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Chapter 0

Résumé

L’analyse automatique du comportement humain connait un intérêt crois-
sant en psychologie, linguistique, neuroscience, informatique et en au-
tomatique. Cet intérêt prend encore plus d’ampleur au vu des récents
succès des algorithmes d’apprentissage automatique dans les tâches de
perception. Comme l’expression du visage et l’intonation de la voix sont
des données représentatives de l’état émotionnel d’une personne, notre
travail vise à détecter et prédire des situations à risque en analysant
l’état cognitif d’un opérateur humain à partir de signaux audio-visuels.
Dans ce travail, nous discutons les différentes approches et techniques
d’apprentissage automatique pour la reconnaissance d’émotions. Nous
montrons ce que les réseaux de neurones à apprentissage profond, en
particulier les réseaux de neurones convolutifs, ont apporté à la recon-
naissance d’émotions dans un contexte multi-label et multi-tâche. Dans
le cadre de la reconnaissance d’émotions à partir d’images en prenant en
considération le contexte dans lequel se déroule l’action, nous proposons
une architecture originale pour l’extraction des attributs caractéristiques
: un module corps, réseau Xception, est dédié à l’extraction d’attributs
des émotions de la personne et un module scène, réseau VGG16 modifié,
pour l’extraction des attributs de la scène entière. Les sorties de ces deux
modules constituent les entrées d’un 3e module, réseau multicouche, com-
posé d’une partie fusion des deux vecteurs de caractéristiques et d’une
partie décision pour la reconnaissance d’émotions. Nous présentons aussi
une architecture pour la reconnaissance d’émotions à partir de la voix.
Nous introduisons le principe du ”Fingerprint” de l’état émotionnel et le
concept de rupture émotionnelle qui sera un indicateur d’un changement
brutal et inattendu de l’état émotionnel. Les résultats obtenus lors d’un
processus expérimental sont discutés.

Mots Clés Apprentissage automatique ; Apprentissage profond ;
CNN ; Reconnaissance d’émotions ; Détection de risques ; Rupture
émotionnelle.
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Chapter 0

Abstract

The automatic analysis of human behavior is experiencing an unprece-
dented interest in psychology, linguistics, neuroscience, computer science
and automation. This interest is further enhanced by the recent success
of machine learning algorithms in perceptual tasks. Since facial expres-
sion and voice intonation are representative of a person’s emotional state,
our work aims at detecting and predicting risky situations by analyzing
the cognitive state of a human operator from audio-visual signals. In
this work, we discuss the different approaches and techniques of machine
learning for emotion recognition. We show how deep learning neural net-
works, in particular convolutional neural networks, have contributed to
emotion recognition in a multi-label and multi-task context. For image-
based emotion recognition, taking into account the context in which the
action takes place, we propose an original architecture for the extraction
of characteristic attributes: a body module, Xception network, is dedi-
cated to the extraction of attributes of the person’s emotions and a scene
module, modified VGG16 network, for the extraction of attributes of the
whole scene. The outputs of these two modules constitute the inputs of
a 3rd module, a multilayer network, composed of a fusion part of the
two feature vectors and a decision part for emotion recognition. We also
present an architecture for voice-based emotion recognition. We intro-
duce the principle of the ”Fingerprint” of the emotional state and the
concept of emotional breakdown which will be an indicator of a sudden
and unexpected change of the emotional state. The results obtained in
an experimental process are discussed.

Keywords Machine Learning; Deep Learning; CNN; Emotion recog-
nition; Risk detection; Emotional Breakdown.
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Chapter 1 Motivations and Thesis Objectives

1.1 Risk detection with emotion recogni-

tion

The last decades have seen a constant improvement in the field of human-
computer interaction. Several works in this field have aimed to improve
the user experience when the latter has to interact with a machine. How-
ever, in a classical human-machine interaction system, the machine has
no idea of humans’ feelings. It, therefore, cannot adapt its functions to
human needs. In a world that moves towards full automation, passive
feedback from the user is essential for human safety.

A case in point is the tragic accident that occurred in the state of
California on March 23, 2018 (see Figure1.1). According to the NTSB
(the National Transportation Safety Board of the United States) report
1, a Tesla in Autopilot mode crashed into a low concrete wall at more
than 100 km/h causing the death of its passenger. The question ”Whose
fault was it?” is probably not easy to answer. Even if the system was
not perfect, shouldn’t the passenger have been paying attention? Was he
simply aware? What is sure is that we are facing a lack of information.
The car had no information about the passenger’s state.

Figure 1.1: Autonomous Tesla crashed in California. Image taken from
the NTSB report

Another example is what we have just experienced in the last two
years with the Covid19 pandemic. More and more people have started
to telecommute, and courses are given online. We can easily imagine
a scenario, where we are home alone, and wherein the workload would
be so significant that it would inevitably lead to mistakes. Also, for

1https://www.ntsb.gov/investigations/AccidentReports/Reports/

HWY18FH011-preliminary.pdf
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Chapter 1 Motivations and Thesis Objectives

online courses, as it is already difficult for professors to judge students’
attention level in class, how could they do it at a distance?

Humans are by nature very expressive and this begins at birth. With
42 facial muscles, screams and cries, we can express very easily, willingly
or not, what we feels. This is particularly the case when we find ourselves
in a situation of risk, danger, misunderstanding or discomfort, as show
in Figure1.2. So the question is, can we design a human operator risk
detection system based on his facial and verbal expression?

Figure 1.2: Driver surprised 2in light of an incident.

1.2 Aim of Thesis

This thesis aims at developing a system for the automatic detection of
the cognitive state of a human operator from the analysis of audiovisual
signals produced by the voice and the face. The system is non-intrusive
and the state is captured from cameras and microphones.

Works on automatic emotion recognition started since computers ex-
ist. However, many research challenges still remain. The main challenge
to this work is the exploitation of visual and audio signals from cam-
eras and microphones in real-time, to detect environmental or human
risks based on facial and verbal characteristics. Many works conducted
on emotion recognition traded the temporal aspect with accuracy. This
trade-off is not possible for a safety-critical system such as autonomous
vehicles for example.

The other constraint for such a system is the outdoor environment.
Since the beginning of computer vision, outdoor environments remain the

2https://www.dreamstime.com/
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Chapter 1 Motivations and Thesis Objectives

most challenging factor. The brightness changes, the occlusion regions
and the all unpredictable events that could happen in an uncontrolled
environment may highly affect the system accuracy.

1.3 Main Contributions

This thesis focuses on designing an automatic system to detect risks
from operators’ facial and voice expressions. We designed a bi-modal
architecture to detect sudden changes in operator’s emotional state. This
architecture could be split on three major parts:

• Image and context-based features extractor. The approach is de-
scribed in Chapter 5 and published in [7]. In this Chapter we
worked on the Emotic Database [52] to build a model for image-
based multi-task emotion recognition. The motivation behind this
choice is that the database offers the possibility to take into consid-
eration the context in which the action takes place. Nevertheless,
the labels distribution through the database is not homogeneous.
Our first contribution is our categorical loss function named the
multi-label focal loss (MFL) that gives much better results (with
the same architecture) than the most common categorical loss func-
tions we have compared (Cross-Entropy and the Euclidean loss).
Compared to the state of the art, our loss function gave better re-
sults on the less frequent labels (< 5%). Our second contribution
is our deep learning architecture for context-based emotion recog-
nition. We combined an Xception network [14] with a modified
VGG network [96]. We removed the two fully connected layers
and added a Conv3D block to get an output of 1024 channels fol-
lowed by a Global Average Polling layer to get 1024 outputs. We
also found out that in a multi-task learning, loss functions must
be chosen together instead of choosing the best ones separately
regarding previous works. It seems like there is a sort of affinity
relationship between loss functions in a multi-task scenario.

• Audio-based features extractor. The approach is also described
in Chapter 6. We designed a VGG-based architecture for Audio-
based emotion recognition on the RAVDESS database [68]. We
transformed the audio signals into images by computing the Mel-
Spectrogram of each defined audio segment.

• Audio-visual emotional state Fingerprint. The principle of emotion
state Fingerprint published in [5, 6] is described in Chapter 7. We
take both of the precedent architectures and prune their outputs
assuming that the last layer before the output layer must be con-
sidered as the feature layer, i.e. the layer where all the information
is combined before a classification or a regression task. By tak-
ing the two feature layers of the two architectures and concatenate

16



Chapter 1 Motivations and Thesis Objectives

them results on a single layer which represents the fingerprint of a
unique emotional state (ES).

• EmoRuption: A system for emotional breakdown detection. The
process is also described in Chapter 7. Knowing the ES fingerprint
at t−∆t and compares it to the actual ES using a distance function
(Similarity function) results on the difference between the actual
ES and the ES at t−∆t, i.e. the temporal derivative of the ES. If the
distance exceeds a predefined threshold, an emotional breakdown
(EB) happened.

1.4 Outline

The thesis is structured as follows. First we define what is a risk and
what is a dissonance. This is presented in Chapter 2 along with a study
that shows the relationship between human behaviour through their ex-
pressed emotions and audiovisual signals. Chapter 3, presents the basics
of image and voice processing and, we overfly some works on visual-
based, audio-based and audiovisual-based emotion recognition and give
a shot review on machine learning in Chapter 4. We present the main
architectures and finally we discuss the impact of machine learning on
emotion recognition. In Chapter 5 and 6, we present our architecture
for context-based emotion recognition and we show how our loss func-
tion improved the recognition on low frequent labels. After that, we
present our approach for audio-based emotion recognition and we dis-
cuss the audiovisual fusion approaches. Finally we present the principle
of Emotional Breakdown (EB) and our validation process. We conclude
the thesis with a summary and some research perspectives in Chapter
7. The dependencies between chapters are shown in the flow graph in
Fig.1.3.
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The technological evolution resulting from the increased development
of digital media at work is likely to have a severe impact on human be-
havior. In this chapter, we are going to highlight the link between the
human feeling and the audiovisual signals. To do this we will study the
case of dissonances. It relates to suffering or discomfort due to a conflict
between personal or collective beliefs with felt or expressed emotions.
The study of dissonances comes from work in cognitive science [29] and
engineering science [48]. The concept was then explored as part of the
analysis of human reliability to extend the study of human error to that
of use dissonances of socio-technical systems [111, 113–115]. A disso-
nance due to a failure of cooperation between a human operator and a
robot, for example, may affect factors such as misunderstanding, frustra-
tion, embarrassment, or astonishment. Among these factors, there are
emotions whose detection is the subject of significant research based on
facial or voice recognition systems [51]. For attentional dissonances that
are gaps between actual and perceived attention, the synchronization
of dynamic events as alarms with heart rate significantly increases the
number of errors in their detection [118].

2.1 From human reliability analysis to dis-

sonance engineering

Human reliability can be defined as the human ability to realize the re-
quired and the additional tasks, at a given time or during an interval
of time, with acceptable consequences regarding criteria such as safety,
security, workload, quality, or production of services [114]. Human error
is the complement of human reliability. It is the capacity of humans not
to realize their requirements or their additional tasks correctly. Off-line
human error assessment methods for prospective, retrospective, or cog-
nitive analysis exist to assess qualitatively or quantitatively erroneous
human behaviors [8, 12, 18, 38, 49, 54, 82, 84–86, 107, 117]. Many of them
consider mainly the first set of tasks, i.e., they study the possible human
errors related to what the users are supposed to do. Moreover, they
usually focus on the human error impact on system safety or on erro-
neous behaviors when controlling emergency or safety-critical situations.
Prospective methods aim at anticipating human errors during the design
of a human-machine system.

Retrospective methods explain human errors that occur on the field
and cause incidents or accidents. They produce feedback of experience
and can propose modifications of the socio-technical system in order
to make it more reliable by preventing it from hazardous human er-
ror occurrence. Cognitive model-based methods analyze human error
by applying taxonomy of errors, by defining possible factors that fa-
cilitate human error occurrence, or by identifying the possible causes
and consequences of human errors. Other on-line human reliability ap-
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proaches are based on human indicator measures. They relate, for in-
stance, to quantitative measurements or results of subjective evaluation
methods [17,88,90,91,106,108,116].

More recently, resilience engineering concepts were developed to study
safety management on critical systems. System resilience is then de-
fined as its ability to recover from any instability [114]. Cooperation or
learning-based support systems can then be defined in order to make the
system more resilient to human errors [1,26,46,77,82,109,119,120,134].
Dissonances are interpreted as possible causes of human instability re-
garding their consequences in terms of discomfort, overload, or stress
when they are detected or controlled or of unconsciousness when they
are not perceived, and people feel they behave right. The successful
control of these dissonances makes the system resilient, while its failure
makes it vulnerable.

