). Pioneered by J. J. Moreau [65], sweeping processes has been studied and developed intensively in the last 50 years (for more detail, see Section 1.1 below).

Optimal control of sweeping processes has received great attentions from researchers in recent years. This theory has many applications in the study of crowd motions, robotics engineering, or traffic flows, etc. For the most important results in this direction, one can refer to [24-29, 38-41, 51, 62, 64]. Note that dynamical systems serve as constraints of an optimal control problem. To fully describe the latter, one has to give an objective function, which can be an integral function (for Lagrange problems), a real-valued function (for Mayer problems), or the sum of both of them (for Bolza problems).

This dissertation is concerned with three main problems in NSDS. Namely, perturbed sweeping processes, sweeping processes with velocity constraints, and vibro-impact problems are discussed in detail.

Let us briefly introduce the dynamical systems studied in this dissertation and our contributions in the next sections.

Systèmes Dynamiques Non-réguliers

Chapter 1 Introduction

Nonsmooth dynamical systems (or NSDS for brevity) are systems with the nonsmoothness appearing in the evolution. In real life, nonsmooth phenomenon occurs frequently even in very simple models, for example, mechanical systems with dry friction or impact, electric circuits with diodes, transistors or relay. Nowadays, engineers and scientists are dealing with more and more complex models that require a high level of precision. So, to get a more adequate and close predictions, they need a better understanding of the mathematical models behind NSDS.

Due to numerous applications of NSDS, the study of these systems is crucial and therefore, their analytical and numerical development is required. Recall that in classical dynamical systems, the trajectories are always supposed to be smooth or differentiable. However, since the trajectories in NSDS are not smooth, the concepts of generalized gradients, generalized subdifferentials, tangent cones, and normal cones play an important role. Fortunately, these concepts were thoroughly studied in nonsmooth analysis, set-valued and variational analysis. We refer, e.g., to the books of J.-P. Aubin and H. Frankowska [START_REF] Aubin | Set-valued analysis[END_REF], F. H. Clarke [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF], B. S. Mordukhovich [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation[END_REF][START_REF] Mordukhovich | Variational analysis and generalized differentiation[END_REF][START_REF] Mordukhovich | Variational Analysis and Applications[END_REF], J.-P. Penot [START_REF] Penot | Calculus without derivatives[END_REF], R. T. Rockafellar and R. J.-B. Wets [START_REF] Rockafellar | of Grundlehren der Mathematischen Wissenschaften[END_REF], W. Schirotzek [START_REF] Schirotzek | Nonsmooth analysis[END_REF]. Day by day, this topic has been enriched by the contributions of many authors and it still attracts considerable attention of mathematicians.

Although NSDS appear in many real-life models (in physics, engineering, biology, etc.), their mathematical formulation seems to be the same. One usually writes NSDS in the form of differential inclusions or evolution variational inequalities. Many aspects of NSDS, such as well-posedness, stability analysis, control analysis, and numerical analysis, have been considered (see, e.g., [START_REF] Acary | Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics[END_REF][START_REF] Adly | A Variational Approach to Nonsmooth Dynamics[END_REF][START_REF] Brogliato | Nonsmooth Mechanics[END_REF]). In many kinds of NSDS, the so-called "sweeping process" has played an important

Perturbed Sweeping Processes

Let T > 0 be a real number and let C(t), t ∈ [0, T ], be nonempty closed subsets of a real Hilbert space H. For any fixed x 0 ∈ C(0), the differential inclusion

   -ẋ(t) ∈ N Cl C(t) (x(t)) a.e. t ∈ [0, T ], x(0) = x 0 , (1.1) 
where N Cl Ω (z) denotes the Clarke normal cone [33, p. 51] to a closed set Ω at z, is called a sweeping process. If C(t) is convex, then the Clarke normal cone coincides with the normal cone in the sense of convex analysis [START_REF] Ioffe | Theory of Extremal Problems[END_REF]Proposition 2.4.4,p. 52]. An absolutely continuous function x(•) : [0, T ] → H which satisfies the two conditions in (1.1) is said to be a solution of the sweeping process. Note that any absolutely continuous function x(•) : [0, T ] → H is Fréchet differentiable almost everywhere on [0, T ] with respect to the Lebesgue measure (see Proposition 2.8).

The model (1.1) under the assumption that C(t) is convex for each t ∈ [0, T ] was introduced by Moreau in [START_REF] Moreau | Rafle par un convexe variable. I[END_REF], where some fundamental results on solution existence and uniqueness were obtained. In [START_REF] Moreau | Rafle par un convexe variable. II[END_REF], the continuity of the solutions has been studied when the convex-valued mapping C : [0, T ] ⇒ H undergoes small 1. Introduction perturbations.

In some subsequent papers, assumptions on the convexity of C(t) have been relaxed. For examples, Colombo and Goncharov [START_REF] Colombo | The sweeping processes without convexity[END_REF] obtained existence and uniqueness theorem of the solution under the hypothesis that the sets C(t) are weakly closed and ϕ-convex. Later, in a more general setting, Bounkhel [START_REF] Bounkhel | Existence and uniqueness of some variants of nonconvex sweeping processes[END_REF] proved some solution existence and uniqueness results. Namely, the author just assumed the sets C(t) to be prox-regular (see the definition of prox-regularity of a set in Definition 2.37).

Since the function x(•) in (1.1) can be interpreted as the trajectory of a certain mechanical system, which is driven by an external force (the gravitational force, a force generated by an electromagnetic field, a wind, etc.), several authors have studied perturbed sweeping processes of the form

   -ẋ(t) ∈ N Cl C(t) (x(t)) + g(t, x(t)) a.e. t ∈ [0, T ] x(0) = x 0 , (1.2)
where the perturbation function g is either a single-valued or a multi-valued map satisfying some regularity assumptions. Since N Cl C(t) (x(t)) = {0} if C(t) = H for all t ∈ [0, T ], then the inclusion in (1.2) reduces to the ordinary differential equation ẋ(t) = g(t, x(t)), when g is single-valued. Hence, in that case, (1.2) is a Cauchy problem. In the finite-dimensional setting, where H = R n , there are two classical theorems: the Peano theorem [50, Theorem 2.1, p. 10] (for the solution existence of the Cauchy problem) and the Picard-Lindelöf theorem [50, Theorem 1.1, p. 8] (for the existence and uniqueness of the solution of the Cauchy problem). Naturally, one wishes to have some analogues of such theorems for problem (1.2).

Perturbed sweeping processes with the sets C(t), t ∈ [0, T ], being convex or the complement of the interior of a convex set were studied by Castaing, Duc Ha and Valadier [START_REF] Castaing | Evolution equations governed by the sweeping process[END_REF] and several authors in references therein. For sweeping processes with delay, where C(t), t ∈ [0, T ], are assumed to be compact convex sets, Castaing and Monteiro Marques [START_REF] Castaing | Topological properties of solution sets for sweeping processes with delay[END_REF] obtained not only solution existence and uniqueness results but also some topological properties of the solution sets.

Bounkhel and Thibault [START_REF] Bounkhel | Nonconvex sweeping process and proxregularity in Hilbert space[END_REF]Corollary 3.5] established new characterizations of r-prox-regular sets in terms of the subdifferentials of the distance functions associated with the sets.

Using these characterizations, they proved [21, Theorem 4.2] a solution existence theorem for nonconvex sweeping processes in Hilbert spaces with multi-valued perturbation mappings.

For discontinuous perturbed sweeping processes in the infinite-dimensional 1.2. Sweeping Processes with Velocity Constraints setting, Edmond and Thibault [START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusion with perturbation[END_REF]Theorem 3.1] studied solutions in the form of functions of bounded variation, which might be discontinuous. As a corollary, they gave [START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusion with perturbation[END_REF]Theorem 5.1] sufficient condition for the existence of absolutely continuous solutions. Later, Nacry [START_REF] Nacry | Perturbed BV sweeping process involving prox-regular sets[END_REF] improved the results in [START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusion with perturbation[END_REF] by considering the perturbation of the normal cone in form of a sum of a single-valued mapping and a set-valued mapping. Weakening the assumption on the movement of the constraint sets in preceding works, Nacry and Thibault [START_REF] Nacry | BV prox-regular sweeping process with bounded truncated variation[END_REF] obtained the existence and uniqueness results of a solution for the perturbed sweeping process with bounded truncated variation.

The solution existence and uniqueness for the sweeping processes with proxregular constraint sets C(t) with single-valued perturbations will be investigated systematically in Chapter 3 of this dissertation. Based on the result on the prox-regularity of nonsmooth sublevel sets of Adly, Nacry and Thibault [START_REF] Adly | Preservation of prox-regularity of sets with applications to constrained optimization[END_REF]Theorem 4.1], we prove the solution existence as well as the solution uniqueness for a special case when C(t) are sublevel sets under some assumptions. To clarify the applicability of the obtained results, we give some examples having clear mechanical interpretations. Remarkably, the examples can only be solved by invoking the uniqueness of the solution of (1.2).

Sweeping

Processes with Velocity

Constraints

Studied firstly by Siddiqi and Manchanda [START_REF] Siddiqi | Variants of Moreau's sweeping process[END_REF] and Bounkhel [START_REF] Bounkhel | Existence and uniqueness of some variants of nonconvex sweeping processes[END_REF] in some simple forms, sweeping processes with velocity in a moving set encompass a class of evolution variational inequalities, which have numerous applications in mechanics and physics (see [7, p. 8] and [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF]Section 6.4]). Adopting a more general setting than the ones in [START_REF] Bounkhel | Existence and uniqueness of some variants of nonconvex sweeping processes[END_REF][START_REF] Siddiqi | Variants of Moreau's sweeping process[END_REF], Adly, Haddad, and Thibault [7, Theorem 5.1] obtained a result on the solution existence of sweeping processes in separable Hilbert spaces with velocity in a moving bounded convex set. Afterwards, Adly and Le [6, Theorem 1] proved that a similar result can be established for the case where the moving set is unbounded and convex. In addition, by constructing an example (see [6, Example 1]), the authors showed that the sweeping process in question may not have solutions if one of the assumptions of the existence theorem is violated.

Vilches and Nguyen [92, Section 5] have improved the result of [START_REF] Adly | On semicoercive sweeping process with velocity constraint[END_REF] by weakening the continuity condition of the moving constraint set. The solution existence in [START_REF] Vilches | Evolution inclusions governed by timedependent maximal monotone operators with a full domain[END_REF] has been obtained by applying an existence result on evolution inclusions governed 1. Introduction by time-dependent maximal monotone operators with full domains. The interested reader is referred to [6, pp. 840-842] for an application of the solution existence results to irregular electrical circuits.

Adly and Haddad [START_REF] Adly | An implicit sweeping process approach to quasistatic evolution variational inequalities[END_REF] have proved the equivalence between sweeping processes with velocity constraints and quasistatic evolution variational inequalities. Focusing on the case of convex constraint sets (the convex case), Jourani and Vilches [START_REF] Jourani | A differential equation approach to implicit sweeping processes[END_REF] have established the existence and uniqueness of the solution to the sweeping process in a very general framework by equivalently transforming the problem in question to an ordinary differential equation on a Hilbert space. The obtained results have been applied to quasistatic evolution variational inequalities and nonsmooth electrical circuits [START_REF] Jourani | A differential equation approach to implicit sweeping processes[END_REF]Sections 7 and 8]. Let us mention that the authors have also shown [54, p. 5169] that one solution existence result in [START_REF] Bounkhel | Existence and uniqueness of some variants of nonconvex sweeping processes[END_REF] can be proved by noting that the velocity vector at each time instance is uniquely defined as the projection of the origin of the Hilbert space on the moving constraint set. As a consequence, the corresponding results on the solution existence and uniqueness in [START_REF] Siddiqi | Variants of Moreau's sweeping process[END_REF], which are applicable to the case of convex moving constraint sets, also can be derived in this way.

Recently, Adly and Haddad [START_REF] Adly | On evolution quasi-variational inequalities and implicit state-dependent sweeping processes[END_REF] have obtained existence and uniqueness results for sweeping processes with velocity constraints in the convex case where the constraint set depends on both time and state.

Let H be a Hilbert space and C : [0, T ] ⇒ H be a set-valued mapping. Let A 0 , A 1 : H → H be bounded symmetric linear operators and f : [0, T ] → H be a continuous mapping. Recall that a linear operator A : H → H is said to be symmetric if Ax, y = x, Ay for all x, y ∈ H. Following [START_REF] Adly | On semicoercive sweeping process with velocity constraint[END_REF][START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF], we consider the sweeping process

A 1 u(t) + A 0 u(t) -f (t) ∈ -N P C(t) ( u(t)) a.e. t ∈ [0, T ], u(0) = u 0 , (1.3) 
where N P C(t) ( u(t)) is the proximal normal cone (see, e.g., [20, p. 21] and Section 2.5 below) to C(t) at u(t). An absolutely continuous function u : [0, T ] → H is said to be a solution of (1.3) if it satisfies the differential inclusion and the initial value condition in the formulation of the problem. Since every Lipschitz function u : [0, T ] → H is absolutely continuous, it is desirable to have sufficient conditions for (1.3) to have a Lipschitz continuous solution.

For concrete examples of sweeping processes with velocity in a moving set we refer to [7, Examples 1 and 2] and [6, Example 1].

Sweeping Processes with Velocity Constraints

The solution existence theorem in [START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF]Theorem 5.1] for (1.3) was obtained under the following assumptions:

(a) C(t) is closed convex bounded for every t ∈ [0, T ]; (b) A 1 is positive semidefinite, i.e., A 1 x, x ≥ 0 for all x ∈ H.

For the sweeping process (1.3), the authors of [START_REF] Adly | On semicoercive sweeping process with velocity constraint[END_REF] showed that the next two assumptions guarantee the solution existence:

( a) C(t) is closed convex for every t ∈ [0, T ]; ( b) A 1 is positive semidefinite and there exist positive constants α, β such that A 1 x, x ≥ α x 2 -β for all x ∈ C(0).

It is worth to emphasize that the settings and results of [START_REF] Adly | On semicoercive sweeping process with velocity constraint[END_REF][START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF][START_REF] Jourani | A differential equation approach to implicit sweeping processes[END_REF][START_REF] Vilches | Evolution inclusions governed by timedependent maximal monotone operators with a full domain[END_REF] require the separability of the Hilbert space H.

As far as we know, nonconvex sweeping processes with velocity constraints have only been addressed by Bounkhel [START_REF] Bounkhel | Existence and uniqueness of some variants of nonconvex sweeping processes[END_REF], who assumed that A 0 ≡ 0, A 1 is the identity operator, and the sets C(t) are uniformly prox-regular and contained in a convex compact set for all t ∈ [0, T ].

The sweeping process (1.3) where C(t) is not necessarily convex for every t ∈ [0, T ] will be studied in Chapter 4 of this dissertation. Firstly, by using a result of Yen [START_REF] Yen | Hölder continuity of solutions to a parametric variational inequality[END_REF] on the solution sensitivity of parametric variational inequalities, we investigate (1.3) in the case where the set-valued mapping t → C(t), t ∈ [0, T ], has nonempty closed convex values and is locally Lipschitz-like. Thanks to this approach, the vital requirement of the separability of H in most of the preceding works is no more required. Note also that a locally Lipschitz-like setvalued mapping with nonempty closed convex values can be not continuous in the Hausdorff distance sense. Secondly, we obtain several solution existence results for the case where C(t) is a finite union of disjoint convex sets.

Assuming that the operator A 0 in (1.3) is coercive and the constraint sets are convex, the authors of [START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF] have given a condition for the solution uniqueness. Herein, we will prove that (1.3) can have at most one solution if the operator A 1 is coercive. However, the coerciveness of both A 0 and A 1 does not imply the solution uniqueness of (1.3) even in the case of a fixed nonconvex constraint set that is compact, uniformly prox-regular, and connected (see Remark 4.26 below). We think that the solution uniqueness of (1.3) deserves further investigations.

Due to the wide range of applications of (1.3), other properties of the solutions of that problem are also of great interest. In Chapter 5 of this dissertation, we will prove that if some sufficient conditions for the solution existence and uniqueness are satisfied, then the solution is Lipschitz continuous on the initial value. Then, we 1. Introduction will show that the solution set is bounded if some assumptions used in the literature are fulfilled. The solution set is not always closed in the space of continuous vectorvalued functions. However, it is a closed subset in an appropriate space. Two sets of sufficient conditions for the convexity of the solution set will be obtained. Interestingly, a sharp outer estimate for the solution set can be established. It is worthy to emphasize that the just-mentioned properties of the solutions of (1.3) are investigated here for the first time. To the best of our knowledge, analogous results are not available in the literature.

Vibro-impact Problems

Vibro-impact systems are the dynamical multibody systems subjected to perfect non-penetration conditions which generate vibrations and impacts. Because of the impact experiences, the systems involve discontinuities in velocity and the acceleration may contain Dirac masses. Hence, vibro-impact systems cannot be modeled by ordinary differential equations, and one uses measure differential inclusions (see, e.g., [START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems[END_REF][START_REF] Paoli | Mathematical aspects of vibro-impact problems[END_REF]). More precisely, we consider a mechanical system with a finite number of degrees of freedom, subjected to perfect time-dependent unilateral constraints. Let I = [0, T ], T > 0, be a bounded time real interval and d ∈ N * . Let g : I × R d → R d and f i : I × R d → R, i ∈ {1, . . . , m} be some functions and m ∈ N. We denote by q ∈ R d the representative point of the system in generalized coordinates and define the set of admissible positions at each instant t ∈ I by

C(t) = {q ∈ R d | f i (t, q) ≤ 0 ∀i ∈ {1, . . . , m}}.
and the set of active constraints by J(t, q) = {i ∈ {1, . . . , m} | f i (t, q) = 0}. The vibro-impact system given by g and the functions f i is formally described by the following second-order differential inclusion in R d :

q(t) -g(t, q(t)) ∈ -N Cl C(t) (q(t)),
where N C(t) (q(t)) is the Clarke normal cone [33, p. 51] to C(t) at q(t), t ∈ I.

There are many existence results for the vibro-impact problems with timeindependent constraints (i.e., when the set of admissible positions does not depend on time: C(t) = C for t ∈ [0, T ]). In the single-constraint case, the results have been established by using the position-based algorithm in [START_REF] Paoli | Schéma numérique pour un modèle de vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie[END_REF][START_REF] Paoli | A numerical scheme for impact problems. I. The one-dimensional case[END_REF][START_REF] Paoli | A numerical scheme for impact problems. II. The multidimensional case[END_REF] and by using the velocity-based algorithm in [START_REF] Dzonou | A sweeping process approach to inelastic contact problems with general inertia operators[END_REF][START_REF] Dzonou | A convergence result for a vibro-impact problem with a general inertia operator[END_REF][START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF][START_REF] Maury | A time-stepping scheme for inelastic collisions. Numerical handling of the nonoverlapping constraint[END_REF][START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems[END_REF]. In the multi-constraint case, several 1.4. Outline of the Dissertation results have been obtained in [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF][START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF][START_REF] Paoli | Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints. I: the inelastic impact case[END_REF][START_REF] Paoli | A proximal-like algorithm for vibro-impact problems with a nonsmooth set of constraints[END_REF].

For vibro-impact problems with time-dependent constraints (i.e., when the set of admissible positions C(t) depends on time), there are few solution existence theorems. Let us list some important results related to this case that are known in the literature:

Schatzman [START_REF] Schatzman | Penalty method for impact in generalized coordinates[END_REF] established an existence result by considering a generalization of the Yosida-type approximation proposed in [START_REF] Paoli | Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie[END_REF].

Assuming that the set of admissible positions at any instant is defined as a finite intersection of complements of convex sets, Bernicot and Lefebvre-Lepot [START_REF] Bernicot | Existence results for nonsmooth secondorder differential inclusions, convergence result for a numerical scheme and application to the modeling of inelastic collisions[END_REF] obtained an existence theorem.

Paoli [START_REF] Paoli | A position-based time-stepping algorithm for vibro-impact problems with a moving set of constraints[END_REF][START_REF] Paoli | Existence and approximation for vibro-impact problems with a timedependent set of constraints[END_REF] proposed a time-stepping approximation scheme for the problem and proved its convergence, which gives as a by-product a global existence result when the set of admissible positions at any instant is defined by a finite family of C 2 functions.

The existence of solutions for these second-order differential problems has been studied by Bernicot and Venel [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF] in a general and abstract framework. More precisely, the set C(t) of admissible positions is assumed in [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF] to be Lipschitz continuous in the Hausdorff distance sense and satisfies an "admissibility" property (see Section 2.3 [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF]). The authors also considered a particular case, where the constraints are C 2 functions and have bounded second-order derivatives (see Section 4 in [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF]). The assumptions used in this chapter require less regularity on the data of the problem and could be seen as a complementary result of Theorem 3.2 and an improvement of Theorem 4.6 in [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF] (see Remark 6.22 for more details).

In Chapter 6 of the dissertation, we will obtain a solution existence theorem for a class of vibro-impact problems where the moving constraints set are the sublevel sets of a family of Lipschitz functions. Herein, we present four explicit conditions for the constraints without requiring any second-order differentiability information on the data involved in the constraints. To prove the convergence of the approximate solutions, we use the time-stepping scheme, which was used in some preceding works. To clarify the applicability of the obtained result, an illustrative example will be given.

Outline of the Dissertation

The dissertation is organized as follows:

In Chapter 1, we give a short introduction and motivation for studying 1. Introduction of nonsmooth dynamical systems. Our focus is made on three well-known models, namely, the perturbed sweeping process, sweeping process with velocity constraints, and the vibro-impact problem.

In Chapter 2, we describe some notations and necessary background from functional analysis and nonsmooth analysis which are crucial in this dissertation.

Chapter 3 studies nonconvex perturbed sweeping processes. This chapter is based on the joint paper of N. K. Son, N. N. Thieu, and N. D. Yen "On the solution existence for prox-regular perturbed sweeping processes", which is available as a preprint [arXiv:2108.07515v1] and was accepted for publication in Journal of Nonlinear and Variational Analysis.

Chapter 4 investigates the solution existence and the solution uniqueness of sweeping processes with velocity constraints. This chapter is based on the paper "Some classes of nonconvex sweeping processes with velocity constraints" of S. Adly, N. N. Thieu, and N. D. Yen, which was submitted for publication.

Chapter 5 establishes some fundamental properties of the solutions of sweeping processes with velocity constraints. This chapter is based of the paper "Solution properties of convex sweeping processes with velocity constraints" by N. N. Thieu, which is available as a preprint [arXiv:2109.06556v1] and submitted for publication.

Chapter 6 is devoted to a class of vibro-impact problems where the moving constraints set are the sublevel sets of a family of Lipschitz functions. This chapter is based on the paper "Existence of solutions for a Lipschitzian vibroimpact problem with time-dependent constraints" of S. Adly and N. N. Thieu, which has been submitted for publication.

Chapter 2

Mathematical Background

The present chapter recalls some notations and results from functional analysis, nonsmooth analysis which are mostly taken from the monographs [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF][START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF][START_REF] Diestel | Vector Measures[END_REF][START_REF] Kolmogorov | Introductory Real Analysis[END_REF][START_REF] Rudin | Principles of Mathematical analysis[END_REF][START_REF] Rudin | Functional Analysis[END_REF].

Some Notations and Elementary Concepts

By N * we denote the set of positive integers. The notation [a, b] (resp., (a, b)) stands for a closed interval (resp., an open interval) in the real line R. Throughout this paper, let H be a real Hilbert space equipped with the scalar product •, • and the associated norm • . The open ball (resp., closed ball) in H with center x and radius r > 0 is denoted by B H (x, r) (resp., BH (x, r)). If the space is itself clear by the context, we will omit the subscripts in these notations. The closure, the interior, the boundary, and the closed convex hull of a set Ω ⊂ H are denoted respectively by cl(Ω), int(Ω), ∂Ω, and co(Ω). The distance from x to Ω is d(x, Ω) := inf y∈Ω xy . The projection of a point x ∈ H onto Ω is defined by 

P Ω (x) = {y ∈ Ω | d(x, Ω) = x -y }. For any extended real number r ∈ (0, ∞], the r-enlargement of Ω, denoted by U r (Ω), is defined by U r (Ω) = {x ∈ H | d(x, Ω) < r}. The Banach space of continuous functions from [a, b] to H is denoted by C 0 ([a, b], H). The norm is given by x C 0 = max t∈[a,b] x(t) . Definition 2.1. The Hausdorff distance between two subsets Ω 1 , Ω 2 of H is given by d H (Ω 1 , Ω 2 ) = max { sup x∈Ω 1 d(x, Ω 2 ), sup
(f, [a, b]) = sup n i=1 f (x i ) -f (x i-1 ) ,
where the supremum is taken over all finite partitions a =

x 0 < x 1 < • • • < x n = b of [a, b]. If Var(f, [a, b]) < +∞, then f is said to be of bounded variation on [a, b].
The space of all functions of bounded variation from [0, T ] to H is denoted by BV([0, T ]; H). (ii) The difference of two monotonic functions is a function of bounded variation.

(iii) Suppose that A 1 , . . . , A k are disjoint intervals of [a, b], whose union is [a, b].
The formula f (x) = α i for x ∈ A i , where α 1 , . . . , α k are real numbers, defines a step function, which is a function of bounded variation.

(iv) The function

f (x) =    x α sin 1 x β if 0 < x ≤ 1 0 if x = 0.
is of bounded variation on [0, 1] if α > β and not if α ≤ β; see [56, p. 331]. 

(i) For all t ∈ I, {x k (t)} k is a relatively compact subset of X; (ii) There exists a positive function c(•) ∈ L 1 (I, R) such that ẋk (t) ≤ c(•) for almost all t ∈ I.
Then, there exists a subsequence, still denoted by {x k (•)}, converging to an absolutely continuous function x(•) from I to X in the sense that

(i) x k (•) converges uniformly to x(•) over compact subsets of I; (ii) ẋk (•) converges weakly to ẋ(•) in L 1 (I, X), i.e., lim k→∞ I ϕ(τ ) ẋk (τ )dτ = I ϕ(τ ) ẋ(τ )dτ (∀ϕ ∈ L ∞ (I, X)).

Measures and Integrals

Definition 2.10. A function f : Y → H defined on Y ⊂ R n is said to be (globally) Lipschitz continuous with modulus L > 0 on Y if f (y)f (y ) ≤ L yy for all y, y ∈ Y . If this inequality holds for all y, y in some neighborhood of x ∈ H then f is said to be locally Lipschitz in the neighborhood of x.

Clearly, any Lipschitz continuous function is an absolutely continuous function.

Measures and Integrals

First, we begin with some well-known facts about Riemann integral and Lebesgue integral. We denote by L 1 (Ω) the space of Lebesgue integrable functions from Ω to R. Proposition 2.14. (Hölder's inequality, see, e.g., [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Theorem 4.6] or [56, p. 385])

For p ∈ (1, ∞), let L p (Ω, R) denote the space of all measurable functions from Ω to R satisfying |f | p ∈ L 1 (Ω, R).
E and if f (x) ≤ g(x) for x ∈ E, then E f (τ )dτ ≤ E g(τ )dτ .
Let p ∈ [1, ∞], f ∈ L p (Ω, R) and g ∈ L q (Ω, R) with 1 p + 1 q = 1. Then, Ω |f (τ )g(τ )|dτ ≤ Ω |f (τ )| p dτ 1 p + Ω |g(τ )| q dτ 1 q . Proposition 2.15. (See [56, Theorem 8, p. 324]) If f ∈ L 1 ([a, b], R), then d dx x a f (τ )dτ = f (x) for almost every x ∈ [a, b].
We now recall the definition of Bochner integral.

Definition 2.16. (See [43, pp. 44-45]) Let (Ω, Σ, µ) be a finite measurable space and X be a Banach space. A µ-measurable function f : Ω → X is called Bochner integrable if there exists a sequence of simple functions {f k } such that

lim k→∞ Ω f k (ω) -f (ω) X dµ = 0.

Mathematical Background

In this case,

E f (ω)dµ is defined for each E ∈ Σ by E f (ω)dµ = lim k→∞ E f k (ω)dµ,
where E f k (ω)dµ is defined in an obvious way.

As noted in [43, p. 45], the limit in Definition 2.16 exists and is independent of the defining sequence {f k }.

Next, we give an characterization of Bochner integrable functions. 

f (ω) X dµ < ∞.
The dominated convergence theorem for Bochner integration is stated below. 

f k (ω)dµ = E f (ω)dµ for each E ∈ Σ. Proposition 2.19. (See [43, Theorem 4, p. 46]) If f is Bochner integrable in µ measure then (a) lim µ(E)→0 E f (ω)dµ = 0; (b) E f (ω)dµ ≤ E f (ω) dµ for all E ∈ Σ; (c) if {E k } is a sequence of pairwise disjoint sets in Σ and E := ∞ k=1 E k then E f (ω)dµ = ∞ k=1 E k f (ω)dµ,
where the sum on the right-hand side is absolutely convergent.

Next proposition gives an important result on Bochner integrable functions with respect to the Lebesgue measure. If 1 ≤ p < ∞, the Bochner space L p (Ω, X) consists of all µ-measurable functions f : Ω → X satisfying

f p = Ω f (ω) p X dµ 1/p < ∞
(see, e.g., [43, pp. 49-50]). For more details on Bochner integration, we refer to [97, p. 132], [43, Chapter II], and [22, p. 116]. Some useful facts on Bochner integration of absolutely continuous functions will be discussed further in Section 4.2 (see Remark 4.16).

