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Abstract

Our understanding of the brain has improved considerably in the last decades, thanks
to groundbreaking advances in the field of neuroimaging. Now, with the invention and
wider availability of personal wearable neuroimaging devices, such as low-cost mobile
EEG, we have entered an era in which neuroimaging is no longer constrained to tradi-
tional research labs or clinics. “Real-world” EEG comes with its own set of challenges,
though, ranging from a scarcity of labelled data to unpredictable signal quality and
limited spatial resolution. In this thesis, we draw on the field of deep learning to help
transform this century-old brain imaging modality from a purely clinical- and research-
focused tool, to a practical technology that can benefit individuals in their day-to-day
life.

First, we study how unlabelled EEG data can be utilized to gain insights and im-
prove performance on common clinical learning tasks using self-supervised learning. We
present three such self-supervised approaches that rely on the temporal structure of the
data itself, rather than onerously collected labels, to learn clinically-relevant represent-
ations. Through experiments on large-scale datasets of sleep and neurological screening
recordings, we demonstrate the significance of the learned representations, and show
how unlabelled data can help boost performance in a semi-supervised scenario.

Next, we explore ways to ensure neural networks are robust to the strong sources of
noise often found in out-of-the-lab EEG recordings. Specifically, we present Dynamic
Spatial Filtering, an attention mechanism module that allows a network to dynamically
focus its processing on the most informative EEG channels while de-emphasizing any
corrupted ones. Experiments on large-scale datasets and real-world data demonstrate
that, on sparse EEG, the proposed attention block handles strong corruption better
than an automated noise handling approach, and that the predicted attention maps
can be interpreted to inspect the functioning of the neural network.

Finally, we investigate how weak labels can be used to develop a biomarker of neuro-
physiological health from real-world EEG. We translate the brain age framework, ori-
ginally developed using lab and clinic-based magnetic resonance imaging, to real-world
EEG data. Using recordings from more than a thousand individuals performing a
focused attention exercise or sleeping overnight, we show not only that age can be pre-
dicted from wearable EEG, but also that age predictions encode information contained
in well-known brain health biomarkers, but not in chronological age.

Overall, this thesis brings us a step closer to harnessing EEG for neurophysiological
monitoring outside of traditional research and clinical contexts, and opens the door to
new and more flexible applications of this technology.

Keywords: Deep learning, representation learning, self-supervised learning, electroen-
cephalography, neuroimaging, wearable neurotechnology





Résumé

Au cours des dernières décennies, les avancées révolutionnaires en neuroimagerie ont
permis de considérablement améliorer notre compréhension du cerveau. Aujourd’hui,
avec la disponibilité croissante des dispositifs personnels de neuroimagerie portables, tels
que l’EEG mobile « à bas prix », une nouvelle ère s’annonce où cette technologie n’est
plus limitée aux laboratoires de recherche ou aux contextes cliniques. Les applications
de l’EEG en « conditions réelles » présentent cependant leur lot de défis, de la rareté
des données étiquetées à la qualité imprévisible des signaux et leur résolution spatiale
limitée. Dans cette thèse, nous nous appuyons sur le domaine de l’apprentissage profond
afin de transformer cette modalité d’imagerie cérébrale centenaire, purement clinique
et axée sur la recherche, en une technologie pratique qui peut bénéficier à l’individu au
quotidien.

Tout d’abord, nous étudions comment les données d’EEG non étiquetées peuvent être
mises à profit via l’apprentissage auto-supervisé pour améliorer la performance d’algo-
rithmes d’apprentissage entraînés sur des tâches cliniques courantes. Nous présentons
trois approches auto-supervisées qui s’appuient sur la structure temporelle des données
elles-mêmes, plutôt que sur des étiquettes souvent difficiles à obtenir, pour apprendre des
représentations pertinentes aux tâches cliniques étudiées. Par le biais d’expériences sur
des ensembles de données à grande échelle d’enregistrements de sommeil et d’examens
neurologiques, nous démontrons l’importance des représentations apprises, et révélons
comment les données non étiquetées peuvent améliorer la performance d’algorithmes
dans un scénario semi-supervisé.

Ensuite, nous explorons des techniques pouvant assurer la robustesse des réseaux de
neurones aux fortes sources de bruit souvent présentes dans l’EEG hors laboratoire.
Nous présentons le Filtrage Spatial Dynamique, un mécanisme attentionnel qui per-
met à un réseau de dynamiquement concentrer son traitement sur les canaux EEG les
plus instructifs tout en minimisant l’apport des canaux corrompus. Des expériences
sur des ensembles de données à grande échelle, ainsi que des données du monde réel,
démontrent qu’avec l’EEG à peu de canaux, notre module attentionnel gère mieux la
corruption qu’une approche automatisée de traitement du bruit, et que les cartes d’at-
tention prédites reflètent le fonctionnement du réseau de neurones.

Enfin, nous explorons l’utilisation d’étiquettes faibles afin de développer un biomar-
queur de la santé neurophysiologique à partir d’EEG collecté dans le monde réel. Pour
ce faire, nous transposons à ces données d’EEG le principe d’âge cérébral, originellement
développé avec l’imagerie par résonance magnétique en laboratoire et en clinique. À tra-
vers l’EEG de plus d’un millier d’individus enregistré pendant un exercice d’attention
focalisée ou le sommeil nocturne, nous démontrons non seulement que l’âge peut être
prédit à partir de l’EEG portable, mais aussi que ces prédictions encodent des infor-
mations contenues dans des biomarqueurs de santé cérébrale, mais absentes dans l’âge
chronologique.

Dans l’ensemble, cette thèse franchit un pas de plus vers l’utilisation de l’EEG pour le
suivi neurophysiologique en dehors des contextes de recherche et cliniques traditionnels,
et ouvre la porte à de nouvelles applications plus flexibles de cette technologie.
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Notation

General

a A scalar

a A vector

A A matrix

A A tensor

ai Element of vector x at position i (with the first
index being 1)

Ai,j Element of matrix X at row i and column j

Ai,j,k Element (i, j, k) of tensor X

I Identity matrix

diag(a) Square matrix filled with zeros whose diagonal is
the vector a

1condition Indicator function returning 1 if condition is true,
and 0 otherwise

X A set of N examples {x(1), . . . ,x(N)}, where (i) in-
dexes the example in the dataset

JqK Set {1, . . . , q} for any integers p, q ∈ N

Jp, qK Set {p, . . . , q}for any integers p, q ∈ N

|·| Absolute value, applied element-wise

N (µ, σ2) Gaussian distribution with mean µ and standard
deviation σ

U(a, b) Uniform distribution in the closed interval [a, b]

EEG time series

S Multivariate time series S ∈ RC×M , whereM is the
number of time samples and C is the dimension of
samples (e.g., channels)

X Non-overlapping window X ∈ RC×T extracted
from S, with T the number of time samples in a
window.
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Understanding the brain and how it functions has been a core scientific endeavour ever
since its role in sensory and cognitive functions was first identified. Groundbreaking
work in the nineteenth and twentieth centuries, such as the first recording of electrical
brain activity (Caton, 1875), the discovery that neurons are the discrete units of the
nervous system (Ramón y Cajal, 1894), and the functional mapping of the cortex (Pen-
field and Rasmussen, 1950), has laid the foundation for investigating how human health
relates to brain anatomy and function.

Since then, the neurophysiological underpinnings of various phenomena such as sleep,
consciousness and cognition have been studied. Pathologies that originate in the brain,
such as epilepsy, dementia, and sleep disorders, are also the subject of ongoing research.
Ultimately, a better understanding of how the brain works could help prevent, treat or
manage diseases, and even identify ways to optimize its overall performance.

As the tools we use to record brain activity become more precise, affordable and even
portable, the data needing to be analyzed increases in complexity and volume. Relying
on human expertise to interpret that data becomes increasingly difficult. As a result,
signal processing and machine learning have become critical tools for processing and
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analyzing brain data, in both research and clinical settings. Deep learning (DL), in
particular, has recently shown great promise in automating pattern recognition tasks
performed on raw data (LeCun et al., 2015). Together, neuroimaging and machine
learning have tremendous potential to enable revolutionary applications outside of tra-
ditional controlled environments.

In this thesis, methodological advances in the use of deep learning for the processing of
real-world EEG data are presented. To set the stage, this introduction chapter covers
the core principles and applications of EEG and of DL. The main contributions of this
thesis, along with the resulting publications, concludes the chapter.

1.1 Electroencephalography: a window into human brain
function

In this section, we give an overview of functional neuroimaging, with a particular focus
on EEG, one of the most common techniques for studying brain function and the one
that is at the core of this thesis.

1.1.1 Functional neuroimaging

Over the last decades, powerful tools have been developed to image the brain and
measure its functioning. Functional neuroimaging modalities leverage different physical
properties of brain tissues to capture brain activity in a direct or indirect manner.
For instance, electrophysiological modalities pick up the electromagnetic fields that are
generated as brain cells communicate with each other. Hemodynamic modalities, in
contrast, measure how blood flow-related metrics vary when energy demands increase
in different regions of the brain. We describe these two categories of modalities next.

Electrophysiological modalities As neurons communicate, electrochemical activ-
ity in organized brain structures gives rise to weak electromagnetic fields. As a res-
ult, these fields reflect instantaneous brain activity (see Section 1.1.2). The electrical
component of these fields can be measured with electrodes, i.e., sensors made out of
conductive material and placed directly on or close to the area to be recorded. The
voltage difference between two electrodes is then indicative of the activity occurring
in the brain volume between these two locations. This can be done invasively by pla-
cing electrodes directly on the cortical surface or inserting them inside brain structures
(intracranial EEG (iEEG) (Jasper and Penfield, 1949; Parvizi and Kastner, 2018)).
Non-invasive measures can also be taken by placing electrodes on the scalp (surface
or scalp EEG, often simply referred to as EEG (Berger, 1929; Hari and Puce, 2017)).
The magnetic component of the field, in contrast, can be measured non-invasively using
sensors called magnetometers and gradiometers, as is done in magnetoencephalography
(MEG) (Cohen, 1968; Baillet, 2017; Hari and Puce, 2017). Both scalp EEG and MEG
are non-invasive and therefore pose little to no health risk (as opposed to iEEG which
requires opening the skull), making them excellent choices for studying or monitoring
brain activity. Moreover, thanks to the direct relationship between neuronal activity
and the electromagnetic fields that are captured, these modalities enable high temporal
resolution monitoring on the order of milliseconds. While the spatial resolution of EEG
is limited by the smearing of electrical fields by tissues, which does not occur in MEG,
EEG is found more commonly in clinical and research settings, as it is portable and
more affordable (by orders of magnitude) than MEG. Recent developments in more
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portable MEG sensor technology might however improve this in the foreseeable future
(Tierney et al., 2019).

Hemodynamics-based modalities As a brain region becomes active, its neurons
require more glucose and oxygen to support widespread or sustained neuronal activ-
ity. As a result, more blood needs to be delivered to this brain region. This coupling
between neural activity and cerebral blood flow is called the hemodynamic response (Ia-
decola, 2017). Typically, there is a delay of about four to six seconds between neuronal
activation and the peak in localized blood flow (Miezin et al., 2000). The resulting
increase in blood flow can therefore be used as a (delayed) proxy of neural activity.
This hemodynamic information can be measured by optical and magnetic means. Op-
tical neuroimaging modalities such as functional near-infrared spectroscopy (fNIRS)
rely on the fact that hemoglobin, the molecule that carries oxygen in the bloodstream,
has different light absorption characteristics in the near-infrared spectrum, depending
on whether it has oxygen molecules attached to it or not (Jöbsis, 1977; Ferrari and
Quaresima, 2012). Changes in the concentration of oxygenated hemoglobin (HbO)
and deoxygenated hemoglobin (HbR) can therefore be measured using near-infrared
light sources placed on the scalp and nearby photodetectors that pick up the scattered
photons that have travelled through the skull all the way to the cortex and back. Func-
tional magnetic resonance imaging (fMRI) similarly monitors hemoglobin levels as an
indirect measure of neural activity, though leveraging the magnetic, rather than optical,
properties of HbR molecules (Ogawa et al., 1990), giving rise to a signal known as the
blood oxygenation level-dependent (BOLD) signal (Logothetis et al., 2001). Unlike in
fNIRS where measurements are limited to the cortical surface, the BOLD signal can be
recorded in the entire brain. This has made fMRI a prevailing modality for functional
neuroimaging since the 1990s. However, contrary to fNIRS, fMRI is a highly expensive
modality and is not portable.

Because it has excellent temporal resolution, is non-invasive, relatively inexpensive and
also increasingly portable, EEG is not only a common choice for studying brain activity,
it also opens the door to neurophysiological monitoring in entirely new environments
and contexts. Next, we delve deeper into EEG: we describe its generation mechanism,
some typical applications, and discuss how its portability enables new scientific and
technological developments.

1.1.2 Electroencephalography

Reports of electrical brain activity measurements date back to the second half of the
nineteenth century, when invasive recordings in animal models suggested sensory ac-
tivation could be measured with a galvanometer (Caton, 1875). Almost half a century
later, the first human scalp EEG recordings were reported by Berger (1929). Berger’s
main finding was what he called the “alpha” rhythm, a component found at the back of
the head, oscillating at roughly 10 Hz. This same component is, still today, one of the
most studied EEG components, and is of critical importance in the discussion of some
of the results reported in this thesis (Chapter 4).

Physiological generators of EEG signals The human brain comprises approxim-
ately 86 billion cells called neurons (Azevedo et al., 2009) which transfer information
by propagating electrochemical currents along their main axis (Hari and Puce, 2017).
About 19% of these neurons are found in the outer layer of the brain, called the cortex
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Figure 1.1 – EEG signal generation mechanism. (A) Electrodes are placed on the scalp
and connected to an amplifier. (B) Under the skull, the outer layer of the brain, called
cortex, contains pyramidal neurons that are aligned perpendicularly to its surface. (C)
Post-synaptic potentials propagate as intracellular current flow along the main axis
of pyramidal neurons. When these potentials occur in synchrony for a large enough
population of nearby pyramidal neurons, the resulting potential can be detected at the
surface of skull using electrodes.

(Figure 1.1). Only 3-4 mm thick, the cortex is a highly convoluted structure, of which
about two-thirds of the surface is folded over itself. Despite accounting for only a portion
of total brain volume, the cortex is where most of the electrical activity picked up by
EEG originates. This is because the primary cortical neurons, called pyramidal neurons
due to their characteristic triangular cell bodies, are highly organized: they are aligned
perpendicularly to the cortical surface. As a result, when a group of thousands of such
neurons are simultaneously activated, tiny electrical potentials called post-synaptic po-
tentials (PSPs) add up and give rise to electrical potentials large enough to be measured
on the scalp, e.g., on the order of tens of µV . However, because the medium through
which the electrical potential propagate (i.e., the cerebrospinal fluid, skull and scalp)
is not homogeneous the resulting EEG signals are smeared spatially. Consequently,
the information picked up at a specific location is actually the summation of multiple
electric fields originating from different regions of the brain. This gives rise to the local-
ization problem, or inverse problem, an active area of research in which algorithms are
developed to reconstruct brain sources given EEG recordings (Baillet et al., 2001; He
et al., 2018). Moreover, thanks to the direct relationship between the signals measured
on the scalp and neuronal activity, and due to the near instantaneous propagation of
electric fields in the brain tissues, EEG has an excellent temporal resolution allowing
the recording of brain activity at a millisecond timescale.

Instrumentation A typical clinical- or research-grade EEG device has around 16 to
256 sensors, or electrodes, that are arranged on the scalp following a predetermined grid-
like pattern called a montage (e.g., the International 10-20 system, see Figure 1.2D).
Signals are typically digitized at a sampling frequency fs of 128 to 1024 Hz. The
measurements are made between one electrode and another reference electrode, which
is commonly set to the top of the head or to linked mastoids, as these locations are far
away from the most common artifact sources (see Section 1.1.3). Typically, conductive
gel, paste, or a saline solution is used to ensure a good electrical connection between
the electrodes and the skin. Dry electrodes have more recently been introduced and,
because they can work without these kinds of solutions, are usually faster to set up
and more convenient to wear, though they can have a higher sensitivity to noise and
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Figure 1.2 – Illustration of common EEG instrumentation and related concepts. (A)
A typical research/clinical-grade EEG device.1(B) Examples of wearable mobile EEG
used for neurofeedback and sleep tracking applications (Muse headband, InteraXon Inc.,
Toronto, Canada). Images shared with permission from Interaxon Inc. (C) Example
EEG time series collected with a 32-channel EEG montage. (D) The International 10-20
standard positioning system, as viewed from the top of the head. Letters refer to the
different brain regions (F: frontal, C: central, T: temporal, P: parietal and O: occipital)
while numbers indicate how far from the sagittal line an electrode is found (taken from
Malmivuo et al. (1995)). The electrodes are positioned such that the distance between
them is 10 or 20% of the distance between the front and back, or the right and left
sides, of the head. Insets in (A) and (B) indicate where on the head the different EEG
electrodes are placed.

artifacts (Lopez-Gordo et al., 2014).

Applications EEG can be used to study a wide array of brain processes (Hari and
Puce, 2017; Schomer and Da Silva, 2012; Biasiucci et al., 2019). For instance, as one of
the main tools used in clinical sleep studies, EEG is key to diagnosing and studying sleep
disorders such as apnea and narcolepsy (Aboalayon et al., 2016; Ghassemi et al., 2018;
Bathgate and Edinger, 2019). Critically, EEG is the gold standard for sleep staging,
i.e., the process of identifying in which stage of sleep an individual is during the night
(Berry et al., 2012). Due to the importance of sleep in EEG research, multiple experi-
ments presented in this thesis make use of sleep data, including on the sleep staging task
(Chapters 2-4). EEG is also routinely used in clinical contexts to screen individuals for
neurological conditions such as epilepsy (Smith, 2005; Acharya et al., 2013), dementia
(Micanovic and Pal, 2014), attention deficit hyperactivity disorder (Arns et al., 2013),
disorders of consciousness (Giacino et al., 2014; Engemann et al., 2018a) and depth of
anaesthesia (Hagihira, 2015). The pathology detection task, which we study alongside
sleep staging in Chapters 2 and 3, can be seen as a higher level classification task where
one must whether an individual’s EEG is indicative of a pathology or not. Recently,
EEG has also been proposed to build biomarkers of neurophysiological health through
the brain age framework (Franke et al., 2010, 2012; Al Zoubi et al., 2018; Sabbagh
et al., 2020). By comparing an individual’s chronological age to the age predicted by a
neuroimaging-based model trained on a normative healthy population, we can identify
individuals whose brain look “older” than other people in the same age group, suggest-
ing premature or pathological aging (Cole and Franke, 2017; Cole et al., 2018). We

1Image from https://en.wikipedia.org/wiki/Electroencephalography#/media/File:EEG_cap.
jpg (public domain).

https://en.wikipedia.org/wiki/Electroencephalography#/media/File:EEG_cap.jpg
https://en.wikipedia.org/wiki/Electroencephalography#/media/File:EEG_cap.jpg
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present an extension of the brain age framework to real-world EEG data in Chapter 4.
Neuroscience and psychology research also make frequent use of EEG with applications
such as cognitive and affective monitoring (Berka et al., 2007; Thorsten and Christian,
2011; Al-Nafjan et al., 2017). Finally, EEG is a popular modality for brain-computer
interfaces (BCIs) - communication channels that bypass the natural output pathways
of the brain - to allow brain activity to be directly translated into directives that affect
a user’s environment (Lotte et al., 2015; McFarland and Wolpaw, 2017).

1.1.3 Unsolved challenges in EEG processing

Although EEG has proven to be a critical tool in many domains, it still suffers from a
few limitations, which we briefly discuss here.

Artifacts and noise Though they contain information about brain activity, the sig-
nals picked up by EEG instrumentation often contain noise originating from various
other sources and which can be orders of magnitude larger than actual brain signals
(Hari and Puce, 2017). For this reason, proper care must be taken to avoid these sources
of noise if possible, and to handle them otherwise. Common noise categories include
physiological artifacts, movement artifacts, instrumentation noise, and environmental
noise. Physiological artifacts are large signals that are generated by electrical current
sources outside the brain, such as heart activity, eye or tongue movement, muscle con-
traction, etc. Depending on the EEG electrode montage and the setting of the recording
(e.g., eyes-open or eyes-closed), these artifacts are more or less likely to disrupt meas-
urements of the brain activity of interest. Movement artifacts, on the other hand, are
caused by the relative displacement of EEG electrodes with respect to the scalp, and
can introduce noise of varying spectral content in the affected electrodes during the
movement itself. If an electrode cannot properly connect with the skin (e.g., after a
movement artifact or because it was not correctly set up initially), its reading will likely
contain little or no physiological information and instead pick up instrumentation and
environmental noise. Electrodes suffering from this problem are commonly referred to as
bad or missing channels in the literature. In the context of this thesis, we refer to them
as corrupted channels to explicitly reflect the fact that such channels may still contain
usable information, in addition to the noise. This is investigated in Chapter 3. Import-
antly, because these sources of noise are characterized by widely different morphologies
and spatial distributions, noise handling techniques typically need to be designed with
a specific type of noise in mind. This challenge, along with existing solutions, will be
extensively discussed in Chapter 3 when presenting corruption-robust architectures for
mobile EEG.

Non-stationarity EEG is also a non-stationary signal (Gramfort et al., 2013; Cole
and Voytek, 2018), i.e., its statistics vary across time. As a result, a classifier trained
on a temporally-limited amount of user data might generalize poorly to data recorded
at a different time on the same individual, as the statistics of the signals might have
changed in the meantime. This is an important challenge for real-life applications of
EEG, which often need to work with limited amounts of data.

Inter-subject variability Inter-subject variability arises due to physiological differ-
ences between individuals, which vary in magnitude but can severely affect the perform-
ance of models that need to generalize across subjects (Clerc et al., 2016). Since the
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ability to generalize from a first set of individuals to a second, unseen set is key to many
practical applications of EEG, a lot of effort is being put into developing methods, such
as transfer learning, to handle inter-subject variability (see Saha and Baumert (2020)
and Wan et al. (2021) for reviews).

Domain-specific processing pipelines To solve some of the above-mentioned prob-
lems, processing pipelines are often developed with a specific application domain in
mind. Indeed, a significant amount of research has been dedicated to developing domain-
specific processing pipelines to clean, extract relevant features, and classify EEG data.
As a result, there are no “one-size-fits-all” methods to processing EEG. However, more
recent state-of-the-art techniques, such as Riemannian geometry-based classifiers and
adaptive classifiers might be more re-usable across domains (Lotte et al., 2018).

Need for automated processing Finally, a wide variety of tasks would benefit
from a higher level of automated processing. For example, sleep staging, the process of
annotating sleep recordings by categorizing windows of a few seconds into sleep stages,
currently requires trained technicians to visually inspect and manually label the data.
The development of more sophisticated, automated EEG processing could make this
process much faster and more flexible. Similarly, real-time detection or prediction of
the onset of an epileptic seizure would be very beneficial to epileptic individuals, but also
requires automated EEG processing. Finally, the ability to fully automate processing
has the potential to greatly improve reproducibility in EEG and neuroimaging research
in general, as the exact same processing pipelines could be re-applied to a dataset, or
re-used over multiple datasets (Jas et al., 2018).

1.1.4 Toward ubiquitous neurophysiological monitoring with
low-cost mobile EEG

In recent years, the emergence of low-cost mobile EEG devices has made it possible to
monitor and record EEG in entirely new environments, and to dramatically improve
access to the technology (Mihajlović et al., 2014; Casson, 2019). In the context of this
thesis, we refer to this new paradigm as “real-world EEG”, to emphasize the fact that
the technology is no longer confined to the controlled environment of research labs and
clinical settings.

Consumer-focused EEG devices typically have a few channels only, are wireless, use
dry electrodes, and are available below a USD 1,000 price point. Thanks to their
affordability and ease of use, they enable recording brain activity in at-home settings or
anywhere medical or research infrastructure is not available, with applications such as
sleep monitoring, pathology screening, neurofeedback, brain-computer interfacing and
anaesthesia monitoring (Mihajlović et al., 2014; Dhindsa, 2017; Kreuzer, 2017; Krigolson
et al., 2017; Johnson and Picard, 2020; Hohmann et al., 2020; Krigolson et al., 2021;
Mikkelsen et al., 2021). This in turn enables the collection of unprecedented amounts of
EEG data from diverse populations across the world and opens the door to performing
neurophysiological health assessments on a day-to-day basis.

However, low-cost mobile EEG technology comes with its own set of challenges. First,
spatial information is often limited, i.e., only a few channels are available, as compared
to typical clinical- and research-grade devices. As a result, localized activity in specific
parts of the brain might be impossible to monitor if the available electrodes do not
cover all the regions of interest. For instance, BCIs that rely on detecting the activation
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of the motor cortex to distinguish imagined movements require coverage of the central
(i.e., the top) of the head to function (Pfurtscheller and Neuper, 1997). Therefore, a
sparse EEG montage without electrodes in this region might be blind to the actual
patterns of interest.

Second, while channel corruption affects EEG recordings in all contexts, it is more
likely to occur in real-world mobile EEG recordings than in controlled laboratory set-
tings. Indeed, trained experimenters can monitor and remedy bad electrodes during
laboratory recordings, which is not typically the case in real-world EEG recordings.
Low-cost mobile EEG also often makes use of dry electrodes, which, despite being less
complicated to set up, are more sensitive to environmental noise than regular wet or gel
electrodes. This further increases the likelihood of noise being injected into the record-
ings. Moreover, as opposed to controlled experiments where dense electrode montages
allow interpolating missing channels offline, the limited spatial information provided by
mobile EEG devices makes this approach much more challenging. Therefore, special
care must be given to the problem of channel corruption in sparse mobile EEG settings.
This topic will be further addressed in Chapter 3.

Thirdly, with the increasing availability of low-cost mobile EEG devices, the volume of
data generated exceeds the capacity of human experts (e.g., neurologists, sleep techni-
cians, etc.) to analyze and manually annotate every single recording, as is traditionally
done in research and clinical settings. Novel methods facilitating clinical and research
applications in real-world settings, especially with sparse EEG montages, are therefore
needed. In response to this challenge, new unsupervised paradigms can be designed to
allow the use of this significant amount of data (see Chapter 2). Similarly, new ways of
leveraging the available metadata (or “weak labels”) can be designed to develop proxy
measures of brain health (see Chapter 4).

Now that we have introduced EEG, discussed common applications and motivated its
use “outside of the lab”, we turn our attention to deep learning, on which we rely in this
thesis to further enable the use of EEG in the real world.

1.2 Deep learning on EEG time series

To overcome the challenges that arise from the various applications of EEG (Sec-
tion 1.1.3), new approaches are required that should be more robust to noise and non-
stationarity, and lead to better generalization. In this context, a promising approach is
deep learning (DL), a subfield of machine learning which studies computational models
that learn hierarchical representations of data through successive non-linear transform-
ations (LeCun et al., 2015). DL has the potential to significantly simplify processing
pipelines by allowing automatic end-to-end learning of preprocessing, feature extrac-
tion and classification modules, while also reaching competitive performances on target
learning tasks. Over the last few years, DL architectures have already proven to be very
successful in processing complex data such as images, text and audio signals (LeCun
et al., 2015), leading to state-of-the-art performances on multiple public benchmarks
- such as the Large Scale Visual Recognition challenge (Deng et al., 2012) - and an
ever-increasing role in industrial applications.

Deep neural networks (DNNs), inspired by earlier models such as the perceptron (Rosen-
blatt, 1958) (itself a simplified model of biological neurons), are models where: 1)
stacked layers of artificial “neurons” each apply a linear transformation to the data they
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Figure 1.3 – Number of DL-EEG publications per domain per year, as reported in Roy
et al. (2019a).

receive as input and 2) the output of each layer’s linear transformation is fed through
a non-linear activation function.

While neural networks with a single hidden layer are universal function approximat-
ors (Hornik et al., 1989), composing multiple successive hidden layers has been shown
empirically to help learning by enabling hierarchical transformations of the input data
LeCun et al. (2015). Importantly, the parameters for these transformations are learned
by directly minimizing a cost function. Although the term “deep” implies the inclusion
of many layers, there is no consensus on how to measure depth in a neural network and
therefore on the point at which a neural network becomes a deep one (Goodfellow et al.,
2016).

Although it is still a relatively new approach to processing EEG, DL has already been
the subject of a significant amount of research looking at applying it to EEG data.
For instance, the number of DL-EEG publications in different application categories
(e.g., BCIs, epilepsy and sleep) has been steadily growing over the last few years, as
shown by a recent comprehensive review of the literature (Figure 1.3, from Roy et al.
(2019a)). Despite these early results, multiple challenges and questions remain to be
tackled.

In this section, we introduce the core concepts behind using deep learning to learn from
EEG data. We simultaneously present relevant results taken from Roy et al. (2019a) to
highlight important trends in DL-EEG research.

1.2.1 Learning problem

A parametric machine learning model fθ with parameters θ is trained to learn the
mapping between x ∈ X , an example, and y ∈ Y, the target, i.e., a variable that
represents class membership or a value x is associated to. In this thesis, we often
consider fθ to be a deep neural network. Both X and Y depend on the dataset and
the task at hand. Looking first at the input, in EEG-related tasks, X is often RC×T ,
i.e., a matrix X containing the amplitude values (e.g., in µV) of C channels across T
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time points. Sometimes, such as in classical machine learning settings, x might also be
a transformed version of the EEG signals, i.e., processed through a feature extraction
step before being passed to fθ. The goal of the feature extraction step is to represent
the data more efficiently and/or to highlight the relevant information that it contains in
order to facilitate the learning task. For instance, X can be represented by its covariance
matrices in specific frequency bands (Ang et al., 2008)2.

When it comes to the target, two common machine learning tasks focused on learning
the mapping between x and y are classification and regression. Because the target
y is required for the algorithm to learn such mappings, these two tasks are said to
be supervised. In classification problems, y(i) represents the category an example x(i)

belongs to, i.e., Y is JLK for a classification problem with L classes. For instance, the
sleep staging task introduced in Section 1.1.2 is typically cast as a 5-class classification
problem where a 30-s EEG window (i.e., T = 30×fs where fs is the sampling frequency)
must be mapped to the sleep stage (W, N1, N2, N3, R) in which it occurred. In
regression problems, the target y(i) is usually a continuous value, i.e., Y is R or a
specific portion of the real line. For instance, the brain age prediction task (Chapter 4)
focuses on predicting the age, in years, of an individual given one or multiple windows
drawn from their EEG.

In order to know how well a model fθ performs on a given learning task and how to
improve its performance, we use a loss function L. Loss functions can be derived using
e.g., the maximum likelihood estimation framework. In this framework, our model is
taken to represent a parametric probability distribution pmodel(x;θ) which estimates
the true distribution of the data. We then seek to find the parameters θ∗ that maxim-
ize the conditional log-likelihood on pairs (x(i), y(i)) sampled from the true underlying
distribution pdata:

θ∗ = arg max
θ

Ex,y∼pdata log pmodel(y|x;θ) . (1.1)

Importantly, pdata is not accessible in practice, and so we have to resort to using
a finite collection of examples sampled from this distribution, i.e., a dataset X =
{x(1), . . . ,x(N)} along with the associated targets {y(1), . . . , y(N)}. However, theseN ex-
amples form a different distribution p̂data(x, y), called the empirical distribution, which
likely differs from pdata(x, y). Despite this, if the training examples are independently
and identically distributed (i.i.d.)3, p̂data should be representative of the true distribu-
tion and we can rely on the empirical risk to compute and optimize the conditional
likelihood of fθ. This is equivalent to minimizing the cross-entropy of the two distribu-
tions pmodel and p̂data (Goodfellow et al., 2016). For instance, in classification problems,
the categorical cross-entropy loss function, which corresponds to pmodel following a Mul-
tinouilli distribution, can be implemented as:

Lcategorical(θ) = −
N∑
i=1

L∑
k=1

1y(i)=k log pmodel(y = k|x(i);θ) . (1.2)

2This follows from the assumption that a short time window X, once bandpass filtered, is centered
around zero and mostly Gaussian, and therefore that the covariance matrix Σ ∈ RC×C is a sufficient
statistic of the distribution of multivariate EEG samples.

3Of note, for EEG windows to be independently distributed, they must not overlap.
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On the other hand, for regression problems, it is common to use the mean squared
error (MSE) loss function (i.e., a Gaussian prior) which directly uses the prediction
ŷ(i) = fθ(x(i)):

LMSE(θ) =
1

N

N∑
i=1

(
y(i) − fθ(x(i))

)2
, (1.3)

or the mean absolute error (MAE), which we will use in Chapter 4 for brain age pre-
diction experiments (i.e., a Laplacian prior):

LMAE(θ) =
1

N

N∑
i=1

∣∣∣y(i) − fθ(x(i))
∣∣∣ . (1.4)

For instance, MSE might be preferred over MAE if predictions that are further away
from the true target should be penalized more strongly.

Importantly, while the loss function is evaluated on the training data, we are actually
interested in the ability of the model fθ to generalize, i.e., to correctly predict the
target of an example that it has never seen. It is therefore common practice to split
the available data into training and testing sets. The training set contains examples on
which fθ will be trained, while the testing set is used to obtain an unbiased estimate
of the performance of the model. Additionally, if comparing multiple variations of a
model to pick the best one, an additional set is needed to avoid optimistically biasing
the final results. For this purpose, it is common to further divide the training examples
into a smaller training set and a validation set. When working with multi-subject EEG
datasets, we often divide the data such that no examples from the same subject or
recording is in more than one set at a time. This allows a more faithful evaluation of
the ability of a trained model to generalize to new unseen individuals or recordings.

1.2.2 Architectures

As stated above, deep neural networks perform successive non-linear transformations
on their input. To do so, different types of layers are used as building blocks. Most
commonly, these are fully-connected (FC), convolutional or recurrent layers. The types
and numbers of layers define a neural network’s architecture. For instance, we refer
to models using these types of layers as FC networks, convolutional neural networks
(CNNs) (LeCun et al., 1989) and recurrent neural networks (RNNs) (Rumelhart et al.,
1986), respectively. Recently, attention mechanisms have also led to major improve-
ments in the performance and interpretability of neural networks (Niu et al., 2021).
Here, we provide a quick overview of the main architectures found in the DL literature.
In-depth descriptions of DL methodology can be found in Schmidhuber (2015); LeCun
et al. (2015); Goodfellow et al. (2016).

Fully-connected layers

FC layers are composed of fully-connected neurons, i.e., each neuron receives as in-
put the activations of every single neuron of the preceding layer (Figure 1.4). Neural
networks composed of only FC layers are called fully-connected neural networks or mul-
tilayer perceptrons (MLPs) (Goodfellow et al., 2016). At its core, an FC layer h with d′

hidden units applies an affine transformation to the input vector x ∈ Rd using a mat-
rix W ∈ Rd′×d and a bias vector b ∈ Rd′ , followed by a non-linear function g (called



12 CHAPTER 1. MOTIVATION AND CONTRIBUTIONS

Hidden layer 1 Hidden layer 2 Output layerInput

Figure 1.4 – A fully-connected neural network with two hidden layers. Edges represent
weights between the output of a layer and units of the next layer. The opacity of the
edges illustrate the relative weights of randomly initialized parameters. Adapted from
LeNail (2019).

Figure 1.5 – The two core operations in convolutional neural networks: convolution and
pooling.

activation function), which makes it possible to learn a non-linear mapping between x
and the output of the network:

h(x; W,b) = g(Wx + b) . (1.5)

A common choice for the activation function is the element-wise rectified linear unit
(ReLU) function:

g(z) = max(z, 0) . (1.6)

A k-layer FC neural network is then composed by cascading layers:

fθFC(x) = h(k)( . . . h(2)(h(1)(x))) , (1.7)

where θFC = {W(1),W(2), ...,W(k),b(1),b(2), ...,b(k)}.
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Convolutional layers

Convolutional layers, as opposed to fully-connected ones, impose a particular structure
where neurons in a given layer are only connected to a subset of the neurons in the
preceding layer (Figure 1.5, left) (LeCun et al., 1989). This structure is akin to the
convolution operation in signal or image processing from which it gets its name, and
which is defined as:

s(t) = (x ∗ w)(t) =

∫ ∞
−∞

x(a)w(t− a)da , (1.8)

i.e., a weighting function w is shifted around t and multiplies the input x.

