
HAL Id: tel-03601836
https://theses.hal.science/tel-03601836

Submitted on 8 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual SLAM with automatic map update in dynamic
environments
Youssef Bouaziz

To cite this version:
Youssef Bouaziz. Visual SLAM with automatic map update in dynamic environments. Computer Vi-
sion and Pattern Recognition [cs.CV]. Université Clermont Auvergne, 2021. English. �NNT : 2021UC-
FAC045�. �tel-03601836�

https://theses.hal.science/tel-03601836
https://hal.archives-ouvertes.fr

UNIVERSITY of Clermont Auvergne - Clermont Ferrand

EDSPI DOCTORAL SCHOOL

P H D T H E S I S
to obtain the title of

DOCTOR OF THE UNIVERSITY

of Clermont Auvergne University - Clermont-Ferrand, France
Speciality : Computer Science

Defended by

Youssef Bouaziz

Visual SLAM with automatic map update in
dynamic environments

Defended on

July 7, 2021

Jury :

Jury president: Rémi Boutteau - Université de Rouen Normandie
Co-supervisor: Guillaume Bresson - Institut Vedecom
Director: Michel Dhome - CNRS
Reviewer: Simon Lacroix - LAAS/CNRS
Reviewer: Michèle Rombaut - Université Grenoble Alpes
Co-supervisor: Eric Royer - Université Clermont Auvergne

Dédicaces

Du profond de mon cœur, je dédie ce travail à tous ceux qui me

sont chers,

À MA CHÈRE MÈRE

“ Que ce travail soit l’expression de ma reconnaissance pour tes

sacrifices consentis, ton soutien moral et matériel que tu n'as cessé

de prodiguer.

Tu as tout fait pour mon bonheur et ma réussite.

Que dieu te préserve en bonne santé et t’accorde une longue

vie ”

À MON CHER PÈRE

“ Je dédie cet événement marquant de ma vie à la mémoire de

mon père disparu trop tôt. J’espère que, du monde qui est sien

maintenant, il apprécie cet humble geste comme preuve de

reconnaissance de la part d’un fils qui a toujours prié pour le salut

de son âme ”

À MA CHERE FÈMME

Pour la patience et le soutien dont elle a fait preuve pendant

cette thèse, pour toute l'affection qu'elle m'a témoignée, pour ses

précieux encouragements et pour sa présence malgré la distance

qui nous sépare.

À MON FRÈRE ET MES SŒURS

“ Vous étiez toujours présents pour m’aider et m’encourager.

Sachiez que vous serez toujours dans mon cœur ”

À TOUS MES AMIS…

“ A tous mes amis qui n’ont cessé de m’encourager et de me

soutenir ”

Youssef

Remerciements

Je tiens tout d’abord à exprimer mes sincères et chaleureux

remerciements à mon directeur de thèse M. Michel Dhome et mes

encadrants M. Éric Royer et M. Guillaume Bresson pour leur

constante disponibilité, leur aide et leur encouragement ainsi que

pour m’avoir fait bénéficier amplement de leur rigueur

scientifique, de leurs critiques objectives et de leurs conseils avisés,

aussi pour leurs qualités humaines qui suscitent mon admiration et

mon profond respect.

J’exprime également ma profonde gratitude aux membres du jury

Mr. Rémi Boutteau, Mr. Simon Lacroix et Mme. Michèle Rombaut

pour avoir accepté d’examiner ce travail.

Je tiens aussi à témoigner ma profonde gratitude à tous les

enseignants qui ont participé à mon évolution scientifique durant

mon cursus scolaire et universitaire.

Ce travail a bénéficié d'une aide de l’État gérée par l'Agence

Nationale de la Recherche au titre du programme

“Investissements d’Avenir” dans le cadre du Laboratoire

d'Excellence IMobS3 (ANR-10-LABX-0016) et de l'Initiative

d'Excellence IDEX-ISITE CAP 20-25 (ANR-16-IDEX-0001)

i

Abstract:
Appearance changes are one of the most challenging problems for the visual localization
of an autonomous vehicle in outdoor environments. Data association between the current
image and the landmarks in the map can be difficult if the map was built with different
environmental conditions. The work developed in this PhD thesis is focused on life-long
navigation for autonomous shuttles in outdoor environments where the appearance is
subject to substantial changes.

In this thesis, we put forward several contributions to improve localization robustness
and accuracy in long-term scenarios. The proposed approaches present a solution to build
and use multi-session maps that incorporate sequences recorded in different conditions
(day, night, fog, snow, rain, change of season, etc.). We can categorize our proposed
approaches in two ways: keyframes retrieval and map management.

The keyframes retrieval process is carried out online during visual localization, in
which, we take advantage of a visual landmark map composed of N sequences gathered
at different times and conditions. During each localization session, we exploit information
collected in the beginning of the trajectory to compute a ranking function which will be
used in the rest of the trajectory to retrieve from the map the keyframes that maximise
the number of matched points. The retrieval depends on the geometric distance between
the pose of the keyframe and the current pose of the vehicle, and the similarity of this
keyframe with the current environmental condition. In the mapping phase, covering all
conditions by constantly adding data to the map leads to a continuous growth in the
map size which in turn deteriorates the localization speed and performance. Therefore,
we employ a map management phase which has the aim of maintaining a long-term
reliable map with a fixed size throughout the frequent runs. To efficiently reduce the
size of the map without significantly degrading the localization performance, we tend to
remove superfluous data from the map. Accordingly, we have proposed different map
management strategies by using different kind of information, such as the traversals sim-
ilarity information computed during the keyframes retrieval process or the sun’s position
information related to each traversal, to analyse the data redundancy in the map.

Throughout this report, we provide the results of our experiments which were per-
formed on real data collected with our autonomous shuttle as well as on a widely used
public dataset. By comparing our proposed keyframes retrieval technique with a simple
strategy where the keyframes are retrieved only according to their geometric distance
to the vehicle pose, we have demonstrated that our approach has significantly improved
localization performance in different challenging conditions. On several aspects related
to map management, we demonstrated that our proposed strategies have outperformed
a state-of-the-art map management approach.

We have also presented a new dataset that contains challenging environmental con-
ditions which we make available to the community in the hope that it will be useful to
other people working in this field.

Keywords:
Visual-Based Navigation, Computer Vision for Transportation, SLAM, Life-Long Navi-
gation, Map Management, Landmark Retrieval, Autonomous Shuttles

Résumé étendu en français :
Ces dernières années, le SLAM visuel (localisation et cartographie simultanées) s’est
avéré être un algorithme très puissant pour la localisation en temps réel de systèmes
robotiques dans différentes applications. Il permet d’extraire des images d’une ou
plusieurs des caméras embarquées du robot pour calculer simultanément la trajec-
toire des caméras (ce qui revient à calculer la trajectoire du robot) et la structure
de la scène dans laquelle il opère.

Pour garantir le meilleur compromis vitesse/précision, la majorité des algo-
rithmes de SLAM visuel sont basés sur une représentation éparse de l’environnement.
En faisant correspondre des primitives visuelles (amers) sur des images successives,
il est possible d’estimer la position 3D de ces primitives ainsi que les poses (posi-
tion, orientation) des caméras. De nombreux progrès, tant dans la vitesse que dans
la qualité de la trajectoire et de la reconstruction 3D, ont été réalisés ces dernières
années. Cependant, la localisation par SLAM visuel présente encore plusieurs défis,
nous en présentons quelques-uns dans la Figure I.

(a) Changement de saison ([Bai 2018]). (b) Changement d’éclairage.

(c) Changement d’angle du point de vue.

Figure I – Exemples de défis pour le SLAM visuel.

Les changements d’apparence restent un défi crucial pour le SLAM visuel.
Comme illustré dans la Figure I, les informations visuelles affectées par les change-
ments saisonniers, les changements d’éclairage ou les changements de point de vue
peuvent entraîner des difficultés majeures lors de l’association des données entre
l’image actuelle et les amers qui se trouvent dans la carte. Par conséquent, la re-
localisation dans des zones précédemment cartographiées peut être une tâche difficile
car l’apparence de l’environnement change sans cesse dans les scénarios extérieurs
et un tel phénomène peut entraîner une localisation inexacte ou erronée. Dans cer-
taines applications comme les voitures autonomes, la partie d’estimation de la pose
du processus de SLAM est très délicate et doit être prise avec beaucoup de prudence
car même une petite erreur dans l’estimation de la pose du véhicule peut entraîner

iv

un accident dangereux. Pour assurer une navigation sécurisée et sûre à long terme
dans des environnements dynamiques, les véhicules autonomes doivent faire face à
un tel défi.

L’association des données entre l’image actuelle et les amers dans la carte peut
être difficile si la carte a été construite dans des conditions environnementales dif-
férentes. Les travaux développés dans cette thèse de doctorat se concentrent sur
la localisation à long terme pour les navettes autonomes dans des environnements
extérieurs où l’apparence est soumise à des changements substantiels.

Dans nos travaux, nous proposons plusieurs contributions pour améliorer la
robustesse et la précision de la localisation dans des scénarios à long terme. Les
approches proposées présentent une solution pour construire et utiliser des cartes
multi-sessions qui intègrent des séquences enregistrées dans différentes conditions
(jour, nuit, brouillard, neige, pluie, changement de saison, etc.). Nous pouvons ca-
tégoriser nos approches proposées en deux volets : la récupération des images clés
et la gestion des cartes.

La récupération des images clés est effectuée lors de la localisation visuelle, nous
exploitons une fonction de classement pour extraire les informations les plus perti-
nentes de la carte. Cette fonction de classement est conçue pour prendre en compte
la pose du véhicule et les conditions environnementales actuelles. Dans la phase de
cartographie, couvrir toutes les conditions en ajoutant constamment des données
à la carte conduit à une croissance continue de la taille de la carte qui à son tour
détériore la vitesse et les performances de localisation. C’est pour cette raison que
nous avons conçu nos stratégies de gestion de la carte qui visent à limiter la taille
de la carte tout en la gardant aussi diversifiée que possible.

L’estimation de la probabilité d’appariement entre l’image actuelle et une image
clé de la carte est une tâche difficile car, comme l’illustre la Figure II, ces deux
images peuvent avoir été enregistrées à différents points de vue, dans des conditions
environnementales différentes, ou même les deux à la fois.

En conséquence, la première contribution de cette thèse consiste en une solution
de récupération d’images clés face au problème posé dans la Figure II. Nous propo-
sons une approche de localisation capable de tirer parti d’une carte visuelle composée
de N séquences rassemblées à des moments différents. Cette approche peut être ap-
pliquée en particulier aux navettes autonomes car l’utilisation de N séquences ayant
la même trajectoire pour construire une carte convient à un tel usage. En général,
les algorithmes de SLAM récupèrent les images clés utilisées pour la localisation en
fonction de leur distance géométrique par rapport à la pose du véhicule. Cependant,
cette technique a montré une faiblesse dans la localisation à long terme car elle ne
prend pas en compte les changements de l’environnement. L’exemple présenté dans
la Figure III illustre un cas de mauvaise localisation où le SLAM a récupéré l’image
clé la plus proche (encerclée) de la pose estimée du véhicule (violet). Un tel cas peut
conduire à un échec de localisation car l’image clé récupérée et l’image actuelle ne
partagent pas les mêmes conditions environnementales (correspondance entre jour
et nuit).

Cela nous incite à développer une nouvelle stratégie de récupération d’images

v

(a) Points de vue différents. (b) Conditions environne-
mentales différentes.

(c) Points de vue et condi-
tions environnementales
différents.

Figure II – Un exemple de différents cas de mise en correspondance de l’image actuelle
avec une image clé dans la carte. Dans (a), l’image actuelle (en haut) et l’image clé (en
bas) ont des points de vue différents. Dans (b), les deux images ont un même point de vue
mais des conditions environnementales différentes. Dans (c), les deux images ont à la fois
un point de vue différent et des conditions environnementales différentes.

Figure III – Un exemple d’un cas de mauvaise localisation où le SLAM a récupéré l’image
clé la plus proche qui a été enregistrée dans des conditions environnementales différentes.

clés afin d’adapter notre algorithme SLAM aux opérations à long terme. Au cours
du processus de localisation, nous visons à maximiser le nombre de points appa-
riés en récupérant des expériences pertinentes à partir d’une carte qui intègre de
nombreuses conditions environnementales comme illustré dans la Figure IV. Notre

vi

approche proposée tire parti des statistiques recueillies dans les premiers mètres
d’une traversée pour calculer une fonction de classement probabiliste. Cette fonc-
tion est utilisée dans le reste de la traversée pour attribuer des scores de pertinence
à un ensemble d’images clés dans la carte. Ces scores sont calculés par la fonction
de classement en tenant compte des conditions environnementales de chaque image
clé et de sa distance géométrique à la pose estimée du véhicule.

Figure IV – Les scores attribués aux images clés par la fonction de classement. Celle qui
a le score le plus élevé (encerclée) sera récupérée et utilisé pour la localisation.

Dans la phase de cartographie, la création d’une carte qui couvre toutes les
conditions environnementales en ajoutant sans cesse des amers à cette carte peut
aider à améliorer les performances de localisation dans des conditions changeantes.
Cependant, cela conduit également à une croissance incessante de la taille de la carte,
qui est relative au nombre de traversées effectuées par la navette (expériences). Cela
signifie que la localisation après plusieurs traversées nécessite une quantité immense
de mémoire pour stocker la carte, ainsi qu’un processeur haut de gamme pour trouver
des correspondances entre les points de l’image actuelle et les amers qui se trouvent
dans une énorme base de données. En d’autres termes, la localisation en temps réel
à long terme sera impossible après un certain nombre de sessions de localisation. Par
conséquent, la deuxième contribution de cette thèse consiste en plusieurs stratégies
de mise à jour des cartes qui ont été développées pour éviter de tels cas et garantir
une localisation fiable en temps réel à long terme :

1) Nous avons exploité des scores de ressemblance entre les traversées calculées
par l’approche de récupération des images clés pour déterminer quelle traversée
a la plus grande similitude avec les autres pour la supprimer éventuellement.

2) Nous avons exploité les informations relatives à la position du soleil pour
calculer la corrélation des traversées afin de produire une carte avec un nombre
minimum de traversées ayant des conditions environnementales diverses.

3) Nous avons proposé une amélioration pour le travail de Mühlfellner et al.
[Mühlfellner 2016]. Dans leur travail, Mühlfellner et al. attribuent des scores

vii

aux amers en fonction du nombre de sessions de localisation différentes dans
lesquelles ils apparaissent, ensuite, ils suppriment les amers ayant les scores les
plus bas dans un processus exécuté hors ligne. De même, nous avons proposé
de supprimer les amers ayant les scores les plus bas dans la carte tout en
conservant un nombre uniforme d’amers à chaque traversée.

Toutes ces stratégies ont en commun leur capacité à produire une carte compres-
sée et fiable qui assure une localisation à long terme sans, ou avec très peu d’erreurs
de localisation.

Dans la Figure V, nous présentons un diagramme expliquant le mécanisme de
fonctionnement de la récupération des images clés et le processus de gestion de la
carte ainsi que la connexion entre eux. Notre système utilise une carte multi-session
qui contient plusieurs traversées enregistrées dans différentes conditions environne-
mentales. Chaque fois qu’une nouvelle image arrive, l’algorithme de récupération des
images clés doit extraire des données cartographiques pertinentes pour la condition
environnementale actuelle. Ces données récupérées sont ensuite utilisées pour cal-
culer la pose du véhicule. Après la fin de la session de localisation, notre algorithme
de gestion de carte sera exécuté hors ligne pour mettre à jour la carte en ajoutant
de nouvelles données ou en supprimant les informations superflues.

Récupération des images clés

Localisation en
temps réel

données les plus
pertinentes

Fin de
trajectoire ?

Pose du véhicule
pour la conduite

autonome

non

Gestion de carte hors ligne

Ajouter ou supprimer une
traversée

oui

Nouvelle
image

Carte multi-session

tra
ve

rs
ée

 1

tra
ve

rs
ée

 2

tra
ve

rs
ée

 3

tra
ve

rs
ée

 N

Figure V – Un schéma représentant le mécanisme de fonctionnement de la récupération
des images clés et de la gestion de la carte proposées dans ce manuscrit.

La figure montre deux parties principales qui correspondent aux deux contribu-
tions fournies dans cette thèse. La première partie, qui correspond à la question de la
recherche des amers pertinents pour la localisation, a été abordée dans de nombreux
travaux récents. Sutherland and Thompson [Sutherland 1993] ont été parmi les pre-
miers chercheurs à étudier ce problème. Ils ont démontré l’existence d’une forte
dépendance entre l’erreur de localisation et la configuration des amers sélectionnés.

viii

À cet égard, des efforts intensifs ont été consacrés à la sélection de l’ensemble opti-
mal d’amers afin de réduire les erreurs de localisation. Par exemple, Mühlfellner et
al. [Mühlfellner 2016] ont proposé une approche de sélection d’amers dans laquelle
un score est attribué à chaque amer en fonction du nombre de fois où il a été observé.
Les amers avec des scores élevés sont considérés comme utiles pour la localisation
et par conséquent récupérés lors de la phase de localisation.

Dans le même esprit, Bürki et al. [Bürki 2016] ont développé un système de
SLAM distribué avec une carte décentralisée sur le cloud pour des scénarios coopé-
ratifs multi-véhicules. Leurs travaux se sont concentrés sur le développement d’une
solution en temps réel pour les environnements à bande passante limitée. Ils ont
proposé une approche qui réduit le flux de données à distance en extrayant de la
carte distribuée uniquement les informations pertinentes pour la localisation dans
les conditions environnementales actuelles. L’approche proposée consiste, dans un
premier temps, à créer une sorte de graphe qui représente la co-observabilité des
amers dans toutes les traversées passés. Ensuite, ils utilisent une fonction de clas-
sement dont le but est de trouver la probabilité qu’un amer potentiel soit observé
dans les conditions environnementales actuelles.

Contrairement à ces travaux qui ont abordé ce problème en sélectionnant un
ensemble d’amers sur la carte, nous abordons la récupération d’une manière basée
sur les images clés. Cela signifie que nous n’envisageons pas de récupérer les amers
directement à partir de la carte, mais plutôt que nous recherchons les images clés
les plus pertinentes pour la localisation et nous récupérons leurs amers associés.
En fait, cette formulation d’images clés du problème de récupération des amers
nous a permis de concevoir une fonction de classement probabiliste qui prend en
compte non seulement les conditions environnementales des images clés (et leurs
amers associés), mais aussi leurs distances géométriques par rapport à la pose du
véhicule. Cela signifie également qu’au lieu de calculer un score pour chaque amer
séparément, ce qui est coûteux et inutile puisque tous les amers associés à une même
image clé partagent la même condition environnementale, la fonction de classement
proposée calcule et attribue un score à chaque image clé, ce qui permet de minimiser
le temps de calcul.

Afin de récupérer uniquement les informations pertinentes pour la localisation,
nous avons conçu une fonction de classement qui est partiellement construite avec
des données hors ligne. Le rôle de cette fonction est de récupérer à partir de la carte
les images clés les plus pertinentes en tenant compte de deux facteurs principaux :

— La distance géométrique entre l’estimation de la pose du véhicule et la pose
associée à l’image clé Kj qui est utilisée pour la localisation.

— Les conditions environnementales de l’image clé Kj ainsi que les conditions
environnementales actuelles (éclairage, météo, saison,. . .).

La fonction de classement est calculée pendant les premiers mètres de la trajec-
toire. Après cela, elle sera utilisée pour estimer la probabilité qu’un point pt extrait
de l’image courante Ii trouve une correspondance dans l’image clé Kj extraite de la

ix

carte. La fonction de classement est décrite par l’Équation (1) :

P (pt ∈ Ii,Kj) = fdist(Ii,Kj) · fc(Ii,Kj) (1)

fdist(Ii,Kj) est une fonction qui définit un score pour faire correspondre l’image
courante Ii avec l’image clé Kj récupérée de la carte en supposant que les deux ont
été prises dans des conditions similaires (météo, éclairage,. . .). Cela implique que le
calcul de ce score ne dépend que de la distance géométrique entre les deux images.
En d’autres termes, fdist est défini comme la fonction qui calcule le pourcentage
d’inliers en fonction de la distance longitudinale, latérale et angulaire entre les poses
de deux images. En revanche, fc(Ii,Kj) suppose que les poses des deux images
sont identiques ; il ne prend donc en compte que les changements d’apparence pour
attribuer le score de correspondance entre les deux images Ii et Kj .

Le calcul de P (pt ∈ Ii,Kj) ainsi que le calcul/mise à jour de la fonction fc
sont effectués en ligne lors de la re-localisation. Le terme re-localisation réfère au
processus de localisation du véhicule dans un endroit précédemment cartographié.

Dans la Figure VI, nous présentons un diagramme qui explique le processus de
re-localisation à l’aide de la fonction de classement proposée. Cette fonction de clas-
sement (P (pt ∈ Ii,Kj)) prend en entrée l’image courante (et sa pose prédite selon
les données d’odométrie) pour récupérer de la carte multi-session l’image clé (et ses
amers associés) qui a le score de similarité le plus élevé. Une nouvelle pose sera cal-
culée en faisant correspondre l’image actuelle et l’image clé récupérée. Pour assurer
la cohérence de fc avec les changements des conditions environnementales, elle sera
mise à jour tout au long de la trajectoire. Cette tâche de mise à jour est effectuée
en parallèle avec la récupération de l’image clé la plus pertinente pour la localisa-
tion (selon la fonction de classement) en récupérant de la carte une autre image clé
(choisie, chaque fois, au sein d’une traversée différente de manière circulaire) et en
l’utilisant pour mettre à jour fc.

tra
ve

rs
ée

 1

tra
ve

rs
ée

 2

tra
ve

rs
ée

 3

tra
ve

rs
ée

 N

Carte multi-session

Mise en
correspondance +

PnPPose actuelle

Condition
environnementale

actuelle
(abstraite dans fc)

État du véhicule

Récupérer une autre
image clé pour vérifier
les changements des

conditions
environnementales

Mise en
correspondance +

PnP
Nouvelle condition
environnementale

Récupérer l'image clé
et les amers les plus

pertinents Fonction de
classement

fdist fc

Données
odométriques

données

Nouvelle
image

sensorielles X Y

X Y

X Y

: exécuter Y après avoir terminé X

: Y utilise les données de X

: mettre à jour Y en utilisant les données de X

X
Y
Z

: exécuter Y et Z en parallèle

Nouvelle pose de
véhicule

Figure VI – Un diagramme représentant le mécanisme de fonctionnement de la partie de
re-localisation.

Comme indiqué dans l’Équation (1) ainsi que dans la Figure VI, la fonction de
classement est constituée de deux fonctions fdist et fc. La fonction fdist(Ii,Kj) a été
calculée hors ligne avec l’utilisation de certaines données collectées spécifiquement à

x

cet effet. Elle modélise le mouvement de la caméra entre la pose d’acquisition de Ii
et de Kj par rapport aux déplacements longitudinaux, latéraux et angulaires (angle
de lacet). La fonction fc(Ii,Kj) ne dépend pas de l’emplacement d’acquisition des
images Ii et Kj , mais ne prend en compte que la condition de l’environnement pour
estimer le score d’appariement entre Ii et Kj . En conséquence, nous en déduisons
que fc est dépendante de la traversée, cela signifie que la valeur de fc entre Ii et toute
image appartenant à la même traversée que Kj aura la même valeur que fc(Ii,Kj)

(dans le cas normal où il n’y a pas de changement brusque dans les conditions
météorologiques ou dans l’éclairage).

Par conséquent, il est plus approprié de concevoir la fonction fc comme une
matrice Fc de deux dimensions et qui a la forme de [N × N] (où N est le nombre
de traversées existant dans la carte). La matrice Fc peut être formalisée comme
suit : fc(Ii,Kj) = Fc(trav(Ii), trav(Kj)), où la fonction trav(X) se réfère à l’indice
de la traversée à laquelle l’image X appartient (puisque Ii est l’image courante,
trav(Ii) fait référence à la traversée courante). La valeur de Fc(trav(Ii), trav(Kj))

correspond au score de similitude (qui dépend des conditions environnementales)
entre la traversée qui contient Ii et la traversée qui contient Kj .

Afin de définir et de calculer la matrice Fc, nous utilisons notre carte globale (qui
est composée de N séquences ayant des conditions environnementales différentes)
comme carte de référence pour effectuer une re-localisation. Lors de cette phase de
re-localisation, nous consacrons le début de la trajectoire au calcul de la fonction.
D’après l’Équation (1), nous avons :

Fc(trav(Ii), trav(Kj)) =
P (pt ∈ Ii,Kj)

fdist(Ii,Kj)
(2)

Notre idée consiste à faire apprendre la matrice Fc au début de la trajectoire
selon l’Équation (2). Puisque la fonction de classement n’étant pas encore définie,
nous avons mesuré le taux d’inlier en appariant l’image Ii avec l’image clé Kj et
l’avons utilisée pour remplacer P (pt ∈ Ii,Kj) dans l’Équation (2).

Après avoir calculé la matrice Fc au début, le but dans le reste de la trajectoire
est de trouver l’image clé K∗ qui maximise la probabilité d’appariement définie dans
l’Équation (3) :

K∗ = argmax
K

P (pt ∈ Ii,K) (3)

K∗ correspond à l’image clé encerclée dans l’exemple montré dans la Figure IV. La
recherche de K∗ dans toute la carte est coûteuse. Par conséquent, nous choisissons
de chaque traversée l’image clé K l, l ∈ [1, N] qui a la distance géométrique minimale
par rapport à l’estimation de la pose actuelle du véhicule. Pour toutes les images
clés K l, l ∈ [1, N], nous calculons la probabilité d’appariement avec l’Équation (1)
pour récupérer celle qui a le score le plus élevé (K∗) avec l’Équation (3). K∗ sera
utilisé pour la mise en correspondance avec l’image actuelle et pour le calcul et
l’optimisation de la pose.

xi

Il est intéressant de mettre à jour les valeurs de la matrice Fc régulièrement
après les premiers mètres de la trajectoire. En effet, cette mise à jour peut être utile
lorsque l’état de l’environnement change entre le début et la fin de la session de
re-localisation. Ce processus de mise à jour fonctionne en parallèle avec le processus
de récupération des images clés. Pour cette raison, nous visons à éviter de ralentir
la re-localisation en mettant à jour Fc pour une seule traversée à chaque itération.

Nous avons évalué notre approche sur le jeu de données d’Oxford [Maddern 2017]
ainsi que sur notre propre jeu de données qui a été enregistré avec notre véhicule
expérimental et qui contient, pour le moment, 127 séquences collectées sur deux
ans dans lesquelles le véhicule a suivi le même chemin autour d’un parking avec
de légères déviations latérales et angulaires. Ce jeu de données contient diverses
conditions environnementales dues aux changements de luminance, de l’heure de la
journée, de saisons et de véhicules stationnés, et chaque séquence mesure environ
200 m de longueur. Une vue aérienne du parking où nous avons enregistré notre jeu
de données est présentée dans la Figure VII. Plus de détails sur le jeu de données
IPLT sont fournis dans l’Annexe A.

Figure VII – Une vue aérienne du parking où nous avons enregistré le jeu de données IPLT.
Les courbes colorées représentent un exemple du chemin parcouru lors de l’enregistrement
de 6 séquences différentes.

Pour le jeu de données IPLT, nous avons sélectionné 103 séquences ayant dif-
férentes heures de la journée, avec des conditions météorologiques diverses (pluie,
soleil, couvert) et quelques déviations latérales et angulaires, 10 d’entre elles ont
été utilisées pour la construction de la carte globale d’IPLT (séquences de cartogra-
phie). On peut voir sur la Figure VIII un aperçu des images prises de séquences de
cartographie.

Pour le jeu de données d’Oxford, nous avons identifié un segment d’environ
1,6 km de long dans lequel le véhicule a suivi le même itinéraire et la même direction
dans 20 séquences différentes. Huit d’entre elles ont été utilisées pour la construction
de la carte globale d’Oxford. La Figure IX illustre un aperçu des images prises à
partir des séquences de cartographie d’Oxford.

xii

2020-01-15-11-15-33 2019-10-02-15-03-40 2019-10-01-16-54-55 2019-10-22-15-01-25

2020-02-05-17-53-21 2020-02-05-18-19-19 2020-02-05-18-37-10 2020-01-15-13-23-09

2020-01-22-10-22-06 2020-01-31-16-07-34

Figure VIII – Un aperçu des images de jeu de données IPLT utilisé pour la construction
de la première carte globale. Pour chaque séquence, nous indiquons la date d’acquisition au
format « aaaa-mm-jj-HH-MM-SS » et symbolisons la condition environnementale par une
petite icône.

Pour les deux jeux de données, nous comparons les résultats obtenus en uti-
lisant τ1 = fdist(Ii,Kj) comme fonction de classement (qui ne prend en compte
que la distance géométrique comme critère pour attribuer des scores aux images
clés) avec les résultats obtenus en utilisant notre fonction de classement proposée
τ2 = P (pt ∈ Ii,Kj) = fdist(Ii,Kj) · Fc(trav(Ii), trav(Kj)) (qui prend en compte la
distance géométrique et les conditions environnementales des images clés).

Nous présentons le nombre moyen d’inliers observés dans chaque séquence ainsi
que le nombre d’échecs de localisation par km comme critères de comparaison. Pra-
tiquement, nous avons constaté que la localisation peut être considérée comme fiable
lorsqu’il y a au moins 30 points appariés entre l’image courante et la base de don-
nées, en dessous de ce seuil, nous considérons un échec de localisation. Il s’agit d’un
seuil de précaution pour assurer la sécurité de notre navette autonome [Royer 2016].

Pour le jeu de données IPLT, nous utilisons 93 séquences ayant des conditions
environnementales différentes pour la phase de test. Ces séquences de test ont été
classifiées manuellement en 5 classes différentes en fonction de leurs conditions en-
vironnementales : « soleil », « couvert », « pluie », « crépuscule » et « nuit ».
Ces 5 classes contiennent respectivement 13, 39, 12, 17 et 11 séquences. La classe

xiii

2014-06-24-14-47-45 2014-06-26-09-53-12 2014-12-05-11-09-10 2015-02-20-16-34-06

2015-07-08-13-37-17 2014-07-14-14-49-50 2014-11-25-09-18-32 2015-05-19-14-06-38

Figure IX – Un aperçu des images du jeu de données d’Oxford utilisé pour la construction
de la carte d’Oxford.

« globale » regroupe l’ensemble des 93 séquences. La figure X présente une compa-
raison entre les performances de localisation sur la carte d’IPLT en utilisant τ1 et
τ2 comme fonctions de classement.

Globalement, nous constatons que notre approche de récupération d’images clés
a considérablement augmenté le nombre d’inliers observés lors de la re-localisation
pour toutes les classes. Nous remarquons également qu’avec notre approche, nous
avons réussi à réduire le nombre de mauvaises localisations par km de 61, 24 à
seulement 0, 16 (soit à peu près 400× moins). Un tel critère (le nombre d’échecs
de localisation) est très important dans les applications des navettes autonomes car
un échec de localisation conduit à l’interruption du système de conduite autonome
et nécessite des interventions manuelles. Par exemple, si la navette parcourt 100
km par jour, alors notre approche permet de réduire les interventions manuelles
quotidiennes de plus de 6 000 à seulement 16.

Pour évaluer les performances de notre approche sur le jeu de données d’Oxford,
nous avons utilisé 12 séquences de test avec des conditions environnementales diffé-
rentes. Ces séquences de test ont été classifiées en 4 classes : « soleil », « couvert »,
« pluie » et « neige ». La classe « soleil » contient 5 séquences, la classe « couvert »
contient 4 séquences, la classe « pluie » contient 2 séquences et la classe « neige »
ne contient qu’une seule séquence.

Dans la Figure XI, nous comparons les performances de re-localisation de τ1 et
τ2 sur la carte globale d’Oxford qui comprend 8 séquences (comme présenté dans la
figure IX). La comparaison a été effectuée par rapport au nombre moyen d’inliers
par image et aux échecs de localisation par km, comme nous l’avons fait pour le jeu
de données IPLT.

Selon la figure, τ2 a réussi à augmenter le nombre d’inliers et à réduire le nombre
d’échecs de localisation de 9 échecs par km à seulement 0,5. Dans ce jeu de données,
nous considérons une augmentation moins significative en termes d’inliers par rap-
port à l’augmentation observée sur le jeu de données IPLT (Figure X). Cela est dû

xiv

Figure X – Une comparaison entre les deux fonctions de classement τ1 et τ2 sur la carte
IPLT à l’aide des 93 séquences de test du jeu de données IPLT. La comparaison se fait
selon deux critères : le nombre moyen d’inliers par image et le nombre moyen d’échecs
de localisation par km. Chaque case représente la valeur moyenne + et - l’écart type des
inliers (ou échecs de localisation) enregistrés lors de la re-localisation en utilisant toutes
les séquences de la classe correspondante sur la carte globale. La couleur des cases indique
quelle fonction de classement a été utilisée pour enregistrer ces valeurs. Pour une meilleure
lisibilité des valeurs des échecs de localisation, nous représentons le nombre moyen d’échecs
par km de localisation sur l’axe des abscisses du bas.

Figure XI – Une comparaison entre les deux fonctions de classement τ1 et τ2 sur la carte
globale d’Oxford à l’aide des 12 séquences de test de ce jeu de données.

au fait que le jeu de données IPLT contient plus de séquences avec plus de change-
ments dans les conditions environnementales et il comprend des séquences avec des
déviations latérales et angulaires qui ont un impact significatif sur les performances
de τ1.

Malgré cette amélioration significative des performances de localisation, les tech-
niques de récupération des amers, comme notre approche définie par τ2, ne sont pas
suffisantes pour assurer une navigation à long terme pour les robots autonomes.
Ces types d’approches atteignent leurs limites lorsque la taille de la carte augmente

xv

considérablement, ce qui entraîne une augmentation significative du temps de calcul.
Par conséquent, la deuxième contribution de notre thèse vise à résoudre ce problème.
A cet égard, nous proposons différentes techniques de gestion de la carte dont le rôle
est d’éviter l’expansion continue de la carte.

D’autres travaux ont également abordé le problème de la gestion des cartes ces
dernières années [Biber 2005], [Mühlfellner 2016], [Dymczyk 2015], [Bürki 2018],
[Krajník 2016], [Halodová 2019], Certains de ces travaux réduisent la taille
de la carte selon une politique qui suggère de supprimer les amers qui ont des
taux d’observation faibles [Mühlfellner 2016, Dymczyk 2015]. Certains autres tra-
vaux ont proposé d’éliminer les amers qui ont été incorporés dans les échecs
de localisation [Bürki 2018] et ont un taux élevé de correspondances incor-
rectes [Halodová 2019].

Le travail effectué dans cette thèse aborde également le même problème de dif-
férentes manières. Afin d’assurer une cohérence à long terme de la carte, nous avons
proposé trois différentes techniques de gestion de carte dans le but de limiter sa
taille au cours des multiples parcours de la navette autonome, tout en évitant de
dégrader les performances de la re-localisation.