Sobolev Spaces

Now, we recall the definition and some properties of Sobolev spaces of vectorvalued functions. Let Ω be an open subset of R and X be a Banach space. The space L 1 loc (Ω, X) of locally integrable functions is defined as follows:

L 1 loc (Ω, X) := f : Ω → X | K f (τ ) dτ < ∞, ∀K ⊂ Ω, K is compact . Definition 2.22. Let f ∈ L p (Ω, X), where p ∈ [1, ∞), a function f ∈ L 1 loc (Ω, X) is said to be a weak derivative of f if Ω ġ(τ )f (τ )dτ = - Ω g(τ ) f (τ )dτ, for all g ∈ C ∞ 0 (Ω)
, where C ∞ 0 (Ω) the space of all real-valued functions that are infinitely differentiable and have compact support in Ω.

The weak derivative of f ∈ L p (Ω, X) is uniquely defined up to a set of measure zero (see [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications[END_REF]Proposition 23.18]). Definition 2.23. (See, e.g, [START_REF] Cazenave | An Introduction to Semilinear Evolution Equations[END_REF]) Let p ∈ [1, +∞), Ω be an open subset of R, and X be a Banach space. The Sobolev space W 1,p (Ω, X) is the set of all functions f ∈ L p (Ω, X) that admit a weak derivative on Ω satisfying ḟ ∈ L p (Ω, X). This space is equipped with the norm

f W 1,p = Ω f p dµ 1 p + Ω ḟ p dµ 1 p .
From the above definition, we see that if a sequence {f k } converges strongly to f in W 1,p (Ω, X), then f k (resp., ḟk ) converges strongly to f (resp., ḟ ) in L p (Ω, X). It is well known [START_REF] Cazenave | An Introduction to Semilinear Evolution Equations[END_REF]Proposition 1.4.34] that W 1,p (Ω, X) is a Banach space for all p ∈ [1, +∞). The following conditions are equivalent

(a) x ∈ W 1,p (Ω, X).
(b) x is absolutely continuous, differentiable almost everywhere and ẋ ∈ L p (Ω, X).

(c) there exists a function y ∈ L p (Ω, X) such that for almost every t 0 , t ∈ Ω, one has

x(t) = x(t 0 ) + t t 0 y(τ )dτ.
Remark 2.25. For Ω = (0, T ), if x : Ω → H is an absolutely continuous function, then it is a simple matter to prove that the limits lim t→0 + x(t) and lim t→T -x(t) exist. So, setting x(0) = lim t→0 + x(t) and x(T ) = lim t→T -x(t) gives an absolutely continuous function defined on [0, T ]. Therefore, by Proposition 2.24 one can identify the Sobolev space W 1,1 (Ω, X), where Ω = (0, T ), with the space of absolutely continuous functions u : [0, T ] → H equipped with the norm

u W 1,1 = T 0 u(τ ) dτ + T 0 u(τ ) dτ.
(2.1)

We use this identification and write W 1,1 ([0, T ], H) for W 1,1 ((0, T ), H). f (y + tv)f (y) t .

Subgradients and Normal Cones

Definition 2.28. The Clarke subgradient of f at x is a vector ξ ∈ H satisfying

ξ, v ≤ f 0 (x; v) for all v ∈ H.
The set of all the Clarke subgradient of f at x is called the Clarke subdifferential of f at x and denoted by ∂ C f (x).

Let Ω be a closed subset of H and x ∈ Ω.

Definition 2.29. The set T Cl Ω (x) := {v ∈ H | d 0 (x, Ω; v) = 0} is called the Clarke tangent cone to Ω at x. The Clarke normal cone to Ω at x is defined by polarity with T Cl Ω (x). Namely, one has

N Cl Ω (x) = {x * ∈ H | x * , v ≤ 0 ∀v ∈ T Cl Ω (x)}.
Definition 2.30. (See, e.g., [20, p. 21]) The proximal normal cone N P Ω (x) to Ω ⊂ H at x ∈ Ω is defined by setting

N P Ω (x) = {ξ ∈ H | ∃α > 0 such that x ∈ P Ω (x + αξ)} .
Definition 2.31. A vector v ∈ H is a proximal subgradient of a function f : H → R at x if there exist a real number σ ≥ 0 and a neighborhood U of x such that

v, x -x ≤ f (x ) -f (x) + σ x -x 2 ,
for all x ∈ U .

Proposition 2.32. For any x ∈ Ω, one has

N P Ω (x) = {v ∈ H | ∃t > 0 : d(x + tv, Ω) = t v }.
Proof. The proof follows from [START_REF] Bounkhel | Regularity Concepts in Nonsmooth Analysis[END_REF]Proposition 1.7,p. 22].

Example 2.33.

Let Ω = {(x 1 , x 2 ) ∈ R 2 | x 2 ≤ |x 1 |}. The proximal normal cone to Ω at (0, 0) is N P Ω (0, 0) = {0, 0}.
The following propositions are specifications of some assertions in [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]. 

x1 x2 0 N P Ω (0, 0) N Cl Ω (0, 0) Ω Fig. 2.3: Normal cones of Ω = {(x 1 , x 2 ) ∈ R 2 | x 2 ≤
1. ∂ C f (x) is a nonempty, convex, compact subset of R d and ξ ≤ L for every ξ in ∂ C f (x). 2. For every v in R d , one has f 0 (x; v) = max { ξ, v | ξ ∈ ∂ C f (x)}. 3. ξ ∈ ∂ C f (x) if
Ω = {y ∈ R d | f 1 (y) ≤ 0, . . . , f m (y) ≤ 0},
and let x be such that f i (x) = 0 for i = 1, . . . , m. Then, if each f i is differentiable at x and if ∇f i (x), i = 1, . . . , m, are positively linearly independent, then

N Cl Ω (x) = m i=1 λ i ∇f i (x) | λ i ≥ 0, i = 1, . . . , m . Ω Ω x 1 x 2
Fig. 2.4: Any convex set is uniformly prox-regular 2.6 Prox-regularity of Sets Definition 2.37. (See [START_REF] Bounkhel | Nonconvex sweeping process and proxregularity in Hilbert space[END_REF]) For some r > 0, a nonempty closed set Ω ⊂ H is called r-prox-regular if for all x ∈ Ω, for all t ∈ (0, r) and for all ξ ∈ N P Ω (x) such that ξ = 1, one has x ∈ P Ω (x + tξ). One says that Ω is uniformly prox-regular if it is r-prox-regular for some constant r > 0.

It is a simple matter to verify that every nonempty closed convex set is r-proxregular for any r > 0. More examples of uniformly prox-regular sets will be given and discussed in Chapter 4. The interested reader is referred to [START_REF] Adly | Preservation of prox-regularity of sets with applications to constrained optimization[END_REF][START_REF] Bounkhel | Nonconvex sweeping process and proxregularity in Hilbert space[END_REF][START_REF] Colombo | Prox-regular sets and applications[END_REF] for other properties, as well as various characterizations, of uniformly prox-regular sets.

Example 2.39. The two-dimensional set Ω in the Fig. 2.6 is not uniformly proxregular. Indeed, suppose to the contrary that there is r > 0 such that Ω is r-proxregular. Note that the bisector x 0 c divides the angle ax 0 b into two angles. The projection on Ω of any point in the angle ax 0 c, which does not lie in the bisector x 0 c, is a singleton consisting of a point belonging to the ray x 0 a. Similarly, the projection on Ω of any point in the angle bx 0 c, which does not lie in the bisector x 0 c, is a singleton consisting of a point belonging to the ray x 0 b. For any point x = x 0 in the ray x 0 b, the proximal normal cone to Ω at x is the ray from x which is perpendicular to the half-line x 0 b and points inward to the angle ax 0 b. Denote by y x the intersection of that ray and the bisector x 0 c of the angle ax 0 b. We see that only the points in the segment [y x , x] on Ω have x as their projections and the length of the segment [y x , x] tends to 0 as x approaches x 0 . Take any x = x 0 such that y xx < r 2 . As the proximal normal cone to Ω at x is a ray, the proximal gradient ξ ∈ N P Ω (x) with ξ = 1 is unique. For all t ∈ r 2 , r , we have x + tξx > r 2 > y xx . So, x + tξ does not belong to the segment [y x , x]. Therefore, x / ∈ P Ω (x + tξ) for all t ∈ r 2 , r , which is a contradiction. We have thus proved the above claim.

Arguing as above, we can prove that any set in R 2 having a corner with an acute angle, a right angle, or an obtuse angle is not uniformly prox-regular (see Fig. 2 

Chapter 3 Prox-Regular Perturbed Sweeping Processes

In this chapter, we study a class of perturbed sweeping processes in the setting adopted by Edmond and Thibault [START_REF] Edmond | Relaxation of an optimal control problem involving a perturbed sweeping process[END_REF][START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusion with perturbation[END_REF]. This chapter has been the object of a publication in Journal of Nonlinear and Variational Analysis. Let T > 0 and I = [0, T ]. Following Edmond and Thibault [START_REF] Edmond | Relaxation of an optimal control problem involving a perturbed sweeping process[END_REF], we consider the next two assumptions.

Assumption (H1). For each t ∈ I, C(t) is a nonempty closed subset of H which is r-prox-regular for some constant r > 0.

Assumption (H2). C(t) varies in an absolutely continuous way, that is, there exists an absolutely continuous function v : I → R such that for any y ∈ H and s, t ∈ I, one has

d(y, C(t)) -d(y, C(s)) ≤ |v(s) -v(t)|.
The following result, which is a simplified form of Theorem 5.1 from [START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusion with perturbation[END_REF], provides us with an analogue of the Peano theorem [50, Theorem 2.1, p. 10] which works for ordinary differential equations. (c) For some compact subset K ⊂ B and for some non-negative function β(•) ∈ L 1 (I, R), one has for all (t, x) ∈ I × H,

G(t, x) ⊂ β(t)(1 + x )K.
Assume also that H is separable if G ≡ {0}. Then, for any x 0 ∈ C(0), the sweeping process

   -ẋ(t) ∈ N Cl C(t) (x(t)) + G(t, x(t)) a.e. t ∈ [0, T ] x(0) = x 0 , (3.1)
has at least one absolutely continuous solution x(•).

The next result is an analogue of the Picard-Lindelöf theorem [50, Theorem 1.1, p. 8] from the theory of ordinary differential equations. Theorem 3.2. (See [START_REF] Edmond | Relaxation of an optimal control problem involving a perturbed sweeping process[END_REF]Theorem 1]) Assume that a family of sets C(t), t ∈ I, in H satisfies the assumptions (H1) and (H2). Let g : I ×H → H be such a separately measurable map on I that (i) For every η > 0, there exists a non-negative function k η (•) ∈ L 1 (I, R) such that for all t ∈ I and for any x, y ∈ B(0, η) one has g(t, x)g(t, y) ≤ k η (t) xy ;

(ii) There exists a non-negative function β(•) ∈ L 1 (I, R) such that, for all t ∈ I and for all x ∈ s∈I C(s), one has g(t, x) ≤ β(t)(1 + x ).

Then, for any x 0 ∈ C(0), the sweeping process (1.2) has one and only one absolutely continuous solution x(•). In addition, the solution satisfies the estimate

ẋ(t) + g(t, x(t)) ≤ (1 + M x 0 )β(t) + | v(t)| a.e. t ∈ I,
where

M x 0 := x 0 + exp 2 T 0 β(s)ds T 0 (2β(s)(1 + x 0 ) + | v(s)|)ds.
When G is a single-valued mapping, Theorem 3.1 gives sufficient conditions for the existence of solution to problem (1.2). Meanwhile, Theorem 3.2 provides conditions for the existence and uniqueness of solution to problem (1.2). However, the assumption (c) in Theorem 3.1 is tighter than the assumption (ii) in Theorem 3.2. To justify this fact, let us consider the following example.

Example 3.3. Let H be an infinite dimensional Hilbert space. Consider the problem (1.2) with C(t) satisfying the assumptions (H1) and (H2). Let g : I ×H ⇒ H, g(t, x) = tPB(x). We see that g is linear with respect to t. In addition, since the projection map onto a closed convex set in Hilbert space is Lipschitz continuous, g satisfies the assumptions (a), (b) of Theorem 3.1 and (i) of Theorem 3.2. Moreover, since g(t, x) ≤ t for all t ∈ I, the assumption (ii) of Theorem 3.2 is also valid. However, the unit ball B in H is non-compact, so we cannot find any compact set K such that the assumption (c) of Theorem 3.1 holds. So, it is not possible to apply Theorem 3.1 in this case. Nevertheless, for any x 0 ∈ C(0), Theorem 3.2 assures the solution existence and uniqueness of the problem under consideration. Remark 3.4. Since the assumptions of the Peano theorem are weaker than those of the Picard-Lindelöf theorem, it would be nice if one can have another version of Theorem 3.1 whose assumption set is weaker than that of Theorem 3.2.

From a result of Edmond and Thibault [START_REF] Edmond | Relaxation of an optimal control problem involving a perturbed sweeping process[END_REF]Proposition 2] it follows that, for every t ∈ I, the mapping ψ t : C(0) → C(t) with ψ t (x 0 ) := x(x 0 , t), where x(x 0 , •) denotes the unique solution x(•) of (1.2) with the initial value x(0) = x 0 , is Lipschitz on any bounded subset of C(0).

Solution Existence Theorems

Let there be given the functions f i : I × H → R, i ∈ {1, . . . , m}. Suppose that the set 

C(t) := {x ∈ H | f i (t, x) ≤ 0, i ∈ {1, . . . ,

Assumption (A3).

There is γ > 0 such that for all t ∈ [0, T ] and i ∈ {1, . . . , m}, for all x 1 , x 2 ∈ U ρ (C(t)), and for all

ξ j ∈ ∂ C f i (t, •)(x j ), j = 1, 2, ξ 1 -ξ 2 , x 1 -x 2 ≥ -γ x 1 -x 2 2 .

Solution Existence Theorems

Assumption (A4).

There is µ > 0 with the property that for all t ∈ [0, T ] and x ∈ C(t) one can find v = v(t, x) ∈ H with v = 1 such that for all i ∈ {1, . . . , m},

for all ξ ∈ ∂ C f i (t, •)(x), one has ξ, v ≤ -µ.
Clearly, if ∂ C f 1 (t, •) is monotone for every t ∈ [0, T ], i.e., ξ 1ξ 2 , x 1x 2 ≥ 0 for all x 1 , x 2 ∈ H and for all ξ j ∈ ∂ C f i (t, •)(x j ), j = 1, 2, then Assumption (A3) is satisfied with any γ > 0. Proof. Fix a real number ϑ such that ϑ ≥ µ -1 L 1 . Choose a subdivision

T 0 = 0 < T 1 < . . . < T p = T of [0, T ] such that T k -T k-1 < ϑ -1 ρ for k = 1, . . . , p.
Fix an index k ∈ {1, . . . , p} and select any numbers s, t from the segment

I k := [T k-1 , T k ]. Put u(s, t) = ϑ|s-t|.
For any x ∈ C(t), define y = x+u(s, t)v. Since t, s ∈ I k , we have y-x = ϑ|s-t|< ρ. This proves that y ∈ int(U ρ (C(t))). By [8, Lemma 3.2], for all λ ∈ [0, 1] we have

x + λ(y -x) ∈ int(U ρ (C(t))).
Take any i ∈ {1, . . . , m}. By Assumption (A2) and Lebourg's mean value theorem (see, e.g., [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]Theorem 2.3.7,p. 41]) there exists λ ∈ (0, 1) such that

f i (t, y) -f i (t, x) ∈ ∂ C 2 f i (t, x(λ)), u(s, t)v with x(λ) := (1 -λ)x + λy.
Hence, by Assumptions (A1) and (A4) we have

f i (s, y) = [f i (s, y) -f i (t, y)] + f i (t, x) + [f i (t, y) -f i (t, x)] ≤ L 1 |s -t|-u(s, t)µ = (L 1 -ϑµ) |s -t|.
Hence, f i (s, y) ≤ 0. Since i ∈ {1, . . . , m} can be chosen arbitrarily, we have thus shown that the vector y = x + ϑ|s -t|v belongs to C(s). So, d(x, C(s)) ≤ ϑ|s -t| for every x ∈ C(t). By symmetry, we get d(x , C(t)) ≤ ϑ|s -t| for every x ∈ C(s).

Consequently, we obtain d H (C(t), C(s)) ≤ ϑ|t -s|.
The proof is complete.

Theorem 3.7. Suppose that Assumptions (A1)-(A4) are fulfilled. Let g : I ×H → H satisfy the three requirements (a), (b) and (c) in Theorem 3.1. Then, for any

x 0 ∈ C(0), the sweeping process    -ẋ(t) ∈ N Cl C(t) (x(t)) + g(t, x(t)) a.e. t ∈ I x(0) = x 0 (3.2)
has at least one absolutely continuous solution x(•).

Proof. By Lemma 3.5, the set C(t) is r-prox-regular for all t ∈ [0, T ]. Moreover, Lemma 3.6 states that d H (C(t), C(s)) ≤ ϑ|t -s|.
For all y ∈ H, we have that

d(y, C(t)) -d(y, C(s)) ≤ d H (C(t), C(s)). It follows that C(t)
varies in an absolutely continuous way, i.e.,

d(y, C(t)) -d(y, C(s)) ≤ |v(s) -v(t)|,
where v : I → R, v(z) = ϑz. By Theorem 3.1, we obtain the desired result.

Theorem 3.8. Suppose that Assumptions (A1)-(A4) are fulfilled. Let g : I ×H → H be such a separately measurable map on I that satisfies the two requirements (i)

and (ii) in Theorem 3.2. Then, for any x 0 ∈ C(0), the sweeping process (3.2) has a unique absolutely continuous solution x(•).

Proof. Using Theorem 3.2 instead of Theorem 3.1 and arguing similarly as in the proof of Theorem 3.7, one can obtain the desired result.

Remark 3.9. The assumptions (A1)-(A4) on the functions f i , i ∈ {1, . . . , m}, and the family of sets C(t), t ∈ I, do not depend on the choice of x 0 from C(t). Clearly, the requirements (i) and (ii) on g(t, x) in the formulation of Theorem 3.8 also do not depend on the choice of x 0 from C(t).

Some Illustrative Examples

To illustrate the applicability of Theorem 3.8, we shall provide two examples in dimension 2. 

Some Illustrative Examples

x1 x2 C(0) 0 (a) C(0) x1 x2 C( 1 2 ) 0 (b) C 1 2 x1 x2 C(1) 0 (c) C(1)
H = R 2 , m = 1, f 1 (t, x) = t -x 2 + |x 1 |, and g(t, x) = 0 for all t ∈ [0, T ], x = (x 1 , x 2 ) ∈ R 2 .
Here, we have

C(t) = {x ∈ R 2 | -x 2 + |x 1 |≤ -t}. (3.3)
Let the initial condition be x(0) = (0, 0). Obviously, x(0) ∈ C(0) and f = f 1 satisfies Assumptions (A1) and (A2). We have

∂ C f 1 (t, •)(x) =          {(1, -1)} if x 1 > 0 [-1, 1] × {-1} if x 1 = 0 {(-1, -1)} if x 1 < 0. (3.4) Since f 1 (t, •) is convex, ∂ C f 1 (t,
•) coincides with the convex subdifferential mapping of ∂f 1 (t, •), which is monotone. Hence, for any t ∈ [0, T ], the mapping

∂ C f 1 (t, •)
is hypermonotone with any γ > 0. Thus, Assumption (A3) is satisfied. Now, to check Assumption (A4), let us fix any µ ∈ (0, 1]. Suppose that t ∈ [0, T ] and x ∈ C(t) are given arbitrarily. For v := (0, 1), one has ξ, v = ξ 2 , where

ξ = (ξ 1 , ξ 2 ) ∈ ∂ C f 1 (t, •)(x)
can be chosen arbitrarily. Thanks to (3.4), we have

ξ 2 = -1. Hence, ξ, v = -1 ≤ -µ.
We have thus showed that Assumption (A4) is satisfied. Since g(t, x) ≡ 0, the requirements (i) and (ii) on g are fulfilled. So, according to Theorem 3.8, (3.2) has a unique absolutely continuous solution x(•). Interestingly, we can give an explicit formula for x(•). Namely, let us show that

x 1 (t) = 0, x 2 (t) = t ∀t ∈ [0, T ]. (3.5)
Clearly, the trajectory x(t) given by (3.5) satisfies the conditions x(0) = (0, 0) andẋ(t) = (0, -1).

Since C(t) is convex, the Clarke normal cone to C(t) at any point of C(t) coincides with the normal cone to C(t) at that point in the sense of convex analysis (see [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]Proposition 2.4.4]). So, applying [53, Proposition 2, p. 206] to the set C(t) in (3.3), which is a sublevel set of the continuous convex function f 1 (t, •), at the boundary

x(t) = (x 1 (t), x 2 (t)), one obtains N Cl C(t) (x(t)) = R + ∂f 1 (t, •)(x(t)). Since x 1 (t) ≡ 0, combining this with (3.4) gives N Cl C(t) (x(t)) = R + ([-1, 1] × {-1}). So, -ẋ(t) ∈ N Cl C(t) (x(t)) + g(t, x(t)) for all t ∈ [0, T ].
Hence, formula (3.5) describes the unique absolutely continuous solution of the problem in question. The above mathematical model and the solution have the following clear mechanical meanings. In the horizontal coordinate plane R 2 , there is a small metal ball standing at the origin of the plane at time t = 0. The boundary of C(0) is the union of two orthogonal half-lines. Suppose that the boundary is the frame made from two long sticks of bamboo or wood which are firm enough that they cannot be bend by the metal ball. The set C(t) in (3.3) is the position of C(0) at the time t. The requirement saying that the ball must be inside C(t) at any time t means that it must be in the plane area formed by the frame. The change of C(t) with respect to t corresponds to the movement of the frame along the x 2 -axis with the velocity 1. The assumption g(t, x) ≡ 0 means that there is no external force acting on the ball. The formula (3.5) of the obtained solution means that the ball always lies in the corner of the frame, when the later moves steadily along the x 2 -axis.

Concerning the sweeping problem in Example 3.10, we observe that the role of the normal cone operator

N Cl C(t) (x(t)) in the inclusion -ẋ(t) ∈ N Cl C(t) (x(t)) + g(t, x(t))
is important. Namely, note that the last inclusion implies x(t) ∈ C(t). Note also that 0

∈ N Cl C(t) (x(t)) if x(t) ∈ C(t).
So, together with (3.2), it is naturally to 3.2. Some Illustrative Examples consider the following tighter problem:

         -ẋ(t) = g(t, x(t)) a.e. t ∈ I x(t) ∈ C(t) for t ∈ I x(0) = 0
Since g(t, x) ≡ 0, the first and the third conditions of this system imply that x(t) = 0 for all t ∈ I. However, for this curve x(t), the second condition of the system is violated. So, the assertion of Theorem 3.8 may fail to hold if one replaces

the inclusion -ẋ(t) ∈ N Cl C(t) (x(t)) + g(t, x(t)) by the conditions -ẋ(t) = g(t, x(t)) and x(t) ∈ C(t).
Example 3.11. Consider problem (3.2) with the data given in Example 3.10, where the initial point is x(0) = x 0 with x 0 = (x 0 1 , x 0 2 ) being an arbitrary point from C(0). The analysis in Example 3.10 shows that the assumptions (A1)-(A4) and the requirements (i) and (ii) on g(t, x) in the formulation of Theorem 3.8 are satisfied. Hence, by Remark 3.9 and Theorem 3.8, the sweeping process (3.2) has a unique absolutely continuous solution x(•). To have an explicit formula for this solution x(•), we first suppose that x 0 belongs to the interior of C(0). This means that |x 0

1 |< x 0 2 . Put t x 0 = x 0 2 -|x 0 1 | and note that t x 0 > 0. Case 1 : T ≤ t x 0 . In this case, since f 1 (t, x 0 ) = t -x 0 2 + |x 0 1 |= t -t x 0 < 0 for all t ∈ [0, T ), one has x 0 ∈ int(C(t)) for all t ∈ [0, T ). So, setting x(t) = x 0 for t ∈ I, we obtain N Cl C(t) (x(t)) = {(0, 0)} for all t ∈ [0, T ). Therefore, (3.
2) is satisfied. Since the solution is unique by Theorem 3.8, the just defined constant trajectory is the unique absolutely continuous solution of the sweeping process under our consideration.

Case 2 : t x 0 < T . First, consider the subcase where t x 0 ≤ 2|x 0 1 |+t x 0 < T . Let us prove that the unique solution x(•) can be given by the formula

x(t) =          x 0 if t ∈ [0, t x 0 ) (x 0 1 -sign(x 0 1 ) t-tx 0 2 , x 0 2 + t-tx 0 2 ) if t ∈ [t x 0 , 2|x 0 1 |+t x 0 ) (0, t) if t ∈ [2|x 0 1 |+t x 0 , T ]. (3.6)
Note that the function x(•) is absolutely continuous on [0, T ] and x(0) = x 0 . Arguing as in Case 1, we obtain -

ẋ(t) ∈ N Cl C(t) (x(t))+g(t, x(t)) for every t ∈ [0, t x 0 ). For t ∈ [t x 0 , 2|x 0 1 |+t x 0 ), if x 0 1 ≤ 0 then t < -2x 0 1 +t x 0 . Hence, x 1 (t) = x 0 1 + t-tx 0 2 < 0.

Prox-Regular Perturbed Sweeping Processes

Combining this with (3.6) yields

f 1 (t, x(t)) = t -x 2 (t) + |x 1 (t)|= t -x 0 2 + t -t x 0 2 -x 0 1 + t -t x 0 2 = 0. This means that x(t) ∈ ∂C(t), x 1 (t) < 0; so ∂ C f 1 (t, x(t)) = {(-1, -1)}.
Thanks to the continuity and convexity of the function

f 1 (t, •), applying [33, Proposition 2.4.4] we have N Cl C(t) (x(t)) = R + {(-1, -1)}. It follows that ẋ(t) = ( 1 2 , 1 2 ) ∈ -N Cl C(t) (x(t)) for all t ∈ (t x 0 , -2x 0 1 + t x 0 ). The situation x 0 1 > 0 can be treated similarly. Therefore, -ẋ(t) ∈ N Cl C(t) (x(t)) + g(t, x(t)) for t ∈ (t x 0 , 2|x 0 1 |+t x 0 ). Now, for t ∈ [2|x 0 1 |+t x 0 , T ], one has -ẋ(t) ∈ N Cl C(t) (x(t)) + g(t, x(t)) by (3.6
) and the result given in Example 3.10. Therefore, (3.6) describes the unique absolutely continuous solution x(•) of the problem in question. In the situation where t x 0 < T ≤ 2|x 0 1 |+t x 0 , arguing analogously as before, we can show that the formula

x(t) =    x 0 if t ∈ [0, t x 0 ) (x 0 1 -sign(x 0 1 ) t-tx 0 2 , x 0 2 + t-tx 0 2 ) if t ∈ [t x 0 , T ] (3.7)
describes the unique absolutely continuous solution x(•) of our problem. Now, suppose that x(0) ∈ ∂C(0). This means that x 0 2 -|x 0 1 |= 0. This situation reduces to Case 2 above with t x 0 := x 0 2 -|x 0 1 |= 0. So, the unique absolutely continuous solution x(•) of our problem is given by

x(t) =    (x 0 1 -sign(x 0 1 ) t 2 , x 0 2 + t 2 ) if t ∈ [0, 2|x 0 1 |) (0, t) if t ∈ [2|x 0 1 |, T ] (3.8) 
whenever 2|x 0 1 |< T , and

x(t) = x 0 1 -sign(x 0 1 ) t 2 , x 0 2 + t 2 for t ∈ [0, T ] (3.9)
whenever 2|x 0 1 |≥ T . As in the preceding example, the problem here and the obtained solution can be interpreted respectively as a mechanical problem and a mechanical motion as follows. Suppose that, at time t = 0, there is a small metal ball standing at the point x 0 ∈ C(0) in the horizontal plane R 2 . When the set C(0) moves along the x 2 -axis with the velocity 1 (see (3.3)), its boundary -a firm frame consisting of two orthogonal half-lines -also moves along the x 2 -axis with the velocity 1. The ball cannot overpass the frame. If x 0 ∈ int(C(0)), x 1 (0) = 0, and 2|x 0 1 |+t x 0 < T with t x 0 := x 0 2 -|x 0 1 |, then (3.6) shows that the motion of the 2 (the ball is on the left wing if x 1 (0) < 0 and it is on the right wing if x 1 (0) > 0); (c) In the time interval [2|x 0 1 |+t x 0 , T ], the ball always lies in the corner of the above-mentioned frame. Similar interpretations can be given for formulas (3.7)-(3.9).

Let the horizontal plane R 2 in the preceding example be replaced by a vertical plane R 2 , where the x 2 -axis is orthogonal to the earth surface and pointing up. Then, the set C(t) given by (3.3) can be interpreted as the position of the set

C(0) = {x ∈ R 2 | -x 2 + |x 1 |≤ 0} at time t.
In other words, in accordance with formula (3.3), the set C(0) is moving up along the x 2 -axis with the velocity 1. As before, the boundary of C(0) -a firm frame -also moves along the x 2 -axis with the velocity 1. Note that the metal ball in question cannot overpass the frame. Since the ball has the tendency to go down straightly with the acceleration g 0 = 9.8, the velocity of its free fall is -g 0 t. So the equation of motion of the ball should beẋ(t) ∈ N Cl C(t) (x(t)) + g(t, x(t)) for almost everywhere t ∈ I, where g(t, x) := (0, g 0 t). The solution of this mechanical problem is given below.