In convolutional layers, discrete convolution4 is often used to process a 3D input X ∈
RC×T×F (where F is the number of convolutional channels, e.g., they could be thought
of as the number of frequency bands in a filterbank representation5) with a collection of
P kernels K ∈ RM×N×F (where M and N are the dimensions of the kernel in the first
and second dimensions of X). The parameters of each kernel K, also called convolutional
filter, are learned during training and transform the input by picking out e.g., different
spatial, temporal and/or spectral patterns. We can write a convolutional layer as:

X′i,j,k = g
(

(X ∗K(k))i,j,k

)
= g

 C∑
c=1

T∑
t=1

F∑
f=1

Xc,t,fK
(k)
i−c,j−t,f

 , (1.9)

where k ∈ JP K and g is an element-wise non-linear function, as defined above. The
slices of X′ along its third dimension are called convolutional channels6 or feature maps.

Equation 1.9 illustrates the parameter sharing property of convolution layers: each
neuron of a layer k only sees a portion of the layer’s input, and shares its weights
(i.e., the kernel K(k)) with all other neurons of its feature map. From this perspective,
a convolutional layer learns filters that “look” for the same information across patches
of the input. This also helps make CNNs more efficient, as fewer parameters need to be
tuned.

Importantly, the local structure of a convolutional layer encourages the model to learn
translation-equivariant representations of the data, i.e., where the representations for an
input X′ that is a translated version of X are the translated representations themselves.

In deep learning architectures designed for EEG, it is common to encounter 1D convolu-
tions, i.e., convolutional layers in which convolutions are applied to either the temporal
or spatial dimension (M = 1 or N = 1). This is analogous to the temporal and
spatial filtering steps commonly used in traditional signal processing of EEG signals
(Makeig et al., 1996; McFarland et al., 1997; Parra et al., 2005; Blankertz et al., 2007;
de Cheveigné and Simon, 2008; Lotte and Guan, 2010; Nikulin et al., 2011).

4In practice, deep learning libraries implement a cross-correlation operation, which is identical
except for its sign. Since the parameters are learned, this difference has no effect on the underlying
capacity of the model.

5Typically, when working with EEG, the input to a CNN has F = 1, however after the first layer
the number of convolutional channels increases.

6Not to be confused with EEG channels as introduced in Section 1.1.2.
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Figure 1.6 – A recurrent neural network fθRNN , in a folded (left) and unfolded (right)
configuration. Adapted from Goodfellow et al. (2016).

A second key component of CNNs is pooling, where activations are locally aggregated
(Figure 1.5, right). In CNNs, pooling operations typically follow blocks of convolutions.
One example is the max-pooling operation, which is defined as:

X′i,j,k = max
m=JMK

max
n=JNK

XSh(i−1)+m,Sw(j−1)+n,k , (1.10)

where Sh, Sw are the strides of the pooling operation in the first and second dimensions
of X (i.e., the height and width dimensions).

It is specifically the combination of convolutions and pooling that enables models to
learn representations that are approximately invariant to translations of the input. This
is often a desirable property: for instance, in an object recognition task, translating the
content of an image should not usually affect the prediction of the model. Moreover,
pooling can improve the computational efficiency of a layer by reducing the dimension-
ality of its output, when input regions are pooled with a stride larger than one. Pooling
is also sometimes applied to the convolutional channel dimension (i.e., the third dimen-
sion of X), to instead provide invariance to the transformations applied by the different
kernels of convolutional layers, in which case it is referred to as global pooling, e.g., global
average pooling (GAP) (Lin et al., 2013).

Recurrent layers

In contrast to convolutional layers, recurrent layers impose a structure whereby a layer
receives both the preceding layer’s activations and its own activations from the previous
time step as input (Figure 1.6). Models composed of recurrent layers are thus encour-
aged to make use of the sequential structure of data, allowing them to achieve high
performance in tasks such as natural language processing (NLP) (Zhou and Xu, 2015;
Yogatama et al., 2017). The operations carried out by a vanilla recurrent layer can be
written as:

h(t) = gh(Wh(t−1) + Ux(t) + b) , (1.11)

o(t) = go(Vh(t)) + c , (1.12)

where W ∈ Rd′×d′ , U ∈ Rd′×d, V ∈ Rd′×d′′ are weight matrices, b ∈ Rd′ and c ∈ Rd′′ ,
and gh and go are non-linear functions applied on the state vector (or hidden state)
h or the output o, respectively. This structure provides a different kind of parameter
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sharing where the same parameters are reused from one time step to another (instead
of from one patch to another, as is the case for convolutional layers).

To train such networks, outputs must be “unfolded” in time (Figure 1.6, right). This
leads to a major challenge when using gradient descent (see Section 1.2.3), as gradients
run the risk of vanishing or exploding (Goodfellow et al., 2016). A widely adopted
solution to this problem is to use gated recurrent units layers instead of the vanilla
recurrent layers (Hochreiter and Schmidhuber, 1997; Cho et al., 2014). Gated units
have a more complicated structure that allows them to accumulate information over
multiple time steps, while also forgetting information when needed.

Attention mechanisms

Attention mechanisms are (generally differentiable) modules that can be inserted between
the layers of a neural network to help the network focus its processing on the most rel-
evant parts of the data (Bahdanau et al., 2014; Luong et al., 2015; Vaswani et al., 2017;
Niu et al., 2021). Even setting aside the empirical results that have shown significant
performance gains thanks to its use, attention is intuitively a powerful framework as
1) it helps focus the computational power of a model on the information that matters
given the task at hand, and 2) it allows the inner workings of a neural network to be
introspected through attention maps, i.e., by observing which parts of the input the
network focused on. These two properties of attention mechanisms will be leveraged in
Chapter 3 to design noise-robust and interpretable deep learning EEG models.

Attention over sequences Attention mechanisms were initially designed in the con-
text of NLP where they were used to improve performance on sequence-to-sequence
(seq2seq) tasks. For instance, tasks such as machine translation require the processing
of sequences of arbitrary length (e.g., translating a sentence from French to English).
Early work using an encoder-decoder architecture where the input sequence was sum-
marized into a single vector (Sutskever et al., 2014) struggled with long-range dependen-
cies: the longer the sequence, the harder it was for a neural network to reliably encode
the information into a unique vector. To address this, additive attention (Bahdanau
et al., 2014; Luong et al., 2015) uses a dedicated scoring function to estimate the re-
lative importance of each input word for predicting each output word. The internal
representation of the input words, along with information on the sequence being gen-
erated, can then all be aggregated (with a weighted sum), with the result then being
used to predict the next word in the sequence. The introduction of additive atten-
tion greatly improved modelling of longer sequences. Recently, a major improvement
to attention-based architectures came with the self-attention Transformer architecture
(Vaswani et al., 2017). Self-attention refers to attention mechanisms that evaluate the
importance of each item of a sequence relative to the others, which is key in tasks such
as language understanding. Much of the recent NLP literature relies on Transformers
to achieve high-performance in different tasks (Devlin et al., 2018; Radford et al., 2019;
Liu et al., 2019).

Attention over images While attention mechanisms have proved critical in recent
years for sequence learning tasks, similar strategies can also be very useful for other,
non-sequential data. In the computer vision (CV) literature, scaling attention mechan-
isms are designed to help networks focus on specific portions of an input (i.e., spatial
information) or specific feature maps (i.e., specific transformations of an input). For in-
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stance, the Squeeze-and-Excitation (SE) block (Hu et al., 2018) does so by transforming
the feature map outputted by a convolutional layer using the information contained in
the feature map itself. This makes it easier for a model to boost relevant features while
minimizing the contribution of less relevant ones. Similarly, the convolutional block
attention module (CBAM) is an attention module that sequentially applies channel at-
tention and spatial attention (Woo et al., 2018). First, as in an SE block, channels are
remapped based on an aggregated version of their input. Second, a spatial attention
map is obtained by transforming the aggregated feature map across channels. This spa-
tial attention map is then used to re-weight the different parts of the feature map before
passing it on to the next layer. Finally, the Transformer networks used in NLP have
also been adapted to work on CV tasks. This requires extracting patches from the input
images before feeding them to the network as to mimic the sequential structure expected
by the Transformer architecture. This approach achieved state-of-the-art performance
on image classification tasks even rivalling well-established CNNs (Dosovitskiy et al.,
2020).

DL architectures for EEG

As shown in Figure 1.7, CNNs were found to be the most popular type of architecture
used with EEG in Roy et al. (2019a) (40% of all papers reviewed). A large proportion
of studies using CNNs further used raw EEG as input. Moreover, the great majority of
studies surveyed used architectures with at most 10 layers, suggesting relatively shallow
models can already yield satisfactory performance on EEG data.

EEG-focused architectures are commonly designed to replicate the usual steps of a
signal processing pipeline. For instance, many architectures have been designed to
process temporal and spatial information separately in the earlier stages of the network,
replicating the temporal and spatial filtering steps typically employed when analyzing
EEG (Manor and Geva, 2015; Kwak et al., 2017; Zafar et al., 2017; Behncke et al.,
2017; Schirrmeister et al., 2017; Chambon et al., 2018). Two of these models were used
extensively in this thesis and will be further described in Chapter 2: ShallowNet (also
called FBCSPNet) (Schirrmeister et al., 2017) and StagerNet (Chambon et al., 2018).

1.2.3 Training neural networks

Neural networks are commonly trained using gradient descent and the backpropagation
algorithm. We briefly describe these two foundational algorithms next.

Gradient descent is an optimization technique used to find a value w∗ which minimizes
a function y = f(w) (Cauchy et al., 1847). Starting from an initial (e.g., random)
guess w0, a small step is taken in the opposite direction of the gradient ∇wy, which
indicates the direction in which f increases the most rapidly. The size of the step is
controlled by the learning rate λ: the larger it is, the more rapidly the function might
decrease, however a large λ also increases the probability of overshooting and getting
worse results. With a well calibrated λ though, we are likely to find a value w1 that
returns a lower value of y, i.e., f(w1) < f(w0). This procedure can be repeated multiple
times to find the minimum of f . This minimum might be local (the smallest value of all
neighboring values) or global (the smallest possible value of f). When training neural
networks, this technique is used to find the parameters θ∗ (i.e., the weights and biases
of the different layers) that minimize a cost function, such as a categorical cross-entropy
or MSE (Section 1.2.1).
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Figure 1.7 – Deep learning architectures used in the studies included in Roy et al.
(2019a). “N/M” stands for “Not mentioned” and includes the papers in which no in-
formation was provided about the deep learning methodology component under analysis.
CNN: convolution neural network; AE: autoencoder; RNN: recurrent neural network;
DBN: deep belief network; FC: fully-connected network; RBM: restricted Boltzmann
machine; GAN: generative adversarial network.

To apply gradient descent to deep learning, we must therefore compute the gradient
∇θL of a neural network’s cost function with respect to all of its parameters. Back-
propagation is an efficient procedure for computing this gradient (Rumelhart et al.,
1986). First, an input x is forward propagated through the neural network fθ up to the
output layer, yielding a prediction ŷ. Second, ŷ is used to estimate the value of the loss
function L. Finally, the chain rule of calculus is used to compute the gradient of the
loss function with respect to the different parameters in the network, starting from the
output layer and moving backwards all the way to the input layer. Once these gradients
are calculated, a gradient descent step is taken to update the parameters such that the
model now produces a lower value for the cost function.

In practice, neural networks are often trained using minibatch gradient descent, i.e., the
gradient is computed over a set of multiple examples. This both speeds up computation
thanks to parallelization on graphical processing units (GPUs) and regulates the level
of noise present in the estimate of the gradient. Finally, modern deep learning optim-
izers often use additional tricks to make optimization less sensitive to hyperparamet-
ers, i.e., learning algorithm settings that are fixed externally, and not tuned through
the learning procedure (Goodfellow et al., 2016). For instance, the Adam algorithm
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(Kingma and Ba, 2014) makes the optimization process more robust to the choice of
initial learning rate λ0 by adaptively rescaling the gradient of each parameter.

1.2.4 Learning tasks

When introducing the learning problem (Section 1.2.1) and describing applications of
EEG (Section 1.1.2), we focused on supervised learning problems. In supervised learn-
ing, e.g., classification or regression tasks, the learning algorithm has access to targets
or labels y ∈ Y which are used to learn the mapping fθ : X → Y. This is akin to having
access to a teacher who corrects us after we guess the answer to a question, allowing
us to quickly identify our mistakes and change our internal model to better answer the
next time. The supervised learning setting is widely studied from both theoretical and
empirical perspectives. As a result, procedures to train machine learning models in this
scenario are fairly well understood. However, obtaining targets for entire datasets can
be time-consuming, expensive, or even impossible. This means it is not always possible
to train a model with a supervised objective, or that the amount of available labels may,
in some cases, be too limited to expect good performance.

In unsupervised learning, in contrast, there are no labels. Therefore, it is not possible to
directly learn a mapping like in supervised learning, although different tasks can be used
to learn the structure of the data e.g., density estimation, clustering and representation
learning. Because, by definition, there is no need for resource-hungry targets in unsu-
pervised learning, it is often the case that the amount of data available to a model is
orders of magnitude larger than for supervised problems. However, devising an object-
ive function that will lead to good results can be challenging. Recently, self-supervised
learning (SSL) has been proposed as an effective unsupervised learning strategy where
supervision is provided by the very structure of the data under study (Jing and Tian,
2021). By reframing an unsupervised learning problem as a supervised one, SSL allows
the use of standard, better understood optimization procedures. Specifically, in SSL, a
model is trained on a pretext task, which must be sufficiently related to the downstream
task (i.e., the task we are actually interested in, but for which there are limited or
no annotations) such that similar representations are likely to be learned to carry it
out. We will discuss SSL in more detail in Chapter 2, when presenting self-supervised
algorithms for learning on clinical EEG time series.

Finally, in some settings, only part of the data is labelled. This gives rise to a semi-
supervised learning problem. Different methods have been proposed to improve per-
formance in this scenario, e.g., self-training (Yarowsky, 1995) and label propagation
(Zhu and Ghahramani, 2002). For instance, in self-training, a classifier trained with a
limited number of labelled examples is used to predict labels on the unlabelled examples.
Examples for which the classifier produces predictions with a high enough level of con-
fidence are then added to the training set, and the model is trained again. This process
can be repeated a specific number of times, or until no new examples are added during
the prediction phase. An alternative approach, popular in the world of deep learning, is
to leverage representation learning methods to first learn a good representation of the
input data in an unsupervised manner, and then to reuse this representation to train
shallow classifiers with the labelled data or use the pre-trained neural network as an
initialization for the supervised network. This semi-supervised setting will be studied
in Chapter 2 as well when investigating SSL approaches for EEG.
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1.2.5 Opportunities for deep learning and EEG

There are multiple ways in which DL may improve and extend existing EEG processing
methods. First, the hierarchical nature of DNNs means features can potentially be
learned on raw or minimally preprocessed data, reducing the need for domain-specific
processing and feature extraction pipelines. Because they are developed in a purely
data-driven way, features learned through a DNN may also be more effective or ex-
pressive than the ones engineered by humans. Importantly, DL makes it possible to
learn highly informative features in a completely unsupervised manner with e.g., self-
supervision.

Second, as is the case in the multiple domains where DL has surpassed the previous
state of the art, it has the potential to substantially improve model performance on a
variety of tasks. Such improvements have already been hinted at by previous reports
(Roy et al., 2019a), although more work will be necessary to confirm these findings.

Third, DL facilitates the learning of tasks that are less often attempted on EEG data,
such as generative modelling (Goodfellow, 2016) and domain adaptation (Ben-David
et al., 2007). Finally, when used jointly with attention mechanisms, DL also makes it
possible to explain decisions through the visualization of attention maps.

1.2.6 Open questions and challenges for deep learning and EEG

There remain multiple open questions and challenges concerning the use of deep learn-
ing for EEG tasks. First and foremost, the amount of data that is required to train
deep learning models on EEG is still to be determined. In many cases, the datasets
typically available in EEG research contain a limited number of examples (as compared
e.g., to the quantities of data that have enabled the current state-of-the-art in DL-heavy
domains such as CV and NLP). With data collection being relatively expensive (when
compared to collecting images or text, for instance) and data accessibility often being
hindered by privacy concerns - especially for clinical data - openly available datasets of
comparable sizes are not common. Some initiatives are actively tackling this problem
though, e.g., the TUH EEG corpus, a publicly available dataset of more than 30,000
clinical EEG recordings (Harati et al., 2014) or the National Sleep Research Resource,
which contains more than 31,000 sleep EEG recordings (Zhang et al., 2018). Generally
speaking, opportunities for collecting larger-scale datasets do exist. Low-cost mobile
EEG, in particular, makes the collection of such large unlabelled datasets much easier.
However, in many cases the data will be unlabelled, as the labelling process can become
prohibitively expensive or time-consuming when it requires clinical expertise or care-
fully crafted experimental protocols. We tackle this problem in Chapter 2 and suggest
a further alternative when only some weak labels are available in Chapter 4.

Second, the peculiarities of EEG, such as its low signal-to-noise ratio (SNR), make EEG
data different from other types of data for which DL has been most successful, e.g., im-
ages, text and speech. Therefore, the architectures and practices that are currently
used in DL might not be directly applicable to EEG processing. Specifically, the strong
noise characteristics that can be expected in real-world EEG scenarios might affect deep
learning models in a different way from “traditional” deep learning tasks. We study this
scenario and propose a solution to mitigating this problem in Chapter 3.

Third, DNNs are notoriously seen as black boxes, when compared to more traditional
“shallow” methods. Indeed, straightforward model inspection techniques such as visu-
alizing the weights of a linear classifier are not applicable to deep neural networks and
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as a result their decisions are much harder to interpret. This is problematic in clinical
settings for instance, where understanding and explaining the choices made by a clas-
sification model might be critical to making informed clinical choices. Neuroscientists
might also be interested by what drives a model’s decisions and use that information to
shape hypotheses about brain function. In response to this problem, multiple model in-
spection techniques have been proposed (Roy et al., 2019a), with some work specifically
tailored to EEG (Schirrmeister et al., 2017; Hartmann et al., 2018; Ghosh et al., 2018).
In addition to these strategies, attention mechanisms can also be used to improve the
interpretability of DNNs (Niu et al., 2021): through the visualization of the resulting
attention maps, it is possible to infer the importance of the different dimensions and
elements of a neural network’s input. Overall, sustained efforts aimed at inspecting
models and understanding the patterns they rely on to reach decisions are necessary to
broaden the use of DL for EEG processing.

Finally, one major challenge the field of DL-EEG has been facing is reproducibility.
Indeed, one of the conclusions of the comprehensive literature review of Roy et al.
(2019a) was that the results of most papers included in the analysis were hard or even
impossible to reproduce, due to missing information, lack of code sharing, or the use of
results obtained on private datasets only. This lack of reproducibility in turn makes it
harder to provide a good answer as to whether deep learning is generally better suited
to EEG than classical machine learning that relies on feature engineering and shallow
models (preliminary or domain-specific answers can be found in Figure 14 of Roy et al.
(2019a) or in the benchmarked results reported by Gemein et al. (2020)). Open source
libraries such as braindecode7 (Schirrmeister et al., 2017) and initiatives such as the
DL-EEG Portal8 (Roy et al., 2019b) will be key to fostering reproducibility in the field.

1.3 Contributions

The thesis is organized as follows. First, the introduction (this chapter) provides back-
ground information on both EEG and deep learning, which are the two common threads
throughout this thesis. Additionally, some results from a comprehensive review of the
literature on deep learning and EEG are presented to motivate the importance and
timeliness of this topic (Roy et al., 2019a). The collected metadata and associated code
developed for the literature review have been made publicly available9, along with an
online portal (in development) to help the community foster reproducibility10.

In Chapter 2, we present experiments on using SSL to leverage unlabelled EEG data
in unsupervised and semi-supervised scenarios. Motivated by the difficulty obtaining
expert labels on EEG data presents, we propose three self-supervised tasks that can
be used to learn representations of EEG data without any expert supervision. Experi-
ments on two large public datasets and on two distinct EEG classification tasks (sleep
staging and pathology detection) demonstrate that the clinical structure of EEG data
can in fact be learned by leveraging its temporal structure alone, and that our proposed
methodology can improve downstream task performance and reduce overall reliance on
labelled data. The results presented in this chapter have been published in Banville

7https://github.com/braindecode/braindecode
8https://dl-eeg.com/
9https://github.com/hubertjb/dl-eeg-review

10https://dl-eeg.com/

https://github.com/braindecode/braindecode
https://dl-eeg.com/
https://github.com/hubertjb/dl-eeg-review
https://dl-eeg.com/
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et al. (2019, 2021a). Additionally, an implementation of the core proposed method has
been made publicly available in the braindecode library11.

Next, Chapter 3 focuses on the challenge of channel corruption in real-world EEG. We
introduce dynamic spatial filtering (DSF), an attention module that is specifically de-
signed to handle channel corruption in sparse real-world EEG. We present experiments
on the sleep staging and pathology detection classification tasks, including a dataset of
real-world EEG data collected by users of a low-cost mobile EEG headset. We demon-
strate the usability and interpretability of the DSF approach, and show that, in sparse
EEG settings, it outperforms a commonly used automated noise handling strategy. The
work presented in this chapter has been shared as a preprint (Banville et al., 2021b)
and is currently under revision at NeuroImage. Code for reproducing these experiments
is publicly available online12.

Finally, Chapter 4 presents the first application of the brain age prediction framework
on real-world, low-cost mobile EEG. This framework, which uses age predictions as a
proxy measure of pathological aging, can be seen as a variation of the self-supervised
techniques presented in Chapter 2. Through experiments on more than 1,500 at-home
EEG recordings, we demonstrate that brain age can indeed be predicted from out-of-the-
lab EEG and that it is a promising biomarker of pathological aging. These experiments
make use of the DSF attention module introduced in Chapter 3 and further show its
usability on real-world EEG data. A manuscript based on the work presented in this
chapter is currently being prepared for submission at the Journal of Sleep Research.

1.4 Publications

The work presented in this thesis led to the following publications:

• Yannick Roy∗, Hubert Banville∗, Isabela Albuquerque, Alexandre Gramfort,
Tiago H Falk, and Jocelyn Faubert. Deep learning-based electroencephalography
analysis: a systematic review. Journal of Neural Engineering, 16(5):051001, 2019a
∗Shared first authorship.

• Hubert Banville, Graeme Moffat, Isabela Albuquerque, Denis-Alexander Enge-
mann, Aapo Hyvärinen, and Alexandre Gramfort. Self-supervised representation
learning from electroencephalography signals. In 2019 IEEE 29th International
Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE,
2019

• Hubert Banville, Omar Chehab, Aapo Hyvärinen, Denis-Alexander Engemann,
and Alexandre Gramfort. Uncovering the structure of clinical EEG signals with
self-supervised learning. Journal of Neural Engineering, 18(4):046020, 2021a

• Hubert Banville, Sean UN Wood, Chris Aimone, Denis-Alexander Engemann,
and Alexandre Gramfort. Robust learning from corrupted EEG with dynamic
spatial filtering. arXiv preprint arXiv:2105.12916, 2021c

11https://braindecode.org/auto_examples/plot_relative_positioning.html
12https://github.com/hubertjb/dynamic-spatial-filtering

https://braindecode.org/auto_examples/plot_relative_positioning.html
https://github.com/hubertjb/dynamic-spatial-filtering
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• Hubert Banville, Sean UN Wood, Maurice Abou Jaoude, Chris Aimone, Alex-
andre Gramfort, and Denis-Alexander Engemann. Brain age as a proxy measure
of neurophysiological health using low-cost mobile EEG. Manuscript in prepara-
tion, 2021b
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For common applications of EEG, such as sleep staging and pathology detection, labels
are needed in order to train supervised machine learning models. However, in many
cases, obtaining labels is a costly and time-consuming process: for instance, it can
require trained experts to visually analyze the collected EEG data, window by window.
While such expert annotators may be available in some contexts, such as small-scale data
collection in a lab or clinic, or in some prominent data collection projects (Goldberger
et al., 2000; Obeid and Picone, 2016; Zhang et al., 2018), they are typically a bottleneck
for EEG researchers. As the capacity to collect large EEG datasets increases, thanks
to advances in mobile and consumer-focused technology, we need new ways to leverage
unlabelled EEG data.
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In this chapter, we explore self-supervised learning (SSL) as a way to learn representa-
tions of EEG signals with deep learning in a purely unsupervised fashion. We present
three SSL tasks that rely on predicting the temporal context of EEG windows and
evaluate them on sleep staging and pathology detection tasks. Specifically, we evaluate
these methods in a semi-supervised scenario, where the objective is to improve model
performance when only a small amount of labelled EEG data, but large amounts of
unlabelled EEG data, are available.

Through experiments on two large public datasets with thousands of recordings, we
show that SSL-learned features consistently outperform purely supervised deep neural
networks in low-labelled data regimes, while remaining competitive when all labels are
available. Additionally, the representations learned with each method reveal clear latent
structures related to physiological and clinical phenomena, such as age. Our results
suggest that SSL is a promising technique for learning representations on unlabelled
EEG data, improving our ability to make use of real-world EEG in research and clinical
applications.

Since the publication of the articles on which this chapter is based (Banville et al.,
2019, 2021a), other groups have produced research on SSL and EEG (Cheng et al.,
2020; Mohsenvand et al., 2020; Xu et al., 2020a; Kostas et al., 2021; Han et al., 2021; Ye
et al., 2021), in many cases citing and building on the methods we introduced. Their
results further validate the idea that self-supervision is a powerful representation learn-
ing task, with great potential for low-labelled data regimes.

This chapter is based on the following work:

• Hubert Banville, Graeme Moffat, Isabela Albuquerque, Denis-Alexander Enge-
mann, Aapo Hyvärinen, and Alexandre Gramfort. Self-supervised representation
learning from electroencephalography signals. In 2019 IEEE 29th International
Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE,
2019

• Hubert Banville, Omar Chehab, Aapo Hyvärinen, Denis-Alexander Engemann,
and Alexandre Gramfort. Uncovering the structure of clinical EEG signals with
self-supervised learning. Journal of Neural Engineering, 18(4):046020, 2021a

Implementations of the proposed SSL tasks are available in the braindecode1 Python
library. (Schirrmeister et al., 2017)

2.1 Introduction

Electroencephalography (EEG) and other biosignal modalities have enabled numerous
applications inside and outside of the clinical domain, e.g., studying sleep patterns and
their disruption (Ghassemi et al., 2018), monitoring seizures (Acharya et al., 2013) and
brain-computer interfacing (Lotte et al., 2018). In the last few years, the availability
and portability of these devices has increased dramatically, effectively democratizing
their use and unlocking the potential for positive impact on people’s lives (Mihajlović
et al., 2014; Casson, 2019). For instance, applications such as at-home sleep staging and
apnea detection, pathological EEG detection, mental workload monitoring, etc. are now
entirely possible.

1https://github.com/braindecode/braindecode

https://github.com/braindecode/braindecode
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In all these scenarios, monitoring modalities generates an ever-increasing amount of
data which needs to be interpreted. Therefore, predictive models that can classify,
detect and ultimately “understand” physiological data are required. Traditionally, this
type of modelling has mostly relied on supervised approaches, where large datasets of
annotated examples are required to train models with high performance.

However, obtaining accurate annotations on physiological data can prove expensive,
time consuming or simply impossible. For example, annotating sleep recordings re-
quires trained technicians to go through hours of data visually and label 30-s windows
one-by-one (Malhotra and Avidan, 2013). Clinical recordings such as those used to dia-
gnose epilepsy or brain lesions must be reviewed by neurologists, who might not always
be available. More broadly, noise in the data and the complexity of brain processes
of interest can make it difficult to interpret and annotate EEG signals, which can lead
to high inter-rater variability, i.e., label noise (Younes et al., 2016; Engemann et al.,
2018b). Furthermore, in some cases, knowing exactly what the participants were think-
ing or doing in cognitive neuroscience experiments can be challenging, making it hard
to obtain accurate labels. In imagery tasks, for instance, the subjects might not be fol-
lowing instructions or the process under study might be difficult to quantify objectively
(e.g., meditation, emotions). Therefore, a new paradigm that does not rely primarily
on supervised learning is necessary for making use of large unlabelled sets of recordings
such as those generated in the scenarios described above. However, traditional unsu-
pervised learning approaches such as clustering and latent factor models do not offer
fully satisfying answers as their performance is not as straightforward to quantify and
interpret as supervised ones.

Self-supervised learning (SSL) is an unsupervised learning approach that learns repres-
entations from unlabelled data, exploiting the structure of the data to provide supervi-
sion (?) (introduced in Section 1.2.4). SSL comprises a pretext and a downstream task.
The downstream task is the task we are actually interested in but for which there are
limited or no annotations. The pretext task, on the other hand, must be sufficiently
related to the downstream task such that similar representations should be employed
to carry it out. Importantly, it must also be possible to generate the annotations for
this pretext task using the unlabelled data alone. For example, in a computer vision
scenario, one could use a jigsaw puzzle task where patches are extracted from an im-
age, scrambled randomly and then fed to a neural network that is trained to recover
the original spatial ordering of the patches (Noroozi and Favaro, 2016). If the network
performs this task reasonably well, then it is conceivable that it has learned some of the
structure of natural images, and that the trained network could be reused as a feature
extractor or weight initialization on a smaller-scale supervised learning problem such as
object recognition. Apart from facilitating the downstream task and/or reducing the
number of annotated examples necessary, self-supervision can also uncover more general
and robust features than those learned in a specialized supervised task (van den Oord
et al., 2018). Therefore, given the potential benefits of SSL, can it be used to enhance
the analysis of EEG?

To date, most applications of SSL have focused on domains where plentiful annotated
data is already available, such as computer vision (?) and natural language processing
(Mikolov et al., 2013; Devlin et al., 2018). Particularly in computer vision, deep net-
works are often trained with fully supervised tasks (e.g., ImageNet pretraining). In
this case, enough labelled data is available such that direct supervised learning on the
downstream task is already in itself competitive (He et al., 2019b). SSL has an even
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greater potential in domains where low-labelled data regimes are common and super-
vised learning’s effectiveness is limited, e.g., biosignal and EEG processing. Despite
this, few studies on SSL and biosignals have been published.2 These studies either fo-
cus on limited downstream tasks and datasets (Yuan et al., 2017), or test their approach
on signals other than EEG (Sarkar and Etemad, 2020).

Therefore, it still remains to be shown whether self-supervision can truly bring improve-
ments over standard supervised approaches on EEG, and if this is the case, what the
best ways of applying it are. Specifically, can we learn generic representations of EEG
with self-supervision and, in doing so, reduce the need for costly EEG annotations?
Given the growing popularity of deep learning as a processing tool for EEG (Roy et al.,
2019a), the answer could have a significant impact on current practices in the field. In-
deed, while deep learning is notoriously data-hungry, an overwhelmingly large part of all
neuroscience research happens in the low-labelled data regime, including EEG research:
clinical studies with a few hundred subjects are often considered to be big data, while
large-scale studies are much rarer and usually originate from research consortia (Shafto
et al., 2014; Obeid and Picone, 2016; Zhang et al., 2018; Bycroft et al., 2018; Engemann
et al., 2020). Therefore, it is to be expected that the performance reported by most
deep learning-EEG studies - often in low-labelled data regimes - has so far remained
limited and does not clearly outperform those of conventional approaches (Roy et al.,
2019a). By leveraging unlabelled data, SSL can effectively create a lot more examples,
which could enable more successful applications of deep learning to EEG.

In this chapter, we investigate the use of self-supervision as a general approach to
learning representations from EEG data. To the best of our knowledge, we present the
first detailed analysis of SSL tasks on multiple types of EEG recordings. We aim to
answer the following questions:

1. What are good SSL tasks that capture relevant structure in EEG data?

2. How do SSL features compare to other unsupervised and supervised approaches
in terms of downstream classification performance?

3. What are the characteristics of the features learned by SSL? Specifically, can SSL
capture physiologically- and clinically-relevant structure from unlabelled EEG?

The rest of the chapter is structured as follows. Section 2.2 presents an overview of the
SSL literature at the time of our publication (Banville et al., 2021a), then describes the
different SSL tasks and learning problems considered in our study. We also introduce
the neural architectures, baseline methods and data used in our experiments. Next,
Section 2.3 reports the results of our experiments on EEG. Lastly, we discuss the results
in Section 2.4.

2.2 Methods

2.2.1 State-of-the-art self-supervised learning approaches

Although it has not always been known as such, SSL has already been used in many
other fields. In computer vision, multiple approaches have been proposed that rely
on the spatial structure of images and the temporal structure of videos. For example,

2At the time of writing the two papers on which this chapter is based (Banville et al., 2019, 2021a).
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a context prediction task was used to train feature extractors on unlabelled images
in Doersch et al. (2015) by predicting the position of a randomly sampled image patch
relative to a second patch. Using this approach to pretrain a neural network, the authors
reported improved performance as compared to a purely supervised model on the Pascal
VOC object detection challenge. These results were among the first showing that self-
supervised pretraining could help improve performance when limited annotated data
is available. Similarly, the jigsaw puzzle task mentioned above (Noroozi and Favaro,
2016) led to improved downstream performance on the same dataset. In the realm
of video processing, approaches based on temporal structure have also been proposed:
for instance, in Misra et al. (2016), predicting whether a sequence of video frames was
ordered or shuffled was used as a pretext task and tested on a human activity recognition
downstream task. The interested reader can find other applications of SSL to images
in ?.

Similarly, modern natural language processing (NLP) tasks often rely on self-supervision
to learn word embeddings, which are at the core of many applications (Turian et al.,
2010). For instance, the original word2vec model was trained to predict the words
around a center word or a center word based on the words around it (Mikolov et al.,
2013), and then reused on a variety of downstream tasks (Nayak et al., 2016). More
recently, a dual-task self-supervised approach, BERT, led to state-of-the-art perform-
ance on 11 NLP tasks such as question answering and named entity recognition (Devlin
et al., 2018). The high performance achieved by this approach showcases the potential
of SSL for learning general-purpose representations.

Lately, more general pretext tasks inspired by early work on representation learning
(Becker and Hinton, 1992; Becker, 1993) along with new improved methodology have
led to strong results that have begun to rival purely supervised approaches. For instance,
contrastive predictive coding (CPC), an autoregressive prediction task in latent space,
was successfully used for images, text and speech (van den Oord et al., 2018). Given
an encoder and an autoregressive model, the task consists of predicting the output of
the encoder for future windows (or image patches or words) given a context of multiple
windows. The authors presented several improved results on various downstream tasks;
a follow-up further showed that higher-capacity networks could improve downstream
performance even more, especially in low-labelled data regimes (Hénaff et al., 2019).
Momentum contrast (MoCo), rather than proposing a new pretext task, is an improve-
ment upon contrastive tasks, i.e., tasks where a classifier must predict which of two or
more inputs is the true sample (He et al., 2019a; Chen et al., 2020b). By improving the
sampling of negative examples in contrastive tasks, MoCo helped boost the efficiency
of SSL training as well as the quality of the representations learned. Similarly, the Sim-
CLR approach of Chen et al. (2020a) showed that using the right data augmentation
transforms (e.g., random cropping and color distortion on images) and increasing batch
size could lead to significant improvements in downstream performance.

