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Thèse dirigée par: Samir ADLY et Khoa Son NGUYEN

JURY :

Hedy ATTOUCH Professeur, Université de Montpellier Président
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Chapter 1

Introduction

Nonsmooth dynamical systems (or NSDS for brevity) are systems with the

nonsmoothness appearing in the evolution. In real life, nonsmooth phenomenon

occurs frequently even in very simple models, for example, mechanical systems with

dry friction or impact, electric circuits with diodes, transistors or relay. Nowadays,

engineers and scientists are dealing with more and more complex models that

require a high level of precision. So, to get a more adequate and close predictions,

they need a better understanding of the mathematical models behind NSDS.

Due to numerous applications of NSDS, the study of these systems is crucial

and therefore, their analytical and numerical development is required. Recall that

in classical dynamical systems, the trajectories are always supposed to be smooth

or differentiable. However, since the trajectories in NSDS are not smooth, the

concepts of generalized gradients, generalized subdifferentials, tangent cones, and

normal cones play an important role. Fortunately, these concepts were thoroughly

studied in nonsmooth analysis, set-valued and variational analysis. We refer,

e.g., to the books of J.-P. Aubin and H. Frankowska [12], F. H. Clarke [33],

B. S. Mordukhovich [60, 61, 63], J.-P. Penot [81], R. T. Rockafellar and R. J.-

B. Wets [85], W. Schirotzek [89]. Day by day, this topic has been enriched by

the contributions of many authors and it still attracts considerable attention of

mathematicians.

Although NSDS appear in many real-life models (in physics, engineering,

biology, etc.), their mathematical formulation seems to be the same. One

usually writes NSDS in the form of differential inclusions or evolution variational

inequalities. Many aspects of NSDS, such as well-posedness, stability analysis,

control analysis, and numerical analysis, have been considered (see, e.g., [1, 3, 23]).

In many kinds of NSDS, the so-called “sweeping process” has played an important
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1.1. Perturbed Sweeping Processes

role thanks to its broad application in mechanics, physics, engineering, social

sciences (see, e.g., [1, 2, 2, 6, 23, 67, 68]). Pioneered by J. J. Moreau [65], sweeping

processes has been studied and developed intensively in the last 50 years (for more

detail, see Section 1.1 below).

Optimal control of sweeping processes has received great attentions from

researchers in recent years. This theory has many applications in the study of

crowd motions, robotics engineering, or traffic flows, etc. For the most important

results in this direction, one can refer to [24–29, 38–41, 51, 62, 64]. Note that

dynamical systems serve as constraints of an optimal control problem. To fully

describe the latter, one has to give an objective function, which can be an integral

function (for Lagrange problems), a real-valued function (for Mayer problems), or

the sum of both of them (for Bolza problems).

This dissertation is concerned with three main problems in NSDS. Namely,

perturbed sweeping processes, sweeping processes with velocity constraints, and

vibro-impact problems are discussed in detail.

Let us briefly introduce the dynamical systems studied in this dissertation and

our contributions in the next sections.

1.1 Perturbed Sweeping Processes

Let T > 0 be a real number and let C(t), t ∈ [0, T ], be nonempty closed subsets

of a real Hilbert space H. For any fixed x0 ∈ C(0), the differential inclusion−ẋ(t) ∈ NCl
C(t)(x(t)) a.e. t ∈ [0, T ],

x(0) = x0,
(1.1)

where NCl
Ω (z) denotes the Clarke normal cone [33, p. 51] to a closed set Ω at z, is

called a sweeping process. If C(t) is convex, then the Clarke normal cone coincides

with the normal cone in the sense of convex analysis [53, Proposition 2.4.4, p.

52]. An absolutely continuous function x(·) : [0, T ] → H which satisfies the two

conditions in (1.1) is said to be a solution of the sweeping process. Note that any

absolutely continuous function x(·) : [0, T ] → H is Fréchet differentiable almost

everywhere on [0, T ] with respect to the Lebesgue measure (see Proposition 2.8).

The model (1.1) under the assumption that C(t) is convex for each t ∈ [0, T ]

was introduced by Moreau in [65], where some fundamental results on solution

existence and uniqueness were obtained. In [66], the continuity of the solutions

has been studied when the convex-valued mapping C : [0, T ] ⇒ H undergoes small

2 Systèmes Dynamiques Non-réguliers



1. Introduction

perturbations.

In some subsequent papers, assumptions on the convexity of C(t) have been

relaxed. For examples, Colombo and Goncharov [36] obtained existence and

uniqueness theorem of the solution under the hypothesis that the sets C(t) are

weakly closed and ϕ-convex. Later, in a more general setting, Bounkhel [19] proved

some solution existence and uniqueness results. Namely, the author just assumed

the sets C(t) to be prox-regular (see the definition of prox-regularity of a set in

Definition 2.37).

Since the function x(·) in (1.1) can be interpreted as the trajectory of a certain

mechanical system, which is driven by an external force (the gravitational force,

a force generated by an electromagnetic field, a wind, etc.), several authors have

studied perturbed sweeping processes of the form−ẋ(t) ∈ NCl
C(t)(x(t)) + g(t, x(t)) a.e. t ∈ [0, T ]

x(0) = x0,
(1.2)

where the perturbation function g is either a single-valued or a multi-valued map

satisfying some regularity assumptions. Since NCl
C(t)(x(t)) = {0} if C(t) = H for all

t ∈ [0, T ], then the inclusion in (1.2) reduces to the ordinary differential equation

−ẋ(t) = g(t, x(t)), when g is single-valued. Hence, in that case, (1.2) is a Cauchy

problem. In the finite-dimensional setting, where H = Rn, there are two classical

theorems: the Peano theorem [50, Theorem 2.1, p. 10] (for the solution existence of

the Cauchy problem) and the Picard-Lindelöf theorem [50, Theorem 1.1, p. 8] (for

the existence and uniqueness of the solution of the Cauchy problem). Naturally,

one wishes to have some analogues of such theorems for problem (1.2).

Perturbed sweeping processes with the sets C(t), t ∈ [0, T ], being convex or

the complement of the interior of a convex set were studied by Castaing, Duc Ha

and Valadier [31] and several authors in references therein. For sweeping processes

with delay, where C(t), t ∈ [0, T ], are assumed to be compact convex sets, Castaing

and Monteiro Marques [30] obtained not only solution existence and uniqueness

results but also some topological properties of the solution sets.

Bounkhel and Thibault [21, Corollary 3.5] established new characterizations

of r-prox-regular sets in terms of the subdifferentials of the distance functions

associated with the sets. Using these characterizations, they proved [21,

Theorem 4.2] a solution existence theorem for nonconvex sweeping processes in

Hilbert spaces with multi-valued perturbation mappings.

For discontinuous perturbed sweeping processes in the infinite-dimensional

Systèmes Dynamiques Non-réguliers 3



1.2. Sweeping Processes with Velocity Constraints

setting, Edmond and Thibault [49, Theorem 3.1] studied solutions in the form

of functions of bounded variation, which might be discontinuous. As a corollary,

they gave [49, Theorem 5.1] sufficient condition for the existence of absolutely

continuous solutions. Later, Nacry [69] improved the results in [49] by considering

the perturbation of the normal cone in form of a sum of a single-valued mapping

and a set-valued mapping. Weakening the assumption on the movement of the

constraint sets in preceding works, Nacry and Thibault [70] obtained the existence

and uniqueness results of a solution for the perturbed sweeping process with

bounded truncated variation.

The solution existence and uniqueness for the sweeping processes with prox-

regular constraint sets C(t) with single-valued perturbations will be investigated

systematically in Chapter 3 of this dissertation. Based on the result on the

prox-regularity of nonsmooth sublevel sets of Adly, Nacry and Thibault [8,

Theorem 4.1], we prove the solution existence as well as the solution uniqueness

for a special case when C(t) are sublevel sets under some assumptions. To clarify

the applicability of the obtained results, we give some examples having clear

mechanical interpretations. Remarkably, the examples can only be solved by

invoking the uniqueness of the solution of (1.2).

1.2 Sweeping Processes with Velocity

Constraints

Studied firstly by Siddiqi and Manchanda [90] and Bounkhel [19] in some simple

forms, sweeping processes with velocity in a moving set encompass a class of

evolution variational inequalities, which have numerous applications in mechanics

and physics (see [7, p. 8] and [45, Section 6.4]). Adopting a more general setting

than the ones in [19, 90], Adly, Haddad, and Thibault [7, Theorem 5.1] obtained a

result on the solution existence of sweeping processes in separable Hilbert spaces

with velocity in a moving bounded convex set. Afterwards, Adly and Le [6,

Theorem 1] proved that a similar result can be established for the case where

the moving set is unbounded and convex. In addition, by constructing an example

(see [6, Example 1]), the authors showed that the sweeping process in question may

not have solutions if one of the assumptions of the existence theorem is violated.

Vilches and Nguyen [92, Section 5] have improved the result of [6] by weakening the

continuity condition of the moving constraint set. The solution existence in [92]

has been obtained by applying an existence result on evolution inclusions governed

4 Systèmes Dynamiques Non-réguliers



1. Introduction

by time-dependent maximal monotone operators with full domains.

The interested reader is referred to [6, pp. 840–842] for an application of the

solution existence results to irregular electrical circuits.

Adly and Haddad [4] have proved the equivalence between sweeping processes

with velocity constraints and quasistatic evolution variational inequalities.

Focusing on the case of convex constraint sets (the convex case), Jourani and

Vilches [54] have established the existence and uniqueness of the solution to the

sweeping process in a very general framework by equivalently transforming the

problem in question to an ordinary differential equation on a Hilbert space. The

obtained results have been applied to quasistatic evolution variational inequalities

and nonsmooth electrical circuits [54, Sections 7 and 8]. Let us mention that the

authors have also shown [54, p. 5169] that one solution existence result in [19]

can be proved by noting that the velocity vector at each time instance is uniquely

defined as the projection of the origin of the Hilbert space on the moving constraint

set. As a consequence, the corresponding results on the solution existence and

uniqueness in [90], which are applicable to the case of convex moving constraint

sets, also can be derived in this way.

Recently, Adly and Haddad [5] have obtained existence and uniqueness results

for sweeping processes with velocity constraints in the convex case where the

constraint set depends on both time and state.

Let H be a Hilbert space and C : [0, T ] ⇒ H be a set-valued mapping. Let

A0, A1 : H → H be bounded symmetric linear operators and f : [0, T ] → H be

a continuous mapping. Recall that a linear operator A : H → H is said to be

symmetric if 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ H. Following [6, 7], we consider the

sweeping process{
A1u̇(t) + A0u(t)− f(t) ∈ −N P

C(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0,
(1.3)

where N P
C(t)(u̇(t)) is the proximal normal cone (see, e.g., [20, p. 21] and Section 2.5

below) to C(t) at u̇(t). An absolutely continuous function u : [0, T ] → H is said

to be a solution of (1.3) if it satisfies the differential inclusion and the initial

value condition in the formulation of the problem. Since every Lipschitz function

u : [0, T ]→ H is absolutely continuous, it is desirable to have sufficient conditions

for (1.3) to have a Lipschitz continuous solution.

For concrete examples of sweeping processes with velocity in a moving set we

refer to [7, Examples 1 and 2] and [6, Example 1].

Systèmes Dynamiques Non-réguliers 5



1.2. Sweeping Processes with Velocity Constraints

The solution existence theorem in [7, Theorem 5.1] for (1.3) was obtained under

the following assumptions:

(a) C(t) is closed convex bounded for every t ∈ [0, T ];

(b) A1 is positive semidefinite, i.e., 〈A1x, x〉 ≥ 0 for all x ∈ H.

For the sweeping process (1.3), the authors of [6] showed that the next two

assumptions guarantee the solution existence:

(ã) C(t) is closed convex for every t ∈ [0, T ];

(b̃) A1 is positive semidefinite and there exist positive constants α, β such that

〈A1x, x〉 ≥ α‖x‖2−β for all x ∈ C(0).

It is worth to emphasize that the settings and results of [6, 7, 54, 92] require

the separability of the Hilbert space H.

As far as we know, nonconvex sweeping processes with velocity constraints

have only been addressed by Bounkhel [19], who assumed that A0 ≡ 0, A1 is the

identity operator, and the sets C(t) are uniformly prox-regular and contained in a

convex compact set for all t ∈ [0, T ].

The sweeping process (1.3) where C(t) is not necessarily convex for every

t ∈ [0, T ] will be studied in Chapter 4 of this dissertation. Firstly, by using a

result of Yen [94] on the solution sensitivity of parametric variational inequalities,

we investigate (1.3) in the case where the set-valued mapping t 7→ C(t), t ∈ [0, T ],

has nonempty closed convex values and is locally Lipschitz-like. Thanks to

this approach, the vital requirement of the separability of H in most of the

preceding works is no more required. Note also that a locally Lipschitz-like set-

valued mapping with nonempty closed convex values can be not continuous in the

Hausdorff distance sense. Secondly, we obtain several solution existence results for

the case where C(t) is a finite union of disjoint convex sets.

Assuming that the operator A0 in (1.3) is coercive and the constraint sets

are convex, the authors of [7] have given a condition for the solution uniqueness.

Herein, we will prove that (1.3) can have at most one solution if the operator

A1 is coercive. However, the coerciveness of both A0 and A1 does not imply the

solution uniqueness of (1.3) even in the case of a fixed nonconvex constraint set

that is compact, uniformly prox-regular, and connected (see Remark 4.26 below).

We think that the solution uniqueness of (1.3) deserves further investigations.

Due to the wide range of applications of (1.3), other properties of the solutions

of that problem are also of great interest. In Chapter 5 of this dissertation, we will

prove that if some sufficient conditions for the solution existence and uniqueness

are satisfied, then the solution is Lipschitz continuous on the initial value. Then, we

6 Systèmes Dynamiques Non-réguliers



1. Introduction

will show that the solution set is bounded if some assumptions used in the literature

are fulfilled. The solution set is not always closed in the space of continuous vector-

valued functions. However, it is a closed subset in an appropriate space. Two

sets of sufficient conditions for the convexity of the solution set will be obtained.

Interestingly, a sharp outer estimate for the solution set can be established. It is

worthy to emphasize that the just-mentioned properties of the solutions of (1.3)

are investigated here for the first time. To the best of our knowledge, analogous

results are not available in the literature.

1.3 Vibro-impact Problems

Vibro-impact systems are the dynamical multibody systems subjected to perfect

non-penetration conditions which generate vibrations and impacts. Because of

the impact experiences, the systems involve discontinuities in velocity and the

acceleration may contain Dirac masses. Hence, vibro-impact systems cannot

be modeled by ordinary differential equations, and one uses measure differential

inclusions (see, e.g., [59, 76]). More precisely, we consider a mechanical system

with a finite number of degrees of freedom, subjected to perfect time-dependent

unilateral constraints. Let I = [0, T ], T > 0, be a bounded time real interval and

d ∈ N∗. Let g : I × Rd → Rd and fi : I × Rd → R, i ∈ {1, . . . ,m} be some

functions and m ∈ N. We denote by q ∈ Rd the representative point of the system

in generalized coordinates and define the set of admissible positions at each instant

t ∈ I by

C(t) = {q ∈ Rd | fi(t, q) ≤ 0 ∀i ∈ {1, . . . ,m}}.

and the set of active constraints by J(t, q) = {i ∈ {1, . . . ,m} | fi(t, q) = 0}. The

vibro-impact system given by g and the functions fi is formally described by the

following second-order differential inclusion in Rd:

q̈(t)− g(t, q(t)) ∈ −NCl
C(t)(q(t)),

where NC(t)(q(t)) is the Clarke normal cone [33, p. 51] to C(t) at q(t), t ∈ I.

There are many existence results for the vibro-impact problems with time-

independent constraints (i.e., when the set of admissible positions does not depend

on time: C(t) = C for t ∈ [0, T ]). In the single-constraint case, the results have

been established by using the position-based algorithm in [77, 79, 80] and by using

the velocity-based algorithm in [46, 47, 57–59]. In the multi-constraint case, several

Systèmes Dynamiques Non-réguliers 7



1.4. Outline of the Dissertation

results have been obtained in [13, 71, 72, 74].

For vibro-impact problems with time-dependent constraints (i.e., when the set

of admissible positions C(t) depends on time), there are few solution existence

theorems. Let us list some important results related to this case that are known

in the literature:

Schatzman [88] established an existence result by considering a generalization

of the Yosida-type approximation proposed in [78].

Assuming that the set of admissible positions at any instant is defined as a

finite intersection of complements of convex sets, Bernicot and Lefebvre-Lepot [15]

obtained an existence theorem.

Paoli [73, 75] proposed a time-stepping approximation scheme for the problem

and proved its convergence, which gives as a by-product a global existence result

when the set of admissible positions at any instant is defined by a finite family of

C2 functions.

The existence of solutions for these second-order differential problems has been

studied by Bernicot and Venel [17] in a general and abstract framework. More

precisely, the set C(t) of admissible positions is assumed in [17] to be Lipschitz

continuous in the Hausdorff distance sense and satisfies an “admissibility” property

(see Section 2.3 [17]). The authors also considered a particular case, where

the constraints are C2 functions and have bounded second-order derivatives (see

Section 4 in [17]). The assumptions used in this chapter require less regularity on

the data of the problem and could be seen as a complementary result of Theorem

3.2 and an improvement of Theorem 4.6 in [17] (see Remark 6.22 for more details).

In Chapter 6 of the dissertation, we will obtain a solution existence theorem

for a class of vibro-impact problems where the moving constraints set are the

sublevel sets of a family of Lipschitz functions. Herein, we present four explicit

conditions for the constraints without requiring any second-order differentiability

information on the data involved in the constraints. To prove the convergence

of the approximate solutions, we use the time-stepping scheme, which was used

in some preceding works. To clarify the applicability of the obtained result, an

illustrative example will be given.

1.4 Outline of the Dissertation

The dissertation is organized as follows:

In Chapter 1, we give a short introduction and motivation for studying

8 Systèmes Dynamiques Non-réguliers
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of nonsmooth dynamical systems. Our focus is made on three well-known

models, namely, the perturbed sweeping process, sweeping process with velocity

constraints, and the vibro-impact problem.

In Chapter 2, we describe some notations and necessary background from

functional analysis and nonsmooth analysis which are crucial in this dissertation.

Chapter 3 studies nonconvex perturbed sweeping processes. This chapter is

based on the joint paper of N. K. Son, N. N. Thieu, and N. D. Yen “On the

solution existence for prox-regular perturbed sweeping processes”, which is available

as a preprint [arXiv:2108.07515v1] and was accepted for publication in Journal of

Nonlinear and Variational Analysis.

Chapter 4 investigates the solution existence and the solution uniqueness of

sweeping processes with velocity constraints. This chapter is based on the paper

“Some classes of nonconvex sweeping processes with velocity constraints” of S.

Adly, N. N. Thieu, and N. D. Yen, which was submitted for publication.

Chapter 5 establishes some fundamental properties of the solutions of sweeping

processes with velocity constraints. This chapter is based of the paper “Solution

properties of convex sweeping processes with velocity constraints” by N. N. Thieu,

which is available as a preprint [arXiv:2109.06556v1] and submitted for publication.

Chapter 6 is devoted to a class of vibro-impact problems where the moving

constraints set are the sublevel sets of a family of Lipschitz functions. This

chapter is based on the paper “Existence of solutions for a Lipschitzian vibro-

impact problem with time-dependent constraints” of S. Adly and N. N. Thieu,

which has been submitted for publication.

Systèmes Dynamiques Non-réguliers 9
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Chapter 2

Mathematical Background

The present chapter recalls some notations and results from functional analysis,

nonsmooth analysis which are mostly taken from the monographs [22, 33, 43, 56,

86, 87].

2.1 Some Notations and Elementary Concepts

By N∗ we denote the set of positive integers. The notation [a, b] (resp., (a, b))

stands for a closed interval (resp., an open interval) in the real line R. Throughout

this paper, let H be a real Hilbert space equipped with the scalar product 〈·, ·〉
and the associated norm ‖·‖. The open ball (resp., closed ball) in H with center x

and radius r > 0 is denoted by BH(x, r) (resp., B̄H(x, r)). If the space is itself

clear by the context, we will omit the subscripts in these notations. The closure,

the interior, the boundary, and the closed convex hull of a set Ω ⊂ H are denoted

respectively by cl(Ω), int(Ω), ∂Ω, and co(Ω). The distance from x to Ω is d(x,Ω) :=

inf
y∈Ω
‖x−y‖. The projection of a point x ∈ H onto Ω is defined by PΩ(x) = {y ∈ Ω |

d(x,Ω) = ‖x − y‖}. For any extended real number r ∈ (0,∞], the r-enlargement

of Ω, denoted by Ur(Ω), is defined by Ur(Ω) = {x ∈ H | d(x,Ω) < r}. The Banach

space of continuous functions from [a, b] to H is denoted by C0([a, b],H). The norm

is given by ‖x‖C0= max
t∈[a,b]
‖x(t)‖.

Definition 2.1. The Hausdorff distance between two subsets Ω1, Ω2 of H is given

by

dH(Ω1,Ω2) = max { sup
x∈Ω1

d(x,Ω2), sup
y∈Ω2

d(y,Ω1)}.

Definition 2.2. (See [18, Section 3.3.2, p. 193]) A function Q : H → R is said to be

a quadratic form on H if there exists a bilinear symmetric function B : H×H → R

11



2.2. Vector-valued Functions

such that Q(x) = B(x, x) for all x ∈ H. A quadratic form Q is said to be

nonnegative if Q(x) ≥ 0 for all x ∈ H.

Proposition 2.3. (See [18, Proposition 3.71, p. 193]) A quadratic form Q(·) is

convex on H if and only if it is nonnegative.

Lemma 2.4. (See [8, Lemma 3.2]) Let C ⊂ Rd and x, y ∈ C with ‖x − y‖< 2ρ,

where ρ ∈ (0,+∞]. Then, for any τ ∈ [0, 1] one has x+ τ(y − x) ∈ Uρ(C).

2.2 Vector-valued Functions

Definition 2.5. The total variation of a function f : [a, b] → H on [a, b] is the

nonnegative extended real number

Var(f, [a, b]) = sup
n∑
i=1

‖f(xi)− f(xi−1)‖,

where the supremum is taken over all finite partitions a = x0 < x1 < · · · < xn = b

of [a, b]. If Var(f, [a, b]) < +∞, then f is said to be of bounded variation on [a, b].

The space of all functions of bounded variation from [0, T ] to H is denoted by

BV([0, T ];H).

Example 2.6. Let [a, b] ⊂ R be an interval.

(i) A increasing or decreasing function f : [a, b]→ R is of bounded variation.

(ii) The difference of two monotonic functions is a function of bounded variation.

(iii) Suppose that A1, . . . , Ak are disjoint intervals of [a, b], whose union is [a, b].

The formula f(x) = αi for x ∈ Ai, where α1, . . . , αk are real numbers, defines

a step function, which is a function of bounded variation.

(iv) The function

f(x) =

xα sin 1
xβ

if 0 < x ≤ 1

0 if x = 0.

is of bounded variation on [0, 1] if α > β and not if α ≤ β; see [56, p. 331].

Definition 2.7. A function x : [a, b] → H is said to be absolutely continuous on

[a, b] if for every ε > 0 there is δ > 0 such that
∑`

k=1‖x(bk) − x(ak)‖< ε for any

finite system of pairwise disjoint subintervals (ak, bk) ⊂ [a, b], k = 1, . . . , `, with

the total length
∑`

k=1(bk − ak) less than δ.
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x

y

0

f(x) = sign(x)

Fig. 2.1: Discontinuous BV function
in [−1, 1]

f(x) = x sin( 1
x
)

Fig. 2.2: Unbounded variation
function in [0, 1]

Arguing similarly as [56, Theorem 2, p. 337] (it suffices to replace the absolute

value of real numbers by the norm of vectors in H), one can show that any

absolutely continuous function [a, b]→ H is a function of bounded variation.

Proofs of the next proposition can be found in the books by Benyamini and

Lindenstrauss [14, Corollary 5.12 and Theorem 5.21] or by Diestel and Uhl [43,

Corollary 13 of Chapter 3, Theorem 2 on p. 107, and Section 6 of Chapter VII].

Proposition 2.8. Let f : [a, b]→ H be absolutely continuous. Then, f is Fréchet

differentiable almost everywhere on [a, b] with respect to the Lebesgue measure of

the segment.

Theorem 2.9. (See [11, Theorem 4, p. 13]) Let {xk(·)} be a sequence of absolutely

continuous functions from an interval I ⊂ R to a Banach space X satisfying

(i) For all t ∈ I, {xk(t)}k is a relatively compact subset of X;

(ii) There exists a positive function c(·) ∈ L1(I,R) such that ‖ẋk(t)‖≤ c(·) for

almost all t ∈ I.

Then, there exists a subsequence, still denoted by {xk(·)}, converging to an

absolutely continuous function x(·) from I to X in the sense that

(i) xk(·) converges uniformly to x(·) over compact subsets of I;

(ii) ẋk(·) converges weakly to ẋ(·) in L1(I,X), i.e.,

lim
k→∞

∫
I

ϕ(τ)ẋk(τ)dτ =

∫
I

ϕ(τ)ẋ(τ)dτ (∀ϕ ∈ L∞(I,X)).

Systèmes Dynamiques Non-réguliers 13
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Definition 2.10. A function f : Y → H defined on Y ⊂ Rn is said to be (globally)

Lipschitz continuous with modulus L > 0 on Y if ‖f(y) − f(y′)‖≤ L‖y − y′‖ for

all y, y′ ∈ Y . If this inequality holds for all y, y′ in some neighborhood of x ∈ H
then f is said to be locally Lipschitz in the neighborhood of x.

Clearly, any Lipschitz continuous function is an absolutely continuous function.

2.3 Measures and Integrals

First, we begin with some well-known facts about Riemann integral and Lebesgue

integral. We denote by L1(Ω) the space of Lebesgue integrable functions from Ω

to R. For p ∈ (1,∞), let Lp(Ω,R) denote the space of all measurable functions

from Ω to R satisfying |f |p∈ L1(Ω,R).

Proposition 2.11. (See, e.g., [56, Theorem 1, p. 368]) If f is continuous on [a, b]

then its Riemann integral exists and coincides with its Lebesgue integral.

Remark 2.12. (See [86, Remarks 11.23(c)]) If f and g is Lebesgue integrable on

E and if f(x) ≤ g(x) for x ∈ E, then

∫
E

f(τ)dτ ≤
∫
E

g(τ)dτ .

Theorem 2.13. (See [56, Theorem 6, p. 340]) If a function f : [a, b] → R is

absolutely continuous, then its derivative ḟ is Lebesgue integrable on [a, b] and

f(x) = f(a) +

∫ x

a

ḟ(τ)dτ ∀x ∈ [a, b].

Proposition 2.14. (Hölder’s inequality, see, e.g., [22, Theorem 4.6] or [56, p. 385])

Let p ∈ [1,∞], f ∈ Lp(Ω,R) and g ∈ Lq(Ω,R) with 1
p

+ 1
q

= 1. Then,

∫
Ω

|f(τ)g(τ)|dτ ≤
(∫

Ω

|f(τ)|pdτ
) 1

p

+

(∫
Ω

|g(τ)|qdτ
) 1

q

.

Proposition 2.15. (See [56, Theorem 8, p. 324]) If f ∈ L1([a, b],R), then
d

dx

(∫ x

a

f(τ)dτ

)
= f(x) for almost every x ∈ [a, b].

We now recall the definition of Bochner integral.

Definition 2.16. (See [43, pp. 44–45]) Let (Ω,Σ, µ) be a finite measurable space

and X be a Banach space. A µ-measurable function f : Ω→ X is called Bochner

integrable if there exists a sequence of simple functions {fk} such that

lim
k→∞

∫
Ω

‖fk(ω)− f(ω)‖Xdµ = 0.
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In this case,

∫
E

f(ω)dµ is defined for each E ∈ Σ by

∫
E

f(ω)dµ = lim
k→∞

∫
E

fk(ω)dµ,

where

∫
E

fk(ω)dµ is defined in an obvious way.

As noted in [43, p. 45], the limit in Definition 2.16 exists and is independent

of the defining sequence {fk}.
Next, we give an characterization of Bochner integrable functions.

Proposition 2.17. (See [43, Theorem 2, p. 45]) A µ-measurable function f : Ω→
X is Bochner integrable if and only if

∫
Ω

‖f(ω)‖Xdµ <∞.

The dominated convergence theorem for Bochner integration is stated below.

Theorem 2.18. (Dominated Convergence Theorem, see [43, Theorem 3, p. 45])

Let {fk} be a sequence of Bochner integrable on Ω. If lim
k→∞

fk = f in µ measure,

i.e., lim
k→∞

µ{ω ∈ Ω | ‖fk(ω) − f(ω)‖≥ ε} = 0 for every ε > 0, and if there

exists a real-valued Lebesgue integrable function g on Ω with ‖fk‖≤ g µ-almost

everywhere, then f is Bochner integrable on Ω and lim
k→∞

∫
E

fk(ω)dµ =

∫
E

f(ω)dµ

for each E ∈ Σ.

Proposition 2.19. (See [43, Theorem 4, p. 46]) If f is Bochner integrable in µ

measure then

(a) lim
µ(E)→0

∫
E

f(ω)dµ = 0;

(b)

∥∥∥∥∫
E

f(ω)dµ

∥∥∥∥ ≤ ∫
E

‖f(ω)‖dµ for all E ∈ Σ;

(c) if {Ek} is a sequence of pairwise disjoint sets in Σ and E :=
∞⋃
k=1

Ek then

∫
E

f(ω)dµ =
∞∑
k=1

∫
Ek

f(ω)dµ,

where the sum on the right-hand side is absolutely convergent.

Next proposition gives an important result on Bochner integrable functions

with respect to the Lebesgue measure.

Proposition 2.20. (See [43, Theorem 9, p. 49]) Let f be Bochner integrable on

[0, 1] with respect to Lebesgue measure. Then, one has

lim
h→0

1

h

∫ t+h

t

‖f(t)− f(τ)‖dτ = 0
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for almost all t ∈ [0, 1]. Consequently, lim
h→0

1

h

∫ t+h

t

f(τ)dτ = f(t) for almost all

t ∈ [0, 1].

Remark 2.21. In the formulation of Proposition 2.20, one can replace [0, 1] by

any real interval [a, b]. The proof remains the same.

If 1 ≤ p < ∞, the Bochner space Lp(Ω, X) consists of all µ-measurable

functions f : Ω→ X satisfying

‖f‖p=
(∫

Ω

‖f(ω)‖pXdµ
)1/p

<∞

(see, e.g., [43, pp. 49–50]). For more details on Bochner integration, we refer to [97,

p. 132], [43, Chapter II], and [22, p. 116].

Some useful facts on Bochner integration of absolutely continuous functions

will be discussed further in Section 4.2 (see Remark 4.16).

2.4 Sobolev Spaces

Now, we recall the definition and some properties of Sobolev spaces of vector-

valued functions. Let Ω be an open subset of R and X be a Banach space. The

space L1
loc(Ω, X) of locally integrable functions is defined as follows:

L1
loc(Ω, X) :=

{
f : Ω→ X |

∫
K

‖f(τ)‖dτ <∞, ∀K ⊂ Ω, K is compact

}
.

Definition 2.22. Let f ∈ Lp(Ω, X), where p ∈ [1,∞), a function f̃ ∈ L1
loc(Ω, X)

is said to be a weak derivative of f if∫
Ω

ġ(τ)f(τ)dτ = −
∫

Ω

g(τ)f̃(τ)dτ,

for all g ∈ C∞0 (Ω), where C∞0 (Ω) the space of all real-valued functions that are

infinitely differentiable and have compact support in Ω.

The weak derivative of f ∈ Lp(Ω, X) is uniquely defined up to a set of measure

zero (see [98, Proposition 23.18]).

Definition 2.23. (See, e.g, [32]) Let p ∈ [1,+∞), Ω be an open subset of R, and

X be a Banach space. The Sobolev space W 1,p(Ω, X) is the set of all functions
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f ∈ Lp(Ω, X) that admit a weak derivative on Ω satisfying ḟ ∈ Lp(Ω, X). This

space is equipped with the norm

‖f‖W 1,p=

(∫
Ω

‖f‖pdµ
) 1

p

+

(∫
Ω

‖ḟ‖pdµ
) 1

p

.

From the above definition, we see that if a sequence {fk} converges strongly to

f in W 1,p(Ω, X), then fk (resp., ḟk) converges strongly to f (resp., ḟ) in Lp(Ω, X).

