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ABSTRACT

When a two-level system – a qubit – is used to probe a larger system, it naturally
leads to answering a single yes-no question about the system state. Identifying what is
the state of a system thus comes down to ask a series of binary questions iteratively to
refine our knowledge. However, this approach leads to long measurement times for large
systems, such as a resonator containing a large number of photons. In this thesis, we
propose a new approach which enables us to make a measurement in a time, which is
independent of the system size. This new measurement uses the qubit as an encoder of
information about the system state into the many propagating modes of a transmission
line.
Assuming an ideal detector, we show that photon counting can then be implemented

in a fixed time whatever the number of photons. We demonstrate the practicality of
this approach by counting the number of photons in a microwave resonator coupled
dispersively to a single superconducting qubit.
In a first instance, we observe the qubit fluorescence dependence on the resonator

photon number when the qubit is driven by a microwave monochromatic tone. Using the
backaction of this dispersive measurement and post-selection, we evidence the photon
counting ability of the measurement. The dephasing rate between two Fock states
induced by the photon number measurement is measured and compared to theory.
The latter allows us to study the non-linear dependence of the dephasing rate on the
microwave drive amplitude.
In a second instance, the qubit fluorescence is probed using a frequency comb. Multi-

plexed heterodyne detections are simultaneously performed at each comb frequency and
allow us to measure the photon number in the microwave resonator. This multiplexed
measurement benefits from the recent bandwidth improvements of near quantum lim-
ited amplifiers. The limited cavity lifetime and detector efficiency prevented us from
reaching single shot readout of the photon number in this proof-of-principle experiment.
However, unlike in sequential measurement schemes, a single run of our experiment does
provide, in parallel, partial information about the occupancy of each Fock state. Besides,
we manage to observe the multiplexed measurement backaction on the resonator using
direct Wigner tomography, which allowed us to measure the decoherence rate of the
resonator induced by the measurement. We evidence an optimal qubit drive amplitude
for information extraction, which matches the expected dynamics of a qubit under a
multifrequency drive.
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RÉSUMÉ

Lorsque l’on utilise un bit quantique (qubit) pour sonder l’état d’un système, la stratégie
habituelle consiste à poser une série de questions binaires, chaque question améliorant
notre connaissance de l’état du système. Cependant, cette stratégie nécessite de longs
temps de mesure lorsque l’on considère un grand système, comme par exemple un ré-
sonateur électromagnétique peuplé d’un grand nombre de photons, car chaque question
ne peut extraire qu’un bit d’information. Dans cette thèse, nous proposons une nouvelle
stratégie qui permet d’obtenir un temps de mesure indépendant de la taille du système.
Cette nouvelle approche est basée sur l’utilisation d’un qubit comme routeur, ce qui
permet d’encoder l’information sur l’état du système dans les nombreux modes d’une
ligne de transmission.
Dans le cas d’un détecteur idéal, nous montrons à l’aide d’une expérience de pensée

que cette stratégie permet de mesurer le nombre de photons contenu dans une cavité
en un temps constant, indépendant de la taille du système. Pour démontrer la fais-
abilité de cette mesure idéale, nous appliquons cette stratégie à la mesure du nombre
de photons contenu dans un résonateur micro-onde couplé dispersivement à un qubit
supraconducteur.
Dans un premier temps, la fluorescence du qubit est mesurée lorsque ce dernier

est sondé à l’aide d’un ton micro-onde monochromatique. L’action en retour de cette
mesure dispersive est étudiée, nous démontrons à travers la post-sélection que la fluores-
cence du qubit encode effectivement le nombre de photons contenu dans le résonateur.
Nous mesurons le taux de déphasage induit par la mesure entre deux états de Fock
du résonateur et le comparons à un modèle théorique. Ce dernier nous permet alors
d’étudier le comportement non-linéaire du taux de déphasage induit par la mesure avec
l’amplitude du ton micro-onde.
Dans un deuxième temps, la fluorescence du qubit est sondée à l’aide d’un peigne de

fréquence. Des mesures hétérodynes multiplexées à tous les tons du peigne de fréquence
nous permettent alors de mesurer le nombre de photons contenus dans le résonateur.
Cette mesure multiplexée est rendue possible grâce aux récentes améliorations sur la
bande passante des amplificateurs limités quantiquement. Le temps de vie du résonateur
et une efficacité de mesure limités nous empêchent d’atteindre un rapport signal sur
bruit permettant de décoder toute l’information contenue dans notre mesure hétéro-
dyne multiplexée. Cependant, contrairement à une mesure séquentielle, notre approche
fournit en parallèle une information partielle sur la population de chaque état de Fock.
L’action en retour de cette mesure dispersive multiplexée est étudiée à l’aide de tomo-
graphies de Wigner du résonateur. Nous sommes ainsi capables de mesurer le taux de
déphasage induit pas la mesure multiplexée et mettons en évidence une amplitude opti-
male du peigne de fréquence qui maximise le taux de déphasage. Un modèle théorique
basé sur l’approximation que le peigne de fréquence est infini nous permet de prédire
l’amplitude optimale du peigne, et ce en accord avec l’expérience.
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Part I

INTRODUCTION





1
INTRODUCTION

1.1 background

Quantum and classical measurements differ significantly from one another. When per-
forming a quantum measurement, the quantum state of a system is modified depending
on the results of the measurement - an effect called measurement back-action. A classi-
cal measurement can also have a back-action on a system, for example by draining part
of its internal energy and thus decreasing its temperature, but this effect is not system-
atic. For a quantum measurement, the back-action exists as soon as information about
the quantum state is extracted. Therefore, quantum mechanics can be seen partly as
an information theory.
It is difficult to describe quantum measurement without the notion of entanglement.

It was first introduced by Einstein, Podolsky and Rosen in 1935 with the EPR paradox
[1]. The question was to know if there are hidden local variable [2] in quantum mechanics
or if the theory is intrinsically non-local. Bell came in 1964 with a proposal to test it
quantitatively [3]. This was measured by Alain Aspect et al. [4] who concluded that
there is no hidden local variable. Thus, entanglement and non-locality are intrinsic
concept to the quantum mechanics, whatever is our interpretation of the quantum
mechanics.
The first description of the back-action was the collapse of the quantum state intro-

duced by W. Heisenberg [5] and used by J. von Neumann to describe the von Neumann
measurement [6]. However this first description treated the measurement as an instan-
taneous and discrete phenomenon which is a poor approximation as instantaneous is
unphysical, since it would require an infinite amount of energy. The generalized measure-
ment description [7] solves this issue by describing the measurement as an entanglement
of the system with a probe which is measured by a measurement apparatus. The en-
tanglement between the system and the probe is a key part of the measurement as it
limits the type and the amount of information one can recover from the measurement.
With this formalism, a continuous measurements and its back-action can be described.
The back-action of a continuous measurement is not described by an instantaneous
collapse of the quantum state but rather by its continuous decoherence [7]. Because of
the Heisenberg uncertainty principle, the information extraction rate of the continuous
measurement is bounded by the decoherence rate induced by the measurement [8].
Entanglement and quantum measurements are now routinely used in experiments

measuring and manipulating individual quantum systems, following pioneering works
from the 2012 Nobel Prize laureates, Haroche and Wineland [9]. A part of the work
of Haroche was dedicated to the measurement of the number of excitations, called
photons, residing into the stationary electromagnetic mode of a microwave cavity using
a quantum two-level system, or quantum bit (qubit) as a probe. Each measurement was
revealing at most 1 bit of information about the number of photons in the cavity mode
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and a sequence of various and successive measurements was needed to measure the
photon number. However, is it the best use of a qubit to determine an observable of an
individual quantum state with many possible outcomes such as a photon number? This
is the question this thesis aims to answer. It will lead us to investigate the back-action
of multiple and simulatenous measurements performed on an individual quantum state.

1.2 individual quantum state

Before measuring or manipulating an individual quantum state, one has to understand
what are the necessary conditions for its existence. As Zurek explains [10], classicality
is a property which emerges from a quantum system when it interacts with an environ-
ment. Thus, one can see quantum mechanics as a theory describing “isolated” systems.
Of course a system can not be rigorously isolated otherwise it would be impossible to
observe. Here, we consider a system sufficiently isolated from the environment such that
its quantum state can be manipulated and measured before being reduced to a simple
classical state by the coupling to the environment. So far, no maximal size has been
identified for the existence of a quantum system. For example, the most massive sys-
tems showing degrees of freedom described by quantum mechanics are the 40 kg LIGO
and VIRGO mirrors [11, 12]. These mirrors are pendulums sufficiently isolated from the
earth’s vibrations to have mechanical degrees of freedom that follow the rules of quan-
tum mechanics. The motion and position of the mirrors are thus described similarly to
a quantum mechanical harmonic oscillator.
Nowadays, numerous systems were successfully “isolated” such that their individual

quantum state could be manipulated. One can cite trapped ions [13], nitrogen-vacuum
centers [14], quantum dots [15], Rydberg atoms [16] and electromagnetic fields or me-
chanical waves in cavity quantum electrodynamics [16], cavity optomechanics [17], and
circuit quantum electrodynamics [18].
In this thesis, we develop a new measurement approach to measure the number of pho-

tons contained in a stationary electromagnetic mode. Our experimental testbed relies
on superconducting circuits. These circuits are made of resonators and transmission lines
that can be easily combined to a Josephson junction in order to create artificial atoms.
They host collective excitations of the electromagnetic field and the superconducting
condensate which are described by electromagnetic resonant modes. These modes can
be considered as “isolated” and one can manipulate and measure their quantum states.
One of the main advantages of superconducting circuits is that their parameters can
be adjusted by design.

1.3 photon-counting with the dispersive interaction

We want to measure in the pohoton number basis the state of a superconducting mi-
crowave resonant mode - that we dub storage - using a superconducting artifical atom
called the transmon (see Fig. 1.1). When both are cooled down to millikelvin tempera-
ture, they exhibit quantum behaviors and the transmon can be considered as a quantum
bit (qubit). The storage state is described by the number of photons it contains; the
state of the qubit is described by only two states: ground and excited. The macroscopic
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storage

qubit

Figure 1.1: Optical picture of the circuit. The storage mode (green) is coupled to a transmon ar-
tificial atom or qubit (orange). An additional qubit (blue) and its dedicated readout
resonator (purple) are used as a reference photon counter and storage tomography.

size of the qubit allows us to operate in a regime where the coupling rate with the
storage is higher than the dissipation rate of the qubit and the storage mode [19]. The
detuning between the resonant frequencies of the qubit and the storage is designed to be
much larger than the coupling rate leading to an interaction which red-shifts the qubit
frequency for each photons in the resonator, also called a dispersive interaction [20].
In order to photon count, the dispersive interaction is designed to be in the number-
resolved regime, in which the frequency red-shift is larger than the decoherence rate of
the qubit [21]. Thus, the qubit frequency depends on the number of photons occupying
the storage mode.
This system is in fact analogous to the one used by Haroche in his Nobel Prize works

and this thesis follows up on his microwave photon-counting works [22, 23, 24, 25] and
their implementations in circuit quantum electrodynamics (circuit QED) [21, 26, 27,
28]. In those circuit QED works, the number-resolved regime is used to manipulate the
qubit such that its state encodes information about the storage photon number. This
information can be recovered by measuring the qubit state using a dedicated readout
resonator dispersively coupled to the qubit. This qubit state readout is called a qubit
dispersive readout. In this case, the qubit readout answers a yes-no question about the
system state. Identifying what is the state of a system thus comes down to playing a
game of “Guess Who?”. A series of binary questions are asked iteratively to refine our
knowledge about the state. Unlike the classical game, each answer disturbs the state
of the system due to the measurement back-action. Determining an arbitrary number
of photons in the cavity between 0 and 2m − 1 takes at least m consecutive qubit
measurements since each answer provides at most one bit of information about the
system state. This limitation originates from the encoding of the extracted information
into the quantum state of the qubit.
Our approach uses the fact that photon number is already encoded in the qubit

frequency owing to the dispersive coupling. Thus, probing the qubit fluorescence with
a transmission line enables us to readout the qubit frequency and thus to extract
information about the storage photon number [29]. This measurement is the reverse of
the usual qubit dispersive readout, and can be viewed as the storage dispersive readout.
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storage qubit transmission line

Figure 1.2: The photon number of the storage is encoded in the qubit frequency or color. The
qubit is probed with a frequency comb trough a transmission line. The amplitude
of the reflected frequency comb enable to measure the photon number, here 2.
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Figure 1.3: Time domain–division multiplexing takes place one question at a time, while
frequency-division multiplexing simultaneously retrieves multiple answers.

When probing at a single frequency, the qubit fluorescence encodes at most 1 bit of
information, however, thanks to the recent bandwidth improvements of near quantum
limited amplifiers [30], we can probe simultaneously the qubit fluorescence at multi-
frequencies using a frequency comb (see Fig. 1.2). Here, the qubit is used as an encoder
of information about the storage state into the many propagating modes of a trans-
mission line which can, together, encode much more than 1 bit of information. Daring
an analogy with communication protocols [31], previous measurement schemes with
time series of binary questions used time division multiplexing while our experiment
demonstrates the analogous of frequency division multiplexing, where the qubit alone
acts as the frequency multiplexing transducer (Fig. 1.3).
Assuming an ideal detector, we show that photon counting can then be implemented

in a time independent of the number of photons. We demonstrate the practicality of this
approach in an experiment where information about 9 possible photon numbers (more
than 3 bits) in the storage mode is simultaneously extracted by a single superconducting
qubit into 9 propagating modes of a transmission line. When driving the qubit at 9 test
frequencies by multiplexing, the qubit simultaneously emits 9 microwave signals that
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Figure 1.4: Multiplexed photon-counting. Dots: simultaneously measured average emission
coefficients corresponding to every photon number k from 0 to 8 as a function of
the initial mean photon number n̄ in the storage mode. rk is here the reflection
coefficient of the qubit at its frequency corresponding to k photons in the storage
mode. Solid lines: prediction based on a master equation without free parameters.

each reveals information about the photon number ranging from 0 to 8 (see Fig. 1.4),
implementing a multiplexed dispersive readout of the storage mode.

1.4 measurement back-action

The measurement back-action of the storage dispersive readout and of the storage
multiplexed dispersive readout are observed using direct Wigner tomographies of the
storage [32], which allows us to measure the decoherence rate of the storage induced
by the measurement.
The dephasing between two storage Fock states induced by the storage dispersive

readout is measured and reproduced with a theory based on the adiabatic elimination
of the qubit. We observe a strong non-linear dependence of the measurement-induced
dephasing rate on the amplitude of the drive probing the qubit. The drive frequency
leading to the largest dephasing rate depends non-linearly on the drive amplitude. This
is a major difference compared to the back-action of a qubit dispersive readout.
The dephasing of the storage mode induced by the storage multiplexed dispersive

readout is measured and shows a non-linear dependence on the amplitude of the multi-
frequency drive. We evidence an optimal qubit drive amplitude for information extrac-
tion, which matches the expected dynamics of a qubit under a multi-frequency drive
(see Fig. 1.5). In this case, the qubit undergoes periodic and almost instantaneous ro-
tations in the Bloch sphere around the x-axis. At the optimal amplitude, each rotation
corresponds to a π-pulse, thus maximizing the emission of the qubit and the information
extraction rate.

1.5 outline

This thesis is not written in a chronological order. Almost all the measurements were
performed during the first half of the thesis whereas the theory and models where
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Figure 1.5: Dephasing rate measured (dots) and simulated (line) as a function of qubit drive
amplitude Ω in units of χ. The evolution of the dephasing rate are strongly non
linear with drive amplitude. β is the initial coherent state in the storage and δf0

s

the detuning with which the storage is probed.

derived during the second half. This means most experiments were performed with
an understanding of the phenomenon below what is explained in this manuscript. To
discuss the results in a logical and pedagogical order, we show measurements and
theories together.
The three first chapters introduce the basic concepts needed to understand this the-

sis. Chap. 2 gives a quantum description of superconducting circuits. It discusses the
master equation of an open quantum system, the basic controls one can apply on the
circuit modes and the dispersive coupling. Chap. 3 shows how a superconducting cir-
cuit can be simulated to refine its design and reach the targeted circuit parameters. It
focuses on the coupling between the circuits modes and the transmission line and the
unavoidable resulting coupling to the environment - the Purcell effect. Chap. 4 intro-
duces the notion of quantum measurement, the relevant parameters to classify quantum
measurements and the different types of quantum measurements. It discusses in details
heterodyne detection and the role of quantum-limited amplifiers. This chapter finishes
with a characterization of the Josephson travelling wave parametric amplifier used in
this thesis.
The four next chapters discuss the microwave photon-counting experiments and the

main results of this thesis. Chap. 5 describes standard photon-counting protocols and
their limitations and how a multiplexing approach can improve the measurement speed.
In Chap. 6, we discuss the photon-counting of a resonator coherent state using the
fluoresence of a dispersively coupled qubit. The measured back-action is studied and
discussed with regards to the back-action of the qubit dispersive readout. Chap. 7 ex-
plores the photon-counting of a coherent state using a frequency comb to probe the
qubit fluorescence in a multiplexing way. The photon spectral density of the reflected
comb is measured and related to the dynamics of a qubit driven by a infinite frequency
comb. Finally, Chap. 8 discusses the measurement back-action of the resonator multi-
plexed dispersive readout. The measured dephasing rate induced by the measurement
is explained using the resonator-qubit dynamics when the qubit is probed by an infinite
frequency comb. The last chapter, Chap. 9, is dedicated to the work performed at the
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end of this thesis to reach a single-shot photon number measurement. It concludes with
the perspectives of this thesis work.
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2
CIRCUIT QUANTUM ELECTRODYNAMICS

The field of circuit quantum electrodynamics concerns the control, the measurement
and the study of quantum electromagnetic modes based on superconducting devices.
As said in the introduction, a degree of freedom is described by quantum mechanics
if one can consider it as “isolated”, i. e. if one can control and measure it on a time
scale smaller than the one with which the degree of freedom and the environment
interact. For circuit quantum electrodynamics, the degrees of freedom are the electric
and magnetic field1. The two fields are coupled together as described by the Maxwell
equations and the result is the existence of electromagnetic modes. Those modes are
the ones studied in the circuit quantum electrodynamics. The superconductivity of the
devices enables one to confine the electric and magnetic fields, to impose the resonant
condition (the resonant frequency of the modes is around 5 GHz), and to remove the
Joule effect which would destroy the mode quantum state. Interestingly, the use of a
superconductor enables coupling these modes to a Josephson junctions which can be
built to have mode resonating in the GHz regime. Thus superconductors and Josephson
junctions enable one to design and fabricate low-dissipation elements and to couple
them strongly in the microwave regime.
The use of superconductors is not enough to ensure the existence of a quantum state

on a time scale long enough to manipulate this state. Electromagnetic shielding and
filtering, and low temperature are needed to protect the quantum state in these systems.
The low temperature plays two roles. First, it freezes the environment dynamics and
fluctuations. Second, it cools down the system into its ground state. The energy of
the thermal fluctuations kBT , where kB is the Boltzmann constant, has to be small
compared to the energy of a photon of the electromagnetic mode, which is given by
hfr with h the Planck constant and fr the resonant frequency of the mode. For a mode
resonating at 20 GHz, the energy of a photon is equal to the energy of the thermal
fluctuations at 1 K. With resonant frequencies around 5 GHz, temperatures of 10 mK,
which are reachable with dilution refrigeration [33], are sufficient.

Compared to optical light experiments, which show quantum behaviors even at room
temperature, the requirement of a dilution fridge to cool down the microwave modes is
a drawback. However, to control, probe, and simulate the system, the circuit quantum
electrodynamics community can use microwave equipment and simulation softwares
that are already well developed by the microwave industry.
This chapter will describe the nature of the electromagnetic modes used in circuit

quantum electrodynamics and derive the formalism to describe them. As said, even
if the system is “isolated”, meaning one can control and measure it before that the
decoherence happens, it is still an open system interacting with its environment. We
will see how we can describe this interaction and derive a master equation describing
the dynamics of the system’s quantum state.

1 Either their free version in vacuum or their dressed version in the matter.
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a. b.

c.

Figure 2.1: a. Optical picture of a λ/2 superconducting resonator in niobium. The vertical
coplanar waveguide is a transmission line used to probe the resonator. b. Optical
picture of a rectangular λ/4 superconducting post cavity in aluminum. One can see
a sapphire wafer with the two antennas of a transmon qubit in tantalum. c. Optical
picture of an open rectangular cavity. The groove in the right piece is used for an
indium seal.

2.1 circuit quantization

2.1.1 About resonators and cavities

The field of cavity quantum electrodynamics (cavity QED) was born to study the
quantum state dynamics of a light mode confined in a superconducting cavity. By
coupling light to matter (e.g., atoms, spins, electrons), the field has led to a large number
of ground-breaking experiments [7, 16, 34]. In 1999, the first superconducting qubit
was created [35], followed, in 2004, by the first demonstration of the regime of strong
coupling between a superconducting qubit and a resonator [19], leading to the birth of
a new branch called circuit QED. While the cavity QED field uses cavities to confine
light modes and make them interact with various kinds of matter, the circuit QED
field uses cavities and 2D resonators to confine light and the Josephson junction non-
linearities to create and engineer interactions. Thanks to the large range of accessible
parameters, the circuit QED field can be used to study and exploit various phenomena
like quantum thermodynamics [36, 37, 38], quantum sensors [39], quantummeasurement
and quantum back-action [40, 41], and quantum computing [18, 42].
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2.1 circuit quantization

a. b.

Figure 2.2: a. Representation of a resonator or cavity mode by an LC electromagnetic res-
onator. The relation between the flux Φ through the inductor and the charge Q of
the capacitor to the current i and the voltage V is given by Eq. (2.2). b. Harmonic
potential of a harmonic oscillator as a function of the flux Φ. Fock state |n〉 levels
are equally spaced by hfr, the energy of a photon at the mode resonance frequency
fr.

Resonators can take many forms: the most common is the λ/2 coplanar waveguide
[43] made of superconductors (see Fig. 2.1a). It behaves as a Fabry-Perot cavity with
a first resonance for a wavelength equal to twice its length. Superconducting cavities
are bulk 3D superconductors designed to have a stationary resonant electromagnetic
mode. The two most used are the rectangular cavity for readout [44], and the coaxial
λ/4 cavity for high Q cavity [45, 46]. The resonant frequencies of a rectangular cavity
of dimensions lx, ly, lz are given by

fk,l,m =
c

2π

√(
kπ

lx

)2

+

(
lπ

ly

)2

+

(
mπ

lz

)2

(2.1)

with k, l, and m, the number of anti-nodes along the x, y, and z direction. For a λ/4
cavity, the resonant frequency is mainly given by the height h of the cavity central
post; the wavelength of the first mode is equal to about 4h. All those resonators and
cavities have an infinite number of resonant modes, which can all be described by an
LC circuit [47, 48] ( see Fig. 2.2a). As they are made of superconductors, we first ignore
the dissipation and model the circuit without a resistor2. One can define the generalized
flux Φ through the inductor and the generalized charge Q of the capacitor, which are
related to the current i and the voltage V by [48].


Φ(t) =

∫ t

−∞
dt′V (t′)

Q(t) =

∫ t

−∞
dt′i(t′)

. (2.2)

2 To be more precise, there is no DC resistance, but the superconductors still have an AC resistance
which can first be neglected.
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We can define the classical Lagrangian L of the system

L =
CΦ̇2

2
− Φ2

2L
(2.3)

with C the capacitance, and L the inductance of the mode studied. Here the capacitor
and inductor energies play kinetic and potential energy roles, respectively. One can
derive the conjugate variable of Φ, which is equal to CΦ̇, and identify it to the charge
Q thanks to the capacitor characteristic. Thus Φ plays the role of position and Q plays
the role of momentum. The classical Hamiltonian of the system can be written

H =
∂L
∂Φ̇

Φ̇− L =
Q2

2C
+

Φ2

2L
. (2.4)

As expected, this Hamiltonian describes a harmonic oscillator with two degrees of
freedom, which are the flux Φ and the charge Q. It is identical to a mechanical harmonic
oscillator describing a mass-spring system with a mass C and a spring constant 1/L.
The resonant frequency of the LC oscillator is given by fr = 1/

√
LC and its impedance

by Z =
√
L/C. The quantum Hamiltonian of the circuit is the same as the classical

one, with Q and Φ, replaced by quantum operator charge Q̂ and flux Φ̂ that obey the
canonical commutation relation [Φ̂, Q̂] = i~.

Ĥ =
Q̂2

2C
+

Φ̂2

2L
. (2.5)

One can diagonalize this Hamiltonian using the annihilation operator â defined as

â =
1√
2~Z

(Φ̂ + iZQ̂). (2.6)

Thus, the Hamiltonian takes the form

Ĥ = hfr(â
†â+ 1/2) (2.7)

with the canonical commutation relation [â, â†] = 1. We recognize the diagonal form of a
quantum harmonic oscillator with â, the operator which annihilates one mode quantum,
â† the creation operator which creates one mode quantum, and â†â the number operator
that gives the number of quanta in the mode. Those quanta, called photons, are
collective excitations of the superconducting fluid made of Coopers pairs and of the
electromagnetic field. The basis that diagonalizes the Hamiltonian is the Fock basis
{|n〉}n≥0 [48], where n is the number of quanta of the mode (see Fig. 2.2b).
The flux and charge operators can be expressed using the annihilation and creation

operators as

{
Φ̂ = ΦZPF(â+ â†)

Q̂ = QZPF(â− â†)/i
, (2.8)

with ΦZPF =

√
~Z
2

and QZPF =

√
~

2Z
, the zero-point fluctuations. One can notice that

their product saturates the Heisenberg uncertainty principle: ΦZPFQZPF = ~/2.
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b.a.

Figure 2.3: a. Equivalent circuit of a transmon qubit. The crossed box represents a Josephson
junction including the intrinsic junction capacitor. We can separate the linear part
from the non-linear one and thereby describe the transmon qubit as an LC resonator
in parallel with a non-linear element, represented by the "spider" symbol. b. The
cosine potential of the transmon qubit with its low energy levels. In the transmon
regime, the frequency is independent of the charge ng and decreases proportionally
to the anharmonicity (which is equal to the charge energy EC) when we climb the
energy levels.

Those resonators and cavities cannot be used alone for two reasons. First, as the fre-
quency of the mode is independent of the state (see Fig. 2.2b), the only state one can gen-
erate with a classical source is a coherent state |α〉 = exp

(
−|α|2/2

)∑
n≥0 α

n/
√
n! |n〉.

Second, as we will see in Sec. 2.5.1 if we couple two light modes capacitively or induc-
tively, we obtain two hybrid modes that are uncoupled. Thus, to have greater control
and coupling between our light modes, we need to add non-linearities in the circuit,
which is the role of the Josephson junction. From now on, we will not write the hat
on a quantum operator except if the classical or quantum nature of the operator is
ambiguous.

2.1.2 The transmon qubit

A simple way to add non-linearity in the circuit, to have control of it, and to achieve
coupling between the modes is to use a Josephson junction (JJ). The JJ has the advan-
tage of working in the microwave regime and shows small amounts of dissipation. It is
possible to build either a parametric coupler based on JJ [49, 50, 51, 52] or a resonant
mode that can be used as a quantum bit (qubit)[49]. Here, we will focus on the qubit
type used in this thesis: the transmon qubit.
The transmon qubit is made from a JJ shunted by a capacitor made of two supercon-

ducting islands (the fabrication process is detailed in App. a). As we will see below, the
capacitance and the junction properties make the transmon a charge-protected qubit
based on a Cooper-pair box. The transmon is currently the most used qubit, partic-
ularly in multi-qubit experiments[53, 54]. Before considering it further, we will first
describe a JJ.
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a. b.

c. d.

Figure 2.4: a. Scanning electron microscope (SEM) image of a transmon qubit. The bright
element at the center is the aluminum part of the qubit. The two gray pads on each
side of the aluminum part are the two superconducting islands in niobium. At the
top and at the bottom, one can see the beginning of λ/2 resonators capacitively
coupled to the transmon. b. Aluminum part of the transmon. Here, we can see
the galvanic contact, which corresponds to the large area shared by the niobium
superconducting islands and the aluminum in order to obtain a small amount of
electrical resistance between the two. c. SEM image of the JJ, which is the bump at
the center. The junction is evaporated using an inline Dolan bridge (see Sec. a). d.
An SEM image of another JJ in Al/AlOx/Al using a 90° Dolan bridge (see Sec. a).
The visible grains are due to the layer of aluminum that was used to image the
device.

A JJ is comprised of a weak link between two superconducting islands. In the circuit
QED field, the weak link is usually an oxide barrier in AlOx between two supercon-
ducting Al wires. Up until now, only junctions that have aluminum oxide barriers have
shown good coherence properties and an almost reproducible fabrication process. In this
thesis, the superconducting islands of the transmon are either made of niobium, alu-
minum or tantalum, and have a galvanic contact with the aluminum junction wires. The
dynamics of a JJ can be described by the phase difference ϕ between the Bose–Einstein
condensates of the two superconducting islands [55]. The Josephson Hamiltonian reads

HJJ = −EJ cosϕ, (2.9)

with EJ/2 ∼ h×20 GHz is the energy associated with a coherent tunneling of a Cooper
pair through the junction. The phase ϕ can be related to a flux Φ across the junction

using ϕ =
Φ

ϕ0
(mod 2π) 3, with ϕ0 = ~/(2e) being the reduced flux quantum. In order

3 If the junction is shunted by an inductance, then the phase ϕ is defined over R rather than ]− π, π]
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2.1 circuit quantization

to describe the transmon qubit, we need to take into account the capacitance between
the two superconducting islands and the capacitance of the JJ. The full Hamiltonian
is written as [56]

Htransmon = 4EC(nc − ng)2 − EJ cosϕ, (2.10)

with nc the quantum operator giving the difference between number of Copper pairs

of the two superconducting islands, EC =
e2

2(Cshunt + CJ)
being the charging energy,

e the electrical charge, and Cshunt ∼ 0.1 pF and CJ ∼ 1 fF the capacitance of the
superconducting islands and of the junction, respectively. Finally, ng is a charge offset
either due to a voltage source or to an asymmetry between the superconducting islands
[47]. We can then distinguish two parameter regimes. If EJ/EC < 10 (e. g., if there is no
shunt capacitor), we are in the Cooper-pair box regime, and the qubit is a Cooper-pair
box qubit[35]. The energy spectrum will depend strongly on ng and any charge noise on
ng will lead to a strong dephasing of the Cooper-pair box qubit and a coherence time in
the order of 1 µs [20]. By adding the shunt capacitor, we can increase the charge energy
EC to reach the ratio EJ/EC > 30, which is called the transmon regime [20]. The
dependence of the energy spectrum on ng decreases exponentially, with EJ/EC leading
to a spectrum that is independent of ng. The larger the ratio EJ/EC is, the wider
the decomposition of the transmon eigenstates on the charge basis. As the transmon
state is delocalized in the charge basis, it can be viewed as a charge-protected qubit
based on a Copper-pair box. At the same time, when EJ/EC increases, the low-energy
eigenstates of the transmon are more localized around the phase ϕ = 0, which allows
us to separate the linear part from the non-linear cosine part.

Htransmon = 4EC(n− ng)2 +
EJ
2
ϕ2 − EJ︸ ︷︷ ︸

linear

−
(

cos (ϕ)− EJ +
EJ
2
ϕ2

)
︸ ︷︷ ︸

non linear

(2.11)

The linear terms can easily be diagonalized using the qubit annihilation operator

b =
1

2

(
EJ

2EC

)1/4
(
ϕ+ 2i

√
2EC
EJ

n

)
. (2.12)

Thus, the linear part corresponds to an harmonic oscillator with the resonant frequency
1

h

√
8EJEC . The second term adds non-linearities to the transmon qubit, making it a

non-linear harmonic oscillator at low energies. The junction can be viewed as a non-

linear inductor L = LJ/ cos(ϕ) with a low-energy inductance LJ =
ϕ2

0

EJ
∼ 15 nH. If we

only take into account the fourth-order non-linearities, the Hamiltonian of a transmon
reads

Htransmon =
√

8EJECb
†b− EC

12
(b†+ b)4 ≈ (

√
8EJEC −EC)b†b− EC

2
b†b†bb, (2.13)

where ft = (
√

8EJEC−EC)/h, and the last approximation is obtained using a rotating-
wave approximation (RWA) that stands as long as hft � EC/4 (which is the case in
the transmon regime). The non-linear term modifies the transmon resonant frequency
depending on the transmon state. As shown in Fig. 2.3b, the resonant frequency between
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levels m and m + 1 is fm,m+1 = ft −mEC at the first order in EC/EJ . The fact that
the anharmonicity, defined as f1,2−f0,1, is given by EC sets a limit on the ratio EJ/EC
we can design. Indeed, in order to selectively address the two lowest levels within a
time ∆t[57] and at a frequency of around 5 GHz, EC needs to be larger than 1/∆t and
EJ will be fixed by the resonant frequency. In practice, EC is between 100 MHz and
300 MHz. With this design, the |0〉 and |1〉 states (also called the |g〉 and |e〉 states)
can be isolated (i. e., controlled selectively) and defined the two states of the transmon
qubit.

2.2 open quantum systems

In the last section, we showed how we can create harmonic oscillators and transmon
qubits. We would now like to describe the basic control and measurements we can
perform on such a system; however, this is, at this point, impossible. As things stand,
we only have the Hamiltonian of those systems, allowing us only to study them as closed
quantum systems. Of course, in order to perform measurements and apply controls, we
have to interact with the system and, as such, we also need to let the environment
interact with it. At this point, the system is no longer a closed system: it is now an
open one, and its dynamics need to be described by a new master equation. In the next
section, we will investigate how to describe an open quantum system4.

2.2.1 The density matrix

The simplest way to describe a quantum state is to use a vector |Ψ〉 of the Hilbert
space H associated with the system. However, only a pure state can be described in
this manner. In order to be able to use a statistical mixture of pure states, also called
a mixed state, and to study how the system can become entangled with an unknown
auxiliary system, we have to use the density-matrix formalism. A density matrix ρ is a
representation of the quantum state with the following properties [58]:

• for a pure state, |Ψ〉, ρ = |Ψ〉〈Ψ|

• ρ is hermitian, i. e. ρ = ρ†

• ρ is positive, i. e. ∀ |Ψ〉 ∈ H, 〈Ψ| ρ |Ψ〉 ≥ 0

• ρ is normalized, i. e. Tr(ρ) = 1

• The expected mean value of an observable O is given by 〈O〉 = Tr(Oρ)

• The probability pµ of finding an outcome mµ after a measurement is given by
pµ = Tr(Πµρ), where Πµ is the projector on the eigenspace of mµ

• If the measurement outcome is mµ, the measurement back-action changes ρ into
ΠµρΠµ

pµ
, where the denominator imposes to conserve a trace of 1.

4 It is important to note that even if the quantum system is opened, it is designed to be sufficiently
isolated to possess quantum behaviors. More precisely, the time the environment needs to destroy the
quantum behavior of the system is longer than the time we need to control and measure its behavior.
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2.2 open quantum systems

As ρ is hermitian and positive, it is diagonalizable only with positive eigenvalues. Thus,
we can write

ρ =
∑
µ

wµ |Ψµ〉 〈Ψµ| , (2.14)

where the normalization of ρ imposes
∑

µwµ = 1. In this case, we can understand ρ as
a statistical mixture of the pure states {|Ψµ〉}µ, where wµ is the probability of having
the state |Ψµ〉. From this form, it is a simple matter to use the Schrodinger equation
to derive the derivative of ρ

dρ

dt
= − i

~
[H, ρ], , (2.15)

with H the Hamiltonian of the system.
We need to highlight the fact that ρ is the best representation we have of the quantum

state, based on the information observers currently possess. This observation reveals
quantum mechanics as a theory of information [59]: we accumulate in one object (the
density matrix) all the information we have about a quantum state5. An omniscient
observer that knows all the information about a system will be able to write it as a
pure state.
That is, if two systems, A and B, are entangled, the quantum state can therefore

be described by the density matrix ρAB. The density matrix ρA, which describes the
state of A without looking at B, is simply given by the partial trace of ρAB over B

ρA = TrB(ρAB) =
∑
µ

〈
ΨB
µ

∣∣ ρAB ∣∣ΨB
µ

〉
, (2.16)

where {
∣∣ΨB

µ

〉
}µ is a basis of B, and the sandwich of ρAB produced by the bras and the

kets of B acts only on the Hilbert space of B. This way, ρA only contains information
about the system A; it does not contain any information about the entanglement it has
with the system B.

As our systems are open, they exchange energy and information with the environ-
ment; thus, the only exact way to describe them is to use the density-matrix formalism.
Moreover pure states are non-physical. The quantum version of the third law of ther-
modynamics says that we can prepare a pure state only by using an infinite amount of
resources [60]. Thus, experimentally, there is no such thing as a pure state. However,
pure states are a usefull representation which make the description of system easier in
many situations.
Before deriving the master equation for our system, let us see how we can be more

quantitative about the amount of information contained in the density matrix.

2.2.2 Von Neumann entropy

Instead of looking at the amount of information we have about a state, we prefer to
look at the amount of information that is unknown (in other words, the amount of

5 If we dare to construct an analogy, this is like asking someone to draw a picture of somebody they
have never seen, but only heard about. The drawing will contain all the information the artist has and
will not be fully accurate; additionally, parts of the drawing will be blurred when the artist contains
only partial information.
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information we have to discover if we wish to project the system’s current state onto a
pure state)6. Commonly, this missing information is called entropy, as it refers to the
same entropy concept found in statistical physics. There are several ways to define the
entropy of a quantum state; in this thesis, we will use the von Neumann definition of
entropy, which satisfies all the properties an entropy should have [59],

S(ρ) = Tr(ρ log2(ρ)) = −
∑
µ

wµ log2(wµ), (2.17)

where the second equality is easily obtained after the diagonalization of ρ. This shows
that the von Neumann entropy of a statistical mixture of pure states is the same as Shan-
non’s entropy[59] of the probability distribution {wµ}µ. The log2(x) = log(x)/ log(2)

function is the binary logarithm; in this way, the entropy is expressed in units of bits
of information.
As an example, let us consider the maximally entropic state of a qubit, ρq =

1

2
|g〉〈g|+

1

2
|e〉〈e|. We can translate its state as follows: the qubit has 50% chance of being in |g〉

and a 50% chance of being in |e〉. In this case, the von Neumann entropy gives S(ρq) = 1,
which means we need to measure one bit of information to know the qubit’s exact state.
This makes sense, as a qubit state is described by one bit of information7.

The von Neumann entropy will be used in Sec. 8.2.2 to derive the rate at which the
measurement extracts information from the system.

2.2.3 The environment’s measurements

In order to derive the master equation of an open quantum system, we first need to be
able to describe the interaction between the system and its environment. To do so, we
will derive the generalized measurement formalism, and use it to describe the system’s
interaction with the environment and to derive a differential equation for the system
dynamics.

2.2.3.1 Generalized measurement

As we will see in Sec. 4.1.2, most measurements are not projective. As such, we need
to introduce a formalism that will enable us to deal with all kinds of measurements [7].
First, let us describe how measurements are generally performed. Our system, called
system A, interacts with an ancillary system, B, which is used for the purpose of mea-
surement. The measurement scheme is as follows: we let systems A and B interact and
become entangled under the unitary evolution UE , before performing a von Neumann
measurement of system B [7]. Let us now consider the effect of this measurement pro-
cess on system A. As any mixed state is a statistical mixture of pure states, we will, in a
first time treat system A as starting in a generic pure state

∣∣ΨA
〉
. Thus, the full system

6 This is of course impossible, according to the third law of quantum thermodynamics, because of the
noise that is always attached to any measurement

7 This also means that a qubit state cannot encode more than one bit of information.
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2.2 open quantum systems

starts in the state
∣∣ΨA

〉
⊗
∣∣0B〉, where ∣∣0B〉 is a reference state for B. The entangling

operation UE changes the state of the system in a unitary way, as follows [7]:∣∣ΨAB
〉

= UE
∣∣ΨA

〉
⊗
∣∣0B〉 =

∑
µ

(Mµ

∣∣ΨA
〉
)⊗

∣∣ΨB
µ

〉
, (2.18)

where each
∣∣ΨB

µ

〉
corresponds to an eigenvector, associated with the result mµ of the

projective measurement that will be performed on B and Mµ are the measurement
operators which describes how the state of the system A evolve under the entangling op-
eration UE for each result mµ. We have the mathematical relationMµ =

〈
ΨB
µ

∣∣UE ∣∣0B〉.
If system A starts in a mixed state, we can write ρA, the density matrix of A, as a
convex combination of a pure state projectors, applying the same results to each pure
state. Thus, the state after the unitary evolution reads

ρAB = UE(ρA ⊗
∣∣0B〉〈0B∣∣)U †E =

∑
µ,ν

MµρAM
†
ν ⊗

∣∣ΨB
µ

〉〈
ΨB
ν

∣∣ . (2.19)

If the von Neumann measurement of B gives the outcomemµ, the state of B is projected
onto

∣∣ΨB
µ

〉
and the state of A becomes MµρAM

†
µ/Tr

(
MµρAM

†
µ

)
. By tracing over A,

we can show that the probability of measuring the outcome mµ is given by pµ =

Tr(MµρAM
†
µ). As the size of B is not bounded, the number of outcomes and the number

of measurement operators Mµ are not bounded either.
Let us then summarize what we discussed. A measurement scheme can be described

using a unitary entanglement with an ancillary system or probe, followed by a projec-
tive measurement of the ancillary system. Each measurement outcome mµ is related
to a measurement operator Mµ, which may not be Hermitian. The probability pµ of
obtaining the outcome mµ is

pµ = Tr
(
MµρAM

†
µ

)
, (2.20)

and the system state after the measurement becomes

ρA →
MµρAM

†
µ

pµ
. (2.21)

As the sum of the probability outcomes has to be equal to 1, the measurement operators
must satisfy a normalization equality, as follows∑

µ

M †µMµ = 1 . (2.22)

It is easy to confirm that, if the measurement operators are orthogonal projectors,
then the Eqs. (2.20) and (2.21) become equivalent to those used by a von Neumann
measurement performed on A.
If the measurement is unread, the density matrix ρA will be given as a statistical

mixture of all possible density matrices after the measurement, weighted by the outcome
probabilities [7]

ρA →
∑
µ

pµ
MµρAM

†
µ

pµ
=
∑
µ

MµρAM
†
µ. (2.23)

Generalized measurement is a powerful tool. As we will see in the next section, any
quantum evolution can be described as an unread generalized measurement; this will
allow us to derive the dynamics of an open system.
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2.2.3.2 Quantum maps and Kraus operators

Any unitary evolution, unread measurement, or interaction by a system with its envi-
ronment can be described by a linear super-operator8, L, called a quantum map [7].
A quantum map has to be a linear operator that leads to a hermitian, positive, and
normalized density matrix. Thus

• L(pρ+ qρ′) = pL(ρ) + qL(ρ′) with p+ q = 1

• L†(ρ) = L(ρ)

• Tr(L(ρ)) = 1

• 〈Ψ| L(ρ) |Ψ〉 ≥ 0 for all |Ψ〉 in H.

One can show that any quantum map can be written as an unread generalized mea-
surement [7]. In such cases, the measurement operators are also called Kraus operators.
Thus, any quantum map representing the evolution of the system during the time ∆t,
including any interaction with an environment, takes the form

ρ(t+ ∆t) = L(ρ(t)) =
∑
µ

MµρM
†
µ. (2.24)

There are many possible sets of Kraus operators Mµ for a given map but it is possible
to find a set with at most N2

H Kraus operators, where NH is the size of the system
Hilbert space H, whatever the size of the environment with which the system interacts.
These results show that the decoherence process, i. e. the decrease of the coherences
due to interaction with an environment, can be seen as a measurement performed by
the environment. As an observer of the system, we may not have access to the outcome
of this measurement. There is one condition to satisfy to describe the effect of an envi-
ronment on a system with such a quantum map, the system and the environment have
to start in a separable state; i. e. they must not be entangled or classically correlated.

2.2.3.3 The Lindblad equation

The quantum map derived in the last section is a time-integrated evolution. When
describing our system, we would prefer to use a first-order differential equation to de-
scribe the dynamics of ρ as a function of time t. Deriving such a differential equation
is not straightforward; the environment has to satisfy certain conditions. For a precise
description of the environment, see [61], and for a detailed discussion about the condi-
tions, see [7]. Here, we will only state that the following conditions are enough to derive
a first-order differential equation:

• The environment must be a “sink” (e. g. large enough, with many degrees of
freedom) whose evolution is not appreciably affected by the system. Thus, we can
use a Markov approximation to erase the memory of the environment. The time
scale of the correlation and fluctuation of the environment can be denoted by tc.
The Markov approximation involves looking at the system using a time step dt

8 A super-operator acts on operators of the Hilbert space.
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2.2 open quantum systems

larger than tc, otherwise we need to take into account the memory and fluctuations
of the environment to describe the system dynamics. tc can be viewed as the time
the environment needs to reset the modes that are coupled to the system.

• The system dynamics is divided into time slices of duration dt. Mathematically,
it means we cannot consider the limit dt → 0. This “coarse-grained” description
erases high-frequency system dynamics, the fluctuations and correlations of the
environment, and any entanglement between the system and the environment. In
order to capture a dynamics with the typical time scale td, the time step dt has
to be smaller than td. Thus, we can state the following restriction:

tc � dt� td. (2.25)

• We assume that no measurement has been performed by the observer (or, at least,
that only unread measurements have been performed).

Under the above assumptions, at any time t (with time steps dt) the state of the system
and the environment can be considered as factorized. This allows us to use a quantum
map to compute the system evolution during the next time step dt with Kraus operators
that do not depend on the time t.
We define the derivative of ρ as

dρ

dt
(t) =

Ldt(ρ(t))− ρ(t)

dt
, (2.26)

where Ldt is the quantum map describing the evolution of the density matrix during
the time dt: Ldt(ρ(t)) = ρ(t+ dt). As we choose dt small compared to the typical time
scale of the system dynamics, ρ(t + dt) must be equal to ρ(t) at the first order in dt.
This means that at least one of the Kraus operators in dt is of the order of unity. As
the set of Kraus operators is not fixed, we can make it so that only one Kraus operator
is of the order of unity. Let us call this Kraus operator M0, which we can write as

M0 = 1 − iH
~

dt− Jdt, (2.27)

where we isolate the hermitian H/~ and anti-hermitian J parts of the first-order contri-
bution. The decision to call the hermitian part H is not anecdotal: as we will see later,
it is in fact the Hamiltonian of the system.
The action of all other Kraus operators, i. e. MµρM

†
µ, are of the order of unity in dt.

Thus, we write

Mµ =
√

dtLµ, (2.28)

where Lµ is called the jump operator and is independent of t and dt. Using the normal-
ization condition of the Kraus operator set, we can express J as a function of {Lµ}µ

∑
µ

M †µMµ = 1 − 2Jdt+
∑
µ6=0

dtL†µLµ = 1 , (2.29)
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obtaining

J =
1

2

∑
µ6=0

L†µLµ. (2.30)

Note that H does not appear. This make sense, as the normalization condition of the
Kraus operator imposes the preservation of the density matrix trace and a Hamiltonian
dynamics is unitary and thus does not affect the density matrix trace.
We now know everything we need to write the derivative of the density matrix.

Eq. (2.24) reads

dρ

dt
= − i

~
[H, ρ] +

∑
µ6=0

D(Lµ)ρ, (2.31)

where D is the Lindblad super-operator defined as D(L)ρ = LρL† − 1

2
{L†L, ρ}.

This master equation is in the Lindblad form and, as such, is commonly termed the
Lindblad equation. In this equation, we retrieve the unitary evolution under the Hamil-
tonian H as in Eq. (2.15). However, the Hamiltonian is not exactly the same. In the
Lindblad equation, H contains all the renormalization effects due to its interaction with
the environment, as in, for example, the Lamb shift [61, 7]. When comparing Eqs. (2.15)
and (2.31), we can see that the major effect of the environment is adding the Lindblad
superoperator terms, which act as the unread measurement of the jump operators. Note
also that the Lindblad super-operator form ensures the conservation of the trace of the
density matrix.

2.3 dissipation and control of resonators

In this section and the next, we will describe and discuss the Lindblad form of the master
equation for resonators (or cavities) and qubits, and the controls and measurements we
can perform. As cavities and resonators are equivalent systems, for the rest of this thesis
we will always use the word “resonator,” except where the system is explicitly a cavity.

2.3.1 Input–output relation

In order to apply a control and to probe the resonator, we capacitively couple the
resonator to a microwave transmission line (see Fig. 2.5a). In this thesis, all experiments
are performed by probing the resonator in reflection; this only needs one transmission
line, whereas a measurement in transmission needs two transmission lines. To stay
general, we will derive the equations by assuming that the resonator has two ports.
Each transmission line can be described using an infinite number of LC modes in

parallel (see Fig. 2.5b); thus, the number of degrees of freedom the transmission line has
can be considered as large enough that the transmission line is a “sink.” We can then
use a master equation with a Lindblad form. The resonator can only lose photons one
by one, so the jump operators we have to consider are

√
κ1a,

√
κ2a, and

√
κla, where κ1

(respectively κ2)) is the coupling rate between the resonator and the first (respectively
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a. b. c.

Figure 2.5: a. LC mode capacitively coupled to a transmission line. The coupling capacitor
Cc depends on the length of the pin in 3D geometry and the capacitor pad size
in 2D. b. Equivalent descriptions of the transmission line. We replace it with an
infinite number of LC modes, corresponding to the line’s propagating modes. c. A
Caldeira–Leggett model of the transmission line. The infinite collection of LC modes
is replaced by a linear resistor whose impedance that is equal to that possessed by
the line [48]. This representation will be useful in Sec. 3.2.

second) transmission line, κl is the rate at which the resonator loses photons due to
internal losses, and a is the annihilation operator of the resonator mode. Thus, the
master equation is

dρ

dt
= − i

~
[H, ρ] + (κ1 + κ2 + κl)D(a)ρ. (2.32)

The input and output propagating fields for each transmission line i are linked to the
resonator state by the input–output relationship [62], as follows:

aout,i − ain,i = −
√
κia, (2.33)

where ain,i and aout,i are the annihilation operators of the input and output fields at
the end of the transmission line i (i. e. the input and output fields seen by the coupling
capacitor Cc).
Using the Heisenberg picture, we can write the quantum Langevin equation within

the RWA, followed by the annihilation operator a [48]

da

dt
= − i

~
[Hbare, a]− κ1 + κ2 + κl

2
a+
√
κ1ain,1(t) +

√
κ2ain,2(t) +

√
κlain,l(t), (2.34)

where Hbare is the Hamiltonian of the system under the assumption that no input field
was received through the two ports or through internal losses, and ain,l is the annihila-
tion operator representing the input field corresping to the internal losses. Driving port
1 with a coherent field (which is what we have when using a classical microwave source
attenuated at low temperature) of complex amplitude αin and angular frequency ω, the
mean value of the Langevin equation gives a mean-field equation reading

dα

dt
= −iωrα−

κtot

2
α+
√
κ1αin, (2.35)
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where κtot = κ1 + κ2 + κl, α is the complex amplitude of the resonator coherent field
and ωr is the resonant angular frequency. Employing the Fourier domain to solve this
equation and using the input–output relation (see Eq. (2.33)), we can compute the
reflected coefficient S11 on port 1 and the transmission coefficient S21 from ports 1 to
2 

S11(ω) =
αout,1(ω)

αin,1(ω)
= −κ1 − κ2 − κl + 2i(ω − ωr)

κtot − 2i(ω − ωr)

S21(ω) =
αout,2(ω)

αin,1(ω)
=

−2
√
κ1κ2

κtot − 2i(ω − ωr)

(2.36)

These two coefficients are the signal we measure when we perform a spectroscopy of
the resonator with an heterodyne detection setup.

2.3.2 Displacement operator

In the last section, we described the output field when the resonator is driven by a
coherent field. Let us now discuss the effect of this drive on the resonator state. Going
back to Eq. (2.34), we see that adding a coherent drive αine−iωt through port 1 is
equivalent to displacing the state ain by the drive

ain → ain + αine−iωt. (2.37)

Thus, a new term appears in the Langevin equation (2.34) that can be absorbed in the
Hamiltonian by adding the drive term Hdrive [62]:

Hdrive = i~
√
κ1(a† − a)(αine−iωt + α∗ineiωt). (2.38)

Using the rotating frame of the resonator and performing RWA, we get

HRWA = i~
√
κ1(a†αine−i∆t − aα∗inei∆t), (2.39)

with ∆ = ω − ωr being the detuning of the drive compared to the resonator frequency.
This Hamiltonian is equivalent to applying a displacement force in an oscillating direc-
tion on the resonator state. If the drive is resonant (∆ = 0), the direction of the force
is constant and the state ρ(t = 0) will be transformed after time t in

ρ(t) = D(α)ρ(0)D(α)†, (2.40)

where D(α) = exp
(
αa† − α∗a

)
is the displacement operator and α =

√
καint. This

equation is valid if the dissipation is negligible during the time t (i. e., t� 1/κtot). This
operator is called “displacement,” as it translates the state by α in the phase space.
Specifically, if we start in the vacuum |0〉, the state after a displacement D(α) is the

coherent state |α〉 = exp
(
−|α|2/2

)∑
n

αn√
(n!)
|n〉.

