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S. DECK Directeur de recherche, ONERA, Meudon Examinateur
F. DUCHAINE Chercheur, CERFACS, Toulouse Examinateur
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High-Fidelity Simulation of Conjugate Heat Transfer Between a Turbulent Flow and a Duct
Geometry

Abstract This study concerns the development of a new numerical technique for the simulation of
Conjugate Heat Transfer (CHT) in turbulent pipe flow configuration. The method is progressively
developed in order to ultimately grow into the desired high-fidelity technique. All numerical de-
velopments and simulations are carried out within the massively parallel open-source code Incom-
pact3d/Xcompact3d. In a first phase, the capabilities of the present numerical strategy are expanded and
assessed. By means of Direct and Implicit Large-Eddy Simulation (DNS/ILES), its advantageous com-
bination of numerical features are explored, among which we may highlight the Immersed Boundary
Method (IBM) based on Lagrange polynomial interpolations, the original Viscous Filtering technique
for DNS/ILES and the implicit wall-layer modelling feature intrinsic to the use of high-order numerical
dissipation as an ersatz of the subgrid-scale (SGS) contribution. The second part is focused on the intro-
duction of an original strategy for the simulation of heat-transfer in wall turbulence. For that purpose,
the IBM is subjected to extensive developments for the correct imposition of boundary conditions on
the thermal field. The numerical techniques are validated with DNS of heat transfer in turbulent pipe
flow with Isoflux (IF) and Mixed-type Boundary Conditions (MBC). Special attention is given to IF, as
an original methodology based on IBM is developed for the imposition of Neumann boundary condi-
tions. The strategy is then used to introduce a versatile method for the numerical simulation of CHT
in pipe configuration. It is shown that this technique is capable of providing an accurate description of
the thermal interaction between fluid and solid media, which may be valuable, for instance, to improve
RANS/LES modelling in industrial applications where fluctuating thermal stresses are a concern. The
pipe geometry is considered here as a prototype of complex geometry to investigate, in further work,
conjugate heat transfer in more complex geometries such as solar power plants and T-junction flow.

Keywords Direct Numerical Simulation, Large-Eddy Simulation, High Performance Computing,
turbulent pipe flow, conjugate heat transfer, thermal boundary conditions, complex geometry, im-
mersed boundary method

i



Simulation haute-fidelité du transfert thermique conjugué entre un fluide turbulent et le
corps d’une conduite hydraulique

Résumé Cette étude est consacrée au développement d’une nouvelle technique numérique pour la
simulation du transfert thermique conjugué avec une application pour la reproduction de l’écoulement
turbulent dans une conduite. La méthode est construite progressivement pour atteindre la haute-
fidélité souhaitée. Tous les développements numériques et simulations sont effectués sur la base du
code libre et massivement parallèle Incompact3d/Xcompact3d. Dans une première phase, le potentiel de
la stratégie numérique choisie est étendu puis évalué par simulation directe et implicite à grande échelle
pour mieux cerner la façon de combiner avantageusement ses caractéristiques. Parmi ces dernières, on
peut mentionner la méthode des frontières immergées basée sur des interpolations polynomiales de La-
grange, la technique originale de filtrage visqueux et la modélisation implicite de turbulence pariétale
par utilisation d’une dissipation numérique d’ordre élevé comme ersatz de la contribution sous-maille.
La deuxième partie est consacrée à l’introduction d’une stratégie originale pour la simulation du trans-
fert thermique turbulent pariétal. Dans ce but, la méthode des frontières immergées est adaptée pour
permettre l’imposition de conditions aux limites thermiques spécifiques. L’approche est validée par
simulation numérique directe du transfert de chaleur en turbulence de conduite avec des conditions
aux limites de type Isoflux ou mixte. Une attention particulière est accordée au cas Isoflux qui nécessite
des développements pour permettre l’imposition d’une condition aux limites de type Neumann. Cette
stratégie est ensuite mise à profit pour mettre au point une méthode polyvalente qui permet la repro-
duction d’un phénomène de transfert thermique conjugué entre un fluide turbulent et le corps de la
conduite qui le contient. Il est démontré que cette technique de couplage est capable de fournir une de-
scription précise de l’interaction thermique entre les milieux fluide et solide, ce qui peut être utile, par
exemple, pour améliorer la modélisation RANS/LES dans les applications industrielles pour lesquelles
les contraintes thermiques fluctuantes sont une préoccupation. La conduite cylindrique considérée ici,
sans lien avec la nature Cartésienne du maillage, peut être vue comme un prototype de géométrie com-
plexe, ceci ouvrant la voie à la réalisation de simulations haute-fidélité en géométrie réaliste telle que
celle d’un Té de mélange avec plus largement des applications dans le cadre des centrales nucléaires
ou solaires.

Mots-Clés Simulation Numérique Directe, Simulation à Grande Echelle, Calcul Haute Performance,
écoulement turbulent dans les conduites, transfert thermique conjugué, conditions aux limites ther-
miques, géométrie complexe, méthode des frontières immergées
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Chapter 1

Introduction

Pipes are the most widely used fluid transport system in the world, being found in nearly every
engineering design: from pipelines to water supply systems, integrating different components in an
airplane, everywhere in our cars, in our houses, etc. In heat transfer applications, fluids in movement
inside ducts are commonly employed for thermal regulation, as exemplified in Figure 1.1, with the
cooling systems of a turbine blade (left) and a nuclear power plant (right). In order to extract the best
performance out of these systems, their design must take into account heat exchange characteristics that
are intrinsically related to the geometry of the flow. Many simplified theoretical and empirical tools may
be used to globally predict heat transfer in hydraulic systems but they are unable to provide reliable
information for every possible scenario, specially when thermal fatigue phenomena are involved or
complex geometries must be considered.

Furthermore, when considering heat exchange in confined flows, not only the fluid is concerned
but also its thermal interaction with the solid pipe body. The terminology Conjugate Heat Transfer (CHT)
refers to this thermal interaction between fluid and solid media by exchanging thermal energy at the
interfaces between them. The classic example of the kettle in Figure 1.2-left illustrates well the princi-
ple. Here, we can identify the three basic ways in which heat transfer take place - namely conduction,
convection and radiation - but we may focus only on conduction and convection. In solid bodies, heat
is transferred by conduction, whereas in fluids, convection often dominates over conduction. This way,
the load of heat received at the base of the kettle in direct contact with the fire is transported throughout
its thickness by conduction. This heat is then transferred by convection to the fluid recirculating inside.

This same reasoning can be projected to the pipe configuration represented in Figure 1.2-right, the
load of heat received at its outer surface is conducted throughout the solid thickness and then conveyed
by the fluid in movement inside. Therefore, to investigate a CHT problem means considering different
physical processes occurring in distinct media. The complexity of this scenario can be further increased
if the confined flow is in turbulent state - which is the case in the vast majority of real life industrial
applications - adding a multi-scale and random nature to the problem.

1
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Figure 1.1: Examples of cooling systems based on pipe flow. (Left) Micro-channels through
which air flows to cool down the turbine blades of an aeronautical engine. (Right) Pipes are
present all over nuclear power plants connecting components and transporting the cooling
fluid. Images adapted from [1, 2, 3].

Turbulent 
Flow

Heat Flux

Figure 1.2: (Left) Illustration of the three basic ways in which heat can be transferred: con-
duction, convection and radiation. (Right) Schematic representation of the Conjugate Heat
Transfer problem in the present pipe flow configuration.
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Thanks to the progressive development of High Performance Computing (HPC), the investigation
of these thermal phenomena are no longer limited only to experimental studies, as numerical simula-
tions in much more demanding configurations are nowadays possible. This is our field of action here,
the ultimate goal of the present work is to introduce a numerical technique for the high-fidelity sim-
ulation of the conjugate heat transfer in turbulent pipe flow configuration. To do so, in the course of
the last three years, various numerical features have been developed and progressively embedded in
the open-source code Incompact3d/Xcompact3d [7, 11, 12]. This massively parallel code has been in
continuous development since its creation in Pprime Institute and counts today with a relatively large
(and still growing) community of international developers [12].

In this chapter, fundamentals of wall-bounded turbulence and heat transfer in turbulent flows,
relevant to this work, are briefly presented. Then, the numerical developments brought to the code as
well as its main features are progressively described and validated throughout chapters 2 through 4.
Chapters 5 and 6 are then dedicated to the numerical treatment of heat transfer in pipe flow.

1.1 Fundamentals of wall-bounded turbulence

As a matter of fact, most turbulent flows present in engineering applications are bounded by solid
surfaces and the turbulent pipe flow, together with channel and boundary layer flows, are canonical
examples with a wide spectrum of industrial applications. The presence of a solid body exerts strong
influence on the behaviour of a viscous flow since viscous effects will govern the physics of the flow near
the wall surface. Statistically speaking, the presence of a wall introduces inhomogeneity and anisotropy
in the wall-normal direction, further increasing the complexity of the turbulent flow. Nonetheless,
wall-bounded turbulent flows are of major relevance to the industry as ducts of different sizes and
shapes are present in nearly every engineering design, hence the interest in thoroughly investigating,
understanding and modelling wall effects in turbulence research.

In this section, main aspects of wall-bounded turbulence are briefly recalled using the pipe flow
as a guideline. The flow configuration treated in this work is presented as well as the flow governing
equations and relevant physical/statistical definitions. Then, the transport of temperature as a passive
scalar is also addressed.

1.1.1 Turbulent pipe flow

Flow geometry We consider here the turbulent flow in a long, straight, circular pipe with uniform
inner radius R and outer radius Ro, as illustrated in Figure 1.3. Because a regular Cartesian mesh is
used in the present work, a Cartesian system of coordinates (x, y, z) is represented together with the
cylindrical one (r, φ, z) associated to the wall geometry. They are both centred at the pipe axis and

https://www.incompact3d.com/
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R R0

Heat Flux
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⟨T ⟩(r , z)

Flow z

Figure 1.3: Sketch of the pipe flow geometry subjected to a heat flux at its outer surface r = Ro.
Typical shapes of the the mean axial velocity and mean temperature are represented in blue
and red respectively.

relate to each other according to

r =
√
x2 + y2

φ = arctan(y/x)

z = z . (1.1)

Governing equations The flow is governed by the incompressible Navier-Stokes (N-S) equations
for a Newtonian fluid

∂ui
∂xi

= 0 (1.2)

∂ui
∂t

+
1

2

(
uj
∂ui
∂xj

+
∂uiuj
∂xj

)
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi (1.3)

where repeated indices imply summation over the three Cartesian components (x1, x2, x3) = (x, y, z),
this convention is kept in the rest of this monograph, unless indicated otherwise. The fluid density ρ
and kinematic viscosity ν are assumed constant. The fluid velocity field is a function of time and space
ui(xi, t) = (ux, uy, uz), as well as the pressure field p(xi, t) which is defined so that the incompressibility
constraint (1.2) is satisfied. The convective term on the left-hand side (lhs) of eq.(1.3) is presented in
skew-symmetric form, as it is numerically treated [7]. Here, the forcing term fi corresponds only to
the pressure gradient forcing

fi = −1

ρ

∂〈p〉
∂xi

, (1.4)

that compensates friction losses along the pipe in order to ensure a constant flow rate.
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Reynolds number The Reynolds number translates the competition between inertial and viscous
forces within a flow

Re =
inertial forces
viscous forces =

UbD

ν
. (1.5)

It is defined here with the pipe diameter D, the kinematic viscosity of the fluid ν and the bulk veloc-
ity Ub, which, for a duct of uniform diameter, corresponds to the average velocity through the cross-
sectional area Ac

Ub =
1

Ac

∫

Ac

〈uz〉dAc . (1.6)

Evenly, the bulk velocity can be also defined by means of a volumetric average operator embedding the
average operator 〈·〉 (as it is numerically computed in the present work):

Ub =
1

Ωf

∫

Ωf

uzdΩf , (1.7)

where Ωf is the fluid inner volume of the pipe
Ωf = {(r, φ, z) | r ∈ [0, R[, φ ∈ [0, 2π], z ∈ [0, Lz]} . (1.8)

When viscous forces are predominant (i.e., at lower Reynolds number) the viscous term ν∇2u in
eq.(1.3) tends to damp perturbations in the flow, preventing a turbulent wake from developing and the
flow is therefore laminar. Contrarily, when inertial forces are dominant (higher Reynolds number), the
non-linear convective term in eq.(1.3) overcomes the stabilizing effect of the viscous forces and small
perturbations are amplified triggering transition towards a full turbulent state. Transition has a well es-
tablished theoretical base nowadays and unlike the other canonical wall-bounded configurations, the
laminar profile of a pipe flow is linearly stable for all Reynolds numbers [13], therefore, in order to
trigger transition, two ingredients must be combined: a sufficiently fast flow and a sufficiently strong
perturbation [14]. For this reason, the precise value of Re to trigger turbulent effects in a pipe flow is
difficult to define, still, if a sufficiently strong perturbation is considered, as in the original experimen-
tation of Osborne Reynolds in 1883 [15], the transitional value Re ≈ 2300 is generally accepted and
presented in theory [16, 17].

Statistical considerations Classically, turbulence has been seen as a random event and therefore
investigated by means of statistical approaches [6, 13]. In the last three decades however, a more deter-
ministic view has grown and much contributed to the present understanding of the physics involved in
turbulence. In this scenario, randomness is no longer seen as a property but rather as a methodological
choice, so that turbulence is treated as a dynamical system that satisfies the Navier-Stokes equations
and the attention is turned to the investigation of coherent structures in the flow [18]. Numerically, this
type of investigation requires a large amount of computational resources and, in many cases - depend-
ing on the desired application and available resources - a statistical approach remains the most suitable
one. For instance, industrial engineering analyses are focused, in good part, on the performance of sys-
tem by predicting certain of the flow characteristics such as stresses on a immersed body or the mixing
of transported quantities in a duct [19]. In this case, statistical analyses (as well as the development of
efficient models) are of major relevance in turbulence research.
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As just mentioned, in a statistical framework, turbulence is studied as a random event and the flow
quantities, treated as random functions in both time and space. We introduce therefore the Reynolds
decomposition

f = 〈f〉+ f ′ , (1.9)
where f(xi, t) is a given quantity of the flow (such as velocity, pressure or temperature), 〈f(xi, t)〉
is its ensemble average and f ′(xi, t) is the fluctuations with zero mean value 〈f ′〉 = 0. By taking the
ensemble average of the N-S equations (1.2, 1.3) while using (1.9), one obtains the mean-flow equations
(not shown for conciseness, the reader is referred to [6] p.86) with its classic closure problem associated
to the Reynolds stresses

− ρ〈u′iu′j〉 , (1.10)
which arises from the non-linearity of the N-S equations. The mean-flow equations are analogous to the
N-S ones with this supplementary stress, so that, physically, the mean motion can be interpreted as a
real flow motion, smooth in space and time, subjected to i) mean pressure gradient, ii) mean molecular
stresses and iii) the extra turbulent Reynolds stresses (1.10) (see [13], p.122).

In the present pipe configuration, homogeneity is assumed for the azimuthal-φ direction because of
the axial symmetry . Analyses are always carried out in fully developed turbulent state, which allows
us to assume a mean flow statistically stationary and independent of the streamwise-z direction. Thus,
mean quantities are assumed to depend only on r - the inhomogeneous direction - and the ensemble
average is therefore reduced to an average in φ, z and over time

〈ui(xi, t)〉 = 〈ui〉(r) . (1.11)

Mean pressure gradient When simplified with the above considerations, the conservation of wall-
normal momentum in the mean flow reveals that the force induced by the mean pressure gradient is
unidirectional and constant

− ∂〈p〉
∂xi

=

(
0, 0, −d〈p〉

dz

)
, with d〈p〉

dz
= cst , (1.12)

which implies a linear drop of the mean pressure 〈p〉(z) along the duct. Moreover, the conservation
of axial momentum displays an equilibrium between pressure and viscous effects in the mean flow
direction

τw = −R
2

d〈p〉
dz

, (1.13)

where τw is the mean wall shear stress given by

τw = ρν
d〈uz〉
dz

∣∣∣∣
r=R

. (1.14)

The friction losses induced by the wall shear stress are compensated by the forcing term fi (1.4) - which
may represent, for instance, the action of a pump - in order to sustain statistical steady state of the flow.
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Friction quantities The predominance of viscous effects close to the wall requires the definition of
viscous scales to consistently scale flow quantities. From the wall shear stress τw and flow density ρ,
we introduce the friction velocity defined as

uτ =

√
τw
ρ

, (1.15)

and an associated viscous length scale δν which must account for the viscous effects in the near-wall
region, so that

δνuτ
ν

= 1 =⇒ δν =
ν

uτ
. (1.16)

And lastly the viscous time scale
τν =

δν
uτ

=
ν

u2
τ

. (1.17)

When flow quantities are normalized here with viscous scales, they are referred to as in wall units and
the superscript ‘+’ is used, e.g. the normalized distance from the wall (R − r)/δν = (R − r)+ and the
normalized mean velocity profile 〈uz〉+ = 〈uz〉/uτ .

Friction Reynolds number From the viscous scales, the friction Reynolds number is defined as

Reτ =
uτR

ν
(1.18)

which can be interpreted as [20]
Reτ =

δ

δν
= R+ .

That is, it translates the separation range between the length scale δ = R, dictated by the geometry
of the flow, and the viscous length scale δν = ν/uτ . Due to the influence of wall-viscous effects into
the flow, coherent structures that compose wall-bounded flows are generally stratified in three layers
according to their distance from the wall. These different regions influence directly the shape of the
mean velocity profile as shown in Figure 1.4. In the i) inner region, viscous effects have strong influence
over the structures and hence it is generally accepted that mean flow quantities scale with uτ and δν
[18, 5]. In the ii) outer region, far from the wall, viscous effects are mostly negligible (analogously to
free-shear flows) and the length scale is the flow thickness delimited by R, in the case of a pipe flow.
Thus, Reτ may be interpreted as a scale separation between inner and outer scales [18]. At higher Re
(or Reτ), this separation extends and a iii) overlap layer forms between inner and outer regions, where
neither the flow thickness nor viscosity are relevant [18]. In statistical terms, this region has been
interpreted as a cascade of momentum from the outer towards the inner region, which works as a sink
of momentum at the wall, analogously to the turbulent energy cascade from large scales - responsible
for the production of turbulent kinetic energy - toward the smallest scales, whose role is to dissipate it
[21].

As a matter of fact, the canonical configurations - namely channel, boundary layer and pipe - are
very similar in the near-wall and log-layer regions, differing mostly in the outer region because of the
influence of the pressure gradient [22, 23].
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Figure 1.4: Mean velocity profile in wall units 〈uz〉+ from our DNS at Reτ = 1000. The inner
region (0 ≤ y+ ≤ 30) is usually sub-divided in viscous sublayer and buffer layer. In the former,
the mean profile is linear with 〈uz〉+ = y+ and the latter makes the connection with the overlap
layer (0 ≤ y+ ≤ 0.15Reτ), which is not clearly identified due to the not sufficiently high
Reτ (Reτ > 2000 would be required [4]). There has been much debate whether this regions
follows a logarithmic or power law [5]. Classically, the outer region (0.15Reτ ≤ y+ ≤ Reτ)
is also scaled with uτ and then the mean velocity is presented in terms of a velocity defect,
following a defect law, see [6] p.272.
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Figure 1.5: Snapshots of the normalized streamwise fluctuation velocityu′z+ atReτ = 180, 1000
(Re = 5300, 37700).

In the present work, numerical simulations are carried out at two nominal friction Reynolds num-
bers Reτ = 180, 1000; and Figure 1.5 provides two cross-sectional snapshots of the streamwise fluctua-
tion velocity u′z = uz−〈uz〉 from our DNS, where the increase in the number of structures that compose
the flow can be clearly perceived. Theoretical considerations on the fundamental scaling laws for the
mean velocity profile are not presented here, the reader is referred to the good review of [5] which
covers the main advancements in the last 50 years and the ongoing discussions on the topic.

1.1.2 Heat transfer in turbulence

In a general turbulent flow context, the flow field induces fluctuations on the scalar field through
turbulent convection and, in turn, the fluctuating scalar field impacts the velocity field through mean
gradients and density changes caused by the temperature variation [24]. We suppose here that these
temperature fluctuations are relatively small which allows us to assume that the thermal field is trans-
ported without being affected by these temperature differences (passive scalar), such that, buoyancy
effects can be neglected, as well as any temperature dependence of the fluid and solid material proper-
ties [24, 25].

In the present work, we consider the conjugate heat transfer context where a fully developed turbu-
lent flow of an incompressible Newtonian fluid in a pipe is subjected to a constant heat flux at its outer
surface, as illustrated in Figure 1.3. The load of heat received on the outer surface r = Ro is transported
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through the solid subdomain

Ωs = {(r, φ, z) | r ∈ [R,Ro], φ ∈ [0, 2π], z ∈ [0, Lz]} (1.19)

by conduction only and then conveyed by the turbulent flow in the fluid subdomain Ωf defined in
eq.(1.8). Thus, heat transfer in the fluid medium is governed by the advection-diffusion equation

∂T

∂t
+ uj

∂T

∂xj
= α

∂2T

∂xj∂xj
in Ωf (1.20)

where T (xi, t) is the temperature field and α = λ/ρcp is the thermal diffusivity of the fluid with λ its
thermal conductivity and cp its specific heat at constant pressure (which for an incompressible fluid,
as in here, is constant and equal to the specific heat at constant volume cp = cv). In the solid medium,
heat transfer is governed by the unsteady heat diffusion equation

∂T

∂t
= αs

∂2T

∂xj∂xj
in Ωs (1.21)

where αs = λs/ρscps is the thermal diffusivity of the solid with λs its thermal conductivity, ρs its
density and cps its specific heat at constant pressure.

As for the hydrodynamic quantities, temperature is decomposed into mean and fluctuating parts

T = 〈T 〉+ T ′ . (1.22)

The typical shape of mean temperature profile 〈T 〉 is illustrated in Figure 1.3 for the generic case where
the wall temperature is higher than the fluid oneTw > T (and fluid/ solid thermal propertiesλ, λs, α, αs
are comparable), implying that heat transfer would be occurring from the solid towards the fluid.

Bulk temperature When dealing with internal flows, a reference temperature Tb must be defined
to represent for the convection heat transfer in the confined flow what T∞ - the fixed free stream tem-
perature - represents for external flows [17]. The bulk temperature Tb is defined as an average quantity
such that its transport in the mean flow (lhs of eq.(1.23)) represents the true rate of thermal energy
advection integrated over the cross-sectional area (rhs of eq.(1.23)) [17]

ṁcpTb =

∫

Ac

ρcp〈uz〉〈T 〉dAc , (1.23)

where ṁ = ρUbAc is the average mass flux. For an incompressible fluid, and from the definition of the
bulk velocity Ub in eq.(1.6), the above expression may be rewritten as

Tb =

∫
Ac
〈uz〉〈T 〉dAc∫
Ac
〈uz〉dAc

. (1.24)

Note that Tb plays for the temperature field the same role that Ub plays for the velocity field and, when
expressed like this, Tb is assumed uniform across the cross-sectional area. So, as it has been done for
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the bulk velocity, the cross-sectional integrals may be equivalently replaced by volumetric ones

Tb =

∫
Ωf
uzTdΩf∫

Ωf
uzdΩf

. (1.25)

This way, the local wall heat flux can be expressed with Newton’s law of cooling as
qw = h (Tw − Tb) , (1.26)

where h is the convection heat transfer coefficient, a parameter of major interest in engineering analysis.

Dimensionless parameters Throughout the years, many dimensionless parameters have been de-
fined to translate important thermal characteristics of fluids and/or flows. We dedicate some words
here to the most relevant ones for the present framework, for an extensive presentation of other mean-
ingful quantities, the reader is referred to [17], p.376.

The Prandtl number,
Pr =

ν

α
, (1.27)

is a property of the fluid and those characterised by Pr � 1, such as liquid metals, transport energy
(represented by the thermal diffusivity α) much more effectively than momentum (represented by the
kinematic viscosity ν), the inverse is true for fluids withPr � 1. For ideal gases, whose Prandtl number
is near unity, the transport of the two quantities is comparable [17]. A fluid characterised by a Prandtl
number higher than unity Pr > 1 develops a hydrodynamic boundary layer quicker than the thermal
one; the inverse is true when Pr < 1 [17]. For the numerical simulations carries out here, two typical
Prandtl numbers are considered Pr = 0.71, 0.025, representative of air and mercury respectively.

The Nusselt number provides a measure of the convection heat transfer occurring at the surface and
it is a quantity of major importance in heat transfer analyses, representing for the thermal boundary
layer what the friction coefficient represents for the velocity one. It is given by

Nu =
hD

λ
, (1.28)

or, from Newton’s law of cooling eq.(1.26)

Nu =
qwD

λ (Tw − Tb)
. (1.29)

For a fully developed flow of an incompressible fluid, both the heat transfer coefficienth and the thermal
conductivity λ are assumed constant, implying Nu = cst as well.

The Péclet number
Pe =

UbD

α
= RePr , (1.30)

translates the ratio of advection to conduction heat transfer of a given flow. For sufficiently high values
Pe > 100, the heat transfer can be interpreted as essentially convective and axial heat conduction can
be therefore neglected [26], which is valid for all cases in the present work, where even the most critic
combination with Re = 5300 and Pr = 0.025 still provides Pe = 132.5.
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Thermal boundary conditions The imposition of proper boundary conditions is a fundamental
criteria to obtain realistic representations of real life phenomena. When dealing with the Navier-Stokes
equations for instance, the velocity boundary conditions are well-defined from the no-slip condition.
On the other hand, defining thermal boundary conditions (TBCs) that fairly represent a real heat trans-
fer phenomena may not be so straightforward [27]. What is commonly done in numerical simulation
of heat transfer in wall-bounded configurations is to bypass the heat conduction in the solid (1.21) and
solve only the advection-diffusion in the fluid (1.20). In this case, assumptions and simplifications are
made concerning the solid-to-fluid transfer of heat, and the physical process in the solid is modelled by
a simplified/idealized TBC imposed to eq.(1.20) at the inner interface r = R. This approach is referred
to as ideal local imposition in this monograph and it is the subject of chapter 5. It is widely recognised
however that idealized TBCs cannot provide realistic representations of real life heat transfer in every
possible scenario [28], since simplifications concerning the behaviour of temperature fluctuations at the
wall cannot be avoided as long as the calculations are performed for the fluid side only. Alternatively,
in the framework of Conjugate Heat Transfer (CHT) simulations, the heat conduction occurring in the
solid is also solved and coupled to the fluid solution through shared conditions at the fluid-solid inter-
face. This strategy can provide a fine description of the turbulent thermal interaction between fluid and
solid media which may be valuable, for instance, to investigate applications where fluctuating thermal
stresses are a concern and may even lead to thermal fatigue [28].

As mentioned, in chapter 5, ideal local imposition is addressed as a pathway into developing a nu-
merical methodology for imposing Dirichlet and Neumann boundary conditions to the thermal field in
the present computational configuration. This paves the way then to introduce in chapter 6 an original
and high-fidelity technique to tackle CHT problems in complex geometries1.

Statistical considerations The temperature field is also considered always in thermally fully devel-
oped state and statistical homogeneity is directly assumed for the azimuthal-φ direction. Concerning
the axial direction however, the basic condition for heat transfer to occur between the solid body and
the fluid is the existence of a temperature gradient, that is,

∂〈T 〉
∂z
6= 0 and, consequently, dTb

dz
6= 0 . (1.31)

In other words, the existence of convection heat transfer in the axial direction makes the temperature
field statistically non-homogeneous in thermally fully developed conditions. This condition is repre-
sented in Figure 1.3 by the dependence of the mean temperature profile 〈T 〉 on the streamwise-z direc-
tion, exemplifying the existence of a temperature gradient that triggers heat transfer between fluid and
solid media.

Non-dimensional temperature The aforementioned condition (1.31) raises an obstacle for the nu-
merical treatment/discretization of the flow direction. This hindrance can be, nonetheless, bypassed

1The term complex geometry refers to a mesh arrangement disconnected from the wall geometry
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by working with suitable non-dimensional temperature forms Θ (Tw, Tb, T ) such that
∂〈Θ〉
∂z

= 0 and Θb = cst , (1.32)

which allows the streamwise direction to be practically treated as statistically homogeneous and ther-
mally stationary [29, 17]. Distinct dimensionless expressions may be used according to their conve-
nience when imposing one or another TBC (appropriate expressions of Θ will be presented in due
time for each ideal TBC in chapter 5).

1.2 Computational Fluid Dynamics

The incompressible Navier-Stokes (N-S) equations (1.2, 1.3) are an excellent model to describe fluid
motion, being able to provide very good predictions of turbulent flows, describing every details from
the largest to the smallest length and time scales [13]. The inherent difficulty however is found in the
complexity of this model, our mathematics, up to the present day, only allows for analytical solutions
in simplified cases while turbulence is characterised by a “chaotic” organization, with many degree of
freedom.

Yet, under the right assumptions, turbulence can be seen as a deterministic phenomenon which
evolves in time in a very complicated way [13, 18]. This is the approach followed in numerical simula-
tion of fluid dynamics - to put it better, Computational Fluid Dynamics (CFD) - where the partial differ-
ential equations (N-S) that describe the fluid motion with an infinite space-time continuum of values
throughout some domain is approximated by only a finite number of discrete points in time and space
[30]. In this process, called discretization, the continuous space-time is broken down on a grid of mesh
∆x,∆t. Then, the once continuous spatial and temporal partial derivatives in the governing equations
are now represented by analogous operators, that can be treated independently for space and time, and
rely on appropriate algorithms (spectral, finite-difference, finite volume, finite elements, ...) to provide
approximations of real life phenomena modelled by the N-S equations [31]. Moreover, given the just
mentioned reliability of the N-S equations to describe fluid motion, from a given initial state and a set
of boundary conditions, a deterministic/discrete time evolution of the flow can be calculated [13].

As highlighted by [5], it was in 1987 that the scientific community was convinced about the ca-
pability of numerical simulations to realistically reproduce turbulent flows, after the visualizations
of [32] which successfully mimicked the experimental hydrogen bubble visualization of [33]. This
work was recognised worldwide as a validated database and even used later to improve and validate
new measurement techniques [23]. Since then, CFD has much evolved and numerical results have
contributed to remarkable advancements in turbulence research. Furthermore, with an accurate and
validated method, numerical simulations aim to work alongside with experimental research for the
common goal: to improve theoretical understanding of turbulence [13]. For instance, for certain flow
configurations - such as the turbulent confined flow considered here - accurate measurements may be
very challenging to perform very near to the wall, under high-velocity and with an intrusive equip-
ment. Another aspect is its versatility, e.g. vorticity fields can be easily and accurately calculated from
numerical simulations [13].
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If the spatial discretization ∆x is fine enough to capture all the energetic scales that compose the
flow (from the smallest, which dissipate energy as heat, to the largest which inject energy in the sys-
tem), we refer to Direct Numerical Simulation (DNS) since all relevant information contained in the flow
is explicitly (directly) computed and, therefore, does not require additional modelling. Despite the
ongoing computational development, this approach is still limited to moderate Reynolds numbers lest
it becomes too costly [13]. Alternatively, higher Reynolds number may be investigated by Large-Eddy
simulation (LES)2, where a not-so-fine mesh ∆x is employed so that only the largest scales of the flow
can be accurately computed. The smallest scales are filtered out (subgrid scales, SGS) and their effect is
represented by a SGS model. LES contain some errors which are commonly associated to the numerical
methods, or, as stated by [13], due to our current ignorance vis-à-vis the smallest scales, and to the lack
of detail concerning the initial and boundary conditions. Throughout a simulation, these errors will
be amplified by the non-linear behaviour of the equations and after a period of time the predicted field
will differ significantly from the actual field [13]. This helps understand how, even for a deterministic
system, unpredictability and randomness are still evoked [13]. Yet, as stressed by [13], LES remain
extremely useful, since it can decently predict the shape (but not the phase and/or precise position) of
the large vortices existing in the flow. Also, very often, it can suitably provide the statistical information
needed by the engineer. Both DNS and LES of turbulent pipe flow are performed in this work with an
inexpensive and accurate numerical methodology detailed in chapters 2 through 4.