The ability of SSL-trained features to demonstrably generalize to downstream tasks jus-
tifies a closer look at their statistical structure. A general and theoretically grounded
approach was recently formalized in Hyvärinen and Morioka (2017); Hyvärinen et al.
(2019) from the perspective of nonlinear independent component analysis (ICA). In
this generalized framework, an observation x is embedded using an invertible neural
network, and contrasted against an auxiliary variable u (e.g., the time index, the in-
dex of a segment or the history of the data). A discriminator classifies the pair by
learning to predict whether x is paired with its corresponding auxiliary variable u or a
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perturbed (random) one u∗. When the data exhibits certain structure (e.g., autocorrel-
ation, non-stationarity, non-gaussianity), the embedder trained on this contrastive task
will perform identifiable nonlinear ICA (Hyvärinen et al., 2019). Most of the previously
introduced SSL tasks can be viewed through this framework. Given the widespread use
of linear ICA as a preprocessing and feature extraction tool in the EEG community
(Makeig et al., 1997; Jung et al., 1997; Parra et al., 2005; Ablin et al., 2018), an exten-
sion to the nonlinear regime is a natural step forward and could help improve traditional
processing pipelines.

Remarkably, very few studies have applied SSL to biosignals despite its potential to
leverage large quantities of unlabelled data. In Yuan et al. (2017), a model inspired
by word2vec, called wave2vec, was developed to work with EEG and electrocardio-
graphy (ECG) time series. Representations were learned by predicting the features
of neighbouring windows from the concatenation of time-frequency representations of
EEG signals and demographic information. This approach was however only tested on
a single EEG dataset and was not benchmarked against fully supervised deep learning
approaches or expert feature classification. SSL has also been applied to electrocardi-
ography (ECG) as a way to learn features for a downstream emotion recognition task:
in Sarkar and Etemad (2020), a transformation discrimination pretext task was used in
which the model had to predict which transformations had been applied to the raw sig-
nal. While these results show the potential of self-supervised learning for biosignals, a
more extensive analysis of SSL targeted at EEG is required to pave the way for practical
applications.

2.2.2 Self-supervised learning pretext tasks for EEG

In this section, we describe the three SSL pretext tasks used in this chapter. A visual
explanation of the tasks can be found in Figure 2.1. Implementations of the proposed
SSL tasks are available in the braindecode3 Python library (Schirrmeister et al., 2017).

Relative positioning

To produce labelled samples from the multivariate time series S, we propose to sample
pairs of time windows (Xt,Xt′) where each window Xt, Xt′ is in RC×T and T is the
duration of each window, and where the index t indicates the time sample at which
the window starts in S. The first window Xt is referred to as the anchor window. Our
assumption is that an appropriate representation of the data should evolve slowly over
time (akin to the driving hypothesis behind slow feature analysis (SFA) (Földiák, 1991;
Becker, 1993; Wiskott and Sejnowski, 2002)) suggesting that time windows close in time
should share the same label. In the context of sleep staging, for instance, sleep stages
usually last between 1 to 40 minutes (Altevogt and Colten, 2006); therefore, nearby
windows likely come from the same sleep stage, whereas faraway windows likely come
from different sleep stages. Given τpos ∈ N, which controls the duration of the positive
context, and τneg ∈ N, which corresponds to the negative context around each window
Xi, we sample N labelled pairs:

ZN = {((Xti ,Xt′i
), yi) | i ∈ JNK , (ti, t′i) ∈ T , yi ∈ Y},

3https://github.com/braindecode/braindecode

https://github.com/braindecode/braindecode
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Figure 2.1 – Visual explanation of the three proposed SSL pretext tasks (relative positioning
(RP), temporal shuffling (TS) and contrastive predictive coding (CPC)). The first column
illustrates the sampling process by which examples are extracted from a time series S (EEG
recording) in each pretext task. The second column describes the training process, where
sampled examples are used to train a feature extractor hΘ end-to-end. RP: Pairs of windows
are sampled from S such that the two windows of a pair are either close in time (“positive
pairs”) or farther away (“negative pairs”). hΘ is then trained to predict whether a pair is
positive or negative. TS: Triplets of windows (rather than pairs) are sampled from S. A triplet
is given a positive label if its windows are ordered or a negative label if they are shuffled. hΘ
is then trained to predict whether the windows of a triplet are ordered or shuffled. CPC:
Sequences of Nc + Np consecutive windows are sampled from S along with random distractor
windows (“negative samples”). Given the first Nc windows of a sequence (the “context”), a
neural network is trained to identify which window out of a set of distractor windows actually
follows the context.
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where Y = {−1, 1} and T = {(t, t′) ∈ JM − T + 1K 2 |
∣∣∣t− t′∣∣∣ ≤ τpos or

∣∣∣t− t′∣∣∣ > τneg}.
Intuitively, T is the set of all pairs of time indices (t, t′) which can be constructed from
windows of size T in a time series of size M , given the duration constraints imposed
by the particular choices of τpos and τneg4. Here yi ∈ Y is specified by the positive or
negative contexts parameters:

yi =

{
1, if |ti − t′i| ≤ τpos
−1, if |ti − t′i| > τneg . (2.1)

We ignore window pairs where Xt′ falls outside of the positive and negative contexts of
the anchor window Xt. In other words, the label indicates whether two time windows
are closer together than τpos or farther apart than τneg in time. Noting the connection
with the task of Doersch et al. (2015), we call this pretext task relative positioning
(RP).

In order to learn end-to-end how to discriminate pairs of time windows based on their
relative position, we introduce two functions hΘ and gRP . hΘ : RC×T → RD is a feature
extractor with parameters Θ which maps a window X to its representation in the feature
space. Ultimately, we expect hΘ to learn an informative representation of the raw EEG
input which can be reused in different downstream tasks. A contrastive module gRP is
then used to aggregate the feature representations of each window. For the RP task,
gRP : RD×RD → RD combines representations from pairs of windows by computing an
elementwise absolute difference, denoted by the | · | operator: gRP (hΘ(X), hΘ(X′)) =
|hΘ(X)−hΘ(X′)| ∈ RD. The role of gRP is to aggregate the feature vectors extracted by
hΘ on the two input windows and highlight their differences to simplify the contrastive
task. Finally, a linear context discriminative model with coefficients w ∈ RD and bias
term w0 ∈ R is responsible for predicting the associated target y. Using the binary
logistic loss on the predictions of gRP we can write a joint loss function L(Θ,w, w0) as

L(Θ,w, w0) =
∑

(Xt,Xt′ ,y)∈ZN

log(1 + exp(−y[w>gRP (hΘ(Xt), hΘ(Xt′)) + w0])) (2.2)

which we assume to be fully differentiable with respect to the parameters (Θ,w, w0).
Given the convention used for y, the predicted target is the sign of w>g(hΘ(Xt), hΘ(Xt′))+
w0.

Temporal shuffling

We also introduce a variation of the RP task that we call temporal shuffling (TS), in
which we instead sample two anchor windows Xt and Xt′′ from the positive context,
and a third window Xt′ that is either between the first two windows or in the negative
context. We then construct window triplets that are either temporally ordered (t <
t′ < t′′) or shuffled (t < t′′ < t′ or t′ < t < t′′). We augment the number of possible
triplets by also considering the mirror image of the previous triplets, e.g., (Xt,Xt′ ,Xt′′)
becomes (Xt′′ ,Xt′ ,Xt). The label yi then indicates whether the three windows are
ordered or have been shuffled, similar to Misra et al. (2016).

The contrastive module for TS is defined as gTS : RD × RD × RD → R2D and is
implemented by concatenating the absolute differences:

gTS(hΘ(x), hΘ(X′), hΘ(X′′)) = (|hΘ(X)− hΘ(X′)|, |hΘ(X′)− hΘ(X′′)|) ∈ R2D .
4The values of τpos and τneg can be selected based on prior knowledge of the signals and/or with

a hyperparameter search.
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Moreover, Eq. (2.2) is extended to TS by replacing gRP by gTS and introducing Xt′′ to
obtain:

L(Θ,w, w0) =
∑

(Xt,Xt′ ,Xt′′ ,y)∈ZN

log(1 + exp(−y[w>gTS(hΘ(Xt), hΘ(Xt′), hΘ(Xt′′)) +w0])) . (2.3)

TS shares similarities with the unsupervised metric learning approach of Franceschi
et al. (2019), however the sampling procedure and loss function both differ.

Contrastive predictive coding

The contrastive predictive coding (CPC) pretext task, introduced in van den Oord
et al. (2018), is defined here in comparison to RP and TS, as all three tasks share
key similarities. Indeed, CPC can be seen as an extension of RP, where the single
anchor window Xt is replaced by a sequence of Nc non-overlapping windows that are
summarized by an autoregressive encoder gAR : RD×Nc → RDAR with parameters ΘAR

5.
This way, the information in the context can be represented by a single vector ct ∈
RDAR . gAR can be implemented for example as a recurrent neural network with gated
recurrent units (GRUs).

The context vector ct is paired with not one, but Np future windows (or steps) which
immediately follow the context. Negative windows are then sampled in a similar way as
with RP and TS when τneg = 0, i.e., the negative context is relaxed to include the entire
time series. For each future window, Nb negative windows X∗ are sampled inside each
multivariate time series S (“same-recording negative sampling”) or across all available
S (“across-recording negative sampling”). For the sake of simplicity and to follow the
notation of the original CPC article, we modify our notation slightly: we now denote a
time window by Xt where t is the index of the window in the list of all non-overlapping
windows of size T that can be extracted from a time series S. Therefore, the procedure
for building a dataset with N examples boils down to sampling sequences Xc, Xp and
Xn in the following manner:

Xc
i = (Xti−Nc+1, . . . ,Xti) (Nc context windows)

Xp
i = (Xti+1, . . . ,Xti+Np) (Np future windows)

Xn
i = (Xt∗i1,1

, . . . ,Xt∗i1,Nb

, . . . ,Xt∗iNp,1
, . . . ,Xt∗iNp,Nb

) (NpNb random negative windows)

where ti ∈ JNc,M−NpK . We denote with t∗ time indices of windows sampled uniformly
at random. The dataset then reads:

ZN = {(Xc
i , X

p
i , X

n
i ) | i ∈ JNK } . (2.4)

As with RP and TS, the feature extractor hΘ is used to extract a representation of size
D from a window Xt. Finally, whereas the contrastive modules gRP and gTS explicitly
relied on the absolute value of the difference between embeddings h, here for each future
window Xt+k where k ∈ JNpK a bilinear model fk parametrized by Wk ∈ RD×DAR is
used to predict whether the window chronologically follows the context ct or not:

fk(ct, hΘ(Xt+k)) = hΘ(Xt+k)>Wkct (2.5)

5CPC’s encoder gAR has parameters ΘAR, however we omit them from the notation for brevity.
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The whole CPC model is trained end-to-end using the InfoNCE loss (van den Oord
et al., 2018) (a categorical cross-entropy loss) defined as

L(Θ,ΘAR,Wk, . . . ,Wk+Np−1) =

−
∑

(Xc
i ,X

p
i ,X

n
i )∈ZN

cti=gAR(Xc
i )

Np∑
k=1

log

 exp(fk(cti , hΘ(Xti+k)))

exp(fk(cti , hΘ(Xti+k))) +
∑

j∈JNbK

exp(fk(cti , hΘ(Xt∗ik,j
)))


(2.6)

While in RP and TS the model must predict whether a pair is positive or negative, in
CPC the model must pick which of Nb + 1 windows actually follows the context. In
practice, we sample batches of Nb + 1 sequences and for each sequence use the Nb other
sequences in the batch to supply negative examples.

2.2.3 Downstream tasks

We performed empirical benchmarks of EEG-based SSL on two clinical problems that
are representative of the current challenges in machine learning-based analysis of EEG:
sleep monitoring and pathology screening. These two clinical problems commonly give
rise to classification tasks, albeit with different numbers of classes and distinct data-
generating mechanisms: sleep monitoring is concerned with biological events (event
level) while pathology screening is concerned with single patients as compared to the
population (subject level). These two clinical problems have generated considerable
attention in the research community, which has led to the curation of large public
databases. To enable fair comparisons with supervised approaches, we benchmarked
SSL on the Physionet Challenge 2018 (Ghassemi et al., 2018; Goldberger et al., 2000)
and the TUH Abnormal EEG (López et al., 2017) datasets.

First, we considered sleep staging, which is a critical component of a typical sleep
monitoring assessment and is key to diagnosing and studying sleep disorders such as
apnea and narcolepsy (Bathgate and Edinger, 2019). Sleep staging has been extensively
studied in the machine (and deep) learning literature (Chambon et al., 2018; Motamedi-
Fakhr et al., 2014; Roy et al., 2019a) (approximately 10% of papers reviewed in Roy
et al. (2019a)), though not through the lens of SSL. Achieving fully automated sleep
staging could have a substantial impact on clinical practice as 1) agreement between
human raters is often limited (Younes et al., 2016) and 2) the annotation process is
time-consuming and still largely manual (Malhotra and Avidan, 2013). Sleep staging
typically gives rise to a 5-class classification problem where the possible predictions are
W (wake), N1, N2, N3 (different levels of sleep) and R (rapid eye movement periods).
Here, the task consists of predicting the sleep stages that correspond to 30-s windows
of EEG.

Second, we applied SSL to pathology detection: EEG is routinely used in a clinical
context to screen individuals for neurological conditions such as epilepsy and demen-
tia (Smith, 2005; Micanovic and Pal, 2014). However, successful pathology detection
requires highly specialized medical expertise and its quality depends on the expert’s
training and experience. Automated pathology detection could, therefore, have a ma-
jor impact on clinical practice by facilitating neurological screening. This gives rise
to classification tasks at the subject level where the challenge is to infer the patient’s
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diagnosis or health status from the EEG recording. In the TUH dataset, medical spe-
cialists have labelled recordings as either pathological or non-pathological, giving rise to
a binary classification problem. Importantly, these two labels reflect highly heterogen-
eous situations: a pathological recording could reflect anomalies due to various medical
conditions, suggesting a rather complex data-generating mechanism. Again, various
supervised approaches, some of them leveraging deep architectures, have addressed this
task in the literature (Lopez et al., 2015; Schirrmeister et al., 2017; Gemein et al., 2020),
although none has relied on self-supervision.

These two tasks are further described in Section 4.2.2 when discussing the data used in
our experiments.

2.2.4 Deep learning architectures

We used two different deep learning architectures as embedders hΘ in our experi-
ments (see Figure 2.2 for a detailed description). Both architectures were convolutional
neural networks composed of spatial and temporal convolution layers, which respect-
ively learned to perform the spatial and temporal filtering operations typical of EEG
processing pipelines.

The first one, which we call StagerNet, was adapted from previous work on sleep sta-
ging where it was shown to perform well for window-wise classification of sleep stages
(Chambon et al., 2018). StagerNet is a 3-layer convolutional neural network optimized
to process windows of 30 s of multichannel EEG. As opposed to the original architecture,
1) we used twice as many convolutional channels (16 instead of 8), 2) we added batch
normalization after both temporal convolution layers6 3) we did not pad temporal con-
volutions and 4) we changed the dimensionality of the output layer to D = 100 instead
of the number of classes (see Figure 2.2-1). This yielded a total of 62,307 trainable
parameters.

The second embedder architecture, ShallowNet, was directly taken from previous liter-
ature on the TUH Abnormal dataset (Schirrmeister et al., 2017; Gemein et al., 2020).
Originally designed to be a parametrized version of the filter bank common spatial pat-
terns (FBCSP) processing pipeline common in brain-computer interfacing, ShallowNet
has a single (split) convolutional layer followed by a squaring non-linearity, average
pooling, a logarithm non-linearity, and a linear output layer. Batch normalization was
used after the temporal convolution layer. Despite its simplicity, this architecture was
shown in the benchmark of Gemein et al. (2020) to perform almost as well as the best
model on the task of pathology detection on the TUH Abnormal dataset. We therefore
used it as is, except for the dimensionality of the output layer which we also changed
to D = 100 (see Figure 2.2-2). This yielded a total of 170,860 trainable parameters.

We used a GRU with a hidden layer of size DAR = 100 for the CPC task’s gAR, for
experiments on both datasets.

The Adam optimizer (Kingma and Ba, 2014) with β1 = 0.9 and β2 = 0.999 and learning
rate 5 × 10−4 was used. The batch size for all deep models was set to 256, except for
CPC where it was set to 32. Training ran for at most 150 epochs or until the validation

6As described in van den Oord et al. (2018); He et al. (2019a), batch normalization can harm the
network’s ability to learn on the CPC pretext task. However, we did not see this effect on our models
(likely because their capacity is relatively small) and alternatives such as no normalization or layer
normalization (Ba et al., 2016) performed unfavorably. Therefore, we also used batch normalization in
CPC experiments.
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Figure 2.2 – Neural network architectures used as embedder hΘ for 1) sleep EEG and
2) pathology detection experiments.

loss stopped decreasing for a period of a least 10 epochs (or 6 epochs for CPC). Dropout
was applied to fully connected layers at a rate of 50% and a weight decay of 0.001 was
applied to the trainable parameters of all layers. Finally, the parameters of all neural
networks were randomly initialized using uniform He initialization (He et al., 2015).

2.2.5 Hyperparameter search procedure

The hyperparameter search in Section 2.3.3 was carried out using the following steps.
First, embedders hΘ were independently trained on the RP, TS and CPC tasks. The
parameters of hΘ were then frozen, and the different hΘ were used as feature extractors
to obtain sets of 100-dimensional feature vectors from the original input data. Finally,
we trained linear logistic regression classifiers to perform the downstream tasks given
the extracted features. We further varied the principal pretext task hyperparameters
to understand their impact on both pretext and downstream task performance (see
Table 2.1). In both cases, we compared the balanced accuracy on the validation set.
For RP and TS, we focused our attention on τpos and τneg, which are used to control the
size of the positive and negative contexts when sampling pairs or triplets of windows.
As a first step, the values of τpos and τneg were varied jointly, i.e., τpos = τneg, to
avoid sampling “confusing” pairs or triplets of windows which could come from either
the positive or negative classes. The best value was then used to set τpos, and a sweep
over different τneg values was carried out. In a second step, we fixed τneg such that
it encompassed all recordings, i.e., negative windows were uniformly sampled from
any recording in the dataset instead of being limited to the recording which contained
the anchor window. We then varied τpos again with this second negative sampling
strategy. For CPC, we studied the impact of the number of predicted windows (“#
steps”) (van den Oord et al., 2018) and, as for RP and TS, the type of negative sampling
(“same-recording” vs. “across-recordings”). Finally, we again first varied the number of
predicted windows and reused the best value to compare negative sampling strategies.
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PC18 TUAB

τpos (min) τneg (min) Negative
sampling

τpos (min) τneg (min) Negative
sampling

RP 0.5, 1, 2, 5,
15, 30, 60,
120

0, 0.5, 1,
2, 5, 15,
30, 60,
120

same
rec.,
across
rec.

6 s, 12 s,
0.5, 1, 2, 5,
10

0 s, 6 s, 12
s, 0.5, 1,
2, 5, 10

same rec.,
across
rec.

TS 1, 2, 5, 15,
30, 60, 120

2, 5, 15,
30, 60,
120

same
rec.,
across
rec.

12 s, 0.5, 1,
2, 5, 10

12 s, 0.5,
1, 2, 5, 10

same rec.,
across
rec.

# predicted
windows

Negative
sampling

# predicted
windows

Negative
sampling

CPC 2, 4, 8, 12,
16

same
rec.,
across
rec.

2, 4, 8, 12,
16

same rec.,
across
rec.

Table 2.1 – SSL pretext task hyperparameter values considered in Section 2.3.3. Bold
face indicates values that led to the highest downstream task performance.

2.2.6 Baselines

The SSL tasks were compared to four baseline approaches on the downstream tasks: 1)
random weights, 2) convolutional autoencoders, 3) purely supervised learning and 4)
handcrafted features.

The random weights baseline used an embedder whose weights were frozen after ran-
dom initialization. The autoencoder (AE) was a more basic approach to representation
learning, where a neural network made up of an encoder and a decoder learned an iden-
tity mapping between its input and its output, penalized by e.g., a MSE loss (Kramer,
1991). Here, we used hΘ as the encoder and designed a convolutional decoder that
inverts the operations of hΘ. The purely supervised model was directly trained on the
downstream classification problem, i.e., it had access to the labelled data. To do so,
we used the same embedder architectures as for the self-supervised tasks, but with an
additional linear classification layer on top of the embedder, before training the whole
model with a multi-class cross-entropy loss.

We also included traditional machine learning baselines based on handcrafted features.
For sleep staging, we extracted the following features (Chambon et al., 2018): mean,
variance, skewness, kurtosis, standard deviation, frequency log-power bands between
(0.5, 4.5, 8.5, 11.5, 15.5, 30) Hz as well as all their possible ratios, peak-to-peak amp-
litude, Hurst exponent, approximate entropy and Hjorth complexity. This resulted in 37
features per EEG channel, which were concatenated into a single vector. In the event of
an artefact causing missing values in the feature vector of a window, we imputed miss-
ing values feature-wise using the mean of the feature computed over the training set.
For pathology detection, a pipeline based on covariance matrices, Riemannian geometry
and non-linear classifiers was used, inspired by the results of Gemein et al. (2020) which
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showed high accuracy on the evaluation set of the TUH Abnormal dataset. Specifically,
the spatial covariance matrix of each window X was extracted then vectorized through
a projection into its Riemannian tangent space (yielding an input dimensionality of
C(C + 1)/2 for C channels of EEG), allowing the use of a standard Euclidean-space
classifier (Barachant et al., 2013b; Congedo et al., 2017; Lotte et al., 2018). Here, we
did not average the covariance matrices per recording to allow a fair comparison with
the other methods which work window-wise.

Finally, since we used SSL-learned features in a semi-supervised setting, i.e., where a
limited amount of labelled data is used in conjunction with a larger set of unlabelled
examples (see Section 1.2.4), we included an additional baseline that draws on self-
training (Yarowsky, 1995), for completeness.

For the downstream tasks, features learned with RP, TS, CPC and AE were classified
using a linear logistic regression with L2-regularization parameter7 C = 1, while hand-
crafted features were classified using a random forest classifier with 300 trees, maximum
depth of 15 and a maximum number of features per split of

√
F (where F is the number

of features)8. Balanced accuracy (bal acc), defined as the average per-class recall, was
used to evaluate model performance on the downstream tasks. Moreover, during train-
ing, the loss was weighted to account for class imbalance. Models were trained using
a combination of the braindecode (Schirrmeister et al., 2017), MNE-Python (Gramfort
et al., 2014), PyTorch (Paszke et al., 2019), pyRiemann (Barachant et al., 2013b) and
scikit-learn (Pedregosa et al., 2011) packages. Finally, deep learning models were
trained on 1 or 2 Nvidia Tesla V100 GPUs for anywhere from a few minutes to 7h,
depending on the amount of data, early stopping and GPU configuration.

2.2.7 Data

The experiments were conducted on two publicly available EEG datasets, which are
described in Tables 2.2 and 2.3.

PC18 (train)

# windows
W 158,020 # unique subjects 994
N1 136,858 # recordings 994
N2 377,426 Sampling frequency 200 Hz
N3 102,492 # EEG channels 6
R 116,872 Reference M1 or M2
Total 891,668

Table 2.2 – Description of the Physionet Challenge 2018 (PC18) dataset used in this
study for sleep staging experiments.

7Varying C had little impact on downstream performance, and therefore we used a value of 1 across
experiments.

8Random forest hyperparameters were selected using a grid search with maximum depth in
{3, 5, 7, 9, 11, 13, 15}, and maximum number of features per tree in {

√
F , log2 F} using the validation

sets as described in Section 4.2.2.



2.2. METHODS 37

TUAB

train eval # unique subjects 2329
# recordings # recordings # recordings 2993

Normal 1371 150 Sampling frequency 250, 256, 512 Hz
Abnormal 1346 126 # EEG channels 27 to 36
Total 2717 276 Reference Common average

Table 2.3 – Description of the TUH Abnormal (TUAB) dataset used in this study for
EEG pathology detection experiments.

Physionet Challenge 2018 dataset

First, we conducted sleep staging experiments on the Physionet Challenge 2018 (PC18)
dataset (Ghassemi et al., 2018; Goldberger et al., 2000). This dataset was initially
released in the context of an open-source competition on the detection of arousals in
sleep recordings, i.e., short moments of wakefulness during the night. A total of 1,983
different individuals with (suspected) sleep apnea were monitored overnight and their
EEG, electroculography (EOG), chin electromyography (EMG), respiration airflow and
oxygen saturation measured. Specifically, 6 EEG channels from the international 10/20
system were recorded at 200 Hz: F3-M2, F4-M1, C3-M2, C4-M1, O1-M2 and O2-M1.
The recorded data was then annotated by 7 trained scorers following the AASM manual
(Berry et al., 2012) into sleep stages (W, N1, N2, N3 and R). Moreover, 9 different types
of arousal and 4 types of sleep apnea events were identified in the recordings. As the
sleep stage annotations are only publicly available on about half the recordings (used as
the training set during the competition), we focused our analysis on these 994 recordings.
In this subset of the data, mean age is 55 years old (min: 18, max: 93) and 33% of
participants are female.

TUH Abnormal EEG dataset

We used the TUH Abnormal EEG dataset v2.0.0 (TUAB) to conduct experiments
on pathological EEG detection (López et al., 2017). This dataset, a subset of the
entire TUH EEG Corpus (Obeid and Picone, 2016), contains 2,993 recordings of 15
minutes or more from 2,329 different patients who underwent a clinical EEG in a hospital
setting. Each recording was labelled as “normal” (1,385 recordings) or “abnormal” (998
recordings) based on detailed physician reports. Most recordings were sampled at 250 Hz
(although some were sampled at 256 or 512 Hz) and contained between 27 and 36
electrodes. Moreover, the corpus is divided into a training and an evaluation set with
2,130 and 253 recordings each. The mean age across all recordings is 49.3 years old
(min: 1, max: 96) and 53.5% of recordings are of female patients.

Data splits and sampling

We split the available recordings from PC18 and TUAB into training, validation and
testing sets such that the examples from each recording were only in one of the sets (see
Table 2.4).

For PC18, we used a 60-20-20% random split, meaning there were 595, 199 and 199
recordings in the training, validation and testing sets respectively. For RP and TS,
2,000 pairs or triplets of windows were sampled from each recording. For CPC, the
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PC18 RP/TS CPC TUAB RP/TS CPC
# recordings # tuples # sequences # recordings # tuples # sequences

Train 595 1,190,000 877,792 2,171 868,400 642,144
Valid 199 398,000 294,272 543 217,200 160,224
Test 199 398,000 292,608 276 110,400 81,184

Total 993 1,986,000 1,464,672 2,990 1,196,000 883,552

Table 2.4 – Number of recordings used in the training, validation and testing sets with
PC18 and TUAB, as well as the number of examples for each pretext task.

number of batches to extract from each recording was computed as 0.05 times the
number of windows in that recording; moreover, we set the batch size to 32.

For TUAB, we used the provided evaluation set as the test set. The recordings of the
development set were split 80-20% into a training and a validation set. Therefore, we
used 2,171, 543 and 276 recordings in the training, validation and testing sets. Since the
recordings were shorter for TUAB, we randomly sampled 400 RP pairs or TS triplets
instead of 2000 from each recording. We used the same CPC sampling parameters as
for PC18.

Preprocessing

The preprocessing of the EEG recordings differed for the two datasets. On PC18, the
raw EEG was first filtered using a 30Hz FIR lowpass filter with a Hamming window, to
reject higher frequencies that are not critical for sleep staging (Chambon et al., 2018;
Aboalayon et al., 2016). The EEG channels were then downsampled to 100Hz to reduce
the dimensionality of the input data. For the same reason, we focused our analysis on
two channels only. We selected F3-M2 and F4-M1 as, being closer to the eyes, they pick
up more of the EOG activity critical for the classification of stage R. These channels
are also close to the forehead region, whose lack of hair makes it a popular location
for at-home polysomnography systems. Lastly, non-overlapping windows of 30 s of size
(3000 x 2) were extracted.

On TUAB, a similar procedure to the one reported in Gemein et al. (2020) was used.
The first minute of each recording was cropped to remove noisy data that occurs at
the beginning of recordings. Longer files were also cropped such that a maximum of
20 minutes was used from each recording. Then, 21 channels that are common to all
recordings were selected (Fp1, Fp2, F7, F8, F3, Fz, F4, A1, T3, C3, Cz, C4, T4, A2,
T5, P3, Pz, P4, T6, O1 and O2). EEG channels were downsampled to 100Hz and
clipped at ±800µV to mitigate the effect of large artifactual deflections in the raw
data. Non-overlapping 6-s windows were extracted, yielding windows of size (600×21).

Finally, windows from both datasets with peak-to-peak amplitude below 1µV were
rejected. The remaining windows were normalized channel-wise to have zero-mean and
unit standard deviation.
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PC18 TUAB

Figure 2.3 – Impact of number of labelled examples per class on downstream perform-
ance for SSL tasks (blue), supervised approaches (yellow) and unsupervised baselines
(green). Feature extractors were trained with an autoencoder (AE), the relative posi-
tioning (RP), temporal shuffling (TS) and contrastive predictive coding (CPC) tasks,
or left untrained (“random weights”), and then used to extract features on PC18 and
TUAB. Following a hyperparameter search (Section 2.3.3), we used same-recording
negative sampling on PC18 and across-recording negative sampling on TUAB. Down-
stream task performance was evaluated by training linear logistic regression models on
the extracted features for the labelled examples, with at least one and up to all exist-
ing labelled examples in the training set (“All”). Additionally, fully supervised models
were trained directly on labelled data and random forests were trained on handcrafted
features. Results are the average of five runs with same initialization but different ran-
domly selected examples (see Figure 2.4 below for a version with standard deviation).
While more labelled examples led to better performance, SSL models achieved much
higher performance than a fully supervised model when only few were available.

2.3 Results

2.3.1 SSL models learn representations of EEG and facilitate
downstream tasks with limited annotated data

Can the suggested pretext tasks enable SSL on clinical EEG data and reduce the need
for labelled EEG data in clinical tasks? To address this question, we applied the pre-
text tasks to two clinical datasets (PC18 and TUAB) and compared their downstream
performance to that of established approaches such as fully supervised learning, while
varying the number of labelled examples available.

The impact of the number of labelled samples on downstream performance is presented
in Figure 2.3 (and in Figure 2.4 for a more complete view of the results with a measure
of the spread around each performance estimate). First, SSL-learned features led to
above-chance downstream performance across all data regimes: on PC18, maximum
performance was 72.3% balanced accuracy (5-class, chance=20%) while on TUAB it
was 79.4% (2-class, chance=50%). Second, SSL-learned features were competitive with
other baseline approaches and could even outperform supervised approaches. On sleep
data (Figure 2.3A), all three SSL models outperformed alternative approaches including
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PC18 TUAB

Figure 2.4 – Impact of number of labelled examples per class on downstream perform-
ance with uncertainty estimates. As compared to Figure 2.3, we present the standard
deviation over five runs as the shaded area around each line. As could be expected,
standard deviation was high when few labelled examples were available, but decreased
as more labelled examples were provided.

full supervision and handcrafted features in most data regimes. The performance gap
between SSL and full supervision reached 22.8 points when only one example per class
was available. SSL remained better up until 10,000 examples per class, where full
supervision began to exceed SSL performance, however by a 1.6-3.5% margin only.
Moreover, SSL outperformed handcrafted features about 100 examples per class, e.g., by
up to 5.6 points for CPC.

Other baselines (random weights and autoencoding) achieved much lower performance,
suggesting learning informative features for sleep staging is not trivial and requires more
than the inductive bias of a convolutional neural network alone or a pure reconstruction
task. Interestingly, the autoencoder’s poor performance can be attributed to its MSE
loss. This encourages the model to focus on low frequencies, which, due to 1/f power-
law dynamics have the largest amplitudes in biosignals like EEG. Yet, low frequency
signals only capture a small portion of the neurobiological information in EEG signals.

Next, we applied SSL to pathology detection, where classes (“normal” and “abnormal”)
are likely to be more heterogeneous than in sleep staging. Again, SSL-learned features
outperformed baseline approaches in most data regimes: CPC outperformed full super-
vision under 10,000 labelled examples per class, while the performance gap between the
two methods was around 1% when all examples were available. RP, TS and CPC also
consistently outperformed handcrafted features, albeit by a smaller amount (e.g., 3.8-4.8
point difference for CPC). Again, AE and random weights features could not compete
with the other methods. Notably, AE’s downstream performance never exceeded 53.0%.

Finally, for the sake of completeness, we investigated whether a classical semi-supervised
approach, namely self-training, could be used to leverage unlabelled data in a similar
fashion to SSL. The comparison between a purely supervised approach (handcrafted
features baseline) and self-training is presented in Figure 2.5 on both PC18 and TUAB.
Instead of improving performance, self-training systematically led to a decrease in per-
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formance as compared to the handcrafted baseline approach, except for minimal im-
provements when only one or 10 labelled examples were available per class. Increasing
the threshold mitigated this decrease, but did not lead to improved performance over
a purely supervised model either. Given a potential limitation arising from the prob-
ability estimation accuracy of tree-based models (Tanha et al., 2017), we also tested a
logistic regression classifier which should produce more reliable probability estimates.
Performance was overall negatively impacted again. These results suggest that while
classical semi-supervised approaches have shown potential to leverage large amounts
of unlabelled data, their use is not straightforward in EEG classification problems and
domain-specific efforts might have to be made in order to accommodate their use.

PC18 TUAB

Figure 2.5 – Impact of number of labelled examples per class on downstream perform-
ance for a self-training semi-supervised baseline, as compared to the handcrafted fea-
tures approach. We conducted self-training experiments with a random forest (RF) and
logistic regression (LR) using the same hyperparameters as described in Section 2.2.6
and a probability threshold of 0.7 or 0.4 and maximum number of iterations of 5. Self-
training overall harmed downstream performance for both datasets.

Taken together, our results demonstrate that the proposed SSL pretext tasks were
general enough to handle two fundamentally different types of EEG classification prob-
lems. All SSL tasks systematically outperformed or matched other approaches in low-
to-medium labelled data regimes and remained competitive in a high labelled data
regime.

2.3.2 SSL models capture physiologically and clinically meaningful
features

While SSL-learned features yielded competitive performance for sleep staging and patho-
logy detection, it is unclear what structure was captured by SSL. Hence, we examined
the relationship between the embeddings, annotations and metadata available in the
clinical datasets. We projected the 100-dimensional embeddings obtained on PC18 and
TUAB to two dimensions using UMAP (McInnes et al., 2018) and using the models
with the highest downstream task performance as identified in Section 2.3.3.9 This
allows a qualitative analysis of local and global structure in SSL-learned features.

9Similar results were obtained with other well-performing hyperparameter configurations.
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Figure 2.6 – Uniform Manifold Approximation and Projection (UMAP) visualization of
SSL features on the PC18 dataset. The subplots show the distribution of the 5 sleep
stages as scatterplots for RP (firt row), TS (second row) and CPC (third row) features.
Contour lines correspond to the density levels of the distribution across all stages and are
used as visual reference. Finally, each point corresponds to the features extracted from
a 30-s window of EEG by the RP, TS and CPC embedders with the highest downstream
performance as identified in Section 2.3.3 and Table 2.1. All available windows from
the train, validation and test sets of PC18 were used. In all three cases, there is clear
structure related to sleep stages although no labels were available during training.

Results on sleep data are shown in Figure 2.6. A structure that closely follows the dif-
ferent sleep stages is visible in RP, TS and CPC embeddings of PC18. Upon inspection
of the distribution of examples from the different stages, clear groups emerged. These
groups not only correspond to the labelled sleep stages, but are also sequentially ar-
ranged: moving from one end of the embedding to another, we could draw a line that
passes through W, N1, N2 and N3. Stage R, finally, mostly overlaps with N1. These
results are in line with previous observations on the structure of the sleep-wakefulness
continuum (Pardey et al., 1996; Lopour et al., 2011).

