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Abstract

The amount of data exchanged over the Internet has grown dramatically over
the past decades. The increasing number of users, connected devices, and the
popularity of video content have surged the demand for new communication
methods that can deal with the growing volume of data traffic. Information-
Centric Networking (ICN) has been proposed as an alternative to traditional IP-
based networks. In ICN, consumers request named content via Interest packets
to the network and receive data as a response to their request from anywhere
in network.

ICN allows in-network caching and naturally supports the use of multiple
paths. Nevertheless, the maximum throughput can only be achieved if the
content is requested over an optimal set of multicast trees. The computation of
such multicast trees is hard to scale over large dynamic networks and requires
coordination among network entities.

Network coding has been recently introduced in ICN to improve multi-path
dissemination and caching of content without the need for coordination. The
challenge in the case of network coding is to get independent coded content
in response to multiple parallel Interests by one or several consumers. In this
thesis, we analyze some previous works that integrate network coding and ICN
and identify some key issues these works face. We introduce an efficient solution
where clients add compact information to Interest packets in order to ensure
linear independence of content in network-coded ICN.

This thesis proposes an architecture, MICN, that provides network cod-
ing on top of an Interest-based ICN implementation: Named Data Networking
(NDN). The proposed architecture helps alleviate the issues faced by network
coding-enabled ICN solutions presented in the past. A novel construction called
MILIC (Multiple Interests for Linearly Independent Content) is introduced that
imposes constraints on how the replies to Interests are coded, intending to get
linearly independent contents in response to multiple Interests. Numerical anal-
ysis and simulations illustrate that the MILIC construction performs well with
network-coded NDN, and the MICN protocol yields close to optimal throughput
in some scenarios. The performance of MICN compares favorably to existing
protocols. It shows significant benefits when considering the total number of
transmitted packets in the network and in the case of lossy links. Several mod-
ified forwarding techniques integrated into the MICN protocol are proposed to
optimize the network resource utilization while keeping a high throughput.

MILIC led us to consider the problem of constructing subsets of vectors from
a given vector space, such that when drawing arbitrarily one vector from each
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subset, the selected vectors are linearly independent. This thesis considers it as
a mathematical problem and studies some alternative solutions to the MILIC
construction. Finally, the thesis proves that a large family of solutions to this
problem are equivalent to MILIC.

Keywords: Information-Centric Networking (ICN), Named Data Networking
(NDN), Network Coding, Interest Forwarding Strategy



Résumé

Le volume de données échangées sur l’Internet a augmenté de façon spectac-
ulaire au cours des dernières décennies. Le nombre croissant d’utilisateurs,
d’appareils connectés et la demande croissante de contenus vidéo nécessitent de
nouvelles méthodes de communication capables de gérer le volume croissant des
données échangées. Les réseaux centrés sur l’information (Information Centric
Networking, ICN) ont été proposés comme une alternative aux réseaux IP tra-
ditionnels. Dans les réseaux ICN, les clients demandent au réseau un contenu
par son nom via des paquets d’« intérêt », et reçoivent des données en réponse
à leurs demandes sans avoir à se soucier de l’emplacement du contenu dans le
réseau.

Les réseaux ICN permettent la mise en cache dans le réseau et prennent
naturellement en charge le multicast. Néanmoins, le débit maximal ne peut
être atteint que si le contenu est demandé sur un ensemble optimal d’arbres
multicast. Le calcul de ces arbres est difficile à mettre en œuvre sur de grands
réseaux dynamiques et nécessite une coordination entre les entités du réseau.

Le codage réseau (Network Coding) a été récemment introduit dans les
réseaux ICN afin d’améliorer la diffusion par l’utilisation de chemins multiples et
la mise en cache des contenus sans qu’une coordination soit nécessaire. La diffi-
culté dans le cas du codage réseau est d’obtenir des paquets codés linéairement
indépendant en réponse à de multiples requêtes parallèles par un ou plusieurs
clients. Dans cette thèse, nous analysons certains travaux antérieurs qui in-
tègrent le codage réseau et les réseaux ICN et identifions limitations de ces
approches. Nous proposons une solution efficace où les clients ajoutent des in-
formations compactes aux paquets d’« intérêt » afin d’assurer l’indépendance
linéaire des paquets reçus en réponse.

Cette thèse propose MICN, un protocole permettant une intégration efficace
du codage réseau dans une implémentation d’ICN : Named Data Networking
(NDN). L’architecture proposée permet de résoudre certains des problèmes ren-
contrés par les solutions ICN integrant des codage réseau présentées dans le
passé. Une nouvelle construction appelée MILIC (Multiple Interests for Lin-
early Independent Content) est introduite. Elle impose des contraintes sur
la façon dont les réponses aux paquets d’ « intérêt » sont codées. Le but est
d’obtenir des contenus linéairement indépendants en réponse à des intérêts mul-
tiples. Analyse théorique et simulations montrent que MILIC fonctionne bien
avec le codage réseau pour NDN, et que le protocole MICN offre un débit proche
de l’optimum dans divers scénarios. Les performances du protocole MICN se
comparent favorablement aux protocoles existants. Il présente des avantages
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significatifs lorsqu’on considère le nombre total de paquets transmis dans le
réseau et dans le cas de liens pouvant subir des pertes. Plusieurs techniques
de gestion de la diffusion des « intérêts » dans le protocole MICN sont pro-
posées afin d’optimiser l’utilisation des ressources du réseau tout en conservant
un débit élevé.

Lors de l’étude de MILIC nous avons considéré le problème de la construction
de sous-ensembles de vecteurs dans un espace vectoriel donné, tels que lorsqu on
choisit arbitrairement un vecteur de chaque sous-ensemble, les vecteurs sélec-
tionnés sont linéairement indépendants. Cette thèse formalise ce problème et
propose quelques solutions alternatives à la construction MILIC. Enfin, la thèse
prouve qu’une large classe de solutions à ce problème est équivalente à MILIC.

Mots-clés: Réseaux centrés sur l’information, Named Data Networking (NDN),
Codage réseau, Stratégies de relayage d’intérêts, Réseaux centrés contenu
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1
Introduction

1.1 Background

Development and advancement in technology have revolutionized our world and
daily lives. The Internet has significantly impacted people’s lives and has trans-
formed the world into a global village. Over the past few decades, incredible
tools and resources have been developed, allowing access to information at our
fingertips. Easier connectivity and access to information have made content the
center of our lives. Consumers have access to content anywhere in the world,
with just a click, in a blink of an eye. The consumers are interested more in
the content itself rather than its location in the network. The current Internet
architecture, however, works on the principle that attributes the content to its
location.

Information-Centric Networking (ICN) has been proposed to shift the Inter-
net paradigm from location-specific to content-specific. ICN removes location
from the attributes of the content, consequently allowing it to be cached any-
where in the network. ICN identifies and routes content based on its name,
hence shifting the importance from where to what.

Some ICN architectures allow the consumers to request content based on
its name via an Interest packet. The Interest is routed in the network until
it reaches a cache that stores a copy of the requested content. The content is
routed back to the requesting consumers using the reverse path of the Interest.

Since ICN removes end-to-end communication, it naturally supports utiliz-
ing multiple faces and facilitates in-network caching. ICN supports seamless
consumer mobility since no location information is involved, and communica-
tion is not restricted between two endpoints. A content request may be satisfied
by any closest cached copy. Each ICN packet is signed and encrypted, unlike

1



2 Chapter 1. Introduction

traditional communication that encrypts the channel between two endpoints.
This provides additional mobility support.

Another ICN benefit comes from the fact that nowadays client devices, e.g.,
smartphones, laptops, tablets, etc., are equipped with multiple network inter-
faces, e.g., Wi-Fi, 4G/5G, and Bluetooth. Each one of them can be used to
retrieve content. However, the point-to-point nature of traditional networking
requires establishing a session among endpoints. Simultaneous use of the avail-
able interfaces is not generally supported. MPTCP [2], a recent advancement,
has multi-path support, but it requires multiple sessions for each source. ICN,
however, provides intrinsic support for multi-path usage by allowing clients to
forward their Interests to all available faces.

Overall the primary goal of ICN from its conception is to facilitate access
to content by embedding the content-centric nature of client requests in the
network architecture. Nevertheless, ICN does not instantly solve all the network
challenges by itself, and in some cases, its operation can be tuned or further
improved.

Considering the currently dominant Internet usage trends: most Internet
traffic is generated by data-intensive applications such as video content con-
sumption. In such applications, customer satisfaction is mostly based on the
amount of time it requires to get back the content and the stability of content
retrieval (e.g., video quality). When several clients are interested in a large
content, the ICN network faces issues that can degrade its performance. First
of which is bottlenecks that can limit the flow of the content to the clients.
Caching in the network [3] can help resolve this issue. However, it is only help-
ful if the Interests of multiple clients are timed one after the other so the content
received in response to the first client’s Interests can serve the other clients.

Additionally, with several clients requesting, the network faces the problem
of limited bandwidth on the links between the clients and sources. Another
vital issue that degrades ICN’s performance, specifically in terms of delay, is
packet losses. In case of packet loss, a client retransmits the Interest for the lost
segment after the original Interest has expired. It induces a delay in retrieval
and is problematic, especially for applications that require low latency, e.g.,
video streaming applications. Finally, the optimal usage of multiple available
paths is still difficult with the classical ICN, especially for multiple clients and
sources scenarios.

1.2 Motivation

As described previously, there is a balance between the natural benefits of ICN
and the limitations encountered in some scenarios. On the one hand, ICN inher-
ently supports multi-path content retrieval, and it has been observed to increase
the throughput [4]. The clients can retrieve content faster by aggregating the
bandwidth of multiple interfaces. On the other hand, robust content dissemi-
nation is a challenge, and performance hits limitations described previously. In
fact, the optimal throughput can only be achieved in multicast scenarios if the
content is requested over an optimal set of multicast trees [5]. Finding the op-
timal multicast trees in large-scale and dynamic networks has scalability issues,
especially with link failures and losses. It is also complicated in ICN due to its
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ClientClient

Figure 1.1 – Example of clients retrieving content in ICN over multiple paths

distributed and volatile content caching infrastructure. Complete knowledge of
the network and coordination between several network entities is required.

To illustrate this last point, Figure 1.1 presents a simple example of clients U1

and U2 requesting some content in ICN. Both clients want a content consisting
of two segments x1 and x2. They send Interests I1 and I2 for the two segments
over their two available paths. We assume that client U1 forwards Interest I1
on the direct link to source S1 and U2 forwards Interest I2 on the direct link to
the source S2. The other Interests of each client go through the link R1 − R2.
Observe that the link R1 − R2 is a bottleneck and can only deliver one packet
at a time. So the client U1 will have to wait for the content x1 to be delivered
to U2 before getting back the segment x2 (considering client U2’s Interest I1 was
received and forwarded first).

If, however, the clients can coordinate and send the request for the same
segments on the middle link, they can utilize the network capacity more effi-
ciently. For example, if both nodes send the Interest I1 on the link R1 − R2

they can achieve maximum throughput. However, it is only possible with co-
ordination among the network nodes and knowledge of the network topology.
Thus, an interesting question is how to operate ICN in an uncoordinated but
efficient manner? This thesis focuses on studying network coding as a solution
to efficiently use ICN for multi-path content retrieval.

Network coding has been proposed to solve ICN’s problem when download-
ing large content in a multi-party network [6]. We will explain the benefits
and challenges of this combination in the following section. The main idea of
network coding is to allow network nodes to combine packets in the network,
unlike routing, where the packets are only forwarded.

In classical ICN, clients sequentially request each of the data segments of
content individually. However, with network coding, the clients request coded
segments of the content with no particular order. Coded segments are generated
by combining the source segments of the content. The network nodes, including
the sources and the intermediate routers, can perform network coding operations
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on the content segments and send coded segments in Data packets as a response.
The Data packets also carry the encoding vectors of the coded segments that
bring information about the encoding.

A request for coded segments of the content is satisfied by any coded segment
instead of one specific segment, reducing the content request’s granularity. Since
any coded packets can respond to a coded content request, it allows multiple
users to take advantage of others’ requests without the need for coordination.
Take, for example, the scenario in Figure 1.1. If the clients U1 and U2 send a
request for coded segments instead of specific segments, one coded packet can
respond to the request of both clients, allowing them to utilize the bottleneck
link R1 −R2 efficiently.

Network coding enables the clients’ requests to be sent over multiple faces
without the need to forward them over a set of optimal multicast trees. The
mixing of segments within the network increases the diversity of content in the
network. The increased content diversity increases the cache hit rate. Net-
work coding enables ICN to utilize multiple paths efficiently and consequently
increases the throughput of the ICN network in data-intensive applications.

Along with the throughput gains, network coding can help ICN to improve
resilience to losses. It can help ICN to recover from both Interest and Data
packet losses. In the case of classical ICN, one Interest requests a specific seg-
ment. If the Interest for that segment or the Data packet is lost, the clients must
re-request the segment. The client would have to wait until the corresponding
Interest expires before re-sending the Interest in the network. However, with
network coding, if a coded packet or an Interest is lost, another Interest or coded
packet can be used instead. With network coding, the clients can proactively
send a few more Interests in case of lossy network conditions.

A client requesting coded content can decode the original content once it
has received enough linearly independent coded packets. Linearly indepen-
dent coded packets are required for the clients to perform decoding operations.
However, ensuring that clients get back a decodable set of coded content is
not straightforward. Since ICN allows caching in the network and any coded
segment can respond to Interest requesting coded segments, there is a high
probability that the client may get back the same coded segment again from
neighboring nodes. Several solutions have been proposed in the literature to
ensure retrieval of a decodable set of coded segments, including sending the
encoding vectors of all the received coded packets. The previous attempts have
some shortcomings in terms of balancing between retrieving a decodable set of
content and retrieving the content at the maximum possible rate. One open
question is how to improve them to take full advantage of network coding in
ICN?

1.3 Thesis Objectives

Motivated by the throughput benefits that network coding can bring to ICN, the
main objective of this thesis is to propose a protocol that efficiently integrates
network coding and ICN to overcome the shortcomings of the previous attempts.

We choose Named Data Networking (NDN), an Interest-based ICN architec-
ture to integrate network coding with ICN. Ensuring that the clients get back a
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decodable set of coded segments with the maximum possible rate is the primary
design objective of the protocol. To retrieve a decodable set of coded content,
finding the perfect naming scheme is imperative. The naming scheme includes
the content names in the ICN packets and the associated meta-information in
options fields. It should allow the Interests to advertise what is required at the
client to decode content to the network. We aim to design a naming scheme
with network coding that takes into account the principles of NDN and allows
the processing of multiple parallel Interests in the network.

The second design objective of the protocol is to ensure maximum through-
put in large content retrieval scenarios. This design objective translates into
having a forwarding strategy that ensures that enough Interests are forwarded
in the network.

The third objective of this thesis is to optimize network resource utilization
while ensuring maximum throughput. Network resource utility is improved by
optimizing the number of Interest and Data packets sent in the network. This
optimization is to ensure that the protocol meets its primary objective without
needlessly flooding the network.

The final goal of the thesis is an investigation on generalizing the mechanisms
introduced to achieve the previous objective: the construction of subsets such
that when choosing one vector from each subset, the resulting set of vectors are
linearly independent. It includes exploring alternate families that satisfy this
property and ensuring their suitability for network coding.

1.4 Thesis Contributions

In order to design an architecture that integrates network coding and NDN, we
start by studying the previous works. We analyze in detail the design choices
of architectures integrating network coding and ICN in the literature.

The first contribution of this thesis presented in Chapter 3 provides a solu-
tion for compressing received content information in the Interests using a linear
code(s) approach. Many network-coded ICN works proposed in the past add
the received content information in the Interests to ensure that the client re-
ceives a decodable set of coded content. However, the information is not added
compactly and incurs significant overhead in the Interest packets. Our solution
helps to reduce this overhead.

The second contribution of this thesis is also presented in Chapter 3. We
present a formal analysis of the forwarding strategies of NetCodCCN. NetCod-
CCN is an existing family of protocols that aims to achieve similar design goals
as ours. Our formal analysis presents that their forwarding strategies are not
always efficient and that protocol proofs are important.

The main contribution of this thesis is the MICN architecture which inte-
grates network coding over NDN presented in Chapter 4. We propose a specific
naming scheme called MILIC (Multiple Interests for Linearly Independent Con-
tent). MILIC adds an index in the Interest name. These indices represent pre-
defined subsets of coding vectors (following a set of mathematical constraints).
The response to an Interest with a MILIC index can only have coding vectors
from the predefined subset. The subsets ensure that the coded packet for each
index is linearly independent of the others. We define these subsets and provide
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formal proofs that linear independence of content for different subsets is en-
sured. MICN ensures that each client receives a decodable set of coded content
with maximum throughput.

The maximum throughput of MICN comes at the cost of flooding of Inter-
est. A consequence of this flooding is redundant traffic in the network. The
following contribution of this thesis is proposing dynamic forwarding strategies
in Chapter 5 to reduce the flooding of Interests and consequently reduce the
extra data traffic.

The final contribution of this thesis is studying families of subsets similar to
MILIC. We formalize the problem of defining subsets such that if one element
is chosen from each subset, the resulting set of vectors is linearly independent.
We study some general families and prove that they are equivalent to MILIC.
Some examples of alternate algebraic solutions are also proposed.

1.5 Thesis Outline

The thesis is organized as follows

Chapter 2 highlights and overviews the fundamental properties of ICN in gen-
eral and of NDN in particular. It presents the background and overview of
the existing work performed in the content of NDN and network coding.

Chapter 3 analyses the design choices made in some of the pre-existing work
in the context of our primary design goals.

Chapter 4 presents MICN, an architecture that integrates network coding and
NDN to achieve maximum throughput for large data retrieval. The chap-
ter presents a detailed architecture of MICN, the results, and the benefits
of MICN compared to NDN and one of the pre-existing solutions. More-
over, the chapter also observes the flooding of Interests as a side effect
of the maximum throughput that MICN achieves and presents an initial
optimization mechanism to solve it.

Chapter 5 presents some modified forwarding techniques to counter the flood-
ing problem introduced in Chapter 4.

Chapter 6 presents finding subsets that give linearly independent transversals
as a formal mathematical problem SELIT problem. We prove that a large
number of families of construction that are SELIT solutions are equivalent
to our construction MILIC (introduced in Chapter 4).

Chapter 7 concludes this thesis and presents some future perspectives and
promising directions for network-coded NDN architectures and MICN.

Some ideas and figures presented in the thesis have appeared previously in the
following publications:

Journal Papers

(J1) Hirah Malik, Cédric Adjih, Claudio Weidmann, and Michel Kieffer. MICN:
a Network Coding Protocol for ICN with Multiple Distinct Interests per
Generation. Computer Networks, 187:107816, 2021.[7]
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Conference/Workshop Papers

(C2) Hirah Malik, Cédric Adjih, Michel Kieffer, and Claudio Weidmann. Anal-
ysis of the Properties of NetcodICN Protocols. In CORES 2020 – 5ème
Rencontres Francophones sur la Conception de Protocoles, l’Évaluation de
Performance et l’Expérimentation des Réseaux de Communication, Lyon,
France, September 2020.[8]

(C3) Hirah Malik, Cédric Adjih, Michel Kieffer, and Claudio Weidmann. On
the Problem of Finding "Sets Ensuring Linearly Independent Transver-
sals"(SELIT), and its Application to Network Coding. In 9th IFIP Inter-
national Conference on Performance Evaluation and Modeling in Wireless
Networks (PEMWN), pages 1–6. IEEE, 2020.[9]
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2
State of the Art

2.1 Overview

Content distribution has become the primary task for today’s Internet. Internet
usage for content retrieval has increased many folds in the past decade and
is continuously growing. According to CISCO’s forecast, video traffic will be
accounting for 79 percent of total mobile data traffic by 2022 [10].

The communication network’s traditional paradigm has some drawbacks,
especially when dealing with large-scale content distribution because of the
point-to-point nature of communications and location dependence. In IP-based
networks a connection between the requester and the source is established. Once
a secure connection is established between the two endpoints, communication

Server 

User

URL: https://www.dailymotion.com/video/surprised-kitty
Destination IP: 195.8.215.136

Figure 2.1 – Content retrieval in traditional IP networks
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Figure 2.2 – Initial concept of communication among computers

takes place over this connection. The increasing interest in content, the evolu-
tion of consumer behaviors, and the amount of data being shared over the Inter-
net (from smart devices, connected homes, IoT devices) have prompted a shift
in this paradigm. Newer and faster Internet architectures are being explored for
efficient content sharing. Consumer behavior has triggered the research around
content-based networks because consumers care about the content itself and not
about its origin.

Information-Centric Networking (ICN) is a novel approach introduced to
make content the center of the network. It decouples the content from its
location and allows content retrieval from anywhere in the network from a
mere name. One challenge of the ICN architectures is to perform efficiently in
multi-party (multi-source, multi-client) scenarios. Coordination among different
network entities is required to overcome limitations such as content duplication,
bottlenecks, etc.

An approach to address this shortcoming is to use coding of the content,
e.g., channel coding. The sources encode the original content using, e.g., FEC
erasure codes, raptor codes, etc., and the clients can retrieve a subset of the
coded packets generated by the source to decode the original content. However,
it has been presented that allowing intermediate nodes to perform coding op-
erations can further help the performance of content retrieval [11]. Therefore,
network coding has been proposed as an alternative approach; moreover, some
studies have demonstrated the benefits of network coding in ICN networks.

In this chapter, we present an overview of the concepts of ICN. We formally
present the content retrieval process on the Internet and introduce content-
centric networks and their advantages in the current Internet world. We intro-
duce ICN and its popular implementations, focusing on Interest-based imple-
mentations. Within the Interest-based architectures, we focus mainly on NDN
and describe all the principal elements and algorithms of content retrieval in
NDN.

Later in this chapter, we introduce a few shortcomings in terms of fast
content retrieval in classical NDN networks and detail some of the methods that
have been used to overcome them. We focus primarily on network coding-based
solutions. We discuss the previously published work in this domain. Finally, a
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Figure 2.3 – Current Internet content delivery network

discussion on the forwarding techniques in network coding-based NDN networks
is presented.

2.2 Motivation of Information/Content Centric
Networks

Current Internet communication relies on the IP protocol [12] that assumes
a host-centric networking model. Host-centric communication models enable
communication between well-defined locations. This model originates from the
very early communication networks and has survived their evolution. From
the invention of electric telegraphs to the primary telephone network, the goal
was to connect two hosts. The initial network started with dedicated cables to
connect the endpoints. Then with the increase of users, a concept of switches
was introduced to connect several entities.

The early computers allowed clients to use the machine’s computational
power remotely, and there was little data transfer between devices. Like tele-
phone networks, the initial concept of communication among computers in-
cluded a model involving two machines, and the amount of data shared was
small.

The User Datagram Protocol (UDP), transmission control protocol and IP
protocol (TCP/IP) were introduced to transport Data packets across a wide
range of networks giving rise to inter-networking and the Internet. The intro-
duction of the World Wide Web (WWW) for information-sharing and hyper-
linking helped transform internet to a universal tool to access content. Over the
last two decades, the Internet has become the prime source of information, e.g.,
news websites, blogs, forums, and social media websites. It has also become
the prime source of entertainment with video on demand (VoD), social media,
online music and is the center of many businesses with e-commerce and online
shopping.

The Internet architecture can be seen as a set N of nodes including content
provides or sources S, a set of content consumers or clients U and routers R
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Figure 2.4 – Overview of content retrieval over Internet

that forwards copies of the packets as received. The operation of the Internet
involves assigning a specific address to each of the network entities. Content
retrieval over the Internet involves sending copies of the content object from a
particular server to a requesting client.

The clients requesting certain content should know the server’s location on
the internet with the desired content, i.e., the server’s IP address. A specific
name resolution system resolves the name into an IP address, e.g., Domain
Name System (DNS) [13, 14]. The DNS works like a phone book that manages
the mapping between domain names and IP addresses. DNS translates the
domain name that a client enters in its browser to an IP address.

The client can then use different methods to request the content from the
content server. For example, with the current Internet architecture, the clients
use Hypertext Transfer Protocol (HTTP) GET message [15] to send their con-
tent request to the IP address of the content server. There are other methods for
the client to show interest in certain content, e.g., subscribing to a PUSH [16]
service. The content server then sends the content in HTTP response messages.

The amount of information shared over the Internet, and the use of this
information has increased many folds. The effectiveness of the transfer of this
information is critical in today’s world. A substantial amount of research is
devoted to improving the efficiency of communication architectures. However,
the communication still depends on a client-server architecture.

The use of the Internet is evolving from a mean to connect a client to a server,
to a universal tool of information access. The number of devices connected to
IP networks is expected to be more than three times the global population by
2023 [17]. There will be 29.3 billion networked devices by 2023, up from 18.4
billion in 2018. These devices range from mobile phones, tablets to handheld
games, smartwatches, and smart home appliances. In particular, the devices
with video access can have a multiplier effect on traffic [17].
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Figure 2.5 – Content retrieval in CCN/NDN

A wide range of overlay solutions for the existing Internet architecture have
been proposed in the past, e.g., peer-to-peer (P2P) [18], content delivery net-
works (CDNs) [19] to meet the increased demand. The increase in data traffic
has also motivated network architectures that are different from the classical
network paradigms. Among them, Information-Centric Networking addresses
the issue of content delivery and mobility by introducing the concept of named
content objects.

2.3 Information-Centric Networking

The explosion of video-based content consumption resulted in research of new
approaches that can cater to the demand. Van Jacobson introduced the idea of
shifting the communication paradigm towards a content-centric approach. He
proposed that content is the king and stated:

“If you don’t care where you’re getting the data—if all that mat-
ters to you is what the data is, not where it comes from—then all
of this memory that has to be in the network as buffering in order
to manage the multiplexing suddenly becomes a viable source of
data.[20]”

This concept introduced the idea of remodeling or reengineering the Internet
architecture. The perspective of focusing on what rather than where led to
the notion of data-oriented networks, commonly know as Information-Centric
Networks (ICN). ICN has been proposed as an alternative to the traditional
point-to-point communication and shifts the paradigm towards a data-centric
approach [21, 22]. The ICN principle is based on naming contents instead of
their locations; it allows caching [3] at intermediate nodes to reduce the content
delivery time.

ICN aims to better deal with a large amount of content by addressing
caching, scalability, mobility, and security by focusing on the content in chal-
lenging communication scenarios [23]. Multiple network architectures based
on ICN have been proposed in the literature. A few of the well known ICN
architectures are listed below:

• Data-Oriented Network Architecture (DONA) [24]
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• Network of Information (NetInf) [25]

• Publish-Subscribe Internet Routing Paradigm (PSIRP) [26, 27]

• Content-Centric Networking (CCN) [28]

• Named Data Networking (NDN) [29].

2.3.1 Data-Oriented Network Architecture

Data-Oriented Network Architecture (DONA) [24] proposed in 2007 is one of
the first ICN-based architectures that proposed redesigning the Internet naming
and name resolution. DONA introduced the concept of naming the content
objects and giving globally unique names to content objects. The naming in
DONA is organized around principals. Each data object name is associated
with its principal, and the principal chooses the granularity of naming. The
clients request the data by sending a Find message with the name. The Find
message is forwarded until it reaches a copy of the content, which is sent back
following the route of the find message. Each content object is associated with
a public-private key pair. A client can verify that the data came from the
principal by checking that the public key hashes to the principal.

2.3.2 Network of Information

The Network of Information NetInf [25] proposed in 2008 is an ICN architecture
that effectively combines the elements of pub/sub and named content networks.
NetInf allows named-based retrieval of the content, where clients request content
by its name. A routing protocol advertises data object names and populates the
routing tables of Content Routers (CRs). The subscribers send a GET message
that is propagated hop-by-hop towards the publisher or a cache with a copy.
It also supports the pub/sub architecture where clients subscribe to publishers
based on the content they publish. A Name Resolution System (NRS) is used
to map object names to locators that can be used to reach the corresponding
information object. A publisher makes an information object available by send-
ing a PUBLISH message with its locator to the local NRS. When a subscriber
is interested in an information object, it can send a GET message to its local
NRS, which routes the request to the publisher to bring back content in a DATA
message.

2.3.3 Publish-Subscribe Internet Routing Paradigm

Publish-Subscribe Internet Routing Paradigm (PSIRP) [26, 27] proposed in
2012 tries to redesign Internet architecture from a publish/subscribe (pub/sub)
point of view. In pub/sub architecture content sources are the publishers and
clients are the subscribers. Sources publish what they have and can send, and
receivers/clients subscribe to the publishers based on what they want to receive.
In principle, a receiver will only receive what it has subscribed to. Additionally,
each content object has a unique name for which the subscribers send special
Interests. The Interests are matched to the published content by a rendezvous
system.
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2.3.4 Interest-Based ICN Architectures CCN/NDN

Content-Centric Networking (CCN) and Named Data Networking (NDN) are
two of the most popular ICN architectures based on identifying content by
names. The basic framework of CCN and NDN is a pull-based mechanism
where the clients send Interest packets that contain the name of the requested
content. These Interest packets are routed based on their names. A node
holding a copy of the requested content replies to the Interest with the content
in a Data packet.

Van Jacobson et al. originally proposed the Content-Centric Network (CCN) [28]
architecture as a project initiated by Palo Alto Research Center (PARC). Named-
data networking (NDN) [29] is an enhanced version of the CCN architecture and
refers to the NSF-funded Future Internet Architecture project, a collaborative
project that included PARC. The NDN project initially used CCNx as its code-
base; after a few years of combined research, NDN and CCN parted ways. A
research group ICNRG (Information-Centric Networking Research Group) in
IRTF, provides a platform for ICN research ideas. They have many informa-
tional and experimental RFC documents on the ICN research topics such as
review of research challenges, CCNx semantics [30, 31, 32] and others.

Although the primary mechanism is similar, there are some architectural
differences between the two [33]. In this thesis, we focus on the NDN protocol
suite. We use the NDN architecture and implement its core semantics in our
simulator developed in Python. The implementations and simulations are on
top of the basic NDN architecture, and we compare the results with the basic
NDN.

In the next section, we present in detail the basic concepts and elements of
the NDN architecture [1, 34].

2.4 Named Data Networking

Named Data Networking (NDN) is one of the Interest-based ICN architectures.
Consider an NDN network consisting of a set N of nodes that can be sources
that generate content, intermediate nodes or caching routers or clients that re-
quest content. A node can have any of these roles at a given time. Each node
r ∈ N is connected in the network through a set of faces Fr. The term face is
a generalization for a network interface and corresponds to the communication
channel that NDN implementation uses for packet forwarding. A good descrip-
tion of the detail of the NDN semantics and implementation is available in the
NFD Developer’s Guide [34].

2.4.1 Communication Packets

Communication in NDN is consumer-driven, with two basic types of communi-
cation packets: Interest and Data packets.
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Figure 2.6 – Interest and Data packets in NDN architecture (From [1])

Figure 2.7 – Content segmentation in NDN

Interest Packets

Each content object in NDN is uniquely named. To receive content, a client
sends the name of the content in an Interest packet. The Interest packet, as
the name indicates, advertises a client’s interest in a content by carrying the
content’s name1. The Interest is forwarded in the network hop by hop until it
reaches a node holding a copy of the content with the requested name.

Data Packets

When the Interest packet reaches a source or cache that stores a copy of the
requested content, the content is sent back in a Data Packet.

Content Naming and Segmentation

Each content object is identified by a name in NDN. Since every operation in
the NDN network is based on names, naming is an essential aspect of NDN. The
NDN naming is indifferent to network, i.e., the names do not define an address.
Each content object is named differently and independently by applications.
Content is named hierarchically, which helps represent a relationship between
data chunks and allows assisting the routing. The simplest form of the NDN
names is of the following form provider/video/surprised-kitty/i that is the
identifier of the content. Richer semantics with name prefixes, selectors, etc.,
are also available at [35].

If the content object is large, it may be partitioned into smaller segments
to fit into the Maximum Transmission Unit (MTU), and more generally may
be transmitted through various use of NDN semantics (for instance [36]). A
content object can be viewed as a set of data segments C = [c1, c2, ..., cn].

1along with potential options/selectors [34]
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Figure 2.8 – Main components of an NDN-node

A client request can request any content by sending its name in an Interest
packet. In the simplest mode of operations for large content objects, the clients
send Interests with the content name and a segment identifier i. For example,
the Interest provider/video/surprised-kitty/i is requesting the ith segment
of the content. The clients can deterministically construct the names of the
subsequent Interest by incrementing the segment identifier. Each Interest also
carries a random identifier, called nonce, that helps prevent Interest forwarding
loops [34].

To retrieve the content C with n segments, a client has to send at least n
Interests. The client sends more Interests in case of losses in the network. Each
Interest has an expiration time associated with it. A client considers an Interest
expired if no reply is received for it at the expiration time and can issue a new
Interest.

The Data packets carry the same name as the Interest along with the con-
tent. Both Interest and Data packets carry the name of the content, but there
is no information regarding the client or source.

