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Abstract 
 

Arboviruses are responsible for a significant public health burden throughout the world with 

over 150 viral species having capacity to cause disease in humans. Almost all of them are 

zoonotic and circulate between vertebrate hosts and hematophagous vectors such as 

mosquitoes, ticks and midges. Almost all are maintained in sylvatic transmission cycles 

involving wildlife. Ever since, arboviruses have caused outbreaks around the world and new 

arboviruses have emerged from their sylvatic reservoirs such as West Nile, Usutu and Zika 

viruses as the most recent examples. Understanding the emergence of arboviral disease in 

humans and developing surveillance methods to predict its occurrence depends upon the 

understanding of the ecology of the different arboviruses and their life-cycles. During enzootic 

periods, arboviruses survive via sylvatic life cycles which can involve a variety of species of 

which many are currently not identified, especially in Africa. It is unclear which and how many 

animal species can contribute to the maintenance of arboviruses in nature, nevertheless the 

sylvatic/zoonotic cycles of many mosquito-borne viruses are presented with arboreal mosquitos 

feeding on non-human primates (NHPs). However, this is can be extremely oversimplified 

because their population numbers and number of susceptible animals at any time, are not 

enough to maintain sylvatic cycles and other mammals are probably also involved. Thus, the 

goal of this project is to provide new insights in the animal reservoir or amplifier hosts, the 

ecology of arboviruses in African countries and document extent of infection rates in animals. 

We developed a serological tool that allows simultaneous detection of IgG antibodies to 

multiple arboviruses in a single biological sample. With this highly sensitive and specific 

multiplex immunoassay, we screened more than 6000 samples from a wide diversity of primate 

and bat species across Central and West Africa. Primates from Cameroon and Democratic 

Republic of Congo showed an overall IgG prevalence is below 5%. Bat species across Guinea, 
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Cameroon and Democratic Republic of Congo showed an overall IgG prevalence of 8.45%. 

Both, primate and bat samples, reacted with at least one of the ten antigens tested, variable 

seroprevalences were observed according to collection sites, environmental behavior of the 

species and for the virus. We conclude that African NHPs are most likely not the only reservoir 

for the arboviruses tested and the presence of IgG antibodies in bats suggests that they could 

also play a role in the sylvatic cycle of arboviruses in addition to NHPs. 

 

Key words: Arboviruses, Primates, Bats, Africa, Antibodies, Luminex 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 



 viii 

 

Résumé substantiel 
 

 
Les maladies infectieuses émergentes et ré-émergentes (MIE) représentent une menace 

épidémique constante pour la politique de santé mondiale ainsi qu'une chaîne étendue de 

conséquences avec un impact économique et social. Environ 60% des MIEs ont une origine 

zoonotique et pour la plupart il existe un lien avec la faune sauvage. De ce fait, l’inter 

connectivité entre l’homme, l’environnement et les animaux représente un risque majeur pour 

l’émergence des maladies zoonotiques. Cette inter connectivité a augmenté significativement 

par l’accroissement des activités humaines dans les zones occupées pour la faune sauvage, 

comme par exemple le récent développement des industries forestières et minières dans les 

zones forestières reculées et l’augmentation de la chasse et de la consommation de viande de 

brousse. Ces zones connaissent des changement climatiques et environnementales, menant à 

l'exposition des humains aux vecteurs d'agents pathogènes tels que les rongeurs, les chauves-

souris ou les moustiques qui migrent facilement entre la forêt et les agglomérations voisines. 

Une étape majeure dans la compréhension, la prédiction et le contrôle du risque des infections 

zoonotiques émergentes et ré-émergentes, c’est de caractériser la diversité des agents 

pathogènes afin de documenter l'étendue du réservoir animal à l’interface entre l’homme et 

l’animal basé sur l’approche « Une seule Santé ». 

La grande propagation du moustique Aèdes aegypti entre le 15e et 19e siècles à travers 

des commerce des esclaves de l’Afrique au Amériques est responsable de la première 

émergence documentée des deux virus transmis par les arthropodes en Amérique ; il s’agit du 

virus de la Dengue et celui de la Fièvre jaune. Avec plus de 150 espèces virales ayant la capacité 

de causer des maladies chez l’homme, les Arbovirus constituent un problème majeur de santé 

publique avec un lourd tribu. La plupart d’entre eux sont zoonotiques et circulent entre l’hôte 

vertébré et des vecteurs hématophages comme les moustiques, tiques et moucherons. La plupart 

sont maintenus en cycles de transmission sylvatiques impliquant la faune salvage. Depuis, les 
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arbovirus ont causé des épidémies dans le monde et des nouveaux virus ont émergé de leur 

réservoirs sylvatiques comme le virus du Nil Occidental, l’Usutu et le virus Zika, qui sont des 

exemples récents. Comprendre l’émergence de la maladie arbovirale chez l’homme et 

développer des méthodes de surveillance afin de prédire son apparition dépend d'une 

compréhension de l’écologie individuelle des chaque arbovirus et de son cycle de vie. Pendant 

les périodes épizootiques, les arbovirus se maintiennent via les cycles sylvatiques impliquant 

une grande variété d’espèces dont la plupart ne sont pas actuellement identifiés, surtout pas en 

Afrique. Ce n’est pas encore clairement compris quelle espèce animale contribue à la 

pérennisation des arbovirus dans la faune. Cependant, la plupart d’études incriminent les 

moustiques arboricoles se nourrissant du sang de primates non humains (PNHs) comme 

vecteurs majeurs des arbovirus. Mais cela reste dubitatif car le nombre de leurs populations et 

le nombre d'animaux sensibles à tout moment ne sont pas suffisants pour maintenir les cycles 

sylvatiques et d'autres mammifères sont probablement impliqués. 

Ainsi, l'objectif de ce projet de thèse était de proposer de nouvelles connaissances sur 

le réservoir animale ou l’hôte amplificateur, l’écologie des arbovirus dans certains pays 

d’Afrique et documenter l’étendu des taux d’infection chez les animaux. Nous avons développé 

un outil sérologique qui a permis de détecter simultanément des anticorps IgG contre plusieurs 

arbovirus dans un échantillon biologique par la technologie Luminex capable de détecter 

jusqu’à 100 régions d’antigènes dans un seul puits d'une plaque 96 puits à fond plat. Des 

antigènes à large affinité afin de capturer des anticorps avec réaction croisée des mêmes virus 

ou des virus apparentés ont été combiné avec antigènes plus spécifiques pour différencier entre 

les différents virus et sérotypes.  Nous avons testé un total de 17 protéines recombinantes (RP) 

pour sept différents arbovirus. Pour les Flavivirus nous avons utilisé les RP dérivées du 

domaine III de l’enveloppe (DIII) pour la Dengue, le Zika et le virus du Nil et des protéines 

non-structurel 1 (NS1) de la Dengue, le Zika, l’Usutu, le virus du Nil et la Fièvre jaune. Pour 
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les Alphavirus nous avons utilisé des RP pour l’enveloppe E2 du Chikungunya et O’nyong-

nyong mais aussi une RP protéine non-structurel (NSP) pour le Chikungunya. Les protéines 

recombinantes ont été couplées à des billes magnétiques MagPlex® en différentes 

concentrations selon chaque antigène. Les dilutions en série des échantillons ont été exécutées 

à volumes finaux différents aussi bien que différents temps d’incubation et température dans le 

but d’obtenir « un meilleur signal par rapport au bruit de fond ». Les résultats sont donnés en 

intensité moyenne de fluorescence (MFI) par bille.  

Pour évaluer la sensibilité, la spécificité et la précision, un panel d'échantillons positifs 

(n=95) et négatifs (n=66) bien documentés a été utilisé. La sensibilité, la spécificité et la 

précision de chacun des antigènes ont été déterminées par les courbes ROC et la formule 

Moyenne des contrôles négatifs + 3 fois l'écart type. Dans un panel de 161 échantillons, les 

antigènes NS1, CHIKV-E2 et WNV-DIII avaient > 95 % de sensibilités et spécificités, à 

l'exception de NS1-YFV. Pour USUV_NS1 et ONNV_E2, nous n'avions aucun contrôle positif, 

la spécificité était de 98,5% et 96,97 %, respectivement. Pour les autres antigènes, la sensibilité 

était faible, limitant l'intérêt de leur utilisation dans des études de séroprévalence. Des réactions 

simultanées entre les virus homologues et non homologues ont été observées avec une plage 

comprise entre 0% et 60%. Ensuite, nous avons utilisé les dix antigènes de notre panel 

hautement spécifiques et sensibles pour dépister plus de 6000 espèces de primates et de 

chauves-souris à travers l'Afrique centrale et occidentale. 

Des milliers d'échantillons bien documentés de primates et de chauves-souris à travers 

l'Afrique ont été testés pour la présence d'anticorps IgG contre les arbovirus. Les échantillons 

de viande de brousse, de DBS et de matières fécales des primates collectés dans de nombreux 

sites différents au Cameroun et en RDC ont été testés. Des échantillons de DBS provenant de 

chauves-souris frugivores et insectivores en liberté qui ont été collectés dans des sites de repos 

et d'alimentation dans leur environnement naturel en Guinée, au Cameroun et en RDC ont 
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également été examinés. Pour l'interprétation des résultats et l'estimation de la prévalence, nous 

nous sommes appuyés sur des approches mathématiques et statistiques en l'absence 

d'échantillons témoins positifs et négatifs pour les différentes espèces animales. 

Un total de 3,518 échantillons de 9 espèces de PNHs du Cameroun et de la République 

démocratique du Congo (RDC) étaient testés contre NS1 (DENV1-4/WNV/ZIKV/USUV), E2 

(CHIKV/ONNV) et DIII (WNV) antigènes. Les singes (n = 2,100), la séroprévalence globale 

variée entre 2% et 5% pour les dix antigènes testés. Nous avons stratifié les singes par leur 

habitat, les espèces arboricoles ont montré réactivité élevée. Pour les singes du Cameroun, la 

prévalence des IgG observée contre ONNV-E2 et DENV2-NS1 était de 3.95% et 3.40% 

respectivement et en RDC, ONNV-E2 (6.63%) et WNV-NS1 (4.42%).  Chez les grands singes 

(n = 1,418) la prévalence des IgG était entre 0 % pour USUV-NS1 à 2,6 % pour CHIKV-E2. 

Toutefois, une large différence a été observée parmi les sites des collectes et les espèces des 

grands singes, par exemple 18% (9/40) et 8.2% (4/49) des gorilles étaient réactifs avec CHIKV-

E2 ou WNV-NS1, respectivement dans deux différents sites du Cameroun.  

Nous avons testé des échantillons de 2,579 chauves-souris, représentant 1,917 

frugivores et 641 insectivores, réparties en sept familles et 21 espèces. Globalement, 218/2579 

(8.45%) chauves-souris, ont réagi avec au moins un des dix antigènes testés. La prévalence la 

plus élevée a été observée contre USUV avec 2,3% (59/2579), suivi de 1,9% (49/2579) et 1,35% 

(35/2579) pour les sérotypes DENV 4 et 3, respectivement. La séroprévalence globale variait 

selon les pays et les sites de collecte, 11% (151/1376) au Cameroun, 3,5% (20/565) en RDC et 

7,3% (47/638) en Guinée. Les taux les plus élevés ont été observés chez Hypsignathus 

monstrosus (17,9%), Rousettus aegyptiacus (16,4%) et Eidolon helvum (10,7%) et chez les 

espèces de la famille insectivore des Molossidés (7,8%-8,9%). Enfin, nous avons observé des 

changements de séroprévalence au cours de l'année dans les colonies d'E. helvum et H. 

monstrosus qui pourraient être liés au comportement des populations.  
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En conclusion, les primates africains ne sont probablement pas les réservoirs naturels 

pour les arbovirus testés, mais plutôt des hôtes intermédiaires et la présence d’anticorps IgG 

chez les chauves-souris suggère qu'ils pourraient jouer un rôle dans les cycles sylvatiques des 

arbovirus en complément des primates ou d’autres animaux. En plus, tous deux contribuent au 

maintien des arbovirus en milieu sylvatique, rural et urbain en Afrique centrale et de l'Ouest. 

D’autres études de recherche séroépidémiologique et de détection moléculaire chez les 

animaux, mais aussi chez les humains qui habitant dans les mêmes zones sont nécessaires pour 

une meilleure compréhension de l’écologie des arbovirus et notamment identifier les réservoirs 

sylvatiques potentiels afin de prédire leur impact potentiel sur la santé humaine.  

 
 

Mots clés : Arbovirus, Primates, Chauves-souris, Afrique, Anticorps, Luminex 
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Chapter I: Emerging and Re-emerging Viruses  

 

 

I.A. Emerging Infectious and Zoonoses 

Emerging infectious diseases (EIDs) are defined as infections that arise or have arisen 

from new pathogens in a population and whose incidence in humans and in geographic extent 

has increased during the last two decades and that seem to continue to increase. Moreover, these 

pathogens that are established and disseminated in the host population may reappear (or re-

emerge) due to the recognition of the infectious agent that was not detected after a decline in 

incidence (Morse 1995; Morens, Folkers, and Fauci 2010; van Doorn H 2014). Since the 

beginning of the 20th century more than 300 infectious diseases have emerged or re-emerged 

around the world (Jones et al. 2008). 

Emerging and re-emerging infectious diseases represent a constant epidemic threat to 

the global health policy as well as an extensive chain of consequences with economic and social 

impact (Binder et al. 1999; Smith et al. 2019; Fisher and Murray 2021; Jones et al. 2008). Over 

the years several factors have contributed and continue to contribute to emergence and re-

emergence of new pathogenic agents and one of them is driven by the increased globalization 

through mobility, industrialization and technology. This ‘globalization big bang” generated 

advances in public health policy and at the same time challenges for global health associated 

due to rapid environmental and social changes (Bloom and Cadarette 2019; Morens, Folkers, 

and Fauci 2010; Fisher and Murray 2021; Labonté, Mohindra, and Schrecker 2011; Daly 2021; 

Heffernan 2018). 

Over the last decades, the global community has witnessed several outbreaks with 

viruses that lead to significant epidemics or even pandemics like the ongoing Coronavirus 

disease 2019 (COVID-19). The emergence and spread of these EIDs events is due to a 

combination of many factors such as time, increasing population densities, increased travel, 

encroachment on natural previously inhabited areas, global wildlife trade, ecological changes 
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due to agricultural (deforestation) or economic development and climate changes that represent 

the drivers of human behavioural activities (Morse 1995; Jones et al. 2008; Allen et al. 2017; 

Daly 2021; van Doorn H 2014; Fisher and Murray 2021; Scheffers et al. 2019; Heffernan 2018). 

The majority of EIDs events have a zoonotic origin (60%) and the great majority 

originate in wildlife which shows that the interconnectivity between humans, the environment 

and animals represent a major risk for emergence from sylvatic reservoirs (Jones et al. 2008; 

van Doorn H 2014; Fisher and Murray 2021). Most zoonotic events that affect the human 

population are caused by viruses with an RNA genome which have high ability to adapt to 

changing environments and naïve hosts. A factor that facilitated the interactions among host-

pathogens and the interspecies transmission of a viral zoonosis was the human encroachment 

into wilderness habitats for land use and mining industries in remote forest areas and increasing 

hunting and consumption of bushmeat (Wolfe et al. 2005; Daly 2021). This leads to exposure 

of humans to insect or other arthropod vectors and vertebrate reservoirs as bats and monkeys 

that are natural reservoirs of vector-borne diseases with arboviruses, one of th- most serious 

and important EIDs (Morse 1995)(Karesh et al. 2012)(Morens, Folkers, and Fauci 2010). 

 

I.B. Arbovirus 

The term ‘arbovirus’ is an acronym for Arthropod-borne virus, referring to a diverse 

group of infectious agents that are transmitted by blood-sucking arthropods (mosquitoes, ticks 

or sandflies) from an infected individual or from an animal reservoir to susceptible hosts 

(Young 2018; Kuno and Chang 2005; Hanley and Weaver 2008). One of the most widely 

spread vectors in the world was Aedes aegypti and started with the slave trade in Africa to the 

Americas during the 15th to 19th centuries.  Ae. aegypti and a secondary vector, Ae. albopictus 

- mosquitoes that can transmit many arboviruses, expanded throughout the 18th and 19th 

centuries from African countries due trade routes with Asia, Europe, Central America. The 
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rising globalization and increased travel, transport and migration lead to the first dengue fever 

epidemics in different hemispheres (Simmons, Jeremy, et al. 2012; Huang, Higgs, and 

Vanlandingham 2019; Daly 2021). 

During the first 50 years of the 20th century many arboviruses have been identified in 

animals, humans and arthropods (Hubálek, Rudolf, and Nowotny 2014; Venter 2018). Over 

the last 30 years, there has been an increase in the emergence and / or re-emegence as well as 

a spread of this large group of viruses, giving rise to epidemic outbreaks in several regions of 

the world, with a major  impact on international public health (Gould et al. 2017; Girard et al. 

2020; Weaver 2018). Today, arboviruses represent a major threat for public health due to the 

adaptation of vectors in urban regions as well as the population density and their movements 

facilitated by transport but also due to climatic and environmental changes such as rainfall 

and temperature which apparently seems to foster mosquitoes to blood-feeding on human 

rather than animals (Jones et al. 2008; Daly 2021; Girard et al. 2020; Pennisi 2020). 

Mosquito-borne arboviruses that have emerged throughout the tropics and caused 

epidemic outbreaks comprise Zika virus (ZIKV) (Grubaugh et al. 2019; Zanluca et al. 2015); 

Yellow fever virus (YFV) (Bryant, Holmes, and Barrett 2007; Fernandes et al. 2017); West 

Nile virus (WNV) (Siconelli et al. 2021; Martin and Simonin 2019); Chikungunya virus 

(CHIKV) (Rico-Mendoza et al. 2019; de Souza Costa et al. 2019) and  Dengue virus (DENV). 

DENV is the most prevalent arbovirus in the world with 100-400 million infections estimated 

per year, (Mayer, Tesh, and Vasilakis 2017; Cabral et al. 2021). 

 

I.C. Arbovirus Families 

In the past, arboviruses were classified in different serogroups from A to D based on 

their ability to replicate and transmission through arthropods (De Madri and Porterfield 1974). 

However, they were reorganized and classified based on their manner of messenger RNA 
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(mRNA) synthesis (Baltimore classification) and antigenic characteristics (C. H. Calisher and 

Monath 1988; C. H. Calisher and Karabatsos 1988). 

Arboviruses are comprising many taxonomic families with many of them being 

zoonotic arboviruses, with clinical importance for humans and livestock, that belong to the 

families of Flaviviridae, Togaviridae, Bunyaviridae, Rhabdoviridae, Orthomyxoviridae and 

Reoviridae (Figure 1) (Gubler 2002; Venter 2018; Go, Udeni B. R. Balasuriya, and Lee 2014). 

 

  
Figure 1: Classification of arboviruses. Families are grouped according to Baltimore 

classification: ss, single-stranded; + positive-sense; - negative-sense; ds, double-stranded. 

*Tospoviruses are known to infect plants but are transmitted by arthropods. Modified 
from (Go, Udeni B. R. Balasuriya, and Lee 2014). 

 

 

 

To date, more than 500 arboviruses have been registered in the International Catalogue 

of Arboviruses of which  about 150 are known to be pathogenic to humans and the vast majority 

that have an impact on public health belong to Flavivirus and Alphavirus genus, and some 

genera of the Bunyaviridae family (Gubler 2002; Young 2018). 
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I.C.1 Genus Flavivirus 

 

The name Flavi is derived from the Latin word “flavus” that means “yellow”. This 

refers to the propensity of flaviviruses to cause jaundice in infected humans and from the early 

research done on the yellow fever vaccine in 1930s (Norrby 2007; Rathore and St. John 2020). 

The Flavivirus genus belongs to the Flaviviridae family which encompasses three additional 

genera unrelated to arboviruses; Pestivirus, Hepavirus and Pegivirus, and are known to cause 

vector-borne and hepatic disease in humans (Simmonds et al. 2017). 

The Flavivirus genus currently comprises arboviruses linked to epidemic outbreaks of 

Dengue, Zika, Yellow fever, West Nile virus and tick-borne encephalitis virus. Globally 

distributed, well-known flaviviruses as well as lesser-characterized flaviviruses (Usutu, tick-

borne encephalitis and Japanese encephalitis viruses) have been causing outbreaks in animals, 

humans and infecting up to 400 million people annually (Bhatt et al. 2013; Pierson and 

Diamond 2020). 

The Flaviviruses comprise over 50 taxonomically recognized viruses with a very 

complex ecological network (Simmonds et al. 2017). They are divided in three major clusters: 

members of non-vector, tick-borne viruses (TBV) and mosquito-borne viruses (MBV) (Figure 

2). Flaviviruses are also classified according to their antigenic similarity into serocomplexes 

and sub-complexes. Cross-reactions are observed and have been demonstrated by 

hemagglutination-inhibition (HI) and neutralization titer assay (Kuno et al. 1998; C. Calisher 

et al. 1989; Li, Barrett, and Beasley 2005). 

 

I.C.1.a. Structure and Genome Organization  

 
Flaviviruses are small (~50 nm) RNA virions, enveloped with a spherical capsid and 

coated with a lipid membrane derived from the host cell. Mature virions contain both 
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membrane and envelope coding proteins (M and E) and immature forms contain a precursor 

membrane protein (prM) (Figure 3) (Pierson and Diamond 2020; Simmonds et al. 2017). 

 

 
Figure 2: Phylogenetic three illustrating the antigenic relationships among flavivirus. 

Viruses from the same serocomplex are covered by arched lines and common vectors 

are listed also by colors. Source : Frontiers in Immunology (Rathore and St. John 

2020). 

 

 

The Flaviviruses genome is a positive-sense unsegmented single-stranded RNA of 

approximately 9.4-13 kb in length (Shi et al. 2016). The genome consists in a single open 

reading frame (ORF) flanked by 5’ and 3’ untranslated regions (UTR)s that encodes a 

polyprotein which results in ten functional proteins (Zmurko, Neyts, and Dallmeier 2015). 

These proteins are divided in three structural (capsid, C; prM/M, membrane ; envelope 

protein, E) as well as seven non-structural (NS) proteins that are synthesized in infected cells 

(NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) (Zhang et al. 2017; Zmurko, Neyts, and 
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Dallmeier 2015) (Figure 4).  

 

 

 
Figure 3: Typical morphology of both mature and immature virions. 

The structures consist in structural proteins C, E, prM and lipid 

membrane. Modified from : EMBO reports (Rey et al. 2018) 
 

 

 
Figure 4: Flavivirus genome structure. Modified from: Reviews in Medical Virology 

(Zmurko, Neyts, and Dallmeier 2015). 
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I.C.2. Zoonotic Flaviviruses 

 

The vast majority of zoonotic and globally important flaviviruses are mosquito-borne 

viruses (MBFV) such as Dengue, Yellow fever, West Nile, Zika but also Usutu virus that was 

neglected for many years and suddenly emerged in Europe far away from the area where it was 

initially described (H Weissenböck et al. 2010; Marion Clé et al. 2018).The first cases of these 

viruses were isolated at the beginning of the 20th century, i.e., Yellow fever virus that 30 years 

after the first isolation caused one of the most severe epidemics in Africa with 30,000 deaths in 

Ethiopia (Theiler and Downs 1973; H Weissenböck et al. 2010). 

Mosquito-borne flaviviruses are distributed in many continents, affect millions of 

humans but also are pathogenic for domestic animals, and wildlife with a variety of mosquito 

species that feed on a wide range of vertebrate hosts (H Weissenböck et al. 2010; Gould et al. 

2017).  

According to The International Committee on Taxonomy of Viruses (ICTV) the 

MBFV are composed of 38 viruses that are divided in a “mosquito-borne” and a “probably 

mosquito-borne” group. They are classified based on genetic and antigenic relationships as well 

as geographic association, vector, host, ecological characteristics and disease association. 

(Simmonds et al. 2017) (Table 1). 

Here we review and further describe only the mosquito-borne flaviviruses that were 

investigated in this thesis. 
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Table 1: List of mosquito-borne flavivirus that cause disease in domestic animals, wildlife and 

humans. 

 

 

This list was based on the last report of ICTV, updated in 2019 and was completed with 

literature-based research (Simmonds et al. 2017; Venter 2018; Pierson and Diamond 2020) 

(Arbovirus Catalog – CDC Division of Vector-Borne Disease (DVBD).  Dark green column 

represents the six groups of mosquito-borne flavivirus and light green the two groups of 

probably mosquito-borne flavivirus. 
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I.C.2.a. Yellow Fever virus  

 

One of the first reports showing yellow fever-like disease is dated from 1495 in 

Hispaniola as well as the first outbreaks on the Caribbean islands in mid-1647 (Hindle 1932). 

Thereafter for nearly four centuries (15th to 19th) it caused numerous outbreaks in ports of North 

and South American cities, but also in Africa and Europe, particularly the Mediterranean coast. 

The disease spread then further in North America causing significant epidemic outbreaks such 

as in Philadelphia, where 10% of the population was wiped out by the disease (Rush 1805) and 

continued to expand throughout the coastal region of the Americas (Holbrook 2017; Bryant, 

Holmes, and Barrett 2007). 

Nevertheless, the ways on how the disease spread and caused terrible epidemics 

remained unknown for centuries until a Yellow Fever commission was set up at the end of the 

19th century.  The commission members as well as the military volunteers who participated in 

the survey, showed that mosquitoes were the main vectors of YFV transmission, being a 

milestone (Finlay C. J. 1881; Norrby 2007; Holbrook 2017). 

Extensive research on YFV was done in mid-1930, like viral isolation studies 

coordinated by Adrian Stokes and Rockefeller Foundation, showing the viral nature of the agent 

by inoculating the virus obtained from human samples into monkeys (Stokes, Bauer, and 

Hudson 1928). In the same period, efforts were made to eliminate Aedes aegypti in endemic 

areas for Yellow fever disease (Africa and Tropical America). However, in certain regions it 

was not successful, thus showing for the first time that the monkeys were the reservoir host of 

the virus and illustrating the transmission cycle between humans, monkeys and jungle-dwelling 

mosquitoes. Other advances were the development of a test by Max Theiler, which measured 

protective antibodies in mice and humans as well as the development of the attenuated 17D 

virus strain which gave him the Nobel prize (Norrby 2007). 
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During the 20th century, the scientific community declared that YFV entered in the 

New World and Europe through slave trade, like Ae. aegypti, in bilges of the ships. This theory 

was confirmed through evolutionary/molecular and epidemiological studies in the 21st century 

(Bryant, Holmes, and Barrett 2007) that estimated that YFV strains emerged in Americans 

about ~400 years ago, which corresponds with the timing of the slave trade. Moreover, the 

ancestral lineage of YFV in Africa is estimated to have emerged about 3,000 years ago (Bryant, 

Holmes, and Barrett 2007; Moureau et al. 2015). Genetic studies on Ae. aegypti showed that 

the American mosquitos are direct descendants of the African mosquito population, providing 

an additional piece on the puzzle of the origin of YFV in the Americas (Gould et al. 2017; 

Crawford et al. 2017; Tabachnick 1991).  

Currently, yellow fever is still endemic in tropical and temperate regions, despite the 

creation of the vaccine (1937) and the implementation of vaccination programs, which are 

sometimes poorly managed. According to the World Health Organization (WHO) (WHO 2017) 

more than 30 countries in Africa and more than 13 in Latin America are endemic areas for 

YFV, and vaccination is recommended for people traveling to these countries (Figure 5). 

However, even with massive vaccination campaigns in these countries, recurrent outbreaks and 

re-emergences continue to occur, as for example in Angola in 2016, where no reports of urban 

YFV outbreaks were reported since 1971. The outbreak in Angola has further spread to the 

Democratic Republic of Congo, a neighboring country, but also to Kenya through international 

travel from individuals that were infected in Angola. Moreover, 11 cases of foreign workers 

infected in Angola were reported in urban centers in China, which were the first cases of travel-

associated YFV introduction in Asia (Brent et al. 2018; Wilder-Smith and Monath 2017; Girard 

et al. 2020). Similarly, outbreaks of YFV in South American countries (Brazil and Peru) led to 

imported cases of YFV into Europe and the USA (ECDC 2017; Girard et al. 2020; Huang, 

Higgs, and Vanlandingham 2019). 
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Most of the endemic regions cited above have experienced the re-emergence and 

spillover of YFV due to factors that reflect social and surveillance problems: poverty, failure to 

implement vaccination programs, infected humans near naive populations in urban centers, 

rural areas with difficult access for vaccination, increased population density, as well as the 

failure of vector control in tropical and equatorial areas where mosquitoes that transmit the 

virus are prevalent (Bryant, Holmes, and Barrett 2007; Wilder-Smith and Monath 2017; Pierson 

and Diamond 2020). 

Characterized as a native African virus, YFV virus is transmitted primarily by Aedes 

spp that are widely distributed across the African continent and the Haemogogus species that 

are more predominant in forests from Latin America.  Although the two continents are endemic, 

it is estimated that 90% of the cases occur in Africa, resulting in approximately 130,000 severe 

cases of YFV as well as approximately 78,000 deaths per year, according to the estimation of 

a model (Garske et al. 2014; Hamlet et al. 2018). Progressions in disease burden change of YFV 

were made for 2050 and 2070 in Africa in a context of climate change. Gaythorpe et al., states 

Figure 5: Yellow Fever Maps. A) America Latina; B) Africa; 

Source: https://www.cdc.gov/yellowfever/maps/index.html 
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that in a less severe scenario that annual deaths will increase by about 93.0% [CI 95% (92.7, 

93.2%)] in 2050 (Gaythorpe et al. 2020). 

The biome is especially heterogeneous in Africa and Latin America, where recurrent 

outbreaks of YFV occur due the progressive combinations of factors that contributed (i.e., 

anthropic modifications) to the overlap of ecosystems (Possas et al. 2018). These regions harbor 

different species of mosquitoes capable of becoming infected with the YFV, and carry the virus 

between or in overlap of ecosystems and ecotone (florets, rural and urban areas) (Possas et al. 