The concept of dissonance is suitable because it can take into account
several subjective or quantitative baselines to identify human disruptions
and analyze associated human behaviors, or consider erroneous baseline
or a lack of baseline, and treat weak signals [114]. Moreover, different
strategies of dissonance control or discovery can be applied and studied
to reinforce human knowledge or belief [111,113].

The architecture model proposed in section 5 is based on the results
of two studies presented in sections 3 and 4, respectively. It considers an
automated detection of emotion by analyzing audio-visual signals from
subjects facing dissonances, and the possible inattention that provokes
a lack of their detection and the associated emotion.

2.2 The Reverse Comic Strip for emotion

analysis

The Reverse Comic Strip support aims at identifying emotions in the
course of human activities by determining a kind of comic strip by repro-
ducing experienced emotions with facial pictures and verbal expressions
or thoughts, [110,112].

The study concerns the discovery of interpretation rules about sig-
naling systems presented in [112]. It consists in discovering the right rule
related to the on-lights that are on different panels, Fig. 2.1.

The discovery process involved 36 subjects who were invited to define
a rule regarding the lights on or off of the signaling supports of pictures
1, 2, and 3. The first step concerned the rule discovery of picture 1.
Before the discovery process of picture 2, the correct rule of picture 1
was given. It was the same process before engaging the discovery process
of picture 3: the rule related to picture 2 was given. Therefore, the
learning associated with the discovery process was supervised because,
at each step, the correct rule was given to the subjects. For pictures 1
and 2, when the lights are on the train will stop at the corresponding

21



Chapter 2 Audiovisual signal and risks

Figure 2.1: Discovery of the meaning of the lights on of the pictures 1,
2 and 3.

Figure 2.2: Results on Fig.2.1 picture 1 [110]

stations. In picture 3, there are two metro lines, and the on-lights means
the presence of a train at the corresponding station.

Regarding the Reverse Comic Strip parameters, (see Fig.2.2, Fig.2.3,
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Figure 2.3: Results on Fig.2.1 picture 2 [110]

Figure 2.4: Results on Fig.2.1 picture 3 [110]
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Fig.2.4), pictures 1 and 3 generate more negative emotions, i.e, the se-
lected emotion pictures, thoughts or words, this is due to the novelty of
the situations. On the other hand, the discovery exercise related to pic-
ture 2 is less stressful regarding the selected pictures and generate more
positive emotions in terms of thoughts or words because it is similar to
picture 1.

This study aimed to put a link between human behaviour and au-
diovisual signal. The results presented motivate the design of an ar-
chitecture to recognize automatically human operators’ emotions from
audiovisual signals by analyzing their facial and verbal expressions.

2.3 EmoRuption: Toward a bi-modal ar-

chitecture for Emotional Breakdown de-

tection

We know that the situations of discomfort expressed through emotions
can be very brief but also very intense (state of shock, surprise, discom-
fort etc). Starting from this postulate, we realize that the very nature
of expressed emotions is not really significant when we are interested in
the detection of discomfort situations, especially since the neutral state
can differ from one person to another. It would be interesting to think
that it is rather the brutal and intense changes of the emotional state
that are the most likely to describe a discomfort situation.

Based on this, we have designed a bi-modal architecture, named
EmoRuption (see Fig.2.5) for the detection of these changes in the emo-
tional state. This work has been published in [5, 6]

Figure 2.5: EmoRuption’s theoretical architecture for emotional break-
down detection

From an audiovisual input signal we extract both voice and facial
feature vectors respectively Ap and Af describing the operator’s actual
emotional state. Then those feature go through a fusion module where
the emotional state vector is built, denoted Vt. On the next iteration, we
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compare the actual emotional state Vt with the previous emotional state
Vt−δt using a similarity function. An Emotional Breakdown (EB) occurs
when the similarity function becomes greater than a fixed threshold α
and is defined as follows:

EB(t) =

{
True if Sf (Vt, Vt−1) > α

False otherwise
(2.1)

It is essential to notice that there is no classification here; the very
nature of the emotion is not computed. We only focus on the changes in
the emotional state.

2.4 Conclusion

This chapter aimed to highlight the relationship between human be-
haviour through their expressed emotions and audiovisual signals. The
results presented in this chapter motivate the design of an architecture to
recognize automatically human operators’ emotional state from audiovi-
sual signals by analyzing their facial and verbal expressions. After that,
we introduced our designed bi-modal architecture to capture human’s
emotional state and compare it to the previous one so we can calculate
the its variations and detect Emotional Breakdowns.
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The automatic analysis of human behavior is experiencing an un-
precedented interest in psychology, linguistics, neuro-science, computer
science and automation. Emotion recognition has known a broad interest
over the past two decades and especially for facial expression recognition,
which represents the central axis the literature explored. However, in [72]
Mehrabian stated that the facial expression of a message contribute 55%
of the overall emotional state information while the vocal and the se-
mantic parts contribute 38 and 7%, respectively. This means that if we
only process the facial expression, we miss out on 45% of the available
information.

In this chapter, we will firstly introduce some basics of image and
audio processing. Next, we will give a global vision of the state of the
art in visual-based emotion recognition, audio-based emotion recognition
and finally audiovisual-based emotion recognition.

3.1 Some basics of computer vision and

image processing

3.1.1 Image matching based area of interest (AOI)

In computer vision, the area of interest designate the interesting parts
of the digital image. These areas can be contours, points or regions of
interest.

When an area of interest is detected, it is associated with a vector
called a features descriptor, which as its name indicates describes this
area of interest.

Areas of interest are used for image matching, which consists in find-
ing common elements in two (or more) images, representing the same
scene but in different ways. This is very useful in many computer vision
tasks such as visual search (finding an image similar to another), or in
object recognition in an image, classification and 3D reconstruction. Fig-
ure 3.1 shows an example of image matching. The circles on the images
represent the areas of interest.

The image matching goes through two steps:

• Detection and description of features for both images.

• Finding pairs of features that match in the two images.

Finding matching pairs is a complex problem that can make matching
impossible. In addition, several elements including photometric proper-
ties (brightness, contrast ... etc), occlusion, scale and rotation make the
task even more difficult.

To facilitate the comparison of features and thus the correspondence,
the descriptor must have certain properties of invariance to the elements

1https://openclassrooms.com
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Figure 3.1: Examples of image matching 1

mentioned above. Among the existing descriptors we can cite the Scale-
Invarient Feature Transform (SIFT) which is based on the detection, in
the image, of circular areas, each centered around a point called the point
of interest, and of a determined radius called the scale factor. SIFT is
invariant to scale transformations, rotation and occlusion; but it uses the
gradient, which makes it sensitive to photometric changes.

3.1.2 Low and high level features

When we look at the image in Figure 3.2, we can identify a flying bird,
the sun and the ocean in the background. This identification is made
based on the entire scene. We do not consider the bird, the sun and the
ocean separately to classify the image. Instead, we make a description of
the visual content: this is called a high-level description (high semantics)
of the image.

On the other hand, some algorithms, like SIFT mentioned above,
cannot perform this kind of global identification. They rely on local
points such as edges and points of interest to detect features, combine
them and then classify the image.

Minimizing the gap between high-level representations (interpreted
by humans) and low-level features (detected by algorithms), is a key
point in vision recognition problems.
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Figure 3.2: Low and high level features.

3.1.3 Convolution

Convolution is one of the most important operations in image processing.
It is mainly used in feature extraction and is also the basic of convolu-
tional neural networks.

The convolution consists in performing the scalar product between
a convolution matrix and the neighborhood of a pixel, according to the
formula 3.1. The pixel value is replaced by the resulting value of this
product. The convolution matrix, also called convolution kernel or filter,
is usually a square and much smaller than the image.

f [x, y] ∗ g[x, y] =
∞∑

n1=−∞

∞∑
n2=−∞

f [n1, n2] ∗ g[x− n1, y − n2] (3.1)

where f represents the numerical image, g the convolution kernel and
∗ is the product convolution. The obtained image can be interpreted as
a modified (filtered) version of f .

At first the filter is applied to the upper left part of the image. It is
then moved along the image, to calculate the new values of each pixel.
This displacement is done by a step of 1 pixel.

3.1.4 Pyramids and image sampling

In the field of computer vision, the pyramid is a multi-resolution or multi-
scale representation allowing an analysis of the image on several levels,
from the finest detail to the most coarse.

2https://qastack.fr/datascience/23183/why-convolutions-always-use-odd-numbers-as-filter-size
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Figure 3.3: Graphical representation of convolution 2

This theory appeared progressively at the end of the 70’s, and was in-
spired by natural environments which also lend themselves to this multi-
level decomposition. Indeed, the real objects, the physical reality, con-
trary to the mathematical objects, exist in the form of different entities
depending on the level of scale which one considers (Example: a leaf, a
tree, a forest).

The multi-scale analysis of an image and the extraction of the infor-
mation contained in it at each level allows a more accurate structural
description than that made with a single level analysis.

This technique was introduced for simple image processing, but was
later adopted by the field of computer vision. In particular, neural net-
works with a pyramidal configuration have been used to extract local
and global contextual information from images.

In the next section we will explain the basics of audio processing. We
will enumerate the most relevant audio features we can extract from a
digital audio signal and how they are extracted.

3.2 Some basics in audio processing

As image features, audio features can be categorized in three main cat-
egories following their level of abstraction (see Fig.3.5): High-level fea-
tures as cords, melody or lyrics, mid-level features pitch, fluctuation
patters or Mel-Frequency Cepstral Coefficients (MFCC’s) and low-level

3https://en.wikipedia.org/wiki/Pyramid_(image_processing)
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Figure 3.4: Visual representation of a five levels pyramid 3.

features as amplitude envelope, energy or spectral centroid [50]. In the
following we will only focus on the mid and low-level features.

The mid and low-level features cited above are either computed in
the time domain or frequency domain representation of the audio signal
as shown in Fig.3.6. Time domain representation indicates on each point
the amplitude of the signal at time t where the frequency domain rep-
resentation indicates the signal magnitude at different frequencies. This
representation is a result of a Fourier Transformation of the time domain
representation.

Figure 3.6: Diagrams of time domain representation (left) and frequency
representation (right) of a violin [50].
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Figure 3.5: Audio features classification following their level of abstrac-
tion [50].

A classic and primitive pipeline of acoustic feature extraction is de-
scribed in [50] and can be represented as follow (Fig.3.7):
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Figure 3.7: Simplified workflow of a typical audio feature extractor [50]

From the analogue signal of an audio source (music instrument or
voice for example) we need to convert that signal into a digital one.

After converting the analogue signal of an audio source into a dig-
ital signal we will result in a so-called Pulse Code Modulation (PCM)
representation of an audio signal. In this representation, an amplitude
value is assigned to each sample (a range of time; the smaller the more
accurate). However, we cannot use this representation to extract time
domain features because the samples are too short, i.e., 1 sample at 44.1
Khz = 0.0.0227 which is way smaller that the ear’s time resolution (10
ms). To solve this, we need to perform a framing to the PCM which
is basically concatenating samples as shown if Fig.3.7. Frames’ size are
commonly powers of 2 because of the Fourier Transform which becomes
way faster in this case. Typically an overlap of 50% is used. The duration
of a frame (in seconds) is computed as follow:

df =
1

Sr
.K (3.2)
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where Sr in the sample rate (how many samples in one second) and K
the frame size.

In order to compute the frequency domain representation of sound
using the Fourier transformation we need firstly to make a so-called frame
windowing. It consists of applying a windowing function to each frame.
The Hann function is a common choice and it is defined as follow:

w(k) = 0.5.

(
1− cos

(
2.π.k

K − 1

))
(3.3)

where, K is the frame size and k = 1..k.
Another alternative to the Hann function is the Hamming function

and it is defined as follows:

w(k) = 0.54− 0.46.

(
1− cos

(
2.π.k

K − 1

))
(3.4)

The windowing process consists of multiplying sample by sample the
whole frame with the respective value of the windowing function. Doing
so results on a periodic signal and will avoid artefacts in the spectrum
when using the Fourier transformation. Fig.3.8. shows the windowing
process using Hann function. The upper image represents the frame, the
second represents the Hann function the third represents the result of the
Hann windowing on the frame. As shown in the third image, the edges
of the frame are suppressed, this is why an overlap of 50% is commonly
used, to avoid information loss.