Intuitively, the largest sources of variation in sleep EEG data are linked to changes in
sleep stages and corresponding microstructure (slow waves, sleep spindles, etc.). To
explore other sources of variations, the clinical information available in PC18 was used
to color the embeddings: apnea events and subject age. The results are presented in
the first row of Figure 2.7, 2.8 and 2.9 for TS, RP and CPC, respectively. Similar
conclusions apply to all three methods. First, apnea-related structure can be seen in
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Figure 2.7 – Structure learned by the embedders trained on the TS task. The models
with the highest downstream performance as identified in Section 2.3.3 and Table 2.1
were used to embed the combined train, validation and test sets of the PC18 and TUAB
datasets. The embeddings were then projected to two dimensions using UMAP and dis-
cretized into 500 x 500 “pixels”. For binary labels (“apnea”, “pathological” and “gender”),
we visualized the probability as heatmaps, i.e., the color indicates the probability that
the label is true (e.g., that a window in that region of the embedding overlaps with an
apnea annotation). For age, the subjects of each dataset were divided into 9 quantiles,
and the color indicates which group was the most frequent in each bin. The features
learned with SSL capture physiologically-relevant structure, such as pathology, age,
apnea and gender.

the middle of the embeddings, overlapping with the area where stage N2 was prevalent
(first column of Figure 2.7-2.9). At the same time, very few apnea events occurred
at the extremities of the embedding, for instance over W regions, naturally, but also
over N3 regions. Although this structure likely reflects the correlation between sleep
stages, age and apnea-induced EEG patterns, this nonetheless shows the potential of
SSL to learn features that relate to clinical phenomena. Second, age structure was
revealed in two distinct ways in the embeddings (second column of Figure 2.7-2.9).
The first is related to sleep macrostructure, i.e., the sequence of sleep stages and their
relative length. Indeed, younger subjects predominantly occupied the R region, while
older subjects were more frequently found over the W region. This is in line with well-
documented phenomena such as increased sleep fragmentation and sleep onset latency
in older individuals, as well as a subtle reduction in REM sleep with age (Mander et al.,
2017). Sleep microstructure-related information is also observed in the embeddings. For
instance, looking at N2-N3 regions, older individuals are more likely in the leftmost side
of the blob, while younger subjects are more likely found on its rightmost side. This
suggests the characteristics of N2-N3 sleep vary across age groups, e.g., sleep spindles
(Purcell et al., 2017). Finally, there is also gender-related structure, with discernible
low and high probability regions in the embeddings (third column of Figure 2.7-2.9).
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Figure 2.8 – Structure learned by the embedders trained on the RP task. See Figure 2.7
for a complete description.

P
C
1
8

T
U
A
B

Figure 2.9 – Structure learned by the embedders trained on the CPC task. See Figure 2.7
for a complete description.

Can similar structure be learned on a different type of EEG recording? We conducted
the same analysis for TUAB, this time focusing on pathology, age and gender. Results
are shown in the second row of Figure 2.7, 2.8 and 2.9. The embeddings exhibited a
primary multi-cluster structure, with similar gradient-like structure inside each cluster.
For instance, pathology-related structure is apparent in the two embeddings (column
1), with an increasing probability of EEG being abnormal when moving from one end
of the different clusters to the other. Likewise, an age-related gradient emerged inside
each cluster (column 2), in a similar direction as the pathology gradient, while a gender-
associated gradient appears orthogonal to the first two (last column). To understand
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Figure 2.10 – Structure related to the original recording’s number of EEG channels
and measurement date in TS-learned features on the entire TUAB dataset. The overall
different number of EEG channels and measurement date in each cluster reveals that
the cluster-like structure reflects differences in experimental setups. See Figure 2.7 for
a description of how the density plots are computed.

what these different clusters actually represent, we plotted experimental setup-related
labels (original number of EEG channels and recording date) in Figure 2.10. Each cluster
was predominantly composed of examples with a particular number of channels and a
specific range of measurement dates. This suggests that SSL models have partially
learned data collection-related noise. Indeed, the TUAB dataset was collected over
several years across different sections of the Temple University Hospital, by different
EEG technicians and with various EEG devices and montages (Ferrell et al., 2019).
Most likely, the impact of this noise on the embedding could be mitigated by stronger
preprocessing (e.g., bandpass filtering) or by only sampling negative examples within
recordings from the same cohort.

In conclusion, this experiment showed that SSL can encode clinically-relevant structure
such as sleep stages, pathology, age, apnea and gender from EEG data, while revealing
interactions (such as younger age and REM sleep), without any access to labels.

2.3.3 SSL pretext task hyperparameters strongly influence
downstream task performance

How should SSL pretext task hyperparameters be tuned to make full use of self-
supervision in clinical EEG tasks? In this section, we describe how hyperparameters
were tuned in the experiments above and study the impact of key hyperparameters on
downstream performance.

To benchmark pretext tasks across datasets, we tracked pretext and downstream per-
formance across different choices of hyperparameters (see Section 2.2.5 for a complete
description of the search procedure). The comparison is depicted in Figure 2.11. Pretext
tasks performed significantly above chance on all datasets: RP and TS reached a max-
imum performance of 98.0% (2-class, chance=50%) while CPC yielded performances as
high as 95.4% (32-class, chance= 3.1%). On the downstream tasks, SSL always per-
formed above chance as reported in Section 2.3.1. Interestingly though, configurations
with high pretext performance did not necessarily yield high downstream performance,
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A BPC18 TUAB

Figure 2.11 – Impact of principal hyperparameters on pretext (blue) and downstream
(yellow) task performance, measured with balanced accuracy on the validation set of
(A) PC18 and (B) TUAB. Each row corresponds to a different SSL pretext task. For
both RP and TS, we varied the hyperparameters that control the length of the positive
and negative contexts (τpos, τneg, in seconds); the exponent “all” indicates that negative
windows were sampled across all recordings instead of within the same recording. For
CPC, we varied the number of predicted windows and the type of negative sampling.
Finally, the best hyperparameter values in terms of downstream task performance are
emphasized using vertical dashed lines. See text for more details on the hyperparameter
search procedure.

which highlights the necessity of appropriate hyperparameter selection.

Next, we examined the influence of hyperparameters on each pretext task (rows of
Figure 2.11) to identify optimal configurations. First, we focused on same-recording
negative sampling (anchor window(s) and negative examples are sampled from the same
recording). With RP, increasing τpos always made the pretext task harder. Indeed, the
larger the positive context, the more probable it is to get positive example pairs that
are composed of distant (and thus potentially dissimilar) windows. On sleep data, we
noticed a plateau effect: downstream performance was roughly constant below τpos =
20min, suggesting EEG autocorrelation properties might change at this temporal scale.
On TUAB, downstream performance decreased above τpos = 30 s and increased again
after τpos = 2min. On the other hand, varying τneg with τpos fixed did not affect
downstream performance consistently or significantly, although larger τneg generally led
to easier pretext tasks.

Do these results hold when negative windows are sampled across all recordings? In-
terestingly, negative sampling has a considerable effect on downstream performance
(columns 3 and 6 of Figure 2.11). On sleep staging, downstream performance dropped
significantly and degraded faster as τpos was increased, while the opposite effect could
be seen on the pathology detection task (higher, more stable performance). This ef-
fect might be explained by the nature of the downstream task: in sleep staging, major
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changes in the EEG occur within a given recording, therefore distinguishing between
windows of a same recording is key to identifying sleep stages. On the other hand, in
pathology detection, each recording is given a single label (“normal” or “pathological”)
and so distinguishing between a window from the same recording (necessarily having
the same label) or from another one (possibly having the opposite label) intuitively ap-
pears more useful. In other words, the distribution that is chosen for sampling negative
examples determines the kind of invariance that the network is forced to learn. Overall,
similar results hold for TS.

A similar analysis on CPC shows that while increasing the number of windows to predict
made the pretext task harder, predicting further ahead in the future yielded better
representations for sleep staging (bottom row of Figure 2.11). Pretext performances of
around 20% might seem low, however they are in fact significantly higher than chance
level (3.1%) on this 32-class problem. Remarkably, negative sampling had a minor
effect on downstream performance on sleep data (71.6 vs. 72.2% bal acc), but had
a considerable effect on pathology detection (74.1 vs. 80.4%), akin to RP and TS
above. This result echoes the report of van den Oord et al. (2018) where subject-specific
negative sampling led to the highest downstream performance on phoneme classification.

In this last experiment, we confirmed that our SSL pretext tasks are not trivial, and
that certain pretext task hyperparameters have a measurable impact on downstream
performance.

2.4 Discussion

In this chapter, we introduced self-supervised learning (SSL) as a way to learn repres-
entations on EEG data. Specifically, we proposed two SSL tasks designed to capture
structure in EEG data, relative positioning (RP) and temporal shuffling (TS) and ad-
apted a third approach, contrastive predictive coding (CPC), to work on EEG data.
As compared to previous work on representation learning for EEG (Yuan et al., 2017)
and ECG (Sarkar and Etemad, 2020), these methods do not require manual feature
extraction, additional demographic information or a pretraining step, and do not rely
on data augmentation transforms that have yet to be defined on EEG. We showed that
these tasks can be used to learn generic features which capture clinically relevant struc-
ture from unlabelled EEG, such as sleep micro- and macrostructure, and pathology.
Moreover, we performed a rigorous comparison of SSL methods to traditional unsu-
pervised and supervised methods on EEG, and showed that downstream classification
performance can be significantly improved by using SSL, particularly in low-labelled
data regimes. These results hold for two large-scale EEG datasets comprising sleep and
pathological EEG data, both with thousands of recordings.

2.4.1 Using SSL to improve performance in semi-supervised
scenarios

We showed that SSL can be used to improve downstream performance when plentiful
unlabelled data is available but labelled data is scarce, i.e., in a semi-supervised learning
scenario (Section 1.2.4). For instance, CPC-learned features outperformed fully super-
vised learning on sleep data by about 20% when only one labelled example per class
was available. Similarly, on pathology detection a ∼15% improvement was obtained
with SSL when only 10 labelled examples per class were available. In practice, SSL
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has the potential to boost classification performance when annotations are expensive,
a common scenario when working with biosignals like EEG.

While the SSL pretext tasks included in this work are applicable to multivariate time
series in general, their successful application does require adequate recording length
and dataset size. EEG recordings must be sufficiently long so that a reasonable number
of windows can be sampled given the positive and negative contexts and the window
length. This is typically not an issue for clinical recordings (e.g., sleep monitoring
and pathology screening produce recordings of tens of minutes to many hours). Other
stimulus-presentation based protocols might also be used when entire recordings are
available (rather than event-related windows only). Second, the current results may
suggest large datasets are necessary to enable SSL on EEG as analyses were based
on two of the largest publicly available EEG datasets with thousands of recordings
each. However, similar results hold on much smaller datasets containing fewer than
100 recordings (Banville et al., 2019). Intuitively, as long as the unlabelled dataset is
representative of the variability of the test data, representations that are useful for the
pretext task should be transferable to a related downstream task.

One might argue that the performance gain of SSL over supervised approaches is minor
in the moderate-to-large data regime. Nevertheless, our results open the door to fur-
ther developments which may lead to substantial performance improvements. In this
chapter, we limited our experiments to the linear evaluation protocol, where the down-
stream task is carried out by a linear classifier trained on SSL-learned features, in order
to focus on the properties of the learned representations. Finetuning the parameters of
the embedders on the downstream task (van den Oord et al., 2018; Tian et al., 2020)
could likely improve downstream performance. Preliminary experiments (not shown)
suggested that a 3-4-point improvement can be obtained in some data regimes with
finetuning and that performance with all data points equals that of a purely super-
vised model. However, using nonlinear classifiers (here, random forests) as suggested in
van den Oord et al. (2018) on SSL-learned features did not improve results, suggesting
our pretext and downstream tasks might be sufficiently close that relevant information
is already linearly accessible.

Generally speaking, self-supervision also presents interesting opportunities to improve
model performance as compared to purely supervised approaches. First, due to their
sampling methodology, most SSL tasks can “create” a combinatorially large number of
distinct examples going far beyond the number of labelled examples typically available
in a supervised task. For instance, on PC18, our training set contained close to 5 ×
105 labelled examples while our SSL embedders were trained on more than twice that
number of examples (to fit computational time requirements; more could have been
easily sampled). The much higher number of available examples in SSL opens the
door to larger deep neural networks (Hénaff et al., 2019). Given the relatively shallow
architectures currently used in deep learning-EEG research (León et al., 2020) and
the limited number of examples typically available as compared to other deep learning
application domains (Roy et al., 2019a), SSL could be key to training deeper models
and improving the state of the art on various EEG tasks.

Second, in most applications, it is desirable that a trained model generalizes across
individuals, including individuals not in the training set. Therefore, many classification
approaches rely on subject-dependent training to reach optimal performance (Roy et al.,
2019a; Sabbagh et al., 2020). This however comes at the cost of requiring subject-specific
labelled data. Along with work on neural network architectures (Zhang et al., 2020)
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and transfer learning strategies (Xu et al., 2020b), among others, SSL is likely to help
overcome this challenge. Indeed, given larger (unlabelled) datasets, SSL pretraining can
improve the diversity of examples captured by the learned feature space and, in doing
so, act as a strong regularizer against overfitting on the individuals of the training set.

Finally, although an increasing number of deep learning-EEG studies choose raw EEG
as input to their neural networks, handcrafted feature representations are still used
in a large portion of recent papers (Roy et al., 2019a). This raises the question of
what optimal handcrafted features are for a specific task (Maiorana, 2020). SSL brings
an interesting solution to this problem, as the features it learns can capture import-
ant physiological parameters from raw data, and their reuse in a deep neural network is
straightforward (e.g., as weight initialization). Although handcrafted features are inher-
ently more interpretable, recent work on model inspection techniques has shown learned
features can be meaningfully interpreted as well (Hartmann et al., 2018). Therefore,
given the potential of SSL-learned features to capture true statistical sources (under
certain conditions; see Section 2.4.3), SSL might close the gap between raw EEG- and
handcrafted features-based approaches.

2.4.2 Sleep-wakefulness continuum and inter-rater reliability

We have demonstrated that the embeddings learned with SSL capture clinically-relevant
information. Sleep, pathology, age and gender structure appeared in the learned feature
space (Figure 2.6-2.7). The variety of metadata that is visible in the embeddings high-
lights the capacity of the proposed SSL tasks to uncover important factors of variation
in noisy biosignals in a purely unsupervised manner. Critically though, this structure
is not discrete, but continuous. Indeed, sleep stages are not cleanly separated into
five clusters (or two for normal and abnormal EEG), but instead the embeddings dis-
play a smooth continuum of sleep-wakefulness (or of normal-abnormal EEG). Is this
gradient-like structure meaningful, or is it a mere artefact of our experimental setup?
We speculate that the continuous nature of SSL-learned features is inherent to the
neurophysiological phenomena under study. Conveniently, this offers interesting oppor-
tunities to improve the analysis of physiological data. For instance, the concept of sleep
stages and their taxonomy is the product of incremental standardization efforts in the
sleep research community (Loomis et al., 1937; Kales et al., 1968; Moser et al., 2009;
Berry et al., 2012). Although this categorization is convenient, critics still stress the
limitations of stage-based systems under the evidence of sub-stages of sleep and the
interplay between micro- and macrostructure (Schulz, 2008). Moreover, even trained
experts using identical rules do not perfectly agree on their predictions, showing that
the definition of stages remains ambiguous: in Younes et al. (2016), an overall agree-
ment of 82.6% was obtained between the predictions of more than 2,500 trained sleep
scorers (63.0% for N1). Consequently, could a data-driven representation of sleep EEG,
such as the one learned with self-supervision, alleviate some of these challenges? While
previous research suggests sleep might indeed be measured using a continuous metric
derived from a supervised machine learning model (Pardey et al., 1996) or a computa-
tional mean-field model (Lopour et al., 2011), we additionally demonstrated that the
rich feature space learned with SSL can simultaneously capture sleep-related structure
and variability caused by age and apnea. Importantly, the data-driven nature of the SSL
representation alleviates the subjectivity of manual sleep staging. This suggests SSL-
learned representations could provide more fine-grained information about the multiple
factors at play during sleep and, in doing so, enable a more precise study of sleep.
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Similarly, many EEG pathologies are described by a clinical classification system which
defines discrete subtypes of diseases or disorders, e.g., epilepsy (Pack, 2019; England
et al., 2012) and dementia (Walters, 2010). As for sleep EEG, inter-rater agreement
is limited (Gemein et al., 2020). This suggests that there is an opportunity for these
pathologies to be interpreted on a continuum as well.

2.4.3 Finding the right pretext task for EEG

With the large number of possible self-supervised pretext tasks, and the even larger
number of possible EEG downstream tasks, how can we choose a combination of pretext
task and hyperparameters for a given setting? To answer this question, many more
empirical experiments will have to be conducted. However, our results give some insight
as to what may be important to consider. In this work, we developed pretext tasks that
proved effective on two different classification problems by combining 1) prior knowledge
about EEG signals, 2) assumptions about the statistical structure of the features to be
learned, 3) thorough hyperparameter search and 4) computational considerations.

First, we designed the RP and TS tasks by relying on prior knowledge about EEG.
Specifically, sleep EEG signals have a clear temporal structure originating from the
succession of sleep stages during the night. Therefore, two windows that are close
in time are likely sharing the same sleep stage annotation and statistical structure.
Learning to differentiate close-by from faraway windows should intuitively be related
to learning to differentiate sleep stages. Similar approaches in the computer vision
literature (Doersch et al., 2015; Misra et al., 2016) rely on properties of natural images
that generally do not hold for EEG. For instance, whereas two EEG windows Xt and
Xt′ that are close in time likely look alike, there is typically no physiological information
in these windows that allows one to determine whether t < t′ or t > t′.10 Therefore,
tasks that rely on proximity rather than absolute positioning appear to be a better
match for EEG. We included CPC in our experiments as it naturally extends RP and
TS and yielded promising results on other kinds of data (van den Oord et al., 2018).

Second, assumptions about the statistical structure of the latent factors to recover was
used to support our choice of tasks. Given its similarity with permutation contrastive
learning (PCL, a self-supervised method for nonlinear ICA (Hyvärinen and Morioka,
2017)), RP likely relies on general temporal dependencies (including autocorrelations)
in EEG signals to recover informative features.11 Since TS and CPC can both be seen
as extensions of RP with more elaborate sampling strategies and contrastive procedures
(Section 2.2.2), all three tasks might rely on similar structure to discover features.

Third, the careful selection of pretext task hyperparameters was essential to select-
ing the right pretext task configuration. For instance, RP, TS and CPC yielded similar
downstream performance once optimal hyperparameters were selected. Particularly, the
negative sampling strategy proved to be critical (Section 2.3.3). Indeed, sleep staging
benefited from same-recording negative sampling whereas pathology detection worked
best with across-recording negative sampling. This simple change allowed RP, TS and
CPC to compete with purely supervised approaches on pathology detection, although

10Exceptions would include transitions between sleep stages that are more likely than others, such
as from lighter to deeper sleep stages; however these transitions occur rarely during the night; more
often a back-and-forth between sleep stages is observed.

11PCL can be obtained by setting RP’s τpos to the length of a single window and τneg to 0. Incident-
ally, we found that the optimal value of τpos and τneg were relatively small on the datasets considered,
suggesting hyperparameters close to those of PCL are optimal.
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RP and TS were initially designed for capturing intra-recording sleep structure. This
shows that negative sampling hyperparameters can be used to develop invariances to
particular structure that is not desirable, e.g., intra-recording changes or measurement-
site effects (Figure 2.10). Ultimately, the fact that all three pretext tasks could reach
similar downstream performance suggests self-supervision was able to uncover funda-
mental information likely related to physiology.

Finally, computational requirements and architecture-specific constraints are important
to consider when choosing a pretext task. Given the similar downstream performance
yielded by each pretext task after hyperparameter selection, RP might be preferred as
it is the most memory-efficient and simplest. However, although CPC has more hy-
perparameters and requires additional forward and backward passes, its autoregressive
encoder gAR could yield better features for some tasks with larger-scale dependencies
(van den Oord et al., 2018), e.g., sleep staging. Indeed, recent studies on automated
polysomnography have reported improved performance using larger-scale temporal in-
formation (Chambon et al., 2018; Supratak et al., 2017). Preliminary results (not shown)
suggest CPC’s autoregressive features can substantially improve both sleep staging and
pathology detection performance.

Other pretext tasks could have been explored, for instance a transformation discrimina-
tion task similar to the ECG-focused work of Sarkar and Etemad (2020), or a nonlinear
ICA-derived framework such as generalized contrastive learning (Hyvärinen et al., 2019)
to explicitly leverage other structure present in EEG signals.

2.4.4 Limitations

We identify three principal limitations to this work: fixed hyperparameters across data
regimes, restricted architecture search, and difference between reported results and state
of the art.

Given the computational requirements of training neural networks on large EEG data-
sets, we fixed the training hyperparameters of fully supervised models (learning rate,
batch size, dropout, weight decay) and reused these values across data regimes. As a
result, fully supervised models typically stopped learning after only a few epochs. We
tested the impact of various training hyperparameters on a subset of the models and
saw that although training can be slightly improved, this effect is not strong enough to
change any of our conclusions (results not shown).

Similarly, hyperparameter search was limited to pretext task hyperparameters in our
experiments. However, architecture hyperparameters (e.g., number of convolutional
channels, embedding size, number of layers, etc.) can also play a critical role in achiev-
ing high performance using SSL (Kolesnikov et al., 2019). Sticking to a single fixed
architecture for all models and data regimes means that these improvements - which
could help bridge (or widen) the gap between SSL methods and the various baselines -
were not taken into account in this work.

Finally, the goal of this work being to introduce self-supervision as a representation
learning paradigm for EEG, we did not focus on matching state-of-the-art perform-
ance. Nonetheless, downstream performance would most likely improve significantly
by aggregating temporal windows (Supratak et al., 2017; Chambon et al., 2018). On
TUAB, we reused the simpler approaches from Gemein et al. (2020) instead of the
best performing models. Moreover, 1) we did not use cropped decoding (Schirrmeister
et al., 2017), 2) we used z-score instead of exponential moving average normalization
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and 3) our train/validation data split was different. Together, these differences explain
the small drop in performance between these state-of-the-art methods and the results
reported here.

2.5 Conclusion

In this chapter, we introduced SSL approaches to learn representations on EEG data
and showed that they could compete with and sometimes even outperform traditional
supervised approaches on two large clinical datasets. Importantly, the features learned
through SSL displayed a clear structure in which different physiological quantities were
jointly encoded. This validates the potential of self-supervision to capture important
physiological information, even in the absence of labelled data. In particular, this shows
that SSL is a promising tool for making use of large-scale, unlabelled EEG data recorded
in real-world conditions with mobile EEG.

Future work will have to demonstrate whether SSL can also be used successfully with
other kinds of EEG recording settings and tasks. Ultimately, developing a better un-
derstanding of how best to design pretext tasks in order to target specific types of EEG
structure will be critical to establishing self-supervision as a valuable component of any
EEG analysis pipeline.
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In the last chapter, we focused on the challenges brought about by large unlabelled EEG
datasets, which will become increasingly common as out-of-the-lab EEG technology ma-
tures. Now that we have demonstrated the effectiveness of SSL in extracting information
from unlabelled EEG, we turn our attention to another important challenge real-world
EEG applications are faced with, namely noise. Indeed, low-cost mobile EEG devices
typically 1) trade-off signal quality for faster setup time and practicality (e.g., by favor-
ing sparse montages and dry electrodes over denser montages and the use of conductive
gel or paste) and 2) are used in uncontrolled environments (e.g., at home) without ex-
pert assistance or supervision. As a result, both the prevalence and strength of noise
tend to increase, when compared to traditional research or clinical settings.

Building machine learning models for real-world EEG processing therefore requires
methods that are robust to noisy data and randomly corrupted channels. In this chapter,
we propose dynamic spatial filtering (DSF), an attention module that can be plugged in
before the first layer of a neural network to handle corrupted EEG channels by learning
to focus on good channels and to reduce the emphasis on bad ones. Specifically, DSF re-
weights EEG channels on a window-by-window basis according to their relevance given
a predictive task. Moreover, DSF provides an interesting insight into the functioning of
the neural network it is used with, through the visualization of its attention maps.

Our experiments on public and private EEG datasets, comprising more than 4,000
recordings and including real-world EEG recordings, show that when significant channel
loss occurs, DSF systematically outperforms traditional noise-handling strategies. We
also show how DSF’s outputs can be interpreted, making it possible to monitor the
usefulness of each channel in real-time. Overall, this new approach enables effective
EEG analysis in challenging settings where channel corruption is likely to hamper the
reading of brain signals.
This chapter is based on the following work (pending revisions in NeuroImage):

• Hubert Banville, Sean UN Wood, Chris Aimone, Denis-Alexander Engemann,
and Alexandre Gramfort. Robust learning from corrupted EEG with dynamic
spatial filtering. arXiv preprint arXiv:2105.12916, 2021c

Code used for the data analysis presented in this chapter is openly available at https:
//github.com/hubertjb/dynamic-spatial-filtering.

3.1 Introduction

The use of machine learning for automating EEG analysis has been the subject of much
research in recent decades (Lotte et al., 2007, 2018; Roy et al., 2019a). However, state-
of-the-art EEG prediction pipelines are generally benchmarked on datasets recorded in
well-controlled conditions that are relatively clean when compared to data from mobile
EEG. As a result, it is unclear how models designed for laboratory data will cope with
signals encountered in real-world contexts. This is especially critical for mobile EEG
recordings that may contain a varying number of usable channels as well as overall
noisier signals, in contrast to most research- and clinical-grade recordings. In addition,
the difference in number of channels between research and mobile settings also means
that interpolating bad channels offline (as is commonly done in recordings with dense
electrode montages) is likely to fail on mobile EEG devices given their limited spatial
information. It is an additional challenge that the quality of EEG data is not static but
can vary significantly within a given recording. This suggests that predictive models

https://github.com/hubertjb/dynamic-spatial-filtering
https://github.com/hubertjb/dynamic-spatial-filtering
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should handle noise dynamically. Ideally, not only should machine learning pipelines
produce predictions that are robust to (changing) sources of noise in EEG, but they
should also do so in a way that is interpretable. For instance, if noise is easily identifiable,
corrective action can be quickly taken by users or experimenters during a recording.
Finally, practical real-world EEG devices are likely to have access to a limited amount
of computational resources for processing the raw EEG (e.g., mobile phone), meaning
processing must be as efficient as possible, especially in applications where real-time
feedback is required (e.g., brain-computer interfacing and neurofeedback). With this in
mind, existing noise-handling strategies from the EEG and MEG literature may not be
optimal for handling the problem of channel corruption in sparse montages.

In this chapter, we propose and benchmark an attention mechanism module designed
to handle corrupted channel data, based on the concept of scaling attention (Hu et al.,
2018; Woo et al., 2018). This module can be inserted before the first layer of any
convolutional neural network architecture in which activations have a spatial dimension
(Schirrmeister et al., 2017; Lawhern et al., 2018; Chambon et al., 2018), and then be
trained end-to-end for the prediction task at hand.

The rest of the chapter is structured as follows. Section 3.2 presents an overview of
the EEG noise handling literature, then describes the attention module and denoising
procedure proposed in this study. The neural architectures, baseline methods and data
used in our experiments are introduced in Section 3.3. Next, Section 3.4 reports the
results of our experiments on sleep and pathology EEG datasets. Lastly, we examine
related work and discuss the results in Section 3.5.

3.2 Methods

3.2.1 State-of-the-art approaches to noise-robust EEG processing

Existing strategies for dealing with noisy data can be divided into three categories
(Table 3.1): 1) ignoring or rejecting noisy segments, 2) implicit denoising, i.e., methods
that allow models to work despite noise, and 3) explicit denoising, i.e., methods that rely
on a separate preprocessing step to handle noise or missing channels before prediction.
We now discuss existing methods employing these strategies in more detail.

The simplest way to deal with noise in EEG is to assume that it is negligible or to simply
discard bad segments (Roy et al., 2019a). For instance, a manually selected amplitude
or variance threshold (Manor and Geva, 2015; Hefron et al., 2018; Wang et al., 2018) or a
classifier trained to recognize artifacts (Dhindsa, 2017) can be used to identify segments
to be ignored. This approach, though commonplace, is ill-suited to mobile EEG settings
where noise cannot be assumed to be negligible, but also to online applications where
model predictions need to be continuously available. Moreover, this approach is likely
to discard windows due to a small fraction of bad electrodes, potentially losing usable
information from other channels.

Implicit denoising approaches can be used to design noise-robust processing pipelines
that do not contain a specific noise handling step. First, implicit denoising approaches
can use representations of EEG data that are robust to missing channels. For instance,
multichannel EEG can be transformed into topographical maps (“topomaps”) that are
less sensitive to the absence of a few channels. This representation is then typically fed
into a standard CNN architecture. While this approach can gracefully handle missing
channels in dense montages (e.g., 16 to 64 channels in Bashivan et al. (2016); Thodoroff
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et al. (2016); Hagad et al. (2019)), it is likely to perform poorly on sparse montages
(e.g., 4 channels) as spatial interpolation might fail if channels are missing. Moreover,
this approach requires computationally demanding preprocessing and feature extraction
steps, undesirable in online and low-computational resources contexts. In the traditional
machine learning setting, Sabbagh et al. (2020) showed that representing input windows
as covariance matrices and using Riemannian geometry-aware models did not require
common noise correction steps to reach high performance on a brain age prediction
task. However, the robustness of this approach has not been evaluated on sparse mont-
ages. Also, its integration into neural network architectures is not straightforward with
geometry-aware deep learning remaining an active field of research (Bronstein et al.,
2017). Signal processing techniques can also be used to promote invariance to certain
types of noise. For instance, the Lomb-Scargle periodogram can be used to extract
spectral representations that are robust to missing samples (Li et al., 2015; Chu et al.,
2018). However, this approach fails when channels are completely missing. Finally,
implicit denoising can be achieved with traditional machine learning models that are
inherently robust to noise. For instance, random forests trained on handcrafted EEG
features were shown to be notably more robust to low SNR inputs than univariate
models on a state-of-consciousness prediction task (Engemann et al., 2018a). Although
promising, this approach is limited by its feature engineering step, as features 1) rely
heavily on domain knowledge, 2) might not be optimal to the task, and 3) require an
additional processing step which can be prohibitive in limited resource contexts.

Multiple studies have explicitly handled noise by correcting corrupted signals or predict-
ing missing or additional channels from available ones. Spatial projection approaches
aim at projecting the input signals to a noise-free subspace before projecting the signals
back into channel-space, e.g., ICA (Jung et al., 1997; Mammone et al., 2011; Wink-
ler et al., 2011) or principal component analysis (PCA) (Uusitalo and Ilmoniemi, 1997;
Kothe and Jung, 2016). While approaches such as ICA are powerful tools to mitigate ar-
tifact and noise components in a semi-automated way, their efficacy can diminish when
only few channels are available. For instance, in addition to introducing an additional
preprocessing step, these approaches are likely to discard important discriminative in-
formation during preprocessing because they are decoupled from the prediction task.
Also, the fact that preprocessing is done independently from the supervised learning
task, or the statistical testing procedure, actually makes the selection of preprocessing
parameters (e.g., number of good components) challenging. Motivated by the chal-
lenge of parameter selection, fully automated denoising pipelines have been proposed.
FASTER (Nolan et al., 2010) and PREP (Bigdely-Shamlo et al., 2015) both combine
artifact correction, noise removal and bad channel interpolation into a single automated
pipeline. Autoreject (Jas et al., 2017) is another recently developed pipeline that uses
cross-validation to automatically select amplitude thresholds to use for rejecting win-
dows or flagging bad channels. These approaches are well-suited to offline analyses
where the morphology of the signals is of interest, however they are typically computa-
tionally demanding and are also decoupled from the statistical modeling. Additionally,
it is unclear how interpolation can be applied when using bipolar montages (i.e., that
do not share a single reference), as is often the case in e.g., polysomnography (Berry
et al., 2012) and epilepsy monitoring (Rosenzweig et al., 2014).

Finally, generic machine learning models have been proposed to recover bad channels.
For instance, generative adversarial networks (GANs) have been trained to recover dense
EEG montages from a few electrodes (Corley and Huang, 2018; Svantesson et al., 2020).
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Other similar methods have been proposed, e.g., long short-term memory (LSTM)
neural networks (Paul, 2020), AEs (El-Fiqi et al., 2019), or tensor decomposition and
compressed sensing (Ramakrishnan and Satyanarayana, 2016; Sole-Casals et al., 2018).
However, these methods postulate that the identity of bad channels is known ahead of
time, which is a non-trivial assumption in practice.

In contrast to the existing literature on channel corruption handling in EEG, we intro-
duce an interpretable end-to-end denoising approach that can learn implicitly to work
with corrupted sparse EEG data, and that does not require additional preprocessing
steps.

3.2.2 Dynamic spatial filtering: Second-order attention for learning
on noisy EEG signals

The key goal behind DSF is to help neural networks focus on the most important chan-
nels, at each time instant, given a specific machine learning task on EEG. To do so, we
introduce a spatial attention mechanism that dynamically re-weights channels accord-
ing to their predictive power. This idea is inspired by recent developments in attention
mechanisms, most specifically the scaling attention approach proposed in computer
vision (Hu et al., 2018; Woo et al., 2018). Notably, DSF leverages second-order inform-
ation, i.e., spatial covariance, to capture dependencies between EEG channels. In this
section, we detail the learning problem under study, the proposed attention architecture
and a data augmentation transform designed to help train noise-robust models.

We perform experiments in the supervised classification setting. A model fΘ : X → Y
with parameters Θ (e.g., , a CNN) is trained to predict the class y of EEG windows
X. For this, we train fΘ to minimize the loss L, e.g., the categorical cross-entropy loss,
over the example-label pairs (X(i), y(i)):

f̂Θ = arg min
Θ

EX,y∈X×Y [L(fΘ(X), y)] . (3.1)

In particular, we are interested in the performance of fΘ when random channels are
corrupted and more specifically when channel corruption occurs at test time (i.e., when
training data is mostly clean). Toward this goal, we insert an attention-based module
mDSF : RC×T → RC′×T into fΘ which performs a (fixed) transformation Φ(X) to
extract relevant spatial information from X, followed by a parametrized re-weighting
mechanism for the input signals.

In order to implicitly handle noise in neural network architectures, we design an atten-
tion module where second-order information is extracted from the input and used to
predict weights of a linear transformation of the input EEG channels, that are optimized
for the learning task (Figure 3.1). Applying such linear transforms to multivariate EEG
signals is commonly referred to as spatial filtering, a technique that has been widely
used in the field of EEG (Makeig et al., 1996; McFarland et al., 1997; Parra et al.,
2005; Blankertz et al., 2007; de Cheveigné and Simon, 2008; Lotte and Guan, 2010;
Nikulin et al., 2011). This enables the model to learn to ignore noisy outputs and/or to
re-weight them, while still leveraging any remaining spatial information. We now show
how this module can be applied to the raw input X.

We define the dynamic spatial filter (DSF) module mDSF as:

mDSF(X) = WDSF(X)X + bDSF(X) , (3.2)
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Table 3.1 – Existing methods for dealing with noisy EEG data.