1.2.1 Spatial discretization

As briefly mentioned above, the partial differential equations express the continuous solution of
the dependent variables of the problem throughout the physical domain. Numerical solutions, on the
other hand, provide results only at discrete points - that is grid points - in this domain [30]. In the
process of spatial discretization of the governing equations (1.2, 1.3, 1.20, 1.21), first and second partial
spatial derivatives, defined in the infinite continuum, are replaced by finite approximations provided
by algebraic operators. The first step is to discretize the solution domain. This consists of inserting
discrete locations into the geometrical domain where the problem is to be solved, that is, we define
a numerical grid. Distinct types of grids may be used according to the shape of the body, complexity
of the problem or numerical method used. In Figure 1.6 we illustrate the principle with a section of
the discrete structured (regular) grid used for the present pipe geometry, each intersection between
grid lines composes a grid point. The terms structured and regular refer to the consistent geometrical
regularity based on a Cartesian organization of the grid with uniform spacing (grid size) in all three
Cartesian-xyz directions

∆x = cst , ∆y = cst , ∆z = cst . (1.33)
Furthermore, in here, for the transverse-xy directions we have always

∆x = ∆y . (1.34)

Following the definition of the numerical grid, a method of discretization must be chosen. There are many
but we may focus only on finite-difference here as it is the method used in this work.

2For the sake of pertinence, we shall not consider Reynolds-Averaged Navier-Stokes (RANS) simulations here,
the reader is referred to the comprehensive book of [6]
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Figure 1.6: Illustration of the structured (regular) Cartesian grid used to discretize the present
pipe geometry.

As stressed by [23], finite-difference is the simplest method to solve partial differential equations
in regions bounded by simple as well as by complex geometries. In the finite-difference framework, the
spatial differential operators are substituted by algebraic ones which are obtained from Taylor series
expansions. More precisely, these algebraic operators are defined in terms of the neighboring discrete
grid points and provide approximations of the partial spatial derivatives with a certain order of accuracy
which corresponds to the truncation error of the Taylor series. The order of accuracy dictates how
quick the discretized solution converges towards the exact one as the number of grid points goes to
infinity (or, equivalently, the grid size goes to zero). Different types and orders of accuracy may be
used for the finite approximations of the spatial derivatives which defines the numerical schemes for the
spatial discretization. The choice of the finite approximation is crucial for the reliability of a numerical
method, as it defines its numerical properties (consistency, stability, convergence, conservation, accuracy,
etc). As stressed by [31], when defining a numerical method, a compromise between simplicity, ease
of implementation, accuracy and computational efficiency has to be made.

In the present context where a regular grid is used, the numerical implementation of finite-difference
is straightforward and higher-order schemes can be easily defined. The complete description of the spa-
tial discretization is given in the next chapter, section 2.6. Although greater accuracy can be obtained
from the association of regular Cartesian grid and finite-difference discretization, note that it results in
a mesh arrangement disconnected from the wall geometry, as it can be seen in Figure 1.6. In cases like
this, what is commonly done to conciliate grid and body geometry is to use an Immersed Boundary
Method.
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1.2.2 Immersed boundary methods

In the previous sections, we have highlighted in different occasions the importance of prescribing
consistent boundary conditions (BC) to the partial differential equations in order to fairly represent
real life phenomena. Likewise, in CFD, the proper choice and imposition of BC is a crucial factor to
obtain reliable physical representations out of numerical results. To do so, traditional methods employ
body-fitted meshes which consists of design the grid (either structured or unstructured) to follow the
shape of the object immersed in the flow, see representation in Figure 1.7-(b). This approach causes
the grid point to coincide with the boundary of the object, making the imposition of the desired BC
straightforward. Another advantage is the possibility of locally refining the grid near the body (as also
illustrated in Figure 1.7-(b)) in order to satisfy the requirements of normal mesh resolution to properly
capture the viscous effects in wall-bounded turbulent flows [19, 34, 23]. However, this strategy has also
its drawbacks, for instance, if a finite-difference method is to be used with a structured mesh, the gov-
erning equations must be transformed onto a curvilinear system of coordinates [31]. In addition, for
more complex geometries, the generation of a proper grid can be very demanding in terms of compu-
tational resources (in particular for simulations with moving bodies for which a remeshing is needed
every time step) and user input. All these factors can make the simulation much more costly and lead
to loss of accuracy due to grid distortion [35].

Alternatively, an Immersed Boundary Method (IBM) may be used. In this scenario, a structured grid
is generated without taking into account the solid boundaries as illustrated in Figure 1.7-(c). This nat-
urally allows the treatment of more complex geometries with the presence of the body being generally
modelled through a modification of the governing equations. This modification can be done in many
different ways, reason why - since the method was designed in the 70’s to simulate the flow around
heart valves [36, 37] - many variations and novel approaches have been developed, especially in the
last 20 years [38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. Because the structured (usually Cartesian) mesh can
be kept even when the flow around complex-shaped bodies is concerned, efficient numerical schemes
such as fast Fourier transform algorithm and high-order compact schemes can be straightforwardly
used [7]. Fundamentally, the introduction of the forcing term that reproduces the effect of the body
can be done in two different ways, which allows us to roughly divide the many existing strategies in
two groups: continuous and discrete forcing approaches.

Continuous forcing approach The forcing function is implemented on the continuous (not dis-
cretized) governing equations and hence can be applied everywhere in the computational domain.
The action of the body is represented through a model - for instance, in the original work of [36], the
heart valves have been modelled as an elastic solid body following Hooke’s law - and a smooth delta
Dirac function is used to administer its effect on the target surrounding nodes. Since its first imple-
mentation, this method has been mostly used for biological applications and multiphase flows where
elastic boundaries are widely considered. For rigid bodies, such a representation is more challenging
but can still be used by modelling the elastic body on the rigid limit, however, it may raise accuracy
and stability problems [35].
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Discrete forcing approach Here, the effect of the boundary is modelled directly on the discretized
equations. A numerical procedure is defined to apply the effect of the body on the cells near to the
boundary, resulting, usually, in a modified system of equations [35]. Within this category, the methods
can be still be subdivided in indirect [48, 41] or direct forcing [49, 40, 44].

Among the disadvantages of IBM, one may cite the loss of accuracy condensed in the near-wall
region depending on the quality of the forcing technique. Also, the consequences of the boundary
treatment on the conservation properties of the numerical scheme are not so easy to determine and,
since it is normally used in the context of a non-body fitted meshes, it may be tricky to precisely define
the grid resolution in the vicinity of the body. However, these methods are attractive for their many
advantages such as simplicity (even when complex geometries are considered), favourable computa-
tional cost (especially when simulating moving bodies) and accuracy - notably when high-order finite
difference schemes are used [35, 50].

Nowadays, the use of immersed boundary methods is not only an alternative for the treatment
of complex geometries but beyond that, in many cases, more sophisticated IBM are used as a method-
ological choice, providing efficient answers to real requirements of industrial applications. For instance,
Strandenes et. al [51] represented the solid geometry through an IBM (based on least square interpo-
lation for direct forcing of first fluid nodes [42]) while using a Cartesian grid with local refinement
by zones, which enabled the proper resolution of the boundary layer and wake behind the cylinder.
Another example is the Immersed Boundary Conditions (IBC) approach [46, 52], where the immersed
boundaries are handled in a quasi body-fitted mesh enabling the treatment of complex industrial con-
figurations. For instance, the Zonal Immersed Boundary Conditions (ZIBC) methodology has been
used by Weiss and Deck [46] for the simulation of the Ariane 5 space launcher.

The goal of this section is not to provide a comprehensive description of the different IBM strategies
developed in the last 50 years of research in the domain. For that purpose, the reader is referred to the
complete review article of [35] and more recently [53]. We aim here rather to present the fundamentals
in general lines in order to described later on, in section 2.5, the customised IBM developed over the
last 10 years in the framework of Incompact3d/ Xcompact3d.

1.2.3 Time integration

The time discretization, or time grid, may be regarded in the same fashion as the spatial discretiza-
tion with finite-difference, that is, as discrete points in time, spaced by a time-step ∆t. Still, differently
from the computation of the spatial derivatives of the incompressible N-S equations (which has an el-
liptic behaviour), the time solution has a parabolic-like behaviour, meaning that a forcing in time at
a certain moment can only affect future values of a the quantity concerned [31]. In this sense, to be
consistent with the physical nature of time, from a given initial condition, the numerical solution is
advanced (integrated) in time step-by-step. As pointed-out by [54], some requirements must be met
by a time-integration method: accuracy, efficiency, flexibility and physical consistency (see p.98 of [54]).
Nonetheless, it is generally not possible to equally comply all of them and a balance must be sought.
Furthermore, the author stresses that there is little use for an extremely accurate method if it is not
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 (b) Structured body-fitted grid 
Body

Flow

(a) Physical representation  (c) Regular Cartesian grid          (non-body fitted) 
Figure 1.7: Illustration of a (a) structured body-fitted mesh and a (b) regular Cartesian mesh
which does not conform to the body geometry. In the Cartesian grid representation, blue
points designate fluid domain and the red ones solid domain.

efficient or capable of treating the flow complexities in a particular application of interest.

As for the spatial discretization, time-integration methods are to provide consistent solutions with
small time steps ∆t. However, as highlighted by [31], the behaviour of methods for a large step size is
important because in problems with widely varying time scales (such as the present turbulent flow in
wall-bounded configuration), the goal is often to compute the slow, long term behaviour of the solution
and the short time scales are merely a nuisance. This discussion raises the issue of stability, for which
a time-integration method may be defined as stable if it produces a bounded solution [31], this aspect
is further explored in chapter 4.

Time-integration schemes are either explicit or implicit, the former requires only information from
previous time steps (n, n− 1, n− 2, ...) to predict the new value n+ 1 of a certain quantity of the flow,
while the latter uses also information on time level n+ 1 and therefore requires an iterative solution to
obtain the new values for the quantities. Explicit schemes has the disadvantage of being unstable for
larger time steps, yet, they are relatively easy to use and program and, since they require one single
evaluation of the time derivative per time step, they are also relatively cheap [30]. Conversely, implicit
schemes are generally more stable but usually are more costly (longer time per time step) and require
more computer memory [31]. Another important aspect of time-integration methods is their formal
order of accuracy, which can be generally increased by using information at more points in time, in this
sense we refer to multi-points methods [31].

Conventionally in Incompact3d/Xcompact3d, simulations of turbulent pipe flow have been carried
out with a full-explicit time integration of convective and diffusive terms in eqs.(1.3, 1.20, 1.21) with
a third-order Adams-Bashforth scheme (AB3). Chapter 4 of this text is dedicated however to a new
filtering technique for DNS/LES which - when combined with the explicit time-integration with AB3
- can considerably relax stability constraints related to diffusivity, allowing for the use of significantly
larger time steps which ultimately leads to remarkable savings of computational resources.
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1.3 General conclusion

Some fundamental aspects of wall-bounded incompressible turbulence while including heat trans-
fer are recalled in section 1.1 and applied to the flow geometry treated in this work. More precisely,
fundamental concepts of turbulent pipe flow and fluid-solid thermal interaction in turbulent flows are
briefly discussed in sections 1.1.1 and 1.1.2. These are key concepts for the discussions to be developed
in the following chapters. Likewise, fundamental principles of Computational Fluid Dynamics (CFD)
relevant in the present work - such as Immersed Boundary Method (IBM) and space-time discretization
- are subsequently recalled in section 1.2.

Version française

Quelques aspects essentiels de la turbulence pariétale incompressible avec transfert thermique sont
rappelés dans la section 1.1 par référence à la configuration d’écoulement traitée dans ce travail. Plus
précisément, les concepts fondamentaux reliés à l’écoulement turbulent dans une conduite et les en-
jeux associés de l’interaction thermique fluide-solide sont brièvement discutés dans les sections 1.1.1
et 1.1.2. Il s’agit des concepts clés pour les discussions qui seront développées dans les chapitres suiv-
ants. De même, les éléments essentiels de la stratégie numérique suivie dans ce travail qui relève de la
Mécanique des fluides numérique (CFD en sigle anglo-saxon), en particulier la Méthode des frontières
immergées (IBM en sigle anglo-saxon) et la discrétisation spatio-temporelle, sont ensuite rappelés dans
la section 1.2.
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Chapter 2

Numerical Methods

In the present work, DNS and LES of turbulent pipe flow are carried out with the open-source
code Incompact3d/ Xcompact3d [7, 11, 12]. Moreover, thanks to its attractive computational efficiency
and suitable structure, many numerical tools have been developed, adapted and implemented in the
framework of this thesis. This chapter is therefore dedicated to providing a description of the funda-
mental numerical aspects of the code so that the main numerical developments may be progressively
presented in the following chapters. Firstly, an overview of the code and its general features is given,
followed by a description of the flow configuration, governing equations, initial conditions and cus-
tomised immersed boundary technique. Next, the spatial discretization is presented while focusing
on the notion of targeted numerical dissipation for regularization, an essential concept for the present
numerical framework. Thereafter, the time integration strategy is described followed by the statistical
averaging methodology used in the present computational configuration.

2.1 The code Incompact3d/Xcompact3d

Incompact3d is an in-house open-source code developed in a partnership between Pprime Institute
and Imperial College London since the mid-90’s [7, 11]. This code solves the incompressible Navier-
Stokes equations by means of DNS and LES in the context of High Performance Computing (HPC).
Among its attractive numerical features to investigate incompressible turbulent flows, we may cite: i)
the quasi-spectral accuracy; ii) the treatment of complex geometries and iii) the advantageous compu-
tational efficiency. The first one is achieved thanks to the use of high-order compact finite-difference
schemes (the subject of section 2.6) combined with a regular Cartesian grid1. Despite the use of a sim-
ple regular grid, the treatment of complex geometries is done thanks to an efficient immersed boundary
method (IBM) adapted to high-order spatial schemes (the subject of section 2.5). Concerning the third

1a mesh refinement in one direction is also enabled by the code, but it has not been used in this study
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a) X-Pencil b) Y-Pencil c) Z-Pencil
Figure 2.1: Illustration of the 2D decomposition of the computational domain in Incom-
pact3d/Xcompact3d. In this representation, 9 (3×3) MPI processes are used. Different colours
mean different MPI processes.

aspect, since 2010, Incompact3d has been rebuilt around the 2D Decomp and FFT library [55] which
introduced a 2D (or pencil) decomposition of the computational domain, following an idea initially
implemented for spectral codes [11]. Schematic representations of the pencil decomposition are pro-
vided in Figure 2.1 for: a) X-Pencils, b) Y-Pencils and c) Z-Pencils. The basic principle is to perform all
the finite-difference operations (and Fourier transforms) in only one direction - the pencil direction - at
time, the domain is partitioned in two Cartesian directions and each MPI process manages the data con-
tained in one block. Thanks to this improvement, issues related to serial processors memory resources
(due to the 1D - or slab - decomposition previously used) were solved, enabling the code to be executed
on massively parallel computing systems. Its scalability has been demonstrated for up to one million
MPI processes while keeping its computational efficiency. The implementation and validation of this
2D decomposition method are entirely issued from [11]. Another great feature of Incompact3d is the
resolution of the Poisson equation that satisfies the incompressibility condition, which is fully solved
in spectral space by applying relevant three-dimensional fast Fourier transforms (3D FFT). Through
the concept of modified wavenumber (to be discussed also later in this chapter), the divergence-free
condition can be ensured up to the machine accuracy.

Throughout the years, many developments have been brought to the code’s architecture thanks to
the constant growth of the international community of users. As a result, the capabilities of the code
have been expanded in terms of flow regime (up to compressible flow regime at low Mach number)
and flow geometries. Thus, recently, a new version of the code has been released under the name Xcom-
pact3d in which the main developments have been restructured and grouped together in a user-friendly
design. Many ready-to-run simulations are available in this new version, for a detailed description the
reader is referred to [12]. The implementation of the turbulent pipe flow in Xcompact3d has also been
an important part of this thesis.
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2.2 Computational configuration

For the description of the numerical methodology provided in this chapter, we consider the stan-
dard flow solver approach of Incompact3d/Xcompact3d, where only the DNS and LES solutions of the
fluid zone are concerned. The numerical developments brought to the code to deal with the multi-
physics Conjugate Heat Transfer (CHT) problem is fully described later on in chapter 6.

A schematic view of the computational configuration is presented in Figure 2.2. The pipe geom-
etry of uniform inner radius R, outer radius Ro and longitudinal length Lz = 12.5D is centred in a
computational domain Ω = [−Lx/2, Lx/2]× [−Ly/2, Ly/2]× [0, Lz], with Lx = Ly . The domain is then
discretized with a regular Cartesian mesh of nx × ny × nz nodes regularly distributed with nx = ny ,
leading to the uniform grid spacing 2

∆x = Lx/nx , ∆y = Ly/ny , ∆z = Lz/nz , (2.1)

with ∆x = ∆y. The Cartesian frame of reference is placed on the axis of the pipe and the regular
distribution of grid points is given by

xi = (i− 1)∆x− Lx/2 (2.2)
yj = (j − 1)∆y − Ly/2 (2.3)
zk = (k − 1)∆z (2.4)

where the index i runs in the transverse-x direction, the index j runs in the transverse-y direction and
the index k runs in the streamwise-z direction. For the sake of convenience, we may use throughout
this text both the Cartesian coordinates (x1, x2, x3) = (x, y, z) associated to the computational mesh
and the cylindrical coordinates (r, φ, z) associated to the pipe geometry where r is the radial distance
to the pipe axis, φ is the azimuthal angle φ = arctan(y/x) and z is the common streamwise direction.
The relationship between the two system of coordinates is given by

rij =
√
x2
i + y2

j (2.5)

φij = arctan

(
yj
xi

)
(2.6)

zk = zk , (2.7)

and is illustrated in Figure 2.3. The use of a Cartesian mesh also offers a straightforward solution for
the classical difficulty of dealing with the singularity at r = 0. As stressed by [23] in chapter 10 of
his book, this is one of the major reasons for the scarcity of pipe flow simulations in literature (when
compared to channel and boundary-layer flows for instance) as the treatment of the centre condition
commonly implies additional programming work, loss of accuracy and/or extra computational cost.

The conciliation between the nodes distribution and the wall geometry is done with the customized
IBM also illustrated in Figure 2.2. The technique is based on reconstructions of the solution into the

2With periodic boundary conditions at the domain borders
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Figure 2.2: Schematic view of the computational configuration. The zoomed views evidence
the buffer zone, the regular Cartesian grid and the immersed boundary technique.
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immersed boundary region, which corresponds to the annular volume R ≤ r ≤ Ro, i.e. the wall
thickness (Ro − R). Note that the region r > Ro corresponds to a buffer fluid zone with a dual role
of ensuring the success of the reconstruction of the solution while allowing the imposition of periodic
boundary conditions at the boundaries of the computational domain in the transverse-xy directions,
more details are given in sections 2.3 and 2.5

Special care must be taken when choosing the longitudinal lengthLz . As periodic boundary condi-
tions are enforced in the longitudinal direction, the domain size must be appropriately chosen in order
to avoid an artificial influence on the statistics while enabling to capture the largest turbulent velocity
and thermal structures. In an experimental study in 1999, [56] introduced the term ’very large-scales of
motion’ (VLSM) to put in evidence structures observed with lengths of 5R up to 20R in the outer layer
of fully developed turbulent pipe flow. More recently, these observations have been confirmed by [57]
and [58] who also underlined the important and active role of these structures, which contain up to half
of the turbulent kinetic energy of the streamwise direction. Over the last years, many numerical studies
have analyzed the importance of these structures on both velocity and temperature statistics, with the
influence of VLSM being widely analyzed on statistics of higher and lower order, one and two-point
statistics, going from low to high Reynolds and Prandtl numbers [59, 22, 60, 61, 62, 63]. Following these
considerations, Lz = 12.5D have been selected as a sufficient pipe length to properly capture the long
structures and ensure reliable first and second-order statistics for the range of Reynolds and Prandtl
numbers considered in the present work.

2.3 Governing equations

As mentioned in chapter 1, the incompressible Navier-Stokes equations (continuity, momentum
and the passive transport equation for the temperature field) are solved for the turbulent pipe flow.
To allow scaling to real flow conditions and comparison with analogous flow configurations (such as
boundary layer and channel flows), the quantities of the problem are non-dimensionalized with the
bulk velocity Ub and the pipe diameter D:

t∗ =
t

D/Ub

x∗i =
xi
D

u∗i =
ui
Ub

p∗ =
p

ρU2
b

Θ = f(T, Tb, Tw) . (2.8)

For the sake of convenience, we introduce for now the dimensionless temperature Θ without provid-
ing a formal expression. When imposing one or another type of thermal boundary condition (TBC),
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distinct dimensionless expressions can be conveniently defined in terms of the bulk Tb and wall tem-
perature Tw. Hence, appropriate expressions will be presented at due time in chapter 5.

Henceforth, only dimensionless quantities are used unless stated otherwise, we may therefore drop
the asterisk notation (∗) for non-dimensional quantities. The substitution of the above expressions into
the governing equations (1.2, 1.3, 1.20) leads to the following dimensionless governing equations

∂ui
∂xi

= 0 (2.9)

∂ui
∂t

+
1

2

(
uj
∂ui
∂xj

+
∂uiuj
∂xj

)
= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

+ fi (2.10)

∂Θ

∂t
+ uj

∂Θ

∂xj
=

1

Pe

∂2Θ

∂xj∂xj
+ fΘ (2.11)

with Pe = RePr according to eq.(1.30). Note that the convective term of the momentum equation
(2.10) is expressed in skew-symmetric form. When computed this way, aliasing errors are reduced
while remaining energy conservative for the spatial discretization of the code [64, 7]. In contrast to the
classical LES approach, for the implicit LES (ILES) technique used here, no explicit SGS modelling is
applied to the equations, instead, numerical dissipation is used to regularise the solution as a substitute
to explicit SGS modelling [65]. For this reason, the governing equations are the same either solved in
DNS or ILES mode. The forcing term fi corresponds to the mean pressure gradient that drives the flow.
Following the discussions in section 1.1.1, only the streamwise component has a non-zero value,

fi = (0, 0, fz) ,

which here is constant in space but adjusted every time step to compensate the viscous friction in
order to sustaining a stationary regime. Similarly, fθ is the source term that arises from the non-
dimensionalization and sustains stationary thermal regime for the temperature field Θ. The numerical
treatment for fi is presented further below in section 2.7, whereas fΘ is described in chapter 5, section
5.2.3.

2.3.1 Boundary conditions

Within the present numerical strategy, the pipe geometry is fully immersed in the computational
domain and thus 3 well defined regions can be identified: the fluid subdomain r < R, the solid subdo-
main R ≤ r ≤ Ro and the surrounding buffer zone r > Ro which consists of fluid at rest (no driving
force is applied here). Accordingly, boundary conditions are to be defined at (i) the inner immersed
boundary r = R; (ii) the (inner and) outer immersed boundaries (r = R and) r = Ro; and (iii) at the
boundaries of the computational domain.

The prescription of BCs (i, ii) are made with the IBM described further below in section 2.5. Con-
cerning the domain boundaries (iii), in the streamwise-z direction, periodic boundary conditions are
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Figure 2.4: Illustration of the initial conditions for (a) velocity and (b) temperature fields.

prescribed, which is only possible thanks to the compensation of friction losses along the duct per-
formed through the source term fi. Periodic boundary conditions are equally prescribed in the transverse-
xy directions, which is only possible thanks to the insertion of the buffer zone r > Ro. The insertion
of this zone corresponds to an oversizing of the computational domain in these directions. Although
this may be seen as disadvantageous in terms of computational performance, this region is extremely
important for the present numerical strategy as it allows us not only to prescribe tri-periodic boundary
conditions (and thus conserve the accuracy of the high-order finite-difference schemes at the bound-
aries of the domain), but also to ensure the success of the present IBM.

2.4 Initial conditions

2.4.1 Velocity

The initial condition for the velocity field is the Poiseuille laminar flow:

uz(r) = 2

(
1− r2

R2

)
, ur = uφ = 0 . (2.12)

In order to force transition, a modulated random disturbance of large amplitude is superimposed
to the laminar profile at the core of the pipe as illustrated in Figure 2.4-(a). Such a perturbation contains
a large initial turbulent kinetic energy and for a matter of numerical stability it is introduced only in
r < 0.8R, i.e., sufficiently far from the near-wall region. This disturbance is then naturally spread
towards the wall during the first time iterations. During the transient phase, the level of turbulent
kinetic energy drops before raising again to reach the fully-developed turbulent state, in agreement
with observation of [23].
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2.4.2 Temperature

Two types of local imposition of thermal boundary conditions are considered in this work, namely
mixed-type (MBC) and isoflux (IF), they will described in details in due time in chapter 5. The initial
conditions for the temperature filed corresponds to the analytical laminar solution according to the
thermal boundary condition used

Θ(r) = 2Nu

(
3

16
+ r4 − r2

)
for MBC (2.13)

Θ(r) = 2

(
3

16
+ r4 − r2

)
− 1

Nu
for IF . (2.14)

No extra perturbation is needed here to force transition as the disturbance introduced in the velocity
field is naturally transmitted to the temperature through the convective term in eq.(2.11).

2.5 Immersed boundary method

The immersed boundary method (IBM) plays the role of conciliating the cylindrical pipe geometry
with the Cartesian regular mesh. In section 1.2.2 we have briefly introduced the concept of IBM by
reviewing traditional approaches, here, the different IBM strategies used in Incompact3d over the years
are outlined then the technique used in the present work is described.

Since its development in the mid 90’s, Incompact3d makes use of simple Cartesian grids3 for spatial
discretization, implying that immersed boundary methods have been constantly used over the years
to simulate flows around solid bodies. In this period of about 30 years, the user’s community grew
and some strategies have been further developed, updated and/or replaced, but always using discrete
forcing approaches of direct nature. The IBM implemented in its first version was the simple direct
forcing originally proposed by [66]. This strategy satisfies the no-slip condition by roughly imposing
a null velocity on mesh nodes found in the solid region and thus, the modification on the governing
equations is brought on the time integration in a straightforward manner [67]. Its advantage is found,
as mentioned, in its simplicity, whereas the biggest disadvantages are: i) the lack of accuracy since the
precise position of the boundary is never defined, this incertitude being of the order of the mesh size
and implying a global error convergence of only 1st order; ii) the presence of discontinuities on the
derivative at the solid-fluid interface leading to strong spurious oscillations around the interface when
high-order compact schemes are used.

To overcome this problem, [68] proposed a new method in which the forcing term creates an inter-
nal flow by mirroring the flow around the body. In this way, besides ensuring the no-slip condition, first
derivatives across the immersed boundary are also conserved. The method has been developed and
validated in the framework of the flow around a cylinder and to manage the discontinuity of the forced

3For which a mesh refinement is available in one direction of space.
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flow at the centre of the body, a modulation function was used [68, 69, 70, 44]. This strategy based on
mirrored flows had been already used by [39, 38] among others - but only to impose a mirrored velocity
at the first solid node, never to reconstruct a fictitious flow inside the object. Within this approach an
outstanding reduction on the spurious oscillations near the boundary was obtained, nonetheless the
method lacked of flexibility and automatism since it could not be straightforwardly implemented for
different geometric shapes (the modulation function and the mirroring procedure are not so easy to
define for other complex geometries than the cylinder one). For aeroacoustics applications, [71, 72, 73]
used the IBM of [38] to perform shape optimisation of cylinders for aeolian noise reduction. In this
version, the presence of the solid was modelled by a forcing term in the momentum equations, defined
as damped oscillator.

In 2013, [67, 50] implemented a new direct forcing technique specially developed to answer to the
fundamental needs uncovered by the technique of [68]. Within this new strategy, the no-slip condition
is softly satisfied while preserving the first derivatives continuity across the interface. This is accom-
plished through an unidimensional reconstruction of the physical solution into the body domain by
means of Lagrange polynomial interpolation, allowing the spatial differentiation to be performed without
any particular treatment near the fluid/solid interface. The 1D interpolation feature makes the method
robust and flexible, applicable to any type of geometry with no need of estimating the distance to the
closest wall. In terms of computational implementation, the technique is customised for Incompact3d’s
massively parallel architecture, the inner fluid interpolation is enchained with the derivatives compu-
tation as they are carried out along each pencil (each direction) at time. In this sense, the resulting
forcing term can be seen as changeable depending on the spatial direction of the finite-difference oper-
ator, hence the name “Alternating Direct Forcing” was used. The method has been first used to simulate
the active control of turbulent micro-jets [50]. Later, it has also been used by [8] to perform DNS of
turbulent pipe flow at low Reynolds number Re = 5300 and [74] to investigate heat transfer in chan-
nel and pipe flow configurations up to Re = 19000. In the present work, the technique has been very
important to perform DNS/ILES of turbulent pipe flow [75, 76, 77, 78], being also the key-factor to
successfully produce filtered-DNS data [76] (see chapter 3, the article is also provided in Appendix A)
and further developed to impose Neumann boundary conditions at the pipe wall [79] (see chapter 5,
the article is also provided in Appendix A).

Alternating Direct Forcing

As mentioned, the alternating forcing has been developed to work optimally with the 2D decom-
position of Incompact3d/Xcompact3d. To illustrate the principle, let us take the computation of the
right-hand side (RHS) of the momentum equation (2.10). The diagram in Figure 2.5 provides an out-
line of the procedure. On account of the 2DMPI decomposition, the computation of the first and second
derivatives of the required terms (ux, uy, uz, uxux, uxuy, ...) starts inX-pencils progressing to Y and fin-
ishing in Z. High-order compact schemes are particularly sensitive to the presence of discontinuities.
Due to its spectral-like behaviour, strong spurious oscillations might be not only generated but also
spread over the surrounding nodes. For this reason, the polynomial reconstructions are performed be-
fore each finite-difference operation in order to suppress the step-like change on the derivatives while
(indirectly) imposing the boundary condition.
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Figure 2.5: Schematic diagram of the 1D interpolations in the framework of the 2D decompo-
sition implemented in Incompact3d.

The full characterization of the strategy allowing to manage different geometric shapes is found
in chapter 6 of [67], in here, we focus on detailing its operation for the present pipe geometry. There
are two possible scenarios when performing the 1D reconstruction, they are schematized in Figure 2.6.
In the first case, only one object is identified along the grid row, and the reconstruction is simply a re-
connection of the buffer zone through the solid which does not affect the inner flow solution. For the
second one, two objects are identified. In this case the interpolations connect buffer and inner zones
while satisfying the boundary condition and conserving first-derivatives across the inner wall.

The local reconstruction schemes are Lagrange polynomials according to

LN−1(x) =

N∑

j=1

N∏

i6=j
i=1

(x− xi)

N∏

i6=j
i=1

(xj − xi)
Φj (2.15)

where L is the polynomial of order N − 1, passing through N points (input points) and Φj is the
solution of the scalar field Φ at the point xj . In the present work, fifth-order Lagrange polynomials are
used (i.e. N = 6 input points), as in [8]. Out of the six input points, two correspond to the boundary
condition at inner and outer boundaries

Φ(r = R) = Φ(r = Ro) = Φb (2.16)
where Φb is the value to be imposed at the immersed boundary - the same value is imposed at the in-
ner and outer boundaries to optimize the smoothness of the reconstruction. The immersed boundary
location, which does not coincide with mesh organization, is defined through a ’search method’ that
determines the wall intersection coordinates with an extra-refinement of 100× on the each direction
[67]. The remaining four input points are information collected from the adjacent fluid nodes, sym-
metrically, two from the inner zone and two from the buffer zone. The six input points are represented
by the white-crossed markers in Figure 2.6. Note however that the closest fluid nodes are skipped, in
fact, due to the irregular distribution of the Cartesian mesh points with respect to the cylindrical geom-
etry, some of these nodes can be found very close to the wall and the resulting interpolation coefficients
of eq.(2.15) - although algebraically correct - can become very large and lead to critical numerical in-
stability.
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Figure 2.6: Schematic view of the polynomial reconstruction into the pipe wall. Red crossed
points are the interpolated nodes, white crossed points are the input nodes for the Lagrange
polynomial interpolation (note that the closest fluid nodes are skipped).