Figure 3.8: Windowing of a 256-sample frame using a Hann function [50]

Now we have our windowed frames we can apply the Fourier trans-
formation to get the frequency domain representation. The fast Fourier
Transformation (FFT) can be used if the signal is discrete, which is the
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case in digital signal representation with samples and frames. The FFT
is defined as follows:

Xm =
K−1∑
k=0

xke
− 2π.i

K
km (3.5)

where, k is the number of samples in the frame, m is an integer from 0
to K−1 and xk is the kth input amplitude. The output Xm is a complex
number where the real part Re(Xm) and the imaginary part Im(Xm)
represent the cos and sin waves. We then obtain the magnitude:

|Xm| =
√
Re(Xm)2 + Im(Xm)2 (3.6)

which represents the amplitude of the combined sine and cosine waves,
and the phase:

φ(Xm) = tan−1
Im(Xm)

Re(Xm)
(3.7)

which indicates the relative proportion of sine and cosine.

Also there is a third representation combining both time and fre-
quency domains called spectrogram. It is computed by using the Short
Time Fourier Transformation (STTF) which consists of using many FFT’s
over different windowed frames in temporal order. Concatenating the re-
sulting frequency domain representation gives a spectrogram as shown
in Fig3.9.

Figure 3.9: Example of spectrogram representation of a sound.
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3.2.1 Common low-level audio features

In this section we will present some pertinent audio features. We will
firstly present time domain features then frequency domain features and
lastly time-frequency domain features.

3.2.1.1 Time domain features

• Root-Mean-Square Energy (RMS Energy): It relates to per-
ceived sound intensity and can be used for loudness estimation and
as an indicator for new events in audio segmentation. It is defined
as follows:

RMSt =

√√√√ 1

K
.

(t+1).K−1∑
k=t.K

s(k)2 (3.8)

where s(k) is the amplitude of the kth sample and K is the frame
size.

• Zero-Crossing Rate (ZCR): It measures the number of times
the amplitude value changes its sign. It is defined as follows:

ZCRt =
1

2

(t+1).K−1∑
k=t.K

|sgn(s(k))− sgn(s(k + 1))| (3.9)

3.2.1.2 Frequency domain features

• Fundamental frequency (F0): The fundamental frequency de-
noted F0 is the lowest frequency component in a complex sound
wave (Fig.3.10). It is important in the understanding of intonation
and closely corresponds to pitch [58].
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Figure 3.10: Wave form representation of the sounds [o], [u] and [i] from
up to down, respectively. We can see that the lowest frequency repeats
itself each 0.01s so F0 = 100Hz [58].

• Band Energy Ratio (BER): BER relates the energy in the lower
frequency bands to the energy in the higher bands and in this way
measures how dominant low frequencies are. It is defined as follows:

BERt =

∑F−1
n=1 mt(n

2)∑N
n=F mt(n2)

(3.10)

where F denotes the split frequency band and mt(n) the magnitude
of the signal in the frequency domain at frame t in frequency band
n. The choice of F highly influences the resulting range of values.

• Spectral Centroid (SC): Represents the frequency band where
most of the energy is concentrated. It is related to the sound timber
and defined as follows:

SCt =

∑N
n=1mt(n).n∑N
n=1mt(n)

(3.11)

• Spectral Spread (SS): Is derived from the spectral centroid. It
can be interpreted as variance from the mean frequency in the
signal. It is defined as follows:
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SSt =

∑N
n=1 |n− SCt| .mt(n)∑N

n=1mt(n)
(3.12)

• Spectral Flux (SF): Describes the change in the power spectrum
between consecutive frames, it is often used as speech detector. It
is defined as follows:

SFt =
N∑
n=1

(Dt(n)−Dt−1(n))2 (3.13)

where Dt(n) is the frame-by-frame normalized frequency distribu-
tion in frame t.

3.3 Emotion conceptualization and struc-

tures

In order to work on emotion recognition, we firstly need to understand
how emotions have been conceptualized and structured. In psychology,
three primary ways of conceptualization have been retained.

The most long-standing way that conceptualize emotions is drawn
from everyday life. Discrete categories of emotions [22, 23, 105]. The
most popular example is the 6 basic emotions, happiness, sadness, anger,
disgust, surprise and fear as shown in Fig.3.11.

Figure 3.11: Graphical representation of the 6 basic emotions. Anger,
Happiness, Surprise, Disgust, Sadness, Fear. Image taken from the gri-
mace project5

5http://www.grimace-project.net/
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The notion of basic emotions was introduced by Ekman [22] in 1977.
Following his cross-cultural study where he states that no matter the reli-
gion or culture, everyone agrees on the 6 basic emotions. This interpreta-
tion is very simple and useful when it comes to labeling databases. Most
people agree on the emotions conveyed by a facial expression. However,
this discrete representation of emotions quickly finds its limits because
it fails to describe the wide spectrum of emotions in scenarios where
communication is natural and sometimes complex.

The second way of interpreting emotions is through a multidimen-
sional space by choosing a small number of dimensions. Among these
dimensions we can mention: evaluation, activation, power, arousal, dom-
inance etc. The categorical representation allows to choose one emotion
among a set of emotions, on the other hand, the continuous represen-
tation (see Fig.3.12) of emotions allows the raters to choose an interval
of emotions. However, this way of describing emotions is very sensitive
to the choice of dimensions. A too small number of dimensions will re-
sult in a loss of information, a too high number of dimensions will result
in an exponential complexity. Furthermore, this representation is not
intuitive, a training for the raters is required.

Figure 3.12: Graphical representation of emotions representation
through a 2D continuous space. Dimensions are Valence and Arousal
[104]
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3.4 Databases

There are hundreds on audio, visual and audio-visual databases for emo-
tion recognition. In the table.3.1 we will only focus on the most fa-
mous/used accessible and free databases. For each database we will
detail its proprieties regarding the type (audio, visual or both), the num-
ber of samples, the number of subjects and the emotion description.
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3.5 Vision-based emotion recognition

Facial expressions represent the major part of the information on the
emotional state conveyed by the human, this is why most of the work on
emotion recognition is based on facial expressions. There are two ways to
process facial-based emotion recognition: extracting facial features then
classification or extract so-called facial unites which have a rule-based
system to determine emotions.

3.5.1 Action Units and the FACS (Facial Action
Coding System)

Figure 3.13: FACS action units [135]

Instead of focusing on the direct interpretation of facial expressions,
FACS [22] proposes to codify muscular movements into so-called action
units (AU’s) as shown in Fig.3.13. Since these action units are indepen-
dent of any interpretation, they can be used to describe any emotion.
Ekman [22] proposed a rule-based system to find the 6 basic emotions
from the AU’s and the recognition of other emotional states such as de-
pression [24] or pain [123] with other systems of high-order interpretation
categories.
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3.5.2 Straight emotion recognition

Instead of using the FACS codification, some works have focused on a
straight way to detect emotion by directly analysing facial movements
and then classify them (see Fig.3.14. In this exercise, we can distinguish
two different feature classes: Geometric and appearance features.

Figure 3.14: Basic system for emotion recognition [21].

3.5.2.1 Geometric features

The geometric features represent the shape of the facial components such
as eyes or mouth and salient facial points such as the corners of the eyes.
Some approaches in the literature as Kanade Lucas Tomasi (KLT) [53]
or Elastic Bunch Graph Matching (EBGM) [31] have been explored to
extract geometric features.

Figure 3.15: Geometric points tracking [21]
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Figure 3.16: Distance between geometric points [21]

3.5.2.2 Appearance features

Appearance features represent the facial texture, wrinkles, bulges, and
furrows. Descriptors as Local Binary Pattern (LBP) [94], Local Mean Bi-
nary Pattern (LMBP) [32], Local Gabor Binary Pattern (LGBP) [75] or
Local Phase Quantization (LPQ) [122] are the most effective descriptors
for an appearance-based features extraction.

As suggested in different studies [69, 102, 103], a hybrid approach
combining both appearance and geometric features might be the best
choice.

3.6 Audio-based emotion recognition

Audio-based emotion recognition is also based on basic emotions. How-
ever, there are some works that have targeted some emotions such as
disappointment [33,39], certainty [66] or empathy [98].

Research for audio-based emotion recognition often focuses on the
acoustic characteristics of the sound signal. These acoustic features can
be classified into two categories: Prosodic features and spectral features.
However, there are some works that have used linguistic features (lan-
guage and speech) to improve the performance of emotion recognition
from audio signals [4, 62,67].

3.6.1 Prosody features

From the Cambridge dictionary, prosody is defined as ”the rhythm and
intonation (the way a speaker’s voice rises and falls) of language”. In
computer science prosody features are described by the pitch, energy
and speech rate (duration). The pitch baseline and topline, as well as
the pitch range, are commonly computed based on the mean and vari-
ance of the logarithmic F0 values. Energy features are computed based
on the intensity contour. Similar to the F0 features, a variety of energy
related range features, movement features, and slope features are com-
puted using various normalization. Speech rate is obtained by computing
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the pause duration between each word.

Many studies show that energy and pitch features contribute the most
to audio emotion recognition [56].

3.6.2 Spectral features

Spectral features are obtained by converting the time based signal into
the frequency domain using the Fourier Transform, like: fundamental
frequency, frequency components, spectral centroid, spectral flux, spec-
tral density, spectral roll-off, etc.

3.7 Audiovisual-based emotion recognition

Besides the audio and visual feature extraction discussed above, audiovisual-
based emotion recognition can be seen as a fusion problem. Where and
how do we merge the two modalities ?

We can distinguish four major data fusion strategies: Feature level,
decision level, model level and hybrid fusion strategy. Feature level fusion
consists on concatenating prosodic features and facial features to build
a feature vector. This vector in then propagated into a classifier. The
main issue with this approach is the different time scale and metrics from
both modalities [11,92,129].

Decision feature level is the most used approach in the literature. It
consists of processing the two modalities separately then combine the de-
cision of each single-modal decision (as a voting system). This approach
assume that there is no dependencies between the two modalities, which
is a bit naive and more likely incorrect [3, 40, 78,126,128]

To solve the dependency problem, a couple of model level fusion meth-
ods have been proposed to make use of the correlation and dependencies
that both modalities might have. Methods like Multi-stream fused Hid-
den Markov Models (HMM) [129] or tripled HMM [97] for prosodic and
upper and lower face features have been proposed. Neural networks [30]
and Bayesian Networks [93] also have been explored. As each strategy
has its advantages and its disadvantages, hybrid or multistage fusion
strategies seems to confer the best compromise.

3.8 Conclusion

This chapter has been devoted to explain some basic notions in image and
audio processing and the basics of emotion recognition. We explained
how emotions are represented in psychology and how they have been
conceptualized in computer science. We covered the main aspects and
techniques of visual-based, audio-based and audiovisual-based emotion
recognition.
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In the next chapter we will introduce the main aspects of Artificial
Intelligence and especially machine learning and how it did impact the
field of emotion recognition.
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There is no intelligence without learning - Yan LeCun,
head of artificial intelligence (AI) at Facebook.

In general, machine learning allows a machine to perform tasks that
would be impossible to perform using conventional algorithms and for
which it is not explicitly programmed beforehand, by extracting and ex-
ploiting information present in a data set. This process allows machines
to evolve through a systematic process, so that they can make indepen-
dent decisions and react appropriately to unknown situations.

Machine learning techniques are used in many different fields. For
example, it can be used in the medical field where machines help diagnose
tumors, in the banking field to estimate a person’s ability to repay a
loan, or in the transportation industry to develop driverless navigation
systems.

A computer program is said to learn from experience E
with respect to some class of tasks T and performance mea-
sure P, if its performance at tasks in T, as measured by P,
improves with experience E - Tom MITCHELL, in his book
”Machine Learning” [74].

According to this definition, a program learns from an experiment E
to perform a task T, if its performance measure P, measured for task T,
improves with experiment E. The book [74] details each aspect as follow:

1. The task T:

The goal of machine learning is to teach a machine to perform
a specific task T, which would be very difficult or impossible to
perform with a classical algorithm. These tasks can be for example
tasks of:

• Classification: This task consists in determining the class
to which an input X belongs, with C the set of classes. As an
example, we can consider the classification of flowers, where
we have to find the class to which a flower belongs knowing
the number of petals, the color ... etc.

• Regression: This task is similar to classification, except that
the set of outputs is not discrete but continuous. An example
is learning to guess the prices of houses knowing some criteria
such as the area.

• Transcription: It consists in having as output a sequence of
symbols corresponding to an input, as in speech recognition,
where it is a matter of generating a sequence of words from
sound waves.

• Machine translation: Here the input and output are se-
quences of symbols. It is a matter of converting a sequence of
words written in one language into another language.
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• Structured output: This category includes any task whose
output is a vector (or other structure with multiple values),
whose elements are linked. Transcription and machine trans-
lation are therefore also part of this task. Another example
is low-level semantic segmentation of images (pixel-wise se-
mantic segmentation), where the program assigns each pixel
of the image to a specific category.

