur la base de zones d'applications préalablement connues pour chaque type de turbine. Les turbines Pelton et Francis sont bien connues car elles sont les plus souvent utilisées. De plus, elles couvrent une grande partie des zones d'applications que nous utiliserons dans le cadre de ce travail. Les turbines « Crossflow » (connue aussi sous le nom de Banki-Michel) et « Turgo » présentent des modifications par rapport aux turbines Pelton. Les turbines Kaplan, quant à elles, sont utilisées pour de faibles hauteurs manométriques et de grands débits. Les principales caractéristiques des turbines hydrauliques sont présentées dans le Tableau 2.4.

Types de	Hauteur de	Débit (m^{3}/s)	Rendement	Barrages	Puissance	Types
Turbine	chute (m)	(11178)	mecanique			fonctionnement
Pelton	200-2000	4-15	Jusqu'à 90% pour les petites turbines	réservoirs de haute montagne	jusqu'à 15 MW	Turbine à action
Crosflow	1-150	1-10	Jusqu'à 82% limitée	-	jusqu'à 2000 kW	
Francis	10-700	4-55	Jusqu'à 92% pour les petites turbines	centrales au fil de l'eau	jusqu'à 15 MW	Turbine à réaction
Kaplan	0-30	1-350	Jusqu'à 92% pour les petites turbines	centrales au fil de l'eau	Puissance jusqu'à 15 MW	Turbine à réaction

Tableau 2.4. Types des turbines hydrauliques (SHEMA, 2010)

Les hauteurs de chute citées dans le Tableau 2.4 sont valables pour des puissances élevées. Pour les faibles puissances, les hauteurs de chute peuvent être beaucoup plus petites. Les zones de fonctionnement des petites turbines sont présentées sur Figure. 2.22 (Stoyanov, 2011; Wasserkraft, 2006).

Figure 2.22. Zones d'application des différentes turbines (Stoyanov, 2011 ; Wasserkraft, 2006)

2.5.5. Générateur électrique

Quel qu'en soit le type, les groupes turbines-pompes sont raccordés au réseau électrique par une machine synchrone unique qui joue le rôle de moteur pour la fonction pompe et le rôle d'alternateur pour la fonction turbine.

La pompe nécessite une énergie mécanique en entrée. Cette énergie mécanique est fournie dans la plupart des cas par un moteur. Les deux types de moteurs disponibles sont les moteurs à courant continu et les moteurs asynchrones. Quelques avantages et inconvénients de chaque type de moteur sont donnés dans le Tableau 2.5. (Prensier et Daux, 2006)

	Moteur à courant continu	Moteur asynchrone		
Avantages	Facilité de régulation (variation de vitesse, couple,) Rendement de 90%	Fiabilité, nécessite peu d'entretien. rendement de 90%		
Inconvénients	Coût d'entretien : le système balai/collecteur est à changer	Difficulté et coût de régulation (nécessite la réalisation de commandes vectorielles)		

Tableau 2.5. Avantages et inconvénients des moteurs asynchrone et à courant continu.

Le meilleur compromis pour actionner une pompe immergée est le moteur asynchrone. Les sources d'énergie disponibles sur les sites d'extraction d'eau sont différentes. Ceci induit plusieurs modes de fonctionnement du moteur asynchrone. Il fonctionne sur une source de tension alternative en monophasé, diphasé ou en triphasé. Si la source d'énergie est continue, un onduleur est utilisé pour transformer le signal en alternatif.

Dans les centrales hydroélectriques, différents générateurs électriques qui convertissent l'énergie mécanique de la turbine hydraulique en électricité sont utilisés. Les générateurs synchrones à pôles saillants et asynchrones sont les plus utilisés. Les premières machines s'utilisent dans les grandes centrales hydroélectriques (PHE), tandis que les machines asynchrones s'appliquent pour des systèmes de petites et moyennes puissances (Enersol, 2004). Compte tenu de l'objectif de la thèse, à savoir l'étude de différentes structures de systèmes hybrides, il est prévu que les puissances ne soient pas trop élevées. Par conséquent, nous ne présenterons que la modélisation d'un générateur asynchrone pour des études en régime établi.

A titre d'illustration, la Figure 2.23 montre une courbe représentative de la variation du rendement réduit du générateur asynchrone par rapport à la puissance d'entrée réduite (Stoyanov, 2011). Elle a été obtenue à partir des caractéristiques de fonctionnement d'un moteur asynchrone en admettant qu'en régime générateur le rapport entre la puissance d'entrée et celle de sortie reste identique. Pour une valeur donnée de la puissance d'entrée on détermine le rendement, d'où la puissance de sortie. Plus d'informations seront données dans la suite de ce document.

Les moteurs alternateurs synchrones équipant la plupart des centrales existantes de deux types d'architectures des pompe-turbines. La machine synchrone est une machine qui se prête bien au fonctionnement en générateur (alternateur). Elle possède deux entrées de réglage séparées qui sont sa vitesse, qui fixe la fréquence, et son courant d'excitation, qui fixe la tension dans le cas d'une installation autonome. Dans le cas d'un raccordement au réseau, le moteur d'entraînement fixe la puissance fournie et le courant d'excitation permet de régler les échanges de puissance réactive.

Figure 2.23. Rendement de générateur asynchrone en fonction de la puissance réduite.

2.5.6. Modélisation du groupe Pompe-Turbine – Conversion Hydraulique-Mécanique

Il a été montré dans le chapitre 1 relatif à la bibliographie que la plupart des travaux réalisés sur le couplage des systèmes photovoltaïques-éoliens avec les groupes pompe-turbine considérait un rendement constant pour la turbine et la pompe ; or, il apparaît clairement sur la Figure. 2.21 que ce rendement varie beaucoup en fonction du débit d'eau et que ne pas en tenir compte introduirait des erreurs dans notre modélisation et ce d'autant plus que l'utilisation de sources d'énergie intermittentes implique que les régimes de fonctionnement sont très variable d'un moment à l'autre.

Dans le cas d'un système conventionnel, le groupe pompe-turbine est connecté à une source d'énergie contrôlable ; ainsi, la puissance électrique envoyée à la pompe sera telle que qu'elle fonctionne à rendement maximal ; de même, en mode turbinage, le débit d'eau sera choisi de

telle manière que le turbinage se fasse à rendement optimal. Dans ce cas de figure, l'utilisation d'un rendement constant peut être considéré comme acceptable.

Dans le cas d'un couplage avec un système de production EnR intermittent, la puissance délivrée à la pompe est fortement variable et donc le rendement de pompage peut approcher les 90% mais peut également être autour de 20% (il est cependant toujours intéressant d'utiliser le pompage car dans le cas contraire, la puissance produite par éoliennes et les systèmes PV sera inutilisée et donc perdue. En mode turbinage, la puissance produite par la turbine (couplée à l'alternateur) sera également variable puisque dépendante des besoins en électricité du réseau électrique. Dans ces conditions, considérer un rendement constant du groupe pompage-turbinage n'est pas du tout réaliste.

L'objectif de ce paragraphe est d'optimiser le fonctionnement du groupe Pompe/Turbine réversible. Pour ce faire, nous allons procéder en plusieurs étapes :

- détermination des courbes « Rendement-Débit réduit » du groupe Pompe/Turbine réversible en régime pompage et turbinage ;
- détermination à partir des courbes de rendement précédemment modélisées des courbes caractéristiques « Débit/Puissance mécanique » puis « Débit/Puissance Electrique »;

Le paragraphe suivant traitera du développement d'une méthode d'optimisation du nombre de Pompes/Turbines en fonctionnement et des débits optimisés correspondant pour les deux régimes pompage et turbinage.

Nous considérerons dans notre étude, une pompe réversible pouvant fonctionner dans les deux régimes, ce système a l'avantage de réduire les coûts d'installation mais le désavantage de rendre les deux modes de fonctionnement interdépendant, la puissance nominale en mode pompage étant liée à celle en mode turbinage ; ce type de groupe pompe/turbine réversible est le plus utilisé actuellement dans les STEP.

2.5.6.1. Les deux modes de fonctionnement

Nous allons passer en revue successivement les deux modes de fonctionnement.

Fonction production d'électricité : Mode Turbinage

La chaîne de conversion du groupe Pompe/Turbine en mode turbinage est présentée sur la Figure 2.24 :

Figure 2.24. Schéma de la chaîne de conversion en mode turbinage.

Notre objectif est de déterminer le débit d'eau Q_{turb} à utiliser par la turbine pour qu'elle produise une puissance électrique $P_{elec,turb}$ à un instant donné (en fait pendant une heure, pas de temps des données utilisées au cours de ce travail), les étapes de ce travail sont schématisées ci-dessous :

$$P_{elec,turb} \rightarrow P_{mec,turb} \rightarrow P_{hyd,turb} \rightarrow Q_{turb}$$

A chaque instant, une puissance électrique $P_{elec,turb}$ doit être produite pour satisfaire la charge complètement ou partiellement, à partir d'une ou de plusieurs turbines, fonctionnant chacune

à un pourcentage de leur charge maximale. Le choix du nombre de turbines et du régime de fonctionnement sera réalisé de manière à ce que l'ensemble du groupe turbinage fonctionne de manière optimale, c'est-à-dire produisant la puissance appelée en utilisant le débit minimal d'eau, c'est l'optimisation qui sera développée dans le paragraphe suivant.

Si on considère un rendement de l'alternateur η_{alte} la puissance mécanique nécessaire pour produire $P_{elec,turb}$ est :

$$P_{mec,turb} = \frac{P_{elec,elec}}{\eta_{alte}}$$
(2.35)

Or la puissance mécanique est reliée à la puissance hydraulique par :

$$P_{mec,turb} = \eta_{turb} P_{hyd,turb} \tag{2.36}$$

Avec

$$P_{hyd,turb} = \rho_{eau} g \Delta H Q_{turb} \tag{2.37}$$

 ρ_{eau} est la masse volumique de l'eau égale à 1000 kg.m⁻³, g l'accélération de la pesanteur $g = 9.81m.s^{-2}$ et ΔH la hauteur manométrique (différence de hauteur entre les deux bassins + pertes de charges singulières et régulières).

La hauteur manométrique ΔH totale dépend du débit d'eau car celui-ci influe sur les pertes de charge à la fois singulières et régulières ; cependant, pour des raisons de simplification, mais tout en gardant une précision suffisante, nous considérerons ces pertes de charges constantes quel que soit le débit et pour une différence de hauteur donnée entre les deux réservoirs.

Le rendement de la turbine dépend du débit d'eau qui la traverse :

$$\eta_{turb} = f(Q_{turb}) \tag{2.38}$$

Ainsi l'équation (2.36) devient :

$$P_{mec,turb} = f(Q_{turb})\rho_{eau}g\Delta HQ_{turb}$$
(2.39)

De la même manière, l'alternateur a un rendement qui dépend de la puissance mécanique de la turbine à laquelle il est couplé :

$$\eta_{alte} = g(P_{meca,turb}) \tag{2.40}$$

Ainsi, nous obtenons :

$$P_{elec,turb} = \eta_{alte} f(Q_{turb}) \rho_{eau} g \Delta H Q_{turb} = g [f(Q_{turb}) \rho_{eau} g \Delta H Q_{turb}]$$
(2.41)

Il conviendra donc de trouver une relation liant directement la puissance électrique de la turbine au débit d'eau qui la traverse puisque notre objectif sera de déterminer de combien le stockage hydraulique diminuera pour une puissance appelée par le réseau donnée.

Fonction Stockage : Mode Pompage

La chaîne de conversion du groupe Pompe/Turbine réversible en mode pompage est présentée sur la Figure 2.25.

Figure 2.25. Schéma de la chaîne de conversion en mode Pompage

Notre objectif est de déterminer le débit d'eau Q_{pomp} à remonter par la ou les pompes lorsqu'une puissance électrique $P_{elec,pomp}$ en provenance des systèmes EnR intermittent ou d'autres systèmes énergétiques alimentera le groupe Pompe/Turbine réversible à un instant donné, les étapes de ce travail sont schématisées ci-dessous :

$$P_{elec,pomp} \to P_{mec,pomp} \to P_{hyd,pomp} \to Q_{pomp}$$

A un instant donné, une puissance électrique $P_{elec,pomp}$ est fournie à la ou aux pompes ; si on considère un rendement du moteur η_{mote} la puissance mécanique produite $P_{mec,pomp}$ sera :

$$P_{mec,pomp} = \eta_{mote} P_{elec,pomp} \tag{2.42}$$

Le rendement électrique du moteur η_{mote} dépend de la puissance électrique qu'il reçoit du réseau électrique :

$$\eta_{mote} = g'(P_{elec,pomp}) \tag{2.43}$$

Ainsi :

$$P_{mec,pomp} = g'(P_{elec,pomp})P_{elec,pomp}$$
(2.44)

Or la puissance mécanique est reliée à la puissance hydraulique par :

$$P_{mec,pomp} = P_{hyd,pomp} / \eta_{pomp}$$
(2.45)

Avec

$$P_{hyd,pomp} = \rho_{eau} g \Delta H Q_{pomp} \tag{2.46}$$

Or le rendement de la pompe dépend du débit d'eau remontée :

$$\eta_{pomp} = f'(Q_{pomp}) \tag{2.47}$$

L'équation (2.45) devient alors :

$$P_{mec,pomp} = \rho_{eau} g \Delta H Q_{pomp} / f'(Q_{pomp})$$
(2.48)

Nous obtenons ainsi :

 $P_{mec,pomp} = g'(P_{elec,pomp})P_{elec,pomp} \Longrightarrow P_{elec,pomp} = P_{meca,pomp} / g'(P_{elec,pomp}) \Longrightarrow$

$$P_{elec,pomp} = \left(P_{hyd,pomp} / f'(Q_{pomp}) \right) / g'(P_{elec,pomp}) \Rightarrow$$

$$P_{elec,pomp} = \left(\rho_{eau} g \Delta H Q_{pomp} / f'(Q_{pomp}) \right) / g'(P_{elec,pomp})$$
(2.49)

Il conviendra donc de trouver une relation liant directement la puissance électrique de la pompe au débit d'eau remontée et ce de manière optimale c'est-à-dire en remontant le maximum d'eau avec le minimum de puissance électrique. On pourra ainsi déterminer à partir de la puissance électrique envoyée à la pompe le volume d'eau dont aura varié le réservoir.

2.5.6.2 Informations sur les pompes réversibles

Les quelques données présentées dans ce paragraphe sont issues de deux références (Chapallaz, 2007) et (Stelzer et Walters, 1977). Il n'a pas été aisé de trouver des informations nécessaires à notre modélisation des pompes réversibles car les aspects traités dans la littérature concernent rarement la modélisation énergétique.

Selon Chapallaz (2007), le rendement maximum est obtenu pour un débit égal à 85-90% de débit maximum Q_{max} . Au-dessous de 40% de ce débit maximum le rendement obtenu n'est plus satisfaisant.

En fonctionnement en pompe :

- la vitesse de rotation en service normale est constante ;
- le coup de bélier au démarrage est contrôlé par l'ouverture lente de la vanne en amont ou par mise en vitesse progressive du groupe ;
- en cas de coupure d'alimentation la pompe s'arrête.

En fonctionnement en turbine,

- le sens de rotation en turbine est l'inverse de celui en pompe ;
- le débit au point de rendement maximum est supérieur à celui de la pompe à vitesse de rotation identique (1,2-1,5 fois) ;
- le démarrage du groupe turbogénérateur est obtenu par ouverture contrôlée lente d'une vanne en amont. Le générateur est couplé au réseau lorsque la vitesse de rotation atteint la vitesse synchrone ;
- le coup de bélier au démarrage est contrôlé par la vitesse d'ouverture de la vanne amont ;
- en cas de coupure d'alimentation électrique (perte de réseau) la vitesse de rotation du groupe augmente jusqu'à la vitesse à vide ou vitesse d'emballement ;
- la turbine ne produit de la puissance qu'à partir d'un débit minimum dit débit à vide ;
- jusqu'au débit optimum le rendement augmente rapidement (zone de charge partielle);
- au-delà du point optimum le rendement diminue lentement avec l'augmentation du débit.

Si on compare les deux régimes, la valeur du rendement maximal en turbine est très proche du rendement en pompe, généralement légèrement supérieur de 1 à 2%, mais ce n'est pas une règle générale. L'écoulement en régime de pompage est divergent, de l'intérieur vers l'extérieur, ce qui conduit à des pertes plus élevées qu'en régime turbine pour lequel l'écoulement est convergent. Il en découle que lors du choix de la machine, il est préférable

de choisir une pompe légèrement sous-dimensionnée qui travaillera en turbine dans la zone de surcharge.

Les informations suivantes ont été tirées de Stelzer et Walters (1977) :

- le rendement autour de 75 % ;
- le dimensionnement de la pompe-turbine se fait sur la base de la pompe.
- le rendement d'une pompe-turbine peut être supérieur à celle d'une turbine.
- une pompe-turbine a un diamètre supérieur à celui d'une turbine.
- une pompe-turbine ne peut pas générer de la puissance au-dessous de 67% de la hauteur optimal.
- le domaine de hauteur manométrique de fonctionnement est plus étroit pour une pompe-turbine que pour une turbine seule : de 65% à 125% de la hauteur optimale.
- la hauteur manométrique optimale n'est pas la même pour la pompe et la turbine, la hauteur optimale pour la turbine est 125% celle de la pompe.
- problème de cavitation plus important en fonctionnement pompe qu'en fonctionnement turbine.

2.5.6.3. Conversion hydraulique-mécanique - Equation du rendement mécanique en fonction du débit

Nous avons choisi d'utiliser les courbes de rendement d'un groupe Pompe/Turbine. Pour ce faire, nous nous sommes inspirés des courbes présentées :

- d'une part, pour une pompe réversible et issue des Techniques de l'ingénieur par Megnint *et al* (2008) (Figure 2.24) ;
- d'autre part des courbes caractéristiques complètes d'une pompe réversible proposées par Chapallaz (2007) pour une turbine réversible Francis (Figure 2.25).

Figure 2.26. Courbes constructeur – Rendement en fonction de débit (ou du débit réduit) - caractéristiques énergétiques et rendement d'une pompe réversible (Megnint *et al*, 2008)

Figure 2.27. Courbes de rendement en fonction de débit caractéristiques pour une pompe réversible (Chapallaz, 2007).

Les débits nominaux en mode turbine et en mode pompe sont différents ; nous avons donc voulu représenter la courbe (rendement-débit réduit) en prenant pour référence le débit nominal de la turbine. Nous avons ainsi obtenu la courbe représentée sur la Figure 2.26.

Figure 2.28. Courbes de rendement en fonction du débit réduit, en prenant comme débit nominal de référence celui de la turbine.

On note que le débit nominal de la pompe est égal à 60% du débit nominal de la turbine, sachant que la puissance mécanique de la turbine et de la pompe sont identiques.

Comme il est précisé par Megnint et *al* (2008), les groupes réversibles présentent les avantages essentiels d'une plus grande simplicité d'installation et d'un moindre encombrement. Ces machines réversibles sont aussi moins coûteuses et leur choix s'impose, à priori, lorsque la part du coût de l'équipement électromécanique s'accroît par rapport au coût global de l'installation, et ce, même si, du fait du compromis de tracé de la roue réversible, le rendement énergétique est moindre.

Le défaut principal de la machine réversible est l'exigence de l'inversion du sens de rotation pour passer du fonctionnement turbine au fonctionnement pompe ou vice versa, ce qui allonge le temps nécessaire à ces opérations. En outre, le démarrage en pompe est moins aisé que pour des pompes seules. Il doit être assuré par des moyens externes à la turbine-pompe tels qu'un moteur poney (moteur asynchrone monté en bout d'arbre), une turbine auxiliaire, un convertisseur statique de fréquence, dos-à-dos avec d'autres groupes, un démarrage asynchrone de l'alternateur-moteur, la pompe étant éventuellement dénoyée pour diminuer le couple résistant.

Un autre inconvénient de la machine réversible est qu'elle ne permet pas de choisir une puissance de turbinage supérieure à celle de pompage ; du fait de la conception même de ces machines, si les vitesses de rotation sont égales pour les deux régimes, ces puissances sont en effet tout au plus sensiblement égales.

2.5.6.4. Modélisation de la pompe réversible en mode Pompage/turbinage.

Sur la Figure 2.26, le débit réduit ou relatif (variant de 0 à 1) est défini par (Q/Q_{turb}^0) , Q_{turb}^0 étant le débit à puissance nominale de la pompe turbine en mode turbinage.

Pour modéliser le rendement de la pompe, nous avons choisi d'utiliser des polynômes du troisième degré (Figure 2.26). Nous retiendrons donc comme équation liant le rendement de la pompe au débit réduit l'expression :

$$\eta_{pomp} = 7,6392 \left(\frac{Q_{pomp}}{Q_{turb}^{0}}\right)^{3} - 12,903 \left(\frac{Q_{pomp}}{Q_{turb}^{0}}\right)^{2} + 6,0712 \left(\frac{Q_{pomp}}{Q_{turb}^{0}}\right)$$

$$avec \quad 0 \le \left(Q_{pomp} / Q_{turb}^{0}\right) \le 0,6$$
(2.50)

Nous avons réalisé le même travail pour la courbe de rendement de la turbine. Cette fois, le débit relatif peut atteindre la valeur unitaire puisque le débit nominal de référence choisi ici est le débit nominal en mode turbinage.

Il apparaît clairement qu'une équation du troisième degré est bien adaptée à notre courbe et nous obtenons :

$$\eta_{Turb} = 3,4523 \left(\frac{Q_{turb}}{Q_{turb}^{0}}\right)^{3} - 9,8092 \left(\frac{Q_{turb}}{Q_{turb}^{0}}\right)^{2} + 8,9782 \left(\frac{Q_{turb}}{Q_{turb}^{0}}\right) - 1,7994$$

$$\operatorname{avec} 0,28 \le \left(Q_{turb}/Q_{turb}^{0}\right) \le 1$$
(2.51)

2.5.7. Conversion mécanique – électrique et vice versa – Rendement électrique en fonction de la puissance électrique.

Il convient de convertir maintenant la puissance mécanique produite par la turbine en puissance électrique et inversement de transformer la puissance électrique en puissance mécanique avant de la transmettre à la pompe.

Pour ce faire, nous avons analysé les courbes de rendement d'une machine électrique d'une puissance de 50 MWe fournies par Rizov et Stoyanov (2014). La Figure 2.28 présente les courbes de rendement ainsi obtenues pour respectivement un alternateur et un moteur ; attention l'abscisse de ces courbes est la puissance électrique divisée par la puissance nominale électrique. Cette puissance électrique correspond à la puissance d'entrée dans le cas du moteur (pompage) mais à la puissance de sortie pour l'alternateur (turbinage).

Figure 2.29. Rendement de l'alternateur et du moteur en fonction de la puissance électrique réduite (machine de 50 MW) (Rizov et Stoyanov, 2014)

Si le rendement est nul pour une puissance réduite nulle dans le cas de l'alternateur, il n'en est pas de même pour le moteur qui atteint un rendement nul dès une puissance réduite de 0,02. En fait, dans le cas du moteur, le rendement est le rapport de la puissance mécanique sur la puissance électrique ; les pertes à vide sont de l'ordre de 1 MW pour une machine de 50 MW ce qui implique que tant que cette puissance électrique de 1 MW n'est pas atteinte, aucune puissance mécanique n'est produite ; donc le rendement est nul tant que la puissance électrique n'a pas atteint un certain seuil.

Dans le cas de l'alternateur, le rendement est le rapport de la puissance électrique sur la puissance mécanique et donc il ne peut devenir nul que si la puissance électrique l'est également.

Il apparaît que la forme de la courbe de rendement obtenue est très proche de celle utilisée pour modéliser le rendement des onduleurs (Equation 2.28) (Schmid et Von Dincklage, 1988; Schmid et Schmidt, 1991) et peut être mise sous la forme d'une équation de type:

$$\eta alt = \frac{p}{p + p_0 + kp^2}$$
avec $p = \frac{P_{elec}}{P_{elec}^0}$ la puissance électrique réduite. (2.52)

Nous avons appliqué ce modèle aux deux courbes de rendement précédentes: la courbe relative au moteur étant nulle pour une puissance électrique relative de 0.02, nous avons légèrement modifié la formulation. Ainsi, nous obtenons :

Pour l'alternateur :

$$\eta_{alt} = \frac{P_{elec}}{P_{meca}} = \frac{p}{p + 0,00915738 + 0,00797107p^2}$$
(2.53)

Pour le moteur :

$$\eta_{mot} = \frac{P_{meca}}{P_{elec}} \frac{(p - 0.02)}{(p - 0.02) + 0.01010391 + 0.00731429(p - 0.02)^2}$$
(2.54)

Si p <0,02 alors le rendement est nul

Les Figures 2.30 et 2.31 montrent une comparaison entre les deux modèles précédents (Equations 2.53 et 2.54) appliqués au moteur et à l'alternateur et les points expérimentaux correspondant. On constate aisément que ces modèles peuvent être appliqués avec une bonne précision pour représenter le rendement dans le cas des deux machines électriques.

Figure 2.30. Comparaison du modèle (Eq. 2.53) appliqué au moteur

Figure 2.31. Comparaison du modèle (Eq. 2.54) appliqué à l'alternateur

2.6. Obtention des courbes caractéristiques « Puissance électrique Réduite-Débit Réduit »

Il convient maintenant de coupler les deux conversions :

- hydraulique-mécanique puis mécanique-électrique pour la turbine ;
- électrique mécanique puis mécanique-hydraulique pour la pompe.

Comme nous l'avons vu, il convient dans les deux modes de fonctionnement de déterminer le débit pour une puissance électrique donnée de pompe ou de turbine. Plutôt que de résoudre les équations implicites du troisième voire quatrième degré par une méthode numérique difficile de mise en œuvre, nous avons préféré coupler les courbes « Rendement mécanique - Débit Réduit » et « Rendement électrique-Puissance électrique réduite » en courbes caractéristiques « Puissance Electrique Réduite - Débit Réduit ».

La méthode consiste :

- à prendre une situation particulière (qui deviendra par la suite générale puisque nous rendrons toutes les grandeurs adimensionnelles); nous avons choisi une différence de hauteur manométrique de 400 m pour une puissance électrique de la machine de 20 MW.
- puis à déterminer la puissance hydraulique nominale de la machine dans sa configuration pompe et turbine en utilisant le rendement à 100% de la puissance de machine dans ses deux configurations ;
- en déduire les débits nominaux en pompage et turbinage ;
- puis à déterminer pour différents débits (d'un débit nul au débit nominal) la puissance électrique en utilisant les courbes de rendement précédemment modélisées ;
- enfin à tracer le débit réduit en fonction de la puissance électrique réduite pour les deux modes de fonctionnement de la machine hydraulique.

Une fois cette méthodologie mise en œuvre, nous obtenons les deux courbes présentées sur la Figure 2.32 pour la machine réversible (débit réduit calculé en fonction du débit nominal en mode turbine).

Figure 2.32. Courbes caractéristiques de la machine hydraulique réversible dans les deux modes de fonctionnement.

Nous pouvons d'ores et déjà constater que le fonctionnement d'un ensemble de pompes ou de turbines ou de pompes réversibles peut être optimisé afin que le débit d'eau soit minimum en turbinage pour une puissance électrique donnée et inversement que le débit soit maximum en pompage pour une puissance électrique délivrée.

Par exemple, à partir de la Figure 2.32., si on utilise deux pompes à 50% de la puissance nominale, le débit réduit remonté par chaque pompe est de 0,39 soit un débit total remonté de $2 \ge 0.39 = 0.78 \ge 100\%$ de sa puissance nominale. La même puissance électrique peut alimenter une seule machine à 100% de sa puissance nominale, le débit obtenu alors ne sera que de 0,6 x le débit nominal. On constate par conséquent un gain de l'ordre de 30% sur le débit remonté en utilisant deux pompes à 50% de la puissance nominale plutôt qu'une seule machine utilisée à pleine puissance. Cet exemple montre clairement l'intérêt de mettre en œuvre une méthode d'optimisation du fonctionnement de ces machines hydrauliques qui fera l'objet du paragraphe 9.

2.6.1. Méthode d'optimisation de l'utilisation des groupes Pompes-Turbines

Comme nous l'avons vu, le rendement des machines dépend du débit d'eau. Pour obtenir de meilleurs rendements globaux, nous pouvons envisager d'utiliser plusieurs pompe/turbines en parallèle qui fonctionneront chacune à un débit particulier.

Nous ne recherchons pas à optimiser le fonctionnement de chaque machine mais à obtenir le rendement maximum sur l'ensemble des machines.

Nous avons choisi d'utiliser 4 machines en parallèle car c'est le nombre maximal utilisé dans les STEP existantes (Bart, 2013). De plus, il est difficilement envisageable d'utiliser de plus nombreuses machines pour des raisons de coût évidentes. Nous prendrons ici 4 machines hydrauliques de 20 MW et les résultats obtenus seront aisément applicables à plusieurs autres puissances de machines puisque nous avons travaillé en permanence avec des grandeurs adimensionnées. Nous avons choisi une hauteur manométrique de 400 m, ordre de grandeur des hauteurs de chute en région Corse.

Dans le cas du fonctionnement en mode pompage, nous recherchons la configuration qui, pour une puissance fournie à l'ensemble des machines en parallèle, permettra de remonter la quantité maximale d'eau c'est-à-dire aura un débit maximum.

Dans le cas du fonctionnement en mode turbinage, le problème est inversé, nous recherchons la configuration qui, pour une puissance demandée par le réseau, à l'ensemble des machines turbines en parallèle, utilisera le minimum d'eau c'est-à-dire utilisera un débit minimum.

Pour différentes puissances électriques fournies aux groupes pompe/turbine, nous cherchons à optimiser le nombre de pompes en fonctionnement et la puissance relative à laquelle chacune fonctionne.

La Figure 2.33 montre, pour différentes configurations (nombre de pompes en marche et régime de fonctionnement de chaque pompe), le débit résultant, somme des débits de chacune des pompes). L'objectif est, bien entendu, de remonter le maximum d'eau avec une puissance électrique donnée. On constate que le débit total varie de manière importante selon la configuration choisie ce qui confirme l'intérêt de cette optimisation. La configuration optimale pour chaque puissance mise en jeu est représentée par un symbole plus gros. On constate aisément que l'on peut, du simple fait de cette optimisation, augmenter les performances de près de 30%.

Figure 2.33. Variation du débit remonté en fonction de la configuration choisie pour différentes puissances électriques alimentant les pompes.

Le Tableau 2.5 résume les configurations optimales pour les différentes puissances électriques fournies au groupe de pompage. Il donne le débit pour chacune des quatre machines hydrauliques et le débit total résultant du fonctionnement des 4 pompes.

Tableau 2.6. Configuration optimale pour différentes puissances électriques fournies à la machine hydraulique et débits réduits correspondant (chacune des machines à une puissance électrique nominale de 20 MW).

Puissance	25	35	45	55	60	65	70	75
Nombre de pompes	3	4	4	4	4	4	4	4
Puissance Pompe 1	9	9	11	14	15	17	18	19
Débit Pompe 1	0,359	0,359	0,424	0,496	0,517	0,553	0,569	0,585
Puissance Pompe 2	8	9	11	14	15	16	18	19
Débit Pompe 2	0,319	0,359	0,424	0,496	0,517	0,5357	0,569	0,585
Puissance Pompe 3	8	9	11	14	15	16	17	19
Débit Pompe 3	0,319	0,359	0,424	0,496	0,517	0,5357	0,553	0,585
Puissance Pompe 4		8	12	13	15	16	17	18
Débit Pompe 4		0,319	0,450	0,474	0,517	0,5357	0,553	0,569
Débit total	0,9979	1,397	1,723	1,965	2,068	2,160	2,245	2,325

Cette étude réalisée pour 4 machines hydrauliques de 20 MW (puissance totale de 80 MW) peut être aisément transposée à d'autres puissances. En effet, chaque machine ayant la même courbe de rendement (aussi bien au niveau de la conversion électrique-mécanique que mécanique-hydraulique) et les résultats étant exprimés en termes de débit réduit, on peut généraliser ces résultats.

Par exemple, dans le cas d'une puissance à satisfaire de 35 MW en pompage avec 4 pompes de 20 MW, on trouve que la meilleure configuration est de 4 pompes fonctionnant à un régime de 9 MW pour trois d'entre elles, et de 8 MW pour la quatrième ; elles remontent ensemble un débit réduit de 1,397 (soit un débit de 1,397 x le débit nominale de la pompe

réversible de 20 MW en mode turbinage (Voir Tableau 2.5)). Nous obtenons le même résultat si nous prenons 4 pompes réversibles de 4 MW recevant une puissance électrique de 7 MW avec un fonctionnement optimal obtenu avec 3 pompes fonctionnant à 1,9 MW chacune et la dernière pompe fonctionnant à 1,6 MW pour la troisième et remontant ensemble un débit de 1,397 x le débit nominal de la pompe réversible de 4 MW en mode turbinage.

Pour chaque puissance électrique réduite fournie à la machine hydraulique, nous connaissons donc la configuration optimale et le débit réduit total correspondant. Nous avons donc tracé pour chaque puissance électrique réduite (entre 1 et 4, relative à la puissance nominale d'une pompe réversible donc variant de 1 à 4 pompes) le débit réduit maximum remonté par l'ensemble des 4 machines sur la Figure 2.33.

Figure 2.34. Débit réduit optimal pour chaque puissance électrique fournie à la machine hydraulique composée de 4 pompes de 20 MW.

Comme nous l'avons précisé précédemment, cette courbe peut être également présentée avec en abscisse la puissance réduite (Figure 2.34).

Figure 2.35. Débit réduit optimal pour chaque puissance électrique réduite fournie à la machine hydraulique composée de 4 pompes de 20 MW

2.6.2. Méthode appliquée à la pompe réversible en mode turbinage

Dans le cas du fonctionnement en mode turbinage, le problème est inversé, nous recherchons la configuration qui, pour une puissance à fournir au réseau par l'ensemble des machines en parallèle, utilisera le minimum d'eau c'est-à-dire utilisera un débit minimum.

Comme précédemment, nous avons pris 4 machines hydrauliques d'une puissance de 20 MW électrique chacune et pour différentes puissances électriques demandées par la charge, nous cherchons à optimiser le nombre de turbines en fonctionnement et leur puissance relative. La Figure 2.35 montre, pour différentes configurations (nombre de turbines en marche et régime de fonctionnement de chaque turbine), le débit résultant, somme des débits de chacune des quatre turbines.

Figure 2.36. Variation du débit utilisé en fonction de la configuration choisie pour différentes puissances électriques demandées par la charge.

Le Tableau 2.6 synthétise les configurations optimales pour différentes puissances électriques fournies à la charge.

Tableau 2.7. Configuration optimale pour différentes puissances électriques fournies par la machine hydraulique et débits réduits correspondant (chacune des machines à une puissance électrique nominale de 20 MW).

Puissance	30	40	45	50	60	70	75
Nombre de turbines	2	3	3	3	4	4	4
Puissance Turbine 1	15	14	15	17	15	18	19
Débit Turbine 1	0,712	0,675	0,712	0,800	0,712	0,856	0,924
Puissance Turbine 2	15	13	15	17	15	18	19
Débit Turbine 2	0,712	0,641	0,712	0,800	0,712	0,856	0,924
Puissance Turbine 3		13	15	16	15	17	19
Débit Turbine 3		0,641	0,712	0,753	0,712	0,800	0,924
Puissance Turbine 4					15	17	18
Débit Turbine 4					0,712	0,800	0,856
Débit total	1,424	1,957	2,136	2,354	2,848	3,315	3,628

Pour chaque puissance électrique fournie par la machine hydraulique, nous connaissons donc la configuration optimale et le débit réduit total correspondant. Nous avons donc tracé pour chacune de ces puissances électriques réduites le débit minimum utilisé par l'ensemble des 4 machines sur la Figure 2.36.

Figure 2.37. Débit réduit optimal pour chaque puissance électrique réduite fournie par la machine hydraulique composée de 4 turbines.

2.7. Conclusion

Dans ce chapitre, nous avons successivement modélisé le comportement d'un champ photovoltaïque et celui d'un parc éolien puis avons, à partir de courbes de rendements énergétiques de la pompe réversible déterminé les caractéristiques puissances électriques – débit des groupes pompe-turbine.

Après avoir succinctement donné quelques informations sur le développement et fonctionnement des systèmes photovoltaïques connectés au réseau électrique, nous avons présenté plusieurs modèles énergétiques disponibles dans la littérature pour calculer la puissance électrique d'un champ de photopiles à partir de l'éclairement solaire reçu et de la température ambiante. Après une vérification expérimentale, le modèle de Durish a été choisi du fait de sa fiabilité, de sa simplicité de mise en œuvre mais également de sa généralisation à différentes technologies de photopiles, même si nous ne l'appliquerons qu'à des cellules photovoltaïques monocristallines.

L'onduleur, convertisseur DC/AC, a été modélisé à partir de sa courbe de rendement par des équations développées en particulier par Schmidt et qui ont été comparées à des données de producteur d'onduleurs. Sur la base de travaux préalables réalisés par Stoyanov au sein du même laboratoire, une optimisation du couplage champ photovoltaïque/onduleur a été utilisée et permet de travailler ainsi avec un système photovoltaïque optimisé pour la région sur laquelle les simulations sont réalisées.

Nous avons choisi d'utiliser pour décrire le comportement d'une éolienne et d'un parc éolien, le modèle de Pallabazzer qui permet d'obtenir directement la puissance électrique fournie par les aérogénérateurs à partir de la vitesse du vent à la hauteur du moyeu. Préalablement, la vitesse du vent mesurée à 10 mètres de hauteur a été « relevée » à la hauteur du moyeu par l'utilisation de la bien connue formule de Justus. En ce qui concerne le groupe pompe/turbine, nous avons choisi d'utiliser une pompe réversible pouvant passer du mode pompage en mode turbinage en quelques minutes voire secondes; cette solution est moins couteuse car elle ne nécessite qu'une machine hydraulique et elle n'utilise qu'une conduite (pas de nécessité de dérivation) ; par contre, elle ne permet pas d'optimiser le choix de la puissance de la machine car la puissance en mode turbinage est liée à celle en mode pompage ;

A partir de courbes de rendement-débit, nous avons déterminé les courbes (puissance électrique-débit) en mode pompage et turbinage. Ces courbes permettent de déterminer directement en fonction de la puissance électrique fournie à la pompe ou de celle à fournir au réseau par la turbine, le débit d'eau correspondant et par voie de conséquence de calculer le niveau d'eau dans les bassins.

Au vue de ces courbes, il est apparu la nécessité d'optimiser le fonctionnement de ces machines hydrauliques. Nous avons choisi d'utiliser 4 groupes pompe/turbine en parallèle et d'optimiser le nombre et le régime de fonctionnement de chacune d'elle en fonction du débit d'eau pompé ou turbiné. L'objectif étant d'utiliser le débit d'eau minimal en mode turbinage et maximal en mode pompage.

Nous avons donc obtenu des courbes d'optimisation qui du fait de leur absence de dimension peuvent être généralisées à tout ensemble de 4 machines quelle que soit la puissance totale du groupe hydraulique.

Il est important de préciser que tous les modèles utilisés, bien que simples, prennent en compte la variation du régime de fonctionnement :

- pour le système PV, le rendement dépend à la fois de l'éclairement solaire et de la température ambiante ;
- pour l'onduleur, son rendement dépend de la charge soutirée au convertisseur DC/AC ;
- pour l'éolienne, la puissance électrique extraite dépend de la vitesse du vent de manière différente selon le régime de vent ;
- pour les pompes et turbines, le rendement est fortement dépendant de la puissance électrique entrante ou sortante et par voie de conséquence les débits d'eau pompés ou turbinés le sont également.

Cette prise en compte du régime de fonctionnement est importante car elle permet de ne pas faire abstraction de la forte variabilité des sources énergétiques renouvelables qui fait que les flux énergétiques entrant et sortant sont en perpétuelles variations. Cette prise en compte de la variabilité des sources d'énergie distingue nos travaux de la plupart des travaux déjà réalisés et disponibles dans la littérature qui souvent ne considèrent que des rendements constants quel que soit le régime de fonctionnement.

Il apparaît donc clairement que considérer les rendements constants des machines hydrauliques, comme d'ailleurs des champs photovoltaïques ou fermes éoliennes, n'est pas une hypothèse réaliste et ne rend pas compte des performances réelles du système PV-Eolien-STEP que nous étudions.

Chapitre 3

Profil de consommation

Stratégies de fonctionnement du système PV/Eolien/STEP

3.1. Introduction

Dans ce chapitre, nous commencerons par expliciter les difficultés d'approvisionnement en électricité dues à la nécessité d'atteindre à chaque instant un équilibre parfait entre production et consommation. Nous montrerons que cet équilibre est d'autant plus difficile à atteindre que le réseau électrique est petit et qu'il n'est pas ou peu interconnecté avec les grands réseaux de distribution d'électricité ; cela nous amènera tout naturellement à regarder plus particulièrement ce qui se passe dans les réseaux insulaires. Il sera mis l'accent sur les difficultés rencontrées par les gestionnaires de réseau électrique d'intégrer, parmi leurs moyens de production, des centrales de production à sources renouvelables d'énergie aléatoire appelées également énergies « fatales ».

Ces difficultés et les contraintes de sécurité d'approvisionnement en électricité imposent de limiter la part de la puissance « fatale » injectée dans le réseau à un certain pourcentage de la puissance appelée (en France, 30%). Cette contrainte limite le taux d'intégration des EnR intermittentes dans les réseaux ; les restrictions imposées à la pénétration directe de l'énergie du vent et du soleil sont un obstacle à l'augmentation de l'utilisation des énergies renouvelables ; l'utilisation de moyens de stockage d'énergie permettra d'augmenter la part de ces énergies pour peu que la gestion du stockage soit optimisée.

Nous présenterons ensuite les profils de consommation électrique qui seront utilisés en sortie de notre système. Pour ce faire, nous nous sommes inspirés et rapprochés du profil de consommation réelle de la Corse dont nous disposions des données sur une année au pas de temps semi-horaire. Nous présenterons également de manière succincte le parc de production de l'île et l'empilement des moyens de production.

Enfin, nous présenterons les trois stratégies de fonctionnement de notre système PV/Eolien/STEP au sein des autres moyens de production d'énergie et expliquerons les raisons de ces choix.

L'objective de ce travail est d'étudier en détail la conception optimale du système PV/Eolien/STEP avec des stratégies d'opération qui exploiteront pleinement ou le plus possible le potentiel renouvelable intermittent disponible par l'introduction du stockage sous forme de STEP.

3.2. Problématique de l'approvisionnement en électricité.

L'électricité doit être utilisée immédiatement après avoir été produite ! Le gestionnaire du réseau doit dispatcher l'électricité et assurer un équilibre parfait entre la production d'électricité et la demande. Dans un réseau électrique, l'équilibre en puissance doit être maintenu à chaque instant i.e. la demande en électricité doit être égale à la production d'électricité et réciproquement et ce, à chaque instant. Le réseau doit travailler à une fréquence stabilisée (50 Hz, parfois 60 Hz); ainsi, le système de production doit, en permanence, adapter sa production à la consommation (ou réciproquement) soit au niveau des moyens de production soit au niveau du centre de dispatching (Notton, 2015).

En mode normal, il y a équilibre (Figure 3.1): la production est toujours égale à la consommation et la fréquence varie très peu autour de la fréquence de référence. Si la fréquence diminue de manière soudaine suite à la perte d'un moyen de production ou d'un passage nuageux au-dessus d'une centrale photovoltaïque, cet équilibre est rompu ; dans ce cas une augmentation rapide de puissance électrique délivrée par un moyen connecté doit se produire (par exemple, une augmentation de la puissance produite d'un moteur diesel

fonctionnant à charge partielle) ou le démarrage d'un nouveau moyen de production est nécessaire. Mais la vitesse de montée en puissance d'un moyen de production et son temps de démarrage ne sont pas instantanés comme l'illustre le Tableau 3.1 (Saguan, 2007). Comme ces temps sont longs, la mise en marche d'un nouveau moyen de production doit être anticipée; on note dans le Tableau 3.1 que seules les centrales hydrauliques démarrent rapidement, suivies par les turbines à combustion (fuel léger ou gaz), les moteurs à combustion interne (fuel lourd ou gaz) ont besoin d'environ 45 min pour débuter leur production.

arrêt des machines de production

Figure 3.1. Illustration de l'équilibre production/consommation.

Туре	Taille (MW)	Capacité mini de production	Vitesse de montée en puissance par	Temps de démarrage (heures)
		1	min	
Centrale nucléaire	400-1300 par réacteur	20%	1%	40 (froid)-18h (chaud)
Centrale thermique vapeur	200-800 par turbine	50%	0.5%-5%	11-20h (froid)-5h (chaud)
Centrale thermique à combustion	1-200	50% - 80%	10%	10 min-1 h
Centrale cycle combiné	100-400	50%	7%	1-4h
Centrale hydraulique	50-1300			5 min
Turbine à combustion (fuel léger)	25			15-20 min
Moteur à combustion interne	20	65%		45-60 min

Tableau 3.1. Caractéristiques des centrales de production d'électricité (Saguan, 2007)

Si une augmentation de la consommation et par conséquent le démarrage d'un nouveau moyen de production n'est pas anticipée, le déséquilibre va se poursuivre et il sera nécessaire de déconnecter une partie de la charge. Si cette déconnection est trop faible ou insuffisante, il y aura black-out. De manière similaire, si la charge est plus faible que la production, la fréquence va augmenter ce qui induit un danger pour les machines électriques, le système de sécurité arrêtera alors ces machines ce qui conduira à une défaillance du réseau.

Il apparaît donc que même avec des moyens de production conventionnels et contrôlables, la gestion de l'équilibre offre/demande à chaque instant est compliquée pour le gestionnaire du réseau électrique.

Tant l'énergie éolienne que solaire se caractérise par son intermittence et son caractère fatal : le producteur ne peut piloter sa production. C'est un handicap réel, car ces sources peuvent ne pas produire au moment de la demande la plus forte, et à l'inverse produiront, au moment où le réseau n'en a pas besoin, une énergie fatale, excédentaire et au final gênante.

L'intermittence va par essence à l'encontre d'une production adaptée au profil de la consommation. L'énergie éolienne peut connaître des sautes brutales de production (lorsque le vent dépasse la vitesse maximum acceptable, toutes les machines du champ vont s'arrêter au même moment par mise en sécurité automatique). Les gestionnaires de réseaux considèrent que ce problème est gérable par les moyens courants tant que la puissance injectée sur le réseau ne dépasse par un certain seuil donné en pourcentage de la puissance consommée (30% de la puissance active totale sur le réseau selon le Décret français du 28 Avril 2008).

L'utilisation de systèmes éoliens ou photovoltaïques induisent deux contraintes majeures (EDF, 2009 ; Pestourie, 2013 ; Robyns *et al*, 2006) :

- les contraintes dues à la source : pas de puissance garantie due à l'intermittence de la source qui induit une obligation de disposer d'autres moyens en réserve capable de compenser les variations en puissance et de réagir immédiatement (en augmentant ou diminuant leur production à court terme). Ces sources « fatales » ne sont pas toujours disponibles quand on en a besoin et sont parfois présentes quand le réseau n'en a pas besoin, leur production étant alors excédentaire.
- des contraintes techniques : les systèmes PV et éoliens n'ont pas d'inertie et sont sensibles aux variations de tension de de fréquence du réseau qui coupent la production et aggravent les incidents. De plus, ils ne participent pas au « service système », à la stabilité et à la qualité du réseau électrique (régulation de tension et de fréquence), ces systèmes agissent comme des générateurs passifs d'un point de vue électrique.

La première contrainte implique que les systèmes de production conventionnels doivent fonctionner à charge partielle afin de pouvoir réagir rapidement à une variation brusque de la puissance produite par le système PV ou éolien ; dans ce cas, le rendement du moteur conventionnel est réduit, d'où une augmentation de la consommation en fuel par kWh produit, et une augmentation du coût de production. Il est donc impossible d'optimiser le fonctionnement des moyens de production conventionnels.

La seconde contrainte implique d'avoir une régulation en tension et en fréquence réalisée par une centrale électrique conventionnelle qui doit donc être en fonctionnement en permanence.

Le problème est d'autant plus important que le territoire n'est pas étendu et pas interconnecté (ou peu) avec les autres réseaux de distribution :

- le fait que ce territoire ne soit pas étendu diminue l'effet de foisonnement c'est-àdire l'effet de lissage dû à la répartition des moyens de production intermittente sur des grandes distances : Les productions des systèmes PV ou éoliens répartis sur les îles varient dans le même sens, compliquant le travail du gestionnaire de réseau ; de plus, il y a de plus grandes difficultés pour prédire la production mais aussi la consommation: les modèles sont moins fiables principalement à cause de l'absence d'effet de foisonnement.
- le fait que le territoire ne soit pas interconnecté l'oblige à atteindre seul l'équilibre offre-demande, il ne peut demander une puissance supplémentaire à l'extérieur en cas de besoin ni se débarrasser d'un excès de puissance en cas de surproduction.

C'est en fait le cas de tous les territoires insulaires (Notton, 2015) pour lesquels on constate d'importantes pertes électriques dans les réseaux, un nombre important de défauts et de coupures d'approvisionnement, un cout du kWh produit entre 3 et 4 fois supérieur à ceux des réseaux continentaux.

Ainsi dans les îles, plus qu'ailleurs la contrainte de ne pas dépasser 30% de puissance intermittente dans le réseau est un obstacle au développement des énergies renouvelables intermittentes. A l'heure actuelle, lorsque la puissance intermittente EnR dépasse cette limite, les éoliennes ou les centrales PV sont déconnectées comme l'illustre la Figure 3.2.

Figure 3.2. Illustration de la déconnexion partielle ou totale de fermes photovoltaïques due au seuil maximum de 30%.

A titre d'exemple, en Corse, la consommation minimum est atteinte fin Mai ou début Juin, lorsque la température ne nécessite plus de besoin en chauffage et que l'afflux touristique n'a pas encore commencé. Ainsi, de nombreuses déconnexions de centrales photovoltaïques ont lieu.

Pour limiter voire annihiler ces déconnexions et permettre un plus haut taux d'intégration de ces énergies dans les réseaux électriques de manière générale, mais insulaire plus particulièrement, la mise en place de moyens de stockage avec une gestion optimisée est absolument nécessaire.

3.2.1. Situation énergétique de la Corse

Nous allons brièvement présenter la situation énergétique de la Corse car elle servira de base pour notre profil de consommation et pour les hypothèses qui seront prises dans ce travail au niveau de l'empilement des moyens de production d'énergie et des stratégies de fonctionnement du système électrique.

La Corse a une superficie de 8 680 km² et sa population est estimée à 316 578 habitants en 2012 (estimation INSEE au 01/01/2012). La densité de population est de l'ordre de 36 habitants au km².

La Figure 3.3 présente les différents moyens de production électrique présents sur l'île.

Figure 3.3. Répartition territoriale des moyens de production d'électricité en Corse (EDF SEI, 2013)

La Corse est connectée à l'Italie partiellement par 2 câbles:

- un câble SACOI (Sardaigne-Corse-Italie) de 50 MW, 200 kV DC, cette puissance est garantie;
- un câble SARCO (SARdaigne-COrse) de 100 MW AC (la puissance disponible pour alimenter la Corse dépend des besoins de la Sardaigne, celle-ci est négociée chaque 3 jours avec ENEL, compagnie d'électricité italienne) ;

Deux centrales fonctionnent au fuel : Vazzio et Lucciana: 7 x 18,9 MW (132,3 MW) et 5 x 10,9 MW (54,5 MW) moteurs fuel lourd. La nouvelle centrale de Lucciana 7 x 18,3 MW (128,1 MW) fuel léger convertible gaz a été mise en service fin 2013.

L'hydraulique est utilisée en hiver et des turbines à combustion (TAC) utilisées en pointe (Fuel léger).

La répartition des moyens de production en puissance installée avant et après 2013 est illustrée sur la Figure 3.4.

Si l'on observe maintenant la répartition de la production électrique en 2012 et 2013 (Figure 4.5), on constate qu'elle varie légèrement : 2 197 GWh en 2012 avec une pointe à 530 MW (pas d'épisode de froid durant l'hiver) contre 2 235 GWh en 2013 avec une puissance de pointe de 495 MW (pas d'épisode de froid également).

La part des EnR a été de 21,6% (dont 5,9% d'EnR intermittentes) en 2012 contre 33,2% (dont 6% de fatales) en 2013 ; l'hydraulique a produit 598 GWh en 2013, niveau jamais atteint auparavant et en hausse de 78% par rapport à 2012 due principalement à la mise en route d'une nouvelle centrale hydraulique de 55 MW sur le Rizzanese.

Figure 3.5. Mix Energétique en 2012 et 2013 (Répartition en énergie produite)

Si l'on observe la répartition mensuelle de ces productions (Figure 3.6) on constate que les pointes de consommation ont lieu en hiver dues au chauffage des habitations ; une remontée de la consommation a lieu pendant la saison estivale à cause de l'arrivée massive des touristes (près de 2 millions par an). Les périodes les moins énergivores sont Mai et Octobre car la température est toujours douce et les flux touristiques moins importants.

Figure 3.6. Répartition mensuelle des énergies produites.

Les profils journaliers de consommation sont présentés sur la Figure 3.7, pour 2010 et 2012. On note qu'en intersaison la consommation est faible est descend jusque 120 MW ce qui implique que la puissance électrique injectée sur le réseau par les parcs éoliens et photovoltaïques ensemble est alors limitée à 40 MW ce qui est bien au-dessous de la puissance installée actuellement sur l'île (Figure 3.8).

Figure 3.7. Profil de consommation saisonnier pour 2010 et 2012.

Figure 3.8. Puissance installée d'éolien et de PV en Corse.

Il est important de connaître comment se fait la gestion des moyens de production, c'est-à-dire de savoir quels sont les ordres de priorité. La Figure 3.9 montre l'empilement des moyens de production selon la saison pour 2012. Ces graphiques (EDF SEI, 2013) permettent de

comprendre le rôle de chaque palier de production: les importations constituent principalement de l'énergie de base, les centrales diesels fonctionnent en base/semi-base, les réserves hydrauliques sont sollicitées principalement l'hiver, tandis que les TAC (Turbines à combustion) apportent un complément de puissance en hiver, mais aussi en été lorsque le fonctionnement des lacs est contraint par le maintien d'un approvisionnement en eau potable lors de la saison touristique ou la fourniture d'eau agricole et également sur incident. On note, sur la Figure 3.9, la faible participation de l'hydraulique en été, certains barrages ont également des fonctions d'approvisionnement en eau potable ou eau d'irrigation prioritaires sur les besoins en électricité

La sûreté du système électrique corse nécessite, entre autres, de supporter la perte instantanée de moyens de production suite à événement fortuit. Or la perte de la liaison SARCO peut entraîner la perte de la production éolienne et photovoltaïque ainsi que celle de la station de conversion (SCC - SACOI) de Lucciana, entrainant ainsi un black-out complet de l'île.

Le plan de défense de sûreté du système électrique corse est efficace, face à un événement de cette nature, tant que la somme de la puissance injectée sur le réseau, à tout instant, par les EnR intermittentes (éolien et photovoltaïque), SARCO et la SCC de Lucciana (SACOI) ne dépasse pas une certaine limite par rapport à la charge totale instantanée compatible avec la charge pouvant être délestée.

La liaison DC SACOI de 50 MW est toujours disponible quelle que soit la saison.

La puissance de la liaison SARCO était de 80 MW début 2008. Le renforcement du réseau électrique Bonifacio – Porto-Vecchio (novembre 2010) a permis une augmentation de puissance de la liaison SARCO à 100 MW. La puissance disponible sur SARCO durant l'été dépend des contraintes du côté Sarde et varie donc selon la saison (nous en tiendrons compte dans l'élaboration de notre profil de consommation).

Figure 3.9. Empilement des moyens de production selon la saison en 2012 (EDF SEI, 2013)

La Figure 3.10 montre cet empilement pour la journée de production maximale (07 Février), on constate aisément que les turbines à combustion utilisées pour satisfaire les pointes de consommation et dont le coût de production est énorme sont en fonctionnement toute la journée. L'introduction d'une STEP couplée à un taux plus élevé d'énergies renouvelables intermittentes pourrait permettre de diminuer et de limiter le recours aux turbines à combustion fort couteuses pour le producteur d'électricité et donc pour l'usager.

Figure 3.10. Empilement des moyens de production pour la journée de consommation maximale.

3.2.2. Elaboration du profil de charge

Nous disposons des données de consommation de la région Corse au pas de temps de la demiheure pour l'année 2008.

Les hypothèses relatives aux profils de consommation que nous utiliserons dans ce travail et tirées des observations déduites de la Figure 3.9, même si il ne s'agit pas de la même année de référence, sont les suivantes :

- le câble DC de 50 MW est en fonctionnement en permanence ;
- le câble AC de 80 MW (en 2008) produit 70 MW en hiver, 50 MW au Printemps-Automne et 25 MW en été ;
- 8 moteurs de 20 MW sont disponibles (ils étaient au nombre de 7 à Lucciana (7 x 16 MW = 112 MW) et de 7 au Vazzio (7 x 19 = 133 MW) soit une puissance totale de 320 MW contre 160 MW dans notre profil);
- pas de moyens hydrauliques car il est trop difficile d'estimer leur production liée aux disponibilités des ressources en eau qu'il serait alors nécessaires de prendre en compte ; le fait de ne pas prendre en compte les moyens hydrauliques classiques font que notre étude de cas sera très éloignée de celle de la Corse ;
- une puissance d'éoliennes et de systèmes photovoltaïques variable : en 2008, il y avait 18 MW d'éolien pour 274 kW de PV ; fin 2014, on compte environ 100 MW de PV pour 18 MW d'éolien sur l'île.

Nous faisons intervenir, par ordre prioritaire d'empilement :

- le câble DC à puissance maximale soit 50 MW ;
- le câble AC à puissance dépendante d'une part de la saison et d'autre part des productions PV et éoliennes (si la production en provenance du câble DC, du PV et de l'éolien (dans la limite de 30% de la consommation pour ces dernières) : la puissance du câble AC s'adaptera alors à la charge. Il ne doit pas à lui seul représenter plus de 30% de la charge (ce qui peut arriver au printemps).
- le PV et éolien (dans la limite de 30% de la consommation) ;
- les moteurs (au maximum 8 x 20 MW);

Nous considérerons que la puissance non satisfaite par les moyens précédemment présentés correspond à la pointe ou au pic de consommation. Le surplus EnR correspond aux puissances éoliennes et PV non utilisées (du fait de la limitation des 30%) qui seraient perdues ou stockables. Le surplus Câble est l'énergie encore disponible sur le câble AC et qui pourrait être stockée également.

Les productions photovoltaïques et éoliennes ont été estimées à partir des modèles présentés dans cette thèse en utilisant les données horaires d'éclairement solaire et de vitesse de vent moyennées sur plusieurs années pour le site d'Ersa qui dispose d'un potentiel éolien élevé en plus du potentiel solaire important présent sur l'ensemble de l'île.