Example 3.12. Consider problem (3.2) with the data given in Example 3.10 except for g(t, x) = (0, g 0 t), where g 0 = 9.8 is the gravitational acceleration. Let the initial condition be x(0) = (x 0 1 , x 0 2 ). As we know from the two examples above, the assumption (A1)-(A4) hold true. Since g(t, x) is independent of the second variable, it is clear that the requirement (i) in Theorem 3.8 is satisfied. In addition, as g(t, x) is a linear function of t, the requirement (ii) in the theorem is satisfied with the choice β(t) = g 0 t. Hence, by Remark 3.9 and Theorem 3.2, the sweeping process (3.2) has a unique absolutely continuous solution x(•). To provide an explicit formula for this solution x(•), we first consider the situation where

x 0 ∈ int(C(0)). Putting t x 0 = x 0 2 -|x 0 1 |, one has t x 0 > 0. Define θ 1 x 0 = -1+ √ 1+2g 0 tx 0 g 0 and θ 2 x 0 = -1+ √ 1+2g 0 (tx 0 +2|x 0 1 |) g 0 . It is clear that 0 < θ 1 x 0 ≤ θ 2 x 0 . Case 1 : T ≤ θ 1 x 0 . Setting x(t) = (x 0 1 , x 0 2 - g 0 t 2 2 ) (∀t ∈ I), (3.10) 
we have

f 1 (t, x(t)) = t -x 0 2 + g 0 t 2 2 + |x 0 1 |< 0, for any t ∈ [0, T ). Hence, x(t) ∈ int(C(t)) for all t ∈ [0, T ). So, N Cl C(t) (x(t)) = {(0, 0)} for all t ∈ [0, T ). Since -ẋ(t) = (0, g 0 t), it follows that the inclusion in (3.2) is satisfied for all t ∈ [0, T ).
Therefore, Theorem 3.8 assures that the chosen trajectory is the unique absolutely continuous solution of (3.2).

Case 2 : θ 1 x 0 < T . If θ 1 x 0 ≤ θ 2
x 0 < T. then the explicit formula for the solution x(•) is

x(t) =          (x 0 1 , x 0 2 -g 0 t 2 2 ) if t ∈ [0, θ 1 x 0 ) (x 0 1 -sign(x 0 1 ) t-tx 0 2 + g 0 t 2 4 , x 0 2 + t-tx 0 2 -g 0 t 2 4 ) if t ∈ [θ 1 x 0 , θ 2 x 0 ) (0, t) if t ∈ [θ 2 x 0 , T ]. (3.11)
Indeed, the function x(•) is an absolutely continuous on [0, T ], x(0) = x 0 , and a direct verification shows that -

ẋ(t) ∈ N Cl C(t) (x(t)) + (0, g 0 t) for t ∈ [0, θ 1 x 0 ). Now, suppose that x 0 1 ≤ 0. Then we have x 1 (t) = x 0 1 + t-tx 0 2 + g 0 t 2 4 < 0 for t ∈ [θ 1 x 0 , θ 2 x 0 ). So, for t ∈ [θ 1 x 0 , θ 2 x 0 ), one has f 1 (t, x(t)) = t -x 0 2 - t -t x 0 2 + g 0 t 2 4 -x 0 1 - t -t x 0 2 - g 0 t 2 4 = 0.
Hence, x(t) ∈ ∂C(t). Since x 1 (t) < 0, this implies that

∂ C f 1 (t, x(t)) = {-1, -1} for every t ∈ [θ 1
x 0 , θ 2 x 0 ). Thanks to the continuity and convexity of f 1 (t, •), applying [33, Proposition 2.4.4], we obtain

N Cl C(t) (x(t)) = R + {(-1, -1)} for t ∈ [θ 1 x 0 , θ 2 x 0 ). Since ẋ(t) = 1 + g 0 t 2 , 1 + g 0 t 2 -g 0 t , one has -ẋ(t) ∈ N Cl C(t) (x(t)) + (0, g 0 t) for t ∈ (θ 1 x 0 , θ 2 x 0 ). Thus, for every t ∈ (θ 1 x 0 , θ 2 x 0 ), the inclusion -ẋ(t) ∈ N Cl C(t) (x(t)) + g(t, x) holds. For t ∈ (θ 2 x 0 , T ), it is clear that f 1 (t, x(t)) = 0 and ẋ(t) = (0, 1). Since N Cl C(t) (x(t)) = R + ([-1, 1]×{-1}), the inclusion -ẋ(t) ∈ N Cl C(t) (x(t)) + g(t, x)
holds for t ∈ (θ 2 x 0 , T ). Therefore, the function x(•) given in (3.11) describes the unique absolutely continuous solution of the problem under consideration. The situation x 0 1 > 0 can be treated similarly. If T ≤ θ 2 x 0 , arguing analogously, we can 3.2. Some Illustrative Examples prove that the formula

x(t) =    (x 0 1 , x 0 2 -g 0 t 2 2 ) if t ∈ [0, θ 1 x 0 ) (x 0 1 -sign(x 0 1 ) t-tx 0 2 + g 0 t 2 4 , x 0 2 + t-tx 0 2 -g 0 t 2 4 ) if t ∈ [θ 1 x 0 , T ] (3.12)
describes the unique solution x(•). Now, suppose that x(0) ∈ ∂C(0). It is not difficult to show that the unique absolute solution x(•) is described as

x(t) =    (x 0 1 -sign(x 0 1 ) t 2 + g 0 t 2 4 , x 0 2 + t 2 -g 0 t 2 4 ) if t ∈ [0, θ 2 x 0 ), (0, t) if t ∈ [θ 2 x 0 , T ]. (3.13) if θ 2
x 0 < T , and by the formula Remark 3.13. By R T we denote the set of end points of the sweeping process (1.2), i.e., the set of all x(T ) with x(•) being the unique solution of (3.2) where x 0 ∈ C(0) is chosen arbitrarily. It is an interesting question that under which conditions on C(t), t ∈ [0, T ], we have R T = C(T ). The following example shows that even when C(t) is just a linear translation of C(0), we get a negative answer. The system

x(t) = x 0 1 -sign(x 0 1 ) t 2 + g 0 t 2 4 , x 0 2 + t 2 - g 0 t 2 4 for t ∈ [0, T ]. (3.14) if θ 2 x 0 ≥ T .
   -ẋ(t) ∈ N Cl C(t) (x(t)) + g(t, x(t)) a.e. t ∈ I, x(T ) = x 1 (3.15)
will be used in our analysis.

Example 3.14. Consider problem (3.2) with H = R 2 , m = 2, f 1 (t, x) = t -x 2 + |x 1 |, f 2 (t, x) = x 2 -t -1,
and g(t, x) = 0 for all t ∈ [0, T ], where T = 3, and x = (x 1 , x 2 ) ∈ R 2 . Here, we have Let the terminal condition be x(T ) = (x 1 1 , x 1 2 ). If (3.15) has a solution x(•), then one has x(0) = x 0 for some x 0 = (x 0 1 , x 0 2 ) ∈ C(0). Since the assumptions (A1)-(A4) and the requirements (i) and (ii) on g(t, x) in the formulation of Theorem 3.8 are satisfied, by Remark 3.9 and Theorem 3.8, the sweeping process (3.2) with the chosen x 0 has a unique absolutely continuous solution. Using the formula of

C(t) = {x ∈ R 2 | -x 2 + |x 1 |≤ -t, x 2 ≤ t + 1}. (3.16) x1 x2 C(0) 0 1 (a) C(0) x1 x2 C( 1 2 ) 0 (b) C 1 2 x1 x2 C(1) 0 (c) C(1)
C(t) in (3.16), one can easily show that |x 0 1 |≤ 1. For t x 0 := x 0 2 -|x 0 1 |, we have 2|x 0 1 |+t x 0 ≤ 2 < T .
Arguing similarly to Example 3.11, we can show that the unique absolutely continuous solution x(•) of (3.2) is given by (3.6) if x 0 2 = 1 or if x 0 ∈ int(C(0)), and by (3.8) if x 0 2 < 1 and x 0 ∈ ∂C(0). In both cases, we have x(T ) = (0, 3). So, the following assertions are valid: (i) If x 1 = (0, 3), then problem (3.15) has no solution; (ii) If x 1 = (0, 3), then (3.15) have infinite number of solutions; (iii) For any x 0 ∈ C(0), the unique solution x(•) of (1.2) ends at the point x(T ) = (0, 3). However, if the sweeping process (3.15) in Remark 3.13 is subjected to multivalued perturbations g(t, x(t)), then the above question can be considered as a controllability problem, for which we expect to have a positive solution.

Conclusions

In this chapter, the solution existence as well as the solution uniqueness for perturbed sweeping processes has been studied under the assumption of the proxregularity of the constraint sets.

If the perturbation function g(t, x) is multi-valued, then we have deal with multi-valued perturbed sweeping processes in the prox-regular case. For these problems, it is of interest to establish some results on the solution existence, continuous dependence of the solutions, and the reachability of sweeping processes 3.3. Conclusions similar to the ones given in this chapter.

The question of the relaxation of the assumptions of Theorem 3.7 remains open, i.e., in a way that the solution existence of the problem (3.2) is still guaranteed, or not.

Chapter 4 Nonconvex Sweeping Processes with Velocity Constraints

Following Adly, Haddad, and Thibault [START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF], in this chapter, we will study some classes of sweeping processes with velocity in a moving set. Our main tool is a theorem on the solution sensitivity of parametric variational inequalities. Beside the traditional requirement that the constraint set moves continuously in the Hausdorff distance sense, we intensively use a new assumption on the local Lipschitz-likeness of the constraint set-valued mapping. The obtained results are compared with the existing ones and analyzed by several examples.

Let H be a Hilbert space and C : [0, T ] ⇒ H be a set-valued mapping. Let A 0 , A 1 : H → H be bounded symmetric linear operators and f : [0, T ] → H be a continuous mapping. Recall that a linear operator A : H → H is said to be symmetric if Ax, y = x, Ay for all x, y ∈ H. Following [START_REF] Adly | On semicoercive sweeping process with velocity constraint[END_REF][START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF], we consider the sweeping process

A 1 u(t) + A 0 u(t) -f (t) ∈ -N P C(t) ( u(t)) a.e. t ∈ [0, T ], u(0) = u 0 , (P)
Firstly, let us discuss some characters of proximal normal cones.

Remark 4.1. Let x ∈ Ω ⊂ H and ξ ∈ N P Ω (x) \ {0}.
If α is a positive number such that x ∈ P Ω (x + αξ), then x ∈ P Ω (x + tξ) for every t ∈ (0, α). Indeed, by our assumption,

d (x + αξ, Ω) = (x + αξ) -x = α ξ . (4.1)
If x / ∈ P Ω (x + tξ) for a value t ∈ (0, α), then the inequality (x + tξ)y < (x + tξ)x holds for some y ∈ Ω. Therefore,

(x + αξ) -y ≤ (x + αξ) -(x + tξ) + (x + tξ) -y < (α -t) ξ + (x + tξ) -x = α ξ .
So, by (4.1) one gets (x + αξ)y < d(x + αξ, Ω), which is impossible because y ∈ Ω.

Remark 4.2. Proximal normal cone is a local structure. Namely, for any x ∈ Ω ⊂ H and ρ > 0, the proximal normal cone to Ω ⊂ H at x coincides with the proximal normal cone to Ω ∩ B(x, ρ) at x, i.e.,

N P Ω (x) = N P Ω∩ B(x,ρ) (x). (4.2)
Note that both cones in (4.2) contain the element ξ = 0. Take any ξ ∈ N P Ω (x)\{0}. Let α > 0 be such that x ∈ P Ω (x+αξ). Hence, (x+αξ)-y ≥ (x+αξ)-x for all y ∈ Ω. In particular, the last inequality still holds for all y ∈ Ω ∩ B(x, ρ). Thus, we have x ∈ P Ω∩ B(x,ρ) (x + αξ), which implies that ξ ∈ N P Ω∩ B(x,ρ) (x). So, the inclusion N P Ω (x) ⊂ N P Ω∩ B(x,ρ) (x) has been proved. Now, let ξ ∈ N P Ω∩ B(x,ρ) (x) \ {0} be given arbitrarily. Let α > 0 be such that x ∈ P Ω∩ B(x,ρ) (x + αξ). So, by Remark 4.1, we have x ∈ P Ω∩ B(x,ρ) (x + tξ) for every t ∈ (0, α). This means that

(x + tξ) -y ≥ (x + tξ) -x ∀t ∈ (0, α), ∀y ∈ Ω ∩ B(x, ρ) . (4.3)
To prove the inclusion ξ ∈ N P Ω (x) by contradiction, suppose that ξ / ∈ N P Ω (x). Then, by Definition 2.30, x / ∈ P Ω (x + βξ) for every β ∈ (0, α). So, there exists

y β ∈ Ω such that (x + βξ) -y β < (x + βξ) -x .
Combining the last inequality with (4.3) yields y βx > ρ. For any β ∈ (0, α) satisfying β < ρ 2 ξ , we have

x -y β -βξ ≤ (x -y β ) + βξ < (x + βξ) -x = β ξ .
This implies that xy β < 2β ξ < ρ. Since y βx > ρ, we have arrived at a contradiction. We have thus shown that N P Ω∩ B(x,ρ) (x) ⊂ N P Ω (x). The equality (4.2) has been established.

The local character of proximal normal cone can also be seen through [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]Proposition 1.5] or [START_REF] Bounkhel | Regularity Concepts in Nonsmooth Analysis[END_REF]Proposition 1.7].

Some uniformly prox-regular sets will be discussed in the following examples. and1 2 -prox-regular. To prove the r-prox-regularity of Ω with r = 1 2 , observe by the closedness of Ω that the projection of any u ∈ R 2 \Ω on Ω exists and belongs to ∂Ω. Putting f (x) = ux 2 and g(x) = -x 2 1 + x 2 , we consider the optimization problem

Example 4.3. Let H = R 2 , the set Ω = {x = (x 1 , x 2 ) ∈ R 2 | x 2 ≤ x 2 1 } is unbounded, closed, nonconvex,
min{f (x) | g(x) ≤ 0}. (4.4) For all x ∈ R 2 , since ∇g(x) = (-2x 1 , 1) is nonzero, there is some v ∈ R 2 such that ∇g(x), v < 0.
Applying the Lagrange multiplier rule (see [82, Theorem 1, p. 260] and [START_REF] Clarke | A new approach to Lagrange multipliers[END_REF]) to (4.4), one can prove that the problem has a unique solution x u for each u ∈ R 2 \ Ω, i.e., P Ω (u) = {x u }. Moreover, a careful analysis of the necessary optimality conditions given by the Lagrange multiplier rule shows that, for each x ∈ ∂Ω \ {(0, 0)}, the equality x = P Ω (ū) holds for ū ∈ R \ Ω if and only if ū = x + t∇g(x) with t ∈ (0, 1 2 ). Therefore, we have N P Ω (x) = R + ∇g(x) for every x ∈ ∂Ω \ {(0, 0)}. For x ∈ (0, 0), the equality x = P Ω (ū) holds for ū ∈ R \ Ω if and only if ū = x + t∇g(x) = (0, t) with t ∈ (0, +∞). Hence, N P Ω ((0, 0)) = {0} × R + . To find a modulus r > 0 for the uniform prox-regularity of Ω, we can argue as follows. Fix a point x ∈ ∂Ω \ {(0, 0)} and let ū = x + τ ∇g(x) for some τ ∈ (0, 1 2 ). Since ū

-x = τ ∇g(x) ∇g(x) ∇g(x) = τ 4x 2 1 + 1 ∇g(x) ∇g(x) ,
for ξ := ∇g(x) ∇g(x) one has x ∈ P Ω (x + tξ) if and only if t := τ 4x 2 1 + 1 belongs to the interval (0, 1 2 4x 2 1 + 1). Clearly, the infimum of

1 2 4x 2 1 + 1 over the set x1 ∈ R \ {0} is 1 2 .
In addition, at x ∈ (0, 0), one has x = P Ω (x + t(0, 1)) for all t ∈ (0, +∞). So, in agreement with Definition 2.37, we can conclude that r := 1 2 is the best modulus for the uniform prox-regularity of Ω.

From the result established in Example 4.3 we get the following useful examples of uniformly prox-regular sets in spaces of higher dimensions.

Example 4.4. The set {x = (x 1 , x 2 , . . . , x n ) ∈ R n | x 2 ≤ x 2
1 }, where n ≥ 3, is unbounded, closed, nonconvex, and 1 2 -prox-regular.

Example 4.5. all the numbers α ij := inf{ xy | x ∈ Ω i , y ∈ Ω j }, with i, j ∈ I and i = j, are positive, then Ω is uniformly prox-regular. More precisely, Ω is r-prox-regular, where r > 0 is any number satisfying the condition r ≤ 1 2 α ij for all i, j ∈ I with i = j. In addition, Ω is not uniformly prox-regular if α ij = 0 for a pair (i, j) ∈ I ×I with i = j. These assertions can be easily proved by using Definition 2.37 and the fact that the proximal normal cone coincides with the normal cone in the sense of convex analysis if the set under consideration is convex.

The set {x = (x 1 , x 2 , x 3 , . . . ) ∈ 2 | x 2 ≤ x 2 1 } is unbounded, closed, nonconvex,

Parametric Variational Inequalities

In this section, we recall some concepts and results relating to parametric variational inequalities.

Let M , Λ be two metric spaces. Let F : H × M → H be a vector-valued function, and K : Λ ⇒ H be a set-valued map with nonempty closed convex values. For each pair of parameters (µ, λ) ∈ M × Λ, we consider the problem of finding a vector x ∈ K(λ) such that

F (x, µ), y -x ≥ 0 ∀y ∈ K(λ), (4.5) 
which is a parametric variational inequality with a moving constraint set. The pseudo-Lipschitz property of set-valued mappings introduced by Aubin [10, p. 98] is a crucial concept in set-valued and variational analysis. This property is also known under other names: the Aubin continuity property [START_REF] Dontchev | Characterizations of strong regularity for variational inequalities over polyhedral convex sets[END_REF], the sub-Lipschitzian property [START_REF] Rockafellar | Lipschitzian properties of multifunctions[END_REF], and the Lipschitz-like property [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation[END_REF]. Complete characterizations of the property can be found in [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation[END_REF][START_REF] Mordukhovich | Variational Analysis and Applications[END_REF][START_REF] Rockafellar | Lipschitzian properties of multifunctions[END_REF] and the references therein. 

K : Λ ⇒ H is Lipschitz-like around a point ( λ, x) in its graph, which is the set {(λ, x) ∈ Λ × H | x ∈ K(λ)}, if there exist a neighborhood V of λ, a neighborhood W of x and a constant κ > 0 such that K(λ) ∩ W ⊂ K(λ ) + κd(λ, λ ) B(0, 1), ∀λ, λ ∈ V. (4.6)
Remark 4.8. If there exist a neighborhood V of λ and a constant κ > 0 such that

K(λ) ⊂ K(λ ) + κd(λ, λ ) B(0, 1), ∀λ, λ ∈ V, (4.7) 
then one says that K is locally Lipschitz around λ. If the inclusion in (4.7) holds for some κ > 0 and for all λ, λ ∈ Λ, then K is said to be a Lipschitz set-valued mapping. It is well known that if K is locally Lipschitz around λ, then K is Lipschitz-like around ( λ, x) for every x ∈ K( λ). In particular, a Lipschitz setvalued mapping is Lipschitz-like around every point in its graph.

Consider the parametric variational inequality (4.5). Let x be a solution to it at given parameters (μ, λ) ∈ M × Λ. We make two assumptions on the behavior of the function F (x, µ) around the point (x, μ). Namely, we assume that there exist a closed convex neighborhood X of x, a neighborhood U of μ, and two positive constants α, l such that

F (x , µ ) -F (x, µ) ≤ l( x -x +d(µ , µ)), ∀µ, µ ∈ U, x, x ∈ X, (4.8) 
and

F (x , µ) -F (x, µ), x -x ≥ α x -x 2 , ∀µ ∈ U, x, x ∈ X. (4.9) 
Theorem 4.9. (See [94, Theorem 2.1]) Assume that x is a solution to (4.5) with respect to the given parameters (μ, λ) ∈ M × Λ, conditions (4.8) and (4.9) hold, and the set-valued map K : Λ ⇒ H is Lipschitz-like around ( λ, x). Then, there exist positive constants κ ū and κλ, and neighborhoods Ũ of μ and Ṽ of λ such that (i) For every (µ, λ) ∈ Ũ × Ṽ , there exists a unique solution to (4.5) in X, denoted by x(µ, λ); 

(ii) For all (µ , λ ), (µ, λ) ∈ Ũ × Ṽ , one has x(µ , λ ) -x(µ, λ) ≤ κ μd(µ , µ) + κλd(λ , λ)

The Case of Convex Constraint Sets

For studying the problem (P), the next two assumptions were used in [START_REF] Adly | On semicoercive sweeping process with velocity constraint[END_REF][START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF].

Assumption (H1). The constraint sets C(t), t ∈ [0, T ], are nonempty, closed, and convex.

Assumption (H2). The set-valued mapping C is continuous in the Hausdorff distance sense, i.e., there exists a continuous function g

: [0, T ] → R such that d H (C(s), C(t)) ≤ |g(s) -g(t)| for all s, t ∈ [0, T ]. (4.11)
The results of Adly, Haddad, and Thibault [START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF] also require the following assumption.

Assumption (H3a). The constraint set C(0) is bounded.

Later, to deal with possibly unbounded constraint sets, Adly and Le [START_REF] Adly | On semicoercive sweeping process with velocity constraint[END_REF], have used the next semicoercivity assumption.

Assumption (H3b

). There exist positive constants c 1 , c 2 such that

A 1 x, x ≥ c 1 x 2 -c 2 , ∀x ∈ C(0).
(4.12)

Remark 4.10. If A 1 is positive semidefinite, then (H3a) implies (H3b). Indeed, if C(0) is bounded, then we can find ρ > 0 such that C(0) ⊂ ρ B(0, 1). Choosing c 1 = 1 and c 2 = ρ 2 , we have A 1 x, x ≥ 0 ≥ c 1 x 2 -c 2 for any x ∈ C(0). Thus, (H3b) holds true. Therefore, by (H3b) we get

Ay, y = A 1 x + (γ + ε)w, x + (γ + ε)w = A 1 x, x + 2(γ + ε) A 1 x, w + (γ + ε) 2 w 2 ≥ c 1 x 2 -c 2 + 2(γ + ε) A 1 x, w + (γ + ε) 2 w 2 = c 1 y -(γ + ε)w 2 -c 2 + 2(γ + ε) A 1 (y -(γ + ε)w), w + (γ + ε) 2 w 2 = c 1 y 2 -c 2 -2c 1 (γ + ε) y, w + c 1 (γ + ε) 2 w 2 +2(γ + ε) A 1 y, w -(γ + ε) 2 A 1 w, w + (γ + ε) 2 w 2 ≥ c 1 y 2 -c 2 -2c 1 (γ + ε) y -(c 1 + A 1 +1)(γ + ε) 2 -2(γ + ε) A 1 y ≥ c 1 2 y 2 -c 2 + y c 1 2 y -2(γ + ε)(c 1 + A 1 ) -(c 1 + A 1 +1)(γ + ε) 2 . (4.13) If y ≥ 4(γ + ε) c 1 (c 1 + A 1 )
, then from (4.13) it follows that

Ay, y ≥ c 1 2 y 2 -c 2 -(c 1 + A 1 +1)(γ + ε) 2 . ( 4.14) 
On the other hand, if y ≤ 4(γ + ε) c 1 (c 1 + A 1 ), then (4.13) implies that 

Ay, y ≥ c 1 2 y 2 -c 2 -2(γ + ε)(c 1 + A 1 ) 4(γ + ε) c 1 (c 1 + A 1 ) -(c 1 + A 1 +1)(γ + ε) 2 = c 1 2 y 2 -c 2 - 8(γ + ε) 2 c 1 (c 1 + A 1 ) 2 -(c 1 + A 1 +1)(γ + ε) 2 (4.15) By setting ĉ1 = c 1 2 and ĉ2 = c 2 + 8(γ + ε) 2 c 1 (c 1 + A 1 ) 2 + (c 1 + A 1 +1)(γ + ε)
C(t) = 0 + C(0) for every t ∈ [0, T ].
The solution existence and solution uniqueness results of [START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF] for sweeping processes with velocity constraints of the form (P) can be stated as follows.

Theorem 4.13. (The moving constraint set is bounded and continuous in the Hausdorff distance sense; see [7, Theorems 5.1 and 5.2]) Suppose that H is separable and A 0 , A 1 are positive semidefinite. If the assumptions (H1), (H2a), (H3a) are satisfied, then (P) has at least one Lipschitz solution. If A 0 is coercive, i.e., there exists a constant α 0 > 0 such that A 0 x, x ≥ α 0 x 2 for all x ∈ H, and (H1) is satisfied, then (P) has at most one solution.

The above results of Adly, Haddad, and Thibault have been extended by Adly and Le [START_REF] Adly | On semicoercive sweeping process with velocity constraint[END_REF] to the case of possibly unbounded closed convex sets C(t), t ∈ [0, T ]. In fact, there is no statement on solution uniqueness of (P) in [START_REF] Adly | On semicoercive sweeping process with velocity constraint[END_REF]. However, it is not difficult to see that the proof of Theorem 5.2 in [START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF] is also valid for the case of unbounded closed convex constraint sets. The separability of H and the continuity in the Hausdorff distance sense of the set-valued mapping C are vital assumptions in Theorems 4.13 and 4.14, which were proved by Moreau's time discretization techniques and the catching-up algorithm. Besides, as it has been noted in Remark 4.12, if (H1) and (H2a) are satisfied then the recession cone 0 + C(t) of C(t) is invariant with respect to t. By using the concept of parametric variational inequality and Theorem 2.1 from [START_REF] Yen | Hölder continuity of solutions to a parametric variational inequality[END_REF], which have been recalled in Section 4.1, we now establish a new result on the solution existence and solution uniqueness of (P). Here, H can be a non-separable Hilbert space, the constraint set C(t) can be unbounded, and the recession cone of C(t) can vary when t changes in [0, T ]. Theorem 4.15. (The moving constraint set is locally Lipschitz-like) Let H be a Hilbert space, A 0 = 0, A 1 : H → H a symmetric coercive bounded linear operator, and f : [0, T ] → H a continuous mapping. Assume that C : [0, T ] ⇒ H is a setvalued mapping with nonempty closed convex values, which is Lipschitz-like around every point in its graph. Then (P) has a unique solution u, which is a Lipschitz function. Moreover, the unique solution is a continuously differentiable function (provided that one identifies u(0) with the right derivative of u at 0 and u(T ) with the left derivative of u at T ).

Proof. Since A 0 = 0, (P) has the form

A 1 u(t) -f (t) ∈ -N P C(t) ( u(t)) a.e. t ∈ [0, T ], u(0) = u 0 . (P 1 )
To apply Theorem 4.9 for (P 1 ), let us set

M = H, Λ = [0, T ], F (x, µ) = A 1 x+µ for (x, µ) ∈ H × M , K(λ) = C(λ) for λ ∈ Λ.
Since A 1 is coercive, there is a constant α > 0 such that A 1 x, x ≥ α x 2 for all x ∈ H. Hence, choosing X = H, U = M , and l = max{ A 1 , 1}, we see that the conditions (4.8) and (4.9) are satisfied.

For each pair (µ, λ) ∈ M × Λ, by the well-known solution existence theorem for strongly monotone variational inequality (see, e.g., Theorem 4.1 in [START_REF] Huy | Minimax variational inequalities[END_REF], which has the origin in [55, Theorem 2.1, p. 24]) we know that (4.5) has a unique solution.

The latter is denoted by x(µ, λ). For every λ ∈ Λ, we define a vector µ(λ) = -f (λ). Fix a value λ = t ∈ [0, T ] and let μ = µ( λ) = -f ( t), x = x(μ, λ). Since the setvalued mapping K(•) = C(•) is Lipschitz-like around ( λ, x), Theorem 4.9 asserts that there exist positive constants κ ū and κλ, and neighborhoods Ũ of μ and Ṽ of λ such that the inequality (4.10) holds for all (µ , λ ), (µ,

λ) ∈ Ũ × Ṽ . As Ũ is a neighborhood of μ = µ( λ) = -f ( t), µ(λ) = -f (λ)
, and f (•) is continuous at t, we can find a neighborhood V 0 of t in [0, T ] such that V 0 ⊂ Ṽ and µ(λ) ∈ Ũ for all λ = t with t ∈ V 0 . Then, by (4.10) one has

x(µ(t), t) -x(µ( t), t) ≤ κ μ µ(t) -µ( t) +κλ|t -t| 1/2 = κ μ f (t) -f ( t) +κλ|t -t| 1/2
for every t ∈ V 0 . It follows that lim t→ t

x(µ(t), t)x(µ( t), t) = 0. Therefore, the formula z(t) = x(µ(t), t) defines a continuous function z : [0, T ] → H. Summing up all the above, we can assert that, for every t ∈ [0, T ], the variational inequality (4.5) with the chosen function F , the set-valued mapping K, where (µ, λ) := (-f (t), t)), has the unique solution z(t), and the function z(•) is continuous on [0, T ]. In particular, for every t ∈ [0, T ], one has Conversely, since the inclusion 

A 1 z(t) -f (t), y -z(t) ≥ 0 ∀y ∈ C(t). ( 4 
A 1 z-f (t) ∈ -N P C(t) (z) is equivalent to the condition A 1 z -f (t), y -z ≥ 0 ∀y ∈ C(t), 4 
u(t) -u(s) = t 0 z(τ )dτ - s 0 z(τ )dτ ≤ t s z(τ ) dτ ≤ max{ z(τ ) | τ ∈ [0, T ]}(t -s).
Thus, this function u is Lipschitz continuous with the modulus L = max

τ ∈[0,T ] z(τ ) .
The fulfillment of (4.17) for all t ∈ [0, T ] and the equality u(0) = u 0 assure that u is a Lipschitz solution of (P 1 ). It remains to prove that u(•) is the unique solution of (P 1 ). Arguing by contradiction, suppose that (P 1 ) has another solution v(•) for which there is t In particular, ϕ( t) = 0. Hence, one gets x * , w( t) = 0, which is a contradiction. We have thus established the solution uniqueness of (P 1 ). So, formula (4.18) defines the unique solution of (P 1 ), which is a Lipschitz function on [0, T ]. Moreover, the unique solution is a continuously differentiable function.