2.4.2 Data Structures

The content retrieval in NDN is facilitated by data structures that store infor-
mation necessary for routing and forwarding. Each NDN node has a Pending
Interest Table (PIT), a Forwarding Information Base (FIB), and a Content
Store (CS) for the transport of the named content in the network [28, 34] as
shown in Figure 2.8.

PIT

The Pending Interest Table (PIT) keeps a record of pending Interests forwarded
by the node that are not yet satisfied. PIT stores the information about faces
where an Interest arrived and where it was forwarded so that the Data packet
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NDN PIT
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Figure 2.9 – NDN-PIT

can be routed back to the requester. PIT is a collection of PIT entries. A PIT
entry is associated with each Interest that arrives at a node and is forwarded.

As represented in Figure 2.9, each PIT entry is identified by a name that
is the name prefix of the content requested in an Interest. Each PIT entry has
an associated in-record list and an out-record list. The in-record list stores the
face(s) where Interests arrive (in-faces) and the out-record list stores the face(s)
where they have been forwarded (out-faces). The information stored in the
in-record list and the out-record list helps the nodes route the content back to
the requesting node by storing the reverse link for the Data packet. Each PIT
entry also has a nonce list to record the nonce(s) associated with the Interests
that it has forwarded. The nonce information helps a node in loop detection.
The node updates a PIT when an Interest is received or when the content for
an Interest arrives, and in case of an Interest expiration.

FIB

The Forwarding Information Base (FIB) stores routing information used to
forward Interest packets toward potential sources of matching content. Much
like the PIT, the FIB is also a collection of entries, as represented in Figure 2.10.
A name or prefix for some content identifies each entry. Each entry has a set of
next-hop links that can lead to a potential source(s) for the prefix. A routing
cost for each next-hop link is also associated. The FIB can be populated in
several ways manually or automatically. The FIB population might be complex
due to the fact that global information about the network can be necessary. A
node can populate its FIB by self-learning, i.e., keeping the information of the
Interests it forwarded in the past. A routing protocol may also populate the
FIB. Routing and forwarding strategies to efficiently perform the name-based
routing are presented in [37] and [38].

Content Store (CS)

Content in NDN is independent of location and can be stored anywhere in the
network. Therefore, each NDN node is not just a router that routes packets but
is also equipped with cache memory to store content. This cache memory is
called the content store (CS). Each content is in the content store is identified
by it name as represented in Figure 2.11.
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Figure 2.10 – NDN-FIB

Any node in the network can cache the content that it forwards downstream.
Caching the content can help nodes to reply to future Interests. Consequently,
content is stored in source nodes and in caching routers [34]. Before forwarding
any Interests, the nodes first consult their CS to check if a copy of the requested
content is stored.

NDN CS

Name Data

Figure 2.11 – NDN-CS

The data might be cached in the CS for as long as possible. The cache,
however, has a limited capacity and the data has to be evicted after some time.
For any content in the cache, the nodes implement caching policies for caching
and eviction decisions. Caching policies keep track of the content requests and
then decide on storing or removing content based on either popularity or time it
has been stored in the cache. Caching is one of the important research topics in
NDN communities. Some popular caching strategies are LRU (Least Recently
Used), CEE (Cache Everything Everywhere), LCD (Leave Copy Down). Some
of the caching approaches in NDN are detailed in [39].
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Dead Nonce List

Dead Nonce List is another data structure in NDN that keeps a record of the
nonces that a node has processed (forwarded or replied) in the near past. This
data structure is introduced mainly to avoid looping Interests. The Dead Nonce
List supplements the PIT in loop detection. The Interests are usually short-
lived and expire, and the PIT removes expired Interests along with the nonce.
The reason for storing these nonces is detecting possible looping Interests that
may arrive sometime after the Interest has expired in the PIT. As the name
indicates, the dead Nonce list stores a list of nonces that are dead from the PIT.

2.4.3 NDN Interest Processing

An NDN node processes every received Interest to decide whether it can reply to
this Interest, forward it or ignore it as represented in Figure 2.12. If a forwarding
decision is taken, the Interest processing decides the face(s) where to forward
the Interest. The incoming Interest processing involves several steps. The first
of which is the detection of looping Interests by checking the Dead Nonce List. If
the nonce of the received Interest exists in the Dead Nonce List, it is considered
looping and immediately dropped; this is called Interest suppression. Then the
node consults the PIT for duplicate nonces, and the Interest is dropped if the
same nonce is found in the PIT.

The nodes then verify if a similar Interest, i.e., an Interest requesting the
same content, is already pending in the PIT. An existing entry with the same
name indicates that the node has already forwarded a similar Interest. An
existing entry also confirms that the requested content is not available in the
cache. If a similar entry exists, the node only updates the entry, and the new
Interest is not forwarded since content for it is already expected; this process
is called Interest merging. The pre-existing entry is updated by appending to
their respective lists, the incoming face, and the Interest’s nonce. Also, the
Interest expiration time for the entry is updated. Storing the incoming face
allows the node to store the path to send back content, and storing the nonce
helps to perform loop detection.

If a similar entry is absent, the node then verifies if the requested content is
available in the cache. A content store lookup checks if content with the same
name as the Interest is stored in the cache. If there is a cache hit, i.e., the
requested content is available in the cache, the node responds to the Interest
with a Data packet. The Data packet is sent on the incoming face of the Interest.

In the case of the unavailability of requested content or cache miss, the node
decides to forward the Interest. The node can choose to forward the Interest
on one or several faces. A forwarding strategy takes the forwarding decision,
i.e., the number of faces and the exact faces where the Interest is forwarded.
The forwarding strategy uses the faces stored in the FIB for the prefix to select
among the available faces.

Then the node creates a PIT entry to store the in-face(s), out-face(s), and
the nonce.
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Figure 2.12 – NDN Interest processing

2.4.4 NDN Data Processing

Once a Data packet is received from upstream, the node verifies if it had pre-
viously forwarded a corresponding Interest. If not, the content is considered
unsolicited and not forwarded anywhere, as represented in Figure 2.13. How-
ever, the node can choose to cache it based on its caching strategy. If an
Interest for the received content is present in the PIT, the information stored
in its PIT-entry (in-record) is used to find the path to the client downstream.
If the Interest was received from more than one face, a copy is sent to each
of those faces. Once the content is routed back to the requesting node using
the information in the PIT, the node deletes the corresponding PIT entry. The
node also decides whether the content should be cached locally [34].

2.4.5 Forwarding in NDN

In NDN, the forwarding decision is taken by a forwarding strategy. The strategy
decides where an Interest should be forwarded; how many faces, and which exact
faces. Some of the default NDN forwarding strategies are listed below [34].

• Best Route Strategy chooses to forward the Interest to the face with
the lowest cost of reaching a source.

• Multicast Strategy forwards the Interests to all the available faces.

• Client Control Strategy allows the clients to decide where to forward
the Interest.

• Load Balance Strategy forwards on the available faces alternatively to
balance the load.
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Figure 2.13 – NDN data processing

2.4.6 Multi-path Content Delivery in NDN

Devices nowadays come with multiple network interfaces that can be used to
retrieve content, e.g., Wi-Fi, 4G/5G. Traditional networking requires establish-
ing a transport session among endpoints. Using multiple paths is possible in
IP, e.g., with MPTCP [2], but it requires associating multiple paths to multi-
ple addresses. A detailed survey of the multi-path delivery over the Internet is
presented in [40].

In contrast to traditional networking, NDN inherently enables the use of
multiple interfaces. NDN does not require establishing a connection, and the
clients and intermediate nodes can choose to use multiple paths. Multi-path
content delivery is an important research topic in NDN networks. Rossini et
al. [4] analyze the content delivery in NDN networks, focusing on multi-path
forwarding strategies. Gomes et al. [41] propose load balancing mechanisms for
NDN to utilize multiple paths. They show an improvement in utilizing multiple
paths compared to typical single path strategies.

Nevertheless, NDN cannot always perform optimally in a dynamic network
with multiple clients and sources when using multiple paths. There is a one-to-
one mapping between Interests and content, i.e., each Interest corresponds to
a specific chunk of content. Due to the one-to-one mapping, the use of multiple
paths does not bring appreciable benefits in NDN. If a client sends an Interest
Ip1 requesting segment 1 of content with prefix p over multiple faces, it will
receive only multiple copies of the same content at the client. In a scenario
with clients requesting the same content over multiple faces, some coordination
is required to take advantage of multiple paths.

Raptor codes [42] or packet level FEC codes have been proposed to improve
ICN content delivery in multi-source and multi-client scenarios. Several works
demonstrate their advantages in multi-client scenarios. Anastasiades et al. [43]
propose RC-NDN an NDN architecture with Raptor codes. Evaluations show
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that RC-NDN outperforms the original NDN significantly.
Montpetit et al. [6] introduced network coding over ICN as a solution to

the coordination approach to use multiple paths in ICN efficiently. Numerous
works have been proposed using network coding over different ICN architectures.
Before detailing the application of network coding over ICN, we present the
basics of network coding.

2.5 Network Coding

Network coding (NC) is a modern communication paradigm [11]. It allows the
network nodes to perform operations on the packets instead of just routing them.
Traditional network nodes only forward the received packets. However, network
coding suggests that mixing the incoming information flows is possible. It is not
necessary to keep them independent, and merging or mixing them can improve
network performance. Network coding can benefit communication networks in
terms of throughput, security, forward error correction (FEC), resilience to link
failures or losses. One of the significant benefits specifically for NDN networks
is the increased Data packet diversity in multi-path scenarios.

Network coding combines packets in the network. Nodes receiving different
packets can combine them by performing different reversible operations. These
operations can be XOR, addition, or linear combinations [44]. These network-
coded packets are then forwarded to the network. The receiving nodes perform
the decoding operations to recover the initial information flows.

The benefits of network coding were initially presented by Ahlswede et
al. [11] in a wired network. The example butterfly scenario in Figure 2.14 illus-
trates the benefits of network coding in a wired network in [11]. An analogous
scenario without coding was presented in Section 1.2 and Figure 1.1. There are
two sources S1 and S2, and two clients U1 and U2. All links have same capacity
1. As with [11], but unlike our later assumption of a packet network, this de-
scription assumes a synchronous communication network where bits (symbols)
are individually transmitted on links. The sources generate bits x1 and x2.

In a network with standard routers, the middle link should transmit one of
x1 and x2 ; without the loss of generality, the Figure 2.14 assumes it is x1. The
client U2 receives both bits simultaneously. Client U1 receives x1 from both its
links. For client U1, the node R1 has to resend later the bit x2 along the path
R1 −R2 for instance.

However, with network coding the router R1 can take x1 and x2 and generate
a third bit x1 + x2 by combining them, e.g., by XORing the two bits. x1 + x2
is now sent over the bottleneck link (see Figure 2.14b). The client U1 receives
{x1, x1+x2} and the client U2 receives {x2, x1+x2}. Both U1 and U2 can solve
the simple system of two equations to retrieve the original bits. With network
coding, both clients receive the content simultaneously.

The example in Figure 2.14 illustrates the network coding benefits in terms
of throughput and delay, compared to classical routing. Network coding can
also be helpful in case of losses, the coded packets can help retrieve lost packets.
Gkantsidis et al. [45] demonstrate that download time for coded large scale con-
tent is significantly lower in comparison to forwarding unencoded information.
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Figure 2.14 – Example network for network coding advantages

Additionally they demonstrate that network coding improves the download time
further compared to coding at the server only. A few other works presenting
details on network coding are [46, 47, 48, 49].

2.5.1 Random Linear Network Coding RLNC

One of the commonly used methods of network coding is performing linear oper-
ations on packets in the network [44]. Packets are considered to be vectors over
a given Galois Field Fq. Fq is a Galois field of q elements and F∗q= Fq \ {0}. In
RLNC [50, 51], nodes can independently perform random linear combinations
of the packets, and the coding coefficients are chosen randomly. The original
data is divided into segments of equal size and then linearly combined by choos-
ing scalar coding coefficients drawn from a finite field. Coded segments are a
linear combination of source segments seen as vectors of the Galois field Fq. For
instance Q1 = α1P1 + α2P2 + · · · + αnPn where P1, P2, . . . , Pn are the source
segments and (αi)i∈{1,...,n} are the coding coefficients. The coded segments are of
the same size as the source segments. Once enough linearly independent coded
segments are received, the receiving nodes can decode and recover the source
segments by solving the linear system of equations. An important feature of
RLNC is that it allows re-encoding without the need of decoding. Therefore,
the network nodes can combine coded segments to create more coded segments,
increasing the network’s data diversity (recoding). The re-encoded segments
also have the same size as coded or source segments.

2.6 Network Coding and ICN

Network coding and ICN both inherently tend to address the content delivery
and focus on improving content distribution over the network. Network cod-
ing and ICN can work jointly to exploit network capacity better (by exploiting
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Figure 2.15 – Content segmentation in network coding-based NDN

caching, multi-path delivery, etc.). The idea of applying network coding over
ICN was first introduced in [6] to take advantage of ICN and network coding’s
inherent features to improve content delivery. The idea was to counter the chal-
lenges ICN faces when dealing with large content retrieval presented in [52].
They described the network coding implementation over a Pub/Sub ICN archi-
tecture [27] and an Interest-based architecture (CCN) with Network Coding for
CCN (NC3N) [6]. Motivated by the advantages that network coding can bring
to ICN [6, 53], several works have been presented combining network coding
and ICN. There are efforts in standardization on these topics. For instance, at
IRTF, the Network Coding Research Group (NWCRG) focuses on coding for
the network, including network coding and sliding window coding [54]. The
Information-Centric Networking Research Group (ICNRG) focuses on ICN. In
particular, an ongoing work [55] presents a combination of ICN and network
coding.

2.6.1 Network-Coding and Interest-Based ICNs

In this thesis, we focus on Interest-based ICN architectures and implementation
of network coding over them. We begin by explaining the basic semantics of
network-coded NDN and the challenges faced when incorporating the two.

In a classical network coding scenario, the original content C is partitioned
into G smaller groups of segments, called generations C = [c1, c2, ..., cG]. All
generations of a content have same number of equally sized elements. Network
coding is only allowed among the segments of the same generation. This helps
reducing the decoding complexity and overhead.

With linear coding [44] segments from a given generation may be linearly
combined within a source or at any intermediate node in the network. The
coefficients in Fq of the linear combination form the encoding vector [56] of each
coded segment. The encoding vector is associated to each coded segment. In
RLNC the coefficients are chosen randomly. In the NDN context, the source
nodes and caching routers may store original or coded segments.

In the most general application of network coding, the clients would not
request a specific segment; instead, they request a coded segment. The client
nodes send Interests requesting coded segments of a generation of the content.
The name carried by Interest packets is adapted to indicate that coded seg-
ments are expected (e.g., by setting a flag that indicates the retrieval of coded
segments [6]). A client can send the Interest Îg for the prefix p, indicating that
coded segments from generation g are requested. The segment id in the NDN
Interest is now replaced with the generation id.
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The Data packets that clients receive in response to these Interests are en-
coded and contain linear combinations of source segments. A coded data seg-
ment contains the coded content and information of how the content was coded
by carrying the encoding vector that indicates the weight of each of the source
segments.

A client requires at least n linearly independent coded segments to be able
to decode a generation of size n. The pull-based request-response mechanism
of NDN allows one Interest to bring back one content segment. A client node
has to send at least n Interests to be able to get n coded packets.

When receiving the Interest Îg for coded segments, if the corresponding
cache is not empty, a node can respond with a coded packet stored in its cache
or can re-encode several cached packets to generate a new coded combination.
The one-to-one mapping between Interest and content no longer exists in this
network-coded scenario since we are assuming that any coded packet of the
generation g can be a reply to such Interest.

The challenge when using network coding with NDN is to ensure retrieval
of innovative (linearly independent) content in response to multiple parallel
Interests by one or several clients. NDN allows caching and nodes can send
the packets stored in their cache to respond to the Interest. In the case of
network coding, this can be a problem: the same coded segment can respond to
several Interests requesting coded content. Imagine a client that sends a request
for a coded content and gets back the first coded segment. When sending the
Interests for the next segment may get back the same coded segment from
its neighboring node. However, in general, this can happen anywhere in the
network. Two Interests from a client sent on different links may still end up
bringing redundant content.

Another problem when requesting network-coded content is that when these
multiple identical Interests are sent in parallel (pipelined), the nodes consider
them to be similar Interests. With classical NDN processing, they are not
forwarded further as content from another similar Interest is already expected.
So in order to take advantage of the “one Interest, multiple possible responses
concept”, the Interest and content processing needs to be adapted in network
coding enabled NDN.

2.6.2 Network-Coded NDN Architectures

NC3N proposed in [6] had Interests that include the information of coded seg-
ments available at the client sending the Interest. This approach is similar to
the one proposed for TCP by Sundararajan et al. [57]. Later, the network-coded
NDN schemes proposed in [58, 59, 60] work with the same principle. The en-
coding vectors of all the received coded segments are sent in the Interests. The
encoding vectors help the nodes to decide either to generate a coded segment
that will be innovative for the requesting node or forward the Interest to their
next-hop neighbors. Wu et al. proposed the coding cache [58, 59] that stores
coded content in the nodes of the network. By increasing the diversity, they are
able to improve the cache hit rate. Similarly, Lei et al. [60] improved the cache
diversity and an increased cache hit rate, and improved network transmission
efficiency, a metric for the amount of useful data (linearly independent in this
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case) transferred in the network.
Nevertheless, adding the coding coefficients of the received content [6, 58,

59, 60] introduces an overhead in the Interest packets. This overhead increases
with the number of coded segments received by the requesting node (See 3.1).
The size of the overhead can be limited by keeping the generation size small.
However, these approaches also introduce a delay as the client node needs to wait
to receive the replies for previously sent Interests before it can issue Interests for
more coded segments to ensure retrieval of linearly independent content with
each Interest. In fact, to always ensure linear independence client can only have
one pending Interest and will operate in a stop-and-go manner.

Llorca et al.[61] proposed a caching-aided, network-coded scheme for mul-
ticast scenarios. They presented a framework to optimize the transport using
random linear network coding, multicasting and Zipf popularity distribution for
content. However, an implementation solution for the proposed scheme in ICN
is not presented.

Liu et al. [62] introduced an Interest coding and forwarding strategy that
allows splitting and joining Interests (for the same content and generation) at
intermediate nodes. The Interests request a subset of segments by indicating the
number of required coded segments to get a decodable generation. This scheme
implements a one Interest-multiple replies strategy, which is not compliant with
the NDN principle of one Interest-one reply.

Zhang et al. [63] compared the approach of sending all the encoding vectors
of the received content (precise matching) to rank-based matching, i.e., sending
only the client node’s rank. They observed that rank-based matching achieves
slightly lower performance but has much lower computation and communication
overhead.

Liu et al. [64] proposed to add the number of desired coded segments as an
additional field in the Interest. These Interests allow the node to request more
than one coded segment with one Interest. Consequently, a responding node
can send more linearly independent segments in response to this Interest if it
can generate more than one. However, requesting more than one coded segment
contradicts the NDN principle of one Interest-one reply.

Matsuzono et al. [65] proposed L4C2, a low-loss, low-latency, network coding-
enabled video streaming protocol over CCN. In L4C2, nodes request uncoded
content. Network-coded packets are requested only in case of Data packet losses.
Bilal et al. [66] proposed an algebraic framework of linear network coding for
CCN for efficient data dissemination.

Lal et al. [67] proposed a framework for cache management in ICN based on
network coding. They introduced different measures to choose the ideal caching
routers to increase the diversity and consequently the cache hit rate.

Saltarin et al. presented NetCodCCN [68] that addresses the shortcomings
of previous approaches by sending undifferentiated Interests for coded segments
of a generation. The client node implicitly states that it requires another coded
segment by sending additional Interests for coded segments. The intermediate
nodes that have previously sent coded segments keep track of the number of
coded segments forwarded on each face and the rank of their CS. The node only
replies to an Interest if the rank of its CS is larger than the number of coded
segments it has sent on a particular face. Thanks to these precise forwarding
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rules, NetCodCCN also supports the transmission and handling of multiple
Interests at one time (pipelining) and allows nodes to request content more
efficiently. With pipelining, a burst of Interests is sent first by a client. Each
time content is received, a new Interest is sent. A non-obvious drawback of this
approach is that unnecessary data traffic can still flow in the network even after
the clients have received enough content to decode a generation.

Saltarin et al. [69] and Bourtsoulatze et al. [70] presented adaptive video
streaming schemes implemented over network-coded ICN. Saltarin et al. im-
plement DASH (dynamic adaptive streaming over HTTP) in NDN. It is based
on a modified version of their work presented in [68] and adapted to NDN.
The scalable video transmission scheme presented in [70] uses Prioritized Ran-
dom Linear Network Coding (PRLNC) [71] for encoding the different layers.
It proposes the use of Bloom filters [72] to handle multiple Interests and Data
packets.

In Chapter 3, we analyze some design choices of the works that used network
coding over NDN in the past. The in-depth analysis provides us with insights
that help us make design choices for our solution that implements network
coding over NDN. Chapter 4 of the thesis proposes our novel protocol MICN
that enables efficient data retrieval over NDN. MICN solves some shortcomings
of the aforementioned approaches. It avoids the overhead incurred by some
approaches, reduces the delay, and improves retrieval time. Indeed, MICN
allows the forwarding and processing of several Interests in parallel.



3
Overview of Design Choices for

Network Coding with ICN

3.1 Introduction

Network coding was introduced to solve ICN’s coordination problem as detailed
in Chapter 2, that also presented some challenges when incorporating network
coding and ICN and the solutions proposed in the past to address these chal-
lenges.

In this chapter, we present in detail some design issues and choices that we
explored in our effort to combine network coding with Interest-based ICN in the
most efficient manner. We begin by explaining the main goals and challenges
of combining the two approaches.

One of the main goals of incorporating network coding into ICN is to allow
fast retrieval of content, especially in a multiparty network with multiple sources
and multiple clients requesting the same content. Since Interest-based ICN uses
a pull-based request-response mechanism, network coding-based ICN should
work on the same principles. Plain ICN allows one Interest to bring back one
content segment. A client node has to send at least n Interests to be able to
decode a generation of n segments. However, in a network-coded scenario, one
Interest sent over different links can bring differently coded packets (as there is
no one-to-one mapping between Interests and content).

One of the initial ideas is to increase the number of forwarded Interests in
the network, i.e., forwarding Interests for coded content to multiple available
faces and forwarding multiple Interests to one face (pipelining). The former is
not particularly helpful in classical ICN, since Interests with the same prefix are
expected to bring identical content. With classical Interest processing, multiple
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Interests can not reach the sources because of Interest merging or suppression.
Interest suppression occurs if an Interest with the same prefix (Interest request-
ing the same content) as an Interest already forwarded by the node is received
again. The node only records this Interest and does not forward it. This is done
to stop the propagation of Interests that are expected to bring back identical
content. However, with network coding, one Interest for coded content can be
replied to with different coded packets, and parallel processing of these Inter-
ests inside the network is beneficial. Doing so requires some adaptation of the
Interest forwarding mechanism of classical ICN.

In addition, to decode the requested n-segment content, no matter how many
Interests are sent in the network, the client requires n linearly independent
contents. So the fast retrieval of content relies on the assumption that the
content packets being received are all linearly independent. To achieve fast
retrieval, we identified three basic principles for ICN with network coding.

Principle 1 Forwarding enough Interests in the network,

Principle 2 Ensuring that each of the Interests brings linearly independent
content.

Principle 3 Pipelining, i.e., parallel processing of multiple Interests.

Several works in the literature have proposed solutions following these princi-
ples. Solutions presented in [58, 59, 60] add the encoding vectors of the received
coded packets in Interests and this ensure generation of linearly independent
content with each Interest. This provides a good solution to ensure linear inde-
pendence (Principle 1); however, they do not implement nor can benefit from
sending multiple Interests or pipelining (Principle 2 and 3). Additionally, a
naming overhead is introduced in the Interests with this method.

As discussed previously, classical ICN semantics is at odds with Principle 1.
Another family of protocols called NetCodCCN [68, 69, 73] sends undifferen-
tiated Interests in the network. They modify Interest forwarding at nodes to
ensure parallel processing of these undifferentiated Interests. These protocols
ensure linear independence by keeping counters (detailed in Section 3.3.1) and
rank information at the intermediate nodes. They achieve Principles 1, 2, and
3.

We analyze the proposed solutions and explore the design space for these
principles. In this chapter, we have two contributions. In the first part of
chapter we propose an improvement of the solution that relies on sending a
description of the content already at the client. We propose an efficient way
to compress the information on received content to reduce the overhead in the
Interests. This information helps ensure linear independence with each Interest.

In the second part of the chapter, our contribution is a detailed analysis of
the NetCodCCN protocol family that performs parallel processing of multiple
undifferentiated Interests requesting coded content. We identify some design
issues and their consequences and show that the forwarding techniques intro-
duced in different variants of these protocols are not always efficient, despite
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satisfying all the principles. We also present how the findings of this detailed
analysis influence our design choices for MICN: a network-coded NDN protocol
that we propose and present in Chapter 4.

3.2 Retrieval of Linearly Independent Content

One of the critical design issues in network-coded ICN is to get innovative
(linearly independent) content with each Interest. In network-coded ICN, the
clients send Interests requesting coded segments of content. Such Interests
can be replied to with differently coded segments of the content. However,
it is challenging to ensure that the response to each of these Interests brings
useful segments (linearly independent segments). To ensure linear independence
among the received coded segments, the clients may either choose to

a) advertise what they have already or

b) state what they need to decode a generation.

The former has been proposed in several previous solutions (including [58, 59,
60]). In this section, we review these solutions, their benefits, and their limita-
tions. We also present a novel solution to efficiently compress the information
in the Interests.

3.2.1 Network-Coded ICN with Vector Space in Interest

The client nodes can advertise what they have already received by sending the
encoding vectors of the received segments in the Interests. They do so by adding
a field with encoding vectors in the Interest represented by I[EV ].

When the clients begin content retrieval, their Interests are sent with an
empty encoding vector field I[∅], as they do not have any content. Any node in
the network with the requested content generates a coded segment in response
to the Interest I[∅]. The coded segment is sent back in a Data packet. An
example is presented in Figure 3.1, where the client requests a content with two
source packets A and B. The first Interest I[∅] is answered with a coded packet
2A+B by the neighboring node.

The client issues a second Interest after receiving content for the first In-
terest, adding its encoding vector in the Interest. This Interest now carries
information of the already received segments at the client. In Figure 3.1b the
node receiving this Interest checks if it can generate a coded segment that will
be linearly independent to the already received one. If not, it forwards the
Interest to its next-hop neighbors. The Interest is forwarded until it reaches a
cache with enough content to generate a linearly independent coded segment.
This coded segment is guaranteed to increase the rank of the requesting node.
This technique ensures that an innovative packet is sent as a response every
time.

This approach provides an efficient solution to ensure linear independence
with each Interest (Principle 2). Nevertheless, this approach introduces an
overhead in the Interest packets that increases with each coded segment that
the requesting node receives. The size of the overhead is limited by keeping
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Client

(a)

Client

(b) Interest with encoding vector field responded with a coded vector linearly inde-
pendent of the already received encoding vectors

Figure 3.1

the generation size small in some of the proposed work, e.g., Lei et al. in [60]
set the generation size 4 for their experiments. In the following sections, we
focus on proposing a solution to compress the information of already received
content at the client. Our contribution provides an effective way to reduce this
overhead.

3.2.2 Vector Subspace Representation

We begin by introducing the concept of representing the content received at the
client nodes as vector subspace. Assume that some client node has received k
Data packets with linearly independent encoding vectors vi ∈ Fn, i = 1, . . . , k.
These row vectors form a basis of a k-dimensional vector subspace V of Fn, with

V = span {v1,v2, ..., vk} .

For the next content to be linearly independent the next Interest packet should
request some coded segment that does not belong to V. The choice considered
in [58, 59, 60] to represent V is to send {v1,v2, ..., vk} in the Interest, which
requires k × n elements of F in the Interest name suffix.

3.2.3 Channel Coding Perspective

Alternatively, V can be seen as an (n, k) linear code over F considering a channel
coding perspective. A k × n generator matrix G associated with this code is
obtained by stacking the vectors vi (as in [58, 59, 60]). Any element of V is
obtained by linearly combining the rows of G. Then an efficient way to check
whether a vector belongs to V is by considering an (n− k) × n parity-check
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matrix H associated to G. The parity-check matrix is such that for all v ∈ Fn,

s = vH> = 0 if and only if v ∈ V. (3.1)

From (3.1) for any vector v to belong to the vector space V, the syndrome of
v relative to the parity-check matrix H must be equal to zero [74, pp. 86]. G
and H are thus two equivalent representations of V. Any generator matrix G
can be put in the following systematic form

Gs =
[
Ik|P

]
(3.2)

by performing pivoting on rows of G followed by some permutation of the
columns represented by the permutation π. In (3.2), Ik is the k × k iden-
tity matrix and P is a k × (n − k) matrix with elements in F. If Gs has been
obtained from G only by row pivoting, Gs and G represent the same vector
space V. This is no more the case when column permutations are necessary.
The (n− k)× n parity check matrix associated with Gs is obtained as

Hs =
[
P>|In−k

]
. (3.3)

Again, if column permutations were required to put G in systematic form, Hs

is not a parity check matrix of the code associated to V. A parity-check matrix
H for G is obtained by applying the inverse column permutation π−1 to the
columns of Hs. To represent V using G or H, only the k × (n− k) matrix P is
required, as well as the permutation function π.

3.2.4 Interests with Compressed Vector Space

We attempt to reduce the overhead in the Interests by using parity check matri-
ces. The Interests sent for the content can be represented as I (V), containing
some function as a suffix to represent V. From the definitions above, sending G
when k 6 n/2 and H when k > n/2 provides a first reduction of the overhead in
Interest packets compared to the approach considered in [58, 59, 60]. A single
bit is necessary to indicate whether G or H is put in the Interest packet.

Then the alternate representation of H is sending the matrix P . The over-
head in Interest packets with this approach is then k×(n− k) elements of F and
at most n× dlog2 ne bits to represent the permutation π or just n elements to
represent the pivot columns. Consequently, when client nodes request network-
coded segments of a generation, they may indifferently use V, G, H, or P and
the associated permutation function π in the Interest packet to indicate their
received vector subspace. As a result, a node holding a vector v that is not in
V can reply to the Interest.

Example 3.1. Consider content with generation size n = 10 over a Galois field
F = GF (24)1. A client has received 7 coded segments from the generation.
The received packet information can be represented by the matrices G, H or P .
The client can use any of these representations in the Interest I(V ) to ensure
retrieval of linearly independent content as a response.

1For simplicity, we represent the field elements by 0, . . . , 15. The field was constructed
using the irreducible polynomial
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An example vector space of the client can be represented as V by stacking
all the linearly independent coded segments received by the client.

V =



15 15 12 8 13 1 8 6 2 7
14 6 14 4 14 0 2 9 12 4
8 12 13 4 4 8 11 7 11 11
3 13 2 12 1 2 3 14 6 6
0 3 0 4 4 9 2 4 15 4
14 11 9 14 7 15 1 6 8 10
1 7 7 2 10 0 13 8 5 10


The k × n Generator matrix in (3.2) for the vector space V is given by

Gs =



1 0 0 0 0 0 0 14 11 7
0 1 0 0 0 0 0 6 9 3
0 0 1 0 0 0 0 7 2 3
0 0 0 1 0 0 0 10 5 1
0 0 0 0 1 0 0 7 10 13
0 0 0 0 0 1 0 1 7 12
0 0 0 0 0 0 1 0 1 9


.

The resulting G matrix is obtained by some permutation of the columns
represented by the permutation function

π =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


The permutations π can, in fact, easily be represented by n indices to rep-

resent the pivot columns as π∗ =
(
0 1 2 3 4 5 7 6 8 9

)
.

The generator matrix is in standard form Gs =
[
Ik|P

]
. The Generator

matrix includes the k × (n− k) P matrix

P =



14 11 7
6 9 3
7 2 3
10 5 1
7 10 13
1 7 12
0 1 9


The related (n− k)× n parity check matrix 3.3 of the generator matrix is

Hs =

 14 6 7 10 7 1 0 1 0 0
11 9 2 5 10 7 1 0 1 0
7 3 3 1 13 12 9 0 0 1





3.2. Retrieval of Linearly Independent Content 35

It is evident that the size of the parity check matrix H is much smaller than
the Generator matrix G. And the P matrix is even smaller.

Example 3.1 presents the difference in the dimension of the matrices that can
effectively represent the vector space received by a client. In order to compare
the number of bits required to send each of these representations, we present
Example 3.2.

Example 3.2. Considering a content with generation size n = 16 and a Galois
field F = GF (28), the number of bits required to send the information about
received coded segments using different approaches is given in Table 3.1.