Si le profil de consommation utilisé dans cette thèse est très proche du profil de charge actuel, le fait de ne pas prendre en compte les apports en énergie des centrales hydrauliques (au nombre de 8 pour une puissance totale installée de 194 MW et pouvant représenter jusqu'à 27% de la production totale d'énergie) fait que nous sommes loin des conditions réelles de la production d'électricité en Corse. Cependant, ces conditions restent tout à fait réalistes et la prise en compte des moyens hydrauliques pourraient faire l'objet d'une continuité à ces travaux dans la cadre d'une autre thèse.

La Figure 3.11 présente l'évolution de ce profil de charge pour divers périodes selon la saison et pour deux journées particulières, celle de plus forte consommation et celle de plus faible consommation. Les puissances produites par les parcs photovoltaïques et éoliens ont été calculées par les modèles présentés au chapitre 2.

0

0.5

6.5 12.5 18.5 0.5

6.5 12.5 18.5 0.5 6.5 Heures 12.5 18.5

0.5

6.5 12.5 18.5

Figure 3.11. Profil de charge avec empilement des moyens de production (PV = 274 kWc – Eolien = 18 MW) – Hiver – Printemps – Eté sur 4 jours – Profil journalier : consommation maximale et minimale.
On a reporté dans le Tableau 3.2, la part des différents moyens de production dans la production totale d'énergie pour chacune des périodes considérées.

	Câble DC	Câble AC	PV	Eolien	Diesel	Pointe	Surplus EnR	Surplus Câble	Surplus	Conso
Hiver	1200.0	1679.7	0.76	134.01	3646.0	1017.4	0.0	0.3	0.3	7677.9
Printemps	1093.7	1093.7	1.38	130.9	1584.1	0.00	0.0	212.6	212.6	3903.7
Eté	1185.75	600.0	1.65	280.4	3186.8	349.2	0.0	14.3	14.3	5603.7
Max	1200.00	1680.0	0.42	432.0	3700.5	1381.1	0.0	0.0	0.0	8394.0
Min	1040.1	1040.1	1.92	397.4	1078.0	0.0	0.0	369.8	369.8	3558.5

Tableau 3.2. Répartition des moyens de production sur chaque période en MWh/jour.

Nous constatons sur ces périodes aucune présence de surplus de production de la part des EnR, mais au printemps une possibilité d'utiliser l'énergie non utilisée du câble. Au printemps aucune pointe à satisfaire n'apparaît. En été, une pointe est surtout présente en fin de journée. En hiver, la pointe de consommation est pratiquement toujours présente. Si nous comparons ces profils avec ceux de la Figure 3.9, nous constatons, que, mise à part l'intervention des moyens hydrauliques non pris en compte, les profils sont proches.

Nous allons maintenant retracer ces profils pour 150 MW de PV (aujourd'hui 100 MW sont déjà présents sur le Territoire Corse) et 50 MW d'éolien. Les résultats pour cette nouvelle configuration sont présentés sur la Figure 3.12.

Nous constatons cette fois la présence de surplus de production de la part des EnR mais également du câble (Tableau 3.3). Malgré ce surplus, les EnR intermittentes sont loin de pouvoir satisfaire à elle seule la consommation et assurer l'équilibre offre/demande. Il apparaît donc clairement que la limitation de la production des EnR intermittentes est une entrave à leur développement car il est inéluctable qu'une grande partie de leur production est perdue. La présence d'un stockage d'énergie permettrait de stocker tout ou partie de la production excédentaire au 30% de la charge et de la renvoyer au réseau électrique au moment de fortes consommation ou en remplacement d'une production d'énergie fossile plus couteuse.

Il convient donc de trouver un juste équilibre entre la taille du stockage et celui des systèmes éoliens et photovoltaïques qui lui sont associés. Il convient également de déterminer quel est la meilleure gestion possible entre les divers flux d'énergie, le meilleure ordre de priorité des moyens de production tout en gardant à l'esprit que la sécurité de l'approvisionnement en énergie électrique des consommateurs est essentiel.

Figure 3.12. Profil de charge avec empilement des moyens de production (PV = 100MW – Eolien = 50 MW) – Hiver – Printemps – Eté sur 4 jours – Profil journalier : consommation maximale et minimale.

Tableau 3.3. Répartition de	es moyens de	production sur	chaque période	en MWh/jour.
-----------------------------	--------------	----------------	----------------	--------------

	Câble	Câble	DV	Falian	Diagal	Dainta	Surplus	Surplus	Surplus	Canaa
	DC	AC	ΡV	Eollen	Diesei	Pointe	EnR	Cab		Conso
Hiver	1200.0	1679.7	415.7	372.2	3380.8	855.9	1.4	0.3	1.7	7677.9
Printemps	1093.7	1027.2	512.8	348.8	921.3	0.0	256.8	279.1	536.0	3903.8
Eté	1185.7	600.0	734.9	774.6	2186.8	12.5	173.0	14.3	187.3	5603.8
Max	1200.0	1680.0	227.4	1200.0	3474.8	1442.0	0.0	0.0	0.0	8394.0
Min	1040.1	1040.1	522.9	943.7	312.2	0.0	688.1	670.3	1358.4	3558.5

3.3. Les stratégies de fonctionnement du système hybride PV/Eolien/STEP

Si nous disposons d'un système hybride Photovoltaïque/Eolien avec stockage illustré sur la Figure 3.13, il convient maintenant de choisir la manière de l'utiliser, c'est ce que nous appellerons la stratégie de fonctionnement du système. Plusieurs questions à se poser, parmi lesquelles :

- allons-nous utiliser ce système PV/Eolien/stockage comme moyen supplémentaire de production d'électricité disponible au grès des besoins et du niveau d'eau stockée dans le réservoir ? Ou allons-nous l'utiliser en période de pic de consommation (qu'il conviendra au préalable de bien définir) afin d'éviter l'usage d'autres moyens de production très couteux tels que les turbines à combustion ?
- avec quelle puissance électrique va-t-on alimenter les pompes pour remplir le bassin haut ? Avec la totalité du flux excédentaire en provenance des EnR et des câbles (énergie ayant le coût de production minimum), uniquement l'excédent EnR, avec la totalité de la production EnR, ...
- quand allons-nous utiliser le turbinage ? Une fois le réservoir plein, en fonction de la consommation, ... ;
- à quoi servira la puissance produite par la STEP ? A alimenter la charge uniquement en période de pic de consommation en remplacement des turbines à combustion ou à différents moments dans la journée, ...

hydro-pompage

Figure 3.13. Principe général du système étudié.

Dans la réalité, la gestion des flux d'énergie dans un système si complexe qui est illustré plus en détail sur la Figure 3.14 a besoin pour être optimisée de connaître préalablement les flux entrant et sortant de ce système c'est-à-dire la production de la ferme éolienne et PV ainsi que de la consommation.

La prédiction des productions des systèmes PV et éolien à différents horizon temporel fait l'objet actuellement de nombreuses recherches et en particulier au sein de l'équipe Energies Renouvelables de l'Université de Corse.

Nous nous contenterons de définir ici trois stratégies de base qu'il conviendra, dans un travail futur d'améliorer, en tenant compte à la fois des productions estimées des systèmes PV et éoliens, de l'estimation de la consommation, de la disponibilité des autres moyens de production d'électricité, du taux de remplissage des bassins, ...

Nous élaborons dans ce travail un outil évolutif et aisément modifiable avec lequel nous il sera possible de modifier la stratégie de fonctionnement et de la complexifier pour se rapprocher le plus possible d'une gestion réelle de réseau identique ou proche de celle réalisée par le gestionnaire du réseau électrique.

Quelle que soit la stratégie choisie, les hypothèses suivantes sont communes :

- câble DC 50 MW (SACOI) : il est disponible et en fonctionnement en permanence toute l'année ; cependant, pour des raisons de sécurité de réseau (la perte du câble serait alors non compensable), identiques à celles imposées à la limitation des énergies renouvelables intermittentes, la puissance en provenance de ce câble et injectée sur le réseau électrique ne doit pas dépasser 30% de la charge à un instant donné ; si la puissance délivrée par SACOI dépasse les 30% de charge alors elle sera limitée à ces 30%.
- câble AC (SARCO) : 70 MW hiver, 50 MW au printemps et en automne, 25 MW en été pour la deuxième stratégie. De la même manière que pour le câble SACOI, la puissance délivrée par SARCO ne doit pas excéder 30% de la charge, si elle les dépasse sa puissance sera limitée ;

- 8 générateurs Diesel de 20 MW travaillant en semi-base à une puissance comprise entre 60 et 100 % de leur puissance nominale;
- 4 groupes réversibles de turbines/pompes hydrauliques couplés aux générateurs/moteurs électriques; il ne sera pas envisagé un nombre supérieur de machines car il est peu réaliste qu'une station de transfert d'énergie par pompage puisse disposer de plus de 4 groupes pompage/turbinage pour des raisons évidentes de coût.
- Des parcs éoliens et des champs photovoltaïques de puissances nominales variables.

Figure 3.14. Schéma général des flux d'énergie au sein du système étudié.

Dans les systèmes classiques de production d'énergie électrique des centrales de production doivent couvrir toutes les fluctuations de la consommation, avec des périodes de pointe qui peuvent représenter un pourcentage élevé de la consommation réelle, tout en essayant de maintenir un coût minimum.

Ces pics sont généralement satisfaits par ce qu'on appelle des centrales de pointe telles que les turbines à combustion (TAC), utilisant comme carburant du fuel léger ou du gaz. Ces systèmes sont de petite taille, ont un temps de démarrage et de montée en puissance faible mais ont des couts de production du kWh très élevés.

Le système PV/Eolien/STEP étudié (Figure 3.14) sera composé de:

- un parc éolien de puissance nominale variable de 20 MW à 300 MW ;
- un parc photovoltaïque avec une puissance crête de 50 MW à 300 MW.
- une station de pompage-turbinage réversible composée de 4 groupes pompeturbine dont les puissances nominales sont elles aussi variables (dans le cas du groupe réversible la puissance nominale de la turbine est liée à celle de la pompe);
- un système de stockage d'eau, il est constitué d'un réservoir inférieur et supérieur séparé d'une hauteur ΔH ;
- la hauteur manométrique est prise égale à 400 mètres car c'est l'ordre de grandeur des hauteurs manométriques dans les systèmes hydrauliques présents en Corse. Nous considérerons dans la suite de ce travail que cette hauteur manométrique ne varie pas quel que soit le débit d'eau utilisé dans la STEP en pompage ou

turbinage. Cette hypothèse est, bien entendue, une approximation de la réalité puisque les pertes de charge singulières et régulières dépendent de la vitesse d'écoulement ; cependant, nous pouvons considérer que le système hydraulique (canalisation et singularités) est conçu de telle manière que les pertes de charge soient faibles.

- le domaine de variation des volumes des réservoirs a été choisi de manière à rester dans des dimensions réalistes pour une application en Corse ; pour ce faire, nous avons, au préalable à cette étude, regarder les volumes d'eau stockés dans les centrales hydrauliques insulaires actuelles.Le volume des réservoirs sera variables ce qui permettra de faire varier la quantité d'énergie stockable ;
- un ensemble de production d'électricité conventionnelle composé de 8 moteurs de 20 MW ;

Il n'est pas prévu de système de production de pointe mais l'énergie non satisfaite par le système sera calculée tout en sachant que dans la réalité cette énergie non satisfaite n'existe pas et sera produite par un moyen de production de pointe comme les TAC.

Les domaines de variation de puissances des différents organes du système sont :

- réservoir : $0,1 \text{ Mm}^3 2 \text{ Mm}^3$ par pas de $0,1 \text{ Mm}^3$.
- différence de hauteur manométrique (y compris les pertes de charge singulières et régulières égale à 400 m)
- pompes réversibles : 3 MW 30 MW par pas de 2 MW (puissance de l'ensemble)
- nombre de machines (pompes, turbines ou pompe réversible) : 4
- photovoltaïque : de 50 MW à 300 MW par pas de 20 MW
- $\acute{e}olien = 20 300 \text{ MW}$ par pas de 20 MW
- moteurs : 8 moteurs de 20 MW proche de la situation réelle avant la mise en fonctionnement de la nouvelle centrale de Lucciana.

Nous avons fait le choix de travailler avec trois stratégies de fonctionnement distinctes avec des objectifs différents, soit augmenter la part des énergies renouvelables intermittentes en stockant toute puissance produite par le PV et l'éolien supérieure à 30% de la charge (si l'état du stockage le permet) et en utilisant la STEP quand les besoins en consommation le sollicitent, soit en utilisant la STEP en production pour écrêter les pointes de consommation et ainsi éviter l'utilisation totale ou partielle des TAC très coûteuse en production.

3.3.1. Stratégie de fonctionnement 1

Cette stratégie 1 de fonctionnement est illustrée sur la Figure 3.15.

Figure 3.15. Algorithme de la Stratégie 1 pour le fonctionnement du système de production électrique

La stratégie 1 a été proposée par Bueno et Carta (2005a; 2005b). Stoyanov (2011) a légèrement modifié cette stratégie afin de mieux l'adapter au cas que nous traitons :

- la puissance électrique produite par le système hybride éolien/PV dans la limite de 30% de la puissance totale appelée (taux d'intégration maximale autorisé) est injectée directement sur le réseau électrique. En cas d'excès, si cette puissance renouvelable dépasse les 30%, la partie en surplus sera envoyée vers le pompage afin d'être stockée sous forme hydraulique. Les pompes pourront fonctionner si le réservoir supérieur n'est pas plein, dans le cas contraire, la puissance produite sera perdue ;
- 2. si la production du système hybride (limitée aux 30%) et celle en provenance du câble SACOI (50 MW) ne sont pas suffisantes pour couvrir la charge, les turbines hydrauliques seront mise en marche quand le niveau du bassin haut le permet. Ces turbines seront également mises automatiquement en marche lorsque le bassin haut atteindra un taux de de remplissage de 90 % et elles resteront en fonctionnement jusqu'à la vidange complète du réservoir. Dans le cas contraire, le supplément de production du système hybride au-delà des 30 % de la charge est non utilisé et rajouté à l'énergie perdue.
- 3. la puissance en provenance de SARCO (puissance variable en fonction de la saison, dans la réalité, la puissance disponible est négociée avec ENEL chaque 3 jours dans la limite d'une puissance maximale) est utilisée si les turbines ne peuvent pas générer d'électricité, si l'énergie appelée au réseau est supérieure à l'énergie disponible dans le bassin ou si la puissance nominale des turbines n'est pas suffisante. Dans le premier cas, le supplément de la production du système hybride est sauvegardé si le niveau du bassin haut le permet. Dans les autres deux cas cette énergie est non utilisée.

- 4. en cas d'un nouveau manque, les moteurs diesels sont utilisés. Le supplément est sauvegardé ou non utilisé selon l'état des machines hydrauliques et des niveaux d'eau dans les bassins.
- 5. si toutes les sources d'énergie disponibles ne sont pas suffisantes pour la satisfaction de la consommation une avarie est enregistrée et l'énergie non satisfaite est calculée. Dans la réalité, ce sont des turbines à combustion qui auraient été utilisées pour éviter l'avarie.

3.3.2. Stratégie de fonctionnement 2

Cette stratégie est illustrée sur la Figure 3.16

Figure 3.16. Algorithme de la Stratégie 2 pour le fonctionnement du système de production électrique

Il s'agit cette fois d'utiliser la STEP pour écrêter les pointes de consommation et ainsi éviter l'utilisation de turbines à combustion couteuses et polluantes.

On définira la pointe de consommation de la manière suivante, à savoir :

$$Pointe(t) = conso(t) - cable(t) - diesel(t) - EnR_{directe}(t)$$
(3.1)

Avec $EnR_{directe}(t)$ la production EnR limitée à 30% de la consommation c'est-à-dire pouvant être directement injectée sur le réseau électrique. Il est évident que la pointe de consommation pourrait être définie différemment.

Si Puissance (PV + Eolien) < 30% Consommation, la puissance est envoyée sur le réseau et on complète la production par les moteurs diesel.

Si Puissance (PV + Eolien) > 30% Consommation, la part au-dessus des 30% alimente la ou les pompes pour peu que le barrage haut ne soit pas plein, dans le cas contraire l'énergie est perdue. Le turbinage quant à lui sert pour écrêter les pointes de consommation. La puissance P_{turbine}(t) fournie par les turbines pour couvrir la demande de pointe est donnée par:

$$P_{elec,turb} = \eta_{alte} f(Q_{turb}) \rho_{eau} g \Delta H Q_{turb}$$
(3.2)

Dans cette stratégie, il apparaît que les puissances utilisées pour les parcs photovoltaïques et éoliens et les puissances des groupes pompe-turbinage seront plus faibles puisque les charges à satisfaire (pic de consommation) sont moins élevées que dans le cas de la stratégie 1.

3.3.3. Stratégie de fonctionnement 3

Cette stratégie est illustrée sur la Figure 3.17.

Figure 3.17. Algorithme de la Stratégie 3 pour le fonctionnement du système de production électrique

Cette stratégie se distingue de la précédente uniquement par le fait que la puissance électrique produite par les EnR intermittentes est utilisée **uniquement** pour alimenter la ou les pompes. La STEP fournira de l'électricité uniquement pour écrêter les pointes de consommation. Plus encore que dans le cas de la stratégie 2, les puissances des parcs photovoltaïques et éoliens seront plus faibles car elles serviront qu'à alimenter les pompes.

3.4. Illustration des stratégies de fonctionnement

L'objectif de ce paragraphe est d'illustrer ces trois stratégies de fonctionnement en représentant sur une période courte la variation des différents flux énergétiques qui prennent place au sein de notre système complexe. Pour ce faire, nous choisirons de montrer l'évolution de ces flux pour une période estivale et hivernale. Au préalable, il convient de définir un certain nombre de termes.

3.4.1. Flux et grandeurs énergétiques

Différentes grandeurs énergétiques seront calculées à chaque pas de temps de nos simulations :

- Energie photovoltaïque E_{PV} : énergie produite par le parc photovoltaïque ;
- Energie éolienne E_{eole}: énergie produite par le parc éolien ;
- Energie Renouvelable EnR : somme des deux énergies précédentes ;
- EnR_{pompe} : part de l'énergie EnR servant à alimenter les pompes ;
- EnR_{pompe dispo} : part de l'énergie EnR disponible pour alimenter la pompe, c'est-à-dire part de l'EnR produite supérieure aux 30% de la charge ;
- EnR_{charge} : part de l'énergie EnR envoyée directement au réseau (production PV et éolien de puissance inférieure aux 30%)
- EnR_{perdue} : part de l'énergie EnR totale produite qui n'a pas été envoyée au réseau (car supérieur au 30%) et/ou qui n'a pas pu être stockée (car stockage plein)

Une relation évidente entre ces grandeurs est donnée par :

$$EnR = EnR_{pompe} + EnR_{charge} + EnR_{perdue} = E_{PV} + E_{eole}$$
(3.3)

Nous déterminerons deux parts EnR i.e. deux paramètres pour juger de la part de la production EnR intermittente dans la production totale; on définit au préalable EnR* et EnR** par :

$$EnR^* = EnR_{pompe} + EnR_{charg\,e} \tag{3.4}$$

$$EnR^{**} = EnR_{turbine} + EnR_{charge}$$
(3.5)

EnR* représente la partie produite par les énergies renouvelables qui est utilisée (soit directement pour alimenter la charge soit pour alimenter la pompe) alors que EnR** représente la partie de la consommation satisfaite par les énergies renouvelables ; en fait, dans le second cas on prend en compte le rendement de conversion de la STEP. On pourra ainsi déterminer deux ratios :

$$Part_{EnR^*} = \frac{EnR^*}{E_{consommée}}$$
(3.4)

$$Part_{EnR^{**}} = \frac{EnR^{**}}{E_{consommée}}$$
(3.5)

Nous préférons prendre l'énergie consommée plutôt que l'énergie totale produite dans le système électrique car dans le second cas l'excédent d'énergie renouvelable est pris en compte.

Nous calculerons également :

- l'énergie non satisfaite E_{non-sat}: énergie de la charge qui n'a pas pu être satisfaite par le système global (y compris câble et moteur); le nombre d'avaries sera également déterminé. Dans la réalité, cette part de la consommation non satisfaite sera alimentée par des turbines à combustion.
- nous déterminerons le nombre de cycles de la STEP, c'est-à-dire le nombre de fois que le stockage effectue un cycle de vidange/remplissage ; celui-ci peut être calculé en fonction du volume pompé ou du volume turbiné, or ces deux volumes sont approximativement égaux car au bout d'un temps suffisamment long la différence entre les deux niveaux n'est qu'au maximum que d'un volume de stockage ; nous avons choisi de le définir sur la base du volume de turbinage.

$$N_{cycle/turbine} = \frac{V_{turbin\acute{e}}}{V_{r\acute{e}servoir}}$$
(3.6)

• Le rendement globale de la STEP défini par :

$$\eta_{global} = \frac{E_{turbin\acute{e}e}}{E_{pomp\acute{e}e}}$$
(3.7)

3.4.2. Variation des grandeurs énergétiques sur une période courte.

Afin de bien visualiser les variations des différentes grandeurs énergétiques que nous avons définies, nous avons tracé sur une période courte de 5 jours ces différentes grandeurs. Nous avons choisi de représenter deux périodes : une période hivernale (10 Janvier - 15 Janvier) et estivale (5 Août - 10 Août).

Pour chaque stratégie de fonctionnement et chaque période, nous présentons trois graphiques sur lesquels (Figures 3.15 à 3.20) on peut voir :

- 1. la variation de la puissance produite par le SACOI, le SARCO, les EnR dans la limite des 30% de la charge, les moteurs et la charge totale. La part du pic de consommation satisfaite dans le cas des profils 1 et 2 est également représentée ; nous rappelons que la partie non satisfaite de ce pic sera comblée par l'utilisation d'une turbine à combustion.
- 2. la variation des puissances produites par le parc éolien et photovoltaïque et la puissance totale produite par les EnR intermittentes (somme des deux précédentes); sont également représentées la part de la production EnR injectée directement au réseau électrique (<30% charge), celle qui alimente le groupe de pompage (>30% charge si le stockage n'est pas plein) et celle qui est perdue (lorsque le stockage est plein ou lorsque la puissance au-delà des 30% dépasse la puissance maximale acceptée par le groupe de pompage).
- 3. la variation du niveau d'eau dans le réservoir haut exprimé en pourcentage du volume maximum ainsi que les puissances des pompes et des turbines.

Les caractéristiques du système PV/Eolien/STEP utilisées pour tracer ces courbes sont :

- Puissance crête photovoltaïque : 150 MW
- Puissance éolienne : 90 MW
- Volume de stockage : 1 Mm³
- 4 groupes pompe/turbine réversibles de 20 MW

Ces caractéristiques n'ont pas été optimisées mais choisies uniquement de manière à observer, sur chacune des deux périodes, différents cas de fonctionnement du système PV/Eolien/STEP. Pour chacune des stratégies de fonctionnement et chaque période, nous avons reporté dans le Tableau 3.4 les différentes énergies et le rendement de la STEP. Nous avons également calculé le pourcentage d'énergie EnR perdue sans la présence de la STEP, pour ce faire, nous avons déterminé l'énergie renouvelable perdue sans la STEP $EnR_{perduessSTEP}$ par :

$$EnR_{perduessSTEP} = EnR - EnR_{charge}$$
(3.8)

Ainsi, nous pouvons observer comment l'introduction d'un moyen de stockage permet de diminuer la quantité d'énergie renouvelable perdue ; pour estimer l'augmentation de la part des EnR dans le mix énergétique du fait de la présence du stockage, nous avons également calculé la part des EnR sans la présence de la STEP (dans ce cas seul la part EnR allant à la charge intervient) par conséquent :

Figure 3.21. Stratégie 2 – Période estivale

Stratégie/période	1/Eté	1/Hiver	2/Eté	2/Hiver	3/Eté	3/Hiver
SACOI	6025,00	6025,00	5955,05	6025,00	5980,05	6025,00
SARCO	9174,22	9525,19	3000	8288,75	3012,05	8288,75
EnR Charge	6129,43	7855,43	6098,08	7855,43	0	0
STEP/Pic	1515,09	769,67	730,81	478,33	1028,43	2182,5
Moteur	5847,27	9169,12	12862,56	11063,33	16738,95	17194,75
Non satisfait	60,00	372,08	0	5,67	1991,07	25,5
Charge	28751,00	33716,50	28751,00	33716,5	28751,00	33716,5
Pic			730.81	484.00	3019.50	2208.00
Pic satisfait	1515,09	769,67	730,81	478,33	1028,43	2182,5
EnR	9651,87	10303,87	9651,87	10303,87	9651,87	10303,87
EnR PV	4775,50	1826,64	4775,50	1826,54	4775,50	1826,54
EnR éolien	4876,37	8477,23	4876,37	8477,23	4876,37	8477,23
EnR perdue	1091,37	445,16	2031,28	870,56	7687,40	7622,77
EnR pompe	2431,97	2003,28	1477,51	1575,74	1964,47	2681,11
%EnR perdue	11,31%	4,32%	21,14%	8,45%	79,64%	73,98%
Rendement STEP	62,32%	38,42%	49,46%	30,41%	53,43%	83,00%
%EnR perdue	36,49%	23,76%	36,52%	23,74%		
sans STEP						
Part EnR	29,77%	29,24%	26,54%	27,98%	6,83%	7,95%
Part EnR sans STEP	21,31%	23,29%	21,20%	27,32%		
%non satisfait	0,208%	1,104%	0%	0,017%	6,92%	0,076%
% pic couvert			100%	98.83%	34.06%	98.85%

Tableau 3.4. Energies au cours des deux périodes pour les 3 stratégies de fonctionnement (en MWh)

Le système n'étant pas optimisé et la période de fonctionnement courte, on ne peut pas tirer de conclusions intéressantes, cependant on note :

- que la stratégie 3 n'est pas intéressante avec les caractéristiques utilisées dans cette simulation et ne le sera pas pour les autres configurations; en effet, les puissances produites par les systèmes photovoltaïques et éoliens ne servent qu'à alimenter les pompes et n'alimentent pas la charge directement : il n'y a donc pas d'intérêt à ce que les puissances PV et éoliennes soient très supérieures à celles des pompes ce qui limite l'intérêt du recours aux EnR et ce d'autant plus que l'énergie excédentaire à la puissance de la pompe est perdue alors qu'elle pourrait être aisément renvoyée directement à la charge. Nous décidons donc de ne pas étudier cette stratégie dans la suite de ce travail et de nous concentrer sur les stratégies 1 et 2.
- la part d'EnR perdue est faible pour la stratégie 2 voire très faible pour la stratégie 1 et dans les deux cas fortement réduite par rapport au même système sans le stockage d'énergie par STEP, un des objectifs recherché semble donc atteint.
- l'apport de la STEP est plus important en été qu'en hiver au niveau de la part des EnR dans la production totale.
- le rendement de la STEP est souvent faible car la STEP n'est probablement pas correctement dimensionnée ou le cyclage pas suffisant sur la période considérée. Ce paramètre n'a pas signification que s'il est calculé sur une période suffisamment longue.
- la part de la pointe de consommation satisfaite avec l'introduction de la STEP est très proche de 100% avec une part d'énergie perdue que l'on peut considérer comme faible ; l'objectif de combler les pointes de consommation avec un système hybride PV/Eolien/STEP semble donc sur ces deux périodes atteint.

3.5. Conclusion

Dans ce chapitre, nous avons présenté les profils de consommation ainsi que les stratégies de fonctionnement du couplage entre le système PV/Eolien et la STEP.

Simuler la totalité des moyens de production de l'île et la gestion des différents flux électriques est une tâche difficile ; par conséquent, nous avons essayé de nous rapprocher le plus possible de la situation réelle mais nous avons négligé la production hydraulique qui peut atteindre entre 25 et 30% de la production globale annuelle (surtout présente en hiver), ce qui est une hypothèse qui nous éloigne beaucoup de la situation réelle. Parmi les autres hypothèses, il a été décidé que le parc de production thermique est constitué de 8 moteurs de 20 MW, que le câble SACOI fournit 50 MW au réseau en permanence (hypothèse exacte) et que le second câble SARCO peut apporter au réseau électrique une puissance dépendante de la saison (dans la réalité, elle dépend de négociations permanentes avec ENEL, mais globalement elle délivre moins d'électricité en été qu'en hiver).

Nous avons également défini la pointe de consommation mais la définition que nous en avons donnée n'est pas unique et celle-ci pourrait être tout autre ; cependant, elle est importante car nous envisagerons d'avoir deux stratégies de fonctionnement de notre système dans lesquelles l'objectif premier est d'utiliser notre système PV/Eolien/STEP pour satisfaire ces pointes de consommation en lieu et place des turbines à combustion utilisées actuellement avec un coût de production du kWh électrique très élevé.

Enfin, nous avons présenté les 3 stratégies de fonctionnement et de gestion du système tout en gardant à l'esprit que ces stratégies sont peu applicables en situation réelle ; en effet, une gestion optimale d'un système complexe de mix énergétique ne peut se faire qu'en connaissant à l'avance les quantités d'énergie susceptibles d'être produites (ou consommées) par les différents moyens de production et en particulier les moyens utilisant des sources renouvelables intermittentes et imprévisibles.

La première stratégie a pour objectif d'augmenter la part des EnR intermittentes dans le mix énergétique tout en diminuant la quantité d'énergie perdue du fait de la limitation de la part des EnR à 30% de la puissance totale produite à chaque instant.

Les domaines de variation des différentes grandeurs intervenant dans les performances du système telles que volume du stockage, puissance installée de photovoltaïque et d'éolien, puissance du groupe de pompage/turbinage ont été choisis afin de rester dans un domaine réaliste :

- les volumes de stockage d'eau ont été déterminés à partir des volumes de stockage existant actuellement en Corse dans les diverses centrales hydrauliques ;
- la hauteur manométrique, prise constante à 400 mètres, a été aussi choisie après avoir passé en revue celles mises en jeu dans les centrales actuelles ;
- la gamme de puissance des éoliennes et centrales PV a été choisie en fonction des puissances actuellement installées et des perspectives attendues par les décideurs locaux et sachant que certaines centrales PV sont déjà déconnectées car la limite des 30% est parfois dépassée.
- la gamme de puissance des groupes pompage/turbinage a été choisie en fonction de celles existantes actuellement en Corse mais également en fonction des puissances installées de PV et d'éolien qui vont les alimenter en électricité.

Afin d'illustrer les trois stratégies proposées nous avons tracé les principales grandeurs énergétiques et calculer les paramètres caractérisant les performances du système PV/Eolien/STEP sur une période de 5 jours. Sur cette période, il a semblé que la stratégie 3

n'était pas judicieuse alors que la stratégie 2 semblait remplir sa mission i.e. combler les pics de consommation tout au moins sur la période considérée. Nous avons donc décidé de ne plus prendre en considération dans la suite de ce travail la stratégie 3.

Nous allons dans le chapitre 4 calculer ces principales grandeurs et principaux paramètres sur une période de 1 an pour différentes configurations du système étudié (volume de stockage, puissance installée PV et éolienne, puissances du groupe pompe/turbine). Nous étudierons l'influence des paramètres de configuration sur les grandeurs énergétiques et sur les performances globales du système afin d'en tirer des conclusions sur le meilleurs compromis pour une gestion optimale des flux d'énergie.

Chapitre 4

Influence des caractéristiques du système photovoltaïque/éolien/STEP sur ses performances énergétiques

4.1. Introduction

Notre objectif est d'observer l'influence des caractéristiques essentielles du système PV/Eolien/STEP (volume de stockage, puissance du groupe Pompe/turbine, Puissance installée photovoltaïque et éolienne) sur les performances énergétiques, sur l'augmentation du taux d'intégration des énergies renouvelables intermittente et la baisse de la part perdue des énergies renouvelables due à la limitation des 30% de la charge, mais également sur la part de la pointe couverte dans le cas de la stratégie 2.

Pour ce faire, nous allons, pour chacune des deux stratégies de fonctionnement, successivement faire varier chacune de ces caractéristiques tout en gardant les autres constants. Ainsi, nous pourrons tirer un certain nombre de conclusions sur l'influence de chaque caractéristique pour tenter de trouver la ou les meilleure(s) configuration(s).

Nous observerons ensuite la dépendance entre les paramètres de performances retenus ; part EnR et part du pic couvert versus pourcentage d'énergie perdue qui nous permettra de mettre en exergue les meilleures configurations du système photovoltaïque/éolien/STEP.

Nous discuterons également des avantages et inconvénients de chacune des deux stratégies et de leur efficacité par rapport au but recherché, celui d'augmenter la part des énergies renouvelables dans le mix énergétique tout en maintenant la sécurité du réseau électrique et sans qu'une partie trop importante de l'énergie soit perdue dans le premier cas et celui de couvrir le plus possible la pointe de consommation.

Nous allons donc calculer pour chaque stratégie de fonctionnement les grandeurs énergétiques et les paramètres de performances qui ont été définis dans le chapitre 3. Les Tableaux regroupant la totalité des résultats seront présentés dans l'annexe de ce manuscrit.

La structuration de ce chapitre est la suivante :

- premier niveau : la stratégie 1 ou 2 ;
- second niveau : influence du volume de stockage, des puissances du groupe -Pompe/Turbinage, des puissances installées photovoltaïques et des puissances installées éoliennes.
- dépendance des paramètres de performance entre eux.

4.2. Stratégie 1

4.2.1. Influence du volume de stockage

Le volume de stockage d'eau influe bien évidemment sur la quantité d'énergies renouvelables intermittentes stockables ; cependant il faut garder à l'esprit que si le groupe Pompe/Turbine est de faible puissance, ce stockage une fois vide risque de ne plus pouvoir se remplir complément et se comportera alors comme un stockage de volume inférieur.

Nous avons choisi de représenter les paramètres de performance pour 3 doubles configurations :

1.	$P_{pv} = 150 \text{ MWc}$	$P_{eole}=90 \text{ MW}$	Pompe/Turbine 4 x 20 MW et 4 x 10 MW
	1 pv 100111110		

- 2. $P_{pv} = 250 \text{ MWc}$ 3. $P_{pv} = 75 \text{ MWc}$ Peole=90 MW Pompe/Turbine 4 x 20 MW et 4 x 10 MW
- Peole=90 MW Pompe/Turbine 4 x 20 MW et 4 x 10 MW

Le volume de stockage a varié dans une gamme de 0,2 à 2 Mm³ toujours dans l'esprit de rester dans un domaine de variation compatible avec la réalité. Nous avons également calculé les performances du système sans la présence de la STEP afin de pouvoir juger de l'amélioration apportée par sa présence, ce qui l'objectif de la stratégie 1.

Nous présentons les principaux résultats obtenus sans la STEP dans le Tableau 4.1 (la totalité des résultats sont présentés en Annexe A4.1). Dans ce cas, les deux paramètres PartEnR* et PartEnR** sont identiques pour chaque configuration puisque la groupe Pompe/Turbine est absent, dans ce cas, l'énergie renouvelable utile est limitée à la part des EnR inférieure aux 30% de la charge.

P_{PV}	\mathbf{P}_{eole}	%perdu	%non satisfait	PartEnR
150	90	36,85%	0,59%	22,06%
250	90	47,60%	0,57%	22,55%
75	90	27,30%	0,63%	21,01%

Tableau 4.1. Principaux paramètres pour le système sans la STEP

On note à partir du Tableau 4.1 que la part de l'énergie renouvelable qui contribue à alimenter les consommateurs augmente peu quand les puissances installées PV et éoliennes augmentent.

Même sans la STEP, la part de l'énergie consommée non satisfaite est très faible, cela est dû à nos hypothèses au niveau des moyens de production choisis et de l'empilement de ces moyens ; l'apport de la STEP n'aura donc pas un effet important sur ce paramètre qui est déjà pratiquement nul, mais influera sur la part des énergies renouvelables dans le mix énergétique et sur le pourcentage de ces énergies intermittentes perdues du fait de la contrainte des 30%.

Nous avons reporté sur la Figure 4.1 la variation des principaux paramètres de performances en fonction du volume d'eau stockée : deux figures sont présentes pour chaque configuration, la première présentant les pourcentages de pertes EnR, de la charge non satisfaire et celle d'EnR dans la production, la seconde montre les performances de la STEP en terme de nombre de cycles et de rendement global. Les configurations sont précisées sur chaque figure.

Figure 4.1. Variation des paramètres de performance en fonction du volume d'eau stockée dans le cas de la stratégie 1 pour un groupe Turbine/pompe réversible.

Nous pouvons faire un certain nombre de constations :

- les paramètres de performances, quels qu'ils soient, varient très peu en fonction du volume de stockage pour une même configuration (même puissance installée d'EnR et même groupe Pompe/Turbine);
- les variations du pourcentage de la charge non satisfaite sont également faibles (échelle de droite) ; cela est dû au fait que les autres moyens de production n'étant pas totalement utilisés, ils comblent la partie non apportée par les EnR.
- ces variations ne sont pas décroissantes ou croissantes comme nous aurions pu nous y attendre car il aurait été « logique » que le volume de stockage augmentant, la part des EnR augmentent aussi et que le pourcentage perdue d'EnR diminue (ainsi que le pourcentage de non satisfaction de la charge). Or, il apparaît que la condition introduite dans la stratégie 1 de vider le réservoir lorsque le niveau de celui-ci a atteint 90% de sa capacité maximale soit à l'origine de ces irrégularités ; en fait, pendant la vidange du réservoir la production des EnR est limitée aux 30% de la charge, aucune partie de cette production ne pouvant alors être stockée). Selon la simultanéité ou non

de cette décharge avec une forte ou faible production EnR, les paramètres calculés varient beaucoup et introduisent des discontinuités.

- pour une même puissance installée d'EnR, le fait de diminuer la puissance des pompes/turbines augmente l'énergie EnR perdue puisque la partie des EnR au-delà des 30% qui pourrait alimenter les pompes est diminuée (la même raison explique la diminution de la part des EnR dans la production totale); l'énergie de la charge non satisfaite ne change pas car d'autres moyens de production remplaceront la partie EnR non utilisée.
- le rendement de la STEP ne varie pas en fonction du volume stockée et ne varie que légèrement quand la puissance installée EnR change ; par contre le nombre de cycles est fortement influencé par le volume de stockage ; plus le volume sera faible plus il sera amené à être vide puis de nouveau rempli.
- On note que le rendement de la STEP est de l'ordre de 66-72% ce qui est en accord avec la littérature et conforte nos hypothèses quant aux courbes de rendement des pompes et turbines que nous avons utilisées ; comme nous l'avons déjà précisé, le fait de travailler avec des énergies fortement fluctuantes pour alimenter la pompe explique que le rendement d'une STEP fonctionnant avec de EnR intermittentes soit plus faible que si elle était alimentée par une source « contrôlable » dont la puissance serait en permanence adaptée à la pompe pour qu'elle fonctionne à son rendement maximum.

Si on compare maintenant les résultats obtenus avec la STEP et sans elle, on note :

- que la présence de la STEP diminue l'énergie perdue de moitié voire des 2 tiers selon la puissance du groupe pompe/turbine et de la puissance installée ; plus la puissance pompe turbine est importante, plus de production en provenance d'énergies renouvelables (au-delà des 30%) peut lui être stockée, diminuant ainsi les pertes.
- la part des EnR augmente de près de 50% (d'environ 20% à 30%) et cette augmentation est d'autant plus importante que la puissance installée EnR et la puissance du groupe pompe/turbine est importante.

Dans l'annexe A4.1, apparaissent les nombres de pannes (dans la réalité de nombre de recours à une turbine à combustion), celles-ci sont très rares au printemps et en été et très nombreuses en hiver (1,5 fois/jour en moyenne), leur nombre est deux fois moins élevé en automne qu'en hiver.

4.2.2. Influence de la puissance du groupe Pompe/Turbine

La puissance du groupe Pompe/Turbine influe d'une part sur la part d'énergie perdue EnR puisque plus celle-ci est faible, plus la puissance EnR disponible au-delà des 30% qui alimentera la pompe sera faible ; d'autre part, si la puissance produite par la turbine n'est pas suffisamment élevée pour satisfaire la totalité de la puissance manquante de la charge, il y aura création d'une énergie de charge non satisfaite

Nous avons choisi de représenter les paramètres de performance pour 3 doubles configurations :

- 1. $P_{pv} = 150 \text{ MWc}$ $P_{eole} = 90 \text{ MW}$ Volume de stockage : 0,6 Mm³ et 1,2 Mm³
- 2. $P_{pv} = 250 \text{ MWc}$ $P_{cole}=90 \text{ MW}$ Volume de stockage : 0,6 Mm³ et 1,2 Mm³
- 3. $P_{pv} = 75 \text{ MWc}$ $P_{cole} = 90 \text{ MW}$ Volume de stockage : 0,6 Mm³ et 1,2 Mm³

La puissance du groupe Pompe/Turbine a varié dans une gamme de 20 MW (4 x 5 MW) à 80 MW (4 x 20 MW). Les puissances installées des systèmes PV et éoliens n'ayant pas changé, les performances du système sans la présence de la STEP sont toujours présentées dans le Tableau 4.1.

La totalité des résultats des performances en fonction de la puissance du groupe Pompe/Turbine sont présentés en Annexe A4.2). Nous avons reporté sur la Figure 4.2 la variation des principaux paramètres de performance en fonction de la puissance du groupe Pompe/Turbine.

Figure 4.2. Variation des paramètres de performance en fonction de la puissance du groupe Pompe/Turbine dans le cas de la stratégie 1 pour un groupe Turbine/pompe réversible.

Nous pouvons faire un certain nombre de constations :

- l'influence du volume de stockage est très faible sur les paramètres de performances, pour une même puissance du groupe Pompe/Turbine et les mêmes puissances installées EnR; les deux courbes pour chaque volume sont quasi-confondues; une légère influence sur la part de l'énergie EnR perdue est visible.
- les variations du pourcentage de la charge non satisfaite sont également faibles (de l'ordre de 0,04% sur la gamme de puissance) ; l'explication est la même que celle donnée pour l'influence du volume de stockage.
- L'influence de la puissance du groupe sur la part EnR semble plus importante que l'influence du volume de stockage.
- La variation la plus significative est au niveau de la part d'énergie perdue qui diminue fortement lorsque la puissance du groupe augmente, ce qui est évident car plus la puissance de la pompe est élevée, plus grande est la part de l'énergie EnR excédentaire aux 30% susceptible d'être utilisée pour alimenter la pompe et donc moins d'énergie EnR est perdue. Cette constatation avait déjà été faite dans le paragraphe précédent.
- le rendement de la STEP qui était très peu sensible au volume de stockage, l'est plus à la variation de puissance de groupe et ce d'autant plus que la puissance installée EnR est faible (75 kWc PV : 66-71% ; 150 kWc PV : 66-70% ; 250 kWc PV : 66-68%).
- le nombre de cycles augmente quand la puissance du groupe augmente pour un même volume de stockage puisque les débits mis en jeu seront plus importants et que le stockage pourra se remplir et se vider plus rapidement; ce nombre de cycles a tendance à se stabiliser et ce d'autant plus rapidement que le volume de stockage est grand.
- le rendement de la STEP est toujours dans une gamme en accord avec la littérature.

Si on compare maintenant les résultats obtenus avec la STEP et sans elle, on note :

• que la présence de la STEP diminue l'énergie perdue de moitié dans le cas de la puissance EnR installée la plus grande et entre un facteur 3 et 4 pour la puissance EnR installée la plus faible voire des 2 tiers selon la puissance du groupe pompe/turbine et de la puissance installée ; en augmentant encore la puissance de la pompe-turbine, nous pourrions atteindre une énergie EnR perdue nulle.

• la part des EnR augmente de l'ordre de 50% quand la puissance installée EnR est élevée (d'environ 22% à 32%), mais cette augmentation est moindre avec une faible puissance installée (environ 25%, de 21 à 27%).

4.2.3. Influence de la puissance installée éolienne

La puissance installée éolienne influe sur la part d'énergies renouvelables, mais également sur la part d'énergie perdue car si cette puissance installée est trop grande, l'énergie produite (ou susceptible de l'être) dépassera les 30% de la charge mais risque de ne pas pouvoir être utilisée par le groupe Turbine/pompe si la puissance de la pompe est dépassée.

Nous avons choisi de représenter les paramètres de performance pour 3 doubles configurations :

- 1. $P_{pv} = 100 \text{ MWc}$ Pompe/turbine : 4 x 20MW Volume : 0,6 Mm³ et 1,2 Mm³
- 2. $P_{pv} = 100 \text{ MWc}$ Pompe/turbine : 4 x 10MW Volume : 0,6 Mm³ et 1,2 Mm³
- 3. $P_{pv} = 200 \text{ MWc}$ Pompe/turbine : 4 x 20MW Volume : 0,6 Mm³ et 1,2 Mm³

La puissance installée éolienne a varié dans une gamme de 30 MW à 300 MW. Les puissances installées EnR variant, les performances du système sans la présence de la STEP varient pour chaque puissance installée éolienne, nous avons tracé sur la Figure 4.3 les performances du système sans STEP pour différentes puissances installées éoliennes.

Figure 4.3. Variation des paramètres de performance en fonction de la puissance installée éolienne pour un système sans STEP.

Il apparaît clairement que la part EnR tend à se stabiliser quand la puissance éolienne augmente ; en fait, à partir d'un certain seuil (120-150 MW) la puissance éolienne installée supplémentaire ne pourra plus être utilisée pour alimenter la charge directement, les 30% de la charge ayant été atteints ; cette constatation se retrouve sur la courbe représentative de la part d'énergie perdue qui se met à croître considérablement à partir de ce seuil. Il apparaît donc qu'il n'y a pas d'intérêt à augmenter la puissance installée des éoliennes au-delà d'une certaine valeur car cette augmentation ne fera qu'accroître l'énergie perdue.

La présence de la STEP devrait permettre de récupérer une partie de cette énergie perdue et de la rendre utilisable, mais seulement si la puissance produite par le parc éolien au-delà des 30% n'excède pas la puissance du groupe de pompage.

La totalité des résultats des performances en fonction de la puissance installée éolienne sont présentés en Annexe A4.3). Nous avons reporté sur la Figure 4.4 la variation des principaux paramètres de performances en fonction de la puissance installée éolienne.

Figure 4.4. Variation des paramètres de performance en fonction de la puissance installée éolienne dans le cas de la stratégie 1 pour un groupe Turbine/pompe réversible.

Si on compare les résultats obtenus avec la STEP et sans elle, on note :

- que la présence de la STEP n'intervient pas sur la part d'énergie non satisfaite car d'autres moyens de production d'énergie prennent la relève.
- au niveau de l'énergie perdue, la présence de la STEP la réduit dans des proportions qui dépendent de la puissance du groupe Pompe/Turbine, plus celle-ci est faible, moins l'influence de la STEP est importante ce qui est normal puisque la puissance de la pompe limite la part excédentaire des 30% utilisables.

Si on observe maintenant l'influence de la puissance installée éolienne sur les performances du système avec STEP, on constate :

- comme dans le cas du système sans STEP, qu'au-delà d'une valeur seuil la part des EnR dans la production ne varie que très peu (même explication que sans la STEP). Bien sûr, ce seuil de stabilisation est atteint pour une valeur plus importante de la puissance installée car avec la STEP, plus d'énergie renouvelable est utilisée. Au-delà de cette valeur seuil, une augmentation de la puissance installée éolienne n'aurait pas d'intérêt car la puissance électrique produite ne pourrait ni être envoyée à la charge directement ni être utilisée pour alimenter la pompe.
- que pour une même puissance installée et un même groupe Pompe/Turbine, l'influence de la capacité de stockage est faible comme nous avions déjà pu le constater dans le paragraphe 2.1 (courbes pratiquement confondues);
- que l'énergie EnR perdue peut être très faible quand la puissance installée éolienne est petite ;
- qu'au niveau des performances de la STEP, on a une chute du rendement global lorsque la puissance éolienne dépasse une valeur seuil ; cette valeur seuil est de l'ordre de 180 MW éolien quelle que soit la puissance PV installée et celle du groupe Pompe/Turbinage ; le rendement global se stabilise alors autour de 66%.
- que la valeur seuil de puissance installée à partir de laquelle le rendement et le nombre de cycles de la STEP devient constant est identique à celle pour laquelle la part d'EnR dans la production se stabilise.

• Le nombre de cycles se stabilise également pour cette valeur de 180 MW autour de 360 pour un groupe Pompe/turbine de 80 MW contre 200 pour un groupe de 40 MW.

Tout autre paramètre étant constant, il apparaît donc évident, que l'influence positive de la STEP est réelle (moins d'énergie perdue et augmentation de la part EnR) mais au-delà d'une puissance installée éolienne, plus aucune amélioration n'a lieu puisque la STEP n'est plus capable d'absorber plus de puissance électrique en provenance des systèmes éoliens (et photovoltaïques).

Le rendement global de la STEP atteint une valeur limite inférieure de 66% indépendamment des puissances des autres moyens de production (PV et STEP) pour une puissance installée éolienne de 180 MW environ ; le nombre de cycles atteint également une valeur asymptotique dépendante de la puissance du groupe Pompe/Turbine.

4.2.4. Influence de la puissance installée photovoltaïque

La puissance installée PV influe, comme pour la puissance éolienne, sur la part d'énergies renouvelables, mais également sur la part d'énergie perdue car si cette puissance installée est trop grande, l'énergie produite (ou susceptible de l'être) dépassera les 30% de la charge mais risque de ne pas pouvoir être utilisée par le groupe Turbine/pompe si la puissance de la pompe est dépassée.

Nous avons choisi de représenter les paramètres de performance pour 3 doubles configurations :

- 1. $P_{eole} = 90 \text{ MWc}$ Pompe/turbine : 4 x 20MWVolume : 0,6 Mm³ et 1,2 Mm³2. $P_{eole} = 90 \text{ MWc}$ Pompe/turbine : 4 x 10MWVolume : 0,6 Mm³ et 1,2 Mm³
- 3. $P_{eole} = 40 \text{ MWc}$ Pompe/turbine : 4 x 20MW Volume : 0,6 Mm³ et 1,2 Mm³

La puissance installée PV a varié dans une gamme de 30 MW à 300 MW. Comme pour l'éolien, les puissances installées EnR variant, les performances du système sans la présence de la STEP varient pour chaque puissance installée éolienne, nous avons tracé sur la Figure 4.5 les performances du système sans STEP pour différentes puissances installées éoliennes.

Figure 4.5. Variation des paramètres de performance en fonction de la puissance installée PV pour un système sans STEP.

Comme pour l'éolien, la part EnR tend à se stabiliser quand la puissance PV augmente ; à partir d'un seuil de l'ordre de 120 MWc la puissance PV installée supplémentaire ne pourra

plus être utilisée pour alimenter la charge directement, les 30% de la charge ayant été atteints ; cette constatation se retrouve sur la courbe représentative de la part d'énergie perdue qui se met à croître considérablement.

Si on compare la Figure 4.5 avec la Figure 4.3, on note deux différences principales : alors que la variation de la part EnR avec la puissance éolienne était sensiblement la même pour 100 et 200 MW PV installée, cette variation avec la puissance PV est plus significative selon la puissance éolienne (écart de l'ordre de 5-7%). Cela tend à montrer une influence plus forte de l'éolien sur la part EnR que le photovoltaïque.

On retrouve cette différence au niveau de la part d'énergie perdue, moins sensible à la variation de la puissance PV qu'éolienne ; on note d'ailleurs que cette part atteint des valeurs très proches de zéro quand la puissance éolienne est faible (courbe 40 MW éolien sur Figure 4.5), mais est plus élevée pour une puissance PV faible.

Ces deux constatations peuvent s'expliquer par le fait que l'énergie solaire n'est présente que le jour contrairement à l'énergie éolienne qui est présente aussi la nuit, donc produisant dans une période où la consommation est plus faible et donc donnant lieu à plus d'énergie perdue.

La totalité des résultats des performances en fonction de la puissance du groupe Pompe/Turbine sont présentés en Annexe A4.4). Nous avons reporté sur la Figure 4.6 la variation des principaux paramètres de performance en fonction de la puissance installée éolienne.

Figure 4.6. Variation des paramètres de performance en fonction de la puissance installée PV dans le cas de la stratégie 1 pour un groupe Turbine/pompe réversible.

Si on compare les résultats obtenus avec la STEP et sans elle, on peut faire les mêmes observations que celles pour la variation de puissance éolienne installée.

Si on observe maintenant l'influence de la puissance installée PV sur les performances du système avec STEP, on constate :

- comme dans le cas du système sans STEP, qu'au-delà d'une valeur seuil la part des EnR dans la production ne varie que très peu. Bien sûr, ce seuil de stabilisation est atteint pour une valeur plus importante de la puissance installée car avec la STEP, plus d'énergie renouvelable est utilisée. Les constations sont identiques à celles observées pour une augmentation de la puissance installée éolienne.
- que pour une même puissance installée et un même groupe Pompe/Turbine, l'influence de la capacité de stockage est faible sur la part EnR et la part EnR perdue, sauf quand la puissance éolienne installée est faible (Cas 3);
- que la variation de l'énergie EnR perdue en fonction de la puissance PV est différente de celle en fonction de la puissance éolienne ; en particulier, un changement de pente

présent dans la Figure 4.4 n'apparait plus dans la Figure 4.6, ou ne commence à apparaitre pour des puissances installée EnR (PV + Eolien) plus importantes.

- qu'au niveau des performances de la STEP, on a une chute du rendement global plus régulière qu'avec une variation de puissance éolienne mais toujours avec une stabilisation autour de 66% quand la puissance éolienne installée est faible (Cas 3). On retrouve, une coïncidence de valeur seuil (120-150 MWc) de puissance PV à partir de laquelle le rendement et le nombre de cycles de la STEP et la part d'EnR dans la production totale se stabilise.
- le rendement ne dépend pas de la taille du stockage comme l'énergie perdue mais beaucoup plus des puissances installées et de la taille des pompes ; la raison a été explicitée dans les paragraphes précédents.
- Le rendement atteignant 90% pour 30 et 60 MW Photovoltaïque ne doit pas être pris en compte car avec 120 -150 MW EnR installée, peu de puissance sert à alimenter la pompe alors que l'énergie turbinée prend en compte celle qui l'a été avant que le barrage soit vide; une grande part de l'énergie turbinée n'a pas été pompée au préalable, le rapport de ces deux énergies définissant le rendement global de la STEP n'est pas représentatif des performances de la STEP.
- Le nombre de cycles a tendance à se stabiliser comme nous l'avions déjà remarqué; dans le cas 3, avec de faibles puissances installées PV et éoliennes ; le nombre de cycles est extrêmement faible (il varie entre 2 et 115 pour un volume de stockage de 0,6 Mm³).

4.2.5. Conclusion partielle sur la stratégie 1 avec une pompe/turbine réversible

Ce paragraphe nous a permis de tirer un certain nombre de constatations relatives à l'influence des différentes grandeurs entrant dans la configuration du système photovoltaïque/éolien/STEP :

- le volume de stockage influe peu sur la part d'énergies renouvelables perdues ainsi que sur la proportion de la production EnR dans la production globale d'électricité ; il interviendra de manière importante sur le nombre de cycles sans affecter pour autant la valeur du rendement global de la STEP.
- la puissance installée éolienne a une influence un peu différente de celle de la puissance installée photovoltaïque au niveau de l'énergie EnR perdue, cette différence est due au fait que l'énergie éolienne est présente également la nuit en des périodes où les besoins en électricité sont réduits, créant ainsi principalement de l'énergie EnR perdue.
- qu'il s'agisse de puissance installée éolienne ou PV, on note un effet de seuil (plus net dans le cas de l'éolien) au-dessus duquel la part EnR n'augmente plus ou que très peu, impliquant que la quasi-totalité de la production EnR est alors perdue ; ce seuil dépend peu du volume de stockage mais est plus lié à la puissance du groupe Pompage/turbinage ; il est de l'ordre de 180 MW pour l'éolien et de 120 MWc pour le photovoltaïque.
- de même, l'influence de la puissance éolienne sur le nombre de cycles fait apparaître une tendance asymptotique, faisant tendre ce nombre vers une valeur constante dépendante du volume de stockage et de la puissance du groupe pompage/turbinage. Le rendement de la STEP décroit rapidement lorsque cette puissance augmente puis reste constante à partir d'une valeur seuil de puissance installée identique à celle à partir de laquelle la part d'EnR dans la production se stabilise. Le rendement global se stabilise alors autour de 66%. On retrouve, dans une moindre mesure ce même phénomène pour la puissance installée PV.

- la puissance du groupe Pompage/turbinage influe beaucoup sur la part de l'énergie perdue puisque celle-ci limite la puissance EnR au-delà des 30% de la charge susceptible d'alimenter la pompe et d'être réutilisée ultérieurement.
- il est apparu clairement que la présence de la STEP permet d'augmenter la part de la production EnR intermittente et de diminuer les pertes d'énergie EnR. La présence de la STEP diminue l'énergie perdue de moitié voire des 2 tiers selon la puissance du groupe pompe/turbine et de la puissance installée. La part des EnR augmente de près de 50% (d'environ 20% à 30%) et cette augmentation est d'autant plus importante que la puissance installée EnR et la puissance du groupe pompe/turbine est importante.
- chaque grandeur caractéristique du système a une influence positive sur un paramètre de performance mais tend à en dégrader un autre; par exemple, l'augmentation de la puissance éolienne et photovoltaïque permet d'augmenter la part des EnR dans la production totale ce qui est positif mais également la part d'EnR perdue, ce qui est négatif sauf dans le cas où cette puissance installée EnR est suffisamment faible pour que toute la puissance électrique produite au-delà des 30% de la consommation puisse être absorbée par le groupe Pompage/turbinage.
- satisfaire à la fois un taux élevé de participation des EnR dans la production électrique totale et rendre les pertes de production EnR négligeables est difficilement conciliable par la seule utilisation d'une STEP.
- il apparaît clairement que d'autres mesures doivent être prises pour optimiser un tel système au sein d'un système de production d'électricité complexe, mesures sur lesquelles nous reviendrons en conclusion générale de ce travail.
- il est important de rappeler également que la stratégie de fonctionnement et de gestion des flux d'énergie utilisée ici n'est pas optimale et que par conséquent, l'apport d'une STEP au niveau de l'amélioration des performances du système global de production d'électricité sera bien plus intéressante avec une stratégie optimisée de gestion des flux d'énergie.

4.3. Stratégie 2

Cette stratégie, comme nous l'avons vu dans le chapitre 3, diffère de la première stratégie par le fait que l'énergie produite par la STEP (lors du turbinage) est utilisée pour écrêter les pointes (ou pics) de consommation. La puissance électrique des EnR est envoyée directement à la charge dans la limite des 30% de celle-ci, et le surplus alimente la pompe dans la limite de la puissance des pompes, le reste étant perdu. Les turbines ne produiront de l'électricité uniquement pour alimenter la charge au moment des pointes de consommation.