∈ [0, T ] such that v( t) = u( t). Set w(t) = v(t) -u(t) for all t ∈ [0, T ].
The proof is complete. (c) (See the proof of Theorem 2 on p. 107 in [START_REF] Diestel | Vector Measures[END_REF]) Let u : [0, T ] → X, where X is a reflexive Banach space, be an absolutely continuous function. Then, 

u(t) = u 0 + t 0 u(τ )dτ (∀t ∈ [0, T ]). (d) If z : [0, T ] → X,
4.17. Let H = R 2 , Λ = R, K(λ) = {x = (x 1 , x 2 ) ∈ R 2 | x 2 = λx 1 }
for all λ ∈ R. Given any λ ∈ Λ and x = (x 1 , x2 ) ∈ K( λ), we will show that K is Lipschitz-like around ( λ, x) by a direct verification based on Definition 4.7. First, suppose that x = (0, 0). Take any ρ > 0 and choose V = Λ, W = B(0, ρ), κ = ρ 2 .

The Case of Convex Constraint Sets

To verify condition (4.6), fix arbitrary elements λ, λ ∈ V . Since

K(λ) ∩ W = x = (x 1 , x 2 ) ∈ R 2 | x 2 = λx 1 , x ≤ ρ ,
we have for every

x = (x 1 , x 2 ) ∈ K(λ) ∩ W the following d(x, K(λ )) ≤ d ρ 1+λ 2 , λ ρ 1+λ 2 , K(λ ) = ρ (1+λ 2 )(1+(λ ) 2 ) |λ -λ| ≤ ρ 2 |λ -λ|.
It follows that K(λ) ∩ W ⊂ K(λ ) + κ|λ -λ| B(0, 1). The Lipschitz-likeness of K around ( λ, x) has been proved. Now, suppose that x = (0, 0). Take any ρ ∈ (0, 1) and choose V = B( λ, ρ x ), W = B(x, ρ). To define the constant κ, let us consider the expression ∆ (λ

) := (1 + λ 2 )ρ -x2 1 (λ -λ) 2 , where λ ∈ B λ, ρ x . Since ∆ = (1 + λ 2 )ρ -x2 1 (λ -λ) 2 ≥ (1 + λ 2 )ρ -x 2 ρ 2 x 2 ≥ λ 2 ρ, one has ∆ (λ) ≥ 0 for all λ ∈ B λ, ρ x
. So, the number [START_REF] Bounkhel | Existence and uniqueness of some variants of nonconvex sweeping processes[END_REF]) is well defined, and we have µ ≥ 0. Let κ = max{µ, 1}. To verify (4.6), let λ, λ ∈ V be given arbitrarily. Since

µ := max 1 2 |(1 + λ λ)x 1 |+ (1 + λ 2 )ρ -x2 1 (λ -λ) 2 | λ ∈ B λ, ρ x (4.
d(x, K(λ)) = |x 2 -λx 1 | 1 + λ 2 (λ, -1) = | λx 1 -λx 1 | √ 1 + λ 2 = |x 1 | √ 1 + λ 2 |λ -λ| ≤ x |λ -λ| ≤ ρ, one has K(λ) ∩ W = ∅. Clearly, K(λ) ∩ W is a line segment with the end-points x := (1 + λ λ)x 1 -∆ (λ) 1 + λ 2 , λ (1 + λ λ)x 1 -∆ (λ) 1 + λ 2 and x := (1 + λ λ)x 1 + ∆ (λ) 1 + λ 2 , λ (1 + λ λ)x 1 + ∆ (λ) 1 + λ 2 ,
4. Nonconvex Sweeping Processes with Velocity Constraints which may coincide. Note that

d(x, K(λ )) = |x 2 -λ x1 | 1 + (λ ) 2 (λ , -1) = |λx 1 -λ x1 | 1 + (λ ) 2 = |x 1 | 1 + (λ ) 2 |λ -λ| = |(1 + λ λ)x 1 -∆ (λ)| (1 + λ 2 ) 1 + (λ ) 2 |λ -λ| ≤ |(1 + λ λ)x 1 |+ ∆ (λ) 2 |λ -λ|.
Similarly,

d(x, K(λ )) ≤ |(1 + λ λ)x 1 |+ ∆ (λ) 2 |λ -λ|. Since d(x, K(λ )) ≤ max{d(x, K(λ )), d(x, K(λ ))} for every x = (x 1 , x 2 ) ∈ K(λ) ∩
W , it follows from the above estimates, (4. [START_REF] Bounkhel | Existence and uniqueness of some variants of nonconvex sweeping processes[END_REF], and the formula κ = max{µ, 1}, that d(x, K(λ )) ≤ κ|λ -λ|. This proves that K(λ)∩W ⊂ K(λ )+κ|λ -λ| B(0, 1). So, the set-valued mapping K is Lipschitz-like around every point ( λ, x) ∈ gph K.

It is well known that any Hilbert space H of dimension greater or equal 2 admits the representation H = H 0 ⊕ H 1 , where H 0 and H 1 are orthogonal subspaces, and dim(H 0 ) = 2. Fixing a coordinate system in H 0 , we can identify H 0 with R 2 . Define a set-valued mapping C : R ⇒ H by setting C(t) = K(t) ⊕ H 1 for all t ∈ R. Then, from the above analysis it follows that C has nonempty closed convex values, and C is Lipschitz-like around every point in its graphs. 

H = R 2 , T = 1, A 0 = 0 0 0 0 , A 1 = 1 0 0 1 , f (t) = 1 + √ t t
A 1 z(t) -f (t), y -z(t) ≥ 0 ∀y ∈ C(t).
The latter is equivalent to

A 1 z(t) -f (t) ∈ -N P C(t) (z(t)
). This means that there exists β ∈ R satisfying

z 1 (t) z 2 (t) - 1 + √ t t √ t = β t -1 . Therefore, z 1 (t) = βt + √ t + 1 and z 2 (t) = t √ t -β. The condition z(t) ∈ C(t)
forces z 2 (t) = tz 1 (t). Hence, β = -t 1 + t 2 . Thus,

z(t) =    1 + √ t - t 2 1 + t 2 t √ t + t 1 + t 2    =    √ t + 1 1 + t 2 t √ t + t 1 + t 2    for all t ∈ [0, 1]. Using Remark 4.16(c), we have u(t) = u 0 + t 0 z(τ )dτ for each t ∈ [0, 1]. Therefore, u(t) =    2 3 t √ t + arctan t 2 5 t 2 √ t + 1 2 ln(1 + t 2 )    (t ∈ [0, 1]),
a continuously differentiable function on [0, 1], is the unique solution of (4.20).

The solution uniqueness result established in Theorem 4.15 is new, because the operator A 0 = 0 is positive semidefinite, but not coercive. Thus, in some sense, our result complements those given in Theorem 4.13 and 4.14. A natural question arises: Whether the coerciveness of A 1 also guarantees the solution uniqueness of (P) in the case where A 0 = 0? The following theorem, whose proof is based on some ideas of [START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF], solves this question in the affirmative.

Theorem 4.19. If C(t) is nonempty and convex for every t ∈ [0, T ], A 1 is coercive, and A 0 is positive semidefinite, then (P) can have at most one solution.

Proof. Suppose that u(•) and v(•) are two solutions of (P), where C(t) is nonempty and convex for every t ∈ [0, T ], A 1 is coercive, and A 0 is positive semidefinite. Then u, v : [0, T ] → H are absolutely continuous functions, u(0

) = v(0) = u 0 , A 1 u(t) + A 0 u(t) -f (t), u(t) -z ≤ 0 ∀z ∈ C(t) (4.21) 
and 

A 1 v(t) + A 0 v(t) -f (t), v(t) -z ≤ 0 ∀z ∈ C(t) (4 
A 1 ( u(t) -v(t)) + A 0 (u(t) -v(t)), u(t) -v(t) ≤ 0 (4.23)
for almost every t ∈ [0, T ]. Since A 1 is coercive, there is a number α 1 > 0 such that A 1 x, x ≥ α 1 x 2 for all x ∈ H. Thus, (4.23) implies that

α 1 u(t) -v(t) 2 + A 0 (u(t) -v(t)), u(t) -v(t) ≤ 0 a.e. t ∈ [0, T ]. (4.24)
Taking the Lebesgue integral of both sides of (4.24) and applying Remark 2.12, we obtain

T 0 α 1 u(τ ) -v(τ ) 2 dτ + T 0 A 0 (u(τ ) -v(τ )), u(τ ) -v(τ ) dτ ≤ 0. (4.25) Since d dτ A 0 (u(τ ) -v(τ )), u(τ ) -v(τ ) = 2 A 0 (u(τ ) -v(τ ))
, u(τ )v(τ ) at every point τ where both derivatives u(τ ), v(τ ) exist, using Theorem 2.13 and noting that u(0) = v(0), one has

A 0 (u(T ) -v(T )), u(T ) -v(T ) = 2 T 0 A 0 (u(τ ) -v(τ )), u(τ ) -v(τ ) dτ.
Thus, (4.25) is equivalent to

T 0 α 1 u(τ ) -v(τ ) 2 dτ + 1 2 A 0 (u(T ) -v(T )), u(T ) -v(T ) ≤ 0.
Since A 0 is positive semidefinite, the latter implies 

T 0 u(τ ) -v(τ ) 2 dτ ≤ 0. ( 4 

The Case of Nonconvex Constraint Sets

Using the results in Section 4.2, we will establish some facts about solution existence for sweeping processes with nonconvex constraint sets. The obtained results differ from those of Bounkhel [START_REF] Bounkhel | Existence and uniqueness of some variants of nonconvex sweeping processes[END_REF]. Note that the union of convex sets are not convex in general. Let I = {1, . . . , m} be a finite index set with m ≥ 2. Let C i : [0, T ] ⇒ H, i ∈ I, be set-valued mappings with nonempty closed convex values such that, for any t ∈ [0, T ] and i, j ∈ I with i = j, C i (t) does not intersect C j (t). Then, the set C(t) := i∈I C i (t) is closed and nonconvex for every t ∈ [0, T ]. The uniform prox-regularity of such kind of sets has been discussed in Remark 4.6. In this section, we will study (P) with C : [0, T ] ⇒ H being the just defined set-valued mapping. To do so, for each i ∈ I, we consider the problem

A 1 u(t) + A 0 u(t) -f (t) ∈ -N P C i (t) ( u(t)) a.e. t ∈ [0, T ], u(0) = u 0 . (P C i )
The following theorems establish the solution existence for three classes of

The Case of Nonconvex Constraint Sets

Let τ ∈ (0, T ) be arbitrarily chosen. By Theorem 4.13, the problem

   A 1 u(t) + A 0 u(t) -f (t) ∈ -N P C 1 (t) ( u(t)) a.e. t ∈ [0, τ ], u(0) = u 0 , (4.27)
has a Lipschitz solution, which we denote by u 1,τ (•). Similarly, the problem

   A 1 u(t) + A 0 u(t) -f (t) ∈ -N P C 2 (t) ( u(t)) a.e. t ∈ [τ, T ], u(τ ) = u 1,τ (τ ), (4.28)
has a Lipschitz solution, which is denoted by u 2,τ (•). Setting

u τ (t) = u 1,τ (t) if t ∈ [0, τ ], u 2,τ (t) if t ∈ (τ, T ],
we see that u τ is Lipschitz continuous function satisfying u τ (0) = u 0 . As noted at the beginning of this proof, if

z ∈ C 1 (t) (resp., z ∈ C 2 (t)), then N P C 1 (t) (z) = N P C(t) (z) (resp., N P C 2 (t) (z) = N P C(t) (z)
). Therefore, from (4.27) and (4.28) it follows that A 1 uτ (t) + A 0 u τ (t)f (t) ∈ -N P C(t) ( uτ (t)) for almost every t ∈ [0, T ]. Hence, u τ is a Lipschitz solution of (P). Now, take any τ 1 , τ 2 ∈ (0, T ) with τ 1 < τ 2 . Since u τ 1 (τ 1 ) = u τ 2 (τ 1 ), arguing similarly as in the above proof of the pairwise distinctness of the solutions u (1) , . . . , u (m) of (P), we can show that the restrictions of u τ 1 and u τ 2 on [τ 1 , τ 2 ] are two different functions. So, the family {u τ | τ ∈ (0, T )} consists of pairwise distinct Lipschitz functions. Hence, by the uncountability of (0, T ) we can assert that (P) has an uncountable number of Lipschitz solutions. Theorem 4.21. (The moving constraint set is continuous in the Hausdorff distance sense) Suppose H is separable and A 0 , A 1 are positive semidefinite. If every set-valued mapping C i , i ∈ I, satisfies the assumptions (H1), (H2a), and (H3b), then (P) has an uncountable number of Lipschitz solutions, among them there are m solutions u

(i) , i ∈ I, with u(i) (t) ∈ C i (t) for almost every t ∈ [0, T ].
Proof. Using the same arguments as the ones in the proof of Theorem 4.20 and applying Theorem 4.14 instead of Theorem 4.13, we then obtain the desired results. Theorem 4.22. (The moving constraint set is locally Lipschitz-like) Suppose that H is a Hilbert space, A 0 = 0, A 1 : H → H is a symmetric coercive bounded linear operator, and f : [0, T ] → H is a continuous mapping. Assume that, for i ∈ I, the set-valued mapping C i has nonempty closed convex values and is Lipschitz-like around every point in its graph. Then (P) has an uncountable number of Lipschitz solutions, among them there are m continuously differentiable solutions u (i) , i ∈ I, with u(i) (t) ∈ C i (t) for almost every t ∈ [0, T ]. 

Illustrative Examples

In general, problem (P) does not have a unique solution even in the case where C(t) is convex; see [7, Example 1]. For the convex case, Adly, Haddad, and Thibault [7, Theorem 5.2] (see Theorem 4.13 in Section 4.2) have proved that if A 0 is coercive, then (P) can have at most one solution. By constructing an example, we now show that this condition is not enough to obtain the solution uniqueness in the case where C(t) is r-prox-regular and connected for each t ∈ [0, T ].

Example 4.23. Consider problem (P) with

T = 1, H = R 2 , A 0 = A 1 = 1 0 0 1 , f ( 
t) ≡ 0, u 0 = (0, 0), and

C(t) = {x = (x 1 , x 2 ) ∈ R 2 | (1 + t) 2 ≤ x 2 1 + x 2 2 ≤ 9} .
Clearly, A 0 and A 1 are coercive, C(t) is an annulus, which is r-prox-regular with r = 1 and connected for each t ∈ [0, T ]. As the condition (5.1) is fulfilled with g(t) := t and C(0) is bounded, the assumptions (H2a) and (H3a) are satisfied. Since C(t), t ∈ [0, T ], are nonempty and closed, the assumption (H1) is partially satisfied. Nevertheless, here Theorem 4.13 cannot be applied, because the setvalued mapping C has nonconvex values. So, the solution existence of (P) is

under question. Let u 1 (t) = 1 2 (1 + t) 2 - 1 2 , 0 for t ∈ [0, T ]. We see that u1 (t) = (1 + t, 0) ∈ C(t)
and

N P C(t) ( u1 (t)) = R -× {0} for t ∈ [0, T ]. Since A 1 u1 (t) + A 0 u(t) -f (t) = 1 + t 0 + 1 2 (1 + t) 2 -1 2 0 ∈ -N P C(t) ( u1 (t))
for all t ∈ [0, T ] and u 1 (0) = (0, 0), u 1 is a continuously differentiable solution of (P). Now, let

u 2 (t) = 1 2 √ 2 (1 + t) 2 -1, (1 + t) 2 -1 (∀t ∈ [0, T ]).
We have u 2 (0) = (0, 0), u2 (t) = 1 √ 2 (1 + t, 1 + t) ∈ C(t) and

N P C(t) ( u2 (t)) = {(x 1 , x 2 ) ∈ R 2 | x 1 = x 2 ≤ 0}.
Then,

A 1 u1 (t) + A 0 u(t) + f (t) = 1 √ 2 (1 + t) 1 √ 2 (1 + t) + 1 2 √ 2 (1 + t) 2 -1 2 √ 2 1 2 √ 2 (1 + t) 2 -1 2 √ 2 ∈ -N P C(t) ( u2 (t)).
Therefore, u 2 (•) is also a continuously differentiable solution of (P). So, (P) has multiple solutions.

The next two examples will shed light on the assertions about solution uniqueness in Theorem 4.14 and Theorem 4.15. It turns out that the convexity assumption on the sets C(t), t ∈ [0, T ], cannot be replaced by uniform proxregularity and connectedness.

Example 4.24. Let T , H, A 0 , A 1 , and f be as in the preceding example. Let

C(t) = {x = (x 1 , x 2 ) ∈ R 2 | (1 + t) 2 ≤ x 2 1 + x 2 2 } for all t ∈ [0, T ].
Then, C(t) is unbounded, r-prox-regular with r = 1 and connected for each t ∈ [0, T ]. The assumptions (H2a) and (H3b) are fulfilled. Since the assumption (H1) is just partially satisfied, Theorem 4.14 cannot be used. Set u(t) = ( 1 2 t 2 +t)a for t ∈ [0, T ], where a is any point in ∂C(0). By a direct verification, we can show that u is a continuously differentiable solution of (P). So, (P) has multiple solutions.

Example 4.25. Let T , H, A 1 , f , and C(•) be the same as in Example 4.23. The fulfillment of (5.1) with g(t) := t shows that C is a Lipschitz set-valued mapping. Hence, as noticed in Remark 4.8, C is Lipschitz-like around every point in its graph. Choosing A 0 = 0, we see that, except for the required convexity of each C(t), all other assumptions of Theorem 4.15 are satisfied. It is easy to verify that the formula u(t) = ( 1 2 t 2 + t)a, where a ∈ R 2 and a = 1, defines a continuously differentiable solution of (P). So, (P) has multiple solutions. then one has a problem with a fixed constraint set. The formula u(t) = ta, where a ∈ R 2 and a = 1, defines a continuously differentiable solution of the problem (P). So, (P) can have multiple solutions even in the case of a fixed nonconvex constraint set, which is compact, uniformly prox-regular, and connected. This observation is also valid for Example 4.24, if the constraint set is kept fixed, i.e., one takes

C(t) = x = (x 1 , x 2 ) ∈ R 2 | 1 ≤ x 2 1 + x 2 2 ≤ 9 ,
C(t) = x = (x 1 , x 2 ) ∈ R 2 | 1 ≤ x 2 1 + x 2 2 for all t ∈ [0, T ].
If a person uses a motorbike to go on a road starting from A on a time interval [0, T ] then, roughly speaking, at every time instant he/she can choose one level of velocity from the set {0, 1, 2, 3} of the motorcycle gear levels. Different choices of the velocity level u(t) for various disjoint segments of [0, T ] generate different path length functions u(t). Here one has u(0) = 0. The following example will put this very common daily nonconvex sweeping process with velocity constraints in an abstract setting.

Example 4.27. Consider problem (P) with A 1 , A 0 , f , u 0 being given arbitrarily, and C(t) = {v 1 , . . . v m } for all t ∈ [0, T ], where m ≥ 2 and v i , i ∈ I := {1, . . . , m}, are pairwise distinct points in H. By Remark 4.6, we know that C is uniformly prox-regular. Let τ 0 = 0 < τ 1 < • • • < τ k = T be a partition of the interval [0, T ]. Let u(t) be a step function that takes just one value from {v 1 , . . . v m } on each interval (τ j , τ j+1 ), j = 0, . . . , k -1. The formula u(t) = u 0 + t 0 u(s)ds gives a

Illustrative Examples

Lipschitz function defined on [0, T ]. It is obvious that, for any z ∈ {v 1 , . . . v m } and t ∈ [0, T ], one has N P C(t) (z) = H. Hence, the two conditions in the formulation of (P) are satisfied. Thus, u(t) is a solution of (P). We have shown that (P) has uncountable number of Lipschitz solutions.

The next example can serve as an illustration for Theorem 4.22.

Example 4.28. Consider problem (P) where 

H = R 2 , A 0 = 0, A 1 ∈ R 2×2 is a symmetric positive definite matrix, f : [0, T ] → R 2 is a continuous function, C 1 (t) = x = (x 1 , x 2 ) ∈ R 2 | x 2 ≥ e -x 1 +t , C 2 (t) = {(x 1 , x 2 ) ∈ R 2 | x 2 ≤ 0},
(i) , i ∈ {1, 2}, with u(i) (t) ∈ C i (t) for almost every t ∈ [0, T ].
To verify the local Lipschitz-likeness of an implicit set-valued mapping defined by a generalized inequality system in infinite-dimensional Hilbert spaces or Banach spaces, one can use, e.g., some results in [START_REF] Dien | On implicit function theorems for set-valued maps and their application to mathematical programming under inclusion constraints[END_REF][START_REF] Yen | Implicit function theorems for set-valued maps[END_REF].

Interestingly, Theorem 4.21 can be applied to the sweeping process considered in Example 4.28.

Example 4.29. Let H, A 0 , A 1 , f (•), and C 1 (•), C 2 (•), and C(•) be the same as in Example 4.28. To show that every set-valued mapping C i , i ∈ {1, 2}, satisfies the assumptions (H1), (H2a), and (H3b), it suffices to verify the continuity of C 1 in the Hausdorff distance sense. To do so, take any t, s ∈ [0, T ] with s < t. Then, one has C 1 (t) ⊂ C 1 (s). Given any y = (y 1 , y 2 ) ∈ C 1 (s), we define x = (x 1 , x 2 ), where x 1 = y 1 + ts and x 2 = y 2 . Since e -x 1 +t = e -(y 1 +t-s)+t = e -y 1 +s ≤ y 2 = x 2 , we get x ∈ C 1 (t). As xy = ts, it follows that d H (C 1 (s), C 1 (t)) ≤ |t -s| for all t, s ∈ [0, T ]. Therefore, by Theorem 4.21, (P) has an uncountable number of Lipschitz solutions, among them there are 2 solutions u (i) , i ∈ {1, 2}, with u(i) (t) ∈ C i (t) for almost every t ∈ [0, T ]. Note that, to apply Theorem 4.21 for this sweeping process, as A 0 one can choose an arbitrary symmetric positive semidefinite 2 × 2 matrix (i.e., it is not necessary to put A 0 = 0).

Open Questions

Several open questions related to the results given in Sections 4.2-4.4 will be formulated in this section.

An Iteration Scheme

Let H be a Hilbert space, A 0 : H → H a symmetric positive semidefinite bounded linear operator, A 1 : H → H a symmetric coercive bounded linear operator, and f : [0, T ] → H a continuous mapping. Assume that C : [0, T ] ⇒ H is a set-valued mapping with nonempty closed convex values, which is Lipschitz-like around every point in its graph. Then, according to Theorem 4.19, the sweeping process (P) can have at most one solution. If A 0 = 0, by Theorem 4.15 we know that (P) has a unique solution, which is a continuously differentiable function. The first open question is about the case where A 0 is a nonzero operator.

(Q1) If A 0 = 0, then the above assumptions are sufficient for the solution existence of (P)?

If (Q1) can be solved in the affirmative, then it is of interest to have an iteration scheme to find the unique solution of (P). Based on Theorem 4.15, we can propose such a scheme. At the initial step k = 0, one solves the problem (P 1 ) and denotes the unique solution by u (0) . Clearly, u (0) is a rough approximate solution of (P), because the operator A 0 = 0 had no role in creating the function. If u is the exact solution of (P), which is to be found, and u (k) is an approximate solution of (P) at a step k ∈ {0, 1, 2, . . . }, then

A 1 u(t) + A 0 u(t) -f (t) ≈ A 1 u(t) + A 0 u (k) (t) -f (t) a.e. t ∈ [0, T ]. Hence, setting fk+1 (t) = -A 0 u (k) (t) + f (t) for all t ∈ [0, T ], we have A 1 u(t) + A 0 u(t) -f (t) ≈ A 1 u(t) -fk (t) a.e. t ∈ [0, T ].
So, the approximate problem of (P) at step k + 1 is

A 1 u(t) -fk+1 (t) ∈ -N P C(t) ( u(t)) a.e. t ∈ [0, T ], u(0) = u 0 . (P 1,k+1 ) Since fk+1 : [0, T ] → H is a continuous function, problem (P 1,k+1
) is of the form (P 1 ). Therefore, by Theorem 4.15, it has a unique solution, which is denoted by u (k+1) . The just described iteration scheme yields a sequence of continuously differentiable functions {u (k) } k∈N . The second open question is as follows.

(Q2) Whether the sequence {u k } k∈N converges to a solution of (P)?

A Regularization Method

It is appealing to study the problem (P 1 ) in the setting of Theorem 4.15 with A 1 being only a symmetric positive semidefinite bounded linear operator. Let us denote the problem by (P 0 ) and its solution set by S 0 .

(Q3) Can we obtain a solution existence result for the problem (P 0 )?

If S 0 = ∅, then it would be reasonable to try to get a solution by the Tikhonov regularization method, which has been successfully applied for monotone variational inequalities (see, e.g., [START_REF] Tam | Solution methods for pseudomonotone variational inequalities[END_REF]Theorem 2.3]). For each ε > 0, the operator A 1 + εId, where Id denotes the identity function, is coercive. Therefore, by Theorem 4.15, the regularized problem

(A 1 + εId) u(t) -f (t) ∈ -N P C(t) ( u(t)) a.e. t ∈ [0, T ], u(0) = u 0 ,
of (P 0 ) has a unique solution, which is denoted by u ε . The following questions deserve further considerations:

(Q4) If S 0 = ∅, then the solution u ε of the regularized problem converges in C 0 ([0, T ], H) to a solution of the original problem as ε → 0 + ? (Q5) If S 0 = ∅, then the limit of u ε as ε → 0 + , if exists, is a solution of (P 0 )

whose derivative has the smallest L 2 ([0, T ], H) norm?

Problems Having a Fixed Connected Uniformly

Prox-Regular Constraint Set

Several examples of sweeping processes with uniformly prox-regular constraint sets have been given in Section 4.4. In Example 4.27, despite of the fact that the constraint set is fixed and finite, (P) has multiple solutions for any choice of A 1 , A 0 , and f . In addition, from Remark 4.26 where the constraint set of the problem under consideration is fixed and both operators A 0 , A 1 are coercive, we see that the solution uniqueness cannot be guaranteed. Thus, the next questions seem to be interesting.

Nonconvex Sweeping Processes with Velocity Constraints

(Q6) Under which conditions, can we obtain the solution existence for (P) when the constraint set is fixed, uniformly prox-regular, and connected?

(Q7) Under which conditions, can we obtain the solution uniqueness for (P) when the constraint set is fixed, uniformly prox-regular, and connected?

Conclusions

In this chapter, we have established the solution existence for some classes of sweeping processes in Hilbert spaces with velocity constraints where the constraint sets can be either convex or nonconvex as well. For the convex case, a new result on the solution uniqueness has been obtained. For the nonconvex case, we have proved that there are many classes of problems having an uncountable number of solutions.

Using a theorem on the solution sensitivity of parametric variational inequalities, we have proposed a new approach to the solution existence and solution uniqueness of sweeping processes with velocity constraints. Among other things, being locally Lipschitz-like, the constraint set mapping needs not to be continuous in the Hausdorff distance sense. An example has been given to show the advantage of the new results. Other illustrative examples, where the focus was made on uniform prox-regularity of the constraint sets, have been presented.

Seven open problems deserving further investigations have been formulated.

Chapter 5 Solution Properties of Convex Sweeping Processes with Velocity Constraints

Some properties of solutions of convex sweeping processes with velocity constraints are studied in this chapter. Namely, the solution sensitivity with respect to the initial value, the boundedness, the closedness, and the convexity of the solution set are discussed in detail.

Using the same notation as in preceding chapter, we let A 0 , A 1 : H → H be positive semi-definite, bounded symmetric linear operators and f : [0, T ] → H be a continuous mapping. In this chapter, we will only consider the case where C(t), t ∈ [0, T ] is convex, which implies that the proximal cone in the formulation of (P) can be substituted by the normal cone in the sense of convex analysis. We then recall the problem (P)

A 1 u(t) + A 0 u(t) -f (t) ∈ -N C(t) ( u(t)) a.e. t ∈ [0, T ], u(0) = u 0 . (P)
We denote by Sol(P, u 0 ) the solution set of (P) with the initial value u 0 . For the reader's convenience, before investigating the solution properties for problem (P), we restate the assumptions that were used in preceding chapter and present some new ones, which will also be discussed. Assumption (H2b). C is Lipschitz-like around every point in its graph.

Assumption (H1)

Assumption (H3a). The constraint set C(0) is bounded.

Assumption (H3b

). There exist positive constants c 1 , c 2 such that

A 1 x, x ≥ c 1 x 2 -c 2 , ∀x ∈ C(0).