No. of received coded segments k G H P

1 128 1920 120
2 256 1792 224
8 1024 1024 512
9 1152 896 504
14 1792 256 224
15 1920 128 120

Table 3.1 – Number of bits2 required to encode the received vector space of
a client in Interests for content of generation size n = 16 from Galois field
F = GF (28)

It is evident that the overhead of sending G (as in [58, 59, 60]) increases
linearly with k. This overhead can be decreased by sending the parity check
matrix H after receiving segments k > n/2. The overhead introduced by the
final approach (P matrix) is considerably lower even after considering the per-
mutation function. The number of bits required to represent the vector space
decreases with the number k of received coded packets.

3.2.5 Benefits and Limitation

Sending the vector space in the Interest packet ensures linear independence of
content received with each distinct Interest. The parity check matrix method
is an efficient way to compress the vector space representation to keep the
overhead small, while still retrieving linearly independent content.However, this
approach introduces some delay. The client node needs to wait to receive the
reply for previously sent Interest to arrive, before it can issue another Interest
requesting more coded segments. Multiple Interests carrying the same vector
space issued together or sent over multiple faces may not bring similar benefits.
The client can get back more than one packet for these multiple Interests.
However, multiple coded packets generated in reply to the same Interest are not
guaranteed to be innovative. There is a high probability of receiving linearly
dependent content with these Interests.

Figure 3.2 presents an example scenario where multiple Interests with the
same encoding vector fields are sent in the network. The initial Interest with

2The permutation is represented by a vector of pivots π∗ for which nlog2[n] = 64 bits max
are required
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Client

(a)

Client

(b)

Client

(c)

Client

(d)

Figure 3.2 – Example scenario for multiple Interests with encoding vector field

an empty vector field brought two coded packets to the neighboring node of the
client. One of them (C = A + B) was delivered to the client. The client then
issues multiple Interests with the same encoding vector field, e.g., two similar
Interests in Figure 3.2. The neighboring node can reply to both Interests with
differently coded packets C1 = A+ 2B + C and C2 = A+ 3B = 2C. However,
C, C1 and C2 are linearly dependent. This illustrates that sending multiple
Interests is not always beneficial with this approach. Hence, one can not benefit
from efficient forwarding or pipelining when using the approach of advertising
received content.

An effective solution to this problem is to request content for multiple gen-
erations in parallel. Note that this approach has not been proposed in the past.
Although it can overcome the delay over several generations, this kind of solu-
tion works only for problems where multiple generations of content are already
available for download, or for applications where initially a complete download
of the content can be done. However, such solutions are not well suited for
scenarios where there is live streaming of content.

The shortcoming in terms of delay led us to explore the second method,
where the client nodes state what is required to decode a generation instead
of the vector space of what they have. The method is not detailed here but
constitutes of of the major thesis contributions in Chapter 4. The main idea is
to be able to send and process multiple Interests for network-coded data in the
network. An alternate solution, MILIC, is presented in Section 4.3, that allows
the node to implicitly state what is required to decode a generation. This is
done by specifying constraints in the Interests for the content that can satisfy
them. Interests with different constraints always recover linearly independent
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content due to MILIC properties. The exact method is presented in Chapter 4.
Pipelining of multiple Interests is possible with MILIC Interests.

3.3 Network Coding with Undifferentiated Inter-
ests

In Chapter 2 we presented some work from literature proposing network-coded
ICN algorithms. The protocols NetCodCCN [68, 73] and NetCodNDN [69]
(implemented on top of CCN and NDN, respectively) present a solution with
undifferentiated Interests that can be pipelined in the network. These protocols
are capable of reaching the capacity of the network or the maximum possible
throughput. Although the capacity is shown to be reached on examples, we
are not aware of formal proofs of this performance. The Interest forwarding
algorithm is a critical aspect of these protocols, because their performance is
mainly dependent on how parallel Interests reach the sources and bring back
content.

Looking closely into these forwarding algorithms and their variants we found
out that they have a flooding effect, i.e., many Interests (more than required)
are sent in the network. We reproduced the simulation results following closely
the descriptions provided in [68]. The simulation results show that a lot of
unnecessary data traffic is generated in the network due to the flooding.

In the following sections of this chapter, we analyze more formally the prop-
erties of several variants of forwarding algorithms of these protocols. For the
rest of this chapter, we denote the family of protocols presented in [68, 69, 73]
as NetCodCCN. The detailed analysis of NetCodCCN semantics and forwarding
strategies contributed in some major design choices for the main contribution
of this thesis (presented in Chapter 4).

3.3.1 NetCodCCN Semantics

NetCodCCN [68] is based on the idea that clients send several undifferentiated
Interests, in reply to each of which linearly coded segments of the content will
be sent, possibly from different sources. Receiving enough linearly independent
coded segments will be sufficient to retrieve the original content. The core idea
of these protocols is different from classical CCN/NDN forwarding. Instead
of suppressing similar Interests, these protocols allow the nodes to receive and
forward several identical Interests from a face. To keep track of the sent Interests
and expected content, the nodes keep a count in the in-records and out-records.
The NetCodCCN PITs store more information than classical CCN PITs, and
accordingly, the forwarding algorithms are different.

We first present the main building blocks of the NetCodCCN nodes, followed
by the algorithms for Interest and content forwarding. A NetCodCCN node has
data structures differing from CCN/NDN nodes. Each data structure stores
information per generation for each content prefix.

1. Each node has a PIT. The PIT maintains for each of its faces f :

• rf = the counter of pending Interests (the in-record);
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Figure 3.3 – NetCodCCN node (with three faces)

• sf = the counter of the Interests that have been forwarded on the
face (the out-record);

• σf = the number of coded segments that have been sent on the face;

• sall = the total number of incoming Interests that required forward-
ing (from any face).

2. Each node has a CS. The NetCodCCN CS stores linearly independent
coded segments {Q1, Q2, . . . Qρ}. The number of these linearly indepen-
dent segments defines the node rank ρ. The node rank is used for the
decision of Interest forwarding and data response.

3. Each node has a Forwarding Information Base (FIB), denoted F , which
indicates the interfaces on which the Interest could be forwarded. The
forwarding strategy determines dynamically on which subset of F they
are actually forwarded.

Figure 3.4 shows the detailed structure of a NetCodCCN node with three faces
represented in the simple topology in Figure 3.3.

Now we present the network operation of the NetCodCCN nodes.

Content Store (CS)
Rank 

 Received Interests    
  Forwarded Interests      

Sent Contents     

Face 1
 Received Interests    

  Forwarded Interests      
Sent Contents     

Face 2

Total Forwarded Interests

 Received Interests    
  Forwarded Interests      

Sent Contents     

Face 3

face 1, face 2, face 3
FIB

Figure 3.4 – Internal data structures of a NetCodCCN node
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Figure 3.5 – Example forwarding scenario

Interest Processing

NetCodCCN uses a Parallel Strategy (PS). The parallel strategy is a multicast
forwarding strategy that forwards Interests in parallel over all faces in the For-
warding Information Base (FIB). When receiving an Interest on a face f , the
node processes this Interest before deciding whether to forward it. The node
first checks its rank, e.g., if it has full rank, it can decode all coded segments.
If so, the node can act as a source and send a linear combination of packets.
Otherwise, if σf < ρ, then the CS has more linearly independent combinations
than it has already forwarded on the face f . In that case, the Interest can be im-
mediately satisfied by sending a random linear combination of coded segments
in the CS. Otherwise, the Interest is considered for forwarding.

Interest Forwarding Strategies

NetCodCCN protocols have undifferentiated Interests, i.e., all Interests request-
ing coded segments of the same content appear similar. Similar Interests are
merged or suppressed in normal CCN/NDN forwarding, as they are expected to
bring the same content. However, since this is not the case for coded scenarios,
a NetCodCCN node forwards similar Interests. A node decides if and where
it will forward the Interest based on the information stored in its PIT and its
rank. An Interest is never sent back on its receiving face.

We identify several variants and derivatives of NetCodCCN presented in [68,
69, 73]. They vary in their Interest forwarding decision algorithms. We present
the forwarding variants in detail; the naming of the forwarding variants ap-
pearing here is ours. We consider the example scenario presented in Figure 3.5
with a NetCodCCN node with three faces to present these variants. The node
receives undifferentiated Interests requesting coded segments of some content in
the sequence a, b and c as represented in Figure 3.5. The node receives a first
undifferentiated Interest I from face 1, then a second one I ′ from face 3, and
afterward a third Interest I ′′ from its face 1 again. The Interests are represented
as I, I ′ and I ′′ only to indicate that they are received from different faces at
different times.

We consider that the CS of the node is initially empty. The node records
all the information in its PIT. The node has to decide whether or not it will
forward the Interest, based on the counters in its PIT. The forwarding decision
is taken based on one of the following variants.
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Figure 3.6 – Example scenario for Optimistic Forwarding

Optimistic Forwarding (OF)

Optimistic Forwarding assumes that all sent Interests on all faces will bring
back content. Hence forwarding occurs only when the number of received In-
terests becomes greater than total Interests forwarded rf >

∑
ϕ∈F sϕ. The

assumption here is that every face f ∈ F brings back innovative content. This
is proposed in [69, p. 2190] and [73, p. 53]. The state of the node’s data struc-
tures (counters) are presented in Figure 3.6 during the scenario from Figure 3.5.

• The first Interest is received at face 1, updating the received counter r1
to 1. It is forwarded to the faces 2 and 3, incrementing their forwarding
counters s2 and s3 to 1 each.

• When the second Interest arrives at face 3, its received counter r3 updates
to 1. However, the forwarding does not occur since the total forwarded In-
terests computed by OF is

∑
ϕ∈F sϕ = 2, and the condition rf >

∑
ϕ∈F sϕ

is not met. Figure 3.6 presents the state of the node before the arrival of
second Interest I ′.

• The same happens when the third Interest I ′′ arrives at face 1, i.e., the for-
warding condition is not met, and the node does not forward the Interest.
This is because the first Interest has been forwarded twice

So only one Interest will be forwarded out of three with optimistic forwarding.



3.3. Network Coding with Undifferentiated Interests 41

 Received Interests    
  Forwarded Interests      

Sent Contents     

Face 1
 Received Interests    

  Forwarded Interests      
Sent Contents     

Face 2

Total Forwarded Interests

 Received Interests    
  Forwarded Interests      

Sent Contents     

Face 3

Content Store (CS)

face 1, face 2, face 3
FIB

Figure 3.7 – Example scenario for Pessimistic Forwarding (after I)
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Figure 3.8 – Example scenario for Pessimistic Forwarding (after I ′)

Pessimistic Forwarding (PF)

Pessimistic Forwarding counts the number of times sall that the node had
to forward Interests. Forwarding is done when the number of Interest received
at any face f becomes more than the number of times the node has forwarded
Interests, i.e., rf > sall. This is one interpretation of the proposition in [68].
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There is a subtle ambiguity because [75, p.6] reads “For the sake of simplicity,
we make the assumption that nodes follow a simple model in which any for-
warded Interest brings an innovative segment before its expiration.” However,
if an Interest is forwarded on three other faces, does it count as one “forwarded
Interest” or three? PF assumes one and OF assumes three. Now we consider
that the node implements Pessimistic forwarding in the scenario in Figure 3.5.

• The node forwards the first Interest since r1 > sall. This happens because
all the counters are initially set to zero, except the counter r1, updated
upon receiving the first Interest I.

• When the second Interest I ′ arrives, the node would not relay it as r3 =
sall. The counter sall remains unchanged. Figure 3.7 shows the state of
the node at the arrival of the second Interest.

• The third Interest I ′′ would be forwarded since r2 will be incremented,
and consequently, the condition r1 > sall will be satisfied (r1 = 2 while
sall = 1). Figure 3.8 indicates the state of the node at the arrival of
I ′′. After the Interest is forwarded, the counters s2, s3 and sall will be
updated.
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Figure 3.9 – Example scenario for Robust Forwarding

Robust Forwarding (RF)

The Robust Forwarding forwards Interest on each interface ϕ ∈ F \ {f}
where less Interests have been forwarded than received on f , i.e., sϕ < rf . Now
we consider that the node implements Robust forwarding in the scenario in
Figure 3.5.

• The Initial Interest I is forwarded similarly as in OF and PF since the CS
is empty.
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• The second Interest I ′ that arrives at face 3 will be forwarded on face
1 since s1 < r3. Figure 3.9 presents the state of the node with Robust
forwarding after the forwarding decision has been taken for the second
Interest.

• Similarly, the third Interest I ′′ will be forwarded on faces 2 and 3, since
s2 < r1 and s3 < r1 (r1 is incremented on the third Interest’s arrival).

With Robust Forwarding, all three Interests in the given scenario will be for-
warded by the node. Notice if the Interests were distinct and duplicates were
dropped or merged upon arrival, or if each client originates a single Interest;
this mimics NDN semantics [34].

FIB Computation

The forwarding operation of a node also depends on how the FIB is populated.
We describe several choices to fill the FIB.

• FIB F can include all faces of the node. This leads to a Flooding for-
warding behavior. We denote it as FIB-F.

• The FIB can only include the faces that can lead to a source without
looping back to the node. It is denoted as FIB-P.

• The FIB of all nodes could be configured to form a directed acyclic graph
directed towards the sources. It is denoted FIB-DAG.

3.3.2 Logical Analysis of the Behavior of NetCodCCN
Protocols

We assume clients and sources do not forward Interests and that a client sends
each of its Interests on all its faces. For the analysis of the forwarding strategies,
we only focus on the Interest forwarding achieved with the OF, PF, and RF;
the data retrieval is not considered. Additionally, all the analysis is performed
over networks with unit capacity links.

The first important forwarding design trade-off depends on the FIB. FIB-
F is straightforward to implement since it includes all faces and forwards to
all faces. FIB-P is often used instead of FIB-F 3, as it suppresses obviously
useless Interests. However, it requires knowledge of paths to sources in order to
avoid self-looping. FIB-DAG requires a potentially expensive FIB computation
protocol (e.g., NLSR [34]) and some coordination of the nodes to avoid loops.
Thus FIB-DAG is only suited for applications in smaller networks, but it can
reduce the use of network resources.

Looking in detail at the different FIB designs, we note two important prop-
erties:

3Not always clearly specified in all articles, but default behavior in some simulators such
as ndnSIM [76] {https://ndnsim.net/2.1/doxygen/ndn-global-routing-helper_8cpp_
source.html}is equivalent to FIB-P

https://ndnsim.net/2.1/doxygen/ndn-global-routing-helper_8cpp_source.html
https://ndnsim.net/2.1/doxygen/ndn-global-routing-helper_8cpp_source.html
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Figure 3.10 – Bidirectionality

1. FIB-DAG is sometimes suboptimal: This can be shown by the ex-
ample scenario in Figure 3.10, where U1 and U2 are the clients requesting
content stored at sources S1 and S2. We assume that all the links are
unit capacity. The use of link R2–R3 in both directions is necessary for
clients U1 and U2 to be able to receive simultaneous content from S1 and
S2. However, the bi-directional use of the link R2–R3 ends up in creating
a cycle that is incompatible with a DAG. Hence FIB-DAG is not always
efficient and does not always allow maximum throughput.

Figure 3.11 – Example network presenting overload

2. FIB-P and FIB-F can generate extraneous traffic: Pessimistic and
robust forwarding allow content to be quickly delivered to clients, but we
observed in our simulations (detailed in Chapter 4, Section 4.7) that Data
packets could be exchanged long after the clients get all content, because
of the generous replication of Interests. In Figure 3.11, we present a simple
example with one client U sending k Interests to get back a k segment
content. With parallel forwarding strategy RF and PF, the Interests will
be forwarded to both the links U–R1 and U–R2 and then on over all the
links on the next node to reach the source S. The client U will get all
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content in k
2
time units as the content will be received from both links.

However, node R3 and R2 that have also forwarded all the Interests will
continue to receive content during k time units since they only have one
link and only one packet can be received per unit time. The content that
will be received after time k

2
by these nodes will be redundant for the

client, but it continues to flow in the network. This superfluous traffic
reduces the capacity available for other content or data traffic.

We now focus on the Interest forwarding algorithms: Optimistic Forwarding
(OF), Pessimistic Forwarding (PF), and Robust Forwarding (RF). One funda-
mental and necessary property of one such algorithm is that the number of
Interests that reach the source(s) is greater or equal to the number of Interests
sent by the client(s). We denote this property conservation for scenarios where
no sources actually reply with Data packets (or with near-infinite delay). The
following analysis studies the preservation of the conservation property with the
forwarding algorithms (OF, PF & RF).

OF Analysis With One Client

We first observe that OF has difficulties with conservation. This comes from
the fact that a node of degree d + 1, when receiving kd Interests from a face,
will send k Interests on each forwarding face as shown in Figure 3.12. This is a
form of bounded local flow conservation. With the OF strategy, the output rate
(number of outgoing Interests) of one node is lower or equal to the input rate
(number of incoming Interests), which is sufficient only if every Interest gets a
linearly independent reply.

Consider the case in Figure 3.13, where we count the ratio of Interests flowing
on each link compared to the number of Interests originated by the client U .
Because of the previously noted property, the flow splits at node R1. However,
if the flow meets again as in R4 in Figure 3.13, a proportion of the Interests will
not be forwarded (1

4
in Figure 3.13). Hence, the total flow is not conserved as

the source receives only 3
4
th of the Interests originally sent by the client. Thus

cross links prevent conservation under OF
With one client with one link (and any number of sources), conservation

is possible with OF if and only if there are only parallel connections and no

X

...

kd I

k Ik I k Ik I

Figure 3.12 – OF forwarding
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Figure 3.13 – OF with one client (links labelled with the ratio of Interest flow )

cross links, which implies a tree structure of the nodes (before the sources) as
in Figure 3.14. Not even FIB-DAG guarantees this.

Figure 3.14 – Conservation in OF

OF Analysis With Several Clients

OF with several clients suffers from the same issues. However, in case of multiple
clients requesting the same content, the Interest flow from a client might com-
pensate flow losses for another client, as shown in the example of Figure 3.15,
where conservation is observed this time. The same situation can also occur for
a single client with several outgoing links.

As a result, we know that conservation is generally not verified for OF with
several consumers, but the characterization of such cases appears more complex.
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Figure 3.15 – OF case with several clients

RF Analysis

RF will always provide conservation. This comes from its property that any
node that receives k Interests on one of its links will always forward k Interests
on each of its other faces in the FIB (either the k Interests or some similar
ones received previously). Figure 3.16 presents a example scenario to prove
conservation for RF: it shows that if one has a graph Gi with that very property,
one can expand it with any neighbor node to obtain a graph Gi+1 with the same
property, e.g., k Interests coming in on the left, will still result into k Interests
going out on the links of the new node N to the right (and vice-versa – not
represented). Growing a graph iteratively (excluding clients and sources), one
can prove recursively that any k Interests sent by a client will result in k Interests
reaching every node of the network (FIB-F), or at least every node on the path
to source(s) (FIB-P, FIB-DAG) and then every source.

Figure 3.16 – RF Case
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PF Analysis With Several Clients

We first observe that in some scenarios, with FIB-F, PF will not provide con-
servation. In Figure 3.17, if Interests are sent simultaneously by clients C1 and
C2, the kth Interest of C1 is blocked by the kth Interest of C2 at node R3 because
it has already forwarded the latter.

Figure 3.17 – PF case with several clients

PF Analysis with One Client

Under the assumption that client Interest have sufficiently large inter-arrival
time4, one can prove that with FIB-F, “if the (unique) client sends k Interests,
then k Interests must reach every source”. We denote this property Pk.

We first introduce a concept derived from a notable property from PF:
let ` > 0 be an integer. Imagine a node ui forwards its `th Interest (i.e., its sall
reaches `). By definition, this is only possible if it has just received the `th of
rf = ` Interests on some face f . This face is linked to a previous node ui−1;
we can similarly identify the previous hop ui−2 that caused ui−1 to forward its
`th Interest, etc. and we establish a path, denoted `-causality path, that starts
from the client (no loop)With that definition, by induction on n, we prove the
property Pn: “n Interests sent by the client will always result in n Interests
reaching each source”. P0 is obvious.

U VC u v w

Figure 3.18 – PF Case

We then assume that Pn is true, and prove Pn+1 by contradiction: we con-
sider that n + 1 Interests are sent by the client. Notice Pn can be applied to

4i.e., when one arrives, the previous one has fully propagated
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the first n Interests, hence at least n Interests will get forwarded by any node.
Now denote U the set of nodes that forwarded exactly n + 1 Interests, and V
the set of nodes that forwarded n Interests (Figure 3.18).

Assume that V is not empty, and consider any node w ∈ V . Consider the
nth (and last) Interest forwarded by w, and the associated n-causality path of
w. The n-causality path originates from the client c (in U), reaches w ∈ V ,
so it must cross the border between U and V : denote u ∈ U and v ∈ V such
neighbor nodes on the n-causality path of w. By definition, the nth forwarded
Interest of u reaches v and is the nth forwarded Interest by v.

Now we know by the definition that u will forward another (n+1)th Interest.
This Interest cannot originate from v, therefore it will be received by v. It will
be the (n + 1)th received by v from u and v must forward another (n + 1)th

Interest. This contradicts the fact that v is in V . Hence the hypothesis “V is
not empty” cannot be true, and the property Pn+1 is verified for n+ 1, and by
induction, for any n. �

The analysis presented above gives a closer view of the forwarding tech-
niques and their consequences. To conclude, some seemingly simple optimiza-
tions (such as OF, or PF with several clients, etc.) actually lead to losing the
conservation property. Therefore, not every Interest will reach a source (or a
cache). This is losing a vital design property (that, for instance, NDN main-
tains). Our solution will be to use robust versions of the algorithms such as RF;
however, they also come with a cost (such as superfluous data traffic after the
entire content has been retrieved by clients).

3.4 Conclusion

In this chapter, we have explored some design choices for network-coded ICN
presented in the past and proposed novel enhancements. The first part of this
chapter presented a solution for compressing the information in the Interests to
ensure retrieval of linearly independent content.

In the second part of this chapter, we analyzed the properties of a family of
protocols presented in the past that have been experimentally observed to reach
network capacity. We focused mainly on the variants of their Interest forwarding
algorithms and presented some essential properties of NetCodCCN concerning
Interest Forwarding. We illustrated that different variants of forwarding algo-
rithms lead to different trade-offs and properties: some are not necessarily easy
to establish nor known as presented in the published work [68, 69, 73].
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4
MICN: A Network Coding

Protocol for ICN

4.1 Introduction

Chapter 2 illustrated the fact that integrating ICN and network coding yields
throughput benefits in a multi-client and multi-source network. Nevertheless,
to get these benefits, the clients in an ICN network need to ensure that each
Interest sent in the network brings back innovative (linearly independent) con-
tent.

This chapter presents MICN, a protocol that integrates network coding over
NDN. The proposed protocol enables fast retrieval of content over an NDN
architecture in multi-client multi-source networks. The clients request coded
content by sending indexed Interests that bring back innovative content.

We focus on the challenges in terms of naming the Interests requesting coded
content in network-coded ICN scenarios. We present our naming approach by
introducing an index in each Interest that imposes constraints on the coded seg-
ments that can serve as a reply to that Interest. This construction of Interests
is called MILIC (Multiple Interests for Linearly Independent Content). The
MILIC constraints ensure retrieval of linearly independent content with each
Interest. We also propose MICN (MILIC-ICN), a protocol that uses MILIC
construction to integrate network coding over NDN, as well as some optimiza-
tions to improve the performance of the protocol further.

The chapter is organized as follows: Section 4.2 presents the MICN pro-
tocol’s basic architecture. Section 4.3 presents the desired properties of coded
content to ensure linear independence with each received packet, introduces our
solution MILIC and present the mathematical proofs of the properties. Sec-

51
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interests
and
faces

coded
segments

Figure 4.1 – Basic components of MICN (Source, Client, Interest, coded data,
MICN node (PIT, FIB, CS)

tion 4.4 details the protocol specification of MICN. Finally, we present the sim-
ulation setup and the results of the MICN protocol in Section 4.7. We compare
the performance with state of the art techniques.

4.2 Proposed Approach for Network-Coded NDN

In this section, we propose a protocol called MICN that supplements NDN
with network coding. In MICN, the client nodes implicitly indicate the re-
quired coded segments by pipelining multiple distinct Interests. The distinct
Interests allow parallel processing of these Interests and ensure that replies to
the pipelined Interests are not redundant. We start by presenting an overview
of the MICN architecture.

4.2.1 MICN Architecture

The architecture of MICN is based on NDN [34]. It incorporates common
adaptations of network coding to NDN (as described in Section 2.6), including
dividing content into generations and allowing in-network coding operations
on the content from one generation. Figure 4.1 presents the basic elements of
MICN. For the protocol messages: Interests are sent to retrieve coded segments,
and replies to these Interests are coded segments (i.e., linear combinations of the
source segments) sent in Data packets. For the data structures: the nodes have
a PIT, a CS, and a FIB. The data structures are modified to receive, process,
and forward coded segments. Original or coded segments may be stored at the
source and intermediate nodes. Each generation is retrieved independently of
others.

One central design goal of MICN is to achieve high throughput using mul-
tiple available paths to the sources. To achieve this, MICN maximizes the
propagation of Interests. The main MICN semantics are explained below.

• Forwarding strategy: MICN uses a multicast forwarding strategy : at
each node, when possible, Interests are forwarded on all available faces.

• Pipelining: Interests are pipelined to allow parallel retrieval of content
and hence increases throughput.
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• Interest processing: Interests of different clients (similar Interests, dif-
ferent nonces) are not suppressed: this effectively allows the Interests of
each client to reach the sources from multiple available paths.

Figure 4.2 – Impact of NDN’s Interest suppression: Interest from Client 2 sup-
pressed due to earlier propagation of Client 1’s interest

MICN, unlike NDN, chooses not to suppress the forwarding of similar In-
terests coming from different clients and treats each Interest with a different
nonce as a new Interest. Figure 4.2 illustrates why MICN does not perform
such merging of Interests. Interest Ik from client 1 in Figure 4.2 is propagated
in the network first. The plain NDN semantics stops the propagation of sim-
ilar Interests from client 2 since it expects the same content from the client 1
Interests. As a result, client 2 will be unable to take advantage of the multiple
paths and will get content from only one path (from node A in Figure 4.2).

In order to achieve high throughput, one main challenge while pipelining
and forwarding Interests to multiple paths is to ensure receiving linearly inde-
pendent segments as replies. We impose constraints called MILIC (explained
in Section 4.3) on the possible coded segments that can satisfy an Interest with
index i ∈ {1, . . . , n}: their encoding vector must follow constraints depending
on i. MICN (through these constraints) ensures that coded segments sent as
replies to Interests with different indexes are always linearly independent.

We adopt some additional features to complement these design choices. The
most important additional feature is Interest cancellation. We introduce Interest
cancellation as an option to cancel unnecessary Interests that may be lingering in
the network after the retrieval of the content at the clients (see Section 4.5.2).
Just-in-time re-encoding is adapted to prevent content from becoming non-
innovative while being queued (Section 4.10). When there are multiple paths
to a node, the fastest path is preferred. However, with pipelining, the contents
tend to queue on the reverse fastest path. Content redirection allows all possible
paths to be used (instead of just the fastest/ shortest path).
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Figure 4.3 – MICN operation: Example scenario

4.2.2 Example of the Protocol Operation

Consider a single generation of size 3 with source segments P1, P2 and P3 in
GF (11)1. MILIC constrains any coded segment replying to the first Interest
I1: it should be a linear combination including P1, e.g., α1P1 + α2P2 + α3P3

with α1 6= 0. A coded segment satisfying I2 should not include P1 and must
include P2, e.g., β2P2 + β3P3 with β2 6= 0. Finally for I3, the “coded” segment
is just a scaling of P3, e.g., γ3P3 with γ3 6= 0. Notice the constraints are
realized with the subsets of encoding vectors A1 =

{
(v1, v2, v3) ∈ Fnq | v1 6= 0

}
,

A2 =
{
(0, v2, v3) ∈ Fnq | v2 6= 0

}
and A3 =

{
(0, 0, v3) ∈ Fnq | v3 6= 0

}
.

In the example of Figure 4.3 a client sends indexed Interest I1 that is for-
warded by the network to reach the two available sources. Each source sends a
coded content Q1 = 2P1 + 4P2 + 2P3 and Q′1 = 3P1 + 7P2 + 5P3 satisfying the
constraint for I1 (i.e., their encoding vectors are in subset A1), with encoding
vectors

(
2 4 2

)
∈ A1 and

(
3 7 5

)
respectively.

The intermediate node first receives the coded segment Q1 and forwards it
to the client as a response to the Interest I1. On receiving Q1 the client sends
Interest I2. Several sequences of events can happen that illustrate the main
features of MICN:

• If the second content Q′1 is received after I2 then the intermediate node
forwards I2, since there is no content satisfying it that can be constructed
from the CS. Later, more coded segment(s) will be received by the node,
and I2 will thus be satisfied. Note here that if the constraints were not
imposed, the content Q1 might as well serve as a reply for the second
Interest as well as all later Interests. It is a critical to avoid this2. This is
property 4.1 of MILIC (see Section 4.3).

• If the second content Q′1 is received before I2: the intermediate node
will store the content Q′1 along with Q1 in its CS, since they belong to

1other Galois Field may be considered. With GF (11) all coding coefficients are between
0 and 10 and all operation are modulo 11.

2Note that the method of NetCodCCN to avoid sending the same coded segment again,
is to only reply to an Interest when the rank of its CS (here 1) is greater that the number of
coded segments sent on the face (here also 1).
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the same generation and are linearly independent. The CS may perform
one step of Gaussian elimination, and keep them in row echelon form
R1 = P1 + 2P2 + P3(= Q1/2) and R2 = 1P2 + 2P3(= Q′1 − 3Q1/2).
Now observe that when the Interest I2 arrives, it can be satisfied at the
intermediate node using the CS (this will illustrate property 4.3 of MILIC
defined later in Section 4.3).

The example illustrates that although coded segments match different con-
straints and correspond to different subsets, all the coded segments of one gen-
eration are mixed together (in the decoding process, Gaussian elimination, and
packet generation).

The constraints on the subsets and their properties are formally introduced
in the following section.

4.3 Multiple Interests for Linearly Independent
Content

4.3.1 Introduction and Motivation

The main goal in this work presenting network coding enabled NDN starts
from the idea of consecutive transmission or pipelining where several Interests
for content are sent in parallel, with the goal that each of them brings innovative
coded segments. Additionally, to ensure that Interest/Data packets are not lost
and the cache sizes are minimized.

The original content for network coding is partitioned into generations. With
RLNC, segments from a given generation may be linearly combined within a
source node or at any intermediate node in the network. The linear combi-
nations are performed in some Galois field Fq to get coded segments. In what
follows, Fq is a Galois field of q elements and F∗q= Fq \{0}. The coefficients in Fq
of the linear combination form the encoding vector [56] of each coded segment.

For a generation of size n, we propose to use n distinct Interests. Interest
i ∈ {1, . . . , n} can be satisfied by any coded segment whose encoding vector
belongs to a predefined subset Ai of the set of all possible encoding vectors. In
the following, these constraints will be such that the set of all non-zero encoding
vectors is partitioned into n non-overlapping subsets A1, . . . ,An satisfying some
additional constraints.

4.3.2 Desired Properties of Subsets

To ensure that the answer to Ik is linearly independent to Il, if k 6= l, the
following properties of the subsets are sufficient conditions.

Property 4.1. For any ai ∈ Ai, i = 1, . . . , n, the vectors a1, . . . , an have to
be linearly independent, i.e., for any n-tuple of coefficients (α1 . . . αn) ∈ Fnq ,∑n

i=1 αiai = 0 iff α1 = · · · = αn = 0.

An additional condition can be imposed on subsets A1, . . . ,An to benefit
from the observation that when a node sends the same Interests over ` faces, `
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Figure 4.4 – Example explaining Properties 4.1 & 4.2

answers to these Interests will likely be received. Ideally, these replies should be
linearly independent. This leads to a property of subsets that is not mandatory,
but desirable to improve the efficiency of the proposed solution.

Property 4.2. Consider k distinct subsets Aπ(1), . . . ,Aπ(k) where π is a per-
mutation of the integers 1 to k. Consider ` > 1 vectors a1κ, . . . , a`κ chosen
uniformly at random from each subset Aπ(κ), κ = 1, . . . , k such that `k 6 n,
then rank

(
a11, . . . , a

`
k

)
= `k with high probability.

Finally, one may try to exploit the fact that segments are coded with pos-
sible re-encoding at intermediate nodes. Intermediate nodes may have received
several segments with coding vectors belonging to the same subset. It may be
of interest if these segments can be used to generate a coded segment with en-
coding vector belonging to another subset, to satisfy Interests for that subset.
This translates into the following additional desirable property for the subsets.

Property 4.3. Consider the subset Ai, i = 1, . . . , n−1. For any pair (a1i , a2i ) of
linearly independent vectors belonging to Ai, with high probability, there exist
α1 ∈ F∗q and α2 ∈ F∗q such that α1a

1
i + α2a

2
i ∈ Ak with k > i.