La première technique de gestion de la carte correspond à une amélioration
de l’approche « Summary Maps » (désignée par SM) proposée par Mühlfellner et
al. [Mühlfellner 2016]. Dans ce travail, les auteurs donnent des scores aux amers
en fonction du nombre de sessions de localisation différentes dans lesquels ils appa-
raissent, et ils suppriment celles qui ont les scores les plus bas dans un processus
hors ligne. Dans cette approche, nous avons identifié une limitation qui peut être
définie comme un problème de biais vers des conditions environnementales plus fré-
quemment rencontrées. Ce biais se produit lorsqu’un ensemble de séquences avec
des conditions environnementales similaires est mélangé avec une séquence ayant
une condition environnementale étrange dans la même carte (par exemple, un en-
semble de séquences de jour est inclus dans la même carte avec une séquence de
nuit). Dans ce cas, les amers observés dans la condition environnementale étrange
se voient attribuer des scores faibles par la fonction de classement car ils n’ont pas
été observés aussi fréquemment que les amers des autres séquences, ce qui signifie
qu’ils seront filtrés lors de l’étape de compression de la carte.

Par conséquent, nous proposons une amélioration de la technique « Summary
Maps » proposée par Mühlfellner et al.. Notre version améliorée consiste à imposer
une contrainte qui assure la distribution d’un nombre uniforme d’amers dans toutes
les traversées après la compression de la carte. Par conséquent, nous appelons notre
technique « Uniform Summary Maps » (et la désignons par USM).

La deuxième technique de gestion de la carte est une technique basée sur les
traversées. Cela signifie qu’elle est utilisée pour limiter le nombre de traversées dans
la carte à un nombre fixe N̂ . Cette valeur (N̂) représente le nombre de traversées
à maintenir dans la carte après avoir effectué la gestion de la carte. Pour cette
raison, nous utilisons les informations relatives à la position du soleil pour calculer
la corrélation entre les traversées afin de produire une carte ayant N̂ traversées avec
diverses conditions environnementales. Différentes valeurs de N̂ ont été choisies dans

xvi

nos expériences pour évaluer l’efficacité de notre approche dans différents cas.
La méthodologie de notre approche est décrite dans la Figure XII. Après chaque

session de localisation, nous testons si le nombre de traversées dans la carte (N) est
supérieur au nombre prédéfini N̂ . Si tel est le cas, notre algorithme de gestion de
carte sera exécuté hors ligne pour réduire la taille de la carte. N > N̂ signifie que
la carte contient une traversée supplémentaire (N = N̂ + 1), ce qui implique aussi
qu’elle occupe un espace mémoire supplémentaire. Dans ce cas, notre approche doit
agir hors ligne pour limiter la taille de la carte, c’est-à-dire, elle doit décider quelle
traversée a le plus de similitude avec les autres pour finalement la supprimer.

Nouvelle traversée

Carte

Calculer la
similitude entre
les traversées

(carte + nouvelle
traversée)

Classifier les
traversées et

supprimer une
d'entre elles

gestion de la carte hors ligne

session de
 localisation

terminée

non

Ajouter la nouvelle traversée à la carte

N > N̂

oui

Mise à jour de la carte

SLAM

Figure XII – Un schéma illustrant le processus de la deuxième technique de gestion de la
carte proposée dans cette thèse. Une nouvelle traversée est localisée et ajoutée à la carte
existante. Après avoir terminé la re-localisation et la cartographie par SLAM, l’algorithme
de gestion de la carte est exécuté hors ligne pour vérifier si la carte doit être compressée
ou non (si N > N̂). Si la réponse est oui, l’algorithme doit agir en deux parties. Tout
d’abord, il doit calculer les similitudes entre les N traversées dans la carte (N = N̂ + 1).
Deuxièmement, il utilise ces informations de similarité pour classifier toutes les traversées
et sélectionner celle qui doit être supprimée.

Ce mécanisme comprend deux parties principales, le calcul de similarité et la
classification. Dans la partie calcul de similarité, nous profitons de la position du so-
leil pour comparer la ressemblance entre les traversées de la carte afin de déterminer
celles à conserver et celles à supprimer. Pour chaque traversées dans la carte, nous
utilisons l’algorithme de l’Almanach astronomique [Michalsky 1988] pour calculer
les coordonnées sphériques du soleil correspondantes : l’angle d’élévation solaire (el)
et l’angle d’azimut solaire (az). Après avoir calculé toutes les positions du soleil
associées aux N traversées dans la carte, nous générons une matrice de similarité D
ayant la forme de [N × N]. D est une matrice de distance symétrique 2D contenant
les distances, prises par paires, entre les positions solaires calculées des N traversées.

Nous avons testé deux variantes de la matrice de similarité D. La première
variante, Del, est construite en calculant les distances entre les angles d’élévation

xvii

de chaque paire de traversées, et la deuxième variante, Daz_el, est construite en
utilisant à la fois les angles d’élévation et d’azimut. Pour chaque traversée, on calcule
le vecteur cartésien à partir des coordonnées sphériques, ensuite, on calcule l’angle
entre chaque paire de vecteurs cartésiens.

Après avoir calculé Del et Daz_el, un algorithme de classification hiérarchique
[Szekely 2005] est utilisé pour classifier la matrice D (on applique cette méthode de
la même manière sur Del et sur Daz_el) afin de sélectionner la traversée à supprimer.
Nous désignons notre technique par MMSE lorsqu’on utilise uniquement l’élévation
solaire (lorsqu’on utilise la matrice Del) et par MMSAE lorsqu’on utilise à la fois
l’azimut et l’élévation solaires (lorsqu’on utilise la matrice Daz_el).

La localisation dans la nuit peut être considérée comme un cas particulier car
il n’y a pas de lumière fournie par le soleil après le crépuscule astronomique. Par
conséquent, les lampadaires sont presque la seule source de lumière, ce qui signifie
que toutes les séquences enregistrées pendant la nuit sont visuellement similaires.
Cela signifie qu’il est inutile de conserver plusieurs traversées de nuit dans la carte,
et d’autre part, la suppression de toutes les traversées de nuit peut conduire à
une dégradation significative des performances de localisation pour les séquences de
nuit. Pour cette raison, nous imposons une nouvelle contrainte à notre algorithme :
la traversée avec l’angle d’élévation du soleil le plus bas n’est pas désignée comme
la traversée à supprimer (les traversées de nuit ont un angle d’élévation du soleil
négatif), toute autre traversée de nuit sera supprimée. Cela garantit que la carte
produite n’intégrera qu’une seule traversée de nuit.

Dans la troisième technique de gestion de la carte, nous proposons une méthode
basée sur la matrice Fc définie précédemment. Comme dans la technique précédente,
l’idée ici est de réduire la taille de la carte tout en la gardant aussi diversifiée
que possible pour couvrir un nombre maximum de conditions environnementales
différentes.

Le principe de cette approche est très similaire à celui proposé dans la technique
précédente. La principale différence entre elles réside dans les données utilisées pour
calculer la similitude entre les traversées. Par conséquent, la procédure de gestion
de carte proposée ici consiste à limiter le nombre total de traversées dans la carte
(N) à un nombre prédéfini de traversées N̂ . Lorsque le nombre de traversées dans la
carte N dépasse le nombre prédéfini N̂ (N = N̂ + 1), notre algorithme doit choisir
un parcours à supprimer de la carte. Le choix dépend principalement de la ma-
trice Fc définie par l’algorithme de récupération des images clés. Cependant, comme
indiqué précédemment, Fc est régulièrement mise à jour le long de la trajectoire.
Par conséquent, nous calculons sa valeur moyenne F̄c à la fin de chaque session de
re-localisation :

F̄c =
1

n

n∑

i=1

F i
c (4)

où n est le nombre total d’images dans la trajectoire et F i
c est la valeur de la matrice

Fc à l’itération i.
Pour effectuer une classification hiérarchique sur la matrice F̄c, nous devons

xviii

d’abord la convertir en une matrice de distance. Puisque F̄c est symétrique et que
ses valeurs sont comprises entre 0 et 1/max(fdist), nous pouvons obtenir une matrice
de distance en la normalisant comme suit :

D = J − F̄c ·max(fdist) (5)

où J est une matrice de uns avec la même dimension que F̄c ([N × N]). La matrice
résultante D est une matrice de distance avec une diagonale nulle et toutes ses
valeurs appartiennent à [0, 1].

Nous avons utilisé l’algorithme de classification hiérarchique pour classifier la
matrice normalisée D exactement de la même manière que nous l’avons fait avec
Del et Daz_el dans la technique précédente. Nous désignons cette technique qui est
basée sur la matrice Fc par MMFc.

Nous avons testé nos techniques de gestion de carte (USM, MMSE, MMSAE,
MMFc) sur les mêmes jeux de données que ceux utilisés pour évaluer la technique de
récupération d’images clés. Nous avons également utilisé la même division pour les
séquences de cartographie et les séquences de test (10 séquences de cartographie et 93
séquences de test pour l’ensemble de données IPLT, et 8 séquences de cartographie
et 12 séquences de test pour l’ensemble de données Oxford RobotCar).

Dans la partie d’évaluation, nous visons à limiter le nombre de traversées utilisées
pour construire la carte globale à un nombre prédéfini N̂ . En d’autres termes, nous
cherchons à choisir la meilleure carte à N̂ -sessions parmi un total de N traversées
(nous appelons une carte à N̂ -sessions une carte constituée à partir de N̂ traversées).

Ce mode d’évaluation convient uniquement aux techniques basées sur les tra-
versées (MMSE, MMSAE et MMFc), le concept de « Summary Maps » (SM) et
de « Uniform Summary Maps » (USM) est assez différent des autres techniques
puisque dans ces deux approches, la compression de la carte est effectuée d’une ma-
nière basée sur les amers, où les amers les moins pertinents sont supprimés. Par
conséquent, pour comparer équitablement les deux techniques SM et USM avec les
autres approches proposées (MMSE, MMSAE et MMFc), nous recherchons le taux
de compression r̂ qui génère une carte avec approximativement le même nombre
d’amers incorporés dans une carte à N̂ -sessions :

r̂ =
namers(MN)

namers(MN̂)
(6)

où MX est une carte contenant X traversées (ou encore carte à X-sessions) et le
terme namers(M) désigne le nombre d’amers contenus dans la carte M .

De cette manière, nous nous assurons que les cartes générées avec les tech-
niques SM, USM, MMSE, MMSAE et MMFc sont équivalentes en termes de nombre
d’amers (et respectivement en termes d’occupation de mémoire), ce qui garantit une
comparaison équitable entre les performances de localisation après la compression
de la carte.

Pour évaluer nos différentes approches, nous continuons à effectuer le SLAM

xix

sur les séquences de cartographie, une par une, et à la fin de chaque session, nous
utilisons nos différentes techniques pour réduire la taille de la carte. Considérant
que l’ordre dans lequel les traversées sont ajoutées à la carte peut influencer la carte
résultante, nous testons notre approche avec plusieurs permutations dans l’ordre
des N traversées (on a testé 100 000 différentes permutations des 10 traversées de
IPLT et toutes les permutations possibles de 8 traversées d’Oxford : 8! = 40 320).
Cela conduit à la génération de plusieurs cartes à N̂ -sessions lorsque nous exécutons
chaque technique de gestion de la carte (MMSE, MMSAE ou MMFc) plusieurs fois
avec différentes permutations dans l’ordre des N traversées . Ainsi, nous choisissons
la carte à N̂ -sessions la plus reproduite (notée M∗) et l’utilisons pour évaluer les
performances de localisation avec les séquences de test. Ceci n’est possible qu’avec
les techniques basées sur les traversées : MMSE, MMSAE et MMFc. Comme SM et
USM ne sont pas des techniques basées sur les traversées, nous procédons simplement
à une compression de carte après la fin de chaque session de SLAM avec un taux de
compression r̂ calculé par l’Équation (6).

Afin d’évaluer l’influence de la compression de la carte sur la performance de
localisation avec le jeu de données IPLT, nous comparons les performances de lo-
calisation sur la carte globale d’IPLT M0, qui est composée de N = 10 traversées,
avec les performances de localisation sur la carte à N̂ -sessions la plus reproduite par
chaque technique de gestion de la carte : M∗

MMSE , M
∗
MMSAE et M∗

MMFc ainsi que
les deux cartes produites par la technique classique de [Mühlfellner 2016] et celle
après nos améliorations (MSM et MUSM). Nous incluons également dans la compa-
raison deux autres cartes à N̂ -sessions, notées

∼
M∗

MMSE et
∼
M∗

MMSAE , qui ont été
reproduites avec les approches MMSE et MMSAE tout en imposant la contrainte
qui assure le maintien d’une séquence de nuit dans la carte. Nous avons utilisé trois
valeurs différentes de N̂ pour démontrer l’efficacité de nos approches sur différentes
configurations : N̂ = {3, 4, 5}.

Dans la Figure XIII, nous présentons le nombre moyen d’inliers par image et
le nombre moyen d’échecs de localisation par km enregistrés en re-localisant sur
les différentes cartes. Les séquences de test ont été classifiées manuellement en 5
classes différentes comme expliqué précédemment. La classe « globale » contient les
93 séquences de test et la classe « globale \ {nuit} » contient toutes les séquences
à l’exclusion des séquences de nuit (82 séquences). La Figure XIII montre que la
performance de localisation a globalement diminué après avoir limité la carte à
N̂ = 5 traversées et a diminué davantage pour N̂ = 4 et 3 traversées. Pour tous les
choix de N̂ , la performance de localisation sur la carte M∗

MMSE avec les séquences
de nuit était très faible puisque cette carte n’inclut aucune traversée de nuit. Ce
n’est pas le cas pour les cartes à N̂ -sessions M∗

MMSAE et M∗
MMFc qui intègrent

une traversée de nuit. Les deux cartes
∼
M∗

MMSE et
∼
M∗

MMSAE incluent également
une traversée de nuit grâce à la contrainte imposée. Par conséquent, la performance
de localisation avec les séquences de nuit sur ces cartes est fiable (1.36 échecs de
localisation par km, soit la même valeur enregistrée sur M0).

xx

(a) N̂ = 3

(b) N̂ = 4

(c) N̂ = 5

Figure XIII – Comparaison des performances de localisation entre M0 et chacune des
cartes produites par les différentes approches en utilisant les 93 séquences de test de jeu
de données IPLT. Les sous-figures (a), (b) et (c) montrent les performances de localisation
lors du choix de 3, 4 et 5 comme valeurs pour le paramètre N̂ , respectivement. Chaque
case dans la figure représente la valeur moyenne + et - l’écart type des inliers (ou échecs de
localisation) enregistrés lors de la re-localisation en utilisant toutes les séquences de la classe
correspondante. La couleur de chaque case indique quelle technique de gestion de la carte
a été utilisée pour produire la carte où la localisation a été effectuée. Pour une meilleure
lisibilité des valeurs des échecs de localisation, nous représentons le nombre moyen d’échecs
de localisation par km sur l’axe des abscisses du bas.

xxi

En revanche, la carte MSM a montré une faiblesse majeure dans la localisation,
notamment pour les séquences de nuit. Cela confirme que cette approche n’est pas
bien adaptée lorsque les amers ne sont pas uniformément répartis sur les différentes
conditions environnementales comme le cas de la carte globale M0 d’IPLT, qui ne
contient qu’une seule séquence de nuit (Figure VIII). Cela signifie que les amers
observés pendant la nuit se voient attribuer un score faible puisqu’ils n’ont été
observés qu’au cours d’une seule session (nous avons exprimé ce phénomène par un
biais vers des conditions environnementales plus fréquemment rencontrées). Comme
prévu, les performances de localisation ont été améliorées, en particulier pour les
séquences de nuit, lors de l’utilisation de la carte MUSM qui comprend un nombre
uniforme d’amers sur les différents traversées. Cependant, même avec l’amélioration,
l’approche USM n’a pas été en mesure de fournir une très bonne performance de
localisation pour les séquences de nuit. Cela signifie que la politique de classement
adoptée dans les deux approches (SM et USM), qui supprime les amers en fonction
de leur taux d’observation dans différentes sessions, ne permet pas de compresser
efficacement la carte pour assurer une navigation à long terme.

En global, les performances de localisation ont été dégradées lors de la com-
pression de la carte avec différentes valeurs de N̂ . Cependant, même avec cette
dégradation, la localisation peut toujours être considérée comme fiable avec l’utili-
sation de certaines de nos techniques de gestion de la carte proposées, en particulier
MMFc, qui fournit visiblement des résultats légèrement meilleurs que les autres mé-
thodes. En utilisant MMFc avec N̂ = 5, nous considérons 1,1 échecs de localisation
par km sur toutes les séquences de test (classe « globale »). Cela signifie que seule-
ment 20 images parmi les 93 séquences (qui incorporent un total de 159 074 images)
correspondaient à moins de 30 inliers (c’est-à-dire, ∼ 1, 26e−4 échecs par image).

Comme nous l’avons fait avec le jeu de données IPLT, nous évaluons l’influence
de la compression de la carte sur la performance de localisation avec le jeu de don-
nées d’Oxford avec N̂ = 3. Dans la Figure XIV, nous comparons les performances de
localisation sur la carte globale d’OxfordM0, qui est composée de N = 8 traversées,
avec les performances de localisation sur les cartes à N̂ -sessions les plus reproduites
pour chaque technique de gestion de la carte. Nous comparons également ces tech-
niques avec les approches SM et USM. Les séquences utilisées pour la cartographie
et pour le test n’intègrent aucune séquence de nuit dans ce jeu de données. Par
conséquent, nous n’incluons pas les cartes

∼
M∗

MMSE et
∼
M∗

MMSAE dans la comparai-
son (les cartes qui ont été obtenues en imposant la contrainte qui assure le maintien
d’une séquence de nuit dans la carte). La comparaison est effectuée en fonction de
la moyenne des inliers par séquence et du nombre d’échecs de localisation par km.

Cette figure montre que les performances de localisation sur le jeu de données
d’Oxford ont légèrement diminué avec N̂ = 3 lors de l’utilisation de nos différentes
approches. Ce type de dégradation est attendu après compression de la carte de 8
traversées à seulement 3. D’après la figure, il y a un taux d’échec significatif pour les
séquences de la classe « pluie ». Cela peut s’expliquer par le fait que les séquences
de test incluent une séquence (2014-11-21-16-07-03) qui a été enregistrée au
début du crépuscule et lors d’une forte pluie. Par contre, la localisation sur la classe

xxii

Figure XIV – Comparaison des performances de localisation entre M0 et chacune des
cartes produites par les différentes approches en utilisant les 12 séquences de test du jeu
de données d’Oxford.

∼
M∗

MMSE and
∼
M∗

MMSAE sont exclus de la comparaison car ce jeu de
données ne comporte aucune séquence de nuit.

« neige » (cette classe ne contient qu’une seule séquence 2015-02-03-08-45-10) n’a
conduit à aucun échec de localisation avec M∗

MMFc et M∗
MMSAE . Ces deux cartes

à N̂ -sessions contiennent la séquence 2015-02-20-16-34-06 qui est visuellement
similaire à cette séquence de neige (2015-02-03-08-45-10) qui a été enregistrée
lors d’une légère chute de neige.

Dans ce rapport, nous avons présenté trois algorithmes différents qui peuvent
être utilisés pour un processus de localisation à long terme. Ces trois algorithmes
ont en commun leur capacité à limiter la taille de la carte pour éviter son inflation
continue et chacun d’eux est conçu pour utiliser un type différent d’informations
pour supprimer les données superflues de la carte. Dans le premier algorithme, nous
avons proposé une amélioration de la technique de « Summary Maps » de l’état
de l’art pour éviter d’omettre des amers observés dans des conditions environne-
mentales rarement rencontrées. Dans le deuxième algorithme, nous avons utilisé les
informations de position du soleil comme guide pour filtrer les traversées et leurs
amers associés qui ont été enregistrés dans des conditions d’éclairage similaires. Le
dernier algorithme est basé sur certains concepts fondamentaux proposés dans l’ap-
proche de récupération d’images clés. Il utilise la matrice de similarité Fc comme
information pour classifier les traversées dans la carte et supprimer celles les moins
importantes en fonction de leur ressemblance.

Pour tester l’efficacité de nos approches proposées, nous avons évalué les per-
formances de localisation à l’aide de deux jeux de données. À l’exception de notre
technique améliorée de « Summary Maps » (USM) qui n’a pas donné de très bons
résultats, nos approches se sont avérées capables de parvenir à une navigation fiable
à long terme sur deux jeux de données différents tout en limitant la taille de la
carte. Bien que les performances de localisation aient été légèrement réduites après

xxiii

la compression de la carte, nos approches proposées ont réussi à limiter la com-
plexité de calcul. Nous avons également démontré que nos différentes techniques ont
nettement surpassé la performance de localisation avec une approche de l’état de
l’art (« Summary Maps »).

Nous avons également enregistré le jeu de données IPLT, que nous avons mis à
la disposition de la communauté dans l’espoir qu’il sera utile à d’autres chercheurs
travaillant dans le domaine de la navigation à long terme. Ce jeu de données a été
enregistré sur une période de deux ans dans un parking et comprend, à ce jour,
127 séquences enregistrées dans diverses conditions environnementales (luminance,
météo, changements saisonniers . . .).

Mots clés :
Navigation Visuelle, Vision par Ordinateur pour les Transports, SLAM, Navigation
à Long Terme, Gestion de la Carte, Récupération des Amers, Navettes Autonomes

Contents

1 Introduction 1
1.1 Context of the thesis . 1
1.2 Problematic . 3
1.3 Contributions and organization of the manuscript 5
1.4 Publications . 7

2 State of the art 9
2.1 Introduction . 9
2.2 Fundamentals on SLAM . 9

2.2.1 Sensor data acquisition phase 12
2.2.1.1 Proprioceptive sensors 12
2.2.1.2 Exteroceptive sensors 13

2.2.2 Front-end . 14
2.2.3 Back-end . 16

2.3 History of visual SLAM . 19
2.4 Lifelong navigation . 25

2.4.1 Illumination invariant features descriptors for lifelong navigation 28
2.4.2 Landmarks retrieval . 31
2.4.3 Map management . 33

2.5 Conclusion . 35

3 Keyframes Retrieval 37
3.1 Introduction . 37
3.2 Contribution . 39
3.3 Methodology . 40

3.3.1 Offline computation of fdist 43
3.3.1.1 Defining fdist as a multiplication of three indepen-

dent functions . 43
3.3.1.2 Defining fdist as a linear combination of Gaussians . 46

3.3.2 Online computations . 48
3.3.2.1 Calculating fc . 48
3.3.2.2 Calculating the ranking function P (pt ∈ Ii,Kj) . . . 50
3.3.2.3 Update of Fc(trav(Ii), trav(Kj)) 50

3.4 Experiments . 51
3.4.1 Experimental setup . 52
3.4.2 Datasets . 52

3.4.2.1 IPLT dataset . 52
3.4.2.2 Oxford RobotCar dataset 54

3.5 Results . 55
3.5.1 IPLT dataset . 55

xxvi Contents

3.5.1.1 Overall results . 56
3.5.1.2 Detailed study on the effects of deviations from the

learned trajectory 58
3.5.1.3 Detailed study on the update process of Fc 60

3.5.2 Oxford RobotCar dataset . 62
3.6 Conclusion . 63

4 Map Management 65
4.1 Introduction . 65
4.2 Contributions . 66
4.3 Map management with improved summary maps 67
4.4 Map management based on solar information 72

4.4.1 Similarity computation . 73
4.4.2 Classification and traversal removal 74

4.5 Map management based on environmental conditions similarity (us-
ing Fc matrix) . 77

4.6 Experiments . 78
4.6.1 Evaluation scenario 1 . 79
4.6.2 Evaluation scenario 2 . 80

4.7 Results . 81
4.7.1 Evaluation scenario 1 . 81

4.7.1.1 IPLT dataset . 81
4.7.1.2 Oxford RobotCar dataset 87

4.7.2 Evaluation scenario 2 . 90
4.8 Conclusion . 94

5 Conclusion and perspectives 95

A IPLT dataset 99

B Update rate evaluation 105

Bibliography 107

List of Figures

1.1 Example of SLAM application areas. 2
1.2 Example of some types of elements that can be found in an urban

scene. 3
1.3 Examples of challenges for visual SLAM. 4
1.4 The operating mechanism of the keyframes retrieval and the map

management. 6

2.1 A diagram formulating the SLAM problem. 10
2.2 Pre and post loop closing [Bokovoy 2017]. 11
2.3 The architecture of a classic SLAM system [Cadena 2016]. 12
2.4 GPS constellation [Raghu 2014]. 13
2.5 Factor graph formulation of the SLAM problem [Kaess 2012]. 17
2.6 Overview of the main components of PTaM [Klein 2007]. 22
2.7 Overview of the ORB-SLAM system [Mur-Artal 2015]. 23
2.8 A flowchart diagram illustrating the operating process of the SLAM

system used in this thesis. 24
2.9 An aerial view of two 3D maps generated with our SLAM system. . . 25
2.10 Example of a result obtained with SeqSLAM. 27
2.11 Improving image similarity at two different times of the day. 29
2.12 The feature extraction pipeline proposed in LIFT [Yi 2016a]. 30
2.13 An example of a co-observability graph [Bürki 2016]. 32
2.14 Schematic illustration of the map management process proposed

in [Bürki 2018]. 34

3.1 An example of different cases of matching the current image with a
keyframe in the map. 38

3.2 An example of a bad localization case. 39
3.3 Scores assigned to keyframes by the ranking function. 40
3.4 An aerial view of the parking lot where we have recorded the IPLT

dataset. 41
3.5 A diagram representing the operating mechanism of the re-

localization part. 42
3.6 Example of sequences used for the calculation of fdist from three

different recording sessions. 44
3.7 Form of the three functions flong, flat and fang. 45
3.8 Surface of the 4d function fdist. 47
3.9 An overview of images from IPLT dataset used for the construction

of the first global map. 53
3.10 A ∼1.6 km segment in which the Oxford vehicle has followed the same

route and direction in 22 different sequences. 54

xxviii List of Figures

3.11 An overview of images from Oxford RobotCar dataset used for the
construction of the Oxford map. 55

3.12 An overview of images recorded with the front camera for some of
the sequences of IPLT dataset used in our tests. 56

3.13 A comparison between the two ranking functions τ1 and τ2 on the
IPLT map. 57

3.14 Path traveled for the sequence 2020-02-05-18-37-10 and the sequence
2020-02-05-18-41-39. 58

3.15 The effect of lateral and angular deviations on the two ranking func-
tions τ1 and τ2. 59

3.16 The values of Fc along a sequence of one hour and 10 minutes. . . . 60
3.17 Different values for the update rate α. 61
3.18 An overview of images from the 12 test sequences of Oxford RobotCar

dataset. 62
3.19 A comparison between the two ranking functions τ1 and τ2 on the

Oxford global map. 63
3.20 Example of extremely overexposed images that led to localization

failures. 63

4.1 The landmark scoring policy proposed by Mühlfellner et al. 68
4.2 An example illustrating the execution mechanism of our proposed

algorithm. 71
4.3 A diagram illustrating the map management process proposed in this

section. 73
4.4 Solar Elevation Angle and Solar Azimuth Angle [Cheng 2019]. 74
4.5 Example of matrices Del and Daz_el built with a map containing

N = 10 traversals. 75
4.6 Steps for classification and the selection of the traversal to remove. . 75
4.7 Localization performance on 7 different maps containing night traver-

sals. 76
4.8 The matrix F̄c computed on the IPLT map. 78
4.9 Average localization errors for the IPLT dataset global map. 82
4.10 A comparison between the N̂ -session maps produced with the differ-

ent approaches. 83
4.11 Comparison of localization performance using the 93 test sequences

from IPLT dataset. 85
4.12 A curve in which we inspect the size of the maps with the different

approaches. 87
4.13 Average localization errors of the Oxford RobotCar dataset global

map with N̂ = 3. 88
4.14 A comparison between the N̂ -session maps produced with the differ-

ent approaches using N̂ = 3 with Oxford RobotCar dataset. 89
4.15 Comparison of localization performance using the 12 test sequences

from Oxford RobotCar dataset. 90

List of Figures xxix

4.16 Comparison of localization performance with respect to evaluation
scenario 2. 91

4.17 Comparison of computational cost of all proposed techniques with
respect to evaluation scenario 2. 93

5.1 Illustration of a semantic segmentation task. 98

A.1 Autonomous driving platform represented in See-Think-Act Cy-
cle [Siegwart 2011]. 100

A.2 An overview of images recorded with the front camera for some se-
quences of our dataset. 101

A.3 The EasyMile EZ10 electric shuttle used to record our dataset. . . . 102
A.4 Unified camera model. 103

B.1 Different values for the update rate α without smoothing. 105

List of Tables

3.1 Mean of residual errors from fitting fdist. 46
3.2 Value of |Fc − F̄c| with respect to the choice of m. 52
3.3 Designation of condition icons. 54
3.4 Computational cost of processing a frame. 57

4.1 Bias towards more experienced environmental conditions in Summary
Maps. 69

4.2 Compressing the map with the Uniform Summary Maps. 71
4.3 Traversals included in each map produced by our approaches on IPLT

dataset. 84
4.4 Traversals included in each map produced by our approaches on Ox-

ford RobotCar dataset. 89
4.5 Memory occupancy and number of landmarks in each map built using

Oxford RobotCar dataset. 89

A.1 Intrinsic parameters of the cameras. 103
A.2 Extrinsic parameters of the cameras. 104

List of Algorithms

1 Calculation of the Fc matrix in the first few meters 49
2 Keyframe retrieval and update of Fc 51
3 Uniform Summary Maps . 70

Chapter 1

Introduction

Contents
1.1 Context of the thesis . 1
1.2 Problematic . 3
1.3 Contributions and organization of the manuscript 5
1.4 Publications . 7

1.1 Context of the thesis

The work done in this PhD thesis is focused on visual-based long-term localization
under challenging conditions. In recent years, visual SLAM (Simultaneous Local-
ization And Mapping) has proven to be a very powerful algorithm for real-time
localization of robotic systems in different applications. It makes possible to extract
images from one or more of the robot on-board cameras to simultaneously calculate
the trajectory of the cameras (i.e., calculate the trajectory of the robot) and the
structure of the scene in which it operates.

The SLAM algorithm is a central topic in robotic research field and its ap-
plications are becoming more and more numerous. Actually, SLAM applica-
tions are covering a wide number of fields, ranging from smart vacuum cleaner
robots [Hasan 2014], to the exploration of dangerous areas [Holmquist 2017,
Weidner 2017, Vanicek 2018, Appapogu 2019] (e.g., areas of natural disasters, mili-
tary combat zones, caves, underwater exploration, etc.) and the mapping of inacces-
sible environments to humans (e.g., NASA’s Mars Exploration Rover 2003 [Di 2008]
and 20201 missions, China’s Chang’E-3 [WANG 2014] and Chang’E-4 [Liu 2020]
missions). Figure 1.1 presents some examples of SLAM applications in various
fields.

Recently, Visual SLAM is becoming a fundamental component in autonomous
driving applications due to its inexpensive setup requirements and its efficiency in
localizing vehicles without any prior knowledge of the operating environment. Most
of the current SLAM algorithms are adapted to environments that are supposed
to be rigid and static over time. However, in real-life scenarios, the environment
is constantly changing. The automatic update of the 3D model of the scene is a
difficult but crucial problem. In an urban scene, we can distinguish several types of

1https://mars.nasa.gov/mars2020/

https://mars.nasa.gov/mars2020/

2 Chapter 1. Introduction

(a) Submarine exploration [Antonelli 2001]. (b) Volcano exploration [Caltabiano 2005].

(c) Caves exploration [Gallant 2016]. (d) Space exploration (NASA’s 2020 Perse-
verance Rover).

Figure 1.1: Example of SLAM application areas.

changes that must be treated differently. Figure 1.2 illustrates an example of some
types of elements that can be found in an urban scene. Such a scene may contain:

(a) some elements that have a long-term durability (e.g. buildings, street furni-
ture, pavement, etc.). These elements are modified rarely and they can stay
unchanged for long periods.

(b) some elements that are temporary (such as parked cars) but they are always
found in the same areas.

(c) other elements that have a stable geometry but change their appearance (e.g.
a repainted building, an advertising panel whose poster is replaced constantly,
etc.).

In this thesis, we are developing a navigation system for autonomous shuttles.
In such a context, driverless shuttles are frequently revisiting the same places at
different times of the day. This means that they are very likely to experience many

1.2. Problematic 3

(a) Example of unchanged elements in a
scene [Naseer 2014].

(b) Example of temporary parked cars.

(c) Example of an appearance change for a
geometrically stable element.

Figure 1.2: Example of some types of elements that can be found in an urban scene.

different environmental conditions which can deteriorate the localization perfor-
mance even when revisiting familiar places. In this thesis, we aim to improve the
robustness of long-term navigation in such dynamic environments.

1.2 Problematic

The main challenge of mobile robotics is to design a system capable of localizing itself
autonomously, quickly and safely, in an unfamiliar environment that can be dynamic,
difficult and large, based only on the sensory data. SLAM algorithms have been
attempting to accomplish this task for several years. The first solutions proposed for
SLAM date back to the 1980s with the work of Smith and Cheeseman [Smith 1986].
Since then, this algorithm has reached a significant level of maturity, with a great
number of real-time solutions reported by the state of the art. In the last few years,
cameras have become one of the most commonly used types of sensors in SLAM
thanks to their inexpensive setup requirements and their efficiency. Accordingly,
Visual-SLAM has widely drawn attention of researchers and it is seeing a growing
number of real-time applications in different disciplines.

To guarantee the best speed/precision compromise, the majority of visual SLAM
algorithms are based on a sparse representation of the environment. By matching
visual primitives on successive images, it is possible to estimate the 3D position of
these primitives and the poses (position, orientation) of the cameras. Much progress,
both in the speed and in the quality of the trajectory and of the 3D reconstruction,
has been made over the past years. However, localization by visual SLAM still has
multiple challenges, we present some of them in Figure 1.3.

As illustrated in Figure 1.3, appearance changes remain a crucial challenge for
visual SLAM. Visual information affected by seasonal changes, lighting changes or

4 Chapter 1. Introduction

(a) Seasonal change ([Bai 2018]). (b) Lighting change.

(c) Viewpoint angle change.

Figure 1.3: Examples of challenges for visual SLAM.

viewpoint changes can result in major difficulties when associating data between
the current image and the landmarks in the map. Therefore, re-localization in
previously mapped areas can be a hard task since the appearance of the environment
is changing ceaselessly in outdoor scenarios and such a phenomenon can result in
inaccurate or erroneous localization. In some applications like self-driving cars, the
pose estimation part of the SLAM process is very delicate and must be taken very
carefully because even a small error in estimating the pose of the vehicle can result
in a dangerous accident. To ensure a secure and safe lifelong navigation in dynamic
environments, autonomous vehicles must cope with such a challenge.