It is well known [32, Proposition 1.4.34] that W 1,p(Ω, X) is a Banach space for all

p ∈ [1,+∞).

Proposition 2.24. (See [32, Theorem 1.4.35]) Let p ∈ [1,∞) and x ∈ Lp(Ω, X).

The following conditions are equivalent

(a) x ∈ W 1,p(Ω, X).

(b) x is absolutely continuous, differentiable almost everywhere and ẋ ∈
Lp(Ω, X).

(c) there exists a function y ∈ Lp(Ω, X) such that for almost every t0, t ∈ Ω, one

has

x(t) = x(t0) +

∫ t

t0

y(τ)dτ.

Remark 2.25. For Ω = (0, T ), if x : Ω → H is an absolutely continuous

function, then it is a simple matter to prove that the limits lim
t→0+

x(t) and lim
t→T−

x(t)

exist. So, setting x(0) = lim
t→0+

x(t) and x(T ) = lim
t→T−

x(t) gives an absolutely

continuous function defined on [0, T ]. Therefore, by Proposition 2.24 one can

identify the Sobolev space W 1,1(Ω, X), where Ω = (0, T ), with the space of

absolutely continuous functions u : [0, T ]→ H equipped with the norm

‖u‖W 1,1=

∫ T

0

‖u(τ)‖dτ +

∫ T

0

‖u̇(τ)‖dτ. (2.1)

We use this identification and write W 1,1([0, T ],H) for W 1,1((0, T ),H).

2.5 Subgradients and Normal Cones

Definition 2.26. For a closed convex set Ω ⊂ H, the normal cone to Ω at x ∈ H
in the sense of convex analysis is NΩ(x) := {x∗ ∈ H | 〈x∗, y − x〉 ≤ 0, ∀y ∈ Ω} if

x ∈ Ω and ∅ if x /∈ Ω.
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Definition 2.27. Let f be Lipschitz continuous in a neighborhood of x in H and

let v be any vector in H. Clarke’s generalized directional derivative of f at x in

the direction v, denoted by f 0(x; v), is defined by

f 0(x; v) := lim sup
y→x, t↓0

f(y + tv)− f(y)

t
.

Definition 2.28. The Clarke subgradient of f at x is a vector ξ ∈ H satisfying

〈ξ, v〉 ≤ f 0(x; v) for all v ∈ H.

The set of all the Clarke subgradient of f at x is called the Clarke subdifferential

of f at x and denoted by ∂Cf(x).

Let Ω be a closed subset of H and x ∈ Ω.

Definition 2.29. The set T ClΩ (x) := {v ∈ H | d0(x,Ω; v) = 0} is called the Clarke

tangent cone to Ω at x. The Clarke normal cone to Ω at x is defined by polarity

with T ClΩ (x). Namely, one has NCl
Ω (x) = {x∗ ∈ H | 〈x∗, v〉 ≤ 0 ∀v ∈ T ClΩ (x)}.

Definition 2.30. (See, e.g., [20, p. 21]) The proximal normal cone N P
Ω (x) to

Ω ⊂ H at x ∈ Ω is defined by setting

N P
Ω (x) = {ξ ∈ H | ∃α > 0 such that x ∈ PΩ(x+ αξ)} .

Definition 2.31. A vector v ∈ H is a proximal subgradient of a function f : H →
R at x if there exist a real number σ ≥ 0 and a neighborhood U of x such that

〈v, x′ − x〉 ≤ f(x′)− f(x) + σ‖x′ − x‖2,

for all x′ ∈ U .

Proposition 2.32. For any x ∈ Ω, one has

N P
Ω (x) = {v ∈ H | ∃t > 0 : d(x+ tv,Ω) = t‖v‖}.

Proof. The proof follows from [20, Proposition 1.7, p. 22].

Example 2.33. Let Ω = {(x1, x2) ∈ R2 | x2 ≤ |x1|}. The proximal normal cone

to Ω at (0, 0) is N P
Ω (0, 0) = {0, 0}.

The following propositions are specifications of some assertions in [33].
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x1

x2

0

N P
Ω (0, 0)

N Cl
Ω (0, 0)

Ω

Fig. 2.3: Normal cones of Ω = {(x1, x2) ∈ R2 | x2 ≤ |x1|} at (0, 0)

Proposition 2.34. (See [33, Propositions 2.1.2 and 2.1.5]) Let f be Lipschitz

continuous with modulus L in a neighborhood of x. Then,

1. ∂Cf(x) is a nonempty, convex, compact subset of Rd and ‖ξ‖≤ L for every

ξ in ∂Cf(x).

2. For every v in Rd, one has f 0(x; v) = max {〈ξ, v〉 | ξ ∈ ∂Cf(x)}.

3. ξ ∈ ∂Cf(x) if and only if f 0(x; v) ≥ 〈ξ, v〉 for all v in Rd.

4. Let xk and ξk be sequences in Rd such that ξk ∈ ∂Cf(xk). Suppose that xk

converges to x, and that ξ is a cluster point of ξk. Then one has ξ ∈ ∂Cf(x).

Proposition 2.35. (See [33, Proposition 2.2.4]) If f is Lipschitz continuous near

x and ∂f(x) reduces to a singleton {ξ}, then f is strictly differentiable at x and

∇f(x) = ξ.

Proposition 2.36. (See [33, Corollary 2 of Theorem 2.4.7]) Let Ω be given as

follows:

Ω = {y ∈ Rd | f1(y) ≤ 0, . . . , fm(y) ≤ 0},

and let x be such that fi(x) = 0 for i = 1, . . . ,m. Then, if each fi is differentiable

at x and if ∇fi(x), i = 1, . . . ,m, are positively linearly independent, then

NCl
Ω (x) =

{ m∑
i=1

λi∇fi(x) | λi ≥ 0, i = 1, . . . ,m
}
.
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Ω
Ω

x1

x2

Fig. 2.4: Any convex set is uniformly prox-regular

2.6 Prox-regularity of Sets

Definition 2.37. (See [21]) For some r > 0, a nonempty closed set Ω ⊂ H is

called r-prox-regular if for all x ∈ Ω, for all t ∈ (0, r) and for all ξ ∈ N P
Ω (x) such

that ‖ξ‖= 1, one has x ∈ PΩ(x+ tξ). One says that Ω is uniformly prox-regular if

it is r-prox-regular for some constant r > 0.

It is a simple matter to verify that every nonempty closed convex set is r-prox-

regular for any r > 0.

Example 2.38. The complement of an open ball in H with radius ρ is r-prox-

regular, where r = ρ. In particular, the complement of an open disk in R2 is

uniformly prox-regular.

More examples of uniformly prox-regular sets will be given and discussed in

Chapter 4. The interested reader is referred to [8, 21, 37] for other properties, as

well as various characterizations, of uniformly prox-regular sets.

Example 2.39. The two-dimensional set Ω in the Fig. 2.6 is not uniformly prox-

regular. Indeed, suppose to the contrary that there is r > 0 such that Ω is r-prox-

regular. Note that the bisector x0c divides the angle âx0b into two angles. The

projection on Ω of any point in the angle âx0c, which does not lie in the bisector

x0c, is a singleton consisting of a point belonging to the ray x0a. Similarly, the

projection on Ω of any point in the angle b̂x0c, which does not lie in the bisector

x0c, is a singleton consisting of a point belonging to the ray x0b. For any point

x 6= x0 in the ray x0b, the proximal normal cone to Ω at x is the ray from x which

is perpendicular to the half-line x0b and points inward to the angle âx0b. Denote
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Ω

ρ

Fig. 2.5: Illustration for Example 2.38 in R2

Ω

x0
x

yx

a

b

c

Fig. 2.6: Illustration for Example 2.39
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Ω

(a)

Ω

(b)

Ω

(c)

Fig. 2.7: Examples of not uniformly prox-regular sets in R2

by yx the intersection of that ray and the bisector x0c of the angle âx0b. We see

that only the points in the segment [yx, x] on Ω have x as their projections and

the length of the segment [yx, x] tends to 0 as x approaches x0. Take any x 6= x0

such that ‖yx − x‖< r
2
. As the proximal normal cone to Ω at x is a ray, the

proximal gradient ξ ∈ N P
Ω (x) with ‖ξ‖= 1 is unique. For all t ∈

(
r
2
, r
)
, we have

‖x + tξ − x‖> r
2
> ‖yx − x‖. So, x + tξ does not belong to the segment [yx, x].

Therefore, x /∈ PΩ(x+ tξ) for all t ∈
(
r
2
, r
)
, which is a contradiction. We have thus

proved the above claim.

Arguing as above, we can prove that any set in R2 having a corner with an

acute angle, a right angle, or an obtuse angle is not uniformly prox-regular (see

Fig. 2.7).

Lemma 2.40. (See [37, Theorem 3, p. 108]) Let Ω be a closed subset of H and

r > 0. If Ω is r-prox-regular then, for any x, x′ ∈ Ω and v ∈ N P
Ω (x), one has

〈v, x′ − x〉 ≤ 1

2r
‖v‖‖x′ − x‖2.

Proposition 2.41. (See [37, Proposition 7, p. 117]) If a nonempty closed set Ω is

uniformly prox-regular, then N P
Ω (x) = NCl

Ω (x). In particular, if Ω is a nonempty

closed convex set, then N P
Ω (x) coincides with the normal cone NΩ(x).

Proposition 2.42. (See [21, Proposition 2.1, p. 313]) Let Ω be a nonempty closed

subset of H and x ∈ Ω. The following assertions hold

(i) ∂Pd(x,Ω) = N P
Ω (x) ∩ B;

(ii) If Ω is r-prox-regular, then ∂Pd(x,Ω) is closed convex set in H.
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Proposition 2.43. (See [21, Proposition 4.1, p. 366]) Let r > 0. Assume that

Ω(t) is r-prox-regular for all t ∈ [0, T ]. Then, for a given 0 < δ < r the following

statement holds: For any t ∈ [0, T ], x ∈ Ω(t) + (r − δ)B, xn → x, tn → t with

tn ∈ [0, T ] and vn ∈ ∂Pd(xn,Ω(tn)) with vn
w
⇀ v, one has v ∈ ∂Pd(x,Ω(t)). Here

w
⇀ stands for the weak convergence in H.
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Chapter 3

Prox-Regular Perturbed

Sweeping Processes

In this chapter, we study a class of perturbed sweeping processes in the setting

adopted by Edmond and Thibault [48, 49]. This chapter has been the object

of a publication in Journal of Nonlinear and Variational Analysis. Let T > 0

and I = [0, T ]. Following Edmond and Thibault [48], we consider the next two

assumptions.

Assumption (H1). For each t ∈ I, C(t) is a nonempty closed subset of H which

is r-prox-regular for some constant r > 0.

Assumption (H2). C(t) varies in an absolutely continuous way, that is, there

exists an absolutely continuous function v : I → R such that for any y ∈ H and

s, t ∈ I, one has

‖d(y, C(t))− d(y, C(s))‖≤ |v(s)− v(t)|.

The following result, which is a simplified form of Theorem 5.1 from [49],

provides us with an analogue of the Peano theorem [50, Theorem 2.1, p. 10] which

works for ordinary differential equations.

Theorem 3.1. (See [49, Theorem 5.1]) Assume that a family of sets C(t), t ∈ I,

in H satisfies the assumptions (H1) and (H2). Assume that G : I ×H ⇒ H is a

set-valued map with nonempty convex compact values such that

(a) For any x ∈ H, G(·, x) has a measurable selection;

(b) For all t ∈ I, G(t, ·) is scalarly upper semicontinuous on H;
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(c) For some compact subset K ⊂ B̄ and for some non-negative function β(·) ∈
L1(I,R), one has for all (t, x) ∈ I ×H,

G(t, x) ⊂ β(t)(1 + ‖x‖)K.

Assume also that H is separable if G 6≡ {0}. Then, for any x0 ∈ C(0), the sweeping

process −ẋ(t) ∈ NCl
C(t)(x(t)) +G(t, x(t)) a.e. t ∈ [0, T ]

x(0) = x0,
(3.1)

has at least one absolutely continuous solution x(·).

The next result is an analogue of the Picard-Lindelöf theorem [50, Theorem 1.1,

p. 8] from the theory of ordinary differential equations.

Theorem 3.2. (See [48, Theorem 1]) Assume that a family of sets C(t), t ∈ I, in

H satisfies the assumptions (H1) and (H2). Let g : I×H → H be such a separately

measurable map on I that

(i) For every η > 0, there exists a non-negative function kη(·) ∈ L1(I,R) such

that for all t ∈ I and for any x, y ∈ B̄(0, η) one has

‖g(t, x)− g(t, y)‖≤ kη(t)‖x− y‖;

(ii) There exists a non-negative function β(·) ∈ L1(I,R) such that, for all t ∈ I
and for all x ∈

⋃
s∈I

C(s), one has ‖g(t, x)‖≤ β(t)(1 + ‖x‖).

Then, for any x0 ∈ C(0), the sweeping process (1.2) has one and only one

absolutely continuous solution x(·). In addition, the solution satisfies the estimate

‖ẋ(t) + g(t, x(t))‖≤ (1 +Mx0)β(t) + |v̇(t)| a.e. t ∈ I,

where

Mx0 := ‖x0‖+ exp

{
2

∫ T

0

β(s)ds

}∫ T

0

(2β(s)(1 + ‖x0‖) + |v̇(s)|)ds.

When G is a single-valued mapping, Theorem 3.1 gives sufficient conditions

for the existence of solution to problem (1.2). Meanwhile, Theorem 3.2 provides

conditions for the existence and uniqueness of solution to problem (1.2). However,
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the assumption (c) in Theorem 3.1 is tighter than the assumption (ii) in

Theorem 3.2. To justify this fact, let us consider the following example.

Example 3.3. Let H be an infinite dimensional Hilbert space. Consider the

problem (1.2) with C(t) satisfying the assumptions (H1) and (H2). Let g : I×H⇒

H, g(t, x) = tPB̄(x). We see that g is linear with respect to t. In addition, since the

projection map onto a closed convex set in Hilbert space is Lipschitz continuous, g

satisfies the assumptions (a), (b) of Theorem 3.1 and (i) of Theorem 3.2. Moreover,

since ‖g(t, x)‖≤ t for all t ∈ I, the assumption (ii) of Theorem 3.2 is also valid.

However, the unit ball B̄ in H is non-compact, so we cannot find any compact

set K such that the assumption (c) of Theorem 3.1 holds. So, it is not possible

to apply Theorem 3.1 in this case. Nevertheless, for any x0 ∈ C(0), Theorem 3.2

assures the solution existence and uniqueness of the problem under consideration.

Remark 3.4. Since the assumptions of the Peano theorem are weaker than those

of the Picard-Lindelöf theorem, it would be nice if one can have another version

of Theorem 3.1 whose assumption set is weaker than that of Theorem 3.2.

From a result of Edmond and Thibault [48, Proposition 2] it follows that,

for every t ∈ I, the mapping ψt : C(0) → C(t) with ψt(x0) := x(x0, t), where

x(x0, ·) denotes the unique solution x(·) of (1.2) with the initial value x(0) = x0,

is Lipschitz on any bounded subset of C(0).

3.1 Solution Existence Theorems

Let there be given the functions fi : I ×H → R, i ∈ {1, . . . ,m}. Suppose that the

set

C(t) := {x ∈ H | fi(t, x) ≤ 0, i ∈ {1, . . . ,m}}

is nonempty for each t ∈ I. Assume that there is an extended real number ρ ∈
[0,+∞] satisfying the next four assumptions.

Assumption (A1). For x ∈ H and for all i ∈ {1, . . . ,m}, fi(·, x) is Lipschitz

continuous with modulus L1 > 0 on [0, T ].

Assumption (A2). For each t ∈ [0, T ], and for all i ∈ {1, . . . ,m}, fi(t, ·) is

locally Lipschitz continuous on Uρ(C(t)).

Assumption (A3). There is γ > 0 such that for all t ∈ [0, T ] and i ∈ {1, . . . ,m},
for all x1, x2 ∈ Uρ(C(t)), and for all ξj ∈ ∂Cfi(t, ·)(xj), j = 1, 2,

〈ξ1 − ξ2, x1 − x2〉 ≥ −γ‖x1 − x2‖2.
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Assumption (A4). There is µ > 0 with the property that for all t ∈ [0, T ] and

x ∈ C(t) one can find v = v(t, x) ∈ H with ‖v‖= 1 such that for all i ∈ {1, . . . ,m},
for all ξ ∈ ∂Cfi(t, ·)(x), one has 〈ξ, v〉 ≤ −µ.

Clearly, if ∂Cf1(t, ·) is monotone for every t ∈ [0, T ], i.e., 〈ξ1 − ξ2, x1 − x2〉 ≥ 0

for all x1, x2 ∈ H and for all ξj ∈ ∂Cfi(t, ·)(xj), j = 1, 2, then Assumption (A3) is

satisfied with any γ > 0.

Lemma 3.5. (See [8, Theorem 4.1]) For all t ∈ [0, T ], the set C(t) is r-prox-regular

with r = min{ρ, µ
γ
}.

Lemma 3.6. The set-valued map C : I ⇒ H is Lipschitz with respect to the

Hausdorff distance, with the Lipschitz modulus ϑ, for any ϑ ≥ L1

µ
.

Proof. Fix a real number ϑ such that ϑ ≥ µ−1L1. Choose a subdivision

T0 = 0 < T1 < . . . < Tp = T

of [0, T ] such that Tk − Tk−1 < ϑ−1ρ for k = 1, . . . , p. Fix an index k ∈ {1, . . . , p}
and select any numbers s, t from the segment Ik := [Tk−1, Tk]. Put u(s, t) = ϑ|s−t|.
For any x ∈ C(t), define y = x+u(s, t)v. Since t, s ∈ Ik, we have ‖y−x‖= ϑ|s−t|<
ρ. This proves that y ∈ int(Uρ(C(t))). By [8, Lemma 3.2], for all λ ∈ [0, 1] we have

x+ λ(y − x) ∈ int(Uρ(C(t))).

Take any i ∈ {1, . . . ,m}. By Assumption (A2) and Lebourg’s mean value theorem

(see, e.g., [33, Theorem 2.3.7, p. 41]) there exists λ ∈ (0, 1) such that

fi(t, y)− fi(t, x) ∈ 〈∂C2 fi(t, x(λ)), u(s, t)v〉

with x(λ) := (1− λ)x+ λy. Hence, by Assumptions (A1) and (A4) we have

fi(s, y) = [fi(s, y)− fi(t, y)] + fi(t, x) + [fi(t, y)− fi(t, x)]

≤ L1|s− t|−u(s, t)µ

= (L1 − ϑµ) |s− t|.

Hence, fi(s, y) ≤ 0. Since i ∈ {1, . . . ,m} can be chosen arbitrarily, we have thus

shown that the vector y = x+ ϑ|s− t|v belongs to C(s). So, d(x,C(s)) ≤ ϑ|s− t|
for every x ∈ C(t). By symmetry, we get d(x′, C(t)) ≤ ϑ|s− t| for every x′ ∈ C(s).

Consequently, we obtain dH(C(t), C(s)) ≤ ϑ|t− s|.
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The proof is complete.

Theorem 3.7. Suppose that Assumptions (A1)–(A4) are fulfilled. Let g : I×H →
H satisfy the three requirements (a), (b) and (c) in Theorem 3.1. Then, for any

x0 ∈ C(0), the sweeping process−ẋ(t) ∈ NCl
C(t)(x(t)) + g(t, x(t)) a.e. t ∈ I

x(0) = x0

(3.2)

has at least one absolutely continuous solution x(·).

Proof. By Lemma 3.5, the set C(t) is r-prox-regular for all t ∈ [0, T ]. Moreover,

Lemma 3.6 states that

dH(C(t), C(s)) ≤ ϑ|t− s|.

For all y ∈ H, we have that ‖d(y, C(t))− d(y, C(s))‖≤ dH(C(t), C(s)). It follows

that C(t) varies in an absolutely continuous way, i.e.,

‖d(y, C(t))− d(y, C(s))‖≤ |v(s)− v(t)|,

where v : I → R, v(z) = ϑz. By Theorem 3.1, we obtain the desired result.

Theorem 3.8. Suppose that Assumptions (A1)–(A4) are fulfilled. Let g : I×H →
H be such a separately measurable map on I that satisfies the two requirements (i)

and (ii) in Theorem 3.2. Then, for any x0 ∈ C(0), the sweeping process (3.2) has

a unique absolutely continuous solution x(·).

Proof. Using Theorem 3.2 instead of Theorem 3.1 and arguing similarly as in the

proof of Theorem 3.7, one can obtain the desired result.

Remark 3.9. The assumptions (A1)–(A4) on the functions fi, i ∈ {1, . . . ,m},
and the family of sets C(t), t ∈ I, do not depend on the choice of x0 from C(t).

Clearly, the requirements (i) and (ii) on g(t, x) in the formulation of Theorem 3.8

also do not depend on the choice of x0 from C(t).

3.2 Some Illustrative Examples

To illustrate the applicability of Theorem 3.8, we shall provide two examples in

dimension 2.
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x1

x2

C(0)

0

(a) C(0)

x1

x2

C(1
2
)

0

(b) C

(
1

2

) x1

x2

C(1)

0

(c) C(1)

Fig. 3.1: Examples of constraint sets in Example 3.10

Example 3.10. Consider the problem (3.2) with H = R2, m = 1, f1(t, x) =

t− x2 + |x1|, and g(t, x) = 0 for all t ∈ [0, T ], x = (x1, x2) ∈ R2. Here, we have

C(t) = {x ∈ R2 | −x2 + |x1|≤ −t}. (3.3)

Let the initial condition be x(0) = (0, 0). Obviously, x(0) ∈ C(0) and f = f1

satisfies Assumptions (A1) and (A2). We have

∂Cf1(t, ·)(x) =


{(1,−1)} if x1 > 0

[−1, 1]× {−1} if x1 = 0

{(−1,−1)} if x1 < 0.

(3.4)

Since f1(t, ·) is convex, ∂Cf1(t, ·) coincides with the convex subdifferential mapping

of ∂f1(t, ·), which is monotone. Hence, for any t ∈ [0, T ], the mapping ∂Cf1(t, ·)
is hypermonotone with any γ > 0. Thus, Assumption (A3) is satisfied. Now,

to check Assumption (A4), let us fix any µ ∈ (0, 1]. Suppose that t ∈ [0, T ]

and x ∈ C(t) are given arbitrarily. For v := (0, 1), one has 〈ξ, v〉 = ξ2, where

ξ = (ξ1, ξ2) ∈ ∂Cf1(t, ·)(x) can be chosen arbitrarily. Thanks to (3.4), we have

ξ2 = −1. Hence,

〈ξ, v〉 = −1 ≤ −µ.

We have thus showed that Assumption (A4) is satisfied. Since g(t, x) ≡ 0, the

requirements (i) and (ii) on g are fulfilled. So, according to Theorem 3.8, (3.2) has

a unique absolutely continuous solution x(·). Interestingly, we can give an explicit

formula for x(·). Namely, let us show that

x1(t) = 0, x2(t) = t ∀t ∈ [0, T ]. (3.5)
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Clearly, the trajectory x(t) given by (3.5) satisfies the conditions

x(0) = (0, 0) and − ẋ(t) = (0,−1).

Since C(t) is convex, the Clarke normal cone to C(t) at any point of C(t) coincides

with the normal cone to C(t) at that point in the sense of convex analysis (see

[33, Proposition 2.4.4]). So, applying [53, Proposition 2, p. 206] to the set C(t)

in (3.3), which is a sublevel set of the continuous convex function f1(t, ·), at the

boundary x(t) = (x1(t), x2(t)), one obtains NCl
C(t)(x(t)) = R+∂f1(t, ·)(x(t)). Since

x1(t) ≡ 0, combining this with (3.4) gives

NCl
C(t)(x(t)) = R+([−1, 1]× {−1}).

So, −ẋ(t) ∈ NCl
C(t)(x(t))+g(t, x(t)) for all t ∈ [0, T ]. Hence, formula (3.5) describes

the unique absolutely continuous solution of the problem in question. The

above mathematical model and the solution have the following clear mechanical

meanings. In the horizontal coordinate plane R2, there is a small metal ball

standing at the origin of the plane at time t = 0. The boundary of C(0) is

the union of two orthogonal half-lines. Suppose that the boundary is the frame

made from two long sticks of bamboo or wood which are firm enough that they

cannot be bend by the metal ball. The set C(t) in (3.3) is the position of C(0) at

the time t. The requirement saying that the ball must be inside C(t) at any time

t means that it must be in the plane area formed by the frame. The change of

C(t) with respect to t corresponds to the movement of the frame along the x2-axis

with the velocity 1. The assumption g(t, x) ≡ 0 means that there is no external

force acting on the ball. The formula (3.5) of the obtained solution means that

the ball always lies in the corner of the frame, when the later moves steadily along

the x2-axis.

Concerning the sweeping problem in Example 3.10, we observe that the role of

the normal cone operator NCl
C(t)(x(t)) in the inclusion

−ẋ(t) ∈ NCl
C(t)(x(t)) + g(t, x(t))

is important. Namely, note that the last inclusion implies x(t) ∈ C(t). Note also

that 0 ∈ NCl
C(t)(x(t)) if x(t) ∈ C(t). So, together with (3.2), it is naturally to
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consider the following tighter problem:
−ẋ(t) = g(t, x(t)) a.e. t ∈ I
x(t) ∈ C(t) for t ∈ I
x(0) = 0

Since g(t, x) ≡ 0, the first and the third conditions of this system imply that

x(t) = 0 for all t ∈ I. However, for this curve x(t), the second condition of the

system is violated. So, the assertion of Theorem 3.8 may fail to hold if one replaces

the inclusion −ẋ(t) ∈ NCl
C(t)(x(t)) + g(t, x(t)) by the conditions −ẋ(t) = g(t, x(t))

and x(t) ∈ C(t).

Example 3.11. Consider problem (3.2) with the data given in Example 3.10,

where the initial point is x(0) = x0 with x0 = (x0
1, x

0
2) being an arbitrary point

from C(0). The analysis in Example 3.10 shows that the assumptions (A1)–(A4)

and the requirements (i) and (ii) on g(t, x) in the formulation of Theorem 3.8 are

satisfied. Hence, by Remark 3.9 and Theorem 3.8, the sweeping process (3.2) has

a unique absolutely continuous solution x(·). To have an explicit formula for this

solution x(·), we first suppose that x0 belongs to the interior of C(0). This means

that |x0
1|< x0

2. Put tx0 = x0
2 − |x0

1| and note that tx0 > 0.

Case 1 : T ≤ tx0 . In this case, since f1(t, x0) = t− x0
2 + |x0

1|= t− tx0 < 0 for all

t ∈ [0, T ), one has x0 ∈ int(C(t)) for all t ∈ [0, T ). So, setting x(t) = x0 for t ∈ I,

we obtain

NCl
C(t)(x(t)) = {(0, 0)}

for all t ∈ [0, T ). Therefore, (3.2) is satisfied. Since the solution is unique

by Theorem 3.8, the just defined constant trajectory is the unique absolutely

continuous solution of the sweeping process under our consideration.

Case 2 : tx0 < T . First, consider the subcase where tx0 ≤ 2|x0
1|+tx0 < T . Let

us prove that the unique solution x(·) can be given by the formula

x(t) =


x0 if t ∈ [0, tx0)

(x0
1 − sign(x0

1)
t−tx0

2
, x0

2 +
t−tx0

2
) if t ∈ [tx0 , 2|x0

1|+tx0)
(0, t) if t ∈ [2|x0

1|+tx0 , T ].

(3.6)

Note that the function x(·) is absolutely continuous on [0, T ] and x(0) = x0.

Arguing as in Case 1, we obtain−ẋ(t) ∈ NCl
C(t)(x(t))+g(t, x(t)) for every t ∈ [0, tx0).

For t ∈ [tx0 , 2|x0
1|+tx0), if x0

1 ≤ 0 then t < −2x0
1+tx0 . Hence, x1(t) = x0

1+
t−tx0

2
< 0.
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Combining this with (3.6) yields

f1(t, x(t)) = t− x2(t) + |x1(t)|= t−
(
x0

2 +
t− tx0

2

)
−
(
x0

1 +
t− tx0

2

)
= 0.

This means that x(t) ∈ ∂C(t), x1(t) < 0; so ∂Cf1(t, x(t)) = {(−1,−1)}. Thanks to

the continuity and convexity of the function f1(t, ·), applying [33, Proposition 2.4.4]

we have NCl
C(t)(x(t)) = R+{(−1,−1)}. It follows that ẋ(t) = (1

2
, 1

2
) ∈ −NCl

C(t)(x(t))

for all t ∈ (tx0 ,−2x0
1 + tx0). The situation x0

1 > 0 can be treated similarly.

Therefore, −ẋ(t) ∈ NCl
C(t)(x(t)) + g(t, x(t)) for t ∈ (tx0 , 2|x0

1|+tx0). Now, for

t ∈ [2|x0
1|+tx0 , T ], one has −ẋ(t) ∈ NCl

C(t)(x(t)) + g(t, x(t)) by (3.6) and the

result given in Example 3.10. Therefore, (3.6) describes the unique absolutely

continuous solution x(·) of the problem in question. In the situation where

tx0 < T ≤ 2|x0
1|+tx0 , arguing analogously as before, we can show that the formula

x(t) =

x0 if t ∈ [0, tx0)

(x0
1 − sign(x0

1)
t−tx0

2
, x0

2 +
t−tx0

2
) if t ∈ [tx0 , T ]

(3.7)

describes the unique absolutely continuous solution x(·) of our problem.

Now, suppose that x(0) ∈ ∂C(0). This means that x0
2−|x0

1|= 0. This situation

reduces to Case 2 above with tx0 := x0
2 − |x0

1|= 0. So, the unique absolutely

continuous solution x(·) of our problem is given by

x(t) =

(x0
1 − sign(x0

1) t
2
, x0

2 + t
2
) if t ∈ [0, 2|x0

1|)
(0, t) if t ∈ [2|x0

1|, T ]
(3.8)

whenever 2|x0
1|< T , and

x(t) =

(
x0

1 − sign(x0
1)
t

2
, x0

2 +
t

2

)
for t ∈ [0, T ] (3.9)

whenever 2|x0
1|≥ T . As in the preceding example, the problem here and the

obtained solution can be interpreted respectively as a mechanical problem and a

mechanical motion as follows. Suppose that, at time t = 0, there is a small metal

ball standing at the point x0 ∈ C(0) in the horizontal plane R2. When the set

C(0) moves along the x2-axis with the velocity 1 (see (3.3)), its boundary - a firm

frame consisting of two orthogonal half-lines - also moves along the x2-axis with

the velocity 1. The ball cannot overpass the frame. If x0 ∈ int(C(0)), x1(0) 6= 0,

and 2|x0
1|+tx0 < T with tx0 := x0

2 − |x0
1|, then (3.6) shows that the motion of the
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ball in the time segment [0, T ] and has three phases: (a) Until the time instant tx0 ,

the ball stays still; (b) In the time interval [tx0 , 2|x0
1|+tx0), the ball goes steadily

along one wing of the boundary of C(0) with the speed
√

2
2

(the ball is on the

left wing if x1(0) < 0 and it is on the right wing if x1(0) > 0); (c) In the time

interval [2|x0
1|+tx0 , T ], the ball always lies in the corner of the above-mentioned

frame. Similar interpretations can be given for formulas (3.7)–(3.9).

Let the horizontal plane R2 in the preceding example be replaced by a vertical

plane R2, where the x2-axis is orthogonal to the earth surface and pointing up.

Then, the set C(t) given by (3.3) can be interpreted as the position of the set

C(0) = {x ∈ R2 | −x2 + |x1|≤ 0}

at time t. In other words, in accordance with formula (3.3), the set C(0) is moving

up along the x2-axis with the velocity 1. As before, the boundary of C(0) - a firm

frame - also moves along the x2-axis with the velocity 1. Note that the metal ball

in question cannot overpass the frame. Since the ball has the tendency to go down

straightly with the acceleration g0 = 9.8, the velocity of its free fall is −g0t. So

the equation of motion of the ball should be −ẋ(t) ∈ NCl
C(t)(x(t)) + g(t, x(t)) for

almost everywhere t ∈ I, where g(t, x) := (0, g0t). The solution of this mechanical

problem is given below.