32 CHAPTER 2. NUMERICAL METHODS

Fluid and solid zones are distinguished by the scalar field ε(r)

ε(r) =

{
1, if R ≤ r ≤ Ro
0, otherwise (2.17)

which is used to mask the action of the forcing term when solving the Poisson equation, more details
are given in section 2.7.

Formal analysis of the error carried out by [67] for the flow around a cylinder at Re = 40 and later
by [74] for laminar pipe and channel flows presented a global 2nd order convergence. It has been shown
also by [74] that, although small, the domain size (i.e., the buffer zone extension) plays a role on the
global error amplitude and thus, for the sake of accuracy, a minimum amount of external points must
be provided in r > Ro.

2.6 Spatial discretization

In Incompact3d/Xcompact3d, the entire spatial differentiation is based on sixth-order centred com-
pact schemes4. In this section, the general formulation of the sixth-order schemes used for first and sec-
ond derivatives are described. Afterwards, the resolution characteristics of the schemes are assessed
in the Fourier space in order to present the concept of numerical dissipation control through second
derivatives, the foundation of the present implicit LES technique.

2.6.1 Compact schemes

First derivatives

The formulations are generically presented here for the x-direction, which can be naturally ex-
tended to y and z. The discrete distribution of mesh nodes xi is given by eq.(2.2)

xi = (i− 1)∆x− Lx/2 ,

and the value of a continuous function f(x) at the nodal positions x = xi is denoted fi = f(xi). The
approximation of the first derivative f ′i = f ′(xi) accurate up to eighth-order can be achieved with the

4When periodic (or free-slip) boundary conditions are used, as in here, the centred formulation can be also
kept for mesh nodes close to the boundaries of the domain, which allows the order of accuracy to be conserved
while suppressing dissipative errors.



2.6. SPATIAL DISCRETIZATION 33

3-7 stencil formulation [80]

αf ′i−1 + f ′i + αf ′i+1 = a
fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
+

c
fi+3 − fi−3

6∆x
+O(∆xn)

(2.18)

Where O(∆xn) is the truncation error and the choice of coefficients (α, a, b, c) is constrained by Taylor
series expansion according to the desired order of accuracy n ≤ 8. The higher is the order, the higher
is the number of conditions to be met and more constrained is the choice of the coefficients

(i) a+ b+ c = 1 + 2α for n ≥ 2

(ii) a+ 22b+ 32c = 2 3!
2!α for n ≥ 4

(iii) a+ 24b+ 34c = 2 5!
4!α for n ≥ 6

(iv) a+ 28b+ 38c = 2 9!
8!α for n = 8 (2.19)

For sixth-order accuracy, the set of four coefficients must meet the three conditions (i,ii,iii). By impos-
ing c = 0 the compactness of the scheme is reinforced and the solution of the system gives

α = 1/3, a = 14/9, b = 1/9, c = 0 (2.20)

Second derivatives

Likewise, the second derivative approximation f ′′i = f ′′(xi) can be made accurate up to tenth-order
with the 3-9 stencil formulation [65]

αf ′′i−1 + f ′′i + αf ′′i+1 = a
fi+1 − 2fi + fi−1

∆x2
+ b

fi+2 − 2fi + fi−2

4∆x2
+

c
fi+3 − 2fi + fi−3

9∆x2
+ d

fi+4 − 2fi + fi−4

16∆x2
+O(∆xn)

(2.21)
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And the conditions to be met are

(i) a+ b+ c+ d = 1 + 2α for n ≥ 2

(ii) a+ 22b+ 32c+ 42d = 4!
2!α for n ≥ 4

(iii) a+ 24b+ 34c+ 44d = 6!
4!α for n ≥ 6

(iv) a+ 26b+ 36c+ 46d = 10!
8! α for n ≥ 8

(v) a+ 28b+ 38c+ 48d = 18!
16!α for n = 10 (2.22)

The conventional sixth-order scheme of [80] is obtained by meeting conditions (i,ii,iii) while imposing
c = d = 0. The solution of the system gives

α = 2/11, a = 12/11, b = 3/11, c = 0, d = 0 . (2.23)

In the next section however, it will be shown that the spectral behaviour of the second derivative scheme
can be adjusted through the establishment of extra-constraints, which leads to a new family of FD
schemes, the foundation of the present implicit LES technique [81, 65].

2.6.2 Fourier analysis of compact schemes

Very often, FD schemes are evaluated based only on its formal order of accuracy. However, this
information only tells us the rate at which the error decreases as the mesh spacing is reduced ∆x→ 0,
i.e., as nx → ∞ [31]. As discussed in section 1.2, generally, a compromise needs to be found between
mesh resolution and computational resources, therefore it might be interesting to evaluate the accuracy
of a numerical scheme also for a given (fixed) grid. This can be done through a Fourier analysis of the
errors associated with the FD approximations (2.18),(2.21) [80]. This type of analysis is well known
nowadays and it is fully described by [82]. This is a classic approach for comparing difference schemes
and it has been used, for instance, by Robert and Weiss [83], Kreiss and Oliger [84] and Swartz and
Wendrof [85].

Let f(x) be the solution to a given partial differential equation, defined in the interval [0, Lx] with
f(x) ∈ R. We assume that f(x) is periodic - f(x1) = f(xnx) - and ∆x = Lx/nx. Then, the function
f(x) can be broken down into a weighted sum of sinusoidal functions, i.e. its discrete Fourier series,
according to

f(xj) =

N/2∑

k=−N/2
f̂ke

ikxj with j = 1, 2, ..., nx (2.24)

where k is the wavenumber, i =
√
−1 is the unit imaginary number, xj is the discrete position of the

node j (as in eq.(2.2)) and f̂k ∈ C are the Fourier (or spectral) coefficients that weight the sum of
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the sinusoidal functions. Since f(x) is real valued, we have f̂k = f̂∗k and f̂0 = f̂∗0 where ∗ denotes the
complex conjugate [80].

We take here the complex exponential

f(x) = eikx (2.25)

representing the ensemble of sinusoidal functions of the family eikxj . Thus, the exact first derivative of
f(x) is given by

f ′(x) = ikeikx (2.26)
and its second derivative

f ′′(x) = −k2eikx . (2.27)
Then, the error associated to a difference scheme can be evaluated in the Fourier space through the
comparison of its exact derivatives in eqs.(2.26) and (2.27) with their respective numerical approxima-
tions

[f ′(x)]FD = ik′eikx (2.28)
and

[f ′′(x)]FD = −k′′eikx (2.29)
obtained with the FD scheme. The modified wavenumber k′ and modified square wavenumber k′′ are the
variables through which comparisons are carried out. For each finite difference scheme, expressions of
k′∆x or k′′∆x2 as functions of k∆x can be derived. For the exact differentiation, the curve k′∆x(k∆x)
corresponds to the straight line k′∆x = k∆x, and the curve of k′′∆x(k∆x) corresponds to the parabola
k′′∆x2 = k2∆x2.

First derivatives

By replacing the RHS of eq.(2.18) with eq.(2.25) and its LHS with eq.(2.28), the following expres-
sion for the modified wavenumber k′∆x for scheme (2.18) is obtained

k′∆x =
a sin k∆x+ b

2 sin 2k∆x+ c
3 sin 3k∆x

1 + 2α cos k∆x
. (2.30)

Figure 2.7 compares the curves of k′∆x for different variants of scheme (2.18). Low values of the
wavenumber k correspond to the large-scale motions that are actually captured by a given grid and
the shortest scale which can be captured is associated to the cut-off wavenumber kc = π/∆x with
corresponding wavelength

λc =
2π

kc
= 2∆x .

This means that, with a mesh of size ∆x, the smallest phenomenon that can be described is λc =
2∆x, i.e., two times larger. This is true however, only in the best-case of scenario, when the scheme
is actually capable of providing k′∆x = k∆x as k → kc. The first relevant information from Figure
2.7 is that, although a physical process of a certain scale might be captured by the grid, it does not
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Figure 2.7: Modified wavenumber k′∆x for different schemes obtained from (2.18). The Her-
mite (compact) ∆x6 corresponds to the one used in the present work.

necessarily mean that the predicted information is reliable. The modified wavenumber provides indeed
a straightforward way of evaluating - at a given mesh resolution - the range of well-resolved scales with
a certain FD scheme. This range corresponds to the interval k∆x for which the modified wavenumber
k′∆x approximates the exact differentiation [80].

Thus, when dealing with turbulent flows characterized by a wide range of scales of motion, it is
advantageous to use FD schemes capable of properly describing perturbations as close as possible to the
cut-off wavenumber. For all the simulations carried out throughout this work, the sixth-order compact
scheme (2.18, 2.20) is used for the computation of first spatial derivatives in eqs.(2.10, 2.11).

Second derivatives

Likewise, by replacing the RHS of eq.(2.21) with eq.(2.26) and its LHS with eq.(2.29) the expression
of the modified square wavenumber k′′∆x2 is obtained for scheme (2.21)

k′′∆x2 =
2a [1− cos k∆x] + b

2 [1− cos 2k∆x] + 2c
9 [1− cos 3k∆x] + d

8 [1− cos 4k∆x]

1 + 2α cos k∆x
(2.31)

In Figure 2.8, the curve of k′′∆x2 for the conventional sixth-order scheme (2.21, 2.23) of [80] is com-
pared to the exact differentiation. Although compact schemes may be characterized by the extended
range of well-resolved scales, one sees that at the cut-off wavenumber kc∆x = π, the estimation of the
second derivative with scheme (2.21, 2.23) presents a significant drop k′′∆x2(π) = 48/7 compared to
its exact value k2∆x2(π) = π2. The numerical error associated to this underestimation reveals, in fact,
the sub-dissipative behaviour of scheme (2.21, 2.23) at high wavenumbers [81, 65]. In the next section,
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we shall see how this feature can be controlled and profitably used to regularise the numerical solution
in both DNS and LES applications.

2.6.3 High-order numerical dissipation schemes

By perceiving that eq.(2.31) admits a singularity at the cut-off wavenumber for α = 1/2, [81] pro-
posed a new family of schemes with flexible behaviour at small scales, the fundamentals of this ap-
proach are summarized in this section.

Together with conditions (i,ii,iii) in eqs.(2.22), which ensures sixth-order accuracy, an extra-constraint
can be introduced to remold the shape of k′′∆x2 by imposing a target value at the cut-off wavenumber
k′′∆x2(π) = k′′c∆x2. This target value can either correspond to the exact differentiation k′′c∆x2 = π2 or
even to an over-estimation of the form

k′′c∆x2 = mπ2 (2.32)
wherem is a value that determines the level of the over-estimation. The extra-condition (2.32) requires
c 6= 0 in (2.21) and a new family of sixth-order compact schemes with high-order dissipation concen-
trated at small scales is introduced

α =
272− 45k′′c∆x2

416− 90k′′c∆x2

a =
48− 135k′′c∆x2

1664− 360k′′c∆x2

b =
528− 81k′′c∆x2

208− 45k′′c∆x2

c =
−432 + 63k′′c∆x2

1664− 360k′′c∆x2
. (2.33)

Curves of k′′∆x2 associated with scheme (2.21, 2.33) for different values of m are presented in Figure
2.8. In this context, it can be said that the second derivative operator is made hyperviscous at small
scales and, algebraically, we observe α → 1/2 as m → ∞. However, it is important to properly under-
stand what is the advantage of employing this extra-numerical dissipation and how to determine its
appropriate level and distribution among the scales. Formally, when dealing with FD schemes (even
compact ones), numerical errors are inevitably higher at high wavenumbers [65], this is evidenced by
the under-dissipative behaviour of the conventional (and widely used) sixth-order scheme (2.21, 2.23)
of [80], which is also plotted in Figure 2.8 for comparison. The interest in switching to a rather over-
dissipative behaviour resides in the capability that high-order numerical dissipation offers to control
aliasing errors that arise at high wavenumbers. In fact, when used in this way, numerical dissipation
can regularise the solution at small scales, playing the role of a subgrid-scale model in the context of
LES, being, for instance, an alternative to the conventional Smagorinsky approaches based on explicit
SGS modelling [65]. Indeed, this is the foundation of the Spectral Vanishing Viscosity (SVV) method,
presented hereafter.
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Spectral Vanishing Viscosity (SVV)

The SVV method was first introduced by [86] in the framework of spectral methods applied to
the Burger’s equation and it has been later adapted for finite element methods [87, 88]. The principle
of the technique is to selectively add a small amount of numerical dissipation at the small scales of
the computational grid to control high wavenumber oscillations [87]. In the Fourier space, this added
numerical dissipation takes the form of a spectral viscosity νs(k) which is summed to the molecular
viscosity ν. Thus, free from discretization errors, the viscous operator takes the form

(ν + νs) k
2 (2.34)

while the spectral viscosity (numerical dissipation) may assume, for instance, the kernel [87]

νs(k) = ν0 exp

[
−
(
kc − k
γkc − k

)2
]

with γ = 0.3 (2.35)

where ν0 = νs(kc) is the parameter that controls the desired value of numerical dissipation to be ap-
plied at the cutoff wavenumber and γ defines its scale selectivity. The kernel of the spectral viscosity
(2.35) is plotted in Figure 2.9. For k/kc ≤ γ, we have νs = 0, i.e., the spectral viscosity vanishes at
low wavenumbers, leaving the large-scales virtually free from any influence. Conversely, γ < k/kc < 1
corresponds to the range of small scales that actually receives the extra-numerical dissipation that reg-
ularises the LES solution by controlling the numerical errors.
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Implicit Spectral Vanishing Viscosity (ISVV)

The above reasoning can be also extended to FD schemes. In the Fourier space, the viscous oper-
ator νk′′ takes into account the discretization errors associated to the FD scheme used for the second
derivative. If we desire to express the numerical dissipation introduced in k′′ through condition (2.32)
(which formally corresponds to an error of discretization) as a numerical viscosity ν′′s , we may follow
eq.(2.34) to write the equality

(ν + ν′′s ) k2 = νk′′ (2.36)
And the associated numerical viscosity may be then expressed as

ν′′s (k) = ν
k′′ − k2

k2
. (2.37)

Note that the ratio on the RHS plainly corresponds to the numerical error associated to the second
derivative approximation. Then, in order to tune the distribution of numerical dissipation among the
scales, the spectral viscosity ν′′s can be, for instance, adjusted to mimic the SVV kernel5 (2.35) at the
cut-off wavenumber by setting νs(kc) = ν0. Thus, condition (2.32) can be re-expressed now in terms of
the spectral viscosity with

k′′c∆x2 =
(

1 +
ν0

ν

)
π2 . (2.38)

Note that the parameter ν0/ν needs to be defined by the user and prescribes the proportion of spectral
viscosity ν0 to be embedded in the solution with respect to the molecular viscosity ν.

Dairay et. al [65] showed that the present technique is the finite difference counterpart of the Spec-
tral Vanishing Viscosity. Yet, differently from the SVV - for which the spectral viscosity is explicitly
included through an extra term on the momentum equation and involves additional computational
operations - within the present approach, both molecular and spectral viscosities are embedded in one
single operator. Also, the numerical dissipation is implicitly embedded in the computation of second
derivatives, which means that no-extra computational cost is involved. Hence, the method went by
the name of Implicit Spectral Vanishing Viscosity (ISVV) [81, 65]. Furthermore, the role of the scale se-
lectivity provided by the adjustment of the dissipation kernel has been demonstrated by [75] through
rigorous comparisons with DNS results based on a priori/a posteriori analysis with a particular attention
to distant triad interactions between subgrid-scales and very large scales.

ISVV for DNS

Now, through eq.(2.37), the spectral behaviour of scheme (2.21, 2.33) can be assessed in terms of
spectral viscosity. Figure 2.9-left compares its hyperviscous kernel to the SVV one given by eq.(2.35)
for the arbitrary value ν0 = ν. The viscous kernel associated to the conventional scheme (2.21, 2.23)
is also plotted and its under-dissipative behaviour is confirmed by the negative value displayed at the
cut-off wavenumber. Concerning scheme (2.21, 2.33), Figure 2.9-left shows that, when compared to the

5The spectral viscosity ν′′s can also be adjusted to mimic a hyperviscous kernel [89], for more details see [81].
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SVV kernel, the global dissipation is considerably reduced since the numerical dissipation introduced
is much more concentrated near kc [81]. In fact, this turns out to be a well-suited choice for DNS.
When used in this way, numerical dissipation is efficient for controlling the numerical oscillations at
the smallest scales (which are inevitably compromised when FD is used) while preserving the quality
of the large-scales prediction [90]. Indeed, this scheme has been successfully used to perform DNS
of the Taylor-Green-vortex [75], turbulent jet [90], channel [91], micro-channel [50] flows, as well as
direct computation of sound [81] (which is well known for being very demanding in terms of numer-
ical accuracy), among many others. In the present framework, scheme (2.21, 2.33) has been used for
the discretization of second derivatives when performing DNS with the small amount of numerical
dissipation ν0/ν = 3.

ISVV for implicit LES

In LES applications, higher levels of numerical dissipation are required to control the numerical er-
rors. In this sense, [81, 90] proposed to introduce an extra-condition to spectrally mimic the SVV kernel
(2.35) at an intermediate scale km = 2

3kc. By introducing the constant c1 to express the proportion of
νs(km) with respect to its maximum value at the cut-off wavenumber νs(kc) = ν0, the extra-condition
may be expressed as

k′′m∆x2 =
(

1 + c1
ν0

ν

) 4

9
π2 (2.39)

with c1 ≈ 0.44 for the SVV formulation (2.35). Then, by allowing d 6= 0 in (2.21), sixth-order accuracy
can be kept through the relationships (i,ii,iii) in eqs.(2.22), and, together with eqs.(2.38, 2.39), 5 con-
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ditions are provided for the set of 5 coefficients (α, a, b, c, d). The solution of the system leads to the
sixth-order scheme introduced by [90] with extended range of numerical dissipation

α =
405k′′c∆x2 − 1280k′′m∆x2 + 2736

810k′′c∆x2 − 1280k′′m∆x2 + 288

a = −4329k′′c∆x2 − 256k′′m∆x2 − 1120k′′c∆x2k′′m∆x2 + 2288

3240k′′c∆x2 − 5120k′′m∆x2 + 1152

b =
2115k′′c∆x2 − 1792k′′m∆x2 − 280k′′c∆x2k′′m∆x2 + 1328

405k′′c∆x2 − 640k′′m∆x2 + 144

c = −7695k′′c∆x2 + 2304k′′m∆x2 − 1440k′′c∆x2k′′m∆x2 − 20592

3240k′′c∆x2 − 5120k′′m∆x2 + 1152

d =
198k′′c∆x2 + 128k′′m∆x2 − 40k′′c∆x2k′′m∆x2 − 736

405k′′c∆x2 − 640k′′m∆x2 + 144
(2.40)

Figure 2.9-right illustrates the ability of the present FD scheme to mimic the SVV kernel (2.35). Note
that, the separation between dissipative and artificial-viscosity free ranges is less sharp for the present
SVV-like kernel (c1 ≈ 0.44)). Nonetheless, the shape of the dissipation kernel can be flexibly adjusted
by setting different values for the constant c1, which leads to a more or less sharp behaviour while
regulating the global dissipation [65]. Two other examples are shown in Figure 2.9-right for c1 = 0.055
(Sharp) and c1 = 0.007 (Extremely-sharp).

Because of the equivalence with spectral viscosity, the artificial dissipation introduced by the second
derivative can be seen as a subgrid-scale model in the context of LES [81, 90, 65]. Furthermore, it has
been shown by [65] that, oppositely to the popular Smagorinsky approaches, the numerical solution
with the present technique is more efficient and can be actually seen as converged at the mesh scale.
Moreover, since the modelling is entirely (and implicitly) contained in the regularisation provided by
the numerical dissipation, it is referred to as an Implicit LES (ILES) strategy. In addition, in the present
pipe flow framework, it has been shown that its very profitable features have also the ability to function
as a (implicit) wall-layer model for LES [76] (see article in Appendix A), this is the subject of chapter
3.

The method is very flexible, since the dissipation kernel can be freely adjusted by setting ν0/ν (level)
and c1 (shape/range). Still, the choice of these parameters must not be done arbitrarily. For this pur-
pose, [65] presented a simplified spectral closure - based on the solution of the Pao-lin equation - to
constrain the choice of this parameters based on an appropriate physical scaling. This approach as-
sumes the validity of Kolmogorov’s statistical stationarity assumption, i.e. in an equilibrium frame-
work, non-equilibrium [92] modifications of the model are still to be developed. The formalism, for
the sake of brevity, is not presented here, for a full description the reader is referred to [65]. In general
lines, from the specification of the ratio between a reference DNS and a given LES mesh resolution, a
Pao-like solution of the Lin equation provides a prediction of the influence of the numerical dissipa-
tion on the kinetic energy spectrum in the context of homogeneous and isotropic turbulence. Then, the
appropriate level of numerical dissipation is defined to provide, at the cut-off wavenumber of the LES
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grid, the same (low) level of energy at the cut-off wavenumber of the DNS grid, which actually verifies
numerical convergence for the LES solution.

As its DNS counterpart, the sixth-order scheme (2.21, 2.40) has been widely utilised to perform
ILES at many different flow configurations, in the present framework, it has been used for the dis-
cretization of second derivatives when performing ILES.

2.7 Time integration

In this section, the time-integration of the momentum equation (2.10) is described. For the sake of
convenience, time integration of the energy equation (2.11) is only presented in chapter 5. Firstly, the
fractional step method and pressure treatment are briefly described and then, the numerical treatment
for the forcing term that ensures stationary regime in the pipe is presented.

Fractional step method

In the incompressible context, the velocity components must respect the incompressibility condi-
tion by constituting a divergence free vector field, this condition is expressed by the continuity equation
(2.9). In this sense, this equation can be rather interpreted as a kinematic constraint to be respected by
the velocity components when solving the momentum equations (2.10) [31]. Furthermore, with the 3
velocity components being issued from the solution of the 3 momentum equations, it is the pressure
field which should be held accountable for the incompressibility condition, providing a closed system.
However, the well known difficulty when dealing with incompressible flows is the lack of direct cou-
pling between pressure and velocity (which, for compressible flows, is done through the equation of
state). To overcome this obstacle, since only the pressure gradient is relevant in the incompressible con-
text, the pressure field may be “constructed” such that its gradient provides a divergence free velocity
field through its action on the momentum equations (2.10). The classic approach to do so is to take the
divergence of the momentum equation and simplify the resulting expression with the continuity equa-
tion, the outcome will be a Poisson equation for the pressure field satisfying the continuity constraint
[31, 23].

In the history of numerical simulation, many different strategies have been proposed for the pres-
sure treatment in the incompressible framework [31]. For unsteady flows, it is common to use non-
iterative techniques such as the fractional step method first introduced by [93], whose principle is to
split the time integration of the momentum equation in sub-steps. As pointed out by [31], the frac-
tional step concept is more a generic approach than a particular method and, since its introduction in
the mid 80’s, many kinds of splitting have been proposed. In Incompact3d/Xcompact3d, the method
of [94] - developed in the framework of DNS of turbulence based on central difference approximations
- is used. It consists of splitting the time advancement of the momentum equation (2.10) according to:

1. As a first step, the convective and diffusive terms are advanced in time. With a third order
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Adams-Bashforth scheme (AB3), an intermediate velocity u∗i may be computed as:

u∗i − uni
∆t

=

p−1∑

j=0

αjH
n−j
i , (2.41)

where p = 3 for an AB3 andα0 = 23/12,α1 = −16/12,α2 = 5/12 are the time scheme coefficients;
Hi is the operator that represents the discretized convective-diffusive terms

Hi = −1

2

(
uj
∂ui
∂xj

+
∂uiuj
∂xj

)
+

1

Re

∂2ui
∂xj∂xj

.

2. In a second-step the velocity components u∗i are corrected by the pressure gradient in order to
be projected in the divergence-free space

un+1
i − u∗i

∆t
= −∂p

n+1

∂xi
+ fn+1

i . (2.42)

The forcing with fi - which ensures the stationary state - have been expressed here together with
the pressure gradient correction in one single step, its numerical treatment is detailed hereafter.
The above pressure gradient is computed from the pressure field pn+1 issued from the solution
of the Poisson equation

∂2pn+1

∂xi∂xi
=

1

∆t

∂ ((1− ε−)u∗i )
∂xi

, (2.43)

where the scalar ε− acts as a mask that transforms the Poisson equation (2.43) into a Laplace
equation where ε− = 1, more details are given in the next section. Note that a forcing term
associated to the IBM does not explicitly appear in the time advancement since, as discussed in
section 2.5, the no-slip condition is indirectly imposed within the reconstruction of the velocity
components prior to the computation of spatial derivatives of Hi.

Pressure treatment

As in [44, 50], the Poisson equation (2.43) is modified by the introduction of the mask (1 − ε−),
where ε− corresponds to the scalar ε (see eq.(2.17)) with one-mesh retraction from the solid region
in the transverse-xy directions [50], the principle is illustrated in Figure 2.10-left. Note that in this
way, eq.(2.43) implies that a Poisson equation is solved in the expanded fluid region defined by ε− =
0 whereas a Laplace equation is recovered for the retracted solid region6 defined by ε− = 1. Tests
performed by [50] showed that the use of ε− instead of ε allows a better mass conservation near solid
regions.

The numerical treatment of the Poisson equation is a sensitive matter here. As stressed by [7, 54],
when higher-order FD schemes are used for the spatial discretization of the pressure, sophisticated

6As well as for the buffer zone r > Ro, which consists of fluid at rest.
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procedures might be required to invert the Poisson equation in physical space every time step and the
substantial effort added may be computationally disastrous. In Incompact3d/Xcompact3d, with the
help of Fast Fourier Transforms (FFT), the pressure treatment is made in the Fourier space where the
equivalent operations in (2.43) are simpler and cheaper. Also, the strategy combines well with high-
order compact schemes, as shown by [7]. The pressure nodes are staggered by a half-mesh with respect
to the velocity grid to avoid spurious oscillations observed by [7] in the full-collocated configuration
(see illustration in Figure 2.10-right). When solving the Poisson equation (2.43) at the staggered nodes,
mid-point operators are used to compute first derivatives and to interpolate the velocity at the pressure
nodes, the former is done with the scheme of [7] while for the latter, the optimized scheme of [65] is
used. For a comprehensive description of the numerical treatment for the pressure in Incompact3d, see
[7, 11].

Forcing term

In a real pipeline, the external force applied to the flow to overcome the friction losses is usually
provided by a pump or gravity. Likewise, in numerical simulation of confined flows this external forc-
ing must be modelled. The three most popular approaches - namely Constant Flow Rate (CFR), Constant
Pressure Gradient (CPG) and Constant Power Input (CPI) - have been assessed by [95] and it has been
shown that the use of one or the other does not have an important influence on the turbulence statistics
of the flow field.
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In here, CFR is ensured through the action of the forcing term fn+1
i in eq.(2.42) every time step in

order to keep a constant bulk velocity Ub. More especifically, the forcing can be explicitly expressed by
splitting eq.(2.42) in two steps as follows

u∗∗i = u∗i + ∆tf∗i (2.44)

un+1
i − u∗∗i

∆t
= −∂p

n+1

∂xi
, (2.45)

where u∗∗i is another intermediate velocity and the notation f∗i points to the fact that the forcing is
applied on the intermediate velocity u∗i so that the gradient pressure correction discussed above may
have the last word on the final velocity un+1

i . Furthermore, as discussed in section 1.1.1, this forcing is
constant and unidirectional in z - i.e. fi = (0, 0, fz) with

fz = −∂〈p〉
∂z

= cst . (2.46)

In order to express fz in terms of the bulk velocity Ub, we take the volumetric average 1
Ωf

∫
Ωf
dΩf of

the streamwise-z component of eq.(2.44). By rearranging, we may express it as
∆t

Ωf

∫

Ωf

f∗z dΩf =
1

Ωf

∫

Ωf

u∗∗z dΩf −
1

Ωf

∫

Ωf

u∗zdΩf . (2.47)

Following eq.(2.46), the left-hand-side of the above equation can be reduced to
∆t

Ωf

∫

Ωf

f∗z dΩf = ∆tf∗z . (2.48)

Furthermore, by using the definition of the bulk velocity given by eq.(1.7), we obtain the expression
for the forcing term in eq.(2.44) as it is actually computed in the code

∆tf∗z = U∗∗b − U∗b , (2.49)
where U∗∗b = 1 is imposed every time in order to keep the constant flow rate (stationary regime) and

U∗b =
1

Ωf

∫

Ωf

u∗zdΩf , (2.50)

is the intermediate bulk velocity. The integral on the right-hand-side of eq.(2.50) is computed with a
simple rectangular method.

In summary, in the correction step (2.44), the intermediate streamwise velocity u∗z is adjusted, every
time step7, with the forcing term (2.49) in order to ensure stationary regime by providing U∗∗b = 1. In
addition, the friction velocity uτ , defined from eqs.(1.15, 1.13)

uτ =

√
−R

2

∂〈p〉
∂z

, (2.51)

7In a physical sense, how much U∗b distances from U∗∗b = 1 at each time step represents the loss due to viscous
friction at the wall within the time frame ∆t.
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can be directly predicted, every time step, from the the application of the forcing term (2.49)

uτ =

√
R

2
f∗z , (2.52)

following eq.(2.46).

2.8 Statistical averaging

Statistical analyses of both velocity and temperature field are always carried out in fully developed
turbulent state. The quantities assessed to monitor the turbulent transition are the instantaneous fric-
tion Reynolds number Reτ (t) (calculated from the friction velocity uτ according to eq.(1.18)) for the
velocity and the instantaneous Nusselt number Nu(t) for the temperature. Once reached the fully de-
veloped state, the quantities of the flow are then gathered on the fly.

Azimuthal-φ projection

To perform the azimuthal averaging, we use the technique introduced by [8] which is summa-
rized in this section. As discussed in section 1.1.1, the present pipe flow is homogeneous in time,
streamwise-z and azimuthal-φ directions, implying that a certain quantity u(r, φ, z, t) of the flow, once
averaged, depends only on the radial direction, that is 〈u〉(r). With the present Cartesian mesh, the
quantity u(x, y, z, t) may be straightforwardly averaged in time and streamwise-z direction, leading to
〈u〉z,t(x, y). As stressed by [8], statistical convergence is established when 〈u〉z,t(x, 0) and 〈u〉z,t(0, y)
collapse together while corresponding to 〈u〉(r). Nonetheless, such a statistical convergence is very
demanding, thus an extra-average needs to be used in the azimuthal-φ direction.

Here, we perform a direct projection of the data from the Cartesian mesh nodes (xi, yj) to the dis-
cretized coordinate rk, with i = 1, ..., nx, j = 1, ..., ny and k = 1, ..., nr. The number of radial points
nr can be freely chosen so that the radial mesh size ∆r may be smaller than its Cartesian counterparts
∆x = ∆y, providing the set of radial positions rk = (k − 1)∆r, as represented in Figure 2.11. The sim-
plest method to perform this projection is to distribute all the contributions of the raw data 〈u〉z,t(xi, yj)
on rk through an average in the interval [rk, rk+1] for contributions such as rij =

√
x2
i + y2

j ∈ [rk, rk+1]

at the azimuthal location φij = arctan(yj/xi) [8]. Yet, such an average would be only first order ac-
curate. In order to improve the accuracy, a second-order Taylor expansion can be used to extrapolate
every 〈u〉z,t(xi, yj) from the Cartesian mesh nodes (xi, yj) to the closest radial locations rk with [8]

〈u〉z,t(rk) = 〈u〉z,t(xi, yj) +

(
xi

∂〈u〉z,t
∂x

∣∣∣∣
xi,yj

+ yj
∂〈u〉z,t
∂y

∣∣∣∣
xi,yj

)
+O(∆r2) . (2.53)

As highlighted by [8], the non-regular distribution of (xi, yj) tends to generate small irregularities on
the radial profile 〈u〉z,t(rk), especially when ∆r � ∆x. As the simulation advances, these irregular-
ities will naturally disappear as the statistical convergence is improved through the establishment of
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Figure 2.11: Sketch of the parameters for the projection from the Cartesian mesh (xi, yj) to the
discretized radial coordinate rk. Figure adapted from [8].

rotational symmetry on 〈u〉z,t(xi, yj). To reduce them, the contribution of every mesh node can also be
distributed more widely using the Taylor expansion (2.53) for the ns closest radial location rk. Here,
ns = 3 for ∆r = ∆x/8 were used as a compromise, limiting the correction of raw data while improving
the smoothness of radial profiles after this particular projection with ∆r < ∆x [8].