In previous work done at Institut Pascal [Royer 2016], Royer et al. employed a
driverless shuttle for three months on an industrial site, totaling nearly 1500 km of
autonomous travel. During this experience, we identified some long-term difficulties
for autonomous navigation. Generally, SLAM algorithms retrieve the keyframes
that are used for localization based on their geometric distance to the vehicle pose.
However, this technique has shown a weakness in long-term localization because it
does not take into account environmental changes.

Building a map that covers all environmental conditions by continuously adding
landmarks to this map can help improving localization performance in changing
conditions. However, this will result, also, in a ceaseless growth of the map’s size
that is relative to the number of traversals (experiences) performed by the vehicle.
This means that after several traversals, localization will require an immense storage
space for the map and high-end CPU to find matching points between the current
image and the corresponding landmarks in a vast database. In other words, real-
time long-term localization will be impossible after a certain number of localization
sessions. Thus, a map update strategy is required to prevent such cases and to
ensure reliable real-time long-term localization.

1.3. Contributions and organization of the manuscript 5

1.3 Contributions and organization of the manuscript

The work carried out during this thesis is structured in two main contributions:
keyframes retrieval and map management. In the keyframes retrieval, we propose
a localization approach able to take advantage of a visual landmark map composed
of N sequences gathered at different times.

Generally, basic SLAM algorithms retrieve the keyframes that are used
for localization based on their geometric distance to the vehicle pose. How-
ever, this technique has shown a weakness in long-term localization because
it does not take into account environmental changes. This incents us to de-
velop a new strategy for keyframe retrieval in order to adapt our SLAM algo-
rithm [Lébraly 2011], [Royer 2016] for long-term operation. During the localiza-
tion process, we aim to maximize the number of matched points (i.e., ameliorate
the localization performance) by retrieving relevant experiences from a map that
integrates numerous environmental conditions.

The second contribution of this thesis consists in a map management operation
whose aim is to maintain a reliable map with a fixed size throughout the frequent
runs of the vehicle. This reliable map must ensure long-term localization with no,
or very few, localization errors. We have proposed three different map management
techniques in this thesis:

1) We exploited scores of resemblance between the traversals computed by our
keyframes retrieval approach to determine which traversal has the highest
similarity to the others to remove it eventually.

2) We exploited information related to the sun’s position to compute the traver-
sals correlation in order to produce a map with a minimum number of traver-
sals having diverse environmental conditions.

3) We proposed an improvement for the work of Mühlfellner et
al. [Mühlfellner 2016]. In their work, Mühlfellner et al. are scoring
landmarks according to the number of different localization sessions in which
they appear and they are removing the landmarks with the lowest scores in
an offline process. Similarly, we proposed to remove the landmarks with the
lowest scores from the map while keeping a uniform number of landmarks on
each traversal.

In Figure 1.4, we present a diagram explaining the operating mechanism of both
the keyframes retrieval and the map management processes and the connection be-
tween them. Our system uses a multi-session map that incorporates multiple traver-
sals recorded in different environmental conditions. Each time a new frame arrives,
the keyframes retrieval algorithm must extract, from the map, data relevant to the
current environmental condition. These retrieved data are then used to compute
the vehicle pose. After the end of the localization session, our map management
algorithm will be invoked offline to update the map by adding new data or removing
superfluous information.

6 Chapter 1. Introduction

R
ea

l-t
im

e
lo

ca
liz

at
io

n

m
os

t r
el

ev
an

t
da

ta

En
d

of
tr

aj
ec

to
ry

?

Ve
hi

cl
e

po
se

 fo
r

au
to

no
m

ou
s

dr
iv

in
g

no

O
ffl

in
e

m
ap

 m
an

ag
em

en
t

A
dd

 o
r r

em
ov

e
tr

av
er

sa
l

ye
s

N
ew

 im
ag

e

M
ul

ti-
se

ss
io

n
m

ap

traversal 1

traversal 2

traversal 3

traversal N

K
ey

fr
am

es
 re

tr
ie

va
l

F
ig
ur
e
1.
4:

A
di
ag
ra
m

re
pr
es
en
ti
ng

th
e
op

er
at
in
g
m
ec
ha

ni
sm

of
th
e
ke
yf
ra
m
es

re
tr
ie
va
la

nd
th
e
m
ap

m
an

ag
em

en
t
pr
op

os
ed

in
th
is

do
cu
m
en
t.

1.4. Publications 7

This document is organized as follows. In Chapter 2, we present the state of
the art in relation with our problematic. Some SLAM basics are introduced in
Section 2.2. Section 2.3 presents the main works that led to the continuous im-
provement of the visual SLAM over the last few years. In Section 2.4, we present
the state of the art in relation with our problematic, namely the lifelong navigation
in dynamic environments. The three sub-sections incorporated in the Section 2.4
are highlighting:

1) some different types of feature descriptors that are employed to improve the
robustness of visual SLAM in changing conditions.

2) some methods in relation with landmark retrieval.

3) some map management techniques to reduce the size of the map.

In Chapter 3, we propose a keyframes retrieval approach that takes advantage
of statistics gathered in the first few meters of a traversal in a given location to
compute a probabilistic ranking function. This ranking function is used in the
rest of the traversal to retrieve from the map the most relevant keyframes, taking
into account the current environmental conditions. In order to ensure our ranking
function consistency, we keep updating it regularly throughout the trajectory.

Chapter 4 presents our proposed map management strategies. All the proposed
strategies have the aim of reducing the size of the multi-session map without con-
siderably degrading the localization performance. In the experimental part of this
chapter, we compared the localization performance for each of these techniques with
the state-of-the-art approach proposed by Mühlfellner et al. [Mühlfellner 2016].

Finally, Chapter 5 presents the conclusion and the perspectives of this research.

1.4 Publications

The work presented in this thesis has been the subject of the following publications:

• Journals:

Youssef Bouaziz, Eric Royer, Guillaume Bresson and Michel Dhome: "Map
management for robust long-term visual localization of an autonomous shuttle
in changing conditions": Submitted to MTAP journal "Multimedia Tools and
Applications" Special Issue on Machine Vision Theory and Applications for
Cyber Physical Systems, 2021.(Impact factor 2.3 JCR). On going

• International Conferences:

Youssef Bouaziz, Eric Royer, Guillaume Bresson and Michel Dhome: "Over
two years of challenging environmental conditions for localization: The IPLT
dataset". ICINCO 2021: "18th International Conference on Informatics in

8 Chapter 1. Introduction

Control, Automation and Robotics".

Youssef Bouaziz, Eric Royer, Guillaume Bresson and Michel Dhome:
"Keyframes retrieval for robust long-term visual localization in changing
conditions". SAMI 2021: IEEE 19th World Symposium on Applied Machine
Intelligence and Informatics.

Youssef Bouaziz, Eric Royer, Guillaume Bresson and Michel Dhome: "Long-
term localization with map compression based on solar information". Sub-
mitted to ICIRA 2021: "The 14th International Conference on Intelligent
Robotics and Applications". On going

• National Conferences:

Youssef Bouaziz, Eric Royer, Guillaume Bresson and Michel Dhome: "Institut
Pascal Long-Term dataset". RFIA 2020.

Chapter 2

State of the art

Contents
2.1 Introduction . 9

2.2 Fundamentals on SLAM . 9

2.2.1 Sensor data acquisition phase 12

2.2.2 Front-end . 14

2.2.3 Back-end . 16

2.3 History of visual SLAM . 19

2.4 Lifelong navigation . 25

2.4.1 Illumination invariant features descriptors for lifelong navigation 28

2.4.2 Landmarks retrieval . 31

2.4.3 Map management . 33

2.5 Conclusion . 35

2.1 Introduction

The goal of this chapter is to present the state of the art and some basics related
to our problem, with intense focus on SLAM solutions that solve the problem of
long-term visual localization. We have divided this chapter into several sections.
Section 2.2 presents some fundamentals on SLAM. In Section 2.3, we highlight the
important works that has led to the continuous improvement of SLAM in recent
years, with more focus on visual-based solutions. In Section 2.4, we present the
state of the art in relation with our problematic, namely the lifelong navigation
in dynamic environments. We classified the state-of-the-art contributions in this
regard into three main categories, which are presented in sub-sections 2.4.1, 2.4.2
and 2.4.3. Finally, section 2.5 gives the conclusion of this chapter.

2.2 Fundamentals on SLAM

The Simultaneous Localization and Mapping (SLAM) problem addresses two im-
portant issues in mobile robotics. These two problems can be formulated into two
questions, the first question is: where am I? The answer to this question defines the
localization part of the robot. The second question concerns the characteristics of

10 Chapter 2. State of the art

the robot’s environment: what does the environment in which I operate look like?
The answer to this question defines the mapping part. Thus, the SLAM problem is
formulated in Figure 2.1.

Figure 2.1: A diagram formulating the SLAM problem.

With a SLAM system, a robot placed in an unknown environment must create
a map of the environment and simultaneously attempt to localize itself with respect
to that map. This robotic system has several sensors that help it retrieve the
information it needs. As formulated in Figure 2.1, this task appears to be a "chicken-
and-egg" problem since the robot needs an accurate map to precisely localize itself,
but at the same time it needs to know its exact location in order to be able to
construct an accurate map. In order to make it easier to deal with this problem, the
researchers formulated the previous two problems into one problem: Where am I
located in the most likely map of the environment that I have observed so far? This
formulation helped minimize error in both the localization and mapping tasks.

The state of the robot is described by its own position and orientation, although
other secondary parameters may also be included in this description, such as its
speed and the calibration parameters of its sensors. On the other hand, the map
is a representation of distinctive primitives observed in the environment, such as
points of interest (e.g., the position of landmarks or obstacles). This representation
is used to describe the environment in which the robot operates. The mapping part
helps to limit the error made in estimating the robot state. Without a map, the
state of the robot would quickly drift over time. On the other hand, in the presence
of a map, the robot can correct its accumulated drift by revisiting known areas (this
process is called loop closure).

SLAM aims to provide a consistent representation of the environment based
on measurements of motion and loop closure. Therefore, loop closure is a very

2.2. Fundamentals on SLAM 11

important component in this process. A mapping system that omits the loop closure
step is in some ways similar to odometry. In early applications, odometry was
obtained from wheel encoders. The position estimate obtained from odometer data
drifts rapidly, which increases the localization error after a few meters. This was one
of the main reasons for the development of SLAM. The observation of landmarks is
useful for reducing the errors that are related to the odometry. A robot that performs
odometry and neglects the loop closure interprets the mapping domain as an endless
world in which it explores an infinite number of new domains. In Figure 2.2, we
show an example of a mapping case where the SLAM made a significant drift that
was corrected in the loop closure step.

Figure 2.2: Pre and post loop closing [Bokovoy 2017]. Left: A raw map created with
SLAM. The inner curve represents the trajectory of a mobile robotic system. The outer
points represent the landmarks of the map. Right: The trajectory and the map were
optimized with a loop closure algorithm.

Thus, loop closure is necessary in SLAM algorithms because many applications
require reconstructing a consistent world-scale map. For example, in many explo-
ration applications, the purpose of the robot is to explore an environment and return
a consistent map to the human operator.

The classical architecture of a modern SLAM system consists of three main
components: the sensor data acquisition part, the front-end part, and the back-end
part of SLAM. Data can be collected from two types of sensors: proprioceptive
and exteroceptive. The front-end part is summarized in mathematical models to
interpret the sensor data, while the back-end part, which corresponds to the SLAM
core, performs inference from the abstract data generated by the previous phase.
The back-end process can also provide feedback to the front-end part for loop clo-
sure detection and verification. This architecture is summarized in Figure 2.3 and
explained in the following sub-sections.

12 Chapter 2. State of the art

Figure 2.3: The architecture of a classic SLAM system [Cadena 2016].

2.2.1 Sensor data acquisition phase

A wide variety of sensors can be used in navigation. Sensors are traditionally divided
into two categories depending on whether they measure the state of the robotic
system itself (proprioceptive sensors) or the state of its environment (exteroceptive
sensors).

2.2.1.1 Proprioceptive sensors

We can give some examples of proprioceptive sensors: inertial measurement unit
(IMU), gyroscopes, odometers, counters, etc. These sensors provide measurements
that correspond to variations in position, orientation and increments. An IMU
provides information on acceleration, a gyroscope provides information on angular
velocity, and an odometer provides information on the cumulative distance traveled.
Information coming from these sensors are generally used with the mathematical
motion model of the mobile robot to predict the followed trajectory. However, there
is an intrinsic limitation to the use of this technique. In fact, measurement noise
accumulates for each prediction computed according to the vehicle model, which
ultimately leads to a highly noisy position estimate. In practice, position estimation
based solely on this principle is impractical during long journeys (we can exclude
certain very expensive inertial units that can provide very low measurement noise).
Nevertheless, these sensors have some interesting characteristics that make them
valuable tools for instantaneous measurements:

• a high sampling frequency.

• passivity (no emission of electromagnetic or other waves).

• independence from the external environment. For example, a gyroscope works
equally well on land, in the air or under the sea.

2.2. Fundamentals on SLAM 13

2.2.1.2 Exteroceptive sensors

They can be classified into two categories. There are those that provide an absolute
position in the terrestrial reference frame (GNSS) and those that provide a local
position and/or orientation in a given coverage area.

GNSS GNSS stands for Global Navigation Satellite System. It is a set of compo-
nents based on a constellation of artificial satellites that allow a user to be provided
with their 3D position, 3D velocity and time via a small portable receiver. This
category of global positioning systems is characterized by its metric precision, its
global coverage and the compactness of the terminals, and also by its sensitivity to
obstacles located between the receiving terminal and the satellites.

Examples of GNSS include Europe’s Galileo, the USA’s NAVSTAR Global Posi-
tioning System (GPS), Russia’s Global’naya Navigatsionnaya Sputnikovaya Sistema
(GLONASS) and China’s BeiDou Navigation Satellite System.

The first satellite positioning system was developed by the United States with
TRANSIT back in 1964 for military use only, then the Global Positioning System
(GPS) has became operational since 1995 using a constellation of 24 satellites, de-
scribing the same orbit twice a day. Later, a few more satellites were added to this
constellation (see Figure 2.4). Among this satellite constellation, between 5 and 8
satellites are always visible from any point on Earth [Arora 2016], allowing good
positioning accuracy to be achieved through trilateration.

Figure 2.4: GPS constellation [Raghu 2014].

14 Chapter 2. State of the art

GPS suffers from multiple limitations, such as the coverage quality of some zones
(e.g. when traveling in closed or covered areas such as tunnels, in very isolated geo-
graphical areas, etc.), the interference of information, the multiple reflections related
to infrastructure and the presence of non-covered areas (e.g., in space exploration).

RADAR RADAR — RAdio Detection And Ranging — allows to obtain an esti-
mate of the linear velocity of the mobile robot with respect to an object in the scene.
It uses the principle of the Doppler effect to measure speed. It emits a continuous
electromagnetic wave which is reflected by any target in the pointed direction. By
Doppler effect, this reflected wave has a frequency slightly different from that emit-
ted: higher frequency for mobile objects approaching the radar and lower for those
moving away. By measuring the frequency difference between the emitted wave and
the returned one, we can calculate the speed of the target.

LIDAR LIDAR — LIght Detection And Ranging — works on the same principle
as RADAR, but uses light instead of electromagnetic waves.

Vision sensor (Camera) Through the image sequences that it provides, a cam-
era can offer a lot of information on the environment crossed by a mobile robot.
Despite the fact that the processing necessary to make use of the information pro-
vided by this sensor is usually time-consuming and complicated to set up, cameras
have the advantage of being the only sensors that provide sensory information from
the environment that is very similar to that perceived by humans.

When used alone, a camera provides two-dimensional information. However,
by calculating the optical flow between multiple images, it is possible to mea-
sure the camera angle or its distance from the perceived landmarks [Alberto 2009],
or even its speed. Several studies focused on using a single camera for localiza-
tion [Mouragnon 2006, Eade 2006, Davison 2007]. However, in order to improve the
results or make the treatments less heavy, two or more cameras are usually used.
We talk about stereo-vision when two cameras are pointed in the same direction
with an overlapping field of view (FoV).

2.2.2 Front-end

In robotic applications, it might be difficult to describe sensor measurements directly
as an analytic function of the state, as required by the back-end (SLAM core). If
the raw sensor data are images, it might be difficult to express the intensity of each
pixel as a function of the state of the SLAM core. This problem arises because we
are unable to conceive a sufficiently general representation of the environment. Even
in the presence of such a representation, it would be difficult to write an analytic
function that relates the measurements (observations) to the parameters of that
representation. For this reason, before running the SLAM core, it is recommended
to have a pre-processing module (front-end) whose task is to extract features from
the raw sensor data.

2.2. Fundamentals on SLAM 15

Landmark extraction is an important pre-processing phase for SLAM algorithms.
Landmark detectors detect a minimum number of landmarks from a large stream
of raw data coming from an exteroceptive sensor. There are different types of
landmarks depending on the exteroceptive sensor used. For lidars, landmarks are
either lines, corners, or even local maxima corresponding to walls or objects. For a
camera, landmarks are pixels extracted from either outlines, corners, static objects
in the scene, etc. Visual landmark extraction algorithms are usually divided into
two main processes:

• The detection process: this process involves the extraction of points from
the space using the images that are captured from the environment. This
extraction process must be invariant to changes in scale and viewpoint. In
other words, a moving robotic system must be able to detect the same points
even if they are perceived from different angles and distances.

• The description process: the task of this process is to describe the appearance
of a detected point based on several visual information. A visual descriptor
computed on a point must also be invariant to scale and viewpoint changes.
Therefore, this process allows the recognition of a same point that is perceived
from different scales and viewpoints, which is a common operating scenario
for a moving robotic system.

Several visual-based landmark detection and extraction algorithms have been
proposed and used in the context of visual SLAM. For example, the Scale In-
variant Feature Transform (SIFT) [Lowe 2004] is proposed for detecting and de-
scribing salient key-points from images for object recognition applications. As
indicated in the name of this descriptor, the features produced by this algo-
rithm are supposed to be invariant to image scale and partially invariant to il-
lumination changes and viewpoint changes. More recently, another feature de-
scription method, called the Speeded Up Robust Features (SURF), has been pro-
posed by Bay et al. [Bay 2006]. SURF is computationally simpler and faster than
SIFT [Sheena 2016], therefore, in many recent real-time visual SLAM applications
as [Murillo 2007] and [Engelhard 2011], SURF was used in the pre-processing step
for landmark extraction. Despite the fact that SIFT and SURF were designed to
be able to match features with a certain level of invariance to illumination changes,
some studies [Petry 2013, Diaz-Escobar 2018, Xiang 2020] demonstrated that both
of them suffer from strong illumination changes.

Unlike SIFT and SURF, which are used for both detection and description
processes, corner detectors such as Harris [Harris 1988] and Shi-Tomasi [Shi 1994]
can be used for the landmark detection task in SLAM applications. For ex-
ample, Davison et al. [Davison 2002] have proposed a monocular SLAM sys-
tem that uses the Harris corner detector for feature detection and they have
described landmarks using 15×15 patches centered on the points. Similarly,
the SLAM system used in this thesis uses the Harris corner detector to de-
tect landmarks on the images. These landmarks are then matched with

16 Chapter 2. State of the art

ZNCC — Zero-mean Normalized Cross-Correlation — computed on 11×11 pixel
windows around each of them.

To sum up, in a vision-based SLAM system, the front-end part extracts the pixel
location in the image of some distinguishable points in the environment. These pixel
observations can now be easily modelled by the SLAM core. The front-end part is
also responsible for the data association task, this means that its job is to match
each measurement with a particular 3D point in the environment. In other words,
the data association module tries to identify an observation zk in a set of unknown
variables Xk such that zk = hk(Xk). Finally, the front-end module can also provide
an initial estimate of the variables. For example, in a monocular SLAM, the front-
end part can take care of the initialization of landmarks by triangulation. The type
of calculation performed in the front-end part strongly depends on the type of the
used sensor since the notion of landmark changes from one sensor to another.

According to Figure 2.3, the data association module in the front-end can act in
two modes: in short-term manner and in long-term one. The short-term data asso-
ciation means that the front-end module is responsible for associating corresponding
features in consecutive sensor measurements. For example, in a monocular SLAM,
the short-term data association module would take into account that two differ-
ent pixel measurements in two consecutive frames may be referring to a same 3D
point. After data association, it is common in visual SLAM algorithms to perform
a nonlinear optimization called Bundle Adjustment (BA) [Triggs 1999] to minimize
the reprojection error. On the other hand, long-term data association which refers
to loop closure is in charge of associating new measurements to older landmarks.
We notice in the figure that the back-end usually feeds back to the front-end about
information in relation to loop closure detection and validation.

2.2.3 Back-end

The present hierarchy of SLAM was first introduced in the work of Lu and
Milios [Lu 1997] followed by the work of Gutmann and Konolige [Gutmann 1999].
SLAM in general is formulated as a posterior estimation problem and can be rep-
resented by a graph to demonstrate the independence between variables. Sup-
posing that we want to look for an estimate of a variable X . In the context of
SLAM, X is a variable that includes the trajectory of the robot (as a set of discrete
points) and the positions of landmarks in the scene. Given a set of observations
Z = {zk; k = 1, . . . ,m} such that each observation can be expressed as a function
of X : zk = hk(Xk) + εk, where hk is a known function (observation model) and εk is
the measurement error. In the processing phase of the SLAM core, X is calculated
to maximize the posterior p(X|Z). According to Bayes theorem:

X ∗ = argmax
X

p(X|Z) = argmax
X

p(Z|X)p(X) (2.1)

p(Z|X) is the likelihood of the measurements Z given the variable X , p(X)

represents the previous probability of X which includes any prior knowledge about

2.2. Fundamentals on SLAM 17

this variable. In the case of the lack of previous information, p(X) becomes a uniform
probabilistic distribution and can be excluded from the factorization.

Supposing that the measurements Z are independent, this means that the mea-
surements noises are not correlated and therefore equation (2.1) can be factorized
as follows:

X ∗ = argmax
X

p(X)
m∏

k=1

p(zk|X) = argmax
X

p(X)
m∏

k=1

p(zk|Xk) (2.2)

This representation can be interpreted as a factor graph1 [Kschischang 2001].
The variables correspond to the nodes of the graph, the two terms p(zk|Xk) and p(X)

are called factors. These factors encode the probabilistic constraints throughout a
sequence of nodes. The factorized graph is a graphical representation which encodes
the dependencies between the factors and the corresponding variable X .

A first advantage of the interpretation by factor graph is that it allows an in-
sightful visualization of the problem. Figure 2.5 shows an interpretation of a simple
SLAM problem by a factor graph representation. The figure shows the different
variables in a SLAM system, including the position of the robot, the position of the
landmarks and the factors that impose the constraints between the different vari-
ables. As a second advantage, the factorized graph model serves to give a general
representation of such a complex problem integrating several heterogeneous factors
and variables.

Figure 2.5: Factor graph formulation of the SLAM problem [Kaess 2012]. The colored
circles represent the variable nodes (xi nodes represent the poses of the cameras and li
nodes represent the landmark positions), the small solid black circles represent the factor
nodes (p denotes prior factors, ui represent the odometry measurements, ci represent a loop
closure constraint and mi represent landmark measures).

After finishing data association by the front-end part, the back-end part performs
a bundle adjustment step to minimize the reprojection error. The BA seeks a

1A factor graph is a bipartite graph made up of two types of nodes: nodes representing variables
and nodes representing factors. The variable nodes are connected to the factor nodes by edges in
the graph, where each factor node is a function of all the variables to which it is connected.

18 Chapter 2. State of the art

maximum likelihood solution of the observations by using all the measurements over
the entire evolution of the robot. The goal of BA is to minimize the error between the
predicted observation and the image measurements of n 3D points observed from
m sensor poses (Usually expressed with 6 DoF — Degrees of Freedom —). The
measures and parameters to be estimated are considered to be normally distributed
and the problem is often solved with nonlinear least squares minimization techniques
such as the Gauss-Newton method.

In a usual back-end part (SLAM core) of a SLAM system, we can distinguish 3
basic modules: Initialization, Tracking and Mapping:

• Initialization: To start a SLAM session, it is necessary to define the coordi-
nate system for the vehicle estimate pose and the 3D reconstruction. This
means that the first step in this initialization phase is to determine the global
coordinate system, then, to reconstruct a part of the environment as an initial
map with respect to this determined global coordinate system. After a suc-
cessful initialization, the tracking and mapping are performed to continuously
estimate the vehicle poses in the reconstructed initial map.

• Tracking: In this phase, the SLAM takes into account the initial vehicle pose
xi−1 and the reconstructed initial map to track features in the recorded im-
ages to estimate the camera pose xi with respect to the map. To accomplish
this task, it is crucial for visual SLAM algorithms to use cameras with pre-
calibrated extrinsic parameters. However, if the extrinsic parameters are not
accurate, SLAM systems tends to fail to track the camera movements or large
errors can be observed on the map. Conversely, using well calibrated camera
parameters, the vehicle pose in the global coordinate system can be easily
computed after tracking the camera pose.

• Mapping: the initial map is expanded by estimating the 3D structure of the
environment where the camera observes. Adding all tracked features to the
map leads to a considerable redundancy in the mapped landmarks which re-
sults in a quick expand in the size of the map. Therefore, modern SLAM
algorithms are using the notion of "keyframes" [Klein 2007, Mur-Artal 2015].
This means that a frame is added to the map as a keyframe only if its pose
is, at some level, different from the poses of already existing keyframes in
the map. This keyframe representation allows to avoid mapping redundant
information from successive frames, and helps to handle incremental drift by
readjusting a more compact set of poses in real time using classical loop closure
constraints [Meilland 2013]. During mapping, if a 2D point measurement is
matched with a 3D point landmark, then the set of descriptors of the landmark
is enlarged by adding the descriptor of the 2D point measurement.

In addition to the three modules mentioned above, the back-end part usually in-
cludes two additional modules depending on the application goals: re-initialization
and global map optimization. For example in a visual SLAM system, the re-

2.3. History of visual SLAM 19

initialization process is required when tracking fails due to a rapid camera move-
ment or some other issues related to the robot or the environment. In such a
case, the robot has to re-estimate the position of the camera in the mapped scene.
Therefore, this process is called re-initialization. In a SLAM application where no
re-initialization module is incorporated, the system will stop working after a sin-
gle tracking failure. Such a system is not useful in most of autonomous driving
applications.

The second additional module is the global map optimization. SLAM mapped
scenes usually include cumulative estimate errors on the camera movement and
consequently on the mapped landmarks. A global map optimization is required in
such a case to reduce the error. The global map optimization process makes sure that
the map is refined taking into account the consistency of all the mapped information.
When a previously mapped region is revisited after some camera movement, the
cumulative error from the old position to the current position can be calculated.
After that, a loop closure constraint from these information is used to perform a
whole map optimization. In the loop closure process, the system seeks for a loop
by matching the current frame with the previously mapped keyframes. If the loop
is validated, it means that the robot has returned to one of the already observed
scenes. In this case, the cumulative error that occurred while the robot was moving
in this loop can be estimated. We can note that the loop detection phase can be
performed using some techniques that are similar to those of the re-initialization
module. Basically, re-initialization is performed to recover only one robot pose in
the map, while loop detection is performed to obtain a geometrically consistent map.

2.3 History of visual SLAM

The first works on SLAM in the robotics community are attributed to Smith and
Cheeseman [Smith 1986]. In this work, the authors have used a Kalman filter
to solve the localization and mapping problem. They have proposed to estimate
the uncertainty and the correlation between the position of the sensor and the
structure of the environment. Subsequently, a significant number of solutions were
proposed to achieve real-time SLAM. For instance, EKF (extended Kalman filter)
approaches [Newman 1999, Davison 2003] have become widely used solutions for
real-time SLAM applications.

EKF-based approaches are characterized by a state vector composed of the land-
marks locations. Uncertainty is represented by a probabilistic density function. The
EKF is particularly sensitive to bad associations, an incorrect measurement can
lead to the discrepancy of the entire filter. Moreover, the complexity of the EKF is
quadratic based on the number of landmarks on the map. Its use is therefore difficult
in large-scale environments. These limitations have led a large number of studies to
move towards more scalable SLAM algorithms adapted to large-scale environments,
in particular the works on local filtering of the map [Williams 2001, Tardós 2002],
and the works on compressed filters [Guivant 2001, Folkesson 2003, Yoon 2006].

20 Chapter 2. State of the art

Monte-Carlo methods [Dellaert 1999, Fox 1999, Thrun 2001] were proposed as a
solution to the localization problem. Compared to EKF methods, Monte-Carlo has
brought much more scalable means to the problem of state representation. In this
scope, some other approaches based on particle filters were also proposed to provide
a solution to the scalability issues associated with EKF-based SLAM systems. One
of the most famous approaches based on particle filters is the FastSLAM proposed
by Montemerlo et al. [Montemerlo 2002]. The main idea in their system is the
Rao-Blackwellized representation of the posterior. This design allowed to represent
the posterior distribution as a particle filter on the robot’s path, while allocating
an independent Kalman filter to each primitive associated with each particle. The
FastSlam algorithm can be summarized in three main steps:

1) Sampling: the proposal distribution is computed for each particle to sample a
pose.

2) Importance Weighting: an importance weight is assigned to each particle k
according to:

w
[k]
t =

target distribution
proposal distribution

(2.3)

3) Re-sampling: low importance weighted particles will be rejected and replaced
by samples with higher rates.

The complexity of this algorithm is logarithmic, O(M log(K)), where M is the
number of particles used and K is the number of landmarks in the map. The
major problem with this approach is that there is no way to determine the num-
ber of particles needed to accurately represent the state of the system. In other
words, using multiple particles require a significant memory occupation and com-
puting time, and using a few particles leads to inaccurate results. Although particle
filter-based methods have proven to be successful for several applications, Julier
and Uhlmann [Julier 2001] have shown that over very long trajectories, the state
estimates provided by filter-based methods are inaccurate.

An alternative to particle filter-based methods are the pose graph methods. This
type of approach has become very popular in the recent years, showing mapping
capabilities at very large scales compared to filter-based methods. In the pose graph
SLAM methods, the problem is represented as a set of nodes and edges, where the
nodes represent the poses of the sensors and landmarks, and the edges represent the
constraints that determine the spatial relationship between these poses. Once the
graph has been reconstructed, the problem comes down to finding the configuration
of the nodes which ensures maximum consistency with the constraints.

The formulation of the problem of SLAM by pose graph was initially introduced
by Lu and Milios [Lu 1997]. The pose graph formulation of SLAM has taken several
years to become popular due to the relatively high complexity of solving the error
minimization problem. Advances in linear algebra and improvements in optimiza-
tion methods have allowed this formulation to become one of the most widely used.

2.3. History of visual SLAM 21

Dellaert and Kaess [Dellaert 2006] have introduced the square root smoothing and
mapping (SAM), a graph-based visual SLAM technique that leverages the problem’s
sparse structure to calculate a solution. Thrun and Montemerlo [Thrun 2006] have
proposed an offline pose graph SLAM solution whose goal is to produce a lower-
dimensional problem using variable elimination techniques to reduce the graph.
Subsequently, a large number of works on SLAM solutions based on pose graphs
were published [Olson 2006, Grisetti 2007, Konolige 2010, Kümmerle 2011]. One of
the most important qualities of graph-based approaches over filter-based approaches
is the fact that the optimization, to solve the SLAM problem, keeps all the infor-
mation about all the poses that have been recorded unlike filter-based approaches
which give less importance to previous poses.

Kaess et al. [Kaess 2008] presented the iSAM system which is based on their
previous work (SAM [Dellaert 2006]). The iSAM framework is an online solution
for visual SLAM which performs smoothing using QR factorization of the square
root information matrix. Later, Kaess et al. [Kaess 2012] proposed the iSAM2 which
is formulated in the form of a factor graph as in Figure 2.5. The major contribution
of iSAM2 is that it offers an efficient and precise method for the incremental update
of the factorization of the system by recalculating only the elements of the matrix
which have been changed. This means that it is no longer necessary to solve the
entire system each time a pose is added to the graph.

A similar technique to visual SLAM called Structure from Motion (SfM)
was firstly introduced in [Ullman 1979] and has seen tremendous evolution
over the years [Tomasi 1992, Schaffalitzky 2002, Pollefeys 2004, Snavely 2006,
Pollefeys 2008]. It has its origins in the fields of photogrammetry and computer
vision. The SfM technique calculates the 3D structure of the camera position and
the scene from a set of images. The main difference between SLAM and SfM is
that SLAM requires a linear and ordered set of data to be processed in real-time;
however, image-based SfM can be applied to an unordered set of data where it is
also possible to input all images at once for processing. The standard procedure of
SfM is to extract landmarks from the images, identify them through the matching
process, and perform a nonlinear optimization (Bundle Adjustment) to minimize
reprojection error.

Nistér et al. [Nistér 2004] introduced the Visual Odometry (VO) technique. In
VO, there is no notion of long term memory, it consists in simultaneously determin-
ing the position of the camera for each received image and the position of landmarks
in 3D, incrementally and in real-time. Mouragnon et al. [Mouragnon 2006] proposed
a variant to the visual odometry approach proposed by Nistér et al. by adding a
local bundle adjustment technique.

Klein and Murray [Klein 2007] proposed a monocular system called Parallel
Tracking and Mapping (PTaM). PTaM is an image-based approach with two par-
allel threads as illustrated in Figure 2.6. The first thread performs a tracking and
landmarks detection task, while the other task produces an optimized 3D map with
BA. PTaM is a widely used framework for localization and augmented reality in
small workspaces.

22 Chapter 2. State of the art

Tracking:
- Landmark detection
- Landmark tracking

...
- Pose estimation

Mapping:
- Initialization

- Keyframe selection
- Map building

- BA

Figure 2.6: Overview of the main components of PTaM [Klein 2007].

More recently, a monocular SLAM approach with interesting properties was
proposed under the name of ORB-SLAM [Mur-Artal 2015]. ORB-SLAM has been
widely used for localization and mapping, with impressive mapping results. As
shown in Figure 2.7, ORB-SLAM is based on three processing threads: the tracking
thread, the local mapping thread and the loop closing thread. This architecture
allowed ORB-SLAM to work in real time, in small/large, indoor/outdoor envi-
ronments. The system generates a compact and traceable map. In addition, it
offers the means to ensure the loop closure and the re-localization based on index-
ing approaches. However, despite the algorithmic quality of ORB-SLAM and its
robustness in different navigation environment scenarios, it still suffers from time
consuming and computational complexity. Moreover, the efficiency of this frame-
work drops considerably in dynamic environments with moving objects and changing
environmental conditions [Cui 2019].

In addition to these developments in visual SLAM which are mainly based on the
detection and tracking of visual primitives (landmarks) which can be called sparse
approaches, new so-called direct approaches or dense approaches have been adopted.
These methods do not use visual primitives (featureless approaches), they rely on
texture tracking. Engel et al. [Engel 2014] proposed LSD-SLAM which stands for
Large-Scale Direct SLAM and it consists in estimating the pose of a monocular
camera by image alignment. LSD-SLAM incorporates a multi-scale approach com-
bined with a technique of estimation and statistic filtering of semi-dense depth maps
where only the points with a high gradient value are taken into account. A global
optimization is performed in a pose graph composed of keyframes as nodes and
the relative transformations between these images as edges. LSD-SLAM has been
extended to make it compatible with stereo cameras instead of only monocular cam-
eras. In the stereo LSD-SLAM version proposed by Engel et al. [Engel 2015], several
advantages can be noted: the initialization is instantaneous, the scale is fixed auto-
matically and large rotations are better managed. In addition, stereo LSD-SLAM
includes automatic exposure correction which makes the error function less sensitive
to illumination changes.