Nous ne calculerons plus l'énergie non satisfaite car celle-ci varie très peu comme nous l'avons vu dans le cas de la stratégie 1. Nous introduirons un nouveau paramètre, le pourcentage du pic couvert, qui nous permettra de juger de l'apport de la STEP.

Avec cette stratégie, l'objectif n'est plus à proprement parlé d'augmenter la part des EnR, bien qu'elle augmentera inévitablement, mais de diminuer l'utilisation des turbines à combustion, conçues pour les pointes de consommation et dont le coût de production du kWh est extrêmement élevé.

Dans cette stratégie, l'énergie turbinée alimente le pic de consommation ; elle est donc liée à la charge. L'énergie du pic couvert est égale à l'énergie de turbinage.

Cette énergie de turbinage dépend des puissances installées EnR, de la puissance du groupe de turbinage/pompage et du volume du stockage. Plusieurs cas peuvent se présenter :

- la puissance des turbines est inférieure à la puissance maximale appelée par le pic de consommation, dans ce cas le pic ne pourra être totalement couvert, indépendamment des puissances installées EnR.
- si la puissance des turbines permet de satisfaire le pic, pour que la pointe soit satisfaite il faut qu'il y ait suffisamment d'eau dans le réservoir. Pour cela, la quantité d'eau pompée précédemment doit être suffisante, supérieure à celle qui sera turbinée (à cause des rendements de conversion).
- l'énergie pompée peut être limitée de deux manières, par la puissance nominale des pompes insuffisante pour remonter assez d'eau sur la période de pompage (dans ce cas, quelle que soit la puissance EnR installée, elles ne pourront remonter suffisamment d'eau) et/ou celle des puissances installées EnR trop faibles pour faire fonctionner les pompes à un niveau de charge suffisante.
- si la quantité d'eau pompée est trop faible (si l'énergie pompée est trop faible), au début de la période de simulation, de l'eau sera turbinée sur la réserve qui se videra ; une fois la réserve d'eau vide, l'énergie turbinée sera directement liée à celle pompée, le rendement de la STEP (rapport énergie turbinée sur énergie pompée) restera alors pratiquement contant et la part de la pointe couverte ne dépendra plus que de la puissance installée EnR.

Comme pour la stratégie 1, nous allons observer successivement l'influence des différentes caractéristiques du système PV/Eolien/STEP sur les paramètres de performances (% de pic couvert, part EnR, part EnR perdue).

4.3.1. Influence du volume de stockage

Nous avons choisi de représenter les paramètres de performance pour 3 doubles configurations :

- 1. $P_{pv} = 75 \text{ MWc}$ $P_{eole} = 90 \text{ MW}$ Pompe/Turbine 4 x 20 MW et 4 x 15 MW
- 2. $P_{pv} = 150 \text{ MWc}$ $P_{eole} = 90 \text{ MW}$ Pompe/Turbine 4 x 20 MW et 4 x 15 MW
- 3. $P_{pv} = 250 \text{ MWc}$ $P_{eole} = 90 \text{ MW}$ Pompe/Turbine 4 x 20 MW et 4 x 15 MW

Le volume de stockage a varié dans une gamme de 0,2 à 1,5 Mm³ toujours dans l'esprit de rester dans un domaine de variation compatible avec la réalité et en gardant à l'esprit que l'objectif est de ne satisfaire que la pointe de consommation, donc avec un volume de stockage plus faible que dans le cas de la stratégie 1. Nous avons également calculé les performances du système sans la présence de la STEP afin de juger de l'amélioration apportée au niveau de l'énergie perdue et de la part EnR.

Les principaux résultats obtenus sans la STEP sont présentés dans le Tableau 4.1 (la totalité des résultats sont présentés en Annexe A4.5).

Nous avons reporté sur la Figure 4.7 la variation des principaux paramètres de performance en fonction du volume d'eau stockée : deux figures sont présentes pour chaque configuration, la première présentant les pourcentages de pertes EnR, de pic satisfait et d'EnR dans la production, la seconde montrent les performances de la STEP en termes de nombre de cycles et de rendement global.

Figure 4.7. Variation des paramètres de performance en fonction du volume d'eau stockée dans le cas de la stratégie 2 pour un groupe Turbine/pompe réversible.

On constate que les allures des courbes sont différentes de celles obtenues dans le cas de la stratégie 1.

Dans les 6 configurations étudiées, on constate que la part du pic couvert peut atteindre 80% (cas 3) ; même avec une puissance EnR installée modeste, on peut satisfaire entre 65 et 70% de ce pic !

La part EnR varie peu en fonction du volume de stockage et ce d'autant plus que la puissance EnR installée totale (PV + éolien) est élevée.

Le pourcentage d'énergie EnR perdue est peu influencé par l'augmentation du volume d'eau stocké comme nous l'avions déjà vu avec la stratégie 1 ; l'influence du volume sur l'énergie perdue ne se fait sentir que lorsque la puissance installée EnR totale est faible (cas 1).

La part du pic couverte est fortement liée au volume de stockage, mais sa variation en fonction du volume tend vers une asymptote dont la valeur dépend de la puissance du groupe Pompe/turbine et cette dépendance vis-à-vis de la puissance du groupe pompe/turbine est d'autant plus grande que la puissance EnR installée totale augmente. De plus, cette valeur asymptotique est d'autant plus vite atteinte que la puissance EnR installée est grande.

Pourquoi cette tendance asymptotique : au départ, du fait de la disponibilité d'eau stockée (réservoir plein) l'énergie turbinée (égale à l'énergie de pointe couverte) est liée à la puissance des turbines qui fonctionnent soit à pleine puissance (si leur puissance nominale est inférieure à celle appelée par la pointe), soit à la puissance appelée par la pointe. Si cette puissance EnR ou celle de la pompe est trop faible, la quantité d'eau pompée ne permettra pas de retrouver le niveau précédent du réservoir et le réservoir se videra (et ce d'autant plus vite que le réservoir est petit). Tant que le réservoir n'est pas vide, l'énergie turbinée est maximale car non limitée par la puissance EnR installée, une fois vide elle dépendra de l'énergie pompée (la turbine ne pourra utiliser que l'eau qui ara été préalablement pompée). Donc, pour de petites puissances installées, ou de faibles puissances de groupe, l'énergie turbinée augmente avec le volume d'eau stockée, d'où augmentation de la part couverte de la pointe. Quand le volume sera très grand, il ne sera pas vide et l'énergie turbinée restera la même d'où stabilisation de l'énergie turbinée.

Si on compare les résultats obtenus avec et sans STEP, on note que la part EnR varie très peu, amélioration de l'ordre de 1%, et que la part d'énergie EnR perdue ne s'améliore que de 2 à 4%.

La part d'énergie perdue dans le cas 3 autour de 45% ne permet pas de considérer cette configuration comme envisageable.

Au niveau des performances de la STEP, le nombre de cycles est fortement diminué par rapport à la stratégie 1, atteignant au maximum pour nos configurations 73 cycles/an.

Le comportement du rendement global de la STEP en fonction du volume change selon la puissance EnR installée : il est d'autant plus important que la puissance EnR installée est faible, il augmente avec le volume à faible puissance EnR installée, puis à plus grande puissance EnR, il atteint une valeur haute dépendante de la puissance du groupe Pompe/turbine avant de diminuer pour des valeurs du volume stockée plus élevée.

Le rendement global de la STEP diminue quand la puissance EnR installée augmente car pour de fortes puissances installées, une quantité d'eau plus importante sera pompée alors la quantité d'eau turbinée ne dépendra pas de la puissance éolienne et PV mais uniquement de la charge électrique à satisfaire ; on augmente ainsi l'énergie utilisée

pour le pompage sans augmenter celle pour le turbinage avec pour effet de diminuer le rendement global de la STEP.

Comme nous l'avons dit, plus le volume est important, plus l'énergie turbinée est grande puis elle se stabilise ; l'énergie pompée augmente avec le volume, car plus le volume est grand moins souvent il atteindra le niveau haut et arrêtera le pompage. Le rendement augmentera donc en fonction du volume, soit il augmentera tant que l'énergie turbinée augmente puis se stabilisera voire diminuera légèrement quand l'énergie turbinée se stabilisera.

De nouveau, le cas 3 présente de faible performance en termes de rendement global qui reste entre 63 et 64%.

4.3.2. Influence de la puissance du groupe Pompe/Turbine réversible

Nous avons choisi de représenter les paramètres de performance pour 3 triples configurations, il nous a paru intéressant d'envisager un troisième volume de stockage de 0,2 m³.

1.	$P_{pv} = 75 \text{ MWc}$	Peole=90 MW	Volume de stockage : $0,2, 0,5$ et $1m^3$
2.	$P_{pv} = 150 \text{ MWc}$	Peole=90 MW	Volume de stockage : $0,2, 0,5$ et $1m^3$
3.	$P_{pv} = 250 \text{ MWc}$	Peole=90 MW	Volume de stockage : $0,2, 0,5$ et $1m^3$

On fait varier la puissance du groupe Pompe/turbine de 4 x 5 à 4 x 20 MW (20 à 80 MW). Les puissances installées des systèmes PV et éoliens n'ayant pas changé, les performances du système sans la présence de la STEP sont toujours présentées dans le Tableau 4.1.

La totalité des résultats des performances en fonction de la puissance du groupe Pompe/Turbine est présenté en Annexe A4.6). Nous avons reporté sur la Figure 4.8 la variation des principaux paramètres de performance en fonction de la puissance du groupe Pompe/Turbine pour les trois volumes de stockage.

Figure 4.8. Variation des paramètres de performance en fonction de la puissance du groupe Pompe/Turbine dans le cas de la stratégie 2 pour un groupe Turbine/pompe réversible.

La part d'EnR dans la production et la part d'EnR perdue ne dépendent que très peu de la puissance du groupe Pompe/Turbine ; la part d'énergie perdue varie tout au plus de 1-1,5% sur la gamme de variation de puissance du groupe Pompage/turbinage quel que soit le cas et le volume du stockage.

On constate que le pourcentage du pic couvert augmente avec la puissance du groupe Pompage turbinage ; plus la puissance de ce groupe est faible, plus la puissance de turbinage est limitée et réduit la part de la pointe couverte, mais la puissance du groupe limite également la puissance de pompage et donc la puissance EnR utilisée pour le pompage.

Le pourcentage du pic couvert tend vers une asymptote différente selon le volume du stockage ; c'est donc le stockage qui limite le pourcentage du pic couvert.

Même avec la plus faible puissance EnR installée (cas 1) le pourcentage de pic couvert atteint 58%.

Au niveau des performances de la STEP, le nombre de cycles dépend peu de la puissance du groupe turbine/pompe et bien plus du volume de stockage d'eau.

Le rendement global de la STEP varie d'autant plus que la puissance installée EnR est faible mais pour une même configuration (puissance groupe + puissance EnR installée), il est d'autant plus important que la puissance EnR installée est petite. Le rendement tout d'abord croît avec la puissance du groupe puis diminue après avoir atteint sa valeur maximale.

Dans le cas 3, l'énergie perdue est trop élevée pour que cette configuration puisse être envisagée.

4.3.3. Influence de la puissance installée éolienne

Nous avons choisi de représenter les paramètres de performance pour 3 doubles configurations :

- 1. $P_{pv} = 100 \text{ MWc}$ Pompe/turbine : 4 x 20MW Volume : 0,6 Mm³ et 1,2 Mm³
- 2. $P_{pv} = 100 \text{ MWc}$ Pompe/turbine : 4 x 10MW Volume : 0,6 Mm³ et 1,2 Mm³
- 3. $P_{pv} = 200 \text{ MWc}$ Pompe/turbine : 4 x 20MW Volume : 0,6 Mm³ et 1,2 Mm³

La puissance installée éolienne a varié dans une gamme de 30 MW à 300 MW comme dans le cas de la stratégie 1. Les performances du système sans STEP sont les mêmes que celles présentées sur la Figure 4.3.

La totalité des résultats des performances en fonction de la puissance installée éolienne du groupe Pompe/Turbine est présenté en Annexe A4.7). Nous avons reporté sur la Figure 4.9 la variation des principaux paramètres de performances en fonction de la puissance installée éolienne.

Figure 4.9. Variation des paramètres de performance en fonction de la puissance installée éolienne dans le cas de la stratégie 2 pour un groupe Turbine/pompe réversible.

Si on compare les résultats obtenus avec la STEP et sans elle, on note que l'introduction de la STEP ne diminue pratiquement pas la part d'EnR perdue, tout au plus de 1 à 2%. De même, la part d'EnR au sein de la production n'augmente la part des EnR de manière significative la part des EnR dans la production totale.

Si on observe maintenant l'influence de la puissance installée éolienne sur les performances du système avec STEP, on constate :

- très peu d'influence de la capacité de stockage sur l'énergie perdue et la part EnR
- que l'énergie EnR perdue peut être très faible quand la puissance installée éolienne est petite, mais le taux de couverture de la pointe est alors faible ;
- il apparaît une valeur de puissance installée éolienne (autour de 90 MW) à partir de laquelle les variations des paramètres de performance deviennent plus faibles quelle que soit la configuration du système. Cela concerne à la fois le taux de couverture de la pointe, la part EnR, le nombre de cycles de la STEP voire même la part EnR perdue.

- qu'au niveau des performances de la STEP, on a une chute du rendement global lorsque la puissance éolienne augmente et on ne voit plus l'existence du rendement limite qui était présent avec la stratégie 1. Par contre, avec la stratégie 2, le rendement de la STEP est plus faible qu'avec la stratégie 1.
- Le nombre de cycles ne se stabilise plus mais augmente puis diminue après 90 MW également dans les cas 1 et 2. Pour le cas 3, il ne fait que décroitre car la puissance totale EnR installée est trop importante ; cette configuration (cas 3) ne peut être envisagée car la puissance installée EnR est bien trop importante et les taux d'EnR perdue énorme.

La constatation essentielle est l'existence de cette valeur seuil de 90 MW éolien installés audelà de laquelle les coefficients de performance diminuent ou se stabilisent, nous reviendrons sur cette valeur dans la suite de ce travail.

4.3.4. Influence de la puissance installée photovoltaïque

Nous avons choisi de représenter les paramètres de performance pour 4 doubles configurations :

1.	$P_{eole} = 90 \text{ MW}$	Pompe/turbine : 4 x 20MW	Volume : $0,6 \text{ Mm}^3$ et $1,2 \text{ Mm}^3$
2.	$P_{eole} = 90 \text{ MW}$	Pompe/turbine : 4 x 15MW	Volume : $0,6 \text{ Mm}^3 \text{ et } 1,2 \text{ Mm}^3$
3.	$P_{eole} = 90 \text{ MW}$	Pompe/turbine : 4 x 10MW	Volume : $0,6 \text{ Mm}^3 \text{ et } 1,2 \text{ Mm}^3$
4.	$P_{eole} = 40 \text{ MW}$	Pompe/turbine : 4 x 20MW	Volume : $0,6 \text{ Mm}^3 \text{ et } 1,2 \text{ Mm}^3$

La puissance installée PV a varié dans une gamme de 30 MW à 300 MW. Les performances du système sans STEP sont les mêmes que celles présentées sur la Figure 4.5.

La totalité des résultats des performances en fonction de la puissance installée éolienne du groupe Pompe/Turbine est présenté en Annexe A4.7). Nous avons reporté sur la Figure 4.10 la variation des principaux paramètres de performances en fonction de la puissance installée éolienne.

Figure 4.10. Variation des paramètres de performance en fonction de la puissance installée PV dans le cas de la stratégie 2 pour un groupe Turbine/pompe réversible.

Le rendement de la STEP dans le 4^{ème} cas atteint des valeurs aberrantes bien trop élevées, nous l'avions déjà constaté dans le paragraphe 3.5, l'explication a été donnée : une énergie turbinée sur les réserves pour laquelle il n'y a pas eu d'énergie pompée induisant un rendement infini non représentatif sur une période finie.

La présence d'un seuil au-delà duquel la variation des performances est moindre ou constante est moins visible qu'avec la variation de la puissance éolienne mais il semble apparaître pour une valeur de 100-110 MWc.

La plupart des commentaires réalisés avec la variation de la puissance éolienne installée sont valables pour la variation de la puissance PV. On retrouve cependant quelques différences au niveau de la part d'EnR perdue avec un impact plus important de l'éolien par rapport au PV dont nous avons déjà parlé avec la stratégie 1.

4.3.5. Conclusion partielle sur la stratégie 2 avec une pompe/turbine réversible

Cette stratégie de fonctionnement donne des résultats très prometteurs car elle permet d'obtenir des taux de recouvrement de la pointe de consommation élevés ce qui était l'objectif recherché. Ce paragraphe nous a permis de tirer un certain nombre de constatations relatives à l'influence des différentes grandeurs entrant dans la configuration du système photovoltaïque/éolien/STEP :

- tout d'abord cette stratégie ne permet pas d'augmenter de manière significative la part d'énergie EnR dans le système ni réduire la part perdue de production renouvelable.
- le pourcentage d'énergie EnR perdue est peu influencé par l'augmentation du volume d'eau stockée comme nous l'avions déjà vu avec la stratégie 1 ; l'influence du volume sur l'énergie perdue ne se fait sentir que lorsque la puissance installée EnR totale est faible.
- la part du pic couvert est fortement liée au volume de stockage, mais sa variation en fonction du volume tend vers une asymptote dont la valeur dépend de la puissance du groupe Pompe/turbine et cette dépendance vis-à-vis de la puissance du groupe pompe/turbine est d'autant plus grande que la puissance EnR installée totale augmente.

- comme pour la stratégie 1, la puissance installée éolienne a une influence un peu différente de celle de la puissance installée photovoltaïque au niveau de l'énergie EnR perdue, cette différence est due au fait que l'énergie éolienne est présente également la nuit en des périodes où les besoins en électricité sont réduits, créant ainsi principalement de l'énergie EnR perdue.
- qu'il s'agisse de puissance installée éolienne ou PV, on note un effet de seuil (plus net dans le cas de l'éolien) au-dessus duquel le taux de couverture de la pointe, la part EnR, le nombre de cycles de la STEP voire même la part EnR perdue varie plus doucement ou se stabilise. Ce seuil est de l'ordre de 90 MW (contre 180 MW dans le cas de la stratégie 1) pour l'éolien et de 100-110 MWc (contre 120 MWc pour la stratégie 1) pour le photovoltaïque.
- la part d'EnR dans la production et la part d'EnR perdue ne dépendent que très peu de la puissance du groupe Pompe/Turbine (tout au plus de 1-1,5% pour l'énergie perdue).
- le pourcentage du pic couvert augmente avec la puissance du groupe Pompage turbinage ;
- Il est important de rappeler que la stratégie de fonctionnement et de gestion des flux d'énergie utilisée ici n'est pas optimale et que par conséquent, l'apport d'une STEP pour satisfaire au maximum la pointe de consommation sera bien plus important avec une stratégie optimisée de fonctionnement du système.

4.4. Relation part énergie perdue/part EnR et part énergie perdue/part de la pointe couverte

4.4.1. Stratégie 1

Pour chacune des 24 configurations étudiées dans le paragraphe 2, nous avons tracé la part EnR dans la production totale d'électricité en fonction de la part d'énergie renouvelable perdue. 4 figures ont été utilisées pour illustrer le rapport entre ces deux grandeurs :

- Figure 4.11 : configurations pour lesquelles la puissance éolienne installée varie ;
- Figure 4.12 : configurations pour lesquelles la puissance photovoltaïque installée varie ;
- Figure 4.13 : configurations pour lesquelles la puissance du groupe pompage/turbinage varie ;
- Figure 4.14 : configurations pour lesquelles le volume de stockage d'eau varie.

La part EnR qui a été reportée sur les Figures est la part EnR**.

Le Tableau 4.2 synthétise les caractéristiques des 24 configurations (une case vide = cette caractéristique varie).

Numéro configuration	Puissance PV (MWc)	Puissance éolien (MW)	Puissance groupe pompage/turbinage (MW)	Volume stockage (Mm ³)
 1	100		80	0,6
2	100		80	1,2
3	100		40	0,6
4	100		40	1,2
5	200		80	0,6
6	200		80	1,2
 7		90	80	0,6
8		90	80	1,2
9		90	40	0,6
10		90	40	1,2
11		40	80	0,6
12		40	80	1,2
 13	150	90		0,6
14	150	90		1,2
15	250	90		0,6
16	250	90		1,2
17	75	90		0,6
18	75	90		1,2
 19	150	90	80	
20	150	90	40	
21	250	90	80	
22	250	90	40	
23	75	90	80	
24	75	90	40	

Tableau 4.2. Caractéristiques des différentes configurations comparées pour la stratégie 1

Figure 4.11. Part EnR dans la production totale versus Part EnR perdue – Configuration avec puissance éolienne variable.

Figure 4.12. Part EnR dans la production totale versus Part EnR perdue – Configuration avec puissance photovoltaïque variable.

Figure 4.13. Part EnR dans la production totale versus Part EnR perdue – Configuration avec puissance groupe pompage/turbinage variable.

Figure 4.14. Part EnR dans la production totale versus Part EnR perdue – Configuration avec volume de stockage variable.

Les résultats observés permettent de retrouver une partie des constatations décrites dans le paragraphe 2.

Il convient ici de rechercher une configuration qui permet à la fois d'obtenir un taux de participation de la production EnR intermittente le plus élevé possible tout en évitant une perte d'énergies renouvelable perdue d'énergie renouvelables trop importante. Il ne semble pas judicieux d'accepter un système de production électrique au sein duquel la production EnR intermittente, du fait de sa forte variabilité et de sa non concordance temporelle avec la charge, perde plus de 20 à 25 % d'énergie EnR.

Sur la Figure 4.11, l'allure des courbes montrent une croissance rapide du taux EnR en fonction de la part EnR perdue puis une stabilisation ou tout au moins une croissance plus faible. Au-delà de 25-28% de pertes d'énergie EnR, la part EnR dans la production totale d'électricité n'augmente que très peu pour une configuration donnée. Les configurations n°2 et 6 permettent d'atteindre 31% de la production d'électricité totale en ne perdant que 24-25% d'énergie EnR. Les caractéristiques des deux systèmes permettant d'atteindre ces objectifs sont :

- Configuration 2 : PV : 100 MWc Eolien : 150 MW Pompe/turbine : 80 MW Volume = 1,2 Mm³
- Configuration 6 : PV : 200 MWc Eolien : 120 MW Pompe/turbine : 80 MW Volume = 1,2 Mm³

Ces deux systèmes sans la STEP avaient pour performances :

- Configuration 2 : Part EnR perdue = 49,73% Part EnR dans production : 23,21%
- Configuration 6 : Part EnR perdue = 49,91% Part EnR dans production : 23,35%

On augmente ainsi, du fait de la présence de la STEP, la part EnR de 8% en absolu soit 35% en relatif.

On note également que la part d'énergies renouvelables quelle que soit la configuration ne descend pas au-dessous de 15%.

Sur la Figure 4.12, on constate également une stabilisation du taux d'EnR dans la production totale. Les configurations 7 et 8 donnent des résultats très peu différents. Pour 25% d'énergie perdue, les caractéristiques du système A permettant d'atteindre un taux EnR aux alentours de 30% est :

• $PV: 300 \text{ MWc Eolien}: 90 \text{ MW Pompe/turbine}: 80 \text{ MW Volume} = 1,2 \text{ Mm}^3$

Cependant le taux EnR varie peu et pour le même système avec une puissance PV de 210 MW (système B), le taux EnR est de 28,84% pour une perte d'EnR de seulement 20,10%. Ce système a donc de bonnes performances.

Les deux systèmes A et B sans la STEP conduisent respectivement à des parts EnR et des Parts EnR perdue de 22,68% et 51,77% pour A et 22,4% et 43,72%.

La Figure 4.13 montre que pour une même part d'EnR dans la production totale, le taux d'EnR perdue varie fortement : pour 25% de part EnR, l'énergie perdue peut représenter 7%, 24% et 39,8% selon la configuration choisie. Il apparaît clairement l'intérêt de bien choisir le meilleur système et que le choix de la puissance du groupe pompage/turbinage est essentiel. Les courbes des configurations 13 et 14, 15 et 16, 17 et 18 respectivement se confondent car elles ont la même puissance EnR installée. Deux systèmes paraissent intéressants celui C conduisant à 29% de part EnR pour une part EnR perdue de 25% (configuration 16) et celui D de part EnR 27,6% pour 14% d'énergie EnR perdue (configuration 14). Il s'agit de :

- $C : PV : 250 \text{ MWc Eolien} : 90 \text{ MW Pompe/turbine} : 80 \text{ MW Volume} = 1,2 \text{ Mm}^3$
- D : PV : 150 MWc Eolien : 90 MW Pompe/turbine : 80 MW Volume = 1,2 Mm³

Le système D permet d'atteindre à peu près les mêmes performances avec presque la moitié de puissance PV installée, il sera donc préféré.

Comme pour l'influence de la puissance installée PV, si on réduit de 1% la part EnR, dans le cas de la configuration 14, l'énergie perdue représente 28,07%.

La Figure 4.14 montre des variations très semblables à celles observée sur la Figure 4.13. On note pour un même pourcentage d'EnR des parts d'EnR perdues très différentes. La configuration (21) permet d'atteindre 29,5% de part EnR pour un pourcentage d'EnR perdue de 24% avec le système de caractéristique suivant :

• PV : 250 MWc Eolien : 90 MW Pompe/turbine : 80 MW Volume = 1,4 Mm3

C'est-à-dire pratiquement les mêmes performances que pour le système D.

On constate que tous les systèmes qui montrent les meilleures performances, parmi ceux étudiés, ont un volume de stockage de 1,2 Mm³ et 80 MW de pompe/turbine c'est-à-dire les valeurs maximales testées ; on note cependant que lorsque l'on s'éloigne un peu de ces valeurs pour le volume de stockage et la puissance pompe/turbine, les performances restent du même ordre de grandeur.

4.4.2. Stratégie 2

Pour chacune des 29 configurations étudiées dans le paragraphe 3, nous avons tracé la part du pic couvert en fonction de la part d'énergie renouvelable perdue. 4 figures ont été utilisées pour illustrer le rapport entre ces deux grandeurs :

• Figure 4.15 : configurations pour lesquelles la puissance éolienne installée varie ;

- Figure 4.16 : configurations pour lesquelles la puissance photovoltaïque installée varie ;
- Figure 4.17 : configurations pour lesquelles la puissance du groupe pompage/turbinage varie ;
- Figure 4.18 : configurations pour lesquelles le volume de stockage d'eau varie.

Le Tableau 4.3 synthétise les caractéristiques des 29 configurations (une case vide = cette caractéristique varie).

Numéro configuration	Puissance PV (MWc)	Puissance éolien (MW)	Puissance groupe pompage/turbinage (MW)	Volume stockage (Mm ³)
1	100		80	0,6
2	100		80	1,2
3	100		40	0,6
4	100		40	1,2
5	200		80	0,6
6	200		80	1,2
7		90	80	0,6
8		90	80	1,2
9		90	60	0,6
10		90	60	1,2
11		90	40	0,6
12		90	40	1,2
13		40	80	0,6
14		40	80	1,2
15	75	90		0,2
16	75	90		0,5
17	75	90		1
18	150	90		0,2
19	150	90		0,5
20	150	90		1
21	250	90		0,2
22	250	90		0,5
23	250	90		1
24	75	90	80	
25	75	90	60	
26	150	90	80	
27	150	90	60	
28	250	90	80	
29	250	90	60	

Tableau 4.3. Caractéristiques des différentes configurations comparées pour la stratégie 2

Figure 4.15. Part du pic couvert versus Part EnR perdue – Configuration avec puissance éolienne variable.

Figure 4.16. Part du pic couvert versus Part EnR perdue – Configuration avec puissance photovoltaïque variable.

Figure 4.17. Part du pic couvert versus Part EnR perdue – Configuration avec puissance groupe pompage/turbinage variable.

Figure 4.18. Part du pic couvert versus Part EnR perdue – Configuration avec volume de stockage variable.

Les résultats observés sont très intéressants et on retrouve un bon nombre des constatations décrites dans le paragraphe 3.

Il convient de concilier à la fois un taux de couverture de la pointe satisfaisant sans trop perdre d'énergie renouvelables. Il semble inopportun d'accepter un système de production électrique au sein duquel la production EnR intermittente, du fait de sa forte variabilité et de sa non concordance temporelle avec la charge, perde plus de 20 à 25 % d'énergie EnR.

Sur la Figure 4.15 il apparaît nettement qu'au-delà de 27% de perte d'énergie EnR, la part de la pointe couverte n'augmente que très peu pour une configuration donnée. La configuration n°2 permet d'atteindre 64% de pic couvert en ne perdant que 26% d'énergie EnR (la puissance éolienne est alors de 90 MW, part EnR*=22,75%), compromis tout à fait

acceptable. Notons également que les valeurs des puissances installées EnR (PV et éolienne) correspondent à celles des seuils qui sont apparus au cours de l'étude du paragraphe 3.

Sur la Figure 4.16, on constate que la part EnR perdue peut atteindre des valeurs très proches de zéro mais avec un taux de recouvrement de la pointe tout au plus de 10%. Par contre, la configuration 8, permet d'atteindre les mêmes performances pour une puissance PV de 90 MW, c'est-à-dire pour les mêmes caractéristiques que précédemment. La stabilisation de la part du pic couvert quand la part d'énergie perdue devient élevée est moins visible que dans le cas de la variation de la puissance installée éolienne, ainsi augmenter légèrement la puissance installée PV peut permettre de gagner un peu de taux de recouvrement sans générer trop d'énergie perdue supplémentaire.

La Figure 4.17, bien différente de celle obtenue avec la stratégie 1, montre que pour une même part d'énergie perdue, le taux de recouvrement de la pointe varie fortement (entre 32 et 41% de variation). Les meilleures configurations pour chaque part d'énergie perdue sont la 17, 20 et 23 c'est-à-dire celles correspondantes au volume de stockage maximum de 1 Mm^3 . Pour chacune de ces trois configurations, le point de taux de recouvrement maximum correspond à une puissance du groupe pompage/turbinage de 4 x 20MW. Ne pouvant envisager un système avec un taux très élevé d'énergie perdue la configuration 17 semble être la meilleure.

La Figure 4.18 montre des variations très semblables à celles observées sur la Figure 4.17. Les courbes représentatives des configurations 24 et 25, 26 et 27, 28 et 29 se superposent, montrant ainsi la faible influence de la puissance du groupe pompe/turbine. Le taux maximum de recouvrement atteint par la configuration 24 n'est pas très inférieur à celui de la configuration 28 (66% pour 78%) mais la part d'énergie perdue est près de la moitié. Les taux maximum de recouvrement du pic correspondent au volume de stockage le plus élevé. Cependant réduire la taille du stockage de 1,5 à 1 Mm³ (diminution d'un tiers) ne diminue le taux de recouvrement que de 8%.

Grace à cette étude, on a pu mettre en exergue un certain nombre de systèmes dont les performances sont satisfaisantes.

4.5. Conclusion

Dans ce paragraphe, nous avons utilisé l'outil de modélisation du système photovoltaïque/éolien/STEP qui a été développé dans le chapitre 2 pour observer l'influence des grandeurs caractéristiques du système sur ses performances. Par grandeurs caractéristiques, nous entendons les puissances installées PV et éoliennes, la puissance nominale du groupe Pompe/turbine réversible et le volume de stockage d'eau ; pour juger des performances du système, nous avons déterminé puis calculé la part de la production des énergies renouvelables intermittentes dans la production totale d'électricité, la part de la production des énergies renouvelables perdues (lorsque la puissance produite dépasse le seuil des 30% et qu'elle ne peut être entièrement utilisée pour alimenter le pompage), la part de la consommation qui n'a pas été satisfaite (et qui le sera dans la réalité par l'utilisation de turbines à combustion) et la part de la pointe de consommation satisfaite dans le cas de la stratégie 2.

Dans cette conclusion, nous ne rappellerons que les principales constatations car des conclusions partielles pour chaque stratégie ont déjà été présentées dans les paragraphes 2.5 et 3.5.

La stratégie 1 a pour objectif d'augmenter la part de la production d'énergies renouvelables intermittentes dans le mix énergétique alors que la stratégie 2 a pour but d'alimenter la pointe

de consommation et de réduire ainsi le recours aux turbines à combustion (fuel ou gaz) dont les couts de production du kWh électrique est très élevés.

Pour chacune des configurations qui ont été considérées dans l'étude, les performances ont été calculées avec et sans présence de la STEP afin de juger de l'influence de la présence du stockage d'énergie sur la part d'EnR dans la production globale d'énergie. On a constaté, dans le cas de la stratégie 1 que la présence de la STEP diminue l'énergie perdue de moitié avec une puissance EnR installée importante et d'un facteur 3 à 4 pour une puissance EnR installée plus faible voire des 2 tiers selon la puissance du groupe pompe/turbine et de la puissance installée. Cette énergie perdue peut même atteindre, dans certains conditions, une valeur presque nulle, mais au détriment d'une amélioration intéressante au niveau du taux des EnR dans la production. Concernant l'augmentation de la part des EnR, celle-ci augmente de l'ordre de 50% avec une puissance installée EnR élevée, et de 25% lorsque cette puissance installée est plus faible. On peut donc considérer que l'objectif recherché, augmenter la part des EnR et réduire la part perdue, a été atteint. Cependant, il faut garder à l'esprit que la stratégie choisie n'est pas optimale et que le choix d'une stratégie plus « efficace » permettra d'améliorer encore les performances et de mieux justifier l'intérêt d'une STEP. Dans le cas de la stratégie 2, l'influence de la STEP sur le taux d'EnR dans la production et sur l'énergie perdue est moindre, car la production de la STEP dépend de la consommation et est moins dépendante du niveau d'intégration des EnR intermittentes dans le système de production.

Pour la stratégie 2, le taux de recouvrement de la pointe de consommation atteint parfois 80% et là encore une meilleure stratégie permettrait probablement d'augmenter ce taux. De plus, une étude saisonnière devrait permettre de mettre en exergue des périodes où la pointe de consommation est totalement couverte (comme cela a été visible sur les illustrations du comportement du système sur une semaine du chapitre 3), permettant ainsi, sur ces périodes, de ne pas faire appel aux turbines à combustion.

Le pourcentage de la charge non satisfaite est très peu sensible aux variations des grandeurs caractéristiques du système, car telles que les stratégies sont conçues notamment au niveau de l'empilement des moyens de production, ce sont les autres systèmes de production qui prennent le relais en cas de manque, sauf s'ils sont tous utilisés. L'utilisation de ce paramètre comme critère de performance n'a donc pas été judicieuse et il n'a donc pas été utilisé dans le cas de la stratégie 2.

Le rendement de la STEP atteint parfois des valeurs « trop élevées », l'explication en a été donnée : en présence d'un faible volume de stockage ou d'une faible puissance EnR installée, le stockage a tendance à se vider rapidement (en créant de l'énergie de turbinage sans énergie de pompage), puis l'énergie de turbinage est liée à celle de pompage turbinage (ne pouvant pas turbiner de l'eau qui n'a pas été pompée auparavant). Ce surplus d'énergie de turbinage en début de simulation rend le rendement de la STEP élevé mais il n'est pas représentatif des performances réelles de la STEP ; il convient donc de prendre avec précaution ce paramètre dans certains cas. Cependant, lorsque celui-ci est représentatif, il varie le plus souvent entre 66 et 72% ce qui est en accord avec la littérature, la valeur de 66% est souvent apparue comme valeur limite inférieure.

Quelle que soit la stratégie, des valeurs seuils pour les puissances EnR installées sont apparues, plus élevées dans le cas de la stratégie 1 que pour la stratégie 2 du fait des objectifs différents de ces deux stratégies. Ces valeurs seuils, plus visibles au niveau de l'éolien que du photovoltaïque, se retrouvent au niveau de l'étude menées dans le chapitre 4 sur la variation du taux de couverture du pic ou du taux d'EnR dans la production en fonction de la part d'énergie perdue ; en effet, ces valeurs apparaissent dans les meilleures configurations retenues ; cette concordance tend à montrer la justesse et l'intérêt de nos calculs.

L'étude menées dans le paragraphe 4 de ce chapitre, a permis de mettre en valeur un certain nombres de configurations du système dont les performances ont déjà jugées bonnes. Il n'a pas été possible d'extraire une configuration optimale car une étude de coût de production du kWh électrique aurait dû alors être menée afin de déterminer une configuration du système PV/Eolien/STEP à la fois satisfaisant « énergétiquement » parlant et « économiquement » intéressant.

Conclusion et Perspectives

Nous nous étions fixés comme objectif d'estimer l'apport de l'intégration d'un moyen de stockage d'énergie, largement répandu et mature, une station de transfert d'énergie par pompage, dans un système de production d'électricité composé de moyens de production « conventionnels » et de systèmes de production utilisant des sources renouvelables intermittentes et stochastiques.

L'intégration de systèmes photovoltaïques et/ou éoliens avec un haut taux de pénétration dans un réseau électrique peu ou pas interconnecté, tel que celui des îles, est limitée par leur nature intermittente, stochastique et non prédictible. Ce taux de pénétration ne peut être augmenté que si des moyens d'accumulation d'énergie sont utilisés.

Sans stockage, les productions des éoliennes et des centrales photovoltaïques peuvent être interrompues pour des raisons de sécurité du réseau électrique au-delà d'un certain pourcentage de participation de la consommation appelée, limitant ainsi les puissances installées des systèmes à sources renouvelables intermittentes.

En utilisant les solutions de stockage en soutien direct des grandes unités de production d'EnR, les producteurs pourront compenser les variations aléatoires des énergies intermittentes et assurer un niveau de puissance disponible suffisant, tout en s'affranchissant des moyens de production de compensation, fortement émetteurs de CO₂. D'un point de vue économique, le stockage permettrait aux producteurs de rentabiliser leurs infrastructures mais également d'atteindre un niveau de compétitivité comparable voire supérieur aux énergies traditionnelles. Ils gagneront en flexibilité et auront par exemple la possibilité de réinjecter leur énergie sur leur réseau quand ils le « souhaitent », afin de maximiser leurs profits. On peut notamment penser à un stockage pendant les heures creuses et une réinjection pendant la pointe (cas qui a été étudié dans ces travaux).

Nous avons donc envisagé deux stratégies de fonctionnement du système de production électrique avec pour chacune d'elle un objectif différent :

- la première stratégie, inspirée des travaux de Bueno et Carta (2005a,b) pour laquelle la puissance en provenance des sources intermittentes au-delà du seuil de déconnexion est utilisée pour alimenter les pompes de la STEP et stocker l'énergie produite pour une utilisation ultérieure. Cette énergie stockée est alors utilisée via les turbines quand les besoins en électricité le nécessiteront. L'objectif est d'augmenter la part de la production des énergies renouvelables intermittentes dans la production globale d'électricité et de limiter les pertes d'énergies renouvelables dues à des surproductions en période de faible consommation.
- dans la seconde stratégie, l'énergie stockée sous forme hydraulique n'est utilisée que pour écrêter les pics de consommation réduisant voire parfois annulant le recours à des moyens de production de pointe couteux et polluants tels que les turbines à combustion.

Le système complet de production d'électricité a été fortement inspiré par le système existant en Corse regroupant un approvisionnement en électricité par câbles sous-marins connectés avec l'Italie et la Sardaigne (mais de puissance disponible limitée) et de moyens de production thermiques (moteur à combustion interne au fuel lourd); seules les moyens de production hydrauliques n'ont pas été pris en compte car leur modélisation était complexe notamment par la nécessité de disposer de données de pluviométrie et des caractéristiques des bassins versants. Le fait de ne pas les avoir intégrés ne permet pas de tirer de nos travaux des conclusions réalistes pour la Corse car le part de cette production hydraulique peut atteindre 30%.

Comme pour tous travaux de recherches, la première partie du travail a consisté à réaliser une étude bibliographique afin de faire le point sur les recherches réalisées sur l'utilisation des STEP et leur couplage avec des systèmes de production d'énergies renouvelables intermittents. Cette bibliographie riche a permis de mettre en évidence l'intérêt de ce type de système de stockage qui suscite un intérêt grandissant dans le secteur de l'énergie en raison de sa grande flexibilité à changer sa puissance de sortie rapidement et à suivre et compenser les variations à court terme de la production EnR.Il représente la moins chère des solutions de stockage d'énergie électrique et bénéficie d'un très bon rendement énergétique. De nombreuses études de cas ont été réalisées dans des contextes insulaires et en particulier grecques. S'est alors posée la question « comment distinguer nos travaux de ceux déjà réalisés ?» ; quatre réponses à cette question :

- dans la littérature, peu d'exemples d'études font intervenir à la fois une production éolienne et photovoltaïque ; dans nos travaux, le système de production globale comprend ces deux sources, qui plus est, d'autres moyens de production ont été pris en compte (câble et production thermique) et nous avons tenté de nous rapprocher le plus possible des conditions réelles de Corse.
- dans la littérature, la stratégie de fonctionnement de la STEP est souvent unique ; plusieurs stratégies de fonctionnement du système PV-Eolien-STEP avec des objectifs différents ont été envisagées dans cette thèse.
- dans la littérature, les calculs d'optimisation sont très souvent basés sur des valeurs moyennes de consommation et de production : dans notre étude, les simulations de fonctionnement des moyens de production et de stockages seront établies et réalisées sur la base de données horaires de consommation, d'irradiation solaire et de vent.
- dans la littérature les rendements sont toujours considérés constants, or la forte variabilité des productions éoliennes et PV implique que les régimes de fonctionnement sont variables en permanence et que les rendements (pompe/turbine réversible, champ PV, éolienne) associés le sont également; dans notre étude, les rendements des pompes réversibles, modules PV et éoliennes dépendent des charges, les hypothèses utilisées sont donc beaucoup plus réalistes.

Le second chapitre présente la modélisation du système PV/Eolien/STEP puis développe une méthode d'optimisation du fonctionnement du groupe pompe/turbine réversible :

- le modèle de Durish *et al* (2007), après avoir été validé, a été choisi pour modéliser la puissance électrique des modules PV en fonction de l'éclairement solaire et de la température ambiante.
- le convertisseur DC/AC a été modélisé par l'intermédiaire de son rendement de conversion ; l'équation représentative de ce rendement en fonction de la charge appelée a été développée par Schmid et Von Dincklage (1988) et Schmid et Schmidt (1991) ; l'équation a été validée par comparaison avec des courbes de rendements d'onduleurs disponibles sur le marché. Sur la base de travaux préalables réalisés par Stoyanov (2011), la taille de l'onduleur par rapport à celle du champ PV a été optimisée et nous a permis de disposer d'un système photovoltaïque optimal.
- le modèle de Pallabazzer (Pallabazzer et Gabow, 1992; Pallabazzer, 1995) nous a permis de décrire la puissance électrique fournie par les aérogénérateurs à partir de la vitesse du vent à la hauteur du moyeu. Préalablement, la vitesse du vent mesurée à 10 mètres de hauteur a été «relevée» à la hauteur du moyeu par l'utilisation de la bien connue formule de Justus (1978). A partir de courbes de rendement-débit disponibles

dans la littérature, les courbes (puissance électrique-débit) en mode pompage et turbinage du groupe pompe/turbine réversible ont été tracées et modélisées. Elles permettent de déterminer directement en fonction de la puissance électrique fournie à la pompe ou de celle à fournir au réseau par la turbine, le débit d'eau et d'en déduire le niveau d'eau dans les bassins.

• nous avons choisi d'utiliser 4 groupes pompe/turbine réversibles en parallèle et d'optimiser le nombre et le régime de fonctionnement de chacune d'elle en fonction du débit d'eau pompé ou turbiné afin d'utiliser le débit d'eau minimal en mode turbinage et maximal en mode pompage.

A l'issu de ce chapitre, nous disposons d'un outil de simulation du système PV/Eolien/STEP performant et très aisément adaptable à différentes stratégies de fonctionnement. Cet outil prend en compte la variabilité des régimes de fonctionnement pour tous les organes qui constituent le système de production et se distingue de la plupart des travaux déjà réalisés qui ne considèrent que des rendements constants quel que soit le régime de fonctionnement.

L'outil de simulation étant prêt, il restait à définir les stratégies de fonctionnement du système PV/Eolien/STEP dans le réseau électrique. Avant de présenter ces stratégies, la problématique de l'électrification des îles a été exposée dans le chapitre 3 car elle justifie d'autant plus l'utilisation de notre système. La situation énergétique de la Corse a été décrite en détail car elle sert de base à ces travaux et à la définition des stratégies de fonctionnement. Au départ, trois stratégies de fonctionnement ont été présentées, mais après les premiers résultats il est vite apparu que la troisième n'avait pas d'intérêt réel ; ainsi, la suite des travaux n'a été basée que sur 2 stratégies se différenciant par l'utilisation de l'énergie produite par la STEP lors du turbinage, soit alimenter la charge en fonction des besoins, soit alimenter uniquement les pointes de consommation ; la première stratégie a pour objectif d'augmenter les puissances installées EnR sans « gâcher » de l'énergie produite mais non utilisée, la seconde a pour but de satisfaire une grande part de la pointe de consommation et de limiter le recours aux turbines à combustion.

Le chapitre 4 a montré les liens existant entre les principales caractéristiques du système (puissances installées PV et éoliennes, puissance nominale du groupe pompe/turbine et volume du stockage) et les paramètres représentatifs des performances énergétiques (taux de production renouvelable dans la production totale, pourcentage d'énergie renouvelable perdue et taux de couverture de la pointe de consommation). L'interprétation des dépendances entre ces grandeurs a pu être réalisée. Il est apparu que les variations constatées étaient différentes selon la stratégie de fonctionnement mise en œuvre. Pour la puissance installée PV et éolienne, des valeurs « seuils » sont apparues au-delà desquelles on constatait un changement de pente dans les courbes de variation laissant ainsi penser qu'une augmentation de la puissance installée devenait alors moins ou plus intéressante; ces valeurs seuils étaient plus élevées dans le cas de la stratégie 1 que pour la stratégie 2 du fait des objectifs différents de ces deux stratégies. Elles sont plus visibles au niveau de l'éolien que du photovoltaïque et se retrouvent au niveau de l'étude menées sur la variation du taux de couverture du pic ou du taux d'EnR dans la production en fonction de la part d'énergie perdue ; en effet, ces valeurs apparaissent de nouveau dans les meilleures configurations retenues ; cette concordance tend à montrer la justesse et l'intérêt de nos calculs.

Pour chacune des configurations étudiées, les performances ont été calculées avec et sans présence de la STEP afin de juger de l'influence de la présence du stockage d'énergie. Dans le cas de la stratégie 1, la présence de la STEP diminue l'énergie perdue de moitié avec une puissance EnR installée importante et d'un facteur 3 à 4 pour une puissance EnR installée plus faible voire des 2 tiers. Cette énergie perdue peut même parfois être proche de zéro mais

au détriment d'une amélioration intéressante au niveau du taux des EnR dans la production. La part des EnR augmente de l'ordre de 50% avec une puissance installée EnR élevée, et de 25% avec une puissance installée plus faible.

On peut donc considérer que l'objectif recherché, augmenter la part des EnR et réduire la part perdue, a été atteint. Cependant, il faut garder à l'esprit que la stratégie choisie n'est pas optimale et que le choix d'une stratégie plus « efficace » permettra d'améliorer encore les performances et de mieux justifier l'intérêt d'une STEP.

Pour la stratégie 2, le taux de recouvrement de la pointe de consommation atteint parfois 80% et là encore une meilleure stratégie permettrait probablement d'augmenter ce taux. De plus, une étude saisonnière devrait permettre de mettre en exergue des périodes où la pointe de consommation est totalement couverte permettant ainsi, sur ces périodes, de ne pas faire appel aux turbines à combustible.

Le rendement de la STEP varie le plus souvent entre 66 et 72% ce qui est en accord avec la littérature, la valeur de 66% est souvent apparue comme valeur limite inférieure. Il est inférieur au rendement présenté dans certains ouvrages car le groupe pompe/turbine couplé à une production intermittente fonctionne en permanence en régime variable et donc pas nécessairement dans les meilleures conditions de rendement, comparé à un fonctionnement avec une source constante.

Au niveau du nombre de cycles, il a été difficile de tirer des conclusions car il est lié à de nombreux paramètres tels que le volume de stockage, la puissance nominale des pompes, ... le nombre de cycles doit être relativement élevé afin d'utiliser au mieux tout le potentiel disponible de la STEP. Le fait que le nombre de cycles soit faible ne signifie pas nécessairement que le volume d'eau est trop important : une trop faible puissance du groupe de pompage ou des puissances installées EnR conduira à vider la réserve d'eau rapidement qui n'arrivera plus à atteindre son niveau haut, le réservoir à volume élevé se comportera alors comme un volume réduit et le nombre de cycles, ramené au volume nominal du stockage, sera alors faible.

Avons-nous atteint nos objectifs ? En partie oui, si l'outil de simulation nous a permis d'observer la variation des principaux paramètres et flux au sein du système et d'en tirer un certain nombre de conclusions, nous ne pouvons pas considérer que le dimensionnement du système PV/Eolien/STEP soit finalisé ou tout au moins optimal. Quelques configurations présentant de bonnes performances ont pu être mises en exergue. Pour développer et améliorer la méthode, il convient en particulier de mettre au point une stratégie de fonctionnement du système plus performante et d'adjoindre une étude économique pour permettre un choix entre des configurations de performances énergétiques proches et de confirmer l'intérêt de l'utilisation d'une STEP (intérêt plusieurs fois démontrée dans la littérature).

Les perspectives à ce travail sont nombreuses, nous allons en citer quelques-unes et montrer notamment comment les autres recherches réalisées au sein de l'UMR CNRS 6134 permettent ou permettront de les réaliser.

Une étude saisonnière pourrait être réalisée, elle permettrait en particulier de mieux observer les moments où les défaillances interviennent et dans le cas de la stratégie 2, de voir quand le recours aux TAC est nécessaire. L'absence des moyens de production hydraulique en été, dans le cas du mix énergétique réel de la Corse, du fait de la diminution des ressources, rend l'utilisation du système étudié en cette période encore plus intéressante.

Il convient également de revenir sur la définition du pic ou pointe de consommation qui pourrait changer les conclusions tirées au niveau de la seconde stratégie. Doit-on définir cette
pointe indépendamment de la production renouvelable intermittente en deçà des 30% de la charge ? il conviendra de se pencher sur ce point.

A plusieurs reprises, la nécessité de développer une stratégie de fonctionnement adéquate et performante a été soulevée ; celle-ci ne peut être « construite » sans connaître au préalable quelles seront les puissances produites par les systèmes éoliens et PV et les puissances consommées et ce à différents horizons temporels. Si la prédiction des puissances produites et consommées est correcte, nous pourrons anticiper sur le fonctionnement de la STEP, envisager divers fonctionnements et en déduire la meilleure. Par exemple, vider une réserve d'énergie tout en sachant que les ressources solaires et éoliennes ne permettront pas de les recharger pendant une longue période n'est pas judicieux alors que dans le cas contraire, elle évitera la mise en route d'un moyen supplémentaire de production.

Comme nous l'avions précisé en introduction de ce document, sur la base d'un rapport ministériel, le développement des moyens de stockage, indispensable pour l'intégration des EnR intermittentes, ne peut avoir lieu sans le développement conjoint des méthodes de prédiction et la mise en œuvre des réseaux intelligents.

Un lien évident existe entre les travaux de cette thèse et les axes développés au sein du projet de recherche "Energies Renouvelables" de l'Université de Corse, et notamment les deux plateformes technologiques MYRTE et PAGLIA ORBA, ainsi que le projet H2020 TILOS (Technology Innovation for the Local Scale, Optimum Integration of Battery Energy Storage). Les plateformes et le projet Tilos intègrent, toutes, la problématique générale de l'intégration des énergies renouvelables intermittentes dans les réseaux électriques insulaires. Elles nécessitent donc toutes la mise en œuvre de méthodes de prédiction de la production solaire, le développement de stratégies de fonctionnement et de gestion de l'énergie et le couplage optimale production intermittente/stockage.

Un comparatif rapide des deux plateformes MYRTE et PAGLIA ORBA et du projet TILOS en termes d'objectif met en valeur leur complémentarité :

Objectif

Résumé

un système et une Développer Couplage entre un champ PV et une Plateforme stratégie de pilotage visant à chaîne hydrogène utilisée comme améliorer **MYRTE** la gestion la et moyen de stockage. stabilisation du réseau électrique. Mise en œuvre d'un smart-grid avec Tester différentes configurations de **Plateforme** stockage différentes filières de smart-grid, différents moyens de PAGLIA (électrochimique, mécanique) et **ORBA** stockage et de production. abordant la mobilité électrique. Couplage entre un champ PV et une Développer un système et une éolienne et stockage d'énergie par stratégie de pilotage optimisée visant Projet batteries NaNiCl₂ et avec gestion à améliorer la gestion et la sécurité TILOS optimale d'un smart-grid d'approvisionnement selon en énergie différentes stratégies de connexion. électrique.

De nombreux travaux sur la prédiction du rayonnement solaire ont été réalisés au sein de l'équipe EnR et le couplage entre ces travaux et ceux réalisés dans le cadre de cette thèse feront l'objet d'un futur travail de doctorat.

Bibliographie

A

ADEME (2015). Micro-STEP de Berrien installée sur une carrière en fin d'exploitation et alimentée par des énergies renouvelables. www.ademe.fr.

Ai B., Yang H., Shen H., Liao X. (2003). Computer-aided design of PV/wind hybrid system. *Renewable Energy* 28, 1491–1512.

Ai A.K., Daraeepour A., Monsef H. (2011). A new self-scheduling strategy for integrated operation of wind and pumped-storage power plants in power markets. *Applied Energy* **88-12**, 5002–5012.

Anagnostopoulos J.S, Papantonis D.E. (2008). Simulation and size optimization of a pumpedstorage power plant for the recovery wind-farms rejected energy. *Renewable Energy* **33(7)**, 1685–1694.

Anagnostopoulos J.S., Papantonis D.E. (2012). Study of pumped storage schemes to support high RES penetration in the electric power system of Greece. *Energy* **45**, 416-423.

Ardizzon G., Cavazzini G., Pavesi G. (2014). A new generation of small hydro and pumpedhydropower plants: Advances and future challenges. *Renewable and Sustainable Energy Reviews* **31**, 746–761.

Armani M., Sparber W., Parretta A., Antonini A., Butturi M., Stefancich, M. (2007). Performance monitoring of different PV systems installed in Northern Italy. 22nd EPEC, Milano, Italy, 3-7 September 2007.

Aspliden, C. (1981), Hybrid solar-wind energy conversion systems meteorological aspects. Rapport PNL-SA-10063, Richland: Pacific Northwest Laboratory.

ASTM (1998). Standard test methods for electrical performance of nonconcentrator terrestrial photovoltaic modules ad arrays using reference cells, Standard E1036. American Society for Testing and Materials, West Conshohocken, PA.

B

Bayón L., Grau J.M., Ruiz M.M., Suárez P.M. (2013). Mathematical modelling of the combined optimization of a pumped-storage hydro-plant and a wind park. *Mathematical and Computer Modelling* **57**, 2024–2028.

Bart J.B. (2013) Grands enjeux du stockage. Journée MPI « Stockage de l'énergie », Toulouse.

Benitez L.E., Benitez P.C., Van Kooten G.C. (2008). The economics of wind power with energy storage. *Energy Economics* **30**, 1973–1989.

Bergene T., Lovik O. (1995). Model calculations on a flat-plate solar heat collector with integrated solar cells. *Solar Energy* **55**, 453-462.

Borowy B.S., Salameh Z.M. (1994). Optimum photovoltaic array size for a hybrid wind/PV system. *IEEE Transactions on energy conversion* **9**, 482-488, 1994.

Borowy B.S., Salameh, Z.M. (1996). Methodology for optimally sizing the combination of a battery bank and PV array in a Wind/PV hybrid system. *IEEE Transactions on energy conversion* **11**, 367-375.

Brano V.I., Orioli A., Ciulla G. (2012). On the experimental validation of an improved fiveparameter model for silicon photovoltaic modules. *Solar Energy Materials and Solar Cells* **105**, 27–39.

Brown P.D., Pecas Lopes J.A., Matos M.A. (2008). Optimization of pumped storage capacity in an isolated power system with large renewable penetration. *IEEE Transaction Power System* 23(2), 23–31.

Bucher K. (1997). Site dependence of the energy collection of PV modules. *Solar EnergyMaterials and Solar Cells***47**, 85-94.

Bueno C., Carta J.A. (2005a). Technical–economic analysis of wind-powered pumped hydrostorage systems. Part I: model development. *Solar Energy* **78**, 382–395.

Bueno C., Carta J.A. (2005b). Technical–economic analysis of wind-powered pumped hydro storage systems. Part II: model application to the island of El Hierro. *Solar Energy* **78**, 396–405.

Bueno C., Carta J.A. (2006). Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. *Renewable and Sustainable Energy Reviews* **10**, 312–340.

Burger B., Ruther R. (2005). Site-Dependent System Performance and Optimal Inverter Sizing of Grid-Connected PV Systems. 31st IEEE Photovoltaic Specialists Conference, Orlando – EUA, pp. 765-768.

Burger B., Ruther R. (2006). Inverter sizing of grid-connected photovoltaic systems in the light of local solar resource distribution characteristics and temperature. *Solar Energy***80**, 32–45.

<u>C</u>

Caralis G., Rados K., Zervos A. (2010). On the market of wind with hydro-pumped storage systems in autonomous Greek islands. *Renewable and Sustainable Energy Reviews* **14**, 2221–2226.

Caralis G., Papantonis D., Zervos A. (2015). The role of pumped storage systems towards the large scale wind integration in the Greek power supply system. *Renewable and Sustainable Energy Reviews* **16**, 2558–2565.

Castronuovo E.D., Pecas Lopes J.A. (2014). Optimal operation and hydro storage sizing of a wind-hydro power plant. *Electrical Power and Energy Systems* **26**, 771–778.

CDE (Connaissance des Energies). (2013). Hydroélectricité : Stations de transfert d'énergie par pompage (STEP). <u>http://www.connaissancedesenergies.org/</u>. Consulté le 10/01/2016.

Chang T.J., Tu Y.L. (2007). Evaluation of monthly capacity factor of WECS using chronological and probabilistic wind speed data: a case study of Taiwan. Renewable Energy 32, 1453–1466.

Chapallaz J.M. (2007). Petites centrales hydrauliques : Pompe fonctionnant en turbine avec réglage du débit (PAT-Francis) 2ème Partie : Sélection de la pompe inversée pour fonctionnement en turbine. Rapport final Ecole Polytechnique Fédérale de Lausanne. Février 2007. Disponible sur www.bfe.admin.ch.

Chen F., Duic N., Alves L.M., Da Graca Carvalho M. (2007). Renew islands—Renewable energy solutions for islands. *Renewable and Sustainable Energy Reviews* **11**, 1888–1902. Connolly D., MacLaughlin S., Leahy M. (2010). Development of a computer program to locate potential sites for pumped hydroelectric energy storage. *Energy* **35**, 375–381.

Connolly D., Lund H., Mathiesen B.V., Pican E., LeahyM. (2012). The technical and economic implications of integrating fluctuating renewable energy using energy storage.*Renewable Energy* **43**, 47-60.