Example 3.12. Consider problem (3.2) with the data given in Example 3.10

except for g(t, x) = (0, g0t), where g0 = 9.8 is the gravitational acceleration. Let

the initial condition be x(0) = (x0
1, x

0
2). As we know from the two examples

above, the assumption (A1)–(A4) hold true. Since g(t, x) is independent of the

second variable, it is clear that the requirement (i) in Theorem 3.8 is satisfied. In

addition, as g(t, x) is a linear function of t, the requirement (ii) in the theorem is

satisfied with the choice β(t) = g0t. Hence, by Remark 3.9 and Theorem 3.2, the

sweeping process (3.2) has a unique absolutely continuous solution x(·). To provide

an explicit formula for this solution x(·), we first consider the situation where

x0 ∈ int(C(0)). Putting tx0 = x0
2−|x0

1|, one has tx0 > 0. Define θ1
x0

=
−1+
√

1+2g0tx0
g0

and θ2
x0

=
−1+
√

1+2g0(tx0+2|x01|)
g0

. It is clear that 0 < θ1
x0
≤ θ2

x0
.

Case 1 : T ≤ θ1
x0

. Setting

x(t) = (x0
1, x

0
2 −

g0t
2

2
) (∀t ∈ I), (3.10)

we have f1(t, x(t)) = t − x0
2 + g0t2

2
+ |x0

1|< 0, for any t ∈ [0, T ). Hence, x(t) ∈
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int(C(t)) for all t ∈ [0, T ). So, NCl
C(t)(x(t)) = {(0, 0)} for all t ∈ [0, T ). Since

−ẋ(t) = (0, g0t), it follows that the inclusion in (3.2) is satisfied for all t ∈ [0, T ).

Therefore, Theorem 3.8 assures that the chosen trajectory is the unique absolutely

continuous solution of (3.2).

Case 2 : θ1
x0
< T . If θ1

x0
≤ θ2

x0
< T. then the explicit formula for the solution

x(·) is

x(t) =


(x0

1, x
0
2 − g0t2

2
) if t ∈ [0, θ1

x0
)

(x0
1 − sign(x0

1)
(
t−tx0

2
+ g0t2

4

)
, x0

2 +
t−tx0

2
− g0t2

4
) if t ∈ [θ1

x0
, θ2
x0

)

(0, t) if t ∈ [θ2
x0
, T ].

(3.11)

Indeed, the function x(·) is an absolutely continuous on [0, T ], x(0) = x0, and a

direct verification shows that −ẋ(t) ∈ NCl
C(t)(x(t)) + (0, g0t) for t ∈ [0, θ1

x0
). Now,

suppose that x0
1 ≤ 0. Then we have x1(t) = x0

1 +
t−tx0

2
+ g0t2

4
< 0 for t ∈ [θ1

x0
, θ2
x0

).

So, for t ∈ [θ1
x0
, θ2
x0

), one has

f1(t, x(t)) = t− x0
2 −

t− tx0
2

+
g0t

2

4
− x0

1 −
t− tx0

2
− g0t

2

4
= 0.

Hence, x(t) ∈ ∂C(t). Since x1(t) < 0, this implies that ∂Cf1(t, x(t)) = {−1,−1}
for every t ∈ [θ1

x0
, θ2
x0

). Thanks to the continuity and convexity of f1(t, ·),
applying [33, Proposition 2.4.4], we obtain NCl

C(t)(x(t)) = R+{(−1,−1)} for

t ∈ [θ1
x0
, θ2
x0

). Since

ẋ(t) =

(
1 + g0t

2
,
1 + g0t

2
− g0t

)
,

one has −ẋ(t) ∈ NCl
C(t)(x(t)) + (0, g0t) for t ∈ (θ1

x0
, θ2
x0

). Thus, for every t ∈
(θ1
x0
, θ2
x0

), the inclusion −ẋ(t) ∈ NCl
C(t)(x(t)) + g(t, x) holds. For t ∈ (θ2

x0
, T ), it is

clear that f1(t, x(t)) = 0 and ẋ(t) = (0, 1). Since NCl
C(t)(x(t)) = R+([−1, 1]×{−1}),

the inclusion

−ẋ(t) ∈ NCl
C(t)(x(t)) + g(t, x)

holds for t ∈ (θ2
x0
, T ). Therefore, the function x(·) given in (3.11) describes the

unique absolutely continuous solution of the problem under consideration. The

situation x0
1 > 0 can be treated similarly. If T ≤ θ2

x0
, arguing analogously, we can
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prove that the formula

x(t) =

(x0
1, x

0
2 − g0t2

2
) if t ∈ [0, θ1

x0
)

(x0
1 − sign(x0

1)
(
t−tx0

2
+ g0t2

4

)
, x0

2 +
t−tx0

2
− g0t2

4
) if t ∈ [θ1

x0
, T ]

(3.12)

describes the unique solution x(·).
Now, suppose that x(0) ∈ ∂C(0). It is not difficult to show that the unique

absolute solution x(·) is described as

x(t) =

(x0
1 − sign(x0

1)
(
t
2

+ g0t2

4

)
, x0

2 + t
2
− g0t2

4
) if t ∈ [0, θ2

x0
),

(0, t) if t ∈ [θ2
x0
, T ].

(3.13)

if θ2
x0
< T , and by the formula

x(t) =

(
x0

1 − sign(x0
1)

(
t

2
+
g0t

2

4

)
, x0

2 +
t

2
− g0t

2

4

)
for t ∈ [0, T ]. (3.14)

if θ2
x0
≥ T . The mechanical meanings of the motion modes (3.10)–(3.14) of the

metal ball are similar to those explained in Example 3.11.

Remark 3.13. By RT we denote the set of end points of the sweeping

process (1.2), i.e., the set of all x(T ) with x(·) being the unique solution of (3.2)

where x0 ∈ C(0) is chosen arbitrarily. It is an interesting question that under

which conditions on C(t), t ∈ [0, T ], we have RT = C(T ). The following example

shows that even when C(t) is just a linear translation of C(0), we get a negative

answer. The system−ẋ(t) ∈ NCl
C(t)(x(t)) + g(t, x(t)) a.e. t ∈ I,

x(T ) = x1

(3.15)

will be used in our analysis.

Example 3.14. Consider problem (3.2) with H = R2, m = 2,

f1(t, x) = t− x2 + |x1|, f2(t, x) = x2 − t− 1,

and g(t, x) = 0 for all t ∈ [0, T ], where T = 3, and x = (x1, x2) ∈ R2. Here, we

have

C(t) = {x ∈ R2 | −x2 + |x1|≤ −t, x2 ≤ t+ 1}. (3.16)
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x1

x2

C(0)

0

1

(a) C(0)

x1

x2

C(12)

0

(b) C

(
1

2

) x1

x2

C(1)

0

(c) C(1)

Fig. 3.2: Examples of constraint sets in Example 3.14

Let the terminal condition be x(T ) = (x1
1, x

1
2). If (3.15) has a solution x(·), then

one has x(0) = x0 for some x0 = (x0
1, x

0
2) ∈ C(0). Since the assumptions (A1)–

(A4) and the requirements (i) and (ii) on g(t, x) in the formulation of Theorem 3.8

are satisfied, by Remark 3.9 and Theorem 3.8, the sweeping process (3.2) with

the chosen x0 has a unique absolutely continuous solution. Using the formula of

C(t) in (3.16), one can easily show that |x0
1|≤ 1. For tx0 := x0

2 − |x0
1|, we have

2|x0
1|+tx0 ≤ 2 < T . Arguing similarly to Example 3.11, we can show that the

unique absolutely continuous solution x(·) of (3.2) is given by (3.6) if x0
2 = 1 or

if x0 ∈ int(C(0)), and by (3.8) if x0
2 < 1 and x0 ∈ ∂C(0). In both cases, we

have x(T ) = (0, 3). So, the following assertions are valid: (i) If x1 6= (0, 3), then

problem (3.15) has no solution; (ii) If x1 = (0, 3), then (3.15) have infinite number

of solutions; (iii) For any x0 ∈ C(0), the unique solution x(·) of (1.2) ends at the

point x(T ) = (0, 3).

However, if the sweeping process (3.15) in Remark 3.13 is subjected to multi-

valued perturbations g(t, x(t)), then the above question can be considered as a

controllability problem, for which we expect to have a positive solution.

3.3 Conclusions

In this chapter, the solution existence as well as the solution uniqueness for

perturbed sweeping processes has been studied under the assumption of the prox-

regularity of the constraint sets.

If the perturbation function g(t, x) is multi-valued, then we have deal with

multi-valued perturbed sweeping processes in the prox-regular case. For these

problems, it is of interest to establish some results on the solution existence,

continuous dependence of the solutions, and the reachability of sweeping processes
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3.3. Conclusions

similar to the ones given in this chapter.

The question of the relaxation of the assumptions of Theorem 3.7 remains open,

i.e., in a way that the solution existence of the problem (3.2) is still guaranteed,

or not.
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Chapter 4

Nonconvex Sweeping Processes

with Velocity Constraints

Following Adly, Haddad, and Thibault [7], in this chapter, we will study some

classes of sweeping processes with velocity in a moving set. Our main tool

is a theorem on the solution sensitivity of parametric variational inequalities.

Beside the traditional requirement that the constraint set moves continuously in

the Hausdorff distance sense, we intensively use a new assumption on the local

Lipschitz-likeness of the constraint set-valued mapping. The obtained results are

compared with the existing ones and analyzed by several examples.

Let H be a Hilbert space and C : [0, T ] ⇒ H be a set-valued mapping. Let

A0, A1 : H → H be bounded symmetric linear operators and f : [0, T ] → H be

a continuous mapping. Recall that a linear operator A : H → H is said to be

symmetric if 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ H. Following [6, 7], we consider the

sweeping process{
A1u̇(t) + A0u(t)− f(t) ∈ −N P

C(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0,
(P)

Firstly, let us discuss some characters of proximal normal cones.

Remark 4.1. Let x ∈ Ω ⊂ H and ξ ∈ N P
Ω (x) \ {0}. If α is a positive number

such that x ∈ PΩ(x+αξ), then x ∈ PΩ(x+ tξ) for every t ∈ (0, α). Indeed, by our

assumption,

d (x+ αξ,Ω) = ‖(x+ αξ)− x‖= α‖ξ‖. (4.1)

If x /∈ PΩ(x + tξ) for a value t ∈ (0, α), then the inequality ‖(x + tξ) − y‖<
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‖(x+ tξ)− x‖ holds for some y ∈ Ω. Therefore,

‖(x+ αξ)− y‖ ≤ ‖(x+ αξ)− (x+ tξ)‖+‖(x+ tξ)− y‖
< (α− t)‖ξ‖+‖(x+ tξ)− x‖
= α‖ξ‖.

So, by (4.1) one gets ‖(x + αξ) − y‖< d(x + αξ,Ω), which is impossible because

y ∈ Ω.

Remark 4.2. Proximal normal cone is a local structure. Namely, for any x ∈
Ω ⊂ H and ρ > 0, the proximal normal cone to Ω ⊂ H at x coincides with the

proximal normal cone to Ω ∩ B̄(x, ρ) at x, i.e.,

N P
Ω (x) = N P

Ω∩B̄(x,ρ)(x). (4.2)

Note that both cones in (4.2) contain the element ξ = 0. Take any ξ ∈ N P
Ω (x)\{0}.

Let α > 0 be such that x ∈ PΩ(x+αξ). Hence, ‖(x+αξ)−y‖≥ ‖(x+αξ)−x‖ for all

y ∈ Ω. In particular, the last inequality still holds for all y ∈ Ω∩ B̄(x, ρ). Thus, we

have x ∈ PΩ∩B̄(x,ρ)(x + αξ), which implies that ξ ∈ N P
Ω∩B̄(x,ρ)

(x). So, the inclusion

N P
Ω (x) ⊂ N P

Ω∩B̄(x,ρ)
(x) has been proved. Now, let ξ ∈ N P

Ω∩B̄(x,ρ)
(x) \ {0} be given

arbitrarily. Let α > 0 be such that x ∈ PΩ∩B̄(x,ρ)(x + αξ). So, by Remark 4.1, we

have x ∈ PΩ∩B̄(x,ρ)(x+ tξ) for every t ∈ (0, α). This means that

‖(x+ tξ)− y‖≥ ‖(x+ tξ)− x‖
(
∀t ∈ (0, α), ∀y ∈ Ω ∩ B̄(x, ρ)

)
. (4.3)

To prove the inclusion ξ ∈ N P
Ω (x) by contradiction, suppose that ξ /∈ N P

Ω (x).

Then, by Definition 2.30, x /∈ PΩ(x + βξ) for every β ∈ (0, α). So, there exists

yβ ∈ Ω such that ‖(x+ βξ)− yβ‖< ‖(x+ βξ)− x‖. Combining the last inequality

with (4.3) yields ‖yβ − x‖> ρ. For any β ∈ (0, α) satisfying β < ρ
2‖ξ‖ , we have

‖x− yβ‖−‖βξ‖≤ ‖(x− yβ) + βξ‖< ‖(x+ βξ)− x‖= β‖ξ‖.

This implies that ‖x − yβ‖< 2β‖ξ‖< ρ. Since ‖yβ − x‖> ρ, we have arrived at a

contradiction. We have thus shown that N P
Ω∩B̄(x,ρ)

(x) ⊂ N P
Ω (x). The equality (4.2)

has been established.

The local character of proximal normal cone can also be seen through [35,

Proposition 1.5] or [20, Proposition 1.7].

Some uniformly prox-regular sets will be discussed in the following examples.
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4. Nonconvex Sweeping Processes with Velocity Constraints

Example 4.3. Let H = R2, the set Ω = {x = (x1, x2) ∈ R2 | x2 ≤ x2
1} is

unbounded, closed, nonconvex, and 1
2
-prox-regular. To prove the r-prox-regularity

of Ω with r = 1
2
, observe by the closedness of Ω that the projection of any u ∈ R2\Ω

on Ω exists and belongs to ∂Ω. Putting f(x) = ‖u− x‖2 and g(x) = −x2
1 + x2, we

consider the optimization problem

min{f(x) | g(x) ≤ 0}. (4.4)

For all x ∈ R2, since ∇g(x) = (−2x1, 1) is nonzero, there is some v ∈ R2 such

that 〈∇g(x), v〉 < 0. Applying the Lagrange multiplier rule (see [82, Theorem 1,

p. 260] and [34]) to (4.4), one can prove that the problem has a unique solution

xu for each u ∈ R2 \ Ω, i.e., PΩ(u) = {xu}. Moreover, a careful analysis of the

necessary optimality conditions given by the Lagrange multiplier rule shows that,

for each x̄ ∈ ∂Ω \ {(0, 0)}, the equality x̄ = PΩ(ū) holds for ū ∈ R \ Ω if and only

if ū = x̄+ t∇g(x̄) with t ∈ (0, 1
2
). Therefore, we have N P

Ω (x̄) = R+∇g(x̄) for every

x̄ ∈ ∂Ω \ {(0, 0)}. For x̄ ∈ (0, 0), the equality x̄ = PΩ(ū) holds for ū ∈ R \Ω if and

only if ū = x̄ + t∇g(x̄) = (0, t) with t ∈ (0,+∞). Hence, N P
Ω ((0, 0)) = {0} × R+.

To find a modulus r > 0 for the uniform prox-regularity of Ω, we can argue as

follows. Fix a point x̄ ∈ ∂Ω \ {(0, 0)} and let ū = x̄+ τ∇g(x̄) for some τ ∈ (0, 1
2
).

Since

ū− x̄ = τ‖∇g(x̄)‖ ∇g(x̄)

‖∇g(x̄)‖ = τ
√

4x̄2
1 + 1

∇g(x̄)

‖∇g(x̄)‖ ,

for ξ := ∇g(x̄)
‖∇g(x̄)‖ one has x̄ ∈ PΩ(x̄ + tξ) if and only if t := τ

√
4x̄2

1 + 1 belongs

to the interval (0, 1
2

√
4x̄2

1 + 1). Clearly, the infimum of 1
2

√
4x̄2

1 + 1 over the set

x̄1 ∈ R \ {0} is 1
2
. In addition, at x̄ ∈ (0, 0), one has x̄ = PΩ(x̄ + t(0, 1)) for all

t ∈ (0,+∞). So, in agreement with Definition 2.37, we can conclude that r := 1
2

is the best modulus for the uniform prox-regularity of Ω.

From the result established in Example 4.3 we get the following useful examples

of uniformly prox-regular sets in spaces of higher dimensions.

Example 4.4. The set {x = (x1, x2, . . . , xn) ∈ Rn | x2 ≤ x2
1}, where n ≥ 3, is

unbounded, closed, nonconvex, and 1
2
-prox-regular.

Example 4.5. The set {x = (x1, x2, x3, . . . ) ∈ `2 | x2 ≤ x2
1} is unbounded, closed,

nonconvex, and 1
2
-prox-regular.

Remark 4.6. Let I be a finite index set. The union Ω of disjoint nonempty closed

convex subsets Ωi ⊂ H, i ∈ I, is nonconvex if I has more than one element. If
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Ω

x1

x2

yx

x

0

Fig. 4.1: Illustration for Example 4.3

all the numbers αij := inf{‖x − y‖| x ∈ Ωi, y ∈ Ωj}, with i, j ∈ I and i 6= j,

are positive, then Ω is uniformly prox-regular. More precisely, Ω is r-prox-regular,

where r > 0 is any number satisfying the condition r ≤ 1
2
αij for all i, j ∈ I with

i 6= j. In addition, Ω is not uniformly prox-regular if αij = 0 for a pair (i, j) ∈ I×I
with i 6= j. These assertions can be easily proved by using Definition 2.37 and the

fact that the proximal normal cone coincides with the normal cone in the sense of

convex analysis if the set under consideration is convex.

4.1 Parametric Variational Inequalities

In this section, we recall some concepts and results relating to parametric

variational inequalities.

Let M , Λ be two metric spaces. Let F : H × M → H be a vector-valued

function, and K : Λ ⇒ H be a set-valued map with nonempty closed convex

values. For each pair of parameters (µ, λ) ∈ M × Λ, we consider the problem of

finding a vector x ∈ K(λ) such that

〈F (x, µ), y − x〉 ≥ 0 ∀y ∈ K(λ), (4.5)

which is a parametric variational inequality with a moving constraint set.

The pseudo-Lipschitz property of set-valued mappings introduced by Aubin

[10, p. 98] is a crucial concept in set-valued and variational analysis. This

property is also known under other names: the Aubin continuity property [44],

the sub-Lipschitzian property [84], and the Lipschitz-like property [60]. Complete

characterizations of the property can be found in [60, 63, 84] and the references

therein.
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Definition 4.7. (See [60, Definition 1.40] and [63, Definition 3.1]) One says that a

set-valued mapping K : Λ ⇒ H is Lipschitz-like around a point (λ̃, x̃) in its graph,

which is the set {(λ, x) ∈ Λ ×H | x ∈ K(λ)}, if there exist a neighborhood V of

λ̃, a neighborhood W of x̃ and a constant κ > 0 such that

K(λ) ∩W ⊂ K(λ′) + κd(λ, λ′)B̄(0, 1), ∀λ, λ′ ∈ V. (4.6)

Remark 4.8. If there exist a neighborhood V of λ̃ and a constant κ > 0 such

that

K(λ) ⊂ K(λ′) + κd(λ, λ′)B̄(0, 1), ∀λ, λ′ ∈ V, (4.7)

then one says that K is locally Lipschitz around λ̃. If the inclusion in (4.7) holds

for some κ > 0 and for all λ, λ′ ∈ Λ, then K is said to be a Lipschitz set-valued

mapping. It is well known that if K is locally Lipschitz around λ̃, then K is

Lipschitz-like around (λ̃, x̃) for every x̃ ∈ K(λ̃). In particular, a Lipschitz set-

valued mapping is Lipschitz-like around every point in its graph.

Consider the parametric variational inequality (4.5). Let x̄ be a solution to it

at given parameters (µ̄, λ̄) ∈M×Λ. We make two assumptions on the behavior of

the function F (x, µ) around the point (x̄, µ̄). Namely, we assume that there exist

a closed convex neighborhood X of x̄, a neighborhood U of µ̄, and two positive

constants α, l such that

‖F (x′, µ′)− F (x, µ)‖≤ l(‖x′ − x‖+d(µ′, µ)), ∀µ, µ′ ∈ U, x, x′ ∈ X, (4.8)

and

〈F (x′, µ)− F (x, µ), x′ − x〉 ≥ α‖x′ − x‖2, ∀µ ∈ U, x, x′ ∈ X. (4.9)

Theorem 4.9. (See [94, Theorem 2.1]) Assume that x̄ is a solution to (4.5) with

respect to the given parameters (µ̄, λ̄) ∈ M × Λ, conditions (4.8) and (4.9) hold,

and the set-valued map K : Λ ⇒ H is Lipschitz-like around (λ̄, x̄). Then, there

exist positive constants κū and κλ̄, and neighborhoods Ũ of µ̄ and Ṽ of λ̄ such that

(i) For every (µ, λ) ∈ Ũ×Ṽ , there exists a unique solution to (4.5) in X, denoted

by x(µ, λ);

(ii) For all (µ′, λ′), (µ, λ) ∈ Ũ × Ṽ , one has

‖x(µ′, λ′)− x(µ, λ)‖≤ κµ̄d(µ′, µ) + κλ̄d(λ′, λ)1/2. (4.10)
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4.2 The Case of Convex Constraint Sets

For studying the problem (P), the next two assumptions were used in [6, 7].

Assumption (H1). The constraint sets C(t), t ∈ [0, T ], are nonempty, closed,

and convex.

Assumption (H2). The set-valued mapping C is continuous in the Hausdorff

distance sense, i.e., there exists a continuous function g : [0, T ]→ R such that

dH(C(s), C(t)) ≤ |g(s)− g(t)| for all s, t ∈ [0, T ]. (4.11)

The results of Adly, Haddad, and Thibault [7] also require the following

assumption.

Assumption (H3a). The constraint set C(0) is bounded.

Later, to deal with possibly unbounded constraint sets, Adly and Le [6], have

used the next semicoercivity assumption.

Assumption (H3b). There exist positive constants c1, c2 such that

〈A1x, x〉 ≥ c1‖x‖2−c2, ∀x ∈ C(0). (4.12)

Remark 4.10. If A1 is positive semidefinite, then (H3a) implies (H3b). Indeed,

if C(0) is bounded, then we can find ρ > 0 such that C(0) ⊂ ρB̄(0, 1). Choosing

c1 = 1 and c2 = ρ2, we have 〈A1x, x〉 ≥ 0 ≥ c1‖x‖2−c2 for any x ∈ C(0).

Thus, (H3b) holds true.

Remark 4.11. If (H2a) and (H3b) are satisfied, then exist positive constants

ĉ1, ĉ2 such that 〈A1x, x〉 ≥ ĉ1‖x‖2−ĉ2 for all t ∈ [0, T ] and x ∈ C(t). Indeed, let

g : [0, T ] → R be a continuous function satisfying (5.1). Then, for all t ∈ [0, T ],

one has dH(C(0), C(t)) ≤ |g(0)− g(t)|≤ γ, where γ := max
t∈[0,T ]

|g(0)− g(t)|. Suppose

c1, c2 are positive constants such that (4.12) holds. For any t ∈ [0, T ] and for every

y ∈ C(t), since d(y, C(0)) ≤ |g(0)− g(t)|≤ γ, we have for every ε > 0 there exists

x ∈ C(0) with ‖y − x‖≤ γ + ε. So, y = x + (γ + ε)w for some w ∈ B̄(0, 1).
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Therefore, by (H3b) we get

〈Ay, y〉 = A1〈x+ (γ + ε)w, x+ (γ + ε)w〉
= 〈A1x, x〉+ 2(γ + ε)〈A1x,w〉+ (γ + ε)2‖w‖2

≥ c1‖x‖2−c2 + 2(γ + ε)〈A1x,w〉+ (γ + ε)2‖w‖2

= c1‖y − (γ + ε)w‖2−c2 + 2(γ + ε)〈A1(y − (γ + ε)w), w〉+ (γ + ε)2‖w‖2

= c1‖y‖2−c2 − 2c1(γ + ε)〈y, w〉+ c1(γ + ε)2‖w‖2+2(γ + ε)〈A1y, w〉
−(γ + ε)2〈A1w,w〉+ (γ + ε)2‖w‖2

≥ c1‖y‖2−c2 − 2c1(γ + ε)‖y‖−(c1 + ‖A1‖+1)(γ + ε)2

−2(γ + ε)‖A1‖‖y‖
≥
(c1

2
‖y‖2−c2

)
+ ‖y‖

(c1

2
‖y‖−2(γ + ε)(c1 + ‖A1‖)

)
−(c1 + ‖A1‖+1)(γ + ε)2.

(4.13)

If ‖y‖≥ 4(γ + ε)

c1

(c1 + ‖A1‖), then from (4.13) it follows that

〈Ay, y〉 ≥ c1

2
‖y‖2−c2 − (c1 + ‖A1‖+1)(γ + ε)2. (4.14)

On the other hand, if ‖y‖≤ 4(γ + ε)

c1

(c1 + ‖A1‖), then (4.13) implies that

〈Ay, y〉 ≥ c1

2
‖y‖2−c2 − 2(γ + ε)(c1 + ‖A1‖)

4(γ + ε)

c1

(c1 + ‖A1‖)
−(c1 + ‖A1‖+1)(γ + ε)2

=
c1

2
‖y‖2−c2 −

8(γ + ε)2

c1

(c1 + ‖A1‖)2 − (c1 + ‖A1‖+1)(γ + ε)2

(4.15)

By setting ĉ1 =
c1

2
and ĉ2 = c2 +

8(γ + ε)2

c1

(c1 + ‖A1‖)2 + (c1 + ‖A1‖+1)(γ + ε)2,

from (4.14) and (4.15), we arrive at the claimed result.

Remark 4.12. It can be shown that if the assumptions (H1) and (H2a) are

satisfied then the recession cone [83, pp. 61–63] of C(t), which is denoted by

0+C(t), is invariant with respect to t, i.e., 0+C(t) = 0+C(0) for every t ∈ [0, T ].

The solution existence and solution uniqueness results of [7] for sweeping

processes with velocity constraints of the form (P) can be stated as follows.

Theorem 4.13. (The moving constraint set is bounded and continuous in the

Hausdorff distance sense; see [7, Theorems 5.1 and 5.2]) Suppose that H is separable

and A0, A1 are positive semidefinite. If the assumptions (H1), (H2a), (H3a) are

satisfied, then (P) has at least one Lipschitz solution. If A0 is coercive, i.e., there
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exists a constant α0 > 0 such that 〈A0x, x〉 ≥ α0‖x‖2 for all x ∈ H, and (H1) is

satisfied, then (P) has at most one solution.

The above results of Adly, Haddad, and Thibault have been extended by Adly

and Le [6] to the case of possibly unbounded closed convex sets C(t), t ∈ [0, T ].

In fact, there is no statement on solution uniqueness of (P) in [6]. However, it is

not difficult to see that the proof of Theorem 5.2 in [7] is also valid for the case of

unbounded closed convex constraint sets.

Theorem 4.14. (The moving constraint set is continuous in the Hausdorff

distance sense; cf. [6, Theorem 1]) Suppose that H is separable and A0, A1 are

positive semidefinite. If the assumptions (H1), (H2a), (H3b) are satisfied, then (P)

has at least one Lipschitz solution. If A0 is coercive and (H1) is satisfied, then (P)

has at most one solution.

The separability of H and the continuity in the Hausdorff distance sense of the

set-valued mapping C are vital assumptions in Theorems 4.13 and 4.14, which were

proved by Moreau’s time discretization techniques and the catching-up algorithm.

Besides, as it has been noted in Remark 4.12, if (H1) and (H2a) are satisfied then

the recession cone 0+C(t) of C(t) is invariant with respect to t. By using the

concept of parametric variational inequality and Theorem 2.1 from [94], which

have been recalled in Section 4.1, we now establish a new result on the solution

existence and solution uniqueness of (P). Here, H can be a non-separable Hilbert

space, the constraint set C(t) can be unbounded, and the recession cone of C(t)

can vary when t changes in [0, T ].

Theorem 4.15. (The moving constraint set is locally Lipschitz-like) Let H be a

Hilbert space, A0 = 0, A1 : H → H a symmetric coercive bounded linear operator,

and f : [0, T ] → H a continuous mapping. Assume that C : [0, T ] ⇒ H is a set-

valued mapping with nonempty closed convex values, which is Lipschitz-like around

every point in its graph. Then (P) has a unique solution u, which is a Lipschitz

function. Moreover, the unique solution is a continuously differentiable function

(provided that one identifies u̇(0) with the right derivative of u at 0 and u̇(T ) with

the left derivative of u at T ).

Proof. Since A0 = 0, (P) has the form{
A1u̇(t)− f(t) ∈ −N P

C(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0.
(P1)
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To apply Theorem 4.9 for (P1), let us set M = H, Λ = [0, T ], F (x, µ) = A1x+µ for

(x, µ) ∈ H×M , K(λ) = C(λ) for λ ∈ Λ. Since A1 is coercive, there is a constant

α > 0 such that 〈A1x, x〉 ≥ α‖x‖2 for all x ∈ H. Hence, choosing X = H, U = M ,

and l = max{‖A1‖, 1}, we see that the conditions (4.8) and (4.9) are satisfied.

For each pair (µ, λ) ∈ M × Λ, by the well-known solution existence theorem for

strongly monotone variational inequality (see, e.g., Theorem 4.1 in [52], which has

the origin in [55, Theorem 2.1, p. 24]) we know that (4.5) has a unique solution.

The latter is denoted by x(µ, λ). For every λ ∈ Λ, we define a vector µ(λ) = −f(λ).

Fix a value λ̄ = t̄ ∈ [0, T ] and let µ̄ = µ(λ̄) = −f(t̄), x̄ = x(µ̄, λ̄). Since the set-

valued mapping K(·) = C(·) is Lipschitz-like around (λ̄, x̄), Theorem 4.9 asserts

that there exist positive constants κū and κλ̄, and neighborhoods Ũ of µ̄ and Ṽ of

λ̄ such that the inequality (4.10) holds for all (µ′, λ′), (µ, λ) ∈ Ũ × Ṽ . As Ũ is a

neighborhood of µ̄ = µ(λ̄) = −f(t̄), µ(λ) = −f(λ), and f(·) is continuous at t̄, we

can find a neighborhood V0 of t̄ in [0, T ] such that V0 ⊂ Ṽ and µ(λ) ∈ Ũ for all

λ = t with t ∈ V0. Then, by (4.10) one has

‖x(µ(t), t)− x(µ(t̄), t̄)‖ ≤ κµ̄‖µ(t)− µ(t̄)‖+κλ̄|t− t̄|1/2
= κµ̄‖f(t)− f(t̄)‖+κλ̄|t− t̄|1/2

for every t ∈ V0. It follows that lim
t→t̄
‖x(µ(t), t) − x(µ(t̄), t̄)‖= 0. Therefore, the

formula z(t) = x(µ(t), t) defines a continuous function z : [0, T ]→ H.

Summing up all the above, we can assert that, for every t ∈ [0, T ], the

variational inequality (4.5) with the chosen function F , the set-valued mapping

K, where (µ, λ) := (−f(t), t)), has the unique solution z(t), and the function z(·)
is continuous on [0, T ]. In particular, for every t ∈ [0, T ], one has

〈A1z(t)− f(t), y − z(t)〉 ≥ 0 ∀y ∈ C(t). (4.16)

Since the set C(t) is closed convex for every t ∈ [0, T ], by [20, Example 1.4, p. 24]

we know that, for any x ∈ H, the proximal normal coneN P
C(t)(x) coincides with the

normal cone of C(t) at x in the sense of convex analysis. So, the condition (4.16)

yields

A1z(t)− f(t) ∈ −N P
C(t)(z(t)). (4.17)

Conversely, since the inclusion A1z−f(t) ∈ −N P
C(t)(z) is equivalent to the condition

〈A1z − f(t), y − z〉 ≥ 0 ∀y ∈ C(t),
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one has A1u̇(t) − f(t) ∈ −N P
C(t)(u̇(t)) if and only if u̇(t) = z(t). Since z(·) is

continuous on [0, T ], the norm ‖z(t)‖ is bounded for every t ∈ [0, T ]. So, the

Lebesgue integral

∫ T

0

‖z(τ)‖dτ exists. By Proposition 2.17, z is Bochner integrable

over the interval [0, T ] with respect to the Lebesgue measure. Setting

u(t) = u0 +

∫ t

0

z(τ)dτ (∀t ∈ [0, T ]), (4.18)

we have u̇(t) = z(t) for all t ∈ [0, T ]. Indeed, applying Proposition 2.20 and the

arguments in its proof (recalling by Proposition 2.11 that the Lebesgue integral

of a continuous real-valued function coincides with the Riemann integral), for

all t ∈ (0, T ), the limit lim
h→0

[
1

h

∫ t+h

t

z(τ)dτ

]
exists and it is equal to z(t). So,

from the relation lim
h→0

u(t+ h)− u(t)

h
= lim

h→0

[
1

h

∫ t+h

t

z(τ)dτ

]
it follows that, for

all t ∈ (0, T ), the derivative u̇(t) exists and one has u̇(t) = z(t). Moreover, for any

t, s ∈ [0, T ] with s ≤ t,

‖u(t)− u(s)‖= ‖
∫ t

0

z(τ)dτ −
∫ s

0

z(τ)dτ‖ ≤
∫ t

s

‖z(τ)‖dτ

≤ max{‖z(τ)‖| τ ∈ [0, T ]}(t− s).