Figure 4.4 presents a scenario that explains Properties 4.1 and 4.2. The
client sends Interest I1 that is duplicated by an intermediate node and sent
on two different faces. The two Interests I1 bring content coded with encod-
ing vectors from the subset A1. With Property 4.3 there is a high probability
that the two responses c1 and c′1 are linearly independent and the node receiving
these responses for I1 has rank 2. The intermediate nodes can store the two
responses in the CS since both are linearly independent. With the Property 4.3
the intermediate node can use these two responses to respond to an Interest I2
from the client. These properties enable each MILIC Interest to bring infor-
mative content due to linear independence within the subsets along with linear
independence between the subsets.
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Figure 4.5 – MILIC subsets A1,A2 andA3 construction for F4q

4.3.3 MILIC Construction

In this section we propose a construction of the sets A1, . . . ,An, called MILIC,
that satisfies the above properties. Consider

Ai =
{
(v1, . . . , vn) ∈ Fnq | vi 6= 0 and ∀j < i, vj = 0

}
, (4.1)

with i = 1, . . . , n. With this construction the sets A1, . . . ,An form a partition
of Fnq \ {(0, . . . , 0)}.

In the remaining part of this section we present the proofs of how our pre-
sented construction leads to subsets that satisfy the desired properties presented
in Section 4.3.2.

4.3.4 Proofs of MILIC Properties

Lemma 4.1. The cardinal number of Ak verifies |Ak| = (q − 1) qn−k

Proof. Consider first A1: ∀ai ∈ A1, one has ai,1 6= 0. There are qn−1 vectors
with leading zeros in Fnq hence |A1| = (q − 1) qn−1. Then consider Ak with
k > 1: ∀ai ∈ Ak, one has ai,j = 0 for j = 1, . . . , k − 1 and ai,k 6= 0. For ai,k,
we have q − 1 possible choices. Then each ai,j, j = k + 1, . . . , n may take q
possible values. Consequently (ai,k+1, . . . , ai,n) may take qn−k possible values
and |Ak| = (q − 1) qn−k.

Thus, with the construction (4.1), the cardinality of the sets is decreasing
with k. This implicitly imposes an ordering among these sets.

We now describe how Properties 4.1, 4.2, and 4.3 are satisfied by the sets
defined by (4.1).

Property 4.1 is satisfied by construction: consider any a1 ∈ A1, . . . , an ∈ An.
The matrix with rows a1, . . . , an is in row echelon form, and thus of full rank.
The vectors a1, . . . , an are thus linearly independent.

An example of the MILIC construction of the subsets A1,A2 andA3 for a
content with 4 source segments over F4q is presented in Figure 4.5. Set A1

according to the definition (4.1) consists of all the possible coding combinations
of the source segments where the first coefficient must not be equal to zero and
the rest of the coefficients can be chosen randomly from Fq. The subset A2

consists of all the coding combinations such that the first segments is missing
(i.e., is equal to zero), the second must not be zero and the rest can be chosen
randomly. The cardinal number of the subset A2 is smaller than the subset
A1 and so on. Vectors chosen from each of the subsets, when stacked together
create a matrix of the form presented in (4.2) and are linearly independent by
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construction.

A1 =


6= 0 ∗ ∗ ∗
0 6= 0 ∗ ∗
0 0 6= 0 ∗
0 0 0 6= 0

 (4.2)

To prove Property 4.3 for k > i, consider an intermediate node that received
two linearly independent segments a1i ∈ Ai and a2i ∈ Ai. The i− 1 first entries
of a1i and a2i are zero, and their i-th entries a1i,i and a2i,i are non-zero. Then, as
F∗q is a group for multiplication, considering any α1 ∈ F∗q, there exists α2 ∈ F∗q
such that α1a

1
i,i+α2a

2
i,i = 0. Moreover, since a1i and a2i are linearly independent

by assumption, one has b = α1a
1
i + α2a

2
i 6= 0. Let k be the smallest index such

that bk 6= 0. Necessarily k > i and b ∈ Ak.
Using Lemma 4.2 one deduces that Property 4.2 is satisfied for A1, . . . ,Ak

as defined by (4.1) provided that ` 6 n − k + 1, and evaluates the probability
of having rank

(
a1k, . . . , a

`
k

)
= ` and Lemma 4.3 illustrates Property 4.2 for the

k first subsets A1, . . . ,Ak.
Lemma 4.2. Consider ` vectors a1k, . . . , a`k chosen uniformly at random from
the set Ak, k ∈ {1, . . . , n}, and with 1 ≤ ` ≤ n − k + 1. The probability that
a1k, . . . , a

`
k are linearly independent is

Pr
(
rank

(
a1k, . . . , a

`
k

)
= `
)
=
∏̀
j=1

(
1− qj−1 − 1

(q − 1) qn−k

)
.

Proof. Consider first ` = 2, and a1k ∈ Ak. The set of non-zero vectors collinear
to a1k and included in Ak is span (a1k)∩Ak = span (a1k) \ {(0, . . . , 0)}, whose size
is q − 1. When choosing a second vector a2k ∈ Ak uniformly at random, the
probability that a1k and a2k are linearly dependent is equal to the probability
that a2k ∈ span (a1k) \ {(0, . . . , 0)}. Consequently, the probability that a1k and a2k
are linearly independent is

Pr
(
rank

(
a1k, a

2
k

)
= 2
)
= 1− |span (a

1
k) \ {(0, . . . , 0)}|
|Ak|

= 1− 1

qn−k
.

Assume now that the j − 1 first vectors a1k ∈ Ak, . . . , a
j−1
k ∈ Ak are linearly in-

dependent. The set of vectors that are linearly dependent with a1k, . . . , a
j−1
k and

included in Ak is span
(
a1k, . . . , a

j−1
k

)
∩ Ak = span

(
a1k, . . . , a

j−1
k

)
\ {(0, . . . , 0)}.

Its size is qj−1 − 1. Then, when choosing ajk ∈ Ak uniformly at random, the
probability that a1k, . . . , a

j
k are linearly dependent is equal to the probability

that ajk ∈ span
(
a1k, . . . , a

j−1
k

)
\ {(0, . . . , 0)}. Consequently

Pr
(
rank

(
a1k, . . . , a

j
k

)
= j | rank

(
a1k, . . . , a

j−1
k

)
= j − 1

)
= 1− qj−1 − 1

(q − 1) qn−k
.

(4.3)

Then one has

Pr
(
rank

(
a1k, . . . , a

`
k

)
= `
)

= Pr
(
rank

(
a1k, . . . , a

`
k

)
= `, rank

(
a1k, . . . , a

`−1
k

)
= `− 1

)
= Pr

(
rank

(
a1k, . . . , a

`
k

)
= ` | rank

(
a1k, . . . , a

`−1
k

)
= `− 1

)
Pr
(
rank

(
a1k, . . . , a

`−1
k

)
= `− 1

)
. (4.4)



4.3. Multiple Interests for Linearly Independent Content 59

Figure 4.6 – Client requesting content for the subset Ak over multiple faces

Applying this recursively and using (4.3), one gets

Pr
(
rank

(
a1k, . . . , a

`
k

)
= `
)

=
∏̀
j=2

Pr
(
rank

(
a1k, . . . , a

j
k

)
= j | rank

(
a1k, . . . , a

j−1
k

)
= j − 1

)
Pr
(
rank

(
a1k
)
= 1
)

=
∏̀
j=1

(
1− qj−1 − 1

(q − 1) qn−k

)
.

Example 4.1. Table 4.1 provides
[
PF (`, 1) , 1− Pr

(
rank

(
a1k, . . . , a

`
k

)
= `
)]

for vectors of n = 10 elements in F256 for different subsetsAk and different values
of `. One observes that choosing 5 vectors at random from any of the subsetsAk,
k = 1, . . . , 5, results in a high probability of getting linearly independent vectors.
Consequently, if a client sends 5 Interest packets for elements inAk over different
faces as illustrated in Figure 4.6, it is likely, provided that these Interests follow
different paths leading to different sources or caches with independent content
in the network, to get 5 linearly independent Data packets.

` = 1 ` = 2 ` = 3 ` = 4 ` = 5

A1 0 2.11× 10−22 5.46× 10−20 1.39× 10−17 3.58× 10−15

A2 0 5.46× 10−20 1.39× 10−17 3.58× 10−15 9.16× 10−13

A3 0 1.39× 10−17 3.58× 10−15 9.16× 10−13 2.34× 10−10

A4 0 3.58× 10−15 9.16× 10−13 2.34× 10−10 6.01× 10−8

A5 0 9.16× 10−13 2.34× 10−10 6.01× 10−8 1.53× 10−5

Table 4.1 – Probability of getting linearly dependent coded vectors of length
n = 10 chosen at random from Ak ⊂ F10256

Lemma 4.3. Consider ` > 1 vectors a1κ, . . . , a`κ chosen uniformly at random
from each subset Aκ, κ = 1, . . . , k such that `k 6 n. The probability that
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{
aλ1 , . . . , a

λ
k

}`
λ=1

are linearly independent is

Pr
(
rank

(
a11, . . . , a

`
k

)
= `k

)
=

(`−1)k∏
j=1

(
1− qj−1

qn−k

)
.

Proof. According to Property 1, the vectors a11, . . . , a1k are linearly independent.
Consider the matrix A, whose first k rows are the vectors a11, . . . , a1k and the
(`− 1) k remaining rows are

{
aλ1 , . . . , a

λ
κ

}`
λ=2

. The first k rows are used to
perform Gaussian elimination on the (`− 1) k remaining rows to get a matrix
A1 of the form

A1 =



1 ∗ · · · ∗
0 1

. . . ...
... . . . . . .

1 ∗ · · · ∗
0

...
... B

0 · · · 0


.

In A1, B is a matrix of (`− 1) k rows and n−k columns. Since all vectors chosen
in the subsets Aκ, κ = 1, . . . , k, have been selected uniformly at random, the
n − k last entries of each vector are independently and uniformly distributed.
The i-th row of B results in a linear combination of a11, . . . , a1k with one of the
remaining vectors a2κ, . . . , a`κ, κ = 1, . . . , k. Consequently, the n−k components
of the i-th row of B are still independently and uniformly distributed. Since
all n − k last components of a2κ, . . . , a`κ, κ = 1, . . . , k are independently and
uniformly distributed; all components of the matrix B are independently and
uniformly distributed.

The matrix A is of full row rank `k iff the matrix B is full row rank (`− 1) k.
The first row b1 of B is non-zero with probability 1− 1

qn−k . The second row b2 of
B has components that are uniformly and independently distributed from the
other entries of B and thus of b1. The vectors (b1, b2) are linearly independent
if b2 does not belong to the space spanned by b1. Since span (b1) is of size q,
one has

Pr (rank (b1, b2) = 2) = 1− q

qn−k
.

Assume now that the j − 1 first rows b1, . . . , bj−1 of B are linearly indepen-
dent. Under this assumption, the probability that bj is such that the j first
rows b1, . . . , bj of B are linearly independent is equal to the probability that
bj does not belong to the subspace of dimension qj−1 spanned by b1, . . . , bj−1.
Consequently,

Pr (rank (b1, . . . , bj) = j | rank (b1, . . . , bj−1) = j − 1) = 1− qj−1

qn−k
.

Then similarly as in 4.4, the probability that B is of full rank is given by
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k ` F2 F256
50 2 0.71 0.0039
25 4 0.71 0.0039
33 3 0.42 1.53× 10−5

49 2 0.23 5.98× 10−8

48 2 0.06 9.13× 10−13

32 3 0.06 9.13× 10−13

24 4 0.06 9.13× 10−13

47 2 0.015 1.39× 10−17

45 2 0.00097 3.24× 10−27

Table 4.2 – Probability PF (`, k) = 1−Pr
(
rank

(
a11, . . . , a

`
k

)
= `k

)
of not getting

` linearly dependent vectors when choosing randomly ` vectors in each of the
subsets A1 to Ak

Pr (rank (B) = (`− 1) k) =

(`−1)k∏
j=1

(
1− qj−1

qn−k

)
=

(`−1)k∏
j=1

(
1− 1

qn−k−j+1

)
.

≈ 1− 1

qn−lk+1
when q large

Notice that the probability that B is full rank is close to one for appropriate
parameter choices, as illustrated by Example 4.2.

Example 4.2. Table 4.2 provides PF (`, k) , 1 − Pr
(
rank

(
a11, . . . , a

`
k

)
= `k

)
for vectors of a generation of size n in Fq when choosing at random ` vectors
from each of the k = 50 subsets. For n = 100, one observes that when a
node receives 2 random packets from each Aκ, κ = 1, . . . , 50 subsets, provided
that network coding is performed in F256, the probability of getting linearly
independent packets is above 99.6%. The same result is obtained when 4 packets
are obtained from each of the k = 25 first subsets. The constraints introduced
by the subsets do not degrade the generation recovery performance significantly
compared to plain network coding. This result is mainly obtained thanks to the
fact that one considers packets received from the first (largest) subsets.

Remark 4.1. The size of the subsetsAk decreases when k increases, see Lemma 4.1.
Thus, at first sight, considering the size of the subsets, given a set of random
vectors (e.g., cache of a node), there would be more possibilities to generate
a coded segment with an encoding vector in the first subsets (larger) than in
the last subsets (smaller). Nevertheless, due to pipelining behavior, this is not
a problem. When there is a single path between a client and a source, Prop-
erty 4.1 ensures that all contents are innovative. If however, ` distinct paths
connect the client to one or more sources or different caches, the first Interest
packet in the pipeline is replicated on the ` paths. This Interest should bring
back ` linearly independent Data packets thanks to Property 4.2. Then again,
thanks to Property 4.2, the k first pipelined Interest packets are likely to bring
back k` linearly independent Data packets, see Table 4.2. Consequently, when
` distinct paths connect the client to one or several sources, it is unlikely that
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this client will need to send Interests for contents in the subsets Ak with k close
to n. This opens the potential for an adjustment and optimization of the size
of the pipeline.

4.4 MICN Protocol

This section complements the description of the MICN architecture introduced
in Section 4.2. It focuses on the Interest and data processing using the MILIC
construction presented in Section 4.3, to recover linearly independent content
with each Interest in the context of NDN. We present in detail protocol specifica-
tions including the content fragmentation and naming, followed by the changes
required in the basic NDN data structures, PIT, and CS in order to process
Interests for MILIC coded content. Finally we present the Interest and content
processing algorithms.

4.4.1 Content Segmentation and Naming

The original content C is partitioned into G smaller groups of segments, called
generations: C = [c1, c2, ..., cG]. Each generation cg, g = 1, . . . , G, contains n
equally-sized segments cg = [cg,1, cg,2, ..., cg,n] . The network coding operations
are restricted to segments that belong to the same generation and are assumed
to be performed in Fq.

A MILIC-compliant coded segment, with encoding vector in the subset Ai,
i = 1, . . . , n, is defined as

c̃g,i =
n∑
j=i

αjcg,j

with αi ∈ F∗q. The entries of cg,j, j = 1, . . . , n and c̃g,i are represented as elements
of Fq. Any coded segment c̃g,i is identified by a prefix, a generation id g, a MILIC
index i, and the encoding vector α = (0, . . . , 0, αi, . . . , αn) ∈ Fnq to indicate the
weight of each source segment in c̃g,i. Consequently, we propose to identify c̃g,i
by the NDN name <prefix>/MICN/<g>/<i>/<αi, . . . , αn> (MICN indicates that the
content is network-coded). Other naming conventions are possible.

4.4.2 Requesting MILIC-Compliant Content

According to the naming convention of content segments, introduced above, the
name carried by the Interest Ig,i for a coded segment from C belonging to the
generation g and with an encoding vector in Ai is <prefix>/MICN/<g>/<i>.

Contrary to other proposals integrating network coding to NDN/CCN, this
Interest format allows the client nodes to pipeline multiple Interests for the
same generation, provided that different indices i are specified in the names.

In practice, a client sends successive Interests for coded segments in a given
generation g, starting from packets with encoding vectors in A1,A2, . . . ,Aρ,
where ρ is the pipeline size. Additional Interests are sent once the content
starts flowing back. The pipeline size ρ limits the number of pending Interests
from a client node at any time.
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Figure 4.7 – MICN compliant PIT: the Interest with index k has a cache hit
and is temporarily stored in the PIT until the queue of face f1 is empty to send
back the associated Data packet

Each Interest Ig,i has an associated time-out. If linearly independent content
in response to Ig,i is not received before time-out, Ig,i is sent again. Time-out
may occur, e.g., in case of loss of the Interest or Data packets.

4.4.3 MICN-Compliant PIT

Compared to the classical NDN PIT, a MICN-compliant PIT identifies Interests
requesting coded segments with the same prefix and generation id as related
Interests. PIT entries for related Interests are grouped in a sub-table (identified
by the prefix and generation id g). Each entry itself includes the associated
index i, nonce ν, as well as the in and out faces. The PIT entries are sorted by
order of arrival.

Figure 4.7 illustrates a part of a MICN-compliant PIT at a given node with
three faces f1, f2, and f3. Three Interests have been received and forwarded.
The two Interests associated with A1 are considered different since they have
different nonces, which implies that different clients sent them. This is sufficient
to implement the semantics that does not suppress similar Interests of different
clients.

4.4.4 Just-in-Time Content Re-encoding/Replying

In plain NDN, whenever a node can satisfy an Interest, a copy of the requested
content is sent immediately. In MICN, as in some other network-coded NDN
protocols, nodes do not just forward a copy of the matching cached coded
segment as an answer to the Interests. They linearly combine cached segments
from the same generation to generate a new coded segment.

In MICN, the reply strategy is further modified, compared to plain NDN. A
node waits until the output queue of a face is empty, before generating a coded
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segment that satisfies a pending Interest on this face. This allows the node to
use its latest cached contents when replying, hence sending more diverse content
through the network. To achieve this, a one packet queue is considered at the
faces, i.e., only one Data packet is in transit on a face, the next is sent only
when the packet in transit is completely delivered. The process to achieve this
just-in-time re-encoding is further detailed in Sections 4.4.5 and 4.4.7.

4.4.5 Interest Processing

When a node receives an Interest Ig,i, it initially performs loop detection. If
an Interest with the same nonce has already been received, Ig,i is considered
as looping Interest and deleted. Otherwise, the node can either reply using a
content generated from its CS or further forward the Interest to the network.

CS Lookup

Like in the PIT, the related contents (i.e., contents with the same prefix and
generation id) are grouped in the CS. The CS can store related coded segments
with network coding vectors in row echelon form. The CS lookup starts by
identifying the related content matching the received Interest. A cache hit
occurs if there exists a coded segment belonging to the subset requested by the
Interest. This coded segment and all linear combinations of this segment with
segments from subsets with a higher index can satisfy this Interest. Later, when
generating a reply, a variant of RLNC can be used.

In case of a cache hit, the node schedules a reply for the Interest. The node
first checks the outgoing queue of the face from where the Interest arrived. If the
queue is empty, the content is immediately sent in a Data packet. Otherwise,
a reply (linear combination) is generated only when the queue becomes empty.
In our implementation, this scheduling is achieved by creating a transient PIT
entry to store the incoming face, nonce, etc., but without specifying an outgoing
face, since the Interest does not require to be forwarded. See, for example, the
Interest with index k in Figure 4.7.

Figure 4.8a illustrates a node that does not implement just-in-time re-
encoding. When it has enough content in its CS to respond to the incoming
Interest I3, it immediately uses the related cached content to generate a response
c̃3. However, the content remains in the queue until the content c1 is transmit-
ted. While the node in Figure 4.8b with just-in-time re-encoding waits until c1
is transmitted, since it may receive more content and have a more diverse CS
(since more content from the same generation is requested). So a transient PIT
entry is generated that is replied to as soon as the queue becomes empty.

4.4.6 Interest Forwarding

In case of a cache miss, the node forwards the Interest to its next hop neighbors
on available faces in the FIB (except the incoming face) and creates a PIT entry,
which records the incoming and outgoing faces. Unlike classical NDN, different
nonces result in different entries, see Figure 4.7.

Regarding the FIB management, multiple Interest forwarding strategies can
be implemented depending on the subset of faces chosen to forward the content.
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(a) Immediate re-encoding: c̃3 = α1c1 + α3c3 is put in the outgoing queue of face f1 before
the reception and processing of content packet c2.

(b) Just-in-time re-encoding with MICN: c̃3 = α1c1+α2c2+α3c3 is put in the outgoing queue
of face f1 only once this queue is empty; this gives the opportunity to the later received c2 on
face f2 to be included in c̃3.

Figure 4.8 – Two variants of cached content re-encoding

In MICN, to take advantage of multiple paths to the source(s) and to have the
opportunity to receive multiple linearly independent segments, the FIB is filled
with all faces that can lead to a source without looping back to the node. The
multicast forwarding strategy is then used, in which Interests are forwarded on
all faces in the FIB, as suggested in [34, Section 5.2.2].

4.4.7 Content Processing

When a coded segment arrives at a node, the node checks if the received segment
and already cached related segments are linearly independent. If the encoding
vector of the received segment belongs to a subset not present in the CS, it is
immediately added to the CS (linear independence guaranteed by Property 4.1).
If, however, the received coded segment has a network coding vector belonging
to the a subset already in the CS, partial Gaussian elimination is performed to
verify linear independence before adding it to the CS. The updated cache might
then satisfy some additional Interests.

The node then uses its updated cache to reply to pending Interests. When-
ever the queue of a face is empty, the node checks if any pending Interest on
that face can be satisfied utilizing the current state of the cache. It answers the
oldest PIT entry that may be satisfied and removes the entry.
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4.5 Optimizations

In this section, we introduce some features that we adapt to complement our
design choices compared to classical NDN. These adaptations help optimize the
performance of MICN in an network-coded NDN scenario.

4.5.1 Content Redirection

Source 

Client

Ik

Ik

Ik
R

Figure 4.9 – Content redirection scenario

A node can receive an Interest on a second face while the same Interest (same
nonce) is still pending at the first face, due to the Just-in-time content re-
encoding of MICN, see Section 4.4.4. The duplicate Interest carrying the same
nonce is considered looping and ignored. A common occurrence is shown in
Figure 4.9 where one path is faster (e.g., shorter) than the other. All Interests
and, ultimately, content will queue on the faster path, while the slow path will
not be used.

Content redirection attempts to utilize all available paths by exploiting the
information brought by the looping Interests that there exists an alternate path
to the client. Suppose the output queue associated with this alternate/second
face is empty, and the node has matching content, then it can be immediately
redirected to the client via this alternate face. This redirection is likely to
improve the network utilization by benefiting from all paths leading to the
client. In case of Figure 4.9, both links should be fully utilized.

Figure 4.10 – Content redirection on face f2: during the transmission of c1,
an Interest I2(ν) for content associated to A2 has been received from face f1
(left) and then from face f2 (middle); since the outgoing queue of face f1 is still
occupied, c̃2 is transmitted on face f2 (right).
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Source Client

R1

R2

Figure 4.11 – Topology where Interest cancellation may be useful

Figure 4.10 depicts the state of a node that receives Interest I3 with the
same nonce ν from an alternate face f2 with an empty queue. Since the node
has enough content to generate a reply for the Interest, but the face f1 is busy,
the node redirects the content via the alternate face to immediately send the
reply and possibly benefit from a second path to the client.

4.5.2 Interest Cancellation (MICN-IC)

We observe that content packets continues to flow in the network even after
the client nodes have received enough content to decode a generation. This
phenomenon is due to delay delay and connectivity discrepancies in different
parts of the network which result in the extra Data packets flowing in the
network. In order to reduce the traffic due to redundant contents, we introduce
the concept of Interest cancellation (IC).

Figure 4.9 shows the simplest scenario justifying Interest cancellation. There
are 2 paths between the client and the source, and Interests will be forwarded
on both paths. The client will retrieve content at a rate twice faster than the
nodes R1 and R2. There will still be pending Interests at the intermediate nodes
when the transfer of content completes at the client. The content will still flow
for these Interests; this content is redundant for the client. IC consists of having
intermediate nodes deleting lingering Interests by using information carried by
the new Interests on the content that is already retrieved at the client.

The optional client identifier and state fields are added in Interest packets to
perform cancellation. The client identifier field can be any unique node identifier
3.The state field bears the information of subsets as defined by MILIC for which
that client has already available content. Such content may have been directly
obtained after Gaussian elimination involving several data segments. The state
field can be represented by a bitmap indicating the available indices. Notice that
client identifier and state fields introduce a small overhead on Interest packets.

When receiving an Interest with the state of a client, a node may ignore the
pending Interests referencing indices i for which content is already available.
Nevertheless, the nodes do not immediately delete them: instead, they are set
to low priority for replies, contrary to other related Interests in the PIT, which
have normal priority. Due to Properties 4.2 and 4.3, answering the low-priority
Interests may still be useful: even network coding segments sent as replies
for subsets for which content is already available at the client may bring new
information with a high probability. Thus, a node first replies to Interests that
are guaranteed to increase the rank of the client and then to Interests that are

3hash of the client node identifier or a randomly generated client nonce
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likely to increase it.

Figure 4.12 – Interest Cancellation: An Interest for packets associated to A6 is
coming from face f1, indicating that the source has already access to content
associated to A1, A2, and A3 (left); the pending Interest for content associated
to A3 is first tagged with low priority (middle); this pending Interest is canceled
as soon as an Interest associated to a subset of higher index (here A4) is replied
to (right).

A reply to a low-priority Interest is sent only if the outgoing face is empty,
and the node cannot generate content for Interests with a normal priority. Dele-
tion of low-priority Interests occurs when the node has sent content for an In-
terest with a higher index than the low priority one to the client. This version
of MICN with Interest Cancellation is referred to as MICN-IC.

Figure 4.12 illustrates the state of a node that receives an Interest for some
content from A6. The Interest also carries the state of the requesting node,
indicating that it has already access to contents from A1, A2, and A3. Using
this information the node sets the pending Interest for content from A3 to low
priority (Interest in gray). This low-priority Interest is deleted once a content
associated with A4 has been sent to the requesting client. Without Interest
cancellation, the node would continue to process Interests and ensures that all
pending Interests are responded to in FIFO order, based on the available content
in the CS.

4.6 MICN Messages and Data-Structures

Table 4.12 compares MICN with classical NDN and NetCodCCN in terms of
information stored in Interest and Data packets as well as in nodes. It gives
an overview of the necessary information for the semantics of each protocol.
For a given setting, it could also be the basis of a precise computation of each
protocol’s packet header size. In many cases, the network coding vector, whose
size increases linearly with generation size, will dominate the overhead, for
instance, for generation size 100 and F284.

4Remark that for MILIC, the network coding vector from index i has size n− i+ 1
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Interest Packet
NDN prefix, segment-id
NetCodCCN prefix, gen-id
MICN prefix, gen-id, MILIC-index
MICN-IC prefix, gen-id, MILIC-index, client-id, bitmap (state)
Content Packet
NDN prefix, segment-id, content segment
NetCodCCN prefix, gen-id, NC vector, coded segment
MICN prefix, gen-id, MILIC-index, NC vector, coded segment
MICN-IC prefix, gen-id, MILIC-index, NC vector, coded segment
PIT
NDN prefix, in-faces, out-faces, nonce-list
NetCodCCN prefix, in-faces, out-faces, content counters 5

MICN prefix, in-face, out-faces, nonce6

MICN-IC prefix, in-face, out-faces, nonce6, priority

Table 4.3 – Information in Interest and Data packets as well as that stored in
nodes (gen-id is generation identifier)

4.7 Evaluation

In this section we evaluate the performance of MICN over different topologies.
The performance is evaluated in comparison to standard NDN and NetCod-
CCN [68]. We compare the protocols over a simple butterfly topology, which
is a rather simple topology, that helps illustrate the properties and benefits of
the protocol. The performance is also evaluated over a more elaborate topology
close to the PlanetLab topology from NetCodCCN [68].

4.7.1 Simulation Setup

We implemented our simulator in Python. The simulator includes a generic
packet network simulator (scheduler, link, packet transmission), on top of which
we developed an implementation of the proposed MICN protocol. We also did
lightweight reimplementations of NDN and NetCodCCN, capturing the main
semantics of these protocols. This includes all the semantics described in Sec-
tion 4.4.6 and the data structures, PIT, FIB, and CS, along with Interest for-
warding (with suppression, management of similar Interests, multicast forward-
ing) in the spirit of [34]. For NetCodCCN, the main part is Interest processing,
forwarding; we implemented the semantics as described in [68] (including Algo-
rithm 1 and 2) 7.

At the link level, the parameters of our simulations are a propagation delay
of 0.1 time units for each packet, a transmission time of 1 time unit for Data

5one counter per face for each prefix and generation id
6one entry per nonce
7Interest expiration was not implemented, since NetCodCCN assumes an expiration time

large enough that any forwarded Interest will bring the requested segment before its expira-
tion.
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packets, and a small transmission delay for Interest packets (1/(10 × 214) '
6×10−6). A small amount of uniformly distributed transmission jitter (between
0 and (1/10× 221) ' 3.8× 10−7) was also introduced.

In each topology, we consider the following scenario. Several clients request
coded content, divided into generations of 100 segments each. We study the
transmission of one generation. Each source stores a complete set of 100 seg-
ments. We assume that the intermediate nodes have enough cache space to
store all segments of a generation. All the coding operations are performed in
the finite field F28 .

An Interest pipeline size ρ = 10 is considered, the FIB and Interest forward-
ing are as described in Section 4.4.6. At the client, each Interest packet has a
time-out of 10 time units (i.e., equivalent to the transmission delay of 10 Data
packets, that is a bit longer than the longer round-trip delay). If a client does
not receive innovative content for an Interest after this time interval, and the
content has not yet been decoded from other data, it will resend the Interest.

For the results, the goal was to focus on the throughput of content. The
performance is evaluated in terms of download time, i.e., the time it takes for
a client to download and decode a generation. Since we ultimately focus on
throughput, all delays come from content transmission (assuming a fixed Data
packet size). All the header overheads are ignored (see Table 4.3 for the over-
head comparison). Packet processing delays (coding/recoding delays), buffer
limits are neglected. An upper bound on the throughput (content/time unit)
received by a client is given by the maximum flow of the graph from the sources
to the client. From this max-flow, one can derive a lower bound on the down-
load time. In similar settings, it had been proven that network coding could
approach the max-flow bound [77], hence it represents a meaningful benchmark.
Another metric of Interest is the total number of Data packets exchanged in
the network until all clients have retrieved the generation with no Interest or
Data packet present in the network anymore. MICN and NetCodCCN use a
multicast Interest forwarding strategy; for fairness of comparison, a multicast
strategy is also considered in NDN.

4.7.2 Results with the Butterfly Topology

We first analyze the behavior of MICN on a simple butterfly topology with
two sources S1 and S2, and two clients U1 and U2, connected through a set
of intermediate caching routers as represented in Figure 4.13. The butterfly
topology is simple, however it evidences some of the properties of MICN.

The performance of the butterfly topology mainly depends on how the bot-
tleneck link (R3 ↔ R4) is used. With classical NDN, the two clients U1 and
U2 should request precisely the same segments on the middle link to improve
performance. Nevertheless, the clients would require topology knowledge and
coordination to do so. However, with network coding, client coordination or
accurate topology knowledge is not required and the clients can simultaneously
send their Interests to all their available faces. With network coding the clients
can benefit from each others Interests.
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Client Client

Figure 4.13 – Butterfly topology

Content Retrieval Time

Figure 4.14 shows the rank evolution of the client nodes over time for MICN,
MICN-IC, NetCodCCN, and NDN. MICN, MICN-IC, and NetCodCCN retrieve
content at the max-flow rate at each client, i.e., each Data packet received at
the client is innovative.
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Figure 4.14 – Butterfly topology: rank evolution as a function of time

After some initial delay, due to propagation, the clients receive 2 linearly
independent Data packets every time unit, as shown in Figure 4.14b. The
results presented in Figure 4.14b are for MICN, but the results are identical for
NetCodCCN and MICN-IC. The similar download time for MICN, MICN-IC
and NetCodCCN is confirmed by the final content retrieval time in Figure 4.15.
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Figure 4.15 – Butterfly topology: content retrieval time

Data Traffic in the Network

The performance in terms of reaching maximum throughput is the same for all
the network coding protocols, nevertheless, there are significant differences in
the volume of data traffic that each protocol generates. Figure 4.16 presents the
cumulative data traffic generated in the network with each protocol. Note that
after NDN, NetCodCCN generates the most data traffic. MICN has a slightly
reduced amount of data traffic, and MICN-IC has the least amount of traffic,
which mostly accounts for innovative traffic.
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Figure 4.16 – Butterfly topology: cumulative data traffic

To understand the data traffic flowing in the network, Figure 4.17 depicts
the evolution over time of the cumulative number of Data packets transmitted
on all the links of the network, counted from time t = 0. The curves end
when transmission of Data packets stops for the requested generation. In the
beginning, there is only innovative traffic in the network, i.e., all Data packets
circulating in the network are innovative; for the intermediate nodes as well as
the client node receiving them. Note that towards the end, when the clients
have received the entire generation (around 52 time units), there is still data
traffic flowing in the network. Since not all the network nodes have the same
min-cut, they receive content at different rates. The intermediate nodes with
a lower min-cut than the clients (see Figure 4.14) continue to get responses for
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Interests that they have forwarded in the past. The content that arrives is still
innovative for them. The intermediate nodes also continue to forward content
to satisfy Interests in their PIT (no longer innovative for the clients; hence the
redundant traffic curve starts to grow).
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Figure 4.17 – Butterfly topology: evolution of cumulative data traffic as a func-
tion of time



74 Chapter 4. MICN: A Network Coding Protocol for ICN

1 5 10 15 20
Pipeline size

0

50

100

150

200

250

Ti
m

e 
un

its

NetCodCCN
MICN
MICN-IC
NDN

Figure 4.18 – Butterfly topology: impact of pipeline size (without losses) on
download time

MICN-IC deletes Interests tagged with low priority, which are pending for
a client that has access to content for those Interests. Canceling such Interests
reduces the redundant data traffic, at the price of some signaling overhead.
Precisely, in butterfly topology (Figure 4.13), 10 transmissions of Data packets
over various links are necessary for delivering 2 Data packets to the clients U1

and U2, i.e., 5 transmissions per packet. For a generation of size 100, a minimum
of 500 transmissions are required for both clients to receive the entire generation.
Figure 4.17 shows that with MICN-IC, a slightly larger amount of transmissions
than the minimum are required. NetCodCCN achieves similar throughput, but
Interests are not canceled, and several Data packets are redundant, leading to
increased traffic.