In comparison, if the drive is applied during a time t that is larger than a few
1/κtot, the resonator state reaches a steady state due to the competition between the
displacement force and the dissipation. The steady state is equal to the coherent state
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|αss〉 where αss is the stationnary solution of the mean-field equation (2.35) in the frame
rotating at the drive frequency

0 = i∆αss −
κtot

2
αss +

√
κ1αin, (2.41)

where the solution is

αss =
2
√
κ1αin

κtot − 2i∆
, (2.42)

2.3.3 Dissipation and temperature

We will now describe the resonator’s losses in more detail. Here, κtot is the total loss
rate of the resonator (i. e. the rate at which the resonator loses photons). Starting from
a coherent field |Ψ(0)〉 = |α〉, the state after at time t when no drive is applied is

|Ψ(t)〉 =
∣∣∣αe−κtott/2

〉
. (2.43)

The amplitude of the coherent field decreases at a rate κtot/2, while the mean photon
number 〈a†a〉|Ψ(t)〉 = |α|2e−κtott decreases exponentially at a rate κtot. In the same way,
the one-photon Fock state |1〉 decays toward the vacuum at a rate κtot. Thus, we can
define the relaxation time of the cavity as T1 = 1/κtot.
We usually use two other quantities to quantify the resonator and cavity losses:

the quality factor Q = ωr/κtot and the internal quality factor Qi = ωr/κl
9. Where

a resonator is used as a probe (to read out the state of a qubit, for example—see
Sec. 2.5.2), the quality factor has to be limited by the coupling to the transmission line
(i. e. Q � Qi) so that the information is not lost in the environment due to internal
losses. Usually, we use a readout resonator with a quality factor around 104 and an
internal quality factor around 106. When a resonator is used as a storage mode, the
coupling to the transmission line is decreased so that the losses are limited only by
the internal losses (Q ∼ Qi). An internal quality factor of 106 has been measured for
2D superconducting resonators [63, 64, 65] and of about 107− 109 for superconducting
cavities in circuit QED [46, 66].
What happens if the resonator temperature is not small compared to ~ωr/kB? In

such a situation, the thermal density matrix is

ρ =

(
1− e

− ~ωr
kBT

)
e
− ~ωr
kBT

a†a
, (2.44)

with T the effective temperature of the environment. Assuming a single temperature for
all the environments, we need to take into account two jump operators,

√
κtot(nth + 1)a

and
√
κtotntha

† with nth being the mean photon number of the thermal state. We can
define κ↑ = κtotnth and κ↓ = κtot(nth + 1) as the rate at which the resonator gains a
photon from the environment and the rate at which it loses a photon in the environment,
respectively. The Lindblad master equation takes the form

dρ

dt
= − i

~
[H, ρ] + κ↓D(a)ρ+ κ↑D(a†)ρ (2.45)

9 We may also define the external quality factor of each port i as Qext,i = ωr/κi.
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and κ↑ and κ↓ satisfy the detailed balance relation

κ↑
κ↓

= e
−
kBT

~ωr , (2.46)

and there are related to κtot through the relation

κtot = κ↓ − κ↑ (2.47)

2.4 dissipation and control of a transmon qubit

In this section, we will describe the master equation and the basic controls we can apply
to a transmon qubit. We will only consider a single-junction qubit10.

2.4.1 Density matrix

A qubit state can be described using a two-by-two density matrix ρq. As the density
matrix is hermitian, we can decompose it on a two-by-two hermitian matrix basis,
{1, σ x, σy, σz}, with σx, σy, and σz being the Pauli matrices:

ρq =
1

2

(
1 + z x− iy
x+ iy 1− z

)
=

1 + xσx + yσy + zσz
2

. (2.48)

Thus, any quantum state of the qubit can be given by a 3D vector ~u(ρq) = {x, y, z}.
Each of the components x, y, and z correspond to the mean value of the respective
Pauli operators: 〈σx〉 = x, 〈σy〉 = y, and 〈σz〉 = z. The so called Bloch vector ~u(ρq) has
a norm not larger than 1 and the set of vectors, which correspond to all possible qubit
states, describe a sphere called the Bloch sphere (see Fig. 2.6). Each point within the
sphere is the representation of a qubit state, and the qubit trajectories can be drawn
inside. This graphical representation of a qubit state is extremely powerful, as any
operation on a qubit state can be translated into a geometrical function applied to the
Bloch vector. The pure qubit states correspond to the vector of norm of 1 (see Fig. 2.6a).
Thus, the surface of the Bloch sphere corresponds to all pure qubit states, while the
inside corresponds to all mixed qubit states (see Fig. 2.6b). The Bloch vector norm and
the von Neumann entropy satisfy the relationship S(ρq) = −p log2(p)−(1−p) log2(1−p)
with p = (1 + ‖~u(ρq)‖)/2. Therefore, the closer the Bloch vectors are to the centre of
the Bloch sphere, the larger the entropy of the state and the most entropic state is
described by the null Bloch vector ~u(ρmax,S) = ~0.
As for the cavity, the qubit has to be coupled to a transmission line in order to

apply control11. The qubit can lose its excitation by emitting a photon in the trans-
mission line and, more generally, in the environment, and it dephases (i. e. the phase

10 The junction of a transmon qubit can be replaced by a superconducting quantum interferences device
(SQUID) in order to obtain a qubit with a tunable resonant frequency that depends on the magnetic
flux inside the SQUID loop[20].

11 This transmission line can be the same transmission line as the one coupled to the resonator. In this
case, the qubit is coupled to the transmission line through the resonator thanks to the Purcell effect.
We will discuss this more in Sec. 3.3
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2.4 dissipation and control of a transmon qubit

a. b. c.

Figure 2.6: Bloch sphere of a qubit for three situations: a. a pure state. b. a mixed state, and
c. a thermal state for a temperature below ~ω/kB (blue), of the order of ~ω/kB
(green), and large compared to ~ω/kB (orange).

of superposition of |g〉 and |e〉 diffuses) due to noise on parameters controlling its fre-
quency and to dispersive coupling with hot modes (see Sec. 2.5.2). An example of
noise-producing dephasing is the charge noise from which the transmon is protected
exponentially in EJ/EC (see Sec. 2.1.2). To describe these two effects, we can use two
jump operators,

√
Γ1σ− and

√
Γϕ/2σz, which correspond to relaxation and dephasing,

respectively. Here, Γ1 is the relaxation rate and Γϕ is the pure dephasing rate12. The
Lindblad master equation then becomes

dρq
dt

= − i
~

[H, ρq] + Γ1D(σ−)ρq +
Γϕ
2
D(σz)ρq. (2.49)

From this equation, we can show that the |e〉 state relaxes toward the |g〉 state
following an exponential decay at a rate Γ1. We can define the lifetime of the qubit as
T1 = 1/Γ1. In the same way, starting from the state (|g〉+ |e〉)/

√
2, the density matrix

evolves as

ρq(t) =
1

2

(
e−Γ1t e−Γ2t

e−Γ2t 2− e−Γ1t

)
, (2.50)

with Γ2 = Γ1/2 + Γϕ being the decoherence rate. Indeed, the off-diagonal term of the
density matrix corresponds to the coherence between the |g〉 and |e〉 states. Thus, we
can define the coherence time as T2 = 1/Γ2. The life-time T1 and the coherence time
T2 give the time during which information can be stored in the |e〉 state or in the phase
of a |g〉 and |e〉 superposition, respectively. Note that T2 cannot be greater than 2T1;
this makes sense as the relaxation of the |e〉 state affects any superposition of |g〉 and
|e〉.
In the same way as for a resonator, if the temperature of the qubit T is not negligible

compare to ~ωq/kB, with ωq being the angular frequency of the qubit, we have to
change the relaxation jump operator using

√
Γ↑σ+ and

√
Γ↓σ−, with Γ↑ = pthΓ1, and

Γ↓ = (1 − pth)Γ1, pth being the mean photon number or the excited state population
of the qubit thermal state, and σ+ = (σx + iσy)/2 and σ− = (σx − iσy)/2 being

12 We can also define a dephasing rate for a resonator (see Sec. 8.1.1), but it is generally small compared
to the relaxation rate κtot.
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the creation and annihilation qubit operators, respectively. Note that Γ↑ and Γ↓ also
satisfy the detailed balance of Eq. (2.46) and that Γ1 = Γ↓ + Γ↑. The Bloch vector of
the thermal state ρq,th is given by ~u(ρq,th) = {0, 0, 2pth − 1} (see Fig. 2.6c) and the
higher the temperature, the closer it is to the Bloch sphere center.

2.4.2 Bloch dynamics

When driving the qubit with a coherent field of complex amplitude αin(t)e−iωdt with
αin(t) = |αin|(t)e−iφd and φd being the phase of the drive, the Hamiltonian of the qubit
becomes[62]

Hq = ~ωq
σz
2
− i~

√
Γc(σ− − σ+)(αin + α∗in), (2.51)

with Γc being the coupling between the qubit and the port used to drive the qubit. As
Γ1 is the coupling of the qubit to the full environment, we then have Γ1 ≥ Γc. In the
frame rotating at ωd, we can perform an RWA to obtain

Hq,RWA = −~δσz
2
− ~

Ω(t)

2
(cos(φd)σy − sin(φd)σx), (2.52)

with Ω(t) = 2
√

Γc|αin(t)| and δ = ωd − ωq being the detuning between the drive and
the qubit angular frequency, respectively. Let us fix the phase φd to be equal to 0; then,
from Eq. (2.52), we can derive the Bloch equations for a detuned Rabi drive along the
σy axis, as follows:

ẋ = −Ωz + δy − Γ2x

ẏ = −δx− Γ2y

ż = Ωx− Γ1(1 + z)

. (2.53)

The above equations contain three dynamics: a rotation around the z axis at the angular
frequency δ due to the detuning, a rotation around the −y axis at the Rabi angular
frequency Ω due to the coherent drive (also called the Rabi drive), and a dissipation at
a rate Γ2 and Γ1. Due to the dissipation, the state of the qubit will converge toward a
steady state that is defined by the Bloch vector coordinates

x∞(Ω, δ) =
Γ1Γ2Ω

Γ1(Γ2
2 + δ2) + Γ2Ω2

y∞(Ω, δ) = − Γ1δΩ

Γ1(Γ2
2 + δ2) + Γ2Ω2

z∞(Ω, δ) = −1 +
Γ2Ω2

Γ1(Γ2
2 + δ2) + Γ2Ω2

. (2.54)

Fig. 2.7 shows the dependence of the steady-state Bloch vector coordinates on the
Rabi angular frequency Ω when the drive is resonant δ = 0 and there is no pure
dephasing Γϕ = 0. When the drive strength Ω is small compared to the dissipation
rate Γ1, the qubit relaxes towards |g〉 faster than it is excited. Thus, the steady state
is close to |g〉. When Ω is of the same order as Γ1 (i. e. the drive and the dissipation
are of the same strength), the qubit steady state is closer to the Bloch sphere center
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Figure 2.7: Bloch vector coordinates of the qubit steady state a a function of the ratio between
the drive strength Ω and the dissipation strength Γ1. The drive is resonant (i. e. δ =

0) and we assume no pure dephasing (i. e. Γϕ = 0).

and contains coherences between |g〉 and |e〉 (i. e. x∞ 6= 0). This is remarkable, as the
stabilization of coherences through the conjugate action of drive and dissipation is not
straightforward. The highest coherences are reached for Ω = Γ1/

√
2 and are equal to

max(x∞) = 1/
√

2. When the drive becomes stronger than the dissipation, the qubit
state converges towards the center of the Bloch sphere, the most entropic state. In this
case, the conjugate action of the drive and the dissipation blurs any information about
the qubit state.
If the drive is detuned by δ, the steady state changes; specifically, the qubit gains

coherence along the y axis. As the detuning entails a rotation around the z axis of the
Bloch vector, we have to compare it to the decay rate in the xy plane, which is given
by Γ2. When the detuning δ is large compared to the decoherence rate Γ2, the qubit
steady state stays close to |g〉, and the drive has no effect. In this situation, the fast
rotation around the z axis due to the detuning δ quickly transforms a Bloch vector with
a positive x coordinate into a Bloch vector with a negative x coordinate. The effect of
the coherent drive is thus quickly transformed from an excitation into a de-excitation.
When the detuning δ is of the same order as Γ2, the qubit steady state is inside the
Bloch sphere (i. e. it is not a pure state) and has some coherence (i. e.

√
x2
∞ + y2

∞ 6= 0).
The coherences along the y axis have the same sign as the detuning and, when δ is
small enough, they are proportional to δ.
More generally, if the pure dephasing rate Γϕ is not negligible the coherences of the

steady state are smaller. One can show that the maximum coherence is

max(
√
x2
∞ + y2

∞ ) =
1

2

√
Γ1

Γ2
; (2.55)

which is reachable as long as Ω ≥
√

Γ1Γ2 with the detuning δmax = ±Γ2

√
Ω2

Γ1Γ2
− 1.
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Figure 2.8: Bloch vector coordinates of the qubit steady state driven by a coherent drive as a
function of δ/Γ2 (the ratio between the detuning and the decoherence rate). The
drive strength is fixed to Γ1/

√
2, and no pure dephasing is taken into account.

Let us now study the dynamics of the Bloch vector (see Eq. (2.53)). We will assume
a resonant drive (i. e. δ = 0) and an initial state described by the Bloch vector ~uρ(t =

0) = {0, 0, z0}. The solution to the Bloch equations (2.53) is

x(t) = x∞(Ω, 0)−
(

Ωz0 − ΓRx∞(Ω, 0)

νR
sin(νRt) + x∞(Ω, 0) cos(νRt)

)
e−ΓRt

y(t) = 0

z(t) = z∞(Ω, 0) +

(
(z0 − z∞(Ω, 0)) cos(νRt)

+
(ΓR − Γ1)z0 − ΓRz∞(Ω, 0)− Γ1

νR
sin(νRt)

)
e−ΓRt

,

(2.56)

where ΓR =
Γ1 + Γ2

2
is the Rabi decay rate and νR =

√
Ω2 − (Γ1 − Γ2)2

4
is the damped

Rabi frequency. Note that these equations are only valid for Ω > |Γ1−Γ2|/2; i. e. for a
strong-enough coherent drive. The system dynamics are not easy to analyze; however,
we can observe the cosine and sine evolution at an effective frequency and the exponen-
tial decay characteristics of a driven-dissipative system. This becomes easier when the
drive is stronger than the dissipation, i. e. Ω� Γ1, Γ2, as then

x(t) = −z0 sin(Ωt)e−ΓRt

y(t) = 0

z(t) = z0 cos(Ωt)e−ΓRt

. (2.57)

The Bloch vector turns around the y axis and the two observables x and z oscillate in
phase quadrature. If we apply the coherent drive during a time tπ = π/Ω much smaller
than 1/ΓR, then the Bloch vector turns around the y axis at an angle π. This is called
a π-pulse; it allows the qubit state to go from |g〉 to |e〉 deterministically. In the same
way, if the drive is applied during a time tπ/2 = π/(2Ω) (still much smaller than 1/ΓR),
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Figure 2.9: a. Equivalent electrical circuit of a transmon qubit capacitively coupled to a trans-
mission line. b and c. Real and imaginary parts of the reflection coefficient for a
strong coupling between the qubit and the transmission line, with no dephasing
(i. e., Γc = Γ1 = 2Γ2). The reflection is coefficient depends on the drive strength Ω.
Note that the reflection vanishes on resonance for Ω = Γ1/

√
2 when the steady state

coherences are maximal. The imaginary part shows a width broader than the real
part (be careful, the x axes are different) as the qubit steady state shows greater
coherences for the out-of-phase quadrature when the detuning δ becomes larger.

then we perform a π/2-pulse, and if the qubit starts at |g〉, it finishes at (|g〉+ |e〉)/
√

2.
More generally, when Ω� Γ1, Γ2, we can prepare any pure state by starting from |g〉.
If the strength of the drive is smaller than the dissipation (i. e. Ω < |Γ1 − Γ2|/2) the

system shows an over-damped dynamic; that is, there are no oscillations and the state
converges exponentially towards the steady state at a rate ΓR −

√
(Γ1 − Γ2)2/4− Ω2

for z(t) and ΓR ±
√

(Γ1 − Γ2)2/4− Ω2 for x(t).

2.4.3 Fluorescence

In most cases, a qubit is not driven long enough to reach the steady state; however, this
is not the case in this thesis, as we probe the qubit resonant fluorescence (see Chap. 6)
13. In this case, we will focus on a coupling between the qubit and a transmission
line that is so large that the steady state is reached well before the measurement is
over (see Fig. 2.9a). The goal of this strong coupling is to ensure that any photons
emitted by the qubit will be caught by the measurement transmission line. We can

13 This electromagnetic field is called fluorescence, because it is the same as that emitted by an atom
driven by a coherent drive.
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write an input–output relationship between the qubit and the propagating mode of the
transmission line [62]

aout = ain −
√

Γcσ−, (2.58)

where Γc is the coupling rate between the qubit and the transmission line14. The mean
output field depends on the mean value of the annihilation qubit operator 〈σ−〉. Taking
the average value in Eq. (2.58), when we apply a coherent drive detuned by δ, we obtain

αout = αin −
√

Γc〈σ−〉(αin, δ) = αin

(
1− 2Γc

Ω
〈σ−〉(Ω, δ)eiφd

)
, (2.59)

where 〈σ−〉 depends on δ and Ω in a non-linear manner. Let us now consider a drive
phase φd, which is equal to 0 for the coherent drive. Once the steady state is reached,
Eq. (2.59) becomes

αout = r(Ω, δ)αin, (2.60)

with r(Ω, δ) the reflection coefficient

r = 1− Γc
Γ1(Γ2 − iδ)

Γ1(Γ2
2 + δ2) + Γ2Ω2

. (2.61)

The reflected coefficient r shows both a real and an imaginary part; they contribute
to the in-phase and out-of-phase quadratures, respectively15, of the signal αout (see
Fig. 2.9b and c). With no detuning, the emission of the qubit is always in an opposite
phase compared to αin, leading to a decrease in the in-phase amplitude of αout. When
there is a detuning, the qubit emission can also be in phase quadrature with αin, leading
to a non-zero out-of-phase amplitude in αout. Note that the reflected coefficient depends
on the drive strength Ω; this is a signature of the non-linearity of the qubit. More
precisely, r tends towards 1, when Ω increases.
This behavior can be easily understood: the signal emitted by a qubit is always

around one photon per min(1/Γ1, 1/Ω), as it can only store one photon and needs a
time 1/Γ1 to emit it by spontaneous emission and 1/Ω to emit it by stimulated emission.
In comparison, the photon flow of the drive is not bounded, growing as Ω2/Γ1. When
Ω is large compared to Γ1, the number of photons per 1/Ω in the drive becomes large
compared to 1 and the photon that is absorbed and emitted by the qubit becomes
“invisible” in the large flow. At this point, the qubit signal becomes undetectable in the
flow of photons and everything happens as if the input drive was completely reflected
by the qubit.
The opposite situation occurs when Ω is small compared to Γ1, in which case the

number of photons per unit of 1/Γ1 in the drive is around or smaller than 1 and the

14 Note that Γc is also called the Purcell rate. When the qubit and the transmission line are not directly
coupled but the qubit is hybridized with another mode that is coupled to the transmission line, then
the coupling rate Γc comes from the Purcell effect; we can call this the “Purcell rate.” However, this
name should not be used if the qubit is directly coupled to the transmission line (see Sec. 3.3 for more
details about the Purcell effect).

15 The expressions “in-phase” and “out-of-phase” refer to the phase of the input drive αin.
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photon absorbed and emitted by the qubit is a significant contribution to the signal.
This leads to a reflected coefficient that converges towards -1 at resonance when Ω

tends towards 0.
The non-linear behavior of a qubit resonant fluorescence does not stop at this de-

pendence on the drive strength Ω. As we will discuss in Sec. 7.3, the qubit resonant
fluorescence contains a inelastic part which leads to the well known Mollow triplet [67,
68].
If the qubit temperature is not negligible, then we need to multiply the second term

of Eq.(2.61) by pg the probability to be in the ground state |g〉. We can write the
reflected coefficient as

r = 1− p

(
1− i δ

Γ2

)
Γ2

Γ1

(
1 +

(
δ

Γ2

)2
)

+

(
Ω

Γ1

)2
, (2.62)

with p = pgΓc/Γ1. The following form shows we cannot distinguish the thermal pop-
ulation pg from the branching ratio Γc/Γ1. To measure Γc, we either need to measure
the thermal population pg with another experiment, or use two ports and two coherent
drives, as detailed in Ref. [38].
Now that we have discussed the open quantum systems that are made up of resonators

or qubits, we need to look at the bipartite system, which is made up of a resonator that
is capacitively coupled to a transmon qubit.

2.5 dispersive coupling

The coupling between a transmon qubit and a resonator is relatively simple to derive
in comparison to other qubits such as the fluxonium [69]. As the phase ϕ of the trans-
mon qubit is located around 0, the cosine non-linearities can be Taylor expanded (see
Eq. (2.11)). As the non-linearities are of the order of Ec, they can be treated as a
perturbation. To compare, it is not possible to utilize a perturbative approach in the
case of the fluxonium. In such circuits, the full Hamiltonian must be diagonalized in
order to ascertain coupling.

2.5.1 The exchange interaction

The transmon qubit requires a large capacitor to shunt the JJ and reach the transmon
regime. As a consequence coupling the transmon to another resonator presents no major
hurdle. The capacitor Cg shown in Fig. 2.10 couples the charge of the transmon mode
to the resonator charge. With regard to the transmon, this process is comparable to
a charge offset on one of the superconducting islands. The Hamiltonian of the system
can then be written as[70]

Hq,r = 4EC(n+
Cg

2eCr
Qr)

2 − EJ cos(ϕ) + ~ωra†a (2.63)

with Qr as the charge operator of the resonator. Two assumptions must be made to
obtain the Hamiltonian. First, it should be assumed that the coupling capacitance Cg
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Figure 2.10: Equivalent circuit of a transmon qubit coupled to a resonator. a. Capacitive
coupling between the transmon and the resonator. Cg is the coupling capacitor.
b. The non-linear part of the transmon mode can be separated from the linear
part. c. The mode corresponding to the linear part of the transmon and the res-
onator hybridize together due to capacitive coupling and form two hybrid modes.
Without a non-linear element, the two hybrid modes can be decoupled. As both
contribute to the junction phase ϕ they are dressed by the junction non-linearity.
It produces an anharmonic mode, the transmon mode, and an almost linear mode,
the resonator, owing to the dispersive coupling.

is smaller than the capacitances of the transmon and resonator, CJ + Cshunt and Cr,
respectively. A derivation beyond this approximation can be found in [62]. Second, as
an actual resonator contains an infinite number of modes (see Sec. 2.1.1), it should be
assumed that the detuning between the transmon mode and the fundamental mode of
the resonator is small compared to the detuning between the transmon mode and all
other modes. In this case the transmon is only coupled to the fundamental mode of
the resonator. As such, the multimodal nature of the resonator can be disregarded16.
Since the transmon mode, has a phase ϕ whose zero-point-fluctuations are much smaller
than π, it is, therefore, possible to truncate the cosine to its fourth order expansion and
diagonalize its linear part (see Eq. (2.11)). This is equivalent to studying the circuit
shown in Fig. 2.10b. The Hamiltonian reads

Hq,r ≈ ~ωqb†b+ ~ω′ra†a−
EC
2
b†b†bb− ~g(b† − b)(a† − a), (2.64)

where b is the annihilation operator of the transmon mode, ω′r is the renormalized
frequency of the resonator due to the capacitor Cg, and g is the coupling rate between
the transmon and the qubit (or between matter and light):

g =
ωrCg

Cshunt + CJ

(
EJ
EC

) 1
4
√
πZr
RK

, (2.65)

16 The multimodal nature of the resonator cannot always be disregarded. For example, see the Purcell
effect, which is described in Sec. 3.3
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Here, Zr is the impedance of the resonator and RK = h/e2 ∼ 25.8 kΩ is the resistance
quantum. The third term of Eq. (2.64) is the non-linear term of the transmon mode.
EC is also referred to as the anharmonicity as it generates it. If the coupling rate is
small compared to the resonant angular frequencies, g � ωq, ωr, an RWA can be used.

Hq,r;RWA = ~ωqb†b+ ~ω′ra†a−
EC
2
b†b†bb+ ~g(b†a+ ba†). (2.66)

The interaction between the transmon and the qubit is an exchange interaction as it
allows excitation to be swapped between the two. Let us analyze the coupling rate g.
In order to derive Eq. (2.63), it was assumed that Cg was smaller than CJ +Cshunt. As
a consequence, the first prefactor in the expression (2.65) of g is small in comparison to
ωr. Even if it assumed that Cg was small compared to CJ +Cshunt to derive Eq. (2.66),
we still want to be in the strong coupling regime, meaning g � Γ1, κtot. This can
be achieved as g is proportional to (EJ/EC)1/4 and within the transmon regime that
imposes EJ > 30EC . The further into the transmon regime, the larger g becomes.
However, the relative anharmonicity of the qubit EC/ωq =

√
EC/8EJ decreases with

(EJ/EC). In addition, increasing g occurs at the expense of the qubit anharmonicity.
In practice, a coupling rate of a few 100 MHz can be achieved with anharmonicity of
a few 100 MHz. It can be observed that g depends on the impedance of the resonator.
For example, a large impedance obtained using an array of junctions [71, 72], is an
effective way to increase the coupling rate g.
In practice, how does this model apply to a transmon coupled to a 3D cavity (see

Fig. 2.4)? With a 3D circuit, the electromagnetic cavity field is diluted in a larger volume
and the coupling g is smaller. Despite these constraints, a strong coupling regime is
still reachable. The zero-point fluctuation of the charge on the transmon capacitance is
QZPF = 2e(EJ/EC)1/4. The transmon can thus be modeled as a dipole with a charge
QZPF and a length lq. In addition, the zero-point fluctuation of the cavity’s electrical

field seen by the transmon dipole is given by EZPF =
ωr
lq

Cg
CJ + Cshunt

√
~Z
2

. The coupling

g can, therefore, be viewed as a dipolar interaction lqQZPFEZPF between the transmon
charge and the cavity’s electrical field. In the case of a 3D circuit, increasing the length
of the superconducting islands of the transmon gives it the shape of an antenna and
increases the dipolar interaction and the coupling rate g.
It is interesting to note that if only the first two levels of the transmon mode are

considered, the Hamiltonian of Eq. (2.66) becomes the well known Jaynes-Cummings
Hamiltonian.

HJC = ~ωq
σz
2

+ ~ωra†a+ g(aσ+ + a†σ−). (2.67)

Describing the system with Jaynes-Cummings Hamiltonian can, in some cases, be useful
(see Sec. 7.3). However, in most cases it is inaccurate. Indeed, to derive the effects of
an exchange interaction and the non-linearity of the junction, the multi-level nature of
the transmon mode must be taken into account.
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2.5.2 Dispersive regime

In most cases, circuit QED experiments are designed to operate in the dispersive regime.
This regime is characterized by a detuning ∆ = ωq − ωr which is large compared to
the coupling rate g ( i. e., g � ∆). As the charging energy EC is assumed to be small
compared to the angular resonant frequencies ωq and ωr, the Hamiltonian of Eq. (2.66)
can be split into a linear term HL and a non-linear term HNL HL = ~ωqb†b+ ~ω′ra†a+ ~g(b†a+ ba†)

HNL = −EC
2
b†b†bb

(2.68)

It is then possible to diagonalize the linear term using the dispersive assumption and
treat the non-linear term as a perturbation. When the small parameter in the perturba-
tion is defined as λ = g/∆ � 1, the linear Hamiltonian HL can be diagonalized using
a Bogoliubov transformation [62]

Udisp = eΛ(ab†−a†b), (2.69)

where Λ = arctan(2λ)/2. This is the same unitary evolution as for a beam splitter. This
Bogoliubov transformation mixes, or hydridizes, the two linear modes. The linear hydrid
modes b̃ of the transmon and ã of the resonator obtained after this transformation are

{
U †dispbUdisp = cos(Λ)b− sin(Λ)a ≈ b− λa

U †dispaUdisp = cos(Λ)a+ sin(Λ)b ≈ a+ λb
, (2.70)

where the approximation is derived using λ � 1. As such, the Hamiltonian of the
system transforms into

HL,disp = U †dispHLUdisp = ~ω̃q b̃†b̃ + ~ω̃rã†ã, (2.71)

with the dressed frequencies
ω̃q =

1

2

(
ωq + ωr +

√
∆2 + 4g2

)
ω̃r =

1

2

(
ωq + ωr −

√
∆2 + 4g2

) . (2.72)

The tilde symbols denote that the annihilation operators ã and b̃ now describe hybrid
modes given by Eq. (2.70). At this stage, it can be observed that the two hybrid
modes are no longer coupled. This result is consistent with any linear Hamiltonian
with a linear coupling that can be diagonalized as this leads to uncoupled hybrid modes.
The non-linear Hamiltonian part acts on both hybrid modes (see Fig. 2.10c). The full
Hamiltonian after the Bogoliubov transformation reads

Hdisp = U †dispHq,r;RWAUdisp ≈ ~ω̃q b̃†b̃+~ω̃rã†ã−~
χqq
2
b̃†b̃†b̃b̃−~χrr

2
ã†ã†ãã−~χqr b̃†b̃ã†ã,

(2.73)
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where the last expression is an expansion in orders of λ and only terms conserving the
number of excitations in each hybrid mode are kept. The junction non-linearity leads
to three non-linear terms: χqq, χrr and χqr

χqq ≈ EC/~

χrr ≈
EC
~

( g
∆

)4

χqr ≈
2EC
~

g2

∆(∆− EC/~)

. (2.74)

The anharmonicity, or self-Kerr, of the hybrid transmon mode is given by χqq. As
the hybridization between the bare linear modes is small, the hybrid transmon mode
inherits almost all the junction non-linearity. In addition, the anharmonicity of the
hybrid transmon mode is almost the same as the bare transmon mode. The two final
non-linear terms of Eq. (2.73) appear due to the hybridization that occurs throughout
this process. The anharmonicity of the hybrid resonator mode is given by χrr. It is of
the order of λ4 and can be viewed as a weak non-linearity. Using few photons only,
the hybrid resonator mode can still be considered as a linear mode. The final non-
linear term represents a coupling between the hybrid transmon and resonator modes.
This coupling, known as dispersive coupling, shifts the hybrid transmon mode resonant
frequency by the cross-Kerr rate χqr for each photon in the hybrid resonator mode
and vice versa. Taking into account the first two states of the hybrid transmon mode,
which define the transmon qubit, and small number of photons in the resonator, the
Hamiltonian (2.73) becomes

Hdisp ≈ ~(ω̃r −
χqr
2

)ã†ã+ ~ω̃q
σz
2
− ~χqrã†ã

σz
2
. (2.75)

Through examining the expression of χqr in Eqs. (2.74), it is possible to observe a
regime defined by 0 < ∆ < EC/~. This is known as the straddling regime, in which
the cross-Kerr rate sign changes. It is qualitatively different from the usual dispersive
regime. In most instances, the straddling regime is avoided and can be better described
by an exact diagonalization of the Eq. (2.64) Hamiltonian.
It should be noted that the hybrid modes can be probed using experimental methods.

In contrast, bare modes are usually inaccessible, meaning only the parameters of the
hybrid modes can be measured. For the remainder of this thesis, and as customary
in the literature, the hybrid transmon mode discussed here is simply referred as the
transmon mode and the uncoupled mode is referred to as the bare mode.
The dispersive regime is remarkable for two reasons. First, the coupling can be de-

signed to be in the number-resolved regime [21] defined by a cross-Kerr rate χqr bigger
than the relaxation and decoherence rate of the modes. This regime enables one to
control the qubit conditionally to the resonator state. For example, a π-pulse can be
performed on the qubit that is resonant only when there are 0 photons in the resonator.
Second, the dispersive coupling enables dispersive readout to be performed on the trans-
mon. Indeed, when a resonator is dispersively coupled to a transmon qubit, probing
the resonator with a coherent drive close to resonance leads to a coherent state that
depends on the transmon qubit state.
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Figure 2.11: Distribution of the heterodyne detection of the αout,1 amplitude. The I and Q

axes are the real and imaginary parts of αout,1
√
κ1, respectively. For simplicity,

we shifted the phase space by −αin
√
κ1.

2.5.3 Dispersive readout

We denote αg(t) and αe(t) the amplitudes of the driven resonator coherent states for
the qubit states |g〉 and |e〉, respectively. For a coherent drive αin longer than a few
1/κtot but much smaller than 1/Γ1, the amplitudes αg(t) and αe(t) tend towards (see
Eq. (2.42)):

αg,ss =
2
√
κ1αin

κtot − 2i∆

αe,ss =
2
√
κ1αin

κtot − 2i(∆ + χqr)

, (2.76)

where ∆ = ω−ωr and ω is the frequency of the coherent drive αin and where the relax-
ation of the qubit was neglected. Thus, the output field of the resonator transmission
line depends on the qubit state through the input–output relation in Eqs. (2.33) and
(2.76). Using heterodyne or homodyne detection setup (see Sec. 4.3), we can measure
the amplitude of the output field17 αout,1 = αin −

√
κ1αg/e and deduce from the value

of the amplitude αout,1 the state of the qubit if the noise is small enough (see below).
The dispersive readout (or measurement) of a qubit consists in the heterodyne de-

tection of the output field of a resonator that is coupled dispersively to the qubit. This
measurement is intrinsically noisy (see Chap. 4 for a detailed discussion about the noise
in quantum measurement), and we denote σ, the standard deviation of the measured
amplitude. Fig. 2.11 shows the distribution of the measurements outcomes; it contains
two “blobs” of mean value αg and αe, and width σ. The distance between the two blobs
is denoted as d = |αg − αe|.

We can define a signal-to-noise ratio (SNR) for the dispersive measurement as

SNR =
d2

σ2
, (2.77)

17 Here, we consider a measurement of the field reflected by the cavity; the same discussion is valid for
the measurement of the transmitted field.

40



2.5 dispersive coupling

and it has been shown that the SNR of a heterodyne detection can be expressed as [73,
74]

SNR = 4ηΓdTm, (2.78)

where η is the quantum efficiency (see Sec. 4.1.2), Γd is the measurement-induced de-
phasing rate, and Tm is the measurement integration time. Thus, maximizing the SNR
is equivalent to maximizing the measurement-induced dephasing rate Γd. The name Γd
comes from the fact that the qubit pure dephasing increases by Γd during the dispersive
measurement process. This effect can be viewed as a back-action of the measurement:
the dispersive measurement extracts information about the qubit photon number; thus,
the conjugate variable, here the phase, must diffuse [8]. This increase of the dephasing
also can be viewed as the photon shot noise resulting from the photon distribution
of the resonator coherent state during the measurement, which is converted by the
dispersive interaction into qubit frequency noise.
The measurement-induced dephasing is not the only effect the dispersive measure-

ment has on the qubit. The average population of the resonator during the measurement
shifts the frequency of the qubit; this effect is known as the AC Stark shift [75]. These
two effects can be derived when eliminating the resonator adiabatically (see Sec. 6.3.4.2
for more information about adiabatic elimination). This leads to an effective Lindblad
master equation for the qubit reading [75]:

ρ̇ =
−i
~

[
~(ωq − ωAC)

σz
2
, ρ
]

+ Γ1D(σ−)ρ+
Γϕ + Γd

2
D(σz)ρ, (2.79)

where the AC Stark shift frequency ωAC and the measurement-induced dephasing rate
Γd read{

Γd = χqrIm(α∗gαe)

ωAC = χqrRe(α∗gαe)
. (2.80)

Γd and ωAC are proportional to |αin|2; Fig. 2.12 shows their dependence on κtot, χqr,
and ∆. They only depend on the ratios χqr/κtot and ∆/χqr. In order to maximize the
measurement SNR, we will opt to design a system in which the ratio χqr/κtot is equal to
or above 1. The optimal frequency for the qubit readout is either the medium frequency
ω = ωr − χqr/2, if χqr is smaller than or equal to κtot, or the frequencies ω = ωr and
ω = ωr − χqr, which correspond to the resonator frequency when the qubit is in the
states |g〉 or |e〉, respectively, if χqr is significantly greater than κtot. It is important to
note that there is no gain to be had (from a measurement perspective) by increasing
χqr above κtot.
From a generalized measurement formalism perspective, the dispersive readout can

be viewed as follows. The resonator is used as an ancillary system or probe, while
the dispersive coupling enables the state of the resonator to be entangled with the
qubit state. The transmission line’s output field state is then entangled with the res-
onator state and can be measured using either a homodyne or heterodyne detection
(see Sec. 4.3 for more detail). As shown in Sec. 4.1.2.2, a measurement is not always
projective. The measurement back-action is dependent on the amount of entanglement
between the resonator and the qubit states. If the SNR is smaller than 1, the amount
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Figure 2.12: Measurement-induced dephasing rate Γd and AC Stark shift frequency ωAC di-
vided by the measurement power |αin|2 (in photons per second), as a function of
the detuning ∆ and various ratios χqr/κtot. Here, we suppose that the resonator
is only coupled to one port and has no losses; i. e. κ1 = κtot

of entanglement is much smaller than 1 bit, and the generalized measurement cannot
be seen as a projective measurement of the qubit state (Sec. 4.1.2.2 explains the kind of
measurement that occurs here). Hopefully, the SNR can be increased by increasing the
drive amplitude αin. However, the dispersive regime is only valid for photon numbers
|αg|2 and |αe|2 in the resonator that are smaller than ((ωq − ωr)/2g)2 [70]. Beyond
this limit, higher-order non-linear effects appear, such as resonator self-Kerr and qubit
ionization [76, 77], and the dispersive readout becomes more complex, with an SNR
that could be null.
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3
S IMULATION AND F ILTER ING

A powerful aspect of circuit QED is the wide range of Hamiltonians it is possible to
engineer. Theoretical models enable us to make a link between the circuit parameters
(e. g. capacitance and inductance) and the Hamiltonian parameters (e. g. coupling rate,
frequency, and the Purcell effect); however, we still need a tool with which to simu-
late the circuit parameters for a particular circuit design. This chapter will discuss
simulation based on one of the main finite element simulation software: Ansys high-
frequency simulation software (HFSS). It will also describe the energy-participation
ratio approach used to compute the Hamiltonian of the system, based on the simula-
tion results. These two tools allow us to “simulate” the design and tune it so that it can
reach the targeted Hamiltonian. Specifically, it is possible to simulate both the Purcell
effect (a phenomenon that we would usually want to minimize) and the circuit’s filters.
The first part of this chapter focuses on the simulation and the simulation analysis,
while the second part concerns the Purcell effect.

3.1 simulation using ansys hfss

3.1.1 Principle

Ansys HFSS is a piece of software whose purpose is to simulate electromagnetism at
high-frequency. It is able to solve Maxwell equations using a finite element method,
and allows us to define ports to simulate the system transfer function, thereby giving
us access to several electrical engineering tools that characterize the system (such as
the S, Z, and ABCD matrices). This is an interesting feature; however, this feature
is mostly used to study microwave filters or antenna, not circuits, for which we are
more interested in the circuit resonant modes. Ansys HFSS also enables us to directly
simulate these modes, allowing access to their frequency and quality factor.
From a circuit QED perspective, the software has several advantages and one signifi-

cant drawback. The first advantage is that the superconducting layer or bulk does not
need to be simulated; we can take this into account just by using a perfect E boundary
condition1. This is a real gain in terms of the speed of the simulation, as it decreases
the volume to simulate and removes the difficulty of properly simulating a thin super-
conducting film. The second advantage is that, once the resonant modes have been
simulated, we have access to the electrical and magnetic field in each cell of the mesh,
as these have been defined by the system during the simulation process. Thus, we can
display the electrical field (as shown in Fig. 3.1), compute the density of the electrical
energy, or compute the current in a wire. This information is crucial, as it allows us
to tune the coupling rate between two modes, protect a mode from losses, compute

1 This boundary condition mandates that the tangential component of the E field is null on the surface
on which the boundary is applied.
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0

1

Figure 3.1: The E field belonging to the first mode of a post cavity. Only the vacuum part of
the cavity is simulated. The E field vector is pointing towards the summit of the
post, where the field norm is maximal. The E field decreases exponentially above
the post, which protects the mode against losses located on the top part of the
cavity (such as those coming from a seal). In order to couple a transmon qubit to
this mode, we have to engineer a dipolar momentum for the transmon going in the
same direction as the E field.

which part of the circuit limits the quality factor of a mode, or compute the mutual
inductance between a flux line and a SQUID. The disadvantage, however, is that the
software only allows us to simulate a linear system, which is not the case of the JJs.

3.1.2 The black-box quantization approach

As mentioned above, we cannot simulate a non-linear element using Ansys HFSS soft-
ware. The solution to this issue that has been found by the circuit QED community
is to reproduce the black-box quantization (BBQ) approach used during the simula-
tion. The BBQ approach[78] consists of solving the linear part of the Hamiltonian first,
then deriving the effect of the non-linearities (assuming they are small enough to use a
perturbation theory). This approach is exactly the same as the one we used to derive
the dispersive coupling in Sec. 2.5.2, except that we are now considering a junction in a
multi-mode environment. Here, the environment is the cavity or the rest of the circuit.
Let us consider a transmon qubit made of a JJ that is shunted by a capacitor and

which has some losses, modeled by a resistance. The transmon is coupled to an arbitrary
combination of N distributed linear modes that can be represented by lumped elements
(i. e. RLC resonators). We do not need to make any kind of assumptions about the cou-
pling, apart from the fact that it is linear. As the phase Φ and its quantum fluctuation
are small compared to π and are centered on 0, the non-linear part of the transmon
mode can be isolated. Thus, the non-linearity is coupled to a multi-mode environment
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hybrid modes

b.

c.

multi-
modes
circuit

circuit’s linear part

multi-
modes
circuit

Figure 3.2: a. Transmon mode represented by its Josephson junction, the shunting capacitor,
and a resistor. The resistor enables to take into account losses. It is coupled to
a multi-mode circuit; this can be described as a combination of distributed linear
modes, with each of those modes described by a lumped element. b. The non-linear
part of the transmon mode can be isolated; as such, the non-linearities are coupled
to a linear multi-mode environment that is described by the impedance Z(ω). c.
The linear part of the circuit can be decomposed using a Foster decomposition of
Z(ω). Thus, the linear part of the circuit is equivalent to N + 1 hybrid uncoupled
linear modes. The phase of the junction Φ is equal to the sum of all the mode fluxes.

that contains N + 1 coupled linear modes described by the impedance Z(ω). Using a
Foster decomposition, we can write the impedance as

Z(ω) =
N∑
µ=0

(
−iωCµ +

1

−iωLµ
+

1

Rµ

)−1

. (3.1)

Note that more general loss models can be used [79, 80]. We obtain N+1 hybrid modes
in parallel, where Rµ, Cµ, and Lµ are the resistor, the capacitor, and the inductor of the
hybrid mode µ, respectively (see Fig. 3.2b and c). In the regime of weak dissipation (i. e.,
Rµ �

√
Lµ/Cµ), the resonant frequency of the mode µ is given by ωµ = 1/

√
LµCµ.

The quality factor Qµ and the impedance Zµ of each mode can be expressed using the
admittance of the linear part Y (ω) = 1/Z(ω)

Qµ =
ωµ
2

Im(Y ′(ωµ))

Re(Y (ωµ))

Zµ =
2

ωµIm(Y ′(ωµ)

. (3.2)

These hybrid modes can be described using a quantum annihilation operator aµ and
a flux Φµ = Φµ

ZPF(aµ + a†µ), with the phase zero-point fluctuation Φµ
ZPF =

√
~Zµ/2.

As each hybrid mode is a collective excitation of the circuit, they all participate in the
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junction phase2 ϕ(see Fig. 3.2b). Thus, the effect of the junction’s non-linearity can be
derived using a perturbation theory and by replacing the phase ϕ with

ϕ =
∑
µ

Φµ

ϕ0
=
∑
µ

Φµ
ZPF

ϕ0
(aµ + a†µ). (3.3)

Taking into account only the fourth-order non-linearity of the junction (i. e. EJϕ4/24),
as in Sec. 2.5.2, applying a perturbation theory, and keeping only those terms that con-
serve the number of photons in each mode, the Hamiltonian of the circuit reads as
follows:

HBBQ =
∑
µ

~(ωµ + ∆µ)a†µaµ +
1

2

∑
µν

χµνa
†
µaµa

†
νaν . (3.4)

The frequency ∆µ is the Lamb-shift effect generated by the non-linearity that occurs

due to the interaction between modes; it is equal to ∆µ =
−e2

2LJ
(Zµ

∑
ν Zν−Z2

µ/2). The

rates χµµ and χµν are the self-Kerr rate of the mode µ and the cross-Kerr rate between
the modes µ and ν, respectively. They read

χµµ = −Lµ
LJ

CJ + Cshunt

Cµ
EC

χµν = −2
√
χµµχνν

. (3.5)

A remarkable result emerges from the above equations: the cross-Kerr rate between
two modes is given by the geometrical mean of the self-Kerr rate. This implies that,
when using only a fourth-order non-linearity, we cannot couple two linear modes in the
number-resolved regime. When targeting a given cross-Kerr rate, we have two options.
We can have a mode with a strong self-Kerr and another mode with a weak self-Kerr,
which is equivalent to a qubit coupled to a linear mode. Alternatively, we can have two
modes with two intermediate self-Kerr rates of the order of χµν/

√
2, in which case the

self-Kerr rate is of the same order as the relaxation rate. That is, the self-Kerr rate is
too large to consider that the mode is linear and too small to use it as a qubit. This is
a parameter regime that we usually try to avoid.

It is possible to show [78] that
Lµ
LJ

and
CJ
Cµ

are always smaller than 1 when the non-

linearity comes from a transmon qubit. This leads to the fact that the self-Kerr rates
of the modes are always smaller than the anharmonicity of the bare transmon mode.
Before discussing how such an approach can be implemented in a simulation, however,

we should note that if we express the self-Kerr and cross-Kerr rates using inductances
and capacitances in Eqs. (3.5), the only physical quantity we have to compute is the
zero-point fluctuation Φµ

ZPF, according to Eq. (3.3).

3.1.3 Energy-participation ratio

The success of the BBQ approach indicates that we can simulate only the linear part of
the circuit in order to obtain the hybrid modes, then measure the zero-point fluctuation

2 In other words, any oscillation of these modes will create an oscillation of the junction phase.
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of the phase of each mode to derive the cross-Kerr and self-Kerr rates. The hybrid modes
can easily be obtained, as Ansys HFSS can simulate them. In order to simulate only the
linear part of the circuit, we replace the junction with an inductor of inductance LJ in
the simulation. Then, as described below, the zero-point fluctuation can be computed
using the energy-participation ratios [81]. An energy-participation ratio is defined as
the percentage of a mode’s inductive energy that is stored in the junction

pµ =
inductive energy stored in the junction by the mode µ

total inductive energy stored in the mode µ
. (3.6)

The participation ratios can be computed using the simulated modes’ electric and mag-
netic energy. For a resonant mode, the total energy is equally split between inductive
Eµind and capacitive energy Eµcap: Eµind = Eµcap. The inductive energy makes two contri-
butions: magnetic energy Eµmag and kinetic energy Eµkin. The magnetic energy is stored
in the magnetic field, while the kinetic energy is stored in inductive elements such as
the inductor of the junction. However, if there are no lumped capacitive elements, the
capacitive energy is equal to the electric energy Eµelec. Thus, we have

Eµelec = Eµcap = Eµind = Eµmag + Eµkin, (3.7)

and

pµ =
Eµkin

Eµind

=
Eµelec − E

µ
mag

Eµelec

. (3.8)

The electric and magnetic energies can both be computed using the complex electric
~Eν(~r)and magnetic ~B(~r) fields simulated by Ansys HFSS, as follows:s

Eνelec =
1

4
Re
(∫
V
~Eν(~r)∗ε~Eν(~r)d~r

)
Eνmag =

1

4
Re
(∫
V
~Bν(~r)∗µ~Bν(~r)d~r

), (3.9)

where ε and µ are the electric-permittivity and magnetic-permeability tensors, and V
is the mode volume.
It has been proven that the zero-point fluctuations and energy-participation ratios

are linked [81] by

(Φµ
ZPF)2 = pµ

~ωµ
2EJ

. (3.10)

Thus, we can replace the zero-point fluctuation with the energy-participation ratio in
the BBQ perturbation theory (see Sec. 3.1.2), as follows:

χµµ = p2
µ

~ω2
µ

8EJ

χµν = 2
√
χµµχνν = pµpν

~ωµων
4EJ

. (3.11)

In practice, the participation ratio and the perturbation theory are performed using a
Python script called pyEPR, written by Zlatok K. Minev and Zaki Leghtas. This script
enables us to deal with more than one junction, to compute the perturbation theory
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to higher orders, and to apply the same energy-participation ratio approach to losses
in order to compute the modes’ quality factors (without having to add losses into the
simulation). It is necessary to emphasize that this approach is only valid for modes with
a quality factor that is much greater than 1, otherwise the electric and magnetic fields
are altered too much by the dissipation. Besides, one must avoid lumped capacitors in
the simulation otherwise the Eqs.(3.7) and (3.8) are not valid anymore. However, this
approach can be applied to any kind of non-linearity, providing a perturbative approach
is suitable, and leads to a good agreement between the measured and predicted circuit
parameters [81, 82, 83, 84].
The energy-participation ratio approach enables us to compute the quality factor

that is due to dielectric losses; however, the coupling to a transmission line is more
complex and is therefore trickier to simulate. In such a case, it would be preferable to
add the dissipation to the Ansys HFSS simulation and let the software simulate the
modes’ quality factors.

3.2 coupling to a transmission line

The coupling to a transmission line is an important feature as it defines the minimum
relaxation rate (and thus the maximum relaxation time T1) and the speed at which a
gate can be applied on qubit modes. This section will discuss three different ways to
simulate these couplings for 3D and 2D circuits. Each following section will start by
presenting the model of transmission line used (the geometry and materials) in order
to explain how we can simulate it and with which boundary condition.

3.2.1 3D circuits

In 3D geometries, the three different ways to simulate the coupling all need to first
add a part of the transmission lines to the simulation (see Fig. 3.3). Many different
kinds of transmission line exist. In terms of circuit QED applications, we are interested
in a transmission line that is suitable for radio frequency signals, such as a coaxial
cable [43]. In this scenario, we prefer to use a transmission line instead of a wave-
guide, as the transmission line supports transverse electromagnetic (TEM) or quasi-
TEM propagation modes, which have low frequency cut-off and no dispersion for TEM
modes and a small one for quasi-TEM modes. In addition, the power of the signal is
low enough that we do not need a wave-guide. It is worth noting that a wave-guide’s
frequency cut-off can be useful, as a filter [85]. The transmission line used, which is a
coaxial cable, finishes by a launcher with a microwave pin entering inside the cavity. The
capacitive coupling between the pin the cavity modes depends on the pin penetration
length.
Before saying how to simulate a coaxial cable, let us recall what it is. A coaxial

cable is made of a cylindrical inner conductor surrounded by a dielectric and an outer
conductor3. The radius and nature of the inner conductor and dielectric are chosen

3 Because the dielectric is non simply connected, the coaxial cable enables the propagation of a TEM
mode [43].
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according to the type of microwave pin and launcher used. In this thesis, the launcher
are made of a copper inner conductor (diameter 1.3 mm) and Teflon dielectric (diameter
4.1 mm), leading to an impedance of 50 Ω.

As shown in Fig. 3.3, the pin and a part of the launcher are added in the simulation,
the pin diameter is chosen equal to the inner conductor diameter and the beginning
of the simulated coaxial cable and the cavity are separate by the thickness of the wall
cavity (see Fig. 3.3). To reduce the complexity of the simulation, the outer conductor
can be replaced by a perfect E boundary condition on the outer surface of the dielectric.
This is equivalent to assuming that the outer conductor is a superconductor. As is shown
in Fig. 3.3, the pin goes trough a vacuum cylinder before entering in the cavity. This
is used to take into account the thickness of the cavity’s superconducting bulk (which
is not simulated). This vacuum cylinder represents the hole that is made through the
cavity wall in order to insert the pin, thus the boundary condition applied to its outer
surface is a perfect E boundary. The diameter of the hole is equal to 3 mm in order
to obtain an impedance of 50 Ω when considering the pin and the hole as an a coaxial
cable. As the diameter of the hole is smaller than the dielectric diameter, there is a
“ring” of dielectric to which we have to apply a boundary condition. This ring is the
part of the dielectric that is in contact with the cavity wall; as such, the boundary
condition is again a perfect E boundary.
At this point, only one surface in this design has no boundary condition: the ring

at the end of the transmission line (see Fig. 3.3). This ring is called the “dissipative
surface”, and it is on this surface that we will apply a specific boundary condition
that will simulate the semi- infinite transmission line. The Caldeira–Leggett model
(see Fig. 2.5) shows that it is possible to replace a semi-infinite transmission line with
a dissipative element that has the same impedance. A non-dissipative element (the
transmission line) can be modeled as a dissipative element as any signals emitted in
the transmission line never come back. However, even with this simplification, we still
need to simulate a finite extent of the transmission line in such a way that the geometry
of the mode fields is well established before reaching the dissipative element. Thus, the
length of the transmission line in the simulation has to be at least the size of the mode’s
wavelength.

The parameter we tune in order to reach the targeted coupling rate between the
mode and the transmission line is the length of the pin. As long as the pin sticks inside
of the hole, there is an exponential increase of the coupling rate as a function of the
pin length. The following “rule of thumbs” applies: the coupling increases by a factor
of 10 every millimeter.
This thesis uses three different dissipative boundary conditions. First is the perfectly

matched layer (PML) boundary, which adds a fictitious material that can absorb any
electromagnetic field that impinges on it. As such, we only need to simulate the eigen-
modes of the system and their quality factors. The PML boundary is recommended for
use with free-space and guided-wave termination. It has the advantage of being able to
absorb waves in any direction and at any frequency; therefore, in order to reduce the
simulated volume, it is recommended that the PML boundary be situated a quarter of
a wavelength away from the mode (it can even be brought closer, coming down to 1/10

of a wavelength). The PML boundary has drawbacks; namely, it results in a slower
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Figure 3.3: Ansys HFSS simulation of a post cavity coupled to a transmission line. Only the
inner conductor (in orange) and the dielectric (in blue) are simulated. The outer
conductor is replaced by a perfect E boundary condition on the surface of the
dielectric. The inner conductor is made of copper and the dielectric is made of
Teflon. The length of the vacuum cylinder around the pin is set by the thickness of
the superconducting cavity.

simulation convergence and a has a larger RAM use, which could be compensated for
by the reduced volume.
The second type of boundary is the wave-port boundary. We can define the dissipative

surface as a wave port and use it to measure the reflection coefficient. In this case, we
use a driven modal simulation, which takes longer as we have to simulate the reflection
coefficient for various frequencies. The reflection coefficient shows a resonance at the
mode frequency from which we can extract the coupling to the transmission line using
Eq. (2.36). It has the advantage of being able to show the frequency dependence of the
reflection coefficient; this dependence is not trivial if the mode is protected by filters (see
Sec. 3.3). We can detect an impedance mismatch either by looking at the impedance
matrix or by looking for wiggles or parasitic resonances in the reflection coefficient.
The last boundary is the lumped RLC boundary, which can only be applied to the

dielectric section of the dissipative surface. It consists of a parallel combination of a
lumped resistor, inductor, and/or capacitor applied to the dissipative surface, while
an eigenmode simulation gives the quality factor of the dissipation. For our purposes,
we use only a resistor, while the resistance is set to the impedance transmission-line
value (i. e. 50 Ω). When applying this boundary, the software requires a “current flow”
line to be defined. The line does not define the direction of an RLC dipole; rather,
the simulation uses it as a region of space where the calculation must converge in
the simulation. Thus, it is recommended that the current flow line be drawn from the
dielectric inner circle to the outer circle. This boundary works as follows: the software
computes a surface impedance Zs ohms/square from the resistance, inductance, and
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3.2 coupling to a transmission line

capacitance values. Then, on the surface, the electric and magnetic fields’ tangential
components, ~Etan and ~Htan, follow the boundary condition

~Etan = Zs(~n ∧ ~Htan), (3.12)

where ~n is the surface’s unit normal vector. As expected, this boundary condition does
not rely on a specific direction given by a current flow line, is easy to use, and does not
increase the amount of RAM needed; however, it is not recommended for use with a
non-rectangular surface as HFSS assume that the surface is always rectangular. With
non-rectangular surface it may lead to a less accurate representation of the lumped
RLC element.
All these three boundary conditions have been used in this thesis; we have checked

that they all generate the same value for the coupling between the modes and the
transmission line. The PML boundary is the most accurate, but it needs a larger amount
of memory and a longer simulation time. The RLC boundary is a good compromise
between speed, accuracy, and memory requirement, while the wave-port boundary offers
interesting results when filters are used between the mode and the transmission line.
Experimentally, we can (during the first cool down of the experiment) obtain a coupling
rate of the same order as the one targeted. This allows us to refine the pin length over
the course of cool downs and thereby get closer to the targeted value. Of course, when
the coupling rate is large enough, it is even possible to measure it at room temperature.