Assumption (H3c

). There exist positive constants c 1 , c 2 such that

A 1 x, x ≥ c 1 x 2 -c 2 , ∀t ∈ [0, T ], ∀x ∈ C(t).
The following theorem can be deduced from the proof of [7, Theorem 5.2]. 

Solution Sensitivity with respect to the Initial Value

In this section, we investigate the solution sensitivity of (P) with respect to the initial value when the solution is unique. The following theorem takes account of the case where the operator A 0 is coercive.

Theorem 5.2. If the assumption (H1a) is satisfied, Sol(P, u 0 ) is nonempty for every u 0 ∈ C(0), and A 0 is coercive with the modulus of coercivity α 0 , then the mapping ϕ : C(0) → C 0 ([0, T ], H), u 0 → u(u 0 , •), where u(u 0 , •) denotes the unique solution of (P), is Lipschitz continuous with the modulus

A 0 α 0 .
Proof. Let x 0 , y 0 ∈ C(0) be given arbitrarily. Then, by our assumptions and Theorem 5.1, the sweeping process (P) has a unique solution x(•) with the initial value x 0 (resp., a unique solution y(•) with the initial value y 0 ). Since C(t) is convex, the inclusion

A 1 u(t) + A 0 u(t) -f (t) ∈ -N C(t) ( u(t)) (5.2)
in the formulation of (P) can be rewritten equivalently as 

A 1 u(t) + A 0 u(t) -f (t), u(t) -z ≤ 0 ∀z ∈ C(t). As N C(t) ( u(t)) = ∅ if u(t) / ∈ C(
   A 1 ẋ(t) + A 0 x(t) -f (t), ẋ(t) -ẏ(t) ≤ 0, -A 1 ẏ(t) -A 0 y(t) + f (t), ẋ(t) -ẏ(t) ≤ 0 (5.3)
for almost every t ∈ [0, T ]. Adding the inequalities in (5.3) side by side yields

A 1 ( ẋ(t) -ẏ(t)), ẋ(t) -ẏ(t) + A 0 (x(t) -y(t)), ẋ(t) -ẏ(t) ≤ 0 a.e. t ∈ [0, T ].
Since A 1 is positive semi-definite, this implies that

A 0 (x(t) -y(t)), ẋ(t) -ẏ(t) ≤ 0 a.e. t ∈ [0, T ]. (5.4)
Taking the Lebesgue integral on both sides of the inequality in (5.4) and applying Remark 2.12, we obtain

t 0 A 0 (x(τ ) -y(τ )), ẋ(τ ) -ẏ(τ ) dτ ≤ 0 (∀t ∈ [0, T ]). (5.5) As d dτ A 0 (x(τ ) -y(τ )), x(τ ) -y(τ ) = 2 A 0 (x(τ ) -y(τ ))
, ẋ(τ )ẏ(τ ) at every point τ where both derivatives ẋ(τ ), ẏ(τ ) exist, by Theorem 2.13 one has

t 0 A 0 (x(τ ) -y(τ )), ẋ(τ ) -ẏ(τ ) dτ = 1 2 [ A 0 (x(t) -y(t)), x(t) -y(t) -A 0 (x(0) -y(0)), x(0) -y(0) ].
(5.6) Then, from (5.5) it follows that A 0 (x(t)-y(t)), x(t)-y(t) -A 0 (x 0 -y 0 ), x 0 -y 0 ≤ 0. Hence, by the coerciveness of A 0 , we get α 0 x(t)y(t) 2 ≤ A 0 (x(t)y(t)), x(t)y(t) ≤ A 0 (x 0y 0 ), x 0y 0

Solution Sensitivity with respect to the Initial Value

≤ A 0 x 0 -y 0 2 .

Therefore, x(t)y(t) ≤

A 0 α 0

x 0y 0 for all t ∈ [0, T ]. So, the inequality

x -y C 0 ≤ A 0 α 0 x 0 -y 0
holds for any x 0 , y 0 ∈ C(0). We have thus proved that the mapping ϕ is Lipschitz continuous on C(0) with the modulus

A 0 α 0 .
According to Theorem 4.19, the nonemptiness and convexity of C(t) together with the coerciveness of A 1 can also guarantee the solution uniqueness for (P) if such a solution exists. A natural question arises: Could we get a similar result as the one in Theorem 5.2 for the case under consideration? The next theorem gives a complete answer to this question. Theorem 5.3. If the assumption (H1a) is fulfilled, Sol(P, u 0 ) is nonempty for every u 0 ∈ C(0), and A 1 is coercive with the modulus of coercivity α 1 , then the mapping ϕ : C(0) → C 0 ([0, T ], H), u 0 → u(u 0 , •), where u(u 0 , •) denotes the unique solution of (P), is Lipschitz continuous with the modulus

T A 0 2α 1 + 1.
Proof. For any x 0 , y 0 ∈ C(0), the assumptions made and Theorem 4.19 assure that (P) has a unique solution x(•) (resp., y(•)) with the initial value x 0 (resp., y 0 ). Then, arguing similarly as in the proof of Theorem 5.2, we have

A 1 ẋ(t) + A 0 x(t) -f (t), ẋ(t) -ẏ(t) ≤ 0 and A 1 ẏ(t) + A 0 y(t) -f (t), ẏ(t) -ẋ(t) ≤ 0 for almost every t ∈ [0, T ].
Adding the last inequalities side by side, one obtains

A 1 ( ẋ(t) -ẏ(t)), ẋ(t) -ẏ(t) + A 0 (x(t) -y(t)), ẋ(t) -ẏ(t) ≤ 0 (5.7)
for almost every t ∈ [0, T ]. Combining the coerciveness of A 0 with (5.7) yields 

α 1 ẋ(t) -ẏ(t) 2 ≤ -A 0 (x(t) -y(t)), ẋ(t) -ẏ(t)
t 0 α 1 ẋ(τ ) -ẏ(τ ) 2 dτ ≤ - t 0 A 0 (x(τ ) -y(τ )), ẋ(τ ) -ẏ(τ ) dτ.
(5.9)

At every point τ where both derivatives ẋ(τ ), ẏ(τ ) exist, we have

d dτ A 0 (x(τ ) -y(τ )), x(τ ) -y(τ ) = 2 A 0 (x(τ ) -y(τ )), ẋ(τ ) -ẏ(τ ) .
Hence, as noted in the preceding proof, by Theorem 2.13 we have (5.6). Consequently, from (5.9) it follows that

t 0 α 1 ẋ(τ ) -ẏ(τ ) 2 dτ ≤ - 1 2 [ A 0 (x(t) -y(t)), x(t) -y(t) -A 0 (x(0) -y(0)), x(0) -y(0) ].
Since A 0 is positive semidefinite, the latter implies

t 0 α 1 ẋ(τ ) -ẏ(τ ) 2 dτ ≤ 1 2 A 0 (x(0) -y(0)), x(0) -y(0) ≤ A 0 2 x 0 -y 0 2 .
So, we have

t 0 ẋ(τ ) -ẏ(τ ) 2 dτ ≤ A 0 2α 1 x 0 -y 0 2 .
(5.10)

In addition, for each t ∈ [0, T ] one has

x(t) -y(t) = x 0 + t 0 ẋ(τ )dτ -y 0 + t 0 ẏ(τ )dτ ≤ x 0 -y 0 + t 0 ẋ(τ ) -ẏ(τ ) dτ.
(5.11)

The inequality shows that the function t → ẋ(t)ẏ(t) belongs to the space L 2 ([0, T ], R). Therefore, setting β(t) = 1 for t ∈ [0, T ] and using the Hölder's inequality (see Proposition 2.14) for functions from L 2 ([0, T ], R), we have

t 0 (β(τ ) ẋ(τ ) -ẏ(τ ) )dτ ≤ t 0 β(τ ) 2 dτ 1 2 t 0 ẋ(τ ) -ẏ(τ ) 2 dτ 1 2
.

Then, combining this with (5.10) yields

t 0 ẋ(τ ) -ẏ(τ ) dτ ≤ √ t A 0 2α 1 x 0 -y 0 ≤ √ T A 0 2α 1 x 0 -y 0 5.2.
Boundedness of the Solution Set for every t ∈ [0, T ]. Hence, thanks to (5.11), we get

x(t) -y(t) ≤ x 0 -y 0 + T A 0 2α 1 x 0 -y 0 =   T A 0 2α 1 + 1   x 0 -y 0 for all t ∈ [0, T ].
This implies that the mapping ϕ defined in the statement of the theorem is Lipschitz continuous on C(0) with the modulus

T A 0 2α 1 + 1.

Boundedness of the Solution Set

Noting that the Sobolev space W 1,1 ([0, T ], H) is the space of all absolutely continuous functions with its derivative in L 1 ([0, T ], H) (see Proposition 2.24), we can view the solution set of (P) as a subset of W 1,1 ([0, T ], H). Of course, at the same time, it is a subset of C 0 ([0, T ], H). If (P) has a unique solution then, under suitable conditions, we have established the solution sensitivity with respect to the initial value. When the solution uniqueness is not guaranteed, the solution set of (P) may be unbounded. Let us consider an example.

Example 5.4. Let H = R 2 , A 0 = A 1 = 0 0 0 1 , u 0 = (0, 0), f (t) = (0, t), and 
C(t) = R × {0} for all t ∈ [0, T ].
For every λ ∈ R, we define a function by setting u (λ) (t) = (λt, 0) for all t ∈ [0, T ]. Clearly, u (λ) (0) = (0, 0) and u(λ) (t) = (λ, 0) ∈ C(t) for all t ∈ [0, T ]. In addition,

A 1 u(λ) (t) + A 0 u (λ) (t) -f (t) = 0 0 0 1 u(λ) 1 (t) u(λ) 2 (t) + 0 0 0 1 u (λ) 1 (t) u (λ) 2 (t) - 0 t = 0 -t . Since N C(t) ( u(λ) (t)) = {0} × R, this yields A 1 u(λ) (t) + A 0 u (λ) (t) -f (t) ∈ -N C(t) ( u(λ) (t)
) for all t ∈ [0, T ]. Thus, for any λ ∈ R, u (λ) is a solution of (P). As

u (λ)
C 0 = |λ|T , the solutions of (P) form an unbounded subset of C 0 ([0, T ], H).

Our aim in this section is to establish some sets of conditions ensuring that the solution set of (P) is bounded.

Theorem 5.5. If C(t) is nonempty for all t ∈ [0, T ] and the assumptions (H2a), (H3a) are satisfied then, for any u 0 ∈ C(0), the solution set Sol(P, u 0 ) is bounded in both spaces C 0 ([0, T ], H) and W 1,1 ([0, T ], H).

Proof. Let u 0 ∈ C(0) be given arbitrarily. If Sol(P, u 0 ) is empty, then it is bounded. Suppose that Sol(P, u 0 ) = ∅ and u is an element from Sol(P, u 0 ). As C(0) is bounded, we can find ρ 0 > 0 such that C(0) ⊂ ρ 0 B(0, 1). Let g : [0, T ] → R be a continuous function satisfying (5.1). Thus, for all t ∈ [0, T ] one has C(t) ⊂ C(0) + |g(0)g(t)|. This implies that for all t ∈ [0, T ] one has C(t) ⊂ ρ B(0, 1), where ρ

:= ρ 0 + max{|g(0) -g(s)|| s ∈ [0, T ]}. Since u(t) ∈ C(t) for almost every t ∈ [0, T ], one has u(t) ≤ ρ for almost every t ∈ [0, T ]. For any t ∈ [0, T ], we put Ω 1 (t) = {s ∈ [0, t] | u(s) ≤ ρ} and Ω 2 (t) = {s ∈ [0, t] | u(s) > ρ}.
Then, the sets Ω 1 (t) and Ω 2 (t) are measurable, and µ(Ω 2 (t)) = 0 with µ being the Lebesgue measure on R. So, by Remark 4.16(c) and Proposition 2.19, we have

u(t) = u 0 + t 0 u(τ )dτ = u 0 + Ω 1 (t) u(τ )dτ + Ω 2 (t) u(τ )dτ ≤ u 0 + Ω 1 (t) u(τ ) dτ + Ω 2 (t) u(τ ) dτ ≤ u 0 +ρµ(Ω 1 (t)) ≤ u 0 +ρT.
Thus, u C 0 ≤ u 0 +ρT . This establishes the boundedness of Sol(P, u 0 ) in C 0 ([0, T ], H). Since u(t) ≤ u 0 +ρT for all t ∈ [0, T ], u(t) ≤ ρ for a.e. t ∈ [0, T ], and u ∈ Sol(P, u 0 ) was chosen arbitrarily, by (2.1) we can assert that Sol(P, u 0 ) is a bounded subset of the Sobolev space W 1,1 ([0, T ], H).

To deal with the case where the sets C(t), t ∈ [0, T ], can be unbounded, we will need the following technical lemma. Since we still have not found any reference containing this statement, a detailed proof is given here. Lemma 5.6. Let f be a Lebesgue integrable, real-valued function defined on [0, T ].

If f (t) ≤ a + b t 0 f (τ )dτ a.e. t ∈ [0, T ] (5.12)
for some constants a, b with b = 0, then

t 0 f (τ )dτ ≤ a b (exp(bt) -1) for all t ∈ [0, T ].
Proof. Let f be a Lebesgue integrable function on [0, T ] satisfying (5.12).

Boundedness of the Solution Set

Multiplying both sides of the inequality in (5.12) by exp(-bt) yields exp(-bt)f (t)b exp(-bt) Thus, taking the Lebesgue integral on both sides of the inequality in (5.13) and applying Remark 2.12, we obtain

t 0 d ds exp(-bs) s 0 f (τ )dτ ds ≤ t 0 a exp(-bs)ds ∀t ∈ [0, T ].
It follows that exp(-bt)

t 0 f (τ )dτ ≤ a b (1 -exp(-bt)) ∀t ∈ [0, T ].
Hence, we get

t 0 f (τ )dτ ≤ a b (exp(bt) -1) ∀t ∈ [0, T ].
The proof is complete.

Theorem 5.7. If the assumptions (H1a), (H2a) and (H3b) are satisfied then, for any u 0 ∈ C(0), the solution set Sol(P, u 0 ) is bounded in both spaces C 0 ([0, T ], H) and W 1,1 ([0, T ], H).

Proof. Given any u 0 ∈ C(0). If Sol(P, u 0 ) is empty, then it is bounded. Suppose that Sol(P, u 0 ) is nonempty. Take any u ∈ Sol(P, u 0 ) and let ε > 0 be given arbitrarily. Since C(t) is nonempty, for any t ∈ [0, T ] there exists z t ∈ C(t) satisfying u 0z t < d(u 0 , C(t)) + ε. By (H2a), we have

z t -u 0 ≤ u 0 -z t < d(u 0 , C(t)) + ε ≤ d H (C(0), C(t)) + ε ≤ |g(0) -g(t)|+ε.
Then, setting

β := u 0 + max τ ∈[0,T ]
|g(0)g(τ )|+ε, we get z t < β. So, for every t ∈ [0, T ] one can find some z t ∈ C(t) such that z t < β. As u ∈ Sol(P, u 0 ), by (H1a) one has for almost every t ∈ [0, T ] that

A 1 u(t) + A 0 u(t) -f (t), u(t) -z ≤ 0 ∀z ∈ C(t). A 1 u(t), u(t) -A 1 u(t), z t + A 0 u(t) -f (t), u(t) -A 0 u(t) -f (t), z t ≤ 0. (5.14)
Using the assumptions (H2a), (H3b), and Remark 4.16, we can find positive constants ĉ1 , ĉ2 such that A 1 x, x ≥ ĉ1 x 2 -ĉ 2 for all t ∈ [0, T ] and x ∈ C(t).

Then, (5.14) implies that

ĉ1 u(t) 2 -ĉ 2 -A 1 u(t), z t + A 0 u(t) -f (t), u(t) -A 0 u(t) -f (t), z t ≤ 0 for a.e. t ∈ [0, T ]. So, one has ĉ1 u(t) 2 -ĉ 2 -β A 1 u(t) -( A 0 u(t) + f C 0 ) u(t) -β( A 0 u(t) + f C 0 ) ≤ 0 for a.e. t ∈ [0, T ]. For each t ∈ [0, T ], setting a 1 (t) = β A 1 + A 0 u(t) + f C 0 and a 2 (t) = β( A 0 u(t) + f C 0 ) + ĉ2 , we get ĉ1 u(t) 2 -a 1 (t) u(t) -a 2 (t) ≤ 0 a.e. t ∈ [0, T ]. (5.15) 
As ĉ1 > 0 and a 2 (t) > 0 for t ∈ [0, T ], the quadratic polynomial

q(x) := ĉ1 x 2 -a 1 (t)x -a 2 (t)
has two roots with different signs. Hence, (5.15) holds if and only if

u(t) ≤ a 1 (t) + a 1 (t) 2 -4ĉ 1 a 2 (t) 2ĉ 1 a.e. t ∈ [0, T ]. Since a 1 (t) 2 -4ĉ 1 a 2 (t) ≤ a 1 (t), this yields u(t) ≤ a 1 (t) ĉ1 for a.e. t ∈ [0, T ]. Therefore, u(t) ≤ β A 1 + A 0 u(t) + f C 0 ĉ1 for a.e. t ∈ [0, T ]. Then one has u(t) ≤ γ(1 + u(t) ) a.e. t ∈ [0, T ], (5.16) 
where γ := max

β A 1 + f C 0 ĉ1 , A 0 ĉ1 . Since u(t) = u 0 + t 0 u(τ )dτ ≤ u 0 + t 0 u(τ ) dτ (5.17) 
(see Remark 4.16(c) and Proposition 2.19(ii)), from (5.16) it follows that

u(t) ≤ γ(1 + u 0 ) + γ t 0 u(τ ) dτ a.e. t ∈ [0, T ].
So, applying Lemma 5.6 for f (t) := u(t) , a := γ(1 + u 0 ), and b := γ gives

t 0 u(τ ) dτ ≤ (1 + u 0 )(exp(γt) -1) ≤ (1 + u 0 )(exp(γT ) -1) ∀t ∈ [0, T ].
Combining this with (5.17) yields

u(t) ≤ u 0 +(1 + u 0 )(exp(γT ) -1) ∀t ∈ [0, T ]. (5.18) 
It follows that u

C 0 ≤ u 0 +(1 + u 0 )(exp(γT ) -1). So, Sol(P, u 0 ) is a bounded subset of C 0 ([0, T ], H).
Finally, using the estimates (5.16), (

, we can find a constant ρ > 0 such that u W 1,1 ≤ ρ for any u ∈ Sol(P, u 0 ). The proof is complete.

Theorem 5.8. If the assumptions (H1a), (H2b) and (H3c) are satisfied then, for any u 0 ∈ C(0), the solution set Sol(P, u 0 ) is bounded in both spaces C 0 ([0, T ], H) and W 1,1 ([0, T ], H).

Proof. For each t ∈ [0, T ], pick a point x t ∈ C(t). As C is Lipschitz-like around (t, x t ), there exist an open neighborhood V t of t in the induced topology of [0, T ] ⊂ R, a neighborhood W t of x t in H, and a constant κ t > 0 such that

C(t ) ∩ W t ⊂ C(t ) + κ t |t -t | B(0, 1) ∀t , t ∈ V t . (5.19) Since [0, T ] = t∈[0,T ] V t , the compactness of [0, T ] implies the existence of t 1 , . . . , t k in [0, T ] such that [0, T ] = k i=1 V t i .
For each i ∈ {1, . . . , k}, we have

x t i ∈ W t i .
So, thanks to (5.19), for every t ∈ V t i we can find z

(i) t ∈ C(t) and ξ (i) t ∈ B(0, 1) satisfying x t i = z (i) t + κ t i |t -t i |ξ (i) t . Then, z (i) t ≤ x t i +κ t i |t -t i |≤ x t i +κ t i T. (5.20) 
Setting β = max { x t i +κ t i T | i ∈ {1, . . . , k}}, we have β > 0. For each t ∈ [0, T ], there is some i ∈ {1, . . . , k} such that t ∈ V t i and, by (5.20), the element z

(i) t ∈ C(t) satisfies the estimate z (i) t ≤ β.
Therefore, for every t ∈ [0, T ], there exists at least one point of the form z

(i) t such that z (i) t ∈ C(t) and z (i) t ≤ β.
Let u 0 ∈ C(0) be given arbitrarily. Since Sol(P, u 0 ) bounded if it is empty, it suffices to consider the case Sol(P, u 0 ) = ∅. Take any u ∈ Sol(P, u 0 ). By (H1a) we deduce for almost every t ∈ [0, T ] that

A 1 u(t) + A 0 u(t) -f (t), u(t) - z ≤ 0 for all z ∈ C(t). Substituting z = z (i) t into the last inequality yields A 1 u(t) + A 0 u(t) -f (t), u(t) -z (i) t ≤ 0 for almost every t ∈ [0, T ].
Using the assumption (H3c) and repeating the final part of the proof of Theorem 5.5 (starting from inequality (5.14)), we can show that the solution set Sol(P, u 0 ) is bounded in both spaces C 0 ([0, T ], H) and W 1,1 ([0, T ], H).

Remark 5.9. The boundedness of Sol(P, u 0 ) in Theorem 5.8 is also valid if instead of the assumption (H2b) one requires that C is inner semicontinuous at every point in its graph, i.e., for every (t,

x) ∈ [0, T ] × H with x ∈ C(t), if U ⊂ H is an open set containing x, then there exists a neighborhood V of t in [0, T ] such that C(t ) ∩ U = ∅ for all t ∈ V . Indeed, for each t ∈ [0, T ], select a point x t ∈ C(t).
The inner semicontinuity of C at (t, x t ) assures that there is an open neighborhood V t of t in the induced topology of [0, T ] such that C(t ) ∩ B(x t , 1) = ∅ for every t ∈ V t . By the compactness of [0, T ], from the open covering {V t } t∈[0,T ] of the segment we can extract a finite subcover V t 1 , . . . , V t k . So, for each t ∈ [0, T ], there exists an index i ∈ {1, . . . , k} such that t ∈ V t i . Since C(t) ∩ B(x t i , 1) = ∅, there is a vector z

(i) t ∈ C(t) ∩ B(x t i , 1). Then one has z (i) t ≤ β, where β := max { x i +1 | i ∈ {1, .
. . , k}}. Consequently, for each t ∈ [0, T ], there exists at least one point of the form z

(i) t such that z (i) t ∈ C(t) and z (i) t ≤ β.
Then, as noted above, the usage of (H3c) and the repetition of the final part of the proof of Theorem 5.5 yield the desired assertion.

Remark 5.10. If a set-valued mapping is Lipschitz-like around a point in its graph then it is inner semicontinuous at that point (see, e.g., [START_REF] Yen | Implicit function theorems for set-valued maps[END_REF]Proposition 3.1]). On the other hand, there exist locally Lipschitz-like mappings which are not continuous in the Hausdorff distance sense (see Example 4.17). Clearly, if the mapping C : [0, T ] ⇒ H is continuous in the Hausdorff distance sense, then it is inner semicontinuous at every point in its graph. Example 4.17 shows that the converse is not true in general.

Remark 5.11. The continuity in the Hausdorff distance sense of C(•) together with the assumption (H3b) implies (H3c) (see Remark 4.16). However, a similar implication may not hold under the inner semicontinuity of C(•) at every point in its graph or even under the Lipschitz-likeness of C(•) around every point in its graph.

Closedness of the Solution Set

First, let us show that the closedness of Sol(P, u 0 ) may not available even for very simple problems in finite dimensions.

Proposition 5.12. The solution set of (P) may not be closed in C 0 ([0, T ], H).

Proof. We will prove the proposition by constructing a suitable example. Let H = R, A 0 = 0, A 1 = 0, u 0 = 0, f (t) ≡ 0, and C(t) = R for all t ∈ [0, T ]. Then, an absolutely continuous function u : [0, T ] → R is a solution of (P) if and only if

0 ∈ N C(t) ( u(t)) a.e. t ∈ [0, T ], u(0) = 0. Since C(t) = R for all t ∈ [0, T ], N C(t) ( u(t)) = {0}
for any t where u(t) exists. So, any absolutely continuous function u : [0, T ] → R with u(0) = 0 is a solution of (P). For k ∈ N, let

x k (t) =    t 2 sin( 1 t 2 ) if t ∈ ( 1 k , T ] t k sin(k 2 ) if t ∈ [0, 1 k ].
and

x(t) =    t 2 sin( 1 t 2 ) if t ∈ (0, T ] 0 if t = 0. Clearly, x k (•) is a Lipschitz function for each k ∈ N. Since x k (0) = 0, x k (•
) is a solution of (P) for every k ∈ N. In addition, for any k ∈ N, we have

sup t∈[0,T ] |x(t) -x k (t)| = sup 0<t≤ 1 k t 2 sin 1 t 2 - t k sin(k 2 ) ≤ sup 0<t≤ 1 k t 2 sin 1 t 2 + sup 0<t≤ 1 k t k sin(k 2 ) ≤ sup 0<t≤ 1 k t 2 + sup 0<t≤ 1 k t k = 2 k 2 .
Therefore, x k strongly converges to x in C 0 ([0, T ], R) as k → ∞. However, since x(•) is not of bounded variation (see Example 2.6(iv)), it is not absolutely continuous. Hence, x is not a solution of (P). We have thus shown that Sol(P, u 0 ) is non-closed in C 0 ([0, T ], H).

We now present a lemma on the relation between strong convergence of sequence of functions in L 1 ([0, T ], H) and its pointwise convergence. Lemma 5.13. Let {x n } be a sequence in L 1 ([0, T ], H) and let x ∈ L 1 ([0, T ], H) be such that x n converges strongly to x in L 1 ([0, T ], H). Then, there exists a subsequence {x n k } of {x n } such that x n k (t) converges to x(t) almost everywhere on [0, T ].

Proof. Since {x n } is a strongly convergent sequence, it is a Cauchy sequence. Hence, for every positive integer k we can find a positive integer n k such that

x m -x q L 1 ≤ 1 2 k (∀m ≥ n k , ∀q ≥ n k ).
Without loss of generality we may assume that

n k 1 < n k 2 whenever k 1 < k 2 .
Clearly, the above choice of {n k } implies that {x n k } is a subsequence of {x n } having the property

x n k+1 -x n k L 1 ≤ 1 2 k ∀k ≥ 1. (5.21) 
Define

y m (t) = m k=1 x n k+1 (t) -x n k (t) . (5.22) 
For all t ∈ [0, T ], by (5.22) and (5.21) we have

|y m (t)|= m k=1 x n k+1 (t) -x n k (t) ≤ m k=1 1 2 k ≤ 1. Thus, |y m (t)|≤ 1 for every t ∈ [0, T ]. Since x n ∈ L 1 ([0, T ], H) is measurable for all n ∈ N, the function y m : [0, T ] → R is also measurable for all m ∈ N.
As {y m } is a increasing sequence of real-valued functions, by the monotone convergence theorem [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Theorem 4.1] one can assert that y m (t) converges to a function y(t) almost everywhere on [0, T ]. Since |y(t)|≤ 1 for all t ∈ [0, T ], we see that y ∈ L 1 ([0, T ], R). On the other hand, for i > j ≥ 2, we have

x n i (t) -x n j (t) ≤ x n i (t) -x n i-1 (t) + . . . + x n j+1 (t) -x n j (t) ≤ y(t) -y n j-1 (t). (5.23) 
It follows that, for almost every t ∈ [0, T ], {x n k (t)} is a Cauchy sequence in H and it converges to a finite limit, say, x(t). From (5.23), letting i tend to infinity, we obtain x(t)x n j (t) ≤ y(t)y n j-1 (t) ≤ y(t)

for almost every t ∈ [0, T ] and for any j ≥ 2. Hence, one has x ∈ L 1 ([0, T ], H). Since x n k (t)x(t) 2 → 0 and x n k (t)x(t) ≤ y(t) almost everywhere on [0, T ], using the Dominated Convergence Theorem 2.18, we can deduce that

x n k -x 1 → 0. Since x n converges strongly to x in L 1 ([0, T ], H) and L 1 ([0, T ], H) is a subspace of L 1 ([0, T ], H),
x n converges strongly to x in L 1 ([0, T ], H). By the uniqueness of limit, we have x = x. Therefore, we have shown that x n k (t) converges to x(t) almost everywhere on [0, T ].

The proof is complete.

Remark 5.14. In the formulation of Lemma 5.13, one can replace L 1 ([0, T ], H) by any Bochner space L p (Ω, X) with 1 ≤ p < ∞. The proof remains the same, provided that one writes L

p (Ω, X) instead of L 1 ([0, T ], H) and L p ([0, T ], R) instead of L 1 ([0, T ], R).
Next, we will prove that the solution set of (P) is closed if it is regarded as a subset of an appropriate space. More precisely, the following theorem confirms that the Sobolev space W 1,1 ([0, T ], H) is such a space. (This result can be explained by the well known fact that the norm of W 1,1 ([0, T ], H) is finer than the one of C 0 ([0, T ], H).) Theorem 5.15. If the assumption (H1) is satisfied then, for any u 0 ∈ C(0), the solution set Sol(P, u 0 ) is closed in W 1,1 ([0, T ], H).