Crampes C., Moreaux M. (2010). Pumped storage and cost saving. *Energy Economics* **32**, 325–333.

D

Dambrine F., Legait B., Liger A., Valérian F, Bellier M., Brunetiere J.R., Gazeau J.C., Boyé H., Weymuller B. (2012). Eolien et photovoltaïque: enjeux énergétiques, industriels et sociétaux. Rapport Ministère du redressement productif, Ministère de l'écologie, du développement durable, et de l'énergie, septembre 2012.

Deane J.P., O Gallachoir B.P., McKeogh E.J. (2010). Techno-economic review of existing and new pumped hydro energy storage plant. *Renewable and Sustainable Energy Reviews* 14, 1293–1302.

Díaz-González F., SumperA., Gomis-Bellmunt O., Villafáfila-Robles R. (2012). A review of energy storage technologies for wind power applications. *Renewable Sustainable Energy Review* **16-4**, 2154–2171.

Ding H., Hu Z., Song Y. (2012). Stochastic optimization of the daily operation of wind farm and pumped-hydro-storage plant. *Renewable Energy* **48**, 571-578.

Duque A.J., Castronuovo E.D., Sanchez I., Usaola J. (2011). Optimal operation of a pumpedstorage hydro plant that compensates the imbalances of a wind power producer. *Electrical Power System Research***81**, 1767–1777.

Durisch W., Bitnar B., Mayor J.C., Kiess H., Lam K.H., Close J. (2007). Efficiency model for photovoltaic modules and demonstration of its application to energy yield estimation. *Solar Energy Materials and Solar cells* **91**, 79-84.

Dursun B., Alboyaci B. (2010). The contribution of wind-hydro pumped storage systems in meeting Turkey's electric energy demand. *Renewable and Sustainable Energy Reviews* 14, 1979–1988.

Dursun B., Alboyaci B., Gokcol C. (2012). Optimal wind-hydro solution for the Marmara region of Turkey to meet electric demand. *Renewable and Sustainable Energy Reviews* 14, 1979–1988.

E

EDF (2009). Intermittent random renewable energy in the insular energy system: why a maximum integration rate of 30%, Rapport, CCPSEI. Disponible à http://sei.edf.com/fichiers/fckeditor/Commun/SEI/corp/Pourquoi-30-dans-SEI.pdf.

EDF R&D. (2013). Les STEP. Collection une technologie dévoilée. Disponible sur: innovation.edf.com.

EDF SEI Corse. (2013). Generation Adequacy Report on the electricity supply - demand balance. Disponible sur sei.edf.com (consulté le 09.04.14).

Endegnanew A.G., Farahmand H., Huertas-Hernando D. (2013). Frequency Quality in the Nordic Power System: Wind Variability, Hydro Power Pump Storage and Usage of HVDC Link. *Energy Procedia* **35**, 62–68.

Enersol (2004). Hydropower – Energy saving and renewable energy in vocational education, Rapport EU, disponible à

www.duurzaammbo.nl/DuurzaamMBO/DuurzaamMBO/Basismodule/Hydropower.pdf

ESA (2009). Electricity Storage Association. <u>http://www.electricitystorage.org</u>. Consulté le 10/01/2016.

EuroObserveur (2016a). Baromêtre Photovoltaïque; Avril 2016. Disponible à www.eurobserv-er.org.

EuroObserveur(2016b). Baromêtre Eolien; Février 2016. Disponible à www.eurobserver.org.

Evans D.L., Florschuetz L.W. (1977). Cost studies on terrestrial photovoltaic power systems with sunlight concentration. *Solar Energy***19**, 255.

Evans, D.L., (1981). Simplified method for predicting photovoltaic array output. *Solar Energy* **27**, 555-560.

F

Faias, S,De Sousa G., Silva Reis F., Castro R. (2012). Assessment and Optimization of Wind Energy Integration into the Power Systems: Application to the Portuguese System. *IEEE Transactions on Sustainable Energy* **3-4**, 627-635.

Farahmanda H., Huertas-Hernando D. (2013). Frequency Quality in the Nordic Power System: Wind Variability, Hydro Power Pump Storage and Usage of HVDC Links. *Energy Procedia* **35**, 62-68.

Foley A.M., Leahy P.G., Li K., McKeogh E.J., Morrison A.P. (2015). Long-term analysis of pumped hydro storage to firm wind power. *Applied Energy* **137**, 638–648.

Fonseca J.A., Schlueter A. (2013). Novel approach for decentralized energy supply and energy storage of tall buildings in Latin America based on renewable energy sources: Case study - Informal vertical community Torre David, Caracas-Venezuela. *Energy* **53**, 93-105.

Fujihara T., Imano H., Oshima K. (1998). Development of Pump Turbine for Seawater Pumped Storage. *Hitachi Review* 47-51.

<u>G</u>

Gabathuler Sh., Pavanello D., Münch C. (2015). Le pompage-turbinage à petite échelle pour le stockage local d'énergie. *Bulletin***2**. Université de Fribourg, Faculté d'Economie et de Sciences Sociales.

Gabler H., Luther J. (1988). Wind-solar hybrid electrical supply systems. Results from a simulation model and optimization with respect to energy payback time. *Solar & Wind Technology* **5**, 239-247.

Garcia L. (2003). Renewable energy applications in desalination: state of the art. *Solar Energy* **75**, 381–393.

Garcia-Gonzalez Moraga J.R., Matres-Santos L., Mateo A. (2008). Stochastic Joint Optimization of Wind Generation and Pumped-Storage Units in an Electricity Market. *IEEE Transactions on Power Systems* 23-2, 460-468.

Gilau A.M., Small M.J. (2008), Designing cost-effective seawater reverse osmosis system under optimal energy options. *Renewable Energy* **33**, 617–630.

Gimeno-Gutierrez M., Lacal-Arantegui R. (2015). Assessment of the European potential for pumped hydropower energy storage based on two existing reservoirs. *RenewableEnergy* **75**, 856-868.

Guillaume L. (2015). L'eau au service du soleil et du vent. <u>http://www.faiteslepleindavenir.com/</u>.

H

Hamidat A., Benyoucef B. (2008). Mathematic models of photovoltaic motor-pump systems. *Renewable Energy* **33**, 933–942.

Hedegaard K., Meibom P. (2012). Wind power impacts and electricity storage - A time scale perspective. *Renewable Energy* **37**, 318-324.

Hegazy A.A. (2000). Comparative study of the performances of four photovoltaic/thermal solar air collectors. *Energy Conversion and Management* **41**, 861-881.

Hladik J. (1984). Énergétique éolienne : applications pratiques, chauffage éolien, production d'électricité, pompage. *Technology & Engineering*. Publisher: Masson.

Hoicka C.E., Rowlands I.H. (2011). Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada. *Renewable Energy* **36-1**, 97–107.

Hosseini-Firouz M. (2013). Optimal offering strategy considering the risk management for wind power producers in electricity market. *Electrical Power and Energy Systems* **49**, 359–368.

Hydro Power. (2006). Mini hydro power course, available on w3.tm.tue.nl/fileadmin/tm/TDO/Indonesie/Hydro_Power.pdf.

I

Ibrahim H., Ilinca A. (2008). *Energy* storage systems—Characteristics and comparisions.*Renewable and Sustainable Energy Reviews***12**, 1221–1250.

IFPEN (2016). Les technologies actuelles de stockage et leur état de maturité. <u>http://www.ifpenergiesnouvelles.fr</u>. Consulté le 10/01/2016.

IEA (2014). Technology Roadmap – Energy storage. Rapport OECD/IEA, Mars 2014. Disponible sur <u>www.iea.org</u>.

Ishikawa T. (2002). Grid-connected photovoltaic power systems: Survey of inverter and related protection equipments. Report IEA PVPS T5-05.

J

Jiang R., Wang J., Guan Y. (2012). Robust unit commitment with wind power and pumped storage hydro. *IEEE Trans Power Syst* 27(2), 800–810.

Justus C.G. (1978). Winds and system performances. Philadelphia, Franklin Institute Press.

<u>K</u>

Kabouris J.Y., Kanellos F.D. (2010). Impacts of large-scale wind penetration on designing and operation of electric power systems. *IEEE Transactions on Sustainable Energy* **1-2**, 107-114.

Kaldellis J.K., Kavadias K.A. (2001). Optimal wind-hydro solution for Aegean Sea islands' electricity-demand fulfillment. *Applied Energy* **70**, 333–354.

Kaldellis J.K. (2008). The wind potential impact on the maximum wind energy penetration in autonomous electrical grids. *Renewable Energy* **33**, 1665–1677.

Kaldellis J.K., Spyropoulos G.C., Kavadias K.A., Koronaki I.P. (2009a). Experimental validation of autonomous PV-based water pumping system optimum sizing. *Renewable Energy* **34**, 1106–1113.

Kaldellis J.K., Zafirakis D., Kondili E. (2010a). Optimum sizing of photovoltaic-energy storage systems for autonomous small islands. *Electrical Power and Energy Systems* **32**, 24–36.

Kaldellis J.K., Kapsali M., Kavadias K.A. (2010b) Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks. *Applied Energy* **87**, 2427-2437.

Kaldellis J.K., Zafirakis D., Kavadias K. (2012). Minimum cost solution of wind-photovoltaic based stand-alone power Systems for remote consumers. *Energy Policy* **42**, 105–117.

Kalogirou S. (2005). A Seawater desalination using renewable energy sources. *Progress in Energy and Combustion Science* **31**, 242–281.

Kanakasabapathy P., Shanti Swarup K. (2010). Bidding strategy for pumped-storage plant in pool-based electricity market. *Energy Conversion and Management* **51**, 572–579.

Kanakasabapathy P. Economic impact of pumped storage power plant on social welfare of electricity market. *Electrical Power and Energy Systems* **45**, 187–193.

Kapsali M., Anagnostopoulos J.S., Kaldellis J.K. (2012). Wind powered pumped-hydro storage systems for remote islands: A complete sensitivity analysis based on economic perspectives. *Applied Energy***99**, 430–444.

Karsten H., Meibom, P. (2012). Wind power impacts and electricity storage - a time scale perspective. *Renewable Energy* **37**, 318-324.

Kasten F., Young A.T. (1989). Revised optical air mass tables and approximation formula. *Applied Optics* **28**, 4735–4738.

Katsaprakakis D.A., Christakis D.G., Zervos A, Papantonis D, Voutsinas S.(2008). Pumped storage systems introduction in isolated power production systems.*Renewable Energy* **33**, 467–490.

Katsaprakakis D.A., Christakis D.G., Pavlopoylos K., Stamataki S., Dimitrelou I., Stefanakis I., Spanos P. (2012). Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos. *Applied Energy* **97**, 38–48.

Katsaprakakis D.A., Christakis D.G. (2014). Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study. *Energy* **66**, 470-486.

Katti P.K., Khedkar, M.K. (2007). Alternative energy facilities based on site matching and generation unit sizing for remote area power supply. *Renewable Energy* **32**, 1346–1362.

Kousksou T., Bruel P., Jamil A., El Rhafiki T., Zeraouli Y. (2014). Energy storage: Applications and challenges. *Solar Energy Materials and Solar Cells* **120- Part A**, 59–80.

Krajacic G., Duic N., Tsikalakis A., Zoulias M., Caralis G., Panteri E., Da Graca Carvalho M. (2011). Feed-in tariffs for promotion of energy storage technologies. *Energy Policy* **39**, 1410–1425.

Krajacic G., Loncar D., Duic N., Zeljko M., Lacal Arantegui R. Loisel R., Raguzin I. (2013). Analysis of financial mechanisms in support to new pumped hydropower storage projects in Croatia. *Applied Energy* **101**, 161–171.

L

Labbé J. (2006). L'hydrogène électrolytique comme moyen de stockage d'énergie électrique pour systèmes PV isolés. Thèse de Doctorat, Ecole des Mines de Paris, CEP, Sophia-Antipolis, Décembre 2006.

Li-jie D; Hua Z., Zeng R., Xiao-yan Q. (2012). The optimal allocation of pumped storage plant in wind farm. *Proceedings of IEEE Asia-Pacific power and energy*.

Loisel R. (2012). Power system flexibility with electricity storage technologies: A technical– economic assessment of a large-scale storage facility. *Electrical Power and Energy Systems* **42**, 542–552.

M

Ma T., Yang H., Lu L., PengJ. (2014a). Optimal design of an autonomous solar-wind-pumped storage power supply system. *Applied Energy***160**, 728–736.

Ma T., Yang H., Lu L. (2014b). Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island. *Energy Conversion and Management* **79**, 387–397.

Ma T., Yang H., Lu L., Peng J. (2014c). Technical feasibility study on a standalone hybrid solar–wind system with pumped hydro storage for a remote island in Hong Kong. *Renewable Energy* **69**, 7–15.

Ma T., Yang H., Lu L. (2014d). Solar photovoltaic system modeling and performance prediction *.Renewable Renewable and Sustainable Energy Reviews***36**, 304–315.

Ma T., Yang H., Lu L., Peng J. (2015). Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization., *Applied Energy* **137**, 649–659.

Mahmoudi H., Abdul-Wahab S.A, Goosen M.F.A, Sablani S.S., Perret J., Ouagued A., Spahis N. (2008). Weather data and analysis of hybrid photovoltaic–wind power generation systems adapted to a seawater greenhouse desalination unit designed for arid coastal countries. *Desalination* **222**, 119–127.

Malakar T., Goswami S. K., Sinha A. K. (2014). Optimum scheduling of micro grid connected wind-pumped storage hydro plant in a frequency based pricing environment. *Electrical Power and Energy Systems* **54**, 341–351.

Manfrida G., Secchi R. (2014). Seawater pumping as an electricity storage solution for photovoltaic energy systems. *Energy* **69**, 470-484.

Manolakos D., Papadakis G., Papantonis D., Kyritsis S. (2004). A stand-alone photovoltaic power system for remote villages using pumped water energy storage. *Energy* **29**, 57–69.

Margeta J., Glasnovic Z. (2010). Feasibility of the green energy production by hybrid solar + hydropower system in Europe and similar climate areas. *Renewable and Sustainable Energy Reviews* **14**, 1580–1590.

Margeta J., Glasnovic Z. (2011). Exploitation of temporary water flow by hybrid PV-hydroelectric plant. *Renewable Energy* **36**, 2268-2277.

Margeta J., Glasnovic Z. (2012). Theoretical settings of photovoltaic-hydro energy system for sustainable energy production. *Solar Energy* **86**, 972–982.

Margeta, J. Water storage as energy storage in green power system. Sustainable Energy Technologies and Assessments 5, 75–83.

McLean E., Kearney D. (2014). An Evaluation of Seawater Pumped Hydro Storage for Regulating the Export of Renewable Energy to the National Grid. *Energy Procedia* **46**, 152 – 160.

Megnint L., Verdurand G., Rey R. (2008). Turbines hydrauliques - Description et fonctionnement. Dossier Techniques de l'Ingénieur, Référence BM4405-v1, Date de publication : 10/10/2008.

Mohring H.D., Stellbogen D., Schaffler R., Oelting S., Gegenwart R. (2004). Outdoor performance of polycrystalline thin film PV modules in different European climates. 19th EPSEC, Paris, France, 7-11 June, 2004.

Mondol J.D., Yohanis, Y.G., Norton, B. (2006). Optimal sizing of array and inverter for gridconnected photovoltaic systems. *Solar Energy* **80**, 1517-1539.

Muche T. (2009). A real option-based simulation model to evaluate investments in pump storage plants. *Energy Policy* **37**, 4851–4862.

Myers, D.R., Emery, K., Gueymard, C., (2002). Revising and validating spectral irradiance reference standards for photovoltaic performance. In: ASES/ASME Solar 2002 Conference Proceeding, Reno, Nevada, 15-20 June, 2002.

N

Nazari M.E., Ardehali M.M., Jafari S. (2010). Pumped-storage unit commitment with considerations for energy demand, economics, and environmental constraints. *Energy* **35**, 4092-4101.

Nfah E.M., Ngundam J.M., Tchinda R. (2007). Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon. *Renewable Energy* **32**, 832-844.

Nolay P., (1987). Développement d'une méthode générale d'analyse des systèmes photovoltaïques. Thèse de Doctorat, Ecole des Mines, Sophia-Antipolis, France.

Notton G., Stoyanov L., Lazarov V. (2010). Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations. *Renewable Energy* **35-2**, 541-554.

Notton G. (2015). Importance of islands in renewable energy production and storage: The situation of the French islands. *Renewable and Sustainable Energy Review***47**, 260–269.

<u>0</u>

O'Driscoll L. (2015). Pumped Hydro Electrical Storage. <u>www.organicpower.ie</u>.

Ozdamar A., Ozbalta N., Akin A., Yildirim E.D. (2005). An application of a combined wind and solar energy system in Izmir. *Renewable and Sustainable Energy Reviews* **9**, 624–637.

P

Paatero J.V., Lund P.D. (2007). Effects of large-scale photovoltaic power integration on electricity distribution networks. *Renewable Energy* **32**, 216-234.

Padrón S., Medina J.F., Rodríguez A. (2011). Analysis of a pumped storage system to increase the penetration level of renewable energy in isolated power systems. Gran Canaria: A case study. *Energy* **36**, 6753-6762.

Pallabazzer R., Gabow A.A. (1992). Wind generator potentiality in Somalia. *International Journal of Renewable Energy* **2**, 353-361.

Pallabazzer R. (1995). Evaluation of wind-generator potentiality. Solar Energy 55, 49-59.

Papaefthymiou S.V., Karamanou E.G., Papathanassiou S., Papadopoulos A., Michael P.A. (2010). Wind-Hydro-Pumped Storage Station Leading to High RES Penetration in the Autonomous Island System of Ikaria. *IEEE Transactions on Sustainable Energy* **1-3**.

Papaefthymiou S.V., Papathanassiou S.A. (2014). Optimum sizing of wind-pumped-storage hybrid power stations in island systems. *Renewable Energy* **64**, 187-196.

Papaefthymiou S.V., Lakiotis V.G., Margaris I.D., Papathanassiou S.A. (2015).Dynamic analysis of island systems with wind-pumped-storage hybrid power stations. *Renewable Energy* **74**, 544-554.

Pappala V.S., Erlich I., Singh S.N. (2008). Unit commitment under wind power and demand uncertainties. *Proceedings of IEEE joint international conference on power system technology* (POWERCON-2008), 1–6.

Patlitzianas K.D., Christos K. (2012). Effective financing for provision of renewable electricity and water supply on islands. *Energy for Sustainable Development* **16**, 120–124.

PerrinS.(2013) Petites centrales hydrauliques. Techniques de l'Ingénieur, Novembre 2003.

Perlman J., Mc Namara A., Strobino D. (2005). Analysis of PV system performance versus modeled expectations across a set of identical PV systems. ISES 2005 Solar World Congress.

Pestourie, J. (2013). Les EnR intermittentes: cas des réseaux insulaires. IEEEP&ES, 25/04/2013, RTE, La Défense, Paris. Disponible à ewh.ieee.org.

Pina A. (2008). Economic modeling of a seawater pumped-storage system in the context of São Miguel. 2008 IEEE International Conference on Sustainable Energy Technologies.

Powell W.R. (1981). An analytical expression for the average output power of a wind machine. *Solar Energy***26**, 77-80.

Prensier J.L., DauxC.(2006). La chaîne d'énergie du pompage de l'eau.Ressource publiée sur EDUSCOL-STI : <u>http://eduscol.education.fr/sti/si-ens-cachan/.</u>

Punys P., Baublys R., Kasiulis E., Vaisvila A., Pelikan B., Steller J. (2013). Assessment of renewable electricity generation by pumped storage power plants in EU Member States. *Renewable and Sustainable Energy Reviews* **26**, 190-200.

Purvins A., Papaioannou I.T., Oleinikova I., Tzimas E. (2012). Effects of variable renewable power on a country-scale electricity system: High penetration of hydro power plants and wind farms in electricity generation. *Energy* **43**, 225-233.

R

Rahimi E., Rabiee A., Aghaei J., Muttaqi K.M., NezhadA.E. (2013). On the management of wind power intermittency. *Renewable and Sustainable Energy Reviews* 28, 643–653.

Ramsome S. (2007). A summary of outdoor testing and modelling of PV systems. PVSAT3 Congress, Durham, 2007. Available at <u>http://www.bp.com</u>.

Rangoni B. (2012). A contribution on electricity storage: The case of hydro-pumped storage appraisal and commissioning in Italy and Spain. *Utilities Policy* **23**, 31-39.

Reichling, J.P., Kulacki F.A. (2008). Utility scale hybrid wind-solar thermal electrical generation: A case study for Minnesota. *Energy* **33**, 626–638.

Ren L., Tang Y., Shi J., Dou J., Zhou S., Jin T. (2013). Techno-economic evaluation of hybrid energy storage technologies for a solar–wind generation system. *Physica C* **484**, 272–275.

Rizov P., Stoyanov L. (2014). Communication personnelle, Université Technique de Sofia, Bulgarie.

Robyns B., Saudemont A.D., Ansel A, Courtecuisse V, Francois B., Plumel S., Deuse, J. (2006). Impact de l'éolien sur le réseau de transport et la qualité de l'énergie. *J3eA***5** - Hors-Série 1.

Rodrigues E.M.G., Godina R., Santos S.F., Bizuayehu A.W., Contreras J., Catalao J.P.S. (2014). Energy storage systems supporting increased penetration of renewables in islanded systems. *Energy* **75**, 265-280.

Rosell J.I., Ibarñez M. (2006). Modelling power output in photovoltaic modules for outdoor operating conditions. *Energy Conversion and Management* **47**, 2424–2430.

Ross R.G. (1976). Interface design considerations for terrestrial solar cell modules. Proceedings of the 12th IEEE Photovoltaic Specialists Conference.

RTE/SER/ERDF/ADEEF (2015). Panorama de l'électricité renouvelable. Juin 2015. Disponible sur <u>www.rte-france.com</u>.

S

Saguan M. (2007) L'analyse économique des architectures de marché électrique. Application au market design du "temps réel". Thèse de Doctorat, Université Paris Sud XI.

Sandvig N.A. (2016). DOE PSH RFI Reponses, Chalenges and Opportunities for New Pumped Storage Development in the US. <u>http://www.slideshare.net/sandvign/doe-psh-rfi-reponses</u>. Consulté 10/01/2016.

Santhosha A., Farida A.M., Youcef-Toumi K. (2014). The impact of storage facility capacity and ramping capabilities on the supply side economic dispatch of the energy-water nexus. *Energy* **66**, 363-377.

Schmid J., Von Dincklage R.D. (1988). Power Conditioning and Control. Euroforum New Energies, Saarbruken, Germany, pp. 241-243.

Schmid J., Schmidt H. (1991). Inverters for Photovoltaic Systems. 5th Contractor's Meeting of the EC Photovoltaic Demonstration Projects, Ispra, Italy, 122-132.

Shaahid S.M., Elhadidy M.A. (2003). Opportunities for utilization of stand-alone hybrid (photovoltaic+diesel+battery) power systems in hot climates. *Renewable Energy* **28**, 1741–1753.

SHEMA. (2010). Dimensionnement des Turbines. Lycée Chevrollier. Cours Société Hydraulique d'Etudes et de Missions d'Assistance. Mars 2010. Disponible sur : eduscol.education.fr/sti/sites/eduscol.education.fr.sti/files/ressources/techniques/767/767-dimensionnement-des-turbines.pdf

Siahkali H., Vakilian M.. (2009). Electricity generation scheduling with large-scale wind farms using particle swarm optimization. *Electric Power Systems Research* **79**, 826–836.

Siahkali H. (2011). Wind farm and pumped storage integrated ingeneration scheduling using PSO. Proceedings of 16th IEEE international Conference.

Singh R.R., Chelliah T.R., Agarwal P. (2014). Power electronics in hydro electric energy systems – A review. *Renewable and Sustainable Energy Reviews* **32**, 944–959.

Sivakumar N., Das D., Padhy N.P., SenthilKumar A.R., Bisoyi N. (2013). Status of pumped hydro-storage schemes and its future in India. *Renewable and Sustainable Energy Reviews* **19**, 208–213.

Smiley E.W., Stamenic L., Jones J.D., Stojanovic M. (2000). Performance modelling of building integrated photovoltaic systems. 16th EPSEC, Glasgow, UK, 2000.

Solar Power Europe (European Photovoltaic Industry Association). (2016). Global Market Outlook For Solar Power 2015 – 2019. Disponible à <u>www.solarpowereurope.org</u>.

Spyrou I.D., Anagnostopoulos J.S. (2010). Design study of a stand-alone desalination system powered by renewable energy sources and a pumped storage unit. *Desalination* **257**, 137–149.

Steffen B. (2012). Prospects for pumped-hydro storage in Germany. *Energy Policy* **45**, 420–429.

Stelzer R.S., Walters R.N. (1977) Estimating Reversible Pump-Turbine Characteristics. A water resources technical publication, Engineering Monograph n°39, United States, Department of the Interior.

Stoyanov L. (2011). Etude de différentes structures de systèmes hybrides à sources d'énergie renouvelables. Thèse de Doctorat, Université de Corse Pasquale Paoli, Corse, France.

Stoyanov L., Notton G., Lazarov V. (2015). Balance of solar and wind energy sources. *Ecological Engineering and Environmental Protection* **1**, 65-76.

Sukamongkol Y., Chungpaibulpatana S., Ongsakul W. (2002). A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads. *Renewable Energy* **27**, 237-258.

T

Tina G., Gagliano S., Raiti S., (2006). Hybrid solar/wind power system probabilistic modelling for long-term performance assessment. *Solar Energy* **80**, 578–588.

Tournery J.F. (2016). Les stations de pompage (STEP). Rubrique : Sources renouvelables, Encyclopédie de l'énergie. encyclopedie-energie.org/rubriques-darticles/sourcesrenouvelables.

Tuohy A., O'Malley M. (2011). Pumped storage in systems with very high wind penetration. *Energy Policy* **39**, 1965-1974.

U

Ummels B.C, Pelgrum E., Kling W.L. (2008). Integration of large-scale wind power and use of energy storage in the Netherlands electricity supply. *Renewable Power Generation* **24(1)**, 34–36.

V

Varkani A.K., Daraeepour A., Monsef H. (2011). A new self-scheduling strategy for integrated operation of wind and pumped-storage power plants in power markets. *Applied Energy* **88**, 5002–5012.

W

Wasserkraft Volk AG (2006). Energy for a sustainable future. Disponible sur

www.wkv-ag.com/off_deutsch/downloads/brochure_d_v2.pdf

Weisser D., Garcia R.S. (2005). Instantaneous wind energy penetration in isolated electricity grids: concepts and review. *Renewable Energy* **30**, 1299–1308.

Williams S.R., Gottschalg R., Infield D.G. (2004). PV modules real operating performance in the UK, a temperate maritime climate. *19th EPSEC*, 7-11 June 2004, Paris, France.

X

Xiaoyu H., Qiuye S., Huaguang Z., Zhan W. (2012). Multi-objective optimal design of wind/PV/pumped-storage system based on GA. *Proceedings of IEEE 2012 Asia-Pacific Power and Energy Engineering Conference*.

Y

Yan R., Yanpin L. (2011). Simulation and optimization of hybrid wind-solar-pumped-storage power system. Electric Information and Control Engineering (ICEICE). International Conference, pp 729 – 733.

Yang C.J., Jackson R.B. (2011). Opportunities and barriers to pumped-hydro energy storage in the United States. *Renewable and Sustainable Energy Reviews* **15**, 839–844.

Z

Zafirakis D., Chalvatzis K.J., Baiocchi G., Daskalakis G. (2013). Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy. *Applied Energy* **105**, 138–154.

Résumé en Français:

L'intégration de systèmes photovoltaïques et/ou éoliens avec un haut taux de pénétration dans un réseau électrique peu ou pas interconnecté, tel que celui des îles, est limitée par leur nature intermittente, stochastique et non prédictible. L'objectif de ce travail est d'estimer l'apport de l'intégration d'un moyen de stockage d'énergie, largement répandu et mature, une station de transfert d'énergie par pompage (STEP), dans un système de production d'électricité composé de moyens de production « conventionnels » et des systèmes éoliens et photovoltaïques à sources renouvelables intermittentes ; les conditions de consommation et de production sont très proches de celles de la Corse.

2 stratégies de fonctionnement ont été successivement analysées : la première ayant pour but d'augmenter la part des EnR intermittente dans le mix énergétique, la seconde d'utiliser au mieux ce système hybride photovoltaïque/éolien/STEP pour alimenter les pointes de consommation en lieu et place des turbines à combustion.

Un outil de simulation du comportement système PV/Eolien/STEP performant et très aisément adaptable à différentes stratégies de fonctionnement a été ainsi développé. Cet outil prend en compte la variabilité des régimes de fonctionnement pour tous les organes qui constituent le système hybride.

A partir de simulations énergétiques utilisant l'outil ainsi développé, les résultats ont montré que les deux objectifs étaient atteints et ont permis d'analyser les influences des principales caractéristiques du système sur ses performances pour la première stratégie, la présence de la STEP permet de diminuer l'énergie perdue (surproduction EnR intermittente) de moitié et d'augmenter la part des EnR de près de 50% par rapport à un système sans stockage. Pour la seconde stratégie, le taux de recouvrement de la pointe de consommation atteint parfois 80% grâce à la STEP. Une meilleure stratégie de gestion de l'énergie permettrait probablement d'augmenter encore ces taux.

Au niveau des perspectives à ce travail, il est nécessaire de développer de nouvelles stratégies de fonctionnement de ces systèmes complexes faisant appel à des prédictions de la production éolienne et solaire et de la consommation afin d'anticiper les actions à mener au niveau du stockage et des moyens de production. Ces travaux sont en parfaite adéquation avec le recherches menées dans le cadre de plateformes Myrte et PagliaOrba et dans le cadre du projet H2020 Tilos.

Mots clés : énergie photovoltaïque ; énergie éolienne ; stations de transfert d'énergie par pompage ; intermittence des ressources ; taux d'intégration des EnR

Résumé en Anglais:

The integration of photovoltaic systems and / or wind, with high penetration in a little or not interconnected power system, as that of the islands, is limited by their intermittent, stochastic and unpredictable nature. The objective of this work is to estimate the contribution of the integration of an energy storage medium, widespread and mature, an energy transfer station by pumping (STEP), in a production system electricity consists of means of production "conventional" and wind power and photovoltaic systems to intermittent renewable sources; the conditions of consumption and production are very close to those of Corsica.

Two operating strategies have been analyzed successively: the first aimed at increasing the proportion of intermittent renewable energy in the energy mix, the second best use of this photovoltaic hybrid / wind / STEP to supply the place in consumption peaks and instead of combustion turbines.

An efficient behavioral simulation tool PV/ Wind power / PHES, *(pumped hydroelectric energy storage)* and quite easily adaptable to different operating strategies have been developed as well. This tool takes into account the variability of operating regimes for all the components that constitute the hybrid system.

From energy simulations using the tool thus developed, the results showed that both objectives were achieved and used to analyze the influences of the main features of the system performance. For the first strategy, the presence of PHES can reduce the energy lost (intermittently renewables overproduction) in half and increasing the proportion of renewables by nearly 50% compared to a system without storage.

In terms of perspectives for this work, it is necessary to develop new operational strategies of these complex systems based on predictions of wind and solar production and the power consumption in order to anticipate the actions to be taken at the storage level and producing means. This work is in perfect harmony with the research carried in the framework of Myrtle platforms and PagliaOrba and in the context of H2020 Tilos project.

Keywords: photovoltaics; wind power; energy transfer stations by pumping; intermittent energy source; integration rate of renewables.

Résumé en Albanais:

Integrimi i sistemeve fotovoltaike dhe/ ose turbinave me erë me depërtim të lartë në rrjetin elektrik, të lidhur pak me rrjetin ose tërësisht të palidhur, sic është rasti i ishujve, është i limituar prej natyrës intermitente, stokastike dhe të paparashikueshme. Objetivi i kësaj pune është të vlerësojë sjelljen e integrimit të një sistemi mesatar energjie, me një përhapje të gjerë dhe të maturuar, një stacion të transferimit të energjisë me anë të pompimit hidraulik (STEPH), në një sistem të prodhimit të energjisë të përbërë prej burimeve konvencionale dhe prej burimeve të të ripërtëritshme të përhershme sic ato të energjisë së erës dhe të sistemeve fotovoltaike; kushtet e konsumit dhe të prodhimit janë shumë afër me ato të Korsikës.

Dy strategjitë operative janë analizuar me sukses: Strategjia e parë kishte për qëllim rritjen e përqindjes së energjisë së rinovueshme në miksin energjetik, dhe e dyta kishte për qëllim përdorimin sa më mirë të sistemit hibrid fotovoltaike / turbina me erë / STEPH për të furnizuar pikun e konsumit dhe zëvendësimit të turbinave me djegie të brendshme.

Një mjet simulimi për sistemin fotovoltaik / turbina me erë / STEPH është efikas dhe shumë lehtësisht i adaptueshëm për dy strategjitë e ndryshme operative. Ky mjet merr parasysh ndryshueshmërinë e sistemeve operative për të gjitha pjesët që përbëjnë sistemin hibrid.

Nga simulimet e energjisë duke përdorur kodin e zhvilluar, rezultatet treguan se të dyja qëllimet janë arritur dhe lejojnë të analizohet ndikimet kryesore të sistemit në performancës. Për strategjinë e pari, prania e STEHP lejon reduktimin energjinë e humbur (të burimeve e rinovueshme të përhershme) prej gati 50% në krahasim me një sistem pa STEHP. Për strategjinë e dytë, shkalla e përfitimit për eleminimin e konsumit të pikut arrin në 80% nëpërmjet STEHP. Një strategji më e mirë e menaxhimit të energjisë ndoshta do të rritë më tej këto norma.

Në kushtet e perspektivës, është e nevojshme të zhvillohen strategji të reja operacionale të këtyre sistemeve komplekse bazuar në parashikimet të parametrave të erës dhe diellit, si edhe të konsumit në rrjet, në mënyrë që të sigurohen veprimet që do të merren për konservimin energjetik tyre. Kjo punë është në harmoni të plotë me hulumtimet e bëra si pjesë e platformave Myrte dhe PagliaOrba si edhe për projektin e H2020 Tilos.

Fjalë kyçe: energjia fotovoltaike; energjia e erës; stacionet e transferimit të energjisë nga pompimi hidraulik, burimet e përhershme të energjisë ; shkalla e integrimit të energjive të rinovueshme

Annexes

Combinaison	Bassin <i>Mm</i> 3	SACOI SARCO	Conso	EnR C	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv Pri	Eté Au	ut <mark>Cyc</mark>	Rend	Part EnR*	Part EnR**	Influ
	0.2	438000 595042	1994241	696729 4	139982	256747	577643	537254	137661	119086	17.09%	412184	97272	1982480	11761	0.59%	810	487 25	53 24	5 571	70.66%	28.97%	26.94%	ē
	0.3	438000 592797	1994241	696729 4	139982	256747	580450	538860	140468	116279	16.69%	412830	98878	1982487	11754	0.59%	810	487 25	53 24	5 394	70.39%	29.11%	27.02%	R
Ppv=150 MWc	0.4	438000 596137	1994241	696729 4	139982	256747	585360	541/72	145378	111369	15.98%	406767	101790	1982676	11565	0.58%	789	475 25	47 24	2 309	70.02%	29.35%	27.17%	ö
Peol=90 MW	0.5	438000 595259	1994241	696729 4	139982	256747	589531	544571	149549	107198	15.39%	404761	104589	1982590	11651	0.58%	795	4/4 25	51 24	5 256	69.94%	29.56%	27.31%	0
4 X 20 MW	0.6	438000 595905	1994241	696729 4	139982	256747	593757	547683	153776	102972	14.78%	401574	107701	1983163	11078	0.56%	760	462 19	46 23	3 221	70.04%	29.77%	27.46%	Į,
	0.7	438000 595851	1994241	090729 4	139982	200747	595974	546478	155992	07744	14.40%	400010	108490	1982945	11290	0.57%	769	400 20	48 24	1 191	09.00%	29.88%	27.50%	<
	0.8	438000 596782	1994241	090729 4	139982	200747	599015	550588	159033	97714	14.02%	397423	110000	1982/92	11449	0.57%	780	402 20	50 24	0 450	09.00%	30.04%	27.01%	õ
	0.9	438000 597385	1994241	606720 4	130002	200/4/	599165	551053 EE1120	159183	9/ 504	14.00%	390245	1110/1	1982083	11008	0.58%	760	4/5 10	44 23	00 100	60 52%	30.04%	27.03%	ľ
	1	430000 590519	1994241	606720 4	120002	200747	599657	551159	159675	90072	13.90%	206562	100707	1902112	11409	0.00%	709	402 20	44 23	0 100	60.60%	30.06%	27.04%	5
	1.1	430000 590410	1994241	606720 4	130093	256747	600010	551990	160029	99107	14.24%	205010	111007	1902/007	11403	0.56%	752	4/1 10	49 24	124	60 54%	29.90%	27.57%	E
	1.2	438000 597190	100/2/1	606720 /	130082	256747	603687	553667	163705	93019	13.75%	395300	113685	1082807	11344	0.50%	761	400 10	10 2/	100	69.04%	30.13%	27.07/0	č
	1.5	438000 592107	1994241	696729 4	139982	256747	604583	554561	164601	92146	13.00%	398141	114579	1982809	11432	0.57%	781	463 25	51 24	102 102	69.61%	30.32%	27.81%	e l
	1.4	438000 594621	100/2/1	606720 /	130082	256747	6004905	551773	160515	06232	13.81%	308323	111701	1082717	11524	0.58%	778	405 25	/3 2/	1/ 03	69.65%	30.11%	27.67%	ŝ
	1.5	438000 592593	1994241	696729 4	139982	256747	603621	554075	163639	93108	13.36%	398228	114093	1982896	11345	0.57%	773	462 25	51 23	5 89	69 72%	30 27%	27.78%	Ħ
	17	438000 592483	1994241	696729 4	139982	256747	605459	555250	165477	91270	13 10%	397124	115268	1982856	11385	0.57%	770	450 25	51 24	4 84	69.66%	30.36%	27 84%	ŏ
	1.8	438000 590389	1994241	696729 4	139982	256747	603975	553749	163993	92754	13.31%	400562	113767	1982699	11542	0.58%	778	468 16	51 24	3 79	69.37%	30.29%	27.77%	K
	1.9	438000 590719	1994241	696729 4	139982	256747	602961	553975	162979	93768	13.46%	399920	113993	1982614	11627	0.58%	786	469 25	49 24	3 75	69.94%	30.24%	27.78%	£.
	2	438000 591666	1994241	696729 4	139982	256747	601588	551909	161606	95141	13.66%	401237	111927	1982812	11429	0.57%	768	465 16	49 23	8 70	69.26%	30.17%	27.68%	30
sans STEP		438000 658743	1994241	696729 4	139982		439982	439982		256747	36.85%	445720		1982445	11796	0.59%	815					22.06%	22.06%	•
	Passin				EnD	EnR			EnD	EnD	0/	-	-		ENen	% E	Mbro					Dort	Dort	
Combinaison	Mm?	SACOI SARCO	Conso	EnR	Clin	Pompe	EnR*	EnR**	Pompo	Porduo	Porduo	E Motours	E	E Totale	Satic	Non	Pannes	Hiv Pri	Eté Au	ut <mark>Cyc</mark>	Rend	Fait EnP*	Fait EnR**	
	MIIIS				marge	Dispo			i ompe	reruue	reruue	Woteurs	Turbine		Oatio	Satis	T annes					Link	Linx	1
	0.2	438000 626799	1994241	696729 4	139982	256747	539104.31	506849.35	99122.32	157624.7	22.62%	410928	66867	1982576	11665	0.58%	795	477 25	52 24	1 406	67.46%	27.03%	25.42%	
	0.3	438000 629810	1994241	696729 4	139982	256747	541310.39	508107.87	101328.40	155418.6	22.31%	406937	68126	1982854	11387	0.57%	771	461 25	52 23	3 280	67.23%	27.14%	25.48%	F
Ppv=150 MWc	0.4	438000 630329	1994241	696729 4	139982	256747	544777.22	510522.63	104795.22	151951.8	21.81%	404111	70541	1982962	11279	0.57%	746	435 24	48 23	89 219	67.31%	27.32%	25.60%	
Peol=90 MW	0.5	438000 629650	1994241	696729 4	139982	256747	547191.62	512189.97	107209.63	149537.4	21.46%	403339	72208	1983179	11062	0.55%	739	435 25	46 23	3 180	67.35%	27.44%	25.68%	
4 x 10 MW	0.6	438000 628904	1994241	696729 4	139982	256747	545993.52	511132.72	106011.53	150735.5	21.63%	405185	71151	1983221	11020	0.55%	746	451 19	37 23	89 148	67.12%	27.38%	25.63%	
	0.7	438000 628542	1994241	696729 4	139982	256747	548027.14	512619.60	108045.15	148701.9	21.34%	403876	72638	1983037	11204	0.56%	741	442 19	37 24	3 130	67.23%	27.48%	25.70%	
	0.8	438000 627885	1994241	696729 4	139982	256747	549989.69	513954.02	110007.70	146739.3	21.06%	403531	73972	1983370	10871	0.55%	743	442 25	34 24	2 116	67.24%	27.58%	25.77%	
	0.9	438000 626015	1994241	090729 4	139982	200747	547622.49	512308.09	107640.50	149100.5	21.40%	400414	72387	1982799	11442	0.57%	720	402 20	42 24	01	07.25%	27.40%	25.69%	
	11	438000 627651	1994241	606720 4	130092	256747	500347.13	513944.12	107765.62	140381.9	21.01%	403711	73962	1983300	10935	0.55%	739	451 25	39 ZZ	24 93 12 93	67 24%	27.00%	25.77%	
	1.1	430000 020302	100/2/1	606720 4	120092	256747	5477225 41	512229 02	107763.02	140301.4	21.30%	400010	72256	1002040	11401	0.57%	777	403 23	51 24	14 76	67 46%	27.41/0	25.70%	
	1.2	438000 020300	100/2/1	606720 /	130082	256747	547233.41	512007 08	107255.42	1/18782	21.40%	400272	72116	108311/	11122	0.57%	760	457 25	30 23	13 70	66.80%	27.44%	25.68%	
	1.0	438000 626905	100/2/1	606720 /	130082	256747	5/000/ 30	513120 0/	100112 30	147634 6	21.00%	40/310	731/18	1082771	11/2/	0.50%	768	464 25	/3 23	10 10	67 04%	27 53%	25.00%	
	1.4	438000 626509	1004241	696729 4	139982	256747	546897.66	511078 23	106915.66	149831 4	21.13%	406324	71996	1982811	11430	0.50%	776	474 25	30 23	10 00	67 34%	27.33%	25.67%	
	1.0	438000 627345	1004241	696729 4	139982	256747	549601.00	513349.27	109619 90	147127 1	21.00%	404126	73367	1982820	11400	0.57%	754	459 25	36 23	10 00	66.93%	27 56%	25 74%	
	1.7	438000 627898	1994241	696729 4	139982	256747	548021.24	512508.66	108039.25	148707.8	21.34%	404497	72527	1982904	11337	0.57%	773	466 19	53 23	5 54	67.13%	27.48%	25.70%	C C
	1.8	438000 626963	1994241	696729 4	139982	256747	547778.15	512444.96	107796.16	148951	21.38%	405935	72463	1983343	10898	0.55%	759	466 10	53 23	0 51	67.22%	27.47%	25.70%	
	1.9	438000 628705	1994241	696729 4	139982	256747	548185.12	513308.29	108203.13	148543.9	21.32%	403297	73326	1983310	10931	0.55%	734	446 19	37 23	32 48	67.77%	27.49%	25.74%	
	2	438000 627595	1994241	696729 4	139982	256747	548803.22	512495.76	108821.23	147925.8	21.23%	405207	72514	1983298	10943	0.55%	749	429 25	51 24	4 46	66.64%	27.52%	25.70%	
sans STEP		438000 658743	1994241	696729 4	139982		439982	439982		256747	36.85%	445720		1982445	11796	0.59%	815					22.06%	22.06%	