2018). Thus, there are three main types of transmission cycles: sylvatic (or jungle), urban and 

intermediate: 

 

• Sylvatic cycles: the cycle is mediated by both varieties of tree-dwelling 

mosquitoes and monkeys are assumed to be the primary reservoir of YFV in 

tropical forests. In south America, the main wild mosquitoes that bite monkeys 

are the Haemogogus and Sabethes, whereas transmission among African 

primates is vectored by arboreal mosquito species such as Ae. formosus, Ae. 

africanus, Ae. simpsoni. Occasionally, humans can become infected when 

working or travelling in the forest (Garske et al. 2014; WHO 2016, 2017); 

• Urban cycles: It involves transmission by infected Aedes spp. mosquitoes that 

feed on humans (humans-mosquitoes-humans) and is characterized by rapid 

transmission due high population and mosquito density. Furthermore, the large 

epidemics caused by yellow fever virus in urban areas are due to the 

introduction of virus as a result of zoonotic spillover from the sylvatic reservoir 

to a susceptible population. This was reported by some studies done from 

outbreaks in Brazil and Uganda in 2016 (N. R. Faria et al. 2018; Kwagonza et 

al. 2018); 
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• Intermediate cycles: This type of transmission occurs in ecosystems that 

overlap rural and forest areas and are driven by peri-domestic mosquitoes who 

feed opportunistically on humans and monkeys. In Africa an example of 

intermediate cycle is in the moist Savannah region that is affected by a wide 

variety of tree-hole breeding mosquito and can transmit YFV to both humans 

and monkeys when density reaches high levels. These events can lead to small-

scale epidemics in rural regions (Garske et al. 2014; Barrett and Higgs 2006). 

 

Even with the existence of an effective vaccine, YFV is far from being eradicated due 

to the presence of a sylvatic reservoir, principally in Africa where non-human primates are 

hardly affected by the infection (unlike some episodes in Brazil (Garske et al. 2014; Gaythorpe 

et al. 2019; T. P. Monath and Vasconcelos 2015; WHO 2016). Thus, YFV infection keeps 

happening due/or as a result of sylvatic spillover. Other YFV burden is the climate change that 

can in the future interfere on the sylvatic transmission cycle and increase the cases of infection 

(Gaythorpe et al. 2020). Efforts in monitoring transmission and epidemiological surveillance 

of yellow fever are very important issues that will contribute to controlling or eliminating 

possible outbreaks in warmer areas or predicting outbreaks in other regions such as Asia that 

have never reported an outbreak of YFV but harbor species of mosquitoes that are susceptible  

to the West-African genotype of yellow fever virus (Lataillade et al. 2020). 

 

I.C.2.b. Dengue virus  

Infections with Dengue virus (DENV) increased rapidly and they represent the most 

prevalent mosquito-borne virus infection in the world, threatening 4 billion people in 128 

countries with 70% of them residing in Asia (WHO 2021). Dengue is endemic and widespread 

in tropical and subtropical areas due to the efficient mosquito vector Ae. aegypti and to a lesser 
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extent Ae. albopictus (Figure 6). Currently, it is estimated that 390 million infections occur 

yearly, causing mainly mild illness but also dengue hemorrhagic fever disease (DHF) and 

deaths (Guzman and Harris 2015). 

 
Figure 6: Global burden of dengue in the world. Modified from The Lancet, (Guzman and 

Harris 2015). 

 

 

 

The origin of dengue remains largely debated because several studies indicate that 

dengue emerged from monkeys and spread to humans in both Africa and Southeast Asia. The 

spread of DENV through other continents, like the Americas was facilitated during the slave 

trade between the 15th to the 19th centuries similarly as for YFV and the corresponding 

competent vectors (Chen and Vasilakis 2011; Gubler 2002; Vasilakis, Tesh, and Weaver 2008; 

Higuera and Ramírez 2019). 

Reports of the disease with similar clinical conditions was reported in a Chinese 

encyclopedia that dated from 265 A.D to 992 A.D. The disease was called water poison, and 

was reported as being associated with flying insects and water (Gubler 1998). The earliest 

description of febrile illness in Africa occurred in 1881 and 1883 on the coast of west Africa. 

Almost 100 years later, the dengue virus was isolated (DENV-1 and DENV-2) from patients 

with fever in Ibadan, a town located in the south west of Nigeria (Fagbami, Fabiyi, and Monath 

1977; Vasilakis, Tesh, and Weaver 2008). 
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In the early 20th century, Athens, Greece, was hit by a large dengue epidemic resulting 

in one million cases. Until 1940, only mild forms of the disease, but which caused large 

epidemics, were documented in the medical literature. However the pattern of the disease took 

another turn due to the description of hemorrhagic forms of the disease after the War World II 

and the first cases related of epidemic DHF were described in the Philippines in the early 50s 

(Gubler 1998). 

The picture of the dengue epidemic changed in the mid of the 20th century, and the 

virus expanded dramatically across continents most likely related to the spread of mosquito 

eggs carried in vehicle tires during shipping especially of Ae. albopictus. Ae. aegypti was the 

first vector to spread before the mid-20th century (Simmons et al. 2012). Even with the 

explosion of dengue in tropical countries, Southeast Asia managed to control the epidemic due 

to vector control policies implemented from 1950 to 1960 for the Malaria and Yellow Fever 

Programs (Gubler 2002).  

Eradication programs for Ae. aegypti began to be implemented in the tropics and 

subtropics, achieving success in a short space of time. However, the mosquitoes reinvaded areas 

that were previously eradicated because the dengue transmission cycle could not be stopped in 

endemic areas (Simmons et al. 2012). Some factors directly contribute to the re-emergence of 

dengue and the increase in the disease burden that accelerated the dengue epidemic such as the 

unprecedented global population growth, urbanization (i.e., in Southeast Asia) associated to 

urban crowding principally in tropical urban centers and population displacement through travel 

were essential for the increase and spread of dengue (Gubler 1998; Huang, Higgs, and 

Vanlandingham 2019). 

According to WHO, dengue cases increased over 8 fold over in the last two decades 

(2000 to 2019) with 5.9 million cases reported in 2019, with more than 3 million cases reported 

in the Americas (World Health Organisation 2021). Different serotypes of DENV have been 
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implicate with the massive outbreaks. Dengue virus comprises four serotypes (DENV-1 to 

DENV-4 and new DENV-5) genetically and antigenically distant, within the dengue antigenic 

complex, although they are epidemiologically similar (Vasilakis et al. 2011). The massive 

outbreaks are caused by different serotypes of dengue virus. In Guangzhou, China, serotype 

DENV-1 has been implicated in most outbreaks (Ma et al. 2021). The four serotypes circulate 

in Brazil as well as on the African continent, being DENV-1 and DENV-2 the most reported 

serotypes implicated in outbreaks in this sites (Cabral et al. 2021; Amarasinghe et al. 2011; 

Mwanyika et al. 2021). 

Gubler and collegues hypothesized that (Gubler 1998) the endemic strains of dengue 

that circulate today have a sylvatic ancestor involving non-human primates (NHP) and Aedes 

vectors from gallery forests. This hypothesis was tested by Whang and collegues (Wang et al. 

2000) who sequenced the complete genome of DENV-1, 2 and 4 strains, that were isolated from 

sentinel monkeys (Macaca spp. and Presbytis spp.) with Ae. niveua as the principal vector in 

Malaysia (Rudnick, Marchette, and Garcia 1967). In the same study Whang and collegues 

sequenced some DENV-2 strains isolated from forest areas in West Africa (Rico-Hesse 1990). 

Thus, showed that endemic/epidemic lineages of dengue serotypes evolved independently from 

sylvatic dengue lineages ~1500 years ago which represents a recent event in the evolution of 

dengue.  

In Asia all four sylvatic serotypes of dengue circulate between canopy-dwelling 

mosquitoes and monkeys and in West Africa until 2003 only sylvatic DENV-2 has been 

identified and demonstrated that sylvatic cycles are maintained between monkeys and sylvatic 

mosquitoes, principally Ae. furcifer mosquitos (Rudnick, Marchette, and Garcia 1967; M. 

Diallo et al. 2003). Yet, little studies are done on the sylvatic transmission cycle of dengue and 

the circulation of sylvatic serotypes to examine whether other mammals are involved in the 

maintenance of dengue virus in forests. Until 2011, three primate species (Chlorocebus sabeus, 
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Papio papio and Erythocebus patas) have been described to play a role in the sylvatic 

transmission cycles of dengue virus as amplifiers or reservoir hosts and in a limited number of 

regions in Africa (Vasilakis et al. 2011). Even today, there are no studies that examined to what 

extent sylvatic dengue viruses still cause outbreaks in humans, even after it has been shown that 

sylvatic dengue is the ancestor of endemic/epidemic dengue. Sylvatic DENV-2 isolates are 

evolutionary distinct from the endemic/epidemic DENV-2 isolates. Thus, only a few reports 

have documented the pathogenicity of sylvatic dengue in humans (Rico-Hesse 1990; Wang et 

al. 2000; Vasilakis et al. 2008). 

Within the four serotypes of dengue, distinct genotypes are described and they can co-

circulate in the same area (Tchetgna et al. 2021). Infection with a particular endemic dengue 

serotype can cause mild illness, resulting in homologous immunity to the circulating serotype 

in a particular community. However, when other endemic serotypes circulate in the same 

community causing co-infections, the risk to develop DHF increases (Weaver and Barrett 2004; 

Gubler 2002). For instance, in 1964 there was the first dengue outbreak in Nigeria where the 

isolated virus corresponded to dengue serotypes 1 and 2, causing only classic dengue (Fagbami, 

Fabiyi, and Monath 1977). After some years, DENV-3 and DENV-4 were reported and DHF 

was identified for the first time in Nigeria. Fagbami and collegues (2018), emphasized that 

presence of multiple serotypes of dengue in Nigeria enhances the occurrence of more cases of 

DHF and can be misdiagnosed as malaria which is common in these areas (Fagbami and Onoja 

2018). 

Current studies have appointed the active circulation of all dengue serotypes on the 

African continent. A systematic review and meta-analysis from Mwanyika and colleagues 

showed 17 outbreaks in East and 16 outbreaks in West Africa between 1960 and 2020, with 

DENV-2 and DENV-1 contributing to most outbreaks, followed by DENV-3 and DENV-4 

(Figure 7). Risk factors that have been associated with outbreaks include older age, climate 
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change, lack of vector control, and recent travel history (Mwanyika et al. 2021). 

 

 
Figure 7: Distribution of dengue virus serotypes in Africa. The degree of distribution was 

classified by color. Source: Viruses, (Mwanyika et al. 2021). 

 

 

 

In Gabon, Central Africa, DENV-2 has been implicated in outbreaks in 2007 and 2010. 

Surveillance studies between the 2007 and 2010 outbreaks showed the association between the 

circulation of DENV-1 and DENV-3 with DENV-2 in the respectively periods and clinical 

hemorrhagic signs, demonstrating the intensification of severe cases during the circulation of 

multiple serotypes (Caron et al. 2013). Recently in Douala, Cameroon, the co-circulation of 

DENV-1 to 3 (Tchetgna et al. 2021) was reported in acute febrile patients with 68.3% of cases 

infected with serotype 3 of dengue. Sylvatic DENV-2 was isolated from a patient returning to 

Spain after a trip to Guinea and presented a clinical condition of DHF. The authors reported 

then the first evidence of DHF caused by a sylvatic DENV-2 West African lineage virus (Franco 



 40 

et al. 2011).  

Sylvatic dengue cycles occur in many West African countries and Southeast Asia. 

Sylvatic DENV-2 has been detected in Senegal since 1970 in mosquitoes but also in humans 

and monkeys  .(M. Diallo et al. 2003) Moreover, there are periods in which some serotypes are 

silenced and re-emerge after intervals of 5-8 years, as reported by Diallo (2003), as example of 

DENV-2 which re-emerged in the sylvatic cycle in the Kedougou after years of silence. In the 

same study, 17 Chlorocebus sabaeus were captured in a forest gallery in Kedougou. DENV-2 

IgG was detected in 58% to 77% in adult and in 37% in juvenile monkeys. However, they could 

not conclude any relationship to the role of monkeys in the amplification of the virus, due the 

cross-reaction of antibodies between flaviviruses (M. Diallo et al. 2003; Saluzzo, Cornet, 

Castagnet, et al. 1986). In Nigeria, monkeys captured in lowland rainforest, living far away 

from humans, presented a high prevalence of dengue neutralizing antibody suggesting the 

existence of a forest cycle (Fagbami, Fabiyi, and Monath 1977). 

In the Americas, the presence of heterologous DENV-1 and DENV-2 antibodies was 

associated with increased risk for hemorrhagic fever (Gardella-Garcia et al. 2008). In Brazil a 

fatal case was associated with the introduction of a new DENV-2 which was attributed to 

several factors like herd immunity reduction against the serotype and differences in viral 

replication in the host (Cunha et al. 2021). All four DENV serotypes have also been identified 

in wild mammals in French Guyana, in Mexico, in Colombia, Costa Rica, Equator and Brazil, 

thus proving the possible existence of a sylvatic transmission cycle until then not well 

elucidated in these regions, unlike in Africa and Asia (de Thoisy B et al. 2009; Aguilar-Setién 

et al. 2008; Calderón et al. 2021; Platt et al. 2000; Catenacci et al. 2018). In French Guyana 600 

mammals were captured in forests surrounded by an urban area and forest sites where the 

disease has not yet emerged. All four DENV serotypes identified by RT-PCR, circulated in 

both sites and were detected in 22%, 12.6%, 12.5% of Rodentia, Marsupialia and Chiroptera, 
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respectively. They showed also that the DENV-2 strains found in mammals have 99% identity 

with the strains that circulate in humans and suggest a spillover from mammals or a possible 

enzootic cycle involving these animals (de Thoisy B et al. 2009). Bats in Colombia showed 

positivity to DENV-2 corresponding to natural infection (Calderón et al. 2021). In Brazil, 

primates and sloths presented antibodies against dengue virus serotypes 1, 2 and 3. These 

samples were collected in agroforestry environments where humans and animals share the same 

environment. This shows evidence for the circulation of the virus but does not confirm a sylvatic 

transmission cycle (Catenacci et al. 2018). 

As mentioned and evidenced above the four dengue serotypes traditionally are 

maintained in two distinct transmission cycles. The sylvatic cycle that include non-human 

primates, and probably also other mammals, and a diverse range of forest-dwelling mosquitoes 

primarily Aedes spp that occurs especially in Africa and Asia. The endemic/epidemic cycle 

which utilizes highly efficient peridomestic mosquitos as Ae. aegypti and Ae. albopictus and 

human host (Fagbami and Onoja, 2018).  

 

• In the dengue endemic/epidemic cycle, humans are the amplifier hosts in urban 

areas where the virus is mainly transmitted by Aedes spp. vectors and other 

mosquitos serving as secondary vectors (Wang et al. 2000; Weaver and Barrett 

2004) These mosquitoes have conquered a range of territories and are very 

efficiently to transmit dengue but can also be co-infected and co-transmit other 

arboviruses (Vogels et al. 2019; Rezende et al. 2020). However, the ability of 

these urban Aedes mosquitoes to transmit sylvatic DENV is being discussed. 

Recently it was reported that the circulation of sylvatic DENV-4 in both Ae. 

aegypti and Ae. albopictus in urban areas of Peninsular Malaysia, were very 

close to a sylvatic strain isolated from sentinel monkeys at the same place 50 
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years ago. In addition, all four dengue serotypes were identified circulating in 

the same period of the study. This fact shows the susceptibility of mosquitoes 

to become infected with sylvatic dengue strains (Johari et al. 2019). Another 

fact that can contribute to the distribution of sylvatic strains mirrors the context 

of rural African villages surrounded by forests where some species of 

mosquitoes i.e., Ae. furcifer, can circulate between forest and peridomestic 

habitats suggesting that transfer of strains could occur regularly (Vasilakis, 

Tesh, and Weaver 2008). 

• The sylvatic or zoonotic cycle involves especially non-human primates as 

vertebrate reservoir hosts in West Africa and in Southeast Asia and serological 

and molecular studies have suggested a secondary role of other mammals in 

the amplification of dengue virus. In the Americas the role of wildlife in the in 

the sylvatic dengue cycle has not yet been identified despite serological and 

molecular evidence (de Thoisy B et al. 2009; Calderón et al. 2021). Until now, 

five sylvatic serotypes have been recognized and the last has only been isolated 

in Asia (Mustafa et al. 2015). The sylvatic cycle involves arboreal mosquitoes 

that live in gallery forests, especially in tree-holes, and then maintain the cycle 

when they feed on NHPs  (Vasilakis, Tesh, and Weaver 2008; Schatzmayr 

2001; Weaver and Barrett 2004). Another fact to note is a second type of 

sylvatic cycle in rural areas surrounded by forest that creates an “intermediate 

zone” that favors primatophilic mosquitoes that live in the forest canopies and 

descend to ground level to feed on humans, which facilitates the transfer of 

sylvatic dengue strains (Vasilakis N. et al.,  2011).  
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I.C.2.c. Zika virus  

Zika virus is on the priority list of the WHO "blueprint", that means, that it is a disease 

that requires attention for additional surveillance and research. Zika virus is mainly transmitted 

by the highly anthropophilic Ae. aegypti mosquito that is distributed in a wide range of regions 

(African Region, Region of the Americas, South-East Asia Region, and Western Pacific 

Region) (World Health Organization 2019). Until 2007, sporadic cases of Zika virus infections 

were registered in the world causing only mild febrile illness in humans in Africa and Asia 

(Pierson and Diamond 2020). Since 2013 successive outbreaks by Zika virus have been 

observed and a lot of information began to be generated. Currently, a total of 86 countries and 

territories in subtropical and tropical climates have reported autochthonous transmission of 

ZIKV (World Health Organization 2019). 

Zika virus was discovered in the Zika Forest of Uganda in 1947 and isolated from a 

sentinel rhesus monkey. The following year Zika virus was isolated from Ae. africanus 

mosquitoes in the same region, and was identified consecutively for the first time in humans in 

Uganda and United Republic of Tanzania in 1952 (Dick 1952). The Zika transmission cycle in 

Africa was initially mainly limited to enzootic circulation and sporadic spillover to humans. 

Zika virus expanded further to equatorial Asia from the ancestral African lineage. The Asian 

lineage of the virus emerged and conquered the territory of the Pacific islands and the Americas, 

at the beginning of the 21st century (Posen et al. 2016). A considerable number of outbreaks 

started to appear: in French Polynesia (2013-2014), Cape Verde Islands and Brazil (2015), 

Guinea-Bissau, Angola, Singapura, Vietnam and Thailand (2016). Furthermore, cases of 

Guillain-Barré syndrome (GBS), microcephaly, maternal-fetal transmission and also detection 

of Zika in semen shaped the set of factors associated with Zika virus outbreaks leading to a 

WHO declaration that ZIKV is a Public Health Emergency of International Concern (World 

Health Organization 2019; Musso, Ko, and Baud 2019) (Figure 8). 



 44 

 
Figure 8: Number of reported and cumulative cases of Zika virus infection in countries. 

Source: The New England and journal of Medicine, Reproduced with permission from 

(Musso, Ko, and Baud 2019).Copyright Massachusetts Medical Society. 

 

 

In a phylogenetic tree, Zika virus clusters within the Spondweni virus (SPONV) 

lineage that circulates only on the African continent. ZIKV strains are divided into two major 

lineages, the African lineage and Asian/American lineage and they differ in approximately 90% 

of their nucleotide sequence (Duong, Dussart, and Buchy 2017). Shen et al. (2016), revealed in 

their study that two countries in West Africa (Senegal and Cote d’Ivoire) played a key role in 

the evolution and genotypic divergence of Zika virus, since in the phylogenetic tree  the Zika 

virus is located close to the SPONV ( a virus that circulate only in Africa), suggesting this 

geographical place as origin of Zika (Shen et al. 2016; Marchi et al. 2020). The spread of the 

Zika virus across Southeast Asia gave rise to the Asian lineage which subsequently spread to 

French Polynesia followed by the spread to America, giving rise to American strains that 

emerged from the ZIKV Asian lineage (Nuno Rodrigues Faria et al. 2016; Musso, Ko, and 

Baud 2019). African lineages have been isolated in Central and Western Africa and contains 

two sublineages (East and West Africa), based on the sequences of  E and NS5 genes, while 

Asian/American lineage are reported in Southeast Asia, Pacific region and American Islands, 
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the latter have formed a new American subclade (Nuno Rodrigues Faria et al. 2016; Duong, 

Dussart, and Buchy 2017) (Figure 9). 

 
Figure 9: Distribution of Zika virus lineages after its origin. Source: Nature ecology and 

evolution, (Gutiérrez-Bugallo et al. 2019) 

 

 

The lineages show differences in transmissibility and pathogenicity/virulence. While 

only the Asian Zika virus lineage has been implicated in all human outbreaks and fetal 

abnormalities, the African Zika virus lineages showed higher transmissibility in mosquitos and 

lethality in mice but also higher infectivity and replication in human neural stem cell than Asian 

strains in experimental infections (Aubry et al. 2021; Simonin et al. 2017)  

The Zika virus mosquito-borne transmission cycle involves two distinct cycles 

(sylvatic and urban) and the “intermediate zone” (ecotone/rural) as for other flavivirus cycles. 

• Sylvatic or enzootic cycle: involve primarily NHPs as vertebrate/amplifier host 

and arboreal mosquitoes. Sometimes, Zika virus may spillover from the 

sylvatic context and initiate epidemics in humans or humans can be bitten by 

virus-infected mosquitoes, occasionally when they encroach the forest. Until 

now, no animal reservoirs were identified other than primates, despite 
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serological evidence of antibodies in other animal species. Therefore, other 

vertebrate animals can play a role in maintenance of Zika virus like birds, 

reptiles or bats in East Africa for example (Darwish et al. 1983; Shepherd and 

Williams 1964; Johnson et al. 1977; Gutiérrez-Bugallo et al. 2019; Kirya and 

Okia 1977). 

• Urban cycle: the virus is transmitted from human to human via Ae. aegypti and 

Ae. albopictus mosquitos as vector.  

 

Many mosquito species worldwide have been identified to be infected with Zika 31 

species belonging to five genera: Aedes, Culex, Anopheles and Eretmapodites (Gutiérrez-

Bugallo et al. 2019). The majority of these species have been caught in sylvatic settings 

(Kraemer et al. 2015). These mosquitoes are distributed in 15 countries in both enzootic and 

epidemic regions and they suggested that in the sylvatic Zika transmission cycle the following 

species Ae. africanus, Ae. furcifer, Ae. lutocephalus, Ae. vittatus, Ae. dalzielli and Ae. taylori 

are mostly implicated while in the urban cycles it is Ae. aegypti (Gutiérrez-Bugallo et al. 2019). 

Ae. aegypti remains the main vector worldwide in urban areas that transmits Zika virus. 

Furthermore, studies on vector competence for Zika virus transmission, as well as 

epidemiological and genomic surveillance in endemic and forests areas is still scarce.  Recently, 

an experimental infection study with Ae. aegypti (native mosquito) and Ae. albopictus (invasive 

mosquito) in Gabon, showed that besides that they are able to replicate and transmit all Zika 

virus strains, they have high vector competence for the African virus lineage. The authors 

emphasize the strong adaptation of African Zika virus strain to both mosquito species in Gabon 

and the ZIKV epidemics is mainly related to related to autochthonous cases rather than non-

native ZIKV (Jiolle et al. 2021). Another study in Central Africa, in Cameroon and the Republic 

of Congo, also analyzed the ability of native and invasive Aedes mosquitoes to transmit Zika 

virus and confirms the results obtained in the study in Gabon, thus highlighting the efficient 
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transmission of Zika virus by both mosquito species. However Ae. aegypti showed to be more 

transmission competent than Ae. albopictus (Kamgang et al. 2020). These results are important 

because they clarify and demonstrate the vector capacity of Aedes mosquito species to cause 

possible outbreaks in urban and rural communities. In blood donors in Cameroon the global 

seroprevalence was ∼5% and was associated with the existence of a (peri-) sylvatic cycle of 

Zika virus transmission (Gake et al. 2017). In East Africa, convalescent plasma from 

individuals with ZIKV-like illness (fever and/or rash) were screened and very low 

seroprevalence of IgG antibodies against ZIKV was found during ~20-year period (Gobillot et 

al. 2020). In Senegal and Nigeria, samples collected from 1992 to 2016 from febrile patients, 

showed that 6.2% of patients had IgM antibodies to ZIKV and were infected with the African 

lineage of Zika virus. The study showed also the presence of 2 African ZIKV sublineages 

circulating throughout West Africa and demonstrate that Zika virus circulates, even if timidly, 

among the urban population (Herrera et al. 2017).  

In Africa, enzootic cycles of Zika virus are supposed to involve NHPs and arboreal 

mosquitoes and circulation seems to be frequent as shown through successive studies in Senegal 

over the last 50 years. The frequency of sylvatic arbovirus isolations and temporal patterns of 

mosquito abundance, were associated with weather variables and evaluated using a uniquely 

rich longitudinal dataset from Senegal. ZIKV has a dominant isolation periodicity of 4.0 years 

(Althouse et al. 2015). However, in America and Asia, no Zika virus sylvatic cycle was 

identified (Gutiérrez-Bugallo et al. 2019) but some studies have reported Zika infection in 

NHPs in Brazil (S. R. Favoretto et al. 2019) and the death of wild marmosets infected with Zika 

in Rio de Janeiro (Meireles M. 2020; Silva et al. 2020). In Asia, despite of sporadic circulation 

and detection of Zika virus in humans, it is unknow if this cases are only driven from the human-

endemic cycle or if they can occur from zoonotic spillover events to humans from not yet 

identified sylvatic cycles (Duong, Dussart, and Buchy 2017). 
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Despite evidence of previous exposure to ZIKV in various animal species as well as 

viral isolation reported in the literature, little is known about the effects of Zika virus infections 

in wild animal populations (Bueno et al. 2016; Gutiérrez-Bugallo et al. 2019). Experimental 

studies show that bats and monkeys are susceptible to Zika virus infections (Simpson and 

O’Sullivan 1968; McCracken et al. 2017; Vanchiere et al. 2018), but knowledge on the extent 

and the degree of viremia and possible clinical signs is still limited. Furthermore, there is also 

lack of data on the circulation of this virus, although it originated in Africa, on the African 

continent itself, as well as in Asia and America. Despite evidence of NHPs participation in 

enzootic cycles, other animal species may support Zika virus amplification in rural and forest 

areas. Many questions remain on how the cycle is sustained in wild areas, the impact of the 

virus on wild animal populations, the mechanism of Zika virus transmission among wild 

populations and on how animals and humans become affected by Zika virus spillover/spillback 

between urban and sylvatic cycles. Thus, entomological studies, combined with 

epidemiological and genomic surveillance in wild environment from field samples of wildlife 

are essential to know how the Zika virus emerges and his subsequent dispersion.  

 

I.C.2.d. West Nile virus  

More than 80 years have passed since West Nile virus (WNV) has been isolated and 

became a mosquito-borne flavivirus disease with widespread geographical distribution 

infecting a wide range of hosts and vectors. When it comes to pathogenicity, WNV is the most 

important veterinary pathogen among flaviviruses, however the degree of pathogenicity in 

humans is comparatively low when compared to other flaviviruses such as DENV, YFV and 

Japanese encephalitis virus (JEV) (H Weissenböck et al. 2010) 

WNV was first identified in 1937 in a woman with fever in the West Nile district of 

Uganda (K. Smithburn et al. 1940). More than 13 years later, new isolates were identified in 
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the blood of febrile children from Egypt (Melnick et al. 1951) and in birds (crows and rock 

pigeon) in the Nile delta Region (Work and Hurlbut 1953). Sixty years after its isolation, WNV 

spread in the Old world and was isolated from birds (Nir et al. 1967), mosquitoes, domestic 

animals (Omilabu et al. 1990) and  humans (Renaudet, Jan, and Ridet 1978) (Nur et al. 1999), 

causing only mild disease and no deaths (Chancey et al. 2015). The majority of the epidemics 

in this period occurred in Sub-Saharan Africa (SSA) (Figure 10) and during this time up to 

55% of human populations seroconvert (W. Sule et al. 2015). 

 

  
Figure 10: Distribution of cases with West Nile virus that have been isolated or 

detected on the African continent in the last 80 years. (This map was made with 

references in Sule et al. 2018). 

 

 

In a serological survey in Guinea, Sudan, Uganda, Kenya and DRC, the authors found 

IgG antibodies against WNV in human samples in all of these countries suggestng that the  virus 

is very active in these areas. Besides that, in the same study bleu monkeys from Kakamega 
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forest Kenya showed presence of neutralizing antibodies to West Nile and St. Louis viruses (K. 

C. Smithburn and Jacobs 1942). In South Africa, samples from indigenous residents in widely 

scattered areas, showed highest incidence of sera with neutralizing antibodies to West Nile and 

Sindbis viruses. Moreover, on the same study showed that 18,8% (78/413) of monkeys had 

neutralizing antibodies to WNV as well as domestic animals and juvenile birds  (Kokernot, 

Smithburn, and Weinbren 1956). Interestingly, a serosurvey held in Cairo in 1951 conducted 

in 251 individuals, more than 50% of the children in the study, which were the vast majority, 

carried maternal antibodies against WNV, as well as neutralizing and complement-fixing 

antibodies to WNV, indicating the widespread of WNV in the population (Melnick et al. 1951). 

WNV continued to circulate and cause outbreaks on the African continent and Middle East 

during the beginning of the 20th and 21st century, causing mild fever symptoms to fatal cases 

of WND in humans but also equine infections (Chancey et al. 2015). 

In Europe, the West Nile virus circulates since 1958 when it was first detected in the 

serum of an Albanian patient (Bardos et al. 1959). Then four years later an outbreak in France 

was recognized where cases of WNV were identified in both humans and horses (Murgue et al. 

2001). West Nile virus continued to circulate, and was identified in a wide range of species of 

migratory birds, ticks, and mosquitoes in several countries on the European continent (Filipe 

1972; Lontai and Straub 1998; Ernek E 1977). After a period of silence two major epidemics 

occurred in Europe, one in Romania (1996) and another one in Russia (1999) with patients 

presenting neurological signs and meningoencephalitis (Platonov et al. 2001; Tsai et al. 1998). 

Several other outbreaks of WNV have subsequently been reported in Europe between 2000 and 

2009 in France, Hungary and Italie (Zeller and Schuffenecker 2004; Martin and Simonin 2019). 

Surveillance programs in Europe started to be implemented after the constant outbreaks with 

WNV, which conquered other European territories that were not yet identified, leading to the 

suggestion of a seasonal introduction through different routes (Esteves et al. 2006; Sambri et 
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al. 2013; Chancey et al. 2015). 

Simultaneous outbreaks of WNV have also occurred in the Middle East in countries 

as Turkey, Iran, Lebanon, Jordan (Chancey et al. 2015) since the first isolation in 1951 in Israel 

where the first outbreak occurred on an agricultural settlement with higher morbidity in children 

than in adults (Bernkopf, Levine, and Nerson 1953). Following this period, another outbreak in 

Israel marked a new era of epidemics in the region and it was in 2000, more than 20 years 

without reported WNV outbreaks, that 35 fatal cases were confirmed out of 417 serologically 

confirmed cases of WNF (Weinberger et al. 2001). WNV in Southern and Eastern Asia as well 

as in Australia have been documented in humans, birds (Mackenzie and Williams 2009) and 

other animal species,  principally in China with seropositivity ranging from 4.9% and 14.9% in 

dogs and cats, respectively (Lan et al. 2011). Curiously, the first case of WNV reported in China 

was in birds, unlike several other reports in the world where the first isolates were identified in 

humans. In India, cases of WNV have been reported since 1981, although sporadic cases were 

documented throughout 1970s - 2000s (George et al. 1984).  

