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Abstract

Mobility in telecommunication networks is often seen as a hassle that
needs to be dealt with: a mobile wireless device has to adapt is trans-
mission parameters in order to remain connected to its counterpart(s),
as the channel evolves with the device’s movements. Drones, which are
unmanned aerial vehicles in the context of this thesis, are no exception.
Because of their freedom of movement, their three-dimensional mobility
in numerous and varied environments, their limited payload and their
energy constraints, and because of the wide range of their real-world
applications, drones represent new exciting study objects whose mobility
is a challenge. Yet, mobility can also be a chance for drone networks,
especially when we can control it. In this thesis, we explore how con-
trolled mobility can be used to increase the performance of a drone
network, with a focus on IEEE 802.11 networks and small multi-rotor
drones. We first describe how mobility is dealt with in 802.11 networks,
that is to say using rate adaptation mechanisms, and reverse engineer
the rate adaptation algorithm used in the Wi-Fi chipset of the Intel Aero
Drone. The study of this rate adaptation algorithm, both experimental
and through simulation, through its implementation in the network sim-
ulator NS-3, allows its comparison against other well-known algorithms.
This highlights how big the impact of such algorithms are for drone
networks, with regard to their mobility, and how different the resulting
behaviors of each node can be. Therefore, a controlled mobility solution
aiming to improve network performances cannot assume much about
the behavior of the rate adaptation algorithms. In addition to that, drone
applications are diverse, and imposing mobility constraints without
crippling a complete pan of these applications is difficult. We therefore
propose a controlled mobility solution which leverages the antenna
radiation pattern of the drones. This algorithm is evaluated thanks to
a customized simulation framework for antenna and drone simulation,
based on NS-3. This solution, which works with any rate adaptation
algorithm, is distributed, and do not require a global coordination that
would be costly. It also does not require a full and complete control of the
drone mobility as existing controlled mobility solutions require, which
makes this solution compatible with various applications.







Introduction

Telecommunication networks make it possible, in a sense, to free oneself
from distance. The electric charges in a conductor and electromagnetic
waves both travel at speeds that few other physical objects can reach,
all the more compared to things one actually handles, such as postal
mail. The beginning of the 20th century saw a revolution in the field of
telecommunications, namely wireless radio communications. With the
miniaturization of the radio devices achieved over the past century, it has
become possible to free oneself from distance while remaining mobile.
Unsurprisingly, switching from a bounded transmission media such as
copper wires to an unbounded one creates a few challenges, and mobility
comes at a price. But it also enables a wide new range of applications
and uses, which is at the heart of the development of the mobile Internet,
and the personal Internet.

This year, 2020, has been a special year for telecommunication networks,
both globally and locally. Worldwide, telecommunications networks in
general, and Internet in particular, made it possible to communicate with
family, friends and colleagues, all during a global pandemic and without
many difficulties. Often described as de-sociabilizing, smartphones and
the Internet became, for a few months, the center of our social life, at
least with people with whom we do not share our home. Without reliable
and resilient networks, it would have been impossible for hundreds of
millions of people to work remotely. And, we are well-placed to know, it
would have been impossible for tens of millions of students to be able to
continue taking courses remotely. In this regard, working on networks
seemed more meaningful and important to me during 2020 than during
the previous year of my thesis.

At the same time, unprecedented movements of opposition to new
telecommunications technologies, whether founded or not, have emerged.
The next broadband cellular standard of the members of the 3rd Genera-
tion Partnership Project (3GPP), 5G, is being described by its opponents
as an energy- and resource-wasting headlong rush, in a global context
of growing environmental concerns. The new frequency bands that can
be used by 5G also fueled many questions about its health impact, and
many conspiracy theories about 5G were relayed online, on the web, in
an ironic twist of fate as mobile traffic accounts for around 50% of the
global web traffic. Starlink, a project whose goal is to provide internet
access through a low earth orbit constellation of tens of thousands of
satellites, drew criticisim from astronomer worldwide for the created
light pollution and the increased number of space debris they would
create once their lifespan has ended. As of 2020, a total of 12, 000 satellites
have been authorized by the Federal Communications Commission (FCC)
to be deployed over the spectrum, and filings have been submitted to
the International Telecommunication Union (ITU) for 30, 000 additional
satellites. More than 800 satellites have already been launched. In 2020,
less than 60% of the world population has access to the Internet, but this