	Bassin					EnR	EnR			FnR	FnR	%	E	E		E Non	% E	Nbre						Part	Part
Combinaison	Mm3	SACOI	SARCO	Conso	EnR	Charge	Pompe	EnR*	EnR**	Pompe	Perdue	Perdue	Moteurs	Turbine	E Totale	Satis	Non	Pannes	Hiv P	ri Eté	Aut	Сус	Rend	EnR*	EnR**
							Dispo										Satis								
	0.2	438000	586462	1994241	858089	449663	408426	615696	564773	166033	242392	28.25%	393700	115109	1982935	11306	0.57%	769	466 2	5 53	225	671	69.33%	30.87%	28.32%
	0.3	438000	585195	1994241	858089	449663	408426	619187	566779	169523	238902	27.84%	393057	117115	1983031	11210	0.56%	764	465 2	3 53	223	464	69.09%	31.05%	28.42%
Ppv=250 MW c	0.4	438000	584690	1994241	858089	449663	408426	626821	571531	177158	231267	26.95%	389095	121868	1983316	10925	0.55%	733	434 2	5 53	221	368	68.79%	31.43%	28.66%
Peol=90 MW	0.5	438000	588001	1994241	858089	449663	408426	633867	576171	184204	224222	26.13%	381493	126508	1983665	10576	0.53%	706	429 2	5 30	222	309	68.68%	31.78%	28.89%
4 x 20 MW	0.6	438000	588797	1994241	858089	449663	408426	636589	577792	186926	221500	25.81%	378973	128129	1983562	10679	0.54%	708	431 2	2 37	218	262	68.55%	31.92%	28.97%
	0.7	438000	587260	1994241	858089	449663	408426	642839	581678	193176	215249	25.08%	376731	132015	1983669	10572	0.53%	691	407 2	1 44	219	232	68.34%	32.23%	29.17%
	0.8	438000	587167	1994241	858089	449663	408426	642416	581292	192752	215673	25.13%	378101	131629	1984561	9680	0.49%	680	416 1	6 39	209	203	68.29%	32.21%	29.15%
	0.9	438000	587108	1994241	858089	449663	408426	641102	580595	191439	216987	25.29%	377683	130932	1983386	10855	0.54%	711	432 2	36	223	180	68.39%	32.15%	29.11%
	1	438000	587589	1994241	858089	449663	408426	643206	581999	193543	214883	25.04%	376775	132336	1984363	9878	0.50%	667	407 2	3 36	201	164	68.38%	32.25%	29.18%
	1.1	438000	588292	1994241	858089	449663	408426	643282	582525	193619	214807	25.03%	375052	132862	1983869	10372	0.52%	683	408 2	5 37	213	149	68.62%	32.26%	29.21%
	1.2	438000	587307	1994241	858089	449663	408426	644921	583800	195258	213168	24.84%	374881	134137	1983988	10253	0.51%	693	419 2	5 48	201	139	68.70%	32.34%	29.27%
	1.3	438000	586657	1994241	858089	449663	408426	647191	584393	197528	210898	24.58%	375171	134729	1984220	10021	0.50%	659	395 1	8 35	211	129	68.21%	32.45%	29.30%
	1.4	438000	584950	1994241	858089	449663	408426	651928	587994	202265	206160	24.03%	372826	138330	1983770	10471	0.53%	665	408 2	5 23	209	123	68.39%	32.69%	29.48%
	1.5	438000	583303	1994241	858089	449663	408426	651071	586865	201408	207018	24.13%	375373	137202	1983540	10701	0.54%	694	424 2	5 35	210	114	68.12%	32.65%	29.43%
	1.6	438000	582661	1994241	858089	449663	408426	648977	585804	199314	209112	24.37%	377070	136140	1983534	10707	0.54%	701	424 2	5 42	210	106	68.30%	32.54%	29.37%
	1.7	438000	580789	1994241	858089	449663	408426	650286	587060	200623	207802	24.22%	377791	137397	1983640	10601	0.53%	706	422 2	5 42	217	100	68.49%	32.61%	29.44%
	1.8	438000	582986	1994241	858089	449663	408426	650346	586560	200683	207742	24.21%	375778	136897	1983324	10917	0.55%	721	430 2	5 42	224	95	68.22%	32.61%	29.41%
	1.9	438000	579642	1994241	858089	449663	408426	651547	587523	201884	206542	24.07%	378249	137859	1983414	10827	0.54%	701	418 2	5 42	216	90	68.29%	32.67%	29.46%
	2	438000	579212	1994241	858089	449663	408426	649549	585700	199886	208540	24.30%	380087	136037	1982999	11242	0.56%	742	454 2	5 45	218	85	68.06%	32.57%	29.37%
Sans STEP		438000	657809	1994241	858089	449663		449663	449663		408426	47.60%	437417		1982890	11351	0.57%	774						22.55%	22.55%
							F = D										0/ -								
Combinaison	Bassin	6460	SARCO	Carros	5-D	EnR	EnR	E-Dt	E-Ditt.	EnR	EnR	%	E	E	E Totolo	E Non	% E	Nbre	USA D		A4	0	Dand	Part	Part
Combinaison	Bassin <i>Mm</i> 3	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non	Nbre Pannes	Hiv P	ri Eté	Aut	Сус	Rend	Part EnR*	Part EnR**
Combinaison	Bassin Mm3	SACOI	SARCO	Conso	EnR 858089	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue 34 97%	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv P	ri Eté	218	Cyc 439	Rend	Part EnR*	Part EnR**
Combinaison	Bassin <i>Mm3</i> 0.2 0.3	SACOI 438000 438000	SARCO 624247 627167	Conso 1994241 1994241	EnR 858089	EnR Charge 449663	EnR Pompe Dispo 408426 408426	EnR* 558035	EnR** 522356	EnR Pompe 108372	EnR Perdue 300054 292531	% Perdue 34.97% 34.09%	E Moteurs 398793 391411	E Turbine 72693 77528	E Totale	E Non Satis 10845 10472	% E Non Satis 0.54% 0.53%	Nbre Pannes 746 697	Hiv P 450 2 416 2	ri Eté	218	Cyc 439 318	Rend 67.08%	Part EnR* 27.98% 28.36%	Part EnR** 26.19% 26.44%
Combinaison	Bassin Mm3 0.2 0.3 0.4	SACOI 438000 438000 438000	SARCO 624247 627167 627586	Conso 1994241 1994241 1994241	EnR 858089 858089 858089	EnR Charge 449663 449663 449663	EnR Pompe Dispo 408426 408426 408426	EnR* 558035 565558 565014	EnR** 522356 527191 526665	EnR Pompe 108372 115895 115351	EnR Perdue 300054 292531 293075	% Perdue 34.97% 34.09% 34.15%	E Moteurs 398793 391411 391575	E Turbine 72693 77528 77002	E Totale 1983396 1983769 1983826	E Non Satis 10845 10472 10415	% E Non Satis 0.54% 0.53% 0.52%	Nbre Pannes 746 697 690	Hiv P 450 2 416 2 418 2	ri Eté 5 53 5 37 2 44	218 219 206	Cyc 439 318 239	Rend 67.08% 66.89%	Part EnR* 27.98% 28.36% 28.33%	Part EnR** 26.19% 26.44% 26.41%
Combinaison Ppv=250 MWc Peol=90 MW	Bassin Mm3 0.2 0.3 0.4 0.5	SACOI 438000 438000 438000 438000	SARCO 624247 627167 627586 627233	Conso 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663	EnR Pompe Dispo 408426 408426 408426 408426	EnR* 558035 565558 565014 569966	EnR** 522356 527191 526665 529965	EnR Pompe 108372 115895 115351 120303	EnR Perdue 300054 292531 293075 288123	% Perdue 34.97% 34.09% 34.15% 33.58%	E 398793 391411 391575 389356	E Turbine 72693 77528 77002 80302	E Totale 1983396 1983769 1983826 1984554	E Non Satis 10845 10472 10415 9687	% E Non Satis 0.54% 0.53% 0.52% 0.49%	Nbre Pannes 746 697 690 643	Hiv P 450 2 416 2 418 2 394 1	ri Eté 5 53 5 37 2 44 5 26	218 219 206 207	Cyc 439 318 239 200	Rend 67.08% 66.89% 66.75% 66 75%	Part EnR* 27.98% 28.36% 28.33% 28.58%	Part EnR** 26.19% 26.44% 26.41% 26.57%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6	SACOI 438000 438000 438000 438000 438000	SARCO 624247 627167 627586 627233 625712	Conso 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663	EnR Pompe Dispo 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984	EnR** 522356 527191 526665 529965 530771	EnR Pompe 108372 115895 115351 120303 121321	EnR Perdue 300054 292531 293075 288123 287105	% Perdue 34.97% 34.09% 34.15% 33.58% 33.46%	E 398793 391411 391575 389356 389469	E Turbine 72693 77528 77002 80302 81107	E Totale 1983396 1983769 1983826 1984554 1983952	E Non Satis 10845 10472 10415 9687 10289	% E Non Satis 0.54% 0.53% 0.52% 0.49% 0.52%	Nbre Pannes 746 697 690 643 703	Hiv P 450 2 416 2 418 2 394 1 433 2	ri Ete 5 53 5 37 2 44 6 26 5 35	218 219 206 207 210	Cyc 439 318 239 200 169	Rend 67.08% 66.89% 66.75% 66.75% 66.85%	Part EnR* 27.98% 28.36% 28.33% 28.58% 28.63%	Part EnR** 26.19% 26.44% 26.41% 26.57% 26.62%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7	SACOI 438000 438000 438000 438000 438000 438000	SARCO 624247 627167 627586 627233 625712 625660	Conso 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663	EnR Pompe Dispo 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984 568638	EnR** 522356 527191 526665 529965 530771 529122	EnR Pompe 108372 115895 115351 120303 121321 118975	EnR Perdue 300054 292531 293075 288123 287105 289451	% Perdue 34.97% 34.09% 34.15% 33.58% 33.46% 33.73%	E 398793 391411 391575 389356 389469 390849	E Turbine 72693 77528 77002 80302 81107 79459	E Totale 1983396 1983769 1983826 1984554 1983952 1983632	E Non Satis 10845 10472 10415 9687 10289 10609	% E Non Satis 0.54% 0.53% 0.52% 0.49% 0.52% 0.53%	Nbre Pannes 746 697 690 643 703 700	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2	ri Eté 5 53 5 37 2 44 6 26 5 35 5 38	218 219 206 207 210 211	Cyc 439 318 239 200 169 142	Rend 67.08% 66.89% 66.75% 66.75% 66.85% 66.79%	Part EnR* 27.98% 28.36% 28.33% 28.58% 28.63% 28.63% 28.51%	Part EnR** 26.19% 26.44% 26.41% 26.57% 26.62% 26.53%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8	SACOI 438000 438000 438000 438000 438000 438000	SARCO 624247 627167 627586 627233 625712 625660 623559	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663	EnR Pompe Dispo 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984 568638 572639	EnR** 522356 527191 526665 529965 530771 529122 531987	EnR Pompe 108372 115895 115351 120303 121321 118975 122976	EnR Perdue 300054 292531 293075 288123 287105 289451 285450	% Perdue 34.97% 34.09% 34.15% 33.58% 33.46% 33.73% 33.27%	E 398793 391411 391575 389356 389469 390849 390213	E 72693 77528 77002 80302 81107 79459 82323	E Totale 1983396 1983769 1983826 1984554 1983952 1983632 1983759	E Non Satis 10845 10472 10415 9687 10289 10609 10482	% E Non Satis 0.54% 0.53% 0.52% 0.49% 0.52% 0.53% 0.53%	Nbre Pannes 746 697 690 643 703 700 695	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 435 2	ri Eté 5 53 5 37 2 44 6 26 5 35 5 38 5 38	218 219 206 207 210 211 217	Cyc 439 318 239 200 169 142 129	Rend 67.08% 66.89% 66.75% 66.75% 66.85% 66.79% 66.94%	Part EnR* 27.98% 28.36% 28.33% 28.58% 28.63% 28.63% 28.51% 28.71%	Part EnR** 26.19% 26.44% 26.41% 26.57% 26.62% 26.53% 26.68%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	SACOI 438000 438000 438000 438000 438000 438000 438000	624247 627167 627586 627233 625712 625660 623559 623631	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663	EnR Pompe Dispo 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984 568638 572639 572647	EnR** 522356 527191 526665 529965 530771 529122 531987 531337	EnR Pompe 108372 115895 115351 120303 121321 118975 122976 122984	EnR Perdue 300054 292531 293075 288123 287105 289451 285450 285442	% Perdue 34.97% 34.09% 34.15% 33.46% 33.46% 33.73% 33.27% 33.27%	E 398793 391411 391575 389356 389469 390849 390213 390277	E Turbine 72693 77528 77002 80302 81107 79459 82323 81673	E Totale 1983396 1983769 1983826 1984554 1983952 1983632 1983759 1983954	E Non Satis 10845 10472 10415 9687 10289 10609 10482 10297	% E Non Satis 0.54% 0.52% 0.49% 0.52% 0.53% 0.53% 0.53%	Nbre Pannes 746 697 690 643 703 700 695 689	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 435 2 425 2	ri Eté 5 53 5 37 2 44 6 26 5 35 5 38 0 23 0 33	218 219 206 207 210 211 217 211	Cyc 439 318 239 200 169 142 129 114	Rend 67.08% 66.89% 66.75% 66.75% 66.85% 66.79% 66.94% 66.94%	Part EnR* 27.98% 28.36% 28.33% 28.58% 28.51% 28.51% 28.71% 28.72%	Part EnR** 26.19% 26.44% 26.41% 26.57% 26.52% 26.53% 26.68% 26.64%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	SACOI 438000 438000 438000 438000 438000 438000 438000 438000	624247 627167 627586 627233 625712 625660 623559 623631 623389	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663 449663	EnR Pompe Dispo 408426 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984 568638 572639 572647 570727	EnR** 522356 527191 526665 529965 530771 529122 531987 531337 530416	EnR Pompe 108372 115895 115351 120303 121321 118975 122976 122984 121064	EnR Perdue 300054 292531 293075 288123 287105 289451 285450 285450 285452 287362	% Perdue 34.97% 34.09% 34.15% 33.46% 33.46% 33.73% 33.27% 33.26% 33.49%	E 398793 391411 391575 389356 389469 390849 390213 390977 391771	E Turbine 72693 77528 77002 80302 81107 79459 82323 81673 80753	E Totale 1983396 1983769 1983826 1984554 1983952 1983632 1983759 1983944 1983577	E Non Satis 10845 10472 10415 9687 10289 10609 10482 10297 10664	% E Non Satis 0.54% 0.53% 0.52% 0.52% 0.53% 0.53% 0.53% 0.53%	Nbre Pannes 746 697 690 643 703 700 695 689 705	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 435 2 425 2 422 2	ri Eté 5 53 5 37 2 44 6 26 5 35 5 38 0 23 0 33 5 42	218 219 206 207 210 211 217 211 214	Cyc 439 318 239 200 169 142 129 114 101	Rend 67.08% 66.89% 66.75% 66.75% 66.85% 66.79% 66.94% 66.41% 66.70%	Part EnR* 27.98% 28.36% 28.33% 28.58% 28.51% 28.51% 28.71% 28.72% 28.62%	Part EnR** 26.19% 26.44% 26.41% 26.57% 26.62% 26.62% 26.68% 26.68% 26.64% 26.60%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1	SACOI 438000 438000 438000 438000 438000 438000 438000 438000	624247 627167 627586 627233 625712 625660 623559 623559 623631 623389 622728	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663	EnR Pompe Dispo 408426 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984 568638 572639 572647 570727 570727	EnR** 522356 527191 526665 530771 529965 530771 530940 531337 530416 530940	EnR Pompe 108372 115895 115351 120303 121321 118975 122976 122984 121064 122559	EnR Perdue 300054 292531 293075 288123 287105 289451 285450 285450 285452 285462 285862	% Perdue 34.97% 34.09% 34.15% 33.58% 33.46% 33.73% 33.27% 33.26% 33.49% 33.31%	E 398793 391411 391575 389356 389469 390849 390213 390977 391771 392274	E Turbine 72693 77528 77002 80302 81107 79459 82323 81673 80753 81276	E Totale 1983396 1983769 1983826 1984554 1983952 1983632 1983759 1983944 1983577 1983942	E Non Satis 10845 10472 10415 9687 10289 10699 10482 10299	% E Non Satis 0.54% 0.53% 0.52% 0.49% 0.52% 0.53% 0.53% 0.52% 0.53% 0.52%	Nbre Pannes 746 697 690 643 703 700 695 689 705 691	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 435 2 425 2 425 2 429 1	ri Ete 5 53 5 37 2 44 6 26 5 35 5 38 0 23 0 33 5 42 6 35	218 219 206 207 210 211 217 211 214 211	Cyc 439 318 239 200 169 142 129 114 101 93	Rend 67.08% 66.89% 66.75% 66.85% 66.79% 66.79% 66.41% 66.41% 66.32%	Part EnR* 27.98% 28.36% 28.33% 28.58% 28.63% 28.51% 28.71% 28.72% 28.62% 28.62% 28.69%	Part EnR** 26.19% 26.44% 26.41% 26.57% 26.62% 26.62% 26.68% 26.64% 26.60% 26.60% 26.62%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	624247 627167 627586 627233 625712 625660 623559 623631 623389 622728 623397	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663 449663	EnR Pompe Disno 408426 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984 568638 572639 572647 570727 570727 572222 571681	EnR** 522356 527191 526665 530771 529122 531987 531550 530940 531550	EnR Pompe 108372 115895 115351 120303 121321 118975 122976 122984 121064 122559 122017	EnR Perdue 300054 292531 293075 288123 287105 289451 285450 285450 285466 285866 286608	% Perdue 34.97% 34.09% 33.58% 33.46% 33.73% 33.27% 33.27% 33.26% 33.49% 33.31%	E 398793 391411 391575 389356 389469 390849 390213 390977 391771 392274	E Turbine 72693 77528 77002 80302 81107 79459 82323 81673 80753 81673 81276 81887	E Totale 1983396 1983769 1983826 1984554 1983952 1983632 1983759 1983944 1983577 1983942 1984193	E Non Satis 10845 10472 10415 9687 10289 10699 10482 10297 10664 10299 10048	% E Non Satis 0.54% 0.53% 0.52% 0.49% 0.52% 0.53% 0.53% 0.52% 0.52% 0.50%	Nbre Pannes 746 697 690 643 703 700 695 689 705 691 681	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 435 2 425 2 425 2 424 2 429 1	ri Ete 5 53 5 37 2 44 6 26 5 35 5 38 0 23 0 33 5 42 6 35 4 46	218 219 206 207 210 211 217 211 214 211 216	Cyc 439 318 239 200 169 142 129 114 101 93 86	Rend 67.08% 66.75% 66.75% 66.75% 66.79% 66.79% 66.41% 66.32% 66.32%	Part EnR* 27.98% 28.36% 28.58% 28.63% 28.51% 28.71% 28.72% 28.62% 28.69%	Part EnR** 26.19% 26.44% 26.41% 26.62% 26.62% 26.68% 26.64% 26.60% 26.62% 26.62% 26.65%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 624247 627167 627586 627533 625712 625660 623559 623631 623389 622728 623397 622078	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663 449663 449663	EnR Pompe 105800 408426 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984 568638 572639 572647 57027 572222 571681 570797	EnR** 522356 527191 526665 530771 529122 531987 531337 530416 530940 531550 53079	EnR Pompe 108372 115895 115351 120303 121321 118975 122976 122984 121064 122559 122017	EnR Perdue 300054 292531 293075 288123 287105 289451 285450 285450 285460 285462 285866 286408 286408	% Perdue 34.97% 34.09% 34.15% 33.58% 33.46% 33.373% 33.27% 33.26% 33.49% 33.31% 33.38%	E 398793 391411 391575 389366 389469 390243 390213 390277 391771 391274 391246 393294	E Turbine 72693 77528 77002 80302 81107 79459 82323 81673 80753 81276 81887 80416	E Totale 1983396 1983769 1983826 1984554 1983952 1983952 1983952 1983957 1983944 1983577 1983942 19834193 1983451	E Non Satis 10845 10472 10415 9687 10289 10609 10482 10297 10664 10299 10048	% E Non Satis 0.54% 0.53% 0.49% 0.52% 0.53% 0.53% 0.52% 0.53% 0.52% 0.53% 0.52%	Nbre Pannes 746 697 690 643 700 695 689 705 691 681 681 713	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 435 2 425 2 425 2 424 2 429 1 405 1 436 2	ri Eté 5 53 5 37 2 44 6 26 5 35 5 38 0 23 5 42 6 35 4 46 5 38	218 219 206 207 210 211 217 211 214 214 211 216 214	Cyc 439 318 239 200 169 142 129 114 101 93 86 78	Rend 67.08% 66.89% 66.75% 66.75% 66.85% 66.79% 66.94% 66.41% 66.70% 66.32% 67.11%	Part EnR* 27.98% 28.36% 28.58% 28.63% 28.63% 28.71% 28.62% 28.62% 28.69% 28.67% 28.67%	Part EnR** 26.19% 26.44% 26.57% 26.62% 26.62% 26.68% 26.68% 26.68% 26.62% 26.65% 26.58%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 624247 627167 627586 627233 625712 625660 623559 623631 623389 623397 622078 623078 623043	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663	EnR Pompe Disno 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984 568638 572639 572647 572727 572647 570727 572681 570797	EnR** 522356 527191 526665 530771 529122 531987 531337 530416 530940 531550 530079 530079	EnR Pompe 108372 115895 115351 120303 121321 118975 122976 122984 121064 122559 122017 121134 120498	EnR Perdue 300054 292531 293075 288123 287105 289451 285450 285442 285466 285468 285866 286408 287292 287927	% Perdue 34.97% 34.09% 33.58% 33.46% 33.46% 33.27% 33.26% 33.24% 33.31% 33.38% 33.48%	E Moteurs 398793 391411 391575 389366 389469 390849 390849 390977 3909771 391274 391246 393294 392534	E Turbine 72693 77528 77002 80302 81107 79459 82323 81673 81673 816753 81276 81887 80416 80395	E Totale 1983396 1983769 1984554 1984554 1983652 1983652 1983759 1983942 1983942 1983451 1983451 1983635	E Non Satis 10845 10472 10415 9687 10289 10609 10482 10297 10664 10299 10048 10790	% E Non Satis 0.54% 0.53% 0.52% 0.52% 0.53% 0.53% 0.52% 0.52% 0.50% 0.54%	Nbre Pannes 746 697 690 643 700 695 689 705 691 681 713 702	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 435 2 425 2 424 2 429 1 405 1 436 2	ri Eté 5 53 5 37 2 44 6 26 5 35 5 38 0 23 5 42 6 35 4 46 5 38 5 38	218 219 206 207 210 211 217 211 214 214 211 216 214 214 219	Cyc 439 318 239 200 169 142 129 114 101 93 86 78 72	Rend 67.08% 66.89% 66.75% 66.75% 66.85% 66.94% 66.94% 66.41% 66.70% 66.32% 67.11% 66.32%	Part EnR* 27.98% 28.36% 28.53% 28.63% 28.71% 28.72% 28.62% 28.69% 28.69% 28.69% 28.62% 28.62%	Part EnR** 26.19% 26.41% 26.57% 26.62% 26.63% 26.68% 26.66% 26.66% 26.65% 26.58%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 624247 627167 627586 625712 625660 623559 623631 623389 622728 622728 622397 622078 623397 622078	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663	EnR Pompe 105500 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984 572639 572647 570727 572222 571681 570797 570162 567904	EnR** 522356 527191 529665 529965 530771 529122 531987 530410 530940 530940 530959 530059 530856	EnR Pompe 108372 115895 115351 120303 121321 118975 122984 122984 122064 122559 122017 121134 120498 118241	EnR Perdue 300054 293075 288123 287105 289451 285450 285450 285450 285450 285866 286408 287292 287927 290184	% Perdue 34.97% 34.15% 33.58% 33.46% 33.73% 33.27% 33.26% 33.31% 33.31% 33.31% 33.38% 33.38% 33.48% 33.55%	E 398793 391411 391575 389356 389469 390213 390271 391771 391771 391274 391246 393294 393265 39329534 393265	E Turbine 72693 77528 77002 80302 81107 79459 82323 81673 80753 81276 81887 80416 80395 79202	E Totale 1983396 1983769 1983826 1984554 1983952 1983952 1983952 1983957 1983944 1983577 1983942 1983463 1983463	E Non Satis 10845 10472 10415 9687 10289 10609 10482 10297 10664 10299 10048 10790 106065	% E Non Satis 0.54% 0.52% 0.49% 0.52% 0.53% 0.53% 0.53% 0.52% 0.52% 0.52% 0.54% 0.54%	Nbre Pannes 746 697 690 643 703 700 695 689 705 689 705 681 713 702	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 425 2 425 2 425 2 429 1 405 1 436 2 420 2	ri Eté 5 53 5 37 2 44 6 26 5 35 5 38 0 23 5 42 6 35 4 46 5 38 5 53	218 219 206 207 210 211 217 211 214 214 214 214 214 214 214 219 211	Cyc 439 318 239 200 169 142 129 114 101 93 86 78 72 66	Rend 67.08% 66.89% 66.75% 66.75% 66.75% 66.94% 66.41% 66.70% 66.32% 67.11% 66.32% 66.32% 66.32%	Part EnR* 27.98% 28.36% 28.33% 28.63% 28.63% 28.62% 28.62% 28.69% 28.62% 28.62% 28.62% 28.62% 28.62% 28.62% 28.62% 28.62%	Part EnR** 26.19% 26.44% 26.41% 26.57% 26.62% 26.68% 26.68% 26.66% 26.65% 26.58% 26.58%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 624247 627167 627586 627233 625660 623559 623559 623659 623728 623389 622728 623043 622078 623043 623043 623335 624594	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663	EnR Pompe Disno 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984 572639 572647 570727 570727 570727 570727 572222 571681 570797 570162 567904 571350	EnR** 522356 527191 529665 539771 529122 531987 530416 530416 530940 53059 530940 531550 530979 530059 528865 530624	EnR Pompe 108372 115895 115351 120303 121321 118975 122976 122984 121064 122559 122017 121134 120498 118241 121687	EnR Perdue 300054 292531 283075 288123 287105 289451 285450 285466 285466 285866 286408 287292 285866 28673927 290184 286739	% Perdue 34.97% 34.09% 33.46% 33.58% 33.27% 33.26% 33.26% 33.49% 33.38% 33.48% 33.55% 33.85% 33.42%	E Moteurs 398793 391411 391575 389356 389469 390849 390213 390977 391771 392274 391246 393294 393294 393294 393266 390417	E Turbine 72693 77528 80302 81107 79459 82323 81673 80753 81673 80753 81276 81887 80416 80395 79202 80961	E Totale 1983396 1983769 1983826 1984554 1983826 1983759 1983959 1983944 1983577 1983942 1984193 1984193 1984451 1983635 1983466 1983635	E Non Satis 10845 10472 10415 9687 10289 10609 10482 10297 10664 10299 10048 10299 10048 10790 10606 10775	% E Non Satis 0.54% 0.53% 0.52% 0.53% 0.53% 0.52% 0.52% 0.50% 0.50% 0.54% 0.54% 0.54% 0.54%	Nbre Pannes 746 697 690 643 703 700 695 689 705 689 705 689 705 691 681 713 702 736 693	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 435 2 425 2 424 2 429 1 405 1 436 2 420 2 420 2 427 2	ri Eté 5 53 5 37 2 44 6 26 5 35 5 38 0 23 0 33 5 42 6 35 5 38 5 38 5 38 5 38 5 38 9 39	218 219 206 207 210 211 217 211 214 214 214 214 214 214 214 214 214	Cyc 439 318 239 200 169 142 129 114 101 93 86 78 78 72 66 64	Rend 67.08% 66.89% 66.75% 66.75% 66.75% 66.94% 66.41% 66.70% 66.32% 66.32% 66.32% 66.32% 66.38% 66.98%	Part EnR* 27.98% 28.36% 28.53% 28.51% 28.71% 28.72% 28.62% 28.62% 28.62% 28.69% 28.62% 28.69% 28.48% 28.48%	Part EnR** 26.19% 26.41% 26.57% 26.62% 26.63% 26.63% 26.64% 26.60% 26.65% 26.58% 26.58% 26.58%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 624247 627167 627586 627233 625712 625660 623651 623639 622728 623078 622078 622078 622078 622078 622078 622078 622078	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663	EnR Pompe 108426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 569966 570984 572639 572639 572647 570727 57022 571681 570797 570162 567904 571575	EnR** 522356 527191 529965 530771 529925 531987 531337 530416 530940 531550 530079 530059 530059 530059 530624 531643	EnR Pompe 108372 115895 115351 120303 121321 122976 122974 122984 122017 122017 121134 122017 121134 120498 118241 121687 122911	EnR Perdue 300054 292531 293075 2884123 285450 285442 285460 285442 285866 286408 286408 287292 287927 290184 286514	% Perdue 34.97% 34.09% 33.46% 33.58% 33.46% 33.26% 33.26% 33.48% 33.31% 33.48% 33.48% 33.48% 33.48% 33.42% 33.42%	E Moteurs 398793 391411 391575 389366 389469 390213 390271 391771 391274 391274 391282 393294 393294 393294 393294	E Turbine 72693 77528 77022 80302 81107 79459 82323 81673 80753 81276 81887 80416 80395 79202 80961	E Totale 1983396 1983769 1983826 1984554 1983952 1983759 1983759 1983759 1983942 1983413 1983451 1983463 1983466 1983665 1983665	E Non Satis 10845 10472 10415 9687 10289 10609 10482 10297 10664 10299 10048 10790 10606 10775 10606 10775	% E Non Satis 0.54% 0.52% 0.52% 0.53% 0.52% 0.53% 0.52% 0.54% 0.54% 0.54%	Nbre Pannes 746 697 690 643 703 700 695 689 705 689 705 691 681 713 702 736 693 708	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 435 2 425 2 425 2 429 1 405 1 405 1 436 2 420 2 420 2 427 2 423 1	ri Eté 5 53 5 37 2 44 6 26 5 35 5 38 0 23 5 42 6 35 5 38 5 38 5 5 38 5 5 38 5 5 38 5 39 9 39 9 37	218 219 206 207 210 211 217 211 214 214 214 214 214 214 214 219 211 212 215	Cyc 439 318 239 200 169 142 129 114 101 93 86 78 72 66 64 61	Rend 67.08% 66.89% 66.75% 66.75% 66.85% 66.79% 66.94% 66.32% 66.32% 66.32% 66.32% 66.53% 66.53% 67.25%	Part EnR* 27.98% 28.36% 28.33% 28.58% 28.63% 28.71% 28.62% 28.62% 28.62% 28.69% 28.65% 28.48% 28.65%	Part EnR** 26.19% 26.41% 26.57% 26.62% 26.62% 26.64% 26.66% 26.66% 26.62% 26.58% 26.58% 26.58% 26.52% 26.66%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 624247 627167 627586 627233 625712 625660 623559 623559 623559 623078 623078 622078 623073 622078 623043 623355 624594 623738 624594 623738	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663	EnR Pompe Uisso 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565588 565014 568044 568086 570984 572639 572647 570727	EnR** 522356 527191 5266655 530771 529192 531937 530416 530540 53059 530059 530059 530059 530059 530059 5300624 531643 532025	EnR Pompe 108372 115895 115351 120303 121321 118975 122976 122976 122976 122977 12104 122559 122017 121134 120498 118241 121687 121911 122561	EnR Perdue 300054 292531 293075 288123 285450 285450 285452 285466 286408 287292 287362 287362 287927 290184 286739 286514 285865	% Perdue 34.97% 34.09% 33.58% 33.58% 33.46% 33.73% 33.26% 33.48% 33.34% 33.38% 33.55% 33.82% 33.82% 33.39% 33.31%	E Moteurs 398793 391411 391575 389366 389469 390849 390977 391771 392274 391246 393294 392534 392534 39254 392266 390417 390180 389045	E Turbine 72693 77502 80302 81107 79459 82323 81673 81673 81673 81673 81276 81887 80416 80395 79202 80961 81980	E Totale 1983396 1983769 1983826 1983826 1983952 1983952 1983942 1983942 1983942 1983451 1983451 1983456 1983635 1983560 1983560	E Non Satis 10845 10472 10415 9687 10289 10609 10482 10297 10664 10299 10048 10790 10606 10775 10606 10671	% E Non Satis 0.54% 0.53% 0.52% 0.53% 0.52% 0.52% 0.52% 0.52% 0.52% 0.54% 0.54%	Nbre Pannes 746 690 643 703 700 695 689 705 691 681 715 691 681 712 736 693 702 736 693 701	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 425 2 425 2 425 2 424 2 425 2 429 1 436 2 420 2 420 2 420 2 420 2 420 2 420 2 421 2 420 1 430 2	ri Eté 5 53 5 37 2 44 6 26 5 35 5 38 0 23 5 42 6 35 5 38 5 42 6 35 5 38 5 5 38 5 5 38 9 39 9 39 5 38	218 219 206 207 210 211 217 211 214 214 214 214 219 211 212 215 215	Cyc 439 318 239 200 169 142 129 114 101 93 86 64 61 57	Rend 67.08% 66.89% 66.75% 66.75% 66.85% 66.41% 66.41% 66.32% 66.32% 66.32% 66.39% 66.53% 67.25% 67.25%	Part EnR* 27.98% 28.36% 28.58% 28.63% 28.63% 28.71% 28.62% 28.62% 28.69% 28.62% 28.69% 28.65% 28.48% 28.65% 28.66% 28.66%	Part EnR** 26.19% 26.41% 26.57% 26.62% 26.62% 26.64% 26.64% 26.66% 26.65% 26.58% 26.58% 26.58% 26.52% 26.61% 26.66%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 624247 627167 627586 627586 623559 623631 623559 623397 622078 623397 622078 623397 624594 623338 624594 623578	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663	EnR Pompe Disno 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565558 565014 569966 570984 572639 572647 570727 57222 571681 570797 570162 567904 571350 571350 571224	EnR** 522356 527191 526665 529965 530771 531987 531337 530940 531550 530979 53059 530059 530654 530624 531643 532025 530624	EnR Pompe 108372 115385 115351 120303 121321 118975 122976 122976 122976 122017 121134 120498 118241 121687 121911 122561 1219261	EnR Perdue 300054 292531 293075 2884123 285450 285450 285450 285462 285466 286408 287292 287927 290184 286739 286514 286524	% Perdue 34.97% 34.09% 33.46% 33.58% 33.27% 33.27% 33.26% 33.32% 33.31% 33.38% 33.38% 33.48% 33.48% 33.42% 33.32% 33.42% 33.31%	E Moteurs 398793 391411 391575 389356 389469 390213 390977 391771 392274 391246 393294 393266 393294 393294 393266 393294 393294 393266 393417 390180 389045 391651	E Turbine 77693 77528 80302 81107 79459 82323 81673 80753 81276 81887 80416 80395 79202 80961 81980 8395	E Totale 1983396 1983769 1983769 1984554 1983952 1983952 1983952 1983952 1983954 1983957 1983944 1983451 1983455 19834635 1983560 1983564 1983584	E Non Satis 10845 10472 10415 9687 10289 10609 10482 10297 10664 10299 10048 10790 10606 10675 10606 10681 10705 10353	% E Non Satis 0.54% 0.52% 0.52% 0.53% 0.53% 0.52% 0.52% 0.52% 0.52% 0.50% 0.54% 0.54% 0.53% 0.54% 0.54%	Nbre Pannes 746 690 643 703 700 695 689 705 689 705 681 713 702 736 693 708 716 837	Hiv P 450 2 416 2 418 2 394 1 433 2 426 2 425 2 425 2 429 1 405 1 436 2 429 1 405 1 436 2 420 2 420 2 420 1 433 2 440 1 433 2 440 1 433 2 440 1 433 2 440 1 433 2 440 1 440 1 433 2 440 1 440 1 44	ri Ete 5 537 2 44 6 26 5 35 5 38 3 23 0 333 5 42 6 35 5 38 5 38 5 38 5 38 5 38 9 39 9 39 5 38 5 42 5	218 219 206 207 210 211 217 211 214 214 211 216 214 211 212 215 215 212	Cyc 439 318 239 200 169 142 129 114 101 93 86 78 72 66 64 61 57 54	Rend 67.08% 66.89% 66.75% 66.75% 66.85% 66.41% 66.41% 66.32% 67.11% 66.32% 67.11% 66.92% 66.92% 67.25% 67.20% 66.43%	Part EnR* 27.98% 28.33% 28.53% 28.53% 28.51% 28.72% 28.62% 28.62% 28.65% 28.65% 28.65% 28.66% 28.66% 28.66% 28.66% 28.66% 28.66% 28.66% 28.66%	Part EnR** 26.19% 26.44% 26.41% 26.57% 26.62% 26.68% 26.68% 26.66% 26.65% 26.58% 26.58% 26.58% 26.61% 26.61% 26.66% 26.66% 26.66%
Combinaison Ppv=250 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 624247 627167 627586 627233 625660 623559 623559 62359 622078 623043 623043 623043 6230335 624594 623738 623738 623739 623263	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089 858089	EnR Charge 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663 449663	EnR Pompe Disno 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426 408426	EnR* 558035 565558 565014 569966 570984 572639 572647 57027 57222 571681 570797 570162 567904 57155 572224 571550 573202	EnR** 522356 527191 526665 529965 5309771 531337 530416 530940 531550 530059 530059 530624 531643 532025 530629 531249	EnR Pompe 108372 115895 115351 120303 121321 118975 122976 122984 122059 122017 121134 120498 118241 121687 121911 122561 121926 123539	EnR Perdue 300054 292531 293075 288123 287105 285450 285450 285452 285460 285462 286408 286708 286739 286514 2866514 285865 286499 284887	% Perdue 34.97% 34.09% 33.46% 33.58% 33.27% 33.26% 33.26% 33.49% 33.348% 33.55% 33.48% 33.55% 33.42% 33.39% 33.31% 33.39%	E Moteurs 398793 391411 391575 389356 389469 390849 390213 390977 391771 392274 391246 393294 393294 393266 390417 390180 389045 3908651 3908651 3908651	E Turbine 72693 77528 77022 80302 81407 79459 82323 81673 80753 81673 80753 81276 81887 80416 80395 79202 80961 81980 82362 80995	E Totale 1983396 1983769 1983826 1984554 1983826 1983759 1983952 1983952 1983944 1983757 1983942 1983451 1983455 1983466 1983550 1983550 1983554 1983584	E Non Satis 10845 10472 10475 9687 10289 10609 10482 10297 10664 10299 10048 10299 10048 10790 10606 10775 10606 10775 10606 10775	% E Non Satis 0.54% 0.52% 0.52% 0.53% 0.53% 0.52% 0.52% 0.54% 0.54% 0.54% 0.54% 0.54% 0.54%	Nbre Pannes 746 697 643 703 700 695 689 705 681 713 702 736 681 713 702 736 693 708 711 685	Hiv P 450 2 418 2 418 2 428 2 426 2 426 2 426 2 425 2 426 2 425 2 429 1 405 1 436 2 429 2 429 2 429 2 429 2 447 2 440 1 433 2 440 1 433 2 440 1 440 1 433 2 440 1 440 4 440 4 44	ri Etc 5 53 7 2 44 6 26 5 35 5 38 0 23 0 33 5 42 5 38 3 0 33 5 42 5 38 3 9 39 6 37 5 38 6 37 5 38 2 39 3 9 39 6 37 5 38 2 39 3 39 3 37 5 38 5 37 5 38 5 37 5 38 5 37 5 38 5 38 5 38 5 39 3 39 5 39 5 39 5 39 5 39 5 38 5 42 5 42 5 42 5 42 5 42 5 5 5 5 5 5 5 5 5 7 5 7 5 7 5 7	218 219 206 207 210 211 217 211 214 216 214 219 211 212 215 215 212 211	Cyc 439 318 239 200 169 142 129 114 93 86 78 72 66 64 57 54	Rend 67.08% 66.89% 66.75% 66.75% 66.85% 66.99% 66.94% 66.32% 67.11% 66.39% 66.38% 66.53% 67.25% 67.20% 66.44%	Part EnR* 27.98% 28.36% 28.53% 28.53% 28.51% 28.71% 28.72% 28.62% 28.62% 28.69% 28.65% 28.66% 28.66% 28.66% 28.66%	Part EnR** 26.19% 26.41% 26.57% 26.62% 26.63% 26.63% 26.64% 26.65% 26.58% 26.58% 26.58% 26.58% 26.61% 26.66% 26.66% 26.66%

Combinaison	Bassin <i>Mm</i> 3	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv	Pri Et	é Aut	Сус	Rend	Part EnR*	Part EnR**
	0.2	438000	606966	1994241	576401	419061	157340	523222	494501	104161	53179	9.23%	442294	75440	1981760	12481	0.63%	871	526	27 53	265	448	72.43%	26.24%	24.80%
	0.3	438000	607819	1994241	576401	419061	157340	524808	495555	105747	51593	8.95%	440402	76494	1981776	12465	0.63%	869	526	27 51	265	306	72.34%	26.32%	24.85%
Ppv=75 MWc	0.4	438000	608589	1994241	576401	419061	157340	528977	498028	109916	47424	8.23%	437248	78967	1981866	12375	0.62%	861	520	23 53	265	241	71.84%	26.53%	24.97%
	0.5	438000	608462	1994241	576401	419061	157340	530559	499044	111498	45842	7.95% 8.05%	437158	79983	1981785	12450	0.62%	805	520 527	27 53	265	196	71.73%	26.60%	25.02%
4 X 20 10100	0.0	438000	6110/0	100/2/1	576401	419001	157340	535188	502224	116127	40397	7 15%	430729	83163	1081856	12402	0.03%	850	517	21 50	203	1/17	71.00%	20.30%	25.00%
	0.7	438000	610125	1994241	576401	419061	157340	535100	502225	116045	41295	7.16%	431607	83164	1981957	12284	0.62%	854	513	27 51	263	129	71.67%	26.83%	25.18%
	0.9	438000	608686	1994241	576401	419061	157340	534071	501850	115010	42330	7.34%	433289	82789	1981825	12416	0.62%	853	513	27 53	260	114	71.98%	26.78%	25.16%
	1	438000	610052	1994241	576401	419061	157340	532950	501058	113889	43451	7.54%	432982	81997	1982092	12149	0.61%	834	502	18 51	263	102	72.00%	26.72%	25.13%
	1.1	438000	610681	1994241	576401	419061	157340	535099	502109	116038	41302	7.17%	431175	83048	1981965	12276	0.62%	844	518	18 53	255	94	71.57%	26.83%	25.18%
	1.2	438000	610535	1994241	576401	419061	157340	535403	502013	116342	40998	7.11%	431300	82952	1981848	12393	0.62%	856	515	27 53	261	86	71.30%	26.85%	25.17%
	1.3	438000	609534	1994241	576401	419061	157340	536443	503397	117382	39958	6.93%	430875	84336	1981806	12435	0.62%	862	519	27 51	265	80	71.85%	26.90%	25.24%
	1.4	438000	609135	1994241	576401	419061	157340	537178	503252	118117	39224	6.80%	431666	84191	1982053	12188	0.61%	838	507	27 51	253	75	71.28%	26.94%	25.24%
	1.5	438000	608644	1994241	576401	419061	157340	535517	501921	116456	40884	7.09%	433404	82860	1981969	12272	0.62%	858	515	27 51	265	69	71.15%	26.85%	25.17%
	1.6	438000	607222	1994241	576401	419061	157340	538927	504839	119866	37474	6.50%	431803	85778	1981864	12377	0.62%	853	508	27 53	265	67	71.56%	27.02%	25.31%
	1.7	438000	607329	1994241	576401	419061	157340	540843	505982	121/82	35558	6.17%	430664	86921	1981975	12266	0.62%	843	516	18 49	260	64	71.37%	27.12%	25.37%
	1.8	438000	606556	1994241	576401	419061	157340	538930	505292	1198/5	3/405	6.00%	433102	86231	1982493	11/48	0.59%	832	517	18 48	248	60 55	71.93%	27.02%	25.34%
	1.9	438000	608455	1994241	576401	419001	157340	539658	505147	120597	36743	6.37%	434727	86086	1981961	12400	0.03%	853	509	27 53	204	54	71.20%	20.00%	25.20%
Sans STEP	2	438000	660341	1994241	576401	419061	15/ 540	419061	419061	120551	157340	27.30%	464336	00000	1981739	12502	0.63%	875	505	21 30	204	54	11.50%	21.00%	21.01%
	Rassin					EnR	EnR			FnR	FnR	0/0	F	F		E Non	% E	Nhro						Part	Part
Combinaison	Bassin Mm3	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non	Nbre Pannes	Hiv	Pri Et	é Aut	Сус	Rend	Part EnR*	Part EnR**
Combinaison	Bassin Mm3	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv	Pri Et	é Aut	Сус	Rend	Part EnR*	Part EnR**
Combinaison	Bassin Mm3	SACOI 438000	SARCO 631350	Conso 1994241	EnR 576401	EnR Charge 419061	EnR Pompe Dispo 157340	EnR* 499002	EnR**	EnR Pompe 79941	EnR Perdue 77399	% Perdue 13.43%	E Moteurs 439109	E Turbine 54314	E Totale	E Non Satis	% E Non Satis 0.62%	Nbre Pannes 858	Hiv 515	Pri Et	é Aut	Cyc 329	Rend 67.94%	Part EnR* 25.02%	Part EnR** 23.74%
	Bassin Mm3 0.2 0.3	SACOI 438000 438000	SARCO 631350 635268	Conso 1994241 1994241	EnR 576401 576401	EnR Charge 419061 419061	EnR Pompe Dispo 157340 157340	EnR* 499002 501506	EnR** 473376 475168	EnR Pompe 79941 82445 84726	EnR Perdue 77399 74895 72604	% Perdue 13.43% 12.99%	E Moteurs 439109 433484	E Turbine 54314 56107	E Totale 1981835 1981920	E Non Satis 12406 12321 12074	% E Non Satis 0.62% 0.62%	Nbre Pannes 858 848	Hiv 515 515	Pri Et 27 53 27 51	é Aut 263 255	Cyc 329 231	Rend 67.94% 68.05%	Part EnR* 25.02% 25.15%	Part EnR** 23.74% 23.83% 22.01%
Combinaison	Bassin Mm3 0.2 0.3 0.4 0.5	SACOI 438000 438000 438000 438000	SARCO 631350 635268 633756 634339	Conso 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340	EnR* 499002 501506 503797 504785	EnR** 473376 475168 476764 477243	EnR Pompe 79941 82445 84736 85724	EnR Perdue 77399 74895 72604 71616	Perdue 13.43% 12.99% 12.60% 12.42%	E Moteurs 439109 433484 433646 432245	E Turbine 54314 56107 57703 58182	E Totale 1981835 1981920 1982167 1981827	E Non Satis 12406 12321 12074 12414	% E Non Satis 0.62% 0.62% 0.61% 0.62%	Nbre Pannes 858 848 824 857	Hiv 515 515 499 516	Pri Et 27 53 27 51 18 45	é Aut 263 255 262 265	Cyc 329 231 179	Rend 67.94% 68.05% 68.10% 67.87%	Part EnR* 25.02% 25.15% 25.26% 25.31%	Part EnR** 23.74% 23.83% 23.91% 23.93%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6	SACOI 438000 438000 438000 438000 438000	631350 635268 633756 634339 633541	Conso 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 504417	EnR** 473376 475168 476764 477243 476708	EnR Pompe 79941 82445 84736 85724 85356	EnR Perdue 77399 74895 72604 71616 71984	% Perdue 13.43% 12.99% 12.60% 12.42% 12.42%	E Moteurs 439109 433484 433646 432245 433746	E Turbine 54314 56107 57703 58182 57647	E Totale 1981835 1981920 1982167 1981827 1981827	E Non Satis 12406 12321 12074 12414 12246	% E Non Satis 0.62% 0.62% 0.61% 0.62% 0.61%	Nbre Pannes 858 848 824 857 853	Hiv 515 515 499 516 512	Pri Et 27 53 27 51 18 45 27 49 27 49	é Aut 263 255 262 265 265 265	Cyc 329 231 179 144 120	Rend 67.94% 68.05% 68.10% 67.87% 67.54%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.29%	Part EnR** 23.74% 23.83% 23.91% 23.93% 23.90%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7	SACOI 438000 438000 438000 438000 438000 438000	SARCO 631350 635268 633756 634339 633541 634067	Conso 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 504417 505005	EnR** 473376 475168 476764 477243 476708 477122	EnR Pompe 79941 82445 84736 85724 85356 85944	EnR Perdue 77399 74895 72604 71616 71984 71396	Perdue 13.43% 12.99% 12.60% 12.42% 12.49% 12.39%	E Moteurs 439109 433484 433646 432245 433746 432985	E Turbine 54314 56107 57703 58182 57647 58061	E Totale 1981835 1981920 1982167 1981827 1981995 1982174	E Non Satis 12406 12321 12074 12414 12246 12067	% E Non Satis 0.62% 0.62% 0.61% 0.62% 0.61%	Nbre Pannes 858 848 824 857 853 843	Hiv 515 515 499 516 512 515	Pri Et 27 53 27 51 18 45 27 49 27 49 27 49 27 49	 Aut 263 255 262 265 265 265 258 	Cyc 329 231 179 144 120 104	Rend 67.94% 68.05% 68.10% 67.87% 67.54% 67.56%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.29% 25.32%	Part EnR** 23.74% 23.83% 23.91% 23.93% 23.90% 23.92%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8	SACOI 438000 438000 438000 438000 438000 438000 438000	SARCO 631350 635268 633756 634339 633541 634067 633010	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 504417 505005 506005	EnR** 473376 475168 476764 477243 476708 477122 478191	EnR Pompe 79941 82445 84736 85724 85356 85944 86944	EnR Perdue 77399 74895 72604 71616 71984 71396 70396	Perdue 13.43% 12.99% 12.60% 12.42% 12.49% 12.39% 12.21%	E Moteurs 439109 433484 433646 432245 433746 432985 432911	E Turbine 54314 56107 57703 58182 57647 58061 59130	E Totale 1981835 1981920 1982167 1981827 1981995 1982174 1982112	E Non Satis 12406 12321 12074 12414 12246 12067 12129	% E Non Satis 0.62% 0.62% 0.61% 0.62% 0.61% 0.61%	Nbre Pannes 858 848 824 857 853 843 822	Hiv 515 515 499 516 512 515 491	Pri Et 27 53 27 51 18 45 27 49 27 49 27 43 27 43 27 43	 Aut 263 255 262 265 265 265 258 259 	Cyc 329 231 179 144 120 104 92	Rend 67.94% 68.05% 68.10% 67.87% 67.54% 67.56% 68.01%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.29% 25.32% 25.32%	Part EnR** 23.74% 23.83% 23.91% 23.93% 23.90% 23.92% 23.98%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	SACOI 438000 438000 438000 438000 438000 438000 438000 438000	631350 635268 633756 634339 633541 634067 633010 632953	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 504417 505005 506005 505922	EnR** 473376 475168 476764 477243 476708 477122 478191 477742	EnR Pompe 79941 82445 84736 85724 85356 85944 86944 86944 86861	EnR Perdue 77399 74895 72604 71616 71984 71396 70396 70396 70479	% Perdue 13.43% 12.99% 12.60% 12.42% 12.49% 12.39% 12.21% 12.23%	E Moteurs 439109 433484 433646 432245 433746 432985 432911 433429	E Turbine 54314 56107 57703 58182 57647 58061 59130 58681	E Totale 1981835 1981920 1982167 1981827 1981995 1982174 1982112 1982125	E Non Satis 12406 12321 12074 12414 12246 12067 12129 12116	% E Non Satis 0.62% 0.61% 0.61% 0.61% 0.61% 0.61%	Nbre Pannes 858 848 824 857 853 843 822 839	Hiv 515 515 499 516 512 515 491 508	Pri Et 27 53 27 51 18 45 27 49 27 49 27 49 27 49 27 49 27 45 27 45 21 49	 Aut 263 255 262 265 265 258 259 261 	Cyc 329 231 179 144 120 104 92 82	Rend 67.94% 68.05% 68.10% 67.87% 67.56% 68.01% 67.56%	Part EnR* 25.02% 25.26% 25.31% 25.29% 25.32% 25.32% 25.37%	Part EnR** 23.74% 23.83% 23.91% 23.93% 23.90% 23.92% 23.98% 23.96%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000	631350 635268 633756 634339 633541 634067 633010 632953 632828	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 504417 505005 506005 505922 507339	EnR** 473376 475168 476764 477243 476708 477122 478191 477742 478655	EnR Pompe 79941 82445 84736 85724 85356 85944 86944 86861 88278	EnR Perdue 77399 74895 72604 71616 71984 71396 70396 70479 69062	% Perdue 13.43% 12.99% 12.60% 12.42% 12.49% 12.39% 12.21% 12.23% 11.98%	E 439109 433484 433646 432245 433746 432985 432911 433429 432747	E Turbine 54314 56107 57703 58182 57647 58061 59130 58681 59623	E Totale 1981835 1981920 1982167 1981827 1981995 1982174 1982125 1982259	E Non Satis 12406 12321 12074 12414 12246 12067 12129 12116 11982	% E Non Satis 0.62% 0.62% 0.61% 0.61% 0.61% 0.61% 0.61% 0.60%	Nbre Pannes 858 848 824 857 853 843 843 822 839 839	Hiv 515 515 499 516 512 515 491 508 507	Pri Et 27 53 27 51 18 45 27 49 27 49 27 43 27 43 27 43 27 43 27 43 27 51	 Aut 263 255 262 265 265 258 259 261 254 	Cyc 329 231 179 144 120 104 92 82 75	Rend 67.94% 68.05% 68.10% 67.87% 67.56% 68.01% 67.56% 67.56% 67.56%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.29% 25.32% 25.37% 25.37% 25.44%	Part EnR** 23.74% 23.83% 23.91% 23.93% 23.90% 23.92% 23.98% 23.96% 24.00%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 631350 635268 633756 634339 633541 634067 633010 632953 632828 632828 632300	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 504417 505005 506005 505922 507339 506670	EnR** 473376 475168 476764 477243 476708 477122 478191 477742 478685 478402	EnR Pompe 79941 82445 84736 85724 85356 85944 86944 86861 88278 87609	EnR Perdue 77399 74895 72604 71616 71984 71396 70396 70479 69062 69731	% Perdue 13.43% 12.99% 12.60% 12.42% 12.49% 12.39% 12.21% 12.23% 11.98% 12.10%	E Moteurs 439109 433484 433646 432245 433746 432985 432911 433429 432211 433429 432217 433409	E Turbine 54314 56107 57703 58182 57647 58061 59130 58681 59623 59341	E Totale 1981835 1981920 1982167 1981827 1981925 1982174 1982125 1982259 1982111	E Non Satis 12406 12321 12074 12414 12246 12067 12129 12116 11982 12130	% E Non Satis 0.62% 0.62% 0.61% 0.61% 0.61% 0.61% 0.60% 0.61%	Nbre Pannes 858 848 824 857 853 843 822 839 839 839 840	Hiv 515 515 499 516 512 515 491 508 507 507	Pri Et 27 53 27 51 18 45 27 49 27 49 27 43 27 43 27 43 27 51 27 51 27 43	 Aut 263 255 262 265 265 265 258 259 261 254 263 	Cyc 329 231 179 144 120 104 92 82 75 68	Rend 67.94% 68.05% 68.10% 67.56% 67.56% 68.01% 67.56% 67.56% 67.54% 67.73%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.29% 25.32% 25.37% 25.37% 25.44% 25.41%	Part EnR** 23.74% 23.83% 23.91% 23.90% 23.90% 23.92% 23.98% 23.96% 23.99%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 631350 635268 633756 633756 633541 63439 633541 634067 632053 632828 632828	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 505417 505005 505922 507339 506670 508025	EnR** 473376 475168 476764 477243 476708 477122 478191 477742 478685 478402 478932	EnR Pompe 79941 82445 84736 85724 85356 85944 86944 86861 88278 87609 88964	EnR Perdue 77399 74895 72604 71616 71984 71396 70396 70396 70479 69062 69731 68376	% Perdue 13.43% 12.99% 12.60% 12.42% 12.42% 12.39% 12.21% 12.21% 12.23% 11.98% 12.10% 11.86%	E Moteurs 439109 433484 433646 432245 432985 432911 433429 432747 433409 432750	E Turbine 54314 56107 57703 58182 57647 58061 59130 58681 59623 59341 59871	E Totale 1981835 1981920 1982167 1981827 198195 1982174 1982125 1982215 1982259 1982111 1982330	E Non Satis 12406 12321 12074 12414 12246 12067 12129 12116 11982 12130 11911	% E Non Satis 0.62% 0.61% 0.61% 0.61% 0.61% 0.61% 0.60% 0.61% 0.60%	Nbre Pannes 858 848 824 857 853 843 822 839 839 839 840 830	Hiv 515 515 499 516 512 515 491 508 507 507 507	Pri Et 27 53 27 51 18 45 27 49 27 49 27 45 27 45 27 45 21 49 27 51 27 43 21 49	 Aut 263 255 262 265 265 258 259 261 254 263 253 	Cyc 329 231 179 144 120 104 92 82 75 68 63	Rend 67.94% 68.05% 67.87% 67.54% 67.56% 68.01% 67.56% 67.56% 67.73% 67.30%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.32% 25.32% 25.37% 25.37% 25.44% 25.41% 25.47%	Part EnR** 23.74% 23.83% 23.91% 23.90% 23.90% 23.98% 23.96% 23.96% 24.00% 23.99% 24.02%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 631350 635268 633756 63439 633541 634067 633010 632953 632828 632828 632828 632828 632827	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 505055 505055 506005 505922 507339 506670 508025 506037	EnR** 473376 475168 476764 477243 476708 477122 478191 477742 478685 478402 478932 4778932	EnR Pompe 79941 82445 84736 85524 85524 85944 86944 86841 88278 87609 88964 88976	EnR Perdue 77399 74895 72604 71984 71396 70396 70396 70396 70479 69062 69731 68376 70364	% Perdue 13.43% 12.99% 12.60% 12.42% 12.42% 12.39% 12.21% 12.23% 12.21% 11.98% 12.10% 11.86% 12.21%	E 439109 433484 433646 432245 43295 432911 433429 43247 433409 432570 433964	E Turbine 54314 56107 57703 58182 57647 58061 59647 59661 59623 598681 59823 59841 59871 58635	E Totale 1981835 1981920 1982167 1981827 198195 1982174 1982125 1982125 1982219 1982130 1982300 1981917	E Non Satis 12406 12321 12074 12414 12246 12067 12129 12116 11982 12130 11911 12324	% E Non Satis 0.62% 0.62% 0.61% 0.61% 0.61% 0.61% 0.61% 0.60% 0.60%	Nbre Pannes 858 848 824 853 843 853 843 822 839 839 839 839 830 830 852	Hiv 515 515 499 516 512 515 491 508 507 507 507 507	Pri Et 27 53 27 51 18 45 27 49 27 49 27 49 27 43 27 43 27 43 21 49 21 49 21 53	 Aut 263 255 262 265 265 258 259 261 254 263 253 265 	Cyc 329 231 179 144 120 104 92 82 75 68 63 57	Rend 67.94% 68.05% 67.87% 67.54% 67.56% 68.01% 67.56% 67.73% 67.30% 67.30%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.32% 25.37% 25.37% 25.37% 25.44% 25.47% 25.47%	Part EnR** 23.74% 23.83% 23.91% 23.92% 23.92% 23.96% 23.96% 24.00% 23.99% 24.02% 23.95%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 631350 635268 633756 634067 633010 632953 632028 632208 632208 632257 632661 632257	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 504417 505005 505922 507339 506670 508025 506037 506037 505545	EnR** 473376 475168 476764 477243 476708 477122 478085 478052 478685 478402 478692 478692 477696 477697	EnR Pompe 79941 82445 84736 85376 85326 85944 86944 86844 86861 88278 87609 88964 86976 86976 86976	EnR Perdue 77399 74895 72604 71616 71984 71396 70479 69062 69731 68376 70364 70364 70364 70364	% Perdue 13.43% 12.99% 12.60% 12.42% 12.39% 12.21% 12.23% 11.98% 12.10% 11.86% 12.21% 12.221%	E Moteurs 439109 433484 433646 432245 433746 432985 432911 433429 432747 433409 432570 433964 432766	E Turbine 54314 56107 57703 58182 57647 58061 59623 59623 59623 598541 59871 59871 58635 58636 59836	E Totale 1981835 1981920 1982167 1981827 1981995 1982174 1982125 1982259 1982211 1982330 1981917 1982325	E Non Satis 12406 12321 12074 12246 12077 12129 12116 11982 12130 11911 12324 12017	% E Non Satis 0.62% 0.62% 0.61% 0.61% 0.61% 0.61% 0.61% 0.60% 0.62% 0.62% 0.62%	Nbre Pannes 858 848 824 857 853 843 822 839 839 839 839 830 830 852 844 852 844	Hiv 515 515 499 516 512 515 491 508 507 507 507 513 511	Pri Et 27 53 27 51 18 45 27 49 27 49 27 49 27 49 27 49 27 49 27 49 27 49 21 49 21 49 21 49 21 53 21 53 27 51 27 51 2	 Aut 263 255 262 265 265 258 259 261 254 263 253 265 265 265 	Cyc 329 231 179 144 120 104 92 82 75 68 63 57 53	Rend 67.94% 68.05% 67.54% 67.56% 67.56% 67.56% 67.56% 67.73% 67.30% 67.30% 67.41% 67.80%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.37% 25.37% 25.37% 25.44% 25.41% 25.47% 25.37%	Part EnR** 23.74% 23.83% 23.90% 23.90% 23.92% 23.98% 23.96% 24.00% 23.95% 23.95% 23.95% 23.95%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 631350 635268 633756 634339 633541 634067 632953 632828 6322300 632828 632200 632828 632267 632661 6322548 632264	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 504417 505005 505922 507339 506670 508025 506037 505545 505947 5050947	EnR** 473376 475168 476764 477243 476708 4777122 478191 477742 478685 478402 478932 478932 477696 477697 478283 477697	EnR 79941 82445 84736 85724 85356 85944 86944 86861 88278 87609 88964 86976 86484 86886 90025	EnR Perdue 77399 74895 72604 71616 71984 71396 70479 69062 69731 68376 70364 70856 70364 70856 70364	% Perdue 13.43% 12.99% 12.60% 12.42% 12.42% 12.23% 12.23% 11.98% 12.10% 12.10% 12.22% 11.86% 12.22%	E 439109 433484 433646 432245 433746 432985 432945 432947 433409 432570 433964 433964 433766 433363	E Turbine 54314 56107 57703 58182 57647 58061 59130 58681 59130 58681 59623 59871 59871 58635 58636 598224	E Totale 1981835 1981920 1982167 1981827 1981827 1982174 1982125 1982259 1982151 1982330 1983117 1982125 1982125 1982125	E Non Satis 12406 12321 12074 12414 12246 12067 12129 12116 11982 12130 11911 12324 12116 12047 12069	% E Non Satis 0.62% 0.61%	Nbre Pannes 858 848 857 853 843 822 839 839 839 840 830 852 844 852 844 852	Hiv 515 515 499 516 512 515 507 507 507 513 511 514 497	Pri Et 27 53 27 54 27 54 27 48 27 49 27 49 27 49 27 49 27 42 27 42 27 42 27 53 27 53 27 53 27 53 27 53 27 53	 Aut 263 255 262 265 265 265 265 258 261 254 263 253 265 253 253 253 253 253 253 253 264 	Cyc 329 231 179 144 120 104 92 82 75 68 63 57 53 53 50 48	Rend 67.94% 68.05% 68.10% 67.54% 67.56% 67.56% 67.56% 67.73% 67.30% 67.30% 67.41% 67.80% 68.16% 68.16%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.32% 25.37% 25.44% 25.41% 25.47% 25.37% 25.35% 25.35%	Part EnR** 23.74% 23.83% 23.91% 23.90% 23.92% 23.98% 23.96% 24.02% 23.95% 23.95% 23.95% 23.95% 23.95%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 631350 635268 633756 633541 634067 632053 632053 632053 632053 632253 632257 63261 63261 632548 632427 6324561	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504417 505005 505922 507339 506670 508025 506037 505545 505947 509096 508425	EnR** 473376 475168 476764 477243 476708 477122 478191 477742 478685 477802 478932 477697 477697 477697 4776952 4778952 477952	EnR 79941 82445 84736 85724 85356 85944 86944 86944 86861 88278 87609 88964 86976 869864 86986 90035 80337	EnR Perdue 77399 74895 72604 71616 71396 70396 70396 70479 69062 69731 68376 70364 70364 70364 70364 70454 67065	% Perdue 13.43% 12.99% 12.60% 12.42% 12.39% 12.21% 12.23% 11.86% 12.21% 12.29% 12.22% 12.22% 11.68%	E 439109 433484 433646 432245 432985 432911 433429 432747 433409 432747 433766 433766 433766 433766	E Turbine 54314 56107 57703 58182 57647 58061 59130 58681 59923 59871 59871 59871 58635 58636 59222 605919	E Totale 1981835 1981920 1982167 1981827 198195 1982174 1982121 1982259 1982111 1982259 1982111 1982300 1981917 1982125 1982125 1982125	E Non Satis 12406 12321 12074 12414 12246 12067 12129 12116 11982 12130 11911 12324 12116 12047 12068 12058	% E Non Satis 0.62% 0.61%	Nbre Pannes 858 848 824 857 853 843 822 839 839 839 839 840 839 840 852 844 851 823	Hiv 515 515 499 516 512 515 491 508 507 507 507 513 511 497 497	Pri Et 27 53 27 51 18 45 27 48 27 43 27 43 27 43 27 43 27 43 21 45 21 49 21 53 27 53 27 43 27 53 27 43 27 53 27 43	 Á Aut 263 255 262 265 265 268 258 259 261 254 263 265 263 265 265 265 265 265 265 267 264 	Cyc 329 231 179 144 120 104 92 82 75 68 57 53 50 48	Rend 67.94% 68.05% 68.10% 67.87% 67.56% 67.56% 67.56% 67.54% 67.30% 67.40% 67.40% 67.40% 67.30% 67.30%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.32% 25.37% 25.37% 25.44% 25.47% 25.47% 25.37% 25.35% 25.35% 25.53%	Part EnR** 23.74% 23.83% 23.91% 23.92% 23.92% 23.98% 23.96% 23.96% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	SACOI 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 631350 635268 633756 633541 633010 632828 632828 632828 632257 632682 632257 632684 632257 632548 633427 634165 63427	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 505005 505005 505922 507339 506670 508025 506025 506037 505545 505947 505545 505947	EnR** 473376 475168 476764 477243 476708 4777122 478191 477742 478685 478402 478695 477696 477696 4776952 479380 480032	EnR Pompe 79941 82445 84736 85724 85944 86944 86944 86861 88278 87609 88964 86976 86484 86876 90035 89377 90123	EnR Perdue 77399 74895 72604 71984 71396 70396 70479 69062 69731 68376 70364 70856 70454 67305 67963 67217	% Perdue 13.43% 12.99% 12.42% 12.42% 12.42% 12.23% 12.23% 11.88% 12.21% 12.22% 11.86% 12.22% 11.68% 11.79%	E 439109 433484 433646 432245 432951 433746 432945 432911 433429 432747 433409 432770 433964 433766 433363 431094 430636	E Turbine 54314 56107 57703 58182 57647 58061 59130 58681 59223 59341 59871 58635 58635 58635 59222 60591 60371 60371	E Totale 1981835 1981920 1982167 1981925 1982174 1982125 19822125 1982215 1982215 1982215 1982111 1982330 1981917 1982125 1982194 1982173 1982182 198273	E Non Satis 12406 12321 12074 12414 12067 12129 12116 11982 12130 11911 12324 12116 12047 12068 12058 12058	% E Non Satis 0.62% 0.61% 0.61% 0.61% 0.61% 0.61% 0.60% 0.61% 0.60% 0.61% 0.60% 0.61%	Nbre Pannes 858 848 824 857 853 843 822 839 839 839 839 830 852 840 830 852 844 851 828 823 796	Hiv 515 515 499 516 512 515 491 508 507 507 507 513 511 514 497 491	Pri Et 27 53 27 51 118 45 27 48 27 43 27 43 27 43 27 43 27 43 21 45 21 45 21 53 227 53 227 54 227 41 21 53 227 41 23 27 34 32 35 32 36 37 37 36 38 38 39 36 30 37 30 37 30 37 30 37 30 37 30 37 30 37 30 37 30 37 30	 Á Aut 263 255 262 265 268 268 259 261 254 263 265 263 253 265 253 267 264 267 264 250 	Cyc 329 231 179 144 104 92 82 75 68 63 57 53 50 48 45 43	Rend 67.94% 68.05% 67.87% 67.56% 67.56% 67.56% 67.54% 67.30% 67.41% 67.41% 67.30% 67.41% 67.30% 67.49% 67.65%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.32% 25.37% 25.37% 25.44% 25.47% 25.47% 25.35% 25.35% 25.53% 25.50% 25.50%	Part EnR** 23.74% 23.83% 23.93% 23.99% 23.98% 23.96% 23.96% 24.00% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95% 23.95% 24.02%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	SACO1 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 631350 635268 633756 634339 633541 634067 633910 632953 632288 632208 632208 632238 632257 632661 632548 633427 632466 633427 6334166 633593 633205	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 506005 505922 507339 506670 508025 5069037 505545 50595 505945 50595 50595 505925 50695 505925 50695 505925 505925 505955 505955 505925 505955 505955 505955 505955 505945 505955 505945 505955 505955 505945 505955 505955 505945 5059555 505955 5055555 5055555 5055555 5055555 5055555 50555555 50555555 50555555 5055555555	EnR** 473376 475168 476764 477243 476708 477712 478191 477742 478685 478685 478695 478697 477696 477697 477696 477697 478283 477652 479380 480032 4789032	EnR Pompe 79941 82445 84736 85356 85944 86344 86944 86276 86484 86886 90035 89377 90123 88171	EnR Perdue 77399 74895 72604 71984 71396 70396 70479 69062 69731 68376 70364 70364 70364 70364 70454 67305 67963 67216 93169	% Perdue 13.43% 12.99% 12.42% 12.42% 12.43% 12.23% 12.21% 12.10% 12.10% 12.21% 12.22% 11.66% 12.22% 11.66% 12.22%	E Moteurs 439109 43344 433646 432245 433746 432985 432747 433409 432770 433409 432570 433964 433766 433766 433766 433766 433064 433063	E Turbine 54314 56107 57703 58182 57647 58061 59130 58631 59623 59341 598711 58635 58636 59222 60591 60319 60319 60339	E Totale 1981835 1981920 1982167 1982174 1982125 1982125 1982259 1982111 19823259 1982125 1982125 1982125 1982125 1982125 1982124 1982182 198278 1982182 1982678 1982978	E Non Satis 12406 12321 12074 12414 12067 12129 12116 11982 12130 11911 12324 12130 11911 12324 12068 12059 11563 11328	% E Non Satis 0.62% 0.61% 0.61% 0.61% 0.61% 0.61% 0.60% 0.61% 0.60% 0.61% 0.60% 0.61% 0.60% 0.61% 0.60%	Nbre Pannes 858 848 824 853 843 822 839 839 839 830 830 852 844 851 828 823 796	Hiv 515 515 515 515 515 515 507 507 507 507 513 511 514 497 491 477 466	Pri Et 27 53 27 51 118 45 27 42 27 45 27 45 27 45 27 45 27 45 27 45 27 45 27 45 27 53 27 40 27 44 27 44 27 40 27 44 27 42 27 42 27 44 27 44 27 44 27 44	 Á Aut 263 255 262 265 265 265 265 258 259 261 254 263 253 265 253 265 253 265 253 264 264 250 251 	Cyc 329 231 179 144 120 104 92 82 75 68 63 57 53 50 48 45 43 40	Rend 67.94% 68.05% 67.87% 67.56% 67.56% 67.56% 67.73% 67.30% 67.30% 67.41% 67.80% 68.16% 67.30% 67.49% 67.65% 67.65%	Part EnR* 25.02% 25.15% 25.26% 25.31% 25.32% 25.37% 25.37% 25.41% 25.47% 25.47% 25.35% 25.53% 25.53% 25.50% 25.53%	Part EnR** 23.74% 23.93% 23.93% 23.90% 23.92% 23.98% 24.00% 23.99% 24.02% 23.95% 23.95% 23.95% 23.95% 23.98% 24.05% 24.02% 24.04% 24.04% 24.07%
Combinaison Ppv=75 MWc Peol=90 MW 4 x 10 MW	Bassin Mm3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2	SACO1 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000 438000	SARCO 631350 635268 633756 633756 634339 633541 634067 632953 632828 632953 632828 632257 632661 6322548 632257 632661 632548 633427 633427 633427	Conso 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241 1994241	EnR 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401 576401	EnR Charge 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061 419061	EnR Pompe Dispo 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340 157340	EnR* 499002 501506 503797 504785 504417 505005 505922 507339 506670 508025 506037 505545 505947 509096 508438 509184 507232 509184	EnR** 473376 475168 476764 477243 477243 4776708 4777122 478685 478402 477897 477893 477696 477697 478283 477696 477697 479822 479380 480032 479900	EnR Pompe 79941 82445 84736 853566 85944 863566 85944 86944 86844 86876 86484 868966 86484 86896 86484 868866 86484 868865 89035 89377 90123 88171 90060	EnR Perdue 77399 74895 72604 71616 71984 71396 70396 70479 69062 69731 68376 70364 70856 70364 70856 67963 67963 67217 69169 67280	% Perdue 13.43% 12.60% 12.42% 12.42% 12.24% 12.21% 12.23% 11.98% 12.21% 12.22% 11.86% 12.22% 11.66% 11.79% 11.66% 11.66%	E 439109 433484 433646 432245 433746 432985 432917 433409 432747 433409 432570 433964 433766 433363 431094 433636 431053 431053 431053	E Turbine 54314 56107 57703 58182 57647 58061 59130 58681 59623 59824 59823 598341 59823 598341 59835 58636 59222 60591 60319 60371 59839	E Totale 1981835 1981920 1982167 1981827 1981827 1982174 1982125 1982259 1982125 1982125 1982142 1982142 1982182 1982182 1982182 1982913 1982913	E Non Satis 12406 12321 12074 12246 12067 12129 12116 11982 12130 11911 12324 12130 11911 12048 12049 11563 11328 11976	% E Non Satis 0.62% 0.61% 0.61% 0.61% 0.61% 0.61% 0.61% 0.61% 0.61% 0.61% 0.61% 0.61% 0.61% 0.61% 0.61% 0.61% 0.61%	Nbre Pannes 858 848 857 853 843 822 839 839 839 839 839 839 839 839 839 839	Hiv 515 515 515 515 515 515 507 507 507 507 513 511 497 491 497 466 488	Pri Et 27 53 27 51 118 48 27 42 27 42 27 42 27 42 27 42 27 42 21 48 21 42 21 48 21 53 21 48 21 48 21 48 21 48 21 42 21 42 21 42 21 42 21 42 21 42 227 42 227 42 227 42 227 42 227 42 227 42 227 42 227 42 227 42 227 42 227 </td <td> Á Aut 263 255 262 265 265 268 259 259 259 259 261 254 263 253 265 253 265 253 264 264 264 260 251 261 261 262 261 263 261 263 264 264 260 251 264 263 264 264 264 265 265</td> <td>Cyc 329 231 179 144 120 104 92 82 75 68 63 57 53 50 48 45 43 40 39</td> <td>Rend 67.94% 68.05% 67.54% 67.56% 67.56% 67.54% 67.54% 67.54% 67.54% 67.54% 67.54% 67.54% 67.54% 67.41% 67.41% 67.41% 67.41% 67.49% 67.49% 67.65% 68.17% 68.17%</td> <td>Part EnR* 25.02% 25.26% 25.31% 25.29% 25.37% 25.37% 25.37% 25.37% 25.37% 25.37% 25.37% 25.37% 25.35% 25.53% 25.53% 25.53%</td> <td>Part EnR** 23.74% 23.91% 23.91% 23.92% 23.96% 23.96% 23.98% 24.00% 23.95% 24.05%24.05% 24.05% 24.05% 24.05%24.05% 24.05%24% 24.05% 24.05%24% 2</td>	 Á Aut 263 255 262 265 265 268 259 259 259 259 261 254 263 253 265 253 265 253 264 264 264 260 251 261 261 262 261 263 261 263 264 264 260 251 264 263 264 264 264 265 265	Cyc 329 231 179 144 120 104 92 82 75 68 63 57 53 50 48 45 43 40 39	Rend 67.94% 68.05% 67.54% 67.56% 67.56% 67.54% 67.54% 67.54% 67.54% 67.54% 67.54% 67.54% 67.54% 67.41% 67.41% 67.41% 67.41% 67.49% 67.49% 67.65% 68.17% 68.17%	Part EnR* 25.02% 25.26% 25.31% 25.29% 25.37% 25.37% 25.37% 25.37% 25.37% 25.37% 25.37% 25.37% 25.35% 25.53% 25.53% 25.53%	Part EnR** 23.74% 23.91% 23.91% 23.92% 23.96% 23.96% 23.98% 24.00% 23.95% 24.05%24.05% 24.05% 24.05% 24.05%24.05% 24.05%24% 24.05% 24.05%24% 2