At the end of the 20th century, the West Nile virus has emerged in the North America 

and attracted attention by the rapid spread in this new territory (Gubler 2007). The epicenter of 

the epidemic started in the metropolitan area of New York  in 1999, where cases of encephalitis 

and meningitis were observed (Mostashari et al. 2001). The virus had already widespread over 

10 states in 2001 and had already reached 40 states in 2002, with cases of WNV and 

approximately 10% of fatalities. After its constant presence in 2004 the WNV was considered 

endemic in North America. In 2010 a study estimated that more than 3 million people were 

infected with WNV in the US based on antibody detection which represents a cumulative 

incidence since the first outbreak in 1999 (Petersen et al. 2013). WNV spread throughout 

continental USA and established enzootic cycles in this region. The virus is also widely 

established from Canada to Venezuela (Gubler 2007). The first cases in South America were 
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documented in Colombia, Argentina and Venezuela in horses and sylvatic birds. Serological 

evidence of WNV infection in Brazilian horses and birds were reported in 2008, the first human 

case was confirmed in 2014 and the first isolation of WNV was confirmed in 2018 from a  horse 

that presented neurological disorders and died (de Castro-Jorge et al. 2019). However, in 

tropical areas such as Caribbean or in Central or South America, severe and fatal neurological 

cases of WNV infection have been rare in humans and horses, presenting a different 

epidemiologic pattern compared to the viruses from the same serogroup and which are closely 

related such as Japanese encephalitis virus and St. Louis encephalitis (Gubler 2007). 

West Nile virus is phylogenetically related to Usutu, Murray Valley encephalitis and 

Kunjin viruses and is a member of the Japanese encephalitis serocomplex (Calisher et al. 1989). 

Multiple lineages of WNV have been identified that mostly correspond with geographic 

distribution and they differ by more 20-25% (May et al. 2011; Chancey et al. 2015). The two 

major lineages, lineage 1 and 2, emerged in the beginning of 20th century and are still 

predominant in the epidemics in North America and Europe (W. F. Sule et al. 2018). WNV-1 

lineage crossed  of the eastern migratory birds routes (Eastern  or Western Mediterranean 

countries) which facilitated its spread northwards towards Europe, Middle East and Northern 

of Africa (Zehender et al. 2011; Chancey et al. 2015). Lineage 1 is the largest in world 

distribution and is associated with outbreaks in humans together with lineage 2 and 5. Lineage 

1 is subdivided in three clades: 1a contains isolates from Africa, Europe, the Middle East, Asia 

and the Americas, clade 1b is found in Australia and is represented by the Kunjin virus (KUNV) 

and 1c (formerly lineage 5) is represented by isolates from India. A single substitution at NS3 

residue 249 in lineage 1 WNV strains confers increased viremia and virulence in birds 

especially in American crows (Brault et al. 2007). The high levels of WNV lineage 1 

seropositivity in Africa suggest an endemic mosquito-bird transmission cycle, whereas in 

Europa, WNV circulates seasonally causing sporadic epidemics (May et al. 2011). Lineage 2 
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is endemic in sub Saharan Africa and Madagascar and in South Africa and is implicated in 

neurological diseases in horses (P. Jupp 2001). In Europe, WNV lineage 2 strains emerged in 

2005 and have been associated with bird and human outbreaks (Chancey et al. 2015) but also 

in Equine encephalomyelitis outbreak (Kutasi et al. 2011). Lineage 3 of WNV was isolated in 

mosquitos in Austria in 1997 and 1999, while lineage 4 includes isolates from ticks, mosquitoes 

and reptiles and has been seen circulating since 1988. Lineage 6 has been described in Spain 

and the lineage 7 strains were isolated from ticks and rodents in Senegal and experimentally it 

has been shown to be more virulent than the 1c strain 'NY99" (Fall et al. 2017).  

The natural enzootic cycle of WNV is between ornithophilic/anthropophilic 

mosquitoes and feral birds, with mammals serving as dead-end host because of low-level or 

short-duration viremia. Humans and horses can also be infected with WNV, although they can 

develop serious illness  leading to death, they are considered as dead-end or incidental host in 

the transmission cycle because of low viremia (P. Jupp 2001; Jeffrey Root 2013). Other 

vertebrate species (dogs, goats,  cattle, pigs, chips and other) are also susceptible to virus 

infection and some reports have shown that they can develop low viremia and support 

arthropod-borne transmission (Meulen, Pensaert, and Nauwynck 2005). Furthermore, WNV 

infection have been reported in wild mammals (lemurs, rodents and bat), in livestock (sheep 

and goats) and sometimes with high seroprevalence rates (McLean et al. 2002; Meulen, 

Pensaert, and Nauwynck 2005) for example, among a group of crocodiles in Israel, 70% (14/20) 

showed neutralizing antibodies to WNV (Steinman et al. 2003). Other mechanisms of WNV 

transmission is by close contact between susceptible birds and cloacal or oral fluids from other 

birds but also when susceptible hosts feed on infected animals or mosquitoes (Meulen, Pensaert, 

and Nauwynck 2005). 

Birds are the principal reservoir hosts for the WNV life cycle and mosquitos of the 

Culex genus are the principal vector, although WNV can also be transmitted by a variety of 
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other mosquitoes. WNV infection is very pathogenic for some species of birds principally to 

the crows family in Americas (Eidson et al. 2001; Brault et al. 2004). some bird mortality, 

although rare, has been associated with WNV in Europe, Africa, the Middle East and Asia 

(Kilpatrick 2011), but it can occur as was the case with young geese in Israel (McLean et al. 

2002). Normally, birds develop high levels of viremia that are enough to infect feeding 

mosquitoes fact and thus to consider birds as host reservoirs of the virus (W. F. Sule et al. 2018). 

A study in South Africa showed that 92% and 70% of 30 feral bird species had 

hemagglutination inhibition (HI) and neutralizing antibodies to WNV, respectively. In addition 

these bird species were involved in the enzootic cycle of WNV without fatal cases, suggestion 

that these birds were the main host reservoir (P. Jupp 2001).  

West Nile virus infections have been described in many mammal species with high 

seropositivity rates, but their role in the epidemiology of WNV is still unknown. In Louisiana, 

1,692 captive rhesus monkeys, pigtail macaques and baboons had their blood tested to WNV 

after an epidemic of meningoencephalitis during the summer in the state. The study found a 

high infection rate in this captive nonhuman primate population  with an overall seroprevalence 

of 36%, suggesting the silent circulation in nature during epidemic periods (Ratterree et al. 

2003). Recently, another study conducted in mangrove forests and caves from Malaysia, 

showed a seropositivity of 29.6% to WNV in long-tailed macaques, and of  12% in bats (Lesser 

Short-nosed Fruit bats, Lesser Sheath-tailed bats, and Thai Horseshoe bats) (Ain-Najwa et al. 

2020). Wild boars also showed antibodies to WNV by virus neutralization test (VNT) in Italy 

(Petruccelli et al. 2020). 

 

I.C.2.e Usutu virus  

Usutu virus (USUV) is a member of the Japanese encephalitis serocomplex and shares 

many features with WNV such as the enzootic transmission cycle that involves Culex mosquitos 
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as vector and birds as reservoir hosts, but also the pathogenicity with neurological 

complications (Poidinger, Hall, and Mackenzie 1996). USUV recently emerged in Europe 

causing epizootics among both captive and wild birds and also Usutu fever in humans (Daniel 

Cadar et al. 2014). 

USUV, was first isolated from a pool of Culex neavei mosquitos in 1959 in Swaziland 

(Southern Africa). During the same period, it was also isolated from a bird-biting mosquito 

Mansonia autites, in Uganda (M. C. Williams et al. 1964; McIntosh 1985). Usutu virus has 

been reported in many countries of Sub-Saharan Africa like Senegal, Côte d’Ivoire, Uganda, 

Nigeria, Central African Republic (CAR) and Burkina Faso and many isolates were identified 

by entomological surveillance in these countries principally in Senegal (Nikolay et al. 2011). 

In these countries, USUV was isolated in different species of mosquitoes as Culex neavei, Culex 

perfuscus, Aedes minutos, Aedes mansonia and Coquillettidia, non-migratory birds (without 

fatal cases), rodents and humans (only two cases, in CAR and Burkina Faso) (Nikolay et al. 

2011).  

Usutu virus was introduced in Europe, similarly as for WNV by migratory bird routes 

from Africa through southern Mediterranean countries (Figure 11). USUV emerged in 2001 in 

Austria, where it caused significant outbreaks and mortality among many species of birds 

principally on Eurasian blackbirds and the virus continued to spread to neighboring countries 

(Herbert Weissenböck et al. 2002). However, there is serological evidence from 1996 

suggesting that USUV circulated prior to 2001, and that the virus established among local 

mosquito species and then spread further (Herbert Weissenböck et al. 2013). After the first 

outbreak in Austria, a decrease in wild bird mortality was shown after a high rate of 

seroconversion of >50% was reached in 2005 compared to <10% between 2003 and 2004 in 

these birds, concluding herd immunity among the bird hosts (Meister et al. 2008). There is 

evidence of co-circulation of USUV and WNV in Southern European countries and some 
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authors showed that the seroprevalence of USUV seems to be much higher than WNV (Zannoli 

and Sambri 2019). In addition, these two viruses are quite similar for clinical manifestations in 

humans and when it comes to pathogenicity in some bird species, USUV appears to be more 

lethal as compared to WNV (Zannoli and Sambri 2019). 

 
Figure 11: Identification of the Usutu virus in countries until 2019. 

Source: Viruses (Roesch et al. 2019) 

 

 

The first human cases in Europe were identified in blood donors in Italy in 2009 by 

serological confirmation (Gaibani et al. 2012) and the first neuroinvasive case in two 

immunocompromised patients in the same year by RT-PCR and sequencing (Pecorari et al. 

2009; Cavrini et al. 2009). Neutralizing and IgG antibodies to USUV were found in 18.1 % of 
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forestry workers from Northern Italy (Percivalle et al. 2017). Until 2018, <50 human cases of 

USUV infection were identified with almost all the cases in Europe (Italia, Germany, Croatia, 

Austria and France) and two other cases in Africa (CAR and Burkina Faso) ( Clé et al. 2019; 

Zannoli and Sambri 2019). These human USUV infections were characterized by meningo-

encephalitis and neuro-invasive disease in Europe and mild clinical signs (fever and skin rash) 

in the two African cases. Retrospective studies in human cerebrospinal fluid and serum samples 

(Italy) but also in blood donors (Italy and Germany) have identified the presence of USUV 

RNA and past exposition to USUV through antibody detection (Grottola et al. 2017; Daniel 

Cadar et al. 2017). The study conducted by Grottola et al. (2017) in the Emilia-Romagna Region 

in northern Italy, suggested that human USUV infection is not a sporadic event (Grottola et al. 

2017). These studies confirmed the existence of asymptomatic USUV infections and the 

necessity to better classify the clinical conditions of infections related to USUV. In reality, they 

observed that the human cases coincided with USUV bird epizootics which could favor the 

exposure of humans to this infection (Clé et al. 2019). 

In Europe, in addition to evidence of infection and die-off disease in birds by USUV, 

other animal species were detected with evidence of USUV infection. These evidences raised 

question on the ability of USUV to adapt to new hosts. A study using virus-specific micro-

neutralization tests and conducted in Zoo animals in France showed evidence of USUV 

infection in African wild dogs but also different rate of seroprevalence, 14.9% to 1.46% in birds 

for Usutu and West Nile viruses, respectively (Constant et al. 2020). In Italy, horses, chickens 

and dead wild birds were examined for the presence of USUV after episodes of high mortality 

of blackbirds in 2009. Samples were collected between 2008 and 2009 and horses showed 

higher prevalence of USUV neutralizing antibodies, 89.2% in 2008, as compared to 7.8% in 

2009 in Italy. Chickens, blackbirds, rock pigeon and magpie also seroconverted to USUV and 

viral strains were detected in 52.9% of blackbirds (Savini et al. 2011). In southwest Germany, 
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USUV was identified in brain samples of 2 dead bats (Pipistrellus pipistrellus). The both bat 

USUV strains had 90.8% to 99.3% aa identity compared to detected in mosquitoes, birds and 

humans’ strains from Europe and Africa. The authors suggest the probability of interactions 

between bats, mosquitoes and birds and their contribution in the epizootic cycles rather than 

acting as a silent reservoir to USUV(Daniel Cadar et al. 2014).  

Engel et al. (2016), showed by analysis of the complete genome from different 

mosquitos, birds and bat species, that Usutu virus was introduced regularly from Africa into 

Europe during the last 50 years and this events are still ongoing (Engel et al. 2016). These 

events explain the broad genetic diversity of USUV strains identified in Europe (Roesch et al. 

2019; Engel et al. 2016; Ndione et al. 2019; Cadar et al. 2017). So far, eight different genetic 

lineages have been reported on the basis of their geographic origin and the genetic variability 

based on partial NS5 (highly conserved) and full-genome sequences. The USUV strains are 

composed by African (1,2 and 3) and European groups (1,2 ,3 ,4 and 5) and they were 

differentiated from each other by different host species, climate and vegetation (Engel et al. 

2016; Roesch et al. 2019; Cadar et al. 2017). 

Similarly, as for the enzootic cycle of WNV, USUV is maintained between 

ornithophilic mosquito vectors, mainly of the Culex genus and birds as natural amplification 

hosts. However, information about ecology and the existence of a non-avian reservoir, that 

could be involved in the USUV transmission cycle, principally in Africa is still scarce (Nikolay 

et al. 2011). Yet, 93 bird species (wild, captive and migratory) were reported to be infected with 

USUV, which caused clinical manifestations as central nervous system disorders, prostration, 

disorientation, ataxia and weight loss and consequently led to avian mortality in Europe (Clé et 

al. 2019). Some species of birds such as blackbirds (Turdus merula), gray owls (Strix nebulosa), 

and house sparrows (Passer domesticus) seem to be the most affected by USUV infection. 

Other animal species have been reported to be infected with USUV such as horses (Savini et 
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al. 2011), bats (Cadar et al. 2017), wild boars (Petruccelli et al. 2020), wild ruminants (Garcia-

Bocanegra et al. 2016), dogs (Montagnaro et al. 2019), rodents and shrews (Diagne et al. 2019) 

but they have been designated as accidental hosts. 

Besides all the evidence that USUV infects a wide range of animal species, it has high 

adaptability to naïve vectors and vertebrate host populations in Europe and increasing virulence, 

limited research is conducted on USUV. Understanding its ecology, as well as other 

mechanisms that are involved in its transmission and maintenance, but also establishing 

surveillance programs in risk areas and in wildlife are necessary. This emergent virus has the 

potential for global spread and to become a public health burden as the example of other 

flaviviruses that originated on the same continent.  

 

I.C.3 Genus Alphavirus 

The Alphavirus genus (Alpha - from Greek letter α) originally got its name from its 

first classification within Group A arboviruses based on their antigenic cross-relationships. The 

Alphavirus genus belongs to the Togaviridae family and is the only genus of this family and it 

contains at least 32 species that can be classified antigenically and genetically into complexes 

(Chen R et al. 2020). 

The Alphavirus genus comprises arboviruses that are linked to global epidemics and 

their members are responsible for a wide range of medically important emerging diseases in 

humans, but they also can infect domestic and wild terrestrial vertebrates, as well as fish 

(Pastorino et al. 2004; Peyrefitte et al. 2007; Pérez et al. 2019; Steyn et al. 2020; Button et al. 

2020). Interestingly,  Alphaviruses present an epidemiological pattern linked to ecological and 

geographical conditions, which means that some members are restricted or have been identified 

in just one geographic region as is the case of ONNV in Africa and Mayaro virus (MAYV) in 

Latin America (Powers et al. 2001; Chen et al. 2020). 
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Like other arboviruses of medical importance, alphaviruses are transmitted by 

mosquitoes, except salmon pancreatic disease virus (SPDV) and Southern elephant seal virus 

(SESV) i.e., SES virus found in lice collected from elephant seals (La Linn et al. 2001). 

Interestingly, these two marine alphaviruses are possibly linked to the evolutionary origin of 

the alphaviruses, because phylogenetic analysis suggest that the origin of alphaviruses occurred 

in the southern oceans and spread across the Old and New World (Forrester et al. 2012). 

Alphaviruses are classified into Old World viruses, which are arthritogenic such as 

Chikungunya (CHIKV), Mayaro (MAYV), O’nyong’nyong (ONNV), Semliki Forest (SFV) 

and Ross River (RRV) and New World viruses, those that cause encephalitis such as Western 

Equine, Venezuelan Equine and Eastern Equine Encephalitis viruses. They can be also divided 

into eight antigenically related complexes (Figure 12) (Powers et al. 2000; Weaver et al. 2012; 

Filomatori et al. 2020). 

 
Figure 12: Phylogenetic tree of the alphaviruses divided into antigenic 

complexes and geographic placement. Source: Elsevier, Antiviral 

Research (Weaver et al. 2012) 
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I.C.3.a. Structure and Genome Organization  

 

Alphaviruses are small RNA virions about 70 nm in diameter, spherical and include 

an icosahedral nucleocapsid composed of 240 capsid protein monomers, surrounded by a lipid 

bilayer embedded with glycoprotein spikes. The envelope contains 80 spikes, each spike is a 

trimer of E1 and E2 heterodimers (Figure 13)(Weaver and Smith 2011; Chen R et al. 2020). 

The cytoplastic tails of E2 interact with capsid proteins (Button et al. 2020). 

 

 
Figure 13: Alphavirus structure. (a) A representation of the structure of the Sindbis 

alphavirus virion; (b) Trimer of spike E1/E2. Heterodimers in gray. OM, outer 

membrane. IM, inner membrane. NC, nucleocapsid core. Modified from Elsevier, 

Current Opinion in Virology (Button et al. 2020). 

 

 

 

The genome of alphaviruses is a positive sense, single-stranded RNA of approximately 

~11.5 kb in length. Alphavirus RNA contains a 5’cap, and 3’ poly-A tail, and encodes four 

nonstructural proteins and six structural proteins (Figure 14). The nonstructural ORF encoded 

nsP1-nsP4 that are important for transcription and replication. Structural ORF encodes the 

capsid, E3, E2, 6K/TF (transframe) and E1, in this order, that are translated as polyproteins 

from subgnomic mRNA. Structural proteins are involved in the assembly of an infectious virion 
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and E2 contains the major antigenic determinants that contribute to virulence in vertebrate hosts 

and infectivity in mosquitoes (Chen et al. 2020; Weaver and Smith 2011; Weaver et al. 2012; 

Button et al. 2020) 

 

 

Figure 14: Alphavirus genome structure. Modified from, Elservier Antiviral Research 

(Weaver et al. 2012). 
 

 

 

I.C.4. Zoonotic Alphaviruses 

 

Several zoonotic alphaviruses such as Middelburg, Sindbis, Venezuelan equine 

encephalitis, Mayaro, Ckikungunya and O’nyong-nyong viruses have re-emerged over the past 

decade in Old and New World regions causing neurological disease outbreaks in wildlife, 

domestic animals and fever, rash, myalgia, arthralgia and neurological symptoms in humans. 

This group of viruses often circulates between both primatophilic and anthropophilic 

mosquitoes and is documented  in a wide variety of mammalian, avian and other vertebrate 

hosts (Weaver et al. 2012; Venter 2018; Salazar-bravo and Alvis-guzma 2020). The table below 

lists the mosquito-borne alphaviruses, especially those of medical importance (Table 2). 
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Table 2: List of mosquito-borne Alphavirus that cause disease in domestic animals, wildlife 

and humans. 

 

This list was based in the last report of ICTV, updated in 2019 (Chen R et al. 2020) and was 

filled also with literature-based research (Weaver et al. 2012; Powers et al. 2001; Forrester et 

al. 2012)(Arbovirus Catalog – CDC Division of Vector-Borne Disease (DVBD). 
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Despite the many reports of outbreaks caused by alphaviruses and the relative 

knowledge of their pathogenesis, some epidemiological features as well as the enzootic 

transmission cycles remain unknown or poorly understood, as well as their burden and the 

endemic extent of the disease in tropical countries of Africa. Here, we will focus on two 

alphaviruses that are closely related: Chikungunya and O’nyong-nyong viruses.  

 

I.C.4. a. Chikungunya virus 

Among the Old World alphaviruses, Chikungunya virus (CHIKV) is in fact the most 

important human pathogen and is involved in major outbreaks in the world causing morbidity 

and mortality (Weaver et al. 2012). Chikungunya, which means “to become contorted” derives 

from a word in the Kimakonde/Makonde language, and describes the diseases that bends up the 

joints (Herve Zeller, Van Bortel, and Sudre 2016; WHO 2020; Chen R et al. 2020). 

Chikungunya's disease overlaps with the symptoms of other flaviviruses such as Dengue and 

Zika which can result in misdiagnosis in areas where these viruses are endemic and co-circulate. 

The clinical onset can include febrile illness with rash, severe pain in the palm of hands and 

soles of the feet. Polyarthralgia is typically a severe sequelae of the disease, that appears after 

recovery from the acute infection, and can persist for months or years (Herve Zeller, Bortel, 

and Sudre 2016; Cardona-Ospina, Diaz-Quijano, and Rodríguez-Morales 2015; Gould et al. 

2017). Other severe symptoms can include neurological sequelae, myocarditis, ocular disease, 

acute renal disease or hepatitis. Despite the range of clinical presentations and their sequelae, 

fatal cases of CHIKV infection are less frequent, but in some epidemics mortality rates have 

been observed (Gérardin et al. 2011; Economopoulou et al. 2009), i.g. an increased mortality 

was reported during an epidemic peak in 2006 in Ahmedabad, India with a total of 3,056 excess 

deaths (Mavalankar et al. 2008) as well as on Réunion Island, in the same year of the last 

example, 203 death cases (244,000 cases) by CHIKV infection was reported (Renault et al. 
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2007). 

Chikungunya virus was discovered in 1953 and it was isolated from the blood of 

several febrile patients and mosquito species after an outbreak reported during 1952-1953 in 

Tanzania, East Africa (Jupp and McIntosh 1988; Herve Zeller, Van Bortel, and Sudre 2016). 

After the first isolate, several outbreaks began to be reported in several African countries for 

about more than 30 years. Moreover, CHIKV outbreaks started to be reported in Asia 

concurrently with outbreaks in Africa, with the first confirmed case of CHIKV infection in late 

1950. CHIKV then spread in southeast Asia where outbreaks were reported in Sri Lanka, 

Indonesia, India and in other eastern countries (Herve Zeller, Van Bortel, and Sudre 2016; 

Weaver et al. 2012). It can be said that the major first phase of the epidemics caused by CHIKV 

occurred between 1960-1980 and that after that first moment there was a decrease in cases and 

outbreaks of CHIKV in both Africa and Asia (Herve Zeller, Van Bortel, and Sudre 2016). 

The second phase of CHIKV outbreaks started in 2004-2005, since then chikungunya 

has been identified in more than 60 countries worldwide (WHO 2020). In 2004, CHIKV 

emerged on Lamu Island in Kenya and started an epidemic affecting 75% of the Lamu 

population (Sergon et al. 2008) and also reemerged in other countries in Central and West 

Africa. Following these outbreaks, CHIKV widely spread in  Reunion Island (Josseran et al. 

2006) (Renault et al. 2007) and several other islands in the Indian Ocean (Mauritius, Seycheles, 

Madagascar and Mayotte) (Higgs 2006), to India (Kalantri, Joshi, and Riley 2006) and to 

Southeast Asia (Indonesia, Maldives, Sri Lanka, Malaysia and Thailand). In Reunion Island 

≈255,000 cases were reported between 2005-2006 with peak incidences reported during two 

epidemics waves (Renault et al. 2007). Following this epidemic period (2005-2006), after a gap 

of 32 years, CHIKV re-emerged in India, causing 1.3 million cases in 13 states (Arankalle et 

al. 2007). In 2006 CHIKV re-emerged in Malaysia after 7 years of silence. The authors 

confirmed through genomic sequences that the Asian genotype was responsible for the outbreak 
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supporting the idea that CHIKV is an endemic infection in Malaysia (AbuBakar et al. 2007).  

In Europe, travel-related CHIKV infection cases from endemic areas started to be 

reported in France 2005-2006 (ECDPC 2020) and the first outbreaks started consecutively in 

Italy (2007 and 2017) (Rezza et al. 2007) and France (2010, 2014 and 2017) (Grandadam et al. 

2011). These outbreaks highlighted the potential dissemination of CHIKV and the efficiency 

of transmission by Ae. albopictus (Vega-Rua et al. 2013).  

In America and the Caribbean Islands, the first cases of autochthonous transmission 

of CHIKV were reported in 2013 primarily on the islands of Saint Martin and Martinique. A 

large epidemic of CHIKV spanned over to the other Caribbean Islands and the Ae. aegypti and 

Ae. albopictus mosquitoes were the main vectors with the CHIKV strains belonging to the 

Asian genotype, being responsible for the outbreaks (Cunha et al. 2020). In 2014 CHIKV 

reached continental territory in countries such as French Guiana, Venezuela, Equator, Peru, 

Bolivia, Argentina, Chile and Brazil. The Pan American Health Organization (PAHO) reported 

in 2014 more than 1 million suspected cases and 37,480 in 2015, 146, 914 in 2016 and 123,087 

in 2017 autochthonous cases were confirmed in America (WHO 2020). Moreover, all these 

autochthonous cases on the continent were related to the Asian lineage. The first time that 

East/Central/South African (ECSA) genotype was notified in America was in 2015 in Bahia 

state, the north-eastern region of Brazil. This Brazilian ECSA lineage was closely related to an 

CHIKV from Angola identified in 1962 (Nunes et al. 2015). By mid-2021 more than 27.000 

mil cases were confirmed  on the American  continent (PAHO- Pan American Health 

Organization 2021). 

When it comes to the first major outbreaks of CHIKV, two major lineages ECSA and 

Asian were responsible for it. Phylogenetic analysis using partial nucleotide sequences of the 

E1 gene supported the hypothesis that CHIKV originated in Africa with the existence of two 

main genotypes i.e. the West African (WA) and ECSA (Powers et al. 2000). Currently, CHIKV 
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are classified into three geographically distinct genotypes: enzootic WA, enzootic ECSA and 

endemic/epidemic Asian  (Gould et al. 2017). In addition, the Asian and ECSA genotypes 

caused outbreaks in worldwide. A mutation in ECSA genotypes conferred enhanced 

transmission by the Ae. albopictus which could explain the rapid spread of CHIKV during the 

last years. The mutation is located in the E1 glycoprotein at position 226 (E1-A226V) and 

increases the ability of the ECSA strain to replicate in this mosquito’s species (Vazeille et al. 

2007; Sam et al. 2012). Some recent sub-lineages are responsible for multiple outbreaks such 

as  the Indian Ocean lineage (IOL) and the Asian/American lineage, that emerged within the 

ECSA and Asian clade, respectively (Langsjoen et al. 2018; Phadungsombat et al. 2020). These 

lineages and sub-lineages are distributed around the globe and with major concentration in 

tropical and sub-tropical zones (Figure 15).  

 

 

Figure 15: Chikungunya virus lineages distributed worldwide. Tropical and sub-tropical 

regions are highlighted in red on the map. This map was modified from Frontiers in 

Microbiology (Cunha et al. 2020). 

 

 

 

The transmission cycle of CHIKV are divided in two mains cycles (enzootic/sylvatic; 

epidemic/endemic cycles) and involve vertebrate hosts and mosquito vectors (Tsetsarkin, Chen, 
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and Weaver 2016): 

• The enzootic, sylvatic African cycles involves NHPs as principal enzootic 

amplification hosts and forest-dwelling mosquitos. CHIKV enzootic 

transmission cycles occur most in sub-Saharan Africa but are still poorly 

understood. (Althouse et al. 2018). In Africa, many sylvatic Aedes species are 

involved in this transmission cycles and Ae. Africanus appears to be the 

principal vector (Diallo et al. 1999). Sylvatic CHIKV have been isolated from 

many NHPs species such as Chlorocebus sabaeus, Erythrocebus patas, Papio 

papio, Cercopithecus aethiops, Galago senegalensis and anti-CHIKV 

neutralizing antibodies have been documented in Mandrillus sphinx, 

Cercopithecus ascanius schmidti, Cercopithecus (Chlorocebus) aethiops sensu 

lato and Papio ursinus in Senegal, Gabon, Uganda and South Africa (Althouse 

et al. 2018). An enzootic CHIKV cycle outside of Africa has not yet been 

confirmed, despite the evidence of CHIKV in monkeys in the Philippines and 

Malaysia. In the Philippines, 14.8% and 59.3% of Macaca fascicularis showed 

IgM and IgG antibodies to CHIKV, respectively (Inoue et al. 2003). CHIKV 

was isolated for the first time from wild long tailed macaques (Macaca 

fascicularis) in Malaysia, suggesting the existence of sylvatic cycle (Apandi et 

al. 2009) 

• The epidemic/endemic cycles occur in urban areas and the transmissions are 

established by between humans and mosquitos, where Ae. aegypti and Ae. 

albopictus are the principal anthropophilic vectors. Moreover, Ae. albopictus 

has been identified in the last years as an excellent vector to transmit the virus 

among humans, which was increased by the adaptive mutation in the CHIKV 
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envelope glycoproteins (Tsetsarkin and Weaver 2011)(Pagès et al. 2009; Vega-

Rua et al. 2013; Pereira-Dos-Santos et al. 2020). 

• Otherwise, CHIKV was isolated from squirrels, bats and ticks  but also rodents 

and birds have been reported to be seropositive to CHIKV suggesting the 

existence of a cycle that contribute to maintaining the virus in Senegal and 

Central African Republic (endemic regions), while primate are 

immunologically protected (Diallo et al. 1999; Althouse et al. 2018); Artibeus 

jamaicensis and Artibeus lituratus bat species were captured in Grenada Island 

(Caribbean) and were tested for neutralizing antibodies to CHIKV and 36% 

(15/42) were seropositive (Stone et al. 2018).  

