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Abstract
This manuscript proposes new cryptographic protocols that are respectful
of users’ privacy and which have real-world applications.

In a first part, the focus is on group signatures, a primitive which al-
lows members of a user group to anonymously sign on behalf of the group,
and on message confidentiality. To remove the trust on single authorities,
group signatures are here defined in a setting with multiple authorities and
support both threshold issuance and threshold opening. These group signa-
tures are then used as authentication mechanism for vehicle-to-vehicle com-
munication, and combined with zone encryption, a new primitive whereby
vehicles can efficiently encrypt their communication, they provide strong,
well-defined privacy guarantees for cooperative intelligent transport systems.
Thereafter, public-key encryption is studied in a more general context in
which users do not have access to secure storage to protect their secret keys,
but can leverage passwords and interaction with servers to obtain compara-
ble security guarantees without renouncing their privacy.

In a second part, the topic of study are general-purpose cryptographic
primitives which have privacy-preserving applications. First come zero-
knowledge arguments, a type of cryptographic schemes which enable a com-
putationally bounded prover to convince a verifier of a statement without
disclosing any information beyond that. More specifically, we study ar-
guments for the satisfiability of Diophantine equations that have logarith-
mic communication and round complexity, as well as their applications to
privacy-preserving cryptography. Then, we tackle the problem of proving
that a user algorithm selected and correctly used a truly random seed in the
generation of her cryptographic key, a problem of fundamental importance
to the security of any public-key cryptographic scheme.
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Résumé
Ce manuscrit propose des nouveaux protocoles cryptographiques qui sont
respectueux de la vie privée des utilisateurs et qui ont des applications dans
la vie réelle.

Dans une première partie, l’accent est mis sur les signatures de groupe,
une primitive cryptographique qui permet aux membres d’un groupe d’utili-
sateurs de signer anonymement au nom du groupe, et sur la confidentialité
des messages. Pour éviter de faire confiance à des autorités uniques, les
signatures de groupe sont ici définies avec plusieurs autorités et permettent
l’émission à seuil de titres de créance ainsi que l’ouverture à seuil. Ces sig-
natures de groupe sont alors utilisées comme mécanisme d’authentification
pour la communication entre véhicules, et, combinées au chiffrement par
zone, une nouvelle primitive permettant aux véhicules de chiffrer éfficace-
ment leur communication, elles assurent de fortes garanties de sécurité bien
définies pour les systèmes de transport coopératifs et intelligents. Par la
suite, le chiffrement à clef publique est étudié dans un contexte plus général
dans lequel les utilisateurs n’ont pas accès à un support de stockage sécurisé
pour leurs clefs secrètes, mais peuvent tirer parti de mots de passe et de
l’interaction avec des serveurs pour obtenir des garanties de sécurité com-
parables tout en préservant leurs vies privées.

Dans une deuxième partie, nous étudions des primitives cryptographiques
à portée générale qui ont des applications à la protection de la vie privée.
Dans un premier temps, nous étudions les arguments à divulgation nulle, un
type de schémas cryptographiques qui permettent à un prouveur avec une
puissance de calcul limitée de convaincre un vérifieur d’une assertion sans
révéler aucune information supplémentaire. Plus précisement, nous étudions
des arguments de satisfiabilité d’équations diophantiennes qui ont une com-
plexité de communication et une complexité de tour logarithmiques, ainsi
que leurs applications à la cryptographie qui vise à protéger la vie privée.
Ensuite, nous considérons la question de prouver que l’algorithme d’un util-
isateur a correctement choisi et utilisé une graine réellement aléatoire pour
générer les clefs de l’utilisateur, un problème d’une importance capitale pour
la sécurité de tout système cryptographique à clef publique.
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Chapter 1

General Introduction

Cryptography has traditionally been concerned with only one question:
how can two parties, who have agreed on a secret, confidentially com-

municate? With the advent of key exchange protocols put forth by Diffie
and Hellman [DH76], the scope of cryptography has vastly expanded. From
then on, it was possible for two parties who had never met to privately com-
municate, and even ensure that the messages they received indeed originated
from the claimed sender, i.e., guarantee the authenticity of messages.

Nowadays, cryptography is inconspicuously omnipresent in our daily
lives e.g., through credit cards, passports, access badges, smartphones, emails
and websites using the HTTPS protocol. With this surge of digital commu-
nication and the aggregation of personal data by public authorities and pri-
vate services, a new question has emerged, namely that of privacy. The last
decade of scandals has taught the general public – though these questions
were already of prime concern for the research community – not only that
people’s data was harvested at large scale in cleartext by service providers,
but also that the content of communication is not the only sensitive aspect
of communication. Knowing who communicates with whom or who signed
which message, or in other words the metadata of communication, is also a
critical aspect of privacy. These realizations have lead to legislative endeav-
ors such as the European General Data Protection Regulation to enforce
accountability on data aggregators.

Nevertheless, a common misconception is that the usability of digital
services must come at the price of privacy. Said otherwise, to benefit from
technological progress, privacy must be forgone. After all, to perform any
computation on data, it seems that one must be able to see the data and the
potentiality of other alternatives seems paradoxical. Although this argument
seems plausible, it is not entirely true: one must indeed have access to
information to compute on it, but there is a priori no fundamental reason
as to why this information must be in clear. For instance, to grant access
to an age-restricted service, a provider need only know that users are above
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a certain age, not their actual date of birth. Gentry even showed that
it is possible to evaluate any boolean circuit on encrypted data with the
first ever fully homomorphic encryption scheme [Gen09]; which implies for
instance that any machine-learning task could be done on encrypted data.
This, together with the celebrated zero-knowledge proofs, indicates that
technological advancement must not necessarily come at the price of privacy
with regard to theoretical feasibility.

However, there is also the question of practical efficiency. Even if a
cryptographic innovation provides all the desired security and privacy guar-
antees desired for a certain task, it may still fail to be widely adopted if the
incurred computational overhead is prohibitive. Therefore, the issue of pri-
vacy should also be addressed from the angle of efficiency. It is the approach
taken in this thesis: it tackles several privacy challenges raised by real-world
technological inventions and attempts to propose practical solutions with
well-determined privacy guarantees.

This thesis comprises two parts. The first part studies, in Chapter 4,
group signatures in a context with several authorities of whom some may
be malicious, and based on its results, addresses in Chapter 5 the question
of privacy and confidentiality in the context of vehicle-to-vehicle commu-
nication. Chapter 6 also considers the issue of privacy and confidentiality,
but in a more general scenario in which no secure storage is assumed to be
available. Chapters 4 and 5 are based on joint work with Jan Camenisch,
Manu Drijvers, Anja Lehmann and Gregory Neven [CDL+20a,CDL+20b],
and Chapter 6 is based on joint work with Olivier Blazy, Laura Brouilhet,
Céline Chevalier, Ida Tucker and Damien Vergnaud. The second part of
this thesis is concerned with more general-purpose cryptographic primitives
which are also indispensable to privacy-related applications. Chapter 9 deals
with zero-knowledge arguments for Diophantine satisfiability and their ap-
plications in (privacy-preserving) cryptography, and Chapter 10 addresses
the fundamental question of randomness in key generation, which is the
heart of all cryptographic schemes. Chapter 9 is based on joint work with
Damien Vergnaud [TV20], and Chapter 10 on work with Olivier Blazy and
Damien Vergnaud [BTV20].



Chapter 2

Preliminaries

This chapter introduces the notation and the elementary notions used
throughout this thesis. It covers standard mathematical and algorith-

mic concepts, and introduces the main concepts of “provable” security. The
classical computational assumptions and cryptographic primitives involved
in this work are also recalled. The chapter assumes some familiarity with
rudimentary mathematics and standard computability theory. The prelimi-
naries specific to each chapter are given at the beginning of the corresponding
chapter.
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4 2.1 Mathematical Notation

2.1 Mathematical Notation

Sets, Integers. For any two sets X and Y, denote by YX the set of
functions from X to Y.

The set of integers is denoted Z, and the set of non-negative integers N.
The set of positive integers is denoted N∗. The absolute value of an integer
n is denoted |n|. For any two integers a ≤ b ∈ Z, Ja; bK denotes the set {a}
if a = b and {a, a+ 1, . . . , b} if a < b. For an integer n ≥ 1, JnK stands for
the set J1;nK.

Groups, Rings and Fields. All groups considered herein are Abelian,
i.e., commutative. Generic groups are denoted G, and when made explicit,
TG denotes the binary complexity of computing group operations. The neu-
tral element of a group G is denoted 1G, and G∗ stands for G\{1G}. The
subgroup generated by an element g ∈ G is denoted 〈g〉. For h ∈ G,

√
〈h2〉

denotes the subgroup
{
g ∈ G : ∃α ∈ Z, g2 = h2α}.

Given a ring (R,+, ·) and an integer ν ≥ 1, R[X1, . . . , Xν ] denotes the
ring of formal polynomials with coefficients in R.

The finite field of cardinality pk where p is a prime and k a positive
integer is denoted Fpk (recall that all finite fields of the same cardinality are
isomorphic).

Modular Arithmetic. Given a positive integer n, Zn denotes the set of
residue classes modulo n. (Zn,+, ·) is a ring, and (Z∗n, ·) stands for the
multiplicative group of residue classes modulo n, i.e., residue classes that
are invertible modulo n. If n is prime, then Z∗n = Zn \ {0} and (Zn,+, ·) is
a field.

Vectors, Matrices and Modules. Vectors and matrices are denoted in
bold font. Consider a group (G, ·) and a positive integer n. For g ∈ Gn,
if n is even, set g1 :=

[
g1 · · · gn/2

]
and g2 :=

[
gn/2+1 · · · gn

]
, and if

n is odd, set g1 :=
[
g1 · · · gbn/2c 1G

]
and g2 :=

[
gdn/2e · · · gn

]
. For

a ∈ Zn, if n is even, set a1 :=
[
a1 · · · an/2

]
and a2 :=

[
an/2+1 · · · an

]
,

and if n is odd, set a1 :=
[
a1 · · · abn/2c 0

]
and a2 :=

[
adn/2e · · · an

]
.

For n ∈ N∗, z ∈ Z and g =
[
g1 . . . gn

]
∈ Gn, let gz :=

[
gz1 · · · gzn

]
∈

Gn. For a =
[
a1 . . . an

]
∈ Zn, define ga := ∏n

i=1 g
ai
i . For g and h in Gn,

g ◦ h ∈ Gn denotes their component-wise product.
Given a ring (R,+, ·), a positive integer n and a vector a ∈ Rn, aX

denotes the vector
[
a1X a2X · · · anX

]
∈ Rn[X]. For two vectors a

and b in Rn, 〈a,b〉 denotes their inner product, and a ◦ b denotes the
Hadamard product (i.e., component-wise product) of a and b, i.e., a ◦ b :=
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[
a1b1 · · · anbn

]
. At times, when clear from the context, a ◦ b may be

simply denoted ab.
For a matrix A ∈ Rn×m with n and m positive integers, AT stands for

its transpose. For two matrices A and B of equal size, A ◦B denotes their
Hadamard product.

Given a Zn module G and a family of vectors u1, . . . ,uk ∈ Gk, the
Zn submodule of G generated by the family is denoted spanZn (u1, . . . ,uk).
When the ring Zn is clear from the context, the submodule is simply denoted
span (u1, . . . ,uk).

Probabilities. Consider a finite set X . Given a random variable X with
values in X and x ∈ X , Pr[X = x] denotes the probability that X takes
value x. Besides, X ∈R X and X ←$ X equivalently denote that X has a
uniform distribution over X .

For any two distributions D1 and D2 over X , the statistical distance be-
tween them is defined as 1/2∑x∈X |Pr[x←$ D1]− Pr[x←$ D2]| . It essen-
tially measures how far two probability distributions are from one another.

Miscellaneous. Unless stated otherwise, all logarithms are in base 2.

2.2 Algorithms
Turing Machines. Turing machines constitute an abstract model of com-
putation introduced by Alan Turing in 1936 [Tur36] which formally captures
the idea of an algorithm. Any computer algorithm can be represented by
a Turing machine. The model uses an infinite tape as unlimited memory.
It has a tape head that can read symbols on the tape head and perform
operations (write, move left, move right) depending on the symbol read and
on a state.

The Turing machines considered in this work are probabilistic, meaning
that they are additionally supplied with another infinite tape of random bits.
For a given algorithm A, y ← A(x) denotes the execution of A on input x
that results in y. To make the random bits used by A explicit, denoting the
string of random bits by r, the notation y ← A(x; r) is used.

Interactive Turing machines are Turing machines supplemented with spe-
cial tapes to communicate with other Turing machines: a communication
input tape to receive messages from other machines and a communication
output tape to send messages to other machines. Interactive Turing ma-
chines are used to model interactive protocols.

Running Time. A Probabilistic algorithm is said to be Polynomial Time
(PPT) if it runs in (strict, not simply expected) time polynomial in the
length of its inputs.
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Sampling Algorithms. Given a probability distribution D, a PPT algo-
rithm that samples a random element according to D is denoted by x←$ D.
For a finite set X , x ←$ X also denotes a PPT algorithm that samples an
element uniformly at random from X .

2.3 Provable Security

“Provable” security refers to the paradigm which consists in reducing, as in
computability theory, the ability to jeopardize the security of a cryptosys-
tem to solving an a priori hard computational problem. The underlying
rationale is that if a certain computational problem is hard and that one
can “efficiently” reduce the security of the scheme to solving the problem,
then the system must be secure as otherwise an attacker can be converted
into a solver. Giving a precise meaning to this intuition requires to formally
define the security of a cryptosystem, which is often done via experiments
as defined below, and to parametrize the hardness of the problem and char-
acterize what it means for an algorithm to be efficient.

Security Parameter. Given enough time, any computational problem
which has a computable solution can be solved by a computer. When rely-
ing on computational assumptions to build cryptosystems, the goal is sim-
ply to make sure that an attacker cannot break the system in reasonable
time. Nowadays, if 2128 elementary operations are necessary for the cur-
rently available computers to break a cryptosystem with a probability not
too small (e.g., 2−7), then the system is considered secure.

To formalize this idea, a security parameter λ ∈ N is introduced. All
algorithms considered in this thesis take a unary representation 1λ of this
parameter (although it may not always be made explicit). The unary rep-
resentation is simply to make sure that all efficient algorithms run in time
polynomial in λ.

Asymptotic Statements. Now that security parameters have been in-
troduced, an algorithm is considered efficient if its runtime is polynomial
time in the security parameter. A function (of the security parameter) is
said to be negligible if it is asymptotically dominated by all polynomial func-
tions (of the security parameter). The probability of an event will be said
to be overwhelming if the probability of the complement event is negligible.

Adversaries, Experiments and Oracles. The security of cryptosys-
tems is often formally defined via so-called “security experiments” or “games”.
A security experiment is essentially an interaction between two algorithms:
a challenger and an adversary. The experiment specifies a series of actions
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between the two algorithms that depends on the considered cryptosystem,
and how much leeway the adversary has during the interaction.

During the security experiments, the adversaries are often also given
access to oracles in addition to the inputs and the random bits. An oracle
is an idealized black-box which returns a value on an input specified by the
adversary, and it models the fact that an algorithm might in practice have
access to the answers to these queries without any restriction on the way
they are computed or obtained. Given an Oracle O, the notation (A,B, ·)
means that (A,B) is its inner (secret) state, while · denotes the (adversarial)
query.

Generally, at the end of the experiment, the challenger returns a decision
bit indicating whether the adversary “won the game”, i.e., broke the system.
The goal of the experiment is to capture a clear range of attacks, and usually,
the wider this range is, the more realistic the attack model is and the more
difficult it is to build efficient schemes.

For a given experiment, the success probability or advantage of an adver-
sary refers to the probability that it wins the game against the challenger.
A cryptosystem is generally deemed secure in the sense specified by the ex-
periment if no PPT algorithm has a non-negligible advantage in winning the
game. Note that such statements are asymptotic, and although they give
an intuition as to why a system should be secure in practice, they fail to
give to quantify the actual advantage that an attacker can have in practice.
That is why for certain problems, it might be more meaningful to rather say
that a scheme is (T, q, ε)-secure if no adversary that runs in time at most T
and makes at most q oracle queries has a success probability of at most ε.

Alternatively, the security of a scheme can rather be defined by requiring
an attacker to distinguish two experiments. The adversary interacts with
the challenger of either of them and returns a decision bit at the end of the
interaction. The advantage of the adversary is then defined as the difference
(in absolute value) of the probabilities that it returns the same decision bit.

Hybrid Arguments. Hybrid arguments are a useful tool to prove that
cryptographic schemes are secure in the sense defined above. They generally
consist in defining a sequence of experiments that are indistinguishable start-
ing from the original experiment which defines the security of the scheme.
The indistinguishability between two consecutive experiments can be either
information theoretic or computational, i.e., in the second case, distinguish-
ing two consecutive experiments can be reduced to solving a computational
problem. The last experiment is usually one in which the advantage of the
adversary is nil.

This technique is especially helpful when several schemes are involved to
build a larger one, as it allows to gradually prove the security of the overall
scheme by focusing on one building block at a time.
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Random-Oracle Model. The random-oracle model was introduced in
cryptography by Bellare and Rogaway [BR93]. It is an idealized model
for hash functions. In short, a random oracle returns consistent answers
to previous inputs, and a uniformly random value in its range on each
new input. The model provides considerable leverage in security reductions
as it allows the reduction algorithm to observe and program the random-
oracle queries of the adversary. However, the random oracle cannot be
realized in practice with a concrete hash function. In fact, there exist con-
trived schemes [CGH98,CGH04,MRH04] which can be proven secure in the
random-oracle model but are insecure when instantiated with a concrete
hash function – on the other hand, no such result for a “natural” protocol
has been proved so far. On this ground, proofs in the random oracle model
should rather be considered as heuristic indications of security.

2.4 Computational Assumptions.
This section covers classical computational assumptions that are used in
this thesis. Contrarily to complexity theory, most assumptions in cryptog-
raphy are about average-case hardness of problems rather than worst-case
hardness. The assumptions presented hereafter are based on the discrete-
logarithm problem or are closely related to the factorization problem. These
types of assumptions underpin most of the now classical cryptosystems, and
in particular the celebrated RSA [RSA78] and Elgamal [ElG85] cryptosys-
tems.

Despite a result by Shor [Sho94] which shows that these problems can be
solved in polynomial time with quantum computers, no classical polynomial-
time algorithm to solve them is known today. They thus still are at the
heart of many cryptographic schemes built nowadays, especially due to the
algebraic properties they provide which allow for practical instantiations.

2.4.1 Group-Family Generators.

A generator of a group family is an algorithm G which takes as an input
a security parameter 1λ, and returns the description of a group G (groups
are denoted multiplicatively) and potentially auxiliary information such as
a group element. It is assumed that given the description of G, the group
law and the inversion of group elements can be efficiently computed and
that group elements can be sampled uniformly at random. When exact-
security statements are made, recall that the bit complexity of an elementary
operation in a group G is denoted TG.

The group description may or may not allow to directly infer the group
order. Actually, it is precisely this distinction which separates the assump-
tions based on the discrete-logarithm problem from those related to the
factorization problem.
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2.4.2 Assumptions on Public-Order-Group Generators

This section presents classical assumptions on generators of groups with
public prime orders (note that these groups are necessarily cyclic). The as-
sumptions are stated in asymptotic terms, even though they could of course
also be stated in exact-security terms.

Discrete-Logarithm Assumption.

The discrete-logarithm assumption is one of the most central assumptions
in cryptography. It has many stronger variants on which numerous practical
schemes rely.

Definition 2.4.3 (Discrete-Logarithm Assumption). Let G be a group-family
generator. The discrete logarithm assumption on G states that for any PPT
adversary A,

Pr
[
x← A(G, p, g, h) : (G, p, g)← G(1λ)

x←$ Z∗p;h← gx

]

is negligible.

Cryptanalysis. Shanks [Sha71] designed a generic (i.e., which only relies
on exponentiations and group operations) deterministic algorithm to com-
pute discrete logarithm in time O(√p). Pollard [Pol78] later improved this
algorithm to use only constant memory and still run in time O(√p), but his
algorithm is probabilistic. This latter algorithm is now known as Pollard’s
“rho” algorithm, and several improvements [Tes01,Mon87,BLS11] have been
proposed since its introduction. Although more efficient algorithms can exist
for specific groups, Shoup [Sho97] showed that any generic algorithm that
solves the discrete-logarithm problem must run in time Ω(√p). Pollard’s
rho algorithm is thus optimal in this sense. As a consequence, research on
the discrete-logarithm problem has focused on designing more efficient al-
gorithms for the specific groups commonly used in practical cryptography,
and on elaborating groups for which no better algorithm is known.

Instantiation with Finite-Field Multiplicative Subgroups. A com-
mon construction of groups with public prime order is as follows. Let p
be a large strong prime, i.e., p′ := (p − 1)/2 is also prime. The sub-
group of squares1 in Z∗p is a (cyclic) group of prime order p′ and is used
in practice. To compute a generator of this subgroup, it suffices to gen-
erate h ←$ G and return g ← h2. The best known algorithms for the
discrete-logarithm problem in such groups are based on index calculus (with

1 The reason why the subgroup of squares is considered is simply for related assump-
tions such as the decisional Diffie–Hellman assumption to hold.
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seminal ideas harking back to Kraitchik’s work [Kra22]) and run in time
O
(
exp

(
a logb(t)(log log(t))1−b

))
for some constants a and b at most 1/3.

The most recent breakthroughs for this class of algorithms are due to Joux
[Jou14], and Kleinjung and Wesolowski [KW19]. The existence of sub-
exponential algorithms then entails that the parameters must be large; some
recommendations advocate primes of 2048 bits for 128 bits of security.

Instantiation with Elliptic Curves. The discrete-logarithm assump-
tions is also believed to hold over elliptic curves, which are algebraic groups
defined by equations of the form y2 − x3 − ax − b = 0. Despite strenuous
cryptanalytic research on elliptic curves, Pollard rho’s algorithm is still the
best known algorithm to solve the discrete-logarithm problem in chosen par-
ticular curves for which the group operation can still be efficiently computed.
For such curves, 256-bit primes are enough to achieve 128 bits of security.

Relation Assumptions.

The computational assumptions given below are related and can be reduced
in polynomial time to the hardness of computing discrete logarithms, and
there is no evidence that these problems are equivalent to the discrete-
logarithm problem. Yet, to break these assumptions, no better attack than
computing discrete logarithms is known.

Decisional Diffie–Hellman Assumption. The following assumption was
introduced by Diffie and Hellman in their work [DH76] which initiated
public-key cryptography. A plethora of cryptosystems are based on it, e.g.,
the Elgamal encryption scheme.

Definition 2.4.4 (Decisional Diffie-Hellman Assumption). Let G be a group
family generator. The Decisional Diffie-Hellman assumption (DDH) over G
states that the advantage (function of λ)∣∣∣∣∣∣∣Pr

b = A(G, `, g, gx, gy, gαb) :
(G, p, g)← G(1λ)

(x, y)←$ Z∗p2, b←$ {0, 1}
α0 ← xy mod p, α1 ←$ Z∗p

− 1
2

∣∣∣∣∣∣∣
of any PPT adversary A is negligible.

Decisional Diffie-Hellman-Inversion Assumption. The following as-
sumption is somewhat related to the DDH assumption but for the problem
of inversion.

Definition 2.4.5 (Decisional Diffie-Hellman-Inversion Assumption [BB04]).
Let G be a group family generator. The q-Decisional Diffie-Hellman-Inversion
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(DDHI) assumption over G states that the advantage (function of λ)∣∣∣∣∣∣∣∣∣∣∣
Pr

b
?= A(G, p, g,y, z) :

(G, p, g)← G(1λ)
x←$ Z∗p, b←$ {0, 1}

yi ← gx
i for i ∈ {1, . . . , q(λ)}

α0 ← 1/x mod `, α1 ←$ Z∗p,
z ← gαb

−
1
2

∣∣∣∣∣∣∣∣∣∣∣
of any PPT adversary A is at most negligible.

2.4.6 Pairing-Group Structures

An (asymmetric) bilinear structure or pairing-group structure is a tuple
(p,G1,G2,GT , e) such that p is a prime, G1 = 〈g1〉, G2 = 〈g2〉 and GT

are p-order groups, and such that e : G1 × G2 → GT is a pairing, i.e., an
efficiently computable non-degenerate (e 6= 1GT ) bilinear map. Bilinearity
here means that e

(
ga1 , g

b
2

)
= e(g1, g2)ab for all a, b ∈ Zp. In what follows, gT

denote e(g1, g2), which is a generator of GT . Type-3 bilinear structures are
bilinear structures for which there is no efficiently computable homomor-
phism from G2 to G1. They are advocated for their efficiency and security
guarantees.

A bilinear structure generator is an algorithm G which, on the input of
a security parameter 1λ, returns the description of a bilinear structure. For
any integers n,m ≥ 1, given vectors x ∈ Gn

1 and y ∈ Gm
2 , f(x,y) denotes

the matrix
[
e (xi, yj)

]
i,j
∈ Gn×m

T .

Instantiation. Pairing-group structures are instantiated via elliptic curves.
Consider an ordinary elliptic curve E over a prime finite field Fp, and let r
be the largest prime such that r | #E(Fp). The embedding degree k of E
is the minimal degree k for which all the r-th roots of unity are contained
in Fpk . Usually, G1 and G2 are r-order subgroups of E(Fpk) and GT is the
subgroup of F∗

pk
of the r-th roots of unity. The most widely used pairings on

ordinary elliptic curves are efficiently computable using variations of Miller’s
algorithm [Mil04].

Cryptanalysis. For the curves considered in cryptography, the best al-
gorithm to compute discrete logarithms in E(Fpk) is still Pollard’s rho al-
gorithm, so it can be done in time O(

√
r). Computing discrete logarithms

in F∗
pk

depends on k and p. Kim and Barbulescu [KB16] improved the
Tower Number-Field Sieve (TNFS) to solve the discrete-logarithm problem
when the embedding degree k is composite. Recently, Fotiadis and Martin-
dale [FM19] then proposed TNFS-secure curves with composite embedding
degree.
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Assumptions.

The assumptions on generators of pairing-group structures are to a certain
extend similar to these on group generators, after eliminating the trivial
attacks due to the existence of a pairing. Boyen [Boy08] gave an extensive
survey and analysis (with a generic approach) of assumptions on generators
of pairing-group structures. The assumptions in this thesis are recalled in
the specific chapters in which they are used.

2.4.7 Assumptions on Hidden-Order-Group Generators

Thi section presents assumptions on generator of hidden-order groups. These
assumptions are given in exact-security term as all statements in the only
chapter (i.e., Chapter 9) in which they appear are in exact-security terms.

A hidden-order-group generator G is an algorithm which takes as an
input a security parameter 1λ and returns the description of a finite Abelian
group (G, ·) and an integer P ≥ 2. Integer P is assumed to be smaller than
the order of G, but to still be a super-polynomial function of the security
parameter. The role of P is mainly to adjust the soundness of the protocols
herein, as their challenge spaces will typically be

q
0;PΩ(1) − 1

y
.

It is also assumed that given the description of G, the group law and the
inversion of group elements can be efficiently computed, that group elements
can be sampled uniformly at random and that an upper bound 2bG on ord(G)
can be efficiently computed, with bG := bG(λ) polynomial in λ (it is further
assumed that bG = Ω(λ)). Recall that the bit complexity of an elementary
operation in a group G is denoted TG.

The following assumptions are classical for hidden-order-group genera-
tors and were introduced by Damgård and Fujisaki [DF02]. They are best
illustrated for P such that natural integers less than P are factorizable in
polynomial time in λ (e.g., λlogΩ(1)(λ) given current knowledge in computa-
tional number theory), and for G as the group Z∗N for an RSA modulus N
with prime factors p and q such that p = q = 3 mod 4, gcd(p−1, q−1) = 2
and the number of divisors of p− 1 and q− 1 with prime factors less than P
is of magnitude O(λ). However, these assumptions are believed to also hold
over generators of ideal-class groups.

Definition 2.4.8 (Strong-Root Assumption). A group generator G satisfies
the (T, ε)-strong-root assumption if for all λ ∈ N, for every adversary A that
runs in time at most T (λ),

Pr

gn = h ∧ n > 1:
(G, P )← G

(
1λ
)

h←$ G
(g, n)← A(G, P, h)

 ≤ ε(λ).

This assumption is simply a generalization of the strong RSA assump-
tion [BP97,FO97] to hidden-order groups.
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Definition 2.4.9 (Small-Order Assumption). A group generator G satisfies
the (T, ε)-small-order assumption if for all λ ∈ N, for every adversary A
that runs in time at most T (λ),

Pr
[
gn = 1G ∧ g2 6= 1G

0 < n < P
: (G, P )← G

(
1λ
)

(g, n)← A(G, P )

]
≤ ε(λ).

The small-order assumption simply states that it should be hard to find
low-order elements in the group (different from 1G), except for square roots
of unity which may be easy to compute (e.g., −1 in RSA groups). In the
group Z∗N for N = pq with p and q prime such that gcd(p − 1, q − 1) = 2,
Damgård and Fujisaki [DF02] showed that factoring N can be reduced to
this problem in polynomial time if integers less than P are factorizable in
polynomial time in λ.

Definition 2.4.10 (Orders with Low Dyadic Valuation). A group generator
G satisfies the low-dyadic-valuation assumption on orders if for all λ ∈ N,
for every (G, P )← G

(
1λ
)
, for every g ∈ G, ord(g) is divisible by 2 at most

once.

Notice that in the group Z∗N for N = pq with p and q prime such that
p = q = 3 mod 4, the order of any element is divisible by 2 at most once
since 2 divides p− 1 and q − 1 exactly once.

Definition 2.4.11 (Many Rough-Order Elements or µ-Assumption). An
integer is said to be P -rough if all its prime factors are greater than or
equal to P . A group generator G satisfies the µ-assumption that there are
many rough-order elements in the groups generated by G (or simply the µ-
assumption) if for all λ ∈ N,

Pr
[
ord(h) is P -rough : (G, P )← G

(
1λ
)

h←$ G

]
≥ µ(λ).

2.5 Cryptographic Primivites
This section introduces primitives that are fundamental in cryptography.

2.5.1 Public-Key Encryption

Public-key encryption is a fundamental cryptographic primitives which al-
lows two parties who have never met to confidentially exchange information.
More precisely, public-key encryption enables a party, A, to privately send
a message to another party, B (the user hereafter), given the public key of
the latter, assuming it to be authentic. Using a corresponding secret key, B
can decipher A’s message.
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Formally, a public-key encryption scheme consists of a setup algorithm
Setup

(
1λ
)
→ pp, a key-generation algorithm KG(pp) → (pk, sk) which re-

turns a public encryption key and a secret decryption key, a probabilis-
tic encryption algorithm Enc(pk,m; r) → C (the randomness r may at
times be omitted from the syntax) and a deterministic decryption algorithm
Dec(sk,C )→ m/⊥.

Golwasser and Micali [GM84] proposed the first security definitions of
public-key encryption, and standard definitions nowadays include the so-
called INDistinguishability under Chosen-Plaintext and Chosen-Ciphertext
Attacks (IND-CPA and IND-CCA). A prominent example of IND-CPA
scheme is the aforementioned Elgamal scheme [ElG85] under the DDH as-
sumption, and under the same assumption, an example of IND-CCA scheme
is the Cramer–Shoup encryption scheme [CS98].

2.5.2 Digital Signatures

(Digital) signature schemes constitute another fundamental cryptographic
primitive which addresses the issue of authenticity in digital communication.
They are to digital communication what seals were to physical communica-
tion in ancient times. A signature scheme allows a party to compute, with
a secret key, signatures on messages that can be verified by anyone who
has an authentic copy of the corresponding public verification key. A prime
example of signature scheme is the cryptosystem due to Rivest, Shamir and
Adleman [RSA78].

Formally, a signature scheme consists of a setup algorithm Setup
(
1λ
)

→ pp, a key-generation algorithm KG(pp) → (vk, sk), a signing algorithm
Sign(sk,m) → σ and a verification algorithm Vf(vk,m, σ) → b ∈ {0, 1}
which returns a bit indicating whether the signature is valid on a message
– bit 1 conventionally indicates validity.

A classical security notion for digital signature schemes is that of ex-
istential unforgeability against chosen-message attacks. It states that an
adversary should not be able to compute a valid signature on a new mes-
sage without the knowledge of the secret key.

2.5.3 Non-Interactive Commitments

(Non-Interactive) commitment schemes play a central role in cryptography
as they allow a party to commit herself to a value in a commitment which
does not disclose any information about the underlying value, and to later
reveal that value to another party without any possibility to change it.

Formally, a (non-interactive) commitment scheme consists of the follow-
ing algorithms.

Setup
(
1λ
)
→ pp : generates public parameters (or common-reference string)
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on the input of a security parameter 1λ. These parameters are implicit
inputs to the other algorithms.

Com (x)→ (C, d) : computes a commitment C to a value and an opening or
decommitment information d.

ComVf(C, x, d)→ b ∈ {0, 1}: a deterministic returns a bit indicating whether
the decommitment d is valid (bit 1) for C and x, or not (bit 0). It is
assumed that if x = ⊥, then it returns 0.

The following security definitions are given in asymptotic term, but could
also be stated in exact-security terms.

A commitment scheme is correct if for all λ ∈ N, for all pp ← Setup
(
1λ
)

and for all x Pr [ComVf(C, x, d) = 1: (C, d)← Com(x)] = 1.
A commitment scheme is hiding (statistically hiding) if for all λ ∈ N, for

every PPT (computationally unbounded) adversary A,∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′ :

pp ← Setup
(
1λ
)

(x0, x1, st)← A(pp)
b←$ {0, 1}
(C, d)← Com(xb)
b′ ← A(st, C)
return (b, b′)


− 1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is negligible. If the above difference is nil, then the scheme is said to be
perfectly hiding.

A commitment scheme is binding if for all λ ∈ N, for every PPT adver-
sary A,

Pr
[

ComVf(C, x0, d0) = ComVf(C, x1, d1) = 1
∧x0 6= x1

: pp ← Setup
(
1λ
)

(C, x0, d0, x1, d1)← A(pp)

]

is negligible.

Pedersen Commitments. The most commonly used commitment scheme
in cryptography ought to be the Pedersen commitment scheme [Ped92]. It
is additively homomorphic and allows to algebraic prove properties of a
committed values. Given G a group-family generator, let G be a cyclic
group of prime order p generated by G. Let g1, g2 denote two generators of
G. The common reference string is (G, p, g1, g2). For a value a ∈ Zp, the
pedersen-commitment algorithm computes generates r ←$ J0, p− 1K and
computes C ← ga1g

r
2. Note that the commitments are perfectly hiding. To

verify a commitment C to a with decommitment information r, the open-
ing algorithm simply verifies that C = ga1g

r
2. Under the discret-logarithm

assumption over G, the scheme is binding.
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Extractable Commitments.

A commitment scheme (Setup,Com,ComVf) is extractable (as defined by
Abdalla et al. [ABB+13]) if there exists an algorithm TSetup

(
1λ
)
→ (pp, τ)

which generates public parameters and a trapdoor, and another algorithm
ExtCom (τ, C) → x/⊥ which, on the input of a trapdoor and of a commit-
ment, returns a message or ⊥ if the commitment is invalid.

The scheme then satisfies trapdoor correctness if for all 1λ, for all (pp, τ)←
TSetup

(
1λ
)
, for all x, Pr [ExtCom(τ, C) = x : (C, δ)← Com(x)] = 1.

The commitment scheme satisfies setup indistinguishability if no PPT
algorithm can distinguish the output of Setup from the first component of
the output of TSetup with a non-negligible advantage.

Lastly, an extractable commitment scheme satisfies binding extractability
if ExtCom runs in polynomial time and if for all 1λ, for every PPT adversary
A,

Pr

 ComVf(C, x, d) = 1
∧x 6= x′

:
(pp, τ)← TSetup

(
1λ
)

(C, x, d)← AExtCom(τ,·)(pp)
x′ ← ExtCom (τ, C)


is negligible.

Public-key encryption schemes secure against chosen-message attacks are
perfectly binding commitment schemes which are additionally extractable
since the secret key can be used as a trapdoor.

2.6 Zero-Knowledge Arguments

This section introduce zero-knowledge arguments. They allow a prover to
convince a computationally-bounded verifier that a statement is true with-
out revealing any information beyond that. More precisely, a prover wants
to convince a verifier that a certain word x belongs to an NP language L.
Arguments are distinguished from proofs in that provers in arguments are
computationally bounded.

Interactive proof systems were first studied by Babai [Bab85], and Gold-
wasser, Micali and Rackoff [GMR85]. Arguments systems were later intro-
duced by Brassard, Chaum and Crepeau [BCC88]. Their underlying idea
is that a cheating prover should not be able to convince a verifier so long
as it cannot solve a presumably hard computational task. This relaxation
is very powerful as it for instance allows to build systems with sub-linear
communication complexity, as for instance shown in Chapter 9.

This section first defines interactive proof systems, then non-interactive
proof systems in both the random-oracle model and common-reference string
model.
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2.6.1 Interactive Systems

This section defines argument systems for families of languages. The lan-
guages are parametrized by public parameters and Common-Reference String
(CRS). As a simple example, given an Abelian group G (which could be non-
cyclic) and an element h ∈ G (the parameters) and another element g ∈ 〈h〉
(the CRS), consider the language of group elements C ∈ G such that there
exists x, y ∈ Z for which C = gxhy. This language is clearly parametrized
by the parameters and the CRS, and one can give an argument system for
this parametrized language in the same vein as what is subsequently done in
the paper. However, to lighten the notation, arguments will be (abusively)
referred to as arguments for languages rather than arguments for families of
languages.

Formally, an argument system (or protocol) for a language L = Lpp,crs
(or equivalently, for the corresponding relation R = Rpp,crs) consists of
a quadruple Π = (Setup,CRSGen,Prove,Vf) such that Setup

(
1λ
)
→ pp re-

turns public parameters on the input of a security parameter, CRSGen(pp)→
crs returns a CRS, and 〈Prove(crs, x, w) 
 Vf(crs, x)〉 → (τ, b) ∈ {0, 1}∗ ×
{0, 1} are interactive algorithms (τ denotes the transcript of the interaction
and b the decision bit of Vf). The public parameters are assumed to be tacit
inputs to algorithms Prove and Vf, even though they may at times be made
explicit for instantiated protocols, especially when the CRS is the empty
string (in which case the CRS is omitted from the syntax).

Completeness. Π is complete if for all λ ∈ N, for all pp ← Setup
(
1λ
)
,

crs ← CRSGen (pp), for all (x,w) ∈ R,

Pr [(∗, 1)← 〈Prove(crs, x, w)
 Vf(crs, x)〉] = 1.

Soundness. Π satisfies (T, ε)-soundness if for all λ ∈ N, for every adver-
sary A that runs in time at most T (λ),

Pr

b = 1 ∧ x /∈ L :
pp ← Setup

(
1λ
)

; crs ← CRSGen (pp)
(st, x)← A(crs)
(τ, b)← 〈A(st, x)
 Vf(crs, x)〉

 ≤ ε(λ).

This definition of soundness formalizes the idea that an adversary should
not be able to convince the verifier that a word x is in L although it is
actually in L̄ := {0, 1}∗ \ L. Groth, Ostrovsky and Sahai [Gro06,GOS06]
relaxed the notion of soundness so that a protocol which satisfies the relaxed
notion only guarantees that an adversary cannot convince the verifier that
a word is in L when it is actually in the complement Λ̄ of language Λ ⊇ L
(to be completely formal, Λ should also parametrized by pp and crs). They
called this new notion co-soundness or culpable soundness. It means that a
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malicious could still convince the verifier that a word is L when it is actually
in Λ \ L. However, for many applications, this notion is sufficient.

Formally, a protocol Π for a Language L satisfies (T, ε,Λ ⊇ L)-soundness
if for all λ ∈ N, for every adversary A that runs in time at most T (λ),

Pr

b = 1 ∧ x /∈ Λ:
pp ← Setup

(
1λ
)

; crs ← CRSGen (pp)
(st, x)← A(crs)
(τ, b)← 〈A(st, x)
 Vf(crs, x)〉

 ≤ ε(λ).

Extractability. Π is (TA, TProve∗ , TE , ε)-extractable if for every determin-
istic algorithm Prove∗ running in time at most TProve∗(λ), there exists an
algorithm (called extractor) E(pp, x)→ w such that for all λ ∈ N, for every
adversary A running in time at most TA(λ),

∗ Pr

 (x,w) /∈ R :
pp ← Setup

(
1λ
)

; crs ← CRSGen (pp)
(st, x, s)← A(crs)
w ← E〈Prove∗(crs,x,s)
Vf(crs,x)〉(crs, x)

 ≤ ε(λ),

∗ the running time of E is at most TE in expectation, with TE depending
on TProve∗ and

εA,Prove∗(λ) := Pr

 β = 1 :
pp ← Setup

(
1λ
)

; crs ← CRSGen (pp)
(st, x, s)← A(crs)
(τ, β)← 〈Prove∗(crs, x, s)
 Vf(crs, x)〉

 .

The above definition means that if Π is extractable, E can extract a valid
witness from any prover Prove∗ with the running time of E depending on the
running time of Prove∗ and on the success probability of (A,Prove∗), except
with probability at most ε(λ). Π is thus an argument of knowledge, which
implies that it is sound. The string s given to Prove∗ can considered as an
internal state which includes its random string.

Similarly to the notion of soundness, the notion of extractability can be
extended to a notion of culpable extractability w.r.t. a relation Σ ⊇ R.

Honest-Verifier Zero-Knowledge. Π is (T, TSim, ε)-honest-verifier zero-
knowledge ((TSim, ε)-statistically honest-verifier zero-knowledge) if there ex-
ists an algorithm Sim running in time at most TSim(λ) such that for all
λ ∈ N, for every adversary A running in time at most T (λ) (for every com-
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putationally unbounded adversary A),

∣∣∣Pr
[

(x,w) ∈ R ∧ b = 1 :

pp ← Setup
(
1λ
)

(crs, st, x, w)← A(pp)
(τ, β)← 〈Prove(crs, x, w)
 Vf(crs, x)〉
b← A(st, (τ, β))



− Pr

 (x,w) ∈ R ∧ b = 1 :

pp ← Setup
(
1λ
)

(crs, st, x, w)← A(pp)
(τ, β)← Sim(crs, x)
b← A(st, (τ, β))


∣∣∣∣∣∣∣∣∣

≤ ε(λ).

Note that the common-reference string is generated by the adversary in
this definition. The reasons are the same as for the commitment key in
the definition of the hiding property of commitment schemes. A weaker
definition in which the common-reference string is honestly generated could
also be considered.

Π is said to be public coin if all messages sent by Vf are chosen uniformly
at random and independently of the messages sent by algorithm Prove.

Schnorr Proofs.

A simple example of a zero-knowledge proof is Schnorr’s proof [Sch90] of
knowledge of discrete logarithms in groups of public prime orders which
perfectly illustrates the “cut-and-choose” paradigm.

In a group G of prime order p, given g and y in G, the goal of the prover
is to prove knowledge of x ∈ Zp such that y = gx. To do so, the prover
generates k ←$ Zp, and computes and sends t ← gk to the verifier. The
verifier chooses a challenge c←$ Zp and sends it to the prover. The prover
then replies with r ← k− cx and the verifier accepts if and only if gryc = t.

Interactive Arguments in the Random–Oracle Model.

Interactive arguments could also be defined in a model in which the protocol
algorithms are given access to a random oracle (in this paper, it will pri-
marily be in case CRSGen needs to compute a non-interactive proof that the
CRS is well-formed, as in Chapter 9 for instance). The soundness and zero-
knowledge properties of the protocol may then be affected by the number of
random-oracle queries made by the parties, e.g., if the protocol involves as
sub-protocol the Fiat–Shamir (see the next section) non-interactive variant
of another protocol, as it is the case in Section 9.3. The definitions of these
properties should then be adapted to include an upper-bound qH on the
number of queries that the adversary can make.
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For instance, given a random-oracleH, one can define (TA, TProve∗ , TE , qH,
ε)-extractability in the same way as (TA, TProve∗ , TE , ε)-extractability in the
standard model was defined, but with the difference that A and Prove∗ are
given oracle access to H and can together make at most qH(λ) queries. The
other definitions are adapted in a similar fashion.

Fiat–Shamir Heuristic.

The Fiat–Shamir heuristic [FS87] can be used to turn a public-coin, in-
teractive argument system into a non-interactive one in the random-oracle
model [BR93]. Given a random oracle H, the messages of the verifier are
computed by evaluating H at the word and the transcript of the interactive
protocol until that point of the computation of the prover. With oracle
access to H, the prover can then compute a full transcript (or argument),
further denoted π instead of τ , without interacting with the verifier, and
this latter can also verify the transcript without any interaction.

The non-interactive argument system derived from an interactive one
Π = (Setup,CRSGen,Prove,Vf) via the Fiat–Shamir heuristic with a random
oracle H is denoted FS .ΠH :=

(
Setup,CRSGen,FS .ProveH,FS .VfH

)
. Note

that the original interactive protocol Π may already be in the random-oracle
model as in the previous section, but it is further assumed to be with a
different oracle (that is not made explicit in the notation for simplicity).

Completeness. A non-interactive protocol FS .ΠH is said to be complete
if for all λ ∈ N, for all pp ← Setup

(
1λ
)
, crs ← CRSGen(pp), for all (x,w) ∈

R, Pr
[
FS .VfH

(
crs, x,FS .ProveH(crs, x, w)

)
= 1

]
= 1.

As in the interactive case, the following notions of soundness and ex-
tractability can be extended to those of culpable soundness and culpable
extractability.

Soundness. FS .ΠH satisfies (T, qH, ε)-soundness if for all λ ∈ N, for every
adversary A that runs in time at most T (λ) and makes at most qH(λ) queries
to H,

Pr
[

FS .VfH(crs, x, π) = 1 ∧ x /∈ L : pp ← Setup
(
1λ
)

; crs ← CRSGen(pp)
(x, π)← AH(·)(crs)

]
≤ ε(λ).

Extractability. FS .ΠH is (TA, TProve∗ , TExt, qH, ε)-extractable if for every
deterministic algorithm Prove∗ running in time at most TProve∗(λ) there
exists an algorithm (Ext0(Q, q)→ Q′, Ext1(pp, x)→ w) such that for all
λ ∈ N, for every adversary A running in time at most TA(λ), if Prove∗
and A together make at most qH(λ) queries to H,
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∗ Pr

 (x,w) /∈ R :
pp ← Setup

(
1λ
)

; crs ← CRSGen(pp);Q← ∅
(x, s)← AExt0(Q,·)(crs)
w ← ExtProve∗Ext0(Q,·)(crs,x,s)

1 (crs, x)


≤ ε(λ),

∗ the running time of Ext is at most TExt in expectation, with TExt de-
pending on TProve∗ and

εA,Prove∗ := Pr

 b = 1 :

pp ← Setup
(
1λ
)

; crs ← CRSGen(pp)
(x, s)← AH(·)(crs)
π ← Prove∗H(·)(crs, x, s)
b← FS .VfH(·)(crs, x, π)

 .

Algorithm (Ext0,Ext1) is given access to a Prove∗ oracle which can be re-
wound to any step of its computation and run anew with fresh Ext0 ran-
domness.

Zero-Knowledge. ΠH is (TA, TSim, qH, ε)-zero-knowledge if there exists
an algorithm Sim running in time at most TSim(λ) such that Sim(0, Q, q)→
(h,Q) and Sim(1, Q, crs, x)→ (π,Q), and such that for all λ ∈ N, for every
adversary A that runs in time at most T (λ) and is given oracle access to H
and Prove,

|Pr [b = 1: pp ← Setup
(
1λ
)

; (crs, st)← AH(·)(pp)
b← AH(·),FS .ProveH(crs,·)(st)

]

− Pr

b = 1:
pp ← Setup

(
1λ
)

;Q← ∅
(crs, st)← AH(·)(pp)
b← AOSim0 (Q,·),OSim1 (Q,crs,·)(st)


∣∣∣∣∣∣∣ ≤ ε(λ),

with OSim0 an oracle that computes (h,Q) ← Sim(0, Q, q) on input (Q, q)
and returns h, and OSim1 an oracle that computes (π,Q)← Sim(1, Q, crs, x)
if (x,w) ∈ R and returns π, and returns ⊥ if (x,w) /∈ R. Set Q can be
considered as a state which stores all pairs (q, h) of queries and responses.
The total number of random-oracle calls incured by direct H queries and by
Prove queries from A can be at most qH.

Notation. Whenever the relation is not made explicit because it is clear
from the context and that the Fiat–Shamir transform is used, then the
relation is embedded in the notation of algorithm Prove. For instance, for the
Fiat–Shamir version of Schnorr’s proof, the notation FS .Prove{x : y = gx}
is be used. The random oracle involved in the proof is not made explicit as
it is here also assumed to be clear from the context.
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2.6.2 Non-Interactive Systems

This section defines non-interactive systems in a model without random
oracles. Note that a non-interactive proof system cannot be sound and
zero-knowledge unless there exists at least a common-reference string used
by both parties that could potentially be trapdoored. Indeed, would such
a scheme exist, any malicious prover could simply run the algorithm of the
simulator and contradict soundness. On this account, this section presents
proof systems of which the properties rely on CRS and trapdoors.

A non-interactive proof system Π for a language L = Lcrs (with cor-
responding relation R) consists of an algorithm Setup

(
1λ
)
→ pp which

returns public parameters, an algorithm CRSGen(pp) → crs which returns
a common reference string, an algorithm Prove(crs, x, w) → π which com-
putes a proof on the input of a word x and of a witness w, and an algorithm
Vf(crs, x, π)→ b ∈ {0, 1} which returns a bit indicated whether the proof is
considered valid.

Π is complete if for all λ ∈ N, for all pp ← Setup
(
1λ
)
, crs ← CRSGen(pp),

for all (x,w) ∈ R, Pr [Vf(crs, x,Prove(crs, x, w)) = 1] = 1.
Π satisfies (T, ε)-soundness if for all λ ∈ N, for every adversaryA running

in time at most T (λ),

Pr

Vf(crs, x, π) = 1 ∧ x /∈ L :
pp ← Setup

(
1λ
)

crs ← CRSGen(pp)
(x, π)← A(crs)

 ≤ ε(λ).

Π is (TExt, TA, ε)-extractable if there exists an algorithm TSetup
(
1λ
)
→

(crs, τ) and an algorithm Ext(crs, τ, x, π) → w running in time at most
TExt(λ) such that the distribution of the first component of TSetup is the
same as that of CRSGen, and such that for all λ ∈ N, for every adversary A
running in time at most TA(λ),

Pr
[
Vf(crs, x, π) = 1 ∧ (x,Ext(crs, τ, x, π)) /∈ R : (crs, τ)← TSetup

(
1λ
)

(x, π)← A(crs)

]
≤ ε(λ).

Π is ε-witness-indistinguishable if for all λ ∈ N, for every PPT adver-
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sary A, ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr



b = b′ :

pp ← Setup
(
1λ
)

crs ← CRSGen(pp)
(st, x, w0, w1)← A(crs)
b←$ {0, 1}
if (x,w0) /∈ R or (x,w1) /∈ R

b′ ←$ {0, 1}
return (b, b′)

π ← Prove(crs, x, wb)
b′ ← A(st, π)
return (b, b′)



− 1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ ε(λ).

Π is (T, ε)-composable zero-knowledge if there exist two other algorithms
TSetup

(
1λ
)
→ (crs, τ) and Sim(crs, τ, x) → π such that for all λ ∈ N, for

every adversary A running in time at most T (λ),

|Pr [1← A(crs) : pp ← Setup
(
1λ
)
, crs ← CRSGen(pp)

]
−

Pr
[
1← A(crs) : (crs, τ)← TSetup

(
1λ
)]∣∣∣ ≤ ε(λ)

and

Pr [1← A(st, crs, π) :
(crs, τ)← TSetup

(
1λ
)

(st, x, w)← A(crs, τ)
π ← Prove(crs, x, w)



= Pr

1← A(st, crs, π) :
(crs, τ)← TSetup

(
1λ
)

(st, x, w)← A(crs, τ)
π ← Sim(crs, τ, x)

 .
Π is (q, ε)-zero-knowledge if there exist two algorithms TSetup

(
1λ
)
→

(crs, τ) and Sim(crs, τ, x) → π such that for all λ ∈ N, the distribution of
crs is the same as that of Setup, and such that for every PPT adversary A
that makes at most q oracle queries,∣∣∣∣∣∣∣Pr

b = 1:
pp ← Setup

(
1λ
)

crs ← CRSGen(pp)
b← AOProve(crs,·)(crs)

− Pr
[
b = 1: (crs, τ)← TSetup

(
1λ
)

b← AOSim(crs,τ,·)(crs)

]∣∣∣∣∣∣∣
≤ ε(λ),

with OProve(crs, ·) an oracle that computes and returns Prove(crs, x, w) on
input (x,w) ∈ R, and returns ⊥ on input (x,w) /∈ R; and OSim an oracle
that computes and returns Sim(crs, x, τ) on input (x,w) ∈ R, and returns
⊥ on input (x,w) /∈ R.
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Chapter 3

Introduction

The first part of this thesis explores, through the prism of privacy, vari-
ous real-world problematics which require confidential communication.

More precisely, in a first subpart, it investigates the case of vehicle-to-vehicle
communication in Chapter 5 and proposes a novel mechanism to securely ex-
change sensitive data to ensure traffic safety, and do so while protecting users
from tracking. This does not only require vehicles to be able to communicate
confidentially but also authentically, i.e., vehicles must be assured that the
messages they receive originate from other accredited vehicles. Hence the
study of group signatures in Chapter 4 as authentication mechanism, even
though they constitute a contribution of independent interest. For stronger
security guarantees, these group signatures are designed in a context with
several authorities to prevent single points of failure.

In a second subpart, i.e., in Chapter 6, the problem tackled is that of
encryption in a context in which users do not have access to secure storage
for their secret keys and thus cannot be guaranteed that only they can read
the messages intended to them. The goal therein is then to achieve security
guarantees as strong as to those provided by secure storage without assuming
it to be available, while requiring users solely to remember a password.

These cryptographic protocols are formally defined in the corresponding
chapters, their security is approached from a property-based perspective,
and efficient, practical solutions are proposed and proved secure via com-
putational reductions following the principles of “provable security” laid by
Goldwasser and Micali [GM82].

3.1 Group Signatures

Group signatures, introduced by Chaum and van Heyst [Cv91], are a fun-
damental cryptographic primitive which allows members of a user group to
anonymously sign messages on behalf of the group, after having been added
to the group by a party called issuer. That is, anyone can verify that a

25
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signature was computed by a group member, but no one can identify the
group member that did, nor even tell whether two signatures were computed
by the same member. Only a dedicated authority called opener can reveal
the identity of a signer, e.g., in case of dispute. In some definitions of group
signatures [BMW03,BCN+10], the issuance and opening roles are assumed
by the same authority who is then entirely responsible for administrating
the group; in which case the authority is called manager.

In static group signatures, first formalized by Bellare, Micciancio and
Warinschi [BMW03], the group members are fixed at the setup phase, whereas
in dynamic group signatures, formalized by Bellare, Shi and Zhang [BSZ05],
users can join the group at any time. This latter variant of group signatures
is more relevant in practice due to its flexibility.

Extensions of dynamic group signatures have many a practical appli-
cation. For instance, Camenisch, Neven and Rückert [CNR12] proposed a
generalization that is intended to be used as a privacy-preserving authenti-
cation mechanism. In their generalization, the issuer generates for each user
a credential associated to list of attributes. Such an attribute can for exam-
ple be a date of birth or a social security number. The user then employs
the credential to generate tokens to authenticate messages and only disclose
the attributes required by the authentication policy. They called this gen-
eralization anonymous-attribute-token (with revocation) systems, but it is
essentially a dynamic group-signature scheme that supports attributes.

Real-World Applications. A motivation for such schemes is that elec-
tronic services nowadays require superfluous information from users to au-
thenticate them. A user who may want to register to an online betting
website or access age-restricted content should only prove that she is old
enough to do so. In practice, however, she also has to provide personal in-
formation that is irrelevant for the requested service such as her full date
of birth or her phone number. Requiring unnecessary information from
users thus harms their privacy and exposes them to identity theft and abuse
by cyber-criminals. It also puts the onus on service providers to protect
users’ data and deploy extra effort to be compliant with data-protection
regulations. Dynamic group signatures with attributes instead provide an
attribute-based authentication mechanism with which users can authentica-
tion themselves while disclosing only minimal, necessary information. Such
variants of group signatures also find applications in secure hardware compu-
tation with trusted platform modules [GPC+,BCC04,Gro14,fS15,CCD+17].

Another real-world application is that of vehicle-to-vehicle communi-
cation systems [WWKH13,PSFK15,NBCN17a], which is the main focus of
Chapter 5. In such systems, vehicles must be able to communicate with each
other and be assured that the messages they receive originate from other ac-
credited vehicles. Yet, the communication should not expose users to mass
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surveillance or tracking by criminals, i.e., the vehicles they use should re-
main anonymous. Still, in case of suspicious activity, the anonymity of a
vehicle that sent a certain message involved in it should be revocable by a
designated authority that can then ban it from the system. Rephrased in
technical terms, vehicles should be able to anonymously send messages to
each other so that a vehicle receiving a message should be certain that it
originates from a member of the group of vehicles authorized at that time.
Furthermore, if need be, the anonymity of the vehicle that sent a message
should be revocable to allow for the exclusion of malicious vehicles and their
associated credentials.

Threshold Schemes. Unfortunately, despite the extensive research on
group signatures, the existing security models are so that no anonymity
is guaranteed as soon as the opener is corrupt. It means that if a single
authority is corrupt, no privacy is ensured and the whole benefit of group
signatures is lost. Moreover, in these models, a malicious issuer can produce
signatures that cannot be trace back to any group members, and therefore
no one can be held accountable in case of dispute. The problem is here that
the issuer and the opener constitute single points of failure and that trust is
placed on a single authority for each role. A solution to mitigate the impact
of corrupt authorities is usually use threshold cryptography [Sha79,DF90],
i.e., in the present case, consider not just one but several authorities and
distribute the capabilities of the issuer and opener over multiple entities,
of whom a threshold number must collaborate to add a user or open a
signature. As long as strictly less than a certain threshold number of them
is corrupt, the security guarantees should be retained.

Short Group Signatures. Early schemes were based on the strong RSA
assumption [ACJT00, CL02], but the focus later shifted to bilinear maps
[BBS04,BS04,CL04,BCN+10,LY10,PS16,DS18] for their better efficiency.
Most of them follow a modular sign-encrypt-and-prove (or simply sign-and-
encrypt) approach, whereby a user’s signing key is a certificate on her iden-
tity, and a group signature contains an encryption of her identity and a
zero-knowledge proof (bound to the signed message) that the user knows a
valid certificate for the encrypted identity. The modular use of encryption
to enable opening readily allows for threshold opening: it suffices to re-
place the underlying encryption scheme with another that supports thresh-
old decryption [DF90]. Nevertheless, lifting a group-signature scheme to a
threshold-issuance setting is not as straightforward. Besides, this modular
approach typically results in signatures that can be prohibitively large for
several applications.

The most efficient (“GetShorty”) group signatures [BCN+10,PS16] de-
part from the sign-and-encrypt paradigm though, yielding the shortest sig-
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nature sizes to date. Instead of adding an encryption of the user’s identity
to every signature, they rely on the issuer for opening. To reveal the iden-
tity of the user that computed a signature, the issuer maintains a list of the
membership credentials he has generated and tests the signature against
each entry. It makes opening expensive for the benefit of having short sig-
natures, which perfectly fits for all applications where signatures must be
short and opening an uncommon practice, such as in vehicle-to-vehicle com-
munication. A disadvantage of this approach is that it merges the roles of
issuer and opener into a single party that has to be trusted for anonymity
and unforgeability.

Unfortunately, these schemes are difficult to map to a threshold setting.
A first obstacle is that to trace the signatures of a user, her identifier gener-
ated during the issuance protocol is necessary. A second hurdle is that their
underlying base signature schemes, namely Camenisch–Lysyanskaya [CL04]
and Pointcheval–Sanders [PS16, PS18] signatures, are not a priori suitable
to a multi-signer setting as needed to distribute issuance. Indeed, with those
signature schemes, all signers would have to agree on a common randomness.

Related Work. Ghadafi [Gha15] and Blömer et al. [BJL16] considered
group signatures with threshold opening, but did not address the more
challenging task of threshold issuance. Manulis [Man05] introduced demo-
cratic group signatures in which there is no group manager. All members
must participate to add a user to the group, and any member can open
all group signatures, i.e., there is no anonymity within the group. Zheng
et al. [ZLM+08] extended democratic group signatures to enforce that at
least a threshold number of members must collaborate to open signatures.
In a sense, the extension of democratic group signatures due to Zheng et
al. can be viewed as group signature schemes with distributed issuance and
threshold opening. However, in addition to the poor anonymity guarantees
that they provide, democratic group signature schemes are not applicable
to a dynamic setting in which members join the group at a high frequency
since public keys must then be refreshed. Furthermore, the public keys and
signatures of the constructions of Manulis and of Zheng et al. are linear in
the group size, making them impractical.

In their “Coconut” paper [SABD18], Sonnino et al. proposed an anony-
mous credential system with threshold issuance and selective disclosure of
user attributes. Though their techniques to achieve threshold issuance are
similar to ours, their solution does not consider the issue of threshold open-
ing, and therefore leaves aside the difficulty of realizing both threshold is-
suance and threshold opening while having short signatures. Besides, the
authors do not provide a security model to analyze the security of their
scheme. They only informally state properties that a scheme with threshold
issuance and selective disclosure should satisfy, and then argue that their
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scheme does.
Gennaro, Goldfeder and Ithurburn recently proposed [GGI19] extensions

of the Boneh–Boyen–Shacham [BBS04] and Camenisch–Lysyanskaya [CL04]
group-signature schemes that support threshold issuance. To achieve thresh-
old opening, since those schemes follow the sign-and-encrypt paradigm, the
authors point out that it suffices to replace the underlying encryption scheme
with a threshold one as did Ghadafi [Gha15] and Blömer et al. [BJL16].
Nonetheless, this paradigm results in large signatures as explained above.
Furthermore, Gennaro et al. do not provide a security model for thresh-
old group-signature schemes. For the BBS scheme, they give a simulation
argument for their threshold issuance protocol. For the CL scheme, they
give a game-based proof that an adversary controlling less than a threshold
number of parties cannot issue new credentials. Without a model that takes
into account all the other aspects of group signatures scheme, especially
threshold opening, it is difficult to grasp the exact security guarantees of
their schemes.

Problem Addressed. It appears that group signatures with threshold
issuance and opening are yet to be formally defined, let alone efficiently
constructed.

3.2 Vehicle-to-Vehicle Communication

The automotive industry and several governments around the world have
made substantial progress towards deploying Cooperative Intelligent Trans-
port Systems (C-ITSs), with the first deployment planned to start in 2019
[SABB16]. In C-ITSs, vehicles communicate with other vehicles (V2V) and
with road-side infrastructure (V2I) to improve traffic safety and efficiency.

V2V and V2I communication, together often referred to as V2X, mainly
consists of two types of messages: occasional event-triggered safety messages
(e.g., emergency braking maneuver) and regular position beacon messages
that each vehicle typically broadcasts 1–10 times per second. The latter
category, known in the European C-ITS as Cooperative Awareness Mes-
sages (CAMs) [ETS14] and in the US as Basic Safety Messages (BSMs)
[oTNHTSA17], carry dynamic information about the vehicle such as its po-
sition, speed, and heading, as well as (semi-)static information about the
vehicle such as its length, width, and sensor accuracy.

Unencrypted Broadcast Messages. The CAMs are primarily broad-
cast in plaintext over an unprotected short-range radio channel (ETSI ITS-
G5), and these messages are therefore easy to intercept and potentially leak
sensitive information about people’s whereabouts, travel itineraries, and
driving habits. The current C-ITS proposals [ETS14, oTNHTSA17] have
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therefore raised serious privacy concerns among civil right unions, scien-
tists [RLS+17], and data protection authorities [Art17]. Concrete threats
include burglars tracking which houses are left unoccupied in a neighbor-
hood, stalkers following their victims from an out-of-sight location, and mass
surveillance of entire cities (e.g., through connected road infrastructure) at
an estimated amortized cost of dollar-cents per vehicle per year [RLS+17].
Privacy regulations prohibiting misuse of CAM data are hard to enforce be-
cause rogue eavesdropping devices are easy to build and nearly impossible
to detect or localize.

Due to the open nature of C-ITSs and the problems of managing encryp-
tion keys among constantly changing groups of vehicles, encryption in V2X
has mostly been considered impractical and of little use.

Privacy-Preserving Authentication. Most research in V2X security
and privacy has focused on the authentication aspect, ensuring that mes-
sages originate from genuine vehicles without making individual vehicles
traceable throughout the system. The work of Petit et al. [PSFK15] pro-
vides an excellent survey of this field.

The practical C-ITS systems which are currently considered for deploy-
ment in Europe [ETS18] and the US [oTNHTSA17] take a similar approach
to authentication by letting vehicles sign outgoing V2X messages with short-
lived pseudonym certificates. Some degree of privacy is obtained by letting
vehicles frequently change or rotate their certificates from a small pool of
pseudonyms. In the European approach, vehicles periodically reload unre-
vocable pseudonyms from an online authorization authority. In the Ameri-
can approach, vehicles come preloaded with three years’ worth of revocable
pseudonym certificates [WWKH13].

However, both approaches are forced into an uncomfortable trade-off
between security, privacy, and efficiency. A larger pseudonym pool size
gives more privacy, but is expensive to store or download, and provides less
protection against Sybil attacks in which the keys of a single compromised
vehicle are used to simultaneously impersonate several vehicles. Indeed,
the compromises of 100 pseudonyms per vehicle per week (EU) or 20 (US)
essentially combine poor privacy guarantees (especially for frequent drivers)
with high bandwidth-and-storage costs, and no meaningful Sybil resistance.

Solutions that realize anonymous authentication via group signatures
(as explained in the previous section), or privacy-preserving credentials
[SF17, dFGSV17,NBCN17b] provide stronger security and privacy guaran-
tees. However, none of them fits the stringent bandwidth constraint of
300 Bytes per CAM, and they are therefore not suitable for practical de-
ployment. Besides, as group signatures have so far only been defined with
single authorities, no authenticity is guaranteed for the solutions based on
group signatures as soon as a single authority is corrupt.
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No Privacy without Encryption. Finally, even though so much effort
has been spent on privacy-preserving authentication in V2X, the main pri-
vacy problem in CAMs is actually the transmitted data itself. Indeed, when
vehicles broadcast their position, speed, heading, and acceleration up to 10
times per second, then linking messages sent by the same vehicle is triv-
ial simply by physical limitations, regardless of how often vehicles switch
pseudonyms. The largely static information included in the CAMs such as
the dimensions of a vehicle and its sensor accuracy further facilitates finger-
printing vehicles and tracking them over longer periods of time.

Related Work. As previously mentioned, the bulk of the literature in
security and privacy of V2X communication focuses on anonymous authen-
tication. Verheul, Hicks and Garcia [VHG19] proposed a variant of the
solution with pseudonym certificates where vehicles come pre-loaded with
encrypted batches of short-lived certificates for a long period of time (i.e.,
years). Each batch corresponds to an epoch and can only be decrypted with
a key that the vehicle receives from an authority before the beginning of the
epoch; malicious vehicles can be banned simply by not providing the key.
Their approach effectively reduces bandwidth to a bare minimum at the
cost of local storage, which makes sense because vehicles are often poorly
connected while storage is cheap, but does not try to hide the content of
CAMs. However, as argued above, no real privacy can be expected without
encrypting CAMs.

Other solutions have been proposed based on different concepts including
message-authentication codes [CJW05], digital signatures [GM02, HCL04,
BMP+14,WWKH13], identity-based cryptography [KBT06], group signa-
tures [BBS04,Zen06], and privacy-preserving attribute-based credentials [SF17,
dFGSV17,NBCN17b]. The latter two come closest to the concept of dynamic
group signatures with attributes, but all have signatures too large to fit the
bandwidth constraints for up-to-date security parameters.

Some work has also been concerned with encryption for V2X communica-
tion. Encrypting CAMs seems an obvious choice, but doing so in a practical
and useful way is not straightforward. The necessarily open nature of C-
ITSs requires that all nearby vehicles can decrypt. Embedding the same
symmetric key in all units is not feasible as no revocation is possible when
the key gets compromised. Possibly better solutions such as multi-sender
broadcast encryption [FKK17] or public-key traitor tracing [CFN94,BN08]
do not scale to a setting with hundreds of millions of vehicles. Another
drawback of symmetric encryption, broadcast encryption, or traitor tracing
used alone is that it is almost impossible to detect, let alone localize, a rogue
wiretapping device which eavesdrops on the communication. Public-key en-
cryption is better in this respect since the receiving device has to make itself
known to the senders so that these latter know which public key to encrypt
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to. However, bandwidth restrictions prohibit one-to-one connections, and
the CAM length of around 300 Bytes is too short to include a separate
ciphertext for each receiving vehicle.

A number of previous proposals let vehicles organize dynamically into
groups according to their speed and driving direction, and establish a com-
mon key to encrypt communication [RAF11,TBNM16]. These schemes are
not practical, however, since key management in highly dynamic groups of
vehicles is intricate. For instance, it is not clear whether the protocol to join
a new group is fast enough to give a timely warning in case of a head-on
collision with a group member.

Freudiger et al. [FRF+07] proposed to use cryptographic “mix zones”
where V2X-enabled vehicles briefly encrypt all communication under a key
provided by a traffic-infrastructure beacon to switch pseudonyms in an un-
linkable way. Zone encryption, the main contribution of Chapter 5, could
be seen as an extreme extension of that concept where the entire surface is
covered in mix zones, but without relying on infrastructure support.

Problem Addressed. In summary, an authentication mechanism for V2X
communication that satisfies the stringent bandwidth constraints of 300 Bytes
per CAM, provides strong (revocable) anonymity guarantees and does not
place all trust on a single authority, has so far remained elusive. In addi-
tion to that, the eventuality of encrypting CAMs in a practical manner has
been disregarded altogether on efficiency grounds, although the CAM data
actually constitutes the most significant threat to users’ privacy.

3.3 Hardware Security without Secure Hardware

Mobile devices are ubiquitous nowadays: smart phones and tablets have
not only become prevalent in daily communication but also in numerous
security-critical tasks. These devices collect and compile a large amount
of confidential information to which access must be controlled. If such a
device is infected by a malware, an attacker may gain full access to the
compromised device and be able to control it and steal any information
stored on it. In addition to that, smart phones and tablets are easily lost or
stolen even though they usually only use (human-memorizable) passwords
to prevent unauthorized access.

Despite their practicality, the use of mobile devices to store sensitive
data incurs various security issues (since they fail to protect sensitive in-
formation and passwords in particular): vulnerability to dictionary attacks
(since passwords are weak-entropy secrets), re-use of passwords across mul-
tiple service, frequent leakage of password databases, and many more. A
possible solution is to use a physical device that provides extra security. A
hardware security module is a tamper-resistant device that strengthens en-
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cryption practices and is used in addition to or in place of passwords. These
modules often come in the form of plug-in cards or external devices from
which secret information cannot be easily leaked to anyone who gets hold
of it. However, such modules are often costly, inconvenient to use and may
even be subverted, i.e., corrupt from their very production. It may thus be
of interest to investigate how such tamper-resistant devices can be disposed
of, while only relying on a smart phone (combined with a public computer)
on which no hardware-security assumption is made. A device (such as a
smart phone) is thus used as a token, meaning in particular that these two
terms are used interchangeably in what follows.

Public-Key Encryption with Password-protected Assisted Decryp-
tion. Following the seminal work of Diffie and Hellman [DH76] and of
Rivest, Shamir and Adleman [RSA78], Golwasser and Micali [GM84] pro-
posed the first security definitions of public-key encryption, and an abun-
dance of definitions exist nowadays. These definitions crucially rely on the
fact that the attacker does not have access to B’s secret key. Therefore, in
practice, it amounts to assuming that B has some form of secure storage,
e.g., a hardware-security module.

Chapter 6 considers the scenario in which B is not required to securely
store her secret key and tackles the problem of achieving security guarantees
equivalent to those of hardware security modules without making any as-
sumption on the device. Therefore, no assumption is made on a user token,
i.e., it is not presumed to be tamper-proof or malware-free. The token just
acts as a virtual smart-card.

To mitigate this lack of security from the token, a server which assists
the user with the decryption is introduced. In a real-world scenario, the user
could log-in from a public computer, use her phone as a token, and commu-
nicate with a remote server to decrypt ciphertexts she receives. Concretely,
the secret key of the user is shared between the token and the server, and a
password is shared between the user and the server. Nevertheless, the intro-
duction of a server should not weaken the security of the original scheme.
In other words, an attacker should not be able to leverage the server alone
to infer any information about the plaintexts of the user. Besides, introduc-
ing a token and a server should not jeopardize the privacy of a user: They
should assist her in a blind manner, i.e., without being able to infer any
information about the ciphertexts they help decrypt. This property is later
referred to as blindness.

Verifiability for the user is also required. That is, although the user is
not required to remember the decryption key, she should still be able to
verify that the token and server both correctly performed their computation
with respect to the public key. Furthermore, the user is not even required
to remember the public encryption key, so a public key is assumed to be



34 3.3 Hardware Security without Secure Hardware

attached to the ciphertext. Since a different key than that attached may
have been used to compute the ciphertext, the protocol should again guar-
antee verifiability with respect to the attached key, so as to protect user and
server-held passwords.

The advantage of having the user enter her password on the computer
rather than on her token is twofold. First, if the token is infected with
malware, still no one can decrypt her ciphertexts without knowledge of her
password (assuming an appropriate throttling mechanism to prevent online
dictionary attacks). Secondly, if the computer from which the user starts
a decryption query is corrupt (e.g., has a keylogger on it), her password
is leaked, but as long as her token is not corrupt, no one can decrypt her
ciphertexts. In other words, separating the user algorithm and the token
guarantees security if either the user password is not leaked or if the token
is not corrupt.

Three Levels of Authentication. In the envisioned scenario, the user
logs in from a public (untrusted) computer, and interacts with an (insecure)
token (such as her smart phone or tablet) and a remote server. She shares
a password with the server, and her decryption key is shared between the
token and the server. Recall that no assumption is made on the hardware
security of the token, but that the password has to be typed from another
machine, such as a computer. The authentication model between these three
parties is now discussed.
User–Token Authentication. Since the token would in practice be a smart
phone or a tablet, a PIN is usually required to access them (in very few
attempts), which is similar to having the user authenticates to the token.
The user can then initiate the decryption protocol between the three entities,
by logging-in to the server using her password. No secure channel between
the user’s machine and the token is assumed.

Similarly, no higher-level mechanism is assumed for the token to authen-
ticate itself to the user. The user is supposed to recognize her token and
have it at proximity. Nonetheless, if the scheme is verifiable and secure, the
user is assured that even if she is led to interact with a malicious token, the
result of the decryption protocol must be correct if it terminates, and that
the protocol leaks no information about her password.
Token–Server Authentication. The token authenticates itself to the server
using its share of the user decryption key. The reason is that if the token
does not prove to the server that it indeed belongs to the user requesting
the decryption of a ciphertext, an attacker could take advantage of the
throttling mechanism of the server to block an honest-user account. Indeed,
the attacker could make decryption requests on the user’s behalf with an
arbitrary token and make several password attempts until the server blocks
her account. Even more damaging, the malicious token could also make
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queries to the server to infer information about the share of the server.
Likewise, the server must itself authenticate to the token using its share of
the user decryption key, as otherwise a malicious server without the user
password could exploit the token to get information about the token share
of the secret key.
Server–User Authentication. In the present model, the user must only re-
member her password. She thus needs to be able to recover the address of
a server which shares a decryption key with her token. This issue can be
dealt with in various ways, but an obvious solution would be to retrieve the
address of the server from the token. However, a corrupt token may lure her
into executing the decryption protocol with a malicious server via a phishing
attack. The user may also simply mistype the address of the server. The
server on which the user lands may even be certified within a public-key in-
frastructure, but not be one with which she shares a password, or one which
shares the secret key with the token. If this server is malicious, it could try
to infer some information about the user’s password or the secret-key share
held by the token.

Therefore, since the secret values (passwords or shares of the secret key)
must remain protected, the user and the server need to authenticate them-
selves to each other, and they do so via the help of their common password.
Note that this authentication does not leak any information on the pass-
word. In particular, it protects the user’s password from an adversarial
server which does not know her password, and it also preserves the con-
fidentiality of her messages against an attacker which does not know her
password and tries to exploit her server. These requirements are captured
by the upcoming security definitions.

A scheme satisfying all the aforementioned properties is called an En-
cryption scheme with Password-protected Decryption or EPAD scheme.

Related Work. For cryptographic authentication, Camenisch, Lehmann,
Neven and Samelin introduced [CLNS16] password-authenticated server-aided
signatures (Pass2Sign) to obtain the best of both worlds. Their approach
aims to offer comparable security guarantees to hardware security modules
even when using a potentially corrupt device. To do so, they introduce a
server which shares the secret key with the device. To compute a signature,
the user starts a protocol with the server from her device, and she uses a
password to authenticate herself to the server. The secret key is never recon-
structed during the protocol, so that if the device is later corrupt (assuming
passwords previously entered have been erased), only a share of the secret
key is lost and the attacker is still unable to compute valid signatures. The
device thus simply acts as a virtual smart card.

However, a crucial assumption in the scenario considered by Camenisch,
Lehmann, Neven and Samelin is that 1) the device is not corrupt at the mo-
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ment the user enters her password, as an attacker would otherwise be able to
impersonate the user and sign on her behalf and 2) the device securely erases
the former passwords, since a corruption would directly leak the password
that were previously typed. In this sense, they do not completely achieve
their ambitious goal of making no assumptions on the security of the device.

Given the above description, the considered scenario (disregarding the
blindness property) is a hybrid of that of Pass2Sign (in which the user en-
ters her password from the device) and of password-protected secret shar-
ing [BJSL11, CLLN14, ACNP16, JKKX17]. An important difference w.r.t.
the latter is that the decryption key is never reconstructed, thereby protect-
ing the user in case of corruption of her machine (i.e., the public computer
from which she initiates the protocol). This property also allows the user to
prevent further use of her device should it be stolen. She can do so by ask-
ing the server to block her account and thereby also hinder online dictionary
attacks.

Moreover, interaction gives the server the opportunity to enforce a throt-
tling mechanism and refuse to decrypt if it detects suspicious behavior (e.g.,
several failed password attempts). From a commercial perspective, inter-
action also allows the server to run a paid service and charge the user for
decryption requests.

Contrarily to the model of Pass2Sign, the communication between the
token and the server is here not assumed to be a priori authenticated (via
TLS for instance). The security model ensures that interacting with a mali-
cious party leaks no information about either the key shares or the passwords
held by the user and the server. In the construction which follows, the to-
ken and the server leverage the fact that they share the user’s secret key to
authenticate themselves to each other.

Finally, separating the user’s machine (on which she types the password)
and the token provides a strictly stronger security than that of password-
authenticated server-aided signatures (for which a malware-infected token
leaks both the user’s password and secret-key share); while being no less con-
venient than technologies leveraging two-factor authentication mechanisms.

3.4 Results
The contributions of the first part of this thesis are manifold.

3.4.1 Group Signatures

Chapter 4 presents the first provably-secure group signatures that no longer
require trust in single authorities for issuance and opening, but instead dis-
tribute their roles over several parties. These group signatures, when aug-
mented with attributes as done in Chapter 5, constitute one of the main
building blocks of the construction therein.
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Security Model for Threshold Group Signatures. Chapter 4 starts
by formalizing threshold dynamic group signatures and define their security
in the presence of multiple issuers and openers. The model features a number
nI of issuers and a number nO of openers separate from the issuers. Any
quorum of tI + 1 issuers can add users to the group, whereas no collusion of
tI issuers can generate a valid credential. Besides, any tO + 1 openers can
recover the identity of a signer, but anonymity is guaranteed against up to
tO corrupt openers.

Short Threshold Group Signatures. Chapter 4 then continues with an
efficient, provably secure instantiation based on Pointcheval–Sanders (PS)
signatures [PS18]. It shares ideas with the “GetShorty” approach, the one
leading to the shortest single-authority group signatures, and extends them
to a threshold setting. It shows that the roles of issuer and opener can be
separate even with this approach, as long as the openers can still access the
opening information generated during issuance. Nevertheless, the openers
do not partake in the issuance protocol and are the only parties who should
be able to retrieve it. The challenge thus consists in making sure, during
issuance, that the opening information is correct, and that the openers (and
only them) can later retrieve it.

The resulting group signatures are short, fast to compute and verify,
thereby making them suitable for practical privacy-preserving applications.
The construction is proved secure in the random-oracle model under a so-
called non-interactive q-type of assumption.

Simpler Distributed Group Signatures and Multi-Signatures. Chap-
ter 4 also presents a variant of its main group-signature scheme that requires
the participation of all nI issuers to add users to the group, but still caters
for threshold opening. It has the benefit of permitting the corruption of all
issuers but one. It is based on a multi-signature variant of the PS scheme
and proved secure in the plain public-key model (i.e., the signers do not
have to prove knowledge of their secret keys) under the same q-assumption.
This PS multi-signature scheme constitutes a contribution of independent
interest. Multi-signatures compress the signatures of multiple signers on the
same message into a single compact signature and are for instance used to
optimize consensus protocols in distributed ledgers and blockchains. Un-
like existing multi-signature schemes [MOR01,Bol03,BDN18,MPSW19], PS
multi-signatures allow for efficient zero-knowledge proofs of signatures, mak-
ing them an interesting tool for the design of privacy-enhancing crypto-
graphic protocols.
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3.4.2 Vehicle-to-Vehicle Communication

Chapter 5 tackles the problem of privacy in V2X communication by ad-
dressing, for the first time, the problem of authenticity and confidentiality in
combination. As a result, it presents a protocol to encrypt and authenticate
CAMs that is suitable for the stringent 300 Bytes bandwidth requirement
of C-ITSs, and arguably offers better privacy than the existing proposal.
Namely, it introduces an authentication scheme based on group signatures
alike those presented in Chapter 4 that combines unlimited privacy with
negligible bandwidth-and-storage costs; and based on this authentication
mechanism, gives a practical way to encrypt CAMs to hide their content
from eavesdroppers. Interestingly, this combination not only improves the
security and privacy of C-ITSs, but the careful composition of symmetric
and asymmetric building blocks even leads to better efficiency.

Zone Encryption. The novel concept of zone encryption is introduced
as a practical means to transmit V2X data authentically and confidentially.
The core idea of zone encryption is to rely on symmetric authenticated en-
cryption for protecting V2X communication, using temporary keys that are
exchanged among vehicles in the same vicinity. Only the key-exchange mes-
sages are signed with short-lived certificates, which results in an important
efficiency gain compared to the existing solutions which sign every outgoing
CAM. For short-lived certificates, the group signatures of Chapter 4, aug-
mented with attributes tailored to the need of V2X communication, are used.
Relying on group signatures instead of a pre-fetched batch of pseudonym cer-
tificates overcomes the trade-off between privacy and security of the existing
approaches: vehicles need only store a single credential, but have full pri-
vacy that is equivalent to an unlimited pseudonym pool size. The certified
attribute is a short time epoch during which the credential is valid. These
credentials allow to create any number of unlinkable signatures to authen-
ticate zone-key exchanges. The desired security and privacy properties are
formally defined, and the chapter proposes an efficient, provably secure pro-
tocol that achieves them. Each CAM is 240 Bytes long in the instantiation,
which is compliant with the stringent bandwidth requirements of C-ITSs.

Zone encryption certainly does not solve all privacy issues concerning
V2X communication, but it does raise the bar of eavesdropping on CAM
data to a level that is unaffordable for occasional criminals and notably
more expensive for mass surveillance. Private criminals will rely on a black
market to obtain eavesdropping devices; and to offset the costs of compro-
mising hardware-protected vehicle keys, the market will most likely share
the same long-term credentials across many rogue devices. Once the police
confiscates rogue devices, it can run in a controlled setting to trace and
revoke their underlying long-term credentials, thereby disabling all devices
in the field that use the same credentials. This will in turn increase the
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costs of producing such devices until they become too expensive for private
criminals.

In the current plaintext-broadcasting C-ITS proposals, mass surveillance
through sensitive antennas or traffic infrastructure is fairly cheap to deploy
and hard to detect. Being inherently a semi-open system that enables all
vehicles to communicate, mass surveillance of C-ITS data through a net-
work of hidden or moving transmitters will always remain possible. Zone
encryption cannot prevent this, but increases the cost of operating such a
network.

Namely, central surveillance antennas have to send strong signals to en-
gage in key exchanges in the observed zones, making it harder for them
to covertly operate. A distributed network of less powerful relay stations,
e.g., in driving vehicles or road infrastructure, is considerably more expen-
sive to set up. Besides, most road infrastructure (e.g., traffic signs) has no
need for privacy, nor to receive CAM data. Such infrastructure can thus be
given a different type of credentials that enables it to broadcast unencrypted
authenticated information, but not obtain zone keys. Any piece of infras-
tructure that is nevertheless caught engaging in zone-key exchanges would
be considered suspect, and requires explanation from road operators.

3.4.3 Encryption with Password-Protected Assisted Decryp-
tion

Chapter 6 formalizes encryption with password-protected assisted decryp-
tion.

Security Model. First, the security properties expected from EPAD schemes
are formalized. As explained above, the security guarantees of the scheme
should tolerate a form of malleability so as to also preserve user privacy.
Indeed, an EPAD scheme enables a user to query decryptions without re-
vealing information about the ciphertext being decrypted. This property
was defined and formalized by Green [Gre11] (for classical public-key en-
cryption schemes) as blind decryption. To ensure the privacy of the user
(particularly towards a malicious server), a similar blindness property for-
malizes the idea that neither the token nor the server should be able to infer
any information about the ciphertexts the user wants to decrypt. It is a
strong requirement as the token and the server are adversarial in the formal
definition, and can therefore together reconstruct the entire secret key and
the password.

Due to this mild form of malleability, which allows users to re-randomize
their ciphertexts, the notion of confidentiality considered for EPAD schemes
is similar to Replayable Chosen-Ciphertext Attacks security (RCCA) de-
fined by Canetti, Krawczyk and Nielsen for classical public-key encryp-
tion [CKN03]. The notion is termed Password-protected Indistinguishabil-
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ity under Replayable Chosen-Ciphertext Attacks (P-IND-RCCA) and takes
into account the fact that decryption requests should be protected by user
passwords. More precisely, it ensures that unless an adversary both knows
the user’s password (by corrupting the user’s machine or the server) and
has corrupted her token, it cannot infer any information about the user’s
plaintexts in reasonable time. It captures both indistinguishability under
replayable chosen-ciphertext attacks and password authentication. The for-
mal model for P-IND-RCCA security is inspired by the Bellare–Rogaway–
Pointcheval (BPR) model for password-based authenticated-key-exchange
protocols [BPR00]. It covers the cases of concurrent protocol executions,
with potentially many users, tokens and servers. The third security notion
in our model is verifiability which guarantees that the user accepts the result
of the decryption protocol only if the token and the server performed their
computations correctly.

Technical Challenges. The fact user passwords are not entered into the
token may at first seem a simple solution to the problem in Pass2Sign, and
thereby to achieve the level of security provided by secure hardware. How-
ever, it raises several challenges. Indeed, (1) the token – without knowing
the password – must be able to ensure that the user and server have cor-
rectly authenticated themselves to each other, and that it shares its secret
key with the server, before performing computations. Otherwise, an attacker
which does not know the password or the other key share, could exploit the
token and gain information about its share. (2) The parties must also make
sure throughout the entire protocol that they are communicating with the
right parties and are not victims of man-in-the-middle attacks (recall that
the communication is not assumed to be a priori authenticated). (3) More-
over, although the token terminates decryption, the server must be able to
hide the plaintext from it, even though it only shares a low-entropy secret
with the user. (4) However, the token must be convinced that the server
correctly performed its computation, even without knowing the only piece
of information (i.e., the password) shared between the user and the server.
(5) Lastly, the protocol should guarantee user privacy even though the token
and the server together know all secrets.

Efficient and Secure Construction. Chapter 6 overcomes these chal-
lenges and proposes a concrete pairing-based EPAD scheme. It uses as build-
ing block the recent publicly verifiable RCCA-secure encryption scheme of
Faonio, Fiore, Herranz and Ràfols [FFHR19], though similar techniques can
be applied to other such schemes (e.g., Libert, Peters and Qian’s [LPQ17]).
The construction is proven secure in the standard model and heavily relies
on malleable zero-knowledge proofs.
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Short Threshold Dynamic
Group Signatures

Group signatures allow members of a user group to anonymously sign
on behalf of the group after being added by an issuer. Only a party,

an opener, can reveal the identity of a signer. This chapter defines group
signatures with several authorities for issuance and opening, of whom a
threshold number must collaborate to perform these critical tasks.

Section 4.2 gives a formal security model of threshold group signatures.
Section 4.3 proposes a provably secure construction of threshold group-
signature scheme which assumes a publicly available write-only ledger. Sec-
tion 4.4 disposes of this assumption, but at the cost of combining the roles of
issuers and openers. Finally, Section 4.6 proposes another variant of group
signatures in which all issuers must participate to add a user, and not just a
threshold number of them, even though opening still only requires a thresh-
old number of authorities. The benefit of this variant is that it guarantees
unforgeability so long as at most all but one issuers are corrupt, and not
simply half of them as does the first variant. It builds on a novel multi-
signature scheme presented in Section 4.5. This scheme is of independent
interested as it allows to efficiently prove knowledge of multi-signatures, an
important feature in many a privacy-preserving protocol.
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4.1 Preliminaries

This section introduces preliminary material to this chapter. It comprises
hardness assumptions and building blocks on which the constructions in this
chapter rely. It also features a general forking lemma due to Bagherzandi et
al. [BCJ08], which is a corner of the security proofs in this chapter.

4.1.1 Hardness Assumptions

Strong Diffie–Hellman Assumption. Pointcheval and Sanders intro-
duced [PS18] a new non-interactive q-type of assumption that they called the
Modified q-Strong Diffie–Hellman (q-MSDH-1) assumption. They proved
that it holds in the generic bilinear group model.

Definition 4.1.2 (q-MSDH-1 Assumption). Let G be a type-3 pairing-group
generator. The q-MSDH-1 assumption over G is that for all PPT adversary
A, for all λ ∈ N, for all Γ =

(
p,G, G̃,GT , e

)
← G

(
1λ
)
, given Γ, g ∈R G∗,

g̃ ∈R G̃∗, and two tuples
(
gx

`
, g̃x

`
)q
`=0
∈ (G × G̃)q+1 and (ga, g̃a, g̃ax) ∈

G×G̃2 for x, a ∈R Z∗p, the probability that A computes a tuple
(
w,P, h1/x+w,

ha/P (x)
)
, with h ∈ G∗, P a polynomial in Zp[X] of degree at most q and

w ∈ Zp such that the polynomials X + w and P are coprime, is negligible.

Symmetric Discrete-Logarithm Assumption. The following assump-
tion a generalization of the standard discrete-logarithm assumption to bilinear-
group structures

Definition 4.1.3 (Symmetric Discrete-Logarithm Assumption). Let G be
a type-3 pairing-group group generator. The Symmetric Discrete-Logarithm
(SDL) assumption [BCN+10] over G is that for all PPT adversary A, for all
λ ∈ N, Γ =

(
p,G, G̃,GT , e

)
← G

(
1λ
)
, g ∈R G∗, g̃ ∈R G̃∗, x ∈R Z∗p, given

(Γ, g, g̃, gx, g̃x) as an input, the probability that A returns x is negligible.
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Note that given (Γ, g, g̃, h, h̃), one can always verify that it is a valid
SDL tuple by testing the equality e(g, h̃) = e(g̃, h). Notice also that the
SDL assumption is implied by the q-MSDH-1 assumption (Definition 4.1.2).

Knowledge-of-Exponent Assumption. Fuchsbauer and Orru introduced
an analog of the Diffie–Hellman Knowledge-of-Exponent assumption [BFS16]
in an asymmetric setting called the Asymmetric Diffie–Hellman Knowledge-
of-Exponent assumption [FO18]. It is primarily used in the context of
subversion-resistant non-interactive witness-indistinguishable proofs.

Definition 4.1.4 (Asymmetric Diffie–Hellman Knowledge-of-Exponent As-
sumption). The (first-group) Asymmetric Diffie–Hellman Knowledge-of-Ex-
ponent (ADH-KE) game, parametrized by λ ∈ N, for a type-3 pairing-group
generator G, an adversary A and an extractor Ext is defined as follows:

◦ Γ := (p,G, G̃,GT , e) ← G(1λ); g ∈R G∗

◦ (X,Y, Z)← A(Γ, g)

◦ s← Ext (Γ, g,X, Y, Z)

◦ return b←
(
gs 6= X ∧ gs 6= Y ∧ Z = Y dlogg(X)

)
.

In other words, A wins the game if (g,X, Y, Z) is a Diffie–Hellman tuple,
but algorithm Ext can extract neither dlogg(X) nor dlogg(Y ).

The ADH-KE assumption over a type-3 pairing-group generator G is that
there exists an efficient algorithm Ext such that for all efficient adversary A
for the ADH-KE game, Pr[b = 1] is negligible in λ.

4.1.5 Pointcheval–Sanders Signature Scheme

Pointcheval and Sanders [PS18] proposed an efficient signature scheme that
allows to sign message blocks (m1, . . . ,mk) at once, and also to efficiently
prove knowledge of signatures in zero-knowledge. They proved this scheme
to be existential unforgeable under the q-MDSH-1 assumption [PS18] stated
in Definition 4.1.2.

Given a type-3 pairing-group generator G and security parameter λ ∈ N,
the PS-signature scheme in a pairing-group Γ =

(
p,G, G̃,GT , e

)
← G(1λ)

consists of the following algorithms.

PS.Setup(1λ,Γ, k)→ pp : generate g̃ ∈ G̃∗. Return pp ← (Γ, g̃, k).

PS.KG(pp)→ (vk, sk) : generate x, y1, . . . , yk+1 ∈R Zp, compute X̃ ← g̃x,
Ỹj ← g̃yj for j ∈ [k + 1], and set and return vk ← (X̃ , Ỹ1, . . . , Ỹk+1)
and sk ← (x, y1, . . . , yk+1).
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PS.Sign (sk, (m1, . . . ,mk))→ σ : choose h ∈R G∗, m′ ∈R Zp and return(
m′, h, hx+

∑k

j=1 yjmj+yk+1m′
)
.

PS.Vf (vk, (m1, . . . ,mk), σ)→ b : parse σ as (m′, σ1, σ2), verify that e (σ1,

X̃
∏k
j=1 Ỹmj

j Ỹ m′
k+1

)
= e(σ2, g̃) and that σ1 6= 1G. If so, return 1,

otherwise return 0.

Pointcheval and Sanders proved this scheme to be existential unforgeable
under the q-MDSH-1 assumption [PS18] stated in Definition 4.1.2.