In Figure 2.12, the establishment of statistical convergence and the resulting projected profiles are
exemplified for the mean velocity 〈uz〉+ normalized in viscous units from one of our DNS at low
Reynolds number Re = 5300. Prior to be projected, the raw data 〈uz〉+z,t(xi, yj) can be visualized as the
2D surface map shown in Figure 2.12-top. Then, in Figure 2.12-bottom, this same raw data can be pre-
sented as a cloud of points, since each coordinate (xi, yj) corresponds to a radial location rij =

√
x2
i + y2

j

and therefore to a normalized wall distance (R − r)+. Note that a slimming of the cloud of raw data
is perceived as statistical convergence is reached. As a result, the irregularities on the projected profile
〈uz〉 progressively vanish. Furthermore, it can be seen that, by setting ∆r = ∆x/8, information from
mesh nodes very close to the wall - at radial distances smaller than the reference Cartesian mesh size
∆x = ∆y due to the irregular distribution with respect to the wall geometry - can be profitably taken
into account when projecting statistics on rk.
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convergence is reached.
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2.9 General conclusion

The fundamental numerical features of the code Incompact3d/Xcompact3d are described in this
chapter. Many of them have been subject of further development in the framework of this thesis, the
numerical developments brought to the code are progressively described, at due time, in the following
chapters. The computational configuration consists of a pipe geometry fully immersed in the com-
putational domain, discretized with a regular Cartesian grid. The governing equations (presented in
this chapter only for the fluid side) are the incompressible Navier-Stokes equations: continuity, mo-
mentum and the passive transport for the temperature field. The conciliation between the mesh nodes
distribution and the wall geometry is done with the customized immersed boundary method (IBM)
developed by [50]. The technique is based on Lagrange reconstructions of the solution into the im-
mersed region, which indirectly imposes boundary conditions at the wall, so that no explicit forcing
term is introduced in the governing equations and the spatial differentiation can be performed without
any particular treatment near the fluid/solid interface.

The spatial discretization is entirely based on sixth-order centred compact schemes. Not only the
order of accuracy of first and second-derivative schemes is considered but also their resolution char-
acteristics in the Fourier space. Moreover, following the work of [81], it is detailed how the spectral
behaviour of the second-derivative schemes can be controlled, leading to a family of finite-difference
schemes based on high-order numerical dissipation. The over-dissipation introduced by these schemes
is concentrated at small scales and can effectively control aliasing errors arising at high-wavenumbers
to regularise the numerical solution. Furthermore, this extra numerical dissipation can be shaped to be-
have as a Spectral Vanishing Viscosity (SVV) and therefore, in the context of LES, it can be interpreted
as a subgrid scale modelling. As shown by [65], this strategy can ensure convergence of the numerical
solution at the mesh scale, oppositely to the popular Smagorinsky approaches. As this modelling is
entirely (and implicitly) contained in the numerical dissipation introduced by the second-derivative
scheme, the method is referred to as an Implicit LES (ILES) strategy. The appropriate level of numeri-
cal dissipation to be used is based on the simplified spectral closure proposed by [65]. Since the role
of the numerical dissipation is to regularise the solution at small scales, this strategy founds also wide
applicability for DNS, this is point will be further addressed in chapters 3 and 5.

Finally, the fractional step method used for the time integration of the momentum equation is pre-
sented. The treatment of the Poisson equation is briefly described as well as the numerical treatment
of the forcing term that ensures stationary regime (constant flow rate) in the pipe.

Version française
Les caractéristiques numériques de base du code Incompact3d/Xcompact3d sont décrites dans ce

chapitre. Celles qui ont fait l’objet de développements dans le cadre de cette thèse seront progres-
sivement décrites dans les chapitres suivants. La configuration de calcul consiste en une géométrie de
conduite entièrement immergée dans le domaine de calcul, lequel est discrétisé à partir d’une grille
Cartésienne régulière. Les équations du problème (présentées dans ce chapitre uniquement pour le
fluide) sont les équations de Navier-Stokes incompressibles : continuité, quantité de mouvement et
transport passif pour le champ de température. Pour concilier la géométrie de la paroi avec la dis-
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tribution des nœuds du maillage, la méthode des frontières immergées (IBM) développée par [50]
est utilisée. Cette technique est basée sur une reconstruction de la solution dans la zone immergée par
polynômes de Lagrange. Elle permet d’imposer indirectement les conditions aux limites à la paroi sans
introduire de terme de forçage dans les équations d’évolution avec une différenciation spatiale qui ne
nécessite pas de traitement particulier à proximité de l’interface fluide/solide.

La discrétisation spatiale est entièrement basée sur des schémas compacts centrés de sixième ordre.
En plus de l’ordre de précision de ces schémas de dérivées première et seconde, il est pris en compte
leurs caractéristiques de résolution dans l’espace de Fourier. De plus, suite aux travaux de [81], il est
détaillé comment le comportement spectral des schémas à dérivée seconde peut être contrôlé, con-
duisant à une famille de schémas aux différences finies basés sur la dissipation numérique d’ordre
élevé. La surdissipation introduite par ces schémas est concentrée à petite échelle et peut contrôler
efficacement les erreurs de repliement survenant à des nombres d’onde élevés pour régulariser la solu-
tion numérique. De plus, cette dissipation numérique supplémentaire peut être conçue pour se com-
porter comme une Viscosité Spectrale Evanescente (SVV en sigle anglo-saxon) interprétable comme
une modélisation sous-maille dans le contexte de la simulation des grandes échelles (LES en sigle
anglo-saxon). Comme le montre [65], cette stratégie peut assurer la convergence de la solution numérique
à l’échelle du maillage, contrairement aux approches plus standard basées de type Smagorinsky. Comme
cette modélisation est entièrement (et implicitement) contenue dans la dissipation numérique intro-
duite par le schéma à dérivée seconde, cette technique peut être vue comme une stratégie LES implicite
(ILES en sigle anglo-saxon). Le niveau approprié de dissipation numérique à utiliser est définie à partir
d’une fermeture spectrale simplifiée proposée par [65]. Puisque le rôle de la dissipation numérique est
de régulariser la solution à petite échelle, cette stratégie est applicable dans le contexte de la simulation
numérique directe (DNS en sigle anglo-saxon). Ce point sera traité plus en détail dans les chapitres 3
et 5.

Enfin, la méthode à pas fractionnaires utilisée pour l’intégration temporelle de l’équation de quan-
tité de mouvement est présentée. Le traitement de l’équation de Poisson est brièvement décrit ainsi que
le traitement numérique du terme de forçage qui assure le régime stationnaire (débit constant) dans la
conduite.



Chapter 3

Implicit Wall-Layer Modelling

Traditional Large-Eddy Simulation (LES) of wall-bounded turbulence is based on the explicit com-
putation of all the energy containing near-wall eddies while modelling the effect of the smallest scales.
In order to do so, it is recommended to use a mesh resolution between 10 and 100 wall units for the
streamwise direction discretization, from 10 to 20 wall units in the spanwise direction, and typically
one wall unit in the wall normal direction through the application of a near-wall mesh refinement for
instance. When these resolution criteria are too demanding in terms of computational resources, an al-
ternative is to use a discretization which do not capture the inner layer while compensating this bypass
with a wall-layer model [19, 34].

Nonetheless, in a previous work from our team, Dairay et al. [65] showed that excellent first and
second order turbulence statistics of pipe flow can be obtained with a mesh resolution coarser than the
viscous sublayer without using any explicit wall-layer modelling. In this context, the near-wall regu-
larization is simply performed by the implicit LES (ILES) technique introduced in section 2.6.3 which
- without any extra cost or adaptation in the near-wall region - displays a wall modelling feature. In
these previous investigations, two Reynolds numbersReτ = 180, 550 were considered when comparing
ILES results to unfiltered DNS data of [9]. As discussed in section 2.6.3, the originality of the present
ILES method is found in the built-in numerical dissipation that does not come from the discretization
of the convective term, but from the diffusive term in the Navier-Stokes equations. This strategy has
also been successfully used by [81, 90] to perform LES of turbulent plane channel and impinging jet
configurations with regular Cartesian meshes, nonetheless, the near-wall behaviour of the implicit SGS
modelling was not yet thoroughly investigated.

Previous comparisons of the ILES technique with reference data were based on basic statistics of
unfiltered DNS data, which means that, although a good agreement was observed, no rigorous assess-
ment could be made. Here, this matter is examined at higher Reynolds number (Reτ = 1000) while
determining to what extent it can be generalized in terms of near-wall region bypass. To do so, a DNS
database is presented with an original method to easily produce filtered statistics which can be gen-
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Figure 3.1: Schematic view of the computational configuration. A regular Cartesian mesh is
used and the fifth-order Lagrange polynomial reconstruction is illustrated in R ≤ r ≤ Ro.

uinely and consistently compared to ILES at any mesh resolution. The goal is to assess the present
implicit LES in terms of ability to predict near-wall statistics despite the use of very coarse grid for
which even the near-wall turbulent production region is fully bypassed.

3.1 Numerical methodology and computational configuration

As detailed in section 2.2, the present computational configuration consists of a pipe geometry of
inner radius R and outer radius Ro fully immersed in a computational domain of dimensions Lx ×
Ly ×Lz , discretized with a Cartesian mesh of nx×ny ×nz nodes regularly distributed. For the sake of
completeness, a schematic view of the computation configuration is once again provided in Figure 3.1.
The cylindrical coordinates system relates to the Cartesian one according to

r =
√
x2 + y2 (3.1)

φ = arctan(y/x) (3.2)
z = z . (3.3)

To model the presence of the solid body, the IBM described in section 2.5 is used. This technique
consists of locally satisfying the no-slip condition with Lagrange polynomial reconstructions of the
fluid solution into the immersed region (i.e., the annular volume R ≤ r ≤ Ro), clearly improving the
accuracy of compact finite difference schemes such as those used in the code Incompact3d/Xcompact3d
(see representation in Figure 3.1). Periodic boundary conditions are prescribed at the boundaries of the
computational domain for all three Cartesian directions. The longitudinal length of the domain is kept
constant for all simulations Lz = 12.5D, whereas the transverse dimensions Lx and Ly are adjusted
according to the mesh resolution in order to provide a minimum number of grid points in the buffer
zone r > Ro. This enables us to prescribe periodic conditions for the transverse-xy directions while
ensuring the success of the reconstruction technique.
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Table 3.1: Numerical parameters of DNS/LES performed.

Re ∆z+ ∆r+ c1 ν0/ν Reτ

DNS
[9] 37700 < 9.98 0.15− 5.12 - - 999
Present 37700 13 ≈ 2.9 - 3 996.8

LES marginal resolution
Implicit model 37700 19.5 ≈ 4.5 0.055 3 990.6
No-model 37700 19.5 ≈ 4.5 - - 1053.1

LES low resolution
Implicit model 37700 26 ≈ 12 0.055 7 981.2
No-model 37700 26 ≈ 12 - - 1242.7

The governing equations are the incompressible Navier-Stokes1 (2.9, 2.10). The full-explicit time
advancement of the momentum equation (2.10) is carried out with a third order Adams-Bashforth
scheme, as described in section 2.7. The implicit SVV method described in section 2.6.3 is used here
to perform LES (ILES) at different mesh resolutions as well as a DNS at marginal resolution. Within
Incompact3d/Xcompact3d, the desired numerical dissipation can be easily calibrated for the different
spectral viscosities (c1 and ν0/ν), the numerical parameters for all the simulations performed are re-
ported in Table 3.1.

3.2 Mesh distribution vs. Mesh resolution

The term mesh resolution refers here to the size of the cells in each Cartesian direction regardless of
the location of the nodes with respect to the wall [8]. In the present framework, a regular Cartesian
mesh is used for the spatial discretization which provides computational cells of fixed size ∆x×∆y×∆z.
The corresponding mesh resolution in wall units for a grid spacing ∆x is therefore given by

∆x+ =
∆x

R
Reτ . (3.4)

The corresponding mesh resolutions for each one of the simulations are also reported in Table 3.1. In
previous investigations in a similar computational configuration, Dairay et al. [8] presented very good
basic DNS statistics of turbulent pipe flow at Reτ = 550 with a transverse mesh resolution ∆x+ =
∆y+ = 5.5 wall units. Based on the concept of minimal scale computed with accuracy (see schematic

1For the investigations presented in this chapter, the transport of temperature is not concerned.
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Δx

4Δx

Figure 3.2: (Left) The accurate description of a scale requires a minimum of 4∆x [8], rea-
son why a extra refinement of the near-wall region providing ≤ 1 wall unit is usually rec-
ommended in order to properly describe physical phenomena within the viscous sublayer.
(Right) Illustration of the irregular distribution of Cartesian mesh nodes. The nodes marked
in red for instance, are found in a distance from the wall smaller than the mesh resolution.

representation in Figure 3.2-left), the minimal scale to be actually captured with such a mesh resolution
should be of the order L+

min ≈ 4× 5.5 ≈ 22 wall units. Such a value should not only bypass the viscous
sublayer (R − r)+ < 5, but also the entire production region (R − r)+ < 15. Nonetheless, the near-
wall statistical signature was remarkably well-reproduced, even up to a scale smaller than the mesh
resolution itself.

The success of the method has been mainly attributed to the mesh distribution, which refers to the
location of the grid points with respect to the wall [8]. Moreover, as the geometry boundaries are
disconnected from the mesh arrangement in this scenario, mesh nodes are irregularly distributed with
respect to the wall. Figure 3.2-right exemplifies how some of the mesh nodes may be found very close
to the wall (even inside the viscous sublayer) despite the coarse mesh resolution used, and thus, their
near-wall knowledge of the solution can advantageously contribute to the computation of turbulence
statistics in distances smaller than the mesh resolution by applying the projection technique described
in section 2.8.

3.3 Filtered DNS database

Having described the numerical methodology, we shall now proceed to the establishment of a fil-
tered DNS database to be consistently compared to ILES results at any mesh resolution. Firstly, DNS of
pipe flow is carried out atRe = 37700 with a mesh of nx×ny×nz = 768×768×1920 in a computational
domain Lx × Ly × Lz = 1.12D × 1.12D × 12.5D, corresponding to a (marginal) mesh resolution of
(∆x+,∆y+,∆z+) = (2.9, 2.9, 13). Statistics are gathered on the fly once the fully developed turbulent
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Figure 3.3: (Left) Mean velocity and (right) Reynolds stress profiles for the DNS at Reτ =
37700 with marginal resolution. The turbulence statistics are compared to DNS data of [9].

state is reached. The evolution of the friction velocity uτ (t), predicted every time step with eq.(2.52) is
the criterion used to monitor the flow development.

For the sake of validation, in Figure 3.3 first and second-order statistics normalized in viscous units
are compared to DNS results of [9], obtained with the high-order spectral element code Nek5000. A
very good agreement is recovered, with only −1% underprediction of the friction Reynolds number
Reτ . Despite the marginal mesh resolution employed, such a satisfactory result could be achieved
thanks to a small amount of numerical dissipation introduced to regularise the solution (ν0/ν = 3 is
used in the framework of the ISVV strategy for DNS described in section 2.6.32). The good results are
also attributed to the mesh distribution factor discussed in the previous section and the use of high-
order spatial schemes (this point is further addressed in chapter 5, section 5.5.2).

In what follows, we introduce an original methodology to generate filtered statistics from this DNS
database. It is interesting to note that, thanks to the high resolution mesh in which the database was
created, the filtered data is also obtained in high resolution.

3.3.1 Pao-filter

In the present ILES framework, the appropriate level of high-order numerical dissipation required
to regularise the LES solution is defined from the simple Pao-like spectral closure proposed by [65]. In
the framework of homogeneous and isotropic turbulence at small scales, this simple model provides
a pragmatic way to calibrate physically the numerical viscosity required by the LES, i.e., the value at
the cutoff wavenumber ν0/ν and its spectral distribution c1 (c.f. section 2.6.3). Although it has been

2Scheme (2.21, 2.33) is used for the computation of second derivatives.
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recognized by [65] that a rigorous formalism is still missing, this regularisation technique can and have
been successfully used to investigate near-wall turbulence of channel flow [81], turbulent jet impinging
on a heated wall [90] and turbulent pipe flow [8, 76, 78]. Furthermore, [65] highlights that, even for
the treatment of inhomogeneous and anisotropic turbulent flows, the only input required by the Pao-
like model is the ratio between the DNS and the LES mesh resolutions. It is recommended to firstly
design the mesh that the hypothetical DNS would require, and then, by inputting the desired LES mesh
resolution, the model provides an estimation of the level of numerical dissipation (ν0/ν and c1) to be
introduced in the ILES as well as an estimation of the filtering operator associated with the reduction
of the number of degrees of freedom.

Here, the transfer function of the filtering operator is used in the spectral space to produce a filtered
DNS database. More precisely, as the filter transfer function is defined according to the numerical
dissipation introduced in the ILES, filtering the DNS solution allows us to define a rigorous target
solution for the ILES, thus enabling consistent a priori/a posteriori comparisons. This type of filter is
referred here as Pao-filter and it is defined as a homogeneous filter whose transfer function is given by
[65]

Tf (k) =

√
ELES(k)

EDNS(k)
, (3.5)

where EDNS and ELES are the kinetic energy spectra associated to the DNS and LES respectively. An
example of the filtering effect3 is illustrated in Figure 3.4-left for a filter length ∆ = 4∆x applied once in
each spatial direction, representing a LES mesh resolution 4× coarser than the DNS in each Cartesian
direction, i.e., a reduction of degrees of freedom by a factor 64. It is interesting to note that very good
levels of global energy should still be nonetheless captured by the LES despite this significant reduction
of degrees of freedom. In Figure 3.4-right, some transfer functions are exemplified for different filter
lengths. It can be said that the Pao-filter displays a behaviour between a cutoff and a Gaussian filter.

The filter is applied once in each spatial direction in order to take the anisotropy of the LES mesh
into account, which means that different filter transfer functions may be used for the streamwise-z and
transverse-xy directions, representing different mesh resolutions. This type of a priori/a posteriori anal-
ysis has already been performed by [75], but in the context of homogeneous and isotropic turbulence
with the Taylor Green Vortex problem. However, in the presence of a wall, it is generally difficult to
define a homogeneous filter because of the loss of homogeneity in the near-wall region. This is possible
here thanks to the use of periodic boundary conditions in all three Cartesian directions together with
the smoothness of the solution across the fluid-solid interface provided by the present IBM. This point
is made very clear in Figure 3.5. When the fluid solution is not reconstructed prior to the application of
the Pao-filter, the sharp fluid-solid interface is strongly felt by the filtering operator. This effect appears
as a no-slip condition poorly ensured in the mean velocity profile, compromising the reliability of fil-
tered data. Such a problem is nearly suppressed when the solution is reconstructed before filtering.
Nonetheless, even in this case, the consistency of the filtered data needs to be assessed. In fact, in the
present framework, the no-slip condition is softly prescribed during the reconstruction but it is never
literally imposed to the solution. This way, a subsequent application of the filter operator can eventu-
ally re-shape the near-wall behaviour of the solution. In other words, particular attention should be

3For the purpose only of illustrating the filtering effect, the spectrum represented is computed at the centre-line
r = 0 along the pipe length Lz
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Figure 3.4: (Left) Filtering effect of the Pao-filter on the Kinetic energy spectra E(k). (Right)
Pao-filter transfer functions for different filter lengths ∆.

paid to possible antagonisms between the application of the homogeneous filter and the conservation
of the no-slip condition.

3.3.2 Streamwise vs. Transverse directions filtering

As a first assessment, the effect of the Pao-filter is tested on the transverse-xy and streamwise-z
directions separately in order to evaluate how the reduction of degrees of freedom along each Cartesian
direction affects the levels of energy to be captured by the ILES. To do so, in Figure 3.6, we analyse the
normalized turbulent kinetic energy profiles k+ = 1

2 〈u′iu′i〉+ for filtered DNS data corresponding to
different xy (left) and z (right) mesh resolutions. Such an assessment can help us to define interesting
mesh resolutions to carry out our ILES. For instance, the profiles in Figure 3.6-left, give us quantitative
estimations of the levels of energy that would still be captured when the viscous sublayer (∆x+ = 6)
and/or even the entire near-wall production region (∆x+ = 12) are structurally bypassed by the mesh
resolution.

It can be seen that filtering the transverse-xy directions impacts mostly the inner region whereas
the streamwise-z filtering extracts energy mostly from the outer region. It is also interesting to note
that, a priori, even a LES mesh 2× coarser than the DNS in all directions - which would represent a
non-negligible reduction of degrees of freedom by a factor 8 - should hardly affect the level of energy
captured.

Surprisingly, the use of a coarse mesh resolution of ∆x+ = ∆y+ = 12 wall units for the transverse-
xy directions should still allow us to capture the large majority of the energetic scales that compose the
flow, as shown by Figure 3.6-left. Such a result suggests that, in the absence of wall-modelling, the use
of very small cells close to the wall is not mandatory in order to capture the energy containing near-wall
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reconstructing the fluid solution before filtering the transverse-xy directions. In this example,
DNS data have been filtered at a corresponding mesh resolution of ∆x+ = ∆y+ = 12.

eddies. This goes against the typical recommendations for LES mentioned in the introduction section
of this chapter [19, 34]. Furthermore, Figure 3.6-right shows that the use of a streamwise resolution
of ∆z+ = 104 wall units would result in a significant loss of turbulent kinetic energy. Such a mesh
resolution (and even coarser) is often used to perform LES of wall turbulence. However, the present
results suggest that the use of very large cells in the flow direction should be considered with more
caution as it would imply neglecting many energetic scales that compose the flow.

It is also important to mention that the capability of the reconstruction to ensure the success of the
transverse-xy filtering is limited to not so high values of the filter length. In fact, this is related to the
previously mentioned dependence of the transverse-xy filtering on the reconstruction technique and
a potential poor conservation of the no-slip condition. For instance, when DNS data is filtered at a
corresponding cell size of ∆x+ = ∆y+ = 24 wall units (see Figure 3.6-left), an abnormal near-wall
rising of kinetic energy is observed as a consequence of a poorly ensured no-slip condition. Additional
tests showed that this unrealistic rising of k+ in the near-wall region could be avoided up to ∆x+ = 15.
Yet, a strange behaviour could still be observed with, for instance, k+ ≈ 0.156 at (R − r)+ ≈ 1.03,
which is erroneously higher than the unfiltered value k ≈ 0.124, showing that persistent non-physical
velocity fluctuations (spurious oscillations) were still emerging for ∆x+ = 15. Therefore, for a matter
of certainty, we have decided to limit our analysis to transverse mesh resolutions ∆x+ ≤ 12 for which
the filtering procedure does not produce abnormal levels of kinetic energy in the inner layer while still
providing a good prediction in the outer layer.
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Figure 3.6: (Left) Turbulent kinetic energy from filtered quasi-DNS at different mesh resolu-
tions. The drop of energy is analysed for the filter applied separately in (left) transverse-xy
directions and (right) streamwise-z direction.

3.4 Implicit LES assessment

From the a priori analysis of the previous section, two interesting configurations have been selected
to perform implicit LES of turbulent pipe flow at Re = 37700:

1. Marginal Resolution: nx × ny × nz = 512× 512× 1280 mesh nodes in a computational domain of
dimensions Lx × Ly × Lz = 1.12D × 1.12D × 12.5D (similarly to the DNS), corresponding to a
mesh resolution, in wall units ∆x+ = ∆y+ ≈ 4.5, ∆z+ ≈ 19.5.

2. Low Resolution: nx×ny×nz = 256×256×960 nodes in a computational domain Lx×Ly×Lz =
1.5D × 1.5D × 12.5D, which corresponds in wall units to ∆x+ = ∆y+ = 12, ∆z+ = 26.

The mesh resolutions have been chosen based on the levels of turbulent kinetic energy to be cap-
tured while enabling the assessment of the present numerical strategy in terms of viscous and near-wall
production region bypass respectively. Filtered DNS results presented henceforth are obtained from
the sequential application - once in each Cartesian direction - of the Pao-filter, which allows us to pro-
duce filtered statistics consistent with the ILES mesh resolution and numerical dissipation used.

Implicit wall-layer modelling Before proceeding to the results, few words should be said about
the use of the term implicit wall-layer modelling. As previously mentioned in this chapter, typical rec-
ommendations for LES suggest that first mesh nodes should be found inside the viscous sub-layer, in
a distance of at least (R − r)+ = 1 from the wall, in order to obtain a correct prediction of the wall
friction. Alternatively, a coarser mesh may be used while explicitly including a wall-layer model to
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provide the friction prediction. Here, the term implicit wall-layer model is used to emphasize that the
capability of the present methodology in regularising the near-wall solution is accomplished without
any explicit wall-model. The improvement brought by the technique is the direct result of the damp-
ing of spurious oscillations arising from small scales, which is simply achieved by using scheme (2.21,
2.40) for the computation of second derivatives - i.e., with the implicit SVV technique described in
section 2.6.3. In other words, instead of relying on a model, it is the solver itself that takes charge of im-
proving the near-wall solution. To highlight this implicit wall modelling feature, the ILES statistics are
also compared, in the next section, to no-model LES results, which is performed without any (implicit
nor explicit) SGS/wall-layer modelling while using the popular sixth-order compact scheme of [80] to
compute second derivatives.

3.4.1 Marginal resolution

Figure 3.7 compares first and second-order statistics of the ILES at Marginal Resolution with DNS
filtered at the corresponding mesh resolution and no-model LES results. This a posteriori analysis points
to the existence of numerical-modelling errors given the deviation between ILES and filtered k+ profiles
observed at the production peak. Yet, it can be stated that the overall agreement is very satisfactory.
Moreover, the precision of the statistics are the confirmation at higher Reynolds number that accurate
turbulent statistics can be obtained despite the use of a mesh resolution that clearly bypasses the viscous
sublayer.

In particular, one sees that the peak of k+ is remarkably well predicted at a level of detail clearly
higher than the minimal scale computed with accuracy 4∆x+ = 18. If compared to no-model results,
numerical dissipation is found definitely necessary so that it can be seen as playing the role, in this
context, of an implicit viscous sublayer modelling. To explain this improvement, it must be mentioned
that the no-model solution is subjected to small-scale oscillations which make inaccurate the prediction
of the friction velocity uτ with an overestimation of about +6%, as reported in Table 3.1. Here, the use
of numerical dissipation can remove these spurious oscillations making the friction velocity prediction
clearly more accurate with a deviation of only −1% by comparison to the DNS prediction.

3.4.2 Low resolution

Figure 3.8 compares first and second-order statistics for the Low Resolution ILES. As reported in
Table 3.1, a good prediction of the mean velocity is recovered by the ILES with an acceptable −2%
underprediction of uτ (see Fig. 3.8-left). The filtered profile of k+ predicted by the ILES in Figure
3.8-right shows that good levels of energy could still be captured despite the astonishing resolution
of 12 wall units used for the transverse-xy discretization. Even though the profile of k+ is somewhat
irregular in the region of the peak, its amplitude is only underestimated by −11% and its shape repro-
duced with a precision evidently smaller than the minimum scale computed with accuracy 4∆x+ = 48.
Furthermore, in the outer layer, the agreement with filtered DNS is very satisfactory.

Conversely, no-model results present for both mean velocity and kinetic energy profiles completely
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Figure 3.7: (Left) Mean velocity and (right) turbulent kinetic energy profiles for ILES atReτ =
37700 with marginal resolution. The turbulence statistics are compared to filtered DNS data
and ‘No-model LES’.
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Figure 3.8: (Left) Mean velocity and (right) turbulent kinetic energy profiles for ILES atReτ =
37700 with low resolution. The turbulence statistics are compared to filtered DNS data and
‘No-model LES’.
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Figure 3.9: Snapshots of the instantaneous streamwise velocity uz for (left) present implicit
LES technique and (right) no-model LES. The suppression of wiggles in the near-wall region
reveals the implicit wall modelling feature embedded in the method.

nonphysical behaviours with such a coarse mesh. These results confirm the implicit wall-layer mod-
elling feature intrinsic to the present implicit SVV technique for LES, given its ability to restore the
quality of the wall friction from +24% to −2% while enabling the realistic prediction of the fluctuating
velocity profiles (embedded in the calculation of k). This very favourable improvement is the result
of the damping of spurious oscillations promoted by the use of numerical dissipation concentrated at
the small scales. In Figure 3.9, snapshots of the instantaneous streamwise velocity uz demonstrate the
reduction of wiggles in the near-wall region.

It interesting to note however that the problem related to the weak conservation of the no-slip con-
dition observed a priori seems to appear also a posteriori in the form of a non-physical raising of kinetic
energy levels in the inner region (Figure 3.8-right). Some preliminary tests have showed that this ef-
fect seems to be related to the azimuthal location of the nodes, especially those close to the cardinal
points. These errors, mostly associated to the immersed boundary technique, tend to compensate each
other leading to the acceptable k+ profile presented in Figure 3.8-right. Further investigations of this
anomaly are planned in order to suppress immersed boundary artefacts.
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3.5 General conclusion

In this chapter, fundamental aspects of the present numerical strategy are highlighted through
Direct and Implicit Large-Eddy Simulation (DNS/ILES) of turbulent pipe flow. Firstly, DNS turbulence
statistics at Re = 37700 with the present strategy are presented with a remarkable agreement with
reference results. The success of the method is attributed to the small amount of numerical dissipation
used to regularise the solution at small scales, as well as the irregular distribution of mesh nodes with
respect to the wall and the use of high-order spatial schemes.

An original filtering strategy is subsequently introduced to produce a filtered DNS database for
rigorous a priori/a posteriori comparisons with ILES results. The filter transfer function is defined in the
Fourier space, consistently with the numerical dissipation introduced in the ILES. The filter is applied
once in each direction to take into account the anisotropy of the ILES mesh. It is also shown how the
interfacial smoothness provided by Lagrange reconstruction of the fluid solution is fundamental for
filtering the transverse-xy directions.

Then, two different mesh resolutions - namely marginal and low resolutions - are chosen to perform
ILES based on the levels of turbulent kinetic energy to be captured with the present numerical strategy
when the viscous sub-layer and even the near-wall production region are bypassed. The comparison
with filtered DNS results points to the existence of modelling errors, yet, turbulence statistics are de-
scribed with a level of detail clearly higher than the minimal scale computed with accuracy for both
marginal and low resolution cases. Furthermore, it is shown through comparison with no-model LES re-
sults that the present Implicit SVV strategy for LES functions also as an implicit wall-layer modelling
thanks to the damping of spurious oscillations (aliasing errors) promoted by the use of numerical dis-
sipation concentrated at small scales. It is recognised that for the low resolution case, errors associated
to the immersed boundary technique tend to compensate each other leading to the acceptable second-
order statistics presented. Further investigations of this problem are scheduled.

Version française

Dans ce chapitre, les caractéristiques essentielles de la présente stratégie numérique sont mises en
évidence par simulation directe et des grandes échelles implicite (DNS/ILES) de l’écoulement turbu-
lent dans une conduite. Les statistiques turbulentes obtenues par DNS àRe = 37700 sont présentées en
montrant un accord remarquable avec les résultats de référence. Le succès de la méthode est attribué à
la dissipation numérique utilisée de façon ciblée pour régulariser la solution à petite échelle, à la dis-
tribution irrégulière des nœuds du maillage par rapport à la paroi ainsi qu’à l’utilisation de schémas
de différentiation spatiale d’ordre élevé.