Approach Examples Notes

Ignore or
reject noise

No denoising (Schirrmeister et al., 2017;
Lawhern et al., 2018; Li
et al., 2019; Schirrmeister
et al., 2017; Gemein et al.,
2020; Supratak et al., 2017;
Guillot et al., 2020; Phan
et al., 2019, 2020)

Might not work in real-life applic-
ations (out of the lab/clinic)

Removing bad
epochs

(Manor and Geva, 2015;
Dhindsa, 2017; Hefron et al.,
2018; Wang et al., 2018)

Doesn’t allow online predictions;
Might discard useful information

Implicit
denoising

Robust input rep-
resentations

Covariance matrices in
Riemannian tangent space
(Sabbagh et al., 2020)

Might not work if too few chan-
nels available

Topomaps (Bashivan et al.,
2016; Thodoroff et al., 2016;
Hagad et al., 2019)

Expensive preprocessing step;
Might not work if too few chan-
nels available

Robust signal pro-
cessing techniques

Lomb-Scargle periodogram
(Li et al., 2015; Chu et al.,
2018)

Only useful for missing samples,
not missing channels

Robust machine
learning classifiers

Handcrafted features and
random forest (Engemann
et al., 2018a)

Requires feature engineering step

Explicit
denoising

Spatial projection-
based approaches

Signal Space Separation
(SSS) for MEG (Taulu
et al., 2004)

Might not work if too few chan-
nels available; Additional pre-
processing step; Preprocessing
might discard important inform-
ation for learning task

ICA-based denoising (Jung
et al., 1997; Mammone et al.,
2011; Winkler et al., 2011)

Automated correc-
tion

Autoreject (Jas et al., 2017),
FASTER (Nolan et al.,
2010), PREP (Bigdely-
Shamlo et al., 2015)

Expensive preprocessing step

Model-based
interpolation/
reconstruction

Deep learning-based super-
resolution (GAN, LSTM,
AE, etc.) (Han et al.,
2018; Kwon et al., 2019;
Corley and Huang, 2018;
Svantesson et al., 2020; El-
Fiqi et al., 2019)

Separate training step; Addi-
tional inference step to recon-
struct at test time; Requires sep-
arate procedure to detect corrup-
ted channels

Tensor decomposition, com-
pressed sensing (Sole-Casals
et al., 2018; Ramakrishnan
and Satyanarayana, 2016)

Interpretable
denoising

Channel
corruption-
invariant archi-
tecture

Dynamic Spatial Filter-
ing (this work)

Trained end-to-end, no ad-
ditional preprocessing, inter-
pretable, works with sparse
montages
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Figure 3.1 – Visual description of the Dynamic Spatial Filtering (DSF) attention mod-
ule. An input window X with C spatial channels is processed by a 2-layer MLP to
produce a set of C ′ spatial filters W and biases b that dynamically transform the input
X. This allows the subsequent layers of a neural network to ignore bad channels and
focus on the most informative ones.

where WDSF ∈ RC′×C and bDSF ∈ RC′ are obtained by reshaping the output of a
neural network, e.g., a MLP, hΘDSF

(Φ(X)) ∈ RC′×(C+1) (see Figure 3.1). Under this
formulation, each row in WDSF corresponds to a spatial filter that linearly transforms
the input signals into another virtual channel. Here, C ′ can be set to the number
of input spatial channels C or considered a hyperparameter of the attention module1.
When C ′ = C, if the diagonal of WDSF is 0, WDSF corresponds to a linear interpolation
of each channel based on the C − 1 others, as is commonly done in the classical EEG
literature (Perrin et al., 1989) (see Section 3.5.6 for an in-depth discussion). Heavily
corrupted channels can be ignored by giving them a weight of 0 in WDSF. To facilitate
this behavior, we can further apply a soft-thresholding element-wise nonlinearity to
WDSF:

W′
DSF = sign(WDSF) max(

∣∣WDSF

∣∣− τ, 0) , (3.3)

where τ is a threshold empirically set to 0.1, |·| is the element-wise absolute value and
both the sign and max operators are applied element-wise.

In our experiments, the spatial information extracted by the transforms Φ(X) was either
1) the log-variance of each input channel or 2) the flattened upper triangular part of the
matrix logarithm of the covariance matrix of X (see Section 3.2.3)2. When reporting
results, we denote models as DSFd and DSFm when DSF takes the log-variance or the
matrix logarithm of the covariance matrix as input, respectively. We further add the
suffix “-st” to indicate the use of the soft-thresholding nonlinearity, e.g., DSFm-st.

Interestingly, the DSF module can be seen as a multi-head attention mechanism (Vaswani
et al., 2017) with real-valued attention weights and where each head is tasked with pro-
ducing a linear combination of the input spatial signals.

1In which case it can be used to increase the diversity of input channels in models trained on sparse
montages (C′ > C) or perform dimensionality reduction to reduce computational complexity (C′ < C).

2In practice, if a channel is “flat-lining” (has only 0s) inside a window and therefore has a variance
of 0, its log-variance is replaced by 0. Similarly, if a covariance matrix eigenvalue is 0 when computing
the matrix logarithm (see Equation 3.8), its logarithm is replaced by 0.
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Finally, we can inspect the attention given bymDSF to each input channel by computing
the “effective channel importance” metric3 φ ∈ RC where

φj =

√√√√ C′∑
i=1

Wij
2 . (3.4)

Intuitively, φ measures how much each input channel is used by mDSF to produce the
output virtual channels. A normalized version

φ̂ =
φ

maxiφi
(3.5)

can also be used to obtain a value between 0 and 1. This straightforward way of
inspecting the functioning of the DSF module facilitates the identification of important
or noisy channels.

To further help our models learn to be robust to noise, we design a data augmentation
procedure that randomly corrupts channels. Specifically, channel corruption is simu-
lated by performing a masked channel-wise convex combination of input channels and
Gaussian white noise Z ∈ RC×T :

X̃ = (1− η) diag(ν)X + η diag(ν)Z + diag(1− ν)X , (3.6)

where Zi,j ∼ N (0, σ2
n) for i ∈ JT K and j ∈ JCK , η ∈ [0, 1] controls the relative strength

of the noise, and ν ∈ {0, 1}C is a masking vector that controls which channels are
corrupted. The operator diag(x) creates a square matrix filled with zeros whose diagonal
is the vector x. Here, ν is sampled from a Multinouilli distribution with parameter p.
Each window X is individually corrupted using random parameters σn ∼ U(20, 50) µV,
η ∼ U(0.5, 1), and a fixed p of 0.5.

3.2.3 Representation of spatial information in the DSF module

In this section, we briefly discuss different spatial representations of EEG and motivate
our choice of the spatial covariance matrix for DSF.

Given some EEG signals X ∈ RC×T , where T is the number of time samples in X, and
which we assume to be zero-mean, an unbiased estimate of their covariance reads:

Σ(X) =
XX>

T
∈ RC×C . (3.7)

The zero-mean assumption is justified after some high-pass filtering or simple baseline
correction of the signals. To assess whether one channel is noisy or not, a human
expert annotator will typically rely on the power of a signal and its similarity with the
neighboring channels. This information is encoded in the covariance matrix.

Multiple well-established signal processing techniques rely on some estimate of Σ. For
instance, common spatial patterns (CSP) performs generalized eigenvalue decompos-
ition of covariance matrices to identify optimal spatial filters for maximizing the dif-
ference between two classes (Koles et al., 1990). Riemannian geometry approaches to

3“Effective channel importance” measures how useful the data of a channel is. It is not to be
confused with the theoretical importance of a channel, i.e., the fact that in theory some channels
(given good signal quality) might be more useful for some tasks than other channels.
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EEG classification and regression instead leverage the geometry of the space of sym-
metric positive definite (SPD) matrices to develop geometry-aware metrics. They are
used to average and compare covariance matrices, which has been shown to outperform
other classical approaches (Congedo et al., 2017; Sabbagh et al., 2020). Artifact hand-
ling pipelines such as the Riemannian potato (Barachant et al., 2013a) and Artifact
Subspace Reconstruction (Mullen et al., 2015) further rely on covariance matrices to
identify bad epochs or attenuate noise.

The values in a covariance matrix often follow a heavy-tailed distribution. Therefore,
knowing that neural networks are typically easier to train when the distribution of input
values is fairly concentrated, it is helpful to standardize the covariance values before
feeding them to the network. While scalar non-linear transformations (e.g., logarithms)
could help reduce the range of values and facilitate a neural network’s task, the geometry
of SPD matrices actually calls for metrics that respect the Riemannian structure of the
SPDmatrices’ manifold (Lin, 2019). For instance, this means using the matrix logarithm
instead of naively flattening the upper triangle and diagonal of the matrix (Sabbagh
et al., 2020). For an SPD matrix S, whose orthogonal eigendecomposition reads S =
UΛU>, where Λ = diag(λ1, ..., λn) contains its eigenvalues, the matrix logarithm log(S)
is given by:

log(S) = U diag(log(λ1), ..., log(λn))U> . (3.8)

The diagonal and upper-triangular part of log(S) can then be flattened into a vector
with C(C + 1)/2 values, which is then typically used with linear models, e.g., support
vector machines (SVMs) or logistic regression.

Other options to provide input values in a restricted range exist. For instance, one
could simply use the element-wise logarithm of the diagonal of the covariance matrix,
i.e., the log-variance of the input signals. This is appropriate if pairwise inter-channel
covariance information is deemed not critical down the line. Alternatively, Pearson’s
correlation matrix, which can be seen as the covariance matrix of the z-score normalized
signals, could be used. It has the advantage that its values are already in a well-defined
range (-1, 1), yet it is blind to channel variances. In our experiments, we focused on
two spatial representations: the channel-wise variance obtained from the diagonal of
Σ, and the matrix logarithm of Σ. Both helped improve robustness on the pathology
detection and sleep staging tasks.

3.2.4 Computational considerations

We set the following hyperparameters when training deep neural networks: optimizer,
learning rate schedule, batch size, regularization strength (number of training epochs,
weight decay, dropout) and parameter initialization scheme. In all experiments, we
used the AdamW optimizer (Loshchilov and Hutter, 2017) with β1 = 0.9, β2 = 0.999,
a learning rate of 10−3 and cosine annealing. The parameters of all neural networks
were randomly initialized using uniform He initialization (He et al., 2015). Dropout
(Srivastava et al., 2014) was applied to fΘ’s fully connected layer at a rate of 50%
and weight decay was applied to the trainable parameters of all layers of both fΘ and
hΘDSF

. Moreover, during training, the loss was weighted to optimize balanced accuracy.
Weight decay and batch size hyperparameters were selected such that learning curves
decreased steadily in the first 10 epochs of training on a subset of the training set of
each dataset. Respectively for TUAB, PC18 and MSD (see Section 3.3.4) these were
256, 64 and 64 (batch size) and 0.01, 0.001 and 0.01 (weight decay).
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Deep learning and baseline models were trained using a combination of the braindecode
(Schirrmeister et al., 2017), MNE-Python (Gramfort et al., 2014), PyTorch (Paszke et al.,
2019), pyRiemann (Barachant et al., 2013b), mne-features (Schiratti et al., 2018) and
scikit-learn (Pedregosa et al., 2011) packages.4 Finally, deep learning models were
trained on 1 or 2 Nvidia Tesla V100 or P4 GPUs for anywhere from a few minutes to
7 hours, depending on the amount of data, early stopping and GPU configuration.

3.3 Experiments

3.3.1 Downstream tasks

We studied noise robustness through two common EEG classification downstream tasks:
sleep staging and pathology detection (see Section 2.2.3 for a detailed description).
First, sleep staging is a 5-class classification problem which consists of predicting which
sleep stage an individual is in, in non-overlapping 30-s windows of overnight recordings.
While a large number of machine learning approaches have been proposed to perform
sleep staging (Motamedi-Fakhr et al., 2014; Chambon et al., 2018; Roy et al., 2019a;
Phan et al., 2020), the handling of corrupted channels has not been addressed in a
comprehensive manner yet, as channel corruption is less likely to occur in clinical and
laboratory settings than in the real-world settings we consider here5.

Second, the pathology detection task is a binary classification tasks aimed at detecting
whether an individual’s EEG is pathological or not (Smith, 2005; Micanovic and Pal,
2014). Such recordings are typically carried out in well-controlled settings (e.g., in
a hospital (Obeid and Picone, 2016)) where sources of noise can be monitored and
mitigated in real-time by experts. To test pathology detection performance in the
context of mobile EEG acquisition, we used a limited set of electrodes, in contrast to
previous work (Lopez et al., 2015; Schirrmeister et al., 2017; Gemein et al., 2020).

3.3.2 Compared methods

We compared the performance of the proposed DSF and data augmentation method to
other established approaches. In total, we contrasted combinations of three machine
learning pipelines and three different noise-handling strategies.

We consider the following machine learning pipelines: 1) end-to-end deep learning (with
and without the DSF module) from raw signals, 2) filter-bank covariance matrices with
Riemannian tangent space projection and logistic regression (Barachant et al., 2013b;
Congedo et al., 2017; Lotte et al., 2018; Sabbagh et al., 2020) (which we refer to as
“Riemann”), and 3) handcrafted features and random forest (RF) (Gemein et al., 2020).

Deep learning pipelines used the same base CNN architectures as in our experiments on
SSL (Section 2.2.4) for fΘ. For pathology detection, we used the ShallowNet architec-
ture from Schirrmeister et al. (2017) which parametrizes the FBCSP pipeline (Gemein
et al., 2020). We used it without modifying the architecture from the original paper,
yielding a total of 13,482 trainable parameters when C = 6. For sleep staging, we used
a 3-layer CNN which takes 30-s windows as input (Chambon et al., 2018), with a total

4Code used for data analysis can be found at https://github.com/hubertjb/
dynamic-spatial-filtering.

5A recent study reported training a neural network on artificially-corrupted sleep EEG data, with
a goal similar to ours (Jónsson et al., 2020); however, this study only appears as a Supplement with
little information on the methods and results.

https://github.com/hubertjb/dynamic-spatial-filtering
https://github.com/hubertjb/dynamic-spatial-filtering
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of 18,457 trainable parameters when C = 4 and an input sampling frequency of 100 Hz.
Finally, when evaluating DSF, we added modules mDSF before the input layer of each
neural network. The input dimensionality of mDSF depended on the chosen spatial
information extraction transform Φ(X): either C (log-variance) or C(C + 1)/2 (vector-
ized covariance matrix). We fixed the hidden layer size of mDSF to C2 units, while the
output layer size depended on the chosen C ′. The DSF modules added between 420
and 2,864 trainable parameters to those of fΘ depending on the configuration.

The Riemann pipeline first applied a filter bank to the input EEG, yielding narrow-
band signals in the 7 bands bounded by (0.1, 1.5, 4, 8, 15, 26, 35, 49) Hz. Next,
covariance matrices were estimated per window and frequency band using the OAS
algorithm (Chen et al., 2010). The covariance matrices were then projected into their
Riemannian tangent space exploiting the Wasserstein distance to estimate the mean
covariance used as the reference point (Sabbagh et al., 2019; Bhatia et al., 2018). The
vectorized covariance matrices with dimensionality of C(C + 1)/2 were finally z-score
normalized using the mean and standard deviation of the training set, and fed to a
linear logistic regression classifier.

The handcrafted features baseline, inspired by Gemein et al. (2020) and Engemann
et al. (2018a), relied on 21 different feature types: mean, standard deviation, root mean
square, kurtosis, skewness, quantiles (10, 25, 75 and 90th), peak-to-peak amplitude,
frequency log-power bands between (0, 2, 4, 8, 13, 18, 24, 30, 49) Hz as well as all
their possible ratios, spectral entropy, approximate entropy, SVD entropy, Hurst expo-
nent, Hjorth complexity, Hjorth mobility, line length, wavelet coefficient energy, Higuchi
fractal dimension, number of zero crossings, SVD Fisher information and phase locking
value. This resulted in 63 univariate features per EEG channel, along with

(
C
2

)
bivariate

features, which were concatenated into a single vector of size 63×C+
(
C
2

)
(e.g., 393 for

C = 6). In the event of non-finite values in the feature representation of a window, we
imputed missing values feature-wise using the mean of the feature computed over the
training set. Finally, feature vectors were fed to a random forest model.

When applying traditional pipelines to pathology detection experiments, we aggregated
the input representations recording-wise as each recording has a single label (i.e., patho-
logical or not). To do so, we used the geometric mean on covariance matrices and the
median on handcrafted features. Deep learning models, on the other hand, were trained
on non-aggregated windows, but their performance was evaluated recording-wise by av-
eraging the predictions over windows within each recording. Hyperparameter selection
for logistic regression and random forest models is described below (Section 3.3.3).

We combined the machine learning approaches described above with the following noise-
handling strategies: 1) no denoising, i.e., models are trained directly on the data without
explicit or implicit denoising, 2) Autoreject (Jas et al., 2017), an automated correction
pipeline, and 3) data augmentation, which randomly corrupts channels during training.

Autoreject is a denoising pipeline that explicitly handles noisy epochs and channels in
a fully automated manner (Jas et al., 2017). First, using a cross-validation procedure,
it finds optimal channel-wise peak-to-peak amplitude thresholds to be used to identify
bad channels in each window separately. If more than κ channels are bad, the epoch
is rejected. Otherwise, up to ρ bad channels are reconstructed using the good channels
with spherical spline interpolation. In pathology detection experiments, we allowed
Autoreject to reject bad epochs, as classification was performed recording-wise. For
sleep staging experiments however, we did not reject epochs as one prediction per epoch
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Table 3.2 – Selected hyperparameters for experiments on number of channels (Sec-
tion 3.4.1).

Number of channels
Model Hyperparameter 2 6 21

Random Forest (RF) Number of trees 300 300 300
Tree depth 17 21 19
Criterion entropy Gini entropy
Features all all all

Logistic regression (LR) C 0.1 0.1 0.001

was needed, but still used Autoreject to automatically identify and interpolate bad
channels. In both cases, we used default values for all parameters as provided in the
Python implementation6, except for the number of cross-validation folds, which we set
to 5.

Finally, data augmentation consists of artificially corrupting channels during training to
promote invariance to missing channels. When training neural networks, the data aug-
mentation transform was applied on-the-fly to each batch. For feature-based methods,
we instead precomputed augmented datasets by applying the augmentation multiple
times to each window (10 for pathology detection, 5 for sleep staging), and then ex-
tracting features from the augmented windows.

3.3.3 Hyperparameter optimization of baseline models

A grid-search over hyperparameters of the random forest and logistic regression clas-
sifiers was performed with 3-fold cross-validation on combined training and validation
sets. This search was performed for each reported experimental configuration: for each
number of channels (for experiments in Section 3.4.1), each denoising strategy (no de-
noising, Autoreject and data augmentation) and each dataset (TUAB, PC18 and MSD,
presented in the next section).

For all RF models, we used 300 trees. This turned out to be a good trade-off between
model performance and computational costs. For each experiment, we selected by
cross-validation the depth of the trees among {13,15,17,19,21,23,25}, the split criterion
between Gini and entropy, and the fraction of selected features used in each tree among
‘sqrt‘ (the square-root of the number of features is used) , ‘log2’ (the logarithm in base
2 of the number of features is used), and using all features. For logistic regression
models, the regularization parameter C was chosen among {10−4, 10−3, . . . , 10}. We
expanded the search on MSD as performance did not peak in the ranges considered
above by adding the following values to the search space: depth in {1,3,5,7,9,11} and
C in {102, 103, 104, 105}.

The selected hyperparameter configurations are listed in Tables 3.2 and 3.3 for the
experiments in Sections 3.4.1 and 3.4.2, respectively. Once the best hyperparameters
for an experimental configuration were identified, the training and validation sets were
combined into a single set on which the model with the best hyperparameters was finally
trained.

6https://github.com/autoreject/autoreject

https://github.com/autoreject/autoreject
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Table 3.3 – Selected hyperparameters for experiments on denoising strategies (Sec-
tion 3.4.2).

Denoising strategy
Dataset Model Hyperparameter No denoising Autoreject Data augm.

TUAB RF

Number of trees 300 300 300
Tree depth 21 13 17
Criterion Gini entropy entropy
Features all all all

LR C 0.1 0.1 0.01

PC18 RF

Number of trees 300 300 300
Tree depth 15 15 17
Criterion entropy Gini entropy
Features sqrt sqrt sqrt

LR C 1 1 10

MSD RF

Number of trees 300 300 300
Tree depth 9 9 11
Criterion entropy entropy entropy
Features all sqrt sqrt

LR C 0.1 0.1 105

Table 3.4 – Summary of the datasets used in this study.

TUAB PC18 (train) MSD

Recording settings Hospital Sleep clinic At-home
# recordings 2,993 994 98
# unique subjects 2,329 994 67
Sampling frequency (Hz) 250, 256 or 512 200 256
# EEG channels 27 to 36 6 4
Reference Common average M1 or M2 Fpz
Labels Normal, abnormal W, N1, N2, N3, R W, N1, N2, N3, R

3.3.4 Data

Approaches were compared on three datasets (Table 3.4): for pathology detection on
the TUH Abnormal EEG dataset (TUAB) (Obeid and Picone, 2016) and for sleep
staging on both the Physionet Challenge 2018 dataset (PC18) (Ghassemi et al., 2018;
Goldberger et al., 2000) and the Muse Sleep Dataset (MSD), an internal dataset of
mobile overnight EEG recordings. A description of the recordings and preprocessing
methodology can be found in Section 2.2.7 for both TUAB and PC18.7

In addition to these two dataset, we also included MSD, a collection of real-world mobile
EEG recordings in which channel corruption is likely to occur naturally. MSD contains
overnight sleep recordings collected with the Muse S EEG headband from InteraXon Inc.
(Toronto, Canada). This data was collected in accordance with the privacy policy (July

7The unique difference is that here, all six EEG channels of PC18 were considered in some of our
experiments.
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2020) users agree to when using the Muse headband8 and which ensures their informed
consent concerning the use of EEG data for scientific research purposes. The Muse S
is a four-channel dry EEG device (TP9, Fp1, Fp2, TP10, referenced to Fpz), sampled
at 256 Hz. The Muse headband has been previously used for event-related potentials
research (Krigolson et al., 2017), brain performance assessment (Krigolson et al., 2021),
research into brain development (Hashemi et al., 2016), sleep staging (Koushik et al.,
2018), and stroke diagnosis (Wilkinson et al., 2020), among others. A total of 98 partial
and complete overnight recordings (mean duration: 6.3 h) from 67 unique users were
selected from InteraXon’s anonymized database of Muse customers, and annotated by a
trained scorer following the AASM manual. Despite the derivations being different from
the common montage used in polysomnography, the typical microstructure necessary
to identify sleep stages, e.g., sleep spindles, k-complexes and slow waves, can be easily
seen in all four channels. Therefore, sleep stage annotations were obtained from actual
EEG activity rather than ocular or muscular artifacts. Mean age across all recordings
is 37.9 years (min: 21, max: 74) and 45.9% of recordings are of female users.

Preprocessing of MSD data was the same as for PC18, with the following differences: (1)
channels were downsampled to 128 Hz, (2) missing values (occurring when Bluetooth
packets are lost) were replaced by linear interpolation using surrounding valid samples,
(3) after filtering and downsampling, samples which overlapped with the original miss-
ing values were replaced by zeros, and (4) channels were zero-meaned window-wise.
Moreover, since the input sampling rate was of 128 Hz instead of 100 Hz for MSD ex-
periments, we adapted the temporal convolution and max pooling hyperparameters of
our CNNs to cover approximately the same duration: filter size of 64 samples, padding
size of 13 and max pooling size of 16 (vs. 50, 10 and 13, respectively), yielding a total
of 21,369 parameters.

We split the available recordings from TUAB, PC18 and MSD into training, validation
and testing, such that recordings used for testing were not used for training or validation.
For TUAB, we used the provided evaluation set as the test set. The recordings in the
development set were split 80-20% into a training and a validation set. Therefore, we
used 2,171, 543 and 276 recordings in the training, validation and testing sets. For PC18,
we used a 60-20-20% random split, meaning there were 595, 199 and 199 recordings in
the training, validation and testing sets respectively. Finally, for MSD, we retained
the 17 most corrupted recordings for the test set (see Section 3.3.5 below for a detailed
description of this process) and randomly split the remaining 81 recordings into training
and validation sets (65 and 16 recordings, respectively). This was done to emulate a
situation where training data is mostly clean, and strong channel corruption occurs
unexpectedly at test time. We performed hyperparameter selection on each of the three
datasets using a cross-validation strategy on the combined training and validation sets.

We repeated training on different training-validation splits (two for PC18, three for
TUAB and MSD). Neural networks and random forests were trained three times per
split on TUAB and MSD (two times on PC18) with different parameter initializations.
Training ran for at most 40 epochs or until the validation loss stopped decreasing for
a period of a least 7 epochs on TUAB and PC18 (a maximum of 150 epochs with a
patience of 30 for MSD, given the smaller size of the dataset).

8https://choosemuse.com/legal/privacy/
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Finally, accuracy was used to evaluate model performance for pathology detection ex-
periments, while balanced accuracy (bal), defined as the average per-class recall, was
used for sleep staging due to important class imbalance (the N2 class is typically much
more frequent than other classes).

3.3.5 Analysis of channel corruption in the Muse Sleep Dataset

In this section, we provide more detail about Muse Sleep Dataset (MSD) and its noise
characteristics. The at-home overnight recordings of MSD were purposefully selected to
evaluate sleep staging algorithms in challenging mobile EEG conditions and therefore
include recordings with highly corrupted channels. Overall, noise is stronger and more
prevalent in these recordings than in typical sleep datasets collected under controlled
laboratory conditions (e.g., PC18).

To characterize the prevalence of channel corruption in MSD recordings, we can inspect
the variance and the slope of the power spectral density (PSD) of each EEG channel
across 30-s windows. Variance is a good measure of signal quality, while the spectral
slope is a global descriptor of the frequency content of a signal and allows distinguishing
between channel corruption (which yields flatter spectra) and artifacts (often displaying
strong low frequencies, e.g., eye movements). Simple thresholds set empirically on these
two markers allowed approximate detection of channel corruption events. Specifically,
we flagged a channel in a window as “corrupted” if its log10-log10 spectral slope (Schiratti
et al., 2018) between 0.1 and 30 Hz was above -0.5 (unitless) and its variance was above
1,000 µV 2. We then computed a recording-wise channel corruption metric by taking
the percentage of bad windows for the most corrupted channel of each recording.

About two-thirds of the recordings had no channel corruption according to this metric,
while the remaining had a value of up to 96.4% (Figure 3.2). In those recordings
with channel corruption, half of the corruption events (defined as a continuous block of
epochs flagged as corrupted) lasted for 1.5 minutes or less, suggesting a large portion of
the corruption happened intermittently, e.g., due to the temporary displacement of the
electrodes relative to the head. Some corruption events however lasted much longer,
for instance up to 88 minutes in one case. These longer corruption events are likely
due to bad connection between the skin and the electrode or to problems with the
instrumentation.

For our experiments on MSD, we therefore selected the 81 cleanest recordings (i.e., with
the lowest corruption fraction) for training and validation and kept the 17 noisiest
recordings for testing. This procedure allowed testing whether a model trained on
relatively clean data could perform well even when random channel corruption was
introduced at inference time.

3.3.6 Evaluation under conditions of noise

The impact of noise on downstream performance and on the predicted DSF filters
was evaluated in three steps. First, we artificially corrupted the input EEG windows
of TUAB and PC18 by using a similar process to our data augmentation strategy
(Equation 3.6). We used the same values for η, σ and p, but used a single mask ν per
recording, such that the set of corrupted channels remained the same across a recording.
Before corrupting, we subsampled a few EEG channels to recreate the sparse montage
settings of TUAB (Fp1, Fp2, T3, T4, Fz, Cz) and PC18 (F3-M2, F4-M1, O1-M2, O2-
M1). We then analyzed downstream performance under varying noise level conditions.
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Figure 3.2 – Corruption percentage of the most corrupted channel of each of the 98
recordings of MSD. Each point represents a single recording. The 17 most corrupted
recordings (red) were used as test set in our experiments of Section 3.4.2.

Second, we ran experiments on real corrupted data (MSD) by training our models on
the cleanest recordings and evaluating their performance on the noisiest recordings.
Finally, we analyzed the distribution of DSF filter weights predicted by a subset of the
trained models.

3.4 Results

3.4.1 Performance of existing methods degrades under channel
corruption

How do standard EEG classification methods fare against channel corruption? If chan-
nels have a high probability of being corrupted at test time, can noise be compensated
for by adding more channels? To answer these questions, we measured the perform-
ance of three baseline approaches (Riemannian geometry, handcrafted features and a
“vanilla” net, i.e., ShallowNet without attention) trained on a pathology detection task
on three different montages as channels were artificially corrupted. Results are presented
in Figure 3.3.

All three baseline methods performed similarly and suffered considerable performance
degradation as stronger noise was added (Figure 3.3A) and as more channels were cor-
rupted (Figure 3.3B). First, under progressively noisier conditions, adding more chan-
nels did not generally improve performance. Strikingly, adding channels even hampered
the ability of the models to handle noise. Indeed, the impact of noise was much less
significant for 2-channel models than for 6- or 21-channel models. The vanilla net per-
formed slightly better than the other methods in low noise conditions, however it was
less robust to heavy noise when using 21 channels.

Second, when an increasing number of channels was corrupted (Figure 3.3B), using
denser montages did improve performance, although by a much smaller factor than what
might be expected. For instance, losing one or two channels with the 21-channel models
only yielded a minor decrease in performance, while models trained on sparser montages



3.4. RESULTS 69

A

B

Varying noise strength, 50% channel corruption probability (test time)

Varying number of corrupted channels, noise strength of 1 (test time)

Figure 3.3 – Impact of channel corruption on pathology detection performance of stand-
ard models. We trained a filter-bank Riemannian geometry pipeline (blue), a random
forest on handcrafted features (orange) and a standard ShallowNet architecture (green)
on the TUAB dataset, given montages of 2 (T3, T4), 6 (Fp1, Fp2, T3, T4, Fz, Cz) or 21
(all available) channels. Performance was then evaluated on artificially corrupted test
data under two scenarios: (A) the η noise strength parameter was varied given a con-
stant channel corruption probability of 50%, and (B) the number of corrupted channels
was varied given a constant noise strength of 1. Error bars show the standard deviation
over 3 models for handcrafted features and 6 models for neural networks. While tradi-
tional feature-based models fared slightly better than a vanilla neural network in some
cases (bottom right), adding noise predictably degraded the performance of all three
models.
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lost as much as 30% accuracy. However, even when as many as 15 channels were still
available (i.e., six corrupted channels), models trained on 21 channels performed worse
than 2- or 6-channel models without any channel corruption, despite having access to
much more spatial information on average. Interestingly, when models were trained on
21 channels, traditional feature-based methods were more robust to corruption than a
vanilla net up to a certain point, however this did not hold for sparser montages.

These results suggest that standard approaches cannot handle significant channel cor-
ruption at a satisfactory level, even when denser montages are available. Therefore,
better tools are necessary to train noise-robust models.

3.4.2 Attention and data augmentation mitigates performance loss
under channel corruption

If including additional EEG channels does not by itself resolve performance degradation
under channel corruption, what can be done to improve the robustness of standard EEG
classification methods? We evaluated the performance of our models when combined
with three denoising strategies (Section 3.3.2) for a fixed 6-channel montage9. Results
on pathology detection (TUAB) are presented in Figure 3.4.

Without denoising, all methods showed a steep performance decrease as noise became
stronger (Figure 3.4A) or more channels were corrupted (Figure 3.4B). Automated noise
handling (second column) reduced differences between methods when noise strength was
increased (Figure 3.4A), and helped marginally improve robustness when only one or
two channels were corrupted (Figure 3.4B). However, it is only with data augmenta-
tion that clear performance improvements could be obtained, allowing all methods to
perform considerably better in the noisiest settings (third column). Performance of
traditional baselines was degraded however in low noise conditions. Neural networks,
in contrast, saw their performance increase the most across noise strengths and num-
bers of corrupted channels. Whereas their performance decreased by at least 34.6%
when going from no noise to strongest noise with the other strategies, training neural
networks with data augmentation reduced performance loss to 5.3-10.5% on average.
The DSF models improved performance further still over the vanilla ShallowNet by
yielding an improvement of e.g., 1.8-7.5% across noise strengths. Finally, adding the
matrix logarithm and the soft-thresholding nonlinearity (DSFm-st, in magenta) yielded
marginal improvements over DSFd. Under strong noise corruption (η = 1) our best
performing model (DSFm-st + data augmentation) yielded an accuracy improvement
of 29.4% over the vanilla net without denoising. Overall, this suggests that learning
end-to-end to both predict and handle channel corruption at the same time is key to
successfully improving robustness.

Next, we repeated this analysis on a sleep staging task using the PC18 dataset (Fig-
ure 3.5). As above, not using a denoising strategy led to a steep decrease in perform-
ance. Once more, Autoreject leveled out differences between the different methods and
boosted performance under single-channel corruption, but otherwise did not improve or
degrade performance as compared to training models without denoising. Data augment-
ation, in contrast, again helped improve the robustness of all methods. Interestingly,
it benefited non-deep learning approaches more than in pathology detection, yielding

9This 6-channel montage (Fp1, Fp2, T3, T4, Fz, Cz) performed similarly to a 21-channel montage
in no-corruption conditions (Figure 3.3) while being more representative of the sparse montages likely
to be found in mobile EEG devices.
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B

Varying noise strength, 50% channel corruption probability (test time)

Varying number of corrupted channels, noise strength of 1 (test time)

DSFd DSFm-st

Figure 3.4 – Impact of channel corruption on pathology detection performance for mod-
els coupled with 1) no denoising strategy, 2) Autoreject and 3) data augmentation. We
compared the per recording accuracy on the TUAB evaluation set (6-channel montage)
as (A) the η noise strength parameter was varied given a constant channel corrup-
tion probability of 50%, and (B) the number of corrupted channels was varied given
a constant noise strength of 1. Error bars show the standard deviation over 3 mod-
els for handcrafted features and 6 models for neural networks. Using an automated
noise handling method (Autoreject; second column) provided some improvement in
noise robustness over using no denoising strategy at all (first column). Data augmenta-
tion benefited all methods, but deep learning approaches and in particular DSF (third
column, in red and magenta) yielded the best performance under channel corruption.
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Varying noise strength, 50% channel corruption probability (test time)

Varying number of corrupted channels, noise strength of 1 (test time)

DSFd DSFm-st

Figure 3.5 – Impact of channel corruption on sleep staging performance for models
coupled with (1) no denoising strategy, (2) Autoreject and (3) data augmentation. We
compared the test balanced accuracy on PC18 (4-channel montage) as (A) the η noise
strength parameter was varied given a constant channel corruption probability of 50%,
and (B) the number of corrupted channels was varied given a constant noise strength of
1. Error bars show the standard deviation over 3 models for handcrafted features and 4
models for neural networks. Similarly to Figure 3.4, automated noise handling provided
a marginal improvement in noise robustness in some cases, data augmentation yielded
a performance boost for all methods, while a combination of data augmentation and
DSF (third column, red and magenta lines which overlap) led to the best performance
under channel corruption.



3.4. RESULTS 73

for instance a similar performance for both handcrafted features and the vanilla Stager-
Net. DSF remained the most robust though with both DSFd and DSFm-st consistently
outperforming all other methods. The performance of these two methods was highly
similar, producing mostly overlapping lines (Figure 3.5).

DSFm-st

Figure 3.6 – Recording-wise sleep staging results on MSD. We show the distributions of
balanced accuracy obtained by models with different random initializations (1, 3 and 9
initializations for Riemann, handcrafted features and deep learning models, respectively)
on the test recordings of MSD. Noise handling with Autoreject had no clear impact on
the performance of the handcrafted features, while data augmentation was detrimental
to the Riemann model. The DSFm-st models reached the highest test performance
when combined with data augmentation.

Finally, do these results hold under more intricate, naturally occurring corruption such
as found in at-home settings? To verify this, we trained the same sleep staging models as
above on the cleanest recordings of MSD (4-channel mobile EEG), and evaluated their
performance on the 17 most corrupted recordings of the dataset. Results are presented in
Figure 3.6. As above, the Riemann approach did not perform well, while the handcrafted
features approach was more competitive with the vanilla StagerNet without denoising.
However, contrary to the above experiments, noise handling alone did not improve the
performance of our models. Data augmentation was even detrimental to the Riemann
and vanilla net models on average. Combined with dynamic spatial filters (DSFd and
DSFm-st) though, data augmentation helped improve performance over other methods.
For instance, DSFm-st with data augmentation yielded a median balanced accuracy of
65.0%, as compared to 58.4% for a vanilla network without denoising. Performance
improvements were as high as 14.2% when looking at individual sessions. Importantly,
all recordings saw an increase in performance, showing the ability of our proposed
approach to improve robustness in noisy settings.

Taken together, our experiments on simulated and natural channel corruption indicate
that a strategy combining an attention mechanism and data augmentation yields higher
robustness than traditional baselines and existing automated noise handling methods.