In the random oracle model, the scheme remains secure under the same
assumption if m′ is computed as H(m1, . . . ,mk) [PS18, Corollary 12]. Notic-
ing that the verification algorithm does not verify any property on m′, and
in particular that m′ = H(m1, . . . ,mk), the scheme still allows for efficient
zero-knowledge proofs of knowledge if m′ is computed as such.

4.1.6 Multi-Signatures with Key Aggregation

A multi-signature scheme [MOR01] allows a number n ≥ 1 of signers to
jointly compute a short signature on the same message. Given the public
verification keys of the n signers, one can verify that all n signers signed the
message.

Syntax.

Formally, for an integer n > 0, an n-signature scheme MS (with key aggre-
gation) consists of the following algorithms:

MS.Setup(1λ, n, aux)→ pp : returns public parameters on the input of a se-
curity parameter, a number of signers and an auxiliary input.

MS.KG(pp)→ (vk, sk) : returns a pair of verification–signing keys on the
input of public parameters.

MS.KAggreg(vk1, . . . , vkn)→ avk : aggregates the verification keys of n sign-
ers and returns a short aggregated key avk that can be used to verify
aggregated signatures.

MS.Sign(sk,m)→ σ : a signing algorithm which takes as an input a signing
key sk and a message m. It returns a signature σ.

MS.SAggreg((vki)ni=1,m, (σi)ni=1)→ σ : an algorithm that aggregates the sig-
natures on a single message m computed by n signers and returns a
short aggregated signature σ.

MS.Vf(avk,m, σ)→ b ∈ {0, 1} : on the input of an aggregated verification
key, a message and an aggregated signature, returns a bit indicating
whether the signature is valid w.r.t. the aggregated verification key.
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An alternative definition in which the verification keys are aggregated
during signature verification could be considered but would be less efficient
in a setting in which the set of signers is fixed (or at least rarely changes).
Indeed, if the set of signers is fixed, their keys can be aggregated once for
all and the resulting aggregated key can be used every time a signature is
to be verified.

Security Model.

The security of an n-signature scheme [BN06] MS is defined via a security
game between an adversary A and a challenger C. At the beginning of
the game, C generates parameters pp ← MS.Setup(1λ, n, aux) and sends
them to A. Adversary A then sends a target honest-signer identity i∗ to
C. Challenger C proceeds by generating keys (vki∗ , ski∗)← MS.KG(pp) and
sending vki∗ to A. Adversary A is now allowed to issue signing queries
on arbitrary messages m. To answer such a query, C computes and sends
σi∗ ← MS.Sign (ski∗ ,m) to A. After the query phase, A outputs a set of
verification keys K such that vki∗ ∈ K, a message m for which no signing
query has been made and a signature σ. Adversary A wins the game if
and only if MS.Vf(MS.KAggreg(K),m, σ) = 1. A multi-signature scheme
is existentially unforgeable under chosen-message attacks (or EUF-CMA
secure) if no efficient adversary can win this security game with a non-
negligible probability.

A weak unforgeability can also be defined via a variant of the previous
game in which A outputs, along with index i∗ (so before getting key vki∗),
a list of messages that C signs with key ski∗ and sends back the results with
vki∗ . Adversary A cannot make signing queries afterwards. Scheme MS
is weakly existentially unforgeable (or EUF-wCMA secure) if no efficient
adversary A has a non-negligible probability of winning this variant of the
security game.

4.1.7 Generalized Forking Lemma

The original forking lemma was formulated by Pointcheval and Stern [PS00]
to analyze the security of Schnorr signatures [Sch91]. The lemma rewinds a
forger A against the Schnorr signature scheme in the random-oracle model
(ROM) to a “crucial” random-oracle query (typically, the query involved in a
forgery) and runs A again from the crucial query with fresh random-oracle
responses. The lemma essentially translates that if A has non-negligible
success probability in a single run, then the forking algorithm will generate
two successful executions with non-negligible probability.

Bellare and Neven [BN06] generalized the forking lemma to apply to
any algorithm A in the random-oracle model using a single rewinding, while
Bagherzandi, Cheon, and Jarecki [BCJ08] generalized the lemma even fur-
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ther to multiple subsequent rewindings on multiple crucial queries. This
section recalls a slight modification of the latter version.

Let A be an algorithm that is given an input in as well as randomness
f = (ρ, h1, . . . , hqH), where ρ is A’s random tape and h1, . . . , hqH are random
values from Zq. Let Ω be the space of all such vectors f and let f |i =
(ρ, h1, . . . , hi−1). Consider an execution of A on input in and randomness
f with access to oracle O, denoted AO(in, f), as successful if it outputs a
tuple (J, {outj}j∈J , aux), where J is a multi-set that is a non-empty subset of
{1, . . . , qH}, {outj}j∈J is a multi-set of side outputs, and aux is an additional
set of auxiliary outputs. A is said to have failed if it outputs J = ∅. Let ε
be the probability that A(in, f) is successful for fresh randomness f ←$ Ω
and for an input in ←$ IG generated by an input generator IG.

For a given input in, the generalized forking algorithm GFA is defined
as follows:

GFA(in):
f = (ρ, h1, . . . , hqH)←$ Ω
(J, {outj}j∈J , aux)← AO(in, f)
If J = ∅ then return fail
Aux ← aux
Let J = {j1, . . . , jn} such that j1 ≤ . . . ≤ jn
For i = 1, . . . , n do

succi ← 0 ; ki ← 0 ; kmax ← 8nqH/ε · ln(8n/ε)
Repeat until succi = 1 or ki > kmax

f ′′ ←$ Ω such that f ′′|ji = f |ji
Let f ′′ = (ρ, h1, . . . , hji−1, h

′′
ji
, . . . , h′′qH)

(J ′′, {out ′′j }j∈J ′′ , aux)← AO(in, f ′′)
Aux ← Aux ∪ aux
If h′′ji 6= hji and J ′′ 6= ∅ and ji ∈ J ′′ then

out ′ji ← out ′′ji ; succi ← 1
If succi = 1 for all i = 1, . . . , n
Then return (J, {outj}j∈J , {out ′j}j∈J ,Aux)
Else return fail

GFA is considered successful if it does not return fail. The main difference
to Bagherzandi et al.’s forking lemma [BCJ08] is A’s access to the oracle O
and the additional auxiliary output aux that gets accumulated in Aux over
all runs of A, including failed runs. If the oracle O is deterministic, meaning
that it always answers the same query with the same response, it is easy to
see that these extensions do not impact the bounds of their forking lemma,
so the following statement still holds.

Lemma 4.1.8 (Generalized Forking Lemma [BCJ08]). Let IG be a ran-
domized algorithm and A be a randomized algorithm running in time τ
with access to a deterministic oracle O that succeeds with probability ε. If
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q > 8nqH/ε, then GFA(in) runs in time at most τ · 8n2qH/ε · ln(8n/ε) and
succeeds with probability at least ε/8, where the probability is over the choice
of in ←$ IG and over the coins of GFA.

4.2 Threshold Dynamic Group Signatures

This section formally defines threshold dynamic group signatures. Classical
dynamic group signatures [BSZ05] allow users to join a group of signers at
any time by interacting with an issuer, and then sign anonymously on behalf
of the group. A verifier is then assured that a valid signature stems from a
group member but cannot infer any information about her identity. Only a
dedicated authority, the opener, can recover the identity of a member who
computed a valid signature.

In terms of security, group signatures should guarantee anonymity even
in the presence of a corrupt issuer and unforgeability (also known as trace-
ability) even when the opener is corrupt. Still, trust in each entity is neces-
sary for the respective properties. It is even worse for schemes in which the
roles of issuer and opener are assumed by the same party [BS04,CG05] who
then has to be trusted for both anonymity and unforgeability. This holds in
particular for the GetShorty-type of signatures [BCN+10,PS16] which yield
the most efficient instantiations to date.

The capabilities of the issuer and the opener are here distributed over
several entities to prevent them from becoming single points of failure. To
reflect the difference between issuer and opener, two thresholds are intro-
duced: schemes are defined with nI > 1 issuers of whom tI + 1 ≤ nI are
required to add users to the group. Similarly, there are nO > 1 openers and
at least tO + 1 openers must collaborate to open a signature and reveal the
signer’s identity.

First comes the syntax of dynamic group signatures with threshold is-
suance and threshold opening. The security requirements that can be ex-
pected from such schemes are then formalized.

4.2.1 Syntax

Formally, a (tI , tO)-out-of-(nI , nO) DGS scheme, or
(nI ,nO

tI ,tO
)
-DGS scheme,

with identity space ID (assumed not to contain ⊥) consists of the following
algorithms:

GSetup(1λ, nI , nO, tI , tO)→ pp : on the input of a security parameter, a
number nI of issuers, a number nO of openers and two integer thresh-
old values, generates public parameters which are assumed to be an
implicit input to all the other algorithms. Those parameters are also
assumed to contain nI , nO, tI and tO. Moreover, each issuer is assigned
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a public, fixed index i ∈ JnIK. Similarly, each opener is assigned a pub-
lic index i ∈ JnOK.

〈{IKG(pp, i)}nIi=1〉 → 〈{(ipk, iski, sti)}nIi=1〉 : a key-generation protocol between
all nI issuers. At the end of the protocol, the issuers agree on a public
key, and each of them holds a secret key and a state(initially empty).
The state later contains the identities of the users that are added to
the group. The issuer public key is used to add users to the group,
and to compute and verify group signatures.

〈{OKG(pp, i)}nOi=1〉 → 〈{(opk, oski, regi)}nOi=1〉 : a key-generation protocol run
by the openers. At the end of the protocol, the issuers agree on a pub-
lic opening key opk, an each of them holds a secret key oski (assumed
to contain i and opk) and a register regi initially empty. The public
opening key is needed to add users to the group, and to compute and
verify signatures. The secret keys and the registers are needed to open
signatures.

The group public key gpk consists of ipk and opk, i.e., gpk ← (ipk, opk).

〈GJoin.U(id, I, gpk)
 {GJoin.I(sti, iski, id, I, gpk)}i∈I〉 → 〈gsk[id]/⊥, st ′i〉 :
is a protocol between a user with identity id and tI + 1 =: |I| issuers.
If id ∈ sti for any i ∈ JnIK, then the ith issuer aborts the protocol. At
the end of the protocol, the user algorithm returns a user group secret
key gsk[id] (or ⊥ if the protocol fails) and the state sti of each issuer
is updated.

GSign(gpk,gsk[id],m)→ σ : a probabilistic algorithm that computes a sig-
nature σ on a message m on behalf of the group.

GVerf(gpk,m, σ)→ b ∈ {0, 1} : a deterministic algorithm that verifies a group
signature σ on a message m w.r.t. to a group public key gpk.

〈{GOpen(regi, oski, O, gpk,m, σ)}i∈I〉 → 〈{idi/⊥}i∈O〉 : is a protocol between
tO + 1 =: |O| openers, at the end of which each algorithm returns the
identity of the user who computed σ on m, or ⊥ in case of failure. It is
here assumed that the openers are given access to public and authentic
information from all the successful issuance protocol executions, and
that they use it to update their registers. Although this information
is public, it is clear that for anonymity to hold, no information about
a signer can be inferred from it without the opener secret keys.

Note that contrarily to the model of Bellare et al. [BSZ05], in the model
above, each opener maintains a register separate from the state of the issuers.
These registers are necessary to open signatures, in addition to the opener
secret keys. Those registers should rather be thought as the registers in the
model of Bichsel et al. [BCN+10].
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Correctness.

Correctness captures the property that all honest issuers must agree on the
same group public key. A signature σ computed on a message m with the
secret key of a group-member id should also be accepted by the verification
algorithm. Lastly, by executing the opening protocol, any set of tO+1 open-
ers should all return id. These properties should hold with overwhelming
probability regardless of the order in which users are added to the group.

4.2.2 Security Model

The security requirements for threshold DGS schemes are similar to the con-
ventional ones for dynamic group signatures with a single issuer and a single
opener [BSZ05], but adapted to a threshold setting. Those requirements are
anonymity, which guarantees that a group signature reveals no information
about the member who computed it, and traceability, which expresses the
unforgeability property of group signatures.

Essentially, no collusion of tI issuers should be able to add users and no
collusion of tO openers should be able to open signatures. The definitions are
flexible in the sense that they can require an additional fraction of openers
to be honest for traceability, and of issuers to be honest for anonymity. This
allows for more efficient schemes that may need slightly stronger assumptions
to prove their security.

Global Variables.

In the security experiments for
(nI ,nO

tI ,tO
)
-DGS schemes, the challenger main-

tains global variables which are accessible to the experiment oracles (defined
hereunder). These variables are a group public gpk, a table of honest-user
group secret keys gsk of size |ID|, and

◦ QGJoin a set of user identities id that have joined the group, whether
honestly via a GJoin.U query or dishonestly via a GJoin.Ii query

◦ QCorrupt a set of user identities id either corrupt from the beginning
via a GJoin.Ii query or of which the group secret key has been revealed

◦ QGSign a set of signing queries (id,m, σ) made by the adversary and
the responses to those

◦ QGOpen a set of message–signature pairs (m, σ) for which the adversary
has made an opening query.

The sets QGJoin, QCorrupt, QGSign and QGOpen are initially empty, and the
entries of gpk and gsk are initially set to ⊥.
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Oracles.

This sections describes the oracles in the security experiments for
(nI ,nO

tI ,tO
)
-

DGS schemes. The oracles have access to global variables priorly defined
and maintained by the challenger in each security experiment. Whenever
the adversary queries a protocol-algorithm (for joining or opening) oracle, a
protocol execution is triggered with all the other honest parties on the same
inputs, and the adversary plays the role of the dishonest parties (dishonest
users, or dishonest issuers or openers). During these executions, the ad-
versary controls the network, i.e., it can forward, delay, drop or modify the
messages sent by the various parties. However, as in prior models [BCN+10],
protocols can only be executed in sequential order, i.e., the adversary can-
not start a protocol execution if all the prior ones have not terminated.
In particular, the adversary cannot interleave messages between protocol
executions or execute multiple sessions of the same protocol in parallel.

In the following description of the oracles, if a verification fails, the oracle
returns ⊥. It is implicitly assumed that id is always in ID. Given a set Q,
the statement “adds x to Q” means that Q ← Q ∪ {x}. The oracles in the
security experiments are then

O.GJoin.U(id, I) : checks that I ∈
(JnIK

tI+1
)
. It adds id to QGJoin. It runs the

user joining algorithm on (id, I, gpk). An execution of protocol GJoin
is triggered and during it, the challenger plays the role of the (honest)
user and of the honest issuers, and the adversary plays the role of
the corrupt issuers. At the end of the protocol, if algorithm GJoin.U
returns a key gsk[id], the challenger updates gsk accordingly.

O.GJoin.Ii(id, I) : (for each honest issuer i) checks that i ∈ I ∈
(JnIK

tI+1
)
. It

adds id to QGJoin and QCorrupt. It runs the issuer joining algorithm on
(sti, iski, id, I, gpk). An execution of protocol GJoin is triggered and
during it, the adversary plays the role of the (corrupt) user and of the
corrupt issuers. The challenger plays the role of the honest issuers.

O.GSign(id,m) : checks that id ∈ QGJoin \ QCorrupt. It computes σ ←
GSign(gpk,gsk[id],m). It adds (id,m, σ) to QGSign and returns σ.

O.GOpeni(O,m, σ) : (for each honest opener i) checks that i ∈ O ∈
(JnOK

tO+1
)
.

It adds (m, σ) to QGOpen. It runs the opening algorithm on (regi, oski,
O, gpk,m, σ). A GOpen protocol execution is triggered and the adver-
sary plays the role of the corrupt openers, while the challenger plays
that of the honest ones.

O.RevealU(id) : adds id to QCorrupt and returns gsk[id].

O.ReadReg(i, id) : returns regi[id].



Short Threshold Dynamic Group Signatures 51

Experiment Expano−b
DGS,λ,nI ,nO,tI ,tO (A) :

pp ← GSetup(1λ, nI , nO, tI , tO)
〈stA, {(ipk, iski, sti)}i>t∗I

〉 ← 〈A(keygen, pp), {IKG(pp, i)}i>t∗I
〉

〈st ′A, {(opk, oski, sti)}i>tO〉 ← 〈A(stA), {OKG(pp, i)}i>tO〉
gpk ← (ipk, opk)
O ←

{
GJoin.U, (GJoin.Ii)i>t∗I ,GSign, (GOpeni)i>tO ,RevealU,WriteReg

}
(st ′′A, id∗0, id∗1,m∗)← AO(gpk,(regi)i,gsk,·)(choose, st ′A)
σ∗ ← GSign(gpk,gsk[id∗b ],m∗)
b′ ← AO(gpk,reg,gsk,·)(st ′′A, σ∗)
if id∗0, id∗1 ∈ QGJoin \QCorrupt and gsk[id∗0],gsk[id∗1] 6= ⊥ and (m∗, σ∗) /∈ QGOpen

return b′
else

return 0

Experiment Exptrace
DGS,λ,nI ,nO,tI ,tO (A) :

pp ← GSetup(1λ, nI , nO, tI , tO)
〈stA, {(ipk, iski, sti)}i>tI 〉 ← 〈A(keygen, pp), {IKG(pp, i)}i>tI 〉
〈st ′A, {(opk, oski, sti)}i>t∗O

〉 ← 〈A(stA), {OKG(pp, i)}i>t∗O
〉

gpk ← (ipk, opk)
O ←

{
GJoin.U, (GJoin.Ii)i>tI ,GSign, (GOpeni)i>t∗O ,RevealU,ReadReg

}
(O∗,m∗, σ∗)← AO(gpk,(regi)i,gsk,·)(forge, st ′A)
if O∗ /∈

({t∗O+1,...,nO}
tO+1

)
then return 0

〈{id∗i }i∈O∗〉 ← 〈{GOpen(regi, oski, O∗, gpk,m∗, σ∗)}i∈O∗〉
if GVerf(gpk,m∗, σ∗) = 1 and (case 1 or case 2)
with

case 1) opening failed i.e.,
∃i ∈ O∗ : id∗i = ⊥ or ∃i, j ∈ O∗ : id∗i 6= id∗j

case 2) opening was “incorrect”, i.e., setting id∗ ← id∗maxO∗ ,
id∗ /∈ QGJoin or (id∗ ∈ QGJoin \QCorrupt and (id∗,m∗, σ∗) /∈ QGSign)

return 1
else

return 0

Figure 4.1: Security Experiments for
(nI ,nO

tI ,tO
)
-DGS Schemes.

O.WriteReg(i, id, v) : (for each honest opener i) sets regi[id] ← v, i.e., it
write value v on the register of the ith opener for user id.

Anonymity.

Anonymity ensures that a group signature reveals no information about the
identity of the member who computed it as long as at most tO openers are
corrupt and the signature has not been opened. User identities are not hid-
den during the joining protocol, and it is in fact necessary to open signatures.
In other words, anonymity is only guaranteed w.r.t. to group signatures, but
it is not a restriction per se as in most practical scenarios, group signatures
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are computed at a much higher frequency than members are added. Signa-
tures are therefore much more critical from a privacy perspective.

The definition is indistinguishability-based as the adversary chooses two
honest users and a message. It receives a group signature computed with
the key of either of them, and it must determine the signer’s identity better
than by guessing. The adversary is given access to an opening oracle which
it can query on all but the challenge signature, capturing a CCA-2 type of
anonymity [BBS04]. Dynamic corruption of group members is allowed, i.e.,
a signer may initially be honest but later corrupt. However, anonymity is
guaranteed only for fully honest users, i.e., there is no forward anonymity.
See Figure 4.1 for the detailed experiment.

The classical notion of anonymity relies on the honesty of the opener,
which is adjusted to a threshold setting and allows the adversary to corrupt
up to tO out of nO openers. Without loss of generality, corrupt entities are
always assumed to be the first ones, i.e., openers 1, . . . , tO are controlled by
the adversary and tO + 1, . . . , nO are run by the challenger.

Concerning the issuers, the definition is flexible. Ideally, in schemes
where the issuer and the opener are distinct entities, the issuer can be fully
malicious in the anonymity game. In a distributed setting, it would trans-
late in corrupting all nI issuers. However, enforcing the corruption of all
issuers may exclude some efficient schemes. The anonymity definition is
thus parametrized to additionally limit the number of issuers that may be
corrupt. In the experiment, the adversary corrupts t∗I issuers, with t∗I be-
ing a function of tI . The strongest anonymity guarantees are achieved when
t∗I = nI , in which case the adversary would output the issuer public key itself.
The scheme presented in Section 4.3 realizes anonymity for t∗I = tI < nI/2,
i.e., the largest possible value for an interactive key-generation process to
guarantee termination (robustness).

Lastly, it is worth noting that w.r.t. key generation, this model is stronger
than that of Bellare et al. [BSZ05] in the sense that the keys of corrupt
authorities are not assumed to be honestly generated.

Definition 4.2.3 (Anonymity). A
(nI ,nO

tI ,tO
)
-DGS scheme DGS is anonymous

if for every efficient adversary A, the advantage Advano
DGS,nI ,nO,tI ,tO,A (λ) of

A defined as∣∣∣Pr[Expano−0
DGS,λ,nI ,nO,tI ,tO (A) = 1]− Pr[Expano−1

DGS,λ,nI ,nO,tI ,tO (A) = 1]
∣∣∣

is negligible in λ.

Traceability.

This notion captures the unforgeability property expected from dynamic
group signatures and guarantees that only users who have joined the group
can compute valid group signatures. With single authorities, the opener can
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be corrupt but the issuer must be honest. Therefore, adapted to a threshold
setting, up to tI out of nI issuers can be corrupt.

Traceability is then formalized through the opening capabilities of group
signatures as described in Figure 4.1. It guarantees that for any valid sig-
nature σ on a message m, opening can neither fail (Case 1) nor reveal an
“incorrect” identity (Case 2). The first case means that an opener cannot
identify any signer or that the openers do not agree on the identity of the
signer. The second case means that the revealed identity has either never
joined the group of signers, or has joined and is honest, but never signed
m. The latter is sometimes formalized through a dedicated non-frameability
requirement, and the choice of combining both notions is discussed below.

Similarly to the case of anonymity, the number of openers that the adver-
sary can additionally corrupt is parametrized via a bound t∗O. The strongest
traceability notion is achieved when t∗O = nO, i.e., when all openers can be
corrupted. This is however not achievable when openers maintain state crit-
ical for opening, since the winning condition depends on a correct execution
of protocol GOpen. In case of stateful opening, this requires the non-corrupt
registers of at least tO + 1 openers. Therefore, in such settings, at most
t∗O = nO − tO − 1 openers can be corrupt.

In comparison, in the traceability definition of Bellare et al. [BSZ05] for
single-authority dynamic group signatures, the opener can be fully corrupt
since the register needed to open signatures is rather maintained by the
issuer (and the opener must have read access to it). However, this has
the effect that in their anonymity definition, even if the honestly generated
issuer key is given to the adversary, the challenger must maintain a register
on its own to answer opening queries, and the adversary cannot read the
register (though it can write on it) otherwise it would trivially win the
anonymity game. It means that their model only captures a situation in
which the issuer’s key is compromised, but its state is not entirely. In this
sense, even if their traceability definition captures a full corruption of the
opener, the consequence is that their anonymity definition does not capture
full corruption of the issuer.

Definition 4.2.4 (Traceability). A
(nI ,nO

tI ,tO
)
-DGS scheme DGS is traceable if

for all efficient adversary A, Pr
[
Exptrace

DGS,λ,nI ,nO,tI ,tO (A) = 1
]
is negligible

in λ.

On Non-Frameability.

Classical definitions of group signatures with single authorities also include
the notion of non-frameability. It reflects the idea that even if the issuer and
opener are corrupt, they cannot falsely claim that an honest user computed
a given valid signature. Since the opening algorithm in those definitions
returns a long-term user public key, in practice, a public-key infrastruc-
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ture would have to bind those keys to real-world identities; and such an
infrastructure would be built with one or several certification authorities.
However, if these certification authorities collude with the issuer and the
opener, they would be able to frame an honest user. In other words, in
real-world applications, users still need to trust some certification authority
to protect them from malicious group-signature authorities even though the
goal of non-frameability is precisely to avoid trust assumptions.

On the other hand, the rationale of threshold cryptography is that if
there are many parties, some of them might in practice be corrupt but not
all. Since group-signature schemes with several issuers and openers are now
considered, the requirement is that if less than respective threshold numbers
of them are corrupt, no efficient adversary can forge a signature and falsely
claim that an honest user computed it. It is precisely this requirement
that is captured by the last winning condition of the above definition of
traceability. The scheme in Section 4.3 satisfies this property, but would
not satisfy a definition in which all group-signature authorities are corrupt.

4.3 Main Construction

This section presents a threshold DGS scheme from (a variant of) PS signa-
tures. It follows the GetShorty approach of Bichsel et al. [BCN+10] instead
of the traditional sign-and-encrypt paradigm. This approach avoids the ex-
tra encryption of user identities and enables schemes with highly compact
signatures despite supporting signature opening. The resulting signatures
are short, and computing and verifying them only require a few exponenti-
ations in the first group and some pairing computations (see Table 4.1).

The efficiency of the GetShorty scheme of Bichsel et al. [BCN+10] comes
at the price of fully trusted authority responsible for both issuance and open-
ing. A threshold setting allows to preserve the efficiency of the GetShorty
approach, yet avoid the need for a single trusted entity. The scheme below
shows that even with the GetShorty approach, the role of issuer and opener
can be separated and distributed, and it enables tI -out-of-nI issuance and
tO-out-of-nO opening. There is still a small price to pay for the efficiency,
as not all issuers can be corrupt for anonymity and, likewise, not all openers
can be malicious for traceability (contrarily to what might be expected).
Still, moving to a threshold setting already avoids the most critical assump-
tion, namely a fully trusted party, and instead tolerates corruption of some
of them.

One challenge in designing the scheme is to separate the role of issuers
and openers. It is necessary in the scheme of Bichsel et al. as the information
needed for opening is created during issuance. The following scheme avoids
that by assuming a public ledger to which users can upload their opening
information during issuance. This information is encrypted under the opener
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keys during issuance, and a user must prove to the issuers that she uploaded
a valid ciphertext. Section 4.4 also presents a scheme that does not assume
a ledger but instead combines the roles of issuer and opener anew, and
supports threshold issuance and opening.

First comes a variant of the PS signature scheme on which the scheme
is based, and then the description of the threshold group signatures.

4.3.1 Variant of the PS Signature Scheme

Consider the PS signature scheme (Section 4.1.5) in which the extra scalar
m′ is computed as H(m). In the same vein, the group element h could also
be returned by the hash function, i.e., (m′, h) ← H(m). This would allow
several signers of the same message to agree on a common base h. The
scheme remains unforgeable and the main difference from the unforgeability
proof of Pointcheval and Sanders [PS18, Section 4.3] is that when H is
queried on a message m different from the challenge message, the reduction
algorithm already prepares (σ1, σ2) to be later returned in case the adversary
makes a signing query on m. For more detail, see the unforgeability proof
of the PS multi-signature scheme (introduced in Section 4.5) which relies on
the same idea. This technique is similar to that of Sonnino et al. [SABD18]
for their credential system. They hash a commitment to the signed message
to obtain a base h, even though they apply it to the CT-RSA’16 version of
the PS scheme (so without m′) and do not formally prove that the scheme
remains secure.

Besides, assume that the messages to be signed are publicly indexed,
i.e., that for every message m there exists a unique value idxm known to any
signer. To sign a message m, instead of hashing to determine a scalar m′
and a base h, a signer could instead compute m′ as H(idxm). If the number
of messages to be signed is known in advance to be polynomial, the scheme
remains unforgeable under the same assumption since indexing messages to
determine (m′, h) is equivalent to specifying in the public parameters a pair
(m′, h) for each message m. It is this variant of the scheme that is considered
in the construction of threshold group signatures in Section 4.3.2. Therein,
the messages signed are user secret keys skid indexed by the user identities
id.

4.3.2 Construction with Separate Issuers and Openers

This section starts with a highlight of the mains ideas of the construction,
and then proceeds with a detailed definition of the protocols and algorithms.

Key Generation. During set-up, the issuers run the distributed key-generation
protocol of Gennaro et al. [GJKR99] with tI as a threshold to generate
a public key for the PS signature scheme so that each of them holds a
share of the secret key. The protocol guarantees that if tI < nI/2, then
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the protocol terminates (which cannot be enforced with a dishonest
majority) and no colluding tI issuers can infer any information about
the secret key, whereas any tI + 1 issuers can reconstruct it.
As for the openers, each of them simply generates a pair of ElGamal
keys.

Join. For tI + 1 issuers to add a user to the group, they all blindly sign
with their PS secret-key share a random secret key skid chosen by the
user. To do so, they need to agree on a common PS base h, so we used
the variant from Section 4.3.1 of the PS signature scheme. The user
group secret key consists of skid and the PS signature on it.
For each opener, the user encrypts a tO-out-of-nO Shamir share of
skid and proves that the ciphertexts are correctly computed. With the
ElGamal public keys of the openers, the issuers can verify the proofs
and thus be convinced that the any tO + 1 openers will later be able
to retrieve correct shares of the user secret key if they can access the
ciphertexts.
To make sure that these shares can later be retrieved by the openers,
we assume the existence of an append-only ledger L accessible to all
users, issuers and openers. Once the user has encrypted the shares of
her secret key and has proved that she did so, she writes the encrypted
shares and the proofs on the ledger. The issuers then send their PS
signature-shares only after verifying the proofs. Therefore, each opener
can later retrieve his shares of all group-member secret keys from the
ledger.
Note that since honest issuers add a given user identity id to the group
only once and when the proofs are correct, there is only one entry with
valid proofs per user that can open her signatures. This entry is the
one denoted L[id] in the descripiton of the opening algorithm.

Sign & Verify. To compute a group signature on a message m, the user
computes a signature of knowledge on m of a valid PS signature on a
user secret key skid . Verifying a signature on a message simply consists
in verifying the signature of knowledge on it.

Open. To open a signature, any tO+1 openers first retrieve from the ledger
their shares of user secret keys and store them in their registers. Once
the openers’ registers are updated, they test the signature to be opened
against each entry in their registers until they find a user for which
the shares match. It makes opening expensive for the benefit of hav-
ing short signatures, which perfectly fits most practical scenarios, in
which signatures should be short and opening an uncommon practice
performed by resourceful authorities.
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Scheme Description.

To formally define the construction, letH0 : {0, 1}∗ → Zp×G∗, andH1 : {0, 1}∗
→ Zp be two random oracles (the latter is to compute non-interactive proofs
of knownledge via the Fiat–Shamir heuristic). Let also ID ⊆ Zp denote a
user identity space. The construction requires as building blocks

◦ the Section-4.3.1 variant of the PS signature scheme, further denoted
PS, to sign user secret keys.

◦ an append-only ledger L with user identities as keys that is available
to all users, issuers and openers

◦ secure (i.e., authenticated and confidential) channels

◦ a broadcast channel, i.e., a protocol between several parties that al-
lows a sender to distribute a value to all the other parties so that the
following three properties are satisfied:

1. (termination) the protocol terminates
2. (consistency) all honest parties receive the same value and
3. (validity) if the sender is honest, then the value received by all

honest parties is that of the sender.

Given a type-3 pairing group generator G and a security parameter λ ∈
N, the

(nI ,nO
tI ,tO

)
-DGS scheme PS-DGS in a pairing group Γ =

(
p,G, G̃,GT , e

)
←

G
(
1λ
)
consists of the following procedures.

GSetup(1λ, nI , nO, tI , tO)→ pp : generate (g, g̃) ∈R G∗ × G̃∗. Set ppPS ←
(Γ, g̃, 1) and return pp ← (ppPS, g, nI , nO, tI , tO).

〈{IKG(pp, i)}nIi=1〉 → 〈{(ipk, iski, sti)}nIi=1〉 : is a protocol between all the is-
suers who proceed as follows:

◦ the issuers run three times the distributed key-generation proto-
col of Gennaro et al. [GJKR99] with tI as a threshold in group
G̃ to obtain three uniformly distributed public values X̃ , Ỹ0 and
Ỹ1. At the end of the protocol, each issuer i ∈ JnIK holds shares
xi, y0,i and y1,i such that for any I ∈

(JnIK
tI+1

)
, if wi denotes the

Lagrange coefficient of issuer i, then x := dlogg̃ X̃ = ∑
i∈I xiwi,

and similarly for y0 := dlogg̃ Ỹ0 and y1 := dlogg̃ Ỹ1.

◦ issuer i ∈ JnIK returns
(

ipk ←
(

X̃ , Ỹ0, Ỹ1
)
, iski ← (i, xi, y0,i, y1,i),

stI ← ⊥). The issuers send ipk to a certification authority which
is assumed to make it publicly available so that anyone can get
an authentic copy of it.
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〈{OKG(pp, i)}nOi=1〉 → 〈{(opk, oski, regi)}nOi=1〉 : for each opener, generate an
ElGamal pair of keys (f̃i ← g̃zi , zi) ∈ G̃∗ × Z∗p and initialize an
empty register regi. Set opki ← f̃i and oski ← (i, f̃i, zi), and opk ←
((i, opki))nOi=1. For each opener, return (opk, oski, regi). The opener
sends opk to a certification authority.

The group public key gpk is set to (ipk, opk).

GJoin : Assume that there is a broadcast channel between a user U and the
tI + 1 issuers Ii in I ∈

(JnIK
tI+1

)
. Assume also that there is a secure chan-

nel between U and every issuer Ii. In particular, this implies that an
adversary cannot modify the messages sent by the user to the issuers:
it can only forward, delay or drop them. Throughout the following
description of the protocol, whenever an algorithm receives an abort
or an ill-formed message, or when a verification fails, it interrupts the
protocol execution by broadcasting an abort message to all partici-
pants and returning ⊥. The joining protocol between the user and the
issuers is as follows:

1. GJoin.U, on input
(

id, I, gpk =
(

ipk = (X̃ , Ỹ0, Ỹ1), opk
))

,

◦ choose skid ∈R Z∗p
◦ (a′, h)← H0(id)
◦ hsk ← hskid ; gsk ← gskid . Therefore, (g, h, gsk , hsk) is a DDH

tuple. It helps the reduction algorithm of the traceability
proof to efficiently extract the secret keys of adversarial users
(under the ADH-KE assumption).
◦ π ← FS .Prove{skid : hsk = hskid ∧ gsk = gskid}
◦ generate p1, . . . , ptO ∈R Zp and set P ← skid +∑tO

`=1 p`X
` ∈

Zp[X]
◦ for i ∈ JnOK, compute si ← P (i), i.e., Shamir shares of skid
for each opener
◦ for ` ∈ [tO], compute h` ← hp` , i.e., verification values as in

the Feldman verifiable secret sharing scheme [Fel87]
◦ for all i ∈ JnOK:
∗ ri ←$ Zp
∗ C̃i := (C̃i,0, C̃i,1)←

(
g̃ri , f̃ rii Ỹ si

0

)
∗ πi ← FS .Prove

{
ri : C̃i,0 = g̃ri , e

(
h, C̃i,1/f̃

ri
i

)
= e

(
hsk

∏tO
`=1 h

i`
` , Ỹ0

)}
, i.e., compute a proof that C̃i en-

crypts the ith share of skid

◦ set L[id]←
(
gsk , hsk , h1, . . . , htO , π,

(
C̃i, πi

)
i∈JnOK

)
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◦ broadcast written to all Ii

2. GJoin.I, for i ∈ I, on input (sti, iski = (i, xi, y0,i, y1,i), id, I, gpk)
◦ abort if id ∈ sti
◦ upon receiving written from U :
∗ (a′, h)← H0(id)

∗ parse L[id] as
(
gsk , hsk , h1, . . . , htO , π,

(
C̃i, πi

)
i∈JnOK

)
∗ FS .Vf(g, h, gsk , hsk , π) ?= 1, i.e., verify that it is a DDH

tuple
∗ for j ∈ JnOK ,FS .Vf

(
h, (h`)tO

`=1, Ỹ0, f̃j , C̃j , πj
)

?= 1, i.e.,
verify that the ciphertexts encrypt correct shares for each
opener
∗ Σi,2 ← hxi+yi,1a

′
h
yi,0
sk (i.e., blindly sign skid via hsk)

∗ sti ← sti ∪ {id}
∗ send Σi,2 to U over a secure channel

3. GJoin.U, upon receiving Σi,2 from all Ii for i ∈ I,

◦ Σ ←
(
a′, h,

∏
i∈I Σwi

i,2 = hx+y0skid+y1a′
)
, i.e., reconstruct the

PS signature w.r.t. to ipk
◦ PS.Vf(ipk, skid ,Σ) ?= 1
◦ return gsk[id]← (skid ,Σ)

GSign(ipk,gsk[id],m)→ σ : parse gsk[id] = (skid ,Σ = (a′,Σ1,Σ2)). Gen-
erate r ∈R Z∗p. Compute (Σ′1,Σ′2)← (Σr

1,Σr
2) and

π ← FS .Prove{(skid , a
′) : PS.Vf(ipk, skid , (a′,Σ′1,Σ′2)) = 1}(m).

That is, compute, with H1 as random oracle, a Schnorr signature
of knowledge π = (c, vsk , va′) ∈ Z3

p on m of a pair (skid , a
′) such

that e
(
Σ′1

skid , Ỹ0
)
e
(
Σ′1

a′ , Ỹ1
)

= e(Σ′2, g̃)e(Σ′1, X̃)−1. Return σ ←
(Σ′1,Σ′2, π).

GVerf(ipk,m, σ)→ b ∈ {0, 1} : parse σ as (Σ1,Σ2, π). Return FS .Vf(gpk,Σ1,
Σ2,m, π). That is, return 1 if

c = H1
(

ipk,Σ1,Σ2, e
(
Σ1

vsk , Ỹ0
)
e
(
Σ1

va′ , Ỹ1
)
e (Σ2

c, g̃) e
(
Σ1
−c, X̃

)
,m
)

and 0 otherwise.

GOpen : is run by tO + 1 openers Oi (for i ∈ O) to recover the identity
of the user who computed a valid group signature σ = (Σ1,Σ2, π) on
a message m. To do so, the openers first update their registers by
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checking the public ledger L. Then, the opening algorithms loop over
the entries of their registers regi containing encryptions of shares Ỹ si

0
recorded during executions of protocol GJoin. For each identity id for
which they have a share, the opening algorithms use their shares to
determine whether (a′,Σ1,Σ2) (with (a′, h) = H0(id)) is a valid PS
signature on the unique value determined by their tO + 1 shares of the
secret key of user id. If it is the case, the algorithms return id. If no
such identity is found, the opening algorithm returns ⊥. The protocol
assumes a broadcast channel between the participating openers, and
also that the protocol is aborted as soon as an algorithm receives an
abort or an ill-formed message.
Formally, GOpen (regi, oski = (i, zi) , I, gpk,m, σ = (Σ1,Σ2, π)) proceeds
as follows:

1. if GVerf(ipk,m, σ) = 0 then return ⊥
2. for all id such that L[id] 6= ⊥, if regi[id] = ⊥ then parse L[id] as(

gsk , hsk , h1, . . . , htO , π, (C̃i, πi)i∈JnOK

)
and set regi[id]← C̃i,1/C̃

zi
i,0

3. for all id such that regi[id] 6= ⊥, compute Tid,i ← e
(
Σ1, C̃i,1/C̃

zi
i,0

)
4. broadcast Si ← {(id, Tid,i)}id : regi[id] 6=⊥ to all the openers in I
5. upon receiving Sj from all the other openers Oj (for j ∈ I\{i}),

◦ for j ∈ I, compute wj ←
∏
`∈I\{j} `/(` − j), i.e., the jth

Lagrange coefficient
◦ for all (id, Tid,i) ∈ Si (in lexicographic order of user identities)
∗ if ∃j ∈ I : (id, ∗) /∈ Sj then continue
∗ (a′, h)← H0(id)
∗ for all j ∈ I\{i}, retrieve (id, Tid,j) from Sj

∗ if e
(
Σ1, X̃Ỹ a′

1

)∏
j∈I T

wj
id,j = e(Σ2, g̃) then return id

6. return ⊥ (i.e., in case the previous equality holds for no tuple in
regi).

Remark 4.3.3. The signing and verification algorithms only need the short
issuer public key, not the entire group public key.

Theorem 4.3.4 (Correctness). PS-DGS is correct.

Proof. The correctness of the scheme follows from the correctness of the key-
generation protocol of Gennaro et al., the correctness of the Shamir sharing
scheme, the correctness of the Elgamal encryption scheme (relevant during
issuance and opening) and the completeness of Schnorr proofs.

The lemmas below give important arguments for the proofs of anonymity
and traceability.
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Lemma 4.3.5 (Unanimity). Protocol GOpen is unanimous between honest
openers in the anonymity and traceability security experiments. That is, for
all (O,m, σ), if idi denotes the output of the ith opening algorithm and HO
the index set of honest openers, then idi = idj for all i, j ∈ O ∩HO.

Proof. During GOpen protocol executions, the broadcast protocol and the
fact that the ledger is publicly available ensure that all honest openers re-
ceive the same opening sets Sj . Moreover, the opening algorithms test the
signature verification equality only on identities for which they all have an
entry in their registers. As they proceed in the same order (i.e., lexicographic
order), the claim follows.

Lemma 4.3.6 (Forgery). If the SDL assumption over the pairing-group gen-
erator G holds, then in the anonymity and traceability security experiments
for PS-DGS, no efficient adversary A can forge, with non-negligible probabil-
ity, a signature that opens to an honest user for which it has not queried the
secret keys. That is, no efficient adversary A can, with non-negligible prob-
ability, make an oracle query GOpen(O,m, σ), or, in the traceability experi-
ment, output (I∗,m∗, σ∗), such that the identity id/id∗ output by the opening
algorithms of the honest openers in O/O∗ is so that id/id∗ ∈ QGJoin\QCorrupt
(which implies id/id∗ 6= ⊥) and (id,m, σ)/(id∗,m∗, σ∗) /∈ QGSign.

Proof. This lemma can be proved by contradiction as follows. Assume that
there exists an adversary A that computes such a forgery in either of the
games with probability at least ε and in time τA. Assume p > 8qH1/ε.
Consider a reduction algorithm B which interacts with the SDL challenger.

On the input of an SDL tuple (g, g̃, gµ, g̃µ), the idea of the proof is to
compute a PS signature on µskid∗ with skid∗ ∈R Z∗p chosen by B for a random
user identity id∗. If this identity is the one for which A forges a signature,
then B can extract µskid∗ , so also µ and win the SDL game. To extract
µskid∗ , algorithm B runs the forking algorithm of the generalized forking
lemma (Lemma 4.1.8) on an algorithm A′ of which A is a sub-routine.

In more detail, A′ runs on the input of public parameters pp as in the
scheme, of a tuple (g1, g̃1, g2, g̃2) ∈

(
G∗ × G̃∗

)2
and of a random tape ρ.

A′ answers random-oracle queries as follows:

◦ H0(id) : forward the query to B.

◦ H1(b ∈ {0, 1}∗) : if (b, ∗) /∈ QH1 then generate c ∈R Zp, do ctr ←
ctr + 1, add (b, c, ctr) to QH1 and return c; else retrieve (b, c, ι) from
QH1 and return c.

During the key-generation phase, A′ proceeds as in the real scheme. At
the end of the protocol, it reconstructs the secret keys x, y0 and y1 using the
shares of the honest issuers. It can do so since there are at least tI+1 honest
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issuers by assumption. If y0 = 0 mod p, which occurs with probability at
most 1/p, algorithm B aborts its interaction with A and sends a uniformly
random Z∗p element to the SDL challenger.
A′ then answers game-oracle queries as follows (if a check fails or if it

ever aborts, A′ returns (∅, ∅, ∅)):

◦ GJoin.U(id, I) : check that I ∈
(JnIK

tI+1
)
. Add id to QGJoin. A GJoin

execution is triggered and B plays the role of the user and of the
honest issuers.

∗ if id 6= id∗, follow the protocol but also save skid in regj [id] for
each honest opener Oj .
∗ if id = id∗, first check that id∗ /∈ sti for all honest issuer Ii. Make

an internal query (a′∗, r∗)← H0(id∗). Next, generate skid∗ ∈R Z∗p
and shares (si)i∈JnOK of 0Zp (, so

∑
j∈I sjwj = 0 mod p for all O ∈(JnOK

tO+1
)
). Compute hsk ← g

r∗skid∗
2 = g

r∗µskid∗
1 and gsk ← g

skid∗
2 . To

compute verification values (h1, . . . , htO) that convince all corrupt
issuers and openers that si is a valid share of dloggr∗1 (hsk) =
µskid∗ , solve via Gaussian elimination the linear system (with
the notation x · g := gx for x ∈ Zp and g ∈ G)

[
i · · · itO

]
i∈CO

 h1
...
htO

 =
[
(gr∗1 )si(h∗sk)−1

]
i∈CO

with unknowns h1, . . . , htO and CO as the set of corrupt openers.
This linear system has a solution since

[
i · · · itO

]
i∈CO

is full-
rank, for it is a sub-matrix of a Vandermonde matrix and the
positions i ∈ CO are pairwise distinct. It should be noted that
unlike the case of the real protocol, there is no relation between
the value µsk∗id signed by the issuers and the shares si.
Now, programH1 to simulate a proof of knowledge π of dlogg1(gsk)
= dloggr∗1 (hsk). For i ∈ CO, compute as in the scheme cipher-
texts C̃i using the h1, . . . , htO values obtained by solving the linear
system, as well as proofs πi. For each honest opener i, choose uni-
formly random C̃i and program oracle H1 to simulate proofs of
knowledge πi.
Set L[id] as in the real protocol, and playing the role of the user,
broadcast written. Under the DDH assumption over G̃, from the
point of view of A, the distribution of L[id] is indistinguishable
from its distribution in the real protocol since A can decrypt at
most tO shares. The distinguishing advantage of A is at most
nO times the advantage of B running it as a sub-routine and
attempting to win DDH game in G̃.



Short Threshold Dynamic Group Signatures 63

Compute signature shares on µskid∗ (using hsk) for each the hon-
est issuers and send them to the user after adding id∗ to their
states. Upon receiving signature shares from A, reconstruct the
PS signature and verify the result as in the proof of each of the
properties (anonymity of traceability). The resulting signature is(

a′
∗
,Σ∗1 ← gr

∗
1 ,Σ∗2 ←

(
gr
∗

1

)x+y0µskid∗+y1a′
∗)
,

i.e., it is a signature on µskid∗ . Set gsk[id∗] ← (⊥, (a′∗,Σ∗1,Σ∗2))
and for all honest Oj , set regj [id∗] as in the scheme but also
append (si)nOi=1.

◦ GJoin.Ii(id, I) : check that i ∈ I ∈
(JnIK

tI+1
)
. Add id to QGJoin and QCorrupt

(note that id 6= id∗ in the event in which the adversary outputs a
forgery, necessarily). A GJoin protocol execution is triggered. Play
the role of the honest issuers and follow the protocol. If the protocol
succeeds, reconstruct Ỹ skid

0 with the shares given by the adversary
(recall that there are at least tO +1 honest openers in either game) for
issuers in I, and append Ỹ skid

0 to regj [id] for each honest opener Oj .
If the reconstructed value is not consistent with the share of an honest
opener (which can be verified with the pairing), abort the protocol for
it means that A broke the soundness of the zero-knowledge proof. It
occurs with probability at most (qH1 + 1)/p. The probability that it
occurs for any of the identities is then at most |ID|(qH1 + 1)/p.

◦ GSign(id,m) : check that id ∈ QGJoin \ QCorrupt. If id 6= id∗ then
compute σ ← GSign(ipk,gsk[id],m), add (id,m, σ) to QGSign and re-
turn σ. If id = id∗ then fetch (⊥, (a′∗,Σ∗1,Σ∗2)) ← gsk[id∗], generate
α ∈R Z∗p, compute (Σ′1,Σ′2)← (Σ∗1,Σ∗2)α, simulate a proof π of knowl-
edge of µsk∗id and a′∗ by programming H1, add (id,m, σ = (Σ′1,Σ′2, π))
to QGSign, and return σ.

◦ GOpeni(O,m, σ = (Σ1,Σ2, π)) : check that i ∈ O ∈
(JnOK

tO+1
)
. Add (m, σ)

to QGOpen. A GOpen execution is triggered. Play the role of the honest
openers in O. Check that GVerf(ipk,m, σ) = 1. Update the registers
as in the real scheme. Test the equality

e
(
Σ1, g̃

x+y1a′
∗

1 g̃
y0skid∗
2

)
= e(Σ2, g̃1).

∗ If the equality does not hold but e
(
Σ1, g̃

x+y1a′

1 Ỹ skid
0

)
= e(Σ2, g̃1)

for an identity id 6= id∗ ∈ QGJoin \ QCorrupt, where (a′, h) ←
H0(id), then A forged a signature on an honest identity id 6= id∗
for which it does not have the secret key. Abort the interaction
with A and send a uniformly random Z∗p element to the SDL
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challenger. This is to make sure that the first identity for which
A forges a signature is id∗ with probability 1/|ID|.
∗ If it holds, if id∗ ∈ QGJoin and if (id∗,m, σ) /∈ QGSign then A has
forged σ on m for id∗.
Parsing σ as (Σ1,Σ2, π = (c, vsk , va′)), let ισ be the computation
step at which A queried H1 on bσ ← (ipk,Σ1,Σ2, u,m) with

u := e
(
Σvsk

1 , Ỹ0
)
e
(
Σva′

1 , Ỹ1
)
e
(
Σ−c1 , X̃

)
e (Σc

2, g̃1) ,

be it the step at which it outputs the forgery, i.e., ισ is such that
(bσ, c, ισ) ∈ QH1 . Algorithm A′ sets J ← {ισ} and aux ← ∅, and
returns (J, {σ}, aux).
∗ If the equality holds and if (id∗,m, σ) ∈ QGSign (which implies

id∗ ∈ QGJoin) then fetch regi[id∗] = (∗, (si)nOi=1). For j ∈ I \ {i},
compute Tid∗,j ← e

(
Σ1, Ỹ0

)sj . Compute

Tid∗,i ←

e (Σ1, g̃
y0skid∗
2

) ∏
j∈I\{i}

T
−wj
id∗,j

1/wi

= e
(
Σ1, Ỹ0

)(µskid∗−
∑

j 6=i sjwj

)
/wi = e

(
Σ1, Ỹ0

)µskid∗/wi+si
.

The values (Tid∗,j)j∈I are indistinguishable from the values in
the real protocol since µskid∗/wi + si and (sj)j∈I\{i} are valid
shares of µskid∗ (recall that ∑j∈I sjwj = 0 for all O ∈

(JnOK
tO+1

)
).

Therefore, with Tid∗,i thus computed, the corrupt participating
openers, if they follow the protocol, will open to id∗. For the
identities id 6= id∗ such that regi[id] 6= ⊥, compute the Tid,i
values as in the scheme. Follow the rest of the protocol.
∗ If the equality does not hold and id∗ ∈ QGJoin, proceed as in the
previous case in which the equality held and (id∗,m, ∗) ∈ QGSign.
The same indistinguishability arguments apply.
∗ If the equality does not hold and id∗ /∈ QGJoin then follow the
protocol.

◦ RevealU(id) : if id = id∗ then abort the interaction with A and send
a uniformly random Z∗p element to the SDL challenger. Add id to
QRevealU. Return gsk[id].

◦ ReadReg(i, id) : (in the traceability experiment only) return regi[id].

◦ WriteReg(i, id, v) : (in the anonymity experiment only) set regi[id]←
v.
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◦ In the anonymity experiment Expano−b
DGS,λ,nI ,nO,tI ,tO (A) for b ∈ {0, 1},

at the challenge phase, if id∗ 6= idb then return GSign(ipk,gsk[idb],
m∗). If idb = id∗ then generate α ∈R Z∗p, compute Σ1 ← gα1 and
Σ2 ← Σx+y1a′

∗

1 (g2)αy2sk∗id . Simulate a proof π of knowledge of µskid∗

and a′∗ by programming H1. Return (Σ1,Σ2, π).

If A never forges a signature for an honest identity, A′ returns (∅, ∅, ∅).
The reduction algorithm B then proceeds as follows. Upon receiving Γ

and (g1, g̃1, g2, g̃2) from the challenger, B sets ppPS ← (Γ, g̃1, 1) and pp ←
(ppPS, g, nI , nO, tI , tO). It then runs A′ on the input of pp, (g1, g̃1, g2, g̃2) and
a uniformly random tape ρ.

Throughout its interaction with A′, algorithm B answers random-oracle
queries as follows:

◦ H0(id) : if (id, ∗) /∈ QH0 then forward the query to C, receive (a′, h),
add (id, (a′, h)) to QH0 and return (a′, h); else retrieve (id, (a′, h)) from
QH0 and return (a′, h).

Recall that p > 8tqH1/ε by assumption. With probability at least
ε/8 and with running time at most 8qH1/ε · ln(8/ε) · τA, the forking algo-
rithm of the generalized forking lemma (Lemma 4.1.8) applied to A′ returns
({ισ}, {σ}, {σ′},Aux). That is, it returns two forgeries for honest identities.

Parsing σ as (Σ1,Σ2, π = (c, vsk , va′)), the computation step at which A
queried H1 on (ipk,Σ1,Σ2, u,m) with

u := e
(
Σvsk

1 , Ỹ0
)
e
(
Σva′

1 , Ỹ1
)
e
(
Σ−c1 , X̃

)
e (Σc

2, g̃1)

is the same step at which it queriedH1 on (gpk,Σ′1,Σ′2, u′,m′) for u′ similarly
defined. The answers c and c′ to these queries are also distinct modulo p.

As the inputs to A and its randomness are identical until that H1 query,
Σ1 = Σ′1, Σ2 = Σ′2, u = u′ and m = m′ necessarily. It also implies id∗ = id ′
by the initial equality test. It follows that

e

(
Σ1, Ỹ

(vsk−v′sk)/(c′−c)
0 Ỹ

(va′−v′a′ )/(c
′−c)

1

)
= e(Σ2, g̃1)e

(
Σ1, X̃

)−1

= e
(
Σ1, g̃

y1a′
∗

1 g̃
y0skid∗
2

)
with the second equality due to the initial test equality. Therefore,

g̃
(y0(vsk−v′sk)+y1(va′−v′a′ ))/(c′−c)
1 = g̃y1a′

∗

1 g̃
y0skid∗
2 .

Compute and send to the SDL challenger the value(
y0(vsk − v′sk) + y1

(
(va′ − v′a′)− a′

∗(c′ − c)
))
/(c′ − c)y0skid∗ ,
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thereby winning the SDL game.
In the event in which A forges with non-negligible probability a signature

that opens to an honest user for which it has not queried the secret keys,
the first identity for which it does is id∗ with probability 1/|ID|. Algorithm
B then wins the SDL game with probability at least

1/|ID| · ε/8 · (1− 1/p)− |ID|(qH1 + 1)/p− nO|ID|AdvDDH−2
G,λ (B(A))

and with running time at most 8qH1/ε · ln(8/ε) · τA + O(|ID|). If ε were
negligible, B would contradict the SDL assumption. Consequently, ε is
necessarily negligible.

Theorem 4.3.7 (Anonymity). Scheme PS-DGS is anonymous under the
first-group DDH and the SDL assumptions over the pairing-group generator
G for any tO < nO/2 and tI = t∗I < nI/2.

Proof. The anonymity of DGS can be proved via the following hybrid argu-
ment. Denote by Cb the challenger of experiment Expano−b

DGS,λ,nI ,nO,tI ,tO (A).
Let H be an algorithm that proceeds exactly like C0 except for the challenge
query. To answer the challenge query, H sends two random G elements as
re-randomized group elements of the PS multi-signature in gsk[idb], and
programs oracle H1 to compute a proof of knowledge of skidb and a′b, and
complete the challenge group signature.

To show that DGS satisfies anonymity, it suffices to show that C0 and
C1 are both computationally indistinguishable from H under the first-group
DDH and the SDL assumptions.

Assume that the SDL assumption holds over G and that there exists
an efficient adversary A that can distinguish C0 from H with probability at
least ε and in time τA. Assume that p > 8qH1/ε. Consider an algorithm
B that runs A as a subroutine and interacts with a DDH challenger CDDH

β

that outputs a Diffie–Hellman tuple if β = 1 or a uniformly random tuple if
β = 0.

Upon receiving the description of a pairing group Γ = (p,G, G̃,GT , e)
and of a tuple (g1, g2, g3, g4) =

(
g1, g

µ
1 , g

ν
1 , g

ξ
1

)
from the DDH challenger, B

sets g1 as the generator of G in the public parameters and generates the
other DGS parameters.
B starts by executing the key-generation protocol with A and recon-

structing the shares of the dishonest managers (which is possible since there
are at least tI + 1 honest issuers). Algorithm B then chooses two identi-
ties id∗0 and id∗1 uniformly at random. To answer game-oracle queries, B
proceeds as algorithm A′ in Lemma 4.3.6, except that everything done for
id∗ is duplicated for id∗0 and id∗1, and except for GSign queries on (id∗d, ∗, ∗)
for d ∈ {0, 1}, for all GOpen queries and for the challenge query. For those
queries, B proceeds as follows:
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◦ GSign(id∗d,m) : check that id∗ ∈ QGJoin \QCorrupt. Fetch (⊥, (a′d
∗,Σ∗d,1,

Σ∗d,2))← gsk[id∗d], generate α ∈R Z∗p, compute (Σ′1,Σ′2)← (Σ∗d,1,Σ∗d,2)α,
simulate a proof π of knowledge of µskid∗d and a

′
d
∗ by programming H1.

Add (id,m, σ = (Σ′1,Σ′2, π), α) to QSign and return σ. The random α
used to compute the signature is necessary to later correctly simulate
the opening of group signatures as B does not have access to g̃µ2 as in
the previous lemma.

◦ GOpeni(O,m, σ = (Σ1,Σ2, π)) : check that i ∈ O ∈
(JnOK

tO+1
)
. Add (m, σ)

to QGOpen. A GOpen execution is triggered. Play the role of the honest
openers in I. Check that GVerf(ipk,m, σ) = 1. By Lemma 4.3.6, this
query cannot be a forgery for id∗0 or id∗1 (in the event in which A
queries Ch on (id∗0, id∗1, ∗) and receives an answer different from ⊥).
For all (id,m, σ, α) in QSign, test the equality

e
(
Σ1, g̃

x+y1a′
∗

1

)
e

(
g
r∗dα
2 , Ỹ

skid∗
d

0

)
= e(Σ2, g̃1).

for all d ∈ {0, 1}. If it holds for some d ∈ {0, 1} and if (id∗d,m, ∗) ∈
QGSign (which implies id∗d ∈ QGJoin) then fetch regi[id∗d] = (∗, (sd,i)nOi=1).
For j ∈ I \ {i}, compute Tid∗d,j ← e(Σ1, Ỹ0)sd,j . Compute

Tid∗d,i ←

e(gr∗dαskid∗
d

2 , Ỹ0

) ∏
j∈I\{i}

T
−wj
id∗d,j

1/wi

= e(Σ1, Ỹ0)
(
µskid∗

d
−
∑

j 6=i sjwj

)
/wi
.

The values (Tid∗d,j)j∈I are indistinguishable from the values in the real
protocol (in which case it would be skid∗d instead of µskid∗d) as A never
receives g2. For the identities id 6= id∗d such that regi[id] 6= ⊥, compute
the Tid,i values as in the scheme. Continue as in Lemma 4.3.6.

◦ For the challenge query, if (id0, id1) 6= (id∗0, id∗1) then halt the interac-
tion with A and send 0 to the DDH challenger. Check that id∗0 and id∗1
are in QGJoin \QCorrupt, that gsk[id∗d] 6= ⊥ for both d ∈ {0, 1} and that
(∗,m∗, σ∗) /∈ QGSign. Set Σ1 ← g3 and Σ2 ← g

x+y1a′0
∗

3 g
skid∗0
4 . Compute

a simulated proof π of knowledge of µskid∗0 and a′0
∗ by programming

H1. Return σ ← (Σ1,Σ2, π).
Note that if β = 1, then the σ has the same distribution as the chal-
lenge signature computed by C0, whereas in case β = 0, Σ2 is uniformly
random in G∗, and therefore σ has the same distribution as the signa-
ture computed by H.

If β = 1 then algorithm B is perfectly indistinguishable from C0, and if
β = 0 then it is perfectly indistinguishable from H. The advantage of B in
the DDH game is then at least ε.
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It follows that

ε ≤|ID|2AdvDDH−1
G,B(A) (λ) + 8p

p− 1 |ID|AdvSDL
G,B(A) (λ)

+ |ID|(qH1 + 1)
p

+ nO|ID|AdvDDH−2
G,λ (B(A)) .

Similarly, if A can distinguish H from C1, then B (by using gsk[id∗1]
instead of gsk[id∗0] for the challenge query) wins the DDH game with prob-
ability at least ε.

Therefore,

Advano
G,PS-DGS,nI ,nO,tI ,tO,A (λ) /2|ID| ≤|ID|AdvDDH−1

G,B(A) (λ) + 8p
p− 1AdvSDL

G,B(A) (λ)

+ (qH1 + 1)
p

+ nOAdvDDH−2
G,B(A) (λ)

and the theorem follows.

Theorem 4.3.8 (Traceability). Denoting by qH0 the number of H0 queries,
scheme PS-DGS satisfies traceability under the qH0-MSDH-1, the ADH-KE
and the SDL assumptions over the pairing-group generator G for any tI <
nI/2, tO < nO and t∗O = min(tO, nO − tO − 1).

Proof. The proof consists in reducing the traceability of DGS to the existen-
tial unforgeability of the PS signature scheme. As its unforgeability relies
on the qH0-MSDH-1 assumption, the theorem follows. (Notice that GJoin.U,
GJoin.Ii and GOpen queries induce H0 queries.)

The proof idea is to apply the forking algorithm of the generalized forking
lemma (Lemma 4.1.8) to an algorithm A′ that runs A as a subroutine in
order to obtain two distinct group signatures from which a PS signature
forgery can be computed.

Suppose that there exists an adversary A that wins the
(nI ,nO

tI ,tI
)
trace-

ability game for DGS with probability at least ε and in time τA. Further
assume that p > 8qH1/ε.

We first define A′ and then a reduction algorithm B that interacts with
the forgery-game challenger C for PS and applies the general forking lemma
to A′ to win the forgery game.
A′ is an algorithm that runs on the input of public parameters pp as in

the scheme, of a public key (X̃ , Ỹ0, Ỹ1) for the PS signature scheme and of
a random tape ρ.

Throughout its interaction with A, algorithm A′ maintains the same
global variables as the challenger of the traceability game. It initializes a
counter ctr ← 0 and sets QH1 ← ∅.

Throughout the experiment, A′ answers random-oracle queries as fol-
lows:
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• H0(id) : forward the query to B.

• H1(b ∈ {0, 1}∗) : if (b, ∗) /∈ QH1 then generate c ∈R Zp, do ctr ←
ctr + 1, add (b, c, ctr) to QH1 and return c; else retrieve (b, c, ι) from
QH1 and return c.

At the beginning of the experiment, A′ runs three times the simulator
of key-generation protocol of Gennaro et al. with A on each X̃ , Ỹ0 and
Ỹ1 respectively, and plays the role of the honest issuers. At the end of
the protocol executions, all honest issuers return an issuer public key ipk.
Moreover, as there are at least tI + 1 honest issuers, so A′ can reconstruct
the share xi, yi,0 and yi,1 of the dishonest issuers. Let X̃ ′, Ỹ ′0 and Ỹ ′1 be
the group elements defined by the shares generated during the simulation,
i.e., X̃ ′ = g̃

∑
i∈I xiwi (and x′ := ∑

i∈I xiwi) for any set I ∈
(JnIK

tI+1
)
, where wi

is the Lagrange interpolation coefficient at position i; and similarly for Ỹ ′0
and Ỹ ′1.

For each of the honest openers, A′ generates a pair of keys as in the
scheme.

Algorithm A′ then answers oracles queries as follows (if a check fails or
if it ever aborts, A′ returns (∅, ∅, ∅)):

◦ GJoin.U(id, I) : check that I ∈
(JnIK

tI+1
)
. Add id to QGJoin. A GJoin

execution is triggered. Play the role of the user and of the honest
issuers with the shares generated by the simulator of the distributed
key-generation protocol.
Upon receiving signature shares Σ2,i from each of the corrupt issuers
played by the adversary, test whether the equality

e
(
Σ1, X̃ ′Ỹ

′skid
0 Ỹ ′a′

1

)
= e

(∏
i∈I

Σwi
i,2, g̃

)

holds, i.e., test whether the signature is valid for the key (X̃ ′, Ỹ ′0, Ỹ ′1).
If not, abort the protocol, otherwise make a signing query to C on sk
and receive a signature Σ = (a′,Σ1,Σ2). Note that Σ2 6=

∏
i∈I Σwi

2,i
with overwhelming probability, because of the simulator of the key-
generation protocol. Follow the joining protocol and set gsk[id] ←
(sk,Σ). Note also that even if A causes the protocol to abort, or delays
or drops messages, B has already added to QGJoin at the beginning of
the protocol.

◦ GJoin.Ii(id, I) : check that i ∈ I ∈
(JnIK

tI+1
)
. Adds id to QGJoin and

QCorrupt. A GJoin protocol execution is triggered. Play the role of the
honest issuers.
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Upon receiving written from the user played by A, parse L[id] as in
the protocol. Make an internal query (a′, h) ← H0(id). Perform the
same verifications as in the real scheme for each of the honest issuers.
If the verification of the proof on the encrypted shares holds but that
the shares are not actually valid i.e., the soundness of the NIZK proof
was broken, abort the protocol and return (∅, ∅, ∅). Note since there
are at least tO + 1 honest openers, A′ can test whether the shares are
valid as it then has enough shares to recompute the user polynomial.
If the verification FS .Vf(g, h, gsk , hsk , π) ?= 1 succeeds, then (g, gsk , h, hsk)
is a Diffie–Hellman tuple. Run skid ← Ext(Γ, g, gsk , h, hsk). Abort the
interaction with A if the extraction fails. Unless A can solve the
discrete-logarithm problem in G, which occurs only with negligible
probability under the SDL assumption over G (which is itself implied
by the q-MSDH-1 assumption), skid = dlogg(gsk) = dlogh(hsk). If
the equality does not hold, then abort the interaction with A. Oth-
erwise, make a signing query on skid to C and receive a signature
Σ = (a′,Σ1 = h,Σ2).
For the honest issuers j 6= i, compute Σ2,j ← hxj+yj,0skid+yj,1a′ .
For issuer i, compute

Σ2,i ←

Σ2
∏

j∈I\{i}
Σ−wj2,j

1/wi

= h(x−x′+(y0−y′0)skid+(y1−y′1)a′)/wi+xi+yi,0skid+yi,1a′ .

Follow the rest of the protocol.
Note that even if A causes the protocol to abort, or delays or drops
messages, A′ has already added to QGJoin and QCorrupt at the beginning
of the protocol. It implies that if B has made a signing query on an
identity id, then id ∈ QGJoin.

◦ GSign(id,m) : check that id ∈ QGJoin \ QCorrupt. Compute σ ←
GSign(ipk,gsk[id],m). Add (id,m, σ) to QGSign. Return σ.

◦ GOpeni(O,m, σ) : (for i ∈ HM) check that i ∈ O ∈
(JnOK

tO+1
)
. Add

(m, σ) to QGOpen. Play the role of the honest openers in I and follow
the protocol.

◦ RevealU(id) : add id to QRevealU. Returns gsk[id].

◦ ReadReg(i, id) : return regi[id].

In the event in which A wins the game, it ultimately outputs a tu-
ple (O∗,m∗, σ∗). Algorithm A′ verifies that O∗ /∈

({t∗O+1,...,nO}
tO+1

)
and that
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GVerf(ipk,m∗, σ∗) = 1. If A does not output such a tuple or if the verifica-
tions fail, then A′ returns (∅, ∅, ∅), otherwise it runs

〈{id∗i }i∈O∗〉 ← 〈{GOpen(regi, oski, O∗, gpk,m∗, σ∗)}i∈O∗〉.

By Lemma 4.3.5, for all i, j ∈ O∗, id∗i = id∗j .
Moreover, since for each honest opener, any id for which regi[id] 6= ⊥

is such that id ∈ QGJoin (for A′ starts by adding to QGJoin the identity of
any joining query), it is impossible that the opening algorithms return an
identity that is not in QGJoin. That is, setting id∗ ← maxO∗, if id∗ 6= ⊥,
then id∗ ∈ QGJoin necessarily.

The winning conditions thus imply that in the event in which A wins the
traceability game, either id∗ = ⊥, or id∗ ∈ QGJoin\QCorrupt and (id∗,m∗, σ∗) /∈
QGSign.

By Lemma 4.3.6, (id∗,m∗, σ∗) /∈ QGSign, i.e., the second case occurs with
negligible probability under the SDL assumption.

If A did not win the traceability game, A′ returns (∅, ∅, ∅). Otherwise,
parsing σ∗ as (Σ∗1,Σ∗2, π∗ = (c∗, v∗sk , v

∗
a′)), let ισ∗ be the computation step at

which A queried H1 on bσ∗ ← (ipk,Σ∗1,Σ∗2, u∗,m∗) with

u∗ := e
(
Σ∗1

v∗sk , Ỹ0
)
e
(
Σ∗1

v∗
a′ , Ỹ1

)
e
(
Σ∗1
−c, X̃

)
e (Σ∗2

c, g̃1) ,

be it the step at which it outputs the forgery, i.e., (bσ∗ , c∗, ισ∗) ∈ QH1 .
Algorithm A′ returns ({ισ∗}, σ∗, ∅).

Set

ε̃← ε− |ID|
(
AdvADH−KE

G,λ (B(A)) + AdvDLOG−1
G,λ (B(A))

)
− 8p
p− 1 |ID|AdvSDL

G,B(A) (λ)− |ID|(qH1 + 1)
p

− nO|ID|AdvDDH−2
G,B(A) (λ) .

It is a lower bound on the probability that A wins the traceability
game for DGS, that A′ never aborts during GJoin execution (prompted by
a GJoin.Ii query) due to extraction failure of a user secret key and that the
identity output by the honest openers at the forgery phase is ⊥.

Let then B be an algorithm that runs A′ as subroutine and interacts
with the forgery-game challenger C for PS.

Upon receiving ppPS and vk from the challenger, B generates g ∈R G∗
and sets pp ← (ppPS, g, nI , nO, tI , tO). It then runs A′ on the input of pp,
(X̃ , Ỹ0, Ỹ1) and a uniformly random tape ρ.

Throughout its interaction with A′, algorithm B answers random-oracle
queries as follows:

◦ H0(id) : if (id, ∗) /∈ QH0 then forward the query to C, receive (a′, h),
add (id, (a′, h)) to QH0 and return (a′, h); else retrieve (id, (a′, h)) from
QH0 and return (a′, h).
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Recall that p > 8tqH1/ε by assumption. With probability at least
ε̃/8 and with running time at most 8qH1/ε̃ · ln(8/ε̃) · τA, the forking algo-
rithm of the generalized forking lemma (Lemma 4.1.8) applied to A′ returns
({ισ∗}, {σ∗}, {σ∗′}) with σ∗ and σ∗′ as group-signature forgeries that open
to ⊥. The lemma ensures that for σ∗ = (Σ∗1,Σ∗2, π∗ = (c∗, v∗sk , v

∗
a′)) and σ∗′

similarly parsed, the computation step at which the challenges c∗ and c∗′

were computed are the same, and those challenge are distinct modulo p.
As the inputs to A and its randomness are identical until that H1 query,

Σ∗1 = Σ∗1′, Σ∗2 = Σ∗2′, u∗ = u∗′ and m∗ = m∗′ necessarily. It follows that

e

(
Σ∗1, Ỹ

(v∗sk−v
∗
sk
′)/(c∗′−c∗)

0 Ỹ
(v∗
a′−v

∗
a′
′)/(c∗′−c∗)

1

)
= e(Σ∗2, g̃1)e(Σ∗1, X̃)−1.

Set sk∗ ← (v∗sk − v∗sk
′)/(c∗′ − c∗), a′∗ ← (v∗a′ − v∗a′

′)/(c∗′ − c∗) and Σ∗ ←
(a′∗,Σ∗1,Σ∗2). The latter is then a valid multi-signature on sk∗.

However, no honest issuer ever signed sk∗ as there would otherwise exist
an identity id∗ 6= ⊥ such that regi[id∗] = s∗i for all opener i ∈ O∗ and
sk∗ = ∑

i∈I∗ s
∗
iwi. It is the case since in each execution of GOpen, the

openers always start by updating their registers. That identity id∗ would
have then be returned by the honest openers.

Algorithm B then sends sk∗ and Σ∗ to C as forgery and wins the exis-
tential forgery game for PS with probability at least ε̃/8. Therefore,

Advtrace
G,DGS,N,t,A (λ) ≤ 8AdvEUF−CMA

G,PS,1,A (λ)

+ |ID|
(
AdvADH−KE

G,B(A) (λ) + AdvDLOG−1
G,B(A) (λ)

)
+ 8p
p− 1 |ID|AdvSDL

G,B(A) (λ) + |ID|(qH1 + 1)
p

+ nO|ID|AdvDDH−2
G,B(A) (λ)

As the first-group discrete logarithm and the SDL assumptions are both
implied by the qH0-MSDH-1 assumption, the theorem follows.

Discussion.

The anonymity of the scheme is only guaranteed if less than half of the
issuers are corrupt, and not all as one would hope. One reason is that the
generation of the issuer keys is interactive, so for the protocol to terminate,
there cannot be a dishonest majority. Another reason is that the reduction
to the DDH requires to know all issuer secret keys which are shares of the
PS secret key obtained during the key-generation protocol. To be able to
reconstruct the shares of the corrupt issuers, the number n − t∗I of honest
issuers must be greater than t∗I .

Concerning traceability, it requires the number of corrupt openers not
only to be smaller than nO − tO − 1 as explained in Section 4.2, but also
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Scheme Sig. Size Sign Verify
PS-DGS [Section 4.3] 2G + 3Zp 4G + 1P 2 4G + 1P 4

PS [PS16] 2G + 2Zp 2G + 1GT 3G + 1P 3

Bichsel et al. [BCN+10] 3G + 2Zp 3G + 1GT 1G + 1G2 + 2P 2

CL [CL04,GGI19] 7G + 4Zp 11G + 1G2 + 1G2
T

1G + 2G2 + 2G3

+1G̃2 + 2P 2

BBS* [BCN+10,GGI19] 4G + 5Zp 5G + 3G2 + 1G5
T

4G2 + 1G3 + 1G4

+1P 2

Coconut [SABD18] 3G + 1G̃ + 3Zp 4G + 1G̃3 + 1G̃2 1G + 1G2 + 1G̃4

+P 2

Table 4.1: Comparison of the PS-DGS scheme with other schemes in terms
of signature sizes, and the cost to compute and verify signatures. For the
signing and verification costs, G` indicates an `-exponentiation in G, and
similarly for G̃ and GT . P denotes the number of pairing computations
required, and P ` stands for the product of ` pairing values, which is more
efficient than computing ` pairings separately.

smaller than tO. It is due to the fact that even though the openers are
separate from the issuers, they must still obtain user secret key shares from
the joining protocol to be able to open signatures. In this sense, opening is
not completely independent of issuance, and it is precisely what allows the
signatures of the scheme to be so short. This constraint on the number of
corrupt openers appears in the proof of Lemma 4.3.6 in which the forked
algorithm must simulate shares of user secret keys, and it can only do so if
at most tO openers are corrupt since the opening threshold is tO + 1.

Efficiency.

On a Cocks–Pinch pairing curve [GMT19] defined over a field of order 2544

and with embedding degree 8, group elements in G take 68 Bytes for a group
of 256-bit order. Note that this curve provides 131 bits of security [GMT19].

A group signature from the above scheme consists of two G elements
and three Zp elements, totalling 232 Bytes. The hash value in the proof of
knowledge of a multi-signature can actually be shortened to second-preimage
resistant length, further shortening a group signature to 216 Bytes.

Considering only group operations, computing a signature costs 4 expo-
nentiations in G and the product of 2 pairing values. Verifying a signature
costs 4 exponentiations in G and the multiplication of 4 pairing values.

Comparison with other Schemes.

Table 4.1 gives a comparison of our threshold DGS scheme of with other
CCA-anonymous dynamic group signatures schemes based on pairings. Lattice-
based schemes are absent from the table since have considerably larger signa-
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tures than pairing-based ones, and are therefore less preferred for practical
applications.

Note that unlike the scheme of Bichsel et al. [BCN+10] and the scheme of
Pointcheval and Sanders [PS16, Appendix A.1], our scheme supports thresh-
old issuance and threshold opening, and does not rely on an interactive
assumption, but rather a q-type of assumption.

The table features the CL and BBS* scheme. As explained in the in-
troduction, Gennaro et al. extended [GGI19] those schemes to make them
support threshold issuance. Since those schemes follow the sign-and-encrypt
paradigm, the CL and BBS* scheme also easily allow for threshold opening.
Note that generating the decryption key in a distributed and robust way
(e.g., with the protocol of Gennaro et al.) would require an honest majority
of openers. However, the security guarantees of those schemes in a threshold
setting are unclear since Gennaro et al. did not provide a formal model for
threshold group signatures schemes.

The table also includes the “Coconut” credential system which is based
on the CT-RSA16 version of the PS signature scheme. The first reason
is that their system and our scheme are related as presenting a credential
consists in proving that a user knows a signature from an authority on her
attributes. It is also how our group signatures are computed. It should be
noted that the verification of a coconut token involves a multiplication in
G, which is approximately as expensive as a squaring, so it was counted
as an exponentiation. Their system is further related to ours in that it
supports threshold issuance. However, since it is a credential system, there
is no need for opening, and it therefore avoids the challenge of also achieving
(threshold) opening while maintaining signatures short. Besides, the authors
did not provide a security model to analyze their scheme.

One can see that, except for the PS group signatures (of which the non-
threshold traceability relies on an interactive assumption) which are not
defined in a threshold setting, the signatures of our scheme are the shortest.
Indeed, even when compared to the signatures of Bichsel et al. [BCN+10],
our signatures are shorter since Zp elements are typically shorter than G
elements.

4.4 Threshold Group Signatures without Ledger

The construction in Section 4.3 requires an append-only ledger for users
to communicate their secret-key shares to the openers. Such ledgers can be
implemented in practice, but it is yet an additional assumption. This section
thus proposes a scheme that does not require a ledger. However, this comes
for the price of combining the roles of issuer and opener, as it is the case in
some of the prior models for group signatures [BS04,CG05,BCN+10,PS16].
The authorities are now referred to as managers, and suppose that there are
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n of them.
For the sake of simplicity, assume now that the issuance and opening

thresholds are the same and denote it t. However, instead of having the
same threshold for corruption, one could define (t, tc)-out-of-n threshold
group signatures as group signatures with n managers, of which t + 1 must
collaborate to add a user or to open a signature, and of which at most tc can
be corrupt. Defining a separate corruption threshold gives the flexibility to
corrupt some managers, but not too many so that any two sets of t have
at least one honest manager in common. This property ensure that any
manager who did not add a user can recover her secret-key shares from an
honest manager who added her when a signature is to be opened.

In this model, the main changes from the previous construction are as
follows.

Key Generation. The managers now simply generate ElGamal keys sep-
arately and run the distributed key-generation protocol of Gennaro
et al. [GJKR99] to generate PS keys. They use t as reconstruction
threshold and tc as corruption threshold.
Note that the original protocol of Gennaro et al. does not distinguish
the reconstruction from the corruption threshold. However, their pro-
tocol can be adapted to a setting with two thresholds. It remains
secure and robust (i.e., it terminates) as long as the number of honest
parties (at least n − tc) is greater than the reconstruction threshold
(t in the present case), so that the honest parties can reconstruct the
shares of qualified participants who received a valid complaint during
the extraction phase [GJKR99, Fig. 2]. The two thresholds t and tc
must only satisfy n− tc > t.

Join. As before, the user encrypts a t-out-of-n Shamir share of skid for
each manager, even for the non-participating ones, and proves the
validity of the ciphertexts. Each participating manager then verifies
the correctness of the proofs. The difficulty is to ensure that the non-
participating managers indeed get those ciphertexts now that there is
no ledger.
Assuming t ≥ (n + tc − 1)/2 (≥ tc), any two manager sets I and J
of size t + 1 have an intersection I ∩ J of size |I| + |J | − |I ∪ J | ≥
2(t +1)−n ≥ tc+1. It means that for every group member, any set of
t + 1 managers will always contain at least one honest manager that
added her.
To ensure that the non-participating managers can later recover the
shares, it suffices to have each manager in the joining protocol sign
the encrypted shares of the user secret key with a multi-signature
scheme (BLS [BDN18, Section 3.1] for instance) after verifying the



76 4.5 Pointcheval–Sanders Multi-Signatures

shares. Each manager then saves the shares and their multi-signatures
in registers.

Update Registers. Afterwards, any set of t +1 managers can synchronize
their registers and retrieve shares of every group-member secret key
by first broadcasting the list of users they added. Next, turn by turn
in lexicographic order, they broadcast the encrypted shares and multi-
signatures for each user such that there is a manager who did not add
her, and for which shares with a valid multi-signature have not not
been broadcast yet.
Since t ≥ tc, a valid multi-signature by t + 1 managers on a set of
shares implies that at least one honest manager has signed them (after
verifying them), so they are authentic. The managers can then update
their registers by decrypting the shares they receive. Moreover, for
every group member, the set of t + 1 managers that added her has at
least tc+1 managers in common with the t +1 managers synchronizing
their registers. Therefore, at least one honest manager will broadcast
valid shares of her secret key, and each manager is guaranteed that his
register now contains a valid secret-key share for every user that was
ever added.

Sign&Verify. Computing and verifying signatures are done as in the Sec-
tion 4.3 construction.

Open. As for opening, after synchronizing their registers, the managers
participating in the opening protocol proceed as before.

Overall, the scheme is secure if n− tc > t ≥ (n+ tc−1)/2 (which implies
tc < min(t, n/3)). An interpretation of these bounds is that the joining
threshold should be large enough so that for every group member, any set
of openers contains at least one honest manager who added her, but not too
large for the honest managers to be able to securely generate issuance keys.

4.5 Pointcheval–Sanders Multi-Signatures
This section introduces a novel multi-signature scheme based on the CT-
RSA’18 version of the Pointcheval–Sanders signature scheme. It is the main
building block of the scheme presented in Section 4.6. The CT-RSA’18 ver-
sion of the PS signature scheme is referred to as the modified PS scheme,
and the unforgeability proof of the multi-signature scheme makes a gradual
reduction starting from the original PS signatures, i.e., the CT-RSA’16 ver-
sion [PS16]. The core difference between the original and modified versions
of PS signatures is that the original one can only be proved to be weakly
unforgeable from the q-MDSH-1 assumption, whereas the modified scheme
leverages an extra scalar to lift the security to standard unforgeability.
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For each version of their signatures, Pointcheval and Sanders also dis-
tinguish the single-message variant that allows to sign a single message in
Zp from the multi-message variant that allows to sign blocks of messages.
This distinction is also made for PS multi-signatures and is further relevant
in the unforgeability proof.

The modified PS signature scheme can be turned into a multi-signature
scheme by having each signer generate her pair of keys separately. However,
to produce a signature for a given message, the signers need to agree on
a common base h and a common extra-message m′. They can do so by
hashing the message to be signed with a random oracle H0 : Zkp → Zp ×G∗
to obtain these1. Moreover, to securely aggregate keys, as for BLS multi-
signatures [BDN18], another random oracle H1 : G̃n(k+2) → Θn ⊆ Znp (with
1/|Θ| negligible in λ) is introduced.

Given a type-3 pairing-group generator G and a security parameter λ ∈
N, the (modified) PS (multi-message) multi-signature scheme in a pairing
group Γ =

(
p,G, G̃,GT , e

)
← G(1λ) consists of the following algorithms:

PSM.Setup(1λ, n, k,Γ)→ pp : generate g ∈R G∗, g̃ ∈R G̃∗ and return pp ←
(Γ, g, g̃, n, k). Integer n is the number of signers, and k is the number
of messages to be signed.

PSM.KG(pp)→ (vk, sk) : generate x, y1, . . . , yk+1 ∈R Z∗p, compute X̃ ← g̃x,
Ỹj ← g̃yj for j ∈ [k + 1], and set vk ←

(
X̃ , Ỹ1, . . . , Ỹk+1

)
, sk ←

(x, y1, . . . , yk+1). Return (vk, sk).

PSM.KAggreg
(
vk1, . . . , vkn

)
→ avk : compute (t1, . . . , tn)← H1(vk1, . . . , vkn)

and return avk ←
∏n
i=1 vktii .

PSM.Sign
(
sk,m = (m1, . . . ,mk)

)
→ σ : compute (m′, h) ← H0(m) ∈ Zp ×

G∗ and return σ ←
(

m′, h, hx+
∑k

j=1 yjmj+yk+1m′
)
.

PSM.SAggreg((vki)ni=1,m, (σi)ni=1)→ σ : parse σi as (m′i, σi,1, σi,2) for i ∈
JnK. If m′1 = · · · = m′n and σ1,1 = · · · = σn,1, compute (t1, . . . , tn) ←

H1(vk1, . . . , vkn) and σ2 ←
∏n
i=1 σ

ti
i,2 = σ

ξ+
∑k

j=1 ujmj+uk+1m′

1,1 , with
ξ = ∑n

i=1 xiti, uj = ∑n
i=1 yi,jti for j ∈ [k] and uk+1 = ∑n

i=1 yi,k+1ti.
Return σ ←

(
m′1, σ1,1, σ2

)
. Otherwise, return ⊥.

PSM.Vf
(
avk,m = (m1, . . . ,mk), σ

)
→ b : parse σ as (m′, σ1, σ2). If σ1 6= 1G1

and e
(
σ1, X̃

∏k
i=1 Ỹmi

i Ỹ m′
k+1

)
= e(σ2, g̃) then return 1, else return 0.

1 Note that Pointcheval and Sanders already suggested [PS18, Section 4.3] to use a ran-
dom oracle to generate m′ deterministically in their single-signer signature scheme. Using
a hash function to generate h is a variation of this idea which has also been considered by
Sonnino et al. [SABD18], but with the original PS signature scheme and without proving
that the scheme remains secure.
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Remark 4.5.1. Note that the original PS signature scheme can also be
turned into a multi-signature scheme in the random oracle model in the
same way, except for m′ which is omitted.

Theorem 4.5.2. In the random oracle model, denoting by qH0 the maximum
number of H0 oracle queries, the PS multi-signature scheme in a pairing
group generated by G is EUF-CMA under the qH0-MSDH-1 assumption over
G.

Proof. Similarly the proof [PS18, Section 5] of the existential unforgeability
under CMA of the modified PS multi-message signature scheme, this proof
is in two steps. First, the original single-message multi-signature scheme is
proved to be EUF-wCMA secure under the qH0-MSDH-1 assumption (this
proof requires the following rewinding lemma, then the existential unforge-
ability of the modified multi-message multi-signature scheme under adaptive
CMAs is reduced to the weak existential unforgeability of the original single-
message multi-signature scheme (notice that each signing query implies an
H0 query). The fact that the qH0-MSDH-1 assumption implies the SDL
assumption then implies the theorem.

Lemma 4.5.3 (Rewinding Lemma [BS17, Variant of Lemma 19.2]). Let S,
Θ and T be non-empty finite sets. Consider a function f : S×Θ×T → {0, 1}.
Let X, Y , Y ′, Z and Z ′ be mutually independent random variables such that
X takes values in S, Y and Y ′ take values in Θ, and Z and Z ′ take values
in T . Setting ε = Pr[f(X,Y, Z) = 1],

Pr[f(X,Y, Z) = 1, f(X,Y ′, Z ′) = 1, Y 6= Y ′] ≥ ε2 − ε/|Θ|.

Lemma 4.5.4. In the random oracle model, denoting by qH0 the amount of
non-adaptive signing queries, the original PS single-message multi-signature
scheme is EUF-wCMA secure under the qH0-MSDH-1 assumption.

Proof. For λ ∈ N, consider a pairing group Γ← G(1λ). Suppose that there
exists an efficient adversary A that wins the weak existential unforgeability
game with at most one query to oracleH1 (the general case will be considered
further) with probability at least ε. Consider a reduction algorithm B which
runs A as a subrountine and receives a q-MSDH-1 instance from a chal-
lenger, i.e., receives two tuples

(
gx

`
, g̃x

`
)q
`=0
∈ (G∗)q+1 and (ga, g̃a, g̃ax) ∈

G∗ × (G̃∗)2. Algorithm B has to output a tuple
(
w,P, h1/x+w, ha/P (x)

)
with h ∈R G∗, P a polynomial in Zp[X] of degree at most q and w ∈ Zp
such that the polynomials X + w and P are coprime. At the beginning of
the weak unforgeability game, adversary A sends to B a tuple of messages
(w1, . . . , wq) ∈ Zqp for which it expects signatures. B computes group el-
ements G ← g

∏q

`=1(x+w`) and G̃ ← g̃
∏q

`=1(x+w`), and sends (G, G̃, n, 1) to
adversary A as public parameters. A sends the index i∗ ∈ JnK of a target
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(honest) signer. B sets X̃i∗ ← g̃ax and Ỹi∗ ← g̃a, and outputs
(

X̃i∗ , Ỹi∗

)
as

the verification key of signer i∗. Notice that this implicitly sets

xi∗ = ax∏q
`=1(x+ w`)

, yi∗ = a∏q
`=1(x+ w`)

.

For ` = 1, . . . , q, algorithm B computes a signature on w` as follows: it
generates t` ∈R Z∗p, and computes and stores

σ` = (σ`,1, σ`,2) =
((

g
∏
r 6=l(x+wr)

)t`
, (ga)t`

)
.

Algorithm B can compute σ` from the q-MSDH-1 instance as the discrete
logarithm of σ`,1 to base g is a polynomial of degree q − 1 in x and σ`,2 is a
single exponentiation of ga. Note that

σ
xi∗+yi∗w`
`,1 =

(
G

t`
x+w`

) ax+aw`∏q

`=1(x+w`) =
(
G

t`
x+w`

) a∏
r 6=l(x+w`)

= gat` = σ`,2,

and thus σ` is a valid signature on w` for the verification key
(

X̃i∗ , Ỹi∗

)
.

Algorithm B then returns σ1, . . . , σq to adversary A.
Whenever adversary A queries random oracle H0 on a message m, algo-

rithm B checks whether m ∈ {w`}q`=1. If m = w` for some ` ∈ JqK, algorithm
B returns σ`,1 as an answer to the random oracle query, otherwise if m has
not been queried before, it generates, stores and returns h ∈R G∗, otherwise
(m is none of the w` and has been queried before), algorithm answers the
query as it priorly did.

Whenever A makes its (unique) query to oracle H1 on (vk1, . . . , vkn) ∈
G̃2n, algorithm B generates and returns (t1, . . . , tn) ∈R Θn. Adversary A
eventually outputs a list of verification keys

(
X̃i, Ỹi

)
i 6=i∗

and a valid forgery
σ on a message w /∈ {w`}q`=1. If the unique query of A to H1 is not such
that vki =

(
X̃i, Ỹi

)
for i = 1, . . . , n, then the forgery can be valid with

probability at most 1/|Θ|, in which case algorithm B returns ⊥ to the q-
MSDH-1 challenger. Otherwise (the query to H1 is as such), as σ is a valid
forgery, σ1 6= 1G and

e

(
σ1,

n∏
i=1

X̃ ti
i · Ỹ

wti
i

)
= e

σ1,
∏
i 6=i∗

X̃ ti
i Ỹwti

i

 e (σ1, X̃ ti∗
i∗ Ỹwti∗

i∗

)
= e

(
σ2, G̃

)
.

Algorithm B then rewindsA to the computation step at which it made its
query toH1. Algorithm B generates t′i∗ ∈R Θ and replies with (t1, . . . , ti∗−1, t

′
i∗ ,
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ti∗+1, . . . , tn). Adversary A can make queries anew, and if it eventually out-
puts another forgery σ′, then σ′1 6= 1G and

e

σ′1, ∏
i 6=i∗

X̃ ti
i Ỹwti

i

 e(σ′1, X̃ t′
i∗
i∗ Ỹwt′

i∗
i∗

)
= e

(
σ′2, G̃

)
.

On that account,

e

(
σ
′t′
i∗

1 /σ
ti∗
1 , X̃i∗Ỹw

i∗

)
= e

(
σ′2/σ2, G̃

)
,

so
e

(
σ
′t′
i∗

1 /σ
ti∗
1 , g̃a(x+w)

)
= e

(
σ′2/σ2, g̃

∏q

`=1(x+w`)
)
.

It follows that
(
σ
′t′
i∗

1 /σti∗ , σ′2/σ2

)
is then of the form

(
hx+w, h

a∏q

`=1(x+w`)

)
.

Setting P = ∏q
`=1(x + w`), note that P is coprime with (X + w) as

w /∈ {w`}q`=1. Algorithm B then returns the tuple
(
w,P, σ

′t′
i∗

1 /σti∗ , σ′2/σ2

)
and wins the q-MSDH-1 challenge. The rewinding lemma (Lemma 4.5.3)
implies that adversary A outputs another forgery with probability at least(
ε2−ε/|Θ|

)
by considering (for the application of the lemma)X as the inputs

of A (including its random tape) up to its to query to H1 in the first run and
its response, excluding ti∗ ; Y and Y ′ as ti∗ and t′i∗ respectively; Z and Z ′ as
the inputs given to A strictly after the query to H1 in the first and second
run respectively; f as the function which outputs 1 if A outputs another
forgery and 0 otherwise. If adversary A does not output another forgery,
B returns ⊥. It follows that algorithm B wins the q-MSDH-1 challenge
with probability at least

(
1− 1/|Θ|

)(
ε2 − ε/|Θ|

)
. As 1/|Θ| is negligible, if ε

were non-negligible, B would win the q-MSDH-1 game with non-negligible
probability: a contradiction. Such an adversary A can therefore not exist.

In the general case, i.e., for an adversary which makes qH1 > 1 queries
to H1 and wins the weak forgery game with probability ε, there exists an
adversary A′ which runs A as a subroutine, makes only one query to H1,
and wins the q-MSDH-1 challenge with probability at least ε/qH1 . Indeed,
consider A′ an algorithm which chooses uniformly at random one of the
qH1 queries to H1 and forwards it to the challenger, and replies to the rest
of the H1-queries with by choosing uniformly random values itself. It also
forwards to the challenger all the other type of queries that A makes. When
A outputs a forgery together with a list of public keys, if those latter are the
ones in the query A′ chose to forward, A′ submits the forgery, otherwise it
returns ⊥. Algorithm A′ then wins the weak forgery game with probability
at least ε/qH1 . Therefore, if there exists an efficient adversary A that wins
the weak forgery game with probability at least ε by making q non-adaptive
signing queries and qH1 queries to oracleH1, there exists an algorithm B with
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running time essentially twice that of A, which wins the q-MSDH-1 game
with probability at least

(
1− 1/|Θ|

)(
ε2− ε/|Θ|

)
/qH1 . Under the q-MSDH-1

assumption, ε must be negligible, and the PS single-message multi-signature
is thus EUF-wCMA secure.