In this thesis, we have used a keyframe-based SLAM framework [Lébraly 2011,
Royer 2016] that is very similar to some widely used frameworks such as ORB-
SLAM [Mur-Artal 2015]. The mapping phase of our system starts with interest
points detection, matching and bundle adjustment. We extract a keyframe from the

2.3. History of visual SLAM 23

Figure 2.7: Overview of the ORB-SLAM system [Mur-Artal 2015].

video flow every∼ 1 meter, and for each keyframe, we compute its 6DoF pose and the
set of its related 3D points through triangulation. Therefore, a keyframe is added to
the map by storing its extracted features and its corresponding 6DoF pose (similarly,
a keyframe is retrieved from the map by retrieving its corresponding features and
6DoF pose). All the stored features will be linked with their corresponding 3D points
in the map. To make sure that we build an experience-based map, all keyframes
belonging to a same run are grouped in a same structure called traversal. This
will make easier accessing to the features recorded in a particular run (benefits of
experience-based mapping). Moreover, our mapping system also involves an online
loop-closure operation which detects and closes loops in the map. In the localization
phase, our system consists, in a first step, in predicting the current pose using the
last computed pose and the wheel odometry input. Afterwards, the most relevant
keyframe according to the predicted pose will be retrieved from the map to perform
a 2D/3D matching with the detected interest points from the current input image.
Finally, we use RANSAC and PnP (Perspective-n-Point) to compute the current
pose of the vehicle which will be optimized in the last step. A diagram illustrating
the localization and mapping process of our SLAM system is presented in Figure 2.8.

24 Chapter 2. State of the art

In
iti

al
iz

at
io

n
N

ew
 fr

am
e

Fe
at

ur
es

 d
et

ec
tio

n
+

Fe
at

ur
es

 tr
ac

ki
ng

+
D

at
a

as
so

ci
at

io
n

Po
se

op
tim

iz
at

io
n

Tr
ac

ki
ng

fa
ile

d?

R
e-

in
iti

al
iz

at
io

n
A

dd
ke

yf
ra

m
e?

M
ap

op
tim

iz
at

io
n

O
nl

in
e

lo
op

 c
lo

su
re

Po
se

es
tim

at
io

n
Ye

s

N
o

N
o

Ye
s

Po
se

es
tim

at
io

n

3D
 M

ap

Po
se

es
tim

at
io

n

3D
 M

apFr
on

t-e
nd

B
ac
k-
en
d

F
ig
ur
e
2.
8:

A
flo

w
ch
ar
t
di
ag
ra
m

ill
us
tr
at
in
g
th
e
op

er
at
in
g
pr
oc
es
s
of

th
e
SL

A
M

sy
st
em

us
ed

in
th
is

th
es
is
.

2.4. Lifelong navigation 25

In Figure 2.9, we present an example of a 3D map generated using our SLAM
system. This map was created using a ∼ 200 meters long sequence from our own
dataset [Bouaziz 2020] which was recorded in a parking lot in the Clermont Auvergne
University campus.

Figure 2.9: An aerial view of a 3D map generated with our SLAM system. The small red
axes denote the 3D poses of the registered keyframes while the green points represent the
mapped landmarks.

2.4 Lifelong navigation

In most real-world robotic scenarios, robots should be able to long-termly operate in
dynamic and daily changing environments, and SLAM should be one of their most
fundamental capabilities. However, most existing SLAM frameworks are evaluated
in static environments or in scenes with only a few dynamic objects, such as moving
people. It is only recently that attempts have been made to extend localization
performance in dynamic environments.

A fundamental problem in long-term visual navigation is the presence of natural
scene changes due to lighting, seasonal, and weather variations. Light Detection
And Ranging (LiDAR) systems can overcome this limitation, but such sensors are
still relatively expensive and require large payload capacities that are impractical in
small robotic systems with limited mass. Although Radar systems are also promising
in this regard [Cen 2018], they are still more expensive than vision-based systems.

In vision-based SLAM, traditional feature-based comparison techniques are
deemed to be unsuitable for long-term operations due to their weakness to changing

26 Chapter 2. State of the art

conditions. On this basis, an image-based approach was proposed by Murillo and
Kosecka [Murillo 2009] to improve localization in dynamic environments using the
Gist representation [Oliva 2001] of panoramic images. Unlike local features descrip-
tors such as SIFT and SURF, Gist is a global descriptor calculated with the entire
image. It corresponds to an abstract representation of the scene. In this approach,
recognizing a place requires a deep search in the database to find the corresponding
image, which is costly in large-scale environments. Milford andWyeth [Milford 2012]
proposed to enhance the performance of global image descriptors for places recog-
nition by matching sequences (SeqSLAM) of images instead of unique images and
they achieved impressive results on various seasonal datasets. SeqSLAM is based
on calculating frame-to-frame dissimilarity scores between all query and database
images and storing them in a so-called difference matrix, then computing a straight
line path through the difference matrix to finally select the path with the smallest
sum of the dissimilarity scores. An example of matched frames with SeqSLAM and
the corresponding difference matrix is presented in Figure 2.10.

Although SeqSLAM has shown excellent performance in some situations, it re-
mains sensitive to viewpoint changes. Pepperell et al. [Pepperell 2016] extended the
classic SeqSLAM structure that uses linear image databases. They integrated an
oriented graph structure to represent the roads. They also used panoramic images
to minimize the variance of viewpoints. Despite all these improvements, the global
image methods still remain sensitive to significant variations in viewpoint. More-
over, these methods can only be used to find a sequence-to-sequence correspondence
between the query and the database datasets (as in Figure 2.10), this means that
they cannot provide a 6DoF estimation of the vehicle pose.

While single-session SLAM has been widely addressed [Bosse 2004, Thrun 2006,
Kaess 2008, Kaess 2012], multi-session mapping deals with persistence issue. This
means that the robotic system must be able to remember multiple representations of
the environment in which it operates. A multi-session map allows a robot to operate
robustly over long periods of time. In a long-term scenario where a mobile robotic
system repeatedly travels through previously visited areas, the robot cannot simply
treat each mission as an entirely new experience that does not involve previously
created maps. However, the robot also cannot treat its entire lifetime experiences as
one large mission where all data is represented in a single pose graph and processed
in a single batch optimization. Therefore, multi-session mapping implies that when
the mobile robot starts a new experience, it tries to localize itself in a previously
created map. This solution has the advantage of always using the same reference
map. It also ensures that only one multi-session map is created through the multiple
runs, instead of several independent ones.

In order to build a multi-session map, Churchill and Newman [Churchill 2012]
proposed an approach in which a place can have different appearances. They de-
veloped a mapping system based on a "plastic" map representation (a compromise
between adapting to new models and preserving old models). This map is repre-
sented by two structures:

2.4. Lifelong navigation 27

(a) Example of query and database matching frames from University of Bonn
dataset [Vysotska 2015].

(b) Difference matrix. Blue lines correspond to a match between a sequence of query frames
with a sequence of database frames.

Figure 2.10: Example of a result obtained with SeqSLAM.

• Short-Term Memory : reacts quickly to changes, uses a high update rate (high
plasticity).

• Long-Term Memory : Should not react to temporary variations, uses low up-
date rate (low plasticity).

This structure allows to memorize different experiences for each place rather than
trying to match different appearances between seasons and/or brightness changes.
They have also proposed a similar approach in [Churchill 2013] in which they added
new experiences whenever a localization failure occurred in some mapped area. How-
ever, in both [Churchill 2012, Churchill 2013], the proposed representations generate
a direct dependence between the size of the map and the variations in the scene,
which requires to match the query image with all experiences to find the best match.

28 Chapter 2. State of the art

Most of recent attempts that were made to improve localization performance
in changing environments and to ensure a reliable lifelong navigation in dynamic
environments can be categorized into one of the three following categories:

• Invariant features descriptors.

• Landmarks retrieval techniques.

• Map management techniques.

Therefore, in sub-section 2.4.1 we present some recent invariant features descriptors
that are proposed to improve matching accuracy against illumination changes. In
sub-section 2.4.2, we review some landmark retrieval techniques from the state of
the art. And in sub-section 2.4.3 we provide a description of map management and
we present some related state-of-the-art approaches.

2.4.1 Illumination invariant features descriptors for lifelong navi-
gation

Local image descriptors can be applied in many areas in computer vision: pattern
recognition, objects detection and tracking, 3D reconstruction of scenes, camera
calibration, SfM, SLAM, etc. This type of approach is based on the pairing (or
mapping) of points of interest characterized by a local descriptor. Depending on
the application, certain invariance is necessary. In some contexts such as SfM and
SLAM, it is essential to be invariant, at a certain level, to lighting transformations.

In the work of Maddern et al. [Maddern 2014], a lighting invariant approach
is proposed to improve visual localization in different hours of the day. In this
approach, the authors propose to compute an illumination invariant color space by
converting an RGB image with three channels (IR, IG and IB) into a corresponding
illumination invariant image Iinvariant, as follows:

Iinvariant = 0.5 + log(IG)− α log(IB)− (1− α) log(IR) (2.4)

The optimal value of α was chosen with an exhaustive search. The resulting image
Iinvariant has a less variance to sunlight and shadows than the initial RGB image
as shown in Figure 2.11. However, this approach requires using a color camera
since the equation (2.4) requires an RGB image as input. Moreover, the proposed
illumination invariant color space is only able to reduce the appearance change due
to sunlight, meaning that no other source of appearance change, including seasonal
or day-to-night changes, can be tackled by this approach.

Pascoe et al. [Pascoe 2017] proposed a SLAM framework called NID-SLAM.
This framework incorporates a whole-image metric, named Normalized Information
Distance (NID), to estimate the camera motion. Unlike photometric error, the
NID metric is not a function of the intensities of an image but rather a function of
their entropies; therefore, images collected under very different lighting, weather and

2.4. Lifelong navigation 29

Figure 2.11: Improving image similarity at two different times of the day [Maddern 2014].
The RGB color model is converted to the illumination invariant color space using Equa-
tion (2.4).

seasonal conditions can be located relative to a common map and used to update
depth maps despite changes in appearance.

In the same context, Diaz-Escobar et al. [Diaz-Escobar 2018] proposed a lu-
minance invariant descriptor called LUIFT and stands for LUminance Invariant
Feature Transform. As indicated in the name of this descriptor, LUIFT is used to
extract the most significant local features in images degraded by nonuniform illumi-
nation, geometric distortions, and heavy scene noise. LUIFT utilizes image phase
information rather than intensity variations to gain more robustness to nonuniform
illuminations. The feature detector part of LUIFT is constructed using a modi-
fied Harris corner detector, while the feature descriptor part is constructed using a
modified HOG-based method (Histogram of Oriented Gradients).

Many recent works replaced the descriptors generation methods with
the neural networks like DeepDesc [Simo-Serra 2015], Matchnet [Han 2015],
PN-Net [Balntas 2016], L2-Net [Tian 2017], LF-Net [Ono 2018], Super-
point [DeTone 2018], etc. For example, DeepDesc uses CNN — Convolutional
Neural Networks — to learn the representation of different patches in the image.
This means that DeepDesc is no longer based on hand-crafted features, but it is
trained based on the correlations of the different patches. PN-NET proposes a
triplet deep network architecture, in which, triplets of image patches are presented
to the network, all these triplets are composed from two positive (matching) and
one negative (non-matching) patches. The network then tries to learn a mapping
that minimizes the distance between the two positives and maximizes the two
distances between the positive and negative samples. Most of these descriptors
are learned to build a good scale and viewpoint invariance while not paying much

30 Chapter 2. State of the art

attention to the illumination invariance.
Some other works like TILDE [Verdie 2015], LIFT [Yi 2016a], D2-

Net [Dusmanu 2019] and SOSNet [Tian 2019] have paid more attention to illumina-
tion invariance. For instance, TILDE has introduced a learning-based method for
feature point detection by training a regressor through supervised learning to work
normally even if the lighting changes dramatically. The process consists firstly in
identifying good keypoint candidates in multiple training images and secondly in
training the regressor to predict a score map whose maxima are these points.

Unlike TILDE, which only performs feature detection, LIFT [Yi 2016a] —
Learned Invariant Features Transform — is a novel architecture that can per-
form detection, orientation estimation, and description at the same time. As
presented in Figure 2.12, LIFT combines a keypoint detector that is similar to
TILDE [Verdie 2015], an orientation estimator like the one proposed in [Yi 2016b]
and a similar descriptor to DeepDesc [Simo-Serra 2015] into a single unified pipeline
and uses ground-truth that is generated using a SIFT-based SfM. The training pro-
cess introduces the inverse training, which can minimize the influence of illumination
on feature point detection.

Figure 2.12: The feature extraction pipeline proposed in LIFT [Yi 2016a].

D2-Net [Dusmanu 2019] proposed an alternative formulation that solves the
feature detection and description problem jointly by using a single network that
plays a detect-and-describe role: dense feature description and feature detection
are achieved simultaneously. The proposed network outputs a pixel-wise likelihood
feature map and a joint descriptor. However, this method has difficulty in detecting
accurate keypoints learned from low-resolution feature maps.

In order to learn more robust descriptors by minimizing the edge similarity be-
tween matching descriptors, SOSNet [Tian 2019] incorporated a second order simi-
larity regularization RSOS , that is usually used for graph matching and clustering
tasks, and a triplet margin loss as part of their loss function to supervise the learn-
ing of real-valued descriptor. They have also designed a local descriptor evaluation
method based on von Mises-Fischer distribution.

All these works can help improve localization against changes in environmental
conditions, and can be combined with other map management approaches to further
improve the robustness of localization under such conditions.

2.4. Lifelong navigation 31

2.4.2 Landmarks retrieval

The problem of visual landmark retrieval/selection has been widely investigated
in the scientific literature. Sutherland and Thompson [Sutherland 1993] were among
the first researchers to study this problem. They demonstrated the existence of a
strong dependence between the localization error and the configuration of the se-
lected landmarks. In this regard, intensive effort has been devoted with the aim of
selecting the optimal set of landmarks in order to reduce localization errors. For
instance, Sinriech and Shoval [Sinriech 2000] specified a set of constraints on the
number of landmarks and their distance from critical points in the environment,
and formulated the positioning of landmarks as a nonlinear optimization problem.
Sala et al. [Sala 2006] proposed a region-based decomposition of the environment
while they made sure that at least k landmarks are observable on each region. They
have used a graph-theoretical formulation to find such a decomposition that incor-
porates the minimum number of regions. This formulation allowed them to design
a selection criteria that takes into account the region from which each landmark
is visible to select a small set of landmarks that can be used for localization in a
variety of regions. Similarly, Zhang et al. [Zhang 2005] proposed an entropy-based
landmark selection method for SLAM. This method specifies a measure about which
visible landmark is best in the sense of entropy reduction.

However, these works are addressing localization speed by reducing the set of
selected landmarks. Moreover, they rely on pure geometrical reasoning for the se-
lection. Some other recent works have addressed landmark selection to improve
long-term localization. For instance, Mühlfellner et al. [Mühlfellner 2016] proposed
a landmark selection approach, in which, a score is assigned to each landmark based
on the number of times it has been observed. Landmarks with high scores are
considered valuable for localization and consequently retrieved in the localization
phase.

The works of Linegar et al. [Linegar 2015] were devoted to reduce computational
costs of their previous work [Churchill 2013]. To do so, they exploited information
about each past keyframe-to-keyframe localization attempt to recall and retrieve
successful localization experiences under the current environmental condition. This
approach is computationally inexpensive because it does not directly take into ac-
count the appearance information. However, it cannot effectively select future ex-
periences unless there are enough past experiences stored in the history.

In the same regard, Bürki et al. [Bürki 2016] developed a distributed SLAM
system with a cloud-based map for multi-vehicle cooperative scenarios. Their work
focused on providing a real-time solution for bandwidth-constrained environments.
They proposed an approach that reduces the remote data flow by extracting from
the distributed map only relevant information for localization under actual envi-
ronmental conditions. Their proposed approach consists, in a first step, in creating
a kind of graph that represent the landmark co-observability in all past traversals
(as in Figure 2.13). Then, they use a ranking function whose goal is to decide

32 Chapter 2. State of the art

how likely a candidate landmark is to be observed at the current environmental
condition. However, this approach reaches its limits on maps containing multiple
conditions at the same time.

Figure 2.13: An example of a co-observability graph [Bürki 2016]. This graph represents
which and how often landmarks (nodes) have been co-observed in the past (edges). The
ranking function decides how likely a candidate landmark (blue nodes) is to be observed at
the current environmental condition taking into account the recently observed landmarks
along the current traversal (orange nodes).

More recently, Bürki et al. [Bürki 2018] improved their approach by proposing a
new formulation of the ranking function for appearance-based landmark selection.
This new formulation allowed to exploit frequently collected sensor data to signif-
icantly increase the landmark selection performance without the need to increase
the size of the map.

The most recent work of Burki et al. [Bürki 2019] deals with the landmark re-
trieval problem in a similar way. They derived several appearance-based ranking
functions from their earlier work and related them to popular ranking schemes from
document retrieval techniques with text queries. They assumed that an environ-
mental condition can be encoded in the session-observation relation of landmarks,
i.e., a set of landmarks observed in the same sessions are assumed to have the same
environmental condition. They used this encoding to select only the set of land-
marks observed under the current environmental condition. However, this requires
an exhaustive search to retrieve the set of landmarks that have the same session-
observation encoding as the current landmarks. Furthermore, this encoding does
not allow to accurately encode the environmental condition, e.g., we may observe a
landmark taken in rain on both cloudy and sunny days. This means that a signif-
icant number of landmarks observed in rainy, cloudy, and sunny conditions can be
mixed in the same session-observation encoding.

In the same respect, MacTavish et al. [MacTavish 2018] have derived a landmark
retrieval technique from other communities. They have inspired their proposed land-
mark retrieval approach from recommender systems. The proposed recommender

2.4. Lifelong navigation 33

system is based on a collaborative filtering approach (CF), which recommends ex-
periences according to the current environmental conditions based on the landmark
matching history. However, this technique suffers from the limitations of CF-based
techniques, e.g., if a landmark is not seen during the training process, the system
cannot create an embedding for it and consequently cannot query the model with
that landmark. This issue is often referred to as the cold-start problem [Kim 2011]
in the recommender systems community.

2.4.3 Map management

Although it is true that continuously adding landmarks from different environmen-
tal conditions into a single multi-session map can help improving visual long-term
localization, the size of the resulting map rapidly increases and becomes impractical
to maintain. Therefore, considerable efforts have been made to optimize the map
representation by removing redundant information and maintaining a minimal set of
landmarks that ensure a robust localization in different environmental appearances.

An early work proposed by Biber and Duckett [Biber 2005] was devoted to op-
timize map representation for long-term scenarios. They developed dynamic maps
that manage environmental changes through the use of robust statistics and multi-
ple local maps at different discrete time-scales, where the map that best represents
the current sensor data is used for the localization. Short-term maps are updated
online each time new sensory data are obtained while long-term ones are managed
offline, typically once a day, based on long-term experience.

Mühlfellner et al. [Mühlfellner 2016] used their landmark scoring policy, which
assigns scores to landmarks according to the number of different localization sessions
in which they appear, to design a map management technique called "Summary
Maps". The proposed approach consists in using the landmark scores to summarize
the map in an offline process carried out after each localization session. The main
limitation of this approach is the fact that landmarks in rarely visited areas are
assigned with low scores, which means that they are expected to be removed in
the map summarization process. Dymczyk et al. [Dymczyk 2015] proposed a very
similar approach that aims to solve the problem of bias towards regions which were
visited more often. They designed a slightly different scoring policy that relates the
actual number of trajectories to the expected number of trajectories to observe a
landmark:

score =
actual number of observer trajectories

f(expected number of observer trajectories)
(2.5)

The expected number of landmark trajectories to observe a landmark is estimated
from the landmark co-visibility graph.

In the same way, Bürki et al. [Bürki 2018] have also proposed a map management
technique in addition to their proposed ranking function which is used for landmark
retrieval as explained in the previous sub-section. They have introduced the two
types of sessions: "rich session" and "observation session". They assumed that

34 Chapter 2. State of the art

the environmental condition of a localization session, whose performance is worse
than a predefined threshold, is not covered in the map. Accordingly, they add
new landmarks to the map in order to cover this new encountered environmental
condition. Landmarks added to the map in this fashion are referred to as a rich
session. In the other case, if the localization has performed sufficiently well (the
performance is higher than a predefined threshold), the map is then deemed to cover
the encountered conditions. Therefore, they decide that no new landmarks need to
be added to the map, but instead, they enrich the previously observed landmarks
with new observations from the current localization session. Observations added
to the map in this fashion are referred to as an observation session. A schematic
illustration of the proposed map management process is presented in Figure 2.14.
After a rich session, Bürki et al. [Bürki 2018] employ an offline map summarization
process which aims to produce a reliable map with a fixed size that covers a high
degree of variance in appearance as in [Mühlfellner 2016] and [Dymczyk 2015].

Figure 2.14: Schematic illustration of the map management process proposed
in [Bürki 2018].

The work proposed by Krajník et al. [Krajník 2016] aims at predicting the cur-
rent state of the environment based on previously observed and learned temporal
patterns. Their proposed system builds a new independent map on each run, these
maps are then integrated into a spatio-temporal occupancy grid where each cell con-
tains a frequency-spectrum of its past states and allows the prediction of the cells’
future states.

Halodová et al. [Halodová 2019] extended the work presented in [Krajník 2016].
They presented an adaptive map update scheme which removes or adds features
based on their past influence on the localization quality. They proposed an adaptive
scoring policy that increments or decrements each feature score based on whether
it was matched correctly, incorrectly or not matched, and thereby they managed to
removes the n worst scored features and replace them with n observed features in
the current session. However, this map management strategy must be coupled with
a very accurate landmark retrieval technique, otherwise the incorrectly matched
features that were caused by inaccurate retrievals will be penalized by this scoring
policy.

2.5. Conclusion 35

2.5 Conclusion

In this chapter, we have started with a general view on SLAM and its history. After
that, we have discussed the influence of long-term changes of the environment on
the localization performance and we have classified the state-of-the-art contributions
in this regard into three main categories, and accordingly, presented some leading
state-of-the-art approaches on each category.

In the work done in this thesis, we address long-term localization with respect to
only two of the three categories presented in Section 2.4: landmark retrieval and map
management. We did not approach the third category, illumination invariant feature
descriptors, because this type of techniques cannot solve the problem of long-term
navigation alone, but it can be used in conjunction with other approaches to further
improve localization performance. On the other hand, landmark retrieval and map
management are two complementary approaches that must be used together to
properly address multi-session mapping. Landmark retrieval is used to extract a
set of relevant features from a multi-session map to improve localization in long-
term scenarios. This retrieval can be costly and even inaccurate in immense maps;
therefore, the map management process aims to reduce the size of the multi-session
map to ensure the efficiency of landmark retrieval.

In the next chapter, we will present and explain the operation process of our pro-
posed keyframes retrieval approach that is designed to score and retrieve keyframes
and their corresponding landmarks according to the environmental changes and the
geometric distance. This approach belongs to the category of contributions stated
in sub-section 2.4.2.

Chapter 3

Keyframes Retrieval

Contents
3.1 Introduction . 37

3.2 Contribution . 39

3.3 Methodology . 40

3.3.1 Offline computation of fdist 43

3.3.2 Online computations . 48

3.4 Experiments . 51

3.4.1 Experimental setup . 52

3.4.2 Datasets . 52

3.5 Results . 55

3.5.1 IPLT dataset . 55

3.5.2 Oxford RobotCar dataset . 62

3.6 Conclusion . 63

This chapter is organized as follows. Section 3.1 gives an introduction to our
work. In Section 3.2, we exhibit our contribution in relation to the state-of-the-art.
After that, a detailed description of the methodology of our approach is provided
in Section 3.3. The experiments and results are presented in Sections 3.4 and 3.5
respectively. Finally, the chapter conclusion is given in Section 3.6.

3.1 Introduction

Estimating the probability of matching features between the current image and a
keyframe in the map is a challenging task because, as illustrated in Figure 3.1,
these two images may have been recorded at different viewpoints, under different
environmental conditions, or even both at the same time.

Accordingly, in this chapter we address a keyframe retrieval solution with respect
to the problem stated in Figure 3.1. We propose a localization approach able to take
advantage of a visual landmark map composed of N sequences gathered at different
times. This approach can be applied particularly to autonomous shuttles since using
N sequences of the same trajectory to build a map is suitable for such usage. Gen-
erally, SLAM algorithms retrieve the keyframes that are used for localization based
on their geometric distance to the vehicle pose. However, this technique has shown

38 Chapter 3. Keyframes Retrieval

(a) Different viewpoints. (b) Different environmental
conditions.

(c) Different viewpoints
+ different environmental
conditions.

Figure 3.1: An example of different cases of matching the current image with a keyframe
in the map. In (a), the current image (top) and the keyframe (bottom) have different
viewpoints. In (b), the two images have a same viewpoint but different environmental
conditions. In (c), the two images have a different viewpoint and different environmental
conditions at the same time.

a weakness in long-term localization because it does not take into account environ-
mental changes. The example presented in Figure 3.2 illustrates a bad localization
case where the SLAM system has retrieved the closest keyframe (circled) to the
vehicle estimate pose (purple). Such a case may produce a localization failure since
the retrieved keyframe and the current image do not share the same environmental
conditions (day against night matching).

This incents us to develop a new strategy for keyframe retrieval to adapt our
SLAM algorithm [Lébraly 2011, Royer 2016] for long-term operation. During the
localization process, we aim to maximize the number of matched points by retrieving
relevant experiences from a map that integrates numerous environmental conditions.
Our proposed approach takes advantage of statistics gathered in the first few meters
of a traversal to compute a probabilistic ranking function. This function is used in
the rest of the traversal to assign relevance scores to a set of keyframes in the map as
illustrated in Figure 3.3. Those scores are computed by the ranking function taking
into account the environmental conditions of each keyframe and its corresponding
geometric distance to the vehicle estimate pose. Accordingly, the ranking function
retrieves from the map the most relevant keyframes (i.e., the ones with the highest
score). In order to ensure our ranking function consistency, we keep updating it
regularly throughout the trajectory.

We evaluated our approach on the Oxford RobotCar dataset [Maddern 2017]
and a new dataset recorded with our experimental vehicle that we make avail-

3.2. Contribution 39

Figure 3.2: An example of a bad localization case where the SLAM system has retrieved
the closest keyframe which was recorded under different environmental conditions.

able to the community. Our dataset is called IPLT1(Institut Pascal Long-Term)
dataset [Bouaziz 2020] and it contains, at the moment, 127 sequences recorded over
two years in which the vehicle has followed the same path around a parking lot with
slight lateral and angular deviations. This dataset contains various environmental
conditions due to changes in luminance, weather, seasons and parked vehicles and
each sequence is around 200 m in length. An aerial view of the parking lot where
we have recorded our dataset is presented in Figure 3.4. Further details about the
IPLT dataset are provided in Appendix A.

3.2 Contribution

The work presented in this chapter is addressing the landmark selection prob-
lem to improve long-term localization in dynamic environments. In contrast to
other works [Mühlfellner 2016, Linegar 2015, Bürki 2016, Bürki 2018, Bürki 2019,
MacTavish 2018] which have also addressed this issue by selecting a set of land-
marks from the map, we approach the landmark selection in a keyframe-based way.
This means that we do not consider retrieving landmarks directly from the map, but
instead, we search for the most valuable keyframes for localization and we retrieve
their associated landmarks. In fact, this keyframe formulation of the landmark
selection problem allowed us to design a probabilistic ranking function that takes
into account not only the environmental conditions of the keyframes (and their as-
sociated landmarks), but also their geometric distances to the vehicle pose. This
also means that instead of computing a score for each landmark separately, which
is costly and useless since all landmarks associated to a same keyframe share the

1To download our dataset please visit http://iplt.ip.uca.fr/datasets/ and enter the fol-
lowing username/password for a read-only access to our ftp server : ipltuser/iplt_ro

http://iplt.ip.uca.fr/datasets/

40 Chapter 3. Keyframes Retrieval

Figure 3.3: Scores assigned to keyframes by the ranking function. The one with the highest
score (circled) will be retrieved and used for localization.

same environmental condition, the proposed ranking function computes and assigns
a score to each keyframe. This formulation allows to minimize the computational
time.

We note that comparing our approach’s performance with most of the existing
state-of-the-art techniques is very difficult. This is due to a major conceptual differ-
ence, where each state-of-the-art approach is proposed and applied in a specific map-
ping framework with particular features representation [Bürki 2019, Magnago 2019].
Such a difference in the representation makes it difficult to compare one approach
applied to, say, a filter-based slam with another applied to a keyframe-based SLAM.

This chapter is based on a work [Bouaziz 2021] that was published at IEEE 19th
World Symposium on Applied Machine Intelligence and Informatics (SAMI 2021).

3.3 Methodology

In order to retrieve only relevant information for localization, we designed a ranking
function that is partially built with offline data. The role of this function is to
retrieve from the map the most relevant keyframes taking into account two main
factors:

• The geometric distance between the vehicle pose estimation and the pose
associated to the keyframe Kj which is used for localization.

• The environmental conditions of the keyframe Kj as well as the current envi-
ronmental conditions (lighting, weather, season,. . .).

The ranking function is computed during the first few meters of the trajectory.
After that, it will be used to estimate the probability that a point pt extracted from
the current image Ii finds a match in the keyframe Kj retrieved from the map. The

3.3. Methodology 41

Figure 3.4: An aerial view of the parking lot where we have recorded the IPLT dataset. The
colored curves are representing an example of the path traveled while recording 6 different
sequences.

ranking function is described by the Equation (3.1):

P (pt ∈ Ii,Kj) = fdist(Ii,Kj) · fc(Ii,Kj) (3.1)

fdist(Ii,Kj) is a function computing a score for matching the current image Ii with
the keyframe Kj retrieved from the map by supposing that both of them were taken
in similar conditions (weather, lighting. . .). This implies that computing this score
depends only on the geometric distance between the two images. On the other
hand, fc(Ii,Kj) supposes that the poses of the two images are identical; hence it
takes into account only the appearance changes to compute the score of matching
between the two images Ii and Kj . fdist is computed offline with the use of some
data collected specifically for this purpose. The calculation of P (pt ∈ Ii,Kj) and
the calculation/update of fc are performed online during re-localization. We refer
to re-localization the process of localizing the vehicle in a previously mapped place.

In Figure 3.5, we present a diagram that explains the re-localization process
using the proposed ranking function. The ranking function (P (pt ∈ Ii,Kj)) takes
as input the current image (and its corresponding predicted pose according to the
odometry data) to retrieve from the multi-session map the keyframe (and its associ-
ated landmarks) that has the highest similarity score. A new pose will be computed
by matching the current image and the retrieved keyframe. To ensure the consis-
tency of fc with the environmental condition changes, it will be updated along the
traversal. This update task is performed in parallel with the retrieval of the most
relevant keyframe for localization (according to the ranking function). Therefore,
the ranking function retrieves another keyframe from the map (each time from a
different traversal in a circular way) and uses it to update fc (see Section 3.3.2.3
for more details). The following sections present details on both offline and online
computations.

42 Chapter 3. Keyframes Retrieval

traversal 1

traversal 2

traversal 3

traversal N

M
ul

ti-
se

ss
io

n
m

ap

C
ur

re
nt

 p
os

e

C
ur

re
nt

en
vi

ro
nm

en
ta

l
co

nd
iti

on
(s

um
m

ar
iz

ed
 in

 f c
)

Ve
hi

cl
e

st
at

e

N
ew

 im
ag

e

O
do

m
et

ry
da

ta

se
ns

or
y

da
ta

X
Y

X
Y

X
Y

: r
un

 Y
 a

fte
r f

in
is

hi
ng

 X

: Y
 u

se
s

da
ta

 fr
om

 X

: u
pd

at
e

Y
us

in
g

da
ta

 fr
om

 X

X
Y Z

: r
un

 Y
 a

nd
 Z

 in
 p

ar
al

le
l

R
an

ki
ng

 fu
nc

tio
n

f d
is

t
f c

R
et

rie
ve

 m
os

t
re

le
va

nt
 k

ey
fr

am
e

an
d

la
nd

m
ar

ks

R
et

rie
ve

 o
th

er
ke

yf
ra

m
e

to
 c

he
ck

fo
r e

nv
iro

nm
en

ta
l

co
nd

iti
on

s
ch

an
ge

s

M
at

ch
in

g
+

Pn
P

M
at

ch
in

g
+

Pn
P

N
ew

 v
eh

ic
le

po
se

ne
w

en
vi

ro
nm

en
ta

l
co

nd
iti

on

F
ig
ur
e
3.
5:

A
di
ag
ra
m

re
pr
es
en
ti
ng

th
e
op

er
at
in
g
m
ec
ha

ni
sm

of
th
e
re
-lo

ca
liz
at
io
n
pa

rt
.

3.3. Methodology 43

3.3.1 Offline computation of fdist

We have recorded some sequences specifically for this step. These sequences were
recorded successively in a short time period to avoid variation in lighting because
fdist(Ii,Kj) assumes that Ii and Kj are taken under the same environmental condi-
tions. The sequences were also taken at the same place and the vehicle has followed
a slightly different path with some lateral and angular deviation between each pair
of sequences.

We conducted three separate recording sessions at three different locations and
times to evaluate the extent to which fdist depends on the recording environment of
the sequences. We used the sequences of each recording session to define a distinct
fdist function. This means that we have defined three different functions using
the sequences of the three recording sessions. In the first session, we recorded 7
sequences, in the second session we recorded 3 sequences and in the third session
we recorded 5 sequences. Figure 3.6 shows some examples of sequences recorded in
the three sessions.

We compute fdist in the same way for each recording session. For each pair
of sequences <SeqA, SeqB> belonging to the same recording session, we use SeqA
to generate a map using our SLAM algorithm, then we use SeqB to perform re-
localization on the produced map. While performing re-localization with SeqB,
for each current pose estimate p̂i (estimated using the previous computed pose
pi−1 + wheel odometry), we pick the 20 closest keyframes and their corresponding
poses from the map built with SeqA: K1, . . . , K20 and we match each of them
(K l, l ∈ [1, 20]) to our current image Ii and calculate the current pose pi in order
to calculate the inlier rate: inliers/(inliers+ outliers). Then, we compute the
longitudinal, lateral and angular gap between the current pose pi and the pose pl

associated to the keyframe K l. Therefore, for each pose pl, we record a quadruplet
consisting of the percentage of inliers, the longitudinal, lateral and angular distance.