 

Chikungunya virus has become widely spread and became a public health threat during 

the last 15 years. Yet, there are still many gaps in understanding the genetics, evolution and 

emergence mechanism of CHIKV. It is necessary to continue sampling of wild animals and 

human populations in tropical and sub-tropical regions, to identifies the levels exposure and 

CHIKV seroconversion to better understanding the sylvatic cycle of CHIKV and to know which 

vertebrate host are implicate in the maintenance of the sylvatic cycle in the regions. Moreover, 

a global vigilance is required to predicting future CHIKV emergence and outbreaks (Tsetsarkin, 

Chen, and Weaver 2016; Herve Zeller, Van Bortel, and Sudre 2016). 

 

I.C.4. b. O’Nyong nyong virus 

 

O’nyong-nyong, means ‘very painful weakening of joints,’ in the language of the 

Acholi people of northwestern Uganda (Haddow, Davies, and Walker 1960). ONNV become 

endemic in sub-Saharan Africa and co-circulate in the same areas as forests and urban 

settlements where dengue fever and malaria are also present (LaBeaud et al. 2015). 
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ONNV was first isolated from human blood and anopheline mosquitos in Gulu, during 

an epidemic that started in northern Uganda in 1959 (Haddow, Davies, and Walker 1960; M. 

C. Williams and Woodall 1965). The epidemic is widespread in East Africa including  Kenya, 

Tanzania, Malawi, Mozambique and the Democratic Republic of Congo and lasted > 4 years 

affecting more than 2 million people only in eastern Africa (M. C. Williams and Woodall 1965; 

R. Lanciotti et al. 1998; Bessaud et al. 2006). During the epidemic period, ONNV spread also 

westward to Senegal, Nigeria, Guinea Bissau, DRC, Cameroon and the Central African 

Republic (CAF) where human infections and virus isolation have been documented (Brottes et 

al. 1966; Taufflieb R, Cornet M, and Camicas JL 1968; Guyer 1972; Kiwanuka et al. 1999; 

Powers et al. 2000; Posey et al. 2005; Giovanni Rezza, Chen, and Weaver 2017). Human cases 

of ONNV, outbreaks and virus isolation in the African continent are shown on the map below 

(Figure 16) (Pezzi et al. 2019). 

 
Figure 16: Cases of O’nyong-nyong virus in Africa countries.  

Source: Elservier Antiviral Research (Pezzi et al. 2019). 
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A second epidemic wave started in 1996 after 35 years of absence of reports of human 

infections or epidemics caused by ONNV. The virus re-emerged in south-central Uganda 

causing sporadic outbreaks and similar symptoms to that of the first epidemic period  

(Rwaguma et al. 1997; R. Lanciotti et al. 1998). During this outbreak in south-central Uganda 

a large difference in infection and attack rates was reported. ONNV infection rate ranged from 

3% to 45% and ONNV fever attack rate ranging from 3% to 29% (Sanders et al. 1999). During 

the same ONNV fever epidemic (1996–1997), ONNV was isolated from Anopheles funestus 

mosquitos during entomological studies in the Bbaale village, Rakai District of southcentral 

Uganda, assuming that this mosquito species was the main vector as it was the most abundant 

species during collection (80%)(Lutwama et al. 1999). 

High rates of ONNV were reported in coastal Kenya in sera of non-symptomatic 

humans and an IgG prevalence of 56% in a total of 443 samples confirmed by PRNT as 

compared to 6% for CHIKV. Another fact was that younger adults were more likely to be 

seropositive than older adults and older age and female gender were associated with ONNV 

and CHIKV seropositivity (LaBeaud et al. 2015).  

In Cameroon, 34.2% (29/79) of febrile patients reacted with alphavirus antigens by 

Haemagglutination-inhibition (HI) and ONNV and CHIKV being the most frequent. The 

samples were also positive by complement fixation and some samples showed high neutralizing 

antibodies titer against ONNV by PNRT (Fokam et al. 2010). Another study in a rural area of 

western Cameroon, no anti-ONNV antibodies ware found in healthy volunteers one year after 

CHIKV outbreaks in 2006 (Demanou et al. 2010). Further studies of seroprevalence and 

distribution of arboviruses in rural Cameroonian adults were conducted and 256 samples were 

tested by PRNT and a high seroprevalence was observed for both ONNV (47.7%) and CHIKV 

(46.5%), besides that some sera had higher antibody titers to ONNV than to CHIKV 

suggested possible ONNV circulation in the population (Kuniholm et al. 2006). In Côte d’Ivoire 
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an outbreak of febrile illness started in 2003 in a refugee camp and samples were collected from 

patients in the acute and convalescent phase. Of those surveyed,  26% showed positivity to 

ONNV infection in serological and RT-PCR (Posey et al. 2005). In addition, ONNV was 

isolated in Chad from the blood of a convalescent patient, and anti-ONNV IgG was detected in 

a traveler with fever who returned to Europe from West Africa (Bessaud et al. 2006; Tappe et 

al. 2014). 

ONN fever disease is characterized by the sudden onset of fever, severe arthralgia, that 

is similar to CHIK fever, but also headache, generalized maculopapular skin rash. Unlike CHIK 

fever, ONN fever causes more manifestations of cervical lymphadenitis and conjunctivitis than 

CHIK fever (Shore 1961; Kiwanuka et al. 1999; Tappe et al. 2014). The transmission of ONNV 

is primarily by anopheline mosquitoes, these include Anopheles funestus and Anopheles 

gambiae, and ONNV is thus the only virus among alphaviruses that is transmitted by this 

species of mosquitoes, the same vectors of malaria (M. Williams et al. 1965). The transmission 

cycle is limited to the African continent and during the interepidemic periods, ONNV is 

probably maintained through an enzootic cycle, whose actors have not been well characterized 

yet. Some mammal species showed neutralizing antibodies against ONNV, suggesting the 

existence of an enzootic cycle (Pezzi et al. 2020). These species were: duikers (Cephalophus 

and Philantomba spp.) in DRC, forest buffaloes (Syncerus caffer nanus) in DRC and Gabon 

and also mandrills (Mandrillus sphinx) in Gabon; suggesting that several species of mammals 

may be involved in the enzootic cycle of ONNV and serve as host/reservoir (Kading et al., 

2013). 

 

I.C.5. Typical Mechanism of Flaviviruses and Alphaviruses Transmission  

The transmission cycles for several mosquito-borne virus have been established with 

some of them occurring in sylvatic (or jungle), urban and ecotone ecosystems in the same 
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region. Depending on the environment and the transmission vectors, the cycles use different 

species as vertebrate or reservoir hosts. Furthermore, humans and other animal species can 

serve as a dead-end host. Thus, for an arbovirus transmission cycle to be established is require 

a host in which they replicate and a vector (mosquitoes and ticks) (Weaver and Barrett 2004). 

The knowledge of the natural ecology of transmission and the capacity of different 

vectors to transmit some arboviruses as Dengue, Yellow fever, Zika, Usutu, O’nyong-nyong 

and Chikungunya is essential to understanding their emergence. Some of these arboviruses have 

an enzootic cycle establish in Africa but for other some gaps are still open and the possibility 

of other animal species being involved are pertinent.  

The natural YFV transmission cycle in Africa is an enzootic cycle involving Aedes 

spp. found in the forest canopy as vector and NHPs. When humans encroach the forest, they 

can be infected by sylvatic strains. Urban and intermediate cycles exist involving human-

mosquito-human in urban cycles and human-primates-humans in the jungle border areas of 

intermediate zones (ecotone). 

The natural Dengue virus transmission cycle in Africa is a sylvatic cycle involving 

non-human primates and arboreal canopy-dwelling Aedes spp. (i.g., Ae. furcifer and Ae.  

aegypti formosus). An intermediate zone (ecotone) as rural areas can facilitate the transfer of 

sylvatic DENV from the forest to peridomestic environments. The human cycle is mediated by 

Ae. aegypti and Ae. albopictus.  

The natural Zika virus transmission cycle in Africa is an enzootic cycle mediated by 

non-human primates and arboreal mosquitoes as Ae. vittatus, Ae. furcifer and Ae. aegypti 

formosus. Zika virus also stablish an urban tansmition cycle involving human-mosquitoes-

humans which Ae. aegypti and Ae. albopictus act as vectors. 

The enzootic cycle of WNV is mediated by birds and ornithophilic/anthropophilic 

mosquitoes (i.e., Cx. univittatus) with mammals serving as dead-end host.  
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The natural cycle of transmission of the USUV is an enzootic cycle involving mainly 

passerine birds as amplifier host and mosquitoes ornithophilis (i.e., Culex spp.) as vector. 

In Africa CHIKV is maintained in a sylvatic cycle involving non-human primates and 

mosquitoes of the genus Aedes (i.g., Ae. furcifer, Ae. luteocephalus, Ae.  africanus). In this 

cycle’s humans can be infected being an incidental host. The virus has an urban cycle well 

established and mediated by Ae. aegypti and Ae.albopictus mosquito species.  

The sylvatic cycle of ONNV in Africa that has not been characterized yet but 

Anopheles funestus and Anopheles gambiae are involved as natural vectors. Humans serving as 

amplification hosts during epidemics.  

 
Figure 17: Typical Flavivirus and Alphavirus transmission cycles. The enzootic 

transmission cycles of some zoonotic arboviruses are maintained involving birds, 

rodents, NHPs and perhaps bats, as yet unconfirmed and bridge vectors. Some 

ecosystems can overlap and facilitate the movement of vectors, animals and 

humans between sylvatic, rural and urban areas, facilitating the movement, for 

example, of DENV strains of sylvatic or endemic origin. Some arboviruses use 

domestic animals as amplifying hosts within a rural epizootic cycle. 
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I.D. Arbovirus Distribution 

 

I.D.1. The Global Epidemic 

During the last two decades, the emergence and resurgence of epidemic arboviral 

diseases have affected humans and animals around the world. They have become a concern and 

a burden for public health worldwide. Arbovirus epidemics were mainly caused by Yellow 

fever, Dengue, Zika, Chikungunya viruses and more recently by the emerging viruses like West 

Nile in the Americas and Europe and Usutu in Europe. As an example, Dengue virus is one of 

the most common infections globally and is distributed in at least 128 countries with active 

transmission putting billions of people at risk (Kraemer et al. 2015; Stanaway et al. 2016; 

Fritzell et al. 2018). 

 

I.D.2. The epidemic in Africa  

More than 600 arboviruses are cataloged around the world and comprise several 

families. A large number of these arboviruses, which are pathogenic to humans and cause 

various clinical manifestations are suggested to originate in Africa (Burt, Goedhals, and 

Mathengtheng 2014; Young 2018). The principal arboviruses that cause diseases in humans 

and different clinical signs are transmitted by mosquitoes. Mosquito-borne diseases have 

caused more than 700,000 deaths yearly across the globe (Burt, Goedhals, and Mathengtheng 

2014; Nyaruaba et al. 2019). Some and the most common clinical syndromes are acute benign 

febrile illness, rash, headache, conjunctivitis, neurological disease, polyarthritis, hemorrhagic 

fevers (Young 2018). In South Africa for example, mosquito-borne viruses as Sindbis, Rift 

Valley, West Nile cause large outbreaks in periods of heavy rainfall. In addition, other less 

known flaviviruses and alphaviruses such as Usutu and Middelburg viruses have been shown 

to have a high potential for emergence and to cause outbreaks, however knowledge on their 
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medical importance and diagnostic capacity is still limited (Burt, Goedhals, and Mathengtheng 

2014). Mosquito-borne viruses such as CHIKV, ZIKV and WNV were isolated for the first 

time in East Africa, and are now causing outbreaks worldwide (Nyaruaba et al. 2019).  

In sub-Saharan Africa, acute febrile illnesses is one of the most widely distributed 

disease. However, distinguishing which pathogen is implicated in the acute febrile illnesses 

becomes challenging because familiar diseases as malaria and typhoid fever can be over-

diagnosed and the real extend of arboviruses can be underestimated (Sow et al. 2016). 

Serological surveys have been an important tool in the identification and distribution of 

arboviruses in the general population, as well as in domestic animals and wildlife mainly in the 

identification of vertebrate/reservoirs host, since many of these arboviruses still do not have an 

identified reservoir source (Gilbert et al. 2013).  

 

I.D.2.a. In Guinea 

Several arboviruses have been identified in various regions of Guinea. Serological 

surveys were conducted between  the 70s and 80s in febrile patients and a prevalence of 40% 

for YFV is found (Butenko 1996). YFV has caused outbreaks throughout the country and the 

largest outbreak in the population was in 2000 and 2001 in Conakry (Nathan et al. 2001; Jentes 

et al. 2010). Several arboviruses were also isolated from arthropods, bats, birds, non-human 

primates (Butenko 1996). A considerable proportion of febrile illnesses remains unidentified in 

Guinea. Thus, serum of 47 suspected cases of arboviruses were tested by Immunoglobulin M 

antibody capture enzyme-linked immunosorbent assays and plaque-reduction neutralization 

assays. The study found a seropositivity of 63% (30/47) in the patients and the arboviruses 

included WNV, YFV, DENV, CHIKV and Thayna virus (Jentes et al. 2010). 

Seroepidemiological studies of arboviruses in human populations are still scarce and even 

despite evidence of circulation throughout the African continent, laboratory diagnoses do not 
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seem to be part of the routine, even in Guinea. Furthermore, it leaves an open gap in the history 

of arboviruses.  

 

D.2.b. In Cameroon 

Cameroon is a country located in central Africa with a vast tropical rain forest being 

favorable for dissemination of many infectious diseases as malaria (endemic in the region) and 

the arboviruses due to presence of a variety of hematophagous arthropods. Many mosquito 

species have been identified in the field like Aedes spp, Anophele spps, and Culex spp 

supporting the circulation of arboviruses (Demanou et al. 2010; Braack et al. 2018). 

Serosurvey showed the circulation of many arboviruses in the country, even silently 

(Fokam et al. 2010). Febrile patients (with negative laboratory findings for malaria and typhoid 

fever) and anthropophilic mosquitoes (4,764) were tested for arboviruses by hemagglutination 

inhibition (HI), complement fixation test (CF) and virus isolation. The patients reacted with 

both alphavirus (36.7%) and flavivirus (58.2%) by HI. The most alphavirus positive by HI were 

CHIKV (34.2%) and ONNV (34.2%). All serotypes of dengue were detected being DENV-2 

(39.2%) the most seroprevalent followed by ZIKV, YFV and WNV by HI. No virus was 

isolated (Fokam et al. 2010). Another serosurvey in samples from 234 acutely febrile patients 

have been screened for arboviruses and antibodies to CHIKV, DENV 1–4, YFV, WNV were 

detected by HAI and cross-reactivity among the flavivirus was also observed. 44% of serum 

samples showed antibodies to CHIKV (Ndip et al. 2004). 

A serosurvey for arboviruses was conducted in healthy rural Cameroonian adults. A 

total of 256 serum samples were tested by PRNT and different positive rates were found; 

CHIKV (46.5%), ONNV (47.7%), DENV-2 (12.5%), 26.9% to YFV and 6.6% to WNV. The 

samples were also seropositive for Sindbis and Thayna viruses. Age was significantly related 

to increased rates of YFV and CHIKV (Kuniholm et al. 2006).  
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Different serotypes of dengue have been identified among acute febrile patients and in 

children of Cameroon. A cross-sectional study using a Dengue NS1-IgG/IgM Rapid Test was 

conducted in 961 children of pediatric clinics and observed a prevalence of 6.14% acute dengue 

virus in children with febrile illness. A significant difference was seen between populations 

who practiced vector protection measures among those who did not (Tedjou et al. 2019). In 

Douala, Cameroon, where Ae. aegypti is predominant in downtown and Ae.albopictus more 

common in suburban areas  the presence of dengue was investigated in acute febrile patients. 

In 2017 a total of 114 plasma were tested by PCR, showing that serotype 1 of dengue was 

predominant and responsible of 10% of the acute febrile diseases of which 63.2% were females 

(Yousseu et al. 2018). More recently, 320 acute febrile patients were screened for DENV using 

RT-PCR and 12.8% (41/320) were positive with DENV-3 (68.3%) the most common followed 

by DENV-2 (19.5%) and DENV-1 (4.9%) (Tchetgna et al. 2021). 

Chikungunya was first isolated in Cameroon in 2006 were the virus was identified in 

Douala and Yaoundé during an outbreak of a dengue-like syndrome in the same year. Samples 

were collected from patients (1 to 54 years) and tested for CHIKV, DENV and WNV using 

ELISA/IgM/IgG. Specific real time RT-PCR showed that one sample was positive for CHIKV 

and phylogenetic analysis showed that it fell in cluster of viruses from the Democratic Republic 

of the Congo. The authors suggest the existence of urban cycles since the patients were infected 

in urban or peri-urban centers (Peyrefitte et al. 2007). A serological and entomological survey 

was conducted in 2006 during an outbreak of CHIKV in a rural area in Western Cameroon, one 

year after the identification of the initial outbreak. ELISA IgM and IgG was used to 

discriminated CHIKV, ONNV and DENV. A total of 105 sera were screened and 51.4% had 

detectable IgM anti-CHIKV antibodies and 39% had IgG. All sera were negative to DENV and 

ONNV. The mosquitoes captured were Ae. africanus and Culex spp (Demanou et al. 2010). 
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I.D.2.c. In the Democratic Republic of Congo  

 The Democratic Republic of Congo (DRC) located in central Africa, is the second 

largest country in Africa. DRC comprising an area of more than 230 thousand hectares with 

primary ecosystems such as tropical and subtropical grassland, savanna, shrubland, tropical and 

subtropical moist broadleaf forest. The country has an incredible biodiversity with many species 

of apes, elephants, white rhino etc (Simons 2013; Mbanzulu et al. 2020). Their biodiversity 

contributed to the emergence of numerous viral diseases. Arboviruses circulate since 1912 

when the first outbreak of YFV was reported (Deprez 1920). A number of mosquito-borne 

viruses have been documented in humans but also in livestock and domestic animals and 

multiple outbreaks of CHIKV and YFV have been reported in the country (Nur et al. 1999; 

Pastorino et al. 2004; Willcox et al. 2018; Makiala-Mandanda et al. 2018; Selhorst et al. 2020; 

Mbanzulu et al. 2020)  

Chikungunya virus has caused repeated outbreaks in DRC. The virus was first isolated 

in 1958 and two years later, Pastorino and colleagues (2004) reported the resurgence of CHIKV 

after 39 years during an urban epidemic in Kinshasa in 1999-2000 (Pastorino et al. 2004). The 

virus was isolated from nine patients with clinical symptoms and all sequences clustered in the 

central African lineage (Pastorino et al. 2004). In 2019 another outbreak of CHIKV was 

reported in DRC and 49.7% (87/175) of the samples from patients with chikungunya-like 

symptoms collected in Kinshasa (capital) and Kongo Central province were positive for 

CHIKV by real-time RT-PCR. In addition, CHIKV was found in 41.7% (14/34) pools of 

mosquitoes more predominantly in Ae. albopictus than Ae. Aegypti from the same area. ECSA2 

lineage was identified by whole-genome sequencing and the new viruses did not cluster with 

sequences from the previously reported outbreak. The authors suggested that CHIKV is 

adapting in function of Ae. albopictus (Selhorst et al. 2020). 

A serosurvey was conducted using dried blood spots (DBS) from 978 children and 
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screened using ELISA and neutralization assays. A global seroprevalence of 18.7% (183/978) 

was shown and the tests showed evidence of past infection to DENV and ZIKV. Antibodies to 

serotypes 1, 2 and 3 of dengue were identified. Furthermore, the authors  were surprised by the 

positive result for YFV, showing the failure of the vaccination program with only 18.4% were 

positive by ELISA (Willcox et al. 2018). YFV in DRC is responsible for more than 95% of 

acute febrile jaundice cases, according to the program of Yellow fever surveillance in DRC. 

Real-time PCR was used to screen 453 patients that were IgM negative to YFV for presence of 

DENV, WNV, CHIK, ONNV, ZIKV, RFVF and YFV. Patients were positive for DENV and 

CHIKV, and some of them showed co-infection with both viruses (Makiala-Mandanda et al. 

2018). West Nile virus caused sporadic outbreaks in some regions of DRC and in military 

patients with neurologic signs, abdominal pain, arthralgia and headache, IgM antibodies to the 

following arboviruses were detected; WNV (66%), CHIKV (34%) and DENV (3%). The results 

confirmed the outbreaks of WNV in Kapalata military camp in Kisangani, DRC (Nur et al. 

1999). 

A review on mosquito-borne viral disease in DRC showed that arboviral infections 

increased over time and space in the country and YFV, DENV, ZIKV, WNV, CHIKV and 

ONNV were more frequently recorded across the DRC. Serological investigations and 

molecular methods were used on the majority of human samples. Nevertheless, African buffalo, 

chimpanzees and elephants from Haut-Uelé Province have been identified as potential hosts or 

reservoirs to CHIKV based on serological evidence only. Neutralizing antibodies against 

ONNV were found in buffaloes and duikers in the Garamba National Park and Ituri Rain Forest 

(Kading et al. 2013) respectively, but infections in humans have never been identified in DRC. 

They also highlight factors that are drivers for the occurrence of mosquito-borne viruses as 

heavy rains, human movements, forest encroachment and deforestation (Mbanzulu et al. 2020). 
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I.E. Animal Reservoir and the Ecology of Arboviruses 

 

A reservoir of an infectious agent is life beings (humans, animals) or environments in 

which the agent normally lives, grows and multiplies and can persist for long periods (CDC 

2012). In the case of wildlife populations, these may be an important reservoir of infectious 

agents and provide a “zoonotic pool”, from which pathogens, hitherto unknown in humans, can 

emerge (Morse 1995). Regarding reservoirs of arboviruses, there are still vast discussions and 

controversial issues concerning vertebrate reservoirs (Kuno et al. 2017). Arboviruses have a 

unique mode of transmission using arthropods as vectors of transmission to vertebrate hosts 

and these vertebrates may play a role as reservoirs, as defined by the WHO (WHO 1985). 

However, arboviruses represent a heterogeneous group of viruses that involve multiple vectors 

and/or animal hosts, which is intriguing and a puzzle to identify vertebrate reservoirs. 

Another element is the variable time of the viremic period in infected vertebrate hosts 

despite some studies have shown persistence viral RNA in different periods of time. As 

exemples, WNV was detected in urine of convalescent patients for 2452 days (Murray et al. 

2010) and for up to 5.5 months in the brain of monkeys after inoculation (Pogodina et al. 1983). 

Therefore, to identify the vertebrate reservoirs of arboviruses, three commonly empirically-

learned conditions have been stated by Kuno and colleagues (2017) “(i) either continued or 

intermittent isolation of an arbovirus in question from the suspected vertebrates during the 

period of complete cessation of vector’s feeding activity (a minimum of 2 but preferably ≥3 

months) (hereafter called the “interrupted period”), such as during the dry season in the tropics 

or the cold season in temperate regions; (ii) the total absence of the introduction of infected 

vertebrates and/or vectors during the interrupted period; and (iii) the detection of the infectious 

virus from blood after the interrupted period. Ideally, a consensus among multiple groups of 

independent researchers for a given virus-host relationship is desirable”(Kuno et al. 2017). 
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The maintenance mechanism and amplification cycle of arboviruses is still 

incompletely elucidated and sometimes becomes complex because it can involve several 

vectors and infect numerous host species depending on the environment. Despite the knowledge 

of certain actors in the role of arbovirus maintenance, infected humans may be considered as a 

“transient reservoir” involved in the urban transmission cycles of Dengue, Chikungunya and 

Zika viruses (Kuno et al. 2017; Weaver and Barrett 2004). However, the natural maintenance 

mechanism of certain arboviruses in the context of sylvatic/enzootic transmission cycles 

remains unknown as well as the animal/vertebrate reservoir. Because of the recent observations 

of a sylvatic cycle of Zika virus in Brazil, it is suggested that neotropical primates could be 

reservoirs for Zika virus in Brazil. Hence, sera and oral swabs from twenty four neotropical 

primates were tested by real-time PCR and seven (29%) were positive (Favoretto et al. 2016). 

In another study in Brazil,  82 carcasses of free-living NHP that were found dead in urban and 

peri-urban areas were investigated for YFV and ZIKV by molecular analysis and thirty nine 

percent (32/82) were ZIKV-positive in at least one tissue sample and all samples were negative 

for YFV (Terzian et al. 2018). The obtained nucleotide sequences from these samples were 

phylogenetically related to the American lineage of ZIKV. 

Bats have been suspected to play a role as reservoir for DENV, because both RNA and 

antibodies to NS1 proteins have been detected in samples from Neotropical bat species in 

French Guiana, Mexico and Costa Rica (de Thoisy, Dussart, and Kazanji 2004; de Thoisy B et 

al. 2009; Moreira-Soto, Soto-Garita, and Corrales-Aquilar 2017; Thompson et al. 2015)  

The maintenance mechanism of WNV and the reservoir hosts in certain regions, such 

as the USA, are well described. In epizootic and enzootic cycles of WNV transmissions, several 

species of birds are involved and act as reservoirs/amplifying hosts (Taieb et al. 2020). 

However, the possibility of other animal species participating in the WNV transmission cycle 

or even acting as amplifier hosts cannot be ruled out. Although the determination and/or the 
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identification of animal species serving as reservoirs and/or amplifying hosts in a given 

environment is a complex process, elucidating this is essential for the understanding of the 

origin of arboviruses and to predict potential outbreaks.  

 

II.A. Non-human Primates  

The risk of pathogen transmission between humans and non-human primates (NHPs) 

increased in the last years due the increasing proximity between them. The natural barriers 

between them were reduced by several means such as road development, encroachment of 

humans into ecosystems for agriculture, hunting, travel which made contacts between wildlife 

and humans more frequent, allowing thus the transmission of infectious diseases (Devaux et al. 

2019; Scheffers et al. 2019; Jones et al. 2008). Africa is estimated to host 70 species of NHP 

including apes and monkeys (Perelman et al. 2011). Some are terrestrial, like apes, others, like 

some guenons, are arboreal. These NHPs live in contrasted areas in lowland forests, secondary 

forests and in the forest/savannah mosaics. For example, Central Africa is composed for 90% 

of tropical forest, concentrating thus a vast diversity of NHPs. In this part of Africa, hunting 

and eating of NHPs as bushmeat is common and wildlife remains the primary source of meat 

for most Central African villagers (Wolfe et al. 2005). This practice is assossiated with an 

increased risk for zoonotic transmissions because humans can be exposed to infected blood, 

secretions or tissues of bushmeat during hunting and butchering (Steve et al. 2017; Peeters et 

al. 2002; Filippone et al. 2015). 

Zoonotic transmission of pathogens from NHPs to humans can also occur by other 

routes such as droplets, fecal-oral contamination, through bites or by an arthopod vector. The 

encroachment of  humans in forest habitats increased also the contact with many species of 

mosquitoe vectors that feed on NHPs that can be potentially infected by arboviruses, and infect 

humans who can bring the disease to more populated urban areas (Possas et al. 2018). It is 
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assumed that many emerging arboviruses originated in NHPs and that they are maintained in 

natural forests by sylvatic transmission cycles involving arboreal mosquitoes as vectors 

(Weaver and Barrett 2004; Vasilakis et al. 2011). 

NHPs typically develop viremia whithout clinial signs (Jones et al. 2008), but this is 

based on limited data. However, some NHP spcies such as Alouatta spp. from South America, 

are susceptible to YFV and developed clinical signs and even deaths (Possas et al. 2018). 

Therefore, the circulation of humans between forests, urban and rural areas can contribute to 

the spread of arboviruses in both sylvatic or urban cycles, leading to events of “spill back” and 

“spill over (Vasilakis et al. 2011; Weaver and Barrett 2004; Hanley et al. 2013). 

NHPs are suspected to play a role in the sylvatic lifecycle because they have been 

shown to be infected by many arboviruses (DENVs, CHIKV, YFV and ZIKV) primarily across 

the African continent. Arboviruses have been detected in several primate species either by virus 

isolation, RNA detection, and serological testing.  Moreover, NHPs can also be experimentally 

infected (Valentine, Murdock, and Kelly 2019). Different species of NHPs cohabit with forest-

dwelling mosquitoes that feed on them contributing to the maintenance of the sylvatic cycles 

(Althouse et al. 2018; Eastwood et al. 2017; Kading et al. 2013; D. Diallo et al. 2012; Cornet 

et al. 1984).  

Natural infection of NHPs with arboviruses have been reported in Africa for more than 

50 years (Valentine, Murdock, and Kelly 2019). A serosurvey in Nigeria found neutralizing 

antibodies to DENV-2 in 45% of Nigerians , 25% (3/12) of Galagos species, an arboreal 

species, showed neutralizing antibodies to DENV-2 and also highest percentage of DENV 

antibodies was observed in rainforest zone and savannah zone (Fagbami, Fabiyi, and Monath 

1977). In Senegal a serosurvey showed positivity to DENV-2 in Erythrocebus patas, 

Cercopithecus aethiops, Papio papio (PP) by complement-fixation test (Saluzzo, Cornet, 

Adam, et al. 1986) and 58.8% (10/17) of African Green Monkeys showed antibodies by ELISA 
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(Diallo et al. 2003). DENV was isolated from E. patas (Cornet et al. 1984).  Eastwood et al. 

(2017) showed that 57.1% (4/7) of Papio anubis and 82/3% (14/17) of Papio cynocephalus in 

East Africa showed IgG antibodies to all serotypes of DENV. The authors suggested possible 

spillback from humans to Papio species due to close contact of this primates with humans in 

forest areas (Eastwood et al. 2017). Evidence of exposure to DENV-2, WNV, YFV and CHIKV 

was also demonstrated in Mandrillus sphinx in Gabon (Kading et al. 2013).  

CHIKV also has been isolated in several NHP species  and sylvatic mosquitoes since 

1964 (McIntosh et al. 1964; McIntosh 1970). Evidence of epizootic cycles was observed in the 

forest canopies in Uganda, where sylvatic mosquitoes and Cercopithecus ascanius schmidti 

were positive to CHIKV by hemagglutination-inhibition with C. ascanius schmidti showing 

high seropositivity (83%;25/30) (McCrae et al. 1971). Papio papio, Erythrocebus patas, 

Galago senegalensis,  Chlorocebus sabaeus have been confirmed to be naturally infected with 

CHIKV in Senegal (Diallo et al. 1999; Sow et al. 2018; Althouse et al. 2018). These monkey 

species showed high levels of neutralizing antibody to CHIKV by PRNT, where 87% (66/76), 

75% (25/33) and 71% (5/7) of Papio papio, C.sabaeus, and E. patas were positive, respectively 

(Sow et al. 2018). In addition to the evidence of natural CHIKV infection in mandrills in Gabon, 

this species also presented neutralizing antibodies to ONNV by PRNT (16%; 4/25) (Kading et 

al. 2013). In Kenya, an overall CHIKV seroprevalence of 13.4% (9/67) was found in sera from 

blue monkeys, olive baboons, red-tailed monkeys and yellow baboons by PRNT (Eastwood et 

al. 2017). It is evident that CHIKV has established a sylvatic transmission cycle involving 

NHPs in Africa, but it is not yet defined whether other vertebrates have a role in maintaining 

the virus, removing the status of NHPs as the only host vertebrates. 