Lemma 4.5.5. If the SDL assumption holds over the group-generator G and
the PS single-message multi-signature scheme is EUF-wCMA secure, then
the modified PS multi-message multi-signature scheme is EUF-CMA secure.

Proof. The proof consists in showing that if there exists an efficient algo-
rithm that can win the forgery game for the modified PS k-message multi-
signature scheme, then, if the SDL assumption holds, there exists an efficient
algorithm that can win the weak forgery game of the original single-message
signature-scheme. Let A be an adversary that wins the forgery game for the
modified PS k-message multi-signature scheme, for an integer k ≥ 1, with
a non-negligible probability ε. As a signing query implies a query to H0,
adversary A makes at most qH0 signing queries. For ` ∈ JqH0K, denote by
m` = (m`,1, . . . ,m`,k) the messages for which A makes a signing query. Un-
der the SDL assumption, if i∗ is the index of the target (honest) signer, then
the message m = (m1, . . . ,mk) for which A outputs a forgery is such that∑k
j=1 yi∗,jmj + yi∗,k+1mk+1 6=

∑k
j=1 yi∗,jm`,j + yi∗,k+1m`,k+1 for ` ∈ JqH0K (if

` if strictly greater than the number of signing queries, set m` = ⊥).
Indeed, would it not be the case, consider a algorithm B which runs A as

a subroutine and interacts with an SDL challenger which outputs an instance(
g, g̃, Y = gy, Ỹ = g̃y

)
. Given a target (honest) signer index i∗ ∈ JnK from

A, algorithm B generates xi∗ ∈R Zp and aj , bj ∈R Zp for j = 1, . . . , k + 1,
and sets and sends X̃i∗ = g̃xi∗ , Ỹi∗,j = g̃aj Ỹ bj for j = 1, . . . , k + 1 to A. It
implicitly sets yi∗,j = aj + ybj .

To answer H1 queries, B chooses uniformly random values. To answer
the `-th H0 query on a new message m`, algorithm B prepares and stores a
signature on m`, i.e., generates m′`, t` ∈R Zp, sets σ`,1 ← gt` and

σ`,2 ←
(
g
xi∗+

∑k

j=1 ajm`,j+ak+1m′` · Y
∑k

j=1 yjm`,j+yk+1m′`
)t`

= σ
xi∗+

∑
j
yi∗,jm`,j+y`,k+1m′`

`,1 .

Algorithm B then replies with σ`,1. Later, if A makes a signing query on
m`, algorithm B replies with (m′`, σ`,1, σ`,2). If A makes a signing query on a
message m for which it has not made a H0-query yet, algorithm B proceeds
as before but also outputs the signature instead of only storing it. If A
makes a H0-query for a message for which it has already made a signing or
H0 query, algorithm B answers as it priorly did.

When A eventually outputs a forgery (m′, σ1, σ2) on a message m such
that ∑k

j=1 yi∗,jmj + yi∗,k+1mk+1 = ∑k
j=1 yi∗,jm`,j + yi∗,k+1m`,k+1 mod p for
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some ` ∈ JqH0K and a message m` for which it has made a signing query,
then

g̃
∑k

j=1 aj(mj−m`,j)+ak+1
(

m′−m′`,j
)

= Ỹ
∑k

j=1 bj(mj−m`,j)+bk+1
(

m′−m′`,j
)
.

Since the distribution of the bj values conditioned on the input of adversary
A is uniformly random (because of the aj values), ∑k

j=1 bj (mj −m`,j) +
bk+1 (m′− m′`,j

)
= 0 mod p with probability 1/p. Consequently, algorithm

B wins the SDL challenge with probability at least (1−1/p)ε, which is non-
negligible and the SDL assumption is thus contradicted. It follows that if
the SDL assumption holds, then the message m = (m1, . . . ,mk) for which
A outputs a forgery is necessarily such that ∑k

j=1 yi∗,jmj + yi∗,k+1mk+1 6=∑k
j=1 yi∗,jm`,j + yi∗,k+1m`,k+1 for ` ∈ JqH0K.
Consider then an algorithm B which runs A as a sub-routine and inter-

acts with a challenger for the weak unforgeability game of the PS k-message
multi-signature scheme. On the input of public parameters, B forwards them
to A, receives a target signer index i∗, and forwards it to the challenger to-
gether with qH0 messages w1, . . . , wqH0

chosen uniformly at random. The
challenger outputs a verification key

(
X̃i∗ , Ỹi∗

)
for signer i∗ and signatures

σ1, . . . , σqH0
.

Next, algorithm B generates uj ∈R Zp for j = 1, . . . , k+1, and computes
Ỹi∗,1 ← Ỹ and Ỹi∗,j ← Ỹ uj for j = 2, . . . , k + 1. Algorithm B then outputs
vki∗ ←

(
X̃i∗ , Ỹi∗,1, . . . , Ỹi∗,k+1

)
. This implicitly sets ski∗ = (xi∗ , yi∗,1 =

yi∗ , yi∗,2 = u2yi∗ , . . . , yi∗,k+1 = uk+1yi∗). To answer H1 queries, B chooses
uniformly random values. To answer the `-th H0 query on a new message
m`, algorithm B prepares and stores a signature on m` by setting

m′` ← u−1
k+1

w` − k∑
j=1

ujm`,j

 mod p

with u1 = 1. Since yi∗,1w` = ∑k
j=1 yi∗,1ujm`,j + yi∗,1uk+1m′` = ∑k

j=1 yjm`,j

+ yk+1m′`, the tuple (m′`, σ`,1, σ`,2) is a valid signature on m`. Algorithm B
then replies the H0-query with σ`,1. Later, if A makes a signing query on
m`, algorithm B replies with (m′`, σ`,1, σ`,2). If A makes a signing query on a
message m for which it has not made a H0-query yet, algorithm B proceeds
as before but also outputs the signature instead of only storing it. If A
makes a H0-query for a message for which it has already made a signing or
H0 query, algorithm B answers as it priorly did.

When A eventually outputs a list of verifications keys for i 6= i∗ and a
forgery (m′, σ1, σ2) on a new message m (i.e., for which no signing query was
made) such that∑k

j=1 yi∗,jmj+yi∗,k+1mk+1 6=
∑k
j=1 yi∗,jm`,j+yi∗,k+1m`,k+1

mod p for all ` ∈ JqH0K, setting w = ∑k
j=1 ujmj+uk+1m′, note that yi∗,1w 6=

yi∗,1w` for ` ∈ JqH0K. Therefore, (σ1, σ2) is a valid forgery for the new
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message m. Algorithm B then perfectly simulates to A the challenger of the
forgery game for the modified PS k-message multi-signature scheme, and
wins with the same probability with which A wins the weak forgery game
for the PS single-message multi-signature scheme. Hence the statement of
the lemma.

This concludes the proof of theorem.

4.6 Distributed Group Signatures from Multi-Sig-
natures

In practice, the ability to open signatures with a threshold number of openers
seems to be a natural requirement. For privacy concerns, it is desirable to
distribute the role of the opener over many entities. If this number is high,
not all potential openers can be expected to be permanently available, or
to agree in case of legal dispute for instance. Therefore, only a threshold
amount of them should be required to open signatures.

The threshold aspect is, however, less critical for issuance. Although the
ability to add users to the group should be distributed to several entities
for stronger security, the number of issuers generally does not need to be
as high as the number of potential openers. Effectively, issuers would be a
few service providers, whereas openers would be judges or jurors. Besides,
the eventuality of a disagreement about adding a user is less likely than a
dispute about opening a signature. Distributed issuance instead of threshold
issuance might then be satisfactory for many real-world scenarios.

Distributed Group Signatures. On this account, this section presents
a group signature scheme with distributed issuance and threshold opening.
The benefit of this dedicated distributed scheme is that the traceability of
the scheme now holds even if all issuers but one are corrupt. It means that
even if all but one issuer collude, they can neither compute an untraceable
valid group signature nor forge a group signature that opens to an honest
user who never computed it. In contrast, the PS-DGS scheme in Section 4.3
does not allow to corrupt nI − 1 issuers because of the tI < nI/2 bound
stemming from the key-generation protocol of Gennaro et al. [GJKR99].

Restricting issuance to a distributed setting rather than a threshold one
allows to dispense with a key-generation protocol. Instead, the distributed
scheme is based on PS multi-signatures. Relying on multi-signatures not
only overcomes the tI < nI/2 bound but also features a simpler, non-
interactive key generation phase.

In terms of signature size and computational costs, this group signature
scheme still has the same efficiency as the scheme in Section 4.3, and it also
supports the same threshold opening capabilities as the previous schemes.
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4.6.1 Construction

Building on PS multi-signatures, the dynamic group signatures with dis-
tributed issuance and threshold opening can now be described. The main
differences compared to the scheme in Section 4.3 are in the key-generation
phase and the issuance protocol.

Key Generation. Given that PS multi-signatures support public key ag-
gregation, the issuers can now generate their PS keys separately in-
stead of executing a protocol. The PS public keys generated by the
issuers can later be aggregated with a random oracle H1 to obtain
a global issuer public key that can be used for signing and verifying
signatures.
Nevertheless, the security proofs still require to be able to extract the
keys of dishonest issuers, so they additionally have to prove knowledge
of their PS secret keys. It is worth stressing that proving knowledge
of secret keys is not needed for the stand-alone PS multi-signature
scheme, but rather needed to prove the group-signature scheme secure.
The opener keys are generated as in the scheme in Section 4.3.
The group public key is now the concatenation of all issuer-and-opener
public keys.

Issuance. During issuance, each issuer blindly signs hsk with his secret key.
After receiving signatures from all issuers, the user aggregates them
and verifies their validity with respect to the global issuer public key,
i.e., the PS aggregated public key. Therefore, user certificates are now
PS multi-signatures instead of PS signatures.

Update Registers, Sign, Verify & Open. Updating registers, and com-
puting, verifying and opening signatures are done as in the scheme of
Section 4.3, except that signing and verifying are now done with an-
other hash function H2 modeled as a random oracle.

Formally, the key-generation and key-aggregation algorithms of the is-
suers and the issuance protocol are as follows.

IKG(pp, i ∈ JnK)→ (ipki, iski, sti)) : generate (vk, sk) ← PSM.KG(pp) and
set (pki, ski) ← (vk, sk). Denote by RPSM the relation of honestly
generated PS multi-signature public and secret keys. Compute πi ←
FS .Prove{ski : (pki, ski) ∈ RPSM}. Set ipki ← (i, pki, πi) and iski ←
(ipki, ski). Initialize an empty state sti. Return (ipki, iski, sti). The
vector of all issuer public keys is denoted ipk.

IKAggreg(ipk1, . . . , ipkn)→ ipk : for i ∈ JnK, parse ipki as (i, pki, πi). Verify
that for all i ∈ JnK, FS .Vf(g̃, pki, πi) = 1. Compute an aggregated key
avk ← PSM.KAggreg(pk1, . . . , pkn). Set an return ipk ← avk.
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The group public key gpk is set to (ipk, opk).

GJoin The protocol assumes a secure channel between U and every issuer Ii
as well as a broadcast channel. Formally,

1. GJoin.U, on input (id, gpk),
◦ choose skid ∈R Z∗p
◦ (a′, h)← H0(id)
◦ hsk ← hskid ; gsk ← gskid

◦ π ← FS .Prove{skid : hsk = hskid ∧ gsk = gskid}
◦ generate p1, . . . , ptO ∈R Zp and set P ← skid +∑tO

`=1 p`X
` ∈

Zp[X]
◦ for i ∈ JnOK, compute si ← P (i)
◦ for ` ∈ JtOK, compute h` ← hp`

◦ for all i ∈ JnOK:
∗ ri ←$ Zp
∗ C̃i := (C̃i,0, C̃i,1)←

(
g̃ri , f̃ rii Ỹ si

0

)
∗ πi ← FS .Prove

{
ri : C̃i,0 = g̃ri , e

(
h, C̃i,1/f̃

ri
i

)
= e

(
hsk

∏tO
`=1 h

i`
` , Ỹ0

)}
◦ set L[id]←

(
gsk , hsk , h1, . . . , htO , π,

(
C̃i, πi

)
i∈JnOK

)
◦ broadcast written to all Ii

2. GJoin.I, for i ∈ JnIK, on input (sti, iski = (i, xi, y0,i, y1,i), id, I, gpk)
◦ abort if id ∈ sti
◦ upon receiving written from U :
∗ (a′, h)← H0(id)

∗ parse L[id] as
(
gsk , hsk , h1, . . . , htO , π,

(
C̃i, πi

)
i∈JnOK

)
∗ FS .Vf(g, h, gsk , hsk , π) ?= 1
∗ for j ∈ JnOK ,FS .Vf

(
h, (h`)tO

`=1, Ỹ0, f̃j , C̃j , πj
)

?= 1

∗ Σi,2 ← hxi+yi,1a
′
h
yi,0
sk

∗ sti ← sti ∪ {id}
∗ send Σi,2 to U over a secure channel

3. GJoin.U, upon receiving Σi,2 from all Ii,
◦ ipk ← PSM.KAggreg(pk)
◦ Σ← PSM.SAggreg(pk, skid , (a′, h,Σi,2)nIi=1)
◦ PSM.Vf(ipk, skid ,Σ) ?= 1
◦ return gsk[id]← (skid ,Σ).
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Security.

The anonymity of the scheme holds under the DDH and the SDL assump-
tions over the group generator if tO < nO/2. It is not necessary to assume
that less than half of the issuers are corrupt since the issuer secret keys can
be extracted from their proofs of knowledge.

As for traceability, it holds under the qH0-MSDH-1, the ADH-KE and
the SDL assumptions if at most nI − 1 issuers are corrupt. It is because no
colluding nI − 1 PS signers can, with non-negligible probability, compute a
multi-signature that is valid w.r.t. the aggregated key of all the nI signers.
The assumption that at most min(tO, nO − tO − 1) openers are corrupt is
still necessary though. Indeed, no more than tO openers can be corrupt in
the simulation of shares of µskid in the proof that no honest user can be
framed by nI − 1 corrupt issuers; and the winning condition still depends
on a correct execution of protocol GOpen which requires the non-corrupt
registers of at least tO + 1 openers.



Chapter 5

Zone Encryption with
Anonymous Authentication

Vehicle-to-vehicle (V2V)communication systems are currently being pre-
pared for real-world deployment, but they face strong opposition over

privacy concerns. Position beacon messages are the main culprit, being
broadcast in cleartext and pseudonymously signed up to 10 times per second.
So far, no practical solutions have been proposed to encrypt or anonymously
authenticate V2V messages.

This chapter introduces Zone Encryption to enhance the privacy of V2V
communication. In a zone-encryption scheme, vehicles generate and authen-
tically distribute encryption keys associated to static geographic zones close
to their location. Zone encryption provides security against eavesdropping,
and, combined with the group signatures from Chapter 4 as authentication
scheme, ensures that messages can only be sent by genuine vehicles, while
adding only 224 Bytes of cryptographic overhead to each message. The
group signatures from Chapter 4 are actually augmented with attributes in
Section 5.2. In the context of zone encryption, these attributes are only
the validity periods of short-term credentials vehicles need to authentically
distribute keys. Section 5.3.1 formally defines zone encryption and its se-
curity, and Section 5.3.7 proposes an efficient constructions that meet the
requirements of C-ITSs. Lastly, Section 5.3.14 addresses the limitations of
zone encryption.
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5.1 Preliminaries

This section introduces preliminary material to this chapter.

5.1.1 Deterministic Authenticated Encryption

Deterministic Authenticated Encryption (DAE) [RS06] is a type of sym-
metric encryption. It is mainly used in the context of key wrapping, i.e.,
transmitting a secret key from one party to another. It is one of the main
cryptographic building blocks of the construction given in Section 5.3.7.

Security Properties.

(Deterministic) Privacy [RS06, Appendix B] is modeled via a distinction
experiment. In the real game, a key is chosen uniformly at random and the
adversary can make (, without loss of generality, non-repeated) encryption
queries. In the ideal game, encryption queries are answered with uniformly
random bit strings. A DAE scheme satisfies privacy if no efficient adversary
has a non-negligible advantage in distinguishing the real game from the
ideal game. (Deterministic) Authenticity is formalized via a key at the
beginning of which a key is chosen uniformly at random. The adversary can
make (non-repeated) encryption queries, and can submit ciphertexts none
of which is the output of a previous encryption query; that is to say, it can
make forgery attempts. The adversary wins the game as soon as one of
those forgery attempts does not fail. A DAE scheme satisfies authenticity if
no efficient adversary has non-negligible advantage in winning this game.

SIV Construction.

Rogaway and Shrimpton constructed a DAE scheme from IV-based encryp-
tion schemes and Pseudo-Random Functions (PRFs). They called it the
Synthetic-IV (SIV) construction. Their construction requires the cipher-
texts of the encryption scheme to be unpredictable if the initialization vector
is a uniformly random n-bit string, with n the IV length of the encryption
scheme. (The latter property is referred to as privacy of IV-based encryption
schemes.) They therefore use a PRF in the SIV construction to compute
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the initialization vector from the message and the header, so as to make the
IV unpredictable.

Note that the PRF must thereby support vectors of bit strings even
though most PRFs in the literature are designed to be computed on a single
bit string. Of course, in case a PRF must be computed on a vector of bit
strings, the string could be concatenated, but it would incur an important
efficiency loss [RS06, Section 5]. Rogaway and Shrimpton consequently pro-
posed a String-to-Vector (S2V) transformation [RS06, Section 5] of string
PRFs to PRFs that directly support string vectors without the efficiency
loss of trivial solutions.

Formally, the SIV construction is the following. Let PRF : K1×{0, 1}∗∗ →
{0, 1}n be a pseudo-random function with key space K1 and the set of vectors
of bit strings {0, 1}∗∗ as message space. Consider also (Enc,Dec) (the setup
algorithm is omitted) an IV-based encryption scheme with key space K2. To
generate keys for the DAE scheme, generate independently and uniformly
at random two keys K1 and K2 from K1 and K2 respectively. To encrypt,
on the input of K1, K2, a header H and a message M , compute IV ←
PRF(K1, (H,M )) then C ← Enc(K2, IV ,M ), and output IV ‖C. To decrypt
a ciphertext C, if it is less than n-bit long, abort. Otherwise parse it as
IV ‖C′ with IV the first n bits, and compute Dec(K2, IV , C′) then IV ′ ←
PRF(K1, H,M ). If IV = IV ′, then output M , otherwise output ⊥.

Rogaway and Shrimpton proved [RS06, Theorem 2] that if the IV-based
scheme (Enc,Dec) satisfies privacy and if PRF is a pseudo-random function
(i.e., such that its outputs are computationally indistinguishable from uni-
formly random n-bit strings), then the SIV construction satisfies privacy
and authenticity.

To instantiate their construction, one can use the S2V transform of a
block cipher such as AES in CMAC mode [Dwo16] as PRF and a block
cipher in counter (CTR) mode [Dwo07] as IV-based encryption scheme.

5.2 Group Signatures with Attributes

This section introduces an important building block for the zone-encryption
protocol, namely dynamic group signatures with attributes (DGS+A). These
group signatures are simply an extension of those presented in Chapter 4
and constitute the main authentication mechanism later used in the zone-
encryption construction of Section 5.3.7. For simplicity, they are defined
with a single authority responsible for both issuance and opening. The
underlying reason is that zone encryption will itself be formally defined with
a single authority to stress its privacy and security aspect rather than the
threshold aspect. Of course, DGS+A could also be defined in a threshold
setting in the same vein as in Chapter 4.
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5.2.1 Definition

In the extension of group signatures with attributes, users obtain member-
ship credentials which are associated to a set of attributes by interacting
with an issuer. Signatures, further referred to as authentication tokens, are
verified w.r.t. those attributes, i.e., a message m can only be signed for a
set of attributes A if the signer has a valid membership credential for A.
What is called credential here is nothing but a group-secret key according
to the terminology in Section 4.2. A similar generalization of group sig-
natures with attributes was already introduced by Camenisch, Neven and
Rückert [CNR12], but without interactive credential issuance.

Syntax.

Formally, a DGS+A scheme consists of the following algorithms.

Setup(λ, aux)→ pp : Generates public parameters on the input of a secu-
rity parameter and of auxiliary inputs. These public parameters are
assumed to be an implicit input to all the other algorithms.

KG(pp)→ (pk, (sk, st)) : A key-generation algorithm for the issuer. It is
assumed that pk can be recovered from sk. Variable st represents a
state.

〈Issue.U(id,A, pk)
 Issue.I(sk, st, id,A)〉 → 〈cred, st ′〉 : A credential-issuance
protocol for an attribute set A and user identity id. At the end of the
protocol, the user outputs a membership credential cred (or ⊥ if the
protocol fails) and the issuer updates its state to st ′. Credential cred
is assumed to contain the attributes A.

Auth(pk, cred,m)→ tok : A probabilistic authentication algorithm which signs
a message m w.r.t. A and returns tok.

Vf(pk,m,A, tok)→ b ∈ {0, 1} : Returns b = 1 if tok is a valid token for
message m and attributes A w.r.t. pk.

Open(sk, st,m,A, tok)→ id/⊥ : An opening algorithm which allows the is-
suer to identify the user who generated a valid authentication token.
The algorithm returns an identity id or ⊥.

Correctness & Security Properties.

Similarly to the group signatures in Chapter 4, group signatures should
satisfy correctness, anonymity and traceability. The main difference is here
that there is only authority in the present case (again, for simplicity) which
is assumed to be honest. Another slight distinction is that the adversary in
the definition of anonymity and traceability must also specify a challenge
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attribute set which also intervenes in the winning conditions. Except for
those aspects, the properties of the extension with group signatures are akin
to those of the group signatures in Chapter 4.

5.2.2 Construction of Group Signatures with Attributes

The high-level idea of the DGS+A construction is similar to that of the
construction of group signatures in Section 4.3. More precisely, to compute
a user membership credential as a PS signature on her identity and her
(public) attributes. To compute an anonymous authentication token for a
message, the user re-randomizes the group elements of her signature and
computes a signature of knowledge, on the message, of her signed identity.

To allow for compact authentication tokens yet enable traceability, the
issuer maintains a list of the credentials that it generated and traces a token
by testing the re-randomized PS signature in the token against each entry.
This approach makes tracing more expensive for the benefit of having short
tokens, which perfectly fits our application to V2V communication in which
bandwidth is limited and tracing an uncommon practice.

Scheme Description. Let G be a type-3 pairing-group generator, H a
random oracle and PS the modified Pointcheval–Sanders signature scheme
(Section 4.1.5). Denoting by k the number of attributes of each user, the
DGS+A constructionDGSA consists of the following algorithms.

Setup(λ, k)→ pp : Generate Γ = (p,G, g̃,GT , e) ← G (λ). Return pp ←
(Γ, k + 1).

KG.I(pp)→ (pk, (sk, st)) : Generate g̃ ∈R g̃∗, (x, yid , y1, . . . , yk+1) ∈R Zk+3
p ,

compute X̃ ← g̃x, Ỹid ← g̃yid , and Ỹj ← g̃yj for j = 1, . . . , k + 1, and
return pk ←

(
g̃, X̃ , Ỹid , Ỹ1, . . . , Ỹk+1

)
, sk ← (pk, x, yid , . . . , yk+1) and

an intially empty state st ← ∅.

Issue : For issuance between a user U and an issuer I, we assume a secure
channel. If a party aborts the protocol, it returns ⊥. We further
assume that the identity space ID is a polynomial-size (in λ) subset
of Zp.

1. Issue.I
(

sk, st, id,A = (ai)ki=1

)
,

◦ abort if a record (id,A, ∗) exists in st
◦ compute σ = (a′, σ1, σ2)← PS.Sign(sk, (id, a1, . . . , ak))
◦ send σ to U and return st ′ ← st ∪ (id,A, a′)

2. Issue.U(id,A, pk) upon receiving σ from I:
◦ verify that PS.Vf(pk, (id,A), σ) = 1 and abort if not
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◦ return cred ←
(

id,A, σ, e
(
σ1, Ỹid

)
, e
(
σ1, Ỹk+1

))
. It is ac-

tually not necessary to store e(σ1, Ỹid) and e(σ1, Ỹk+1), but
it helps avoiding pairing computations when tokens are gen-
erated.

Auth(pk, cred,m)→ tok : Parse cred = (id, A, σ, e
(
σ1, Ỹid

)
, e
(
σ1, Ỹk+1

))
with A = (ai)ki=1, generate r ∈R Z∗p, compute (σ′1, σ′2) ← (σr1, σr2) and
a non-interactive proof of knowledge π of (id, a′) such that

e

(
σ′1, X̃Ỹ id

id

k∏
i=1

Ỹ ai
i Ỹ a′

k+1

)
= e(σ′2, g̃).

That is, compute u ← e
(
σrsid

1 , Ỹid
)
e
(
σ
rsa′
1 , Ỹk+1

)
for sid , sa′ ∈R Zp,

compute a challenge c ← h (u,A,m, σ′1, σ′2, pk) ∈ Zp and a response
v← (sid − cid, sa′ − ca′). Set π ← (c,v), and return tok ← (σ′1, σ′2, π).

Vf(pk,m,A, tok)→ b : Parse tok = (σ1, σ2, π) with π = (c, vid , va′), A =
(ai)ki=1, and return 1 if σ1 6= 1G and c = h0 (u,A,m, σ1, σ2, pk) for
u← e

(
σvid

1 , Ỹid
)
e
(
σ
va′
1 , Ỹk+1

)
e (σc2, g̃) e

(
σc1, X̃−1∏k

j=1 Ỹ−ajj

)
.

Open(sk, st,m,A, tok)→ id/⊥ : Recovers the identity id of the user who
generated an authentication token tok = (σ1, σ2, π) for a message m
and attribute set A. It first verifies that tok is valid for m and A. If
so, it goes through (in lexicographic order of the identities) the tuples
(id,A, a′) in st until it finds one such that (a′, σ1, σ2) is a valid PS
signature on (id,A), and then returns id. If no such tuple is found, it
returns ⊥.

Algorithm 5.2.1 Open.
Require: (sk, st,m,A, tok)
Ensure: An identity id or ⊥.
1: if Vf(pk,m,A, tok) = 0 then
2: return ⊥
3: end if
4: for all id such that (id,A, a′) ∈ st do
5: if e

(
σ1, X̃Ỹ id

id
∏k
i=1 Ỹ ai

i Ỹ a′
k+1

)
= e(σ2, g̃) then

6: return id
7: end if
8: end for
9: return ⊥
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To open a signature on a given message, the opening algorithm loops over
all id such that a credential was issued for a tuple (id,A). The complexity of
the opening algorithm is then of order O(|ID|). This approach allows to have
much shorter group signatures than those obtained with the traditional sign-
and-encrypt paradigm. An expensive opening procedure seems appropriate
to the case of V2X communication as the issuer should revoke the anonymity
of vehicles only on solid grounds.

Efficiency.

With a Cocks–Pinch pairing curve [GMT19] defined over a field of order 2544

and with embedding degree 8, group elements in G take 68 Bytes for a group
of 256-bit order. Note that this curve provides 131 bits of security [GMT19].

An authentication token consists of two G elements and three Zp ele-
ments, totalling 232 Bytes. The hash value in the proof of knowledge of
a multi-signature can actually be shortened to second-preimage resistant
length, further shortening a group signature to 216 Bytes.

Application to Zone Encryption. With a token size of 216 Bytes, our
pairing-based instantiation is sufficiently compact to be used in combination
with our zone-encryption scheme. Therein, tokens are only computed and
sent during key requests and responses. Compared to the 160-Byte overhead
of ECDSA signatures with certificates, our scheme could even be considered
to sign each individual CAM.

Threshold Group Signatures with Attributes.

In the above definition and scheme, the issuer can alone open all tokens,
which makes him a single point of failure in terms of privacy. Yet, notice
that the group signatures in Chapter 4 can be augmented with attributes as
done above, and this would result in threshold scheme in which the issuers
and openers are separated.

5.3 Zone Encryption

This section introduces zone encryption, a novel mechanism to authentically
and confidentially send CAMs between vehicles. It lets a vehicle securely
communicate with the other vehicles in its vicinity, encrypting all CAMs. A
vehicle can do so only after anonymously authenticating itself to the other
vehicles.

To authenticate itself, a vehicle uses a short-term credential that it re-
quests at regular intervals from an issuer to whom it authenticates with a
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long-term credential. If necessary, the issuer can revoke the anonymity of
a vehicle and potentially ban it from the system by revoking its long-term
credential.

Overall, the goal is that the V2X communication is authenticated, con-
fidential, i.e., only authorized vehicles can decrypt messages, and that the
privacy of vehicles in this communication is preserved. This section starts
by describing the high-level concept of zone encryption for V2X communi-
cation, then formally defines the desired properties and finally propose a
provably secure instantiation.

Geo-Local Shared Keys. The core idea behind zone encryption is to
leverage the fact that only vehicles in close proximity need to communicate.
More precisely, zone encryption assumes that the surface of the earth is di-
vided into disjoint zones, and lets the vehicles that are present in a particular
zone agree on the shared encryption key for that zone. For example, the
zone boundaries could be derived statically from the GPS coordinates and
are chosen so that the longest straight-line distance within a zone is less than
the transmission radius of a radio signal (typically 300–500m), enabling any
two vehicles in the same zone to communicate.

Of course, it should be avoided that two vehicles that are physically close
but at opposite sides of a zone boundary cannot communicate because they
broadcast to different zones. On this account, vehicles broadcast to multiple
zones simultaneously.

Short-Lived Zone Keys. The zone keys are also required to be periodi-
cally refreshed, e.g., every 15 minutes. This ensures that a rogue eavesdrop-
ping device cannot simply stay silent and listen to ongoing traffic, but has to
send key requests or responses to other vehicles, exposing itself to detection
and localization through triangulation.

Authenticated encryption. Zone encryption takes a significantly differ-
ent approach for authentication than the existing C-ITS proposals. Instead
of signing every CAM with an anonymous authentication scheme, we sim-
ply use authenticated symmetric encryption with the short-lived zone keys.
Anonymous credential-based authentication is only necessary when a vehicle
enters a zone and keys are exchanged in an authenticated manner. Given
that each vehicle has to process up to 3000 incoming CAMs per second, rely-
ing (mostly) on symmetric primitives instead of asymmetric authentication
leads to a significant computational speed-up.

Besides, smart traffic infrastructure that has no need to receive CAMs
can be equipped with certificates only for broadcasting authenticated but
unencrypted messages (as their content is not privacy sensitive), so that it
cannot be abused for mass surveillance.
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Identity Resolution & Revocation. In case of dispute or malicious ac-
tivity in a certain zone at a given time, the messages that each vehicle had
to send to receive the zone key can be opened by a dedicated entity. The
opening algorithm run by this entity reveals the identity of the vehicle that
computed a message, which in turn allows to revoke its long-term credential.
Recovering the long-term identity of rogue vehicles is commonly known as
identity resolution. It has been established as an essential requirement to
balance the privacy and accountability needs in vehicular communication
systems [SMK09,WWKH13,PSFK15]. In the current C-ITS proposal, iden-
tity resolution is realized by keeping mappings between pseudonyms and
long-term identities [WWKH13, Section IV.D].

For revocation, the approach followed is that of passive revocation which
is advocated by the European standard [ETS19, Section 6.1.4], meaning that
vehicles must regularly request new short-term credentials. These requests
are rejected once the corresponding long-term credential has been revoked.
Revocation of the long-term credential does not only disable the decryption
capabilities of the detected device, but also of any other rogue devices based
on the same compromised credential, making mass production of rogue de-
vices less lucrative.

Privacy & Efficiency vs. Sybil Resistance & Non-Repudiation.
Zone encryption does pay a price in some other security aspects, though.
By relying on symmetric authenticated encryption to authenticate CAMs,
neither Sybil resistance nor non-repudiation can be achieved. The former
is not a major change since with a pseudonym pool size of up to 100 si-
multaneously valid certificates, the current proposals essentially gave up
on Sybil resistance as well. The loss of non-repudiation should only have
minor effects: V2X logs will still be a useful tool to analyze accidents in
court, and transmitters of false information can still be uncovered, albeit
with slightly more effort, by tracing key requests and responses at the time
of the accident. The loss of non-repudiation (which is not a requirement of
the standards) is, on this account, a small price to pay for the privacy gains
that zone encryption achieves.

5.3.1 Syntax of Zone Encryption Schemes

A Zone-Encryption (ZE) scheme allows vehicles in a geographic zone at a
given time to securely and anonymously communicate which each other. A
ZE scheme features an enrollment authority E , an issuer I, and vehicles
with unique identities V ∈ {0, 1}∗. The enrollment authority provides ve-
hicles with revocable long-term credentials and may in practice be a state
authority. A vehicle that has obtained a long-term credential is considered
enrolled, and a vehicle identity can be enrolled (only once) in the system at
any time.
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Figure 5.1: Illustration of Zone Encryption with its Anonymous-
Authentication Approach.

The long-term credential is used to obtain short-term credentials from
the issuer (which may in practice be another legal authority or a representa-
tive of a car-manufacturer consortium). That is, the time is assumed to be
divided into (revocation) epochs, and all parties are assumed to be roughly
synchronized, i.e., they share a common clock (e.g., a network clock). The
duration of an epoch (e.g., a week) is the validity period of short-term cre-
dentials, and before the beginning of each epoch, a vehicle must interact with
the issuer to obtain the short-term credential. These short-term credentials
are irrevocable as they have limited validity anyway. However, the issuer
learns the identity V of the vehicle and can check if its long-term credential
has been revoked by the enrollment authority. For the sake of simplicity,
we do not explicitly model revocation. As revocation would only be needed
for standard, i.e., non-anonymous authentication, this can be added in a
straightforward way.

A vehicle being equipped with a short-term credential can, during the
epoch for which the credential was issued, communicate with other vehi-
cles in an authenticated yet anonymous manner. More precisely, it uses the
short-term credential to exchange so-called zone keys with other (anony-
mously) authenticated vehicles. These keys are valid for a particular zone
and short time period, e.g., 15 minutes and enable vehicles to securely send
and receive payloads that are encrypted under these keys.

A ZE scheme allows vehicles to communicate anonymously, but if need
be, the issuer can recover the identity of the vehicle which computed a
certain message. It can then revoke (i.e., blacklist) the vehicle identity and
reject its authorization requests in the future.

To formally define a ZE scheme, let Z be a set of zones that cover the
road network and let P be the payload space. Consider also a set of epochs
Epoch and a set of time periods T , both non-empty finite integer sets such
that for all t ∈ T , there exists a unique e ∈ Epoch for which e ≤ t < e + 1.
Denote it by e(t). These are parameters for the scheme. A ZE scheme then
consists of the following algorithms:
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Setup & Key Generation. A ZE scheme features an algorithm generat-
ing public parameters Setup (λ, Z,Epoch, T )→ pp, as well as key-generation
algorithms KG.E(pp)→ (pkE , (skE , stE)) and KG.I(pp)→ (pkI , (skI , stI)) re-
spectively for the enrollment authority and the issuer. The private outputs
also contain state stE and stI that are used to keep track of enrolled vehicles
and open messages sent during key requests. Moreover, we assume that the
public keys can be recovered from the secret keys.

Receiving Long-term and Short-term Credentials. A ZE scheme
has two interactive protocols for V to obtain authentication credentials.

〈Enroll.V(pkE ,V)
 Enroll.E(skE , stE ,V)〉 → 〈certV , st ′E〉 : The Enroll proto-
col is run between a vehicle V and enrollment authority E . If success-
ful, V obtains a long-term certificate certV .

〈Authorize.V(certV , e, pkI)
 Authorize.I(skI , stI ,V, e, pkE)〉 → 〈credV , st ′I〉 :
A vehicle V can use its long-term certificate to obtain from issuer
I a short-term credential credV for an epoch e by running protocol
Authorize.

Entering and Exiting Zones. Protocol Enter is run when a vehicle V
enters a zone z at time t. It is run with other responding vehicles Wi,
all authenticated via their short-term credentials credWi . If successful, the
protocol allows the entering vehicle V to obtain the zone key Kz,t for the
zone–time pair (z, t). Algorithm Exit is used to remove key material from
the zone-key list LK of a vehicle when it exits a zone or when the time
period has expired. The latter is crucial for our security model in which a
vehicle, after leaving a zone, should no longer be able to decrypt messages
or compute valid ciphertexts for it.

〈Enter.V(credV , LK , pkI , z, t, requester)

 Enter.W(credWi , LKi , pkI , z, t, responder i)i≥0〉 → 〈LK ,⊥〉 : Proto-
col Enter is run between a requesting vehicle V and other responding
vehicles Wi. List LK consists of tuples (z′, t′,Kz′,t′) to which, if the
protocol is successful, a new key Kz,t for the requested zone–time pair
is added.

Exit(LK , z, t)→ L′K : Removes (z, t,Kz,t) from LK .

Sending and Receiving Payloads. Algorithms Send and Receive are
used by a vehicle to exchange encrypted payloads. Note that these algo-
rithms only need to access the zone keys stored in LK , but not the short-
and-long-term credentials, which is a security benefit compared with existing
C-ITS solutions.
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Send(LK ,P, Y ⊆ Z, t)→ γ/⊥ : Computes a ciphertext γ for a payload P for
all zones Y in time period t (if LK contains the corresponding keys).
The ciphertext γ is assumed to carry public information about t and
Y , i.e., it can be parsed as (t, Y, γ′).

Receive(LK , γ)→ P/⊥ : Recovers the payload P from ciphertext γ if LK
contains a zone key under which γ is encrypted.

Identity Escrow. When suspicious behaviour is detected or when an acci-
dent occurs, the issuer I of the short-term credentials can reveal the identity
of a vehicle that sent a given message during an execution of protocol Enter.

Open(skI , stI ,m)→ V/⊥: returns the identity of a vehicle that it identifies
as the sender of a message m during an execution of protocol Enter,
or ⊥.

Note that Open runs on a single anonymous message sent during an
execution of protocol Enter, not on a full record of all messages ever sent by
vehicles. It means that in practice, in case of a dispute or a suspicious event
in a certain zone the issuer only needs to de-anonymize the messages sent
during executions of protocol Enter for that zone at the time (period) of the
event.

Correctness of Zone Encryption. A ZE scheme should satisfy correct-
ness, i.e., if a vehicle is authorized during a given epoch and has entered a
zone in a certain time period, then every message sent by that vehicle to
this zone should be successfully received by any other vehicle in the zone
in that time period. Moreover, the identity of a vehicle that sent a given
message during an Enter protocol execution should be recoverable by the
issuer. These properties should hold independently of the order in which
certificates and credentials are issued for vehicles, and with overwhelming
probability.

5.3.2 Security of Zone Encryption Schemes

This section describes the security and privacy properties a ZE scheme must
satisfy.

The payloads sent by the vehicles should be confidential. This property
is formalized as Payload-Hiding security against Chosen-Ciphertext
Attacks (PH-CCA). Intuitively, PH-CCA security ensures that no efficient
adversary can infer any information about the payload underlying a cipher-
text, unless it has entered the zone in the time period of the ciphertext.

The privacy of vehicles should also be preserved, and this requirement
is defined through an anonymity game. Essentially, anonymity guarantees
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that ciphertexts and enter-protocol messages do not reveal any information
about the identity of the sending vehicle.

Note that there is no anonymity requirement for the authorization pro-
cess, i.e., for receiving short-term credentials, as it is performed once per
epoch (e.g., a week) and leaks very little information about the whereabouts
of the vehicles. It is not an issue assuming that users have control on when
it occurs.

Furthermore, despite strong privacy properties, zone-encryption should
ensure that only legitimate vehicles can send valid ciphertexts. This is cap-
tured via two related security definitions.

First, the traceability notion guarantees that if a vehicle knows a key
Kz,t for zone z at time t, then it must have explicitly entered the zone z at
time t, meaning that it must have sent an enter message that can be traced
back by the issuer to its long-term identity.

Secondly, the related notion of ciphertext integrity guarantees that
an adversary cannot compute a valid ciphertext γ for a particular zone–time
pair without knowing the zone key.

Common Oracles.

We first introduce the oracles we give the adversary in all our security games.
In the formal definitions, O(skE , stE , skI , stI) denotes that the adversary is
given access to oracles {Enroll.E,Enroll.V&E,Authorize.I,Authorize.V&I,Enter,
Exit, Send,Receive,Open,Corrupt} as defined hereunder and initialized with
secret keys skE , stE , skI , stI . The public keys pkE , pkI are not made explicit,
but are assumed to be recoverable from the corresponding secret keys.

Throughout the security experiments, the challenger maintains several
lists which reflect the information A learns through his interaction with the
oracles. These are summarized on Figure 5.2.

Lhonest list of all enrolled honest vehicles {(V)}
Lcorrupt enrolled vehicles {(V)} that where corrupt either from the be-

ginning or later on
Lauth authorized vehicles {(V, e)} per epoch e
Lenter contains all messages {({V,A}, z, t,m)} that honest vehicles or

the adversary A exchanged during executions of protocol Enter
Lsent ciphertexts {γ} generated by honest vehicles
Lreceived decrypted ciphertexts {γ = (t, Y, γ′)}
Lopened opened transcripts m
Lkeys zone-keys {(z, t,Kt,z)} that the adversary A learned by cor-

rupting honest vehicles

Figure 5.2: Lists maintained by the Challenger in the ZE Security Experi-
ments.



100 5.3 Zone Encryption

Notation. “O.algorithm.P” denotes the oracle which lets the adversary
interact with honest party P running algorithm.P. Similarly, an oracle
“O.algorithm.P&R” allows the adversary to trigger the interactive proto-
col 〈algorithm.P 
 algorithm.R〉 between two honest parties P and R. In
the latter case, the adversary does not learn the outputs of honest parties,
but their internal states are updated accordingly. Moreover, when an oracle
is said to be running an algorithm on behalf of an honest vehicle V, it is
implicitly assumed that the oracle checks that V ∈ Lhonest. Finally, the state
of an honest vehicle V is referred to as V[stV ], e.g., V[LK ] denotes the zone
keys LK maintained by V.

Oracles for Obtaining Credentials. There are a number of oracles
to model enrollment and issuance of short-term credentials, depending on
whether the requesting vehicle is honest or corrupt.

O.Enroll.V&E(skE , stE , ·) on input V, lets the adversary trigger the enroll-
ment protocol between an honest vehicle with identity V and the hon-
est enrollment authority E . If Enroll.V ends with a private output
V[cert], it adds V to Lhonest.

O.Enroll.E(skE , stE , ·) on input V, lets the adversary run an enrollment pro-
tocol (in the role of the corrupt vehicle V) with the honest enrollment
authority. If Enroll.E ends with a private output st ′E , it adds V to
Lcorrupt.

O.Authorize.V&I(skI , stI , ·) on input (V, e), triggers an Authorize protocol
between the honest vehicle V and honest issuer I. If Authorize.V ends
with private output V[e, credV ], it adds (V, e) to Lauth.

O.Authorize.I(skI , stI , ·) on input (V, e), allows a corrupt vehicle V, played
by the adversary, to run the Authorize protocol with the honest issuer
I. If Authorize.I ends with private output st ′I , it adds (V, e) to Lauth.

Oracles for Entering and Exiting Zones. The adversary is further
given access to an oracle which lets it actively participate in the Enter pro-
tocol as well as eavesdrop on enter-protocol executions between honest vehi-
cles. Another oracle lets the adversary make an honest vehicle exit a zone.

O.Enter(·) on input (V, z, t, role), triggers a zone-key request or response
protocol (according to role) for a honest vehicle V in zone z and time
period t.

◦ For role = requester , the oracle starts Enter.V for V in the requester
role and also internally invokes all other honest vehiclesWi which
have zone keys for (z, t) to run Enter.W with role = responder .
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The adversary can intercept and inject messages sent by these
honest vehicles, and also participate in the responder role with
a corrupt vehicle. Eventually, the key state V[LK ] of the honest
requester is updated to include Kz,t.
◦ For role = responder the oracle lets an honest vehicle V respond

to a zone-key request that the adversary runs for a corrupt vehi-
cle.

All messages (V, z, t,m) sent by honest vehicles V are tracked with list
Lenter. Similarly, when an honest vehicle receives a message m that no
other honest vehicle has sent, the message is recorded as adversarial
by adding (A, z, t,m) to Lenter.
Note that this oracle captures both active and passive attacks. The lat-
ter can be done if the adversary queries O.Enter for role = requester
and does not participate as corrupt responder or manipulates mes-
sages, but merely observes the traffic between the honest vehicles
in a certain zone and time period (z, t). There is then no message
(A, z, t,m) ∈ Lenter; and A is considered successful if it infers informa-
tion for (z, t) that is supposed to only be known to vehicles which en-
tered the zone, e.g., if it manages to distinguish ciphertexts encrypted
for (z, t) (PH-CCA) or if it can produce a valid ciphertext (ciphertext
integrity).

O.Exit(·) on input (V, z, t), deletes key Kz,t from the key state of the honest
vehicle V.

Oracles for Sending and Receiving Payloads, Opening and Cor-
ruption. Finally, the adversary is given access to oracles that can trigger
honest vehicles to encrypt or decrypt messages, recover the identity of send-
ing vehicles, and adaptively corrupt vehicles.

O.Send(·) on input (V,P, Y, t) for an honest vehicle V, returns γ/⊥ ←
Send(V[LK ],P, Y, t) and adds γ to Lsent.

O.Receive(·) on input (V, γ) for an honest vehicle V, returns m/⊥ ←
Receive(V[LK ], γ) and adds γ to Lreceived.

O.Open(skI , stI , ·) on input m, returns V/⊥ ← Open(skI , stI ,m) and adds
m to Lopened.

O.Corrupt(·) on input V, returns the current state of the honest vehicle
V, i.e., it returns V[certV ], all V[{(ej , credV,j)}], and V[LK ] to the
adversary. It also adds V to Lcorrupt and all keys (z, t,Kz,t) in V[LK ]
to Lkeys.
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Payload Hiding.

Payload-hiding security against chosen-ciphertext attacks (see Figure 5.3)
guarantees that an adversary cannot infer any information about messages
encrypted for a zone it is not supposed to be in. The definition follows the
classical CCA definition and requires the adversary to output two payloads
P0, P1 together with a time t∗ and zones Y ∗, upon which it receives the
zone encryption of Pb for a random b ∈ {0, 1}. The adversary must then
determine b better than by guessing. The adversary is given access to honest
participants in the system, e.g., by allowing it to enroll and authorize vehi-
cles, enter zones, encrypt and decrypt messages of its choice, and to corrupt
vehicles.

The adversary wins as long as its interactions with these oracles do
not lead to a trivial win. Clearly, the adversary is not allowed to query the
decryption oracle O.Receive on (parts of) the challenge ciphertext (condition
1), or corrupt an honest vehicle that has a zone-key for one of the challenge
zones in Y ∗ at time t∗ (condition 2). Furthermore, the adversary must not
have entered any challenge zone at time t∗ with a corrupt vehicle, or if it did,
it must not have a valid authorization credential for epoch e(t∗) (condition
3). The latter condition is crucial as the PH-CCA notion should guarantee
message confidentiality for all zones the adversary was not supposed to be
in.

Experiment Expph−cca−b
Z,λ,Z,Epoch,T (A) :

pp ← Setup(λ, Z,Epoch, T )
(pkE , (skE , stE))← KG.E(pp), (pkI , (skI , stI))← KG.I(pp)

initialize all oracles as O(skE , stE , skI , stI)
(V∗, P0, P1, Y

∗, t∗, stA)← AO(choose, pp, pkE , pkI)
abort if V∗ ∈ Lcorrupt

γ∗ ← Send(V∗[LK ], Pb, Y ∗, t∗) with γ∗ = (t∗, Y ∗, γ∗′)
b′ ← AO(guess, γ∗, stA)
return b′ if A did not trivially win, i.e.,
1) ∀(t∗, Y, γ) ∈ Lreceived : γ ∩ γ∗′ = ∅ and

2) ∀y∗ ∈ Y ∗ : (y∗, t∗, ·) /∈ Lkeys, i.e., A has not corrupted a vehicle in a challenge zone, and

3a) ∀y∗ ∈ Y ∗ : ((A, y∗, t∗, ·) /∈ Lenter) or

3b) ∃(A, y∗, t∗, ·) ∈ Lenter and ∀Vj ∈ Lcorrupt, @(Vj , e(t∗)) ∈ Lauth
i.e., A has not entered a challenge zone in time t∗ or entered but was not authorized

Figure 5.3: PH-CCA Experiment for ZE Schemes.

Definition 5.3.3 (PH-CCA Security). A ZE scheme Z is PH-CCA secure
if there exists a negligible function negl such that for all efficient adversary
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A, for all λ ∈ N, zone-set Z, epoch set Epoch and time-period set T ,∣∣∣Pr
[
Expph−cca−0

Z,λ,Z,Epoch,T (A) = 1
]
− pr

[
Expph−cca−1

Z,λ,Z,Epoch,T (A) = 1
]∣∣∣ ≤ negl(λ).

Anonymity.

Anonymity (see Figure 5.4) captures the idea that ZE ciphertexts and the
messages sent during executions of protocol Enter do not reveal any infor-
mation about the identity of the sending vehicle. This includes unlinkability,
i.e., the adversary cannot tell whether two ciphertexts or two enter-protocol
messages stem from the same vehicle.

The definition follows the indistinguishability style, and it grants the
adversary oracle access to honest participants. In particular, the adversary
can enter and exit zones with honest vehicles, as well as send payloads and
receive ciphertexts with them. The adversary must eventually output two
challenge vehicle identities V0 and V1, after which it gets access to vehicles
Vb and V1−b and has to determine b. In the experiment, it is captured
by turning all oracles that should not leak information about the vehicles
identity into challenge oracles. That is, the oracles to enter and exit zones, or
to send payloads and receive ciphertexts are restricted to no longer respond
to queries for identities V0 or V1. If the adversary wants to make such a query
for either of them, it has to provide a bit d and the query is answered with
vehicle Vd⊕b, i.e., either the chosen vehicle Vb (for d = 0) or its counterpart
V1−b (for d = 1).

To avoid trivial wins, the oracles to enter and exit zones cannot be
queried at a time t for a challenge vehicle if V0 and V1 have not both been
authorized in epoch e(t). Besides, the adversary can never open a message
sent by one of the challenge vehicles during an execution of protocol Enter.

Note that this definition does not require the authorization protocol to
be anonymous, but only ZE ciphertexts and messages exchanged during
executions of protocol Enter. As authorization is performed only once per
epoch, it is not critical for the privacy guarantees we aim for in V2X com-
munication.

Definition 5.3.4 (Anonymity). A ZE scheme Z satisfies anonymity if there
exists a negligible function negl such that for all efficient adversary A, for
all λ ∈ N, zone-set Z, epoch set Epoch and time-period set T ,∣∣∣Pr

[
Expano−0

Z,λ,Z,Epoch,T (A) = 1
]
− Pr

[
Expano−1

Z,λ,Z,Epoch,T (A) = 1
]∣∣∣ ≤ negl(λ).

Traceability.

The notion of traceability ensures that if a vehicle knows a secret keyKz,t for
a zone–time pair, then it must have entered the zone–time pair by sending a
message that can be traced back to the sending vehicle. This is captured via
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Experiment Expano−b
Z,λ,Z,Epoch,T (A) :

pp ← Setup(λ, Z,Epoch, T )
(pkE , (skE , stE))← KG.E(pp), (pkI , (skI , stI))← KG.I(pp)

initialize all oracles as O(skE , stE , skI , stI)
(V0,V1, stA)← AO(choose, pp, pkE , pkI)
abort if the vehicles have different cred/key states, i.e., check that:

for d ∈ {0, 1}: @ei s.t. (Vd, ei) ∈ Lauth and (V1−d, ei) /∈ Lauth and V0[LK ] = V1[LK ]

use challenge oracles O∗(b) for
{
Enter∗,Exit∗, Send∗,Receive∗

}
b′ ← AO∗(guess, stA)
return b′ if A did not trivially win, i.e.,
for d ∈ {0, 1} : Vd ∈ Lhonest and ∀m ∈ L∗enter : m /∈ Lopened

Figure 5.4: Anonymity Experiment for ZE Schemes.

a game (on Figure 5.5) where the adversary must output a key Kz∗,t∗ for a
zone z∗ and time t∗ of its choice. The adversary wins if at least one honest
vehicle V has accepted the key, but none of the messages in executions of
protocol Enter for (z∗, t∗) can be traced with algorithm Open to a corrupt
vehicle (that was authorized to enter). To avoid trivial wins we further
request that the adversary has not corrupted an honest vehicle that held
the key Kz∗,t∗ output by the adversary (condition 1). Moreover, no corrupt
vehicle can be authorized in epoch e(t∗) (conditions 2) as otherwise the
adversary would be able to impose a zone key.

In particular, for a ZE scheme that satisfies traceability, if an efficient
adversary knows the zone key of an honest vehicle, then it has either cor-
rupted another honest vehicle in the zone, or it must have sent at least one
message that traces back to a corrupt vehicle that was authorized in epoch
e(t∗).

Experiment Exptrace
Z,λ,Z,Epoch,T (A) :

pp ← Setup(λ, Z,Epoch, T )
(pkE , (skE , stE))← KG.E(pp), (pkI , (skI , stI))← KG.I(pp)

initialize all oracles as O(skE , stE , skI , stI)
(z∗, t∗,Kz∗,t∗)← AO(forge, pp, pkE , pkI)
look up V ∈ Lhonest with Kz∗,t∗ ∈ V[LK ], abort if no such V exists

return 1 if knowledge of Kz∗,t∗ cannot be traced to a corrupt vehicle:
1) Kz∗,t∗ /∈ Lkeys and 2) ∀(·, z∗, t∗,mj) ∈ Lenter with Vj ← Open(skI , stI ,mj) :

Vj /∈ Lcorrupt or ((Vj ∈ Lcorrupt) and (@(Vj , e(t∗)) ∈ Lauth))

Figure 5.5: Traceability Experiment for ZE Schemes.
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Definition 5.3.5 (Traceability). A ZE scheme Z satisfies traceability if
there exists a negligible function negl such that for all efficient adversary A,
for all λ ∈ N, zone-set Z, epoch set Epoch and time-period set T ,

Pr
[
Exptrace

Z,λ,Z,Epoch,T (A) = 1
]
≤ negl(λ).

Ciphertext Integrity.

The notion of ciphertext integrity (see Figure 5.6) complements the trace-
ability property as it guarantees that without knowing a secret zone key
Kz,t an adversary should not be able to compute a valid ciphertext for that
zone and time. This is modeled by asking the adversary to produce a fresh
and valid ciphertext γ∗ for zones for which it is not supposed to know the
keys. The adversary also outputs an honest vehicle V that must decrypt γ∗
to P 6= ⊥.

Freshness means that γ∗ should not contain any honestly generated ci-
phertexts (or parts thereof) the adversary has received via oracle O.Send
(condition 1). Moreover, the same conditions as in the PH-CCA game are
used to check that the adversary is not supposed to know the key. That
is, the adversary must not have corrupted an honest vehicle that knows a
valid key for the forged ciphertext (condition 2). Besides, it must not have
entered any challenge zone at time t∗ with a corrupt vehicle, or if it entered,
it must not have a valid authorization credential for epoch e(t∗) (condition
3). The last condition means that the adversary does win the game if it
knows the key of a zone–time pair it was not allowed to enter.

Experiment Expintegrity
Z,λ,Z,Epoch,T (A) :

pp ← Setup(λ, Z,Epoch, T )
(pkE , (skE , stE))← KG.E(pp), (pkI , (skI , stI))← KG.I(pp)

initialize all oracles as O(skE , stE , skI , stI)
(V, γ∗)← AO(forge, pp, pkE , pkI)
parse γ∗ = (t∗, Y ∗, γ∗′), abort if V ∈ Lcorrupt

return 1 if Receive(V[LK ], γ∗) 6= ⊥ and A did not trivially win, i.e.,
1) ∀(t∗, Y, γ) ∈ Lsent : γ ∩ γ∗′ = ∅ and

2) ∀y∗ ∈ Y ∗ : (y∗, t∗, ·) /∈ Lkeys and
i.e., A has not corrupted a vehicle in a challenge zone

3a) ∀y∗ ∈ Y ∗ : ((A, y∗, t∗, ·) /∈ Lenter) or

3b) ∃(A, y∗, t∗, ·) ∈ Lenter and ∀Vj ∈ Lcorrupt : @(Vj , e(t∗)) ∈ Lauth
i.e., A has not entered a challenge zone in time t∗ or entered but was not authorized

Figure 5.6: Ciphertext-Integrity Experiment for ZE Schemes.
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Definition 5.3.6 (Ciphertext Integrity). A ZE scheme Z satisfies ciphertext-
integrity if there exists a negligible function negl such that for every efficient
adversary A, for all λ ∈ N, zone-set Z, epoch set Epoch and time-period set
T ,

Pr
[
Expintegrity

Z,λ,Z,Epoch,T (A) = 1
]
≤ negl(λ).

Zone Encryption with Multiple Authorities.

The previous definitions feature a single authorization authority that is re-
sponsible for both issuing vehicle credentials and revoking their anonymity.
The definitions could of course be readily extended to support multiple,
separate authorities for each role and require a threshold number of them
for each task, following the same ideas as in Chapter 4. For simplicity, the
definitions were kept with a single authority to highlight the aspects other
than the threshold one and ease their readability.

5.3.7 Construction of a Zone-Encryption Scheme

This section gives a generic zone-encryption scheme constructed from au-
thenticated encryption, public-key encryption, digital signatures and a dy-
namic group signature scheme with attributes. For the latter, see the prac-
tical, pairing-based instantiation in Section 5.2.2. The ZE scheme involves
the following building blocks:

◦ SIG a signature scheme to generate long-term credentials and thereby
certify vehicle identities

◦ DGSA a group-signature scheme (Section 5.2.1) used to compute short-
term authentication credentials. Group-membership credentials are
issued w.r.t. the current time epoch e(t)

◦ PKE a public-key encryption scheme to encrypt zone keys during key
requests and responses

◦ SE a symmetric-key encryption scheme to encrypt payloads

◦ DAE a deterministic authenticated encryption scheme to wrap payload
keys with each zone key, and thereby bind payload ciphertexts to their
zones.

The reason symmetric encryption is used to encrypt payloads and only
authenticate key wraps is that payloads may a priori be long. Authenti-
cating the payload part of the ciphertext would increase its length. Only
authenticating the key wraps and bind the payload part to them results in
shorter ciphertext.
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Formal Description.

Recall that each short-term credential is only valid in a certain epoch (e.g.,
a week), and that zone keys must be refreshed at the beginning of every
time period (e.g., every 15 minutes). It is assumed that, during protocol
executions, whenever an algorithm receives an abort or invalid message,
or a verification step fails, it aborts by returning ⊥. Likewise, when an
algorithm must retrieve a key from its internal state, it aborts if no such key
can be found.

The ZE scheme Z, parametrized by a zone set Z, an epoch set Epoch
and a time-period set T , is defined as follows.

Setup & Key Generation. The setup and key generation algorithms
simply run the respective algorithms of the building blocks and generate the
keys and parameters accordingly.

Setup (λ, Z,Epoch, T ) : Generate public parameters for SIG, DGSA (with one
attribute), PKE, SE and DAE and return pp ← (ppSIG, ppDGSA, ppPKE,
ppSE, ppDAE, Z,Epoch, T ).

KG.E(pp) : Run (vk, sk)← SIG.KG(ppSIG), set keys as (pkE , skE)← (vk, sk),
stE ← ∅, and return the tuple (pkE , (skE , stE)).

KG.I(pp) : Run and return (pkI , (skI , stI))← DGSA.KG(ppDGSA).

Issuance of Long-Term and of Short-Term Credentials. To enroll
in the communication system, a vehicle with identity V must request a
long-term certificate, which is simply a signature on V by the enrollment
authority. From then on, it can request short-term credentials at the be-
ginning of each epoch from issuer I. Credentials are DGS+A membership
credentials for an epoch e as attribute, and are used to authenticate vehicles
during protocol Enter.

Enroll.V
 Enroll.E : The vehicle and the EA proceed as follows.

1. Enroll.V(pkE ,V):
◦ (vkV , skV)← SIG.KG(ppSIG), send (V, vkV) to E

2. Enroll.E(skE , stE ,V) upon receiving (V, vkV):
◦ check that V /∈ stE (to ensure that a vehicle identity can be
enrolled only once), send a signature σE ← SIG.Sign(skE , (V, vkV))
to V and return st ′E ← stE ∪ V

3. Enroll.V upon receiving σE from E :
◦ if SIG.Vf(pkE , (V, vkV), σE) = 1, return certV ← (skV , vkV ,
σE).
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Authorize.V
 Authorize.I : 1. Authorize.V(certV , e, pkI) with certV parsed
as (skV , vkV , σE):
◦ compute σV ← SIG.Sign(skV , e)
◦ send (vkV , σE , σV) to I

2. Authorize.I(skI , stI ,V, e, pkE) upon receiving (vkV , σE , σV):
◦ abort if V is revoked (this is handled outside the scheme)
◦ test whether SIG.Vf(pkE , (V, vkV), σE) = 1 and SIG.Vf(vkV , e, σV)

= 1
3. I and V run the issuance protocol of DGSA with id = V and

attribute A = e, i.e., run

〈DGSA.Issue.U(V, e, pkI)
 DGSA.Issue.I(skI , stI ,V, e)〉

and return their respective outputs cred and st ′I .

Entering and Exiting Zones. A vehicle which approaches a zone z in
time period t obtains the key for (z, t) by sending an anonymously authen-
ticated key request wich includes a fresh public-key encryption key ek. Any
vehicle which receives the request and knows the zone key Kz,t can send an
anonymously authenticated response which contains an encryption of Kz,t

under ek. The tokens authenticate messages consisting of z, t, and the fresh
key ek for requests or encryptions C under ek of the zone key Kz,t.

If the requesting vehicle receives no response, it generates a random key
Kz,t and waits for requests from new vehicles that join the zone.

A vehicle determines whether it should reply according to a predeter-
mined strategy, e.g., the vehicle closest to the requesting vehicle should reply
to the key request. The optimal strategy depends on the zone structure, the
traffic and other practical factors, and it is an engineering problem on its
own. The assumption is here that such a pre-established key-response strat-
egy exists among all vehicles. Finally, once the time period t has elapsed, V
simply deletes Kz,t from its internal key state.

Enter.V
 [Enter.Wi] : The inputs are assumed to be well-formed, i.e., cre-
dentials credV and credWi are valid for epoch e(t).

1. V running Enter.V(credV , LK , pkI , z, t, requester) :
◦ return LK if ∃ (z, t,Kz,t) ∈ LK
◦ (ek, dk)← PKE.KG(ppPKE)
◦ tokV ← DGSA.Auth(pkI , credV , (z, t, ek))
◦ broadcast (z, t, ek, tokV)

2. Wi running Enter.W(credWi , LKi , pkI , z, t, responder i) upon re-
ceiving (z, t, ek, tokV) from a vehicle V:
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◦ verify that DGSA.Vf(pkI , (z, t, ek), e(t), tokV) = 1
◦ retrieve (z, t,Kz,t) ∈ LKi
◦ C ← PKE.Enc(ek,Kz,t)
◦ tokW ← DGSA.Auth(pkI , credWi , (z, t,C ))
◦ send (z, t,C , tokW) to vehicle V

(3a) Vehicle V upon receiving (z, t,C , tokW) from a vehicle Wi:
◦ verify that DGSA.Vf(pkI , (z, t,C ), e(t), tokW) = 1
◦ decryptKz,t ← PKE.Dec(dk,C ), return LK ← LK∪(z, t,Kz,t)

(3b) If V does not receive a response after a predetermined waiting
time:
◦ Kz,t ← DAE.KG(λ), return LK ← LK ∪ (z, t,Kz,t)

Exit(LK , z, t) : If (z, t,Kz,t) ∈ LK return L′K ← LK\(z, t,Kz,t).

Sending and Receiving Payloads. To encrypt CAMs, referred to as
payloads in the construction, a vehicle generates a fresh symmetric key KP
and encrypts the payload with it. It then wraps the payload key with the
key Kz,t of each of the zones to which it intends to send the CAM. By us-
ing a deterministic1authenticated encryption scheme [RS06] to wrap fresh
payload keys, it is guaranteed that the message originates from a genuine
vehicle, as it had to authenticate itself to obtain the zone key. The need
for a separate signature on each CAM message is thus eliminated, yielding
considerable savings in terms of computation. In addition to that, the au-
thentication provided by scheme DAE is extended to the payload ciphertext
C by including C as the header when KP is encrypted under the zone keys.

Send(LK ,P, Y ⊆ Z, t) : to send a payload P,

1. retrieve keys {Ky,t} for all zones y ∈ Y and time t from LK

2. C ← SE.Enc(KP , P ) with KP ← SE.KG(ppSE)
3. for all y ∈ Y : γy,t ← DAE.Enc(Ky,t,C ,KP )
4. return γ ← (t, Y, ((y, γy,t)y∈Y ,C ))

1. retrieve keys {Ky,t} for all zones y ∈ Y and time t from LK

2. C ← SE.Enc(KP , P ) with KP ← SE.KG(ppSE)
3. for all y ∈ Y : γy,t ← DAE.Enc(Ky,t,C ,KP )
4. return γ ← (t, Y, ((y, γy,t)y∈Y ,C ))

1A deterministic authenticated encryption scheme is here used as a key-wrapping al-
gorithm should in practice not rely on nonces [Dwo04].
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Figure 5.7: Encryption Procedure with Y := {y1, . . . , yn} and ij := (yj , t).

Receive(LK , γ) : To recover the payload of a ciphertext γ,

1. parse γ = (t, Y, ((y, γy,t)y∈Y ,C ))
2. retrieve from LK a key Ky,t for a zone y ∈ Y
3. KP ← DAE.Dec(Ky,t,C , γy,t)
4. return P ← SE.Dec(KP ,C ).

Identity Escrow. If needed, the issuer can recover the identity of a vehicle
that sent an authenticated key request or response during an execution of
protocol Enter. He does so by executing the opening protocol of DGSA.

Open(skI , stI ,m) : parse message m as (z, t,m′, tok) with m′ ∈ {ek,C} and
return identity V/⊥ ← DGSA.Open(skI , stI , (z, t,m′), e(t), tok).

Threshold Issuance and Identity Resolution. In the above scheme,
the issuer can alone issue vehicle credentails and de-anonymize messages sent
during executions of protocol Enter, making it a single point of failure. To
distribute the issuance and opening capabilities over several authorities, one
can instead use the threshold DGS+A scheme mentioned in Section 5.2.2,
so that at least a threshold number of authorities must collaborate to issue
a credential or to link a message to a vehicle long-term credential. The
ZE scheme thereby inherits the security properties of the threshold DGS+A
scheme.

Correctness & Security.

This section shows that Z is correct and satisfies the security requirements
introduced in Section 5.3.2.
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Theorem 5.3.8 (Correctness). Z is correct if the signature scheme SIG, the
DGS+A scheme DGSA, the public-key encryption scheme PKE, the symmet-
ric encryption scheme SE and the authenticated encryption scheme DAE are
correct.

Proof. If the signature scheme SIG is correct, vehicles that honestly execute
the vehicle enrollment algorithm obtain a certificate that is accepted in the
authorization protocol with probability 1. If scheme DGSA is also correct,
the credentials obtained during the authorization protocol in an epoch al-
lows the vehicles to generate authentication tokens that are later accepted
when they enter new zones in the same epoch with overwhelming probabil-
ity. If the encryption scheme PKE is correct, during the Enter protocol for
a zone in a given time period, the same vehicles can successfully unwrap
the authenticated-encryption key for the zone in that time period. The
correctness of the symmetric encryption scheme SE and that of the authen-
ticated encryption scheme DAE then suffice to conclude that scheme Z is
correct.

Theorem 5.3.9 (PH-CCA Security). Z is PH-CCA secure if SIG is EUF-
CMA secure, if DGSA satisfies traceability, if SE is IND-CPA secure, if PKE
is IND-CPA secure, and if DAE satisfies privacy and authenticity.

Proof. Under the assumptions of the theorem, the PH-CCA security of Z
can be proved via the following hybrid argument. Let A be an adversary
for the PH-CCA security distinction experiment (i.e., A tries to tell apart
the PH-CCA challenger Cph−cca

0 that encrypts P0 and the challenger Cph−cca
1

that encrypts P1). Suppose that A wins the game with (V∗,P0,P1, Y
∗, t∗)

as a challenge tuple. Number the zones in Y ∗ from 1 to nY ∗ := |Y ∗|, i.e.,
Y ∗ = {y1, . . . , ynY ∗}. For i = 0, . . . , nY ∗ , consider the hybrid algorithm Hi
that proceeds exactly like the PH-CCA challenger Cph−cca

0 , except that to
compute the challenge ciphertext, it encrypts the first i zones with a payload
key K ′ and the remaining z − i zones with another key K, and encrypts P0
with K. Namely, the challenge ciphertext of Hi is of the form

DAE.Enc(Ky1,t,K
′), . . . ,DAE.Enc(Kyi,t,K

′),
DAE.Enc(Kyi+1,t,K), . . . ,DAE.Enc(KnY ∗ ,t,K),
SE.Enc(K,P0).

Consider also, for i = 0, . . . , nY ∗ , the hybrid algorithm H′i that proceeds
exactly like the PH-CCA challenger Cph−cca

1 , except that to compute the
challenge ciphertext, it encrypts the first i zones with a payload key K and
the remaining z − i zones with another key K ′, and encrypts P1 with K.
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Namely, the challenge ciphertext of H′i is of the form

DAE.Enc(Ky1,t,K), . . . ,DAE.Enc(Kyi,t,K),
DAE.Enc(Kyi+1,t,K

′), . . . ,DAE.Enc(KnY ∗ ,t,K
′),

SE.Enc(K,P1).

By definition, H0 = Cph−cca
0 , the challenger that encrypts P0 and H′nY ∗ =

Cph−cca
1 , the challenger that encrypts P1. To show that A has a negligible

advantage in the PH-CCA distinction experiment, it suffices to show that
the advantage of A in distinguishing two consecutive hybrids is negligible.

If adversary A can distinguish Hi from Hi+1, then it can be used to win
the DAE privacy game for DAE as follows. Assume SIG to be existentially
unforgeable, DGSA to satisfy traceability, SE to be IND-CPA secure, PKE to
be IND-CPA secure, and DAE to satisfy authenticity. Let B be an algorithm
that features A and interacts with a DAE privacy game Cpriv

b for b ∈ {0, 1},
which generates a secret key Kpriv. At the beginning of the game, B receives
parameters ppDAE for DAE from Cpriv

b and generates the other parameters
itself. It generates (pkE = vk, skE = sk) ← SIG.KG(ppSIG) and (pkI =
pk, skI = sk) ← DGSA.KG(ppDGSA). It then sends all the parameters and
pkE and pkI to A.
B chooses a time period t̃ uniformly at random and implicitly sets Kyi+1,t̃

:= Kpriv (i.e., it will query Cpriv
b to answer queries Send queries involving zone

yi+1 and time t̃).
Throughout the game, B locally maintains the same lists as the PH-CCA

challenger does.
For Enroll.V&Enroll.E queries, B runs the protocol and stores the gener-

ated certificates.
For Enroll.E queries, B runs the corresponding algorithms with skE .
For Authorize.V&I queries, B runs the protocol and stores the generated

credentials.
For Authorize.I queries, B runs the corresponding algorithm with pkI .
For an Enter query on input (V, z, t, role), (V /∈ Lcorrupt by definition of

this oracle) for any role, if (z, t) = (yi+1, t̃) then B starts an execution of
protocol Enter with A.

If role = requester , then algorithm B generates (ek, dk) ← PKE.KG(λ),
computes a token tok ← DGSA.Auth(pkI , credV,e(t), (z, t, ek)) and sends
(z, t, ek, tokV) to A.

If role = responder i, and that V should respond according to the strategy
of responder i, then B, upon receiving (yi+1, t̃, ek, tok) from A, determines
whether it comes from a non-corrupt vehicle identity in the same protocol
execution, i.e., whether A is simply performing a passive attack by relaying
a message from a non-corrupt vehicle identity.

If so, then B encrypts a random message instead of K with PKE. The
IND-CPA security of PKE is important here to argue for indistinguishability
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between the two consecutive hybrids. If V ∈ Lcorrupt, algorithm B returns
⊥.

If (yi+1, t̃, ek, tok) does not come from a non-corrupt vehicle in the same
protocol execution, it is an active attack. B then aborts the protocol exe-
cution. In the event in which A wins the PH-CCA game, if t∗ = t̃ (B will
abort if it is not the case), the winning condition 3b) implies that no vehicle
Vj ∈ Lcorrupt can be authorized in e(t̃), so that

◦ either there exists a vehicle identityW such that (W, e(t̃)) ∈ Lauth but
W /∈ Lhonest (and also not in Lcorrupt), i.e., it has obtain a credential
for e(t̃) but has never been enrolled neither as an honest vehicle nor
a corrupt one; and it happens with negligible probability if SIG is
EUF-CMA secure

◦ or no such vehicle exists and the token sent the adversary can be valid
w.r.t. pkI and e(t̃) with only negligible probability if DGSA satisfies
traceability.

Therefore, by aborting the protocol once a token is received from A during
the Enter protocol execution, B is computationally indistinguishable from
both Hi and Hi+1.

If (z, t) 6= (yi+1, t̃), then B simply runs the Enter.V algorithm on input
(V, z, t, role), and never has to send Kpriv.

For an Exit on input (V, z, t), algorithm B simply deletes (z, t,Kz,t) from
V[LK ] that it locally maintains for V.

For a Send query on (V,P, Y 3 yi+1, t̃), algorithm B checks whether all
the zones in Y are active for V, and in particular if (yi+1, t̃, ·) ∈ V[LK ]. If
not, it returns⊥, otherwise B generates a payload keyK ← DAE.KG(ppDAE),
computes C ← DAE.Enc(K,P ), and computes γyi+1,t̃ for the zone–time pair
(yi+1, t̃) by sendingK to Cpriv

b . Simulator B then encryptsK with the keys for
the other zone–time pairs in the query, and sets the ciphertext as the Enter
algorithm does. For Send queries such that yi+1 /∈ Y or t 6= t̃, algorithm B
runs algorithm Send on the inputs.

For a Receive query on a vehicle identity V and a ciphertext γ = (t̃, Y, ((y,
γy,t̃)y∈Y ,C )) such that yi+1 ∈ Y , algorithm B first determines whether yi+1
is the only zone in Y that is active for V in time t̃. If not, then B can answer
the query using any other zone z that is active for V, i.e., by computing
KP ← DAE.Dec(Kz,t̃,C , γz,t̃), and returning P ← SE.Dec(KP ,C ). If yi+1 is
the only zone in γ that is active for V in time t, then B checks whether γyi+1,t̃

and C are the output of a same previous Send query that it answered. If
not, then B replies with ⊥. This is where the authenticity of DAE comes into
play. Indeed, if DAE satisfies authenticity, A can submit a ciphertext that
does not decrypt to ⊥ with only negligible probability. If γyi+1,t̃ and C are
part of the answer to a previous Send query, then B replies with the payload
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on which it was queried. For Receive oracle involving other zone–time pairs,
B simply runs algorithm Receive on the queried input.

For an Open query on input m, algorithm B parses m as (m′, t, tok) and
runs DGSA.Open(skI , stI , (m, e(t), tok)). It returns the output to A.

For a Corrupt query on an identity V, algorithm B replies by sending
to A the certificate V[certV ], all the credentials V[ej , credV,j ] and the key
list V[LK ]. Note that in the event in which A wins the game, if t = t̃, no
challenge zone y∗ ∈ Y ∗ can be active for V in time t∗ (condition 2). In
particular, B never has to send Kyi+1,t̃ to A.

At the challenge phase, adversary A outputs the challenge tuple (V∗,P0,
P1, Y

∗, t∗). If V∗ ∈ Lcorrupt, then B returns 0 as the PH-CCA challenger does.
If t̃ 6= t∗, then B aborts and outputs ⊥; otherwise, B generates two payload
keys K and K ′, sends them to C, and receives a ciphertext γ∗

yi+1,t̃
from Cpriv

b .
For k = 1, . . . , i, Simulator B computes γyk,t̃ ← DAE.Enc(Kyk,t̃

,K ′), and
for i < k ≤ nY ∗ , it computes γyk,t̃ ← DAE.Enc(Kyk,t̃

,K). It also compute
C ← DAE(K,P0), and then sends the ciphertext

γ∗ ←
(
t̃, Y ∗, ((yk, γyk,t̃)k≤i, (yi+1, γ

∗
yi+1,t̃

), (yk, γyk,t̃)k>i+1,C )
)

to adversary A.
After the challenge phase, for Receive on (V, γ) queries from A, algorithm

B first parses γ as (t, Y, γ′). Conditioned on the event in which A wins the
PH-CCA game, no part of γ′ is replayed from the challenge ciphertext γ∗,
i.e., γ′ ∩ γ∗

′
6= ∅. B can then proceeds as before the challenge phase.

For the other queries, B replies as before the challenge phase.
At the end of the experiment, B forwards the decision bit of A. Up to the

existential unforgeability of SIG and the traceability of DGSA, B perfectly
simulates Cph−cca

b to adversaryA except for Receive queries involving (yi+1, t̃)
as the only zone in the ciphertext that is active for the queried vehicle and
for passive Enter queries. Consequently, as t̃ = t∗ with probability 1/|T |,

AdvHi,Hi+1 (A)− qEnter.act(yi+1, t̃)Adveuf−cma
SIG (B(A))

− qEnter.act(yi+1, t̃)Advtrace
DGSA(B(A))

− qReceive(yi+1, t̃)Advauth
DAE(B(A))

− qEnter.pass(yi+1, t̃)Advind−cpa
PKE (B(A))

≤ |T |Advind−cpa
SE (B(A)) ,

with

◦ qEnter.act(yi+1, t̃) the number of active enter queries in (yi+1, t̃)

◦ qReceive(yi+1, t̃) the number of Receive queries involving (yi+1, t̃) as the
only zone in the ciphertext that is active for the queried vehicle
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◦ qEnter.pass(yi+1, t̃) the numer of passive Enter queries made by for zone
yi+1 in time t̃.

Therefore, if SIG is EUF-CMA secure, if DGSA satisfies traceability, if PKE
is IND-CPA secure and if DAE satisfies authenticity, then Hi and Hi+1 are
computationally indistinguishable.

The IND-CPA security of SE can be reduced to the computational in-
distinguishability of H′i and H′i+1 in the very same manner.

Note also that the IND-CPA security of SE can be reduced to the com-
putational indistinguishability of HnY ∗ and H′0. The reduction algorithm
can implicitly set K as the challenger key, and forward the challenge tuple
(P0,P1) at the challenge phase. It can answer of all the other Send queries
(i.e., other that the challenge one) by generating fresh payload keys. More-
over, as all the key for active zones are known to B, it can answer all the
other queries.

Overall,

Advph−cca
Z (A)− negl(λ) ≤ 2nY ∗ |T |Advpriv

DAE(B(A)) + Advind−cpa
SE (B(A)),

hence the statement of the theorem.

Theorem 5.3.10 (Anonymity). The ZE scheme Z satisfies anonymity if
the DGS+A scheme DGSA satisfies anonymity and if SIG is EUF-CMA
secure.

Proof. Assuming that DGSA satisfies anonymity, and that SIG is EUF-CMA
secure, the anonymity of Z can be proved via the following hybrid argument.
Let A be an adversary for the ZE anonymity game that makes q Enter∗
queries. One can assume that q > 0. Indeed, an adversary that wins the
game with q = 0 can always be run as a sub-routine by an adversary that
makes one arbitrary Enter∗ query. For i = 0, . . . , q, let Hi be an algorithm
that proceeds exactly that the ZE anonymity game challenger, except that
to answer the (*) queries with a bit d up to the ith Enter∗, it uses V1−d. For
the remaining (*) queries (including the remaining q − i Enter∗), it uses Vd.
By definition, if Cb denotes the ZE anonymity challenger that uses Vb, then
H0 = C0 and Hq = C1. The advantage of A in the ZE anonymity game is
therefore at most q times its advantage in distinguishing Hi from Hi+1 for
some 0 ≤ i ≤ q − 1. However, if A can distinguish Hi from Hi+1, then it
can be used to win the DGS+A anonymity game as follows.

Consider a simulator that runs A as a subroutine and interacts with the
DGS+A anonymity challenger CDGSA,b for b ∈ {0, 1}. Throughout the game,
B locally maintains the same lists as the PH-CCA challenger does.

Upon receiving parameters ppDGSA for DGSA and a public pkI , simulator
B generates the parameters for the other schemes itself, generates (pkE =
vk, skE = sk)← SIG.KG(ppSIG) and sends all the parameters to A as well as
pkE and pkI .
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For Enroll.V&Enroll.E queries, B runs the protocol and stores the gener-
ated certificates.

For Enroll.E queries, simulator runs the corresponding algorithms with
skE .

For an Authorize.V&I on (V, e), simulator B queries the Auth oracle of
CDGSA,b for (V, e) and stores the output credential.

For an Authorize.I query on (V, e), simulator B starts an execution of
protocol Authorize with A. Conditioned on the event in which A wins the
game with a pair of identities V0 and V1, if V = Vd for d ∈ {0, 1}, upon
receiving (vkV , σE , σV) from A, simulator B checks whether Vd ∈ Lhonest (i.e.,
it Vd is enrolled). If not, then B aborts and is indistinguishable from the ZE
anonymity challenger under the assumption that SIG is EUF-CMA secure. If
V 6= V0,V1, then simulator B first checks that SIG.Vf(pkE , (V, vkV), σE) = 1
and that . If not, B aborts; otherwise it starts an execution of protocol
DGSA.Issue with A on (V, e) and simply forwarding every message from A
to the Issue.I oracle provided by CDGSA,b and vice versa.
B answers Enter queries by calling on oracle Auth to generate and verify

authentication tokens.
For an Exit on input (V, z, t), simulator B simply deletes (z, t,Kz,t) from

V[LK ] that it locally maintains for V.
For Send and Receive queries, B runs the corresponding algorithms on

the inputs.
For an Open query on input m, simulator B queries the Open oracle

provided by the DGS+A-anonymity challenger on m.
To answer Corrupt queries on a vehicle identity V, simulator B sends to

the Corrupt oracle provided by C all the pairs (V, ej) such that (V, ej) ∈ Lauth,
gets a credential credj for each ej , and sets credV,j ← credj . It can then
answer the query by returning the certificate V[certV ] (that it maintains
locally), V[(ej , credV,j ] and the list V[LK ] of keys that it maintains for V.

At the challenge phase, after the adversary outputs two challenge vehicle
identities V0 and V1. Simulator B checks that they are authorized in exactly
the same epochs and that V0[LK ] = V1[LK ]. If it is not the case, B aborts.
B simulator randomly chooses a zone–time pair (z̃, t̃) such that both

vehicles are authorized in e(t̃).
After the challenge phase, the oracles Enter, Exit, Send and Receive are

respectively replaced with the Enter∗, Exit∗, Send∗ and Receive∗ oracles.
For all oracles queries except the queries to these oracles with a bit d,

simulator B replies as before the challenge phase (and recall that conditioned
on the event in which A wins the game, neither V0 nor V1 can be corrupt).

For the (*) queries up to the ith Enter∗ query,

1. if Enter∗ is queried on (d, z, t, requester), B

◦ checks that (e(t),V1−d) ∈ Lauth (aborts if not)
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◦ checks if ∃(z, t,Kz,t) ∈ V1−d[LK ] (does nothing if it is the case)
◦ makes an authenticated key request: it generates a (ek, dk) ←

PKE.KG(λ), queries the Auth oracle of CDGSA,b on the tuple (V1−d,
e(t), (z, t, ek)), receives an authentication token tok and sends
(z, t, ek, tok) to A

◦ upon receiving (z, t,C , tok ′) from A, checks that DGSA.Vf(pkI ,
(z, t,C ), e(t), tok ′) = 1. If not, B aborts, otherwise it decrypts
Kz,t ← PKE.Enc(ek,C ) and adds (z, t,Kz,t) to V1−d[LK ]

2. if Enter∗ is queried on (d, z, t, responder i), B upon receiving (z, t, ek, tok)
from A, if ∃(z, t,Kz,t) ∈ V1−d[LK ] and if it should reply according to
the strategy of responder i,

◦ checks that DGSA.Vf(pkI , (z, t, ek), e(t), tok) = 1 (aborts if not)
◦ computes C ← PKE.Enc(ek,Kz,t)
◦ queries the Auth oracle of CDGSA,b on (V1−d, e(t), (z, t,C )) and
receives a token tok ′

◦ sends (z, t,C , tok ′) to A

3. if Exit∗ is queried on (d, z, t), simulator B deletes (z, t,Kz,t) from both
V1−d[LK ]

4. if Send∗ is queried on (d,P, Y, t), simulator B

◦ computes γ ← Z.Enc(V1−d[LK ],P, Y, t) and sends it to A

For the i+1th Enter∗ query on input (d, z, t, role), if (z, t) 6= (z̃, t̃), simula-
tor B aborts, otherwise if it is an Enter∗ with role = requester , to compute an
authenticated key request, it sends (V0,V1, e(t̃), (z, t, ek)) as a challenge tu-
ple to CDGSA,b. If it is an Enter∗ query and that role = responder i and that it
should reply according to the strategy to the strategy of responder i, to com-
pute its authenticated key response, simulator B sends (V0,V1, e(t̃), (z, t,C ))
as a challenge tuple to CDGSA,b.

For the remaining (*) queries B uses the state of Vd instead of V1−d.
Note that the winning condition enforces that neither V0 nor V1 can be

corrupt throughout the game so B never has to return their states.
Moreover, the winning condition also implies that A never made an Open

query on any message exchanged during the executions protocol Enter∗. As
a consequence, the distribution of the answers of B to oracle queries except
for the i+ 1th Enter∗ query are identically to those of Hi and Hi+1.

At the end of the game, B forwards the decision bit b′ of A to CDGSA,b.
If A has made no Enter∗ query on z and t, then B returns ⊥ to C, otherwise
B forwards b′ to CZ,b, and
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AdvHi,Hi+1 (A)− negl(λ) ≤ |Z||T |Advano
DGSA (B(A))

with the negligible factor coming from the unforgeability of SIG.
Therefore,

Advano
Z (A)− negl(λ) ≤ q|Z||T |Advano

DGSA (B(A)) .

As 1/q|Z||T | is non-negligible, if A has a non-negligible advantage in the
ZE anonymity game, then so does B in the DGS+A anonymity game; hence
the theorem.

Theorem 5.3.11 (Traceability). The ZE scheme Z satisfies traceability if
the DGS+A scheme DGSA satisfies traceability, if PKE is IND-CPA secure
and if SIG is EUF-CMA secure.

Proof. Consider an adversary A that wins the ZE traceabilty game with a
non-negligible probability. To win the game, at the challenge phase, A out-
puts a tuple (z∗, t∗,Kz∗,t∗) such that there exists an honest vehicle identity
V such that (z∗, t∗,Kz∗,t∗) ∈ V[LK ].

The winning condition implies that Kz∗,t∗ /∈ Lkeys, so for Kz∗,t∗ to
be active for V, either there exists at least one message mj (with mj =
(z∗, t∗,C , tok) or (z∗, t∗, ek, tok)) such that (A, z∗, t∗,mj) ∈ Lenter or (W, z∗,
t∗,mj) ∈ Lenter for W ∈ Lcorrupt, or there does not exist such a message.

If there is no such message (case 0), then the traceability of Z can be
reduced to the IND-CPA security of PKE since A only sees transcripts of
Enter protocol executions.

If there exists at least one such message mj , then the winning condition
ensures that for Vj ← Open(skI , stI ,mj),

1. Vj /∈ Lcorrupt or

2. (Vj ∈ Lcorrupt) ∧ (Vj , e(t∗)) /∈ Lauth.

In case 1), the traceability of Z can be reduced to the unforgeability of
SIG or the IND-CPA security of PKE. Indeed, the fact that Kz∗,t∗ ∈ V[LK ]
means that A has sent an authentication token tok for a message mj that
was accepted by an honest vehicle in (z∗, t∗), be it V, (since Kz∗,t∗ ∈ V[LK ])
during an Enter protocol execution, i.e., DGSA.Vf(pkI ,mj , e(t∗), tok) = 1.
However, as Vj /∈ Lcorrupt, if

1.1) Vj ∈ Lhonest, then A either 1.1.1) simply relayed a message between Vj
and that honest vehicle, and the traceability of Z can be reduced to
the IND-CPA security of PKE, or 1.1.2) the adversary forged a token
that opens to an honest vehicle that never computed it, in which case
the traceability of Z can be reduced to the traceability of DGSA
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1.2) Vj /∈ Lhonest (and also not in Lcorrupt), then the traceability of Z can
be reduced to the unforgeability of SIG if 1.2.1) (Vj , e(t∗)) ∈ Lauth (Vj
was never enrolled, i.e., A forged a certificate for it) or the traceability
of DGSA if 1.2.2) (Vj , e(t∗)) /∈ Lauth.

In case 2), the traceability of Z can be reduced to the traceability of
DGSA as Vj is corrupt, but was not authorized in e(t∗).

The reduction to the IND-CPA security of PKE in case 0) and 1.1.1),
is done by encrypting random a random key instead of the challenger in
passive Enter queries.

To reduce to the traceability of DGSA in cases 1.1.2), 1.2.2) and 2), a
reduction algorithm B running A as a subroutine uses message mj and token
tok sent by A as a forgery for the vehicle identity Vj in epoch e(t∗).

To reduce to the unforgeability of SIG in case 1.2.1), B uses the signature
of the certificate of Vj as a forgery.

Theorem 5.3.12 (Ciphertext Integrity). The ZE scheme Z satisfies ci-
phertext integrity if DAE satisfies authenticity, if SIG is EUF-CMA secure,
if DGSA satisfies traceability, and if PKE is IND-CPA secure.

Proof. Assume SIG to be EUF-CMA secure, DGSA to satisfy traceability and
PKE to be IND-CPA secure. The ciphertext integrity of Z can be reduced
to the authenticity of DAE as follows. Let A be an adversary that wins the
authenticity game of Z with probability at least ε. Let B be a reduction
algorithm which runs A as a subroutine and interacts with the challenger
C of the authenticity game of DAE (which generates a secret key K). At
the beginning of the game, B receives parameters ppDAE for DAE from Cpriv

b

and generates the other parameters itself. It generates (pkE = vk, skE =
sk) ← SIG.KG(ppSIG) and (pkI = pk, skI = sk) ← DGSA.KG(ppDGSA). It
then sends all the parameters and pkE and pkI to A.

Algorithm B chooses a zone–time pair (z̃, t̃) uniformly at random and
implicitly sets Kz̃,t̃ := K (i.e., it will query C to answer queries involving z̃
and t̃).

Throughout the game, B locally maintains the same lists as the PH-CCA
challenger does.

For Enroll.V&Enroll.E queries, B runs the protocol and stores the gener-
ated certificates.

For Enroll.E queries, B runs the corresponding algorithms with skE .
For Authorize.V&I queries, B runs the protocol and stores the generated

credentials.
For Authorize.I queries, B runs the corresponding algorithm with pkI .
For an Enter query on input (V, z, t, role), (V /∈ Lcorrupt by definition

of this oracle) for any role, if (z, t) = (z̃, t̃) then B starts an execution of
protocol Enter with A.
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If role = requester , then B generates (ek, dk) ← PKE.KG(λ), computes
tok ← DGSA.Auth(pkI , credV,e(t), (z, t, ek)) and sends (z, t, ek, tokV) to A.

If role = responder i, and that V should respond according to the strat-
egy of responder i, then B, upon receiving (z̃, t̃, ek, tok) from A, determines
whether it comes from a non-corrupt vehicle identity in the same protocol
execution, i.e., whether A is simply performing a passive attack by relaying
a message from a non-corrupt vehicle identity.

Algorithm B then encrypts a random message instead of K with PKE.
The IND-CPA security of PKE is important here to argue for indistinguisha-
bility between the two consecutive hybrids. If V ∈ Lcorrupt, algorithm B
returns ⊥.

If (z̃, t̃, ek, tok) does not come from a non-corrupt vehicle in the same
protocol execution, it is an active attack. B then aborts the protocol exe-
cution. Conditioned on the event in which A wins the PH-CCA game, if
t∗ = t̃ (B will abort if it is not the case), the winning condition 3b) implies
that no vehicle Vj ∈ Lcorrupt can be authorized in e(t̃), so that

• either there exists a vehicle identityW such that (W, e(t̃)) ∈ Lauth but
W /∈ Lhonest (and also not in Lcorrupt), i.e., it has obtain a credential
for e(t̃) but has never been enrolled whether as an honest vehicle or
not; and it happens with negligible probability if SIG is EUF-CMA
secure

• or no such vehicle exists and the token sent the adversary can be valid
w.r.t. pkI and e(t̃) with only negligible probability if DGSA satisfies
traceability.

Therefore, by aborting the protocol once a token is received from A during
the Enter protocol execution, B is computationally indistinguishable from
both Hi and Hi+1.

If (z, t) 6= (z̃, t̃), then B simply runs the Enter.V algorithm on input
(V, z, t, role), and never has to send Kpriv.

For an Exit on input (V, z, t), algorithm B simply deletes (z, t,Kz,t) from
V[LK ] that it locally maintains for V.

For a Send query on (V,P, Y 3 z̃, t̃), algorithm B checks whether all
the zones in Y are active for V, and in particular if (z̃, t̃, ·) ∈ V[LK ]. If
not, it returns ⊥, otherwise B generates a payload key K ← SE.KG(ppSE),
computes C ← SE.Enc(K,P ), and computes γz̃,t̃ for the zone–time pair
(z̃, t̃) by sending K to Cpriv

b . Algorithm B then encrypts K with the keys for
the other zone–time pairs in the query, and sets the ciphertext as the Enter
algorithm does. For Send queries such that z̃ /∈ Y or t 6= t̃, algorithm B runs
algorithm Send on the inputs.

For every Receive query on vehicle identity V and a ciphertext γ =
(t, Y 3 z̃, ((y, γy,t)y∈Y ,C )) such that t = t̃, algorithm B first checks whether
there exists a zone y 6= z̃ in Y such that (y, t̃, ·) ∈ V[LK ]. If so, it decrypts
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using Ky,t̃ and replies as algorithm Receive does, otherwise it checks whether
(z̃, t̃, ·) ∈ V[LK ]. If not, it returns ⊥; otherwise it sends γz̃,t̃ together with
C as a header to C and forwards its answer to A. For Receive queries such
that z̃ /∈ Y or t 6= t̃, algorithm B runs the corresponding algorithm on the
inputs.

For an Open query on input m, algorithm B parses m as (m′, t, tok) and
runs DGSA.Open(skI , stI , (m, e(t), tok)). It forwards the output to A.