Thus, this function u is Lipschitz continuous with the modulus L = max
τ∈[0,T ]

‖z(τ)‖.
The fulfillment of (4.17) for all t ∈ [0, T ] and the equality u(0) = u0 assure that u

is a Lipschitz solution of (P1). It remains to prove that u(·) is the unique solution

of (P1). Arguing by contradiction, suppose that (P1) has another solution v(·)
for which there is t̄ ∈ [0, T ] such that v(t̄) 6= u(t̄). Set w(t) = v(t) − u(t) for

all t ∈ [0, T ]. Clearly, w is absolutely continuous on [0, T ] and w(0) = 0. Since

v̇(t) = z(t) for almost every t ∈ [0, T ], we have ẇ(t) = v̇(t) − u̇(t) = 0 for almost

every t ∈ [0, T ]. As w(t̄) 6= 0, there exists x∗ ∈ H such that 〈x∗, w(t̄)〉 > 0.

Consider the function ϕ(t) := 〈x∗, w(t)〉. Note that ϕ is absolutely continuous on

[0, T ], ϕ(0) = 0, and ϕ̇(t) = 〈x∗, ẇ(t)〉 = 0 for almost every t ∈ [0, T ]. Applying

Theorem (2.13) for the scalar function ϕ, one has ϕ(t) = ϕ(0) +

∫ t

0

ϕ̇(τ)dτ = 0

for each t ∈ [0, T ]. In particular, ϕ(t̄) = 0. Hence, one gets 〈x∗, w(t̄)〉 = 0, which

is a contradiction. We have thus established the solution uniqueness of (P1). So,

formula (4.18) defines the unique solution of (P1), which is a Lipschitz function

on [0, T ]. Moreover, the unique solution is a continuously differentiable function.

The proof is complete.
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Remark 4.16. By the arguments in the final part of the above proof, we obtain

the following useful facts on the Bochner integration:

(a) If z : [0, T ] → X, where X is a Banach space, is a continuous function,

then the formula u(t) = u0 +

∫ t

0

z(τ)dτ defines a continuously differentiable

function u : [0, T ]→ X and we have u̇(t) = z(t) for all t ∈ [0, T ].

(b) Let u, v : [0, T ] → X, where X is a reflexive Banach space, be absolutely

continuous functions. If u(0) = v(0) and u̇(t) = v̇(t) for a.e. t ∈ [0, T ], then

u(t) = v(t) for all t ∈ [0, T ].

(c) (See the proof of Theorem 2 on p. 107 in [43]) Let u : [0, T ]→ X, where X

is a reflexive Banach space, be an absolutely continuous function. Then,

u(t) = u0 +

∫ t

0

u̇(τ)dτ (∀t ∈ [0, T ]).

(d) If z : [0, T ]→ X, where X is a Banach space, is a Bochner integrable function

with respect to the Lebesgue measure, then the formula u(t) = u0+

∫ t

0

z(τ)dτ

defines a function u : [0, T ]→ X, which is Fréchet differentiable a.e. on [0, T ]

and we have u̇(t) = z(t) for a.e. t ∈ [0, T ].

To prove (c), it suffices to put v(t) = u0 +

∫ t

0

u̇(τ)dτ for t ∈ [0, T ], and apply

the assertion (b). The fact that the function u̇(·) is Bochner integrable on [0, T ]

is shown with detailed explanations in the proof of [43, Theorem 2, p. 107]. The

assertion (d) follows from [43, Theorem 9, p. 49] which asserts that, under the

assumptions made, lim
h→0

[
1

h

∫ t+h

t

z(τ)dτ

]
= z(t).

For any Hilbert space H of dimension greater or equal 2, there exist set-valued

mappings C : R ⇒ H with nonempty closed convex values, Lipschitz-like around

every point in their graphs, which are not continuous in the Hausdorff distance

sense on any interval [a, b] ⊂ R, where a < b. The forthcoming example justifies

our observation.

Example 4.17. Let H = R2, Λ = R, K(λ) = {x = (x1, x2) ∈ R2 | x2 = λx1}
for all λ ∈ R. Given any λ̄ ∈ Λ and x̄ = (x̄1, x̄2) ∈ K(λ̄), we will show that K is

Lipschitz-like around (λ̄, x̄) by a direct verification based on Definition 4.7. First,

suppose that x̄ = (0, 0). Take any ρ > 0 and choose V = Λ, W = B̄(0, ρ), κ =
√

ρ
2
.
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To verify condition (4.6), fix arbitrary elements λ, λ′ ∈ V . Since

K(λ) ∩W =
{
x = (x1, x2) ∈ R2 | x2 = λx1, ‖x‖≤ ρ

}
,

we have for every x = (x1, x2) ∈ K(λ) ∩W the following

d(x,K(λ′)) ≤ d
((√

ρ
1+λ2

, λ
√

ρ
1+λ2

)
, K(λ′)

)
=
√

ρ
(1+λ2)(1+(λ′)2)

|λ′ − λ|
≤
√

ρ
2
|λ′ − λ|.

It follows that K(λ) ∩W ⊂ K(λ′) + κ|λ′ − λ|B̄(0, 1). The Lipschitz-likeness of K

around (λ̄, x̄) has been proved. Now, suppose that x̄ 6= (0, 0). Take any ρ ∈ (0, 1)

and choose V = B̄(λ̄, ρ
‖x̄‖), W = B̄(x̄, ρ). To define the constant κ, let us consider

the expression ∆′(λ) := (1 + λ2)ρ− x̄2
1(λ− λ̄)2, where λ ∈ B̄

(
λ̄, ρ
‖x̄‖

)
. Since

∆′ = (1 + λ2)ρ− x̄2
1(λ− λ̄)2

≥ (1 + λ2)ρ− ‖x̄‖2 ρ2

‖x̄‖2 ≥ λ2ρ,

one has ∆′(λ) ≥ 0 for all λ ∈ B̄
(
λ̄, ρ
‖x̄‖

)
. So, the number

µ := max

{
1

2

[
|(1 + λλ̄)x̄1|+

√
(1 + λ2)ρ− x̄2

1(λ− λ̄)2

]
| λ ∈ B̄

(
λ̄,

ρ

‖x̄‖

)}
(4.19)

is well defined, and we have µ ≥ 0. Let κ = max{µ, 1}. To verify (4.6), let

λ, λ′ ∈ V be given arbitrarily. Since

d(x̄, K(λ)) =
|x̄2 − λx̄1|

1 + λ2
‖(λ,−1)‖= |λ̄x̄1 − λx̄1|√

1 + λ2
=

|x̄1|√
1 + λ2

|λ− λ̄|

≤ ‖x̄‖|λ− λ̄|
≤ ρ,

one has K(λ) ∩W 6= ∅. Clearly, K(λ) ∩W is a line segment with the end-points

x̃ :=

(
(1 + λλ̄)x̄1 −

√
∆′(λ)

1 + λ2
, λ

(1 + λλ̄)x̄1 −
√

∆′(λ)

1 + λ2

)

and

x̂ :=

(
(1 + λλ̄)x̄1 +

√
∆′(λ)

1 + λ2
, λ

(1 + λλ̄)x̄1 +
√

∆′(λ)

1 + λ2

)
,
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which may coincide. Note that

d(x̃, K(λ′)) =
|x̃2 − λ′x̃1|
1 + (λ′)2

‖(λ′,−1)‖ =
|λx̃1 − λ′x̃1|√

1 + (λ′)2

=
|x̃1|√

1 + (λ′)2
|λ′ − λ|

=
|(1 + λλ̄)x̄1 −

√
∆′(λ)|

(1 + λ2)
√

1 + (λ′)2
|λ′ − λ|

≤ |(1 + λλ̄)x̄1|+
√

∆′(λ)

2
|λ′ − λ|.

Similarly,

d(x̂, K(λ′)) ≤ |(1 + λλ̄)x̄1|+
√

∆′(λ)

2
|λ′ − λ|.

Since d(x,K(λ′)) ≤ max{d(x̃, K(λ′)), d(x̂, K(λ′))} for every x = (x1, x2) ∈ K(λ)∩
W , it follows from the above estimates, (4.19), and the formula κ = max{µ, 1},
that d(x,K(λ′)) ≤ κ|λ′−λ|. This proves that K(λ)∩W ⊂ K(λ′)+κ|λ′−λ|B̄(0, 1).

So, the set-valued mapping K is Lipschitz-like around every point (λ̄, x̄) ∈ gphK.

It is well known that any Hilbert spaceH of dimension greater or equal 2 admits

the representation H = H0⊕H1, where H0 and H1 are orthogonal subspaces, and

dim(H0) = 2. Fixing a coordinate system in H0, we can identify H0 with R2.

Define a set-valued mapping C : R ⇒ H by setting C(t) = K(t) ⊕ H1 for all

t ∈ R. Then, from the above analysis it follows that C has nonempty closed

convex values, and C is Lipschitz-like around every point in its graphs. For any

interval [a, b] ⊂ R, where a < b, C is not continuous in the Hausdorff distance

sense on [a, b]. Indeed, one has 0+C(t) = C(t) for every t ∈ [a, b] and C(t) 6= C(t′)

for any t, t′ ∈ [a, b] with t′ 6= t. Hence the condition 0+C(t) = 0+C(0) for every

t ∈ [a, b], which is necessary for the continuity of C in the Hausdorff distance sense

on [a, b], is violated.

The next example is designed to show how Theorem 4.15 can be used for solving

concrete problems.

Example 4.18. Consider the sweeping process (P) with H = R2, T = 1, A0 =(
0 0

0 0

)
, A1 =

(
1 0

0 1

)
, f(t) =

(
1 +
√
t

t
√
t

)
, and u0 =

(
0

0

)
. Let C(t) = K(t) with

K being the set-valued mapping defined in Example 4.17. For each t ∈ [0, 1], since

C(t) is the straight line tx1 − x2 = 0, one has N P
C(t)(u̇(t)) = R

(
t

−1

)
. Then, (P)
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becomes

(
1 0

0 1

)(
u̇1(t)

u̇2(t)

)
−
(

1 +
√
t

t
√
t

)
∈ −N P

C(t)(u̇(t)) a.e. t ∈ [0, 1],

u(0) =

(
0

0

)
.

(4.20)

As shown in Example 4.17, C is Lipschitz-like around every point in its graph.

So, all the assumptions of Theorem 4.15 are satisfied and, by that theorem,

problem (4.20) has a unique solution u(·) : [0, 1] → R2, which is a continuously

differentiable function. To find an explicit formula for u(t), we observe from the

proof of Theorem 4.15 that u̇(t) = z(t) for all t ∈ [0, 1], where z(t) =

(
z1(t)

z2(t)

)
is

the unique solution of the parametric variational inequality

〈A1z(t)− f(t), y − z(t)〉 ≥ 0 ∀y ∈ C(t).

The latter is equivalent to A1z(t) − f(t) ∈ −N P
C(t)(z(t)). This means that there

exists β ∈ R satisfying (
z1(t)

z2(t)

)
−
(

1 +
√
t

t
√
t

)
= β

(
t

−1

)
.

Therefore, z1(t) = βt +
√
t + 1 and z2(t) = t

√
t − β. The condition z(t) ∈ C(t)

forces z2(t) = tz1(t). Hence, β =
−t

1 + t2
. Thus,

z(t) =

1 +
√
t− t2

1 + t2

t
√
t+

t

1 + t2

 =


√
t+

1

1 + t2

t
√
t+

t

1 + t2


for all t ∈ [0, 1]. Using Remark 4.16(c), we have u(t) = u0 +

∫ t

0

z(τ)dτ for each

t ∈ [0, 1]. Therefore,

u(t) =

 2

3
t
√
t+ arctan t

2

5
t2
√
t+

1

2
ln(1 + t2)

 (t ∈ [0, 1]),

a continuously differentiable function on [0, 1], is the unique solution of (4.20).

The solution uniqueness result established in Theorem 4.15 is new, because the
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operator A0 = 0 is positive semidefinite, but not coercive. Thus, in some sense,

our result complements those given in Theorem 4.13 and 4.14. A natural question

arises: Whether the coerciveness of A1 also guarantees the solution uniqueness

of (P) in the case where A0 6= 0? The following theorem, whose proof is based on

some ideas of [7], solves this question in the affirmative.

Theorem 4.19. If C(t) is nonempty and convex for every t ∈ [0, T ], A1 is coercive,

and A0 is positive semidefinite, then (P) can have at most one solution.

Proof. Suppose that u(·) and v(·) are two solutions of (P), where C(t) is nonempty

and convex for every t ∈ [0, T ], A1 is coercive, and A0 is positive semidefinite. Then

u, v : [0, T ]→ H are absolutely continuous functions, u(0) = v(0) = u0,

〈A1u̇(t) + A0u(t)− f(t), u̇(t)− z〉 ≤ 0 ∀z ∈ C(t) (4.21)

and

〈A1v̇(t) + A0v(t)− f(t), v̇(t)− z〉 ≤ 0 ∀z ∈ C(t) (4.22)

for a.e. t ∈ [0, T ]. Since u̇(t) and v̇(t) belong to C(t) for almost every t ∈ [0, T ],

substituting z = v̇(t) to the inequality in (4.21) and z = u̇(t) to the inequality

in (4.22) yields

〈A1u̇(t) + A0u(t)− f(t), u̇(t)− v̇(t)〉 ≤ 0

and

〈A1v̇(t) + A0v(t)− f(t), v̇(t)− u̇(t)〉 ≤ 0

for almost every t ∈ [0, T ]. Adding the last inequalities side by side, one gets

〈A1(u̇(t)− v̇(t)) + A0(u(t)− v(t)), u̇(t)− v̇(t)〉 ≤ 0 (4.23)

for almost every t ∈ [0, T ]. Since A1 is coercive, there is a number α1 > 0 such

that 〈A1x, x〉 ≥ α1‖x‖2 for all x ∈ H. Thus, (4.23) implies that

α1‖u̇(t)− v̇(t)‖2+〈A0(u(t)− v(t)), u̇(t)− v̇(t)〉 ≤ 0 a.e. t ∈ [0, T ]. (4.24)

Taking the Lebesgue integral of both sides of (4.24) and applying Remark 2.12,

we obtain∫ T

0

α1‖u̇(τ)− v̇(τ)‖2dτ +

∫ T

0

〈A0(u(τ)− v(τ)), u̇(τ)− v̇(τ)〉dτ ≤ 0. (4.25)
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Since
d

dτ
〈A0(u(τ)− v(τ)), u(τ)− v(τ)〉 = 2〈A0(u(τ)− v(τ)), u̇(τ)− v̇(τ)〉 at every

point τ where both derivatives u̇(τ), v̇(τ) exist, using Theorem 2.13 and noting

that u(0) = v(0), one has

〈A0(u(T )− v(T )), u(T )− v(T )〉 = 2

∫ T

0

〈A0(u(τ)− v(τ)), u̇(τ)− v̇(τ)〉dτ.

Thus, (4.25) is equivalent to∫ T

0

α1‖u̇(τ)− v̇(τ)‖2dτ +
1

2
〈A0(u(T )− v(T )), u(T )− v(T )〉 ≤ 0.

Since A0 is positive semidefinite, the latter implies∫ T

0

‖u̇(τ)− v̇(τ)‖2dτ ≤ 0. (4.26)

As

∫ T

0

‖u̇(τ)− v̇(τ)‖2dτ ≥ 0, by (4.26) we have

∫ T

0

‖u̇(τ)− v̇(τ)‖2dτ = 0. Hence,

by [56, Corollary of Theorem 5, pp. 299–300], u̇(t) = v̇(t) almost everywhere on

[0, T ]. So, thanks to Remark 4.16(b), we obtain u(t) = v(t) for all t ∈ [0, T ]. Thus,

(P) can have at most one solution.

4.3 The Case of Nonconvex Constraint Sets

Using the results in Section 4.2, we will establish some facts about solution

existence for sweeping processes with nonconvex constraint sets. The obtained

results differ from those of Bounkhel [19]. Note that the union of convex sets are

not convex in general. Let I = {1, . . . ,m} be a finite index set with m ≥ 2. Let

Ci : [0, T ] ⇒ H, i ∈ I, be set-valued mappings with nonempty closed convex values

such that, for any t ∈ [0, T ] and i, j ∈ I with i 6= j, Ci(t) does not intersect Cj(t).

Then, the set C(t) :=
⋃
i∈I
Ci(t) is closed and nonconvex for every t ∈ [0, T ]. The

uniform prox-regularity of such kind of sets has been discussed in Remark 4.6. In

this section, we will study (P) with C : [0, T ] ⇒ H being the just defined set-valued

mapping. To do so, for each i ∈ I, we consider the problem{
A1u̇(t) + A0u(t)− f(t) ∈ −N P

Ci(t)
(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0.
(PCi)

The following theorems establish the solution existence for three classes of
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nonconvex sweeping processes with velocity constraints. The key point here is that

the problems in question admit multiple solutions.

Theorem 4.20. (The moving constraint set is bounded and continuous

in the Hausdorff distance sense) Suppose H be separable and A0, A1 are

positive semidefinite. If every set-valued mapping Ci, i ∈ I, satisfies the

assumptions (H1), (H2a), and (H3a), then (P) has an uncountable number of

Lipschitz solutions, among them there are m solutions u(i), i ∈ I, with u̇(i)(t) ∈
Ci(t) for almost every t ∈ [0, T ].

Proof. Let i ∈ I be chosen arbitrarily. Since Ci satisfies the conditions (H1), (H2a),

and (H3a), under the assumptions made, (PCi) has a Lipschitz solution u(i)(·) by

Theorem 4.13. If u̇i(t) ∈ Ci(t), then the condition Ci(t)∩Cj(t) = ∅ for j ∈ I \ {i}
and the closedness of Cj(t), j ∈ I \ {i}, assure that there is a number ρi(t) > 0

satisfying Cj(t) ∩ B̄
(
u̇(i)(t), ρi(t)

)
= ∅ for all j ∈ I \ {i}. So, one gets

C(t) ∩ B̄
(
u̇(i)(t), ρi(t)

)
= Ci(t) ∩ B̄

(
u̇(i)(t), ρi(t)

)
.

Therefore, thanks to Remark 4.2 and the fact that the inclusion u̇(i)(t) ∈ Ci(t)

holds for almost every t ∈ [0, T ], we have

N P
C(t)(u̇

(i)(t)) = N P
C(t)∩B̄(u̇(i)(t),ρi(t))

(u̇(i)(t)) = N P
Ci(t)∩B̄(u̇(i)(t),ρi(t))

(u̇(i)(t))

= N P
Ci(t)

(u̇(i)(t))

for almost every t ∈ [0, T ]. Since u(i)(·) is a Lipschitz solution of (PCi), this yields{
A1u̇

(i)(t) + A0u
(i)(t)− f(t) ∈ −N P

C(t)(u̇
(i)(t)) a.e. t ∈ [0, T ],

u(i)(0) = u0.

Hence, u(i)(·) is a Lipschitz solution of (P).

Next, fix a pair (i, j) ∈ I × I with i 6= j, and let u(i) be a Lipschitz solution

of (PCi), u
(j) be a Lipschitz solution of (PCj). Then both functions u(i) and u(j) are

Lipschitz solutions of (P). These functions are distinct. Indeed, if u(i)(t) = u(j)(t)

for all t ∈ [0, T ] then, since the inclusions u̇(i)(t) ∈ Ci(t) and u̇(j)(t) ∈ Cj(t) hold

for a.e. t ∈ [0, T ], we find t̄ ∈ (0, T ) such that the derivatives u̇(i)(t̄) and u̇(j)(t̄)

exist, u̇(i)(t̄) ∈ Ci(t̄) and u̇(j)(t̄) ∈ Cj(t̄). This is impossible because u̇(i)(t̄) = u̇(j)(t̄)

and Ci(t̄)∩Cj(t̄) = ∅. We have proved the existence of pairwise distinct Lipschitz

solutions u(1), . . . , u(m) of (P), for which one has u̇(i)(t) ∈ Ci(t) for every i ∈ I and

for almost every t ∈ [0, T ].
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Let τ ∈ (0, T ) be arbitrarily chosen. By Theorem 4.13, the problemA1u̇(t) + A0u(t)− f(t) ∈ −N P
C1(t)(u̇(t)) a.e. t ∈ [0, τ ],

u(0) = u0,
(4.27)

has a Lipschitz solution, which we denote by u1,τ (·). Similarly, the problemA1u̇(t) + A0u(t)− f(t) ∈ −N P
C2(t)(u̇(t)) a.e. t ∈ [τ, T ],

u(τ) = u1,τ (τ),
(4.28)

has a Lipschitz solution, which is denoted by u2,τ (·). Setting

uτ (t) =

{
u1,τ (t) if t ∈ [0, τ ],

u2,τ (t) if t ∈ (τ, T ],

we see that uτ is Lipschitz continuous function satisfying uτ (0) = u0. As noted

at the beginning of this proof, if z ∈ C1(t) (resp., z ∈ C2(t)), then N P
C1(t)(z) =

N P
C(t)(z) (resp., N P

C2(t)(z) = N P
C(t)(z)). Therefore, from (4.27) and (4.28) it follows

that A1u̇τ (t) + A0uτ (t)− f(t) ∈ −N P
C(t)(u̇τ (t)) for almost every t ∈ [0, T ]. Hence,

uτ is a Lipschitz solution of (P). Now, take any τ1, τ2 ∈ (0, T ) with τ1 < τ2.

Since uτ1(τ1) = uτ2(τ1), arguing similarly as in the above proof of the pairwise

distinctness of the solutions u(1), . . . , u(m) of (P), we can show that the restrictions

of uτ1 and uτ2 on [τ1, τ2] are two different functions. So, the family {uτ | τ ∈ (0, T )}
consists of pairwise distinct Lipschitz functions. Hence, by the uncountability of

(0, T ) we can assert that (P) has an uncountable number of Lipschitz solutions.

Theorem 4.21. (The moving constraint set is continuous in the Hausdorff

distance sense) Suppose H is separable and A0, A1 are positive semidefinite. If

every set-valued mapping Ci, i ∈ I, satisfies the assumptions (H1), (H2a),

and (H3b), then (P) has an uncountable number of Lipschitz solutions, among

them there are m solutions u(i), i ∈ I, with u̇(i)(t) ∈ Ci(t) for almost every

t ∈ [0, T ].

Proof. Using the same arguments as the ones in the proof of Theorem 4.20 and

applying Theorem 4.14 instead of Theorem 4.13, we then obtain the desired results.

Theorem 4.22. (The moving constraint set is locally Lipschitz-like) Suppose that

H is a Hilbert space, A0 = 0, A1 : H → H is a symmetric coercive bounded linear
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operator, and f : [0, T ] → H is a continuous mapping. Assume that, for i ∈ I,

the set-valued mapping Ci has nonempty closed convex values and is Lipschitz-like

around every point in its graph. Then (P) has an uncountable number of Lipschitz

solutions, among them there are m continuously differentiable solutions u(i), i ∈ I,

with u̇(i)(t) ∈ Ci(t) for almost every t ∈ [0, T ].

Proof. It suffices to follow the proof scheme of Theorem 4.20 and use Theorem 4.15

instead of Theorem 4.13.

4.4 Illustrative Examples

In general, problem (P) does not have a unique solution even in the case where C(t)

is convex; see [7, Example 1]. For the convex case, Adly, Haddad, and Thibault [7,

Theorem 5.2] (see Theorem 4.13 in Section 4.2) have proved that if A0 is coercive,

then (P) can have at most one solution. By constructing an example, we now

show that this condition is not enough to obtain the solution uniqueness in the

case where C(t) is r-prox-regular and connected for each t ∈ [0, T ].

Example 4.23. Consider problem (P) with T = 1, H = R2, A0 = A1 =

(
1 0

0 1

)
,

f(t) ≡ 0, u0 = (0, 0), and C(t) = {x = (x1, x2) ∈ R2 | (1 + t)2 ≤ x2
1 + x2

2 ≤ 9} .
Clearly, A0 and A1 are coercive, C(t) is an annulus, which is r-prox-regular with

r = 1 and connected for each t ∈ [0, T ]. As the condition (5.1) is fulfilled with

g(t) := t and C(0) is bounded, the assumptions (H2a) and (H3a) are satisfied.

Since C(t), t ∈ [0, T ], are nonempty and closed, the assumption (H1) is partially

satisfied. Nevertheless, here Theorem 4.13 cannot be applied, because the set-

valued mapping C has nonconvex values. So, the solution existence of (P) is

under question. Let u1(t) =

(
1

2
(1 + t)2 − 1

2
, 0

)
for t ∈ [0, T ]. We see that

u̇1(t) = (1 + t, 0) ∈ C(t)

and N P
C(t)(u̇1(t)) = R− × {0} for t ∈ [0, T ]. Since

A1u̇1(t) + A0u(t)− f(t) =

(
1 + t

0

)
+

(
1
2
(1 + t)2 − 1

2

0

)
∈ −N P

C(t)(u̇1(t))

for all t ∈ [0, T ] and u1(0) = (0, 0), u1 is a continuously differentiable solution
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of (P). Now, let

u2(t) =
1

2
√

2

(
(1 + t)2 − 1, (1 + t)2 − 1

)
(∀t ∈ [0, T ]).

We have u2(0) = (0, 0), u̇2(t) =
1√
2

(1 + t, 1 + t) ∈ C(t) and

N P
C(t)(u̇2(t)) = {(x1, x2) ∈ R2 | x1 = x2 ≤ 0}.

Then,

A1u̇1(t) + A0u(t) + f(t) =

(
1√
2
(1 + t)

1√
2
(1 + t)

)
+

(
1

2
√

2
(1 + t)2 − 1

2
√

2
1

2
√

2
(1 + t)2 − 1

2
√

2

)
∈ −N P

C(t)(u̇2(t)).

Therefore, u2(·) is also a continuously differentiable solution of (P). So, (P) has

multiple solutions.

The next two examples will shed light on the assertions about solution

uniqueness in Theorem 4.14 and Theorem 4.15. It turns out that the convexity

assumption on the sets C(t), t ∈ [0, T ], cannot be replaced by uniform prox-

regularity and connectedness.

Example 4.24. Let T , H, A0, A1, and f be as in the preceding example. Let

C(t) = {x = (x1, x2) ∈ R2 | (1 + t)2 ≤ x2
1 + x2

2} for all t ∈ [0, T ]. Then, C(t) is

unbounded, r-prox-regular with r = 1 and connected for each t ∈ [0, T ]. The

assumptions (H2a) and (H3b) are fulfilled. Since the assumption (H1) is just

partially satisfied, Theorem 4.14 cannot be used. Set u(t) = (1
2
t2+t)a for t ∈ [0, T ],

where a is any point in ∂C(0). By a direct verification, we can show that u is a

continuously differentiable solution of (P). So, (P) has multiple solutions.

Example 4.25. Let T , H, A1, f , and C(·) be the same as in Example 4.23. The

fulfillment of (5.1) with g(t) := t shows that C is a Lipschitz set-valued mapping.

Hence, as noticed in Remark 4.8, C is Lipschitz-like around every point in its

graph. Choosing A0 = 0, we see that, except for the required convexity of each

C(t), all other assumptions of Theorem 4.15 are satisfied. It is easy to verify that

the formula u(t) = (1
2
t2 + t)a, where a ∈ R2 and ‖a‖= 1, defines a continuously

differentiable solution of (P). So, (P) has multiple solutions.

Remark 4.26. In Examples 4.23 and 4.25, if the formula of C(t) is changed to

C(t) =
{
x = (x1, x2) ∈ R2 | 1 ≤ x2

1 + x2
2 ≤ 9

}
,
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Ω

r
=
1
+
t

Fig. 4.2: Illustration for
Example 4.23

Ω

r
=
1
+
t

Fig. 4.3: Illustration for
Example 4.24

then one has a problem with a fixed constraint set. The formula u(t) = ta,

where a ∈ R2 and ‖a‖= 1, defines a continuously differentiable solution of

the problem (P). So, (P) can have multiple solutions even in the case of a

fixed nonconvex constraint set, which is compact, uniformly prox-regular, and

connected. This observation is also valid for Example 4.24, if the constraint set is

kept fixed, i.e., one takes

C(t) =
{
x = (x1, x2) ∈ R2 | 1 ≤ x2

1 + x2
2

}
for all t ∈ [0, T ].

If a person uses a motorbike to go on a road starting from A on a time interval

[0, T ] then, roughly speaking, at every time instant he/she can choose one level

of velocity from the set {0, 1, 2, 3} of the motorcycle gear levels. Different choices

of the velocity level u̇(t) for various disjoint segments of [0, T ] generate different

path length functions u(t). Here one has u(0) = 0. The following example will

put this very common daily nonconvex sweeping process with velocity constraints

in an abstract setting.

Example 4.27. Consider problem (P) with A1, A0, f , u0 being given arbitrarily,

and C(t) = {v1, . . . vm} for all t ∈ [0, T ], where m ≥ 2 and vi, i ∈ I := {1, . . . ,m},
are pairwise distinct points in H. By Remark 4.6, we know that C is uniformly

prox-regular. Let τ0 = 0 < τ1 < · · · < τk = T be a partition of the interval [0, T ].

Let u̇(t) be a step function that takes just one value from {v1, . . . vm} on each

interval (τj, τj+1), j = 0, . . . , k − 1. The formula u(t) = u0 +

∫ t

0

u̇(s)ds gives a
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Lipschitz function defined on [0, T ]. It is obvious that, for any z ∈ {v1, . . . vm} and

t ∈ [0, T ], one has N P
C(t)(z) = H. Hence, the two conditions in the formulation

of (P) are satisfied. Thus, u(t) is a solution of (P). We have shown that (P) has

uncountable number of Lipschitz solutions.

The next example can serve as an illustration for Theorem 4.22.

Example 4.28. Consider problem (P) where H = R2, A0 = 0, A1 ∈ R2×2 is a

symmetric positive definite matrix, f : [0, T ]→ R2 is a continuous function,

C1(t) =
{
x = (x1, x2) ∈ R2 | x2 ≥ e−x1+t

}
,

C2(t) = {(x1, x2) ∈ R2 | x2 ≤ 0}, and C(t) = C1(t)∪C2(t) for t ∈ [0, T ]. According

to Remark 4.6, C(t) is not uniformly prox-regular for any t ∈ [0, T ]. Meanwhile,

each mapping Ci, i ∈ {1, 2}, is Lipschitz-like around every point in its graph. To

verify this property for C1, one can apply a suitable implicit function theorem

for set-valued mappings (for instance, [84, Theorem 3.2] and [95, Theorem 3.3]).

Since all the assumptions of Theorem 4.22 are satisfied, we can assert that (P)

has an uncountable number of Lipschitz solutions, among them there are two

continuously differentiable solutions u(i), i ∈ {1, 2}, with u̇(i)(t) ∈ Ci(t) for almost

every t ∈ [0, T ].

To verify the local Lipschitz-likeness of an implicit set-valued mapping defined

by a generalized inequality system in infinite-dimensional Hilbert spaces or Banach

spaces, one can use, e.g., some results in [42, 93].

Interestingly, Theorem 4.21 can be applied to the sweeping process considered

in Example 4.28.