• Anomalies detection: The program analyzes and examines
a series of input data and tries to find an unusual event in
order to report it. This is used for example in the detection
of fraud in the use of credit cards.

• Sampling and synthesis: A program performing this task
is called to generate new examples similar to the ones it has
learned. This is useful for example in video games to auto-
matically generate textures for large objects or landscapes,
instead of labeling each pixel manually.

• Denoising: This task consists in cleaning or reconstructing
an input data that is corrupted, and returning the original
data.

2. The performance P

P-performance is a quantitative measure used to evaluate the ma-
chine learning algorithm. This performance is measured on data
that has not been used for training, which is called ”test data”.
This will determine the ability of the algorithm to perform task
T on real-world data that it has never encountered before. The
measures differ from one task to another. For example, for clas-
sification we often use Accuracy, which represents the number of
correctly classified examples. The same information can be ob-
tained by measuring the Error Rate, which gives the number of
misclassified examples.

3. The experience E

Machine learning includes three main methods: supervised learn-
ing, unsupervised learning and reinforcement learning.

• Reinforcement learning This learning technique is based
on a control strategy. The program is seen as an agent that in-
teracts with its environment and receives in return (feedback),
reward values that tell it whether the decision it has taken is
good or bad. This establishes a policy that aims at maxi-
mizing its gains (rewards), and thus encourages the model to
make better decisions. In practice, this type of learning is
widely used in logic games, which are defined as a sequence
of decisions (Poker, Chess, AlphaGo...). It is also used in lo-
gistics, scheduling, as well as in the control of robotic arms in
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order to find the most efficient motor combination for robot
navigation or to learn obstacle avoidance behavior through
the negative feedback that accompanies hitting obstacles.

• Unsupervised learning In this method, the program re-
ceives a set of input data, and it tries to learn by itself the
correlations or features linking these data in order to group
them into clusters. The goal is to maximize the coherence
of the data belonging to the same cluster (inter-class), and
minimize it between the classes (intra-class).

• Supervised learning The program is provided with a set of
labeled data. It therefore knows the output (class or value)
for each input example. The goal is to compare its returned
value with the true value, if it conforms then it is on the
right track, otherwise modifications on the learned function
are performed.

4.1 Some examples of machine learning al-

gorithms

There is a wide range of algorithms in the field of machine learning
including support vector machines (SVM), linear regression, logistic re-
gression, decision trees, Bayesian classifiers, etc. In this paper, we will
focus on a method, which is widely used for supervised and unsupervised
learning: Artificial neural networks.

4.1.1 Artificial Neural Networks (ANN)

An artificial neural network, also called a multilayer perceptron, is an
information processing model inspired by the functioning of the biolog-
ical nervous system. Like the human brain, a neural network learns
by example. Each artificial neural network is configured for a specific
application such as object recognition or data classification, through a
learning process. Its architecture is composed of several layers, each of
which contains computing units called perceptrons (neurons) intercon-
nected and working together to solve a specific task.

4.1.2 Perceptron (Neuron)

A perceptron has several inputs connected to a single output as shown
in Fig.4.1. In its most simplified version, the inputs and the output
are Boolean. More generally, the inputs can be real numbers. The
perceptron [74] computes the output O as a function of input variables
I1, ..., In, each of which has a weight w, according to the formula: s = b+
n∑
i=1

wiIi where b represents the bias. This sum is then passed through an
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activation function. This function returns a value depending on s. If the
emitted value exceeds a certain threshold, then the neuron is activated.

Figure 4.1: Mathematical representation of a perceptron [74].

4.1.3 Multi-layer Neural Networks

As its name indicates, a neural network is composed of several layers
of neurons as shown in Fig.4.2. The input layer does not perform any
computation, it is only in charge of receiving data from the outside and
transmitting them to the next layer. The neurons of a hidden layer re-
ceive the data from the previous layer, and each one makes the weighted
sum of all the inputs as explained previously. The output layer is re-
sponsible for generating the results. A loss function is associated with
the final layer to calculate the error.

Figure 4.2: 2 hidden layers neural network architecture

Synaptic connections between neuronal cells in the human brain are
malleable and constantly evolving through learning: this is also the case
in artificial neural networks. For a neural network to learn, the weights
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associated with the neural connections must be updated after data runs.
Adjusting the weights helps to reconcile the difference between the actual
and predicted results for subsequent runs (minimizing the error). Since
in a neural network with many layers and many neurons it would make
no sense to test a large number of weights to find the combination that
does the best job. The weights are therefore updated methodically. They
are learned by back-propagation of the gradient: The parameters that
minimize the loss function are calculated progressively (for each layer,
starting from the end of the network). The optimization is done with a
stochastic gradient descent.

4.2 Deep Learning

There are several methods for doing machine learning, but the most
promising approach that has literally ”changed the world” recently is
deep learning. The principles of this approach have been known since
the 1980s, thanks to the work of some researchers such as Yann Lecun,
one of the pioneers of deep learning. But it did not evolve in terms of
use until 2012. Indeed, following the evolution of processing and storage
technologies as well as the growth of data, deep learning was successfully
applied in the ”ImageNet Large Scale Visual Recognition challenge” [19]
in 2012. During this competition, a team from the University of Toronto,
Canada, trained a convolutional neural network, a type of network using
deep learning, to classify a dataset containing 1.2 million high-resolution
images into 1000 different classes, with a minimal error rate compared
to those generated by other techniques After this victory, deep learning
was brought back to the forefront with resounding success. Today, it is
at the heart of all scientific issues. This attention is clearly deserved,
given the enormous progress it has made. It has clearly turned the world
of artificial intelligence upside down.

But what exactly is deep learning?

Yann Lecun explains the concept of deep learning as follows:

The idea is very simple: the trainable system consists of a
series of modules, each representing a processing step. Each
module is trainable, with adjustable parameters similar to the
weights of linear classifiers. The system is trained from start
to finish: at each example, all the parameters of all the mod-
ules are adjusted in order to bring the output produced by the
system closer to the desired output. The advantage of deep
architectures is their ability to learn to represent the world in
a hierarchical way. Since all layers are trainable, there is no
need to build a feature extractor by hand. The training will
take care of that. Moreover, the first layers will extract simple
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features (presence of contours) that the following layers will
combine to form more and more complex and abstract con-
cepts: assemblies of contours into patterns, of patterns into
parts of objects, of parts of objects into objects, etc.

To summarize, deep learning is a subset of machine learning, using an
architecture with a high level of abstraction (multiple layers of non-linear
neurons). The idea behind this approach is that all layers are trainable,
in order to allow feature extraction through a hierarchical learning pro-
cess; at each level, abstractions are learned and sent to the next level.
More complex concepts will be trained at that level, based on the ab-
stractions received from the previous level. Deep learning models can
achieve a very high level of accuracy. This accuracy does not only de-
pend on the architecture of the network or the machine, but also on the
data samples used. The quality of these samples has a direct impact
on the efficiency of the learning: a small volume of data for example
is likely to reduce the performance even if the machine used for learn-
ing is powerful, while a large volume of data and a good representation
of it can lead to very accurate results. Some models require thousands
or even millions of data examples to achieve good accuracy. There are
several architectures of deep neural networks such as Deep Belief net-
works [43], Recursive neuronal networks, Long short-term memory, Deep
Q-networks and Convolutional neural networks. A specific architecture
is more efficient in some domains than in others. For example, convo-
lution neural networks are widely used in the field of computer vision;
while recursive neural networks are, for example, used for combinatorial
optimization problems.

4.2.1 Convolutional Neural Networks

Convolutional neural networks (CNN) are a class of neural networks
that have proven to be very effective in areas such as image recognition
and classification: identification of objects, faces, traffic signs, vision
feeding of robots and autonomous cars...etc. They represent the most
widespread deep architecture. Developed in the late 80’s by the pioneer
of deep learning, Yann Lecun, these networks were inspired by the com-
position of the visual cortex. The visual cortex is composed of small
cells, sensitive to certain regions of the visual field. In 1962, Hubel and
Wesley demonstrated that certain neurons in the visual cortex respond
only to certain contours, with a specific orientation. For example, some
neurons act when exposed to vertical contours, others to horizontal or
diagonal contours. The two researchers found that these neurons were
distributed in columns, and that together they were able to produce
visual perception.

The idea of components within a system, each of which is specialized
in a specific task (neural cells seeking particular features), is the basis of
convolutional neural networks.
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There are several architectures of convolutional neural networks, rang-
ing from the most basic to the most complex. ”LeNet” was one of the
very first convolutional neural networks that helped propel the field of
deep learning. This pioneering work by Yann LeCun was named LeNet-
5. At that time, the LeNet architecture was mainly used for character
recognition tasks such as reading postal codes, numbers, etc. As shown
in Figure 4.3, the LeNet stacks different convolution and subsampling
layers, followed at the end by a fully connected layer.

Figure 4.3: LeNet-5 architecture [60].

Several new architectures, which are enhancements of the LeNet, have
been proposed in recent years. But, as complex as an architecture can
be, it still has some basic elements which are:

• Convolution Layer

• Pooling /Subsampling layer

• Fully Connected Layer

• Activation Function

• Loss Function

Convolution Layer: It is the main component of a convolutional
neural network and constitutes at least the first layer. As explained
previously, the principle of convolution in the field of image processing,
consists in scrolling a convolution filter of size (n*n) by a fixed step, on
each region of size (n*n) of a digital image, and to calculate at each step
the new value of the pixel located at the center of this region. The result
of the image browsing is a map called features map. In a convolutional
neural network, each perceptron of each convolution layer is linked to a
subset of perceptrons of the previous layer, which represents a rectangu-
lar region of the image. This image can be the original, or the resultant
of the operations of the previous layers. Unlike classical methods, where
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the filter values are predefined, in a convolutional neural network, these
values are learned during the training phase. Nevertheless, some pa-
rameters, notably the convolution step (stride) and the padding to zero
(padding) are fixed beforehand. A stride represents the number of pixels
with which the filter is moved on the image between two convolutions,
Fig.4.4 shows a convolution with a stride of 2. Since the application of
a convolution cannot be done on the edges of the image, the padding or
zero-padding technique is used. It consists in adding zeros on the edges
of the image. Fig.4.5 shows the application of a padding of size 1.

Figure 4.4: 3x3 convolution with a stride of 21

Figure 4.5: Padding of 1

Pooling / Subsampling: The goal of this layer is to reduce the
size of the feature map, while keeping the most relevant information.
There are several subsampling methods such as max-pooling, proposed
by LeCun in his LeNet [61], and average pooling. Max-pooling consists
in dividing a matrix (image) into small non-overlapping fragments and

1https://shangeth.com/post/gan-4/
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taking the maximum value of each fragment, in order to produce a new
reduced matrix. Fig.4.6 shows an example of this process.

Figure 4.6: Max-Pooling application 2

Average pooling proceeds in exactly the same way, except that the
values in the new matrix represent the means of the fragments and not
the maximum values.

Fully connected layer: This type of layer is used at the end of
the neural network, after all the convolution and subsampling layers. It
performs the final processing, not feature extraction.

In a fully connected layer, each perceptron is connected to all neurons
in the previous layer as shown in Fig.4.7.

Figure 4.7: Fully-connected layer representation

2https://datascientest.com/convolutional-neural-network
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These layers (Convolution, Pooling and Fully-connected) are, as men-
tioned before, the basic layers of a convolutional neural network. There
are other types of layers, some of which are designed for very specific
tasks.

Activation function All convolutional layers as well as the fully
connected layer have an activation function. There are several activation
functions, the choice of the function differs according to the architecture
of the network. In CNNs, generally the ReLU (Rectified Linear Unit)
function is used for the convolutional layers and the Softmax function
for the output layer (for a classification task).

• ReLu: It is defined as follows:{
ReLU(x) = 0 if x < 0
ReLU(x) = x else

(4.1)

Given the remarkable results obtained [16] from the use of this
function, it has recently become the most widely used in practice.

Figure 4.8: ReLu function

• Softmax: It is a function programmed to perform a multi-class
classification from a K-output network. This function is often used
in the final layer of a neural network based classifier. It is defined
as follows

σ(z)j = eZj
K∑
k=1

eZk
forj = 1, ..., K

(4.2)

Loss fucntion: The loss function is used to ”guide” the training
process of a neural network by calculating the error committed by the
latter. The choice of the error function has an effect on the performance
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of the model. In most learning networks, the error is calculated as the
difference between the actual output and the predicted output. Differ-
ent loss functions are used to handle different types of tasks, namely
regression and classification. Multi-task learning applications use a com-
bination of different loss functions.