74
CHAPTER 3. ROBUST LEARNING WITH DYNAMIC SPATIAL

FILTERING

3.4.3 Attention weights are interpretable and correlate with signal
quality

The DSF module was key to achieving high robustness to channel corruption on both
pathology detection and sleep staging tasks. Can we explain the behavior of the module
by inspecting its internal functioning? If so, in addition to improving robustness, DSF
could also be used to monitor the effective importance of each incoming EEG channel,
providing an interesting “free” insight into signal quality. To test this, we analyzed the
effective channel importance φi of each EEG channel i to the spatial filters over the
TUAB evaluation set. Results are shown in Figure 3.7.

Overall, the attention weights behaved as expected: the more usable (i.e., noise-free) a
channel was, the higher its effective channel importance φi was relative to those of other
channels. For instance, without any additional corruption, the DSF module focused
most of its attention on channels T3 and T4 (Figure 3.7A, first column), known to be
highly relevant for pathology detection (Schirrmeister et al., 2017; Gemein et al., 2020).
However, when channel T3 was replaced with white noise, the DSF module reduced its
attention to T3 and instead further increased its attention on other channels (second
column). Similarly, when both T3 and T4 were corrupted the module reduced its
attention on both channels and leveraged the remaining channels instead, i.e., mostly
Fp1 and Fp2 (third column). Interestingly, this change is reflected by the topography of
the predicted filters WDSF (Figure 3.7B): for instance, some dipolar filters computing a
difference between left and right hemispheres were dynamically adapted to rely on Fp1
or Fp2 instead of T3 or T4 (e.g., filters 1, 3 and 5). Intuitively, the network has learned
to ignore corrupted data and to focus its attention on the good EEG channels, and to
do so in a way that preserves the meaning of each virtual channel.

To further verify the interpretability of DSF’s attention weights on naturally-corrupted
real-world EEG data, we visualized the normalized effective channel importance metric
alongside a time-frequency representation of the raw EEG in Figure 3.8. As expected,
the metric dropped to values close to zero when a channel suffered heavy corruption,
e.g., Fp1 throughout the recording (left column) and TP9 intermittently (right column).
These results again illustrate the capacity of DSF to de-emphasize corrupted channels,
but also highlight its capacity to dynamically adapt to changing noise characteristics.

3.4.4 Deconstructing the DSF module

What might explain the capacity of the DSF module to improve robustness to channel
corruption and provide interpretable attention weights? By comparing DSF to simpler
interpolation-based methods, DSF can be understood as a more complex version of a
simple attention-based model that decides how much each input EEG channel should
be replaced by its interpolated version (see detailed discussion in Section 3.5.6). With
this connection in mind, we performed an ablation study to understand the importance
of each additional mechanism leading to the formulation of the DSF module. Fig-
ure 3.9 shows the performance of the different attention module variations trained on
the pathology detection task with data augmentation, under different noise strengths.

Naive interpolation of each channel based on the C − 1 others (orange) performed
similarly to or worse than the vanilla ShallowNet model (blue) across noise strengths.
Introducing a single attention weight (green) to control how much channels should be
mixed with their interpolated version only improved performance for noise strengths
above 0.5. Using one attention weight per channel (red) further improved performance,
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Figure 3.7 – Effective channel importance and spatial filters predicted by the DSF
module trained on pathology detection. We compared three scenarios on the TUAB
evaluation set: no added corruption, only T3 is corrupted and both T3 and T4 are
corrupted. (A) The corruption process was carried out by replacing a channel with
white noise (σ ∼ U(20, 50) µV), as illustrated with a single 6-s example window (first
row). (B) The distribution of effective channel importance values φ is presented using
density estimate and box plots. Corrupted channels are significantly down-weighted
in the spatial filtering. (C) A subset of the spatial filters (median across all windows)
are plotted as topomaps for the three scenarios. Corrupting T3 overall reduced the
effective importance attributed to T3 and slightly boosted T4 values, while corrupting
both T3 and T4 led to a reduction of φ for both channels, but to an increase for
the other channels. This change was also reflected in the overall topography: dipole-
like patterns (indicated by white arrows) were dynamically modified to focus on clean
channels (e.g., Filter 3).
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Figure 3.8 – Normalized effective channel importance φ̂ predicted by the DSF module on
two MSD sessions with naturally-occurring channel corruption. Each column represents
the log-spectrogram of the four EEG channels of one recording (Welch’s periodogram
on 30-s windows, using 2-s windows with 50% overlap). The red line above each spec-
trogram is the normalized effective channel importance φ̂i (see Eq. 3.5), between 0 and
1, computed using a DSFm-st model trained on MSD. When a channel is corrupted
throughout the recording (left column, second row, as indicated by broad spectrum
high power noise), DSF mostly “ignores” it by predicting small weights for that channel.
This results in φ̂i values close to 0 for Fp1. When the corruption is intermittent (right
column, first row), DSF dynamically adapts its spatial filters to only ignore important
channels when they are corrupted. This is the case for channel TP9 around hours 4, 6,
and 7, where φ̂i is again close to 0.

Figure 3.9 – Performance of different attention module architectures on the TUAB eval-
uation set under increasing channel corruption noise strength. Each line represents the
average of 6 models (2 random initializations, 3 random splits). Models that dynamic-
ally generate spatial filters, such as DSF, outperform simpler architectures across noise
levels.
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this time across all noise strengths. The addition of dynamic interpolation (magenta),
in which both the attention weights and an interpolation matrix are generated based on
the input EEG window, yielded an additional substantial performance boost. Relaxing
the constraints on the interpolation matrix and adding a bias vector to obtain DSFd
(brown) led to very similar performance. Finally, the addition of the soft-thresholding
non-linearity and the use of the matrix logarithm of the covariance matrix (DSFm-st,
pink) further yielded performance improvements.

Together, these results show that combining channel-specific interpolation and dynamic
prediction of interpolation matrices is necessary to outperform simpler attention module
formulations. Performance can be further improved by providing the full covariance
matrix as input to the attention module and encouraging the model to produce 0-
weights with a nonlinearity.

3.5 Discussion

We introduced dynamic spatial filtering (DSF), a new method to handle channel cor-
ruption in EEG based on an attention mechanism architecture and a data augment-
ation transform. Plugged into a neural network whose input has a spatial dimension
(e.g., EEG channels), DSF predicts spatial filters that allow the model to dynamic-
ally focus on important channels and ignore corrupted ones. DSF shares links with
interpolation-based methods traditionally used in EEG processing but in contrast does
not require separate preprocessing steps that are often expensive with dense montages
or poorly adapted to sparse ones. DSF outperformed feature-based approaches and
automated denoising pipelines under simulated corruption on two large public datasets
and in two different predictive tasks. Similar results were obtained on a smaller dataset
of mobile sparse EEG with strong natural corruption, demonstrating the applicabil-
ity of our approach to challenging at-home recording conditions. Finally, the inner
functioning of DSF can easily be inspected using a simple measure of effective channel
importance and topographical maps. Overall, DSF is computationally lightweight, easy
to implement, and improves robustness to channel corruption in sparse EEG settings.

3.5.1 Handling EEG channel loss with existing denoising strategies

As opposed to the more general problem of “noise handling” (Table 3.1), we focused
our experiments on the problem of channel corruption in sparse montages. In light of
our results, we explain why existing strategies are not well suited for handling channel
corruption, while DSF is.

Our first experiment (Section 3.4.1) demonstrated that adding more EEG channels does
not necessarily make a classifier more robust to channel loss. In fact, we observed the
opposite: a model trained on two channels can outperform 6- and 21-channel models
under heavy channel corruption (Figure 3.3A). This can be explained by two phenom-
ena. First, increasing the number of channels increases the input dimensionality of
classifiers, making them more likely to overfit the training data. Tuning regularization
hyperparameters can help with this, but does not solve the problem by itself. Second,
in vanilla neural networks, the weights of the first spatial convolution layer, i.e., the
spatial filters applied to the input EEG, are fixed. If one of the spatial filter relies
mostly on one specific (theoretically) important input channel, e.g., T3, and this input
channel is corrupted, all successive operations on the resulting virtual channel will carry
noise as well. This highlights the importance of dynamic re-weighting: with DSF, we
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can find alternative spatial filters when a theoretically important channel is corrupted,
and even completely ignore a corrupted channel if it contains no useful information.

Since adding channels is not on its own a solution, can traditional EEG denoising
techniques, e.g., interpolation-based methods such as Autoreject (Jas et al., 2017), help
handle the channel corruption problem? In our experiments, interpolation-based denois-
ing did help but only marginally (middle column of Figure 3.4 and 3.5). The relative
ineffectiveness of this approach can be explained by the very low number of available
channels in our experiments (4 or 6) which likely harmed the quality of the interpolation.
Our results therefore do not invalidate these kinds of methods (whose performance has
been demonstrated multiple times on denser montages and in challenging noise condi-
tions (Nolan et al., 2010; Bigdely-Shamlo et al., 2015; Jas et al., 2017)) but only expose
their limitations when working with few channels. Still, there are other reasons why
interpolation-based methods might not be optimal in settings like the ones studied in
this chapter. For instance, completely replacing a noisy channel by its interpolated
version means that any remaining usable information in this channel will be discarded
and that any noise contained in the other (non-discarded) channels will end up in the
interpolated channel.

Finally, an interesting case to consider is when tasks can be performed accurately with
a single good channel, e.g., sleep staging (Liang et al., 2012). In such a case, could
a single-channel model perform as well as a multi-channel model, without the need
to worry about the challenges discussed above? While this may be true if we have
access to a reliably good channel, as soon as it is corrupted (e.g., in real-world mobile
EEG settings) it can no longer be used by the model. An ensemble of single-channel
models might be an interesting solution; however this requires knowing both which
channel to focus on and when, which is not trivial and requires additional logic and
processing pipeline components. Moreover, to improve upon such a model by making
use of spatial information (Chambon et al., 2018) the model should be trained on all
possible combinations of good channels, which can quickly become prohibitive. DSF
offers a compelling solution to the challenges encountered with single-channel models
thanks to its end-to-end dynamic re-weighting capabilities.

3.5.2 Impact of the input spatial representation

The representation used by the DSF module constrains the types of patterns that can be
leveraged to produce spatial filters. For instance, using the log-variance of each channel
allows detecting large-amplitude corruption or artifacts, however this makes the DSF
model blind to more subtle kinds of interactions between channels. These interactions
can be very informative in certain cases, e.g., when one channel is corrupted by a noise
source which also affects other channels but to a lesser degree.

Our experiments suggested that models based on log-variance (DSFd) or vectorized
covariance matrices (DSFm-st) were roughly equivalent in simulated noise conditions
(Figure 3.4-3.5). This is likely because the additive white noise we used was not spatially
correlated and therefore no spatial interactions could be leveraged by the DSF modules
to identify noise. On naturally corrupted data however, using the full spatial information
along with soft-thresholding was critical to outperforming other methods (Figure 3.6).
This is likely because the noise in at-home recordings was often correlated spatially
and because corrupted channels, often containing mostly noise (Section 3.3.5), could be
completely ignored by DSF.
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Related attention block architectures have used average-pooling (Hu et al., 2018) or a
combination of average- and max-pooling (Woo et al., 2018) to summarize channels.
Intuitively, average pooling should not yield a useful representation of the input, as
EEG channels are often assumed to have zero-mean, or are explicitly highpass filtered
to remove their DC offset. Max-pooling, on the other hand, does capture amplitude
information that overlaps with second-order statistics, however it does not allow differ-
entiating between large transient artifacts and more temporally consistent corruption.
Experiments on TUAB (not shown) confirmed this: a combination of min- and max-
pooling was less robust to noise than covariance-based models. From this perspective,
vectorized covariance matrices or similar representations (Section 3.2.3) are an ideal
choice of spatial representation. Ultimately, DSF could be fed with any learned repres-
entations with a spatial dimension, e.g., filter-bank representations.

3.5.3 Impact of the data augmentation transform

Data augmentation was critical to developing invariance to corruption (Section 3.4.2).
For instance, under simulated corruption, a vanilla neural network trained with our
data augmentation transform gained considerable robustness, even without an atten-
tion mechanism. Does this mean that data augmentation is the key ingredient to DSF?
In fact, our results on naturally corrupted data (Figure 3.6) showed that data augment-
ation without attention negatively impacted performance and that adding an attention
mechanism was necessary to improve performance. Moreover, traditional pipelines gen-
erally did not benefit from data augmentation as much as neural networks did, and even
saw their performance degrade considerably in certain cases, e.g., in low noise condi-
tions in pathology detection experiments and on the real-world data for the Riemann
models.

Nonetheless, these results highlight the role of data augmentation transforms in de-
veloping robust representations of EEG. Recently, work in self-supervised learning for
EEG (Banville et al., 2021a; Cheng et al., 2020; Mohsenvand et al., 2020) has fur-
ther suggested the importance of well-characterized data augmentation transforms for
representation learning. Importantly though, the motivation behind the use of data
augmentation in our experiments was not primarily to reduce overfitting due to lim-
ited sample sizes like commonly done in deep learning, but rather to evaluate methods
under controlled corruption of experimental data. Ultimately, our additive white noise
transform could be combined with channel masking and shuffling (Saeed et al., 2020)
and other potential corruption processes such as those described in (Cheng et al., 2020;
Mohsenvand et al., 2020).

3.5.4 Interpreting dynamic spatial filters to measure effective
channel importance

The results in Figure 3.7 demonstrated that visualizing the spatial filters produced
by the DSF module can reveal the spatial patterns a model has learned to focus on
(Section 3.4.3). As observed in our experiments, a higher φ indicates higher effective
importance of a channel for the downstream task. For instance, temporal channels were
given a higher importance in the pathology detection task, as suggested by previous
work (Schirrmeister et al., 2017; Gemein et al., 2020). Similarly, in real-world data, low
φ values were given to a channel whenever it was corrupted (Figure 3.8).
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However, φ is not a strict measure of signal quality but more of channel usefulness:
there could be different reasons behind the boosting or attenuation of a channel by the
DSF module. Naturally, if a channel is particularly noisy, its contribution might be
brought down to zero to avoid contaminating virtual channels with noise. Conversely
though, if the noise source behind a corrupted channel is also found (but to a lesser
degree) in other channels, the corrupted channel could also be used to regress out noise
and recover clean signals (Haufe et al., 2014). In other words, φ reflects the importance
of a channel conditionally to others.

Finally, using DSF to obtain a measure of channel usefulness actually opens the door to
DSF being used in non-machine learning settings. For instance, once a neural network is
trained with DSF, its effective channel importance values can be reused as an indicator of
signal quality on similar data (e.g., , data collected with the same or similar hardware).
Such a signal quality metric can be helpful during data collection, or to know which
parts of the recording should be kept for analysis.

3.5.5 Practical considerations

When faced with channel corruption in a predictive task, which modelling and denoising
strategies should be preferred? This choice should depend on the number of available
channels, as well as on assumptions about the stationarity of the noise. When us-
ing sparse montages, as in this chapter, different solutions can lead to good results.
For instance, handcrafted features with random forests can perform well when spa-
tial information is not critical (e.g., sleep staging, Section 3.4.2) or noise is stationary
(Engemann et al., 2018a), although they require a non-trivial feature engineering step.
However, when less can be assumed about the predictive task, e.g., corruption might be
non-stationary or spatial information is likely important, DSF with data augmentation
is an effective way to make a neural network noise-robust. Although we did not test
denoising approaches on dense montages, we can expect different methods to work well
in these settings. For instance, under stationary noise, Riemmanian geometry-based ap-
proaches were shown to be robust to the lack of preprocessing in MEG data (Sabbagh
et al., 2020). If, on the other hand, noise is not stationary and the computational re-
sources allow it, interpolation-based methods might be used to impute missing channels
before applying a predictive model (e.g., Jas et al. (2017)). In cases where introducing a
separate preprocessing step is not desirable, DSF with data augmentation might again
be a promising end-to-end solution.10

3.5.6 From simple interpolation to Dynamic Spatial Filtering

In this section, we establish an interesting conceptual link between DSF and noise
handling pipelines such as Autoreject (Section 3.2.1) which rely on an interpolation step
to reconstruct channels that have been identified as bad. Specifically, these pipelines use
head geometry-informed interpolation methods (based on the 3D coordinates of EEG
electrodes and spline interpolation) to compute the weights necessary to interpolate
each channel using a linear combination of the C − 1 other channels (Perrin et al.,
1989). From this perspective, a naive method of handling corrupted channels might
be to always replace each input EEG channel by its interpolated version based on the
other C − 1 channels. An “interpolation-only” module minterp could be written as:

10In this case, the number of parameters of the module can be controlled by e.g., selecting log-
variance as the input representation or reducing dimensionality by using fewer spatial filters than there
are input channels.
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minterp(X) = WinterpX , (3.9)

where Winterp is a C ×C real-valued matrix with a 0-diagonal11. The limitation of this
approach is that given at least one corrupted channel in the input X, the interpolated
version of all non-corrupted channels will be reconstructed in part from corrupted chan-
nels. This means noise will still be present, however given enough clean channels, its
impact might be mitigated.

Improving upon the naive interpolation-only approach, we might add the ability for
the model to decide whether (and to what extent) channels should be replaced by
their interpolated version. For instance, if the channels in a given window are mostly
clean, it might be desirable to keep the initial channels; however, if the window is overall
corrupted, it might instead be better to replace channels with their interpolated version.
This leads to a “scalar-attention” module mscalar:

mscalar(X) = αXX + (1− αX)WX , (3.10)

where αX ∈ [0, 1] is the attention weight predicted by an MLP conditioned on X (e.g., on
its covariance matrix) and W is the same as for the interpolation-only module. While
this approach is more flexible, it still suffers from the same limitation as before: there
is a chance interpolated channels will be reconstructed from noisy channels. Moreover,
the fact that the attention weight is applied globally, i.e., a single weight applies to
all C channels, limits the ability of the module to focus on reconstructing corrupted
channels only.

Instead, the “vector attention” modulemvector introduces channel-wise attention weights,
so that the interpolation can be independently controlled for each channel:

mvector(X) = diag(αX)X + (I− diag(αX))WX , (3.11)

where αX ∈ [0, 1]C is again obtained with an MLP and W is as above. Although more
flexible, this version of the attention module still faces the same problem caused by
static interpolation weights.

To solve this issue, we build on the previous approach by both predicting an attention
vector αX as before and dynamically interpolating with a matrix WX ∈ RC×C (with a
0-diagonal) predicted by another MLP:

mdynamic(X) = diag(αX)X + (I− diag(αX))WXX . (3.12)

In practice, a single MLP can output C×C real values, which are then reorganized into
a 0-diagonal interpolation matrix W and a C-length vector whose values are passed
through a sigmoid nonlinearity to obtain the attention weights αX . An interesting
property of this formulation which holds for mvector too is that αX can be directly
interpreted as the level to which each channel is replaced by its interpolated version.
However, in contrast to mvector the interpolation filters can dynamically adapt to focus
on the most informative channels.

Finally, we observe that Eq. (3.12) can be rewritten as a single matrix product:

mdynamic(X) =
(

diag(αX) + (I− diag(αX))WX

)
X = ΩXX , (3.13)

11Winterp can be set or initialized using head geometry information (Perrin et al., 1989) or can be
learned from the data end-to-end.
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where, denoting the element i, j of matrix WX as Wij ,

ΩX =


α1 (1− α1)W12 . . . (1− α1)W1C

(1− α2)W21 α2 . . . (1− α2)W2C
...

...
. . .

...
(1− αC)WC1 (1− αC)WC2 . . . αC

 . (3.14)

The matrix ΩX contains C2 free variables, that are all conditioned on X through an
MLP. We can then relax the constraints on ΩX to obtain a simple matrix WDSF where
there are no dependencies between the parameters of a row and the diagonal elements
are allowed to be real-valued. This new unconstrained formulation can be interpreted as
a set of spatial filters that perform linear combinations of the input EEG channels. We
can further introduce an additional bias term to recover the DSF formulation introduced
in Section 3.2.2:

mDSF(X) = WDSF(X)X + bDSF(X) . (3.15)

This bias term can be interpreted as a dynamic re-referencing of the virtual channels.
In contrast to the interpolation-based formulations, DSF allows controlling the number
of “virtual channels” C ′ to be used in the downstream neural network in a straightfor-
ward manner (e.g., enabling the use of montage-specific DSF heads that could all be
plugged into the same fΘ with fixed input shape). As shown in Section 3.4.4, DSF also
outperformed interpolation-based formulations in our experiments.

3.5.7 Related work

Deep learning and noise robustness for audio data Noise robustness is of par-
ticular interest to the speech recognition community. For example, “noise-aware train-
ing” was proposed to train deep neural networks on noisy one-channel speech signals
by providing an estimate of the noise level as input to the network (Seltzer et al.,
2013). Noise-invariant representations of speech signals were also developed by training
a classifier to perform well on the speech recognition task but badly on signal quality
classification (Serdyuk et al., 2016) or by penalizing the distance between the internal
representations of clean and noisy signals (Liang et al., 2018; Salazar et al., 2018).
Methods have also been designed to leverage the spatial information of multiple audio
channels similarly to our proposed DSF approach. Deep beamforming networks were
used to dynamically re-weight different audio channels to improve robustness to noise,
for instance with filter prediction subnetworks (Li et al., 2016; Xiao et al., 2016b,a). In a
fashion similar to ours, recent work also used spatial attention to re-weight beamformed
input speech signals to decide which filters to focus on (He et al., 2020).

Attention mechanisms for EEG processing Recent efforts in the deep learning
and EEG community have led to various applications of attention mechanisms to end-
to-end EEG processing. First, some studies used attention to improve performance on a
specific task by focusing on different dimensions of an EEG representation. For instance,
NLP-inspired attention modules were used in sleep staging architectures to improve
processing of temporal dependencies (Phan et al., 2019; Yuan et al., 2019; Guillot et al.,
2020; Phan et al., 2020; Guillot and Thorey, 2021). Attention was also applied in
the spatial dimension to dynamically combine information from different EEG channels
(Yuan et al., 2018; Yuan and Jia, 2019) or even from heterogeneous channel types (Yuan
et al., 2019). In one case, spatial and temporal attention were used simultaneously in



3.5. DISCUSSION 83

a BCI classification task (Huang et al., 2019). Second, attention mechanisms have
been used to enable transfer learning between different datasets with possibly different
montages. In Nasiri and Clifford (2020), two parallel attention mechanisms allowed a
neural network to focus on the channels and windows that were the most transferable
between two datasets. Combined with an adversarial loss, this approach improved
domain adaptation performance on a cross-dataset sleep staging task. Similarly to
DSF, a spatial attention block was used in Guillot and Thorey (2021) to recombine input
channels into a fixed number of virtual channels and allow models to be transferred to
different montages. A Transformer-like spatial attention module was also proposed to
dynamically re-order input channels (Saeed et al., 2020). In contrast to DSF, though,
these approaches used attention weights in the [0, 1] range, breaking the conceptual
connection between channel recombination and spatial filtering.

3.5.8 Limitations

Our experiments on sleep data focused on window-wise decoding, i.e., we did not aggreg-
ate larger temporal context but directly mapped each window to a prediction. How-
ever, modeling these longer-scale temporal dependencies was recently shown to help
sleep staging performance significantly (Supratak et al., 2017; Chambon et al., 2018;
Phan et al., 2019; Yuan et al., 2019; Guillot et al., 2020; Phan et al., 2020; Guillot and
Thorey, 2021). Despite a slight performance decrease, window-wise decoding offered a
simple but realistic setting to test robustness to channel corruption, while limiting the
number of hyperparameters and the computational cost of the experiments. In practice,
the effect of data corruption by far exceeded the drop in performance caused by using
slightly simpler architectures.

The data augmentation and the noise corruption strategies exploited in this work em-
ploy additive Gaussian white noise. While this approach helped develop noise robust
models, spatially non-correlated additive white noise represents an “adversarial scen-
ario”. Indeed, under strong white noise, the information in higher frequencies is more
likely to be lost than with e.g., pink or brown noise. Additionally, the absence of spa-
tial noise correlation means that spatial filtering can less easily leverage multi-channel
signals to regress out noise (Section 3.5.4). Exploring more varied and realistic types of
channel corruption could further help clarify the ability of DSF to work under different
conditions. Despite this, our experiments on naturally corrupted sleep data showed that
additive white noise as a data augmentation does help improve noise robustness.

Finally, we focused our empirical study of channel corruption on two clinical problems
that are prime contenders for mobile EEG applications: pathology screening and sleep
monitoring. Interestingly, these two tasks have been shown to work well even with
limited spatial information (i.e., single-channel sleep staging (Liang et al., 2012)) or to
be highly correlated with simpler spectral power representations (Schirrmeister et al.,
2017). Therefore, future work will be required to validate the use of DSF on tasks where
fine-grained spatial patterns might be critical to successful prediction, e.g., brain age
estimation (Engemann et al., 2020) as presented in the next chapter. Other common
EEG-based prediction tasks such as seizure detection might benefit from DSF and will
require further validation.
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3.6 Conclusion

We presented dynamic spatial filtering (DSF), an attention mechanism architecture that
improves robustness to channel corruption in EEG prediction tasks. Combined with a
data augmentation transform, DSF outperformed other noise handling procedures un-
der simulated and real channel corruption on three datasets. Altogether, DSF enables
efficient end-to-end handling of channel corruption, works with few channels, is inter-
pretable and does not require expensive preprocessing. We hope that our method can be
a useful tool to improve the reliability of EEG processing in challenging non-traditional
settings such as user-administered, at-home recordings.
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The novel methodology presented in Chapters 2 and 3 facilitated the use of real-world
EEG data. Here, in the final chapter of this thesis, we take a step back and consider
a promising application of large-scale cross-sectional datasets such as those created by
real-world applications of EEG.

As we showed in Chapter 2, unlabelled EEG data can be harnessed for common down-
stream tasks like sleep staging and pathology detection thanks to new approaches like
self-supervision. However, in many cases, we do actually have access to some labels
which, though they might not be as informative as carefully collected labels, contain
sufficient information to be used for a related learning task. For instance, as compared
to the labels a trained neurologist can provide (e.g., the onset and duration of patho-
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logical EEG events or an overall diagnosis), weak labels like age and gender are widely
accessible since they can be obtained without clinical expertise or careful methodolo-
gical planning. Age, specifically, is a valuable piece of information to have access to, as
aging and health are so intricately linked.

One compelling use of simple age labels is the brain age framework proposed by Franke
et al. (2010) for building biomarkers of neurophysiological health. By measuring how
someone’s chronological age deviates from the age predicted based on their brain ana-
tomy or physiology (i.e., the brain age ∆), it is possible to identify individuals whose
neurological characteristics look different from those of healthy people in the same age
range. For example, a large brain age ∆ could reflect accelerated aging or neurolo-
gical pathologies. Although this framework has been studied for more than a decade,
most research on brain age still relies on expensive neuroimaging modalities, such as
structural magnetic resonance imaging (MRI), in order to derive predictions. Low-cost
mobile EEG, because of its ease of use and affordability, is an obvious contender for
translating brain age monitoring to real-world settings and making it a more practical
framework.

In this chapter, we validate the idea of an EEG-based brain age metric through experi-
ments on hundreds of real-world meditation and sleep EEG recordings. Our validation
analysis relies on well-known biomarkers of sleep and aging to which we compare the
predicted brain age of our models. Deep learning models, including the DSF attention
module described in Chapter 3, are shown to outperform other approaches to age re-
gression. We also investigate the variability of such an EEG-based brain age metric by
analyzing longitudinal data in subjects with up to 220 recordings spread out over more
than a year. Overall, our findings open the door to widespread, regular neurophysiolo-
gical health monitoring in at-home settings.
This chapter is based on a manuscript in preparation for submission to the Journal of
Sleep Research:

• Hubert Banville, Sean UN Wood, Maurice Abou Jaoude, Chris Aimone, Alex-
andre Gramfort, and Denis-Alexander Engemann. Brain age as a proxy measure
of neurophysiological health using low-cost mobile EEG. Manuscript in prepara-
tion, 2021b

4.1 Introduction

The accessibility and affordability of low-cost mobile EEG devices, as well as their
ease of use, open the door to the possibility of tracking neurophysiological health on
a day-to-day basis. For instance, the regular screening of brain health might support
early identification and prevention or treatment of various neurological pathologies.
However, a major challenge to the realization of this objective is the need for automated
EEG analysis. Relying on trained experts to inspect recordings visually is not scalable,
given the amount of data that is already being produced. Unfortunately, building
machine learning models to detect or predict pathologies from EEG data often requires
large amounts of labelled data, which again requires expert inspection. Moreover, this
labelling process needs to be repeated for each pathology of interest. Instead, a recently
proposed alternative to address this problem is to use proxy measures of health (Dadi
et al., 2021). For instance, brain age prediction is a versatile approach to performing
brain health monitoring without having access to expert labels (Cole et al., 2019).
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While chronological age, i.e., the number of years elapsed since birth, is a useful metric
to monitor the actual biological aging process, it does not provide a complete picture of
this complex phenomenon. For instance, age does not affect everyone uniformly: some
individuals tend to lose cognitive abilities earlier than others (LaPlume et al., 2021).
As the brain changes through development and adulthood, the characteristics of EEG
signals evolve as well (Feinberg et al., 1967; Mourtazaev et al., 1995; Landolt and Bor-
bély, 2001; Chiang et al., 2011; Voytek et al., 2015; Hashemi et al., 2016). Rather than
chronological age then, a data-driven measure might reflect the process of aging more
faithfully. This is the objective behind the brain age framework proposed by Franke
et al. (2010, 2012). Specifically, the brain age ∆ is defined as the difference between an
age estimate (i.e., the age predicted by a model trained on a healthy population) and
chronological age.1 Positive values indicate someone’s brain looks “older” than it nor-
mally does for healthy individuals in the same age group, suggesting this individual’s
brain is aging prematurely or that it presents a pathology that makes it look older2

(Cole and Franke, 2017; Cole et al., 2018).

Most research on the topic of brain age has focused on structural MRI, as this technique
allows the quantitative analysis of anatomical changes such as reduced grey matter
volume and increased cerebrospinal fluid volume (Franke et al., 2010; Cole et al., 2019).
For instance, a positive MRI-based brain age ∆ has been shown to be correlated with
Alzheimer’s disease (Franke and Gaser, 2012), sleep pathologies such as sleep apnea
(Weihs et al., 2021), and even to predict mortality (Cole et al., 2018). Considering the
compelling results obtained with anatomical brain information only, the question arises
as to whether functional information, i.e., obtained through functional neuroimaging
modalities, could provide similar, or even complementary, information on brain age.
This hypothesis was tested in Engemann et al. (2020), where it was shown that adding
fMRI and MEG modalities significantly improve brain age prediction performance.

In light of these findings, and as EEG is portable and significantly more affordable than
MRI, functional information available through EEG emerges as a prime contender for
estimating brain age more practically. This has already been the topic of a few studies.
For instance, in Al Zoubi et al. (2018), a classifier ensemble learned to predict age
from 31-channel eyes-open resting state EEG with a MAE of 6.87 years. On a more
restricted population of children and adolescents, a similar handcrafted feature-based
approach yielded low MAEs in the 1.5 to 2.1 year range using 14-channel eyes-closed
resting state EEG recordings (Vandenbosch et al., 2019). An approach relying on filter-
bank covariance matrices and Riemannian geometry was also shown to yield good brain
age prediction performance on the TUH Abnormal Dataset (Sabbagh et al., 2020).
A series of papers further showed how a similar brain age measure could be derived
from sleep EEG data. For instance, an MAE of 7.6 years was obtained by training
a linear regression (with a softplus link function) on handcrafted features capturing
sleep micro- and macrostructure obtained with six EEG electrodes (Sun et al., 2019).
Building on this approach, it was further shown that this sleep EEG-based brain age ∆
was associated with life expectancy (Paixao et al., 2020) and dementia (Ye et al., 2020).

1Here, we use the term “brain age” to refer to the age predicted by the normative model, and “brain
age ∆” to refer to the difference between chronological age and brain age. The brain age ∆ is also
sometimes called BrainAGE (Franke et al., 2010) or “brain age index” (Sun et al., 2019).

2Generally speaking, a deviation, be it positive or negative, from the chronological age, might
indicate abnormal aging of the brain.
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More recently, feature-based approaches to brain age prediction have been improved
upon using deep learning. In Cole et al. (2017), CNNs were used to predict brain age
from structural MRI, improving upon the results obtained with a Gaussian process re-
gression model. Again on structural MRI, Peng et al. (2021) have shown state-of-the-art
results by combining a CNN and various performance improving techniques (including
data augmentation and pre-training). Similar approaches have been proposed for EEG
data, for example in Brink-Kjaer et al. (2020), where a MobileNetv2 architecture was
trained on multimodal sleep recordings (including 2-channel EEG, but also EMGs and
ECGs, among others). In Nygate et al. (2021), a large dataset of 134,000 sleep record-
ings was used to train and evaluate a deep learning-based brain age prediction model,
whose predictions were correlated to various clinical conditions such as epilepsy and
seizure disorders, stroke and an elevated apnea-hypopnea index. Finally, deep learning
architectures have also been used, although on a more limited dataset of young chil-
dren, to predict brain age from auditory event-related potentials (ERPs) captured with
30-channel EEG (Bruns, 2021).

These previous studies have laid the groundwork for neuroimaging-based, and specific-
ally, EEG-based, brain age prediction to provide a valuable proxy measure of brain
health and aging. However, to maximize the impact brain age could have as a neuro-
physiological health screening tool, it should be made available to as many people as
possible as part of a regular screening procedure. To this end, could low-cost mobile
EEG be used to reliably predict brain age from real-world, out-of-the-lab recordings?

In this chapter, we aim to answer this question by presenting experiments on at-home
EEG recordings from more than 1,000 subjects which address the following points:
1) how can machine learning be used to build brain age prediction models from low-
cost mobile EEG?, 2) do the resulting brain age predictions contain health-related
information not available in the chronological age? and 3) how variable are the brain
age predictions over long periods of time?

The rest of the chapter is organized as follows. In Section 4.2, we introduce the machine
learning problem under study, along with the datasets, machine learning pipelines and
training procedure. The extraction of biomarkers from sleep recordings, as well as their
analysis is also described. Next, Section 4.3 presents the results of three experiments
designed to explore the feasibility and meaningfulness of brain age prediction from low-
cost mobile EEG. Lastly, in Section 4.4, we discuss the results and propose directions
for future research.

4.2 Methods

In this section, we describe how we train machine learning models to predict age from
low-cost mobile EEG recordings and how the resulting brain age metric is evaluated
(Figure 4.1). We first define the machine learning problem under study. We then
present the different EEG datasets used in our experiments. The extraction of sleep
biomarkers, central to the validation of the brain age metric, is then motivated. Next, we
describe the different machine learning models considered, as well as their training and
performance evaluation procedures, and describe how their brain age predictions will be
validated against sleep biomarkers. Finally, we list some computational considerations
for our experiments.



4.2. METHODS 89

age predictions

Can low-cost 
EEG-based

help identify 
pathological 

aging?

A
Age prediction with machine 
learning models

B
Validation of age predictions 
against sleep biomarkers C

Analysis of stability of 
age predictions

18
67

42
74

31

...
...

EEG Chronological
age

predicted
age

Sleep spindles
Slow waves
Spectral features
Macrostructure

Sleep 
EEG predicted

age

b
io

m
a
rk

e
rs

B
ra

in
 a

g
e
 Δ

Days, weeks, months

? years old

Figure 4.1 – Overview of our approach and experiments. We seek to predict age from
low-cost, mobile EEG to provide health-related information to complement chronolo-
gical age. (A) Machine learning models were trained to predict age from 5-8 minutes of
eyes-closed meditation data from 971 unique subjects. (B) The predictions of the best
machine learning models were compared to known biomarkers of sleep in order to assess
whether brain age contains information that is not contained in chronological age. (C)
The stability of the brain age predictions was assessed longitudinally using data from a
few subjects with recordings collected over the span of more than one year.