Proof. Let u 0 ∈ C(0) be given. Suppose that {u k } ⊂ Sol(P, u 0 ) is a sequence converging strongly in W 1,1 ([0, T ], H) to u as k → ∞. Then, u is an absolutely continuous function. To prove that u satisfies the initial condition in (P), we can argue as follows. Since the norm in W 1,1 ([0, T ], H) is given by ( 2 

t ∈ [0, T ], the inclusion A 1 uk (t) + A 0 u k (t) -f (t) ∈ -N C(t) ( uk (t)) is equivalent to A 1 uk (t) + A 0 u k (t) -f (t), uk (t) -z ≤ 0 ∀z ∈ C(t).
( 

A 1 u(t) + A 0 u(t) -f (t), u(t) -z ≤ 0 ∀z ∈ C(t).
Thus, for almost every t ∈ [0, T ], one has A 1 u(t) + A 0 u(t)f (t) ∈ -N C(t) ( u(t)).

We have thus proved that u ∈ Sol(P, u 0 ) and, therefore, established the desired 5.4. Convexity of the Solution Set closedness of Sol(P, u 0 ) in W 1,1 ([0, T ], H).

Convexity of the Solution Set

As the normal cone in the sense of convex analysis to a convex set can be presented in a variational way, sweeping processes and variational inequalities are closely related. So, the convexity of the solution set of a sweeping process may have some connections with that property of the solution set of a variational inequality.

Theorem 5.16. If the assumption (H1) is fulfilled and A 0 = 0, then Sol(P, u 0 ) is convex for every u 0 ∈ C(0).

Proof. Let u 0 ∈ C(0) be taken arbitrarily. It suffices to consider the case where Sol(P, u 0 ) is nonempty. Under the assumption (H1) and the condition A 0 = 0, an absolutely continuous function u belongs to Sol(P, u 0 ) if and only if u(0) = u 0 and Hence, w ∈ Sol(P, u 0 ). The convexity of Sol(P, u 0 ) has been proved.

A 1 u(t) -f (t), y -u(t) ≥ 0 ∀y ∈ C(
The kernel of the operator A 0 : H → H plays an important role in the forthcoming results. Recall that ker A 0 := {x ∈ H | A 0 x = 0}. Note that the quadratic form ϕ(y) := A 0 y, y is Fréchet differentiable on H because A 0 is bounded (see, e.g., [START_REF] Yen | Affine variational inequalities on normed spaces[END_REF]Proposition 2.1]). Since A 0 y, y ≥ 0 for all y ∈ H, a vector x ∈ H satisfies the equality A 0 x, x = 0 if and only if x is a solution of the optimization problem min{ϕ(y) | y ∈ H}. If x is a solution of the latter, then by the Fermat rule one has ∇ϕ(x) = 0, i.e., A 0 x = 0. Conversely, if A 0 x = 0 then ϕ(x) = 0. Therefore, we have {x ∈ H | A 0 x, x = 0} = ker A 0 .

(5.28)

Under a mild assumption, using one solution u of (P), we can construct a closed convex set K in W 1,1 ([0, T ], H), such that the solution set Sol(P, u 0 ) is contained in u+K. Thus, the closed convex set u+K is an outer estimate for Sol(P, u 0 ). The estimate is sharp, because in some cases it holds as an equality (see Theorem 5.18 below).

Theorem 5.17. Suppose that (H1) is satisfied. For any u 0 ∈ C(0), if Sol(P, u 0 ) is nonempty and u is a selected solution of (P), then

Sol(P, u 0 ) ⊂ u + K, (5.29) 
where

K := y ∈ W 1,1 ([0, T ], H) | y(0) = 0, ẏ(t) ∈ (C(t) -u(t)) ∩ ker A 0 a.e. t ∈ [0, T ] (5.30) is a closed convex set.
Proof. Select a solution u of (P). Let v ∈ Sol(P, u 0 ) be chosen arbitrarily. Since (H1) is fulfilled, we have 

   A 1 u(t) + A 0 u(t) -f (t), u(t) -z ≤ 0 ∀z ∈ C(t), A 1 v(t) + A 0 v(t) -f (t), v(t) -z ≤ 0 ∀z ∈ C(
t 0 A 0 (u(τ ) -v(τ )), u(τ ) -v(τ ) dτ ≤ 0 ∀t ∈ [0, T ].
As it has been noted in the proof of Theorem 5.2, this implies

A 0 (u(t) -v(t)), u(t) -v(t) -A 0 (u(0) -v(0)), u(0) -v(0) ≤ 0 ∀t ∈ [0, T ].
Since u(0) = v(0), the latter means that A 0 (u(t)v(t)), u(t)v(t) ≤ 0 for all t ∈ [0, T ]. So, by the positive semidefiniteness of A 0 , we obtain In the next theorem, we investigate the convexity of the solution set in the case where A 0 = 0. Theorem 5.18. Suppose that (H1) is satisfied, A 1 = 0, and f (t) ⊥ ker A 0 (i.e., f (t), x = 0 for every x ∈ ker A 0 ) for all t ∈ [0, T ]. Then, Sol(P, u 0 ) is convex for every u 0 ∈ C(0).

A 0 (u(t) -v(t)), u(t) -v(t) = 0 ∀t ∈ [0, T ].
Proof. Let u 0 ∈ C(0) be given arbitrarily and u be a solution of (P). By Theorem 5.29, the inclusion (5.29), where the set K is defined in (5.30), holds. Take any x ∈ K. Then, the function v defined by setting v(t) = u(t) + x(t), t ∈ [0, T ], is a solution of (P). Indeed, for almost every t ∈ [0, T ], one has

v(t) = u(t) + ẋ(t) ∈ u(t) + (C(t) -u(t)) = C(t).
Note that v(0) = u(0) + x(0) = u 0 . Since ẋ(t) ∈ ker A 0 for a.e. t ∈ [0, T ], x(0) = 0, and the linear operator A 0 is bounded, by [START_REF] Cazenave | An Introduction to Semilinear Evolution Equations[END_REF]Proposition 1.4.22] we have

A 0 x(t) = A 0 x(0) + t 0 ẋ(τ )dτ = A 0 t 0 ẋ(τ )dτ = t 0 A 0 ẋ(τ )dτ = 0 (5.31)
for all t ∈ [0, T ]. By Ω we denote the set of all t ∈ [0, T ] where the derivatives u(t), ẋ(t) exist, the inclusion A 0 u(t)f (t) ∈ -N C(t) ( u(t)) is satisfied, and ẋ(t) ∈ (C(t)u(t)) ∩ ker A 0 .

By our assumptions, Ω is a subset of full measure of [0, T ]. For any t ∈ Ω and for any z ∈ C(t), by (5.31) we have

A 0 v(t) -f (t), z -v(t) = A 0 (u(t) + x(t)) -f (t), z -( u(t) + ẋ(t)) = A 0 u(t) -f (t), z -( u(t) + ẋ(t)) = A 0 u(t) -f (t), z -u(t) -A 0 u(t), ẋ(t) + f (t), ẋ(t) = A 0 u(t) -f (t), z -u(t) -u(t), A 0 ẋ(t) + f (t), ẋ(t) .
Since ẋ(t) ∈ ker A 0 and f (t) ⊥ ker A 0 , it follows that u(t), A 0 ẋ(t) = 0 and f (t), ẋ(t) = 0. Therefore,

A 0 v(t) -f (t), z -v(t) = A 0 u(t) -f (t), z -u(t) .
(5.32)

As u ∈ Sol(P, u 0 ), the right hand side of (5.32) is nonnegative. Hence, from (5.32) we can deduce that A 0 v(t)f (t), zv(t) ≥ 0. Since z ∈ C(t) is can be chosen arbitrarily, we get

A 0 v(t) -f (t), z -v(t) ≥ 0 ∀z ∈ C(t)
for all t ∈ Ω. Equivalently, A 0 v(t)f (t) ∈ -N C(t) ( v(t)) for all t ∈ Ω. It follows that v is a solution of (P). So, we have proved that u + K ⊂ Sol(P, u 0 ). Combining this with (5.29) yields Sol(P, u 0 ) = u+K. Hence, the desired convexity of Sol(P, u 0 ) follows from the convexity of the set u + K.

In connection with Theorems 5.16-5.18, we would like to raise the following open questions.

Question 1. We wonder if the assumptions A 1 = 0 and f (t) ⊥ ker A 0 for all t ∈ [0, T ] could be dropped in the formulation of Theorem 5.18? In other words, does estimate (5.29) hold as an equality just under the assumption (H1)?

Question 2. Is there any example showing that, under the assumption (H1), the solution set of (P) could be nonconvex?

Conclusions

In this chapter, we have obtained several new results on the solution sensitivity with respect to the initial value, as well as the closedness, the boundedness, and the convexity of the solution set for sweeping processes with convex velocity constraints. In addition, an outer estimate for the solution set is also given. Hoping for further in-depth studies on the solution set, we have proposed two open questions.

Chapter 6

A Lipschitzian Vibro-impact Problem with Time-dependent Constraints

In this chapter, we study a mechanical system with a finite number of degrees of freedom, subjected to perfect time-dependent unilateral constraints, in which the constraints are not necessarily convex nor smooth. The dynamics is described in a form of a second-order measure differential inclusion. Let I = [0, T ], T > 0, be a bounded time real interval and d ∈ N. Let g : I × R d → R d and f i : I × R d → R, i ∈ {1, . . . , m} be some functions and m ∈ N. We denote by q ∈ R d the representative point of the system in generalized coordinates and define the set of admissible positions at each instant t ∈ I by

C(t) = {q ∈ R d | f i (t, q) ≤ 0 ∀i ∈ {1, . . . , m}}.
and the set of active constraints by J(t, q) = {i ∈ {1, . . . , m} | f i (t, q) = 0}. The vibro-impact system given by g and the functions f i is formally described by the following second-order differential inclusion in R d : q(t)g(t, q(t)) ∈ -N Cl C(t) (q(t)). (6.1)

Denote by ∇f i (t, •)(q) the derivative of f i (t, q) with respect to the second variable q and by ∂f i (•, q) the derivative of f i with respect to the first variable t. In what follows, given a set Ω ⊂ R d , we denote its interior and boundary respectively by int(Ω) and ∂Ω.

Since N Cl C(t) (q) = ∅ if q(t) / ∈ C(t), if q is a solution of (6.1), then q(t) must belong to C(t) for all t ∈ I. If q(t) ∈ int(C(t)) for all t ∈ I, then N Cl C(t) (q(t)) = {0} for all t ∈ I, so (6.1) becomes q = g(t, q), which is an ordinary differential equation.

If q(t) ∈ int(C(t)) for all t ∈ (t 0 , t 1 ) ∪ (t 1 , t 2 ), q(t 1 ) ∈ ∂C(t 1 ), then q(t - 1 ) ∈ -T (t 1 , q(t 1 )) and q(t + 1 ) ∈ T (t 1 , q(t 1 )), (

where

T (t, q) := {v ∈ R d | ∂f i (•, q)(t) + ∇f i (t, •)(q), v ≤ 0 ∀i ∈ J(t, q) }.
Observe that the set T (t, q) is polyhedral convex for each pair (t, q). In particular, T (t, q) is convex and closed. The inclusion (6.2) will be proved in Subsection 4.2.

Note that the function q may be discontinuous at some t ∈ I if J(t, q(t)) is nonempty. Therefore, in general, we cannot find a solution q of (6.1) for which, there exists a differentiable derivative q. Hence, we look for a solution q of (6.1) whose derivative q is of bounded variation. The latter implies that q is differentiable almost everywhere on I. Then, q can be understood as a Stieltjes measure. Therefore, (6.1) can be extended in the distributional sense:

   q ∈ BV ([0, T ]; R d ) d q -g(•, q(•))dt ∈ -N Cl C(•) (q(•))dt,
where BV ([0, T ]; R d ) stands for the space of all functions of bounded variation from [0, T ] to R d . More precisely, the second inclusion is taken in the Radon measure space M(0, T ; R d ), which is the dual space of the space of all continuous functions from [0, T ] to R d , denoted by C([0, T ], R d ). For ϕ ∈ C(I, R d ) and for

ξ(•) ∈ -N Cl C(•) (q(•)), d q : C(I, R d ) → R; d q, ϕ = I ϕd q, g(•, q(•))dt : C(I, R d ) → R; g(•, q(•))dt, ϕ = I g(t, q(t)), ϕ(t) dt, ξ(•)dt : C(I, R d ) → R; ξ(•)dt, ϕ = I ξ(t), ϕ(t) dt.
Since the relation (6.2) does not uniquely define q(t + ), we will follow [START_REF] Moreau | Liaisons unilatérales sans frottement et chocs inélastiques[END_REF] to impose the impact law q(t + ) = P T (t,q(t)) ( q(t -)),

where P T (t,q(t)) ( q(t -)) is the nearest point of q(t -) in T (t, q(t)).

To sum up, we are interested in investigating the next problem.

Problem (P). Let (q 0 , p 0 ) ∈ C(0) × T (0, q 0 ). Find q : [0, T ] → R d , with T > 0, such that (P1) q is absolutely continuous on [0, T ], q ∈ BV(0, T ; R d );

(P2) q(t) ∈ C(t) for all t ∈ [0, T ];

(P3) d q -g(•, q(•))dt ∈ -N Cl C(•) (q(•))dt;
(P4) q(t + ) = P T (t,q(t)) ( q(t -)) for all t ∈ [0, T ];

(P5) q(0) = q 0 and q(0) = p 0 .

Let C = {(t, q) ∈ [0, T ] × R d | q ∈ C(t)}.
We now propose some regularity assumptions.

Assumption A1. There exists an extended real ρ ∈ (0, +∞] such that (i) for all i ∈ {1, . . . , m}, f i is differentiable on U ρ (C) and its derivative ∇f i (•, •) : U ρ (C) → R is Lipschitz continuous with rank L;

(ii) there is γ > 0 such that for all t ∈ [0, T ] and i ∈ {1, . . . , m}, for all q 1 , q 2 ∈ U ρ (C(t)),

∇f i (t, •)(q 1 ) -∇f i (t, •)(q 2 ), q 1 -q 2 ≥ -γ q 1 -q 2 2 .
(iii) for all t ∈ [0, T ] and for all i ∈ {1, . . . , m}, one has ∇f i (t, •)(q) ≤ L for all q ∈ U ρ (C(t)).

Assumption A2. There is µ > 0 with the property that for all t ∈ [0, T ] and q ∈ C(t) there exists v = v(t, q) ∈ R d with v = 1 such that for all i ∈ {1, . . . , m}, one has ∇f i (t, •)(q), v ≤ -µ. (6.3) with x λ = λx + (1λ)(x + u(s, t)v). Hence, by Remark 6.1, we have

f i (s, x + u(s, t)v) = [f i (s, x + u(s, t)v) -f i (t, x + u(s, t)v)] + f i (t, x) + [f i (t, x + u(s, t)v) -f i (t, x)] ≤ L|s -t|+f i (t, x) + ∇f i (t, •)(x λ ), u(s, t)v .
By (6.3) and the inclusion x ∈ C(t) we get

f i (s, x + u(s, t)v) ≤ L|s -t|-u(s, t)µ = (L -ϑµ) |s -t|≤ 0,
where the inequality is valid due to the choice of ϑ. Since i ∈ {1, . . . , m} can be chosen arbitrarily, this implies that the vector x + u(s, t)v = x + ϑ|s -t|v belongs to C(s). Hence, x ∈ C(s) + ϑ|s -t|(-v). It follows that

C(t) ⊂ C(s) + ϑ|s -t|(-v) ⊂ C(s) + ϑ|s -t|B. Thus, C(•) is ϑ-Lipschitzian on [T k-1 , T k ]. So, we can infer that C(•) is ϑ- Lipschitzian on [0, T ].

An Existence Result for the Vibro-impact Problem

The approximate solutions will be constructed by the following time-discretization scheme. Let N be a positive natural number and h = T /N , we define t n = nh for all 0 ≤ n ≤ N and

1. Q -1 = q 0 -hp 0 , Q 0 = q 0 , 2. for all n ∈ {0, . . . , N }, G n = t n+1 tn g(s, Q n )ds and V n = 2Q n -Q n-1 + h 2 G n , Q n+1 ∈ argmin x∈C(t n+1 ) V n -x . (6.4) 
In this scheme, we use the approximation q(x) ≈ q(x + h) -2q(x) + q(xh) h 2 .

6. A Lipschitzian Vibro-impact Problem with Time-dependent Constraints corresponding Clarke tangent cone:

T Cl C(t) (q) = {v ∈ R d | ∇f i (t,
•)(q), v ≤ 0, ∀i ∈ J(t, q)}. (6.5) Lemma 6.6. Let t ∈ [0, T ], q ∈ C(t) and v = v(t, q) be the vector existed by assumption A2. There exist ρ > 0, τ ∈ (0, ρ ] and θ ∈ (0, ρ ] such that for all t ∈ I, |t -t|≤ τ , and for all q from the open ball B(q, θ) centered at q with radius θ,

∇f i (t , •)(q ), v ≤ - µ 3 
, ∀i ∈ {1, . . . , m}.

Proof. Let q ∈ C(t), v be defined in A2. For all t ∈ I, q ∈ R d such that qq ≤ ρ, and for any i ∈ {1, . . . , m}, by Remark 6.1(ii) we have

∇f i (t , •)(q ) -∇f i (t, •)(q), v ≤ ∇f i (t , •)(q ) -∇f i (t, •)(q) v ≤ L(|t -t |+ q -q ). Hence, ∇f i (t , •)(q ), v ≤ -µ + L(|t -t |+ q -q ). Choose τ = θ = min{µ/3L, ρ}. Then we have ∇f i (t , •)(q ), v ≤ -µ 3 .
Our main result is the next theorem.

Theorem 6.7. Suppose that assumptions A1-A3 hold. Let (q 0 , p 0 ) ∈ C(0) × T (0, q 0 ). Then, there is a subsequence of {q N }, still denoted by {q N }, of the approximate solutions which converges uniformly on [0, T ] to a limit q satisfying (P1)-(P3). Furthermore, if assumption A4 holds, then q also satisfies (P4) and (P5), and it is a solution of problem (P) on [0, T ].

To make the proof of this theorem easier for understanding, we present it in the forthcoming three subsections.

Convergence of the Approximate Solutions

In this subsection, we shall prove that the discrete sequence {q N } constructed in the latter section converges to a limit, which will later be verified to be a solution of problem (P). More precisely, we will prove that {p N } is uniformly bounded and it has bounded variation in Propositions 6.12 and 6.13.

An Existence Result for the Vibro-impact Problem

We now prove that for all N > N 1 and we can construct a finite family of real numbers (τ

N k ) 1≤k≤k 0 such that τ N 0 = 0 < τ N 1 < • • • < τ N k N 0 = T with 1 ≤ k N 0 ≤ k 0 and for all k ∈ {1, . . . , k N 0 }, in each interval [τ N k-1 , τ N k ), one has P n ≤ κ k ∀n ∈ {0, . . . , N -1}. Consider the interval [0, τ 1 ] instead of [0, T ].
From assumption A2, we can define a vector w 0 = 6L µ v(t 0 , Q 0 ). Note that P -1 = p 0 ≤ κ 0 ≤ κ, by Lemma 6.11 we have P

0 ≤ κ. Since 0 < h = T N ≤ θ 2κ , Q 1 -Q 0 = h P 0 ≤ θ 2 < θ. Moreover, |t 1 -t 0 |≤ h ≤ τ /2 < τ , we have (t 1 , Q 1 ) ∈ B(t 0 , τ ) × B(Q 0 , θ).
We will prove that w 0 -P 0 ∈ T Cl C(t 1 ) (Q 1 ). Indeed, for all i ∈ J(t 1 , Q 1 ), by Lemma 6.10 one has

∇f i (t 1 , •)(Q 1 ), w 0 -P 0 = ∇f i (t 1 , •)(Q 1 ), w 0 + L -(L + ∇f i (t 1 , •)(Q 1 ), P 0 ) ≤ -µ w 0 3 + L + γh P 0 2 ≤ -2L + L + γhκ 2 ≤ - L 2 .
From the latter inequality, it follows that w 0 -P 0 ∈ T Cl C(t 1 ) (Q 1 ). Since P -1 -P 0 + hG 0 ∈ N Cl C(t 0 ) (Q(0)), we get (P -1w 0 ) -(P 0w 0 ) + hG 0 , w 0 -P 0 ≤ 0.

This yields P -1w 0 + hG 0 , w 0 -P 0 ≤ -P 0w 0 2 , which implies that

P 0 -w 0 ≤ P -1 -w 0 +h G 0 .
Hence,

P 0 ≤ P -1 + 12L µ + h G 0 ≤ κ 1 ≤ κ.
Next, we will prove by induction that

P n -w 0 ≤ P -1 -w 0 +h n =0 G ∀n ∈ {0, . . . , N -1}. a vector w 1 = 6L µ v(t N +1 , Q N +1 ).
For the sack of simplicity, we will recount the index from 0 instead of N +1. By the same argument, we can prove that P n ≤ κ 2 for all n ∈ {0, . . . , N -1} on the interval [τ N 1 , τ N 1 + τ 2 ]. We now can divide the interval [0, T ] into subintervals [τ N i , τ N i + τ i+1 ] for i ∈ {1, . . . , k 0 }. Repeating the same argument for finitely many steps, we get the desired result. Proposition 6.13. There exists κ > 0 such that, for all N > N 1 , we have

N -1 n=0 P n -P n-1 ≤ κ .
Proof. We decompose [0, T ] into the subintervals [τ N k , τ N k+1 ], k ∈ {0, . . . , k h 0 -1}, which were defined in the proof of Proposition 6.12. Consider the interval [τ N 0 , τ N 1 ]. We have shown that

w 0 -P n ∈ T Cl C(t n+1 ) (Q n+1 )
for all n ∈ {0, . . . , N -1}. We now prove that the closed ball B w 0

-P n , 1 2 ⊂ T Cl C(t n+1 ) (Q n+1 ). Indeed, let a ∈ B w 0 -P n , 1 2 . Then, a -(w 0 -P n ) ≤ 1 2 .
As in the proof of Proposition 6.12, one has ∇f

i (t n+1 , •)(Q n+1 ), w 0 -P n ≤ -L 2 for all n ∈ {0, . . . , N -1}. Then, ∇f i (t n+1 , •)(Q n+1 ), a = ∇f i (t n+1 , •)(Q n+1 ), a -(w 0 -P n ) + ∇f i (t n+1 , •)(Q n+1 ), w 0 -P n ≤ ∇f i (t n+1 , •)(Q n+1 ) a -(w 0 -P n ) - L 2 ≤ 0. This proves that a ∈ T Cl C(t n+1 ) (Q n+1 ). Since the tangent cone T Cl C(t n+1 ) (Q n+1
) is closed and convex [33, p. 51], for every x ∈ R d , by [START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems[END_REF]Lemma 4.3,p. 22] we have

x -P T Cl C(t n+1 ) (Q n+1 ) (x) ≤ x -w 0 + P n 2 -P T Cl C(t n+1 ) (Q n+1 ) (x) -w 0 + P n 2 .
Applying this with x = P n-1 -P n + hG n , we get

P n-1 -P n + hG n -P ≤ P n-1 -P n + hG n -w 0 + P n 2 -P -w 0 + P n 2 ,
where P = P T Cl C(t n+1 ) (Q n+1 ) (P n-1 -P n + hG n ). It follows that

P n-1 -P n + hG n -P ≤ P n-1 + hG n -w 0 2 -P -w 0 + P n 2 .
Recall that P n-1 -

P n + hG n ∈ N Cl C(t n+1 ) (Q n+1 ) (see Lemma 6.8). Since N Cl C(t n+1 ) (Q n+1 ) is the dual cone of T Cl C(t n+1 ) (Q n+1 ), P = 0. We get P n-1 -P n = P n-1 -P n + hG n -hG n ≤ h G n + P n-1 -P n + hG n = h G n + (P n-1 -P n + hG n ) -P ≤ h G n + P n-1 -P n + hG n 2 -P n -w 0 2 ≤ h G n + P n-1 -w 0 2 -P n -w 0 2 +h 2 G n 2 +2h G n , P n-1 -w 0 ≤ h G n + P n-1 -w 0 2 -P n -w 0 2 +h 2 G n 2 +2h G n P n-1 -w 0 = (1 + h G n +2 P n-1 -w 0 ) h G n + P n-1 -w 0 2 -P n -w 0 2 ≤ (1 + h G n +2 P n-1 +2 w 0 ) h G n + P n-1 -w 0 2 -P n -w 0 2 .
It follows that

P n-1 -P n ≤ h 1 + F L 1 (0,T ;R d ) +2κ + 12L µ G n + P n-1 -w 0 2 -P n -w 0 2
for n = 0, . . . , N -1. Adding these inequalities, we get

N -1 n=0 P n-1 -P n ≤ 1 + F L 1 (0,T ;R d ) +2κ + 12L µ N -1 n=0 h G n + P 0 -w 0 2 -P N -w 0 2 ≤ T 1 + F L 1 (0,T ;R d ) +2κ + 12L µ F L 1 (0,T ;R d ) +2 κ + 6L µ 2 .
Similarly, we can obtain the same result for all the subintervals [τ N i , τ N i+1 ] where i ∈ {1, . . . , k 0 }. Since the number of the subintervals [τ N i , τ N i+1 ] is finite, the proof is complete.

From Propositions 6.12 and 6.13 we can infer that the sequence {q N } is uniformly Lipschitz continuous and that the sequence {p N } is uniformly bounded in L ∞ (0, T ; R d ) and in BV ([0, T ]; R d ). For any t ∈ [0, T ], it is clear that q N (t) is bounded for all N . Moreover, since p N is the derivative of q N , by Proposition 2.9, there exists a subsequence of {q N }, still denoted by {q N }, converging uniformly to an absolutely continuous function q over [0, T ]. In addition, by [59, Theorem 2.1], we can extract subsequences of {p N }, still denoted by {p N } and find 6.1. An Existence Result for the Vibro-impact Problem

p ∈ BV ([0, T ]; R d ) such that p N → p pointwise in [0, T ],
dp N dp weakly* in M(0, T ; R d ).

Properties of the Limit Trajectory

In this subsection, we will prove that the limit trajectory q satisfies the properties (P1)-(P3).

The definitions of q N and p N imply that

q N (t) = q 0 + t 0 p N (s)ds ∀t ∈ [0, T ] ∀n > N 1 .
Passing to the limit as N → +∞, by dominated convergence theorem [22, Theorem 4.2,p. 90] we obtain

q(t) = q 0 + t 0 p(s)ds ∀t ∈ [0, T ]. (6.10) 
Hence q = p ∈ BV ([0, T ]; R d ) which implies that q is Lipschitz continuous with rank κ on [0, T ]. Proposition 6.14. For all t ∈ [0, T ], q(t) ∈ C(t).

Proof. Indeed, for all t ∈ [0, T ] and for all N > N 1 , there exists n ∈ {0, . . . N -1} such that t ∈ [t n , t n+1 ]. Then, for all i ∈ {1, . . . , m},

f i (t, q(t)) -f i (t n , q N (t n )) = f i (t, q(t)) -f i (t, q N (t n )) + f i (t, q N (t n )) -f i (t n , q N (t n )) ≤ L q(t) -q N (t n ) +L|t n -t| ≤ L q(t) -q N (t n ) +hL ≤ L( q(t) -q(t n ) + q(t n ) -q N (t n ) ) + hL.
Since q is Lipschitz continuous with modulus κ, we have and (6.11) holds for all N > N 1 , we can conclude that f i (t, q(t)) ≤ 0.

f i (t, q(t)) -f i (t n , q N (t n )) ≤ L(κ(t -t n ) + sup{ q(s) -q N (s) R d | s ∈ [0, T ]}) + hL ≤ L(κh + q -q N C([0,T ];R d ) ) + hL. (6.11) Since {q N } converges uniformly to q on [0, T ], f i (t n , q N (t n )) = f i (t n , Q n ) ≤ 0,
The proof is complete.

We are going to show that the limit trajectory satisfies property (P3). By the definition of p N , the Stieltjes measure d qN = dp N is a sum of Dirac's measures

dp N (t) = N -1 n=0 (P n -P n-1 )δ(t -t n ). Define g N (t) = N -1 n=0 hG n δ(t-t n )- N -1 n=0 m i=1 λ n i (∇f i (t n+1 , •)(Q n+1 )-∇f i (t n , •)(q(t n ))δ(t-t n ), and 
U N (t) = N -1 n=0 m i=1 δ(t -t n )λ n i ∇f i (t, •)(q(t)),
where the constants λ n i are given in Remark 6.9. Then, (6.8) can be rewritten as dp N (t) = -U N (t) + g N (t). (6.12) Lemma 6.15. For all i ∈ {1, . . . , m} and for all N > N 1 we have

N -1 n=0 |λ n i |≤ 1 µ κ + F L 1 (0,T ;R) .
Proof. Let i ∈ {1, . . . , m}, n ∈ {0, . . . , N -1}. By (6.8) we have

m i=1 λ n i ∇f i (t n+1 , •)(Q n+1 ) ≤ P n -P n-1 +h G n
By assumption A1(ii), for fixed n, there exists v such that

∇f i (t n+1 , •)(Q n+1 ), v ≤ -µ.
Hence,

P n -P n-1 + hG n , v = m i=1 λ n i ∇f i (t n+1 , •)(Q n+1 ), v = m i=1 λ n i ∇f i (t n+1 , •)(Q n+1 ), v ≤ m i=1
λ n i (-µ).

6.1. An Existence Result for the Vibro-impact Problem For every fixed i, we have

λ n i ≤ m i=1 λ n i ≤ 1 µ ( P n -P n-1 + hG n ) .
Hence,

N -1 n=0 |λ n i |= N -1 n=0 λ n i ≤ 1 µ N -1 n=0 ( P n -P n-1 +h G n ) ≤ 1 µ (κ + F L 1 (0,T ;R) ).
The proof is complete.