Une stratégie de filtrage originale est ensuite introduite pour produire une base de données DNS
filtrée pour des comparaisons a priori/a posteriori rigoureuses avec les résultats ILES. La fonction de
transfert du filtre est définie dans l’espace de Fourier, en cohérence avec la dissipation numérique in-
troduite dans le type d’ILES mené. De cette façon, les résultats DNS filtrés correspondent à la solu-
tion ILES cible. De plus, le filtre est appliqué une fois dans chaque direction pour prendre en compte
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l’anisotropie du maillage ILES. Il est également montré comment la régularité interfaciale fournie par la
reconstruction par polynôme de Lagrange de la solution fluide est fondamentale pour filtrer correcte-
ment les directions transverses-xy.

Ensuite, deux maillages différents (résolutions marginale et basse) sont choisis pour effectuer des
ILES en considérant les niveaux d’énergie cinétique turbulente à reproduire lorsque la sous-couche
visqueuse et même la région de production en proche paroi ne semblent pas correctement capturées par
la grille de calcul. Même si la comparaison avec les résultats DNS filtrés indique la présence d’erreurs
de modélisation significatives, les statistiques turbulentes de base sont décrites avec un niveau de détail
nettement supérieur à l’échelle minimale calculée avec précision pour les deux résolutions considérées.
En outre, il est montré par comparaison avec des résultats LES sans modèle sous-maille (no-model
LES) que la stratégie SVV implicite suivie ici fonctionne comme un modèle de paroi implicite grâce
à l’amortissement des oscillations parasites (produites notamment par les erreurs de repliement) fa-
vorisé par l’utilisation d’une dissipation numérique concentrée à petite échelle. Il est reconnu que pour
le cas basse résolution, les erreurs associées à la technique de frontières immergées ont tendance à se com-
penser, ceci conduisant à des statistiques du second ordre d’une qualité acceptable. Des investigations
plus approfondies sur ce phénomène sont prévues.



Chapter 4

Viscous and hyperviscous filtering for
direct and large-eddy simulation

In the course of this thesis, a novel solution filtering technique for DNS and LES has been de-
veloped. This approach is in fact equivalent to the use of spectral viscosity as a possible ersatz of
subgrid-scale modelling for LES (or regularisation at small scales for DNS), according to the discus-
sions developed in section 2.6.3. The method is detailed in this chapter and it should be stressed that
its development/implementation has been mutually important for the advancement of this thesis and
the validation of this novel technique. More precisely, as discussed in section 2.7, a full-explicit time
integration with third-order Adams-Bashforth scheme have been used for the governing equations.
However, as it is shown in this chapter, when an IBM is used, diffusivity can easily become more con-
straining than the CFL condition, requiring the use of very small time steps in order to ensure numerical
stability. This condition can be further aggravated if heat transfer is to be considered with Pr � 1 to-
gether with a hyperviscous second-derivative operator as it is done in here. As a consequence, the heat
transfer simulations scheduled for this thesis would be too costly, especially for low Prandtl number
fluids and/or the Conjugate Heat Transfer problem (CHT) which requires dealing simultaneously with
distinct temporal and spatial scales when simulating the forced convection in the fluid coupled to the
heat conduction in the solid.

In this context, it can be even said that the development of the present viscous filtering technique
came at the perfect timing as its major highlight is precisely the strong relaxation on the diffusivity
constraint, allowing the use of much larger time steps which ultimately led to remarkable savings
of computational resources. In the light of the article recently published where the methodology is
fully detailed [78], we have decided not to re-describe it from scratch here but to directly provide the
reader with the article. Turbulent heat transfer results presented with Mixed-type boundary condi-
tions (MBC) in section 7.2 are re-addressed in the next chapter when describing the IBM strategies
implemented for prescribing thermal boundary conditions in the framework of this thesis.
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This work is dedicated to the solution filtering technique for performing direct and large-
eddy simulation. It is shown that this approach is equivalent to the use of spectral viscosity 
as a possible ersatz of subgrid-scale modelling. In the framework of finite-difference 
schemes, the filter operator can be designed to ensure time consistency while easily 
controlling the level and scale selectivity of the dissipation thus introduced. Then, a new 
family of filter schemes is developed in order to represent both the molecular and artificial 
dissipations. The resulting viscous filter operator is straightforward to implement through a 
simple modification of its coefficients that depend on the molecular/artificial viscosity and 
the time step. A definitive advantage in terms of computational efficiency is obtained for 
computational configurations where the time step is restricted by the Fourier condition, as 
a simple alternative to implicit time integration of the viscous term. Numerical tests clearly 
show that this viscous filtering method is flexible, accurate and numerically stable at large 
Fourier number.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In the context of large-eddy simulation (LES), spatial filtering can refer to different concepts and techniques, as a poten-
tial source of misunderstanding between users and developers in this field of computational fluid dynamics. The essential 
meaning of spatial filtering is related to the LES formalism itself as a tool of decomposition between the large-scale com-
ponent of the solution and its residual small-scale component designated as the subgrid-scale (SGS) part. This first concept 
has been widely developed with the purpose to derive the governing equations of the large-scale motion while introducing 
the unknown SGS tensor in the framework of a closure problem. For the general background based on this way to define 
the LES problem, the reader is referred to the textbooks [1–3] which also include the presentation of the most popular SGS 
models. In this study, this primitive meaning of spatial filtering is not addressed. The related SGS modelling is also not con-
sidered, avoiding the difficult questions about the way to account for this “implicit filtering” in the SGS model itself. For the 
most popular SGS model, namely the Smagorinsky model, the spatial filtering, to which the solution is actually subjected, 
is a model feature. This feature can only be known a posteriori, as an output of the LES, with a major role of the numerical 
error for the filtering actually obtained [4].

In this study, we are interested in the technique that consists in the application of spatial filtering every time step on 
the solution during the time advancement of the governing equations. This technique is sometimes referred as “solution 
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filtering” [5] or as “relaxation filtering” [6,7]. It can also be designated as “explicit filtering”, but this term is potentially 
confusing with the SGS modelling approach where the non-linear convective terms, based on the implicitly filtered (i.e. 
large-scale) solution, are themselves filtered with a given operator to define an alternative SGS tensor in a modified closure 
problem [8–10]. Here, for simplicity, the term “solution filtering” is preferred to clearly express that the filter operation is 
applied directly on the solution without any reference to other formalisms or non-linearity treatments. We also only focus 
on the systematic application of the filter every time step, even if a periodic application every n time steps can also be an 
option to control the resulting artificial dissipation while saving computational time [11–14].

The solution filtering approach is shared by a wide community in the field of LES as well as in direct numerical simula-
tion (DNS), see for instance [15,16,11,17–19]. When used in DNS, it can be viewed as a way to control the development of 
numerical oscillations, due for instance to aliasing errors, when the viscous term is not strong enough to ensure this control 
[20]. Typically, it enables simulators to perform DNS at marginal resolution while improving the physical realism of their 
solutions which can be virtually free from small-scale spurious oscillations. When this idea is pushed further using coarse 
computational mesh at high Reynolds number, the filtering solution strategy is referred as an ersatz of SGS modelling in a 
fuzzy formalism mainly based on considerations about the expected functional role of the SGS uncaptured by the compu-
tational mesh. Viewed in this perspective, this approach may be classified in the field of implicit LES, the solution filtering 
corresponding to an artificial regularisation process applied throughout the calculation. Since its very beginning through the 
MILES approach [21], implicit LES has become very popular with the development of a wide range of technics to ensure 
regularisation (see for instance the collective book [22]). In this work, the goal is not to propose a new approach for implicit 
LES but to develop a new technique that can be put in this perspective while being firstly useful for DNS.

To introduce artificial dissipation for regularisation purposes, the most popular method is to differentiate the convective 
term using upwind schemes. An alternative is to boost artificially the viscous term through an overestimation of the second 
derivatives at small scales, as proposed by [23] where a comparison with the traditional upwind-based strategy is presented 
for a one-dimensional (1D) linear convection/diffusion equation. In [23], and in a more detailed way in [4], it has been 
shown that this type of numerical dissipation is the finite-difference counterpart of spectral vanishing viscosity (SVV) [24–
27]. In this paper, also based on a finite-difference framework, the links between SVV, boosted second derivative and filtering 
are clarified to open the way for a new technique of solution filtering.

The manuscript is organized as follows. In section 2, a generic finite-difference operator is defined with a classic defini-
tion of its coefficient relations up to a given order of accuracy. Then, the role of solution filtering is described in section 3
by considering a 1D model equation where the filtering operation can be clearly expressed inside the time advancement. 
In this simplified framework, an equivalent SVV is introduced in section 4 as a function of the filter transfer function. 
Based on this equivalence, the strength and the scale-selectivity of the filter can be controlled through the scaling of the 
scheme coefficients while ensuring the time consistency of the resulting regularisation operator. This principle is extended 
in section 5 in order to incorporate the molecular dissipation into the filter scheme. In section 6, the numerical accuracy 
and stability of this new type of filtering, called “viscous filtering”, is analysed through spatial and temporal convergence 
tests. Then, DNS/LES results are presented in section 7 to assess the viscous filtering strategy in demanding computational 
configurations involving fully developed turbulence. The major advantage of viscous filtering, in terms of numerical stability, 
is clearly exhibited, as an efficient alternative strategy to time implicit integration of the viscous term. The main conclu-
sions are summarized in section 8 while drawing perspectives for further developments. Finally, an appendix is provided to 
clearly establish the close link between viscous filter and second derivative finite-difference schemes.

2. Filtering scheme and transfer function

Here, the filtering approach is considered in the framework of finite-difference schemes. For simplicity, the discretization 
is based on a regular mesh and the formalism is presented in 1D through the basic filtering operator expressed as

α f f̂ i−1 + f̂ i + α f f̂ i+1 = a f f i + b f
f i−1 + f i+1

2
+ c f

f i−2 + f i+2

2

+ d f
f i−3 + f i+3

2
+ e f

f i−4 + f i+4

2
(1)

with its associated transfer function

T (k�x) = a f + b f cos(k�x) + c f cos(2k�x) + d f cos(3k�x) + e f cos(4k�x)

1 + 2α f cos(k�x)
(2)

where f i = f (xi) are the values of a generic function f (x) on the nodes xi = (i − 1)�x, f̂ i are the filtered values and k
is the wavenumber. To provide a low-pass filter, it is common to impose the value of T (k�x) at the cutoff wavenumber 
kc = π/�x with for instance

T (kc�x) = 1 − σ (3)

where 0 ≤ σ ≤ 1. In the context of numerical simulation, the most popular choice is to fully remove the grid-to-grid 
wavelength using σ = 1.

2
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Fig. 1. Left: highly (α f = 0.49) and moderately (α f = 0.47) scale-selective filtering for σ = 1. Right: soft (σ = 0.25) and medium (σ = 0.75) filtering for 
α f = 0.47.

In addition to condition (3), Taylor’s expansion can provide extra constraints on the set of coefficients (α f , a f , b f , c f , d f ,

e f ) in order to reach a given order of accuracy, with

1 + 2α f = a f + b f + c f + d f + e f (�x2) (4)

2α f = b f + 4c f + 9d f + 16e f (�x4) (5)

2α f = b f + 16c f + 81d f + 256e f (�x6) (6)

2α f = b f + 64c f + 729d f + 4096e f (�x8) (7)

2α f = b f + 256c f + 6561d f + 65536e f (�x10) (8)

For the present 6 coefficient scheme, condition (3) expressed as

a f − b f + c f − d f + e f = (1 − σ)(1 − 2α f ) (9)

enables 10th-order accuracy.
If only 6th-order accuracy is desired, an option is to reduce the stencil of (1) by imposing e f = 0 while leaving free α f , 

this choice leading to the set of coefficients

a f = σ(10α f − 5) + 16

16

b f = σ(15 − 30α f ) + 64α f

32

c f = σ(−3 + 6α f )

16

d f = σ(1 − 2α f )

32
(10)

in which the very popular scheme of [28] corresponds to the assumption σ = 1 with a f = 11 + 10α f

16
, b f = 15 + 34α f

32
, 

c f = −3 + 6α f

16
and d f = 1 − 2α f

32
. For the more general scheme given by (10), the two control parameters of the filter 

behaviour are α f and σ . The former defines the scale-selectivity of the filtering whereas the latter specifies its attenuation 
level through its prescription on the grid-to-grid oscillations. These two features are illustrated in Fig. 1.

3. Functional role of solution filtering

Despite its name, as already mentioned in the introduction section 1, this type of filtering operator has no direct con-
nection with the filtering framework of the LES formalism. To make clear this essential point, let us consider

du

dt
= λu (11)

as a simple model equation of the DNS/LES governing equations. The complex variable λ can be defined to consider a 
generic convection/diffusion equation with λ = −ick − νk2 where ν is the molecular viscosity, c is the convective velocity 

3
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and u(k, t) is the solution expressed in the Fourier space. In LES based on solution filtering, the way to impose the filter is 
related to the time integration of this type of equation. In practice, the time advancement from tn to tn + �t is split into 
two steps, with

u∗ = un +
tn+�t∫
tn

λu dt (first step) , un+1 = T u∗ (second step) (12)

with un = u(k, tn) and un+1 = u(k, tn + �t). Assuming an exact time integration for the first step, these two steps can be 
summarized as

un+1 = T exp(λ�t)un (13)

to be compared to

un+1 = exp(λ�t)un (14)

obtained from the exact solution of (11). The application of the filter T every time step produces a damping corresponding 
to an artificial dissipation as long as 0 ≤ T ≤ 1. This is precisely the desired effect in LES through the expectation that it can 
represent the SGS influence in the spirit of implicit LES. The damping of small scales can also be a motivation for performing 
DNS while controlling spurious oscillations due for instance to aliasing errors [20] or to subdomain boundaries [29].

4. Equivalence with spectral vanishing viscosity

The comparison between the time advancement (13) with its exact counterpart (14) leads to the conclusion that the 
deviation of T from 1 corresponds to the numerical error introduced, on purpose, by the filtering. It is easy to show that 
(13) also corresponds to the exact time integration of (11) with λ = −ick − (ν + νs)k2 where νs can be interpreted as the 
SVV associated with the filtering. By the exact identification T = exp(−νsk2�t), the expression of νs can be obtained with

νs(k�x) = − ln T (k�x)

k2�t
(15)

This very simple relation clearly shows that solution filtering can be related to an equivalent SVV, at least in a framework 
where time errors are neglected.

A first remark connected to this equivalence is that the value T = 0 is a singularity for νs which becomes infinite. This 
singularity is obtained in particular at the cutoff wavenumber kc when σ = 1. Even if infinite values for νs are numerically 
feasible, it is difficult to relate them to any SGS contribution when interpreted in the framework of implicit LES. Another 
remark is related to the asymptotic behaviour of νs for vanishing time steps with formally

lim
�t→0

νs(k�x) = ∞ ∀k �= 0 (16)

Numerically, this second singular behaviour corresponds to a loss of time consistency. It can be easily understood by re-
marking that a solution filtering performed in the same way every time step produces a cumulative effect that is more and 
more pronounced as �t goes to zero [5].

Fortunately, both singularities can be easily avoided through a scaling of σ on the time step, enabling the application of 
one filtering to vanish as �t goes to zero. For this scaling, it is convenient to introduce the numerical viscosity ν0 which 
can be defined as the value of νs at the cutoff wavenumber with ν0 = νs(kc�x). This value can be chosen by reference to 
molecular viscosity ν as explained for instance in [4] where the ratio ν0/ν is estimated using a simplified closure of Lin’s 
equation in the context of implicit LES. Then, σ can be adjusted on a finite value of ν0 using expression (15) leading to

σ = 1 − exp
(
−ν0k2

c �t
)

(17)

This scaling of σ on �t can restore the time consistency of the solution filtering as an alternative to the rescaling technique 
proposed by [5]. It also enables the control of the numerical viscosity introduced by the solution filtering for any �t while 
avoiding to impose an infinite value at the cutoff wavenumber kc . Using the Fourier number

F = ν�t

�x2
(18)

it can be convenient to make nondimensional expression (17) with

σ = 1 − exp
(
−π2 ν0

ν
F
)

(19)

4
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Fig. 2. Left: Comparison between the reference SVV kernel and its equivalent counterparts associated to filter (1), (10) with σ = 1 or with the scaling (17)
and to filter [30] with σ = 1. Right: Comparison between the reference SVV kernel and its equivalent counterparts associated to filtering using (1), (26) or 
associated to the computation of second derivative [4]. Examples at ν0/ν = 10 and F = 0.001.

which shows that the scaled σ is only a function of ν0/ν and F . In the same way, the nondimensional counterpart of (15)
can be written as

νs(k�x)

ν0
= − ln T (k�x)

ν0

ν
Fk2�x2

(20)

To illustrate to what extent solution filtering is equivalent to SVV, the resulting νs(k�x) are compared in Fig. 2-left. Here, 
the reference SVV corresponds to the kernel

νs(k�x) =
⎧⎨
⎩

0 if k�x < mπ

ν0 exp

[
−

(
π−k�x

mπ−k�x

)2
]

if mπ ≤ k�x ≤ π
(21)

with the standard value m = 0.3. As expected, because of its singular behaviour at the cutoff wavenumber kc , the filter 
(1) based on coefficients (10) with σ = 1 is unable to mimic the standard SVV kernel. For this example, the filter is made 
highly selective with the value α f = 0.47 close to 0.5. Similar conclusions can be obtained from any filter based on the 
choice σ = 1. For instance, the optimized 6th-order filter of [30], despite its good behaviour at low wavenumbers, leads to 
very high values of equivalent spectral viscosity for k�x � 1. This behaviour can make highly intrusive the filtering when 
only moderate values of the numerical viscosity are required. On the contrary, the use of the scaling (19) with α f = 0.35
leads to a kernel close to the standard SVV with a finite value at the cutoff wavenumber kc as imposed by ν0/ν = 10 in the 
example presented in Fig. 2-left.

So far, only 6th-order filters have been considered using the set of coefficients (10). For reasons that will be explained 
in the following, we propose here to increase the formal order of the filter by adding the 8th-order condition while using 
the full stencil of scheme (1). The coefficients are determined using (4)-(7) and to control the shape of the kernel, two extra 
constraints can be imposed. Here, we choose to impose the transfer function at the cutoff wavenumber kc and at km = 2kc/3
with T (kc�x) = Tc and T (km�x) = Tm . These two extra constraints can be written as

a f − b f + c f − d f + e f = (1 − 2α f )Tc (22)

a f − b f

2
− c f

2
+ d f − e f

2
= (1 − α f )Tm (23)

where Tc and Tm are

Tc = exp
(
−π2 ν0

ν
F
)

(24)

Tm = exp

(
−4π2

9
c1

ν0

ν
F

)
(25)

with c1 ≈ 0.44 as given by the SVV kernel (21) at k = km . The system of 6 equations (4)-(7), (22), (23) with the 6 unknowns 
(α f , a f , b f , c f , d f , e f ) leads to the solution

α f = −256Tm + 81Tc + 175

−256Tm + 162Tc + 94

5
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a f = Tc(35Tm + 46) − 163Tm + 82

−128Tm + 81Tc + 47

b f = − Tc(56Tm − 137) + 200Tm − 119

−128Tm + 81Tc + 47

c f = Tc(28Tm − 28) − 28Tm + 28

−128Tm + 81Tc + 47

d f = − Tc(8Tm − 8) − 8Tm + 8

−128Tm + 81Tc + 47

e f = −Tm + Tc(Tm − 1) + 1

−128Tm + 81Tc + 47
(26)

where Tc and Tm are given by (24), (25) in which the input parameters are ν0/ν and F .
The spectral viscosity associated to filter (1) based on the set of coefficients (26) is presented in Fig. 2-right. It is found 

to be slightly less intrusive than the 6th-order filter at low wavenumbers while mimicking correctly the SVV kernel of 
reference. Interestingly, this spectral viscosity obtained from filtering is almost identical to the one introduced by the finite-
difference scheme proposed by [4] to compute second derivatives. This remarkable similarity between filtering and second 
derivative opens a way for designing a filter to fully mimic a second derivative, i.e. both its numerical and molecular 
dissipation. This is the subject of the next section.

5. Viscous filtering

In this work, we propose a new approach where the filter is designed to provide both the molecular and artificial 
dissipations. Thanks to this feature, the viscous term can be removed from (11) by using λ = −ick. In this way, both the 
artificial and molecular dissipation have to be included in T . To enable this feature, Taylor’s expansions must be performed 
by reference to the viscous kernel to obtain order conditions between the coefficients (α f , a f , b f , c f , d f , e f ). More precisely, 
the purpose is to approach the exact amplification factor associated with the purely diffusive case,

Tref = exp(−νk2�t) = exp
[
−F (k�x)2

]
(27)

with a given order of accuracy. Taylor’s expansions of (27), of the denominator and numerator of (2) lead respectively to

exp
[
−F (k�x)2

]
= 1 − F (k�x)2 + F 2(k�x)4

2! − F 3(k�x)6

3! + O (k�x)8, (28)

1 + 2α f cos(k�x) = 1 + 2α f

[
1 − (k�x)2

2! + (k�x)4

4! − (k�x)6

6!
]

+ O (k�x)8 (29)

and

a f + b f cos(k�x) + c f cos(2k�x) + d f cos(3k�x) + e f cos(4k�x) =

a f + b f

[
1 − (k�x)2

2! + (k�x)4

4! − (k�x)6

6!
]

+ c f

[
1 − 22(k�x)2

2! + 24(k�x)4

4! − 26(k�x)6

6!
]

+ d f

[
1 − 32(k�x)2

2! + 34(k�x)4

4! − 36(k�x)6

6!
]

+ e f

[
1 − 42(k�x)2

2! + 44(k�x)4

4! − 46(k�x)6

6!
]

+ O (k�x)8 (30)

Then, by identification order by order of (2) with (27), the following set of conditions is obtained with

1 + 2α f = a f + b f + c f + d f + e f (�x2)

2F (1 + 2α f ) + 2α f = b f + 4c f + 9d f + 16e f (�x4)

12F 2(1 + 2α f ) + 24Fα f + 2α f = b f + 16c f + 81d f + 256e f (�x6)

120F 3(1 + 2α f ) + 360F 2α f + 60Fα f + 2α f = b f + 64c f + 729d f + 4096e f (�x8) (31)

Naturally, for the inviscid case given by F = 0 (i.e. Tref = 1), conditions (4)-(7) are recovered. For the more general viscous 
case (F �= 0), as in the previous section, we have 6 coefficients (α f , a f , b f , c f , d f , e f ) subjected to the 4 conditions (31).

6
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Fig. 3. Comparison between the exact wavenumber and its modified counterparts associated to viscous filtering or to the computation of second derivative. 
Left: F = 0.001 (green-dashed curve). Right: F from 0.5 to 1 by step of 0.1 (from top to bottom green-dashed curves). (For interpretation of the colours in 
the figure(s), the reader is referred to the web version of this article.)

A first option is to remove 2 coefficients, with d f = e f = 0 in order to make more compact the resulting scheme. Contrary 
to a standard filter based on conditions (4)-(7), the present new type of filter, which can be designated as a viscous filter, is 
self-sufficient without requiring any extra condition to avoid the singular solution a f = 1, α f = b f = c f = 0. The solving of 
the corresponding system (31) leads to the set of coefficients

α f = − 30F 2 − 15F + 2

60F 2 + 60F − 11

a f = 180F 3 − 240F 2 + 171F − 22

120F 2 + 120F − 22

b f = −120F 3 − 120F 2 − 6F + 4

60F 2 + 60F − 11

c f = 60F 3 − 3F

120F 2 + 120F − 22
, d f = 0, e f = 0 (32)

The associated modified square wavenumber k′′ given by

k′′�x2 = − ln T

F
(33)

is compared in Fig. 3-left to the exact differentiation k′′ = k2 and to the modified square wavenumber of the very popular 
6th-order scheme of [28] for the computation of the second derivative. The almost perfect collapse between viscous filtering 
and second derivative suggest that these two finite-difference techniques can produce very similar results to represent 
physical diffusion. The former can be seen as the counterpart of the latter while including the time integration. This point 
will be discussed more in the next section and also in Appendix A.

The comparison presented in Fig. 3-left is based on a low value of the Fourier number F = 0.001. Lower values of F
would produce virtually identical k′′ . The use of higher values has to be discussed more carefully. First, it can be noticed 

that all the coefficients (32) become singular for the positive root of their denominator given by F =
√

390 − 15

30
≈ 0.158. 

In practice, in the neighbourhood of this singularity, the transfer function T (k�x) becomes erratic with strong deviations 
from its exact reference exp(−νk2�t) and sudden changes of sign (with vertical asymptotes) at particular wavenumbers k. 
In this range of F , this filtering technique becomes inoperable. In a more general way, because T (k�x) corresponds to the 
amplification factor in the context of von Neumann stability analysis, the present scheme is numerically stable if |T (k)| ≤ 1. 
To exhibit its numerical stability, the isocontour T = 1+ in the plane (k�x, F ) is presented in Fig. 4. A very thin unstable 
zone can be identified near the singularity F ≈ 0.158 suggesting to avoid the range 0.14 < F < 0.17. For higher values of F , 
another unstable zone can be noticed, starting from F > 1.35 at k = kc .

Even if the present scheme is numerically stable at F ≈ 1, it is worth to address its accuracy. For that purpose, a map 

of the error parameter k′′
err = k′′ − k2

k2
c

in the plane (k�x, F ) is presented in Fig. 5. Paradoxically, the unstable/inaccurate 

zone (plotted in red) near F ≈ 0.158 is surrounded by regions where the accuracy is slightly improved by reference to 
the error at low F . Outside the unstable/inaccurate range F ∈]0.14, 0.17[, low values F ≤ 0.14 provide similar accuracy. 
On the contrary, high values F ≥ 0.14 deteriorate the accuracy as F is increased, with a strong under-estimation of k′′ at 
high wavenumber k�x ∈ [π/2, π ]. This behaviour is also illustrated in Fig. 3-right in the range 0.5 ≤ F ≤ 1. Based on these 

7
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Fig. 4. Isocontour T = 1+ in the plane (k�x, F ). The red dashed line indicates the singular value F ≈ 0.158.

Fig. 5. Map of the error parameter k′′
err = k′′ − k2

k2
c

in the plane (k�x, F ). Saturated colormap for |k′′
err| > 1%.

observations, it is suggested that the useful ranges of Fourier number to ensure both stability and accuracy are F ≤ 0.14
and 0.17 ≤ F ≤ 0.5.

To avoid the singular behaviour of the scheme because of the root of its coefficient denominator, it can be decided to 
make it explicit (α f = 0) while extending its stencil (d f �= 0) in order to preserve the 8th-order accuracy. With these new 
constraints, solving system (31) leads to

a f = −60F 3 − 84F 2 + 49F − 18

18

b f = 10F 3 − 13F 2 + 6F

2

c f = −20F 3 − 20F 2 + 3F

10

d f = 30F 3 − 15F 2 + 2F

90
, α f = 0, e f = 0 (34)

A second alternative is to keep its implicit feature (α f �= 0) while using the stencil extension (d f �= 0) to ensure an extra 
constraint designed to impose the transfer function at kc as in (22). In that case, to take into account both the molecular 
and numerical viscosities, Tc is given by

Tc = exp
[
−π2

(ν0

ν
+ 1

)
F
]

(35)

instead of (24) which was designed to only mimic the numerical dissipation. These extra constraint combined with system 
(31) leads to the solution

α f = − 45Tc + 480F 3 − 600F 2 + 272F − 45

−90Tc + 960F 3 + 240F 2 − 416F + 90

a f = F 3(600Tc − 720) + F (145Tc − 561) − 90Tc + F 2(1158 − 390Tc) + 240F 4 + 90

−90Tc + 960F 3 + 240F 2 − 416F + 90

b f = − F 3(1800Tc − 240) + F (135Tc + 953) + 180Tc + F 2(−990Tc − 1362) + 240F 4 − 180

−180Tc + 1920F 3 + 480F 2 − 832F + 180

c f = − F 2(90Tc + 438) + F (81Tc − 81) + F 3(−360Tc − 720) + 240F 4

−90Tc + 960F 3 + 240F 2 − 416F + 90

8



E. Lamballais, R. Vicente Cruz and R. Perrin Journal of Computational Physics 431 (2021) 110115

Fig. 6. Left: Comparison between schemes (1), (34) and (1), (36) at 10% of the maximum stable Fourier number F (ν0/ν = 0). Right: Comparison between 
the reference SVV kernel and its equivalent counterparts associated to filtering using (1), (38) or to the computation of second derivative [4] (ν0/ν = 10
and F = 0.001).

d f = F (7Tc − 7) + F 2(78 − 30Tc) + F 3(−120Tc − 240) + 240F 4

−180Tc + 1920F 3 + 480F 2 − 832F + 180
, e f = 0 (36)

Both sets of coefficients (34) and (36) avoid any erratic behaviour around a singular value of F . The stability condition is 
more favourable for the scheme (1), (36) than for the scheme (1), (34) with F < 4.12 for the former and F < 0.84 for the 
latter. More importantly, at 10% of the maximum stable Fourier number, the scheme (1), (36) is significantly more accurate 
than the scheme (1), (34) as illustrated in Fig. 6-left.

Following the method presented in the previous section to control the shape of the SVV kernel introduced by the 
filtering, the last option presented here is to use the full stencil (d f �= 0 and e f �= 0) of scheme (1) while imposing the 
transfer function at kc and km through the two constraints (22), (23) where Tc is given by (35) and Tm by

Tm = exp

[
−4π2

9

(
c1

ν0

ν
+ 1

)
F

]
(37)

Then, solving system (31), (22), (23) provides the set of coefficients

α f = − 1280Tm − 405Tc + 1440F 3 − 3240F 2 + 2736F − 875

−1280Tm + 810Tc + 2880F 3 − 2160F 2 − 288F + 470

a f =

(
F (3520Tm + 855Tc − 4951) + F 3(3200Tm + 1800Tc − 1520)+
Tc(700Tm + 920) − 3260Tm + F 2(−4640Tm − 2430Tc + 5038) + 240F 4 + 1640

)

−2560Tm + 1620Tc + 5760F 3 − 4320F 2 − 576F + 940

b f =

(
F 2(2560Tm + 6210Tc + 6478) + F (256Tm − 4329Tc − 6871) − 4000Tm+
Tc(2740 − 1120Tm) + F 3(−2560Tm − 3960Tc − 1520) + 240F 4 + 2380

)

−2560Tm + 1620Tc + 5760F 3 − 4320F 2 − 576F + 940

c f = −

(
F (1792Tm − 2115Tc + 323) + F 3(1280Tm − 1800Tc − 1040) + 280Tm+
Tc(280 − 280Tm) + F 2(−2240Tm + 2970Tc + 598) + 240F 4 − 280

)

−1280Tm + 810Tc + 2880F 3 − 2160F 2 − 288F + 470

d f = −

(
F 2(2560Tm − 2430Tc + 2158) + F (256Tm + 855Tc − 1111)+
Tc(160Tm − 160) − 160Tm + F 3(−2560Tm + 1800Tc − 1520) + 240F 4 + 160

)

−2560Tm + 1620Tc + 5760F 3 − 4320F 2 − 576F + 940

e f =

(
F 2(160Tm − 270Tc + 478) + F (64Tm + 99Tc − 163)+
Tc(20Tm − 20) − 20Tm + F 3(−640Tm + 360Tc − 560) + 240F 4 + 20

)

−2560Tm + 1620Tc + 5760F 3 − 4320F 2 − 576F + 940
(38)

The corresponding SVV can be expressed using this time the exact identification T = exp[−(ν + νs)k2�t] in order to in-
corporate both the molecular and artificial dissipations while solving (11) with λ = −ick. Then, the counterpart of (15)
becomes

ν + νs(k�x) = − ln T (k�x)

k2�t
(39)

9
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or equivalently in nondimensional form

νs(k�x)

ν0
= − ln T (k�x)

ν0

ν
Fk2�x2

− ν

ν0
(40)

As in the previous section, when compared with the approach of [4] based on the explicit computation of the viscous term 
while boosting it artificially at small scales, the present viscous filtering method can lead to virtually identical spectral 
viscosity as shown in Fig. 6-right. Both approaches can behave like SVV with an equivalent flexibility through the choice of 
the input parameters ν0/ν and c1 to shape the associated kernel. In terms of stability, the extra constraint at km introduces 
an unstable range 0.023 < F < 0.64. For higher values of F , numerical stability is ensured as long as F < 7.94 but with a 
strong loss of accuracy (not shown for conciseness). Even if the stability condition F < 0.023 is more restrictive than for 
schemes (34) and (36), it is not at all penalizing in many DNS/LES applications where the typical values of Fourier numbers 
are clearly smaller.