In Uganda (McCrae and Kirya 1982; Dick 1952),  Nigeria (T. Monath and Kemp 

1973),  Senegal (Althouse et al. 2015), Tanzania and Gambia (Buechler et al. 2017). ZIKV has 

been detected in multiple species of NHPs. In Uganda, where the virus was first identified in a 
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sentinel macaque monkey, high seropositivity to ZIKV was observed in Cercopithecus 

ascanius schmidti (38.1%; 54/142), Colobus abyssinicus uellensis (45.4%; 4/11) and 

Cercocebus albigena johnstoni (50%; 2/4) were by HAI but ZIKV was also isolated in Aedes 

africanus (McCrae and Kirya 1982). High seropositivity to ZIKV was observed in Nigeria in 

multiple monkey species of the Cercopithecus genus (Cercopithecus mona, C.nictitans 

martini), Cercocebus torquatus, Chlorocebus aethiops, Papio anubis and  Erythrocebus patas 

with rates that varied between 11% to 100% by HAI and 5.9% to 100% by serum neutralization 

(SN) (Monath and Kemp 1973) Papio sp and Chlorocebus sp showed evidence of exposure to 

ZIKV by ELISA, in Tanzania and Gambia, respectively (Buechler et al. 2017). 

 

II.B. Bats  

Bats are traditionally grouped in the Chiroptera order (meaning “hand-wings” in 

Greek) and represent 20% of all mammalian species, the second largest order of mammals in 

terms of number of species (Woo and Lau 2019; Moratelli and Calisher 2015; Melaun et al. 

2014). More than 1300 species of bats are found worldwide and are divided into suborders, i.e. 

Megachiroptera (Old Word fruit bats) and Microchiroptera (echolocating bats). Most microbats 

are insectivorous (Jones et al. 2002) (Woo and Lau 2019). Being the only mammals with the 

capacity to fly, they help dissemination of seeds and pollen, playing a role in insect control, and 

they have thus an important role in ecosystems. Their gregarious roosting behavior and 

population densities increase the dissemination and transmission of viruses within and between 

species (Calisher et al. 2006; Moratelli and Calisher 2015; Melaun et al. 2014). Bats have high 

diversity and are known to harbor a variety of zoonotic viruses. These viruses can cross species 

barriers and infect humans as well as domestic and wild animals (Olival et al. 2017; Moratelli 

and Calisher 2015).  

Africa is home for a diversity of bat species where they live in complex ecosystems, 
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exploit a variety of roosts and share ecological niches with other wild animals but also with 

many hematophagous arthropods like ticks, mosquitoes, flies, etc (Kunz et al. 2011; Calisher 

et al. 2006). This close ecological relationships of bats with hematophagous arthropods makes 

that bats are exposed to a diversity of arthropod-borne viruses of medical and veterinary 

importance. Furthermore, the interaction of bats with other species extends to contact with 

humans. This human-bat interaction depends on the behavior and life traits of bats, where 

different species roost on urban buildings, feed on fruit trees or insects in urban and rural areas 

(Moratelli and Calisher 2015). Another form of interaction takes place because of human 

cultural characteristics, which often use bats as a food source through hunting or medicine 

mainly in African countries (Kamins et al. 2011; Anti et al. 2015; Rocha et al. 2021). All this 

ecological configuration sets up a favorable scenario for the transmission of zoonotic viruses 

favoring both spillover and spillback (Guthid et al. 2020). 

Serological and viral isolation studies reported the exposure of bats to arboviruses 

worldwide (Shepherd and Williams 1964; Simpson et al. 1968; M. C. Williams, Simpson, and 

Shepherd 1964; Kading et al. 2018; Reagan et al. 1956; Price 1978; Sotomayor-Bonilla et al. 

2014; Stone et al. 2018; Vicente-Santos et al. 2017; Gard, Marshall, and Woodroofe 1973) and 

speculations arose regarding their roles as reservoir hosts for arboviruses (Calisher et al. 2006; 

Fagre and Kading 2019) Although the evidence of susceptibility to infection by arboviruses 

exists, the role of bats in the sylvatic or urban transmission cycles remains understood.  

Bats exposure to arboviruses have been evidenced by serological and molecular tools 

for a wide diversity of viruses; i.e. Nairoviridae such as Crimean-Congo Hemorragic Fever 

Virus (CCHF), Peribunyaviridae like Bunyamwera virus (BUNV), Phenuviridae (Rift Valley 

fever (RVFV), Flaviviridae (Banzi virus (BANV); JBEV; SLEV; TBEV; DENV; USUV; 

WNV; YFV; ZIKV), Reoviridae (Bukakata (BUKV), Togaviridae (Babanki virus (BBKV); 

CHIKV; EEV; ONNV; Sindbus virus (SINV); Semlink Forest virus (SFV)) (Fagre and Kading 
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2019). However, studies on emerging and medically important arboviruses in bats are still 

scarce in African countries. 

Yellow fever virus circulates in very low titre in Eidolon helvum that also developed 

neutralizing antibodies (Shepherd and Williams 1964). ZIKV and CHIKV were inoculated to 

Roussetus angolensis, but only ZIKV replication was observed (Shepherd and Williams 1964). 

In East and West Africa, strains of Group B virus (flaviviruses) have been isolated from salivary 

glands of the Chaerephon genus and from brain of Eidolon helvum (M. C. Williams, Simpson, 

and Shepherd 1964). Chikungunya virus was also detected in Chaerephon bats by HAI. 

Shepherd and Williams also tested 172 bats captured in Uganda and found presence of 

antibodies to Group A (Alphavirus), Group B (flavivirus) and Bunyamwera virus. Simpson and 

O’Sullivan (1968) reported studies conducted in East Africa with bats and viral inoculations 

and they state that bats play a role in the natural history of arboviruses and that cycles of direct 

transmission among bats through urine, feces and saliva may be the most likely that only the 

involvement of mosquitoes (Simpson and O’Sullivan 1968). This study supported another study 

performed by the same authors where they also reported isolations of Group B viruses from 

Chaerephon bats and demonstrated that antibodies circulate in a large variety of bats collected 

in Kenya and Uganda (Simpson et al. 1968). Studies of natural arbovirus infection in bats were 

carried out in Senegal and a dozen different arboviruses have been isolated since 1961, among 

them CHIKV and different Group B viruses (Brès 1970). Studies on yellow fever in Ethiopia 

showed that bats were seropositive to YFV, ZIKV, WNV and other arboviruses (Sérié et al. 

1968). 

More recent studies identified also the circulation of arboviruses in Old World bats. 

CHIKV was detected in  Scotophillus sp. bats in Kédougou in Senegal where it seems that 

sylvatic transmission cycles are periodic with silent intervals lasting approximately three years 

(Diallo et al. 1999). Neutralizing antibodies against flaviviruses were common in 626 Ugandan 
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fruit and insectivorous bats. Little free-tailed bat and Angolan free-tailed bat showed 

neutralizing antibodies to DENV-2. African straw-colored fruit bat showed neutralizing 

antibodies to WNV. Little epauletted fruit bat was seropositive to WNV, DENV-2 and for 

BBKV and RVFV. Egyptian rousette was positive for YFV and many flaviviruses and 

alphaviruses (Kading et al. 2018). 

 

II.C. Other Animals 

Arboviruses have also been detected in other animal species beside bats and primates, 

such as rodents, shrews, livestock, domestic animals and in domestic and wild birds, the latter 

considered as reservoirs for WNV (Kuno et al. 2017; Nikolay et al. 2011; Jori et al. 2021; 

Hubálek, Rudolf, and Nowotny 2014; Diagne et al. 2019; Escribano-Romero et al. 2015; 

Bażanów et al. 2018). In the WNV transmission cycle, equids do not participate in the cycle 

but are dead-end host and develop febrile illness and encephalomyelitis with ataxia, paralysis 

and mortality. Moreover, camels, dogs, geese, feral pigeons and free-living birds can be 

clinically affected by the disease (Tee, Horadagoda, and Mogg 2012; Dunkel et al. 2004; 

Cannon et al. 2006; Bakonyi et al. 2004).  

It is common within the African context that infectious diseases in animals circulate 

at the wildlife-livestock interface, like the African Swine Fever (ASF) virus that threatens the 

global swine industry and the wildlife reservoir species are warthogs and ticks in East and 

Southern Africa (Jori et al. 2021; Dixon et al. 2020). For example, disease due to arboviruses 

in Nigeria, had an impact on livestock resulting in economic losses and on public health for 

decades (Oluwayelu, Adebiyi, and Tomori 2018). Anti-WNV antibodies were detected in 90% 

(131/145) of horses in Nigeria by ELISA suggesting a enzootic cycle and a strong of exposure 

of horses to WNV (W. Sule et al. 2015). 

Rodents have been identified as possible reservoir hosts for some arboviruses. CHIKV 
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and WNV have been found in rodents in Guinea. In the same study rodents presented antibodies 

to 18 different arboviruses with 13 of them pathogenic for human (Konstantinov et al. 2006). 

Antibodies specific to CHIKV have been detected also in rodents in Senegal, and the authors 

suggested that rodents could be an alternate reservoir to CHIKV, contributing to maintain the 

cycle in the region (Diallo et al. 1999; Althouse et al. 2018). Another virus suspected of using 

rodents as reservoir/vertebrate hosts in addition to birds is the USUV (Clé et al. 2019). USUV 

was detected in three different species of rodents and shrews in Senegal by qRT-PCR and at 

the time of capture no signs of the disease were observed in the animals and the authors 

concluded to the possibility of involvement of rodents in the USUV replication cycle as an 

amplifying or reservoir host (Diagne et al. 2 019). 

Neutralizing antibodies against ONNV, CHIKV, WNV and DENV-2 have been 

reported in African forest buffalo in DRC and Gabon. Four species of duikers in the DRC had 

also neutralizing antibodies specific to ONNV. All the Elephantst tested showed neutralizing 

antibody against WNV but also 67% (2/3) to CHIKV in Zambia and 10% (2/21) in DRC 

(Kading et al. 2013). The sample size of these studies is however low to make the results not 

representative. ONNV was also isolated in Senegal from sentinel mice (Lhuillier et al. 1988). 

Anti-CHIKV antibodies have been detected in several other wild animal species including palm 

squirrels and birds in Senegal (Diallo et al. 1999) or birds and reptiles in Zimbabwe (McIntosh 

et al. 1964). Domestic animals in Nigeria have also been detected with antibodies against 

CHIKV by HAI (Dickinson et al. 1965) and horses reacted positively to complement fixation 

(FC) antigens for several other arboviruses (Olaleye et al. 1989). WNV was detected in cattle 

and sheep animals by neutralizing test in South Africa (Dickinson et al. 1965). A study in Kenya 

on rodents, birds, cattle, goat, dog and reptile, carried out viral isolation and serological tests in 

all mentioned animal species. Birds were actively positive to WNV and cattle and sacred ibis 

exhibited antibodies against many flaviviruses. Rodents in general showed low prevalence of 
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antibodies against all antigens tested, being more positive to ONNV and ZIKV. The white 

toothed shrew showed a antibodies rate of 71.4% against WNV (Johnson et al. 1977). 

 

Chapter III: Diagnosis in Arboviruses 

 

Molecular and serological tools to diagnose arboviral infections have significantly 

improved and today high-quality assays to detect antigens and antibodies are available (Figure 

18). Although viral RNA detection has higher specificity than antibodies (Abs) detection due 

to the short acute phase, the majority of arbovirus assays are focused on antibody detection such 

as enzyme-linked immunosorbent assays (ELISAs), immunofluorescence assay (IFA), and 

plaque-reduction neutralization test (PRNT) (Fritzell et al. 2018; Kerkhof et al. 2020). 

 

 
Figure 18: Diagnostic methods for the detection of arboviruses. 

Modified from, Trends in Microbiology (Kerkhof et al. 2020). 

 

Arbovirus infection starts with an asymptomatic incubation period depending on the 

virus followed by a relatively short viremic phase. Antibodies appear a few days after infection 

and IgG can persist for months or years. In dengue infections for example, the virus can be 

isolated during the incubation period between 0 to 5 days of the primary infection. The onset 

of symptoms starts from the 5th day where IgM can be detected reaching a peak two weeks 

after disease onset. IgM can persist for up to 6 months. Several days after IgM development, 
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IgG Abs are developed during primary infection. During a secondary infection it appear can 

reaching a peak six weeks after onset of symptoms persisting even lifelong (Dussart, Cesaire, 

and Sall 2012; Kerkhof et al. 2020). 

ELISAs are effective to identify seroconversions and have been applied in many 

studies. A review retrieved public papers from 2000 to 2018 addressing the seroprevalence of 

some arboviruses and found that the majority of the studies used IgG ELISAs (77%). IgG 

ELISAs was performed in the majority of studies as compared to IgM ELISA using NS1 

antigens and/or RT-PCR that were often combined (Fritzell et al. 2018). IgG ELISAs measure 

past exposure to arboviruses and are widely used as commercial diagnostic kits. These test tend 

to have a high sensitivity but often a low specificity due the cross-reactivity with other 

arboviruses and can lead to false-positive results (Fritzell et al. 2018; Sergon et al. 2008; 

Blaylock et al. 2011; Andayi et al. 2014). 

Plaque reduction neutralization test (PRNT) are considered as the gold standard and 

are often used as confirmatory tests for antibody/antigen assays. This test measures in vitro the 

capacity of antibodies to neutralize the infecting virus. In contrast, this test is time-consuming, 

labor-intensive and expensive, and only a limited number of samples can be tested at the same 

time (Fritzell et al. 2018; Kerkhof et al. 2020). PRNT have been performed to detection of 

neutralizing antibodies in different serum specimens. Sera of neotropical bats were analyzed by 

PRNT to detect dengue virus and 21.2% (51/241) of bats showed neutralizing anti-DENV 

antibodies (Vicente-Santos et al. 2017). Another study conducted in bats from Uganda used 

PRNT to detect antibodies against different flaviviruses and alphaviruses. Neutralizing 

antibodies against WNV, YFV, DENV, BBKV, RVFV were identified in bats but also showed 

a significant neutralizing antibody titers against an undetermined flavivirus (Kading et al. 

2018). In Kenya, serum samples from humans were tested for alphavirus exposure using 

standardized CHIKV IgG ELISA. After 26% (486/1,848) of participants tested positive for IgG 
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ELISA, PRNT confirmed positives to CHIKV (6%) and ONNV (56%), illustrating thus the 

difficulty to develop specific Elisa’s (LaBeaud et al. 2015). 

Many molecular technologies to detect arboviruses are available and are in general 

PCR-based (end-point; real time), but isothermal techniques (LAMP: Loop-mediated 

isothermal amplification; TMA: transcription mediated amplification) as well as next 

generation sequence (NGS) are also used. PCR-based and especially the isothermal 

amplification (IA) methods have the advantage of being very specific, sensitive and robust and 

many commercial diagnostic molecular assays are available. PCR-assays targeting single or 

multiple viruses of the same serocomplex have been showed to be highly sensitive ( Lanciotti 

et al. 1992; Scaramozzino et al. 2001).  

Multiplex Immunoassays have been developed for simultaneous detection of multiple 

virus but also to distinguish between past or recent infections on closely related viruses (Boyd 

et al. 2015; Merbah et al. 2020; Tyson et al. 2019; Beck et al. 2015). This technology can 

capture specific antibodies against i.g., flavivirus/alphavirus antigens using recombinants 

antigens covalently coupled to microspheres. Some advantages compared to virus 

neutralization assays and real time RT-PCR are that they are less labor intensive, allow high 

throughput screening, and require only a small sample volume and can be adapted to different 

biological samples like, whole blood, plasma, serum, dried blood spots, fecal samples etc 

(Basile et al. 2013; Glushakova et al. 2019; Venkateswaran et al. 2020). 

The EDIII envelope protein (a structural protein of Flavivirus) is used as an antigen for 

serological diagnosis because is the major target of neutralizing antibodies. It was observed that 

most DENV-neutralizing antibodies (Abs) targeted EDIII in a DENV study (Dowd and Pierson 

2011; Zhang et al. 2017). Other proteins secreted by Flaviviruses and used in serological 

diagnosis and commercial kits is the non-structural protein NS1 (involved in the virus lifecycle) 

and it was proposed to be the most specific antigen for detecting specific immune responses 
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(Mora-Cárdenas et al. 2020). Detection of anti-NS1 IgM Abs has shown higher sensitivity in 

serum samples of infected patients compared with real-time RT-PCR (Huhtamo et al. 2010). 

Purified NS1 antigens have been used for detection of IgG Abs and showed limited cross 

reactivity to related viruses (Cleton et al. 2015). Furthermore, Mora-Cárdenas and colleagues 

(2020) analyzed the sensitivity and specificity of NS1 as an antigen to detect antibodies against 

flaviviruses using sera from exposed individuals. They found a high specificity and sensitivity 

of NS1-based assays confirming that recombinant NS1 proteins are an excellent option for a 

variety of diagnostic formats (Mora-Cárdenas et al. 2020). For the detection of specific 

antibodies against alphaviruses such as CHIKV, MAYV and ONNV, E2 glycoprotein that is 

involved in binding and entry of the virus in host cells as well as induces neutralizing antibodies 

for host protection have been widely used in diagnostic serologic tests (Fumagalli et al. 2018; 

Weger-Lucarelli et al. 2016; Fox et al. 2015). A recent study compared ELISAs using 

recombinant E2 protein and a CHIKV-specific neutralization assay on serum samples from 

humans with suspected CHIKV infection. They found different percentage of sensitivity and 

specificity. While in samples that were positive for IgG (26/59) the sensitivity and specificity 

was 89,66% and 100% respectively, in IgM positive samples (24/59) the sensitivity and 

specificity was 92.48% and 79.04%, respectively (Fumagalli et al. 2018).  

Serological diagnosis of arbovirus infections is a challenging due their antigenic cross-

reactivity but especially in regions or countries were important different flavivirus or alphavirus 

infections co-circulate and are endemic. For Zika, Chikungunya, Mayaro or dengue viruses the 

clinical diagnosis is difficult because they have similar clinical features, and this is even more 

complicated when these viruses co-circulate (Daly 2021; Fritzell et al. 2018). Seroprevalence 

studies can provide a picture of the immunity land scape for infectious diseases (Metcalf et al. 

2016). Thus, multiplex immunoassays are effective to rapidly screen for multiple infections in 

humans and wildlife, in many biological specimens and both endemic or no endemic areas 
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where arboviruses co-circulating.  
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Objective of the thesis work 
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In almost any review or research article, the zoonotic cycles for four well known 

arboviruses (Zika, dengue (DENV), yellow fever (YFV), and chikungunya (CHIKV)) are 

presented with arboreal mosquitos feeding on non-human primates (NHP). This is extremely 

oversimplified because today, there are only extremely limited or no data at all available on the 

extent of these arboviral infections in NHP  However, the population size and the number of 

susceptible NHP at any time, are most likely not high enough to maintain sylvatic arbovirus 

cycles during extended epizootic periods and we hypothesize that other mammal species with 

large numbers of offspring to ensure sufficient naïve animals at any time, play also a role in 

sylvatic cycles (ex. bats, rodents or others).  

 

THE GENERAL OBJECTIVE of the work presented in this thesis is to study the 

extent of exposure of primates and bats to arboviruses by studying the prevalence of antibodies 

against arboviruses of public health importance such as Chikungunya (CHIKV), O’Nyong-

nyong (ONNV), Dengue (DENV 1-4), ZIKA (ZIKV), West Nile (WNV) and Usutu (USUV), 

Yellow Fever virus and to provide new insights in the ecology and animal reservoir of 

arboviruses in African countries with high likelihood for (re)emergence of these zoonotic 

infections. 

Specific objectives:  

• Develop a sensitive and specific high throughput assay to simultaneously  

• Evaluate extent of exposure in non-human primates (NHP) and bats by 

studying the prevalence of antibodies 

• Evaluate whether  NHPs and bats play a role in sylvatic cycles and contribute 

to maintenance of arboviruses in Africa 
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Section II: Experimental Memory 
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II: MATERIALS AND METHODS  
 

II.A. Study design 
 

 

The project used samples from non-human primates and bats that have been collected 

in Guinea, Democratic Republic of Congo (DRC) and Cameroon. These countries have 

favorable ecosystems to maintain sylvatic cycles of arboviral infections. The project was built 

up further on long standing multidisciplinary collaborations involving TransVIHMI (INSERM-

University of Montpellier/IRD); CREMER, in Yaoundé, Cameroon; INRB and University of 

Kinshasa, in DRC; national veterinary services, CERFIG and INSP in Conakry, Guinea. 

Moreover, from our previous studies on other pathogens (HIV, malaria, Ebola…) at the 

animal/human interface, several thousands of samples were already available from a wide 

diversity of African mammals (NHP and bats). This allowed us to do a retrospective screening 

for arboviruses in existing samples. 

 

 

II.B. Luminex xMAP Technology as high-throughput immunoassay tool 

The Multiple Analyte Profiling technology (xMAP; Luminex) is a flow cytometry–

based system that enables simultaneous detection of up to 100 analytes in a single well of a 96-

flat bottomed plate (Vignali 2000; Reslova et al. 2017). This technology is generally more 

sensitive than standard ELISA and Western blot to detect antibodies, has a broad dynamic 

range, requires only small volumes of scarce biological samples and is readily adapted to high 

throughput (Beck et al. 2015; Ahuka-Mundeke et al. 2011; Ayouba et al. 2017; Satterly et al. 

2017). We extended the xMAP technology, that we developed successfully for the detection of 

antibodies to Ebolaviruses and for a wide diversity of HIV/SIV lineages (Ahuka-Mundeke et 

al. 2011; Ayouba et al. 2017), with antigens from the following arboviruses: Dengue (DENV), 

Zika (ZIKV), Usutu (USUV), West Nile (WNV), Yellow fever (YFV), Chikungunya (CHIKV) 
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and O’nyong-nyong (ONNV) viruses. The test was evaluated for sensitivity, specificity and 

accuracy for each virus on a reference panel of well documented positive and negative samples 

from humans. Our test was than adapted to screen a wide diversity of wild species with specific 

anti-IgG conjugates and for use on plasma, whole blood, dried blood spots (DBS) and fecal 

samples stored in RNA-later. 

 

II.B.1. Human Reference Panel 

In order to assess the sensitivity, specificity and accuracy of our multiplex 

immunoassay based on Luminex xMAP we used arbovirus positive and negative human serum 

samples as controls for the immunoassay. We constructed an assay panel composed of 161 

samples of which 95 were serum samples with antibodies to the following viruses: 

Chikungunya (n=27), Zika (n=16), Dengue (n=23), West Nile (n=11), Yellow Fever (n=12) 

and 66 samples known to be negative for arboviruses serving as negative controls. The 

reference samples were provided by the Virology Department of the University Hospital rom 

Montpellier and from the Institute of Tropical Medicine, Antwerp, Belgium. More information 

in Article 1 (page 125). 

 

II.B.2. Antigen coupling to magnetic beads and dilution of samples 

Broadly reactive antigens to capture cross-reactive antibodies of the same or related 

viruses were combined with more specific antigens to differentiate between the different viruses 

and genotypes. We tested a total of 17 recombinant proteins (RP) for seven different 

arboviruses. For flaviviruses we used RP derived of the envelope domain III (DIII) from 

Dengue, Zika and West Nile and nonstructural protein 1 (NS1) from Dengue, Zika, Usutu, West 

Nile and Yellow fever. For the Alphaviruses we used RP derived of the envelope E2 region 

from Chikungunya and O’nyong-nyong and a non-structural protein (NSP) from Chikungunya. 
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Recombinant proteins were coupled to MagPlex® microspheres in different concentrations 

according to each antigen. Serial dilutions of samples were made to different final volumes as 

well as different incubation times and temperatures in order to give the best signal to noise ratio. 

The results are given as mean fluorescence intensity (MFI) per bead. The list of recombinant 

proteins and details of RP-coupled magnetic beads can be consulted in Article 1 (page 128). 

 

II.C. Non-Human primate and bat samples used in the study 

Thousands of well documented samples (fecal, whole blood and DBS) from NHP and 

bats across Africa were available from previous studies on the origin of HIV and/or 

Ebolaviruses allowing thus rapid retrospective screening for the presence of antibodies to 

arboviruses in order to study the ecology of arboviruses in wildlife. For each animal sample, 

date and details on the collection site (GPS coordinates), visual species identification and 

information on the ecological environment are available. Molecular species confirmation was 

also done on a large subset of samples. 

II.C.1. Non-human Primates (NHPs) 

With a history of samples collected for over 17 years, the laboratory has currently 

>12,000 fecal samples from apes (chimpanzees, gorillas, bonobos) and > 5,000 whole blood 

samples from > 25 monkey species collected from pets or bushmeat.  We screened samples that 

were collected in many different sites in Cameroon and DRC (Article 1, page 108). Fecal 

samples were collected around night nets and feeding sites and also opportunistically on track. 

All samples were in stored in optimal conditions (-20°C, -80°C) and in sufficient quantity to 

perform the tests.  

II.C.2. Bats 

The African continent contains about 321 extant species of bats according to the 

African Bats NPC and this comprises 25% of the global diversity of bats 
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(https://africanbats.org/). For the study in this thesis, our laboratory already had more than 8,000 

samples (DBS, oral and anal swabs) from bats available from at least 70 species. Free-ranging 

frugivorous and insectivorous bats were captured at night using ground mist nets or harp traps 

in roosting and foraging sites in their natural environment in Guinea, Cameroon and the 

Democratic Republic of Congo (DRC) Article 2 (page 133). They were released after 

sampling. We screened DBS samples that were air-dried and preserved separately in plastic 

bags containing desiccant silica desiccant and well-stocked in -20°C. More details can be found 

in Article 2 (page 137). 

II.D. Interpretation of Results: Calculation of Cut-Off 

Human Panel: In order to interpret and evaluate the effectiveness of the arbovirus 

multiplex microsphere immunoassay, we used two statistical methods to assess sensitivity, 

specificity and accuracy: ROC (XLSTAT) curve and the formula "Mean + 3 X standard 

deviation". To calculate the cut-off we used the results that are expressed as median 

fluorescence intensity (MFI). Each bead-coupled RP in the set is identified by two dyes and 

with a third dye used to read out binding of the analyte via both biotin and streptavidin-

conjugated. Then, when a sample is captured an MFI for each bead is recorded. The cut-off was 

defined for each RP by calculating the threshold value corresponding to the mean of MFI for 

the negative samples + 3 times the standard deviation (+3SD). Thus, the cut-off value that 

defined a sample as positive or negative, corresponds to the consensus MFI for all the RPs used. 

ROC curve analysis was also used to determine the cut-off values for each antigen (except for 

ONNV and USUV). their sensitivity, specificity and accuracy which corresponds to the area 

under the curve (AUC). The ROC curve was performed in (XLSTAT). 

Wildlife samples: In absence of positive and negative samples for the different animal 

species, we will rely on mathematical and statistical approaches (i.g., change point analysis and 

binomial-exponential distributions) for prevalence estimates.  
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Section III : Results 
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Chapter II : Article 1 – Multiplex detection of antibodies to Chikungunya, O’nyong-

nyong, Zika, Dengue, West Nile and Usutu viruses in diverse nonhuman primate species 

from Cameroon and the Democratic Republic of Congo 

 

II.A. Goal of the study  

 

During recent centuries many human epidemic mosquito-borne arboviruses have 

emerged and re-emerged in different parts of the world. These mosquito-borne arboviruses such 

as Zika virus, Dengue virus, West Nile Virus, YFV, Chikungunya virus, Usutu virus and others 

have affected not only the health of humans but also a wide range of domestic animals, birds. 

Many of these arboviruses as ZIKV, DENV, YFV and CHIKV for example, are present in 

sylvatic (forest) transmission cycles involving NHPs and forest-dwelling mosquitoes. The 

presence of humans in natural forest and the contact with forest animals has increased 

significantly. Human encroachment in forest habitats of NHPs creates conditions that they 

become infected after being bitten by mosquitoes carrying an arbovirus. Limited data are 

available on the extent of these infections in NHP as well as on their precise role especially in 

African countries where many arboviruses cocirculate in the same geographic area.  Identifying 

the extent of arbovirus infection in sylvatic transmission cycles is a challenge for serological 

diagnostic and epidemiological surveillance mainly because these viruses are antigenically 

related and can cross-react. Our aim was to develop and validate a high-throughput serological 

screening tool to study the circulation of certain arboviruses representing a significant potential 

impact on human health in NHPs of Central Africa in a large sample size representing numerous 

species. 
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II.A.1. Supporting Information  
 

 

 

S1 Table. Characteristics of the panel of human plasma samples used to validate the 

arbovirus Luminex assay. 