For a Corrupt query on an identity V, algorithm B replies by sending to
A the certificate V[certV ], all the credentials V[ej , credV,j ] and the key list
V[LK ]. Note that in the event in which A wins the game, no challenge zone
y∗ ∈ Y ∗ can be active for V in time t∗ (condition 2). In particular, if t = t̃
(simulator B will abort otherwise), B never has to send Kz̃,t to A.
A ultimately outputs a challenge tuple (V, γ∗). Algorithm B parses γ∗

as (t∗, Y ∗, γ∗
′
). If t̃ 6= t∗ or z̃ /∈ Y ∗, algorithm B aborts; otherwise, in the

event in which A wins, Receive(V[Lk], γ∗) 6= ⊥, meaning that there exists
y∗ ∈ Y ∗ such that DAE.Dec(Ky∗,t̃, γy∗,t̃) 6= ⊥. Such a y∗ is equal to z̃ with
probability at least 1/|Z| and t = t̃ with probability 1/|T |. Moreover, since
∀(t∗, Y, γ) /∈ Lsent, γ ∩ γ∗ = ∅, it follows that γz̃,t̃ was never output by C

priv
b .

Algorithm B then sends γz̃,t̃ to A.
As SIG is assumed to be EUF-CMA secure, DGSA to satisfy traceabilty

and PKE to be IND-CPA secure, B is computationally indistinguishable from
the ZE-scheme integrity challenger. Adversary A then wins the authentic-
ity game with probability at least (ε − negl(λ))/|Z||T |. As DAE satisfies
authenticity and as 1/|Z||T | is non-negligible, ε must be negligible.

5.3.13 Efficiency & Comparison

This section specifies how the building blocks can be instantiated such that
the bandwidth constraint of 300 Bytes per message can be satisfied. Some
design choices for the C-ITS deployment are then discussed and compared
to the current C-ITS proposal.

Efficiency.

To instantiate the above ZE construction at a 128-bit security level, one can
use

◦ SIG as the BLS signature scheme [BLS01] since no zero-knowledge
proof must be computed during enrollment and authorization. On a
Cocks–Pinch pairing curve [GMT19] defined over a field of order 2544

and with embedding degree 8, group elements in G and G̃ respectively
take 68 Bytes and 136 Bytes (using their quadratic twists which have
degree 4 [GMT19]) for a group of 256-bit order. Therefore, vehicle
certificates, each of which consist of a pair of keys and a signature, are
236 Bytes long.
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◦ DGSA as the DGS+A scheme of Section 5.2.2. Authentication tokens
sent during protocol Enter are then 246 Bytes.

◦ PKE as the Hash-ElGamal encryption scheme on the 256-bit first group
of the previous Cocks–Pinch curve. A public key is a group element
in G, and a ciphertext consist of a group element and a bit string of
same length as the plaintext (a 128-bit DAE zone key).

◦ SE as AES-CTR (Counter Mode) with 128-bit keys.

◦ DAE as AES-128-GCM-SIV [RS06, Section 5].

The complexity of the opening algorithm is the same as for DGSA, i.e.,
it grows linearly in the number of enrolled vehicles. This makes tracing ex-
pensive but allows for short authentication tokens, which is the appropriate
trade-off for V2V communication in which CAMs should be short and trac-
ing only be done in case of exceptional events, e.g., an accident or to revoke
the key of a rogue device.

C-ITS Deployment and Comparison.

Suppose that the road network is divided into hexagonal zones, and that a
vehicle broadcasts messages to the zone it currently is and its 6 neighbor-
ing zones, i.e., to 7 zones in total. With the parameters of Section 5.3.13,
the ciphertexts of the ZE scheme (ignoring the time-period and zone indi-
cators) consist of 7 AES-128-GCM-SIV ciphertexts (256 bits each) and an
AES ciphertext (128 bits), amounting to 240 Bytes; well within the 300
Bytes bandwidth requirements for C-ITSs. With payloads of 128 bits, it
corresponds to a cryptographic overhead of 224 Bytes.

For messages during protocol Enter, the cryptographic overhead of the
ZE scheme is a PKE public key (83 Bytes) and an authentication token in
a key request, and a PKE encryption of the DAE key (16 Bytes) and an
authentication token in a key response. With tokens of size 216 Bytes, this
yields a total of 284 Bytes for request and 300 Bytes for response messages.

Table 5.1 gives, for various curve choices, the security level, the size
of certificates and the cryptographic overhead for key requests and key re-
sponses. Note that Cocks–Pinch curves are not vulnerable to TNFS at-
tacks [BGK15, KB16, MSS16, KJ17, BD19, GS19, Gui19] which affects the
security of some curves constructed from different methods, and these at-
tacks may be improved in the future. The CP8-544 curve therefore seems to
be the safest choice in terms of security at a 128-bit level or higher. On the
other hand, although operations on CP8-544 are very efficient [Gui19], the
BLS12-446 and FM12-446 curves are the most efficient pairing curves [Gui19]
at that security level.
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p (bits) Sec. Lvl. (bits) Req. (B) Resp. (B)
CP8-544 [GMT19] 256 131 [GMT19] 284 300

BLS12-446 299 132 [GS19] 263 279
FM12-446 [FM19] 296 136 [Gui19] 261 277

Table 5.1: Sizes of Key Requests and Responses with various Curves and
their associated field sizes and security levels.

With the previous ZE construction used in combination with the DGS+A
scheme of Section 5.2.2, a vehicle can create an unlimited number of unlink-
able (even by other vehicles thanks to the anonymity of group signatures)
signatures by downloading a single credential in every epoch. Compared to
the current C-ITS proposals [ETS14, oTNHTSA17], DGS+A combines the
equivalent of an infinite pseudonym pool size with the negligible costs of
downloading and storing a single constant-size credential per epoch. The
latter aspect is a significant improvement not only in terms of storage, but
also communication: in the current C-ITS proposals, vehicles have to spread
out requests for individual pseudonyms over time, rather than downloading
them in batches, to avoid that issuers are able to link the pseudonyms be-
longing to the same vehicle.

Moreover, with the ZE scheme, each CAM carries only 64 Bytes more of
cryptographic overhead than the current proposals with ECDSA signatures
(160 Bytes), for all the additional security and privacy benefits. Besides,
symmetric cryptography is typically significantly faster than elliptic-curve
operations. Therefore, the verification of the authenticity of incoming CAMs
is also faster thanks to the use of a deterministic authenticated (symmetric)
encryption scheme to encrypt payload keys.

Table 5.2 provides a brief overview of the core differences between zone
encryption and the current C-ITS proposal.

5.3.14 Threat Model and Design Choices

By nature, V2X communication is an open system that enables all partici-
pating vehicles to communicate with each other; the security that one can
hope to achieve is therefore also inherently limited. This section discusses
the threat model of zone encryption in more detail and provides some in-
sights into the design choices.

Passive vs. Active Eavesdropping. Because all vehicles must be able
to decrypt messages from other close vehicles, no system can protect against
eavesdropping attacks by insiders that have access to legitimate vehicle cre-
dentials and roam around to actively listen into nearby zones. However,
zone encryption does force such an attacker to actively participate in zone
key exchange protocols, thereby exposing its credentials to being traced and
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Zone
Encryption

C-ITS
Proposal

Encrypted CAM 3 8

Anonymity 3 7

Pseudonyms per
week

unlimited 100 (EU) /
20 (US)

CAM
Authentication

DAE ECDSA

Overhead per
CAM

224 Bytes 160 Bytes

+ per entered
Zones

284/300 Bytes ––

Table 5.2: Comparison of zone encryption to current C-ITS proposals at
a 128-bit security level. “Pseudonyms” refers to the number of unlinkable
authentication tokens a vehicle can generate per epoch.

revoked by authorities. Doing so may not be straightforward in practice,
but it is a considerable step up from the passive and covert eavesdropping
attacks that are trivial to deploy in the current C-ITS proposals where all
vehicles broadcast plaintext messages.

As priorly discussed, zone encryption enables authorities to considerably
increase the manufacturing cost of black-market decryption devices, hope-
fully beyond the point of economical feasibility for ordinary criminals. As
also mentioned, the threat of abusing traffic infrastructure for mass surveil-
lance can be limited by giving infrastructure that has no need for privacy,
nor to decrypt CAM traffic, a different type of credentials that cannot be
used to obtain zone keys. Nevertheless, mass surveillance by a powerful
adversary remains possible, e.g., through a network of (parked or moving)
vehicles, or by road infrastructure that does have a legitimate need to read
CAM traffic. Therefore, even when using zone encryption, the information
in CAMs must still be minimized as much as possible. Maintaining a pool
of vehicles or infrastructure for performing such eavesdropping attacks be-
comes more expensive with zone encryption though, because by forcing the
adversary to actively participate in zone key exchanges, suspicious behavior
can be traced and the corresponding credentials revoked.

Cloning & Insider Attacks. An adversary that compromises and clones
the keys of a vehicle, short-term credentials, or even its long-term certificate
obviously allows the adversary to “impersonate” that vehicle. For zone keys
and short-term (DGSA) credentials, the impact is limited by the timed aspect
of zone encryption to, e.g., 15 minutes and a week, respectively. Corruption
of long-term credentials is more damaging, but the certificate is also likely
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to enjoy stronger protection, e.g., from trusted hardware. Furthermore, the
issuer of short-term credentials could monitor and detect suspicious use of
long-term credentials, such as too frequent requests or requests from very
distant locations, and block or revoke the long-term credential accordingly.

Apart from decrypting CAM traffic from other vehicles, the adversary
can also use the compromised credentials to broadcast fake information. In-
deed, the ciphertext integrity property of zone encryption protects against
malicious information being inserted by outsiders, but not by inside at-
tackers. Moreover, since zone keys are shared among vehicles, it is nearly
impossible to exactly identify the culprit vehicle. This is indeed a drawback
with respect to the current proposal for C-ITSs where each CAM message
is signed. However, if an abnormal event occurs in a zone, the issuer, can
with our scheme, reduce the list of suspects to just the devices that have en-
tered the zone at the time of the event. Besides, with the current proposal,
the issuer can only fully trace back malicious information, not prevent it,
and information from CAMs will always be double-checked by other sensors
such as cameras and LiDARs. Overall, it seems that the privacy advantages
of zone encryption outweigh not being able to directly identify malicious
senders.

Alternative Authentication Mechanisms. The zone-encryption con-
struction uses group signatures to authenticate messages of protocol Enter,
which guarantees privacy for vehicles while enabling the issuer to trace and
revoke compromised credentials.

One could consider resorting to different authentication mechanisms,
such as anonymous credentials [CL03]. Generic anonymous credential schemes
have been proposed for use in V2X applications [SF17,dFGSV17,NBCN17b]
but typically have much larger signature sizes.

In theory, limited-spending techniques [CHK+06] for such schemes might
seem suitable to avoid the credential cloning and allow to trace compromised
keys. However, doing so would require some authority to collect and cross-
check all pseudonyms across all zones to identify overused credentials. Apart
from being detrimental to privacy, such data collection is infeasible in a
continent-scale V2X communication system with tens of millions of zones
and billions of messages exchanged.

In comparison, the opening algorithm of the group signatures in Sec-
tion 5.2.2 runs on a single authenticated message sent during a key request
or a key response. There is no need for a synchronization between all zones.
The anonymous messages exchanged in a zone can easily be recoverable if
e.g., road infrastructures are required to maintain a record of messages ex-
changed in the zone they are in for a certain duration (e.g., a day), or if
vehicles maintain a record of the messages they exchange when requesting
or communicating zone keys for a short amount of time (e.g., an hour).
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Some anonymous attestation mechanisms such as EPID [BL09] support
signature-based revocation, meaning that the key behind a signature can be
revoked by adding the signature to a blacklist. However, the size and/or the
verification time of such non-revocation proofs grow linearly with the number
of revoked users, which is impractical in a V2X system with hundreds of
millions of vehicles.

Finally, note that the authentication mechanism could be replaced with
a quantum-safe one if large-scale quantum computers were to be built in
the future. However, no quantum-safe scheme known today is even close to
fitting the 300-Byte limit at a 128-bit security level.

5.3.15 Deployment Challenges

The cryptographic concept of zone encryption significantly improves the
security and privacy of V2X communication. To be ready for real-world
usage there are a number of interesting deployment challenges that need to
be solved, and potential solutions are discussed below.

Key Agreement Strategy. The Enter protocol assumes the availability
of an appropriate key agreement strategy. In order to avoid that all vehi-
cles respond to a key request, a predetermined strategy should be used to
decide which should reply, e.g., the vehicle closest to the requesting vehicle.
The optimal strategy depends on the zone structure, the traffic and other
practical factors, and is an engineering problem on its own.

Another important aspect are mechanisms to avoid and resolve differ-
ent key clusters within a zone. These might occur when different groups
of vehicles are unable to communicate with each other, e.g., due to phys-
ical constraints or jamming attacks, and hence establish independent keys
within their clusters. Consequently, vehicles in different clusters would not
be able to communicate with each other. A deployed system would need a
mechanism to detect such clustering and to resolve the duplication issue by
agreeing on a common zone key.

Besides, a clear strategy to refresh zone keys needs to be established.
These keys are supposed to be valid for a short amount of time only. The
expiration time thus needs to be communicated with the key and a mecha-
nism must determine which vehicle will choose the new key, similarly to the
strategy when entering a new zone.

Robustness. It is crucial that the increase of cryptographic security does
not come for the price of reduced reliability of inter vehicle communication.
Therefore, to ensure that vehicles can communicate in a timely manner, they
do not only encrypt to the zone they are in, but also to the neighboring ones.
Note that this approach also limits the impact of key clustering events de-
scribed above. This robustness strategy is captured by the zone-encryption
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protocol which encrypts the payload under several zone keys. The actual
deployment solution still needs to decide which zone keys are used and re-
quested in time by the vehicle, based e.g., on the direction of driving, as well
as available traffic flow and route information.

Besides, to smoothly transition between time periods, periods should be
required to slightly overlap. The concrete layout of such zones or the chosen
time periods will depend on practical factors such as density of traffic and
the range of the communication signal.

Finally, the communication medium of the deployed system should be
robust to prevent package loss. In practice, both key-exchange messages and
payloads would be repeated over a strong signal as done in other real-world
protocols.



Chapter 6

Hardware Security without
Secure Hardware: How to
Decrypt with a Password
and a Server

Hardware security tokens have now been used for several decades to store
cryptographic keys. When deployed, the security of the corresponding

schemes fundamentally relies on the tamper-resistance of the tokens, which
is a very strong assumption in practice. Moreover, secure tokens are often
expensive, cumbersome and can even be subverted.

This chapter introduces a new cryptographic primitive called Encryption
schemes with Password-protected Assisted Decryption (EPAD schemes), in
which the decryption key of a user is shared between a user device (or token)
on which no assumption is made, and an online server. The user shares a
human-memorizable password with the server. To decrypt a ciphertext,
the user launches, from a public computer, a distributed protocol with the
device and the server, authenticating herself to the server with her password
(unknown to the device); and her secret key is never reconstructed during
the interaction.

Section 6.3 gives a strong security model which guarantees that (1) for an
efficient adversary to infer any information about a user’s plaintexts, it must
know her password and have corrupted her device (secrecy is guaranteed if
only one of the two conditions is fulfilled), (2) the device and the server are
unable to infer any information about the ciphertexts they help to decrypt
(even though they could together reconstruct the secret key), and (3) the
user is able to verify that they both correctly performed their computations.
These EPAD schemes are in the password-only model, meaning that the user
is not required to remember a trusted public key, and her password remains
safe even if she is led to interact with a wrong server and a malicious device.

128
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Section 6.4 then gives a practical pairing-based EPAD scheme. The
construction is provably secure under standard computational
assumptions, using malleable non-interactive proof systems which can be
efficiently instantiated in the standard security model, i.e., without relying
on the random oracle heuristic. Section 6.2 recalls the properties of
malleable proof systems and provides a generic construction based on
signatures and witness-indistinguishable proof systems.
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6.1 Preliminaries

This section introduces preliminary material to this chapter.

6.1.1 Hardness Assumptions

We introdcue the Symmetric eXternal Diffie–Hellman assumption, the as-
sumption on which some constructions in this chapter rely.

Definition 6.1.2 (SXDH Assumption). The Symmetric eXternal Diffie–Hellman
(SXDH) assumption over a bilinear structure generator G is that given
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λ ∈ N, for Γ = (p, G1 = 〈g1〉, G2 = 〈g2〉, GT , e) ← G
(
1λ
)
, the Deci-

sional Diffie–Hellman assumption holds in both G1 and G2 with overwhelm-
ing probability. That is, no efficient adversary has a non-negligible advantage
(in λ) in distinguishing

(
gi, g

a
i , g

b
i , g

ab
i

)
from

(
gi, g

a
i , g

b
i , g

c
i

)
, for i ∈ {1, 2},

a, b, c←$ Zp and Γ← G
(
1λ
)
.

6.1.3 Signatures

This section first gives the definition of strong one-time security of signature
schemes. It then presents Groth’s one-time signature scheme as well as a
structure-preserving existentially unforgeable signature scheme due to Jutla
and Roy [JR17].

Strong One-Time Security. A signature scheme is one-time strongly
unforgeable against chosen-message attacks if no efficient adversary can forge
a signature on a message even after obtaining a single signature (potentially
on the same message). That is to say, for all λ ∈ N, for every efficient
adversary A,

Pr

 Vf(vk,m∗, σ∗) = 1
∧(m∗, σ∗) /∈ QSign

:
pp ← Setup

(
1λ
)

;QSign ← ∅
(vk, sk)← KG(pp)
(m∗, σ∗)← AO.SignOT(sk,·)(vk)


is negligible. Oracle O.SignOT(sk, ·) can be queried only once, say on a
message m. It computes and returns σ ← Sign(sk,m), and adds (m, σ) to
QSign.

6.1.4 Groth’s Strong One-Time Signatures

Given a group generator G and family of hash functions H, Groth’s [Gro06]
signature scheme consists of the following algorithms.

Setup
(
1λ
)
→ pp : run (p,G = 〈g〉) ← G

(
1λ
)
. Generate H ←$ H. Set and

return pp ← (p,G, H).

KG(pp)→ (vk, sk): generate x, y ←$ Z∗p. Compute f ← gx and h ← gy.
Generate r, s ←$ Z∗p and compute c ← f rhs. Set vk ← (f, h, c) and
sk ← (x, y, r, s). Return (vk, sk).

Sign (sk,m ∈ {0, 1}∗)→ σ : generate t←$ Zp, and compute and return σ ←(
t, (x(r − t) + ys−H(m))y−1).

Vf(vk,m, σ)→ b ∈ {0, 1} : parse σ as (t, u). Return 1 if c = gH(m)f thu, else
return 0.
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Groth proved [Gro06, Theorem 18] that it is one-time strongly unforge-
able against chosen-message attacks if the discrete-logarithm assumption
over G holds and if H is a family of collision-resistant hash functions.

6.1.5 Jutla and Roy’s Signature Scheme

The following signature scheme, parametrized by a bilinear structure gener-
ator G, is due to Jutla and Roy [JR17]. It allows to sign vectors of first-group
elements, and it is existentially unforgeable under the SXDH assumption.

Setup
(
1λ, n

)
→ pp : run Γ← (p, G1 = 〈g1〉, G2 = 〈g2〉, GT , e)← G

(
1λ
)
.

Return pp ← (Γ, n).

KG(pp)→ (vk, sk): Generate b, d, f, k0, A, z ←$ Zp, k ←$ Znp , K ←$ Zn+4
p .

Set vk1 ←
(
gAK1

2 , . . . , g
AKn+4
2 , gAz2 , gA2

)
and sk ← (b, d, f, k0,k,K, z).

Return (vk, sk).

Sign (sk, µ ∈ Gn
1 )→ σ : Generate r, t←$ Zp. Compute

ρ← gr1, ρ̂← grb1 , ψ ← grt1 , γ ←
n∏
i=1

µkii g
k0+dr+frt
1

τ ← gt2, π ←
n∏
i=1

µKii ρKn+1 ρ̂Kn+2ψKn+3γKn+4gz1

Set and return σ ← (ρ, ρ̂, ψ, γ, π, τ) ∈ G5
1 ×G2.

Vf(vk, µ, σ)→ b ∈ {0, 1} : If e(ρ, τ) = e(ψ, g2) and

e
(
π, gA2

)
=

n∏
i=1
e
(
µi, g

AKi
2

)
e
(
ρ, g

AKn+1
2

)
e
(
ρ̂, g

AKn+2
2

)
e
(
ψ, g

AKn+3
2

)
e
(
γ, g

AKn+4
2

)
e
(
g1, g

Az
2

)
then return 1, else return 0.

6.1.6 Public-Key Encryption

This section introduces labeled public-key encryption schemes, their security,
as well as instantiations.

1The verification key is independent of b, d, f, k0,k as signatures are split-CRS quasi-
adaptive proofs for an affine language defined by the message, b, d, f, k0 and k, and these
proofs are simulated with (K, z) as trapdoor.
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Labeled Public-Key Encryption. A public-key encryption scheme (Setup,
KG,Enc,Dec) is labeled if the encryption and decryption algorithm addition-
ally take as input a label or public data ` which is non-malleably attached
to the ciphertext. In this case, the label is indicated on these algorithms by
a superscript.

IND-PCA Security. INDistinguishability under Chosen Plaintext-Checkable
Attacks [ABP15] (IND-PCA) guarantees that an encryption scheme reveals
no information about plaintexts even if an adversary can check whether ci-
phertexts encrypt messages of its choice. Abdalla, Benhamouda and Pointcheval
[ABP15] argued that this weakening of IND-CCA of security is actually
enough for many password-related applications. Note, however, that it is
equivalent to IND-CCA security if the message space is small since it is then
possible to enumerate all messages. Formally, a labeled encryption scheme
is IND-PCA secure if for every λ ∈ N, for every efficient adversary A,

Pr


b = b′ :

pp ← Setup
(
1λ
)

;Q← ∅; (pk, sk)← KG(pp)
(st, `∗,m0,m1)← AO(Q,sk,·) (pk)
b←$ {0, 1}; C ∗ ← Enc`∗(pk,mb)
b′ ←$ AO(Q,sk,·) (st,C ∗)
if (`∗,C ∗) ∈ Q

b′ ←$ {0, 1}
return (b, b′)

return (b, b′)


is negligibly close to 1/2 (the advantage of A is then the distance of that
probability to 1/2). Oracle O, with a state (Q and sk), replies to a (`,C ,m)
query by returning the truth value of

(
Dec`(sk,C ) = m

)
and setting Q ←

Q∪ {(`,C )}. If A ever queries O on (`∗,C ∗), its advantage is set to 0 since
b′ is overwritten by a uniformly random bit.

Short Cramer–Shoup Encryption. Given a group generator G (i.e., an
algorithm which returns a prime p and the description of a p-order group
on the input of a security parameter 1λ) and a family H of hash functions,
the (labeled) short Cramer–Shoup encryption scheme [ABP15] consists of
the following algorithms.

Setup
(
1λ
)
→ pp : generate (p,G = 〈g〉) ← G

(
1λ
)
and H ←$ H. Set and

return pp ← (p,G, g,H).

KG(pp)→ (pk, sk) : sk ← (ζ, α, β, α′, β′)←$ Z5
p. Compute pk ← (pp, h, γ, δ)

←
(

pp, gζ , gαhβ, gα′hβ′
)
. (Parameters pp may further be omitted in

the syntax.) Return (pk, sk).



Hardware Security without Secure Hardware: How to Decrypt with a
Password and a Server 133

Enc`(pk,m ∈ G; r ∈ Zp)→ C : compute U ← gr, E ← hrm, ξ ← H(U,E, `)
and V ←

(
γδξ

)r
. Set and return C ← (U,E, V ).

Dec`(sk,C )→ m/⊥ : compute m ← U/Eζ and ξ ← H(U,E, `). If V =
Uα+ξα′ (E/m)β+ξβ′ then return m, else return ⊥.

Abdalla, Benhamouda and Pointcheval proved that this scheme is IND-
PCA secure if the DDH assumption over G holds and ifH is second-preimage
resistant.

RCCA Security. Indistinguishability under Replayable Chosen-Ciphertext
Attacks [CKN03] (RCCA) is a relaxation of the classical CCA security which
tolerates a mild form of malleability. It allows for the re-randomization of
ciphertexts while still providing strong security guarantees. Formally, an en-
cryption scheme is IND-RCCA secure if for every λ ∈ N, for every efficient
adversary A,

Pr

b = b′ :

pp ← Setup
(
1λ
)

; (pk, sk)← KG(pp)
(st,m0,m1)← AO(sk,⊥,⊥,·) (pk)
b←$ {0, 1}; C ∗ ← Enc(pk,mb)
b′ ←$ AO(sk,m0,m1,·) (st,C ∗)
return (b, b′)


is negligibly close to 1/2. Oracle O, with state (sk,m0,m1), replies to C
queries by first computing m ← Dec(sk,C ). If m = m0 or m = m1, it
returns a special string replay indicating that C encrypts one of the challenge
messages, otherwise it returns m.

Publicly Verifiable Encryption. A public-key encryption scheme is ver-
ifiable if there exists a deterministic algorithm Vf(pk,C ) → b ∈ {0, 1}
such that no efficient adversary can, on the input of pk and with non-
negligible probability, produce a ciphertext C such that Vf(pk,C ) = 1 and
Dec(sk,C ) = ⊥.

Re-randomizable Encryption. A public-key encryption scheme is re-
randomizable if there exists an algorithm Rand(pk,C )→ Ĉ which computes,
from a public key pk and a ciphertext C , a new ciphertext Ĉ . It is assumed
to return ⊥ if any of its inputs are ill-formed.

Unlinkability. A re-randomizable encryption scheme is perfectly unlink-
able [PR07, CKLM12, LPQ17] if the re-randomized valid ciphertexts have
the same distribution as fresh encryptions of their underlying plaintexts.
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Threshold Decryption. Threshold encryption schemes [CDN01] are schemes
in which decryption keys are shared between several parties. For a given ci-
phertext, each party can compute a decryption share with her key share, and
a threshold number of those decryption shares is necessary to reconstruct
the plaintext. If there are n parties, the security requirement of a t-out-of-n
scheme is that no information about the plaintext can be inferred from less
than t + 1 shares. In the RCCA variant of this security notion, during the
second query phase (which targets a specific honest party), the challenger
first decrypts the ciphertext of the query with the secret key it has gener-
ated, and checks whether it results in one of the challenge messages before
answering with a decryption share if it is not the case.

Encryption Scheme of Faonio, Fiore, Herranz and Ràfols. Faonio,
Fiore, Herranz and Ràfols [FFHR19] constructed a publicly verifiable, re-
randomizable, structure-preserving encryption scheme which is secure under
the matrix decisional Diffie–Hellman assumption [EHK+13]. The explicit
version of their scheme under the SXDH assumption is given below.

Setup
(
1λ
)
→ pp : run Γ ← (p, G1 = 〈g1〉, G2 = 〈g2〉, GT , e) ← G

(
1λ
)
.

Generate a Groth–Sahai common reference string, i.e., a,b ∈ G2
1 and

v,w ∈ G2
2. Set and return pp ← (Γ,a,b,v,w).

KG(pp)→ (pk, sk) : generateD,E ←$ Zp, α1, α2, β1, β2, γ1, γ2 ←$ Zp, F←$
Z2
p and G←$ Z2×3

p . Compute

M1 ←



gD1
gβ1D+β2

1 a1 b1
1G1 a2 b2

g
F1,1D+F2,1
1 a1 b1

1G1 a2 b2

g
F1,2D+F2,2
1 a1 b1

1G1 a2 b2


and

M2 ←



gE2
gγ1D+γ2

2 v1 w1
1G2 v2 w2

g
G1,1E+G2,1
2 v1 w1

1G2 v2 w2

g
G1,2E+G2,2
2 v1 w1

1G2 v2 w2

g
G1,3E+G2,3
2 v1 w1

1G2 v2 w2


.
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For i = 1, 2, generate Ai ←$ Zp. Generate Ki ←$ Z(5+2i)×1
p . Compute

matrices Pi ←MT
i Ki and Ci ← AiKi. Set

pk ←
(
Γ, gD1 , gα1D+α2

1 , gβ1D+β2
1 , gE2 , g

γ1E+γ2
2 ,[

g
F1,1D+F2,1
1
g
F1,2D+F2,2
1

]
,

[
g
G1,1D+G1,2+G1,3(α1D+α2)
1
g
G2,1D+G2,2+G2,3(α1D+α2)
1

]
,g

G1,1E+G2,1
2
g
G1,2E+G2,2
2
g
G1,3E+G2,3
2

 ,
[
g
F1,1E+F1,2
2
g
F2,1E+F2,2
2

]
, A1, A2,P1,P2,C1,C2


sk ← (Γ, α1, α2, A1, A2,C1,C2) .

Return (pk, sk). If ciphetext blinding is necessary as in Section 6.4.1,
store also G in sk.
Matrices Mi, Pi and Ci, and scalars Ai are parameters for the quasi-
adaptive non-interactive zero-knowledge proof system of Kiltz andWee
for linear spaces [KW15] with witness-sampleable distribution.

Enc(pk,m ∈ G1)→ C : ◦ compute a tag, i.e.,
– r, s←$ Zp
– xT ←

[
grD1 gr1 g

r(α1D+α2)
1 m

]
– yT ←

[
gsE2 gs2

]
◦ compute a smooth projective hash π of the tag, i.e.,

π ←e
(
g
r(β1D+β2)
1 , g2

) ∏
i=1,2

e
(
g
r(F1,iD+F2,i)
1 , yi

)
e
(
g1, g

s(γ1E+γ2)
2

) ∏
i=1,2,3

e
(
xi, g

s(G1,iE+G2,i)
2

)

◦ prove that π is well-formed, i.e.,
– rav, rbv, raw, rbw, ρ1, ρ2, σi,j , ri, sk,j ←$ Zp for i, j ∈ {1, 2} and
k = 1, 2, 3

– c(π)←
[
πi,j

]
i,j=1,2

f (arav ,v) f (brbv ,v) f (araw ,w) f (brbw ,w) ,
with πi,j := π if i = j = 2 and 1GT otherwise

– c0 ←
[
1 g

r(β1D+β2)
1

]T
aρ1bρ2

– c1,i ←
[
1 g

r(F1,iD+F2,i)
1

]T
aσi,1bσi,2 for i = 1, 2

– d0 ←
[
1 g

s(γ1E+γ2)
2

]T
vr1wr2

– d1,i ←
[
1 g

s(G1,iE+G2,i)
2

]T
vsi,1wsi,2 for i = 1, 2, 3



136 6.1 Preliminaries

– T←$ Z2×2
p

– Θ←
[
a
T1,1
1 b

T2,1
1 a

T1,1
2 b

T1,2
2 gr11 x

s1,1
1 x

s2,1
2 x

s3,1
3

a
T1,2
1 b

T2,2
1 a

T2,1
2 b

T2,2
2 gr21 x

s1,2
1 x

s2,2
2 x

s3,2
3

]T

=:
[
Θ1 Θ2

]
– Π̃←

[
v
−T1,1
1 w

−T2,1
1 v

−T1,1
2 w

−T2,1
2 gρ1

2 y
σ1,1
1 y

σ2,1
2

v
−T1,2
1 w

−T2,2
1 v

−T1,2
2 w

−T2,2
2 gρ2

2 y
σ1,2
1 y

σ2,2
2

]

– Π1 ← Π̃T
1 vravwraw ; Π2 ← Π̃T

2 vrbvwrbw ; Π←
[
Π1
Π2

]

◦ prove that the commitments are well-formed, i.e., that
[
gDr1 cT

0 cT
1,1 cT

1,2

]T
is in span (M1) and that

[
gEs2 dT

0 dT
1,2 dT

1,2 dT
1,3

]T
is in span (M2).

That is, for j = 1, 2, compute

Ψ1 ← g
rP1,1+

∑
i=1,2 ρiP1,1+i+

∑
i,j=1,2 σi,jP1,2i+j+1

1

Ψ2 ← g
sP2,1+

∑
i=1,2 riP2,1+i+

∑3
i=1

∑2
j=1 si,jP2,2i+j+1

2

◦ set and return

C ←
(
x,y, c(π), c0, (c1,i)2

i=1,d0, (d1,i)3
i=1,Π,Θ, (Ψi)i=1,2

)
.

A ciphertext comprises 14 G1 elements, 15 G2 elements and 4 GT

elements.

Dec(sk,C )→ m/⊥ : ◦ verify that the commitments are well-formed, i.e.,
that

e
(
Ψ1, g

A1
2

)
=e
(
gDr1 , g

C1,1
2

) ∏
i=1,2

e
(
c0,i, g

C1,1+i
2

)
∏

i,j=1,2
e
(
c1,i,j , g

C1,2i+j+1
2

)
and that

e
(
gA2

1 ,Ψ2
)

=e
(
g

C2,1
1 , gEs2

) ∏
i=1,2

e
(
g

C2,1+i
1 ,d0,i

)
∏

i=1,2,3

∏
j=1,2

e
(
g

C2,2i+j+1
1 ,d1,i,j

)
◦ verify that the opening to c(π) is the smooth projective hash of the

tag, i.e., that

f

(
c0,

[
1
g2

]) ∏
i=1,2

f

(
c1,i,

[
1
yi

])

f

([
1
g1

]
,d0

) ∏
i=1,2,3

f

([
1
xi

]
,d1,i

)
=f (a,Π1) f (b,Π2) f (Θ1,v) f (Θ2,w) c(π)
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◦ if both verifications succeed, compute and return m ← x3x
−α1
1 x−α2

2 ,
else return ⊥.

Vf(pk,C )→ b : do the same verifications as algorithm Dec (they do not
require knowledge of sk, only of pk). If they succeed, return 1, else
return 0.

Rand(pk,C )→ Ĉ : first verify that the ciphertext is valid. Next, re-randomize
the tag, and all proofs and commitments, i.e., do

– r̂, ŝ←$ Zp

– x̂← x
[
gr̂D1 gr̂1 g

r̂(α1D+α2)
1

]T
– ŷ← y

[
gŝE2 gŝ2

]T
– re-randomize π, i.e., compute

π̂ ←π · e
(
g
r̂(β1D+β2)
1 , g2

) ∏
i=1,2

e
(
g
r̂(F1,iD+F2,i)
1 , yi

)
e
(
g1, g

ŝ(γ1E+γ2)
2

) ∏
i=1,2,3

e
(
xi, g

ŝ(G1,iE+G2,i)
2

)

– r̂av, r̂bv, r̂aw, r̂bw, ρ̂1, ρ̂2, σ̂i,j , r̂i, ŝk,j ←$ Zp for i, j ∈ {1, 2} and k =
1, 2, 3

– ĉ(π)← f
(
ar̂av ,v

)
f
(
br̂bv ,v

)
f
(
ar̂aw ,w

)
f
(
br̂bw ,w

)
c(π)

– ĉ0 ← c0aρ̂1bρ̂2

– ĉ1,i ← c1,iaσ̂i,1bσ̂i,2 for i = 1, 2
– d̂0 ← d0vr̂1wr̂2

– d̂1,i ← d1,ivŝi,1wŝi,2 for i = 1, 2, 3
– T̂←$ Z2×2

p

– Θ̂← Θ ◦

aT̂1,1
1 b

T̂2,1
1 a

T̂1,1
2 b

T̂1,2
2 gr̂11 x

ŝ1,1
1 x

ŝ2,1
2 x

ŝ3,1
3

a
T̂1,2
1 b

T̂2,2
1 a

T̂2,1
2 b

T̂2,2
2 gr̂21 x

ŝ1,2
1 x

ŝ2,2
2 x

ŝ3,2
3

T

– compute

Π̂← Π◦

v−T̂1,1
1 w

−T̂2,1
1 v

−T̂1,1
2 w

−T̂2,1
2 gρ̂1

2 y
σ̂1,1
1 y

σ̂2,1
2

v
−T̂1,2
1 w

−T̂2,2
1 v

−T̂1,2
2 w

−T̂2,2
2 gρ̂2

2 y
σ̂1,2
1 y

σ̂2,2
2

T

◦

[
vr̂avwr̂aw

vr̂bvwr̂bw

]

– Ψ̂1 ← Ψ1 · g
r̂P1,1+

∑
i=1,2 ρ̂iP1,1+i+

∑
i,j=1,2 σ̂i,jP1,2i+j+1

1
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– Ψ̂2 ← Ψ2 · g
ŝP2,1+

∑
i=1,2 r̂iP2,1+i+

∑3
i=1

∑2
j=1 ŝi,jP2,2i+j+1

2

– set and return Ĉ ← (x̂, ŷ, ĉ(π), ĉ0, (ĉ1,i)2
i=1 , d̂0,

(
d̂1,i

)3

i=1
,

Π̂, Θ̂,
(
Ψ̂i,j

)2

i,j=1

)
.

Threshold Decryption. The scheme of Faonio et al. can be turned into a
t-out-of-n scheme by doing a t-out-of-n Shamir share [Sha79] of α1 and
α2. Before partially decrypting the plaintext, each shareholder first verifies
the validity of the ciphertext, which is possible as the scheme is publicly
verifiable. If the ciphertext is invalid, the shareholder returns ⊥. As a result,
any t + 1 shares are sufficient to decrypt ciphertexts, but no information
about the plaintexts can be inferred with only t shares.

6.1.7 Smooth Projective Hash Functions

Smooth Projective Hash Functions (SPHFs) [CS02] are hash functions de-
fined over a set X , and which can be evaluated in two ways on a subset
L ⊆ X . An SPHF can be evaluated on X using a hashing key hk, which can
be seen as a private key. On L, it can also be evaluated with a projective
key hp, which can be seen a public key, and a witness of membership to L.

Syntax [BBC+13]. A Smooth Projective Hash Function over a language
L ⊆ X is defined by five algorithms: Setup

(
1λ
)
→ pp which generates

public parameters, HashKG(L) → hk which generates a hashing key for a
Language L, ProjKG(hk,L,C )→ hp which derives a projective key hp from
hk depending on a word C ∈ X , Hash(hk,L,C )→ H ∈ H which returns a
hash value for any word C ∈ X , and ProjHash(hp,L,C , w)→ H ∈H which
returns a hash value on a word C ∈ L given a projective key and a witness
w for the membership of C . The public parameters are given as implicit
input to all the other algorithms. When L is the language of ciphertexts
of a given message with a certain scheme, the public parameters typically
contain the encryption key, and may even include the secret key to efficiently
test language membership.

In the definition above due to Gennaro and Lindell [GL03], the projec-
tive keys depend on words C . In the original definition of SPHFs [CS02],
however, the projective keys are word-independent.

Correctness. An SPHF is said to be correct if the hash and the projec-
tive hash values match for all words in L, given valid membership witnesses.
That is, for all C ∈ L with witness w, for all pp ← Setup

(
1λ
)
, hk ←

HashKG(L), hp ← ProjKG(hk,L,C ), Hash(hk,L,C ) = ProjHash(hp,L,C , w).
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Adaptive Smoothness. An SPHF is smooth if its hash values on all
C ∈ X \ L are statistically indistinguishable from uniformly random val-
ues. Katz and Vaikuntanathan introduced [KV11] SPHFs (KV-SPHFs) with
word-independent projective keys, and for which smoothness holds even if
the words depend on the projective keys. KV-SPHFs are the most flexible
kind since the words on which they are evaluated can be chosen even af-
ter computing and publishing the projective keys. In this sense, they are
adaptive.

A KV-SPHF is smooth if its hash values on all C ∈ X \ L are statis-
tically indistinguishable from uniformly random values, even if C depends
on projective keys. Formally, a KV-SPHF is ε-smooth [BBC+13] if, for any
map f onto X \ L, the following two distributions are ε-close:

{(hp,H) : hk ← HashKG(L), hp ← ProjKG(hk,L,⊥),H← Hash(hk,L, f(hp))}
{(hp,H) : hk ← HashKG(L), hp ← ProjKG(hk,L,⊥),H←$ H } .

A KV-SPHF is perfectly smooth if it is 0-smooth.

Designated-Verifier Proofs of Membership. SPHFs can be seen as
designated-verifier proofs of membership to L [ACP09,BPV12]. Indeed, to
prove that a word C is in L, a designated verifier can generate a key hk
and compute a projective key hp which she sends to the prover. Given a
membership witness w, the prover evaluates the SPHF on (C , w) with hp and
sends the result as a proof to the verifier. To verify the proof, the verifier
computes the SPHF on C using hk and accepts if and only if the result
matches the proof value. The correctness of the protocol follows from the
correctness of the SPHF, and its soundness from the adaptive smoothness
of the SPHF.

KV-SPHF for Short Cramer–Shoup Ciphertexts. For a fixed tuple
(p,G = 〈g〉), denote by L`m the language

{C : ∃r, C = (U,E, V ) =
(
gr, hrm,

(
γδH(gr,hrm,`)

)r)}
.

Given a group generator G, Γ ← G(p,G = 〈g〉) and m ∈ G, the follow-
ing scheme, due to Abdalla, Benhamouda and Pointcheval [ABP15], is a
perfectly smooth KV-SPHF for L`m .

Setup
(
1λ
)
→ pp : generate sk ← (ζ, α, β, α′, β′) ←$ Z5

p. Compute pk ←

(h, γ, δ)←
(
gζ , gαhβ, gα

′
hβ
′
)
. Return (Γ, pk, sk).

HashKG
(
L`m
)
→ hk : return hk ← (λ, µ, ν, θ)←$ Z4

p.
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ProjKG
(

hk,L`m ,⊥
)
→ hp : return hp ←

(
gλhνγθ, gµδθ

)
. Note that hp ac-

tually depends on neither m nor `.

Hash
(

hk,L`m ,C
)
→ H : compute ξ ← H(U,E, `). Return H← Uλ+µξ (E/m)ν

V θ.

ProjHash
(

hp,L`m ,C , r
)
→ H : compute ξ ← H(U,E, `). Return H←

(
hp1hpξ2

)r
.

6.1.8 Key-Derivation Functions

A Key-Derivation Function (KDF) computes pseudorandom keys of appro-
priate length from a source key material which is not uniformly distributed,
or which still has high entropy despite partial adversarial knowledge. The
results can then be used as secret keys for cryptosystems.

Syntax. A key-derivation function [Kra10] KDF(SKM ,XTS ,CTX , L) →
K, takes as input a source key material SKM , an extractor-salt value XTS ,
some context information CTX and a length L, and returns an L-bit string
K.

Security. The security of key-derivation functions can be defined w.r.t. to
a specific source of keying material which returns a material SKM and a
public piece of information inf .

Definition 6.1.9 ( [Kra10, Definition 7]). A key-derivation function KDF,
which supports salt values from a finite set Σ, is secure w.r.t. a source (of
key material) SKM if for every efficient adversary A,

Pr



b = b′ :

(SKM , inf )← SKM;Q← ∅
XTS ←$ Σ
(st,CTX∗, `∗)← AO.KDF(Q,SKM ,XTS ,·)(inf ,XTS)
b←$ {0, 1}
if b = 0

K∗ ←$ {0, 1}`
else

K∗ ← KDF(SKM ,XTS ,CTX∗, `∗)
b′ ← AO.KDF(Q,SKM ,XTS ,·)(st,K∗)
if CTX∗ ∈ Q

b′ ←$ {0, 1}
return (b, b′)

return (b, b′)


is negligibly close to 1/2, with O.KDF an oracle which, on input (SKM ,XTS),
replies to a (CTX , `) query with KDF(SKM ,XTS ,CTX , `) and then adds
CTX to Q.
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The previous definition is w.r.t. to a specific source, but it can be ex-
tended to all sources which return materials with enough entropy even
when conditioned on the public information. Formally, for an integer m,
a source SKM is a m-entropy source if for all s in the range of key ma-
terials and all i in the support of public information returned by SKM,
Pr [SKM = s|inf = i] ≤ 2−m. A key-derivation function is then said to be
m-entropy secure if it is secure w.r.t. all m-entropy sources.

Krawczyk’s Key-Derivation Function. Krawczyk gave [Kra10, Sec-
tion 4.2] a secure construction of KDFs from Hash-based Message Authen-
tication Codes [BCK96] (HMAC) which follows the extract-then-expand
paradigm.

More precisely, let {Hκ}κ∈{0,1}k be a family of Merkle–Damgård hash
functions with k-bit outputs which is based on a family of compression func-
tions {hκ}κ (think of SHA-512). Assume (single-keyed) HMAC to be built
from NMAC [BCK96], and NMAC to be built from {Hκ}κ. If {hκ}κ is a fam-
ily of pairwise-independent compression functions, and {Hκ}κ is collision-
resistant against linear-size circuits, then [Kra10, Corollary 9] NMAC trun-
cated by c bits is a

(
m, (n+ 2)2−c/2

)
-statistical extractor on n-block inputs.

If {hκ}κ is modeled as a family of random functions independent from the
source, then the same result applies to HMAC.

Moreover, given another family of compression functions {gκ}κ (think of
SHA-256), if g· is a Pseudo-Random Function (PRF), and if ĝ : (K,m) →
gm(K) is a PRF under a class of affine related-key attacks (defined by the
inner and outer pads), then [Bel06, Theorem 3.3, Lemma 5.2] HMAC is a
(qP , εP )-PRF for qP , εP explicited in Bellare’s paper [Bel06].

Krawczyk’s theorem [Kra10, Theorem 1] implies that HMAC is a (qP , εP+
(n+ 2)2−c/2

)
-secure KDF w.r.t. to sources with min-entropy at least m.

Throughout this chapter, it is assumed that n and c are functions of λ
such that n2−c/2 is negligible in λ. The construction is described in Algo-
rithm 6.1.2. Therein, given two integers n ≥ d ≥ 1 and x ∈ {0, 1}n, [x]d
denotes the sub-string of x consisting of its first d bits.

6.2 Malleable Non-Interactive Proofs
As the construction in Section 6.4 heavily relies on malleability and non-
interactive zero-knowledge proofs, this section recalls the definition of proofs
which are still sound under “controlled malleability”. These proofs allow to
compute, from a proof π on a word x, a new proof π′ on a transformation
Tx(x) of x without the knowledge of a witness for Tx(x), but only if the trans-
formation belongs to a class of “allowed” transformations. The soundness of
the proof system can then be defined w.r.t. this class of transformations. In
addition to that, the soundness definition can even be extended to consider
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Algorithm 6.1.2 Krawczyk’s HMAC-based KDF.
Require: (SKM ,XTS ,CTX , L) and HMAC based on a hash function with

output length k
Ensure: K ∈ {0, 1}L
t← dL/ke
d← L mod k
PRK ← HMAC(XTS ,SKM )
K(1)← HMAC(PRK ,CTX‖0)
for i = 1 to t− 1 do

K(i+ 1)← HMAC(PRK ,K(i)‖CTX‖i)
end for
K ← K(1)‖ · · · ‖[K(t)]d
return K

cases in which proofs are simulatable but remain sound under this controlled
malleability.

Chase et al. [CKLM12] gave a definition of proof systems that are ex-
tractable under controlled malleability and a generic construction based on
signatures and extractable proof systems. This section gives a similar defini-
tion which only requires soundness and then a generic construction from sig-
natures and proof system that are only extractable in a sense defined below.
The reason is that the EPAD construction in Section 6.4 uses Groth–Sahai
proofs from which group elements can be extracted but not exponents.

Syntax of Non-Interactive Proof Systems. Recall from Section 2.6.2
that a non-interactive proof system for a language L (with correspond-
ing relation R) consists of an algorithm Setup

(
1λ
)
→ pp which returns

public parameters, an algorithm CRSGen(pp) → crs that returns a com-
mon reference string, an algorithm Prove(crs, x, w) → π which computes
a proof on the input of a word x and of a witness w, and an algorithm
Vf(crs, x, π) → b ∈ {0, 1} which returns a bit indicating whether the proof
is considered valid.

6.2.1 Transformations

A transformation is an efficiently computable function T := (Tx, Tw) : R →
R. A relation R is said to be closed under T if for any (x,w) ∈ R, T (x,w) ∈
R. Transformation T is then said to be admissible for R. A class T of
transformations is allowable for R if for every transformation T ∈ T , T is
admissible for R.

A non-interactive proof system for a relation R is malleable [CKLM12]
w.r.t. a class T of allowable transformations forR if there exists an algorithm
Eval(crs, T, x, π) → π′ (word x may further be omitted from the syntax)
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which compute a proof π′ for Tx(x) from a valid proof π for x, without the
knowledge of Tw(w).

6.2.2 Simulation Soundness under Controlled Malleability

In certain cases, it is necessary to be able to simulate proofs while still en-
suring that no PPT algorithm can compute new valid proofs for false state-
ments without a trapdoor. This property is commonly known as simulation
soundness. However, a proof system cannot a priori be both malleable and
simulation sound as malleability allows to compute proofs on transformed
words without the knowledge of a witness. Chase et al. [CKLM12] put forth
a relaxed version of simulation soundness which allows for malleability while
guaranteeing a meaningful form of soundness; namely an adversary cannot
compute (without trapdoor) a valid proof for the membership of x to L if
x /∈ L and x is not the image under an admissible transformation (from a
pre-determined class) of a word for which it was given a simulated proof.
Their definition requires the proof system to be a proof of knowledge (i.e.,
it requires extractability), but the following definition is rather for proof of
statements.

Formal Definition.

Let (Setup,CRSGen,Prove,Vf, SS_CRSGen, SimEval) be a non-interactive zero-
knowledge proof system for a language L which is malleable w.r.t. a class T
of allowable transformations for the relation R relative to L (the trapdoor
CRS generation algorithm is here denoted SS_CRSGen). The proof system
is said to satisfy Controlled-Malleable (CM) simulation soundness w.r.t. T
if for all λ ∈ N, for every PPT adversary A,

Pr


Vf(crs, x, π) = 1
∧(x, π) /∈ Q ∧ x /∈ L
∧∀(T, x′, ∗) ∈ T ×Q,
x 6= Tx(x′)

:

pp ← Setup
(
1λ
)

(crs, τ)← SS_CRSGen(pp)
Q← ∅
(x, π)← AO.Sim(Q,crs,τ,·)(crs)


is negligible, with O.Sim an oracle which computes simulated proofs π on
inputs x and adds (x, π) to Q.

6.2.3 Generic Construction

Let R be an efficient relation with corresponding language L. Consider a
class T of allowable transformation for R which contains the identity and
for which membership can be efficiently tested. Consider also an existen-
tially unforgeable signature scheme SIG = (Setup,KG,Sign,Vf). Let Π̂ =
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(Setup,CRSGen,Prove,Vf) be a sound witness-indistinguishable proof sys-
tem for the language

{(x := (x1, x2), vk) : ∃
(
w, x′1, T, σ

)
, (x,w) ∈ R ∨

SIG.Vf
(
vk, x′1, σ

)
= 1 ∧ x = Tx

(
x′1, x2

)
∧ T ∈ T

}
.

Suppose that it is partially extractable in the sense that there exists a
trapdoor-setup algorithm which returns a trapdoor and a CRS indistin-
guishable from the output of CRSGen; and an extraction algorithm such
that no PPT adversary has significant probability of computing a valid
proof π on a word (x, vk), where the value (∗, x′1, ∗, σ) returned by the
extractor on the input of the CRS, the trapdoor and (x, π) is such that
SIG.Vf(vk, x′1, σ) = 0. Let T̂ be a class of transformations such that for
all T ′ ∈ T , there exists T̂ ∈ T̂ such that T̂x : (x, vk) 7→ (T ′x(x), vk) and
T̂w : (w, x′1, T, σ) 7→ (T ′w(w), x′1, T ′ ◦ T, σ); and suppose that Π̂ is malleable
w.r.t. the class T̂ .

Consider then Π, the following proof system inspired by the scheme of
Chase et al. [CKLM12, Section 3]:

Setup
(
1λ
)
→ pp : run ppΠ̂ ← Π̂.Setup

(
1λ
)
and ppSIG ← SIG.Setup

(
1λ
)
.

Set and return pp ←
(
ppΠ̂, ppSIG

)
.

CRSGen(pp)→ crs : run crs′ ← Π̂.CRSGen
(
ppΠ̂

)
and (vk, sk)← SIG.KG(ppSIG).

Set and return crs ← (crs′, vk).

Prove(crs, x, w)→ π : run π ← Π̂.Prove (crs′, (x, vk), (w,⊥)). Return π.

Vf(crs, x, π)→ b ∈ {0, 1} : return Π̂.Vf (crs′, (x, vk), π).

Eval(crs, T, x, π)→ π′ : return Π̂.Eval
(

crs, T̂ , x, π
)
.

Under the above assumptions, Π is complete, zero-knowledge and CM
simulation sound w.r.t. T . Indeed, it suffices to define SS_CRSGen as
CRSGen except that it returns sk as trapdoor, and Sim as an algorithm
which signs x with sk and honestly proves the knowledge of (⊥, x, id, σ).
The witness indistinguishability of Π̂ implies that Π is zero-knowledge. The
simulation soundness of Π stems from the fact that, since Π̂ is sound, an
adversary can win the game only if it can compute a valid signature on a
word x′1 such that (x′1, ∗) was never queried. However, as Π̂ is partially
extractable, that would contradict the existential unforgeability of SIG.

6.2.4 Strong Derivation Privacy

In addition to the completeness, (CM simulation) soundness and zero-knowledge
property for proof systems, a malleable proof system should also satisfy
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derivation privacy. It captures the idea that given (x,w) ∈ R, proofs on
a word Tx(x) computed with Prove and Tw(w) as a witness should be in-
distinguishable from those computed with Eval and a valid proof π for x.
Note that re-randomizable malleable proofs necessarily satisfy derivation pri-
vacy [CKLM12, Theorem 2.7] (randomize then evaluate). An even stronger
notion of derivation privacy is that the proof computed with Eval should
be indistinguishable from those computed by the zero-knowledge simulator.
Following a theorem of Chase et al. [CKLM12, Theorem 3.4], the above
construction Π satisfies strong derivation privacy if Π̂ satisfies derivation
privacy.

6.2.5 Groth–Sahai Proofs

Groth and Sahai (GS) designed a practical, non-interactive witness-indistinguishable
proof system for a wide class of statements in bilinear groups [GS08]. More
precisely, their system allows to prove the existence of values which simulta-
neously satisfy pairing product equations, multi-scalar multiplication equa-
tions in the source groups, and quadratic equations in Zp. That is, given
integers m,n,m′, n′ ≥ 1, the GS proof system allows to prove that there ex-
ists X ∈ Gm

1 , Y ∈ Gn
2 , x ∈ Zm′p and y ∈ Zn′p which satisfy sets of equations

of the form
n∏
i=1

e (Ai, Yi)
m∏
i=1

e (Xi, Bi)
m∏
i=1

n∏
j=1

e (Xi, Yi)γij = ZT

n′∏
i=1

Ãyii

m∏
i=1

Xbi
i

m∏
i=1

n′∏
j=1

X
γ̃ijyj
i = Z1

n∏
i=1

Y ai
i

m′∏
i=1

B̃xi
i

m′∏
i=1

n∏
j=1

Y
γ̂ijxi
j = Z2

n′∑
i=1

ãiyi +
m′∑
i=1

b̃ixi +
m′∑
i=1

n′∑
j=1

γ′ijxiyj = z mod p,

with the other values being public. The set of public values for which all
sets of equations are satisfiable is further denoted LGS. Multiscalar multi-
plication equations in G2 are further omitted (i.e., ai := 0, B̃i := 1G2 , γ̂ij :=
0, Z2 := 1G2) as there are not of interest in this thesis, and as they are purely
symmetric to equations in G1.

Their construction is given in the Common-Reference String (CRS) model.
The CRS is generated in either of two modes: a soundness mode in which
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case the system is perfectly sound, and a witness-indistinguishability mode in
which case the system is perfectly witness-indistinguishable. Under standard
assumptions over bilinear groups, the two types of CRSs are indistinguish-
able.

Instantiation under the SXDH Assumption.

Common Reference String. In the instantiation under the SXDH as-
sumption, the GS CRS contains two vectors a,b ∈ G2

1 and two vectors
v,w ∈ G2

2. In a soundness setting, b ∈ span(a) and w ∈ span(v). Given the
discrete-logarithm relation between a2 and a1, group-element variables can
actually be efficiently extracted (which is not the case for Zp elements as the
discrete-logarithm problem is hard). In a witness-indistinguishable setting,
a and b are linearly independent (b ← at

[
1 g−1

2

]T
for t ←$ Zp), and so

are v and w. In either setting, define d := b
[
1 g2

]T
and u := w

[
1 g2

]T
.

Proof Computation. To compute a GS proof of satisfiability of equations
of the form above,

– commit to all variables, i.e.,

∗ for all i ∈ JmK, generate ρi, σi ←$ Zp

∗ c(Xi)←
[
1 Xi

]T
aρibσi

∗ for all i ∈ JnK, generate ρ′i, σ′i ←$ Zp

∗ c(Yi)←
[
1 Yi

]T
vρ′iwσ′i

∗ for all i ∈ Jm′K, generate ri ←$ Zp
∗ c(xi)← dxiari

∗ for all i ∈ Jn′K, generate r′i ←$ Zp
∗ c(yi)← uyivr′i

– compute proof elements for each pairing product equation, i.e.,

∗ generate T←$ Z2×2
p

∗ Θ←
[
Θ1 Θ2

]
=:

1 ∏
iA

ρ′i
i

∏
i,j X

γi,jρ
′
j

i

1 ∏
iA

σ′i
i

∏
i,j X

γi,jσ
′
j

i

T

◦
[
a
T1,1
1 b

T1,2
1 a

T1,1
2 b

T1,2
2

a
T2,1
1 b

T2,2
1 a

T2,1
2 b

T2,2
2

]T

∗ Π←
[
Π1
Π2

]
=:
[
1 ∏

iB
ρi
i

∏
i,j Y

γi,jρi
j

1 ∏
iB

σi
i

∏
i,j Y

γi,jσi
j

]T

◦

v
∑

i,j
ρiγijρ

′
j−T1,1w

∑
i,j
ρiγijσ

′
j−T2,1

v
∑

i,j
σiγ̃ijρ

′
j−T1,2w

∑
i,j
σiγijσ

′
j−T2,2


– for each multi-scalar multiplication equation in G1,
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∗ generate T←$ Z2
p

∗ Θ←
[
1 ∏

iA
r′i
i

∏
i,j X

γ̃i,jr
′
j

i

]T
◦
[
aT1

1 bT2
1 aT1

2 bT2
2

]T
∗ Π←

[
Π1
Π2

]
=:

u
∑

i
biρi+

∑
i,j
ρiγ̃ijyj

u
∑

i
biσi+

∑
i,j
σiγ̃ijyj

 ◦
v
∑

i,j
ρiγ̃ijr

′
j−T1

v
∑

i,j
σiγ̃ijr

′
j−T2


In case all γ̃ij are nil, then T can be set as 0, and the proof element Θ
can then be restricted to its second component. Besides, if all bi = 0,
then Π can be set as 1.

– for each quadratic equation in Zp,

∗ generate T ←$ Zp

∗ Θ← d
∑

i
ãir
′
i+
∑

i,j
r′iγ
′
ijyjaT

∗ Π← u
∑

i
b̃iρi+

∑
i,j
ρiγ
′
ijyjv

∑
i,j
ρiγ
′
ijr
′
j−T

In case all γ′ij are nil, then T can be set as 0. Moreover, Θ can also
rather be set as ∑i ãir

′
i ∈ Zp and Π as ∑i b̃iρi ∈ Zp, which results

in smaller proof elements (the verification algorithm would then first
compute dΘ and uΠ).

– return all commitments (c(Xi))mi=1 , (c(Yi))ni=1 , (c(xi))m
′

i=1 , (c(yi))n
′

i=1 and
all proof elements. Note that the resulting proof is perfectly re-
randomizable, and that the proof system therefore satisfies derivation
privacy.

Verification. Accept a proof parsed as above if and only if

– for every pairing production equation,

∏
i

f

([
1
Ai

]
, c(Yi)

)∏
i

f

(
c(Xi),

[
1
Bi

])∏
i,j

f (c(Xi), c(Yj))γij

=
[
1 1
1 ZT

]
f (Θ1,v) f (Θ1,w) f (a,Π1) f (b,Π2)

– for every multi-scalar multiplication equation in G1,

∏
i

f

([
1
Ãi

]
, c(yi)

)∏
i

f

(
c(Xi),

[
1
bi

])∏
i,j

f (c(Xi), c(yj))γ̃ij

=f
([

1
Z1

]
,u
)
f (Θ,v) f (a,Π1) f (b,Π2) .
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– for every quadratic equation in Zp,∏
i

f
(
dãi , c(yi)

)∏
i

f
(
c(xi),ub̃i

)∏
i,j

f (c(xi), c(yj))γ
′
ij

=f (d,uz) f (Θ,v) f (a,Π) .

Malleability. Additive transformations in Zp are admissible for the re-
lation of multi-scalar multiplication equations in G1. That is, for any set
J ⊆ Jn′K such that γij = 0 for all i ∈ Jm′K and j ∈ J , given (αi)i∈J ∈ Z|J |p
and ` multi-scalar multiplication equations, the map

T(αi)i :
(
(. . . , Zk,1)`k=1 , ((yi)i, . . .)

)
7→
((

. . . , Zk,1
∏
i

Ãαik,i

)
k

, ((yi + αi)i, . . .)
)

is admissible. This map is identified with the tuple (αi)i∈J . Note that it is
the identity at the coordinates i such that αi = 0.

The GS proof system is malleable w.r.t. to such transformation. More
precisely, its algorithm Eval first parses a valid π as above, generates r′′i ←$
Zp, and computes

– c(yi + αi)← c(yi)uαivr
′′
i

– for all k ∈ J`K, Θk,2 ← Θk,2 ·
∏
i Ã

r′′i
ki .

It then returns ((c(Xi))mi=1, c(yi + αi)n
′
i=1, (Θk,Πk)`k=1

)
.

OR Proofs. Define LOR−GS as the language of pairs (S0, S1) such that
S0 ∈ LGS or S1 ∈ LGS. To prove a statement (S0, S1) ∈ LOR−GS, following
techniques of Groth [Gro06], it suffices to introduce new variables χ0 ∈ Zp,
and Xβ ∈ Gm

1 , Yβ ∈ Gn
2 , xβ ∈ Zm′p and yβ ∈ Zn′p for β ∈ {0, 1}, and then

GS prove the satisfiability of the sets of equations
nβ∏
i=1

e (Aβ,i, Yβ,i)
mβ∏
i=1

e (Xβ,i, Bβ,i)
mβ∏
i=1

nβ∏
j=1

e (Xβ,i, Yβ,i)γβ,ij = Z
βχ0+(1−β)(1−χ0)
β,T

n′β∏
i=1

Ã
yβ,i
β,i

mβ∏
i=1

X
bβ,i
β,i

mβ∏
i=1

n′β∏
j=1

X
γ̃β,ijyj
β,i = Z

βχ0+(1−β)(1−χ0)
β,1

n′β∑
i=1

ãβ,iyβ,i +
m′β∑
i=1

b̃β,ixβ,i +
m′β∑
i=1

n′β∑
j=1

γ′β,ijxβ,iyβ,j = z
βχ0+(1−β)(1−χ0)
β mod p

χ2
0 − χ0 = 0 mod p

for β ∈ {0, 1}, and with A0,i denoting the variable Ai for S0 and A1,i the one
for S1, and likewise for the other public values. If S0 ∈ LGS (with witness
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(X, . . .)), set X0 ← X and X1 ← 1, x0 ← x and x1 ← 0, and similarly for
the other variables; and vice versa if S1 ∈ LGS. The last equation implies
that χ0 = 0 or 1 mod p, which guarantees that S0 ∈ LGS or S1 ∈ LGS. To
prove the last equation, it suffice to consider χ0 as both an extra x and an
extra y variable such that x− y = 0 mod p and x− xy = 0 mod p.

Simulation Soundness under Controlled Malleability. The generic
construction of a CM simulation proof system of Section 6.2.2 can be applied
with Jutla and Roy’s signature scheme (Section 6.1.5) to the GS proof system
for multi-scalar multiplication equations in G1; the latter being malleable
w.r.t. additive transformations in Zp.

In more detail, given equations of the form

n′∏
i=1

Ãyik,i

m∏
i=1

X
bk,i
i

m∏
i=1

n′∏
j=1

X
γ̃k,ijyj
i = Zk,1

for 1 ≤ k ≤ `, let T denote the class of additive transformations. These
transformations are identified with tuples (αi)i. For a given transformation
(αi)i, letK ⊆ J`K denote the set of indices such that Zk,1 6= Zk,1

∏
i Ã
−αi
k,i . Set

µ as
(
Zk,1

∏
i Ã
−αi
k,i

)
k∈K

. The components of µ are nothing but the public
values which are affected by the transformation (i.e., it corresponds to x′1 in
the generic construction). A CM simulation sound GS proof for multi-scalar
multiplication equations in G1 is then a proof that there exists X and y such
that all ` equations are satisfied or that there exists µ, (αi)i and a Jutla–Roy
signature σ such that Vf(vk, µ, σ) = 1 and T(αi),x

((
. . . , Zk,1

∏
i Ã
−αi
k,i

)`
k=1

)
=

(. . . , Zk,1)`k=1.
Compared to a standard GS proof, a CM-simulation-sound GS proof

introduces |µ| additional variables µi ∈ G1, 5 additional G1 variables and
1 additional G2 variables for σ, |µ| additional variables αi ∈ Zp for the
transformation, and 2 additional Zp variables x and y (which should satisfy
x− y = x− xy = 0).

In terms of equations, it introduces 2 pairing-product equations for the
verification of the signature, |µ| multi-scalar multiplication equations in G1
for the transformation, and 2 quadratic equations in Zp for x and y. That
means 2(5 + |µ|) G1 and 2(3 + |µ|) G2 elements to commit to the additional
variables; 4 G1 and 8 G2 elements as proof elements for the verification of
the signature (which costs 4P6 + 4P7+|µ|); 2 G1, 2 G2 and 2 Zp elements as
proof elements for the two equations in Zp, the of which verification costs
2 G1

1 + 6 G1
2 + 8P5; and |µ| G1 and 4|µ| G2 elements for the multi-scalar

multiplication equations in G1 introduced by µ, the verification of each of
which costs 2P5+|{i : Ãk,i 6=1G1}|.
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6.3 Model for Password-Assisted Decryption
This section introduces Encryption schemes with Password-protected As-
sisted Decryption (EPAD schemes). As mentioned in the introduction, an
EPAD scheme is an encryption scheme which involves three parties, a user,
a token and a server. The user, sharing a password with a server, is logging-
in from a computer, and her decryption key is shared between the token
and the server. The protocol will allow her to decrypt ciphertexts with the
help of the token and the server, as soon as each authentication between the
three parties (based on the private values mentioned above) succeeds.

6.3.1 Syntax

In a three-party setting with a user U , a token T and a server S, an EPAD
scheme consists of the following algorithms.

Setup
(
1λ
)
→ pp : generates public parameters on input a security parame-

ter. These parameters are implicit inputs to all the other algorithms.

KG(pp)→ (pk, sk, skT , skS) : generates a public key, a secret key and shares
thereof.

Enc(pk,M )→ C : a probabilistic encryption algorithm.

Dec(sk,C )→ M/⊥ : a deterministic decryption algorithm.

IDec = 〈U(pk, pU ,C )
 T(skT )
 S(skS , pS)〉 → 〈M/⊥,⊥,⊥〉 : an interac-
tive decryption protocol between a user algorithm with input a public
key, a user password and a ciphertext; a token algorithm with input a
secret-key share; and a server algorithm with input a secret-key share
and a server password. The passwords are here treated as bit strings.

In practice, servers usually only hold a function (or transformation, e.g.,
salted hash) of user passwords. In this case, in the interactive decryption
protocol, U should be given the result of that function applied to pU . For
notational convenience, it is implicitly assumed that it is already the case.

Correctness. An EPAD scheme is correct if the decryption of an en-
crypted plaintext, whether by the deterministic decryption algorithm or by
the interactive protocol with pU = pS , results in the plaintext. That is, for
all λ ∈ N, all M and all pU = pS ,

Pr [IDec = 〈Dec(sk,C ),⊥,⊥〉 = 〈M,⊥,⊥〉 :

pp ← Setup
(
1λ
)

(pk, sk, skT , skS)← KG(pp)
C ← Enc(pk,M )

 = 1.
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6.3.2 Security Definitions

This section formalizes the security properties expected from EPAD schemes.
These properties are Password-protected Indistinguishability under Replayable
Chosen-Ciphertext Attacks (P-IND-RCCA), blindness and verifiability.

P-IND-RCCA Security.

Password-protected Indistinguishability under Replayable Chosen-Ciphertext
Attacks (P-IND-RCCA) ensures that no efficient adversary can infer any
information about a user’s plaintext as long as it does not know her pass-
word (by corrupting the user’s machine or the server) or does not have
access to her token. It captures both indistinguishability under replayable
chosen-ciphertext attacks and password authentication. The latter means
that decryption can only succeed if the user and the server have the same
password.

The formal model for P-IND-RCCA security is inspired by the Bellare–
Rogaway–Pointcheval (BPR) model for password-based authenticated-key-
exchange protocols [BPR00]. It covers the cases of concurrent protocol ex-
ecutions, with potentially many users, tokens and servers. In addition to
that, a user may possess several tokens and could be registered on several
servers.

Game Overview. The P-IND-RCCA security experiment features an ad-
versary A. After an initial phase to generate parameters, the adversary can
request the challenger to generate keys and passwords for the users. The
passwords are generated via a password generator PG that returns values in
a dictionary D. For simplicity, the passwords are assumed to be uniformly
distributed over D, but one could of course consider the min-entropy of the
output distribution of PG (in this case, 1/|D| should be replaced by this
min-entropy in the following statements).

Next, the adversary is given access to several oracles which model dif-
ferent types of attacks (password-related or chosen-ciphertext attacks). A
is also given access to a test oracle which can be called only once but at any
time (a definition with several test queries would be equivalent.) It returns
an encryption of a randomly chosen message out of two specified by A, un-
der the secret key of a user also chosen by A. Adversary A is considered
successful if it correctly guesses which message was encrypted. An EPAD
scheme is then said to be P-IND-RCCA secure if no efficient adversary can
win the game with a probability non-negligibly close to 1/2 plus the max-
imum advantage the adversary can gain from the trivial online dictionary
attacks which consist in guessing passwords (i.e., those should be the only
attacks possible).
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Initialization & Game Variables. A set of users U is assumed to be
fixed. For every U ∈ U , the set of tokens belonging to U is denoted by T [U ],
and the set of servers with which U shares a password is denoted S [U ]. The
set of all tokens is denoted T and the set of all servers S .

During the initialization phase, public parameters for the encryption
scheme are generated. Secret-key shares for all tokens and servers are set to
⊥. Further on, for id ∈ T ∪ S , skid denotes the set of all user key-shares for
id.

A finite instance set I for all party algorithms is also assumed to be fixed.
Each instance i ∈ I of the algorithm of party id maintains a state stiid . A
session identifier sidiid , and partner identities pidi0 and pidi1 allow to match
instances in protocol executions.

A variable usediid indicates whether an active attack has been performed
on the ith instance of the algorithm of party id.

Variables acciid and termi
id respectively indicate whether the ith algo-

rithm instance of party id has accepted and terminated. As in the BPR
model, acceptance and termination are distinguished. When an instance
terminates, it does not output any further message. Nevertheless, it can
accept at a certain point of its computation but terminate later. This may
occur when an instance confirms its partners, in which case it accepts, and
thereafter continues the computation until termination.

A queue QAddU of added users, i.e., users for which keys and passwords
have been generated, and a queue of corrupt users QCorrupt are also initial-
ized.

At the end of the initialization phase, the encryption parameters, the
sets of participants and the user public keys are returned in a public input
pin, and the rest is set in a secret input sin. That is, pin ← (pp, I , U ,

T , S , (pkU )U ) and sin ←
(

pin, (skT )T , (skS)S ,
(

stiid , sidiid , pidiid,0, pidiid,1,

acciid , termi
id , usediid

)
i,id

, QAddU, QCorrupt). The secret input sin is later
made available to all oracles.

Oracles. Throughout the experiment, A is given access to the oracles
detailed below and summarized on Figure 6.1, and which it can query in
any order.

– Testb : returns the encryption with a user public key of one of two
messages, all chosen by the adversary. The challenge user identity
U∗ is not required to be honest (i.e., the adversary may know her
password), but the challenge token T ∗ and challenge server S∗ cannot
both be corrupt, otherwise the adversary would be able to reconstruct
her secret key and trivially win the game. The public key pkU∗ is the
one for which T ∗ and S∗ hold secret-key shares. For simplicity, the
adversary may query this oracle at most once. Note also that as in the
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Init
(
1λ,U ,T ,S , I

)
pp ← Setup

(
1λ
)

for (T ∈ T )
{
for (U ∈ U ) skUT ← ⊥

}
for (S ∈ S)

{
for (U ∈ U ) skUS ← ⊥

}
for (i, id) ∈ I × (U ∪ T ∪ S)

stiid ← ⊥
sidiid ← pidiid,0 ← pidiid,1 ← ⊥
acciid ← termi

id ← usediid ← FALSE
QAddU ← QCorrupt ← ∅
return (pin, sin)

AddU(U ,T [U ],S [U ]) if (U /∈ U or U ∈ QCorrupt) return ⊥
for (S ∈ S [U ])

(
pU , pUS

)
← PG(pp)

// Generate passwords for the user
for (T ,S) ∈ T [U ]× S [U ]

(pkU , skU , skT , skS)← KG(pp) // Generate user keys(
skUT , skUS

)
← (skT , skS)

output pkU
QAddU ← QAddU ∪ {U}

Exec(U , i, T , j,S, k,C ) if (U /∈ QAddU or T /∈ T or S /∈ S)
return ⊥

if
(

usediU or usedjT or usedkS
)
return ⊥

if (Dec(skU ,C ) ∈ {M0,M1}) return replay // Prevent replay attacks
τ ←

〈
Ui(pk, pU ,C ),Tj

(
skUT

)
, Sk

(
skUS , pUS

)〉
// Run an honest protocol execution.
return τ

Send(id, i,M ) if termi
id return ⊥

usediid ← TRUE

if id = U∗ and M = (T ∗, ∗,S∗, ∗,C )
if (Dec(skU∗ ,C ) ∈ {M0,M1})

return replay
if U∗ ∈ QCorrupt or S∗ ∈ QCorrupt

if (id = T ∗) return ⊥
// If A has the password of U∗, reject queries to T ∗

if U∗ ∈ QCorrupt and T ∗ ∈ QCorrupt
if (id = S∗) return ⊥

/* If A has the password of U∗ and if T ∗ is corrupt,
reject queries to S∗ */
〈
mout , acc, termi

id , sid, pid0, pid1, stiid
〉
←
〈
IDec

(
id, stiid , skid , pid ,M

)〉
// If id ∈ U , replace skid with pkid
// If id ∈ T , replace pid with ⊥

if acc and ¬acciid
sidiid ← sid; pidiid,0/1 ← pid0/1; acciid ← acc

return
(
mout , acc, termi

id , sid, pid0, pid1, stiid
)

Corrupt(id, p) if
(
∃i ∈ I : usediid and ¬termi

id

)
return ⊥ //Static corruption only

QCorrupt ← QCorrupt ∪ {id}
if id ∈ U

for S ∈ S [id]
pUS ← p[S] // Overwrite the user’s passwords

return
(

pU ,
{

stiU
}
i∈I

)
else

if (id = T ∗ and S∗ ∈ QCorrupt) or (id = S∗ and T ∗ ∈ QCorrupt)
return ⊥ // T ∗ and S∗ cannot both be corrupt

return
(
skid ,

{
stiid

}
i

)
Testb (U∗, T ∗,S∗,M0,M1) if (U∗ /∈ U or T ∗ /∈ T [U∗] or S∗ /∈ S [U∗]) return ⊥

if
(
(T ∗,S∗) ∈ Q2

Corrupt

)
return ⊥

// T ∗ and S∗ cannot both be corrupt
C ∗ ← Enc (pkU∗ ,Mb)
return C ∗

Figure 6.1: Oracles for the P-IND-RCCA Security Experiment.
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BPR model [BPR00] and the model for distributed session key [BR95],
this query is not restricted to be the last query of the adversary.

– AddU : adds an honest user identity. In addition to a user identity U ,
the adversary specifies a set T [U ] of tokens and a set S [U ] of servers for
U . Note that these can be corrupt, except for the challenge identities
U∗, T ∗, S∗: parties T ∗ and S∗ cannot both be corrupt (see the defini-
tion of oracle Corrupt). For each server in S [U ], a password pU and a
transformation pUS thereof is generated by the password generator PG.
Keys and secret-key shares for all token–server pairs of the user are
also generated.

– Exec : returns the transcript of an honest (i.e., without the interference
of the adversary) decryption-protocol execution on a ciphertext C .
Note that Exec queries thereby model offline dictionary attacks among
others. The execution is between the ith, jth and kth instances the
algorithms of a user U , a token T and a server S. The notation Ui, Tj
and Sk mean that algorithms U, T and S are respectively run with the
states stiU , stjT and stkS . If Dec(skU ,C ) is one of the challenge messages
(with skU the secret key for which T and S hold shares), the oracle
returns a special string replay as in the classical definition of RCCA
security (see Sec. 6.1.6). The parties may be corrupt (in which case A
has their states), but T ∗ and S∗ cannot both be corrupt.

– Send : the adversary can perform active attacks via this oracle. The
adversary can send a message to an algorithm instance (e.g., the kth in-
stance of a server algorithm), all of its choice. The notation IDec(id, ·)
respectively stands for U(·), T(·) or S(·) if id ∈ U , T or S . This
algorithm then runs the instance on that message. To prompt the
ith instance of the algorithm of a user U to initiate a protocol exe-
cution on a ciphertext C with the jth instance of a token T and the
kth instance of a server S, the adversary can query oracle Send on
(U , i, (T , j,S, k,C )). If such a query decrypt to either of the challenge
messages, the oracle returns replay to prevent trivial wins.
In addition to an output message mout , the algorithm also returns to A
acceptance and termination states acc and termi

id , a session identifier
sid and partner instances pid0 and pid1, and a state stiid . Identity pid0
is always assumed to be the party which should receive the next flow
of id, i.e., a token identity if id ∈ U , a server identity if id ∈ T and a
token identity if id ∈ S . Variables sidiid , pidiid,0 and pidiid,1 and acciid
are updated in case the instance accepts, and all values are revealed
to the adversary except the state (which may contain a password or a
secret-key share). A can access this state by corrupting party id.
If A knows the password of the challenge user U∗, by corrupting either
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that identity or S∗, then queries to T ∗ are rejected. It translates the
fact that in case of a server breach or if there is a keylogger on the
user’s machine, then no security can be expected if an attacker also
has access to her token.
Likewise, if U∗ is corrupt as well as T ∗, queries to S∗ are rejected.
It reflects the fact that if a user’s token is corrupt, no security can
be expected if her password is also leaked. Indeed, in that case, an
attacker can use the server which shares a key with the token in order
to decrypt the ciphertexts.

– Corrupt : gives the adversary control over all the instances of a party
algorithm. In the case of a user, the adversary does not only receives
her passwords and the states of all her algorithm instances, but may
also overwrite the password held by each of her servers. If the party
being corrupted is a token or a server, the adversary receives the states
of all of its algorithm instances and also its key shares. Once a Test
query has been made with an identity U∗, the corruption of both
T ∗ and S∗ is not allowed. That is to prevent the adversary from
reconstructing her secret key and trivially win the game.
Only static corruptions are here considered, i.e., the adversary cannot
corrupt a party of which an algorithm instance is in the middle of a
protocol execution. It is expressed by the condition

“if
(
∃i ∈ I : usediid and ¬termi

id

)
return ⊥”.

Definition 6.3.3 (P-IND-RCCA). An EPAD scheme is P-IND-RCCA se-
cure if for all λ ∈ N, for every efficient adversary A,

Pr

b = b′ :

(pin, sin)← Init
(
1λ,U ,T ,S , I

)
b←$ {0, 1}
O ← {Exec,Send,Corrupt,Testb}
b′ ← AO(sin,·)(pin)
return (b, b′)


is negligibly close to 1/2 + qSend/|D|.

The term qSend/|D| accounts for online dictionary attacks. An EPAD
scheme should guarantee that these are the best attacks possible.

On One-Round Protocols. Note that there cannot exist a one-round
protocol secure against offline dictionary attacks. A round is here under-
stood as the set of messages sent between all parties from a message sent
by the user to the token to the next response from the token. Were there
such a one-rounded protocol, an adversary could intercept the transcript of
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an execution of the decryption protocol. In that execution, the user would
have had to send sufficient information for the server to verify her pass-
word, without having received any prior indication that the server shares
this password; sufficient in fact, for the adversary to perform an offline dic-
tionary attack on her password. Therefore, a protocol secure against offline
dictionary attacks must consist of at least two rounds. It is not surprising
as the user, who initiates the protocol, should verify the server holds the
same password as she does. Moreover, the mere fact the user continues the
protocol until the end indicates that the server could successfully authenti-
cate itself to the user. On this account, without a throttling mechanism on
the user’s side, online dictionary attacks against the user’s password cannot
be prevented.

Blindness.

The blindness property formalizes the idea that neither the token nor the
server should be able to infer any information about the ciphertexts the user
attempts to decrypt. In its formal definition, the challenge ciphertexts C0
and C1 must be either both valid or both invalid, i.e., (Dec(sk,C0) = ⊥) =
(Dec(sk,C1) = ⊥) should hold, which is a minimal condition to exclude triv-
ial wins. This strong requirement results from the fact token and server are
adversarial in the formal definition, and can therefore together reconstruct
the entire secret key and password.

Definition 6.3.4 (Blindness). An EPAD scheme satisfies blindness if for
all λ ∈ N, for every efficient adversary A,

Pr


b = b′ :

pp ← Setup
(
1λ
)

(pk, sk, skT , skS)← KG(pp)
(st, pU ,C0,C1)← A(pk, sk, skT , skS)
b←$ {0, 1}
if (Dec(sk,C0) = ⊥) 6= (Dec(sk,C1) = ⊥)

b′ ←$ {0, 1}
return (b, b′)

〈∗, b′〉 ← 〈U(pk, pU ,Cb),A(st)〉
return (b, b′)


is negligibly close to 1/2.

Verifiability.

This property captures the idea that the user should accept the result of the
decryption protocol only if the token and the server have correctly performed
their computations.
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Definition 6.3.5 (Verifiability). An EPAD scheme is verifiable if for all
λ ∈ N, for every efficient adversary A,

Pr [〈U (pk, pU ,C ) ,A(st)〉 /∈ {〈Dec(sk,C ), ∗〉, 〈⊥, ∗〉} :

pp ← Setup
(
1λ
)

(pk, sk, skT , skS)← KG(pp)
(st, pU ,C )← A(pk, sk, skT , skS)

 =1.

6.4 Construction

In this section, we build an EPAD scheme from the RCCA-secure encryption
scheme of Faonio, Fiore, Herranz and Ràfols [FFHR19] (see Section 6.1.6).
Similar techniques can a priori be applied to any publicly verifiable, structure-
preserving RCCA-secure scheme. We start by showing how users can blind
the plaintexts underlying the ciphertexts they want to decrypt. The section
then continues with our construction and its efficiency assessment.

6.4.1 Verification of Blinded Ciphertexts

As mentioned in Section 6.3.2, EPAD schemes should satisfy blindness,
meaning that even if the token and the server are corrupt, they cannot infer
any information about the ciphertexts they are helping a user to decrypt.
It is a stringent requirement as a corrupt token and server can reconstruct
the secret key, and if the server is actually one associated to the user, it also
has her password. Thus given a ciphertext, the user must be able to blind
the underlying plaintext using only public information.

On the other hand, EPAD schemes also target an RCCA type of security,
so the only type of malleability that should be expected is re-randomization.
Therefore, the user cannot a priori blind the plaintext and produce a new
valid ciphertext (except with negligible probability) since she does not re-
member her secret key. Nonetheless, she can provide enough information
auxiliary to the modified ciphertext which allows the token and the server
to verify, with their secret key shares, that she correctly blinded the un-
derlying plaintext of a valid ciphertext, and that she knows the blinding
factor.

A new algorithm Blind(pk,C ) →
(

C̃ , aux
)
is thus introduced. Given a

public key and a ciphertext of the scheme of Faonio et al., it essentially adds
a one-time pad to the plaintext and gives a Groth–Sahai proof knowledge of
pad in some auxiliary information. The new ciphertext can then be verified
by another algorithm BlindVf

(
sk, C̃ , aux

)
→ b ∈ {0, 1} on the input of a

secret-key share and of the auxiliary information. Similar techniques can a
priori be applied to other publicly-verifiable schemes.
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Formal Description.

The algorithms to blind plaintexts and verify that it was done correctly are
given below.

Blind(pk,C )→
(

C̃ , aux
)

:

◦ if Vf(pk,C ) = 0 return ⊥

◦ parse C = (x, y, c(π), c0, (c1,i)2
i=1, d0, (d1,i)3

i=1, Π, Θ, (Ψi)i=1,2)

◦ generate a blinding factor R←$ G1

◦ blind the payload part of the ciphertext, i.e., x̃3 ← x3R

◦ x̃←
[
x1 x2 x̃3

]T
◦ π̃ ← πe

(
R, g

s(G1,3E+G2,3)
2

)
◦ denote by c(π̃) the matrix c(π)

[
π̃i,j

]
i,j=1,2

, with π̃i,j := π̃ if i = j = 2 and
1GT otherwise. It is a commitment to π̃ with the same randomness as
for c(π)

◦ set C̃ ← (x̃, y, c(π), c0, (c1,i)2
i=1, d0, (d1,i)3

i=1, Π, Θ, (Ψi)i=1,2) .Note
that c(π) is not replaced by c(π̃), as one would not be able to prove
that it is well-formed for the scheme of Faonio et al. is RCCA-secure

◦ commit to R, i.e.,

– σ1, σ2 ←$ Zp; c(R)←
[
1 R

]T
aσ1bσ2

◦ Note that

c(π)f
(

c(R),
[

1
g
s(G1,3E+G2,3)
2

])
=f

(
a,
[

1
g
sσ1(G1,3E+G2,3)
2

])

f

(
b,
[

1
g
sσ2(G1,3E+G2,3)
2

])
c(π̃).

The issue is that without the secret key, one cannot compute gsσi(G1,3E+G2,3)
2

for i = 1, 2. However, gs2 and gsE2 are part of the ciphertext, so the
user can compute

Σ←
[
gsσ1

2 gsσ2
2

gsσ1E
2 gsσ2E

2

]
.

Given Σ and G (which is part of the secret key), one can then compute
g
sσ1(G1,3E+G2,3)
2 and gsσ1(G1,3E+G2,3)

2
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◦ aux ← (c(R),Σ). It is essentially a designated GS proof intended for any
party who knows G

◦ return
(

C̃ , aux
)
.

BlindVf
(

sk, C̃ , aux
)
→ b ∈ {0, 1} :

◦ verify that commitments c0, (c1,i)2
i=1,d0, (d1,i)3

i=1, are well-formed as in
algorithm Dec

◦ compute Σ1 ← ΣG2,3
1,1 ΣG1,3

2,1 and Σ2 ← ΣG2,3
1,2 ΣG1,3

2,2 (this requires the secret
key)

◦ verify with the corrective terms Σ1 and Σ2 that the opening to c(π) is the
smooth projective hash of the tag, i.e., that

f

(
c0,

[
1
g2

]) ∏
i=1,2

f

(
c1,i,

[
1
yi

])
f

([
1
g1

]
,d0

) ∏
i=1,2,3

f

([
1
x̃i

]
,d1,i

)

=f (a,Π1) f (b,Π2) f (Θ1,v) f (Θ2,w) c(π)f
(

c(R),
[

1
g
s(G1,3E+G2,3)
2

])

f

(
a,
[

1
Σ−1

1

])
f

(
b,
[

1
Σ−1

2

])

◦ if both verifications succeed, return 1, else return 0.

6.4.2 Main Construction

This section presents the main construction of an EPAD scheme which is
further denoted E . Recall from Section 6.3 that a secure scheme must be
at least two rounds. The protocol, which consists of two round, is therefore
round optimal.

Building Blocks. The construction uses as building blocks

– the RCCA-secure encryption scheme scheme of Faonio et al. (Sec-
tion 6.1.6) denoted Ercca

– the short Cramer–Shoup encryption scheme in G1 (Section 6.1.6) with
hash-function familyHPCA to encrypt passwords. It is further denoted
Epca

– Groth’s one-time signature scheme (see Section 6.1.4), further denoted
OTS, with hash-function family HOTS
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– the KV-SPHF for short Cramer–Shoup ciphertexts (Section 6.1.7)

– a (single-keyed) Hash-based Message Authentication Code [BCK96]
(HMAC), further denoted MAC, with {gκ}κ as family of compression
functions (SHA-256 in practice)

– Krawczyk’s KDF (Section 6.1.8) denoted KDF with

∗ for the extraction phase, HMAC based on a family {Hκ}κ of
Merkle–Damgård hash functions with {hκ}κ as underlying family
of compression functions (SHA-512 in practice), and
∗ for the expansion phase, HMAC with {gκ}κ as family of compres-

sion functions (SHA-256 in practice)

– the SXDH-based simulation-sound Groth–Sahai proof system which
is controllably malleable w.r.t. additive transformations in Zp (Sec-
tion 6.2.5), and which uses Jutla and Roy’s scheme (further denoted
SIG) as underlying signature scheme (Section 6.1.5). The proof system
is further denoted SS_GS.

Construction Overview.

The main steps of the scheme are as follows.

Setup & Key Generation. The parameters include parameters for the
scheme of Faonio et al., for the SPHF for Elgamal ciphertexts, and for
the simulation-sound GS proof system.

Encryption & Decryption Algorithms. These are the same as the ones
of the scheme of Faonio et al.

Interactive Decryption. During the interactive decryption protocol IDec,
the parties proceed as follows.

– At the beginning of the protocol, the user and the server es-
sentially do a one-round Password-Authenticated Key Exchange
(PAKE) with short Cramer–Shoup encryption of their passwords
and KV-SPHF evaluations on them; following techniques of Ben-
hamouda et al. [BBC+13]. The underlying idea is to enable each
party to implicitly check via the projective keys that the cipher-
text of the other party encrypts the same password as hers (see
Section 6.1.7).
The encrypted passwords are bound to the ongoing session via
the projective keys sent during the PAKE and used as labels for
the encrypted passwords. It prevents replay attacks since the
corresponding hashing keys are needed to recover the PAKE key.
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The key obtained later serves two purposes. It is first used as key
material for a KDF of which the output is used to authenticate
the respective next flows of the server and then the user, thereby
making sure that the other party holds the same password. Its
second use is to mask the partial decryption of the server so that
only a party who has the same password as the server can later
remove it and retrieve the plaintext.
In parallel, the token and the server verify that the other party
knows a share of the secret key, and the user checks that the
token and the server can together reconstruct the secret key. The
user therefore makes sure that the server knows both a secret-key
share, and her password if their PAKE outputs are the same
(which she ascertains with the MAC).
Note that, to bind its proof to the ongoing session, the token also
signs the proof (and the input from the user) with a one-time
scheme. The verification key is used as label for an encryption
(with a key different from the one used to encrypt the passwords)
of the partial user public key relative to the token share. As only
the server can also compute the partial user public key of the
token, it can check (given the decryption key) that the token is
the party who computed the ciphertext, and that the one-time
verification key was not altered.
On the other hand, the server need not do the same as no com-
putation involving the token share is done before the server must
prove knowledge of the hashing key corresponding to the projec-
tive key sent in the first round. As the projective key is authen-
ticated together with the server proof via the MAC, and as the
smoothness of the SPHF guarantees that the hashing key can be
recovered with only negligible probability, the server proof is also
bound to the ongoing session.

– After the PAKE, the user re-randomizes her ciphertext and blinds
the underlying plaintext (as in Section 6.4.1) so that even if the
token and the server are corrupt, they cannot infer any infor-
mation about the ciphertext they help her decrypt. She also
authenticates the blinded, re-randomized ciphertext with a key
derived with the KDF from the PAKE key as key material. She
then sends the ciphertext and the tag to the token.

– The token verifies that the user correctly blinded the plaintext of
a valid ciphertext, and that she knows the blinding factor, before
forwarding to the server what it just received. This verification
could actually be done in parallel of the server computation, but
before partially decrypting the ciphertext. It is to make sure
that no attacker can obtain partial decryption from the token on
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invalid ciphertexts and possibly infer information about its share.
– The server verifies the authenticity of the flow via the MAC and

then performs the same verifications as the token. If they suc-
ceed, it partially decrypts the ciphertext and masks it with the
PAKE key. The server then sends the partially decrypted (and
masked) ciphertext to the token, along with a proof that she de-
crypted the ciphertext with the key share of which she proved
knowledge in the first round (i.e., verification is done w.r.t. the
GS commitments to that share and which was were in the first
round), and that it masked the result with the PAKE key from
the first round. Although the token does not know the password
shared by the user and the token, it is convinced that the mask
is really the PAKE key from the first round. That is because the
token verifies the server proof w.r.t. the encrypted passwords and
the projective keys that were sent in the first round, and this is
absolutely crucial to prevent man-in-the-middle attacks between
the token and the server.

– After verifying the proof, the token finishes the decryption and
uses the malleability of GS proofs w.r.t. additive transformations
to compute, from the server proof, a proof that it and the server
both correctly performed their computations. It then sends the
decrypted, though blinded (by the user) and masked, plaintext
and the proof of correct computation.

– The user verifies the proof, and if it is correct, removes her blind-
ing factor, removes the mask with the PAKE key and can then
recover the plaintext.

The proof of security of the scheme requires to be able to guarantee
soundness even after giving the adversary simulated proofs, which is
why the GS proof system must be CM simulation sound w.r.t. additive
transformations. It is due to the fact that secret keys are kept across
different sessions.

Formal Description.

The decryption protocol is given on Figure 6.4.2. Each message sent is
assumed to be prepended with a session identifier and the identities of the
two partner instances. It is assumed that an algorithm aborts if it receives
an ill-formed message or if a verification fails, and that it erases all its
temporary variables (which include its randomness) once it terminates. The
proofs from the token and the server are outlined below.

Notation. Let [·] : G1 → {0, 1}` be an injection, namely the bit represen-
tation of G1 elements. Integers in {0, . . . , p − 1} are identified with their
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binary representations in {0, 1}`. For three integers i ∈ {1, 2}, j and k,
whenever computational costs in a bilinear structure are considered, Gj

i de-
notes a j-exponentiation in Gi and Pk denotes the computation of product
k pairing values. As for communication costs, jGi denotes j elements in Gi

and jZp denotes j elements in Zp.
In the following, SS_GS is a Simulation-Sound Groth Sahai proof system

with two main algorithms, a Prove algorithm that generates valid proofs for
a statement with respect to the secret used, and Vf that checks if a proof is
valid with respect to a statement. An extra algorithm Eval allows to further
refine a proof by using extra witnesses.

OTS is a one time signature, with a KG key generation algorithm, a Sign
signing algorithm, and a verification Vf algorithm checking the consistency
of the signature with respect to its public key.
Epca is a plaintext checkable encryption scheme, while Ercca is a ran-

domizable CCA encryption scheme allowing access to extra algorithms: a
randomization Rand algorithm, and Blind/BlindVf that respectively allow to
blind the payload in a ciphertext, and to check consistency to know whether
the decryption algorithm will return a value different from ⊥.