By comparison to conventional filtering, the present viscous filtering technique enables the bypass of the viscous term 
and then the saving of computational time. But in terms of computational efficiency, the main advantage of viscous filtering 
lies in its robustness for large values of the Fourier number F . This fundamental point is discussed in the following section 
through an analysis of the formal accuracy and numerical stability of this new approach.

6. Accuracy analysis

To validate the present viscous filtering procedure while exhibiting its main accuracy features, the standard convec-
tion/diffusion equation

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
(41)

is solved where u(x, t) is the solution expressed in the physical space. With the initial condition

u(x,0) = exp

[
−

(
x − Lx/2

σx

)2
]

(42)

this equation has an exact solution with

u(x, t) =
√

σ 2
x

σ 2
x + 4νt

exp

[
− (x − ct − Lx/2)2

σ 2
x + 4νt

]
(43)

where Lx is the computational domain considered. The problem is solved using periodicity in x while considering a narrow 
Gaussian with σx = Lx/40 to make negligible the role of the boundary condition for the deviation from the exact solution 
(43) subjected to same periodicity. Using the nondimensionalisation Lx = 1 and c = 1, the viscosity considered is ν = 1/1000
and the equation is solved up to t = 1.

In this section, we want to address the general features of the viscous filtering by comparison to the conventional ap-
proach where the viscosity effects are described through the computation of the right hand side of equation (41) using 
a finite-difference scheme for the computation of the second derivative. For this classical way to take viscous effects into 
account, we will refer to explicit diffusion. As generic viscous filter operator, only the scheme given by the set of coeffi-
cients (36) is considered for conciseness. In the same way, as generic second derivative scheme, only the 6th-order scheme 
reported in [23] is used for comparisons. These two schemes are expected to behave very closely as it was observed in 
the previous section and as it will be checked practically in this section. To reduce the spatial differentiation errors, both 
schemes are scaled to provide a very small amount of numerical dissipation using ν0/ν = 0. This choice to consider only 
these two schemes is for conciseness reasons. Fundamentally, all the comparisons discussed in what follows can be trans-
posed for other numerical parameters (accuracy order, stencil, imposition of Tc and Tm , etc.) provided that the viscous filter 
is compared to its counterpart for the computation of the second derivative.

6.1. Spatial accuracy

First, the spatial accuracy is addressed by using a very small time step �t making negligible the error due to the time in-
tegration. For the conventional approach, the advancement is entirely based on a 3rd-order Adams-Bashforth (AB3) scheme. 
For the technique based on viscous filtering, the AB3 scheme is only used for the convective term while representing the 
diffusion by the application of the viscous filter operator on the computed solution every time step as explained in sec-
tion 3. In both cases, the spatial differentiation of the convective term is performed using the same 6th-order compact 
finite-difference scheme (see [28,31] for information on this standard centred scheme for the computation of first deriva-
tive).

10
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Fig. 7. Spatial convergence for diffusion (c = 0) and convection/diffusion (c = 1) equations. Comparison between the present viscous filtering technique and 
the conventional explicit computation of the diffusion term. Three spatial resolutions are considered with �x = Lx/nx and nx = 256, 512, 1024.

The spatial convergence obtained in each case is shown in Fig. 7 by considering both the convective/diffusive (c = 1) and 
purely diffusive (c = 0) situations. Three spatial resolutions have been considered with �x = Lx/nx where nx is the number 
of mesh nodes with nx = 256, 512, 1024. The remarkable matching of the L2-norm at any spatial resolution clearly confirms 
that the present viscous filtering technique can mimic almost perfectly an explicit diffusion. A 6th-order accuracy is well 
recovered. This accuracy order of the viscous filter (1), (36) is expected in view of the almost perfect collapse between 
modified wavenumbers as illustrated in Fig. 3.1 However, the 6th-order accuracy may seem like a contradiction in view 
of the order conditions checked up the 8th order as expressed in (31). In practice, it is worth noting that the 8th-order 
accuracy is ensured only if F is kept constant with the same number of time steps. For the present investigation of spatial 
convergence based on a constant time step �t while computing the L2-norm at the same time t = 1, the variation of 
F , as �x is reduced, introduces a division by �x2 of the numerical error, explaining the 6th-order accuracy observed in 
the present tests of spatial convergence. This is the reason why a �x8 formulation corresponds in practice to a 6th-order 
accuracy in terms of spatial convergence. Note that it can be checked that the computation of the L2-norm based on a 
spatial convergence at F = cst with the same number of time steps leads to L2-norm ∝ �x8 as expected (not shown for 
conciseness). In Appendix A, the reason of this reduction by �x2 of the formal order is exhibited analytically.

6.2. Temporal accuracy

The accuracy in time of the two strategies, namely the viscous filtering and the explicit diffusion, is more difficult 
to assess. This difficulty is related to the impossibility to make negligible the contribution of the spatial error. For the 
conventional method based on the explicit computation of the diffusion term, in the framework of von Neumann analysis, 
it is well known that numerical stability is ensured only if

F <
σr

k′′
max�x2

(44)

where k′′
max�x2 is the maximum of the modified square wavenumber while σr is a feature of the time advancement scheme 

with σr = 6/11 for the AB3 scheme used in this study [32]. In the present formalism, k′′
max�x2 = (1 + ν0/ν)π2 leads to the 

Fourier stability condition

F <
6

11(1 + ν0/ν)π2
(45)

which reads F � 0.055 for ν0/ν = 0. Close to this critical value, thanks to the accuracy of the AB3 scheme, the main 
contribution to the numerical error comes from the spatial discretisation. A mesh refinement while keeping constant �t
is a way to remove progressively the spatial differentiation error by comparison to the temporal error, but the resulting 
higher value of F leads to numerical instability, making impossible the evaluation of the time accuracy. To ensure numerical 
stability, a mesh refinement by a factor 2 requires a reduction of the time step by a factor 4 because of the scaling of F on 
1/�x2. Then, for the present combination (�x6, �t3), the balance between time and spatial errors is kept constant, making 
impossible a time convergence analysis based on a negligible contribution of the spatial differentiation error.

To overcome this difficulty, the present assessment is based on local accuracy. The principle of local accuracy analysis 
is to estimate the numerical error introduced only by one time step (nt = 1), in contrast to global accuracy for which the 

1 Fig. 3 actually compares the modified wavenumber of the viscous filter (32) with its second derivative counterpart, but the same agreement (not shown 
for conciseness) can be obtained for the viscous filter (36) used in the present validation.
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Fig. 8. Local time convergence exhibited as a scaling in F . Left: diffusion (c = 0) equation. Right: convection/diffusion (c = 1) equation. Comparison between 
the present viscous filtering technique and the conventional explicit computation of the diffusion term. The blue dashed line indicates the stability limit of 
the AB3 scheme F � 0.055.

numerical convergence is examined by considering the solution at a given time t while decreasing the time step �t (i.e. by 
increasing the number of time steps nt with t = nt�t). The advantage of local accuracy analysis is that it is not restricted to 
the stability zone of the scheme, enabling the investigation of high values of F . In present analysis, this convenient property 
can be used to make negligible the contribution of spatial errors. Local accuracy is connected to global accuracy such that 
a �tn-accurate time scheme exhibits a local convergence proportional to �tn+1. As a consequence, for the present AB3 
scheme, a �t4 local convergence is expected. To check this scaling, equation (41) has been advanced in time for one time 
step �t using a spatial resolution with nx = 512. To relate more easily the range of considered �t with the AB3 stability 
condition F � 0.055, the convergence is exhibited as a scaling in F , a global 3rd-order accuracy corresponding to a F 4

scaling.
Fig. 8 compares the local time convergence of the present viscous filtering technique with the conventional approach 

where the viscous term is computed explicitly by spatial differentiation (second derivative). To start this analysis, the simpler 
case of the pure diffusion (c = 0) is first addressed. For the explicit diffusion, two zones can be distinguished in Fig. 8-left. 
From very small F to F ≈ 0.05, a scaling in F can be clearly noticed. It corresponds to a lack of numerical convergence 
in terms of global accuracy. This behaviour corresponds to the situation already discussed for which the spatial errors 
completely dominate the time errors, preventing any convergence in time. At higher F , a scaling in F 4 is established, 
confirming the 3rd-order accuracy of the AB3 scheme. In this second zone, beyond the stability region, it can be considered 
that the contribution of spatial error is negligible.

The behaviour of the time error for the viscous filtering also exhibits the non-convergence zone at small F but reveals 
a more complex behaviour for F � 0.05. Fortunately, the more or less erratic behaviour of the time error with F in the 
range 0.1 � F � 1 corresponds to an increase of the accuracy. A more regular dependency on F is recovered for F � 1
with a scaling close to F 4 corresponding to a global 3rd-order accuracy. The lack of a clear scaling in F is an expected 
result because of the entanglement between time and spatial errors which is an essential feature of the present viscous 
filter scheme. The present analysis shows that this feature is not a drawback thanks to the resulting time accuracy which 
is clearly improved by comparison to the AB3 scheme. In the zone where time error dominates, namely for F � 0.05, 
the improvement corresponds to a reduction of about one order of magnitude in the error. At lower F , this reduction is 
gradually removed, as the contribution of the time error by comparison to the spatial error, but the viscous filtering remains 
the most accurate approach. As a first conclusion, for the purely diffusive case, it can be stated that the viscous filtering 
technique is more accurate in time than the AB3 scheme. This feature is of secondary importance at low F for which spatial 
error dominates. At higher F , the accuracy improvement is a favourable property that supplements the numerical stability 
which is already a major advantage.

The convective/diffusive case (c = 1) must be considered more carefully. In this situation, both approaches (viscous 
filtering and explicit diffusion) require the time integration of the convective term. For the present technique based on 
viscous filtering, the way to accurately combine the time integration of the convective term and the application of the filter 
(in which the time integration is embedded) needs to be clarified. In the general case, the convective term may be non-
linear requiring an approximation for the time advancement. The corresponding generic equation, written in the Fourier 
space, reads as

du

dt
= F (u) − νk2u (46)

To integrate this equation in time, a simple option is to treat the two terms on the right hand side using the same scheme, 
with, in the case of an explicit multi-step scheme
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un+1 = un + �t
p∑

i=0

ai

[
F (un−i) − νk2un−i

]
(47)

for which the AB3 scheme coefficients are given by p = 2, a0 = 23/12, a1 = −16/12 and a2 = 5/12. This technique, referred 
here as the conventional strategy, does not require any filtering given the explicit computation of the diffusion term.

If one desires to integrate exactly the viscous term while approximating the non-linear term with a multi-step scheme, 
it may be tempting to split the time advancement into two steps with

u∗ = un + �t
p∑

i=0

ai F (un−i) (48)

un+1 = exp(−νk2�t)u∗ (49)

The drawback of this approach is that a time splitting error is introduced preventing from considering as exact the time 
advancement of the viscous term in the second step (49). To integrate exactly the viscous term, equation (46) can be 
multiplied by the so-called integrating factor [33,34] exp(νk2t) leading to

d[u exp(νk2t)]
dt

= F (u)exp(νk2t) (50)

Then, the time advancement scheme no longer requires a splitting with

un+1 exp(νk2tn+1) = un exp(νk2tn) + �t
p∑

i=0

ai exp(νk2tn−i)F (un−i) (51)

or, after division by exp(νk2tn+1),

un+1 = exp(−νk2�t)

[
un + �t

p∑
i=0

ai exp(−iνk2�t)F (un−i)

]
(52)

Expressed into two steps, as a more convenient way to implement it, this time advancement can be written as

u∗ = un + �t
p∑

i=0

ai exp(−iνk2�t)F (un−i) (53)

un+1 = exp(−νk2�t)u∗ (54)

without introducing any time splitting error.
The exact amplification factor (27) is recovered in these two steps. Because the present approach consists in the approxi-

mation of this amplification factor by a discrete filtering operator of transfer function T , the analogues of the two-step time 
advancements (48), (49) and (53), (54) are respectively

u∗ = un + �t
p∑

i=0

ai F (un−i) (55)

un+1 = T u∗ (56)

and

u∗ = un + �t
p∑

i=0

ai T
i F (un−i) (57)

un+1 = T u∗ (58)

The advantage of (55), (56) is that it only requires one filtering per time step. In the present framework of finite-difference 
schemes, the computational cost of this type of filter is equivalent to that of a second derivative, avoiding any extra-cost 
due to the viscous filtering strategy. The drawback is the time splitting error resulting in a loss of time accuracy. The time 
advancement (57), (58), free from any time splitting error, is more accurate but also more expensive through the need to 
filter three times per time step for an AB3 scheme: twice in (57) and once in (58). By comparison to the computation of 
one second derivative, the extra-cost is 200%. This may be seen as very penalizing, but as it will be discussed in the next 
session, when implemented in a full Navier-Stokes solver, the relative extra-cost brought about by the viscous filtering is 
much lower while offering very advantageous features in terms of numerical stability.
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Fig. 8-right presents the local convergence obtained for the convection/diffusion equation. For the present balance be-
tween convection and diffusion given by c = 1 and ν = 1/1000, the time accuracy is mainly driven by the time integration of 
the convective term. As a consequence, schemes (47) and (57), (58) are close to each other with a global 3rd-order accuracy 
(i.e. a scaling of the local error in F 4) provided by the AB3 scheme for F � 0.01. For lower values of F , the time convergence 
saturates because of the spatial errors as indicated by the scaling in F . The loss of accuracy using the scheme (55), (56) is 
clearly exhibited in Fig. 8-right with a scaling in F 2 (i.e. global 1st-order accuracy) in the extended range 10−5 � F � 1. For 
the present accuracy analysis performed with very low spatial errors, the superiority of scheme (57), (58) by comparison 
to scheme (55), (56) is clearly shown. However, the time splitting error of scheme (55), (56) can become insignificant in 
the context of multidimensional non-linear governing equations. The generalisation of present viscous filtering in this more 
demanding context is the main subject of the next section.

7. DNS/LES results

In this section, the present viscous filtering technique is used to perform DNS/LES of two academic turbulent flows. 
The corresponding scheme has been implemented in the finite-difference code Incompact3d that numerically solves the 
incompressible Navier-Stokes equations. This code is massively parallel and 6th-order accurate in space when free-slip or 
periodic boundary conditions are used, as in the present study. The computational mesh is Cartesian with nx ×ny ×nz nodes 
regularly distributed in the domain Lx × L y × Lz .2 For more information about this code, the reader is referred to [31,35,36]
and also to [37] for an extension of its capabilities in the new framework called Xcompact3D.

The implementation of the viscous filter in Incompact3d was straightforward thanks to the generic form of the finite-
difference scheme (1). The only sensitive point is to carefully code the sets of coefficients, e.g. (36) or (38), as functions of 
F and ν0/ν given the dependency of Tc and Tm on these two parameters. Note that these two sets of coefficients preserve 
the 6th-order accuracy of Incompact3d.

When the Navier-Stokes equations are solved in the conventional way through the explicit computation of the second 
derivatives in the viscous term while integrating in time the governing equations as in (47), we will refer to “Navier-
Stokes” results. When the viscous filtering is used, because the viscous term is removed from the governing equations, the 
corresponding results will be designated by the term “Euler+VF” with VF designating Viscous Filtering. More precisely, we 
will make the distinction between “Euler+VF1” and “Euler+VF3” to refer to a time advancement based respectively on one 
VF (55), (56) or three VF (57), (58) operations per time step.

In what follows, the goal is to assess the concept of viscous filtering in the general framework of high-fidelity simulation 
of turbulent flows. Subsection 7.1 is mainly a validation based on a widely documented fundamental flow in order to 
show the remarkable equivalence between a computation based on “Navier-Stokes” or “Euler+VF” formulations. Then, a 
problem with wall turbulence and heat transfer is addressed in subsection 7.2. The equivalence between “Navier-Stokes” 
and “Euler+VF” formulations is also well recovered, but more importantly, the interest of “Euler+VF” approach is evidenced 
through its high computational efficiency for numerical stability reasons.

7.1. Taylor-Green Vortex problem

In this subsection, the Taylor-Green Vortex (TGV) problem is used as a benchmark to assess the present viscous filter-
ing technique. The corresponding solution is triperiodic in a cubic domain (2π)3. Two Reynolds numbers Re = 1/ν are 
addressed from t = 0 to t = 20. In this time interval, the flow is subjected to a strong turbulent breakdown up to a fully 
developed state of turbulence. Formally, the low Reynolds number case Re = 1250 may not be seen as turbulent because 
of the deterministic nature of the flow evolution. However, a multiscale state is well established at t = 20, as an important 
feature in common with turbulence. The advantage of the deterministic dynamics is that it enables an easy assessment 
of the numerical accuracy based on instantaneous states obtained by DNS. For the higher Reynolds number Re = 10000
considered, this attractive feature is lost because of non-deterministic evolution of the flow after the turbulent breakdown. 
In this second framework, the LES capabilities of the present viscous filter will be examined more qualitatively.

At Re = 1250, using a spatial resolution of 4803 nodes,3 the DNS accuracy is fully reached. Fig. 9-left compares the 
time evolution of the kinetic energy Ek for the conventional “Navier-Stokes” strategy and for the present “Euler+VF1” and 
“Euler+VF3” alternatives. The former is based on the second derivative scheme documented in [23] whereas in the two lat-
ter cases, the viscous filter is given by (1), (36). As already mentioned and checked in section 6, these two finite-difference 
schemes are expected to behave almost identically for the discrete representation of viscous effects as well as the slight 
artificial dissipation using ν0/ν = 3 to control aliasing errors. The collapse between the three curves in Fig. 9-left confirms 
this point. The viscous dissipation, that drives the free decay of this turbulence problem, is found to be numerically equiv-
alent for the three approaches. Thanks to the deterministic nature of the flow, defining the reference solution as the one 
obtained from the “Navier-Stokes” formulation, the relative deviation Ek−Ek ref

Ek ref
can be monitored throughout the simulation. 

2 The mesh refinement in one direction, enabled by Incompact3d, is not used here.
3 The symmetries of the problem have been used to reduce by a factor 8 the number of degrees of freedom actually computed in the impermeable 

sub-box π3.
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Fig. 9. Time evolution of the kinetic energy Ek (left) and its relative error Ek−Ek ref
Ek ref

in % (right).

Fig. 10. Kinetic energy spectra E(k) (left) and its absolute error |E(k) − E(k)ref| (right) at t = 14.

Fig. 9-right compares the time evolution of this deviation. For the “Euler+VF1” case, the maximum deviation of about 0.045% 
remains acceptable without compromising the DNS accuracy. However, it can be observed that the “Euler+VF3” strategy en-
ables a drastic improvement of the agreement with the reference solution through a reduction of the maximum deviation 
by more than 300. This behaviour is consistent with the results reported in subsection 6.2 where the clear improvement of 
accuracy was observed using the time advancement scheme (57), (58) by comparison to (55), (56).

The “Euler” case is also presented in Fig. 9 to exhibit the behaviour of the code Incompact3d when computing a discrete 
solution free from any viscous effect. Thanks to the use of the skew-symmetric form for the convective terms, this code can 
ensure the kinetic energy conservation up to the time integration error. Using the same time step as for the three other 
cases, a slight decrease of Ek can be observed beyond the start of the turbulent breakdown due to the time error associated 
to the AB3 scheme. The use of a smaller time step can easily make insignificant this deviation from a pure kinetic energy 
conservation (not shown).

The multiscale dynamics produced at t = 14, after the turbulence breakdown, is illustrated in Fig. 10-left where the 
kinetic energy spectra E(k) are presented. For the “Euler” case, a flat spectrum corresponding to a white noise can be clearly 
observed, as expected. The excellent agreement between the three other strategies is well recovered on the whole range of 
wavenumbers k, confirming practically the equivalence between the present viscous filtering and the conventional technique 
where the viscous term is computed explicitly. The quality of this agreement is particularly remarkable at the smallest scales 
captured by the computational mesh, i.e. at k ≈ 240. A scale-by-scale estimation of the difference between these two basic 
approaches can be provided by plotting the absolute deviation |E(k) − E(k)ref| at any computed wavenumber k for the 
present mesh resolution (see Fig. 10-right). The maximum deviation of about 10−4 can be considered as satisfactory for the 
“Euler+VF1” case. If a higher accuracy is expected, the use of “Euler+VF3” enables a spectacular improvement as shown by 
Fig. 10-right with a reduction by about two orders of magnitude of the deviation |E(k) − E(k)ref| in this case.

The capability of the viscous filtering technique is now addressed in the context of LES. For that purpose, a higher 
Reynolds number is considered with Re = 10000. The reference results are from a DNS performed at the resolution 20483

whereas the corresponding LES are based on meshes reduced by a factor 8 or 16 in every direction with 2563 and 1283

nodes respectively. These two levels of mesh refinement are referred as high-resolution (HR) and low-resolution (LR). By 
comparison to DNS, their associated reduction of the number of degrees of freedom corresponds to a drastic decrease of 
the computational cost with a division by a factor of about 4000 for HR LES and more than 65000 for LR LES. Both LES 
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Fig. 11. Left: time evolution of the kinetic energy dissipation εt . Right: kinetic energy spectra E(k) at t = 14.

configurations can be considered as challenging in terms of SGS modelling quality, with naturally a stronger demand for LR 
LES.

A comparison between HR LES and DNS results is presented in Fig. 11 for the dissipation εt (left) of the kinetic energy 
Ek and for its spectrum E(k) at t = 14 (right). The observation of dissipation, estimated as

εt = −dEk/dt (59)

by finite difference, enables a closer analysis of the differences between one result to another. The HR LES results of [4] are 
also included in the comparison. This calculation of reference has been performed using an implicit SVV as SGS model. For 
this approach, belonging to the family of implicit LES, the artificial dissipation is provided by a boost of the second derivative 
at small scales [23,4] while shaping the modified wavenumber to mimic SVV. For the present HR LES, the counterpart 
of this technique is used through a viscous filtering based on the set of coefficients (38) while using the same level of 
numerical dissipation with ν0/ν = 63. Despite the non-deterministic behaviour of the flow at this Reynolds number, an 
excellent matching can be observed in Fig. 11 between present results and those from [4]. The time evolution of εt is in 
good agreement with the DNS results of reference as well as the kinetic energy spectrum E(k) in the wavenumber range 
0 ≤ k � kc/2 as already reported in [4]. In the second part of the spectrum kc/2 � k ≤ kc , the damping of E(k) is almost 
identical for the reference LES [4] (referred as “Navier-Stokes LES”) and for both cases “Euler+VF1” and “Euler+VF3” LES. This 
is the practical confirmation that the present viscous filtering technique can be used in the context of implicit LES as the 
counterpart of implicit SVV initially introduced by [23,4] through the computation of second derivatives in the viscous term.

An attractive feature of this remarkable correspondence is that it provides a way to explicitly estimate the kinetic energy 
dissipation provided by the viscous filtering. As explained in [4], the estimation of εt can be based on the computation of 
second derivatives with

εt = −ν

〈
ui

∂2ui

∂x j∂x j

〉
(60)

using the counterpart scheme of present viscous filtering technique. Estimations of εt given by (59) or (60) are virtually 
identical as shown in Fig. 12-top-left where the symbols are superimposed on the curve. The availability of an accurate pro-
cedure to estimate the total dissipation εt (i.e. including its artificial component) is a clear advantage of the present viscous 
filtering technique. For instance, in the production of turbulent budgets, it is common to estimate the contribution of the 
artificial dissipation as the residual term assuming that budgets are perfectly balanced. With the present approach, the total 
dissipation can be explicitly estimated and thus this assumption is no longer required, enabling the analysis of unbalanced 
budget in transient turbulent states (as for the present TGV flow) or to estimate the lack of statistical convergence when a 
stationary state is reached.

A slight loss of quality can be observed in Fig. 12 (bottom) for the LR LES results. However, it is worth noting that despite 
the coarse mesh, the present implicit SGS modelling enable to capture the peak of dissipation with an acceptable accuracy. 
This means that the brutal kinetic energy cascade during the turbulent breakdown is correctly taken into account by the 
hyperviscous filtering, as far as the time evolution of the kinetic energy is concerned. The shape of the spectrum E(k) is 
qualitatively similar for LR LES by comparison to HR LES (see Fig. 12-right-bottom) with a comparable fall from kc/2 to kc . 
It must be noted that the reduction of the spatial resolution requires to increase the numerical viscosity with ν0/ν = 182
for LR LES against ν0/ν = 63 for HR LES. These two values are predicted by the very simple Pao-like closure proposed by [4]
to choose the level of artificial dissipation knowing the ratio between the LES and DNS cell sizes. Here, this ratio is 8 and 
16 for HR and LR LES respectively, leading to the aforementioned values of ν0/ν . The similar damping of the second part of 
the spectrum for HR and LR LES suggests that these predicted values are physically consistent while being transposable to 
the present hyperviscous filter operator.
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Fig. 12. Left: time evolution of the kinetic energy dissipation εt . Right: kinetic energy spectra E(k) at t = 14. Top: high-resolution LES. Bottom: low-
resolution LES. The case “Navier-Stokes+IF1 has been performed using the optimized 6th-order filter of [30].

Let us consider now the use of filtering in combination with the explicit computation of the viscous term in Navier-Stokes 
equations. In that case, the filtering has to vanish at large scales, so that this approach can be referred as “Navier-Stokes+IF1” 
with IF for “Inviscid Filtering”. For conciseness, only the case with one filtering per time step is considered as it is commonly 
used in the literature. As inviscid filter, an option could be to use the set of coefficients (26) in combination with a conven-
tional scheme for the computation of second derivatives. In practice, because this strategy would be less computationally 
efficient by comparison to the present viscous filtering technique while being equivalent in terms of accuracy, this specific 
combination is not addressed. As an example of “Navier-Stokes+IF1” case, a filter fully removing the grid-to-grid wavelength 
is used with σ = 1. This is, by far, the most popular choice when the filtering solution strategy is used in DNS/LES. The 
filter developed by [30] is chosen for its good features of spectral vanishing at low wavenumber as illustrated in Fig. 2-left. 
The results of the corresponding calculation are presented in Fig. 12 for the time evolution of εt (left) and for the kinetic 
energy spectrum E(k) at t = 14 (right). Despite the favourable scale-selective features of the filter from [30], the prediction 
of the total dissipation εt is found to be of lower quality by comparison to “Euler+VF1” LES, the latter being less expensive 
thanks the dispense of second derivative computation. For HR LES, the phase of turbulent breakdown around the secondary 
peak of dissipation at t ≈ 12 is not correctly captured. Even the first peak of dissipation, corresponding to early transition, 
is less accurately predicted by “Navier-Stokes+IF1” HR LES. This loss of accuracy, significantly magnified for LR LES, may be 
attributed to the too invasive influence of the filtering at small scales. This behaviour is well illustrated in Fig. 12-right by 
the abrupt fall of E(k) due to the use of σ = 1 that corresponds to an infinite value of the numerical viscosity ν0 because of 
the full removing of turbulent scales at kc . This intrusive effect at small scales is consistent with the equivalent SVV kernel 
presented in Fig. 2-left. A more gradual scale-selection of numerical dissipation seems to be a preferable option, with in 
particular a finite value for ν0.

A fundamental issue is the evaluation of the actual role of the artificial dissipation while relating it to what can be 
expected from a SGS model. The simplest way to assess the activity of any SGS modelling, whether implicit or explicit, is 
to switch off the model and then observe the consequences on the results. This type of calculation can be referred as “no 
model” LES. For the present approach, no model means that no filtering is applied while using a conventional scheme, free 
from any artificial dissipation, for the computation of second derivatives. For both HR and LR LES, the lack of regularisation 
is found to lead to very inaccurate results. The loss of accuracy can be directly observed on the time evolution of the 
kinetic energy, with in particular a clear overestimation of the dissipation (see Fig. 12-left). As expected, no model LR LES 
results are worse than their HR LES counterparts. An examination of instantaneous solutions (not shown) reveals that no 
model LES solutions are subject to small-scale oscillations. These spurious oscillations tend to magnify the viscous friction, 
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Fig. 13. Time evolution of the viscous large-scale kinetic energy dissipation εL S and of its SGS counterpart εSG S with εt = εL S + εSG S . Left: high-resolution 
LES. Right: low-resolution LES.

explaining the paradox that the lack of artificial dissipation leads to an overdissipative behaviour. The signature of these 
unphysical oscillations on the spectrum E(k) can be observed in Fig. 12-right as a pile-up of kinetic energy in the spectral 
range kc/2 � k ≤ kc , especially for LR LES for which E(k) becomes almost flat in an extended range of k, indicating the 
establishment of an unphysical white noise which can be seen as a partial thermalization of the flow.

Another way to assess the role of the artificial dissipation is to estimate its relative contribution to the total dissipation. 
Here, we propose to make indirectly this estimation by computing first the viscous large-scale dissipation εL S . Then, in 
agreement with the standard definitions of SGS modelling, the SGS dissipation εSG S can be defined as εSG S = εt −εL S where 
εt is the total dissipation provided by the hyperviscous filtering as a sum of its artificial (equated with SGS contribution) 
and viscous (equated with large-scale contribution) parts. A reasonable choice to estimate εL S is to use a standard second 
derivative scheme free from extra dissipation to compute the right-hand side of (60). Because these estimations are based 
on LES results, they can be referred as a posteriori analysis. To check their reliability, an a priori analysis based on raw 
and filtered DNS data has also been performed. For that purpose, the same methodology as in [38] has been carried out, 
enabling to provide an a priori estimation of both εL S and εSG S . The filtered DNS data are generated consistently with the 
numerical dissipation through the use of a simplified spectral closure as explained in [4]. For both HR and LR LES, a good 
agreement is obtained between these a posteriori and a priori estimations as shown in Fig. 13. Because this agreement is 
obtained without any constant adjustment, it can be considered as successful. Both a priori and a posteriori analyses confirm 
that even HR LES is quite challenging in the sense that εSG S can correspond, during the turbulent breakdown, to more than 
60% of εt . For LR LES, this relative contribution of the SGS dissipation to the total dissipation can reach more than 80%. This 
is a clear confirmation, consistent with the no model results, that the present type of implicit SGS modelling plays a major 
role.

To conclude this subsection, let us compare the computational efficiency of “Euler+VF” and “Navier-Stokes” DNS/LES. 
In the code Incompact3d, the Euler (i.e. the convection and pressure terms) and viscous parts require the computation 
of 24 first and 9 second derivatives respectively. Removing the viscous term while applying a viscous filtering once every 
time step (referred here as “Euler+VF1”) simply consists in the substitution of these 9 second derivatives by the 9 one-
dimensional filter operations (i.e. one by direction) without impacting the computational cost. If the more time accurate 
strategy “Euler+VF3” is adopted, the extra application of 18 one-dimensional filters results in an increase of about +56% of 
the computational cost. Viewed in this perspective, the viscous filtering technique does not present any advantage by com-
parison to the traditional solving of Navier-Stokes equations. It can only be said that the “Euler+VF1” approach reduces the 
computational cost by about −21% by comparison to the conventional “Navier-Stokes+IF1” strategy thanks to the dispense 
of computation of the 9 second derivatives in the viscous term.

Because the strongest time step restriction comes from the CFL condition in the present DNS/LES of TGV, there is no in-
terest in using a viscous filtering as a way to relax the viscous stability condition. In the next subsection, a more challenging 
situation is addressed where the stability limit is mainly dictated by the time integration of the viscous term.

7.2. Turbulent pipe flow

As a second computational configuration, DNS of a turbulent pipe flow at low and high Reynolds numbers are addressed. 
Again, the code Incompact3d is used with the solving of an extra governing equation for a passive scalar in order to provide 
heat transfer predictions. The computational domain Lx × L y × Lz is discretized using a regular Cartesian mesh of nx ×ny ×nz
nodes despite the cylindrical geometry which is modelled thanks to an immersed boundary method customised for Incom-
pact3d [39]. This computational configuration enables the imposition of periodic boundary conditions in the streamwise z
as well as in the transverse x, y directions.