							EnR					0/	_	-			% E								
Combinaison	Puissance	SACOI	SARCO	Conso	EnR	Enk	Pompe	EnR*	EnR**	EnR	EnR	%	E	_ E	E Totale	E Non	Non	Nbre	Hiv Pri	Eté A	ut Cyc	Rend	Part	Part	F. E
	PIMW					Charge	Dispo			Pompe	Perdue	Perdue	Moteurs	Turbine		Satis	Satis	Pannes					EnR*	EnR**	E B
	20	438000	645197	1994241	696729	439982	256747.04	500959	480433	60976.929	195770	28.10%	419191	40451.1	1982821	11420	0.57%	756	448 19	46 2	43 85	66.34%	25.12%	24.09%	ēe
	24	438000	641275	1994241	696729	439982	256747.04	511766	487651	71783.637	184963	26.55%	415902	47668.7	1982828	11413	0.57%	763	453 25	49 2	36 100	66.41%	25.66%	24.45%	
Ppv =150 MWp	28	438000	637847	1994241	696729	439982	256747.04	522971	494897	82989.469	173758	24.94%	412054	54915.1	1982798	11443	0.57%	765	472 20	42 2	31 115	66.17%	26.22%	24.82%	8
Peole = 90 MW	32	438000	634749	1994241	696729	439982	256747.04	530729	500288	90746.813	166000	23.83%	410072	60306.1	1983109	11132	0.56%	759	460 20	39 2	40 126	0.6646	26.61%	25.09%	
Bassin	36	438000	632563	1994241	696729	439982	256747.04	538534	506170	98552.454	158195	22.71%	406011	66188.5	1982745	11496	0.58%	770	472 19	41 2	38 138	67.16%	27.00%	25.38%	4 5
0.6 Mm3	40	438000	628904	1994241	696729	439982	256747 04	545994	511133	106011.53	150736	21 63%	405185	71150 7	1983221	11020	0.55%	746	451 19	37 2	39 148	67 12%	27 38%	25.63%	<u>– i></u>
	14	/38000	626561	100/2/1	606720	/30082	256747.04	553757	516571	113775 /	1/2072	20.52%	101011	76580 /	1083047	1110/	0.56%	7/8	453 20	30 2	36 150	67 32%	27 77%	25.00%	₽•
	48	438000	622390	1004241	696729	439982	256747.04	559855	521369	119872 94	136874	19 65%	401317	81387.3	1983077	11164	0.56%	756	443 25	47 2	41 169	67.89%	28.07%	26.00%	ΡΩ
	52	138000	610530	100/2/1	606720	/30082	256747.04	565730	525478	125757 /	130000	18 80%	30006/	85/06 2	1082081	11260	0.56%	766	1/16 25	52 2	/3 177	67 98%	28.37%	26.35%	11. R
	56	438000	617118	100/2/1	606720	/30082	256747.04	573150	530717	133177 38	123570	17 7/%	307000	0073/ 8	1082835	11/06	0.50%	763	458 25	/1 2	30 188	68 13%	28.7/%	26.61%	an
	60	438000	612080	100/2/1	606720	439902	256747.04	576420	533763	136//6 50	120300	17 07%	308182	03780.7	1082035	11316	0.57%	760	450 25	40 2	36 100	0.6873	20.7470	20.0170	a d
	64	438000	610265	100/2/1	606720	439902	256747.04	580602	536800	1/0710 13	116037	16 65%	307857	06008 1	1083012	11220	0.57 %	700	439 23	32 2	37 200	68 87%	20.90 /0	20.11/0	p 6
	68	438000	606101	100/2/1	606720	439902	256747.04	583384	538036	1407 10.13	113445	16 28%	300744	90900.1	1002702	11/229	0.50%	763	440 20	JZ Z	31 200 11 201	60.05%	29.12%	20.92%	8 H
	72	430000	602126	1004241	606720	400002	250747.04	500100	530530	1401/1 22	100606	16 600/	200126	102614	1002067	1193	0.57%	703	450 25	41 2	41 204	60.0370/	29.2370	27.02/0	r s
	72	430000	500100	1994241	090729	439902	200747.04	501400	542090	140141.20	100000	10.09%	400006	102014	1902007	113/4	0.57 %	700	402 10	4/ 2	40 211	09.21%	29.49%	27.21%	റ്റ്
	20	430000	599100	1004241	606720	439902	200747.04	591400	545000	151425.09	100021	10.1270	400200	103004	1002162	1103	0.50%	750	449 19	42 2	40 217	70 040/	29.00%	27.30%	n p
	80	430000	090900	1994241	090729	439902	200747.04	393737	047000	100//0.0	102972	14.7070	401574	107701	1903103	11076	0.30%	700	402 19	40 Z	33 221	70.04%	29.1170	27.40%	Ъ.Ч
																									è m
																									μΞ.
cone STED		420000	CE0742	1004244	606720	420002		420092	420002		256747	20 000/	445720		1002445	44706	0 50%	045					22.069/	22.06%	E E
Salls OIEF		430000	000/43	1334241	090/29	433302		433302	433302		200/4/	30.03 /0	443720		1902440	11/30	0.55%	010					22.00 /0	22.00 /0	rt F
							F * D										0/								E. S
O	Puissance			•	FP	EnR	Enk	E-Dt	E- Ditt	EnR	EnR	%	E	E	E Tatala	E Non	% E	Nbre	LUNE Del	-		Dend	Part	Part	
Compinaison	PT MW	SACUI	SARCO	Conso	ENK	Charge	Pompe	EUK.	EUK	Pompe	Perdue	Perdue	Moteurs	Turbine	Elotale	Satis	NON	Pannes	HIV Pri	Ete A	ut Cyc	Rena	EnR*	EnR**	9 H
		100000	011010	1001011	000700	400000	DISPO	501011 10	100500 11	04050.40	405000	00.040/	100711	10510.1	1000 100	40754	Satis	707	450.05	50 0	00 40	00.000/	05 4 400	04.400/	5
	20	438000	644216	1994241	696729	439982	256747.04	501341.18	480530.41	61359.19	195388	3 28.04%	420744	40548.4	1983490	10751	0.54%	/6/	453 25	53 2	36 43	66.08%	25.14%	24.10%	ă
B (50 MM)	24	438000	641625	1994241	696729	439982	256747.04	513102.59	488198.02	73120.60	183626	20.30%	415340	48216	1983163	11078	0.56%	751	449 20	46 2	30 51	05.94%	25.73%	24.48%	ra
Ppv = 150 MVVc	28	438000	637043	1994241	696729	439982	256747.04	522130.94	494891.23	82148.94	1/4598	3 25.06%	413061	54909.2	1982995	11246	0.56%	786	4// 25	49 2	35 58	66.84%	26.18%	24.82%	Ħ
Peole = 90 MW	32	438000	634022	1994241	696729	439982	256747.04	530135.47	499818.10	90153.48	166594	23.91%	411155	59836.1	1982996	11245	0.56%	759	455 25	46 2	33 63	66.37%	26.58%	25.06%	lé
Bassin	36	438000	630539	1994241	696729	439982	256747.04	539941.16	506513.60	99959.17	156788	3 22.50%	407760	66531.6	1982813	11428	0.57%	774	461 25	53 2	35 70	66.56%	27.08%	25.40%	Ĥ
1.2 Mm3	40	438000	626308	1994241	696729	439982	256747.04	547235.41	512338.02	107253.42	149494	21.46%	406272	72356	1982918	11323	0.57%	777	457 25	51 2	44 76	67.46%	27.44%	25.69%	ĝ
	44	438000	623676	1994241	696729	439982	256747.04	555260.35	518109.76	115278.36	141469	9 20.30%	402921	78127.8	1982706	11535	0.58%	768	463 25	46 2	34 81	67.77%	27.84%	25.98%	•1
	48	438000	619539	1994241	696729	439982	256747.04	563203.11	523114.38	123221.11	133526	5 19.16%	402081	83132.4	1982734	11507	0.58%	777	469 25	49 2	34 87	67.47%	28.24%	26.23%	
	52	438000	615758	1994241	696729	439982	256747.04	570216.21	528437.45	130234.21	126513	3 18.16%	400711	88455.5	1982907	11334	0.57%	756	443 25	49 2	39 92	67.92%	28.59%	26.50%	\mathbf{v}
	56	438000	612408	1994241	696729	439982	256747.04	575780.63	532729.07	135798.64	120948	3 17.36%	399973	92747.1	1983110	11131	0.56%	763	454 25	42 2	42 97	68.30%	28.87%	26.71%	tr I
	60	438000	608571	1994241	696729	439982	256747.04	581325.71	536777.66	141343.72	115403	3 16.56%	399849	96795.7	1983198	11043	0.55%	763	461 16	42 2	44 101	68.48%	29.15%	26.92%	a
	64	438000	604961	1994241	696729	439982	256747.04	586822.30	540756.34	146840.31	109907	15.77%	399146	100774	1982863	11378	0.57%	763	452 16	51 2	44 105	68.63%	29.43%	27.12%	je,
	68	438000	603934	1994241	696729	439982	256747.04	592228.78	544551.60	152246.79	104500	15.00%	396326	104570	1982811	11430	0.57%	772	451 25	51 2	45 109	68.68%	29.70%	27.31%	<u>aa</u> .
	72	438000	600527	1994241	696729	439982	256747.04	594897.65	546733.22	154915.66	101831	14.62%	397569	106751	1982830	11411	0.57%	769	451 25	48 2	45 111	68.91%	29.83%	27.42%	e
	76	438000	597990	1994241	696729	439982	256747.04	598603.58	549782.86	158621.59	98125.5	5 14.08%	397092	109801	1982864	11377	0.57%	772	467 25	35 2	45 114	69.22%	30.02%	27.57%	<u> </u>
	80	438000	597190	1994241	696729	439982	256747.04	600909.74	551888.68	160927.75	95819.3	3 13.75%	395919	111907	1982997	11244	0.56%	752	466 16	39 2	31 116	69.54%	30.13%	27.67%	
																									С С
																									rc
																									ŭ
sans STEP		438000	658743	1994241	696729	439982		439982	439982		256747	36.85%	445720		1982445	11796	0.59%	815					22.06%	22.06%	ğ
																									Ø
																									P
																									5
																									r
																									e e
																									ē
																									rs
																									Ξ.
																									ž
																									O

Combinaison	Puissance PT MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv Pı	i Eté /	Aut Cy	c Rend	Part EnR*	Part EnR*
	20	438000	642506	1994241	858089	449663	408426	516815	493908	67152	341274	39.77%	409317	44244	1983730	10511	0.53%	715	427 2	5 50 3	213 9	3 65.89%	25.92%	24.77%
	24	438000	638585	1994241	858089	449663	408426	529243	502120	79579	328846	38.32%	404706	52457	1983411	10830	0.54%	705	432 2	0 38 3	215 11	0 65.92%	26.54%	25.18%
Ppv = 250 MWc	28	438000	635719	1994241	858089	449663	408426	540196	509824	90533	317893	37.05%	400403	60161	1983946	10295	0.52%	683	419 2	0 36 3	208 12	6 66.45%	27.09%	25.56%
Peole=90MW	32	438000	632400	1994241	858089	449663	408426	549975	516158	100312	308113	35.91%	396911	66495	1983469	10772	0.54%	720	439 2	5 42 3	214 13	9 66.29%	27.58%	25.88%
Bassin	36	438000	629177	1994241	858089	449663	408426	559852	523021	110189	298237	34.76%	393359	73358	1983557	10684	0.54%	696	430 1	9 36 2	211 15	3 66.57%	28.07%	26.23%
0.6 Mm3	40	438000	625712	1994241	858089	449663	408426	570984	530771	121321	287105	33.46%	389469	81107	1983952	10289	0.52%	703	433 2	5 35 3	210 16	9 66.85%	28.63%	26.62%
	44	438000	623758	1994241	858089	449663	408426	580188	537184	130524	277901	32.39%	385218	87520	1984159	10082	0.51%	683	422 1	6 31 3	214 18	2 67.05%	29.09%	26.94%
	48	438000	619158	1994241	858089	449663	408426	587321	542190	137658	270768	31.55%	384804	92527	1984152	10089	0.51%	667	400 2	5 34 3	208 19	1 67.21%	29.45%	27.19%
	52	438000	614970	1994241	858089	449663	408426	593521	546653	143857	264568	30.83%	384442	96990	1984066	10175	0.51%	676	410 1	6 38 3	212 20	0 67.42%	29.76%	27.41%
	56	438000	611686	1994241	858089	449663	408426	602127	552440	152463	255962	29.83%	382325	102776	1984451	9790	0.49%	677	409 1	9 38 3	211 21	3 67.41%	30.19%	27.70%
	60	438000	606961	1994241	858089	449663	408426	607845	556637	158182	250244	29.16%	382742	106974	1984340	9901	0.50%	669	407 1	4 35 2	213 22	1 67.63%	30.48%	27.91%
	64	438000	604227	1994241	858089	449663	408426	614679	561526	165016	243410	28.37%	380171	111863	1983924	10317	0.52%	692	408 2	2 42 3	220 23	1 67.79%	30.82%	28.16%
	68	438000	600594	1994241	858089	449663	408426	618838	564667	169174	239251	27.88%	380454	115004	1983714	10527	0.53%	697	412 2	4 45 3	216 23	7 67.98%	31.03%	28.31%
	72	438000	596992	1994241	858089	449663	408426	627316	570961	177653	230773	26.89%	377964	121297	1983916	10325	0.52%	696	420 2	0 43 3	213 24	9 68.28%	31.46%	28.63%
	76	438000	593697	1994241	858089	449663	408426	629760	573198	180096	228329	26.61%	378954	123535	1983849	10392	0.52%	690	427 1	9 37 3	207 25	3 68.59%	31.58%	28.74%
	80	438000	588797	1994241	858089	449663	408426	636589	577792	186926	221500	25.81%	378973	128129	1983562	10679	0.54%	708	431 2	2 37 3	218 26	2 0.685	5 31.92%	28.97%

Sans STEP		438000	657809	1994241	858089	449663		449663	449663		408426	47.60%	437417		1982890	11351	0.57%	774					22.55%	22.55%
Combinaison	Puissance PT MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv Pri	Eté Aut	Сус	Rend	Part EnR*	Part EnR**
	20	438000	642824	1994241	858089	449663	408426	516576	494037	66912	341513	39.80%	409293	44374	1984155	10086	0.51%	706	437 25	43 201	47	66.32%	25.90%	24.77%
	24	438000	639572	1994241	858089	449663	408426	529546	502679	79883	328542	38.29%	403228	53016	1983478	10763	0.54%	716	437 20	46 213	56	66.37%	26.55%	25.21%
Ppv=250MW c	28	438000	636004	1994241	858089	449663	408426	540501	509396	90838	317588	37.01%	400093	59733	1983494	10747	0.54%	700	426 20	38 216	63	65.76%	27.10%	25.54%
Peole=90MW	32	438000	631457	1994241	858089	449663	408426	548980	515807	99317	309108	36.02%	398267	66144	1983530	10711	0.54%	716	438 25	42 211	69	66.60%	27.53%	25.86%
Bassin	36	438000	627051	1994241	858089	449663	408426	560366	523223	110703	297722	34.70%	395228	73560	1983502	10739	0.54%	706	418 25	49 214	77	66.45%	28.10%	26.24%
1.2Mm3	40	438000	623397	1994241	858089	449663	408426	571681	531550	122017	286408	33.38%	391246	81887	1984193	10048	0.50%	681	405 14	46 216	86	67.11%	28.67%	26.65%
	44	438000	618801	1994241	858089	449663	408426	581642	538210	131979	276447	32.22%	388681	88547	1983692	10549	0.53%	690	416 16	35 223	92	67.09%	29.17%	26.99%
	48	438000	613652	1994241	858089	449663	408426	590970	544234	141306	267119	31.13%	387647	94571	1983533	10708	0.54%	716	446 25	39 206	99	66.93%	29.63%	27.29%
	52	438000	609587	1994241	858089	449663	408426	598066	549160	148403	260022	30.30%	386685	99496	1983432	10809	0.54%	708	433 25	40 210	104	67.04%	29.99%	27.54%
	56	438000	604765	1994241	858089	449663	408426	609565	557511	159902	248524	28.96%	383702	107847	1983977	10264	0.51%	694	427 16	41 210	112	67.45%	30.57%	27.96%
	60	438000	601215	1994241	858089	449663	408426	617233	562946	167570	240856	28.07%	381767	113283	1983928	10313	0.52%	689	417 25	35 212	118	67.60%	30.95%	28.23%
	64	438000	600626	1994241	858089	449663	408426	624262	567638	174599	233827	27.25%	377879	117975	1984143	10098	0.51%	667	406 25	23 213	123	67.57%	31.30%	28.46%
	68	438000	596619	1994241	858089	449663	408426	628565	570687	178902	229524	26.75%	378498	121024	1983805	10436	0.52%	687	423 16	28 220	126	67.65%	31.52%	28.62%
	72	438000	594876	1994241	858089	449663	408426	634885	575849	185222	223204	26.01%	375073	126186	1983798	10443	0.52%	673	406 18	36 213	131	68.13%	31.84%	28.88%
	76	438000	592187	1994241	858089	449663	408426	641275	580499	191611	216814	25.27%	373676	130836	1984363	9878	0.50%	665	410 18	33 204	135	0.6828	32.16%	29.11%
	80	438000	587307	1994241	858089	449663	408426	644921	583800	195258	213168	24.84%	374881	134137	1983988	10253	0.51%	693	419 25	48 201	139	0.687	32.34%	29.27%

Sans STEP 438000 657809 1994241 858089 449663 449663 408663 408426 47.60% 437417 1982890 11351 0.00569 774 22.55% 22.55%

Combinaison	Puissance PT MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv P	ri E	té Aut	Сус	Rend	Part EnR*	Part EnR**
	20	438000	648119.64	1994241	576401	419061	157340	472158	454235	53097	104243	18.09%	441660	35174	1982015	12226	0.61%	845	510 2	22 5	53 260	74 (66.25%	23.68%	22.78%
	24	438000	644975.42	1994241	576401	419061	157340	478963	459062	59902	97438	16.90%	439856	40001	1981893	12348	0.62%	838	500 2	27 4	48 263	84 (66.78%	24.02%	23.02%
Ppv=75MW c	28	438000	642627.28	1994241	576401	419061	157340	487271	464655	68210	89130	15.46%	437051	45594	1982333	11908	0.60%	832	503 2	27 4	46 256	95 (66.84%	24.43%	23.30%
Peole=90MW	32	438000	639475.04	1994241	576401	419061	157340	492772	468681	73711	83629	14.51%	436152	49620	1982308	11933	0.60%	830	505 2	27 4	44 254	103 (67.32%	24.71%	23.50%
Bassin	36	438000	636664.09	1994241	576401	419061	157340	498428	472697	79367	77973	13.53%	434781	53636	1982142	12099	0.61%	847	512 2	21 8	50 264	112	67.58%	24.99%	23.70%
0.6Mm3	40	438000	633541.29	1994241	576401	419061	157340	504417	476708	85356	71984	12.49%	433746	57647	1981995	12246	0.61%	853	512 2	27 4	49 265	120	0.6754	25.29%	23.90%
	44	438000	632140.94	1994241	576401	419061	157340	511070	481534	92009	65332	11.33%	430424	62473	1982099	12142	0.61%	839	512 1	8 4	44 265	130 (67.90%	25.63%	24.15%
	48	438000	629233.4	1994241	576401	419061	157340	514298	484552	95237	62103	10.77%	430335	65491	1982120	12121	0.61%	830	499 1	9 4	49 263	136 (68.77%	25.79%	24.30%
	52	438000	626754.84	1994241	576401	419061	157340	518024	486978	98963	58377	10.13%	430389	67917	1982121	12120	0.61%	839	509 2	2 5	51 257	141 (68.63%	25.98%	24.42%
	56	438000	624527.52	1994241	576401	419061	157340	522419	490827	103358	53982	9.37%	428519	71766	1981873	12368	0.62%	851	510 2	27 4	49 265	149 (69.43%	26.20%	24.61%
	60	438000	622146.08	1994241	576401	419061	157340	524152	492490	105091	52249	9.06%	429280	73429	1981917	12324	0.62%	846	506 2	27 4	48 265	152 (69.87%	26.28%	24.70%
	64	438000	619386.78	1994241	576401	419061	157340	526237	494018	107176	50164	8.70%	430386	74957	1981791	12450	0.62%	861	521 2	27 5	52 261	155 (69.94%	26.39%	24.77%
	68	438000	616817.98	1994241	576401	419061	157340	528695	496081	109634	47706	8.28%	430893	77020	1981792	12449	0.62%	862	522 2	27 5	51 262	159	70.25%	26.51%	24.88%
	72	438000	613195.06	1994241	576401	419061	157340	529890	497349	110829	46511	8.07%	433232	78288	1981775	12466	0.63%	867	524 2	27 5	53 263	161	70.64%	26.57%	24.94%
	76	438000	610537.95	1994241	576401	419061	157340	530128	498127	111067	46273	8.03%	435094	79066	1981759	12482	0.63%	870	527 2	27 5	53 263	162	71.19%	26.58%	24.98%
	80	438000	608462.22	1994241	576401	419061	157340	530004	498567	110943	46397	8.05%	436729	79506	1981759	12482	0.63%	870	527 2	27 5	53 263	163	0.7166	26.58%	25.00%

Sans STEP		438000	660341	1994241	576401	419061		419061	419061		157340	27.30%	464336		1981739	12502	0.63%	875					21.01%	21.01%
Combinaison	Puissance PT MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv P	ri Eté /	Aut (Cyc Rend	Part EnR*	Part EnR**
	20	438000	648541.49	1994241	576401	419061	157340	472006	453903	52945	104395	18.11%	442153	34842	1982598	11643	0.58%	825	489 2	7 51	258	37 65.81%	23.67%	22.76%
	24	438000	645550.65	1994241	576401	419061	157340	481366	460599	62305	95035	16.49%	438349	41538	1982498	11743	0.59%	832	507 2	7 46	252	44 66.67%	24.14%	23.10%
Ppv=75MW c	28	438000	642512	1994241	576401	419061	157340	488475	465401	69414	87926	15.25%	436111	46340	1982025	12216	0.61%	830	506 2	7 46	251	49 66.76%	24.49%	23.34%
Pwt=90MW	32	438000	639381.23	1994241	576401	419061	157340	494189	469279	75128	82212	14.26%	435488	50218	1982148	12093	0.61%	828	501 2	2 53	252	53 66.84%	24.78%	23.53%
Bassin	36	438000	635095.72	1994241	576401	419061	157340	499909	473139	80847	76493	13.27%	435799	54078	1982034	12207	0.61%	852	518 1	8 53	263	57 66.89%	25.07%	23.73%
1.2Mm3	40	438000	632828.14	1994241	576401	419061	157340	508025	478932	88964	68376	11.86%	432570	59871	1982330	11911	0.60%	830	507 2	1 49	253	63 67.30%	25.47%	24.02%
	44	438000	629181.16	1994241	576401	419061	157340	512524	482858	93463	63877	11.08%	431904	63797	1981943	12298	0.62%	840	509 2	7 46	258	67 68.26%	25.70%	24.21%
	48	438000	627298.8	1994241	576401	419061	157340	516757	485881	97695	59645	10.35%	430697	66820	1981877	12364	0.62%	850	507 2	7 53	263	70 68.40%	25.91%	24.36%
	52	438000	623481.47	1994241	576401	419061	157340	521190	489379	102129	55211	9.58%	431388	70318	1982248	11993	0.60%	836	509 1	8 51	258	73 68.85%	26.13%	24.54%
	56	438000	620629.43	1994241	576401	419061	157340	524754	492632	105693	51647	8.96%	430652	73571	1981913	12328	0.62%	854	511 2	7 53	263	77 69.61%	26.31%	24.70%
	60	438000	620187.05	1994241	576401	419061	157340	527415	494617	108354	48986	8.50%	429241	75556	1982045	12196	0.61%	838	499 2	7 49	263	79 69.73%	26.45%	24.80%
	64	438000	617300.07	1994241	576401	419061	157340	528493	495745	109432	47908	8.31%	431030	76684	1982075	12166	0.61%	837	505 2	7 51	254	80 70.07%	26.50%	24.86%
	68	438000	615651.71	1994241	576401	419061	157340	531983	498541	112922	44418	7.71%	429837	79480	1982029	12212	0.61%	843	507 2	7 46	263	83 70.38%	26.68%	25.00%
	72	438000	613788.88	1994241	576401	419061	157340	533569	499662	114507	42833	7.43%	430671	80601	1982121	12120	0.61%	843	510 1	8 51	264	84 70.39%	26.76%	25.06%
	76	438000	610387.94	1994241	576401	419061	157340	535773	501690	116712	40628	7.05%	432039	82629	1982117	12124	0.61%	843	512 1	8 51	262	86 70.80%	26.87%	25.16%
	80	438000	610535.06	1994241	576401	419061	157340	535403	502013	116342	40998	7.11%	431300	82952	1981848	12393	0.62%	856	515 2	7 53	261	86 0.713	26.85%	25.17%

Sans STEP 438000 660341 1994241 576401 419061 419061 157340 27.30% 464336 1981739 12502 0.63% 875 21.01% 21.01%

Combinaison	Puiss Eolienne MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv	Pri E	té Aut	Сус	Rend	Part EnR*	Part EnR**	la puis
	30	438000	666833	1994241	312803	277512	35291.1	306778	297986	29266	6024.76	1.93%	564583	20474	1967402	26839	1.35%	1752	1099	75 6	4 514	43	69.96%	15.38%	14.94%	SSS
	60	438000	645795	1994241	464827	375373	89454.1	430900	413590	55526	33927.8	7.30%	480594	38216	1977979	16262	0.82%	1154	706	39 5	9 350	80	68.83%	21.61%	20.74%	n
PV = 100 MWc	90	438000	631189	1994241	616852	429075	187777	522033	492011	92959	94818.4	15.37%	421291	62936	1982490	11751	0.59%	800	487	19 4	6 248	131	0.677	26.18%	24.67%	6
Bassin = 0,6 Mm3	120	438000	624543	1994241	768876	450823	318053	573317	532116	122494	195559	25.43%	389716	81293	1984375	9866	0.49%	645	372	12 4	5 216	169	66.36%	28.75%	26.68%	Ħ.
Groupe P/T = 40 MW	150	438000	621480	1994241	920900	462947	457953	595614	550413	132666	325287	35.32%	375250	87466	1985143	9098	0.46%	592	336	10 3	7 209	182	65.93%	29.87%	27.60%	IS
	180	438000	619245	1994241	1072925	472455	600470	609537	562584	137082	463388	43.19%	366056	90130	1985886	8355	0.42%	543	294	74	0 202	187	0.6575	30.56%	28.21%	[a]
	210	438000	615560	1994241	1224949	480115	744834	622389	573709	142274	602560	49.19%	359529	93594	1986798	7443	0.37%	500	272	53	5 188	194	65.78%	31.21%	28.77%	Πé
	240	438000	614730	1994241	1376974	486568	890405	631969	582364	145401	745005	54.10%	352298	95796	1987393	6848	0.34%	464	239	63	6 183	199	65.88%	31.69%	29.20%	ŏ.
	270	438000	612928	1994241	1528998	492122	1036876	641108	590242	148986	887890	58.07%	346568	98120	1987737	6504	0.33%	436	224	7 2	4 181	203	65.86%	32.15%	29.60%	eč (
	300	438000	611457	1994241	1681022	496962	1184060	646724	595564	149762	1034298	61.53%	342740	98602	1987761	6480	0.32%	438	228	6 2	8 176	204	65.84%	32.43%	29.86%	Ĕ
Sans STEP	00	100000	070000	4004044	040000	077540		077540	077540		05004	44.00%	577754		4007400	07050	4.00%	4774						40.00%	40.00%	r₿ -
	30	438000	6/3926	1994241	312803	277512		277512	277512		35291	11.28%	5///51		196/189	27052	1.36%	1//1						13.92%	13.92%	ne
	60	438000	002082	1994241	404827	3/53/3		3/53/3	3/53/3		89454	19.24%	501587		19//042	10599	0.83%	047						18.82%	18.82%	
	90	438000	059587	1994241	200070	429075		429075	429075		18////	30.44%	4003440		1982052	12189	0.01%	847						21.52%	21.52%	-
	120	430000	656224	1994241	020000	400020		400020	400020		310033	41.37%	437 143		1903/22	0400	0.33%	633						22.01%	22.01%	
	100	430000	655261	1994241	920900	402947		402947	402947		407900	49.13%	42/400		1904/42	9499	0.40%	000 500						23.2170	23.2170	
	210	430000	65/382	100/2/1	1072920	472400		472400	4/2400		7//93/	60 81%	419017		10000000	8070	0.44%	541						23.09%	23.09%	
	210	438000	653722	100/2/1	1224949	400113		400113	400113		800/05	64 66%	413073		1086702	7530	0.40%	506						24.00%	24.00%	
	240	438000	653106	100/2/1	1528008	400000		400000	400000		1036876	67.81%	403824		10871/1	7100	0.36%	/70						24.40%	24.40%	
	300	438000	652646	1004241	1681022	496962		496962	496962		1184060	70 44%	300024		1087514	6727	0.30%	202						24.00%	24.00%	
	000	400000	002040	1004241	1001022	400002		400002	400002		1104000	70.4470	000000		1007014	0121	0.0470	202						24.5270	24.5270	•
	Duine					E-D	EnR			E.D.	E-D	0/	-	-		Ellen	% E	Milara						Dort	Dert	1
Combinaison	Eolienne MW	SACOI	SARCO	Conso	EnR	Charge	Pompe	EnR*	EnR**	Pompe	Perdue	Perdue	⊏ Moteurs	⊏ Turbine	E Totale	Satis	Non	Pannes	Hiv	Pri E	té Aut	Сус	Rend	EnR*	EnR**	
	30	438000	664630	1994241	312803	277512	35291	306872	298125	29360	5931	1 90%	566509	20613	1967264	26977	1 35%	1762	1108	74 6	6 514	22	70 21%	15 39%	14 95%	
	60	438000	644157	1994241	464827	375373	89454	433305	415144	57932	31522	6.78%	480519	39771	1977819	16422	0.82%	1160	727	41 5	3 339	42	68.65%	21.73%	20.82%	
PV = 100 MWc	90	438000	629352	1994241	616852	429075	187777	523408	492774	94334	93444	15.15%	422158	63699	1982285	11956	0.60%	810	489	25 5	3 243	67	67.53%	26.25%	24.71%	
Bassin = 1.2 Mm3	120	438000	624555	1994241	768876	450823	318053	576115	533669	125292	192761	25.07%	388213	82846	1984436	9805	0.49%	642	363	19 4	8 212	87	66.12%	28.89%	26.76%	
Groupe P/T = 40 MW	150	438000	620506	1994241	920900	462947	457953	598476	552521	135528	322425	35.01%	374199	89574	1985226	9015	0.45%	593	330	10 4	0 213	94	66.09%	30.01%	27.71%	
	180	438000	618091	1994241	1072925	472455	600470	614139	565766	141684	458785	42.76%	364428	93311	1986285	7956	0.40%	535	294	11 3	6 194	98	65.86%	30.80%	28.37%	H
	210	438000	615604	1994241	1224949	480115	744834	626363	576386	146248	598586	48.87%	356847	96271	1986837	7404	0.37%	494	274	4 3	6 180	101	65.83%	31.41%	28.90%	
	240	438000	613059	1994241	1376974	486568	890405	634197	583664	147628	742777	53.94%	352545	97096	1987268	6973	0.35%	478	256	7 3	7 178	102	65.77%	31.80%	29.27%	
	270	438000	612317	1994241	1528998	492122	1036876	642869	591207	150747	886129	57.95%	346052	99085	1987575	6666	0.33%	452	241	2 3	4 175	104	65.73%	32.24%	29.65%	
	300	438000	610326	1994241	1681022	496962	1184060	649401	596973	152439	1031622	61.37%	342377	100011	1987676	6565	0.33%	446	231	73	4 174	105	65.61%	32.56%	29.93%	_

Combinaison	Puiss Eolienne MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv F	ri Eté	Aut	Сус	Rend	Part EnR*	Part EnR**
	30	438000	635234	1994241	473601	310374	163227	414470	381527	104095	59131	12.49%	515152	71153	1969913	24328	1.22%	1563	982 6	6 59	456	146	68.35%	20.78%	19.13%
	60	438000	611303	1994241	625601	397347	228255	532494	489991	135147	93108	14.88%	439787	92645	1979081	15160	0.76%	1066	654 3	9 61	312	190	68.55%	26.70%	24.57%
PV = 200 MWc	90	438000	592166	1994241	777626	445869	331757	617799	565095	171930	159827	20.55%	388230	119226	1983491	10750	0.54%	726	433 2	2 46	225	244	69.35%	30.98%	28.34%
Bassin = 0,6 Mm3	120	438000	572882	1994241	929650	465659	463991	682953	614913	217294	246697	26.54%	358906	149254	1984701	9540	0.48%	617	346 1	4 51	206	305	68.69%	34.25%	30.83%
Groupe P/T = 80 MW	150	438000	563031	1994241	1081674	476389	605285	730352	647744	253962	351323	32.48%	336861	171354	1985636	8605	0.43%	555	308	9 38	200	348	67.47%	36.62%	32.48%
	180	438000	557579	1994241	1233699	484819	748879	756825	665952	272005	476874	38.65%	324806	181132	1986337	7904	0.40%	509	274	9 40	186	367	66.59%	37.95%	33.39%
	210	438000	554381	1994241	1385723	491683	894040	772213	678135	280531	613510	44.27%	316761	186452	1987277	6964	0.35%	458	241	9 33	175	377	66.46%	38.72%	34.00%
	240	438000	552366	1994241	1537747	497484	1040264	782449	687073	284966	755298	49.12%	309980	189589	1987419	6822	0.34%	441	236	4 32	169	383	66.53%	39.24%	34.45%
	270	438000	548504	1994241	1689772	502506	1187266	792487	695371	289981	897284	53.10%	306020	192865	1987895	6346	0.32%	408	212	6 30	160	389	66.51%	39.74%	34.87%
	300	438000	546725	1994241	1841880	506863	1335017	802257	702986	295394	1039623	56.44%	300522	196123	1988232	6009	0.30%	398	202	7 31	158	396	66.39%	40.23%	35.25%
Sans STEP																									
	30	438000		1994241	473601	310374		310374	310374		163227	34.47%	548809		1968625	25616	1.28%	1628						15.56%	15.56%
	60	438000		1994241	625601	397347		397347	397347		228255	36.49%	482210		1978468	15773	0.79%	1118						19.92%	19.92%
	90	438000		1994241	777626	445869		445869	445869		331757	42.66%	440677		1982703	11538	0.58%	794						22.36%	22.36%
	120	438000		1994241	929650	465659		465659	465659		463991	49.91%	424147		1984298	9943	0.50%	648						23.35%	23.35%
	150	438000		1994241	1081674	476389		476389	476389		605285	55.96%	415690		1985263	8978	0.45%	586						23.89%	23.89%
	180	438000		1994241	1233699	484819		484819	484819		748879	60.70%	409013		1986006	8235	0.41%	534						24.31%	24.31%
	210	438000		1994241	1385723	491683		491683	491683		894040	64.52%	403523		1986599	7642	0.38%	498						24.00%	24.66%
	240	438000		1994241	153//4/	497484		497484	497484		1040264	07.05%	398787		1987093	7148	0.36%	470						24.95%	24.95%
	270	438000		1994241	1089/72	502506		502500	502506		118/200	70.26%	052301		1987504	6/3/	0.34%	443						25.20%	25.20%
	300	438000		1994241	1841880	506863		506863	506863		1335017	72.48%	391127		1987857	6384	0.32%	427						25.42%	25.42%
Combinaison	Puiss Eolienne MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv F	ri Eté	Aut	Сус	Rend	Part EnR*	Part EnR**
	30	438000	636053	1994241	473601	310374	163227	428991	391201	118617	44609	9.42%	504894	80827	1970148	24093	1.21%	1508	958 6	67 38	445	84	68.14%	21.51%	19.62%
	60	438000	610060	1994241	625601	397347	228255	541429	495769	144083	84172	13.45%	435566	98423	1979395	14846	0.74%	1024	627 2	9 43	325	102	68.31%	27.15%	24.86%
PV = 200 MWc	90	438000	591128	1994241	777626	445869	331757	628521	571387	182652	149105	19.17%	382560	125518	1983074	11167	0.56%	748	452 2	25 37	234	130	68.72%	31.52%	28.65%
Bassin =1,2 Mm3	120	438000	572938	1994241	929650	465659	463991	693882	622281	228223	235768	25.36%	351529	156622	1984748	9493	0.48%	585	343 1	2 32	198	162	68.63%	34.79%	31.20%
Groupe P/T = 80 MW	150	438000	561090	1994241	1081674	476389	605285	741611	655124	265221	340064	31.44%	332375	178734	1986589	7652	0.38%	487	270 1	0 30	177	184	67.39%	37.19%	32.85%
	180	438000	555648	1994241	1233699	484819	748879	764454	670968	279635	469245	38.04%	321885	186149	1986502	7739	0.39%	480	270	7 20	183	192	66.57%	38.33%	33.65%
	210	438000	551913	1994241	1385723	491683	894040	777913	682004	286231	607810	43.86%	315445	190322	1987362	6879	0.34%	442	240	9 21	172	196	66.49%	39.01%	34.20%
	240	438000	547169	1994241	1537747	497484	1040264	792716	693787	295232	745031	48.45%	309206	196303	1988162	6079	0.30%	395	207	7 20	161	202	66.49%	39.75%	34.79%
	270	438000	545737	1994241	1689772	502506	1187266	802579	702125	300073	887193	52.50%	302133	199619	1987995	6246	0.31%	399	214	7 21	157	205	66.52%	40.24%	35.21%
	300	438000	542969	1994241	1841880	506863	1335017	809169	707460	302306	1032711	56.07%	299781	200597	1988209	6032	0.30%	394	207	724	156	207	66.36%	40.58%	35.48%

Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv F	Pri Eté	é Aut	Сус	Rend	Part EnR*	Part EnR**	la pui
	30	438000	619418	1994241	504204	392119	112085	477339	454754	85220	26865	5.33%	468598	62635	1980770	13471	0.68%	942	555 2	28 53	306	129	73.50%	23.94%	22.80%	SS
	60	438000	612679	1994241	552576	411294	141283	515828	486796	104534	36749	6.65%	444082	75503	1981557	12684	0.64%	892	535 2	27 53	277	155	72.23%	25.87%	24.41%	ar
Eolien : 90 MW	90	438000	607364	1994241	600828	425580	175247	548703	513369	123123	52124	8.68%	423303	87789	1982036	12205	0.61%	831	505 2	25 51	250	180	71.30%	27.51%	25.74%	IC .
Bassin 0,6 Mm3	120	438000	600024	1994241	649079	434456	214623	572961	531994	138505	76118	11.73%	412417	97538	1982435	11806	0.59%	804	486 2	25 51	242	200	70.42%	28.73%	26.68%	0
Groupe P/T : 80 MW	150	438000	595990	1994241	697210	440028	257182	594752	548339	154724	102459	14.70%	400798	108311	1983127	11114	0.56%	761	463 ´	19 47	232	222	70.00%	29.82%	27.50%	n
	180	438000	593783	1994241	745642	443912	301730	608109	558131	164197	137533	18.44%	393087	114218	1983001	11240	0.56%	753	454 2	20 48	231	234	69.56%	30.49%	27.99%	ŝŧ
	210	438000	589821	1994241	793834	446751	347082	622803	568423	176052	171031	21.54%	387106	121671	1983349	10892	0.55%	735	434 2	25 45	231	249	69.11%	31.23%	28.50%	E
	240	438000	590193	1994241	842145	449023	393123	632257	575254	183234	209889	24.92%	380235	126231	1983681	10560	0.53%	715	436 2	21 44	214	258	68.89%	31.70%	28.85%	ê
	270	438000	589845	1994241	890457	450840	439617	643410	582450	192571	247047	27.74%	373787	131610	1984082	10159	0.51%	676	406 2	24 33	213	269	68.34%	32.26%	29.21%	P (
	300	438000	588816	1994241	937987	452380	485606	651262	587928	198881	286725	30.57%	369408	135548	1984152	10089	0.51%	663	407 2	25 25	206	277	68.16%	32.66%	29.48%	Ž
Sans STEP	00	40,0000	001010	1001011	504004	000110		000110	000140		440005	00.00%	400000		4000704	10510	0.00%	050						10.00%	40.000/	· ,
	30	438000	001019	1994241	504204	392119		392119	392119		112085	22.23%	488993		1980731	13510	0.08%	952						19.00%	19.00%	
	60	438000	000720	1994241	552576	411294		411294	411294		141283	25.57%	4/145/		1981470	12771	0.64%	903						20.62%	20.02%	
	90	438000	650404	1994241	640070	425580		425580	425580		1/524/	29.17%	458471		1981942	12299	0.62%	853						21.34%	21.34%	
	120	430000	659726	1994241	607210	434430		434430	434430		214023	33.07%	400090		1902240	11704	0.60%	029						21.79%	21.79%	,
	100	430000	000/00	1994241	745642	440020		440020	440020		201720	30.09%	440000		1902447	11/94	0.59%	014 706						22.00%	22.00%	
	210	438000	659076	1994241	703834	443912		443912	443912		3/7082	40.47 %	442290		1092011	11/05	0.50%	790						22.20%	22.20%	
	210	438000	657857	100/2/1	842145	440731		440731	440731		303102	45.7270	439919		1082858	11490	0.50%	750						22.40%	22.40 /0	
	240	438000	657664	100/2/1	200457	449023		449023	449023		/30617	40.00%	431910		1082030	11202	0.57%	767						22.5270	22.32 /0	
	300	438000	657522	100/2/1	037087	450380		450040	450040		439017	49.37 /0 51 77%	430444		1083021	11295	0.57%	753						22.01/0	22.01%	
	500	400000	001022	1334241	331301	402000		402000	402000		403000	51.7770	400110		1303021	11220	0.0070	100						22.0070	22.0070	1
Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv F	Pri Eté	é Aut	Сус	Rend	Part EnR*	Part EnR**	
	30	438000	620393	1994241	504204	392119	112085	478704	455573	86585	25500	5.06%	466851	63454	1980817	13424	0.67%	940	562 2	28 53	297	66	73.28%	24.00%	22.84%	
	60	438000	613307	1994241	552576	411294	141283	520237	490225	108944	32339	5.85%	440129	78932	1981661	12580	0.63%	875	537 ´	18 51	269	82	72.45%	26.09%	24.58%	
Eolien : 90 MW	90	438000	606263	1994241	600828	425580	175247	552137	515338	126557	48691	8.10%	422449	89758	1982050	12191	0.61%	834	504 2	25 51	254	93	70.92%	27.69%	25.84%	
Bassin 1,2 Mm3	120	438000	600518	1994241	649079	434456	214623	579864	536648	145407	69215	10.66%	407835	102191	1983000	11241	0.56%	761	465 ´	19 31	246	106	70.28%	29.08%	26.91%	
Groupe P/T : 80 MW	150	438000	597267	1994241	697210	440028	257182	600983	551916	160955	96227	13.80%	395820	111888	1983003	11238	0.56%	751	466 ´	16 39	230	116	69.51%	30.14%	27.68%	
	180	438000	594166	1994241	745642	443912	301730	617415	564359	173503	128227	17.20%	386421	120446	1982946	11295	0.57%	738	450 ⁻	16 38	234	124	69.42%	30.96%	28.30%	
	210	438000	589900	1994241	793834	446751	347082	634289	575145	187538	159544	20.10%	380342	128394	1983388	10853	0.54%	719	432	18 36	233	133	68.46%	31.81%	28.84%	
	240	438000	588281	1994241	842145	449023	393123	642534	582107	193511	199611	23.70%	376079	133085	1984467	9774	0.49%	676	424 2	21 46	185	138	68.77%	32.22%	29.19%	
	270	438000	586041	1994241	890457	450840	439617	653867	589781	203027	236590	26.57%	369904	138941	1983726	10515	0.53%	679	411 2	25 35	208	144	68.43%	32.79%	29.57%	
	300	438000	584378	1994241	937987	452380	485606	660148	594263	207768	277838	29.62%	367371	141883	1984011	10230	0.51%	652	390 ⁻	16 38	208	146	68.29%	33.10%	29.80%]

Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv F	ri Et	é Aut	Сус	Rend	Part EnR*	Part EnR**
	30	438000	637551	1994241	504204	392119	112085	465186	441991	73067	39018	7.74%	463329	49872	1980870	13371	0.67%	936	560 2	2 51	303	104	68.25%	23.33%	22.16%
	60	438000	634551	1994241	552576	411294	141283	492944	466882	81651	59632	10.79%	442324	55589	1981757	12484	0.63%	862	528 ´	5 49	270	116	68.08%	24.72%	23.41%
Eolien : 90 MW	90	438000	633974	1994241	600828	425580	175247	515958	486945	90378	84870	14.13%	423320	61365	1982239	12002	0.60%	810	495 ´	9 44	252	128	67.90%	25.87%	24.42%
Bassin 0,6 Mm3	120	438000	630390	1994241	649079	434456	214623	534589	502192	100133	114490	17.64%	412066	67735	1982647	11594	0.58%	782	475 2	21 45	241	141	67.65%	26.81%	25.18%
Groupe P/T : 40 MW	150	438000	628882	1994241	697210	440028	257182	546001	511154	105973	151209	21.69%	405187	71126	1983223	11018	0.55%	745	451 ´	9 37	238	148	67.12%	27.38%	25.63%
	180	438000	627518	1994241	745642	443912	301730	555717	518861	111804	189926	25.47%	398984	74949	1983363	10878	0.55%	726	446 2	21 31	228	156	67.04%	27.87%	26.02%
	210	438000	626970	1994241	793834	446751	347082	563000	524482	116249	230834	29.08%	394380	77731	1983832	10409	0.52%	713	430 2	21 34	228	162	66.87%	28.23%	26.30%
	240	438000	626037	1994241	842145	449023	393123	568112	528725	119089	274033	32.54%	390924	79702	1983686	10555	0.53%	707	428 2	25 37	217	166	66.93%	28.49%	26.51%
	270	438000	624933	1994241	890457	450840	439617	574349	533426	123509	316108	35.50%	387916	82586	1984275	9966	0.50%	664	407	6 35	206	1/1	66.87%	28.80%	26.75%
0	300	438000	624825	1994241	937987	452380	485606	576784	535487	124404	361202	38.51%	386203	83107	1984516	9725	0.49%	661	394 2	25 37	205	172	66.80%	28.92%	26.85%
Sans STEP	20	420000	661610	1004044	504204	202110		202110	202110		110005	22.220/	400000		1000721	10510	0.690/	050						10.66%	10.660/
	30 60	438000	660720	1994241	552576	392119		392119	392119		1/12000	22.23%	400993		1900/31	10010	0.00%	952						19.00%	19.00%
	00	430000	650801	1994241	600828	411294		411294	411294		141203	20.07%	4/ 143/		1001470	12771	0.04%	903						20.02%	20.02%
	120	438000	650104	100/2/1	6/0070	42000		423300	42000		21/622	29.17/0	450506		1082246	11005	0.02%	820						21.3470	21.04/0
	120	438000	658736	100/2/1	607210	404400		4/10028	4/10028		257182	36.80%	400000		1082///7	1170/	0.00%	81/						22.1.5%	21.73%
	180	438000	658400	1994241	745642	443912		443912	443912		301730	40 47%	442298		1982611	11630	0.58%	796						22.00%	22.00%
	210	438000	658076	1994241	793834	446751		446751	446751		347082	43 72%	439919		1982746	11495	0.58%	790						22.20%	22.20%
	240	438000	657857	1994241	842145	449023		449023	449023		393123	46 68%	437978		1982858	11383	0.57%	776						22.52%	22.52%
	270	438000	657664	1994241	890457	450840		450840	450840		439617	49.37%	436444		1982948	11293	0.57%	767						22.61%	22.61%
	300	438000	657522	1994241	937987	452380		452380	452380		485606	51.77%	435119		1983021	11220	0.56%	753						22.68%	22.68%
												-													
	Duice					EnP	EnR			EnP	EnP	0/	F	F		E Non	% E	Nhro						Part	
Combinaison	PV MW	SACOI	SARCO	Conso	EnR	Charge	Pompe Dispo	EnR*	EnR**	Pompe	Perdue	Perdue	Moteurs	Turbine	E Totale	Satis	Non Satis	Pannes	Hiv F	ri Et	é Aut	Сус	Rend	EnR*	Part EnR**
	30	438000	636708	1994241	504204	392119	112085	466593	443363	74474	37611	7.46%	462831	51244	1980903	13338	0.67%	926	541 2	28 51	306	54	68.81%	23.40%	22.23%
	60	438000	633857	1994241	552576	411294	141283	494595	467905	83302	57981	10.49%	442150	56611	1981912	12329	0.62%	862	525 2	21 49	267	59	67.96%	24.80%	23.46%
Eolien : 90 MW	90	438000	630875	1994241	600828	425580	175247	516948	487374	91368	83880	13.96%	426235	61794	1982484	11757	0.59%	812	492 2	25 53	242	65	67.63%	25.92%	24.44%
Bassin 1,2 Mm3	120	438000	629139	1994241	649079	434456	214623	535108	502008	100652	113971	17.56%	413340	67552	1982487	11754	0.59%	793	473 2	25 51	244	71	67.11%	26.83%	25.17%
Groupe P/T : 40 MW	150	438000	626305	1994241	697210	440028	257182	547310	512400	107282	149901	21.50%	406215	72371	1982920	11321	0.57%	776	457 2	25 51	243	76	67.46%	27.44%	25.69%
	180	438000	625265	1994241	745642	443912	301730	556719	519189	112807	188923	25.34%	400303	75276	1982757	11484	0.58%	763	459 2	25 49	230	79	66.73%	27.92%	26.03%
	210	438000	624368	1994241	793834	446751	347082	563506	524905	116754	230328	29.01%	395765	78153	1983037	11204	0.56%	751	450 2	25 44	232	82	66.94%	28.26%	26.32%
	240	438000	622287	1994241	842145	449023	393123	569175	529033	120153	272970	32.41%	394281	80010	1983601	10640	0.53%	709	414 2	25 46	224	84	66.59%	28.54%	26.53%
	270	438000	623324	1994241	890457	450840	439617	574567	533632	123727	315890	35.48%	388629	82792	1983585	10656	0.53%	688	410 <i>°</i>	9 46	213	87	66.92%	28.81%	26.76%
	300	438000	622775	1994241	937987	452380	485606	576904	535274	124524	361083	38.50%	387833	82893	1983881	10360	0.52%	690	418 [·]	6 50	206	87	66.57%	28.93%	26.84%

Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv	Pri I	Eté Au	: Cyc	Rend	Part EnR*	Part EnR**
	30	438000	670838	1994241	250950	248655	2295	250409	249890	1754	542	0.22%	610516	1235	1969244	24997	1.25%	1744	1088	66	64 526	3	70.42%	12.56%	12.53%
	60	438000	663460	1994241	299081	284738	14344	297365	294227	12628	1716	0.57%	574804	9489	1970490	23751	1.19%	1669	1052	61	64 492	2 20	75.15%	14.91%	14.75%
Eolien : 40 MW	90	438000	653924	1994241	347454	309001	38452	341012	332513	32011	6441	1.85%	546927	23512	1971363	22878	1.15%	1592	1002	61	64 465	5 49	73.45%	17.10%	16.67%
Bassin 0,6 Mm3	120	438000	643979	1994241	395645	323609	72036	379416	363845	55807	16229	4.10%	526306	40236	1972130	22111	1.11%	1522	964	59	61 438	83	72.10%	19.03%	18.24%
Groupe P/T : 80 MW	150	438000	634945	1994241	443836	333053	110783	414049	390018	80996	29787	6.71%	509778	56964	1972741	21500	1.08%	1449	911	51	60 427	' 117	70.33%	20.76%	19.56%
	180	438000	629403	1994241	492268	339746	152522	440686	408911	100940	51582	10.48%	497233	69165	1973547	20694	1.04%	1418	889	58	57 414	142	0.6852	22.10%	20.50%
	210	438000	625870	1994241	540580	344684	195897	461883	424245	117200	78697	14.56%	485560	79561	1973675	20566	1.03%	1380	871	49	54 406	5 163	67.89%	23.16%	21.27%
	240	438000	623939	1994241	588771	348569	240202	480463	437233	131894	108308	18.40%	475657	88664	1974829	19412	0.97%	1326	831	57	51 387	' 182	67.22%	24.09%	21.92%
	270	438000	622542	1994241	637083	351744	285339	495853	448376	144110	141230	22.17%	466096	96633	1975014	19227	0.96%	1297	847	42	32 376	5 198	67.05%	24.86%	22.48%
	300	438000	621621	1994241	684608	354319	330289	508232	457060	153913	176376	25.76%	458117	102742	1974799	19442	0.97%	1276	824	54	20 378	3 211	66.75%	25.48%	22.92%
Sans STEP																									
	30	438000	671567	1994241	250950	248655		248655	248655		2295	0.91%	610984		1969206	25035	1.26%	1748						12.47%	12.47%
	60	438000	669922	1994241	299081	284738		284738	284738		14344	4.80%	577792		1970452	23789	1.19%	1673						14.28%	14.28%
	90	438000	668628	1994241	347454	309001		309001	309001		38452	11.07%	555679		1971309	22932	1.15%	1598						15.49%	15.49%
	120	438000	667665	1994241	395645	323609		323609	323609		72036	18.21%	542586		1971861	22380	1.12%	1546						16.23%	16.23%
	150	438000	666868	1994241	443836	333053		333053	333053		110783	24.96%	534313		1972234	22007	1.10%	1505						16.70%	16.70%
	180	438000	666397	1994241	492268	339746		339746	339746		152522	30.98%	528376		1972519	21722	1.09%	1474						17.04%	17.04%
	210	438000	665890	1994241	540580	344684		344684	344684		195897	36.24%	524166		1972740	21501	1.08%	1453						17.28%	17.28%
	240	438000	665523	1994241	588771	348569		348569	348569		240202	40.80%	520830		1972922	21319	1.07%	1437						17.48%	17.48%
	270	438000	665246	1994241	637083	351744		351744	351744		285339	44.79%	518076		1973066	21175	1.06%	1420						17.64%	17.64%
	300	438000	665030	1994241	684608	354319		354319	354319		330289	48.24%	515835		1973184	21057	1.06%	1409						17.77%	17.77%
Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Turbine	E Totale	E Non Satis	% E Non Satis	Nbre Pannes	Hiv	Pri I	Eté Au	: Cyc	Rend	Part EnR*	Part EnR**
	30	438000	670766	1994241	250950	248655	2295	250407	250155	1752	543	0.22%	610323	1501	1969244	24997	1.25%	1744	1088	66	64 526	6 2	85.63%	12.56%	12.54%
	60	438000	663356	1994241	299081	284738	14344	297905	294949	13167	1176	0.39%	574185	10211	1970490	23751	1.19%	1669	1052	61	64 492	2 11	77.55%	14.94%	14.79%
Eolien : 40 MW	90	438000	654416	1994241	347454	309001	38452	343973	334584	34972	3481	1.00%	544581	25583	1971581	22660	1.14%	1578	1004	51	58 465	5 27	0.7315	17.25%	16.78%
Bassin 1,2 Mm3	120	438000	645937	1994241	395645	323609	72036	385535	368491	61926	10110	2.56%	519961	44881	1972388	21853	1.10%	1498	953	61	56 428	3 47	72.48%	19.33%	18.48%
Groupe P/T : 80 MW	150	438000	637839	1994241	443836	333053	110783	424237	397316	91184	19600	4.42%	499908	64263	1973064	21177	1.06%	1431	901	55	46 429	67	70.48%	21.27%	19.92%
	180	438000	631351	1994241	492268	339746	152522	452257	416684	112511	40011	8.13%	487831	76938	1973865	20376	1.02%	1380	882	45	46 407	80	68.38%	22.68%	20.89%
	210	438000	626909	1994241	540580	344684	195897	474043	432242	129359	66538	12.31%	476995	87559	1974146	20095	1.01%	1333	837	48	48 400	91 (67.69%	23.77%	21.67%
	240	438000	620157	1994241	588771	348569	240202	492674	446058	144105	96098	16.32%	470415	97489	1974631	19610	0.98%	1286	807	48	46 385	5 101	67.65%	24.70%	22.37%
	270	438000	617950	1994241	637083	351744	285339	505769	454931	154025	131314	20.61%	463948	103187	1974828	19413	0.97%	1260	789	48	46 377	' 107	66.99%	25.36%	22.81%
	300	438000	616263	1994241	684608	354319	330289	520640	465306	166321	163967	23 95%	455647	110987	1975216	19025	0.95%	1233	768	48	47 370) 115	66 73%	26 11%	23 33%