HashKG,ProjKG,Hash,ProjHash are the four algorithms constituting an
SPHF, to generate keys to allow to implicitly prove the validity of a state-
ment with respect to a given witness.

Parameters. Given two families HPCA and HOTS of hash functions from
{0, 1}∗ to {0, 1}`, to generate public parameters,

– generate a bilinear structure Γ ← (p,G1 = 〈g1〉,G2 = 〈g2〉,GT , e) ←$
G
(
1λ
)
. Let `← blog2 pc+ 1 be the bit length of p

– select HPCA ←$ HPCA and HOTS ←$ HOTS

– generate a salt value XTS ←$ {0, 1}` for the KDF

– generate keys for the short Cramer–Shoup encryption scheme in G1,
i.e.,

Decryption key dk = (ζ, α, β, α′, β′)

Encryption key ek = (h1, γ, δ) =
(
gζ1 , g

α
1 h

β
1 , g

α′
1 h

β′

1

)
– generate parameters for Ercca, i.e., GS parameters a,b ∈ G2

1; v,w ∈ G2
2

in soundness mode

– generate parameters for SS_GS, i.e., GS parameters ã, b̃ ∈ G2
1; ṽ, w̃ ∈

G2
2 in soundness mode and a pair of keys (vk, sk)← SIG.KG(Γ, 2)

– return pp ← crs ←
(
Γ; a,b; v,w; ã, b̃; ṽ, w̃;HPCA, ek; HOTS; vk; XTS).
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Passwords. Passwords are elements of G1; 1G1 is not valid password.

Key Generation. To generate keys for E , first run (pkU , sk, skT , skS)←
Ercca.KG(pp). The secret-key shares skT /skS ←

(
α1,T /S , α2,T /S , G, A1,

A2, C1, C2), are such that αi,T ←$ Zp and αi,S = αi − αi,T for i = 1, 2.
Generate also another pair (ek ′, dk ′)← Epca.KG(p, g1,G1, H). Note that pkU
is of the form

(
Γ, pk1 := gD1 , pk2 := gα1D+α2

1 , . . .
)
. The token is given ek ′,

and the server dk ′. The whole token share (cf. the syntax of Section 6.3) is
then (skT , ek ′) and the whole server share is (skS , dk ′).

Acceptance and Termination. The U instance accepts after verifying
tag τS , and terminates after returning M . The T instance accepts after
receiving

(
C̃M , aux, τU

)
, and terminates after sending MT and πT to the

user. The S instance accepts after verifying τU , and terminates after sending
MS and πS to the token.

First Proofs π̃T from the Token. In the first round, the token proves
with SS_GS to the server that it knows the other share of the user secret
key. Proof π̃T then consists of 20 G1 element, 26 G2 elements and 2 Zp
elements, and verifying it costs 4G1

1 + 4G1
2 + 2P4 + 6P6 + 8P5 + 4P8.

First Proofs π̃S from the Server. Leveraging the malleability of SS_GS,
the server computes a proof of knowledge of the complete user secret key.

Second Proof πS from the Server. After the server partially decrypts
the ciphertext and masks the result with an SPH, it proves that it correctly
performed its computation. In particular, the server proves the server proves
that secret-key shares it used to partially decrypt are the ones to which it
committed in the first round. It also proves that the password it encrypted
in the first round is the same that is used to computed the SPH mask.

Equations. Let ξ ← H(U,E, hpS). The server must prove knowledge of
pS , hkS := (λ, µ, ν, θ) and rS such that

hpS,1 = gλ1h
ν
1γ

θ

hpS,2 = gµ1 δ
θ

CS = (U,E, V ) =
(
grS1 , hrS1 pS ,

(
γδξ

)rS)
MS x̃−1

3 = x̃
−α1,S
1 x̃

−α2,S
2 Uλ+µξEν (1/pS)ν V θ

(
hpU ,1hpξU ,2

)rS
.

With SS_GS, proof πS consists of 38 G1 elements, 42 G2 elements and
2 Zp elements. Verifying it costs 4G1

1 +G2
2 + 2P3 + 4P4 + 4P5 + 6P6 + 6P7 +

4P9 + 8P10 + 2P13. Note that the token verifies w.r.t. to the commitments
c(αi,S) it infers from the first proof π̃S and its secret-key share.
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Figure 6.2: Decryption Protocol.



166 6.4 Construction

Second Proof πT from the Token. Upon receiving πS from the server,
the token decryption algorithm first verifies it. If πS is correct, the token
algorithm uses the malleability of GS proofs to compute a proof that de-
cryption was done with the full secret key of which knowledge was proved
in the first round.

Correctness & Security.

This section shows that E is correct and satisfies the security properties
defined in Section 6.3.

The P-IND-RCCA security and the verifiability of E rely of the following
assumptions (see also Section 6.1.8):

– {hκ}κ is pairwise-independent

– {Hκ}κ is collision-resistant against linear-size circuits

– g· is a secure Pseudo-Random Function (PRF)

– ĝ : (K,M )→ gM (K) is a secure PRF under a class of affine related-key
attacks defined by the inner and outer pads [Bel06, Lemma 5.2].

Assuming that the SXDH assumption over G holds, that {hκ}κ, {Hκ}κ, g·
and ĝ· satisfy the assumptions above, thatHPCA is second-preimage resistant
and that HOTS is collision-resistant, E is P-IND-RCCA secure. Moreover, E
satisfies blindness under the SXDH assumption over G. Lastly, E is verifiable
if {hκ}κ, {Hκ}κ, g· and ĝ· satisfy the assumptions above and if the SXDH
assumption over G holds.

Theorem 6.4.3 (Correctness). E is correct.

Proof. This immediately follows from the correctness and completeness of
each building block of the interactive-decryption protocol.

Theorem 6.4.4 (P-IND-RCCA). Assuming that the SXDH assumption
over G holds, that {hκ}κ, {Hκ}κ, g· and ĝ· satisfy the assumptions above,
that HPCA is second-preimage resistant and that HOTS is collision-resistant,
E is P-IND-RCCA secure.

Proof. Let A be an adversary for the P-IND-RCCA game which makes at
most qExec Exec queries and at most qSend Send queries. A message is subse-
quently said to be oracle-generated if it was computed by the challenger as
a response to a Send query and it was not altered. Otherwise, the message
is said to be adversarially generated. If an adversarially generated message
is given as an input to an algorithm which simply forwards it (possibly
after some verifications), the message is still considered adversarially gen-
erated. Recall that only static corruptions are considered. However, A can
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of course modify the messages sent between the parties. Recall also that
all instances are assumed to erase their temporary variables (which include
their randomness) upon termination.

Further distinguish the following cases:

1. A never makes a Send query to an S instance on a valid tuple (i.e.,
which passes all verification) (CU , hpU , ovk, π̃T ,CT , σT ) such that the
pair (CU , hpU ) is oracle-generated but (CT , ovk) is adversarially gen-
erated, although T and S are honest.

2. A makes a Send query of the above form.

In the first case, the main idea is to define a game which is indistin-
guishable from the real one, but in which the adversary cannot modify the
messages computed by honest parties within a session; unless it knows their
passwords in the case of user and server identities. Moreover, the oracle-
generated messages in this latter game are independent of the passwords, so
as long as a user and one of her servers are honest, A can only guess their
common password, and it can only do so with probability at most |D|−1.
Winning the 1-out-of-2 IND-RCCA security of Ercca can then be reduced to
winning that game.

To this end, consider the sequence of games hereafter. It starts by mod-
ifying how Exec queries are handled, and then continues with Send queries.

Game 0. This is the real P-IND-RCCA game.

Game 1. In this game, the challenger generates a trapdoor SS_GS CRS,
i.e., a signing key sk which allows to simulate proofs, as well as the
discrete-logarithm relations between ã1 and ã2, and between b̃1 and
b̃2, which allow to extract committed group elements. As the result-
ing parameters are perfectly indistinguishable from honest parameters,
Game 1 and Game 0 are perfectly indistinguishable.

Game 2. To answer Exec queries with identities U , T and S, the challenger
simulates π̃S and πS . Note that since SS_GS satisfies perfect deriva-
tion privacy, proofs in the previous game (leveraging its malleability)
are perfectly indistinguishable from proofs computed with the full se-
cret key. By the zero-knowledge property of SS_GS, these latter are
indistinguishable from simulates proofs of the full secret key.
The zero-knowledge property of SS_GS implies that A can distin-
guish this game from the previous one with an advantage of at most
εzkSS_GS(qExec), with the latter denoting the supremal advantage of any
PPT adversary in distinguishing real proofs from simulated ones.
Note that even if S is corrupt at the beginning of the protocol and A
thus knows the witness of the proofs, it still cannot distinguish real
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proofs from simulated ones since SS_GS is zero-knowledge. Moreover,
as temporary variables of the token algorithm instance are erased upon
termination, A cannot distinguish real proofs from simulated ones by
corrupting S after the execution either.

Game 3. To answer Exec queries with identities U , T and S, the challenger
computes HU = HS ← Hash (hkU ,LpU , CS) Hash (hkS ,LpS , CU ). Game
3 from Game 2 are perfectly indistinguishable by correctness of the
SPHF.

Game 4. To answer Exec queries with identities U , T and S, the challenger
now computes CU as EnchpU (ek, 1G1) and CS as EnchpS (ek, 1G1) (recall
that 1G1 is assumed not to be a valid password).
The indistinguishability of Game 4 from Game 3 stems from the IND-
CPA security (implied by the IND-PCA security) of Epca which relies
on the SXDH assumption. The distinguishing advantage of A is at
most qExecε

ind−cpa
Epca

, with εind−cpa
Epca

denoting the supremal advantage of
any efficient adversary in the IND-CPA game with scheme Epca.

Game 5. The challenger now answers Exec queries with identities U , T and
S by choosing HU = HS uniformly at random. This game is perfectly
indistinguishable from the previous one by the smoothness property
of the SPHF.

Game 6. In this game, the challenger also saves the short-Cramer–Shoup
decryption key dk. Game 6 is perfectly indistinguishable from Game
5.

Game 7. To answer Send queries to an S instance on (CU , hpU , ovk, π̃T ,CT ,
σT ) and on

(
C̃M , aux, τU

)
, the challenger simulates π̃S and πS . The

challenger also simulates π̃T and πT to answer queries to T instances.
The same arguments as in Game 2 imply that A can distinguish Game
7 from Game 6 with an advantage of at most εzkSS_GS(qSend).

Game 8. The challenger now answers Send queries on (CU , hpU , ovk, π̃T ,CT ,
σT ) to an S instance as follows:

– if OTS.Vf (ovk, (CU , hpU , π̃T ) , σT ) 6= 1 or Epca.Decovk(dk ′,CT ) 6=
pk2pk−α1,S

1 g
−α2,S
1 or GS.Vf (crs, pkU , αi,S , π̃T ) 6= 1, return ⊥

– if (CU , hpU ) is oracle-generated and the tuple of the Send query
also is, compute HS ← Hash (hkU ,LpU , CS) · Hash (hkS ,LpS , CU )
(the challenger knows hkU since (CU , hpU ) is honestly generated).
In this case, this game is perfectly indistinguishable from the
previous one by the correctness of the SPHF
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– if (CU , hpU ) and (CT , ovk) are oracle-generated (i.e., the tuple
(∗, ovk, ∗,CT , ∗) was computed as an answer to a Send query)
but the tuple is adversarially generated, if T is honest, abort
as A contradicted the strong one-time security of OTS. If T is
corrupt, then reply with ⊥ if U is corrupt; if U is honest, compute
HS ← Hash (hkU , LpU , CS) · Hash (hkS ,LpS , CU ).
Denoting by εOTS the supremal advantage of any efficient adver-
sary in the strong one-time security game, A can distinguish this
game from the previous one with an advantage of at most |I |εOTS
(the reduction algorithm must guess the T instance for which it
sets the one-time signing key as that of the challenger)

– if (CU , hpU ) is oracle-generated but (CT , ovk) is adversarially gen-
erated,
∗ if T is corrupt then
◦ if (U , T ,S) = (U∗, T ∗,S∗) and U∗ is corrupt, reply with
⊥ thereby following the definition of oracle Send
◦ else, computeHS ← Hash (hkU , LpU , CS)·Hash (hkS ,LpS ,
CU )

∗ if T is honest, then S is necessarily corrupt as (CU , hpU ) is
oracle-generated and (CT , ovk) is adversarially generated (cf.
conditions of case 1). Compute HS as in the real game

– if (CU , hpU ) is adversarially generated and U and S are honest,
check whether Epca.DechpU (dk,CU ) = pUS . If so, i.e., A correctly
guessed pUS , abort and return 1 indicating that A won the game
(which increases the advantage of A in this game). If not, gener-
ate HS uniformly at random, and the perfect smoothness of the
SPHF implies the perfect indistinguishability from the previous
game

– if (CU , hpU ) is adversarially generated and U or S is corrupt,
∗ if (U , T ,S) = (U∗, T ∗,S∗) and T ∗ is corrupt, return ⊥. By

definition of oracle Send, Game 8 is perfectly indistinguish-
able from Game 7
∗ if T is honest, compute HS as in the real game.

The advantage of A in the previous game is therefore upper-bounded
by its advantage in Game 8 plus qSend|I |εOTS.

Game 9. The challenger now answers Send on (CS , hpS , π̃S , τS) to a U in-
stance as follows:

– if SS_GS.Vf (crs, pkU , π̃S) 6= 1, return ⊥
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– if (CS , hpS) is oracle-generated, compute HU ← Hash (hkS ,LpS ,
CU ) · Hash (hkU ,LpU , CS) (the challenger knows hkS as (CS , hpS)
is honestly generated). In this case, Game 9 is perfectly indistin-
guishable from Game 8 by the correctness of the SPHF

– if (CS , hpS) is adversarially generated and S and U are honest,
check whether Epca.DechpS (dk,CS) = pU . If so (i.e., A correctly
guessed pU ), abort and return 1. If not, choose HU uniformly
at random, and the perfect smoothness of the SPHF implies the
perfect indistinguishability from the previous game

– if the tuple is adversarially generated and S or U is corrupt,
compute HU as in the real game.

The advantage of A in the previous game is thus upper-bounded by
its advantage in this game.
From this game onwards, the randomness used to encrypt passwords is
necessary to compute neither HU nor HS in case U and S are honest.

Game 10. In this game, the challenger answers Send queries to

– an S instance on tuples (CU , hpU , ovk, π̃T , CT , σT ) such that
(CU , hpU ) is oracle-generated, and which are oracle-generated
if T is honest, by generating HS ←$ G1 in case U is honest

– a U instance on oracle-generated tuples (π̃S ,CS , τS , hpS) by set-
ting HU ← HS , the latter being the value of the partner S in-
stance of the U in the current session

A lemma by Katz and Vaikuntanathan [KV11, Lemma 1] states that
SPH values are computationally indistinguishable from uniformly ran-
dom group elements even if hashing keys and ciphertexts are used sev-
eral times and if projective keys made public, under the assumption
that the encryption scheme is IND-PCA secure (they actually prove
it in the case of IND-CCA security, but the application of the lemma
only makes use of plaintext-check queries) and that the SPHF is statis-
tically smooth. The lemma then entails that A can distinguish Game
10 from Game 9 with an advantage of at most 2q2

Sendε
ind−pca
Epca

(qSend),
with εind−pca

Epca
(qSend) denoting the supremal advantage of any efficient

adversary which makes at most qSend plaintext-check queries in the
IND-PCA game with scheme Epca.

Game 11. For prompting queries (T , ∗,S, ∗, ∗) to a U instance and Send
queries to an S instance on oracle-generated tuples (CU , hpU , ovk, π̃T ,
CT , σT ) such that (CU , hpU ) is also oracle-generated, if U and S are
honest, the challenger computes CS as EnchpU (ek, 1G1) and CU as
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EnchpS (ek, 1G1). Distinguishing Game 11 from Game 10 can then be
reduced to winning the IND-PCA game for Epca.
Note that for any Send query on (CU , hpU , ovk, π̃T ,CT , σT ) to an S
instance, if the tuple is oracle-generated and (CU , hpU ) also is, the
reduction algorithm already knows the password encrypted in CU and
can then do the same test as the challenger of Game 8. Similarly
for Send queries on tuples (CS , hpS , π̃S , τS) to U instances. In case
(CU , hpU ) or (CS , hpS) is adversarially generated, the reduction can
make a plaintext-check queries.
It follows that A can distinguish Game 11 from Game 10 with an
advantage at most 2qSendε

ind−pca
Epca

(qSend). Note also that from this game
on, the messages computed by instances of U and S are independent of
the passwords if they are both honest, A can then guess their common
password with probability at most |D|−1 at each Send query.

Game 12. For Send queries to an S instance on tuples (CU , hpU , ovk, π̃T ,
CT , σT ) such that (CU , hpU ) is oracle-generated, and which are oracle-
generated if T is honest, the challenger generates KS uniformly at
random in case U is honest. For a Send query to a partner U in-
stance on an oracle-generated tuple (π̃S ,CS , τS , hpS), the challenger
sets KU ← KS .
Distinguishing this game from the previous can be reduced to the
security of KDF w.r.t. uniformly random sources. Note that since the
distribution of the source is independent of the adversary, generating
the salt value XTS before the end of the PAKE does not raise any
issue in the reduction. Indeed, the reduction algorithm can generate
a uniformly random source value at the beginning of the reduction,
submit it to the KDF-security-game challenger, then receive back a
uniform salt value before generating the other parameters for E .
Denoting by εKDF(0) the supremal advantage of any efficient adversary
which makes no oracle query in the KDF security game with scheme
KDF, adversary A can distinguish Game 12 from Game 11 with an
advantage at most |I |2εKDF(0) (the reduction algorithm guesses the
instances of U and S for which it sets the keys as the key returned by
the KDF challenger).

Game 13. For a Send query on an adversarially generated tuple (CS , hpS ,
π̃S , τS) to a U instance, abort the protocol if S and U are honest.
Moreover, if the tuple is oracle-generated in a different session, abort
the protocol. Likewise, for a Send query on a an adversarially gen-
erated tuple

(
C̃M , aux, τU

)
to an S instance, if U and S are honest,

abort the protocol. Besides, if the tuple is oracle-generated in a dif-
ferent session, abort the protocol.
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Distinguishing Game 13 from Game 12 can be reduced to the security
of MAC. It follows A can distinguish Game 13 from Game 12 with an
advantage of at most |I |2εprf

MAC(1), with εprf
MAC(1) being the supremal

advantage of any efficient adversary which makes at most one oracle
query in the PRF game with scheme MAC (the reduction algorithm
guesses the U and S instance for which it sets the common MAC key
as the challenge one).

Game 14. For a Send query to a T instance on pair (MS , πS) which is either
adversarially generated or oracle-generated in a different session, abort
if U and S are honest. Indeed, the word for which πS is a proof is
generated anew for each session since hkS is always freshly generated
(and hpS is thus not the image of a previous projective key under an
additive transformation). It follows that

– if (MS , πS) is oracle generated in a different session, the veri-
fication can only succeed with negligible probability if SS_GS
is sound. In this case, A can distinguish this game from the
previous with an advantage of at most εsound

SS_GS(qSend), with the
latter denoting the supremal advantage of any efficient adver-
sary which makes at most qSend queries in the CM-simulation-
soundness game for SS_GS

– if (MS , πS) is adversarially generated, the CM simulation sound-
ness of SS_GS guarantees that the commitments c(λ), c(µ), c(ν),
c(θ) satisfy

f (g1, c(λ)) f (h1, c(ν)) f (γ, c(θ)) = f (hp1,u) f
(
ΘhpS,1 ,v

)
and

f (g1, c(µ)) f (δ, c(θ)) = f (hp2,u) f
(
ΘhpS,2 ,v

)
(with proof elements excerpted from πS). However, these com-
mitments can then be used to contradict the perfect smoothness
of the KV-SPHF for short Cramer–Shoup ciphertext. Indeed,
given M ∈ G1 and C := (U,E, V ) such that Epca.DechpS (dk,
C ) 6= M , these commitments and hpS can be used to distinguish
Hash(hkS ,LM ,C ) from H←$ G1 simply by testing whether

f (U, c(λ)) f
(
U ξ, c(µ)

)
f (E/M , c(ν)) f (V, (θ))

=f (H,u) f
(
ΘhpS,1Θξ

hpS,2 ,v
)
.

The perfect smoothness of the KV-SPHF for short Cramer–Shoup
ciphertexts implies that it can only occur with probability 1/p.
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Therefore, in this case, the adversary can distinguish this game
from the previous one with an advantage of at most

qSend
(
εsound

SS_GS(qSend) + p−1
)

(the algorithm for the reduction to the perfect smoothness of the
SPHF must guess the query for which it sets the projective key
as hpS).

A can then distinguish this game from the previous one with an ad-
vantage of at most qSend

(
εsound

SS_GS(qSend) + p−1
)
.

In Game 14, once the challenge tuple (U∗, T ∗,S∗) is defined, all values
received by U∗, T ∗ and S∗ instances up to (MS∗ , πS∗) included are either all
oracle-generated in the same session or replied to with ⊥ as long as these
identities are honest. In particular, if U∗ is corrupt, Send queries to T ∗
instances are rejected (by definition of oracle Send) and A thus cannot make
successful Send queries to S∗ instances anymore as long as T ∗ is honest; and
if U∗ and T ∗ are corrupt, Send queries to S∗ instances are rejected anyway.
Likewise, if S∗ is corrupt, Send queries to T ∗ instances are rejected (recall
that S∗ and T ∗ cannot both be corrupt) and A cannot make successful Send
queries to S∗ instances anymore. Winning the 1-out-of-2 RCCA game for
Ercca can then reduced to winning Game 14 as follows.

At the beginning of the game, the reduction algorithm, further denoted
B, guesses the identities U∗, T ∗ and S∗. If A later makes its Test query on
a different tuple of identities, B simply aborts and sends to the challenger a
bit chosen uniformly at random.

Recall that T ∗ and S∗ cannot both be corrupt by definition of P-IND-
RCCA game. On this account, first suppose that S∗ is honest throughout
the game. B then sets the public key as the public key of U∗ and asks for a
secret key share that it sets as the share of T ∗ (which is given to A in case
of corruption). The other share is then implicitly the share of party S∗.

For Exec queries and Send queries on oracle-generated tuples of the form(
C̃M , aux, τU∗

)
to S∗ instances, since C̃M is computed by B, the latter can

make decryption queries to the RCCA challenger on the original cipher-
text CM , receive back x3x

−α1,S∗
1 x

−α1,S∗
2 , and multiply it by RHS∗ , with R

denoting the blinding factor generated by algorithm Blind.
B also simulates with the trapdoor proofs π̃S and πS .
For query Test, algorithm B simply forwards (M0,M1) to the RCCA

challenger. After the test query, for Exec queries as above, if CM decrypts
to M0 or M1, the RCCA challenger answers with replay and so does B.

For a prompting Send query on (T ∗, ∗,S∗, ∗,CM ) to a U∗ instance, the
reduction makes a decryption query to the RCCA challenger on CM . If it
decrypts to M0 or M1, the reduction algorithm receives replay and forwards
it to A.
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The condition “if (Dec(skU ,C ) ∈ {M0,M1}) return replay” guarantees
that B can answer with ⊥ Exec queries and prompting Send queries on C ∗,
and perfectly emulate the Game-14 challenger.

Moreover, recall that in case 1), A never makes a Send query on a
valid tuple (CU∗ , hpU∗ , ovk, π̃T ∗ ,CT ∗ , σT ∗) such that (CU∗ , hpU∗) is oracle-
generated but (CT ∗ , ovk) is adversarially generated, although T ∗ and S∗ are
honest. It means that if U∗ is honest, A can obtain partial decryption from
S∗ only with oracle-generated tuples, and the condition mentioned above
ensures that S∗ never has to make a decryption query on a ciphertext which
decrypts to M0 or M1. If U∗ is corrupt and T ∗ is honest, B never has to
make such a decryption query either as A would never submit a valid tuple
in the first flow. If U∗ and T ∗ are both corrupt, then B can simply answer
Send queries with ⊥.

As B perfectly emulates the Game-14 challenger, it wins the RCCA game
with at least the same advantage as A in that game.

In case T ∗ is honest throughout the game, the reduction is similar except
that B now sets the key share it gets as the share of S∗. Note that in Game
14, all valid pairs (MS∗ , πS∗) submitted to T ∗ instances are oracle-generated
in the same session if U∗ and S∗ are honest. If either of them is corrupt,
all Send queries to T ∗ instances are rejected. Consequently, B never has to
make a decryption query on a ciphertext that decrypts to M0 or M1.

It follows that the advantage of A in the P-IND-RCCA game in case 1)
is at most

εzkSS_GS(qExec) + εzkSS_GS(qSend) + qExecε
ind−cpa
Epca

+ |I |εOTS

+ qSend
(
|D|−1 + εsound

SS_GS(qSend) + p−1 + 2(qSend + 1)εind−pca
Epca

(qSend)
)

+ |I |2
(
εKDF(0) + εprf

MAC(1)
)

+ |U ||T ||S |Advind−rcca
G,Ercca

(λ).

In the second case, T and S are honest in the query that distinguishes
the two cases. The major argument is that only T and S can compute
pkα1,T

1 g
α2,T
1 and that only S holds the decryption dk ′. Therefore, an ad-

versary cannot distinguish CT from encryption of a dummy message which
contains no information about the token share. Moreover, as long as U and
S are honest, HS is indistinguishable from a uniformly random value and
MS thus contains no information about the shares either. For the adversary
to compute a valid tuple from that point, it has to compute a valid proof
on the token share after only getting zero-knowledge ones. This valid proof
can then be used to contradict the 1-out-of-2 security of Ercca.

To prove it formally, consider the following sequence of games.

Game 0–5. These are the same as in the previous case.
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Game 6. To answer Exec queries with identities U , T and S, the challenger
computes, the challenger generates KU ← KS uniformly at random.
A can distinguish this game from the previous one with an advantage
of at most |I |εKDF(0).

Game 7. In this game, to answer Exec queries with identities U , T and
S, the challenger generates MS ←$ G1. This game is perfectly indis-
tinguishable from the previous one as HS is uniformly random in the
latter.

Game 8. To answer Exec queries with identities U , T and S, the chal-
lenger now computes CT as Epca.Encovk (ek ′, 1G1

)
(and verifies that

Epca.Decovk(dk ′,CT ) = 1G1). The indistinguishability from the previ-
ous games stems from the IND-CPA security of Epca (which is implies
by its IND-PCA security). Therefore, A can distinguish this game
from the previous one with an advantage of at most qExecε

ind−cpa
Epca

, with
εind−cpa
Epca

denoting the supremal advantage of any efficient adversary in
the IND-CPA game with scheme Epca.

Game 9. To compute π̃S and πS to answer Send queries to S instances, the
challenger now simulates them with the trapdoor. Likewise, the chal-
lenger simulates π̃T and πT to answers Send queries to T instances.
The zero-knowledge property of SS_GS implies that A can distin-
guish this game from the previous one with an advantage of at most
εzkSS_GS(qSend).

Game 10. The challenger now answers Send queries to an S instance on
(CU , hpU , ovk, π̃T ,CT , σT ) such that (CU , hpU ) is oracle-generated
by computing HS ← Hash (hkU , LpU , CS) · Hash (hkS ,LpS , CU ). This
game is perfectly indistinguishable from the previous one by the cor-
rectness of the SPHF.

Game 11. The challenger now answers Send to a U instance on a tuple
(CS , hpS , π̃S , τS) such that (CS , hpS) is oracle-generated by comput-
ing HU ← Hash (hkS ,LpS , CU ) · Hash (hkU ,LpU , CS). This game is per-
fectly indistinguishable from the previous one by the correctness of the
SPHF.

Game 12. In this game, the challenger answers Send queries to

– an S instance on tuples (CU , hpU , ovk, π̃T ,CT , σT ) such that the
couple (CU , hpU ) is oracle-generated by generating HS ←$ G1 in
case U is honest

– a U instance on oracle-generated tuples (π̃S , CS , τS , hpS) by set-
ting HU ← HS , the latter being the value of the partner S in-
stance of the U in the current session
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Katz and Vaikuntanathan’s lemma [KV11, Lemma 1] implies that A
can distinguish this game from the previous one with an advantage of
at most 2q2

Sendε
ind−pca
Epca

(qSend).

Game 13. For Send queries to an S instance on tuples (CU , hpU , ovk, π̃T ,
CT , σT ) such that (CU , hpU ) is oracle-generated, the challenger gener-
ates KS uniformly at random in case U is honest. For a Send query
to a partner U instance on an oracle-generated tuple (π̃S ,CS , τS , hpS),
the challenger sets KU ← KS .

Distinguishing this game from the previous can be reduced to the
security of KDF w.r.t. uniformly random sources.

Denoting by εKDF(0) the supremal advantage of any efficient adversary
which makes no oracle query in the KDF security game with scheme
KDF, this game can be distinguished from the previous one with an
advantage of at most |I |2εKDF(0).

Game 14. In this game, if U is honest, the challenger answers Send queries
to S instances on

(
C̃M , aux, τU

)
tuples by generating MS ←$ G1.

This game is perfectly indistinguishable from the previous one as HS
is uniformly random in the latter.

Game 15. To answer Send queries to T instances on oracle-generated pairs
(CU , hpU ), the challenger now generatesK ←$ G1 and computes CT as
Epca.Encovk (ek ′,K

)
. To answer Send queries to the partner S instance

in this session on tuples (CU , hpU , ovk, π̃T ,CT , σT ), the challenger ver-
ifies that Epca.Decovk(dk ′,CT ) = K. The indistinguishability from the
previous game follows from the IND-PCA security of Epca. Indeed, for
queries to S instances as above, if (CT , ovk) is oracle-generated (i.e.,
(∗, ovk, ∗,CT , ∗) was computed as an answer to a Send query), then
the reduction need not make a decryption query as it computed it
itself. If (CT , ovk) is adversarially generated, i.e., CT was computed
with a label different from ovk, the reduction algorithm can then make
a decryption query.

Distinguishing this game from the previous one can thus be done with
an advantage of at most qSendε

ind−pca
Epca

(qSend).

Game 16. To answer Send queries to T instances on oracle-generated pairs
(CU , hpU ), the challenger now generates K,K ′ ←$ G1 and computes
CT as Epca.Encovk (ek ′,K

)
. To answer Send queries to the partner S in-

stance in this session on tuples (CU , hpU , ovk, π̃T ,CT , σT ), if (CT , ovk)
is oracle-generated in the same session, the challenger skips the veri-
fication, otherwise the challenger verifies that Epca.Decovk(dk ′,CT ) =
K ′. Once again, indistinguishability from the previous game follows
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from the IND-PCA security of Epca. Adversary A can thus distin-
guish this game from the previous one with an advantage of at most
qSendε

ind−pca
Epca

(qSend).

Game 17. For Send queries to S instances on tuples (CU , hpU , ovk, π̃T ,CT ,
σT ), if ovk and πT are oracle-generated but in different sessions, return
⊥. Denoting by εOTS the supremal advantage of any efficient adversary
in the strong one-time security game, A can distinguish this game from
the previous with an advantage of at most qSend|I |εOTS (the reduction
algorithm must guess the T instance for which it sets the one-time
signing key as that of the challenger).

Game 18. For Send′ queries to S instances on tuples (CU , hpU , ovk, π̃T ,CT ,
σT ), if ovk is adversarially generated and πT is oracle-generated, the
challenger returns ⊥. Adversary A can distinguish this game from
the previous one with an advantage of at most 1/p. Indeed, if πT
is oracle-generated, there exists a K ′ as defined in Game 16 which is
independent of all the other messages computed by the challenger and
of all the inputs from A.

Winning the 1-out-of-2 RCCA game can then be reduced to winning the
last game as follows. At the beginning of the game, the reduction algorithm,
denoted B, guesses again the identities U∗, T ∗ and S∗. (If A later makes
its Test query on a different tuple of identities, B simply aborts and sends
to the challenger a bit chosen uniformly at random.) B then sets the public
key as the public key of U∗ and asks for a secret key share that it sets as
the share of S∗. The other share is then implicitly the share of T ∗.

Recall that if A corrupts U∗, algorithm B can reply to Send queries to
T ∗ instances with ⊥ and perfectly emulate the challenger of the last game.

Whenever A makes its first Send query to an S∗ instance on a valid tu-
ple (CU∗ , hpU∗ , ovk, π̃T ∗ ,CT ∗ , σT ∗) such that (CU∗ , hpU∗) is oracle-generated
but (CT ∗ , ovk) is adversarially generated, ovk and πT ∗ are necessarily ad-
versarially generated by definition of the challenger of the last game. By
CM simulation soundness of SS_GS w.r.t. additive transformations (which
holds under the existential unforgeability of SIG), either (i) f (pk1, c(α1,T ∗))
f (g1, c(α2,T ∗)) = f

(
pk2pk−α1,S∗

1 g
−α2,S∗
1 ,u

)
f (Θ,v), or there exists an oracle-

generated proof (respectively by an S∗ instance or by a T ∗ instance) (c1,
c2,Θ′) such that (ii-a) f (pk1, c1) f (g1, c2) = f (pk2,u) f (Θ′,v) or (ii-b)
f (pk1, c1) f (g1, c2) = f (pk2 pk−α1,S∗

1 g
−α2,S∗
1 ,u

)
f (Θ′,v) and a tuple (c(ζ1),

c(ζ2),Θ′′), with (ζ1, ζ2) ∈ Z2
p representing a transformation, such that

f (pk1, c(ζ1)) f (g1, c(ζ2)) = f
(

pk2pk−α1,S∗
1 g

−α2,S∗
1 ,u

)
f
(
Θ′′,v

)
.

It follows that for i = 1, 2 either c(αi,T ∗) or c(ζi) is a commitment to αi,T ∗ ;
and assume without loss of generality that it is the former. B then computes
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c(αi) ← c(αi,T ∗)uαi,S∗ for i = 1, 2, i.e., commitments to αi with the same
randomness used to compute c(αi,T ∗).

If A makes a Test query on the guessed identities, B simply forwards
(M0,M1) to the RCCA challenger, and receives back a challenge ciphertext
C ∗ which encrypts Mb for b←$ {0, 1}. (If the guess was incorrect, B aborts
its interaction with A and sends a uniformly random bit to the challenger.)
Note that x∗3M−1

b = x∗1
α1x∗2

α2 and that dlogpk1
x∗1 = dlogg1 x

∗
2 = dlogpk2

x∗3.
Therefore, f (x∗1, c(α1)) f (x∗2, (α2)) = f

(
x∗3M−1

b ,u
)
f (Θ,v). Algorithm B

can then test the previous equality with M0 and M1 and win the 1-out-
of-2 RCCA game with at least the same advantage as A in the selective
P-IND-RCCA game.

Consequently, in case 2), A wins the P-IND-RCCA game with an ad-
vantage of at most

εzkSS_GS(qExec) + εzkSS_GS(qSend) + qExecε
ind−cpa
Epca

+ |I |εOTS + 2|I |2εKDF(0)

+ 2qSend(qSend + 1)εind−pca
Epca

(qSend) + εsound
SS_GS(qSend)

+ |U ||T ||S |Advind−rcca
G,Ercca

(λ).

Theorem 6.4.5 (Blindness). E satisfies blindness under the SXDH assump-
tion over G.

Proof. The blindness property of E can be proved as follows via a sequence
of indistinguishable games starting from the real game and ending with a
game in which the advantage of any adversary is nil.

Game 0. This is the real game.

Game 1. The challenger generates GS parameters a,b,v,w in witness-
indistinguishability mode. This CRS is computationally indistinguish-
able from the one in the previous game under the SXDH assumption
over G.

Game 2. Instead of computing c(R) and Σ as algorithm Blind, the chal-
lenger simulates those values with the GS proof-system simulator. Fur-
ther denote the resulting algorithm as SimBlind. Game 2 is perfectly
indistinguishable from Game 1 since the simulation is perfect.

Game 3. In this game, the challenger runs SimBlind on Enc (pk,Dec(sk,Cb)).
Game 3 is perfectly indistinguishable from Game 2 since the scheme
of Faonio et al. is perfectly unlikable.

Game 4. Instead of running algorithm SimBlind on Enc (pk,Dec(sk,Cb)),
the challenger runs it on Enc (pk,K) forK ←$ GT . Game 4 is perfectly
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indistinguishable from Game 3 since SimBlind computes x̃3 as x3R for
R←$ GT , which entirely re-randomizes Dec(sk,Cb) in Game 3.
Note that in Game 4, the advantage of any adversary is nil.

It follows that E satisfies blindness under the SXDH assumption over G.

Theorem 6.4.6 (Verifiability). E is verifiable if {hκ}κ, {Hκ}κ, g· and ĝ·
satisfy the assumptions above and if the SXDH assumption over G holds.

Proof. Suppose that there exists an efficient adversary A which wins the
verifiability game with a non-negligible probability, i.e., it returns pU and C
such that the honest execution of U on (pk, pU ,C ) with A results in a value
different from Dec(sk,C ) and ⊥. In the event in which A wins the game,
then either Dec(dk,CS) = pU or not. If so, then there exists an algorithm
B which runs A as sub-routine and contradicts the perfect soundness of the
GS proof system. If Dec(dk,CS) 6= pU , then there exists an algorithm B
which runs A as sub-routine and wins the MAC game with non-negligible
probability.

In the first case, the correctness of the SPHF guarantees thatH (hkU ,LpU ,
CS) ProjHash (hpS ,LpU ,⊥, rU ) = H (hkS ,LpS ,CU ) ProjHash (hpU ,LpS ,⊥, rS).
Therefore, if the value returned by U at the end of the protocol is differ-
ent from both Dec(sk,C ) and ⊥, adversary A necessarily contradicted the
soundness of SS_GS for to the language

{(ek, pkU ,CU ,CS , hpU , C̃M ,MS) : ∃ (αi, hkS , pS , rS) ,
pk2 = pkα1

1 gα2
1

hpS = ProjKG (hkS ,LpS ,⊥)
CS = Epca.EnchpS (ek, pS ; rS)

MS x̃−1
3 = x̃−α1

1 x̃−α2
2 H (hkS ,LpS ,CU )

·ProjHash (hpU ,LpS ,⊥, rS)} ,

which is impossible under the existential unforgeability of Jutla and Roy’s
signature, which relies on the SXDH assumption.

In the second case, i.e., if Dec(dk,CS) 6= pU , the verifiability of E can be
reduced to the security of the MAC through a sequence of games as below.

Game 0. This is the real game.

Game 1. In this game, the challenger replaces HU with a uniformly ran-
dom value. By the smoothness of the SPHF, Game 1 is perfectly
indistinguishable from Game 0.

Game 2. The challenger now generates a random key KU instead of com-
puting it with the KDF. The indistinguishability of Game 2 from Game
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1 can then be reduced to the security of KDF w.r.t. uniformly random
source.

Note that as the distribution of the source is independent of the adver-
sary, generating the salt value XTS before the end of the PAKE does
not raise any issue in the reduction. Indeed, the reduction algorithm
can generate a uniformly random source value at the beginning of the
reduction, submit it to the KDF-security-game challenger, then receive
back a uniform salt value before generating the other parameters for
E .

Therefore, under the assumptions on the compression functions which
imply the security of Krawczyk’s KDF, an efficient adversary can dis-
tinguishing Game 2 from Game 1 with advantage at most εKDF(qSend),
with εKDF(qSend) denoting the supremal advantage of any efficient ad-
versary which makes at most qSend queries in the KDF security game
with scheme KDF.

AsAmust compute a tuple (π̃S ,CS , hpS , τS) such that MAC (KU , (π̃S ,CS ,
hpS)) = τS to win Game 0 without any prior MAC computation by U, it
does so with non-negligible probability in Game 2. It follows that A can
then be run as sub-routine to win the MAC game with non-negligible prob-
ability. Once again, under the assumptions on the compression functions
(which imply the security of HMAC), an efficient adversary can only do so
with negligible probability; a contradiction. It follows that such an adver-
sary A cannot exist and E is thus verifiable.

Efficiency.

Table 6.1 sums up the communication cost of the decryption protocol.

U
 T T
 S

1st Flow 5G1 31G1 + 26G2 + 4Zp

2nd Flow 25G1 + 26G2 + 3Zp 25G1 + 26G2 + 3Zp

3rd Flow 16G1 + 19G2 + 4GT 16G1 + 19G2 + 4GT

+1Zp +1Zp
4th Flow 39G1 + 42G2 + 1Zp 39G1 + 42G2 + 1Zp

Table 6.1: Communication Cost of the Decryption Protocol.
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On Adaptive Corruptions.

The main reason why the decryption protocol is not secure against adaptive
corruptions is that the short Cramer–Shoup encryption is “fully commit-
ting”, meaning that there is only one valid opening (i.e., message–randomness
pair) for each commitment (i.e., ciphertext). However, in one of the interme-
diate games in the proof of P-IND-RCCA security, the challenger computes
commitments to dummy passwords for honest parties. It means that if the
adversary corrupts an honest party right after she has sent her commitment,
the challenger cannot return to the adversary a valid opening which contains
the actual password of that party.

To overcome this hurdle, one could instead use an equivocable commit-
ment scheme which supports adaptively smooth KV-SPHFs. As an equiv-
ocable commitment scheme allows to compute a valid opening to any com-
mitment given a trapdoor, such a scheme together with a KV-SPHF should
make the protocol secure against adaptive corruptions. Blazy and Cheva-
lier’s commitment scheme and its associated KV-SPHF [BC16] precisely
satisfy these conditions. The commitment scheme relies on the SXDH as-
sumption, and although its size is constant in the bit length of the message
(i.e., 4 G1 elements and 2 G2 elements for each commitment), it is still larger
than that of the short Cramer–Shoup encryption scheme. The latter was
then chosen for efficiency reasons but at the expense of adaptive corruptions.

Note also that if U∗ is corrupted right after the end of the PAKE (i.e.,
at the end of the first round), then the adversary could get from the server
instance a partial decryption on the challenge ciphertext with the third flow
(even if the U∗ instance was prompted on a different ciphertext). To prevent
this, the token could again compute a one-time signature as in the first flow,
but also include CM in the label of the encryption. Doing ensures the server
that the third flow went through the token, which would not be possible in
case of corruption of U∗ as token queries are then rejected.

On Composability.

The Section-6.3 definitions are game-based and do not guarantee compos-
ability. However, a universal-composability [Can01] functionality for EPAD
schemes could be defined in the same vein as for PAKE [CHK+05] and
RCCA-secure encryption schemes [CKN03] considered together. Yet, to
achieve composability, and as for PAKE protocols, it would be necessary for
the UC simulator (in case the adversary correctly guesses the password of
an honest party) to be able to compute correct SPH values on invalid words
C (encrypting 1G1) with the sole knowledge of a projective key hp from the
adversary and not of the corresponding hashing key hk.

Benhamouda et al. [BBC+13] introduced trapdoor SPHFs exactly for
this purpose and gave a construction for the original Cramer–Shoup en-
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cryption scheme which is computationally and adaptively smooth under the
SXDH assumption. It could readily be adapted to the short version of their
scheme, though each projective key would contain one more G1 element.
Alternatively, one could also use structure-preserving SPHFs which were
introduced by Blazy and Chevalier [BC16].

Mitigating Server Breaches.

EPAD schemes have so far been defined only w.r.t. a single server. Nev-
ertheless, password theft from server databases is common in practice, and
users even tend to use the same password for several services. It means that
not only the confidentiality of user messages is threatened if a single server is
compromised (and if her token is corrupt), but also potential other services.

To mitigate the impact of server breaches, a potential solution is to use
threshold cryptography [Sha79,DF90]. User passwords are then encrypted
in a database and the decryption key is shared between n ≥ 1 servers so that
no information about the passwords is leaked if at most a number t of them
are corrupt. Nevertheless, any t + 1 servers should be able to recover user
passwords. Blazy, Chevalier and Vergnaud [BCV16, Section 5] proposed an
efficient protocol for threshold PAKE [MSJ06] from SPHFs which is based
on this idea. It allows a user and a gateway that interacts with t + 1 of
servers to agree on a common high-entropy key if the user password and the
encrypted password match, without revealing any information about the
passwords. However, if they do not, the keys obtained by each party are
independent and uniformly random. In consequence, the security of the key
exchange is guaranteed so long as at most t servers are corrupt.

The EPAD scheme in Section 6.3 can then be turned into a scheme with
n servers and which withstand the corrupt of t of them (i.e., a t-out-of-n
scheme) as follows. During the set-up phase, the user encrypts her password
and sends the encrypted password and a t-out-of-n secret-key share to each
server. The Ercca secret key is t + 1-out-of-n + 1 shared between the n
servers and the token so that any t + 1 servers and the token can decrypt
user ciphertexts. During the decryption protocol, each of the participating
servers plays in parallel the role of the gateway of Blazy, Chevalier and
Vergnaud’s protocol, and uses the resulting keys to authenticate the second
flow in the protocol of Figure 6.4.2. In the last flow, each server would then
have to prove that it partially decrypted the ciphertext with its Ercca key
share and masked it with the key resulting from the threshold PAKE. As the
threshold PAKE is based on SPHFs, the same techniques (as in Section 6.3)
leveraging malleability apply.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

Chapter 5 presented zone encryption, a cryptographic primitive tailored to
the needs of C-ITSs which can enhance their privacy properties. When used
in combination with the group signatures from Chapter 4 augmented with
attributes, vehicles send 216-Byte authentication tokens, while needing only
a single constant-size credential per epoch. This is an important improve-
ment over the limited pseudonym pool sizes and their expensive reloading
protocols that are currently proposed for deployment. Secondly, our zone
encryption scheme enables efficient encryption of position beacon messages,
protecting their content from eavesdroppers.

Moreover, all variants of group signatures and the multi-signature scheme
presented in Chapter 4 constitute contributions of independent interest with
applications beyond the scope of vehicle-to-vehicle communication.

Despite these improvements, these schemes should still be used with
some care. Actively participating eavesdroppers can still receive all commu-
nication, so minimizing the information contained in CAMs for the partic-
ular envisaged applications remains crucial. Besides, authentication tokens
leak the identity of the issuers, i.e., vehicles are only anonymous among
other vehicles with the same issuers. This is easily circumvented at an or-
ganizational level by letting all vehicles use the same (e.g., country-wide)
issuers. If that is not possible, technical solutions would involve delegatable
credentials [BCC+09], but their tokens are too long to be used in C-ITS.

It should be stressed that there are further privacy limitations inherent
to V2X communication, as vehicles can be tracked by other means than
CAMs. One could, e.g., fingerprint radio transmitters and antennas, use
side-channel analysis, or even cameras and image processing to track vehi-
cles [TCMDS11]. However, the possibility of such attacks does not mean
that privacy for vehicular communication should be entirely forgone. In fact,
similar arguments can be made for most applications, e.g., users’ online ac-
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tivities which can be fingerprinted through the hardware they use. Still,
efficient privacy-preserving protocols are still sought after instead abandon-
ing the idea of online privacy altogether.

Chapter 6 tackled public-key encryption in a context in which secure
storage is unavailable. It introduced encryption with password-protected
assisted decryption, a new primitive which allows users to decrypt cipher-
texts with the help of an untrusted token and of a server with which they
share a password, while maintaining the privacy of users. The security of
this primitive was formalized via game-based definitions, and an efficient,
provably-secure construction was proposed.

7.2 Future Work
The main construction of group signatures in Chapter 4 can only tolerate
the corruption of less than half of the issuers and openers. In contrast, the
construction based on multi-signatures does not support threshold issuance
but can tolerate the corruption of all but one issuer. Hence the question of
whether it is possible to construct as efficient group signatures with both
threshold issuance and opening, but with higher thresholds than half of the
authorities.

Besides, as explained in Section 4.3.2 and contrarily to what could be
hoped for, the anonymity of the scheme still requires some issuers to be
honest and likewise, some openers must be honest to guarantee traceability.
It would thus be interesting to build a scheme, perhaps based on different
ideas, that can overcome these shortcomings while maintaining signatures
as short.

Concerning zone encryption, the main hurdle for a practical deploy-
ment remains the key-agreement strategy among vehicles that minimizes
zone clustering. Designing strategies and testing them via simulations of
real-world scenarios would then be an important step for privacy in V2V
communication.

As for encryption with password-assisted decryption, defining its secu-
rity in the universal-composability framework [Can01], with adaptive cor-
ruptions, would provide stronger security guarantees and would be an in-
teresting contribution on its own, although that may come at the price of
efficiency.
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Chapter 8

Introduction

The focus of this second part is on general-purpose cryptographic primi-
tives that are also critical to privacy-preserving applications. Chapter 9

gives zero-knowledge arguments for a wide class of cryptographic problems,
namely those that can be represented by Diophantine equations. As for
Chapter 10, it addresses the fundamental question of randomness in the
context of key generation, which is a cornerstone of any cryptographic con-
struction.

8.1 Diophantine Satisfiability

A Diophantine equation is a multi-variate polynomial equation with inte-
ger coefficients, and it is satisfiable if it has a solution with all unknowns
taking integer values. Davis, Putnam, Robinson and Matiyasevich [Mat70]
showed that any computational problem can be modeled as finding a solu-
tion of such equations, thereby proving that the general Diophantine sat-
isfiability problem is undecidable and giving a negative answer to Hilbert’s
tenth problem. For instance, several classical NP-problems such as 3-SAT,
Graph 3-colorability or Integer Linear Programming can be readily encoded
as Diophantine equations. Several cryptographic problems such as proving
knowledge of an RSA signature, that a committed value is non-negative or
that encrypted votes are honestly shuffled by a mix-net, can also be encoded
as Diophantine equations.

Efficient zero-knowledge arguments of knowledge of solutions to Dio-
phantine equations, if a solution is known to a party, can thus be useful
for many practical cryptographic tasks; and doing so requires to do zero-
knowledge proofs on committed integers.

186
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8.1.1 Prior Work

Integer Commitments. Fujisaki and Okamoto [FO97] presented the first
efficient integer commitment scheme and also suggested a zero-knowledge
protocol for verifying multiplicative relations over committed values. Such
a commitment scheme allows to commit to any x ∈ Z in a group of un-
known order, with a Pedersen-like commitment scheme. This makes the se-
curity analysis more intricate since division modulo the unknown group order
cannot be performed in general. As an evidence that this setting is error-
prone, it was shown by Michels that the Fujisaki–Okamoto proof system was
flawed. Damgård and Fujisaki [DF02] later proposed a statistically-hiding
and computationally binding integer commitment scheme under standard
assumptions in a hidden-order group G with an efficient argument of knowl-
edge of openings to commitments, and arguments of multiplicative relations
over committed values. This primitive gives rise to a (honest-verifier) zero-
knowledge proof of satisfiability of a Diophantine equation withM multipli-
cations over Z that requires Ω(M) integer commitments and requires Ω(M)
proofs of multiplicative relations [DF02,Lip03]. These complexities have not
been improved since then.

Circuit Satisfiability over Zp. Similarly, it is possible to design a zero-
knowledge proof of satisfiability of an arithmetic circuit over Zp using Peder-
sen’s commitment scheme [Ped92] in a group G of public prime order p. An
immediate solution is to use the additive homomorphic properties of Ped-
ersen’s commitment and zero-knowledge protocols for proving knowledge of
the contents of commitments and for verifying multiplicative relations over
committed values [Sch91,CS97].

For an arithmetic circuit with M multiplication gates, this protocol re-
quires Ω(M) commitments and Ω(M) arguments of multiplication consis-
tency and has a communication complexity of Ω(M) group elements. In
2009, Groth [Gro09] proposed a sub-linear size zero-knowledge arguments
for statements involving linear algebra and used it to reduce this communi-
cation complexity to O

(√
M
)
group elements. This breakthrough initiated

a decade of progress for zero-knowledge proofs for various statements (see
e.g., [BG13, GK15, BCC+16, BBB+18] and references therein). It culmi-
nated with the argument system “Bulletproofs” proposed by Bünz, Bootle,
Boneh, Poelstra, Wuille and Maxwell [BBB+18] which permits to prove the
satisfiability of such an arithmetic circuit with communication complexity
O(log(M)) and round complexity O(log(M)). The corner stone of their pro-
tocol is an argument that two committed vectors satisfy an inner-product
relation. It has logarithmic communication and round complexity in the vec-
tor length; and its security only relies on the discrete-logarithm assumption
and does not require a trusted setup.

Circuit satisfiability over any finite field is an NP-complete problem so
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the “Bulletproofs” argument system has a widespread application. However,
as mentioned above, in many cryptographic settings, it is desirable to prove
statements such as “the committed value x is a valid RSA signature on a
message m for an RSA public key (N, e)”. In this case, the prover has to
convince the verifier that xe = H(m) mod N , or in other words that there
exists an integer k such that xe+kN = H(m) where this equality holds over
the integers for |k| ≤ N e−1 and H is some cryptographic hash function. In
order to use directly an argument of satisfiability of an arithmetic circuit to
prove the knowledge of a pair (x, k) which satisfies this equation, one needs
to use a group G a prime order p with p > N e (and to additionally prove
that x < N and k < N e). For a large e, this approach results in a proof
with prohibitive communication complexity.

Moreover, in various settings, such as the Integer-Linear-Programming
problem, there is no a priori upper-bound on the sizes of the integer solu-
tions during setup when p is defined. Being able to argue on integers instead
of residue classes modulo a fixed prime integer then becomes necessary. Be-
sides, generic reductions to circuit satisfiability over prime-order fields for
some simple problems naturally defined over the integers may return circuits
with a very large number of multiplication gates and even the “Bulletproofs”
argument system could produce large proofs. Modeling computational prob-
lems using Diophantine equations is more versatile, and a succinct argument
system for Diophantine satisfiability thus has many potential applications.

8.2 Public-Key Generation with Verifiable Ran-
domness

Cryptographic protocols are commonly designed under the assumption that
the protocol parties have access to perfect (i.e., uniform) randomness. How-
ever, random sources used in practical implementations rarely meet this
assumption and provide only a stream of bits with a certain “level of ran-
domness”.

The quality of the random numbers directly determines the security
strength of the systems that use them. Following preliminary work by Juels
and Guajardo [JG02] and Corrigan-Gibbs, Mu, Boneh and Ford [CMBF13],
Chapter 10 revisits the problem of proving that a cryptographic user algo-
rithm has selected and correctly used a truly random seed in the generation
of her cryptographic public–secret key pair.

8.2.1 Related Work.

A prominent example that the use of randomness in public-key cryptogra-
phy (and especially in key-generation protocols) is error-prone is the recent
randomness failure known as the ROCA vulnerability [NSS+17]. This weak-
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ness allows a private key to be recovered efficiently from the public key
only (in factoring-based cryptography). The flawed key-generation algo-
rithm selects specific prime numbers as part of the private key instead of
generating uniformly random primes and many certified devices were shown
vulnerable (e.g., Estonian and Slovakian smartcards and standard crypto-
graphic libraries). This kind of weaknesses is not new as in 2012, Lenstra,
Hughes, Augier, Bos, Kleinjung and Wachter [LHA+12] did a sanity check of
factoring-based public keys collected on the web. They showed that a signifi-
cant percentage of public keys (0.5%) share a common prime factor, and this
fact was explained [HDWH12] by the generation of these low entropy keys
during booting. Since cryptographic failures due to weak randomness can
be dire [NSS+17,LHA+12,HDWH12], designers should build schemes that
can withstand deviations of the random sources from perfect randomness.

Following seminal works by Simmons on the threat of covert channels
(also called subliminal channels) in cryptography [Sim83], the concept of
kleptography was proposed by Young and Yung [YY97]. It models the fact
that an adversary may subvert cryptographic algorithms by modifying their
implementations in order to leak secrets using for instance covert channels
present in randomized algorithms. Several sources have recently revealed
that cryptographic algorithms have effectively been subverted to undermine
the security of users. This raises the concern of guaranteeing a user’s se-
curity even when she may be using a compromised machine or algorithm.
Motivated by the (in)famous potential backdoor on the Dual Elliptic Curve
Deterministic Random Bit Generator (Dual EC DRBG) [CMG+16], Bellare,
Paterson, and Rogaway [BPR14] initiated a formal analysis of kleptographic
attacks on symmetric key encryption algorithms. For factoring-based public-
key cryptography, in light of the known shortcomings of implemented key
generators, a line of research has focused on proving that RSA moduli satisfy
certain properties [GMR98,CM99,AP18], or on attesting that RSA prime
factors were generated with a specified prime generator [BFGN17]. This line
of work is only concerned with the structure of the keys, not with the fact
that they are generated with enough entropy. Juels and Guajardo [JG02]
suggested as early as in 2002 an approach for users to prove to another
party (which is typically a trusted certificate authority or CA) that her pub-
lic–secret key pair was generated honestly using proper randomness. In their
setting, the CA provides an additional source of randomness in an interactive
process, and the user algorithm proves that it has not weakened, whether in-
tentionally or unintentionally, the key-generation procedure1. The security
goal of such a primitive is threefold.

1. Maintain User Privacy: if the user uses a randomness source with
high entropy, then an adversary (possibly the CA himself) has no
additional information on the secret-key compared to a key generated

1This notion is very similar to the more recent cryptographic reverse firewalls [MS15].
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by the real key-generation algorithm on uniform randomness.

2. Improve Randomness Quality: if the user or the CA use a random-
ness source with high entropy, then, an adversary (other than the CA)
has no additional information on the secret-key compared to a key
generated by the real key-generation algorithm on uniform random-
ness.

3. Resist Information Exfiltration: the generated public key leaks no
information whatsoever to the outer world. In particular, a faulty user
algorithm cannot use it to convey any information. In this sense, the
CA certifies to the end user, that she can securely use the generated
key.

A malicious user can obviously publish her secret key, but the problem we
tackle is different: we want the CA to only certify keys that he knows to have
been generated with high-entropy randomness and without covert channels.

Juels and Guajardo proposed a formal security model for verifiable ran-
dom key generation with the goal to achieve these three security objectives.
Their model is unfortunately not strong enough to capture real-world threats
since

– it is restricted to public-key cryptosystems where a given public key
corresponds to a unique secret key (and cannot be used for many recent
schemes);

– it considers only a stand-alone or independent key-generation instances
(and therefore does not prevent attacks such as the one considered
in [LHA+12,HDWH12] where several public-keys are generated with
correlated randomness sources);

– it only bounds the distance that a dishonest user algorithm can gen-
erate a given key to that of an honest algorithm executing the key
generation protocol.

As a simple example, consider the problem of generating an ElGamal
public key gx in a group G = 〈g〉 of prime order p. Juels and Guajardo
outlined a protocol for generating such a key with verifiable randomness.
The natural idea to generate a public-key gx in this (illusorily) simple setting
is to share the secret key x as x = xU+xCA mod p where xU denotes the user
randomness and xCA denotes the CA randomness. However, this protocol
fails to achieve (3) as the user algorithm can choose xU to match a specify
value after seeing xCA. To overcome this issue, a simple idea would be to
make the user first commit to xU and then prove its knowledge. However,
the hiding and zero-knowledge properties of commitment schemes and proof
systems inherently rely on perfect randomness, which the user algorithm is
assumed not to have at its disposal.
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Juels and Guajardo also proposed a protocol for the generation of RSA
keys where the distance in (3) increases by a factor which is polynomial
in the security parameter λ (assuming some number-theoretic conjecture).
Therefore, their protocol does not rule out the existence of covert channels
withO(log λ) bit capacity. Their model was reconsidered by Corrigan-Gibbs,
Mu, Boneh and Ford [CMBF13] in a weaker setting that guarantees (1) and
(2) but not (3), and does not even prevent a malicious user algorithm from
generating malformed keys.

8.3 Results

8.3.1 Diophantine Satisfiability

Chapter 9 provides the first succinct argument for the satisfiability of Dio-
phantine equations with a communication complexity and a round complex-
ity that grows logarithmically in the size of the polynomial equation. It is
statistical honest-verifier zero-knowledge and is extractable under standard
computational assumptions over hidden-order groups such as RSA groups
or ideal-class groups.

Integer Commitments. Section 9.2 introduces a new computationally
hiding and binding commitment scheme that allows to commit to vectors
of integers. It is close to Damgård and Fujisaki’s seminal proposal, but
has much smaller parameters. Denoting by λ the security parameter and
letting 2bG be an upper bound on the group order, the version of our scheme
which allows to commit to n integers at once has parameters consisting of
O(bG + logn) bits instead of Ω (nbG · polylog(λ)) as with the generalized
version of Damgård and Fujisaki’s scheme.

Damgård and Fujisaki’s commitment scheme, for n = 1, is a variant of
Pedersen’s commitment in a hidden-order group G: given two group ele-
ments g, h ∈ G, the commitment to an integer value x ∈ Z is C = gxhr,
where r is an integer of appropriate size. The hiding property of their scheme
crucially relies on the fact that g ∈ 〈h〉, which is not always guaranteed as
the group may not be cyclic. Damgård and Fujisaki’s proposed a Schnorr-
type [Sch91] protocol to prove such statements, but their challenge set is
restricted to {0, 1} to guarantee soundness under the assumptions on the
group. Their protocol must then be repeated logarithmically many times to
achieve negligible soundness, and the resulting parameters are large. The sit-
uation is worse when n is large as commitments are computed as gx1

1 · · · gxnn hr

and a proof for each gi must be computed.
The scheme in Section 9.2 is based on the observation that proving

that g2 ∈
〈
h2〉 can be done more efficiently in a single protocol run un-

der the assumptions on the group. Our commitments are thus computed as
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(gxhr)2 ∈ G. We further such how to aggregate the proofs of several such
statements to reduce the size of our parameters when n is large.

Succinct Inner-Product Arguments on Integers. Section 9.3 presents
a succinct argument that two integer vectors committed with our scheme
satisfy an inner-product relation. That is, an argument of knowledge of vec-
tors a and b ∈ Zn (and of a randomness r ∈ Z) that open a commitment
C and such that 〈a,b〉 = z given a public integer z. Succinct here means
that the communication complexity of the prover is of order O(`+log(n)bG),
where ` is the bit length of the largest witness (see the corresponding section
for a discussion on the verification time). The complexity is measured in
bits as during the protocol, the prover sends logarithmically many group
elements and three integers, but these latter could be arbitrarily large.

The argument of Bünz et al. [BBB+18] for inner-product relations over
Zp is not applicable to integers as their proof of extractability relies on the
generalized discrete-logarithm assumption for which there is no equivalent in
hidden-order groups that may not even be cyclic, and on the invertibility of
elements in Z∗p since it requires to solve linear systems over Zp. Besides, their
argument is not zero-knowledge and is on vectors committed with the non-
hiding version of Pedersen’s scheme (i.e., with nil randomness). Therefore,
whenever it is used as a sub-protocol in another one, techniques specific
to the larger protocol must always be used to guarantee that it is zero-
knowledge. del Pino, Seiler and Lyubashevsky [dLS19] later solved this
issue by adapting the argument of Bünz et al. in prime-order groups to make
it perfectly honest-verifier zero-knowledge with the full-fledged Pedersen’s
scheme.

The protocol in Section 9.3 uses halve-then-recurse techniques similar
to those of Bünz et al. for the Section-9.2.2 commitment scheme in hidden-
order groups and thus allows to succinctly argue on integers, but only uses
the integrality of Z as a ring since one cannot invert modulo the unknown
order. (Note that these techniques are themselves inspired by the recur-
sive inner-product argument of Bootle et al. [BCC+16].) In particular, we
prove that even though one cannot a priori solve in Z the linear system of
Bünz et al. required to prove the extractability of their protocol, one can
instead solve a “relaxed” system in Z. Then, under the assumptions on
the hidden-order group, we show that the solution to the relaxed system is
enough to extract a representation of the commitment in the public bases.
In groups with public prime orders, the assumption that discrete-logarithm
relations are hard to compute allows to conclude that this representation of
the commitment actually leads to a valid witness, but this assumption is not
a priori translatable to hidden-order groups. Instead, we prove that a sim-
ilar assumption in the subgroup generated by a randomly sampled element
is weaker than the assumptions on the group, and that suffices to prove the
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extractability of the protocol. The details of these technical challenges are
outlined in Section 9.3.1.

Furthermore, as the group order is unknown to all parties, the argument
is only statistically honest-verifier zero-knowledge. To ensure this property,
the randomness range of the prover is carefully adapted to allow for simu-
latability without knowledge of a witness.

Succinct Arguments for Multi-Integer Commitments. Section 9.4
then gives several succinct protocols related to multi-integer commitments.
These protocols are important building blocks in our Diophantine satisfia-
bility argument system but may also find applications in other settings.

We show how to succinctly argue knowledge of an opening (a1, . . . , an, r)
to a commitment. The protocol has bit communication complexity O(` +
log(n)bG). This argument system is based on the same halve-then-recurse
techniques as in Section 9.3. We also propose a protocol that allows to
aggregate arguments of knowledge of openings to m such commitments for
any m ≥ 2. With the same notation, the bit communication complexity of
this aggregated protocol is only O (`+ log(n)bG + log(m)) (i.e., the number
of group elements does not increase withm). It is worth mentioning that the
techniques used in it can be applied to additively-homomorphic commitment
schemes in public-order groups.

We also show how to obtain short parameters for our new integer-vector
commitment scheme and the inner-product argument with communication
complexity O (`+ log(n)bG + log(m)) bits, i.e., arguments that group ele-
ments g1, . . . , gm, h for m ≥ 2 satisfy g2

i ∈
〈
h2〉 for i ∈ {1, . . . ,m} with

communication complexity O(bG + logm) bits instead of O(mbG) bits ob-
tained by repeating m times the protocol for one group element. Finally,
we show how to succinctly argue knowledge of the same vector of integers
in Zn committed with our schemes using m different bases for any m ≥ 2
(and different randomness).

Succinct Arguments for Diophantine Equations. Section 9.5 presents
our succinct protocol to argue satisfiability of Diophantine equations. The
approach therein is inspired by Skolem’s method [Sko50] which consists in
reducing the degree of the polynomial by introducing new variables to obtain
a new polynomial of degree at most 4, in such a way that the satisfiability of
one polynomial implies that of the other. Tailoring Skolem’s method to the
problem of arguing satisfiability, we show how to reduce the satisfiability of
any polynomial in Z[x1, . . . , xν ] of total degree δ with µmonomials to the ex-
istence of vectors aL =

[
aL,1 · · · aL,n

]
, aR =

[
aR,1 · · · aR,n

]
and aO =[

aO,1 · · · aO,n
]
in Zn, for n ≤ νblog δc+(δ−1)µ, such that aO,i = aL,iaR,i

for all i ∈ {1, . . . , n}, and that satisfy 1 ≤ Q ≤ 1 + 2ν(blog δc− 1) + (δ− 2)µ
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linear constraints of the form

〈wL,q,aL〉+ 〈wR,q,aR〉+ 〈wO,q,aO〉 = cq,

where wL,q,wR,q,wO,q ∈ Zn and cq ∈ Z for all q ∈ {1, . . . , Q}. The reduction
is constructive as it allows to infer the vectors and the constraints directly
from the original polynomial.

Bootle et al. [BCC+16] then Bünz et al. [BBB+18] gave an argument
system for proving knowledge of vectors in Zp (instead of Z) that satisfy
such constraints. They use this protocol to argue for the satisfiability of
arithmetic circuits over Zp. Our argument shares similarities with theirs,
but again there are key technical differences that arise from the fact that
Z is not a field. Indeed, as one cannot invert nor reduce integers modulo
the unknown orders of the bases, we use different techniques notably to
prevent the integers involved in the argument from increasing too much,
and to ensure consistency between the variables in the entry-wise product
and those in the linear constraints. Guaranteeing this latter consistency
requires to construct new polynomials for the argument that do not involve
inverting integers. Besides, one cannot use their commitment-key switching
technique which consists in interpreting ga as a commitment to xa to the
base gx−1 in groups of public prime order. Finally, extra precaution must be
taken to guarantee the zero-knowledge property as integers are not reduced
modulo p and may carry information about the witness. These challenges
and the ways we overcome them are described in details in Section 9.5.2.

As a result, the communication complexity of the Diophantine-satisfiability
argument in Section 9.5 has a communication-complexity of

O (δ`+ min(ν, δ) log (ν + δ) bG +H)

bits, if the absolute value of all the polynomial coefficients is upper-bounded
by 2H for some integerH. In contrast, the overall communication complexity
using Damgård and Fujisaki’s multiplication argument is upper-bounded by
O
((ν+δ

δ

) (
δ`+ log

((ν+δ
δ

))
H + bG

))
and lower-bounded by Ω

((ν+δ
δ

)
(`+ bG)

)
.

Applications. Lastly, Section 9.6 resents several applications of the Dio-
phantine-satisfiability argument in Section 9.5. It provides explicit reduc-
tions to Diophantine satisfiability for the following problems:

◦ argument of knowledge of a (possibly committed) RSA e-th root in ZN
of some public value with in O (log(log(e))bG) bits. This has applica-
tion to credential systems when combined with proofs of non-algebraic
statements [CGM16];

◦ argument of knowledge of O (log(log p)bG) bits for ECDSA signatures
with a prime p, and of O (log(log q)bG + log(log p)) bits for DSA sig-
natures with primes p and q. The signed message is public, but can be
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committed if the argument is combined with proofs of non-algebraic
statements [CGM16];

◦ argument that two committed lists of integers of length n are permu-
tations of each other with O (`+ log(n)bG) bits;

◦ argument of satisfiability of a 3-SAT Boolean formula with m clauses
and n variables with O (log(n+m)bG) bits;

◦ argument of satisfiability of an Integer-Linear-Programming problem
of the form x ∈ Nn and AxT ≥ bT, for A ∈ Zm×n and b ∈ Zm, with
O (`+ log(4n+ 3m) bG + log ‖A‖∞ + log ‖b‖∞) bits.

8.3.2 Public-Key Generation with Verifiable Randomness

Chapter 10 revisits the verifiable key-generation primitive and presents the
first strong security models and efficient, provably secure constructions.

Game-Based Security Model. Section 10.2 presents a game-based model
that covers concurrent protocol executions with different instances of pro-
tocol algorithms. It is inspired by the Bellare-Pointcheval-Rogaway (BPR)
model for authenticated key exchange [BPR00]. The communication be-
tween the user and the CA is assumed to be carried over an insecure channel.
Messages can be tapped and modified by an adversary, and the communi-
cation between the user and the CA is asynchronous. The adversary is split
into two algorithms: (1) the sampler which provides the randomness sources
to the user and the CA (for multiple instances of the protocol) and (2) the
distinguisher which tries to gain information from the generated public key.
The protocol is deemed secure if the distinguisher is unable to do so assum-
ing that the entropy of either random source is high enough.

The main difficulty in defining the security model for this primitive is to
formalize the third security goal. A dishonest user algorithm can indeed al-
ways execute several instances of the protocol with the CA until she obtains
a public-key which has some specific property which allows to exfiltrate in-
formation. This is similar to the “halting attack” subliminal channel [Des96]
and cannot be avoided, at least without adding a third party to the model as
in access-control encryption [DHO16, IPV10]. This narrow-band subliminal
channel is taken into consideration in the security model while capturing
the fact that in a secure protocol, this should be the only possible covert
channel for a dishonest user algorithm. In practical applications, this covert
channel can be prevented easily if the CA charges an important fee for a
user that performs too many key generation procedures, or if an increasing
time-gating mechanism for repeating queries is introduced.

This model does not suffer from the shortcomings of the model proposed
from [JG02] as it allows for multiple dependent runs of the protocol and
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captures the resistance to exfiltration of information (with only the narrow-
band subliminal channel from the “halting attack”). It guarantees security
with concurrent sessions and is thus much stronger than security consdered
in cryptographic reverse firewalls [MS15].

Generic Protocol for Probabilistic Circuits. Section 10.3.1 then presents
a generic approach for key generation based on (families of) probabilistic cir-
cuits and we prove its security in the security model of Section 10.2. It relies
on two-source randomness extractors, pseudo-random-function families and
extractable commitments with associated zero-knowledge proofs. Since two-
party computation (2PC) protocols rely on perfect randomness, a generic
2PC protocol cannot be used in this setting; moreover, such a protocol guar-
antees privacy and correctness, but it does not guarantee that a user cannot
influence the result (and thus requirement (3)).

Efficient Protocol for RSA Keys. Section 10.3.4 also proposes a new
generic protocol for factoring-based cryptography and proves it secure in the
same model. It relies on classical cryptographic tools (namely commitments,
pseudo-random functions (PRFs) and zero-knowledge proofs). Section 10.4
provides an instantiation based on the Dodis–Yampolskiy PRF [DY05] in
the group of quadratic residue modulo a safe prime which outputs group el-
ements. The main technical difficulty is to convert the outputs of this PRF
into integers while proving that the RSA prime factors are outputs of the
PRF. In the process, Section 10.4 proposes a new efficient zero-knowledge
proof system for the so-called double discrete logarithm problem (in pubic-
order groups). A double discrete logarithm of an element y 6= 1G in a
cyclic group G of prime order p with respect to bases g ∈ G and h ∈ Z∗p
(generators of G and Z∗p respectively) is an integer x ∈ {0, . . . , p − 1} such
that y = gh

x . Stadler introduced this computational problem for verifiable
secret-sharing [Sta96] and it was used to design numerous cryptographic
protocols (e.g., group signatures [CS97], blind signatures [ASM10], e-cash
systems [CG07] and credential systems [CGM16]). All these constructions
rely on a proof system proposed by Stadler which has Ω(log p) computa-
tional and communication complexity (in terms of group elements). Our
new proof system outputs proofs with only O(log log p) group elements and
permits an efficient instantiation of our generic protocol for factoring-based
cryptography. As a by-product, the new protocol can be used directly in
all the aforementioned applications in a prime, public-order setting to ex-
ponentially reduce their communication complexity. It relies on techniques
similar to those presented in Section 9.5.1.
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Succinct
Diophantine-Satisfiability
Arguments

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist
Menschenwerk.

— Leopold Kronecker

This chapter presents the first succinct honest-verifier zero-knowledge ar-
gument for the satisfiability of Diophantine equations with a commu-

nication complexity and a round complexity that grows logarithmically in
the size of the polynomial equation. The security of the argument relies on
standard assumptions on generators of hidden-order groups. As the argu-
ment requires to commit to integers, it introduces a new integer-commitment
scheme (in the random-oracle model) that has much smaller parameters than
Damgård and Fujisaki’s scheme. The last section of the chapter shows how
to succinctly argue knowledge of solutions to several NP-complete problems
and cryptographic problems by encoding them as Diophantine equations.
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9.1 Preliminaries
This section introduces introduces preliminary material to this chapter.

9.1.1 Non-interactive Commitments in the Random-Oracle
Model

This section defines, in exact-security terms, commitment schemes in the
random-oracle model, i.e., in a model in which the scheme algorithms (and
the adversary) are given access to a random oracle. The reason is that
the algorithms may have to check non-interactive proofs computed with
a random oracle before carrying on with their computation. Therefore,
the number of random-oracle queries made by an adversary can affect the
security of the scheme.

Formally, a (non-interactive) commitment scheme consists of the follow-
ing algorithms.

Setup
(
1λ
)
→ pp : generates public parameters on the input of a security

parameter 1λ. These parameters are implicit inputs to the other algo-
rithms.

KG (pp)→ ck : computes a commitment key on the input of public param-
eters. The parameters and the commitment key further define a mes-
sage space denoted Xpp,ck .
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Com (ck, x)→ (C, d) : computes a commitment C to a value x and an open-
ing or decommitment information d on the input of a commitment key
ck. It is further assumed that if x /∈ Xpp,ck , then the algorithm returns
⊥.

ComVf(ck, C, x, d)→ b ∈ {0, 1}: deterministically returns a bit indicating
whether the decommitment d is valid (bit 1) for C and x w.r.t. key
ck, or not (bit 0). It is assumed that if C = ⊥ or if x /∈ Xpp,ck , then it
returns 0.

A commitment scheme is correct if for all λ ∈ N, for all pp ← Setup
(
1λ
)
,

for all ck ← KG (pp) and all x ∈ Xpp,ck ,

Pr [ComVf(ck, C, x, d) = 1: (C, d)← Com(ck, x)] = 1.

Give a random oracleH, a commitment scheme is (T, qH, ε)-hiding ((qH, ε)-
statistically hiding) if for all λ ∈ N, for every adversary A that runs it time
at most T (λ) (computationally unbounded, i.e., T (λ) = ∞) and makes at
most qH queries to H,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b = b′ :

pp ← Setup
(
1λ
)

(ck, x0, x1, st)← AH(·)(pp)
b←$ {0, 1}
(C, d)← Com(ck, xb)
b′ ← A(st, C)
for e ∈ {0, 1}

if xe ∈ Xpp,ck and x1−e /∈ Xpp,ck
b′ ←$ {0, 1}


− 1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ ε(λ).

Note that in the definition, the adversary is the party computing the com-
mitment key. One could consider a weaker variant of the definition with
trusted key generation in which the key is necessarily honestly generated.

Give a random oracle H, a commitment scheme is (T, qH, ε)-binding if
for all λ ∈ N, for every adversary A that runs in time at most T (λ) and
makes at most qH queries to H,

Pr
[

ComVf(ck, C, xi, di) = 1
∧ x0 6= x1

:
pp ← Setup

(
1λ
)

ck ← KG (pp)
(C, (xi, di)i=0,1)← AH(·)(pp, ck)

 ≤ ε(λ).

Discussion. The syntax above separates the commitment-key generation
algorithm from the setup algorithm, although these are often tacitly com-
bined (as in Section 2.5.3), especially for commitments in public-order groups.
The main reason is that doing so allows to define the hiding property for
schemes even when the keys are possibly invalid. This question does not arise
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for schemes with keys that are elements of a prime-order group G = 〈g〉 (e.g.,
Pedersen’s scheme [Ped92]) since any element h ∈ G∗ is a valid commitment
key. However, when the scheme is defined over an unknown-order group G
which may not be cyclic, and that keys are elements of the subgroup gen-
erated by an element (as it is the case for Damgård–Fujisaki commitments
recalled in Section 9.2.1), say h, there may not be an efficient way to test
whether another element g ∈ G is in 〈h〉. Computing a commitment with an
invalid key may then not guarantee that the commitment is hiding. That is
why the definition of the hiding property allows the key to be adversarially
generated so that if the definition is satisfied, commitments computed with
a potentially invalid key do not reveal information about the committed
values.

On the other hand, the definition of the binding property does not con-
sider adversarially generated keys. To understand why, it might be helpful
to rather think of an interactive commitment protocol between Alice and
Bob. Bob generates a key and sends it to Alice, and Alice commits to a
value that she later opens to Bob. It now becomes clear that Alice’s com-
mitted value should remain hidden before she opens the commitment, and
so even if she does not trust Bob’s key. Yet, Bob, who needs to ensure that
Alice does not later open to a value different from the committed one, is the
party who computed the key and thus need not verify that it is valid. The
situation is the same with Pedersen’s scheme, as its binding property relies
on the fact that the discrete-logarithm relation between g and h is unknown
to the party who computes the commitment.

9.2 Integer Commitments

This section recalls a scheme due to Damgård and Fujisaki which allows
to commit to integers1. Then comes a new integer-commitment scheme
with parameters smaller than those of Damgård and Fujisaki’s scheme, and
which are also more efficient to compute. For the version of our scheme
which allows to commit to n integers, the parameters are of O(bG + logn)
bits instead of Ω(nbG logP ) as with the generalized version of Damgård and
Fujisaki’s scheme, where 2bG is an upper bound on the group order.

9.2.1 Damgård–Fujisaki Commitments

The Damgård–Fujisaki commitment scheme [FO97, DF02], parameterized
by a group generator G, consists of the following algorithms:

1Couteau, Peters and Pointcheval [CPP17] proved that in the case of RSA groups (with
Blum integers), the security of Damgård and Fujisaki’s scheme is provable under (a variant
of) the RSA assumption instead of the strong RSA assumption. This also holds for our
scheme. However, this result does not concern generic hidden-order groups.
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Setup
(
1λ
)
→ pp : run (G, P )← G

(
1λ
)
, generate h←$ G and return (G, P,

h). Recall that these parameters are implicit inputs to all the other
algorithms.

KG(pp)→ ck : generate α←$
q
0; 2bG+λy (2bG is an upper bound on ord(G)),

compute and return g ← hα.

Com(g, x ∈ Z)→ (C, d) : generate r ←$
q
0; 2bG+λy, compute C ← gxhr, set

d← (r, 1G) and return (C, d).

ComVf (g, C, x, d)→ b ∈ {0, 1} : parse d as (r, g̃). If C = gxhrg̃ and g̃2 = 1G,
return 1, else return 0.

Equivalently, the commitment-algorithm could simply set the decommit-
ment information d to r, and the commitment-verification would return 1
if the equality C2 =

(
gxhd

)2
holds and 0 otherwise. The squaring in the

verification is due to the fact that the small-order assumption does not ex-
clude the possibility to efficiently compute square roots of unity, and they
thus relaxed the verification equation to allow for sound argument of knowl-
edge of openings to commitments. In other words, the scheme would still be
binding without the squaring in the verification equation, and the relaxation
is simply an artifact to allow for sound arguments.

More precisely, suppose that the verification were not relaxed, i.e., that
it would only check that C = gxhd. Two accepting transcripts (D, e1, z1, t1)
and (D, e2, z2, t2) of a standard Schnorr-type argument of knowledge of
an opening would imply that Ce1−e2 = gz2−z1ht2−t1 . Assuming e1, e2 ∈
J0;P − 1K, e1 6= e2, and that e1 − e2 divides z2 − z1 and t2 − t1 (Damgård
and Fujisaki showed that this latter event occurs with probability negligibly
close to 1/2 under the assumptions on the group generator), the previous
equality would imply that

(
g(z2−z1)/(e1−e2)h(t2−t1)/(e1−e2)C−1

)e1−e2 = 1G,
and the small-order assumption would only allow to conclude that C2 =(
g(z2−z1)/(e1−e2)h(t2−t1)/(e1−e2)

)2
. The trivial attack in which an adversary

computes C as gxhdg̃ with g̃ ∈ G such that g̃2 = 1G would then not be
excluded by the protocol.

Properties. Damgård and Fujisaki’s scheme is correct, is computationally
binding under the strong-root and the µ-assumption, and is statistically
hiding. Note that hiding property crucially relies on the fact that g ∈ 〈h〉.
To guarantee the statistical hiding property of the scheme without trusted
key generation, the party which computes g is then also required to compute
a non-interactive proof that g ∈ 〈h〉. The commitment algorithm would
then verify the proof and proceed as above if it is valid, and otherwise
return ⊥. Damgård and Fujisaki proposed to compute such a proof with a
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Schnorr-type protocol (made non-interactive via the Fiat–Shamir heuristic)
with {0, 1} as challenge set; i.e., given α ∈ Z such that g = hα, the prover
generates k ←$

q
0; 2bG+2λy and sends f ← hk to the verifier, this later

chooses and sends to the prover a challenge c ←$ {0, 1}, the prover replies
with z ← k − cα (computed in Z), and the verifier accepts if and only if
hzgc = f . To attain a soundness error of at most 1/P , the proof must
then be repeated at least dlogP e times. With the Fiat–Shamir heuristic,
each proof consists of (c, z), and the total proof in the public parameters
then consists of dlogP e (bG + 2λ+ 2) = Ω (bG logP ) bits (recall that P is
super-polynomial in λ, e.g., λlog λ).

9.2.2 A new Integer-Commitment Scheme

This section introduces a novel integer-commitment scheme that is close to
Damgård and Fujisaki’s scheme, but with an argument (rather than a proof)
of only O(bG) (with b such that ord(G) ≤ 2bG) bits in non-trusted keys, and
the argument only requires a single protocol run to reach the same soundness
error. As the soundness of the protocol relies on computational assump-
tions on the group generator, the scheme is only computationally hiding,
whereas Damgård and Fujisaki’s cut-and-choose protocol is perfectly sound
(the prover is not assumed to be computationally bounded) but inefficient.

Formally, let G be a group generator and let FS .ΠH be a Fiat–Shamir
non-interactive argument system with random oracle H for the language
{g ∈ G, ` ∈ N∗ : ∃α ∈

q
0; 2`

y
, g = hα

}
, given parameters (G, P, h, 1) (inte-

ger 1 is just to indicate that there is only one group element g in the word
for which the proof is computed) and the empty string as CRS. The proof of
the hiding property will require the protocol to satisfy culpable soundness
w.r.t. the language

√
〈h2〉. The scheme, parameterized by G and further

denoted C , consists of the following algorithms.

Setup
(
1λ
)
→ pp : run (G, P )← G

(
1λ
)
, generate h←$ G and return (G, P,

h). Recall that these parameters are implicit inputs to all the other
algorithms.

KG(pp)→ ck : generate α ←$
q
0; 2bG+λy, compute g ← hα and a proof

π ← FS .ΠH.Prove((G, P, h, 1), (g, bG + λ), α), and return (g, π).

Com ((g, π) , x ∈ Z)→ (C, d) : if FS .ΠH.Vf((G, P, h, 1), (g, bG + λ), π) = 0,
then return ⊥; else generate r ←$

q
0; 2bG+λy, compute C ← (gxhr)2,

set d← r and return (C, d).

ComVf ((g, π) , C, x, d)→ b ∈ {0, 1} : if C2 =
(
gxhd

)4
return 1, else return

0.
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Comparison with Damgård–Fujisaki Commitments. As for Damgård
and Fujisaki’s commitments, the squaring in the verification equation (com-
pared to the computation of commitments) is again to later allow for sound
arguments of knowledge of openings. The main difference compared to
Damgård and Fujisaki’s commitments is that commitments are computed as
(gxhr)2 instead of gxhr. It is simply due to the fact that π only guarantees
that g2 ∈

〈
h2〉, not that g ∈ 〈h〉, hence the power 2 in the computation

of commitments to ascertain that they are hiding. However, only requiring
that g2 ∈

〈
h2〉 instead of g ∈ 〈h〉 is precisely what allows to have much

smaller arguments that can be computed in a single protocol run.

Correctness & Security.

We now prove the correctness and the security of the commitment scheme
C .

Theorem 9.2.3. C is correct.

Proof. The correctness of C immediately follows from its definition.

Theorem 9.2.4. Assuming FS .ΠH to be
(
T, qH, ε

snd,
√
〈h2〉

)
-sound, scheme

C is
(
T, qH, 2−λ+1 + εsnd

)
-hiding.

Proof. Unless the adversary can contradict the culpable soundness of FS .ΠH,
the key (g, π) it returns is such that g2 = h2α for some α ∈ Z. As the
distribution of (gxhr)4 = h4(αx+r) for r ←$

q
0; 2bG+λy is the same as the

distribution of h4z for z ←$
q
αx mod ord

(
h4) ;αx mod ord

(
h4)+ 2bG+λy,

which is at a statistical distance of at most 2−λ+1 from the distribution of
h4z for z ←$

q
0; ord

(
h4)− 1

y
, the claim follows.

Theorem 9.2.5. For any T : N∗ → N∗, scheme C is
(
T, qH, ε

strg + εzk + 2−λ
)
-

binding if FS .ΠH is
(
T, TSim, qH, ε

zk
)
-zero-knowledge and if the (TSim +

O(T + bG), εstrg)-strong-root assumption holds on G.

Proof. Suppose that there exists an adversary A running in time T and
contradicts the binding property of the scheme with probability at least ε.
Consider then an algorithm B which runs a trapdoor setup algorithm which
is exactly as Setup

(
1λ
)
(in particular, it computes hα for α←$

q
0; 2bG+λy,

which requires at most 2(bG + λ + 1) group operations with the square-
and-multiply algorithm), except that it simulates an argument of knowledge
of α with the simulator of FS .ΠH. The runtime of this trapdoor setup
algorithm is then of order TSim +O(bG +λ) = TSim +O(bG) (since bG = Ω(λ)
by assumption). Adversary A can then distinguish B from the challenger
of the binding game with an advantage of at most εzk, so A contradicts
the binding property of the scheme with probability at least ε− εzk on the
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input of parameters returned by algorithm B. Given two pairs of integers
(x, d), (x′, d′) and a group element C such that x 6= x′ and C2 =

(
gxhd

)4
=(

gx
′
hd
′
)4
, the equality h4(α(x−x′)+d−d′) = 1G holds. Let 0 ≤ ρ < ord(h)

denote the unique integer such that α = ord(h) bα/ ord(h)c + ρ. Note that
the distribution of (x, d) and (x′, d′) only depends on ρ as A is only given
g (and not α) as input. Since bα/ ord(h)c is uniformly distributed over
a set of size at least 2λ, the probability that α(x − x′) + d − d′ = 0 is
at most 2−λ. Lemma 9.2.6 then shows that denoting by TB the running
time of B and setting n := 4 (α(x− x′) + d− d′), the inequality ε − εzk −
2−λ ≤ εstrg holds under the

(
TB +O(logn), εstrg)-strong-root assumption.

Remark that the integers returned by A are necessarily less than 2O(T ) as
an algorithm running in time T can return a value of at most O(T ) bits (the
algorithm might be using an alphabet different from {0, 1}, hence the big
O). Therefore, logn = O(T + bG). Since TB = T + TSim +O(bG), the claim
follows.

Lemma 9.2.6. Consider the problem (depending on λ) of computing a value
n ∈ Z∗ such that hn = 1 on the input of (G, P ) ← G

(
1λ
)
and of a group

element h ←$ G. If there exists an algorithm A that solves this problem in
time T with probability at least ε, then there exists an algorithm that solves
the strong-root problem in time at most T +O(logn) with probability at least
ε.

Proof. Let A be an algorithm as in the statement of the lemma. Consider an
algorithm B which, on the input of (G, P )← G

(
1λ
)
and of a group element

h←$ G, runs A as a subroutine on the input of (G, P ) and h. If A returns
an integer n ∈ Z∗ such that hn = 1 note that h|n|+1 = h. Algorithm B then
computes |n|+ 1 (which can be done in time at most O(logn)) and returns
(h, |n|+ 1).

Argument System FS .ΠH.

It only remains to provide a protocol FS .ΠH to argue knowledge of an
integer α ∈ Z such that g2 = h2α, which is sufficient for the commitment
scheme to be computationally hiding. We first give an interactive protocol
Π for the language

{
g ∈ G, ` ∈ N∗ : ∃α ∈

q
0; 2`

y
, g = hα

}
given parameters

(G, P ) ← G
(
1λ
)
and that satisfies culpable soundness w.r.t.

√
〈h2〉, and

then apply the Fiat–Shamir heuristic to obtain FS .ΠH.
In more detail, the (interactive) protocol Π is as follows: the prover

generates k ←$
q
0; 2`+λP

y
, computes t← hk and sends t to the verifier; the

verifier chooses c ←$ J0;P − 1K and sends it to the prover; the prover then
replies with r ← k−cα, and the verifier accepts if and only if hrgc = t. With
the Fiat–Shamir heuristic, the proof consists of (c, r), i.e., 2 blogP c+`+λ+3
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bits. For ` = bG +λ, that is 2 blogP c+ bG + 2λ+ 3 = O(bG) bits (recall that
P ≤ 2bG and bG = Ω(λ)).

Properties. We now show that Π is complete, statistically honest-verifier
zero-knowledge and satisfies culpable extractability w.r.t.

√
〈h2〉 under the

assumptions introduced in Section 2.4.7.

Theorem 9.2.7. Π is complete.

Proof. It immediately follows from the definition of Π.

Theorem 9.2.8. Π is
(
O ((`+ λ+ logP )TG) , 2−λ+1

)
-statistically honest-

verifier zero-knowledge.

Proof. To simulate such a proof conditioned on a challenge c, it suffices
to generate k ←$

q
0; 2`+λP

y
, compute t ← hkgc and set r ← k. As the

distribution of
(
hk+cα, c, k

)
for k ←$

q
0; 2`+λP

y
is at a 2−λ+1 statistical

distance from the distribution of
(
hk, c, k − cα

)
for k ←$

q
0; 2`+λP

y
, the

protocol is honest-verifier 2−λ+1-statistically zero-knowledge. The simulator
simply generates k ←$

q
0; 2`+λP

y
and c←$ J0;P − 1K, computes hkgc and

returns
(
hkgc, c, k

)
. As hkgc can be computed in O(` + λ + logP ) group

operations with classical sliding-window algorithms [Ava05], the simulator
runs in time O ((`+ λ+ logP )TG).

Theorem 9.2.9. Π is
(
TA, TProve∗ , TE , ε

ord + εstrg + 1− µ,
√
〈h2〉

)
-extractable

with TE :=
(
ε2 − 1/P

)−1
TProve∗ +O(TProve∗ logP ), and TA and TProve∗ such

that TA+
(
ε2 − 1/P

)−1
TProve∗+O

(
TProve∗TG logP + log2 P

)
≤ min(T strg, T ord).

Proof. To prove that the protocol satisfies culpable extractability (and thus
culpable soundness), notice that given two valid transcripts (t, c, r) and
(t, c′, r′) such that c 6= c′, the equality hr−r′ = gc

′−c holds. Assume with-
out loss of generality that c′ > c, and let d := gcd (r − r′, c′ − c). The
extended Euclidean algorithm applied to r − r′ and c′ − c returns, in time
O (log(r − r′) log(c′ − c)), integers u and v such that d = u(r−r′)+v(c′−c)
and |u|, |v| ≤ max (|r − r′|, |c′ − c|) /d.

– If d = c′ − c, then
(
h(r−r′)/(c′−c)g−1

)c′−c
= 1 since hr−r′ = gc

′−c.
The fact that 0 < c′− c < P and the small-order assumption therefore
implies that h2(r−r′)/(c′−c) = g2, i.e., (r−r′)/(c′−c) is a valid (culpable)
witness.

– If d < c′ − c, since the equality hr−r
′ = gc

′−c implies that hd =
(guhv)(c′−c),

(
(guhv)(c′−c)/d h−1

)d
= 1 although d < c′ − c < P . The
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small-order assumption thus implies that g̃2 = 1 for g̃ := (guhv)(c′−c)/d

h−1. If g̃ = 1G, then (guhv, (c′ − c)/d) is a solution to the strong-root
problem. If, g̃ 6= 1G, further distinguish two sub-cases:

∗ if (c′−c)/d is odd, then g̃(c′−c)/d = g̃ and thus h = (guhv g̃)(c′−c)/d,
i.e., (guhv g̃, (c′ − c)/d) is a solution to the strong-root problem

∗ if (c′ − c)/d is even, then the low-dyadic-valuation assumption
implies that ord

(
(guhv)(c′−c)/d

)
is odd, which is impossible if

ord(h) is P -rough (and necessarily odd) as ord(g̃h) = 2 ord(h) in
this case.

Note that since the absolute value of integers returned by the algo-
rithm Prove∗ of a prover (A,Prove∗) are necessarily less than 2O(TProve∗ ),
computing the witness (r − r′)/(c′ − c) in case d = c′ − c can be done in
time O(TProve∗ logP ). Besides, in any of the cases in which there is a re-
duction to the strong-root problem, computing (c′ − c)/d can be done in
time O

(
log2 P

)
as d ≤ c′ − c < P , and computing guhv g̃ can be done

in O (max (TProve∗ , logP )) group operations using the square-and-multiply
algorithm, i.e., in time O (max (TProve∗ , logP )TG) (recall that TG is the
bit complexity of performing group operations), after u and v have been
computed in time O (TProve∗ logP ) with the extended Euclidean algorithm.
The solution to the strong-root problem can thus be computed in time
O
(
TProve∗TG logP + log2 P

)
given two accepting transcripts.