The physical boundary conditions imposed at the pipe wall are no-slip for the velocity and mixed-type for the temper-
ature [40]. Numerically, both can be treated as Dirichlet-type boundary conditions. Defining the Reynolds number on the 
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Fig. 14. Schematic view of the computational configuration of the pipe flow. Hatched zone indicates the solid region modelled by a customised immersed 
boundary based on solution reconstruction inside the solid [39].

bulk velocity Ub and the pipe diameter D , its two addressed values are Re = (5300, 37700) at the same Prandtl number 
Pr = 0.71. For the Reynolds numbers based on the friction velocity uτ , the two related nominal values are Reτ = 180, 1000. 
The streamwise length of the computational domain is the same for both Reynolds numbers with Lz = 12.5D; concerning 
the transverse dimensions, at Re = 5300 a slightly larger size is used with Lx = L y = 1.28D against Lx = L y = 1.12D at 
Re = 37700. This adjustment of the computational domain enables us to ensure a minimum number of nodes inside the 
solid region that corresponds to the pipe wall thickness tw with tw ≈ 0.075D at Re = 5300 and tw ≈ 0.016D at Re = 37700. 
The computational mesh is based on nx × ny × nz = 256 × 256 × 640 and nx × ny × nz = 768 × 768 × 1920 nodes for the 
low and high Reynolds number respectively. For a schematic view of the computational configuration, see Fig. 14 where the 
principle of the solution reconstruction inside the immersed boundary is illustrated [39].

Expressed in wall units, the related cell sizes are �z+ = (7, 13) and �x+ = �y+ = (1.8, 2.9) at Re = (5300, 37700). 
These spatial resolutions can be considered as fine except in the near-wall region for �x+ − �y+ , especially for the high 
Reynolds case. However, it has been shown by [41,42] that this type of Cartesian mesh can provide basic turbulent statistics 
reaching the DNS accuracy. This is why we refer to DNS in this subsection, as a reliable computational configuration to 
assess the present viscous filtering technique while showing its major advantage in terms of computational efficiency.

The principle of comparison is the same as in the previous section. The reference data are from DNS based on the 
conventional way to compute the viscous term in the governing equations, referred here as “Navier-Stokes” DNS. The original 
data are obtained by the strategy “Euler+VF” DNS, namely through the solving of Euler equations while applying the viscous 
filter once (“Euler+VF1” DNS) or three times (“Euler+VF3” DNS) per time step. The viscous filter is given by (1), (36) as the 
counterpart of the second derivative scheme from [23] on which are based the reference “Navier-Stokes” DNS. As in the 
DNS of TGV presented in the previous subsection, aliasing errors are controlled using a moderate value of the numerical 
viscosity with ν0/ν = 3. For the present pipe flow DNS, this artificial dissipation significantly improves the results contrary 
to the TGV flow for which it is of secondary importance.

It is important to stress that, unlike the previous subsection, the present comparisons between “Navier-Stokes” DNS and 
“Euler+VF” DNS are not based on the same time step. For the “Navier-Stokes” DNS, the most severe restriction on �t comes 
from the AB3 Fourier condition (45) which reads F < 0.0138 for ν0/ν = 3.

In the present computational flow configuration, based on immersed boundary condition, the correct definition of F is 
not obvious. Firstly, because of the Prandtl number less than unity, the most restrictive condition comes from the diffusion 
term in the temperature equation so that it is more convenient to define the Fourier number using the thermal diffusivity 
α instead of the viscosity ν . Secondly, concerning the reference length in F , an option could be to simply consider the 
smallest cell size given by �x or �y. From this definition of F , the maximum time step ensuring numerical stability 
should be Ub�t/D ≈ (1.30 10−3, 8.87 10−4) for Re = (5300, 37700). In practice, for the present “Navier-Stokes” DNS, these 
maximum values cannot be approached without losing numerical stability when an immersed boundary method is used. 
These maximum time steps have been therefore determined empirically. For the two configurations addressed here, the 
obtained values are Ub�t/D ≈ (4 10−4, 2 10−4) for Re = (5300, 37700), about 25%-30% of their reference values predicted 
by numerical stability analysis, corresponding to a strong reduction of the computational efficiency.

One reason of this difficulty lies in the mesh node distribution disconnected from the wall geometry. This feature, which 
is a strength of immersed boundary methods, imposes the computation of the solution on mesh nodes very close to the 
wall, namely at a clearly smaller distance than the mesh size. Fig. 14 illustrates this situation with a red mark for these 
very near-wall nodes by contrast to the others marked in green. This irregular mesh topology in terms of wall distance 
suggests that �x may not be the correct length scale to estimate the maximum Fourier number. To the best of the authors’ 
knowledge, a numerical stability analysis of this problem, inherent to the immersed boundary method, is not documented 
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Fig. 15. Profiles of mean velocity 〈uz〉, turbulent kinetic energy k, mean temperature 〈�〉 and temperature variance 〈�′�′〉 at Re = 5300. Temperature 
statistics at Pr = 0.71 (middle) and Pr = 0.025 (bottom).

in the literature. Here, we presume that, when expressing the Fourier condition, its reference length should be corrected in 
order to take into account the occurrence of mesh nodes very close to the wall. This corrected cell size �c can be estimated 
from the empirical determination of the maximum numerically stable �t . Based on the 25%-30% reduction of the time step 
previously mentioned, we get the crude estimation �c ≈ 0.5�x which can be seen, in first approximation, as a median 
value of the distance of the closest mesh nodes from the wall.

The crucial advantage of the present viscous filtering technique is the strong relaxation on the Fourier condition with 
F < 4.12 for the present scheme (1), (36) as already mentioned in section 6. For the present DNS, this condition is clearly 
less restrictive on the time step than the CFL condition which enables the use of a time step (6, 3.5) times larger in 
“Euler+VF” DNS by comparison to “Navier-Stokes” DNS for the case Re = (5300, 37700) respectively. Naturally, the point 
is to ensure that the resulting computational saving is not against accuracy. The following comparisons address this key 
issue.

Profiles of mean velocity, turbulent kinetic energy, mean temperature and temperature variance are presented in Fig. 15
at Re = 5300 for “Navier-Stokes” DNS, “Euler+VF1” DNS and “Euler+VF3” DNS. Present turbulent statistics are estimated 
through a smoothed projection from the Cartesian mesh to the cylindrical coordinates (r, θ) with an average in time and 
in the azimuthal direction θ (see [41] for more details on the data projection technique). The DNS data of [43] are also 
included for reference. For all of these quantities, an excellent agreement can be observed. The very small discrepancies are 
within the statistical convergence uncertainty. As in the previous subsection, the difference between “Euler+VF1” DNS and 
“Euler+VF3” DNS is found to be insignificant, making questionable the practical interest of the extra cost of +56% due to 
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Fig. 16. Profiles of mean velocity 〈uz〉, turbulent kinetic energy k, mean temperature 〈�〉 and temperature variance 〈�′�′〉 at Re = 37700. Temperature 
statistics at Pr = 0.71.

the two additional filtering applications per time step. This conclusion is not unexpected: it is well-known that because of 
time-scale ratio between convection and diffusion processes, the viscous term can be integrated in time using a scheme 
of lower accuracy by comparison to the convection term. By accepting the negligible loss of time accuracy of “Euler+VF1” 
DNS, it can be concluded that the present viscous filtering strategy reduces by −83% the computational cost by comparison 
to an explicit time integration of the viscous term. For “Euler+VF3” DNS, the computational saving is only −74% which is 
nonetheless very satisfactory.

The advantage of viscous filtering can be even more spectacular at low Prandtl number Pr. This can be particularly 
useful in applications involving liquid metals, such as advanced cooling devices, in which the prediction by DNS/LES of 
heat-transfer in turbulent flows of low-Pr fluids is necessary for design purposes. Because of the corresponding high value 
of the thermal diffusivity α, an explicit time integration of the viscous term becomes extremely penalizing requiring the 
use of a very small time step in order to ensure the Fourier condition. With the present viscous filtering technique, low-Pr
fluids can be addressed without any extra-cost. To illustrate this capability, a case at Pr = 0.025 has been considered by 
DNS at Re = 5300. At this high level of diffusion, there is no need to apply any artificial dissipation for the temperature 
equation (ν0 = 0). Despite the corresponding less restrictive Fourier condition F < 0.00425, the high value of the diffusivity 
would make too expensive a “Navier-Stokes” DNS. On the contrary, an “Euler+VF” DNS without changing the time step 
can be easily performed. A comparison of the resulting temperature statistics with the reference data of [43] is presented 
in Fig. 15-bottom. Again, an excellent agreement is obtained. The same computation by “Navier-Stokes” DNS would have 
required a time step 30 times smaller, leading to a computational saving of −95% for the “Euler+VF3” DNS.

To confirm the good behaviour of the present viscous filtering approach, a more demanding computational configuration 
at Re = 37700 is now considered. As already mentioned, expressed in wall units, the spatial resolution is marginal, especially 
in the near-wall region. In such a situation, the use of artificial dissipation is crucial to compensate the small fraction of 
viscous dissipation missed due to the too coarse mesh to fully capture the Kolmogorov scale. At this Reynolds number, 
successful turbulent velocity statistics have been obtained by [44] with the same computational configuration using the 
conventional strategy “Navier-Stokes” DNS. In Fig. 16, turbulent statistics with the present “Euler+VF3” DNS approach are 
compared to the DNS of [45] for velocity and to the well-resolved LES of [43] for temperature.4 Despite the marginal 
resolution for this high Reynolds number case, a good overall agreement can be observed. The ability of “Euler+VF3” DNS to 
faithfully reproduce the reference results despite the use of a 3.5 times larger time step by comparison to “Navier-Stokes” 
DNS shows that the present viscous filtering approach is not only attractive for low Reynolds turbulence. It leads to a 

4 As [43], we refer to LES, but it must be noted that, thanks to the very fine mesh used, the accuracy of this calculation is very close to DNS.
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reduction of about −55% that can be extended to −71% if the simpler and slightly less accurate “Euler+VF1” DNS strategy 
is used. In conclusion, as a generic, stable, efficient and accurate method, the “Euler+VF” DNS seems to be a convenient 
technique for solving the Navier-Stokes equations.

8. Conclusion and discussion

In this study, a new approach of spatial filtering is proposed for solving the governing equations of fluid mechanics. The 
general framework of this approach is the concept of solution filtering which consist in the application of a spatial filter 
operator every step of the time advancement. The method is developed in the context of finite-difference schemes as a 
simple spatially discrete integrating factor commonly used in spectral Fourier methods for computational fluid dynamics 
[33,34].

First, the guiding principles of the solution filtering technique have been discussed while clearly exhibiting the flexibility 
of the method through the adjustment of the scheme coefficients. In this preliminary part, the equivalence between solution 
filtering and spectral vanishing viscosity is shown. To the authors’ knowledge, this is the first time that this link is clearly 
established. Thanks to the simple formalism related to this connection, the consequences of using a fixed filter are discussed 
as well as the physical anomaly that consists in fully removing the grid-to-grid wavelength that must be associated to the 
application of an infinite artificial viscosity at this scale. Another issue raised by the use of a fixed filter scheme is the lack 
of time consistency. As a very simple remedy to these drawbacks, it is suggested to make dependent the scheme coefficients 
on the time step �t . It leads to a first family of flexible filters that can be shaped to mimic a generic spectral vanishing 
viscosity while controlling the level of artificial dissipation at small scales through the parameter ν0 referred as numerical 
viscosity. As nondimensional parameters to represent �t and ν0 in the scheme coefficients, the Fourier number F and 
the ratio ν0/ν are introduced. Because of the spectral vanishing behaviour of these finite-difference operators, they can be 
referred as inviscid filters (i.e. virtually free from any significant dissipation at large scales).

Then, the principle of modifying the filter scheme coefficients is extended in order to incorporate both the molecular 
and artificial dissipations in one single operator. The development of this new family of filter schemes is performed in the 
Fourier space to make easier the establishment of relation orders between the scheme coefficients. This leads to the new 
concept of viscous filtering while keeping the initial philosophy to apply the filter on the solution every time step. Various 
sets of scheme coefficients are provided on the basis of 8th-order accuracy in space. These coefficients are a function of 
F and ν0/ν . Each viscous filter operator is connected to its counterpart as a differentiation operator to compute a second 
derivative. Based on this link, it can be shown that the actual order of accuracy of the viscous filter is reduced by two 
levels by comparison to its formal order, leading to 6th-order for the family developed in this study. The same link shows 
that the solution provided by the viscous filter is a 1st-order approximation in time of its counterpart obtained using 
a second derivative scheme with an exact time integration (see Appendix A). Spatial convergence test confirms the 6th-
order accuracy of the developed viscous filter scheme. Temporal convergence shows that despite the 1st-order previously 
mentioned, because of the entanglement between spatial and time errors, the viscous filtering is always more accurate in 
time than an Adams-Bashforth scheme of 3rd-order accuracy. By comparison to this explicit time advancement scheme, 
it can be observed that the present viscous filtering strategy is much more robust in terms of numerical stability, with a 
spectacular relaxation of the Fourier condition.

The accuracy as well as the numerical stability features of the viscous filtering technique are recovered for challenging 
DNS/LES of two academic flows. For the Taylor-Green Vortex problem, the study of a deterministic regime at low Reynolds 
number has enabled very accurate comparisons between a conventional solving of Navier-Stokes equations (based on the 
explicit computation of the viscous term) and the present new viscous filtering approach. A higher Reynolds number is also 
considered by LES to show the capability of the method as an implicit subgrid-scale model. As a generic wall-turbulence 
problem, the turbulent pipe flow has been calculated by DNS while considering heat transfer. The treatment of this cylin-
drical geometry with an immersed boundary method and a Cartesian mesh has enabled us to assess the method as a more 
general approach compatible with complex geometry. Successful results are obtained in the sense that the viscous filtering 
strategy can reach an excellent accuracy while reducing drastically the computational cost thanks to the use of large time 
steps. This facility is allowed by the very favourable numerical stability of the time advancement provided by viscous fil-
tering. In particular, this is a definitive advantage in the context of immersed boundary method, low Reynolds and/or low 
Prandtl turbulent flows.

The present viscous filtering method can be seen as an alternative to implicit time integration of the viscous term which 
is very popular in the context of DNS/LES of wall turbulence when unconditional stability is expected, enabling to deal with 
any value of the Fourier number F . For the present method, the conditional stability is not removed but its restriction is so 
relaxed that it is close to unconditional stability. By comparison to implicit methods, the treatment of the viscous influence 
as a filtering process offers advantages in terms of flexibility (control of the molecular/artificial dissipations) and efficiency 
(no operator inversion required). It is also extremely easy to code in the sense that any finite-difference routine can be 
straightforwardly adapted through the simple change of the scheme coefficients. This is an almost “zero development” 
method contrary to the implementation of an implicit time integration, especially in a three-dimensional context. Here, 
because the filtering is explicit in time, the filter operators can be applied sequentially in every direction without any 
difficulty in terms of coding.
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Further work is required to extend the validity of the viscous filtering approach. First, one-sided viscous filter schemes 
need to be developed for the imposition of Dirichlet and Neumann boundary conditions. A slightly more delicate step is to 
generalize the viscous filtering for a non-regular computational mesh. The use of a mapping technique may be the most 
straightforward way to take this step but other methods, possibly more efficient, are probably feasible.

A few words can be added on the anisotropic and inhomogeneous application of the viscous filtering through the choice 
of ν0/ν related to the artificial dissipation. Technically, the use of a different value of ν0/ν depending on the spatial direction 
is straightforward in the sense that the present filtering strategy is based on one-dimensional finite-difference operators. 
Then, if there are physical reasons for an anisotropic application of the artificial dissipation, it can be done easily. In the 
same way, its inhomogeneous application is technically feasible by enabling spatial variation of ν0/ν for the computation 
of the coefficients of the finite-difference filter scheme at every mesh node. Another option is to use two sets of constant 
coefficients, one with ν0/ν = 0 and another with a high value of ν0/ν . Then, a local switch between the two operators 
(one free from artificial viscosity and another one highly dissipative at small scale) can be performed. This second option 
has been investigated by [46] for the boosted second derivative which is the counterpart of the present viscous filtering. 
The simplicity and efficiency of this approach, called Adaptive Numerical Viscosity (ANV), is clearly shown in this study. 
To summarize, there is no technical barrier for an anisotropic and inhomogeneous application of the artificial dissipation 
embedded in the present viscous filtering technique.

A more fundamental question is related to the purpose of an anisotropic and inhomogeneous application of numerical 
dissipation. In terms of physical scales, the use of the same value of ν0/ν in the three spatial directions does not mean that 
the artificial dissipation is isotropic. It is only true if the computational mesh itself is isotropic. For instance, in the turbulent 
pipe flow DNS presented in section 7.2, the use of non-cubic cells, with an aspect ratio of about 4, leads to an anisotropic 
numerical dissipation despite the same value ν0/ν = 3 used in the three spatial directions. For a regular and Cartesian 
computational mesh, directional values of ν0/ν would only be useful to compensate a potential mismatch between physics 
and numerics. In other words, instead of imposing anisotropy on the numerical viscosity, a preferable option would be to 
adapt the computational mesh. A similar idea can be advocated for the use of inhomogeneous numerical dissipation that 
should be first reflected by the mesh design. This corresponds to the general recommendation of [4] (see concluding section) 
who suggest to adapt the LES mesh on its corresponding DNS counterpart using a constant and isotropic derefinement factor 
everywhere, this choice making meaningful the use of a constant numerical viscosity. This recommendation can be extended 
to the present viscous filtering, at least in first intention.

A common motivation for spatially varying subgrid-scale viscosity is also the treatment of wall turbulence, with typically 
a damping of the model activity in the near-wall region. This approach has been investigated by [46] using their technique 
of Adaptive Numerical Viscosity for LES of turbulent plane channel flow up to very high Reynolds numbers. Their conclusion 
was that a local adaptation of ν0/ν was not really needed, even for the most demanding computational configuration 
addressed. This conclusion is consistent with our pipe flow LES reported in [44] and based on the use of boosted second 
derivatives. In this previous study, it has been shown that good turbulent statistics can be obtained while using a constant 
value for ν0/ν . This easiness probably comes from the high scale-selectivity of the numerical dissipation which is weakly 
intrusive on the largest scale dynamics.

Naturally, in a perspective of advanced subgrid-scale modelling, the spatial variation of ν0/ν may be a physically mean-
ingful option. For instance, to deal with the unsteady and inhomogeneous component of non-equilibrium turbulent cascade 
[47], the opportunity of controlling locally and instantaneously the strength of the kinetic energy transfer may be an 
attractive feature. Hence, scaling of the artificial dissipation, related to the choice of ν0/ν , can be guided by physical con-
siderations on the kinetic energy transfer from large to subgrid scales. Naturally, because the present approach is purely 
dissipative, no backscatter phenomenon can be handled in this way. However, in complement to the simple spectral closure 
of [4] only valid for isotropic turbulence at equilibrium, as a tool for a priori estimation of ν0/ν , a more dynamic evaluation 
of this parameter, as in the adaptive filtering of [12,14], may be an interesting option.

The extension of the concept of viscous filtering may also be adapted to more sophisticated spectral/hp element ap-
proaches [48,49], as a contribution to the development of implicit LES in highly accurate DNS/LES solvers [50,51]. In this 
demanding context, the present combination of high-order finite-difference schemes with an immersed boundary method 
can be seen as a simple and efficient strategy which is reinforced by this particular way to model viscous effects.
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Appendix A. Connection between viscous filter and second derivative schemes at small Fourier number

In this appendix, the asymptotic behaviour of the viscous filter when F → 0 is examined. It will be shown that the 
modified wavenumber given by (33) can be seen as a 1st-order O (�F ) approximation of the modified wavenumber of a 
counterpart second derivative scheme written in the form

α f ′′
i−1 + f ′′

i + α f ′′
i+1 = a

fi

�x2
+ b

fi−1 + f i+1

2�x2
+ c

fi−2 + f i+2

2�x2

+ d
fi−3 + f i+3

2�x2
+ e

fi−4 + f i+4

2�x2
(A.1)

with its associated modified wavenumber

k′′�x2 = −a + b cos(k�x) + c cos(2k�x) + d cos(3k�x) + e cos(4k�x)

1 + 2α cos(k�x)
(A.2)

where f ′′
i is an approximation of the second derivative f ′′(xi) at the node xi . Here, to make easier the connection between 

this scheme and the viscous filter, the adopted form mimics the generic form of a filter scheme without any loss of gen-
erality in the framework of centred schemes based on a given stencil. For this scheme, the order conditions can be easily 
obtained with

0 = a + b + c + d + e (�x0)

2 + 4α = b + 4c + 9d + 16e (�x2)

24α = b + 16c + 81d + 256e (�x4)

60α = b + 64c + 729d + 4096e (�x6) (A.3)

This set of conditions has similarities with the order conditions (31) of the viscous filter which can also be written as
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In particular, it can be concluded that the set of coefficients(
α f ,

a f − 1

F
,

b f − 2α f

F
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c f
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d f

F
,

e f

F

)
(A.5)

is a O (�F ) approximation of the set of coefficients (α, a, b, c, d, e).
The logarithmic term ln T in (33) can be written and approximated as

ln

[
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F + b f −2α f

F cos(k�x) + c f
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Then, using (33), the corresponding approximated modified wavenumber is

k′′�x2 = −
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as the counterpart of (A.2) for a second derivative scheme where the set of coefficients (A.5) is recovered to replace 
(α, a, b, c, d, e).

These developments show that the present viscous filter corresponds to a second derivative which behaves asymptotically 
as a conventional second derivative finite-difference scheme when F → 0. The scaling in F means that this approximation 
is 1st-order accurate in time while leading to a reduction of 2 for the spatial order of accuracy. It explains why the present 
8th-order filter formulation can only provide 6th-order accuracy.
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92 CHAPTER 4. VISCOUS AND HYPERVISCOUS FILTERING FOR DLES

Version française

Au cours de cette thèse, une nouvelle technique de filtrage de solutions DNS et LES a été développée.
Cette approche est en fait équivalente à l’utilisation de la viscosité spectrale comme un ersatz de modélisation
sous-maille (ou simplement de régularisation à petite échelle dans le cas de la DNS), conformément
aux discussions développées dans la section 2.6.3. La méthode est détaillée dans ce chapitre et il faut
souligner que son développement/implémentation a été extrêmement important pour l’avancement
de cette thèse qui a permis sa validation en retour. Plus précisément, comme discuté dans la section
2.7, une intégration temporelle pleinement explicite avec un schéma d’Adams-Bashforth du troisième
ordre est utilisée ici pour les équations d’évolution. Cependant, comme il est montré dans ce chapitre,
lorsqu’une méthode de frontière immergée est utilisée, la condition de Fourier peut facilement devenir
plus contraignante que la condition CFL, ceci nécessitant l’utilisation de très petits pas de temps afin
d’assurer la stabilité numérique. Cette contrainte peut être encore aggravée en cas de transferts de
chaleur s’opérant à faible nombre de Prandtl (Pr � 1) ainsi que par l’usage d’un opérateur hyper-
visqueux via la dérivée seconde comme c’est le cas ici. En pratique, les simulations de transferts de
chaleur prévues pour cette thèse dans ce cadre auraient été trop coûteuses, pour les fluides à faible
nombre de Prandtl et même simplement pour traiter un cas avec transfert thermique conjugué (CHT
en sigle anglo-saxon) qui nécessite de traiter simultanément des échelles temporelles et spatiales forte-
ment distinctes associées à la convection forcée dans le fluide et la conduction thermique dans le solide.

Dans ce contexte, on peut même dire que le développement de la présente technique de filtrage
visqueux est arrivé au bon moment, car son principal atout est précisément la forte relaxation de la
contrainte de Fourier, permettant l’utilisation de pas de temps beaucoup plus grands, ce qui a conduit
à une économie remarquable des ressources de calcul. En cela, on peut voir cette approche par filtrage
comme une alternative au traitement implicite du terme diffusif avec l’efficacité de calcul en plus. A
la lumière de l’article récemment publié où la méthodologie est entièrement détaillée [78], nous avons
décidé de ne pas la décrire à nouveau ici mais de fournir au lecteur l’article par son insertion directe
dans le manuscrit. Les résultats de transferts de chaleur turbulents présentés avec des conditions aux
limites de type mixte (MBC) dans la section 7.2 sont repris dans le chapitre suivant lors de la description
des stratégies IBM mises en œuvre pour prescrire les conditions aux limites thermiques dans le cadre
de cette thèse.



Chapter 5

Heat Transfer in Turbulent Pipe Flow

The choice of appropriate boundary conditions for the governing equations is crucial to obtain
accurate representations of real life phenomena. For instance, the velocity boundary conditions for the
Navier-Stokes are well-defined from the no-slip condition. Nonetheless, specifying a thermal boundary
condition (TBC) that fairly describes a certain real heat transfer phenomenon for the energy equation
may not be so straightforward since the most employed TBCs are idealized simplified representations.
To illustrate this point, let us consider the conjugate heat transfer problem represented in Figure 1.3,
where a certain heat exchange process is occurring between the external surroundings r > Ro, the pipe
body R ≤ r ≤ Ro and the confined turbulent flow r < R. What is commonly done in heat transfer
simulations is to solve only the fluid temperature field r < Rwhile modelling the heat exchange across
the solid wall with a boundary condition. More precisely, the heat conduction taking place across
the solid subdomain R ≤ r ≤ R0 is not computed, it is instead represented by an ideal TBC directly
prescribed at the fluid solid interface r = R, as represented in Figure 5.1. This approach is referred to
as local imposition and the most generic TBCs are isothermal or isoflux boundary conditions prescribed at
the wall. The former consists of enforcing a wall temperature which is spatially uniform, whereas for
the second, it is the wall heat flux that is uniform. Furthermore, in this chapter, we will be dealing with
ideal local imposition, where the term ideal implies, as in [29], that the instantaneous quantity imposed
is not only uniform (space) but also constant (time).

Therefore, ideal isoflux, denoted by IF in this monograph, means that the instantaneous wall heat
flux qw in Figure 5.1 is uniform and constant. As a consequence, the instantaneous wall temperature Tw
admits fluctuations but its (time-)averaged value displays a linear increase along the duct. On the other
hand, for ideal isothermal, denoted by IT, the instantaneous wall temperature is uniform and constant
but the associated heat flux admits fluctuations [96, 29]. We reinforce that, these are idealized repre-
sentations of real heat transfer phenomena and, in practical applications, it is rather the time-averaged
quantities that are more likely to display a uniform behaviour [27]. For instance, in the DNS literature
of turbulent heat transfer in channel and pipe configurations, a uniform time-averaged heat flux q̄w is
very frequently prescribed. This can be done by imposing the instantaneous wall temperature as free of
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fluctuations and linearly increasing along z. In this way, the wall temperature can be regarded as locally
isothermal, because of the vanishing fluctuations, yet, still displaying the linear increase characteristic
of isoflux conditions [17]. In other words, the time-averaged wall heat flux q̄w is uniform (space), while
the instantaneous wall temperature Tw is constant (time). For this reason, this type of TBC has been
commonly referred to as Mixed-type (MBC) [29].

In recent years, turbulent heat transfer in wall-bounded configurations has been widely investigated
by numerical simulations. In the DNS framework for instance, thanks to the progressive development
of super computers, the physics of forced convection in wall-bounded turbulent flow has been analysed
in increasingly more demanding computational configurations, with most of the investigations being
performed nonetheless for channel flow [60]. The first successful DNS involving heat transfer was
performed by [24] for a turbulent channel flow at low Reynolds number Reτ = 180 (based in the half
channel height) for different Prandtl numbers Pr = 0.1, 0.7, 2.0. The passive scalar was uniformly
produced internally with cold isothermal walls, which allowed to treat the heat in the same way as
the mean pressure gradient that drives the flow. It is considered as the first successful DNS with heat
transfer for its good agreement with formulas by [97] as well as for its relevant observations concerning
the turbulent Prandtl number, very important quantity for the development of RANS closure models.
Later on, [27] investigated how the fluctuating temperature at the wall can be properly specified for
near-wall heat flux models in channel configuration.

Through the budgets of temperature variance and turbulent heat fluxes, [98] investigated the ef-
fects of Reynolds (Reτ = 180, 395) and Prandtl numbers (Pr = 0.025, 0.2, 0.71) on the turbulent heat
flux transport in channel flow configuration. Satake et. al [99] focused mostly on the effect of the fric-
tion Reynolds number when performing the first DNS of pipe flow with passive scalar transport for
Reτ ranging from 150 up to 1050 for Pr = 0.71 with MBC. Even for the highest Reynolds number
Reτ = 1050, a pipe length of 15R was used, which may be too short to properly capture the very large
structures in the flow, both thermal and hydrodynamic [100, 10]. [101, 25] performed DNS of turbulent
flow with passive temperature transport in a flume for Reτ = 171 (based on the height of the flume)
with Pr = 1, 5, 4 [101] and in a channel for Reτ = 150 with Pr ranging from 0.71 to 7 [25]. In both
studies, the role of different TBCs has been addressed. Lower and higher-order statistics, as well as
plots of the instantaneous velocity and temperature fields were compared for MBC and IF.

In his comprehensive work in 2005, [29] compared also the effect of different TBCs for pipe flow at
low Reynolds number Re = 5300 with Pr = 0.71. Turbulence statistics up to fourth order, budgets of
temperature fluctuations and snapshots of the instantaneous temperature fields have been assessed. It
has been shown that the imposition of either MBC or IF affects the temperature statistics only within
the conductive sublayer. Moreover, he showed that MBC acts as IT in the inner layer and as IF in the
outer layer. The term Mixed (MBC) was then used for the first time to address this type of TBC.

Later, [100] focused his analysis on the effect of the Prandtl number on the turbulent heat transfer in
a pipe flow atReτ = 186. More specifically, this is the first DNS of pipe flow at various Prandtl numbers
(ranging from 0.026 to 1). Also, by comparison with turbulent channel statistics, it has been found
that the wall curvature in the pipe configuration slightly enhances the temperature fluctuations (in
agreement with observation of [29]) but without a major impact on turbulent heat transfer. Then, [60]
investigated the effect of the computational domain length on the turbulent heat transfer predictions
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by means of DNS of pipe flow atRe = 5000 and Pr = 0.025, 0.71, 2. As a validation step for performing
Conjugate Heat Transfer (CHT) in channel flow, [102] presented temperature statistics for MBC and IF at
different (and slightly higher) Reynolds numbers Reτ = 180, 395, 590 for a very-low Prandtl number
Pr = 0.01, characteristic of liquid sodium-steel systems.

Ultimately, [10] investigated the effect of different TBCs - namely IF, IT and MBC - for pipe flow
at higher Reynolds numbers (ranging from 5300 to 37700) and two different Prandtl numbers Pr =
0.025, 0.71. These results represented an expansion of the findings of [29] to high Re and low Pr.
Lower-order statistics have been analysed, as well as budgets of temperature fluctuations and power
spectral densities. It has been shown that large thermal structures and thermal structures located right
at the wall - which are characteristic of low Prandtl numbers - are only reproduced with IF. Furthermore,
it has been shown that the suppression of temperature fluctuations at the wall - which is enforced with
MBC and IT - leads to different near-wall behaviours of the turbulent heat fluxes. Hence, it is suggested
that the appropriate TBC for local imposition should be chosen depending on the Prandtl number and
on which statistics are to be evaluated.

The present chapter is dedicated to the development of a numerical strategy for the ideal local im-
position of MBC and IF with Incompact3d/Xcompact3d. For this purpose, our IBM based on Lagrange
polynomials reconstruction is further developed to impose as well the thermal boundary conditions.
Special attention is given to IF as an original methodology based on IBM is developed for the imposition
of Neumann boundary conditions. Additionally, for the non-body fitted grid used here, the imposition
of a wall-normal heat flux while leaving free the wall-tangential one represents a real challenge. The
results of validation provided in this chapter paves the way for the introduction of a novel technique
to perform conjugate heat transfer (CHT) in pipe configuration, the subject of chapter 6.