Let Λ N i (t) = N -1 n=0 λ n i δ(t -t n ).
By the above lemma, Λ N i is uniformly bounded, then there exists a subsequence of {Λ N i } converging weakly * to nonnegative measure Λ i in M(0, T ; R). Therefore, U N has a subsequence which

converges weakly * to U in M(0, T ; R d ) with U (t) = m i=1 Λ i (t)∇f i (t, •)(q(t)). Since ∇f i (t, •)(q(t)) ∈ N Cl C(t) (q(t)), we obtain U ∈ N Cl C(•) (q(•))dt.
Lemma 6.16. The sequence {g N } converges weakly * to g(•, q)dt in M(0, T ; R d ),

where g(•, q)dt is the measure of density g(•, q) with respect to Lebesgue's measure on [0, T ].

Proof. Let ϕ ∈ C([0, T ]; R d ). By the definition of g N , we have Moreover, for all n ∈ {0, . . . , N -1}, we have (t n , q(t n )) ∈ C and

g N , ϕ = N -1 n=0 h G n , ϕ(t n ) + N -1 n=0 m i=1 λ n i ∇f i (t n+1 , •)(Q n+1 ) -∇f i (t n , •)(q(t n )), ϕ(t n ) = N -1 n=0 t n+1 tn g(s, Q n ), ϕ(t n ) ds + N -1 n=0 m i=1 λ n i ∇f i (t n+1 , •)(Q n+1 ) -∇f i (t n , •)(q(t n )), ϕ(t n ) = T 0 g(s, q(s)), ϕ(s) ds + N -1 n=0 t n+1 tn g(s, Q n ) -g(s, q(s)), ϕ(s) ds + N -1 n=0 t n+1 tn g(s, Q n ), ϕ(t n ) -ϕ(s) ds + N -1 n=0 m i=1 λ n i ∇f i (t n+1 , •)(Q n+1 ) -∇f i (t n , •)(q(t n )), ϕ(t n ) .
Q n+1 -q(t n ) ≤ Q n+1 -Q n + q N (t n ) -q(t n ) ≤ κh + q -q N C([0,T ];R d ) .
Let ε n := Q n+1q(t n ) . From Remark 6.1 and Lemma 6.15 it follows that

N -1 n=0 m i=1 λ n i ∇f i (t n+1 , •)(Q n+1 ) -∇f i (t n , •)(q(t n )), ϕ(t n ) ≤ N -1 n=0 m i=1 λ n i L(h + ε n ) ϕ(t n ) ≤ N -1 n=0 m i=1 λ n i L((κ + 1)h + q -q N C([0,T ];R d ) ) ϕ C([0,T ];R d ) ≤ mL µ ((κ + 1)h + q -q N C([0,T ];R d ) ) ϕ C([0,T ];R d ) (Var(p N , [0, T ]) + F L 1 (0,T ;R d ) )
In addition,

N -1 n=0 t n+1 tn g(s, Q n ) -g(s, q(s)), ϕ(s) ds ≤ N -1 n=0 t n+1 tn L g Q n -q(s) ϕ(s) ds ≤ L g (κh + q -q N C([0,T ],R d ) )
T 0 ϕ(s) ds.

We also have

N -1 n=0 t n+1 tn g(s, Q n ), ϕ(t n ) -ϕ(s) ds ≤ N -1 n=0 t n+1 tn g(s, Q n ) ϕ(t n ) -ϕ(s) ds ≤ ω ϕ (h) F L 1 ([0,T ];R d ) ,
where ω ϕ denotes the modulus of continuity of ϕ. Therefore, letting N to ∞ in (6.13) we get g N , ϕ → T 0 g(s, q(s)), ϕ(s) ds.

The proof is complete.

Passing (6.12) to the limit yields dpg(

•, q)dt ∈ -N Cl C(•) (q(•))dt. ≥ -∂f i (•, Q n )(t n α ) + 1 βh ∇f i (t n+1 , •)(Q n+1 ) -∇f i (t n+1 , •)(q n β ), Q n+1 -q n β .
Since h P n ≤ ρ 2 , by Lemma 2.4 we know that q n β ∈ U ρ (C(t n+1 )). Therefore, by Remark 6.1(i),

∂f i (•, Q n+1 )(t n+1 ) -∂f i (•, Q n )(t n α ) ≥ -L(|t n+1 -t α |+ Q n+1 -Q n ) = -Lh(α + P n ) ≥ -Lh(1 + P n ).
Then, by assumption A1(ii), one has

1 βh ∇f i (t n+1 , •)(Q n+1 ) -∇f i (t n+1 , •)(q n β ), Q n+1 -q n β ≥ - γ βh Q n+1 -q n β 2 = -γβh P n 2 ≥ -γh P n 2 
Hence,

∂f i (•, Q n+1 )(t n+1 ) + ∇f i (t n+1 , •)(Q n+1 ), P n ≥ -h(L + L P n +γ P n 2 ).
The proof is complete.

Proposition 6.19. For all t ∈ (0, T ), one has q(t + ) = P T (t,q) ( q(t -)).

Proof.

Step 1: We consider the case that J(t, q(t)) = ∅. Since f i are continuous for all i ∈ {1, . . . , m}, we may define ρ t ∈ (0, min(ρ, t, Tt)) such that, for all i ∈ {1, . . . , m} we have f i (s, y) ≤ 1 2 f i (t, q(t)) < 0 ∀s ∈ [tρ t , t + ρ t ], y ∈ B(q(t), ρ t ) and we define N t > max N 1 , 4T (κ + 1) ρ t such that qq N C([0,T ];R d ) ≤ ρ t 4 for all N > N t . Then, for all ρ ∈ (0, ρ t ] and for all N > N t , we define

n -=       t - ρ 4(κ + 1) h       + 1, n + =       t + ρ 4(κ + 1) h       .
It follows that 2h < ρ t , Q n+1q(t) ≤ Q n+1q N (t) + q N (t)q(t)

≤ κ|t n+1 -t|+ qq N C([0,T ];R d ) < ρ t .

It follows that f i (t n+1 , Q n+1 ) < 0 and λ n i = 0 for all i ∈ {1, . . . , m} and for all n ∈ {n -, . . . , n + }. Thus, Letting N to infinity, we obtain that p(t + )p(t -) = 0. This means that q(t -) = p(t -) = p(t + ) = q(t + ).

Step 2: Now, let t ∈ (0, T ) be such that J(t, q(t)) = ∅. Consider the case if J(t, q(t)) = {1, . . . , m}, we let ρ t = 1 2 min(ρ, t, Tt). Otherwise, using the continuity of the mappings f i , i ∈ {1, . . . , m} we may define ρ t in (0, min(ρ, t, T -t)) such that, for all i ∈ {1, . . . , m} \ J(t, q(t)) we have f i (s, y) ≤ 1 2 f i (t, q(t)) < 0 ∀s ∈ [tρ t , t + ρ t ], y ∈ B(q(t), ρ t ).

Then, by the uniform convergence of (q N ) to q on [0, T ], we can define N t > max N 1 , 4T (κ + 1) ρ t such that qq N C([0,T ];R d ) ≤ ρ t 4 for all N > N t . We will show that for all N > N t and for all t n ∈ t -ρ t 4(κ + 1)

, t + ρ t 4(κ + 1)

, J(t n+1 , Q n+1 ) ⊂ J(t, q(t)). Indeed, let N > N t and t n ∈ t -ρ t 4(κ + 1)

, t + ρ t 4(κ + 1)

. We have |t n+1 -t| ≤ ρ t 4(κ + 1) + h ≤ ρ t 2(κ + 1) < ρ t , Q n+1q(t) ≤ Q n+1q N (t) + q N (t)q(t)

≤ κ|t n+1 -t|+ qq N C([0,T ];R d ) < ρ t .

In addition, we have f i (t n+1 , Q n+1 ) < 0 ∀i / ∈ J(t, q(t)).

Therefore, J(t n+1 , Q n+1 ) ⊂ J(t, q(t)). Represent J(t, q(t)) as J(t, q(t)) = J 1 (t, q(t)) ∪ J 2 (t, q(t)) with J 1 (t, q(t)) = i ∈ J(t, q(t)) | ∃ρ i ∈ (0, ρ t ], ∃N i > N t , ∀N > N i , ∀t n ∈ t -ρ i 4(κ + 1) , t + ρ i 4(κ + 1) ∩ [0, T ], f i (t n+1 , Q n+1 ) < 0 and J 2 (t, q(t)) = i ∈ J(t, q(t)) | ∀ρ i ∈ (0, ρ t ], ∀N i > N t , ∃N > N i , ∃t n ∈ t -ρ i 4(κ + 1)

, t + ρ i 4(κ + 1) ∩ [0, T ], f i (t n+1 , Q n+1 ) = 0 .

6.1. An Existence Result for the Vibro-impact Problem Since J 1 (t, q(t)) is a finite set, we may define    ρt = min{ρ i | i ∈ J 1 (t, q(t))}, Ñt = max{N i | i ∈ J 1 (t, q(t))} if J 1 (t, q(t)) = ∅ ρt = ρ t , Ñt = N t if J 1 (t, q(t)) = ∅. Now let ρ ∈ (0, ρt ] and N > Ñt . As before, we define

n -=       t - ρ 4(κ + 1) h       + 1, n + =       t + ρ 4(κ + 1) h      
which implies that 2h < (n --1)h ≤ t -ρ 4(κ + 1)

< n -h < . . . < n + h ≤ t + ρ 4(κ + 1) < (n + + 1)h < T -2h and P n --1 = p N t -ρ 4(κ + 1)

P n + = p N t + ρ 4(κ + 1) .

Thus,

P n + -P n --1 = n + n=n - hG n - n + n=n - m i=1
λ n i ∇f i (t n+1 , •)(Q n+1 ).

Since J(t n+1 , Q n+1 ) ⊂ J(t, q(t)), i / ∈ J(t n+1 , Q n+1 ) implies that i ∈ J 1 (t, q(t)).

Thus,

P n + -P n --1 = n + n=n - hG n - i∈J 2 (t,q(t)) n + n=n - λ n i ∇f i (t n+1 , •)(Q n+1 ). (6.14) 
If J 2 (t, q(t)) = ∅ using the same arguments as in Step 1, we can obtain that q(t + ) = q(t -). Moreover, since q(s) ∈ C(s) for all s ∈ [0, T ], q(t + ) ∈ T (t, q(t)). It follows that q(t + ) = q(t -) ∈ T (t, q(t)) and therefore we have q(t -) = q(t + ) = P T (t,q(t)) ( q(t -)).
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For the case where J 2 (t, q(t)) = ∅, we rewrite (6. R + ∇f i (t, •)(q(t)).

Proof. We can estimate the last two terms of (6.15) as follows We now will prove that the set S := i∈J 2 (t,q(t))

R + ∇f i (t, •)(q(t)) is a closed subset of R. Indeed, let {x n }, with x n = i∈J 2 (t,q(t))

x i,n ∇f i (t, •)(q(t)), be a sequence in S converging to some x * . By assumption A2, there exists v = v(t, q(t)) such that v = 1 and

x n , v = i∈J 2 (t,q(t))

x i,n ∇f i (t, •)(q(t)), v = i∈J 2 (t,q(t))

x i,n ∇f i (t, •)(q(t)), v ≤ (-µ) i∈J 2 (t,q(t))

x i,n .

From this it follows that 0 ≤ x i,n ≤ i∈J 2 (t,q(t))

x i,n ≤ 1 µ x n , -v ≤ 1 µ x n .
Since {x n } is a convergent sequence, there exists l > 0 such that for each i ∈ J 2 (t, q(t)) we have 0 ≤ x i,n < l for all n. Hence, there exists a subsequence of {x i,n }, denoted by {x i,n } and nonnegative number x * i such that for all i ∈ J 2 (t, q(t))

x i,n n →+∞ ----→ x * i .

Since the sequence {x n } converges to x * , the sequence {x n } also converges to x * . We have

x n -i∈J 2 (t,q(t))

x * i ∇f i (t, •)(q(t)) ≤ i∈J 2 (t,q(t))

|x i,nx * i | ∇f i (t, •)(q(t)) .

From this we obtain the limit

x * = i∈J 2 (t,q(t))

x * i ∇f i (t, •)(q(t)) ∈ S.

We have shown that k∈J(t,q) R + ∇f i (t, •)(q) is closed. Hence, by (6.16) we get the desired result.

Lemma 6.21. For all i ∈ J 2 (t, q(t)), one has ∂f i (•, q(t))(t) + ∇f i (t, •)(q(t)), q(t + ) = 0. λ n j ∇f j (t, •)(q(t)).

Since i / ∈ J(t n+1 , Q n+1 ) for all n ∈ {n α + 1, . . . , n + } by the definition of n α and the inclusion J(t n+1 , Q n+1 ) ⊂ J(t, q(t)), assumption A4 implies that the second term of the right-hand side of this last inequality is non-negative. Furthermore, the last term can be estimate as ∇f i (t, •)(q(t)), e 1e 2 ≥ -

n + n=nα+1 j∈J(t n+1 ,Q n+1 )
λ n j L 2 (|tt n+1 |+ Q n+1q(t) )

≥ -L 2 m r 4(κ + 1) + h α + qq Nα C([0,T ];R d ) × (Var(p N , [0, T ]) + F L 1 (0,T ;R d ) ).

Recalling that P n + = p N t + ρ 4(κ + 1)

, then, passing the right-hand side of (6.17) to the limit, we obtain lim ρ→0 + lim Nα→∞ ∂f i (•, q(t))(t) + ∇f i (t, •)(q(t)), P n + = ∂f i (•, q(t))(t)

+ ∇f i (t, •)(q(t)), p(t + ) ≥ 0.

This means that ∂f i (•, q(t))(t) + ∇f i (t, •)(q(t)), q(t + ) ≥ 0.

6. A Lipschitzian Vibro-impact Problem with Time-dependent Constraints

We now continue the proof of Proposition 6.19. We have q(t + ) ∈ T (t, q(t)) and q(t + )q(t -) ∈ -i∈J 2 (t,q(t))

R + ∇f i (t, •)(q(t)).

Hence there exist non-negative real numbers λi , for i ∈ J 2 (t, q(t)), such that q(t + )q(t -) = -i∈J 2 (t,q(t))

λi ∇f i (t, •)(q(t))

for all w ∈ T (t, q(t))

q(t -)q(t + ), wq(t + ) = i∈J 2 (t,q(t))

λi ∇f i (t, •)(q(t)), wq(t + ) .

But, using the previous proposition, for all w ∈ T (t, q(t)) and for all i ∈ J 2 (t, q(t)), we have ∇f i (t, •)(q(t)), wq(t + ) = (∂f i (•, q(t))(t) + ∇f i (t, •)(q(t)), w )

-(∂f i (•, q(t))(t) + ∇f i (t, •)(q(t)), q(t + ) )

= ∂f i (•, q(t))(t) + ∇f i (t, •)(q(t)), w ) ≤ 0.

Hence q(t -)q(t + ), wq(t + ) ≤ 0 ∀w ∈ T (t, q(t)).

As T (t, q(t)) is a closed convex subset of R d , the above is equivalent to q(t + ) = P T (t,q(t)) ( q(t -)).

The proof is complete.

Finally we observe that the limit trajectory satisfies the initial data. Indeed, with (6.10) we have immediately q(0) = q 0 . Moreover, p 0 ∈ T (0, q 0 ) we can prove that q(0 + ) = p 0 = P T (0,q 0 ) (p 0 ) by the same kind of computations. Indeed, if t = t 0 = 0, we may define ρ t 0 ∈ (0, min(ρ, T )) such that J(s, y) ⊂ J(t 0 , q(t 0 )) ∀s ∈ [t 0ρ t 0 , t 0 + ρ t 0 ] ∩ [0, T ] ∀y ∈ B(q(t 0 ), ρ t 0 ) and we define N t 0 (respectively, ρt 0 and Ñt 0 if J(t 0 , q(t 0 )) = ∅). in the same way as previously. Then, for all ρ ∈ (0, ρ t 0 ] and for all N > h t 0 (respectively, for all Titre thèse français: Systèmes Dynamiques Non-réguliers: Applications en Optimisation et aux Processus de Rafles Résumé : Dans cette thèse, nous étudions quelques classes de systèmes dynamiques non-réguliers. Plus précisément, les processus de rafles perturbés, les processus de rafles avec contraintes de vitesse ainsi que les problèmes de vibro-impact sur un ensemble de contraintes non-convexe dépendant du temps.

Le premier sujet porte sur l'existence et l'unicité de solutions pour les processus de rafles perturbés non-convexes. Dans le cadre adopté par Edmond et Thibault [Mathematical Programming 104 (2005), 347-373], nous étudions une classe de processus de rafles perturbés. Sous des hypothèses appropriées, nous obtenons deux théorèmes d'existence de solutions pour les processus de rafles perturbés, les ensembles de contraintes étant des ensembles de sous-niveaux prox-réguliers. Les résultats sont appliqués à l'analyse du comportement de certains procédés de rafles en mécanique unilatérale.

Le deuxième sujet porte sur certaines classes de processus de rafles avec vitesse dans un ensemble en mouvement. En plus de l'existence et l'unicité de la solution pour le cas d'un ensemble de contraintes convexe en mouvement, des résultats sur l'existence de la solution et la multiplicité de la solution où l'ensemble de contraintes est une union finie d'ensembles convexes disjoints sont également obtenus. Notre outil principal est un théorème sur la sensibilité des solutions des inéquations variationnelles paramétriques. Outre l'exigence traditionnelle selon laquelle l'ensemble de contraintes se déplace continuellement dans le sens de la distance de Hausdorff, nous utilisons intensivement une nouvelle hypothèse de type Lipschitz des multi-applications à valeurs dans l'ensemble de contraintes. Les résultats obtenus sont comparés à ceux existants et analysés à l'aide de plusieurs exemples. De plus, certaines propriétés de solutions de processus de rafles convexe avec des contraintes de vitesse sont également étudiées. En effet, la sensibilité des solutions par rapport à la valeur initiale, la limitation, la fermeture et la convexité de l'ensemble de solutions sont discutées en détail.

Le troisième sujet porte sur un problème de vibro-impact, qui est décrit sous la forme d'inclusion différentielle à mesure de second ordre. Grâce à une discrétisation de notre problème par l'algorithme de pas de temps, on construit une suite de solutions approchées qui converge vers une solution du problème considéré.

Mots clés : Processus de rafles, problème de vibro-impact, contrainte dépendante du temps, contrainte de vitesse, prox-régularité, ensemble de sous-niveaux, Propriétés de type Lipschitz des multi-applications.

Titre thèse anglais: Nonsmooth Dynamical Systems: Applications in

Optimization and Sweeping Processes Abstract: In this dissertation, we study some classes of nonsmooth dynamical systems. Namely, perturbed sweeping processes, sweeping processes with velocity constraints, and vibro-impact problems are investigated. The first topic is on the solution existence and uniqueness of nonconvex perturbed sweeping processes. In the setting adopted by Edmond and Thibault [Mathematical Programming 104 (2005), 347-373], we study a class of perturbed sweeping processes. Under suitable assumptions, we obtain two solution existence theorems for perturbed sweeping processes with the constraint sets being proxregular sublevel sets. The results are applied to analyzing the behavior of some concrete mechanical sweeping processes.

The second topic is on some classes of sweeping processes with velocity in a moving set. In addition to the solution existence and the solution uniqueness for the case of a moving convex constraint set, some results on the solution existence and the solution multiplicity where the constraint set is a finite union of disjoint convex sets are also obtained. Our main tool is a theorem on the solution sensitivity of parametric variational inequalities. Beside the traditional requirement that the constraint set moves continuously in the Hausdorff distance sense, we intensively use a new assumption on the local Lipschitz-likeness of the constraint set-valued mapping. The obtained results are compared with the existing ones and analyzed by several examples. In addition, some properties of solutions of convex sweeping processes with velocity constraints are also studied. Namely, the solution sensitivity with respect to the initial value, the boundedness, the closedness, and the convexity of the solution set are discussed in detail.

The third topic is on a vibro-impact problem, which is described in the form of second-order measure differential inclusion. We are able to discretize our problem by the time-stepping algorithm and construct a sequence of approximate solutions which is proved to converge to a solution of the problem in consideration.

Keywords: Sweeping process, vibro-impact problem, time-dependent constraint, velocity constraint, prox-regularity, sublevel set, Lipschitz-likeness

Example 2 . 6 .

 26 Let [a, b] ⊂ R be an interval. (i) A increasing or decreasing function f : [a, b] → R is of bounded variation.

Definition 2 . 7 .

 27 A function x : [a, b] → H is said to be absolutely continuous on [a, b] if for every ε > 0 there is δ > 0 such that k=1 x(b k )x(a k ) < ε for any finite system of pairwise disjoint subintervals (a k , b k ) ⊂ [a, b], k = 1, . . . , , with the total length k=1 (b ka k ) less than δ.

Fig. 2 . 1 :Fig. 2 . 2 :Proposition 2 . 8 .

 212228 Fig. 2.1: Discontinuous BV function in [-1, 1]

Proposition 2 .

 2 11. (See, e.g., [56, Theorem 1, p. 368]) If f is continuous on [a, b] then its Riemann integral exists and coincides with its Lebesgue integral. Remark 2.12. (See [86, Remarks 11.23(c)]) If f and g is Lebesgue integrable on

Theorem 2 .

 2 13. (See [56, Theorem 6, p. 340]) If a function f : [a, b] → R is absolutely continuous, then its derivative ḟ is Lebesgue integrable on [a, b] and f (x) = f (a) + x a ḟ (τ )dτ ∀x ∈ [a, b].

Proposition 2 .

 2 20. (See [43, Theorem 9, p. 49]) Let f be Bochner integrable on [0, 1] with respect to Lebesgue measure. Then, one has lim h→0 1 h t+h t f (t)f (τ ) dτ = 0 2.4. Sobolev Spaces for almost all t ∈ [0, 1]. Consequently, lim h→0 1 h t+h t f (τ )dτ = f (t) for almost all t ∈ [0, 1]. Remark 2.21. In the formulation of Proposition 2.20, one can replace [0, 1] by any real interval [a, b]. The proof remains the same.

Proposition 2 .

 2 24. (See[START_REF] Cazenave | An Introduction to Semilinear Evolution Equations[END_REF] Theorem 1.4.35]) Let p ∈ [1, ∞) and x ∈ L p (Ω, X).

Example 2 . 38 .

 238 The complement of an open ball in H with radius ρ is r-proxregular, where r = ρ. In particular, the complement of an open disk in R 2 is uniformly prox-regular.

Fig. 2 . 5 :Fig. 2 . 6 : 39 ΩFig. 2 . 7 :

 25263927 Fig. 2.5: Illustration for Example 2.38 in R 2

Theorem 3 . 1 .

 31 (See [49, Theorem 5.1]) Assume that a family of sets C(t), t ∈ I, in H satisfies the assumptions (H1) and (H2). Assume that G : I × H ⇒ H is a set-valued map with nonempty convex compact values such that (a) For any x ∈ H, G(•, x) has a measurable selection; (b) For all t ∈ I, G(t, •) is scalarly upper semicontinuous on H;

Lemma 3 . 5 .Lemma 3 . 6 .

 3536 (See [8, Theorem 4.1]) For all t ∈ [0, T ], the set C(t) is r-prox-regular with r = min{ρ, µ γ }. The set-valued map C : I ⇒ H is Lipschitz with respect to the Hausdorff distance, with the Lipschitz modulus ϑ, for any ϑ ≥ L 1 µ .

Fig. 3 . 1 : 10 Example 3 . 10 .

 3110310 Fig. 3.1: Examples of constraint sets in Example 3.10

3. 2 .

 2 Some Illustrative Examples ball in the time segment [0, T ] and has three phases: (a) Until the time instant t x 0 , the ball stays still; (b) In the time interval [t x 0 , 2|x 0 1 |+t x 0 ), the ball goes steadily along one wing of the boundary of C(0) with the speed √ 2

  The mechanical meanings of the motion modes (3.10)-(3.14) of the metal ball are similar to those explained in Example 3.11.

Fig. 3 . 2 :

 32 Fig. 3.2: Examples of constraint sets in Example 3.14

Definition 4 . 7 .

 47 (See [60, Definition 1.40] and [63, Definition 3.1]) One says that a set-valued mapping

Remark 4 . 11 .

 411 If (H2a) and (H3b) are satisfied, then exist positive constants ĉ1 , ĉ2 such that A 1 x, x ≥ ĉ1 x 2 -ĉ 2 for all t ∈ [0, T ] and x ∈ C(t). Indeed, let g : [0, T ] → R be a continuous function satisfying (5.1). Then, for all t ∈ [0, T ], one has d H (C(0), C(t)) ≤ |g(0)g(t)|≤ γ, where γ := max t∈[0,T ] |g(0)g(t)|. Suppose c 1 , c 2 are positive constants such that (4.12) holds. For any t ∈ [0, T ] and for every y ∈ C(t), since d(y, C(0)) ≤ |g(0)g(t)|≤ γ, we have for every ε > 0 there exists x ∈ C(0) with yx ≤ γ + ε. So, y = x + (γ + ε)w for some w ∈ B(0, 1).

Theorem 4 .

 4 [START_REF] Benyamini | Geometric Nonlinear Functional Analysis[END_REF]. (The moving constraint set is continuous in the Hausdorff distance sense; cf. [6, Theorem 1]) Suppose that H is separable and A 0 , A 1 are positive semidefinite. If the assumptions (H1), (H2a), (H3b) are satisfied, then (P) has at least one Lipschitz solution. If A 0 is coercive and (H1) is satisfied, then (P) has at most one solution.

  Clearly, w is absolutely continuous on [0, T ] and w(0) = 0. Since v(t) = z(t) for almost every t ∈ [0, T ], we have ẇ(t) = v(t)u(t) = 0 for almost every t ∈ [0, T ]. As w( t) = 0, there exists x * ∈ H such that x * , w( t) > 0. Consider the function ϕ(t) := x * , w(t) . Note that ϕ is absolutely continuous on [0, T ], ϕ(0) = 0, and φ(t) = x * , ẇ(t) = 0 for almost every t ∈ [0, T ]. Applying Theorem (2.13) for the scalar function ϕ, one has ϕ(t) = ϕ(0) + t 0 φ(τ )dτ = 0 for each t ∈ [0, T ].

Remark 4 . 16 .

 416 By the arguments in the final part of the above proof, we obtain the following useful facts on the Bochner integration: (a) If z : [0, T ] → X, where X is a Banach space, is a continuous function, then the formula u(t) = u 0 + t 0 z(τ )dτ defines a continuously differentiable function u : [0, T ] → X and we have u(t) = z(t) for all t ∈ [0, T ]. (b) Let u, v : [0, T ] → X, where X is a reflexive Banach space, be absolutely continuous functions. If u(0) = v(0) and u(t) = v(t) for a.e. t ∈ [0, T ], then u(t) = v(t) for all t ∈ [0, T ].

  where X is a Banach space, is a Bochner integrable function with respect to the Lebesgue measure, then the formula u(t) = u 0 + t 0 z(τ )dτ defines a function u : [0, T ] → X, which is Fréchet differentiable a.e. on [0, T ] and we have u(t) = z(t) for a.e. t ∈ [0, T ]. To prove (c), it suffices to put v(t) = u 0 + t 0 u(τ )dτ for t ∈ [0, T ], and apply the assertion (b). The fact that the function u(•) is Bochner integrable on [0, T ] is shown with detailed explanations in the proof of [43, Theorem 2, p. 107]. The assertion (d) follows from [43, Theorem 9, p. 49] which asserts that, under the assumptions made, lim h→0 1 h t+h t z(τ )dτ = z(t). For any Hilbert space H of dimension greater or equal 2, there exist set-valued mappings C : R ⇒ H with nonempty closed convex values, Lipschitz-like around every point in their graphs, which are not continuous in the Hausdorff distance sense on any interval [a, b] ⊂ R, where a < b. The forthcoming example justifies our observation.

Example

  

  For any interval [a, b] ⊂ R, where a < b, C is not continuous in the Hausdorff distance sense on [a, b]. Indeed, one has 0 + C(t) = C(t) for every t ∈ [a, b] and C(t) = C(t ) for any t, t ∈ [a, b] with t = t. Hence the condition 0 + C(t) = 0 + C(0) for every t ∈ [a, b], which is necessary for the continuity of C in the Hausdorff distance sense on [a, b], is violated. The next example is designed to show how Theorem 4.15 can be used for solving concrete problems. Example 4.18. Consider the sweeping process (P) with

  )v(τ ) 2 dτ ≥ 0, by (4.26) we have T 0 u(τ )v(τ ) 2 dτ = 0. Hence, by [56, Corollary of Theorem 5, pp. 299-300], u(t) = v(t) almost everywhere on [0, T ]. So, thanks to Remark 4.16(b), we obtain u(t) = v(t) for all t ∈ [0, T ]. Thus, (P) can have at most one solution.

Proof.

  It suffices to follow the proof scheme of Theorem 4.20 and use Theorem 4.15 instead of Theorem 4.13.

Remark 4 . 26 .

 426 In Examples 4.23 and 4.25, if the formula of C(t) is changed to

  Fig. 4.2: Illustration for Example 4.23

  Fig. 4.3: Illustration for Example 4.24

  The constraint sets C(t), t ∈ [0, T ], are nonempty, closed, and convex. Assumption (H1a). The constraint sets C(t), t ∈ [0, T ], are nonempty and convex. Assumption (H2a). The set-valued mapping C is continuous in the Hausdorff distance sense, i.e., there exists a continuous function g : [0, T ] → R such that d H (C(s), C(t)) ≤ |g(s)g(t)| ∀s, t ∈ [0, T ].(5.1)

Theorem 5 . 1 .