4.2.2 Some Deep Learning architectures

This section presents some deep learning architectures either we used or
are fundamental to understanding other deep learning architectures.

4.2.2.1 VGG

VGG [95] has a simple feed-forward back-propagation architecture (see
Fig.4.9) but is nevertheless powerful to learn complex patterns. Its ar-
chitecture goes as follow:

• Input: VGG takes in a 224x224 pixel RGB image. For the Im-
ageNet competition, the authors cropped out the center 224x224
patch in each image to keep the input image size consistent.

• Convolutional Layers: The convolutional layers in VGG use a very
small receptive field (3x3, the smallest possible size that still cap-
tures left/right and up/down). There are also 1x1 convolution
filters which act as a linear transformation of the input, which is
followed by a ReLU unit. The convolution stride is fixed to 1 pixel
so that the spatial resolution is preserved after convolution.

• Fully-Connected Layers: VGG has three fully-connected layers: the
first two have 4096 channels each and the third has 1000 channels,
1 for each class.

Figure 4.9: VGG architecture [95]

4.2.2.2 Res-Net

Residual neural networks (Res-Net) [37] are also feed-forward back-propagation
network with the particularity that some blocks can skip some layers.
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Thus creating a contribution of so-called residues of the preceding lay-
ers. Doing so avoids the problem of vanishing gradient [41] and speeds
up the learning problem by simplifying the network as it skips layers.

Figure 4.10: Res-Net architecture compared to VGG network 3.

4.2.2.3 Inception

Instead of classic CNN’s, Inception networks [100] work not with one
but different kernel size for convolution (commonly three different filters,
1x1, 3x3 and 5x5). After the max-pooling layer, the obtained results are
concatenated and sent to the next layer. By structuring the CNN to
perform its convolutions on the same level, it goes wider instead of going
deeper. The network was designed to solve computational expense and
overfitting issues.

Figure 4.11: Inception-V3 architecture [101].

3https://fr.acervolima.com/reseaux-residuels-resnet-deep-learning/
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4.2.2.4 Xception

Xception networks [14] are typically the combination of residual networks
and Inception network, it goes wider with residues. We will detail its
architecture in Chapter 5.

4.3 Artificial Intelligence for emotion recog-

nition

AI and more specifically machine learning, has considerably changed the
way information in proceeded. We do not need descriptors and fea-
ture extractors anymore as long as we have enough data to learn from
them how to extract features. Nevertheless, machine learning algorithms
highly suffer from unbalanced datasets. Many works have been con-
ducted on machine learning’s loss functions, on purpose of learning the
very less frequent labels in inhomogeneous datasets. The most classic ap-
proach is to weight output labels in terms of their distribution as made
in [34, 52, 87]. Another approach was introduced by [64] and based on
the Cross-Entropy loss function weights up the hard samples regardless
of their distribution.

4.3.1 Vision-based emotion recognition

As same as image processing, facial expression recognition achieved a
point of mature due to two main factors: The availability of massive
databases and the significant increase of computing power with GPU’s
which both allowed the use of sophisticated algorithms such as deep
learning [59]. In the last decade, convolutional neural networks (CNN)
[59] showed their superiority to extract features from static and dynamic
images comparing to hand-crafted descriptors. Many works have been
conducted using deep learning for affective computing. In [13], authors
proposed a new loss function to enhance the discriminative power of
deeply learned features. It reduces the intra-class variations while ampli-
fying the inter-class variations. In the same manner, the work presented
in [63] adopted a deep learning architecture which aims to enhance the
discriminative power of deep features by preserving the locality resem-
blance while maximizing the inter-class scatters. They also proposed
the first multi-labeled database for emotion recognition. In [73], authors
proposed a new deep learning architecture and a new loss function in
order to alleviate the inter-subject variation. They proposed to learn si-
multaneously expression and identity features with two CNNs. The work
described in [10] proposed a new CNN architecture to learn facial expres-
sions. They used a parallel feature extraction block (FeatEx) which con-
sists of Convolutional, Pooling, and ReLU Layers. Besides the ability to
learn by themselves how to extract image features, CNN’s or rather 3D-
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CNN’s have allowed the take into consideration the temporal dimension
by processing videos as consecutive blocks of images [55,124,132,133].

4.3.2 Audio-based emotion recognition

In the last decade prosodic features have shown their efficiency to de-
scribe voice carried emotions as discussed in Chapter.3. In the other
hand, CNN’s have shown their power to learn by themselves how to
extract image features and easily reach 98% of accuracy in some classi-
fication problems, this is why the major part of the recent works have
explored different techniques to transform sound into images. In [28]
authors proposed a CNN approach for audio-based emotion recognition
where the input was a spectrogram of the audio signal. [76] made a break-
through using deep retinal CNN’s (DRCNN’s) which was successful to
recognize emotion from speech. [42, 57, 130] also used Mel-spectrogram
transformation to generate CNN’s input.

4.3.3 Audiovisual-based emotion recognition

Many modality fusion strategies have been developed in the recent years.
As introduced and partially covered in Chapter.3 there are four main
fusion strategies: Feature-level, decision-level, model-level and hybrid
fusion. Machine learning has improved the most interesting but also
challenging model-level fusion [44] but nevertheless this strategy remains
widely unexplored. Most of the recent works focuses on hybrid multistage
fusions and seem to have reach a point of mature [15,36,70]. In [2] authors
made a three stage fusion pipeline using SVR’s to combine early and late
fusion strategies.

4.4 Conclusion

This chapter has been devoted to some basic notions of machine learning
and deep learning, necessary for the understanding of the rest of the
chapters. Also, we reviewed the major uses of machine learning in audio-
based, visual-based and audio-visual based emotion recognition.Thus, we
can start the next chapter with the necessary background.
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Chapter 5 Visual context-based emotion recognition

Emotional state and human behavior analysis is knowing an increas-
ing interest in psychology, neural science, and especially in computer
science. This interest is mainly due to our need to make machines take
the lead while interacting with humans, moving from computer-centered
to human-centered human-computer interaction designs (HCI) [79, 81].
In human-human interactions, users’ affective state and its changes are
fundamental components. However, most current HCI designs are made
to work with explicit information while ignoring the implicit ones. For
instance, an autonomous car needs to know if the driver feels uncom-
fortable in case of tiredness without the driver explicitly informing the
car.

Over the past four decades, researchers from many fields developed
systems to automatically recognize the human emotional state. Starting
from Ekman in 1967 [22], who encoded facial emotional information using
Action Units (AU’s) into the Facial Action Units System (FACS), to the
explosion of Deep Neural Networks (DNN) due to the availability of the
significant amount of data and computing power.

In this chapter we will tackle the first component of our solution
presented in Chapter 2: The facial feature extraction module as shown
in Fig.5.1. We will describe our solution to exploit visual signals in
order to recognize emotions. As explained previously, the context is
a must have modality for emotion recognition. Therefor, we designed
an architecture composed of three main modules. A module for body
features extraction, a module for scene features extraction and finally a
module for the fusion of the two modalities.

Figure 5.1: Our proposed solution in which the part tackled in this
chapter, i.e. facial fractures extraction, is framed in red

5.1 Motivations

The classic emotion recognition problem, which was the classification of
the six primary emotions (neutral, fear, surprise, disgust, sadness, and
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happiness), was solved. However, the scientific community agrees that
the emotional state cannot be reduced to six discrete categories due to
two main reasons [127]. First of all, our emotions are complex and cannot
be naively resumed to only six of them. On the other hand, emotions
must be seen as overlapping clusters in a multi-dimensional continuous
space and not as a set of discrete classes.

Figure 5.2: From EMOTIC database [52] : A child looking as he is
chocked or surprised.

Figure 5.3: The same child in Fig.1 with the whole scene blowing out
his birthday candles.

Even if many studies have pointed out the importance of the context
(fig.5.3 and fig.5.3) in emotion recognition [27, 45, 89, 125], no approach
has been explored in-depth. This is mainly due to the unavailability
of data and also the difficulty of representing the context with classi-
cal approaches. Recently, EMOTIC database has been released [52].
This database contains 34320 people in 23571 images annotated on 26
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emotion categories and their degree of arousal, valence, and dominance.
Note that, emotions are complex expressions that are confusing and the
dataset is so unbalanced that it is challenging to classify these many of
categories in an accurate manner.

5.2 Contributions

In this work, we advance two main contributions. The first contribution
show that in a highly correlated multi-task learning, loss functions must
be chosen by groups instead of choosing them separately. To this end,
we compare three categorical loss functions and three regression ones.

The second contribution is the proposal of a new loss function based
on the binary Focal loss [64] that gives better results when dealing with
unbalanced data.

In the following we will present our approach for a context-based
multi-task emotion recognition on the Emotic dataset. We will firstly
present the datasets we used, then present our CNN-based architecture
and our new loss function called the Multi-label Focal Loss (MFL). We
will compare our loss function to the most used loss functions in cate-
gorical classification combined with three mainly used loss functions for
regression problems. Also, we will explain how we implemented our so-
lution and the tools we used to this end. Finally, we will present and
discuss our results. This work has been published in [7].

5.3 Databases

In this section we will present and describe the datasets invoved in this
work. Those datasets are : ImageNet, Places and Emotic Datasets.

5.3.1 ImageNet dataset

ImageNet is, at this date, the largest image dataset. It has more than 14
million images labeled in 20,000 categories. A subset of ImageNet is used
in ILSVRC, the most notorious challenge of image classification. In the
challenge, only 1000 classes are considered. The most accurate models
of this challenge are considered as the basis models for transfer learning.
In the following we used a VGG network pre-trained on ImageNet.

5.3.2 Places Dataset

Places dataset [136] is a repository of more than 10 million scene pho-
tographs, labeled in 434 scene semantic categories (Office, Hotel room,
Valley, Nursery ...). A subset of places called Places365-Challenge is
used as a benchmark in the ILSVRC Challenge. In this subset only
365 categories are retained. The training set has 8 millions images, the
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Figure 5.4: Images from ImageNet [19].

validation set has 50 images per class and the test set has 900 images
per class. In the following we used the Xception newtork pre-trained on
Places365-Challenge.

Figure 5.5: Some examples from Places Dataset [136]. The dataset con-
tains three macro-classes: Indoor, Nature, and Urban.
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5.3.3 Emotic dataset

The Emotic dataset is a set of images of people in uncontrolled environ-
ment. It contains 23,571 images and 34,320 annotated people. A part of
the images was collected from Google search engine and the rest of the
images is from two public datasets : COCO [65] and Ade20k [137].

One image can contain one or many people and each person is la-
beled with one or many emotion categories listed in table.5.2 and has its
dominance, arousal and variance values from 0 to 10. Some examples
are shown in fig.5.6 and fig.5.7.