To obtain two valid transcripts with distinct challenges, it suffices to
run the proving algorithm once, rewind it to the computation step right
after it sent its first message and run it anew on fresh verifier randomness.
If both runs are valid and the challenges are distinct, then return the two
transcripts, otherwise restart. The expected runtime of this procedure is at
most

(
ε2 − 1/P

)−1
TProve∗ if ε denotes the success probability of the prover.

Define then an extractor E as an algorithm that runs the previous pro-
cedure and returns the witness (r − r′)/(c′ − c) in case c′ − c | r − r′, and
otherwise returns ⊥. The running time of E is then

(
ε2 − 1/P

)−1
TProve∗ +

O(TProve∗ logP ) in expectation.
Moreover, for T strg and T ord such that TA +

(
ε2 − 1/P

)−1
TProve∗ +

O (TProve∗TG logP + log2 P
)
≤ min

(
T strg, T ord

)
, the previous case analysis

shows that a valid witness cannot be extracted with probability at εord +
εstrg +1−µ under the

(
T strg, εstrg)-strong-root assumption, the

(
T ord, εord

)
-

small-order assumption, the low-dyadic-valuation assumption and the µ-
assumption over G. The theorem thus follows.
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Arguing Knowledge of Openings.

As for Damgård and Fujisaki’s commitments, one can efficiently argue knowl-
edge of openings, i.e., of integers x and r such that a given commitment C
satisfies C2 = (gxhr)4.

The protocol imposes an upper bound of ` on the bit length of the wit-
ness, with ` being part of the (public) word. It is simply to adapt the
randomness range of the prover (and of the honest-verifier zero-knowledge
simulator) to ensure that the protocol remains statistically honest-verifier
zero-knowledge; and ` can be arbitrarily large. The protocol does not
guarantee that the largest absolute value in the extracted witness is at
most ` bits long 2. In technical terms, the protocol is for the relation{(
C ∈ G, ` ∈ N∗;x, r ∈

q
0; 2`

y)
: C2 = (gxhr)4

}
that satisfies culpable ex-

tractability for the relation Σ :=
{
(C ∈ G, ` ∈ N∗;x, r ∈ Z) : C2 = (gxhr)4} .

More precisely, consider the problem of arguing in zero-knowledge knowl-
edge of integers x and r such that C2 = (gxhr)4 and |x|, |r| ≤ 2`, for a group
element C chosen by the prover and public bases h and g, and a public
proof π that g ∈

√
〈h2〉. The prover first verifies π and aborts if it is invalid.

The prover generates y, s←$
q
0;P2`+λ

y
, computes and sends D ← (gyhs)2

to the verifier. The verifier then chooses e ←$ J0;P − 1K, sends it to the
prover, and this latter replies with z ← y− ex and t← s− er (computed in
Z). The verifier then accepts if and only if

(
gzht

)2
Ce = D. Further denote

the protocol by ΠC .

Theorem 9.2.10. ΠC is complete.

Proof. This fact immediately follows from the definition of ΠC .

Theorem 9.2.11. ΠC is
(
O ((`+ λ+ logP )TG) , qH, 2−λ+1 + εsnd

)
-statisti-

cally honest-verifier zero-knowledge if ΠH is
(
T, qH, ε

snd,
√
〈h2〉

)
-sound.

Proof. Unless the adversary can contradict the culpable soundness of ΠH,
there exists α ∈ Z such that g2 = h2α. Assuming |x| and |r| to be at
most ` bits long, for y, s ←$

q
0;P2`+λ

y
, the distribution of the tuple(

h2(αy+s), e, y − ex, s− er
)
is at a statistical distance of at most 2−λ+1 from

the distribution of the tuple
(
h2(α(y+ex)+(s+ex)), e, y, s

)
=
(
(gyhs)2Ce, e, y, s

)
.

Since (gyhs)2Ce can be computed in O(`+λ+logP ) group operations with
classical sliding-window algorithms [Ava05], the statement follows.

Theorem 9.2.12. ΠC is
(
TA, TProve∗ ,

(
ε2 − 1/P

)−1
TProve∗ , ε

ext,Σ
)
-extrac-

table for any TA and TProve∗ such that TA+bG log(P )TProve∗TG ≤ Ω
(
min

(
T strg,

T ord
))

, with εext :=
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
+ εzk

ΠH.
2To prove such statements using hidden-order groups, Lipmaa’s range argu-

ment [Lip03], corrected by Couteau, Peters and Pointcheval [CPP17], is suitable.
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Proof. To prove culpable extractability, note that from two accepting tran-
scripts (D, e1, z1, t1) and (D, e2, z2, t2) (with the same D ∈ G) such that
e1 6= e2, the equality Ce2−e1 =

(
gz1−z2ht1−t2

)2 follows. If (e2 − e1) di-
vides (z1 − z2) and (t1 − t2), then the low-order assumption implies that
C =

(
g(z1−z2)/(e2−e1)h(t1−t2)/(e2−e1)

)2
g̃C for some group element g̃C such

that g̃2
C = 1, i.e., ((z1 − z2)/(e2 − e1), (t1 − t2)/(e2 − e1) is a valid witness

for C. Besides, one can show that e1 − e2 does not divide z2 − z1 or t2 − t1
with probability at most

(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
un-

der the
(
T strg, εstrg)-strong-root assumption, the

(
T ord, εord

)
-small-order as-

sumption, the low-dyadic-valuation assumption and the µ-assumption over
G, and assuming that the running time of the prover (A,Prove∗) is such that
TA+log(P )bGTProve∗TG ≤ Ω

(
min

(
T strg, T ord

))
. This part is a special case

of Lemma 9.3.7 and is similar to a part of the extractability proof of the
protocol proposed by Damgård and Fujisaki to argue knowledge of openings
to their commitments.

To obtain two valid transcripts with distinct challenges, it suffices to
run the proving algorithm once, rewind it to the computation step right
after it sent its first message and run it anew on fresh verifier randomness.
If both runs are valid and the challenges are distinct, then return the two
transcripts, otherwise restart. If a prover (A,Prove∗) convince the verifier
with probability at least ε, the expected runtime of this procedure is at
most

(
ε2 − 1/P

)−1
TProve∗ . Define then an extractor E which first simulates

a proof π that g ∈
√
〈h2〉 with FS .ΠH.Sim and then runs the previous

procedure. The theorem then follows.

Multi-Integer Commitments.

The above commitments can be generalized to vectors of integers just like
Damgård–Fujisaki commitments (as Couteau, Peters and Pointcheval [CPP17]
did). That is to say, the scheme can be extended to commit to several inte-
gers at once.

Formally, let G be a group generator and suppose that there exists a non-
interactive argument system FS .ΠH with random oracle H for the language{
g1, . . . , gn ∈ G, ` ∈ N∗ : ∃α1, . . . , αn ∈

q
0; 2`

y
,∀i ∈ JnK gi = hαi} given pa-

rameters (G, P, h, n) and the empty string as CRS.

Setup
(
1λ, n

)
→ pp : run (G, P ) ← G

(
1λ
)
, generate h ←$ G and return

(G, P, h, n).

KG(pp)→ ck : generate αi ←$
q
0; 2bG+λy for i ∈ JnK, compute gi ← hαi and

π ← FS .ΠH.Prove ((G, P, h, n) , (g, bG + λ), (αi)ni=1), and return (g, π).

Com ((g, π) , x1, . . . , xn ∈ Z)→ (C, d) : if FS .ΠH.Vf((G, P, h, n) , (g, bG +λ),
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π) = 0 return ⊥; generate r ←$
q
0; 2bG+λy, compute C ← (∏n

i=1
gxii h

r)2, set d← r and return (C, d).

ComVf ((g, π) , C, x1, . . . , xn, d)→ b ∈ {0, 1} : if C2 =
(∏

i g
xi
i h

d
)4

return 1,
else return 0.

The only missing component is an interactive protocol Π that satisfies culpa-
ble soundness w.r.t.

{
g1, . . . , gn ∈ G : ∃α1, . . . , αn ∈ Z,∀i ∈ JnK g2

i = h2αi
}
.

A possible solution is to run n times in parallel the protocol from the case
n = 1 for each of the αi values. However, they achieve an overall 2−λ
statistical distance from n simulated arguments, the range of the prover’s
randomness in the Section–9.2.2 protocol must be multiplied by n so that
each argument is 2−λn−1-zero-knowledge. A better solution is to use the
protocol of Section 9.4.3, which results in arguments of O(bG + logn) bits.
This should be compared to the Ω(nbG logP )-bit parameters of the gener-
alized Damgård–Fujisaki commitments.

9.3 Succinct Inner-Product Arguments on Inte-
gers

This section gives a statistically honest-verifier zero-knowledge, logarithmic-
size inner-product argument on integers committed in hidden-order groups
with the scheme from Section 9.2.2. That is, an argument of knowledge of
vectors a and b ∈ Zn, and of a randomness r ∈ Z such that C2 =

(
gahbf r

)4

and 〈a,b〉 = z given public bases g and h, a public commitment C and a
public integer z; and the bit-communication complexity of the protocol is
logarithmic in of order O(`+ lognbG) where ` is an upper-bound on the bit
length of the largest integer witness and 2bG an upper-bound on the order
of the group.

9.3.1 Formal Description

This section formalizes the protocol and gives precise statements as to the
properties it satisfies.

Relations.

The protocol is a honest-verifier zero-knowledge argument for

R :=
{

(C ∈ G, z ∈ Z, ` ∈ N∗; a,b ∈ Zn, r ∈ Z) : C2 =
(
gahbf r

)4

∧〈a,b〉 = z ∧
∥∥∥[a b r

]∥∥∥
∞
< 2`

}
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given parameters (G, P, f, n) with f ∈ G and n ∈ N∗, and (g,h, πcrs) ∈
G2n × {0, 1}∗ as CRS.

The relation imposes the largest value (in absolute value) in the witness[
a b r

]
to be at most ` bits long, with ` being part of the (public) word.

As for the argument of knowledge of openings in Section 9.2.2, it is again
to adapt the randomness range of the prover and of the honest-verifier zero-
knowledge simulator to make sure that the protocol remains statistically
honest-verifier zero-knowledge; and ` can be arbitrarily large. However,
the protocol does not necessarily return a witness with integers of at most
` bits in absolute value. In other words, the protocol satisfies culpable
extractability w.r.t. the relation

Σ :=
{

(C ∈ G, z ∈ Z, ` ∈ N∗; a,b ∈ Zn, r ∈ Z) : C2 =
(
gahbf r

)4

∧〈a,b〉 = z}.

The argument for R is actually reduced to a logarithm-size argument (given
on Figure 9.2) for the following relation in which the inner product is also
committed:

R′ :=
{

(C ∈ G, ` ∈ N∗; a,b ∈ Zn, r ∈ Z) : C2 =
(
gahbe〈a,b〉f r

)4

∧
∥∥∥[a b r

]∥∥∥
∞
< 2`

}
given parameters (G, P, f, n) with f ∈ G and n ∈ N∗, and (g,h, e, πcrs) ∈
G2n+1 × {0, 1}∗ as CRS. Again, the protocol does not guarantee that the
extracted witness satisfies the bounds on its bit length – denote by Σ′ the
relation defined as R′ without the restriction on the size of the witness.

During the reduction, the verifier chooses a base e ∈ 〈f〉 and proves
to the prover that e is in

√
〈f2〉, which guarantees to the prover that the

commitment Ce2z remains hiding. (As explained in Section 9.2, this pre-
caution is not needed in groups of public prime orders.) However, since
the protocol in Section 9.2.2 is only honest-verifier, and the extractability
of the argument system partly relies on the fact that the prover does not
know a discrete-logarithm relation between e and f , the verifier must com-
pute a non-interactive argument with a random oracle. In other words, the
extractability of the argument relies on the zero-knowledge property of the
protocol in Section 9.2.2. Moreover, the CRS of the protocol includes a
proof that g and h are in

√
〈f2〉n, and the argument is only guaranteed to

be honest-verifier zero-knowledge if it is indeed the case; that is, the zero-
knowledge property of the argument relies on the soundness of the protocol.
This mirroring in the properties of two protocols is simply due to the fact
that at the beginning of the inner-product argument, the prover becomes
the verifier of the protocol for g,h ∈

√
〈f2〉n.
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Main Insights.

The goal is to have a protocol forR′ in which the prover sends only 2dlogne+
2 group elements and three integers of at most O(` + bG + log(n) log(P ))
bits. The main idea is to have the prover first send a constant number
of commitments that depend on the witness vectors (which are in Zn), so
that the verifier can thereafter choose integer linear combinations (defined
by an integer x) of the witness vectors that are of length n/2 (to ease the
explanation, further assume n to be a power of 2 in this section). These new
vectors then serve as witness for a new commitment derived from the original
commitment on which the proof is computed, the commitments sent by the
prover and x; in bases of length n/2 and determined by the original bases
and x. The prover and the verifier can thus recursively run the protocol
with vectors of length n/2. After logn recursive calls, the vectors are of
length 1, and the parties run a protocol that two committed integers a and
b satisfy ab = z for a public z.

In more detail, given a,b ∈ Zn and r ∈ Z such that C2 =
(
gahbe〈a,b〉f r

)4
,

the prover first sends commitments U ←
(
g1

a2h2
b1e〈a2,b1〉fsu

)2
and V ←(

g2
a1h1

b2 e〈a1,b2〉fsv
)2
, for su and sv with uniform distribution over an

integer set large enough for the commitments to be hiding. The verifier
chooses x ←$ J0;P − 1K, sends it to the prover, and this latter computes
a′ ← a1 + xa2, b′ ← xb1 + b2 and t← sv + rx+ sux

2. Note that all these
operations are performed in Z and do not require to invert any integer. Now
note that (

(gx1 ◦ g2)a′ (h1 ◦ hx2)b′ e〈a
′,b′〉f t

)4
=
(
Ux

2
CxV

)2
,

which means that the prover and verifier can run the protocol again with
gx1 ◦ g2 and h1 ◦ hx2 as bases and a′ and b′ (all of size n/2 instead of n) as
witness for Ux2

CxV .
To understand how a witness consisting of integer vectors can be ex-

tracted, suppose that one can obtain three transcripts
(
U, V, xj ,a′j ,b′j , t′j

)3

i=1
such that (

(g1
xj ◦ g2)a′j (h1 ◦ h2

xj )b′j e〈a
′
j ,b
′
j〉f tj

)4
=
(
Ux

2
jCxjV

)2

for all j ∈ J3K. The goal is to find a representation of C in the bases g, h, e
and f . To do so, consider the linear system:

X

ν1
ν2
ν3

 =

0
1
0

 for X :=

 1 1 1
x1 x2 x3
x2

1 x2
2 x2

3

 and indeterminate

ν1
ν2
ν3

 .
It does not necessarily have a solution in Z3 (and this is the first major
difference with Bulletproofs in groups with public prime orders). However,
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denoting by adj(X) the adjugate matrix of X (which is in Z3×3), the column
vector

νC := adj(X)

0
1
0

 satisfies XνC = X adj(X)

0
1
0

 =

 0
det(X)

0


since X adj(X) = det(X)I3. Therefore, via linear combinations with coeffi-
cient determined by νC , one can obtain aC ,bC ∈ Zn and zC , rC ∈ Z such
that C2 det X =

(
gaChbCezCf rC

)4
. If the challenges x1, x2, x3 are pairwise

distinct, then det X 6= 0, and Lemma 9.3.7 shows that under the assump-
tions on the group generator, 2 det X must divide (with overwhelming prob-
ability) 4zC , 4rC and each of the components of 4aC , 4bC . Therefore, up
to a relabeling of 2aC/ det X and so on, one can extract aC ,bC ∈ Zn and
zC , rC ∈ Z such that C =

(
gaChbCezCf rC

)2
g̃C for g̃C ∈ G that satisfies

g̃2
C = 1G.

Nonetheless, it is not yet certain that zC = 〈aC ,bC〉. To guarantee it, it
suffices to extract similar representations for U and V , and replacing U , C
and V by those representations in the equality

(
(gx1 ◦ g2)a′ (h1 ◦ hx2)b′ e〈a

′,b′〉f t
)4

=
(
Ux

2
CxV

)2

for any x ∈ {x1, x2, x3} . This leads to a discrete-logarithm relation 1G =
g1
pg1 (x)g2

pg2 (x)h1
ph1 (x)h2

ph2 (x)epe(x)fpf (x) with pg1 , pg2 , ph1 , ph2 , pe, pf poly-
nomials in Z[x] of degree at most 2. Lemma 9.3.8 essentially states that it
is hard to find discrete-logarithm relations in the subgroup generated by a
group element f ←$ G (this is the second main difference with Bulletproofs
in groups with public prime orders). It thus implies that if the bases are all
in 〈f〉 with exponents chosen uniformly at random over a large integer set,
these polynomials must all be zero (with overwhelming probability) when
evaluated at x; and pg1 , ph2 and pe together lead to an integer polynomial of
degree 4, with leading coefficient zC−〈ac,bC〉, that must be nil when evalu-
ated at x. Therefore, starting with five accepting transcripts instead of three
entails that this polynomial of degree 4 must be nil and thus zC = 〈ac,bC〉,
i.e., aC ,bC ∈ Zn, rC ∈ Z is a valid witness for C.

As for the zero-knowledge property of the scheme, the ranges of su and sv
at each of the logn recursion step are chosen so that the statistical distance
of (U, V ) to a pair of uniform values in

〈
f2〉 is at most

(
log(n)2λ

)−1
. It

then remains to compute an upper-bound on the bit length of the witness
at the lass step of the protocol so that the randomness of the prover can be
chosen from a set of which the bit length is λ times larger. The calculation
is detailed in the proof of Theorem 9.3.5.
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Protocol Algorithms.

The argument system for relation R is further denoted Π. It uses as building
blocks a group generator G and the Fiat–Shamir non-interactive variant
FS .Π̃H with a random oracle H of a protocol Π̃ for the language{

(g,h) ∈ G2n : ∃α, β ∈ Z2n,∀i ∈ JnK gi = fαi ∧ hi = fβi
}

given parameters (G, P, f, 2n) and the empty string as CRS. Π̃H is later
assumed to satisfy culpable soundness w.r.t. the language{

(g,h) ∈ G2n : ∃α, β ∈ Z2n,∀i ∈ JnK g2
i = f2αi ∧ h2

i = f2βi
}
.

The protocol algorithms are then as follows:

– Π.Setup
(
1λ, n ∈ N∗

)
runs (G, P ′) ← G

(
1λ
)
, computes P :=

⌊
P ′1/3

⌋
(the power 1/3 is to ensure extractability under the assumptions on
the group generator), generates f ←$ G and returns pp ← (G, P, n, f)
as public parameters.

– Π.CRSGen(pp) generates αi, βi ←$
q
0; 2bG+2λy for i ∈ JnK, computes

gi ← fαi , hi ← fβi and πcrs ← FS .Π̃H.Prove ((G, P, f, 2n), (g,h) , α, β),
and returns (g,h, πcrs).

– Π.Prove and Π.Vf are as on Figure 9.1. They run as sub-routines the
proving and verification algorithms of a protocol Π′ for relation R′.

◦ Π̃.Setup
(
1λ, n ∈ N∗

)
is the same as Π.Setup

(
1λ, n ∈ N∗

)
.

◦ Π̃.CRSGen(pp) computes g and h as Π.CRSGen(pp), and also
e ← fγ for γ ←$

q
0; 2bG+2λy. It then computes a proof πcrs ←

FS .Π̃H.Prove ((G, P, f, 2n+ 1), (g,h, e) , α, β, γ) that the bases
gi, hi for i ∈ JnK and e are in

√
〈f2〉, and eventually returns

the tuple (g,h, e, πcrs)
◦ Π′.Prove and Π′.Vf are as on Figure 9.2, except that Π′.Prove first

verifies the CRS and aborts if it is invalid. In the presentation
on Figure 9.2, the CRS does not include the proof that it is
well-formed and the prover does not perform any preliminary
verification (i.e., the CRS is assumed to be honestly generated).
The reason is that Π.Prove already does this verification; if Π′
were to be used as a stand-alone protocol, those verification would
be necessary. Π′.Prove and Π′.Vf additionally take as input a
variable i which keeps track of the recursion depth during the
protocol execution to adjust the randomness of the prover.
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P (n, f,g,h, πcrs, C, z, `; a,b, r) V (n, f,g,h, πcrs, C, z, `)

C2 =
(
gahbfr

)4 ∧ 〈a,b〉 = z ∧
∥∥[a b r

]∥∥
∞
< 2`

if FS .Π̃H.Vf ((G, P, f, 2n), (g,h) , πcrs) = 0 α←$
q
0; 2b+2λy; e← fα

then return ⊥ π ← FS .Π̃H.Prove((G, P, f, 1), e, α)
e,π←−−

if FS .Π̃H.Vf((G, P, f, 1), e, π) = 0
then return ⊥

run the protocol on Figure 9.2 on input
(
1, n, f,g,h, e, C1 := Ce2z, `; a,b, r

)
Figure 9.1: Inner-Product Argument on Integers.

P (i, n, f,g,h, e, Ci, `; a,b, r) V (i, n, f,g,h, e, Ci, `)

C2
i =

(
gahbe〈a,b〉fr

)4
∧
∥∥[a b r

]∥∥
∞
< 2`

if n = 1
α, β ←$

q
0; 2`+λP i

y

s←$
q
0; 2(i− 1)2bG+λy

t←$

r
0; 2(i− 1)2bG+2λP i+2 + 2`+λ (P − 1)i+1

z

Replace i− 1 by 1 if i = 1
Γ←

(
gαhβeαb+aβfs

)2
∆←

(
eαβf t

)2
Γ,∆−−−→

xi ←$ J0;P − 1K
xi←−−

a′ ← α+ axi
b′ ← β + bxi
u← t+ sxi + rx2

i
a′,b′,u−−−−−→ (

gxia
′
hxib

′
ea
′b′fu

)4 ?=
(
C
xi
i Γxi∆

)2
else

su, sv ←$
q
0; 2 (dlogne+ i− 1) 2bG+λy

Ui ←
(

g1a2h2
b1e〈a2,b1〉fsu

)2
Vi ←

(
g2a1h1

b2e〈a1,b2〉fsv
)2

Ui,Vi−−−−→
xi ←$ J0;P − 1K

xi←−−
a′ ← a1 + xia2
b′ ← xib1 + b2
t← sv + rxi + sux2

i

recurse on
(
i+ 1, dn/2e, f, gxi1 ◦ g2, h1 ◦ hxi2 , e, Ci+1 := U

x2
i

i C
xi
i Vi, `; a′,b′, t

)
Figure 9.2: Argument for Relation R′.
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Prover-Communication Complexity.

Throughout the protocol, the prover sends 2n′ + 2 group elements (with
n′ = dlogne), two integers (a′ and b′) less than 2`Pn′ in absolute value
and an integer (u) less than

(
2n′2bG+λPn

′+3 + 2`(P − 1)n′+2
) (

1 + 2λ
)
in

absolute value. The bit communication complexity of the prover is then
of order O (`+ log(n)(bG + logP ) + λ+ max (log logn+ bG + λ, `)). Since
logP ≤ bG = Ω(λ), that is O (`+ log(n)bG + max (log logn+ bG, `)), or
even O (`+ log(n)bG) bits (n is here assumed to be greater than 1).

Verification via a Single Multi-Exponentiation.

As described on Figure 9.2, the verifier computes a new commitment Ux
2
i

i Cxii Vi,
and new vectors gxi1 ◦ g2 and h1 ◦ hxi2 at each recursion step i. In total, the
verifier then has to compute n′ := dlogne 3-exponentiations with exponents
less than P 2 and two

⌈
n2−i

⌉
-exponentiations with exponents less than P

for i = 0, . . . , n′ − 1. At the last stage of the protocol, the verifier also

has to check that
(
gxn′+1a

′
hxn′+1b

′
ea
′b′fu

)4
=
(
C
x2
n′+1

n′+1 Γxn′+1∆
)2

, i.e., a 7-
exponentiation with exponents (in absolute value) less than the bit length
of the largest exponent.

Alternatively, the verifier could simply generate the challenges after re-
ceiving the Ui and Vi values, delay its verification to the last stage of the
protocol and then do a single multi-exponentiation. As shown below, this
multi-exponentiation is a (2n+ 2n′ + 5)-exponentiation, which results in
computational savings in practice since computing a k-exponentiation with
`-bit exponents requires ` group operations with a pre-computed table of 2k
group elements following classical sliding-window methods [Ava05], which
is much faster than computing k separate single exponentiations with `-
bit exponents (which requires k` group operations with a single group ele-
ment in memory) and multiplying the result. Of course, if n is large, then
the pre-computation might be prohibitively long with the standard multi-
exponentiation method, in which case one would rather split the multi-
exponentiation in small batches of appropriate size. In any case, delaying
the verification until the last step already has the benefit of eliminating
latency in the verification.

To reduce the verification to a single multi-exponentiation, the commit-
ment at the last stage and the bases g and h must be expressed in terms of
the challenges xi and of the initial vectors g and h alone.
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Ultimate Commitment.

Given that Ci+1 := U
x2
i

i Cxii Vi for all i ∈ Jn′K, the commitment Cn′+1 at the
last step of the protocol is equal to

U
x2
n′

n′

n′−1∏
i=1

U
x2
i xi+1···xn′

i Cx1···xn′
n′−1∏
i=1

V
xi+1···xn′
i Vn′ .

Expression for g and h.

It now remains to express the bases g and h at the last step of the recursion
in terms of gi, hi for i ∈ JnK and xj for j ∈ Jn′K.

First assume n to be a power of 2 and let n′ := logn. In this case,

g =
n∏
i=1

g

∏
j∈Si

xj

i and h =
n∏
i=1

h

∏
j∈JnK\Si

xj

i

with

Si :=
{
j ∈

q
n′

y
: n′ + 1− jth bit of i− 1 is 0

}
.

In case n is not a power of 2, finding an explicit expression for the
exponents xj to which gi is raised is much more intricate. For instance, in
case n = 5, g = gx1x2x3

1 gx1x3
2 gx2x3

3 gx3
4 g5. The above expression is no longer

true since, for example, the exponent g5 is 1 although the first and second
bits of 4 are nil and the exponent of g4 is x3 even though the first bit of 3
is 1.

Explicit Expression for the Final Bases. First consider the case of g.
Notice that the gi elements that are raised to the power x1 in the expression
of g are such that 1 ≤ i ≤ bn/2c, and the elements that are raised to the
power x2 are such that 1 ≤ i ≤ bdn/2e /2c or bn/2c + 1 ≤ i ≤ bn/2c +
bdn/2e /2c. Likewise, the elements that are raised to the power x3 are such
that

1 ≤ i ≤ bddn/2e /2e /2c
bdn/2e /2c+ 1 ≤ i ≤ bdn/2e /2c+ bddn/2e /2e /2c

bn/2c+ 1 ≤ i ≤ bddn/2e /2e /2c
bn/2c+ bdn/2e /2c+ 1 ≤ i ≤ bn/2c+ bdn/2e /2c+ bddn/2e /2e /2c .

In general, the elements gi that are raised to the power xj (for j ≥ 2) are
such that 1 + k ∗

⌊⌈
n2j−2⌉ /2⌋ ≤ i ≤ 1 + k ∗

⌊⌈
n2j−2⌉ /2⌋ +

⌊⌈
n2−j+1⌉ /2⌋

for 0 ≤ k ≤ j − 2, with k ∗
⌊⌈
n2j−2⌉ /2⌋ defined as k

⌊⌈
n2j−2⌉ /2⌋ if k is odd

and k/2 ∗
⌊⌈
n2j−3⌉ /2⌋ if k is even and greater than 0 (if k = 0, it is simply
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0). That is, if v2(k) denotes the dyadic valuation of k, k ∗
⌊⌈
n2j−2⌉ /2⌋ =

k2−v(k)
⌊⌈
n2j−2−v(k)

⌉
/2
⌋
.

As for h, the elements hi that are raised to the power xj (for j ≥ 2) in
the expression of h are such that i is in the complement of the union of the
above intervals.

Another possibility is to expand, g and h to vectors g̃ and h̃ of size 2n′ by
inserting 1G at specific positions so that the result of the folding procedure
applied g̃ and h̃ are the same as the result of the procedure applied to g
and h (i.e., g and h). This reduces the multi-exponentiation to the case in
which the size of the vectors is a power of 2.

Reduction to Powers of 2. The idea is to expand, as does Algorithm
Span, g and h to vectors g̃ and h̃ of size 2n′ by inserting 1G at specific
positions so that the result of the folding procedure applied g̃ and h̃ are the
same as the result of the procedure applied to g and h (i.e., g and h). This
reduces the multi-exponentiation to the case in which the size of the vectors
is a power of 2.

As a first step, the following lemma shows that the size of the vectors of
group elements at the (i+1)th step of the protocol, which is dddn/2e /2e · · · /2e
(i times), is actually equal to

⌈
n2−i

⌉
.

Lemma 9.3.2. For any two integers n ≥ 1 and i ≥ 0,
⌈⌈
n2−i+1⌉ /2⌉ =⌈

n2−i
⌉
.

Proof. Let w denote the Hamming weight of n. As n ≥ 1, w ≥ 1 as well.
Then, write n as 2ν1 + · · ·+ 2νw , with 0 ≤ ν1 < · · · < νw = blognc, and thus
n2−i+1 = 2ν1−i+1 + · · ·+ 2νw−i+1.

If i > blognc = νw, then 0 <
⌈
n2−i+1⌉ ≤ 2,

⌈⌈
n2−i+1⌉ /2⌉ = 1, and

0 < n2−i = 2ν1−i + · · ·+ 2νw−i < 1, so
⌈
n2−i

⌉
= 1.

If i ≤ blognc, the set {1 ≤ k ≤ w : νk > i− 1} is non-empty as it always
contains w. Let ` denotes its minimum. Rewrite then n2−i+1 as 2ν1−i+1 +
· · ·+ 2ν`−i+1 + · · ·+ 2νw−i+1. Note that by definition, ν` ≥ i.

If ` = 1, then
⌈
n2−i+1⌉ = 2ν`−i+1 + · · · + 2νw−i+1 and

⌈⌈
n2−i+1⌉ /2⌉ =

2ν`−i + · · ·+ 2νw−i = n2−i =
⌈
n2−i

⌉
. If ` > 1, further distinguish two cases:

– if ν`−1 = i − 1, then
⌈
n2−i+1⌉ = 2 + 2ν`−i+1 + · · · + 2νw−i+1 and⌈⌈

n2−i+1⌉ /2⌉ =
⌈
n2−i+1⌉ /2 = 1+2ν`−i+ · · ·+2νw−i. Besides, n2−i =

2ν1−i + · · · + 2−1 + 2ν`−i + · · · + 2νw−i, and therefore
⌈
n2−i

⌉
= 1 +

2ν`−i + · · ·+ 2νw−i =
⌈⌈
n2−i+1⌉ /2⌉

– if ν`−1 > i−1, then
⌈
n2−i+1⌉ = 1 + 2ν`−1−i+1 + 2ν`−i+1 + · · ·+ 2νw−i+1

and
⌈⌈
n2−i+1⌉ /2⌉ = 1 + 2ν`−1−i + · · ·+ 2νw−i =

⌈
n2−i

⌉
.
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Algorithm 9.3.3 Span
Require: integer n ≥ 1, vector g ∈ Gn

Ensure: vector g̃ ∈ G2dlogne

if HammingWeight(n) = 1 then // n is a power of 2
return g

end if
i← Lsb(n) // least significant bit of n counting from 1
I ←

{⌈
n2−i

⌉
+ j2dlogne−i+1 : 0 ≤ j < 2i−1

}
while i < blognc do

i← i+ 1
if
⌊(
n mod 2i

)
2−i+1⌋ mod 2 = 0 then // the ith bit of n is 0

I ← I ∪
{⌈
n2−i

⌉
+ j2dlogne−i+1 : 0 ≤ j < 2i−1

}
end if

end while
g̃← 12dlogne

G
Head← 1
for i = 1 to 2dlogne do

if i ∈ I then
continue // expand g by one element by inserting 1G at position

i
end if
g̃[i]← g[Head]
Head← Head + 1

end for
return g̃

Now, to prove that the result of the folding procedure applied g̃ and h̃
are g and h, notice that it suffices to show that for any integers n ≥ 2 and
x, and any vector g ∈ Gn,

Span (dn/2e,Fold(n, x,g)) = Fold
(
2dlogne, x,Span(n,g)

)
.

Indeed, in the case of the vector g (of size n, and recall that n′ := dlogne)
at the initial protocol step and of the last base g for instance, if the above
statement is true, then

Algorithm 9.3.4 Fold
Require: integers n ≥ 2 and x, vector g ∈ Gn

Ensure: vector g̃ ∈ Gdn/2e
g̃← gx1 ◦ g2
return g̃
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g = Span(1, g)
= Span (1,Fold (2, xn′ , (· · ·Fold (n, x1,g) · · · )))

= Fold
(
2, xn′ ,

(
· · ·Fold

(
2n′ , x1,Span (n,g)

)
· · ·
))

= Fold
(
2, xn′ ,

(
· · ·Fold

(
2n′ , x1, g̃

)
· · ·
))
.

To prove that Span (dn/2e,Fold(n, x,g)) = Fold
(
2dlogne, x,Span(n,g)

)
for any integers n ≥ 2 and x, and any vector g ∈ Gn, distinguish the follow-
ing cases:

– if n is a power of 2, then n/2 also is and Span (dn/2e,Fold(n, x,g)) =
Fold(n, x,g) = Fold (n, x,Span (n,g))

– if n is even and not a power of 2, note that running Span on (n/2,gx1 ◦ g2)
results in a vector of size 2dlog(n/2)e with 1G at positions in{⌈

n2−12−i
⌉

+ j2dlog(n/2)e−i+1 : 0 ≤ j < 2i−1
}

for Lsb(n/2) ≤ i ≤ blog(n/2)c, i.e., for integers i such that Lsb(n) ≤
i+ 1 ≤ blognc.
On the other hand,{⌈

n2−i
⌉

+ j2dlogne−i+1 : 0 ≤ j < 2i−1
}

=
{⌈
n2−12−i+1

⌉
+ j2dlog(n/2)e−i+2 : 0 ≤ j < 2 · 2(i−1)−1

}
for any Lsb(n) ≤ i ≤ blognc such that the ith bit of n is 0. There-
fore, applying Fold to

(
2dlogne,Span (n,g)

)
results in a vector of size

2dlogne−1 = 2dlog(n/2)e with 1G inserted in gx1 ◦ g2 at positions{⌈
n2−12−i

⌉
+ j2dlog(n/2)e−i+1 : 0 ≤ j < 2(i−1)−1

}
for Lsb(n) ≤ i ≤ blognc. A change of variables i ← i− 1 then allows
to conclude that Span (n/2,Fold(n, x,g)) = Fold (n, x,Span (n,g))

– if n is odd, write n as 20 + · · ·+ 2`1 + 2ν2 + · · ·+ 2ν2+`2 + · · ·+ 2νk+`k

for k > 1 and 0 ≤ `1 < ν2 − 1 < · · · ≤ ν2 + `2 < · · · < νk −
1 < · · · ≤ νk + `k. Then, dn/2e = 2`1 + 2ν2−1 + · · · + 2νk+`k−1.
One the one hand, running algorithm Span on input dn/2e and gx1 ◦
g2 =

[
g1 · · · gdn/2e−1 1G

]x
◦
[
gdn/2e · · · gn

]
returns a vector of

size 2dlogdn/2ee with 1G inserted at positions in{⌈
dn/2e2−i

⌉
+ j2dlogdn/2ee−i+1 : 0 ≤ j < 2i−1

}
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for i = `1 + 1, . . . , ν2 − 1, . . . , `k−1 + 1, . . . , νk − 1.
On the other hand, running algorithm Span on (n,g) inserts 1G in
g at positions in

{⌈
n2−i

⌉
+ j2dlogne−i+1 : 0 ≤ j < 2i−1

}
for i = 1, `1 +

2, . . . , ν2, . . . , `k−1+2, . . . , νk. Consequently, running Fold on
(
2dlogne,

x,Span(n,g)) results in a vector of size 2dlogne−1 = 2dlogdn/2ee with 1G
inserted in

[
g1 · · · gdn/2e−1 1G

]x
◦
[
gdn/2e · · · gn

]
at positions in{⌈⌈

n2−i
⌉

2−1
⌉

+ j2dlogne−(i−1) : 0 ≤ j < 2(i−1)−1
}

for i = `1 + 2, . . . , ν2, . . . , `k−1 + 2, . . . , νk. Moreover, Lemma 9.3.2 im-
plies that

⌈⌈
n2−i

⌉
2−1⌉ =

⌈
n2−i−1⌉ =

⌈⌈
n2−1⌉ 2−i

⌉
, and since dlogdn/2ee

= dlogne − 1, the change of variables i← i− 1 shows that

Span (dn/2e,Fold(n, x,g)) = Fold
(
2dlogne, x,Span(n,g)

)
.

Verification Efficiency.

In case n is a power of 2 (the previous paragraph shows that the problem
can always be reduced to this case), the verifier then only has to check that(

n∏
i=1

g

∏
j∈Si

xj

i

)4xn′+1a
′ (

n∏
i=1

h

∏
j∈JnK\Si

xj

i

)4xn′+1b
′

e4a′b′f4u

=

Uxn′n′

n′−1∏
i=1

U
xixi+1···xn′
i Cx1···xn′

n′−1∏
i=1

V
xi+1···xn′
i Vn′

2x2
n′+1

Γ2xn′+1∆2,

i.e., do a (2n+ 2n′ + 5)-exponentiation with exponents (in absolute value)
less than

4 max

2`P 2n′+1,

|a′b′|<︷ ︸︸ ︷
22`P 2n′ ,

|u|<︷ ︸︸ ︷(
2n′2bG+λPn

′+1 + 2`(P − 1)n′+2
) (

1 + 2λ
) .

Verification thus requires O(` + bG + log(n) log(P )) group operations
(n ≥ 2).

9.3.3 Completeness and Security

This section proves that Π is complete, honest-verifier zero-knowledge and
extractable. The proof of extractability of Π is based on the proof of ex-
tractability of Π′ and on Lemma 9.3.8. The proof of extractability of Π′ is
itself based on Lemma 9.3.8 and Lemma 9.3.7, and Lemma 9.3.7 relies on
Lemma 9.3.6.
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Theorem 9.3.4 (Completeness). Π is complete.

Proof. The completeness of the protocol immediately follows from the com-
pleteness of protocol ΠH, from the fact that each step i ∈ Jn′K,

(
(gxi1 ◦ g2)a′ (h1 ◦ hxi2 )b′ e〈a

′,b′〉f t
)4

= (gxi1 ◦ g2)4(a1+xia2) (h1 ◦ hxi2 )4(xib1+b2) e4(x2〈a2,b1〉+x〈a,b〉+〈a1,b2〉)

f4(sv+rxi+sux2
i )

= g1
4xi(a1+xia2)g2

4(a1+xia2)h1
4(xib1+b2)h2

4xi(xib1+b2)e4(x2〈a2,b1〉+x〈a,b〉+〈a1,b2〉)

f4(sv+rxi+sux2
i )

=
(
U
x2
i

i Cxii Vi

)2
,

and from the completeness of the last step of the protocol (i.e., i = n′ + 1).
The second equality stem from the fact that for any two vectors G,H ∈ Gn

and any vector k ∈ Zn, (G ◦H)k = GkFk.

Theorem 9.3.5 (Honest-Verifier Zero-Knowledge). If Π̃ is
(
TΠ̃, qH, ε

snd
Π̃

)
-

sound, then protocol Π is
(
TΠ̃, O ((`+ bG + log(P ) log(n))TG) , qH, 2−λ+2+

εsnd
Π̃

)
-honest-verifier zero-knowledge.

Proof. If the initial length n of the vectors is at least 2, note that at each step
i ∈ Jn′K, the length of the vectors is ni :=

⌈
n2−i+1⌉, so dlognie+ i− 1 = n′.

Since e2 ∈
〈
f2〉 (the verifier is honest), and since the group elements in

the parameters are also in
〈
f2〉 unless the adversary can contradict the

soundness of Π̃, the pair (Ui, Vi) is at a 2−λ+1/n′ statistical distance from a
pair

(
f2su , f2sv) for su, sv ←$

q
0; 2n′2bG+λy, and the tuple (Ui, Vi)n

′

i=1 is thus
at a statistical distance of at most 2−λ+1 from a 2n′-tuple with components
generated as f2s for s←$

q
0; 2n′2bG+λy.

At the last step of the protocol (i.e., for i = n′ + 1), note that |a|, |b| ≤
2`Pn′+1 and that the absolute value of the randomness r in the commit-
ment Cn′+1 is less than 2n′2bG+λPn

′+1 + 2` (P − 1)n
′
. Indeed, if n = 1

the statement is immediate and if n ≥ 2, at the first step of the proto-
col i = 1, max a′ = max a1 + x1 max a2 ≤ 2`P . If min a2 < 0, then
min a′ = min a1 + x1 min a2 ≥ −2`P , and if min a2 ≥ 0, then min a′ =
min a1 ≥ −2` ≥ −2`P ; and similarly for b′. A simple induction then shows
that |a|, |b| ≤ 2`Pn′+1. Besides, the randomness of the commitment C1 is at
most 2` in absolute value, and under the assumption that the randomness
in Ci is at most 2n′2bG+λP i + 2` (P − 1)i−1 in absolute value for i ∈ Jn′K,
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the randomness in Ci+1 is less than

2n′2bG+λ +
(
2n′2bG+λP i + 2` (P − 1)i−1

)
(P − 1) + 2n′2bG+λ(P − 1)2

= 2n′2bG+λ
(
1 + P i(P − 1) + (P − 1)2

)
+ 2` (P − 1)i

≤ 2n′2bG+λ
(
P i(P − 1) + P 2

)
+ 2` (P − 1)i

≤ 2n′2bG+λP i+1 + 2` (P − 1)i .

Moreover, it is also greater than −2`(P − 1)i since the randomness su and
sv are always positive. The statement then holds for all i ∈ Jn′ + 1K.

It follows that at the last step of the protocol, (assuming n′ ≥ 1,)

sxn′+1 + rx2
n′+1 ≤ 2n′2bG+λ +

(
2n′2bG+λPn

′+1 + 2` (P − 1)n
′)

(P − 1)2

≤ 2n′2bG+λ
(
1 + Pn

′+1(P − 1)2
)

+ 2`(P − 1)n′+2

≤ 2n′2bG+λPn
′+3 + 2`(P − 1)n′+2.

Consequently, for α, β ←$

r
0; 2`+λPn′+1

z
, s ←$

q
0; 2 max(n′, 1)2bG+λy

and t←$ J0; 2 max(n′, 1)2bG+2λPn
′+3+ 2`+λ (P − 1)n

′+2
z
, the distribution

of
Γ︷ ︸︸ ︷(

gαhβeαb+aβfs
)2
,

∆=(eαβf t)2︷ ︸︸ ︷(
gxn′+1a

′
hxn′+1b

′
ea
′b′fu

)2
C
−x2

n′+1
n′+1 Γ−xn′+1 , xn′+1,

a′︷ ︸︸ ︷
α+ axn′+1,

b′︷ ︸︸ ︷
β + bxn′+1,

u︷ ︸︸ ︷
t+ sxn′+1 + rx2

n′+1


is at a statistical distance of at most 2−λ from the distribution of((

gαhβeαb+aβfs
)2
,
(
gxn′+1αhxn′+1βeαβf t

)2
C
−x2

n′+1
n′+1 Γ−xn′+1 , xn′+1, α, β, t

)
,

which is itself at a statistical distance of at most 2−λ from the distribution
of (

f2s,
(
gxn′+1αhxn′+1βeαβf t

)2
C
−x2

n′+1
n′+1 f−2sxn′+1 , xn′+1, α, β, t

)
.

Recall also that

Cn′+1 = U
x2
n′

n′

n′−1∏
i=1

U
x2
i xi+1···xn′

i Cx1···xn′
n′−1∏
i=1

V
xi+1···xn′
i Vn′ .
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Therefore, the transcript
(
(Ui, Vi, xi)n

′

i=1 ,Γ,∆, xn′+1, a
′, b′, u

)
of an honest

protocol execution is at a statistical distance of at most 2−λ+2 from a tuple(
(Ui, Vi, xi)n

′

i=1 , f
2s,
(
gxn′+1αhxn′+1βeαβf t

)2
C
−x2

i
n′+1f

−2sxn′+1 , xn′+1, α, β, t

)
with, for all i ∈ Jn′ + 1K, xi ←$ J0;P − 1K, su,i, sv,i ←$

q
0; 2n′2bG+λy,

Ui ← gsu,i , Vi ← gsv,i , α, β ←$

r
0; 2`+λPn′+1

z
, s←$

q
0; 2 max(n′, 1)2bG+λy ,

t←$

r
0; 2 max(n′, 1)2bG+2λPn

′+3 + 2`+λ (P − 1)n
′+2

z
and Cn′+1 computed

as above. Note the latter distribution is independent of the witness. Besides,
each Ui and Vi can be computed in O(bG+λ+log logn) group operations and
the group element

(
gxn′+1αhxn′+1βeαβf t

)2
C
−x2

i
n′+1f

−2sxn′+1 can be computed
in

O (`+ bG + λ+ log(P ) log(n) + log logn) = O(`+ bG + log(P ) log(n))

group operations (logP ≤ bG = Ω(λ)). A simulated transcript can thus be
computed in time O ((`+ bG + log(P ) log(n))TG), hence the theorem.

Lemma 9.3.6. Let n be a natural integer and let a0, . . . , an, b and N be
integers, with N ≥ 1. Assuming that the ai integers are not all nil modulo
N , the number of tuples (x0, . . . , xn) ∈ Zn+1

N such that a0x0+· · ·+anxn+b =
0 mod N is either 0 or Nn gcd(a0, . . . , an, N).

Proof. The lemma can be proved by induction on n as follows. For n = 0,
note that the equation a0x0 + b = 0 mod N has no solution if gcd(a0, N) - b.
If gcd(a0, N) | b, let a′0 be such that a0 = gcd(a0, N)a′0, and define b′ and
N ′ similarly. Integers a′0 and N ′ are then coprime, and let u and v be
integers such that a′0u + N ′v = 1. Consider now the equation a′0x0 + b′ =
0 mod N ′. Multiplying it by u shows that x0 = −b′u mod N ′. It follows
that the integers x0 solutions to the equation a′0x0 + b′ = 0 mod N ′ are
of the form −b′u + kN ′ for k ∈ Z. Besides, for two integers k0 and k1,
−b′u + k0N

′ = −b′u + k1N
′ mod N if and only if gcd(a0, N) | k1 − k0.

Therefore, if gcd(a0, N) | b, the solutions x0 to the equation a0x0 + b =
0 mod N are −b′u+ kN ′ for 0 ≤ k ≤ gcd(a0, N).

Now suppose the statement to be true for n ≥ 0 and consider the equa-
tion a0x0+· · ·+an+1xn+1+b = 0 mod N for some integers a0, . . . , an+1, b and
N ≥ 1. For a fixed value xn+1 ∈ ZN , as in the case n = 0, there is no solution
if gcd(a0, . . . , an, N) - an+1xn+1 +b; and if gcd(a0, . . . , an, N) | an+1xn+1 +b,
then the induction hypothesis implies that there are Nn gcd(a0, . . . , an, N)
solutions in ZN . It now remains to determine the number of values xn+1 ∈
ZN such that an+1xn+1 + b = 0 mod gcd(a0, . . . , an, N). To this end, let
un+1 and vn+1 be integers such that an+1un+1 + gcd(a0, . . . , an, N)vn+1 =
gcd(a0, . . . , an+1, N). As in the case n = 0, there is no solution if gcd(a0, . . . ,
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an+1, N) - b, and if gcd(a0, . . . , an+1, N) | b, then the solutions to the equa-
tion an+1xn+1 + b = 0 mod gcd(a0, . . . , an, N) are exactly xn+1 = −bun+1 +
kn+1d

′ for 0 ≤ kn+1 < gcd(a0, . . . , an+1, N) and d′ ∈ Z such that gcd(a0, . . . ,
an, N) = gcd(a0, . . . , an+1, N)d′. The values xn+1 ∈ ZN for which the equa-
tion a0x0+· · ·+an+1xn+1+b = 0 mod N is satisfied in case gcd(a0, . . . , an+1,
N) | b are then exactly −bun+1 + kn+1d

′ + k gcd(a0, . . . , an, N) for 0 ≤
kn+1 < gcd(a0, . . . , an+1, N) and 0 ≤ k < N ′, where N ′ ∈ Z is such that
N = gcd(a0, . . . , an, N)N ′. Therefore, the number of solutions to the equa-
tion a0x0+· · ·+an+1xn+1+b = 0 mod N is either 0 or Nn gcd(a0, . . . , an, N)
gcd(a0, . . . , an+1, N)N ′ = Nn+1 gcd(a0, . . . , an+1, N). The statement of the
lemma is then true for all n ∈ N.

Lemma 9.3.7. Consider the problem (depending on λ) of computing, on
input (G, P ) ← G

(
1λ
)

and f ←$ G and (fxi)ni=0 (for integers xi ←$q
0; 22bG+λ(n+ 1)

y
) an element C ∈ G and integers a0, . . . , an, b, δ such that

1 < |δ| < P , δ does not divide b or at least one of the ai integers, and
Cδ = fa0

0 · · · fann f b.
Under the

(
T strg, εstrg)-strong-root assumption, the

(
T ord, εord

)
-small-

order assumption, the low-dyadic-valuation assumption and the µ-assumption
over G, the probability that any probabilistic algorithm running in time T
solves this problem is at most

(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
,

if T is such that (n+1) max(log(n+1), 1) log(P )bGTTG ≤ Ω
(
min

(
T strg, T ord

))
.

Proof. Let A be an algorithm as in the statement of the lemma and assume
without loss of generality that δ > 0 (if δ < 0, raise the equality to the
power −1). The equality Cδ = fa0

0 · · · fann f b implies that Cδ = f
∑

i
aixi+b.

The goal is to show that in case δ does not divide ∑i aixi + b, algorithm A
can be used to violate the assumptions on generator G; and to show that
conditioned on the event in which A solves the problem, the probability that
δ divides ∑i aixi + b is at most 1/2 + 2−λ + (1− µ).

More precisely, if δ does not divide∑i aixi+b, let d := gcd (δ,∑i aixi + b)
and u, v ∈ Z such that d = uδ + v (∑i aixi + b). Then, fd = (fuCv)δ, i.e.,(
(fuCv)δ/d f−1

)d
= 1G. Since 1 ≤ d < δ < P by assumption, the small-

order assumption over G implies that the element g̃ := (fuCv)δ/d f−1 is
such that g̃2 = 1G with probability at least εord. If g̃ = 1G and d > 1, then(
(fuCv)δ/d , d

)
is a solution to the strong-root problem. Otherwise,

∗ if δ/d is odd, then g̃δ/d = g̃ and therefore, (fuCv g̃, δ/d) is a solution
to the strong-root problem

∗ if δ/d is even, then the low-dyadic-valuation assumption on orders
implies that ord

(
(fuCv)δ/d

)
is odd, which is impossible if ord(f) is

P -rough (and thus odd) since ord(fg̃) = 2 ord(f) in this case.
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Consequently, δ does not divide ∑i aixi + b with probability at most εord +
εstrg + 1− µ.

Since |ai|, |b| ≤ 2O(T ),∑i aixi+b can be computed in timeO ((n+ 1)T (bG+
log(n+ 1))). Then, u and v can be computed in time O((T + bG + log(n+
1)) logP ) with the extended Euclidean algorithm as |∑i aixi + b| ≤ n(n +
1)2O(T )22bG+λ + 2O(T ) and |δ| ≤ P ; and u and v are such that |u|, |v| ≤
max (|δ|, |∑i aixi + b|) /d. Besides, computing δ/d can be done in time
O
(
log2 P

)
and then fuCv g̃ in

O (max (T + bG + log(n+ 1), logP )) = O (T + bG + log(n+ 1))

group operations since P ≤ 2bG . The solution to the strong-root problem
can thus be computed in time

O ((n+ 1)(bG + log(n+ 1))T + (T + bG + log(n+ 1)) log(P )TG) ,

after the bases f0, . . . , fn have been computed in O((n + 1) max(log(n +
1), 1)bG) group operations.

It remains to show that δ divides ∑i aixi + b with probability at most
1/2 + 2−λ + 1− µ conditioned on the event in which A solves the problem.
To do so, consider the event in which it occurs. Let p and j respectively be
a prime and a positive integer such that pj divides δ and pj does not divide
b or at least one of the ai integers. Such p and j necessarily exist for an
assumption of the lemma is that δ does not divide b or at least one of the ai
integers. Note that pj cannot divide all the ai integers as it would otherwise
divide b as well, since it divides ∑i aixi + b. Moreover, if µ-assumption that
there are many rough-order elements in the groups generated by G holds, p
does not divide ord(f). Therefore, if the µ-assumption holds, pj does not
divide ai ord(f) for some i ∈ J0;nK.

For i ∈ J0;nK, let 0 ≤ ρi < ord(f) be the unique integer such that
xi = ord(f) bxi/ ord(f)c+ ρi, and note that fxi = fρi . Then, ∑i aixi + b =∑
i ai ord(f) bxi/ ord(f)c+∑i aiρi + b = 0 mod pj and ai ord(f) 6= 0 mod pj

for some i ∈ J0;nK. Lemma 9.3.6 shows that the equation ∑
iAiXi +

B = 0 mod pj with Ai := ai ord(f) and B := ∑
i aiρi + b has at most

pjn gcd
(
a0 ord(f), . . . , an ord(f), pj

)
solutions, and the integer gcd(a0 ord(f),

. . . , an ord(f), pj) is at most pj−1 since ai ord(f) 6= 0 mod pj for some i ∈
J0;nK. However, the variables Xi := bxi/ ord(f)c are identically distributed
and independent of the values returned byA (G, P, f, fρ0 , . . . , fρn); and their
distribution is at a statistical distance of at most ord(f)2−2bG−λ(n+ 1)−1 ≤
2−bG−λ(n+ 1)−1 from the uniform distribution over

r
0;
⌊
(n+ 1)22bG+λ/ ord(f)

⌋z
⊇

r
0; (n+ 1)2bG+λ

z
.

Besides, if a variableX is uniformly distributed over the set
q
0; (n+ 1)2bG+λy,

then the distribution of X mod pj is at a statistical of at most pj2−bG−λ(n+
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1)−1 ≤ (P − 1)2−bG−λ(n+ 1)−1 from the uniform distribution over Zpj . The
distribution of the random vector

(
X0 mod pj , . . . , Xn mod pj

)
is then at

a statistical of at most P2−bG−λ ≤ 2−λ from the uniform distribution over
Zn+1
pj

. Consequently, the equation ∑i aixi + b = 0 mod pj can then be sat-
isfied with probability at most 2−λ + pj(n+1)−1/

(
pj
)n+1 ≤ 1/2 + 2−λ and

thus, δ divides ∑i aixi + b with probability at most 1/2 + 2−λ + 1− µ.
In summary, denoting by ε the probability that A solves the problem of

the statement of the lemma, ε ≤ εord +εstrg +1−µ+
(
1/2 + 2−λ + 1− µ

)
ε,

which is equivalent to ε ≤
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
.

Lemma 9.3.8 (Discrete-Logarithm Relations). Let n be a non-negative in-
teger. Consider the problem (depending on λ) of computing, on the in-
put of (G, P ) ← G

(
1λ
)
and of group elements f ←$ G and (fxi)ni=0 (for

xi ←$
q
0; 22bG+λ (n+ 1)K), integers a0, . . . , an, b such that fa0

0 · · · fann f b =
1G although at least one of a0, . . . , an, b is non-zero. Under the

(
T strg, εstrg)-

strong-root assumption, the
(
T ord, εord

)
-small-order assumption, the low-

dyadic-valuation assumption and the µ-assumption over G, the probability
that any probabilistic algorithm running in time at most T solves this prob-
lem is at most

εstrg + max
(

2−bG−λ+1,
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg +1− µ)

)

if T is such that (n+1) max(log(n+1), 1) log(P )bGTTG ≤ Ω
(
min

(
T strg, T ord

))
.

Proof. Let A be an algorithm as in the statement of the lemma and denote
the probability that it solves the problem by ε. If a0 = · · · = an = 0, then
b 6= 0 by assumption and Lemma 9.2.6 shows that since f b = 1G, there
exists an algorithm that solves the strong-root problem in time at most
T + O(log b) with probability at least ε, and since b = 2O(T ), ε ≤ εstrg.
Now turn to the case in which ai 6= 0 for some i ∈ J0;nK. If n = 0, then
fa0x0+b = 1G by assumption. Writing x0 as x0 = ord(f) bx0/ ord(f)c + ρ0
for 0 ≤ ρ0 < ord(f), the random variable X0 := bx0/ ord(f)c is indepen-
dent of the values returned by A (G, P, f, fρ0), and is at a statistical dis-
tance of at most ord(f)2−2bG−λ ≤ 2−bG−λ from the uniform distribution
over

r
0;
⌊
22bG+λ/ ord(f)

⌋z
⊇

q
0; 2bG+λy . However, for A0 := a0 ord(f) and

B := a0ρ0 +b, the equation A0X0 +B = 0 in Z has no solution if A0 - B and
exactly one otherwise. Therefore, the probability that a0x0 + b = 0 in Z is
at most 2−bG−λ+1, and there exists an algorithm that solves the strong-root
problem in time at most O(T ) with probability at least ε − 2−b−G−λ+1, so
ε ≤ εstrg + 2−bG−λ+1.
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If n > 0, it suffices to prove that the probability that fa0
0 · · · fann f b = 1G

and∑i aixi+b = 0 is at most
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
.

Then, in case f
∑

i
aixi+b = 1G and ∑i aixi + b 6= 0, Lemma 9.2.6 shows that

this probability is at most εstrg. This then would imply that

ε ≤ εstrg +
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
.

Suppose that ∑i aixi + b = 0 (which implies that fa0
0 · · · fann f b = 1G).

Let d := gcd(a0, . . . , an) and note that d necessarily divides b. Besides,∑
i aixi + b = 0 if and only if ∑i(ai/d)xi + (b/d) = 0 and therefore,

f
a0/d
0 · · · fan/dn f b/d = 1G with gcd(a0/d, . . . , an/d) = 1. However, 12

G = 1G =
f
a0/d
0 · · · fan/dn f b/d although the integers ai/d cannot all be even as they are
coprime. Lemma 9.3.7 then implies that ∑i aixi + b = 0 with probability at
most

(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg +1− µ) .

Theorem 9.3.9 (Extractability of Π′). Under the
(
T strg, εstrg)-strong-root

assumption, the
(
T ord, εord

)
-small-order assumption, the low-dyadic-valuation

assumption and the µ-assumption over G, protocol Π′ (with honest CRS gen-
eration) is

(
TA, TProve∗ , TE , ε

ext,Σ′
)
-extractable for any TA and TProve∗ such

that TA + n log(n+ 1) log(P )bGTProve∗TG ≤ Ω
(
min

(
T strg, T ord

))
, with

TE = O
(
nbGTG + nlog 5+logα log(n+ 1) log(P )TProve∗/ε

)
for any α > (1− 5/P )−2 assuming that εA,Prove∗ ≥ 5nlogα/((α− 1)P ), and
with

εext = εord + εstrg

+ max
(

2−b−λ+1,
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

))
+
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
.

Proof. To prove that the system satisfies witness-extended emulation, it
suffices to show that at the (n′ + 1)th step of the protocol, a witness for
commitment Cn′+1 can be extracted by rewinding the prover, and then that
for i from n′ + 1 down to 2, given a witness for Ci, a witness for Ci−1 can
again be extracted by rewinding the prover sufficiently many times. One
a witness for the initial commitment C1 is extracted, it is then possible to
generate a transcript with the same distribution as in the interaction with
the honest verifier since the protocol is public coin.

Henceforward, and until the end of this proof, the underscript i indi-
cating the current step of the protocol will be omitted as the specific step
should always be clear from the context. The underscripts in what follows
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rather indicate several challenges at the same protocol step. It might be
convenient for the reader to think of these latter as underscripts j; for in-
stance, at the ith step of the protocol, x1, x2 and x3 are actually challenges
xi,1, xi,2 and xi,3, i.e., xi,j for j = 1, 2, 3.

Now consider the case i = n′ + 1 (recall that n′ := dlogne). Given
five transcripts

(
Γ,∆, xj , a′j , b′j , uj

)5

j=1
such that

(
gxja

′
jhxjb

′
jea
′
jb
′
jfuj

)4
=(

Cx
2
jΓxj∆

)2
for all j ∈ J5K, the goal is to extract a representation of C

in the bases g, h, e and f . To do so, consider the linear system 1 1 1
x1 x2 x3
x2

1 x2
2 x2

3


ν1
ν2
ν3

 =

0
0
1



with unknowns ν1, ν2 and ν3. Denote by X the matrix

 1 1 1
x1 x2 x3
x2

1 x2
2 x2

3

. It is a
Vandermonde matrix, and its determinant is thus (x3−x2)(x3−x1)(x2−x1).
Even if det X 6= 0, this system may not have a solution in Z, but it does in
Q. Moreover, Cramer’s rule implies that

ν1 det X = det

0 1 1
0 x2 x3
1 x2

2 x2
3

 , ν2 det X = det

 1 0 1
x1 0 x3
x2

1 1 x2
3

 and

ν3 det X = det

 1 1 0
x1 x2 0
x2

1 x2
2 1

 .
It follows that

ν1

δ1︷ ︸︸ ︷
(x3 − x1)(x2 − x1)(x3 − x2) =

γ1︷︸︸︷
1 (x3 − x2)

ν2

δ2︷ ︸︸ ︷
(x3 − x2)(x1 − x2)(x3 − x1) =

γ2︷︸︸︷
1 (x3 − x1)

ν3

δ3︷ ︸︸ ︷
(x2 − x3)(x1 − x3)(x2 − x1) =

γ3︷︸︸︷
1 (x2 − x1)

and that
det X

∑
j

δjγjx
2
j = δ det X,

∑
j

δjγjxj = 0 and
∑
j

δjγj = 0

for δ := δ1δ2δ3 and δj := δ/δj for j ∈ J3K; and δ, δj and γj are in Z for all
j ∈ J3K. Besides, note that |δ| ≤ P 3 ≤ P ′. In other words, the linear system 1 1 1

x1 x2 x3
x2

1 x2
2 x2

3


ν1
ν2
ν3

 =

0
0
δ


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has a (unique) solution in Z if det X 6= 0, and it is

δ1γ1
δ2γ2
δ3γ3

 . Therefore,
assuming x1, x2 and x3 to be pairwise distinct, one can extract, via lin-
ear combinations of the responses, integers aC , bC , zC and rC such that
C2δ =

(
gaChbCezCf rC

)4
, and δ 6= 0; and the bit length of the linear co-

efficients is of order O(logP ). However, g can be expressed in terms of
g1, . . . , gn and x1, . . . , xn, and the exponent of gn in the expression of g
is 1. Similarly, h can be expressed in terms of h1, . . . , hn and x1, . . . , xn,
and the exponent of h1 in the expression of h is 1. Lemma 9.3.7 then im-
plies that if |δ| > 1, 2δ divides 4aC , 4bC , 4zC and 4rC with probability at
least 1−

(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
. The small-order as-

sumption then implies that C =
(
gaC/δhbC/δezC/δf rC/δ

)2
g̃C for some group

element g̃C such that g̃2
C = 1G, i.e., up to a relabeling of the integers 2aC/δ,

2bC/δ, 2zC/δ and 2rC/δ, there exist a group element g̃C and integers aC ,
bC , zC and rC such that C =

(
gaChbCezCf rC

)2
g̃C and g̃2

C = 1G.

Likewise, by considering the linear systems X

ν1
ν2
ν3

 =

0
1
0

 and X

ν1
ν2
ν3

 =

1
0
0

, with probability at least the same probability as above, there exist

group elements g̃Γ and g̃∆ and integers aΓ, a∆, bΓ, b∆, zΓ, z∆, rΓ and r∆ such
that Γ =

(
gaΓhbΓezΓf rΓ

)2
g̃Γ, ∆ =

(
ga∆hb∆ez∆f r∆

)2
g̃∆ and g̃2

Γ = g̃2
∆ = 1G.

Consequently, for any (x, a′, b′, u) ∈
{(
xj , a

′
j , b
′
j , uj

)5

j=1

}
,

(
gxa

′
hxb

′
ea
′b′fu

)4
=
(
gaChbCezCf rC

)4x2 (
gaΓhbΓezΓf rΓ

)4x

(
ga∆hb∆ez∆f r∆

)4
,

Furthermore, Lemma 9.3.8 entails that

a′x = aCx
2 + aΓx+ a∆

b′x = bCx
2 + bΓx+ a∆

a′b′ = zCx
2 + zΓx+ z∆

u = rCx
2 + rΓx+ r∆

unless one can find a non-trivial discrete-logarithm relation in 〈f〉. That
is because the exponent of gn is 1 in the expression of g in terms of the
initial group elements g1, . . . , gn and of the challenges x1, . . . , xn′ , and since
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the exponent of h1 in the expression of h is 1 in terms of h1, . . . , hn and of
x1, . . . , xn′ . Multiplying the third equality by x2 then implies that(

aCx
2 + aΓx+ a∆

) (
bCx

2 + bΓx+ a∆
)
− zCx4 + zΓx

3 + z∆x
2 = 0,

i.e., the above polynomial in Z[x] is of degree 4 and has at least 5 integer
roots if the challenges x1, . . . , x5 are pairwise distinct. It is thus the zero
polynomial, aCbC = zC and (aC , bC , rC) is a valid culpable witness for C.

It now remains to show that for i from n′ down to 1, given a witness
for the commitment at the i + 1th step, a witness for the commitment
at the ith step can be extracted. To this end, consider five transcripts(
U, V, xj ,a′j ,b′j , t′j

)5

i=1
such that

(
(g1

xj ◦ g2)a′j (h1 ◦ h2
xj )b′j e〈a

′
j ,b
′
j〉f tj

)4
=
(
Ux

2
jCxjV

)2

for all j ∈ J5K. The objective is to find an expression for C in the bases g1,
g2, h1, h2, e and f .

As in the case i = n′+1, by considering the linear systems X

ν1
ν2
ν3

 =

1
0
0

,
X

ν1
ν2
ν3

 =

0
1
0

 and X

ν1
ν2
ν3

 =

0
0
1

, one can extract integers δU , δC , δV ,

zU , zC , zV , rU , rC , rV , and integer vectors aU ,aC ,aV , bU ,bC ,bV ∈ Zdn2−i+2e
such that

U2δU =
(
gaUhbU ezU f rU

)4

C2δC =
(
gaChbCezCf rC

)4

V 2δV =
(
gaV hbV ezV f rV

)4
.

Moreover, if the challenges are pairwise distinct, δU , δC , δV 6= 0. Lemma 9.3.7
and the small-order assumption imply that one can actually extract inte-
gers zU , zC , zV , rU , rC , rV , and integer vectors aU ,aC ,aV , bU ,bC ,bV ∈
Zdn2−i+2e such that

U =
(
gaUhbU ezU f rU

)2
g̃U

C =
(
gaChbCezCf rC

)2
g̃C

V =
(
gaV hbV ezV f rV

)2
g̃V

for some g̃U , g̃C , g̃V ∈ G that satisfy g̃2
U = g̃2

C = g̃2
V = 1G.
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Therefore, for any (x,a′,b′, t′) ∈
{(
xj ,a′j ,b′j , t′j

)5

i=1

}
,

1G = g1
4(xa′−aU,1x2−aC,1x−aV,1)g2

4(a′−aU,2x2−aC,2x−aV,2)h1
4(b′−bU,1x2−bC,1x−bV,1)

h2
4(xb′−bU,2x2−bC,2x−bV,2)e4(〈a′,b′〉−zUx2−zCx−zV )f4(t′−rUx2−rCx−rV ).

Lemma 9.3.8 then implies that

xa′ = aU,1x2 + aC,1x+ aV,1 (9.1)
a′ = aU,2x2 + aC,2x+ aV,2 (9.2)
b′ = bU,1x2 + bC,1x+ bV,1 (9.3)
xb′ = bU,2x2 + bC,2x+ bV,2 (9.4)

〈a′,b′〉 = zUx
2 + zCx+ zV (9.5)

t′ = rUx
2 + rCx+ rV (9.6)

since the expressions of the components of g1,g2,h1,h2 in terms of the
challenges x1, . . . , xi−1 (if i ≥ 2) and of the initial bases g1, . . . , gn, h1, . . . , hn
are such that for each component, there exists an initial basis with 1 as an
exponent. Indeed, if i = 1, then the statement is true by definition. If i ≥ 2,
denote by g(i) and h(i) the vectors at step i. Then, g(i) = g(i−1)xi−1

1 ◦g(i)2
and h(i) = h(i− 1)1 ◦h(i− 1)xi−1

2 , which shows that if the statement is true
for i−1, then it is true for i and the statement is then true for all i ∈ Jn′ + 1K.

Equations 9.1 and 9.2 imply that

aU,2x3 + (aC,2 − aU,1)x2 + (aV,2 − aC,1)x− aV,1 = 0. (9.7)

Similarly, Equations 9.3 and 9.4 entail that

bU,1x3 + (bC,1 − bU,2)x2 + (bV,1 − bC,2)x− bV,2 = 0. (9.8)

Besides, from Equations 9.2, 9.3 and 9.5,〈
aU,2x2 + aC,2x+ aV,2,bU,1x2 + bC,1x+ bV,1

〉
− zUx2 + zCx+ zV = 0,

(9.9)

and the coefficient of x in this polynomial is

〈aC,2,bV,1〉+ 〈aV,2,bC,1〉 − zC .

If the 5 challenges are pairwise distinct, the polynomials in Equations 9.7,
9.8 and 9.9 are necessarily nil as they are of degree at most 4. Therefore,
bV,1 = bC,2, aV,2 = aC,1 and zC = 〈aC ,bC〉. That is, (aC ,bC , rC) is a valid
witness for C.

Given a prover (A,Prove∗) with success probability at least ε, define
then E as an algorithm which first generates bases g,h, e as in the real
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protocol (which requires O(nbG) group operations). It continues by running
the challenge-tree generator of del Pino, Seiler and Lyubashevsky’s forking
lemma [dLS19] (corrected in Section 9.3.3) with blackbox access to Prove∗.
Since the extractor needs 5 transcripts at each recursion step, their challenge-
tree generator runs in time O

(
nlog 5+logα log(n+ 1)TProve∗/ε

)
for any α >

(1 − 5/P )−2, assuming that the prover succeeds with probability at least
5nlogα/((α − 1)P ). Then, algorithm E can extract a valid witness in time
O(n log(n+1) log(P )TProve∗) unless the extraction fails at one of the protocol
steps, since a witness at each recursion step can be computed via linear
combinations with coefficients of O(logP ) bits of integer vectors of length n
derived from integers returned by Prove∗ (so at most 2O(TProve∗ ) in absolute
value). Extraction fails with probability at most

εord + εstrg + max
(

2−b−λ+1,
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

))
+
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
,

hence the theorem.

Corollary 9.3.10 (Extractability of Π). Under the
(
T strg, εstrg)-strong-

root assumption, the
(
T ord, εord

)
-small-order assumption, the low-dyadic-

valuation assumption and the µ-assumption over G, protocol Π is (TA, TProve∗ ,
TE , qH, ε

ext, Σ)-extractable for any TA and TProve∗ such that

TA + n log(n+ 1) log(P )bGTProve∗TG ≤ Ω
(
min

(
T strg, T ord

))
,

with TE = 3TΠ̃H.Sim + 2TΠ′.E +O((b+ logn+ `)TG) and

εext = εord + εstrg + εzk
Π̃ +

(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
+ max

(
2−b−λ+1,

(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

))
,

if FS .Π̃H is
(
TΠ̃H.Sim, qH, ε

zk
Π̃H

)
-statistically honest-verifier zero-knowledge.

Proof. Given integers α, α′, r, r′ and integer vectors a, a′, b, b′ such that(
Cf2αz)2 =

(
gahbfα〈a,b〉f r

)4
and

(
Cf2α′z

)2
=
(
ga′hb′fα

′〈a′,b′〉f r
′
)4
, it

follows that

1G =
(
ga−a′hb−b′fα(〈a,b〉−z)fα

′(〈a′,b′〉−z)f r−r
′)4

.

Lemma 9.3.8 shows that if α, α′ ←$
q
0; 2b+2λy, then a = a′, b = b′ and

z = 〈a,b〉 unless one can find a non-trivial discrete-logarithm relation in
〈f〉.
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with probability at least

1− εstrg −max
(

2−b−λ+1,
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

))
.

Consider then an algorithm Π.E that generates bases as in the real proto-
col but simulates πcrs and π with FS .Π̃H.Sim (the time to generate the bases
is already included in TΠ′.E). It generates α←$

q
0; 2b+2λy, computes Cf2αz

and runs Π′.E with Prove∗ as subroutine from the computation step after
this latter has verified π, on the inputs of protocol Π′. It then obtains an in-
teger r and integer vectors a and b such that

(
Cf2αz)2 =

(
gahbfα〈a,b〉f r

)4
.

It generates anew α′ ←$
q
0; 2b+2λy, computes Cf2α′z, simulates π and runs

Π′.E as before a second time. Since Π′.E cannot extract a valid witness for
Σ′ with probability at most

εord + εstrg + max
(

2−b−λ+1,
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

))
+
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
,

the analysis above then shows that Π.E cannot extract a valid witness for Σ
with probability at most

εord + εstrg + εzk
Π̃

+ max
(

2−b−λ+1,
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

))
+
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
.

Note that the bounds on the failure probability of Π′.E already accounted
for the probability of finding non-trivial discrete-logarithm relations in 〈f〉.

As z = 〈a,b〉 and the components of a and b are of absolute value
less than 2`, |z| ≤ n22` and Cf2αz and Cf2α′z can both be computed in
O(bG + `+ logn) group operations. Therefore, Π.E runs in time 3TΠ̃H.Sim +
2TΠ′.E +O((b+ logn+ `)TG) and the theorem follows.

Challenge-Tree Generators.

For any prover (A,Prove∗) with success probability at least ε > 0, the
challenge-tree generator of del Pino, Seiler and Lyubashevsky’s forking lemma
[dLS19] is claimed to run in time O

(
nlogm+logα log(n) TProve∗/ε) for any

α > (1 − 5/P )−2, with m denoting the arity of the tree that must be gen-
erated. However, we explain that their analysis does not apply to their
algorithm, and show how to modify their algorithm to obtain the claimed
bound.
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More precisely, the task of their algorithm is to generate a rooted tree
of height n′ = dlogne (the number of recursion steps) in which each node
at height 1 ≤ i ≤ n′ − 1 has mi children (m = maxmi), and to label each
node with a challenge so that no two siblings in the tree have the same label.
Moreover, the executions of Prove∗ with the challenges on the paths from
the root to each leaf must be accepting. These conditions must all be met
for the extractor of the Bulletproofs to be bale extract a witness at each
recursion step.

To generate such challenge trees, Bootle et al. [BCC+16] had proposed
a recursive tree-finder algorithm that, given fixed challenges x1, . . . , xi−1,
generates a challenge xi uniformly at random at each recursion step i > 1
and makes a recursive call with x1, . . . , xi. A challenge is then appended to
the tree if the recursive call returns a non-empty tree. At the last recursion
step (i.e., at each leaf of the tree), the algorithm runs the protocol with the
generated challenge and returns the challenge (as single node) only if the
execution is successful. At each recursion step i < n′, the algorithm repeats
the procedure of generating fresh challenges and making recursive calls as
many times as necessary to obtain mi challenges that eventually lead to a
success.

The main issue with their algorithm as pointed out by del Pino, Seiler
and Lyubashevsky is that for challenges x1, . . . , xi−1, the prover may only
have negligible success probability if the first i − 1 challenges are fixed to
x1, . . . , xi−1, even though the overall success probability of the prover might
be non-negligible if all challenges are generated uniformly at random. As a
consequence, in case such x1, . . . , xi−1 is chosen, the tree-finder algorithm
may run for an arbitrarily long time.

To resolve this issue, del Pino, Seiler and Lyubashevsky’s idea was then
to estimate the probability that a certain xi leads to a success probability
that is not too small compared to the success probability of the prover with
fixed x1, . . . , xi−1 before appending xi to the tree, and then recursively call the
tree-finder algorithm. More precisely, if εi(x1, . . . , xi−1) denotes the success
probability of the prover with the first i− 1 challenges fixed to x1, . . . , xi−1
if i > 1 (set ε1 = ε), their idea is to generate a challenge xi that is distinct
from its siblings and estimate whether εi+1(x1, . . . , xi) ≥ εi(x1, . . . , xi−1)/α
for some constant α > 1 (to conduct their analysis, α must actually be
greater than (1 − 5/P )−2). To perform this estimation for a generated xi,
the tree-finder algorithm runs the protocol with the first i challenges fixed
to x1, . . . , xi a certain number Ti = O

(
nlogm+logαTProve∗/ε

)
of times and

counts the number of successful executions. Challenge xi is then appended
to the tree only if this number is higher than a certain threshold. If the
threshold is not reached, the algorithm generates a fresh challenge xi.

Using probabilistic methods, they attempt to show that the probability
that with this number Ti of protocol runs, for a certain challenge xi, (1)
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the probability that εi+1 ≥ εi/α and that the threshold is reached is high,
and (2) the probability that εi+1 < εi/α although the threshold is reached
is low. The second part lead to a proof that the probability that no node in
the final tree is labeled with a challenge xi such that εi+1 < εi/α is high.

However, an issue in the proof of the first step is in the use of heavy-row
arguments: the authors claimed that the probability that xi is such that
εi+1 ≥ εi/α is at least 1 − 1/α, which is not the guaranteed by heavy-row
arguments. Instead, heavy-row arguments guarantee that the probability
that xi is such that εi+1 ≥ εi/α conditioned on the event in which xi leads
to a success is at least 1 − 1/α. Without the conditioning, the best known
bound is only εi(1− 1/α).

We thus propose to modify their tree-finder algorithm as follows: the
algorithm does not generate a challenge xi and start counting, but instead
generates xi and runs the protocol until the end. If the execution is not
successful, then the algorithm generates a fresh challenge xi. If the execution
is successful, then the algorithm proceeds with the counting. This way, when
the algorithm starts counting, xi is already known to lead to a success and
their running-time analysis applies. The expected running time to generate
a value xi that leads to a success is TProve∗/εi.

Now recall that a challenge xi is only appended to the tree if it sub-
sequently leads to a high number of successes. The analysis of del Pino,
Seiler and Lyubashevsky then continued by showing that, in expectation, a
constant of xi must be drawn before appending one to the tree, assuming
that only xi such that εi+1 ≥ εi/α are chosen. Therefore, the expected run-
ning time until our algorithm appends a challenge xi to the tree is of order
O((1/εi + Ti)TProve∗) in expectation; and since εi ≥ ε/αi−1, 1/εi = o(Ti),
and O((1/εi + Ti)TProve∗) = O(Ti). Their analysis of the expected running
time of the whole tree-finder algorithm in case only challenges such that
εi+1 ≥ εi/α are chosen then shows that the expected time of our algorithm
is of order O

(
nlogm+logα log(n+ 1)TProve∗/ε

)
; and our algorithm certainly

returns a challenge-tree with transcripts that are all accepting, not just with
probability 1/4 as theirs.

9.4 Succinct Arguments for Multi-Integer Com-
mitments

This section gives several succinct protocols related to multi-integer commit-
ments. The first protocol allows to succinctly argue knowledge of an opening
to a multi-integer commitment, and is based on the same halve-then-recurse
techniques as in Section 9.3. Then comes a protocol that allows to aggregate
arguments of knowledge of openings to several commitments (and the tech-
niques used in it can be applied to additively-homomorphic commitment
scheme in public-order groups). With the same aggregation techniques, we
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then show how to obtain short parameters for the commitment scheme in
Section 9.2.2 and the inner-product argument in Section 9.3. Finally, we
show how to succinctly argue knowledge of the same opening to several
commitments in different bases.

9.4.1 Succinct Arguments of Openings

It is worth noting that the halving techniques used in protocol Π′ can also
be used to argue knowledge of openings to the multi-integer commitments
presented in Section 9.2.2. To argue knowledge of integers a1, . . . , an, r (with
n ≥ 2) of absolute value less than 2` and such that C2 = (gahr)4 for
positive integers n and `, group elements h, g1, . . . , gn, C ∈ G and a proof
πcrs that g ∈

√
〈h2〉n, the prover starts by verifying πcrs and aborts if it is

invalid. Next, she computes U ← g1
a2hsU and V ← g2

a1hsV for sU and sV
uniformly random over the same range as in protocol Π′, and sends them to
the verifier. The verifier chooses x←$ J0;P − 1K, sends it to the prover, and
this latter computes a′ ← a1 + xa2. They then recurse (without verifying
πcrs) with dn/2e as new vector-length, gx1 ◦ g2 and h as new bases, Ux2

CxV
as commitment, and the prover uses a′ and sv + rx+ sUx

2 as new witness.
When the vector length is 1, they run the protocol in Section 9.2.2.

As in the inner-product protocol, the bit communication complexity of
the prover is of the order of O (`+ log(n)bG) bits.

This should compared with the complexity of the straightforward pro-
tocol which consists in adapting the protocol in Section 9.2.2 with vector of
length 1 to the case of vectors of length n. The bit complexity of this lat-
ter protocol is of order O (bG + n (`+ λ+ logP )), and O (n (`+ λ+ logP ))
with the Fiat–Shamir heuristic.

9.4.2 Aggregating Arguments of Openings to Integer Com-
mitments

This section shows how to aggregate several arguments of knowledge of
openings to integer commitments, i.e., given m commitments C1, . . . , Cm,
how to argue at once knowledge of integer vectors aj ∈ Zn and integers
rj such that C2

j = (gajhrj )4 for all j ∈ JmK. These techniques can also be
applied to Pedersen’s commitments in public-order groups, in which case the
size of the proof is constant in m (the only effect of m is on the extraction
probability).

More formally, the protocol is for the relation{
(C ∈ Gm, ` ∈ N∗; a1, . . . ,am ∈ Zn, r ∈ Zm) : ∀j ∈ JmK C2

j = (gajhrj )4

∧
∥∥∥[aj rj

]∥∥∥
∞
< 2`

}
,
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given parameters (G, P, h, n,m) and (g, πcrs) ∈ Gn × {0, 1}∗ as CRS. The
protocol satisfies culpable extractability w.r.t. the language define similarly
but without the bounds on the witness.

The construction is generic in the sense that it builds upon any protocol
for a single commitment. Of course, aggregating arguments is only interest-
ing if it leads to savings in terms of communication size and computational
costs compared to m parallel executions of the protocol for a single inner
product. Applied to the protocol in Section 9.3.1, the number of group
elements sent by the prover in the aggregated argument is 2dlog(n)e + 1
instead of m(2dlogne + 1) group elements for m parallel executions of the
protocol, but the last two integers in the aggregated argument are mP times
larger. Moreover, the verification of the aggregated argument requires a sin-
gle multi-exponentiation instead of m, but with exponents that are mP
times larger than for m separate multi-exponentiations.

Protocol.

The main building block is a protocol Π for the relation in Section 9.4.2.
At the beginning of the protocol, the verifier chooses integers ξ1, . . . , ξm
←$ J0;P − 1K and sends them to the prover. The prover and the verifier
then compute Cξ11 · · ·Cξmm . With (G, P, h, n) as parameters, and g and the
proof that g ∈

√
〈h2〉n as CRS, the parties run Π on the input of Cξ11 · · ·Cξmm

and `+ blog(mP )c+ 1 as maximum length (if ` is the maximum bit length
of the integers in the witness); and the prover uses ξ1a1 + · · ·+ ξmam ∈ Zn
and ξmr1 + · · ·+ ξmrm ∈ Z as witness.

The underlying idea is simple: if the prover indeed knows openings to
all commitments, then this latter should be able to open random linear
combination of C1, . . . , Cm, and this is enough to convince the verifier as the
prover can guess the combination ξ1, . . . , ξm in advance with only negligible
probability.

Alternatively, the verifier could send a single integer ξ ←$ J0;P − 1K,
which would define a vector Ξ :=

[
1 ξ · · · ξm−1

]
. Although this would

reduce the communication from the verifier to the prover, the integers in
the witness would be Pm times larger instead of mP times. In case op-
timizing the communication size from the prover is more important (e.g.,
for non-interactive arguments with the Fiat–Shamir heuristic, although the
computational cost of the prover increases), the first variant is preferable.
It should be noted that in public-order groups, one should rather favor the
second variant since the integers can always be reduced modulo the group
order.
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Completeness and Security.

The protocol is complete by construction. Moreover, if Π is (T, TSim, ε)-
honest-verifier zero-knowledge, then so is the protocol.

As for extractability, note that for any matrix Ξ ∈ Zm×m, denoting by
ej ∈ Zm the canonical row vector with 1 at position j and 0 elsewhere for
j ∈ JmK, and by adj(Ξ) the adjugate matrix of Ξ, the vector xj := ej adj(Ξ)
satisfies xjΞ = ej adj(Ξ)Ξ = det(Ξ)ej since adj(Ξ)Ξ = det(Ξ)Im. Assuming
that for all i ∈ JmK, the equality

(
C
ξi,1
1 · · ·Cξi,mm

)2
= (gaihri)4 holds for

some integer vectors ai ∈ Zm and integers ri, it follows that C2 det Ξ
j =(

g
∑m

i=1 xj,iaih
∑m

i=1 xj,iri
)4

for all j ∈ JmK.
Consider then an extractor which first generates Ξ1 ←$ J0;P − 1Km. If

Ξ1 = 0Zm , then it generates a new vector Ξ1 and otherwise runs the proto-
col with Prove∗ with Ξ1 as first message from the verifier. If the protocol
execution fails, then the extractor rewinds the Prove∗ to the beginning of
the protocol and generates a fresh vector Ξ1.

Note that conditioned on the event in which Ξ1 6= 0Zm , Prove∗ convinces
the verifier with probability at least ε − P−m. Moreover, conditioned on
the first message Ξ1, a heavy-row argument implies that with probability at
least 1/2, the row vector Ξ1 is such that the verifier of the sub-protocol Π
is convinced with probability at least (ε− P−m)/2 on input Cξ1,11 · · ·Cξ1,mm .

The extractor then runs Π.E on Prove∗ from the computation step after
it has received Ξ1. If Π.E does not return a value in at most twice the ex-
pected value of its running time with a prover that succeeds with probability
at least (ε−P−m)/2, the extractor generates a new vector Ξ1 and proceeds
as before. Denote by H (as in “heavy”) the event in which Ξ1 is such that
the verifier of Π is convinced with probability at least (ε − P−m)/2, and
by T the event in which Π.E returns a value in at most twice the expected
value of its running time with a prover that succeeds with probability at
least (ε − P−m)/2 for a given C

ξ1,1
1 · · ·Cξ1,mm (Markov’s inequality implies

that this event occurs with probability at most 1/2). The extractor re-
turns a value in the event H ∩ T and Pr[T ∩ H] = Pr[T |H] Pr[H] ≥ 1/4.
Therefore, the generator restarts from the generation of Ξ1 an expected
number of times at most 4 and at each repetition, its running time is at
most ε̃−1(1−P−m)−1TProve∗ + 2TΠ.E(ε̃/2), with ε̃ := ε−P−m and TΠ.E(ε̃/2)
the expected running time of Π.E given a prover that succeeds with proba-
bility at least ε̃/2. The term TProve∗ comes from the fact that the generator
must determine whether Ξ1 leads to a success. The expected running time
is at most 4

(
ε̃−1(1− P−m)−1TProve∗ + 2TΠ.E(ε̃/2)

)
.

Now, for i ∈ {2, . . . ,m}, the extractor generates Ξi ←$ J0;P − 1Km.
If Ξ1, . . . ,Ξi are linearly dependent over Q, then the extractor generates a
new vector Ξi ←$ J0;P − 1Km. Slinko [Sli01, Corollary 2] proved that this
event occurs with probability at most P−m+i−1. It follows that for fixed
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Ξ1, . . . ,Ξi−1, conditioned on the event in which Ξ1, . . . ,Ξi are linearly inde-
pendent, Prove∗ convinces the verifier with probability at least ε−P−m+i−1.
The extractor proceeds as in the case i = 1 but with P−m+i−1 ≤ P−1 in-
stead of P−m. Note, however, that the extractor must determine whether
Ξ1, . . . ,Ξi are linearly independent, and it can do so by computing its rank,
i.e., the rank of a matrix with coefficient in J0;P − 1K. Using Bareiss algo-
rithm [Bar68] which requires O(m3) arithmetic operations on integers less
than O

(
mm/2Pm

)
, i.e., it can be done in time O

(
m5(logm+ logP )2). Be-

sides, the extractor must determine whether Ξi leads to a success, which
takes time at most TProve∗ . At any step i ∈ JmK, the expected running time
is thus at most

4
(
ε̃−1O

((
1− P−1

)−1 (
m5(logm+ logP )2 + TProve∗

))
+ 2TΠ.E(ε̃/2)

)
for ε̃ := ε− P−1.

Consequently, the extractor can obtain vectors ai ∈ Zn and integers
ri such that

(
C
ξi,1
1 · · ·Cξi,mm

)2
= (gaihri)4 for all i ∈ JmK and for some

Ξ ∈ Zm×m such that det Ξ 6= 0 in expected time at most

4m
(
O

(
ε̃−1

(
1− P−1

)−1 (
m5(logm+ logP )2 + TProve∗

))
+ 2TΠ.E(ε̃/2)

)
.

Lemma 9.3.7 then shows that with probability at least

1−
(
1/2− 2−λ − (1− µ)

)−1 (
εord + εstrg + 1− µ

)
,

det Ξ divides 2∑m
i=1 xi,jai and 2∑m

i=1 xi,jri for all j ∈ JmK under the
(
T strg,

εstrg)-strong-root assumption, the
(
T ord, εord

)
-small-order assumption, the

low-dyadic-valuation assumption and the µ-assumption over G, if TΠ.E(ε̃/2)
plus the time to compute 2∑m

i=1 xi,jai and 2∑m
i=1 xi,jri, which is denoted T ,

is such that n(bG + logn)TTG + (T + bG + logn) log(P )TG ≤ Ω
(
min

(
T strg,

T ord
))
. The coefficient of adj(Ξ) are of order O(mPm) in absolute value,

and the components of ai and ri are at most 2O(TΠ.E(ε̃/2)) in absolute value.
Therefore, 2∑m

i=1 xi,jai and 2∑m
i=1 xi,jri can be computed in time

O (nmTΠ.E(ε̃/2) (logm+m logP )) .

9.4.3 Shorter Parameters for Integer Commitments

The keys of the multi-integer commitment scheme in Section 9.2.2 include
a proof that that they were well-formed, i.e., that if the scheme allows to
commit to m integers, then the group elements g1, . . . , gm in the key are all
in
√
〈h2〉 for h←$ G. One can of course run m times in parallel the protocol
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in Section 9.2.2, which would result in arguments of O(mbG) bits. Alterna-
tively, one could use the same techniques as in Section 9.4.2 to aggregate
these arguments and obtain a single argument of O(bG + logm) bits.

In more detail, the protocol is a proof system for the language{
g1, . . . , gm ∈ G, ` ∈ N∗ : ∃α1, . . . , αm ∈

r
0; 2`

z
,∀i ∈ JmK gi = hαi

}
,

given parameters (G, P, h,m) and the empty string as CRS. It guarantees
that gi ∈

√
〈h2〉 for all i ∈ JmK. At the beginning of the protocol, the

verifier chooses integers ξ1, . . . , ξm ←$ J0;P − 1K and sends them to the
prover. The prover and the verifier compute gξ11 · · · gξmm , and run the protocol
of Section 9.2.2 (i.e., for the case m = 1) on the input of gξ11 · · · gξmm and
` + blog(mP )c + 1 as maximum bit length; and the prover uses ξ1x1 +
· · ·+ ξmxm ∈ Z as witness. With the Fiat–Shamir heuristic, the proof then
consists of 2 blogP c + ` + blog(mP )c + λ + 4 bits. For ` = bG + λ, that is
O(bG+logm) bits (recall that P ≤ 2bG and bG = Ω(λ)). The same arguments
as in Section 9.4.2 imply that this protocol is complete, statistically honest-
verifier zero-knowledge and extractable.

Similarly, the CRS of the inner-product protocol in Section 9.3.1 includes
an argument that the bases g and h ∈ Gn (for some n ∈ N∗) are in

√
〈f2〉n

for f ←$ G. The same technique can then be used to obtain an argument
of O(bG + logn) bits instead of O(nbG) bits.

9.4.4 Succinct Base-Switching Arguments

This section shows how to succinctly argue knowledge of an integer vector
a ∈ Zn and of integers r1, . . . , rm such that (a, r1) , . . . , (a, rm) respectively
open to commitments C1, . . . , Cm w.r.t. bases (g1, h) , . . . , (gm, h) ∈ Gn+1.
Said otherwise, the same vector a is committed in m different bases. For-
mally, the protocol is for the relation{

(C ∈ Gm, ` ∈ N∗; a ∈ Zn, r ∈ Zm) : ∀j ∈ JmK C2
j = (gjahrj )4

∧
∥∥∥[a r

]∥∥∥ < 2`
}
,

given parameters (G, P, h, n,m) and (g1, . . . ,gm, πcrs) ∈ Gm×n × {0, 1}∗ as
CRS, and πcrs is an argument that each of the components of all the gj
vectors are in

√
〈h2〉.

The idea underlying the protocol is again to use linear combinations to
reduce C1, . . . , Cm to a single group element, and run the succinct argument
for multi-integer openings on the linear combination of the basis. More
precisely, the verifier generates ξ ←$ J0;P − 1Km and sends it to the prover.
Both parties compute C ← Cξ = Cξ11 · · ·Cξmm and g← gξ11 ◦ · · · ◦ gξmm . They
then run the protocol for multi-integer openings on the input of C and g,
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and the prover uses a and ξ1r1 + · · ·+ ξmrm as witness. The new witness is
then at most mP times larger than the original one.

The completeness and the zero-knowledge property of the scheme are im-
mediate. Concerning its extractability, notice that if for all i ∈ JmK one can
obtain vectors ai ∈ Zm and integers rj such that C2ξi =

(
g
ξi,1
1 ◦ · · · ◦ gξi,mm

)4ai

h4ri , with ξ1, . . . , ξm vectors in J0;P − 1Km that are linearly independent over
Q, then one can first compute xj := ej adj(Ξ), where ej ∈ Zm denotes the
canonical row vector with 1 at position j and 0 elsewhere for all j ∈ JmK,
Ξ denotes the matrix with rows ξ1, . . . , ξm and adj(Ξ) its adjugate. Then,
since xjΞ = det(Ξ)ej , it follows that for all j ∈ JmK,

C2 det Ξ
j =

m∏
i=1

(
g1
ξi,1 ◦ · · · ◦ gmξi,m

)4xj,iaj
h
∑

i
4xj,irj

=
m∏
i=1

(
g1

xj,iξi,1 ◦ · · · ◦ gmxj,iξi,m
)4aj

h
∑

i
4xj,irj

=
(
g1
∑

i
xj,iξi,1 ◦ · · · ◦ gm

∑
i

xj,iξi,m
)4aj

h
∑

i
4xj,irj

= gj4 det(Ξ)ajh
∑

i
4xj,irj .