Example 4.29. Let H, A0, A1, f(·), and C1(·), C2(·), and C(·) be the same as

in Example 4.28. To show that every set-valued mapping Ci, i ∈ {1, 2}, satisfies

the assumptions (H1), (H2a), and (H3b), it suffices to verify the continuity of C1

in the Hausdorff distance sense. To do so, take any t, s ∈ [0, T ] with s < t. Then,

one has C1(t) ⊂ C1(s). Given any y = (y1, y2) ∈ C1(s), we define x = (x1, x2),

where x1 = y1 + t− s and x2 = y2. Since e−x1+t = e−(y1+t−s)+t = e−y1+s ≤ y2 = x2,

we get x ∈ C1(t). As ‖x − y‖= t − s, it follows that dH(C1(s), C1(t)) ≤ |t − s|
for all t, s ∈ [0, T ]. Therefore, by Theorem 4.21, (P) has an uncountable number

of Lipschitz solutions, among them there are 2 solutions u(i), i ∈ {1, 2}, with

u̇(i)(t) ∈ Ci(t) for almost every t ∈ [0, T ]. Note that, to apply Theorem 4.21

for this sweeping process, as A0 one can choose an arbitrary symmetric positive

semidefinite 2× 2 matrix (i.e., it is not necessary to put A0 = 0).
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4.5 Open Questions

Several open questions related to the results given in Sections 4.2–4.4 will be

formulated in this section.

4.5.1 An Iteration Scheme

Let H be a Hilbert space, A0 : H → H a symmetric positive semidefinite bounded

linear operator, A1 : H → H a symmetric coercive bounded linear operator, and

f : [0, T ]→ H a continuous mapping. Assume that C : [0, T ] ⇒ H is a set-valued

mapping with nonempty closed convex values, which is Lipschitz-like around every

point in its graph. Then, according to Theorem 4.19, the sweeping process (P)

can have at most one solution. If A0 = 0, by Theorem 4.15 we know that (P) has

a unique solution, which is a continuously differentiable function. The first open

question is about the case where A0 is a nonzero operator.

(Q1) If A0 6= 0, then the above assumptions are sufficient for the solution existence

of (P)?

If (Q1) can be solved in the affirmative, then it is of interest to have an iteration

scheme to find the unique solution of (P). Based on Theorem 4.15, we can propose

such a scheme. At the initial step k = 0, one solves the problem (P1) and denotes

the unique solution by u(0). Clearly, u(0) is a rough approximate solution of (P),

because the operator A0 6= 0 had no role in creating the function. If u is the exact

solution of (P), which is to be found, and u(k) is an approximate solution of (P)

at a step k ∈ {0, 1, 2, . . . }, then

A1u̇(t) + A0u(t)− f(t) ≈ A1u̇(t) + A0u
(k)(t)− f(t) a.e. t ∈ [0, T ].

Hence, setting f̃k+1(t) = −A0u
(k)(t) + f(t) for all t ∈ [0, T ], we have

A1u̇(t) + A0u(t)− f(t) ≈ A1u̇(t)− f̃k(t) a.e. t ∈ [0, T ].

So, the approximate problem of (P) at step k + 1 is{
A1u̇(t)− f̃k+1(t) ∈ −N P

C(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0.
(P1,k+1)

Since f̃k+1 : [0, T ] → H is a continuous function, problem (P1,k+1) is of the

form (P1). Therefore, by Theorem 4.15, it has a unique solution, which is denoted
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by u(k+1). The just described iteration scheme yields a sequence of continuously

differentiable functions {u(k)}k∈N. The second open question is as follows.

(Q2) Whether the sequence {uk}k∈N converges to a solution of (P)?

4.5.2 A Regularization Method

It is appealing to study the problem (P1) in the setting of Theorem 4.15 with

A1 being only a symmetric positive semidefinite bounded linear operator. Let us

denote the problem by (P0) and its solution set by S0.

(Q3) Can we obtain a solution existence result for the problem (P0)?

If S0 6= ∅, then it would be reasonable to try to get a solution by the

Tikhonov regularization method, which has been successfully applied for monotone

variational inequalities (see, e.g., [91, Theorem 2.3]). For each ε > 0, the operator

A1 + εId, where Id denotes the identity function, is coercive. Therefore, by

Theorem 4.15, the regularized problem{
(A1 + εId)u̇(t)− f(t) ∈ −N P

C(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0,

of (P0) has a unique solution, which is denoted by uε. The following questions

deserve further considerations:

(Q4) If S0 6= ∅, then the solution uε of the regularized problem converges in

C0([0, T ],H) to a solution of the original problem as ε→ 0+?

(Q5) If S0 6= ∅, then the limit of uε as ε → 0+, if exists, is a solution of (P0)

whose derivative has the smallest L2([0, T ],H) norm?

4.5.3 Problems Having a Fixed Connected Uniformly

Prox-Regular Constraint Set

Several examples of sweeping processes with uniformly prox-regular constraint

sets have been given in Section 4.4. In Example 4.27, despite of the fact that the

constraint set is fixed and finite, (P) has multiple solutions for any choice of A1,

A0, and f . In addition, from Remark 4.26 where the constraint set of the problem

under consideration is fixed and both operators A0, A1 are coercive, we see that

the solution uniqueness cannot be guaranteed. Thus, the next questions seem to

be interesting.
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(Q6) Under which conditions, can we obtain the solution existence for (P) when

the constraint set is fixed, uniformly prox-regular, and connected?

(Q7) Under which conditions, can we obtain the solution uniqueness for (P) when

the constraint set is fixed, uniformly prox-regular, and connected?

4.6 Conclusions

In this chapter, we have established the solution existence for some classes of

sweeping processes in Hilbert spaces with velocity constraints where the constraint

sets can be either convex or nonconvex as well. For the convex case, a new result

on the solution uniqueness has been obtained. For the nonconvex case, we have

proved that there are many classes of problems having an uncountable number of

solutions.

Using a theorem on the solution sensitivity of parametric variational

inequalities, we have proposed a new approach to the solution existence and

solution uniqueness of sweeping processes with velocity constraints. Among other

things, being locally Lipschitz-like, the constraint set mapping needs not to be

continuous in the Hausdorff distance sense. An example has been given to show

the advantage of the new results. Other illustrative examples, where the focus was

made on uniform prox-regularity of the constraint sets, have been presented.

Seven open problems deserving further investigations have been formulated.
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Chapter 5

Solution Properties of Convex

Sweeping Processes with Velocity

Constraints

Some properties of solutions of convex sweeping processes with velocity constraints

are studied in this chapter. Namely, the solution sensitivity with respect to the

initial value, the boundedness, the closedness, and the convexity of the solution

set are discussed in detail.

Using the same notation as in preceding chapter, we let A0, A1 : H → H be

positive semi-definite, bounded symmetric linear operators and f : [0, T ]→ H be

a continuous mapping. In this chapter, we will only consider the case where C(t),

t ∈ [0, T ] is convex, which implies that the proximal cone in the formulation of (P)

can be substituted by the normal cone in the sense of convex analysis. We then

recall the problem (P){
A1u̇(t) + A0u(t)− f(t) ∈ −NC(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0.
(P)

We denote by Sol(P, u0) the solution set of (P) with the initial value u0. For the

reader’s convenience, before investigating the solution properties for problem (P),

we restate the assumptions that were used in preceding chapter and present some

new ones, which will also be discussed.

Assumption (H1). The constraint sets C(t), t ∈ [0, T ], are nonempty, closed,

and convex.

Assumption (H1a). The constraint sets C(t), t ∈ [0, T ], are nonempty and
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convex.

Assumption (H2a). The set-valued mapping C is continuous in the Hausdorff

distance sense, i.e., there exists a continuous function g : [0, T ]→ R such that

dH(C(s), C(t)) ≤ |g(s)− g(t)| ∀s, t ∈ [0, T ]. (5.1)

Assumption (H2b). C is Lipschitz-like around every point in its graph.

Assumption (H3a). The constraint set C(0) is bounded.

Assumption (H3b). There exist positive constants c1, c2 such that

〈A1x, x〉 ≥ c1‖x‖2−c2, ∀x ∈ C(0).

Assumption (H3c). There exist positive constants c1, c2 such that

〈A1x, x〉 ≥ c1‖x‖2−c2, ∀t ∈ [0, T ], ∀x ∈ C(t).

The following theorem can be deduced from the proof of [7, Theorem 5.2].

Theorem 5.1. (Cf. [7, Theorem 5.2]) If A0 is coercive and C(t) is nonempty and

convex for every t ∈ [0, T ], then (P) has at most one solution.

5.1 Solution Sensitivity with respect to the

Initial Value

In this section, we investigate the solution sensitivity of (P) with respect to the

initial value when the solution is unique. The following theorem takes account of

the case where the operator A0 is coercive.

Theorem 5.2. If the assumption (H1a) is satisfied, Sol(P, u0) is nonempty for

every u0 ∈ C(0), and A0 is coercive with the modulus of coercivity α0, then the

mapping ϕ : C(0)→ C0([0, T ],H), u0 7→ u(u0, ·), where u(u0, ·) denotes the unique

solution of (P), is Lipschitz continuous with the modulus
√
‖A0‖
α0

.

Proof. Let x0, y0 ∈ C(0) be given arbitrarily. Then, by our assumptions and

Theorem 5.1, the sweeping process (P) has a unique solution x(·) with the initial

value x0 (resp., a unique solution y(·) with the initial value y0). Since C(t) is
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convex, the inclusion

A1u̇(t) + A0u(t)− f(t) ∈ −NC(t)(u̇(t)) (5.2)

in the formulation of (P) can be rewritten equivalently as

〈A1u̇(t) + A0u(t)− f(t), u̇(t)− z〉 ≤ 0 ∀z ∈ C(t).

As NC(t)(u̇(t)) = ∅ if u̇(t) /∈ C(t), the fulfillment of (5.2) for almost every t ∈ [0, T ]

implies that u̇(t) ∈ C(t) for almost every t ∈ [0, T ]. Therefore, the inclusions

ẋ(t) ∈ C(t) and ẏ(t) ∈ C(t) hold for almost every t ∈ [0, T ]. So, we have〈A1ẋ(t) + A0x(t)− f(t), ẋ(t)− ẏ(t)〉 ≤ 0,

〈−A1ẏ(t)− A0y(t) + f(t), ẋ(t)− ẏ(t)〉 ≤ 0
(5.3)

for almost every t ∈ [0, T ]. Adding the inequalities in (5.3) side by side yields

〈A1(ẋ(t)− ẏ(t)), ẋ(t)− ẏ(t)〉+ 〈A0(x(t)− y(t)), ẋ(t)− ẏ(t)〉 ≤ 0 a.e. t ∈ [0, T ].

Since A1 is positive semi-definite, this implies that

〈A0(x(t)− y(t)), ẋ(t)− ẏ(t)〉 ≤ 0 a.e. t ∈ [0, T ]. (5.4)

Taking the Lebesgue integral on both sides of the inequality in (5.4) and applying

Remark 2.12, we obtain∫ t

0

〈A0(x(τ)− y(τ)), ẋ(τ)− ẏ(τ)〉dτ ≤ 0 (∀t ∈ [0, T ]). (5.5)

As
d

dτ
〈A0(x(τ) − y(τ)), x(τ) − y(τ)〉 = 2〈A0(x(τ) − y(τ)), ẋ(τ) − ẏ(τ)〉 at every

point τ where both derivatives ẋ(τ), ẏ(τ) exist, by Theorem 2.13 one has∫ t

0

〈A0(x(τ)− y(τ)), ẋ(τ)− ẏ(τ)〉dτ =
1

2
[〈A0(x(t)− y(t)), x(t)− y(t)〉

−〈A0(x(0)− y(0)), x(0)− y(0)〉].
(5.6)

Then, from (5.5) it follows that 〈A0(x(t)−y(t)), x(t)−y(t)〉−〈A0(x0−y0), x0−y0〉 ≤
0. Hence, by the coerciveness of A0, we get

α0‖x(t)− y(t)‖2≤ 〈A0(x(t)− y(t)), x(t)− y(t)〉 ≤ 〈A0(x0 − y0), x0 − y0〉
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≤ ‖A0‖‖x0 − y0‖2.

Therefore, ‖x(t)− y(t)‖≤
√
‖A0‖
α0
‖x0 − y0‖ for all t ∈ [0, T ]. So, the inequality

‖x− y‖C0≤
√
‖A0‖
α0

‖x0 − y0‖

holds for any x0, y0 ∈ C(0). We have thus proved that the mapping ϕ is Lipschitz

continuous on C(0) with the modulus
√
‖A0‖
α0

.

According to Theorem 4.19, the nonemptiness and convexity of C(t) together

with the coerciveness of A1 can also guarantee the solution uniqueness for (P) if

such a solution exists. A natural question arises: Could we get a similar result as

the one in Theorem 5.2 for the case under consideration? The next theorem gives

a complete answer to this question.

Theorem 5.3. If the assumption (H1a) is fulfilled, Sol(P, u0) is nonempty for

every u0 ∈ C(0), and A1 is coercive with the modulus of coercivity α1, then the

mapping ϕ : C(0)→ C0([0, T ],H), u0 7→ u(u0, ·), where u(u0, ·) denotes the unique

solution of (P), is Lipschitz continuous with the modulus

√
T‖A0‖

2α1

+ 1.

Proof. For any x0, y0 ∈ C(0), the assumptions made and Theorem 4.19 assure

that (P) has a unique solution x(·) (resp., y(·)) with the initial value x0 (resp., y0).

Then, arguing similarly as in the proof of Theorem 5.2, we have

〈A1ẋ(t) + A0x(t)− f(t), ẋ(t)− ẏ(t)〉 ≤ 0

and

〈A1ẏ(t) + A0y(t)− f(t), ẏ(t)− ẋ(t)〉 ≤ 0

for almost every t ∈ [0, T ]. Adding the last inequalities side by side, one obtains

〈A1(ẋ(t)− ẏ(t)), ẋ(t)− ẏ(t)〉+ 〈A0(x(t)− y(t)), ẋ(t)− ẏ(t)〉 ≤ 0 (5.7)

for almost every t ∈ [0, T ]. Combining the coerciveness of A0 with (5.7) yields

α1‖ẋ(t)− ẏ(t)‖2≤ −〈A0(x(t)− y(t)), ẋ(t)− ẏ(t)〉 a.e. t ∈ [0, T ]. (5.8)

Since the function t 7→ −〈A0(x(t)−y(t)), ẋ(t)− ẏ(t)〉 is integrable (in the Lebesgue

sense), from (5.8) we can deduce that the function t 7→ α1‖ẋ(t) − ẏ(t)‖2 is also
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integrable. Integrating both sides of the inequality in (5.8), we obtain∫ t

0

α1‖ẋ(τ)− ẏ(τ)‖2dτ ≤ −
∫ t

0

〈A0(x(τ)− y(τ)), ẋ(τ)− ẏ(τ)〉dτ. (5.9)

At every point τ where both derivatives ẋ(τ), ẏ(τ) exist, we have

d

dτ
〈A0(x(τ)− y(τ)), x(τ)− y(τ)〉 = 2〈A0(x(τ)− y(τ)), ẋ(τ)− ẏ(τ)〉.

Hence, as noted in the preceding proof, by Theorem 2.13 we have (5.6).

Consequently, from (5.9) it follows that∫ t

0

α1‖ẋ(τ)− ẏ(τ)‖2dτ ≤ −1

2
[〈A0(x(t)− y(t)), x(t)− y(t)〉

− 〈A0(x(0)− y(0)), x(0)− y(0)〉].

Since A0 is positive semidefinite, the latter implies∫ t

0

α1‖ẋ(τ)− ẏ(τ)‖2dτ ≤ 1

2
〈A0(x(0)− y(0)), x(0)− y(0)〉 ≤ ‖A0‖

2
‖x0 − y0‖2.

So, we have ∫ t

0

‖ẋ(τ)− ẏ(τ)‖2dτ ≤ ‖A0‖
2α1

‖x0 − y0‖2. (5.10)

In addition, for each t ∈ [0, T ] one has

‖x(t)− y(t)‖ =
∥∥∥(x0 +

∫ t

0

ẋ(τ)dτ

)
−
(
y0 +

∫ t

0

ẏ(τ)dτ

)∥∥∥
≤ ‖x0 − y0‖+

∫ t

0

‖ẋ(τ)− ẏ(τ)‖dτ.
(5.11)

The inequality shows that the function t 7→ ‖ẋ(t) − ẏ(t)‖ belongs to the space

L2([0, T ],R). Therefore, setting β(t) = 1 for t ∈ [0, T ] and using the Hölder’s

inequality (see Proposition 2.14) for functions from L2([0, T ],R), we have

∫ t

0

(β(τ)‖ẋ(τ)− ẏ(τ)‖)dτ ≤
(∫ t

0

β(τ)2dτ

) 1
2
(∫ t

0

‖ẋ(τ)− ẏ(τ)‖2dτ

) 1
2

.

Then, combining this with (5.10) yields

∫ t

0

‖ẋ(τ)− ẏ(τ)‖dτ ≤
√
t

√
‖A0‖
2α1

‖x0 − y0‖≤
√
T

√
‖A0‖
2α1

‖x0 − y0‖
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for every t ∈ [0, T ]. Hence, thanks to (5.11), we get

‖x(t)− y(t)‖≤ ‖x0 − y0‖+
√
T‖A0‖

2α1

‖x0 − y0‖=

√T‖A0‖
2α1

+ 1

 ‖x0 − y0‖

for all t ∈ [0, T ]. This implies that the mapping ϕ defined in the statement of the

theorem is Lipschitz continuous on C(0) with the modulus

√
T‖A0‖

2α1

+ 1.

5.2 Boundedness of the Solution Set

Noting that the Sobolev space W 1,1([0, T ],H) is the space of all absolutely

continuous functions with its derivative in L1([0, T ],H) (see Proposition 2.24),

we can view the solution set of (P) as a subset of W 1,1([0, T ],H). Of course, at

the same time, it is a subset of C0([0, T ],H).

If (P) has a unique solution then, under suitable conditions, we have established

the solution sensitivity with respect to the initial value. When the solution

uniqueness is not guaranteed, the solution set of (P) may be unbounded. Let

us consider an example.

Example 5.4. Let H = R2, A0 = A1 =

(
0 0

0 1

)
, u0 = (0, 0), f(t) = (0, t), and

C(t) = R× {0} for all t ∈ [0, T ]. For every λ ∈ R, we define a function by setting

u(λ)(t) = (λt, 0) for all t ∈ [0, T ]. Clearly, u(λ)(0) = (0, 0) and u̇(λ)(t) = (λ, 0) ∈
C(t) for all t ∈ [0, T ]. In addition,

A1u̇
(λ)(t) + A0u

(λ)(t)− f(t) =

(
0 0

0 1

)(
u̇

(λ)
1 (t)

u̇
(λ)
2 (t)

)
+

(
0 0

0 1

)(
u

(λ)
1 (t)

u
(λ)
2 (t)

)
−
(

0

t

)

=

(
0

−t

)
.

Since NC(t)(u̇
(λ)(t)) = {0} × R, this yields A1u̇

(λ)(t) + A0u
(λ)(t) − f(t) ∈

−NC(t)(u̇
(λ)(t)) for all t ∈ [0, T ]. Thus, for any λ ∈ R, u(λ) is a solution of (P). As

‖u(λ)‖C0= |λ|T , the solutions of (P) form an unbounded subset of C0([0, T ],H).

Our aim in this section is to establish some sets of conditions ensuring that the

solution set of (P) is bounded.
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Theorem 5.5. If C(t) is nonempty for all t ∈ [0, T ] and the assumptions (H2a),

(H3a) are satisfied then, for any u0 ∈ C(0), the solution set Sol(P, u0) is bounded

in both spaces C0([0, T ],H) and W 1,1([0, T ],H).

Proof. Let u0 ∈ C(0) be given arbitrarily. If Sol(P, u0) is empty, then it is bounded.

Suppose that Sol(P, u0) 6= ∅ and u is an element from Sol(P, u0). As C(0) is

bounded, we can find ρ0 > 0 such that C(0) ⊂ ρ0B̄(0, 1). Let g : [0, T ] → R
be a continuous function satisfying (5.1). Thus, for all t ∈ [0, T ] one has C(t) ⊂
C(0) + |g(0) − g(t)|. This implies that for all t ∈ [0, T ] one has C(t) ⊂ ρB̄(0, 1),

where ρ := ρ0 + max{|g(0)− g(s)|| s ∈ [0, T ]}. Since u̇(t) ∈ C(t) for almost every

t ∈ [0, T ], one has ‖u̇(t)‖≤ ρ for almost every t ∈ [0, T ]. For any t ∈ [0, T ], we put

Ω1(t) = {s ∈ [0, t] | ‖u̇(s)‖≤ ρ} and Ω2(t) = {s ∈ [0, t] | ‖u̇(s)‖> ρ}. Then, the

sets Ω1(t) and Ω2(t) are measurable, and µ(Ω2(t)) = 0 with µ being the Lebesgue

measure on R. So, by Remark 4.16(c) and Proposition 2.19, we have

‖u(t)‖= ‖u0 +

∫ t

0

u̇(τ)dτ‖ = ‖u0 +

∫
Ω1(t)

u̇(τ)dτ +

∫
Ω2(t)

u̇(τ)dτ‖

≤ ‖u0‖+
∫

Ω1(t)

‖u̇(τ)‖dτ +

∫
Ω2(t)

‖u̇(τ)‖dτ

≤ ‖u0‖+ρµ(Ω1(t))

≤ ‖u0‖+ρT.

Thus, ‖u‖C0≤ ‖u0‖+ρT . This establishes the boundedness of Sol(P, u0) in

C0([0, T ],H). Since ‖u(t)‖≤ ‖u0‖+ρT for all t ∈ [0, T ], ‖u̇(t)‖≤ ρ for a.e. t ∈ [0, T ],

and u ∈ Sol(P, u0) was chosen arbitrarily, by (2.1) we can assert that Sol(P, u0) is

a bounded subset of the Sobolev space W 1,1([0, T ],H).

To deal with the case where the sets C(t), t ∈ [0, T ], can be unbounded, we will

need the following technical lemma. Since we still have not found any reference

containing this statement, a detailed proof is given here.

Lemma 5.6. Let f be a Lebesgue integrable, real-valued function defined on [0, T ].

If

f(t) ≤ a+ b

∫ t

0

f(τ)dτ a.e. t ∈ [0, T ] (5.12)

for some constants a, b with b 6= 0, then

∫ t

0

f(τ)dτ ≤ a

b
(exp(bt) − 1) for all

t ∈ [0, T ].

Proof. Let f be a Lebesgue integrable function on [0, T ] satisfying (5.12).

Systèmes Dynamiques Non-réguliers 71



5.2. Boundedness of the Solution Set

Multiplying both sides of the inequality in (5.12) by exp(−bt) yields

exp(−bt)f(t)− b exp(−bt)
∫ t

0

f(τ)dτ ≤ a exp(−bt) a.e. t ∈ [0, T ]. (5.13)

By Proposition 2.15 one has

d

ds

(
exp(−bs)

∫ s

0

f(τ)dτ

)
= exp(−bs)f(s)− b exp(−bs)

∫ s

0

f(τ)dτ.

Thus, taking the Lebesgue integral on both sides of the inequality in (5.13) and

applying Remark 2.12, we obtain∫ t

0

d

ds

(
exp(−bs)

∫ s

0

f(τ)dτ

)
ds ≤

∫ t

0

a exp(−bs)ds ∀t ∈ [0, T ].

It follows that

exp(−bt)
∫ t

0

f(τ)dτ ≤ a

b
(1− exp(−bt)) ∀t ∈ [0, T ].

Hence, we get ∫ t

0

f(τ)dτ ≤ a

b
(exp(bt)− 1) ∀t ∈ [0, T ].

The proof is complete.

Theorem 5.7. If the assumptions (H1a), (H2a) and (H3b) are satisfied then, for

any u0 ∈ C(0), the solution set Sol(P, u0) is bounded in both spaces C0([0, T ],H)

and W 1,1([0, T ],H).

Proof. Given any u0 ∈ C(0). If Sol(P, u0) is empty, then it is bounded. Suppose

that Sol(P, u0) is nonempty. Take any u ∈ Sol(P, u0) and let ε > 0 be given

arbitrarily. Since C(t) is nonempty, for any t ∈ [0, T ] there exists zt ∈ C(t)

satisfying ‖u0 − zt‖< d(u0, C(t)) + ε. By (H2a), we have

‖zt‖−‖u0‖≤ ‖u0 − zt‖< d(u0, C(t)) + ε ≤ dH(C(0), C(t)) + ε

≤ |g(0)− g(t)|+ε.

Then, setting β := ‖u0‖+ max
τ∈[0,T ]

|g(0) − g(τ)|+ε, we get ‖zt‖< β. So, for every

t ∈ [0, T ] one can find some zt ∈ C(t) such that ‖zt‖< β. As u ∈ Sol(P, u0),

by (H1a) one has for almost every t ∈ [0, T ] that

〈A1u̇(t) + A0u(t)− f(t), u̇(t)− z〉 ≤ 0 ∀z ∈ C(t).
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Substituting z = zt into the above inequality yields 〈A1u̇(t) +A0u(t)− f(t), u̇(t)−
zt〉 ≤ 0 for almost every t ∈ [0, T ]. Thus,

〈A1u̇(t), u̇(t)〉−〈A1u̇(t), zt〉+〈A0u(t)−f(t), u̇(t)〉−〈A0u(t)−f(t), zt〉 ≤ 0. (5.14)

Using the assumptions (H2a), (H3b), and Remark 4.16, we can find positive

constants ĉ1, ĉ2 such that 〈A1x, x〉 ≥ ĉ1‖x‖2−ĉ2 for all t ∈ [0, T ] and x ∈ C(t).

Then, (5.14) implies that

ĉ1‖u̇(t)‖2−ĉ2 − 〈A1u̇(t), zt〉+ 〈A0u(t)− f(t), u̇(t)〉 − 〈A0u(t)− f(t), zt〉 ≤ 0

for a.e. t ∈ [0, T ]. So, one has

ĉ1‖u̇(t)‖2−ĉ2−β‖A1‖‖u̇(t)‖−(‖A0‖‖u(t)‖+‖f‖C0)‖u̇(t)‖−β(‖A0‖‖u(t)‖+‖f‖C0) ≤ 0

for a.e. t ∈ [0, T ]. For each t ∈ [0, T ], setting a1(t) = β‖A1‖+‖A0‖‖u(t)‖+‖f‖C0
and

a2(t) = β(‖A0‖‖u(t)‖+‖f‖C0) + ĉ2,

we get

ĉ1‖u̇(t)‖2−a1(t)‖u̇(t)‖−a2(t) ≤ 0 a.e. t ∈ [0, T ]. (5.15)

As ĉ1 > 0 and a2(t) > 0 for t ∈ [0, T ], the quadratic polynomial

q(x) := ĉ1x
2 − a1(t)x− a2(t)

has two roots with different signs. Hence, (5.15) holds if and only if

‖u̇(t)‖≤ a1(t) +
√
a1(t)2 − 4ĉ1a2(t)

2ĉ1

a.e. t ∈ [0, T ].

Since
√
a1(t)2 − 4ĉ1a2(t) ≤ a1(t), this yields ‖u̇(t)‖≤ a1(t)

ĉ1

for a.e. t ∈ [0, T ].

Therefore,

‖u̇(t)‖≤ β‖A1‖+‖A0‖‖u(t)‖+‖f‖C0
ĉ1

for a.e. t ∈ [0, T ]. Then one has

‖u̇(t)‖≤ γ(1 + ‖u(t)‖) a.e. t ∈ [0, T ], (5.16)
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where γ := max

{
β‖A1‖+‖f‖C0

ĉ1

,
‖A0‖
ĉ1

}
. Since

‖u(t)‖= ‖u0 +

∫ t

0

u̇(τ)dτ‖≤ ‖u0‖+
∫ t

0

‖u̇(τ)‖dτ (5.17)

(see Remark 4.16(c) and Proposition 2.19(ii)), from (5.16) it follows that

‖u̇(t)‖≤ γ(1 + ‖u0‖) + γ

∫ t

0

‖u̇(τ)‖dτ a.e. t ∈ [0, T ].

So, applying Lemma 5.6 for f(t) := ‖u̇(t)‖, a := γ(1 + ‖u0‖), and b := γ gives∫ t

0

‖u̇(τ)‖dτ ≤ (1 + ‖u0‖)(exp(γt)− 1) ≤ (1 + ‖u0‖)(exp(γT )− 1) ∀t ∈ [0, T ].

Combining this with (5.17) yields

‖u(t)‖≤ ‖u0‖+(1 + ‖u0‖)(exp(γT )− 1) ∀t ∈ [0, T ]. (5.18)

It follows that ‖u‖C0≤ ‖u0‖+(1 + ‖u0‖)(exp(γT )− 1). So, Sol(P, u0) is a bounded

subset of C0([0, T ],H). Finally, using the estimates (5.16), (5.18), and formula

(2.1), we can find a constant ρ > 0 such that ‖u‖W 1,1≤ ρ for any u ∈ Sol(P, u0).

The proof is complete.

Theorem 5.8. If the assumptions (H1a), (H2b) and (H3c) are satisfied then, for

any u0 ∈ C(0), the solution set Sol(P, u0) is bounded in both spaces C0([0, T ],H)

and W 1,1([0, T ],H).

Proof. For each t ∈ [0, T ], pick a point xt ∈ C(t). As C is Lipschitz-like around

(t, xt), there exist an open neighborhood Vt of t in the induced topology of [0, T ] ⊂
R, a neighborhood Wt of xt in H, and a constant κt > 0 such that

C(t′) ∩Wt ⊂ C(t′′) + κt|t′ − t′′|B̄(0, 1) ∀t′, t′′ ∈ Vt. (5.19)

Since [0, T ] =
⋃

t∈[0,T ]

Vt, the compactness of [0, T ] implies the existence of t1, . . . , tk

in [0, T ] such that [0, T ] =
k⋃
i=1

Vti . For each i ∈ {1, . . . , k}, we have xti ∈ Wti .

So, thanks to (5.19), for every t ∈ Vti we can find z
(i)
t ∈ C(t) and ξ

(i)
t ∈ B̄(0, 1)

satisfying xti = z
(i)
t + κti |t− ti|ξ(i)

t . Then,

‖z(i)
t ‖≤ ‖xti‖+κti |t− ti|≤ ‖xti‖+κtiT. (5.20)
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Setting β = max {‖xti‖+κtiT | i ∈ {1, . . . , k}}, we have β > 0. For each t ∈ [0, T ],

there is some i ∈ {1, . . . , k} such that t ∈ Vti and, by (5.20), the element z
(i)
t ∈ C(t)

satisfies the estimate ‖z(i)
t ‖≤ β. Therefore, for every t ∈ [0, T ], there exists at least

one point of the form z
(i)
t such that z

(i)
t ∈ C(t) and ‖z(i)

t ‖≤ β.

Let u0 ∈ C(0) be given arbitrarily. Since Sol(P, u0) bounded if it is empty, it

suffices to consider the case Sol(P, u0) 6= ∅. Take any u ∈ Sol(P, u0). By (H1a)

we deduce for almost every t ∈ [0, T ] that 〈A1u̇(t) + A0u(t) − f(t), u̇(t) −
z〉 ≤ 0 for all z ∈ C(t). Substituting z = z

(i)
t into the last inequality yields

〈A1u̇(t) + A0u(t) − f(t), u̇(t) − z
(i)
t 〉 ≤ 0 for almost every t ∈ [0, T ]. Using the

assumption (H3c) and repeating the final part of the proof of Theorem 5.5 (starting

from inequality (5.14)), we can show that the solution set Sol(P, u0) is bounded in

both spaces C0([0, T ],H) and W 1,1([0, T ],H).

Remark 5.9. The boundedness of Sol(P, u0) in Theorem 5.8 is also valid if instead

of the assumption (H2b) one requires that C is inner semicontinuous at every point

in its graph, i.e., for every (t, x) ∈ [0, T ] × H with x ∈ C(t), if U ⊂ H is an

open set containing x, then there exists a neighborhood V of t in [0, T ] such that

C(t′) ∩ U 6= ∅ for all t′ ∈ V . Indeed, for each t ∈ [0, T ], select a point xt ∈ C(t).

The inner semicontinuity of C at (t, xt) assures that there is an open neighborhood

Vt of t in the induced topology of [0, T ] such that C(t′) ∩ B(xt, 1) 6= ∅ for every

t′ ∈ Vt. By the compactness of [0, T ], from the open covering {Vt}t∈[0,T ] of the

segment we can extract a finite subcover Vt1 , . . . , Vtk . So, for each t ∈ [0, T ], there

exists an index i ∈ {1, . . . , k} such that t ∈ Vti . Since C(t)∩B(xti , 1) 6= ∅, there is

a vector z
(i)
t ∈ C(t)∩B(xti , 1). Then one has ‖z(i)

t ‖≤ β, where β := max {‖xi‖+1 |
i ∈ {1, . . . , k}}. Consequently, for each t ∈ [0, T ], there exists at least one point of

the form z
(i)
t such that z

(i)
t ∈ C(t) and ‖z(i)

t ‖≤ β. Then, as noted above, the usage

of (H3c) and the repetition of the final part of the proof of Theorem 5.5 yield the

desired assertion.