EMOTIC dataset contains 34,320 annotated people, where 66 percent
of them are males and 34 percent of them are females. There are 10
percent children, 7 percent teenagers and 83 percent adults amongst
them.
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Table 5.1: List of categorical emotions with explanation in EMOTIC
dataset (part 1) [52]

1. Affection: fond feelings; love; tenderness

2. Anger: intense displeasure or rage; furious; resentful

3. Annoyance: bothered by something or someone; irritated;
impatient; frustrated

4. Anticipation: state of looking forward; hoping on or getting
prepared for possible future events

5. Aversion: feeling disgust, dislike, repulsion; feeling hate

6. Confidence: feeling of being certain; conviction that an outcome
will be favorable; encouraged; proud

7. Disapproval: feeling that something is wrong or reprehensible;
contempt; hostile

8. Disconnection: feeling not interested in the main event of
the surrounding; indifferent; bored; distracted

9. Disquietment: nervous; worried; upset; anxious; tense; pressured;
alarmed

10. Doubt/Confusion: difficulty to understand or decide; thinking
about different options

11. Embarrassment: feeling ashamed or guilty

12. Engagement: paying attention to something;
absorbed into something; curious; interested

13. Esteem: feelings of favourable opinion or judgement; respect
admiration; gratefulness

14. Excitement: feeling enthusiasm; stimulated; energetic

15. Fatigue: weariness; tiredness; sleepy

16. Fear: feeling suspicious or afraid of danger, threat, evil or pain;
horror

17. Happiness: feeling delighted; feeling enjoyment or amusement

18. Pain: physical suffering

19. Peace: well being and relaxed; no worry; having
positive thoughts or sensations; satisfied
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Table 5.2: List of categorical emotions with explanation in EMOTIC
dataset (part 2) [52]

20. Pleasure: feeling of delight in the senses

21. Sadness: feeling unhappy, sorrow, disappointed, or discouraged

22. Sensitivity: feeling of being physically or emotionally
wounded; feeling delicate or vulnerable

23. Suffering: psychological or emotional pain; distressed; anguished

24. Surprise: sudden discovery of something unexpected

25. Sympathy: state of sharing others emotions, goals
or troubles; supportive; compassionate

26. Yearning: strong desire to have something; jealous; envious; lust

Figure 5.6: Some examples from the Emotic dataset with their categor-
ical labels

Figure 5.7: Some examples from the Emotic dataset with their valence,
arousal and dominance values

Fig. 5.8 shows the number of annotated people for each of the 26
emotion categories, sorted by decreasing order. Notice that the data
is unbalanced, which makes the dataset particularly challenging. An
interesting observation is that there are more examples for categories
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associated to positive emotions, like Happiness or Pleasure, than for cat-
egories associated with negative emotions, like Pain or Embarrassment.
The category with most examples is Engagement. This is because in
most of the images people are doing something or are involved in some
activity, showing some degree of engagement. Fig.5.8b, 5.8c and 5.8d
show the number of annotated people for each value of the 3 continu-
ous dimensions. In this case we also observe unbalanced data but fairly
distributed across the 3 dimensions which is good for modelling

Figure 5.8: Data distribution in Emotic database

5.4 Approach

In this section, we describe our architecture that receives in input two
images for categorical emotion classification over 26 classes and contin-
uous spacial emotion regression over three values. We also present a
new categorical loss function called the multi-label focal loss, two other
categorical and three regression loss functions to compare with.
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5.4.1 CNN architecture

As shown in [52], the scene (context) seems to improve the final clas-
sification results. We followed the same idea and designed an end to
end architecture (Fig.5.9) built by three main modules: scene features
extraction, body features extraction, and fusion-decision network. The
first module takes as input the entire image, the second only the body
delimited by a bounding box, and the third one is used to merge the
scene and body features and output decisions.

Figure 5.9: The proposed architecture for emotion recognition on
EMOTIC database. The architecture takes in input two images, the
whole image is propagated into the scene module and the cropped image
is propagated into the body module.

The details architecture of our solution is shown in Fig.5.10. The left
part represents the Xception network, i.e. the body feature extraction
module, it takes as input images with size 299x299x3 (the last dimension
if for RGB colors). As explained in Chapter4 Xception networks are a
combination of Inception networks and residual networks, so except for
the two first Conv blocks the architecture repeats itself (with different
weights) as blocks of two SeparableConv and a residual Conv to the
next block. At the end a Global Average Pooling is applied to the last
SeparableConv wich contains 2048 filters. In top right corner of the
image is shown the scene feature extraction module. Until the 5th layer,
the architecture is that of VGG16. We truncate the architecture at this
point and added a new block if three Conv layers of 1024 filters and then
applied a Global Average Pooling on the last layer. Doing so, we were
able to lighten the scene feature extraction module from 134 million to
38 million trainable parameters.
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Figure 5.10: Detailed version of our proposed architecture. It combined
the Xception network and a modified version of VGG network.

The last part in the bottom right of the image in the fusion mod-
ule. We concatenate the two resulting layers with dimension 1x2048
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and 1x1024 for, respectively, body feature and scene features extraction
modules resulting in 1x3072 vector layer and then fully connected to
both decision layers, i.e. 1x26 layer for categorical classification and 1x3
layer for regression prediction. Both layers have Segmoid function as
activation function.

5.4.1.1 The scene features extraction module

The scene feature extraction module takes as input the entire image,
which may contain more than one person. Those features reflect and
codify the main aspects of the image. We used only the convolutional
layers of VGG16 [95] pre-trained on Places Database [136]. To reduce
computation complexity and overfitting issues, we remove the fully con-
nected layer, and we replace it with a convolutional block of three layers
and a Global Average Pooling layer. So, in the end, we compute 1024
scene features.

5.4.1.2 The body features extraction module

The body feature extraction module takes as input the body part in the
image that implicitly contains information like facial expressions, head
position, and body gesture are extracted. We used Xception network [14]
pre-trained on ImageNet [20], which outputs 2048 body features.

5.4.2 The fusion-decision module

The fusion-decision module concatenates the body feature vector and the
scene feature vector (3072 features). The output layers of classification
(26 outputs) and regression (3 outputs) are fully connected to the con-
catenated layer. To avoid any eventual overfitting, except for the output
layer, no additional fully connected layers were used.

5.4.2.1 Loss functions

The global loss function is a weighted sum of two distinct loss functions,
Lglobal = λLcat + Lreg where Lcat and Lreg represent respectively, the
multi-label classification and the continuous variable regression loss func-
tions. However, both problems, classification, and regression are highly
correlated. We can say that the two problems are, to a certain point of
view, a unique problem represented as a classification and a regression
problem. Thus said, the back-propagation on regression output effects
and may improve the categorical classification and vice versa. Therefore,
Lcat and Lreg must be seen and chosen as a couple instead of two inde-
pendent loss functions. We tried several couples of loss functions, which
will be detailed in the following.
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5.4.2.2 Classification loss functions

Since the categorical labels are unbalanced, we define a multi-label focal
loss function from the binary focal loss [64], which has better results
while dealing with unbalanced data. The binary focal loss is defined as:

FL(σt) = −α (1− σt)γ log (σt) (5.1)

where γ is the focusing parameter and

σt =

{
σ if y = 1

(1− σ) otherwise
(5.2)

where, σ and y are, respectively, the categorical model output and
its groundtruth label for the positive class.

We define the multi-label focal loss (MFL) as follows:

MFLα,γ(y, σ) =−
Ne∑
i=1

α (1− σi)γ yi log (σi)

+ (1− α)σγi (1− yi) log (1− σi) (5.3)

where Ne is the number of classes. σi and yi denote respectively the
categorical model output and its groundtruth label for the ith class. α
and γ are two empirical parameters. γ, the focusing parameter, still has
the same purpose as in the binary focal loss. It down-weights the easy
classification samples while up-weights the hard ones, which in this case
might be the less frequent ones. On the other hand, α here does not
serve to balance the two binary classes but to promote either recall or
precision costs. Also, we experimented with three other loss functions in
order to compare our results.

- The Cross-Entropy loss (CE) is defined by:

CE(y, σ) = −
Ne∑
i=1

yi log (σi) + (1− yi) log (1− σi) (5.4)

Note that the CE is a particular case of MFL when α and γ in Eq.5.3
are set to 0.5 and 0, respectively.

- And finally, the Euclidean loss (EUC) is defined as:

EUC(y, σ) =
Ne∑
i=1

(σi − yi)2 (5.5)
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Table 5.3: Macro-Precision for MFL+Huber for different values of γ.

γ values γ = 1 γ = 2 γ = 3 γ = 4

Macro-Precision 26.83 26.28 28.33 26.62

5.4.2.3 Regression loss functions

We tested the three main loss functions for regression problem with each
of the above mentioned multi-label loss functions.

- The Huber loss is defined by:

Huberδ(z, s) =
3∑
i=1

{
1
2

(zi − si)2 for |zi − si| ≤ δ

δ
(
|zi − si| − 1

2
δ
)
, otherwise

(5.6)

where, si and zi represent respectively the continuous model output
and its groundtruth value for the ith dimension. δ is an empirical pa-
rameter.

- The Mean Squared Error (L2) is defined as:

L2(z, s) =
1

3

3∑
i=1

(zi − si)2 (5.7)

- And the Mean Absolute Error (L1) is defined as:

L1(z, s) =
1

3

3∑
i=1

|zi − si| (5.8)

5.5 Training setup and experimental results

We trained the whole architecture on EMOTIC database which contains
only one partition with all loss function combinations. After several
attempts, we empirically found the most suitable parameters for loss
functions and the training parameters.

In all the results below, regarding the multi-label focal loss, γ is set
to 3. We tried four values for γ in the set {1, 2, 3, 4} the corresponding
performance is depicted in Table 5.3. As it can be seen, when γ was
set to 3 the performance was the best. α is set to 0.5 to give the same
weight to precision and recall. Regarding Huber loss, δ is set to 0.1
because output values are in [0, 1] and δ is usually around 10%.

For the training parameters, λ in the global loss function is set to 5.
We made a dichotomic search on [0.5, 10] and found that λ = 5 gave the
best results. Due to a lack of available memory, the batch size was set to
10 samples and the learning rate starts from 10−4 with a decay of 10−5.

The training, validation and test sets are already provided by [52].
These three sets contain respectively 12957, 3334, and 7280 images.
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We tested all the combinations of the above classification and regres-
sion loss functions. We trained nine models of the proposed architecture,
which takes in input the body and scene image and outputs the categori-
cal emotion and the three continuous emotional values (Valence, Arousal,
Dominance). The body feature extraction module is pre-trained on Im-
ageNet, the scene feature extraction module is pre-trained on Places,
and the fusion-decision module is trained from scratch. We denote in
the following MFL for multi-label focal loss, CE for cross-entropy, EUC
for euclidean loss, L2 for mean squared error, and L1 for mean absolute
error. Our comparative metrics for the categorical classification are the
precision (where Precision = Recall) for each class. Note that, in this
case the Macro-Precision over all classes is equal to Maco-F1. For the
regression problem, we use the Mean Average Error.

For each loss function combination, the models convergence time was
almost similar. It took around 25 epochs to the models to converge and
each epoch lasted more than 3 hours which made it very time consuming
to adjust all the hyper-parameters. The algorithm was running on a
Nvidia Titan V GPU.

5.5.1 Categorical classification

In Tables 5.4, 5.5 and 5.6 we show our results when combining all loss
functions discussed above.

Table 5.4 shows results when combining MFL, CE, and EUC with
L2. In this case, CE outperformed MFL and EUC with a precision of
27.08%.

In Table 5.5, CE outperformed MFL and EUC when all of them were
combined with L1. Also, CE and EUC gave better results with L1 than
with L2. However, MFL gave worse results with L1 than with L2. We
notice that the results did not increase homogeneously, which means that
there is a synergy between loss functions.

In table 5.6, we show the results of combining MFL, CE, and EUC
with the Huber loss. We can clearly remark that the combination of MFL
with the Huber loss outperforms all the other combinations. Moreover,
it is important to mention that this performance is not due to the Huber
loss alone. Indeed, using the Huber loss instead of L2 and L1 does not
necessarily improve the performance. For example, EUC with L1 gave
a Macro-Precision of 26.68% (Table 5.5) when it decreased to 26.06%
(Table 5.6) with the Huber loss.

The obtained experimental results showed that the performance ob-
tained by the focal and cross-entropy losses were better than that ob-
tained by the Euclidean loss. It is well known that, in general, the cross
entropy loss functions are better then EUC in classification problems
while EUC loss is more suitable for regression problems.
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Table 5.4: Precision on the test set.

Categorical MFL + CE + EUC +
Emotions L2 L2 L2

1. Affection 29.44 28.30 26.13
2. Anger 13.65 11.02 10.66
3. Annoyance 16.36 17.58 16.48
4. Anticipation 57.31 57.27 56.85
5. Aversion 08.10 08.93 07.05
6. Confidence 73.08 76.07 73.40
7. Disapproval 14.30 14.90 13.20
8. Disconnection 27.10 26.74 26.45
9. Disquietment 18.76 18.67 17.81
10. Doubt/Confusion 20.66 20.83 19.84
11. Embarrassment 02.26 02.84 02.52
12. Engagement 85.90 85.89 84.79
13. Esteem 15.78 15.82 14.85
14. Excitement 69.04 71.54 69.28
15. Fatigue 12.83 13.09 11.75
16. Fear 05.79 05.82 04.62
17. Happiness 76.63 74.67 74.64
18. Pain 09.93 06.91 08.26
19. Peace 23.40 23.86 22.21
20. Pleasure 46.25 44.65 44.64
21. Sadness 19.44 19.39 20.15
22. Sensitivity 05.20 06.60 06.48
23. Suffering 21.60 22.21 19.96
24. Surprise 07.55 08.53 07.56
25. Sympathy 13.68 12.16 11.11
26. Yearning 08.58 09.67 08.29

Macro-Precision 27.02 27.08 26.12

80



Chapter 5 Visual context-based emotion recognition

Table 5.5: Precision on the test set.