Drones . ..
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Thesis Statement. . . . ...
Thesis Organization . ...
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4 1 Introduction

Saint-Martin-Vésubie

Monaco
Nice
Figure 1.1: Out of order cellular sites of
the Orange telecommunications operator,

after the storm “Alex”, on the 3 October
2020, as reported on the ARCEP website.

[27]: Fédération Frangaise des Télécoms
(2020), Tempéte Alex | Comment les opéra-
teurs se sont mobilisés pour réparer les réseaux
fixes et mobiles ?

[61]: Moschetta et al. (2017), ‘Introduction
to UAV Systems’

[18]: Chaumette (2017), “Collaboration Be-
tween Autonomous Drones and Swarm-
ing’

number is steadily increasing every year.

Evidence suggest the human-caused global warning is increasing the
number of extreme climate events, including storms, hurricanes, floods
or large-scale wildfires. Large-scale natural disasters often destroy trans-
port, communications and telecommunication infrastructures, which are
nonetheless necessary for the organization of the disaster response. In
the wake of storm Alex, which killed at least 8 people at the beginning of
October 2020 in France, optical fiber networks were destroyed, including
the one serving cellular antennas Figure 1.1. Disaster response included
deploying Wi-Fi hotspots connected to the Internet using satellite links,
and satellite phones [27]. The deployment of emergency communica-
tions” infrastructure is often a prerequisite for the organization of search
and rescue operations and humanitarian responses. The importance
of telecommunications networks is never more apparent than where
they become off-line. Designing resilient networks which can be rapidly
deployed is one of the envisioned application of drone networks.

Drones

Drones, also known as Unmanned Aerial Vehicles (UAVs), are aircraft
without humans on board. Previously mainly reserved for military use,
the past decade have seen the development of many types of smaller
drones [61], which have been used in civilian applications such as aerial
photography, agriculture, surveillance, disaster management, network
deployment, search-and-rescue missions, or transport. Embedded with
several types of sensors and processing power, drones can be remote-
controlled by a human operator, in which case (wireless) connectivity
between the pilot and the drone is more than desirable, or they can
be autonomous. The degrees of drone autonomy vary, ranging from
following precomputed trajectories defined by waypoints, to having
complete freedom of movement in order to carry out their missions.
Most of the time, communication between the drone and the ground
is necessary, be it for legal reasons or to exchange control, feedback or
mission data.

Fleets of drones which can coordinate themselves can achieve tasks
that would be otherwise impossible to achieve by a single drone, or
realize tasks more quickly, more efficiently or with more flexibility [18].
For this cooperation to be possible, connectivity between the drones is
necessary, whether it is provided by a cellular network, in a mobile ad-hoc
network scheme, or even by satellite. The resulting drone networks are
subject to specific challenges, as their components are power and weight
constrained, are highly mobile in three dimensions, and evolve in an
environment that is in turns highly dynamic and mission dependent.

Mobility in Networks

Mobility in networks is often seen as a hassle that needs to be dealt with.
Indeed, a mobile wireless device, and a drone in particular, face many
challenges. It has to adapt is transmission parameters in order to remain
connected to its counterpart, as the channel evolves with the device’s
position. A non-autonomous drone that wanders outside the range of



its remote controller is guaranteed to crash if no preventive measures
are taken. Yet, mobility is often a key feature of network applications.
Without mobility, it would be impossible to the participants of a low
density network like the one envisioned by the Serval network, intended
for resilient communications during crisis situations, to communicate
[34]. Mobility of the first responders in the wake of a natural catastrophe is
not an adjustement variable, it is a strong prerequisite to their missions.