Combinaison	Bassin Mm3	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic Couvert	E Turbine	E Totale	% Pic couvert	Nbre Pannes	Hiv F	Pri Eté Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**	nflue
	0.2	425696	414175	1994241	576401	419061	157340	432576	427267	13515	143825	24.95%	708140	27168	8206	8206	1975279	30.20%	894	397 2	21 127 349	48	60.72%	21.69%	21.43%	nc
	0.3	425696	414175	1994241	576401	419061	157340	434616	428965	15555	141785	24.60%	708140	27168	9904	9904	1976977	36.45%	790	353	4 95 338	38	63.67%	21.79%	21.51%	ö
Ppv=75 MW c	0.4	425696	414175	1994241	576401	419061	157340	435958	430094	16897	140443	24.37%	708140	27168	11032	11032	1978105	40.61%	738	324	0 77 337	32	65.29%	21.86%	21.57%	d l
Peol=90 MW	0.5	425696	414175	1994241	576401	419061	157340	437106	431076	18045	139295	24.17%	708140	27168	12015	12015	1979088	44.22%	698	298	0 63 337	35	66.58%	21.92%	21.62%	$\overline{\langle}$
4 x 20 MW	0.6	425696	414175	1994241	576401	419061	157340	438064	431903	19003	138337	24.00%	708140	27168	12841	12841	1979914	47.27%	670	277	0 56 337	25	67.58%	21.97%	21.66%	<u>o</u>
	0.7	425696	414175	1994241	576401	419061	157340	438898	432640	19837	137503	23.86%	708140	27168	13579	13579	1980652	49.98%	637	257	0 45 335	22	68.45%	22.01%	21.69%	Ц
	0.8	425696	414175	1994241	576401	419061	157340	439682	433318	20621	136719	23.72%	708140	27168	14257	14257	1981330	52.48%	600	230	0 37 333	20	69.14%	22.05%	21.73%	ne
	0.9	425696	414175	1994241	576401	419061	157340	440486	433993	21425	135915	23.58%	708140	27168	14932	14932	1982004	54.96%	562	209	0 26 327	19	69.69%	22.09%	21.76%	d l
	1	425696	414175	1994241	576401	419061	157340	441211	434613	22150	135190	23.45%	708140	27168	15552	15552	1982625	57.24%	529	188	0 19 322	18	70.21%	22.12%	21.79%	e
	1.1	425696	414175	1994241	576401	419061	157340	441757	435112	22696	134644	23.36%	708140	27168	16051	16051	1983124	59.08%	505	172	0 13 320	17	70.72%	22.15%	21.82%	stc
	1.2	425696	414175	1994241	576401	419061	157340	442298	435609	23237	134103	23.27%	708140	27168	16548	16548	1983621	60.91%	483	158	0 10 315	16	71.22%	22.18%	21.84%	č
	1.3	425696	414175	1994241	576401	419061	157340	442846	436106	23785	133555	23.17%	708140	27168	17045	17045	1984118	62.74%	465	146	0 8 311	15	71.66%	22.21%	21.87%	(a)
	1.4	425696	414175	1994241	576401	419061	157340	443380	436598	24319	133021	23.08%	708140	27168	17536	17536	1984609	64.55%	440	127	0 5 308	14	72.11%	22.23%	21.89%	le q
	1.5	425696	414175	1994241	576401	419061	157340	443743	436943	24682	132658	23.01%	708140	27168	17882	17882	1984954	65.82%	424	113	0 3 308	14	72.45%	22.25%	21.91%	· .
Sans STEP		425696	414175	1994241	576401	419061		419061	419061		157340	27.30%	708140	27168					1659					21.01%	21.01%	1 7
																										- 1
Combinaison	Bassin Mm3	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic Couvert	E Turbine	E Totale	% Pic couvert	Nbre Pannes	Hiv F	Pri Eté Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**	-
	0.2	425696	414175	1994241	576401	419061	157340	432090	427347	13029	144311	25.04%	708140	27168	8286	8286	1975359	30.50%	899	392	23 136 348	47	63.60%	21.67%	21.43%	
	0.3	425696	414175	1994241	576401	419061	157340	434147	428956	15086	142254	24.68%	708140	27168	9895	9895	1976967	36.42%	807	355	6 110 336	37	65.59%	21.77%	21.51%	
Ppv=75 MW c	0.4	425696	414175	1994241	576401	419061	157340	435476	430031	16415	140925	24.45%	708140	27168	10970	10970	1978043	40.38%	763	332	4 91 336	31	66.83%	21.84%	21.56%	
Peol=90 MW	0.5	425696	414175	1994241	576401	419061	157340	436614	430952	17553	139787	24.25%	708140	27168	11891	11891	1978964	43.77%	733	308	4 85 336	27	67.74%	21.89%	21.61%	1
4 x 15 MW	0.6	425696	414175	1994241	576401	419061	157340	437566	431739	18505	138835	24.09%	708140	27168	12678	12678	1979751	46.67%	711	290	4 82 335	24	68.51%	21.94%	21.65%	
	0.7	425696	414175	1994241	576401	419061	157340	438432	432467	19371	137969	23.94%	708140	27168	13405	13405	1980478	49.34%	675	265	4 71 335	22	69.20%	21.98%	21.69%	
	0.8	425696	414175	1994241	576401	419061	157340	439276	433141	20215	137125	23.79%	708140	27168	14080	14080	1981153	51.83%	640	242	4 65 329	20	69.65%	22.03%	21.72%	i
	0.9	425696	414175	1994241	576401	419061	157340	440112	433808	21051	136289	23.64%	708140	27168	14747	14747	1981820	54.28%	613	224	4 57 328	18	70.05%	22.07%	21.75%	

135595 23.52% 708140 27168 15322

134476 23.33% 708140 27168 16309

133566 23.17% 708140 27168 17125

708140 27168 15820

708140 27168 16806

708140 27168 17347

135043 23.43%

133922 23.23%

133220 23.11%

15322

15820

16309

16806

17125

17347

1982395 56.40%

1982892 58.23%

1983382 60.03%

1983879 61.86%

1984198 63.03%

1984420 63.85%

589 215 4 47 323 17

551 187 4 44 316 15

533 171 4 44 314 15

515 154 4 43 314 14

513 152 4 43 314 13

565 197 4 44 320

70.46%

70.95%

71.33%

71.76%

71.92%

16

22.10% 21.78%

22.13% 21.81%

22.16% 21.83%

22.19% 21.86%

22.22% 21.88%

72.03% 22.21% 21.87%

Annexe A4. 'n Grandeurs énergétiques et paramètres τ. Stratégie \mathbf{N} Groupe P/T réversible 1

1 425696 414175 1994241 576401 419061 157340 440806 434383 21745

441358 434881 22297

435867

436408

22864

23418

23774

24120

441925 435370

442835 436186

442479

443181

1.1 425696 414175 1994241 576401 419061 157340

1.2 425696 414175 1994241 576401 419061 157340

1.3 425696 414175 1994241 576401 419061 157340

1.4 425696 414175 1994241 576401 419061 157340

1.5 425696 414175 1994241 576401 419061 157340

425696 414175 1994241 5

Combinaison	Bassin Mm3	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic Couvert	E Turbine	E Totale	% Pic couvert	Nombre Pannes	Hiv	Pri	Eté Au	t Cyc Turbine	Rend	Part EnR*	Part EnR**
	0.2	425696	414175	1994241	697210	440028	257182	457524	450911	17496	239686	34.38%	688916	25425	10883	10883	1979698	42.80%	635	295	13	40 28	7 63	62.20%	22.94%	22.61%
	0.3	425696	414175	1994241	697210	440028	257182	459965	452680	19937	237246	34.03%	688916	25425	12652	12652	1981467	49.76%	535	241	0	20 27	4 48	63.46%	23.06%	22.70%
Ppv=150 MW c	0.4	425696	414175	1994241	697210	440028	257182	461445	453696	21417	235765	33.82%	688916	25425	13668	13668	1982483	53.76%	499	210	0	16 27	3 39	63.82%	23.14%	22.75%
Peol=90 MW	0.5	425696	414175	1994241	697210	440028	257182	462588	454501	22560	234622	33.65%	688916	25425	14473	14473	1983288	56.92%	475	191	0	11 27	3 33	64.15%	23.20%	22.79%
4 x 20 MW	0.6	425696	414175	1994241	697210	440028	257182	463487	455212	23459	233723	33.52%	688916	25425	15184	15184	1984000	59.72%	453	174	0	7 27	2 29	64.73%	23.24%	22.83%
	0.7	425696	414175	1994241	697210	440028	257182	464323	455893	24295	232887	33.40%	688916	25425	15865	15865	1984681	62.40%	429	157	0	4 26	3 26	65.30%	23.28%	22.86%
	0.8	425696	414175	1994241	697210	440028	257182	464961	456419	24933	232249	33.31%	688916	25425	16391	16391	1985207	64.47%	394	132	0	3 25	9 23	65.74%	23.32%	22.89%
	0.9	425696	414175	1994241	697210	440028	257182	465476	456867	25448	231734	33.24%	688916	25425	16839	16839	1985655	66.23%	373	116	0	3 25	4 21	66.17%	23.34%	22.91%
	1	425696	414175	1994241	697210	440028	257182	465907	457252	25879	231303	33.18%	688916	25425	17224	17224	1986039	67.74%	355	103	0	3 24	ə 20	66.55%	23.36%	22.93%
	1.1	425696	414175	1994241	697210	440028	257182	466391	457572	26363	230819	33.11%	688916	25425	17544	17544	1986360	69.00%	341	94	0	3 24	4 18	66.55%	23.39%	22.94%
	1.2	425696	414175	1994241	697210	440028	257182	466783	457812	26755	230427	33.05%	688916	25425	17784	17784	1986599	69.94%	323	80	0	3 24) 17	66.47%	23.41%	22.96%
	1.3	425696	414175	1994241	697210	440028	257182	467038	457945	27010	230172	33.01%	688916	25425	17917	17917	1986733	70.47%	319	78	0	3 23	3 16	66.33%	23.42%	22.96%
	1.4	425696	414175	1994241	697210	440028	257182	467277	458078	27249	229934	32.98%	688916	25425	18050	18050	1986866	70.99%	319	78	0	3 23	8 15	66.24%	23.43%	22.97%
	1.5	425696	414175	1994241	697210	440028	257182	467496	458211	27468	229715	32.95%	688916	25425	18183	18183	1986999	71.52%	319	78	0	3 23	3 14	66.20%	23.44%	22.98%
Sans STEP		425696	414175	1994241	697210	440028		440028	440028		257182	36.89%	688916						1540						22.06%	22.06%

Combinaison	Bassin <i>Mm</i> 3	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic Couvert	E Turbine	E Totale	% Pic couvert	Nombre Pannes	Hiv	Pri E	té Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**
	0.2	425696	414175	1994241	697210	440028	257182	456911	450942	16883	240300	34.47%	688916	25425	10914	10914	1979730	42.93%	669	304	16 E	4 285	62	64.65%	22.91%	22.61%
	0.3	425696	414175	1994241	697210	440028	257182	459214	452547	19185	237997	34.14%	688916	25425	12519	12519	1981334	49.24%	584	255	4 5	0 275	47	65.25%	23.03%	22.69%
Ppv=150 MWc	0.4	425696	414175	1994241	697210	440028	257182	460503	453426	20475	236707	33.95%	688916	25425	13398	13398	1982213	52.69%	557	232	4 4	6 275	38	65.43%	23.09%	22.74%
Peol=90 MW	0.5	425696	414175	1994241	697210	440028	257182	461508	454177	21480	235702	33.81%	688916	25425	14149	14149	1982964	55.65%	538	213	4 4	6 275	32	65.87%	23.14%	22.77%
4 x 15 MW	0.6	425696	414175	1994241	697210	440028	257182	462375	454847	22347	234836	33.68%	688916	25425	14819	14819	1983634	58.28%	519	196	4 4	4 275	28	66.31%	23.19%	22.81%
	0.7	425696	414175	1994241	697210	440028	257182	463111	455428	23083	234100	33.58%	688916	25425	15400	15400	1984216	60.57%	493	177	4 4	3 269	25	66.72%	23.22%	22.84%
	0.8	425696	414175	1994241	697210	440028	257182	463674	455909	23646	233537	33.50%	688916	25425	15881	15881	1984697	62.46%	468	160	4 4	3 261	22	67.16%	23.25%	22.86%
	0.9	425696	414175	1994241	697210	440028	257182	464125	456291	24097	233085	33.43%	688916	25425	16263	16263	1985079	63.96%	449	145	4 4	3 257	20	67.49%	23.27%	22.88%
	1	425696	414175	1994241	697210	440028	257182	464613	456610	24585	232597	33.36%	688916	25425	16582	16582	1985398	65.22%	438	140	4 4	3 251	19	67.45%	23.30%	22.90%
	1.1	425696	414175	1994241	697210	440028	257182	465037	456879	25009	232174	33.30%	688916	25425	16851	16851	1985667	66.28%	422	128	4 4	3 247	17	67.38%	23.32%	22.91%
	1.2	425696	414175	1994241	697210	440028	257182	465393	457099	25365	231817	33.25%	688916	25425	17071	17071	1985887	67.14%	420	126	4 4	3 247	16	67.30%	23.34%	22.92%
	1.3	425696	414175	1994241	697210	440028	257182	465662	457248	25634	231548	33.21%	688916	25425	17220	17220	1986036	67.73%	414	120	4 4	3 247	15	67.17%	23.35%	22.93%
	1.4	425696	414175	1994241	697210	440028	257182	465900	457380	25872	231311	33.18%	688916	25425	17352	17352	1986168	68.25%	413	119	4 4	3 247	14	67.07%	23.36%	22.94%
	1.5	425696	414175	1994241	697210	440028	257182	466127	457512	26099	231084	33.14%	688916	25425	17484	17484	1986300	68.77%	408	114	4 4	3 247	13	66.99%	23.37%	22.94%
Sans STEP		425696	414175	1994241	697210	440028		440028	440028		257182	36.89%	688916						1540						22.06%	22.06%

Combinaison	Bassin Mm3	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nbre Pannes	Hiv	Pri I	Eté Au	Cyc Turbine	Rend	Part EnR*	Part EnR**
	0.2	425696	414175	1994241	858089	449663	408426	470411	462334	20747	387678	45.18%	680271	24435	12671	12671	1982477	51.86%	523	237	9	39 238	72	61.07%	23.59%	23.18%
	0.3	425696	414175	1994241	858089	449663	408426	473493	464465	23830	384596	44.82%	680271	24435	14802	14802	1984608	60.58%	418	179	0	13 226	56	62.12%	23.74%	23.29%
Ppv=250 MW c	0.4	425696	414175	1994241	858089	449663	408426	475367	465745	25703	382722	44.60%	680271	24435	16081	16081	1985887	65.81%	372	145	0	4 223	46	62.57%	23.84%	23.35%
Peol=90 MW	0.5	425696	414175	1994241	858089	449663	408426	476600	466575	26937	381489	44.46%	680271	24435	16912	16912	1986718	69.21%	333	111	0	3 219	38	62.78%	23.90%	23.40%
4 x 20 MW	0.6	425696	414175	1994241	858089	449663	408426	477413	467110	27750	380676	44.36%	680271	24435	17446	17446	1987252	71.40%	315	95	0	3 217	33	62.87%	23.94%	23.42%
	0.7	425696	414175	1994241	858089	449663	408426	477990	467504	28326	380099	44.30%	680271	24435	17840	17840	1987646	73.01%	297	85	0	3 209	29	62.98%	23.97%	23.44%
	0.8	425696	414175	1994241	858089	449663	408426	478487	467816	28824	379602	44.24%	680271	24435	18152	18152	1987958	74.29%	280	74	0	3 203	26	62.98%	23.99%	23.46%
	0.9	425696	414175	1994241	858089	449663	408426	478987	468126	29324	379102	44.18%	680271	24435	18463	18463	1988269	75.56%	258	65	0	3 190	23	62.96%	24.02%	23.47%
	1	425696	414175	1994241	858089	449663	408426	479322	468350	29659	378767	44.14%	680271	24435	18687	18687	1988493	76.48%	249	64	0	3 182	21	63.01%	24.04%	23.49%
	1.1	425696	414175	1994241	858089	449663	408426	479566	468488	29902	378523	44.11%	680271	24435	18825	18825	1988631	77.04%	245	63	0	3 179	19	62.96%	24.05%	23.49%
	1.2	425696	414175	1994241	858089	449663	408426	479788	468619	30125	378300	44.09%	680271	24435	18956	18956	1988762	77.58%	240	58	0	3 179	18	62.92%	24.06%	23.50%
	1.3	425696	414175	1994241	858089	449663	408426	480010	468755	30347	378079	44.06%	680271	24435	19091	19091	1988897	78.13%	238	56	0	3 179	17	62.91%	24.07%	23.51%
	1.4	425696	414175	1994241	858089	449663	408426	480245	468885	30582	377844	44.03%	680271	24435	19222	19222	1989028	78.67%	234	52	0	3 179	16	62.85%	24.08%	23.51%
	1.5	425696	414175	1994241	858089	449663	408426	480481	469018	30818	377608	44.01%	680271	24435	19354	19354	1989161	79.21%	233	52	0	3 178	15	62.80%	24.09%	23.52%
Sans STEP		425696	414175	1994241	858089	449663					408426	47.60%	680271	24435					1458							

Combinaison	Bassin <i>Mm</i> 3	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nbre Pannes	Hiv I	Pri Et	é Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**
	0.2	425696	414175	1994241	858089	449663	408426	469522	462158	19858	388567	45.28%	680271	24435	12495	12495	1982301	51.13%	575	257	12 63	3 243	70	62.92%	23.54%	23.17%
	0.3	425696	414175	1994241	858089	449663	408426	472313	464051	22650	385776	44.96%	680271	24435	14388	14388	1984194	58.88%	490	204	4 50	232	54	63.52%	23.68%	23.27%
Ppv=250 MW c	0.4	425696	414175	1994241	858089	449663	408426	473821	465046	24158	384268	44.78%	680271	24435	15383	15383	1985189	62.95%	457	178	4 43	3 232	43	63.68%	23.76%	23.32%
Peol=90 MW	0.5	425696	414175	1994241	858089	449663	408426	474800	465686	25136	383289	44.67%	680271	24435	16023	16023	1985829	65.57%	432	153	4 43	3 232	36	63.74%	23.81%	23.35%
4 x 15 MW	0.6	425696	414175	1994241	858089	449663	408426	475522	466170	25859	382566	44.58%	680271	24435	16507	16507	1986313	67.56%	410	137	4 43	3 226	31	63.83%	23.84%	23.38%
	0.7	425696	414175	1994241	858089	449663	408426	476107	466562	26443	381982	44.52%	680271	24435	16899	16899	1986705	69.16%	394	125	4 43	3 222	27	63.91%	23.87%	23.40%
	0.8	425696	414175	1994241	858089	449663	408426	476628	466875	26965	381461	44.45%	680271	24435	17212	17212	1987018	70.44%	374	116	4 43	3 211	24	63.83%	23.90%	23.41%
	0.9	425696	414175	1994241	858089	449663	408426	477087	467168	27423	381002	44.40%	680271	24435	17505	17505	1987311	71.64%	363	111	4 43	3 205	22	63.83%	23.92%	23.43%
	1	425696	414175	1994241	858089	449663	408426	477362	467326	27698	380727	44.37%	680271	24435	17662	17662	1987468	72.28%	359	109	4 43	3 203	20	63.77%	23.94%	23.43%
	1.1	425696	414175	1994241	858089	449663	408426	477577	467459	27914	380511	44.34%	680271	24435	17796	17796	1987602	72.83%	355	105	4 43	3 203	18	63.75%	23.95%	23.44%
	1.2	425696	414175	1994241	858089	449663	408426	477818	467593	28155	380271	44.32%	680271	24435	17929	17929	1987735	73.38%	352	102	4 43	3 203	17	63.68%	23.96%	23.45%
	1.3	425696	414175	1994241	858089	449663	408426	478076	467726	28413	380013	44.29%	680271	24435	18062	18062	1987868	73.92%	349	99	4 43	3 203	16	63.57%	23.97%	23.45%
	1.4	425696	414175	1994241	858089	449663	408426	478318	467857	28655	379770	44.26%	680271	24435	18194	18194	1988000	74.46%	349	99	4 43	3 203	15	63.49%	23.98%	23.46%
	1.5	425696	414175	1994241	858089	449663	408426	478568	467992	28904	379521	44.23%	680271	24435	18329	18329	1988135	75.01%	343	99	4 43	3 197	14	63.41%	24.00%	23.47%
Sans STEP		425696	414175	1994241	858089	449663		449663	449663		408426	47.60%	680271	24435					1458						22.55%	22.55%
Combinaison	Pompe	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic Couvert	E Turbine	E Totale	% Pic couvert	Nbre Pannes	Hiv F	Pri Eté	Aut Cyc	Reno	i Par EnR	t Part * EnR**	Anr Infl	
------------------	----------	--------	--------	---------	--------	---------------	-------------------	----------------------	--------------	---------------	-------------	--------------	-------	----------------	--------------	-----------	------------------	----------------	-------	---------	------------------	---------	--------------------	------------------------	--------------------	
	20	425696	414175	1994241	576401	419061	157340 42946	0 425846	10399	146941	25.49%	708140	27168	6785 7227	6785	1973858	24.97%	1179 1120	482 3	88 258	401 38	65.25	% 21.54 % 21.57	% 21.35% % 21.38%		
Ppv=75 MWc	24	425696	414175	1994241	576401	419061	157340 43050	7 426629	11446	145894	25.31%	708140	27168	7568	7568	1974640	27.85%	1055	440 3	33 208	374 42	66.11	% 21.57	% 21.30%	ိုင္လဲ က	
Peol=90MW	32	425696	414175	1994241	576401	419061	157340 43084	5 426885	11784	145556	25.25%	708140	27168	7824	7824	1974897	28.80%	1013	427 3	31 195	360 44	66.39	% 21.60	% 21.41%	ິ ລິ 🕨	
Bassin : 0,2 Mm3	36	425696	414175	1994241	576401	419061	157340 43110	9 427055	12048	145292	25.21%	708140	27168	7994	7994	1975067	29.42%	987	417 3	32 182	356 45	66.35	% 21.62	% 21.41%	4 5	
	40	425696	414175	1994241	576401	419061	157340 43129	7 427150	12236	145104	25.17%	708140	27168	8089	8089	1975162	29.77%	957	405 3	30 165	357 45	66.11	% 21.63	% 21.42%	· <u> </u>	
	44	425696	414175	1994241	576401	419061	157340 43148	7 427228	12426	144914	25.14%	708140	27168	8167	8167	1975240	30.06%	943	401 2	29 160	353 46	65.72	% 21.64	% 21.42%	, <u>m</u> .	
	48	425696	414175	1994241	576401	419061	15/340 43166	4 42/2//	12603	144/3/	25.11%	708140	27168	8216	8216	1975289	30.24%	929	399 2	27 150	353 46	65.19	% 21.65	% 21.43%	re G	
	52 56	425696	414175	1004241	576401	419061	157340 43183	1 42/313	12/70	144570	25.08%	708140	27168	8204	8204	1975327	30.38%	916	390 4	20 140	300 47 240 47	64.04	% 21.00 % 21.60	% 21.43% % 21.43%	in la	
	50 60	425696	414175	1994241	576401	419061	157340 43190	0 427343 0 427347	12905	144435	25.00%	708140	27168	0204 8286	8286	1975350	30.49%	800	394 4	23 139	349 47 348 47	63.60	% 21.00 % 21.67	% 21.43% % 21.43%	SS II	
	64	425696	414175	1994241	576401	419061	157340 43219	7 427342	13136	144204	25.02%	708140	27168	8281	8281	1975354	30.48%	896	394	23 131	348 47	63.04	% 21.67	% 21.40%	i Bi C	
	68	425696	414175	1994241	576401	419061	157340 43228	5 427331	13224	144116	25.00%	708140	27168	8270	8270	1975343	30.44%	888	390 2	23 127	348 47	62.54	% 21.68	% 21.43%	З Ц	
	72	425696	414175	1994241	576401	419061	157340 43239	5 427317	13334	144006	24.98%	708140	27168	8256	8256	1975329	30.39%	892	393 2	23 128	348 48	61.92	% 21.68	% 21.43%	e rs	
	76	425696	414175	1994241	576401	419061	157340 43246	8 427282	13407	143933	24.97%	708140	27168	8221	8221	1975294	30.26%	890	394 2	21 128	347 48	61.32	% 21.69	% 21.43%	^b D	
	80	425696	414175	1994241	576401	419061	157340 43257	6 427267	13515	143825	24.95%	708140	27168	8206	8206	1975279	30.20%	894	397 2	21 127	349 48	60.72	% 21.69	% 21.43%	⁷ S R	
sans STEP		425696	414175	1994241	576401	419061	41906	<u>1 419061</u>		157340	27.30%	708140	27168					1659					21.01	<mark>% 21.01</mark> %	<u> </u>	
									-																- S (G	
Combinsion	Demes			0	5-D	EnR	EnR	E-D++	EnR	EnR	%	E	E Die	Pic	E	E Tatala	% Pic	Nbre	115.1		Сус		, Par	t Part	Ϋ́, Ϋ́	
Compinaison	Pompe	SACOI	SARCO	Conso	EnR	Charge	Pompe Enk	ENK	Pompe	Perdue	Perdue	Moteurs	EPIC	Couvert	Turbine	E l'otale	couvert	Pannes	HIVE	ri Ete	Aut Turbi	ne Reno	¹ EnR	* EnR**	2.5	
	20	425696	414175	1994241	576401	419061	157340 43299	5 428384	13934	143406	24 88%	708140	27168	9323	9323	1976396	34 32%	1101	440	3 230	398 21	66 91	% 21 71	% 21 48%		
	24	425696	414175	1994241	576401	419061	157340 43394	0 429087	14879	142461	24.72%	708140	27168	10026	10026	1977099	36.90%	1024	416 2	27 201	380 23	67.38	% 21.76	% 21.52%	ំ ភ្ម. ខ្ល	
Ppv=75 MWc	28	425696	414175	1994241	576401	419061	157340 43447	8 429543	15417	141923	24.62%	708140	27168	10482	10482	1977555	38.58%	958	388 2	25 177	368 24	67.99	% 21.79	% 21.54%	, n	
Peol=90MW	32	425696	414175	1994241	576401	419061	157340 43494	5 429907	15884	141456	24.54%	708140	27168	10846	10846	1977919	39.92%	913	372 2	22 165	354 24	68.28	% 21.81	% 21.56%	° o t	
Bassin: 0,5 Mm3	36	425696	414175	1994241	576401	419061	157340 43532	6 430191	16265	141075	24.48%	708140	27168	11130	11130	1978203	40.97%	876	358	19 145	354 25	68.43	% 21.83	% 21.57%	• • • •	
	40	425696	414175	1994241	576401	419061	157340 43561	7 430406	16556	140784	24.42%	708140	27168	11345	11345	1978418	41.76%	833	337 1	16 130	350 25	68.53	% 21.84	% 21.58%	, ŭ	
	44	425696	414175	1994241	576401	419061	157340 43589	4 430579	16833	140507	24.38%	708140	27168	11518	11518	1978590	42.39%	807	330 1	13 120	344 26	68.42	% 21.86	% 21.59%	, La	
	48	425696	414175	1994241	576401	419061	157340 43612	4 430705	17063	140277	24.34%	708140	27168	11644	11644	1978717	42.86%	784	324	10 108	342 26	68.24	% 21.87	% 21.60%	, E	
	52	425696	414175	1994241	576401	419061	157340 43631	3 430813	17252	140088	24.30%	708140	27168	11752	11752	1978825	43.26%	768	317	8 103	340 26	68.12	% 21.88	% 21.60%	į	
	56	425696	414175	1994241	576401	419061	157340 43647	5 430890	17414	139926	24.28%	708140	27168	11829	11829	1978901	43.54%	753	317	5 93	338 27	67.93	% 21.89	% 21.61%	ਂ ਸੈਂ	
	60	425696	414175	1994241	576401	419061	157340 43661	4 430952	17553	139/8/	24.25%	708140	27168	11891	11891	1978964	43.77%	733	308	4 85	336 27	67.74	% 21.85 V 21.00	% 21.61%	ć ĝ	
	69	425090	414175	1004241	576401	419001	157340 43073	0 431007 7 431049	17776	139003	24.2370	700140	27169	11097	11940	1979010	43.97 %	723	300	3 75	337 27 337 37	67.44	% 21.90 % 21.90	% 21.01%		
	72	425696	414175	100/2/1	576401	419001	157340 43003	5 431040	17874	130/66	24.21%	708140	27168	12011	12011	1070083	44.12 /0	7 14	200	2 67	337 27	67 10	% 21.90	% 21.01%	, 1	
	76	425696	414175	1994241	576401	419061	157340 43701	6 431081	17955	139385	24.20%	708140	27168	12020	12011	1979092	44 24%	700	298	0 66	336 28	66.94	% 21.91	% 21.02%	N N	
	80	425696	414175	1994241	576401	419061	157340 43710	6 431076	18045	139295	24.17%	708140	27168	12015	12015	1979088	44.22%	698	298	0 63	337 28	66.58	% 21.92	% 21.62%	, H	
sans STEP		425696	414175	1994241	576401	419061	41906	1 419061		157340	27.30%	708140	27168					1659					21.01	% 21.01%	, भ	
																									- m -	
						FnR	EnR		EnR	FnR	%	F		Pic	E		% Pic	Nbre			Cve		Par	Part	<u>ب</u> ج	
Combinaison	Pompe	SACOI	SARCO	Conso	EnR	Charge	Pompe EnR*	EnR**	Pompe	Perdue	Perdue	Moteurs	E Pic	Couvert	Turbine	E Totale	couvert	Pannes	Hiv F	ri Eté	Aut Turbi	, Reno	EnR	* EnR**		
							Dispo											1050							<u> </u>	
	20	425696	414175	1994241	576401	419061	157340 43506	9 429727	15008	141332	24.52%	708140	27168	10000	10666	1977739	39.26%	1053	404	33 228	388 12	67.00	% 21.82	% 21.55%	i O	
Dove 75 MM/c	24	425090	414175	1004241	576401	419001	157340 43031	0 430900	10449	139091	24.2770	700140	27169	1047	104/	1970920	45.01%	900	220 1	27 193	372 IS 266 14	60.16	70 ZI.08	% 21.01%	/ F	
Peol=90MW	32	425696	414175	1994241	576401	419001	157340 43730	3 432565	19282	138058	23 95%	708140	27168	13504	13504	197 9020	40.54 %	824	302 2	22 146	354 15	70.03	% 21.94 % 21.94	% 21.00%	i D	
Bassin: 1 Mm3	36	425696	414175	1994241	576401	419061	157340 43900	5 433101	19944	137396	23.84%	708140	27168	14040	14040	1981113	51.68%	773	285	9 122	347 16	70.40	% 22.01	% 21.72%	d j	
	40	425696	414175	1994241	576401	419061	157340 43952	5 433501	20464	136876	23.75%	708140	27168	14440	14440	1981513	53.15%	718	258	16 103	341 16	70.56	% 22.04	% 21.74%	, Ō	
	44	425696	414175	1994241	576401	419061	157340 43990	6 433772	20845	136495	23.68%	708140	27168	14711	14711	1981783	54.15%	680	246	13 89	332 17	70.57	% 22.06	% 21.75%	i T	
	48	425696	414175	1994241	576401	419061	157340 44022	6 433976	21165	136175	23.63%	708140	27168	14915	14915	1981988	54.90%	658	238	10 76	334 17	70.47	% 22.07	% 21.76%	° ,	
	52	425696	414175	1994241	576401	419061	157340 44046	8 434147	21407	135933	23.58%	708140	27168	15086	15086	1982158	55.53%	637	235	8 66	328 17	70.47	% 22.09	% 21.77%	, Т	
	56	425696	414175	1994241	576401	419061	157340 44066	5 434281	21604	135736	23.55%	708140	27168	15220	15220	1982293	56.02%	609	225	5 52	327 17	70.45	% 22.10	% 21.78%	ŗ	
	60	425696	414175	1994241	576401	419061	157340 44080	6 434383	21745	135595	23.52%	708140	27168	15322	15322	1982395	56.40%	589	215	4 47	323 17	70.46	% 22.10	% 21.78%	ંરે	
	64	425696	414175	1994241	576401	419061	157340 44091	7 434465	21856	135484	23.51%	708140	27168	15404	15404	1982477	56.70%	577	211	3 41	322 17	70.48	% 22.11	% 21.79%	ġ	
	68	425696	414175	1994241	5/6401	419061	15/340 44099	4 434528	21933	135407	23.49%	708140	2/168	15467	15467	1982540	56.93%	564	204	3 34	323 17	70.52	% 22.11	% 21.79%	, S	
	72	425696	414175	1994241	576401	419061	15/340 4410/	9 4345/2	22018	135322	23.48%	708140	27168	15511	15511	1982584	57.09%	551	198	z 29	JZZ 18	70.45	% 22.12	% 21.79%	; 5	
	70 90	420090	4141/5	1994241	576401	419061	15/340 44112	9 434000 1 434643	22008	1352/2	23.41%	708140	27169	15552	15552	1982012	57.20%	540 520	190	0 23	J∠∠ 18	70.42	70 ZZ.12	70 ZI.79%	Ē	
sans STEP	30	425696	414175	199424	576401	419061	44121	1 404013	22100	1573/0	23.45%	708140	27168	10002	10002	1902025	J1.24%	1659	100	0 19	JZZ 10	10.21	21.01	[∞] 21.19%	<u> </u>	
							41000				2														-	

						EnP	EnR			EnP	EnP	9/-	E		Pic	E		% Pic	Nbro				Chic		Part	Part
Combinaison	Pompe	SACOI	SARCO	Conso	EnR	Charge	Pompe	EnR*	EnR**	Pompe	Perdue	Perdue	Moteurs	E Pic	Couvert	Turbine	E Totale	couvert	Pannes	Hiv	Pri	Eté Au		Rend	EnR*	EnR**
						ona go	Dispo						motouro					oouron			_					
	20	425696	414175	1994241	697210	440028	257182	452611	448126	12583	244600	35.08%	688916	25425	8098	8098	1976913	31.85%	1025	419	30	227 34	9 46	64.35%	22.70%	22.47%
	24	425696	414175	1994241	697210	440028	257182	453698	448884	13670	243512	34.93%	688916	25425	8856	8856	1977672	34.83%	953	400	25	193 33	5 50	64.78%	22.75%	22.51%
Ppv=150 MWc	28	425696	414175	1994241	697210	440028	257182	454491	449483	14463	242719	34.81%	688916	25425	9455	9455	1978271	37.19%	883	365	23	169 32	6 53	65.37%	22.79%	22.54%
Peol=90MW	32	425696	414175	1994241	697210	440028	257182	455181	449980	15153	242030	34.71%	688916	25425	9952	9952	1978767	39.14%	836	355	22	149 31	0 56	65.67%	22.82%	22.56%
Bassin : 0,2 Mm3	36	425696	414175	1994241	697210	440028	257182	455726	450343	15698	241484	34.64%	688916	25425	10315	10315	1979131	40.57%	791	344	22	124 30	1 58	65.71%	22.85%	22.58%
	40	425696	414175	1994241	697210	440028	257182	456087	450599	16059	241124	34.58%	688916	25425	10571	10571	1979387	41.58%	751	332	20	105 29	4 59	65.83%	22.87%	22.60%
	44	425696	414175	1994241	697210	440028	257182	456383	450767	16355	240828	34.54%	688916	25425	10739	10739	1979555	42.24%	733	324	20	96 29	3 60	65.67%	22.89%	22.60%
	48	425696	414175	1994241	697210	440028	257182	456550	450851	16522	240661	34.52%	688916	25425	10823	10823	1979639	42.57%	718	319	20	87 29	2 61	65.51%	22.89%	22.61%
	52	425696	414175	1994241	697210	440028	257182	456681	450894	16653	240529	34.50%	688916	25425	10866	10866	1979682	42.74%	701	315	18	79 28	9 61	65.25%	22.90%	22.61%
	56	425696	414175	1994241	697210	440028	257182	456773	450925	16745	240437	34.49%	688916	25425	10897	10897	1979712	42.86%	681	309	16	69 28	7 61	65.08%	22.90%	22.61%
	60	425696	414175	1994241	697210	440028	257182	456911	450942	16883	240300	34.47%	688916	25425	10914	10914	1979730	42.93%	669	304	16	64 28	5 62	64.65%	22.91%	22.61%
	64	425696	414175	1994241	697210	440028	257182	456994	450946	16966	240216	34.45%	688916	25425	10918	10918	1979733	42.94%	659	304	15	54 28	6 62	64.35%	22.92%	22.61%
	68	425696	414175	1994241	697210	440028	257182	457111	450940	17083	240100	34.44%	688916	25425	10912	10912	1979728	42.92%	648	298	15	48 28	7 62	63.88%	22.92%	22.61%
	72	425696	414175	1994241	697210	440028	257182	457233	450926	17205	239977	34.42%	688916	25425	10898	10898	1979713	42.86%	642	296	15	44 28	7 62	63.34%	22.93%	22.61%
	76	425696	414175	1994241	697210	440028	257182	457364	450912	17336	239846	34.40%	688916	25425	10883	10883	1979699	42.81%	637	294	13	43 28	7 62	62.78%	22.93%	22.61%
	80	425696	414175	1994241	697210	440028	257182	457524	450911	17496	239686	34.38%	688916	25425	10883	10883	1979698	42.80%	635	295	13	40 28	7 63	62.20%	22.94%	22.61%
sans STEP		425696	414175	1994241	697210	440028		440028	440028		257182	36.89%	688916	25425					1540						22.06%	22.06%
						E-D	EnR			E-D	E-D	0/	-		Die	-		9/ Die	Minus				Cure		Deut	Dout
Combinaison	Pompe	SACOI	SARCO	Conso	EnR	Chargo	Pompe	EnR*	EnR**	Pompo	Porduo	70 Porduo	Motoure	E Pic	Couvert	Turbino	E Totale	70 PIC	Pannoe	Hiv	Pri	Eté Au	It Turbino	Rend	FnP*	FnP**
						Charge	Dispo			Fompe	Ferdue	Feruue	Woteurs		Couvert	Turbine		couvert	Faimes				TUIDITE		Elik	EUK
	20	425696	414175	1994241	697210	440028	257182	454810	449669	14782	242401	34.77%	688916	25425	9641	9641	1978456	37.92%	982	383	30	227 34	2 22	65.22%	22.81%	22.55%
	24	425696	414175	1994241	697210	440028	257182	456127	450657	16099	241083	34.58%	688916	25425	10629	10629	1979444	41.80%	903	359	25	192 32	7 24	66.02%	22.87%	22.60%
Ppv=150 MWc	28	425696	414175	1994241	697210	440028	257182	457141	451409	17113	240069	34.43%	688916	25425	11380	11380	1980196	44.76%	833	324	23	166 32	0 26	66.50%	22.92%	22.64%
Peol=90MW	32	425696	414175	1994241	697210	440028	257182	458030	452045	18002	239180	34.31%	688916	25425	12017	12017	1980833	47.26%	772	301	22	145 30	4 27	66.75%	22.97%	22.67%
Bassin : 0,5 Mm3	36	425696	414175	1994241	697210	440028	257182	458813	452565	18785	238397	34.19%	688916	25425	12537	12537	1981353	49.31%	726	290	19	120 29	7 28	66.74%	23.01%	22.69%
	40	425696	414175	1994241	697210	440028	257182	459427	452971	19399	237784	34.11%	688916	25425	12943	12943	1981759	50.91%	668	264	16	100 28	8 29	66.72%	23.04%	22.71%
	44	425696	414175	1994241	697210	440028	257182	459989	453321	19961	237221	34.02%	688916	25425	13293	13293	1982109	52.28%	638	249	13	88 28	8 30	66.60%	23.07%	22.73%
	48	425696	414175	1994241	697210	440028	257182	460487	453619	20459	236723	33.95%	688916	25425	13591	13591	1982407	53.45%	610	240	10	75 28	5 31	66.43%	23.09%	22.75%
	52	425696	414175	1994241	697210	440028	257182	460884	453839	20856	236327	33.90%	688916	25425	13811	13811	1982627	54.32%	590	235	8	66 28	1 31	66.22%	23.11%	22.76%
	56	425696	414175	1994241	697210	440028	257182	461209	454029	21181	236001	33.85%	688916	25425	14001	14001	1982816	55.07%	558	224	5	52 27	7 31	66.10%	23.13%	22.77%
	60	425696	414175	1994241	697210	440028	257182	461508	454177	21480	235702	33.81%	688916	25425	14149	14149	1982964	55.65%	538	213	4	46 27	5 32	65.87%	23.14%	22.77%
	64	425696	414175	1994241	697210	440028	257182	461769	454284	21741	235441	33.77%	688916	25425	14256	14256	1983072	56.07%	526	212	3	36 27	5 32	65.57%	23.16%	22.78%
	68	425696	414175	1994241	697210	440028	257182	461978	454359	21949	235233	33.74%	688916	25425	14331	14331	1983147	56.37%	511	204	3	28 27	6 32	65.29%	23.17%	22.78%
	72	425696	414175	1994241	697210	440028	257182	462210	454422	22182	235000	33.71%	688916	25425	14393	14393	1983209	56.61%	498	198	2	22 27	6 33	64.89%	23.18%	22.79%
	76	425696	414175	1994241	697210	440028	257182	462413	454474	22385	234797	33.68%	688916	25425	14446	14446	1983261	56.82%	486	196	0	16 27	4 33	64.53%	23.19%	22.79%
	80	425696	414175	1994241	697210	440028	257182	462588	454501	22560	234622	33.65%	688916	25425	14473	14473	1983288	56.92%	475	191	0	11 27	3 33	64.15%	23.20%	22.79%
sans STEP		425696	414175	1994241	697210	440028		440028	440028		257182	36.89%	688916	25425	_		_		1540						22.06%	22.06%
						EnD	EnR			EnP	EnP	0/_	E		Pic	-		% Pic	Nbro				Chic		Part	Part
Combinaison	Pompe	SACOI	SARCO	Conso	EnR	Charge	Pompe	EnR*	EnR**	Pompe	Perdue	Perdue	Moteurs	E Pic	Couvert	Turbine	E Totale	couvert	Pannes	Hiv	Pri	Eté Au		Rend	EnR*	EnR**
						ona go	Dispo						motouro								_			_		
	20	425696	414175	1994241	697210	440028	257182	456398	450526	16370	240812	34.54%	688916	25425	10498	10498	1979314	41.29%	958	369	30	227 33	2 12	64.13%	22.89%	22.59%
	24	425696	414175	1994241	697210	440028	257182	457986	451722	17958	239224	34.31%	688916	25425	11694	11694	1980510	45.99%	863	332	25	192 31	4 13	65.12%	22.97%	22.65%
Ppv=150 MWc	28	425696	414175	1994241	697210	440028	257182	459227	452722	19199	237983	34.13%	688916	25425	12694	12694	1981510	49.93%	781	287	23	166 30	5 14	66.12%	23.03%	22.70%
Peol=90MW	32	425696	414175	1994241	697210	440028	257182	460334	453575	20306	236876	33.97%	688916	25425	13547	13547	1982362	53.28%	729	259	22	145 30	3 15	66.71%	23.08%	22.74%
Bassin : 1 Mm3	36	425696	414175	1994241	697210	440028	257182	461270	454258	21242	235940	33.84%	688916	25425	14230	14230	1983046	55.97%	670	242	19	120 28	9 16	66.99%	23.13%	22.78%
	40	425696	414175	1994241	697210	440028	257182	462028	454830	22000	235183	33.73%	688916	25425	14802	14802	1983618	58.22%	599	208	16	100 27	5 17	67.28%	23.17%	22.81%
	44	425696	414175	1994241	697210	440028	257182	462701	455306	22673	234509	33.64%	688916	25425	15278	15278	1984093	60.09%	555	187	13	88 26	7 17	67.38%	23.20%	22.83%
	48	425696	414175	1994241	697210	440028	257182	463292	455717	23264	233918	33.55%	688916	25425	15689	15689	1984505	61.71%	522	175	10	75 26	2 18	67.44%	23.23%	22.85%
	52	425696	414175	1994241	697210	440028	257182	463823	456072	23795	233387	33.47%	688916	25425	16044	16044	1984860	63.10%	496	165	8	65 25	8 18	67.42%	23.26%	22.87%
	56	425696	414175	1994241	697210	440028	257182	464253	456367	24225	232957	33.41%	688916	25425	16339	16339	1985154	64.26%	461	151	5	51 25	4 18	67.44%	23.28%	22.88%
	60	425696	414175	1994241	697210	440028	257182	464613	456610	24585	232597	33.36%	688916	25425	16582	16582	1985398	65.22%	438	140	4	43 25	1 19	67.45%	23.30%	22.90%
	64	425696	414175	1994241	697210	440028	257182	464928	456811	24900	232283	33.32%	688916	25425	16783	16783	1985599	66.01%	422	134	3	33 25	2 19	67.40%	23.31%	22.91%
	68	425696	414175	1994241	697210	440028	257182	465212	456973	25184	231998	33.28%	688916	25425	16945	16945	1985760	66.64%	402	122	3	25 25	2 19	67.28%	23.33%	22.91%
	72	425696	414175	1994241	697210	440028	257182	465494	457094	25466	231716	33.23%	688916	25425	17066	17066	1985881	67.12%	384	113	2	17 25	2 19	67.01%	23.34%	22.92%
	76	425696	414175	1994241	697210	440028	257182	465717	457189	25689	231494	33.20%	688916	25425	17161	17161	1985977	67.50%	368	110	0	9 24	9 19	66.81%	23.35%	22.93%
	80	425696	414175	1994241	697210	440028	257182	465907	457252	25879	231303	33.18%	688916	25425	17224	17224	1986039	67.74%	355	103	0	3 24	9 20	66.55%	23.36%	22.93%
CODO STED		425696	414175	1994241	697210	440028		440028	440028		257182	36.80%	688916	25425					1540						22 06%	22.06%

Combinaison	Pompe	SACOI	SARCO	Conso	EnR	EnR	EnR Pompe	EnR*	EnR**	EnR	EnR	%	Е	E Pic	Pic	Е	E Totale	% Pic	Nbre	Hiv	Pri Et	é Aut	Сус	Rend	Part	Part
						Charge	Dispo			Pompe	Perdue	Perdue	Moteurs		Couvert	Turbine		couvert	Pannes				Turbine		EnR*	EnR**
	20	425696	414175	1994241	858089	449663	408426	463242	458314	13579	394847	46.01%	680271	24435	8651	8651	1978457	35.40%	957	389	28 22	3 317	49	63.71%	23.23%	22.98%
	24	425696	414175	1994241	858089	449663	408426	464665	459258	15001	393424	45.85%	680271	24435	9595	9595	1979401	39.27%	876	362	25 19	0 299	54	63.96%	23.30%	23.03%
Ppv=250 MWc	28	425696	414175	1994241	858089	449663	408426	465813	460065	16150	392275	45.72%	680271	24435	10402	10402	1980208	42.57%	796	326	23 16	3 284	58	64.41%	23.36%	23.07%
Peol=90IVIW	32	425696	414175	1994241	858089	449663	408426	466833	460733	1/1/0	391256	45.60%	680271	24435	11070	11070	1980876	45.30%	753	320	22 14	1 270	62	64.47%	23.41%	23.10%
Bassin : 0,2 ivim3	30	425696	414175	1994241	858089	449663	408426	467600	461214	1937	200011	45.51%	680271	24435	11944	11944	1981357	47.27%	672	205	22 12	2 259	65	64.39%	23.45%	23.13%
	40	425696	414175	1994241	858089	449663	408426	468481	461307	18817	389608	45.45%	680271	24435	12054	12054	1981860	40.47%	652	295	18 96	5 252	68	64.52%	23.47%	23.14%
	48	425696	414175	1994241	858089	449663	408426	468806	461871	19142	389283	45 37%	680271	24435	122034	122034	1982014	49.96%	637	281	16 87	252	69	63 77%	23.45%	23.15%
	52	425696	414175	1994241	858089	449663	408426	469073	461985	19410	389016	45.34%	680271	24435	12322	12322	1982128	50.43%	619	276	14 79	250	69	63.48%	23.52%	23.17%
	56	425696	414175	1994241	858089	449663	408426	469303	462076	19639	388786	45.31%	680271	24435	12413	12413	1982219	50.80%	592	264	12 69	247	70	63.20%	23.53%	23.17%
	60	425696	414175	1994241	858089	449663	408426	469522	462158	19858	388567	45.28%	680271	24435	12495	12495	1982301	51.13%	575	257	12 63	243	70	62.92%	23.54%	23.17%
	64	425696	414175	1994241	858089	449663	408426	469723	462217	20060	388365	45.26%	680271	24435	12554	12554	1982360	51.38%	563	256	11 53	243	71	62.58%	23.55%	23.18%
	68	425696	414175	1994241	858089	449663	408426	469887	462252	20224	388202	45.24%	680271	24435	12589	12589	1982395	51.52%	546	247	11 47	241	71	62.25%	23.56%	23.18%
	72	425696	414175	1994241	858089	449663	408426	470088	462285	20425	388001	45.22%	680271	24435	12621	12621	1982427	51.65%	533	240	11 42	240	72	61.79%	23.57%	23.18%
	76	425696	414175	1994241	858089	449663	408426	470246	462310	20583	387843	45.20%	680271	24435	12647	12647	1982453	51.76%	528	238	9 42	239	72	61.44%	23.58%	23.18%
	80	425696	414175	1994241	858089	449663	408426	470411	462334	20747	387678	45.18%	680271	24435	12671	12671	1982477	51.86%	523	237	9 39	238	72	61.07%	23.59%	23.18%
sans STEP		425696	414175	1994241	858089	449663		449663	449663		387678	45.18%	680271	24435					1458						22.55%	22.55%
							EnP																			
Combinaison	Pompe	SACOL	SARCO	Conso	EnR	EnR	Pompe	EnR*	EnR**	EnR	EnR	%	E	E Pic	Pic	E	E Totale	% Pic	Nbre	Hiv	Pri Et	ό Διιτ	Сус	Rend	Part	Part
Combination	rompe	UNUU	OAILOO	001130	Link	Charge	Dispo	Linx	Linx	Pompe	Perdue	Perdue	Moteurs	2110	Couvert	Turbine	LIOtale	couvert	Pannes			Aut	Turbine	Rend	EnR*	EnR**
	20	425696	414175	1994241	858089	449663	408426	465367	459644	15704	392721	45.77%	680271	24435	9981	9981	1979787	40.85%	918	355	28 22	3 312	23	63.55%	23.34%	23.05%
	24	425696	414175	1994241	858089	449663	408426	466992	460775	17328	391097	45.58%	680271	24435	11112	11112	1980918	45.47%	830	324	25 19	0 291	25	64.12%	23.42%	23.11%
Ppv=250 MWc	28	425696	414175	1994241	858089	449663	408426	468305	461718	18642	389784	45.42%	680271	24435	12055	12055	1981861	49.33%	742	282	23 16	3 274	27	64.66%	23.48%	23.15%
Peol=90MW	32	425696	414175	1994241	858089	449663	408426	469487	462505	19824	388602	45.29%	680271	24435	12841	12841	1982647	52.55%	691	268	22 14	1 260	29	64.78%	23.54%	23.19%
Bassin : 0,5 Mm3	36	425696	414175	1994241	858089	449663	408426	470537	463177	20874	387552	45.16%	680271	24435	13513	13513	1983320	55.30%	637	249	19 11	8 251	30	64.74%	23.59%	23.23%
	40	425696	414175	1994241	858089	449663	408426	471430	463752	21767	386659	45.06%	680271	24435	14089	14089	1983895	57.66%	578	217	16 10	0 245	32	64.73%	23.64%	23.25%
	44	425696	414175	1994241	858089	449663	408426	472285	464241	22622	385804	44.96%	680271	24435	14577	14577	1984383	59.66%	543	201	13 88	3 241	33	64.44%	23.68%	23.28%
	48	425696	414175	1994241	858089	449663	408426	4/3023	464661	23359	385066	44.87%	680271	24435	14998	14998	1984804	61.38%	515	190	10 /5	240	34	64.21%	23.72%	23.30%
	52	425696	414175	1994241	858089	449663	408426	473698	465039	24034	384391	44.80%	680271	24435	15376	15376	1985182	62.93%	494	182	8 65	239	35	63.97%	23.75%	23.32%
	50 60	425090	414175	100/2/1	020009	449005	408420	474202	403300	24010	202200	44.75%	690271	24455	16022	16022	1005020	65 57%	439	152	A 12	237	35	62 7/%	23.76%	23.34%
	64	425696	414175	1994241	858089	449005	408420	474800	465925	25150	387871	44.07%	680271	24455	16261	16261	1986067	66 55%	452	150	4 43	232	30	63 51%	23.81%	23.35%
	68	425696	414175	1994241	858089	449663	408426	475654	466134	25991	382435	44.57%	680271	24435	16470	16470	1986277	67 41%	392	136	3 25	222	37	63 37%	23.85%	23.30%
	72	425696	414175	1994241	858089	449663	408426	476055	466329	26392	382033	44.52%	680271	24435	16666	16666	1986472	68.20%	367	125	2 17	223	38	63.15%	23.87%	23.38%
	76	425696	414175	1994241	858089	449663	408426	476338	466461	26675	381751	44.49%	680271	24435	16798	16798	1986604	68.75%	349	118	0 9	222	38	62.97%	23.89%	23.39%
	80	425696	414175	1994241	858089	449663	408426	476600	466575	26937	381489	44.46%	680271	24435	16912	16912	1986718	69.21%	333	111	0 3	219	38	62.78%	23.90%	23.40%
sans STEP		425696	414175	1994241	858089	449663		449663	449663		387678	45.18%	680271	24435					1458						22.55%	22.55%
						EnR	EnR			EnR	EnR	%	Е		Pic	Е		% Pic	Nbre				Cvc		Part	Part
Combinaison	Pompe	SACOI	SARCO	Conso	EnR	Charge	Pompe	EnR*	EnR**	Pompe	Perdue	Perdue	Moteurs	E Pic	Couvert	Turbine	E Totale	couvert	Pannes	Hiv	Pri Et	é Aut	Turbine	Rend	EnR*	EnR**
	20	425696	414175	100/2/1	858089	449663	408426	466786	460374	17123	391303	45 60%	680271	24435	10711	10711	1980517	13 83%	899	345	28 22	3 303	12	62 55%	23 41%	23.09%
	20	425696	414175	1994241	858089	449003	408420	468559	461618	18896	389529	45.00%	680271	24435	11954	11954	1981760	43.83%	809	345	20 22	n 282	12	63.26%	23.41%	23.05%
Ppy=250 MWc	28	425696	414175	1994241	858089	449663	408426	470015	462676	20352	388074	45.23%	680271	24435	13013	13013	1982819	53.26%	715	263	23 16	3 266	15	63.94%	23.57%	23.20%
Peol=90MW	32	425696	414175	1994241	858089	449663	408426	471360	463592	21697	386728	45.07%	680271	24435	13929	13929	1983735	57.00%	648	239	22 14	1 246	16	64.20%	23.64%	23.25%
Bassin : 1 Mm3	36	425696	414175	1994241	858089	449663	408426	472570	464380	22906	385519	44.93%	680271	24435	14717	14717	1984523	60.23%	589	214	19 11	8 238	17	64.25%	23.70%	23.29%
	40	425696	414175	1994241	858089	449663	408426	473584	465055	23921	384505	44.81%	680271	24435	15392	15392	1985198	62.99%	525	179	16 10	0 230	17	64.34%	23.75%	23.32%
	44	425696	414175	1994241	858089	449663	408426	474517	465629	24854	383572	44.70%	680271	24435	15966	15966	1985772	65.34%	486	162	13 88	223	18	64.24%	23.79%	23.35%
	48	425696	414175	1994241	858089	449663	408426	475359	466138	25695	382730	44.60%	680271	24435	16475	16475	1986281	67.42%	457	151	10 75	221	19	64.12%	23.84%	23.37%
	52	425696	414175	1994241	858089	449663	408426	476137	466593	26474	381952	44.51%	680271	24435	16930	16930	1986736	69.29%	429	140	8 65	216	19	63.95%	23.88%	23.40%
	56	425696	414175	1994241	858089	449663	408426	476790	466990	27127	381299	44.44%	680271	24435	17327	17327	1987133	70.91%	387	121	5 51	210	19	63.87%	23.91%	23.42%
	60	425696	414175	1994241	858089	449663	408426	477362	467326	27698	380727	44.37%	680271	24435	17662	17662	1987468	72.28%	359	109	4 43	203	20	63.77%	23.94%	23.43%
	64	425696	414175	1994241	858089	449663	408426	477903	467620	28240	380186	44.31%	680271	24435	17957	17957	1987763	73.49%	341	102	3 33	203	20	63.59%	23.96%	23.45%
	68	425696	414175	1994241	858089	449663	408426	478333	467864	28670	379756	44.26%	680271	24435	18201	18201	1988007	74.49%	313	89	3 25	196	21	63.49%	23.99%	23.46%
	72	425696	414175	1994241	858089	449663	408426	478734	468067	29071	379355	44.21%	680271	24435	18404	18404	1988210	75.32%	286	76	2 17	191	21	63.31%	24.01%	23.47%
	76	425696	414175	1994241	858089	449663	408426	479043	468226	29380	379046	44.17%	680271	24435	18562	18562	1988369	75.97%	265	70	0 9	186	21	63.18%	24.02%	23.48%
	80	425696	414175	1994241	858089	449663	408426	479322	468350	29659	378767	44.14%	680271	24435	18687	18687	1988493	/6.48%	249	64	υ 3	182	21	63.01%	24.04%	23.49%