Categorical MFL + CE + EUC +
Emotions L1 L1 L1

1. Affection 29.14 28.84 29.23
2. Anger 11.24 15.75 08.36
3. Annoyance 13.75 17.69 15.10
4. Anticipation 56.98 57.34 57.49
5. Aversion 07.72 08.54 06.98
6. Confidence 74.90 74.81 75.69
7. Disapproval 12.64 13.49 13.76
8. Disconnection 27.34 27.25 27.86
9. Disquietment 17.88 19.11 17.49
10. Doubt/Confusion 20.32 20.82 20.86
11. Embarrassment 02.45 03.15 02.66
12. Engagement 85.09 84.68 85.87
13. Esteem 15.40 15.43 16.20
14. Excitement 69.53 70.26 70.34
15. Fatigue 11.63 13.37 12.41
16. Fear 06.31 05.99 04.58
17. Happiness 74.86 74.61 76.07
18. Pain 11.33 09.53 07.42
19. Peace 23.27 24.00 22.75
20. Pleasure 44.55 44.52 47.05
21. Sadness 19.52 20.61 20.40
22. Sensitivity 05.95 06.50 05.54
23. Suffering 20.11 24.20 22.53
24. Surprise 08.03 08.76 07.71
25. Sympathy 11.23 13.18 11.29
26. Yearning 09.50 09.09 08.12

Macro-Precision 26.56 27.27 26.68
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Table 5.6: Precision on the test set.

Categorical MFL + CE + EUC +
Emotions Huber Huber Huber

1. Affection 31.92 29.63 29.91
2. Anger 13.94 11.81 11.78
3. Annoyance 17.42 16.78 15.09
4. Anticipation 57.73 57.35 57.28
5. Aversion 08.18 08.73 07.13
6. Confidence 75.29 77.78 74.53
7. Disapproval 14.88 13.97 12.56
8. Disconnection 28.32 26.11 25.79
9. Disquietment 19.72 19.11 17.43
10. Doubt/Confusion 23.11 22.57 19.77
11. Embarrassment 02.84 02.67 02.00
12. Engagement 85.83 84.98 85.51
13. Esteem 16.72 16.81 15.81
14. Excitement 70.43 70.66 69.52
15. Fatigue 14.43 12.46 10.92
16. Fear 08.27 05.62 04.69
17. Happiness 76.61 73.94 75.18
18. Pain 09.38 08.64 07.17
19. Peace 24.31 22.42 23.23
20. Pleasure 46.89 45.07 42.76
21. Sadness 23.94 19.69 17.00
22. Sensitivity 06.28 07.41 05.06
23. Suffering 26.24 20.87 19.80
24. Surprise 10.07 09.30 07.87
25. Sympathy 13.98 12.35 11.74
26. Yearning 09.71 09.09 07.96

Macro-Precision 28.33 27.15 26.06
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Figure 5.11: Some well predicted examples from the Emotic dataset

5.5.2 Regression

Tables 5.7, 5.8 and 5.9 show the Mean Average Error of the nine models
discussed above on Valence, Arousal and Dominance.

Table 5.7: Mean Average Error for each continuous variable.

Dimensions MFL + CE + EUC +
L2 L2 L2

Valence 0.085 0.090 0.088
Arousal 0.101 0.105 0.106
Dominance 0.094 0.095 0.102

Mean 0.094 0.097 0.099

Table 5.7 shows the errors when L2 is combined with MFL, CE, and
EUC. We note that the best results were obtained when L2 was combined
with MFL.

Table 5.8: Mean Average Error for each continuous variable.

Dimensions MFL + CE + EUC +
L1 L1 L1

Valence 0.084 0.088 0.095
Arousal 0.103 0.106 0.103
Dominance 0.096 0.100 0.095

Mean 0.094 0.098 0.098

Table 5.8 shows the error when L1 is combined with MFL, CE, and
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EUC. We notice that the best results were also when L1 was combined
with MFL.

Table 5.9: Mean Average Error for each continuous variable.

Dimensions MFL + CE + EUC +
Huber Huber Huber

Valence 0.083 0.085 0.089
Arousal 0.099 0.099 0.103
Dominance 0.092 0.093 0.097

Mean 0.091 0.092 0.096

Lastly, Table 5.9 shows the errors when we combine Huber with MFL,
CE, and EUC. We also notice that the best results were given by MFL.

These results show that the Huber loss is better than L2 and L1. How-
ever, combining the Huber loss with another loss function may straighten
or weaken its results.

5.5.3 Comparing with the state of the art

In table 5.10, we compare our best model (MFL + Huber loss) with the
current state of the art (as far as we know). We had better results than
that of [52] where authors used an EUC loss weighted by labels frequency
over the train set. Also, for the labels with a frequency less than 6%,
our model is better in 8 labels out of 11 as shown in Figure 5.12.
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Table 5.10: Comparing our model to the current state of the art.

Categorical Our Results Results
Emotions Model in [52] in [131]

1. Affection 31.92 27.85 46.89
2. Anger 13.94 9.49 10.87
3. Annoyance 17.42 14.06 11.23
4. Anticipation 57.73 58.64 62.64
5. Aversion 08.18 07.48 05.93
6. Confidence 75.29 78.35 72.49
7. Disapproval 14.88 14.97 11.28
8. Disconnection 28.32 21.32 26.91
9. Disquietment 19.72 16.89 16.64
10. Doubt/Confusion 23.11 29.63 18.68
11. Embarrassment 02.84 03.18 01.94
12. Engagement 85.83 87.53 88.56
13. Esteem 16.72 17.73 13.33
14. Excitement 70.43 77.16 71.89
15. Fatigue 14.43 09.7 13.26
16. Fear 08.27 14.14 04.21
17. Happiness 76.61 58.26 73.26
18. Pain 09.38 08.94 06.52
19. Peace 24.31 21.56 32.85
20. Pleasure 46.89 45.56 57.46
21. Sadness 23.94 19.66 25.42
22. Sensitivity 06.28 09.28 05.99
23. Suffering 26.24 18.84 23.39
24. Surprise 10.07 18.81 09.02
25. Sympathy 13.98 14.71 17.53
26. Yearning 09.71 08.34 10.55

Macro-Precision 28.33 27.39 28.42

Our model did not outperform [131] regarding Macro-Precision over
all classes. However, with our proposed MFL, we had better results over
the first nine less frequent classes (embarrassment, pain, anger, sensi-
tivity, aversion, fear, suffering, disapproval, and annoyance) as shown
in Figure 5.13. Also, for the labels with a frequency less than 6%, our
model in better in 10 labels out of 11.

Our model gave better results on the less frequent labels due to how
the MFL loss considers unbalanced data. The MFL loss does not consider
the bias between classes, it up weights the error of the hard samples,
which generally have the less frequent labels.
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Figure 5.12: Comparing our model’s precision evolution along all classes
sorted by their distribution over the test set with results in [52]. (From
the less frequent to the most frequent)

Figure 5.13: Comparing our model’s precision evolution along all classes
sorted by their distribution over the test set with results in [131] (From
the less frequent to the most frequent)

5.6 Conclusion

This chapter introduced a new deep learning architecture and a new loss
function, namely the multi-label focal loss (MFL). The objective is to
deal with unbalanced emotion classes. We described our architecture, its
components, and the training process. We compared our MFL loss func-
tion with two other loss functions known as the standard loss functions
for categorical classification and studied their behavior when combined
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with three regression loss functions. The proposed MFL outperformed
the binary cross-entropy and the euclidean loss. It did also point out the
synergy between loss functions in a multi-task learning problem, espe-
cially when dealing with high correlated multi-task problems. The com-
parison of our results with the current state of the art showed that MFL
gave the best results on less frequent labels on the EMOTIC database.
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Chapter 6 Audio-based emotion recognition

As explained previously, audio features contain 38% of the global
emotional information. In this chapter we will tackle the second compo-
nent of our solution presented in Chapter 2: The voice feature extraction
module as shown in Fig.6.1. We will describe our solution to exploit au-
dio signals in order to recognize emotions.

Figure 6.1: Our proposed solution in which the part tackled in this
chapter, i.e. voice features extraction, is framed in red

6.1 RAVDESS database

The RAVDESS database [68] is an audio-visual database for emotional
speech and song among 7356 files. The database contains 24 professional
actors (12 female, 12 male), vocalizing two lexically-matched statements
in a neutral North American accent. Speech includes calm, happy, sad,
angry, fearful, surprise, and disgust expressions, and song contains calm,
happy, sad, angry, and fearful emotions. Each expression is produced
at two levels of emotional intensity (normal, strong), with an additional
neutral expression. Note, there are no song files for Actor18.

In the following we will only focus on audio-only speech file. The 24
actors say ”Kids are talking by the door” and ”Dogs are siting by the
door” with each previously stated emotion at two levels of intensity. The
duration of sound tracks is between 3 to 5 seconds and 1440 files, non-
divided on train/test sets, compose the dataset. The data distribution
is homogeneous as shown in Fig.6.2.

6.2 Approach

As show previously, CNN’s proved their efficiency to extract features
from images and use those features for classification or regression tasks.
It is known that the 2-D spectrogram contains low-level spectral infor-
mation related to the speaker’s emotion expression, such as energy and
pitch which is suitable as input for a CNN.
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Figure 6.2: RAVDESS data distribution

6.2.1 Data preprocessing

In order to transform sound tracks into images, both frequency and time
domain representation must be conserved so CNN’s could extract both
domain features. Thus, the spectrogram representation could be seen
as an image carrying both frequency and time domain features of sound
track. In the following we will use the Mel-spectrogram representation,
a spectrogram converted to the mel scale [99] which is which is closest to
the human ear, i.e. we can easily distinguish two sounds at 500Hz and
1000Hz but hardly distinguish between 10 000Hz and 10 500Hz.

Two data representation are presented in this Chapter: computing
the whole Mel-spectrogram of a sound track and use it for classification
and computing the whole Mel-spectrogram and split it into multiple
time-frames and then use theses segments for classification. Both data
representation have their advantages and disadvantages as in the first
all the features describing the sound track are fully accessible for the
CNN which may improve the recognition accuracy. However, for real-
time running, such an approach might be too greedy because the system
will compute one Mel-Spectrogram each 4 or 5 seconds while there could
be many expressed emotion such a lapse of time. The second approach
fixes this issue but the training will be more difficult and the accuracy
might be lower as few features will be propagated into the network.

6.2.1.1 The entire Mel-Spectrogram as input

• From the digital sound track input we remove the empty signal at
the beginning and the end of the track as show in Fig.6.3.

• We compute the frequency domain representation using Short Time
Fourier Transformation (STFF).
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• For a single sound track we adopt 64 Mel-filter banks from 20 to
8000 Hz (see Fig.6.4)

• Windowing with a Hann window of 23 and 12 ms overlapping.

• Each segment has a size of 64xN where N satisfies the equality
23
2

(N − 1) = sound track duration.

Figure 6.3: 1-D audio time domain representation cut off of the edges
where the signal is at 0 Hz

Figure 6.4: Mel-Spectrogram representation

6.2.1.2 Framing the Mel-Spectrogram using a context window

In the following we will compute Mel-spectrogram frames with size 64x64
using a 64x64 context window.

• From the digital sound track input we remove the empty signal at
the beginning and the end of the track.

92



Chapter 6 Audio-based emotion recognition

• We compute the frequency domain representation using Short Time
Fourier Transformation (STFF).

• For a single sound track we adopt 64 Mel-filter banks from 20 to
8000 Hz.

• Windowing with a Hann window of 11.6ms and 5.8 ms overlapping.

• Parsing the whole Mel-spectrogram with a context window of 64
frames to obtain audio segments with size of 64x64 with an overlap
of 10 frames.

• Each segment has a size of 64x64 and its time
duration is 11.6

2
(64−1) ≈ 356ms which is higher than the minimum

recommended duration (250ms) to recognize emotions [83].

Figure 6.5: The resulting image from the audio track

This extracted Mel-spectrogram can be regarded as the gray-scale
image feature representation of audio data as shown in Fig.6.5. In order
to use a pre-trained VGG16 model (Fig.6.6) which has as input size
299x299x3, the Mel-spectrogram frames are resized to the suitable shape.

6.2.2 Architecture and training

To train our model, we used a pre-trained VGG 16 version on Ima-
genet. It contains 6 convolution blocks and two fully connected layers
(see Fig.6.7). The output layer contains 8 neurons for the 8 classes with
Softmax as an activation function.

For both approaches, we trained our models on 80% of the available
data, randomly chosen. For each data segmentation approach, the re-
sulting train and test sets contain, respectively, 63864 and 15966 samples
for splited Mel-spectrograms and 1440 and 288 of whole spectrogram as
shown in Table.6.1. After several tests, the learning rate was initially set
at 10−4 with a decay of 10−5.
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Figure 6.6: Proposed architecture for audio-based emotion recognition

Figure 6.7: Detailed VGG16 architecture for audio-based emotion recog-
nition

94



Chapter 6 Audio-based emotion recognition

Table 6.1: Number of samples in train and test sets.
Whole Mel-Spectrogram Mel-Spectrogram split into frames

Train set 1152 63 864
Test set 228 15 966

In the next section we will discuss the results of each model.