 51 (Cf.[START_REF] Adly | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities[END_REF] Theorem 5.2]) If A 0 is coercive and C(t) is nonempty and convex for every t ∈ [0, T ], then (P) has at most one solution.

t 0 ff 0 f

 00 (τ )dτ ≤ a exp(-bt) a.e. t ∈ [0, (τ )dτ = exp(-bs)f (s)b exp(-bs) s (τ )dτ.

  )u(τ ) dτ = 0. (5.25) Note that u k (t) = u k (0) + t 0 uk (τ )dτ and u(t) = u(0) + t 0 u(τ )dτ for every t ∈ [0, T ] and for all k ∈ N (see [9, Remark 3.4(c)]). Hence, from (5.24), (5.25), 5. Solution Properties of Convex Sweeping Processes with Velocity Constraints and Proposition 2.19 it follows that )u(s) ds= T u 0u(0) . So, u(0) = u 0 .It remains to prove that u satisfies the differential inclusion in (P).Setting C = {ϕ ∈ L 1 ([0, T ], H) | ϕ(t) ∈ C(t) a.e. t ∈ [0, T ]} , we will prove that C is closed in L 1 ([0, T ], H). Let {ϕ m } ⊂ D be a sequence converging strongly in L 1 ([0, T ],H) to a function ψ. Thanks to Lemma 5.13, we can find a subsequence {ϕ m j } of {ϕ m } such that ϕ m j (t) converges to ψ(t) for almost every t ∈ [0, T ]. Since ϕ m j (t) ∈ C(t) a.e. t ∈ [0, T ] and C(t) is closed, we have ψ(t) ∈ C(t) a.e. t ∈ [0, T ]. Hence, one has ψ ∈ C. This shows that C is closed in L 1 ([0, T ], H). Since {u k } ⊂ Sol(P, u 0 ), we have uk ∈ C for all k ∈ N. From (5.25) it follows that u ∈ C. So, u(t) ∈ C(t) for almost every t ∈ [0, T ]. As C(t) is convex for all

. 26 )

 26 For each k ∈ N, (5.26) holds for a.e. t ∈ [0, T ]. Thus, there exists a subset D k ⊂ [0, T ] having zero Lebesgue measure that (5.26) holds for every t in [0, T ]\D k . Putting D = k∈N D k , we see that D is a set of zero Lebesgue measure and (5.26) holds for all k ∈ N and for every t in [0, T ] \ D. For each t from [0, T ] \ D, passing the inequality in (5.26) to the limit yields

  Therefore, setting x(t) := v(t)u(t), t ∈ [0, T ], by (5.28) we havex(t) ∈ ker A 0 for all t ∈ [0, T ]. It is clear that x(0) = v(0)u(0) = 0 and ẋ(t) = v(t)u(t) ∈ C(t)u(t)for a.e. t ∈ [0, T ]. Since x(•) is an absolutely continuous function, from the condition A 0 x(t) = 0 for all t ∈ [0, T ] we deduce that A 0 ẋ(t) = 0 for a.e. t ∈ [0, T ]. Hence, ẋ ∈ K. We have thus shown that (5.29) is valid. The convexity and closedness of K can be easily verified by using the convexity and closedness of C(t) for all t ∈ [0, T ].

(6. 13 ) 6 .
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F

  (s)ds.

  Let f be Lipschitz continuous in a neighborhood of x in H and let v be any vector in H. Clarke's generalized directional derivative of f at x in the direction v, denoted by f 0 (x; v), is defined by

	2.5. Subgradients and Normal Cones
	Definition 2.27. f 0 (x; v) := lim sup
	y→x, t↓0
	Definition 2.26. For a closed convex set Ω ⊂ H, the normal cone to Ω at x ∈ H in the sense of convex analysis is N ∈ Ω.

Ω (x) := {x * ∈ H | x * , yx ≤ 0, ∀y ∈ Ω} if x ∈ Ω and ∅ if x /

  and only if f 0 (x; v) ≥ ξ, v for all v in R d .4. Letx k and ξ k be sequences in R d such that ξ k ∈ ∂ C f (x k ). Suppose that x k converges to x, and that ξ is a cluster point of ξ k . Then one has ξ ∈ ∂ C f (x).

	Proposition 2.35. (See [33, Proposition 2.2.4]) If f is Lipschitz continuous near
	x and ∂f (x) reduces to a singleton {ξ}, then f is strictly differentiable at x and ∇f (x) = ξ.
	Proposition 2.36. (See [33, Corollary 2 of Theorem 2.4.7]) Let Ω be given as
	follows:

  .7).

	Proposition 2.43. (See [21, Proposition 4.1, p. 366]) Let r > 0. Assume that
	Ω(t) is r-prox-regular for all t ∈ [0, T ]. Then, for a given 0 < δ < r the following statement holds: For any t ∈ [0, T ], x ∈ Ω(t) + (r -δ)B, x n → x, t n → t with t n ∈ [0, T ] and v n ∈ ∂ P d(x n , Ω(t n )) with v n w v, one has v ∈ ∂ P d(x, Ω(t)). Here w stands for the weak convergence in H.
	Lemma 2.40. (See [37, Theorem 3, p. 108]) Let Ω be a closed subset of H and r > 0. If Ω is r-prox-regular then, for any x, x ∈ Ω and v ∈ N P Ω (x), one has
	v, x -x ≤	1 2r	v x -x 2 .
	Proposition 2.41. (See [37, Proposition 7, p. 117]) If a nonempty closed set Ω is
	uniformly prox-regular, then N P Ω (x) = N Cl Ω (x). In particular, if Ω is a nonempty closed convex set, then N P Ω (x) coincides with the normal cone N Ω (x).
	Proposition 2.42. (See [21, Proposition 2.1, p. 313]) Let Ω be a nonempty closed
	subset of H and x ∈ Ω. The following assertions hold
	(i) ∂ P d(x, Ω) = N P Ω (x) ∩ B;		
	(ii) If Ω is r-prox-regular, then ∂ P d(x, Ω) is closed convex set in H.

  Remark 4.12. It can be shown that if the assumptions (H1) and (H2a) are satisfied then the recession cone[83, pp. 61-63] of C(t), which is denoted by 0 + C(t), is invariant with respect to t, i.e., 0 +

2 

, from (4.14) and (4.15), we arrive at the claimed result.

  .[START_REF] Bernicot | Stochastic perturbation of sweeping process and a convergence result for an associated numerical scheme[END_REF] Since the set C(t) is closed convex for every t ∈ [0, T ], by[START_REF] Bounkhel | Regularity Concepts in Nonsmooth Analysis[END_REF] Example 1.4, p. 24] we know that, for any x ∈ H, the proximal normal cone N P C(t) (x) coincides with the normal cone of C(t) at x in the sense of convex analysis. So, the condition(4.16) 

	yields	
	A 1 z(t) -f (t) ∈ -N P C(t) (z(t)).	(4.17)

  .2. The Case of Convex Constraint Sets one has A 1 u(t)f (t) ∈ -N P C(t) ( u(t)) if and only if u(t) = z(t). Since z(•) is continuous on [0, T ], the norm z(t) is bounded for every t ∈ [0, T ]. So, the ) dτ exists. By Proposition 2.17, z is Bochner integrable over the interval [0, T ] with respect to the Lebesgue measure. Setting for all t ∈ [0, T ]. Indeed, applying Proposition 2.20 and the arguments in its proof (recalling by Proposition 2.11 that the Lebesgue integral of a continuous real-valued function coincides with the Riemann integral), for all t ∈ (0, T ), the limit lim

		T					
	Lebesgue integral	0	z(τ u(t) = u 0 +	0	t	z(τ )dτ (∀t ∈ [0, T ]),	(4.18)
	we have u(t) = z(t) h→0	1 h	t	t+h	z(τ )dτ exists and it is equal to z(t). So,
	from the relation lim h→0	u(t + h) -u(t) h	= lim h→0	1 h

t+h t z(τ )dτ it follows that, for all t ∈ (0, T ), the derivative u(t) exists and one has u(t) = z(t). Moreover, for any t, s ∈ [0, T ] with s ≤ t,

  and C(t) = C 1 (t)∪C 2 (t) for t ∈ [0, T ]. According to Remark 4.6, C(t) is not uniformly prox-regular for any t ∈ [0, T ]. Meanwhile, each mapping C i , i ∈ {1, 2}, is Lipschitz-like around every point in its graph. To verify this property for C 1 , one can apply a suitable implicit function theorem for set-valued mappings (for instance,[START_REF] Rockafellar | Lipschitzian properties of multifunctions[END_REF] Theorem 3.2] and[START_REF] Yen | Stability of the solution set of perturbed nonsmooth inequality systems and application[END_REF] Theorem 3.3]). Since all the assumptions of Theorem 4.22 are satisfied, we can assert that (P) has an uncountable number of Lipschitz solutions, among them there are two continuously differentiable solutions u

  t), the fulfillment of (5.2) for almost every t ∈ [0, T ] implies that u(t) ∈ C(t) for almost every t ∈ [0, T ]. Therefore, the inclusions ẋ(t) ∈ C(t) and ẏ(t) ∈ C(t) hold for almost every t ∈ [0, T ]. So, we have

  Solution Properties of Convex Sweeping Processes with Velocity Constraints integrable. Integrating both sides of the inequality in (5.8), we obtain

	a.e. t ∈ [0, T ].	(5.8)

Since the function t → -A 0 (x(t)-y(t)), ẋ(t)-ẏ(t) is integrable (in the Lebesgue sense), from (5.8) we can deduce that the function t → α 1 ẋ(t)ẏ(t) 2 is also 5.

  T ]. This implies thatA 1 ẇ(t) + A 0 w(t)f (t) ∈ -N C(t) ( ẇ(t)) a.e. t ∈ [0, T ].

	a.e. t ∈ [0,	
	t)	
	for a.e. t ∈ [0, T ]. The latter means that z(t) := u(t) is a solution of the variational inequality
	F (z, t), y -z ≥ 0 ∀y ∈ C(t)	(5.27)
	for a.e. t ∈ [0, T ], where F (z, t) := A 1 z -f (t). By the assumed positive semidefiniteness of A 1 , one has
	F (z , t) -F (z, t), z -z = A 1 (z -z), z -z ≥ 0	
	for every z, z ∈ H. Hence, F (•, t) : H → H is a monotone operator. Moreover, since the linear operator A 1 is bounded, F (•, t) is continuous. Therefore, applying
	Minty's lemma [55, Lemma 1.5] for the monotone variational inequality (5.27),
	we can assert that the solution set of (5.27) is closed an convex for every t ∈ [0, T ]. Consequently, if u, v are two elements of Sol(P, u 0 ) and λ ∈ (0, 1) is given arbitrarily, (1 -λ) u(t) + λ v(t) is a solution of (5.27) for almost every t ∈ [0, T ]. Since t → (1-λ) u(t)+λ v(t) is Bochner integrable (see [32, Proposition 1.4.17]), the t
	formula w(t) := u 0 + function. Clearly, w(0) = u 0 . In addition, we have ẇ(t) = (1 -λ) u(t) + λ v(t) for [(1 -λ) u(τ ) + λ v(τ )] dτ defines an absolutely continuous 0 a.e. t ∈ [0, T ] (see, e.g., [9, Remark 3.4(d)]). So, w(t) is a solution of (5.27) for

  t) for a.e. t ∈ [0, T ]. As u(t) and v(t) belong to C(t) for almost every t ∈ [0, T ], the latter implies that

	A 1 u(t) + A 0 u(t) -f (t), u(t) -v(t) ≤ 0
	and
	A 1 v(t) + A 0 v(t) -f (t), v(t) -u(t) ≤ 0
	for a.e. t ∈ [0, T ]. From the last inequalities one gets
	A 1 ( u(t) -v(t)) + A 0 (u(t) -v(t)), u(t) -v(t) ≤ 0
	for a.e. t ∈ [0, T ]. As A 1 is positive semidefinite, it follows that
	A 0 (u(t) -v(t)), u(t) -v(t) ≤ 0
	for a.e. t ∈ [0, T ]. Integrating both sides of the last inequality and applying Remark 2.12 yield

  < (n --1)h ≤ t -ρ 4(κ + 1)< hn -< . . . < hn + By relation (6.8) we haveP n + -P n --1 = ∇f i (t n+1 , •)(Q n+1 ).Moreover, for all n ∈ {n -, . . . , n + } we have t n = nh ∈ t -

		≤ t +	ρ 4(κ + 1)	< (n + + 1)h < T -2h
	and	P n --1 = p N t -	ρ 4(κ + 1)	,	P n + = p N t +	ρ 4(κ + 1)	.
				n +				n +	m
				n=n -	hG n -	n=n -	i=1	λ n i ρ 4(κ + 1)	, t +	ρ 4(κ + 1)
	and	|t n+1 -t| ≤	ρ 4(κ + 1)	+ h ≤	ρ t 2(κ + 1)

  n=n -λ n i ∇f i (t n+1 , •)(Q n+1 ) -∇f i (t, •)(q(t)) .Before continuing the proof, we prove the following two technical lemmas.Lemma 6.20. We have p(t + )p(t -) ∈ -

				14) as follows
	p N t + = -i∈J 2 (t,q(t)) ρ 4(κ + 1) n + n=n -	ρ 4(κ + 1) n + i ∇f i (t, •)(q(t)) + -p N t -λ n n=n -	hG n	(6.15)
	-	i∈J 2 (t,q(t))	n +	

i∈J 2 (t,q(t))

  (∇f i (t n+1 , •)(Q n+1 ) -∇f i (t, •)(q(t))), using Lemma 6.15 and Remark 6.1(ii) we have N , [0, T ]) + F L 1 (0,T ;R d ) .

	n + n=n -	hG n ≤	t n + +1 tn -	F (s)ds ≤	t+ 4(κ + 1) ρ 4(κ + 1) t-ρ	+h	F (s)ds
	and, let ∆ n i (t) = λ n n + i i∈J 2 (t,q(t)) n=n -∆ n i (t) ≤	i∈J 2 (t,q(t))	n + n=n -	∆ n i (t)
							n +
		≤	i∈J 2 (t,q(t))	n=n -	λ n i L(|t n+1 -t|+ Q n+1 -q(t) )
		≤	i∈J 2 (t,q(t))	n + n=n -	λ n i L	h +	ρ 4(κ + 1)	+ q -q N C([0,T ];R d )
		≤ L	h +	ρ 4(κ + 1)	+ q -q N C([0,T ];R d )
	× Var(p From (6.15), it follows that m µ
	lim ρ→0 + lim N →∞	p N t + ρ 4(κ+1) -p N t -ρ 4(κ+1)

+ i∈J 2 (t,q(t)) n + n=n -λ n i ∇f i (t, •)(q(t)) = 0. (

6

.16) 6.1. An Existence Result for the Vibro-impact Problem

  6.1. An Existence Result for the Vibro-impact Problem we rewrite it as follows ∇f i (t, •)(q(t)), P n + -P nα = ∇f i (t, •)(q(t)), F (s)ds + ∇f i (t, •)(q(t)), e 2 + ∇f i (t, •)(q(t)), e 1e 2

				n +
				n=nα+1	hG n + ∇f i (t, •)(q(t)), e 1
		≥ -L	ρ 4(κ + 1) ρ 4(κ + 1) t+ t-
	where		
		n +	
	e 1 =	n=nα+1 j∈J(t n+1 ,Q n+1 )	λ n j ∇f j (t n+1 , •)(Q n+1 ),
		n +	
	e 2 =		
		n=nα+1 j∈J(t n+1 ,Q n+1 )
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nonconvex sweeping processes with velocity constraints. The key point here is that the problems in question admit multiple solutions.

Theorem 4.20. (The moving constraint set is bounded and continuous in the Hausdorff distance sense) Suppose H be separable and A 0 , A 1 are positive semidefinite. If every set-valued mapping C i , i ∈ I, satisfies the assumptions (H1), (H2a), and (H3a), then (P) has an uncountable number of Lipschitz solutions, among them there are m solutions u (i) , i ∈ I, with u(i) (t) ∈ C i (t) for almost every t ∈ [0, T ].

Proof. Let i ∈ I be chosen arbitrarily. Since C i satisfies the conditions (H1), (H2a), and (H3a), under the assumptions made, (P C i ) has a Lipschitz solution u (i) (•) by Theorem 4.13. If ui (t) ∈ C i (t), then the condition C i (t) ∩ C j (t) = ∅ for j ∈ I \ {i} and the closedness of C j (t), j ∈ I \ {i}, assure that there is a number ρ i (t) > 0 satisfying C j (t) ∩ B u(i) (t), ρ i (t) = ∅ for all j ∈ I \ {i}. So, one gets

Therefore, thanks to Remark 4.2 and the fact that the inclusion u(i) (t) ∈ C i (t) holds for almost every t ∈ [0, T ], we have N P C(t) ( u(i) (t)) = N P C(t)∩ B( u(i) (t),ρ i (t)) ( u(i) (t)) = N P C i (t)∩ B( u(i) (t),ρ i (t)) ( u(i) (t)) = N P C i (t) ( u(i) (t))

for almost every t ∈ [0, T ]. Since u (i) (•) is a Lipschitz solution of (P C i ), this yields

Hence, u (i) (•) is a Lipschitz solution of (P).

Next, fix a pair (i, j) ∈ I × I with i = j, and let u (i) be a Lipschitz solution of (P C i ), u (j) be a Lipschitz solution of (P C j ). Then both functions u (i) and u (j) are Lipschitz solutions of (P). These functions are distinct. Indeed, if u (i) (t) = u (j) (t) for all t ∈ [0, T ] then, since the inclusions u(i) (t) ∈ C i (t) and u(j) (t) ∈ C j (t) hold for a.e. t ∈ [0, T ], we find t ∈ (0, T ) such that the derivatives u(i) ( t) and u(j) ( t) exist, u(i) ( t) ∈ C i ( t) and u(j) ( t) ∈ C j ( t). This is impossible because u(i) ( t) = u(j) ( t) and C i ( t) ∩ C j ( t) = ∅. We have proved the existence of pairwise distinct Lipschitz solutions u (1) , . . . , u (m) of (P), for which one has u(i) (t) ∈ C i (t) for every i ∈ I and for almost every t ∈ [0, T ]. Remark 6.1. From assumption A1(i), it follows that (i) For each i ∈ {1, . . . , m}, for all t, t ∈ [0, T ] and q, q ∈ R d ,

(ii) for each i ∈ {1, . . . , m}, for all t, t ∈ [0, T ], q, q ∈ U ρ (C(t)),

Remark 6.2. From assumptions A1 and A2, it follows that for all i ∈ {1, . . . , m}, µ ≤ ∇f i (t, •)(q) ≤ L for all t ∈ [0, T ] and |∂f i (•, q)(t)|≤ L for all q ∈ U ρ (C(t)). In particular, ∇f i (t, •)(q) = 0 for all i ∈ {1, . . . , m}.

We are going to present some characterizations of the set of admissible positions C(t) and the Clarke's normal cone N Cl C(t) (q). Thanks to assumptions A1 and A2, the following proposition is valid. Proof. Fix a real number ϑ such that ϑ ≥ µ -1 L. Choose a subdivision

Then, take any i ∈ {1, . . . , m}. Put u(s, t) = ϑ|s -t|. For any x ∈ C(t), define y := x + u(s, t)v. Since t, s ∈ I k , we have yx = ϑ|s -t|< ρ. This proves that y ∈ int(U ρ (C(t))). By Lemma 2.4, for all λ ∈ [0, 1] we have

Now we consider the expression f

, by the mean value theorem there exists λ ∈ (0, 1) such that

Clearly, this leads to (6.4). We define the discrete velocities as

The sequence of approximate solutions q N is given by

For the existence of a solution to our problem we will need the following assumptions: Assumption A3. For all q ∈ R d , g(•, q) is measurable on [0, T ] and for all t ∈ [0, T ], g(t, •) is continuous on R d . Moreover, there exist L g > 0 and F ∈ L 1 (0, T ; R) such that for almost every t ∈ [0, T ] one has

Assumption A4. For all t ∈ [0, T ], q ∈ U ρ (C(t)), and for all j, k ∈ J(t, q) and j = k, one has ∇f j (t, •)(q), ∇f k (t, •)(q) ≥ 0.

Proposition 6.5. Under assumptions A1(i) and A2, for any t ∈ I and q ∈ C(t), the Clarke normal cone to C(t) at q can be computed by the formula

Proof. If q ∈ int(C(t)), then the Clarke tangent cone is equal to the whole space R d . Therefore, N Cl C(t) (q) = {0}. Now we consider the case q is on the boundary ∂C(t) of C(t). Then J(t, q) = ∅. From Assumption A2 it follows that {∇f i (t, •)(q) | i ∈ J(t, q)} is positively linearly independent. Hence, by Proposition 2.36 we obtain the desired formula for N Cl C(t) (q). From Proposition 6.5 we can deduce the next formula for computing the Lemma 6.8. For all n ∈ {0, . . . , N -1}, one has

Proof. By definition of the scheme, for all x ∈ C(t n+1 ), we have

By definition,

)), we can choose ε > 0 sufficiently small so that

Otherwise J(t n+1 , Q n+1 ) = ∅. We know that by (6.5), the Clarke's tangent cone of

So we need to show that

Take any w ∈ int(T Cl C(t n+1 ) (Q n+1 )). We will prove that Q n+1 + s w ∈ C(t n+1 ) for s > 0 sufficiently small. For any s ≥ 0, there exists q λ := Q n+1 + λs w with λ ∈ (0, 1), such that

For s small enough such that s w ≤ ρ, we have

), by (6.7) we get

Letting s → 0, one has

By assumption A2, there exits a unit vector

for all k ≥ 1, converges to v. We also see that

. This leads to

Remark 6.9. One can reformulate (6.6) as follows: For all n ∈ {0, . . . , N -1}, there exist nonnegative real numbers λ n i , i = 1, . . . , m such that λ n i = 0 for all i / ∈ J(t n+1 , Q n+1 ), and 

(6.9)

Proof. For all i ∈ J(t n+1 , Q n+1 ), we have

where

, by Lemma 2.4 we know that q n α i ∈ U ρ (C(t n+1 )). By assumption A1(ii), we obtain (6.9). Lemma 6.11. Let N > N 0 , where

Then, for all n ∈ {0, . . . , N -1}, we have

, where v(t n , Q n ) is the unit vector defined in assumption A2 for (t, x) = (t n , Q n ), i.e., for all i ∈ {1, . . . , m}, one has

Indeed, by Remark 6.2 and mean value theorem, we have

By mean value theorem, there exists

Since N ≥ 6T L µθ , q n α ∈ B(Q n , θ). By Lemma 6.6, we have

Therefore, for all i ∈ {1, . . . , m},

We have proved that

Thus, P n-1 -P n + hG n ≤ P n-1w + hG n . So, we get P n ≤ 2 P n-1 +2h G n + w , which yields the conclusion. Proposition 6.12. There exist N 1 > N 0 and κ > 0 such that

Proof. We now define two real sequences {κ k } k∈N and {τ k } k∈N * by setting κ 0 = p 0 +1,

It is easy to see that the series

Indeed, let n ∈ {0, . . . , N -1}. Suppose that

Then,

and by Lemma 6.11 we infer that

For all i ∈ J(t n+1 , Q n+1 ), by Lemma 6.10 one has

It follows that w 0 -P n ∈ T Cl C(t n+1 ) (Q n+1 ). Therefore,

This yields

Hence,

We have shown that P n ≤ κ 1 for all n ∈ {0, . . . , N } on the interval [0, Lemma 6.6 and assumption A2, we can define

Checking the Impact Law and the Initial Data

In this subsection, we will prove that the limit trajectory satisfies the impact law (P4) and the initial data (P5).

Lemma 6.17. If J(t, q) = ∅ then q(t + ) ∈ T (t, q(t)).

Proof. Let t ∈ I be chosen arbitrarily. Consider an index i such that f i (t, q(t)) = 0. We have

Dividing both sides by ε and letting ε → 0, we obtain

We have shown that q(t + ) ∈ T (t, q(t)).

Similarly, we can prove that q(t -) ∈ -T (t, q(t)).

Lemma 6.18. For each i ∈ J(t n+1 , Q n+1 ) and P n ≤ ρN 2T , one has

Proof.

and

Hence,

Proof. By Lemma 6.17, q(t + ) ∈ T (t, q(t)). Hence, for each i ∈ J 2 (t, q(t)), ∂f i (•, q(t))(t) + ∇f i (t, •)(q(t)), q(t + ) ≤ 0.

We only need to prove that ∂f i (•, q(t))(t) + ∇f i (t, •)(q(t)), q(t + ) ≥ 0; ∀i ∈ J 2 (t, q(t)).

Let i ∈ J 2 (t, q(t)) and ρ ∈ (0, ρt ]. By the definition of J 2 (t, q(t)) , there exists a subsequence {N α } α∈N strictly increasing to infinity such that, for all α ∈ N we have

and i ∈ J(t n+1 , Q n+1 ) .

By Lemma 6.18 we have

It follows that

.17) We can estimate the second and fourth terms of the right-hand side of (6.17) as follows

If n α = n + , the third term of the right-hand side of (6.17) vanishes. Otherwise, ρ ∈ (0, ρt 0 ] and for all N > Ñt 0 if J(t 0 , q(t 0 )) = ∅) we define

We get

h

Using the same computation as above, we obtain q(0 + ) = p 0 .

Remark 6.22. A similar existence result was proved in [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF]Theorem 4.6]. Let us mention that our proof does not require any second-order information or boundedness on the constraints f i such that (A3) and (A4) used in [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF]. In fact, the boundedness conditions on [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF] are not necessary in our analysis. Moreover, the condition (R q ) used in [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF] is replaced here by the weak uniform Slater condition A2. Our existence result is more specific to constraints inequalities, uses less regularity assumptions on the constraints f i and could be seen as complementary to [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF]Theorem 3.2]. In fact, Theorem 3.2 in [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF] gives a global existence result for second-order differential inclusions involving a general abstract prox-regular and Lipschitz continuous set C(t). When applying this result to the particular case of finite inequality constraints

two main questions arise: under which conditions on the data f i the set C(t) is Lipschitz continuous? and is prox-regular? It is well known that the sublevel of prox-regular functions may fail to be prox-regular and also the prox-regularity of sets is not stable under intersection (see [START_REF] Adly | Preservation of prox-regularity of sets with applications to constrained optimization[END_REF] for more details). Our aim here is to give some verifiable and practical conditions on the data f i to satisfy both the proxregularity and Lipschitz continuity properties of the set C(t) in (6.18). An other way to obtain Theorem 6.7 is to assume A1-A3 to prove via Propositions 6.3 and 6.4 the prox-regularity and the Lipschitz continuity of the set C(t) given in (6.18) and then apply the general Theorem 3.2 in [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF]. For the convenience of the reader, we prefer to give a direct and self-contained proof specific to constraints inequalities based on the time-stepping algorithm. We mention that this technique for proving existence result for nonsmooth second-order differential inclusion problems was also used in [START_REF] Bernicot | Existence results for nonsmooth secondorder differential inclusions, convergence result for a numerical scheme and application to the modeling of inelastic collisions[END_REF][START_REF] Bernicot | Stochastic perturbation of sweeping process and a convergence result for an associated numerical scheme[END_REF][START_REF] Paoli | A position-based time-stepping algorithm for vibro-impact problems with a moving set of constraints[END_REF]. The following example shows that the assumptions (A3) and (A4) in [START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF] could not be satisfied.

Example

Let t ∈ [0, 1] and for i ∈ {1, 2},

Consider the problem P with the set

and g(t, q) = 0. Observe that f i (•, •), i ∈ {1, 2} are differentiable and theirs derivatives are Lipschitz continuous with rank L = √ 5

2 . This shows that the assumption A1(i) holds. Note that ∂f 1 (•, q)(t) = ∂f 2 (•, q)(t) = -1 and

and

Assumption A1(ii) is always true for v = (0, 1) and µ = 1. We also have f i (t, •)(x, y) ≤ L and therefore, assumption A1(iii) holds. Assumption A2 is satisfied with the choice of γ = 1 2 . If J(t, q) = {1, 2} we have ∇f 1 (t, •)(q), ∇f 2 (t, •)(q) = -1 2 1 2 + (-1)(-1) = 3 4 ≥ 0.

Hence, assumption A4 holds. We have showed that assumptions A1-A4 are satisfied for the above problem. By Theorem 6.7, the problem has a solution. Note that the second order derivative with respect to the second variable q of f 1 (of f 2 ) does not exists at q = (0, y) (at q = (4, y), respectively) for any y ∈ R. Hence f 1 , f 2 / ∈ C 2 ([0, 1] × R 2 ; R). This shows that the assumptions proposed in [START_REF] Bernicot | Existence results for nonsmooth secondorder differential inclusions, convergence result for a numerical scheme and application to the modeling of inelastic collisions[END_REF][START_REF] Bernicot | Existence of solutions for second-order differential inclusions involving proximal normal cones[END_REF][START_REF] Paoli | A position-based time-stepping algorithm for vibro-impact problems with a moving set of constraints[END_REF] cannot be applied to ensure the existence solution for this example.

Conclusions

In this paper, we have presented some regularity conditions for the data to ensure the existence of solution for a class of vibro-impact problems. These conditions neither require the second-order differentiability nor convexity of constraint functions. Some assumptions relate to the uniformly prox-regularity of the set of admissible positions. We also give an example to illustrate the applicability of the provided assumptions.