3.2.2 2D circuits

The geometry we often used with 2D circuits is the coplanar waveguide (CPW) geom-
etry, which is based on a dielectric substrate on top of which is located a center strip
conductor, surrounded by two semi-infinite ground planes, on top (see Fig. 3.4a). The
CPW architecture offers several advantages [86]. It supports a quasi-TEM propagation
mode4, it is easier to fabricate as there is no need for a ground plane on the bottom of
the dielectric and it does not need any via holes nor a wraparound. In addition (from
a design and performance point of view) shunts are easy to fabricate, radiation losses
are small as there is no dipolar momentum, and the cross-talk between adjacent lines is
weak. The drawbacks of CPW come from the existence of the two ground planes; that
is, two modes exist—an even one where the two ground planes always have the same
potential, and an odd one, where the two ground planes have opposite potentials. In
the case of circuit QED, the odd mode is a parasitic one that is removed by connecting
the two ground planes using an air bridge above the center track (see Fig.3.4b and c).
In 2D geometries, coupling between a transmission line and a mode is achieved by

sharing a capacitor (see Fig.3.4b), while the capacitance determines the coupling rate.
This coupling rate can be simulated in the same way as in the third 3D-geometry
method (RLC boundary method). The transmission line’s track is connected to the
ground through two rectangles with lumped RLC boundaries. A resistance R is at-

4 Due to the fact that there are two different dielectrics in a CPW geometry—the substrate dielectric and
the air/vacuum—there are two different propagation speeds and, therefore, a TEM mode cannot exist.
However, modes do exist that are nearly TEM and with a low dispersion; these are called quasi-TEM
modes
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Figure 3.4: a. A vertical cut-through of the CPW architecture. On the top of a dielectric, a
center strip conductor (also called a track) is surrounded by two ground planes. In
circuit QED, the conductors are replaced by superconductors. b. An Ansys HFSS
simulation of a qubit coupled to a readout resonator, which is then coupled to a
CPW transmission line through a coupling capacitor. The dielectric is shown in
blue and the superconductor in grey, and air bridges can be seen connecting the
ground planes to each side of the track. c. Close-up of the CPW transmission line.
In the simulation, the track of the transmission line is shorted to the ground by
two lumped resistors (shown in red) in order to mimick the infinite length of the
transmission line and its equivalent dissipation.

tributed to the two rectangles, which is equivalent to adding two parallel resistors of
resistance R at the end of the transmission line. If each resistance R is equal to twice
the impedance of the transmission line, the two resistors are equivalent to an infinite
transmission line. An eigenmode simulation gives access to the mode quality factor,
from which we can derive the coupling rate. We could use only one resistor with a resis-
tance equal to the transmission-line impedance, but the convergence of the simulation
would be slower if we did so. Thus, as the transmission-line mode is symmetric with
respect to the track, it is better to use a dissipation that has the same symmetry. As
the current in the resistors goes from the track to the ground, it is recommended that
we define a current flow line going from the track to the ground.

In the simulation shown in Fig. 3.4b, only the bare resonator mode is capacitively
coupled to the transmission line. However, due to the hybridization, both the resonator
and qubit hybrid modes are coupled to the transmission line. The fact that the qubit
mode is coupled to the transmission line is called the Purcell effect; this effect is in-
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teresting because it enables us to drive the resonator and the qubit through the same
transmission line. However, it can be too strong and, in which case, can limit the lifetime
T1 of the qubit.

3.3 the purcell effect

3.3.1 History

The Purcell effect is an enhancement of the spontaneous emission of a quantum system
by its environment. It was discovered in the 1940s by Edwards Mills Purcell when he was
studying the enhancement of the spontaneous emission of an atom in a resonant cavity
[87]. By changing the environment from the vacuum to a resonant cavity, the density
of state at the atom’s resonant frequency changes and, according to Fermi’s golden
rule, the spontaneous emission rate changes as well. Purcell concluded that the higher
the quality factor of the cavity is, the higher the spontaneous emission rate is, which
is a non-straightforward result. We can, however, understand it easily as follows: the
density of states Dc of a cavity at its fundamental resonant frequency is (see Eq. 3.19)

Dc =
2

πκtot
. (3.13)

This result comes from the fact that we have only one mode with a linewidth of κtot.
Thus, at a fixed frequency, increasing the quality factor is equivalent to decreasing κtot,
leading to an increase in the density of states.

3.3.2 Bad cavity limit

Let us derive the Purcell relaxation rate of a transmon qubit coupled to a resonator5.
In this example, only the resonator is coupled to a transmission line, with a rate κ
that is assumed to be larger than the coupling rate g between qubit and resonators
(i. e. we are in the weak coupling regime). Starting from the linear part of the exchange’s
Hamiltonian (see Eq. (2.66)), we can move in the frame rotating at the transmon
frequency for both modes. The Hamiltonian reads

H̃q,r;RWA = −∆a†a+ g(ba† + b†a), (3.14)

with ∆ = ωq − ωr being the detuning between the two modes. In the rotating frame,
the quantum Langevin equations of the field amplitudes become

〈ȧ〉 =
−i
~
〈[H̃q,r;RWA, a]〉 − κ

2
〈a〉 = i∆〈a〉 − ig 〈b〉 − κ

2
〈a〉

〈ḃ〉 =
−i
~
〈[H̃q,r;RWA, b]〉 = −ig〈a〉

. (3.15)

5 This derivation is based on that by Marius Villier, given in the lecture notes from the Ecole de Physique
des Houches 2021 cQED OXY-Jeunes sessions but it can be done differently [7, 88]. This approach is
valid when applied to any system that contains two coupled linear modes.
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Due to the weak coupling assumption and in absence of drive, we can assume that the
resonator mode is always in its steady state, i. e. 〈ȧ〉 = 0. This assumption is valid,
whatever the value of the detuning ∆. The steady state 〈a〉ss reads

〈a〉ss =
ig〈b〉

i∆− κ/2
, (3.16)

and by replacing the mean value of a by its steady state value in the mean-field equation
for mode b, we get

〈ḃ〉 =
−g2

∆2 + κ2/4
(−i∆ + κ/2)〈b〉. (3.17)

In this way, we obtain two results: first, the frequency of the transmon mode is shifted
by g2∆/(∆2 + κ2/4) (this is the Lamb shift of the transmon mode induced by the
resonator mode due to the exchange coupling being corrected by the resonator losses);
and second, the transmon state decays spontaneously at a rate of

Γp =
g2κ

∆2 + κ2/4
, (3.18)

which is called the Purcell rate. The Purcell rate is given by a Lorentzian function of
∆ that has the width κ. This can be explained easily, as the density of state Dc(ω) of
the resonator reads

Dc(ω) =
1

2π

κ

(ω − ωr)2 + κ2/4
. (3.19)

Thus, the Purcell rate is, as expected, proportional to the resonator density of state at
the transmon frequency Dc(ωq). If the detuning ∆ is small compared to the resonator
losses κ, we retrieve the same expression and conclusion as Purcell: that the Purcell
effect increases with the resonator quality factor. In the circuit QED field, this regime
of parameters is rare, as a strong regime coupling can easily be achieved, but this is not
the case for some hybrid systems, such as the spin-resonator system in electron spin
resonance experiments, with which the resonant Purcell effect is often used [89].

3.3.3 Strong and dispersive regime

As has been said in Sec. 2.5, most circuit QED experiments are conducted using the
strong and dispersive regime, i. e. ∆� g � κ. In such cases, the exchange interaction
allows the excitation between the transmon and the resonator to be coherently swapped;
this phenomenon is called the vacuum Rabi oscillation [19]. As the resonator is lossy,
there is a finite probability of losing the excitation in the resonator before it is swapped
again in the transmon. In the former section, we assumed that the resonator is always
in its steady state; however, this assumption can no longer be made as the exchange
rate is bigger than the loss rate. In the strong and dispersive regime, the Purcell rate
is derived as [70]

Γp =
g2κ

∆2
. (3.20)
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These results can easily be understood: the ratio g/∆ is the amount of hybridization
between the transmon and the resonator mode. Thus, g2/∆2 is the probability that
an excitation of the hybrid transmon mode occurs in the bare resonator mode. Thus,
this excitation has a probability κdt to be lost during the next time step dt, leading
to the Purcell rate seen in Eq. (3.20). This formula can easily be retrieved by applying
the Bogoliubov transformation to the Lindblad dissipation term; however, as we will
discuss below, this is not the proper way to derive it.
If either the strong or the dispersive assumptions are not satisfied, we can derive the

Purcell rate of the transmon mode using the weaker assumption κ �
√

∆2 + 4g2[88],
in which case the Purcell rate reads

Γp =
κ

2

(
1− ∆√

∆2 + 4g2

)
. (3.21)

We can easily check whether the three Purcell rates from Eqs.(3.18), (3.20) and (3.21)
give the same results κg2/∆2 under the dispersive approximation, whatever the ratio
g/κ. However, these expressions are only valid for an inverted situation; that is, where
the Purcell rate is induced by a lossy transmon qubit on a resonator. As has been
shown in [90], for a lossy resonator, we need to take the multi-mode nature of the
resonator into account. Additionally, we did not take into account the dependence of κ
on the angular frequency ω. We did the approximation that κ(ω) is flat; however, this is
only true around the resonator frequency and κ(ωq) can differ from κ(ωr). In the next
two sections, we will discuss the multi-mode nature of the resonator, the convergence
problem, and the dependence of κ on the angular frequency ω.

3.3.4 The multi-mode Purcell effect

The transmon mode is coupled to not one but an infinity of lossy modes6. First, we study
a lumped circuit where the resonator is replaced by a finite-length transmission line[90].
The Purcell rate becomes asymmetric with respect to the detuning ∆ and is smaller
for negative detuning δ < 0 (i. e., when the transmon frequency is below the cavity
frequency) than for positive detuning δ > 0 (i. e., when the transmon frequency is above
the resonator frequency). This is one of the explanation about why the circuit QED
community designs readout resonators to work at frequencies above qubits resonant
frequencies. The reason for this can easily be understood if we take into account the
resonator’s second mode.
This multi-mode behavior is already taken into account by the Ansys HFSS simula-

tion. Another way to study this concept is to look at the admittance Y0(ω) seen by the
transmon (see Fig. 3.5). By studying this classical circuit [91, 90], we can see that the
Purcell rate is given by

Γp =
Re(Y0(ωq))

CJ + Cshunt
. (3.22)

6 As a transmon contains only one mode, the Purcell effect due to a lossy qubit on a resonator is given
by the Eqs.(3.18), (3.20) and (3.21).
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multi-
modes

resonator

Figure 3.5: Transmon qubit capacitively coupled to a multi-mode resonator. We can replace
the multi-mode resonator and the coupling capacitor with an equivalent admittance
Y0(ω). The Purcell rate of the transmon mode, due to the resonator losses, is given
by the real part of the admittance Y0 at the transmon’s resonant frequency.

Even if all the above simulating approaches work and show a good agreement with
the experiment [90], we still have to be careful if we want to generalize the theory to
a multi-mode system. We can show that assuming the resonant frequency of the n-th
resonator mode is (n+ 1)ωr and its impedance Z/(n+ 1), its losses κn and its coupling
rate gn with the transmon are given by gn = g

√
n+ 1 and equate to κn = κ(n + 1)2

[90]. Taking into account the fact that the detuning ∆n between the transmon and the
n-th resonator mode is linear with n, we can easily show that the series

∑
n Γp,n, where

Γp,n is the Purcell rate due to the mode n, diverges.
This divergence can be solved by more precise studies that take into account the

spatial extent of modes. We can study the system with a transmission line (the res-
onator) of length l and a spatial zero dimensional transmon. It has been shown in [92]
that the coupling and transmon capacitors become shorter at high frequency, acting
as a low-pass filter. Thus, the amplitude of the n-th resonator mode at the qubit posi-
tion is suppressed for large n. This effectively causes a powerlaw with a low exponant
of gn and decreases the scaling of the loss rate κn. Although this model has already
solved the divergence problem, it still views the transmon as a dot in space, which
is an approximation. Indeed, if we want to derive the coupling gn, we always have
to use the dipolar approximation, which assumes that the transmon length is small
compared to the wavelength of the resonator mode. While this approximation is valid
for low-frequency modes, it is not valid for high-frequency modes as the wavelength
decreases as 1/n. It has been shown [93] that the effective coupling capacitance be-
tween a transmon of length 2lq and the n-th mode of the resonator is proportional to
sinc(2πlq/λn) ∼ 1/n. This is due to the fact that the coupling is given by the overlap
of the transmon and the n-th mode’s resonator electrical field. We have to integrate
this coupling over the full extent of the transmon, taking into account the spatial de-
pendence of the electrical field phase. For high-frequency modes, the phase changes too
quickly, leading to a loss of coherence and a decrease in the coupling rate. We can view
the transmon as a collection of zero extension antennas; if they are not oscillating in
phase, there will be no excitation of the transmon mode.
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3.3.5 Purcell filters

We have not yet discussed the dependence of the loss rate κ on the angular frequency
ω. The loss rate κ is obtained when the Markov approximation is performed on the
environment. When doing so, it is shown that the loss rate reads [94]

κ(ω) = 2πDe(ω)|ge(ω)|2, (3.23)

with De(ω) being the density of state of the environment at angular frequency ω and
ge(ω) being the coupling rate of the environment mode to the resonator, at angular
frequency ω. Now Eq. (3.18) can be seen from a new perspective—the transmon mode
perspective. The resonator is the transmon environment and the density of state of this
effective environment is equal to Dc(ω).
Eq. (3.23) shows that we have two ways to tune the loss rate and suppress the

Purcell rate. That is, we can either design a coupling ge or a density of state De that
is small at the transmon frequency, while keeping the loss rate κ at the value needed
for the resonator. In our experiment, ge is already set by the choice of the capacitive
coupling. Thus, a convenient way to protect a mode from the Purcell effect is to design
an environment density of state that is small at the mode frequency. An easy way to do
this is to use Purcell filters [95] placed between the system (which, here, is formed by
the transmon and the resonator) and the transmission line. It must show a close-to-1
reflection amplitude |r| at the transmon frequency (or at the frequency of the mode we
have to protect) and a close-to-1 transmission amplitude |t| at the resonator frequency
(or at the lossy mode’s frequency). If the filter has no loss, the Purcell rate becomes

ΓP (ω)→ ΓP (ω)|t(ω)|2. (3.24)

Various types of Purcell filter exist; the most commonly used are the stub filter [95]
(or λ/4 filter) and the band-pass filter [96]. The stub filter is designed to have destructive
interference at the transmon frequency, leading to a high reflection coefficient. The stub
filter imposes a good frequency matching as the destructive interference phenomenon
happens only at specific frequencies. The band-pass filter is an added resonator. It has
to be close to the resonator mode in terms of frequency. Usually, we can simply choose
a band-pass filter that is resonant with the resonator mode. However, as the resonator
is coupled to the transmission line through the band-pass filter, the Purcell filter has a
higher loss rate than the resonator does. Thus, we have to be careful that the exchange
coupling rate between the transmon and the Purcell filter is small, otherwise it will add
a non-negligible Purcell effect.
Some Purcell filters are incorporated inside the transmission line (see Sec. 9.2.1), in

which case the impedance of the filter must be matched to that of the transmission line.
If there is an impedance mismatch (which there always is due to the SMA connectors
or the line filtering) we can create a standing wave (i. e. a resonant mode, as in a
Fabry–Perot cavity) that can change in response to the transmission line’s density of
modes and thus strongly enhance the transmon’s relaxation rate.
As we will see, this filtering concept is crucially important, as it is not only used to

protect a mode from the Purcell effect but, more generally, to protect a quantum state
from decoherence.
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3.4 filtering, noise, and decoherence

The filtering of a superconducting circuit is essential, as the noise seen by the system and
its relaxation are related through the fluctuation dissipation theorem. Let us assume
that an harmonic mode is coupled to a noise source, described by the quantum operator
F̂ , with the following coupling Hamiltonian:

V = Aφ̂F̂ = AφZPF(â+ â†)F̂ . (3.25)

Thus, using Fermi’s golden rule, the probabilities κ↓ and κ↑ (of losing and gaining a
photon, respectively) are [8]

κ↓ =
A2φ2

ZPF

~2
SFF (+ωr)

κ↑ =
A2φ2

ZPF

~2
SFF (−ωr)

, (3.26)

where ωr is the resonant angular frequency of the mode and SFF is the quantum noise
spectral density. Thus, from the system’s perspective, the noise in the environment gen-
erates dissipation. As the noise is quantum, the spectral density is not an even function
of ω, leading to a relaxation rate that is higher than the excitation rate. Filtering the
environment becomes essential, as it allows us to decrease the spectral density ampli-
tude and to reach a dissipation rate that is low enough to allow coherent control of the
system. Thus, the cavity QED architecture makes sense, as it uses the cavity to filter
the noise from the environment.
In Eq. (3.23), we related the total loss rate κ to the environment density of state De,

whereas, in Eq. (3.26), the total loss rate κ = κ↓ − κ↑ is related to the quantum noise
spectral density. We can easily check whether these two expressions are compatible.
Assuming the mode is coupled to the transmission line capacitively, we can derive the
charge noise spectral density of one harmonic oscillator using the resonant frequency
ωo [8], as follows:

SQQ(ω) = 2πQ2
ZPF(nb(ωo)δ(ωo + ω) + (nb(ωo) + 1)δ(ωo − ω)), (3.27)

with nb(ω) being the Bose–Einstein occupation factor at energy ~ω. As the Kronecker
functions that appear are simply the density of state Dho(ω) and Dho(−ω) of the har-
monic oscillator, we can easily derive the charge noise spectral density for a transmission
line, which is a collection of harmonic oscillators with a density of state De(ω). This
leads to the spectral density

SQQ(ω) = 2πQ2
ZPF(|ω|)(nb(ω)De(ω) + (nb(−ω) + 1)De(−ω)), (3.28)

where De(ω < 0) = 0. We can also easily check that the relaxation rate κ(ωr) =

κ↓(ωr)−κ↑(ωr) is indeed proportional to the density of state De(ωr). Thus, the Purcell
effect and the Purcell filter can be viewed as an enhancement or a filtering of the noise
perceived by a mode. The effect of a Purcell filter can be viewed as a filtering of the
environment noise. This noise is decreased by the transmission coefficient t, leading to
the spectral density |t(ω)|2SQQ(ω).
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In the last paragraph, we discussed relaxation only; however, a quantum system is
also sensitive to dephasing. If a parameter F of a mode’s Hamiltonian shows quantum
fluctuations, then the frequency of the mode can fluctuate as well. This leads to the
dephasing rate [20]

Γϕ =
1

2

(
∂ωr
∂F

)2

SFF (ω → 0). (3.29)

As such, the dephasing rate is related to the quantum noise spectral density at low
frequency.
Similarly to the Purcell effect, if the transmon mode has a dephasing rate Γϕ, given

by Eq. (3.29), the exchange interaction between the transmon mode and the resonator
mode leads to two new dissipation terms (commonly known as dressed dephasing [94]):

Γ∆D(a†b) and Γ−∆D(ab†) with Γ±∆ =

(
∂ωr
∂F

)2 g2

∆2
SFF (±∆). These two terms relate

to the excitation and decay of the transmon state at the rate nΓ±∆, with n being
the average number of photons in the resonator. Thus, this term leads to the spurious
transition of the transmon, either during readout or if the resonator mode is hot. This
term can be viewed as either an up- or down-conversion of the photon noise at frequency
∆ by the resonator photons, indicating the importance of filtering the system, not only
at low and resonant frequencies, but also at those frequencies that correspond to the
detuning between the modes.
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QUANTUM MEASUREMENT

We usually learn from quantum physics textbooks that a measurement is an instanta-
neous collapse of the quantum state. The word “collapse” refers to a situation where
the coherence between measurement eigenvectors is erased and the system state is
projected randomly onto one of those eigenvectors; this is the so-called von Neumann
measurement. This measurement raises many issues. First is that it is difficult to de-
scribe all measurements using this formalism. For example, if a photodetector measures
the excitation of a qubit and goes “click” (i. e., detects a photon), we know before the
measurement occurs that there was a non-null probability that the qubit was in the
excited state. However, after the measurement, the qubit is in its ground state, as its
excitation has been absorbed by the photodetector. Such a measurement is described
using the measurement operator |e〉〈g|, which is not a von Neumann measurement (see
Sec. 2.2.3.1). Second, not all the measurements are projectives; some of them leave the
quantum state with coherences in the measurement eigenvectors’ basis. These measure-
ments are called weak measurements. To reconcile those two cases with von Neumann
measurement we need to take into account a probe mode. Third, a measurement is
never instantaneous; we can always define a measurement bandwidth that is related to
the minimal amount of time needed to perform a projective (or strong) measurement.
In this chapter, we discuss the different types of generalized measurements that can be

performed and define the relevant quantities used to characterize them. Specifically, we
will focus on the heterodyne and homodyne measurements and on the photodetector,
all of which are at the center of this thesis. To finish, we will discuss the idea of
a quantum-limited amplifier and describe the amplifier that is used in the thesis: a
Josephson traveling-wave parametric amplifier (TWPA).

4.1 stern and gerlach experiment

This section discusses the different types of measurements and defines the relevant
parameters, using a idealized Stern and Gerlach experiment as an example. Although
the historical experiment was initially used to prove the quantum nature of spins1, its
idealized version is a perfect and easily studied example of generalized measurement.

4.1.1 Measurement scheme

The Stern and Gerlach experiment was imagined by Otto Stern in 1921 and conducted
by Walther Gerlach in 1922 [97]. In this experiment, a silver atom beam is sent into
an inhomogeneous magnetic field. As silver atoms can be seen as spin-1/2 particles,

1 Let’s remark that the initial experiment was performed to test the Bohr-Sommerfeld hypothesis en-
tailing that the atom angular momentum is quantized. It was only several years later that the spin
existence was postulate.
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Stern–Gerlach

screen

atom beam

Figure 4.1: The Stern and Gerlach experiment. An atom beam, polarized along the x direction,
goes through a magnetic field gradient. Due to the spin and the magnetic field
interaction, the beam is deviated depending on the z component of the spin. This
interaction is a unitary evolution that entangles the atom spin and the position’s
degree of freedom. The beam arrives on a screen that performs a von Neumann
measurement of the atom’s z coordinate. Depending on the distance h between the
two beam spots on the screen, the initial quantum noise δzQ, and the final total
noise δz, various types of quantum measurements can be achieved.

the magnetic field gradient in the z direction deviates the beam according to the spin
z-component (see Fig. 4.1). A screen enables us to measure the position of atoms after
the deflection occurs.
The quantum states of the beam’s atoms have two parts: one describing the spin

degree of freedom, the other the z position degree of freedom. Thus, the quantum state
can be written as |Ψ〉 = |Ψs〉 ⊗ |Ψz〉, where |Ψs〉 and |Ψz〉 are the quantum states of
the spin and the position, respectively. In this idealized version of the experiment, we
assume that the atom spin state is prepared in |+ x〉 = (| ↑〉+ | ↓〉)/

√
2, where |↑〉 and

|↓〉 are the two eigenvectors of the σz operator. As there is no environment, no unknown
auxiliary system, and no uncertainty in the initial state, we can use the Hilbert space
vectors instead of the density matrix. After the beam’s focusing process, there will
always be a non-null beam width, which is given by the quantum standard deviation
δzQ of the position z. For example, if the beam is focused using an optical trap, δzQ
will be the zero-point fluctuation2. Thus, the position’s quantum state is described by
the vector |Ψ0〉, leading to a probability density of |Ψ0(z)|2, which is centered on zero
with the width δzQ (see Fig. 4.1).

After the magnetic field, the atom state reads

|Ψ〉 = (|↑〉 ⊗ |Ψ+h〉+ |↓〉 ⊗ |Ψ−h〉 )/
√

2, (4.1)

2 Here we assume that the thermal fluctuation does not affect the beam preparation which was the case
in the historical experiment.
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and the spin degree of freedom is entangled with the position degree of freedom. The
measurement of the atom position on the screen can be modeled as a von Neumann
measurement and leads to the projection of the |Ψ+h〉 and |Ψ−h〉 states on the position
eigenvector |z〉. The spin state reads

|Ψs〉 =
〈z|Ψ+h〉 |↑〉+ 〈z|Ψ−h〉 |↓〉√
| 〈z|Ψ+h〉 |2 + | 〈z|Ψ−h〉 |2

. (4.2)

This is the protocol for a generalized measurement (see Sec. 2.2.3.1), with the mea-
surement operator M(z) being associated with the measurement outcome z, as follows:

M(z) =

(
〈z|Ψ+h〉 0

0 〈z|Ψ−h〉

)
. (4.3)

When looking at the probability density of atom detections, we can see that the
width of the density is equal to δz and is larger than δzQ (see Fig. 4.1). This occurs
because the measurement setup adds noise; for example, the noise of the magnetic field
gradient or the noise of atom detection by the screen. As such, the total noise δz of
the atom position is made of two contributions: a quantum part δzQ, which cannot
be removed and is contained in |Ψ±h〉, and a classical part δzc, which is added by the
measurement scheme. The total noise reads as δz =

√
δz2
Q + δz2

c . The measurement
operator of Eq. (4.3) takes only the quantum noise into account. When adding the
classical noise, after the measurement the density matrix ρs of the spin state becomes

ρs →
∫
pc(z

′)M(z − z′)ρsM
†(z − z′)dz′

Tr
(∫
pc(z′)M(z − z′)ρsM †(z − z′)dz′

) , (4.4)

where pc(z′) is the probability density of the classical noise. Based on the respective
values of 2h, δzQ, and δzc, we can identify a fourth case.

4.1.2 Measurement regimes

4.1.2.1 Strong measurements

If the difference 2h between the mean signals for spin up and down is large compared to
the total noise δz (see Fig. 4.2a), there is no ambiguity in the state of the system after
the atom detection has taken place. From the point of view of the quantum state, if there
is no classical noise δzc, the states |Ψ+h〉 and |Ψ−h〉 are orthogonal (〈Ψ+h|Ψ−h〉 = 0)
and there is a high entanglement of one bit between the spin and the position. With a
non negligeable classical noise, the state must be described with a density matrix and
the entanglement is erase by the classical noise. However the classical noise is not large
enough to blur the measurement result as 2h is larger than δzc. If the measurement
outcome’s z is positive (negative), the spin state is projected on |↑〉 (|↓〉) as 〈z|Ψ−h〉 = 0

(〈z|Ψ+h〉 = 0). This measurement is projective and is called a strong measurement or
single-shot measurement; it is usually the qubit-state readout regime we would want to
reach [98].
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a. b.

c. d.

Figure 4.2: Density probability P(z) of the atom detection with the classical noise added by the
measurement scheme (blue) and with only the quantum noise (orange). a. Strong
measurement. The signal 2h is bigger than the noise δz b. Weak measurement.
The signal 2h is of the same order as the quantum noise δzQ, and the classical
noise is negligible c. Unread strong measurement. The signal 2h is greater than the
quantum noise δzQ, but is of the same order or smaller than the classical noise δzc.
d. Unread weak measurement. The signal 2h is of the same order as the quantum
noise δzQ, but is smaller than the classical noise δzc.

4.1.2.2 Weak measurement

When the classical noise is small compared to the signal and the signal is smaller than
the quantum noise (i. e. δzc � 2h and 2h ≤ δzQ) the amount of entanglement (much
less than one bit) between the position and spin degree of freedom is not large enough
to achieve a strong measurement. There is an overlap between the two states |Ψ+h〉
and |Ψ−h〉 (〈Ψ+h|Ψ−h〉 6= 0). When measuring the position of the atom, we cannot
deduce the spin state without ambiguity (see Fig. 4.2b); this ambiguity comes from the
quantum fluctuation. The atom spin state after the position measurement is a coherent
superposition of |↑〉 and |↓〉, which is given by Eq. (4.2). This measurement is called a
weak measurement, which can be used to measure quantum trajectories [74].

4.1.2.3 Partially read strong measurement

In the two last cases, the classical noise was negligible compared to the quantum noise
and/or the signal. We will now study a case wherein the classical noise δzc is of the
same order or larger than the signal 2h and is much larger than the quantum noise
δzQ; i. e. δzc ∼ 2h � δzQ. Here, the amount of entanglement we would have between
the position and spin degree of freedom whitout classical noise is large enough to result
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in a strong measurement (the yellow curve in Fig. 4.2c), but the classical noise erases
the entanglement and blurs the results of the position measurement (the blue curve in
Fig. 4.2c). As the measurement is strong from the point of view of the quantum noise
(i. e. 2h � δzQ), the final spin state has no coherence. The classical noise transforms
the pure spin state into a statistical mixture of |↑〉 and |↓〉, while the density matrix
reads

ρs = p(z) |↑〉〈↑|+ (1− p(z)) |↑〉〈↑| , (4.5)

where p(z) is the probability of detecting a spin |↑〉 at the position z and is mostly
given by the classical noise. The measurement is strong; however, only a part of the
information is recovered, being equivalent to reading only a part of the measurement.
If the classical noise becomes much larger than the signal, then we cannot recover the
measurement information; as such, the measurement becomes an unread measurement
that is equivalent to a decoherence process.

4.1.2.4 Partially read weak measurement

The last case is defined as a classical noise, a quantum noise, and a signal of the same
order; i. e. 2h ∼ δzc ∼ δzQ. In this case, the measurement is a weak measurement
that is blurred by the classical noise. The final spin state is a statistical mixture of the
coherent superposition of |↑〉 and |↓〉. This is usually a regime of parameters that we
try to avoid for a qubit-state readout. In circuit QED, as the classical noise is rarely
negligible, quantum trajectory experiments are usually performed in a partially read
weak measurement regime, rather than in a pure weak measurement regime.

4.2 measurement characteristics

In the last section we discussed the various strengths of a quantum measurement, which
can be quantified using various parameters such as the signal-to-noise ratio (SNR).
In this section we will introduce the main characteristics and parameters of quantum
measurements, such as continuous and quantum non-demolition (QND) measurements.

4.2.1 SNR and quantum efficiency

From the study of the Stern and Gerlach experiment (see the previous section), we
can see that the measurement is characterized by two parameters: the SNR and the
quantum efficiency η.

SNR =
(2h)2

δz2

η =
δz2
Q

δz2

. (4.6)

The quantum efficiency compares the classical noise to the quantum noise and, more
generally, the minimal amount of noise imposed by quantum mechanics to the total
amount of noise. It gives the percentage of the measurement information recovered,
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which is equivalent to saying that it quantifies the amount of information that is pre-
served from the classical noise. The SNR quantifies whether the amount of information
recovered is enough to determine the state of the system without any ambiguity. For
a qubit-state readout, we would want a high SNR (larger than 10) and a quantum
efficiency close to 1.
For a dispersive qubit readout and qubit fluorescence measurement, the signal am-

plitude is limited either by the higher-order non-linearities effect (see Sec. 2.5.3) or by
the fact that a qubit can only store one photon (see Sec. 2.4.3). To reach the fastest
strong measurement, it becomes essential to reach a close-to-1 quantum efficiency. The
signal power being only a few photons, measuring the signal without amplification will
not work because of the microwave room-temperature noise which is about thousands
of photons and the acquisition card sensitivity which is too low. Noise is always added
during an amplification process; a good amplification scheme is composed of an am-
plifier that adds a noise that is negligible compared to that of the signal. In a circuit
QED experiment, the first amplifier is usually a quantum-limited amplifier such as
the Josephson parametric converter (JPC) [99], Josephson parametric amplifier (JPA)
[100], or a TWPA [30]. These amplifiers add a noise that is close to the minimal one
imposed by quantum mechanics. The gain of about +20 dB from these amplifiers is
large enough so that the noise added by the rest of the amplification scheme is almost
negligible; thus, the efficiency of the amplification scheme is mainly dominated by the
quantum efficiency of the first quantum-limited amplifier.

4.2.2 QND measurements

One of the most important features of a quantum measurement is whether or not it
demolishes the system’s quantum state. Here the word “demolition” does not refer to
a collapse nor to a projection of the quantum state; rather, it refers to the fact that a
measurement can get the system out of the Hilbert space thus making it impossible to
measure it again, or leads to a measurement outcome in a following measurement that
is not correlated to the first one. As an example, let us describe two types of demolition
measurements. First of these is the Stern and Gerlach experiment, in which the atom
detection by the screen leads to the absorption of the atom; therefore, performing a
second measurement is impossible.
The second example is the measurement of a qubit by a photodetector. The photode-

tector is able to detect any photon emitted by the qubit. If the photodetector “clicks”,
this means the qubit was in the excited state. We use the past tense as the qubit emit-
ted the photon stored in the excited state and so it is now in the ground state. Thus,
while the “click” is a measurement of the qubit’s excited state, the qubit state after
the measurement is |g〉. The measurement operator is |g〉 〈e|. If we perform a second
measurement, the result will be “no click”.
In comparison, the dispersive readout of a qubit is a QND measurement when driving

the resonator such that the photon number remains low [70]. For a large drive, leading
to a large number of photons in the resonator, the resonator photons can induce a qubit
transition during the measurement, leading to a non-QND measurement (or “demolition
measurement”) [101].
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4.2.3 Continuous vs discrete measurements

As described in Sec. 2.2.3.1, a quantum measurement consists of two steps: an entan-
glement process between the system and the probe and a von Neumann measurement
of the probe. In practice, the von Neumann measurement can be a continuous process
such as a voltage measurement, which needs to be integrated over time in order to
suppress the noise. Depending on the characteristics of the two processes, a quantum
measurement can be viewed as either a discrete or a continuous time process.

4.2.3.1 Continuous case

If the two processes are continuous and occur simultaneously, then we can divide the
measurement in time steps that are as small as the time step dt used to study the
system dynamics (see Sec. 2.2.3.3). This is the case of the dispersive readout of a qubit.
The entanglement between the cavity and the qubit and the homodyne/heterodyne
measurement of the outgoing field occur approximately at the same time. This kind
of measurement allows us to consider the measurement as continuous in time. When
dividing a measurement with duration T into N shorter measurements of duration
T/N , the noise of shorter measurements is integrated over a smaller time, leading to a
smaller SNR. It has been shown that the SNR is proportional to the integration time3

T . For a measurement made with a phase-sensitive amplifier (see Sec. 4.3.3.2 for the
definition of a phase-sensitive amplifier), the relationship reads [74]

SNR = 8ΓmT, (4.7)

where Γm is the measurement rate4 (i. e. the speed at which the information is recovered
by the observer). The measurement rate is related to the quantum efficiency η and the
dephasing rate Γd by the relationship [8]

Γm = ηΓd. (4.8)

The dephasing rate is the rate at which coherences between the measurement eigenvec-
tors decrease, which implies that we cannot measure faster than the speed at which
the state dephases. These fundamental results come from the measurement back-action.
Every time information is extracted from the system, the back-action of the measure-
ment dephases the quantum state, leading to its collapse. We can see the dephasing
rate as the rate at which information is acquired by the environment, only a part of
which η is recovered by the observer.

As the SNR depends linearly on the integration time T , we can continuously change
the measurement strength: from a weak measurement to a strong measurement. Thus,

3 To be more precise, the SNR is proportional to the inverse measurement bandwidth (see supplementary
information in [102]). If the measurement time (which is equal to the integration time) is longer than
the inverse bandwidth of the resonator, amplifiers, or filters, etc., the inverse measurement bandwidth
is equal to the integration time.

4 The definition of the SNR is not universal. Using the notation from the Stern and Gerlach experiment,
we can find the following definitions: SNR = h2/δz2 [8] and SNR = (2h)2/(2δz)2 [62]. These definitions
do not change the definition of the measurement rate Γm in Eq. (4.7); only the prefactor (here 8)
changes.
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a strong measurement can be viewed as the averaging of a series of weak measurements
[103].
If back-action of a weak measurement is a continuous process, it is not always the case

for a strong measurement. If the inverse of the measurement rate is much smaller than
that of the system dynamics and the time step dt of the Lindblad equation, this means
a strong measurement is performed at every time step dt. One can apply a threshold to
the continuous measurement record to discretize it and the back-action may be discret.
During this discret back-action processes, the quantum state occurs quantum jumps.
This is the case for a qubit probed by a photodetector with a photon loss rate much

smaller than the photodetector detection rate. In such a case, the measurement value
is either “click” or “no click” and when a “click” is recorded, the qubit quantum state is
projected in |g〉 and the qubit dynamics is discret.
When a measurement can be considered as continuous, we can define a jump op-

erator L in the same way we define it when deriving the Lindblad master equation
(see Sec. 2.2.3.3). The jump operator defines the measured observable and the back-
action of the measurement. Under the Markov approximation (see Sec. 2.2.3.3), the
jump operator is independent of t. We can take the continuous measurement record
and its stochastic nature in the master equation into account, leading to a stochastic
master equation that enables us to derive the density matrix at any time t, based on
the measurement records [74]. If the measurement rate is large enough to discretize the
measurement record, one can replace the stochastic continuous record by a stochastic
discrete record [102].

4.2.3.2 Discrete case

An example of discrete measurement in time is the measurement of a resonator’s photon
number (see Chap. 5.3.1 for more details about photon-number measurement protocols).
To obtain such a measurement, we first have to entangle the qubit and the resonator in
such a way that the qubit state encodes information about the photon number. Here
the qubit is a probe, and a dispersive readout of its state enables us to read out the
information about the photon number. We usually need a series of measurements to
recover enough information to make conclusions about the photon number. As the
entanglement operation takes a fixed time and we need to perform measurements af-
ter various entanglement operations, we cannot divide the measurement into smaller
photon-number measurements. Thus, the photon-number measurement is a discrete
measurement in time, and we cannot derive a jump operator for such a measurement.
One of the goals of this thesis was to use a new approach to perform a photon-number
measurement that is continuous in time (see Chap. 7). As such, for the rest of this
chapter, we will focus on measurements that are continuous in time, as this is the type
of measurement used in this thesis. We will pay particular attention to the homodyne
and heterodyne measurement of an electromagnetic field, as they are used for disper-
sive qubit readouts and for the multiplexed photon-number measurements performed
during this thesis.
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4.3 homodyne and heterodyne measurements

4.3.1 Principles

Homodyne and heterodyne measurements are methods used to recover information
encoded in the phase or quadrature of a radio frequency (RF) or an optical electro-
magnetic radiation. The homodyne (heterodyne) measurement is the measurement of
one quadrature (two quadratures) of the radiation. Detection of a homodyne or het-
erodyne measurement is based on the down-conversion of the oscillating signal by a
local oscillator (LO) oscillating at the same frequency ω as the signal; this is equiva-
lent to performing a demodulation. The general form of a classical signal s is s(t) =

I(t) cos(ωt)+Q(t) sin(ωt), with I(t) and Q(t) being the two slowly varying quadratures.
The down-converting signal takes the form sd(t) = I(t) cos(φ) +Q(t) sin(φ), with φ be-
ing the LO phase. By changing the phase φ, we can select the quadratures I or Q, which
are measured by the homodyne detection. For a heterodyne measurement, the oscillat-
ing signal first has to be split into two; the first part of the signal is down-converted
by the LO, while the other part is down-converted by the same LO but phase shifted
by π/2. This enables us to have two down-converted signals, each of which encodes a
different quadrature but with an SNR that is twice as small as the one of the homodyne
detection. The splitting of the signal is mandatory, as the Heisenberg principle forbids
us to measure the two quadratures (I and Q) at the same time. This process comes
from quantum optics [61], and there are several ways to implement it in the microwave
domain. Here we will focus on the detection scheme used in this thesis, demonstrating
that we cannot focus only on the detection part but have to take into account the
generation of the oscillating signal and the amplification process as well.

4.3.2 Use of an intermediate frequency

The generation/detection setup used in this thesis is based on four elements: the use
of an intermediate frequency; the generation of a signal; the noise detection; and the
amplification process. The first three will be discussed here, with the last one discussed
in the following section.
The heterodyne measurement scheme used in this thesis is shown in Fig. 4.3. In or-

der to simplify the quadrature measurement, the RF signal sRF(t) = I(t) cos(2πfRFt)+

Q(t) sin(2πfRFt), which oscillates at a frequency of fRF, is down-converted by a de-
tuned LO at the frequency fLO = fRF + fIF. A low-pass filter leads to an intermediate
frequency (IF) signal, sIF(t) = I(t) cos(2π fIFt) − Q(t) sin(2πfIFt), at the frequency
−fIF. This signal is digitized by an analog-to-digital converter (ADC), and a numer-
ical demodulation enables us to measure both I and Q quadratures. Because of the
heterodyne detection noise (classical and quantum), I and Q are stochastic processes.
The numerical demodulation enables us to go over the cost of splitting the signal

into two in order to perform a heterodyne detection. It does not break the Heisenberg
principle, as the I and Q oscillate in phase quadrature and then, when the I quadrature
is maximal, the Q quadrature is null and so effectively can never measure the two
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quadratures at the same time. This is obvious when considering a sampling frequency
equal to fIF/4, wherein the digitized signal reads [I(t0),−Q(t1),−I(t2), Q(t3), I(t4), ...].
If we are to probe the system with the RF signal, we have to generate it first. As there

is no arbitrary waveform generator with a sampling frequency that is high enough to
generate an RF signal5, we generate an IF signal in the 10-100 MHz range first and up-
convert it into a RF signal at a few GHz. For phase-locking reasons, the up-conversion is
achieved with the same LO oscillator as the down-conversion. If this up-conversion step
is performed with a single IF signal and a regular mixer, it generates two RF signals
at the frequencies fLO ± fIF. Only one of these signals is resonant with the system
and can acquire information about the system state. In this thesis, the relevant RF
signal is always the lower side band: fLO − fIF. During the down-conversion process,
the relevant RF signal is down-converted to the frequency −fIF, while the parasitic
RF signal oscillating at frequency fLO + fIF is down-converted to the frequency fIF.
The numerical demodulation of the digitized signal cannot then distinguish between
these two signals, while the information contained in the relevant signal is blurred by
the parasitic one. To avoid this, we generate two IF signals in phase quadrature and
combine them both with the LO. This enables us to suppress the upper side band during
the up-conversion process and generate only one RF signal oscillating at the frequency6

fRF. This single sideband up-conversion can also be performed using a single sideband
mixer with only one IF signal.
If the amplification scheme has a bandwidth larger than 2fIF, a similar problem to the

one described in the previous paragraph raises the noise. After the amplification scheme,
the noise at the frequencies fLO±fIF are equivalent. The down-conversion process brings
these noise to the frequency ±fIF, and both are numerically demodulated. Thus, the
relevant signal at the frequency −fIF is attached to two noises at the frequencies ±fIF

and leads to a reduction of the SNR by a factor two. To avoid this, we have to down-
convert only those frequencies that fall below fLO. This can be done either by using
an image-reject (or image-rejection) mixer or by performing a numerical demodulation
of the two IF signals generated by the down-conversion. The down-conversion leads to
two spatially separated IF signals, the first of which reads [62]

sIF(t) =I(t) cos(2π fIFt)−Q(t) sin(2πfIFt)

+Re(ξ∗−IF(t)e−iωIFt) +Re(ξ∗+IF(t)eiωIFt),
(4.9)

with I and Q the mean value of the I and Q quadratures and ξ±IF(t) being the complex
noise amplitude at frequency ±fIF. The second reads

s′IF(t) =− I(t) sin(2πfIFt)−Q(t) cos(2πfIFt)

+Re(ξ∗−IF(t)e−iωIFt−iπ/2) +Re(ξ∗+IF(t)eiωIFt−iπ/2).
(4.10)

Thus, after a numerical demodulation of sIF(t) and s′IF(t) at the frequency −fIF, we
obtain two complex envelops s0(t) and s′0(t), respectively. They reads

s0(t) = I(t) + iQ(t) + ξ̃−IF(t) + ξ̃∗+IF(t) = I(t) + iQ(t) + ξ̃∗+IF(t),

s′0(t) = i(I(t) + iQ(t)) + iξ̃−IF(t)− iξ̃∗+IF(t) = i(I(t) + iQ(t))− iξ̃∗+IF(t),
(4.11)

5 Actually there are but their price tag is prohibitive
6 There are two phase-quadrature configurations: one suppresses the lower side band, the other the upper
one

70



4.3 homodyne and heterodyne measurements

ci
rc

ui
t

LO

AW
G

A
D

C

mixer

mixer

Figure 4.3: Scheme of a heterodyne measurement. An arbitrary waveform generator (AWG)
emits an IF signal fIF. The signal is up-converted using a mixer and an LO, gen-
erating a carrier at the frequency fLO. The RF signal going out of the mixer is at
the frequency fRF = fLO − fIF. The RF signal is used to probe the circuit and the
outgoing RF signal is amplified using a quantum-limited amplifier. The amplifier
mixes and amplifies the mode aout, which contains information about the circuit
state with an idler mode b. The mode d going out of the amplifier is at the fre-
quency fRF. The signal is down-converted using the same LO and sent trough low
pass (LP) filters. The down-converted signal oscillating at the frequency fIF is then
digitized using an ADC. A final demodulation at the frequency fIF is numerically
performed.

where ξ̃±IF are the complex noise ξ±IF filtered by the demodulation process. From
Eq. (4.11), it is easy to obtain that adding −is′0(t) to s0(t) enables to suppress the
noise at frequency +fIF.
If the amplification scheme has a narrow bandwidth smaller than fIF centered on

the RF frequency fRF, after the down-conversion the noise at the frequency fIF will be
negligible compared to the noise at the frequency −fIF; thus, we can disregard it.

4.3.3 Quantum-limited amplifiers

Up to now, it seems one can perform a heterodyne measurement without dividing the
SNR by two as is commonly the case in the optical community. This is due to the fact
we have treated the ADC and the numerical demodulation as classical; we can do so as
the RF signal has been amplified enough to be treated classically. In fact, we pay the
same price as the optical physicists at the level of the amplification process. Let us now
focus on the quantum-limited amplifier as, at this stage, the RF signal is quantum and
so we have to treat the amplification as a quantum process. The outgoing mode d of the
amplifier cannot simply be equal to d =

√
Gaout with G being the gain of the amplifier,

as the mode d will not satisfy the canonical commutation relationship [d, d†] = G 6= 17.
Two strategies, corresponding to two types of amplifiers, can be used to amplify.

7 Except if the gain G is equal to 1, but this is not a relevant regime for an amplifier.
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4.3.3.1 Phase-preserving amplifiers

The first strategy consists of mixing the signal mode aout with an idler mode c. The out-
going mode d then reads

d =
√
Gaout −

√
G− 1c†. (4.12)

In this type of amplification process, the outgoing mode d satisfies the canonical com-
mutation relationship [d, d†] = 1. Such amplifiers are called phase-preserving amplifiers
as they amplify both quadratures of the signal. However, whatever the value of the
gain G is, this amplification process divide the SNR by two. As the mode aout is mixed
with the idler, the mode d contains, at best, twice the noise of the initial signal mode
aout. This is easy to show by deriving the variance of the d + d† quadrature for the
mode aout in a coherent state and the idler c in the vacuum. We find that the variance
is amplified by 2G− 1 ∼ 2G instead of only G (see Fig. 4.4).
When talking about a coherent state, we can say that the phase-preserving amplifi-

cation adds half a photon of noise. As the noise added is quantum (i. e. the amount of
entanglement between the system and the mode d is the same than that between the
system and the mode aout) there is no decrease in the quantum efficiency. The Eq. (4.7)
is simply modified, reading [73]

SNR = 4ΓmT. (4.13)

If there is no decrease in the quantum efficiency, we still double the quantum noise and
thus have divided the SNR by two.
Phase-preserving amplifier are well suited for heterodyne measurement but nothing

forbids “discarding” one of the quadrature after the numerical demodulation to perform
a homodyne measurement. However this homodyne measurement will be done with the
intrinsic noise of a heterodyne measurement. We can cite the JPC and the Josephson
TWPA as examples of a phase-preserving amplifier [30, 104, 99].

4.3.3.2 Phase-sensitive amplifiers

The second type of amplification process is called phase sensitive. In this case there is
no need for an idler mode, as the output mode d of the amplifier is related to the signal
mode aout by

d =
√
Gaout + eiθ

√
G− 1a†out. (4.14)

Such an amplification process amplifies only one quadrature of the signal, de-amplifying
the opposite quadrature. Thus, the amplified signal is squeezed along a direction given
by the angle θ (see Fig. 4.4 with θ = 0). No noise is added in this process, and Eq. (4.7)
stays valid. We can still perform a heterodyne measurement using the ADC; this is
because, as one quadrature was de-amplified, that quadrature contains only noise. Thus,
we measure only the quadrature of aout along the θ direction, and the measurement is
equivalent to a homodyne one. This amplification process can be achieved using a JPA,
for example [100].
If we measure two quadratures with the ADC, whether they encode one or both

quadratures of the RF signal mode aout depends only on the type of quantum-limited

72



4.4 an example of a phase-preserving amplifier: the josephson
travelling-wave parametric amplifier

I

Q

phase
preserving

phase
sensitive

Figure 4.4: Drawing of the amplification of a coherent state in the quadrature space. The
Wigner function of the original coherent state (dark arrow) is amplified with a gain
G = 10, either in a phase-sensitive (green) or phase-preserving (orange) way θ = 0

(see App. c for the definition of a Wigner function). The phase-preserving process
adds half photon of noise. The blue circle (no photon of noise added) and the orange
circle (half photon of noise added) represent the width of the coherent state Wigner
function in the IQ space.

amplifier used: a phase-sensitive amplifier allows ideal homodyne measurement, while
a phase-preserving amplifier allows ideal heterodyne and inefficient homodyne mea-
surements. In this thesis, the quantum-limited amplifier we used was a TWPA (phase-
preserving amplifier); the next section will present its characterization.

4.4 an example of a phase-preserving amplifier: the josephson
travelling-wave parametric amplifier

4.4.1 Principle

The parametric amplification process is based on the interaction of a signal with a non-
linearity, thereby enabling the wave-mixing process. The non-linearity has to be excited
by a source of energy, a large electromagnetic field called a pump for a superconducting
quantum-limited amplifier. The pump oscillates at the frequency fp in order to amplify
the signal at the frequency fs and an idler mode at the frequency fi. Two types of
mixing processes are used for parametric amplification: three-wave mixing, where fp =

fs + fi, and four-wave mixing, where 2fp = fs + fi. The parametric amplification gain
depends on the interaction time between the signal and the non-linear medium. There
are two approaches that can be used to increase this interaction time: embed the non-
linearity in a resonator [98, 105, 106, 107], or propagate the signal in a non-linear
transmission line [30, 108, 109]. The Josephson travelling-wave parametric amplifier
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(TWPA) uses the second approach, using the microwave analogue of a non-linear optical
fiber. The transmission line is made using the JJ as the source of the non-linearities [109].
The main issue with such an amplifier is the phase mismatch, also called momentum
conservation. During the propagation, the signal, idler, and pump phases all change
differently, leading to a decrease in the gain. The phase mismatch of a Josephson TWPA,
based on a four-wave mixing non-linearity, reads

∆k = ∆kdisp + ∆kKerr, (4.15)

where ∆kdisp is the phase mismatch caused by the dispersion relationship of the trans-
mission line [110] and ∆kKerr is the phase mismatch due to the third-order phase
modulation process which depends on the pump power [111, 112]. If the phase mis-
match is null, the gain increases exponentially with the transmission line length. On
the contrary, if the phase mismatch is non-zero, the gain increases only quadratically
with the transmission line length [112].

There are two approaches to cancelling the phase mismatch. We can engineer the
dispersion relation, changing ∆kdisp either by using a spatial impedance modulation
(which opens a gap in the dispersion relation [108, 113, 114, 115, 116, 117, 118, 119,
120]) or by introducing resonant elements in the transmission [30, 121, 116], thereby
creating a stop-band gap. Alternatively, we could engineer ∆kKerr, the third-order phase
modulation process, by reversing the sign of the non-linearity [122].
Various types of superconducting TWPAs exist; these differ according to the type of

non-linearity, the phase mismatch solution and the meta-material used (i. e. the source
of the non-linearity). The meta-materials used are either based on JJ or on non-linear
kinetic inductance [108, 113, 114, 115, 117, 118, 119, 116]. Superconducting TWPAs are
amplifiers with numerous aspects that could still be improved (e. g., by improving noise,
saturation power, or reciprocity). The review [123] discusses state-of-the-art TWPAs
and the open challenges for the future in this regard.