The second and third equalities respectively rely on the fact that for any
two vectors e, f ∈ Gn and any vector c ∈ Zn, (e ◦ f)c = ecfc, and for any
two integers c, d, ec ◦ ed = ecd. Using rewinding techniques similar to those
in the extractability proof the aggregated arguments then shows that the
protocol is extractable.

9.5 Succinct Argument for Diophantine Equations

This section gives a succinct argument to argue satisfiability of Diophantine
equations. Although Davis, Putnam, Robinson and Matiyasevich [Mat70]
showed that there does not exist an algorithm that can decide whether any
Diophantine equation has a solution (thereby giving a negative answer to
Hilbert’s tenth problem), one can argue in zero-knowledge knowledge of a
solution, if a solution is known to the prover, which convinces the verifier
that the equation is satisfiable.

Damgård and Fujisaki gave [DF02, Section 4.2] a protocol to argue, given
three commitments C1, C2, C3 computed with their scheme, knowledge of
openings x1, x2, x3 such that x3 = x1x2. Therefore, to show the satisfiability
of an ν-variate polynomial ∑i∈Nν aix

i1
1 · · ·xiνν of total degree δ using their

scheme, if the polynomial can be computed in M(ν, δ) multiplications, then
one would have to compute 2M(ν, δ) + 1 integer commitments and compute
M(ν, δ) multiplication-consistency arguments. As Damgård and Fujisaki’s
scheme is additively homomorphic, the verifier can verify addition itself.
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Computing a monomial xi11 · · ·xiνν can be done in at most δ − 1 multi-
plications since the polynomial is of total degree δ. Without any further
restriction on the polynomial than its number of variables ν and its total
degree δ, the best bound on the number of multiplications (between vari-
ables) one can give is δ − 1 as δ could be less than ν, and all ik at most 1.
Evaluating an ν-variate polynomial of total degree δ thus a priori requires
(δ − 1)

(ν+δ
δ

)
multiplications as such a polynomial has at most

(ν+δ
δ

)
mono-

mials. This can be improved to
(ν+δ
δ

)
− ν − 1 ≤

(ν+δ
δ

)
multiplications by

evaluating all possible monomials (even those which may have coefficient 0)
recursively by increasing degree and storing the previous evaluations. There
exist more efficient methods for specific polynomials (e.g., recursive Horner’s
method or summation for polynomials with a small numbers of monomials
of large degree) but no better upper-bound on the number of multiplications
is known for generic polynomials.

Consider a prover that wants to argue the satisfiability of a (generic) ν-
variate polynomial of total degree δ with integer coefficients whose absolute
value is upper-bounded by 2H for some integer H. The communication
complexity of the arguments of the first multiplication gates are of order
Ω(logP + `+ bG) if ` denotes the maximum bit length of any coordinate in
the solution. Since the total degree of the polynomial is δ, the bit length
of the witness at the maximum-depth multiplication gates can be as large
as δ` + log

((ν+δ
δ

))
H and the communication complexity of the argument

of the satisfiability of the Diophantine equation (i.e., the proof that the
polynomial actually evaluates to 0) is Ω

(
δ`+ log

((ν+δ
δ

))
H + bG

)
. The

overall communication complexity with Damgård and Fujisaki’s scheme is
therefore upper-bounded by O

((ν+δ
δ

) (
δ`+ log

((ν+δ
δ

))
H + bG

))
and lower-

bounded by Ω
((ν+δ

δ

)
(`+ bG)

)
for generic polynomials.

This section shows how to argue the satisfiability of Diophantine equa-
tions with a communication complexity of order O (δ`+ min(ν, δ) log (ν + δ)
bG +H) .

9.5.1 Arguments via Polynomial-Degree Reductions

Our approach to argue for Diophantine satisfiability is different and is in-
spired by Skolem’s method [Sko50]. The idea is to give a systematic method
to turn any polynomial equation to another of degree at most 4 by increasing
the number of variables so that the satisfiability of one polynomial implies
that of the other. The resulting polynomial is such that its satisfiability is
equivalent to the satisfiability (over the integers) of a Hadamard product of
the form aL ◦ aR = aO and of linear equations with the entries of aL, aR
and aO as indeterminate. The length of these latter vectors is the number
of variables in the resulting polynomial, and if the original polynomial is ν-
variate and of total degree at most δ, then the new polynomial has at most
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νblog δc + (δ − 1)µ variables, where µ ≤
(ν+δ
δ

)
is the number of monomials

in the original polynomial.
On this account, if one can argue for the satisfiability of such Hadamard

products and linear constraints, then one can argue for the satisfiability of
the original polynomial. In the protocol given in Section 9.5.2, the prover
only sends logarithmically many group elements in the length of the vectors
in the Hadamard product, and a constant number of integers. The bit length
of those integers is upper-bounded byO (δ`+ bG + min(ν, δ) log (ν + δ) logP+
H) if the bit length of the witness is upper-bounded by ` and the bit length
of each coefficient of the polynomial is at most H.

Reducing Arbitrary Polynomials to Polynomials of Degree at most
4.

We now give a systematic procedure to reduce any Diophantine equation into
an equation of degree at most 4 of which the satisfiability can be reduced
to the satisfiability of a Hadamard product and linear constraints; and the
Hadamard product and the constraints can be read immediately from the
resulting polynomial. The presentation is gradual as it starts with ν-variate
affine equations, proceeds with ν-variate Diophantine equations in which the
degree in each variable is at most 1, further tackles univariate polynomials of
arbitrary degree and then considers arbitrary Diophantine equations. The
method applies to every multivariate integer polynomial, but for specific
polynomials, more astute techniques could lead to a smaller number of new
variables and/or constraints.

Step 1–Affine Equations. Given an integer polynomial a1x1+· · ·+aνxν+
b ∈ Z[x1, . . . , xν ], set aO ←

[
x1 · · · xν

]
and for all i ∈ JνK, set

aL,i = 1 and aR,i = xi. The equation a1x1 + · · · + aνxν + b = 0 is
satisfied if and only if

〈[
a1 · · · aν

]
,aO

〉
= −b and aL ◦ aR = aO.

Note that no variable or linear constraint was added to the system of
equations.

Step 2–Restricted Diophantine Equations. Consider an integer poly-
nomial ∑i∈Nν aix

i1
1 · · ·xiνν ∈ Z[x1, . . . , xν ] of total degree δ such that

ai 6= 0Z =⇒ i ∈ {0, 1}ν , i.e., the polynomial is of degree at most
1 in each variable. For all i ∈ Nν \ {0Nν} such that ai 6= 0Z, let
{j1, . . . , jw(i)} be the subset of JνK such that j1 < · · · < jw(i) and
ij1 = · · · = iw(i) = 1, with w(i) denoting the Hamming weight of i
(which is necessarily less than δ). If w(i) > 1, introduce new variables

ui,1 ← xj1xj2 , ui,2 ← ui,1xj3 , . . . , ui,w(i)−1 ← ui,w(i)−2xjw(i) ,

with the convention that ui,0 := xj1 . Note that ∑i∈Nν aix
i1
1 · · ·xiνν = 0
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if and only if

∑
i∈Nν : ai 6=0Z
w(i)>1

w(i)−1∑
k=1

(
ui,k − ui,k−1xjk+1

)2 +

∑
i∈Nν

aiui,w(i)−1

2

= 0,

with the convention that u0Nν ,−1 = 1. This latter polynomial is of
degree 4, and the equation is satisfied if and only if the linear equation∑

i∈Nν aiui,w(i)−1 = 0 is as well as the constraints ui,k−ui,k−1xjk+1 = 0.
Set then

aL ←
[
xj1 ui,1 · · · ui,w(i)−2

]
aR ←

[
xj2 xj3 · · · xjw(i)

]
aO ←

[
ui,1 ui,2 · · · ui,w(i)−1

]
,

and introduce the linear constraints aL,i+1 − aO,i = 0 for all i ∈
{1, . . . , w(i)−2}. The procedure introduces at most δ−1 new variables
and δ − 2 new linear constraints per monomial, and since there are at
most

(ν+δ
δ

)
monomials in an ν-variate polynomial of total degree δ,

that is at most (δ − 1)
(ν+δ
δ

)
variables and (δ − 2)

(ν+δ
δ

)
constraints.

Step 3–Univariate Polynomials. Given a polynomial Z = a0 + a1x +
· · ·+ aδx

δ ∈ Z[x] of degree δ ≥ 2, introduce variables

u1 ← x2, u2 ← u2
1, . . . , ublog δc ← u2

blog δc−1.

Now notice that a0 + a1x+ · · ·+ aδx
δ = 0 if and only if

(
u1 − x2

)2
+
blog δc∑
i=2

(
ui − u2

i−1

)2
+
(
Z ′(x, u1, . . . , ublog δc)

)2
= 0,

where Z ′(x, u1, . . . , ublog δc) is blog δc + 1-variate integer polynomial
in which the degree of each variable is at most 1, i.e., if and only if
Z ′(x, u1, . . . , ublog δc) = 0 and the constraints u1 − x2 = 0 and ui+1 −
u2
i = 0 are satisfied.

Since

δ∑
i=0

aix
i = a0 +

blog δc∑
k=0

2k+1−1∑
i=2k

aix
i = a0 +

blog δc∑
k=0

2k+1−1∑
i=2k

aix
i0ui11 · · ·u

ik−1
k−1 uk,

where i0, . . . , ik−1 is the binary decomposition of i and ai := 0 for
i > δ, this give an explicit expression for Z ′.
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Set then the vectors aL ← aR ←
[
x u1 · · · ublog δc−1

]
and aO ←[

u1 u2 · · · ublog δc
]
, and introduce constraints

aL,i+1 − aO,i = aR,i+1 − aO,i = 0

for all i ∈ Jblog δc − 1K.
As the second step shows that the satisfiability of Z ′ can be reduced
to a Hadamard product and linear constraints, the satisfiability of Z
can be reduced to a Hadamard product and linear constraints. This
procedure introduces blog δc new variables and 2 (blog δc − 1) new lin-
ear constraints. It is important for Step 4 to remark that the number
of monomial of Z ′ is at most the same as the number of monomials in
Z.

Step 4–Arbitrary Diophantine Equations. For any integer polynomial
Z = ∑

i∈Nν aix
i1
1 · · ·xiνν ∈ Z[x1, . . . , xν ] (for ν ≥ 2) of total degree δ,

apply Step 3 to Z considering it as a polynomial in Z[x2, . . . , xν ][x1],
i.e., a polynomial in x1 with coefficients in Z[x2, . . . , xν ]. Let Z ′ be the
resulting polynomial with coefficients in Z[x2, . . . , xν ] and of degree at
most 1 in each variable as in Step 3. Repeat Step 3 with Z ′ and
variable x2. After Step 3 has been repeated for each x1, . . . , xν , at
most νblog δc new variables and 2ν(blog δc− 1) new linear constraints
have been introduced, the resulting polynomial is of degree at most 1
in all variables and has coefficients in Z. Concerning its total degree,
note that during the process, for each monomial xi11 · · ·xiνν , the term
xikk is replaced by at most one variable if ik ≤ 2 and by the product
of log ik + 1 ≤ ik variables if ßk > 2 for all k ∈ JνK, so the total degree
remains at most δ. Now apply then Step 2 to the resulting polynomial.

In summary, the procedure reduces the satisfiability of any polynomial in
Z[x1, . . . , xν ] of total degree δ with µ monomials (µ ≤

(ν+δ
δ

)
necessarily) to

the satisfiability of a Hadamard product aL ◦ aR = aO, with aL, aR and aO
integer vectors of length at most νblog δc+(δ−1)µ, and Q linear constraints
of the form

〈wL,q,aL〉+ 〈wR,q,aR〉+ 〈wO,q,aO〉 = cq

for all q ∈ JQK withQ ≤ 1+2ν(blog δc−1)+(δ−2)µ and with wL,q,wR,q,wO,q

integer vectors and cq ∈ Z. The coefficients of the linear constraints in-
troduced by the procedure are in {−1, 0, 1}, except for one of which the
coefficients are the coefficients of the original polynomial.

Example. As a simple illustration of the procedure, consider the polyno-
mial 2x3 + xy− 1. The procedure introduces new variables u← x2, v ← xy



246 9.5 Succinct Argument for Diophantine Equations

and w ← ux, and the equation 2x3 + xy − 1 = 0 is satisfiable if and only if(
u− x2)2 + (v − xy)2 + (w − ux)2 + (2w + v − 1)2 = 0 also is, which allows
to write a Hadamard product and linear constraints which are satisfiable if
and only if this latter equation is.

Diophantine Equations as Circuits.

It is worth noting that any polynomial in Z[x1, . . . , xν ] can naturally be
viewed as an arithmetic circuit with integer inputs, and addition gates cor-
respond to addition between two integers and similarly for multiplication
gates. Nevertheless, different circuits can compute the same polynomial.
For instance, the polynomial xy + 2y = y(x + 2) can be computed by mul-
tiplying x and y, multiplying y by 2 and adding the result, or by adding 2
to x and multiplying the result by y. The fewer multiplication gates there
are in a circuit that represents a polynomial, the smaller the communication
cost of the protocol for its satisfiability will be. In any case, one can always
use the circuit directly inferred by its representation as sum of monomials.

Bootle, Cerulli, Chaidos, Groth and Petit [BCC+16, Appendix A] de-
scribed a procedure to turn any arithmetic circuit over Zp into a circuit with
only multiplication gates together with a list of linear constraints to ensure
consistency between the outputs of a multiplication gate and the inputs of
the gates at the next depth level of the circuit. The procedure replaces
addition gates and multiplication by a constant with linear constraints and
only retains multiplication gates. It ensures that the new circuit and the
constraints are satisfiable if and only if the original circuit is satisfiable.

More precisely, their procedure converts any arithmetic circuit with n
multiplication gates into a Hadamard product aL ◦ aR = aO, with aL, aR
and aO in Znp , and Q ≤ 2n linear constraints of the form

〈wL,q,aL〉+ 〈wR,q,aR〉+ 〈wO,q,aO〉 = cq

for q ∈ JQK, with wL,q,wR,q,wO,q ∈ Znp and cq ∈ Zp. The vectors aL, aR
respectively denote the vectors of left and right inputs to the multiplication
gates, and aO the vector of outputs.

Unfortunately, their procedure cannot be directly use for circuits over
the integers as it requires to re-write a linear equation y = Ax (with inde-
terminate x) as an equation z = A′x, with A′ in reduced row-echelon form
obtained from A via Gaussian elimination. Computing A′ may thus possi-
bly require to invert entries of A. Yet, for any matrix A ∈ Zm×n, there ex-
ist [Art10, Theorem 14.4.6] invertible integer matrices Q ∈ GLm(Z) and P ∈
GLn(Z) such that Q−1AP is a matrix of the form diag(d1, . . . , dk, 0, . . . , 0),
with all di positive integers such that d1 | d2 | · · · | dk. Given this obser-
vation, the equation y = Ax can be re-written as z = A′x, with A′ of the
previous form, i.e., zi = dixi for i ∈ JkK, and the circuit cannot be satisfied
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if zi 6= 0 for any k > i. By introducing new variables zi := dixi, and increas-
ing the number of constraints to include the constraints zi − dixi = 0, one
could probably proceed as they did and have at most Q ≤ 3n constraints to
satisfy.

The issue with using this procedure to argue for Diophantine satisfiabil-
ity is that one cannot readily infer the constraints from the initial polynomial
and one must always determine them on a case-by-case basis. Besides, if one
uses the circuit directly inferred by the monomials of the polynomial with-
out introducing new variables to decrease its degree (which would amount
to modifying the circuit), computing xδ1 for instance requires δ− 1 multipli-
cations instead of blog δc as with our method.

9.5.2 Protocol

Section 9.5.1 shows how to reduce the satisfiability of any polynomial in
Z[x1, . . . , xν ] of total degree δ with µ monomials (µ ≤

(ν+δ
δ

)
necessarily) to

the satisfiability of a Hadamard product aL ◦ aR = aO, with aL, aR and aO
integer vectors of length at most νblog δc + (δ − 1)µ, and 1 + 2ν(blog δc −
1) + (δ − 2)µ linear constraints of the form

〈wL,q,aL〉+ 〈wR,q,aR〉+ 〈wO,q,aO〉 = cq

for all q ∈ JQK, with wL,q,wR,q,wO,q integer vectors and cq ∈ Z.
To argue for Diophantine satisfiability, it thus suffices to give a protocol

protocol such relations. The following protocol is actually for more general
relations in which variables of the polynomial can be committed (with the
scheme in Section 9.2), which allows to argue on committed values while sav-
ing the cost of encoding the commitment scheme as an integer polynomial.
More precisely, the protocol is for the relation{(

WL,WR,WO ∈ ZQ×n,WV ∈ ZQ×m,V ∈ Gm, c ∈ ZQ, ` ∈ N∗;

aL,aR,aO ∈ Zn,v, ρ ∈ Zm) :
aL ◦ aR = aO ∧WLaT

L + WRaT
R + WOaT

O = WV vT + cT

∧∀i ∈ JmKV 2
i = (evifρi)4 ∧

∥∥∥[aL aR aO v ρ
]∥∥∥
∞
< 2`

}
given parameters (G, P, n,Q,m, f) such that f ∈ G and n,Q,m ∈ N∗, and
(g,h, πcrs) ∈ G2n × {0, 1}∗. For fixed parameters n, Q and m, Section 9.5.1
shows that the protocol allows to prove the satisfiability of any polynomial in
Z[X1, . . . , Xν ] of total degree δ and with µ monomials if νblog δc+(δ−1)µ ≤
n and 1 + 2ν (blog δc − 1) + (δ − 2)µ + m ≤ Q. The additional term m in
the number of constraints compared to the previous section is to ensure the
consistency between the committed variables v and the ones in the inner
product.
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Bünz et al. [BBB+18] gave a protocol for a similar relation in Zp instead
of Z to argue for the satisfiability of arithmetic circuits over Zp (without
the bounds related to integer polynomials as it was not their target) that
is inspired by the one of Bootle et al. [BCC+16]. The general idea of our
protocol for this relation is similar to the two previous ones, but there are
key differences that arise from the fact that Z is not a field. These differences
are highlighted in the overview below

Building Blocks. The protocol builds mainly on the protocol on Fig-
ure 9.2, and on three auxiliary protocols: a protocol Πcrs to prove that the
CRS is well-formed (as in Section 9.4.3), a protocol Π′ to aggregate argu-
ments of opening to integer commitments (see Section 9.4.2) and a protocol
Π̃ to argue knowledge of an integer vector that opens to commitments in
different bases (Section 9.4.4), i.e., a base-switching argument. These ar-
guments may be in the random-oracle model with an oracle H.

Main Insights.

The main idea of the protocol is to reduce the verification of the Hadamard
product and of the linear constraints to a single inner-product argument
over the integers, and then invoke the protocol on Figure 9.2.

Starting with the product aL ◦ aR − aO = 0Zn , the idea to verify all n
equations at once is to consider each entry as the coefficient of a n-variate
polynomial of total degree 1 and evaluate the polynomial at a vector y←$
J0;P − 1Kn chosen by the verifier by computing 〈aL ◦ aR − aO,y〉. If the
polynomial is non-zero, then the evaluation will be zero will only negligible
probability (this is the analog to the Schwartz-Zippel lemma in integral
rings), i.e., 〈aL ◦ aR,y〉 = 〈aO,y〉 with high probability. The reason we
choose y ←$ J0;P − 1Kn instead of choosing y ←$ J0;P − 1K and setting
y ←

[
1 y · · · yn−1

]
(as did Bootle et al. and Bünz et al., and in which

case the Schwartz-Zippel argument would still apply) is that it makes the
integers in 〈aL ◦aR,y〉 only mP times larger than those in aL ◦aR instead of
Pm. Similarly, the Q equations WLaT

L +WRaT
R+WOaT

O = WV vT +cT are
reduced to a single equation by multiplying on the left by a random vector
z ←$ J0;P − 1KQ. Naturally, the prover must commit to the inputs aL,aR
and the outputs aO in the witness before receiving the values y and z for
the Schwartz-Zippel lemma to apply since the coefficients of the polynomial
cannot depend on the random point at which it is later evaluated. The
inputs are committed in a group element CI with some bases (g,h) and the
outputs in a group element CO with bases g.

Now the goal is to verify both 〈aL ◦ aR − aO,y〉 = 0 and zWLaT
L +

zWRaT
R + zWOaT

O − zWV vT + zcT = 0 with a single inner-product. To do
so, we introduce another variable X and construct two vectors of polyno-
mials of small degree l(X) and r(X) in Zn[X] of which the inner product is
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denoted t(X) := 〈l(X), r(X)〉. The coefficients of l(X) and r(X) depend on
the two relations to be proved, and are designed so that some coefficients
of t(X) force these relations while being computable from public values,
i.e., so that the verifier can prevent the prover from cheating. The explicit
construction of l(X) and r(X) is given below. After the prover has commit-
ted to the coefficient of t(X) that the verifier cannot compute on his own,
this polynomial is be evaluated at a random point x chosen by the verifier.
However, the prover cannot simply send t(x) to the verifier as it contains
information about the witness, and adding a random integer will not help
as Z is infinite unlike Zp. This is the first main difference with the argument
of Bünz et al. For this reason, the verifier cannot check that t(x) is correctly
computed with the committed coefficients of t, and the argument cannot be
directly reduced to the full inner-product argument in Section 9.3.

Fortunately, the prover can instead argue that she knows the committed
coefficients of t and the openings to the committed v with the aggregated
argument Π′, assuming that they are committed in the same base (e, f).
After these arguments, we notice that the verifier is able to compute et(x)

at any x of her choice from the coefficients of t that she could compute
on her own (and which force the relations of interest with y and z) and
the committed coefficients. The verifier can then choose x, send it to the
prover, and then together proceed with an argument of knowledge of l(x)
and r(x) of which the inner product is committed to with the base e using
the protocol on Figure 9.2.

It now remains to define such polynomials l(X) and r(X) in Zn[X].
Consider first the relation with z. The goal is to make use of WV , V and
c which are public to force the equality with the rest that contains private
parts by making sure that the coefficient of t(X) will be computable from
the public information. As the relation is an inner product itself, notice that
aL and zWL cannot be in the same polynomial, and similarly for aR and
zWR and aO and zWO. If the relation aL ◦ aR − aO = 0Zn were already
enforced (with 〈aL ◦ aR − aO,y〉 = 0), one could put aL and zWR at the
same degree in l(X), put aR and zWL at the same degree in r(X), and make
sure that the sum of those degrees is equal to the degree at which a0 is in one
of the polynomials (say l(X)), and leverage the equality aL ◦aR−aO = 0Zn
to eliminate parasite terms that are not publicly computable. With this
reasoning, the minimal degree a0 can be is then 2, and the others at degree
1.

The relation 〈aL ◦ aR − aO,y〉 = 0Zn must still be proved, and unfortu-
nately since one cannot invert integers modulo the unknown orders of the
bases, this verification cannot be embedded in the same degrees as the re-
lation with z. It must then be shifted to higher degrees, and a different
polynomial than that of Bünz et al. must be defined (this is the second
main difference). The same reasoning as before leads to additional terms
aLX3 − aOX4 in l(X) and to additional terms yX2 − y ◦ aRX3 in r(X),
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and the term of degree 6 of t(X) is then 0.
The polynomials l(X) and r(X) are then respectively defined as (aL +

zWR)X+aOX2 +aLX3−aOX4 and −1n+zWO+(aR + zWL)X+yX2 +
y ◦ aRX3. Note that for t(X) := 〈l(X), r(X)〉 = ∑7

i=1 tiX
i with

t2 = 〈aL, zWL〉+ 〈zWR,aR〉+ 〈aO, zWO〉+ 〈zWR, zWL〉
− 〈aO,1n〉+ 〈aL,aR〉

= 〈aL, zWL〉+ 〈zWR,aR〉+ 〈aO, zWO〉+ 〈zWR, zWL〉︸ ︷︷ ︸
δ(z)

= 〈zWV ,v〉+ δ(z) and
t6 = 〈aL,y ◦ aR〉 − 〈aO,y〉 = 〈aL ◦ aR − aO,y〉 = 0.

Since c is public and the verifier can compute δ(z) on his own, the verifier
can compute et2 from the commitments V.

A last hurdle arises from the fact the verifier must be guaranteed that
the vector aR in the term y ◦ aRX3 of r(X) is really the same as the input
vector to which the prover committed to at the beginning of the protocol.
In Zp, one can easily do so by simply interpreting a commitment of the form
haR as a commitment to y◦aR in the basis

[
h
y−1
1

1 · · · hy
−1
n
n

]
. Nonetheless,

the order of the group elements hi are unknown in the present case (this is
the third major difference with the proofs in groups of public order). That is
why the prover must commit to aL and y◦aR in a new group element C ′I after
receiving y and argue that (aL,aR) opens to both CI and C ′I respectively in
the bases (g,h) and (g,h′) with h′ =

[
hy1

1 · · · hynn

]
. To do so, the prover

and the verifier run the base-switching argument Π̃.

Protocol Algorithms.

The protocol is denoted Π. The parameter-generation algorithm and the
CRS generator are as in Section 9.3.1. The algorithms of the prover and
the verifier are given on Figure 9.3. On that figure, W denotes the matrix[
WL WR WO WV

]
. The values `′, ˜̀and `9.2 are given in Section 9.5.2.

Prover-Communication Complexity.

To estimate the communication complexity of the entire protocol from Fig-
ure 9.3, we estimate the complexity of each of its sub-protocol. To do so, one
must assess the bit length of the integer witnesses given to each sub-protocol
of the protocol on Figure 9.3, and this requires to give upper bounds on the
polynomial evaluations in the protocol.

Heights of l(X) and r(X). Since l(X) = (aL + zWR)X+aOX2+aLX3−
aOX4 ∈ Zn[X], the height (i.e., the maximum of the absolute values of the
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P (f,g,h, e, πcrs,W,V, c, `; aL,aR,aO,v, ρ) V

aL ◦ aR = aO ∧WLaT
L + WRaT

R + WOaT
O = WV vT + cT ∧ ∀i ∈ JmKV 2

i = (evifρi )4∥∥[aL aR aO v ρ
]∥∥
∞
< 2`

return ⊥ if FS .ΠHcrs.Vf ((G, P, f, 2n+ 1), (g,h, e) , πcrs) = 0
ρI , ρO ←$

q
0; 2bG+λ+3y

CI ← (gaLhaRfρI )2

CO ← (gaOfρO )2

CI ,CO−−−−−→
y←$ J0;P − 1Kn

z←$ J0;P − 1KQ
y,z←−−

l(X)← (aL + zWR)X + aOX2 + aLX3 − aOX4

r(X)← −1n + zWO + (aR + zWL)X + yX2 + y ◦ aRX3

l(X), r(X) ∈ Zn[X] and 1n :=
[
1 1 · · · 1

]
∈ Zn

t(X)← 〈l(X), r(X)〉 =
∑7

i=1 tiX
i

t(X) ∈ Z[X] and t6 = 0
∀i ∈ J7K \ {2, 6}, si ←$

q
0; 2bG+λ+3y

, Ti ←
(
etifsi

)2
Commit to the non-zero coefficients of t(X) except for t2
ρ′I ←$

q
0; 2bG+λ+3y

, C′I ←
(

gaLhy◦aRfρ
′
I

)2
Commit to the inputs in (g,h′) with h′ :=

[
hy1

1 hy2
2 · · · hynn

]
T:=
[
T1 T3 T4 T5 T7

]
,C′I

−−−−−−−−−−−−−−−−−−−−−−−−−→

(τ ′,b′)←〈Π′.Prove(m+5,f,e,T,V,`′;t,s)
Π′.Vf(m+5,f,e,T,V,`′)〉
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Argue knowledge of representations of (Ti)i 6=2,6 and (Vj)mj=1 in (e, f)
if b′ = 0 return ⊥

(τ̃ ,b̃)←〈Π̃.Prove(2,f,(g,h),(g,h′),CI ,C′I ,˜̀;aL,aR,ρI ,ρ
′
I)
Π̃.Vf(2,f,(g,h),(g,h′),CI ,C′I ,˜̀)〉←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Argue that CI and C′I are commitments to the same inputs in (g,h) and (g,h′)
if b̃ = 0 return ⊥

x←$ J0;P − 1K
x←−

l, r← l(x), r(x) ∈ Zn

σ ← ρIx+ ρ′Ix
3 + ρO

(
x2 − x4

)
+ s1x+ 〈zWV , ρ〉x2

+
∑

3≤i6=6≤7 six
i // ρ =

[
ρ1 · · · ρm

]
WL,WR,WO ← hzWL ,gzWR ,hzWO

Cl,r ← CxI C
′
I
x3
C

(x2−x4)
O

(
h−1nh′x

2
Wx
LW

x
RWO

)2

Cl,r is a commitment to l and r in (g,h)

C = C(x)← Cl,rT
x
1
(
e2(〈z,c〉+δ(z))VzWV

)x2∏
3≤i 6=6≤7 T

xi

i

C =
(

glhre〈l,r〉fσ
)2

run the protocol on Figure 9.2 on input (1, n, f,g,h, e, C, `9.2; l, r, σ)

Figure 9.3: Succinct Argument of Diophantine-Equation Satisfiability.
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coefficients) of the polynomials in l(X) is at most 2` − 1 +Q ‖W‖∞ (P − 1)
(recall that W =

[
WL WR WO WV

]
). Concerning r(X) = −1n +

zWO + (aR + zWL)X + yX2 + y ◦ aRX3, the height of the polynomials in
r(X) is at most

max
(
2` − 1 +Q ‖W‖∞ (P − 1), (P − 1)(2` − 1)

)
≤ P

(
2` − 1 +Q ‖W‖∞

)
.

Prover Complexity in Π′. The height of t(X) = 〈l(X), r(X)〉 is at most

7nP
(
2` − 1 +Q ‖W‖∞ P

) (
2` − 1 +Q ‖W‖∞

)
.

The bit length of the height of t(X) is thus at most

3 + blognc+ blogP c+ 2 + max (`, blog(Q ‖W‖∞)c+ 1) + 1
+ max (`, blogP c+ blog(Q ‖W‖∞)c+ 2) + 1

= 7 + blognc+ blogP c+ max (`, blog(Q ‖W‖∞)c+ 1)
+ max (`, blogP c+ blog(Q ‖W‖∞)c+ 2)

≤ 10 + blognc+ 2 (blogP c+ `+ blog(Q ‖W‖∞)c) .

Therefore, the maximum bit length of the witness in this call is at most

`′ ← max (bG + λ+ 4, 10 + blognc+ 2 (blogP c+ `+ blog(Q ‖W‖∞)c)) .

Π′ is used to aggregate m + 5 arguments, so the bit-communication
complexity of Π′ is of order O (`′ + log(m+ 5) + logP + log(n)bG), i.e.,

O (`+ log(n)bG + logQ+ log(m+ 5) + log ‖W‖∞) .

Prover Complexity in Π̃. The bit length of the witness in this call is at
most ˜̀← max (bG + λ+ 4, `). As Π̃ is used to argue about two bases, the bit
complexity of Π̃ is of order O

(
˜̀+ logP + log(n)bG

)
, i.e., O (`+ log(n)bG) .

Prover Complexity in the Protocol on Figure 9.2. The largest ab-
solute value of the components in l = l(x) and r = r(x) is at most P 5

(
2`−

1 +Q ‖W‖∞). Besides, the height of the polynomial

σ(X) := ρIX + ρ′IX
3 + ρO

(
X2 −X4

)
+ s1X + 〈zWV , ρ〉X2 +

∑
3≤i 6=6≤7

six
i

is at most 2bG+λ+3+mQ ‖W‖∞ P (2`−1) (given by the term of degree 2). The
absolute value of randomness σ is thus at most P 8

(
2bG+λ+3 +mQ ‖W‖∞ P(

2` − 1
))

. Therefore, the bit length of the integer witnesses (in absolute
value) in the execution of the protocol on Figure 9.2 is at most

`9.2 ← 5 + blogP c+ max (bG + λ+ 4, `+ blog (mQ ‖W‖∞ P )c+ 1) .
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In case m = 0, it is only bG + λ + 4. The bit complexity of the call to this
protocol is then of order

O (`+ log(n)bG + logQ+ logm+ log ‖W‖∞) .

(The term logm vanishes in case m = 0.)

Overall Prover-Communication Complexity. Based on the previous
estimations, the prover sends O (`+ log(n)bG + logQ+ logm+ log ‖W‖∞)
bits during the protocol (the term logm disappears in case m = 0). There-
fore, for a polynomial in Z[X1, . . . , Xν ] of total degree δ, with µ mono-
mials and with coefficients less than 2H in absolute value, assuming that
νblog δc + (δ − 1)µ ≤ n and 1 + 2ν (blog δc − 1) + (δ − 2)µ + m ≤ Q, the
communication complexity of the protocol is of order

O

(
`+ log

(
δ

(
ν + δ

δ

))
bG +H

)
= O (`+ min(ν, δ) log (ν + δ) bG +H) .

The term H = blog ‖W‖∞c+1 comes from the fact that the procedure gives
linear constraints determined by the coefficients of the polynomial.

Verification Effiency.

Similarly to Section 9.3.1, the verifications of Π′, Π̃ and the protocol on Fig-
ure 9.2 can each be done via single multi-exponentiations, with exponents of
at most O (`+ bG + log(n) log(P ) + logQ+ logm+ log ‖W‖∞) bits. For a
polynomial in Z[X1, . . . , Xν ] of total degree δ, with µmonomials and with co-
efficients less than 2H in absolute value, that isO (`+ bG + min(ν, δ) log (ν + δ)
logP +H) bits.

9.5.3 Completeness and Security

This section formally states the properties achieved by the protocol.

Theorem 9.5.4 (Completeness). Π is complete if Πcrs, Π′ and Π̃ are.

Proof. The completeness of Π immediately follows from its definition and
from the completeness of Πcrs, Π′ and Π̃, and the completeness of the pro-
tocol on Figure 9.2.

Theorem 9.5.5 (Honest-Verifier Zero-Knowledge Property). If Π′ and Π̃
are respectively (TΠ′ , TΠ′.Sim, εΠ′) and

(
TΠ̃, TΠ̃.Sim, εΠ̃

)
-honest-verifier zero-

knowledge, and if FS .ΠHcrs is is
(
TΠHcrs

, qH, ε
snd
ΠHcrs

)
-sound, then Π is (T,O(bG)+

TΠ′.Sim + TΠ̃.Sim +T9.2.Sim, ε
zk
ΠHcrs

+ εΠ′ + εΠ̃ + ε9.2
)
- honest-verifier zero-know-

ledge for T ≤ min(TΠHcrs
, TΠ′ , TΠ̃, T9.2), where (T9.2, T9.2.Sim, ε9.2) denote the

bounds from Theorem 9.3.5.



254 9.5 Succinct Argument for Diophantine Equations

Proof. It suffices to define a simulator which, instead of computing the com-
mitments CI , CO, C ′I , T1, T3, T4, T5, T7 in the protocol, computes elements as
fα for α ←$

q
0; 2bG+λ+3y. These are then at a statistical distance of at

most 2−λ from the values computed in a real protocol execution, unless the
CRS is ill-formed (which occurs with probability at most εzk

ΠHcrs
). The pro-

tocol also runs the simulator of Π′, Π̃ and the simulator of the protocol on
Figure 9.2.

Theorem 9.5.6 (Extractability). If FS .Πcrs is
(
TΠ̃crs.Sim, qΠcrs , ε

zk
Π̃

)
-statis-

tically honest-verifier zero-knowledge, Π′ is
(
TΠ′,A, TΠ′,Prove∗ , TΠ′.E , qΠ′ , ε

ext
Π′
)
-

extractable and Π̃ is
(
TΠ̃, qΠ̃, ε

snd
Π̃

)
-sound, then under the

(
T strg, εstrg)-strong-

root assumption, the
(
T ord, εord

)
-small-order assumption, the low-dyadic-

valuation assumption and the µ-assumption over G, then Π is (TA, TProve∗ , TE ,
qH, ε

ext,Σ
)
-extractable for TA and TProve∗ such that TA+TProve∗ ≤ min

(
TΠ̃.Sim,

TΠ̃
)
and TA and TProve∗ satisfy the bounds for TΠ′,A and TΠ′,Prove∗ and

for T9.2,A and T9.2,Prove∗, TE explicited in the proof of the theorem, qH ≤
min

(
qΠcrs , qΠ̃, qΠ′

)
and ε ≤ εzk

Π̃ + εext
Π′ + εsnd

Π̃ + ε9.2, where T9.2,A, T9.2,Prove∗

and ε9.2 denote the bounds from Theorem 9.3.9.

Proof. Suppose that for fixed vectors y and z and nine pairwise-distinct chal-
lenges x1, . . . , x9, one can obtain representations

(
glhre〈l,r〉fσ

)4
of C2(xj)

for j ∈ J8K (l, r and σ depend on xj). Denoting by X the Vandermonde ma-
trix of x1, . . . , x8, by adj(X) its adjugate matrix and by ej (for j ∈ J8K) the
canonical row vector with 1 at position j and 0 elsewhere, the linear equa-
tions XνT = det(X)eT

j with indeterminate ν ∈ Z8 have unique solutions if
det X 6= 0, and these solutions are adj(X)eT

j . Therefore, one can solve the
equation XνT = det(X)eT

2 and compute via linear combinations integer vec-
tors aL and aR and an integer ρI such that C2 det X

I =
(
gaLhaRe〈aL,aR〉fρI

)4

since

C2(x) =
(
CxI C

′
I
x3
Cx

2−x4

O

)2 (
h−1n+yx2hxzWLgxzWRhzWO

)4

T x1 (e2(〈z,c〉+δ(z))VzWV

)x2 ∏
3≤i 6=6≤7

T x
i

i

2

(9.10)

for all x ∈ {x1, . . . , x9}. Likewise, by considering the equation XνT =
det(X)eT

4 , one can compute integer vector a′L and a′R and an integer ρ′I
such that C ′I

2 det X =
(
ga′Lha′Re〈a′L,a′R〉fρ′I

)4
. Moreover, let e be the row

vector with 1 at position 3, −1 at position 5 and 0 elsewhere. The equation
XνT = det(X)eT has a unique solution if det(X) 6= 0, and it is adj(X)eT. It
follows that one can compute integer vectors aO,L and aO,R and an integer
ρO such that C2 det X

O =
(
gaO,LhaO,Re〈aO,L,aO,R〉fρO

)4
.
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Besides, assume to be given integers tj and sj for j ∈ J7K \ {2, 6}, and vi
and ρi for i ∈ JmK such that T 2

j =
(
etjfsj

)4 and V 2
i = (evifρi)4.

Lemma 9.3.7 shows that 2 detX divides all the integers in the repre-
sentations of C2 det X

I , C ′I
2 det X and C2 det X

O unless one can find non-trivial
discrete-logarithm relations (the probability of this latter event is already
accounted for in the bounds of Theorem 9.3.9). That is to say, one can ob-
tain representations of C2

I , C ′I
2 and C2

O (these integers obtained by dividing
by 2 detX are further denoted as before). Inserting these representations in
Equation 9.10 for any x ∈ {x1, . . . , x9}, it follows that

l = (aL + zWR)x+ aO,Lx2 + a′Lx3 − aO,Lx4

r = −1n + zWO + (aR + zWL)x+ yx2 + a′Rx3 + aO,R
(
x2 − x4

)
and that

〈l, r〉 = 〈aL,aR〉x+
〈
a′L,a′R

〉
x3 + 〈aO,L,aO,R〉

(
x2 − x4

)
+ s1x+ (〈zWV ,v〉+ 〈z, c〉+ δ(z))x2 +

∑
3≤i 6=6≤7

tix
i,

unless one can obtain a non-trivial discrete-logarithm relation in 〈f〉. As
the equation is satisfied for nine values of x although the polynomials are of
degree at most 8 in x, then one can infer from the terms of degree 2, 6 and
8 that

0 = 〈aL, zWL〉+ 〈zWR,aR〉+ 〈aO,L, zWO〉 − 〈aO,L,1n〉
+ 〈aL,aR〉 − 〈zWV ,v〉 − 〈z, c〉 − 〈aO,L,aO,R〉

0 =
〈
a′L,a′R

〉
− 〈aO,L,y〉 and

0 = 〈aO,L,aO,R〉 .

Assuming an additional guarantee that a′L = aL and a′R = y ◦ aR, these
equations thus imply that

〈zWL,aL〉+ 〈zWR,aR〉+ 〈zWO,aO,L〉 = 〈zWV ,v〉+ 〈z, c〉 and
〈aL ◦ aR − aO,L,y〉 = 0.

If these equalities are verified form vectors y1, . . . ,ym ∈ Zm that are linearly
independent over Q and for Q vectors z1, . . . , zQ ∈ ZQ that are linearly
independent over Q, then aL ◦aR = aO,L and WLaT

L + WRaT
R+ WOaT

O,L =
WV vT + cT, with vi committed in Vi with randomness ρi for all i ∈ JmK.
In other words, aL,aR,aO,L,v, ρ is a valid witness.

The idea is now to gradually define an extractor for the entire protocol
with a bottom-up approach starting from the extractor for the protocol
on Figure 9.2 assuming vectors y, z and an integer x to be fixed. The next
extractor E2 builds on the previous extractor and can extract a witness given
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fixed vectors y and z (sent as the first message from the verifier) as inputs.
The following oracle E1 takes a fixed vector y and builds on E2. The last
extractor E takes no fixed values except for the protocol inputs builds then
builds on E1.

The running time of each of these extractor has a success probability
which of course depends on the success probability of the prover with the
fixed inputs, and for instance, what E1 does is simply to generate a vector
z that leads to a success, and then using a heavy-row argument, one can
show that with probability 1/2 over the choice of z, the success of the prover
decreases by a factor at most 1/2 if z is fixed to the chosen value, and then
E1 can run E2 with its fixed inputs and z, and extract a witness in reasonable
expected time. The idea for the other steps is the same.

Consider now an algorithm E2 that runs the prover from the computation
step right after it receives y and z, and suppose that for some fixed vectors
y and z, the success probability of the prover is at least η > 0. Algorithm
E2 runs Π′.E on the prover to extract representation of (Ti)i 6=2,6 and (Vj)mj=1.
It continues by executed protocol Π̃ with the prover. As Π̃ is assumed to be
sound, the extractor is guaranteed that with probability at least 1−εsnd

Π̃ , the
inputs committed in CI with bases (g,h) are the same as those committed
in CO with bases (g,h′) if the execution of Π̃ succeeds.
E2 generates x←$ J0;P − 1K, sends it to the prover and runs the protocol

until the end. If the execution fails, E2 generates a fresh value x and proceeds
as before. If the execution succeeds, then a heavy-row argument implies that
with probability at least 1/2 (over the choice of x), x is such that the prover
succeeds in the rest of the protocol with probability at least η/2. Algorithm
E2 then computes C(x) as in the real protocol and runs the extractor of the
protocol on Figure 9.2 (denote it Π9.2.E). If this latter does not return a
value in at most twice the expected value of its running time with a prover
that succeeds with probability at least η/2 (Markov’s inequality shows that
this event occurs with probability at most 1/2), algorithm E2 generates a
fresh value x and proceeds as before. If it does, E2 returns the same value.

Denote by H the event in which x is such that the verifier of is convinced
with probability at least η/2 and by T the event in which Π9.2.E returns a
value in at most twice the expected value of its running time with a prover
that succeeds with probability at least η/2. Algorithm E2 returns a value in
the event H ∩ T and Pr[T ∩H] = Pr[T |H] Pr[H] ≥ 1/4, so E2 restarts from
the generation of x an expected number of times at most 4. Furthermore,
at each repetition, its running time is at most TProve∗/η+TΠ9.2.E(η/2), with
TΠ9.2.E(η/2) denoting the expected running time of Π9.2.E with a prover that
succeeds with probability at least η/2. Therefore, the expected running
time given a prover that succeeds with probability at least η is at most
4 (TProve∗/η + 2TΠ9.2.E(η/2)).
E2 then repeats this process eight other times, with the restriction that
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the new challenge xj (for j = 2, . . . , 9) is distinct from the ones previously
chosen ones, i.e., xj has a uniform distribution over J0;P − 1K\{x1, . . . , xj−1}.
Note that in this case the prover succeeds with probability at least η− (j −
1)/P ≥ η − 8/P =: η′. Therefore, the total running time of E2 is at most
36 (TProve∗/η

′ + 2TΠ9.2.E(η′/2)).
Now, for a fixed vector y1 ∈ Zn, suppose that a prover convinces the

verifier with probability at least θ > 0 conditioned on the vector y in the
first message from the verifeir being y1; and consider an algorithm E1 which
has black-box access to a prover Prove∗ and proceeds as follows. E1 starts
by generating a vector z1. If z1 = 0ZQ , then it generates new vectors and
otherwise playing the role of the verifier, runs with the prover the entire
protocol with (y1, z1) as first message from the verifier. If the execution is
unsuccessful, then E1 rewinds Prove∗ to the beginning of the protocol and
generates a new vector z1.

Note that conditioned on the event in which z1 is non-zero, Prove∗ con-
vinces the verifier with probability at least θ−P−Q. Moreover, conditioned
on the event in which the first message (y1, z1) leads to at least one success-
ful execution, a heavy-row argument implies that with probability at least
1/2 (over the choice of z1), the first message (y1, z1) is such that prover
Prove∗ convinces the verifier with probability at least

(
θ − P−Q

)
/2.

Algorithm E1 then runs E2 on Prove∗ from the computation step right
after the first message from the verifier is sent. If E2 returns a value in at most
twice its expected running time with a prover that succeeds with probability
at least η :=

(
θ − P−Q

)
/2, then E1 returns that value and otherwise rewinds

Prove∗ to the beginning of the protocol and generates fresh vectors y1 and
z1.

Similarly to the analysis of E2, the expected running of E1 is at most

4
(
η−1

(
1− P−Q

)−1
TProve∗ + 2TE2(η/2)

)
.

The term
(
1− P−Q

)−1
simply comes from the expected time necessary to

generate a non-zero vector z1.
Now, for j = 2, . . . , Q, algorithm E2 generates zj ←$ J0;P − 1KQ. If

z1, . . . , zj are linearly dependent over Q, then E2 generates a new vector zj .
Slinko [Sli01, Corollary 2] proved that this event occurs with probability at
most P−Q+j−1. Consequently, conditioned on the event in which z1, . . . , zj
are linearly independent, Prove∗ convinces the verifier with probability at
least θ − P−Q+j−1 ≥ θ − P−1. Algorithm E2 then proceeds as in the case
j = 1 with θ − P−1 instead of θ − P−Q.

The total running time of E1 is thus at most

4Q
(
η−1

(
1− P−1

)−1
TProve∗ + 2TE2(η/2)

)
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with η :=
(
θ − P−1) /2. Note that if any two vectors zi, zj for i, j ∈ JQK lead

to distinct witness returned by E2, then one obtains a non-trivial discrete-
logarithm relation in 〈f〉.

The extractor E of the entire protocol can now be defined similarly to
E1 to generate linearly independent vectors y1, . . . ,yn ∈ Zn. Assuming that
it has black-box access to a prover that succeeds with probability at least ε,
its running time is at most

4n
(
θ−1

(
1− P−1

)−1
TProve∗ + 2TE1(θ/2)

)
with θ :=

(
ε− P−1) /2.

9.6 Applications
In this section, we apply the Diophantine-satisfiability argument from Sec-
tion 9.5 to several computational problems. The methodology is always
the same: encode the problem as a polynomial, apply the degree-reduction
procedure from Section 9.5.1 and then run the protocol from Section 9.5.2.

9.6.1 Arguing Knowledge of RSA signatures

It is often useful for a user to prove that an organization has supplied him
with a signature or a certificate without revealing it. A natural approach is
to commit to the value of the signature and to prove its knowledge without
revealing any information on it. If the user can additionally prove it in such
a way that the signature cannot be linked to its issuance and multiple proofs
cannot be linked to each other, then one can use the primitive in privacy-
preserving applications. Camenisch and Stadler [CS97] presented a proof of
knowledge of committed x ∈ Z∗N such that xe = y mod N , where (N, e) is
an RSA public key. Their proof is in a group G of known order N (obtained
for instance by finding a prime number p such that N divides (p − 1) and
considering G as the subgroup of Z∗p of order N). The main issue with this
approach is that it requires at least that the prover knows N at the time
the commitment scheme is set up. It also requires a new instance of the
commitment scheme for each RSA moduli.

As mentioned above, Damgård and Fujisaki [DF02] proposed an efficient
proof of knowledge of the contents of commitments and proofs of multiplica-
tive relations over committed values. They stated that this scheme allows
to prove in zero-knowledge the knowledge of an RSA signature since the
verification equation can also be written as xe − λN = y for some integer
λ < N e−1. This gives a proof with communication complexity with Ω(ebG)
bits which makes it usable only for very small e. One can use the elegant
technique from [CS97] to improve this to Ω(log(e)bG) using the square-and-
multiply algorithm in the exponent (see [CS97,CGM16] for details). In the
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following, we show that our succinct Diophantine satisfiability argument can
be used to exponentially reduce this communication complexity.

Let N be some RSA integer and let e be a public RSA exponent with
e = (e0, e1, . . . , eT−1) ∈ {0, 1}T as binary representation, i.e.,

e =
T−1∑
i=0

ei2i.

with eT−1 = 1. Suppose that one wants to prove the knowledge of some
x ∈ Z∗N such that xe = y mod N for some public value y (typically the hash
value of a message). Suppose that the prover commits to x using our integer
commitment scheme and wants to prove that the opening of V is an e-th
root of the public y modulo N .

First define integers (y1, . . . , yT−1) such that

yi =
{
x if ei = 1
1 if ei = 0

for i ∈ {0, . . . , T − 1}. Set then zT−1 = x and define by induction

wi = z2
i mod N

λi =
⌊
z2
i /N

⌋
B wi = z2

i − λiN (9.11)

zi−1 = yi · wi mod N
µi = b(yi · wi)/Nc B zi−1 = yi · wi − µiN (9.12)

for i downward from T − 1 to 0 such that if xe = y mod N . Then, z−1 = y.
Reciprocally, if there exist five integer sequences (w0, . . . , wT−1), (y0, . . . ,

yT−1, yT ), (λ0, . . . , λT−1), (z0, . . . , zT−1), (µ0, . . . , µT−1) such that w0y0 −
µ0N = y, Equations (9.11) and (9.12) hold for all i ∈ {0, . . . , T − 1} and

{yi : ei = 0, i ∈ {0, . . . , T − 1}} = {1} and {yi : ei = 1, i ∈ {0, . . . , T}} = {x}
(9.13)

where x, the unique element in the latter set, is committed in V , then
xe = y mod N .

One can now write down explicitly a Diophantine equation in such a way
that the equation is satisfiable under the linear constraints (9.13) if and only
if the value committed in V is an e-th root of the public y modulo N :

T−1∑
i=0

(
wi − z2

i − λiN
)2

+
T−1∑
i=0

(zi − yiwi − µiN)2 = 0
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This Diophantine equation is directly suited for the reduction from Sec-
tion 9.5.1 without introducing new variables. It indeed suffices to set

aL ←
[
z
[
w 1

]
λ µ

]
aR ←

[
z
[
y x

]
0 0

]
aO ←

[
w

[
y z

]
0 0

]
∈ Z4T+1.

Besides, there are 10T + 3 linear equations that these vectors must satisfy
(2T for the terms in the sum of squares in the Diophantine equation, 4T for
the zeros in aR and a0, 2T for the consistency of z, T for the consistency of
w, T for the consistency of y with V and 3 for the consistency of x and y).

Now, to estimate the bit complexity of the argument, note that each wit-
ness is upper-bounded by N and the maximum coefficient of the linear con-
straints is O(N). According to the bounds in Section 9.5.2, the bit length of
the argument is of order O (log(T )bG + logN) = O (log(log(e))bG + logN).

Finally, note that even if it is not necessary to commit to the value x, this
technique can be used to argue knowledge of a modular e-th root modulo N
with communication complexity O (log(log(e))bG) bits (in a group with bG =
Ω(logN)). In particular for e < 2O(λ/ log(λ)) this improves asymptotically
the communication of the well-known protocol due to Guillou-Quisquater
[GQ88] which has communication complexity O (log(λ)/ log(e) · log(N)).

9.6.2 Argument of Knowledge of (EC)DSA Signatures

The Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA) [JMV01] are standardized discrete-logarithm based ef-
ficient digital signature schemes. The underlying groups of public prime or-
der are usually standardized and it may seem at first thought that one can
use commitments in these groups (together with the classical zero-knowledge
toolbox) in order to design a zero-knowledge argument of possession of an
(EC)DSA signature. However, it turns out that this is not so easy since
the verification equations of these signatures involve arithmetic modulo two
different prime numbers. In this section, we show how one can use our
Diophantine satisfiability argument and the approach we already used for
RSA signatures to efficiently prove the knowledge of an (EC)DSA signature
without revealing any further information.

DSA Signatures.

The DSA signature scheme consists of the following procedures (given two
parameters λ1 and λ2).

KG(λ1, λ2)→ (vk, sk) : Generate a prime q of bit-length λ2 uniformly at
random and a prime p of bit-length λ1 uniformly at random such that q
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divides p−1. Choose an integer h ∈ {2, . . . , p−2} uniformly at random
and set g = h(p−1)/q mod p (in the rare case that g = 1, try again with
a different h). Choose x ∈ Zq uniformly at random, and compute the
integer y = gx mod p. The verification key is vk ← (p, q, g, y,H) where
H is a cryptographic hash function H : {0, 1}∗ → {0, 1}λ2 , while the
signing key is sk ← (p, q, g, x,H).

Sign(sk,m)→ σ : Choose a secret k ∈ Z∗q uniformly at random, then com-
pute gk mod p and set r =

(
gk mod p

)
mod q. Repeat the whole pro-

cess until r 6= 0. Next, compute s = k−1(H(m) + rx) mod q and
repeat the signing process from the beginning until s 6= 0. The signa-
ture of the message m is the pair σ ← (r, s).

Vf(vk,m, σ)→ b ∈ {0, 1} : To verify a signature pair σ = (r, s) of a message
m for vk, first check that 0 < r, s < q. Then, compute

– w = s−1 mod q
– u1 = H(m) · w mod q
– u2 = r · w mod q
– v = (gu1yu2 mod p) mod q

Accept the signature (i.e., return 1) if and only r = v.

If a user wants to prove the knowledge of such a signature σ = (r, s) for
a public message m and a public verification key is vk = (p, q, g, y,H), she
has to prove the knowledge of a 6-tuple of integers (r, w, α, β, µ1, µ2) such
that

α = H(m) · w − µ1 · q
β = r · w − µ2 · q
β 6= 0

r =
(
gαyβ mod p

)
mod q.

In order to prove the last equality, introduce the value ρ =
(
gαyβ mod p

)
and µ3 such that

r = ρ− µ3 · q.

Write gi = g2i mod p and yi = y2i mod p for i ∈ {0, . . . , λ2 − 1} and

α =
λ2−1∑
i=0

αi2i with αi ∈ {0, 1} for i ∈ {0, . . . , λ2 − 1}

β =
λ2−1∑
i=0

βi2i with αi ∈ {0, 1} for i ∈ {0, . . . , λ2 − 1}.
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The values αi and βi for i ∈ {0, . . . , λ2 − 1} have to be kept secret by the
user. Starting from ρ−1 = 1, recursively construct

νi = ρi−1 · (1 + αi · (gi − 1)) mod p B νi = ρi−1 · (1 + αi · (gi − 1)) + δip

ρi = νi · (1 + βi · (yi − 1)) mod p B ρi = νi · (1 + βi · (yi − 1)) + εip

such that ρj = g
∑j

i=0 αi2
i

y
∑j

i=0 βi2
i mod p for j ∈ {0, . . . , λ2 − 1} and in

particular ρλ2 = ρ. It thus leads to the Diophantine equation

λ2−1∑
i=0

(
α2
i − αi

)2
+
(
β2
i − βi

)2
+ (νi − ρi−1 · (1 + αi · (gi − 1))− δip)2

+
λ2−1∑
i=0

(ρi − νi · (1 + βi · (yi − 1))− εip)2 + (r − ρλ2 + µ3 · q)2

+(α−H(m) · w + µ1 · q)2 + (β − r · w + µ2 · q)2

+

α− λ2−1∑
i=0

αi2i
2

+

β − λ2−1∑
i=0

βi2i
2

= 0,

with (α, α0, . . . , αλ2), (β, β0, . . . , βλ2), (ρ0, . . . , ρλ2), (ν0, . . . , νλ2), (δ0, . . . ,
δλ2), (ε0, . . . , ελ2) and (r, w, µ1, µ2, µ3) as unknowns.

Using the approach from Section 9.5.2, the bit length of the argument
is of order O (log(λ2)bG + log(λ1)). Note also that this argument could be
combined with proofs of non-algebraic statements [CGM16] to obtain proofs
on committed messages.

ECDSA Signatures.

For ECDSA signatures, the underlying group is an elliptic curve E(Zp)
defined over Zp. The group law involves arithmetic operations modulo p,
but the group order is usually some prime number q (of bit size equal to
the bit size of p). The main difference in an ECDSA signature (r, s) ∈ Z2

p is
that the verification equation checks that r is the abscissa of some point on
the elliptic curve obtained by a double scalar multiplication with exponents
derived from (r, s) and the hash value of the signed message. It is therefore
possible to follow the same strategy as for DSA by adding more variables
in order to handle the more intricate group law on the elliptic curve. More
precisely, one need only add a constant number of variables per bit in the
exponents and using the approach from Section 9.5.2, the bit length of the
argument is of order O (log(log p)bG).

9.6.3 Argument of Knowledge of List Permutation

Consider the classical problem of proving knowledge of openings (x1, . . . , xn)
and (y1, . . . , yn) (together with the corresponding randomness) of two com-
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mitment vectors (V1, . . . , Vn) and (V ′1 , . . . , V ′n), and of a permutation π ∈ Sn

(the symmetric group of order n) such that yi = xπ(i) for all i ∈ JnK.
To provide a succinct argument of such a statement, one can write down

a simple Diophantine equation that is satisfiable (under additional linear
constraints) if and only if the statement indeed holds. Denote Vi = exifρi

and V ′i = eyifηi for i ∈ JnK. Note that if there exists such a permutation
π, one can consider the associated permutation binary matrix U = (ui,j) ∈
Zn×n defined by ui,j = 1 if j = π(i) and ui,j = 0 otherwise. Such a matrix
has exactly one “1” per row and per column (and is null at all other indices).
Therefore, xi = yj for integers i, j ∈ JnK if ui,j = 1. In particular, for all
i ∈ JnK

n∑
j=1

(ui,j (xi − yj))2 = 0. (9.14)

Conversely, if there exists a permutation matrix U = (ui,j) ∈ Zn×n such
that Equation (9.14) holds for all i ∈ JnK, then there exist a permutation
π ∈ Sn, such that yi = xπ(i) for all i ∈ JnK. Consider then the following
Diophantine equation

n∑
i=1

n∑
j=1

(ui,j (xi − yj))2 +
(
u2
i,j − ui,j

)2
= 0

with the 2n linear constraints:
n∑
i=1

ui,j = 1 for all j ∈ JnK
n∑
j=1

ui,j = 1 for all i ∈ JnK .

Note that these constraints could have been direclty embedded in the Dio-
phantine equation.

Following the ideas in Section 9.5.1, by introducing variables vi,j ← ui,jxi
for i, j ∈ JnK, the previous equation is equivalent to the satisfiability of the
equation

n∑
i=1

n∑
j=1

(vi,j − ui,jyj)2 +
(
u2
i,j − ui,j

)2
+ (vi,j − ui,jxi)2 = 0.

This polynomial is now in a form which allows to immediately read a
Hadamard product between variables and linear equations of which the sat-
isfiability is equivalent to the satisfiability of the Diophantine equation. It
suffices to set

aL ←
[
x̂ ŷ u

]
aR ←

[
u u u

]
aO ←

[
v v u

]
∈ Z3n2

.

where u is the vector of dimension n2 obtained by concatenating the rows
of U, x̂ is the vector of dimension n2 obtained by repeating n times each
coordinate of x and ŷ =

[
y · · · y

]
is a vector of dimension n2.
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Besides, there are 7n2 + 2n linear equations that these vectors must
satisfy and the vectors x and y are committed individually (i.e., 2n commit-
ments). To estimate the bit complexity of the argument, note that if have
‖x‖∞ < 2` (and thus ‖y‖∞ < 2`), then, according to the analysis in Sec-
tion 9.5.2, the bit length of the argument is of order O

(
`+ log

(
3n2) bG) =

O (`+ log(n)bG).

9.6.4 3-SAT Satisfiability Argument

3-SAT is the prototypical NP-complete problem of deciding the satisfiability
of a Boolean formula in conjunctive normal form, with each clause limited
to at most three literals. Consider two integers m,n ≥ 1 and a set of
clause C1, . . . , Cm where each Ci is the disjunction of exactly three literals
from the set of Boolean variables x1, . . . , xn (a literal is a variable xi or its
negation ¬xi). The problem is decide whether there exists an assignment of
(x1, . . . , xn) ∈ {0, 1}n such that all clauses are satisfied. Write each clause
Ci for i ∈ JmK as Ci = (li,1 ∨ li,2 ∨ li,3), with li,1, li,2 and li,3 denoting the
literals in Ci.

Such a Boolean 3-SAT formula can be readily turned into an equi-
satisfiable Diophantine equation. Indeed, for i ∈ JmK and j ∈ J3K and
k ∈ JnK, define

ε3(i−1)+j,k =


1 if li,j = xk
−1 if li,j = ¬xk

0 otherwise

so that setting l :=
[
l1,1 l1,2 l1,3 · · · lm,1 lm,2 lm,3

]
, x :=

[
x1 · · · xn

]
and E :=

[
εi,k
]

1≤i≤3m,1≤k≤n
, the equality lT = E · xT holds. The Diophan-

tine equation must ensure that (1) xi ∈ {0, 1}, i.e., xj (1− xj) = 0 for j ∈
JnK, and that (2) the clauses are all satisfied, i.e., (1− li,1) (1− li,2) (1− li,3) =
0 for all i ∈ JmK. The satisfiability of the 3-SAT instance is then equivalent
to the satisfiability of the Diophantine equation

n∑
j=1

(
xj − x2

j

)2
+

m∑
i=1

(1− li,1 − li,2 − li,3 + li,1li,2 + li,1li,3 + li,2li,3 − li,1li,2li,3)2 = 0

Following the ideas in Section 9.5.1, by introducing variables ui,1 ← li,1li,2,
ui,2 ← li,1li,3, ui,3 ← li,2li,3, vi ← ui,1li,3 for i ∈ JmK, the previous equation
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is equivalent to the satisfiability of the equation
n∑
j=1

(
xj − x2

j

)2
+

m∑
i=1

(1− li,1 − li,2 − li,3 + ui,1 + ui,2 + ui,3 − vi)2

+
m∑
i=1

(
(ui,1 − li,1li,2)2 + (ui,2 − li,1li,3)2 + (ui,3 − li,2li,3)2 + (vi − ui,1li,3)

)2

= 0.

This polynomial is now in a form which allows to immediately read
a Hadamard product between variables and linear equations of which the
satisfiability is equivalent to the satisfiability of the Diophantine equation.
It suffices to set

aL ←
[
x l(1) l(1) l(2) l(3)

]
aR ←

[
x l(2) l(3) l(3) u1

]
aO ←

[
x u1 u2 u3 v

]
∈ Zn+4m.

Besides, there are 2n+ 9m linear equations that these vectors must satisfy
(3m from matrix E, m for the final Diophantine equation and 2n+ 5m for
the consistencies in aL, aR and a0).

Now, to estimate the bit complexity of the argument, note that since
‖x‖∞ ≤ 1 and ‖E‖∞ ≤ 1, all witnesses and all variables are upper-bounded
by 1, and according to the bounds in Section 9.5.2, the bit length of the
argument is of order O (log(n+ 4m)bG) = O (log(n+m)bG).

9.6.5 Integer-Linear-Programming Satisfiability Argument

A (decisional) Integer-Linear-Programming (ILP) problem is a feasibility
linear program in which the variables are integers: given two positive integers
m and n, a matrix A ∈ Zm×n and a vector b ∈ Zm, the problem consists
in deciding whether there exists a vector x ∈ Nn such that AxT ≥ bT.
This problem is a classical NP-complete problem and it models many real-
life optimization problems, and the following shows how to succinctly argue
knowledge of a solution to it using the techniques presented in Section 9.5.

In other to prove the positivity of an integer x, as previously done in
the literature [Bou00,Lip03,CPP17], one can rely on Lagrange’s four-square
theorem which states that every natural integer can be represented as the
sum of four integer squares. Actually, as remarked by Groth [Gro05], one
can also rely on Legendre’s three-square theorem which states that every
natural number x = 1 mod 4 can be represented as the sum of three integer
squares. Both theorems are effective and there exists efficient polynomial-
time algorithms to find the decomposition as a sum of squares (see [Bou00,
Lip03,Gro05,CPP17] and references therein for details).
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To argue the satisfiability of the ILP problem, it is thus equivalent to
argue knowledge of vectors y1,y2,y3 ∈ Zn and vectors z1, z2, z3 ∈ Zm such
that

4xj + 1− y2
1,j − y2

2,j − y2
3,j = 0 ∀j ∈ JnK and

n∑
j=1

4aijxj − 4bi + 1− z2
1,i − z2

2,i − z2
3,i = 0 ∀i ∈ JmK .

The satisfiability of the ILP problem is then equivalent to the satisfiability
of the Diophantine equation

n∑
j=1

(
4xj − y2

1,j − y2
2,j − y2

3,j + 1
)2

+

m∑
i=1

 n∑
j=1

4aijxj − 4bi − z2
1,i − z2

2,i − z2
3,i + 1

2

= 0.

Following the ideas in Section 9.5.1, by introducing variables u1,j ← y2
1,j ,

u2,j ← y2
2,j , u3,j ← y2

3,j , v1,i ← z2
1,i, v2,i ← z2

2,i and v3,i ← z2
3,i, the previous

equation equation is equivalent to the satisfiability of the equation

n∑
j=1

(4xj − u1,j − u2,j − u3,j + 1)2

+
m∑
i=1

 n∑
j=1

4aijxj − 4bi − v1,i − v2,i − v3,i + 1

2

+
n∑
j=1

(
u1,j − y2

1,j

)2
+
(
u2,j − y2

2,j

)2
+
(
u3,j − y2

3,j

)2

+
m∑
i=1

(
v1,i − z2

1,i

)2
+
(
v2,i − z2

2,i

)2
+
(
v3,i − z2

3,i

)2
= 0.

This polynomial is now in a form which allows to immediately read a
Hadamard product between variables and linear equations of which the sat-
isfiability is equivalent to the satisfiability of the Diophantine equation. It
suffices to set

aL ←
[
x y1 y2 y3 z1 z2 z3

]
aR ←

[
0 y1 y2 y3 z1 z2 z3

]
aO ←

[
0 u1 u2 u3 v1 v2 v3

]
∈ Z4n+3m.

Besides, there are 4(n+m) linear equations that these vectors must satisfy.
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Now, to estimate the bit complexity of the argument, note that if ‖x‖∞ <

2`, then
∣∣∣∑n

j=1 4aijxj − 4bi + 1
∣∣∣ < 4

(
n ‖A‖∞ 2` + ‖b‖∞

)
+1 for all i ∈ JmK.

Therefore, according to the bounds in Section 9.5.2, the bit length of the
argument is of order O (`+ log(4n+ 3m)bG + log ‖A‖∞ + log ‖b‖∞).



Chapter 10

Public-Key Generation with
Verifiable Randomness

This chapter addresses the problem of proving that a user algorithm selected
and correctly used a truly random seed in the generation of her cryptographic
key. A first approach was proposed in 2002 by Juels and Guajardo for the
validation of RSA keys. Section 10.2 presents a new security model and
general tools to efficiently prove that a private key was generated at random
according to a prescribed process, without revealing any further information
about the private key.

Section 10.3 gives a generic protocol for all key-generation algorithms
based on probabilistic circuits, as well as for factoring-based cryptogra-
phy, and proves their security. Section 10.4 instantiates the protocol for
factoring-based cryptography. The instantiation relies on a new efficient
zero-knowledge argument for the double discrete logarithm problem that
achieves an exponential improvement in communication complexity com-
pared to the state of the art, and is of independent interest. This argument
relies on techniques similar to those presented in Chapter 9.
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10.1 Preliminaries

This section introduces notions about imperfect randomness, randomness
extraction, pseudo-random functions, and other tools used in this chapter.

10.1.1 Randomness Sources and Min-Entropy.

Imperfect randomness is modeled as arbitrary probability distributions with
a certain amount of entropy. The min-entropy notion is used to measure the
randomness in such an imperfect random source. A source is said to have
k bits of min-entropy if its distribution has the property that each outcome
occurs with probability at most 2−k.

10.1.2 Randomness Extractors

For a discrete distribution X over a set S, its min-entropy is denoted
H∞(X) = minx←$X{− log Pr[X = x]}. A distribution X is called a κ-source
if H∞(X) ≥ κ.

A randomness extractor is a function which, applied to the output of
one or several discrete distributions (possibly together with an additional
uniformly random seed), returns a value indistinguishable from a uniformly
random one. It is well known that there does not exist good deterministic
extractors for a single random source i.e., without the additional random
seed. This chapter uses two-source extractors defined as follows.

Let H = {Hx : {0, 1}n × {0, 1}n → {0, 1}m}x∈{0,1}d be a hash function
family. H is said to be a (κ, ε)-two-source extractor if for any pair of dis-
crete distributions I, J over {0, 1}n such that max(H∞(I), H∞(J)) ≥ κ, for
X uniformly random over {0, 1}d and U is uniformly random over {0, 1}m,
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the distributions of (X,HX(I, J)) and (X,U) are ε-close. For some param-
eter sets, there exist deterministic two-source extractors (i.e., with d = 0)
(e.g., [Li16]). Using the random-oracle heuristic, two-source extractors with
high security and efficient parameters can be efficiently constructed. Alter-
natively, one can also rely on the weaker notion of universal computational
extractor [BHK13].

10.1.3 Universal Computational Extractors

Bellare, Hoang and Keelveedhi introduced Universal Computational Extrac-
tors [BHK13] (UCEs) as a standard-model security notion for keyed hash
functions which relates them to random-oracles. Their definition features
a two-stage adversary, i.e., a source S and a distinguisher D. The source
is given access to an oracle which either computes the hash function or is
a random oracle, whereas the distinguisher is only given the hash-function
key and some leakage information from the source. D is then suppose to
guess whether the oracle computed a hash function or was a random oracle.

The formal definition of a UCE is actually given w.r.t. source classes
instead of a single source. Formally, given a class of sources S and maps
d : N→ N and N,M : N→ 2N, a family

H =

Hx ∈
⋃

n∈N(λ),m∈M(λ)
({0, 1}m){0,1}

n×{1}m

x∈{0,1}d(λ)

of (variable-input-length and variable-output-length) functions is (T, q, ε)-
UCE secure w.r.t. S if for all λ ∈ N, for every T (λ)-time adversary (S,D)
such that S ∈ S and such S makes at most q oracle queries,∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b = b′ :

x←$ {0, 1}d(λ);Q← ∅
b←$ {0, 1}
L← SOb(x,Q,·)

(
1λ
)

b′ ← D
(
1λ, x, L

)
return (b, b′)


− 1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ ε(λ),

with Ob(x,Q, ·) an oracle which, on input (a, 1m) such that a ∈ ⋃
n∈N(λ)

{0, 1}n

and m ∈M(λ), proceeds as follows:

– if there exists h ∈ {0, 1}m such that (a, 1m, h) ∈ Q, return h

– else

∗ if b = 1, return Hx (a, 1m)
∗ else, generate h←$ {0, 1}m, add (a, 1m, h) to Q and return h.
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As S could simply return one of its query and the response from the
oracle in the leakage information, restrictions must imposed on the source
for the security notion to be achievable. A classical requirement is then that
S should be a class of unpredictable sources. A source S is unpredictable if it
is computationally hard to determine its hash queries even given its leakage
information L, in case it interacts with a random oracle. Formally, a source
S is (T, q, ε)-simply unpredictable if for any λ ∈ N, for every adversary or
simple1predictor P running in time at most T (λ) and making at most q
oracle queries,

Pr

Q ∩Q′ 6= ∅ :

x←$ {0, 1}d(λ);Q← ∅
L← SO(x,Q,·)

(
1λ
)

Q′ ← P
(
1λ, L

)
return (Q,Q′)

 ≤ ε(λ),

with O(x,Q, ·) an oracle which, on input (a, 1m) such that a ∈ ⋃
n∈N(λ)

{0, 1}n

andm ∈M(λ), returns h if there exists h ∈ {0, 1}m such that (a, 1m, h) ∈ Q,
and otherwise generates h←$ {0, 1}m, adds (a, 1m, h) to Q and returns h.

Pseudo-Random Functions.

A Pseudo Random Function (PRF) [GGM84] is an efficiently computable
function of which the values are computationally indistinguishable from uni-
formly random values.

Formally, a function PRF : K(λ)×X (λ)→ Y(λ) is a (T, q, ε)-secure PRF
with key space K, input space X and range Y (all assumed to be finite) if
the advantage∣∣∣Pr

[
1← APRF(K,·) : K ←$ K

]
− Pr

[
1← Af(·) : f ←$ YX

]∣∣∣
of every adversary A that runs in time at most T (λ) is at most ε(λ).

Dodis–Yampolskiy Pseudo-Random Function.

Let G be a group family generator. The Dodis–Yampolskiy pseudo-random
function [DY05] in an `-order group (G, `, g) ←$ G is the map F : (K,x) ∈
K × X 7→ g1/(K+x) ∈ G∗, with K = Z∗` and X ⊂ Z∗` . They proved that it
is
(
T/
(
qλO(1)

)
, q, εq

)
-secure under the (T, q, ε)-DDHI assumption (Defini-

tion 2.4.5) for G, where q(λ) = O(log λ) is an upper-bound on the bit-size
of X for all λ [DY05, Section 4.2].

1The predictor is qualified as simple as it is not given access to oracle O. Bellare,
Hoang and Keelveedhi proved [BHK13, Lemma 4.3] that a source is unpredictable (i.e.,
with a predictor which is given oracle access) if and only if it is simply unpredictable.
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10.1.4 Chernoff’s Bound

The Chernoff bound gives bound on the tail distribution of sums of inde-
pendent Bernoulli random variables. It will prove to be a useful tool from
probabilistic methods for the analysis of the runtime of some algorithms in
this chapter.

Theorem 10.1.5 ( [MR95, Theorem 4.2]). Let X1, X2, . . . , Xn be indepen-
dent Bernoulli random variables such that, for 1 ≤ i ≤ n, Pr[Xi = 1] = pi,
with 0 < pi < 1. Then, for X = ∑n

i=1Xi, µ = E[X] = ∑n
i=1 pi, and any

0 < δ ≤ 1,

Pr [X < (1− δ)µ] < exp
(
−µδ2/2

)
.

10.2 Model for Key Generation with Verifiable Ran-
domness

This section formalizes key-generation protocols for arbitrary, predetermined
key-generation algorithms. Such a protocol is executed between a user U
and a certification authority CA. At the end of the protocol, U obtains
a pair of public–secret keys that CA certifies to be indistinguishable from
keys generated by a fixed algorithm KeyGen, and to have been generated
with proper randomness. These requirements are formally captured by a
model for randomness verifiability given below. The security definition of the
model ensures that a protocol satisfying its conditions fulfills the following
properties:

1. CA can infer no more information about the secret key than it would
from a public key generated by KeyGen if U ’s randomness source has
high entropy

2. no external attacker can distinguish a public key generated via the
protocol from a public key generation with KeyGen if the randomness
source of either U or CA has high entropy

3. U cannot bias the generation of the keys if the randomness source of
CA has high entropy. In particular, U cannot use the public key as a
subliminal channel to convey information.

10.2.1 Syntax

An interactive asymmetric-key-generation protocol is a triple IKG = (Setup,
U,CA) of algorithms such that Setup

(
1λ
)
→ pp is a probabilistic algorithm

which returns public parameters and

〈U(pp; rU )
 CA(pp; rCA)〉 → 〈(pkU , sk), pkCA〉
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are interactive algorithms. At the end of the protocol, the user key-generation
algorithm U returns a pair of public–secret keys, and the certificate-authority
key-generation algorithm CA returns a public key.

Algorithm Setup may require some randomness, but the parameters it
generates can be fixed once for all and used across multi sessions and by
several users and authorities. Once parameters are fixed, high-entropy ran-
domness is still needed to securely generate keys, and this is formalized in
Section 10.2.3.

Definition 10.2.2 (Correctness). In the O-oracle model, a key-generation
protocol IKG is δ-correct w.r.t. a class A of algorithms if for all λ ∈ N, for
every A ∈ A ,

Pr

pkU = pkCA 6= ⊥ :

pp ←$ Setup
(
1λ
)

(DU ,DCA)←$ AO(·) (pp)
rU ←$ DU , rCA ←$ DCA
〈(pkU , sk), pkCA〉 ← 〈U(pp; rU )
 CA(pp; rCA)〉

 ≥ δ.
Note that the last line of the probability event implicitly implies that U

and CA must terminate.
The above definition is given in model in which A has oracle access to

O. This latter is used to “distinguish” different models: it may be a random
oracle, but it could also simply be an oracle which returns a fixed value
(i.e., the common-reference-string model) or no value at all (the standard
model). The reason for this distinction is that if a component of the protocol
(e.g. a randomized primality-testing algorithm) is not perfectly correct, then
its correctness probability is only defined for perfect randomness although
the parties only have access to imperfect randomness. However, in the
random-oracle model for instance, this imperfect randomness chosen by the
algorithm in the definition may depend on the random-oracle queries made
by this latter.

10.2.3 Security

This section gives a game-based security model for key-generation protocols
with verifiable randomness. It covers concurrent protocol executions with
different instances of protocol algorithms. It is inspired by the BPR model
for authenticated key exchange [BPR00] but with key differences.

Protocol Participants. A set of user identities U and a set of certificate-
authority identities CA are assumed to be fixed. The union of the those
sets form the overall identity space ID. For readability, it is implicitly as-
sumed that during protocol executions, the messages exchanged are always
prepended with the instance identifier of the receiving party. Note that
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Init
(
1λ,U ,CA, I

)
h←$ Ω; pp ←$ Setup

(
1λ
)

ID ← U ∪ CA
for i ∈ JIK and id ∈ ID do

stiid ← riid ← ⊥
usediid ← FALSE
acciid ← termi

id ← flagiid ← FALSE
sidiid ← pidiid ← ⊥
skiid ← pkiid ← ⊥

QReveal ← QCorrupt ← ∅
return (pin, sin)

Oracle(m) return h(m)
Dist

(
id, i,Diid

)
riid ←$ Diid // riid is simply generated and not returned to A1

Exec(U , i, CA, j) if
(
U /∈ U or CA /∈ CA or usediU or usedjCA

)
return ⊥

if riU 6= ⊥ and rjCA 6= ⊥
return

〈
Ui
(
pp, riU

)
, CAj

(
pp, rjCA

)〉
return ⊥ // A1 must specify distributions beforehand

Send(id, i,m) if riid = ⊥ return ⊥ // A1 must specify a distribution beforehand
if termi

id return ⊥
usediid ← TRUE〈
mout , acc, term, sid, pid, pk, sk, stiid

〉
←
〈
IKG

(
id, stiid ,m; riid

)〉
if acc and ¬acciid

sidiid ← sid; pidiid ← pid
acciid ← acc

if term and ¬termi
id // Set keys only after termination

pkiid ← pk; skiid ← sk
return

(
mout , sid, pid, pk, sk, acc, termi

id
)

Reveal(id, i) QReveal ← QReveal ∪ {(id, i)}
return

(
pkiid , skiid

)
Corrupt(id) QCorrupt ← QCorrupt ∪ {id}

for i ∈ JIK
{
if ¬acciid then flagiid ← TRUE

}
return {stiid}i∈JIK

Testb(id∗, i∗) if
(
∃(id0, id1, i, j) : pidiid0 = id1 and pidjid1

= id0 and acciid0

and ¬termj
id1

)
return ⊥

// Once an instance accepts, its partner must eventually terminate
if ¬termi∗

id∗ return ⊥
if flagi

∗

id∗ return ⊥
// Reject if id∗ was corrupt before (id∗, i∗) accepted
if (id∗, i∗) ∈ QReveal or

(
∃(id ′, j) : pidi

∗

id∗ = id ′ and pidjid′ = id∗
and (id ′, j) ∈ QReveal)

return ⊥
// Reject if the key of (id∗, i∗) or of its partner has been revealed
if pki

∗

id∗ 6= ⊥
if b = 0

(pk, sk)←$ KeyGen
(
1λ
)

return pk
return pki

∗

id∗

return ⊥ // Reject if (id∗, i∗) does not have a key

Figure 10.1: Oracles for the Key-Generation Indistinguishability Experi-
ment.
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several instances of the same algorithm may concurrently run during the
game.

Adversaries. The game features a two-stage adversary (A1,A2). Adver-
saries A1 and A2 may agree on a common strategy before the beginning of
the game. That is to say, the strategy may be part of their code, and it may
dictate which queries to make (possibly depending on the oracle answers),
the order of the queries and so forth. All but the challenge query can only
be made by A1. The role of A2 is essentially only to guess whether a public
key was generated with KeyGen or with the protocol, while A1 can make
arbitrary queries according to the pre-established strategy.

However, A1 and A2 cannot communicate after the beginning of the
game. It reflects the fact that in practice, an implementer may distribute
its key generator, but does not necessarily wiretap the execution of the
key-generation protocol for a particular user. From a technical viewpoint,
the reason is that in a key-generation protocol, a user has to prove to the
authority that she correctly performed her computation. However, the ran-
domness used in these proofs can be used as a subliminal channel to convey
information about the secret key. For instance, an engineer could in prac-
tice implement a bogus key generator which only terminates the protocol
if the first bits of the proof and secret key match. The proof then serves
as subliminal channel to leak information about the secret key. Later on,
when a user wants to generate a certified public key, if the engineer could
wiretap the protocol execution, he could infer some information about her
secret key through the proof of correct computation. It is the reason why
communication between the adversaries cannot be allowed.

The restriction that A1 and A2 cannot communicate after the beginning
of the game means that the attacks in which the protocol executions are
listened to are excluded, but as explained above, it seems to be a minimal
requirement.

Game Overview. At the beginning of the game, the challenger first runs
an initialization algorithm. After that, A1 can make several queries to the
algorithm instances. It can in particular

∗ specify distributions from which randomness is drawn and given as an
input to the instances,

∗ ask for the protocol to be executed between different instances of the
protocol algorithms without its intervention, i.e., perform passive at-
tacks,

∗ perform active attacks by sending messages to algorithm instances of
its choice,
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∗ later on reveal the keys that were generated by a particular instance,

∗ corrupt a party (user or certificate authority), and thereby gain access
to the state of all its algorithm instances.

As for A2, it can reveal keys or make a test query that returns either (with
probability 1/2 each) keys freshly generated by the key-generation algorithm
or keys generated by instances of its choice via queries made by A1. Ad-
versary A2 must eventually return a guess for the origin of the keys it was
returned, and (A1,A2) wins the game if the guess of A2 is correct.

Initialization & Game Variables. During the initialization phase, game
variables are declared for every instance of the protocol algorithms. Assume
that there are at most I = I(λ) instances of any participant id. Each
instance i ∈ I of a participant id maintains a state stiid . A session iden-
tity sidiid and a partner identity pidiid allow to match instances together
in protocol executions. It is assumed that for each sidiid there can be at
most one partner instance, i.e., one pair (id ′, j) such that pidiid = id ′ and
sidiid :=

(
id, i, id ′, j, sidiid

′).
Public/secret-key variables (denoted pkiid and skiid) hold the keys that

were output, if any, by the ith instance of the algorithm of party id at
that step of the computation. For certificate authorities, the secret keys are
always set to ⊥.

A variable usediid indicates whether the adversary has performed an ac-
tive attack on the ith algorithm instance of participant id.

Variables acciid and termi
id respectively indicate whether the algorithm

of the ith instance of participant id has accepted and terminated. As in the
BPR model [BPR00], termination and acceptance are distinguished. When
an instance terminates, it does not output any further message. However,
it may accept at a certain point of the computation, and terminate later.
In the present context, it may for instance occur when an instance expects
no further random input from its partner instance, and the rest of its com-
putation is purely deterministic. It may then only terminate after finishing
its computation. This distinction is crucial for the security definition. It is
important to exclude the trivial case in which, although every computation
was honestly performed, a user discards the public key if it does not follow
a certain pattern, thereby influencing the distribution of the output public
key (i.e., perform rejection sampling), and possibly using it as a subliminal
channel to convey information about the secret key.

Another variable flagiid (new compared to the BPR model) indicates
whether party id was corrupted before its ith instance had accepted. Recall
that acceptance intuitively means that an instance expects no further ran-
dom input from its partner instance. As long as flagiid is set to FALSE, the
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only information the adversary has about riid is its distribution and there-
fore, if this distribution has high min-entropy, the adversary cannot bias the
generation of the keys.

A variable riid holds the random string to be used the ith instance of the
algorithm of id.

The challenger maintains a set (initially empty)QReveal of identity–instance
pairs of which the keys were revealed. It also maintains a set (initially empty)
QCorrupt of corrupt identities.

At the end of the initialization phase, the public parameters, the sets of
participants and the user public keys are returned in a public input pin, and
the rest is set in a secret input sin. That is, pin ← (pp,U ,CA, I, (pkid)id)
and sin ←

(
pin, (skid)id ,

(
stiid , sidiid , pidiid , acciid , termi

id , usediid
)
i,id

, QCorrupt,

QReveal). The secret input sin is later made available to all oracles.

Oracles.

Throughout the game, adversary A1 is given access to the oracles summa-
rized below and defined in Figure 10.1. It can query them one at a time.

∗ Oracle : gives access to a function h chosen uniformly at random from
a probability space Ω. The adversary and the protocol may depend on
h. The probability space Ω specifies the model in which the protocol
is considered. If it is empty, then it is the standard model. If it is a
space of random functions, then it is the random oracle model. As for
the Common-Reference String (CRS) model, Ω is a space of constant
functions.

∗ Dist : via this oracle, the adversary specifies the distribution Diid from
which the randomness of the ith instance of id is drawn. These distri-
butions are always assumed to be independent of oracle Oracle. How-
ever, the distributions specified by the adversary for different instances
can be correlated in any way. Oracle Dist then generates a bit string
riid according to the input distribution and does not return it to the
adversary. Whenever oracle Exec or Send is queried on (id, i), it uses
randomness riid for its computation.
This new (compared to the BPR model) oracle is essential to express
requirements on the minimal entropy used by the instances, and also
to express reasonable winning conditions. It allows to properly capture
properties like the fact that (1) the authority cannot infer any informa-
tion about the secret key if the randomness of the user algorithm has
high entropy, (2) that the output keys are indistinguishable from keys
generated with the key-generation algorithm if the randomness used
by the algorithm of either of the parties has high entropy, or (3) that
a potentially malicious user algorithm cannot bias the distribution of
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the output keys if the randomness of the authority algorithm has high
entropy. That is first because the test query later made by A2 requires
the min-entropy of the randomness of either the challenge instance or
of its partner to be high. It is also due to the fact that the adversary
cannot corrupt the challenge instance (thus learning its randomness)
before the partner randomness necessary to generate the challenge key
is committed, which is monitored by the flags. It for instance means
that if the CA is the target of the test and the adversary plays the role
of a user algorithm (in which case the partner randomness is consid-
ered to have nil entropy) and possibly deviates from the protocol, then
the test CA must be given high-entropy randomness and the definition
ensures that the resulting key is indistinguishable from keys generated
with KeyGen.

∗ Exec : returns the transcript of an honest (i.e., without the interfer-
ence of the adversary) protocol execution between the ith instance of
U and the jth instance of CA. The protocol is executed with the ran-
dom strings generated for these instances by oracle Dist on the input
of adversarial distributions. The notations Ui and CAj mean that al-
gorithms U and CA are executed using the state of the ith instance
of U and the jth instance of CA respectively. It is implicitly assumed
that the states acciU , termi

U , accjCA and termj
CA are set to TRUE after

an honest protocol execution. Moreover, if the termination variable
of either party is set to TRUE, the protocol is not executed and ⊥ is
returned. In essence, by querying oracle Exec, adversary A1 performs
a passive eavesdropping attack.

∗ Send : adversary A1 can perform active attacks via this oracle. A1
can send any message to an instance of its choice, e.g., the ith in-
stance of a user algorithm, which runs the honest protocol algorithm
of the corresponding party on the input of the message chosen by the
adversary.
To prompt the ith instance of id to initiate a protocol execution
with the jth instance of id ′, adversary A1 can make a Send query
on
(
id, i, (id ′, j)

)
.

IKG(id, ∗) denotes the IKG algorithm of party id, i.e., either U or CA.
The algorithm is executed using the randomness generated by oracle
Dist for that instance. (Note that the input random string may be used
only at certain steps of the computation.) The oracle then returns the
output of the instance to the adversary. It also specifies if this instance
accepted and/or terminated, and returns the session identifier and the
identity of its partner in the protocol execution, as well as the public
and secret keys returned by this instance, if any. Note that if the
instance is that of a certificate-authority algorithm, the secret key is



Public-Key Generation with Verifiable Randomness 279

always set to ⊥.

∗ Reveal : on input (id, i), returns the keys held by the ith instance of
the algorithm of id. The couple (id, i) is added to the set QReveal of
revealed keys.

∗ Corrupt : on input id, returns the states of all the instances of the
algorithm of id. The identity id is added to the set QCorrupt of corrupt
identities. Besides, for any instance i of id, if it has not yet accepted,
flagiid is set to TRUE.

Remark 10.2.4. The first main difference with the BPR model is the new
oracle Dist. It allows to capture an adversary running several instances of
the protocol with correlated randomness. In the new model, it is also impor-
tant to express winning conditions that exclude the trivial (and unavoidable)
rejection-sampling attack. Another difference is that the variable flagiid is
set to TRUE if A1 corrupts id before its ith instance has accepted. It is
to say that for instance, if an adversary (e.g., a malicious user algorithm)
knows the randomness of the other party (by corrupting the CA) before it has
“committed” to its randomness, then that party can influence the resulting
key and break property (3).

As for adversary A2, it is given access to oracles Oracle, Reveal and to
oracle

∗ Testb : on input (id∗, i∗), it returns the public key pki∗id∗ generated via
IKG (with an Exec query or Send queries) if b = 0 or a fresh public key
generated via KeyGen if b = 1.
An important restriction on this query is that the following condi-
tion must be satisfied: for any instance i of the algorithm of a party
id0, once it has accepted, i.e., once acciid0

is set to TRUE, the partner
instance algorithm, say the jth instance of id1, must eventually ter-
minate, i.e., termj

id1
must have been set to TRUE as well by the time

of query Test. It prevents A1 from biasing the distribution of the keys
by prematurely aborting the protocol although it was followed, if the
resulting key does not follow a certain pattern, and which would allow
A2 to guess b with a non-negligible advantage.
The other restrictions are simply that i∗-th instance of id∗ must have
terminated, that id∗ was not corrupt before (id∗, i∗) had accepted2,
that neither the key of the i∗th instance of id∗ nor of its partner
instance has been revealed, and that the i∗th instance of id∗ must
already hold a key.
Note that A2 can query Test only once. A definition with multiple
queries would be asymptotically equivalent via a standard hybrid ar-
gument.
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Adversary A2 must eventually return a bit b′ as a guess for the origin
(i.e., either IKG or KeyGen) of the key returned by oracle Testb.

To achieve any form of indistinguishability from a key-generation algo-
rithm, it is clear that either the distribution Di∗id∗ or the distributions Djid′
for the partner instance (j, id ′) of (i∗, id∗) must have high entropy. Indeed, if
distributions with low entropy were allowed, A1 and A2 could agree on these
identities, instances and distributions beforehand. Adversary A2 could then
simply return 1 if and only if the challenge key is the most likely key w.r.t.
Di∗id∗ and D

j
id′ , and thereby win the game with a non-negligible advantage.

A parameter κ for the maximal min-entropy of Di∗id∗ and D
j
id′ specified by

A1 is therefore introduced. If the adversary modified any message from the
partner (j, id ′) of (id∗, i∗) before (id∗, i∗) accepts, then Djid′ is set to be the
Dirac mass at the zero bit-string by convention (and it thus has no entropy).
The underlying idea is that as long as at least one of the two parties has
a randomness source with high entropy, the key returned at the end of the
protocol should be indistinguishable from a key generated by the KeyGen
algorithm, which implies properties (1), (2) and (3). The security of a key-
generation protocol is then defined for adversaries that specify challenge
distributions with min-entropy at least κ.

Definition 10.2.5 (Indistinguishability). An interactive key-generation pro-
tocol IKG is (T, qOracle, qDist, qExec, qSend, qReveal, qCorrupt, κ, ε)-indistinguishable
from a key-generation algorithm KeyGen (running on uniform randomness)
if for all λ ∈ N, for every adversary (A1,A2) that runs in time at most
T (λ) and makes at most qO queries to O ∈ {Oracle,Dist,Exec, Send,Reveal,
Corrupt}, and such that max

(
H∞

(
Di∗id∗

)
, H∞

(
Djid′

))
≥ κ for query Test,

the advantage (function of λ)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′ :

(pin, sin)← Init
(
1λ,U ,CA, I

)
O1 ← {Oracle,Dist,Exec, Send,Reveal,Corrupt}
AO1(sin,·)

1 (pin)
b←$ {0, 1}
O2 ← {Oracle,Reveal,Testb}
b′ ← AO2(sin,·)

2 (pin)
return (b, b′)


− 1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 To understand why it is necessary for id∗ not to be corrupt before (id∗, i∗) accepts

even thoughA1 andA2 do not communicate, suppose that this condition were not imposed
and consider the following strategy which allows (A1,A2) to trivially win: A1 and A2
agree on (id∗, i∗) and on a distribution Di

∗
id∗ . Adversary A1 prompts (id∗, i∗) to initiate a

protocol execution by making a Send query. It then corrupts id∗ and obtains sti
∗

id∗ , from
which it can read ri

∗
id∗ . Adversary A1 could then play the role of its partner and adapt

the messages it sends to make sure that the resulting public key follows a certain pattern
known to A2. This latter would then be able to win the game with a non-negligible
advantage.
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of (A1,A2) is at most ε(λ).