Pipelining Effect

The effect of sending consecutive Interests by clients is analyzed in Figure 4.18.
To have a continuous flow of content in the butterfly topology (in the absence
of losses), the clients need to have at least two pending Interests at any time
(because there are two paths) and usually even more because of the propagation
delays. In the case of plain NDN with multicast strategy, the link R3 ↔ R4

becomes a bottleneck due to the absence of coordination among the clients.
Even when the pipeline size increases, the performance cannot reach the one
obtained with network coding. MICN, MICN-IC, and NetCodCCN, however,
with a sufficient pipeline size (here as small as ρ = 5), can reach the maximum
capacity.

Performance with Packet Losses

Next, we evaluate the performance of MICN in case of packet losses. Fig-
ure 4.19, depicts the effect of losses on the performance of the protocols. We
consider transmission losses modeled with a fixed loss probability for both In-
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Figure 4.19 – Butterfly topology: impact of packet loss rate on download time

terest and Data packets8. MICN and MICN-IC appear to have much better
performance compared to NetCodCCN. MICN has the advantage of precisely
identifying which Interest (pointing to a subset Ai) has timed out (no matching
content received). In NetCodCCN, when a Data packet is lost downstream, the
node will, nevertheless consider the Interest as satisfied (i.e., update its content
counters). An Interest retransmitted due to time-out is considered a new Inter-
est, and the node will typically forward it. In MICN, the retransmitted Interest
will be immediately satisfied by cache of the node.

4.7.3 Results with the PlanetLab Topology

Source

Figure 4.20 – PlanetLab Topology

The behavior of MICN is then analyzed considering the PlanetLab topology
(see Figure 4.20) adapted from [68]9, with one source and five client nodes

8Notice that NetCodCCN simulations in [68] consider only segment (Data packets) losses.
However, here both Interest and Data packets are prone to losses.

9originally adapted from the PlanetLab project [78]
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connected through a set of 20 intermediate caching routers. All the links in the
PlanetLab topology are equal capacity links.
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Figure 4.21 – PlanetLab topology: rank evolution as a function of time
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Figure 4.22 – PlanetLab topology: content retrieval time

Figure 4.21 shows the rank evolution of the client nodes over time for MICN,
MICN-IC, and NetCodCCN. Note that the clients have different min-cut and
the difference can be recognized in the graphs in Figure 4.21.

As seen in Figure 4.22, with MICN, MICN-IC, and NetCodCCN, clients
receive enough content to decode a generation at a rate above 95% of the max-
imum rate (provided by the min-cut between the source and the clients), as
observed for the butterfly topology.

Data Traffic in the Network

The difference between the data traffic generated by each network is repre-
sented in Figure 4.23. MICN has a better performance in terms of total traffic
compared to NetCodCCN.

Figure 4.24 illustrates the cumulative number of Data packets transmitted
on the network as a function of time. NetCodCCN generates the most data
traffic (also for a longer duration). MICN is able to reduce the cumulative
traffic by a considerable amount since the content does not have to be flooded
on all the links as for NetCodCCN. MICN-IC performs best in terms of traffic,
with respectively 2.16 and 3.42 times fewer transmitted Data packets compared
to MICN and NetCodCCN.
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Figure 4.23 – PlanetLab topology: cumulative data traffic
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Figure 4.24 – PlanetLab topology: evolution of cumulative data traffic as a
function of time

In the PlanetLab topology, with the considered scenario, the amount of
non-innovative packets dominates: about 80% of the content traffic with Net-
CodCCN is redundant (non-innovative). Note that not all the innovative traffic
that appears in the cumulative traffic might not be useful for the clients. The
graphs in Figures 4.23 and 4.24 represent the innovative traffic at all the nodes
in the network and since intermediate nodes of the network are unable to detect
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when a client has received all packets required to decode a generation. Con-
sequently a Data packet that is innovative for intermediate node is considered
innovative.

Pipelining Effect

In the PlanetLab topology, the pipeline size impacts the performance only when
it is too small, as shown in Figure 4.25. Increasing the pipeline size above 2
(MICN), 3 (MICN-IC), and 5 (NetCodCCN) does not bring additional benefit.
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Figure 4.25 – PlanetLab topology: impact of pipeline size (without losses)

Performance with Packet Losses

Figure 4.26 shows the effect of packet losses. The download time with MICN and
MICN-IC increases linearly with the loss rate, compared to NetCodCCN, which
increases faster when the loss rate is above 10%. In the PlanetLab topology,
compared to the butterfly topology, MICN, MICN-IC, and NetCodCCN are all
more robust to packet losses due to the more significant amount of redundant
content traffic in the network, which helps to compensate for the losses.
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Figure 4.26 – PlanetLab topology: impact of packet loss rate
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4.8 Conclusions

In this chapter, we studied and discussed the objectives and challenges of in-
tegrating network coding with NDN. We proposed a novel way of integrating
network coding and Interest-based ICN. The proposed MICN protocol is built
around the MILIC construction, that allows the clients to request content with
encoding vectors that belong to predefined subsets by adding an index in the
Interest, indicating the subset. This Interest naming allows the nodes to send
multiple Interests in parallel and ensures that linearly independent content is
sent as reply. In the considered scenarios, the clients download content close to
their maximum capacity.

We observed that integrating network coding with NDN brought through-
put benefits in multi-client multi-source scenarios where clients request a large
content. We also observed that protocols that achieve higher throughput with
this integration also incur higher costs in-terms of total data traffic generated
in the network. We provided a solution for our protocol to reduce this higher
traffic cost by introducing Interest cancellation. MILIC-IC limits the redundant
data traffic considerably by adding some additional information in the Interests.
This reduces the network load and leaves free network resources to fetch content
from consecutive generations. In the next chapter we explore more options to
reduce this cost by adapting the forwarding mechanism of the Interests in the
network.



5
Improving Forwarding Techniques

5.1 Introduction

In Chapter 4, we presented the novel protocol MICN that integrates network
coding and NDN. It enables NDN to take advantage of network coding and
allows fast retrieval of content. MICN enables NDN to overcome the challenges
of network coding integration by proposing an Interest naming scheme ensuring
retrieval of linearly independent content with each Interest.

Our main objective in MICN is to maximize throughput, i.e., sending con-
tent from sources to clients in the least amount of time. As observed for MICN
and some other protocols [68] that achieve high throughput with network coding
and ICN/NDN, this performance comes at the cost of some flooding of Inter-
ests. The flooding results in lingering Interests that remains pending in the
network after the clients that sent them have received the corresponding data.
These lingering Interests create a notable amount of redundant data flowing
in the network (see Section 4.7). This degrades performance in real multi-user,
multi-content scenarios. The performance degradation has been observed in the
basic operation of sequentially retrieving multiple generations.

Interest cancellation presented in Chapter 4, is the first solution to reduce
the impact of the lingering Interests in the network. IC works on the principle
of initial flooding and then requires feedback from the clients for the network to
identify the lingering Interests and ultimately cancel them. In this chapter, we
present alternative approaches to reduce the number of these lingering Interests
and consequently the redundant traffic. The alternative approaches are modified
Interest forwarding strategies implemented at the clients or the intermediate
nodes in the network. These solutions rely on heuristics.

The chapter is organized as follows: we present the effect of lingering In-
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terests on the performance in multi-generation content retrieval in Section 5.2.
Then several modified Interest forwarding strategies are presented in Section 5.3.
A detailed mechanism and forwarding algorithm for each modified forwarding
strategy is presented, and the results are compared to the classical MICN (with-
out IC).

5.2 Effects of Lingering Interests in MICN

MICN achieves maximum throughput at the cost of some redundant data traffic
that flows in the network. This traffic is a consequence of the Interests that are
flooded into the network early in content retrieval. Although MICN achieves
the goal of reaching the max throughput, it is still important to consider that
this redundant content takes up network resources useful for other content and
clients.

The inefficiencies observed are increased download time when another con-
tent or multiple successive generations of the same content are requested. The
Interests for the next content that arrive later; are processed after the old linger-
ing ones (still in PIT as pending Interests). The nodes process PIT Interests in
FIFO order, so older Interests are satisfied before the new ones based on the con-
tent available in the CS. To assess the effects of redundant traffic on network
performance, we present an example of a network in which clients download
multiple successive generations.
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Figure 5.1 – Evolution of the rank of clients1 in multi-generation content re-
trieval with NDN and MICN, 4 generations of 100 content segments each w.r.t.
simulation time.

Figures 5.1 and 5.2 illustrate the average time required to get back all the
content at both the clients and the total data traffic generated in a multi-
generation content retrieval on the butterfly topology represented in Figure 4.13.

1average of 2 clients in butterfly topology
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The simulation parameters and settings are the same as in MICN (Section 4.7.1);
however, instead of requesting one generation of the content, the clients request
4 generations of 100 segments successively.

In the butterfly topology (Figure 4.13) the client’s max-flow is 2 Data pack-
ets per unit time. Figure 5.1 represents the content retrieval time at the client
nodes with MICN and NDN. From Figure 5.1, we can observe that only the first
generation (rank=100) is retrieved at maximum speed with MICN. During the
retrieval of the first generation (time 0 to 50), there is no redundant content.
Redundant (non-innovative) coded Data packets start to appear after the com-
plete download of first generation at both clients (after time 50), as shown in
Figure 5.2. This happens because coded data for the first generation continues
to exchange between some nodes due to lingering unsatisfied Interests. These
Data packets take up the network resources causing the delay in download for
the next requested generations.
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Figure 5.2 – Count of total and redundant (non-innovative) coded Data pack-
ets exchanged in the entire network in multi-generation content retrieval with
MICN, 4 generations of 100 content segments each, w.r.t. simulation time.

One Interest might sometimes bring multiple innovative coded data from dif-
ferent sources for maximum throughput, requiring first a forwarding on several
faces. The issue then is that the clients’ Interest generation rate proves ulti-
mately too high, resulting in excess, lingering Interests as in our scenario. The
related general issue (appearing in the butterfly topology) is that some nodes’
max-flow is different from others. The content retrieval rate of some nodes is
slow, and the additional data traffic due to the lingering Interests, although
not relevant for the actual client, will still be innovative for these nodes with a
slower download rate. This additional data might be useful if extra clients were
present.

Nevertheless, adjusting Interest generation and modifying the Interest for-
warding in the network are possible solutions to reduce the extra traffic. We
proposed an Interest cancellation technique in Section 4.5.2 to limit the data
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traffic generated by the lingering Interests. Interest cancellation requires a feed-
back mechanism and cancels the Interests in the network for content that the
client no longer requires.

In the following section, we propose additional methods to reduce the lin-
gering Interests that can be implemented at the nodes to limit the number of
lingering Interests with MICN. These methods provide a decentralized solution
without the need for a feedback mechanism.

5.3 Modified Forwarding Techniques

MICN, as described in Chapter 4 uses a multicast forwarding strategy where
the nodes forward Interests to all the available faces. Using this forwarding
strategy helps the Interests to reach all the sources by taking advantage of
multiple paths in the network. With network coding, the same Interest can
result in different coded contents when different copies of that Interest reach
different caches/sources.

MILIC Interests ensure that linearly independent content is received with
each distinct Interest. Additionally, there is a high probability that two MILIC
Interests with the same index bring linearly independent content. For example,
in the butterfly topology (Figure 4.13) the client U1 and U2 send each Interest
Ii with i = 1, . . . , n on their two available faces. A linearly independent content
is received for each Interest Ii from both faces. It was observed that most of
the content was retrieved at the clients from Interests for initial indices (1 to ≈
n/2). This is the direct consequence of Property 4.3 of MILIC subsets, i.e., two
linearly independent contents for the same index yield two contents for different
indices after Gaussian elimination. The router of the client node received 2
linearly independent contents for one index, as each index was forwarded to
different faces. The Interests for the following indices that the clients send with
each incoming content brought content, but it eventually becomes redundant
for the client nodes.

With MILIC with Interest cancellation, the Interest generation and forward-
ing strategy are kept the same as in plain MICN, and some Interests are canceled
based on the content received at the clients.

A natural approach to reducing this traffic would be to change the forwarding
strategy and use a forwarding strategy that only forwards Interests to one path.
Replacing the multicast strategy can help reduce redundant traffic by sending
fewer Interests. Nevertheless, it no longer allows to take advantage of the multi-
source and multi-destination, and consequently the fast retrieval of content can
no longer be achieved. Indeed a multicast strategy is required to achieve max
flow with network coding.

In the following sections, we present some time-varying forwarding methods
that change dynamically over time. The main idea is to let the node use the
multicast strategy at the beginning in order to take advantage of the multiple
available paths. Then based on the rate of content retrieval and the state of
caches, the forwarding strategy can be changed (sending on one face or not
forwarding the Interests at all). The decision of changing forwarding strategy
over time is taken considering the state of the nodes and clients.
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Forwarding Technique Implemented at Network Parameter
Threshold intermediate nodes queue lengths
Short Queue intermediate nodes queue lengths
Dynamic pipeline clients pipeline size
Replication factor intermediate nodes no. of faces
Expected rank intermediate nodes no. of forwarded Interests+

rank of the cache

Table 5.1 – List of different Forwarding Techniques

We propose different methods considering different parameters. We explore
the design space for such methods and design mechanisms for the implemen-
tation of these algorithms. We also present insights into the choice of these
methods. Simulations are performed, and an in-depth analysis of the behav-
ior of nodes with each method is presented. The modified techniques are then
tested on the butterfly topology (See 4.13), which is clearly an unrealistic
network however this simple network helps illustrating and understanding of
the improved forwarding approaches. To verify the results with the modified
strategies they are additionally tested on a complex more realistic PlanetLab
Topology (See 4.20)

We study in detail the information available at the nodes and clients to
help the nodes take a different forwarding decision. Testing these approaches
helped us study the network behavior and the effects of implementing varying
forwarding techniques on the content delivery time and the cumulative data
traffic inside the network with MICN.

Table 5.1 presents a list of the proposed methods and the decision param-
eters. The following sections present detail of the proposed methods and the
modified forwarding algorithms implemented at the nodes. The proposed for-
warding techniques are tested on the butterfly topology and the PlanetLab
topology. The simulation parameters are the same as in MICN (Section 4.7.1),
where clients request one generation of content. We compare the results with
normal MICN (without IC).

5.3.1 Threshold-Based Forwarding

To avoid lingering Interests in the network, the number of Interests forwarded
in the network needs to be limited. An approach for this would be to limit the
number of pending Interests forwarded in the network. We propose to do so by
putting a limit on the number of Interests a node forwards.

The PIT stores the information of pending Interests queue lengths, i.e., the
number of Interests a node has forwarded on its faces. With the basic MICN
forwarding, the nodes replicate incoming Interests to all available outgoing faces
without a limitation. We propose a threshold-based forwarding (TBF) technique
that limits the queue length on the faces of a node. This limit is added by
defining a threshold θ for the queue length at the node. This technique is easy
to implement since each node has the information of the pending queues on its
faces readily available.

With the threshold-based forwarding, the nodes continue with the multicast
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strategy as MICN but stop forwarding more Interests on a face as soon as the
queue length of a face reaches the threshold θ. However, the Interest genera-
tion at clients remains the same as MICN, i.e., after the initial pipeline burst,
an Interest for a new index is sent as soon as linearly independent content is
received.
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Figure 5.3 – Forwarding time of Interest and arrival time of content for node
R4 in butterfly topology with MICN

The main idea is that forwarding more Interests on faces with long queues
results in increased queue lengths but does not affect the rate at which content
flows back. Figure 5.3 presents the forwarding time of Interests and the arrival
time of content at the node R4 of the butterfly topology with MICN. Figure 5.3
presents the cumulated Interests from both the clients U1 and U2 at the node
R4. Node R4 forwards the Interests from the clients for the generation of size
100 around time unit 50. The rate at which the content is received by the node
R4 is much slower because its max flow is 1 compared to 2 for the client nodes.
The content continues to flow until time 100, while the content at the clients
is received by time 50. The same happens on other nodes of the network with
lower max flow. The distance between the Interest forwarding time and content
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Figure 5.4 – Pending Interest queue length at R4 towards R3 in butterfly topol-
ogy with MICN
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arrival time in Figure 5.3 represents the delay in content arrival. The delay is
increasing with time.

Figure 5.4 shows the queue of pending Interests at R4 towards the node
R3. The queue length increases until all the Interests from the clients have
been forwarded. The Interest propagation starts at time zero by the clients.
The pending queue length at node R4 becomes 20 immediately (with some
propagation delay) due to the initial burst of Interest in MICN from both clients
U1 and U2. As observed in the butterfly topology results (see Section 4.7.2,
Figure 4.14b) the entire generation is received at the client at a time less than
50 time units. The clients do not send Interests once the complete generation
is downloaded. Nevertheless, the nodes are continuing to forward the Interests
because they are unaware that the client has received the required content.
The queues then continue to decrease, indicating the content is still flowing in
response to these Interests.

The threshold limits queue length on each face of the node to limit the
forwarding. A node forwards an Interest only if the queue lengths are shorter
than the threshold. This strategy sends on all available faces until the set
threshold is reached. Later it chooses to send on one or more faces based
on their queue lengths. If only one face has a queue less than the threshold,
the node forwards Interest on that one face. Otherwise, if multiple faces have
queues that are not full the node forwards on all these faces. The nodes in the
network discard the Interests if none of their faces have a queue size less than
the threshold. We tested this technique with a fixed threshold initially equal
to the pipeline size (10). The initial pipeline of Interests is multicast in the
network, and afterward, the forwarding depends on queue lengths compared to
θ. The clients only resend Interests for missing indexes after the initial Interests
time-out.
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(b) Evolution of cumulative data traffic as a
function of time

Figure 5.5 – Results of the threshold-based forwarding strategy in butterfly
topology (θ = 10)

The modified strategy was tested on the butterfly topology in Figure 4.13
with the same simulation parameters of MICN (see Section 4.7.1). Figure 5.5
presents the results of the threshold-based forwarding technique in terms of
download time and the total content traffic in the network. Figure 5.6 com-
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Figure 5.6 – Results of the threshold-based forwarding (TBF) strategy in but-
terfly topology (θ = 10)

pares the results with classical MICN in terms of redundant traffic and content
retrieval time. It can be observed that limiting queue lengths presented promis-
ing results in terms of the redundant content, and consequently, total content
traffic in the network was reduced considerably. Figure 5.6a indicates the reduc-
tion of redundant data traffic, however, max throughput is no longer achieved
at the clients (see Figure 5.6b).
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Figure 5.7 – Forwarding time of Interest and arrival time of content for node
R4 with threshold-based forwarding in butterfly topology (θ = 10)

Max flow was not achieved using threshold forwarding. Nevertheless, the re-
sults present valuable insights on the Interest forwarding in the network. Multi-
face forwarding is beneficial for fast content retrieval; however, the delay be-
tween the Interests forwarded and content received should be considered when
forwarding Interests. The rate of Interest forwarding does not reduce the time
of arrival between two content packets.

Figure 5.7 presents the Interest forwarding and content arrival time with the
threshold-based forwarding at the node R4 (butterfly topology). We observe
that the delay between the Interest forwarding time and content arrival time
becomes smaller. The nodes discard Interests received after the queue threshold.
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Figure 5.8 – Pending Interest queue length at R4 towards R3 when threshold-
based forwarding strategy is used in MICN in butterfly topology (θ = 10)
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(b) Evolution of cumulative data traffic as a
function of time

Figure 5.9 – Results of the threshold-based forwarding strategy in PlanetLab
topology (θ = 12)

The clients do not receive content for some of the discarded Interests, hence the
delay in content retrieval time (Figure 5.5a). The clients then have to re-request
missing indices after the Interest for these indices time-out. In Figure 5.7 the re-
requested indices appear after time 60. We observed that by reducing the rate of
Interest forwarding, we prevent long queues from developing on outgoing faces
Figure 5.8. There are fewer lingering Interests and consequently less redundant
data traffic.

Figures 5.9a and 5.10b present the results with the threshold-based forward-
ing on the PlanetLab topology with θ = 12. Figures 5.10a and 5.9b present a
comparison in the content retrieval time and the redundant traffic in the net-
work with classical MICN. The redundant data traffic is reduced to 9.07% of
the redundant traffic generated with MICN.
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Figure 5.10 – Results of the threshold-based forwarding (TBF) strategy in Plan-
etLab topology (θ = 12)

5.3.2 Forwarding on Shorter Queue

The results with the threshold-based forwarding are promising in solving the
redundant content problem in the network. These results lead us to explore
other methods that reduce the number of Interests forwarded in the network.
One approach is to choose faces to forward an Interest based on their pending
queues lengths.

We propose a shorter queue-based forwarding (SQF) that choses the face
with the shorter queue after the first burst of Interests in MICN. Sending Inter-
ests only on the face with a shorter queue length helps avoid sending Interests
on slower faces or with already long queues of Interests. Forwarding on less
busy faces helps to avoid over-occupying links with Interests that will either
expire or bring back content later than required. It also mimics the same effect
as threshold-based forwarding but allows the nodes to send at least one Interest
each time an Interest is received.

0 10 20 30 40 50 60
Time Units

0

100

200

300

400

500

Co
nt

en
t P

ac
ke

ts

innov
redun
total

(a) Evolution of cumulative data traffic as a
function of time
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Figure 5.11 – Results of the shorter queue-based forwarding approach

The Interest generation strategy is the same as MICN. The strategy excludes
the first burst of Interests in MICN. A multicast strategy for the initial burst of
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Figure 5.12 – Results of the shorter queue-based forwarding (SQF) approach
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Figure 5.13 – Forwarding time of Interest and arrival time of content for node
R4 with shorter queue-based forwarding

Interests helps to get a continuous flow of Data packets (similar to the threshold-
based forwarding in Section 5.3.1).

The shorter queue-based strategy is tested on the butterfly topology (see
Figure 4.13). The results show that multicasting the first burst of Interests
allows the Interest to reach the sources faster, and hence the rate of content
retrieval is fast. Later the Interests start to flow slowly; hence the content
flow slows down as well. The total redundant content with this strategy is
negligible (see Figures 5.11a and 5.12a). The content retrieval speed does not
reach the maximum value (see Figures 5.11b and 5.12b). However, it is faster
than the threshold method since Interests are not discarded but only limited in
forwarding in the network by forwarding once (on one face with shorter pending
Interest queue) only.

Figure 5.13 indicates that the delay between Interests and content is reduced
compared to normal MICN forwarding in Figure 5.3. The queue length repre-
sents the fact that the initial burst of Interests is allowed to forward without
limit on flooding, and node R4 in butterfly topology forwards the Interests of
both the clients U1 and U2 see Figure 5.14.

Figures 5.15 and 5.16 presents the result with the shorter queue forwarding
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Figure 5.14 – Pending Interest queue length at R4 towards R3 in shorter queue-
based forwarding approach
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Figure 5.15 – Results of the shorter queue-based forwarding approach

strategy on the PlanetLab topology. The content retrieval time at the clients
is slower than the with MICN; however, the redundant traffic is a mere 9.4% of
the redundant traffic with MICN (see Figure 5.15).
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Figure 5.16 – Results of the shorter queue-based forwarding (SQF) approach
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Figure 5.17 – Evolution of pending Interest queue length at client U1 in the
gradually decreasing pipeline approach with α = 2

5.3.3 Gradual Decrease of the Pipeline Size

MICN allows the client nodes to send multiple Interests at the beginning of
content retrieval. This initial burst enables the clients to send enough Interest
in the network to have a continuous flow of content when the content starts
flowing back. The clients in MICN then maintain a constant pipeline size during
the content retrieval. That means that as long as the entire generation is not
received, the the clients have a number of pending Interests equal to the pipeline
size. They ensure that the flow of content is continuous, with clients having
pending Interests at all times. Given a sufficient pipeline size, MICN can reach
the maximum capacity as detailed in Section 4.7 (see Figures 4.18 and 4.25).

Nevertheless, we observed that clients keeping a constant pipeline size through-
out the content retrieval and multicast forwarding strategy at nodes results in
Interest generation to be ultimately too high. For example, in butterfly topol-
ogy, the Interests 0 to 50 are responsible for most clients’ content as they send
Interests on two faces and receive two content packets for each. This is a direct
consequence of the MILIC properties 4.2 and 4.3.

This observation leads us to explore the possibility of controlling the rate
at which the clients generate Interests. With the threshold-based and shorter
queue-based forwarding, we controlled forwarding strategy at the nodes; we
now propose controlling Interest generation at the client. The main idea is to
have the same pipeline size at the beginning of content retrieval to send enough
Interest required for the continuous flow of content. Then gradually reduce
the size of the pipeline maintained by the clients. Clients dynamically reduce
pipeline size based on the amount of content they have received. We denote
this gradually decreasing pipeline (GDP) strategy.

The clients now maintain a gradually decreasing size of the pipeline pt at
any time t (per generation). We propose a linear decrease based on the current
pipeline size pt, the rank received at a client’s cache Rt, the size m of the
generation g of the content being requested and a scaling factor α > 0. The
pipeline size is then computed as follows
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Figure 5.18 – Evolution of pending Interest queue length at client U1 in MICN
with constant pipeline

pt+1 = max
(
1, pt(1− α

Rt

m
)

)
. (5.1)

When α = 0, the pipeline size does not change, which is equivalent to plain
MICN. The rate at which the size reduces depends on α. The larger the value of
α, the faster the size reduces with each data received at the client. Equation 5.1
ensures that pt > 1, i.e., there are always outstanding Interests until the entire
generation is received at the client. The experiment done to test the reducing
pipeline window over the butterfly topology, has a variable value of scaling
factor α.

Figure 5.17 presents the gradually decreasing queue lengths at the client U1

with α = 2. The queue length of the client U1 in MICN (Figure 5.18) stays
constant until all the indexes in a generation are requested. After all the indexes
are requested, the queue lengths start to decrease.

Figure 5.19a and 5.19b presents the results obtained from the experiment
regarding the time of rank retrieval and the total data in butterfly topology.
Figure 5.20a show the content retrieval with this strategy is near max flow.
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Figure 5.19 – Results of gradually decreasing pipeline size with α = 2
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Figure 5.20 – Results of gradually decreasing pipeline size according to 5.1
(GDP) with α = 2

Figure 5.21 presents the redundant traffic with the varying value of α. Higher
values of α mean fast reduction of the pipeline size, reducing the number of
Interests sent in the network, consequently reducing the redundant traffic. The
experiments show that if 0 ≤ α ≤ 2, the content retrieval time is close to the
plain MICN (see Figure 5.22). However, the traffic reduces considerably with
increasing value of α (Figure 5.21).
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Figure 5.21 – Redundant data traffic in butterfly topology with the gradual
decrease of pipeline with different values of α

This strategy indicates that indeed the Interest generation rate in combi-
nation with the multicast forwarding is high in MICN. The clients can thus
reduce their pipeline size and still get back the requested data fast enough
while avoiding redundant data.

The gradual reduction of the pipeline is tested over the PlanetLab topology.
The results in terms of time and data are promising presented in Figures 5.23
and 5.24. The α parameter is tuned differently for PlanetLab topology with 5
clients with different throughput, min-cut, and distance to the source.
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Figure 5.22 – Content retrieval time in butterfly topology with the gradual
decrease of the pipeline size with different values of α
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Figure 5.23 – Content retrieval time in PlanetLab topology with the gradual
decrease of the pipeline size with different values of α

In conclusion, reducing pipeline size at the client is efficient in terms of data
retrieval time and total data traffic. However, it is essential to note here that
it is possible to correct the factor α at the clients. The client application that
generates Interests should tune α. However, the application receives one content
for each Interest packet it generates since the replication of Interests happens
at the nodes in the network. The application does not have the information if
multiple packets are received for one Interest. Some feedback mechanism from
the node is required for the application to tune the factor α. If a node has
an estimate of how fast content comes in, it can slow down the replication of
Interests. This is similar to reducing the pipeline size locally, instead of at the
clients.
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Figure 5.24 – Redundant data traffic in PlanetLab topology with the gradual
decrease of the pipeline size with different values of α

5.3.4 Replication Factor-Based Forwarding

The multicast forwarding strategy, replicates every Interest on all the available
faces of a node. This replication is one reason for the excessive number of
Interests circulating in the network. One of the methods to tackle the excessive
number of Interests is to control the replication of Interest at the nodes. We
propose control this replication by implementing a replication probability at the
nodes. The main idea is to let the nodes choose between sending Interests on all
outgoing faces and sending on some faces randomly with a certain probability.
Unlike the techniques in Section 5.3.1 and Section 5.3.2, there is no threshold
or limit for the node to reach before they start modifying their forwarding
technique.

With this method, instead of forwarding to all faces (multicast strategy), the
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Figure 5.25 – Results of Replication Factor-based approach on butterfly topol-
ogy with pr = 30%



98 Chapter 5. Improving Forwarding Techniques

nodes have a varying forwarding strategy. For example, a node with two outgo-
ing faces can choose to send on two faces or one face with a certain probability.
The decision to replicate the Interests is based on a replication probability pr
and hence called replication factor-based forwarding (RPF). To test this ap-
proach we implemented a constant replication probability pr on all the nodes
of a network. Each node in the network replicated the Interests received with
pr = 30%, i.e., each node replicated 30% of the Interests it received to all its
faces. The rest of the Interests are forwarded only to one face chosen randomly.
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Figure 5.26 – Results of Replication Factor-based forwarding (RPF) on butterfly
topology with pr = 30%
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Figure 5.27 – Content retrieval time in butterfly topology with with different
replication probabilities pr

Figures 5.25a and 5.25b presents the results obtained from the experiment
in terms of the time of rank retrieval and the total data in butterfly topology.
Figure 5.26b shows that reducing the number of times a node replicates Inter-
ests reduces the total data traffic in the network. The download time increases
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compared to the multicast strategy of MICN (see Figure 5.27) since the for-
warding choice is random in terms of the number of faces and the faces chosen
for forwarding. However, the overall redundant data can be reduced to less than
20 packets compared to 250 with MICN.

10 20 30 40 50 60 70 80 90 100
pr

0

50

100

150

200

250

Da
ta

 P
ac

ke
ts

Redundant

Figure 5.28 – Redundant data traffic in butterfly topology with different repli-
cation probabilities pr

Figures 5.27 and 5.28 presents the effects of changing the replication proba-
bility at the nodes. If pr = 100, i.e., all nodes replicate Interests on all available
faces 100% of the time, and it gives the same results as MICN. Also, pr = 100
generates the most traffic. Decreasing the value of pr decreases the redundant
traffic but increases the content retrieval time.
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Figure 5.29 – Content retrieval time in PlanetLab topology with with different
replication probability pr
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Figure 5.30 – Redundant data traffic in PlanetLab topology with different repli-
cation probabilities pr

Figures 5.30 and 5.29 presents the result with replication factor-based strat-
egy on the PlanetLab topology. The results with the PlanetLab topology show
similar trends as the butterfly topology in redundant traffic. The content re-
trieval time, however, becomes close to MICN with a replication factor of 60%.
This indicates that different networks with different numbers of clients and dif-
ferent network parameters such as connectivity, throughput, etc., require the
replication factor to be tuned differently. It is important to note here that the
replication factor implemented in the example scenarios stays constant through-
out the content retrieval. However, a dynamic modification of this replication
during content retrieval could improve both content retrieval time and data
traffic.

In conclusion, the results with the replication factor strategy are quite
promising. Nevertheless, the difficulty is for nodes to decide when and how
much they need to adjust their replication factor.