4.4.2 First characterization

The Jospehson TWPA used in this thesis was made by the Lincoln Labs. It is based
on a four-wave mixing process and the phase mismatch is canceled using resonant ele-
ments. Thus, the dispersion relation shows a gap and the phase mismatch is canceled
when pumping the amplifier at a frequency close from the gap. We first characterized
the TWPA using the overlap between the |e〉 and |g〉 state measurement quadrature
distributions of a qubit. This approach does not need any calibration but is not quan-
titative. Then we calibrated the measurement-induced dephasing of a qubit in order
to measure the quantum efficiency of the TWPA (see section 4.4.3). To confirm the
measured quantum efficiency, we check its value using the correlations between weak
and strong measurements of the qubits (see section 4.4.4).
In order to characterize the TWPA’s quantum efficiency, we used a circuit with a

transmon qubit and a resonator, the whole setup is detailed in Fig. b.1 in App. b. The
cavity allows us to read the state of the qubit by dispersive measurement. The resonator
frequency is ωr/2π = 7.13766 GHz and the qubit frequency ωq/2π = 4.18337 GHz.
We measured an anharmonicity for the qubit of α/2π = 160 MHz, a cross-Kerr rate
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Figure 4.5: Heterodyne measurement probability distribution for a. |e〉 and b. |g〉 states. The
distribution corresponding to the e state is deformed because of decoherence (T1 =

12 µs) during the measurement duration 1.8 µs. The TWPA is pumped at 6.0035
GHz and with 9.8 dBm power referred to the room temperature stage.

between the qubit and the resonator χ/2π = 0.58 MHz and a coupling rate for the
resonator κ/2π = 3.91 MHz. We used the TWPA to amplify the transmitted signal
at the resonator frequency. We performed heterodyne measurement of that signal (see
Sec. 4.3), which gave us the probability densities (or probability distributions) of the
quadratures in the (I,Q) space for each qubit state. We denote these distributions by
P g(I,Q) for |g〉 state and P e(I,Q) for |e〉 state. Fig. 4.5 shows these distributions for a
pump frequency of 6.035 GHz and a pump power of 9.8 dBm.
For several sets of frequencies and powers of the TWPA pump, we measured the

overlap between |e〉 and |g〉 probability distributions of the qubit. We define the overlap
Oeg as

Oeg =

∫ ∫
dIdQP g(I,Q)P e(I,Q)√∫ ∫

dIdQP g(I,Q)2
∫ ∫

dIdQP e(I,Q)2
. (4.16)

The Fig. 4.6 shows the dependence of the overlap with the TWPA pump parameters.
The gap opened in the dispersion relation due to added resonant elements correspond
to the yellow band between 6.1 GHz and 6.6 GHz. As expected, the minimum of overlap
is obtain when pumping close to the gap. We decided to zoom in on the area around
6 GHz and pump power of 10 dBm referred to the room temperature stage (red box on
the Fig. 4.6a), which seems to have the best discrimination between |e〉 and |g〉 states
(see Fig. 4.6b). This first characterization enables to choose a first TWPA working point
before going into more quantitative analyses.
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Figure 4.6: Overlap between the probability distributions of |e〉 and |g〉 states. We first sweep
the pump frequency and then sweep the pump power for each frequency. We see
the gap of the dispersion relation between 6.1 GHz et 6.7 GHz. a. Large scan of
the TWPA pump parameter. The red square defines the area studied with a refined
mesh. b. Refined scan of the area showing the best overlap.

4.4.3 Quantum efficiency map

The relevant quantities one wants to measure for a quantum-limited amplifier are the
gain, the quantum efficiency or the noise rise of the amplification scheme as a function of
the pump parameters. One can derive those quantities from the |e〉 and |g〉 probability
distributions.
The quantum efficiency can be derived using Eq. (4.13), the SNR is derived from

the probability distributions and the dephasing rate can be calibrated using Ramsey
oscillations. The pulse sequence to probe the measurement-induced dephasing rate is
represented on Fig. 4.7. This sequence is equivalent to Ramsey oscillations obtained
with the cavity driven in a steady state during the whole time. To reach the steady
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Figure 4.7: Ramsey pulse sequence used to measure the measurement-induced dephasing rate.
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Figure 4.8: AC Stark shift ωAC and measurement-induced dephasing rate Γd as a function
of the resonator drive detuning ∆ and amplitude ad. a. and b. AC Stak shift and
measurement-induced dephasing rate as a function of detuning at fixed amplitude
ad. c. and d. AC Stak shift and measurement-induced dephasing rate as a function
of amplitude for ∆ = 0.

state of the cavity, we wait a few 1/κ before the first π/2 pulse. For each set of param-
eters (detuning ∆ and drive amplitde ad), we repeated the sequence, which contains
measurement for several values of ∆t, twice. Once with a π/2 pulse before the qubit
readout and once with a −π/2 pulse in order to create a reference that supresses low fre-
quency noise. We swept the time ∆t between the two qubit pulses to measure Ramsey
oscillations. By fitting them, we access the AC Stark shift and the measurement-induced
dephasing rate for different detuning ∆ and amplitude ad. In order to determine the
measurement-induced dephasing rate at the readout amplitude aro, one has to cali-
brate the dependency of the AC Stark shift and the measurement-induced dephasing
rate with the amplitude ad and the detuning ∆ (see Fig. 4.8). As explain in Sec. 2.5.3,
the measurement-induced dephasing rate and the AC Stark shift read

{
Γd(t) = χIm(αg(t)∗αe(t))

ωAC(t) = χRe(αg(t)∗αe(t))
, (4.17)

with αg and αe the complex amplitudes of the resonator field.
The signal to noise ratio can be measured from the distance ∆V between the mean of
|e〉 and |g〉 distributions and the standard deviation σ of the |g〉 distribution (assuming
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it is the same as the |e〉 distribution). The SNR reads SNR = ∆V 2/σ2. Thus, the
quantum efficiency reads

η =
∆V 2

σ2
× 1

4
∫ T

0 Γd(t, aro)dt
, (4.18)

with T the integration time of the heterodyne measurement and where the time integral
takes into account the transient regime of the resonator during the read out8.

With a TWPA pump set at frequency 6.035 GHz and power 9.8 dBm (referred
to the room temperature stage), we have ∆V = 7.5 mV and σ = 1.442 mV for Γd =

31.8 rad µs−1 and T = 1.8 µs. This leads to a quantum efficiency of the full amplification
scheme of

η = 0.118. (4.19)

One has to emphasize that the setup contained a beam splitter between the TWPA
and the resonator, leading to the decrease of the quantum efficiency by at least a factor
two. The microwave setup was designed in order to perform photocounting experiment
(see Chaps. 5, 6 and 7) and two signals had to be mixed before being amplifier with
the TWPA. For the TWPA characterization, only one of the two signals was used.
The |e〉 and |g〉 probabilty distributions are measured for various powers and frequen-

cies of the TWPA pump (we first sweep the power and then sweep the frequency for
each pump power) and the quantum efficiency is computed for each pump parameter
set. In order to measure also the TWPA gain, we measured the distance ∆V between
the two distribution with the TWPA pump off and defined the TWPA gain as

GTWPA = 20log10(
∆VTWPA on

∆VTWPA off
) dB. (4.20)

In the same way, to measure the TWPA noise rise, we chose a arbitrary pixel as
reference and define the noise rise as

Pnr = 20log10(
σ

σref
) dB. (4.21)

Thus, the noise rise is the amount by which the noise increases or decreases compare
to the reference.
Figs. 4.9 show maps of the quantum efficiency, gain of the TWPA, and noise rise.

One can see the there is a specific area, close to the gap for which the highest quantum
efficiency is reached at medium pump power. If the gain continues to increase when
increasing the pump power, the noise rise increases faster leading to a decrease of the
quantum efficiency. One can look at the correlation between the gain and the quantum
efficiency (see Fig. 4.10). The quantum efficiency saturates at large gain and there are
no clear correlations between the two.

4.4.4 Weak and stong measurement correlations

Another way to compute the quantum efficiency is to measure the correlations between
a weak and a strong measurement of the qubit state. The weak measurement back-
action can be derived from the weak measurement record and a prediction of the strong

8 If we assume the resonator in its steady state, the measurement-induced dephasing does not depend
on the time t and we recover the expression of Eq. (4.13).
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Figure 4.11: Correlations between weak and strong measurements of the qubit state a. σz and
Q, b. σx and I, and c. σy and I. Red lines are obtained using Eq. (4.22)

measurement mean value can be done based on the weak measurement record. To carry
on this experiment, we start from an equal superposition of |e〉 and |g〉 qubit states. We
then let the qubit interact with a weak drive at the frequency of the readout resonator.
The drive amplitude is ten times smaller than the one of a strong measurement. After
600 ns of interaction, we perform a tomography of the qubit. Two traces are acquired.
First we record the reflected weak drive amplitude. The homodyne measurement of
this signal gives us a weak measurement of σz when measuring the Q quadrature or
iσz

9 when measuring the I quadrature [74]. The second measurement is a full qubit
state tomography. This measurement either gives us the value of σx, σy or σz. For every
realization we have therefore a couple [Q̃/Ĩ ; σx/σy/σz].

With the two records we can post-select on the weak measurement values of Q or I
to compute the mean value of the tomography. It means that for every possible value
Q̃ (or Ĩ) of the weak measurement, we select all the realizations with Q = Q̃ (or I = Ĩ)
and we compute the mean value of σx, σy or σz for those realizations. This allows us
to have access to the correlations between weak and strong measurements. We expect
the following behaviors for the correlations [74]

〈σz〉Q=Q̃ = tanh(artanh(z0) +
√
ηΓdQ̃)

〈σx〉I=Ĩ = cos(
√
ηΓdĨ)e(1−η)Γdt

〈σy〉I=Ĩ = sin(
√
ηΓdĨ)e(1−η)Γdt

, (4.22)

9 The measurement of iσz give access to the evolution of the phase between |e〉 and |g〉 states.
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with z0 the mean value of σz after the π/2 preparation pulse and Q and I the weak
measurement records normalized with respect to the noise. The normalization of the
weak measurement records is such that the variance of the two records Q and I is equal
to the weak measurement time10. Fig. 4.11 shows measured and predicted correlations
for t = 600 ns, and Γd = 31.8 rad.MHz. We extract from the data the following value
for the quantum efficiency{

η = 0.14 for σz

η = 0.12 for σx and σy
. (4.23)

These results concur with the former determination of the quantum efficiency in the
last section.

10 There are two ways to normalize the records in the stochastic master equation. Here we decided to
normalize it by the diffusion coefficient of the noise. In this case, the unit of the record is in unit of
square root of second [8].
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5
PHOTOCOUNTERS

A photocounter is a key element for any quantum microwave toolbox. Photocounters
are needed in numerous situations such as quantum key distribution [124, 125, 126, 127],
quantum computing [128, 129], quantum communication [130, 131, 132, 133, 134, 135,
136, 137], quantum simulations [138, 139, 140, 141], and boson sampling [140, 142, 143,
144, 145]. However, counting microwave photons is a harder challenge than counting
optical photons. In optics, it is solved thanks to single-photon avalanche photodiodes
and superconducting nanowire single-photon detectors [146]. However this component is
still an open research field for the microwave domain. The major difference between the
two (microwave and optical photons) comes from the energy scale. If an optical photon
has an energy of about 1015 Hz, a microwave photon has an energy up to 106 times
smaller. An optical photon has an energy that is bigger than the room-temperature
photon noise and so can be detected at room temperature. In comparison, a microwave
photon is negligible compare to the room-temperature photon noise. So a probe working
at low temperatures that is sensitive to a small energy scale (small compared to optical
energy) is required.
The variety of counting modes in circuit and cavity QED is rather large. First, we

can consider situations in which we only try to detect whether there is more than zero
photons. In such cases, we will talk about photodetectors, not photocounters. There
exist already a large range of such devices and protocols [76, 147, 148, 149, 150, 151, 29,
27], which are starting to be used in order to improve measurements in situations such
as electron spin resonance experiments [152]. We can classify superconducting photo-
counter protocols into two types: those for propagating photons [27, 153]; and those for
stationary photons (i. e. photons stored in a stationary mode) [22, 23, 21, 26, 24, 25,
28]. In this thesis, we will focus on stationary photocounters; however, any stationary
photocounter can become a propagative photocounter using a catch-and-release proto-
col [27]. At the beginning of this thesis, all the known superconducting photocounters
used a qubit as a probe in order to measure the number of photons. A series of binary
questions were then asked iteratively in order to refine our knowledge about the system
state, with each answer providing, at most, one bit of information about the system
state. All these measurements were discrete in time, and the information was extracted
piece by piece. The goal of this thesis is to build to a photocounter that is continu-
ous in time, that can extract all the information at the same time, and that offers a
performance that is better compare to that offered by a state-of-the-art photocounter.
This type of photon counter is missing in the quantum engineering tool box as, at the
beginning of this thesis, there was no continuous photon counter and all of the former
photon counter was measuring the number of photon using decimation, i. e. extracting
the photon number information piece by piece. This is an interesting challenge, as it is
not possible to encode more than one bit of information in a qubit state and it would en-
able one to perform adaptative measurements or feedbacks based on continuous record
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and to coutinuously monitor the photon number which may encode the syndrome of a
quantum error correction code [154].
After a description of the circuit used, this chapter will focus on the usual way

in which photocounting is achieved; this was first introduced in relation to Rydberg
atoms [22, 23], before being implemented in circuit QED [21, 26]. We will also discuss
the numerous protocols involved. This chapter will finish with a discussion regarding
the limitations of the usual approach and how to overcome these limitations. The main
experiments will then be presented in the two chapters that follow.
Remarks: Most of the results shown in this chapter are published in Ref. [155]

5.1 circuit

5.1.1 Design

The circuit is composed of 4 electromagnetic modes whose parameters can be found
in Sec. 5.1.2. A high-Q harmonic oscillator, called storage mode, is composed of a λ/2
coplanar waveguide (CPW) resonator (green in Fig. 5.1). The storage resonator is ca-
pacitively coupled to two transmon qubits. The multiplexing qubit (orange) has a spon-
taneous photon emission rate Γ1,mp = (44 ns)−1 into a transmission line that is high
compared to other modes. In contrast, the yes-no qubit (blue) is capacitively coupled to
a low-Q readout resonator (purple) and has a long coherence time T2,yn = 27 µs. The
circuit enables the implementation of the standard approach to count the number of
photons in the storage mode, which resonates at fs = ωs/2π = 4.558 GHz. The yes-no
qubit with a frequency fyn = ωyn/2π = 3.848 GHz is used to perform the standard pho-
tocounting approach or storage mode tomography; while the multiplexing qubit with
a frequency fmp = ωmp/2π = 4.238 GHz is used to perform continuous photocounting
(see Chaps. 6 and 7). Both qubits are dispersively coupled to the resonator so that their
frequency respectively redshifts by χs,yn/2π = 1.4 MHz and χs,mp/2π = 4.9 MHz per
additional photon in the storage mode. The measurement setup is described in App. b.

5.1.2 Parameters

All parameters of the 4 modes can be measured using standard circuit-QED techniques
(see Table 5.1). Frequencies of the readout mode and multiplexing qubit are measured
by spectroscopy. Frequencies of storage mode and yes-no qubit are measured using two-
tone spectroscopy with the readout mode. Yes-no qubit decay and decoherence rate are
measured with the time evolution of the probability to find the qubit excited after a
π pulse and using Ramsey oscillations. Readout mode decay rate and cross-Kerr rate
between readout mode and yes-no qubit are measured using the measurement-induced
dephasing rate by the readout mode on the yes-no qubit. Cross-Kerr rate between the
storage mode and the two qubits are measured using qubit spectroscopy with the stor-
age state initialized in various coherent states. Anharmonicities are measured using
spectroscopy of the qubit excited state. Decay and decoherence rates of the storage
mode are measured with the time evolution of the probability to have 0 photon in
the storage mode after a displacement and storage Ramsey interferometry experiment.
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Figure 5.1: a. Scheme of the device in coplanar waveguide architecture. The storage mode
(green) is coupled to a transmon multiplexing qubit (orange), which is directly
coupled to a transmission line (rainbow). A directional coupler and broadband
Josephson TWPA allow us to probe the qubit in reflection. An additional transmon
yes-no qubit (blue) and its readout resonator (purple) are used as a reference photon
counter and storage tomography. b. Optical picture of the circuit. The readout
resonator is colored in purple, storage mode in green, yes-no qubit in blue and
multiplexing qubit in orange. All dark grey areas are silicon, grey areas are niobium
on silicon and Josephson junctions are made of Al/AlOx/Al.

Multiplexing qubit decay and decoherence rates are measured by fitting the qubit spec-
troscopy for various drive amplitudes. All those parameters enable us to write a master
equation model based on the Lindblad equation with the Hamiltonian

Ĥ = ~ωron̂ro + ~ωsn̂s + ~ωynn̂yn + ~ωmpn̂mp

−~χro,ynn̂ron̂yn − ~χs,ynn̂sn̂yn − ~χs,mpn̂sn̂mp

−~χyn,ynn̂yn(n̂yn − 1)− ~χmp,mpn̂mp(n̂mp − 1),

(5.1)

where n̂ro, n̂s, n̂yn, and n̂mp are the photon number operators respectively for the read-
out, storage, yes-no qubit and multiplexing qubit. χa,b is the cross-Kerr rate between
modes a and b. χa,a is the self-Kerr rate of the mode a. The master equation on the
system density matrix ρ reads

ρ̇ = − i
~

[Ĥ, ρ] + ΓroD(âro)ρ+ 2Γφ,sD(n̂s)ρ+ Γ1,sD(âs)ρ

+2Γφ,ynD(n̂yn)ρ+ Γ1,ynD(âyn)ρ+ 2Γφ,mpD(n̂mp)ρ

+Γ1,mpD(âmp)ρ,

(5.2)

where âb is the annihilation operator of mode b. For a qubit mode b, the dephasing rate
Γφ,b is linked to the decoherence rate by Γ2,b = Γ1,b/2 + Γφ,b.

5.2 standard photocounting

5.2.1 Principle

In the standard approach [21, 26], which probes whether there are k photons, the
probability to have k photons is encoded as the probability P e to excite the yes-no
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circuit parameters symbol Hamiltonian term value
readout resonator frequency ωro/2π ~ωron̂ro 7.138 GHz

storage mode frequency ωs/2π ~ωsn̂s 4.558 GHz

yes-no qubit frequency ωyn/2π ~ωynn̂yn 3.848 GHz

multiplexing qubit frequency ωmp/2π ~ωmpn̂mp 4.238 GHz

readout/yes-no qubit cross-Kerr rate χro,yn −~χro,ynn̂ron̂yn 2π × 0.4 MHz

storage/yes-no qubit cross-Kerr rate χs,yn −~χs,ynn̂sn̂yn 2π × 1.4 MHz

storage/multiplexing qubit cross-Kerr rate χs,mp −~χs,mpn̂sn̂mp 2π × 4.9 MHz

yes-no qubit self-Kerr rate χyn,yn −~χyn,ynn̂yn(n̂yn − 1) 2π × 160 MHz

multiplexing qubit self-Kerr rate χmp,mp −~χmp,mpn̂mp(n̂mp − 1) 2π × 116 MHz

circuit parameters symbol jump operator value
readout decay rate Γro ΓroL(âro)ρ (40 ns)−1

storage decay rate Γ1,s Γ1,sL(âs)ρ (3.8 µs)−1

storage decoherence rate Γ2,s 2Γφ,sL(n̂ro)ρ (2 µs)−1

yes-no decay rate Γ1,yn Γ1,ynL(âyn)ρ (20 µs)−1

yes-no decoherence rate Γ2,yn 2Γφ,ynL(n̂yn)ρ (27 µs)−1

multiplexing decay rate Γ1,mp Γ1,mpL(âmp)ρ (42 ns)−1

multiplexing decoherence rate Γ2,mp 2Γφ,mpL(n̂mp)ρ (84 ns)−1

Table 5.1: Table of circuit parameters.

qubit by driving it with a π-pulse at fdrive = fyn − kχs,yn. The state of the yes-no
qubit is read out using the dedicated resonator. As we used the qubit as a probe, one
cannot measure more than 1 bit of information at each readout. To demonstrate this
photon-counting ability, we use a microwave tone at fs to prepare the storage mode in
a coherent state |β〉 = e−|β|

2/2
∑+∞

n=0
βn√
n!
|n〉, which is a superposition of all Fock states

with mean photon number n̄ = |β|2. The probability P e is then measured and shows
resolved peaks as a function of fdrive for every photon number up to about 7 (Fig. 5.2).
One can notice a decrease of the signal amplitude for high photon number compare to
the master equation model. This decrease has two origins. First, there exists a parasitic
cross-Kerr between the readout resonator mode and the storage mode. Thus, for large
photon number in the storage, the resonator frequency shifts and the qubit calibration
is not anymore valid. One can erase this effect by calibrating this frequency shift and
change the readout pulse frequency accordingly. Second, because the displacement pulse
envelop is a troncated Gaussian function, it starts and finishes with a step with a high of
about 13% of the pulse amplitude. This leads to high frequency components which can
ionize the qubit for large displacement [76] leading to a decrease of the signal amplitude.
This effect can be decreased with better pulse shaping.

This experiment shows the simpler photocounting protocols based on the standard
approach. We will discuss the other protocols in Sec. 5.3.1. Yet, using this experiment
one can calibrate the number of photons in the storage mode.
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a. b.

Figure 5.2: Standard photon-counting. The storage mode is prepared in a coherent state with
an average photon number n̄ using a microwave pulse at storage frequency and
amplitude Vs. a, b, Measured probability P e that the yes-no qubit gets excited
by a π-pulse at a frequency fdrive. Peaks appear at fyn − kχs,yn and indicate the
probability to store k photons. The dots in b are cuts along the dashed lines in a
and match the master equation model (solid lines), hence providing a calibration
of n̄ as a function of the drive amplitude Vs.

5.2.2 Photon number calibration

In this experiment, we use the standard photocounting measurement as a calibration
of the photon number in the storage mode. The linear relation between β and the
amplitude Vs of the tone at ωs is extracted using a master-equation based model repro-
ducing the measured P e (solid lines in Fig. 5.2b). The storage mode can be displaced
by driving it on resonance with a voltage Vs(t) cos(ωst+ φs), where Vs(t) is the pulse
envelope. The driving Hamiltonian of the storage mode reads

i~(εs(t)â
†
s − ε∗s (t)âs) where εs(t) = µVs(t)e

iφs . (5.3)

The scaling factor µ = 1.45 (mV.µs)−1 is calibrated by fitting the photocounting mea-
surement results obtained using the yes-no qubit with the master equation simulation
(see App. d). Fig. 5.3a shows the evolution of εs with Vs. For every experiment, the
storage mode displacements are realized using a Gaussian pulse shape εs(t) = λ(t)εmax

with a maximum amplitude εmax, a width 25 ns and a duration 100 ns. We simu-
lated the dynamics of the storage mode under this Gaussian displacement taking into
account the couplings, relaxation and decoherence rates (see App. d) for various ampli-
tudes εmax. We then computed the expectation value of the photon number operator
〈n̂s〉 at the end of the pulse. Fig. 5.3b shows the square root of 〈n̂s〉 as a function of
εmax. Fitting with a linear function, we find that

√
〈n̂s〉 = 59.1εmax. As εs increases

linearly with Vs, εmax increases linearly with the maximum voltage amplitude Vmax,s of
the Gaussian pulse Vs(t) = λ(t)Vmax,s. Using the two linear regressions, we can express
the photon number of the storage mode as

√
〈ns〉 = (85.9 V−1)Vmax,s.

5.3 measurement time

In this section we compare the following various photon number measurement schemes
using a qubit of frequency fq that is dispersively coupled to a storage mode of frequency
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a. b.

Figure 5.3: Calibration of the average number of photons 〈ns〉 in the storage mode as a function
of the displacement amplitude. a. Evolution of the displacement amplitude εs with
the pulse envelope Vs. b. Square root of the average photon number 〈ns〉 in the
storage mode as a function of the drive amplitude. The storage is displaced by
100 ns long Gaussian pulse with a width of 25 ns. The same pulse shape is used
in the simulation. From the two linear fits we extract the evolution of the mean
number of photons with the amplitude of the pulse

√
〈ns〉 =

(
85.9 V−1

)
Vmax,s.

fs. We assume the cross Kerr rate χ between the storage mode and the qubit to be
greater than the decoherence rate of the qubit Γ2. The goal is to measure the photon
number N assuming it is smaller than Nmax.

5.3.1 Comparison between protocols

5.3.1.1 Sequential brute force

The brute force approach consists in measuring whether or not there are k photons
in the storage mode for all possible values of k from 0 to Nmax [26]. For each k =

0, 1, 2, 3, ..., we apply a photon number conditional π pulse to the qubit at frequency
ωq − kχ so that the qubit is excited only if there are k photons in the storage mode.
Reading out the qubit state gives the answer to the question ‘Are there k photons?’.
The full measurement stops as soon as this binary answer is positive so that it takes
N + 1 consecutive measurements and a time given by (Tπ + Tro)(N + 1). The time Tπ
is the time of a conditional π pulse, hence it is at least about1 2π/χ, while the qubit
readout time Tro is limited by other parameters in order to get a single-shot readout.
This approach is highly sensitive to measurement errors as an error at a step k < N

will stop the measurement, leading to a false photon number, before the step N and
an error at the step N will entail continuing the measurement up to the step Nmax

without finding the photon number.

5.3.1.2 Passive photon number decimation using weak measurement

This approach, which was implemented with Rydberg atoms in cavity [23], consists in
encoding the photon number in the phase of the qubit by waiting a time 2π/(Nmaxχ)

1 The conditional π pulse must be long enough to ensure there is no frequency components detuned by
±χ. This contition depends on the pulse waveform but the properties of the Fourier transform impose
that a wavepacket with a frequency width about χ must have a temporal width about at least 2π/χ.
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after the qubit has been prepared in state (|g〉+ |e〉)/
√

2. The protocol is composed of
a series of p sequences, where each sequence encodes the photon number into the phase
of the qubit and realizes a π/2 pulse on the qubit with a phase 2πp/Nmax followed by
a qubit readout. Using generalized measurement theory, one infers the probability that
the cavity is in a given Fock state.
After the p sequences the variance of the photon number is σ = Nmax/(

√
pπ) (see

appendix A in Ref. [25]). Therefore, the required number of repetitions k to get a fixed
error probability on the photon number scales as k ∝ N2

max. Since each measurement
takes at least 2π/(Nmaxχ), the total measurement time scales at least as 2πNmax/χ.
This approach is quite insensitive to measurement errors as any error will be suppressed
by the other measurements during the averaging step.

5.3.1.3 Active photon number decimation

The previous protocol can be improved by optimizing the phase of the final π/2 pulse
to maximize the amount of information extracted on the cavity photon number. It was
realized in Ref. [24] using Rydberg atoms in cavity. Because of the use of feedback on
a weak measurement, we could not find a closed form for the measurement time in this
case [25]. However it was shown that the total time is larger than the total time taken
by a binary decimation with feedback (see below).

5.3.1.4 Binary decimation with feedback

This method was shown to provide the least number of steps for sequential photocount-
ing [22]. Each step consists in applying an unconditional π/2 pulse to the qubit, wait
a time π/2kχ, apply a new unconditional π/2 pulse with a phase φk that encodes the
least significant2 kth bit bk of the photon number N =

∑
k bk2

k into the qubit state.
Importantly, the phase φk depends on the results of the k − 1 former measurements.
The sequence needs to be repeated p = log2(Nmax + 1) times with k going from 0 to
p− 1. This procedure was recently implemented in Ref. [27].
The measurement time is at least given by the sum of the total interaction time

between qubit and cavity and of the total feedback latency. The total interaction time
is bounded by

∑
p π/(2

pχ) = 2π/χ. However the feedback latency scales as p and can
be written as Tfb log2(Nmax + 1).
From the point of view of measurement error, this approach is higly sensitive to error

due to the feedback. A measurement error at step k − 1 leads to a wrong phase φk
and an error at step k. The measurement error at the step k − 1 propagates to all the
following measurements.

5.3.1.5 Binary decimation with optimal pulse control

An optimal binary decimation can also be implemented without using a feedback loop
by measuring a series of generalized parity operators which yields the bit values of the
binary decomposition of the photon number in the storage mode. The kth generalized

2 here least significant is to be understood as the last bit in the binary decomposition, and not in terms
of amount of information
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Protocol tmeas ∝ complexity error propagation
Sequential
brute force

2π(N + 1)/χ N + 1 gates yes

Passive
decimation

2πNmax/χ
N2

max gates
and complex analysis

no

Binary code
feedback

Tfb log2(Nmax + 1) feedback yes

Binary code
optimal control

(Treset + 2π/χ) log2(Nmax + 1) optimal control no

Table 5.2: Protocols for photocounting using a qubit

parity measurement consists in an optimal pulse that excites the qubit conditioned on
the value of the kth bit. The p = log2(Nmax + 1) parity measurements are performed
in a time sequence. A subsequent measurement and dynamic reset of the qubit state
completes the sequence [156, 28]. Such an optimal pulse can only be performed in a time
of the order of the dispersive interaction time 2π/χ. It leads to a total measurement
time scaling as (2π/χ+ Treset) log2(Nmax + 1) where Treset is the duration of the active
reset protocol.
From the point of view of error propagation, this approach is more robust than the

binary decimation by feedback as all measurements are independent. A measurement
error at step k will not affect the following steps.

5.3.1.6 Summary

In the table, we provide a summary of the various advantages and drawbacks of the
photocounting methods (see Tab. 5.2). No time sequence measurement is able to provide
a measurement time that does not depend on the photon number. As all approaches
use the qubit state to encode the answer to a binary question, all these photon number
measurements are discrete in time. Moreover, none of these measurements implement a
measurement of the observable ns as they extract information bit by bit. For example,
the binary decimation implements measurements of the photon-number-bit observables.
How to improve these approaches ? Making them continuous in time is not simple

as the entanglement gate between the storage and the qubit and the measurement of
the qubit state cannot be done simultaneously. Besides, making the full sequence in a
time that is short compared to the storage relaxation time and the other gate time is
difficult as the duration of the sequence time increase with the maximum photon num-
ber. Furthermore, one cannot perform multiple steps of the photon-counting protocol
at the same time as a qubit cannot encode more than 1 bit.
One can improve the measurement protocols by changing 2 ingredients. First, al-

though the entangling gate is performed such that a binary question is encoded in the
qubit state, the frequency of the qubit is already encoding the storage photon number
thanks to the dispersive interaction. Thus, measuring the qubit frequency is equivalent
to measuring the storage photon number. This can be done easily by probing the qubit
in reflection and measuring its fluorescence field. Second, all the former approaches use a
sequence of questions in time, but with the recent improvement in wide band quantum-
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limited amplifiers [30], one can now use the spectral domain to multiplex measurements
[157, 158, 159]. Using those two tools, one can create a multiplexed photocounter, thus
enabling a new measurement scheme with completely different characteristics and a
better upper bound for the measurement time.

5.3.2 Gedanken multiplexed photocounter

In this section, we show how, despite using a single qubit as well, multiplexed measure-
ments are able to determine the photon number in a constant time (independent of
the number of photons) in contrast with the standard approach. We consider an ideal
detector for the propagating modes in order to better illustrate the interest of multi-
plexing. The ideal detector is made of a frequency multiplexer followed by a perfect
photodetector on each of its outputs (Fig. 5.4). The multiplexer is made of a parallel
ensemble of bandpass filters that are each centered on the frequency fmp − kχs,mp/2π

with a bandwidth χs,mp/2π. The protocol proceeds in three steps to count the number
of photons in the storage mode starting in state |ψ〉s, as detailed in Fig. 5.4.

• First, the multiplexing qubit is excited with a π-pulse that is short enough so that
it prepares the qubit in the excited state irrespective on the number of photons.

• Second, the qubit decays in the transmission line converting its excitation into a
single photon contained in a propagating wavepacket whose envelope decays at
a rate Γ1,mp. In the limit where Γ1,mp � χs,mp, and without pure dephasing of
the qubit, the photon emission produces an entangled state between the storage
mode and the propagating modes of the line. Here the qubit is not a probe, it
is used to generate frequency entanglement between the propagating wavepacket
photon and the storage mode. The system state reads∑

k

〈k|ψ〉s
⊗
j

|δk,j〉j ⊗ |k〉s,

where |·〉j represents the quantum state of the propagating mode going through
the multiplexer on branch j corresponding to frequencies in the band (see Fig. 5.4c)

[fmp − (j + 1/2)χs,mp/2π, fmp − (j − 1/2)χs,mp/2π[.

Matching the temporal envelope of the modes to the exponential decay at a rate
Γ1 [150], the mode is occupied by either |0〉j or |1〉j depending on the storage
photon number, hence the notation |δk,j〉j .

• Finally, a single photodetector clicks and reveals the number of photons k with
probability |〈k|ψ〉|2 (Fig. 5.4d). In case of ideal detectors with zero false positives,
the click detects the associated propagating mode in |1〉k, and therefore, as the
line is entangled with the storage mode, the measurement back-action projects
the storage mode in Fock state |k〉.

The total measurement time, a few 1/Γ1,mp, corresponds to the time it takes for one
photodetector to click. The time is thus independent on the number of photons stored
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d.c.b.a.

Figure 5.4: Gedanken multiplexing experiment. a. An unconditional π pulse is applied to the
multiplexing qubit while the cavity is prepared in state |ψ〉s. b. The qubit is pre-
pared in the excited state. c. The qubit spontaneously emits a photon into the
transmission line, where a multiplexer sorts the emitted radiation according to its
frequency. Each port k of the multiplexer is bandpass filtered around frequency
fmp − kχs,mp by a rectangular component displaying the frequency band. d. Even-
tually a single photodetector (detector k = 1 in the figure) clicks with probability
|〈k|ψ〉|2, allowing us to deduce the photon number. The storage mode is projected
on the corresponding Fock state (here |1〉s) in a typical time T1,mp that does not
depend on the average number of photons in the storage mode.

in the storage mode. Note that in order to avoid spectral leakage into other ports, Γ1,mp

is limited by χs,mp so that the shortest measurement time is limited to a few 1/χs,mp.
In contrast to sequential measurements for which increasing the maximal number of

photons that can be detected requires additional temporal resources (of the order of
log2(Nmax)), this gedanken experiment shows that the multiplexed measurement is able
to operate in a constant time at the expense of additional spectral resources. Besides,
the unconditional π pulse can be performed in a time much smaller than the relaxation
time of the cavity. With a qubit relaxation time and a photodetector measurement time
much smaller than the storage one, one obtains a measurement that can be considered
as continuous in time when it is repeated.
In practice, building such an array of frequency sensitive photodetectors remains an

open challenge in the microwave domain, despite encouraging recent progress towards
this goal [147, 148, 149, 150, 151, 76, 27]. One can identify the two main ingredients
to build a simpler version of such a multiplexed photocounter. The first is the ability
to photocount by measuring the fluorescence of the qubit. The second is the ability to
multiplex this fluorescence measurement. Based on these two ingredients, we performed
an experiment where the unconditional qubit π-pulse is replaced by a continuous fre-
quency comb containing all the possible resonant frequencies of the qubit and the
perfect array of photodetectors is replaced by a multiplexed heterodyne measurement
of all the frequencies of the frequency comb reflected by the qubit. As we will see,
the frequency comb can be understood as a series of unconditional pulses. With the
right comb amplitude, it is equivalent to applying periodically an unconditional qubit
π-pulse. The next chapter will present the calibration of the qubit used to perform this
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multiplexed photocounting protocol and will discuss the implementation of the first in-
gredient: the fluorescent photocounting. The multiplexed photocounting will be discuss
in the Chap. 7.

conclusion

Here are the main conclusions of this chapter:

• The standard photocounting approach uses the dispersive interaction to entangle
the qubit state and the resonator state. The type of entanglement gate used
defines the binary question asked to the system.

• The readout of the qubit state gives at most one bit of information. It recovers
the answer of a binary question.

• The standard photocounting approach recovers information bit by bit with the
best protocols (the binary decimation). Thus, it is discrete in time.

• The optimal protocol (the binary decimation) needs a measurement time scaling
with the maximum photon number Nmax as log2(Nmax).

• Using frequency resources instead, one can reach a measurement time independent
of Nmax.
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6
FLUORESCENCE BASED PHOTON NUMBER MEASUREMENT

Fluorescence measurements correspond to the detection of photons or electromagnetic
fields emitted by a quantum system. They are routinely performed in experiments on
atoms, ions and nitrogen-vacancy centers in diamond. In circuit QED, fluorescence
measurements can realize qubit readouts [85, 160, 161], probe quantum trajectories
[162, 163, 164, 165, 166, 167, 168, 169], explore quantum thermodynamics [38, 170],
access the light-matter interaction [171, 172, 173, 174, 175, 176, 68], cooling processes
[29], and demonstrate the generation of single photons [177]. Although a large range
of experiments can be performed using superconducting qubit fluorescence, it is very
rarely used in quantum measurement. As the signal of qubit fluorescence measurement
saturates and even decreases at large probe power (see Sec. 2.4.3), resonator fluorescence
measurements are preferred. In this thesis, we use the fluorescence of a transmon qubit
to read out the number of photons stored in a resonator. This was possible thanks to
the dispersive coupling between these two modes. Interestingly, this is the reverse of
the usual situation in which resonator fluorescence is used to read out a qubit photon
number [20]. This chapter will discuss the characterization of the qubit used to perform
the fluorescent photocounting, the photocounting ability, and the measurement back-
action of the fluorescence photocounting. From this point onwards, we will use the word
“fluorescence” to talk about the fluorescence of the multiplexing qubit (in contrast to the
fluorescence of the readout resonator).
Remarks: Most of the results shown in this chapter are published in Ref. [155, 178]

6.1 qubit characterization

6.1.1 Rabi oscillations

The multiplexing qubit of the circuit (see Fig. 5.1) is intended to be used with fluo-
rescence measurement. The multiplexing qubit is characterized using reflection spec-
troscopy; once we know its frequency, we can measure Rabi oscillations in order to
calibrate the linear relationship between the drive amplitude and the Rabi oscillation
angular frequency Ω. As the qubit is probed in fluorescence, the Rabi pulse also acts
as a readout pulse. The average fluorescence record (i. e., the reflected pulse) reads (see
Sec. 2.4.3 and Eq. (2.58)):

〈aout〉(t) = 〈ain〉(t)−
√

Γc〈σ−,mp〉(t), (6.1)

where 〈ain〉(t) is the input pulse complex amplitude and σ−,mp the qubit lowering op-
erator. Thus, one can observe Rabi oscillations of the multiplexing qubit by applying
a 1 µs-long square pulse at fmp with a varying amplitude Vmp referred to the IF sig-
nal (see Sec. 4.3). The reflected signal, which is demodulated by time steps of 10 ns,
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Figure 6.1: Multiplexing qubit Rabi oscillations for various driving amplitudes.The measured
Rabi oscillations observed in the reflection coefficient at qubit frequency (dots) are
reproduced by Eq. (6.2 (solid line). The vertical axis represents the deviation of the
qubit in phase coherence 〈σx,mp〉 to its steady-state value. This calibration allows
us to extract the scaling parameter ξ, relates the drive amplitude voltage amplitude
Vmp to the Rabi frequency a Ω = 2πξVmp = 2π(0.543± 0.002 GHz.V−1 )Vmp.

displays damped oscillations given by Eq. (2.56). When subtracting the steady-state
signal reached at the end of the pulse, the real part of the signal reads as follows:√

Γ1,mp〈σx,mp〉(t)−
√

Γ1,mp〈σx,mp〉ss '

A cos

√(2πξVmp)2 −
(

Γ1,mp − 2Γφ,mp

16

)2

(t− t0) + φ

× e−(t−t0)/T ,
(6.2)

where 〈σx,mp〉ss is the value of the mean value of the σx,mp operator in the steady state.
We obtain ξ = 0.543± 0.002 GHz.V−1 , meaning that the Rabi frequency is calibrated
as Ω = 2πξVmp = (0.543 GHz.V−1)Vmp (see Fig. 6.1).

Once the Rabi angular frequency is calibrated, we can use it to measure the relaxation
rate and the decoherence rate of the multiplexing qubit.

6.1.2 Spectroscopy

Based on Eq. (2.61), measuring the reflection coefficient for various Rabi angular fre-
quencies Ω and probe frequencies fprobe enables a precise measurement of the relaxation
and the decoherence rates. With the heterodyne measurement of the fluorescence field,
we measure the qubit reflection coefficient, the transmission line spectrum, and the
Jospehson TWPA gain that depends on the frequency. When conducting a spectroscopy
of the multiplexing qubit, the heterodyne record reads

I(fprobe,Ω) + iQ(fprobe,Ω) = G(fprobe)〈aout〉(fprobe,Ω)

= G(fprobe)r(fprobe,Ω)〈ain〉(Ω),
(6.3)
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Figure 6.2: Reflection coefficient of the multiplexing qubit as a function of probe frequency for
various probe amplitudes, expressed in units of the Rabi angular frequency Ω. The
measured reflection coefficient (dots) are reproduced by the Eq (2.36). a. Real and
imaginary parts of the reflected coefficiention as a function of probe frequency. b.
Reflection coefficient in the complex plane for varying frequencies.

with G(fprobe) being a complex factor that takes into account the total gain and phase
shift of the setup at the frequency fprobe

1. In this thesis, we were able to calibrate
G(fprobe) by displacing the storage mode with a large coherent-state amplitude (about a
hundred photons). Thanks to the dispersive coupling, the multiplexing qubit resonance
frequency is then shifted enough that the reflection coefficient can be considered as
equal to 1. The heterodyne records for this reference spectroscopy read

Iref(fprobe,Ω) + iQref(fprobe,Ω) = G(fprobe)〈aout〉(Ω) = G(fprobe)〈ain〉(Ω). (6.4)

Dividing the record of the first spectroscopy by the record of the reference spectroscopy
gives access to the multiplexing qubit reflection coefficient. This reads (see Eqs. (6.3)
and (6.4)),

r(fprobe,Ω) =
I(fprobe,Ω) + iQ(fprobe,Ω)

Iref(fprobe,Ω) + iQref(fprobe,Ω)
. (6.5)

The measured reflection coefficient is shown in Fig. 6.2 as a function of the probe
frequency and the Rabi angular frequency. The imaginary part is shifted by 0.15 due
to a parasitic reflection in the setup. We can fit it with Eq. (2.36); this gives access to
the relaxation rate Γ1,mp and the decoherence rate Γ2,mp.

1 We assume that all amplifiers work in the linear regime, meaning that the gain does not depends on
the input field amplitude.
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6.2 fluorescence photocounting

6.2.1 Photocounting a coherent state

The intrinsic limitation of the standard approach (see Sec. 5.3.1) is that measuring the
qubit state can at most reveal one bit of information per step. It is possible to avoid
this constraint by observing the qubit frequency directly instead of measuring its state.
The multiplexing qubit is coupled to the transmission line so that when there are k
photons in the storage mode, the qubit emits a fluorescence signal into the mode of
the transmission line that is centered around the qubit frequency fmp − kχs,mp/2π. Of
course, the qubit needs to be excited for the emission occurs. This encoding ability
can thus be observed by driving the multiplexing qubit with a single microwave drive
through the transmission line (see Fig. 5.1) [177, 68, 161, 164]. The measured real
part Re(r) of the reflection coefficient at frequency fprobe is reduced when the probe
resonates with the qubit, hence revealing the photon number k [29]. This reduction
arises from the coherent emission by the qubit in phase opposition with the reflected
drive [179] (see Eq. (2.58)). Therefore, on average, the distribution of photon numbers
in the storage mode can be deduced from the relative amplitudes of the reduction of
Re(r) at each frequency fmp − kχs,mp/2π. The reflected coefficient reads

r(fprobe) = 1−
∑
k

ps(k)
2Γc
Ω
〈σ−,mp〉(δ = fprobe − fmp + k

χs,mp

2π
), (6.6)

where ps(k) is the probability that the storage contains k photons and 〈σ−,mp〉(δ) is
the mean value of the lowering operator when the qubit is driven by a coherent tone
detuned by δ.

In Figs. 6.3 a,b, we show the measured qubit emission coefficient 1 − Re(r) as a
function of a single probe frequency fprobe and of the initial amplitude of the storage
mode coherent state

√
n̄. The measurement is performed using a drive strength Ω =

χs,mp/4 (expressed as the corresponding Rabi angular frequency), a pulse duration of
2 µs, which is smaller than the storage lifetime of 3.8 µs, and the reference technique
describes in Sec. 6.1.2. Resolved peaks develop for every photon number up to at least
9. Using the former calibration of n̄ (see Sec. 5.2.2), a master-equation based model
enables us to reproduce the measurement results (see Appendix d).
The observation of resolved peaks is due to our choice of parameters. We designed

the relaxation rate of the multiplexing qubit Γ1,mp = (42 ns)−1 so that the decoherence
rate Γ2,mp = Γ1,mp/2 is smaller than the dispersive shift χs,mp. When peaks are sepa-
rated, probing the qubit at one of its resonance frequencies fmp − kχs,mp/2π opens a
communication channel with a maximal bandwidth Γ2,mp/2π carrying information only
about Fock state |k〉. We maximize the bandwidth of each channel by designing Γ1,mp

as large as possible by adjusting the direct coupling to the transmission line, under the
constraint of keeping the peaks resolved (see Sec. 5.1.2).

This fluorescence photon-counting ability was demonstrated earlier in Ref. [29] using
a continuous drive to cool down a hot radio-frequency mode. Here, this fluorescence
photon-counting ability is used with pulsed drive and we will focus on its back-action.
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a. b.

Figure 6.3: Fluorescence photon-counting a, b, Measured emission coefficient 1 − Re(r) as a
function of the probe frequency fprobe and the mean photon number n̄ in the storage
mode. The emission coefficient exhibits a resolved peak for each photon number.
The dots in b are cuts along the dashed lines in a and are captured by a master
equation model described in App. d (solid lines).

As we will see, one can improve this measurement using a multiplexing approach (see
Chap. 7).

6.2.2 Comparison with the standard photocounting approach

We have shown that both fluorescence photon-counting and standard photon-counting
(Figs. 6.3 and 5.2) allow us to ask questions along the lines of “are there k photons?”
We can already see that the fluorescence photon-counting measurement is continuous
both in time and in strength, whereas the standard measurement is only continuous
in strength. The important difference between both techniques is that only the fluores-
cence photon-counting process can be multiplexed. Indeed, when using the standard
technique, we need to read out and reset the qubit at the end of each step. The read-
out step cannot be multiplexed, as it always occurs at the readout mode frequency. In
contrast, with the fluorescence readout, information about a given photon number k is
constantly extracted through the frequency mode fmp− kχs,mp/2π of the transmission
line. The key ingredient to our approach is thereby enabled; that is, the multiplexing
measurement of the reflection coefficient at every frequency fmp − kχs,mp/2π.
Naively, we could view the fluorescence photon-counting approach as an encoding

of the photon number into the qubit state. Indeed the record depends on the mean
expected value of the multiplexing qubit lowering operator. If this were to be true,
even by multiplexing the measurement we would not be able to extract more than
1 bit of information at a time. This is not the case; the multiplexing qubit works
as an “encoder”, exactly in the same way as a readout resonator used to measure a
dispersively coupled qubit does. In order to understand the role of encoder, let us go
back to the basis of heterodyne detection, which measures the output field aout(fRF)

at the frequency fRF (see Sec. 4.3). The multiplexing qubit or the readout resonator
are used as entangling devices between the rest of the system and the many modes
{aout(f)}f of the transmission line. Each of the transmission-line modes can contain an
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infinite amount of information, and the number of transmission-line modes that could
be entangled with the system is only bounded by the bandwidth of the line. Thus,
the amount of information we can extract using heterodyne detection is not bounded;
rather, it is the entangling process that bounds the amount of information we can
extract.
In the standard approach, the storage is first entangled with a dispersively coupled

qubit (the yes–no qubit in the Sec. 5.2.1), following which this qubit is entangled with
the transmission-line modes thanks to the presence of the readout resonator. As the
entanglement between the storage mode and the transmission-line modes is generated
through the qubit, the amount of information we can extract from this entanglement
process is limited by the amount of information a qubit can store: 1 bit. In addition,
the system can only be entangled with one transmission-line mode aout(fpulse), which
oscillates at the frequencies of the readout pulse fpulse. Thus, it is impossible to mul-
tiplex the standard approach, as the entangled transmission-line mode is always the
same.
In the fluorescent approach, the storage mode is directly entangled with the many

transmission-line modes thanks to the multiplexing qubit. Each Fock state |n〉 of
the storage resonator may be entangled with one transmission line mode aout(fmp −
nχs,mp/2π) oscillating at the frequency fmp − nχs,mp/2π. Thus, the amount of infor-
mation we can extract through this entanglement process is only bounded by the line
bandwidth, as, using a multiplexing approach, we can read out, at the same time, all
the transmission line mode states which can collectively host much more than a single
bit of information.
Before discussing the multiplexing fluorescence photon-counting process, we will dis-

cuss the measurement back-action of the fluorescence based photon number measure-
ment. Indeed, here the probed system is a harmonic oscillator (a multi-level system)
and the probe/encoder used is a non-linear element (the multiplexing qubit); thus, we
can expect a measurement back-action that is more complex than the one resulting
from a dispersive qubit readout.

6.3 fluorescence back-action

6.3.1 Modeling of the measurement operator

We introduce here a simple model to characterize the measurement and its back-action
on the resonator. The measurement uses a phase preserving amplifier in order to am-
plify the signal at a frequency fmp−kχs,mp/2π when probing Fock state k and records a
complex amplitude I(k) + iQ(k). Here, we assume that the measurement record only ex-
tracts the information on the occupation of the Fock state |k〉, which is experimentally
valid in the limit χs,mp � Γ2,mp. Without decoherence and in the limit of long measure-
ment time, its back-action on the storage mode would project the storage state either
on Fock state |k〉 or on the complementary subspace Π

(k)
⊥ Hs, where Π

(k)
⊥ = 1 − |k〉〈k|

and Hs is the Hilbert space of the storage resonator.
In practice, the measurement proceeds by first entangling the resonator, which is in

a state |ψs〉, and the signal mode of the phase preserving amplifier (i. e. the output
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field of the multiplexing qubit). When probing Fock state |k〉, the entangled state reads
|α, 0〉 ⊗Π(k)|ψs〉+ |α⊥, 0〉 ⊗Π

(k)
⊥ |ψs〉, where Π(k) = |k〉〈k|, and states denoted as |α, β〉

are the state of the amplified field denoted by the coherent states amplitude of the
signal and the idler modes at the input of the amplifier (see Sec. 4.3.3.1). As discuss in
Sec. 7.3, describing the output field of the qubit as a coherent state is an approximation
as we don’t capture the incoherent emission of the qubit.
We distinguish two cases: the case where the probe is resonant with the multiplexing

qubit, leading to a reflected amplitude α, and the case where it is off resonant leading to
a reflected amplitude α⊥. The resonance frequency of the qubit depends on the number
of photons in the resonator so that the reflected amplitude α indicates k photons while
α⊥ indicates that there are not k photons. For an incoming amplitude αin onto the
multiplexing qubit, we get (see Eq.(2.59))

α⊥ = αin

α = αin

(
1− 2Γ1,mp

Ω
〈σ−,mp〉sseiφd

)
, (6.7)

where 〈σ−,mp〉ss is the steady state mean value of the multiplexing qubit lowering oper-
ator. If the qubit is driven by a single tone, the maximum of |〈σ−,mp〉ss| is reached for
Ω = Γ1,mp/

√
2.

The measurement operator (Kraus operator) corresponding to the heterodyne de-
tection of a propagating field encoding the information on the |k〉 state thus reads

M (k)(I(k), Q(k)) = 〈ΨI(k),Q(k) |α, 0〉Π(k) + 〈ΨI(k),Q(k) |α⊥, 0〉Π
(k)
⊥ , (6.8)

where |ΨI(k),Q(k)〉 is the state on which the amplified field (i. e. the signal and the idler
mixed field) is projected after the heterodyne measurement performed by the phase
preserving amplifier followed by a heterodyne detection setup (see Secs. 4.3 and 4.3.3.1).
Following the supplementary information of Ref. [103], in the case of a phase preserv-

ing amplifier the inner product ξ(β, I,Q) = 〈ΨI,Q|β, 0〉 is given up to a global phase
factor (independent on β, I and Q) by

ξ(β, I,Q) =
1√
π2σ0

e
−
|β|2

2(2σ0)2
e
−

(I − β)2

2(2σ0)2
e
−

(Q+ iβ)2

2(2σ0)2
(6.9)

where σ0 is the amplitude of the zero-point fluctuations (the variance of the measured
I is 2σ2

0 in the quantum limit of phase preserving amplification).
Therefore, we finally get the following analytical expression of the measurement op-

erators when probing Fock state |k〉, in the case of Γ2,mp � χs,mp

M (k)(I(k), Q(k)) = 1√
π2σ0

e
−
|α⊥|2

2(2σ0)2
e
−

(I(k) − α⊥)2

2(2σ0)2
e
−

(Q(k) + iα⊥)2

2(2σ0)2
Π

(k)
⊥

+ 1√
π2σ0

e
−
|α|2

2(2σ0)2
e
−

(I(k) − α)2

2(2σ0)2
e
−

(Q(k) + iα)2

2(2σ0)2
Π(k).

(6.10)

The same approach enables to derive the measurement operator for a homodyne
detection made with a phase-preserving amplifier. The measurement operator reads

M (k)(I(k)) = 〈ΨI(k) |α, 0〉 ⊗Π(k) + 〈ΨI(k) |α⊥, 0〉 ⊗Π
(k)
⊥ . (6.11)
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The product ξ(β,Q) = 〈ΨI|β, 0〉 is given up to a global phase factor (independent on
β and I) by

ξ(β, I) =
1

(4πσ2
0)1/4

e
−
Im(β)2

2(2σ0)2
e
−

(I − β)2

2(2σ0)2
. (6.12)

Therefore, the measurement operators for the homodyne detection when probing
Fock state |k〉, in the case of Γ2,mp � χs,mp, reads

M (k)(I(k)) = 1
(4πσ2

0)1/4 e
−
Im(α⊥)2

2(2σ0)2
e
−

(I(k) − α⊥)2

2(2σ0)2
Π

(k)
⊥

+ 1
(4πσ2

0)1/4 e
−
Im(α)2

2(2σ0)2
e
−

(I(k) − α)2

2(2σ0)2
Π(k).

(6.13)

Assuming the multiplexing qubit is in its steady state (see Sec. 2.4.2), one can inject
the expression of α and α⊥ in the heterodyne and homodyne measurement operators.
One obtains that the photon number information is encoded in the in-phase record I(k).

6.3.2 Post-selection and correlation

The back-action of the fluorescence photon-counting measurement can be studied by
performing a tomography of the storage mode at the end of the fluorescence measure-
ment process. The storage tomography is a direct Wigner tomography [32, 180, 181]
performed thanks to the yes–no qubit (see App. c for details about Wigner tomography
and Sec. 5.1 for details about the yes-no qubit).

6.3.2.1 The basics of the Wigner function

A Wigner tomography performed by measuring the displaced parity operator. The
measured Wigner function W (α) reads

W (α) =
2

π
Tr(D†(α)ρD(α)P), (6.14)

where D(α) is the displacement operator of the storage mode by a coherent state |α〉,
and P = eiπâ

†
s âs is the photon number parity operator.