 

Sample serostatus France Belgium Colombia DRC 
     

Negative (n=66) 61 5 0 0 

CHIKV+ (n=27) 1 5 0 21 

DENV+ (n=23) * 5 6 12 0 

WNV+ (n=11) 11 0 0 0 

YFV+ (n=18) 0 10 5 3 

ZIKV+ (n=16) 2 14 0 0 

             CHIKV, Chikungunya virus ; ONNV, O’nyong nyong virus, ZIKV, Zika virus ; DENV, 

Dengue virus; USUV, Usutu virus;  WNV, West Nile virus 

              *among the 23 DENV, 6 were DENV-1, 7 DENV-2, 4 DENV-3, 3 DENV-4 and 3 DENV1-

4 serotypes. 
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S2A Table: Number of monkey samples collected from different sites in Cameroon and the Democratic Republic of Congo (DRC). Location of 

sites are shown in Figure 1 with the same abbreviations 
   Cameroon Democratic Republic of Congo  

Genus Species Common name Pets BP§ ND YD BQ EW EB MS MN MBk ML MK KL WK GM Total 

                   

Allenopithecus nigroviridis Allan swamp monkey - - - - - - - - - 38 - 2 1 - - 41 

Cercocebus agilis Agile mangabey 11 - - 1 9 - 31 13 60 3 - - - - - 128 

 torquatus Red capped mangabey 2 -  -  -  -  5 -  -  -  -  -  -  -  -  -  7 

 Colobus angolensis Angolan colobus - - - - - - - - - - - 4 21 - - 25 

  guereza Mantled guereza 1 - 15 8 - - - - 8 1 - - 1 - - 34 

 satanus Black colobus - - - - - 7 - - - - - - - - - 7 

Piliocolobus tholloni Tsuapa red colobus - - - - - - - - - - - 2 84 - - 86 

Cercopithecus ascanius Red tailed monkey - - - - - - - - - 35 42 12 106 6 33 234 

 cephus Mustached monkey 27 6 9 16 24 108 158 14 142 - - - - - - 504 

 hamlyni Hamlyn’s monkey - - - - - - - - - - - - - - 6 6 

 lhoesti l’Hoest monkey - - - - - - - - - - - - - 6 32 38 

 mitis Blue monkey - - - - - - - - - - - - - 21 30 51 

 mona Mona monkey 8 - - 1 - - - - - - - - - - - 9 

 neglectus De Brazza monkey 4 - - 4 8 2 11 - 3 18 2 1 6 - - 59 

 nictitans Greater spot-nosed 41 8 21 51 - 69 7 35 144 9 - - - - - 385 

 pogonias Crested mona monkey 5 1 10 14 10 21 27 17 76 - - - - - 1 182 

 preussi Preuss monkey 1 - - - - - - - - - - - - - - 1 

 wolfi Wolf’s monkey - - - - - - - - - 21 1 5 30 6 8 71 

Chlorocebus tantalus Tantalus monkey 14 - - - - - - - - - - - - - - 14 

Erythrocebus patas Patas monkey 16 - - - - - - - - - - - - - - 16 

Lophocebus albigena Grey cheecked mangabey 6 - 10 - - 1 2 15 73 - - 1 - - 2 110 

 aterrimus Black mangabey - - - - - - - - - - - 2 31 - - 33 

Mandrillus leucophaeus Drill 1 - - - - - - - - - - - - - - 1 

 sphinx Mandrill 15 1 - - - 8 - - - - - - - - - 24 

Miopithecus talapoin Northern talapoin 7 3 - 1 - 7 - - - - - - - - - 18 

Papio anubis Olive baboon 16 - - - - - - - - - - - - - - 16 

                   

 Total  175 19 65 96 51 228 236 94 506 125 45 29 280 39 112 2100 

§ abbreviations of sites are as follows: BP, Bipindi; BQ, north of Dja; EB, Eboumetoum; EW, Ebolowa; GM, Goma; KL, Kole; MBk, Mbandaka; MK, Monkoto; 

ML, Malebo; MN, Mindourou; MS, Messok; ND, Nditam; WK, Walikale; YD,Yaoundé
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S2B Table: Number of bonobo, chimpanzee and gorilla fecal samples collected from different sites in  

Cameroon and the Democratic Republic of Congo (DRC). Location of sites are shown in Figure 1 with the same abbreviations. 

Country Collection site# Bonobo Chimpanzee Gorilla  Total 

  Pan paniscus Pan troglodytes troglodytes Gorilla gorilla gorilla*   
Cameroon SO - - 49  49 

Cameroon BP - - 85  85 

Cameroon CP - 5 195  200 

Cameroon MS - - 48  48 

Cameroon DJ - - 104  104 

Cameroon MT - - 40  40 

Cameroon LB - - 20  20 

Cameroon EK - 35 65  100 

Cameroon BQ - 29 127  156 

Cameroon MB - 113 23  136 

DRC LP 14 - -  14 

DRC ML 18 - -  18 

DRC MZ 183 - -  183 

DRC LA 137 - -  137 

DRC BB - 10 -  10 

DRC LS - 71 -  71 

DRC IB* - - 47  47 

 Total 352 263 803  1,418 

# abbreviations of sites are as follows: BB, Bobangi; BP, Bipindi; BQ, north of Dja; CP, Campo; 

DJ. Djoum; EK, Ekom; IB, Ibanga;LA, Lomako-Yokokala; LB, Lobéké; LS, Lusanga; MB, 

Mambelé ; ML, Malebo; MS, Messok; MT, Mintom; MZ, Manzana; LP, Lempu; SO, Somalomo.* 

Gorilla samples collected at IB in eastern DRC are from Gorilla berengei graueri species.  
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S3 Table. Recombinant proteins used in the study. 

Virus Protein Antigen Provider Reference Purity by SDP-PAGE 
     

 
Chikungunya Envelope CHIKV_E2 Interchim A2YI70 > 95% 

 Non Structural Protein 1234 CHIKV_NSP Cusabio RPC23292 > 90% 

O'nyong-nyong Envelope ONNV_E2 Centaur IT-022-005Ep > 95% 

Zika Envelope Domain 3 ZIKV_DIII Interchim A2YHT0 > 95% 
 Non Structural protein 1 ZIKV_NS1 Interchim 40544-V07H > 95% 

Yellow Fever Non Structural protein 1 YFV_NS1 Interchim 80-1547 > 95% 

Dengue  Envelope Domain 3 DENV1_DIII Interchim BWZ880 > 95% 
 Envelope Domain 3 DENV2_DIII Interchim 40471-V08Y3 > 95% 
 Envelope Domain 3 DENV3_DIII Interchim OPPA02169 > 95% 
 Envelope Domain 3 DENV4_DIII Interchim OPPA02021 > 95% 
 Non Structural protein 1 DENV1_NS1 Biorad PIP047A > 95% 
 Non Structural protein 1 DENV2_NS1 Biorad PIP048A > 95% 
 Non Structural protein 1 DENV3_NS1 Biorad PIP049A > 95% 
 Non Structural protein 1 DENV4_NS1 Biorad PIP050A > 90% 

Usutu Non Structural protein 1 USUV_NS1 Abcam Ab218552 > 95% 

West Nile Non Structural protein 1 WNV_NS1 Interchim 40346-V07H > 95% 
 Envelope Domain 3 WNV_DIII Interchim 40345-V08Y > 95% 
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S5 Table. Cut-off values obtained with the different methods for each antigen on ape fecal samples. 

 

Antigen Binomial Exponential ChangePoint Mean of the 3 

methods 

CHIKV_E2 49 47 78 48 

CHIKV_NSP 23 22 24 22 

ONNV_E2 26 35 43 30 

ZIKV_DIII 14 17 3 15 

ZIKV_NS1 25 25 38 25 

YFV_NS1 14 19 10 16 

DENV1_DIII 13 14 2 13 

DENV2_DIII 14 22 13 18 

DENV3_DIII 14 15 10 14 

DENV4_DIII 17 19 21 18 

DENV1_NS1 13 15 2 14 

DENV2_NS1 15 15 10 15 

DENV3_NS1 13 14 2 13 

DENV4_NS1 13 15 2 14 

USUV_NS1 13 16 2 14 

WNV_NS1 25 19 50 22 

WNV_DIII 14 28 24 21 
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S6 Table. Level of cross-reactivity with recombinant antigens from other arboviruses in the reference panel of human plasma samples 
   Plasma 

sample status 
CHIK
V_E2  

CHIKV
_NSP  

ONNV
_E2 * 

ZIKV
_DIII  

ZIKV
_NS1  

YFV_
NS1  

DENV
1_DIII  

DENV
2_DIII  

DENV
3_DIII  

DENV
4_DIII  

DENV
1_NS1  

DENV
2_NS1 

DENV
3_NS1 

DENV
4_NS1  

USUV_
NS1 * 

WNV
_NS1  

WNV
_DIII  

 
                 

CHIKV+ 

(n=27) 
26/27 19/27 14/27 0/27 2/27 14/27 12/27 8/27 10/27 16/27 11/27 5/27 4/27 6/27 14/27 5/27 1/27 

                  

ZIKV+ 

(n=16) 
0/16 0/16 0/16 2/16 16/16 7/16 2/16 0/16 8/16 1/16 5/16 4/16 5/16 5/16 0/16 2/16 0/16 

                  

DENV+ 

(n=23) 
1/23 0/23 1/23 2/23 14/23 19/23 18/23 8/23 21/23 18/23 22/23 23/23 23/23 20/23 15/23 9/23 1/23 

                  

WNV+ 

(n=11) 
0/11 0/11 0/11 0/11 1/11 0/11 2/11 2/11 1/11 3/11 3/11 3/11 2/11 4/11 11/11 11/11 11/11 

                  

YFV+  

(n=18) 
2/18 0/18 0/18 1/18 4/18 8/18 7/18 2/18 7/18 4/18 7/18 5/18 7/18 7/18 6/18 2/18 0/18 

                  

NEG  

(n=66) 
3/66 1/66 2/66 7/66 0/66 5/66 0/66 3/66 9/66 13/66 2/66 0/66 0/66 1/66 1/66 0/66 0/66 

*Results based on cut-off determined with Mean+3xSD method instead of ROC analysis due to absence of positive control samples. 

(CHIKV: Chikungunya virus); (ZIKV: Zika virus); (DENV: Dengue virus); (USUV:  Usutu virus); (WNV: West Nile virus); (YFV: Yellow 

Fever virus); (NEG: Negative). 
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S7 Table. Number and proportions of positive monkey samples to arboviruses and stratified by biotope/habitat. 
Common species 

name 
  Number of Sample reactive to indicates antigens (%) Totala 

Arboreal (n=1749) N Country CHIKV E2 ONNV E2 ZIKVNS1 DV1 NS1 DV2 NS1 DV3 NS1 DV4 NS1 > 1 NS1 DENV* USUV NS1 WNV NS1 WNV DIII N+ (%, range) 

Angolan colobus 25 DRC -b - 1/25 (4.0) c 2/25 (8.0) 1/25 (4.0) 2/25 (8.0) 2/25 (8.0) 2 (8.0) 2/21 (9.5) 2/21(9.5) - 3 (12.0; 4.1-29.9) 

Mantled guereza 34 DRC§ / CMR 1/34 (2.9) 1/27 (3.7) 1/34 (2.9) 1/34 (2.9) 1/34 (2.9) 1/34 (2.9) 1/34 (2.9) 1 (2.9) 1/34 (2.9) 1/34 (2.9) 1/34 (2.9) 3 (8.82; 12.4-40.0) 

Black colobus 7 CMR 2/7 (28.0) nt d 1/7 (14) 1/7 (14) 2/7 (28.0) 1/7 (14) 1/7 (14) 1 (14) - - - 3 (42.0; 15.8-74.9) 

Tsuapa red colobus 86 DRC 2/86 (2.3) 3/85 (3.5) 1/86 (1.1) 1/86 (1.1) 1/86 (1.1) - 1/86 (1.1) - 3/85 (3.4) 1/85 (1.1) 5/85 (5.8) 11 ( 12.7; 7.2-21.4) 

Red tailed monkey 234 DRC 8/234 (3.4) 23/181 (12) 11/234 (4.7) 6/234 (2.6) 6/234 (2.6) 5/234 (2.1) 7/234 (3.0) 6 (2.6) 8/181 (4.5) 8/181 (4.5) 13/181 (7.1) 49 (20.9; 16.2-26.6) 

Mustached monkey 504 CMR 21/504 (4.1) 7/148 (4.7) 12/504 (2.3) 7/504 (1.3) 15/504 (2.9) 6/504 (1.2) 9/504 (1.7) 11 (2.1) 7/369 (1.8) 5/369 (1.3) 10/369 (2.7) 69 (13.6; 10.9-16.9) 

Blue monkey 51 DRC 16/51 (31.0) nt 1/51 (1.9) - - 1/51 (1.9) - - nt nt nt 17 (33.3; 21.9-47.0) 

Mona monkey 9 CMR - 1/9 (11) - - - - - - - - - 1 (11.1; 1.9-43.5) 

Greater spot-nosed 385 DRC§ / CMR 6/385 (1.5) 9/210 (4.2) 17/385 (4.4) 7/385 (1.8) 18/385 (4.7) 9/385 (2.3) 10/385 (2.6) 11 (2.8) 12/315 (3.8) 6/315 (1.9) 7/315 (2.2) 58 (15; 11.8-18.9) 

Crested mona monkey 182 DRC§ / CMR 2/182 (1.0) 3/77 (3.8) 6/182 (3.3) 7/182 (3.8) 8/182 (4.4) 5/182 (2.7) 5/182 (2.7) 7 (3.8) 3/137 (2.1) 4/137 (2.9) 2/137 (1.4) 17 (9.3; 5.9-14.4) 

Wolf’s monkey 71 DRC 1/71 (1.4) 2/55 (3.6) 1/71 (1.4) 2/71 (2.8) 2/71 (2.8) 3/71 (4.2) 1/71 (1.4) 1 (1.4) 1/55 (1.8) 1/55 (1.8) - 8 (11.6; 8.8-25.6) 

Grey cheecked 

mangabey 
110 DRC§/ CMR 5/110 (4.5) - 7/110 (6.3) 5/110 (4.5) 5/110 (4.5) 5/110 (4.5) 8/110 (7.2) 5 (4.5) 2/74 (2.7) 1/74 (1.3) 3/74 (4.0) 17 (15.4; 9.8-23.3) 

Black mangabey 33 DRC - 1/29 (3.4) - - - - 1/33 (3.0) - - - - 2 (6.0; 1.6-19.6) 

Northern talapoin 18 CMR - - 1/18 (5.5) 2/18 (11.0) 1/18 (5.5) 1/18 (5.5) 1/18 (5.5) 2 (11) 1/18 (5.5) - 2/18 (11.1) 4 (22.2; 9.0-45.2) 

Total arboreal 1749  64 (3.6) 50 (2.8) 61 (3.5) 41 (2.3) 60 (3.4) 39 (2.2) 47 (2.7) 47(2.7) 40 (2.7) 29 (1.6) 43 (2.5)  

Terrestrial (n=264)               

Allan swamp monkey 41 DRC - - 1/41 (2.4) - - - - - 1/41 (2.4) 2/41 (4.8) 3/41 (7.3) 7 (17.0; 8.5-31.2) 

Agile mangabey 128 DRC§/ CMR 3/128 (2.3) 4/61 (6.5) 2/128 (1.5) 2/128 (1.5) - 1/128 (0.8) 2/128 (1.5) 2 (1.5) 1/112 (0.8) 1/112 (0.8) 2/112 (1.7) 11 (8.5; 4.8-14.7) 

l’Hoest monkey 38 DRC - nt - - - - - - nt nt nt 0 

Preuss monkey 1 CMR - - - - - - - - - - - 0 

Patas monkey 16 CMR - - - - - - - - - - 1/16 (6.2) 1 (6.25; 1.1-28.3) 

Mandrill 24 CMR - - - - - - - - - - - 0 

Olive baboon 16 CMR - - - - - - - - - - - 0 

Total terrestrial 264  3 (1.1) 4 (1.5) 3 (1.1) 2 (0.8) 0 1 (0.4) 2 (0.8) 2 (0.8) 2 (0.8) 3 (1.1) 6 (2.2)  

Semi-terrestrial (n=87)               

Red capped mangabey 7 CMR - - - - - - - - - - - 0 

Hamlyn’s monkey 6 DRC - nt - - - - - - nt nt nt 0 

De Brazza monkey 59 DRC/CMR - 2/43 (4.6) 2/59 (3.3) - - - 1/59 (1.7) - 2/53 (3.7) 3/53 (5.6) 4/53 (7.5) 9 (15.2; 8.2-26.5) 

Tantalus monkey 14 CMR - - - - - - - - - - 1/14 (7.1) 1 (7.1; 1.2-31.4) 

Drill 1 CMR - - - - - - - - - - - 0 

Total semi-terrestrial 87  0 2 (2.3) 2 (2.3) 0 0 0 1 (1.1) 0 2 (2.3) 3 (3.4) 5 (5.7)  

               

a Total number of samples reactive with more Denv NS1antigens ; b no positive samples were identified; c  number of positives (percentages); d nt, not tested 
*Reactive to more than one DENV antigen; § less than 10 sample
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S8 Table. Amino acid identity matrix between diverse human and sylvatic Dengue virus 
envelope and NS1 proteins. 
 
                                                   Envelope (% amino acid identity) 
 Sylvatic DV1 Sylvatic DV2 Sylvatic DV4 
 hDV1* 97,6 69,5 64,2 
hDV2 68,5 93,7 64,0 
hDV4 63,7 64,2 95,7 

*: human dengue virus 
 
                                                   NS1 (% amino acid identity) 
 Sylvatic DV1 Sylvatic DV2 Sylvatic DV4 
hDV1 97,0 73,0 68,7 
hDV2 73,0 91,4 72,0 
hDV4 68,5 71,1 93,0 
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Chapter III : Article 2 - Seroprevalence of IgG antibodies against multiple arboviruses in 

bats from Cameroon, Guinea, and the Democratic Republic of Congo.  

 

III.A. Goal of the study 

 

Bats harbor a wide diversity of zoonotic viruses and are natural reservoir hosts for various 

pathogens, such as Marburg virus, Nipah virus, and Hendra virus. Bats have a high potential 

for viral dispersion, and transmit viruses to humans and other domestic or wild animals. 

Furthermore, bats have been reported to be exposed to many arboviruses in both urban and 

forest environments, but limited data on the extend of these infections are available from 

African countries which harbor a vast diversity of bat species. In this context, we hypothesize 

that bat species could also play a role in the sylvatic arbovirus cycles during extended epizootic 

periods because they have a large number of offspring to ensure sufficient naïve animals at any 

time. Our aim was to apply our multiplex immunoassay to screen retrospectively a large number 

from different bat species to evaluate the circulation of certain arboviruses in bats from 

Cameroon, DRC and Guinea. This allows us to evaluate the extent and degree of exposure of 

bats to arboviruses. 
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ABSTRACT  

 

Background: Emergence of mosquito-borne arboviruses have caused significant public health 

burden. The life cycle of arboviruses comprises sylvatic and urban cycles, including a wildlife 

reservoir, a human host and an arthropod vector. However, many questions remain on the 

sylvatic cycles of arboviruses. Here, we investigate the prevalence of IgG antibodies to 

arboviruses of public health importance in African bats. Material and methods: We collected 

dried blood spots from bats in Cameroon, Guinea and the Democratic Republic of the Congo 

(DRC). To detect IgG antibodies to ten antigens of six arboviruses (Dengue, Zika, West Nile, 

Usutu, Chikungunya and O’nyong nyong viruses) we adapted a previously validated multiplex 

detection assay based on the Luminex technology. Results: We tested samples from 2,579 bats, 

representing 1,917 frugivorous and 641 insectivorous bats distributed in seven families and 21 

species. Overall, 218/2579 (8.45%) bat samples reacted with at least one of the ten antigens 

tested. The highest prevalence was observed against Usutu virus with 2.3% (59/2579), followed 

by 1.9% (49/2579) and 1.35% (35/2579) for the Dengue virus serotypes 4 and 3, respectively. 

The global seroprevalence varied by country and collection site, 11% (151/1376) in Cameroon, 

3.5% (20/565) in Democratic Republic of the Congo  and 7.3% (47/638) in Guinea. The highest 

rates were observed in Hypsignathus monstrosus (17.9%), Rousettus aegyptiacus (16.4%) and 

Eidolon helvum (10.7%) and in species from the insectivorous Molossidae family (7.8%-8.9%). 

Finally, we observed changes in seroprevalence over the year in E. helvum and H. monstrosus 

colonies which could be related to population structure. Conclusion: On more than 2,500 bat 

samples tested, we showed variable IgG seroprevalences against multiple arboviruses. Overall, 

the prevalence of IgG antibodies of 8.45% against arboviruses found in bats suggest that they 

could play a role in arboviruses cycles in the wild, in addition to other animal species. 

Keywords: arboviruses, bats, Africa, antibodies, Luminex.   
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INTRODUCTION 

 

 The number and impact of emerging infectious diseases (EIDs) has significantly 

increased over time. The large majority of EIDs have a zoonotic origin, and more than 70% 

originate from wildlife (Jones, et al. 2008). Among them, mosquito-borne arboviruses 

constitute a significant threat to public health in worldwide. Arboviruses are predominantly 

RNA viruses and approximately one third have pathogenic potential for humans, such as 

Dengue, Zika, West Nile, Usutu, Chikungunya, O’nyong-nyong and many other viruses 

(Guzmán, et al. 2020). The life cycle of arboviruses comprises in general a sylvatic or enzootic 

cycle and a urban cycle, that include a wildlife reservoir, a human host and an arthropod vector 

in a complex interplay. Many arboviruses causing epidemics today have their origin in Africa 

or were first identified in Africa; i.e. Yellow Fever, West Nile, Zika, Chikungunya and Usutu 

viruses (Shope 1994,Dick 1953,Mason and Haddow 1957). For many of them, like Zika, 

Dengue, or Chikungunya, non-human primates (NHPs) were considered to play a major role in 

sylvatic cycles, but this was based on limited data. We recently showed that the observed 

seroprevalence for arboviruses on a large number of NHPs in Africa was not sufficient for them 

to be considered as the main reservoir species. Thus, other species most likely also play a role 

to maintain these viruses in the sylvatic cycles in Africa (Valentine, et al. 2019,Raulino, et al. 

2021).  

 Bats are known to harbor many viruses and arboviruses have also been detected in bats  

(Luis, et al. 2013,Melaun, et al. 2014,Fagre and Kading 2019,Ayhan, et al. 2021,Calderon A 

2016). Bats represent 20% of all mammalian species, with more than 1400 species worldwide, 

have high population densities and roosting behavior that favor the likelihood of transmission 

of pathogens (Omatsu, et al. 2007). The majority of studies reporting on arboviruses in bats are 

from southern America (Hernández-Aguilar, et al. 2021,Thompson, et al. 2015,Ubico and 
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McLean 1995). Very few studies have been conducted in Africa, the majority were done before 

1970 and reported antibodies to Zika virus or Yellow Fever in several bat species in east Africa 

(Williams, et al. 1964,Simpson, et al. 1968).  

 The limited data available on this important question is probably due to lack of assays 

for bat’s immune typing, the difficulty of arbovirus serology because of antigenic proximity 

among different arboviral lineages and limited sample volumes that can be drawn from bats. 

Recently, our group has developed a high throughput serological tool to detect IgG antibodies 

to different arboviruses of global interest that circumvent some of the above mentioned 

difficulties (Raulino, et al. 2021). In the present report, we adapted this serological tool for the 

detection of IgG antibodies to six arboviruses (Chikungunya, O’nyong nyong, Dengue, Zika, 

West Nile and Usutu viruses) and tested bat samples collected in Cameroon, Guinea and DRC. 

Our data showed that seroprevalence varied by country, by collection site, by bat families and 

species, and ranged from less to 1% to up to 20%. These findings suggest that bats could play 

a role in sylvatic life cycles of some arboviruses.   

 

MATERIAL AND METHODS 

 

Bat sampling and sites 

Samples from free-ranging frugivorous and insectivorous bats were collected between 2016 

and 2019 from in Cameroon, DRC and Guinea in the framework of a study on Ebola and other 

viruses in bats. Bats were captured using mist nets or harp traps in roosting and foraging sites 

and immediately released after sampling as previously described (De Nys, et al. 2018). Dried 

blood spots (DBS) were prepared on Whatman 903 filter paper (GE Healthcare, Feasterville-

Trevose, PA, USA) from whole blood samples collected by venipuncture of the propatagial or 

brachial vein. DBS samples were preserved as described in De Nys, et al. 2018, stored in the 
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filed at ambient temperature and then at -20°C. For each sample, information on capture site 

(GPS coordinates (Supplementary Table S5), ecological environment), capture method, 

morphology (body measurements, weight, color), sex, age class (adult, juvenile), reproduction 

cycle and visual species identification were recorded in the field. Permissions to perform this 

research were obtained from administrative authorities of Cameroun, Guinea and the DRC. 

 

Detection of antibodies to arboviruses 

Samples were tested with our previously developed assay based on the Luminex technology 

with sensitivity and specificity and accuracy > 95% on a reference panel of well documented 

human samples (Raulino, et al. 2021). We used 10 commercially available recombinant proteins 

from six arboviruses: CHIKV-E2 (Chikungunya virus Envelope protein 2), ONNV-E2 

(O’nyong nyong virus envelope  protein 2), DENV-NS1 (Dengue virus-Nonstructural protein 

1) (1 to 4 serotypes), USUV-NS1 (Usutu virus-Non Structural protein 1), WNV-NS1 (West 

Nile virus Non Structural protein 1) , WNV-DIII (West Nile virus Domain-3 protein) and 

ZIKV-NS1 (Zika virus Non-Structural protein 1)(Raulino et al. 2021). The assay was  

performed as previously described and optimized for bats using goat anti-bat biotin–labeled 

IgG (Euromedex, France) and Streptavidin-R- phycoerythrin (Fisher Scientific/Life 

Technologies, Illkirch, France) (Raulino, et al. 2021). Whole blood was reconstituted from DBS 

as previously described and a final plasma dilution 1/200 was used (Ayouba, et al. 2019). The 

results were expressed as median fluorescence intensity (MFI) per 50 beads. Each plate 

included a blank well, positive samples for Chikungunya, Dengue, Zika and West Nile viruses 

and also 2 negative samples to validate inter-assay repeatability. 

 

Calculation of cut-off values for the different antigens 
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In the absence of positive and negative control samples from bats, we analyzed our data with 

different statistical methods to determine MFI cut-off values for each antigen as previously 

described (Raulino, et al. 2021,De Nys, et al. 2018,Ayouba, et al. 2019,Peel, et al. 2013,Gilbert, 

et al. 2013). We used a change-point analysis with the R package “changepoint” and calculated 

one single shift in the arithmetic mean with the AMOC (at most one change) method (Lardeux, 

et al. 2016,Killick and Eckley 2014). We also used fitted univariate distributions (binomial and 

negative exponential distributions) to our data and defined the cut-off based on a 0.001 risk of 

error. Data were bootstrapped 10,000 times and averaged for each antigen. Analyses were done 

with R software version 3.3.6. We then compared the cut-off values identified by the 3 different 

methods and calculated their mean as a consensus cut-off that we used in this study 

(Supplementary Table S1). A sample was considered reactive if MFI was above the cut-off 

value. 

 

Molecular confirmation of bat species 

Species identification recorded in the field was molecularly confirmed on a subset of samples 

by sequence analysis of an 800 bp fragment of the mitochondrial cytochrome b (CytB) like in 

our previous studies (De Nys, et al. 2018, Lacroix, et al. 2020). Sequences were submitted to 

NCBI for BLAST analysis to identify the most similar bat species. For samples with none or 

low similarity (<97%) hits with species in Genbank, phylogenetic tree analysis was done using 

maximum likelihood methods implemented in PhyML (Guindon and Gascuel 2003) with 

reference sequences in order to approach genus identification. To discriminate between 

Epomophorus gambiensis and Micropteropus pusillus, we used also morphologic details on 

forearm and weight measurements because species identification was not possible based on 
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CytB sequences (Nesi, et al. 2011). Species identification was extrapolated by per capture 

method, GPS coordinate and morphological descriptions for the other samples.  

 

RESULTS 

 

Distribution and diversity of bat species 

 We tested a total of 2,579 bats captured in 21 different sites in Guinea (n=8), Cameroon 

(n=4) and DRC (n=9) (Figure 1). The samples were from bats living in urban areas (52%), 

villages (26%), forest (10.5%) and caves (10.9%).  For 2,313 (89.6%) samples, the species 

identification in the field was confirmed by sequence analysis, however it was not possible to 

clearly discriminate between certain Chaerophon and Mops species from the Molossidae family 

based on CytB sequences and morphological data. We tested at least 12 different species of 

frugivorous bats, and six different families of insectivorous bats. Details on the different bat 

species that were collected in each country are shown in Table 1.  

 Overall, 1193 bats were male, 1381 female and for five data were not available. Among 

females, 77% were adults, 8.0% were reproductively immature and 14% were juveniles. For 

males, 70%, 12% and 17% were adults, reproductively immature and juveniles respectively. 

For the remaining samples information on age and sex were not available.  
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Figure 1: Bat collection sites and presence of arboviruses in Cameroon, Guinea and DRC.  

The maps represent Africa and the 3 countries (Guinea, top; Cameroon, center; and the DRC, 

bottom) where studied samples have been collected. Grey dots indicate sampling sites where 

no antibodies to arboviruses were detected; red dots, sites where antibodies to alphaviruses were 

detected; blue dots, sites where antibodies to flaviviruses were detected; red dots with blue 

circles, sites were antibodies to flavi- and alpha viruses were detected. Site abbreviations: 

Cameroon – Village: CP/Campo; MB/Mambele, Urban area: OB/Obala ;YD/Yaoundé. DRC 

– Caves: BM/Boma; KP/Kimpse; ZG/Zongo, Forest: ZG/Zongo; BD/Boende, Urban area: 

BN/Beni; BK/Bikoro; BM/Boma; KP/Kimpse; KM/Komanda; MG/Mangina, Village: 

BD/Boende; KI/Kikiwit. Guinea – Caves: KK/Kankan; KN/Kindia; MC/Macenta; 

MM/Mamou; SI/Siguiri, Forest: MC/Macenta, Urban area: KN/Kindia; MM/Mamou; Villages: 

BF/Boffa; KK/Kankan; KN/Kindia; KD/Koundara; LL/Lola; MC/Macenta; MM/Mamou; 

SI/Siguiri. 
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Table 1: Number of different bat families and species collected in each country 

Family/ 

     genus/species 

Cameroon  

n (%) 

DRC  

n (%) 

Guinea  

n (%) 

Total 

n (%) 

 

Pteropodidae      
Casinycteris arginnis 1 (0.07) 4 (0.7) - 5 (0.19) 
Eidolon helvum 815 (59) 153 (27) 20 (3.1) 988 (38) 
Epomophorus gambianus - 41 (7.2) 44 (6.8) 85 (3.2) 
Epomops sp* 121 (8.8) 56 (9.9) 21 (3.2) 198 (7.6) 
Hypsignathus monstrosus 249 (18) 5 (0.8) 2 (0.3) 256 (9.9) 
Lissonycteris angolensis 41 (2.9) 6 (1.0) 3 (0.4) 50 (1.9) 
Megaloglossus woermanni 6 (0.43) 5 (0.8) - 11 (0.4) 
Micropteropus pusillus 5 (0.36) 95 (16) 19 (2.9) 119 (4.6) 
Myonycteris torquata 26 (1.8) 31 (5.4) - 57 (2.2) 
Nanonycteris veldkampii - - 1 (0.1) 1 (0.03) 
Rousettus aegyptiacus 1 (0.07) - 145 (22) 146 (5.6) 
Scotonycteris zenkeri 1 (0.07) - - 1 (0.03) 

Subtotal frugivorous bats 1266 (92) 396 (70) 255 (33) 1917 (74) 

 

Hipposideridae 
    

Hipposideros sp 1 (0.07) 102 (18) 78 (12) 181 (7.0) 
Miniopteridae     

Miniopterus sp - 49 (8.6) 5 (0.7) 54 (2.0) 
Molossidae     

Chaerephon sp - 2 (0.3) 154 (24) 156 (6.0) 
Chaerephon or Mops 94 (6.8) - 35 (5.4) 129 (5.0) 
Mops sp - - 56 (8.7) 56 (2.1) 

Nycteridae     

Nycteris sp - 1 (0.1) 2 (0.3) 3 (0.11) 
Rhinolophidae     

Rhinolophus sp - 7 (1.2) 35 (5.4) 42 (1.6) 
Vespertilionidae     

Neoromicia sp - 4 (0.7) - 4 (0.15) 
Scotophilus sp - 3 (0.5) 13 (2.0) 16 (0.6) 

Subtotal insectivorous bats 95 (6.9) 168 (29) 378 (59) 641 (24) 

 

Indeterminate species 
15 (1.0) 1 (0.1) 5 (0.7) 21 (0.8) 

Total 1376 (53.3) 565 (21.9) 638 (24.7) 2579 (100) 
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Evidence of antibodies to Alphaviruses and Flaviviruses in bats 

Antibodies to alphavirus (Chikungunya and O’nyong-nyong) and flaviviruses (Dengue 1 

to 4, Usutu, West Nile and Zika) tested in this study were observed in Eidolon helvum, 

Epomophorus gambianus, Epomops sp, Hypsignathus monstrosus, Lissonycteris angolensis, 

Micropteropus pusillus, Myonycteris torquarta, Rousettus aegyptiacus, Hipposideros sp, 

Miniopterus sp, Chaerephon sp, Mops sp and Rhinolophus sp bats from the three countries 

(Figure 1). Overall, 8.45% (218/2,579) of the samples reacted with at least one arbovirus 

antigen (Table 2). Globally, 2.3% of the bats had antibodies to Usutu virus, 0.85% to 1.35% to 

serotypes 1 to 4 of Dengue virus and the lowest proportions were observed for Zika virus 

(0.54%). Global rates and stratified per virus varied among countries and within countries. In 

Cameroon, 11% (151/1,376) of bat samples had antibodies to arboviruses, ranging between 

0.58% for Zika virus to 4.0% for Usutu virus. In Guinea, we also observed antibodies to all 

viruses with a total seroprevalence of 7.3% (47/638) and a predominance to O’nyong-nyong 

(2.35%). In DRC, 3.5% (20/565) of the bat samples tested had antibodies with a predominance 

to antigen NS1 of West Nile virus, and in contrast to the two other countries, no antibodies to 

Chikungunya virus were observed.  