4.2.1 Problem definition

The brain age prediction problem is a supervised learning regression problem of the
form:

f̂Θ = arg min
Θ

EX,y∈X×Y [L(fΘ(X), y)] , (4.1)

where a model fΘ : X → Y with parameters Θ is trained to predict the age y of
a subject whose EEG has been recorded. Here, Y is a positive integer (representing
the age in years). It ranged from 18 and 81 in the datasets we used (Section 4.2.2).
fΘ can be implemented, for instance, as a convolutional neural network. The model
might receive a single EEG window X(i), a sequence of consecutive windows, or even
an entire recording S(i) as input.3 Here, our deep learning models used single EEG
windows as input, while baseline “shallow” models used aggregated features over entire
recordings (Section 4.2.5). We train fΘ to minimize the loss L, e.g., the mean absolute
error (MAE) (i.e., the L1 loss) between the true target age y(i) and the predicted age
ŷ(i) = fΘ(X(i)) over a training set of N examples:

LMAE(y, ŷ) =
1

N

N∑
i=1

∣∣∣y(i) − ŷ(i)
∣∣∣ , (4.2)

3Age is considered to be fixed over the course of a single recording. In other words, all samples
from a recording share the same target.
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where |·| is the element-wise absolute value. We directly optimize the L1 loss as it is the
most common metric used to evaluate performance in brain age studies (Franke et al.,
2012; Cole and Franke, 2017; Sun et al., 2019; Sabbagh et al., 2020).

4.2.2 Data

Our experiments make use of real-world mobile EEG datasets collected from users of
the Muse S headband (InteraXon Inc., Toronto, Canada). This data was collected in
accordance with the privacy policy (July 2020) users agree to when using the Muse
headband4 and which ensures their informed consent concerning the use of EEG data
for scientific research purposes. As previously described in Section 3.3.4, the Muse
headband has been already used in many different areas of research, such as research
into brain development (Hashemi et al., 2016), sleep staging (Koushik et al., 2018), and
stroke diagnosis (Wilkinson et al., 2020), among others.5

Data collection The Muse S is a wireless, dry EEG device with four channels (TP9,
Fp1, Fp2, TP10, referenced to Fpz). EEG is sampled at 256 Hz and sent over Bluetooth
to a nearby mobile device (e.g., phone or tablet) for real-time analysis and saving to
file. Two types of recordings were collected to build the datasets used in this study: 1)
meditation recordings with neurofeedback and 2) overnight sleep recordings (Table 4.1).
In both cases, recordings were done by the users through the Muse application on iOS
or Android mobile operating systems.6 The application first guided the users through
the setup of their EEG device, then through a signal quality check and finally through
the recording, as described next.

Meditation recordings Awake continuous EEG was collected during meditation re-
cordings in which users performed a focused attention task. First, an eyes-closed resting
state period of 30-s to more than a minute was performed for the purpose of calibrating
the neurofeedback algorithm and allowing signal quality to improve. Users then moved
on to a neurofeedback exercise, in which auditory feedback was provided to them in
real-time. The length of the neurofeedback exercise (between 1 minute and 3 hours)
was selected beforehand by the users. During the exercise, users were instructed to stay
still, keep their eyes closed and focus their attention on their breathing. As the exer-
cise proceeded, users were then provided with auditory feedback on their mental state
derived from their own real-time EEG, through a proprietary algorithm using machine
learning and spectral analysis to map EEG into sound.

Overnight sleep recordings In overnight sleep recordings, users had the option to
listen to a choice of audio content and/or auditory feedback while falling asleep. On-
device sleep staging was then performed to provide the users with a hypnogram-based
analysis of their night when they woke up the next morning.

Next, we describe the three datasets collected by selecting recordings from InteraXon
Inc.’s anonymized database of Muse users.

4https://choosemuse.com/legal/privacy/
5https://choosemuse.com/muse-research/
6https://choosemuse.com/muse-app/

https://choosemuse.com/legal/privacy/
https://choosemuse.com/muse-research/
https://choosemuse.com/muse-app/
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Muse Meditation Dataset (MMD)

Meditation recordings of 5 minutes and more were selected from Muse S meditation
recordings collected between October 2019 and October 2021. Recordings were then
filtered to only keep users whose age was between 18 and 81 years at the time of
recording. A single recording was sampled per user, such that the age distribution
across all sampled recordings was approximately uniform and the dataset was balanced
for male and female users. This yielded a total of 3,667 candidate recordings. From
this set, only recordings with excellent signal quality, based on basic signal statistics
defined as follows, were retained. First, recordings for which more than 5% of samples
were missing for any of the EEG channels (caused by Bluetooth packet loss during
transmission from the headband to the mobile device) were rejected. The variance of the
signals bandpass-filtered between 2 and 26 Hz was also computed for non-overlapping
1-s windows. Recordings for which, for any of the four channels, 25% or more of the
windows had a variance above a threshold of 100 µV2 were rejected. This finally yielded
a subset of 971 recordings (mean duration: 15.1 ± 6.9 minutes) with excellent signal
quality from 971 unique individuals. Mean age across recordings was 47.7 ± 16.4 years
old (min: 18, max: 81) and 35.9% of recordings were of female users.

Overlapping Meditation-Sleep Dataset (OMSD)

Separately, we sought to collect a dataset of recordings where users performed both
a meditation recording and a sleep recording in close temporal proximity. Being able
to analyze both types of recordings alongside one another is key to assessing how the
predicted brain age obtained with models trained on meditation recordings relates to
known sleep EEG biomarkers. To identify candidate recordings, we first sampled sleep
recordings, following a similar procedure to the one described above for MMD. Record-
ings that lasted between 5 and 11 hours, from users between 18 and 81 years of age
at the time of recording, and which were started between 5 PM and 5 AM, local time,
were selected. A maximum of two recordings per user were selected, yielding a total
of 1046 candidate recordings, that were then screened for signal quality. Signal quality
screening was performed on non-overlapping 30-s windows (i.e., the standard window
length in sleep recording analysis). Recordings for which more than 25% of the windows
had a variance above 1,000 µV2 were rejected. Finally, the recording with the highest
number of good windows was kept for each user. This yielded a total of 312 overnight
sleep recordings from 312 unique users.

Next, we searched for meditation recordings performed by the subjects selected above.
Meditation recordings that were recorded up to 24h before or after the beginning of a
sleep recording were selected. This yielded a subset of 98 meditation recordings (mean
duration: 14.9 ± 9.1 minutes) with good signal quality from 98 unique individuals,
collected between October 2020 and October 2021. Of these, nine recordings were from
subjects who also had different recordings in MMD, and one recording was already
contained in MMD (and was therefore removed). These meditation recordings occurred,
on average, 5.4 hours before (63.3% of recordings) or 13.9 hours after (36.7%) the closest
sleep recording. The matching sleep recordings had a mean duration of 488.8 ± 58.6
minutes. Mean age across recordings was 45.1 ± 13.6 years (min: 20, max: 74) and
23.5% of recordings were of female users.
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Table 4.1 – Description of the datasets used in this study.

MMD OMSD MMD-long

Recording type Meditation Meditation Sleep Meditation
# recordings 971 98 98 497
# subjects 971 98 98 4
Average duration (min) 15.1 ± 6.9 14.9 ± 9.1 488.8 ± 58.6 23.1 ± 8.7
Age range 18-81 20-74 20-74 -

Longitudinal Muse Meditation Dataset (MMD-long)

Finally, we explored the long-term dynamics of the predicted brain age measure using
another subset of Muse meditation recordings, this time focusing on users with multiple
consecutive recordings. The search criteria used to sample MMD recordings were reused
to identify users with at least 100 meditation recordings. After filtering recordings for
excellent signal quality following the same procedure as was used for MMD, we selected
four subjects (three male, one female) of different age groups.7 In total, this yielded
497 recordings (mean duration: 23.1 ± 8.7 minutes).

4.2.3 Extraction of sleep EEG biomarkers

To assess whether a low-cost mobile EEG-based brain age metric could be used as a
proxy measure of health, we need to demonstrate that the brain age predictions contain
information about aging that is not already found in the chronological age. To do so,
we extracted a variety of biomarkers from the overnight sleep recordings of OMSD, to
which the predicted age on corresponding meditation recordings could be compared.
These biomarkers, which we describe in detail in this Section (see Table 4.2), are widely
accepted indicators of health and aging in the sleep research literature (Purcell et al.,
2017; Muehlroth and Werkle-Bergner, 2020) and as such provide us with a data-driven
view on the neurophysiological changes that occur with aging.

We grouped the extracted sleep biomarkers into four categories: sleep spindle character-
istics, slow wave characteristics, spectral features and macrostructure-related features.
The different features are described in Table 4.2. In order to extract these features,
we first obtained sleep stage predictions using a sleep staging classifier trained on la-
belled Muse S data with classes W (wake), N1, N2, N3 (non-REM sleep) and R (rapid
eye movement sleep). This also required careful handling of bad windows to avoid
introducing noise in our measures. We next provide a detailed description of these
sleep staging and signal quality estimation procedures, followed by a description of the
different biomarker categories we included in our analysis.

Automatic sleep staging

A convolutional and recurrent neural network architecture inspired by Abou Jaoude
et al. (2020) was trained on private Muse S sleep recordings annotated according to
the AASM guidelines (Berry et al., 2012) by a sleep technician (see Section 3.3.4 for
a description of the dataset). In contrast to the original architecture, the model 1)
used unidirectional, rather than bidirectional, LSTM layers, to allow its use in a real-
time processing context and 2) had different input layer and maxpooling kernel sizes,

7We do not disclose these subjects’ ages in order to minimize identifiable information.
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in order to accommodate signals sampled at 256 Hz (vs. 200 Hz in Abou Jaoude et al.
(2020)). The model was trained to predict which sleep stage (W, N1, N2, N3 or R) a
30-s EEG window corresponded to. Moreover, the data was preprocessed in a similar
manner to Section 4.2.4: 1) linear interpolation of missing values, 2) downsampling to
128 Hz, 3) bandpass filtering between 1 and 40 Hz, and 4) channel-wise zero-meaning of
each window. The trained model was deployed as-is on the sleep recordings of OMSD
to produce hypnograms, i.e., sequences of overnight sleep stage predictions, with 30-s
resolution.

Signal quality estimation

In order to extract sleep spindle, slow wave and spectral feature biomarkers, bad win-
dows must be rejected, as noise can heavily impact parameter estimation for these
biomarkers. To do so, we used an approach heavily inspired by Muehlroth and Werkle-
Bergner (2020), where we divided each recording into non-overlapping 1-second windows
and computed the peak-to-peak amplitude of each channel in each window. Channels
inside a window were marked as bad if their peak-to-peak amplitude was below 3 µV or
above 250 µV. Additionally, entire 1-s windows were marked as bad if, for at least one
of their channels, the absolute z-scored peak-to-peak amplitude was higher than 2.5.
Finally, the longer time windows used to extract the other biomarkers were dropped if
they overlapped with too many 1-s bad windows (the exact number varies between the
biomarkers and is described below).

Sleep spindle characteristics

Sleep spindles are phasic waves between 11 and 16 Hz with a characteristic increasing-
then-decreasing morphology that typically last between 0.5 and 2 seconds (De Gennaro
and Ferrara, 2003; Purcell et al., 2017; Muehlroth and Werkle-Bergner, 2020). Being a
highly recognizable sleep microstructure event, sleep spindles are the main feature used
to score N2 sleep according to the AASM guidelines (Berry et al., 2012). Sleep spindles
are known to originate from thalamocortical sources, although their function remains
unclear (De Gennaro and Ferrara, 2003; Purcell et al., 2017). Two distinct types of
sleep spindles are now commonly recognized: slow spindles (between 9 and 12.5 Hz,
prevalent in frontal regions) and fast sleep spindles (between 12.5 and 16 Hz, prevalent
in parieto-central regions) (Muehlroth and Werkle-Bergner, 2020). While they share a
common generating mechanism, these two spindle types have distinct generators in the
brain and have been shown to be genetically uncorrelated (De Gennaro and Ferrara,
2003; Purcell et al., 2017; Muehlroth and Werkle-Bergner, 2020).

The characteristics of sleep spindles are known to vary with age in multiple ways which
are thought to reflect the maturation of thalamocortical mechanisms (Purcell et al.,
2017). For instance, their amplitude decreases with age (De Gennaro and Ferrara,
2003; Purcell et al., 2017; Muehlroth and Werkle-Bergner, 2020). Their frequency has
been shown to vary differently with age for slow and fast spindles, with fast spindles
seeing an increase in frequency (Muehlroth and Werkle-Bergner, 2020) and a plateau
around adulthood (Purcell et al., 2017), and slow spindles seeing a decrease in frequency
(Muehlroth and Werkle-Bergner, 2020). The spatial distribution of sleep spindles also
varies in a frequency-dependent manner: while slow spindles remain frontal throughout
aging, fast spindles move posterially as people age (Muehlroth and Werkle-Bergner,
2020). Finally, spindle density, i.e., the number of spindles that occur per unit time,
increases with age until adolescence and then decreases (Purcell et al., 2017). Interest-
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Table 4.2 – Description of the extracted sleep biomarkers.

Category Name Description References

Spindles Slow
spindle
frequency

Average slow spindle fre-
quency (Hz) during N2
sleep

(De Gennaro and Ferrara,
2003; Purcell et al., 2017;
Muehlroth and Werkle-
Bergner, 2020)

Fast spindle
frequency

Average fast spindle frequency
(Hz) during N2 sleep

(De Gennaro and Ferrara,
2003; Purcell et al., 2017;
Muehlroth and Werkle-
Bergner, 2020)

Slow
waves

Slow wave
frequency

Average slow wave frequency
(Hz) during N3 sleep

(Carrier et al., 2011; Schwarz
et al., 2017; Ujma et al., 2019;
Timofeev et al., 2020; Muehl-
roth and Werkle-Bergner,
2020)

Spectral N3 δ log-
power

Log-power of the EEG in the
δ band (0.5-4.5 Hz) during N3
sleep

(Mourtazaev et al., 1995;
Muehlroth and Werkle-
Bergner, 2020)

Macro-
structure

Wake after
sleep onset
(WASO)

Total awake time between the
first and last sleep windows, in
minutes

(Sun et al., 2019; Muehlroth
and Werkle-Bergner, 2020)

% N1 Percentage of total sleep time
spent in N1

(Schwarz et al., 2017; Sun
et al., 2019; Muehlroth and
Werkle-Bergner, 2020)

% N2 Percentage of total sleep time
spent in N2

(Schwarz et al., 2017; Sun
et al., 2019; Muehlroth and
Werkle-Bergner, 2020)

% N3 Percentage of total sleep time
spent in N3

(Mourtazaev et al., 1995;
Schwarz et al., 2017; Sun
et al., 2019; Muehlroth and
Werkle-Bergner, 2020)

ingly, multiple other variables appear to influence sleep spindle characteristics, e.g., the
circadian rhythm (De Gennaro and Ferrara, 2003), intelligence and cognitive abilities
(Ujma et al., 2014; Hoedlmoser et al., 2014) and dementia (D’Atri et al., 2021). We
focused on slow and fast spindle frequencies for the analyses in Section 4.3.2, as this
measure is more robust to higher proportions of bad windows (e.g., as compared to
spindle density measures).

Sleep spindles were extracted using the open-source YASA toolbox (Vallat and Walker,
2021). First, the spindles_detect() function was used on the raw data, separately
focusing on the slow spindles (9-12.5 Hz) or fast spindles (12.5-16 Hz) frequency ranges
(Muehlroth and Werkle-Bergner, 2020). Spindles lasting between 0.5 and 2.5 seconds
were detected in the N2 windows of each recording using a combination of thresholds on
1) the relative σ power (11-16 Hz), 2) Pearson’s correlation between the σ-filtered signal
and the raw signal, and 3) the root mean square (RMS) of the σ-filtered signal. This
yielded a list of potential channel-specific sleep spindle events, with multiple parameters
for each detected event, including median instantaneous frequency, peak-to-peak amp-
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litude, and duration. As explained above, we only considered the frequency parameter
in our experiments. A spindle event was rejected if it overlapped with a 1-s window that
was previously marked as bad. Finally, all values that passed signal quality evaluation
were aggregated channel-wise using a trimmed mean with a cut proportion of 25%,
yielding one frequency value per recording per channel for both slow and fast spindles.

Slow wave characteristics

Slow waves are low frequency biphasic waves consisting of a positive and a negative
deflection (Timofeev et al., 2020). Following to the AASM guidelines (Berry et al.,
2012), slow waves are detected using an amplitude threshold of 75 µV on oscillations in
the 0.5-2 Hz range. As the name suggests, slow waves are the defining characteristic of
slow wave sleep: a 30-s window will be labelled as “N3” if it is made out of more than
20% slow waves (Malhotra and Avidan, 2013). Slow waves are known to play a critical
role in memory consolidation (Bellesi et al., 2014) although the mechanism by which
they are involved is still debated (Léger et al., 2018).

Multiple characteristics of slow waves are known to evolve with age (Carrier et al., 2011;
Ujma et al., 2019). For instance, a decrease in slow wave amplitude is a consistent
finding across sleep and aging studies (Schwarz et al., 2017; Muehlroth and Werkle-
Bergner, 2020). Similarly, the density of slow waves, i.e., the number of occurrences
per unit of time, is known to decrease with age (Carrier et al., 2011; Muehlroth and
Werkle-Bergner, 2020). An overall slowing of low frequency components with age has
also been reported (Carrier et al., 2011; Muehlroth and Werkle-Bergner, 2020). Finally,
the spatial distribution of slow wave activity changes with age as well (Timofeev et al.,
2020; Muehlroth and Werkle-Bergner, 2020). We focused our analysis on the slow wave
frequency, as this value is less sensitive to the confounding effect of fixed amplitude
thresholds that might bias slow wave detection in different age groups (Muehlroth and
Werkle-Bergner, 2020). Amplitude information was instead captured using a spectral
power analysis, as described in the next section.

Slow waves were also extracted using the YASA toolbox (Vallat and Walker, 2021). The
default frequency range of the sw_detect() function was kept (0.3-1.5 Hz). Internally,
the raw data was first bandpass filtered in the 0.3-2 Hz range. Peak detection was then
applied to find negative peaks in a given range. A peak-to-peak amplitude threshold, as
well as a duration criteria were finally applied to identify potential slow wave events in
the N3 windows of each recording. Again, multiple parameters per event were computed,
however we only considered frequency in our analyses. A slow wave event was rejected if
it overlapped with more than one 1-s window that had previously been marked as bad.
Finally, all values that passed signal quality evaluation were aggregated channel-wise
using a trimmed mean with a cut proportion of 25%, yielding one frequency value per
recording per channel.

Spectral features

To mitigate the confounding effect of fixed amplitude thresholding on slow wave detec-
tion, it has been proposed that one should instead rely on slow-wave activity (SWA),
i.e., the spectral power in the δ band (0.5-4.5 Hz), to study slow-wave-related changes
in aging (Muehlroth and Werkle-Bergner, 2020). With this in mind, and given its sim-
plicity, and the wide use of spectral band powers as features in EEG-based machine
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learning pipelines, we included the log-power in the δ band during N3 sleep in our
analyses.

Frequency band power was computed window-wise using the mne-features package
(Schiratti et al., 2018). Welch’s method was applied to 30-s windows, using 1-s non-
overlapping Hamming windows. Channel-wise power in the δ frequency bands (0.5-4.5
Hz) was then averaged and log-transformed for each window labelled as N3, yielding
one value per window and channel. A window-channel combination was rejected if it
overlapped with more than nine 1-s sub-windows marked as bad by the signal quality
estimation procedure described above. Finally, all values that passed signal quality
evaluation were aggregated channel-wise using a trimmed mean with a cut proportion
of 25%, yielding one value per recording per channel.

Macrostructure-derived features

Sleep macrostructure, i.e., the overall structure of the different sleep stages across the
night, is also known to vary with age, though not as much as the microstructure com-
ponents described above (Schwarz et al., 2017; Sun et al., 2019; Muehlroth and Werkle-
Bergner, 2020). Indeed, the capacity of the brain to generate sleep, as well as the
prevalence of each sleep stage change throughout the lifetime. For instance, the per-
centages of N1 and N2 stages across an overnight recording tend to increase with age,
with the percentage of N3 tending to decrease with age (Schwarz et al., 2017; Muehl-
roth and Werkle-Bergner, 2020). Similarly, the time spent awake between the first and
last sleep event of a night, called “wake after sleep onset” (WASO), is also known to
increase with age (Muehlroth and Werkle-Bergner, 2020). We included these four meas-
ures (%N1, %N2, %N3 and WASO) as biomarkers for the analysis of the predicted brain
age.

In order to compute these features, we directly processed the hypnograms obtained by
the automatic sleep stager. The ratio of each non-REM sleep stage was computed by
dividing the number of windows of a given sleep stage by the total number of sleep
windows (i.e., all labels except W). The “wake after sleep onset” (WASO) metric was
computed by evaluating the total time (in minutes) spent awake between the first and
last sleep events of a night. Of note, the extraction of the other sleep biomarkers relied
on the predicted hypnogram as well, so as to enable focusing on specific sleep stages,
i.e., N2 for sleep spindles, and N3 for spectral features and slow waves.

4.2.4 Preprocessing

EEG data was minimally preprocessed before being passed to brain age prediction mod-
els. In the case of meditation recordings, the meditation exercise part of the recording
was cropped to remove the first minute of the recording (in which signal quality might
still be settling), and retain as many as eight of the following minutes of data. Next,
missing values (which can occur if the wireless connection is weak and Bluetooth packets
are lost) were replaced through linear interpolation using surrounding valid samples.

The remaining steps differed for filterbank models, where the preprocessing was inspired
by Engemann et al. (2021), and for deep learning models, where the preprocessing was
instead similar to Section 2.2.7. For filterbank models, a zero-phase FIR band-pass
filter between 0.1 and 49 Hz was applied. Non-overlapping 10-s windows were then
extracted. Windows for which peak-to-peak amplitude exceeded a value of 250 µV
were rejected. For deep learning models, a zero-phase FIR low-pass filter with a cutoff
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frequency of 40 Hz was instead applied to the data, followed by resampling to 128 Hz.
Non-overlapping 15-s windows were extracted, and no rejection criterion was applied.
Finally, channels were zero-meaned window-wise before being fed to the neural networks.

Sleep recordings were preprocessed within the sleep biomarker extraction pipelines
which implemented specific signal quality and filtering steps for each biomarker cat-
egory (see Section 4.2.3).

4.2.5 Machine learning pipelines

To predict age from mobile EEG, we compared two common methods that have been
shown to perform well on different EEG-based learning tasks: using filter-bank co-
variance matrices with log-diagonal vectorization or with Riemannian tangent space
projection (Barachant et al., 2013b; Congedo et al., 2017; Lotte et al., 2018; Sabbagh
et al., 2020) and using end-to-end deep learning on raw signals (Roy et al., 2019a).

The filter-bank covariance pipeline first applied a filter bank to the input EEG, yielding
narrow-band signals in the nine following bands: low frequencies (0.1-1 Hz), δ (1-4 Hz),
θ (4-8 Hz), αlow (8-10 Hz), αmid (10-12 Hz), αhigh (12-15 Hz), βlow (15-26 Hz), βmid (26-
35 Hz) and βhigh (35-49 Hz). Next, covariance matrices were estimated in each frequency
band from non-overlapping 10-s window using the OAS algorithm (Chen et al., 2010),
yielding a set of nine covariance matrices per recording. For the “diag” variation, the
log-diagonal of each covariance matrix was extracted and concatenated into a single
feature vector of dimension C × 9, z-score normalized using the mean and standard
deviation of the training set, then fed to a linear regression model with an L2 penalty
(“Ridge regression”). For the “Riemann” variation, covariance matrices were instead
projected into their Riemannian tangent space, exploiting the Wasserstein distance to
estimate the mean covariance used as the reference point (Sabbagh et al., 2019; Bhatia
et al., 2018). The vectorized covariance matrices with dimensionality C(C + 1)/2 were
finally z-score normalized, concatenated, and fed to a linear regression model with an L2
penalty, just as for the “diag” model. Of note, the Ridge regression models were trained
by optimizing the mean squared error instead of the mean absolute error, following
previous work (Sun et al., 2019; Engemann et al., 2020; Sabbagh et al., 2020)

The deep learning pipelines used the ShallowNet base architecture (Schirrmeister et al.,
2017) which parametrizes the FBCSP pipeline (Gemein et al., 2020). We first used
it without modifying the architecture, yielding a total of 11,641 trainable parameters
with C = 4. We then tested a variation of ShallowNet, prepended with a DSF attention
module, as presented in Chapter 3. We set the number of virtual channels to the
number of input channels, i.e., C ′ = C, fixed the hidden layer size to C2 = 16 and
used the matrix logarithm of the covariance matrix as the input spatial representation.
We used a soft-thresholding non-linearity on the output spatial filtering matrix, since
it was shown in Chapter 3 to provide an additional performance boost on real-world
Muse S data. The DSF module added 516 trainable parameters to those of ShallowNet.
Deep learning models were trained on individual 15-s windows, but their performance
was evaluated recording-wise by averaging the predictions over windows within each
recording. Finally, an element-wise logistic non-linearity was added to the output of
the network to facilitate the prediction of values that fell within a plausible range of
age:

σ(x) = alow +
ahigh − alow

1 + e−rx
+ bx , (4.3)
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where ahigh = 0 and alow = 98 are upper and lower asymptotes, r = 0.1 is the growth
rate, and b = 0.1 is the slope of an additional linear trend added to avoid getting stuck
in regions with zero-gradient during training.

4.2.6 Training and performance evaluation

Models were first trained using 10-fold cross-validation. The training folds were further
split to perform a hyperparameter search (leave-one-out cross validation for selecting the
L2 regularization strength8 in the filterbank models) or early stopping (80-20% random
split for deep learning models). The examples from each subject were always restricted
to only one of the training, validation or testing sets.

Neural networks were trained three times per split with different random parameter
initializations. Training ran for at most 70 epochs or until the validation loss stopped
decreasing for a period of a least 20 epochs. In all experiments, we used the AdamW
optimizer (Loshchilov and Hutter, 2017) with β1 = 0.9, β2 = 0.999, a learning rate of
5 × 10−4 and cosine annealing. The parameters of all neural networks were randomly
initialized using uniform He initialization (He et al., 2015). Dropout was applied to fΘ’s
fully connected layers at a rate of 50%. Training hyperparameters for deep learning
models were selected such that learning curves decreased steadily in the first 10 epochs
of training on a subset of a training fold of MMD.

Predictions on the test folds were then used to evaluate the performance of the different
models, as measured with MAE (see Equation 4.2) and the coefficient of determination
R2, i.e., the percentage of chronological age variance explained by the predicted brain
age:

R2(y, ŷ) = 1−

∑N
i=1

(
y(i) − ŷ(i)

)2

∑N
i=1

(
y(i) − y

)2 , (4.4)

where y = 1
N

∑N
i=1 y

(i).

Finally, models were retrained using the entire MMD (with the same validation set
splitting strategies) and evaluated on the meditation recordings of OMSD and MMD-
long.

4.2.7 Analysis of predicted brain age

We studied the added value of predicted brain age for modelling health and aging
through the analysis of linear regression coefficients (Dadi et al., 2021). First, we mod-
elled each of the 20 (z-score normalized) extracted sleep biomarkers yj ∈ R, where
j ∈ J20K , using independent univariate linear regression models of the form

yj ≈ βunivar
j,k × xk , (4.5)

where k ∈ {age, predicted age} such that xk ∈ R is either the chronological age (xage) or
predicted age (xpredicted age) normalized to have zero-mean and unit-standard deviation.
Once the models were fit, the sign and magnitude of the estimated coefficients β̂univar

j,k

indicated the direction and strength of the relationship between each of the two age
measures and the sleep biomarkers.

8We searched through 100 values spaced log-uniformly between 10−5 and 1010.
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Next, we modelled each sleep biomarker using both age measures at once using bivariate
linear regression models:

yj ≈ βbivar
j,age × xage + βbivar

j,predicted age × xpredicted age . (4.6)

Again, the estimated coefficients β̂bivar
j,k reflected the explanatory power of each predictor,

however this time taking both predictors into account simultaneously. By comparing
the goodness of fit (i.e., the likelihood) of the univariate and bivariate models of the
same sleep biomarker, we could then estimate how much additional explanatory power
is obtained by adding brain age to chronological age. This can be quantified using a
likelihood ratio test where the test statistic is computed as:

λLR
j = −2

[
`(βunivar

j,age , 0)− `(βbivar
j,age , β

bivar
j,predicted age)

]
, (4.7)

where `(βage, βpredicted age) is the log-likelihood of the model. Under the null hypothesis
H0 : βbivar

j,predicted age = 0, λLR
j then follows a χ2 distribution with K = 1 degree of

freedom. As a result, p-values can be obtained for each biomarker j. After applying
Bonferroni corrections to control the family-wise error rate (FWER), biomarkers with
a significant p-value (e.g., with α = 0.01) were finally identified. Biomarkers for which
the null hypothesis could be rejected are interpreted as being better explained when
brain age is included in the model.

4.2.8 Computational considerations

A combination of the MNE-Python (Gramfort et al., 2014), PyTorch (Paszke et al.,
2019), braindecode (Schirrmeister et al., 2017), pyRiemann (Barachant et al., 2013b),
coffeine (Sabbagh et al., 2020), mne-features (Schiratti et al., 2018), scikit-learn
(Pedregosa et al., 2011), statsmodels (Seabold and Perktold, 2010), YASA (Vallat and
Walker, 2021), mne-bids (Appelhoff et al., 2019) and mne-bids-pipeline (Jas et al.,
2018) packages were used to carry out our experiments. Deep learning models were
trained on a machine with a single Nvidia P4 GPU.

4.3 Results

4.3.1 Predicting age from low-cost mobile EEG

Can low-cost mobile EEG be used to predict someone’s age, despite sparse spatial
information and recordings made in uncontrolled environments? If so, what kind of
machine learning approach is the most accurate? To answer these questions, we trained
four brain age prediction pipelines and compared their performance on a dataset of 971
recordings of unique users. Results are shown in Figure 4.2.

All four models outperformed a dummy regressor that predicted the median age of
the training set (MAE=14.02, R2=-0.04). Predictably, the model based on simple log-
powers (“diag”, in yellow) performed the worst out of the considered models, likely due
to its limited ability to leverage spatial information. The Riemann model (green), which
had access to full covariance information in each frequency band, performed better, with
a mean MAE across folds of 11.33 years, and a mean R2 of 0.23. Deep learning models
(red and magenta) yielded better mean MAE and R2 than the Riemann model, with
a combination of ShallowNet and DSF yielding the best performance (MAE=10.99,
R2=0.31). Interestingly, although MAE values were similar for Riemann and deep
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Figure 4.2 – Brain age prediction performance on MMD. The mean absolute er-
ror (MAE) and ratio of explained variance (R2) obtained across 10 cross-validation
folds are shown for different models: simply returning the median of the training set
(“dummy”), Ridge regression on log-power in different frequency bands (“diag”), Rieman-
nian geometry-based pipeline on filter-bank covariance matrices (“Riemann”), and deep
learning models (“ShallowNet” and “ShallowNet-DSF” with dynamic spatial filtering).
While all models performed better than a dummy regressor, the combination of Shal-
lowNet with DSF yielded the lowest mean MAE and highest mean R2.

learning models, R2 values were a lot more spread out for the Riemann model across
cross-validation folds, likely due in part to the use of the sigmoidal non-linearity in deep
learning models which restricts their output range.

Overall, these results suggest that it is indeed possible to predict age from low-cost
mobile EEG, with performance significantly above that of a dummy regressor.

4.3.2 Brain age as a complementary source of information to
chronological age

To be useful as a health biomarker, a brain age measure needs to encode information
that is complementary to the chronological age itself, i.e., which is not available when
only the chronological age is known. If this is the case, brain age could be a valuable tool,
in combination with chronological age, for quickly screening individuals for pathological
aging based on only a few minutes of their EEG. To test this, we used linear regression
to model known sleep biomarkers (see Section 4.2.3 for a detailed description of the
analysis) based on chronological age, predicted brain age, or a combination of both.
Results of this analysis are presented in Figure 4.3.

First, as shown through univariate analysis (first column), most models yielded non-
zero coefficients for both chronological and brain age variables. Exceptions include
e.g., slow wave frequency and percentage of N2 sleep, for which the two variables were
not useful predictors. Interestingly, chronological age was generally more correlated
with the biomarkers than predicted age was. An exception to this however is N3 δ log-
power, for which chronological age was a bad predictor (only one non-zero coefficient),
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as opposed to predicted age (three non-zero coefficients). Overall, as expected (see
Section 4.2.3), most sleep biomarkers were significantly correlated with both measures
independently.

Next, we combined both chronological and brain age within bivariate models to ex-
plore their associations with sleep biomarkers (Figure 4.3, second column). Again, each
biomarker category (N3 δ log-power, fast spindle frequency, slow spindle frequency,
slow wave frequency and hypnogram-derived markers) had biomarkers for which both
chronological and brain age had non-zero coefficients. Moreover, as shown with the
p-value of likelihood ratio tests (third column), most of these biomarkers were accord-
ingly easier to model once predicted age was included in the linear regression. Notably,
models of channel-wise N3 δ log-power had larger coefficients for both variables (as com-
pared to their univariate versions), and all had significantly better fits once predicted
age was included in the model. This demonstrates that the two age measures contain
complementary information that helps model a known biomarker of sleep and aging,
i.e., δ power or slow-wave activity. Similarly, the fast spindle frequency was significantly
easier to model (for all channels except TP10) when brain age was made available to
the linear regression. Interestingly, for other biomarkers, e.g., slow spindle frequency
and percentage of N3 sleep, the sign of the predicted age coefficient flipped when going
from a univariate to a bivariate model. This suggests that the residual information
contained in the brain age is actually anticorrelated to the information contained in the
chronological age, or in other words that the correlation between the two is negative
conditional on age but positive otherwise.

These results suggest that the proposed brain age metric - which is predicted from short
five to eight-minute segments of non-sleep data - is meaningfully correlated to known
biomarkers of sleep and aging and contains additional information not contained in
chronological age, supporting the potential use of brain age derived from mobile EEG
as a proxy measure of health.

4.3.3 Variability of brain age over multiple days

To confirm the usability of our mobile EEG-based brain age metric, we must consider
its variability over medium- to long-term periods. Indeed, stable values over weeks and
months would indicate actual trait-like information on the subject is being captured.
On the other hand, significant variability at smaller scales would suggest the metric is
also influenced by momentary factors and therefore captures “brain states” as well. To
answer these questions, we computed the recording-by-recording brain age ∆ of four
subjects with a large number of recordings and looked at the characteristics of their
predicted values. The results of this analysis are presented in Figure 4.4.

First, while there is substantial variability across recordings from a same subject, the
predicted values remain fairly stable across longer-term periods. Indeed, despite across-
recording standard deviations of 2.7 to 4.6 years, the average predictions over longer
periods (e.g., months) do not vary substantially. This is seen in both a subject whose
chronological and brain age match closely (sub-002) and in one for whom there is a large
difference between the two measures (sub-004). Interestingly, sub-001 saw a short-lived
decrease in their brain age ∆ about 100 days after their first recording, but otherwise
had stable predictions on average.
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Figure 4.3 – Analysis of the relationship between sleep biomarkers and age measures.
Linear regression was used to model each of 20 sleep biomarkers using age, predicted
brain age, or a combination of both. In the first column, the coefficients of univariate
models that were trained either on chronological age (blue) or on predicted age (orange)
are shown for each biomarker. In the second column, the coefficients of a single bivariate
model trained on both chronological and predicted age are shown. In both cases, 95%
confidence intervals are depicted by horizontal bars around markers. Finally, the third
column shows the negative log p-value of the likelihood ratio test comparing a univariate
model with chronological age only, and a bivariate model with both chronological and
predicted age. The vertical red line indicates a threshold of p = 0.01 with Bonferroni
correction, and grey bars indicate biomarkers for which the null hypothesis cannot be
rejected. While the coefficients of chronological age are generally larger than those of
predicted age, multiple sleep biomarkers are significantly easier to model once predicted
age is made available to the linear regression, suggesting brain age contains information
that is not found in the chronological age alone.
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Next, to understand what might explain this variability, we looked at different factors
that are likely to have an influence on our EEG-based predicted age. Specifically,
we analyzed the relationship between predicted age and time of day, on the larger
population of the MMD dataset (Figure 4.5). A multiple linear regression model with
continuous factor “time of day” and categorical factor “gender”, along with a “time of
day × gender” interaction term was fitted to the cross-validated predictions obtained on
MMD. The coefficients of the model were not significantly different from zero, suggesting
neither variable is driving the variability seen in our results. Therefore, while brain age
∆ is on average slightly higher earlier in the day, the relationship with time of day is
not significant. Likewise, our analysis shows that gender does not explain the observed
variability either. Therefore, other factors not readily available in our datasets are likely
the cause of the variability seen in the brain age ∆ over time.