The Wigner tomography is a complete tomography of the storage state, meaning
that all the information in the storage density matrix is contained in the Wigner func-
tion, and that we can reconstruct the density matrix from the Wigner function. As an
example, the Wigner function W (α)|β〉 of a coherent state |β〉 is a Gaussian function
centered on β with a width of 1/2, where

W (α)|β〉 =
2

π
e2|α−β|2 . (6.15)

6.3.2.2 Post-selection

Remark: The post-selection experiment described in this section was performed dur-
ing a different run to that of most of the results of this thesis. The storage and the
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Figure 6.4: a. Circuit diagram of the post-selection experiment protocol. The Wigner tomog-
raphy is represented by the Wigner measurement box (see Appendix c for more
details). The initial coherent state amplitude is β = 1.4. b. The Wigner function
of a coherent state

∣∣β =
√

1.4
〉
after 4 µs of unread fluorescence measurement ask-

ing the question “Are there 0 photons?” The donut’s shape is characteristic of a
statistical mixture of Fock states.

multiplexing qubit lifetimes were 7.1 µs and 30 ns, respectively. The high relaxation
rate of the multiplexing qubit leads to a higher SNR for the fluorescence measurement;
however, the storage–multiplexing qubit dispersive interaction was not in the photon
number-resolved regime.
Let us now characterize the photon-counting abilities of the fluorescence measure-

ment. We initialize the storage mode in a coherent state
∣∣β =

√
1.4
〉
, then probe, with

the multiplexing qubit, whether there are 0 photons, using a microwave pulse at the fre-
quency fmp, before measuring the Wigner function of the storage mode (see Fig. 6.4a).
The fluorescent readout gives two records, I(0) and Q(0), for each realization of the
experiment. When averaging over all realizations, the Wigner function measured takes
the shape of a donut (see Fig6.4b) that corresponds to a statistical mixture of Fock
states. As the mean photon number of the initial coherent state is small, measuring
whether there are 0 photons is almost the same as measuring the photon number. Thus,
the storage state after this unread fluorescence photon measurement contains no coher-
ences in the Fock basis. This loss of coherences makes sense, as the phase and photon
number are conjugate variables; thus, measuring the photon number will diffuse the
phase of the storage state.
Looking at the histograms of the I(0) and Q(0) fluorescence records, we can see that

the Q(0) histogram is simply a Gaussian distribution, whereas the I(0) histogram is
the sum of two Gaussian distributions (see Fig.6.5a and b), as predicted by the mea-
surement operators (see Sec. 6.3.1). We can identify the distribution with the smallest
mean value (the green distribution in Fig.6.5) as the “0-photon” distribution (i. e., the
distribution we would have if the storage was in the vacuum). In the same way, the
distribution with the highest mean value (the yellow distribution in Fig.6.5) can be
identified as the distribution of experiments with “not 0 photons”. The SNR of the
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Figure 6.5: Histograms of the I(0) and Q(0) fluorescence records when measuring whether
there are 0 photons when the storage mode is prepared in |β〉 =

∣∣√1.4
〉
. a. The

I(0) histogram is composed of two Gaussian distributions corresponding to the “0
photon” (green line) and “not 0 photon” (yellow line) results. The red line is the sum
of the two distributions. The purple line is a fit using only one Gaussian distribution.
This single Gaussian distribution fit is not able to reproduce the shape of the
distribution. Thus we reject the hypothesis that the I(0) histogram is composed of
a single Gaussian distribution. b. The Q(0) histogram contains no information. It
corresponds to a single Gaussian distribution (red line).

fluorescence measurement is about 2; it was possible to reach this number thanks to
the higher relaxation rate of the multiplexing qubit. Even if the SNR is too small to
be in the strong measurement regime, we can still highlight the back-action of the
fluorescence measurement using post-selection. We can first post-select all the experi-
ment’s realizations for which the fluorescence record I(0) is smaller than 7 mV. Based
on the I(0) histogram, these experiments are mainly experiments with 0 photons. The
Wigner function measured for this ensemble of realizations is shown in Fig. 6.6a. We
can reproduce this tomography using the Wigner function of a thermal state [7]:

Wρ(nth)(α = x+ ip) =
2

π

1

2nth + 1
e−2|α|2/(2nth+1), (6.16)

where nth is the thermal photon number. Fig. 6.6b shows the agreement between the
measured Wigner function along the X = Re(α) and P = Im(α) axes and the theory.
Only the thermal photon number is used as a fitting parameter. We can determine
that the post-selected Wigner function is the one for a thermal state with the thermal
photon number nth = 0.01 ± 0.006, that is in good agreement with an independent
measurement2 of the thermal photon number, giving nth < 0.009.
In the same way, we can post-select all realizations that have a fluorescence record

I(0) that is higher than 13 mV. The Wigner function of this ensemble is shown in
Fig. 6.7a; here, we can see the appearance of negativity at the center of the quadrature
phase space, which is in agreement with the Wigner function of a Fock state |1〉. The
negativity is smaller than that of a Fock state |1〉 as we are post-selecting based on the
fact there is not 0 photon, which means we can have 2 photons as well. The Wigner
function is well reproduced using a statistical mixture of Fock states from 0 to 3 photons.

2 This independent measurement was the same as the one in Sec. 5.2.1. However the storage thermal
photon number measured was different as the two measurement carried out during different cool downs.
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Figure 6.6: a. The measured storage mode Wigner function when post-selecting on fluorescence
records I(0) ≥ 7 mV corresponding to “0 photons”. b. A comparison between a
thermal-state Wigner function, with 0.01 thermal photons, and the post-selected
measured Wigner function along the X = Re(α) and P = Im(α) axes.

The Wigner function used to reproduce the post-selected measured Wigner function is
as follows

W (α)”not0photon” = p0W (α)|0〉+p1W (α)|1〉+p2W (α)|2〉+(1−p0−p1−p2)W (α)|3〉, (6.17)

where p0, p1, and p2 are fitting parameters corresponding to the probabilities of having,
respectively, 0, 1 and 2 photons in the post-selected storage state. We obtain a good
agreement between the model and the measured Wigner function (see Fig. 6.7b) with
p0 = 0.18, p1 = 0.49 and p2 = 0.26. Compared to the initial photon distribution
(p0 = 0.23, p1 = 0.34, p2 = 0.24 after the initialization and p0 = 0.44, p1 = 0.36,
p2 = 0.15 after the 4 µs fluorescence measurement) we can see that the post-selection
has the effect of decreasing the probability of having 0 photons and to increase the
probability of having more than 0 photons.
Based on the two post-selected Wigner functions studied, we can conclude that the

fluorescence measurements do encode information about the question “Are there 0 pho-
tons?”.

6.3.3 Back-action dynamics

The back-action dynamics, which is the dynamics of the storage mode due to the
fluorescence measurement, can be studied by measuring the Wigner function of the
storage mode after fluorescence measurements of various durations t and frequencies
fprobe. This experiment uses the same sequence as the post-selection experiment (see
the previous section and Fig. 6.4a) but we vary the fluorescence measurement durations
and frequencies. In comparison to the post-selection measurement, here we dismiss the
fluorescence record; the only record entering in the analysis is the Wigner function
W (α, t, fprobe), which depends on the time t and frequency fprobe. For each repetition
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Figure 6.7: a. The measured storage mode Wigner function when post-selecting on fluores-
cence I(0) ≥ 13 mV corresponding to “not 0 photons”. b. A comparison between
the Wigner function of a statistical mixture of Fock states and the post-selected
measured Wigner function along the X = Re(α) and P = Im(α) axes.

of the experiment, we initialize the storage mode in a coherent state |β = 1.75〉 and use
a fluorescence measurement amplitude Ω = Γ1,mp/

√
2.

6.3.3.1 Density matrix coherences

As noted in Sec. 6.3.2.1 and Appendix c, the Wigner function is in one to one correspon-
dence with the density matrix, so that we can reconstruct the density matrix from the
Wigner function (see App. c for the reconstruction process). Using the evolution of the
density matrix, we probe the dynamics of coherences between Fock states in order to
extract the measurement-induced dephasing rate of the fluorescence measurement for
each pair of Fock states. This measurement-induced dephasing will naturally depend
on the frequency fprobe of the fluorescence measurement. However, the coherences are
also affected by the relaxation rate of the storage mode; thus, we decided to normalize
the off-diagonal density-matrix elements in order to remove the trivial effects of the
storage-mode relaxation. Let us now show that, in the absence of Hamiltonian evolu-
tion and measurement back-action, the quantity |ρnm|/

√
ρnnρmm indeed evolves only

because of dephasing and that its dynamics are not affected by relaxation. We will now
consider the storage mode alone, under the influence of its relaxation and dephasing
channels in a frame rotating at fs:

ρ̇ = Γ1,sD(âs)ρ+ 2Γφ,sD(â†s âs)ρ. (6.18)

From this equation, we can compute the time derivative of the density-matrix elements

ρ̇nm =Γ1,s

(
ρn+1m+1

√
(n+ 1)(m+ 1)− n+m

2
ρnm

)
− Γφ,sρnm(n−m)2.

(6.19)
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If the storage mode is initialized in a coherent state |αo〉, the solution to the equation
is

ρnm(t) = e−|αo|
2e−Γ1,st αmo e

−mΓ1,st/2(α∗o)
ne−nΓ1,st/2

√
n!m!

e−Γφ,s(n−m)2t, (6.20)

and we get

ρ̃nm =
|ρnm|√
ρnnρmm

(t) = e−Γφ,s(n−m)2t. (6.21)

Thus, the normalization does in fact remove the effect of the relaxation rate Γ1,s and
only characterizes the dephasing rate. In addition, the normalized coherences are inde-
pendent of the initial coherent state amplitude.
Here, the dephasing rate Γφ,s will contain the intrinsic dephasing rate of the storage

mode and the measurement-induced dephasing rate due to the fluorescence measure-
ment, which will depend on the measurement frequency and strength. Even if it is
a strong (or even wrong) assumption that the fluorescence measurement has a back-
action of the form D(â†s âs)ρ, we will see that we can still obtain a good agreement
between theory and measurement by only assuming that the Eq. (6.21) is valid for a
measurement-induced dephasing rate depending on n and m.

6.3.3.2 Coherence dynamics

Using each of the Wigner functions W (α, t, fprobe), we can reconstruct the density ma-
trix ρ(t, fprobe) for each time t and frequency fprobe. Before going further into this
analysis, we have to check that the reconstructed density matrix is a physical state
(meaning that its trace is equal to 1 and the matrix is positive). Here, the density ma-
trix is truncated to 4 photons, due to the size and mesh of the Wigner function and the
amplitude of the initial coherent state β = 1.75. We determine that the trace of the
truncated density matrix is smaller than 1 (0.93 on average, with a standard deviation
of 0.03 over the whole density matrix). In order to know whether this difference comes
from the truncation, we can still check whether the measured Wigner function may cor-
responds to a physical state by computing its integral over the phase space

∫∫
dαW (α).

The normalization condition of the density matrix Tr(ρ) = 1 is equivalent to the Wigner
function normalization

∫∫
dαW (α) = 1. Over the 441 Wigner functions measured for

this experiment, the integral over the phase space is equal to 0.99±0.03. The positivity
is a property more difficult to check as it do not correspond to some properties of the
Wigner function and the density matrix being truncated, it may be non-positive. Thus,
we can conclude that the density matrix extracted from the Wigner function is indeed
physical up to the truncation. This truncation is not a problem, as long as we only
work with the density matrix elements and do not compute any expected mean values
for the operators from the truncated density matrix.
The next step before looking at the coherences is to check that the dynamics of

the diagonal elements of the density matrix does not depend on the fluorescence mea-
surement (as expected from a QND photon number measurement and as predicted by
the simple model of Eq. (6.20)). Fig. 6.8a,b,c,d, and e show the value of the diagonal
density matrix element as a function of the measurement time t and normalized detun-
ing ∆mp/χs,mp = 2π(fmp − fprobe)/χs,mp. Up to the precision of the experiment, we
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Figure 6.8: a., b., c., d. et e. Diagonal element ρnn of the storage mode density matrix
as a function of time t and detuning ∆mp. We check that the dynamics of the
diagonal elements does not depend on ∆mp. f. The measured (dots) and fitted
(line) probability of having 0 photons as a function of time t.

do not see any dependence of diagonal elements ρnn on the fluorescence measurement
frequency fprobe. We do, however, observe a dependence on the measurement time t,
which is attributed to the storage relaxation (as predicted by Eq. (6.20)). We check
this assumption by extracting the storage relaxation rate Γ1,s of the ρ00(t) dynamics
(see Fig. 6.8) using the fitting function

ρ00(t) = exp
(
−n0e−tΓ1,s

)
, (6.22)

where n0 is the initial photon number. We determine that Γ1,s = (3.79(2) µs)−1 is
in agreement with the former calibration of the storage lifetime (see Sec. 5.1.2). The
initial photon number, measured as n0 = 2.78 ± 0.01, is below the theoretical value
1.752 = 3.06. We can attribute this difference to the 370 ns duration needed to measure
the Wigner function, during which the storage mode unavoidably relaxes.
Following these two sanity checks, we can look at the dynamics of the normalized

coherences ρ̃nm. Fig. 6.10 shows the normalized coherences as a function of fluores-
cence measurement time t and re-scaled detuning ∆′mp in units of χs,mp. The difference
between the multiplexing qubit resonance frequencies corresponding to two successive
photon numbers is not constant owing to higher order effects3. Therefore, for an easier
interpretation of the figures, we rescale the detuning ∆mp into a new detuning ∆′mp in

3 Because of higher order cross-Kerr terms, the cross-Kerr rate depends on the storage mode Fock state.
This effect was not taken into account before as it entails only small effects. Here, we take it into
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Figure 6.9: Scheme about how the detuning ∆mp is rescaled in ∆′mp. Each slice of ∆mp of
length χn,n+1, starting at the detuning corresponding to n photons in the storage
mode to the detuning correponding to n+1 photons, are multiplied by χ0,1/χn,n+1

such that the corresponding slice of ∆′mp has a length of χ0,1 = χs,mp.

such a way that the detuning ∆′mp is exactly given by nχs,mp when there are n photons.
Here is how this rescaling is realized. We denote χn,n+1 the differences between the
multiplexing qubit resonant frequencies corresponding to n and n + 1 photons in the
storage mode. We have that χ0,1 = χs,mp, χn−1,n ≥ χn,n+1 and the resonant frequency
of the multiplexing qubit when the storage mode host n photons is ωmp−

∑n−1
k=0 χk,k+1.

The detuning axis is re-scale by slices: the slice
[∑n−1

k=0 χk,k+1,
∑n−1

k=0 χk,k+1 + χn,n+1

]
is multiplied by χ0,1/χn,n+1 (see Fig. 6.9). The mathematical formula is

∆′mp =



∆mp if ∆mp < χ0,1

(∆mp − χ0,1)
χ0,1

χ1,2
+ χ0,1 if ∆mp < χ0,1 + χ1,2(

(∆mp − χ0,1)
χ0,1

χ1,2
− χ0,1

)
χ1,2

χ2,3
+ 2χ0,1 if ∆mp <

∑2
k=0 χk,k+1

...
...((

(∆mp−χ0,1)
χ0,1
χ1,2
−χ0,1

)
...−(n−1)χ0,1

)
χn−1,n
χn,n+1

+nχ0,1 if ∆mp <
∑n

k=0 χk,k+1

.

(6.23)

When the re-scaled detuning ∆′mp is equal to nχs,mp, this implies that the drive is
resonant with the multiplexing qubit only if the storage mode contains n photons.
We can see the strong dependence of the normalized coherences ρ̃nm dynamics on the

re-scaled detuning ∆′mp. First, when looking at the dynamics of the coherences between
the Fock states |n〉 and |m〉, the dephasing is strong when the fluorescence measurement
probes around the re-scaled detunings ∆′mp = nχs,mp and ∆′mp = mχs,mp. This makes
sense as, for these detunings, the fluorescence measurement is asking questions along
the lines of “Are there n/m photons?” Thus, we are expecting that the phase between
the Fock state |n〉 (or |m〉) and the other Fock states diffuses, leading to a decrease
in coherence. An interesting behavior is that the strongest dephasing does not happen

account to know precisely when the drive is resonant with the multiplexing qubit and for how many
photons in the storage.
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Figure 6.10: Normalized off-diagonal elements ρ̃nm as a function of the measurement time t
and re-scale detuning ∆′mp. We can see the strong dependence of the ρ̃nm dynamics
on ∆′mp.

for the re-scaled detuning ∆′mp = nχs,mp or ∆′mp = mχs,mp, but for the detunings that
are above and below, respectively. This behavior is not surprising, as we can observe
the same in the dispersive readout of a qubit. When the total loss rate of the readout
resonator is of the same order as the cross-Kerr rate χqr between the qubit and the
resonator, the optimal readout angular frequency is not ωr −χqr, ωr −χqr/2 or ωr but
an intermediate frequency (see Sec. 2.5.3). This is exactly the same situation as the
fluorescence measurement has a cross-Kerr rate χs,mp only 1.25 times bigger than the
relaxation rate Γ1,mp.
In order to be more quantitative, we can extract (for each frequency fprobe =

fmp −∆mp/2π) the rate Γnmd,s (∆mp) at which the normalized coherence ρ̃nm dephases.
According to Eq. (6.20), this dephasing rate contains both the intrinsic dephasing rate
of the storage mode and the measurement-induced dephasing rate of the fluorescence
measurement. The next section will discuss this measurement-induced dephasing and
introduce a theory that reproduces our observations.
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6.3.4 Measurement-induced dephasing

In order to explain our measurements, we have to study the bipartite storage/multi-
plexing qubit system and derive an effective master equation for the storage mode only.
This effective master equation will contain the measurement-induced dephasing.

6.3.4.1 The bipartite system

The bipartite master equation in the interaction frame reads
Hs,mp/~ = −χs,mpns

σz,mp

2
+ ∆mp

σz,mp

2
+

Ω

2
σx,mp

ρ̇s,mp =
−i
~

[Hs,mp, ρs,mp] + Γ1,mpD(σ−,mp)ρs,mp

, (6.24)

where ∆mp = 2π(fmp − fprobe), and we neglect the relaxation of the storage mode and
the dephasing of the multiplexing qubit. There is two regimes of parameters which are
easy to study.
The first regime corresponds to χs,mp � Γ1,mp, which corresponds to the photon

number-resolved regime. In this case, the drive Ω affects the qubit only if it is resonant
(i. e. only if ∆mp − kχs,mp = 0, with k an integer) and the master equation can be
simplified using an RWA. This is not the best regime from a fluorescence measurement
perspective, as the rate Γ1,mp at which information is extracted is small.
The second regime corresponds to χs,mp � Γ1,mp. In this case, the dynamic of the

multiplexing qubit is faster than the entangling rate, and the system is essentially
dissipative. We can perform an adiabatic elimination of the multiplexing qubit in order
to obtain an effective master equation for the storage mode. However, this regime is
not the best for fluorescence measurement, as the coupling between the storage and the
multiplexing qubit is, compared to the qubit relaxation, a perturbation.
Here, the experiment regime is defined by χs,mp ∼ Γ1,mp (χs,mp = 1.25Γ1,mp in

this experiment). Thus, we cannot use a RWA or a simple adiabatic elimination. The
solution, found by A. Sarlette, is to derive an adiabatic elimination at any order in
χs,mp/Γ1,mp [178]. Thus, the effective master equation of the storage mode is valid
whatever the value of the ratio ε = χs,mp/Γ1,mp. We will not derive the demonstration
of this adiabatic elimination here (in can be found in our article [178]); however, we
will introduce the starting point and the main conclusion.

6.3.4.2 Adiabatic elimination

The master equation of the bipartite system can be written using two quantum maps:
L0 and L1 (see Sec. 2.2.3.2 for the definition of a quantum map). The dynamics of the
system follow the master equation

ρ̇s,mp = (L0(ρs,mp) + εL1(ρs,mp)), (6.25)

where L0 contains the dissipative driven dynamics of the multiplexing qubit, and L1

the coupling between the storage mode and the multiplexing qubit. The goal of the
adiabatic elimination is to write an effective quantum map Leff for the storage-mode

113



fluorescence based photon number measurement

density matrix ρ. To do so, we introduce a Kraus map or completely positive trace-
preserving map K to move from the density matrix ρ to the bipartite one ρs,mp:

ρs,mp = K(ρ) =
∑
k

MkρM
†
k , (6.26)

where
∑

kM
†
kMk = 1.

As the time derivative and the Kraus map K commute, starting from Eq. (6.25), the
problem boils down to how to find Leff and K, such that

K(Leff(ρ)) = (L0 + εL1)(K(ρ)). (6.27)

Solving this equation exactly, can be difficult. This is why we used to express Leff and
K as a series expansion in ε, solve each order separately to improve the accuracy of
the solution [182]. Existing work on a different system stopped the series expansion to
the second order [183, 184, 185]. In Ref. [178], we derive the analytic solution at an
arbitrary order for any subspace of the Hilbert storage space generated by the Fock
states {|n〉 , |m〉}. The effective quantum map Leff reads as

ρ̇{n,m} =Leff(ρ) = −iδω(n,m)
[
|n〉〈n| − |m〉〈m| , ρ{n,m}

]
+

ΓMID(n,m)

2
D(|n〉〈n| − |m〉〈m|)ρ{n,m},

(6.28)

where ρ{n,m} is the storage density matrix restricted to the subspace {|n〉 , |m〉} and
δω and ΓMID are the “AC Stark shift” and the measurement-induced dephasing rates
between the Fock states |n〉 and |m〉, respectively. These quantities read

δω(n,m) =
λ− λ∗

4i

ΓMID(n,m) = −λ+ λ∗

2

, (6.29)

where λ is the eigenvalue with the highest real part of the matrix


−Γ1,mp/2 −∆̃mp 0 0

∆̃mp −Γ1,mp/2 −Ω 0

0 Ω −Γ1,mp −Γ1,mp − i2χ̃s,mp

0 0 −i2χ̃s,mp 0

 , (6.30)

where χ̃s,mp = (n−m)χs,mp is an effective cross-Kerr rate and ∆̃mp = ∆mp−
n+m

2
χs,mp

an effective probe detuning.

6.3.4.3 Comparing theory and experiment

Now that we are able to predict the measurement-induced dephasing rate of the fluo-
rescence measurement, we can compare the theory to the experiment. Fig. 6.11 shows
a comparison between the dephasing rate Γnmd,s (∆′mp) extracted from the normalized
coherence dynamics and the theoretical dephasing rate Γϕ,s(n−m)2 + ΓMID(n,m) for
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Figure 6.11: Decoherence rate of superpositions between Fock states induced by a fluorescence
photon measurement. In each panel, dots show the measured dephasing rate of
the normalized coherences ρ̃nm using Fig. 6.8. The lines represent the highest
eigenvalue of (6.30), without any free parameters. An offset equal to Γφ,s(n−m)2,
which is the intrinsic dephasing rate of the storage mode, is added to obtain the
total dephasing rate.

n and m going from 0 to 4. The rate Γϕ,s is the intrinsic dephasing rate of the stor-
age mode (see Sec. 5.1.2) and is equivalent to an offset, as it does not depend on the
frequency fprobe.
Without any free parameters, we can obtain a good agreement between the mea-

sured dephasing rate and the predicted one. The small discrepancy between the theory
and the experiment (particularly the asymmetry as a function of n and m) may be
explained by the photon loss rate of the storage mode and the higher-order cross-Kerr
rate between the storage mode and the multiplexing qubit, which is not captured in the
simplified theoretical model and force to use the re-scaled detuning ∆′mp to compare
the measurements and the theory. As expected (and in agreement with the dispersive
qubit readout) in a regime with resolved resonance peaks (|χ̃s,mp| > Γ2,mp), the deco-
herence rate Γnmd,s is larger when the single drive probes whether there are n photons or
m photons with a moderate drive amplitude Ω. In comparison, in a regime with poorly
resolved resonances (that is, where (|χ̃s,mp| < Γ2,mp)) the decoherence rate is larger
when probing at the middle frequency ∆̃mp = 0. The premises of this effect are visible
in Fig. 6.11, as the maximal decoherence rate occurs at a re-scaled detuning that is
slightly closer to (n+m)χs,mp/2, with a stronger effect for small |m− n|, both in the
theory and in the experimental observations.
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Figure 6.12: Predicted measurement-induced dephasing rate between the Fock states |n〉 and
|m〉 using Eq.(6.29) as a function of the fluorescence measurement amplitude Ω

and the detuning ∆mp. We can see a strong non-linear behavior as a function of
Ω. For this graph, we set Γ1,mp = χs,mp = 1 (rad.MHz).

The main difference between photon number fluorescence measurement and a qubit
dispersive readout is the dependence on the drive strength Ω, which we can study thanks
to the theoretical model. In the case of the qubit dispersive readout (see Sec. 2.5.3),
the measurement-induced dephasing ΓMID scales linearly with the square of the drive
amplitude αin, and the ratio ΓMID/α

2
in is independent of αin. However, Fig. 6.12 shows

that the measurement-induced dephasing rate of the fluorescence measurement does
not scale linearly with Ω2 = 4Γ1,mpα

2
in, and that the shape of the function ΓMID(∆mp)

depends strongly on Ω. We were expecting such a behavior, as the theory predicts that
the measurement-induced dephasing rate ΓMID of the fluorescence measurement cannot
be greater than Γ1,mp/2. This bound makes sense, as the fluorescence emission has a
rate limited by Γ1,mp, and the number of excitations stored by the multiplexing qubit
is limited to 1.
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6.3 fluorescence back-action

The evolution of the measurement-induced dephasing rate with the drive strength Ω

can be understood by looking at the qubit steady state. The linewidth4 δω of x∞ and
z∞ (see Sec. 2.4.2 for a definition) is equal to

δω = 2Γ2

√
1 +

Ω2

Γ2Γ1
. (6.31)

In the same way, the width of the y∞ maxima scales as Ω2/Γ1,mp when Ω is much larger
than Γ1 and Γ2. This shows that the “linewidth” of a qubit increases with the drive
strength Ω. Thus, the interesting quantity to look at for the fluorescence measurement
is the ratio5 χ̃s,mp/δω and, by increasing the drive strength, we can decrease the value
of the ratio, bringing the optimal probe frequency closer to ∆̃mp = 0. For large Ω, the
linewidth δω of the qubit becomes much larger than the effective cross-Kerr rate χ̃s,mp

and the measurement-induced dephasing rate decreases. This non-trivial behavior does
not exist in the qubit dispersive readout and is a consequence of the non-linearity of
the probe (which, here, is the multiplexing qubit).

conclusions

Here are this chapter’s main conclusions:

• The fluorescence of a qubit can be used to count the number of photons in a
dispersively coupled resonator.

• The fluorescence photon measurement is continuous in time and strength.

• The fluorescence measurement can be multiplexed, whereas the standard ap-
proach cannot.

• The multiplexing qubit is used as an entangling device between the storage mode
and the many modes of the transmission line. Information is not stored in the
multiplexing qubit but, rather, in the state of the many transmission-line modes.

• The correlations between the fluorescence measurement and the Wigner tomog-
raphy prove that the fluorescence record encodes information about the storage
mode photon number.

• The dephasing rate induced by the fluorescence measurement can be measured
and predicted by adiabatically eliminating the multiplexing qubit.

• The dephasing rate induced by the fluorescence measurement is expected to show
a non-linear behavior as a function of the drive strength Ω. This is a key difference
between the photon number fluorescence measurement and the qubit dispersive
readout.

4 This is defined here as the frequency band where x∞ and z∞ are above half of their maximum for a
fixed value of Ω.

5 As a comparison, the measurement-induced dephasing rate of the qubit dispersive readout is controlled
by the ratio χqr/κtot, see Sec. 2.5.3. This ratio is independent of the drive amplitude αin.
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7
MULTI -FREQUENCY RESONANCE FLUORESCENCE

Frequency multiplexed measurements in circuit QED consist of the simultaneous de-
tection of several signals propagating in the same transmission line but at different
frequencies. The detection can be a heterodyne/homodyne detection or a photon de-
tection, as in the gedanken experiment proposed in Sec. 5.3.2. Frequency multiplexing
has already been used to read out as many as six qubits coupled to a single feed line
[158, 159, 157, 53].
In terms of photon number measurement, the standard approach consists of a time

domain-division multiplexing measurement (see Fig. 7.1) during which questions about
the storage photon number are asked one after the other, each time using all of the
measurement bandwidth. As we discuss in Sec. 5.3.2, by using the frequency domain,
we can improve the measurement time of photon number measurements. This new ap-
proach is based on two ingredients: first, the fact that we can photocount using the
fluorescence of a dispersively coupled qubit, which we explained in Chap. 6; and sec-
ond, the fact that we can multiplex this fluorescence measurement. In this chapter, we
will prove that it is possible to perform the fluorescence photon number measurement
using a frequency domain-division multiplexing approach (see Fig. 7.1), in which ques-
tions about storage photon numbers are asked simultaneously and the measurement
bandwidth is shared between all the questions.
By studying the multiplexing qubit dynamics when the qubit is probed by a fre-

quency comb, we will be able to show that the multiplexed fluorescence photon number
measurement is continuous in time. This will lead us to define an infinite frequency
comb approximation, permitting us, in the next chapter, to derive a back-action theory
for the multiplexed photon number measurement.
This multiplexed fluorescence measurement is only one part of a more complex phe-

nomenon: the resonance fluorescence of a qubit simultaneously driven by multiple fre-
quencies. We call this phenomenon “multi-frequency resonance fluorescence”. Actually,
the multiplexed fluorescence measurement is simply the multiplexed measurement of
the coherent emission of a qubit. A qubit can also emit photons incoherently, thanks
to spontaneous emission, and as it is a non-linear system, the qubit’s scattering can be
inelastic. In this chapter, we will define the idea of coherent and incoherent emissions,
examining how the qubit scattering can be characterized by its spectral density and
how this density can be measured using a heterodyne detection setup. We will see that
the multi-resonance fluorescence can be qualitatively explained using the infinite fre-
quency comb approximation. This will lead us to a discussion concerning the following
question: “Are we recovering all the available information about the photon number
when we measure only the coherent qubit emission?”
Remarks: In this thesis, the word “multiplexing”will always refer to “frequency multi-

plexing”.Remarks: Most of the results shown in this chapter are published in Ref. [155]
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Figure 7.1: Time–division multiplexing takes place one question at a time, while frequency-
division multiplexing simultaneously retrieves multiple answers.

7.1 multiplexed photon number measurement

7.1.1 Principle

As explained in Sec. 6.2.2, the fluorescence photon number measurement can be multi-
plexed. This is achieved by probing the multiplexing qubit at all the angular frequencies
{ωmp−kχs,mp}0≤k≤8 simultaneously. In this thesis, we have chosen to restrict the count-
ing to nine frequencies, and thus will probe the photon numbers from 0 to 8. As shown
in Fig. 7.2, if the storage mode is in a Fock state, only one frequency will be resonant
with the multiplexing qubit, as we are in the number-resolved regime. In a simplified
model, the reflected frequency comb will be unchanged; that is, except for the reso-
nant frequency, in which the in-phase amplitude is decreased (see Sec. 2.4.3). Thus,
the multiplexed heterodyne detection of the frequency comb reveals the storage photon
number1. Using the photon number-resolved regime is not mandatory when performing
this experiment; however, doing so makes it easier to decode the information stored in
each comb’s frequency.
The heterodyne detection setup does not need any major changes to be made in order

to perform this multiplexed detection. A scheme showing the generation and detection
of the comb is shown in Fig. 7.3 (for more details about heterodyne detection, see
Sec. 4.3). An intermediate frequency (IF) comb can be generated using an arbitrary
waveform generator (AWG) {ωIF+kχs,mp}0≤k≤8, where ωIF/2π = 75 MHz. To do so, we
need an AWG with a bandwidth greater than (ωIF + 8χs,mp)/2π. In our case, the AWG
has a bandwidth of 500 MHz, and the maximal comb frequency we used is 115 MHz

(see App. b). A Gaussian envelope is chosen as the comb’s time envelope in order to
decrease the spectral broadening that occurs due to the finite duration of the comb
pulse. This IF comb is mixed with a local oscillator (LO) using a lower single-side
band mixer in order to generate the radio frequency (RF) comb {ωmp − kχs,mp}0≤k≤8.
The reflected RF comb is then amplified using a broadband amplifier—here a Josephson
TWPA (see Sec. 4.4)—before being down-converted by the LO, which uses a lower image
reject mixer. The IF comb is digitized and a numerical demodulation is performed at

1 We will see, in Secs. 7.2.2.2 and 8.3.1, that the situation is more complex than this.
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storage multiplexing
qubit

Figure 7.2: The frequency (color) of the multiplexing qubit encodes the storage photon number.
The reduction in the reflection amplitude of the qubit at one of the frequencies
reveals the number of photons in the storage mode; for example, here there are two
photons.

the frequency {fIF + kχs,mp/2π}0≤k≤8. Each demodulation leads to a record I(k)(t) +

iQ(k)(t), which encodes the probability that k photons are stored in the storage mode.

7.1.2 Demultiplexing

We have to be careful when demodulating the signal at all the comb frequencies, as a
demodulation process requires certain constraints that are easy to satisfy for a single
frequency but difficult to satisfy for multiple frequencies. The signal s(t) that we want
to demultiplex is of the form2

s(t) =
8∑

k=0

I
(k)
0 cos(2πfIF,kt), (7.1)

where fIF,k = fIF + kχs,mp/2π is the intermediate frequency of the record k, and I(k)
0

is its amplitude.
In order to demultiplex the IF comb, the sampling frequency of the digitization

process must be larger than 2fIF,8, which is usually easily achieved. Additionally, the
duration of the measurement Tm, which is usually equal to the length of demodu-
lation window, must be greater than the inverse of the frequency step of the comb
Tm > 2π/χs,mp ' 200 ns, otherwise the numerical demodulation would not be able
to distinguish the comb’s two adjacent frequencies. If we want to achieve a perfectly
uncorrelated demodulation process, it would be preferable to have a measurement time
that is divisible by the period of each frequency of the comb. This means that

∀k ∈ [[0, 8]], ∃n such that Tm =
n

fIF,k
, (7.2)

which will ensure that the signal at frequency fIF,k averages to zero when demodulating
the frequency fIF,k′ . This is impossible to do in practice, because the cross-Kerr rate

2 Here, we only focus on the in-phase quadrature, but the whole discussion is valid when adding an
out-of-phase quadrature.
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multiplexing
qubit

Figure 7.3: The qubit is probed by a frequency comb of amplitude Ω, which is generated using
an arbitrary waveform generator. The reflected pulse is amplified and digitized
before numerical demodulation occurs at every frequency fmp − kχs,mp/2π. This
multiplexing–demultiplexing process leads to the reflection coefficients rk that each
encodes the probability that k photons are stored.

χs,mp depends on the storage photon number (due to the higher-order Kerr effect); thus,
the comb’s frequency steps are not constant. However, the longer the measurement, the
smaller the leakage of the fIF,k is when demodulating at fIF,k′ . Let us consider only
the case where k ∈ {0, 1} (2 tones only), as doing so will allow us to offer a simpler
example. The demodulation at the frequency fIF,0 reads

I(0) =
2

Tm

∫ Tm

0
dtI

(0)
0

1 + cos(4πfIF,0t)

2
+ I

(1)
0

cos(χs,mpt) + cos(2π(fIF,0 + fIF,1)t)

2
.

(7.3)

Let us assume that Tm is chosen such that it is divisible by 1/fIF,0. The record I(0)

takes the form

I(0) = I
(0)
0 +

2

Tm

∫ Tm

0
dtI

(1)
0

cos(χs,mpt) + cos(2π(fIF,0 + fIF,1)t)

2
. (7.4)

The last term, which is the demodulation of the record k = 1 at the frequency fIF,0, is
not necessarily equal to zero, as Tm is not necessarily divisible by 1/fIF,1. Thus, if Tm

and fIF are not carefully chosen, the record I(0) reads

I(0) = I
(0)
0 + pleakI

(1)
0 , (7.5)

where |pleak| is the fraction of information from the record k = 1 that leaks into I(0)

during the demodulation process. This percentage is bounded by

|pleak| <
2

Tmχs,mp
+

1

Tmπ(fIF,0 + fIF,1)
' 2

Tmχs,mp
, (7.6)

where the last equality comes from our choice of parameters fIF � χs,mp/2π. Within
this thesis’s circuit parameters (see Sec. 5.1.2), the maximum leakage percentage for a
measurement of 2 µs is about 3.2%.
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As the measurement time cannot be divisible by the periods of all the comb frequen-
cies, we use a demodulation code, choosing a different demodulation window length
Td,k for the demodulation of each record k. The demodulation length Td,k is chosen to
be the closest to Tm, such that Td,k/fIF,k is an integer.
The demodulation window Td,k needs to be as close as possible to Tm for all k,

which means that the relation in Eq. (7.2) is almost verified. Here, we have chosen an
intermediate frequency fIF of 75 MHz, as this offers several advantages. First is that,
for a measurement time of 2 µs—which is what is used in multiplexed photon number
measurement (see Sec. 7.1.3)—the measurement time is divisible by 1/fIF. Second, this
frequency is much larger than χs,mp/2π or 1/Tm, leading to only a small variation in
Td,k (for example, Td,8 = 1.998 µs); thus, there is only a small amount of information
leakage. Indeed, in this parametric regime, the fraction of information pleak leaking from
the frequency fIF,1 when it is demodulated at the frequency fIF,0 reads

pleak =
1

Td,0

∫ Td,0

Td,1

cos(χs,mpt)dt⇒ |pleak| <
Td,0 − Td,1

Td,0
∼ 0.001. (7.7)

Thus, for this choice of intermediate frequency and measurement time, we can approx-
imate that the record I(k) is only equal to I(k)

0 . From each record, we can then define
a reflected coefficient rk using the same reference technique as that used in Sec. 6.1.2.

7.1.3 Photon-counting a coherent state

To demonstrate the multiplexed photon-counting abilities of our circuit, we perform
the following experiment. We initialize the storage mode in a coherent state with mean
photon number n̄ and measure simultaneously the emission coefficients 1 − Re(rk)
at all frequencies {fmp − kχs,mp/2π}0≤k≤8. This multiplexed approach is of course
much faster than measuring the reflection coefficient at every frequencies one at a
time. Fig. 7.4 shows these emission coefficients as a function of the average initial
photon number n for a drive strength Ω = χs,mp/2 and a measurement duration of 2 µs.
For a given n̄, every measurement channel k gives an average signal that is a linear
combination of the photon number distribution. This linear combination is such that
the average signal of channel k is mainly a linear function of the probability to have k
photons (see Sec. 8.3.1). As n̄ is varied, the shape of the average signal of channel k
reproduces a Poisson distribution distorted by relaxation processes, channel cross-talk
that increases with driving strength (see Sec. 6.3.4) and demodulation cross-talk (see
Secs. 7.2.2.2 and 8.3.1). This multiplexed photon-counting signal can be reproduced
using a master equation approach (solid lines in Fig. 7.4) using the photon number
calibration of the standard photon-counting approach (see Sec. 5.2.2 for the photon
number calibration and appendix d for the master equation approach). This result
thus demonstrates the applicability of our multiplexing approach to photon-counting
by simultaneously probing information about the presence of 9 possible photon numbers
in the resonator. Besides, we demonstrate that the two ingredients, fluorescence and
multiplexing, of the gedanken photon-counting approach (see Sec. 5.3.2) are indeed
feasible.
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Figure 7.4: Multiplexed photon-counting. Dots: simultaneously measured average emission co-
efficients corresponding to every photon number k from 0 to 8 as a function of
the initial mean photon number n̄ in the storage mode. rk is here the reflection
coefficient at fmp − kχs,mp/2π. Solid lines: prediction based on a master equation
without free parameters (see appendix d).

So how does this proof-of-principle experiment compare with standard photocount-
ing? Each method has its own advantages and drawbacks. The multiplexed photon-
counting scheme trades off the temporal constraint and complexity of optimal control
of the standard approach for the need of an efficient quantum measurement on a large
frequency bandwidth. The efficient measurement of the reflected pulse requires the use
of a near quantum-limited amplifier with a dynamical bandwidth of at least a dozen of
χs,mp which is now possible using a TWPA [30]. However, in this experiment we didn’t
succeed to reach the single-shot regime due to the too short lifetime of the storage mode.
Thus, one measurement extracts only a part of the 3 bits of photon number information
and one can recover all the information only by averaging repeated measurements. The
relevant parameter to characterize the strength of our measurement is the parameter
ηΓ1,mp/Γ1,s which is equal to 17 in this experiment. This ratio can be viewed as the
number of photons emitted by the multiplexing qubit and which could be detected by
the heterodyne detection setup during the lifetime of the storage mode. Increasing it
by an order of magnitude would make single-shot measurements possible.
Now we have demonstrated that multiplexed photon number measurement can be

performed, let us discuss about some characteristics of this measurement.

7.2 characteristics of the multiplexed fluorescence measure-
ment

In order to compare the multiplexed approach to the standard one, we would like to
characterize the multiplexing photon number measurement. The main characteristics
we are interested in are the scaling of measurement time with the photon number and
the dynamic of the measurement: is it continuous in time ?
The first part of this section will focus on the measurement time and how it depends

on the number of frequencies demultiplexed. As the dynamics of the multiplexing mea-
surement is given by the dynamics of the multiplexing qubit, the second part of this
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section will be dedicated to the study of the dynamic of a qubit driven by a frequency
comb.

7.2.1 Measurement time

It is out of scope of this thesis work to derive an exact expression of the photon num-
ber measurement time for the multiplexed photon number measurement. However, we
can determine wether the measurement time depends on the maximum photon num-
ber Nmax one wants to measure. In contrast with the gedanken experiment which uses
photodetectors, multiplexed heterodyne measurements are inherently noisy. This noise
comes from the Heisenberg uncertainty principle. For standard photocounting which
also uses heterodyne measurement, this noise is usually neglected as the signal ampli-
tude of dispersive qubit readout is not bounded and increase linearly with the drive
power3. On the contrary, qubit fluorescence measurement will always have a signal am-
plitude bounded by Γc/

√
2 ( where Γc is the coupling rate between the multiplexing

qubit and the transmission line, see Sec. 2.4.3).
Identifying the photon number in the storage mode consists in determining which

channel contains an amplitude α while all the others contain an amplitude α⊥ (see
Sec. 6.3.1 and Sec. 8.3.1 ). The measurement records {I(k), Q(k)}k are stochastic pro-
cesses centered on α⊥ (except for one value of k, where it is centered on α). Determining
the photon number comes down to discriminating which record is centered on α only
using the ensemble of noisy records {I(k), Q(k)}k.
For a measurement time t, the measurement records {I(k), Q(k)}k are averaged over

that duration, t. Thus the time-averaged intrinsic noise contained in the measurement
records scales as 1/

√
t and the time averaged mean value is independent on t. The prob-

lem can be mapped onto the following game. Nmax stochastic variables {ui}1≤i≤Nmax

are each randomly chosen using a Gaussian distribution centered on 0 with a width
1/
√
t. Another stochastic variable u0 is randomly chosen using a Gaussian distribution4

centered on 1 with a width 1/
√
t. The list {ui}0≤i≤Nmax is scrambled randomly into

a list l and the goal consists in identifying the variable u0 using only the list l. The
optimal strategy is to pick the highest element of the list l. The probability to make
an error and lose the game is then given by the probability that the maximum of the
{ui}1≤i≤Nmax are higher than u0

Perror = P
(

max
Nmax≥i≥1

(ui) > u0

)
. (7.8)

We can rescale all the distribution by
√
t, thus u0 are chosen randomly using a Gaussian

distribution centered on
√
t with a width of 1 and each of the {ui}1≤i≤Nmax using a

Gaussian distribution centered on 0 with a width of 1. One can show that the mean
of the maximum of {ui}1≤i≤Nmax tends towards

√
2 ln(Nmax) as Nmax tends towards

infinity [186].

mean

[
max

Nmax≥i≥1
(ui)

]
∼
√

2 ln(Nmax) (7.9)

3 This is true as long we stay in the dispersive regime, see Sec. 2.5.3
4 Here we again approximate the output field of the multiplexing qubit as a coherent state (see Sec. 7.3).
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Besides, the median of the max of {ui}1≤i≤Nmax is equal to the mean value within an
error scaling as 1/

√
Nmax:

median [maxNmax≥i≥1(ui)] = mean [maxNmax≥i≥1(ui)]

+O
(
1/
√
Nmax

)
.

(7.10)

Since the error probability is between 1/4 and 3/4 if the median of u0 is equal to the
median of the maximum of {ui}1≤i≤Nmax , this leads to

1/4 < Perror < 3/4⇒
√
t ∼
√

2 logNmax

⇒ t ∼ log(Nmax)
(7.11)

From this expression, we understand that the measurement time for a fixed error
probability scales as log(Nmax). Thus, the multiplexed measurement shows a measure-
ment scaling similarly to the state-of-the-art standard approach (the binary decimation,
see Sec. 5.3.1). The main differences between the binary decimation and the multiplexed
measurement scaling is that the scaling of the binary decimation comes from the en-
tangling process between the storage and the yes-no qubit, whereas the multiplexed
measurement scaling comes from the noise of the heterodyne measurement. Using a
detection setup without noise, such as the photodetectors of the gedanken approach,
one can reach a better scaling. Indeed, in Sec. 8.2.2 we will derive that the best scal-
ing one can reach5 with the multiplexing approach based on the frequency comb, is a
measurement time independent of Nmax.

We demonstrate that the multiplexed measurement and the binary decimation scale
similarly. However, the multiplexed measurement is not based on a decimation of the
photon number information as former protocols, it recovers all the information at the
same time. Moreover, by describing its dynamics, one can show that the multiplexed
photon number measurement is a continuous measurement which is not the case for
the binary decimation.

7.2.2 Dynamics of a qubit driven by a comb

In this section, we will focus on the dynamics of the multiplexing qubit when it is
probed by a frequency comb. The goal is to study its emission rate as every time it
emits a photon, the storage and the transmission line many modes are entangled and
information about the storage photon number is extracted out of the system. We will
not take into account the dispersive coupling of the multiplexing qubit with the storage
mode. It will be added later in Sec. 8.2. Removing the dispersive coupling is not an issue
as we are going to study the multiplexing qubit dynamics under the approximation that
the frequency comb is infinite. In this case, the qubit dynamics stays the same when
its resonant frequency is shifted by χs,mp, thus the qubit dynamics is independent on
the storage state.

5 Here we are talking about the smallest measurement time one can have when using a detection setup
recovering all the information without noise.
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7.2.2.1 Hamiltonian evolution

We consider a single qubit driven by a frequency comb with 2p + 1 frequency peaks
at every fmp + kχs,mp/2π for −p ≤ k ≤ p. Thus, the frequency comb is centered on
the qubit frequency fmp. In the frame rotating at the qubit frequency, the Hamiltonian
reads

H(t) =
Ω

2

 p∑
k=−p

cos(kχs,mpt)

 σx,mp. (7.12)

Surprisingly, there is no term in σy,mp even if the qubit is driven by 2p detuned tones.
This is due to the symmetry of the comb with respect to the qubit frequency. The term
in σy,mp is anti-symmetric in k and its sum over all the value of k vanishes and the
qubit dynamic will only be in the yz-plane of the Bloch sphere. After a time t, the
qubit state will thus be rotated around the x-axis of the Bloch sphere by an angle f(t)

with

f(t) = Ωt

p∑
k=−p

sinc(kχs,mpt), (7.13)

where sinc(x) = sin(x)/x. For large integers p, we can approximate the sum as

+∞∑
k=−∞

sinc(πkT ) =
1

T
, (7.14)

which is valid for 0 < T < 2. Note that for a small number of peaks 2p + 1, this
approximation is invalid close to T = 0 or 2. The expression allows us to approximate
f(t) for 0 < χs,mpt/2π < 1. It is then simple to derive f(t) at any time t since it is
periodic up to the term in k = 0. With this we get

f(t) ≈ π Ω

χs,mp
+ 2π

Ω

χs,mp

⌊
tχs,mp

2π

⌋
=: f̄(t), (7.15)

where bxc is the integer part of x. Therefore the rotation angle f(t) evolves by steps.
A comparison of the actual f(t) and of the staircase approximation for a comb with
21 frequencies (p = 10) is shown in Figure 7.5. To put it simply, the action of the
comb consists in performing a Rabi rotation on the qubit by discrete steps instead
of a continuous evolution as is the case for a single driving frequency. At each period
2π/χs,mp, the qubit rotates almost instantaneously by an angle 2π Ω

χs,mp
. This results can

be understood as a consequence of Fourier transform properties. The Fourier transform
of a comb being a comb, the frequency comb pulse is in fact a time comb of period
2π/χs,mp.

Without decoherence, if the qubit starts in state |g〉 at time t0, the qubit state after
a time t reads

|ψ(t)〉 = cos
(
f(t)−f(t0)

2

)
|g〉+ i sin

(
f(t)−f(t0)

2

)
|e〉

≈ cos

(
Ωπ
χs,mp

⌊
(t− t0)χs,mp

2π

⌋)
|g〉+ i sin

(
Ωπ
χs,mp

⌊
(t− t0)χs,mp

2π

⌋)
|e〉 .

(7.16)

Let us focus on some particular values of Ω
χs,mp

.
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Figure 7.5: Exact rotation angle f(t) in blue and its staircase approximation f̄(t) in red. The
duration of each step is equal to 2π/χs,mp and its height to 2πΩ

χs,mp
. The quality of

the approximation improves as the number of peaks 2p+ 1 in the comb gets larger.
The fact that the trajectory starts with a half-jump is a particularity of having
assumed that all comb components have the same phase at t = 0. Random initial
phases of the signals ( e.g. due to initializing the qubit after its photon emission
into the measuring transmission line at a random time ) would most often position
t = 0 on a flat portion of the staircase.

• If Ω
χs,mp

is integer, the staircase approximation with f̄(t) keeps the qubit in |g〉
at all times, just performing a full rotation on the Bloch sphere at each Rabi
pulse. In presence of relaxation, a photon loss can only happen during the short
duration of the Rabi pulse, which decreases as 1/(p + 1). One can say that the
frequency comb has barely no effect on the qubit.

• If Ω
χs,mp

is half-integer, the staircase approximation with f = f̄ makes the qubit
state jump periodically between |g〉 and |e〉. Intuitively, one can expect that this
maximal extent of the evolution on the Bloch sphere entails a maximal qubit
emission. This will be confirmed in Sec. 7.3.3.2.

Now we describe the Hamiltonian dynamics of the multiplexing qubit, one need to add
the relaxation in order to understand multiplexing qubit emission and the entangling
process between the storage and the transmission line.

7.2.2.2 Integrated qubit dynamics in the presence of relaxation

In the following, we use the infinite comb approximation f(t) ≈ f̄(t). This allows us
to integrate the qubit dynamics exactly. The continuous photon decay at rate Γ1,mp is
interrupted by discrete Rabi rotations at discrete times. The qubit state is confined in
the y − z plane of the Bloch sphere. Under this approximation, after the Rabi pulse
number k + 1, the qubit state is given by(

y(k T + T )

z(k T + T )

)
=

(
cos θ − sin θ

sin θ cos θ

) (
e−Γ1,mpT/2 y(k T )

e−Γ1,mpT z(k T ) + (e−Γ1,mpT − 1)

)
(7.17)

where T = 2π/χs,mp is the period, θ = 2πΩ
χs,mp

is the angle spanned in the Bloch sphere
during a discrete jump. The origin of time t = 0 is chosen to start just after a Rabi
jump.
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Figure 7.6: Average qubit excited state population when the qubit is probed by an infinite
frequency comb. The green dashed line give the ratio Ω/χs,mp for which the Rabi
pulses are either π-pulses or 2π-pulses.

The permanent solution of this discrete-time map right after a step is

ȳ(k T ) =
eΓ1,mpT/4 sinh(Γ1,mpT/2) sin θ

cosh(3Γ1,mpT/4)− cos θ cosh(Γ1,mpT/4)
,

z̄(k T ) =
sinh(Γ1,mpT/2)(e−Γ1,mpT/4 − eΓ1,mpT/4 cos θ)

cosh(3Γ1,mpT/4)− cos θ cosh(Γ1,mpT/4)
.

(7.18)

The average qubit excited state population over one period in the permanent regime
reads

pe(Ω/χs,mp) :=
1

T

∫ T

0
〈e|ρ(t) |e〉 =

1− e−Γ1T

Γ1T

(1 + z̄(k T ))

2
. (7.19)

When using the parametrization c ≡ cos(θ), one easily checks that pe is a strictly
decreasing function of c ∈ [−1, 1]. As a function of θ, it has maxima for θ = (2k + 1)π

(i. e. Ω/χs,mp half integer) and minima for θ = 2kπ (i. e. Ω/χs,mp integer). The latter
are no surprise and give pe = 0 as the Rabi pulse is a 2π-pulse and takes the state
from |g〉 back to |g〉 (see Fig. 7.6); for finite number of peaks in the comb 2p + 1, the
Rabi pulse is not instantaneous and pe > 0 at these minima. The maximum is reached
when the Rabi pulse is a π-pulse and its value would be pe =

tanh(Γ1,mpT/2)
Γ1,mpT

with the
infinite-comb approximation (see Fig. 7.6).
According to this approximation, the average rate of photon emission, which is linked

to the measurement strength (each photon reveals information about the qubit fre-
quency and hence the photon number), is thus peΓ1,mp = tanh(Γ1,mpT/2)/T with the
optimal choice of Ω = χs,mp/2 + kχs,mp, where k is integer.

• At fixed T = 2π/χs,mp, the emission rate increases with Γ1,mp and converges
towards χs,mp. For Γ1,mp � χs,mp, the qubit has the time to fully relax during
one period. Therefore, in simple terms, at each period in the stepwise evolution,
the qubit is excited and then releases deterministically a single photon into the
output transmission line.
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• Likewise, for a fixed Γ1,mp/χs,mp (thus fixed probability pe to emit a photon during
a period), the average emission rate increases when T decreases. Therefore the
average emission rate increases as χs,mp.

• For a fixed Γ1,mp, the largest average emission rate is obtained for χs,mp as large
as possible, but it saturates at PΓ1,mp = Γ1,mp/2. This is consistent with the fact
that Γ1,mp is a hard limit on the photon emission rate.