5.3.5 Expected Rank-Based Forwarding

By studying the methods presented in Sections 5.3.1-5.3.4 we can identify the
actions taken at the nodes to solve the redundant data problem. We observed
that all the presented methods work efficiently in reducing the redundant data
in the network. The maximum throughput, however, is not achieved with all
of them. Another critical point that we observed is that dynamic forwarding is
an effective tool to reduce redundant traffic; choosing the tuning parameters at
each node is not straightforward. All the methods above are tried and tested
on butterfly topology with fixed parameters.

Using all the results from the above techniques, we present a technique that
uses available information at a node to decide to change the forwarding strategy
on the fly. We use this information to predict the effective (data) replication
a node has achieved at any time k and the expected rank of a node at time k
given the Interests forwarded by the node. We denote this forwarding technique
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expected rank-based forwarding (ERF).
The replication achieved rach at a node is computed by

rach = Rk/imax,k (5.2)

where Rk is the rank of the cache at any time k and imax,k is the maximum
MILIC index in the cache prior to Gaussian elimination.

As we know that with MILIC properties 4.2 and 4.3 a node can have rank
higher than the max index received. For example, a node with two outgoing
faces can have a rank of 4, while the maximum index in the cache is 2. It
is possible due to the MILIC properties 4.3 and 4.2, i.e., independent content
received in response to Interests for index 1 and 2 can help the node have a
rank 4. Here the rach of this node is 2.

Another information available at the node is the Interests that a node has
forwarded. At any time, the achieved replication factor and the forwarded
Interests can give an estimate of the expected rank this node (can) achieve after
the data for the forwarded Interests is received. An estimate of the expected
rank of a node is computed by

Re,k = rach × if,k (5.3)

where if,k is the maximum index of the forwarded MILIC Interest in the PIT.
We use the maximum index to compute the estimate, considering that MILIC
Interests are received in order. (5.3) gives a ratio between the number of In-
terests forwarded and number of content packets received by the node, this
effectively translates into the number of useful interests forwarded or the repli-
cation achieved by the node.

Note that the generation size m is the maximum value a node can expect to
receive. We propose that the nodes use this estimate to tune their forwarding
strategy. A node should decide to continue to forward the Interests as long as
Re,k ≤ m. At any time this value becomes strictly larger than the generation
size m the node should stop forwarding Interests. It is important to note that
this value can drop back to less than m if not enough content is received in
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Figure 5.31 – Results of expected rank-based approach in butterfly topology
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Figure 5.32 – Results of expected rank-based Forwarding (ERF) in butterfly
topology

response to the forwarded Interests (see Figure 5.35). As it affects the value of
rach and as soon as this happens, the node can resume forwarding the Interests.

Figures 5.31a and 5.31b present the results obtained from the experiment in
terms of the time of rank retrieval and the total data in butterfly topology. This
method performs as plain MICN in terms of data download time. The number of
redundant Data packets is reduced to less than 25 packets (see Figures 5.32b and
5.32b). This approach is different from the strategies based on the threshold,
pipeline, or replication factor. The nodes decide to change their forwarding
strategy during the content retrieval with no external parameter (e.g., θ, α or
pr). Here we assume that the generation size m is known at all the nodes in
the network2.
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Figure 5.33 – Queue length at R4 towards R3 in expected rank-based forwarding
approach in butterfly topology

2The generation size may be indicated in Interest/Data packets.
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Figure 5.34 – Queue lengths at R3 in expected rank-based forwarding approach
in butterfly topology

Figure 5.33 presents the queue lengths at the node R4 of the butterfly topol-
ogy. In comparison to the queue lengths in Figure 5.4, observe that the nodes
forward fewer Interests and stop forwarding when their expected rank estimate
becomes equal to the generation size m.

Figure 5.34 presents the queue lengths at the node R3 of the butterfly topol-
ogy. Figure 5.34 shows the forwarding strategy adaptation at the node. At
around time unit 25, we observe decreased queue lengths since the node stopped
forwarding Interests. However, there is an increase at time 30 as node forwards
Interest again due to the change in the value of Re,k as shown in Figure 5.35.
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Figure 5.35 – Expected rank Re,k at nodeR3 in expected rank-based forwarding
approach in butterfly topology

Figures 5.36a and 5.36b presents the result with the expected rank-based
strategy on the PlanetLab topology. Figure 5.37 shows that this strategy brings
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a good compromise in terms of the content retrieval time and the total data
traffic.
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Figure 5.36 – Results of expected rank-based approach on PlanetLab topology
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Figure 5.37 – Results of expected rank-based forwarding (ERF) approach on
PlanetLab topology

In comparison to the forwarding strategies presented in Sections 5.3.1-5.3.4,
the expected rank-based forwarding strategy not only achieves the goal of max-
imum throughput but also effectively reduces the redundant traffic. This strat-
egy provides the nodes the independence of choosing the forwarding based on
the available information. No feedback or external tuning of decision parame-
ters is required, the status of network is predicted using the computation of the
expected rank (5.3) and the forwarding decision is taken based on the expected
rank value.

5.4 Conclusion

MICN produces redundant traffic due to the lingering Interests that are a conse-
quence of the flooding of Interests. The flooding of Interests is required to reach
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Figure 5.38 – Redundant traffic vs download time (two clients) in the Butterfly
topology for different modified forwarding strategies

the network’s capacity; however, the resulting redundant traffic deteriorates the
performance in the case of consecutive generations retrieval. In this chapter,
we propose modified forwarding strategies to be implemented at the nodes or
clients to overcome lingering Interests in the network. The goal of these modi-
fied forwarding strategies is to reduce the redundant traffic while still ensuring
fast download. Results from the proposed strategies provide insights into the
forwarding strategies in MICN.

Figures 5.38 and 5.39 present the results obtained with the different heuristic-
based strategies compared to Interest Cancellation (MICN-IC) presented in Sec-
tion 4.5.2. Figure 5.38 presents the download time vs the amount of redundant
data traffic in the Butterfly topology. Each forwarding strategy is presented
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Figure 5.39 – Redundant traffic vs download time (average of 5 clients) in
Butterfly topology for different modified forwarding strategies
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with two points, each corresponding to one of the two clients in the Butterfly
topology. Figure 5.39 presents the average download time3 vs the redundant
data traffic in the network in the PlanetLab topology. The results obtained
with these strategies show that a tradeoff has to be found between the reduc-
tion of the the download time and the redundant traffic. The strategies that
performed better with respect to time generated more traffic and alternatively
the ones that reduced significantly the redundant traffic could not achieve even
near maximum throughput.

In conclusion, the the heuristic-based forwarding strategies did help to re-
duce the redundant traffic in the network. Additionally, these strategies allowed
us to identify the information available at the nodes and the parameters to limit
the flooding in the network.

To conclude, the strategies helped us identify that although a multicast
strategy helps to take advantage of network coding and receive content faster
in MICN, the nodes may switch to different strategies. After the initial phase,
the clients can choose a different forwarding strategy to reduce the network’s
lingering Interests and cumulative traffic. The findings from modified strategies
open the way for future work to explore reinforcement learning techniques. The
reinforcement learning can be used to implement adaptive forwarding strategy
at the nodes for forwarding MILIC Interests.

3Average download time for the five clients in PlanetLab Topology is presented for the
ease of presentation



6
Generalized Construction of

Coding Sets

6.1 Introduction

In Chapter 4, we presented Multiple Interests for Linearly Independent Con-
tent (MILIC) as a solution to get back linearly independent content with each
Interest sent in a network-coded NDN scenario.

The starting point for MILIC is to tackle the inefficiencies in network-coded
NDN protocols that are mainly a consequence of classical NDN caching. For ex-
ample, a node requesting coded content may receive an already received coded
packet again from a neighboring cache. Assuming that a client targets high
throughput, it will simultaneously send multiple parallel Interests as in Fig-
ure 6.1. One may be interested in a mechanism that guarantees that each of
these Interests brings back innovative content.

Figure 6.1 – Parallel transmission of multiple distinct Interests

107
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The core idea of MILIC starts by supplementing each Interest with an index.
MILIC defines indexed subsets such that each index returns content from the
corresponding subset. These subsets are defined such that if one vector is chosen
from each subset, the resulting set of vectors is linearly independent.

In this chapter, we introduce such subsets in a more general formal way as
follows.

Problem 6.1 (The SELIT Problem). Given a vector space of dimension n, is
it possible to partition its elements such that the selected vectors are linearly
independent when drawing arbitrarily one vector from each subset?

Solving the above Problem aims to find Sets Ensuring Linearly Independent
Transversals (SELIT), where transversals means randomly drawing one vector
from each subset (see Definition 6.2). MILIC provides a first solution to Prob-
lem 6.1 by defining the subsets Ak, k = 1, . . . , n as in (4.1) (See Section 4.3.3).
However, the size of the subsets is unbalanced and actually decreases with the
increase of k (See Lemma 4.1). Thus there are more chances to be able to gen-
erate a coded segment from vectors in the first subsets than the last subsets,
which is a problem for recoding (at the end of the generation retrieval). This
chapter aims to find other SELIT constructions that potentially have sets of
more balanced size.

The SELIT problem is loosely related to the well-known index coding prob-
lem [79] initially introduced in the satellite communication context by Birk et
al. [79, 80]. Index coding is a canonical problem in network information theory
that studies the fundamental limit and optimal coding schemes for broadcasting
multiple messages to receivers with different side information.

Figure 6.2 – Index coding problem: How can A, B, and C be satisfied with the
minimum amount of transmissions ?

Consider, for example, a situation where a server has a wireless broadcast
link to several clients. The clients already have some content and request more
from the server, as shown in Figure 6.2. Index coding solutions determine the
coding scheme to convey the clients’ requested information with the minimum
number of necessary transmissions.
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Figure 6.3 – Index coding problem: Source broadcasts coded messages (in blue)
to satisfy A, B, and C with the minimum amount of transmissions

Example 6.1. Figure 6.2 presents a simple example of the index coding prob-
lem with a wireless communication system constituted of one source (in the
middle) and three client nodes A, B, and C. The source stores three messages
x1, x2, andx3. The client nodes are interested in subsets of these messages, with
each one of them already having some information. The source has to find a
way to convey all these messages to all the clients using the minimum possible
number of broadcast transmissions.

A naive way would be to send all messages one by one for the clients, re-
quiring three transmissions. Alternatively, as shown in Figure 6.3, the source
can broadcast the coded messages x1 + x3 and x2 + x3. Each client node can
then receive its desired message with only two transmissions.

The index coding research spawned results such as an equivalence with net-
work coding [81] and capacity region results in the distributed case [82].

SELIT is simpler because it decouples the “capacity” aspect present in the
index coding problem. SELIT addresses the issue of coding the source messages
such that they are linearly independent. We are unaware of existing construc-
tions of the literature that would provide solutions to the SELIT problem.

We study in detail some families of solutions for the SELIT problem. We
will prove that a large class of generalizations of the MILIC construction are
equivalent (isomorphic) to the MILIC construction (the family of subsets intro-
duced in Chapter 4). The main result presented in this chapter is the proof for
this fact in Theorem 6.4. This is of high interest because it limits the search
space for alternate constructions, and the steps of the proof themselves shed
light on properties the alternate solutions must have (or not have). Then, we
exhibit an alternate family of solutions. Later we prove that a large family of
possible solutions are equivalent to the MILIC construction or equivalent up to
a permutation.

It is important to note here that this work is performed to investigate so-
lutions other than MILIC. The dimension of the subsets in MILIC decrease,
however, this does not have any affect on the performance of MICN due to
re-encoding.
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The chapter is organized as follows. We introduce the notations and for-
mulate the SELIT problem is presented in Section 6.2. Section 6.3 discusses
its solutions, including MILIC. In Section 6.4, a generic family of constructions
(for potential solutions), is defined. Sections 6.5 and 6.6 contain the proof that
solutions from this family are equivalent to the MILIC construction. Section 6.7
shows alternative constructions and Section 6.8 concludes.

6.2 Problem Formulation

In a network-coded NDN scenario, client nodes must send at least n Interests
to retrieve a whole generation of n packets. With pure random network coding,
we have to send more than n Interests per generation. The MILIC construction,
defined in Section 4.3, guarantees that n Interests are sufficient to retrieve the
content provided that each one of them reaches a source or content cache and is
not lost. Additionally, if n′ < n Data packets are received, each of the n′ coded
segments are linearly independent with a high probability.

Motivated by these results, we determine whether alternate solutions can
achieve similar results and if it is possible to have constructions with more
balanced subset sizes. We looked for generalizations of our construction. We
begin by presenting the mathematical formulation of the SELIT problem and
then explore families similar to the MILIC construction that solve this problem.

6.2.1 Notations and Definitions

Let [[k]] = {1, 2, . . . k} be the set of integers from 1 to k. F denotes a finite field
with |F| > 2, F∗ = F \ {0}, and Fn is the vector space of dimension n > 1 over
F

Fn =
{(
x1, x2, . . . , xn

)
| x1 ∈ F, x2 ∈ F, . . . , xn ∈ F

}
.

The vector ei = (0, . . . , 0︸ ︷︷ ︸
i−1 zeros

, 1, 0, . . . , 0) is the i-th canonical vector of Fn.

Definition 6.1 (Encoding vector of a linear combination). Consider a coded
packet Q consisting of a linear combination of the source content P1, P2, . . . Pn,
with Q = α1P1 + α2P2 + . . .+ αnPn, and αi ∈ F,∀i ∈ [[n]]. The encoding vector
of Q is v = (α1, α2, . . . , αn).

Definition 6.2 (Transversal). Let E be an arbitrary set. Consider a family
A = (A1, . . . ,Ak) of k indexed subsets of E . A transversal T of A is a tuple
obtained by picking one element in each subset Ai: T = (a1, a2, . . . , ak) with
ai ∈ Ai,∀i ∈ [[k]].

Sets Ensuring Linearly Independent Transversals

Consider a client that wants to retrieve n segments P1, P2, . . . , Pn of source
content. The client sends n Interest packets {Ii}i∈[[n]]. The reply to the i-th
Interest Ii from any server will be a linear combination whose encoding vector
comes from a predefined set Ai.
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The problem considered in this chapter is to build a family of n sets {Ai}i∈[[n]]
that satisfies the following properties.

• Completeness: When n coded packets with encoding vectors v1 ∈ A1, v2 ∈
A2, . . . , vn ∈ An are received by a client, this client should be able to re-
cover P1, P2, . . . , Pn.

• High diversity: If k coded packets with encoding vectors v1, . . . , vk are
received, some potentially drawn from the same sets, the receiving node
should be able to retrieve k linearly independent coded segments from the
coded packets with high probability.

Example 6.2. Consider a node receiving four segments v1 ∈ A7, v2 ∈ A7, v3 ∈
A5, v4 ∈ A5. They should provide non-redundant information, i.e., the node
should have four linearly independent packets with high probability. This can
also be stated as, for k packets, the number of linearly independent coded
segments of the receiving node should be k with high probability.

The MILIC construction (see Definition 6.3 below), introduced in Chapter 4,
satisfies both properties. Completeness is satisfied by construction, and high
diversity is proven by Properties 4.2 and 4.3 (see Section 4.3.2). Since high
diversity is arguably more difficult to formulate precisely for being inherently
probabilistic, we ignore this aspect1. Instead, we focus on ensuring the complete-
ness property. This can be recast as finding Sets Ensuring Linearly Independent
Transversals (SELIT) defined as follows

SELIT Problem of dimension n Given a finite field F, and the vector
space Fn of dimension n over F: Find A = (A1, . . . ,An), a family of n disjoint
subsets of F, such that any of their transversals (see Definition 6.2) always
constitutes a set of linearly independent vectors.

Clearly, a family A of sets solution of the SELIT problem satisfy the com-
pleteness property. If encoding vectors are not linearly independent, it is not
possible to recover n source packets.

6.3 SELIT Solutions

To illustrate the SELIT problem, we present an example of SELIT solution for
n = 2.

Example 6.3.

Consider F = GF(3), n = 2, k = 2,A = (A1,A2)
2 with

A1 =
{(

1, 2
)
,
(
2, 1
)}

,
A2 =

{(
1, 0
)
,
(
1, 1
)}

.

There are exactly 4 possible transversals (obtained by enumeration):
1Notice that high diversity is correlated with the high cardinality of the sets Ai in any

case. So after finding large Ais, one may check a posteriori their diversity.
2Note that A here is not a partition of Fn or Fn/{0}
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Figure 6.4 – Simple SELIT example

• T1 =
((
1, 2
)
,
(
1, 0
))

• T2 =
((
1, 2
)
,
(
1, 1
))

• T3 =
((
2, 1
)
,
(
1, 0
))

• T4 =
((
2, 1
)
,
(
1, 1
))

We can compute the determinant of each of the encoding vectors corresponding
to the transversals to show that they are linearly independent.

• det (T1) = | 1 2
1 0 | = 1 6= 0

• det (T2) = | 1 2
1 1 | = 2 6= 0

• det (T3) = | 2 1
1 0 | = 1 6= 0

• det (T4) = | 2 1
1 1 | = 1 6= 0

Hence all 4 transversals are sets of 2 linearly independent vectors, and thus A
is a SELIT solution.

Consider two subsets A1 and A2 defined as in Example 6.3. This can be
seen as the problem presented in Figure 6.4 where clients send indexed Interests
I1 and I2 to retrieve a content with two source segments P1 and P2.

The indexed Interests I1 and I2 bring back contents belonging to their respec-
tive subsets A1 and A2. A possible reply to Interest I1 is either Q1 = P1 + 2P2

or Q′1 = 2P1 + P2. These replies are linearly independent of any of the two
possible replies to I2, which are Q2 = P1 and Q′2 = P1 + P2.

Definition 6.3 (Multiple Interests for Linearly Independent Contents). MILIC
is a construction with sets of encoding vectors {Ai}i∈[[n]] introduced in Section 4.3
as follows: ∀i ∈ [[n]],

Ai = {(v1, ..., vn) ∈ Fn | vi 6= 0 and ∀j ∈ [[i− 1]], vj = 0} .

Example 6.4 (MILIC for n = 3).

• A1 =
{(
a1, a2, a3

)
| a1 ∈ F∗, a2 ∈ F, a3 ∈ F

}
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• A2 =
{(

0, b2, b3
)
| b2 ∈ F∗, b3 ∈ F

}
• A3 =

{(
0, 0, c3

)
| c3 ∈ F∗

}
Example 6.4 illustrates the MILIC construction introduced in Section 4.3.3

for n = k = 3. MILIC is one possible solution to the SELIT problem. By
construction, any transversal of the MILIC sets is linearly independent. A
triangular matrix is obtained when taking row vectors from each of the subsets
of a MILIC construction.

Later in this chapter, we attempt to generalize MILIC constructions with
matrices. All elements of these matrices are freely picked from predefined sets
for any field F with |F| > 2 (i.e., all except GF (2)) with additional constraints,
see Definition 6.6. Theorem 6.4 states that generalizations of the MILIC con-
struction are MILIC constructions up to a permutation of indices.

6.4 Families of SELIT Constructions

Motivated by the results of MILIC as a SELIT solution, we investigate other
families of SELIT solutions. One naïve solution is to have a family of subsets
containing one vector only or a family with only one non-zero element at one
position. Nevertheless, performing network coding with such families is mean-
ingless since a coded segment is equivalent to a source segment. Hence such
families are not interesting for network coding.

To reduce size of the search space for possible SELIT solutions a special fam-
ily of sets that are of the same form as that of MILIC are explored. This section
specifies the notion of similarity, after introducing some additional definitions.

6.4.1 Canonical Family of Sets

If A = (A1, . . . ,An) is a SELIT solution, one can take an arbitrary vector
vi ∈ Ai in each set, and use the set of vectors {vi} i∈[[n]] as a new basis coordinate.
Accordingly, we introduce the concept of canonical family of sets:

Definition 6.4 (Canonical family of sets). Let A = (A1, . . . ,An) be a family
of n subsets of Fn. A canonical family of sets is such that ei ∈ Ai for all i ∈ [[n]].

6.4.2 Canonical and Component-Wise Family of Sets

Definition 6.5 (Canonical and component-wise family of sets). Consider n
subsets of F,Ai,j ∈ F, i ∈ [[n]], j ∈ [[n]]. A family A = (A1, . . . ,An) of n subsets
of Fn is a canonical and component-wise family of sets if the subset Ai, i ∈ [[n]]
is the union of ei with the n-fold Cartesian product of sets Ai,j, j ∈ [[n]], i.e.,

Ai = {(v1, v2, . . . , vn) | vj ∈ Ai,j ∀j ∈ [[n]]} ∪ {ei}. (6.1)

Note that each element can be changed independently, which is an important
property. A canonical and component-wise family of sets A is fully specified by



114 Chapter 6. Generalized Construction of Coding Sets

the table C (A) of subsets Ai,j denoted as

C (A)def
=

A1,1 · · · A1,n
... . . . ...
An,1 · · · An,n

 . (6.2)

Remark 6.1. As defined in Section 6.2.1, only field size |F| > 2 are considered,
since in the case of F = 2 there are not many choices of coefficients and the
proofs may not apply.

Example 6.5. The MILIC construction AMILIC in Definition 6.3 is a canoni-
cal and component-wise family, associated with the subsets AMILIC

i,j defined as
follows:

AMILIC
i,j =


F∗ if i = j

{0} if i < j

F if i > j

and we have

C (AMILIC) =


F∗ F · · · F
{0} F∗ · · · F
...

... . . . F
{0} {0} · · · F∗

 .
The Cartesian products defined in the MILIC construction already include the
canonical unit vectors ei.

Consider F = GF (3), and the MILIC construction A = (A1,A2,A3) with
n = 3; F can then be represented as F = {0, 1, 2}. Then

C(A) =

{1, 2} {0, 1, 2} {0, 1, 2}{0} {1, 2} {0, 1, 2}
{0} {0} {1, 2}


6.4.3 Canonical, Diagonal and Restricted Diagonal Fam-

ily of Sets

An important property of the MILIC construction represented C(AMILIC) is that
C(AMILIC) has non-zero diagonals. In addition to the canonical and component-
wise families of sets we can define diagonal and restricted diagonal families of
sets.

Definition 6.6 (Canonical, Diagonal and Restricted Diagonal family of sets).
Let A = (A1, . . . ,An) be a canonical and component-wise family of n sets of Fn.
A diagonal family is component-wise canonical, if the sets Ai,i satisfy Ai,i = F∗,
i.e.,

C(A) =


F∗ A1,2 · · · A1,n

A2,1 F∗ · · · A2,n
...

... . . . ...
An,1 An,2 · · · F∗

 . (6.3)
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A canonical family is a restricted diagonal family if the off-diagonal sets Ai,j of
C(A) additionally satisfy:

∀i ∈ [[n]],∀j ∈ [[n]] \ {i} : Ai,j ⊂ F∗ or Ai,j = {0}. (6.4)

Note that a restricted diagonal family of sets is also a diagonal family of
sets.

6.5 Deriving SELIT Solutions of Smaller Dimen-
sion

One important property of a canonical component-wise SELIT solution A for
a given n is that one can derive SELIT solutions of smaller dimension A′ for
n′ < n by removing some sets and some rows or columns of the sets. This is
shown in Theorem 6.1 at the end of this section and will be used as the basis
of the proof by induction of our main result in Section 6.6.

We first formally define what is meant by derivation, through the definition
of a truncated permutation which consists in applying some permutation π to
the elements of a vector, then truncating it to the first k elements.

Definition 1. A k-truncated permutation π of [[n]] is an injective function π :
[[k]] −→ [[n]], i.e., πi 6= πj when i, j ∈ [[k]], i 6= j. The indices of the coefficients
are specified by a tuple of k different indices L = (π1, π2, · · · , πk). The term
mapping denotes the application of a truncated permutation to the elements of
the vector.

Definition 6.7 (Mapping of a vector). Let v =
(
v1, v2, · · · , vn

)
∈ Fn be a

vector. The mapping π (k-truncated permutation) of [[n]] is

TP (v, π) =
(
vπ1 , vπ2 , . . . , vπk

)
∈ Fk. (6.5)

This definition can be extended to a family of subsets in a way that their
diagonal structure is preserved.

Definition 6.8 (Mapping of a family of sets). Let A = (A1, . . . ,An) be a
family of subsets of Fn. The mapping of A, denoted TP (A, π) is the family A′
of subsets of Fn such that

A′ = (A′1, . . . ,A′k)
A′i = {TP(v, π1, π2, . . . , πk) | ∀v ∈ Aπi} , ∀i ∈ [[k]].

(6.6)

IfA is a component-wise family with coefficients from the sets (Aij) i∈[[n]],j∈[[n]],
then we introduce a notation for the table of coefficients of the mapping of A:

P (A, π)def
= C (TP (A, π))

P (A, π) =


Aπ1π1 Aπ1π2 · · · Aπ1πk
Aπ2π1 Aπ2π2 · · · Aπ2πk

...
... . . . ...

Aπkπ1 Aπnπ2 · · · Aπkπk

 . (6.7)
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Example 6.6. For the MILIC construction with n = 3 (introduced in Exam-
ple 6.5), we have the following examples of mapping:

P (A, (1, 2, 3)) =

 F∗ F F
{0} F∗ F
{0} {0} F∗

 with F = {0, 1, 2}
F∗ = {1, 2}

P (A, (1, 2)) =
[
F∗ F
{0} F∗

]
and P (A, (2, 1)) =

[
F∗ {0}
F F∗

]
.

When A = (A1,A2, . . . ,An) is a MILIC construction, then for any set of k
indices π1, π2, . . . , πk with π1 < π2 < . . . < πk, we have:

P(A, (π1, π2, . . . , πk)) =


F∗ F F · · · F
{0} F∗ F · · · F
{0} {0} F∗ · · · F
...

...
... . . . ...

{0} {0} {0} · · · F∗

 (6.8)

Theorem 6.1 (Mapping Theorem for Canonical Solutions). Let A be a canon-
ical family of sets, which is a solution to the SELIT problem if dimension n,
and π a k -truncated permutation of A.

Then A′ = TP(A, π) is a family of k subsets of Fk and a solution to the
SELIT problem of dimension k.

Proof. By contradiction: assume A′ is not a SELIT solution, this implies that
there exist wi ∈ A′i,∀i ∈ [[k]] and α ∈ Fk, α 6= 0 such that α1w1 + α2w2 + . . .+
αkwk = 0. A′ is a family of subsets that are mappings of A, which implies from
(6.7) that each vector wi ∈ A′i is a mapping of some vector vi ∈ Ai . Then∑

i∈[[k]]

αivi =
(
0, 0, · · · , 0︸ ︷︷ ︸

k zeros

, xk+1, xk+2, · · · , xn
)

up to a permutation of the elements. Since A is a canonical family of sets, each
Aj includes the canonical vector ej, and then

k∑
i=1

αivi −
n∑

i=k+1

xiei = 0

which contradicts the fact that A is a SELIT solution. Hence A′ is a SELIT
solution.

6.6 Properties of Canonical and Restricted Di-
agonal Solutions of the SELIT Problem

In this section, we consider one solution of the SELIT problem A that is canon-
ical, component-wise, and restricted diagonal. From the previous definitions we
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can write

Ai = {
(
v1 · · · vn

)
| vj ∈ Ai,j ∀j = 1 . . . n} ∪ {ei}

C(A) =


F∗ A1,2 · · · A1,n

A2,1 F∗ . . . ...
... . . . . . . An−1,n
An,1 · · · An,n−1 F∗


withAi,j ⊂ F∗ or Ai,j = {0} : ∀i ∈ [[n]],∀j ∈ [[n]] \ {i}.

(6.9)

Consider the 2× 2 mapping,

P(A, π) =
[
F∗ Aπ1,π2
Aπ2,π1 F∗

]
involves only Aπ1,π2 and Aπ2,π1 , that must satisfy the property introduced in
Lemma 6.1:

Lemma 6.1 (Non-Zero Set Exclusion). Consider n > 1. Let A be the SELIT
solution introduced in (6.9). Consider the 2× 2 mapping of A.

Then Aπ1,π2 = {0} or Aπ2,π1 = {0} or Aπ1,π2 = Aπ2,π1 = {0}.

Proof. By contradiction: Assume that Aπ1,π2 6= {0} and Aπ2,π1 6= {0}. Then
from (6.9), Aπ1,π2 ⊂ F∗, and Aπ2,π1 ⊂ F∗, hence 0 6∈ Aπ1,π2 and 0 6∈ Aπ2,π1 . Let
A′ = (A′1,A′2) be the mapping of A, i.e. A′ = TP (A, π). We know that:

C(A′) = P(A, π) =
[
F∗ Aπ1,π2
Aπ2,π1 F∗

]
.

Take v1 =
(
a, a1

)
and v2 =

(
a2, a

′) one has a1 = 0 and a2 = 0. Since a ∈ F∗
and a′ ∈ F∗ they can be chosen such that a = a1 and a′ = a2. Then

det(v1, v2) =

∣∣∣∣a1 a1
a2 a2

∣∣∣∣ = 0,

so v1, v2 are linearly dependent.
Thus A′ is not a SELIT solution and by Theorem 6.1, neither is A. This

is a contradiction, therefore the initial assumption that both Aπ1,π2 and Aπ2,π1
are not {0} must be false, hence the lemma.

This lemma allows us to further characterize SELIT solutions using binary
relations. The binary relation give us an order that ultimately provides us the
permutation that is required to get the MILIC matrix.

Definition 6.9 (Binary Relations from A). Consider A as defined by (6.9),
and a k-truncated permutation π of [[n]] . We can introduce a binary relation
on π1 and π2, depending on whether Aπ1,π2 and Aπ2,π1 are {0} :

π1
A
≺ π2 ifAπ2,π1 = {0} andAπ1,π2 6= {0}; thusP(A, π) =

[
F∗ Aπ1,π2
{0} F∗

]
, (6.10)

π2
A
≺ π1 ifAπ1,π2 = {0} andAπ2,π1 6= {0}; thusP(A, π) =

[
F∗ {0}
Aπ2,π1 F∗

]
, (6.11)

π2
A∼ π1 ifAπ1,π2 = Aπ2,π1 = {0}; thusP(A, π) =

[
F∗ {0}
{0} F∗

]
. (6.12)
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Observe that
π1

A

6⊀ π2 ⇐⇒ Aπ1,π2 = {0} (6.13)

The over-script A makes clear that the binary relations depend on A. To
simplify, when there is no ambiguity from the context, we will write ≺ instead
of

A
≺.

We now start with a lemma on the determinant of matrices.

Lemma 6.2. Consider the sets Bi,j, j ∈ [[k]], i ∈ [[j − 1]], the sets Di ⊂ F∗,
i ∈ [[k]], and the set of matricesMk defined as

Mk =





d1 b1,2 b1,3 · · · b1,k−1 b1,k

c1 d2 b2,3 · · · b2,k−1 b2,k

0 c2 d3 · · · b3,k−1 b3,k
...

... . . . . . . ...
...

0 0 0
. . . dk−1 bk−1,k

0 0 0 · · · ck−1 dk


where bi,j ∈ Bi,j,∀j ∈ [[k]], ∀i ∈ [[j − 1]],

and di ∈ Di,∀i ∈ [[k]], and ci ∈ F∗, ∀i ∈ [[k − 1]],

then there exists a matrix M ∈Mk such that det(M) 6= 0.

Proof. The proof is by induction. For k = 2, consider a 2× 2 matrix M2 ∈M

M2 =

[
d1 b1,2
c1 d2

]
where d1 and d2, arbitrarily chosen from the sets Di ⊂ F∗, i = 1, 2, are necessar-
ily non-zero; b1,2 ∈ B1,2 is also arbitrary chosen, and might be zero. If b1,2 = 0
then det(M2) 6= 0. Otherwise if b1,2 6= 0 then since c ∈ F∗, there exists c1 such
that det(M2) 6= 0. Thus the result for k = 2.

Assume the property is satisfied forMk−1 for some k > 1. The determinant
of a k × k matrix Mk ∈Mk is

det(Mk) = d1 det(M
′
k−1)− c1 det(Q)

where M ′
k−1 ∈ Mk−1 and Q is some (k − 1) × (k − 1) matrix. Neither M ′

k−1
nor Q involve the coefficient c1. From the induction assumption, we know that
there exists M ′

k−1 ∈ Mk−1 such that det(M ′
k−1) 6= 0. The matrix Mk is built

fromM ′
k−1, selecting arbitrarily the remaining elements from their possible sets,

except c1. If det(Q) = 0, then ∀c1 ∈ F∗, det(Mk) 6= 0. If det(Q) 6= 0, det(Mk)
will take as many different values as c1 and ∃ c1 ∈ F∗ such that det(Mk) 6= 0.
Since the property is true forM2, the lemma is proven.