Moreover, thanks to the availability of longitudinal recordings, “brain aging” (i.e., the
rate of change of the brain age ∆) can be estimated by fitting a linear model to the brain
age ∆ values (red lines in Figure 4.4). Here, a positive slope indicates a person’s brain
age is increasing faster than their chronological age, while a negative slope indicates
that they are “aging” more slowly than what is expected biologically. While subjects
1 and 3 had positive slopes, sub-002’s slope was close to zero, and sub-003’s slope was
in fact negative. More recordings over longer time periods are needed to enable further
investigation into the meaning of these slopes for brain health.

Overall, these last results suggest that our mobile EEG-based brain age metric captures
both “trait”-like information (e.g., related to aging and, potentially, pathological aging),
and shorter-term “state”-like information, which may reflect a subject’s state at the time
of the recording, and be related to factors like e.g., cognitive fatigue, food and drink
intake, medication, etc.

4.4 Discussion

In this chapter, we showed that low-cost mobile EEG-based brain age predictions can
be used as a proxy measure of aging. We presented results on over 1,500 at-home EEG
recordings from 1,073 unique individuals, combining real-world data collected during
meditation recordings and overnight sleep. While methods based on filter-bank covari-
ance matrices already performed better than chance, we found deep learning methods
performed the best on the brain age prediction task. Importantly, our experiments
showed that the brain age metric contains information that is not found in the chro-
nological age alone, as evidenced by correlating chronological age and brain age with
various commonly studied sleep biomarkers. Finally, we looked at the stability of brain
age over more than a year for four individuals and, despite short-term recording-to-
recording variability, we showed that brain age predictions were stable across longer-
term periods. These results provide a strong foundation for the development of low-cost
mobile EEG-based brain age measurement.

4.4.1 What does EEG-based brain age capture?

A majority of studies focused on predicting age from EEG did so using sleep EEG (Sun
et al., 2019; Paixao et al., 2020; Ye et al., 2020; Brink-Kjaer et al., 2020; Nygate et al.,
2021). Given the large literature on sleep EEG and age, this choice makes a lot of
sense: many biomarkers, both on the microstructure (i.e., related to the patterns in
the EEG time series) and macrostructure (i.e., related to the structure of the different



104 CHAPTER 4. BRAIN AGE WITH LOW-COST MOBILE EEG

Figure 4.4 – Longitudinal brain age ∆ predictions for four subjects with multiple consec-
utive recordings. Four subjects with more than 50 recordings with good signal quality
were selected, and their brain age predicted using a DSFm-st model trained on MMD.
Each blue point of the scatterplots represents the brain age ∆ predicted for a single
recording. In order to ensure the anonymity of the subjects, we only show 50 randomly
sampled recordings for each subject and add random jitter to the recording dates. How-
ever, we use all available sessions to fit a linear model (red line) which shows the trend
for each subject, and to summarize the distribution of predicted age using density plots
(in blue, next to each scatterplot). Despite significant variability visible in all four sub-
jects, the average measure remains stable across longer periods of time, suggesting the
proposed brain age metric captures both “trait”- and “state”-like information.

sleep stages) timescales are known to vary with age (see Section 4.2.3). We also sought
to leverage this well-studied connection in our analysis, but in order to validate, rather
than build, our brain age prediction models. This was done to avoid the circularity
of building a brain age model and validating the age-related information content of its
predictions on the same kind of data, with the same underlying mechanisms. Instead,
we used EEG collected during meditation recordings to predict age. Crucially, since
our models worked on short (e.g., fewer than 10 minutes) awake recordings rather than
hours-long sleep recordings, our approach is a lot more time- and data-efficient than
other work (Sun et al., 2019; Nygate et al., 2021).

This elicits the following question: what information is there in awake continuous EEG
that enables the prediction of someone’s age? Previous work on very similar cross-
sectional data but from a descriptive, rather than predictive, point-of-view has shown
that the characteristics of the α band vary significantly throughout adulthood (Hashemi
et al., 2016). For instance, the α peak frequency decreases with age (a widely reported
finding, see e.g., Klimesch (1999); Chiang et al. (2011); Scally et al. (2018); Knyazeva
et al. (2018); Tröndle et al. (2021)). Additionally, a small but significant increase in α
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Figure 4.5 – Effects of time of day and gender on brain age ∆. The cross-validated age
predictions obtained on MMD are shown as a function of the time at which recordings
were started. Subject gender is color-coded (blue for male, yellow for female). Linear
fits display the gender-specific impact of time of day on the brain age metric. While a
small negative trend is visible for both groups, it is not significant, suggesting these two
variables do not have an impact on brain age ∆ in this dataset.

and β power with age has also been reported in conjunction with a decrease in δ and θ
power (Hashemi et al., 2016). As expected, and as shown by a permutation importance
analysis of the filter-bank Riemann model (Figure 4.6), our model did in fact rely heavily
on the information contained in the mid- and high-α bands, i.e., between 10-12 and 12-
15 Hz. Since ShallowNet is essentially a trained, parametrized version of a filterbank
spatial patterns pipeline, it is likely that the same information was important for the
deep learning models under study. Visualization of the spectrum around the α band
in MMD similarly confirmed that the peak α frequency decreased across age groups
(Figure 4.7). In fact, both the α peak frequency, i.e., the frequency of maximum power
in the α band, as well as the α power, varied across age groups. Indeed, similarly to
Hashemi et al. (2016), power also appeared to increase at this peak frequency in our
sample. Therefore, these features were likely leveraged by the model to distinguish age
groups in our meditation datasets.

Why, specifically, is the α band useful in predicting age? Age-related decline in α power
has previously been linked to increased excitability of thalamo-cortical and cortico-
cortical pathways, due to a gradual loss of cholinergic function in the basal forebrain
(Tröndle et al., 2021). The more recent “neural noise” hypothesis posits instead that the
decrease in α power is caused by the flattening of the 1/f spectral profile of EEG, itself
caused by reduced coupling between brain regions (Voytek and Knight, 2015; Tröndle
et al., 2021). The α peak frequency is also known to decrease in some pathological con-
ditions, e.g., schizophrenia, Alzheimer’s diseases and major depression (Christie et al.,
2017). In either case, combined with the results of our own experiments, this supports
the idea that by focusing on α band information, our brain age models may indeed
be accessing information about the aging of the human brain. Of note, other bands,
e.g., βlow (15-26 Hz), αlow (8-10 Hz) and low frequencies (0.1-1 Hz) also contributed
to prediction performance (Figure 4.6), suggesting that more than just mid/high α
information was used by the model.
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Figure 4.6 – Permutation analysis with the filter-bank Riemann model on OMSD med-
itation recordings. We focus on the filter-bank Riemann model, since it yielded high
performance in our experiments (Section 4.3.1) and its input is already divided into
different spectral bands. We evaluated permutation importance (Breiman, 2001) on the
meditation recordings of OMSD to identify the features whose random shuffling causes
the largest drop in performance. The x-axis indicates by how much the MAE increases
when the values in a specific frequency band are randomly permuted (100 repetitions).
The features in the α band, and more precisely the αmid (10-12 Hz) and αhigh (12-
15 Hz) bands, were the most useful features for the Riemann model. Other bands also
carried some predictive power, although less so: αlow (8-10 Hz), βlow (15-26 Hz) and
low frequencies (0.1-1 Hz).

4.4.2 What causes brain age variability?

Longitudinal experiments on four subjects with more than 100 recordings each showed
that while the average brain age ∆ predictions were mostly stable across longer periods
of time (e.g., months), there was significant variability from one day to the next. What
does this variability reflect? The analysis presented in Figure 4.5 showed that time of
day, at least cross-sectionally, did not have a significant effect on the predicted age for
male or female individuals in our sample.

Following the discussion above, it is clear that the proposed brain age metric is largely
influenced by the information contained in the α band. Interestingly, core characteristics
of the α band, i.e., its peak frequency, are also known to comprise both a “trait” and
a “state” component (Christie et al., 2017). For instance, it has been suggested that a
higher peak α frequency is associated with a higher level of “cognitive preparedness”,
i.e., reflecting how ready an individual is to perform a task (Angelakis et al., 2004;
Christie et al., 2017). Research on “mental fatigue” has also revealed that the spectral
properties of EEG change as fatigue increases, with, for instance, power in θ, α and
β bands increasing (Arnau et al., 2017). Overall, this suggests that cognitive factors
might play a role in the observed variability.

An important factor to consider as well is the nature of the exercise undertaken during
the recordings used for training the brain age models. In our dataset, subjects were
expected to perform a focused attention meditation exercise. Interestingly, multiple
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Figure 4.7 – Visualization of the spectrum around the α band for MMD recordings.
Welch’s periodogram with non-overlapping 4-s segments and median aggregation was
computing from the 10-s windows preprocessed for use with filter-bank models. The
PSDs were then log10−transformed and averaged within each 10-year slice of the sub-
jects. Older individuals tended to have a lower α peak frequency, as well as higher α
peak power, in all four electrodes.

studies on meditation and EEG reported decreased α peak frequency and increased
alpha power, as well as theta bursts, during meditation exercises (West, 1980; Cahn and
Polich, 2006; Lomas et al., 2015). Given the relationship between both α peak frequency
and α power, and aging (see previous section), this would suggest that meditating may
effectively make one’s EEG look older than it would at rest. In this scenario, the
observed variability might arise from the quality of the meditation or the specific type
of meditation exercise carried out during the recording. However, according to previous
reports on brain age in meditators, we could actually expect brain age ∆ to decrease
with long-term meditation practice (Luders et al., 2016). Therefore, the impact of the
meditation exercise on the subject’s state, as well as of extended meditation practice on
their EEG traits, is an important factor to take into account and should be investigated
in greater detail in the future.

Of note, one other study looked at EEG-based brain age and its variability across
different days (Hogan et al., 2021). On a dataset of 86 patients sleeping overnight in
an epilepsy monitoring unit, this study found a night-to-night standard deviation in
brain age ∆ of 7.5 years. This standard deviation could be further decreased to 3 years
when averaging four nights. In comparison, our experiments of Section 4.3.3 showed
a standard deviation of 2.7 to 4.6 years when considering four subjects with above 50
recordings each. Additional experiments on more subjects are required to validate these
results, however this suggests that similar variability is observed even with longer sleep
EEG recordings.
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4.4.3 Interpretation of coefficients in the sleep biomarkers analysis

Many biomarkers were significantly easier to model once the brain age predictions
were made available to the linear regression in addition to the chronological age (Sec-
tion 4.3.2). For almost all of these significant biomarkers, the sign of the brain age
coefficient βpredicted age stayed the same when using univariate or bivariate models (Fig-
ure 4.3). This suggests that the correlation between these biomarkers and brain age
remains the same, regardless of whether chronological age is considered, as would be
expected, intuitively. This was not the cause though for slow spindle frequency and
percentage of N3 sleep, whose sign went from negative to positive. What could explain
such an effect? A straightforward interpretation is that given a fixed age group, brain
age actually varies in the opposite direction to the direction it would normally vary in,
were all age groups to be considered. In other words, the residual information contained
in the brain age (once the chronological age has been regressed out) is negatively cor-
related to these biomarkers. For instance, while the slow spindle frequency at temporal
locations (TP9 and TP10) decreased when brain age increased, if chronological age was
also known, then slow spindle frequencies actually increased with brain age. While the
mechanism by which this phenomenon occurs will require more investigation, this fur-
ther demonstrates that our brain age measure contains information that is not present
when only the chronological age is available.

4.4.4 Limitations

We identify three principal limitations to this work. First, the datasets that we used
in our experiments were collected in uncontrolled, at-home conditions, i.e., no expert
or technician could monitor the subjects to ensure good signal quality and compliance
with the recording instructions. This contrasts with existing work on brain age pre-
diction, where datasets are usually collected in clinical or research settings. Similarly,
only minimal metadata was available in the datasets. As a result, the datasets did not
contain the necessary information to separate healthy individuals (used for training)
from pathological individuals (used for testing), as is commonly done in brain age stud-
ies. Instead, we leveraged the information contained in sleep data, where well-known
biomarkers of health and aging can be extracted, to relate our predictions to aging.
Moreover, since the datasets were not collected in the controlled conditions typical of
laboratory- or clinical-based studies, there is a possibility that some individuals did not
enter their actual age when creating their profile. However, the type of sample size
enabled by mobile EEG devices, much larger than traditional studies, means our mod-
els will be less sensitive to the occasional incorrect label. For instance, a study using
similar datasets produced results that agreed with earlier lab-based studies (Hashemi
et al., 2016), supporting the validity of our dataset for brain age analysis.

Second, as discussed above, the interaction between meditation and α activity means
it is possible that during meditation, a person’s EEG appears to be from an older
individual. However, since every subject contained in our dataset was instructed to
perform a meditation exercise during the recording, this phenomenon should impact all
subjects similarly. Nonetheless, further work will be necessary to assess whether the
quality of the meditation, or the meditation experience of a subject, could explain some
of the variability in brain age ∆ across subjects and across the recordings of individual
subjects. Nevertheless, our validation using sleep EEG biomarkers indicates that this
effect is small enough that our brain age metric could still provide complementary
information towards the prediction of known biomarkers of aging.
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Finally, the relationship between chronological age and predicted age was evaluated
on recordings that were as much as 24 hours away from each other. This may have
drowned out interesting information about shorter-time variations. In a future iteration,
this could be avoided by evaluating brain age on the wake portion of sleep recordings
instead.

Overall, despite these limitations, our experiments demonstrated that brain age can
be predicted from challenging real-world EEG data, providing first baseline results to
which future research can be compared.

4.4.5 Future directions

Multiple research directions would be interesting to explore in order to improve upon
the results presented in this chapter. First, a much larger sample size could be con-
sidered. In this work, we limited the sample size to focus on recordings with high signal
quality only, as a first step toward harnessing low-cost mobile EEG for measuring brain
age. With tools like DSF (Chapter 3) which were shown to improve robustness to cor-
rupted channels, future attempts should also include any recording with viable EEG.
Using larger datasets will likely improve the quality of the models and the stability of
predictions over time. Similarly, one could look into averaging multiple recordings to
provide a more robust brain age prediction (Hogan et al., 2021). Next, as sleep EEG
data is also becoming increasingly available thanks to consumer-focused technology,
our results could be extended to model brain age on sleep rather than awake data,
such as in Sun et al. (2019); Brink-Kjaer et al. (2020); Nygate et al. (2021). In this
case however another approach would be required to validate the information content
of the age predictions, e.g., via access to clinical labels (Sun et al., 2019; Nygate et al.,
2021). Generally speaking, validation with clinical labels such as the results of cognitive
tests will be necessary to advance our understanding of proxy measures of health (Dadi
et al., 2021). Finally, deeper neural network architectures with temporal aggregation
mechanisms, such as the one proposed in Brink-Kjaer et al. (2020), could be used to
improve the modelling, and consequently, the brain age predictions.

4.5 Conclusion

In this chapter, we presented results on brain age prediction with low-cost mobile EEG
and showed that this metric provides information that is complementary to chronological
age. This is additional evidence that unlabelled or weakly labelled EEG is in fact
highly valuable. In all likelihood, expert labels will remain critical to understanding the
physiological processes which influence EEG signals, and to building high-performance
predictive models. However, our results demonstrate that raw EEG data, for instance
as obtained in large-scale real-world applications of EEG, has the potential to play an
increasingly important role in supporting and enabling the creation of new EEG-based
technologies. As predictive models become increasingly resilient to the difficult signal
quality conditions encountered in the real world conditions that such applications are
subject to - for instance, through the use of attention modules like DSF - we can begin to
envision a new era where the century-old neuroimaging modality that is EEG becomes
a widely-adopted personal brain health monitoring tool.
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When work on this thesis started, the traditional machine learning paradigm based on
feature engineering and shallow modelling overwhelmingly dominated applications of
machine learning to EEG time series. As EEG datasets - and neuroimaging datasets
in general - are typically characterized by small sample sizes and high input dimen-
sionality, feature-based approaches were an obvious choice and predictably led to high
performances on many tasks. However, as demonstrated by our comprehensive literat-
ure review on deep learning and EEG (Roy et al., 2019a), the number of studies that
had begun to leverage deep learning to improve the performance and flexibility of their
models was growing exponentially. In fact, many of these studies found that notoriously
data-hungry deep learning models could work as well as, if not better than, traditional
machine learning approaches on typical small-scale EEG datasets. Now that much lar-
ger datasets are being collected and shared openly by various research consortia (Shafto
et al., 2014; Obeid and Picone, 2016; Zhang et al., 2018; Bycroft et al., 2018), we can
only expect deep learning to become an even more productive method for modelling
EEG data.

At the same time, the availability of new EEG hardware that can be used out-of-the-
lab has been growing steadily. Low-cost mobile hardware, such as the Muse headband
(InteraXon Inc., Toronto, Canada), already make it possible to monitor EEG on a
regular basis and remotely. Because they allow EEG to be monitored virtually anywhere
and anytime, and enable a plethora of real world applications, these mobile devices
promise to generate an unprecedented volume of data. This data, however, tends to be
unlabelled, noisier, and sparser than traditional EEG data.

In this thesis, we sought to demonstrate how novel deep learning methodology can
be used to facilitate and enable new large-scale and real-world applications of EEG.
Notably, we provided innovative solutions to the problem of extracting information
from unlabelled or weakly labelled data. We also showed how neural network modules
can be designed to adapt to the particularly challenging noise characteristics of real-
world EEG. Finally, we extended the brain age framework, originally limited to research
and clinical settings, to real-world contexts.

Previously, most applications of SSL were limited to the fields of computer vision and
natural language processing. We adapted and extended this paradigm to learn repres-
entations from multivariate EEG time series, leveraging the temporal dependencies in
the signal. Our work, which has already inspired studies from other groups, has laid
the foundation for translating SSL to biosignal data. Since then, significant advances
have been made on both the theoretical (Hyvärinen et al., 2019; Roeder et al., 2021)
and applied (Chen et al., 2020a; Brown et al., 2020; Goyal et al., 2021) fronts, providing
further evidence that SSL is a powerful framework for learning generalizable represent-
ations in an unsupervised manner. Considering these recent advances, we can expect to
see the development of improved self-supervised techniques, that learn even more use-
ful representations, e.g., through the data augmentation-invariance framework (Chen
et al., 2020a; Rommel et al., 2021). Ultimately, substantial benefits could be derived
from learning a common representation space that captures the many intricacies of EEG
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signals, analogous to the embeddings widely used in language tasks, and which would
enable the transfer of electrophysiological representations across individuals, montages,
hardware, and recording paradigms. Additionally, in the future, representation learn-
ing techniques such as SSL will likely heavily influence the field of neuroimaging, such
that larger, unlabelled datasets, are increasingly preferred over smaller, painstakingly
labelled datasets, the latter of which may not contain enough samples to build robust
and generalizable models (Jas, 2018).

The last few years have also seen the development of many new deep learning archi-
tectures. Notably, the flexibility and representational capacity of neural networks has
improved greatly, thanks to the development of attention mechanisms (Bahdanau et al.,
2014; Luong et al., 2015; Vaswani et al., 2017; Hu et al., 2018; Woo et al., 2018). In this
thesis, we drew on this framework to provide neural networks with robustness to noise,
which is a key requirement for practical real-world EEG applications. This approach
also opened an interesting window onto the functioning of our deep learning models,
allowing us to visualize how useful different EEG channels were to the predictions, on
a window-by-window basis. As hardware and sensor technology continues to improve,
noise and artifacts may become less of a challenge. Even in this scenario, however, at-
tention modules such as DSF will help improve the generalizability and transferability
of EEG representations, for instance by facilitating the sharing of a common core neural
network between different montages or hardware devices.

As neuroimaging technology has matured and larger datasets have become more com-
monplace, new paradigms have also been developed to make use of this data. The brain
age framework, for instance, is a compelling approach to understanding and monitoring
brain health, however it has almost exclusively been studied using high-end expensive
modalities, such as structural MRI. The results presented in this thesis are the first
to show the applicability of the brain age framework in real-world settings. Interest-
ingly, this framework can be extended to encompass various other proxy measures of
health (Dadi et al., 2021) and, as such, is a promising approach to extracting health-
related insights from large datasets of EEG (or of any neuroimaging modality) data,
alongside SSL, for instance. Ultimately, larger datasets, reflecting increasingly diverse
demographics, will continue to be collected, making it possible to train progressively
more accurate and generalizable models.

Numerous other challenges will have to be tackled to fully unleash the potential of
neuroimaging outside of the lab. Notably, the ability to perform on-device federated
learning, i.e., to train models directly on personal computing devices, will be key to en-
abling model finetuning and ensuring high standards of data privacy. Fusing EEG with
complementary data streams, such as other biosignals (photoplethysmography (PPG),
ECG, etc.), neuroimaging modalities (fNIRS), or even behavioral measures (e.g., user
interface interactions) will also improve the accuracy and flexibility of EEG-based ap-
plications. Looking forward, concurrent developments in real-world neuroimaging tech-
nology and artificial intelligence will set the stage for exciting new applications of neur-
otechnology and lead us to a deeper understanding of the brain.
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A
Sommaire récapitulatif en français

Au cours des dernières décennies, les avancées révolutionnaires en neuroimagerie ont
permis de considérablement améliorer notre compréhension du cerveau. Aujourd’hui,
avec la disponibilité croissante des dispositifs personnels de neuroimagerie portables,
tels que l’EEG mobile « à bas prix », une nouvelle ère s’annonce où cette technologie
n’est plus limitée aux laboratoires de recherche ou aux contextes cliniques. Dans le cadre
de cette thèse, nous appelons ce nouveau paradigme « EEG en conditions réelles », afin
de souligner le fait que la technologie n’est plus confinée à ces contextes traditionnels
et peut désormais être utilisée pour diverses applications dans la vie courante.

Ces appareils EEG grand public ne disposent généralement que de quelques canaux,
sont sans fil, utilisent des électrodes sèches et sont disponibles à un prix largement infé-
rieur à celui d’appareils EEG traditionnels. Grâce à ce prix abordable et à leur facilité
d’utilisation, ils permettent d’enregistrer l’activité cérébrale à domicile ou là où l’in-
frastructure médicale ou de recherche est absente, en vue d’applications telles que le
monitorage du sommeil, le dépistage de pathologies, le neurofeedback et l’interfaçage
cerveau-ordinateur (Mihajlović et al., 2014; Kreuzer, 2017; Krigolson et al., 2017; John-
son and Picard, 2020; Hohmann et al., 2020; Krigolson et al., 2021; Mikkelsen et al.,
2021). Cette technologie permet ainsi de collecter des quantités sans précédent de don-
nées d’EEG auprès de populations variées à travers le monde, ouvrant la voie à de
nouvelles manières de mesurer et de faire le suivi de la santé neurophysiologique de ses
utilisateurs.

Les applications de l’EEG en conditions réelles présentent cependant leur lot de défis,
de la rareté des données étiquetées à la qualité imprévisible des signaux et leur résolu-
tion spatiale limitée. Dans cette thèse, nous nous appuyons sur l’apprentissage profond
(LeCun et al., 2015; Schmidhuber, 2015; Goodfellow et al., 2016), un sous-domaine de
l’apprentissage automatique qui étudie l’apprentissage de représentations hiérarchiques
avec des réseaux de neurones artificiels, afin de transformer cette modalité d’image-
rie cérébrale centenaire, axée sur la recherche et les applications en clinique, en une
technologie pratique qui peut bénéficier à l’individu au quotidien. Trois contributions
principales sont présentées, portant sur 1) l’apprentissage auto-supervisé pour l’entraî-
nement de modèles prédictifs avec des données d’EEG non étiquetées, 2) la robustesse
au bruit et à la corruption de canaux d’EEG dans des modèles prédictifs avec des mé-
canismes attentionnels et 3) la mesure de la santé neurophysiologique avec l’EEG en
conditions réelles grâce au concept d’âge cérébral.

Tout d’abord, nous étudions comment les données d’EEG non étiquetées peuvent être
mises à profit via l’apprentissage auto-supervisé (Jing and Tian, 2021) pour améliorer
la performance d’algorithmes d’apprentissage entraînés sur des tâches cliniques cou-
rantes. Nous présentons trois approches auto-supervisées qui s’appuient sur la structure
temporelle des données elles-mêmes, plutôt que sur des étiquettes souvent difficiles à
obtenir, pour apprendre des représentations pertinentes à des tâches de classification
des stades du sommeil et la détection de pathologies : le positionnement relatif (“re-
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lative positioning”), le brassage temporel (“temporal shuffling”), et le codage prédictif
contrastif (“contrastive predictive coding”) (van den Oord et al., 2018). Ces trois ap-
proches reposent intuitivement sur le fait qu’une bonne représentation de l’EEG de-
vrait changer lentement (Földiák, 1991; Becker, 1993; Wiskott and Sejnowski, 2002),
puisque des fenêtres d’EEG proches dans le temps partagent normalement la même
étiquette. Nous étudions les propriétés de ces méthodes auto-supervisées par le biais
d’expériences sur deux grands ensembles de données publiques, contenant des milliers
d’enregistrements (López et al., 2017; Ghassemi et al., 2018; Goldberger et al., 2000)
nous permettant d’effectuer des comparaisons avec des approches purement supervi-
sées ou basées sur l’extraction manuelle de traits caractéristiques (Gemein et al., 2020).
Premièrement, nous démontrons l’utilité de l’apprentissage auto-supervisé lorsque peu
d’étiquettes sont disponibles : en effet, la performance de modèles de classification li-
néaires entraînés sur les représentations apprises par auto-supervision est supérieure à
celle de réseaux de neurones profonds purement supervisés. Deuxièmement, nous ex-
plorons les représentations apprises avec les méthodes auto-supervisées, qui démontrent
des structures latentes liées à des phénomènes physiologiques et cliniques, tels que les
stades du sommeil et le vieillissement. Nos résultats suggèrent que l’auto-supervision
peut ouvrir la voie à une utilisation plus répandue des modèles d’apprentissage profond
sur les données d’EEG dans un scénario semi-supervisé.

Ensuite, nous explorons des techniques pouvant améliorer la robustesse des réseaux
de neurones aux fortes sources de bruit souvent présentes dans l’EEG enregistré en
conditions réelles. Nous présentons le Filtrage Spatial Dynamique (“Dynamic Spatial
Filtering”), un mécanisme attentionnel (Hu et al., 2018; Woo et al., 2018) qui permet
à un réseau de neurones de dynamiquement concentrer son traitement sur les canaux
EEG les plus instructifs tout en minimisant l’apport des canaux corrompus. Cette ap-
proche peut être intuitivement interprétée comme une manière de faciliter la détection
et l’interpolation de canaux corrompus par un réseau de neurones, à l’image des tech-
niques traditionnelles de traitement de bruit en EEG (Perrin et al., 1989; Jas et al.,
2017), mais de manière entièrement guidée par les données. Des expériences sur des en-
sembles de données d’EEG à peu de canaux comprenant des milliers d’enregistrements,
ainsi que sur des données du monde réel, démontrent que notre module attentionnel, en
combinaison avec la corruption de canaux aléatoires pendant l’entraînement (une forme
d’augmentation de données), gère mieux la corruption que des approches de classifi-
cation robustes au bruit (Engemann et al., 2018b; Sabbagh et al., 2020) avec ou sans
traitement automatisé du bruit (Jas et al., 2017). De plus, notre module attentionnel
permet d’inspecter le fonctionnement de réseaux de neurones en évaluant l’importance
de chacun des canaux d’EEG aux prédictions du modèle à partir des cartes d’attention
prédites. Globalement, ces résultats attestent de l’utilité du Filtrage Spatial Dynamique
pour l’apprentissage sur des données d’EEG en conditions réelles.

Enfin, nous explorons l’utilisation d’étiquettes faibles afin de développer un biomar-
queur de la santé neurophysiologique à partir d’EEG collecté dans le monde réel. Pour
ce faire, nous transposons à ces données d’EEG le principe d’âge cérébral, originelle-
ment développé avec l’imagerie par résonance magnétique en laboratoire et en clinique
(Franke et al., 2010, 2012; Al Zoubi et al., 2018; Sabbagh et al., 2020). En comparant
l’âge chronologique d’un individu à l’âge prédit par un modèle recevant uniquement des
données de neuro-imagerie et entraîné sur une population saine, il est possible d’identi-
fier les individus dont le cerveau semble « plus vieux » que celui d’autres personnes du
même groupe d’âge, ce qui suggère un vieillissement prématuré ou pathologique (Cole
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and Franke, 2017; Cole et al., 2018). Nous validons ce concept par le biais d’expériences
sur l’EEG de plus d’un millier d’individus enregistré pendant un exercice d’attention
focalisée ou le sommeil nocturne. Nos résultats démontrent non seulement que l’âge
peut être prédit à partir de l’EEG portable collecté en conditions réelles, mais aussi que
ces prédictions encodent des informations contenues dans des biomarqueurs de santé
neurophysiologique extraits à partir de l’EEG du sommeil, mais absentes dans l’âge
chronologique. Ceci suggère que l’âge cérébral peut être utilisé pour évaluer et faire le
suivi de la santé neurophysiologique d’un individu. Sur un sous-ensemble d’enregistre-
ments longitudinaux, nous explorons de plus la stabilité de l’âge cérébral sur une échelle
de plusieurs mois, et identifions un niveau de variabilité qui pourrait ouvrir la porte à
une analyse plus précise de la santé cérébrale.

Dans l’ensemble, cette thèse franchit un pas de plus vers l’utilisation de l’EEG pour
le suivi neurophysiologique en dehors des contextes de recherche et cliniques tradition-
nels. Tout particulièrement, les résultats présentés dans cette thèse démontrent que
l’apprentissage profond est une approche prometteuse pour faciliter le développement
de nouvelles applications de l’EEG en condtions réelles, permettant à la fois de mettre
à profit de grandes quantités de données non étiquetées, de favoriser la robustesse au
bruit, et d’améliorer la performance sur diverses tâches prédictives.
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tions de l’EEG dans le « monde réel » présentent
cependant leur lot de défis, de la rareté des données
étiquetées à la qualité imprévisible des signaux et
leur résolution spatiale limitée. Dans cette thèse,
nous nous appuyons sur le domaine de l’appren-
tissage profond afin de transformer cette modalité
d’imagerie cérébrale centenaire, purement clinique
et axée sur la recherche, en une technologie pra-
tique qui peut bénéficier à l’individu au quotidien.

Tout d’abord, nous étudions comment les don-
nées d’EEG non étiquetées peuvent être mises à
profit via l’apprentissage auto-supervisé pour amé-
liorer la performance d’algorithmes d’apprentissage
entraînés sur des tâches cliniques courantes. Nous
présentons trois approches auto-supervisées qui
s’appuient sur la structure temporelle des données
elles-mêmes, plutôt que sur des étiquettes souvent
difficiles à obtenir, pour apprendre des représenta-
tions pertinentes aux tâches cliniques étudiées. Par
le biais d’expériences sur des ensembles de données
à grande échelle d’enregistrements de sommeil et
d’examens neurologiques, nous démontrons l’im-
portance des représentations apprises, et révélons
comment les données non étiquetées peuvent amé-
liorer la performance d’algorithmes dans un scéna-
rio semi-supervisé.

Ensuite, nous explorons des techniques pou-

vant assurer la robustesse des réseaux de neurones
aux fortes sources de bruit souvent présentes dans
l’EEG hors laboratoire. Nous présentons le Filtrage
Spatial Dynamique, un mécanisme attentionnel qui
permet à un réseau de dynamiquement concen-
trer son traitement sur les canaux EEG les plus
instructifs tout en minimisant l’apport des canaux
corrompus. Des expériences sur des ensembles de
données à grande échelle, ainsi que des données
du monde réel démontrent qu’avec l’EEG à peu de
canaux, notre module attentionnel gère mieux la
corruption qu’une approche automatisée de traite-
ment du bruit, et que les cartes d’attention prédites
reflètent le fonctionnement du réseau de neurones.

Enfin, nous explorons l’utilisation d’étiquettes
faibles afin de développer un biomarqueur de la
santé neurophysiologique à partir d’EEG collecté
dans le monde réel. Pour ce faire, nous transposons
à ces données d’EEG le principe d’âge cérébral,
originellement développé avec l’imagerie par réso-
nance magnétique en laboratoire et en clinique. À
travers l’EEG de plus d’un millier d’individus enre-
gistré pendant un exercice d’attention focalisée ou
le sommeil nocturne, nous démontrons non seule-
ment que l’âge peut être prédit à partir de l’EEG
portable, mais aussi que ces prédictions encodent
des informations contenues dans des biomarqueurs
de santé cérébrale, mais absentes dans l’âge chro-
nologique.

Dans l’ensemble, cette thèse franchit un pas de
plus vers l’utilisation de l’EEG pour le suivi neuro-
physiologique en dehors des contextes de recherche
et cliniques traditionnels, et ouvre la porte à de
nouvelles applications plus flexibles de cette tech-
nologie.
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Abstract : Our understanding of the brain has im-
proved considerably in the last decades, thanks to
groundbreaking advances in the field of neuroima-
ging. Now, with the invention and wider availa-
bility of personal wearable neuroimaging devices,
such as low-cost mobile EEG, we have entered an
era in which neuroimaging is no longer constrai-
ned to traditional research labs or clinics. “Real-
world” EEG comes with its own set of challenges,
though, ranging from a scarcity of labelled data
to unpredictable signal quality and limited spatial
resolution. In this thesis, we draw on the field of
deep learning to help transform this century-old
brain imaging modality from a purely clinical- and
research-focused tool, to a practical technology
that can benefit individuals in their day-to-day life.

First, we study how unlabelled EEG data can
be utilized to gain insights and improve perfor-
mance on common clinical learning tasks using
self-supervised learning. We present three such
self-supervised approaches that rely on the tem-
poral structure of the data itself, rather than one-
rously collected labels, to learn clinically-relevant
representations. Through experiments on large-
scale datasets of sleep and neurological screening
recordings, we demonstrate the significance of the
learned representations, and show how unlabel-
led data can help boost performance in a semi-
supervised scenario.

Next, we explore ways to ensure neural net-

works are robust to the strong sources of noise
often found in out-of-the-lab EEG recordings. Spe-
cifically, we present Dynamic Spatial Filtering, an
attention mechanism module that allows a network
to dynamically focus its processing on the most
informative EEG channels while de-emphasizing
any corrupted ones. Experiments on large-scale da-
tasets and real-world data demonstrate that, on
sparse EEG, the proposed attention block handles
strong corruption better than an automated noise
handling approach, and that the predicted atten-
tion maps can be interpreted to inspect the func-
tioning of the neural network.

Finally, we investigate how weak labels can be
used to develop a biomarker of neurophysiological
health from real-world EEG. We translate the brain
age framework, originally developed using lab and
clinic-based magnetic resonance imaging, to real-
world EEG data. Using recordings from more than
a thousand individuals performing a focused at-
tention exercise or sleeping overnight, we show not
only that age can be predicted from wearable EEG,
but also that age predictions encode information
contained in well-known brain health biomarkers,
but not in chronological age.

Overall, this thesis brings us a step closer
to harnessing EEG for neurophysiological moni-
toring outside of traditional research and clinical
contexts, and opens the door to new and more
flexible applications of this technology.