Surprisingly, we have found that the entanglement dynamics here is the same as that
in the gedanken experiment. Here, the frequency comb is equivalent to a π pulse when
Ω/χs,mp = 1/2, and the entanglement between the storage and the transmission line is
simply due to the spontaneous emission of the multiplexing qubit. The only difference
is that the gedanken experiment contains only one π pulse, whereas the multiplexed
measurement is a time series of multiple π pulses. Thus, the multiplexed measurement
can be seen as the gedanken experiment repeated every time T with a heterodyne
detection setup.
Based on these entanglement dynamics, we can conclude that the multiplexed mea-

surement is continuous in time, that the ratio Ω/χs,mp enables us to continuously tune
the multiplexing qubit emission rate, and that the measurement rate is not constant.
Indeed, as the emission rate is periodic at the frequency χs,mp/2π, we might expect that
the measurement rate does the same. This raises a cross-talk issue that becomes evi-
dent at the numerical demodulation step of the heterodyne detection. As mentioned in
Sec. 7.1.3, there is cross-talk between the records {rk}k (and even between the records
{I(k) + iQ(k)}k) “due” to the numerical demodulation. During the excitation of the fre-
quency comb, the expected value of the qubit lowering operator 〈σ−,mp〉(t) oscillates at
the frequency χs,mp/2π. This means that the Fourier transform of 〈σ−,mp〉(t) contains
peaks that can be detuned by multiples of χs,mp/2π. We will confirm these peaks when
measuring the spectral density in Sec. 7.3.3.2. Thus, even if the storage mode state
is a Fock state, we will obtain a non-null averaged signal for all the records rk. This
cross-talk can be suppressed using an advanced demodulation waveform instead of the
cosine and sine functions of constant amplitude [187, 188].
This qubit dynamics raises another question; that is, what is the link between the

measurement rate and the measurement-induced dephasing. Indeed, we expect to ex-
tract information about the storage photon number every time the multiplexing qubit
emits a photon. This means that we want to maximize the probability that the mul-
tiplexing qubit is exited in order to maximize the measurement-induced dephasing.
However, our detection setup is based on heterodyne detection; its purpose, therefore,
is to measure the coherence of the qubit. We would prefer to maximize the coherence of
the multiplexing qubit, as this will allow us to maximize the measurement rate. Based
on these considerations, it seems that the measurement rate will not be proportional
to the measurement-induced dephasing rate. We will examine this point in more detail
in Sec. 7.4.
Here, the study of the measurement dynamics allows us to conclude that the multi-

plexed measurement is a continuous measurement in terms of both time and strength.
In fact, we have obtained an even more interesting result; that is, the multiplexed mea-
surement shows how a frequency comb has enabled a new dynamics (compared to the
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Bloch dynamics) and, thereby, a new entangling process, which may open the door to
new experiments. Another use of microwave combs can be seen in the work of Gertler et
al.; they use two frequency combs to engineer an autonomous stabilization of a cavity
photon parity [189].
The infinite frequency comb approximation will be used in the next chapter to derive

the measurement-induced dephasing rate of the multiplexed photon number measure-
ment. It is worth noting, however, that this approximation has already been useful, as
it has enabled us to qualitatively describe the multi-frequency resonance fluorescence
of the multiplexing qubit.

7.3 resonance fluorescence of a qubit with a frequency comb

In the first chapter of this thesis, we discussed the fluorescence of a qubit (see 2.4.3). At
that point, however, we only addressed the coherent elastic scattering of the qubit. In
this section, we will study the resonance fluorescence of the multiplexing qubit, defining
the concepts of coherent and incoherent emission and elastic and inelastic scattering.
All these concepts are connected to spectral density of the qubit emitted field, which
has already been studied for a qubit probed at a single frequency [67, 68, 190, 171, 191].
One of the most famous manifestations of the spectral density is the Mollow triplet [67].
Here, we will look at the qubit emitted field spectral density as it applies to a multi-
resonance fluorescence; this is when a multiplexing has multiple resonance frequencies,
each of which is probed by a frequency comb.
After a theoretical section to define and derive the relations between the relevant

quantities (emission rate, auto-correlation functions, spectral densities,... ), the spectral
density of the output field will be studied through four experiments which differs either
by the drive (single frequency or frequency comb), by the state of the storage (vacuum
or coherent state |α〉), by the physical parameters sweep along the experiment (drive
amplitude Ω or coherent state amplitude α) or by the normalization used (normalization
by the noise, by the reflected comb when the storage contains about 100 photons or
both). The Tab. 7.1 summarizes the parameters of each experiments and their goals.

7.3.1 Qubit scattering

Remark: For the sake of simplicity, in this section we will use the same notation as
that used in Sec. 2.4.3 for the qubit fluorescence.

7.3.1.1 Coherent and incoherent emissions

The fluorescence field amplitude 〈aout〉 studied in Sec. 2.4.3 is defined as the coherent
part of the qubit field [61]. We can define a coherent emission Icoh as

Icoh(t) = |〈aout(t)〉|2 = α2
in(t)−

√
Γcαin(t)〈σx〉(t) + Γc

〈σx〉2(t)

4
, (7.20)

where Γc is the coupling rate between the qubit and the transmission line used to record
the fluorescence field (see Sec. 2.4.3) and the last equality is obtained for a coherent
input drive αin with a phase φd = 0. Interestingly, the coherent emission contains the
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Sec.
drive
freq.

storage
state

sweep normalization goal

7.3.2.2 single vacuum Ω noise
Mollow triplet observation,

test of the
measurement setup

7.3.3.1 comb vacuum Ω
noise and

100 photons

Spectrum when qubit
frequency is on the
border of the comb

7.3.3.2 comb |α = 3〉 Ω 100 photons
Comb centered

Compare to infinite
comb approximation

7.3.3.3 comb |α〉 α 100 photons
Shift the qubit frequency

from the border to
the center of the comb

Table 7.1: Parameters and goal of experiments measuring the reflected drive spectral density.
From left to right the columns gives: the section in which the experiments is described
and discussed, if the drive used to probe the multiplexing qubit is monochromatic or
if it is a comb, the initial storage state, the parameters sweep during the experiment
(either the drive amplitude Ω, either the storage coherent state amplitude α), the
method used to normalized the spectrum (see each section for more details) and the
goal of each experiments

stimulated emission of the qubit
√

Γcαin〈σx〉 and the coherent part of the spontaneous

emission of the qubit Γc
〈σx〉2

4
. Indeed, even if the spontaneous emission is a stochastic

process, it still contains a coherent part as it is proportional to the qubit’s excited-state
population, which depends on the drive strength. This coherent emission (expressed in
photon/Hz) can be compared to the total emission Itot or photon rate 〈a†out(t)aout(t)〉,
which reads

Itot(t) = 〈a†out(t)aout(t)〉 = |αin|2(t)− Ω(t)

2
〈σx〉(t) + Γc

1 + 〈σz〉(t)
2

. (7.21)

The first term is the photon flow of the input drive, reflected off the qubit. The second
term corresponds to the absorption and stimulated emission of photons by the qubit
due to the input drive. As expected, this term’s weight increases with the amplitude
of the drive αin = Ω/(2

√
Γc). The last term is the spontaneous emission of the qubit,

which is given by the product of the qubit excitation probability and of the spontaneous
relaxation rate in the transmission line Γc. When looking at the time dependence of the
photon rate Itot, we can see that it oscillates when the qubit undergoes Rabi oscillations.
This makes sense, as the qubit acts as a “single photon reservoir” for the drive. The qubit
absorbs and emits photons, following the oscillation pattern of the Rabi oscillations.
When averaged over time, the photon rate is equal to |αin|2, which is the photon rate
of the input drive. For a long drive, the phase of the Rabi oscillations becomes random,
due to the stochastic spontaneous emission, and the qubit state converges towards its
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steady state. The photon rate stops oscillating and converges towards the steady-state
value

Itot(t→ +∞) = |αin|2 −
Ω

2
x∞ + Γc

1 + z∞
2

= |αin|2, (7.22)

where x∞ and z∞ are the qubit steady-state Bloch coordinates (see Eq. (2.54)) and we
assume that Γc = Γ1. In this steady state, the total photon rate of the reflected drive
is always equal to that of the input drive.
However, when looking at the coherent emission Icoh, we can see that it is in fact not

equal to the photon rate Itot; specifically, the steady-state value of the coherent emission
is smaller than |αin|2. The difference between the two is defined as the incoherent
emission of the qubit Iinc:

Iinc(t) = Itot(t)− Icoh(t) = Γc

(
1 + 〈σz〉(t)

2
− 〈σx〉

2(t)

4

)
. (7.23)

The existence of an incoherent emission by the qubit was expected, as the amplitude
of the reflected coefficient of the qubit is smaller than 1 at resonance, even if no trans-
mitted signal was considered. The energy missing in the coherent emission is emitted
incoherently by the qubit.
It is interesting to note that both the coherent and incoherent emissions can be

measured and related to work and heat transfers in quantum thermodynamics [169].
In this thesis, we will focus on the spectral density of the output field (see below for

the definition), which can be split into the elastic and inelastic scattering of the qubit.

7.3.1.2 Elastic and inelastic scattering

The coherent and incoherent emissions and the photon rate defined in the last section
(see Eqs. (7.20), (7.23), and (7.21)) do not take into account the frequency of the
photons. In the lab frame, the mode aout is defined as [62, 48]

aout(t) =
−i√
2π

∫ +∞

−∞
dωa→(ω)e−iωt, (7.24)

where a→(ω) is the propagating mode of the transmission line oscillating at the fre-
quency ω and moving away from the multiplexing qubit6. The time evolution of aout(t)

gives the decomposition over the modes a→(ω) and, thus, gives the frequency of the
aout(t) photons.
As the qubit is a non-linear system, the photon can be inelastically scattered. This

means that the photon emitted by the qubit has a frequency different from the one
belonging to the drive. The photon rate can be characterized by its spectral density
Sout(ω). For the rest of the section, we consider that the drive amplitude αin is real
and constant and that the system state is in a stationary regime. Thus, the spectral
density is defined as [67]

Sout(ω) =
1

2π

∫
gout(τ)e−iωτdτ, (7.25)

6 This equation is only valid if we assume that the system only responds to frequencies close to ωmp [62].
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where gout(τ) is the field correlation function defined as [8]

gout(τ) = 〈a†out(t+ τ)aout(t)〉, (7.26)

which does not depend on the time t for a stationary process. The relation between the
spectral density and the correlation function in Eq. (7.25) comes from theWiener–Khinchin
theorem [67, 8]7. In the lab frame, the correlation functions read

gout(τ) = |αin|2eiωdτ−
√

Γc(〈a†in(t+τ)σ−(t)〉+〈σ+(t+τ)ain(t)〉)+Γc〈σ+(t+τ)σ−(t)〉.
(7.27)

The correlation function gout(τ) contains three terms. The first one is the correlation
function of the input drive, and the second one is the cross-correlation between the
input drive and the qubit. As we are in the stationary regime (meaning that the qubit
has reached its steady state), the stochastic spontaneous emission of the qubit has
randomized the phase of the Rabi oscillation. Thus, the σ− and ain operators are
uncorrelated. The correlation function g(τ) becomes

gout(τ) = |αin|2eiωdτ − Ω

2
〈σx〉eiωdτ + Γc〈σ+(t+ τ)σ−(t)〉. (7.28)

The last term of the correlation function gout(τ) is more difficult to compute. The only
stochastic event that can make the operators σ− and σ+ uncorrelated is a spontaneous
emission, which happens at the rate Γ1. Thus, we expect to have correlations between
σ− and σ+ for times τ that are smaller than Γ1. The expression of the correlation
〈σ+(t + τ)σ−(t)〉 can be found in Ref. [67]; here, we will use its Fourier transform,
which is derived in the same reference, to obtain the spectral densities:

Sout(ω) =|αin|2δ(ω − ωd)−
Ω

2
x∞δ(ω − ωd)

+ Γc

[
x2
∞ + y2

∞
4

δ(ω − ωd) +
Γ1Ω2

2π

1 + z∞
2

(ω − ωd)2 + Ω2/2 + Γ2
1

|d(i(ω − ωd))|2

]
,
(7.29)

where d(s) = (s+ Γ1)((s+ Γ2)2 − (ωq − ωd)2) + Ω2(s+ Γ2).
The first term of the spectral density is the spectral density of the reflected input

drive, which only contributes to the angular frequency ωd. The second term−Ω

2
x∞δ(ω−

ωd) is the combination of two phenomena: the absorption by the qubit, which is negative,
and the stimulated emission of the qubit, which is positive. As expected, the qubit only
absorbs and emits photons by stimulation, at the drive angular frequency ωd. Due to
the spontaneous emission, the absorbed photon rate is higher than the rate of photons
emitted by stimulation; thus, this second term is, overall, negative. The last term,
which is the spectral density of the spontaneous qubit emission, is the sum of two
sub-terms. The first of these sub-terms, which contributes only to elastic scattering,
is the coherent scattering of the qubit. The second sub-term, which contributes to
both elastic and inelastic scattering, is the incoherent scattering of the qubit [67]. The
expression of the coherent scattering is easy to understand, as it is simply the coupling

7 The Wiener–Khinchin theorem is valid for any stationary and stochastic process. Thus, it allows us
to derive the spectral density of both the coherent and incoherent emissions.
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rate times the qubit coherence. The expression of the second sub-term is more difficult
to explain; we first notice the factor (1 + z∞)/2, which is the qubit excited population.
As expected, the incoherent emission must be proportional to both the coupling rate
and the qubit excited population. The rest of the term depends strongly on the value
of Ω compared to Γ1, Γ2 and to the detuning (ωq − ωd)2. One interesting regime is
defined as Ω� Γ1,Γ2, |ωq − ωd|; this leads to the so-called Mollow triplet.

7.3.1.3 Mollow triplet

The spectral density can be simplified in the regime Ω � Γ1,Γ2, |ωq − ωd|. Here, z∞
tends towards 1/2, x∞ and y∞ tend towards 0, and Ωx∞ tends towards Γ1. Moreover,
the incoherent scattering of the qubit takes the form derived in Ref. [67], such that the
spectral density reads

Sout(ω) =|αin|2δ(ω − ωd)−
Γ1

2
δ(ω − ωd)

+
Γc
2

 (Γ1 + Γ2)/4

(ω − ωd − Ω)2 +

(
Γ1 + Γ2

2

)2 +
Γ2

(ω − ωd)2 + Γ2
2

+
(Γ1 + Γ2)/4

(ω − ωd + Ω)2 +

(
Γ1 + Γ2

2

)2

 ,
(7.30)

where the last term, which is the spectral density of the incoherent qubit scattering, is
the sum of three Lorentzian functions, known as the Mollow triplet [67, 68, 190, 171,
191]. This means that the qubit emits incoherent photons at the angular frequencies
ωd + Ω and ωd −Ω. This frequency conversion does not break the energy conservation.
The mean energy flow of the Mollow triplet is equal to Γc~ωd, while the energy flow
coming from the drive and absorbed by the qubit is equal to Γ1~ωd. If the qubit is
strongly coupled to the transmission line, these two energy flows are equal. If another
decay channel exists for the qubit, a part of the absorbed energy is lost into this
channel. The energy is still conserved, but the energy flow emitted by the qubit in the
transmission line is smaller than the one that is absorbed.
This frequency conversion can easily be explained by using a dressed model to de-

scribe the qubit-drive system [61]. In this model, the drive is described as a lossy har-
monic mode a that is resonant with the qubit; this mode interacts with the qubit
through an exchange interaction ~g(aσ+ + a†σ−). We note |g,N〉 and |e,N〉, the
system states corresponding to the qubit in its ground and excited states, respec-
tively, with N photons in the drive. As the drive is resonant with the qubit, the
states |e,N〉 and |g,N + 1〉 have the same energy. The exchange interaction lifts the
degeneracy, and the new eigenstates are |+, N + 1〉 = (|e,N〉 + |g,N + 1〉)

√
2 and

|−, N + 1〉 = (|e,N〉−|g,N + 1〉)
√

2. The eigenvector’s energies are (N+1)~ωq+~Ω/2

and (N + 1)~ωq − ~Ω/2 (see Fig. 7.7) with Ω = ~g
√
〈N〉 being the Rabi angular fre-

quency and 〈N〉 being the mean photon number of the drive [61]. When the system
decays from the sub-space {|+, N + 1〉 , |−, N + 1〉} to the subspace {|+, N〉 , |−, N〉},
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Energy

Figure 7.7: Energy diagram of the qubit dressed state. When the coupling rate g is equal to
zero, the states |g,N〉 and |e,N〉 are degenerate. When g 6= 0, the degeneracy is
lifted, and the qubit’s states are dressed by the drive. New transition frequencies
then appear.

photons with three different frequencies can be emitted: ωq, ωq + Ω, and ωq −Ω. Here,
we retrieve the same frequencies as the Mollow triplet. On average, there is twice the
number of decay channels emitting a photon with the frequency ωq than there is emit-
ting a photon with the frequency ωq ± Ω (see the number of arrows in Fig. 7.7). We
also see this result when looking at the amplitude of each Lorentzian function of the
Mollow triplet. In Eq. (7.30), the Lorentzian function centered on ωd is twice taller
than Lorentzian functions that are centered on ωd ± Ω, while half of the incoherent
scattering is around the frequency ωd.
We will now describe the spectral density of the reflected field and explain how we

are able to measure it.

7.3.2 Resonance fluorescence measurement

7.3.2.1 Principle

In practice, we cannot measure the correlation function g(τ) directly; instead, the out-
put field aout is first amplified and mixed with an idler mode by a phase-sensitive
amplifier (see Sec. 4.3.3.2) and, after a frequency down-conversion, the intermediate
frequency (IF) sIF(t) signal is digitized (see Sec. 4.3). The sIF(t) signal is a stochastic
signal, a part of which oscillates at the angular frequency ωIF, with a complex stochastic
envelope s0(t) = I(t)+iQ(t). The goal of the numerical demodulation when performing
a heterodyne detection is to recover the best estimation of this complex envelope. It
has been shown in Ref. [192] that the correlation function of the complex record s0(t)

is related to gout(τ) through the following relationship:

〈s∗0(t+ τ)s0(t)〉 =
~ωmpZ0

2
(Ggout(τ) +Nnδ(τ))e−iωdτ , (7.31)
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where G is the gain of the phase-sensitive amplifier, Nn is the noise added by the
amplification process, and Z0 is the transmission line impedance. Similarly to Eq. (7.24),
Eq. (7.31) is only valid when we assume that the system responds around the frequency
ωmp.
In this thesis, we have decided to use the stochastic IF signal sIF(t) to measure the

correlation function. The complex envelope s0(t) is obtained by demodulating the RF
signal at the frequency −fIF

8 (or the angular frequency −ωIF) at the point at which
fIF tends towards infinity9. The demodulation has to be achieved in a time window
that is equal to k/fIF, where k is an integer. Let us choose the smallest window, with
a length of 1/fIF. Thus, the complex envelope s0(t) and the IF signal sIF(t) are related
through the equation

s0(t) = lim
fIF→+∞

2fIF

∫ t+1/(2fIF)

t−1/(2fIF)
dt′sIF(t′)e−iωIFt

′
. (7.32)

In App. e, we show that the Fourier transform g̃s0(ω) of the complex envelope correla-
tion function gs0(τ) = 〈s∗0(t+ τ)s0(t)〉 is related to the Fourier transform g̃sIF(ω) of the
IF signal correlation function gsIF(τ) = 〈sIF(t+ τ)sIF(t)〉 by

g̃s0(ω) =
1

π2
g̃sIF(ω − ωIF) (7.33)

As the IF signal is a stochastic and stationary process, we can use the Wiener–Khinchin
theorem to express the Fourier transform g̃sIF as its average power spectral density
〈|s̃IF(ω)|2〉, where s̃IF is the Fourier transform of sIF. Using this relation and Eqs. (7.33)
and (7.31), we can obtain the following relation between the spectral density and the
Fourier transform of the IF signal:

~ωmpZ0

2
(GSout(ω + ωd) +Nn) = 〈|s̃IF(ω − ωIF)|2〉. (7.34)

This can be rewritten using the fact that the power spectral density 〈|s̃IF(ω)|2〉 is an
even function and the condition ωd = ωmp = ωRF = ωLO −ωIF of a resonant drive, as

〈|s̃IF(ω)|2〉 =
~ωmpZ0

2
(GSout(ωLO − ω) +Nn). (7.35)

In practice, the IF signal is digitized; thus, we have to ensure that the discrete Fourier
transform of the sampled IF signal is equal to the Fourier transform of the continuous
IF signal. The Nyquist-Shannon theorem states that this is the case if the IF signal
does not contain a frequency that is above half of the analog-to-digital converter (ADC)
sampling frequency; i. e. meaning there is no spectral aliasing. This is ensured by the
low-pass filter used after the down-conversion (see Sec. 4.3), which has a frequency
cut-off, equal to 200 MHz, that is below half of the ADC sampling frequency (equal to
250 MHz). This also means that only a spectrum in the range of 200 MHz around the
multiplexing qubit frequency can be probed using our heterodyne detection setup.

8 We are using the lower side band for our heterodyne detection setup; thus, ωd = ωRF = ωLO − ωIF
and the IF signal oscillate at −ωIF. See Sec. 4.3

9 If fIF stays finite, as it would in a real demodulation process, we do not obtain s0(t) but an estimation
of s0(t), which is filtered by the demodulation process.
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Figure 7.8: Measured normalized spectral density as a function of frequency ω and drive
strength Ω. The Mollow triplet, which is characterized by resonances detuned by
±Ω, is visible. Upper insert: Cuts of the 2D map for values of Ω, indicated by col-
ored lines. The measured spectrum (dots) are compared to the theory (line) using
Eq. (7.29).

7.3.2.2 Measurement

In order to probe the Mollow triplet, we probe the multiplexing qubit and record, during
Tm = 8.192 µs, the IF signal that has been digitized following the down-conversion of the
multiplexing qubit fluorescence field. The discrete Fourier transform of the digitized IF
signal is computed using the fast Fourier transform algorithm. The absolute value of the
measured spectrum is raised to the power 2, before averaging over 450,000 repetitions
of the experiment. Due to the finite measurement time Tm, the average power spectral
density SIF(ω) measured is

SIF(ω, Tm) = 〈|s̃IF(Tm)(ω)|2〉 =
Tm
2π
〈|s̃IF ∗ sinc(ωTm/2)|2〉, (7.36)

in which the symbol ∗ denotes the convolution product. For larger measurement times,
we have the relationship [8]

lim
Tm→∞

SIF(ω, Tm) = 〈|s̃IF|2〉. (7.37)

The experiment is then repeated, this time without using a probe as a reference. This
second measurement enables us to measure the noise coming from the amplification
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process and to calibrate the dependence of the amplifier gain on the frequency. We
denote this reference spectrum as Sref(ω). As Tm is much larger than both the typical
auto-correlation time and 2π/χs,mp, we can perform the approximation SIF(ω, Tm) =

SIF(ω,+∞). We define the normalized spectral density as

SIF(ω)

Sref(ω)
− 1 =

G

Nn
Sout(ωLO − ω). (7.38)

Under the assumption that G/Nn is independent of ω (which is reasonable over the
range ω ∈ [ωIF−2χs,mp, ωIF +10χs,mp]), the normalized spectral density is proportional
to the spectral density of the fluorescence field. Fig. 7.8 shows the measured normalized
spectral density for various values of the drive strength Ω. The measurement can be
reproduced using Eq. (7.29), in which the Dirac functions are replaced by a unique
Lorentzian function, thereby taking into account the finite linewidth of the RF source,
the filters, and the finite measurement time. Two parameters are free and can be used
to adjust the theory: the global amplitude and the linewidth of the added Lorentzian
function. We obtain a good agreement between the measured spectrum and the theory
using an amplitude of 0.57 and a Lorentzian linewidth of 10 kHz. The color function
used in the 2D map in Fig. 7.8 saturates at 0.04, as the contribution of the reflected
drive to the spectral density is about 1,000 times bigger than the multiplexing qubit
incoherent emission. Using a scale adapted to the reflected drive contribution would
make the Mollow triplet invisible.
Next, we describe and measure the resonant fluorescence of the multiplexing qubit

for the storage mode in vacuum; i. e. for a single resonant frequency, we will look at the
multi-frequency resonance fluorescence that occurs when the storage mode is populated
with various Fock states.

7.3.3 Multi-frequency resonance fluorescence

When the multiplexing qubit is probed with the frequency comb, the spectral density
of the reflected comb becomes more complex than that given in Eq. (7.29). In the
infinite frequency comb regime (see Sec. 7.2.2), the qubit does not undergo a Rabi
oscillation. Every time 2π/χs,mp, the qubit instantaneously rotates in the Bloch sphere,
before relaxing until the next rotation. Thus, as the qubit dynamic is 2π/χs,mp-periodic,
we are expecting to measure new photon emissions at frequencies detuned from the
multiplexing qubit frequency by multiple of χs,mp.

7.3.3.1 Resonance fluorescence with a frequency comb

First, we measure the normalized spectral density when the multiplexing qubit is probed
by a frequency comb and the storage mode is empty. The IF signal is digitized over a
duration of 8.192 µs for various constant drive strengths Ω. As most of the contribution
made by the spectral density is due to the reflected comb, we use a trick to remove
this trivial part. We thus perform the measurement a second time, starting from a
storage mode with about 100 photons. Owing to the dispersive coupling, the normalized
spectral density measured during this second measurement contains only the reflected
drive spectrum. Noting that SIF(ω, ns) is the average power spectral density of the IF
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Figure 7.9: The difference ∆SIF between the normalized spectra of the multiplexing qubit that
is probed by a frequency comb when the storage mode has 0 photon and when it
has about 100 photons. The spectrum thereby obtained contains only the qubit
absorption and emission. The lower graph shows the spectral difference ∆SIF for
various drive strengths Ω. The upper graph shows four cuts of the lower graph,
indicated by dashed lines.

signal when the storage mode has an average of ns photons, we look at the spectral
difference ∆SIF between the two normalized spectral densities, as follows

∆SIF(ω) =
SIF(ω, ns = 0)

Sref(ω, ns = 0)
− SIF(ω, ns ∼ 100)

Sref(ω, ns ∼ 100)

=
G

Nn
(Sout(ωLO − ω, ns = 0)− Sout(ωLO − ω, ns ∼ 100)).

(7.39)

Based on Eqs. (7.29) and (7.38), the spectral difference ∆SIF contains only the qubit
absorption and emission which is what we were after. Fig. 7.9 shows this spectral
difference as a function of the drive strength Ω. Here, it is important to note that
the use of the lower sideband in the heterodyne detection (see Sec. 4.3) inverts the
frequency axes (see Eq. 7.39).
As expected, the qubit absorption and emission spectrum exhibits a Mollow triplet

that is centered on the IF frequency ωIF/2π = 75 MHz, with sidebands centered on
ωIF±Ω. However this is only true for Ω < χs,mp; for a large driving strength, the multi-
frequency nature of the excitation modifies the incoherent emission of the qubit. The
Mollow triplet sidebands seem to be localized at the angular frequencies ωIF±χs,mp/2,
and the upper sideband becomes larger than the lower sideband. This asymmetry in
the Mollow triplet’s amplitude is due to the comb’s other frequencies, mainly the one at
ωIF +χs,mp, which corresponds to the drive that is resonant with the multiplexing qubit
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when the storage has 1 photon. For large Ω, this drive is able to drive the multiplexing
qubit dynamics, even if the storage contains 0 photons. Thus, an incoherent emission
is generated around this drive and is superposed on the incoherent emission of the ωIF

drive. This explains why the incoherent emission is stronger between the two angular
frequencies ωIF and ωIF + χs,mp.
How the incoherent emission is affected by the frequency comb is not the only inter-

esting information contained in the spectral difference ∆SIF. For angular frequencies
{ωIF +kχs,mp}k∈Z, ∆SIF contains information about the absorption and coherent emis-
sions of the qubit. For small values of Ω (i. e. Ω < χs,mp) the multiplexing qubit absorbs
the photons that originate mainly from the drive at the intermediate angular frequency
ωIF (which corresponds to the radio frequency ωmp), as it is the only frequency for
which the spectral difference ∆SIF is negative. At the intermediate frequencies, which
correspond to 1 and 2 photons (ωIF +χs,mp and ωIF +2χs,mp ), the spectral difference is
negative for Ω/2π < 2 MHz and positive for 2 MHz < Ω/2π < 3 MHz, meaning that the
multiplexing qubit either absorbs or emits photons at those frequencies. The surprising
part lies in the qubit emission that occurs at the frequencies corresponding to negative
photon numbers; e. g. ωIF − χs,mp and ωIF − 2χs,mp. This photon emission does not
come from the frequency comb, as we have removed the comb’s contribution; rather, it
comes from the multiplexing qubit. As we saw at the beginning of this section, when
a qubit is probed by a frequency comb with the frequency step χs,mp/2π, the qubit
dynamics is 2π/χs,mp-periodic. Thus, the qubit coherence oscillates at χs,mp/2π, and
its coherent emission spectrum should contain emission frequencies detuned by mul-
tiples of χs,mp/2π from the resonant frequency ωmp/2π. This multi-frequency excited
coherent emission becomes even stronger for large values of Ω (Ω ∼ χs,mp). In this
regime, we observe that the multiplexing qubit absorbs photons from the intermediate
frequencies {ωIF + kχs,mp}k∈[[0,3]], and emits photons at the intermediate frequencies
{ωIF + kχs,mp}k∈[[−4,−1]] and {ωIF + kχs,mp}k∈[[4,8]].
Compared the resonance fluorescence with a single drive, the resonance fluorescence

with a frequency comb (multi-frequency excitation) already shows major differences in
the incoherent emission (namely, asymmetric emission and frequency localization) and
in the coherent absorption and emission (absorption over a larger spectrum than Γ1,mp,
and emissions at all the angular frequencies, detuned by multiples of χs,mp).
In this section, we have restricted ourselves to a multi-frequency probe (excitation);

however, as the multiplexing qubit is dispersively coupled to the storage mode, we
can also study multiple-frequency resonance fluorescence, which corresponds to the
resonance fluorescence of a qubit that has multiple possible resonant frequencies, simul-
taneously probing each of them. Here, these multiple resonances of the multiplexing
qubit are incoherent, as they occur due to the entanglement with the storage mode.
Thus, we can expect to see the superposition of multiple spectra, each corresponding
to the spectrum of a qubit driven by a comb.

7.3.3.2 Multiple-frequency resonance fluorescence with a coherent state

Here, we study the multiple resonance fluorescence by preparing the storage mode
in a coherent state |α = 3〉 and probing the multiplexing qubit with a frequency comb
{ωmp−kχs,mp}k∈[[0,8]] going from 0 to 8 photons. The IF signal is digitized over 4.096 µs,
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Figure 7.10: Measured normalized spectral density SIF(ω) as a function of the frequency ω

and the drive strength Ω when the storage mode is initialized in a coherent state
|α = 3〉. Upper graph shows cuts of the lower graph for four values of Ω, as indi-
cated by the dashed lines.

and the power spectral density SIF(ω, ns = |α|2) is computed. To decrease the mea-
surement time, the reference spectrum Sref is not measured. This experiment is only
performed a second time with a coherent-state storage that has about 100 photons10.
The IF power spectral density SIF(ω, ns = |α|2) is normalized using the spectral density
SIF(ω, ns ∼ 100). In addition, we defined the normalized spectral density SIF(ω, ns) as

SIF(ω, ns) =
SIF(ω, ns)

SIF(ω, ns ∼ 100)
− 1 =

GSout(ω − ωLO, ns) +Nn

GSout(ω − ωLO, ns ∼ 100) +Nn
− 1. (7.40)

This normalization process is less accurate than that used in Sec. 7.3.3.1 for the comb
frequencies; however, it takes half less time to be measured. This is a non-negligible
bonus, as each spectral density has to be averaged by over 4 million measurements.
The experiment and its normalization are carried out for various drive strengths Ω.

The normalized spectral density SIF, as a function of Ω, is shown in Fig. 7.10. The
normalized spectral density shows a non-linear dependency on Ω. The multiplexing
qubit incoherent emission reaches a maximum when Ω = χs,mp/2 and Ω = 3χs,mp/2

(the blue and green lines in the upper graph in Fig. 7.10 respectively), and a mini-
mum when Ω = χs,mp and Ω = 2χs,mp (the yellow and red lines in the upper graph
in Fig. 7.10, respectively). This behavior is easy to explain using the infinite comb

10 When using the double calibration procedure, as in Sec. 7.3.3.1, we first calibrated the noise and gain
of the amplifiers and then removed the drive contribution. However, in order to do so, the experiment
must be performed four times.
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approximation (see Sec. 7.2.2). With this approximation, the qubit undergoes discrete
and instantaneous rotations in the Bloch sphere at an angle of 2πΩ/χs,mp every time
2π/χs,mp, relaxing between these rotations. Thus, when Ω is equal to a half integer
of times χs,mp, the instantaneous rotations are π-pulses, and we can show that this
specific value of Ω maximizes the qubit emission rate (see Sec. 7.2.2.2). In comparison,
when Ω is equal to an integer times χs,mp, the instantaneous rotations are 2π-pulses,
and the qubit stays more or less in its ground state |g〉. There, the drive has no effect
on the qubit, and the qubit emission rate is equal to zero. Here, the normalized spectral
density does not reach zero when Ω is equal to an integer times χs,mp, as the frequency
comb is not large enough to be considered infinite. Specifically, the approximation is
not valid on the border of the comb, which is where we observe a strong emission of
the multiplexing qubit around the frequency corresponding to 9 photons.

7.3.3.3 From the border to the center of the frequency comb

The continuous evolution from the border to the center of the frequency comb can be
studied by measuring the normalized spectral density SIF(ω, |α|2) (defined in Eq. (7.40))
at a fixed driving strength Ω for various coherent states |alpha〉 in the storage mode
and with a measurement time of 8.192 µs. For α smaller than 1, the multiplexing qubit
only has one resonance at the angular frequency ωmp, which corresponds to 0 photons
in storage. When α increases, the number of resonances of the multiplexing qubit also
increases. For α = 2, the mean resonance frequency of the multiplexing qubit is in the
middle of the frequency comb; thus, we expect to measure a spectral density that is
in agreement with the infinite frequency comb approximation. When α becomes much
bigger than 2, the resonances of the multiplexing qubit are far detuned, compared to
the frequency comb, and the qubit emission should vanish. Figs. 7.11a and b show the
measured evolution of the normalized spectral density SIF(ω, |α|2) with α for Ω being
equal to χs,mp/2 and χs,mp.
As expected, the multiplexing qubit emission is localized around the angular fre-

quency ωIF for α smaller than 1. When α increases, the multiplexing qubit dynamics
becomes that described by the infinite comb approximation. For Ω = χs,mp the qubit
emission vanishes around α = 3, this value is a bit higher than the one expected (α = 2)
because of the relaxation of the storage mode during the measurement. If the storage
is initialized in a state with an average of α2 = 9 photons, we expect that it has only 1
photon on average at the end of the measurement. In comparison, the qubit emission
does not vanish when Ω = χs,mp/2, which is as expected from the infinite comb approx-
imation. When α is about 5, the qubit emission is not null, even for Ω = χs,mp. In this
case, the multiplexing qubit is mainly resonant with the border frequency of the comb
during the measurement, and the infinite comb approximation is not valid. For higher
values of α, the multiplexing qubit is resonant with none of the comb frequencies and,
therefore, there is no photon emission.
To conclude this section about the fluorescence of a qubit with multiple resonances,

we wish to note that the multi-resonance fluorescence of a qubit is a complex phe-
nomenon that is only qualitatively described here. The infinite frequency comb ap-
proximation explains the dependence of the multiplexing qubit emission on the drive
strength Ω. In addition, the Mollow triplet seems to disappear and is replaced by a
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Figure 7.11: Measured normalized spectral density SIF(ω, |α|2) as a function of the amplitude
α of the storage mode coherent state |α〉. The drive strength Ω is equal to a.
χs,mp/2 and b. χs,mp. In each figure, the upper graph shows cuts of the lower
graph for values of α, indicated by the colored dashed lines.
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continuum of emissions between the comb frequencies. The multi-frequency excitation
of the qubit entails a 2π/χs,mp-periodic dynamic for the multiplexing qubit. This leads
to a strong qubit emission at all frequencies, detuned by a multiple of χs,mp.

7.4 comparing the information in the coherent and incoherent
emissions

7.4.1 Raising the problem

When a qubit is dispersively read out using a readout resonator, the probe used by the
system, i. e. the readout resonator, is a linear system. Thus, the emission of the readout
resonator is in theory always at the same frequency as its excitation (or drive). Moreover,
assuming the output field is in a coherent state, the field is completely described by
its amplitude. Thus, after a heterodyne detection, the second moment of the {I,Q}
quadrature distribution does not provide more information about the qubit state than
the first moment. This means that we can recover all the information extracted by the
measurement (up to the quantum efficiency) by measuring only the I and Q quadrature
with a heterodyne detection at the excitation frequency.

When measuring the fluorescence of a qubit, the frequency of the fluorescence field
can differ from the frequency of the excitation, due to the inelastic scattering. The
output field is no longer a coherent state and, after a heterodyne detection, the first
and second moments of the {I,Q} quadrature distribution may contain different pieces
of information. Moreover, if we perform only a heterodyne measurement at the drive
frequency, we may not recover all the information up to the quantum efficiency. So,
how can we quantify the amount of information we need to collect, compared to the
total amount of information extracted by the multiplexing qubit (up to the quantum
efficiency)?
To answer this question, we have to study the {I(ω), Q(ω)} distribution at every

demodulation frequency ω accessible through the heterodyne detection setup. These
distributions contain all the information we can access. From a photon-counting perspec-
tive, we can define a photon-counting signal as the scalar product of the {I(ω), Q(ω)}
distributions of the reflected drive and the one we obtain when the storage mode is in
a Fock state |n〉 and this for every frequency ω and Fock state |n〉.
If we assume that only the first and second moments of the distributions may dif-

fer (this implies that the amplification scheme does not affect the moments of order
greater or equal than 3), comparing two distributions is equivalent to comparing the
first moment (i. e. the mean value) and the second moment (i. e. the mean value of
I(ω)2 +Q(ω)2) of the distributions. The average of these moments are easy to compute,
as the first moment is equal to the coherent spectral density and the second moment is
equal to the spectral density (or total spectral density), which contains both coherent
and incoherent spectral densities and is defined by Eq. (7.25). The coherent spectral
density reads

Scoh(ω) =
1

2π

∫
〈a†out(t+ τ)〉〈aout(t)〉e−iωτ = |FT(〈aout(t)〉)(ω)|2, (7.41)

where FT is the Fourier transform.
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In this thesis, we do not access the {I(ω), Q(ω)} distributions, nor the spectral den-
sities Scoh and Sout, when the storage is in a Fock state. However, we can detune the
multiplexing qubit enough so that we have access to these spectral densities of the
input drive by displacing the storage mode with 100 photons. We call these densities
Scoh(ω, ns ∼ 100) and Sout(ω, ns ∼ 100), respectively. When subtracting these reference
densities from measured spectral densities of the resonant reflected drive, we obtain the
coherent and total spectral densities of the absorption and emission of the qubit. Thus,
the ratio ηc, which is defined as coherent spectral density divided by the total spectral
density of the qubit absorption and emission

ηc =

∫ +∞
0 |Scoh(ω)− Scoh(ω, ns ∼ 100)|dω∫ +∞
0 |Sout(ω)− Sout(ω, ns ∼ 100)|dω

, (7.42)

is the difference at every frequency ω of the first moment of the {I(ω), Q(ω)} distribu-
tion for resonant and non-resonant drives, divided by the difference at every frequency
ω of the second moment of the same distributions. Interestingly, the numerator of ηc is
the number of photons emitted or absorbed by the multiplexing qubit and that can be
resolved by looking only at the first moment of the {I(ω), Q(ω)} distribution (i. e., by
looking at the coherent part of the emission). In the same way, the denominator is the
number of emitted and absorbed photons resolved by looking at the second moment of
the {I(ω), Q(ω)} distribution (i. e.by looking at the coherent and incoherent part of the
emission). The ratio ηc can thus be called a collecting ratio; that is, it is the percentage
of photons we collect when measuring the coherent emission alone compared to the full
emission.
If the quantum efficiency η gives the fraction of information we recover after the total

amplification process, the ratio ηc says nothing about the fraction of the information
missing in the first moment compare to the second. In order to define a collecting
efficiency, the fraction of information we collect by only analyzing the first moment of
the {I(ω), Q(ω)} distribution, we will need a more complex discussion, one that is out
of the range of this thesis. However, we can easily convince ourselves that the collecting
efficiency is strongly correlated to the collecting ratio we defined and that the bigger
ηc is, the bigger the collecting efficiency should be. For example, if ηc is equal to 0, the
coherent part of the drive should not resolve any of the photons absorbed or emitted by
the qubit, and the coherent spectral density is the same whether the qubit is resonant
or non-resonant. In such a case, we can convince ourselves that there is no information
to recover from the coherent emission, as it does not depend on the multiplexing qubit
frequency11.
Here, we propose to study the collecting ratio in order to determine whether we

might miss pieces of information stored in the second moment of the {I(ω), Q(ω)}
distribution (i. e. stored in the incoherent spectral density) and to examine whether we
might improve our measurement speed by measuring the full photon emission spectrum.

11 In practice, this situation will never happen.
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Figure 7.12: Measured collecting ratio ηc for various frequency spans Ccoh equal to {ωIF +

kχs,mp}0≤k≤8, [ωIF , ωIF + 8χs,mp], and [0, ωADC/2] as a function of the drive
strength Ω, expressed in units of the cross-Kerr rate χs,mp.

7.4.2 Measuring the collecting ratio

In order to measure the collecting ratio as a function of the drive strength Ω, we
probe the multiplexing qubit with a frequency comb and digitize the IF signal of the
heterodyne detection setup over 4.096 µs. The (total) spectral density is related to the
IF signal by Eq. (7.35). In the same way, the coherent spectral density is related to the
IF signal through

|〈s̃IF(ω)〉|2 =
~ωmpZ0

2
GScoh(ωLO − ω), (7.43)

with Z0 being the impedance of the transmission line and G being the TWPA gain.
Thus, the collecting ratio reads

ηc(Ccoh) =

∫
Ccoh

∣∣|〈s̃IF(ω)〉|2 − |〈s̃IF(ω)〉ns∼100|2
∣∣ dω∫ ωADC/2

0 |〈|s̃IF(ω)|2〉 − 〈|s̃IF(ω)|2〉ns∼100| dω
, (7.44)

where the subscript ns ∼ 100 means that the IF signal was recorded with a storage
mode containing about 100 photons. The integral of the numerator is performed over
the ensemble Ccoh, which is the ensemble of the frequencies probed with the heterodyne
detection setup when measuring only the coherent emission. In the experiments of
this thesis, Ccoh is always equal to {ωIF + kχs,mp}0≤k≤8. The upper boundary of the
denominator integral is replaced by half of the ADC frequency ωADC, due to frequency
aliasing. In our case, as the IF signal is filtered with a low-pass filter that has a frequency
cut-off below ωADC, there is no frequency aliasing; we are only probing the photons
absorbed and emitted by the multiplexing qubit in a spectral range of about 200 MHz

around its resonance frequency. As Γ1,mp and χs,mp are smaller than 100 MHz, we can
assume that there is no photon absorbed or emitted by the qubit outside of the spectral
range probed and that replacing the boundary +∞ with ωADC/2 changes nothing.
Fig. 7.12 shows the collecting ratio ηc for various drive strengths Ω and for Ccoh equal

to {ωIF + kχs,mp}0≤k≤8, [ωIF , ωIF + 8χs,mp] and [0, ωADC/2]. The first observation is
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multi-frequency resonance fluorescence

that the collecting ratio is always strictly smaller than 1. Thus, we believe that the
coherent emission does not contain all the information extracted by the multiplexing
qubit.
We observe that the collecting ratio is as low as 10–15% when we probe only the

coherent emission at the comb frequencies (the blue line in Fig. 7.12). In this case, as the
collecting ratio is smaller than the quantum efficiency (about 19%), measuring the total
emission instead of the coherent emission may lead to an increase in the measurement
rate, even if the total emission is more sensitive to the quantum efficiency12. When
probing the coherent emission at all the frequencies between ωIF and ωIF + 8χs,mp

(the orange line in Fig. 7.12) the collecting ratio does not increase significantly. This
means that the coherent emission mostly occurs at the comb frequency peaks in this
frequency range. However, when probing the coherent emission at all frequencies (the
green line in Fig. 7.12), we observe an increase in the collecting ratio of up to 20–25%.
Thus, we can conclude that half of the coherent emission occurs at frequencies outside
of the frequency comb. However, even when probing all the frequencies, the coherent
part contains only a quarter of the photons absorbed and emitted by the multiplexing
qubit.
An interesting feature is the dependence of ηc on Ω/χs,mp. When probing the coherent

emission at all frequencies, the collecting ratio shows an oscillation with Ω/χs,mp. The
collecting ratio is minimal when Ω/χs,mp is a half integer. According to the infinite comb
approximation, the multiplexing qubit occurs during quasi-instantaneous π-pulses and,
on average, its coherence is close to zero. These specific values of Ω/χs,mp maximize
the qubit excited population and thus maximize the qubit’s incoherent emission. In
comparison, when Ω/χs,mp is an integer, the qubit emission occurs during the 2π-pulse,
and the qubit’s incoherent emission is minimal.
From a coherent-emission perspective, there is a trade-off that we need to find. Maxi-

mizing the qubit emission (and thus the measurement strength, see Sec. 8.2.1) minimizes
the collecting ratio and, in the same way, maximizing the collecting ratio minimizes the
qubit emission (and thus the measurement strength).

conclusion

Here are this chapter’s main conclusions.

• The reflection coefficient of a qubit can be measured simultaneously and at mul-
tiple frequencies using a multiplexing protocol.

• The multiplexed measurement of the reflection coefficient enables us to recover
information about all storage photon numbers simultaneously.

• The multiplexed photon number measurement shows a measurement time scaling
as a logarithm of the maximum photon number, as the state-of-the-art protocol:
the binary decimation.

12 This is because, to compute the total emission, we take the square of our signal before averaging it;
thus, it is more sensible to the noise.
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7.4 comparing the information in the coherent and incoherent
emissions

• The multiplexed photon number measurement is continuous in both strength and
time. Conversely, standard protocols are continuous in strength and discrete in
time. Thus, the multiplexed photon number measurement is the first photocount-
ing protocol that is continuous in time.

• The qubit dynamics under a frequency comb differs significantly from Rabi os-
cillations. The qubit periodically undergoes quasi-instantaneous rotations in the
Bloch sphere.

• The resonance fluorescence of the multiplexing qubit when the latter is probed
by a frequency comb differs significantly from that of the Mollow triplet. The in-
finite comb approximation enables a qualitative description of the qubit emission
spectrum.

• The collecting ratio (i. e. the percentage of photons emitted or absorbed by the
multiplexing qubit we detect in the coherent emission) is smaller than 1. We be-
lieve that this means that the coherent emission does not contain all the informa-
tion extracted by the multiplexing qubit. The second moment of the quadrature
distribution (i. e. the incoherent emission of the qubit) may contain information
absent from the first moment; namely, the coherent emission.
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8
MULTIPLEXED PHOTON NUMBER MEASUREMENT
BACK-ACT ION

A quantum measurement, continuous in time and strength, can be characterized by its
back-action. The back-action can be quantified either by looking at the dephasing rate
of the measurement induced on the system [40, 193] or by the correlation it generates
between a weak measurement and the system tomography [74]. The back-action of the
dispersive readout and fluorescence measurement of a qubit is a well-known subject
[162, 194]. However, as the multiplexed photon number measurement is the first pho-
ton number measurement to be continuous in time, its back-action was never studied.
In this chapter, we will look at the back-action of the multiplexed photon number mea-
surement and see how it can differ from the back-action of the fluorescence photon
number measurement (see Sec. 6.3.4). We will introduce the protocol we used to mea-
sure the dephasing rate induced by the measurement and study its dependence with the
drive strength. The infinite comb approximation (see Sec. 7.2.2.2) was used to derive
an analytic expression of the induced dephasing rate between two Fock states of the
storage mode that reproduces the same dependence with the drive strength. Interest-
ingly, from this analytic expression one can prove that the multiplexed approach can
reach a measurement that is time independent of the number of probed Fock states.
Moreover, the photocounting abilities of the multiplexed photon number measure-

ment can be highlighted by the measurement of the correlations between a weak mul-
tiplexed photon number measurement and a strong measurement of the Fock state
population. Using a qualitative analysis of the measurement operator, one can predict
the sign of the correlations and observe a good agreement with the measured correla-
tions.
Remarks: Most of the results shown in this chapter are published in Ref. [155]

8.1 probe the storage mode decoherence

The measurement strength of the multiplexing measurement can be characterized using
the yes-no qubit to observe the dynamics of the cavity coherences under the action of
the continuous multiplexed measurement. The advantage of this method is that it
does not require a single-shot measurement of the photon number, which we could
not reach owing to the limited efficiency of our amplifier, and the too short lifetime
of the storage mode. In the reciprocal case of measuring a qubit using a cavity as a
probe, the measurement rate is bounded by the measurement-induced dephasing rate
of the qubit, which grows as the square of the cavity driving strength [8, 94]. Thus,
characterizing the measurement rate of our multiplexed photon-counting can be done
by observing how the storage mode dephases for a given driving strength Ω. Indeed,
owing to the inherent quantum back-action of the photon number measurement, the
measurement rate is bounded by how fast the conjugated operator, here the phase,
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multiplexed photon number measurement back-action

a. b.
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Figure 8.1: Ramsey oscillations of the storage mode a. Circuit diagram for Ramsey oscillations
of a harmonic oscillator. In this experiment, the amplitude of the prepared coherent
state β is set to -1.55. The detuning between displacement pulse and bare storage
frequencies is δf0

s = 3.96 MHz. b. Measured (dots) and expected (lines) signals for
〈X̂〉 (blue) and 〈P̂ 〉 (orange). The expected signals are matched to the experiment
using Eq. (8.1) with a frequency detuning δfs = 3.96 MHz and a decay rate Γ2,s =

2 µs−1.

diffuses. As the probe is based on a qubit driven by a frequency comb, one expects a
different dependence of the measurement rate on Ω than for standard dispersive qubit
readout and fluorescence measurement (see Sec. 6.3.4).
In order to measure this dephasing rate, we perform the analogous experiment as the

qubit Ramsey oscillations for an harmonic mode.

8.1.1 “Ramsey oscillations“ of an harmonic oscillator

For a qubit, Ramsey oscillations correspond to the evolution of the real and imaginary
parts of the coherence 〈g|ρ|e〉 between the |g〉 and |e〉 states. A typical sequence starts
by a π/2 pulse detuned from resonance by δf to create a coherent superposition of |g〉
and |e〉 states. Then the qubit evolves freely before its state tomography. Both σx and
σy oscillate at δf while decaying at the decoherence rate Γ2.
We decided to realize an analogous sequence based on the same idea for a harmonic

oscillator (a similar sequence was recently performed in Ref. [195]). The first π/2 pulse is
replaced by a detuned displacement pulse D(β) on the storage mode. This displacement
creates coherences between the Fock states of the storage mode in the same way as the
π/2 pulse create coherences between the qubit number states |g〉 and |e〉. The field then
evolves over a time t (during which the multiplexing measurement could be applied)
before a Wigner tomography is realized (see Fig. 8.1a and App. c for the definition of a
Wigner tomography). The expectation value of X̂ = (âs + â†s)/2 and P̂ = (âs − â†s)/2i
quadratures are computed from the Wigner tomography (see App. c). The time trace
of 〈X̂〉 and 〈P̂ 〉 is what we call the Ramsey oscillations for the storage mode. As in the
qubit case, the frequency of the oscillations is set by the detuning δfs between the drive
and the resonant frequency of the mode, which also allows us to extract the frequency
of the storage mode. At this point, a distinction has to be made between the detuning
δf0

s = fdrive − fs between the drive and the bare storage mode frequency (the resonant
frequency when the multiplexed qubit and the storage are undriven) and the detuning
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8.1 probe the storage mode decoherence

δfs between the drive and the resonant frequency of the storage mode, which depends
on the multiplexed measurement strength in perfect analogy with the AC-Stark effect
for a qubit readout. Note that the Wigner tomography sequence uses the same detuned
frequency δfs for its displacement pulse D†(α) in order to keep the same phase reference.
The measurement of Ramsey oscillations of a harmonic oscillator takes longer than the
ones of a qubit because we fully determine the quantum state of an oscillator at each
time step instead of a simple Bloch vector. From Eq. (5.2), one finds that 〈X̂〉 and 〈P̂ 〉
evolve as

〈X̂〉 = |β|cos(2πδfst+ φ)e−tΓd,s

〈P̂ 〉 = |β|sin(2πδfst+ φ)e−tΓd,s
(8.1)

where β = |β|eiφ = 〈âs〉(t = 0). We define the storage mode dephasing rate as Γd,s

which contains the intrinsic decoherence rate Γϕ,s. The Fig. 8.1b shows an example of
measured Ramsey oscillations

8.1.2 Storage mode frequency shift and induced dephasing rate by driving the multi-
plexing qubit with a comb

In analogy with the ac-Stark shift of the frequency of a qubit coupled to a driven
resonator, we also call ac-Stark shift the frequency shift of the storage mode induced
by driving the multiplexing qubit. In order to measure this frequency shift and the
dephasing rate that is induced by the multiplexing qubit on the storage mode, we
realize the reciprocal protocol for a qubit measured by a cavity. We use the Ramsey
interferometry sequence, defined in the former section, on the storage mode during
which the multiplexing qubit is driven with a frequency comb (see Fig. 8.2a). The
drive pulse is given by the sum of nine sine functions at the frequencies [fmp, fmp −
χs,mp/2π, ..., fmp − 8χs,mp/2π] multiplied by a Gaussian envelope of duration t and
width t/4.

For small measurement strength Ω/χs,mp < 0.9, we generated the Ramsey sequence
with a displacement pulse of amplitude β = −1.55 detuned from the base storage mode
by δf0

s = 3.96 MHz. We fit the time evolution of 〈X̂〉 and 〈P̂ 〉 (see Fig. 8.2b) using the
damped sine function

〈X̂〉 = Acos(2πδfst+ φ)e−tΓd,s

〈P̂ 〉 = Asin(2πδfst+ φ)e−tΓd,s
. (8.2)

The parameters A, δfs, φ, and Γd,s are determined altogether by fitting the model to
the measured oscillations. δfs is the sum of the detuning from the bare storage mode
frequency δf0

s and of the ac-Stark shift of the storage mode.
For larger measurement strength Ω/χs,mp > 0.9, we generated the Ramsey sequence

with a displacement pulse detuning of δf0
s = 5.96 MHz, an amplitude of β = −1.27,

and we model the time evolution of 〈X̂〉 and 〈P̂ 〉 by the sum of two sine functions with
an exponential decay

〈X̂〉 = A(cos(2πδfst+ φ) + ζcos(2πνt+ ψX))e−tΓd,s

〈P̂ 〉 = A(sin(2πδfst+ φ) + ζsin(2πνt+ ψP))e−tΓd,s
. (8.3)
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a.

b.