Theorem 6.2. Let A be a SELIT solution as in (6.9). Let k > 1. Consider a se-
quence of k indices L = {π1, π2, . . . , πk}, such that π1≺π2, π2≺π3, . . . , πk−1≺πk;
then πk 6≺π1.
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Proof. We prove this theorem by induction. From property in (6.10) and (6.11),
π1≺π2 and π2≺π1 are mutually exclusive, and the theorem is proven for k = 2.
For k > 2, by induction, assuming that it was satisfied for 2, 3, . . . , k − 1.

Consider a sequence of k indices L = {π1, π2, . . . , πk}, that satisfies

π1≺π2, π2≺π3, . . . , πk−1≺πk.

For any i ∈ [[k]] and j ∈ [[k]] with i < j and (i, j) 6= (1, k), we can apply the
induction hypothesis for πi≺πi+1, πi+1≺πi+2, . . . , and πj−1≺πj, which forms a
chain of k′ = j − i+ 1 ≤ k − 1 binary relations. Thus πj 6≺πi and from (6.13),

∀i ∈ [[k]],∀j ∈ [[k]] with i < j, (i, j) 6= (1, k) : Aπj ,πi = {0}.

Notice that these are all the elements in the lower triangle of the table P(A, π),
and are {0}, except for the diagonal and for Aπk,π1 .

PL =


F∗ Aπ1,π2 · · · Aπ1,πk−1

Aπ1,πk
{0} F∗ · · · Aπ2,πk−1

Aπ2,πk
... . . . . . . ...

...

{0} {0} . . . F∗ Aπk−1,πk

Aπk,π1 {0} · · · {0} F∗

 (6.14)

where 
Ai,i = F∗ if i = j,

Ai,j ⊂ F∗ if j = i+ 1,

Ai,j ⊂ F if j > i+ 1,

Ai,j = 0 if i < j.

Consider A′ = TP(A, π), a mapping of the SELIT solution A. Consider the set
of matrices QA′ constructed from vectors obtained by picking one vector in each
set of A′. Each matrix M = (mi,j) in QA′ is obtained by picking a coefficient
in the table PL in (6.14) at the corresponding position. Its determinant can be
written as

det(M) = m1,1 det(G)−mk,1 det(H)

where m1,1 ∈ F∗, G is a upper triangular matrix (with diagonal elements in
F∗), mk,1 ∈ Aπk,π1 and H is a matrix in form ofMk−1 from Lemma 6.2. This
implies that elements present in H can be selected such that det(H) 6= 0.
Moreover, det(G) 6= 0 as det(G) is the product of non-zero elements. If mk,1

is not zero, then there exists a value m1,1 = mk,1 det(H)/ det(G) ∈ F∗ such
that det(M) = 0, and then the corresponding vectors of M would be linearly
dependent, which contradicts the fact that A′ (thus A) is a SELIT solution.
Therefore mk,1 must always be 0, hence, 0 ∈ Aπk,π1 , and from (6.9), this implies
that Aπk,π1 = {0}.

From (6.13), implies that πk 6≺π1 which concludes the proof by induction,
hence the theorem.

Theorem 6.3. Any canonical and restricted diagonal family A = (A1, . . . ,An)
which is a solution of SELIT, is included in a family B = (B1, . . . ,Bn) which
is a permutation of lines and columns of the MILIC construction for n (that is
∀i ∈ [[n]],Ai ⊂ Bi)
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Proof. The binary relation ≺ is acyclic as a direct consequence of Theorem 6.2.
We can use classical results to build a total order embedding it, see for in-
stance [83]: let / be the transitive closure of ≺3. The transitive closure of an
acyclic relation is irreflexive (see [83]).

Now, by the Szpilrajn extension theorem [84, pp. 386-389], for a transitive
and irreflexive relation, there exists a total order, that includes it, denoted≪.
We can reorder the indices [[n]] as a sequence L = {π1, π2, . . . , πn} using the total
order such that π1≪ π2 . . . πn−1≪πn. The mapping of A with L (actually a
permutation) is given by

P(A, π1, π2, . . . , πn) =


F∗ Aπ1,π2 · · · Aπ1,πn
Aπ2,π1 F∗ · · · Aπ2,πn

...
... . . . ...

Aπn,π1 Aπn,π2 · · · F∗

 . (6.15)

Consider any πi ∈ [[n]], πj ∈ [[n]] and πi 6= πj. Assume that Aπi,πj 6= {0}.
From (6.13), Aπi,πj 6= {0} iff πi≺πj. Then πi≺πj implies that πi / πj and
consequently πi≪πj. Then i < j (because πi≪πj ⇐⇒ i < j), and this
element Aπi,πj must be in the upper triangle of (6.15).

As a consequence, if πi, πj, is in the lower triangle (e.g., j < i) then Aπi,πj =
{0}. This proves that the family A′ = TP (A,L) has a triangular matrix, hence
is included in the MILIC construction for n, shown in (6.8). A′ is obtained
through a permutation of A, hence the theorem, with B obtained through the
inverse permutation of the MILIC construction for n.

Now the most general form of the theorem is obtained by no longer consid-
ering restricted diagonal families, but any diagonal family:

Theorem 6.4. Any canonical and diagonal family A = (A1, . . . ,An) that is a
solution of SELIT, is included in a family B = (B1, . . . ,Bn) which is a permuta-
tion of lines and rows of the MILIC construction for n (where “included” means
that ∀i ∈ [[n]],Ai ⊂ Bi).

Proof. Let (Ai,j) be the sets of coefficients in C(A). Let A′ be the family defined
from its sets of coefficients (A′i,j) from C(A′) selected as follows: ∀i ∈ [[n]],∀j ∈
[[n]] if Ai,j 6= {0} then A′i,j = Ai,j \ {0} otherwise A′i,j = {0}.
A′ is now a restricted diagonal solution, hence Theorem 6.3 can be applied,

and B, a permutation of a MILIC construction can be found such that A′ is
included in B. Now the only difference between A′ and A, is that vectors of
transversals of A may have 0 in entries in positions where vectors of transversals
of A′ might not: but then they would still be included in B, hence A is included
in B, hence the theorem.

6.7 Alternative Algebraic SELIT Solutions

The proofs in the Section 6.6 give insights on the reasons why our constructions
have specific structures. We also tried to explore some other families of solutions

3the transitive closure of a binary relation ≺ on a set is the smallest relation on the set
that contains ≺ and is transitive
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that are not canonical, component-wise and diagonal. An example of one such
solution named Matryoshka is presented in this section. The name Matryoshka
is given based on the way the sets are arranged in a table in a nested way. The
sets are chosen such that they belong to subfields of the field F.

Consider

M =

[
x a
b c

]
.

We have
det(M) = 0 ⇐⇒ x = abc−1.

When x can be selected freely from F∗, we can make det(M) = 0, unless one
of a, b or c is zero. Notice alternately that if a, b, and/or c can take several
values, the generalizations of the Cauchy-Davenport theorem [85, pp. 141-
142] shows that abc−1 will take even more values, hence making the chances
that det(M) = 0 even higher, unless, for instance, they are in a multiplicative
subgroup. This is the insight for proposing the following alternative example of
SELIT solution.

Theorem 6.5. Let H0 = {0}, and let H1 ⊂ . . . ⊂ Hn be nested subfields of F
and denote ∀i ∈ [[n]], Ci=Hi \Hi−1. Let A be the set family such that

C(A) =



Cn Cn−1 Cn−1 · · · Cn−1 Cn−1 Cn−1 Cn−1
Cn−1 Cn−1 Cn−2 · · · Cn−2 Cn−2 Cn−2 Cn−2
Cn−1 Cn−2 Cn−2 · · · Cn−3 Cn−3 Cn−3 Cn−3
...

...
...

...
...

...
Cn−1 Cn−2 Cn−3 · · · C4 C3 C3 C3

Cn−1 Cn−2 Cn−3 · · · C3 C3 C2 C2

Cn−1 Cn−2 Cn−3 · · · C3 C2 C2 C1

Cn−1 Cn−2 Cn−3 · · · C3 C2 C1 C1


(6.16)

Then A is a SELIT solution.

Proof. We prove this by induction. First pick an arbitrary transversal from A,
and write the matrix Mn of its vectors. Then one can write

det(Mn) = an det(Mn−1) + ...+ (−1)n−1a1 det(B1)

where
an ∈ Cn, an−1 ∈ Cn−1, . . . , a1 ∈ Cn−1

and Mn−1 is a matrix with a similar form as Mn of size (n − 1) × (n − 1) and
B1, . . . , Bn−1 are matrices with coefficients in Hn−1.

We can write the determinant of Mn as

det(Mn) = an det(Mn−1) + h

where h ∈ Hn−1. If
det(Mn−1) ∈ Hn−1,

and
det(Mn−1) 6= 0,
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then it is not possible to take

an = − det(Mn−1)
−1h ∈ Hn−1

because
an+1 ∈ Cn = Hn \Hn−1,

hence det(Mn) 6= 0, and still det(Mn) ∈ Hn.
This is the basis for a proof by induction that det(Mn) 6= 0, knowing that

for n = 1 the property is true. Hence A is a SELIT solution.

Note that given a finite field F, the Matryoshka construction is only possible
until a fixed n, which depends on subfields of F. But for any n, one can select
a finite field F that allows the construction. Recoding is possible with the
Matryoshka construction. Vectors form sets defined by the bottom rows may
be combined to obtain a vector form sets defined by the rows higher up in
Table 6.16. Hence, the vectors from the sets defined by the bottom rows should
be sent before the ones from the top.

To define Matryoshka construction for an n dimension SELIT solution one
needs a field that includes n distinct subfields (including itself). One example
is F = 2(2

n) that includes n + 1 subfields. For example, consider GF (256),
that corresponds to n = 3, i.e., F = 2(2

n) the number of subfields possible is
4 (the subfields are GF (256), GF (16), GF (4), GF (2)). Thus, the maximum
generation size is 4. For larger generation size a larger n is required; however,
the cardinality of the field grows very quickly with n. Consequently, the number
of bits required to represent each element of the field can become impractical.
For example, one can select n = 10 for a very limited generation size 11. Each
element for the field requires 128 bytes. 1280 bytes are required for a vector of
generation size 10, which is exactly the minimum MTU of IPv6.

Example 6.7. Alternatively, we can define a family of sets that is a combination
of MILIC and Matryoshka, for instance as follows

C(A) =



C4 C3 C3 C3 F F F F
C3 C3 C2 C2 F F F F
C3 C2 C2 C1 F F F F
C3 C2 C1 C1 F F F F
0 0 0 0 C4 C3 C3 C3

0 0 0 0 C3 C3 C2 C2

0 0 0 0 C3 C2 C2 C1

0 0 0 0 C3 C2 C1 C1


. (6.17)

Any matrix M constituted of the vectors from (6.17) is a block matrix of
the form

M =

[
A B
C D

]
.

Since C is a null matrix, M is a triangular block matrix

M =

[
A B
0 D

]
.
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The determinant of a triangular block matrix is equal to the product of the
determinant of its diagonal blocks [86]. A and D are Matryoshka matrices and
det(A) 6= 0 and det(D) 6= 0 from Theorem 6.5. The family of sets in (6.17)
is a SELIT solution of dimension 8 that requires only 4 subfields. This can
be generalized for any Matryoshka construction and any MILIC construction.
However, the re-coding is guaranteed only among the elements of upper or lower
blocks. Indeed, in general, linear combinations of vectors from the lower block
would not give vectors from the upper block and vice versa. Thus, from a re-
coding perspective, it is restrictive and can lead to inefficiency especially at the
end of content retrieval.

We also tried exploring other SELIT solutions by searching through the sets
of all the possible vectors for a specific field using computer. One example solu-
tion is presented in Example 6.8 for field F = GF (5) and n = 3. The resulting
sets of vectors are neither canonical, component-wise nor of the matryoshka
form.

W

Example 6.8. Consider the Field F = GF (5) and n = 3. One example of sets
of vectors that are a SELIT solution found by exhaustive search is given below.

A1 = {
(
0, 1, 1

) (
1, 0, 3

) (
1, 3, 2

) (
1, 0, 0

) (
1, 4, 4

) (
0, 1, 2

) (
1, 3, 1

) (
0, 1, 3

) (
1, 0, 1

)(
1, 3, 0

) (
1, 4, 2

) (
0, 1, 4

) (
1, 1, 1

) (
1, 4, 3

) (
1, 0, 2

) (
1, 1, 0

) (
1, 0, 4

) (
1, 4, 0

)(
1, 1, 3

) (
1, 4, 1

) (
1, 1, 2

) (
1, 3, 4

) (
0, 1, 0

) (
1, 1, 4

) (
1, 3, 3

)
}

A2 = {
(
1, 2, 2

) (
0, 0, 1

) (
1, 2, 4

)
}

A3 = {
(
1, 2, 1

) (
1, 2, 0

) (
1, 2, 3

)
}

The sets A1,A2, and A3 form a solution to a dimension 3 SELIT problem.
We can find some solutions by exhaustive search but they are computationally
expensive to find and cannot be generalized.

6.8 Conclusion

In this chapter we formally introduced SELIT as a problem specific to the net-
work coding-based NDN scenario. We investigated a special group of families of
sets (canonical, component-wise and diagonal) that are solutions to this prob-
lem. We were able to prove that a large class of such families of solutions for
|F| ≥ 3, where one can pick the coefficient vectors from fixed sets and with
additional constraints, are essentially a version of the MILIC construction pre-
sented in Chapter 4. We presented an alternate Matryoshka construction and
an example of SELIT solution found by exhaustive search.

We can conclude that it appears to be difficult to find very general families
that are not isomorphic to MILIC. The Matryoshka construction is interesting,
but one main issue is that the number of bits required to represent the elements
of the field grows quickly with the generation size n4. If this issue is not ad-
dressed it limits the dimension of generation size for the content unlike MILIC

4exponentially if F = 2(2
n)
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to n < 10 in practice. Hence, MILIC appears to be more practical solution for
the SELIT problem in context of network coding-based NDN.

The results presented in this chapter are mostly specific to canonical families
and leave an open question about the non-canonical families (that do not include
the canonical vectors). Also there is an open question if other solutions for
such problem can be proposed (e.g., using coding theory results). Another
perspective for the future work is that the problem can also be generalized as
k-SELIT for finding k < n sets instead of n.



7
Conclusion and Future

Perspectives

The growth of Internet applications, the increased number of connected devices,
and the users’ ability to easily create, distribute, and consume content over
the Internet have motivated the development of new methods to access data.
Information-Centric Networking is one of the network architectures proposed
to cater to skyrocketing content production and consumption. NDN focuses on
the content rather than its location. NDN enables content caching anywhere
in the network and does not depend on location-specific connections, naturally
supporting multi-path data delivery.

Network coding has been shown to bring many benefits to ICN in terms
of fast data delivery [6, 53]. Network coding allows the nodes to benefit from
multi-path retrieval by allowing forwarding and processing multiple Interests
in parallel. It also helps increasing content diversity by storing coded content
enabling the nodes to serve more requests. Nevertheless, supplementing NDN
with network coding raises several issues, which have been partly addressed in
this thesis. The following sections present the main contributions of the thesis.
Later we propose some future directions to further improve the integration of
network coding in NDN architectures.

7.1 Main Contributions

When supplementing NDN with network coding, Interests request coded con-
tent. It is necessary to ensure that each Interest sent by a client in the network
brings new information to efficiently retrieve coded content in NDN. The so-
lutions presented in the past that ensured linear independence between Data

125
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packets had shortcomings of considerable overhead in Interest packets. The first
contribution of this thesis, presented in Chapter 3 is to provide an effective way
to reduce this overhead. We proposed a coding approach to reduce the size of
the Interest packets when requesting network-coded packets. This method ef-
fectively reduces the overhead and allows network nodes to quickly check if the
content available in their cache would be linearly independent to the requesting
node’s content. The thesis then presents a detailed analysis of NetCodCCN,
a family of previously proposed protocols integrating ICN and network coding
that tend to reach the network capacity.

The main contribution of this thesis presented in Chapter 4 is MICN, a net-
work coding-based NDN protocol. MICN permits the client nodes to implicitly
state what they require to download a generation by a specific naming scheme
called MILIC. MILIC partitions the set of all possible encoding vectors into
subsets. The subsets are defined such that if one vector is drawn randomly
from each of these subsets, the resulting set of vectors are always linearly inde-
pendent. MILIC identifies these subsets with indices. The client nodes add the
index in Interest packets that imposes constraints on the coded segments that
respond to these Interests. A coded segment that can serve as response to the
indexed Interest has encoding vectors chosen randomly from pre-defined MILIC
subsets. The syntax of MICN Interests allows them to be sent and processed
in parallel, effectively allowing the network to achieve its maximum capacity.

The evaluations showed that MICN brings significant improvements in terms
of download delay compared to the classical NDN. The fast content retrieval of
MICN, however, comes at the cost of some redundant data traffic. The thesis
also proposed two solutions to reduce this redundant traffic. The first consists
of supplementing MICN with an Interest Cancellation scheme in a protocol vari-
ant, MICN-IC. MICN-IC cancels the pending Interests in the network whose
corresponding content is no longer required at the client. The cancellation is
achieved by adding a single vector in the Interest packet as feedback to the
network. The additional vector has a dimension equal to the generation size.
MICN uses a multicast forwarding strategy that results in some flooding of the
Interests and incurs this redundant traffic. The second solution for this problem
proposed in this thesis consists in the proposal of several modified forwarding
strategies. Chapter 5 details and analyze these modified forwarding schemes.
These modified forwarding techniques dynamically change the forwarding strat-
egy of a node during content retrieval to reduce the number of Interests in the
network and reduce redundant data traffic.

MILIC requires the partition of network coding vectors (and of associated
coded Data packets) into subsets such that they give linearly independent
transversals, where transversals are obtained by drawing one random vector
from each subset. Motivated by the MILIC property of getting linearly inde-
pendent transversals, the last contribution is a detailed analysis of families that
can give partitions of sets with linearly independent transversals. The main
result of this contribution is that direct generalizations of the MILIC family
turn out to be equivalent (isomorphic) to MILIC. Some alternate constructions
are also proposed, but, unfortunately they appear to have limitations in terms
of practicability in MICN context.

The architecture presented in this thesis is implemented in our own Python
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simulator that implements core NDN semantics. The simulator uses the guide-
lines of NDN provided in the NFD developer’s guide [34]. The architecture is
easily adaptable over other Interest-based ICN architectures.

7.2 Perspectives

This section presents some future research directions and perspectives related to
some key aspects of network-coded ICN architectures that were not addressed
in this thesis and some aspects that require further investigations and improve-
ments.

7.2.1 Sliding Window Coding

The content in MICN is divided into generations to reduce the download time
and decoding complexity. The dimension of generations is decided at the source,
and the network coding operations performed throughout the network respect
the generations. Nevertheless, as observed in Section 5.2, content from one
generation can affect the download time of the next generation. It would be
interesting to explore sliding window [54] coding schemes. Such coding schemes
would not have solid boundaries between generations and make it possible to
group all content segments in a single generation. When using sliding window
coding, the coding window size w decides on the number of source segments that
can be coded together. In MICN, original segments of a generation are coded
based on MILIC constraint defined in (4.1). In the sliding window MICN con-
text, starting from a i-th segment at most w consecutive original segments can
be coded together. We experimented with the sliding window approach applied
to MICN without any optimization and obtained similar download time results
to MICN with multiple generations (a gain of about 2%). This still does not
close the gap compared to MICN with optimizations (MICN-IC). Thus, one still
needs to supplement the sliding window approach with additional mechanisms
to improve performance. For instance, on one tested scenario on the butterfly
topology, MICN-IC with multiple generations is within 11% of the max-flow,
MICN with sliding window is within 60%, and finally, MICN-IC with sliding
window is within 0.1%. Sliding window coding appears promising, and further
work is required to find the best way to integrate it with MICN.

7.2.2 Caching

In this thesis, the caching capacity of the nodes was always considered to be un-
limited or large enough to cache all packets of a content generation. We did not
explore the impact of caching strategies and cache eviction on the performance
of MICN. Nevertheless, this is not the case in real-life networks. The caches
have a limited capacity; not every content is cached, and the cached content is
evicted after some time. The decision to cache content based on its popularity
at the right place in the network (e.g., at the edge of the network) can reduce
the delivery delay and consequently increase the throughput in ICN [39, 3] and
network-coded ICN [87]. It would be interesting to develop efficient cache man-
agement policies in coordination with the MICN protocol. The goal of such
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caching policy is to take into account the limited capacity of caches while still
making it feasible to perform network coding and increase the cache hit rate.

7.2.3 FIB Management

The information from the Forwarding Information Base allows the Interests to
be forwarded to the potential source(s) of data. In MICN, the multicast for-
warding along with network coding helps improve content dissemination in a
network without fully developed or functional FIB. However, it may lead to
inefficient use of the network resources, e.g., the lingering Interests and conse-
quent redundant data traffic in MICN. During this thesis, the positions of the
source and client were considered fixed. Nevertheless, a client can be mobile in
a real network, which is an additional challenge to address.

Additionally, due to the ICN distributed caching infrastructure, the avail-
ability and location of the content may also vary over time. It is a consequence
of temporary copies of the content cached in the network that may be removed
based on caching policies. The MILIC Interests ensures that the clients re-
ceive linearly independent content, no matter where it is cached in the network.
However, an improved FIB management protocol that updates the FIB in case
of mobility or cache eviction can help identify slow and unresponsive faces. It
would be interesting to have a self-learning FIB management that allows the
network nodes to update information online during content retrieval.

7.2.4 Security

Security issues, including privacy, authenticity are not addressed in this thesis.
Most of the network coding approaches presented in the past do not consider
this aspect as well.

ICN does not consider the localization of the content; however, the au-
thenticity of the content is essential. The retrieved content has to be from a
trusted source. Security is an important research topic in ICN [32], and some
approaches have been proposed for content security in ICN [88]. In ICN, each
content object is encrypted and signed by the source, and the client can verify
the authenticity of the content upon retrieval.

Network coding inherently provides content security since an eavesdropper
cannot reproduce the original content until it has enough linearly independent
packets. Nevertheless, packets are mixed with network coding in ICN, i.e., a
new packet is generated with a new signature independent of the producer. The
signature invalidates the producer’s signature making it difficult to authenticate
the content at the client and making it vulnerable to security attacks, e.g.,
pollution attacks [89]. A suitable distributed trust model [90] is required to
sign network-coded content packets at the intermediate nodes.

Secure Practical Network Coding (SPOC) [91] is an approach that encrypts
a subset of encoding coefficients of each Data packet, with keys available at the
source and the client, but not at the intermediate nodes. A subset of unen-
crypted coefficients allows network coding in the network. However, decoding
is only possible after the encrypted coefficients are decoded.

A homomorphic signature scheme has been proposed for network coding
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authentication [92, 93]. A network-coded NDN authentication model based on
the homomorphic signature scheme have been explored in [94, 95, 96]. However,
they do not provide implementations for their schemes in actual network-coded
NDN scenarios.

Security in network coding enabled ICN architectures is an open research
question. It would be interesting to implement one of the aforementioned net-
work coding security mechanisms in the context of MICN.

7.2.5 Congestion Control

In this thesis, we focus on reaching maximum throughput, assuming one type
of connection and not addressing congestion. However, multiple paths with
multiple types of connections in a real network and multiple clients requesting
content can saturate the network. It would be necessary to regulate the streams
of Interests and Data packets, which requires some congestion control. There is
a large amount of work in the past addressing congestion control and ICN; for
instance, see [97, 98, 99, 96] and some on congestion control in the context of
network coding [100]. It would be interesting to have a fully deployed solution
on an actual network to study congestion in network-coded ICN architectures.

7.2.6 SELIT Solutions

The solution of the SELIT problem has been studied on a class of solutions
that are very similar to MILIC construction, i.e., canonical component-wise
and diagonal. The thesis also presents some alternate constructions. However,
only preliminary analysis on the practicality of the alternate constructions has
been performed. Because of the link between the SELIT problem and efficient
network coding over ICN, it would be interesting to first conduct a more thor-
ough analysis, and second to find and explore more diverse families of solutions
to the SELIT problem. It might be possible to construct SELIT solutions from
superimposed codes [101] or other coding constructions.

7.2.7 Adaptive Forwarding Strategies

For content retrieval, MICN is efficient even in the presence of losses, as illus-
trated through the example scenarios in Chapter 4. This performance gain,
however, can be interpreted as a consequence of the Interest flooding. Chap-
ter 5 presents some forwarding techniques integrated with MICN implemented
on nodes to address the Interest flooding and redundant content overflow prob-
lem. All the techniques are presented after studying the network behavior and
the information readily available at the nodes, e.g., the pending queues on dif-
ferent faces and the content available in their Content Stores. These techniques
exploit this information to decide if a node should forward a received Interest
and if the node should duplicate it on some or all of the available faces. These
heuristic-based modified forwarding techniques attempt to achieve the following
goals:

1. Ensuring the retrieval of a decodable set of coded content.
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2. Ensuring that the retrieval of the decodable set is achieved at maximum
speed (maximum throughput).

3. Reducing the number of lingering Interests in the network.

4. Reducing the number of redundant data traffic.

Each of the above goals may result in contradicting forwarding decisions. For
example, if a node aims to reduce the number of lingering Interests in the
network, it can reduce the number of Interests it duplicates on its available faces.
The redundant content will consequently be reduced due to the limited number
of Interests forwarded in the network. However, the multiple available paths will
no longer be exploited resulting in an increased download time. Additionally,
if the nodes do not forward enough Interests, this may result in the client not
getting back a decodable set of coded content, e.g., in case of losses, etc.

The modified strategies helped curb the problem of flooding and redun-
dant traffic. Nevertheless, the price to be paid is reduced robustness to packet
losses. Some forwarding strategies may not be able to adapt in case of losses or
other network topology changes. In real network scenarios, varying bandwidth,
connectivity, network losses, and even user mobility may change the network
dynamics. More dynamic forwarding techniques are required for a node to make
forwarding decisions that ensure maximum throughput and avoid flooding [4].

When looking for dynamic and adaptive forwarding solutions, it is natu-
ral to explore other methods such as machine learning. Indeed, reinforcement
learning techniques have been proposed in the past to improve the Interest for-
warding in ICN, by using Multi-Armed Bandit strategies [102, 103], Q-learning
approaches [104, 105] and other approaches. This family of works mostly focuses
on finding the one best path for Interest forwarding in classical ICN architec-
tures.

Thus, a promising direction is to adopt reinforcement learning techniques
to automatically train adaptive forwarding strategies in MICN, instead of using
hard-coded heuristics. With MICN, we observe that the problem appears to
require powerful techniques mostly due to the credit assignment problem [106];
because it is hard to identify which forwarding decision is responsible if some
of the previously listed goals is not met.

We conducted some work during the course of this thesis to experiment with
various reinforcement learning techniques in MICN. The outcome of this work
is presented as a summary of the models, training methods, preliminary results,
and related details in the Appendix A.



A
Reinforcement Learning for MICN

As described in Section 7.2.7, the heuristic-based forwarding strategies improve
network resources utilization in MICN face some shortcomings. For example,
the parameters are hardcoded and require tuning for changes in the network
state, e.g., in the presence of losses. Our aim in this appendix is to explore
adaptive forwarding solutions based on reinforcement learning algorithms.

A.1 Reinforcement Learning

Learning is a process to improve a system’s performance based on experience.
The improvement comes from information about the actions taken in certain
situations and their outcomes in the past. This information is then utilized to
adjust the future decision-making of a system.

Reinforcement Learning (RL) allows mapping situations to actions and aims
at maximizing a numerical reward. RL involves an agent that interacts with
the environment. It receives stimuli from the environment defining its state and
then reacts by choosing an action. An agent tries different actions to learn the
best actions for each state. The actions taken in any state are then evaluated
as a reward towards a set goal. The rewards may be positive or negative.
The agent uses the observed rewards to improve its actions in the future, i.e.,
take actions that bring better rewards and help the agent reach the set goals.
Additionally, the agent learns to avoid actions that are unfavorable for it to
reach its final goal. The actions taken in different states by the agent are called
a policy.

In general, policies may be deterministic, i.e., specifying a unique action
per state, or stochastic, i.e., specifying probabilities for each action [107]. RL is
often used for networking; it helps with algorithms, decisions, and policies, etc.
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Agent
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actionRewardState

Figure A.1 – Reinforcement Learning model

RL algorithms can learn and adapt the forwarding in MICN over generations
to improve the performance.

A.2 Reinforcement Learning based Forwarding
in ICN

The ICN literature proposes some works implementing RL techniques to im-
prove forwarding in different ICN networks. Chiocchetti et al. [104] propose
INFORM, a dynamically changing forwarding mechanism for ICN. Inspired by
the Q-routing framework [108], INFORM uses RL to discover paths to tempo-
rary copies of content not addressed in routing tables. Avrachenkov et al. [102]
present the ICN Interest forwarding problem as a Multi-Armed Bandit (MAB)
problem with delays. Three well-known algorithms are implemented in [102],
namely ε-greedy, tuned ε-greedy, and UCB (Upper Confidence Bound) to mini-
mize the number of Interests forwarded to suboptimal routes. Bastos et al. [103]
also proposed a Multi-Armed Bandits Strategy (MABS) algorithm: an ε-greedy
algorithm is used to explore the network for better paths. The content routers
build their FIB by keeping a record of each interface retrieval time related to
a specific content name. Abane et al. [109] propose a forwarding strategy for
low-end IoT. A cost is associated with each packet; the nodes overhear packets
and learn a cost value by reinforcement learning. The nodes decide to forward
an Interest with a delay according to their cost-based eligibility. Fu et al. [105]
propose an adaptive forwarding scheme in ICN using a Q-learning-based proto-
col. They propose IQ-Learning (Interest Q-Learning) and DQ-Learning (Data
Q-Learning) strategies that learn from the past choices to make the best delay-
efficient forwarding choices. Other literature using RL techniques to improve
Interest forwarding in ICN may be found in [110, 111]. A survey on routing
approaches for networks using RL is presented in [112]. A Monte-Carlo Tree
Search (MCTS) algorithm is proposed in [113] to construct the path trees from
the users to the sources.

In traditional NDN forwarding, a node decides the path in terms of the next
hop where an Interest should be forwarded. Most of the works found in the
literature are working towards this goal, i.e., to find the correct path to forward
their Interests. These works evaluate the cost in terms of content availability
and delay to learn the most feasible or delay-efficient path to the content. If
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(a) ICN

+

(b) Network-coded ICN

Figure A.2 – Interest forwarding decision

more than one path is available, these algorithms enable nodes to choose the
best paths to forward their Interests. However, it is essential to recall that each
Interest in classical ICN corresponds to one content. Each learning algorithm
should ideally choose one path for each Interest, as presented in Figure A.2a.
The content from one Interest does not affect the next or previous Interests
and, consequently, future forwarding decisions.

With network coding, since one Interest can be answered by a large va-
riety of linearly independent content, Interests may be duplicated on several
paths in order to take advantage of the different coded content cached in the
network. Consequently, the previously sent Interests may impact the Interest
forwarding decisions of the following Interests based on the content received.
As a result, the Interest forwarding decisions with network coding are different
and more complex than Interest forwarding for uncoded content. As shown in
Figure A.2b, the decision in network coding scenario includes the number of
faces and the exact faces for forwarding Interest. Additionally, each forward-
ing decision also needs to take into account the previous forwarding decisions.
An example scenario is presented in the expected Rank-based strategy in Sec-
tion 5.3.5. Each forwarding decision is taken based on the previous decisions
and the content received in response to those decisions.

The classical NDN forwarding strategies are either flooding-based, in which
case Interests are broadcast everywhere, or route-dependent, in which case es-
sentially one path is chosen. Both strategies have some unwanted consequences
in the network coding context. The flooding strategy incurs extra data traffic,
while route-dependent strategies limit the ability to exploit all available paths,
degrading the performance to the equivalent of uncoded NDN.

A.3 Adaptive Forwarding in MICN using Rein-
forcement Learning

MICN implements a multicast strategy to exploit all available paths, as its
main focus is to achieve high throughput. Since multicast is a flooding-based
strategy, it results in redundant traffic. Classical ICN forwarding strategies are
insufficient for MICN. The forwarding strategies should decide on a) how many
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faces and b) which faces to forward Interests to (as presented in Figure A.2b);
this may require taking into account the history of forwarding decisions for a
particular content generation. Ideally, dynamically adaptive forwarding strate-
gies are required to utilize the network resources more efficiently, and to adapt
their variations.

As observed with modified strategies in Chapter 5, a mix of a non-conservative
strategy, e.g., multicast, and a conservative strategy that limits Interest for-
warding, is required to ensure high throughput and avoid redundant data traffic.
We will try to use RL to find this trade off.