While mobility is always subject to external constraints one cannot avoid,
such as the laws of physics, and therefore can never be completely
controlled, we can still introduce the concept of controlled mobility.
Controlled mobility, for a given entity, could be defined as any mobility
on which there exists some degrees of freedom, for example in the
acceleration, speed or position of the entity, mobility that can be acted on
by this very same entity. Such controlled mobility can also be a chance for
communication networks. A well-known trope of controlled mobility, as
portrayed in many movies, is trying to move a cellphone to get a better
signal. Mobility can be exploited in conjunction with store-and-forward
mechanisms to deliver messages to otherwise isolated network segments.
While an automated controlled mobility for devices like a smartphone
or a laptop is more of a wishful thinking, when it comes to autonomous
vehicles, robots, or drones, it is a reality.

Thesis Statement

Creating a drone networks is a matter of connecting drones together,
which can be done through the use of different networking technologies.
In this thesis, we chose to focus on Wi-Fi, defined in the IEEE 802.11 set
of standards, and in turns on Wi-Fi-based drone networks. This choice
can be mainly explained by the (apparent) simplicity of deploying Wi-Fi
networks, which operate in licence-free bands and are supported by
many end-user devices, including ours. Wi-Fi devices are also cheap,
available, off-the-shelf, and can accommodate a wide range of application
requirements, from the IOT low-frequency and lightweight requirements,
to real-time video or Voice over IP, through more classic web browsing. For
critical applications, being able to test such networks in real conditions
before they are actually needed is also an advantage, which would
be harder with for example cellular networks where the regulator’s
agreement is required to transmit.

The use of Wi-Fi to create drone networks is not a new idea, and has been
studied, mainly in the past ten years, in many scientific works [7, 8, 42,
44, 69, 85, 86, 94, 95, 98]. In the experimental studies from this literature,
Wi-Fi is described as under-performing, because of the peculiarity of the
airborne channel on the one side, and the inability of Wi-Fi to cope with
the specific mobility of the drones, both because of the use of unsuitable
antennas and because of inefficiencies in Wi-Fi’s rate adaptation. In the
context of Wi-Fi networks, rate adaptation is the process of choosing
suitable transmission parameters (Wi-Fi has many of them) to cope with
changes in the communication channel and maintain a quality of service.
Controlled mobility in the context of robot and drone networks is more
confidential but a few solutions have also been proposed [19, 38, 53,
59, 73]. Still, the intersection on Wi-Fi networks, drone networks, and
controlled mobility is limited.

[34]: Gardner-Stephen et al. (2013), The
serval mesh: A platform for resilient commu-
nications in disaster & crisis
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1 Introduction

The goal of this thesis is to study the underlying mechanisms of Wi-
Fi networks in order to improve controlled mobility in the context of
networks of autonomous drones. In particular, we focus on the impact
of the Rate Adaptation Algorithms (RAAs) on such networks. Those
algorithms are in charge of finding suitable transmission parameters for
the nodes participating in Wi-Fi-based drone networks, and are thus
closely linked to the network performances, whether good or bad. While,
in our opinion, RAAs are at the heart of the performance evaluation of
modern Wi-Fi networks, this subject has been mostly swept under the
rug in the context of robotics networks, where using static and fixed
transmission parameters is often the norm.

Thesis Organization

The rest of this manuscript is organized into six chapters (not counting
the conclusion).

In Chapter 2, we present the general context of this thesis, with a focus
on the IEEE 802.11 set of standards, drones and drone networks. Indeed,
from its introduction more than two decades ago to the new amendment,
802.11ax, that will be adopted in the coming weeks, Wi-Fi evolved well
beyond its original form and must be correctly introduced.

We then present in Chapter 3 a state of the art of experimental evaluation
and controlled mobility of Wi-Fi based drone networks. We also present
the tools, both simulators and testbeds, one can use to evaluate such
networks.

In Chapter 4, we then describe and analyze the rate adaptation algorithm
used by Intel Wi-Fi cards, which is the way Wi-Fi networks cope wi