Figure 8.2: a. Circuit diagram of the protocol used to determine the dephasing rate and fre-
quency shift of the storage mode induced by the multiplexed photocounting mea-
surement. The blocks linking the multiplexing qubit and the storage mode represent
the multiplexed measurement during a time t made by the qubit on the storage
mode. This measurement is realized by driving the qubit with a frequency comb
[fmp, fmp − χs,mp/2π, ..., fmp − 8χs,mp/2π] within a Gaussian envelope. b. Ramsey
oscillations of the storage mode (dots) and theory (lines) for “small" measurement
amplitude Ω/χs,mp < 1. One can observe that the dephasing rate of 〈X̂〉 and 〈P̂ 〉
is non-monotonic with the drive strength Ω.
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8.1 probe the storage mode decoherence

Figure 8.3: Ramsey oscillations of the storage mode for “large" measurement amplitude
Ω/χs,mp = 1. One can observe that the dynamics 〈X̂〉 and 〈P̂ 〉 are not governed
by a simple decaying sine function. The theory does not reproduce quantitatively
the measurement when using the naive version of the model Eq. (8.2). we use the
simple model Eq. (8.3) to capture this modulation.

This empirical model is motivated by three reasons. The first term is identical to the
simple model in Eq. (8.2). Second, the measured Ramsey oscillations seem to show a
small modulation in amplitude, which we try to capture with a second sine function.
Third we try to keep the model as simple as possible.

Fig. 8.3 shows an example of Ramsey oscillations of the storage mode with a large
amplitude of measurement. The two signals are fitted simultaneously to extract the
parameters A, δfs, ν, φ, ψX, ψP, and Γd,s for various drive amplitude Ω. The frequency
ν varies from 2.15 MHz to 2.5 MHz when Ω varies from 5 MHz to 10 MHz. The
parameter ζ is roughly constant, it varies between 0.2 to 0.27 when Ω varies from 5
MHz to 10 MHz. The Fig. 8.3 shows measurement induced detuning as a function of
measurement drive amplitude.
The ac-Stark shift and the storage dephasing rate measured for drive strength Ω go-

ing from 0 to 2χs,mp are shown on Fig. 8.4. We observe a strong non-linear dependence
of both quantities with Ω and a small dependence with the initial coherent state ampli-
tude β. Noticeably, the dephasing rate reaches a maximum when Ω = χs,mp/2 for which
information is extracted at a rate approximately 5 times larger than the natural dephas-
ing rate. It is possible to understand this behavior by considering the infinite frequency
comb approximation (see Sec. 7.2.2.2). The drive performs sudden rotations by an angle
2πΩ/χs,mp of the Bloch vector of the qubit every time step 2π/χs,mp. When Ω/χs,mp

is integer, the comb does not affect the qubit and thus Γd,s vanishes. Conversely, the
maximum measurement rate corresponds to half-integer Ω/χs,mp for which the effect of
the comb on the qubit dynamics is maximum and leads to the strongest qubit emission.
With the finite comb used in the experiment, this maximum persists and is reproduced
by a model based on a master equation without any free parameter (line in Fig. 8.4,
see App. d for more information about the simulation). The small dependence of the
dephasing rate and the ac-Stark shift on the coherent state amplitude β comes from
the finite size of the comb. As the comb is not infinite, the dephasing rate between Fock
states |n1〉 and |n2〉 will not only depend on the difference |n1−n2| (which is the case for
an infinite comb, see next section) but also on the value of n1 and n2. Thus, the storage
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a. b.

Figure 8.4: c. and d. ac-Stark shift and dephasing rate measured (dots) and simulated (line) as
a function of multiplexing qubit drive amplitude Ω in units of χs,mp. The evolution
of the detuning and dephasing rate are strongly non linear with drive amplitude.

dephasing rate will depend on its photon number distribution. Simulation shows that
this dependence disappears when using a larger comb {fmp − kχs,mp/2π}k∈[[−4,8]] (see
App. d).

While the measurement-induced dephasing rate can be simulated, we currently do not
know how to derive an analytical expression of the dephasing rate for a finite frequency
comb. However the infinite comb approximation simplifies the problem enough to enable
an analytical description of the multiplexing qubit-storage mode bipartite system and
derive the storage dephasing rate. In the next section, we will describe this derivation
and show how it explains the maximum and minimum of the storage dephasing rate.
Interestingly, we will be able to study the dephasing rate as a function of the parameter
Γ1, χs,mp and the maximum photon number allowed in the storage mode Nmax.

8.2 measurement-induced dephasing in the infinite comb approx-
imation

The derivation described in this section follows the study of the multiplexing qubit
dynamics under a frequency comb (see Sec. 7.2.2). We only consider the relaxation of
the multiplexing qubit and the dispersive coupling between the storage mode and the
multiplexing qubit. The Lindblad master equation of the bipartite system, described
by the density matrix ρs,mp is

ρ̇s,mp = −i

−χs,mpa
†
sas

σz,mp

2
+

Ω

2

p∑
k=−p

cos(kχs,mpt)σx,mp, ρs,mp


+ Γ1,mpD(σ−,mp)ρs,mp.

(8.4)

8.2.1 Dynamics of the multiplexing qubit-storage mode bipartite system

For the sake of simplicity, we consider a lossless storage mode in this section. In this case,
each 2 by 2 sub-matrix ρn1,n2 = 〈n1|ρs,mp|n2〉, with |ni〉 the Fock state ni, evolves inde-
pendently of the others ρm1,m2 similarly to a collection of qubit-like system. The sub-
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8.2 measurement-induced dephasing in the infinite comb
approximation

matrix ρn1,n2 is non-normalized because it is an off-diagonal sub-matrix of the storage-
qubit system ρs,mp. For this sub-matrix, the Lindblad master equation of Eq. (8.4)
becomes

ρ̇n1,n2 =− iχs,mp
n1+n2

2 [
σz
2
, ρn1,n2 ]− iχs,mp

n1−n2
2 {σz

2
, ρn1,n2}

− i[Ω
2

p∑
k=−p

cos(kχs,mpt)σx, ρn1,n2 ] + Γ1,mpD(σ−)ρn1,n2 .
(8.5)

8.2.1.1 Computing the decoherence rate of the n1, n2 component

The infinite comb approximation again helps. We view the frequency comb drive as
applying a Rabi pulse of angle θ = 2π Ω

χs,mp
at each period T = 1/χs,mp, without any

effect for the rest of the time. Over one period, we thus have

ρn1,n2(kT + T ) = K0 ◦ K1ρn1,n2(kT ), (8.6)

where the Kraus map K0 applies the Rabi pulse, while K1 contains dynamics associated
to the dispersive coupling and to the multiplexing qubit decay. During each period
between Rabi jumps, denoting1 ρn1,n2 =

xσx+yσy+zσz+ηI
2 , the dynamics K1 corresponds

to the integration of the set of equations

d
dtx = −Γ1,mp

2 x− χs,mp(n1+n2)
2 y

d
dty = −Γ1,mp

2 y +
χs,mp(n1+n2)

2 x

d
dtz = −Γ1,mp(z + η)− iχs,mp(n1−n2)

2 η

d
dtη = −iχs,mp(n1−n2)

2 z

. (8.7)

Our goal is to derive the dynamics of the variable η, it will give us access to the
dephasing rate between the Fock states |n1〉 and |n2〉. After one period T , since the
peaks in the comb are exactly separated by the dispersive shift χs,mp, the effect of the
precession at a frequency χs,mp(n1 +n2)/2 is canceled out2. Note that the infinite comb
approximation differs from the usual rotating wave approximation that would lead to
a similar disabling of the precession for χs,mp � Γ1. We then obtain, in the above
coordinates, the matrix expression

K1 = (−1)n1+n2


e−Γ1,mpT/2 0 0 0

0 e−Γ1,mpT/2 0 0

0 0 (e−Γ1,mpT −G) (e−Γ1,mpT − 1−G)

0 0 G (G+ 1)


(8.8)

with G =
−iχs,mp

n1 − n2

2
(1− e−Γ1,mpT )

Γ1,mp + iχs,mp(n1 − n2)
. Besides, the Rabi rotation corresponds to

K0 =


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 , (8.9)

1 Here η is the coherence between Fock states |n1〉 and |n2〉
2 modulo a possible phase flip every period when n1 + n2 is odd
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where θ = 2πΩ/χs,mp. This expression further simplifies for the two drive strengths
Ω = (k+ 1/2)χs,mp or Ω = kχs,mp, which respectively lead to θ = 0 (no qubit emission)
and θ = π (maximal qubit emission), since the (z, η) variables of interest decouple from
(x, y).

• For θ = 0, we tend to a stationary regime (z, η)kT+T = (z, η)kT . This steady value
thus confirms the intuition developed in the single qubit case (see Sec. 7.2.2.2):
there is no change in the coherences η between Fock states in the resonator for
θ = 0, which means that no measurement is performed (this corresponds to the
minima in Γd,s in Fig. 8.4b).

• For θ = π, we can compute an analytical expression for the factor R by which
the trace η decreases every period T in the permanent regime3. Thus the average
dephasing rate is given by − log(|R|)/T with

R =
1

2(Γ1,mp + iχs,mp(n1 − n2))

[
Γ1,mp(1− e−Γ1,mpT )

+ 2
√
B
(√√

1 +A2 +A+ i
√√

1 +A2 −A
)]

where A =
Γ2

1,mp(1 + e−Γ1,mpT )2 − 4χ2
s,mp(n1 − n2)2e−Γ1,mpT

8B

B = χs,mp(n1 − n2)Γ1,mpe
−Γ1,mpT

and we recall T = 1/χs,mp .

(8.10)

We now analyze this last expression.

8.2.1.2 Optimal decoherence rate of the coherence between Fock states |n1〉 and |n2〉

The average dephasing rate − log(|R|)χs,mp/2π only depends on the ratio χs,mp/Γ1,mp

and on the photon numbers n1 and n2. In Fig. 8.5 are shown the rates corresponding
to several values of n1 − n2 for a driving amplitude Ω = χs,mp/2 (maximal measure-
ment strength). As expected, the decoherence is stronger when the photon numbers
are further apart. Besides, when the effective cross-Kerr rate is much larger than the
multiplexing qubit relaxation rate, i. e. χs,mp|n1 − n2| � Γ1,mp, the rate saturates to
Γ1,mp/2 similarly to the emission rate of a qubit driven by a single frequency. In this
regime, the qubit stays close to the Bloch sphere center as it does not have the time
to relax between two Rabi jumps. This leads to an average population of 1/2 and an
average qubit emission of Γ1,mp/2.
However we have to be careful when comparing to the gedanken experiment (of

Sec. 5.3.2). In the gedanken experiment, after the π-pulse, the qubit relaxes, the excited
population pe decreases and there is no drive to increases it back. Thus, the emission
rate at time t is Γ1,mp exp(−Γ1,mpt) and decreases exponentially with time t. On the
contrary, in the multiplexed experiment with the frequency comb, the latter acts on

3 We find two solutions where z/η is stationary, one stable and one unstable. Considering the stable
solution only, we compute R such that η(kT + T ) = Rη(kT ). The computation boils down to solving
order-two polynomials.
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Figure 8.5: Decoherence rate between Fock states |n1〉 and |n2〉 in units of Γ1,mp for a driving
amplitude Ω = χs,mp/2 as a function of χs,mp/Γ1,mp and for various values of
n1 − n2.

the qubit and excites it again. In particular, when Ω = χs,mp and χs,mp � Γ1,mp, the
qubit excited population is always 1/2 and the emission rate is always Γs,mp/2.

8.2.2 Maximal reachable measurement rate

8.2.2.1 Modeling of the entanglement process

Beyond the determination of the decoherence rate between two Fock states, we are in-
terested in the maximal information extraction rate of the storage state photon number
in the multiplexed measurement scheme. In particular, we will discuss how this maxi-
mal total measurement rate depends on the maximum number of photons Nmax that
are probed by the multiplexed scheme. In the following, we assume a perfect measure-
ment apparatus, giving us access to all the information extracted by the measurement
process, i. e. the measurement rate is equal to the measurement-induced dephasing rate,
which is not necessarily the case for heterodyne measurements on each peak of the comb
(see Sec. 7.4). In Sec. 5.3.2, we propose such a measurement apparatus.

We assume the number-resolved regime χs,mp � Γ2,mp,Γ1,mp. Thus, the decoherence
rate between two Fock states is independent of the Fock state numbers and is equal
to Γ1,mp/2 (see Fig. 8.5). In the following, we show that under these assumptions, the
total measurement rate does not depend on Nmax.
Since the multiplexed measurement operates by entangling the storage mode with

Nmax + 1 wavelet modes of the transmission line4, we can describe the system and
the extraction of information without the multiplexing qubit and only consider its
effect, which is the entanglement operation. Each Fock state |n〉 in the storage mode
(0 ≤ n ≤ Nmax) is associated with one out of the Nmax + 1 wavelet modes of the
transmission line with a carrier frequency ωmp − nχs,mp. Every mode is driven so that

4 Due to the periodic dynamics of the qubit, the storage mode is entangled with more than Nmax + 1

frequency modes of the transmission line. However, when choosing the proper wavelet basis [188] to
describe the propagating modes of the transmission line, the storage mode is entangled with only
Nmax + 1 wavelet modes
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the input is in a coherent state (it can even be a vacuum as in the Gedanken experiment).
At the output, if we change the reference frame by displacing the outgoing modes aout,n

by the opposite of the input coherent state, a single mode will be excited and all the
non-resonant modes will be in the vacuum state when the storage mode is in a Fock
state. Therefore, any quantum state of the outgoing modes can be expressed as a
superposition of Nmax + 2 states only. States |n〉m correspond to all transmission line
modes in the vacuum except the one with a carrier frequency ωmp−nχs,mp, and | ⊥〉m
is the vacuum state of the line.
Thus, we can describe the system using two modes only: the storage mode and a

simplified measurement mode. The storage mode is described using the Fock state
basis {|n〉s}0≤n≤Nmax . The measurement mode has the Nmax + 2 states discussed above.
During a multiplexed measurement, the bipartite system starts in the state

|Ψs,mp(0)〉 = |Ψstorage〉s ⊗ |Ψmeas〉m =

(
Nmax∑
n=0

ψn|n〉s

)
⊗ |⊥〉m. (8.11)

After a measurement time t, the storage mode and the measurement mode become
entangled, and the readout of the measurement mode extracts information about the
storage photon number. As the decoherence rate between every storage Fock state pair
is Γ1,mp/2, one can write the state of the bipartite system as

|Ψs,mp(t)〉 =
√
e−Γ1,mpt/2|Ψ(0)〉+

√
1− e−Γ1,mpt/2

Nmax∑
n=0

ψn|n〉s ⊗ |n〉m. (8.12)

As expected, if we trace over the measurement mode, the diagonal of the density matrix
of the storage mode remains unchanged while the off-diagonal terms decrease at a rate
Γ1,mp/2.

8.2.2.2 Extracted information and mutual information

How can the amount of information we gained during the measurement of duration t be
derived from the state |Ψs,mp(t)〉? One can look at the system as a noisy communication
channel between Alice, who sent information by toggling the storage state, and Bob,
who recovers the information by measuring the state of the measurement mode. The
noisy-channel coding theorem of Shannon [196] enables us to say that the maximum
amount of information that can be shared through a classical communication channel
is given by the maximum of the mutual information [197] of the bipartite system over
the input state. However, in quantum mechanics one has to distinguish the mutual
information I(s,m) from the locally accessible mutual information J(s, {m,Bm}) [198,
199]. They are defined as

I(s,m) = S(ρs) + S(ρm)− S(ρs,m),

J(s, {m,Bm}) = S(ρs)− S(ρs,m|{ρm,Bm})
(8.13)

where S(ρ) is the von Neumann entropy (see Sec. 2.2.2), ρs,m is the bipartite density
matrix, ρs (respectively, ρm) is the density matrix of the storage mode (respectively,
measurement mode) obtained by tracing out the other mode, and S(ρs,m|{ρm,Bm})
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is the entropy of the storage mode when the measurement mode state is projectively
measured in the basis of Bm. Due to the back-action of the measurement, the mutual
information and the locally accessible mutual information differ by a quantity called
the quantum discord [198, 199]. From the point of view of measurement, the mutual
information is the amount of information one can recover from the system using mea-
surements of both input and output states (the storage and the measurement mode
states), whereas the locally accessible mutual information is the amount of information
one can recover when measuring only the output state (the measurement mode state).
Thus, in the case of the multiplexed measurement, for which we only measure the mea-
surement mode, the amount of information C extracted is given by the maximum of
the locally accessible mutual information over the storage state [200, 201, 8].

8.2.2.3 Measurement time

To derive C, we first have to choose the basis Bm on which the measurement mode
is measured. As we are considering a measurement apparatus recovering all the in-
formation, the basis is simply Bm = {| ⊥〉m, |0〉m, |1〉m, ..., |Nmax〉m}. Then, we have
to choose the storage state that maximizes J(s, {m,Bm}): it is the one for which the
storage finishes at the end of the measurement in the most entropic state. This is
the case when considering an initially uniform photon number distribution, such as
ψn = (Nmax + 1)−1/2, for all n. Thus, the amount of information C extracted by the
measurement reads

C =S(ρs)−
Nmax∑
n=0

Tr(ρs,m|n〉〈n|m)S

(
Trm(ρs,m|n〉〈n|m)

Tr(ρs,m|n〉〈n|m)

)
− Tr(ρs,m|⊥〉〈⊥|m)S

(
Trm(ρs,m|⊥〉〈⊥|m)

Tr(ρs,m|⊥〉〈⊥|m)

)
,

(8.14)

where
Trm(ρs,m|n〉〈n|m)

Tr(ρs,m|n〉〈n|m)
is the storage density matrix after the measurement of the

measurement mode with outcomes |n〉 and probability Tr(ρs,m|n〉〈n|m).
For the measurement basis Bm, the storage density matrix after the measurement of

the measurement mode is always a pure state. Thus, C reads

C = S(ρs) (8.15)

and the storage density matrix ρs, for the uniform photon number distribution is

ρs =
e−Γ1,mpt/2

Nmax + 1

Nmax∑
n,l=0

|n〉s〈l|s +
1− e−Γ1,mpt/2

Nmax + 1

Nmax∑
n=0

|n〉s〈n|s. (8.16)

The eigenvalues of ρs are e−Γ1t/2 + (1 − e−Γ1t/2)/(Nmax + 1) with degeneracy 1 and
(1 − e−Γ1t/2)/(Nmax + 1) with degeneracy Nmax. Thus, one can derive the amount of
extracted information C

C = −
(
r +

1− r
Nmax + 1

)
log2

(
r +

1− r
Nmax + 1

)
− Nmax(1− r)

Nmax + 1
log2

(
1− r

Nmax + 1

)
,

(8.17)
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Figure 8.6: Extracted information C for various maximum photon numbers Nmax = 2nb − 1

as a function of measurement time t. a. Mutual information in bits. b. Extracted
information C divided by the number of bits nb as a function of time. The dashed
black curve is the lower bound (1− e−Γ1t/2).

with r = e−Γ1,mpt/2. The time evolution of the extracted information C is shown in
Fig. 8.6. At short time, the extracted information increases with time t at a speed
that depends on Nmax + 1. The time derivative of the extracted information at short
time scales gives the rate at which information is extracted (i.e., the total measurement
rate)[8, 201]. However, in this model, it diverges for finite Nmax. This divergence is
due to the fact that we did not consider the dynamics of the measurement mode. In
our model the measurement mode can evolve instantaneously from the state | ⊥〉 to
the state |n〉. In reality, it would take time of about 1/(pΩ) where p is the number
of frequency in the drive. If the derivative at short time scales is not a good quantity
to look at for this model, one can still look at the time needed to extract 98% of the
photon number information. To do so, we look at the extracted information per bit of
information nb = log2(Nmax + 1). Here, nb is the number of bits we have to extract in
order to fully determine the storage photon number. The extracted information per bit
decreases with nb for small photon numbers but converges to a lower bound when nb
goes to infinity (see Fig. 8.6b)

lim
nb→+∞

C

nb
= (1− e−Γ1t/2). (8.18)

As the extracted information per bit is always bigger than (1− r), the total measure-
ment time to extract 98% of the photon number information is always smaller than
8/Γ1,mp = 8T1,mp. Thus, the best achievable measurement time for the multiplexing
protocol is independent of the maximum photon number Nmax.

8.3 correlation between multiplexed measurement and strong
photon number measurement

Similarly to the correlations studied in Secs. 4.4 and 6.3.2, we can study the correlations
between a weak and a strong measurement in the case of the multiplexing photon
number measurement. The weak measurement will be the multiplexed measurement,
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and the strong measurement will be a binary question asked and read out using the
yes-no qubit and its dedicated readout resonator.

Before describing the experiment and its results in detail, we will derive the measure-
ment operators of the multiplexing photon number measurement. We will use the same
approximation as in Sec. 6.3.1, i. e. we will describe the output field reflected by the
multiplexing qubit as a coherent field.

8.3.1 Measurement operator

Here we will generalize the simple measurement operator model described in Sec. 6.3.1
to the multiplexed photon number measurement. In this case, instead of having only
one record I(k) + iQ(k) corresponding to the fluorescence measurement at the angular
frequency ωmp−kχs,mp, we have nine records {I(k) + iQ(k)}0≤k≤8 corresponding to the
multiplexed fluorescence measurement at all the frequencies {ωmp−kχs,mp}0≤k≤8. When
preparing a Fock state |n〉 in the storage mode, the multiplexing qubit fluorescence will
oscillate at the frequency ωmp−nχs,mp with a 2π/χs,mp-periodic amplitude. Thus, all the
transmission line propagating modes oscillating at {ωmp − kχs,mp}0≤k≤8 are displaced
compared to the amplitude αin of the reflected frequency comb. One can define the
matrix α of elements αkn equal to the amplitude of the transmission line propagating
mode oscillating at ωmp − kχs,mp when the storage mode state is the Fock state |n〉.
For each record I(k) + iQ(k), we define the measurement operator M (k)(I(k), Q(k)) as

M (k)(I(k), Q(k)) =
8∑

n=0

ξ(αkn, I
(k), Q(k))Πn + ξ(αin, I

(k), Q(k))(1 −
8∑

n=0

Πn), (8.19)

where the function ξ(β, I,Q) is defined in Sec. 6.3.1 and Πn is the projector on the
storage Fock state |n〉. The measurement operator M({I(k) + iQ(k)}0≤k≤8) of the mul-
tiplexed measurement reads

M({I(k) + iQ(k)}0≤k≤8) =
8∏

k=0

M (k)(I(k), Q(k)), (8.20)

which can be written in the form

M({I(k) + iQ(k)}0≤k≤8) =

8∑
n=0

1

(4πσ2
0)9/4

exp

(
−

8∑
k=0

|αkn|2 + (I(k) + iQ(k) − 2αkn)(I(k) − iQ(k))

2(2σ0)2

)
Πn

+
1

(4πσ2
0)9/4

exp

(
−

8∑
k=0

|αin|2 + (I(k) + iQ(k) − 2αin)(I(k) − iQ(k))

2(2σ0)2

)
(1 −

8∑
n=0

Πn)

(8.21)

The situation can be simplified either by inverting the matrix α or by using an ad-
vanced waveform for the demodulation of the IF signal (see supplementary information
of Ref. [187]). In this case, one can remove correlations between records I(k) + iQ(k)

and we get new uncorrelated records I(k)
uc + iQ

(k)
uc . If the waveforms are normalized or
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if we normalize the inverse matrix, the records I(k)
uc + iQ

(k)
uc are all affected by a Gaus-

sian noise of amplitude 2σ0 and the average records, when the storage state is a Fock
state |n〉, are equal to αin + δknα. One can displace all records by αin and thus, the
measurement operators using the uncorrelated records I(k)

uc + iQ
(k)
uc read

M({I(k) + iQ(k)}0≤k≤8) =

8∑
n=0

1

(4πσ2
0)9/4

e
−
|α|2 + (I

(n)
uc + iQ

(n)
uc − 2α)(I

(n)
uc − iQ(n)

uc )

2(2σ0)2
e
−
∑
k 6=n

((I
(k)
uc )2 + (Q

(k)
uc )2)

2(2σ0)2
Πn

+
1

(4πσ2
0)9/4

e
−
∑8
k=0

((I
(k)
uc )2 + (Q

(k)
uc )2)

2(2σ0)2
(1 −

8∑
n=0

Πn)

(8.22)

Now that we have derived the measurement operators, let us discuss the correlation
between a weak multiplexed measurement and a strong binary question.

8.3.2 Correlations

8.3.2.1 Description of the experiment

The correlations between the multiplexing qubit and the yes–no qubit photon number
measurement can be seen through the following experiment We initialize the storage
mode in a coherent state |α〉 and then probe the multiplexing qubit with a frequency
comb during 2 µs with an amplitude Ω/2π = 1.1 MHz. A π-pulse of 1.335 µs is performed
on the yes–no qubit at the frequency fdrive at the same time as the multiplexing qubit
measurement. The π-pulse is long enough compared to the cross-Kerr rate χs,yn to con-
sider it as conditional with respect to the storage photon number. The pulse sequence
finishes by a readout of the yes–no qubit state leading to a record Qyn. Thus, for each
repetition of the experiment, we have 10 records {Qyn, I

(0) + iQ(0), ..., I(8) + iQ(8)} that
depend on α and fdrive. In order to obtain positive correlation between records giving
the same information, we multiply5 all the records I(k)+iQ(k) by −1. The mean value of
the yes–no readout quadrature Qyn depends linearly on the yes–no qubit excited state
probability pe. One can first look at the dependence of pe(α, fdrive). Fig. 8.7 shows this
dependence. We retrieve the same map as the one in Sec. 5.2.1. Each spot of large pe
corresponds to a resonance of the yes–no qubit for a specific photon number. Thus, the
probabilities {pe(α, fdrive = fyn − nχs,yn/2π)}n reveal the storage photon distribution
when it is initialized in the coherent state |α〉.

8.3.2.2 Measuring the correlations

The correlations between a record I(k) or Q(k) and the record Qyn due to the mea-
surement back-action can be seen using the same analysis as the one carried out in
Sec. 4.4. For any choice of quadrature Ips + iQps , we select all the realizations for

5 This is equivalent to a change of phase reference. With this reference, the records reads I(k) + iQ(k) =

−αin +
√

Γ1,mp〈σ−,mp〉
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Figure 8.7: Yes–no qubit excited state population pe as a function of the π-pulse frequency
fdrive on the yes-no qubit and the storage mode amplitude α. The excited state
population is obtained by averaging the records Qyn over all realizations of the
experiment.

which I(k) + iQ(k) = Ips + iQps and compute the yes–no excited state population
p(e|I(k) + iQ(k) = Ips + iQps) by averaging Qynover these realizations only.
For each value of yes-no drive frequency fdrive and coherent amplitude α of the storage

mode, p(e|I(k) + iQ(k) = Ips + iQps) can be fit by the function

p(Ips, Qps) = c
(k)
I Ips + c

(k)
Q Qps + c0 (8.23)

where c(k)
I and c(k)

Q are respectively the correlation slopes between the records I(k) and
Qyn and the records Q(k) and Qyn (see Fig. 8.8).

8.3.2.3 Correlation slopes

Here, we did not remove the correlations between the fluorescence records {I(k) +

iQ(k)}0≤k≤8 as explained in Sec. 8.3.1. Thus, to discuss the dependence of the cor-
relation slopes with fdrive and α, we have to determine the matrix α (see Sec. 8.3.1).
Using the master equation model already used to simulate all photon-counting experi-
ments (see App. d), we simulate the matrix α displaced by αin by initializing the storage
mode in a Fock state and looking at the multiplexing qubit fluorescence. In the model,
we set the relaxation rate of the storage mode to 0 to obtain a correlation matrix α′
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Figure 8.8: left: yes–no excited state population p(e|I(0) + iQ(0) = Ips + iQps) as a function
of the post-selected value Ips + iQps. right: Difference between the yes–no excited
state population p(e|I(0) + iQ(0) = Ips + iQps) and the fit function p(Ips, Qps) (see
Eq. (8.23)). The outskirts of the distributions are averaged on very few realizations
and thus are very noisy.

containing only the correlations due to the demodulation and channel cross-talk. The
correlation matrix α′ reads in units of

√
Γ1,mp

α′ = 0.01×

18− 4i 5 + 6i 2 + 3i 2 + 2i 1 + 2i 1 + i 1 + i i i

2− 6i 17− 4i 4 + 5i 2− 3i 1 + 2i 1 + 2i 1 + i i i

−3i 2− 6i 16− 3i 3 + 5i 1 + 3i 1 + 2i 2i i i

−2i −3i 2− 6i 15− 2i 3 + 5i 1 + 3i 1 + 2i 2i i

−2i −2i 13i 2− 6i 15 2 + 6i 1 + 3i 2i 2i

−i −2i 12i 13i 3− 5i 15 + 2i 2 + 6i 3i 2i

−i −i −2i 12i 1− 3i 4− 5i 16 + 3i 2 + 6i 3i

−i −i 1− i 1− 2i 1− 2i 2− 3i 4− 5i 16 + 4i 2 + 6i

−i −i 1− i 1− i 1− 2i 2− 2i 2− 3i 5− 6i 18 + 4i


(8.24)

We now discuss this matrix at the same time as the correlation slopes.
Let us first look at the correlation slopes c(0)

I and c(0)
Q (see Fig. 8.9). The correlation

slopes are non-zero only for frequencies fdrive and amplitudes α, which are compatible,
i. e. when the drive is resonant with the yes–no qubit and the yes–no qubit probes a
Fock state that has a non-zero population. The correlation slope c(0)

I shows that the
record I(0) and the yes–no record are correlated (c(0)

I > 0) when the yes–no qubit is
probing if the storage mode contains 0 photons and anti-correlated (c(0)

I < 0) when the
yes–no qubit is probing if the storage mode contains 1 or 2 photons.
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Figure 8.9: Correlation slopes c(0)
I (left) and c(0)

Q (right) as a function of the yes–no qubit π-
pulse frequency fdrive and the storage mode coherent state amplitude α. The black
solid lines correspond to the contour lines of dressed yes-no qubit spectroscopy in
Fig. 8.7 and indicates the regions of response of the yes-no photocounting. The
green numbers in theses contour lines are the storage photon numbers probed by
the yes–no qubit for the π-pulse frequency fdrive.

The mean record I(0) + iQ(0) is equal to −αin +
√

Γ1,mpα
′
0n.ps(n), where ps(n) is

the storage mode photon number distribution and . denote a vector product. Thus,
according to the measurement operator of Eq. (8.21), the closer I(0) + iQ(0) is to −αin +√

Γ1,mpα
′
0n, the bigger the probability ps(n) is. From the real part of α′0n, one can

deduce the expected sign of the correlation slopes c(0)
I . The storage Fock state |0〉

corresponds to a high average record I(0) = −αin + 0.18
√

Γ1,mp, whereas other Fock
states correspond to small values of I(0) ≤ −αin + 0.05

√
Γ1,mp. Thus, as observed, we

are expecting a positive correlation slope between I(0) and Qyn (as the higher I(0) is,
the higher ps(0) should be) when probing if there are 0 photons in the storage mode. For
other Fock states, we are expecting a negative correlation slope. The amplitude of this
negative correlation slope must decrease with the support of the storage photon number
distribution. Indeed, if there are only 0 or 1 photons in the storage mode, a small value
of I(0) can be associated to the Fock state |1〉 without ambiguity, and we would expect a
strong anti-correlation. However, if the photon distribution is spread over many photon
numbers, a small value of I(0) cannot be associated to a single Fock state but only to the
fact that there are not 0 photons. Thus, the anti-correlation should be small. For the
correlation slope c(0)

I , we indeed observe that the anti-correlation when probing if there
are 1 photon and 2 photons is maximal for small coherent states α ∼ 0.75 compared to
the yes–no resonance corresponding to 1 photon (see the black lines in Fig. 8.9).
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Figure 8.10: Correlation slopes c(3)
I (left) and c(3)

Q (right) as a function of the yes–no qubit π-
pulse frequency fdrive and the storage mode coherent state amplitude α. The black
solid lines correspond to the contour lines of dressed yes-no qubit spectroscopy in
Fig. 8.7 and indicates the regions of response of the yes-no photocounting. The
green numbers in theses contour lines are the storage photon numbers probed by
the yes–no qubit for the π-pulse frequency fdrive.

In the same way, looking at the imaginary part of α′0n, one can deduce the expected
sign of the correlation slopes. With the imaginary parts being negative for α′00 and
positive for α′0n with n 6= 0, one would expect negative correlations when using the
yes–no qubit probe if there are 0 photons and positive correlations when probing other
Fock states. This is indeed what we observe, taking into account the fact that the
positive correlation is observable only if the photon distribution is narrow, i. e. only if
the information “no 0 photons” is equivalent to “there is 1 photon”.
The correlation slopes c(3)

I and c(3)
Q (see Fig. 8.10) can be analyzed using the same

approach. We observe a strong correlation between I(3) and Qyn when using the yes–no
qubit to probe whether there are 3 photons and a small anti-correlation when a different
photon number is probed. The anti-correlation is smaller than the one observed with
I(0), as the photon number distribution is broader. Looking at c(3)

Q , Q(3) and Qyn are
anti-correlated when the yes–no qubit probe photon number is equal to or below 3 and
is correlated in other cases. These observations are in good agreement with the real
and imaginary part of α′3n. The real part is high for n = 3 and small for n 6= 3. The
imaginary part is negative for n ≤ 3 and positive for n > 3. The same study can be
applied to the other correlation slopes, and we always obtain a good agreement between
the sign of the correlation slope (i. e. if we have a correlation or an anti-correlation) and
the value of the real and imaginary parts of α′kn. All the correlation slopes can be found
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in App. f. The existence of these correlations between the multiplexed records and the
storage photon number probability is proof that the multiplexed measurement extracts
information about the storage photon number and that the record k extracts mainly
information about the storage Fock state |k〉 population.

conclusion

Here are the main conclusions of this section.

• We demonstrate how to measure the decoherence rate of a harmonic oscillator
through an experiment inspired by the Ramsey interference experiment.

• The dephasing rate of the multiplexing measurement shows a maximum when the
drive strength Ω is equal to half the cross-Kerr rate χs,mp and a minimum when
the drive strength is equal to the cross-Kerr rate.

• The infinite frequency comb is used to derive the dephasing rate between two
storage Fock states. This dephasing rate shows maximum and minimum rates for
the same drive strength values as the experimental observation.

• From the infinite frequency comb and the derived dephasing rate, one can prove
that the best measurement rate that is accessible using a measurement apparatus
recovering all the information is NmaxΓ1,mp/2, meaning that 98% of the storage
photon number information is always extracted in 8T1,mp no matter what is the
maximal photon number Nmax looked for in the storage mode.

• The photon-counting ability of the multiplexed measurement can be studied
through the correlations between the multiplexed records and a strong measure-
ment performed with the yes–no qubit.
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TOWARD THE S INGLE SHOT MEASUREMENT





9
S INGLE - SHOT MULTIPLEXED PHOTON NUMBER
MEASUREMENT

A major part of this thesis has been dedicated to the improvement of multiplexing
photon number measurement, which makes it possible to photocount using a single-shot
measurement. The single-shot ability of the multiplexed measurement is governed by

the ratio η
Γ1,mp

Γ1,s
; the larger it is, the larger the signal-to-noise ratio of the measurement.

This ratio can be viewed as the number of photons emitted by the multiplexing qubit
and detected by the heterodyne detection setup during the lifetime of the storage mode.
The circuit used in the previous chapters had a ratio of about 17; increasing this by an
order of magnitude should make single-shot multiplexed photon number measurements
possible.
The main difficulty boils down to preventing the desired strong coupling of the qubit

to the measurement line to deteriorate the quality factor of the storage mode. In the
first attempt, we used a tunable Purcell filter, which was added to the transmission
line. The design and performance of this filter will be discussed in this chapter; overall,
however, the improvement on the storage lifetime was only by a factor of 2.5. In the
second attempt, a new experiment was designed using a λ/4 coaxial cavity instead of a
coplanar waveguide resonator for the storage mode. The design of this new experiment
and preliminary results will be discussed in this chapter.

9.1 tunable purcell filter

9.1.1 Design

The goal of the Purcell filter is to protect the storage mode from the Purcell effect
through its hybridization with the multiplexing qubit. In this experiment, a storage
lifetime of 3.8 µs was limited by the Purcell emission of the storage mode in the mul-
tiplexing qubit transmission line (see Sec. 3.3 for more information about the Purcell
effect). The Purcell filter has been designed in such a way that it has a close-to-1 and
flat transmission coefficient around the multiplexing qubit frequency and a close-to-1
reflection coefficient at the storage frequency. We decided to use a 3D geometry to make
the fabrication easier, designing the filter in such a way that the frequency of the notch
is tunable, enabling us to match the notch frequency with the storage frequency.
Pictures of the Purcell filter are given in Fig. 9.1. The filter is a 3D rectangular

cavity with a superconducting inner conductor connected to the left and right faces of
the rectangular cavity. Two microwave pins are added, which define the input/output
ports of the filter. The superconducting inner conductor was added in order to obtain a
non-simply connected geometry, allowing the existence of a transverse electromagnetic
(TEM) mode coupling the two ports. The filter can be viewed as a coaxial cable with
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Figure 9.1: Pictures of the tunable Purcell filter. Left: filter closed. Right: filter open. The two
large brass screws allow us to tune the notch band frequency. The small stainless-
steel screw allows us to tune the impedance of the two ports. A coin of 1 euro gives
the scale.

a square structure instead of a circular one. Without the superconducting inner con-
ductor, the filter is a rectangular waveguide with a frequency cut-off that is above the
multiplexing qubit frequency.
In order to create a notch band, we added two screws. The notch frequency is set by

the penetration length of the screws inside the filter.
The microwave pins in the filter are made of large copper cylinders, in order make the

transmission coefficient higher and flatter around the multiplexing qubit and to enable
us to reach a close to 1 transmission coefficient on a larger frequency band. The distance
between the two pins is also chosen because it increases the transmission coefficient at
the multiplexing qubit frequency.
Two small screws were added from each side of each pin. The length of the screws

penetrating inside the cavity enable us to tune the impedance the port but only by a
small factor.

9.1.2 Results

The reflection and transmission coefficients of the ports were measured for various screw
configurations (see Fig. 9.2). When the screws controlling the notch band frequency are
removed, the filter shows a close-to-1 transmission amplitude around the multiplexing
qubit frequency 4.238 GHz. We identify a parasitic mode around 4.6 GHz (see the purple
line in Fig. 9.2), which can hybridize with the multiplexing qubit and thereby change
its relaxation rate. One of the two screws controls the frequency of the parasitic mode
and enables it to decrease to below 3 GHz (see the red line in Fig. 9.2). The second
screw enables us to create a notch band and to control the notch frequency over a
range larger than 1 GHz. Due to the contraction of the cavity during the cool down,
the notch frequency decreases by 18 MHz from room temperature to 20 mK. This
value is reproducible over several cool downs and enables us to tune the filter at room
temperature, such that the notch frequency is equal to the storage mode frequency
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Figure 9.2: Amplitude of the reflection (left) and transmission (right) coefficients of the tunable
Purcell filter for various screw penetration lengths (the blue, orange, and green
lines). When the two screws are removed (the purple line) a parasitic mode appears
at 4.6 GHz. The frequency of the parasitic mode can be controlled with only one of
the two screws and decreased to below 3 GHz (red line).

4.558 GHz. At this frequency, the filter shows a transmission coefficient below −30 dB

over 40 MHz.
Experimentally, we observed an increase in the storage mode lifetime: from 3.8 µs

to 10 µs. The multiplexing qubit relaxation was fluctuating between 30 ns and 120 ns.
This was due to an impedance mismatch between the filter and the transmission line,
leading to a Fabry–Perot–like effect in the cable connecting the multiplexing qubit to
the filter.
The improvement of the storage lifetime by a factor of 2.5 being too small to perform a

single-shot measurement, we decided instead to design a new version of the experiment.

9.2 new circuit with a coaxial cavity

A major part of this thesis has been dedicated to the design and fabrication of a
new version of the circuit—one that is based on a 3D cavity, instead of on a coplanar
waveguide resonator. Indeed, λ/4 coaxial cavities have shown a lifetime that is larger
by orders of magnitude than that of the λ/2 coplanar waveguide (CPW) resonator
[46, 66, 202]. The goal of the new design is to obtain a cavity mode with a lifetime of
above 200 µs, coupled dispersively to a qubit with a lifetime of 50 ns (dominated by its
coupling to the transmission line) through a cross-Kerr rate of 6 MHz. To reach these
parameters, we have to add a filter in order to protect the cavity mode from the decay
that results from to its coupling to the lossy qubit.

9.2.1 Design

9.2.1.1 Design of the cavity

The cavity is a λ/4 coaxial cavity with a rectangular base (see Fig. 9.3). The bottom
part of the cavity can be viewed as a coaxial line, while the top part can be viewed
as a rectangular waveguide. The dimension of the cavity (10 mm, 18 mm, 30 mm) and

175



single-shot multiplexed photon number measurement

the post height (13.9 mm) define the cavity’s resonant frequency (4.5 GHz) and the
frequency cut off of the waveguide (80 GHz). The frequency cut off of the waveguide is
chosen such that the field of the λ/4 coaxial mode is evanescent above the post, thus
protecting the cavity mode from the loss of the seal at the top of the waveguide [46].
Two “arms” enable us to introduce two chips, each of which contains a qubit.

9.2.1.2 Design of the yes–no qubit

The yes–no qubit is designed as a transmon qubit dispersively coupled to a λ/2 mi-
crostrip resonator dedicated to the yes–no qubit readout. The readout resonator is
coupled to a transmission line through a Purcell filter (a λ/2 microstrip resonator),
which acts as a band pass filter. The Purcell filter protects the yes–no qubit from the
decay induced by its hybridization with the readout resonator.

9.2.1.3 Design of the multiplexing qubit

The multiplexing qubit design was the hardest part of this new circuit; it has to be
strongly coupled to a transmission line in such a way that its lifetime is about 50 ns,
and sufficiently dispersively coupled to the cavity mode to reach the photon number-
resolved regime, without decreasing the cavity mode quality factor.
We decided to capacitively couple the multiplexing qubit to a microstrip transmission

line. The end of the microstrip transmission line is galvanically coupled to a coaxial
transmission line through a pogopin (see Fig. 9.3.a). The pogopin is a microwave pin
mounted on a string. The string presses the microwave pin against the microstrip
transmission line and ensures a galvanic (instead of a capacitive) coupling. On the other
side of the pogopin, the microwave pin is galvanically connected to a SubMiniature A
(SMA) port (see Fig. 9.3.c).

The cavity mode is protected from the Purcell effect through the addition of two
stubs to the microstrip transmission line. These stubs act as a λ/4 resonator, resonant
at the cavity mode frequency (these are described in detail in Ref. [203]). The stubs
have a simple “L”-shape geometry (see Fig. 9.3.d); the length of the stub controls the
stub frequency and the width controls the impedance of the stub.

9.2.2 First characterizations

We started by characterizing the cavity separately. The cavity was fabricated in 4N
aluminum, without mirror polish. It was first cleaned with acetone and isopropanol
and blow-dried with nitrogen, then etched at 50 ◦C with a type-A Transene aluminum
etchant for 40 min, corresponding to etching a depth of 25 µm. Following the etching,
the cavity was cleaned again with acetone and isopropanol, blow-dried with nitrogen,
and backed at 50 ◦C for 30 min. A first cool down of the cavity was then performed.
Next, we carried out a spectroscopy of the cavity in transmission through the ports
dedicated to driving the cavity and the yes–no qubit. The transmission coefficient and
its fit are both shown in Fig. 9.4. As the resonance shows Fano features [204], we fitted
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Figure 9.3: Multiplexing photon-counting experiment based on a λ/4 coaxial cavity. a. High-
frequency structure simulator (HFSS) simulation of the experiment. The storage
mode (first cavity mode) is coupled to two qubits. The multiplexing qubit (left arm)
is capacitively coupled to both a microstrip transmission line containing two λ/4
stubs (identifiable by their “L” shape) and to a pogopin. The yes–no qubit (arm
in the back) is coupled to a microstrip resonator and protected by a microstrip
Purcell filter. b. Picture of the cavity with the multiplexing qubit inside. c. Picture
of the multiplexing qubit chip. The multiplexing qubit antennas are visible at the
top of the chip, while the microstrip transmission line with the λ/4 stubs can
be seen below. d. Picture of the pogopin POGO-PIN-19.0-1 (non-magnetic) by
EmulationTechnologie. The pin (at the top-right corner) is mounted on a spring,
allowing enough pressure between the pin and the microstrip transmission line to
create a galvanic contact.
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Figure 9.4: Spectroscopy of a coaxial high-Q cavity. Left: measured transmission coefficient in
the complex plane (dots) and its fit (red line). Right: Phase and absolute value of the
transmission coefficient as a function of the spectroscopy frequency. The absolute
value of the transmission coefficient is asymmetric because of a Fano effect [204].
The total Q factor of the resonance is about 52× 106.

it using Eq. (2.36) and added a parasitic transmission channel characterized by the
transmission coefficient tf , as follows:

S21(ω) =
√

1− |tf |2
−2
√
κ1κ2

κtot − 2i(ω − ωr)
+ tf . (9.1)

We then obtained a total loss rate κtot of 90 Hz, corresponding to a total Q factor of
about 52×106. Using spectroscopy in reflection, we estimated the value of the coupling
rates κ1 and κ2 to be about 1 Hz, meaning that most of the losses are internal.

When the quality factor is limited by coupling to parasitic two-level systems, a high
probe power saturates the two-level systems and the quality factor increases [205]. For
the purpose of our experiment, we are interested in the quality factor in the single
photon regime (i. e. at a probe power low enough that we can consider the cavity to
contain only one photon). We estimate that the probe power after attenuation is about
−115 dBm, leading to a cavity mean photon number of 2000. In Ref. [206], the authors
show that the critical photon number (i. e. the number of photons we need to add to
see a modification of the quality factor) is about 1100 for a 3D cavity. Thus, the quality
factor measured should be closed to the single photon quality factor and we will confirm
its value with another independent measurement.
The second step was to characterize the cavity/yes–no qubit system. We obtained

a desirable cross-Kerr rate between the yes–no qubit and the cavity mode of 0.8 MHz.
The yes–no qubit lifetime is 38 µs and its coherence lifetime is 2.5 µs. We believe that
the coherence lifetime is limited due to the poor thermalization of the dilution fridge
lines. The storage lifetime is measured by probing the time evolution of the zero photon
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Figure 9.5: Time evolution of the probability that the storage mode contains 0 photons
after a displacement. The probability is measured using a π-pulse that is res-
onant with the yes–no qubit only if the cavity contains 0 photons. The red
line is a fit of the measured probabilities (the blue points) using the expression
p0(t) = exp(−n0 exp(−t/T1,cav)), with n0 = 24 being the mean photon number
after the displacement and T1,cav = 0.96 ms the lifetime of the cavity.

probability after a displacement of the cavity (see Fig. 9.5); by doing so, we obtain a
cavity lifetime of 0.96 ms, corresponding to a quality factor of 25× 106.
The last part we had to characterize was the multiplexing qubit/cavity system. As of

the date of this writing, we were not able to observe the fluorescence of the multiplex-
ing qubit. We have identified two main reasons for this. First, it took us several cool
downs before we could obtain a multiplexing qubit with the targeted frequency (up to
200 MHz). Second, the length of the pogopin was too short during the first cool downs,
leading to a multiplexing qubit with a lifetime that was 20 times higher than the one
targeted (we have recently corrected this).
From the point of view of the cavity mode, the highest lifetime measured with

the multiplexing qubit was about 70 µs. In order to investigate this short lifetime,
we probed the microstrip transmission line/stubs/pogopin/TWPA transmission coef-
ficient, as shown in Fig. 9.6. The ratio of the transmission coefficient at the targeted
multiplexing qubit frequency (5.7 GHz) and at the cavity frequency (targeted 4.54 GHz,
measured 4.585 GHz) is about 45 dB. Thus, the Purcell decay of the storage mode when
there is no stubs should be divided by at least 10000 due the presence of the stubs. For
the multiplexing qubit frequency targeted and the cavity multiplexing qubit cross-Kerr
rate targeted (6.3 MHz), the Purcell effect should limit the cavity lifetime to 5 µs with-
out stubs (see Eq. (3.20)); thus, with the stub filter, the cavity lifetime should be limited
by the Purcell effect to more than 50 ms. We therefore conclude that the low lifetime
measured for the cavity is not due to an error in the stubs’ design and that we will
need to investigate the situation further if we are to understand it.

9.3 perspectives

To conclude this manuscript, we would like to offer some perspectives for the future of
multiplexing photon number measurement.
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Figure 9.6: Measured transmission coefficient of the microstrip transmission line with the
stubs, the pogopin, and the TWPA. The measurement was performed by inserting
an antenna inside the cavity trough the cavity cap. The transmission amplitude is
measure between this antenna and the pogopin port. The features above 6 GHz are
the TWPA gap. The targeted and measured cavity resonant frequencies are close
to the stub frequency. Compared to the multiplexing qubit frequency (targeted
5.7 GHz), the stubs offer a protection of about 45 dB.

9.3.1 After the single-shot measurement

Our continuous measurement opens new possibilities in terms of feedback control of
the quantum state of a cavity. It can readily be applied to stabilize quantum states by
feedback control [40, 207], probe quantum trajectories of microwave modes [7], observe
quantum Zeno dynamics [208], or engineer desired decoherence channels by varying in
time the amplitude of the probe tones. This measurement scheme enables the future
implementation of a large class of measurement operators that would be useful to
stabilize bosonic codes [209], to stabilize a Fock state parity by autonomous feedback
[189], or to extend the reach of simultaneous probing of a single quantum system by
multiple observers [210, 163] to larger systems and arbitrarily many observers. Our
photocounter for stationnary modes can also be converted into a photocounter for
propagating modes using a catch and count protocol [27]. Moving further, one could
extend this frequency domain measurement to more complex probes than a single qubit
and many possible physical systems beyond superconducting circuits.

9.3.2 Going further with the pogopin

The galvanic coupling that was created thanks to the pogopin gave us the idea of
studying whether we could use the pogopin to create a fast-flux line for a frequency-
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Figure 9.7: Design of a SQUID transmon coupled to a superconducting cavity and a DC
current line or flux line. The flux line allows the SQUID transmon frequency to be
controlled. a. and b. The flux line is galvanically connected to two pogopins, and a
readout port is used to read out the qubit state. The superconducting cavity is a λ/4
coaxial cavity. c. and d. Zoom-in on the SQUID transmon. A readout resonator is
used to read out the qubit state, and the qubit is protected by a Purcell filter. The
filter and the readout resonator are snail resonators (inspired by [108]), and a bus
is used to mediate the interaction between the qubit and the cavity.

tunable qubit in a superconducting cavity. A superconducting quantum interference
device (SQUID) transmon qubit is a transmon qubit in which the single Josephson
junction is replaced by two Josephson junctions, forming a loop [20]. The magnetic flux
through the loop allows the frequency of the qubit to be controlled. How to control
the flux of a frequency-tunable qubit in a superconducting cavity is still an open chal-
lenge. The main difficulty comes from the fact that the superconducting cavity screens
any external magnetic field. The current approach consists in replacing a part of the
superconducting cavity with either vacuum [211], a non-superconducting metal such as
copper [212] or a magnetic hose that can be used to guide the magnetic field inside the
cavity [213]. Here, we propose to use the pogopin to create an interface between a coax-
ial DC transmission line and a microstrip DC transmission line, using the microstrip
transmission line (or flux line) to control the magnetic flux inside the SQUID transmon
loop.
The circuit we propose to use is represented in Fig. 9.7. The superconducting cavity

is a λ/4 coaxial cavity of the same design as the one used for the 3D version of the mul-
tiplexing photon-counting experiment. It is dispersively coupled to a SQUID transmon,
with the coupling being mediated by a bus (see Fig. 9.7a and c). In the DC regime, the
SQUID transmon is coupled to a flux line, which allows us to control the flux in the
SQUID loop. The flux line is galvanically connected to two pogopins, which allow us
to bring a DC current inside the cavity (see Fig. 9.7b, c, and d). The flux line contains
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three stub filters, which act as a λ/4 resonator, in order to protect the cavity from
decaying in the flux line. These filters are identifiable by their “L” shape. The SQUID
transmon is also dispersively coupled to a readout resonator, whose snail shape (in-
spired by Ref. [108]) permits to decrease its coupling to the flux line (see Fig. 9.7d). A
readout port enables us to probe the readout resonator through the Purcell filter that
protects the SQUID transmon from Purcell decay (see Fig. 9.7a and c).