Based on the four goals presented in Section 7.2.7, the main performance
metrics for adaptive forwarding techniques in MICN are:

1. Retrieve a decodable set of content generation.

2. Getting back content at the maximum possible rate.

3. Avoid redundant data traffic.

4. Limit the number of Interests sent in the network.

In the threshold-based forwarding strategy (see Section 5.3.1), we observed that
the nodes multicast Interests only at the beginning of content retrieval. Albeit
the threshold-based forwarding failed to achieve maximum throughput, it re-
duced the redundant traffic considerably. The redundant data traffic is reduced
because the nodes stop forwarding Interests later in content retrieval. Other
modified techniques limit the Interest forwarding; however, based on their tun-
ing parameters, they achieved one goal but had to compromise another partly.
Based on this observation, in order to achieve the performance goals, MICN
works well with a forwarding strategy that:

• exploits multi-path content retrieval of NDN (forwards Interests on mul-
tiple faces to encourage fast content retrieval) and

• switches to conservative forwarding (towards the end of a generation re-
trieval or if too much content is already expected).

In order to build a forwarding policy considering the progress in content retrieval
as a state variable may be useful, instead of continuing with a static policy
or having static parameters for modifying the strategy. Our goal with RL
techniques is to allow the nodes to update their forwarding strategy dynamically,
unlike the modified techniques presented in Chapter 5.

The idea is to implement an RL algorithm independently on each node in
the network. The client nodes try to retrieve a content generation; the retrieval
of one content generation defines one episode. Each network node learns from
the outcomes of the policy implemented in one episode to improve the policy
in the next, based on how fast it can retrieve content and how much redundant
content is received at the node. The nodes also evaluate if any useless Interests
were forwarded, i.e., no content was received for a particular Interest because
there is no content source or cache on the forward link.

For our particular problem, the state can be the progress in a generation
of the requested content, i.e., the rank of the CS or the number of received
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innovative content. However, in general, the state can also be the whole history
and observations of the Interests received, forwarded and pending, the content
received, etc.

The action space A includes the number of faces and the set of possible
faces to forward an Interest to, including the set of all available faces and not
forwarding an Interest at all. Following the goals, actions that bring back
innovative content in the least amount of time are rewarded, and those that
bring back redundant or no content are penalized (negative reward). Moreover,
a significant penalty is associated at the end of all actions if the client node fails
to retrieve the entire generation.

We initially tested a Q-learning method to learn the best forwarding action.
We implemented the Monte-Carlo algorithm [107, p. 101] over episodes of
content retrieval. With Q-learning, we observed sudden changes in policies.
Q-learning works with non-stochastic policies, and the action with the best
action-value is chosen (almost) always. This leads to oscillations in the learning
process even with epsilon-greedy methods. Additionally, in a complex network
with multiple nodes or agents, one agent’s decision affects the actions of other
agents. The multi-agent scenario and the impact of past forwarding decisions on
future ones give rise to a credit assignment problem: it is hard to assess which
action is responsible for the goal not being met. Based on these difficulties,
instead, we wish to have a stochastic policy that assigns probabilities to each
action in each state.

A.3.1 Policy Gradient Methods

Policy gradient methods [107] are a type of RL techniques that rely upon op-
timizing parametrized policies with respect to the expected return (long-term
cumulative reward) by gradient ascent. Action-value methods learn the val-
ues of actions and then select actions based on their estimated action values.
However, policy gradient methods are not action-value methods, and they learn
a parameterized policy that can choose actions without a value function. The
value function is used to learn the policy parameters but is not directly involved
in action selection.

REINFORCE [107, p. 330] is a policy gradient method that works for
episodic tasks, i.e., the algorithm generates a complete episode and uses the
returns to compute the gradient. The state, action, and reward at each time
t ∈ 0, 1, 2, ... are denoted St ∈ S, At ∈ A, and Rt ∈ R respectively. Recorded
episode is a sequence or trajectory of states, actions and rewards like

S0, A0, R1, S1, A1, R2, ... .

REINFORCE is a plain policy gradient method and is suitable for stochastic
policies. It computes a stochastic approximate gradient. It is considered as a
policy gradient variant of the Monte-Carlo methods [107, p.101]. Monte-Carlo
methods apply to episodic tasks and estimate the value function for each state
and action pair. They do so by updating these estimates after completing an
episode and computing the rewards for each state-action pair.

The REINFORCE uses the Monte Carlo method returns from time t until
the end of an episode, but instead of updating the value function, it updates
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the policy. π (a|s,θ) refers to the policy which is parameterized by the policy’s
parameter vector θ. The policy can be represented as

π (a|s,θ) = Pr {At = a|St = s,θt = θ}

for the probability that action a is taken at any time t if the system is in state s
at time t with policy parameter θ. The policy π (a|s,θ) should be differentiable
with respect to its parameters, i.e., ∇θπ (a|s,θ) has to exist for all θ.

In this part, we chose a policy gradient method that is a contextual gradient
bandit. S = {1, . . . , k} is the discrete state space. For each state s ∈ S
a parameterized policy has a vector of parameters θs for each action in the
discrete action space A = {1, . . . , n}

θs =

 θs,1
...
θs,n

 .

All actions are assigned probabilities to be chosen in any state based on the
preferences, according to an exponential soft-max distribution:

π (a|s,θs) =
eθs,a∑n
b=1 e

θs,b
. (A.1)

REINFORCE algorithm initializes the policy parameter θs at random and
generates an episode on policy

π (θs) : S0, A0, R1, . . . , ST−1, AT−1, RT .

Then, for t = 0, 1, . . . , T − 1 the return Gt is estimated as

Gt =
T∑
k=t

γRk (A.2)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate that determines
the present value of future rewards. If γ = 0, then only immediate rewards
are considered, however as γ approaches 1 the return takes future rewards into
account more strongly. REINFORCE estimates the returns Gt from actual
sample trajectories and uses it to update the policy parameters at each time t
as

θ(t+1)
s = θ(t)s + αGt

∇θsπ
(
At|St,θ(t)s

)
π
(
At|St,θ(t)s

) (A.3)

where α is the learning rate. For our choice of π (a|s,θ)

∇θsπ (a|s,θ)
π (a|s,θ)

=


−π (1|s,θ)

...
1− π (a|s,θ)

...
−π (n|s,θ)

 .
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Figure A.3 – Topology used for Learning Algorithms

We implemented the REINFORCE algorithm from [107, p. 330] with and with-
out the baseline. A baseline can be a function or a random variable that can
be subtracted from the returns. Baseline subtraction does not affect the ex-
pected value of returns but reduces the variance and is expected to allow faster
learning.

A method can use a learned value function v̂ (St,w), where w ∈ Rd is a
weight vector learned by the value function. REINFORCE uses a Monte Carlo
method to learn the state-value weights w at the same time as θ. We choose
the simplest value function to use in the baseline, for each state s ∈ S a single
scalar ws is associated to each state s, i.e., v̂ (St,w) = ws. The value function
parameter is updated after each policy’s returns are estimated as:

ws = ws + αδws

where δ = Gt − ws and α is the same as the learning rate for θ(t)s .

A.3.2 Results for Policy Gradient Methods

We implemented a basic topology to test the policy gradient method, including
a client node R1 and two source nodes R2 and R3 (See Figure A.3). The REIN-
FORCE algorithm is implemented on the client node with two faces connecting
to sources for the given topology. The node tries to retrieve a decodable set
of content with generation size 20 at max flow and avoids redundant content.
Each source stores a complete set of 20 segments. The pipeline size considered
for this scenario is 2.

The state is identified as the progress within the generation, i.e., the rank
or the number of received innovative content. Given the generation size, there
are 21 possible state values ranging from 0 to 20. The state space is quantized
to two states. An initial state goes from no content to half the content received.
The second state from half the content until the entire generation is received.
The client application stops forwarding Interests after all the content is received.

For the considered topology, the actions vary from forwarding on one of
the available faces ( R2 or R3 ) to forwarding on all faces ( R2 and R3 ) to
forwarding to none. No link losses are considered. We do not implement the
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timeout of Interests, i.e., the clients do not resend Interests if content for an
Interest is not received after the interest timeout.

Since REINFORCE works on episodic tasks, a reward is assigned after the
end of an episode. A reward is computed based on the goals presented in
Section 7.2.7. The reward R considers the rank, i.e., the innovative content
Cinnovreceived compared to the expected final rank, i.e., the generation size
g. Additionally, the reward takes into account the redundant content Cred,
the innovative content retrieval time Tinnov, and the amount of useless Interest
forwarded Iuseless, i.e., the number of Interests forwarded that did not bring
any content. Collectively, the reward R is computed as a weighted sum of
the different objectives, and we found that the following expression gave good
results

R =

(
(Cinnov − g)− ηCred − 2ηTinnov −

1

16
ηIuseless

)
× 1

g
.

Additionally, a large penalty is inflicted if the client fails to retrieve a de-
codable set of content. The learning is performed over 50000 episodes. The
parameter η is used to tune the reward. We consider a non-discounted case for
return computation, i.e., γ = 1 in (A.2). The performance is measured based
on retrieving one generation, the time required to download, and the amount
of redundant content received by the node in the network.

Figure A.4 presents the results of the REINFORCE algorithm. Figure A.4a
shows the rank received by the client node R1 after each episode. In Fig-
ure A.4a, each point presents a moving average of 30 samples1. Rank indicates
the innovative content packets of the generation received at the client. When 20
innovative packets are received, the client can decode the generation. Since the
clients do not resend Interests in case of a timeout, a bad forwarding decision
can result in the client failing to retrieve a decodable set. In such a case, a
significant penalty is given to all the actions.

Figure A.4b indicates the time at which a decodable generation is retrieved
at the client node. Figure A.4c represents the redundant content in the net-
work over episodes. Figure A.4d plots the average return of each episode. These
figures indicate that the learning algorithm is working well in terms of genera-
tion retrieval, completion time and reduction of the redundant content in the
network.

Figures A.4e and A.4f present the policy of node R1 in the state 0 and
1, respectively, and its evolution over the successive episodes. The stochastic
policy assigns a probability to each action for each state. The action itself is
the set of routers where the Interests are forwarded (“−” means no forwarding).
The policy in the first state tends to multicast the Interests by forwarding them
on both available faces. However, the policy in the second state prefers action
zero, i.e., not sending to any faces. Since both faces of node R1 are connected
to the sources, the duplicated Interests are both likely to bring two linearly
independent content. The policy then limits the Interest forwarding to one or
no face. The policy in both states collectively ensures that a decodable set of
coded content is received with maximum throughput. In this case, the min-cut

1Figures A.4b, A.4c, A.4d, A.5a, A.5b, A.5c, A.5d, A.5d, A.7a, A.7b, A.7c and A.7d all
plot a moving average of 30 samples.
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Figure A.4 – Results with REINFORCE algorithm
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Figure A.5 – Results with REINFORCE algorithm with baseline
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of the node is 2, and the content of size 20 is received in around 10 time units
plus some propagation delay. The conservative policy in state 1 helps reduce
the redundant content flowing in the network. The policy in our case converges
to a deterministic policy, because the problem accepts a deterministic policy.

Figure A.5 presents the results of the REINFORCE algorithm with baseline.
An estimated state-value function is used as a baseline. Figure A.5 represents
results for REINFORCE with baseline. Figures A.5e and A.5f present the policy
in the two states. Comparing Figures A.5e, A.5e and Figures A.4f, A.5f, it seems
clear that REINFORCE with baseline learns faster and the policy converges
faster to an optimal policy.

A.3.3 Deep Reinforcement Learning with Policy Methods

We get some good results with the RL techniques; however, challenges may
arise when attempting to apply them to a real, more complex problem, e.g., a
complex network with larger content to retrieve. A common obstacle encoun-
tered with RL techniques is the dimension of the solution space. The size of the
solution space of the problem grows exponentially with each additional feature
describing the state [114]. This problem is described by Bellman [115] as the
curse of dimensionality.

Environment

Action

Reward

State

Agent

Deep Neural Network

Figure A.6 – Deep Reinforcement Learning model

Considering the complexity of our problem in a more practical network
model, we explored Deep Reinforcement Learning (DRL) approaches. DRL
combines deep neural networks and reinforcement techniques. RL allows an
agent to learn by trial and error to reach a particular goal with the training
data set entirely dependent on the policy. DRL uses a neural network to repre-
sent a parametrized state-value function or a policy where parameters are the
weights. This incorporation allows agents to use extensive unstructured input
data to decide on the optimal actions. It is suitable for problems with large
state space. DRL is nowadays being used for many applications, varying from
video games, computer vision, robotics, healthcare, finance, and many more
[116].
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Figure A.7 – Results with Deep RL

The Proximal Policy Optimization algorithm (PPO) [117] from stable base-
lines [118], was used in our Python simulator. The system parameters included
the same action space as the REINFORCE algorithm. The state represents the
progress of a node in terms of content retrieved for a generation, i.e., the rank.
Since DRL can work well with large state/observation space, simplifying state
space is not required; we use all 21 states. The neural network model takes the
state observation as input and gives the policy as output.
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Figure A.7a presents the results for the considered DRL algorithm. Fig-
ures A.7a, A.7b and A.7c indicate that DRL performs well in terms of retrieval
of complete content, completion time, and redundant content. Figure A.7e
presents the policy for the last episode. The policy takes the action of sending
on all faces in the initial states and switches to action zero at the end of content
retrieval to avoid redundant content. Note that state 20 is the terminal state,
and no action is taken in this state since the client node stops sending Interests
after getting the complete generation. Since presenting the evolution of policy
for 21 states over the episodes is not feasible, Figure A.7f shows the frequency
of actions taken in each episode. Note that the action of sending on two faces
and action zero are the preferred actions. Around 60% of the time, the Interests
are sent on both faces, and the remaining 40% of the time the Interests are not
forwarded anywhere. Compared to REINFORCE, DRL can use a large set of
observations and tends to converge faster toward the optimum behavior.

A.4 Conclusion

This appendix presented some preliminary results with different RL algorithms
implemented on MICN. These results indicate that RL algorithms can provide
good solutions to implement an adaptive forwarding strategy. The stochastic
policy ensures that the main goals of MICN are achieved while reducing the
side effect of redundant traffic observed with MICN and other NC algorithms.
These results provide a good base for further exploring the integration of RL
techniques in MICN to improve its performance.
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B
Synthèse

B.1 Contexte

La distribution de contenu est l’une des principales utilisations de l’Internet
d’aujourd’hui, et la majeure partie du trafic de l’Internet est constituée de
contenu vidéo et multimédia [10]. L’intérêt croissant pour ce type de contenu,
couplée à l’évolution des comportements des consommateurs et à l’augmenta-
tion de la quantité de données échangées (à partir d’ordinateurs, de portables,
de mobiles, de systèmes intelligents, de maisons connectées, de dispositifs IoT,
etc...) ont entraîné un changement de paradigme. Des propositions de nouvelles
architectures Internet plus modernes et plus efficaces sont actuellement explo-
rées pour partager efficacement les contenus.

Les réseaux centrés sur l’information (Information Centric Networking, ICN)
ont été proposés pour transformer les paradigmes de l’Internet et s’acquit-
ter de la nécessité préciser l’emplacement du contenu pour y accéder. De fait,
dans leurs requêtes de contenu, les réseaux ICN suppriment l’emplacement du
contenu de la liste des attributs indiqués, ce qui permet aussi de le mettre en
cache n’importe ou dans le réseau, de façon transparente. C’est rendu possible
par le fait que les réseaux ICN identifient le contenu sur la base d’un nom plutôt
que d’un emplacement comme une adresse IP et sont conçus pour acheminer le
contenu sur la base de ce nom.

Certaines architectures ICN permettent aux clients de demander du contenu
par l’intermédiaire de paquets d’« intérêt » indiquant son nom. L’intérêt est
relayé dans le réseau jusqu’à ce qu’il atteigne un cache ou un serveur qui possède
une copie du contenu demandé. Le contenu est alors envoyé aux clients à l’origine
des intérêts par le chemin inverse de celui suivi par ces intérêts.

Les réseaux ICN s’affranchissent de la communication de bout en bout,
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permettant donc naturellement l’utilisation simultanés d’interfaces multiples et
facilitent la mise en cache dans le réseau. Ils permettent aussi une gestion trans-
parente de la mobilité des clients car aucune information d’emplacement n’est
explicitement indiquée et parce que la communication ne se limite pas à la com-
munication entre deux points. Une requête pour du contenu peut être satisfaite
par une copie proche déjà présente dans le cache d’un routeur. Chaque contenu
dans un réseau ICN peut être signé et chiffré individuellement, contrairement
à la communication traditionnelle qui chiffre uniquement les échanges dans un
canal entre deux points. Ceci permet aussi une meilleure prise en charge de la
mobilité.

L’objectif principal des réseaux ICN est de faciliter l’accès au contenu en uti-
lisant explicitement l’aspect « orienté contenu » dans le format des demandes
des clients et dans l’architecture du réseau. Néanmoins, les réseaux ICN ne
résolvent pas instantanément tous les problèmes de communication et, dans
certains cas, leur fonctionnement peut être amélioré ou optimisé. Lorsque plu-
sieurs clients sont intéressés par un contenu de volume important, les réseaux
ICN sont confrontés à des problèmes qui peuvent dégrader leurs performances,
notamment des goulets d’étranglement, des limitations en bande passante et
des pertes de paquets. En outre, l’utilisation optimale et simultanée de plusieurs
chemins disponibles reste difficile avec les réseaux ICN classiques, en particulier
pour des scénarios avec de multiples clients et de multiples sources.

Il existe un équilibre entre les avantages naturels des réseaux ICN et les li-
mites rencontrées dans certains scénarios. D’une part, les réseaux ICN prennent
intrinsèquement en charge la transmission de contenu par chemins multiples,
et il a été observé qu’ils permettent une augmentation du débit [4]. En effet,
les clients peuvent récupérer le contenu plus rapidement en exploitant la bande
passante de plusieurs interfaces en même temps. D’autre part, la diffusion fiable
du contenu reste un défi en particulier quand un haut niveau de performance
est demandé. De fait, le débit optimal ne peut être atteint dans les scénarios de
multidiffusion que si le contenu est transmis sur un ensemble optimal d’arbres
de multidiffusion [5]. Or la recherche d’arbres de multidiffusion optimaux dans
les réseaux à grande échelle pose des problèmes en cas d’évolution dynamique de
la topologie, notamment en cas de défaillances ou de disparition de liens. Elle
est également compliquée dans les réseaux ICN en raison de leur infrastruc-
ture distribuée avec une évolution dynamique et indépendante et de la mise en
cache du contenu, alors qu’une connaissance complète du réseau et une coordi-
nation entre les multiples entités et routeurs du réseau seraient nécessaires pour
optimiser les communications.

Le codage réseau a été proposé pour résoudre certains problèmes des réseaux
ICN lors de la récupération de contenus de gros volumes [6]. L’idée principale
du codage réseau est de permettre aux nœuds du réseau de « mélanger » les pa-
quets dans à l’intérieur du réseau (via des combinaisons linéaires par exemple),
contrairement au routage, où les paquets sont seulement relayés tels quels.

Le contenu est divisé en « segments » et des segments codés sont généré en
combinant les segments sources (initiaux) des contenus. Les nœuds du réseau, y
compris les sources et les routeurs intermédiaires, peuvent effectuer des opéra-
tions de codage réseau sur les segments du contenu et renvoyer des segments co-
dés à l’intérieur de paquets de données ICN. Les paquets de données contiennent
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également les vecteurs d’encodage des segments codés qui fournissent des infor-
mations sur le codage, c’est-à-dire les coefficients de la combinaison linéaire que
le segment codé représente.

L’association du codage réseau au concept de réseaux ICN apporte un en-
semble d’avantages. Une requête de segments codés d’un contenu peut être
satisfaite par n’importe quel segment codé au lieu d’un seul segment spécifique,
ce qui réduit la granularité d’une requête pour du contenu. Le codage du réseau
permet d’envoyer les demandes des clients sur plusieurs interfaces sans avoir à
les transmettre sur un ensemble optimal d’arbres de multidiffusion. Le mélange
(recodage) des segments à l’intérieur du réseau augmente la diversité du contenu
présent dans le réseau. Cette diversité accrue du contenu augmente le taux de
réussite des caches. Le codage réseau permet à aux réseaux ICN d’utiliser effi-
cacement plusieurs chemins et, par conséquent, d’augmenter les débits dans les
applications impliquant des données volumineuses. Outre les gains de débit, le
codage réseau apporte des avantages tels que la résilience aux pertes.

Un client qui demande un contenu codé ne pourra décoder le contenu ori-
ginal que lorsqu’il aura reçu suffisamment des paquets codés qui soient linéai-
rement indépendants. Les paquets codés linéairement indépendants sont donc
nécessaires pour que les clients puissent effectuer des opérations de décodage.
Cependant, justement, il n’est pas simple de s’assurer que le contenu codé re-
tourné aux clients soit linéairement indépendant de ce que chacun a déjà col-
lecté. En réalité, comme les réseaux ICN conservent des segments codés dans
les caches des routeurs, à l’intérieur du réseau lui-même, et du fait que tout
segment codé puisse répondre à un intérêt, il y a une forte probabilité que le
client reçoive à nouveau le même segment codé de nœuds voisins, après les ré-
ponses à ses premiers intérêts. Plusieurs solutions ont été proposées dans la
littérature pour assurer la récupération d’un ensemble complet donc décodable
de segments codés linérairement indépendants, y compris l’envoi dans chaque
intérêt de l’ensemble des vecteurs d’encodage de tous les paquets codés déjà
reçus. Les propositions précédemment publiées présentent néanmoins certaines
faiblesses en matière d’équilibre entre le coût de la récupération d’un ensemble
complet de contenu et la récupération du contenu avec le débit le plus grand
possible. Une question ouverte est de savoir comment les améliorer pour tirer
pleinement parti du codage réseau dans les réseaux ICN.

B.2 Objectifs de la thèse

Motivé par les avantages que le codage réseau peut apporter aux réseaux ICN en
matière de débit, l’objectif principal de cette thèse est de proposer un protocole
qui intègre efficacement le codage réseau et les principes des réseaux ICN pour
surmonter les défauts de travaux précédents.

Nous choisissons « Named Data Networking (NDN) » [29], une architecture
ICN basée sur les intérêts, pour intégrer le codage réseau aux réseaux ICN.
L’objectif principal du protocole est de garantir que les clients récupèrent un
ensemble décodable de segments codés avec le débit maximal possible. Pour
récupérer un ensemble décodable de contenu codé, il est impératif de concevoir
un « schéma de nommage » approprié. Le schéma de nommage comprend les
noms donnés aux segments codés du contenu dans les paquets ICN et les méta-
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informations associées dans les champs d’options. Il doit permettre aux intérêts
d’informer les routeurs du réseau de ce dont le client à besoin pour décoder le
contenu. Notre objectif est de concevoir un schéma de nommage pour codage
réseau qui tienne compte des principes de NDN et permette le traitement de
plusieurs intérêts en parallèle dans le réseau.

Le deuxième objectif dans la conception du protocole est d’assurer un débit
maximal dans les scénarios de transfert de contenus volumineux. Cet objectif se
traduit par une stratégie de relayage qui garantit que suffisamment d’intérêts
sont propagés dans le réseau.

Le troisième objectif de cette thèse est d’optimiser l’utilisation des ressources
du réseau tout en assurant un débit maximal. L’utilisation des ressources du
réseau est améliorée en optimisant le nombre de paquets d’intérêt et de données
envoyés dans le réseau. Cette optimisation permet de s’assurer que le protocole
atteint son objectif principal sans inonder inutilement le réseau.

L’objectif final de la thèse est une étude sur la généralisation des mécanismes
introduits pour atteindre l’objectif précédent : la construction de sous-ensembles
d’espaces vectoriels tels que lorsqu’un vecteur est arbitrairement pris de chaque
sous-ensemble, l’ensemble de vecteurs résultants est linéairement indépendant.
Il s’agit notamment d’explorer d’autres familles qui satisfont à cette propriété
et de vérifier si elles conviennent ou non au codage réseau.

B.3 Résumé des Contributions

Afin de concevoir une architecture intégrant le codage réseau et les réseaux
NDN, nous commençons par étudier les travaux précédents. Nous analysons en
détail les choix de conception des architectures intégrant le codage réseau et les
réseaux ICN dans la littérature.

La première contribution de cette thèse, présentée dans le chapitre 3, fournit
une solution pour la compression dans les intérêts des informations décrivant
l’ensemble des segments codés reçus en utilisant une approche basée sur les
codes linéaires. De nombreux travaux proposés dans le passé ajoutent les infor-
mations du contenu reçues dans les intérêts pour s’assurer que le client reçoive
un ensemble décodable de segments codés. Cependant, cette information n’est
pas ajoutée de manière suffisamment compacte et entraîne un surcoût important
dans les paquets d’intérêt. Notre solution permet de réduire cette surcharge.

La deuxième contribution de cette thèse est également présentée dans le cha-
pitre 3. Nous présentons une analyse formelle des stratégies de relayage des in-
térêts avec NetCodCCN [68]. NetCodCCN représente une famille de protocoles
qui vise à atteindre des objectifs similaires aux nôtres. Notre analyse formelle
montre que les stratégies de relayage de ces protocoles ne sont pas toujours
efficaces et qu’il est important de fournir des preuves de protocole.

La principale contribution de cette thèse est l’architecture MICN qui intègre
le codage réseau aux réseaux NDN, et elle est présentée dans le chapitre 4. Nous
proposons un schéma de nommage spécifique appelé MILIC (Multiple Interests
for Linearly Independent Content). MILIC ajoute un index dans le nom pré-
sent dans les intérêts. L’ensemble de ces indices représente des sous-ensembles
prédéfinis de vecteurs d’encodage (suivant un ensemble de contraintes mathé-
matiques). Le segment codé en réponse à un intérêt avec un index MILIC ne



B.4. Plan de la thèse 149

peut avoir qu’un vecteur d’encodage appartenant à un sous-ensemble prédéfini.
Les sous-ensembles garantissent que le segment codé correspondant à chaque
indice est linéairement indépendant de l’ensemble des autres. Nous définissons
ces sous-ensembles et fournissons des preuves formelles que l’indépendance li-
néaire du contenu pour différents sous-ensembles est assurée. MICN assure que
chaque client recevra un ensemble complet et décodable de segments codés avec
un débit maximal.

Le débit maximal de MICN est obtenu au prix d’une inondation du réseau
avec des paquets d’intérêts. Une conséquence de cette inondation est la géné-
ration de trafics redondant dans le réseau. La contribution suivante de cette
thèse est de proposer des stratégies dynamiques de relayage des intérêts dans
le chapitre 5 pour réduire l’inondation des intérêts et par conséquent réduire le
surcroît de trafic de données.

La dernière contribution de cette thèse est l’étude des familles de sous-
ensembles similaire à MILIC. Nous formalisons le problème en la recherche
de sous-ensembles tels qu’en choissant arbitrairement un élément dans cha-
cun d’entre eux, l’ensemble de vecteurs résultants est linéairement indépendant.
Nous étudions quelques familles générales et prouvons qu’elles sont équivalentes
à MILIC. Nous proposons également quelques exemples de constructions et so-
lutions algébriques alternatives.

B.4 Plan de la thèse

La thèse est organisée comme suit :

Le chapitre 2 donne un aperçu des propriétés fondamentales des réseaux ICN
en général et des réseaux NDN en particulier. Il présente le contexte et une
vue d’ensemble des travaux existants réalisés dans le domaine des réseaux
NDN et du codage réseau.

Le chapitre 3 analyse les choix de conception effectués dans certains travaux
préexistants avec des hypothèses similaires à celles qui nous intéressent.

Le chapitre 4 présente MICN, une architecture qui intègre le codage réseau
aux réseaux NDN afin d’obtenir un débit maximal pour le transfert de
données volumineuses. Le chapitre présente une architecture détaillée de
MICN, les résultats et les avantages de MICN par rapport à NDN et à
l’une des solutions préexistantes. En outre, le chapitre observe également
l’existence de l’inondation des intérêts comme un effet secondaire du débit
maximum que MICN permet d’atteindre, et propose un mécanisme initial
pour y remédier en l’atténuant.

Le chapitre 5 présente quelques techniques de relayage d’intérêts modi-
fiées pour remédier au problème d’inondation observé dans le cha-
pitre 4.

Le chapitre 6 présente la recherche de sous-ensembles dont les transversaux
sont linéairement indépendants comme un problème mathématique for-
mel appelés SELIT. Nous prouvons qu’un grand nombre de familles de
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constructions qui sont des solutions du problème SELIT sont équivalentes
à notre construction MILIC (introduite dans le chapitre 4).

Le chapitre 7 conclut cette thèse et présente quelques perspectives futures et
des directions prometteuses pour les architectures NDN avec le codage
réseau et pour des variantes de MICN.

Certaines parties, idées et figures présentées dans cette thèse ont déjà été
publiées dans les publications suivantes ;

Articles de journaux:

(J1) Hirah Malik, Cédric Adjih, Claudio Weidmann, and Michel Kieffer. MICN:
a Network Coding Protocol for ICN with Multiple Distinct Interests per
Generation. Computer Networks, 187:107816, 2021.[7]

Articles de conférences et congrès

(C2) Hirah Malik, Cédric Adjih, Michel Kieffer, and Claudio Weidmann. Anal-
ysis of the Properties of NetcodICN Protocols. In CORES 2020 – 5ème
Rencontres Francophones sur la Conception de Protocoles, l’Évaluation de
Performance et l’Expérimentation des Réseaux de Communication, Lyon,
France, September 2020.[8]

(C3) Hirah Malik, Cédric Adjih, Michel Kieffer, and Claudio Weidmann. On
the Problem of Finding "Sets Ensuring Linearly Independent Transver-
sals"(SELIT), and its Application to Network Coding. In 9th IFIP Inter-
national Conference on Performance Evaluation and Modeling in Wireless
Networks (PEMWN), pages 1–6. IEEE, 2020.[9]
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Titre : Protocoles de codage réseau efficaces pour les réseaux centrés sur l’information

Mots clés : Réseaux centrés sur l’information, Named Data Networking (NDN), Codage réseau,
Stratégies de relayage d’intérêts, Réseaux centrés contenu

Résumé : Les réseaux centrés sur l’information
(Information Centric Networking, ICN) ont été
proposés comme une alternative aux réseaux IP
traditionnels. Dans les réseaux ICN, les consom-
mateurs demandent au réseau un contenu par
son nom via des paquets « intérêt », et reçoivent
des données en réponse à leurs demandes sans
avoir à se soucier de l’emplacement du contenu
dans le réseau.

Le codage réseau (Network Coding) a été
récemment introduit dans les réseaux ICN afin
d’améliorer la diffusion par l’utilisation de che-
mins multiples et la mise en cache du contenu
sans qu’une coordination soit nécessaire. Cette
thèse propose une architecture, MICN, qui in-
tégre un codage réseau au dessus d’une implé-
mentation ICN basée sur les intérêts : Named
Data Networking (NDN). L’architecture propo-
sée permet de résoudre certains des problèmes
rencontrés par les solutions ICN avec du co-

dage réseau présentées dans le passé. Une nou-
velle construction appelée MILIC (Multiple In-
terests for Linearly Independent Content) est in-
troduite. Elle impose des contraintes sur la façon
dont les réponses aux intérêts sont codées, dans
le but d’obtenir des contenus linéairement in-
dépendants en réponse à des intérêts multiples.
Plusieurs techniques de transport modifiées et
intégrées dans le protocole MICN sont propo-
sées afin d’optimiser l’utilisation des ressources
du réseau tout en conservant un débit élevé.

MILIC construit des sous-ensembles de vec-
teurs à partir d’un espace vectoriel donné, tels
que lorsque l’on choisit arbitrairement un vec-
teur de chaque sous-ensemble, les vecteurs sélec-
tionnés sont linéairement indépendants. Cette
thèse le formalise comme un problème mathé-
matique et étudie quelques solutions alterna-
tives et prouve qu’une large classe de solutions
à ce problème est équivalente à MILIC.

Title : Efficient Network Coding Protocols for Information-Centric Networks

Keywords : Information-Centric Networking (ICN), Named Data Networking (NDN), Network
Coding, Interest Forwarding Strategy

Abstract : Information-Centric Networking
(ICN) has been proposed as an alternative to
traditional IP-based networks. In ICN, consu-
mers request named content via Interest packets
to the network and receive data as a response to
their request from anywhere in network.

Network coding has been recently introdu-
ced in ICN to improve multi-path dissemina-
tion and caching of content. This thesis proposes
an architecture, MICN, that provides network
coding on top of an Interest-based ICN imple-
mentation : Named Data Networking (NDN).
The proposed architecture helps alleviate the is-
sues faced by network coding-enabled ICN solu-
tions presented in the past. A novel construc-
tion called MILIC (Multiple Interests for Li-

nearly Independent Content) is introduced that
imposes constraints on how the replies to In-
terests are coded, intending to get linearly in-
dependent contents in response to multiple In-
terests. Several modified forwarding techniques
integrated into the MICN protocol are propo-
sed to optimize the network resource utilization
while keeping a high throughput.

MILIC constructs subsets of vectors from a
given vector space, such that when drawing ar-
bitrarily one vector from each subset, the selec-
ted vectors are linearly independent. This thesis
considers it as a mathematical problem and stu-
dies some alternative solutions and proves that
a large family of solutions to this problem are
equivalent to MILIC.
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