Antibodies to at least one arbovirus were observed in 14 (70%) of the 21 species tested, 

i.e. in all species with sufficient samples (>20) (Table 3). The highest rates were observed 

among the following frugivorous bat species, Hypsignathus monstrosus (17.9%), Rousettus 

aegyptiacus (16.4%) and Eidolon helvum (10.7%) and in species from the insectivorous 

Molossidae family, Mops sp (8.9%) and Mops/Chaerophon sp (7.8%). Eidolon helvum is a 

common species, which showed IgG antibodies against all viruses tested, but with different 

positivity rates for each virus in different sites tested, which is probably related to differences 

in the numbers of samples tested.  Hypsignathus monstrosus is also a common species, but large 
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numbers were only tested in Cameroon, and antibodies were observed against all viruses tested 

with 10% of samples reactive to Usutu virus. In Rousettus aegyptiacus, that were highly 

represented in the sample set from Guinea, antibodies against almost all viruses were detected 

reaching 8.9% for O’nyong-nyong virus. Also, in bats from the Molossidae family, antibodies 

against almost all alphaviruses and flaviviruses were observed with 7.4% of samples reactive 

against to serotype 4 of Dengue in Cameroon.  In other species, for example Micropteropus 

pusillus, IgG antibodies were only observed against flavivirus, and in Myonycteris torquata 

only IgG antibodies to alphavirus were detected (Table 3). Overall, antibodies were observed 

in 10% (192/1917) of frugivorous bats, versus 3.9% (25/641) in insectivorous bats. Frugivorous 

bats had antibodies to all viruses tested, and in insectivorous bats no antibodies were observed 

against the Usutu and to antigen NS1 of West Nile virus (Table 3).  Only for the serotype 2 of 

Dengue virus, the difference between the positivity in frugivorous and insectivorous was 

statistically significant (p=0.028; OR:4.5626; CI 95%: 1.41-39.7).  

 Ten percent of frugivorous and insectivorous bats captured in urban areas had antibodies 

to arboviruses versus 6.6 % in villages. Eidolon helvum bats were captured in cities, villages 

and forests with the following positivity rates, 10.7%, 18% and 9.8% respectively. Similar rates 

were observed for Hypsignathus monstrosus captured in urban areas (18.5%) and villages 

(16.6%). Rousettus aegyptiacus bats were also positive in all settings with rates between 11.5% 

to 30%. Most insectivorous bats were captured in more remote areas and showed lower rates, 

except for species of the Molossidae family, with 7.7% of Chaerephon/Mops, that were 

captured in villages having antibodies to arboviruses (Table 4). The difference in positivity 

rates of antibodies to arboviruses between frugivorous and insectivorous might reflect the 

different biotopes. Supplementary Table S2 shows in detail the reactivity with the different 

viruses according to the ecological settings independently from the species. Overall, antibodies 
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to almost all viruses studied are observed in all settings, although at different rates with a trend 

of lower rates in caves as compared to the three other settings. 
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Table 2: Prevalence of antibodies to Alphaviruses (CHIKV and ONNV) and Flaviruses (ZIKV, DENV1-4, USUV and WNV) in bats in the 
different collection sites shown in Figure 1. 

 
CHIKV, Chikungunya virus; ONNV, O’nyong nyong virus; ZIKV, Zika virus; DENV, Dengue virus; USUV, Usutu virus; WNV, West Nile virus; CI = 95% 
confidence interval; *total means number of samples reactive with at least one antigen 

  CHIKV_E2 ONNV_E2 ZIKV_NS1 DENV1_NS1 DENV2_NS1 DENV3_NS1 DENV4_NS1 USUV_NS1 WNV_NS1 WNV_D3 Total *positive (%) 

Cameroon  n N Positive (% / CI)  

CP 81 1 (1.23) 1 (1.23) - 1 (1.23) 2 (2.46) - 1 (1.23) - - - 4 (4.9) 

MB 143 1 (0.69) 2 (1.39) - 2 (1.39) - 1 (0.69) 7 (4.89) - - 1 (0.69) 11 (7.6) 

OB 295 2 (0.67) 1 (0.33) 2 (0.67) 1 (0.33) 1 (0.33) 1 (0.33) 2 (0.67) 4 (1.35) 2 (0.67) 4 (1.35) 15 (5.0) 

YD 857 11 (1.3) 9 (1.0) 6 (0.7) 16 (1.9) 19 (2.2) 18 (2.1) 26 (3.0) 52 (6.0) 9 (1.0) 5 (0.6) 121 (14.1) 

SUB-TOTAL 1376 15 (1.0 / 0.66 - 1.80) 13 (0.94 / 0.55 - 1.61) 8 (0.58 / 0.29 - 1.15) 20 (1.4 / 0.94 - 2.24) 22 (1.6 / 1.05 - 2.41) 20 (1.4 / 0.94 - 2.24) 36 (2.6 / 1.89 - 3.61) 56 (4.0 / 3.14 - 5.25) 11 (0.8 / 0.44 - 1.43) 10 (0.72/ 0.39 - 1.34) 151 (11) 

DRC             

BN 77 - - - - - 1 (1.29) - - - - 1 (1.2) 

BK 43 - - - - - - 1 (2.32) - - 1 (2.32) 2 (4.6) 

BD 136 - - - - - 1 (0.73) 3 (2.20) 1 (0.73) - 2 (1.51) 6 (4.4) 

BM 41 - - - - - - - - - - 0 (0.0) 

KI 42 - 1 (2.38) - - - - - - - - 1 (2.3) 

KP 43 - 1 (2.32) 1 (2.32) - - - - - - - 2 (4.7) 

KM 20 - - - - - - - - - - 0 (0.0) 

MG 21 - - - - - - - - - - 0 (0.0) 

ZG 142 - 1 (0.70) 1 (0.70) 1 (0.70) 1 (0.70) 2 (1.40) 1 (0.70) 1 (0.70) 6 (4.22) - 8 (5.6) 

SUB-TOTAL 565 0 (0.0 / 0.00 - 0.68) 3 (0.53 / 0.18 - 1.55) 2 (0.35 / 0.09 - 1.29) 1 (0.17 / 0.03 - 1.00) 1 (0.17 / 0.03 - 1.00) 4 (0.70 / 0.27 - 1.81) 5 (0.88 / 0.37 - 2.06) 2 (0.35 / 0.09 - 1.29) 6 (1.06 / 0.48 - 2.30) 3 (0.53 / 0.18 - 1.55) 20 (3.5) 

Guinea             

BF 93 - 1 (1.07) 1 (1.07) - 1 (1.07) 5 (5.37) 1 (1.07) - - 1 (1.07) 9 (9.6) 

KK  91 - - - - 1 (1.09) - - - - 2 (2.19) 3 (3.2) 

KN 114 2 (1.75) 3 (2.63) - 1 (0.87) 1 (0.87) 1 (0.87) 1 (0.87) - - - 6 (5.2) 

KD 7 - - - - - - - - - - 0 (0.0) 

LL 36 - 1 (2.77) 1 (2.77) - - 1 (2.77) - 1 (2.77) 2 (5.55) 1 (2.77) 5 (13.8) 

MC  98 - 7 (7.14) - - 1 (1.02) 3 (3.06) 4 (4.08) - - 3 (3.06) 12 (12) 

MM 99 3 (3.00) 2 (2.00) 1 (1.00) - 1 (1.00) - 1 (1.00) - - - 8 (8.0) 

SG 100 - 1 (1.00) 1 (1.00) - 1 (1.00) 1 (1.00) 1 (1.00) - - 1 (1.00) 4 (4.0) 

SUB-TOTAL 638 5 (0.78 / 0.33 - 1.83) 15 (2.35 / 1.42 - 3.85) 4 (0.62 / 0.24 - 1.61) 1 (0.15 / 0.02 - 0.89) 6 (0.94 / 0.43 - 2.04) 11 (1.75 / 0.96 - 3.07) 8 (1.25 / 0.63 - 2.46) 1 (0.15 / 0.02 - 0.89) 2 (0.31 / 0.08 - 1.14) 8 (1.25 / 0.63 - 2.46) 47 (7.3) 

Total 2579 20 (0.77 / 0.50 - 1.20) 31 (1.2 / 0.84 - 1.71) 14 (0.54 / 0.32 - 0.91) 22 (0.85 / 0.56 - 1.29) 29 (1.12 / 0.78 - 1.62) 35 (1.35 / 0.97 - 1.89) 49 (1.9 / 1.44 - 2.51) 59 (2.3 / 1.77 - 2.94) 19 (0.73 / 0.47 - 1.15 21 (0.81 / 0.53 - 1.25) 218 (8.45) 
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Table 3: Seroprevalence of IgG antibodies to arboviruses in bat species.  
 
  CHIK_E2 ONNV_E2 ZIKV_NS1 DENV1_NS1 DENV2_NS1 DENV3_NS1 DENV4_NS1 USUV_NS1 WNV_NS1 WNV_D3 N Pos£ % ; CI95% 

Species / genus N tested N positive (%)  

Casinycteris sp 5 - - - - - - - - - - 0 0.0 ; 0-43 

Eidolon helvum 988 9 (0.91) 9 (0.91) 5 (0.50) 16 (1.61) 21 (2.12) 16 (1.61) 26 (2.63) 32 (3.23) 15 (1.51) 9 (0.91) 106 10.7 ; 8.9-12 

Epomophorus gambianus 85 - 1 (1.17) - - - 1 (1.17) - - - - 2 2.35 ; 0.6-8.1 

Epomops sp* 198 1 (0.52) - 3 (1.51) - - - 1 (0.52) - - 1 (0.52) 6 3.0 ; 1.3-6.4 

Hypsignathus monstrosus 256 3 (1.17) 2 (0.78) 3 (1.17) 3 (1.17) 3 (1.17) 7 (2.76) 6 (2.34) 26 (10.1) 4 (1.56) 2 (0.78) 46 17.9 ; 13-23 

Lissonycteris angolensis 50 - - - - - - 1 (2.0) - - - 1 2.0 ; 0.3-10 

Megaloglossus woermanni 11 - - - - - - - - - - 0 0.0 ; 0-25 

Micropteropus pusillus 119 - - 1 (0.84) - - 1 (0.84) 1 (0.84) 1 (0.84) - 1 (0.84) 5 4.2 ; 1.8-9.4 

Myonycteris torquarta 57 1 (1.75) 2 (3.5) - - - - - - - - 3 5.2 ; 1.8-14 

Nanonycteris veldkampii 1 - - - - - - - - - - 0 0.0; § 

Rousettus aegyptiacus 146 4 (1.37) 13 (8.96) 1 (0.68) 1 (0.68) 3 (2.06) 4 (2.73) 5 (3.44) - - 4 (1.37) 24 16.4 ; 11-23 

Scotonycteris zenkeri 1 - - - - - - - - - - 0 0.0 ; § 

Frugivorous bats 1917 17 (0.88) 27 (1.4) 13 (0.67) 20 (1.04) 27 (1.4) $  28 (1.46) 40 (2.0) 59 (3.0) 19 (0.99) 17 (0.88) 192 10 ; 8.7-11 

Hipposideros sp 181 - 1 (0.55) - - 1 (0.55) - - - - 1 (0.55) 3 1.65 ; 0.5-4.7 

Miniopterus sp 54 - - 1 (1.85) - - - - - - - 1 1.85 ; 0.3-9.7 

Chaerephon sp 156 1 (0.64) 1 (0.64) - - - 1 (0.64) 2 (1.28) - - - 5 3.2 ; 1.3-7.2 

Chaerephon or Mops 129 1 (0.77) 2 (1.55) - 2 (1.55) - 1 (0.77) 7 (5.42) - - - 10 7.75 ; 4.2-13 

Mops sp 56 - - - - 1 (1.92) 4 (7.69) - - - 1 (1.92) 5 8.9 ; 3.8-19 

Nycteris sp 3 - - - - - - - - - - 0 0.0 ; 0-56 

Rhinolophus sp 42 - - - - - - - - - 1 (2.38) 1 2.38 ; 0.4-12 

Neoromicia sp 4 - - - - - - - - - - 0 0.0 ; 0-49 

Scotophilus sp 16 - - - - - - - - - - 0 0.0 ; 0-19 

Insectivorous bats 641 2 (0.31) 4 (0.62) 1 (0.15) 2 (0.31) 2 (0.31) $ 6 (0.93) 9 (1.4) 0 (0.0) 0 (0.0) 3 (0.46) 25 3.9 ; 2.6-5.7 

Ideterminate species 21 - - - - - - - - - 1 (4.76) 1 4.8 ; 0.8-22 

*In Cameroon and DRC, Epomops franqueti, in Guinea Epomops buetikoferi; $ = p-value=0.02825 ; CI= confidence interval; §= confidence interval was not 

calculated; CHIKV, Chikungunya virus; ONNV, O’nyong nyong virus; ZIKV, Zika virus ; DENV, Dengue virus ; USUV, Usutu virus ; WNV, West Nile virus , £ 
number positive with a t least one antigen. 
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Table 4: Proportion of samples with antibodies to arbovirus for each species according 

ecological site where they were captured. 

 

*In Cameroon and DRC, Epomops franqueti, in Guinea Epomops buetikoferi 

 

 

 Caves Forest Urban area Village 

Pteropodidae N pos / N tested (%) 

Casinycteris sp - 0/4 (0.0) - - 

Eidolon helvum 0/2 (0.0) 14/143 (9.8) 88/821 (10.7) 4/22 (18) 

Epomophorus gambianus 0/1 (0.0) - 1/42 (2.4) 1/42 (2.4) 

Epomops sp* - 0/11 (0.0) 4/89 (4.5) 2/98 (2.0) 

Hypsignathus monstrosus - 0/5 (0.0) 42/227 (18.5) 4/24 (16.6) 

Lissonycteris angolensis - 1/3 (33) 0/43 (0.0) 0/4 (0.0) 

Megaloglossus woermanni - - 0/1 (0.0) 0/10 (0.0) 

Micropteropus pusillus 0/3 (0.0) 0/39 (0.0) 3/61 (4.9) 2/16 (12.5) 

Myonycteris torquarta - 0/12 (0.0) 1/27 (3.7) 1/18 (5.5) 

Nanonycteris veldkampii - - - 0/1 (0.0) 

Rousettus aegyptiaacus 7/23 (30) 5/41 (12) 3/26 (11.5) 9/56 (16) 

Scotonycteris zenkeri - - - 0/1 (0.0) 

Subtotal Frugivorous bats 7/29 (24) 20/258 (7.7) 142/1337 (10.6) 23/293 (7.9) 

Hipposideridae     

Hipposideros sp 3/154 (1.9) 0/6 (0.0) 0/19 (0.0) 0/2 (0.0) 

Miniopteridae     

Miniopterus sp 1/51 (1.9) 0/3 (0.0) - - 

Molossidae     

Chaerephon sp 0/2 (0.0) - 0/1 (0.0) 5/153 (3.3) 

Chaerephon or Mops - - - 10/129 (7.7) 

Mops sp - - - 5/56 (8.9) 

Nycteridae     

Nycteris sp 0/2 (0.0) 0/1 (0.0) - - 

Rhinolophidae     

Rhinolophus sp 1/38 (2.6) 0/4 (0.0) - - 

Vespertilionidae     

Neoromicia sp - - - 0/4 (0.0) 

Scotophilus sp - - 0/2 (0.0) 0/14 (0.0) 

Subtotal Insectivorous bats 5/245 (2.0)  0/14 (0.0)  0/22 (0.0)  20/376 (5.3)  

     

Indeterminate species 0/5 (0.0) - 0/1 (0.0) 1/15 (6.6) 

     

Total/ (% [95%CI]) 12/281 (4.2 [2.4-7.3]) 20/272 (7.35 [4.8-11]) 142/1360 (10.4 [8.9-12]) 44/666 (6.6 [4.9-8.7]) 
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Antibodies in E. helvum and H. monstrosus according to seasons, age and reproductive cycle 

 The 815 Eidolon helvum and 227 of the 249 Hypsignatus monstrosus samples in 

Cameroon, were part of colonies roosting in Yaoundé and foraging in neighboring areas. 

Samples were collected on a monthly basis between December 2018 and November 2019. For 

E. helvum, we tested 221 juvenile, 218 reproductively immature and 378 adult bats, and 

comparable seroprevalence rates were observed in all age categories ranging from 10.1% to 

11.1%. For H. monstrosus, differences according to age category were observed, with highest 

proportion of positives among adults (31/132, 23.5%), 10/72 (13.9%) of juveniles and lowest 

proportions in reproductively immature (1/22; 4.6%) (Figure 2). Seropositivity rates were also 

significantly higher in adult H. monstrosus as compared to adult E. helvum bats, 23.5% versus 

11.1% respectively (p-value <0.0001) (Supplementary Table S3). We also examined whether 

antibody status can vary in females during gestation and lactation. Among the female H. 

monstrosus bats, 2/11 (18.1%) of the gestating bats were positive versus 28.5% (18/63) of the 

other adult female bats, and for E. helvum the opposite trend was observed with 18.1% (2/11) 

gestating bats positive versus 9.3% (15/160) for the other adult female bats. The differences 

observed were not significant statistically. Similarly, there were also differences between 

female adults during lactation period, as shown in Figure 2, but they were also not statistically 

significant. Taken together, the data from the E. helvum and H. monstrosus bat colonies showed 

fluctuations over time with a minimum rate in June (4.26%) and maximum in February 

(34,78%) (Supplementary Table S4), however, the number of samples are low for certain 

months and the population structure at a given period could influence positivity rates as shown 

above.  
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Figure 2: Percentage of positive samples in colonie of bats, according to age  and reproductive cycle 

 
The figure represents the proportions of positive sample in two species (H.monstrosus and E.helvum) of fruit bats 

followed-up over a year in Yaoundé, Cameroon. Panels A and B (top) represent the proportions of positive samples 

at three categories of age. Panels C and D (bottom) compare the proportion of positive samples in the same two 

bat species, stratified by female reproduction/lactation status. (ns) stands for non-significant statistically (p-value 

above 0.05).  

 

Simultaneous reaction to multiple alphavirus and flavivirus in bats 

 We observed simultaneous reactivity to antigenically-related viruses, but also to 

genetically diverse and less antigenically related viruses (Table 5). The highest simultaneous 

reactivity was observed for NS1 antigens of the four Dengue virus serotypes, reaching 68% 

between the serotypes 1 and 4 of Dengue virus. The results showed also that 30% of the E2 of 

Chikungunya virus positive samples reacted with E2 of O’nyong-nyong virus, and 5% with 

NS1 of Usutu virus and to the serotype 3 of Dengue virus. Among the 31 positive samples of 
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O’nyong-nyong virus, 6 (19%) had simultaneous reactions with the E2 of Chikungunya virus. 

For the other antigens, simultaneous reactions with other antigens were in general below 15%.  

 

Table 5: Proportion of simultaneous reactivity to antigenically-related virus and less 

antigenically related ones. 

 
 N tested CHIK_E2 ONNV_E2 ZIKV_NS1 DV1_NS1 DV2_NS1 DV3_NS1 DV4_NS1 USUV_NS1 WNV_NS1 WNV_D3 

     N pos (%)       

CHIK_E2 n=20  6 (30) 0 (0) 0 (0) 0 (0) 1 (5) 0 (0) 1 (5) 0 (0) 0 (0) 

ONNV_E2 n=31 6 (19)  0 (0) 0 (0) 0 (0) 2 (6.4) 3 (9.6) 0 (0) 0 (0) 4 (12) 

ZIKV_NS1 n=14 0 (0) 0 (0)  1 (7) 1 (7) 0 (0) 1 (7) 1 (7) 1 (7) 2 (14) 

DV1_NS1 n=22 0 (0) 0 (0) 1 (4.5)  12 (54) 3 (13) 15 (68) 1 (4.5) 0 (0) 0 (0) 

DV2_NS1 n=29 0 (0) 0 (0) 1 (3.4) 12 (41)  4 (13) 12 (41) 1 (3.4) 0 (0) 0 (0) 

DV3_NS1 n=35 1 (2.8) 2 (5.7) 0 (0) 3 (8.5) 4 (11)  5 (14) 11 (31) 7 (20) 2 (5.7) 

DV4_NS1 n=49 0 (0) 3 (6.1) 1 (2) 15 (30) 12 (24) 5 (10)  3 (6.1) 7 (20) 1 (6.1) 

USUV_NS1 n=59 1 (1.6) 0 (0) 1 (1.6) 1 (1.6) 1 (1.6) 11 (18) 3 (5.0)  7 (11) 1 (1.6) 

WNV_NS1 n=19 0 (0) 0 (0) 1 (5.2) 0 (0) 0 (0) 7 (36) 1 (5.2) 7 (36)  1 (5.2) 

WNV_D3 n=21 0 (0) 3 (14) 2 (9.5) 0 (0) 0 (0) 2 (9.5) 3 (14) 1 (4.76) 1 (4.76)  

 

 

DISCUSSION 

 The objective of this study was to estimate the prevalence of antibodies to arboviruses 

of public health importance in a large number of bats in Central and West Africa using the same 

serological assay. We tested 2,579 samples from at least 21 bat species, representing to our 

knowledge one of the most comprehensive report on arboviruses in bats in Africa. Our data 

showed spatial and temporal variation of IgG antibodies to diverse arboviruses. We observed 

an overall seroprevalence to arboviruses of 8.45%. This is lower than what was reported from 

(the few) previous seroprevalence studies in African bats, but different serological methods 

were used (i.e. agglutination versus Luminex EIA), the geographical location and the study 

period can also have an impact (Shepherd and Williams 1964).  
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Bats are flying mammals that nightly fly up to 20 km for foraging and up to hundreds 

or thousands of kilometers during seasonal migrations for some species (Schloesing, et al. 

2020,Roberts, et al. 2012). Comparing prevalence in different collection sites is thus only 

meaningful if they are sufficiently distant. Here, almost all our study sites are 20-300 km apart 

(see Figure 1). IgG antibodies to at least one arbovirus antigen were detected in 17 of the 21 

sites investigated and, in the four sites with no positive samples, the sample size was low (i.e. 

< 50). Furthermore, the positivity rate profile for antibodies to arboviruses was statistically 

different according to the ecological settings (see Supplementary Table S2). These differences 

could be related to bat species, environment, human factors or a combination of those.  For 

example, in Yaoundé and Obala where most bat samples studied were collected are urbanized 

areas, that could favored a vector population to interact between bats and humans in the same 

environment, thus contributing to sustain the transmission cycle of arboviruses.  

Similar to other studies, we found variable prevalence by bat species, most likely 

corresponding to different ecology and exposure to arthropod vectors (Hernández-Aguilar, et 

al. 2021,Shepherd and Williams 1964,Kading, et al. 2018). We observed the highest 

prevalences in three frugivorous bat species; Eidolon helvum, Hypsignatus monstrosus and 

Rousettus aegytiacus. E. helvum is widespread in equatorial Africa 

(https://animaldiversity.org/accounts/Eidolon_helvum/; accessed July, 23rd, 2021), and is 

roosting in both urban and rural areas representing thus a good intermediate between sylvatic 

and urban cycles of arboviruses. Combined entomological and bat ecology studies are therefore 

urgently needed for a better understanding of the role of Chiroptera in the lifecycle of 

arboviruses in Africa.  

 Contrasting with the recurrent outbreaks of Chikungunya virus in DRC (Selhorst, et al. 

2020), we did not observe IgG antibodies to Chikungunya virus in bat samples from this 
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country, which might be due to the overall limited number of bat samples tested in this large 

country. Nevertheless, antibodies to Chikungunya virus have been readily detected in free-

raging NHPs in DRC, but in different areas as where we tested bats in this study (Raulino, et 

al. 2021).  It is also possible that bats are not equally exposed to the same array of mosquito 

vectors than NHPs that are involved in the sylvatic cycles of arboviruses as suggested by others 

(Guzmán, et al. 2020,Selhorst, et al. 2020,Simo, et al. 2019,Pastorino, et al. 2004).  

 Usutu virus has been isolated from mosquitoes, birds and some mammals in Europe and 

in some countries in Africa such as Senegal, Central African Republic, South Africa and 

Uganda but data on Usutu virus in Africa are still very limited (Diagne, et al. 2019,Clé, et al. 

2019,Nikolay, et al. 2011). Here, we observed antibodies against to Usutu virus, indicative of 

the circulation of this virus in at least three African fruit bat species (see Table 3). To the best 

of our knowledge, this is the first evidence of Usutu virus circulation in bats from Africa, 

suggesting that they might contribute to the enzootic cycle of Usutu virus in Africa but 

additional investigations to clarify the roles of bats in the viral cycle in Africa is needed.  

 The 12-month longitudinal follow-up of bat colonies in the same geographical location, 

allowed to study impact of age, reproduction cycle and eventual seasonality. We observed 

higher prevalence in adults than in immature or juvenile adults for H. monstrosus species, but 

not for E. helvum, suggesting a possible difference in behavior and ecology and subsequent 

exposure to vectors. During the female reproductive cycles, i.e. gestation or lactation, no 

statistically significant difference was observed for both species.  

 Nevertheless, our work has some limitations, first of all the lack of confirmation of some 

of the seroreactivity by affinity-based virus neutralization assayor affinity measurement assays 

which was hampered by the limited volumes of blood samples, i.e. only a few drops of blood 

on filter paper.  Another limitation is the absence of sequence confirmation of circulation of 
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arboviruses that induced IgG antibodies detected during this work. Arbovirus RNA can only be 

detected during a limited period during acute infection, therefore prospective studies are needed 

that should include blood samples in adequate storage conditions for molecular analysis. 

  

Conclusion 

Overall, the presence of antibodies suggests that bats could play a role in the sylvatic cycle of 

arboviruses in addition to non-human primates and other mammals or animal species. 

Population size and the number of susceptible NHP at any time, are most likely not high enough 

to maintain sylvatic arbovirus cycles and therefore other species like bats with large numbers 

of offspring, i.e. naïve animals at any time, could thus also play also a role in sylvatic cycles. 

Moreover, several bat species live close to human settlements and create thus opportunities for 

contacts via an arthropod vector. More studies are still needed to document diversity of animal 

species susceptible to arboviruses and their role in sylvatic cycles and emergence of new viruses 

in humans.  
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III.A.1. Supporting Information  

 

Supplementary Table S1: Cut-off values in MFI (Medium Fluorescence Intensity) used to discriminate between antibody 

positive and negative bat samples. 

 

 

 Change Point Binomial Exponential Mean 

CHIK_E2     609 138 89 279 

ONNV_E2 747 253 162 387 

ZIKV_NS1 223 46 30 100 

DENV1_NS1 391 168 106 222 

DENV2_NS1 473 248 153 291 

DENV3_NS1 29 17 14 20 

DENV4_NS1 268 223 146 212 

USUV_NS1 548 237 102 296 

WNV_NS1 926 168 93 396 

WNV_D3 356 67 58 160 
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Supplementary Table S2 : Percentage of samples with antibodies to the different arboviruses according to ecological 

setting where they were captured. 

 

 N pos/N 

tested 
% 

p- 

value 
CHIK_E2 ONNV_E2 ZIKV_NS1 DENV1_NS1 DENV2_NS1 DENV3_NS1 DENV4_NS1 USUV_NS1 WNV_NS1 WNV_D3 

Caves 12/281 4,7 

>0,001 

2 (0.71) 6 (2.1) 1 (0.35) 0 (0.0) 2 (0.71) 1 (0.35) 0 (0.0) 0 (0.0) 0 (0.0) 2 (0.71) 

Forest 20/272 7,3 0 (0.0) 5 (1.8) 1 (0.36) 1 (0.36) 1 (0.36) 3 (1.1) 5 (1.8) 2 (0.73) 6 (2.2) 3 (1.1) 

Urban 

area 
142/1360 10,4 15 (1.1) 10 (0.73) 8 (0.58) 17 (1.25) 20 (1.5) 21 (1.5) 29 (2.1) 56 (4.1) 11 (0.8) 10 (0.73) 

Village 44/666 6,6 3 (0.45) 10 (1.5) 4 (0.73) 4 (0.73) 7 (1.0) 10 (1.5) 15 (2.2) 1 (0.15) 2 (0.3) 6 (0.9) 

(%) the percentage of positive samples 
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Supplementary Table S3: Number and percentage of samples with antibodies to arbovirures in colonies of Eidolon helvum 

and Hypsignatus monstrosus bats according to age category and reproductive status for adult females. 