The goal of this experiment has been to demonstrate the following points:

• the control of the flux inside the SQUID transmon loop

• the long lifetime and coherence time of the SQUID transmon

• the long lifetime of the cavity mode

• the ability to perform a fast-flux gate on the SQUID transmon

• the ability to deterministically prepare the cavity mode in non-classical states
(such as Fock or cat states).
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a
JOSEPHSON JUNCTION FABRICATION PROCESS

The JJs are fabricated using a Dolan bridge technique [214] that is based on shadow
evaporation. The wafer/chip is recovered using a bi-layer resist polymethylglutarim-
ide (PMGI) and PMMA mask (with the PMMA on top of the PMGI). An electrical
lithography is performed using a scanning electron microscope (SEM) enabling a sub-
10 nm resolution to be reached. A layer of 10 nm of aluminum is added on top of the
PMMA in order to avoid charge accumulation during the electrical lithography. We
first develop the PMMA, which is electron-sensitive, and then the PMGI, which is not
electron-sensitive. Thus, everywhere the PMMA has been removed, the PMGI is as
well, causing an undercut to appear below the PMMA. The goal of this lithography
is to create a bridge. Fig. a.1a shows the typical pattern exposed during the electrical
lithography and two horizontal cuts, one of which shows the bridge obtained following
the PMMA and PMGI development (Fig. a.1b).
Two aluminum evaporations are then performed using a Plassys®evaporator with

angles at 30° and 0° along the vertical green dashed line in Fig. a.1a, separated by
a control oxidation. Fig. a.1c shows a cut along the evaporation line, while Fig. a.1d
shows the resulting aluminum pattern following the evaporations. An Al/AlOx/Al JJ,
as indicated by the red boxes in Figs. a.1c and d, is created. Its area is given by the
two “finger-width ” w1 and w2 (see Fig. a.1a), while the thickness of the oxide barrier
is controlled by the oxidation parameters (pressure and duration).
A SEM image of a JJ is shown in Fig. a.2a. We observe that, due to the large size of

the transmon antennas required by the cavity multiplexed photocounting experiment,
the JJ is very sensitive to electrical discharge (see Fig. a.2b and c). To protect the
JJ against such discharges, we electrically connect the two antennas together with a
15 µm-wide aluminum line, which is evaporated at the same time as the JJ. This is
equivalent to shorting the JJ. The shorting line protects the junction during both the
lift-off and the first manipulation of the chip. Once the chip is ready to be introduced
into the cavity and only the resistance of the junction needs to be measured (see the
next section), we cut the shorting line using the needle of a probe station while keeping
the JJ under an ionized air flow that is generated by an air ionizer fan. The ionized air
flow evacuates any charge that has started to accumulate on the transmon antennas,
thus protecting the JJ against electrical discharge. We keep the JJ under the ionized
air flow until the chip is mounted in the cavity.
The protocol for the fabrication of the JJ is as follows.
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Figure a.1: Junction fabrication through shadow evaporation using a Dolan bridge. a. Pattern
exposed during the electrical lithography. The finger-width w1 and w2 determine
the future JJ area. b. A cut along the two horizontal axes, indicated by a green
dashed line in a. Top: cut showing the Dolan bridge made of PMMA. Bottom: cut
showing the undercut of the PMGI, below the PMMA. c. Cut along the axes, as
indicated by the vertical dashed line in a. Two aluminum evaporation (grey) layers
with different angles are performed and separated through a control oxidation step,
generating an oxide layer (black line). We obtain a JJ in which the two types of
evaporation are superposed (red dashed box). d. Aluminum pattern after the two
evaporations. The JJ is indicated by the red dashed box.

a.0.0.1 Cleaning

The cleaning step contains two sub-processes: a toluene-methanol-acetone-IPA (TAMI)
cleaning and a piranha cleaning. Remarks: Toluene and methanol are toxic solvents
and piranha is a powerful acid. All must, therefore, be used with caution.

• Clean with toluene in a sonicator for 5 min

• Clean with methanol in a sonicator for 5 min

• Clean with acetone in a sonicator for 5 min

• Clean with IPA in a sonicator for 5 min

• Blow dry with nitrogen
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a.

b. c.

Figure a.2: SEM pictures of a JJ. a. Regular JJ; the image shows the overlap between the two
evaporations that defines the junction. b. and c. JJ after an electrical discharge.

• Clean with piranha solution for 5 min (do not agitate)

• Rinse with DI water

• Blow dry with nitrogen

a.0.0.2 Resist spin coat

• Rinse with DI water

• Blow dry with nitrogen

• Heat at 200 ◦C for 5 min

• Let the wafer/chip cool down for 1 min

• Re-cover entirely with PMGI resist and spin coat:

– 500 rpm 5 s (500 rpm/s)

– 2000 rpm 55 s (4000 rpm/s)

• Heat at 200 ◦C for 5 min

• Let the wafer/chip cool down for 1 min

• Re-cover entirely with PMMA resist and spin coat:
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– 500 rpm 5 s (500 rpm/s)

– 4000 rpm 55 s (4000 rpm/s)

• Heat at 180 ◦C for 15 min

• Let the wafer/chip cool down for 1 min

• Evaporate 10nm of aluminum on top of the PMMA:

– angle = 0°

– rate = 0.3 nm/s

a.0.0.3 Electrical lithography

The electrical lithography is performed using a SEM. The relevant parameters of the
lithography are as follows:

• Tension 30 keV

• Working distance 7 mm

• Aperture 7.5 µm

• Dose 380 µC µm−1

The development of the electrical lithography is achieved using the following proto-
col. The MIBK/IPA solution only develops the PMMA resist, while the MF319 only
develops the PMGI resist.

• Soak the wafer/chip in a potassium hydroxide (KOH) solution (2% in mass) for
1 min to remove the aluminum on top of the PMMA

• Rinse with DI water for 20 s

• Blow dry with nitrogen

• Stir in the MIBK/IPA (1:3 in volume) for 60 s

• Rinse in DI water for 20 s

• Blow dry with nitrogen

• Stir in the MF319 for 35 s (for a 4 mm x 30 mm chip) or 60 s (for a 2-inch wafer)

• Rinse in IPA for 20 s

• Blow dry with nitrogen
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a.0.0.4 Evaporation

The evaporation is performed using a Plassys evaporator, as follows:

• Insert the sample in the evaporator

• Pump the chamber at least overnight, so that it reaches a pressure below 1× 10−7 mbar

• Perform ion milling for 30 s (400 V, 22 mA, Ar, tilt = 0°)

• Perform ion milling for 30 s (400 V, 22 mA, Ar, tilt = 30°)

• Protect the sample with a shutter

• Evaporate the titanium to decrease the O2 pressure:

– rate 0.2 nm/s

– duration 2 min

• Remove the shutter

• Evaporate the aluminum:

– rate 0.5 nm/s

– thickness 20 nm

– tilt 0°

• Perform static oxidation:

– duration 25 min

– pressure PO2 for a few (0.5 to 10) mbar

• Evaporate the aluminum:

– rate 0.5 nm/s

– thickness 40 nm

– tilt 30°

• Perform static oxidation:

– duration 10 min

– pressure 10 mbar.

a.0.0.5 Lift off

• Remove the resist with NMP in the sonicator for 1 h at 60 ◦C

• Rinse with IPA

• Blow dry with nitrogen
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Figure a.3: Resistance of the JJ at 300 K, times the finger widths R(300)w1w2, as a function of
the square root of the oxidation pressure
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a.1 junction resistance

The Josephson energy EJ of the junction can be deduced by measuring the normal
resistance of the junction. The Ambegaokar–Baratoff relationship links the normal-
state resistance of a junction at zero temperature R(0) to the critical current of the
junction I0 = EJ/ϕ0, as follows:

R(0) =
π∆

2eI0
=
π∆ϕ0

2eEJ
, (a.1)

where ∆ ∼ 180 µeV is the aluminum superconducting gap. The resistance of the junc-
tion R(300) is measured at 300 K, and we estimate that R(0) is 15− 20% smaller.

The resistance R(300) should be proportional to 1/w1, 1/w2 and almost proportional
to
√
PO2 [215]. Fig. a.3 shows the resistance of 270 junctions made with a width w1 from

100 nm to 200 nm, a width w2 equal to 120 nm, 160 nm or 200 nm, and pressure PO2

equal to {3.5, 5.8, 6, 7, 15, 30} mbar. This shows how R(300)w1w2 depends on
√
PO2 .

We obtain a close-to-linear relationship. Assuming that the linear relationship is exact,
we compute the value of PO2 , which we will use during the evaporation process in order
to reach the targeted resistance R(300), working always with the same finger widths.
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b.1 twpa characterization
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Figure b.1: Cabling for the Josephson travelling wave parametric amplifier characterization.
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b.2 photocounting experiments

The readout resonator, the yes-no qubit and the multiplexing qubit are driven by
pulses that are generated using a Tektronix® Arbitrary Waveform Generator (AWG)
AWG5014C with a sample rate of 1 GS/s. Storage mode pulses are generated using a
Zurich Instruments® UHFLI with a sample rate of 1.8 GS/s. The UHFLI allows us to
change the pulse amplitude and phase without recompiling the sequence. This feature
decreases the time needed for Wigner tomography compared to a standard AWG and
makes the pulse sequence simple with the drawback of having to synchronize the two
AWGs. AWG pulses are modulated at a frequency 25 MHz for readout, 100 MHz for
yes-no qubit, and 75 MHz for storage and multiplexing qubit. They are up-converted
using single sideband mixers for readout resonator and multiplexing qubit and regular
mixers for the storage resonator and yes-no qubit, with continuous microwave tones pro-
duced respectively by AnaPico® APSIN12G, Agilent® E8257D, WindFreak® Syn-
thHD, and AnaPico® APSIN20G sources that are set at the frequencies fro +25 MHz,
fmp + 75 MHz, fs + 75 MHz and fyn + 100 MHz.
The two reflected signals from the readout and multiplexing qubit are combined with

a diplexer and then amplified with a Travelling Wave Parametric Amplifier (TWPA)
provided by Lincoln Labs. We tuned the pump frequency (fTWPA = 5.998 GHz) and
power in order to reach a gain of 20.7 dB at 7.138 GHz and 18.2 dB at 4.238 GHz.
The quantum efficiency of the yes-no readout signal was measured to be 18.7 ± 0.4%,
and should be close to the efficiency η of the multiplexing detection. We estimate that
this efficiency is the product of the efficiency of the microwave components before the
TWPA (25 to 60%), the efficiency of the TWPA itself (33% to 83%) and the (90 to
95%) efficiency coming from what is above the HEMT amplifier. The follow-up ampli-
fication is performed by a High Electron Mobility Transistor (HEMT) amplifier from
Low Noise Factory (LNF®) at 4 K and by two room temperature amplifiers. The
two signals are down-converted using image reject mixers before digitization by an
Alazar® acquisition board and numerical demodulation. Actually for the multiplexed
signal, nine demodulation operations are performed at each of the down-converted fre-
quencies 75 MHz + kχs,mp for 0 ≤ k ≤ 8. The full setup is shown in Fig. b.2. The Tek-
tronix® AWG is used as the master that triggers the UHFLI and the Alazar® board.
The frequency comb that is used for the multiplexing measurement is generated

and demodulated using the following method. Nine cosine functions at frequencies
{75 MHz+kχs,mp}0≤k≤8 are summed and multiplied by a Gaussian envelop numerically
with a sampling rate of 1 GHz/s over the duration of the pulse. A waveform is then
generated by the AWG following this list of values. This method ensures a good phase
coherence between all the comb frequencies. The AWG output is up-converted using a
single side band mixer whose LO port is driven at frequency fmp + 75 MHz.
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Figure b.2: Schematic of the setup. Each electromagnetic mode of the experiment is driven
by a RF generator detuned by the modulation frequency and whose color matches
the color of the corresponding mode in Fig. 5.1. Room temperature isolators are
not represented for the sake of clarity.
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c
WIGNER TOMOGRAPHY AND DENS ITY MATRIX
RECONSTRUCTION

The Wigner tomography is the tomography process that is most often used with a
harmonic oscillator, giving access to the Wigner function or Wigner quasiprobability
distribution of the quantum state. This appendix will define the Wigner tomography
and the experimental processes used to measure and calibrate it. It will then discuss
the Wigner–Weyl transformations, where we will see that the Wigner tomography is
simply the Wigner transformation of the density matrix and, reciprocally, that the
density matrix is the Weyl transformation of the Wigner function. We will also see
that the Weyl transformation is not straightforward to apply, as well as determining
the different approaches we can use to reconstruct the density matrix from the Wigner
function. One of these approaches is based on the Wigner map, which allows the mean
value of any observable to be measured using the Wigner function. When using this
approach, therefore, the computation is directly performed in the Wigner function phase
space, instead of through the use of the density matrix.
In this appendix, we will use the hat notation with the quantum operator to distin-

guish the classical coordinates x and p of the phase space from the quantum Hermitian
operators x̂ and p̂, thereby defining â = x̂ + ip̂. We also introduce the quadrature
x̂θ = cos(θ)x̂+ i sin(θ)p̂ so that x̂π/2 = p̂.

c.1 the wigner tomography

c.1.1 Definition

TheWigner tomography is a process leading to the measurement of the Wigner function.
The Wigner function of a harmonic oscillator with the density matrix ρ is defined as

W (α) =
2

π
Tr(D̂†(α)ρD̂(α)P̂), where D̂(α) = eαâ

†−α∗â is the displacement operator of

the harmonic mode by the coherent field α, and P̂ = eiπâ
†â is the photon number parity

operator. A Wigner function is thus the expectation value of the photon number parity
operator after displacement by the amplitude −α.
The Wigner function is a quasiprobability distribution as, once it is integrated along

the quadrature x̂θ+π/2 direction, it leads to the probability distribution of the x̂θ quadra-
ture of the field. It is the unique quasiprobability distribution that exhibits this simple
property [7]. Compared to classical quasiprobability distributions (which are always
positive) the Wigner quasiprobability distribution can be negative; this negativity is
the sign of a “non classical” quantum state. For example, the Wigner function of a co-
herent state, a thermal state, and a squeezed state are all positive Gaussian functions.
Those states are considered as “classical”, as we can generate them using a classical
source of light. In comparison, the Wigner function of the Fock state |1〉 contains a
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harmonic
mode

qubit

Figure c.1: A circuit diagram of a direct Wigner tomography using a parity measurement
based on dispersive interaction. After a displacement pulse on the harmonic mode,
an unconditional π/2 pulse is applied to the qubit. The qubit evolves freely during
the time ∆τ = π/χ, before a new ±π/2 pulse is sent and its state is read out.

negativity; this is expected, as we need a quantum source of light in order to generate
a single photon. The Wigner tomography is a powerful tool with which to study the
quantum state, as an equivalence exists between the Wigner function and the density
matrix.

c.1.2 Pulse sequence

There are various ways to measure a Wigner function [7]; however, most of these are
not direct measurements. In circuit QED, we usually use a technique that was proposed
by Lutterbach and Davidovich in 19971 [32, 180, 181] which enables the direct mea-
surement of the Wigner function. The Lutterbach and Davidovich proposal is based on
the measurement of the parity operator, which is made possible thanks to the disper-
sive coupling χ shared between the harmonic mode and a qubit. We will discuss the
implementation of this measurement in Sec.c.1.3.
The Wigner tomography sequence is represented in Fig. c.1. It starts by performing

a displacement on the harmonic mode, following which two successive π/2 pulses are
applied to the qubit, separated by the waiting time ∆τ = π/χ. The sequence thus
implements a parity measurement and maps the parity of the harmonic mode onto the
z-axis on the qubit. It is then terminated by a readout of the qubit state.

c.1.2.1 Pulse characteristics

The pulses of the Wigner tomography sequence have to comply with some constraints.
Due to the dispersive coupling, the harmonic mode inherits some self-Kerr rate. Thus,
the displacement must be achieved in an amount of time that is shorter than the inverse
of the self-Kerr rate, otherwise the harmonic mode will not be displaced by a coherent
state but instead by a squeezed state. The π/2 pulses applied to the qubit must be
independent of the photon number of the harmonic mode. To do so, the duration of
these pulses has to be much shorter than the inverse cross-Kerr rate χ between the
harmonic mode and the qubit. In this thesis, the displacement pulses are Gaussian
pulses of 100 ns, with a width of 25 ns, while the π/2 pulse is a Gaussian pulse of 18 ns,
with a width of 4.5 ns.

Depending on the system, the readout of the qubit state can be achieved using a
dedicated readout resonator or by using the same harmonic mode as the one studied.

1 This technique was initially proposed for use in cavity QED.
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c.1 the wigner tomography

In the first case, as the readout resonator is dispersively coupled to the qubit, there
exists a parasitic cross-Kerr rate between the harmonic mode and the readout mode.
Thus, the heterodyne detection of the readout field contains an offset that depends on
the harmonic mode state. The Q quadrature of the readout reads as

Qπ/2 = pgQg + peQe +Qρ, (c.1)

where pg/e is the qubit probability in the state |g〉 / |e〉, Qg/e is the value of the record
for the qubit state |g〉 / |e〉, and Qρ the offset that depends on the harmonic mode
state2. The easiest way to remove this offset is to perform the experiment a second
time, replacing the second π/2 pulse with a −π/2 pulse. Thus, the Q quadrature reads

Q−π/2 = peQg + pgQe +Qρ, (c.2)

where pg/e are the same weight as the one in Eq. (c.1). The difference between the two
records is independent of the harmonic mode state, as follows

Qπ/2 −Q−π/2 = (pg − pe)(Qg −Qe). (c.3)

This technique is even more powerful as it enables us to remove any offset in the Wigner
tomography. Calibrating the Qg and Qe quadratures using the amplitude of the qubit’s
Rabi oscillation, the Wigner function reads

W (α) =
π

2

Qπ/2 −Q−π/2
Qg −Qe

. (c.4)

If the readout is performed in the same harmonic mode, we have to wait until the
latter relaxes to its ground state before performing a readout, otherwise the readout will
be strongly modified by the existing harmonic mode field. Even so, it is recommended
that the experiment be performed a second time, this time with a −π/2 pulse, in order
to remove any offset.

c.1.2.2 Noise and averaging

A Wigner tomography is a measurement that can take from minutes to hours to be
performed. During the measurement process, the setup can be sensitive to the amplifier
phase and gain drift, as well as to temperature drift and qubit parameter drift (such as
frequency drift or relaxation and dephasing-rate drift). A Wigner function is measured
pixel by pixel, thus the harmonic mode quadrature phase space is meshed. We then have
two choices: either average the measurement of one pixel before moving on to the next
one, or measure each pixel of the mesh once only and repeat this mesh measurement
in order to obtain the average. The first approach is highly sensitive to low-frequency
noise and drifts. The averaging of one pixel measurement is long enough such that the
low-frequency noise and the system drifts have different amplitude when measuring the
next pixel. Thus, each pixel are measured with different setup and system parameters

2 Qg and Qe are modified for higher photon numbers, and the contrast Qg −Qe decreases with photon
numbers. We can counter this effect either by correcting the readout frequency or by flushing the
harmonic mode before the readout.
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pixel 1 pixel 1 pixel 2 pixel 2 pixel n pixel n

averaging loop

Figure c.2: Wigner tomography averaging. Each pixel of the Wigner function is measured twice
(once with the π/2 pulse sequence and once with the −π/2 pulse sequence) before
moving to the next pixel. Once all the pixels have been measured, we repeat the
sequence to obtain the average.

and the Wigner function is distorted. In the second approach, the Wigner tomography is
insensible to low-frequency noise or drift, at the expense of being more sensitive to noise
or drift that is of a frequency equal to the mesh measurement’s repetition frequency.
As the mesh measurement can be obtained in a few seconds, which corresponds with
frequencies that have relatively low noise and drifts, using the second approach is
advised. For the same reason, it is recommended to interleave sequences that have π/2
pulses with sequences that have −π/2 pulses. The interleaved sequences, together with
their mesh averaging, are represented in Fig. c.2.

c.1.3 Parity measurement

The duration ∆τ can be calibrated using qubit state revival during Ramsey interferom-
etry (see supplementary material of Ref. [208]). The Ramsey interferometry sequence is
represented on Fig. c.3a. The only difference compared to a usual Ramsey interferome-
try sequence is that the harmonic mode starts in a coherent state instead of the vacuum.
Due to the dispersive interaction, revivals happen every multiple of 2π/χ which allows
us to set ∆τ as half of the revival time in Fig. c.3b. Indeed, the qubit acquires a phase
nχt for each Fock state |n〉. Thus for large coherent state, the phase of the qubit be-
comes random, leading to a drop of its coherence, except for specific times equal to
2kπχ with k integer for which the phase acquired by the qubit is a multiple of 2π.

For the same reason as for the Wigner function, the experiment has to be repeated
twice with a final pulse of either π/2 or −π/2. The signal difference between the final
−π/2 and +π/2 pulses can be expressed as

S(t) =
Qπ/2 −Q−π/2
Qg −Qe

= e|α|
2(cos(χt)−1)cos(|α|2sin(χt))e−tΓ2−γ|α|2t.

(c.5)

This expression is derived in the supplementary material of Ref. [208] under the assump-
tion of a harmonic oscillator with infinite lifetime and a qubit excited state population
equals to zero. The last exponential decay factor was added to take into account the
intrinsic decoherence of the qubit and the measurement-induced dephasing rate of the
harmonic mode on the qubit during the waiting time. It is also possible to take into
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a. b.

harmonic
mode

qubit

Figure c.3: Revival of the Ramsey interferences on the yes-no qubit a. Circuit diagram for Ram-
sey interferometry in the presence of harmonic mode photons. After displacement
pulse, an unconditional π/2 pulse is applied to the qubit. We then let the qubit
evolve freely during a time t before doing a new ±π/2 pulse and measure its state.
b. Measured (dots) and predicted (lines) signal S as a function of waiting time t for
the storage mode and the yes-no qubit. Predicted signal is computed from Eq. (c.5).
Yes-no qubit revivals occur every 2π/χs,yn ≈ 0.7µs.

account a second order Kerr correction that shifts the revival time with the amplitude
of the coherent state [208]. At first order this shift is given by

trevival = 2∆τ
(
1− 2|α|2χho,ho,q∆τ

)
. (c.6)

This experiment was performed to calibrate the Storage mode Wigner tomography, by
adjusting the above parameters to allow the model to match the measured signal shown
in Fig. c.3b, we find ∆τ = 337 ns, γ = 0.23 µs−1 and χs,s,yn = −14 kHz. However, this
simple expression does not take into account the finite lifetime of the storage mode and
we prefer to only use it as a calibration of ∆τ and not as a calibration of χs,s,yn.

c.1.4 Axis calibration

The axes x and p of the phase space of the Wigner function W (α = x+ ip) = W (x, p)

have to be calibrated. They correspond to the real and imaginary parts of the dis-
placement −α and thus can be calibrated using any calibration of the harmonic mode
displacement. In this thesis, the axes of the phase space x, p are calibrated using the
same pulse sequence as the Wigner tomography. The photon number calibration real-
ized before (see section 5.2.2) cannot be used here for two reasons. First, in order to
measure the measurement back-action of the multiplexed photon number measurement
(see Sec. 8.1), we have to play the Wigner sequence with displacement pulses detuned
from the storage mode frequency, while the photon number calibration is only valid for
resonant pulses. Second, high order Kerr interaction affects the calibration when the
harmonic mode hosts a large number of photons. Thus, we decided to use the width
of the Wigner function when the storage mode is in the thermal equilibrium state to
calibrate the phase space axes. For a thermal state with a thermal photon number nth

the Wigner function is a 2D Gaussian function with a width
√
nth + 1/2 [7]

Wρ(nth)(α = x+ ip) =
2

π

1

2nth + 1
e−2|α|2/(2nth+1). (c.7)

199



wigner tomography and density matrix reconstruction

Figure c.4: Calibration of the quadrature axis for Wigner tomography. Blue dots represent the
standard deviation of the quadratures of the displaced thermal equilibrium state of
the storage mode as a function of drive amplitude for various detuning using only
the photon number calibration (see section 5.2.2). In contrast, yellow dots show the
same standard deviation with the noise based quadrature calibration.

For a thermal state displaced by an amplitude β the Wigner function is still a 2D Gaus-
sian function with a width

√
nth + 1/2 but centered on β. In thermal equilibrium, the

storage mode has an average photon number nth = 0.03 , which is measured using the
standard photon-counting experiment (see Sec. 5.2.1). We calibrated the quadrature
axes in order to get the expected geometrical mean √σxσp = 0.53 of the spread along
the quadratures x and p when the storage mode is at thermal equilibrium. To take
into account high order Kerr effects, we displace the storage mode equilibrium state
and measure its Wigner function. We adjust the calibration to still find a spread of
√
σxσp = 0.53. The function used for the calibration is a third order polynomial func-

tion which gives |α| as a function of the pulse amplitude Vmax,s. We repeat this protocol
for 3 detuning values δfs between the displacement pulse and storage mode frequencies.
Fig. c.4 shows the mean quadrature spread of the displaced storage mode thermal state
Wigner function as a function of drive amplitude Vmax,s for the photon number cali-
bration and the Wigner phase space calibration. For example, the polynomial function
for a detuning of 4 MHz reads α = x+ ip = eiφs(77.3Vmax,s + 86.7V 2

max,s − 1343V 3
max,s)

where Vmax,s is expressed in Volts and φs is the phase of the pulse. For a typical value
Vmax,s = 20 mV, the second order term is a correction of about 2% and the third one
is a correction of about 0.07%.

c.2 the wigner–weyl transformation

c.2.1 Definition

The Wigner function is in fact the Wigner transformation of the density matrix and
is a part of the Wigner–Weyl transformation, which creates a bijection between the
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real function of the phase space and the quantum operator of the Hilbert space. The
Wigner transform WÔ of a quantum operator Ô is defined as

WÔ(α = x+ip) =
1

π

∫ +∞

−∞
e−2ipy〈x+y/2|Ô|x−y/2〉dy =

2

π
Tr(D̂†(α)ÔD̂(α)P̂), (c.8)

where {|x〉} is the eigenbasis of the quadrature operator x̂. The inverse transform Ôf ,
which is the Weyl transform of the real function f(x, p), is defined as

Ôf =
1

4π

∫∫∫∫
f(x, p)eikx(x̂−x)+ikp(p̂−p)dxdpdkxdkp

= π

∫∫
f̃(kx, kp)e

ikxx̂+ikpp̂dkxdkp

, (c.9)

where f̃(kx, kp) is the Fourier transform of f(x, p). Thus, the Weyl transform can be
seen as the replacement of the real variables x and p by the quantum operators x̂ and
p̂, defined as

x̂ =
â+ â†

2
,

p̂ =
â− â†

2i
.

(c.10)

c.2.2 Density matrix reconstruction

As the Wigner transform admits a reverse transformation, the Weyl transform can
be used to reconstruct the density matrix from the Wigner function [216, 217, 218].
However, it leads to an expression of the density operator in the x̂ and p̂ basis that is
not straightforward to use. In addition, this calculation can be significantly simplified
[219]. In this section, we will discuss two other ways to reconstruct the density matrix.

c.2.2.1 Maximum likelihood reconstruction

The maximum likelihood (MaxLike) approach consists of finding the physical3 density
matrix with the closest Wigner function to the one measured [220, 221, 219]. This
approach is robust against the noise and imperfection of the measurement and ensures
that a Hermitian density matrix is obtained that is both positive and normalized. A
review of MaxLik methods in quantum mechanics can be found in Ref. [222].

c.2.2.2 Reconstruction using the Wigner map

For any operator Ô, we can apply the Wigner transform (see Eq. (c.8)) to obtain the
operator’s Wigner mapWÔ. The mean value of the operator Ô can be derived from the
integral over the phase space of the product of the Wigner map WÔ and the Wigner

3 density matrix ρ such that ρ ≥ 0 and Tr(ρ) = 1.
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function W (α) (namely, the Wigner map of the density matrix) multiplied by π, as
follows:

π
∫

dx
∫

dpWρ(x, p)WÔ(x, p)

= 1
π

∫
dx
∫

dp
∫

dy
∫

dy′ e−2ip(y+y′)〈x+ y/2|ρ|x− y/2〉〈x+ y′/2|Ô|x− y′/2〉
=
∫

dx
∫

dy
∫

dy′ δ(y + y′)〈x+ y/2|ρ|x− y/2〉〈x+ y′/2|Ô|x− y′/2〉
=
∫

dx
∫

dy 〈x+ y/2|ρ|x− y/2〉〈x− y/2|Ô|x+ y/2〉
=
∫

du
∫

dv 〈u|ρ|v〉〈v|Ô|u〉
= Tr(ρÔ) = 〈Ô〉ρ

. (c.11)

This is a powerful tool, as it enables us to compute the mean value of any operator
without reconstructing the density matrix. For example, for x̂ and p̂ operators, Wigner
maps take the simple expression

Wx̂(α = x+ ip) = x/π

Wp̂(α = x+ ip) = p/π
, (c.12)

and their mean value can be easily computed as

〈x̂〉 =
∫

dx
∫

dpW (x, p)x

〈p̂〉 =
∫

dx
∫

dpW (x, p)p
. (c.13)

We can use the same approach to reconstruct the density matrix, as any element
ρnm of the density matrix is the mean value of the operator |n〉〈m|. The Wigner map
for every operator |n〉〈m| reads

W|n〉〈m|(x, p) =
1

π

∫
dye−2ipyψn(x+ y/2)ψm(x− y/2), (c.14)

where ψn is the wavefunction of |n〉

〈x|n〉 = ψn(x) =

(
2

π

)1/4 1√
2nn!

Hn(
√

2x)e−x
2

(c.15)

and Hn(x) = (−1)nex
2 dn

dxn e
−x2 is the Hermite polynomial function of order n. Thus,

the matrix element ρnm of the harmonic mode is given by

ρnm = π

∫∫
dxdpW|n〉〈m|(x, p)W (x, p). (c.16)

This approach requires the Wigner function to be properly calibrated. Specifically,
the Wigner function must be normalized

∫∫
d2αW (α) = 1, as its integral is equal to

the density matrix trace
∫∫

d2αW (α) = Tr(ρ). Each Wigner map W|n〉〈m|(x, p) can be
easily computed using any formal calculation software4; additionally, it is necessary to
check that the mesh of the phase space is thin enough, compared to the pattern size
of W|n〉〈m|(x, p), that the integral of W|n〉〈m|(x, p)W (x, p) can be well approximated by
the discrete sum over the phase-space pixel.
For the diagonal element of the density matrix, the Wigner map W|n〉〈n| can easily

be expressed, as it is equal to the Wigner function of the Fock state |n〉,

W|n〉〈n| = (−1)n
2

π
e−2(x2+p2)Ln(4(x2 + p2)), (c.17)

where Ln(x) is the Laguerre polynomial function of order n.
4 We recommend the use of Mathematica
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d
S IMULATION OF PHOTOCOUNTING EXPERIMENTS

In this appendix, we describe the master equation simulations used to reproduce the
experimental results of Chaps. 5,6, 7 and 8. We simulated the three photon-counting
experiments, the standard (see App. d.1.1),the fluorescence (see App. d.1.1.1) and
the multiplexed (see App. d.1.3) photocounting; the photon number calibration (see
App. d.1.2) of the storage mode, and the dephasing rate induced by the multiplexed
measurement of the storage mode photon number (see App. d.1.4).
All simulations were performed using the Python package QuTiP [223]. We simu-

lated the complete system composed of the storage mode, the yes-no qubit and the
multiplexing qubit with all couplings, except in the simulation of the measurement-
induced dephasing rate for which we only took into account the storage mode and the
multiplexing qubit. The storage mode was modeled as an harmonic oscillator while the
transmon qubits were replaced by two-level systems. The Hilbert space of the storage
mode was truncated at a photon number ranging from 10 to 25 photons depending on
the simulation.

d.1 photocounting simulations

d.1.1 Photocounting with the yes-no qubit

Both photon-counting approaches are simulated in a very similar manner. The first
simulation (yes-no simulation) describes the use of conditional operations on the yes-no
qubit. This experiment serves as a calibration of the number of photons in the storage
mode and of all relevant parameters. This experiment starts with a displacement of
the storage mode followed by a conditional π pulse on the yes-no qubit at frequency
fyn − δfyn before detecting the expectation value of the Pauli operator σz,yn.
We write the Hamiltonian of the system in a frame rotating at ωs−χs,mp/2−χs,yn/2

for storage mode, ωyn − 2πδfyn for yes-no qubit mode and ωmp for multiplexing qubit
mode as follows

Ĥ1/~ = 2πδfyn
σ̂z,yn

2
− χs,ynn̂s

σ̂z,yn

2
− χs,mpn̂s

σ̂z,mp

2
− χs,sn̂s(n̂s − 1)

−χs,s,ynn̂s(n̂s − 1)
σ̂z,yn

2
− χs,s,mpn̂s(n̂s − 1)

σ̂z,mp

2
+ εyn(t)σ̂x,yn

+λ(t)(εmaxe
i(χs,mp+χs,yn)t/2âs + ε∗maxe

−i(χs,mp+χs,yn)t/2â†s)

, (d.1)

where λ(t) is a Gaussian function with duration 100 ns, width 25 ns and a maximum of
1 so that the storage mode displacement pulse reads εs(t) = λ(t)εmax and εyn(t) is the
time envelope of a Gaussian pulse with duration 1.9 µs and width 475 ns. The amplitude

of the pulse is chosen to obtain a π rotation on the yes-no qubit. The term −δfyn
σ̂z,yn

2
takes into account the detuning between the π pulse and the yes-no qubit frequency.
εyn(t) is delayed with respect to λ(t) to match the experimental pulse sequence. In

203



simulation of photocounting experiments

comparison with the Hamiltonian (5.1) this simulation adds higher order cross-Kerr
interactions between each qubit and the storage mode and a self-Kerr term on the
storage mode but it does not take into account the readout resonator.
In addition to the Hamiltonian (d.1), we supply the solver with eight collapse oper-

ators to simulate the dynamics of the following master equation

ρ̇ = − i
~

[Ĥ1, ρ] + 2Γφ,sL(n̂s)ρ

+(1 + nth,s)Γ1,sL(âs)ρ+ nth,sΓ1,sL(â†s)ρ

+
1

2
Γφ,ynL(σ̂z,yn)ρ+ Γ1,ynL(σ̂−yn)ρ

+
1

2
Γφ,mpL(σ̂z,mp)ρ+ Γ1,mpL(σ̂−mp)ρ

, (d.2)

with nth,s the expectation values of n̂s when the system is at rest due to thermal occu-
pation. All decoherence and relaxation rates are measured using previously explained
calibration.
The master equation is solved using the function “mesolve” of QuTiP starting from

a thermal state with nth,s average photons in the storage mode, the yes-no qubit in the
ground state |g〉 and the multiplexing qubit also in the ground state |g〉. The solver
iteratively computes the density matrix with a 10 ns time step during the displacement
pulse and the π pulse. We compute the expectation value 〈σ̂z,yn〉 at the end of the
sequence and convert it into a probability P e of finding the yes-no qubit in the |e〉
state.
This simulation can be used to reproduce the experiment in Fig. 5.2 by adjusting

the following parameters {µ = εmax/Vmax,s, χs,yn, χs,s, χs,s,yn, nth,s} where Vmax,s is the
maximum amplitude in Volts of the storage pulse. Note that we need to run the sim-
ulation for every couple of parameters (Vmax,s, δfyn). Tab. d.1 compiles the values of
fitted parameters.

d.1.1.1 Photocounting with the multiplexing qubit

A second simulation (fluorescence simulation) was carried out to compare the photon-
counting experiment in Fig. 6.3 using a single drive on the multiplexing qubit with
theory. This experiment also starts with a storage mode displacement but it is followed
by a 2 µs Gaussian pulse on the multiplexing qubit at the frequency fmp − δfmp with
an amplitude expressed as a Rabi frequency Ω = χs,mp/4. The measured reflection
coefficient of the multiplexing qubit r(δfmp) is given by Eq. (2.61) and since the Rabi
frequency is given by Ω = 2

√
Γ1,mp|〈ain〉| we get an emission coefficient

1−Re (r(δfmp)) =
2Γ1,mp

Ω
Re
(
e−i arg(〈ain〉)〈σ̂−,mp〉

)
(d.3)

in the frame rotating at fmp − δfmp for the multiplexing qubit. If we set the phase
of the drive so that i〈ain〉 = 0, meaning we drive the qubit along σy,mp, the emission
coefficient becomes

1−Re (r(δfmp)) =
Γ1,mp

Ω
〈σ̂x,mp〉 (d.4)
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d.1 photocounting simulations

The Hamiltonian of the problem in the frame rotating at ωs − χs,mp/2− χs,yn/2 for
storage mode, ωyn for yes-no qubit and ωmp − 2πδfmp for multiplexing qubit reads

Ĥ2/~ = 2πδfmp
σ̂z,mp

2
− χs,ynn̂s

σ̂z,yn

2
− χs,mpn̂s

σ̂z,mp

2
− χs,sn̂s(n̂s − 1)

−χs,s,ynn̂s(n̂s − 1)
σ̂z,yn

2
− χs,s,mpn̂s(n̂s − 1)

σ̂z,mp

2
− Ω

2
εmp(t)σ̂y,mp

+λ(t)(εmaxe
i(χs,mp+χs,yn)t/2âs + ε∗maxe

−i(χs,mp+χs,yn)t/2â†s)

, (d.5)

where εmp(t) is a Gaussian function of duration 2 µs, width 250 ns and amplitude 1.
εmp(t) is delayed compare to λ(t) to reproduce the experimental pulse sequence. We
add to this Hamiltonian the same relaxation and decoherence channels as for the yes-no
simulation (see Eq. (d.2)) for which the decoherence and relaxation rates were measured
independently. The resulting master equation only differs from the yes-no simulation
by the Rabi drive that addresses the multiplexing qubit instead of the yes-no qubit.
The master equation is solved using the "mesolve" function of QuTiP with a time step
of 5.25 ns starting from a thermal state with nth,s average photons for storage and the
yes-no qubit and the multiplexing qubit in the ground state |g〉. Finally, the expectation
value 〈σ̂x,mp〉 is computed and integrated during the 2 µs of the pulse.

We compare the measured emission coefficient in Fig. 6.3 to the simulated signal
A〈σ̂y,mp〉 where A is left as a free parameter due to a small parasitic reflection in the
measurement setup and thermal population. The parameters {µ, χs,t, χs,s, χs,s,t, nth,s} is
already set by the calibration above using the simulation of the yes-no qubit. From the
fluorescence simulation, we thus extract the parameters {χs,mp, χs,s,mp, A} by compar-
ing the experimental observations in Fig. 6.3 with the simulation for various Vmax,s and
δfmp. Fitted values are given in Tab. d.1. Finally, we ran the yes-no simulation again
taking into account the updated multiplexing qubit parameters. As expected only small
changes in the results of the yes-no qubit simulation are observed.

parameter fitted values
µ 1.45 (mV µs)−1

χs,yn 1.42 MHz
χs,mp 4.9 MHz
χs,s -0.02 MHz
χs,s,yn -0.003 MHz
χs,s,mp -0.08 MHz
nth,s 0.03

Table d.1: Parameters extracted from the photocounting simulations using the multiplexing
or yes-no qubit. All parameters except those related to the multiplexing qubit are
determined using a fit of the yes-no qubit simulation to the Fig. 5.2. Parameters
related to multiplexing qubit are obtained using a fit of the simulation to Fig. 6.3.

d.1.2 Evolution of the average photon number in the storage mode

We simulated the filling of the storage mode by a displacement pulse on the resonator.
We simulated the same master equation used for the photocounting simulations with
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parameters obtained from the photocounting simulations (see Tab. d.1) but without
applying any drive on the qubits. Only the displacement pulse on the storage mode is
modeled i.e. εmp(t) = 0, δfmp = 0, εyn(t) = 0, and δfyn = 0.
The "mesolve" function of QuTiP computes the density matrix with a time step of

10 ns and returns the mean number of photons in the storage mode at the end of the
displacement pulse for various drive amplitudes. Fig. 5.3 shows the square root of the
expected mean photon number as a function of the amplitude εmax. We obtain a scaling
factor

√
〈ns〉 = 85.9 V−1Vmax,s used in the photon number calibration of the storage

mode, where Vmax,s is the maximum voltage output by the pulse generator that drives
the displacement.

d.1.3 Simulation of multiplexed readout

In this subsection, we simulate how a frequency comb reflects off the multiplexing qubit.
We write the Hamiltonian in the frame rotating at ωs−χs,mp/2−χs,yn/2 for the storage
mode and at the qubit frequencies for the qubits as

Ĥ3/~ =− χs,ynn̂s
σ̂z,yn

2
− χs,mpn̂s

σ̂z,mp

2
− χs,sn̂s(n̂s − 1)− χs,s,ynn̂s(n̂s − 1)

σ̂z,yn

2

− χs,s,mpn̂s(n̂s − 1)
σ̂z,mp

2
+

Ω

2
(ε∗comb(t)σ̂−mp + εcomb(t)σ̂+

mp)

+ λ(t)(εmaxe
i(χs,mp+χs,yn)t/2âs + ε∗maxe

−i(χs,mp+χs,yn)t/2â†s)

, (d.6)

where Ω = χs,mp/2 and εcomb(t) is the product of a Gaussian function with the sum
of nine complex tones

∑8
k=0 exp(iχs,mpkt). The Gaussian envelope of εcomb(t) has a

duration of 2 µs, a width of 250 ns, and a maximum amplitude of 1 and the delay
between εcomb(t) and λ(t) reproduces the experimental sequence. The master equation
(d.2) is used with a time step of 1 ns for various amplitudes εmax. We obtain the time
evolution of 〈σy,mp〉 enabling us to compare the experimental measurements of Fig. 7.4
to the model. To do so, we integrate the simulated function 〈σy,mp〉 × cos(χs,mpkt) for
each integer k, similarly to the demultiplexing processing we perform on the multiplexed
experimental signal. Note that, in the case k = 0, we need to divide the integral by
2 in order to perform a proper demultiplexing. By combining this simulation with the
photon number calibration, we get the expected values of the 9 multiplexing readout
signals as a function of the mean number of photons in the storage mode used in
Fig. 7.4.

d.1.4 Simulation of measurement-induced dephasing on the storage mode

In this part, we only simulate the multiplexing qubit and the storage mode to decrease
the computational cost of the simulation. The Hamiltonian of the simulation in the
frame rotating at the multiplexing qubit resonant frequency and at ωs + 2πδf0

s for the
storage mode is

Ĥ4/~ =− χs,mp
σ̂z,mp + 1

2
n̂s − δf0

s n̂s − χs,s,mpn̂s(n̂s − 1)
σ̂z,mp + 1

2

+
Ω

2
(εcomb(t)σ̂+

mp + ε∗comb(t)σ̂−mp),

(d.7)
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where εcomb(t) is the product of a Gaussian function with the sum of nine complex
exponential

∑8
k=0 exp(iχs,mpkτ). The width of the Gaussian function is equal to one

quarter of the duration t of the pulse. We add four dephasing and relaxation channels
to this Hamiltonian to obtain the master equation

ρ̇ =− i

~
[Ĥ4, ρ] + 2Γφ,sL(n̂s)ρ+ Γ1,sL(âs)ρ

+
1

2
Γφ,mpL(σ̂z,mp)ρ+ Γ1,mpL(σ̂−mp)ρ.

(d.8)

The storage is initialized in a coherent state of amplitude β = 1.55 and the multiplexing
qubit is initialized in state |g〉. We simulate the dynamics of the system for a pulse
duration t going from 100 ns to 5 µs and for Ω ranging from 0 to 2χs,mp. We compute
the expectation value of X̂ = (âs+â

†
s)/2 at the end of each simulation. For a given Ω, we

extract the time evolution of 〈X̂〉 under the influence of the multiplexed measurement
as shown on Fig. d.1a. This decaying sinusoid is fitted using Eq. (8.2) to obtain the
oscillation frequency δfs and the decay rate Γd,s and compare it to the same measured
quantities (see Fig. 8.4)
We repeat the simulation using a square pulse envelope instead of Gaussian pulse for

εcomb to make the simulation faster for several values of χs,mp from 1.5 to 8.8 MHz by
steps of 1.4 MHz. We observe that δfs(Ω) and Γd,s(Ω) increase as χs,mp becomes larger
but that the maxima and minima of the curve are always found for the same Ω/χs,mp

ratio (Fig. d.1b) as predicted by the theory (see Sec. 8.2.1).
Varying the initial coherent state amplitude β (see Fig. d.1c), we observe that the

dephasing Γd,s depends on the amplitude of the initial coherent state. As the frequency
comb contains only a finite number of frequencies fmp − nχs,mp with 0 ≤ k ≤ 8, we are
not exactly in the infinite frequency comb approximation and due to “border” effect,
the decoherence between two Fock states |n〉 and |m〉 does not depends only of the
differences |n−m| but also of the value of n and m.
However, when using a larger comb probing the frequencies {ωmp − kχs,mp}−4≤k≤12,

the dephasing rate Γd,s shows lower minimum, closer from Ω/χs,mp integer (see Fig. d.1d).
The curve Γd,s(Ω) also becomes more χs,mp periodic as the theory predicts with the
infinite comb approximation. Moreover, the dephasing rate Γd,s becomes independent
of the initial coherent state ( for amplitude smaller than 1.8) as for any Fock state
initially populated, one can consider the infinite frequency comb valid and there is no
“boarder” effect in particular for the Fock state |0〉 (see Fig. d.1e).
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Figure d.1: Simulations of the measurement-induced dephasing rate and of the ac-Stark shift
induced by a frequency comb. a. Ramsey-like oscillations of the storage mode for
Ω = χs,mp/2 and an initial coherent field amplitude β = −1.55. Blue dots are the
simulated expectation values of X̂ and red line is the theory given by the Eq. (8.2).
b. Simulated measurement-induced dephasing rate Γd,s and ac-Stark shift as a
function of Ω/χs,mp for various values of χs,mp. Simulations show the same pattern
with maxima and minima for some specific values of Ω/χs,mp as in the experiment
in Fig. 8.4. c. Simulated measurement-induced dephasing rate as a function of
Ω/χs,mp for various initial coherent state amplitudes β in the storage mode and
comb probing from 0 to 8 photons. d. Simulated measurement-induced dephasing
rate as a function of Ω/χs,mp for a frequency comb probing from 0 to 8 photons
(yellow line) and a frequency comb probing from -4 to 12 photons (i. e. probing at
frequencies {ωmp−kχs,mp}−4≤k≤12). e. Simulated measurement-induced dephasing
rate as a function of Ω/χs,mp for various initial coherent state amplitudes β in the
storage mode and comb probing from -4 to 8 photons (i. e. probing at frequencies
{ωmp − kχs,mp}−4≤k≤8).
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e
DERIVATION OF THE CORRELATIONS FUNCTIONS OF THE
COMPLEX RECORD AND IF S IGNAL

The complex record s0(t) = I(t)+iQ(t) is related to the IF signal sIF(t) = I(t) cos(ωIFt)−
Q(t) sin(ωIFt) by the equation

s0(t) = lim
fIF→+∞

2fIF

∫ t+1/(2fIF)

t−1/(2fIF)
sIF(t′)e−iωIFt′dt′ (e.1)

Thus, using the notation TIF = 1/fIF, the correlation function gs0(τ) of the complex
record can be written as

gs0(τ) = 〈s∗0(t+ τ)s0(t)〉

= lim
fIF→+∞

4f2
IF

∫ t+TIF/2

t−TIF/2
dt′
∫ t+τ+TIF/2

t+τ−TIF/2
dt′′〈sIF(t′′)sIF(t′)〉eiωIF(t′′−t′).

(e.2)

By making the change of variable t′′ → τ ′ = t′′ − t′, the correlation function becomes

gs0(τ) = lim
fIF→+∞

4f2
IF

∫ t+TIF/2

t−TIF/2
dt′
∫ t+τ−t′+TIF/2

t+τ−t′−TIF/2
dτ ′〈sIF(τ ′+ t′)sIF(t′)〉eiωIFτ

′
. (e.3)

We recognize at the center of the integrals, the correlation function gsIF(τ ′) = 〈sIF(τ ′+

t′)sIF(t′)〉 of the IF signal. Using the rectangular function ΠT (t) defined as{
ΠT (t) = 0 if |t| > T/2

ΠT (t) = 1 if |t| ≤ T/2
, (e.4)

we can write the correlation function gs0(τ) as

gs0(τ) = lim
fIF→+∞

4f2
IF

∫ +∞

−∞
dt′
∫ +∞

−∞
dτ ′gsIF(τ ′)ΠTIF

(t′−t)ΠTIF
(τ ′−(t+τ−t′))eiωIFτ

′
.

(e.5)

The integral over τ ′ is the Fourier transform of the function gsIF(τ ′)ΠTIF
(τ ′−(t+τ−t′))

evaluated in −ωIF. Thus, this integral is equal to the convolution product of the gsIF(τ ′)

Fourier transform, noted g̃sIF(ω) and the Fourier transform of ΠTIF
(τ ′ − (t + τ − t′)).

Replacing the integral over τ ′ by the integral over ω of the convolution product, the
correlation function reads

gs0(τ) = lim
fIF→+∞

2fIF

π

∫∫ +∞

−∞
dt′dωg̃sIF(−ωIF−ω)sinc

(
π
ω

ωIF

)
ΠTIF

(t′−t)e−iω(t+τ−t′).

(e.6)

The integral over t′ is the Fourier transform of the translated rectangular function
ΠTIF

(t′ − t) evaluated in −ω. Thus, the correlation function reads

gs0(τ) = lim
fIF→+∞

1

π2

∫ +∞

−∞
dωg̃sIF(−ωIF − ω)sinc

(
π
ω

ωIF

)2

e−iωτ . (e.7)
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if signal

Taking the Fourier transform of this last equation, we finally obtain the relation between
the Fourier transforms of the complex record and IF correlation functions

g̃s0(ω) = lim
fIF→+∞

1

2π3

∫∫ +∞

−∞
dω′dτ g̃sIF(−ωIF − ω′)sinc

(
π
ω′

ωIF

)2

e−i(ω
′+ω)τ

= lim
fIF→+∞

1

π2
g̃sIF(ω − ωIF)sinc

(
π
ω

ωIF

)2

=
1

π2
g̃sIF(ω − ωIF)

(e.8)

Thus, the spectrum g̃s0(ω) is equal to the spectrum g̃sIF(ω) shifted by ωIF. This make
sense as the complex envelope s0 is obtained by demodulating the IF signal at the
frequency −ωIF.
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f
CORRELATION BETWEEN A WEAK MULTIPLEXED PHOTON
NUMBER MEASUREMENT AND THE STORAGE FOCK STATE
POPULATION

This appendix contains the correlation slopes c(k)
I and c

(k)
Q for each record k of the

multiplexed measurement. The protocol used to measure these correlation slopes and
their definitions is given in Sec. 8.3.2.2. The measurement operator defined in Eq. 8.21
enables us to predict the sign of the correlation slope with the matrix α is equal to1

α = −αin 1 +
√

Γ1,mpα
′ (f.1)

and

α′ = 0.01×

18− 4i 5 + 6i 2 + 3i 2 + 2i 1 + 2i 1 + i 1 + i i i

2− 6i 17− 4i 4 + 5i 2− 3i 1 + 2i 1 + 2i 1 + i i i

−3i 2− 6i 16− 3i 3 + 5i 1 + 3i 1 + 2i 2i i i

−2i −3i 2− 6i 15− 2i 3 + 5i 1 + 3i 1 + 2i 2i i

−2i −2i 13i 2− 6i 15 2 + 6i 1 + 3i 2i 2i

−i −2i 12i 13i 3− 5i 15 + 2i 2 + 6i 3i 2i

−i −i −2i 12i 1− 3i 4− 5i 16 + 3i 2 + 6i 3i

−i −i 1− i 1− 2i 1− 2i 2− 3i 4− 5i 16 + 4i 2 + 6i

−i −i 1− i 1− i 1− 2i 2− 2i 2− 3i 5− 6i 18 + 4i



,

(f.2)

which is obtain by simulating the circuit with the storage mode initializes in a Fock
state and looking at the multiplexing qubit fluorescence (see Sec. 8.3.2.3).
When examining the real and imaginary parts of α′, we observe that, for each line

k, the highest real part, which is equal to about 0.15–0.18, is obtained for the column
n = k. For the other columns n 6= k, the real part is almost the same: between 0

and 0.05. Thus, based on the measurement operators of the multiplexing measurement,
the real part of the record k must encode information that answers the question “Are
there k photons?”. The higher the record I(k) is, the higher the back-action on the Fock
state k (i. e. the higher the probability that the storage mode will contains k photons).
Thus, we expect to observe strong correlations between I(k) and ps(k) (the probability
of having k photons). This is also equivalent to saying that we expect to observe a
strong anti-correlation between I(k) and the probability of not having k photons. In our
experiment, this means we expect to observe an anti-correlation between I(k) and each

1 We multiply the fluorescence records by −1 to have positive correlation between records giving the
same information. This is equivalent to a change of phase reference.
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photon probability ps(n 6= k), with an amplitude that decreases when we increase the
extent of the initial storage photon distribution. Indeed, for narrow photon distributions,
the information “there are not k photons” may be equivalent to saying “there are k′

photons” with k′ 6= k.
We do indeed observe these expected correlations and anti-correlations between I(k)

and ps(n). In Figs. f.1,f.2, and f.3, the correlation slope c(k)
I is always positive when the

yes–no qubit probes whether there are k photons, indicating that there is a correlation
between I(k) and ps(k). The amplitude of the slope when probing ps(k) is the highest
among all the values of the c(k)

I and c
(k)
Q slopes, which indicates a strong correlation

between I(k) and ps(k). When k increases, the amplitude of the correlation slope when
probing ps(k) decreases, because the initial storage state is a coherent state with a larger
amplitude and, therefore, a smaller initial probability of having k photons. Moreover,
the correlation slope c(k)

I is always negative when the yes–no qubit probes whether there
are n 6= k photons, indicating an anti-correlation, with an amplitude that decreases
quickly when the initial storage photon distribution width increases; i. e. when the
initial coherent state amplitude α increases.

When looking at the imaginary part of α′, we observe that, for each line k, the
imaginary part is positive for n > k and negative for n ≤ k and has an absolute value
that is higher when n is close to k. Thus, we are expecting a correlation between Q(k)

and ps(n) for n > k, and an anti-correlation when n ≤ k, with a larger amplitude when
n is close to k, which decreases quickly when the initial photon distribution width
increases; i. e. when the initial coherent state amplitude α increases. The correlation
slopes c(k)

Q in Figs. f.1,f.2 and f.3 show this behavior. There is a positive (negative)

correlation slope c(k)
Q when the yes–no qubit is probing ps(n) with n > k (n ≤ k).
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Figure f.1: Correlation slopes c(k)
I (left) and c(k)

Q (right) for k = 0, 1, 2 (top, middle, bottom)
as a function of the yes–no qubit π-pulse frequency fdrive and the storage mode’s
coherent state amplitude α. The black line corresponds to the contour lines in
Fig. 8.7, while the numbers in green are the storage photon numbers probed by the
yes–no qubit for a π-pulse frequency fdrive.
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Figure f.2: Correlation slopes c(k)
I (left) and c(k)

Q (right) for k = 3, 4, 5 (top, middle, bottom)
as a function of the yes–no qubit π-pulse frequency fdrive and the storage mode’s
coherent state amplitude α. The black line corresponds to the contour lines in
Fig. 8.7, while the numbers in green are the storage photon numbers probed by the
yes–no qubit for a π-pulse frequency fdrive.
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Figure f.3: Correlation slopes c(k)
I (left) and c(k)

Q (right) for k = 6, 7, 8 (top, middle, bottom)
as a function of the yes–no qubit π-pulse frequency fdrive and the storage mode’s
coherent state amplitude α. The black line corresponds to the contour lines in
Fig. 8.7, while the numbers in green are the storage photon numbers probed by the
yes–no qubit for a π-pulse frequency fdrive.
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