These collected data (the recorded quadruplets) are used to define fdist as the
function that computes the percentage of inliers giving the longitudinal, lateral and
angular distance between the poses. In sub-section 3.3.1.1 and 3.3.1.2, we present
two different ways to define the function fdist. Sub-section 3.3.1.1 presents the
earlier version of fdist, it consists in defining and multiplying three independent 2D
functions that model the camera motion along longitudinal, lateral, and angular
displacements independently. The second definition of fdist (sub-section 3.3.1.2)
represents the newer version which is in use at the present time. It consists of a
single 4D function represented as a linear combination of Gaussians that models the
camera motion along longitudinal, lateral, and angular (yaw angle) displacements.

3.3.1.1 Defining fdist as a multiplication of three independent functions

This definition of fdist consists in multiplying three independent 2D functions model-
ing the camera motion along longitudinal, lateral, and angular displacements: flong,
flat and fang. Each one of these three functions is designed to compute a score
for matching the current image I with the keyframe K while assuming that both

44 Chapter 3. Keyframes Retrieval

(a) Session 1: we present an example of 4 sequences recorded in this session. These sequences
were recorded the same day at 15:16, 15:22, 15:23 and 15:24.

(b) Session 2: we present the 3 sequences recorded in this session. These sequences were
recorded the same day at 15:37, 15:40 and 15:43.

(c) Session 3: we present the 5 sequences recorded in this session. These sequences were
recorded the same day at 15:46, 15:49, 15:50, 15:52 and 15:55.

Figure 3.6: Example of sequences used for the calculation of fdist from three different
recording sessions. The two last sessions ((b) and (c)) were performed the same day while
the first one was performed in a different day.

of them were taken in similar conditions. The computed scores represent the simi-
larity level between I and K with respect to the longitudinal, lateral, and angular
distances of their acquisition poses. Therefore fdist can be represented as follows:

fdist(I,K) = flong(I,K) · flat(I,K) · fang(I,K) (3.2)

3.3. Methodology 45

In order to define these three functions, we proceed to a sampling phase of the
collected data in which we assign the longitudinal and lateral distances into bins of
0.1m and the angular distances into bins of 0.1◦. After that, we calculate the median
of each bin. Finally, we smooth these medians with the RLOESS smoothing function
proposed in [Cleveland 1979]. Thus, we obtain three curves that define the functions
flong, flat and fang. In Figure 3.7, we present the form of the three functions
computed with the data collected from the first recording session (Figure 3.6a).

0 5 10 15 20

distance (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

in
lie

rs
 (

%
)

longitudinal medians +- 0.4 and 0.6 quantiles

smoothed longitudinal medians

lateral medians +- 0.4 and 0.6 quantiles

smoothed lateral medians

angular medians +- 0.4 and 0.6 quantiles

smoothed angular medians

0 5 10 15 20 25 30 35 40 45

angular distance (°)

Figure 3.7: Form of the three functions flong, flat and fang. We used the collected data to
define each of them. For each curve, we compute the median of each bin along with the
0.4 and 0.6 quantiles (for clarity, we have not plotted all the medians). We also present
the smoothed curves in the same color. Longitudinal and lateral distances are measured in
meters (lower axis), while angular distances are measured in degrees (upper axis).

Visually, it is clear that flong and flat are two decreasing functions. This is not
the case for fang which is almost constant. In fact, this is not surprising since a pure
rotation does not change much the appearance of the points in the image. Thus,
we decided to remove it from equation (3.4). We also notice in the figure that the
highest value of flong and flat is around 0.75. Therefore, we normalized these two
functions between [min(flong)..1] and [min(flat)..1] (respectively for flong and flat)
using the following formula:

fnorm = (1−min(f)) ·
f −min(f)

max(f)−min(f)
+ min(f) (3.3)

46 Chapter 3. Keyframes Retrieval

Therefore, fdist can be finally defined as follows:

fdist(I,K) = fnormlong (I,K) · fnormlat (I,K) (3.4)

The shape of flong, flat and fang computed using the data collected from the
other two recording sessions (Figures 3.6b and 3.6c) is very similar to that shown
in Figure 3.7.

3.3.1.2 Defining fdist as a linear combination of Gaussians

In this sub-section we introduce the novel form of fdist. We have remodeled the
previous form which omits the angular motion. Moreover, instead of considering
the camera motion along the longitudinal, lateral, and angular displacements as
three mutually independent functions, the novel form models the camera motion as
a unified probability model defined as a Gaussian process. Therefore, this version
of fdist will be retained in further evaluations. We have chosen to define fdist as a
linear combination of Gaussians as in Equation (3.5):

fdist(I,K) =

ng∑

h=1

ahGh, with:

Gh = e
−
dx(I,K)2

b2h
−
dy(I,K)2

c2h
−
dr(I,K)2

d2h

(3.5)

dx(I,K), dy(I,K), dr(I,K) are respectively the longitudinal, lateral and angu-
lar distances between the pose of the image I and the pose of the keyframe K. The
parameters ah, bh, ch and dh are computed with a non linear Least-Squares mini-
mization to fit fdist to the data points. ng is the number of Gaussians in the model
and it was chosen to have the lowest residual error. In Table 3.1, we show the mean
residual error with respect to ng obtained while fitting the function fdist to the data
points computed with the sequences of the first recording session (Figure 3.6a).

Table 3.1: Mean of residual errors from fitting fdist.

n 1 2 3 4

Mean 0.090 0.075 0.074 0.074

According to the table, we retained ng=3 as the number of Gaussians in our
model. Figure 3.8 presents the result of fitting the function fdist to the collected
data from the same recording session with ng = 3.

We performed the same experiment using the sequences of the second and the
third recording sessions (Figures 3.6b and 3.6c). The shape of the data collected
and the shape of the fitted function fdist are visually identical to those computed

3.3. Methodology 47

(a) fdist with dr = 0

(b) fdist with dy = 0

(c) fdist with dx = 0

Figure 3.8: Each sub-figure presents the surface of the 4D function fdist. In (a), the inliers
rate surface is plotted according to longitudinal and lateral distance while the angular
distance dr is set to 0. The same for (b) and (c), dy and dx are set to 0 respectively.

48 Chapter 3. Keyframes Retrieval

with the first recording session.
The shape of the data collected is dependant on the key-points detector and the

features descriptor. In our experiments, we use Harris corner detector [Harris 1988]
for extracting key-points which are matched with ZNCC — Zero-mean Normalized
Cross-Correlation — computed on 11×11 pixel windows around each key-point.
However, our method can still be applied in the same way using other descriptors.

3.3.2 Online computations

3.3.2.1 Calculating fc

We compute the function fc during the re-localization process. As explained previ-
ously, fc(Ii,Kj) does not depend on the acquisition location of the images Ii and
Kj , but only takes into account the condition of the environment to estimate the
score of matching between Ii and Kj . Accordingly, we deduce that fc is traversal
dependent, this means that the value of fc between Ii and any image belonging
to the same traversal as Kj will have the same value as fc(Ii,Kj) (in the normal
case where there is no sudden change in the weather or in the lighting condition).
Therefore, it is more suitable to design the function fc as a 2D matrix Fc which has
the shape of [N×N] (where N is the number of traversals existing in the map). The
matrix Fc can be formalized as follows: fc(Ii,Kj) = Fc(trav(Ii), trav(Kj)), where
the function trav(X) refers to the index of the traversal where the image X belongs
(since Ii is the current image, trav(Ii) refers to the current traversal). The value of
Fc(trav(Ii), trav(Kj)) corresponds to the score of similarity (which depends on the
environmental conditions) between the traversal which contains Ii and the traversal
which contains Kj . Thus, Equation (3.1) becomes:

P (pt ∈ Ii,Kj) = fdist(Ii,Kj) · Fc(trav(Ii), trav(Kj)) (3.6)

In order to define and calculate the matrix Fc, we use our global map (which
is composed of N sequences having different environmental conditions) as a refer-
ence map to perform a re-localization. During this re-localization phase, we devote
the beginning of the trajectory to the calculation of the function. According to
Equation (3.6), we have:

Fc(trav(Ii), trav(Kj)) =
P (pt ∈ Ii,Kj)

fdist(Ii,Kj)
(3.7)

Our idea consists in calculating the matrix Fc at the start of the trajectory according
to Equation (3.7). Since the ranking function is not yet defined, we measured the
inlier rate by matching the image Ii to the keyframe Kj and used it to replace
P (pt ∈ Ii,Kj) in the Equation (3.7). In the first few meters of the re-localization,
we follow the steps described by Algorithm 1 to initialize the values of the matrix
Fc.

3.3. Methodology 49

Algorithm 1: Calculation of the Fc matrix in the first few meters

1: c← N + 1 (the index of the current traversal)
2: Initialize the buffers: P[l]← ∅, ∀l ∈ [1, N]
3: Compute the initial pose p0 by localizing the image I0 within the map using

bag-of-words.
4: for each current image Ii in the first few meters do
5: Predict the pose p̂i of Ii using the last computed pose pi−1 and the wheel

odometry data.
6: for each traversal l in the map do
7: Pick from the traversal l the 3 closest keyframes to p̂i: K l

j , j ∈ [1, 3]

8: for each picked keyframe K l
j do

9: Match Ii to K l
j and compute the inlier rate P (pt ∈ Ii,K l

j)

10: Calculate x such as: x←
P (pt ∈ Ii,K l

j)

fdist(Ii,K
l
j)

11: P[l]← P[l] ∪ {x}
12: end for
13: end for
14: Calculate pose pi by matching Ii and the keyframe with the highest number

of inliers among the keyframes {K l
j}, j ∈ [1, 3], l ∈ [1, N]

15: end for
16: for each traversal l in the map do
17: Fc(c, l)← mean(P[l])
18: end for
N is the number of traversals existing in the map.

50 Chapter 3. Keyframes Retrieval

3.3.2.2 Calculating the ranking function P (pt ∈ Ii,Kj)

The classic method for keyframes retrieval which consists in picking out the
keyframes from the map only according to their geometric distance to the vehi-
cle pose is not suitable for long-term operation. For example, if we perform a
re-localization in the day while the closest keyframe to our current vehicle pose was
taken during the night, the matching is extremely difficult; therefore, we have pro-
posed to implement a ranking function which is able to consider other important
criteria such as environmental conditions for the retrieval of keyframes.

We have calculated the matrix Fc in the beginning, the goal in the rest of the
trajectory is to find the keyframe K∗ that maximizes the probability of matching
defined in Equation (3.6):

K∗ = argmax
K

P (pt ∈ Ii,K) (3.8)

K∗ corresponds to the circled keyframe in the example presented in Figure 3.3.
Searching for K∗ in the whole map is costly. Therefore, we pick from each traver-
sal the keyframe K l, l ∈ [1, N] which has the minimum geometric distance to the
current vehicle pose estimation. For all keyframes {K l}, l ∈ [1, N], we calculate the
probability of matching with Equation (3.6) to retrieve the one with the highest
score (K∗) with Equation (3.8). K∗ will be used for further matching and pose
calculation and optimization.

In Section 3.5, we are comparing results obtained by the classic ranking function
τ1 = fdist(Ii,Kj) (The score will be assigned based on the geometric distance be-
tween the two images as demonstrated in Figure 3.8) with results obtained by our
proposed ranking function τ2 = P (pt ∈ Ii,K) (Equation (3.6)).

3.3.2.3 Update of Fc(trav(Ii), trav(Kj))

It is interesting to update the values of the matrix Fc regularly after the first few
meters of the trajectory. Indeed, this update can be useful when the state of the
environment changes between the beginning and the end of the sequence. This
update process is performed in parallel with the keyframes retrieval process. For
this reason, we aim to avoid slowing down the re-localization by updating Fc for a
single traversal at each iteration. Algorithm 2 describes the update process of the
matrix Fc and the keyframe retrieval mechanism using our ranking function which
has already been computed in the first few meters of the trajectory.

The value of the update rate α defines how fast the ranking function responds
to sudden changes in the environment during the same re-localization session. In
sub-section 3.5.1.3, we present an evaluation of different values of α with respect
to a scenario where the environmental conditions change between the start and the
end of the localization session.

3.4. Experiments 51

Algorithm 2: Keyframe retrieval and update of Fc

1: Parameters: The update rate α← 0.1
2: Steps:
3: c← N + 1 // the index of the current traversal
4: l← 1 // the index of the first traversal
5: for each current image Ii do
6: Predict the pose p̂i of Ii using the last computed pose pi−1 and the wheel

odometry data.

// Update of Fc:
7: Pick from traversal l the closest keyframe to p̂i: K l

8: Match Ii to K l and compute the inlier rate: P (pt ∈ Ii,K l)

9: Calculate x such as: x← P (pt ∈ Ii,K l)

fdist(Ii,K l)
10: Update Fc: Fc(c, l)← (1− α)Fc(c, l) + αx
11: l← l + 1
12: if l > N then
13: l← 1
14: end if

// Keyframe retrieval and pose calculation:
15: Retrieve from the map the keyframe K∗ which has the highest score assigned

by the ranking function:
K∗ = argmax

K
P (pt ∈ Ii,K)

16: Calculate the pose pi by matching Ii and K∗

17: end for

3.4 Experiments

We divide each dataset into mapping sequences and test sequences. We first
proceeded to a mapping phase in which we built a global map consisting of N
traversals from the mapping sequences with varying environmental conditions. We
used the generated global maps as reference maps in our experiments in order
to perform re-localization with the test sequences. This allowed us to evaluate
the effectiveness of our algorithm in different conditions. We are also compar-
ing results obtained while using τ1 = fdist(Ii,Kj) as a ranking function (which
takes into account only the geometric distance as a criterion to assign scores
to keyframes) with results obtained while using our proposed ranking function
τ2 = P (pt ∈ Ii,Kj) = fdist(Ii,Kj) · Fc(trav(Ii), trav(Kj)) (which takes into consid-
eration the geometric distance and the environmental conditions of the keyframes).

52 Chapter 3. Keyframes Retrieval

3.4.1 Experimental setup

We present the average number of inliers observed in each sequence as well as the
average number of localization failures per km as criteria for the comparison. Prac-
tically, we found that the localization can be considered as reliable when there are
at least 30 points matched between the current image and the database, below this
threshold, we consider a localization failure. This is a conservative threshold to
ensure the security of our autonomous shuttle [Royer 2016].

The number of meters m required to initialize the matrix Fc (in the start of the
trajectory) was chosen experimentally to minimise the distance between the value
of Fc calculated after m meters and its mean F̄c along the trajectory. In Table 3.2,
we illustrate an example of this distance (|Fc − F̄c|) for different values of m.

Table 3.2: Value of |Fc − F̄c| with respect to the choice of m.

m (meters) 5 10 20 30

|Fc − F̄c| 0.985 0.066 0.027 0.024

According to Table 3.2, we have chosen to fix the parameter m to 20 meters.
Thus, we devote the first 20 meters of the trajectory for the calculation of the matrix
Fc.

All calculations were performed on a Dell tower with an Intel Xeon W-2133 CPU
with localization running in real-time.

3.4.2 Datasets

Intensive work on SLAM algorithms has produced a large number of related datasets
such as KITTI [Geiger 2013], Ford Campus Dataset [Cordts 2016]. . . . The vast
majority of these datasets are designed for localization in static environments
with very small environmental changes. However, datasets with many environ-
mental conditions are required for applications that aim for long-term localiza-
tion in dynamic environments. Datasets like Oxford RobotCar [Maddern 2017],
NCLT [Carlevaris-Bianco 2015a] and UTBM [Yan 2019] are widely used for long-
term localization applications since they include different environmental conditions.
Both of the last two mentioned datasets contain only a few number of different
sequences, which makes it difficult for us to test our approach on them. For this
reason, we are using only Oxford RobotCar and our own dataset (IPLT) on the test
phase.

3.4.2.1 IPLT dataset

The IPLT dataset was created from recorded images of two gray-scale 100◦ FOV
cameras mounted on our experimental vehicle (one front and one rear camera) and

3.4. Experiments 53

wheel-odometry. From this dataset, we have selected 103 sequences at different
hours during the day, with varying weather conditions (rain, sun, overcast) and
some lateral and angular deviations, 10 of them were used for the construction of
the first global map (see Figure 3.9).

2020-01-15-11-15-33 2019-10-02-15-03-40 2019-10-01-16-54-55 2019-10-22-15-01-25

2020-02-05-17-53-21 2020-02-05-18-19-19 2020-02-05-18-37-10 2020-01-15-13-23-09

2020-01-22-10-22-06 2020-01-31-16-07-34

Figure 3.9: An overview of images from IPLT dataset used for the construction of the
first global map. For each sequence we are indicating the acquisition date in the format
"yyyy-mm-dd-HH-MM-SS" and symbolizing the environmental condition by a small icon.
Please refer to Table 3.3 for more details about the designation of condition icons used in
this document.

It is difficult to perform re-localization using night-time sequences on a map
containing only day-time sequences, hence, we added a dusk sequence to the map
to work as an intermediate between day and night sequences. This allowed the
SLAM algorithm to find matches linking all the traversals so all the poses have
been optimized in the same bundle adjustment. We verified manually the map to
make sure that all the poses are geometrically coherent. This means that there
is no differential drift between the traversals. This global map contains sequences
having different environmental conditions, it also includes some lateral and angular
deviations between the sequences as illustrated in Figure 3.4.

54 Chapter 3. Keyframes Retrieval

Table 3.3: Designation of condition icons.

Icon Designation

Day & sunny condition
Dusk condition
Night condition
Cloudy weather
Rainy weather
Snow condition

3.4.2.2 Oxford RobotCar dataset

In the Oxford RobotCar dataset, the itinerary and the direction of traversal followed
during individual recordings vary between the different sequences. Accordingly,
we have identified a ∼1.6 km segment in which the vehicle has followed the same
route and direction in 22 different sequences (as shown in Figure 3.10). All of

Figure 3.10: A ∼1.6 km segment in which the Oxford vehicle has followed the same route
and direction in 22 different sequences.

these sequences were recorded during daytime, only one sequence was recorded at
dusk and 2 sequences were recorded at night. The dusk sequence was recorded
at the very beginning of the sunset time (16:07) and it was not possible for us
to use it to properly localize the night sequences in a map created from daytime
sequences. Therefore, we have used only daytime sequences (with varying weather
conditions) due the lack of intermediate dusk sequences to match day-time and
night-time sequences. We used the visual odometry together with both front left

3.5. Results 55

and right cameras in our mapping framework.
We picked 8 sequences from this dataset to build our second global map (the

Oxford map) while we used 12 other sequences for our tests. Figure 3.11 illustrates
an overview of images taken from the sequences used for the construction of the
Oxford map.

2014-06-24-14-47-45 2014-06-26-09-53-12 2014-12-05-11-09-10 2015-02-20-16-34-06

2015-07-08-13-37-17 2014-07-14-14-49-50 2014-11-25-09-18-32 2015-05-19-14-06-38

Figure 3.11: An overview of images from Oxford RobotCar dataset used for the construction
of the Oxford map.

In our tests, we are also interested in testing the effect of lateral and angular
variations between sequences on the localization performance. However, the Oxford
RobotCar dataset does not provide sequences with such criteria. This is one of the
main reasons that led us to record our own dataset (IPLT).

3.5 Results

In this section, we demonstrate the efficiency of our keyframes retrieval approach by
analyzing results obtained after performing re-localization with different sequences.
As we mentioned in the previous section, we performed our tests on the two global
maps obtained from the two datasets.

3.5.1 IPLT dataset

We decompose this section into three sub-sections. In sub-section 3.5.1.1, we show
the overall results of the comparison between τ1 and τ2 (τ1 = fdist(Ii,Kj) and
τ2 = P (pt ∈ Ii,Kj) = fdist(Ii,Kj) · Fc(trav(Ii), trav(Kj))). In sub-section 3.5.1.2,
we present a detailed study of the effect of lateral and angular deviations on the
ranking function. Sub-section 3.5.1.3 presents a detailed study on the effect of
update rate α on the update process on the ranking function.

56 Chapter 3. Keyframes Retrieval

3.5.1.1 Overall results

We are using 93 sequences having different environmental conditions from IPLT
dataset for this test phase. In Figure 3.12 we present an illustration of images
extracted from some of these sequences.

2019-10-01-17-19-
57

2019-10-02-15-08-
10

2019-10-22-14-57-
27

2020-01-15-13-25-
22

2020-01-16-14-05-
24

2020-01-20-10-15-
30

2020-01-31-16-00-
24

2020-02-05-18-41-
39

Figure 3.12: An overview of images recorded with the front camera for some of the sequences
of IPLT dataset used in our tests.

In Figure 3.13, we present a comparison between localization performance on
the IPLT map while using τ1 and τ2 as ranking functions. This figure was generated
using all the 93 test sequences. These sequences were classified manually into 5
different classes according to their environmental condition. These 5 classes (sun,
overcast, rain, dusk and night) are containing respectively 13, 39, 12, 17 and 11
sequences. The "global" class regroups all the 93 sequences. For each class, we
show the average number of inliers observed on the sequences of this class. We also
present the number of localization failures per km experienced on these sequences.

Overall, we note that our proposed keyframe retrieval approach has significantly
increased the number of inliers observed during re-localization for all classes. We
also notice that with our approach, we have successfully reduced the number of
bad localizations per km from 61.24 to only 0.16 (∼ 400×). Such a criterion (the
number of localization errors) is very important in autonomous shuttle applications
since a localization failure leads to the interruption of the driverless system and
requires manual interventions. For example, if the shuttle travels 100 km per day,
then our approach allows to reduce the daily manual interventions from more than
6,000 to only 16.

In Table 3.4, we monitor the computational cost of processing a single frame by
the tracking thread of our system. The values shown in the table are representing
the mean value computed on all the frames of the 93 test sequences when using

3.5. Results 57

Figure 3.13: A comparison between the two ranking functions τ1 and τ2 on the IPLT map
using the 93 test sequences from IPLT dataset. The comparison is done according to two
criteria: the average number of inliers per image and the average number of localization
failures per km. Each box represents the mean value + and - the standard deviation of inliers
(or localization failures) recorded while performing re-localization using all the sequences of
the corresponding class on the global map. The color of the boxes indicates which ranking
function was used to record these values. For better readability of localization failures
values, we plot the average number of localization failures in the bottom x-axis.

τ1 and τ2. Since we execute a particular processing in the first m meters of the
trajectory for τ2 (as described in Algorithm 1), we decomposed the computation
time into two parts: computation time in the first m meters (computation time of
Algorithm 1) and computation time in the rest of the trajectory (computation time
of Algorithm 2).

Table 3.4: Computational cost of processing a frame.

τ1 τ2

Computational time in the first m meters (ms) 7.5 58.7
Computational time in the rest of the trajectory (ms) 7.8 13.7

According to Table 3.4, τ2 is significantly more costly than τ1 in the first m
meters of the trajectory (58.7ms versus 7.5ms). This is because we perform an
exhaustive matching with the neighboring keyframes to compute the matrix Fc (as
described in Algorithm 1, we match the current frame with the 3 closest keyframes
from each traversal). It is possible to reduce this computation time by reducing
the matching rate (i.e., instead of matching the current frame with the 3 nearest
keyframes, we can match it with only 1 or 2 keyframes from each traversal). In our
case, we were still able to localize in real-time on the first m meters since we use a
camera that captures 10 frames per second (58.7ms * 10 < 1s). The computation
time in the rest of the trajectory is a little higher for τ2 than for τ1. This is not
surprising since we update Fc along the trajectory as described in Algorithm 2.

58 Chapter 3. Keyframes Retrieval

3.5.1.2 Detailed study on the effects of deviations from the learned tra-
jectory

To evaluate the effect of lateral and angular deviations on the ranking function, we
have selected a mapping and a test sequence with some deviations. Figure 3.14
shows the path followed when a re-localization was performed on the IPLT map
using the test sequence 2020-02-05-18-41-39 . The other path shown in the same
figure is a sequence from the global map that was recorded a few minutes before
(2020-02-05-18-37-10). Therefore, these two sequences have very similar envi-
ronmental conditions. The only difference between these two sequences is that we
have performed some lateral and angular deviations in the test sequence. These
deviations represent what happens when we have to avoid an obstacle on the way.

Figure 3.14: Path traveled for the sequence 2020-02-05-18-37-10 and the sequence 2020-
02-05-18-41-39 . The dark green path represents the sequence 2020-02-05-18-37-10 from
the map, while the dashed path represents the sequence 2020-02-05-18-41-39 from the test
dataset. The two sequences have very similar environmental conditions, but with some
deviations between them (segments A, B and C represent three zones with a deviation).

In Figure 3.15, we demonstrate that our ranking function τ2 depends on both en-
vironmental conditions and geometric distance to assign scores to keyframes which
helps to retrieve good keyframes for localization. In segments A, B and C, the two
sequences have some lateral and angular deviations (Figure 3.14), thus, τ1 was not
able to retrieve keyframes from traversals with similar environmental condition in
those zones (Sub-figure 3.15a), while our proposed ranking function τ2 has success-
fully retrieved good keyframes even with the deviation (Sub-figure 3.15b). With
τ2, the night sequence is clearly privileged from the beginning to the end of the
trajectory, which means that the day/night change is more important than a lateral
deviation of 2 or 3m.

3.5. Results 59

(a) Values assigned to keyframes by τ1 while re-localizing with the sequence 2020-02-05-18-
41-39 .

(b) Values assigned to keyframes by τ2 while re-localizing with the sequence 2020-02-05-18-
41-39 .

Figure 3.15: The effect of lateral and angular deviations on the two ranking functions τ1
and τ2. The choice of the ranking function is illustrated in sub-figures (a) and (b). Each
traversal in the map is represented by a curve with a different color. For each traversal, the
curve indicates the computed probability of matching the current image with the closest
keyframe of that traversal. The colors of the curves in sub-figure (b) are the same as in
sub-figure (a).

60 Chapter 3. Keyframes Retrieval

3.5.1.3 Detailed study on the update process of Fc

In Section 3.3.2.3, we have presented the update paradigm of the matrix Fc, how-
ever, the sequences used in the previous tests are quite short and they do not
contain significant changes in the environmental condition and consequently they
cannot prove the interest of this update process. For this reason, we recorded a long
sequence (2019-12-05-16-43-56) which has multiple loops in the parking lot starting
from 16:44 until 17:54 and it includes day, dusk and night conditions (the sequence
was recorded in December and the time of sunset on that day was 17:05). In Fig-
ure 3.16, we inspect the update process of the matrix Fc. We plot the values located
in the last row (or column) of the matrix Fc along a re-localization session using
this long sequence on the IPLT map (built with the N =10 sequences presented in
Figure 3.9). The last row (with index N + 1) of this matrix is referring to the cur-
rent traversal (the sequence 2019-12-05-16-43-56). Therefore, this row contains the
similarity scores between the current images (images of the current traversal) and
the closest keyframe from each one of the 10 traversals in the map. We observe that

Figure 3.16: The values of Fc along a sequence of one hour and 10 minutes that includes
day, dusk and night conditions. Each curve corresponds to a traversal in the map (N
curves for N traversals), and the values in each curve indicate the similarity scores between
the images of the current traversal and their closest keyframes belonging to the traversal
represented by that curve. These curves have been smoothed for better readability.

in the start of the trajectory (before the dusk), the curve representing the traversal
2020-02-05-17-53-21 (the pink curve) is at the top. This means that this traversal
has the highest similarity with the current environmental conditions. Therefore,

3.5. Results 61

keyframes from this traversal will be used for localization2. In the dusk time, we
notice a decrease in the values of the pink curve and an increase in the yellow one
(2020-02-05-18-19-19). This means that Fc is indicating that there are more re-
semblance with the traversal represented by the yellow curve (which was recorded
in the dusk). Finally, at the beginning of the night-time, we consider a notable
decrease in all the curves except for the dark green one (2020-02-02-18-37-10).
This is the only traversal recorded in the night, and accordingly, Fc is recommending
retrieving keyframes from this traversal.

The value of the update rate α used to build Figure 3.16 is 0.1. In Figure 3.17,
we present the same experience while using other values for α.

(a) α = 0.01 (b) α = 0.2.

(c) α = 0.5 (d) α = 1

Figure 3.17: Different values for the update rate α.

In (a), the update rate is very small and therefore we consider a lag in the
curves, e.g., the yellow curve that corresponds to the dusk traversal (2020-02-05-18-
19-19) has increased a bit late compared to the other sub-figures. This means
that the ranking function is slow to respond to environmental changes with this
reduced value of the update rate. Although we have significantly changed the value

2We would like to point out that P (pt ∈ Ii, Kj) also takes into account the geometric distance.
The fact that Fc is assigning high scores to the keyframes of a given traversal does not necessarily
mean that they will be retrieved. If fdist has assigned low scores to these keyframes, the ranking
function may retrieve keyframes from other traversals.

62 Chapter 3. Keyframes Retrieval

of α in (b), (c) and (d), we see no noticeable difference between these three sub-
figures. This similarity is due to the use of a smoothing filter before plotting the
curves. Therefore, we present a raw version of these curves without any smoothing
operation in Appendix B.

3.5.2 Oxford RobotCar dataset

To evaluate the performance of our approach on the Oxford RobotCar dataset,
we used 12 test sequences with varying environmental conditions as illustrated in
Figure 3.18.

2014-11-11-11-06-25 2014-11-18-13-20-12 2014-11-21-16-07-
03

2014-12-09-13-21-02

2014-12-16-09-14-09 2015-02-03-08-45-10 2015-02-06-13-57-16 2015-02-13-09-16-26

2015-02-24-12-32-19 2015-03-17-11-08-44 2015-05-29-09-36-29 2015-07-29-13-09-26

Figure 3.18: An overview of images from the 12 test sequences of Oxford RobotCar dataset.

These 12 sequences were classified into 4 classes: sun, overcast, rain and snow.
The sun class contains 5 sequences, the overcast contains 4 sequences, the rain
contains 2 sequences and the snow class contains only 1 sequence.

In Figure 3.19, we are comparing the re-localization performance of τ1 and τ2 on
the Oxford global map which incorporates 8 sequences (as presented in Figure 3.11).
The comparison was performed with respect to the average number of inliers per
image and localization failures per km as we did for IPLT dataset.

According to the figure, τ2 has managed to increase the number of inliers and
decrease the number of localization failures from 9 failures per km to only 0.5. In
this dataset, we consider a less significant increase in terms of inliers compared
to the increase observed on IPLT dataset (Figure 3.13). This is due to the fact
that the IPLT dataset contains more sequences with more changes in environmental

3.6. Conclusion 63

Figure 3.19: A comparison between the two ranking functions τ1 and τ2 on the Oxford
global map using the 12 test sequences from Oxford RobotCar dataset.

conditions and it incorporates some sequences with lateral and angular deviations
that seriously impact the performance of τ1.

We also note that this dataset contains a significant number of overexposed
images especially in sunny sequences [Jatzkowski 2018] (thus the 1.13 localization
failures per km for τ2 in the sun class). We present some examples of these images
in Figure 3.20.

2014-11-18-13-20-12 2015-02-06-13-57-16 2015-05-29-09-36-29 2015-07-29-13-09-26

Figure 3.20: Example of extremely overexposed images that led to localization failures.

3.6 Conclusion

In this chapter, we have put forward an efficient keyframe retrieval technique that is
used to retrieve keyframes based on their Euclidean distance from the current image
and the environmental condition. We have proposed a probabilistic ranking function
that exploits information collected during the first few meters of the trajectory to
determine whether a keyframe is suitable for localization or not.

Until now, classical localization techniques did not sufficiently consider envi-
ronmental changes (especially lighting changes produced by day/night transitions).
This led to a serious problem in practice, especially in long-term localization ap-
plications where we consider a significant number of localization errors (such as in
the case of localization with τ1). Our experiments on two different datasets have

64 Chapter 3. Keyframes Retrieval

demonstrated that our ranking function τ2 was able to retrieve good keyframes under
different environmental conditions. This in turn helped to improve the localization
performance and considerably reduce the number of localization errors (e.g., we re-
duced the number of localization failures in IPLT dataset by ∼400×), which is a
great improvement for all kind of applications that require an autonomous robot.

Although we did not present a comparative study with the state of the art, we
proved that our approach provides efficient localization with very low computational
cost after initializing the ranking function (after the first m meters of the trajec-
tory). Our approach is designed on a keyframe-based structure, where a score is
computed for each keyframe. Most state-of-the-art techniques propose landmark-
based ranking functions. This means that they compute a score for each landmark
in the map, which is costly in large-scale maps that incorporate a significant number
of landmarks.

In this chapter, we have focused only on the re-localization process, but we can
also improve further the performance by performing SLAM-LOC (re-localization +
mapping) to take advantage of the landmarks of the last mapped poses. Our pro-
posed keyframe retrieval technique is able to improve the SLAM-LOC by combining
the 2D/3D constraints extracted from the retrieved keyframe with these extracted
from the previously mapped poses. For feature detection and description, we have
used Harris+ZNCC in our SLAM platform. As a perspective, we aim to use other
more modern descriptors that can further improve the performance.

Despite this significant improvement in localization performance, landmark re-
trieval techniques, such as the approach presented in this chapter, are not sufficient
to ensure lifelong navigation for autonomous robots. These kinds of approaches
reach their limits when the size of the map increases considerably, leading to a sig-
nificant increase in computation time. Therefore, we aim to solve this problem in
the next chapter by proposing different map management techniques whose role is
to avoid the continuous expansion of the map.

Chapter 4

Map Management

Contents
4.1 Introduction . 65

4.2 Contributions . 66

4.3 Map management with improved summary maps 67

4.4 Map management based on solar information 72

4.4.1 Similarity computation . 73

4.4.2 Classification and traversal removal 74

4.5 Map management based on environmental conditions sim-
ilarity (using Fc matrix) . 77

4.6 Experiments . 78

4.6.1 Evaluation scenario 1 . 79

4.6.2 Evaluation scenario 2 . 80

4.7 Results . 81

4.7.1 Evaluation scenario 1 . 81

4.7.2 Evaluation scenario 2 . 90

4.8 Conclusion . 94

The structure of the chapter is organized as follows. Section 4.1 gives an intro-
duction to this chapter. Section 4.2 highlights the different contributions presented
in this chapter. A detailed description of our different proposed map management
techniques is provided in sections 4.3, 4.4, and 4.5. Sections 4.6 and 4.7 describe the
experimentation details and provide the experimental results. Finally, a conclusion
to this chapter is given in Section 4.8.

4.1 Introduction

Significant efforts have been made in visual-based localization in static environ-
ments or with little change, but it is only recently that localization in dynamic
environments with changing environmental conditions has been addressed. Achiev-
ing reliable lifelong navigation in such environments is one of the biggest challenges
for visual SLAM. In this chapter, we are interested in real-time visual-based lo-
calization in outdoor environments for autonomous shuttles. In such applications,
shuttles repeatedly traverse the same path at different times. This means that they

66 Chapter 4. Map Management

are very likely to be exposed to many different environmental conditions that can
deteriorate the localization performance, even when they revisit familiar locations.
In such a scenario, environmental changes can lead to major difficulties when associ-
ating data between the current image and the landmarks in the map. Autonomous
shuttles must be able to deal with such environmental changes to ensure reliable
long-term localization.