Remark 5.10. If a set-valued mapping is Lipschitz-like around a point in its graph

then it is inner semicontinuous at that point (see, e.g., [93, Proposition 3.1]).

On the other hand, there exist locally Lipschitz-like mappings which are not

continuous in the Hausdorff distance sense (see Example 4.17). Clearly, if the

mapping C : [0, T ] ⇒ H is continuous in the Hausdorff distance sense, then it is

inner semicontinuous at every point in its graph. Example 4.17 shows that the

converse is not true in general.

Remark 5.11. The continuity in the Hausdorff distance sense of C(·) together

with the assumption (H3b) implies (H3c) (see Remark 4.16). However, a similar
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implication may not hold under the inner semicontinuity of C(·) at every point

in its graph or even under the Lipschitz-likeness of C(·) around every point in its

graph.

5.3 Closedness of the Solution Set

First, let us show that the closedness of Sol(P, u0) may not available even for very

simple problems in finite dimensions.

Proposition 5.12. The solution set of (P) may not be closed in C0([0, T ],H).

Proof. We will prove the proposition by constructing a suitable example. Let

H = R, A0 = 0, A1 = 0, u0 = 0, f(t) ≡ 0, and C(t) = R for all t ∈ [0, T ]. Then,

an absolutely continuous function u : [0, T ]→ R is a solution of (P) if and only if{
0 ∈ NC(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = 0.

Since C(t) = R for all t ∈ [0, T ], NC(t)(u̇(t)) = {0} for any t where u̇(t) exists.

So, any absolutely continuous function u : [0, T ] → R with u(0) = 0 is a solution

of (P). For k ∈ N, let

xk(t) =

t2 sin( 1
t2

) if t ∈ ( 1
k
, T ]

t
k

sin(k2) if t ∈ [0, 1
k
].

and

x(t) =

t2 sin( 1
t2

) if t ∈ (0, T ]

0 if t = 0.

Clearly, xk(·) is a Lipschitz function for each k ∈ N. Since xk(0) = 0, xk(·) is a

solution of (P) for every k ∈ N. In addition, for any k ∈ N, we have

sup
t∈[0,T ]

|x(t)− xk(t)| = sup
0<t≤ 1

k

∣∣∣∣t2 sin

(
1

t2

)
− t

k
sin(k2)

∣∣∣∣
≤ sup

0<t≤ 1
k

∣∣∣∣t2 sin

(
1

t2

)∣∣∣∣+ sup
0<t≤ 1

k

∣∣∣∣ tk sin(k2)

∣∣∣∣
≤ sup

0<t≤ 1
k

t2 + sup
0<t≤ 1

k

t

k

=
2

k2
.
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Therefore, xk strongly converges to x in C0([0, T ],R) as k →∞. However, since x(·)
is not of bounded variation (see Example 2.6(iv)), it is not absolutely continuous.

Hence, x is not a solution of (P). We have thus shown that Sol(P, u0) is non-closed

in C0([0, T ],H).

We now present a lemma on the relation between strong convergence of

sequence of functions in L1([0, T ],H) and its pointwise convergence.

Lemma 5.13. Let {xn} be a sequence in L1([0, T ],H) and let x ∈ L1([0, T ],H)

be such that xn converges strongly to x in L1([0, T ],H). Then, there exists a

subsequence {xnk} of {xn} such that xnk(t) converges to x(t) almost everywhere

on [0, T ].

Proof. Since {xn} is a strongly convergent sequence, it is a Cauchy sequence.

Hence, for every positive integer k we can find a positive integer nk such that

‖xm − xq‖L1≤ 1

2k
(∀m ≥ nk,∀q ≥ nk).

Without loss of generality we may assume that nk1 < nk2 whenever k1 < k2.

Clearly, the above choice of {nk} implies that {xnk} is a subsequence of {xn}
having the property

‖xnk+1
− xnk‖L1≤ 1

2k
∀k ≥ 1. (5.21)

Define

ym(t) =
m∑
k=1

‖xnk+1
(t)− xnk(t)‖. (5.22)

For all t ∈ [0, T ], by (5.22) and (5.21) we have

|ym(t)|=
m∑
k=1

‖xnk+1
(t)− xnk(t)‖≤

m∑
k=1

1

2k
≤ 1.

Thus, |ym(t)|≤ 1 for every t ∈ [0, T ]. Since xn ∈ L1([0, T ],H) is measurable for all

n ∈ N, the function ym : [0, T ] → R is also measurable for all m ∈ N. As {ym}
is a increasing sequence of real-valued functions, by the monotone convergence

theorem [22, Theorem 4.1] one can assert that ym(t) converges to a function y(t)

almost everywhere on [0, T ]. Since |y(t)|≤ 1 for all t ∈ [0, T ], we see that y ∈
L1([0, T ],R). On the other hand, for i > j ≥ 2, we have

‖xni(t)− xnj(t)‖≤ ‖xni(t)− xni−1
(t)‖+ . . .+ ‖xnj+1

(t)− xnj(t)‖≤ y(t)− ynj−1
(t).

(5.23)
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It follows that, for almost every t ∈ [0, T ], {xnk(t)} is a Cauchy sequence in H and

it converges to a finite limit, say, x̃(t). From (5.23), letting i tend to infinity, we

obtain

‖x̃(t)− xnj(t)‖≤ y(t)− ynj−1
(t) ≤ y(t)

for almost every t ∈ [0, T ] and for any j ≥ 2. Hence, one has x̃ ∈ L1([0, T ],H).

Since ‖xnk(t)− x̃(t)‖2→ 0 and ‖xnk(t)− x̃(t)‖≤ y(t) almost everywhere on [0, T ],

using the Dominated Convergence Theorem 2.18, we can deduce that ‖xnk− x̃‖1→
0. Since xn converges strongly to x in L1([0, T ],H) and L1([0, T ],H) is a subspace

of L1([0, T ],H), xn converges strongly to x in L1([0, T ],H). By the uniqueness

of limit, we have x̃ = x. Therefore, we have shown that xnk(t) converges to x(t)

almost everywhere on [0, T ].

The proof is complete.

Remark 5.14. In the formulation of Lemma 5.13, one can replace L1([0, T ],H)

by any Bochner space Lp(Ω, X) with 1 ≤ p < ∞. The proof remains the same,

provided that one writes Lp(Ω, X) instead of L1([0, T ],H) and Lp([0, T ],R) instead

of L1([0, T ],R).

Next, we will prove that the solution set of (P) is closed if it is regarded as a

subset of an appropriate space. More precisely, the following theorem confirms that

the Sobolev space W 1,1([0, T ],H) is such a space. (This result can be explained

by the well known fact that the norm of W 1,1([0, T ],H) is finer than the one of

C0([0, T ],H).)

Theorem 5.15. If the assumption (H1) is satisfied then, for any u0 ∈ C(0), the

solution set Sol(P, u0) is closed in W 1,1([0, T ],H).

Proof. Let u0 ∈ C(0) be given. Suppose that {uk} ⊂ Sol(P, u0) is a sequence

converging strongly in W 1,1([0, T ],H) to u as k → ∞. Then, u is an absolutely

continuous function. To prove that u satisfies the initial condition in (P), we can

argue as follows. Since the norm in W 1,1([0, T ],H) is given by (2.1), we have

lim
k→∞

∫ T

0

‖uk(τ)− u(τ)‖dτ = 0 (5.24)

and

lim
k→∞

∫ T

0

‖u̇k(τ)− u̇(τ)‖dτ = 0. (5.25)

Note that uk(t) = uk(0) +

∫ t

0

u̇k(τ)dτ and u(t) = u(0) +

∫ t

0

u̇(τ)dτ for every

t ∈ [0, T ] and for all k ∈ N (see [9, Remark 3.4(c)]). Hence, from (5.24), (5.25),
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and Proposition 2.19 it follows that

0 = lim
k→∞

∫ T

0

‖uk(τ)− u(τ)‖dτ

= lim
k→∞

[∫ T

0

∥∥∥uk(0)− u(0) +

∫ τ

0

(u̇k(s)− u̇(s))ds
∥∥∥dτ]

≥ lim inf
k→∞

[∫ T

0

(
‖uk(0)− u(0)‖−

∥∥∥∥∫ τ

0

(u̇k(s)− u̇(s))ds

∥∥∥∥) dτ]
≥ lim inf

k→∞

[∫ T

0

(
‖uk(0)− u(0)‖−

∫ T

0

‖u̇k(s)− u̇(s)‖ds
)
dτ

]
= lim inf

k→∞

[
T‖u0 − u(0)‖−T

∫ T

0

‖u̇k(s)− u̇(s)‖ds
]

= T‖u0 − u(0)‖.

So, u(0) = u0.

It remains to prove that u satisfies the differential inclusion in (P).

Setting C = {ϕ ∈ L1([0, T ],H) | ϕ(t) ∈ C(t) a.e. t ∈ [0, T ]} , we will prove that

C is closed in L1([0, T ],H). Let {ϕm} ⊂ D be a sequence converging strongly in

L1([0, T ],H) to a function ψ. Thanks to Lemma 5.13, we can find a subsequence

{ϕmj} of {ϕm} such that ϕmj(t) converges to ψ(t) for almost every t ∈ [0, T ]. Since

ϕmj(t) ∈ C(t) a.e. t ∈ [0, T ] and C(t) is closed, we have ψ(t) ∈ C(t) a.e. t ∈ [0, T ].

Hence, one has ψ ∈ C. This shows that C is closed in L1([0, T ],H).

Since {uk} ⊂ Sol(P, u0), we have u̇k ∈ C for all k ∈ N. From (5.25) it follows

that u̇ ∈ C. So, u̇(t) ∈ C(t) for almost every t ∈ [0, T ]. As C(t) is convex for all

t ∈ [0, T ], the inclusion A1u̇k(t) + A0uk(t)− f(t) ∈ −NC(t)(u̇k(t)) is equivalent to

〈A1u̇k(t) + A0uk(t)− f(t), u̇k(t)− z〉 ≤ 0 ∀z ∈ C(t). (5.26)

For each k ∈ N, (5.26) holds for a.e. t ∈ [0, T ]. Thus, there exists a subset

Dk ⊂ [0, T ] having zero Lebesgue measure that (5.26) holds for every t in [0, T ]\Dk.

Putting D =
⋃
k∈NDk, we see that D is a set of zero Lebesgue measure and (5.26)

holds for all k ∈ N and for every t in [0, T ] \D. For each t from [0, T ] \D, passing

the inequality in (5.26) to the limit yields

〈A1u̇(t) + A0u(t)− f(t), u̇(t)− z〉 ≤ 0 ∀z ∈ C(t).

Thus, for almost every t ∈ [0, T ], one has A1u̇(t) + A0u(t)− f(t) ∈ −NC(t)(u̇(t)).

We have thus proved that u ∈ Sol(P, u0) and, therefore, established the desired

Systèmes Dynamiques Non-réguliers 79



5.4. Convexity of the Solution Set

closedness of Sol(P, u0) in W 1,1([0, T ],H).

5.4 Convexity of the Solution Set

As the normal cone in the sense of convex analysis to a convex set can be presented

in a variational way, sweeping processes and variational inequalities are closely

related. So, the convexity of the solution set of a sweeping process may have some

connections with that property of the solution set of a variational inequality.

Theorem 5.16. If the assumption (H1) is fulfilled and A0 = 0, then Sol(P, u0) is

convex for every u0 ∈ C(0).

Proof. Let u0 ∈ C(0) be taken arbitrarily. It suffices to consider the case where

Sol(P, u0) is nonempty. Under the assumption (H1) and the condition A0 = 0, an

absolutely continuous function u belongs to Sol(P, u0) if and only if u(0) = u0 and

〈A1u̇(t)− f(t), y − u̇(t)〉 ≥ 0 ∀y ∈ C(t)

for a.e. t ∈ [0, T ]. The latter means that z(t) := u̇(t) is a solution of the variational

inequality

〈F (z, t), y − z〉 ≥ 0 ∀y ∈ C(t) (5.27)

for a.e. t ∈ [0, T ], where F (z, t) := A1z − f(t). By the assumed positive

semidefiniteness of A1, one has

〈F (z′, t)− F (z, t), z′ − z〉 = 〈A1(z′ − z), z′ − z〉 ≥ 0

for every z, z′ ∈ H. Hence, F (·, t) : H → H is a monotone operator. Moreover,

since the linear operator A1 is bounded, F (·, t) is continuous. Therefore, applying

Minty’s lemma [55, Lemma 1.5] for the monotone variational inequality (5.27),

we can assert that the solution set of (5.27) is closed an convex for every t ∈
[0, T ]. Consequently, if u, v are two elements of Sol(P, u0) and λ ∈ (0, 1) is given

arbitrarily, (1 − λ)u̇(t) + λv̇(t) is a solution of (5.27) for almost every t ∈ [0, T ].

Since t 7→ (1−λ)u̇(t)+λv̇(t) is Bochner integrable (see [32, Proposition 1.4.17]), the

formula w(t) := u0 +

∫ t

0

[(1− λ)u̇(τ) + λv̇(τ)] dτ defines an absolutely continuous

function. Clearly, w(0) = u0. In addition, we have ẇ(t) = (1− λ)u̇(t) + λv̇(t) for

a.e. t ∈ [0, T ] (see, e.g., [9, Remark 3.4(d)]). So, w(t) is a solution of (5.27) for
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a.e. t ∈ [0, T ]. This implies that

A1ẇ(t) + A0w(t)− f(t) ∈ −NC(t)(ẇ(t)) a.e. t ∈ [0, T ].

Hence, w ∈ Sol(P, u0). The convexity of Sol(P, u0) has been proved.

The kernel of the operator A0 : H → H plays an important role in the

forthcoming results. Recall that ker A0 := {x ∈ H | A0x = 0}. Note that

the quadratic form ϕ(y) := 〈A0y, y〉 is Fréchet differentiable on H because A0 is

bounded (see, e.g., [96, Proposition 2.1]). Since 〈A0y, y〉 ≥ 0 for all y ∈ H, a

vector x ∈ H satisfies the equality 〈A0x, x〉 = 0 if and only if x is a solution of the

optimization problem min{ϕ(y) | y ∈ H}. If x is a solution of the latter, then by

the Fermat rule one has ∇ϕ(x) = 0, i.e., A0x = 0. Conversely, if A0x = 0 then

ϕ(x) = 0. Therefore, we have

{x ∈ H | 〈A0x, x〉 = 0} = ker A0. (5.28)

Under a mild assumption, using one solution u of (P), we can construct a closed

convex set K in W 1,1([0, T ],H), such that the solution set Sol(P, u0) is contained

in u+K. Thus, the closed convex set u+K is an outer estimate for Sol(P, u0). The

estimate is sharp, because in some cases it holds as an equality (see Theorem 5.18

below).

Theorem 5.17. Suppose that (H1) is satisfied. For any u0 ∈ C(0), if Sol(P, u0)

is nonempty and u is a selected solution of (P), then

Sol(P, u0) ⊂ u+K, (5.29)

where

K :=
{
y ∈ W 1,1([0, T ],H) | y(0) = 0, ẏ(t) ∈ (C(t)− u̇(t)) ∩ ker A0 a.e. t ∈ [0, T ]

}
(5.30)

is a closed convex set.

Proof. Select a solution u of (P). Let v ∈ Sol(P, u0) be chosen arbitrarily.

Since (H1) is fulfilled, we have〈A1u̇(t) + A0u(t)− f(t), u̇(t)− z〉 ≤ 0 ∀z ∈ C(t),

〈A1v̇(t) + A0v(t)− f(t), v̇(t)− z〉 ≤ 0 ∀z ∈ C(t)
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for a.e. t ∈ [0, T ]. As u̇(t) and v̇(t) belong to C(t) for almost every t ∈ [0, T ], the

latter implies that

〈A1u̇(t) + A0u(t)− f(t), u̇(t)− v̇(t)〉 ≤ 0

and

〈A1v̇(t) + A0v(t)− f(t), v̇(t)− u̇(t)〉 ≤ 0

for a.e. t ∈ [0, T ]. From the last inequalities one gets

〈A1(u̇(t)− v̇(t)) + A0(u(t)− v(t)), u̇(t)− v̇(t)〉 ≤ 0

for a.e. t ∈ [0, T ]. As A1 is positive semidefinite, it follows that

〈A0(u(t)− v(t)), u̇(t)− v̇(t)〉 ≤ 0

for a.e. t ∈ [0, T ]. Integrating both sides of the last inequality and applying

Remark 2.12 yield∫ t

0

〈A0(u(τ)− v(τ)), u̇(τ)− v̇(τ)〉dτ ≤ 0 ∀t ∈ [0, T ].

As it has been noted in the proof of Theorem 5.2, this implies

〈A0(u(t)− v(t)), u(t)− v(t)〉 − 〈A0(u(0)− v(0)), u(0)− v(0)〉 ≤ 0 ∀t ∈ [0, T ].

Since u(0) = v(0), the latter means that 〈A0(u(t) − v(t)), u(t) − v(t)〉 ≤ 0 for all

t ∈ [0, T ]. So, by the positive semidefiniteness of A0, we obtain

〈A0(u(t)− v(t)), u(t)− v(t)〉 = 0 ∀t ∈ [0, T ].

Therefore, setting x(t) := v(t) − u(t), t ∈ [0, T ], by (5.28) we have x(t) ∈ ker A0

for all t ∈ [0, T ]. It is clear that x(0) = v(0)− u(0) = 0 and

ẋ(t) = v̇(t)− u̇(t) ∈ C(t)− u̇(t)

for a.e. t ∈ [0, T ]. Since x(·) is an absolutely continuous function, from the

condition A0x(t) = 0 for all t ∈ [0, T ] we deduce that A0ẋ(t) = 0 for a.e. t ∈ [0, T ].

Hence, ẋ ∈ K. We have thus shown that (5.29) is valid. The convexity and

closedness of K can be easily verified by using the convexity and closedness of C(t)
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for all t ∈ [0, T ].

In the next theorem, we investigate the convexity of the solution set in the case

where A0 6= 0.

Theorem 5.18. Suppose that (H1) is satisfied, A1 = 0, and f(t) ⊥ ker A0 (i.e.,

〈f(t), x〉 = 0 for every x ∈ ker A0) for all t ∈ [0, T ]. Then, Sol(P, u0) is convex

for every u0 ∈ C(0).

Proof. Let u0 ∈ C(0) be given arbitrarily and u be a solution of (P). By

Theorem 5.29, the inclusion (5.29), where the set K is defined in (5.30), holds.

Take any x ∈ K. Then, the function v defined by setting v(t) = u(t) + x(t),

t ∈ [0, T ], is a solution of (P). Indeed, for almost every t ∈ [0, T ], one has

v̇(t) = u̇(t) + ẋ(t) ∈ u̇(t) + (C(t)− u̇(t)) = C(t).

Note that v(0) = u(0)+x(0) = u0. Since ẋ(t) ∈ ker A0 for a.e. t ∈ [0, T ], x(0) = 0,

and the linear operator A0 is bounded, by [32, Proposition 1.4.22] we have

A0x(t) = A0

(
x(0) +

∫ t

0

ẋ(τ)dτ

)
= A0

∫ t

0

ẋ(τ)dτ =

∫ t

0

A0ẋ(τ)dτ = 0 (5.31)

for all t ∈ [0, T ]. By Ω we denote the set of all t ∈ [0, T ] where the derivatives

u̇(t), ẋ(t) exist, the inclusion A0u(t)− f(t) ∈ −NC(t)(u̇(t)) is satisfied, and

ẋ(t) ∈ (C(t)− u̇(t)) ∩ ker A0.

By our assumptions, Ω is a subset of full measure of [0, T ]. For any t ∈ Ω and for

any z ∈ C(t), by (5.31) we have

〈A0v(t)− f(t), z − v̇(t)〉 = 〈A0(u(t) + x(t))− f(t), z − (u̇(t) + ẋ(t))〉
= 〈A0u(t)− f(t), z − (u̇(t) + ẋ(t))

= 〈A0u(t)− f(t), z − u̇(t)〉 − 〈A0u(t), ẋ(t)〉+ 〈f(t), ẋ(t)〉
= 〈A0u(t)− f(t), z − u̇(t)〉 − 〈u(t), A0ẋ(t)〉+ 〈f(t), ẋ(t)〉.

Since ẋ(t) ∈ ker A0 and f(t) ⊥ ker A0, it follows that 〈u(t), A0ẋ(t)〉 = 0 and

〈f(t), ẋ(t)〉 = 0. Therefore,

〈A0v(t)− f(t), z − v̇(t)〉 = 〈A0u(t)− f(t), z − u̇(t)〉. (5.32)

As u ∈ Sol(P, u0), the right hand side of (5.32) is nonnegative. Hence, from (5.32)
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we can deduce that 〈A0v(t)− f(t), z − v̇(t)〉 ≥ 0. Since z ∈ C(t) is can be chosen

arbitrarily, we get

〈A0v(t)− f(t), z − v̇(t)〉 ≥ 0 ∀z ∈ C(t)

for all t ∈ Ω. Equivalently, A0v(t) − f(t) ∈ −NC(t)(v̇(t)) for all t ∈ Ω. It follows

that v is a solution of (P). So, we have proved that u+K ⊂ Sol(P, u0). Combining

this with (5.29) yields Sol(P, u0) = u+K. Hence, the desired convexity of Sol(P, u0)

follows from the convexity of the set u+K.

In connection with Theorems 5.16–5.18, we would like to raise the following

open questions.

Question 1. We wonder if the assumptions A1 = 0 and f(t) ⊥ ker A0 for all

t ∈ [0, T ] could be dropped in the formulation of Theorem 5.18? In other words,

does estimate (5.29) hold as an equality just under the assumption (H1)?

Question 2. Is there any example showing that, under the assumption (H1),

the solution set of (P) could be nonconvex?

5.5 Conclusions

In this chapter, we have obtained several new results on the solution sensitivity

with respect to the initial value, as well as the closedness, the boundedness, and

the convexity of the solution set for sweeping processes with convex velocity

constraints. In addition, an outer estimate for the solution set is also given.

Hoping for further in-depth studies on the solution set, we have proposed two

open questions.
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Chapter 6

A Lipschitzian Vibro-impact

Problem with Time-dependent

Constraints

In this chapter, we study a mechanical system with a finite number of degrees of

freedom, subjected to perfect time-dependent unilateral constraints, in which the

constraints are not necessarily convex nor smooth. The dynamics is described in

a form of a second-order measure differential inclusion.

Let I = [0, T ], T > 0, be a bounded time real interval and d ∈ N. Let

g : I × Rd → Rd and fi : I × Rd → R, i ∈ {1, . . . ,m} be some functions and

m ∈ N. We denote by q ∈ Rd the representative point of the system in generalized

coordinates and define the set of admissible positions at each instant t ∈ I by

C(t) = {q ∈ Rd | fi(t, q) ≤ 0 ∀i ∈ {1, . . . ,m}}.

and the set of active constraints by J(t, q) = {i ∈ {1, . . . ,m} | fi(t, q) = 0}. The

vibro-impact system given by g and the functions fi is formally described by the

following second-order differential inclusion in Rd:

q̈(t)− g(t, q(t)) ∈ −NCl
C(t)(q(t)). (6.1)

Denote by ∇fi(t, ·)(q) the derivative of fi(t, q) with respect to the second variable

q and by ∂fi(·, q) the derivative of fi with respect to the first variable t. In what

follows, given a set Ω ⊂ Rd, we denote its interior and boundary respectively by

int(Ω) and ∂Ω.

Since NCl
C(t)(q) = ∅ if q(t) /∈ C(t), if q is a solution of (6.1), then q(t) must
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belong to C(t) for all t ∈ I. If q(t) ∈ int(C(t)) for all t ∈ I, then NCl
C(t)(q(t)) = {0}

for all t ∈ I, so (6.1) becomes q̈ = g(t, q), which is an ordinary differential equation.

If q(t) ∈ int(C(t)) for all t ∈ (t0, t1) ∪ (t1, t2), q(t1) ∈ ∂C(t1), then

q̇(t−1 ) ∈ −T (t1, q(t1)) and q̇(t+1 ) ∈ T (t1, q(t1)), (6.2)

where

T (t, q) := {v ∈ Rd | ∂fi(·, q)(t) + 〈∇fi(t, ·)(q), v〉 ≤ 0 ∀i ∈ J(t, q) }.

Observe that the set T (t, q) is polyhedral convex for each pair (t, q). In particular,

T (t, q) is convex and closed. The inclusion (6.2) will be proved in Subsection 4.2.

Note that the function q̇ may be discontinuous at some t ∈ I if J(t, q(t))

is nonempty. Therefore, in general, we cannot find a solution q of (6.1) for

which, there exists a differentiable derivative q̇. Hence, we look for a solution

q of (6.1) whose derivative q̇ is of bounded variation. The latter implies that q̇ is

differentiable almost everywhere on I. Then, q̈ can be understood as a Stieltjes

measure. Therefore, (6.1) can be extended in the distributional sense:q̇ ∈ BV ([0, T ];Rd)

dq̇ − g(·, q(·))dt ∈ −NCl
C(·)(q(·))dt,

where BV ([0, T ];Rd) stands for the space of all functions of bounded variation

from [0, T ] to Rd. More precisely, the second inclusion is taken in the Radon

measure space M(0, T ;Rd), which is the dual space of the space of all continuous

functions from [0, T ] to Rd, denoted by C([0, T ],Rd). For ϕ ∈ C(I,Rd) and for

ξ(·) ∈ −NCl
C(·)(q(·)),

dq̇ : C(I,Rd)→ R;

〈dq̇, ϕ〉 =

∫
I

ϕdq̇,

g(·, q(·))dt : C(I,Rd)→ R;

〈g(·, q(·))dt, ϕ〉 =

∫
I

〈g(t, q(t)), ϕ(t)〉dt,

ξ(·)dt : C(I,Rd)→ R;
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〈ξ(·)dt, ϕ〉 =

∫
I

〈ξ(t), ϕ(t)〉dt.

Since the relation (6.2) does not uniquely define q̇(t+), we will follow [68] to impose

the impact law

q̇(t+) = PT (t,q(t))(q̇(t
−)),

where PT (t,q(t))(q̇(t
−)) is the nearest point of q̇(t−) in T (t, q(t)).

To sum up, we are interested in investigating the next problem.

Problem (P). Let (q0, p0) ∈ C(0) × T (0, q0). Find q : [0, T ] → Rd, with

T > 0, such that

(P1) q is absolutely continuous on [0, T ], q̇ ∈ BV(0, T ;Rd);

(P2) q(t) ∈ C(t) for all t ∈ [0, T ];

(P3) dq̇ − g(·, q(·))dt ∈ −NCl
C(·)(q(·))dt;

(P4) q̇(t+) = PT (t,q(t))(q̇(t
−)) for all t ∈ [0, T ];

(P5) q(0) = q0 and q̇(0) = p0.

Let

C = {(t, q) ∈ [0, T ]× Rd | q ∈ C(t)}.

We now propose some regularity assumptions.

Assumption A1. There exists an extended real ρ ∈ (0,+∞] such that

(i) for all i ∈ {1, . . . ,m}, fi is differentiable on Uρ(C) and its derivative∇fi(·, ·) :

Uρ(C)→ R is Lipschitz continuous with rank L;

(ii) there is γ > 0 such that for all t ∈ [0, T ] and i ∈ {1, . . . ,m}, for all q1, q2 ∈
Uρ(C(t)),

〈∇fi(t, ·)(q1)−∇fi(t, ·)(q2), q1 − q2〉 ≥ −γ‖q1 − q2‖2.

(iii) for all t ∈ [0, T ] and for all i ∈ {1, . . . ,m}, one has ‖∇fi(t, ·)(q)‖≤ L for all

q ∈ Uρ(C(t)).

Assumption A2. There is µ > 0 with the property that for all t ∈ [0, T ] and

q ∈ C(t) there exists v = v(t, q) ∈ Rd with ‖v‖= 1 such that for all i ∈ {1, . . . ,m},
one has

〈∇fi(t, ·)(q), v〉 ≤ −µ. (6.3)
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Remark 6.1. From assumption A1(i), it follows that

(i) For each i ∈ {1, . . . ,m}, for all t, t′ ∈ [0, T ] and q, q′ ∈ Rd,

|∂fi(·, q)(t)− ∂fi(·, q′)(t′)|≤ L(|t− t′|+‖q − q′‖).

(ii) for each i ∈ {1, . . . ,m}, for all t, t′ ∈ [0, T ], q, q′ ∈ Uρ(C(t)),

‖∇fi(t, ·)(q)−∇fi(t′, ·)(q′)‖≤ L(|t− t′|+‖q − q′‖).

Remark 6.2. From assumptions A1 and A2, it follows that for all i ∈ {1, . . . ,m},
µ ≤ ‖∇fi(t, ·)(q)‖≤ L for all t ∈ [0, T ] and |∂fi(·, q)(t)|≤ L for all q ∈ Uρ(C(t)).

In particular, ∇fi(t, ·)(q) 6= 0 for all i ∈ {1, . . . ,m}.

We are going to present some characterizations of the set of admissible positions

C(t) and the Clarke’s normal cone NCl
C(t)(q). Thanks to assumptions A1 and A2,

the following proposition is valid.

Proposition 6.3. (See [8, Theorem 3.1]) Suppose that assumptions A1(i)-(ii)

and A2 holds, then, for all t ∈ [0, T ], the set C(t) is r-prox-regular with r =

min{ρ, µ
γ
} .

Proposition 6.4. Under assumptions A1(i) and A2, C(·) is ϑ-Lipschitzian on

[0, T ], with ϑ ≥ L

µ
.

Proof. Fix a real number ϑ such that ϑ ≥ µ−1L. Choose a subdivision

0 < T1 < . . . < Tp = T

of [0, T ] such that Tk − Tk−1 <
1

ϑ
ρ. Fix any k and select s, t ∈ Ik := [Tk−1, Tk].

Then, take any i ∈ {1, . . . ,m}. Put u(s, t) = ϑ|s − t|. For any x ∈ C(t), define

y := x + u(s, t)v. Since t, s ∈ Ik, we have ‖y − x‖= ϑ|s− t|< ρ. This proves that

y ∈ int(Uρ(C(t))). By Lemma 2.4, for all λ ∈ [0, 1] we have

x(λ) = x+ λ(y − x) ∈ intUρ(C(t)).

Now we consider the expression fi(t, x + u(s, t)v) − fi(t, x). Since fi(s, ·) is

differentiable on Uρ(C(t)), by the mean value theorem there exists λ ∈ (0, 1)

such that

fi(t, x+ u(s, t)v)− fi(t, x) = 〈∇fi(t, ·)(xλ), u(s, t)v〉
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with xλ = λx+ (1− λ)(x+ u(s, t)v). Hence, by Remark 6.1, we have

fi(s, x+ u(s, t)v) = [fi(s, x+ u(s, t)v)− fi(t, x+ u(s, t)v)] + fi(t, x)

+ [fi(t, x+ u(s, t)v)− fi(t, x)]

≤ L|s− t|+fi(t, x) + 〈∇fi(t, ·)(xλ), u(s, t)v〉.

By (6.3) and the inclusion x ∈ C(t) we get

fi(s, x+ u(s, t)v) ≤ L|s− t|−u(s, t)µ = (L− ϑµ) |s− t|≤ 0,

where the inequality is valid due to the choice of ϑ. Since i ∈ {1, . . . ,m} can be

chosen arbitrarily, this implies that the vector x+ u(s, t)v = x+ ϑ|s− t|v belongs

to C(s). Hence, x ∈ C(s) + ϑ|s− t|(−v). It follows that

C(t) ⊂ C(s) + ϑ|s− t|(−v) ⊂ C(s) + ϑ|s− t|B.

Thus, C(·) is ϑ-Lipschitzian on [Tk−1, Tk]. So, we can infer that C(·) is ϑ-

Lipschitzian on [0, T ].

6.1 An Existence Result for the Vibro-impact

Problem

The approximate solutions will be constructed by the following time-discretization

scheme. Let N be a positive natural number and h = T/N , we define tn = nh for

all 0 ≤ n ≤ N and

1. Q−1 = q0 − hp0, Q0 = q0,

2. for all n ∈ {0, . . . , N},

Gn =

tn+1∫
tn

g(s,Qn)ds

and

Vn = 2Qn −Qn−1 + h2Gn, Qn+1 ∈ argmin
x∈C(tn+1)

‖Vn − x‖. (6.4)

In this scheme, we use the approximation

q̈(x) ≈ q(x+ h)− 2q(x) + q(x− h)

h2
.
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Clearly, this leads to (6.4). We define the discrete velocities as

Pn =
Qn+1 −Qn

h
for all n ∈ {−1, . . . , N}.