  

  Hypsignatus monstrosus   Eidolon helvum   Inter-species 

  N tested N pos (% ; 95%CI) N tested N pos (% ;95%CI) p-value 

Juvenile 72 10 (13.9 ; 7.7-23.7) 221 24 (10.9 ; 7.4-15.0)  0.52593 

Immature adult * 22 1 (4.6 ; 0.8-21) 218 22 (10.1 ; 6.7-14.8)  0.70359 

Adult * 132 31 (23.5 ; 17-31) 376 42 (11.1 ; 8.3-14.7) 0.000413 

            

F-gestation 11 2 (18.1 ; 5.1-47) 11 2 (18.1 ; 5.1-47) 1 

F-no gestation 63 18 (28.5 ; 17-38) 160 15 (9.3 ; 5.7-14) 0.00061 

            

F-lactation 21 8 (38.0 ; 20-59) 65 7 (10.7 ; 5.3-20) 0.00776 

F-no lactation 58 12 (20.6 ; 12-32) 125 10 (8.0 ; 4.4-14) 0.02549 

95% CI= confidential interval; * indicated a p-value less than 0.05 among Immature adult and Adult on Hypsignatus 
monstrosus
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Supplementary Table S4: Seroprevalence of antibodies to arbovirus in colonies of Eidolon helvum and Hypsignatus monstruosus bats 

from Yaoundé and Obala over the months. 
 

 E. helvum   H. monstrosus   Total Rains mm 

Months  N Tested N pos (%) N Tested N pos (%) N Tested N pos (%) CI 95% 

 
Dec-18 20 3 (15.0) 34 6 (17.7) 54 9 (16.7) 9.0 ; 28 13 

Jan-19 95 10 (10.5) 40 10 (25.0) 135 20 (14.8) 9.7 ; 21 18 

Feb-19 8 0 (0.0) 15 8 (53.3) 23 8 (34.8) 18 ; 55 26 

Mar-19 52 6 (11.5) 25 3 (12.0) 77 9 (11.7) 6.2 ; 20 56 

Apr-19 47 6 (12.8) 16 1 (6.3) 63 7 (11.1) 5.4 ; 21 104 

May-19 149 22 (14.8) 21 5 (23.8) 170 27 (15.9) 11 ; 20 95 

Jun-19 81 3 (3.7) 13 1 (7.7) 94 4 (4.3) 1.6 ; 10 83 

Jul-19 130 21 (16.2) 5 0 (0.0) 135 21 (15.6) 10 ; 22 41 

Sep-19 50 5 (10.0) 19 4 (21.1) 69 9 (13.0) 7.0; 22 144 

Oct-19 69 7 (10.1) 17 3 (17.7) 86 10 (11.6) 6.4 ; 20 106 

Nov-19 114 5 (4.4) 22 1 (4.6) 136 6 (4.4) 2.0 ; 9.3 56 

Total 815 88 (10.8) 227 42 (18.5) 1042 130 (12.5) 10-14   
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Supplementary Table S5 : GPS coordinates of the study sites in Cameroon, Guinea and the DRC 

 

Sites Latitude (N or S) GPS Longitude (E or W) GPS 

CMR 

Campo N 2,37278 E 10.10434 

Mambele N 2,44172 E 15.43393 

Obala N 4,0306 E 11.53149 

Yaoundé N 3,86401 E 11.48763 

DRC 

Beni N 0.4898 E 29.45981 

Bikoro S 0.73664 E 18.1378 

Boende S 00.38007 E 20.85815 

Boma S 5,57029 E 13.045 

Kikwit S 5.03754 E 18.81946 

Kimpese S 5,4821 E 14,45868 

Komanda N 1.34869 E 29.75669 

Mangina N 0.62339 E 29.61268 

Zongo S 4,72927 E 14.88844 

Guinea 

Boffa N 10.32175 W 14.26312 

Kankan N 10.37856 W 9.37333 

Kindia N 9.52728 W 13.68561 

Koundara N 12.32034 W 12.78523 

Lola N 7.91639 W 8.49855 

Macenta N 8.53663 W 9.50049 

Mamou N 10.2849 W 12.23256 

Siguiri N 11.5565 W 8.80697 
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In the last decades epidemics caused by arboviruses, and especially those transmitted by 

mosquitoes, affected millions of humans as well as animals, highlighting the importance of public 

health policies for these arboviruses, which are often poorly characterized. Many of these 

mosquitoes-borne arboviruses that (re)emerged in different parts of the world are known to have 

their origin in Africa such as WNV and USUV, isolated from wild birds and sylvatic mosquitoes, 

as well as ZIKV isolated from a sentinel rhesus monkey in Uganda. Despite the evidence that these 

mosquito-borne arboviruses are maintained in a sylvatic transmission cycle involving a range of 

sylvatic mosquitoes and a group of vertebrate hosts, data are still limited on the extent of the animal 

reservoir and on the different animal that are involved in addition to NHPs to maintain the sylvatic 

transmission cycle. Thus, studying the ecology of arboviruses in wildlife is crucial especially in 

African countries were recurrent outbreaks occur and where the resources and equipment are 

limited to distinguish similar febrile illnesses caused by malaria and arboviruses.  

This whole scenario was the major objective of our work on epidemiological 

investigations of arboviruses in wildlife in Central and West African countries. In order to better 

understand and document the circulation of arboviruses in wildlife in Africa we have developed a 

multiplex serological assay, with high specificity and sensitivity for simultaneous detection of IgG 

antibodies against 10 antigens from 6 different arboviruses. This allowed us to consciously track 

the degree of exposure to arboviruses in more more than 6000 thousand samples representing more 

than 50 animal species with a focus on NHPs and bats.  

Three topics will be debated: multiplex immunoassay as a tool for detecting antibodies 

to arboviruses and to estimate exposure to arboviruses in wild NHPs and bats. 

 

• Multiplex immunoassay as a tool for detecting antibodies to arboviruses 

Serological tests are used as a tool for epidemiological surveillance of exposure to 
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infectious diseases in wildlife populations (Boyd et al. 2015; Beck et al. 2015; Nys et al. 2018; 

Ayouba et al. 2019). It is an important tool for inferring the infection history to specific viruses, 

monitoring and predicting possible pathogens to emerge. Despite the ubiquitous use of serology 

in the investigation of infections in wildlife, methodological limitations and interpretation of 

results must be considered (Gilbert et al. 2013; Peel et al. 2013). In this work we developed a 

highly specific and sensitive test for simultaneous detection of antibodies to many arboviruses that 

can be applies in serosurveys in humans and wildlife populations using a variable type of biological 

samples and with only scarce sample volumes that are needed.   

Firstly, the recombinant proteins chosen to screen for antibodies were structural (EDIII; 

Flavivirus and E2; Alphavirus) and non-structural (NS1; flavivirus and NSP; alphavirus) proteins 

whose target role is to induce neutralizing antibodies as well as to serve as a specific antigen, 

respectively. Even more, these recombinant proteins  are often used in commercial serological kits 

for the serological diagnosis of ZIKV, CHIKV and DENV. With this approach we were able to 

capture broad and diverse antibody responses against flavivirus  and alphavirus infections. To 

validate the test performance, we used a panel of human serum samples known to be positive for 

the specific arboviruses from this study (except for ONNV and USUV) as well as  negative 

samples for these arboviruses. It is known that positive and negative control samples are important 

in determining the sensitivity and specificity of a test as well as using an appropriate method to 

determine the cut-off point and define a sample as being “positive” or “negative” (Peel et al. 2013).  

 

In our assay we were able to obtain a specificity above 95% for most of the recombinant 

proteins tested within the flavivirus and alphavirus family regardless of the method used (ROC 

curbe or Meas+3SD) on the reference panel of human samples. This is important because these 

values are comparable to tests considered as the gold standard of specificity like PRNT and 

molecular tests. Besides that, the sensitivity was above 95% for NS1 proteins from Flaviviruses 
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and for E2 from CHIKV, except for YFV (<44%) and serotype 4 (>86%) of Dengue. However, 

the sensitivity was highly variable and weak for most recombinant proteins from flaviviruses in 

the envelope domain III except for WNV. The sensitivity for WNV is in agreement with data found 

by Beck (2015) where the recombinant EDIII used to capture specific antibodies againts WNV 

reached a sensitivity of 98% versus 100% in our study (Beck et al. 2015). This variable and/or low 

sensitivities are in contrast with the characteristics of many immunological assays that are often 

more sensitive than specific (Fritzell et al. 2018). On the other hand a study showed an epitope on 

ZIKV envelope domain III protein with high sensitivity (92%) that could discriminate between 

past and current infections by DENV and ZIKV (Denis et al. 2019). All these counterparts can be 

explained by several parameters, including antibody kinetics, specificity restricted to one or two 

epitopes or compromised recombinant protein structure due to in vitro production issues. 

Unfortunately there was a lack of positive controls for USUV and ONNV to evaluate the sensitivity 

of our test for these viruses. 

 

One of the strengths and limitations for the interpretation of serological tests and which 

impacts on the results is the cut-off point for cross-reactions mainly in human sera positive for 

arboviruses that belong to the same family, which sometimes may require additional tests (De 

Alwis et al. 2014; Mantke et al. 2004; Fritzell et al. 2018). Denis et al. (2019) emphasized that the 

use of recombinant proteins can partially improve the specificity of IgG-based diagnostic assays 

which theoretically can improve test reliability in relation to cross-reactions (Denis et al. 2019). In 

our test, although highly specific, we observed simultaneous reactivity between heterologous and 

homologous viruses. Chikungunya for example reacted simultaneously and expressively with 

ONNV (51%) and USUV (51%). This may be due to the fact that most of these CHIKV samples 

were collected in regions with co-circulating arboviruses and after outbreaks or that the proteins 

used are not specific enough. It can be hypothesized that there was exposure to multiple 
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arboviruses in this samples. Among the flaviviruses, WNV-NS1, ZIKV-NS1, DENV-NS1 and 

YFV-NS1 reacted simultaneously with homologous antigens in varying proportions. This can be 

explained because the flaviviruses can induce cross-reactive IgG in samples/humans from endemic 

area for DENV or ZIKV for example because the viruses are closely related (Denis et al. 2019). 

Flavivirus antigens practically did not cross-react with the alphavirus antigens which proves the 

specificity of the test. Another flaw that could be reformulated was the use of positive samples for 

YFV from vaccinated patients as positive controls which probably interfered with the test 

sensitivity. Unfortunately, we were not able to apply antibody neuralization tests to discriminated 

the cross-reactivity.  

 

It would be interesting for future studies to acquire positive samples for ONNV and 

USUV to assess the sensitivity of the test for the respective recombinant proteins and YFV 

antibody positive samples from patients who developed the disease. Moreover, the possibility of 

including other viruses within the group of mosquito-borne thealphaviruses such as Middelburg 

virus (MIDV) and Semliki Forest virus (SFV) that have ruminants (sheep, goat).and wild birds, 

rodents, insectivores bats as vertebrate host (Hubálek, Rudolf, and Nowotny 2014), respectively, 

and which circulate mainly in Africa, thus, with the potential to cause outbreaks. More important 

would be to acquire also well documented positive samples from wildlife to see if there is a 

difference in cross-reactivity rate, sensitivity and specificity. The test needs also to be improved 

for detection of IgM antibodies so that both IgG and IgM can be identified in the same assay.  

Even despite some unresolved issues, our assay has high specificity, sensitivity and 

accuracy for several recombinant proteins. This allows us to efficiently investigate the exposure 

of primates and bats to arboviruses in their natural habitat to better understand the ecology and 

role of different species in the sylvatic transmission cycle of arboviruses. 
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• Prevalence of IgG antibodies against arbovirus in NHPs 

Primates are known to be animals reservoirs for several arboviruses such as YFV, ZIKV 

and CHIKV, and despite having viremia, they usually do not show clinical signs of infection  

(Valentine, Murdock, and Kelly 2019). However, the data are still very simplified about the 

sylvatic transmission cycle of several other arboviruses and on the role of NHPs in the sylvatic 

transmission cycle as well as the degree of exposure of NHPs to arboviruses. 

Studying viruses/arboviruses in wild populations and to identify animals reservoirs of 

pathogens in general is a challenge and arduous task for several reasons: 

i) Collecting samples from wild animal samples is difficult, requiring many logistics and 

needs to adhere to ethical issues related to conservation of the animal populations, 

especially when highly endangered species are studied like NHPs; 

ii)  Specificity of the assay due to the antigenic proximity of many arboviruses; 

iii) Regions where several arboviruses co-circulate and/or are endemic may hinder the 

interpretation of the assay and differentiate between cross-reactivity or exposure to 

multiple viruses; 

iv) Virus detection is only possible during a due to the short window period for the majority 

of arboviruses, because viruses are cleared after infection; 

v)  A high throughput screening that is highly efficient in detecting antibodies for is needed 

because sample volumes can be significantly reduced; 

vi)  furthermore, in the absence of a well-characterized positive and negative controls, 

determining an efficient cut-off point is challenging. 

 

With this work we assessed and solved some of these challenges through our high 

throughput multiplex screening assay for detection of antibodies. 

In general, the overall prevalence of antibodies was low in NHPs and bats and this may 
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have been influenced by several factors, like the stringent cut-off calculation methods such as 

changepoint, exponential-binomial-fitted distribution. These methodes were applied in order to 

identify samples as being true positive and negative at MFI values in the absence of standard 

controls and are thus most likely minimal estimates of prevalences. While changepoint analysis 

acts in the identification and analysis of time series, allowing the identification of abrupt points of 

change, which defines the cut-off value, the fitted distribution evaluates the probability distribution 

of a series of data related to the measurement repetition of a variable phenomenon. Distributional 

models have been applied to serological studies in wildlife when there are no standard controls to 

use "traditional" methods such as the ROC curve but which can cause biased underestimates of 

seroprevalence, as reported by Peel (Peel et al. 2013) and Gilbert (Gilbert et al. 2013).  

Another parenthesis are the types of samples tested (plasma, DBS, feces dialysates) in 

different primate species, this may have an influence on the sensitivity of antibody detection rate 

and consequently on the global prevalence, it has already been shown that sensitivity of IgG 

detection is lower in stool dialysates  (Ayouba et al. 2019). It is important to develop statistical 

methods that allow more accurate cut-off calculation to allow more reliable prevalence estimates, 

because here we report most likely minimla estimates and underestimate thus real exposure in 

NHP and bats to arboviruses. 

When we look at the prevalence of IgG antibodies in the different species, we observed a 

high variability in the distribution of seropositivity among the different species, but also among 

collection sites, which could reflect different habitat and behavior.  However, it is important to the 

dynamics of antibodies within species, which could allow estimate time since last exposure and 

the total number of times a species has been exposed over a lifetime and to how many different 

arboviruses because many of them are antigenically related (Fischer et al. 2021; Peel et al. 2013). 

It would be interesting to follow longitudinally different species of infantile monkeys and in 
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different seasonal periods to observe the dynamics of exposure to arbovirsuses in order to measure 

antibody titers as well as the collection of sylvatic mosquitoes that cohabit with the NHPs.  

The results obtained from our serosurvey in the different monkey species provided us 

with more information about the enzootic cycle of arboviruses. Firstly, the interesting result of 

seropositivity for ONNV which predominated in DRC and Cameroon. ONNV is known to 

circulate in humans in Africa, including in Cameroon and DRC, causing several outbreaks in the 

continent (Pezzi et al. 2019). However, ONNV has a sylvatic transmission cycle that is poorly 

understood with many gaps. Although antibodies against ONNV have been identified in duikers 

and buffaloes in DRC and Gabon, so far there is only one report of seropositivity of ONNV in 

Mandrills in Gabon (Kading et al. 2013). Mandrills in our study were not positive for ONNV, but 

numbers of samples were limited (n=25). Althouse et al. investigated  the seropositivity for ONNV 

in 12 C. sabaeus, 25 P. papio, and 5 E. patas by PNRT, but the results were ambiguous, according 

to the author, suggesting that the positivity could also reflect reactivity to CHIKV rather than 

ONNV (Althouse et al. 2018). Our results provide thus evidence of a potential enzootic cycle of 

ONNV in DRC and Cameroon involving different monkey species and includes for the first-time 

information about the circulation of the ONNV in Guinea. A second interesting fact is that we 

describe for the first time the detection of anti-USUV antibodies in monkeys. USUV is known to 

circulate between birds and Culex spp and human infections have been reported in few countries 

of Africa and Europe (Roesch et al. 2019). Despite that other mammals have demonstrated 

antibodies against USUV they are not considered as hosts that participate in the transmission 

cycles of USUV. At least 50% (13/26) of the monkey species had IgG antibodies against USUV. 

This demonstrates that the virus circulates in many monkeys species in both arboreal, terrestrial 

and semi-terrestrial and in different environments. Red tailled monkeys for example, showed a 

positive rate of 4.5% (8/181). However, we can not exclude cross-reaction between other flavivirus 
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antigens not tested in the study, despite the high specificity in our test. Nevertheless, when we 

observe the behavior and habitat of these monkeys, we cannot rule out the possibility of expoxure 

to USUV. This monkey species is found in East and Central Africa and is mainly arboreal but may 

also come to the ground, thus circulating in many different environments and having contact with 

various types of arthopods, and thus also to mosquitoes that feed on birds in threetops. Their diet 

is fruit-based but they are considered omnivorous because they eat leaves, flowers or insects in 

times of fruit shortage (additional evidence of contact with diverse arthopods). They also are very 

social and have been observed interacting with blue monkeys (a species that showed 31% of IgG 

antibodies against CHIKV). Both species were sampled in DRC were there are recurrent outbreaks 

of CHIKV. Thus, in this ecological context we cannot rule out the possibility that these species are 

exposed, infected and serve also as a host for viruses such as USUV as well as for other arboviruses 

already confirmed. To date, no case of infection or detection of the Usutu virus has been reported 

in Cameroon, Guinea and DRC. Our results provide evidence of expoxure of monkeys to USUV 

and demonstrates that Usutu is a virus that may be be neglected on the African continent. 

Other observations can be taken into account and discussed towards the results. We 

certify that among all species tested, most are positive for at least one antigen tested, as well as in 

all collection sites, which confirms the wide distribution of arboviruses. In Cameroon, according 

to literature and serological studies, serotype 2 of dengue  is involved in with outbreaks of dengue 

in the country. We observed the circulation of serotype 2 of dengue in  monkeys. Ebolowa is an 

urban community surrounded by a tropical forest with cacoa production as a source of income and 

Mindourou is a rural community located in the middle of a forest with an equatorial climate and 

around 90% of the population lives from agriculture. Both sites shared common species of 

monkeys as greater spot-nosed (Cercopithecus nictitans) and moustached monkeys 

(Cercopithecus cephus) and were among the species that showed considerable positivity of IgG 
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antibody for serotype 2 of dengue. The circulation of DENV-2 in rural and urban areas in 

Cameroon has been reported, but unfortunately we do not know if the strains circulating in urban 

and rural areas are endemic or sylvatic dengue strains since spillback and spillover can happen. 

Molecular investigations are required. Another interesting observation is that if we combine 

reactivity to the WNV antigens NS1 and DIII, the global seroprevalence reaches 5.6% (91/1613), 

being the most prevalent virus in the study. Furthermore, if we focus on DRC where high 

seroprevalence rates of WNV have already been reported in humans (Nur et al. 1999), as well as 

the presence of neutralizing antibodies in animal species such as elephants, buffaloes, horses and 

mountain gorilla (Kading et al. 2013), WNV stands out in monkey samples from DRC and with 

an seroprevalence of 7.1% (45/630) when reactivity to both antigens are combined.  

In apes, the investigation strategy for detecting antibodies against arboviruses was in feces 

dialysates, because only non-invasive sampling is allowed for these highly endangered species,  

even though the concentration of antibodies and the sensitivity is reduced in this type of sample. 

Thus, we obtained a low overall prevalence of IgG antibodies in apes, which may have been 

influenced by the type of samples, in addition to behavior, and exposure to different species of 

mosquitoes. The first interesting fact is the non-detection of antibodies against DENV in 

practically all species. Is detection of DENV in faeces less effective? Or the behavioral 

characteristic of the apes, which, like most other terrestrial monkeys, did not show antibodies 

against dengue, unlike arboreal species? Apes don't develop enough viremia to infect mosquitoes 

during the meal? These are questions that remain open and that perhaps an entomological analysis 

can help to elucidate and fill in some gaps. We also found IgG antibodies against WNV in gorillas 

in DRC like Kading et al.,(Kading et al. 2013). IgG antibodies to WNV were found also in gorillas 

in Cameroon, in chimpanzees in Cameroon and DRC, and in bonobos in DRC. This emphasizes 

the wide spread and distribution of the West Nile virus in apes in Central Africa. Bonobos from 
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the Lomako-Yokokala natural reserve, which is located in northern DRC, had a seropositivity rate 

of 8.75% (12/137) to WNV. This species lives in moist tropical forest, dry forest, savannah 

woodland and marshy grassland and has the characteristic of building nests in trees, which can 

contribute to the exposure to ornithophilic mosquitoes and explain the serostatus. Gorillas and 

chimpanzees showed IgG antibodies against flavivirus and alphavirus. In chimpanzees we 

detected IgG antibodies to CHIKV, ONNV, ZIKV and WNV in Cameroon and only against WNV 

in DRC. Curiously, these species were the only that did not show antibodies against DENV. 

Information in the literature about arboviruses and chimpanzees is scarce, with only so far the 

identification of YFV detection, which makes the discussion difficult. Gorillas were the ones that 

showed IgG antibodies against all antigens arboviruses tested. In general, high seroprevalence 

rates against CHIKV (18.3%) and ONNV (17.5%) in Minton (CMR) in gorillas, providing 

evidence of enzootic circulation of alphavairus in this region and gorillas are used as a reservoir 

host. In Somalomo in CMR, gorillas reacted against all antigens tested. This town is agricultural 

and it is localized in a dense area of equatorial forest and being close to the Dja forest reserve, with 

a high biodiversity. Perhaps the biodiversity of the region can favor the exposure of these gorillas 

to different species of peridomestic and/or sylvatic mosquitoes that transit between the ville and 

the forest environment. 

Several alphaviruses and flaviviruses have already been identified to use primates as both 

reservoir or amplifiers host and for their contribution to the sylvatic transmission cycle. The 

evidence of exposure to multiple alphaviruses and flavivruses in different regions observed in our 

study reinforces this idea of the range of existing enzootic cycles, although some NHPs do not 

show evidence of previous exposure to some arboviruses. Our results also add up because they 

generated data on other viruses that are still poorly characterized and poorly studied, such as 

ONNV and USUV, which have a high power to cause outbreaks. Given the lowprevalence in 
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NHPs they are probalby not the only natural reservoirs of arboviruses but in fact contribute as 

reservoirs hosts of the enzootic cycles. 

 

• Prevalence of IgG antibodies against arbovirus in bats 

Serosurvey of arboviruses in bat populations increased during the last decade, but only in 

neotropical regions (Hernández-Aguilar et al. 2021) even knowing that arboviruses that circulate 

around the globe and that impact human and animal public health arose from tropical areas of 

Africa (20). Data on the role of bats in the ecology arboviruses like transmission, maintenance and 

prevalence of arboviruses in sylvatic cycles in African countries are scarce, since most studies are 

of entomological surveys (JF et al. 2017; M. Diallo et al. 2003) Our study was among the first to 

investigate a large number of frugivorous and insectivorous bats of different species and 

demonstrated that these bats were exposed to different flaviviruses and alphaviruses in almost all 

sites where samples were collected.  

From the serological investigation of more than 6 arboviruses in more than 20 species of 

bats, we were able to demonstrate the possibility of these mammals of play a role in the sylvatic 

transmission cycle of arboviruses in addition to primates and birds. Our high throughput multiplex 

immunoassay revealed a variable seroprevalence by country (3.5-11%), among insectivorous and 

frugivorous bats (3.4-10%), by ecological sites (4.4-10.4%) and in colonies of  E. helvum and H. 

monstrosus (10.7-18.5%) reaching an overall seroprevalence of 8.5%. 

The overall arbovirus seroprevalence (8.45%) in bats in our study is distinct from the rates 

found in previous studies in Uganda and Ethiopia (M. C. Williams, Simpson, and Shepherd 1964; 

Shepherd and Williams 1964; Simpson et al. 1968; Andral et al. 1968; Kading et al. 2018) and the 

comparison between studies is thus limited due to the lack of studies of arboviruses in bats. 

The circulation profile of arboviruses in the three countries may reflect the behavior of 
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the species as well as the type of habitat. An interesting result was the 4.0% IgG antibody rate 

(54/1376) to USUV in Yaoundé, Cameroon. Bats also showed antibodies IgG against USUV in 

Guinea and DRC, which is perhaps the first report of identification of specific antibodies in bats 

in Africa or at least in Cameroon, Guinea and DRC (there are reports of USUV in wildlife in 

Senegal, Uganda, Nigeria and Côte d’Ivoire (Nikolay et al. 2011). Little is known about the 

pathogenicity of USUV in bats, even once identified in the brains of two dead bats in Germany. 

Usutu virus is suggested to be neurotropic and has been detected in wild birds and several other 

species of wildlife in Africa and Europe. The point is that here we have serological evidence that 

bats are exposed to this virus and respond to an infection by producing long-lasting antibodies. In 

addition, they could contribute to the enzootic cycle of USUV in Africa beyond wild birds. In 

Guinea, a coastal country in West Africa that is divided roughly into four distinct geographic 

regions betweens lowlands, mountains, savannah and rainforest (Jentes et al. 2010), the majority 

of bats were captured in villages, caves and forest, where most of them had IgG antibodies to both 

alphaviruses and flaviviruses. An interesting result was the seropostivity to ONNV being the most 

predominant. The majority of bats that were positive to ONNV (7.14%) were captured around the 

village of Macenta (forest region). Data on seroprevalence of arboviruses in this country is very 

scarce. Recurrent YFV outbreaks occured in Guinea including in Macenta (2003) (Nathan et al. 

2001) and IgG antibodies to WNV, DENV, CHIKV were reported in humans (Jentes et al. 2010). 

Data on the exposure of mammals in Guinea to arboviruses and their role as a reservoir were cited 

in two articles (Konstantinov et al. 2006) (Butenko 1996). However, it was only available to read 

the abstract of available articles, not having access to more specific information. In the abstract of 

paper by Butenko, 127 arbovirus strains were isolated from mosquitoes, Ixodidae ticks, wild birds, 

bats, monkeys and other mammals and blood samples collected from febrile patients were 

examined in 1978-1989. However, no information was obtained regarding the 2,700 bat samples 
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he tested (Butenko 1996). To date, no serological evidence of ONNV circulation or an outbreak 

has been reported in Guinea so our results add information to the enzootic cycle of arboviruses in 

the Guinea region, especially the likely role of bats in the maintenance of ONNV in the nature. 

We observed highest rates among some frugivorous bat species as Eidolon helvum, 

Hypsignathus monstrosus and Rousettus aegyptiacus. Eidolon helvum and Hypsignathus 

monstrosus, predominant species in Yaounde, Cameroon showed positivity for all six antigens 

with Usutu virus being the most prevalent, which explains that these species could act as enzootic 

hosts for this virus in the region. The same can be said of Rousettus aegyptiacus and the 

seropositivity for ONNV, since this species was collected predominantly in Guinea which mirrors 

the role of this species as potential enzootic host in the region. In some insectivorous bats low rates 

of IgG were observed and according to Kading et al. this is suggestive of possible accidental 

exposure (Kading et al. 2018). Insectivorous bats has been reported to be exposed to dengue virus 

in Uganda which is in agreement with our results (Kading et al. 2018). However, this study in 

Uganda only detected neutralizing antibodies against dengue serotype 2, which, in our study was 

low. Natural DENV-2 infection has been reported in neotropical insectivorous bats (Mexico, 

Colombia, Caribbean) however some studies propose that bats are rather dead-end-hosts for 

dengue and they are not competent reservoirs for dengue.  

We were able to study longitudinally a colony of bats in Yaoundé and Obala, which 

allowed us to evaluate and observe the dynamics arboviruses in this bat colony as well as  the 

impact of age, reproduction cycle and eventual seasonality. Bat species showed antibodies against 

arboviruses during all monthly collection periods between Dec-2018 and Nov-2019, except 

Eidolon Helvum in February and Hypsignathus monstrosus in July, which is referring to the 

months of low precipitation. Perhaps this simply reflects the small number of samples tested in 

these months. Longitudinal entomological investigations would be needed. As already discussed, 
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Hypsignathus monstrosus adults were significantly more seropositive than all other age groups 

and Eidolon Helvum which can reflect the behavior and ecology of this bats. 

This study provides a broad insight into the dynamics of exposure of various bat species 

to arboviruses and how complex wild arbovirus transmission cycles can be in wildlife. Bats were 

sampled in three countries and geographically regions favorable for epidemic outbreaks. We used 

different antigens from six viruses that make up two large families of arboviruses that cause 

epidemics around the world. This allowed us to assess on a large scale the presence of antibodies 

against arboviruses in bats and also to revisit some arboviruses that appeared in the Old World and 

until then had not been documented in bats. More studies are still needed, where samples of bats, 

humans and mosquito vectors that inhabit the same niche can be screend in order to assess the 

degree of exposure and infection in humans and bats. In conclusion, the presence of antibodies 

suggests that bats could play a role in the sylvatic transmission cycle of arboviruses in addition to 

non-human primates and other mammals or animal species.  
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General conclusion 

 

The goal of this work was to document and understand the enzootic cycle of arboviruses 

in African countries, with the aim to provide new insights into the ecology and the possibility of 

other animal reservoirs being involved in the life cycle of arboviruses. We first developed a large-

scale multiplex antibody detection assay. We obtained a specificity and sensitivity above 95% for 

10 antigens from 6 different arboviruses. Second, we applied this technique on more than 6000 

samples of NHPs and bats from the Old World which allowed us to observe the degree of exposure 

of NHPs and bats to arboviruses. Our observations indicate that arboreal monkeys are more 

exposed to arboviruses and may contribute more  to the sylvatic transmission cycle of arboviruses  

than apes. Assuming that the population size and the number of susceptible NHPs are not high 

enough to maintain the enzootic cycle during epizootic periods, , we investigated also bats as an 

alternative in the enzootic arbovirus transmission cycle. Our study suggest that bats can play a role 

in sylvatic transmission cycles for some arboviruses. Moreover, some species may be more 

susceptible to exposure to a certain virus type such as Usutu, in which it has been shown to 

circulate extensively among H. monstrosus and E. helvum. ONNV and USUV were first 

documented in some bat and primate species. This demonstrates how widespread arboviruses 

circulate in African countries and that research on these arboviruses with high potential to cause 

outbreaks is scarce or neglected. Our data once again show the complexity of the ecology of 

arboviruses, especially on the sylvatic transmission cycles. More studies are important to combine 

samples of human populations, mosquitoes and animals that cohabitate in the same region in order 

to further improve the knowledge of the extent of infection of arboviruses in human and animal 

species, and fill more gaps about possible animal reservoirs and enzootic cycles. 
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