6.3 Results

We tested our two models on the remaining 20% of their data. As shown
in Table.6.2 model A gave better results in overall, this is due the avail-
ability of data and features describing the emotional state, contained in
the whole Mel-spectrogram which makes it easier to classify emotions.

Table 6.2: Accuracy of model A and B in their test sets.
Model A Model B

Neutral 0.68 0.36
Calm 0.9 0.79

Happy 0.58 0.51
Sad 0.47 0.49

Angry 0.74 0.67
Fearful 0.72 0.41
Disgust 0.74 0.58

Surprised 0.82 0.58
Mean 0.70 0.56

Figure 6.8: Confusion matrix through the test set dor Model A

From the confusion matrices shown in Fig.6.8 and 6.9 we can conclude
that from both models and approaches, the confusions between classes
are relatively the same (at different scale).
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Figure 6.9: Confusion matrix through the test set for Model B

Even if model A gave better results than model B, for our system, the
model B, i.e. which has been trained on split frames, will be chosen. Even
if the accuracy is lower than model A, the temporal flexibility offered by
such an approach matters more, especially for real time audio-visual
synchronization and the detection of brief events.

6.4 Conclusion

In this chapter, we presented how we designed our audio-based emotion
recognition model. We presented the RAVDESS dataset on which we
trained our architecture and how we preprocessed raw audio tracks to
transform them into images. Then we presented the model’s results on
RAVDESS dataset.
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As firstly presented in Chapter.2, our objective is to build an archi-
tecture to fingerprint the current emotional state and compare it with
the previous one. We will, in the following, introduce and explain the
principle of ”fingerprinting” an emotion state so we can calculate the
difference between two emotional states.

7.1 Architecture construction

It is known that neural networks work like big feature extractors with
a final decision layer. Then, if we prune the decision layer of a neural
network, we will end-up with a feature extractor. A feature extractor
that extract features from an image and return a 1-D vector. This is
what we called emotional state fingerprinting (see Fig.7.1).

Figure 7.1: EmoRuption architecture

Now that we can put a fingerprint on an emotional state, without
knowing the very nature of emotions, we can calculate the difference
between two emotional states. It comes down to calculate the distance
between two vectors.

Fig.7.1 shows our architecture to detect Emotional Breakdowns (EB).
As firstly introduced in chapter.2 an EB occurs when the difference be-
tween two emotional state is superior to a threshold.

As Algo.1 shows, the facial features extraction is computed with the
image-based emotion recognition module in addition of an open-source
facial recognition algorithm to fingerprint the facial expressions as a vec-
tor of features at time t. We denote Af the facial features vector.

The audio features extraction is computed with the audio-based emo-
tion recognition module to fingerprint the audio expressions as a vector
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Algorithm 1 EmoRuption pseudo code

Require: facialModel & voiceModel
facialModel← PruneOutput(facialModel)
voiceModel ← PruneOutput(voiceModel)
i← 0
loop

if i%10 = 0 then
voice←MicrophoneCapture()
spectrogram← PreprocessingV oice(voice)
Ap ← feed(voiceModel, spectrogram)
i← 0

end if
i← i+ 1
image← CameraCapture()
faceImage, sceneImage← PreprocessingImage(image)
Af ← feed(facialModel, [faceImage, sceneImage])
Af ← 2.Af
Vt ← Concatenate(Af , Ap)
if Vt−1 6= ∅ then
d← Distance(Vt, Vt−1)
if d > α then

print ”EMOTIONAL BD!”
end if

end if
Vt ← Vt−1

end loop
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of features at time t. We denote Ap the facial features vector.
In the fusion module, the two vectors Af and Ap are concatenated.

The resulting vector Vt describes the emotional state at time t. To detect
an EB, we compute the distance between Vt and Vt−1 as follows:

EB(t) =

{
True if Sf (Vt, Vt−1) > α

False otherwise
(7.1)

where α is an empirical threshold, and

Sf = d (Vt, Vt−1) (7.2)

where, for instance, the similarity function is represented by the Eu-
clidean distance and defined as follows:

d(p, q) =
1

N

√√√√ N∑
i

(pi − qi)2 (7.3)

where p and q are two vectors of length N .

7.2 Synchronization and modalities weights

As our audio-based emotion recognition model has been trained to ex-
tract features from segments with a duration of 325 ms and our image-
based emotion recognition model uses image by image recognition we
need to synchronize the two models so they can work together. Let fr
be the camera frame rate and approximately 3 audio frames represent 1s,
i.e. 1000/325 ≈ 3. Thus, for each audio frame fr/3 frames need to be
propagated into the network. As previously mentioned, Mehrabian [72]
stated that the facial expressions contribute 55% of the overall emotional
state information while the vocal and the semantic parts contribute 38
and 7%, respectively. In order to respect those proportions, weights have
to be applied to both vectors Af and Ap, and since verbal semantics is
not treated by the system, Af and Ap are weighted by, respectively, 2

3

and 1
3
.

7.3 Results and discussion

In the following the camera frame rate acquisition was set to 30 frames
per second, so for 10 consecutive pair of images, the same audio image
was propagated to ensure the synchronization.

Few tests have been conducted, the results over the tests are sim-
ilar in overall. Fig.7.2 represents a signal where each point represents
the difference between two consecutive emotional states (30 frames per
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Figure 7.2: EmoRuption output signal representing the distance between
two consecutive emotional states.

second). The black segment represents the period when nothing was
happening, clearly those oscillations are due to camera and microphone
noise, i.e. light variations, body and facial movements and noisy sounds.
The green segments represents two emotional breakdowns when smil-
ing, because the network has been trained to detect happiness, which is
mostly characterized by a smile.

Figure 7.3: An emotional breakdown occurred when feeling chocked

We can distinguish two peaks: the first one is when the smile oc-
curred, then when kept smiling the distance decreased (the same emo-
tional state) and then a second peak when going from smiling to neutral.
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The yellow segments also represents a period when nothing was happen-
ing and the small variations are due to noise. The red segment represents
an emotional breakdown, it occurred when the human operator felt sur-
prised/chocked as shown in Fig.7.3.

Figure 7.4: Some other examples of peaks representing emotional break-
downs

After few tests and iterations, and as it can be seen in Fig.7.2 and
Fig.7.4 a threshold α = 2.8 is likely a reasonable value to detect emo-
tional breakdowns.

Figure 7.5: Facial detection missing the face

As detailed in Chapter 5, the facial feature extraction module works
with pairs of images: One for the face/body and an other one for the
context. However, face detection algorithms are sometime not stable and
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Figure 7.6: False positive emotional breakdown caused by the instability
of face detection

can generate a jump (false positive EB) in the output signal as shown in
Fig.7.5 and Fig.7.6. An upper body detection has been tested but it did
not fix the issue, some instabilities still occurred. Also, in overall using
face detection gave better results than upper body detection even if the
facial features extraction module has been trained on full bodies.

7.4 Conclusion

This chapter presented EmoRuption. An architecture for emotional
breakdowns detection with the image-based emotion recognition model
presented in Chapter 5 and the audio-based emotion recognition model
presented in Chapter 6. We introduced the principle of emotional state
fingerprinting and how to calculate the distance between two emotional
states. Finally, we presented our results and discussed them. It is im-
portant to notice that EmoRuption is a modular architecture and does
not depend on its components. Whether it is the similarity function,
the audio module or the image module, they can all be independently
changed.
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8.1 General challenges

The rapid development of automatic systems during the last years has
not taken into account the way human-machine interaction should evolve.
Since the last two decade human-machine interaction became trapped
by the supremacy humans have on machines. In the current definition,
humans have to give explicit tasks to machine to execute them while
machines are becoming more and more autonomous and intelligent. An
imperative change must occur where we need to redefine the human-
machine interaction, machines have to be aware of their environment
and must understand humans needs without those lasts explicitly order-
ing it and moreover machines have to collect non-explicit information
about their environment. Automatic emotion recognition seems to be
the solution to this issue. By continuously analysing human’s emotions,
machine would be able to receive information from humans in order to
improve their interaction. This thesis aim to develop a system able to
analyze human emotion from audiovisual signals.

We firstly resumed a study based on the Reverse Comic Strip that
showed the relationship between human expressed emotional state and
audiovisual signals. We concluded that audiovisual signals, i.e. facial ex-
pressions and voice, are relevant to identify human emotional discomfort
when they are facing undesirable situations. Then, we exposed the theo-
retical architecture we designed motivated by the idea that the very na-
ture of emotions might be not very relevant if we want to detect briefs but
intense reactions. Rather we headed to the idea that the brief changes
in the emotional state are more likely relevant to describe such a feeling.
Our proposed architecture aims to capture and fingerprint the emotional
state at time t and compare it to the previous one. The resulted value
can be considered as the difference between two emotional states.

The two next chapters, 3 and 4, were dedicated to the state of the
art. On the first one, we firstly introduces some basics in computer vi-
sion and audio signal processing, then, we presented how emotions are
conceptualized in human science, i.e. psychology and cognitive science,
and computer science with a discussion about the advantages and disad-
vantages of the categorical and continuous representations. After that,
we presented the mainly used, visual, audio and audiovisual datasets
in emotion recognition. We concluded the chapter 4 by a short re-
view on the main techniques and features for image-based, audio-based
and audiovisual-based emotion recognition. On the second chapter, we
gave an overview about artificial intelligence and more precisely machine
learning. Starting from a single perceptron to complex deep learning
architectures, we described the functioning of some of artificial networks
components and introduced some recent architectures. After that, we
highlighted the role that machine learning and deep learning played in
improving emotion recognition in overall.
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8.2 Main contributions

The fifth chapter is allocated to our contributions in context-based multi-
task emotion recognition where we present our motivations and under-
line the importance the context has in emotion recognition. We firstly
introduce the EMOTIC Database which represents labeled persons in
the wild. Emotions are labeled in their both categorical and continuous
representations and the context in which the action takes place is avail-
able. However, the categorical labels are highly unbalanced which make
the dataset very challenging. In order to solve this issue, we developed
a new loss function we called the Multi-Label Focal loss (MFL) based
on the Binary Focal Loss which gave better results than the commonly
used categorical loss function. We designed a new architecture composed
of an Xception network for the body feature extraction and a modified
VGG-16 for the scene feature extraction (the context in which the ac-
tion takes place). We compared our results with the state of art and our
solution gave the best results on the less frequent labels, i.e less that 5%,
(the hardest classes to learn).

In the Chapter 6, we presented our solution for audio-based emo-
tion recognition on the RAVDESS database. Firstly, we presented the
RAVDESS database and how it is structured. Then, we detailed our data
preprocessing and our training setup and lastly, we presented and dis-
cussed our results. After that, in Chapter 7 we moved to the realisation
of our system EmoRuption, where we used our model for context-based
multi-task emotion recognition as the image feature extractor and our
model for audio-based emotion recognition. We pruned the decision lay-
ers of both models and kept the last layers before considering them as the
feature vectors of both modalities. We then concatenated the two vectors
which resulted in a fingerprint of the emotional state. Following our first
idea, we compare the actual emotional state with the previous emotional
state by computing the difference between the two vectors, the resulting
value indicate how fare the two emotional states are. We proposed then
to compare this value to a threshold which must be empirically chosen
and if the value exceeds the threshold then an emotional breakdown has
occurred. We finally end this chapter by a short discussion about such
an architecture and the advantages that it may presents.

8.3 Perspectives

The architecture presented is this thesis aims to simplify the data rep-
resentation, starting from images and voice to end up with a scalar.
Nevertheless, instead of considering the distance between two emotional
states as a single scalar, we can consider it as an input signal for an-
other architecture which aims to filter, smooth and process this signal to
extract relevant features about the emotional state derivations. More-
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over, instead of computing the mean of values differences between two
emotional state, computing the vector representing the gradient of the
emotional state over time might be interesting. It will be more than
piratical to figure out which features fluctuate the most and which does
not.

In order to reduce noise, computing the difference between the actual
emotional state with a sort of mean of the previous emotional states over
a limited time window can be interesting. Also, the implementation of a
speech recognizer in mandatory so we do not compute noisy audio input
such as ambient noise when the operator is not speaking.

Lastly, an end-to-end fine tuning on a home made dataset which con-
tains sequences of frames representing the presence of emotional break-
down would get rid of the empirical threshold and by design improve the
detection of emotional breakdowns. Such a dataset will also be helpful
to make a feature selection and remove the potential useless features.
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