The sequence of approximate solutions qN is given by

qN(t) = Qn + (t− tn)
Qn+1 −Qn

h
∀t ∈ [tn, tn+1], ∀n ∈ {0, . . . , N − 1}

and

pN(t) = Pn =
Qn+1 −Qn

h
∀t ∈ [tn, tn+1], ∀n ∈ {0, . . . , N − 1}.

For the existence of a solution to our problem we will need the following

assumptions:

Assumption A3. For all q ∈ Rd, g(·, q) is measurable on [0, T ] and for all t ∈
[0, T ], g(t, ·) is continuous on Rd. Moreover, there exist Lg > 0 and F ∈ L1(0, T ;R)

such that for almost every t ∈ [0, T ] one has

‖g(t, q)− g(t, q̃)‖≤ Lg‖q − q̃‖ ∀(q, q̃) ∈ (Rd)2 s.t. (t, q) ∈ Uρ(C), (t, q̃) ∈ Uρ(C),

‖g(t, q)‖≤ F (t) ∀q ∈ Rd s.t. (t, q) ∈ Uρ(C).

Assumption A4. For all t ∈ [0, T ], q ∈ Uρ(C(t)), and for all j, k ∈ J(t, q) and

j 6= k, one has

〈∇fj(t, ·)(q),∇fk(t, ·)(q)〉 ≥ 0.

Proposition 6.5. Under assumptions A1(i) and A2, for any t ∈ I and q ∈ C(t),

the Clarke normal cone to C(t) at q can be computed by the formula

NCl
C(t)(q) =


{0} if q ∈ int(C(t)){
w ∈ Rd | w =

∑
i∈J(t,q)

λi∇fi(t, ·)(q), λi ≥ 0
}

if q ∈ ∂C(t).

Proof. If q ∈ int(C(t)), then the Clarke tangent cone is equal to the whole space Rd.

Therefore, NCl
C(t)(q) = {0}. Now we consider the case q is on the boundary ∂C(t)

of C(t). Then J(t, q) 6= ∅. From Assumption A2 it follows that {∇fi(t, ·)(q) | i ∈
J(t, q)} is positively linearly independent. Hence, by Proposition 2.36 we obtain

the desired formula for NCl
C(t)(q).

From Proposition 6.5 we can deduce the next formula for computing the
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corresponding Clarke tangent cone:

T ClC(t)(q) = {v ∈ Rd | 〈∇fi(t, ·)(q), v〉 ≤ 0,∀i ∈ J(t, q)}. (6.5)

Lemma 6.6. Let t ∈ [0, T ], q ∈ C(t) and v = v(t, q) be the vector existed by

assumption A2. There exist ρ′ > 0, τ ∈ (0, ρ′] and θ ∈ (0, ρ′] such that for all

t′ ∈ I, |t′− t|≤ τ , and for all q′ from the open ball B(q, θ) centered at q with radius

θ,

〈∇fi(t′, ·)(q′), v〉 ≤ −
µ

3
, ∀i ∈ {1, . . . ,m}.

Proof. Let q ∈ C(t), v be defined in A2. For all t′ ∈ I, q′ ∈ Rd such that

‖q′ − q‖≤ ρ, and for any i ∈ {1, . . . ,m}, by Remark 6.1(ii) we have

〈∇fi(t′, ·)(q′)−∇fi(t, ·)(q), v〉 ≤ ‖∇fi(t′, ·)(q′)−∇fi(t, ·)(q)‖‖v‖
≤ L(|t− t′|+‖q − q′‖).

Hence,

〈∇fi(t′, ·)(q′), v〉 ≤ −µ+ L(|t− t′|+‖q − q′‖).

Choose τ = θ = min{µ/3L, ρ}. Then we have 〈∇fi(t′, ·)(q′), v〉 ≤ −µ
3
.

Our main result is the next theorem.

Theorem 6.7. Suppose that assumptions A1–A3 hold. Let (q0, p0) ∈ C(0) ×
T (0, q0). Then, there is a subsequence of {qN}, still denoted by {qN}, of the

approximate solutions which converges uniformly on [0, T ] to a limit q satisfying

(P1)–(P3). Furthermore, if assumption A4 holds, then q also satisfies (P4) and

(P5), and it is a solution of problem (P) on [0, T ].

To make the proof of this theorem easier for understanding, we present it in

the forthcoming three subsections.

6.1.1 Convergence of the Approximate Solutions

In this subsection, we shall prove that the discrete sequence {qN} constructed in

the latter section converges to a limit, which will later be verified to be a solution

of problem (P). More precisely, we will prove that {pN} is uniformly bounded and

it has bounded variation in Propositions 6.12 and 6.13.
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Lemma 6.8. For all n ∈ {0, . . . , N − 1}, one has

Pn−1 − Pn + hGn ∈ NCl
C(tn+1)(Qn+1). (6.6)

Proof. By definition of the scheme, for all x ∈ C(tn+1), we have

‖Vn −Qn+1‖2 ≤ ‖Vn − x‖2

= ‖Vn −Qn+1‖2+2〈Vn −Qn+1, Qn+1 − x〉+ ‖Qn+1 − x‖2

Hence,

2〈Vn −Qn+1, x−Qn+1〉 ≤ ‖Qn+1 − x‖2.

By definition, Vn −Qn+1 = h(Pn−1 − Pn + hGn), so

〈Pn−1 − Pn + hGn, x−Qn+1〉 ≤
1

2h
‖Qn+1 − x‖2, ∀x ∈ C(tn+1). (6.7)

If Qn+1 ∈ int(C(tn+1)), we can choose ε > 0 sufficiently small so that x1 =

Qn+1 + εE and x2 = Qn+1 − εE belong to C(tn+1), where E = (1, . . . , 1) ∈ Rd.

Then we have

Pn−1 − Pn + hGn = 0.

Otherwise J(tn+1, Qn+1) 6= ∅. We know that by (6.5), the Clarke’s tangent cone

of C(tn+1) at Qn+1 is

T ClC(tn+1)(Qn+1) = {w ∈ Rd | 〈∇fi(tn+1, ·)(Qn+1), w〉 ≤ 0, ∀i ∈ J(tn+1, Qn+1)}.

So we need to show that

〈Pn−1 − Pn + hGn, w〉 ≤ 0, ∀w ∈ T ClC(tn+1)(Qn+1).

Indeed, by assumption A2, int(T ClC(tn+1)(Qn+1)) 6= ∅. Note that

int(T ClC(tn+1)(Qn+1)) = {w ∈ Rd | 〈∇fi(tn+1, ·)(Qn+1), w〉 < 0,∀i ∈ J(tn+1, Qn+1)}.

Take any w̄ ∈ int(T ClC(tn+1)(Qn+1)). We will prove that Qn+1 + sw̄ ∈ C(tn+1) for

s > 0 sufficiently small. For any s ≥ 0, there exists qλ := Qn+1 + λsw̄ with

λ ∈ (0, 1), such that

fi(tn+1, Qn+1 + sw̄)− fi(tn+1, Qn+1) = 〈∇fi(tn+1, ·)(Qn+1 + λsw̄), sw̄〉.
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For s small enough such that ‖sw̄‖≤ ρ, we have Qn+1 + sw̄ ∈ Uρ(C(tn+1)). By

Remark 6.1(ii),

‖∇fi(tn+1, ·)(Qn+1 + λsw̄)−∇fi(tn+1, ·)(Qn+1)‖≤ λsL‖w̄‖.

Then, 〈∇fi(tn+1, ·)(Qn+1 + λsw̄)−∇fi(tn+1, ·)(Qn+1), sw̄〉 ≤ λLs2‖w̄‖2. Hence,

〈∇fi(tn+1, ·)(Qn+1 + λsw̄), sw̄〉 ≤ λLs2‖w̄‖+s〈∇fi(tn+1, ·)(Qn+1), w̄〉.

Since 〈∇fi(tn+1, ·)(Qn+1), w̄〉 < 0, we can choose s small enough such that

fi(tn+1, Qn+1 + sw̄) ≤ 0. This implies that Qn+1 + sw̄ ∈ C(tn+1). Now we choose

x = Qn+1 + sw̄ such that x ∈ C(tn+1), by (6.7) we get

〈Pn−1 − Pn + hGn, sw̄〉 ≤
1

2h
‖sw̄‖2.

Letting s→ 0, one has

〈Pn−1 − Pn + hGn, w̄〉 ≤ 0.

By assumption A2, there exits a unit vector v(tn+1, Qn+1) ∈ int(T ClC(tn+1)(Qn+1)).

Therefore, for all v ∈ T ClC(tn+1)(Qn+1), the sequence {vk}k∈N∗ , which is defined by

vk = v +
1

k
v(tn+1, Qn+1)

for all k ≥ 1, converges to v. We also see that vk ∈ int(T ClC(tn+1)(Qn+1)) for all

k ≥ 1. So, int(T ClC(tn+1)(Qn+1)) is dense in T ClC(tn+1)(Qn+1). This leads to

〈Pn−1 − Pn + hGn, w〉 ≤ 0, ∀w ∈ T ClC(tn+1)(Qn+1),

which implies that Pn−1 − Pn + hGn ∈ NCl
C(tn+1)(Qn+1).

Remark 6.9. One can reformulate (6.6) as follows: For all n ∈ {0, . . . , N − 1},
there exist nonnegative real numbers λni , i = 1, . . . ,m such that λni = 0 for all

i /∈ J(tn+1, Qn+1), and

Pn − Pn−1 − hGn = −
m∑
i=1

λni∇fi(tn+1, ·)(Qn+1). (6.8)

Lemma 6.10. For each i ∈ J(tn+1, Qn+1) and ‖Pn‖≤
ρN

2T
, one has

L+ 〈∇fi(tn+1, ·)(Qn+1), Pn〉 ≥ −γh‖Pn‖2. (6.9)
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Proof. For all i ∈ J(tn+1, Qn+1), we have fi(tn+1, Qn+1) = 0 ≥ fi(tn, Qn). Thus,

0 ≥ fi(tn, Qn)− fi(tn+1, Qn+1)

= fi(tn, Qn)− fi(tn+1, Qn) + fi(tn+1, Qn)− fi(tn+1, Qn+1)

≥ −hL− h〈∇fi(tn+1, ·)(qnαi), Pn〉,

where qnαi = αiQn + (1− αi)Qn+1 for some αi ∈ (0, 1). It follows that

L+ 〈∇fi(tn+1, ·)(Qn+1), Pn〉 ≥ 〈∇fi(tn+1, ·)(Qn+1)−∇fi(tn+1, ·)(qnαi), Pn〉

=

〈
∇fi(tn+1, ·)(Qn+1)−∇fi(tn+1, ·)(qnαi),

Qn+1 − qnαi
αih

〉
≥ 1

h
〈∇fi(tn+1, ·)(Qn+1)−∇fi(tn+1, ·)(qnαi), Qn+1 − qnαi〉

Since ‖Pn‖≤
ρN

2T
, by Lemma 2.4 we know that qnαi ∈ Uρ(C(tn+1)). By

assumption A1(ii), we obtain (6.9).

Lemma 6.11. Let N > N0, where N0 = max

{
T

2
,
6TL

µθ

}
. Then, for all n ∈

{0, . . . , N − 1}, we have

‖Pn‖≤ 2‖Pn−1‖+2h‖Gn‖+
6L

µ
.

Proof. Let w =
6L

µ
v(tn, Qn), where v(tn, Qn) is the unit vector defined in

assumption A2 for (t, x) = (tn, Qn), i.e., for all i ∈ {1, . . . ,m}, one has

〈∇fi(tn, ·)(Qn), v(tn, Qn)〉 ≤ −µ. Then,

Qn + hw ∈ C(tn+1).

Indeed, by Remark 6.2 and mean value theorem, we have

fi(tn+1, Qn + hw) ≤ fi(tn, Qn + hw) + L|tn+1 − tn|.

By mean value theorem, there exists qnα = αQn+(1−α)(Qn+hw) with α ∈ (0, 1),

such that

fi(tn, Qn + hw)− fi(tn, Qn) = 〈∇fi(tn, ·)(qnα), hw〉.
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Since N ≥ 6TL

µθ
, qnα ∈ B(Qn, θ). By Lemma 6.6, we have

〈∇fi(tn, ·)(qnα), w〉 ≤ −µ
3

6L

µ
= −2L.

Therefore, for all i ∈ {1, . . . ,m},

fi(tn+1, Qn + hw) ≤ fi(tn, Qn) + 〈∇fi(tn, ·)(qnα), hw〉+ hL ≤ 0.

We have proved that Qn + hw ∈ C(tn+1). As Qn+1 ∈ argminx∈C(tn+1)‖Vn − x‖, it

follows that

‖2Qn −Qn−1 + h2Gn −Qn+1‖≤ ‖2Qn −Qn−1 + h2Gn −Qn − hw‖.

Thus, ‖Pn−1 − Pn + hGn‖≤ ‖Pn−1 − w + hGn‖. So, we get ‖Pn‖≤
2‖Pn−1‖+2h‖Gn‖+‖w‖, which yields the conclusion.

Proposition 6.12. There exist N1 > N0 and κ > 0 such that

‖Pn‖≤ κ ∀n ∈ {0, . . . , N − 1}, ∀N > N1.

Proof. We now define two real sequences {κk}k∈N and {τk}k∈N∗ by setting κ0 =

‖p0‖+1,

κk = κk−1 +
12L

µ
+ ‖F‖L1(0,T ;Rd)

= κ0 + k

(
12L

µ
+ ‖F‖L1(0,T ;Rd)

)
∀k ≥ 1

and

τk =
min{τ, θ}

2κk
=

min{τ, θ}
2κ0 + 2k

(
2L
µ

+ ‖F‖L1(0,T ;Rd)

) ∀k ≥ 1.

It is easy to see that the series
∞∑
k=1

τk is a divergent sum, hence, there exists k0 ≥ 1

such that
∑k0

k=1 τk > T . Let κ = κk0 . Define

κ̄ = 2κ+ 2‖F‖L1(0,T ;Rd)+
6L

µ

and

N1 = max

(
N0,

2T κ̄

ρ
,
2T κ̄

θ
,
2T

τ
,
2γκ̄2T

L

)
.
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We now prove that for all N > N1 and we can construct a finite family of real

numbers (τNk )1≤k≤k0 such that τN0 = 0 < τN1 < · · · < τN
kN0

= T with 1 ≤ kN0 ≤ k0

and for all k ∈ {1, . . . , kN0 }, in each interval [τNk−1, τ
N
k ), one has

‖Pn‖≤ κk ∀n ∈ {0, . . . , N − 1}.

Consider the interval [0, τ1] instead of [0, T ]. From assumption A2, we can define

a vector w0 = 6L
µ
v(t0, Q0). Note that ‖P−1‖= ‖p0‖≤ κ0 ≤ κ, by Lemma 6.11 we

have ‖P0‖≤ κ̄. Since 0 < h =
T

N
≤ θ

2κ̄
,

‖Q1 −Q0‖= h‖P0‖≤
θ

2
< θ.

Moreover, |t1 − t0|≤ h ≤ τ/2 < τ , we have (t1, Q1) ∈ B(t0, τ)× B(Q0, θ). We will

prove that w0 − P0 ∈ T ClC(t1)(Q1). Indeed, for all i ∈ J(t1, Q1), by Lemma 6.10 one

has

〈∇fi(t1, ·)(Q1), w0 − P0〉 = 〈∇fi(t1, ·)(Q1), w0〉+ L− (L+ 〈∇fi(t1, ·)(Q1), P0〉)

≤ −µ‖w0‖
3

+ L+ γh‖P0‖2

≤ −2L+ L+ γhκ̄2 ≤ −L
2
.

From the latter inequality, it follows that w0 − P0 ∈ T ClC(t1)(Q1). Since P−1 − P0 +

hG0 ∈ NCl
C(t0)(Q(0)), we get

〈(P−1 − w0)− (P0 − w0) + hG0, w0 − P0〉 ≤ 0.

This yields 〈P−1 − w0 + hG0, w0 − P0〉 ≤ −‖P0 − w0‖2, which implies that

‖P0 − w0‖≤ ‖P−1 − w0‖+h‖G0‖.

Hence,

‖P0‖≤ ‖P−1‖+
12L

µ
+ h‖G0‖≤ κ1 ≤ κ.

Next, we will prove by induction that

‖Pn − w0‖≤ ‖P−1 − w0‖+h
n∑
`=0

‖G`‖ ∀n ∈ {0, . . . , N − 1}.
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Indeed, let n ∈ {0, . . . , N − 1}. Suppose that

‖Pk − w0‖≤ ‖P−1 − w0‖+h
k∑
`=0

‖G`‖ ∀k ∈ {0, . . . , n− 1}.

Then,

‖Pk‖≤ 2‖w0‖+‖P−1‖+h
k∑
`=0

‖G`‖≤ κ1 for all k ∈ {0, . . . , n− 1}

and by Lemma 6.11 we infer that ‖Pn‖≤ κ̄. Since 0 < h ≤ θ
2κ̄

,

‖Qn+1 −Qn‖= h‖Pn‖≤
θ

2
< θ.

Moreover, as |tn+1 − tn|≤ h < τ , we have (tn+1, Qn+1) ∈ B(tn, τ)× B(Qn, θ). For

all i ∈ J(tn+1, Qn+1), by Lemma 6.10 one has

〈∇fi(tn+1, ·)(Qn+1), w0 − Pn〉 = 〈∇fi(tn+1, ·)(Qn+1), w0〉+ L− (L+ 〈∇fi(tn+1, ·)(Qn+1), Pn〉)

≤ −µ‖w0‖
3

+ L+ γh‖Pn‖2

≤ −2L+ L+ γhκ̄2 ≤ −L
2
.

It follows that w0 − Pn ∈ T ClC(tn+1)(Qn+1). Therefore,

〈(Pn−1 − w0)− (Pn − w0) + hGn, w0 − Pn〉 ≤ 0.

This yields

‖Pn − w0‖≤ ‖Pn−1 − w0‖+h‖Gn‖≤ ‖P−1 − w0‖+h
n∑
l=0

‖G`‖.

Hence,

‖Pn‖≤ ‖P−1‖+
12L

µ
+ h

n∑
l=0

‖G`‖≤ κ1.

We have shown that ‖Pn‖≤ κ1 for all n ∈ {0, . . . , N} on the interval [0, τ1]. Putting

τN0 = 0, we define τN1 = min{τN0 + τ1, T}. If τN0 + τ1 < T , we have τN1 − τN0 = τ1.

If T > τN1 , then k0 > 1, (tN+1, QN+1) ∈ C and ‖PN+1‖≤ κ1 ≤ κ.

Assume now that τN0 +τ1 < T . By Lemma 6.6 and assumption A2, we can define
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a vector w1 =
6L

µ
v(tN+1, QN+1). For the sack of simplicity, we will recount the

index from 0 instead of N+1. By the same argument, we can prove that ‖Pn‖≤ κ2

for all n ∈ {0, . . . , N − 1} on the interval [τN1 , τ
N
1 + τ2]. We now can divide the

interval [0, T ] into subintervals [τNi , τ
N
i + τi+1] for i ∈ {1, . . . , k0}. Repeating the

same argument for finitely many steps, we get the desired result.

Proposition 6.13. There exists κ′ > 0 such that, for all N > N1, we have

N−1∑
n=0

‖Pn − Pn−1‖≤ κ′.

Proof. We decompose [0, T ] into the subintervals [τNk , τ
N
k+1], k ∈ {0, . . . , kh0 − 1},

which were defined in the proof of Proposition 6.12. Consider the interval [τN0 , τ
N
1 ].

We have shown that

w0 − Pn ∈ T ClC(tn+1)(Qn+1)

for all n ∈ {0, . . . , N − 1}. We now prove that the closed ball B̄
(
w0 − Pn, 1

2

)
⊂

T ClC(tn+1)(Qn+1). Indeed, let a ∈ B̄
(
w0 − Pn, 1

2

)
. Then, ‖a− (w0 − Pn)‖≤ 1

2
. As in

the proof of Proposition 6.12, one has 〈∇fi(tn+1, ·)(Qn+1), w0 − Pn〉 ≤ −L
2

for all

n ∈ {0, . . . , N − 1}. Then,

〈∇fi(tn+1, ·)(Qn+1), a〉 = 〈∇fi(tn+1, ·)(Qn+1), a− (w0 − Pn)〉
+ 〈∇fi(tn+1, ·)(Qn+1), w0 − Pn〉

≤ ‖∇fi(tn+1, ·)(Qn+1)‖‖a− (w0 − Pn)‖−L
2

≤ 0.

This proves that a ∈ T ClC(tn+1)(Qn+1). Since the tangent cone T ClC(tn+1)(Qn+1) is

closed and convex [33, p. 51], for every x ∈ Rd, by [59, Lemma 4.3, p. 22] we have

‖x− PT Cl
C(tn+1)

(Qn+1)(x)‖≤ ‖x− w0 + Pn‖2−‖PT Cl
C(tn+1)

(Qn+1)(x)− w0 + Pn‖2.

Applying this with x = Pn−1 − Pn + hGn, we get

‖Pn−1 − Pn + hGn − P̄‖≤ ‖Pn−1 − Pn + hGn − w0 + Pn‖2−‖P̃ − w0 + Pn‖2,

where P̄ = PT Cl
C(tn+1)

(Qn+1)(Pn−1 − Pn + hGn). It follows that

‖Pn−1 − Pn + hGn − P̄‖ ≤ ‖Pn−1 + hGn − w0‖2−‖P̄ − w0 + Pn‖2.
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Recall that Pn−1 − Pn + hGn ∈ NCl
C(tn+1)(Qn+1) (see Lemma 6.8). Since

NCl
C(tn+1)(Qn+1) is the dual cone of T ClC(tn+1)(Qn+1), P̄ = 0. We get

‖Pn−1 − Pn‖ = ‖Pn−1 − Pn + hGn − hGn‖
≤ h‖Gn‖+‖Pn−1 − Pn + hGn‖
= h‖Gn‖+‖(Pn−1 − Pn + hGn)− P̄‖
≤ h‖Gn‖+‖Pn−1 − Pn + hGn‖2−‖Pn − w0‖2

≤ h‖Gn‖+‖Pn−1 − w0‖2−‖Pn − w0‖2+h2‖Gn‖2+2h〈Gn, Pn−1 − w0〉
≤ h‖Gn‖+‖Pn−1 − w0‖2−‖Pn − w0‖2+h2‖Gn‖2+2h‖Gn‖‖Pn−1 − w0‖
= (1 + h‖Gn‖+2‖Pn−1 − w0‖)h‖Gn‖+‖Pn−1 − w0‖2−‖Pn − w0‖2

≤ (1 + h‖Gn‖+2‖Pn−1‖+2‖w0‖)h‖Gn‖+‖Pn−1 − w0‖2−‖Pn − w0‖2.

It follows that

‖Pn−1 − Pn‖≤ h

(
1 + ‖F‖L1(0,T ;Rd)+2κ+

12L

µ

)
‖Gn‖+‖Pn−1 −w0‖2−‖Pn −w0‖2

for n = 0, . . . , N − 1. Adding these inequalities, we get

N−1∑
n=0

‖Pn−1 − Pn‖ ≤
(

1 + ‖F‖L1(0,T ;Rd)+2κ+
12L

µ

)N−1∑
n=0

h‖Gn‖+‖P0 − w0‖2

− ‖PN − w0‖2

≤ T

(
1 + ‖F‖L1(0,T ;Rd)+2κ+

12L

µ

)
‖F‖L1(0,T ;Rd)+2

(
κ+

6L

µ

)2

.

Similarly, we can obtain the same result for all the subintervals [τNi , τ
N
i+1] where

i ∈ {1, . . . , k0}. Since the number of the subintervals [τNi , τ
N
i+1] is finite, the proof

is complete.

From Propositions 6.12 and 6.13 we can infer that the sequence {qN} is

uniformly Lipschitz continuous and that the sequence {pN} is uniformly bounded

in L∞(0, T ;Rd) and in BV ([0, T ];Rd). For any t ∈ [0, T ], it is clear that qN(t) is

bounded for all N . Moreover, since pN is the derivative of qN , by Proposition 2.9,

there exists a subsequence of {qN}, still denoted by {qN}, converging uniformly to

an absolutely continuous function q over [0, T ]. In addition, by [59, Theorem

2.1], we can extract subsequences of {pN}, still denoted by {pN} and find
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p ∈ BV ([0, T ];Rd) such that

pN → p pointwise in [0, T ],

dpN ⇀ dp weakly* inM(0, T ;Rd).

6.1.2 Properties of the Limit Trajectory

In this subsection, we will prove that the limit trajectory q satisfies the properties

(P1)–(P3).

The definitions of qN and pN imply that

qN(t) = q0 +

∫ t

0

pN(s)ds ∀t ∈ [0, T ] ∀n > N1.

Passing to the limit as N → +∞, by dominated convergence theorem [22,

Theorem 4.2,p. 90] we obtain

q(t) = q0 +

∫ t

0

p(s)ds ∀t ∈ [0, T ]. (6.10)

Hence q̇ = p ∈ BV ([0, T ];Rd) which implies that q is Lipschitz continuous with

rank κ on [0, T ].

Proposition 6.14. For all t ∈ [0, T ], q(t) ∈ C(t).

Proof. Indeed, for all t ∈ [0, T ] and for all N > N1, there exists n ∈ {0, . . . N − 1}
such that t ∈ [tn, tn+1]. Then, for all i ∈ {1, . . . ,m},

fi(t, q(t))− fi(tn, qN(tn)) = fi(t, q(t))− fi(t, qN(tn)) + fi(t, qN(tn))− fi(tn, qN(tn))

≤ L‖q(t)− qN(tn)‖+L|tn − t|
≤ L‖q(t)− qN(tn)‖+hL
≤ L(‖q(t)− q(tn)‖+‖q(tn)− qN(tn)‖) + hL.

Since q is Lipschitz continuous with modulus κ, we have

fi(t, q(t))− fi(tn, qN(tn)) ≤ L(κ(t− tn) + sup{‖q(s)− qN(s)‖Rd| s ∈ [0, T ]}) + hL

≤ L(κh+ ‖q − qN‖C([0,T ];Rd)) + hL.

(6.11)

Since {qN} converges uniformly to q on [0, T ], fi(tn, qN(tn)) = fi(tn, Qn) ≤ 0,

and (6.11) holds for all N > N1, we can conclude that fi(t, q(t)) ≤ 0.

The proof is complete.
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We are going to show that the limit trajectory satisfies property (P3). By the

definition of pN , the Stieltjes measure dq̇N = dpN is a sum of Dirac’s measures

dpN(t) =
N−1∑
n=0

(Pn − Pn−1)δ(t− tn).

Define

gN(t) =
N−1∑
n=0

hGnδ(t−tn)−
N−1∑
n=0

m∑
i=1

λni (∇fi(tn+1, ·)(Qn+1)−∇fi(tn, ·)(q(tn))δ(t−tn),

and

UN(t) =
N−1∑
n=0

m∑
i=1

δ(t− tn)λni∇fi(t, ·)(q(t)),

where the constants λni are given in Remark 6.9. Then, (6.8) can be rewritten as

dpN(t) = −UN(t) + gN(t). (6.12)

Lemma 6.15. For all i ∈ {1, . . . ,m} and for all N > N1 we have

N−1∑
n=0

|λni |≤
1

µ

(
κ′ + ‖F‖L1(0,T ;R)

)
.

Proof. Let i ∈ {1, . . . ,m}, n ∈ {0, . . . , N − 1}. By (6.8) we have∥∥∥∥∥
m∑
i=1

λni∇fi(tn+1, ·)(Qn+1)

∥∥∥∥∥ ≤ ‖Pn − Pn−1‖+h‖Gn‖

By assumption A1(ii), for fixed n, there exists v such that

〈∇fi(tn+1, ·)(Qn+1), v〉 ≤ −µ.

Hence,

〈Pn − Pn−1 + hGn, v〉 =

〈
m∑
i=1

λni∇fi(tn+1, ·)(Qn+1), v

〉

=
m∑
i=1

λni 〈∇fi(tn+1, ·)(Qn+1), v〉

≤
m∑
i=1

λni (−µ).
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For every fixed i, we have

λni ≤
m∑
i=1

λni ≤
1

µ
(‖Pn − Pn−1‖+‖hGn‖) .

Hence,

N−1∑
n=0

|λni |=
N−1∑
n=0

λni ≤
1

µ

N−1∑
n=0

(‖Pn − Pn−1‖+h‖Gn‖) ≤
1

µ
(κ′ + ‖F‖L1(0,T ;R)).

The proof is complete.

Let ΛN
i (t) =

N−1∑
n=0

λni δ(t − tn). By the above lemma, ΛN
i is uniformly

bounded, then there exists a subsequence of {ΛN
i } converging weakly∗ to

nonnegative measure Λi in M(0, T ;R). Therefore, UN has a subsequence which

converges weakly∗ to U in M(0, T ;Rd) with U(t) =
m∑
i=1

Λi(t)∇fi(t, ·)(q(t)). Since

∇fi(t, ·)(q(t)) ∈ NCl
C(t)(q(t)), we obtain U ∈ NCl

C(·)(q(·))dt.

Lemma 6.16. The sequence {gN} converges weakly∗ to g(·, q)dt in M(0, T ;Rd),

where g(·, q)dt is the measure of density g(·, q) with respect to Lebesgue’s measure

on [0, T ].

Proof. Let ϕ ∈ C([0, T ];Rd). By the definition of gN , we have

〈gN , ϕ〉 =
N−1∑
n=0

h〈Gn, ϕ(tn)〉+
N−1∑
n=0

m∑
i=1

λni 〈∇fi(tn+1, ·)(Qn+1)

−∇fi(tn, ·)(q(tn)), ϕ(tn)〉

=
N−1∑
n=0

tn+1∫
tn

〈g(s,Qn), ϕ(tn)〉ds+
N−1∑
n=0

m∑
i=1

λni 〈∇fi(tn+1, ·)(Qn+1)

−∇fi(tn, ·)(q(tn)), ϕ(tn)〉

=

T∫
0

〈g(s, q(s)), ϕ(s)〉ds+
N−1∑
n=0

tn+1∫
tn

〈g(s,Qn)− g(s, q(s)), ϕ(s)〉ds

+
N−1∑
n=0

tn+1∫
tn

〈g(s,Qn), ϕ(tn)− ϕ(s)〉ds

+
N−1∑
n=0

m∑
i=1

λni 〈∇fi(tn+1, ·)(Qn+1)−∇fi(tn, ·)(q(tn)), ϕ(tn)〉.

(6.13)
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Moreover, for all n ∈ {0, . . . , N − 1}, we have (tn, q(tn)) ∈ C and

‖Qn+1 − q(tn)‖ ≤ ‖Qn+1 −Qn‖+‖qN(tn)− q(tn)‖
≤ κh+ ‖q − qN‖C([0,T ];Rd).

Let εn := ‖Qn+1 − q(tn)‖. From Remark 6.1 and Lemma 6.15 it follows that∥∥∥∥∥
N−1∑
n=0

m∑
i=1

λni 〈∇fi(tn+1, ·)(Qn+1)−∇fi(tn, ·)(q(tn)), ϕ(tn)〉
∥∥∥∥∥

≤
N−1∑
n=0

m∑
i=1

λni L(h+ εn)‖ϕ(tn)‖

≤
N−1∑
n=0

m∑
i=1

λni L((κ+ 1)h+ ‖q − qN‖C([0,T ];Rd))‖ϕ‖C([0,T ];Rd)

≤ mL

µ
((κ+ 1)h+ ‖q − qN‖C([0,T ];Rd))‖ϕ‖C([0,T ];Rd)(Var(pN , [0, T ]) + ‖F‖L1(0,T ;Rd))

In addition,∣∣∣∣∣∣
N−1∑
n=0

tn+1∫
tn

〈g(s,Qn)− g(s, q(s)), ϕ(s)〉ds

∣∣∣∣∣∣ ≤
N−1∑
n=0

tn+1∫
tn

Lg‖Qn − q(s)‖‖ϕ(s)‖ds

≤ Lg(κh+ ‖q − qN‖C([0,T ],Rd))

T∫
0

‖ϕ(s)‖ds.