Building a map that covers all environmental conditions by continuously adding
landmarks to this map can help improve localization performance under changing
conditions. However, this also leads to an incessant growth of the map size, which
is relative to the number of traversals performed by the shuttle (experiences). This
means that localization after multiple traversals requires an immense amount of
memory to store the map, as well as a high-end CPU to find matching points between
the current image and the corresponding landmarks in a huge database. In other
words, long-term real-time localization will be impossible after a certain number of
localization sessions. Therefore, several map update strategies are developed in this
chapter to prevent such cases and ensure reliable real-time long-term localization.

As in the previous chapter, the work presented in this chapter was evaluated on
both IPLT and Oxford RobotCar datasets.

4.2 Contributions

Maps are a critical component in self-driving applications. High-precision maps
with loads of reconstructed 3D points are created specifically for localization tasks
using on-board cameras. However, due to the limited computational and memory
resources of the mobile computing platform, these maps impose a significant burden
on real-time processing. Therefore, map management is one of the most suitable
techniques to save the processing power and memory while maintaining the accuracy
of localization.

The goal of this chapter is to provide a real-time solution for long-term localiza-
tion with respect to the map growth problem. For this reason, we present several
map management strategies to reduce the size of the map in an offline fashion. The
role of the proposed map management strategies is to remove superfluous data from
the map, which leads to a significant reduction in the computational cost of the
SLAM algorithm in long-term scenarios.

Other works have also addressed the map management issue in the
last few years [Biber 2005], [Mühlfellner 2016], [Dymczyk 2015], [Bürki 2018],
[Krajník 2016], [Halodová 2019], Some of these works reduce the size of the
map according to a scoring policy that suggests to remove landmarks with the
lowest observation rate [Mühlfellner 2016, Dymczyk 2015]. Some other works have
proposed to eliminate the landmarks that were incorporated in localization fail-
ures [Bürki 2018] and have a high incorrect matching rate [Halodová 2019].

The work presented in this chapter is also addressing the same issue in different
fashions. In order to ensure a long-term consistency, we have proposed three different

4.3. Map management with improved summary maps 67

map management techniques with the aim of limiting the size of the map over the
multiple runs of the autonomous shuttle while avoiding to degrade the localization
performance:

1) We present an improvement for the Summary Maps approach proposed by
Mühlfellner et al. [Mühlfellner 2016]. In this work, the authors are scoring
landmarks according to the number of different localization sessions in which
they appear, and they are removing the landmarks with the lowest scores in
an offline process. In our improved version of Summary Maps, we impose a
new constraint on the landmark removal, the purpose of which is to ensure the
presence of a uniform number of landmarks at each traversal after performing
the map summarization (i.e., compression).

2) We present a traversal-based map management technique whose role is to
remove the less relevant traversals from the map. The traversal-based map
management is used to limit the number of traversals in the map to a fixed
number N̂ . For this reason, we use information related to the position of the
sun to compute the correlation of the traversals to produce a map with N̂

traversals with diverse environmental conditions.

3) We present another traversal-based map management technique that aims to
limit the total number of traversals in the map to N̂ traversals. Instead of using
information related to the sun position, we propose to exploit the matrix Fc

computed in the previous chapter, which defines the similarity values between
the traversals, to determine which traversal has the highest similarity with the
others to finally remove it.

In the three subsequent sections (4.3, 4.4, and 4.5), we present in more detail
the methodology of the three proposed map management techniques mentioned
above. In the results section, we present a comparison between these different
methods, we also present a comparison with the Summary Maps approach proposed
by Mühlfellner et al. [Mühlfellner 2016].

4.3 Map management with improved summary maps

In this section, we present our map management approach which is extending the
works proposed by Mühlfellner et al. [Mühlfellner 2016] named Summary Maps (and
denoted by SM) that we have re-implemented on our mapping framework. Mühlfell-
ner et al. [Mühlfellner 2016] have defined a landmark scoring policy, which assigns
scores to landmarks according to the number of different localization sessions in
which they appear. Therefore, landmarks which were observed in multiple sessions
are assigned with high scores by the scoring policy and deemed valuable for local-
ization as a result. This means that landmarks with low scores are deemed useless
and irrelevant for localization. Therefore, the Summary Maps approach consists in
using these scores to summarize the map in an offline process carried out after each
localization session to remove the most insignificant landmarks.

68 Chapter 4. Map Management

The strategy of the scoring function proposed by Mühlfellner et al. is illus-
trated in Figure 4.1. The figure presents an example of localization and shows the
landmarks observed in two different sessions, i and j.

session i session j

+1
+1 +1

li lj li,j

Figure 4.1: The landmark scoring policy proposed by Mühlfellner et al.. The figure illus-
trates a localization example where some landmarks (li,j) were observed in two different
sessions (session i and session j) and accordingly, their scores were increased by the scoring
policy.

A major limitation of this approach is the fact that landmarks in rarely vis-
ited areas are assigned with low scores since they are infrequently observed, which
means that they are expected to be removed in the map summarization process.
Dymczyk et al. [Dymczyk 2015] referred to this problem as the bias towards regions
that were more frequently visited, and their works were devoted to solve this prob-
lem. They upgraded the scoring policy proposed in [Mühlfellner 2016] to take into
account the expected number of trajectories to observe a landmark.

In our work, we are not interested with the improvements proposed by
Dymczyk et al. since we evaluate our approach on two datasets where all the
sequences are travels of the same path. Therefore, we are not concerned by
the problem of bias towards regions that were more frequently visited addressed
in [Dymczyk 2015]. However, we have identified another limitation of the Summary
Maps approach which is somehow similar to the previously mentioned limitation
and it can be defined as a problem of bias towards more experienced environmental
conditions. This bias occurs when a set of sequences with resembling environmental
conditions are mixed with a sequence with an odd environmental condition in the
same map (e.g. a set of day-time sequences are included in the same map with one
night-time sequence). In this case, landmarks observed under the odd environmen-
tal condition are assigned with low scores by the scoring policy since they were not
observed as frequently as the landmarks from the other sequences, which means that

4.3. Map management with improved summary maps 69

they will be filtered out in the map summarization step.
In Table 4.1, we present an example of bias towards more experienced environ-

mental conditions that has been occurring when summarizing the IPLT map from
the previous chapter with the re-implemented version of the Summary Maps. This
map was built using the 10 sequences presented in Figure 3.9 and it incorporates
only one night sequence (the odd sequence). In this table, we compress the map
with different compression ratios (1, 1.5, 2, 3, 5 and 10) using the Summary Maps
approach. Compressing the map with a compression ratio r means that we sort all
the landmarks based on their scores assigned by the scoring policy, then we remove
the 100 ∗ (1− 1/r) percent of the landmarks with the lowest scores (e.g., we remove
the 50% lowest scored landmarks for r = 2).

Table 4.1: Bias towards more experienced environmental conditions in Summary Maps.

Traversal
Compression ratio r

1 (no compression) 1.5 2 3 5 10
1 140,524 113,922 100,371 75,087 50,304 20,817
2 127,687 93,539 72,205 48,527 28,803 14,071
3 149,065 83,821 52,025 34,912 18,913 9,324
4 140,900 72,955 37,769 26,157 15,868 8,946
5 122,122 97,989 86,896 55,751 29,495 14,022
6 124,643 89,807 76,360 44,106 18,436 9,495
7 72,044 41,333 28,777 16,310 5,092 2,709
8 116,091 67,204 44,438 32,717 24,424 12,825
9 127,972 96,797 78,262 51,610 34,322 16,692
10 143,640 85,758 55,241 36,385 27,280 17,567
total 1,264,688 843,125 632,344 421,562 252,937 126,469
The table shows the number of landmarks observed on each traversal after compressing the map
with the Summary Maps approach using different compression ratios. The second column (r = 1)
represent the initial map with no compression (100*(1-1/1) = 0%). The last row represents the
total number of landmarks on each map.

According to the table, a considerable number of landmarks belonging to the
7th traversal (which corresponds to the night sequence 2020-02-05-18-37-10) were
removed after the map was compressed. This proves that the Summary Maps ap-
proach omits landmarks observed in rarely experienced environmental conditions.
This can cause a serious problem when localizing with night sequences on the com-
pressed map, as most of the night landmarks have been filtered.

Therefore, we propose an improvement for the Summary Maps in this section.
Our proposed technique consists in imposing a constraint that ensures the distribu-
tion of a uniform number of landmarks across all traversals after the map summariza-
tion (compression). Therefore, we call our technique the Uniform Summary Maps
(and denote it by USM). The procedure followed to ensure a uniform distribution
of landmarks over all traversals is explained in Algorithm 3.

70 Chapter 4. Map Management

Algorithm 3: Uniform Summary Maps

1: Parameters:
2: The total number of landmarks to remove: ntot
3: The number of traversals in the map: N
4: Steps:
5: repeat
6: Compute the number of landmarks nlland observed on each traversal l,

with l ∈ [1, N]

7: Sort the nlland landmarks of each traversal l according to the scoring policy
8: Compute the highest number of landmarks: nmax ← max({n1land, . . . , nNland})
9: Find the set of traversals S = {L1

max, . . . , L
s
max} having nmax landmarks

10: Find the traversal Lsmax having the second-highest number of landmarks:
nsmax ← max({n1land, . . . , nNland} \ {nmax})

11: ndiff ← nmax − nsmax
12: Compute the number of landmarks to remove in the current iteration:

nrem ← min(ndiff ∗ |S|, ntot) /* the function min is used to make sure that
we do not remove more than ntot landmarks */

13: for each traversal Lmax ∈ S do

14: Remove the lowest scored
nrem

|S| landmarks from traversal Lmax

15: end for
16: ntot ← ntot − nrem
17: until ntot ≤ 0

To better understand the pseudo-code presented in Algorithm 3, we present an
execution example in Figure 4.2. In the example, a map with N = 4 traversals is
compressed using our algorithm. nlland denotes the number of landmarks belonging
to the traversal l. We run our algorithm to remove ntot = 260 landmarks from the
map while maintaining a uniform distribution of landmarks across the N traversals.
In the first iteration, the algorithm has computed the number of landmarks nrem to
remove from the 4th traversal (the traversal with the highest number of landmarks).
In the second iteration, we note that there are two traversals with the highest number
of landmarks: S = {2, 4}. Accordingly, the algorithm has computed the number of
landmarks to remove nrem and removed nrem/|S| landmarks from each traversal in S.
In the third iteration, the set S contains 3 traversals. The algorithm has computed
the number of landmarks to be removed in this iteration ndiff ∗ |S| = 150. However,
this number is larger than the total number of landmarks to be removed ntot = 120.
Therefore, the statement min(ndiff∗|S|, ntot) was placed to ensure that our algorithm
does not remove more than ntot landmarks.

As we presented in Table 4.1 the results of compressing the map with the Sum-
mary Maps approach, Table 4.2 shows the result of compressing the map with our
improved version of Summary Maps. The table shows that after compressing the

4.3. Map management with improved summary maps 71

Iteration 1

1 200

2 250

3 150

4 290

Iteration 2

1 200

2 250

3 150

4 250

Iteration 3

1 200

2 200

3 150

4 200

-40

-50

-50

-40

-40

-40

Figure 4.2: An example illustrating the execution mechanism of our proposed algorithm.

map with different compression ratios, the number of landmarks stays uniform across
the different traversals.

Table 4.2: Compressing the map with the Uniform Summary Maps.

Traversal
Compression ratio r

1 (no compression) 1.5 2 3 5 10
1 140,524 85,676 63,235 42,157 25,294 12,647
2 127,687 85,676 63,235 42,157 25,294 12,647
3 149,065 85,676 63,235 42,157 25,294 12,647
4 140,900 85,676 63,235 42,157 25,294 12,647
5 122,122 85,676 63,235 42,157 25,294 12,647
6 124,643 85,676 63,235 42,157 25,294 12,647
7 72,044 72,044 63,235 42,157 25,294 12,647
8 116,091 85,676 63,235 42,157 25,294 12,647
9 127,972 85,676 63,235 42,157 25,294 12,647
10 143,640 85,676 63,235 42,157 25,294 12,647
total 1,264,688 843,128 632,350 421,570 252,940 126,470

The Table 4.2 demonstrates that the imposed constraint helped to avoid the
omission of the night traversal in this example. However, this technique suffers
when a significant number of traversals are included in the map. Therefore, in the
following two sections, we present other map management techniques that are able
to overcome this limitation.

72 Chapter 4. Map Management

4.4 Map management based on solar information

The work presented in this section is based on a contribution that was submit-
ted to the 14th International Conference on Intelligent Robotics and Applications
(ICIRA 2021) and which addresses our proposed map update strategy using solar
information. In this approach we aim to maintain a reliable map with a fixed size
throughout the frequent traversals.

In a previous work done at Institut Pascal, Royer et al. [Royer 2016] employed
an autonomous shuttle for three months, totaling nearly 1500 km of autonomous
travel on an industrial site. During this operation, the authors have experienced
some difficulties for long-term navigation. One of the most challenging difficulties
identified in this work is lighting changes over the day, where the tests demonstrated
that variations in lighting (caused by changes in the direction of the sunlight and
the sun elevation) have more impact than long-term changes of the environment on
the localization performance. This has motivated us to exploit information related
to the sun position to design a map management approach with the purpose of
preventing the continuous growth of the map. The sun position information are
used to determine which traversals to keep and which ones to remove from the map.
Traversals with correlated sun position coordinates are considered to have similar
environmental conditions. Thus, our approach consists, in a first time, in computing
the sun positions related to all the traversals in the map, then, in exploiting all those
computed values to classify this map into relevant and irrelevant traversals to finally
produce a compressed map that incorporates a minimum number of traversals with
diverse environmental conditions.

Therefore, the core idea of our approach is to produce a map that incorporates
a minimum number of traversals (N̂) and able to operate in different environmental
conditions. N̂ is the number of traversals to be maintained in the map after carrying
out the map management. Different values of N̂ were chosen in the experiments
section to evaluate the efficiency of our approach in different cases.

The methodology of our approach is described in the Figure 4.3. After each
localization session, we test whether the number of traversals in the map (N) is
greater than the predefined number N̂ . If so, our map management algorithm will
be executed offline to reduce the size of the map. N > N̂ means that the map
contains an extra traversal (N = N̂ + 1), which implies that it occupies additional
memory space. In this case, our approach has to act offline to bound the size of
the map, i.e., it has to decide which traversal has more similarity to the others to
eventually remove it.

As explained in Figure 4.3, this mechanism incorporates two main parts, simi-
larity computation and classification. In the similarity computation part, we exploit
information related to the sun position at each acquisition time and associate the
traversals with the corresponding environmental conditions. This finally allows us
to calculate the similarity between the traversals with respect to the associated en-
vironmental conditions. In the classification part, we use the previously computed
similarity information to classify the traversals according to their importance and

4.4. Map management based on solar information 73

New traversal

Map

compute similarity
between traversals

(map + new
traversal)

Classify the
traversals and

remove one of them

offline map management

localization
session finished

no

Add the new traversal to the map

N > N̂

yes

Map update

SLAM

Figure 4.3: A diagram illustrating the map management process proposed in this section.
A new traversal is localized and added to the existing map. After completing the re-
localization and mapping with SLAM, the map management algorithm is run offline to
check whether the map needs to be compressed or not (if N > N̂). If the answer is yes,
the algorithm must act in two parts. First, it must compute the similarities between the N
traversals in the map (N = N̂ + 1). Second, it uses these similarity information to classify
all the traversals and select the one that needs to be removed.

remove the less important ones.
In sub-sections 4.4.1 and 4.4.2, we present in details the methodology followed

in both similarity computation and classification parts.

4.4.1 Similarity computation

In this part, we take advantage of the sun position to compare resemblance be-
tween the traversals in the map in order to determine which ones to keep in the
map and which ones to remove. For each traversal in the map, we use the Astro-
nomical Almanac’s algorithm [Michalsky 1988] to compute the corresponding sun
spherical coordinates: the Solar Elevation Angle (el) and the Solar Azimuth Angle
(az) (see Figure 4.4). This algorithm takes as inputs the acquisition date/time and
GPS latitude/longitude coordinates of each corresponding traversal. These inputs
(date/time + GPS coordinates) are captured at the first frame of each traversal.
This can be valid only when using short sequences like the case of the sequences used
in evaluation part of this chapter, where the IPLT dataset incorporates ∼ 200 m
length sequences, each one of them was recorded over ∼ 2 minutes and the Oxford
RobotCar dataset incorporates ∼ 1.6 km sequences recorded over ∼ 5 minutes. This
means that there will be no significant gap in the sun position between the start
and the end of the traversal. We note that our technique can still be applied using
longer sequences by rerunning the Astronomical Almanac’s algorithm with updated
inputs every few minutes or few kilometers.

After computing all the sun positions associated to the N traversals in the map,

74 Chapter 4. Map Management

Figure 4.4: Solar Elevation Angle and Solar Azimuth Angle [Cheng 2019].

we generate a similarity matrix D with the shape of [N × N]. D is a 2D symmetric
distance matrix containing the distances, taken pairwise, between the computed sun
positions of the N traversals.

In this section, we tested two variants of the similarity matrix D. The first
variant, Del, is built by computing the distances between the elevation angles of the
traversals:

Del(i, j) = dist(eli, elj), ∀i, j ∈ [1, N] (4.1)

Where the function dist computes the angular distance between two solar elevation
angles. The second variant, Daz_el, is built using both the elevation and azimuth
angles. For each traversal i, we compute the Cartesian vector from the spherical
coordinates:

ui =




cos azi cos eli

sin azi cos eli

sin eli


 , ∀i ∈ [1, N] (4.2)

After that, we compute the distance matrix Daz_el by calculating the angle
between each pair of the N Cartesian vectors:

Daz_el(i, j) = |arccos(ui · uj)|, ∀i, j ∈ [1, N] (4.3)

Figure 4.5 illustrates an example of the similarity matrices Del and Daz_el. Both
matrices were built using the same map that contains 10 traversals (the IPLT map
from the previous chapter).

4.4.2 Classification and traversal removal

In this part, we exploit the matrix D (Del or Daz_el) built in the previous step to
find out which traversal has to be removed. A hierarchical clustering [Szekely 2005]
algorithm is used to classify the matrix D in order to select the traversal to remove
as explained in Figure 4.6.

Figure 4.6 shows the different steps of the classification and the traversal removal:

4.4. Map management based on solar information 75

(a) Del (b) Daz_el

Figure 4.5: Example of matrices Del and Daz_el built with a map containing N = 10
traversals. The values of the matrices were normalized between 0 and 1, black color refers
to 0 (high similarity) and white color refers to 1 (low similarity).

(a) D (b) Clustering D (c) searching for min

Figure 4.6: Steps for classification and the selection of the traversal to remove.

(a) D is the distance matrix obtained from the previous sub-section, we apply
this method the same way on Del and on Daz_el. In this example, D refers to
matrix Daz_el obtained with a map containing N = 5 traversals.

(b) We classify D into N̂ (4 in this example) classes using the hierarchical cluster-
ing algorithm. This results in the two traversals i and j that have the greatest
similarity being placed in the same class (i = 2 and j = 3 in this example).

(c) In this step, we want to remove a traversal from the map while keeping the
map as diverse as possible. To do this, we need to remove either the traversal
i or the traversal j. Therefore, we search which of them has more similarity to
the other traversals by looking for the minimum value in the ith and jth rows
of the matrix while ignoring the diagonal and the elements with coordinates

76 Chapter 4. Map Management

(i, j) and (j, i) (the shaded area in the figure). After finding the minimum, we
remove its associated traversal (traversal 2 in the example).

Lighting changes produced by day-night transitions can result in an enormous
visual gap between images recorded in the same place but at different times of
the day [Shoman 2020]. Localization under night condition can be considered as
a particular case since there are no lights provided by the sun after astronomical
twilight. Therefore, streetlights are almost the only source of light, which means
that all sequences recorded during the night are visually similar. This means that it
is pointless to keep more than one night-time traversal in the map, and on the other
hand, removing all night-time traversals can lead to a serious degradation of the lo-
calization performance for night-time sequences. This is demonstrated in Figure 4.7
where we have evaluated the performance of localization with the sequences of the
"night" class from IPLT dataset on 7 different maps (the "night" class incorporates
11 sequences as detailed in the previous chapter). Each of these maps contains a
single traversal corresponding to a night traversal, as indicated in the legend of the
figure. According to this figure, the localization performance is almost equivalent on
all these maps1. This means that no matter which night traversal is included in the
map, the localization performance on night sequences will be reliable. This can be
explained by the fact that urban lighting comes from fixed sources during the night,
unlike natural sunlight, whose direction and characteristics changes throughout the
day.

Figure 4.7: Localization performance on 7 different maps containing night traversals. Each
map was built using only one sequence (a night sequence) which is indicated on the legend
of the figure. We have not experienced any localization failure when localizing on these
maps.

For this reason, we impose a new constraint on our algorithm: the traversal with
the lowest sun elevation angle is not nominated as the traversal to be removed (the
night traversals have a negative sun elevation angle), any other night traversal will
be removed. This ensures that the produced map will incorporate only one night
traversal.

In the next section, we will present another map management technique that is
able to take into account other factors, such as rain or overcast, to remove irrelevant

1In the sequence 2020-10-07-19-54-47, the shuttle was driving on the left lane which is not the
case for the other sequences. This explains why the localization on the map generated by this
sequence has produced slightly less inliers than the other maps in the figure.

4.5. Map management based on environmental conditions similarity
(using Fc matrix) 77

traversals from the map. Moreover, it does not require any imposed constraint to
avoid removing night sequences.

4.5 Map management based on environmental condi-
tions similarity (using Fc matrix)

The work presented in this section is based on a contribution that was submitted
to a special issue on Machine Vision Theory and Applications for Cyber Physical
Systems of the Multimedia Tools and Applications journal (MTAP). In this work,
we propose a map management technique that is based on the Fc matrix defined
in the previous chapter. We extended the mapping system of the aforementioned
framework to adapt its maps to achieve long-term operations. Like in the previous
section, the idea is to reduce the size of the map while keeping it as diverse as
possible to cover the maximum number of different environmental conditions.

The principle of this approach is very similar to that proposed in the previous
section. The main difference between them is the data used to compute the similarity
between the traversals. Therefore, the map management procedure proposed in this
section consists in limiting the total number of traversals in the map (N) to a
predefined number of traversals N̂ . When the number of traversals in the map
N exceeds the predefined number N̂ (N = N̂ + 1), our algorithm must choose a
traversal to remove from the map. The choice depends mainly on the matrix Fc.
However, as explained in Section 3.3.2.3 from the previous chapter, Fc is regularly
updated along the traversal. Therefore, we compute its average value F̄c at the end
of each SLAM session:

F̄c =
1

n

n∑

i=1

F i
c (4.4)

where n is the total number of images in the trajectory and F i
c is the value of the

matrix Fc at iteration i.
Our approach consists in using this matrix F̄c to select the traversal which has

the most resemblance to the others and then removing it from the map.
In Figure 4.8, we present an example of the matrix F̄c computed on a map that

contains 10 traversals (the IPLT map from previous chapter). The values of the
matrix are between 0 and 1/max(fdist). The value 1/max(fdist) corresponds to the
score assigned by Fc to two identical images. This can be theoretically deduced
from the Equation (4.5) that was defined in Chapter 3:

Fc(trav(Ii), trav(Kj)) =
P (pt ∈ Ii,Kj)

fdist(Ii,Kj)
(4.5)

Assuming that the two images Ii andKj are identical, the value of P (pt ∈ Ii,Kj)

is 1 and the value of fdist(Ii,Kj) is max(fdist), hence the value 1/max(fdist).
To perform hierarchical clustering on the matrix F̄c, we first need to convert it

into a distance matrix. Since F̄c is symmetric and its values are included between 0

78 Chapter 4. Map Management

Figure 4.8: The matrix F̄c computed on the IPLT map. The values of the matrix are
between 0 and 1/max(fdist), black color refers to 0 (low similarity) and white color refers
to 1/max(fdist) (high similarity).

and 1/max(fdist), we can get a distance matrix by normalizing it as follows:

D = J − F̄c ·max(fdist) (4.6)

where J is a matrix of all ones with the same dimension as F̄c ([N × N]). The
resulting matrix D is a distance matrix with zero diagonal and all its values belong
to [0, 1].

We used the hierarchical clustering algorithm to classify the normalized matrix
D exactly the same way as we did with Del and Daz_el in the previous section.

4.6 Experiments

We have tested our map management techniques on the same datasets used in the
previous chapter. We also have used the same division for the mapping sequences
and test sequences (10 mapping sequences and 93 test sequences for IPLT dataset,
and 8 mapping sequences and 12 test sequences for Oxford RobotCar dataset).

We evaluate the work done in this chapter in two different scenarios. In both
scenarios, we aim to limit the number of traversals used to build the global map
to a predefined number N̂ . We call an N̂ -session map a map constituted from N̂

traversals. In other words, we aim to choose the best N̂ -session map from a total of
N traversals.

To evaluate the efficiency of the maps generated with our approaches, we first
proceed to build all possible maps constituted of N̂ traversals. This will result in

4.6. Experiments 79

obtaining n different N̂ -session maps:

n = NCN̂ =

(
N

N̂

)
=

N !

(N − N̂)! N̂ !
(4.7)

However, this paradigm is only feasible with the map management with solar
information (denoted by MMSE when using only solar elevation and MMSAE when
using both solar azimuth and elevation as described in Section 4.4) and the map
management with the similarity matrix Fc (denoted by MMFc) since both of them
are traversal-based map management techniques, where less relevant traversals are
removed. The concept of the Summary Maps (SM) and the Uniform Summary
Maps (USM) is quite different since in both approaches, the map summarization
is performed in a landmark-based way, where less relevant landmarks are removed.
Therefore, to fairly compare the SM and the USM with the other proposed ap-
proaches (MMSE, MMSAE and MMFc), we search for the compression ratio r̂ that
generates a map with approximately the same number of landmarks incorporated
in a map containing N̂ traversals:

r̂ =
nland(MN)

nland(MN̂)
(4.8)

where MX is a map containing X traversals and the term nland(M) denotes the
number of landmarks contained in the map M .

This way, we make sure that the maps generated with the SM, USM, MMSE,
MMSAE and MMFc techniques are equivalent in terms of number of landmarks (and
respectively in terms of memory occupancy), which guarantees a fair comparison
between the localization performance after compressing the map.

4.6.1 Evaluation scenario 1

This scenario is similar to the evaluation scenario from the previous chapter. We
use the mapping sequences to generate a compressed map for each map management
technique. Then we use the test sequences to evaluate the localization performance
on these compressed maps.

The goal is to determine if there exists a small map that can be used to localize
every test sequence without significantly increasing the failure rate of the localization
compared to the map which contains all the traversals. It will also allow to rank
all the possible N̂ -session maps, which means that we can position the result of our
approach among all the n possibilities. Thus we will be able to compare the result
of our incremental approach with the global optimal N̂ -session map. Of course,
this is possible only for an evaluation purpose, the exhaustive search of the global
optimum is intractable for real use cases with hundreds of traversals like the case in
the second evaluation scenario. Therefore, we perform this exhaustive search only
in the first evaluation scenario.

In order to compute localization error, the n generated N̂ -session maps are

80 Chapter 4. Map Management

evaluated by performing re-localization with a selection of sequences from the test
dataset. We have selected a set of sequences with different environmental conditions
from the test sequences (30 sequences were selected from the IPLT test dataset and
all the 12 test sequences from the Oxford RobotCar dataset). Since we do not
possess the ground-truth poses to compute the error in the IPLT dataset, for each
test sequence, we create the corresponding ground-truth poses by performing re-
localization on the global map while retrieving from the map the 4 keyframes which
have the highest probability of matching P (pt ∈ Ii, Kj). The landmarks of these 4
retrieved keyframes are matched to the current image to calculate the ground-truth
pose using PnP+RANSAC. The Oxford RobotCar dataset is providing the RTK
ground-truth poses [Maddern 2020]. However, we deplore a lack of ground-truth
poses for some of the sequences used in this work (either a total or a partial lack,
e.g., 2014-11-18-13-20-12, 2014-12-16-09-14-09, 2015-02-03-08-45-10, etc.). Also, the
ground-truth poses provided by this dataset comprehend a large error margin (∼15
cm in latitude and longitude) which is an order of magnitude higher than the local
accuracy usually given by visual localization in such applications. Therefore, we
decided to proceed in the same way for ground-truth calculation as we did for the
IPLT dataset.

To compute the localization error, we perform re-localization with the test se-
quences on all the n N̂ -session maps. For each N̂ -session map, we compute the
average of localization errors of all the test sequences. The localization errors corre-
spond to the Euclidean distance between the ground-truth poses calculated on the
global map and the poses computed while re-localizing on the N̂ -session maps.

Afterwards, we proceed to an incremental search step. In this step, we employ
each of our map management approaches to build a map from N̂ traversals among N
traversals (feasible only with the traversal-based techniques: MMSE, MMSAE and
MMFc). Considering the fact that the order in which the traversals are added to the
map can influence the resulting map, we test our approach with 100, 000 different
permutations in the order of the N traversals. This results in generating several N̂ -
session maps when we run each map management technique (MMSE, MMSAE or
MMFc) 100, 000 times with different permutations in the order of the N traversals.
Thereby, we pick the most reproduced N̂ -session map (denoted by M∗) and use it
to evaluate the localization performance with the test sequences.

Since both of SM and USM are not traversal-based techniques, we just proceed
to a map compression after the end of each mapping session with a compression
ratio r̂ computed with Equation (4.8).

4.6.2 Evaluation scenario 2

This scenario is modeled on the real use case of autonomous shuttles. This means
that we aim to find the best representation of the environment among all the encoun-
tered sequences (mapping and test sequences). The map is built in an incremental
way where we perform SLAM-LOC (re-localization + mapping) with each sequence
of the mapping and test datasets. After each localization session, the map manage-

4.7. Results 81

ment is performed to ensure that the size of the map remains limited. The quality
of localization is measured along all the sequences (unlike in scenario 1 where the
quality of localization is measured when re-localizing with the test sequences).

We have evaluated this scenario only with the IPLT dataset since it incorporates
a significant number of sequences (mapping + test sequences = 103 sequences),
allowing to properly simulate a real use case of an autonomous shuttle. This is not
the case for Oxford RobotCar dataset which includes only 20 sequences.

During each mapping session, we use our keyframe retrieval technique (intro-
duced in the previous chapter) to extract landmarks from the two most relevant
keyframes in the map. These retrieved landmarks are first combined with the land-
marks extracted from the most recently mapped keyframe (from the current mapping
session), and then matched with the current image to compute the current vehicle
pose. We retrieve two keyframes instead of only one, as in evaluation scenario 1,
to obtain a more accurate pose and reduce the cumulative mapping drift as much
as possible. The mapping drift accumulates progressively and becomes significant
after a large number of mapping sessions (described as a photocopy of a photocopy
in [MacTavish 2017]). Therefore, data association in this evaluation scenario is per-
formed between the current image and the two retrieved keyframes according to τ2
and the most recently mapped keyframe.

4.7 Results

In this section, we show the efficiency of the different proposed map management
approaches in the two evaluation scenarios described above. As in the keyframes
retrieval approach, we test our map management with two datasets.

4.7.1 Evaluation scenario 1

4.7.1.1 IPLT dataset

We evaluated our different approaches on the IPLT dataset using the global map
from the previous chapter (presented in Figure 3.9). We have used three different
values of N̂ to demonstrate its efficiency on different setups: N̂ = {3, 4, 5}.

In Figure 4.9, we show the result of the exhaustive search performed with N̂ =
3 and 4. The exhaustive search allowed us to rank all the possible N̂ -session maps
according to the localization error recorded on each of them. We also present on
this figure all the N̂ -session maps that were generated with the MMFc approach.

This figure shows that the localization error has decreased globally when we
passed from N̂ = 3 to N̂ = 4 (which is clear by the red curve in the two sub-
figures). In the first sub-figure (4.9a), N̂ is equal to 3. According to Equation (4.7),
the number of all possible N̂ -session maps composed from 3 traversals out of N = 10

traversals is n = 120. In the second sub-figure (4.9b), N̂ is equal to 4, accordingly
n = 210. As visible in both sub-figures, our approach has produced multiple results
as consequence of using 100, 000 different permutations of the N traversals as input.

82 Chapter 4. Map Management

(a) N̂ = 3

(b) N̂ = 4

Figure 4.9: Average localization errors for the IPLT dataset global map. The red curve
designates the average of localization errors obtained while performing re-localization with
a selection of test sequences on the n N̂ -session maps. All the N̂ -session maps are sorted in
ascending order according to their corresponding errors. The blue dots are indicating the
results of the MMFc approach on 100, 000 different permutations of the N traversals. We
specify the number of times each result has been reproduced by the MMFc approach with
the size of its corresponding dot and with the annotations on the figures.

4.7. Results 83

Therefore, we take into consideration only the N̂ -session mapM∗, which denotes the
most reproduced N̂ -session map by the corresponding map management approach.
M∗ will be used for further tests and comparisons. It is also noticeable from the
figure that all N̂ -session maps generated by our approach are placed in the lower
bound of the curves for both values of N̂ . This means that for all the 100, 000

permutations of the N traversals, our approach has efficiently avoided producing
maps whose localization errors are significant.

In Figure 4.10, we present a comparison between the maps M∗MMFc, M
∗
MMSE

andM∗MMSAE which refer to the most reproduced N̂ -session maps using the MMFc,
MMSE and MMSAE approaches, respectively. We also include in the comparison
two other N̂ -session maps, denoted

∼
M∗MMSE and

∼
M∗MMSAE , which were reproduced

with the MMSE and MMSAE approaches while imposing the constraint that ensures
keeping a night sequence on the map as described in sub-section 4.4.2.

(a) N̂ = 3 (b) N̂ = 4

Figure 4.10: A comparison between the N̂ -session maps produced with the different ap-
proaches using N̂ = {3, 4}. In (a), the three maps M∗

MMSAE ,
∼
M∗

MMSE and
∼
M∗

MMSAE are
pointing to the same N̂ -session map. In (b), M∗

MMSAE and
∼
M∗

MMSAE are pointing to the
same N̂ -session map, while M∗

MMFc is pointing to an adjacent N̂ -session map (adjacent
index).

We want to remind that for each choice of N̂ , the size of the maps generated
by our different approaches are very close since they incorporate the same number
of traversals (for M∗MMFc, M

∗
MMSE , M

∗
MMSAE ,

∼
M∗MMSE and

∼
M∗MMSAE). For both

of SM and USM approaches, we compress the maps MSM and MUSM with the
compression ratio r̂ computed according to Equation (4.8). This guarantees a fair
comparison between the different approaches.