Combinaison	Puiss Eolienne MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nombre Pannes	Hiv	Pri	Eté A	Aut Tu	Cyc ırbine	Rend	Part EnR*	Part EnR**	Influen
	30	425696	414175	1994241	312803	277512	35291	288112	285416	10600	24691	7.89%	824014	52843	7904	7904	1949302	14.96%	2275	1260	94	191 7	730	15	74.57%	14.45%	14.31%	Ce h
	60	425696	414175	1994241	464827	375373	89454	391510	386824	16137	73317	15.77%	743767	35229	11450	11450	1970462	32.50%	1281	651	22	70 5	538	22	70.96%	19.63%	19.40%	de
PV = 100 MWc	90	425696	414175	1994241	616852	429075	187777	449638	442591	20564	167213	27.11%	698864	26431	13516	13516	1981326	51.14%	575	241	0	30 3	304	26	65.73%	22.55%	22.19%	la .
Bassin = 0,6 Mm3	120	425696	414175	1994241	768876	450823	317978	472427	464217	21605	296449	38.56%	681018	22529	13394	13394	1985106	59.45%	415	124	0	28 2	263	25	62.00%	23.69%	23.28%	p c
Groupe P/T = 80 MW	150	425696	414175	1994241	920900	462947	457408	485159	475968	22212	435741	47.32%	670775	20647	13021	13021	1986614	63.06%	334	86	0	23 2	225	25	58.62%	24.33%	23.87%	11S
	180	425696	414175	1994241	1072925	472455	599425	494060	484580	21605	578865	53.95%	662739	19175	12125	12125	1987191	63.23%	311	77	0	22 2	212	23	56.12%	24.77%	24.30%	sat
	210	425696	414175	1994241	1224949	480115	743288	500913	491515	20798	724036	59.11%	656313	17942	11400	11400	1987699	63.54%	289	67	0	20 2	202	22	54.81%	25.12%	24.65%	
	240	425696	414175	1994241	1376974	486568	888349	506680	497430	20111	870294	63.20%	650891	16910	10862	10862	1988193	64.23%	275	63	0	16 1	96	21	54.01%	25.41%	24.94%	н. ^с
	270	425696	414175	1994241	1528998	492122	1034310	511795	502580	19673	1017203	66.53%	646232	16016	10458	10458	1988683	65.30%	255	57	0	14 1	84	20	53.16%	25.66%	25.20%	lst
	300	425696	414175	1994241	1681022	496962	1180969	516188	507113	19226	1164835	69.29%	642133	15275	10151	10151	1989118	66.46%	235	48	0	14 1	73	19	52.80%	25.88%	25.43%	-a_ "
sans STEP																												8`2
	30	425696	414175	1994241	312803	277512		277512	277512		35291	11.28%	824014	52843			1941398		2990							13.92%	13.92%	ې بې
	60	425696	414175	1994241	464827	375373		375373	375373		89454	19.24%	743767	35229			1959012		2199							18.82%	18.82%	lie
	90	425696	414175	1994241	616852	429075		429075	429075		187777	30.44%	698864	26431			1967810		1606							21.52%	21.52%	n
	120	425696	414175	1994241	768876	450823		450823	450823		318053	41.37%	681018	22529			1971712		1314							22.61%	22.61%	ب ق
	150	425696	4141/5	1994241	920900	462947		462947	462947		45/953	49.73%	6/0//5	20647			19/3594		1214							23.21%	23.21%	
	180	425696	4141/5	1994241	10/2925	4/2455		4/2455	4/2455		600470	55.97%	662739	191/5			19/5066		1126							23.69%	23.69%	41E
	210	425696	414175	1994241	1224949	480115		480115	480115		/44834	60.81%	656313	1/942			19/6299		1068							24.08%	24.08%	<u>c</u>
	240	425696	414175	1994241	13/69/4	480508		480508	480508		890405	04.00%	650891	16910			19//331		1008							24.40%	24.40%	5
	270	425696	414175	1994241	1528998	492122		492122	492122		10308/0	07.01%	040232	10010			19/8225		964							24.08%	24.08%	
	300	420090	414173	1994241	1081022	490902		490902	490902		1184000	70.44%	042133	192/9			19/ 8900		907							24.92%	24.92%	- 0
	Duine						ExD																					- 5
Combinaison	Folionno	84001	SVDCO	Conco	EnD	EnR	Elik	EnD*	EnD**	EnR	EnR	%	E	E Dio	Pic	E	E Totolo	% Pic	Nombre	Цім	Dei	E46 /		Сус	Dond	Part	Part	à m
Compiliaison		SACUI	JARGU	CONSO	CIIK	Charge	Diana	CIIK	CHK	Pompe	Perdue	Perdue	Moteurs		couvert	Turbine		couvert	Pannes	ΠΙν	FII		^{wut} Tu	Irbine	Reliu	EnR*	EnR**	5
	20	125606	111175	100/0/1	212002	077510	25201	280643	286080	10121	22160	7 /0%	Q2//01/	52843	0/69	0469	1050966	17 0.0%	210/	12/0	02	162 7	700	0	79 05%	1/ 52%	1/ 20%	۱
	50 60	425090	41417J	100/10/1	J 1200J	275272	90/5/	209040	200900	10205	Z0100 70150	15.00%	7/3767	35000	9400 1/170	9400 1/170	1073100	11.92 /0	21 04 1150	610	00 2	102 7	00	9 1/	73.40%	14.52 /0	10 53%	Ç
$DV = 100 MW_{\odot}$	00	420090	41417J	1004241	4040Z7 616952	120075	0 04 04 107777	J94000 //52611	115080	24527	1622/0	10.09%	608861	26/21	14179	14179	109/3190	40.2370	100	122	2	0 0)ZU)70	14	68 00%	19.19/0	19.00%	
PV - 100 WWVC Basein - 1.2 Mm3	90 120	425090	41417J	100/10/1	768876	429073	317078	400011	440900	24007	2026//	20.40 %	681018	20431	16001	16001	1007203	71 /2%	420 202	60	0	9 2 7 0	270 016	10	63 33%	22.13/0	22.30%	ţ
Groupo D/T = 20 MW	120	420090	41417J	1004241	020000	400020	157/00	4/0232	400914	20410	292044 /21170	16 92%	670775	22329	16006	16006	1000000	77.06%	292 105	36 09	0	6 1	10	15	60 12%	23.00 /0	20.41/0	, ,
	180	125606	41417J	100/12/1	320300 1072025	+02341 172155	500/125	100122	188020	20114	573/12/	+0.02 /0 53 // %	662730	10175	1557/	1557/	1000009	81 22%	162	21	0	/ 1	137	15	57 58%	24.JU /0 25.05%	24.02 /0	1
	210	125606	/1/175	100/12/1	1072020	12400	7/3282	506160	101831	2605/	718781	58 68%	656313	170/12	1/710	1/710	1001010	82 0/1%	1/2	2 i 10	0	+ 1 3 1	120	1/	56 /10%	25.00%	2/1 81%	5
	210 240	425606	414175	1004241	137607/	486568	888340	51153/	500201	20004	865440	62.85%	650801	16010	13023	13023	100125/	82 34%	133	7	0	1 1	125	13	55 77%	25.50%	2 4 .01 // 25 10%	
	2 1 0 270	425606	414175	1004241	1528008	402122	1034310	516253	505358	24000	10127/15	66 24%	646232	16016	13237	13237	1001204	82 65%	125	7	0	1 1	17	13	54 85%	25.89%	25 34%	CI D
	300	425696	414175	1994241	1681022	496962	1180969	520278	509630	23316	1160744	69.05%	642133	15275	12668	12668	1991634	82.93%	120	7	0	1 1	12	12	54.33%	26.09%	25.56%	101

Combinaison	Puiss Eolienne MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nombre Pannes	Hiv	Pri	Eté	Aut .	Cyc Furbine	Rend	Part EnR*	Part EnR**
	30	425696	414175	1994241	312803	277512	35291	287872	285444	10360	24931	7.97%	824014	52843	7932	7932	1949330	15.01%	2340	1274	102	227	737	15	76.56%	14.44%	14.31%
	60	425696	414175	1994241	464827	375373	89454	390627	386081	15253	74201	15.96%	743767	35229	10708	10708	1969719	30.39%	1426	703	27	142	554	20	70.20%	19.59%	19.36%
PV = 100 MWc	90	425696	414175	1994241	616852	429075	187777	447536	441715	18461	169316	27.45%	698864	26431	12640	12640	1980450	47.82%	720	290	16	105	309	24	68.47%	22.44%	22.15%
Bassin = 0,6 Mm3	120	425696	414175	1994241	768876	450823	317978	469562	462581	18739	299314	38.93%	681018	22529	11758	11758	1983470	52.19%	586	203	12	97	274	22	62.74%	23.55%	23.20%
Groupe P/T = 40 MW	150	425696	414175	1994241	920900	462947	457408	481957	474483	19010	438943	47.66%	670775	20647	11536	11536	1985129	55.87%	505	161	8	93	243	22	60.68%	24.17%	23.79%
	180	425696	414175	1994241	1072925	472455	599425	490729	483374	18274	582196	54.26%	662739	19175	10919	10919	1985984	56.94%	462	139	6	90	227	20	59.75%	24.61%	24.24%
	210	425696	414175	1994241	1224949	480115	743288	497728	490492	17612	727222	59.37%	656313	17942	10376	10376	1986675	57.83%	436	130	4	86	216	19	58.91%	24.96%	24.60%
	240	425696	414175	1994241	1376974	486568	888349	503515	496450	16947	873459	63.43%	650891	16910	9881	9881	1987212	58.43%	406	118	2	80	206	19	58.31%	25.25%	24.89%
	270	425696	414175	1994241	1528998	492122	1034310	508498	501563	16376	1020500	66.74%	646232	16016	9441	9441	1987666	58.95%	380	109	1	75	195	18	57.65%	25.50%	25.15%
	300	425696	414175	1994241	1681022	496962	1180969	512841	506062	15879	1168182	69.49%	642133	15275	9100	9100	1988066	59.58%	369	103	1	75	190	17	57.31%	25.72%	25.38%
sans STEP																											
	30	425696	414175	1994241	312803	277512		277512	277512		35291	11.28%	824014	52843			1941398		2990							13.92%	13.92%
	60	425696	414175	1994241	464827	375373		375373	375373		89454	19.24%	743767	35229			1959012		2199							18.82%	18.82%
	90	425696	414175	1994241	616852	429075		429075	429075		187777	30.44%	698864	26431			1967810		1606							21.52%	21.52%
	120	425696	414175	1994241	768876	450823		450823	450823		318053	41.37%	681018	22529			1971712		1314							22.61%	22.61%
	150	425696	414175	1994241	920900	462947		462947	462947		457953	49.73%	670775	20647			1973594		1214							23.21%	23.21%
	180	425696	414175	1994241	1072925	472455		472455	472455		600470	55.97%	662739	19175			1975066		1126							23.69%	23.69%
	210	425696	414175	1994241	1224949	480115		480115	480115		744834	60.81%	656313	17942			1976299		1068							24.08%	24.08%
	240	425696	414175	1994241	1376974	486568		486568	486568		890405	64.66%	650891	16910			1977331		1008							24.40%	24.40%
	270	425696	414175	1994241	1528998	492122		492122	492122		1036876	67.81%	646232	16016			1978225		964							24.68%	24.68%
	300	425696	414175	1994241	1681022	496962		496962	496962		1184060	70.44%	642133	15275			1978966		907							24.92%	24.92%

Combinaison	Puiss Eolienne MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nombre Pannes	Hiv	Pri	Eté	Aut 1	Cyc Furbine	Rend	Part EnR*	Part EnR**
	30	425696	414175	1994241	312803	277512	35291	289477	286866	11965	23326	7.46%	824014	52843	9354	9354	1950752	17.70%	2302	1267	99	216	720	9	78.18%	14.52%	14.38%
	60	425696	414175	1994241	464827	375373	89454	392816	387919	17443	72011	15.49%	743767	35229	12546	12546	1971558	35.61%	1365	685	23	111	546	12	71.93%	19.70%	19.45%
PV = 100 MWc	90	425696	414175	1994241	616852	429075	187777	450804	444181	21729	166048	26.92%	698864	26431	15106	15106	1982916	57.15%	647	224	16	102	305	14	69.52%	22.61%	22.27%
Bassin = 1,2 Mm3	120	425696	414175	1994241	768876	450823	317978	472998	464703	22175	295878	38.48%	681018	22529	13880	13880	1985592	61.61%	533	166	12	94	261	13	62.59%	23.72%	23.30%
Groupe P/T = 40 MW	150	425696	414175	1994241	920900	462947	457408	485158	476351	22210	435743	47.32%	670775	20647	13404	13404	1986998	64.92%	467	145	8	91	223	13	60.35%	24.33%	23.89%
	180	425696	414175	1994241	1072925	472455	599425	494044	485314	21589	578881	53.95%	662739	19175	12859	12859	1987925	67.06%	429	129	6	88	206	12	59.56%	24.77%	24.34%
	210	425696	414175	1994241	1224949	480115	743288	500983	492398	20868	723966	59.10%	656313	17942	12283	12283	1988582	68.46%	401	116	4	85	196	12	58.86%	25.12%	24.69%
	240	425696	414175	1994241	1376974	486568	888349	506768	498337	20200	870205	63.20%	650891	16910	11769	11769	1989100	69.60%	370	104	2	79	185	11	58.26%	25.41%	24.99%
	270	425696	414175	1994241	1528998	492122	1034310	511669	503399	19548	1017329	66.54%	646232	16016	11278	11278	1989502	70.41%	344	94	1	75	174	11	57.69%	25.66%	25.24%
	300	425696	414175	1994241	1681022	496962	1180969	515799	507753	18837	1165223	69.32%	642133	15275	10791	10791	1989758	70.65%	331	88	1	73	169	10	57.29%	25.86%	25.46%

Puiss Puiss <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>																											
30 426666 414175 194241 473601 310374 163227 329865 320442 2809 13456 28478 49468 92069 1964783 40.52% 1389 7 0.20% 10.0% 65.7% 200 MWc 90 425696 414175 1994241 77662 44569 31757 47173 46233 25.868 30.84% 633681 2419 16464 189866 66.34% 368 1819 31836 197943 5.37% 719 319<2 3 35 34 67.3% 22.86% 20.85% 23.8% 633681 24117 198424 12866 64.1175 1994241 108167 47.34% 255 61 0 3 191 29 0.33 101 29 0.33 101 25 65.85% 1388 13973 198826 72.7% 212 84.9% 0 3 162 55.0% 25.0% 64.59% 1115 118971 198934 128 19893 128 128 19877 73.5% 192 2 0 3 162 <th>binaison</th> <th>Puiss Eolienne MW</th> <th>SACOI</th> <th>SARCO</th> <th>Conso</th> <th>EnR</th> <th>EnR Charge</th> <th>EnR Pompe Dispo</th> <th>EnR*</th> <th>EnR**</th> <th>EnR Pompe</th> <th>EnR Perdue</th> <th>% Perdue</th> <th>E Moteurs</th> <th>E Pic</th> <th>Pic couvert</th> <th>E Turbine</th> <th>E Totale</th> <th>% Pic couvert</th> <th>Nombre Pannes</th> <th>Hiv I</th> <th>Pri Et</th> <th>é Aut</th> <th>Cyc Turbine</th> <th>Rend</th> <th>Part EnR*</th> <th>Part EnR**</th>	binaison	Puiss Eolienne MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nombre Pannes	Hiv I	Pri Et	é Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**
60 425696 414175 1994241 625601 397347 228255 242670 415715 27323 200931 32.12% 723847 3316 18368 18368 18368 18368 18368 63657% 719 319 2 3 325 34 67.2% 21.29% 20.85% 23.18% 63.65% 316 16367 18368 18368 16464		30	425696	414175	1994241	473601	310374	163227	338965	330444	28590	134636	28.43%	794468	49528	20069	20069	1964783	40.52%	1389	749 4	40 3	597	37	70.20%	17.00%	16.57%
200 MWc 90 425696 414175 1994241 77726 445696 44175 1994241 292650 463965 24737 42032 24737 439253 47.737 462332 24737 439253 47.75% 66584 1117 1908167 71.34% 226 61 0 3 120 24569 414175 1994241 120369 48019 24737 490232 24737 439253 47.75% 665834 11877 1908167 71.34% 226 61 0 3 120 0 3 120 20 60.3% 24.5% 24.1% 226 61.0% 3 120 120 120 0 3 120 0 3 120 20.6% 24.5%<		60	425696	414175	1994241	625601	397347	228255	424670	415715	27323	200931	32.12%	723847	33176	18368	18368	1979433	55.37%	719	319	2 3	395	34	67.23%	21.29%	20.85%
= 0.6 Mm3 120 425696 414175 1994241 120650 466569 46397 40732 23927 739253 47.25% 667584 21127 15073 1988187 71.34% 255 61 0 3 191 29 60.93% 24.59% 24.19% P/T = 80 MW 150 425696 414175 1994241 1306174 476389 604740 500317 49032 23927 58136 53.75% 65853 19135 13115 13115 198834 72.7% 212 49 0 3 162 24 55.50% 25.78% 24.37% 210 425696 414175 1994241 1387747 497494 1038207 51098 502929 21614 116850 62.2% 64561 118107 11807 11807 199018 74.2% 17 0 1 12 2 56.65% 25.5% 25.7% 25.2% 200 425696 414175 1994241 168409 104821 116831 69.02% 636751 15113 11242 19247 17<0<	200 MWc	90	425696	414175	1994241	777626	445869	331757	471737	462333	25868	305889	39.34%	683681	24819	16464	16464	1985886	66.34%	368	128	0 3	237	32	63.65%	23.65%	23.18%
P/T = 60 MW 150 425696 414175 1994241 1081674 476389 604740 500371 490362 23827 581358 53.75% 658593 19383 13973 19873 198826 72.07% 228 49 0 3 176 27 58.40% 25.09% 24.59% 180 425696 414175 1994241 128773 510855 50170 29327 871665 2.20% 645656 1110 13115 13115 13185 198334 72.77% 212 39 0 3 176 27 58.40% 25.47% 24.93% 210 425696 414175 1994241 1537747 497484 1038207 51098 509291 116331 69.02% 636751 15113 11242 11242 199018 74.35% 162 1 144 22 53.70% 26.25% 25.75% 30 425696 414175 1994241 144800 506853 131737 21.66% 63051 14426 10748 199018 74.51% 15 15.56% <th< td=""><td>= 0,6 Mm3</td><td>120</td><td>425696</td><td>414175</td><td>1994241</td><td>929650</td><td>465659</td><td>463916</td><td>490397</td><td>480732</td><td>24737</td><td>439253</td><td>47.25%</td><td>667584</td><td>21127</td><td>15073</td><td>15073</td><td>1988187</td><td>71.34%</td><td>255</td><td>61</td><td>0 3</td><td>191</td><td>29</td><td>60.93%</td><td>24.59%</td><td>24.11%</td></th<>	= 0,6 Mm3	120	425696	414175	1994241	929650	465659	463916	490397	480732	24737	439253	47.25%	667584	21127	15073	15073	1988187	71.34%	255	61	0 3	191	29	60.93%	24.59%	24.11%
180 425696 414175 1994241 1233699 484819 747835 507970 497935 23151 725728 58.83% 651528 18023 13115 1998374 72.77% 212 39 0 3 170 25 56.65% 25.47% 24.97% 210 425696 414175 1994241 1385723 491683 802494 510908 509291 21614 1018650 62.90% 648841 12418 1999118 74.12% 114 21 0 1 152 23 54.63% 25.28% 25.55% 25.75% 25	P/T = 80 MW	150	425696	414175	1994241	1081674	476389	604740	500317	490362	23927	581358	53.75%	658593	19388	13973	13973	1988826	72.07%	228	49	0 3	176	27	58.40%	25.09%	24.59%
210 426666 414175 1994241 1385723 491683 892494 514058 50410 22376 871665 62.90% 645804 16883 12418 1989776 73.55% 192 27 0 3 162 24 55.50% 25.76% 25.28% 240 425696 414175 1994241 1587774 497484 103807 51098 523414 513748 2039 166331 69.02% 63651 15113 11424 199037 74.39% 162 2 54.63% 26.03% 25.76% 300 425696 414175 1994241 184780 506863 319126 577138 517611 2027 31474 71.38% 63081 14426 10748 199037 74.39% 162 1 14 22 53.01% 25.67% 35.01% 25.76% 35.01% 25.96% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% 15.65% <t< td=""><td></td><td>180</td><td>425696</td><td>414175</td><td>1994241</td><td>1233699</td><td>484819</td><td>747835</td><td>507970</td><td>497935</td><td>23151</td><td>725728</td><td>58.83%</td><td>651528</td><td>18023</td><td>13115</td><td>13115</td><td>1989334</td><td>72.77%</td><td>212</td><td>39</td><td>0 3</td><td>170</td><td>25</td><td>56.65%</td><td>25.47%</td><td>24.97%</td></t<>		180	425696	414175	1994241	1233699	484819	747835	507970	497935	23151	725728	58.83%	651528	18023	13115	13115	1989334	72.77%	212	39	0 3	170	25	56.65%	25.47%	24.97%
240 425696 414175 1994241 1537747 497484 1038207 519098 509291 21614 1018650 66.24% 640955 15931 11807 1990118 74.12% 174 21 0 1 152 23 54.63% 26.03% 25.64% 200 425696 414175 1994241 1880772 502506 118469 523441 513748 20257 116631 60.02% 636751 15113 11242 190370 74.39% 162 17 0 1 144 22 53.01% 26.63% 25.76% 300 425696 414175 1994241 473601 310374 310374 310374 163227 34.47% 79448 49528 1944713 2760 1 13 21 53.01% 26.35% 19.92% 19		210	425696	414175	1994241	1385723	491683	892494	514058	504100	22376	871665	62.90%	645804	16883	12418	12418	1989776	73.55%	192	27	0 3	162	24	55.50%	25.78%	25.28%
270 425696 414175 1994241 1689772 502506 1184699 523441 513748 20935 116331 69.02% 636751 15113 11242 1990370 74.39% 162 17 0 1 144 22 53.70% 26.25% 25.76% 300 425696 414175 1994241 184180 506863 1331926 527138 517611 20275 131472 71.38% 633081 14426 10748 1990567 74.51% 150 12 0 1 144 22 53.70% 26.25% 25.76% steps 1 14175 1994241 14180 506863 1313926 527138 517611 20275 34.47% 794468 49528 194713 2760 5 15.56% 19.92% <		240	425696	414175	1994241	1537747	497484	1038207	519098	509291	21614	1018650	66.24%	640955	15931	11807	11807	1990118	74.12%	174	21	0 1	152	23	54.63%	26.03%	25.54%
300 425696 414175 1994241 1841880 506863 1331926 527138 517611 2027 1314742 71.38% 633081 14426 10748 1990564 74.51% 150 12 0 1 137 21 53.01% 26.43% 25.96% IS STEP 30 425696 414175 1994241 62601 397347 397347 397347 228255 36.49% 723847 3176 1961065 2038 20 2 2 22.36% 22.36% 90 425696 414175 1994241 625605 445869 445869 445869 331757 22.66% 683681 24819 1960422 1489 2 22.36% 22.36% 22.36% 22.36% 22.36% 23.35% 23.35% 23.35% 23.35% 23.35% 23.35% 23.35% 23.35% 23.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% 24.36% <td></td> <td>270</td> <td>425696</td> <td>414175</td> <td>1994241</td> <td>1689772</td> <td>502506</td> <td>1184699</td> <td>523441</td> <td>513748</td> <td>20935</td> <td>1166331</td> <td>69.02%</td> <td>636751</td> <td>15113</td> <td>11242</td> <td>11242</td> <td>1990370</td> <td>74.39%</td> <td>162</td> <td>17</td> <td>0 1</td> <td>144</td> <td>22</td> <td>53.70%</td> <td>26.25%</td> <td>25.76%</td>		270	425696	414175	1994241	1689772	502506	1184699	523441	513748	20935	1166331	69.02%	636751	15113	11242	11242	1990370	74.39%	162	17	0 1	144	22	53.70%	26.25%	25.76%
IS STEP 30 425696 414175 1994241 473601 310374 310374 163227 34.47% 794468 49528 1944713 2760 15.56% 15.56% 60 425696 414175 1994241 62501 397347 397347 397347 228255 36.49% 723847 33176 1961065 2038 19.92% 12.36% 12.36% 12.36% 12.36%<		300	425696	414175	1994241	1841880	506863	1331926	527138	517611	20275	1314742	71.38%	633081	14426	10748	10748	1990564	74.51%	150	12	0 1	137	21	53.01%	26.43%	25.96%
30425696414175199424147360131037431037431037416322734.47%79468495281944713276015.56%15.56%60425696414175199424162560139734739734739734722825536.49%723847331761961065203819.92%19.92%90425696414175199424177762644586944586944586933175742.66%683681248191969422148922.36%22.36%12042569641417519942419296504656594656594656594639149.91%667584211271973114120923.35%23.35%1504256964141751994241108167447638947638947638960528555.96%658593193881974853111423.89%23.89%180425696414175199424112369948481948481974887960.70%651528180231976218103324.31%24.31%210425696414175199424113857234916834916838940064.52%64580416883197735898024.66%24.66%21042569641417519942411537747497484497484104026467.65%64095515931197831092224.95%24.95%210425696414175199424116897725025065025061187266 <td< td=""><td>IS STEP</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	IS STEP																										
60425696414175199424162560139734739734722825536.49%723847331761961065203819.92%19.92%9042569641417519942417776244586944586944586933175742.66%683681248191969422148922.36%22.36%12042569641417519942419296504656594656594656594639149.91%667584211271973114120923.35%23.35%1504256964141751994241108167447638947638947638960528555.96%65853193881974853111423.89%23.89%180425696414175199424112369948481948481974887960.70%651528180231976218103324.31%24.31%210425696414175199424113857234916834916838940464.52%64580416883197735898024.66%24.66%24042569641417519942411537747497484497484104026467.65%64095515931197831092224.95%24.95%27042569641417519942411689772502506502506502506118726670.26%63675115113197912887925.20%25.20%2704256964141751994241184180506863506863133501772.48% <td< td=""><td></td><td>30</td><td>425696</td><td>414175</td><td>1994241</td><td>473601</td><td>310374</td><td></td><td>310374</td><td>310374</td><td></td><td>163227</td><td>34.47%</td><td>794468</td><td>49528</td><td></td><td></td><td>1944713</td><td></td><td>2760</td><td></td><td></td><td></td><td></td><td></td><td>15.56%</td><td>15.56%</td></td<>		30	425696	414175	1994241	473601	310374		310374	310374		163227	34.47%	794468	49528			1944713		2760						15.56%	15.56%
90425696414175199424177762445869445869433175742.66%683681248191969422148922.36%22.36%22.36%12042569641417519942419296504656594656594656594639149.91%667584211271973114120923.35%23.35%1504256964141751994241108167447638947638947638960528555.96%65853193881974853111423.89%23.89%180425696414175199424112369948481948481974887960.70%651528180231976218103324.31%2104256964141751994241138572349168349168349168389404064.52%64580416883197735898024.66%24.66%24042569641417519942411537747497484497484104026467.65%64095515931197831092224.95%24.95%27042569641417519942411689772502506502506502506118726670.26%63675115113197912887925.20%25.20%30042569641417519942411841880506863506863133501772.48%63308114426197981583625.42%25.42%30042569641417519942411841880506863506863133501772.48% <td></td> <td>60</td> <td>425696</td> <td>414175</td> <td>1994241</td> <td>625601</td> <td>397347</td> <td></td> <td>397347</td> <td>397347</td> <td></td> <td>228255</td> <td>36.49%</td> <td>723847</td> <td>33176</td> <td></td> <td></td> <td>1961065</td> <td></td> <td>2038</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19.92%</td> <td>19.92%</td>		60	425696	414175	1994241	625601	397347		397347	397347		228255	36.49%	723847	33176			1961065		2038						19.92%	19.92%
12042569641417519942419296504656594656594639149.91%667584211271973114120923.35%23.35%1504256964141751994241108167447638947638947638960528555.96%658593193881974853111423.89%23.89%1804256964141751994241123369948481948481974887960.70%651528180231976218103324.31%2104256964141751994241138572349168349168349168389404064.52%64580416883197735898024.66%24042569641417519942411537747497484497484104026467.65%64095515931197831092224.95%2704256964141751994241168977250250650250650250671.876670.26%63675115113197912887925.20%25.20%30042569641417519942411841880506863506863133501772.48%63308114426197981583625.42%25.42%		90	425696	414175	1994241	777626	445869		445869	445869		331757	42.66%	683681	24819			1969422		1489						22.36%	22.36%
1504256964141751994241108167447638947638947638960528555.96%658593193881974853111423.89%23.89%1804256964141751994241123369948481948481974887960.70%651528180231976218103324.31%24.31%210425696414175199424113857234916834916834916838940464.52%64580416883197735898024.66%24.66%24042569641417519942411537747497484497484104026467.65%64095515931197831092224.95%24.95%24.95%27042569641417519942411689772502506502506502506118726670.26%63675115113197912887925.20%25.20%25.20%30042569641417519942411841880506863506863133501772.48%63308114426197981583625.42%25.42%25.42%		120	425696	414175	1994241	929650	465659		465659	465659		463991	49.91%	667584	21127			1973114		1209						23.35%	23.35%
1804256964141751994241123369948481948481974887960.70%651528180231976218103324.31%24.31%2104256964141751994241138572349168349168349168389404064.52%64580416883197735898024.66%24.66%2104256964141751994241153774749748449748497484104026467.65%64095515931197831092224.95%24.95%27042569641417519942411689772502506502506502506118726670.26%63675115113197912887925.20%25.20%30042569641417519942411841880506863506863506863133501772.48%63308114426197981583625.42%25.42%		150	425696	414175	1994241	1081674	476389		476389	476389		605285	55.96%	658593	19388			1974853		1114						23.89%	23.89%
2104256964141751994241138572349168349168389404064.52%64580416883197735898024.66%24.66%24042569641417519942411537747497484497484497484104026467.65%64095515931197831092224.95%25.20%25.20%25.20%25.20%25.20%25.20%25.20%25.20%25.20%25.20%25.20%25.42%25.		180	425696	414175	1994241	1233699	484819		484819	484819		748879	60.70%	651528	18023			1976218		1033						24.31%	24.31%
24042569641417519942411537747497484497484104026467.65%64095515931197831092224.95%24.95%24.95%27042569641417519942411689772502506502506502506118726670.26%63675115113197912887925.20%25.20%25.20%30042569641417519942411841880506863506863133501772.48%63308114426197981583625.42%25.42%25.42%		,210	425696	414175	1994241	1385723	491683		491683	491683		894040	64.52%	645804	16883			1977358		980						24.66%	24.66%
27042569641417519942411689772502506502506502506118726670.26%63675115113197912887925.20%25.20%25.20%30042569641417519942411841880506863506863133501772.48%63308114426197981583625.42%25.42%25.42%25.42%		240	425696	414175	1994241	1537747	497484		497484	497484		1040264	67.65%	640955	15931			1978310		922						24.95%	24.95%
300 425696 414175 1994241 1841880 506863 506863 506863 1335017 72.48% 633081 14426 1979815 836 25.42% 25.42% 25.42%		270	425696	414175	1994241	1689772	502506		502506	502506		1187266	70.26%	636751	15113			1979128		879						25.20%	25.20%
		300	425696	414175	1994241	1841880	506863		506863	506863		1335017	72.48%	633081	14426			1979815		836						25.42%	25.42%

binaison	Puiss Eolienne MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nombre Pannes	Hiv	Pri Et	é Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**
	30	425696	414175	1994241	473601	310374	163227	341241	332336	30866	132360	27.95%	794468	49528	21961	21961	1966675	44.34%	1320	718	17 3	582	21	71.15%	17.11%	16.66%
	60	425696	414175	1994241	625601	397347	228255	427320	417864	29973	198281	31.69%	723847	33176	20518	20518	1981583	61.84%	594	214	2 3	375	19	68.45%	21.43%	20.95%
200 MWc	90	425696	414175	1994241	777626	445869	331757	474459	464196	28590	303166	38.99%	683681	24819	18327	18327	1987748	73.84%	273	70	0 3	200	17	64.10%	23.79%	23.28%
= 1,2 Mm3	120	425696	414175	1994241	929650	465659	463916	492979	482473	27320	436670	46.97%	667584	21127	16814	16814	1989928	79.59%	185	38	0 3	144	16	61.54%	24.72%	24.19%
P/T = 80 MW	150	425696	414175	1994241	1081674	476389	604740	504172	492851	27783	577502	53.39%	658593	19388	16462	16462	1991315	84.91%	137	14	0 3	120	16	59.25%	25.28%	24.71%
	180	425696	414175	1994241	1233699	484819	747835	511593	500137	26774	722105	58.53%	651528	18023	15317	15317	1991536	84.99%	132	12	0 3	117	14	57.21%	25.65%	25.08%
	210	425696	414175	1994241	1385723	491683	892494	517324	506061	25641	868399	62.67%	645804	16883	14378	14378	1991736	85.17%	122	7	0 3	112	14	56.08%	25.94%	25.38%
	240	425696	414175	1994241	1537747	497484	1038207	522137	511130	24654	1015610	66.05%	640955	15931	13646	13646	1991956	85.66%	114	7	0 1	106	13	55.35%	26.18%	25.63%
	270	425696	414175	1994241	1689772	502506	1184699	526365	515482	23859	1163406	68.85%	636751	15113	12976	12976	1992104	85.86%	109	7	0 1	101	12	54.39%	26.39%	25.85%
	300	425696	414175	1994241	1841880	506863	1331926	529954	519266	23091	1311927	71.23%	633081	14426	12403	12403	1992218	85.98%	108	7	0 1	100	12	53.71%	26.57%	26.04%

Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nombre Pannes	Hiv Pr	i Eté Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**	Influer
	30	425696	414175	1994241	504204	392119	112085	409322	404088	17202	94883	18.82%	732708	29542	11968	11968	1976667	40.51%	856	363 0	136 357	23	69.57%	20.53%	20.26%	lce
Eol = 90 MW	60	425696	414175	1994241	552576	411294	141283	429557	423861	18264	123019	22.26%	715349	27727	12567	12567	1979081	45.32%	721	301 0	74 346	24	68.81%	21.54%	21.25%	d
Bassin = 0,6 Mm3	90	425696	414175	1994241	600828	425580	175247	445561	438827	19981	155267	25.84%	702101	26689	13247	13247	1980799	49.63%	614	255 0	42 317	25	66.30%	22.34%	22.00%	e_ ;
Groupe P/T = 80 MW	120	425696	414175	1994241	649079	434456	214623	456070	448565	21613	193009	29.74%	693940	25973	14109	14109	1982377	54.32%	527	217 0	19 291	27	65.28%	22.87%	22.49%	a :
	150	425696	414175	1994241	697210	440028	257182	463487	455212	23459	233723	33.52%	688916	25425	15184	15184	1984000	59.72%	453	174 0	7 272	29	64.73%	23.24%	22.83%	in the second
	180	425696	414175	1994241	745642	443912	301730	468838	459894	24925	276805	37.12%	685426	25032	15982	15982	1985191	63.85%	398	144 0	3 251	30	64.12%	23.51%	23.06%	iss
	210	425696	414175	1994241	793834	446751	347082	473061	463454	26310	320773	40.41%	682888	24730	16702	16702	1986213	67.54%	353	117 0	3 233	32	63.48%	23.72%	23.24%	an
	240	425696	414175	1994241	842145	449023	393123	476477	466313	27454	365668	43.42%	680843	24504	17291	17291	1987028	70.56%	321	100 0	3 218	33	62.98%	23.89%	23.38%	
	270	425696	414175	1994241	890457	450840	439617	479165	468566	28325	411292	46.19%	679231	24299	17727	17727	1987668	72.95%	296	86 0	3 207	33	62.58%	24.03%	23.50%	<u>н</u> . с
	300	425696	414175	1994241	937987	452380	485606	481312	470388	28931	456675	48.69%	677866	24123	18007	18007	1988125	74.65%	278	79 0	3 196	34	62.24%	24.14%	23.59%	lst f
sans STEP																										
	30	425696	414175	1994241	504204	392119		392119	392119		112085	22.23%	732708	29542			1964699		1842					19.66%	19.66%	e e
	60	425696	414175	1994241	552576	411294		411294	411294		141283	25.57%	715349	27727			1966514		1701					20.62%	20.62%	P
	90	425696	414175	1994241	552576	411294		411294	411294		141283	25.57%	715349	27727			1966514		1626					20.62%	20.62%	<u><</u> 5
	120	425696	4141/5	1994241	649079	434456		434456	434456		214623	33.07%	693940	25973			1968268		15/8					21.79%	21.79%	C
	150	425696	4141/5	1994241	69/210	440028		440028	440028		25/182	36.89%	688916	25425			1968816		1540					22.06%	22.06%	ç
	180	425696	4141/5	1994241	745642	443912		443912	443912		301/30	40.47%	685426	25032			1969209		1508					22.26%	22.26%	7
	210	425696	414175	1994241	793834	446/51		446/51	446/51		34/082	43.72%	682888	24730			1969511		14/6					22.40%	22.40%	1
	240	425696	4141/5	1994241	842145	449023		449023	449023		393123	46.68%	680843	24504			1969/3/		1461					22.52%	22.52%	È
	270	420090	4141/5	1994241	007007	400840		400840	450840		439017	49.37%	0/9231	24299			1909942		1400					22.01%	22.01%	2
	300	420090	4141/5	1994241	93/98/	452380		452380	452380		480000	51.77%	0//000	24123			1970118		1435					22.08%	22.00%	. 8
Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nombre Pannes	Hiv Pr	i Eté Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**	
	30	425696	414175	1994241	504204	392119	112085	413434	407787	21315	90771	18.00%	732708	29542	15668	15668	1980367	53.04%	641	241 0	60 340	15	73.51%	20.73%	20.45%) n
	60	425696	414175	1994241	552576	411294	141283	433876	427692	22583	118700	21.48%	715349	27727	16399	16399	1982913	59.14%	511	172 0	13 326	16	72.62%	21.76%	21.45%	Ĩ
Eol = 90 MW	90	425696	414175	1994241	600828	425580	175247	449631	442319	24051	151196	25.16%	702101	26689	16739	16739	1984291	62.72%	446	145 0	9 292	16	69.60%	22.55%	22.18%	1

425696 414175 1994241 649079 434456 214623 459974 451846 25518 189105 29.13% 693940 25973 17389 17389 1985657 66.95%

425696 414175 1994241 697210 440028 257182 466783 457812 26755 230427 33.05% 688916 25425 17784

425696 414175 1994241 745642 443912 301730 471748 461993 27836 273894 36.73% 685426 25032 18081

425696 414175 1994241 793834 446751 347082 475715 465217 28964 318119 40.07% 682888 24730 18466

425696 414175 1994241 842145 449023 393123 478891 467866 29869 363254 43.13% 680843 24504 18843

425696 414175 1994241 890457 450840 439617 481487 470004 30648 408970 45.93% 679231 24299 19165

425696 414175 1994241 937987 452380 485606 483597 471781 31216 454390 48.44% 677866 24123 19401

Bassin = 1.2 Mm3

Groupe P/T = 80 MW

120

150

180

210

240

270

300

Atrata ģ. Ъ \mathbf{N} Groupe P/T réversible Ι

68.15% 23.07% 22.66%

66.47% 23.41% 22.96%

64.95% 23.66% 23.17%

63.75% 23.85% 23.33%

63.09% 24.01% 23.46%

62.53% 24.14% 23.57%

62.15% 24.25% 23.66%

3 263

0 3 240

0 3 213

0 3 196

60 0 3 180

54 0 3 169

49 0 3 159

16

17

17

17

18

18

18

378

323 80

288 72

267 68

243

226

211

17784 1986599 69.94%

18081 1987290 72.23%

18466 1987976 74.67%

18843 1988580 76.90%

19165 1989107 78.87%

19401 1989519 80.42%

112 0

Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nbre Pannes	Hiv	Pri Et	é Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**
	30	425696	414175	1994241	1 504204	392119	112085	403080	399400	10961	101124	20.06%	732708	29542	7281	7281	1971980	24.65%	1133	459	32 26	4 378	42	66.43%	20.21%	20.03%
Eol = 90 MW	60	425696	414175	1994241	1 552576	411294	141283	423629	419260	12336	128947	23.34%	715349	27727	7967	7967	1974480	28.73%	964	416	26 16	2 360	45	64.58%	21.24%	21.02%
Bassin = 0,6 Mm3	90	425696	414175	1994241	1 600828	425580	175247	439225	434273	13645	161602	26.90%	702101	26689	8692	8692	1976245	32.57%	844	376	23 12	0 325	49	63.70%	22.02%	21.78%
Groupe P/T = 60 MW	120	425696	414175	1994241	1 649079	434456	214623	449894	444500	15438	199185	30.69%	693940	25973	10043	10043	1978311	38.67%	729	340	22 67	300	57	65.05%	22.56%	22.29%
	150	425696	414175	1994241	1 697210	440028	257182	456911	450942	16883	240300	34.47%	688916	25425	10914	10914	1979730	42.93%	669	304	16 64	285	62	64.65%	22.91%	22.61%
	180	425696	414175	1994241	1 745642	443912	301730	461826	455349	17913	283817	38.06%	685426	25032	11436	11436	1980646	45.69%	625	283	12 63	267	65	63.84%	23.16%	22.83%
	210	425696	414175	1994241	1 793834	446751	347082	465626	458715	18874	328208	41.34%	682888	24730	11964	11964	1981475	48.38%	600	273	12 63	3 252	67	63.39%	23.35%	23.00%
	240	425696	414175	1994241	1 842145	449023	393123	468666	461403	19644	373479	44.35%	680843	24504	12381	12381	1982118	50.53%	578	260	12 63	3 243	70	63.03%	23.50%	23.14%
	270	425696	414175	1994241	1 890457	450840	439617	471087	463523	20247	419370	47.10%	679231	24299	12684	12684	1982626	52.20%	564	251	12 63	238	71	62.64%	23.62%	23.24%
	300	425696	414175	1994241	1 937987	452380	485606	473021	465273	20641	464965	49.57%	677866	24123	12893	12893	1983011	53.45%	554	245	12 63	3 234	73	62.46%	23.72%	23.33%
sans STEP																										
	30	425696	414175	1994241	1 504204	392119		392119	392119		112085	22.23%	732708	29542			1964699		1842						19.66%	19.66%
	60	425696	414175	1994241	1 552576	411294		411294	411294		141283	25.57%	715349	27727			1966514		1701						20.62%	20.62%
	90	425696	414175	1994241	1 600828	425580		425580	425580		175247	29.17%	702101	26689			1967552		1626						21.34%	21.34%
	120	425696	414175	1994241	1 649079	434456		434456	434456		214623	33.07%	693940	25973			1968268		1578						21.79%	21.79%
	150	425696	414175	1994241	1 697210	440028		440028	440028		257182	36.89%	688916	25425			1968816		1540						22.06%	22.06%
	180	425696	414175	1994241	1 745642	443912		443912	443912		301730	40.47%	685426	25032			1969209		1508						22.26%	22.26%
	210	425696	414175	1994241	1 793834	446751		446751	446751		347082	43.72%	682888	24730			1969511		1476						22.40%	22.40%
	240	425696	414175	1994241	1 842145	449023		449023	449023		393123	46.68%	680843	24504			1969737		1461						22.52%	22.52%
	270	425696	414175	1994241	1 890457	450840		450840	450840		439617	49.37%	679231	24299			1969942		1450						22.61%	22.61%
	300	425696	414175	1994241	1 937987	452380		452380	452380		485606	51.77%	677866	24123			1970118		1435						22.68%	22.68%
Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nbre Pannes	Hiv	Pri Et	é Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**
	30	425696	414175	1994241	1 504204	392119	112085	407632	403243	15513	96572	19.15%	732708	29542	11124	11124	1975822	37.65%	909	386	4 16	1 358	25	71.71%	20.44%	20.22%
	60	425696	414175	1994241	1 552576	411294	141283	428073	422926	16779	124503	22.53%	715349	27727	11632	11632	1978146	41.95%	782	331	4 10	1 346	26	69.33%	21.47%	21.21%
Eol = 90 MW	90	425696	414175	1994241	1 600828	425580	175247	443909	437851	18328	156919	26.12%	702101	26689	12271	12271	1979823	45.98%	686	291	4 75	5 316	28	66.95%	22.26%	21.96%
Bassin = 1,2 Mm3	120	425696	414175	1994241	1 649079	434456	214623	454276	447690	19820	194803	30.01%	693940	25973	13234	13234	1981501	50.95%	597	253	4 48	3 292	30	66.77%	22.78%	22.45%
Groupe P/T = 60 MW	150	425696	414175	1994241	1 697210	440028	257182	461508	454177	21480	235702	33.81%	688916	25425	14149	14149	1982964	55.65%	538	213	4 46	5 275	32	65.87%	23.14%	22.77%
	180	425696	414175	1994241	1 745642	443912	301730	466751	458724	22839	278891	37.40%	685426	25032	14811	14811	1984021	59.17%	493	190	4 43	256	33	64.85%	23.40%	23.00%
	210	425696	414175	1994241	1 793834	446751	347082	470736	462172	23985	323098	40.70%	682888	24730	15421	15421	1984931	62.35%	458	170	4 43	3 241	35	64.29%	23.60%	23.18%
	240	425696	414175	1994241	1 842145	449023	393123	473906	464912	24883	368240	43.73%	680843	24504	15889	15889	1985626	64.84%	434	155	4 43	232	36	63.86%	23.76%	23.31%

 270
 425696
 414175
 1994241
 890457
 450840
 439617
 476439
 467089
 25599
 414018
 46.50%
 679231
 24299
 16250
 1986192
 66.87%
 420
 146
 4
 43
 227
 37
 63.48%
 23.89%
 23.42%

 300
 425696
 414175
 1994241
 937987
 452380
 485606
 478460
 468889
 26080
 459527
 48.99%
 677866
 24123
 16509
 1986627
 68.44%
 404
 136
 4
 43
 221
 37
 63.30%
 23.99%
 23.51%

Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nbre Pannes	Hiv	Pri E	té Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**
	30	425696	414175	1994241	504204	392119	112085	408004	403655	15884	96201	19.08%	732708	29542	11536	11536	1976234	39.05%	968	388	16 1	94 370	22	72.62%	20.46%	20.24%
Eol = 90 MW	60	425696	414175	1994241	552576	411294	141283	428357	423205	17064	124219	22.48%	715349	27727	11911	11911	1978425	42.96%	836	331	16 1	37 352	22	69.80%	21.48%	21.22%
Bassin = 0,6 Mm3	90	425696	414175	1994241	600828	425580	175247	443667	437985	18087	157161	26.16%	702101	26689	12405	12405	1979957	46.48%	754	300	16 1	16 322	23	68.59%	22.25%	21.96%
Groupe P/T = 40 MW	120	425696	414175	1994241	649079	434456	214623	453603	447505	19147	195476	30.12%	693940	25973	13049	13049	1981317	50.24%	688	271	16 1	01 300	24	68.15%	22.75%	22.44%
	150	425696	414175	1994241	697210	440028	257182	460140	453519	20112	237070	34.00%	688916	25425	13491	13491	1982307	53.06%	648	248	16 1	00 284	25	67.08%	23.07%	22.74%
	180	425696	414175	1994241	745642	443912	301730	464869	457799	20956	280774	37.66%	685426	25032	13887	13887	1983096	55.48%	607	230	16 1	00 261	26	66.27%	23.31%	22.96%
	210	425696	414175	1994241	793834	446751	347082	468418	460941	21667	325416	40.99%	682888	24730	14190	14190	1983701	57.38%	582	216	16 1	00 250	27	65.49%	23.49%	23.11%
	240	425696	414175	1994241	842145	449023	393123	471266	463448	22243	370879	44.04%	680843	24504	14425	14425	1984162	58.87%	563	209	16 1	00 238	27	64.85%	23.63%	23.24%
	270	425696	414175	1994241	890457	450840	439617	473468	465418	22628	416989	46.83%	679231	24299	14578	14578	1984520	59.99%	547	203	16 1	00 228	27	64.42%	23.74%	23.34%
	300	425696	414175	1994241	937987	452380	485606	475202	467064	22822	462784	49.34%	677866	24123	14683	14683	1984801	60.87%	538	197	16 1	00 225	27	64.34%	23.83%	23.42%
sans STEP																										
	30	425696	414175	1994241	504204	392119		392119	392119		112085	22.23%	732708	29542			1964699		1842						19.66%	19.66%
	60	425696	414175	1994241	552576	411294		411294	411294		141283	25.57%	715349	27727			1966514		1701						20.62%	20.62%
	90	425696	414175	1994241	600828	425580		425580	425580		175247	29.17%	702101	26689			1967552		1626						21.34%	21.34%
	120	425696	414175	1994241	649079	434456		434456	434456		214623	33.07%	693940	25973			1968268		1578						21.79%	21.79%
	150	425696	414175	1994241	697210	440028		440028	440028		257182	36.89%	688916	25425			1968816		1540						22.06%	22.06%
	180	425696	414175	1994241	745642	443912		443912	443912		301730	40.47%	685426	25032			1969209		1508						22.26%	22.26%
	210	425696	414175	1994241	793834	446751		446751	446751		347082	43.72%	682888	24730			1969511		1476						22.40%	22.40%
	240	425696	414175	1994241	842145	449023		449023	449023		393123	46.68%	680843	24504			1969737		1461						22.52%	22.52%
	270	425696	414175	1994241	890457	450840		450840	450840		439617	49.37%	679231	24299			1969942		1450						22.61%	22.61%
	300	425696	414175	1994241	937987	452380		452380	452380		485606	51.77%	677866	24123			1970118		1435						22.68%	22.68%
	Duice DV					EnD	EnR			EnD	EnD	0/	-		Die	-		% Dic	Nhro				Cue		Dort	Dart
Combinaison		SACOI	SARCO	Conso	EnR	Charge	Pompe	EnR*	EnR**	Domno	Dorduo	/0 Dorduo	E Motouro	E Pic	FIL	E Turbino	E Totale		Donnoo	Hiv	Pri E	té Aut	Turbino	Rend	Fail EnD*	Fait EnD**
	IVIVV					Charge	Dispo			Pompe	Perdue	Peruue	woteurs		couvert	Furbine		couvert	Pannes				Turbine		Elik	Elik
	30	425696	414175	1994241	504204	392119	112085	412365	407287	20246	91839	18.21%	732708	29542	15168	15168	1979867	51.34%	782	283	16 1	16 367	14	74.92%	20.68%	20.42%
	60	425696	414175	1994241	552576	411294	141283	432285	426403	20992	120291	21.77%	715349	27727	15110	15110	1981623	54.49%	718	249	16 1	03 350	14	71.98%	21.68%	21.38%
Eol = 90 MW	90	425696	414175	1994241	600828	425580	175247	447187	440670	21607	153640	25.57%	702101	26689	15090	15090	1982642	56.54%	667	229	16 1	03 319	14	69.84%	22.42%	22.10%
Bassin = 1,2 Mm3	120	425696	414175	1994241	649079	434456	214623	456505	449595	22048	192575	29.67%	693940	25973	15139	15139	1983407	58.29%	619	209	16 1	00 294	14	68.66%	22.89%	22.54%
Groupe P/T = 40 MW	150	425696	414175	1994241	697210	440028	257182	462632	455174	22604	234579	33.65%	688916	25425	15146	15146	1983962	59.57%	587	196	16 1	00 275	14	67.01%	23.20%	22.82%
	180	425696	414175	1994241	745642	443912	301730	467163	459224	23251	278479	37.35%	685426	25032	15311	15311	1984521	61.17%	555	189	16 1	00 250	14	65.85%	23.43%	23.03%
	210	425696	414175	1994241	793834	446751	347082	470596	462253	23844	323238	40.72%	682888	24730	15501	15501	1985012	62.68%	530	180	16 1	00 234	14	65.01%	23.60%	23.18%

 240
 425696
 414175
 1994241
 842145
 449023
 393123
 473328
 464653
 24305
 368817
 43.79%
 680843
 24504
 15630
 1985367
 63.79%
 520
 178
 16
 100
 226
 15
 64.31%
 23.73%
 23.03%

 270
 425696
 414175
 1994241
 890457
 450840
 439617
 475436
 466550
 24597
 415021
 46.61%
 679231
 24299
 15710
 1985652
 64.65%
 508
 174
 16
 100
 218
 15
 63.87%
 23.84%
 23.99%

 300
 425696
 414175
 1994241
 937987
 452380
 485606
 477114
 468147
 24734
 460872
 49.13%
 677866
 24123
 15766
 1985884
 65.36%
 502
 173
 16
 100
 213
 15
 63.74%
 23.92%
 23.47%

Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	EnR Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nbre Pannes	Hiv	Pri E	té Au	Cyc Turbine	Rend	Part EnR*	Part EnR**
	30	425696	414175	1994241	250950	248655	2295	249778	249532	1123	1173	0.47%	854771	50944	877	877	1944174	1.72%	2995	1352	169 6	68 806	2	78.12%	12.52%	12.51%
Eol = 40 MW	60	425696	414175	1994241	299081	284738	14344	288800	287541	4063	10281	3.44%	821606	48026	2804	2804	1949019	5.84%	2516	1249	117 4	27 723	6	69.01%	14.48%	14.42%
Bassin = 0,6 Mm3	90	425696	414175	1994241	347454	309001	38452	319745	316964	10743	27709	7.97%	799061	46307	7963	7963	1955897	17.20%	2022	1115	72 1	51 684	15	74.12%	16.03%	15.89%
Groupe P/T = 80 MW	120	425696	414175	1994241	395645	323609	72036	340197	335913	16588	55448	14.01%	785711	45049	12303	12303	1961495	27.31%	1692	941	57	49 645	24	74.17%	17.06%	16.84%
	150	425696	414175	1994241	443836	333053	110783	354460	348529	21406	89377	20.14%	777168	44148	15476	15476	1965569	35.05%	1432	771	44	12 605	29	72.30%	17.77%	17.48%
	180	425696	414175	1994241	492268	339746	152522	365748	358061	26002	126521	25.70%	771179	43445	18315	18315	1969111	42.16%	1217	619	27	3 568	35	70.44%	18.34%	17.95%
	210	425696	414175	1994241	540580	344684	195897	374501	365233	29817	166079	30.72%	766780	42906	20550	20550	1971884	47.89%	1033	501	16	3 513	39	68.92%	18.78%	18.31%
	240	425696	414175	1994241	588771	348569	240202	381377	370932	32808	207394	35.22%	763305	42495	22363	22363	1974108	52.62%	919	423	14	3 479	42	68.16%	19.12%	18.60%
	270	425696	414175	1994241	637083	351744	285339	386613	375397	34869	250470	39.32%	760474	42152	23653	23653	1975742	56.11%	850	375	10	3 462	45	67.83%	19.39%	18.82%
	300	425696	414175	1994241	684608	354319	330289	390871	378974	36552	293737	42.91%	758192	41858	24655	24655	1977038	58.90%	797	345	5	3 444	46	67.45%	19.60%	19.00%
sans STEP																										
	30	425696	414175	1994241	250950	248655		248655	248655		2295	0.91%	854771	50944			1943297		3108						12.47%	12.47%
	60	425696	414175	1994241	299081	284738		284738	284738		14344	4.80%	821606	48026			1946215		2863						14.28%	14.28%
	90	425696	414175	1994241	347454	309001		309001	309001		38452	11.07%	799061	46307			1947934		2740						15.49%	15.49%
	120	425696	414175	1994241	395645	323609		323609	323609		72036	18.21%	785711	45049			1949192		2660						16.23%	16.23%
	150	425696	414175	1994241	443836	333053		333053	333053		110783	24.96%	777168	44148			1950093		2591						16.70%	16.70%
	180	425696	414175	1994241	492268	339746		339746	339746		152522	30.98%	771179	43445			1950796		2539						17.04%	17.04%
	210	425696	414175	1994241	540580	344684		344684	344684		195897	36.24%	766780	42906			1951335		2482						17.28%	17.28%
	240	425696	414175	1994241	588771	348569		348569	348569		240202	40.80%	763305	42495			1951746		2443						17.48%	17.48%
	270	425696	414175	1994241	637083	351744		351744	351744		285339	44.79%	760474	42152			1952089		2422						17.64%	17.64%
	300	425696	414175	1994241	684608	354319		354319	354319		330289	48.24%	758192	41858			1952383		2403						17.77%	17.77%
							E-D																			

Combinaison	Puiss PV MW	SACOI	SARCO	Conso	EnR	EnR Charge	Pompe Dispo	EnR*	EnR**	EnR Pompe	EnR Perdue	% Perdue	E Moteurs	E Pic	Pic couvert	E Turbine	E Totale	% Pic couvert	Nbre Pannes	Hiv	Pri	Eté Aut	Cyc Turbine	Rend	Part EnR*	Part EnR**
	30	425696	414175	1994241	250950	248655	2295	250441	250306	1786	509	0.20%	854771	50944	1652	1652	1944949	3.24%	2926	1340	169	612 805	2	92.47%	12.56%	12.55%
	60	425696	414175	1994241	299081	284738	14344	290093	288900	5355	8989	3.01%	821606	48026	4163	4163	1950378	8.67%	2433	1237	117	386 693	4	77.74%	14.55%	14.49%
Eol = 40 MW	90	425696	414175	1994241	347454	309001	38452	321334	318563	12333	26119	7.52%	799061	46307	9562	9562	1957496	20.65%	1952	1102	58	123 669	9	77.53%	16.11%	15.97%
Bassin = 1,2 Mm3	120	425696	414175	1994241	395645	323609	72036	343021	338377	19412	52624	13.30%	785711	45049	14768	14768	1963960	32.78%	1578	916	23	7 632	14	76.08%	17.20%	16.97%
Groupe P/T = 80 MW	150	425696	414175	1994241	443836	333053	110783	356963	350615	23909	86874	19.57%	777168	44148	17562	17562	1967654	39.78%	1349	737	16	3 593	17	73.45%	17.90%	17.58%
	180	425696	414175	1994241	492268	339746	152522	368061	359953	28315	124208	25.23%	771179	43445	20207	20207	1971003	46.51%	1148	583	5	3 557	19	71.36%	18.46%	18.05%
	210	425696	414175	1994241	540580	344684	195897	376841	367117	32158	163739	30.29%	766780	42906	22433	22433	1973768	52.28%	967	453	5	3 506	21	69.76%	18.90%	18.41%
	240	425696	414175	1994241	588771	348569	240202	384092	373076	35523	204679	34.76%	763305	42495	24507	24507	1976253	57.67%	825	348	5	3 469	23	68.99%	19.26%	18.71%
	270	425696	414175	1994241	637083	351744	285339	390078	378054	38334	247005	38.77%	760474	42152	26310	26310	1978399	62.42%	718	258	5	3 452	25	68.63%	19.56%	18.96%
	300	425696	414175	1994241	684608	354319	330289	394120	381507	39801	290487	42.43%	758192	41858	27188	27188	1979571	64.95%	667	227	5	3 432	26	68.31%	19.76%	19.13%