We also have∣∣∣∣∣∣
N−1∑
n=0

tn+1∫
tn

〈g(s,Qn), ϕ(tn)− ϕ(s)〉ds

∣∣∣∣∣∣ ≤
N−1∑
n=0

tn+1∫
tn

‖g(s,Qn)‖‖ϕ(tn)− ϕ(s)‖ds

≤ ωϕ(h)‖F‖L1([0,T ];Rd),

where ωϕ denotes the modulus of continuity of ϕ. Therefore, letting N to ∞ in

(6.13) we get

〈gN , ϕ〉 →
T∫

0

〈g(s, q(s)), ϕ(s)〉ds.

The proof is complete.

Passing (6.12) to the limit yields dp− g(·, q)dt ∈ −NCl
C(·)(q(·))dt.
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6.1.3 Checking the Impact Law and the Initial Data

In this subsection, we will prove that the limit trajectory satisfies the impact law

(P4) and the initial data (P5).

Lemma 6.17. If J(t, q) 6= ∅ then q̇(t+) ∈ T (t, q(t)).

Proof. Let t ∈ I be chosen arbitrarily. Consider an index i such that fi(t, q(t)) = 0.

We have

0 ≥ fi(t+ ε, q(t+ ε))− fi(t, q(t))
= ε∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), q(t+ ε)− q(t)〉+ o(ε).

Dividing both sides by ε and letting ε→ 0, we obtain

∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), q̇(t+)〉 ≤ 0.

We have shown that q̇(t+) ∈ T (t, q(t)).

Similarly, we can prove that q̇(t−) ∈ −T (t, q(t)).

Lemma 6.18. For each i ∈ J(tn+1, Qn+1) and ‖Pn‖≤
ρN

2T
, one has

∂fi(·, Qn+1)(tn+1) + 〈∇fi(tn+1, ·)(Qn+1), Pn〉 ≥ −h(L+ L‖Pn‖+γ‖Pn‖2).

Proof. For all i ∈ J(tn+1, Qn+1), fi(tn+1, Qn+1) = 0 ≥ fi(tn, Qn). Thus,

0 ≥ fi(tn, Qn)− fi(tn+1, Qn+1)

= fi(tn, Qn)− fi(tn+1, Qn) + fi(tn+1, Qn)− fi(tn+1, Qn+1)

= −h∂fi(·, Qn)(tnα)− h〈∇fi(tn+1, ·)(qnβ), Pn〉,

where tnα = αtn + (1− α)tn+1 and qnβ = βQn + (1− β)Qn+1 for some α, β ∈ (0, 1),

satisfying

〈∂fi(·, Qn)(tnα), tn − tn+1〉 = fi(tn, Qn)− fi(tn+1, Qn),

and

〈∇fi(tn+1, ·)(qnβ), Qn −Qn+1〉 = fi(tn+1, Qn)− fi(tn+1, Qn+1).

Hence,

〈∇fi(tn+1, ·)(Qn+1), Pn〉 ≥ −∂fi(·, Qn)(tnα) + 〈∇fi(tn+1, ·)(Qn+1)

−∇fi(tn+1, ·)(qnβ), Pn〉
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≥ −∂fi(·, Qn)(tnα) +
1

βh
〈∇fi(tn+1, ·)(Qn+1)

−∇fi(tn+1, ·)(qnβ), Qn+1 − qnβ〉.

Since h‖Pn‖≤
ρ

2
, by Lemma 2.4 we know that qnβ ∈ Uρ(C(tn+1)). Therefore, by

Remark 6.1(i),

‖∂fi(·, Qn+1)(tn+1)− ∂fi(·, Qn)(tnα)‖ ≥ −L(|tn+1 − tα|+‖Qn+1 −Qn‖)
= −Lh(α + ‖Pn‖)
≥ −Lh(1 + ‖Pn‖).

Then, by assumption A1(ii), one has

1

βh
〈∇fi(tn+1, ·)(Qn+1)−∇fi(tn+1, ·)(qnβ), Qn+1 − qnβ〉 ≥ −

γ

βh
‖Qn+1 − qnβ‖2

= −γβh‖Pn‖2

≥ −γh‖Pn‖2

Hence,

∂fi(·, Qn+1)(tn+1) + 〈∇fi(tn+1, ·)(Qn+1), Pn〉 ≥ −h(L+ L‖Pn‖+γ‖Pn‖2).

The proof is complete.

Proposition 6.19. For all t ∈ (0, T ), one has q̇(t+) = PT (t,q)(q̇(t
−)).

Proof. Step 1: We consider the case that J(t, q(t)) = ∅. Since fi are continuous

for all i ∈ {1, . . . ,m}, we may define ρt ∈ (0,min(ρ, t, T − t)) such that, for all

i ∈ {1, . . . ,m} we have

fi(s, y) ≤ 1

2
fi(t, q(t)) < 0 ∀s ∈ [t− ρt, t+ ρt], y ∈ B̄(q(t), ρt)

and we define Nt > max

{
N1,

4T (κ+ 1)

ρt

}
such that ‖q− qN‖C([0,T ];Rd)≤

ρt
4

for all

N > Nt. Then, for all ρ̃ ∈ (0, ρt] and for all N > Nt, we define

n− =

t−
ρ̃

4(κ+ 1)

h

+ 1, n+ =

t+
ρ̃

4(κ+ 1)

h

.
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It follows that

2h < (n− − 1)h ≤ t− ρ̃

4(κ+ 1)
< hn− < . . . < hn+

≤ t+
ρ̃

4(κ+ 1)
< (n+ + 1)h < T − 2h

and

Pn−−1 = pN

(
t− ρ̃

4(κ+ 1)

)
, Pn+ = pN

(
t+

ρ̃

4(κ+ 1)

)
.

By relation (6.8) we have

Pn+ − Pn−−1 =

n+∑
n=n−

hGn −
n+∑

n=n−

m∑
i=1

λni∇fi(tn+1, ·)(Qn+1).

Moreover, for all n ∈ {n−, . . . , n+} we have tn = nh ∈
[
t− ρ̃

4(κ+ 1)
, t+

ρ̃

4(κ+ 1)

]
and

|tn+1 − t| ≤
ρ̃

4(κ+ 1)
+ h ≤ ρt

2(κ+ 1)
< ρt,

‖Qn+1 − q(t)‖ ≤ ‖Qn+1 − qN(t)‖+‖qN(t)− q(t)‖
≤ κ|tn+1 − t|+‖q − qN‖C([0,T ];Rd)< ρt.

It follows that fi(tn+1, Qn+1) < 0 and λni = 0 for all i ∈ {1, . . . ,m} and for all

n ∈ {n−, . . . , n+}. Thus,

∥∥∥∥pN (t+
ρ̃

4(κ+ 1)

)
− pN

(
t− ρ̃

4(κ+ 1)

)∥∥∥∥ =

∥∥∥∥∥
n+∑

n=n−

hGn

∥∥∥∥∥
≤
∫ tn++1

tn−

F (s)ds

≤
∫ t+

ρ̃

4(κ+ 1)
+h

t−
ρ̃

4(κ+ 1)

F (s)ds.

Letting N to infinity, we obtain that ‖p(t+)− p(t−)‖= 0. This means that

q̇(t−) = p(t−) = p(t+) = q̇(t+).

Step 2: Now, let t ∈ (0, T ) be such that J(t, q(t)) 6= ∅. Consider the case

if J(t, q(t)) = {1, . . . ,m}, we let ρt =
1

2
min(ρ, t, T − t). Otherwise, using the

continuity of the mappings fi, i ∈ {1, . . . ,m} we may define ρt in (0,min(ρ, t, T−t))
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such that, for all i ∈ {1, . . . ,m} \ J(t, q(t)) we have

fi(s, y) ≤ 1

2
fi(t, q(t)) < 0 ∀s ∈ [t− ρt, t+ ρt], y ∈ B̄(q(t), ρt).

Then, by the uniform convergence of (qN) to q on [0, T ], we can define

Nt > max

(
N1,

4T (κ+ 1)

ρt

)

such that ‖q− qN‖C([0,T ];Rd)≤
ρt
4

for all N > Nt. We will show that for all N > Nt

and for all tn ∈
[
t− ρt

4(κ+ 1)
, t+

ρt
4(κ+ 1)

]
, J(tn+1, Qn+1) ⊂ J(t, q(t)). Indeed,

let N > Nt and tn ∈
[
t− ρt

4(κ+ 1)
, t+

ρt
4(κ+ 1)

]
. We have

|tn+1 − t| ≤
ρt

4(κ+ 1)
+ h ≤ ρt

2(κ+ 1)
< ρt,

‖Qn+1 − q(t)‖ ≤ ‖Qn+1 − qN(t)‖+‖qN(t)− q(t)‖
≤ κ|tn+1 − t|+‖q − qN‖C([0,T ];Rd)< ρt.

In addition, we have

fi(tn+1, Qn+1) < 0 ∀i /∈ J(t, q(t)).

Therefore, J(tn+1, Qn+1) ⊂ J(t, q(t)). Represent J(t, q(t)) as J(t, q(t)) =

J1(t, q(t)) ∪ J2(t, q(t)) with

J1(t, q(t)) =
{
i ∈ J(t, q(t)) | ∃ρi ∈ (0, ρt],∃Ni > Nt,∀N > Ni,

∀tn ∈
[
t− ρi

4(κ+ 1)
, t+

ρi
4(κ+ 1)

]
∩ [0, T ], fi(tn+1, Qn+1) < 0

}
and

J2(t, q(t)) =
{
i ∈ J(t, q(t)) | ∀ρi ∈ (0, ρt],∀Ni > Nt,∃N > Ni,

∃tn ∈
[
t− ρi

4(κ+ 1)
, t+

ρi
4(κ+ 1)

]
∩ [0, T ], fi(tn+1, Qn+1) = 0

}
.
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Since J1(t, q(t)) is a finite set, we may defineρ̃t = min{ρi | i ∈ J1(t, q(t))}, Ñt = max{Ni | i ∈ J1(t, q(t))} if J1(t, q(t)) 6= ∅
ρ̃t = ρt, Ñt = Nt if J1(t, q(t)) = ∅.

Now let ρ̃ ∈ (0, ρ̃t] and N > Ñt. As before, we define

n− =

t−
ρ̃

4(κ+ 1)

h

+ 1, n+ =

t+
ρ̃

4(κ+ 1)

h


which implies that

2h < (n− − 1)h ≤ t− ρ̃

4(κ+ 1)
< n−h < . . . < n+h

≤ t+
ρ̃

4(κ+ 1)
< (n+ + 1)h < T − 2h

and

Pn−−1 = pN

(
t− ρ̃

4(κ+ 1)

)
Pn+ = pN

(
t+

ρ̃

4(κ+ 1)

)
.

Thus,

Pn+ − Pn−−1 =

n+∑
n=n−

hGn −
n+∑

n=n−

m∑
i=1

λni∇fi(tn+1, ·)(Qn+1).

Since J(tn+1, Qn+1) ⊂ J(t, q(t)), i /∈ J(tn+1, Qn+1) implies that i ∈ J1(t, q(t)).

Thus,

Pn+ − Pn−−1 =

n+∑
n=n−

hGn −
∑

i∈J2(t,q(t))

n+∑
n=n−

λni∇fi(tn+1, ·)(Qn+1). (6.14)

If J2(t, q(t)) = ∅ using the same arguments as in Step 1, we can obtain that

q̇(t+) = q̇(t−). Moreover, since q(s) ∈ C(s) for all s ∈ [0, T ], q̇(t+) ∈ T (t, q(t)). It

follows that q̇(t+) = q̇(t−) ∈ T (t, q(t)) and therefore we have

q̇(t−) = q̇(t+) = PT (t,q(t))(q̇(t
−)).
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For the case where J2(t, q(t)) 6= ∅, we rewrite (6.14) as follows

pN

(
t+

ρ̃

4(κ+ 1)

)
− pN

(
t− ρ̃

4(κ+ 1)

)
= − ∑

i∈J2(t,q(t))

n+∑
n=n−

λni∇fi(t, ·)(q(t)) +
n+∑

n=n−

hGn

− ∑
i∈J2(t,q(t))

∑n+

n=n−
λni

(
∇fi(tn+1, ·)(Qn+1)−∇fi(t, ·)(q(t))

)
.

(6.15)

Before continuing the proof, we prove the following two technical lemmas.

Lemma 6.20. We have

p(t+)− p(t−) ∈ −
∑

i∈J2(t,q(t))

R+∇fi(t, ·)(q(t)).

Proof. We can estimate the last two terms of (6.15) as follows

∥∥∥∥∥
n+∑

n=n−

hGn

∥∥∥∥∥ ≤
∫ tn++1

tn−

F (s)ds ≤
∫ t+

ρ̃

4(κ+ 1)
+h

t−
ρ̃

4(κ+ 1)

F (s)ds

and, let ∆n
i (t) = λni (∇fi(tn+1, ·)(Qn+1) − ∇fi(t, ·)(q(t))), using Lemma 6.15 and

Remark 6.1(ii) we have∥∥∥∥∥∥
∑

i∈J2(t,q(t))

n+∑
n=n−

∆n
i (t)

∥∥∥∥∥∥ ≤
∑

i∈J2(t,q(t))

n+∑
n=n−

‖∆n
i (t)‖

≤
∑

i∈J2(t,q(t))

n+∑
n=n−

λni L(|tn+1 − t|+‖Qn+1 − q(t)‖)

≤
∑

i∈J2(t,q(t))

n+∑
n=n−

λni L

((
h+

ρ̃

4(κ+ 1)

)
+ ‖q − qN‖C([0,T ];Rd)

)

≤ L

((
h+

ρ̃

4(κ+ 1)

)
+ ‖q − qN‖C([0,T ];Rd)

)
× m

µ

(
Var(pN , [0, T ]) + ‖F‖L1(0,T ;Rd)

)
.

From (6.15), it follows that

lim
ρ̃→0+

lim
N→∞

∥∥∥pN (t+ ρ̃
4(κ+1)

)
− pN

(
t− ρ̃

4(κ+1)

)
+
∑

i∈J2(t,q(t))

∑n+

n=n−
λni∇fi(t, ·)(q(t))

∥∥∥ = 0.
(6.16)

Systèmes Dynamiques Non-réguliers 109



6.1. An Existence Result for the Vibro-impact Problem

We now will prove that the set S :=
∑

i∈J2(t,q(t))

R+∇fi(t, ·)(q(t)) is a closed subset

of R. Indeed, let {xn}, with xn =
∑

i∈J2(t,q(t))

xi,n∇fi(t, ·)(q(t)), be a sequence in S

converging to some x∗. By assumption A2, there exists v = v(t, q(t)) such that

‖v‖= 1 and

〈xn, v〉 =

〈 ∑
i∈J2(t,q(t))

xi,n∇fi(t, ·)(q(t)), v
〉

=
∑

i∈J2(t,q(t))

xi,n〈∇fi(t, ·)(q(t)), v〉

≤ (−µ)
∑

i∈J2(t,q(t))

xi,n.

From this it follows that

0 ≤ xi,n ≤
∑

i∈J2(t,q(t))

xi,n ≤
1

µ
〈xn,−v〉 ≤

1

µ
‖xn‖.

Since {xn} is a convergent sequence, there exists l > 0 such that for each i ∈
J2(t, q(t)) we have 0 ≤ xi,n < l for all n. Hence, there exists a subsequence of {xi,n},
denoted by {xi,n′} and nonnegative number x∗i such that for all i ∈ J2(t, q(t))

xi,n′
n′→+∞−−−−→ x∗i .

Since the sequence {xn} converges to x∗, the sequence {xn′} also converges to x∗.

We have∥∥∥∥∥∥xn′ −
∑

i∈J2(t,q(t))

x∗i∇fi(t, ·)(q(t))

∥∥∥∥∥∥ ≤
∑

i∈J2(t,q(t))

|xi,n′ − x∗i |‖∇fi(t, ·)(q(t))‖.

From this we obtain the limit

x∗ =
∑

i∈J2(t,q(t))

x∗i∇fi(t, ·)(q(t)) ∈ S.

We have shown that
∑

k∈J(t,q)

R+∇fi(t, ·)(q) is closed. Hence, by (6.16) we get the

desired result.

Lemma 6.21. For all i ∈ J2(t, q(t)), one has

∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), q̇(t+)〉 = 0.
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Proof. By Lemma 6.17, q̇(t+) ∈ T (t, q(t)). Hence, for each i ∈ J2(t, q(t)),

∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), q̇(t+)〉 ≤ 0.

We only need to prove that

∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), q̇(t+)〉 ≥ 0; ∀i ∈ J2(t, q(t)).

Let i ∈ J2(t, q(t)) and ρ̃ ∈ (0, ρ̃t]. By the definition of J2(t, q(t)) , there exists a

subsequence {Nα}α∈N strictly increasing to infinity such that, for all α ∈ N we have

Nα > Ñt. Let hα = T/Nα, then there exists nhα ∈
[
t− ρ̃

4(κ+ 1)
, t+

ρ̃

4(κ+ 1)

]
such that fi(tn+1, Qn+1) = 0, i.e. i ∈ J(tn+1, Qn+1). We define

nα = max

{
n ∈ N | nhα ∈

[
t− ρ̃

4(κ+ 1)
, t+

ρ̃

4(κ+ 1)

]
and i ∈ J(tn+1, Qn+1)

}
.

By Lemma 6.18 we have

∂fi(·, Qn+1)(tn+1) + 〈∇fi(tn+1, ·)(Qn+1), Pn〉 ≥ −h(L+ L‖Pn‖+γ‖Pn‖2).

It follows that

∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), Pn+〉
≥ −hα(1 + κ+ γκ2) +

(
∂fi(·, q(t))(t)−∇fi(tnα+1, ·)(Qnα+1)

)
+ 〈∇fi(t, ·)(q(t)), Pn+ − Pnα〉+ 〈∇fi(t, ·)(q(t))−∇fi(tnα+1, ·)(Qnα+1), Pnα〉.

(6.17)

We can estimate the second and fourth terms of the right-hand side of (6.17) as

follows

∂fi(·, q(t))(t)−∇fi(tnα+1, ·)(Qnα+1) ≥ −L(|t− tnα+1|+‖Qnα+1 − q(t)‖)

≥ −L
(

ρ̃

4(κ+ 1)
+ hα + ‖q − qNα‖C([0,T ];Rd)

)
and

〈∇fi(t, ·)(q(t))−∇fi(tnα+1, ·)(Qnα+1), Pnα〉
≥ −L(|t− tnα+1|+‖Qnα+1 − q(t)‖)‖Pnα‖

≥ −Lκ
(

ρ̃

4(κ+ 1)
+ hα + ‖q − qNα‖C([0,T ];Rd)

)
.

If nα = n+, the third term of the right-hand side of (6.17) vanishes. Otherwise,
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we rewrite it as follows

〈∇fi(t, ·)(q(t)), Pn+ − Pnα〉 =

〈
∇fi(t, ·)(q(t)),

n+∑
n=nα+1

hGn

〉
+ 〈∇fi(t, ·)(q(t)), e1〉

≥ −L
∫ t+

ρ̃

4(κ+ 1)

t−
ρ̃

4(κ+ 1)

F (s)ds+ 〈∇fi(t, ·)(q(t)), e2〉

+ 〈∇fi(t, ·)(q(t)), e1 − e2〉

where

e1 =

n+∑
n=nα+1

∑
j∈J(tn+1,Qn+1)

λnj∇fj(tn+1, ·)(Qn+1),

e2 =

n+∑
n=nα+1

∑
j∈J(tn+1,Qn+1)

λnj∇fj(t, ·)(q(t)).

Since i /∈ J(tn+1, Qn+1) for all n ∈ {nα+ 1, . . . , n+} by the definition of nα and the

inclusion J(tn+1, Qn+1) ⊂ J(t, q(t)), assumption A4 implies that the second term

of the right-hand side of this last inequality is non-negative. Furthermore, the last

term can be estimate as

〈∇fi(t, ·)(q(t)), e1 − e2〉 ≥ −
n+∑

n=nα+1

∑
j∈J(tn+1,Qn+1)

λnjL
2(|t− tn+1|+‖Qn+1 − q(t)‖)

≥− L2m

(
r̃

4(κ+ 1)
+ hα + ‖q − qNα‖C([0,T ];Rd)

)
× (Var(pN , [0, T ]) + ‖F‖L1(0,T ;Rd)).

Recalling that Pn+ = pN

(
t+

ρ̃

4(κ+ 1)

)
, then, passing the right-hand side of

(6.17) to the limit, we obtain

lim
ρ̃→0+

lim
Nα→∞

∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), Pn+〉 = ∂fi(·, q(t))(t)

+ 〈∇fi(t, ·)(q(t)), p(t+)〉
≥ 0.

This means that ∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), q̇(t+)〉 ≥ 0.
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We now continue the proof of Proposition 6.19. We have q̇(t+) ∈ T (t, q(t)) and

q̇(t+)− q̇(t−) ∈ −
∑

i∈J2(t,q(t))

R+∇fi(t, ·)(q(t)).

Hence there exist non-negative real numbers λ̄i, for i ∈ J2(t, q(t)), such that

q̇(t+)− q̇(t−) = −
∑

i∈J2(t,q(t))

λ̄i∇fi(t, ·)(q(t))

for all w ∈ T (t, q(t))

〈q̇(t−)− q̇(t+), w − q̇(t+)〉 =
∑

i∈J2(t,q(t))

λ̄i〈∇fi(t, ·)(q(t)), w − q̇(t+)〉.

But, using the previous proposition, for all w ∈ T (t, q(t)) and for all i ∈ J2(t, q(t)),

we have

〈∇fi(t, ·)(q(t)), w − q̇(t+)〉 = (∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), w〉)
− (∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), q̇(t+)〉)

= ∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), w〉)
≤ 0.

Hence

〈q̇(t−)− q̇(t+), w − q̇(t+)〉 ≤ 0 ∀w ∈ T (t, q(t)).

As T (t, q(t)) is a closed convex subset of Rd, the above is equivalent to

q̇(t+) = PT (t,q(t))(q̇(t
−)).

The proof is complete.

Finally we observe that the limit trajectory satisfies the initial data. Indeed,

with (6.10) we have immediately q(0) = q0. Moreover, p0 ∈ T (0, q0) we can prove

that q̇(0+) = p0 = PT (0,q0)(p0) by the same kind of computations. Indeed, if

t = t0 = 0, we may define ρt0 ∈ (0,min(ρ, T )) such that

J(s, y) ⊂ J(t0, q(t0)) ∀s ∈ [t0 − ρt0 , t0 + ρt0 ] ∩ [0, T ] ∀y ∈ B̄(q(t0), ρt0)

and we define Nt0 (respectively, ρ̃t0 and Ñt0 if J(t0, q(t0)) 6= ∅). in the same way

as previously. Then, for all ρ̃ ∈ (0, ρt0 ] and for all N > ht0 (respectively, for all
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ρ̃ ∈ (0, ρ̃t0 ] and for all N > Ñt0 if J(t0, q(t0)) 6= ∅) we define

n− = 0, n+ =

t0 +
ρ̃

4(κ+ 1)

h

 .
We get

Pn−−1 = P−1 = p0, Pn+ = pN

(
t0 +

ρ̃

4(κ+ 1)
h

)
Using the same computation as above, we obtain q̇(0+) = p0.

Remark 6.22. A similar existence result was proved in [17, Theorem 4.6]. Let

us mention that our proof does not require any second-order information or

boundedness on the constraints fi such that (A3) and (A4) used in [17]. In fact,

the boundedness conditions on |∇2fi(t, ·)(q)| and |∂2fi(·, q)(t)|+|∂(∇fi(·, ·)(q))(t)|
used in [17] are not necessary in our analysis. Moreover, the condition (Rq)

used in [17] is replaced here by the weak uniform Slater condition A2. Our

existence result is more specific to constraints inequalities, uses less regularity

assumptions on the constraints fi and could be seen as complementary to [17,

Theorem 3.2]. In fact, Theorem 3.2 in [17] gives a global existence result for

second-order differential inclusions involving a general abstract prox-regular and

Lipschitz continuous set C(t). When applying this result to the particular case of

finite inequality constraints

C(t) = {q ∈ Rd | fi(t, q) ≤ 0 ∀i ∈ {1, . . . ,m}}, (6.18)

two main questions arise: under which conditions on the data fi the set C(t) is

Lipschitz continuous? and is prox-regular? It is well known that the sublevel of

prox-regular functions may fail to be prox-regular and also the prox-regularity of

sets is not stable under intersection (see [8] for more details). Our aim here is to

give some verifiable and practical conditions on the data fi to satisfy both the prox-

regularity and Lipschitz continuity properties of the set C(t) in (6.18). An other

way to obtain Theorem 6.7 is to assume A1–A3 to prove via Propositions 6.3 and

6.4 the prox-regularity and the Lipschitz continuity of the set C(t) given in (6.18)

and then apply the general Theorem 3.2 in [17]. For the convenience of the reader,

we prefer to give a direct and self-contained proof specific to constraints inequalities

based on the time-stepping algorithm. We mention that this technique for proving

existence result for nonsmooth second-order differential inclusion problems was
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also used in [15, 16, 73]. The following example shows that the assumptions (A3)

and (A4) in [17] could not be satisfied.

6.2 Example

Let t ∈ [0, 1] and for i ∈ {1, 2}, fi : [0, T ]× R2 → R be defined by

f1(t, (x, y)) =


−y − t if x ≤ 0

−1
4
x2 − y − t if 0 ≤ x ≤ 1

−1
2
x+ 1

4
− y − t if x ≥ 1,

and

f2(t, (x, y)) =


−y − t if x ≥ 4

−1
4
(4− x)2 − y − t if 3 ≤ x ≤ 4

1
2
(x− 4) + 1

4
− y − t if x ≤ 3.

Consider the problem P with the set

C(t) = {q = (x, y) ∈ R2 | fi(t, q) ≤ 0, i ∈ {1, 2}}

and g(t, q) = 0.

Observe that fi(·, ·), i ∈ {1, 2} are differentiable and theirs derivatives are

Lipschitz continuous with rank L =
√

5
2

. This shows that the assumption A1(i)

holds. Note that ∂f1(·, q)(t) = ∂f2(·, q)(t) = −1 and

∇f1(t, ·)(x, y) =


(0,−1) if x ≤ 0

(−1
2
x,−1) if 0 ≤ x ≤ 1

(−1
2
,−1) if x ≥ 1,

and

∇f2(t, ·)((x, y)) =


(0,−1) if x ≥ 4

(1
2
(4− x),−1) if 3 ≤ x ≤ 4

(1
2
,−1) if x ≤ 3.
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Assumption A1(ii) is always true for v = (0, 1) and µ = 1. We also have

‖fi(t, ·)(x, y)‖≤ L and therefore, assumption A1(iii) holds. Assumption A2 is

satisfied with the choice of γ = 1
2
. If J(t, q) = {1, 2} we have

〈∇f1(t, ·)(q),∇f2(t, ·)(q)〉 = −1

2

1

2
+ (−1)(−1) =

3

4
≥ 0.

Hence, assumption A4 holds. We have showed that assumptions A1–A4 are

satisfied for the above problem. By Theorem 6.7, the problem has a solution.

Note that the second order derivative with respect to the second variable q of

f1 (of f2) does not exists at q = (0, y) (at q = (4, y), respectively) for any y ∈ R.

Hence f1, f2 /∈ C2([0, 1] × R2;R). This shows that the assumptions proposed in

[15, 17, 73] cannot be applied to ensure the existence solution for this example.

6.3 Conclusions

In this paper, we have presented some regularity conditions for the data to ensure

the existence of solution for a class of vibro-impact problems. These conditions

neither require the second-order differentiability nor convexity of constraint

functions. Some assumptions relate to the uniformly prox-regularity of the set

of admissible positions. We also give an example to illustrate the applicability of

the provided assumptions.
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d’Analyse Convexe, Vol. II, Exp. No. 3, pages 36 pp. Secrétariat des Math.,

Publ. No. 122. 1972.

[67] J.-J. Moreau. Evolution problem associated with a moving convex set in a

Hilbert space. J. Differential Equations, 26(3):347–374, 1977.
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Titre thèse français: Systèmes Dynamiques Non-réguliers:
Applications en Optimisation et aux Processus de Rafles

Résumé : Dans cette thèse, nous étudions quelques classes de systèmes
dynamiques non-réguliers. Plus précisément, les processus de rafles perturbés,
les processus de rafles avec contraintes de vitesse ainsi que les problèmes de
vibro-impact sur un ensemble de contraintes non-convexe dépendant du temps.

Le premier sujet porte sur l’existence et l’unicité de solutions pour les processus
de rafles perturbés non-convexes. Dans le cadre adopté par Edmond et Thibault
[Mathematical Programming 104 (2005), 347–373], nous étudions une classe de
processus de rafles perturbés. Sous des hypothèses appropriées, nous obtenons
deux théorèmes d’existence de solutions pour les processus de rafles perturbés, les
ensembles de contraintes étant des ensembles de sous-niveaux prox-réguliers. Les
résultats sont appliqués à l’analyse du comportement de certains procédés de rafles
en mécanique unilatérale.

Le deuxième sujet porte sur certaines classes de processus de rafles avec vitesse
dans un ensemble en mouvement. En plus de l’existence et l’unicité de la solution
pour le cas d’un ensemble de contraintes convexe en mouvement, des résultats
sur l’existence de la solution et la multiplicité de la solution où l’ensemble de
contraintes est une union finie d’ensembles convexes disjoints sont également
obtenus. Notre outil principal est un théorème sur la sensibilité des solutions des
inéquations variationnelles paramétriques. Outre l’exigence traditionnelle selon
laquelle l’ensemble de contraintes se déplace continuellement dans le sens de la
distance de Hausdorff, nous utilisons intensivement une nouvelle hypothèse de
type Lipschitz des multi-applications à valeurs dans l’ensemble de contraintes. Les
résultats obtenus sont comparés à ceux existants et analysés à l’aide de plusieurs
exemples. De plus, certaines propriétés de solutions de processus de rafles convexe
avec des contraintes de vitesse sont également étudiées. En effet, la sensibilité des
solutions par rapport à la valeur initiale, la limitation, la fermeture et la convexité
de l’ensemble de solutions sont discutées en détail.

Le troisième sujet porte sur un problème de vibro-impact, qui est décrit
sous la forme d’inclusion différentielle à mesure de second ordre. Grâce à une
discrétisation de notre problème par l’algorithme de pas de temps, on construit
une suite de solutions approchées qui converge vers une solution du problème
considéré.

Mots clés : Processus de rafles, problème de vibro-impact, contrainte dépendante
du temps, contrainte de vitesse, prox-régularité, ensemble de sous-niveaux,
Propriétés de type Lipschitz des multi-applications.



Titre thèse anglais: Nonsmooth Dynamical Systems: Applications in
Optimization and Sweeping Processes

Abstract: In this dissertation, we study some classes of nonsmooth dynamical
systems. Namely, perturbed sweeping processes, sweeping processes with velocity
constraints, and vibro-impact problems are investigated.

The first topic is on the solution existence and uniqueness of nonconvex
perturbed sweeping processes. In the setting adopted by Edmond and Thibault
[Mathematical Programming 104 (2005), 347–373], we study a class of perturbed
sweeping processes. Under suitable assumptions, we obtain two solution existence
theorems for perturbed sweeping processes with the constraint sets being prox-
regular sublevel sets. The results are applied to analyzing the behavior of some
concrete mechanical sweeping processes.

The second topic is on some classes of sweeping processes with velocity in a
moving set. In addition to the solution existence and the solution uniqueness
for the case of a moving convex constraint set, some results on the solution
existence and the solution multiplicity where the constraint set is a finite union
of disjoint convex sets are also obtained. Our main tool is a theorem on the
solution sensitivity of parametric variational inequalities. Beside the traditional
requirement that the constraint set moves continuously in the Hausdorff distance
sense, we intensively use a new assumption on the local Lipschitz-likeness of
the constraint set-valued mapping. The obtained results are compared with the
existing ones and analyzed by several examples. In addition, some properties of
solutions of convex sweeping processes with velocity constraints are also studied.
Namely, the solution sensitivity with respect to the initial value, the boundedness,
the closedness, and the convexity of the solution set are discussed in detail.

The third topic is on a vibro-impact problem, which is described in the form of
second-order measure differential inclusion. We are able to discretize our problem
by the time-stepping algorithm and construct a sequence of approximate solutions
which is proved to converge to a solution of the problem in consideration.

Keywords: Sweeping process, vibro-impact problem, time-dependent
constraint, velocity constraint, prox-regularity, sublevel set, Lipschitz-likeness