In order to evaluate the influence of the map compression in the localization
performance, we compare the performance of localization on the initial global map,
M0, which is composed of N traversals with performance of localization on the
most reproduced N̂ -session map for each map management technique (the maps
compared in Figure 4.10). In Figure 4.11 we present the average number of inliers
per image and the average number of localization failures per km recorded while

84 Chapter 4. Map Management

re-localizing on the global map M0 and on the maps produced with our different
map management techniques (with N̂ = {3, 4, 5}). We also present a comparison
with the state-of-the-art Summary Maps (SM) approach proposed by Mühlfellner et
al. [Mühlfellner 2016]. The test sequences were classified manually into 5 different
classes as in Chapter 3 (13 sequences in "sun" class, 39 in "overcast", 12 in "rain",
17 in "dusk" and 11 in "night"). The "global" class contains all 93 sequences while
the "global \ {night}" class contains all the sequences excluding the night sequences
(82 sequences).

For a better understanding of the results, we present in Table 4.3 the traversals
included in each map produced by our different approaches (excluding MSM and
MUSM since both of them include all the N traversals with a reduced number of
inliers).

Table 4.3: Traversals included in each map produced by our approaches on IPLT dataset.

map N̂ = 3 N̂ = 4 N̂ = 5

M∗MMFc

2020-01-15-11-15-33 2019-10-01-16-54-55 2019-10-02-15-03-40
2019-10-01-16-54-55 2020-02-05-18-37-10 2019-10-01-16-54-55
2020-02-05-18-37-10 2020-01-15-13-23-09 2020-02-05-18-37-10

- 2020-01-31-16-07-34 2020-01-15-13-23-09
- - 2020-01-31-16-07-34

M∗MMSE

2020-01-15-11-15-33 2020-01-15-11-15-33 2020-01-15-11-15-33
2019-10-02-15-03-40 2019-10-02-15-03-40 2019-10-02-15-03-40
2019-10-22-15-01-25 2019-10-22-15-01-25 2019-10-22-15-01-25

- 2020-02-05-17-53-21 2020-02-05-17-53-21
- - 2020-01-31-16-07-34

M∗MMSAE

2019-10-02-15-03-40 2019-10-01-16-54-55 2019-10-02-15-03-40
2020-02-05-18-37-10 2020-02-05-18-37-10 2020-02-05-18-37-10
2020-01-22-10-22-06 2020-01-15-13-23-09 2020-01-15-13-23-09

- 2020-01-22-10-22-06 2020-01-22-10-22-06
- - 2020-01-31-16-07-34

∼
M∗MMSE

2019-10-02-15-03-40 2019-10-02-15-03-40 2019-10-02-15-03-40
2020-02-05-18-37-10 2020-02-05-18-37-10 2019-10-22-15-01-25
2020-01-22-10-22-06 2020-01-15-13-23-09 2020-02-05-17-53-21

- 2020-01-22-10-22-06 2020-02-05-18-37-10
- - 2020-01-22-10-22-06

∼
M∗MMSAE

2019-10-02-15-03-40 2019-10-01-16-54-55 2019-10-02-15-03-40
2020-02-05-18-37-10 2020-02-05-18-37-10 2020-02-05-18-37-10
2020-01-22-10-22-06 2020-01-15-13-23-09 2020-01-15-13-23-09

- 2020-01-22-10-22-06 2020-01-22-10-22-06
- - 2020-01-31-16-07-34

4.7. Results 85

(a) N̂ = 3

(b) N̂ = 4

(c) N̂ = 5

Figure 4.11: Comparison of localization performance between M0 and each of the maps
produced by the different approaches using the 93 test sequences from IPLT dataset. Sub-
figures (a), (b) and (c) show the localization performance when choosing 3, 4 and 5 as
values for the parameter N̂ , respectively. Each box represents the mean value + and -
the standard deviation of inliers (or localization failures) recorded while performing re-
localization using all the sequences of the corresponding class. The colors of the boxes
indicate which map management technique was used to produce the map where the local-
ization was performed. For better readability of the localization failures values, we plot the
average number of localization failures per km in the lower x-axis.

86 Chapter 4. Map Management

It is clear from Figure 4.11 that the localization performance is globally de-
graded after limiting the map to N̂ = 5 traversals and is degraded more for
N̂ = 4 and 3 traversals. For all the choices of N̂ , the localization performance
on the map M∗MMSE with night sequences was very poor since this map does not
include any night traversal (see Table 4.3). This is not the case for the N̂ -session
maps M∗MMSAE and M∗MMFc which incorporate a night traversal. Both

∼
M∗MMSE

and
∼
M∗MMSAE also include a night traversal due to the imposed constraint explained

in sub-section 4.4.2. Therefore, the localization performance with night sequences
on those maps is reliable (1.36 localization failures per km, which is the same value
recorded on M0).

According to the same figure, localization can be reliable in overcast and rainy
conditions even if the map does not include traversals of the same class. For example
with N̂ = 3, both M∗MMFc and M

∗
MMSE include a traversal from "rain" class, while

it is not the case for the other maps, which is distinguishable by the inliers average.
However, all of them have not experienced any localization failure (except for MSM

and MUSM).
On the other hand, the map MSM has shown a major weakness in localization,

especially for night sequences. This confirms that this approach is not well suited
when the landmarks are not uniformly distributed over the different environmental
conditions as it is the case of the global map M0, which contains only one night
sequence (Figure 3.9). This means that landmarks observed in the night are assigned
with a low score since they have been observed only in one session (in Section 4.3, we
have called this phenomenon as the bias towards more experienced environmental
conditions). As expected, the localization performance has been improved especially
for night sequences when using the mapMUSM which incorporates a uniform number
of landmarks over the different traversals (as shown in Table 4.2). However, even
with the improvement, the USM approach was not able to provide a very good
localization performance under the night condition. This means that the scoring
policy used in both approaches (SM and USM), which removes landmarks according
to their observation rate in different sessions, does not allow to efficiently compress
the map to ensure lifelong navigation.

Overall, the localization performance has been degraded when compressing the
map with different values of N̂ . However, even with this degradation, the localiza-
tion can still be considered as reliable with the use of some of our proposed map
management techniques especially MMFc, which is visibly providing slightly better
results than the other methods. Using MMFc with N̂ = 5, we consider 1.1 local-
ization failures per km over all the test sequences ("global" class). This means that
only 20 images among all the 93 sequences (which incorporate a total of 159,074
images) where matched with less than 30 inliers (i.e., ∼ 1.26e−4 failures per image).

Figure 4.12 presents a curve inspecting the memory occupation and landmarks
count of the different maps used in our tests with respect of the choice of N̂ . Ac-
cording to this figure, the choice of N̂ = 5 has resulted in compressing the map
M0 with a compression ratio r ≈ 2. Despite this compression, we note that all of
M∗MMFc, M

∗
MMSAE ,

∼
M∗MMSE and

∼
M∗MMSAE were able to achieve a very compet-

4.7. Results 87

Figure 4.12: A curve in which we inspect the size of the maps with the different ap-
proaches. For each value of N̂ , the curve is presenting the corresponding memory occupa-
tion (Megabytes) and the number of landmarks in each one of these maps (all the maps
have approximately the same size). For N̂ = 10, we provide the size of the map M0.

itive level of performance with the uncompressed map M0. We also note that all
our approaches have remarkably outperformed a map with a same compression rate
that was generated with another approach (MSM).

4.7.1.2 Oxford RobotCar dataset

As as we did with the IPLT dataset, we evaluate our approach on the Oxford Robot-
Car dataset. The global map used here is the same as in Chapter 3 (Figure 3.11).
In Figure 4.13, we present the average of localization error of all the n N̂ -session
maps composed of N̂ = 3 traversals (according to Equation (4.7), n = 56). We also
indicate the solutions produced with the MMFc approach. Since this global map
is built only by N = 8 traversals, we exhibit the result of our approach on all the
possible permutations of 8 traversals (8! = 40320 permutations).

In the figure, there is a sudden increase in the curve, as the last 10 indexed
N̂ -session maps have a remarkable higher localization error. This is caused by
the fact that these 10 N̂ -session maps do not incorporate any rainy sequence (the
map M0 contains 3 rainy sequences as presented in figure 3.11). This means that
these N̂ -session maps are composed of only sunny and cloudy sequences. M0 also
incorporates 1 sunny sequence and 4 cloudy sequences (i.e. 5 sequences), which
means that the combination of sequences that do not contain any rainy sequence is
5C3 = 10.

Figure 4.14 presents a comparison between the most reproduced N̂ -session maps
with the MMFc, MMSE and MMSAE techniques. Unlike the IPLT dataset, the
sequences used for the mapping and the test datasets in Oxford RobotCar do not
incorporate any night sequences. Therefore, we do not include the maps

∼
M∗MMSE

and
∼
M∗MMSAE in the comparison (the maps that were obtained by imposing the

88 Chapter 4. Map Management

Figure 4.13: Average localization errors of the Oxford RobotCar dataset global map with
N̂ = 3. The blue dots are indicating the results of the MMFc approach on all the possible
permutations of the N traversals.

constraint that ensures keeping a night sequence on the map as described in sub-
section 4.4.2).

As we did with the IPLT dataset, we evaluate the influence of the map com-
pression in the localization performance with the Oxford RobotCar dataset. In
Figure 4.15, we compare the performance of localization on the initial global map
M0, which is composed of N = 8 traversals, with the performance of localization
on the most reproduced N̂ -session map for each map management technique. We
also compare these techniques with the SM and USM approaches. The comparison
is performed according to the inliers average and the number of localization failures
per km.

This figure shows that the performance of localization on the Oxford RobotCar
dataset has slightly decreased with N̂ = 3 when using our different approaches. This
kind of degradation is expected after compressing the map from 8 traversals to only
3. According to the figure, there is a significant failure rate for the sequences under
the "rain" class. This can be explained by the fact that the test sequences include
a sequence (2014-11-21-16-07-03) that was recorded at the beginning of dusk
and during a heavy rain (see Figure 3.18). On the other hand, localization on the
"snow" class (the snow class contains only one sequence 2015-02-03-08-45-10)
has not led to any localization failures with M∗MMFc and M∗MMSAE . Both of these
N̂ -session maps contain the sequence 2015-02-20-16-34-06 (see Table 4.4) which

4.7. Results 89

Figure 4.14: A comparison between the N̂ -session maps produced with the different ap-
proaches using N̂ = 3 with Oxford RobotCar dataset.

is visually similar to the snow sequence 2015-02-03-08-45-10 that was recorded
on a soft snow.

Table 4.4: Traversals included in each map produced by our approaches on Oxford RobotCar
dataset.

Map M∗MMFc M∗MMSE M∗MMSAE

N̂ = 3

2014-06-26-09-53-12 2014-06-24-14-47-45 2014-06-26-09-53-12
2015-02-20-16-34-06 2015-07-08-13-37-17 2015-02-20-16-34-06
2014-12-05-11-09-10 2014-11-25-09-18-32 2015-07-08-13-37-17

In Table 4.5, we present the memory occupancy and the number of landmarks in-
cluded in each map used to evaluate our approach on the Oxford RobotCar dataset.

Table 4.5: Memory occupancy and number of landmarks in each map built using Oxford
RobotCar dataset.

Map (N̂ = 3) M0 M∗MMFc M∗MMSE M∗MMSAE MSM MUSM

Memory occupancy (MB) ∼ 970 ∼ 330 ∼ 330 ∼ 330 ∼ 430 ∼ 430

Number of landmarks (×106) ∼ 14 ∼ 5 ∼ 5 ∼ 5 ∼ 5 ∼ 5

We notice from the table that bothMSM andMUSM occupy slightly more mem-

90 Chapter 4. Map Management

Figure 4.15: Comparison of localization performance between M0 and each of the maps
produced by the different approaches using the 12 test sequences from Oxford RobotCar
dataset.

∼
M∗

MMSE and
∼
M∗

MMSAE are excluded since this dataset does not include night
sequences.

ory space than the other techniques, although the number of landmarks is approxi-
mately the same. This is due to the fact that these two maps contain information
about all the N traversals, such as the poses of the vehicle and the cameras. This is
not the case for M∗MMFc, M

∗
MMSE and M∗MMSAE , which only contain information

about the N̂ maintained traversals (all other traversals are completely removed).

4.7.2 Evaluation scenario 2

This scenario is modeled on the real use case of autonomous shuttles. Unlike in
the previous scenario where we build a map from only N traversals (N = 10 for
IPLT dataset and 8 for Oxford RobotCar dataset), in this scenario we use all the
sequences to perform mapping and incorporate them one by one like in the case
where an autonomous shuttle is regularly visiting a same location in different times
to build a long-term map. Therefore, the localization performance is evaluated while
performing SLAM-LOC to build a long-term map. This means that the evaluation of
different permutations of the mapping sequences in this scenario is intractable. For
this reason, we performed this evaluation scenario with a random permutation of all
the sequences. We have performed this evaluation scenario only on the IPLT dataset
since it incorporates a sufficient number of sequences (103 sequences) allowing to
properly evaluate the localization performance. This is not the case for the Oxford
RobotCar dataset where we consider only 20 sequences in total.

In Figure 4.16, we present a comparison between the different proposed map
management techniques with respect to the average number of inliers per image
and localization failures per km.

The figure shows that all presented techniques have successfully provided a re-

4.7. Results 91

(a) N̂ = 3

(b) N̂ = 4

(c) N̂ = 5

Figure 4.16: Comparison of localization performance between M0 and each of the maps
produced by the different approaches with respect to evaluation scenario 2. We have used
all the 103 test+mapping sequences from IPLT dataset in this comparison. Sub-figures
(a), (b) and (c) show the localization performance when choosing 3, 4 and 5 as values for
the parameter N̂ , respectively. In both (b) and (c), we have not experienced any single
localization failure for all the presented techniques.

92 Chapter 4. Map Management

liable lifelong navigation under different environmental conditions without localiza-
tion failures (except for MMSE with N̂ = 3). For all values of N̂ , it is noticeable
that the MMFc method has achieved the best performance among all proposed tech-
niques. This is due to the fact that the similarity scores included in the matrix Fc

take into account all environmental conditions, which is not the case for the scores
provided by the two methods MMSE and MMSAE, which only consider illumination
changes.

According to the figure, there is a notable increase in the number of inliers
compared to the comparison performed in the evaluation scenario 1 (Figure 4.11).
This is due to the use of the SLAM-LOC instead of re-localization in this scenario.
This means that the previously mapped landmarks are bringing a gain and helping
localizing the current image. This noticeable increase in the inliers is also due to the
retrieval of two keyframes from the map instead of only one. This helped increasing
the number of 2D/3D constraints which produced a large number of inliers.

We have not presentedMSM andMUSM in the figure because in both approaches
the SLAM-LOC was not possible after a certain number of mapping sessions (50
sessions forMSM and 55 sessions forMUSM). After inspecting both maps, we found
that the number of 3D points was significantly reduced by the two approaches (∼700
3D points). This means that each of these 3D points was enriched with a large
amount of landmarks observed in different traversals and at different viewpoints.
This problem is due to the fact that the scoring policy used in both approaches
recommends removing the landmarks with the lowest observation rates. In other
words, after each mapping session, both approaches filter out the 3D points asso-
ciated with a low number of landmarks observed in different sessions and keep the
3D points enriched with a high number of landmarks. Therefore, the localization is
no longer possible with a such reduced number of 3D points in the map.

We notice from the figure that all the presented techniques have provided a
reliable localization performance without any matching failure in different environ-
mental conditions (except for MMSE with N̂ = 3). It is also noticeable that the
technique MMFc has produced the N̂ -session map with the best long-term localiza-
tion performance.

The map M0 that incorporates all the 103 sequences has shown the best perfor-
mance according to the figure. However, we note that it also has the highest com-
putational complexity. Since M0 is ceaselessly growing in this evaluation scenario,
the computation time is also increasing. In Figure 4.17, we present a comparison
between the different map management techniques with respect to the computa-
tion time required to process a single frame by the tracking thread of our system.
This figure shows the average computational cost (time required to process a frame)
recorded while performing the comparison presented in Figure 4.16.

According to the figure, the computational complexity of processing frames on
M0 increases with respect to the number of sequences contained in the map. This
means that without performing map management, real-time performance will not
be possible at some point of the autonomous shuttle’s operational routine. For each
value of N̂ , the computational complexity of processing frames on all other maps

4.7. Results 93

0 20 40 60 80 100 120

Sequence index

20

40

60

80

100

120

C
o
m

p
u
ta

tio
n
 t
im

e
 (

m
s)

(a) N̂ = 3

0 20 40 60 80 100 120

Sequence index

20

40

60

80

100

120

C
o
m

p
u
ta

tio
n
 t
im

e
 (

m
s)

(b) N̂ = 4

0 20 40 60 80 100 120

Sequence index

20

40

60

80

100

120

C
o
m

p
u
ta

tio
n
 t
im

e
 (

m
s)

(c) N̂ = 5

Figure 4.17: Comparison of computational cost betweenM0 and each of the maps produced
by the different approaches with respect to evaluation scenario 2. We have used all the 103
test+mapping sequences from IPLT dataset in this comparison. Each sub-figure shows
the average computation time required to process a single frame on each of the 103 used
sequences for each value of N̂ . The sequences are sorted according to the same order
adopted while performing the evaluation scenario 2.

shown in the figure is approximately equivalent, which is expected since they all
incorporate the same amount of data (same number of traversals). Increasing the
value of N̂ leads to an increase in the computation time. This means that the value
of N̂ should be chosen with caution as it has a direct impact on the localization
performance and computational complexity.

94 Chapter 4. Map Management

4.8 Conclusion

In this chapter, we have presented three different algorithms which can be used
for long-term localization process. These three algorithms have in common their
capability to bound the size of the map to avoid its continued inflation and each one
of them is designed to use a different kind of information to remove superfluous data
from the map. In the first algorithm, we have proposed an improvement for the state-
of-the-art Summary Maps technique to avoid omitting landmarks observed under
rarely experienced environmental conditions. In the second algorithm, we have used
the sun position information as a guideline to filter out the traversals and their
associated landmarks which were recorded under resembling lighting conditions.
The last algorithm is based on some fundamental concepts proposed in the keyframe
retrieval approach explained in the previous chapter. It uses the similarity matrix
Fc as information to classify the traversals in the map and remove unimportant ones
based on their resemblance.

To test the efficiency of our proposed approaches, we have evaluated the local-
ization performance in two different scenarios. Except for the improved Summary
Maps technique (USM) which has failed in the second evaluation scenario, our ap-
proaches have been demonstrated to be able to achieve a reliable lifelong navigation
on two different datasets while limiting the size of the map. Although the localiza-
tion performance has been slightly reduced after compressing the map, our proposed
approaches have successfully restrained the computational complexity. We have also
demonstrated that our different techniques have noticeably outperformed localiza-
tion performance of a state-of-the-art approach (Summary Maps).

As perspectives, we aim to further improve our different techniques in several as-
pects. We would like to add a spatial constraint to the USM technique that ensures
a uniform spatial distribution of 3D points over the compressed map, and ensures
the maintenance of a sufficient number of 3D points that guarantee successful navi-
gation under different environmental conditions to avoid running into similar cases
as in evaluation scenario 2. We also aim to combine other weather information with
the solar coordinates to further improve both the MMSE and MMSAE approaches.
Moreover, we are interested in improving our traversal-based map management tech-
niques to dynamically adjust the value of N̂ in such a way that the best localization
performance can be achieved while preserving the real-time capability.

Chapter 5

Conclusion and perspectives

Conclusion
In this PhD thesis, we have been interested in lifelong navigation in dynamic en-
vironments. Particularly, we have been focused on both localization and mapping
aspects for autonomous shuttles applications. The work detailed in this manuscript
is structured in two main contributions.

First, we present a contribution to landmark retrieval, which is employed to ex-
tract relevant landmarks for the current environmental conditions. Unlike most
state-of-the-art approaches, our proposed landmark retrieval is performed in a
keyframe-based aspect, i.e., instead of searching directly on the map for relevant
landmarks for localization, our approach searches for the keyframes that were taken
under similar environmental conditions as the current frame and extracts their asso-
ciated landmarks. Given that classic keyframe retrieval techniques, which retrieve
keyframes based only on their geometric distances from the vehicle pose, fail in
long-term scenarios where the autonomous shuttle revisits the same location under
different environmental conditions. We designed a ranking function that serves as
a heuristic for keyframe retrieval taking into account both geometric distance and
environmental conditions.

The suggested ranking function creates at the beginning of each localization
session a similarity matrix, called Fc, which contains similarity scores between the
different traversals included in the map. The values in this matrix define the sim-
ilarity scores between the environmental conditions of all traversals in the maps,
taken pairwise. This ranking function is used as a guideline during the rest of the
trajectory to retrieve the keyframes which are deemed to provide the best localiza-
tion performance. Given a map that incorporates multiple traversals taken under
different environmental conditions, our ranking function takes into consideration the
similarity scores in the matrix Fc and the geometric distances between the vehicle
pose and the 3D poses of all the mapped keyframes to extract the most relevant
keyframes and their associated landmarks.

By performing data association between the landmarks of the current frame and
those retrieved by our designed ranking function, we have demonstrated, in two
different datasets, that our approach was able to retrieve good keyframes under
different environmental conditions allowing to remarkably improve the localization
performance and significantly reduce the number of localization errors compared to
a classic technique that retrieves the closest keyframes to the vehicle pose (e.g., we
have reduced the number of localization failures in IPLT dataset by ∼400×).

96 Chapter 5. Conclusion and perspectives

The second contribution of this thesis is focused on finding efficient ways to limit
the amount of data to be stored in the map for the purpose of reducing the compu-
tational complexity of localization over long-term scenarios. In this respect, we have
proposed three different map management techniques which have in common their
capability to bound the size of the map to avoid its continued inflation. Each one of
the proposed techniques uses a different kind of information to remove superfluous
data from the map and all of them are carried out offline after each localization
session. The first technique is based on a state-of-the-art approach, called Summary
Maps, which uses inter-session landmark co-observability information to remove less
important data from the map. Our contribution to the Summary Maps consists in
adding a constraint that ensures a uniform distribution of landmarks over all the
traversals. The second technique uses information related to the sun position to
compute similarity between the traversals in the map and filter out landmarks ob-
served in similar brightness levels. The third technique consists in using the matrix
Fc which was defined by our keyframe retrieval technique and which contains sim-
ilarity scores between the different traversals in the map. This matrix is used as a
criterion to detect and remove redundant data from the map.

The three proposed map management techniques were evaluated in two different
scenarios. The first scenario consists in using a set of mapping sequences to build
a map with the different techniques and evaluating the re-localization performance
on each of them with another set of test sequences. The evaluations performed in
this scenario were validated on both the Oxford RobotCar and IPLT datasets. The
second scenario was inspired by the autonomous shuttles application scenario, where
we perform incremental localization and mapping with all available sequences. The
evaluations performed in this scenario were validated on the IPLT dataset.

The evaluations in both scenarios and on both datasets have demonstrated that
the re-localization performance on compact maps generated with our different tech-
niques was reliable and achieved a very competitive level of performance with the
uncompressed map and has remarkably outperformed the state-of-the-art SM tech-
nique (except for the USM technique that has suffered the same problem as SM in the
second evaluation scenario). The evaluations have also demonstrated that computa-
tional complexity has been drastically reduced when re-localizing on a compressed
map.

Another contribution provided in this thesis is the IPLT dataset, which we
have made available to the community in the hope that it will be useful to
other researchers working in the field of long-term localization. This dataset was
recorded over a two-year period in a parking lot and to date includes 127 sequences
recorded under a variety of environmental conditions (luminance, weather, seasonal
changes. . .).

97

Perspectives
Based on the obtained results, the proposed keyframe retrieval method allows im-
proving the retrieval under various challenging conditions, leading to an increase
in the number of matching points and a decrease in the localization failure rate.
Moreover, the proposed map management techniques enable efficient reduction of
the map size while preserving localization performance, allowing long-term real-time
localization in dynamic environments. However, there are still several perspectives
to further improve both keyframe retrieval and map management techniques.

As mentioned in Chapter 3, during the first few meters of the trajectory, the
proposed ranking function is learned using Equation (3.7) to model an abstract
representation of the environmental conditions of the different traversals in the map.
Accordingly, our first perspective consists in using other learning-based techniques,
especially Convolutional Neural Networks (CNN) methods, to learn our ranking
function.

As a second perspective, we will take a deeper look at the keyframe retrieval
technique, in particular the algorithm executed in the first meters of the trajec-
tory, and investigate the best configuration to reduce the computation time and to
maintain a good performance.

In Chapter 4, we demonstrated that both localization performance and com-
putational complexity have a strong dependency upon the value of N̂ . Therefore,
another interesting perspective is envisaged to dynamically adjust this value for a
best trade-off between localization performance and computational complexity.

As a fourth perspective, we aim to extend our work to other more modern feature
descriptors, especially illumination invariant ones, which can further improve both
keyframe retrieval and map management performance.

Another interesting perspective is to integrate semantic information into our sys-
tem to further improve the two proposed approaches. This kind of information can
be used to retrieve only the landmarks that belong to non-dynamic elements (e.g.,
we can exclude retrieving landmarks that belong to clouds, parked cars, pedestri-
ans, etc.). This information can also be considered in the map management process
to filter out landmarks that belong to dynamic elements which are irrelevant for
localization. This can help reduce the number of erroneous matches and improve
the overall performance of our navigation system. Figure 5.1 illustrates the result
of a semantic segmentation task performed on Cityscapes dataset [Cordts 2016].

As a sixth perspective, we will explore the advantages of developing a hybrid
technique that combines different map management techniques. For example, com-
bining the USM and MMFc techniques to design a method that consists of removing
irrelevant traversals in a first step, and then removing irrelevant landmarks from the
remaining traversals in a second step.

The technique proposed in Chapter 3 makes it possible to learn and store an
abstract representation of the environmental conditions of different sequences in the
matrix Fc. An interesting perspective is to exploit this matrix in other domains.
As demonstrated in Figure 3.16, the values of Fc change dynamically depending

98 Chapter 5. Conclusion and perspectives

(a) Input (b) Output

Figure 5.1: Illustration of a semantic segmentation task. (a) depicts the input image
from the Cityscapes dataset and (b) is the output generated by an instance segmentation
algorithm [Zhou 2020].

on the changes in the environmental conditions. This means that this matrix can
be used to detect changes in environmental conditions. Therefore, it is conceiv-
able to use this matrix in other domains that can benefit from this property, such
as autonomous irrigation control systems in agriculture, where irrigation can be
automatically disabled when it rains.

As a final applicative perspective, we intend to employ the work presented in this
thesis on a daily operational autonomous shuttle that is deployed over long periods
to further evaluate the efficiency of our approaches.

Appendix A

IPLT dataset

Autonomous driving applications are very critical and should be taken with absolute
caution before deployment on public roads. Therefore, real-world data are needed
in development, testing and validation phases.

Intensive work on SLAM algorithms has produced a large number of re-
lated datasets such as Ford Campus Dataset [Pandey 2011], Málaga Urban
Dataset [Blanco-Claraco 2014], Waymo Open Dataset [Sun 2020],. . . . Some of these
datasets were recorded in static environments with very little environmental changes,
while some others are not revisiting a same location when recording different se-
quences. KiTTi [Geiger 2013] is widely used dataset in SLAM applications, unfor-
tunately, this dataset is not incorporating many environmental conditions since it
was collected over one week (from 2011-09-26 to 2011-10-03). Later, a new dataset
with a novel labeling scheme and data for 2D and 3D semantic segmentation was
proposed in KiTTi 360 [Xie 2016]. However, this dataset consists of only 11 indi-
vidual sequences and there is little overlap in trajectories between them.

Applications destined for autonomous driving and aiming for long-term local-
ization uses must be evaluated on real-life scenarios where environment is changing
over time. The VPRiCE challenge [Suenderhauf 2015] is a dataset that offers some
challenging cases for localization. Unfortunately, this dataset is offering only few
sequences of some places that were revisited twice on different times. Similarly, the
CMU Seasons dataset [Bansal 2014] was acquired in urban and suburban environ-
ments totaling over 8.5 km of travel and contains 7,159 reference images and 75,335
query images acquired in different seasons. Sattler et al. [Sattler 2018] have also
presented a challenging dataset, called Aachen Day-Night, which incorporates 4,328
daytime images and 98 night-time queries. The NCLT [Carlevaris-Bianco 2015b],
Oxford RobotCar [Maddern 2017] and UTBM RobotCar [Yan 2019] datasets are
three widely used datasets for long-term tracking applications as they include dif-
ferent environmental conditions. The UTBM RobotCar dataset is including only
few sequences (11 sequences in total) while in the two others, the traversed path is
varied on each recording session.

In addition to environmental conditions, we are also interested in evaluating the
effect of the lateral and angular deviation between sequences on the localization
performance. However, the previously mentioned datasets do not provide sequences
with such characteristics. This is the main reason that led us to record our own
dataset and make it available to the community.

This appendix presents our own dataset, called IPLT (Institut Pascal Long-
Term) dataset, which mainly addresses localization under challenging conditions

100 Appendix A. IPLT dataset

issues (snow, rain, change of season. . .). Before explaining in details the composition
of our dataset, it is important to explore the structure of an autonomous robot first.
Figure A.1 represents the operating mechanism of a general autonomous navigation
platform in See-Think-Act cycle as explained in [Siegwart 2011].

Localization and
Mapping

Cameras

Lidars

GPS

Sensors

Sensory data

Cognition
Path planning

Position
+

Global map

Motion control

Path

Path execution

Acting

Actuator commands
Real world

environment

Figure A.1: Autonomous driving platform represented in See-Think-Act Cy-
cle [Siegwart 2011].

According to Figure A.1, we can identify the four main modules interfering in
this See-Think-Act mechanism:

• Perception of the environment and the state of the robot thanks to the different
equipped sensors.

• Robot localization and mapping in the environment.

• Obstacle avoidance and trajectory planning.

• Processing and executing mission orders.

In our case, we are interested only in the first two modules which are directly
dependant to the dataset presented in this appendix. Our experimental vehicle
acquires external environmental data through different equipped sensors (camera
images, laser scans, GPS data, odometry data,...). Then, these sensory information
are received by the localization and mapping (SLAM) module to allow the vehicle
to interpret the environment so it can localize and update the map.

In our dataset, we repeatedly traverse the same parking lot, therefore, we man-
aged to record many dynamic elements such as weather and lighting changes, sea-
sonal changes, parking lot state changes (parked cars changes, empty parking lot, full

101

parking lot, . . .), moving cars, moving pedestrians, In Figure A.2, we present
an overview of images showing some types of environmental conditions included in
our dataset.

2018-10-19-10-54-
31

2018-10-22-19-40-
27

2018-10-26-07-31-
09

2018-10-26-09-11-
01

2018-12-11-17-33-
30

2018-12-13-10-36-
57

2019-01-23-10-33-
15

2019-01-23-16-05-
30

2019-02-04-10-58-
40

2019-10-01-16-54-
55

2019-10-22-15-01-
25

2019-12-05-16-43-
56

2020-01-15-11-13-
20

2020-01-31-16-07-
34

2020-02-05-18-37-
10

Figure A.2: An overview of images recorded with the front camera for some sequences of
our dataset.

This dataset is composed of 127 sequences in total and they are distributed as
follows:

• 22 sequences with sunny condition

• 43 sequences with cloudy weather

• 19 sequences with rainy weather

• 19 sequences with dusk condition

• 14 sequences with night condition

• 4 sequences with fog condition

• 5 sequences with snow condition

• 1 long sequence (2019-12-05-16-43-56.bag) recorded over one hour and 10
minutes with multiple loops in the parking lot starting from 16:44 until 17:54
and it incorporates day, dusk and night conditions.

102 Appendix A. IPLT dataset

We made our dataset public online in the hope of facilitating evaluations
for researchers focusing on long-term autonomous navigation in dynamic environ-
ments. Our dataset can be downloaded through the link: http://iplt.ip.uca.fr/
datasets/. Please enter the following username/password for a read-only access to
our ftp server: ipltuser/iplt_ro.

In all the sequences, the vehicle has followed the same path, while in some
of them, we made some slight lateral and angular deviations as specified in the
Figure 3.4. Each sequence is about 200 m length.

All the sequences in our dataset were recorded with our experimental vehicle
presented in Figure A.3. It consists of an electric shuttle that is equipped with two
cameras (front and rear), four LiDAR systems (two front and two rear), a consumer
grade global positioning system (GPS). . . . Each camera is recording gray-scale
images with 10Hz frequency and both of them are having 100◦ FoV (Field of View).

LiDAR
Systems GPS

Front
Camera

z

y
x

Rear
Camera

z

y

x

IMU +
Odometry

Figure A.3: The EasyMile EZ10 electric shuttle used to record our dataset.

The cameras were slightly moved in April 2019, so we have two different calibra-
tion settings, one for sequences recorded before April 2019 and one for more recent
sequences. All the sequences are saved in rosbag files format and can be read by the
ROS middleware [Quigley 2009]. The rosbag files contain the following rostopics:

• /cameras/front/image: front camera images.

• /cameras/back/image: rear camera images.

• /robot/odom: absolute poses calculated by wheel odometry.

• /lidars/front_left/scan: front-left lidar data.

• /lidars/front_right/scan: front-right lidar data.

• /lidars/back_left/scan: back-left lidar data.

• /lidars/back_right/scan: back-right lidar data.

http://iplt.ip.uca.fr/datasets/
http://iplt.ip.uca.fr/datasets/

103

• /gps_planar: GPS data.

• /tf_static: contains the extrinsic parameters of all sensors (cameras, lidars,
GPS, . . .).

In Table A.1, we present the intrinsic parameters of our two cameras which
are expressed in the unified camera model [Barreto 2006]. The unified camera
model has five parameters: [fx, fy, u0, v0, ξ] and they are used to project a 3D point
P (Xs, Ys, Zs) expressed in the Spherical coordinates into a 2D Point pc expressed
in the image plane as explained in Equation (A.1) and Figure A.4.

Table A.1: Intrinsic parameters of the cameras.

from_2018-10-19_to_2019-03-08
fx fy u0 v0 ξ

front 766.3141 769.5469 324.2513 239.7592 1.4513
back 763.5804 766.0006 326.2222 250.7755 1.4523

from_2019-10-01
fx fy u0 v0 ξ

front 770.0887 768.9841 330.3834 222.0791 1.4666
back 764.4637 763.1171 322.6882 247.8716 1.4565

Figure A.4: Unified camera model. A 3D point P is projected in the image plane of the
camera into a distorted point pc [Lébraly 2012].

104 Appendix A. IPLT dataset

pc = Kmc

K =



fx 0 u0

0 fy v0

0 0 1


 and mc =




Xs

ρ
Ys

ρ
Zs

ρ
+ ξ




with ρ =
√
X2

s + Y 2
s + Z2

s and ξ = Zc ≥ 0

(A.1)

Table A.2 shows the extrinsic parameters of the cameras which are already inte-
grated in the rosbag files. We have expressed the extrinsic parameters of the front
camera in the coordinate system of the rear camera, this means that we present the
translation and the rotation of the front camera with respect to the axis of the rear
camera (see Figure A.3). The rotations are presented in quaternions.