From a practical perspective, this definition (which implies requirement
3 as it enforces indistinguishability from keys generated by IKG) means that
keys generated via a protocol satisfying the definition above are not subject
to randomness vulnerabilities such as the ROCA vulnerabilities [NSS+17]
mentioned in introduction (in which only specific primes were selected by
user key generation algorithms) and those [LHA+12, HDWH12] in which
several public keys are generated with correlated randomness sources.

10.3 Generic Constructions

This section presents a protocol that covers a wide class of key-generation
algorithms, namely those that can be represented as probabilistic circuits,
and another protocol specific to the generation of RSA keys. The first
protocol is of theoretical interest and shows that randomness verifiability
can be achieved for wide class of key-generation algorithms, whereas the
second protocol is a solution that can actually be used in practice.

10.3.1 Key-Generation Protocol with Verifiable Randomness
for Probabilistic Circuits

This section gives a key-generation protocol with verifiable randomness for
a large class of key-generation algorithms. The focus is here on the class of
key-generation algorithms that can be modeled as probabilistic circuits.

The advantage of probabilistic circuits compared to general Turing Ma-
chines for this purpose is that the running time of a probabilistic circuit
is independent of the random inputs. In a key-generation protocol with
verifiable randomness, the user has to prove to the authority that she cor-
rectly performed her computation. Having a constant running time then
ensures that no one can infer any information about the secret key from the
statement proved by the user or the proof itself. It prevents malicious user
algorithms from using the proofs as subliminal channels to pass information
about the secret key.

To understand why it is important for the running time to be con-
stant, consider the artificial random number generator described on Algo-
rithm 10.3.5. To generate a k-bit string t = (t0, . . . , tk−1), it essentially
consists in flipping a random coin s several times for each bit ti and to
set this bit to the parity of the number of flipped coins to obtain the first
“Head”. It produces a k-bit string uniformly distributed within expected
time complexity O(k) and it could be used as a secret-key generation al-
gorithm (and the public key would then be a deterministic function of the
generated secret key).
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Algorithm 10.3.5 RNG with Non-Constant Running Time.
Require: Integer k.
Ensure: Uniformly random k bit-string x.
1: for i = 0 to k − 1 do
2: c← 0
3: while TRUE do
4: c← (c+ 1 mod 2)
5: s←$ {0, 1}
6: if s = 0 then
7: ti ← c
8: break
9: end if

10: end while
11: end for
12: t← t0‖ · · · ‖tk−1
13: return t

For a user to prove that she correctly generated the random bit string
t, she would have to commit to the ti values and compute a proof on the
successive s values. However, each ti is simply the parity of the number of
trials before s = 0. Therefore, from the number of s values for which the
user has to perform a proof, the authority can infer ti. For example, if the
user generated two s values for t1, the authority knows that t1 = 0.

In other words, the statement of the proof itself reveals some information
about the secret key to the certification authority; and the issue is here that
the running time changes from one random run of the algorithm to the other.
Restricting to probabilistic circuits eliminates this issue.

The restriction to circuits comes at a cost though. It for instance ex-
cludes the class of algorithms for which there is no known circuit that can
represent them. It is for instance the case of algorithms that must efficiently
generate primes during the process. Indeed, there is no known circuit that
can efficiently generate prime numbers. On this ground, the generic proto-
col for probabilistic circuits of Section 10.3.1 does not apply to the RSA-key
generation for instance3. See rather Section 10.3.4 for the specific case of
RSA-key generation with verifiable randomness for arbitrary properties that
the keys must satisfy.

3One can construct families of probabilistic “circuits” which output an RSA key but
only with overwhelming probability (and not probability 1) by relying on the prime num-
ber theorem and Chernoff’s bound. However, to obtain a b-bit RSA public key with
probability 1− 2λ, such constructions would have O

(
λ2b4

)
gate complexity and O

(
λ2b2

)
randomness complexity (based on Miller-Rabin’s primality test) or O

(
λb7
)
gate com-

plexity and O
(
λb2
)
randomness complexity (based on Agrawal-Kayal-Saxena primality

test [AKS04]). Applying our generic construction to such circuits family would result in
schemes with prohibitive efficiency.
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Before describing our protocol, we first formally define probabilistic cir-
cuits.

Probabilistic Circuits.

A probabilistic circuit is essentially a deterministic circuit augmented with
uniformly random gates. The random gates produce independent and uni-
form random bits that are sent along their output wires.

We equivalently define a probabilistic circuit as a uniform random vari-
able over a finite collection of deterministic boolean circuits. These boolean
circuits are restricted to have the same amount n of input variables, and
r fixed inputs. The number r of fixed inputs depends on the security pa-
rameter 1λ. Denote such a circuit as Γb1···br(x1, . . . , xn), with x1, . . . , xn the
input variables and b1, . . . , br the fixed inputs. To each element in {0, 1}r
corresponds a circuit in the collection with the bit string as fixed inputs,
so that there are 2r circuits in the collection. However, these circuits are
not required to form a uniform family (i.e., they are not required to be out-
put by a single Turing machine); the circuit families here considered can be
non-uniform.

A probabilistic circuit Γ is then defined as a uniform random variable
over the set (of circuits) {Γb}b∈{0,1}r . Namely, for input variables x1, . . . , xn,
the evaluation Γ(x1, . . . , xn) is a uniform random variable over the set (of val-
ues) {Γb(x1, . . . , xn)}b∈{0,1}r . If ω ∈ {0, 1}r denotes the random input to the
probabilistic circuit Γ, the evaluation Γ(x1, . . . , xn;ω) is then Γω(x1, . . . , xn).

The advantage of this second definition is that randomness is invoked
only once instead of invoking it for each of the r random gates. To generate
keys, PRFs are often used to provide random bit strings from small secret
seeds. As the goal is to build a key-generation protocol which allows the
CA to certify that the keys are generated with high-entropy randomness,
the user will have to prove that she correctly performed the pseudo-random
evaluations. Invoking randomness only once then allows to invoke the PRF
only once in the protocol.

Generic Protocol.

We now give a two-party protocol in the CRS model to generate, with veri-
fiable randomness, keys computed by probabilistic circuits. Requiring that
keys are generated with verifiable randomness here means that the random
inputs to the circuits must be uniformly generated in a verifiable manner.
The deterministic inputs to the circuits can simply be considered as public
parameters.

Building Blocks. The protocol involves
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◦ a function family H = {Hhk}hk∈{0,1}d(λ) which is a universal computa-
tional extractor w.r.t. unpredictable sources (Section 10.1.3)

◦ a two-source extractor Ext (Section 10.1.2) with key space {0, 1}δ(λ)

◦ an extractable commitment scheme C = (Setup,Com,ComVf,TSetup,
ExtCom) for the user algorithm to commit to her random string before
receiving any input from the CA, thereby preventing it from biasing
the distribution of the keys. The parameters returned by Setup are
implicit inputs to the other algorithms of C

◦ a non-interactive, extractable, zero-knowledge proof system Π = (Setup,
,CRSGen,Prove,Vf,TSetupzk,Sim,TSetupext,Ext) for relation

RΠ :=
{(

(xi)i, k, C, rCA, pk; r′U , d, sk
)

: ComVf
(
C, r′U , d

)
= 1

∧(pk, sk) = Γ
(
x1, . . . , xn; Extk

(
r′U , rCA

))}
,

◦ a pseudo-random function PRF to generate the randomness for Π.Prove.

Parameters. Given a circuit Γ with deterministic inputs x1, . . . , xn, to
generate public parameters for the protocol on the input of a security pa-
rameter 1λ, run ppC ← C .Setup

(
1λ
)
(ppC is a tacit input to the algorithms

of C ), pp ← Π.Setup
(
1λ
)
, crs ← Π.CRSGen(pp), and generate hk ←$

{0, 1}d(λ) and k ←$ {0, 1}δ(λ). Return pp ← (crs, ppC , hk, k, x1, . . . , xn).

Formal Description. Consider the interactive protocol IKGΓ on Figure
10.2 between a user U and a certification authority CA. Each algorithm
maintains acceptance and termination variables accid and termid , for id ∈
{U , CA}, initially set to FALSE. On the input of pp and of their respective
random strings rU and rCA, the party algorithms proceed as follows:

1. U separates the domain of Hhk in two and applies it to its randomness.
It commits to the first output with the second output as randomness,
and sends the resulting commitment C to CA

2. CA, upon receiving the commitment from U , sets accCA ← TRUE and
sends its random string rCA to U

3. U, upon receiving rCA from CA, sets accU ← TRUE. Next, it ex-
tracts a seed s with Ext from the joint randomness. It evaluates Γ
on x1, . . . , xn and s, and obtains a key pair (pk, sk). It generates an-
other seed s′ with Hhk . Algorithm U then evaluates PRF mode on
s′ to generate the randomness necessary to compute Π.Prove since
U has no other random string than rU available, i.e., it computes
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rΠ ← PRF(s′, 0). Algorithm U then proves that it followed the proto-
col and correctly evaluated Γ at x1, . . . , xn, i.e., it computes a proof
π ← Π.Prove (crs, ((xi)i, k, C, rCA, pk) , (r′U , d, sk) ; rΠ). After that, it
erases all variables but pk, sk, π, sends pk and π to CA, returns (pk, sk)
and sets termU ← TRUE

4. CA, upon receiving (pk, π) from U , verifies the proof. If the proof is
valid, it returns pk, otherwise it returns ⊥. It then sets termCA ←
TRUE.

U (crs, ppC , hk, k, x1, . . . , xn; rU ) CA (crs, ppC , hk, k, x1, . . . , xn; rCA)
r′U ← Hhk

(
0‖rU , 1|r

′
U |
)

ρU ← Hhk
(
1‖rU , 1|ρU |

)
(C, d)← Com (r′U ; ρU )

C−→
rCA←−−

s ← Extk (r′U , rCA)
(pk, sk)← Γ(x1, . . . , xn; s)
s′ ← Hhk

(
2‖rU , 1|s

′|
)

π ← Π proof of correct computation
with random string PRF (s′, 0)

Erase all variables but pk, sk, π pk,π−−−→ Π.Vf (crs, ((xi)i, k, C, rCA, pk) , π) ?= 1

return (pk, sk) return pk

Figure 10.2: Key-Generation Protocol with Verifiable Randomness for Prob-
abilistic Circuits.

Theorem 10.3.2 (Correctness). Protocol IKGΓ is 1-correct w.r.t. all algo-
rithms if C is correct and if Π is complete.

Proof. The theorem immediately follows from the correctness of C and the
completeness of Π.

Theorem 10.3.3 (Indistinguishability). Suppose that H is (T uce
H , 3, εuce

H )-
UCE secure w.r.t. simply unpredictable sources of min-entropy at least κH.
Suppose also that Ext is a (κExt, εExt)-extractor for κExt ≤ min(|r′U |, |rCA|). If
C is

(
T hide

C , εhide
C

)
-hiding, and satisfies

(
T setup−ind

C , εsetup−ind
C

)
-setup indis-

tinguishability and
(
T biding

C ,ExtCom, T
biding
C ,A , 0, εbiding

C

)
-binding extractability, if Π

is
(
T ext

Ext , T
ext
A,Π, ε

ext
)
-extractable and

(
T zk

Π , εzk
)
-composable zero-knowledge,

and if PRF is (TPRF, 1, εPRF)-secure, then protocol IKGΓ is (T, qO, κ, ε)-indis-
tinguishable from Γ in the CRS model, for

T = min (T uce
H , T hide

C , T setup−ind
C , T biding

C ,ExtCom, T
biding
C ,A , T ext

Π,Ext, T
ext
Π,A, T

zk
Π , TPRF

)
,
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O ∈ {Dist,Exec,Send,Reveal,Corrupt}, κ = max(κH, κExt) and ε := 5εuce
H +

5εExt + εPRF + εzk
Π + εext

Π + εsetup−ind
C + εbind−ext

C + εhide
C .

Proof. First note that if (A1,A2) wins the indistinguishability game with a
probability at least ε, then there exists an adversary (A′1,A′2) which wins
with probability at least ε/|ID||I| a variant of the game in which the ad-
versary is required to specify the pair (id∗, i∗) of its Test query before being
given access to the game oracles, i.e., a selective variant of the indistinguisha-
bility game. Indeed, (A′1,A′2) can simply run (A1,A2) as a subroutine and
guess the pair (id∗, i∗) at the beginning of the game. If (A1,A2) later makes
its Test query on a different pair, (A′1,A′2) simply aborts and sends to the
challenger a bit chosen uniformly at random.

A message is subsequently said to be oracle-generated if it was computed
by the challenger as a response to a Send query and it was not altered.
Otherwise, the message is said to be adversarially generated.

Further distinguish two cases

1. id∗ ∈ CA, or id∗ ∈ U and the random string rCA the i∗th instance of
id∗ receives is oracle-generated.

2. id∗ ∈ U and the random string rCA the i∗th instance of id∗ receives is
adversarially generated.

In the first case, as the commitment scheme satisfies binding extractabil-
ity and as the proof system satisfies simulation extractability, the random-
ness used to generate the keys is really drawn from Di∗id∗ and D

j
id′ . Moreover,

since either Di∗id∗ or D
j
id′ has min-entropy at least κ, family H and extractor

Ext guarantee that the public key generated during the protocol execution
is indistinguishable from a one from the key-generation algorithm.

To prove it, consider the following sequence of games.

Game 0. This is the real selective game.

Game 1. In this game, to generate the common-reference string, the chal-
lenger runs (crs, τext) ← Π.TSetupext

(
1λ
)

instead of Π.setup and
Π.CRSGen. This game is perfectly indistinguishable from the previous
one since Π is extractable.

Game 2. To answer an Exec query on (id∗, i∗, ∗, ∗) or on (∗, ∗, id∗, i∗),
the challenger generates a transcript of an honest protocol execution.
However, instead of setting pki∗id∗ ← pk, it generates a uniformly ran-
dom string σ, runs (pk ′, sk ′)← Γ(x1, . . . , xn;σ) and sets pki∗id∗ ← pk ′.
Recall that A′1 and A′2 share no state, and that in the event in which
the Test query of A′2 is not replied to with ⊥, key pki∗id∗ is not in QReveal
(nor is the key of the partner instance of (id∗, i∗)). Denoting by (id, j′)
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the partner instance of (id∗, i∗), since max
(
H∞

(
Di∗id∗

)
, H∞

(
Djid′

))
≥

κ, adversary (A′1,A′2) can distinguish this game from the previous one
with an advantage of at most εuce

H + εExt.

Indeed, first suppose that id∗ ∈ U . If H∞
(
Di∗id∗

)
≥ κ ≥ κH, then

r′U is εuce
H -computationally indistinguishable from a uniformly ran-

dom value. Since |r′U | ≥ κExt, max
(
H∞ (r′U ) , H∞

(
rjid′
))
≥ κExt

and s is then εext-computationally indistinguishable from a uniformly
random value. On the other hand, if H∞

(
Djid′

)
≥ κ ≥ κExt then

max (H∞ (r′U ) , H∞ (rCA)) ≥ κExt and s is thus εext-computationally
indistinguishable from a uniformly random source. In either sub-case,
(A′1,A′2) can distinguish this game from the previous one with an ad-
vantage of at most εuce

H + εExt.
In case id∗ ∈ CA, a symmetric argumentation implies that (A′1,A′2)
can distinguish this game from the previous one with an advantage of
at most εuce

H + εExt.

Game 3. If id∗ ∈ U , the challenger answers a Send query on (id∗, i∗, rCA)
as follows. It computes (pk, π) honestly, but instead of setting pki∗id∗ ←
pk, it generates a uniformly random string σ, runs

(
pk ′, sk ′

)
← Γ(x1, . . . ,

xn;σ) and sets pki∗id∗ ← pk ′.
Recall that in case 1), since rCA is always oracle-generated. Therefore,
the same indistinguishability between the last two games still apply
and (A′1,A′2) can distinguish this game from the previous one with an
advantage of at most εuce

H + εExt.

Game 4. If id∗ ∈ CA, the challenger answers a Send query on (id∗, i∗, (pk, π))
as follows. If (pk, π) is adversarially generated and valid, the challenger
runs (r′U , d, sk) ← Π.Ext (crs, τext, ((xi)i, k, C, rCA, pk) , π) and checks
whether ((xi)i, k, C, rCA, pk; r′U , d, sk) is in RΠ. If not, it aborts.
This game can be distinguished from the one only if the extractability
of Π is contradicted. Therefore, (A′1,A′2) can distinguish this game
from the one with an advantage of at most εext

Π .

Game 5. The challenger now runs (ppCom, τCom)← C .TSetup
(
1λ
)
instead

of running C .setup. The setup indistinguishability of C implies that
adversary (A′1,A′2) can distinguish this game from the previous one
with an advantage of at most εsetup−ind

C .

Game 6. If id∗ ∈ CA, the challenger of this game answers a Send query
on (id∗, i∗, (pk, π)) as follows. If (pk, π) is adversarially generated and
valid, the challenger runs (r′U , ρU , sk)← Π.Ext (crs, τext, ((xi)i, k, C, rCA,
pk) , π). If ((xi)i, k, C, rCA, pk; r′U , d, sk) is in RΠ, it extracts r′′U ←
ExtCom(τCom, C) and if r′U 6= r′′U , the challenger aborts.
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This game can be distinguished from the previous one only if the
binding extractability of C is contradicted. It follows that adversary
(A′1,A′2) can distinguish this game from the previous with an advan-
tage of at most εbind−ext

C .

Game 7. If id∗ ∈ CA, to answer a Send query on (id∗, i∗, (pk, π)), the
challenger proceeds as the challenger of the previous game, and if it
does not aborts, it generates a uniformly random string σ, computes
(pk ′, sk ′)← Γ (x1, . . . , xn;σ) and sets pki∗id∗ ← pk ′.

Note that if C is adversarially generated, then H∞
(
Di∗id∗

)
≥ κ as

the distribution of the partner instance is set to a Dirac mass since
(id∗, i∗) has not yet accepted, by definition of oracle Test. If C is
oracle-generated, then max

(
H∞

(
Di∗id∗

)
, H∞

(
Djid′

))
≥ κ. The same

arguments for the computational indistinguishability of Game 2 and
Game 1 imply that (A′1,A′2) can distinguish this game from the pre-
vious one with an advantage of at most εuce

H + εExt.

In the last game, the condition that if an instance accepts then its part-
ner must eventually terminate implies that pki∗id∗ is computed by generating
a uniformly random string σ and evaluating Γ at (x1, . . . , xn;σ). The ad-
vantage of the adversary in the last game is thus nil. IT follows that in case
1), the advantage of (A1,A2) is at most

|ID| |I|
(
3 (εuce
H + εExt) + εext

Π + εsetup−ind
C + εbind−ext

C

)
.

In the second case, id∗ ∈ U and since rCA is adversarially generated,
Di∗id∗ has min-entropy at least κ. The security of H and of Ext ensure that
the commitment scheme is hiding and that the proof is zero-knowledge,
which ensures that the protocol execution leaks no information about seed
s. In addition to that, the high min-entropy of Di∗id∗ also guarantees that s
is indistinguishable from a uniformly random string. As a consequence, the
resulting key is indistinguishable from one generated by the key-generation
algorithm.

To prove it, consider the following sequence of games.

Game 0. This is the real selective game.

Game 1. In this game, to generate the common-reference string, the chal-
lenger runs (crs, τzk)← Π.TSetupzk

(
1λ
)
instead of Π.Setup and Π.CRSGen.

Adversary (A′1,A′2) can distinguish this game from the previous one
with an advantage of at most εzkΠ .

Game 2. This game is defined as in the previous case, and (A′1,A′2) can
distinguish this game from the previous one with an advantage of at
most εuce

H + εExt.
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Game 3. To answer a prompting Send query on (id∗, i∗, (∗, ∗)), the chal-
lenger now generates r′U , ρU and s′ uniformly at random. Since rCA
is adversarially generated in case 2) and that U accepts only after re-
ceiving it, the only information (A′1,A′2) has about rU is that it has
a distribution Di∗id∗ such that H∞

(
Di∗id∗

)
≥ κ ≥ κH. In the event in

which the Test query of A′2 is not replied to with ⊥, instance (id∗, i∗)
is not corrupt before it accepts, so the only information A′1 has about
ri
∗

id∗ is that its distribution is Di∗id∗ . Moreover, if id∗ is later corrupt
before the end of the protocol execution, (id∗, i∗) will have already
erased r′U and ρU and s′.

Consequently, the UCE security of H can be reduced to distinguishing
this game from the previous one, and (A′1,A′2) can thus distinguish
this game from the previous one with an advantage of at most εuce

H .

Game 4. In this game, the challenger answers a Send query on (id∗, i∗, rCA),
with rCA adversarially generated, by generating uniformly random val-
ues instead of evaluating PRF at (s′, 0). If id∗ is later corrupt before
the end of the protocol execution, (id∗, i∗) will have already erased
s′ and rΠ. Adversary (A′1,A′2) can distinguish this game from the
previous one with an advantage of at most εPRF.

Game 5. To answer a Send query on (id∗, i∗, rCA) such that rCA is adversar-
ially generated, the challenger simulates a proof π ← Π.Sim (crs, τzk,
((xi)i, k, C, rCA, pk)). By the composable zero-knowledge property of
Π, this game is perfectly indistinguishable from the previous one.

Game 6. To answer a prompting Send query on (id∗, i∗, (∗, ∗)), the chal-
lenger runs (C, d)← Com

(
0|r′U |; ρU

)
and sends C. In the event in which

the Test query of A′2 is not replied to with ⊥, adversary A′1 does not
corrupt id∗ before (id∗, i∗) accepts, so not before ρU is erased. As C
is εhide

C -hiding, (A′1,A′2) can distinguish this game from the previous
one with an advantage of at most εhide

C .

Game 7. To answer a Send query on (id∗, i∗, rCA) such that rCA is adver-
sarially generated, the challenger generates s uniformly at random.
As |r′U | ≥ κExt, s is εext-computationally indistinguishable from a uni-
formly random value. (A′1,A′2) can then distinguish this game from
the previous one with an advantage of at most εExt.

In the last game, the condition that if an instance accepts then its partner
must eventually terminate then implies that pki∗id∗ is computed by evaluating
Γ at (x1, . . . , xn;σ), where σ is a uniformly random string. The advantage
of (A′1,A′2) in that game is then nil. As a result, the advantage of (A1,A2)
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in the second case is at most

|ID| |I|
(
εzkΠ + 2εuce

H + 2εExt + εPRF + εhide
C

)
.

Discrete-Logarithm Keys.

This section instantiates the generic protocol of Figure 10.2 in the case
of discrete-logarithm keys. For simplicity, we present a scheme based on
Pedersen commitments and classical Schnorr-like zero-knowledge proofs.

Let G be a group family generator, λ be an integer and (G, `, g)← G(λ).
Let g1, g2 denote two generators of G used for the Pedersen commitment
scheme. The key-generation protocol for discrete-logarithm keys is then the
following.

1. U applies the random oracle H twice to its randomness rU to compute
r′U ← H(0‖rU ) and ρU ← H(1‖rU ), commits to r′U (with randomness
ρU ) using Pedersen’s commitment, computes a proof πC of knowledge
of an opening to the commitment with a Schnorr-type proof ΠC in
the random-oracle model (with an oracle HC), and sends the resulting
commitment to CA.

2. CA sets accCA ← TRUE, verifies the proof, and it is correct, sends its
randomness rCA to U ; otherwise it returns ⊥ and sets termCA ← TRUE

3. U extracts a seed from the joint randomness by computing

s = r′U +H(rCA) mod `.

It then computes a non-interactive zero-knowledge proof that it cor-
rectly performed its computation, i.e., it computes, in the random
oracle model (with a different oracle HΠ), a proof

π ← Π.Prove
{
r′U : C = g

r′U
1 gρU2 ∧ pk = g

r′U
1 · g

H(rCA)
1

}
which is a standard Schnorr-like proof of representation. Since the
only randomness available to U is rU , it is also used to generate the
randomness necessary to compute the zero-knowledge proof. For this
reason, U derives another seed s′ ← H(0‖s) and then uses H with a
counter on s′.
After computing π, U erases rU , s and all temporary variables used
to compute π. Algorithm U then sends pk ← (g1, g

s
1) and π to CA,

returns (pkU ← pk, skU ← s) and sets termU ← accU ← TRUE

4. CA verifies π. If this verification did not succeed, it returns ⊥, other-
wise it returns pkCA ← pk. It sets termCA ← TRUE.
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U (pp, rU ) CA (pp, rCA)
C ← g

H(0‖rU )
1 g

H(1‖rU )
2

πC ← ΠC .Prove
{
r′U , ρU : C = g

r′U
1 g

ρU
2

}
C,πC−−−→ ΠC .Vf(C, πC) ?= 1
rCA←−−−

s ← rU +H(rCA) mod `
(pk, sk)←

((
g1, gs

1
)
, s
)

π ← Π.Prove
{
r′U , ρU : C = g

r′U
1 g

ρU
2

∧pk = g
r′U
1 · gH(rCA)

1

}
Erase all variables but (pk, sk) pk,π−−−→ Π.Vf(C, pk, π) ?= 1
return (pk, sk) return pk

Figure 10.3: Discrete-Logarithm Key-Generation Protocol with Verifiable
Randomness.

This protocol is 1-correct as Schnorr proofs are. In the random-oracle
model and under the discrete-logarithm assumption over G, it also satisfies
the indistinguishability security notion of Section 10.2.3 w.r.t. randomness
sources with Ω(λ) min-entropy which are independent of the random-oracle.

10.3.4 RSA-Key Generation Protocol with Verifiable Ran-
domness

This section gives a two-party protocol for RSA-key generation with veri-
fiable randomness between a user U and a certification authority CA. The
resulting keys can be used in any RSA cryptosystem. The protocol attests
that the resulting keys were generated with high-entropy randomness and
that they satisfy (fixed) arbitrary properties. These properties are captured
by a relation

RW := {(N, e ∈ Z; p, q ∈W ⊆ P) : p 6= q ∧N = pq ∧ gcd(e, ϕ(N)) = 1}

to which the keys generated should belong, where W is a set that defines
the predicates p and q must satisfy, e.g., p = q = 3 mod 4 or p and q are
safe primes. Its relative language is denoted RW . Efficient proof systems
for such properties exist [vP88,CM99,AP18], though none of them aims at
proving that the keys were generated with proper randomness.

In comparison, the protocol by Juels and Guajardo [JG02] only guaran-
tees the first two properties, and does not ensure that the user algorithm
cannot bias the distribution of the keys. Without the third property, an in-
teractive key-generation protocol is only beneficial if the user does not have
high-entropy randomness locally whereas the CA does, otherwise it is only
a burden for the user. On the other hand, the third property additionally
guarantees the end user that if the CA has high-entropy randomness, her
keys are not faulty.
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As for the attestation scheme of Benhamouda et al. [BFGN17], it allows
to prove that the RSA primes were generated with an arbitrary generator;
and the protocols of Camenisch and Michels [CM99], of Auerbach and Po-
ettering [AP18], and of Goldberg et al. [GRSB19], only allow to prove that
RSA primes satisfy certain properties, not that they were generated with
high entropy. In a sense, our goal is complementary to that of proving that
RSA moduli satisfy certain properties without proving that the keys were
generated with high-entropy randomness.

RSA Key-Generation Algorithm. The NIST standard [NIS13] for the
RSA [RSA78] key-generation algorithm, further denoted KeyGenRSA, is the
following:

– choose at random two distinct large primes p and q

– compute N ← pq and ϕ(N)← (p− 1)(q − 1)

– choose an integer 216 < e < 2256 such that gcd(e, ϕ(N)) = 1 (e may be
chosen deterministically or at random); compute d← e−1 mod ϕ(N)

– Return pk ← (N, e) and sk ← (N, d).

Alternatively, the secret key sk can be set to (p, q, e) instead of (N, d) as
one can compute (N, d) from (p, q, e). It is this variant that is hereafter
considered. To formally capture the requirement on p and q to be large, a
parameter b = b(λ) that specifies the bit-length of p and q is introduced.

Interpretation. There is some ambiguity as to how p and q are generated.
The interpretation (which follows how the algorithm would implemented in
practice) of KeyGenRSA in the rest of the chapter is first that there exists a
PPT primality-test algorithm PrimeTestW (λ, b, e, p) → ζ ∈ {0, 1} (parame-
ter λ is further omitted from its syntax) which tests whether an integer p is
in W , b-bit long and such that gcd(e, (p − 1)) = 1. Algorithm KeyGenRSA
then generates, uniformly at random, integers in

q
2b−1, 2b − 1

y
until it finds

an integer p such that PrimeTestW (b, e, p) = 1, and continues until it finds a
second one q 6= p such that PrimeTestW (b, e, q) = 1. If no such two integers
are found in a specified number of iterations TRSA(λ), the algorithm aborts
and returns an invalid pair, e.g., (0, 0). The random variable with values in
{0, 1, 2} that counts the number of distinct primes found in at most TRSA(λ)
iterations is further denoted ctrRSA.

Protocol.

We now describe our protocol, further denoted IKGRSA, to generate RSA
keys with verifiable randomness. The protocol is given in the random-oracle
model to allow for practical efficiency.
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Building Blocks. The protocol builds on

◦ the same primality-test algorithm PrimeTestW as the one run by al-
gorithm KeyGenRSA. It is said to be δ-correct if with probability at
most 1−δ, PrimeTestW (b, e, p) = 0 for p ∈W ∩

q
2b−1, 2b − 1

y
such that

gcd(e, (p−1)) = 1, or PrimeTestW (b, e, p) = 1 for p /∈W∩
q
2b−1, 2b − 1

y

or such that gcd(e, (p−1)) > 1 (i.e., it is an upper-bound on the prob-
ability that it returns a false negative or a false positive)

◦ a random oracle of which the domain is separated to obtain pairwise
independent random oracles H, HC , HΠ and HΠW

◦ a commitment scheme C = (Setup,Com,ComVf) (App. 9.2) for the
user algorithm to commit to its random string before receiving any
input from the CA. The parameters returned by Setup are tacit inputs
to C other algorithms.

◦ a pseudo-random function PRF with range (non-empty) RPRF ⊆ N for
U to generate the RSA primes from the seed extracted with H

◦ an extractable, non-interactive zero-knowledge argument system ΠC =
(Setup,Prove,Vf, Sim,Ext) for the relation{(

C; r′U , d
)

: ComVf(C, r′U , d) = 1
}

with random oracle HC , i.e., for the user to prove knowledge of an
opening to her committed randomness

◦ an extractable NIZK argument system Π = (Setup, Prove,Vf,Sim,Ext)
with random oracle HΠ for the relation{(

C, rCA, N, (aγ)γ 6=i,j ; r′U , d, ai, aj
)

: ComVf
(
C, r′U , d

)
= 1,

s = r′U ⊕H(rCA), ∀γ ∈ JjK aγ = PRF(s, γ),

2b(λ)−1 ≤ ai, aj ≤ 2b(λ) − 1, N = aiaj in N
}
,

i.e., for the user to prove the RSA primes are really the first two primes
generated with the seed derived from the committed randomness and
the randomness of the CA. This relation is further denoted RΠ

◦ a NIZK argument system ΠW = (Setup,Prove,Vf, Sim) with random
oracle HΠW for relation RW

◦ another pseudo-random function PRF′ with variable output length (en-
coding in unary as last input) for U to generate the randomness nec-
essary4 to compute ΠC .Prove, PrimeTestW , Π.Prove and ΠW .Prove, as
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the only available randomness to the parties are their input random
bit strings.

Throughout the protocol, e is assumed (without loss of generality) to be a
fixed5, hard-coded value in U. For the sake of simplicity, e is further assumed
to be prime, e.g., e = 65537 (it is a value commonly used in practice).

Parameters. Given a security parameter 1λ and a function T : N→ N>1
that gives an upper bound on the number of iterations in Algorithm 10.3.6
(and thus the running time of U), to generate parameters for IKGRSA, run
ppC ← C .Setup

(
1λ
)
, ppΠC ← ΠC .Setup

(
1λ
)
, ppΠ ← Π.Setup

(
1λ
)

and
ppΠW ← ΠW .Setup

(
1λ
)
. Set and return pp ←

(
b(λ), T (λ), ppC , ppΠC , ppΠ,

ppΠW

)
.

1. U applies the random oracle H twice to its randomness rU to com-
pute r′U ← H(0‖rU ) and ρU ← H(1‖rU ), commits to r′U with ρU as
random string. Next, a seed s′ ← H(2‖rU ) from which it derives the
randomness necessary to compute ΠC .Prove, and computes of proof of
knowledge of an opening to the commitment. U sends the commitment
and the proof to CA

2. CA, upon receiving the commitment and the proof from U , sets accCA ←
TRUE. It verifies the proof and if it holds, sends its randomness to U ,
and otherwise returns ⊥ and sets termCA ← TRUE

3. U, upon receiving rCA from CA, sets accU ← TRUE. It extracts a seed
s with H from the joint randomness. It continues by generating by
running

(
(aγ)jγ=1, i

)
← Algorithm 10.3.6.

(a) if i = ⊥ (i.e., Algorithm 10.3.6 did not find 2 primes such that
PrimeTestW (b, e, aj ; PRF(s, j)) = 1 in T iterations; this case is not
depicted on Figure 10.4), U sends

(
rU , (aγ)jγ=1

)
to CA, returns

(0, 0) and sets termU ← TRUE
(b) if i 6= ⊥, U computes a proof π that it correctly performed its

computation with Π, and a proof πW that the RSA public key is in
LW with ΠW . After computing the proofs, U erases all variables

4Juels and Guajardo’s protocol [JG02] allows for probabilistic primality-test algorithms
and makes uses of proof systems, but does not specify the origin of the randomness
necessary for their computation or the zero-knowledge property of the proof systems.

5Alternatively, in the protocol on Figure 10.4, after N is computed, U could continue
to generate pseudo-random values until it finds one that is coprime with ϕ(N) and then
sets it as e. Algorithm U would then also have to reveal the values that did not satisfy
this property and prove that they did not, and also to prove that the chosen e and ϕ(N)
are coprime. Assuming e to be fixed in advance avoids this complication.
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Algorithm 10.3.6
Require: PrimeTestW , integers T, b, e, pseudo-random function PRF, seed

s.
Ensure: Pseudo-random numbers aγ and integer i.
1: ctr , i, j ← 0
2: while ctr < 2 and j < T do
3: j ← j + 1; aj ← PRF(s, j)
4: if PrimeTestW (b, e, aj ; PRF(s, j)) then
5: if ctr = 0 then
6: i← j
7: end if
8: ctr ← ctr + 1
9: end if

10: end while
11: if ctr < 2 then
12: return

(
(aγ)jγ=1,⊥

)
13: else
14: return

(
(aγ)jγ=1, i

)
15: end if

but N , e, p, q, i, π, πW and (aγ)γ 6=i,j . It sends these latter to
CA, except p and q, returns (pkU ← (N, e), sk ← (p, q, e)), and
sets termU ← TRUE

4a. CA, upon receiving
(
rU , (aγ)jγ=1

)
from U , computes r′U , ρU and s as

U, computes (C′, d′)← Com (r′U , ρU ), and verifies that C′ = C and that
PRF(s, γ) = aγ for all γ ∈ JjK. If all verifications succeed, CA returns
0, otherwise it returns ⊥. It sets termCA ← TRUE

4b. CA, upon receiving (N, e, π, πW , i, (aγ)γ 6=i,j) from U , generates a seed
s′′ withH from its randomness, and uses it to generate the randomness
necessary to compute PrimeTestW . The resulting random string is de-
noted r′W . It verifies that for all γ ∈ Jj − 1K \ {i}, PrimeTestW (b, e, aγ ;
r′W ) = 0, and that π and πW are valid. If one of the verifications did
not succeed, CA returns ⊥, otherwise it returns pkCA ← (N, e). It sets
termCA ← TRUE.

Theorem 10.3.5 (Correctness). Let j be the number of iterations of Al-
gorithm 10.3.6, and suppose that PrimeTestW is δ-correct and that PRF′ is
(TPRF′ , j + 3, εPRF′)-secure for TPRF′ = Ω(T · TPrimeTest). If C is correct and
if ΠC, Π and ΠW are complete, protocol IKGRSA is

max
(
1− j(1− δ)− 2εPRF′ − qH

(
2−κU + 2−κCA

)
, 0
)
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U (pp, e; rU ) CA (pp; rCA)
r′U ←H (0‖rU ); ρU ←H (1‖rU )
(C, d)← Com

(
r′U ; ρU

)
s′ ←H (2‖rU ); rΠC ← PRF′

(
s′, 0, 1

∣∣rΠC ∣∣)
πC ← ΠC .Prove

(
ppΠC , C,

(
r′U , d

)
; rΠC

)
C,πC−−−→ ΠC .Vf

(
ppΠC , C, πC

) ?= 1
rCA←−−−

s ← r′U ⊕H(rCA)(
(aγ)jγ=1, i

)
← Alg.10.3.6 with string

PRF′
(
s′, γ, 1|rW |

)
for PrimeTestW

p← ai, q ← aj , N ← pq

π ← Π proof of correct computation with
random string PRF′

(
s′, j + 1, 1|rΠ|

)
πW ← ΠW proof that (N, e) ∈ LW with

random string PRF′
(

s′, j + 2, 1
∣∣rΠW ∣∣)

Erase all variables but N, e, i, p, q s′′ ←H(rCA)

(aγ)γ 6=i,j , π and πW
(N,e),π,πW−−−−−−−−→
i,(aγ)γ 6=i,j

r′W ← PRF′ (s′′, 0)

∀γ 6= i, j, PrimeTestW
(
b, e, aγ ; r′W

) ?= 0
Π.Vf

(
ppΠ,

(
C, rCA, N, (aγ)γ 6=i,j

)
, π
) ?= 1

ΠW .Vf
(

ppΠW , (N, e), πW
) ?= 1

return ((N, e), (p, q, e)) return (N, e)

Figure 10.4: RSA-Key Generation Protocol with Verifiable Randomness for
an Arbitrary Relation RW .

-correct in the random-oracle model w.r.t. to the class of algorithms that run
in time at most TPRF′, make at most qH queries to H and return distributions
DU and DCA independent of the random oracle and with min-entropy at least
2−κU and 2−κCA, respectively.

Proof. Assuming C to be correct and ΠC , Π and ΠW to be complete, a
protocol in which uniformly random values are generated instead of s′ and
s′′ is max (1− j(1− δ), 0)-correct as an honest protocol execution fails only
if PrimeTest does.

Since DU and DCA are assumed to be independent of the random or-
acle and to have min-entropy at least with min-entropy at least 2−κU and
2−κCA , respectively, a protocol in which s and s′ are uniformly random is
q (2−κU + 2−κCA)-statistically indistinguishable from the previous one.

Consider now the following algorithm which interacts with the PRF chal-
lenger for PRF′. Given user and certification-authority distributions, the
algorithm runs the key-generation protocol as a subroutine with random
strings drawn from the specified distributions, and queries the challenger
when PRF′ is to be evaluated on s′ (which is exactly j + 3 times). The
algorithm returns 1 if the protocol execution fails and 0 otherwise. The
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security of PRF′ implies that a protocol execution with PRF′ evaluations on
s′ is max (1− j(1− δ)− εPRF′ − q (2−κU + 2−κCA) , 0)-correct.

Likewise, consider another algorithm which runs the key-generation pro-
tocol as a subroutine with random strings drawn from the specified distribu-
tions, and queries the challenger when PRF′ is to be evaluated on s′′ (which
is exactly once). The algorithm returns 1 if the protocol execution fails and
0 otherwise. The security of PRF′ implies that a protocol execution with
PRF′ evaluations on s′ and on s′′ is

max
(
1− j(1− δ)− 2εPRF′ − q

(
2−κU + 2−κCA

)
, 0
)

-correct.

The following theorem shows that the output of IKGRSA is indistinguish-
able from that of KeyGenRSA in the random oracle if C is hiding and binding,
if ΠC and Π are zero-knowledge and extractable, if ΠW is zero-knowledge
and sound, if PRF and PRF′ are secure PRFs, if the probability that Algo-
rithm 10.3.6 fails although IKGRSA does not is small, and if the adversary
makes few random-oracle queries compared to the min-entropy of the test
distributions.

Theorem 10.3.6 (Indistinguishability). Suppose that C is
(
T hide

C , εhide
C

)
-

hiding and
(
T bind

C , εbind
C

)
-binding, that PRF is (TPRF, j, εPRF)-secure, that

PRF′ is (TPRF′ , j + 3, εPRF′)-secure, that ΠC is
(
T ext

ΠC , qHC , ε
ext
ΠC

)
-extractable

and
(
T zk

ΠC , qHC , 1, ε
zk
ΠC

)
-zero-knowledge, that Π is

(
T ext

Π , qHΠ , ε
ext
Π
)
-extractable

and
(
T zk

Π , qHΠ , 1, εzk
Π

)
-zero-knowledge, and that ΠW is

(
T sound

ΠW , qHW , ε
sound
ΠW

)
-

extractable and
(
T zk

ΠW , qHW , 1, ε
zk
ΠW

)
-zero-knowledge. Protocol IKGRSA is (T,

qO, κ, ε)-indistinguishable from KeyGenRSA in the random-oracle model, for

T = min
(
T hide

C , T bind
C , TPRF, TPRF′ , T

ext
ΠC , T

zk
ΠC , T

ext
Π , T zk

Π , T sound
ΠW , T zk

ΠW

)
,

O ∈ {Oracle,Dist,Exec, Send,Reveal,Corrupt}, qOracle ≥ qH + qHC + qHΠ +
qHW , and

ε := |ID| |I|
(
2−κqH + 5

(
2−κqH + εPRF + |RPRF|−1 + Pr[ctr < 2, ctrRSA = 2]

)
+ εPRF′ + εext

ΠC + εzk
ΠC + εext

Π + εzk
Π + εsound

ΠW + εzk
ΠW + εbind

C + εhide
C

)
.

Proof. First note that if (A1,A2) wins the indistinguishability game with a
probability at least ε, then there exists an adversary (A′1,A′2) which wins
with probability at least ε/|ID||I| a variant of the game in which the ad-
versary is required to specify the pair (id∗, i∗) of its Test query before being
given access to the game oracles, i.e., a selective variant of the indistinguisha-
bility game. Indeed, (A′1,A′2) can simply run (A1,A2) as a subroutine and
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guess the pair (id∗, i∗) at the beginning of the game. If (A1,A2) later makes
its Test query on a different pair, (A′1,A′2) simply aborts and sends to the
challenger a bit chosen uniformly at random.

A message is subsequently said to be oracle-generated if it was computed
by the challenger as a response to a Send query and it was not altered.
Otherwise, the message is said to be adversarially generated.

Further distinguish two cases

1. id∗ ∈ CA, or id∗ ∈ U and the random string rCA the i∗th instance of
id∗ receives is oracle-generated.

2. id∗ ∈ U and the random string rCA the i∗th instance of id∗ receives is
adversarially generated.

In the first case, the situation is similar to the first case of the proof of
Theorem 10.3.3, except that the arguments are in the random-oracle model,
and that C is not assumed to be extractable, so the extraction is rather
done via ΠC . Consider then the following sequence of games.

Game 0. This is the real selective game.

Game 1. To answer an Exec query on (id∗, i∗, ∗, ∗) or on (∗, ∗, id∗, i∗), the
challenger generate an honest transcript of the protocol. However,
instead of setting pki∗id∗ ← pk, it generates a uniformly random string
σ, runs (pk ′, sk ′)← KeyGenRSA(b, e,W ;σ) and sets pki∗id∗ ← pk.
Recall that A′1 and A′2 share no state, and that in the event in which
the Test query of A′2 is not replied to with ⊥, key pki∗id∗ is not in QReveal
(nor is the key of the partner of (id∗, i∗). Denoting by (id, j′) the
partner instance of (id∗, i∗), since max

(
H∞

(
Di∗id∗

)
, H∞

(
Djid′

))
≥ κ,

adversary (A′1,A′2) can distinguish this game from the previous one
with an advantage of at most 2−κqH + εPRF + |RPRF|−1 + Pr[ctr <
2, ctrRSA = 2].
Indeed, in Algorithm 10.3.6, if ctr < 2 after T iterations (with ctr
depending on Di∗id∗ and D

j
id′), then the key pair generated by IKGRSA

is (0, 0), i.e., invalid RSA keys, although the key pair generated by
KeyGenRSA is valid. Moreover, since s = H (0‖rU ) ⊕ H(rCA), it is
2−κqH-statistically indistinguishable from a uniformly random value if
H∞

(
Di∗id∗

)
≥ κ or H∞

(
Djid′

)
≥ κ, for Di∗id∗ and D

j
id′ are independent

of H.
For a uniformly random seed s, the security of PRF implies that its
j+3 evaluations on s are εPRF-computationally indistinguishable from
uniformly random values.
Lastly, if p = q, then the key generated is not a valid RSA key, but it
only occurs with probability at most |RPRF|−1.
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Therefore, (A′1,A′2) can distinguish this game from the previous one
with an advantage of at most 2−κqH + εPRF + |RPRF|−1 + Pr[ctr <
2, ctrRSA = 2].

Game 2. If id∗ ∈ U , the challenger answers a Send query on (id∗, i∗, rCA)
as follows. It then computes (pk, π) honestly, but instead of setting
pki∗id∗ ← pk, it generates a uniformly random string σ, runs (pk ′, sk ′)←
KeyGenRSA(b, e,W ;σ) and sets pki∗id∗ ← pk.
Recall that in case 1), since rCA is always oracle-generated. Therefore,
the same indistinguishability between the last two games still apply
and (A′1,A′2) can distinguish this game from the previous one with an
advantage of at most 2−κqH+εPRF+|RPRF|−1+Pr[ctr < 2, ctrRSA = 2].

Game 3. If id∗ ∈ CA, the challenger answers a Send query on (id∗, i∗, (N, e,
π, πW , i, (aγ)γ 6=i,j)) as follows. If (N, e, π, πW , i, (aγ)γ 6=i,j) is adversar-
ially generated, for all γ 6= i, j, PrimeTestW (b, e, aγ ; r′W ) = 0, and
proofs π and πW are valid, then the challenger runs Π.(Ext0,Ext1) on
A′1. If extraction fails, the challenger aborts; otherwise it obtains a tu-
ple (r′U , d, ai, aj), and checks whether (C, rCA, N, (aγ)γ 6=i,j ; r′U , d, ai, aj)
is in RΠ. If not, it aborts. If so, N = aiaj in N, and the challenger
checks whether (N, e; ai, aj) of (N, e; aj , ai) is inRΠW . If not, it aborts.
Indeed, SinceW ⊆ P, if ai and aj are not prime, then the soundness of
ΠW is contradicted. If ai and aj are prime, then unless the soundness
of ΠW is contradicted, the only possible witness for (N, e) is (ai, aj)
or (aj , ai) by the fundamental theorem of arithmetic. Therefore, if
neither (N, e; ai, aj) nor (N, e; aj , ai) is in RΠW , the soundness of ΠW
is contradicted.
This game can be distinguished from the one only if the extractability
of Π or the soundness of ΠW is contradicted. Therefore, (A′1,A′2)
can distinguish this game from the one with an advantage of at most
εext

Π + εsound
ΠW .

Game 4. If id∗ ∈ CA, the challenger answers a Send query on (id∗, i∗, (N, e,
π, πW , i, (aγ)γ 6=i,j)) the challenger proceeds as the one of the previous
game, but if (C, rCA, N, (aγ)γ 6=i,j ; r′U , d, ai, aj) is in the relation, it runs
ΠC .(Ext0,Ext1). If extraction fails, the challenger aborts; otherwise it
obtains a tuple (r′′U , d′). If r′U 6= r′′U , the challenger aborts.
This game can be distinguished from the previous one only if the
extractability of ΠC or the binding property of C is contradicted. It
follows that adversary (A′1,A′2) can distinguish this game from the
previous with an advantage of at most εext

ΠC + εbind
C .

Game 5. If id∗ ∈ CA, to answer a Send query on (id∗, i∗, (N, e, π, πW ,
i, (aγ)γ 6=i,j)), the challenger proceeds as the one of the previous game,
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and if it does not aborts, it generates a uniformly random string σ,
runs (pk ′, sk ′)← KeyGenRSA(b, e,W ;σ) and sets pki∗id∗ ← pk.

Note that if C is adversarially generated, then H∞
(
Di∗id∗

)
≥ κ as

the distribution of the partner instance is set to a Dirac mass since
(id∗, i∗) has not yet accepted, by definition of oracle Test. If C is oracle-
generated, then max

(
H∞

(
Di∗id∗

)
, H∞

(
Djid′

))
≥ κ. The same argu-

ments for the computational indistinguishability of Game 2 and Game
1 imply that (A′1,A′2) can distinguish this game from the previous one
with an advantage of at most 2−κqH + εPRF + |RPRF|−1 + Pr[ctr <
2, ctrRSA = 2].

In the last game, the condition that if an instance accepts then its partner
must eventually terminate implies that pki∗id∗ is computed by generating a
uniformly random string σ and running KeyGenRSA on input (b, e,W ;σ).
The advantage of the adversary in the last game is thus nil. IT follows that
in case 1), the advantage of (A1,A2) is at most

|ID| |I|
(
3
(
2−κqH + εPRF + |RPRF|−1 + Pr[ctr < 2, ctrRSA = 2]

)
+ εext

Π + εsound
ΠW + εext

ΠC + εbind
C

)
.

In the second case, the situation is similar to the second case of the
proof of Theorem 10.3.3, except that the arguments are in the random-
oracle model, and that ΠW is only assumed to be sound, not extractable.
Consider then the following sequence of games.

Game 0. This is the real selective game.

Game 1. This game is defined as in the previous case, and (A′1,A′2) can
distinguish this game from the previous one with an advantage of at
most 2−κqH + εPRF + |RPRF|−1 + Pr[ctr < 2, ctrRSA = 2].

Game 2. To answer a prompting Send query on (id∗, i∗, (∗, ∗)), the chal-
lenger now generates r′U , ρU and s′ uniformly at random. Since rCA
is adversarially generated in case 2) and that U accepts only after re-
ceiving it, the only information (A′1,A′2) has about rU is that it has
a distribution Di∗id∗ such that H∞

(
Di∗id∗

)
≥ κ. In the event in which

the Test query of A′2 is not replied to with ⊥, instance (id∗, i∗) is not
corrupt before it accepts, so the only information A′1 has about ri∗id∗
is that its distribution is Di∗id∗ . Moreover, if id∗ is later corrupt before
the end of the protocol execution, (id∗, i∗) will have already erased r′U
and ρU and s′.
Consequently, (A′1,A′2) can thus distinguish this game from the previ-
ous one with an advantage of at most 2−κqH.
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Game 3. In this game, the challenger answers a Send query on (id∗, i∗, rCA),
with rCA adversarially generated, if ctr < 2, the challenger aborts.
(A′1,A′2) can thus distinguish this game from the previous one with an
advantage of at most Pr[ctr < 2, ctrRSA = 2].

Game 4. In this game, the challenger answers a Send query on (id∗, i∗, rCA),
with rCA adversarially generated, by generating uniformly random val-
ues instead of evaluating PRF′ at (s′, 0). If id∗ is later corrupt before
the end of the protocol execution, (id∗, i∗) will have already erased
s′ and rΠ. Adversary (A′1,A′2) can distinguish this game from the
previous one with an advantage of at most εPRF′ .

Game 5. Denoting by QHΠ the of queries toH and their responses, and the
challenger now runs Π.Sim(0, QHΠ , ·) to answer random-oracle queries.
To answer a Send query on (id∗, i∗, rCA) such that rCA is adversarially
generated, the challenger simulates a proof π ← Π.Sim (1, QHΠ , (C, rCA,
N, (aγ)γ 6=i,j ; r′U , d, ai, aj)). Likewise, the challenger simulates a proof
πW .
In the event in which the Test query of A′2 is not replied to with
⊥, adversary A′1 does not corrupt id∗ before (id∗, i∗) accepts, so not
before rΠ and rΠW are erased. By the zero-knowledge property of
Π and ΠW , adversary (A′1,A′2) can distinguish this game from the
previous one with an advantage of at most εzk

Π + εzk
ΠW .

Game 6. To answer a prompting Send query on (id∗, i∗, (∗, ∗)), the chal-
lenger simulates a proof ΠC . In the event in which the Test query of
A′2 is not replied to with ⊥, adversary A′1 does not corrupt id∗ before
(id∗, i∗) accepts, so not before rΠC is erased.
By the zero-knowledge property of ΠC adversary (A′1,A′2) can distin-
guish this game from the previous one with an advantage of at most
εzk

ΠC .

Game 7. To answer a prompting Send query on (id∗, i∗, (∗, ∗)), the chal-
lenger runs (C, d)← Com

(
0|r′U |; ρU

)
and sends C. In the event in which

the Test query of A′2 is not replied to with ⊥, adversary A′1 does not
corrupt id∗ before (id∗, i∗) accepts, so not before ρU is erased. As C
is εhide

C -hiding, (A′1,A′2) can distinguish this game from the previous
one with an advantage of at most εhide

C .

Game 8. To answer a Send query on (id∗, i∗, rCA) such that rCA is adver-
sarially generated, the challenger generates s uniformly at random. As
H∞

(
Di∗id∗

)
≥ κ, seed s is 2−κqH-statistically indistinguishable from a

uniformly random value. (A′1,A′2) can then distinguish this game from
the previous one with an advantage of at most 2−κqH.
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Game 9. To answer a Send query on (id∗, i∗, rCA) such that rCA is adversar-
ially generated, the challenger generates uniformly random numbers
instead of evaluating PRF on s. Algorithm (A′1,A′2) can distinguish
this game from the previous one with an advantage of at most εPRF.

Game 10. To answer a Send query on (id∗, i∗, rCA) such that rCA is adver-
sarially generated, the challenger aborts if p = q. Algorithm (A′1,A′2)
can distinguish this game from the previous one with an advantage of
at most |RPRF|−1.

In the last game, the condition that if an instance accepts then its partner
must eventually terminate then implies that pki∗id∗ is computed by running
KeyGenRSA(b, e,W ;σ), where σ is a uniformly random string. The advantage
of (A′1,A′2) in that game is then nil. As a result, the advantage of (A1,A2)
in the second case is at most

|ID| |I|
(
3qH2−κ + 2εPRF + εPRF′ + εzkΠ + εzk

ΠW + εzk
ΠC + εhide

C + 2 |RPRF|−1

+2 Pr[ctr < 2, ctrRSA = 2]) .

Theorem 10.3.7 (Running Time of IKGRSA). Let n(b,W, e,RPRF) denote
the number of primes p in

q
2b−1, 2b − 1

y
∩W ∩RPRF such that gcd(e, p−1) =

1, and let β denote n(b,W, e,RPRF) |RPRF|−1. If n(b,W, e,RPRF) ≥ 1, then
for numbers chosen uniformly at random in RPRF, the number of trials nec-
essary to obtain two primes that satisfy the above conditions is 2/β in ex-
pectation. Moreover, for any δ > 0, setting J ← d2(1 + δ)/βe, if PRF is
(TPRF, J, εPRF)-secure and DU and DCA are independent of the random ora-
cle, have respective min-entropy at least 2−κU and 2−κCA, and are returned
by an algorithm that runs in time at most TPRF and makes at most qH queries
to H, then, in Algorithm 10.3.6, Pr [j > J ] ≤ exp

(
− (2δ/βJ)2 βJ/2

)
+

qH (2−κU + 2κCA) + εPRF.

Proof. Let (Xµ)µ≥1 be a family of independent random variables with the
same binomial distribution of parameter β. In essence, Xµ indicates whether
the µth trial, if it were done with a uniformly random function, would result
in a prime number. For an integer ν ≥ 1, let Tν := min{µ ≥ 1: X1 +
· · · + Xµ = ν}. It is a stopping time which indicates the number of trials
before getting ν primes numbers. The variable Tν − ν, which indicates the
number of non-primes before ν primes are found, has a negative binomial
distribution with parameters ν and 1−β. Its expectation is then ν(1−β)/β.
Therefore, by E[Tν ] = ν/β. In the case of RSA keys, ν = 2.

Moreover, the Chernoff bound (Section 10.1.4) implies that the prob-
ability that the number of trials is higher that this expectation decreases
exponentially fast. Formally, consider a real number δ > 0, and set J ←
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d2(1 + δ)/βe. Note that T2 > J if and only if X1 + · · · + XJ < 2, which
is equivalent to X1 + · · · + XJ − Jβ < 2 − Jβ ≤ −2δ. Note also that
0 < 2δ/βJ ≤ 1 for all δ > 0. The Chernoff bound implies that Pr(T2 >
J) ≤ P (X1 + · · ·+XJ − Jβ < −2δ) ≤ exp(−(2δ/βJ)2βJ/2).

In Algorithm 10.3.6, integers are not generated uniformly at random,
but rather with PRF. However, for any δ > 0, setting J ← d2(1 + δ)/βe,
if PRF is (TPRF, J, εPRF)-secure and DU and DCA are independent of the
random oracle, have respective min-entropy at least 2−κU and 2−κCA , and
are returned by an algorithm that runs in time at most TPRF and makes at
most qH queries to H, then, the inequality of the theorem statement holds.

To show it, first notice that an execution of protocol IKGRSA is qH(2κU +
2κCA)-statistically indistinguishable from one in which s is generated uni-
formly at random. Consider now an adversary for the PRF game with the
DY PRF which makes oracle queries until it either obtains two primes (pos-
sibly at the Jth query) or reaches J query with at most one prime returned
by the oracle. The adversary returns 1 in the first case and 0 in the second.
The number of trials with PRF is then at most the number of trials with a
uniformly random function plus the advantage of this adversary in the PRF
game, and the theorem follows.

Corollary 10.3.8. In Algorithm 10.3.6, if T > 2/β, setting δ ← βT/2− 1
and J ← d2(1 + δ)/βe, Pr [ctr < 2] ≤ exp

(
− (2δ/βJ)2 βJ/2

)
+qH (2−κU + 2κCA)+

εPRF.

Theorem 10.3.9 (Running Time of KeyGenRSA). Let n(b,W, e) denote the
number of primes p in

q
2b−1, 2b − 1

y
∩W such that gcd(e, p − 1) = 1, and

let βRSA denote n(b,W, e)2−b+1. If n(b,W, e) ≥ 1, then the expected run-
ning time of KeyGenRSA is 2/βRSA. Moreover, for TRSA > 2/βRSA, setting
δRSA ← βRSATRSA/2− 1 and JRSA ← d2(1 + δRSA)/βRSAe,

Pr [ctrRSA = 2] ≥ 1− exp
(
−
( 2δRSA
βRSAJRSA

)2 βRSAJRSA
2

)
.

Proof. It follows by the exact same analysis as in the first part of the proof
of Theorem 10.3.7.

As ctr and ctrRSA are independent random variables (the randomness
of by KeyGenRSA in query Test is independent of the distributions given
by A′1), Pr[ctr < 2, ctrRSA = 2] is upper-bounded by the product of the
upper-bounds of Corollary 10.3.8 and Theorem 10.3.9, and this upper bound
mainly (but not only) depends on T , TRSA and RPRF.
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10.4 Instantiation of the RSA-Key Generation Pro-
tocol

This section instantiates the protocol of Section 10.3.4 for RSA key-generation
with verifiable randomness. To do so, it provides efficient instantiations for
each of the building blocks.

Recently, several important advancements have been made on the effi-
ciency of the commit-and-prove paradigm on committed values which com-
bine algebraic and non-algebraic statements [CGM16, BBB+18, BHH+19].
These improvements for cross-domains statements allow to prove efficiently
for instance that some committed value corresponds to a pre-image of some
value of a given hash function such as SHA-256 or that some value is the
output of some non-algebraic PRF (i.e. HMAC-SHA-256 or AES) using
some committed key. To generate an RSA modulus of 3072 bits (for 128-bit
security) using the generic protocol from Section 10.3.4, the PRF must re-
turn 1536-bit integers and the use of non-algebraic PRF with the technique
from [CGM16,BBB+18,BHH+19] would result in prohibitive schemes.

On this account, the instantiation in this section is based on an algebraic
PRF, namely the Dodis–Yampolskiy PRF, and uses techniques due to Bünz
et al. [BBB+18] for range proofs and arithmetic-circuit satisfiability to ob-
tain short proofs of correct computation (i.e., Π in Section 10.3.4). These
techniques are akin to those presented in Chapter 9 for Diophantine satisfi-
ability, though less intricate as they in groups with public prime orders.

In the process, it presents the first logarithmic-size (in the bit-length of
the group order) argument of knowledge of double discrete logarithms, and
argument of equality of a discrete logarithm in a group and a double discrete
logarithm in another related group. The underlying ideas are similar to those
given in Section 9.5.1 to derive a Hadamard product and linear constraints
from a Diophantine equation. In contrast, the protocol of Camenisch and
Stadler [CS97] for the first relation, and the protocol of Chase et al. [CGM16]
for the second are linear in the security parameter.

Parameters. We consider two related group-family generators G1 and G2.
Given a security parameter λ, to generate an RSA modulus which is
the product of two b(λ)-bit prime numbers, let ` be the smallest prime
of binary length equal to b(λ) such that 2`+ 1 is also a prime number
(i.e., ` is a Sophie Germain prime number, or equivalently 2` + 1 is
a b(λ) + 1-bit safe prime). G2 returns, on input λ, the group G2 of
quadratic residues modulo 2` + 1 (which is of prime order `). The
group-family generator G1 returns on input λ some group G1 of prime
order Λ such that ` divides Λ − 1 and Λ > (2` + 1)2. In practice6,
G1 can be taken as a prime order subgroup Λ of Z∗r for some prime
number r such that Λ divides r − 1.
The restriction to quadratic residues is necessary for assumptions like
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the DDH and the q-DDHI assumptions to hold over G2. However, it
introduces a bias by design (not from the user algorithm) in the RSA
keys generated: p and q are necessarily quadratic residues modulo
2` + 1. The reason is that the values returned by the DY PRF are
not actually integers but G2 elements. Nonetheless, it is already the
case for 1/4 of all RSA moduli since the factors p and q returned by
keygenRSA.

Commitment Scheme. Scheme C is the Pedersen commitment scheme
[Ped92] in G2 for the user to commit her randomness.

used to commit to the secret RSA primes p and q, and the same
Pedersen scheme.

Pseudo-Random Functions. PRF is the Dodis–Yampolskiy (DY) PRF
(see Section 10.1.3) in the group G2 = QR2`+1 of quadratic residues
modulo 2` + 1. It is used to generate the secret RSA primes p and
q. Since 2` + 1 is b(λ) + 1 bits long, p and q are b(λ) bits long with
probability close to 1/2. The reason 2` + 1 is chosen to be one bit
larger than p and q is to ensure that all primes of b(λ) bits can be
returned by the PRF so as not to introduce a bias. As for PRF′, it can
be any efficient pseudo-random function, e.g., HMAC [BCK96].

Argument for RW . The argument system ΠW depends on the properties
that the prime factors of N must satisfy, e.g., they must be congruent
to 3 modulo 4 or be safe primes. To prove that p = q = 3 mod 4, one
can prove that N is of the form prqs with p = q = 3 mod 4 using the
protocol of van de Graaf and Peralta [vP88], and run in parallel the
protocol of Boyar et al. [BFL90] to prove that N is square-free. To
prove that p and q are safe primes, there exist proof systems in the
literature such as Camenisch and Michel’s [CM99]. Besides, Goldberg
et al. [GRSB19] recently built a protocol to prove that gcd (e, φ(N)) =
1.

Argument of Correct Computation. The last component is an extractable
zero-knowledge argument system Π in the random-oracle model for the
user algorithm to prove that it correctly performed its computation,
i.e., an argument system for RΠ. Section 10.4.1 presents a perfectly
honest-verifier zero-knowledge interactive protocol for RΠ that also
satisfies extractability.

6To generate RSA moduli which are products of two 1536-bit primes, the instantiation
with the Dodis–Yampolskiy PRF uses ` = 21535 + 554415 which is a Sophie Germain
prime, Λ = (4`+ 18)`+ 1 and r = 1572 · Λ + 1.



306 10.4 Instantiation of the RSA-Key Generation Protocol

10.4.1 Zero-Knowledge Argument with the Dodis–Yampolskiy
PRF

This section gives a zero-knowledge argument Π in the case of the DY PRF
in G2 = QR2`+1. Formally, let 2` + 1 be a b(λ) + 1-bit (i.e., b(λ) + 1 =
blog(2` + 1)c + 1) safe prime (i.e., ` is a Sophie Germain prime) and let Λ
be a prime integer such that ` divides Λ − 1 and Λ > (2` + 1)2. Consider
G1 = 〈G1〉 a group of prime order Λ (in which p and q will be committed)
and G2 = 〈G2〉 = QR2`+1 the group of quadratic residues modulo 2` + 1,
which is a cyclic group of order `. Recall that the DY PRF is defined as the
map (K,x) 7→ G

1/(K+x)
2 .

Proof Strategy.

To prove knowledge of a witness for the membership of (C, rCA, N, (aγ)γ 6=i,j)
to the language relative toRΠ, the user algorithm commits to p = ai and q =
aj in G1 with the Pedersen commitment scheme and respective randomness
rp and rq. The commitments are denoted P and Q.

The user algorithm then proves knowledge of a witness for R0∩R1, with

R0 :=
{
(C, rCA, N, P,Q, (aγ)γ 6=i,j ; r′U , ρu, ai, aj , rp, rq) :

ComVf(C, r′U , ρu) = 1, s = r′U + h(rCA) mod `
∀γ ∈ JjK , aγ = PRF(s, γ),ComVf(P, ai, rp) = ComVf(Q, aj , rq) = 1}

and

R1 :=
{
(C, rCA, N, P,Q, (aγ)γ 6=i,j ; r′U , ρu, ai, aj , rp, rq) : ComVf(P, ai, rp) = 1

ComVf(Q, aj , rq) = 1, 2b(λ)−1 ≤ ai, aj ≤ 2b(λ) − 1, N = aiaj in N
}
.

To prove knowledge of a witness for relation R, it then suffices to prove in
parallel knowledge of a witness for R0 and of a witness for R1 on the same
public inputs. Note that the binding property of the Pedersen commitment
scheme in G1 (relying on the DLOG assumption) guarantees that the ai and
aj values used in both proofs are the same (up to a relabeling).
Relation R0. We start by giving two preliminary protocols:

– a logarithmic-size zero-knowledge argument of knowledge of a double-
discrete logarithm (Section 10.4.2) using Bulletproof techniques [BBB+18].
The resulting proofs are of size logarithmic in the bit-length of the
group order. In comparison, the protocol of Camenisch and Stadler [CS97]
has proofs of size linear in the security parameter

– a logarithmic-size argument of equality of a discrete logarithm in a
group and a double discrete logarithm in another related group (Sec-
tion 10.4.3). In contrast, the protocol of Chase et al. [CGM16, Section
4.3] for this relation uses the techniques of Camenisch and Stadler and
therefore has proofs of size linear in the security parameter.
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We then combine the latter proof with the proof in Section 10.4.4 to obtain
a proof for relation R0.
Relation R1. The aggregated logarithmic range proof of Bünz et al. [BBB+18,
Section4.2] is sufficient to prove that the values committed in P and Q mod-
ulo Λ are in

q
2b−1, 2b − 1

y
(which is equivalent to proving that the values

committed in PG−2b−1

1 and QG−2b−1

1 are in
{

0, . . . , 2b−1 − 1
}
). With the

hypotheses on the parameters Λ and `, the verifier is convinced that the
equation N = aiaj holds in N. Indeed, the equation N = aiaj mod Λ im-
plies that there exists m ∈ Z such that N = aiaj+mΛ. Integer m cannot be
strictly positive as otherwise N would be strictly greater than Λ. Besides,
m cannot be strictly negative since Λ > (2` + 1)2 > aiaj ; it is therefore nil
and the equation N = aiaj holds in N.

10.4.2 Logarithmic-Size Argument of Double Discrete Log-
arithm

This section gives a zero-knowledge argument with logarithmic communica-
tion size for proving knowledge of a double discrete logarithm. It uses as a
sub-argument the logarithmic-size inner-product argument for arithmetic-
circuit satisfiability of Bünz et al. [BBB+18, Section 5.2]. This latter argu-
ment share similarities with the one presented in Section 9.5.2.

As mentioned in Section 9.5.1, following the ideas of Bootle et al. [BCC+16],
Bünz et al. convert any arithmetic circuit with n multiplications gates into
a Hadamard product aL ◦ aR = aO and Q ≤ 2n linear constraints of the
form

〈wL,q,aL〉+ 〈wR,q,aR〉+ 〈wO,q,aO〉 = cq

for q ∈ JQK, with wL,q,wR,q,wO,q ∈ Znp and cq ∈ Zp. The vectors aL, aR
respectively denote the vectors of left and right inputs to the multiplications
gates, and aO the vector of outputs. The linear constraints ensure the
consistency between the outputs and the inputs of two consecutive depth
levels of the circuit.

Bünz et al. actually give an argument for a more general relation which
includes Pedersen commitments of which the openings are included in the
linear consistency constraints. Concretely, given a group G of prime order p
and positive integers n,m andQ, Bünz et al. give a zero-knowledge argument
for the relation{(
g, h ∈ G,g,h ∈ Gn,V ∈ Gm,WL,WR,WO ∈ ZQ×np ,WV ∈ ZQ×mp , c ∈ ZQp ;

aL,aR,aO ∈ Znp ,v, γ ∈ Zmp
)

: Vj = gvjhγj∀j ∈ JmK

∧aL ◦ aR = aO ∧WLaT
L + WRaT

R + WOaT
O = WV vT + cT

}
.
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The soundness of their argument relies on the discrete-logarithm assump-
tion over the generator of G. Concerning the proof size, the prover sends
2dlog2 ne + 8 group elements and 5 Zp elements. Note that this setting is
similar to the one in Section 9.5.2, but over Zp instead of Z.

The main difficulty in the case of a proof of a double discrete logarithm
relation is to re-write the problem in a way that is suitable to apply the
proof for arithmetic circuits. The goal is to give a zero-knowledge argument
for:

R2DLOG :=
{

(G1, H1, G2, Y ;x ∈ Z`, r ∈ ZΛ) : Y = G
Gx2
1 Hr

1

}
.

First, let n(λ)+1 := b(λ) be the bit-length of `. Given the bit representa-
tion (xi)ni=0 of x, Gx2 = G

∑n

i=0 xi2
i

2 = ∏
i

(
G2i

2

)xi . An important observation
is that for xi ∈ {0, 1},

(
G2i

2

)xi = xiG
2i
2 + (1 − xi) = xi

(
G2i

2 − 1
)

+ 1.
The addition here is over ZΛ, although the notation is purely formal since
xi ∈ {0, 1}. It thus follows that an argument for R2DLOG is equivalent to
an argument for:(G1, H1, G2, Y ; (xi)ni=0 ∈ {0, 1}n, r ∈ ZΛ) : Y = G

∏
i

(
xi

(
G2i

2 −1
)

+1
)

1 Hr
1

 ,
which is also equivalent to an argument for:{

(G1, H1, G2, Y ; (ai)ni=0, r ∈ ZΛ) : Y = G

∏
i
ai

1 Hr
1 ∧ ai ∈

{
1, G2i

2

}}
.

To this end, consider the following array
a0 a1 a2 · · · an
1 a0 a0a1 · · · a0a1 · · · an−1
a0 a0a1 a0a1a2 · · · a0 · · · an.

Notice that its third row is the product of the first two. In other words,
if a ← (a0, a1, . . . , an) ∈ Zn+1

Λ and b ← (b0 = a0, b1 = a0a1, . . . , bn−1 =
a0a1 · · · an−1) ∈ ZnΛ, then a ◦ (1 b) = (b y) for y := Gx2 .

Moreover, for aL :=
[
a a − 1n+1

]T
, aR :=

[
1 b a −G2n+1

2

]T
and

aO :=
[
b y 0n+1

]T
∈ Z2(n+1)

Λ , where G2n+1
2 denotes the vector(

G2, G
2
2, G

22
2 , . . . , G

2n
2

)
,

one has aL ◦ aR = aO. If one can prove knowledge of scalars y, r ∈ ZΛ and
of vectors aL, aR and aO such that Y = Gy1H

r
1 and aL ◦ aR = aO, and such

that the vectors are of the form above, then one can prove knowledge of
(ai)ni=0 ∈

∏
i

{
1, G2i

2

}
and (bi)n−1

i=0 such that y = anbn−1 = anan−1bn−2 =
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· · · = anan−1 · · · a1b0 = an · · · a0 and Y = Gy1H
r
1 . That is to say, one can

prove knowledge of a double discrete logarithm.
To prove such a relation, one can use the argument of Bünz et al.

[BBB+18] for arithmetic circuits with the right linear constraints to ensure
that the vectors are of the appropriate form. To express these constraints,
consider matrices

WL :=


0(n+2)×2(n+1)

In+1 −In+1
In+1 0(n+1)×(n+1)

0(n+1)×2(n+1)

 ,

WR :=



0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

... . . . . . . . . . ...
0 0 · · · 0 1 0
0 0 · · · 0 0 1
0 0 · · · 0 0 0
1 0 · · · 0 0 0

0(n+2)×(n+1)

0(n+1)×2(n+1)
0(n+1)×(n+1) −In+1

0(n+1)×2(n+1)



,

WO :=



−In
0
...
0

0 · · · 0 1
0 · · · 0 0

0(n+2)×(n+1)

02(n+1)×2(n+1)
0(n+1)×(n+1) In+1


,

WV :=


0n×2
0 1
1 0

03(n+1)×2

 ,

and vectors v :=
[
1
y

]
, cT :=

[
01×(n+2) 1n+1 G2n+1

2 01×(n+1)

]
.

Three vectors aL, aR and aO ∈ Z2(n+1)
Λ satisfy the equation WLaL +

WRaR + WOaO = WV v + c if and only if there exists a ∈ Zn+1
Λ and

b ∈ ZnΛ such that aTL :=
[
a a − 1n+1

]
, aTR :=

[
1 b a −G2n+1

2

]
and

aTO :=
[
b y 0n+1

]
∈ Z2(n+1)

Λ .
Indeed,
∗ the first n rows of the equation guarantee that for i = 0, . . . , n − 1,

aO,i = aR,i+1,
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∗ the n+ 1th line ensures that aO,n+1 = y,

∗ the n + 2th line imposes aR,1 = 1 (G1 is here used a commitment to
1),

∗ the next n+1 lines are satisfied if and only if aL,[:n+1] = aL,[n+1:]+1n+1,

∗ the next n+ 1 lines guarantee that aR,[:n+1] = aL,[n+1:] + G2n+1
2 ,

∗ the last n+ 1 lines ensure that aO,[2(n+1):] = 0n+1.

If vectors aL, aR and aO additionally satisfy aL ◦aR = aO, then ai = aL,i ∈{
1, G2i

2

}
for i = 0, . . . , n and a ◦ (1 b) = (b y).

Note that the procedure to derive such vectors aL,aR and aO and the
linear constraints is the same as the one in Section 9.5.1.

The argument of Bünz et al. is therefore sufficient to prove in zero-
knowledge knowledge of a double discrete logarithm. The soundness of the
proof relies on the discrete-logarithm assumption over G1.

Regarding the proof size, the prover sends (2dlog2 2(n + 1)e + 8) G1
elements and 5 ZΛ elements. Notice that the argument of Bünz et al. requires
4(n+1) elements ofG∗1 in addition toG1 andH1. To guarantee its soundness,
no discrete logarithm relation between these elements, G1 and H1 must be
known to the prover. They can then be choosen uniformly at random during
set-up.

10.4.3 Logarithmic-Size Argument of Discrete-Logarithm Equal-
ity in two Groups

Building on the argument of double discrete logarithm of Section 10.4.2, this
section gives a zero-knowledge argument for the relation

RDLOG−2 :=
{

(G1, H1, G2, H2, Y,X;x ∈ Z`, r1, r2 ∈ ZΛ) : Y = G
Gx2
1 Hr1

1 ,

X = Gx2H
r2
2 } .

As in Section 10.4.2, writeGx2 as∏i

ai︷ ︸︸ ︷(
xi(G2i

2 − 1) + 1
)
for xi ∈ {0, 1}, and

Hr2
2 as ∏i

ci︷ ︸︸ ︷(
r2,i(H2i

2 − 1) + 1
)
for r2,i ∈ {0, 1}. Note that GX1 = G

∏
i
ai
∏
i
ci

1 .
An argument for R is then equivalent to an argument for{

(G1, H1, G2, H2, Y,X; (ai)ni=0, (ci)ni=0, r ∈ ZΛ) : Y = G

∏
i
ai

1 Hr
1 ,

GX1 = G

∏
i
ai
∏
ci

1 ∧ ai, ci ∈
{

1, G2i
2

}}
.
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To give an argument for this latter relation, consider the following array
(written over several lines)

a0 a1 · · · an c0
1 b0 = a0 · · · bn−1 = a0 · · · an−1 bn−1an
a0 b1 = a0a1 · · · Gx2 = a0 · · · an a0 · · · anc0

· · · c1 · · · cn
· · · d0 = a0 · · · anc0 · · · dn−1 = a0 · · · anc0 · · · cn−1
· · · a0 · · · anc0c1 · · · X = ∏

i ai
∏
i ci.

Its third row is the product of the first two. It follows that for

aTL :=
[
a a − 1n+1 c c− 1n+1

]
,

aTR :=
[
1 b a −G2n+1

2
∏
i ai d c−H2n+1

2

]
,

aTO :=
[
b

∏
i ai 0n+1 d X 0n+1

]
∈ Z4(n+1)

Λ ,

the equality aL ◦ aR = aO holds.
As in Section 10.4.2, it suffices to find linear constraints, i.e., matrices

ML, MR, MO and MV , and a vector c, to enforce that three vectors aL,
aR and aO that satisfy the equation MLaL + MRaR + MOaO = MV v + c,

where v =
[

1
X

]
(G1 and GX1 are respectively used as commitments to 1 and

X), are of the form above.
To express such constraints, consider the matrices WL, WR and WO of

Section 10.4.2, and let W′
L, W′

R and W′
O be their respective sub-matrices

obtained by removing the n+1th line (the one that enforced that aO,n+1 = y
therein) and W′′

L, W′′
R and W′′

O their sub-matrices obtained by removing
the n+ 2th line (the one which imposed that aR,1 = 1). Define also W′

V as
the sub-matrix of WV obtained by removing its n+ 1th line and its second
column and W′′

V as the sub-matrix of W′
V obtained by removing its n+ 2th

line and its first column.
Consider then the following matrices

ML :=
[

W′
L

W′′
L

]
, MR :=

[
W′

R

W′′
R

]

MO :=
[

W′
O

W′′
O

]
, MV :=

[
W′

V

W′′
V

]
.

By definitions of ML, MR, MO, MV , v and c, three vectors aL, aR and
aO ∈ Z(n+1)(n+8)

Λ satisfy the equations MLaL+MRaR+MOaO = MV v+d
and aL ◦ aR = aO if and only if they are of the form above.
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The argument of Bünz et al. is therefore sufficient to prove the relation
RDLOG−2. The prover sends 2 dlog2 4(n+ 1)e + 8 G1 elements and 5ZΛ
elements.

10.4.4 An Intermediate Protocol in G2

This section gives an perfect honest verifier zero-knowledge protocol for
relation

R′0 := {(G2, H2, Xp, Xq, U,Ku, (Kγ)γ 6=i,j , (aγ)γ ;xp, xq, rp, rq, u, ρu) :
∀π ∈ {p, q}, Xπ = Gxπ2 Hrπ

2 , U = Gu2H
ρu
2 ,

∀γ, aγ = G
xγ
2 , xπ(u+Kπ) = xγ(u+Kγ) = 1 mod `

}
.

Note that for π ∈ {p, q},
(
UGKπ2

)xπ
H−xπρu2 = G2, and that ∀γ, auγ =

G2a
−Kγ
γ , i.e., the discrete logarithms of G2a

−Kγ
γ in base aγ for all γ are the

same.
The protocol is given on Figure 10.5). As the proof system is public-

coin, it can be made non-interactive in the random-oracle model via the
Fiat–Shamir heuristic by computing c as h(G2, H2, (Xπ), U, (Kπ), (Kγ)γ , (aγ)γ ,
(Yπ), V, (Hπ), (Aγ)) for a random oracle h with Z` as range. The proof then
consists of (c, (zπ, tπ)π∈{p,q}, w, τu, (τπ)π), i.e., 9 Z` elements.

The protocol is complete, perfectly honest-verifier zero-knowledge, and
satisfies extractability under the discrete-logarithm assumption over G2.
The protocol completeness and its zero-knowledge property are straight-
forward. To prove that the protocol satisfies the extractability property,
note that from two distinct accepting transcripts

(((Yπ), V, (Hπ), (Aγ)γ), c, ((zπ), (tπ), w, τu, (τπ)))

and (
((Yπ), V, (Hπ), (Aγ)γ), c′, ((z′π), (tπ)′, w′, τ ′u, (τ ′π))

)
,

one has

G
(zπ−z′π)/(c′−c)
2 H

(tπ−t′π)/(c′−c)
2 = Xπ,

G
(w−w′)/(c′−c)
2 H

(τu−τ ′u)/(c′−c)
2 = U,(

UGKu2

)(zπ−z′π)/(c′−c)
H

(τπ−τ ′π)/(c′−c)
2 = G2,

a(w−w′)/(c′−c)
γ = G2a

−Kγ
γ .

Replacing U in the third line with the expression in the second, one has
G

(w−w′)+Ku(z−z′))/(c′−c)
2 H

(τu−τ ′u)(z−z′)/(c′−c)2+(τπ−τ ′π)/(c′−c)
2 = G2. Under the

discrete-logarithm assumption over G2, (τu − τ ′u)(zπ − z′π)/(c′ − c)2 + (τπ −
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τ ′π)/(c′ − c) = 0 mod ` and (w − w′)/(c′ − c) + Ku(zπ − z′π)/(c′ − c) = 1
mod `. Moreover, a(w−w′)/(c′−c)

γ = G2a
−Kγ
γ for all γ 6= i, j.

It follows that setting xπ ← (zπ − z′π)/(c′ − c), r ← (tπ − t′π)/(c′ − c),
u← (w−w′)/(c′−c) and ρu ← (τu−τ ′u)/(c′−c), the tuple ((xπ), (rπ), u, ρu)
is a valid witness for relation R′0.

To extract a witness from a prover with a fixed random string, it suffices
to repeat the following procedure:

1. run the protocol once, rewind the protocol to the computation step
right after the prover sent its first message and run it a second time
with a fresh verifier randomness

2. if the verifier accepts both executions, and the challenges of these
executions are different, extract a witness as above; otherwise restart.

The expected running time of this procedure is at most
(
ψ2 − `−1)−1, with

ψ the probability that the verifier accepts a protocol execution.

P(· · · ; (xπ)π∈{p,q}, (rπ), u, ρu) V (G2, H2, (Xπ), U, (Kπ), (Kγ)γ , (aγ)γ)
yπ, sπ, v, σu, σ ←$ Z`
Yπ ← Gyπ2 Hsπ

2

V ← Gv2H
σu
2

(Yπ)π,V,(Hπ)π,(Aγ)γ−−−−−−−−−−−−−−→
Hπ ←

(
UGKu2

)yπ
Hσπ

2
Aγ ← (aγ)v

c←$ Z`
c←−

zπ ← yπ − cxπ, tπ ← sπ − crπ Gzπ2 Htπ
2 Xc

π
?= Yπ

w ← v − cu, τu ← σu − cρu
(zπ,tπ)π−−−−−−−→
w,τu,(τπ)π

Gw2 H
τu
2 Uc

?= V

τπ ← σπ + cxπρu
(
UGKu2

)zπ
Hτπ

2 Gc2
?= Hπ

awγ

(
G2a

−Kγ
γ

)c
?= Aγ

Figure 10.5: Honest-Verifier Zero-Knowledge Protocol for Relation R1.

10.4.5 Protocol for R0

To prove knowledge of a witness for R0, the prover starts setting by setting
Kp := h(rCA) + i, Kq := h(rCA) + j, and u := r′U . It then
◦ computes two commitments Xp = G

xp
2 H

rp
2 and Xq = G

xq
2 H

rq
2 , for

xp = (u+Kp)−1 mod ` and xq = (u+Kq)−1 mod `

◦ computes a proof πDLOG−2,p that the double discrete-logarithm of P
is the discrete logarithm of Xp, and similarly a proof πDLOG−2,q for Q
and Xq

◦ computes a proof π′ for relation R′0 with Xp and Xq.
The final proof π0 for R0 consists of (Xp, Xq, πDLOG−2,p, πDLOG−2,q, π

′
0).
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Security.

It is important to note that the security of the generated key is weakened
compared to an RSA-key of the same size since the CA can recover seed
s (and thus the prime factors) by solving a discrete logarithm problem in
G2. For 3072-bit RSA moduli, this protocol therefore only provides 96
bits of security (with respect to the CA) instead of the expected 128-bit
security level. To avoid this issue, one can increase the bit size of the prime
numbers to 3072 bits (but at the cost of generating RSA moduli of twice this
size). Another possibility is to use other groups for G2 with (alleged) harder
discrete logarithm problem, e.g., the group of points of an elliptic curve over
Fp or an algebraic torus defined over Fp2 (with compact representation of
group elements in Fp) for a 1536-bit prime p. This may however introduce a
new bias for the generated primes and require to adapt the zero-knowledge
proofs.

Efficiency.

The asymptotic complexity of the communication size depends on the num-
ber of trials to obtain two primes inW since the prover has to send (aγ)γ 6=i,j .
However, even though the communication is asymptotically linear in the
number of trials, the overhead incurred by the proof of correct computation
should in practice be small.

Z` ZN ZΛ G1 G2 Total (kB)
R0 9 0 10 4 dlog2 4be+ 16 2 346
R1 0 0 5 2dlog2 2(b− 1)e+ 4 0 142

Figure 10.6: Size of the Arguments (for a 96-bit security level and 3072-bit
RSA moduli).

Total Proof Size.

As discussed in Section 10.4.3, proofs πDLOG−2,p and πDLOG−2,q both con-
sists of 2 dlog2 4(n+ 1)e+ 8 G1 elements and 5ZΛ elements.

Proof π′ consists of 9 Z` elements (see Section 10.4.4). Proof π0 for R0
therefore consists of 2 G2 elements, 4 dlog2 4(n+ 1)e+16 G1 elements, 10 ZΛ
elements and 9 Z` elements. As for the proof for R1, the aggregated proof
that 2 values committed in G1 are in

q
0, 2b−1 − 1

y
consists of 2dlog2 2(b −

1)e+ 4 G1 elements (recall that n+ 1 = b) and 5 ZΛ elements.

Running Time.

An important question about the protocol is the number of necessary PRF
trials to obtain two primes that satisfy the conditions required for the factors
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of N (captured by W ⊆ P). We estimate the number j of necessary trials
in the case W = P ∩

q
2b−1, 2b − 1

y
, i.e., when U simply has to prove that p

and q are prime of b(λ) bits. The following analysis shows (using a number-
theoretic heuristic) that the number of trials exceeds 17b(λ) = O(log λ) (so
the DY PRF remains secure), and that the probability that it is larger than
that decreases exponentially fast.

For an integer x, denote by π(x) the number of primes smaller or equal to
x. For x ≥ 30, Chebyshev’s theorem [Dus98, p. 9] ensures that 0.92x/ ln(x) <
π(x) < 1.11x/ ln(x). Therefore, if b > log2 30 + 1, π

(
2b
)
> 0.92 · 2b/b ln(2)

and π
(
2b−1

)
< 1.11 · 2b/2(b− 1) ln(2).

For two integers q and a and an integer x, denote by π(x; q, a) the
number of primes congruent to a modulo q and smaller or equal to x.
For all x > q, then the Brun–Titchmarsh theorem [MV73] implies that
π(x; q, a) ≤ 2x

ϕ(q) ln(x/q) .
The number of primes in

q
2b−1, 2b − 1

y
which are not congruent to 1

modulo e where e is a prime number greater than 17 is then at least

0.92 · 2b
b ln(2) −

2 · 2b
(e− 1)(b ln(2)− ln(e)) − 1.11 · 2b

2(b− 1) ln(2) ≥

0.12 2b
(b− ln(e)/ ln(2))

for b ≥ 6 ln(e)/ ln(2).
To apply Theorem 10.3.7, it remains to estimate the number of b-bit

primes p in QR2`+1 and such that gcd(e, p− 1) = 1.
Assuming that around half of the primes in

q
2b−1, 2b − 1

y
that are not

congruent to 1 modulo are quadratic residues modulo 2`+ 1, the factor β
in Theorem 10.3.7 is at least 0.12/(b − ln(e)/ ln(2)) ≥ 0.12/b (the range of
the PRF is has size `).

This heuristic is supported by the fact that half of the integers in J2`K are
quadratic residues, and that primes chosen uniformly at random often have
properties similar to those of general integers chosen uniformly at random.

Overall Communication Size.

In the last flow of the protocol, the prover then sends an integer N , two
commitments in G1, 17b(λ)− 2 integers in J0, 2`K with high probability, i.e.,
the (aγ)γ 6=i,j values which are integers returned by the PRF and not in W ,
and the proof of correct computation of which the size is summarized in
Table 10.4.5.



Chapter 11

Conclusion and Future Work

Chapter 9 presented a succinct argument for Diophantine satisfiability based
on generic assumptions over hidden-order group generators. More precisely,
it gave a procedure to turn any Diophantine equation into a Hadamard
product and set of linear constraints, an then an argument for such relations.

Although these techniques were given in generic hidden-order groups, it
would be worth investigating whether they also hold under weaker assump-
tions in specific groups, e.g., the RSA assumption instead of the strong RSA
assumption in RSA groups.

Besides, to instantiate the construction in ideal-class groups, the stan-
dard method consists in selecting a discriminant uniformly at random from
a large set of values. Various heuristic arguments indicate that the dis-
criminant should then contain large and random prime factors, and thus be
difficult to factorize; in which case root extraction appears to be computa-
tionally hard. However, choosing such large value inexorably impacts the
efficiency of the group operations. To be able to choose smaller values, vari-
ants of the strong-root assumption [CCL+20] have been introduced. They
exclude powers of 2 as square roots can be efficiently computed in ideal-class
groups of quadratic number fields if the discriminant is easy to factorize. For
improved practical efficiency, it would be worthwhile to determine whether
the commitment scheme and the argument for Diophantine satisfiability give
in Chapter 9 are still secure under such variants of the strong-root assump-
tion.

Chapter 10 formalized the problem of verifiable randomness in public-
key generation. It presented a game-based security model that accounts
for concurrent sessions and guarantees that the only attack possible is the
unavoidable “halting attack”. It then gave a protocol for key-generation
algorithms that can be represented as probabilistic circuits as well as a
protocol for factoring-based keys.

Despite the wide range of scenarios captured by the game-based model,
it does not guarantee that a protocol proved secure in it remains composably

316
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secure. Providing a universal-composability definition seems natural in this
setting, but the main hurdle in doing so comes from the fact that the sampler
cannot communicate at all with the distinguisher since it would otherwise
allow for covert channels as explained in Section 10.2.3. As a consequence,
a universal-composability definition would need functionalities with local
adversaries, which would be an interesting research direction.

Moreover, designing practical protocols for modern post-quantum cryp-
tosystems based on the learning-with-error problem [Reg05] and variants
therefor would be another important contribution.
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MOTS CLÉS

Vie Privée, Signatures de Groupe, Cryptographie à seuil, V2X, Chiffrement par Zone, Chiffrement à Clef
Publique, Cryptographie à Base de Mots de Passe, Preuves à Divulgation Nulle, Équations Diophantiennes,
Certification d’Aléa

RÉSUMÉ

Ce manuscrit propose des nouveaux protocoles cryptographiques qui sont respectueux de la vie privée des utilisateurs
et qui ont des applications dans la vie réelle.
Dans une première partie, l’accent est mis sur les signatures de groupe, une primitive cryptographique qui permet aux
membres d’un groupe d’utilisateurs de signer anonymement au nom du groupe, et sur la confidentialité des messages.
Pour éviter de faire confiance à des autorités uniques, les signatures de groupe sont ici définies avec plusieurs autorités
et permettent l’émission à seuil de titres de créance ainsi que l’ouverture à seuil. Ces signatures de groupe sont alors
utilisées comme mécanisme d’authentification pour la communication entre véhicules, et, combinées au chiffrement par
zone, une nouvelle primitive permettant aux véhicules de chiffrer éfficacement leur communication, elles assurent de
fortes garanties de sécurité bien définies pour les systèmes de transport coopératifs et intelligents. Par la suite, le
chiffrement à clef publique est étudié dans un contexte plus général dans lequel les utilisateurs n’ont pas accès à un
support de stockage sécurisé pour leurs clefs secrètes, mais peuvent tirer parti de mots de passe et de l’interaction avec
des serveurs pour obtenir des garanties de sécurité comparables tout en préservant leurs vies privées.
Dans une deuxième partie, nous étudions des primitives cryptographiques à portée générale qui ont des applications à la
protection de la vie privée. Dans un premier temps, nous étudions les arguments à divulgation nulle, un type de schémas
cryptographiques qui permettent à un prouveur avec une puissance de calcul limitée de convaincre un vérifieur d’une as-
sertion sans révéler aucune information supplémentaire. Plus précisement, nous étudions des arguments de satisfiabilité
d’équations diophantiennes qui ont une complexité de communication et une complexité de tour logarithmiques, ainsi que
leurs applications à la cryptographie qui vise à protéger la vie privée. Ensuite, nous considérons la question de prouver
que l’algorithme d’un utilisateur a correctement choisi et utilisé une graine réellement aléatoire pour générer les clefs de
l’utilisateur, un problème d’une importance capitale pour la sécurité de tout système cryptographique à clef publique.

ABSTRACT

This manuscript proposes new cryptographic protocols that are respectful of users’ privacy and which have real-world
applications.
In a first part, the focus is on group signatures, a primitive which allows members of a user group to anonymously sign
on behalf of the group, and on message confidentiality. To remove the trust on single authorities, group signatures are
here defined in a setting with multiple authorities and support both threshold issuance and threshold opening. These
group signatures are then used as authentication mechanism for vehicle-to-vehicle communication, and combined with
zone encryption, a new primitive whereby vehicles can efficiently encrypt their communication, they provide strong, well-
defined privacy guarantees for cooperative intelligent transport systems. Thereafter, public-key encryption is studied in a
more general context in which users do not have access to secure storage to protect their secret keys, but can leverage
passwords and interaction with servers to obtain comparable security guarantees without renouncing their privacy.
In a second part, the topic of study are general-purpose cryptographic primitives which have privacy-preserving applica-
tions. First come zero-knowledge arguments, a type of cryptographic schemes which enable a computationally bounded
prover to convince a verifier of a statement without disclosing any information beyond that. More specifically, we study
arguments to prove the satisfiability of Diophantine equations which have logarithmic communication and round com-
plexity, as well as their applications to privacy-preserving cryptography. Then, we tackle the problem of proving that a
user algorithm selected and correctly used a truly random seed in the generation of her cryptographic key, a problem of
fundamental importance to the security of any public-key cryptographic scheme.

KEYWORDS

Privacy, Group Signatures, Threshold Cryptography, V2X, Zone Encryption, Public-Key Encryption,
Password-Based Cryptography, Zero-Knowledge Proofs, Diophantine Equations, Randomness Certification
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