Table A.2: Extrinsic parameters of the cameras.

from_2018-10-19_to_2019-03-08
Rotation Translation

qx qy qz qw tx ty tz

0.0030 -0.9998 0.01479 0.0123 -0.0304 -0.0698 -3.4635

from_2019-10-01
Rotation Translation

qx qy qz qw tx ty tz

0.0002 -0.9998 0.0200 0.0089 0.0600 -0.0321 -3.4637

Appendix B

Update rate evaluation

(a) α = 0.01 (b) α = 0.1

(c) α = 0.2 (d) α = 0.5

(e) α = 1

Figure B.1: Different values for the update rate α without smoothing. Increasing the value
of α leads to an increase in the noise of the values of Fc while decreasing α leads to a
slowdown in the response to environmental changes.

Bibliography

[Alberto 2009] Sergio Alberto, Rodriguez Florez, Vincent Fremont and Philippe
Bonnifait. An experiment of a 3d real-time robust visual odometry for intel-
ligent vehicles. In 2009 12th International IEEE Conference on Intelligent
Transportation Systems, pages 1–6. IEEE, 2009.

[Antonelli 2001] Gianluca Antonelli, Stefano Chiaverini, Nilanjan Sarkar and
Michael West. Adaptive control of an autonomous underwater vehicle: exper-
imental results on ODIN. IEEE Transactions on Control Systems Technology,
vol. 9, no. 5, pages 756–765, 2001.

[Appapogu 2019] Rahul Dev Appapogu. Autonomous navigation in GPS denied en-
vironments using MPC and LQR with potential field based obstacle avoidance.
PhD thesis, Colorado School of Mines, 2019.

[Arora 2016] BS Arora, J Morgan, SM Ord, SJ Tingay, M Bell, JR Callingham,
KS Dwarakanath, P Hancock, L Hindson, N Hurley-Walkeret al. Ionospheric
Modelling using GPS to Calibrate the MWA. II: Regional ionospheric mod-
elling using GPS and GLONASS to estimate ionospheric gradients. Publi-
cations of the Astronomical Society of Australia, vol. 33, 2016.

[Bai 2018] Dongdong Bai, Chaoqun Wang, Bo Zhang, Xiaodong Yi and Xuejun
Yang. Sequence searching with CNN features for robust and fast visual place
recognition. Computers & Graphics, vol. 70, pages 270–280, 2018.

[Balntas 2016] Vassileios Balntas, Edward Johns, Lilian Tang and Krystian Miko-
lajczyk. PN-Net: Conjoined triple deep network for learning local image
descriptors. arXiv preprint arXiv:1601.05030, 2016.

[Bansal 2014] Aayush Bansal, Hernán Badino and Daniel Huber. Understanding
how camera configuration and environmental conditions affect appearance-
based localization. In 2014 IEEE Intelligent Vehicles Symposium Proceedings,
pages 800–807. IEEE, 2014.

[Barreto 2006] Joao P Barreto. Unifying image plane liftings for central catadioptric
and dioptric cameras. In Imaging Beyond the Pinhole Camera, pages 21–38.
Springer, 2006.

[Bay 2006] Herbert Bay, Tinne Tuytelaars and Luc Van Gool. Surf: Speeded up
robust features. In European conference on computer vision, pages 404–417.
Springer, 2006.

[Biber 2005] Peter Biber, Tom Duckettet al. Dynamic maps for long-term operation
of mobile service robots. In Robotics: science and systems, pages 17–24, 2005.

108 Bibliography

[Blanco-Claraco 2014] José-Luis Blanco-Claraco, Francisco-Angel Moreno-Duenas
and Javier González-Jiménez. The Málaga urban dataset: High-rate stereo
and LiDAR in a realistic urban scenario. The International Journal of
Robotics Research, vol. 33, no. 2, pages 207–214, 2014.

[Bokovoy 2017] Andrey Bokovoy and Konstantin Yakovlev. Original loop-closure
detection algorithm for monocular vslam. In International Conference on
Analysis of Images, Social Networks and Texts, pages 210–220. Springer,
2017.

[Bosse 2004] Michael Bosse, Paul Newman, John Leonard and Seth Teller. Simulta-
neous localization and map building in large-scale cyclic environments using
the Atlas framework. The International Journal of Robotics Research, vol. 23,
no. 12, pages 1113–1139, 2004.

[Bouaziz 2020] Youssef Bouaziz, Eric Royer, Guillaume Bresson and Michel Dhome.
Institut Pascal Long-Term dataset. In RFIA, 2020.

[Bouaziz 2021] Youssef Bouaziz, Eric Royer, Guillaume Bresson and Michel Dhome.
Keyframes retrieval for robust long-term visual localization in changing condi-
tions. In 2021 IEEE 19th World Symposium on Applied Machine Intelligence
and Informatics (SAMI), pages 000093–000100. IEEE, 2021.

[Bürki 2016] Mathias Bürki, Igor Gilitschenski, Elena Stumm, Roland Siegwart and
Juan Nieto. Appearance-based landmark selection for efficient long-term vi-
sual localization. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4137–4143. IEEE, 2016.

[Bürki 2018] Mathias Bürki, Marcin Dymczyk, Igor Gilitschenski, Cesar Cadena,
Roland Siegwart and Juan Nieto. Map management for efficient long-term
visual localization in outdoor environments. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 682–688. IEEE, 2018.

[Bürki 2019] Mathias Bürki, Cesar Cadena, Igor Gilitschenski, Roland Siegwart
and Juan Nieto. Appearance-based landmark selection for visual localization.
Journal of Field Robotics, vol. 36, no. 6, pages 1041–1073, 2019.

[Cadena 2016] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide
Scaramuzza, José Neira, Ian Reid and John J Leonard. Past, present, and fu-
ture of simultaneous localization and mapping: Toward the robust-perception
age. IEEE Transactions on robotics, vol. 32, no. 6, pages 1309–1332, 2016.

[Caltabiano 2005] Daniele Caltabiano and Giovanni Muscato. A robotic system for
volcano exploration. INTECH Open Access Publisher, 2005.

[Carlevaris-Bianco 2015a] Nicholas Carlevaris-Bianco, Arash K. Ushani and
Ryan M. Eustice. University of Michigan North Campus long-term vision

Bibliography 109

and lidar dataset. International Journal of Robotics Research, vol. 35, no. 9,
pages 1023–1035, 2015.

[Carlevaris-Bianco 2015b] Nicholas Carlevaris-Bianco, Arash K. Ushani and
Ryan M. Eustice. University of Michigan North Campus long-term vision
and lidar dataset. International Journal of Robotics Research, vol. 35, no. 9,
pages 1023–1035, 2015.

[Cen 2018] Sarah H Cen and Paul Newman. Precise ego-motion estimation with
millimeter-wave radar under diverse and challenging conditions. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages
6045–6052. IEEE, 2018.

[Cheng 2019] Hsu-Yung Cheng, Chih-Chang Yu, Kuo-Chang Hsu, Chi-Chang Chan,
Mei-Hui Tseng and Chih-Lung Lin. Estimating Solar Irradiance on Tilted
Surface with Arbitrary Orientations and Tilt Angles. Energies, vol. 12, no. 8,
page 1427, 2019.

[Churchill 2012] Winston Churchill and Paul Newman. Practice makes perfect?
managing and leveraging visual experiences for lifelong navigation. In 2012
IEEE International Conference on Robotics and Automation, pages 4525–
4532. IEEE, 2012.

[Churchill 2013] Winston Churchill and Paul Newman. Experience-based navigation
for long-term localisation. The International Journal of Robotics Research,
vol. 32, no. 14, pages 1645–1661, 2013.

[Cleveland 1979] William S Cleveland. Robust locally weighted regression and
smoothing scatterplots. Journal of the American statistical association,
vol. 74, no. 368, pages 829–836, 1979.

[Cordts 2016] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth and Bernt
Schiele. The cityscapes dataset for semantic urban scene understanding. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 3213–3223, 2016.

[Cui 2019] Linyan Cui and Fei Wen. A monocular ORB-SLAM in dynamic environ-
ments. In Journal of Physics: Conference Series, volume 1168, page 052037.
IOP Publishing, 2019.

[Davison 2002] Andrew J Davison and David W. Murray. Simultaneous localization
and map-building using active vision. IEEE transactions on pattern analysis
and machine intelligence, vol. 24, no. 7, pages 865–880, 2002.

[Davison 2003] Andrew J Davison. Real-time simultaneous localisation and mapping
with a single camera. In Computer Vision, IEEE International Conference
on, volume 3, pages 1403–1403. IEEE Computer Society, 2003.

110 Bibliography

[Davison 2007] Andrew J Davison, Ian D Reid, Nicholas D Molton and Olivier
Stasse. MonoSLAM: Real-time single camera SLAM. IEEE transactions on
pattern analysis and machine intelligence, vol. 29, no. 6, pages 1052–1067,
2007.

[Dellaert 1999] Frank Dellaert, Dieter Fox, Wolfram Burgard and Sebastian Thrun.
Monte carlo localization for mobile robots. In Proceedings 1999 IEEE Inter-
national Conference on Robotics and Automation (Cat. No. 99CH36288C),
volume 2, pages 1322–1328. IEEE, 1999.

[Dellaert 2006] Frank Dellaert and Michael Kaess. Square Root SAM: Simultaneous
localization and mapping via square root information smoothing. The In-
ternational Journal of Robotics Research, vol. 25, no. 12, pages 1181–1203,
2006.

[DeTone 2018] Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich. Su-
perpoint: Self-supervised interest point detection and description. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 224–236, 2018.

[Di 2008] Kaichang Di, Fengliang Xu, Jue Wang, Sanchit Agarwal, Evgenia
Brodyagina, Rongxing Li and Larry Matthies. Photogrammetric processing
of rover imagery of the 2003 Mars Exploration Rover mission. ISPRS Jour-
nal of Photogrammetry and Remote Sensing, vol. 63, no. 2, pages 181–201,
2008.

[Diaz-Escobar 2018] Julia Diaz-Escobar, Vitaly Kober and Jose A Gonzalez-Fraga.
LUIFT: LUminance Invariant Feature Transform. Mathematical Problems
in Engineering, vol. 2018, pages 1–17, 2018.

[Dusmanu 2019] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys,
Josef Sivic, Akihiko Torii and Torsten Sattler. D2-net: A trainable cnn
for joint description and detection of local features. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8092–8101, 2019.

[Dymczyk 2015] Marcin Dymczyk, Simon Lynen, Titus Cieslewski, Michael Bosse,
Roland Siegwart and Paul Furgale. The gist of maps-summarizing experience
for lifelong localization. In 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 2767–2773. IEEE, 2015.

[Eade 2006] Ethan Eade and Tom Drummond. Scalable monocular SLAM. In 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’06), volume 1, pages 469–476. IEEE, 2006.

[Engel 2014] Jakob Engel, Thomas Schöps and Daniel Cremers. LSD-SLAM: Large-
scale direct monocular SLAM. In European conference on computer vision,
pages 834–849. Springer, 2014.

Bibliography 111

[Engel 2015] Jakob Engel, Jörg Stückler and Daniel Cremers. Large-scale direct
SLAM with stereo cameras. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1935–1942. IEEE, 2015.

[Engelhard 2011] Nikolas Engelhard, Felix Endres, Jürgen Hess, Jürgen Sturm and
Wolfram Burgard. Real-time 3D visual SLAM with a hand-held RGB-D cam-
era. In Proc. of the RGB-D Workshop on 3D Perception in Robotics at the
European Robotics Forum, Vasteras, Sweden, volume 180, pages 1–15, 2011.

[Folkesson 2003] John Folkesson and Henrik Christensen. Outdoor exploration and
slam using a compressed filter. In ICRA, pages 419–426, 2003.

[Fox 1999] Dieter Fox, Wolfram Burgard, Frank Dellaert and Sebastian Thrun.
Monte carlo localization: Efficient position estimation for mobile robots.
AAAI/IAAI, vol. 1999, no. 343-349, pages 2–2, 1999.

[Gallant 2016] Marc J Gallant and Joshua A Marshall. Automated rapid mapping
of joint orientations with mobile LiDAR. International Journal of Rock Me-
chanics and Mining Sciences, vol. 90, pages 1–14, 2016.

[Geiger 2013] Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel Urta-
sun. Vision meets robotics: The kitti dataset. The International Journal
of Robotics Research, vol. 32, no. 11, pages 1231–1237, 2013.

[Grisetti 2007] Giorgio Grisetti, Cyrill Stachniss, Slawomir Grzonka and Wolfram
Burgard. A tree parameterization for efficiently computing maximum likeli-
hood maps using gradient descent. In Robotics: Science and Systems, vol-
ume 3, page 9, 2007.

[Guivant 2001] Jose Guivant and Eduardo Nebot. Compressed filter for real time
implementation of simultaneous localization and map building. In FSR 2001
International Conference on Field and Service Robots, volume 1, pages 309–
314, 2001.

[Gutmann 1999] J-S Gutmann and Kurt Konolige. Incremental mapping of large
cyclic environments. In Proceedings 1999 IEEE International Symposium
on Computational Intelligence in Robotics and Automation. CIRA’99 (Cat.
No. 99EX375), pages 318–325. IEEE, 1999.

[Halodová 2019] Lucie Halodová, Eliska Dvoráková, Filip Majer, Tomás Vintr, Os-
car Martinez Mozos, Feras Dayoub and Tomás Krajník. Predictive and
adaptive maps for long-term visual navigation in changing environments. In
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 7033–7039. IEEE, 2019.

[Han 2015] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar and
Alexander C Berg. Matchnet: Unifying feature and metric learning for patch-
based matching. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3279–3286, 2015.

112 Bibliography

[Harris 1988] Christopher G Harris, Mike Stephenset al. A combined corner and
edge detector. In Alvey vision conference, volume 15, pages 10–5244. Citeseer,
1988.

[Hasan 2014] Kazi Mahmud Hasan, Khondker Jahid Rezaet al. Path planning algo-
rithm development for autonomous vacuum cleaner robots. In 2014 Interna-
tional Conference on Informatics, Electronics & Vision (ICIEV), pages 1–6.
IEEE, 2014.

[Holmquist 2017] Karl Holmquist. SLAMIt A Sub-Map Based SLAM System: On-
line creation of multi-leveled map, 2017.

[Jatzkowski 2018] Inga Jatzkowski, Daniel Wilke and Markus Maurer. A Deep-
Learning Approach for the Detection of Overexposure in Automotive Camera
Images. In 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), pages 2030–2035. IEEE, 2018.

[Julier 2001] Simon J Julier and Jeffrey K Uhlmann. A counter example to the
theory of simultaneous localization and map building. In Proceedings 2001
ICRA. IEEE International Conference on Robotics and Automation (Cat.
No. 01CH37164), volume 4, pages 4238–4243. IEEE, 2001.

[Kaess 2008] Michael Kaess, Ananth Ranganathan and Frank Dellaert. iSAM: In-
cremental smoothing and mapping. IEEE Transactions on Robotics, vol. 24,
no. 6, pages 1365–1378, 2008.

[Kaess 2012] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila,
John J Leonard and Frank Dellaert. iSAM2: Incremental smoothing and
mapping using the Bayes tree. The International Journal of Robotics Re-
search, vol. 31, no. 2, pages 216–235, 2012.

[Kim 2011] Heung-Nam Kim, Abdulmotaleb El-Saddik and Geun-Sik Jo. Collab-
orative error-reflected models for cold-start recommender systems. Decision
Support Systems, vol. 51, no. 3, pages 519–531, 2011.

[Klein 2007] Georg Klein and David Murray. Parallel tracking and mapping for
small AR workspaces. In 2007 6th IEEE and ACM international symposium
on mixed and augmented reality, pages 225–234. IEEE, 2007.

[Konolige 2010] Kurt Konolige, James Bowman, JD Chen, Patrick Mihelich,
Michael Calonder, Vincent Lepetit and Pascal Fua. View-based maps. The
International Journal of Robotics Research, vol. 29, no. 8, pages 941–957,
2010.

[Krajník 2016] Tomás Krajník, Jaime Pulido Fentanes, Marc Hanheide and Tom
Duckett. Persistent localization and life-long mapping in changing environ-
ments using the frequency map enhancement. In 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 4558–
4563. IEEE, 2016.

Bibliography 113

[Kschischang 2001] Frank R Kschischang, Brendan J Frey and H-A Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transactions on information
theory, vol. 47, no. 2, pages 498–519, 2001.

[Kümmerle 2011] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Kono-
lige and Wolfram Burgard. g 2 o: A general framework for graph optimiza-
tion. In 2011 IEEE International Conference on Robotics and Automation,
pages 3607–3613. IEEE, 2011.

[Lébraly 2011] Pierre Lébraly, Eric Royer, Omar Ait-Aider, Clément Deymier and
Michel Dhome. Fast calibration of embedded non-overlapping cameras. In
2011 IEEE international conference on robotics and automation, pages 221–
227. IEEE, 2011.

[Lébraly 2012] Pierre Lébraly. Etalonnage de caméras à champs disjoints et recon-
struction 3D: Application à un robot mobile. PhD thesis, 2012.

[Linegar 2015] Chris Linegar, Winston Churchill and Paul Newman. Work smart,
not hard: Recalling relevant experiences for vast-scale but time-constrained
localisation. In 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 90–97. IEEE, 2015.

[Liu 2020] Zhaoqin Liu, Kaichang Di, Jian Li, Jianfeng Xie, Xiaofeng Cui, Luhua
Xi, Wenhui Wan, Man Peng, Bin Liu, Yexin Wanget al. Landing site topo-
graphic mapping and rover localization for Changâe-4 mission. Science China
Information Sciences, vol. 63, no. 4, pages 1–12, 2020.

[Lowe 2004] David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, vol. 60, no. 2, pages 91–110,
2004.

[Lu 1997] Feng Lu and Evangelos Milios. Globally consistent range scan alignment
for environment mapping. Autonomous robots, vol. 4, no. 4, pages 333–349,
1997.

[MacTavish 2017] Kirk MacTavish, Michael Paton and Timothy D Barfoot. Visual
triage: A bag-of-words experience selector for long-term visual route follow-
ing. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 2065–2072. IEEE, 2017.

[MacTavish 2018] Kirk MacTavish, Michael Paton and Timothy D Barfoot. Selec-
tive memory: Recalling relevant experience for long-term visual localization.
Journal of Field Robotics, vol. 35, no. 8, pages 1265–1292, 2018.

[Maddern 2014] Will Maddern, Alex Stewart, Colin McManus, Ben Upcroft, Win-
ston Churchill and Paul Newman. Illumination invariant imaging: Applica-
tions in robust vision-based localisation, mapping and classification for au-
tonomous vehicles. In Proceedings of the Visual Place Recognition in Chang-

114 Bibliography

ing Environments Workshop, IEEE International Conference on Robotics
and Automation (ICRA), Hong Kong, China, volume 2, page 3, 2014.

[Maddern 2017] Will Maddern, Geoff Pascoe, Chris Linegar and Paul Newman. 1
Year, 1000km: The Oxford RobotCar Dataset. The International Journal of
Robotics Research (IJRR), vol. 36, no. 1, pages 3–15, 2017.

[Maddern 2020] Will Maddern, Geoffrey Pascoe, Matthew Gadd, Dan Barnes, Brian
Yeomans and Paul Newman. Real-time Kinematic Ground Truth for the
Oxford RobotCar Dataset. arXiv preprint arXiv: 2002.10152, 2020.

[Magnago 2019] Valerio Magnago, Luigi Palopoli, Roberto Passerone, Daniele
Fontanelli and David Macii. Effective landmark placement for robot indoor
localization with position uncertainty constraints. IEEE Transactions on In-
strumentation and Measurement, vol. 68, no. 11, pages 4443–4455, 2019.

[Meilland 2013] Maxime Meilland and Andrew I Comport. On unifying key-frame
and voxel-based dense visual SLAM at large scales. In 2013 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 3677–3683.
IEEE, 2013.

[Michalsky 1988] Joseph J Michalsky. The astronomical almanac’s algorithm for
approximate solar position (1950–2050). Solar energy, vol. 40, no. 3, pages
227–235, 1988.

[Milford 2012] Michael J Milford and Gordon F Wyeth. SeqSLAM: Visual route-
based navigation for sunny summer days and stormy winter nights. In 2012
IEEE International Conference on Robotics and Automation, pages 1643–
1649. IEEE, 2012.

[Montemerlo 2002] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben
Wegbreitet al. FastSLAM: A factored solution to the simultaneous local-
ization and mapping problem. Aaai/iaai, vol. 593598, 2002.

[Mouragnon 2006] Etienne Mouragnon, Maxime Lhuillier, Michel Dhome, Fabien
Dekeyser and Patrick Sayd. Monocular vision based SLAM for mobile robots.
In 18th International Conference on Pattern Recognition (ICPR’06), vol-
ume 3, pages 1027–1031. IEEE, 2006.

[Mühlfellner 2016] Peter Mühlfellner, Mathias Bürki, Michael Bosse, Wojciech
Derendarz, Roland Philippsen and Paul Furgale. Summary maps for lifelong
visual localization. Journal of Field Robotics, vol. 33, no. 5, pages 561–590,
2016.

[Mur-Artal 2015] Raul Mur-Artal, Jose Maria Martinez Montiel and Juan D Tar-
dos. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE
transactions on robotics, vol. 31, no. 5, pages 1147–1163, 2015.

Bibliography 115

[Murillo 2007] Ana Cris Murillo, José Jesús Guerrero and C Sagues. Surf features
for efficient robot localization with omnidirectional images. In Proceedings
2007 IEEE International Conference on Robotics and Automation, pages
3901–3907. IEEE, 2007.

[Murillo 2009] Ana C Murillo and Jana Kosecka. Experiments in place recognition
using gist panoramas. In 2009 IEEE 12th International Conference on Com-
puter Vision Workshops, ICCV Workshops, pages 2196–2203. IEEE, 2009.

[Naseer 2014] Tayyab Naseer, Luciano Spinello, Wolfram Burgard and Cyrill Stach-
niss. Robust visual robot localization across seasons using network flows. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 28,
2014.

[Newman 1999] Paul Newman. On the structure and solution of the simultaneous
localisation and map building problem. 1999.

[Nistér 2004] David Nistér, Oleg Naroditsky and James Bergen. Visual odometry. In
Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., volume 1, pages I–I.
Ieee, 2004.

[Oliva 2001] Aude Oliva and Antonio Torralba. Modeling the shape of the scene:
A holistic representation of the spatial envelope. International journal of
computer vision, vol. 42, no. 3, pages 145–175, 2001.

[Olson 2006] Edwin Olson, John Leonard and Seth Teller. Fast iterative alignment
of pose graphs with poor initial estimates. In Proceedings 2006 IEEE Inter-
national Conference on Robotics and Automation, 2006. ICRA 2006., pages
2262–2269. IEEE, 2006.

[Ono 2018] Yuki Ono, Eduard Trulls, Pascal Fua and Kwang Moo Yi. LF-Net:
Learning local features from images. arXiv preprint arXiv:1805.09662, 2018.

[Pandey 2011] Gaurav Pandey, James R McBride and Ryan M Eustice. Ford Cam-
pus vision and lidar data set. The International Journal of Robotics Research,
vol. 30, no. 13, pages 1543–1552, 2011.

[Pascoe 2017] Geoffrey Pascoe, Will Maddern, Michael Tanner, Pedro Piniés and
Paul Newman. Nid-slam: Robust monocular slam using normalised informa-
tion distance. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1435–1444, 2017.

[Pepperell 2016] Edward Pepperell, Peter Corke and Michael Milford. Routed
roads: Probabilistic vision-based place recognition for changing conditions,
split streets and varied viewpoints. The International Journal of Robotics
Research, vol. 35, no. 9, pages 1057–1179, 2016.

116 Bibliography

[Petry 2013] Marcelo R Petry, António Paulo Moreira and Luís Paulo Reisinst. In-
creasing illumination invariance of SURF feature detector through color con-
stancy. In Portuguese Conference on Artificial Intelligence, pages 259–270.
Springer, 2013.

[Pollefeys 2004] Marc Pollefeys, Luc Van Gool, Maarten Vergauwen, Frank Verbiest,
Kurt Cornelis, Jan Tops and Reinhard Koch. Visual modeling with a hand-
held camera. International Journal of Computer Vision, vol. 59, no. 3, pages
207–232, 2004.

[Pollefeys 2008] Marc Pollefeys, David Nistér, J-M Frahm, Amir Akbarzadeh,
Philippos Mordohai, Brian Clipp, Chris Engels, David Gallup, S-J Kim,
Paul Merrellet al. Detailed real-time urban 3d reconstruction from video. In-
ternational Journal of Computer Vision, vol. 78, no. 2, pages 143–167, 2008.

[Quigley 2009] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler and Andrew Y Ng. ROS: an open-source Robot
Operating System. In ICRA workshop on open source software, volume 3,
page 5. Kobe, Japan, 2009.

[Raghu 2014] N Raghu, KNManjunatha and B Kiran. Tracking of satellites by using
Phased Array Antenna. In 2014 International Conference on Electronics and
Communication Systems (ICECS), pages 1–6. IEEE, 2014.

[Royer 2016] Eric Royer, François Marmoiton, Serge Alizon, Datta Ramadasan,
Morgan Slade, Ange Nizard, Michel Dhome, Benoit Thuilot and Florent
Bonjean. Lessons learned after more than 1000 km in an autonomous shuttle
guided by vision. In 2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), pages 2248–2253. IEEE, 2016.

[Sala 2006] Pablo Sala, Robert Sim, Ali Shokoufandeh and Sven Dickinson. Land-
mark selection for vision-based navigation. IEEE Transactions on robotics,
vol. 22, no. 2, pages 334–349, 2006.

[Sattler 2018] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars Ham-
marstrand, Erik Stenborg, Daniel Safari, Masatoshi Okutomi, Marc Polle-
feys, Josef Sivicet al. Benchmarking 6dof outdoor visual localization in chang-
ing conditions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8601–8610, 2018.

[Schaffalitzky 2002] Frederik Schaffalitzky and Andrew Zisserman. Multi-view
matching for unordered image sets, or âHow do I organize my holiday
snaps?â. In European conference on computer vision, pages 414–431.
Springer, 2002.

[Sheena 2016] S Sheena and M Sheena. A comparison of SIFT and SURF algorithm
for the recognition of an efficient iris biometric system. International Journal

Bibliography 117

of Advanced Research in Computer and Communication Engineering, vol. 5,
2016.

[Shi 1994] Jianbo Shiet al. Good features to track. In 1994 Proceedings of IEEE
conference on computer vision and pattern recognition, pages 593–600. IEEE,
1994.

[Shoman 2020] Sota Shoman, Tomohiro Mashita, Alexander Plopski, Photchara
Ratsamee and Yuki Uranishi. Real-to-Synthetic Feature Transform for Il-
lumination Invariant Camera Localization. IEEE Computer Graphics and
Applications, 2020.

[Siegwart 2011] Roland Siegwart, Illah Reza Nourbakhsh and Davide Scaramuzza.
Introduction to autonomous mobile robots. MIT press, 2011.

[Simo-Serra 2015] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos,
Pascal Fua and Francesc Moreno-Noguer. Discriminative learning of deep
convolutional feature point descriptors. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 118–126, 2015.

[Sinriech 2000] David Sinriech and Shraga Shoval. Landmark configuration for ab-
solute positioning of autonomous vehicles. IIE Transactions, vol. 32, no. 7,
pages 613–624, 2000.

[Smith 1986] Randall C Smith and Peter Cheeseman. On the representation and
estimation of spatial uncertainty. The international journal of Robotics Re-
search, vol. 5, no. 4, pages 56–68, 1986.

[Snavely 2006] Noah Snavely, Steven M Seitz and Richard Szeliski. Photo tourism:
exploring photo collections in 3D. In ACM siggraph 2006 papers, pages 835–
846. 2006.

[Suenderhauf 2015] Niko Suenderhauf. The VPRiCE Challenge 2015 â Visual Place
Recognition in Changing Environments, 2015.

[Sun 2020] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vi-
jaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin
Caineet al. Scalability in perception for autonomous driving: Waymo open
dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2446–2454, 2020.

[Sutherland 1993] Karen T Sutherland and William B Thompson. Inexact naviga-
tion. In [1993] Proceedings IEEE International Conference on Robotics and
Automation, pages 1–7. IEEE, 1993.

[Szekely 2005] Gabor J Szekely, Maria L Rizzoet al. Hierarchical clustering via
joint between-within distances: Extending Ward’s minimum variance method.
Journal of classification, vol. 22, no. 2, pages 151–184, 2005.

118 Bibliography

[Tardós 2002] Juan D Tardós, José Neira, Paul M Newman and John J Leonard.
Robust mapping and localization in indoor environments using sonar data.
The International Journal of Robotics Research, vol. 21, no. 4, pages 311–
330, 2002.

[Thrun 2001] Sebastian Thrun, Dieter Fox, Wolfram Burgard and Frank Dellaert.
Robust Monte Carlo localization for mobile robots. Artificial intelligence,
vol. 128, no. 1-2, pages 99–141, 2001.

[Thrun 2006] Sebastian Thrun and Michael Montemerlo. The graph SLAM algo-
rithm with applications to large-scale mapping of urban structures. The In-
ternational Journal of Robotics Research, vol. 25, no. 5-6, pages 403–429,
2006.

[Tian 2017] Yurun Tian, Bin Fan and Fuchao Wu. L2-net: Deep learning of dis-
criminative patch descriptor in euclidean space. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 661–669,
2017.

[Tian 2019] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen and Vassileios
Balntas. Sosnet: Second order similarity regularization for local descriptor
learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 11016–11025, 2019.

[Tomasi 1992] Carlo Tomasi and Takeo Kanade. Shape and motion from image
streams under orthography: a factorization method. International journal of
computer vision, vol. 9, no. 2, pages 137–154, 1992.

[Triggs 1999] Bill Triggs, Philip F McLauchlan, Richard I Hartley and Andrew W
Fitzgibbon. Bundle adjustmentâa modern synthesis. In International work-
shop on vision algorithms, pages 298–372. Springer, 1999.

[Ullman 1979] Shimon Ullman. The interpretation of structure from motion. Pro-
ceedings of the Royal Society of London. Series B. Biological Sciences,
vol. 203, no. 1153, pages 405–426, 1979.

[Vanicek 2018] P Vanicek and L Beran. Navigation of robotics platform in unknown
spaces using LIDAR, Raspberry PI and hector slam. Journal of Fundamental
and Applied Sciences, vol. 10, no. 3S, pages 494–506, 2018.

[Verdie 2015] Yannick Verdie, Kwang Yi, Pascal Fua and Vincent Lepetit. Tilde: A
temporally invariant learned detector. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5279–5288, 2015.

[Vysotska 2015] Olga Vysotska, Tayyab Naseer, Luciano Spinello, Wolfram Burgard
and Cyrill Stachniss. Efficient and effective matching of image sequences
under substantial appearance changes exploiting GPS priors. In 2015 IEEE

Bibliography 119

International Conference on Robotics and Automation (ICRA), pages 2774–
2779. IEEE, 2015.

[WANG 2014] BaoFeng WANG, JianLiang ZHOU, GeShi TANG, KaiChang DI,
WenHui WAN, ChuanKai LIU and Jia WANG. Research on visual local-
ization method of lunar rover. Scientia Sinica Informationis, vol. 44, no. 4,
pages 452–460, 2014.

[Weidner 2017] Nick Weidner, Sharmin Rahman, Alberto Quattrini Li and Ioannis
Rekleitis. Underwater cave mapping using stereo vision. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 5709–5715.
IEEE, 2017.

[Williams 2001] Stefan Bernard Williams. Efficient solutions to autonomous map-
ping and navigation problems. 2001.

[Xiang 2020] Zejun Xiang, Ronghua Yang, Chang Deng, Mingxing Teng, Mengkun
She and Degui Teng. An Illumination Insensitive Descriptor Combining the
CSLBP Features for Street View Images in Augmented Reality: Experimental
Studies. ISPRS International Journal of Geo-Information, vol. 9, no. 6, page
362, 2020.

[Xie 2016] Jun Xie, Martin Kiefel, Ming-Ting Sun and Andreas Geiger. Semantic
instance annotation of street scenes by 3d to 2d label transfer. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3688–3697, 2016.

[Yan 2019] Zhi Yan, Li Sun, Tomas Krajnik and Yassine Ruichek. EU long-
term dataset with multiple sensors for autonomous driving. arXiv preprint
arXiv:1909.03330, 2019.

[Yi 2016a] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit and Pascal Fua. Lift:
Learned invariant feature transform. In European Conference on Computer
Vision, pages 467–483. Springer, 2016.

[Yi 2016b] Kwang Moo Yi, Yannick Verdie, Pascal Fua and Vincent Lepetit. Learn-
ing to assign orientations to feature points. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 107–116, 2016.

[Yoon 2006] Suk-June Yoon, Hyun-Do Choi, Sung-Kee Park, Soo-Hyun Kim and
Yoon-Keun Kwak. Simultaneous Localization & Map-building of Mobile Robot
in the Outdoor Environments by Vision-based Compressed Extended Kalman
Filter. Journal of Institute of Control, Robotics and Systems, vol. 12, no. 6,
pages 585–593, 2006.

[Zhang 2005] Sen Zhang, Lihua Xie and Martin David Adams. Entropy based feature
selection scheme for real time simultaneous localization and map building. In

120 Bibliography

2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1175–1180. IEEE, 2005.

[Zhou 2020] Qianyu Zhou, Zhengyang Feng, Guangliang Cheng, Xin Tan, Jian-
ping Shi and Lizhuang Ma. Uncertainty-aware consistency regularization for
cross-domain semantic segmentation. arXiv preprint arXiv:2004.08878, 2020.

	Introduction
	Context of the thesis
	Problematic
	Contributions and organization of the manuscript
	Publications

	State of the art
	Introduction
	Fundamentals on SLAM
	Sensor data acquisition phase
	Proprioceptive sensors
	Exteroceptive sensors

	Front-end
	Back-end

	History of visual SLAM
	Lifelong navigation
	Illumination invariant features descriptors for lifelong navigation
	Landmarks retrieval
	Map management

	Conclusion

	Keyframes Retrieval
	Introduction
	Contribution
	Methodology
	Offline computation of fdist
	Defining fdist as a multiplication of three independent functions
	Defining fdist as a linear combination of Gaussians

	Online computations
	Calculating fc
	Calculating the ranking function P(pt Ii, Kj)
	Update of Fc(trav(Ii), trav(Kj))

	Experiments
	Experimental setup
	Datasets
	IPLT dataset
	Oxford RobotCar dataset

	Results
	IPLT dataset
	Overall results
	Detailed study on the effects of deviations from the learned trajectory
	Detailed study on the update process of Fc

	Oxford RobotCar dataset

	Conclusion

	Map Management
	Introduction
	Contributions
	Map management with improved summary maps
	Map management based on solar information
	Similarity computation
	Classification and traversal removal

	Map management based on environmental conditions similarity (using Fc matrix)
	Experiments
	Evaluation scenario 1
	Evaluation scenario 2

	Results
	Evaluation scenario 1
	IPLT dataset
	Oxford RobotCar dataset

	Evaluation scenario 2

	Conclusion

	Conclusion and perspectives
	IPLT dataset
	Update rate evaluation
	Bibliography