This chapter is divided as follows. Firstly, basic concepts of heat transfer between a solid wall uni-
formly heated and a fluid are recalled. Then, the numerical methodology is presented while highlight-
ing the non-dimensional forms used for the temperature field. Afterwards, the numerical strategy used
to prescribe MBC is shortly described and major focus is given to the strategy and different techniques
conceived to impose IF in the present numerical framework. Finally, the IF techniques are compared
and the strongest one is selected, results of validation are subsequently presented for IF and MBC while
highlighting the profitable accuracy/cost ratio of the present numerical strategy.

5.1 Ideal local imposition of a uniform heat flux

In this section we provide a brief discussion on the physics of heat transfer between an incom-
pressible Newtonian fluid and a solid wall delivering a uniform heat flux qw. The fluid properties are
assumed constant and buoyancy effects are neglected, we consider therefore a passive thermal flow,
governed by the advection-diffusion energy equation

∂T

∂t
+ uj

∂T

∂xj
= α

∂2T

∂xj∂xj
, (5.1)
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Figure 5.1: Schematic representation of the pipe flow geometry subjected to a uniform heat
flux qw imposed at the fluid-solid interface r = R.

where T (r, φ, z, t) is the temperature field and α = λ/ρcp is the thermal diffusivity of the fluid, with
λ its thermal conductivity and cp the specific heat at constant pressure. Both the TBCs considered
here - namely isoflux (IF) and mixed-type (MBC) - correspond to the prescription of an uniform heat
flux at the fluid-solid interface , the fundamental difference between them is the assumption made
concerning the behaviour of the temperature at the wall Tw. For IF, Tw is left free and thus admits
(spatial and temporal) fluctuations Tw(φ, z, t), whereas for MBC, the wall fluctuations are assumed to
be zero Tw(z).

In this section, we denote thermal quantities averaged in time and homogeneous φ direction by 〈·〉,
〈T 〉(r, z), 〈Tw〉(z), Tb(z) . (5.2)

We consider the flow in fully developed turbulent conditions, subjected to a uniform heat flux qw im-
posed at the fluid-solid interface r = R, as illustrated in Figure 5.1.

The basic requirement for heat transfer to take place between the pipe wall and the fluid is the
existence of a temperature gradient along the streamwise direction, which implies variations of the
bulk temperature Tb and mean temperature profile 〈T 〉 along the tube. This is illustrated in Figure 5.1
by the evolution of the mean profile 〈T 〉 along the streamwise direction.

Let us consider now the cylindrical control volume πRdz illustrated in Figure 5.2-left. A balance of
energy provides,

dqconv = ṁcp [(Tb + dTb)− Tb]
qw(2πR)dz = ρcpUb(πR

2)dTb

dTb
dz

=
2qw

ρcpUbR
= cst . (5.3)

That is, under uniform heat flux conditions, the bulk temperature increases linearly along z.

Newton’s law of cooling states that,
qw = h (〈Tw〉 − Tb) , (5.4)
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Figure 5.2: (Left) Cylindrical differential control volume under uniform heat flux. dqconv is
the infinitesimal amount of heat exchanged through the infinitesimal lateral area dAL. (Right)
Linear increase of the temperature quantities along the tube for uniform heat flux.

where the heat transfer coefficient h is constant and independent of z in fully developed conditions
[17]. Hence,

〈Tw〉 − Tb =
qw
h

= cst , (5.5)

and furthermore, with eq.(5.3)

d〈Tw〉
dz

=
dTb
dz

=
2qw

ρcpUbR
= cst . (5.6)

That is, under uniform heating conditions, 〈Tw〉 follows the same linear increase as Tb with a uniform
difference along the tube, expressed by eq.(5.5)

〈Tw〉 − Tb = cst ,

and illustrated in Figure 5.2-right.

Also, the no-slip condition implies that heat transfer is entirely due to conduction at the wall. Thus,
from Fourier’s law,

qw = −λ ∂T

∂n

∣∣∣∣
w

= λ
∂T

∂r

∣∣∣∣
r=R

. (5.7)

That is, the prescription of an uniform heat flux corresponds virtually to the imposition of the wall
normal derivative

∂T

∂r

∣∣∣∣
r=R

=
qw
λ

(5.8)

as a Neumann boundary condition.
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Figure 5.3: Schematic view of the computational configuration. A regular Cartesian mesh
is used with the new reconstruction strategy performed through the periodicity of the
transverse-xy directions. Physical solutions are represented by solid lines and reconstructed
solutions by dashed lines. Reconstructions are performed with the same fifth-order polyno-
mial functions.

5.2 Numerical Methodology

This section is dedicated to describing the numerical treatment of the temperature transport equa-
tion in Incompact3d /Xcompact3d. A schematic view of the computational configuration is presented
in Figure 5.3. DNS of pipe flow including heat transfer is performed with Mixed-type (MBC) at low
and moderately high Reynolds numbers Re = 5300, 37700 for two different Prandtl numbers Pr =
0.71, 0.025, characteristic of air and liquid metals respectively. As the implementation of the numerical
technique for prescribing Neumann conditions required an extensive numerical development, results
of validation with isoflux conditions (IF) are presented only at low Reynolds number Re = 5300, also
for Pr = 0.71, 0.025. First and second-order temperature statistics are presented, as well as budgets of
temperature fluctuations.

As for the DNS performed in chapters 3 and 4, a regular Cartesian grid is used. For the low
Reynolds simulations Re = 5300, a mesh of (nx × ny × nz) = (256 × 256 × 640) nodes is used for
the discretization of the computational domain of dimensions (Lx, Ly, Lz) = (1.28D, 1.28D, 12.5D),
corresponding to a mesh resolution (∆x+,∆y+,∆z+) = (1.81, 1.81, 7.07) in wall units. For Re =
37700, a mesh of (nx × ny × nz) = (768 × 768 × 1920) points is used for a slightly smaller domain
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in the transverse directions (Lx, Ly, Lz) = (1.12D, 1.12D, 12.5D), providing a marginal mesh resolu-
tion (∆x+,∆y+,∆z+) = (2.92, 2.92, 13.02). This adjustment of the computational domain enables us
to prescribe periodic boundary conditions for the transverse-xy directions while ensuring a minimum
number of nodes in the solid and buffer zones r ≥ R to ensure the success of the (new) reconstruction
technique, described hereafter.

As discussed in section 5.1, because of the heat transfer at the wall, in fully developed conditions,
the mean temperature profile is expected, by construction, to evolve along the streamwise-z direction.
Nonetheless, periodic conditions are also prescribed in z for the temperature by introducing a corrected
dimensionless temperature Θ capable of ensuring, for each TBC, statistical homogeneity by providing
∂〈Θ〉
∂z

= 0, see section 5.2.2.

The viscous filtering technique is used here with scheme (1, 36) of [78]1, which is the counterpart
of the ISVV DNS scheme (2.21, 2.33) for second derivatives. The association of the viscous filtering
technique with a third-order Adams-Bashforth scheme for the time integration of the energy equation
is described in details further below, in section 5.2.3. A small amount of numerical dissipation is used
for regularisation (ν0/ν = 3), except for the lowest Prandtl number Pr = 0.025, for which the level
of diffusivity (Re Pr)−1 is already high enough and thus no extra artificial dissipation is necessary
(ν0/ν = 0).

5.2.1 New reconstruction strategy

During the extensive phase of development of the technique to prescribe Neumann boundary con-
ditions, a variation of the Lagrange reconstruction strategy was also implemented. In this updated
version, a direct re-connection of the fluid zone through the periodicity of the transverse-xy directions
is performed. The principle is illustrated in Figure 5.3.

In this scenario, all the N input values Φ used to define the (N − 1)th-order Lagrange polynomial
function L, according to eq.(2.15)

LN−1(x) =

N∑

j=1

∏N
i6=ji=1(x− xi)

∏N
i 6=ji=1(xj − xi)

Φj ,

come from the relevant fluid zone r < R 2. This way, we no longer reason in terms of solid and fluid
zones, but rather of physical and reconstruction domains. Both the solid (R ≤ r ≤ Ro) and buffer
(r > Ro) zones become the reconstruction domain for the physical domain (r < R) in the present sce-
nario. Thereby, the buffer zone no longer plays the role of intermediation for the reconstruction, being
only necessary now to provide a sufficiently long section to ensure the continuity of the interpolation.
Also, a small improvement in computational performance is obtained since only one (no longer two)

1The article is provided in chapter 4
2With the new reconstruction strategy, N = 6 points are still used and first fluid points are still skipped, con-

sisting of a fifth-order Lagrange polynomial interpolation
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reconstruction is necessary along each transverse grid row. Analysis in laminar regime revealed that
the method is more accurate and robust to conserve first-derivatives across the interface and it has been
therefore implemented for both velocity and temperature fields henceforth.

5.2.2 Governing equation and non-dimensional temperature

The non-dimensional temperature for each TBC is conveniently defined as a temperature difference
∆T , scaled by a reference temperature Tr

Θ =
∆T

Tr
, (5.9)

so that, the streamwise-z direction can be practically treated as statistically homogeneous3

∂〈Θ〉
∂z∗

= 0 , (5.10)

and thermally stationary with
Θb = cst . (5.11)

The replacement of the non-dimensional temperature (5.9) into the energy equation (5.1) (together
with the other normalised quantities x∗i , u∗i , t∗ defined in eqs.(2.8) ) leads to the non-dimensional en-
ergy equation

∂Θ

∂t∗
+ u∗j

∂Θ

∂x∗j
=

1

Pe

∂2Θ

∂x∗j∂x
∗
j

+ fΘ , (5.12)

where Pe = RePr is the Péclet number and fΘ is the source term arising from the nondimensional-
ization, responsible for sustaining stationary regime by ensuring the constant bulk temperature (5.11).
This term is analogous to the mean pressure gradient forcing acting in the momentum equation which
has been detailed in section 2.7. For a complete demonstration of the forcing term fΘ, the reader is
referred to [74]. Expressions for the non-dimensional temperature Θ are presented for each TBC here-
after.

Isoflux boundary conditions (IF)

IF here refers to the imposition of a constant (in time) and uniform (in space) heat flux qw = cst
while admitting non-zero fluctuations at the wall Tw(φ, z, t). We may conveniently define the following
non-dimensional temperature (as in [74]),

Θ = − 1

Nu

(
T − Tb
〈Tw〉 − Tb

)
, (5.13)

3For the sake of clarity, we denote once again, only in this section, non-dimensional quantities with (∗).
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for which the scaling reference temperature Tr = Nu(〈Tw〉 − Tb) is a constant value, according to
eq.(5.5). Furthermore, by using this form, the Nusselt number can be easily estimated from the aver-
aged temperature at the wall,

〈Θw〉 = 〈Θ(T = Tw)〉 =⇒ 〈Θw〉 = − 1

Nu
. (5.14)

The statistical homogeneity condition (5.10), together with eq.(5.6) leads to the equality
∂〈T 〉
∂z

=
dTb
dz

=
d〈Tw〉
dz

=
2qw

ρcpUbR
= cst , (5.15)

implying that, with isoflux conditions, the local averaged temperature 〈T 〉 also presents a linear in-
crease along the tube. The thermal stationary condition (5.11) is ensured by keeping the constant bulk
temperature

Θb = Θ(T = Tb) =⇒ Θb = 0 . (5.16)
This is done through the source term fΘ in eq.(5.12), which for IF is given by (cf.[74])

fΘ =
4u∗z
Pe

∂Θ

∂n

∣∣∣∣
w

= −4u∗z
Pe

∂Θ

∂r∗

∣∣∣∣
r∗=1/2

. (5.17)

Concerning the imposition of the Neumann boundary condition (5.8), the (non-dimensional) wall-
normal derivative is given by

∂Θ

∂r∗

∣∣∣∣
r∗=1/2

= − D

Nu(〈Tw〉 − Tb)
∂T

∂r

∣∣∣∣
r=R

, (5.18)

which, by replacing eq.(5.8), becomes
∂Θ

∂r∗

∣∣∣∣
r∗=1/2

= − qwD

Nu λ(〈Tw〉 − Tb)
. (5.19)

From the definition of the Nusselt number in eq.(1.29), the Neumann boundary condition to be im-
posed is finally reduced to

∂Θ

∂r∗

∣∣∣∣
r∗=1/2

= −1 , (5.20)

which simplifies its numerical implementation. Additionally, the source term can be re-expressed as

fΘ =
4

Pe
u∗z . (5.21)

This term represents the mean axial advection [29] and, in the present work, we do not impose its exact
value given by eq.(5.21), instead it is implemented as a correction step in the time advancement of the
energy equation. Its numerical treatment is presented further below in section 5.2.3.

Note that in the present framework, the use of a Cartesian grid disconnected from the wall geometry
does not allow the direct imposition of the wall-normal derivative (5.20). Indeed, the development of
an IBM technique for the imposition of Neumann boundary conditions in Incompact3d/Xcompact3d
has been a major focus of this thesis [79] (the article is provided in Appendix A).
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Mixed-type boundary conditions (MBC)

For MBC, an uniform heat flux is also applied while assuming that the temperature fluctuations at
the wall are null. The following non-dimensional form is used

Θ =
〈Tw〉 − T
〈Tw〉 − Tb

, (5.22)

for which the scaling temperature Tr = 〈Tw〉 − Tb is also uniform, according to eq.(5.5). This way, the
temperature fluctuations at the wall

T ′w = Tw − 〈Tw〉 , (5.23)
can be purposely expressed as the numerator on the rhs of eq.(5.22) when considering the non-dimensional
temperature at the wall

Θw = Θ(T = Tw) =⇒ Θw =
−T ′w

〈Tw〉 − Tb
. (5.24)

Hence, the assumption of zero fluctuations at the wall can be directly incorporated in the prescription
of the boundary condition

Θw = 0 , (5.25)
which is imposed as a Dirichlet boundary condition (DBC).

Furthermore, the statistical homogeneity condition (5.10), together with the energy balance (5.3), leads
to same linear increase of averaged quantities presented for IF (5.6)

∂〈T 〉
∂z

=
dTb
dz

=
d〈Tw〉
dz

=
2qw

ρcpUbR
= cst .

The behaviour is analogous to isoflux conditions, yet, as temperature fluctuations are assumed to vanish
at the wall through the imposition of the DBC (5.25), the wall can also be regarded as locally isothermal,
hence the terminology mixed first introduced by [29] to address this type of local imposition. As pointed
out by [60], this is one of the most common TBCs that occurs in many practical applications.

The thermal stationary condition (5.11) is ensured by keeping the constant bulk temperature

Θb = Θ(T = Tb) =⇒ Θb = 1 , (5.26)

which is done through the source term fΘ, given by eq.(5.21) as for IF (cf.[74])

fΘ = −4u∗z
Pe

∂Θ

∂r∗

∣∣∣∣
r∗=1/2

.

As for IF, this term represents the mean axial advection [29] and it is treated in the present work as a
correction step in the time advancement of the energy equation. Its numerical treatment is presented
further below.
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Table 5.1: Summary of the non-dimensional forms used for each TBC and the related quantities
of interest.

Θ Θb
∂Θ

∂r

∣∣∣∣
w

fΘ Θ+

MBC 〈Tw〉 − T
〈Tw〉 − Tb

1 −Nu 4Nu

Pe
uz

ReτPr

Nu
Θ

IF − 1

Nu

(
T − Tb
〈Tw〉 − Tb

)
0 −1

4

Pe
uz 2ReτPr

(
Θ +

1

Nu

)

The wall-normal derivative is given by
∂Θ

∂r∗

∣∣∣∣
r∗=1/2

= −Nu , (5.27)

which allows us to reduce the expression of the source term to

fΘ =
4Nu

Pe
u∗z . (5.28)

from which the Nusselt number can be estimated.

Summary

A summary of the non-dimensional forms used for each TBC is provided in Table 5.1. The direct
relationships, from [74], for a scaling in viscous units are also provided. Hereafter we drop the asterisk
(∗) to denote non-dimensional quantities. For the sake of completeness, we provide once again the
energy equation, as solved in the code

∂Θ

∂t
+ uj

∂Θ

∂xj
=

1

Pe

∂2Θ

∂xj∂xj
+ fΘ . (5.29)

5.2.3 Time integration with viscous filtering

The time integration of the energy equation (5.29) is carried out once completed the time advance-
ment of the velocity field. With the viscous filtering technique, the convective term is integrated with a
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third-order Adams-Bashforth (AB3) scheme while representing the diffusion term by the application
of the viscous filter operator on the computed solution every time step, as explained in chapter 4 [78].

Thus, the time advancement may be expressed in two steps as follows

Θ∗ = Θn + ∆t

p∑

j=0

ajT
j
ΘF

n−j (5.30)

Θn+1 = TΘΘ∗ + ∆tfn+1
θ (5.31)

where
Fn = un+1

j

∂Θn

∂xj
, (5.32)

is the convection term computed at time level n, fΘ is the source term that ensures thermal stationary
regime and p = 2, a0 = 23/12, a1 = −16/12, a2 = 5/12 for an AB3 scheme.

In step (5.30), the intermediate temperature Θ∗ is calculated from the integration of the convective
term with the AB3 scheme. The application of the discrete viscous filtering operator is represented by
its transfer function TΘ, according to eqs.(2, 27) in chapter 4 [78]. The viscous filter scheme (1, 36) in
chapter 4 is used for the temperature field, the counterpart of the second-derivative scheme (2.21, 2.33)
for DNS applications. Note that with an AB3 scheme, two applications of the viscous filter are required
in step (5.30) forFn andFn−1 respectively; a third and final application of the filter is performed in step
(5.31), which ultimately provides Θn+1. As shown in chapter 4 [78], the time advancement performed
in this way is free from any time splitting error, however, the requirement of three filter applications
per time step rises the computational cost.

Alternatively, by accepting the introduction of a time splitting error, the time advancement may
also be carried out with

Θ∗ = Θn + ∆t

p∑

j=0

ajF
n−j (5.33)

Θn+1 = TΘΘ∗ + ∆tfn+1
θ (5.34)

which requires only one filter application in step (5.34), being therefore less costly. More precisely, in
results presented with the present computational configuration in chapter 4 [78], we have showed that
the use of scheme (5.30,5.31) with three viscous filter applications (VF3) represented an extra cost of
+56% with respect to one viscous filter application (VF1) required by scheme (5.33,5.34). The draw-
back however is the time splitting error introduced with VF1 resulting in a loss of time accuracy. Yet,
it has been also shown in chapter 4 [78] that, in the context of multidimensional non-linear governing
equations, the time splitting error of VF1 can become insignificant, making questionable the practical
interest of the extra cost related to the two additional filtering applications.

In any case, both approaches VF1 and VF3 are very cost-effective thanks to the spectacular relaxation
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of the stability constraint related to diffusivity4. Furthermore, it should be stressed that the develop-
ment of the viscous filtering technique has been crucially relevant for the present computational config-
uration. In results presented in [78] for instance (which are re-discussed later in this chapter), for the
DNS at Re = 5300 and Pr = 0.71 with MBC, the use of VF1 allowed us to save −83% of computational
resources if compared to the explicit time integration of the viscous term with AB3. Likewise, very
satisfactory −74% could still be obtained with VF3. For the most advantageous case - with Re = 5300,
Pr = 0.025 and VF1 - remarkable 95% of computational resources could be spared. Both schemes VF1

and VF3 have been used to perform the DNS presented in this chapter.

Source term

The numerical treatment of the source term fΘ is the same here as in [74]. As expressed by step
(5.31) (or (5.34)), the forcing is performed every time step. This is done to ensure a thermally station-
ary regime by keeping constant the bulk temperature Θb. The application of the source term can be
explicitly expressed as a correction step by splitting (5.31) in two steps as follows

Θ∗∗ = TΘΘ∗ (5.35)

Θn+1 = Θ∗∗ + ∆tfn+1
Θ . (5.36)

In order to express the correction step (5.36) in terms of the bulk temperature, we may multiply
both sides of the equality by the streamwise velocity un+1

z and subsequently take the volumetric average
1

UbΩf

∫

Ωf

un+1
z Θn+1dΩf =

1

UbΩf

∫

Ωf

un+1
z

(
Θ∗∗ + ∆tfn+1

Θ

)
dΩf (5.37)

where Ωf is the inner fluid volume of the pipe (defined in eq.(1.8)). By rearranging, we may express
it as

∆t

UbΩf

∫

Ωf

un+1
z fn+1

Θ dΩf =
1

UbΩf

∫

Ωf

un+1
z Θn+1dΩf −

1

UbΩf

∫

Ωf

un+1
z Θ∗∗dΩf . (5.38)

The source term fΘ for IF is given by eq.(5.21)

fΘ =
4

Pe
uz for IF ,

4In the present computational configuration, because the Prandtl numbers considered are always less than
unity, the most restrictive condition related to the diffusivity comes from the diffusion term in the energy equation
(5.29), so that it is more convenient to use the thermal diffusivity α to define the Fourier number instead of the
viscosity ν. Also, in the context of a full explicit time integration of the energy equation with IBM, the diffusivity
constraint can easily become more restrictive to ensure stability than the CFL condition. The reader is referred to
4 [78] for more details.
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and, for MBC, it is given by eq.(5.28)

fΘ =
4Nu

Pe
uz for MBC .

Note that in both cases
fΘ

uz
= cst , (5.39)

which allows us to re-express the lhs of eq.(5.38) as

∆t

UbΩf

∫

Ωf

un+1
z fn+1

Θ dΩf =
fn+1

Θ

un+1
z

∆t

UbΩf

∫

Ωf

(un+1
z )2dΩf , (5.40)

and eq.(5.38) then becomes

∆t
fn+1

Θ

un+1
z

=

1

UbΩf

∫

Ωf

un+1
z Θn+1dΩf −

1

UbΩf

∫

Ωf

un+1
z Θ∗∗dΩf

1

UbΩf

∫

Ωf

(un+1
z )2dΩf

. (5.41)

From the definition of the bulk temperature in eq.(1.25), we may write

Θn+1
b =

1

UbΩf

∫

Ωf

un+1
z Θn+1dΩf ,

which consists in fact of the target value to be held constant every time step. By replacing then Θn+1
b in

eq.(5.41)

∆t
fn+1

Θ

un+1
z

=
1

1

UbΩf

∫

Ωf

(un+1
z )2dΩf

(
Θn+1
b − 1

UbΩf

∫

Ωf

un+1
z Θ∗∗dΩf

)
, (5.42)

which ultimately leads to the expression for the forcing term in eq.(5.36) as it is computed in the code

∆tfn+1
Θ =

un+1
z

1

UbΩf

∫

Ωf

(un+1
z )2dΩf

(
Θn+1
b − 1

UbΩf

∫

Ωf

un+1
z Θ∗∗dΩf

)
, (5.43)

where the constant value ensuring thermal stationary regime is, according to eq.(5.16),

Θn+1
b = 0 for IF ,
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and, according to eq.(5.26),
Θn+1
b = 1 for MBC .

The intermediate bulk temperature

Θ∗∗b =
1

UbΩf

∫

Ωf

un+1
z Θ∗∗dΩf , (5.44)

as well as the integral in the denominator on the rhs of eq.(5.43) are computed with a simple rectangular
method, just as for Ub.

In summary, in the correction step (5.36), the intermediate temperature Θ∗∗ is adjusted every time
step with the forcing term (5.43) in order to ensure thermal stationary regime by providing Θn+1

b = cst.

In the present work, when MBC is prescribed, the Nusselt number is directly predicted at the time
level n from the application of the source term since, according to eq.(5.28),

Nu =
Pe

4

fΘ

uz
for MBC , (5.45)

where the term fΘ/uz is computed every time step, on the fly, from (5.42).

5.3 Imposition of MBC - Dirichlet

The mixed-type boundary condition (MBC) is based on the assumption of vanishing temperature
fluctuations at the wall through the prescription of eq.(5.25)

Θw = 0 ,

which consists of imposing a constant and uniform value for the temperature field, i.e. a Dirichlet
boundary condition. In the present computational configuration, its numerical implementation fol-
lows the same rationale of the no-slip condition, and thus, its incorporation in Incompact3d /Xcom-
pact3d did not require any extra numerical development of the immersed boundary technique based
on Lagrange polynomial reconstruction [74].

5.4 Imposition of IF - Neumann

The isoflux boundary condition (IF) consists of prescribing the constant and uniform wall-normal
derivative given by eq.(5.20)

∂Θ

∂r

∣∣∣∣
w

= −1 ,
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which is imposed as a Neumann boundary condition (NBC). The technique developed here for that
purpose is based on the strategy introduced by [103] in the framework of a turbulent jet impinging
on a heated wall, and used later by [74, 91] to perform conjugate heat transfer simulation in plane
channel configuration. Here, the method is extended to a pipe geometry as a prototype of complex
geometry. More precisely, as we work with a Cartesian grid for the discretization of a cylindrical geom-
etry, the imposition of the above wall-normal derivative must be decomposed into its Cartesian com-
ponents. The numerical implementation of this technique is done here in a generic way - i.e., in terms
of the local normal and tangential directions to the surface (local reference frame) - which enables a
straightforward application of the method for more complex body geometries without requiring any
extra-development.

5.4.1 Expression for the wall-normal flux in Cartesian coordinates

As re-illustrated in Figure 5.4, the Cartesian frame of reference used in the present computational
configuration is placed on the axis of the pipe and follows the regular distribution given by eqs.(2.2-
2.4), which are recovered here for the sake of completeness

xi = (i− 1)∆x− Lx/2
yj = (j − 1)∆y − Ly/2
zk = (k − 1)∆z .

Where ∆x = ∆y and the indices i, j, k run in the transverse-xy and streamwise-z directions respec-
tively. The Cartesian frame of reference relates to the one associated to the pipe geometry according
to

rij =
√
x2
i + y2

j

φij = arctan

(
yj
xi

)

zk = zk ,

so that, as represented in Figure 5.4, the normal (pointing towards the fluid) and tangential (positive
counterclockwise) vectors at any point in the fluid zone can be defined as

~er = − cosφ ~x− sinφ ~y (5.46)
~eφ = − sinφ ~x+ cosφ ~y . (5.47)

with ~x, ~y the orthogonal vectors in the transverse-xy directions.

This way, the derivatives at the wall-normal and wall-tangential directions can be expressed in the
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z

Figure 5.4: Positioning of the Cartesian frame of reference and relationship between the Carte-
sian and the local frames of reference with the normal and tangential vectors (~er, ~eφ) repre-
sented.

Cartesian frame of reference, at any point in the fluid domain r < R, according to

∂Θ

∂r
= ~er · ~∇Θ (5.48)

∂Θ

∂φ
= ~eφ · ~∇Θ , (5.49)

where ~∇ is the nabla operator in Cartesian coordinates, leading to
∂Θ

∂r
= − cosφ

∂Θ

∂x
− sinφ

∂Θ

∂y
(5.50)

∂Θ

∂φ
= − sinφ

∂Θ

∂x
+ cosφ

∂Θ

∂y
. (5.51)

From the above equations, we can express the Cartesian derivatives as functions of the normal/tangential
counterparts

∂Θ

∂x
= − cosφ

∂Θ

∂r
− sinφ

∂Θ

∂φ
(5.52)

∂Θ

∂y
= − sinφ

∂Θ

∂r
+ cosφ

∂Θ

∂φ
, (5.53)
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which, at the inner wall r = R (“w”), correspond to the Neumann boundary conditions suitable to be
implemented in a Cartesian grid

∂Θ

∂x

∣∣∣∣
w

= − cosφ
∂Θ

∂r

∣∣∣∣
w

− sinφ
∂Θ

∂φ

∣∣∣∣
w

(5.54)

∂Θ

∂y

∣∣∣∣
w

= − sinφ
∂Θ

∂r

∣∣∣∣
w

+ cosφ
∂Θ

∂φ

∣∣∣∣
w

. (5.55)

In the present approach however, the Cartesian wall-derivatives (5.54, 5.55) are indirectly prescribed,
in the sense that the derivative values are not imposed but rather ensured through the adjustment of
the temperature value at the wall Θw. More precisely, a value of Θw providing locally the expected
derivative at the wall is estimated and then used to perform the Lagrange polynomial reconstruction.
In this sense, it can be said that the Neumann boundary condition is virtually ensured with a Dirichlet
boundary condition.

5.4.2 Formulation for a NBC ensured through a DBC

The strategy proposed here for the prescription of NBC can be understood as the two steps pro-
cedure schematised in Figure 5.5. Firstly, the target value Θw satisfying the NBC is defined and then
subsequently used as an input to perform the Lagrange reconstruction. Moreover, due to the 2D MPI
pencil decomposition of the code (see section 2.1), all operations must be carried out in 1D, which
means that, the wall condition (5.54) must be satisfied during the x-direction reconstruction and (5.55)
during the y-direction reconstruction.

Let us consider, for instance, the local procedure along a x-row, as illustrated in Figure 5.5. We may
define a non-centred finite-difference scheme, such as

∂Θ

∂x

∣∣∣∣
w

= aΘw + bΘi+1 + cΘi+2 + dΘi+3 , (5.56)

so that, Θw providing the target derivative ∂Θ

∂x

∣∣∣∣
w

can be estimated from

Θw =

∂Θ

∂x

∣∣∣∣
w

− bΘi+1 − cΘi+2 − dΘi+3

a
. (5.57)

This wall value is subsequently used in Step 2 of Figure 5.5 as if it was a DBC to perform the recon-
struction. Thus, as it is proposed here, the prescription of NBC can be interpreted as an output of the
Lagrange interpolation, as the expected wall derivative is going to be approximately recovered only
afterwards, when first-derivatives will be computed with the sixth-order compact scheme used in In-
compact3d/Xcompact3d.
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Step 1: Computation of targeted Θw ensuring the NBC

Solid

Θi

Θi+1

Θi+2
Θi+3

Θi+4

Θi+5

i i+1 i+2 i+3 i+4 i+5

Θw

Fluid

Δxw

Solid

Θi

Θi+1

Θi+2
Θi+3

Θi+4

Θi+5

i i+1 i+2 i+3 i+4 i+5

Θw

Fluid

Step 2: Lagrange polynomial reconstruction

Figure 5.5: The imposition of NBC with the present IBM can be understood as a two steps
procedure. Step 1: the target value Θw is defined to provide the desired derivative at the
wall using a non-centred scheme with skipping of first fluid points. Step 2: The Lagrange
reconstruction is performed using the estimated value.

A Taylor expansion from the fluid-solid interface �w leads to the following system (the variable ri
is introduced here to simplify the expressions)

ri =
∆xw + i∆x

∆xw
(5.58)

a+ b+ c+ d = 0

∆xw(b+ r1c+ r2d) = 1 (∆x)

∆x2
w

2
(b+ r2

1c+ r2
2d) = 0 (∆x2)

∆x3
w

6
(b+ r3

1c+ r3
2d) = 0 (∆x3) (5.59)

Note that the definition of the order of accuracy is not straightforward, since the grid resolution ∆xw
in the vicinity of the body is geometry dependent. Therefore, the truncation errors expressed above
are based on the supposition that ∆xw ≈ ∆x, so that (∆xw + i∆x)n ≈ ∆xn.

The solution of system (5.59) for third-order accuracy leads to the following expressions for the
finite-difference coefficients

a = − (r1 + 1)r2 + r1

r1r2∆xw
b =

r1r2

((r1 − 1)r2 − r1 + 1)∆xw
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c = − r2

((r2
1 − r1)r2 − r3

1 + r2
1)∆xw

d =
r1

(r3
2 + r2

2(−r1 − 1) + r1r2)∆xw
(5.60)

Note that the above coefficients are geometry dependent because of ∆xw. In the code, they are
evaluated before the time loop, from the local coordinates of the immersed boundary r = R. They are
then defined as 3× 3 matrices which are used later in the flow solver. One set of coefficients is needed
for each of the transverse-xy directions. Because the coefficients are geometry dependent, the values
computed for Θw with eq.(5.57) will be as well. This point explains how the present strategy is capable
of reproducing temperature fluctuations at the wall (a characteristic feature of IF) although it is manly
based on the imposition of Dirichlet conditions. Note also that the first fluid point (index i in Figure
5.5) is also skipped, consistently with the Lagrange reconstruction. In fact, if not skipped, ∆xw can
assume very small values, leading to very large coefficients given the dependence in the denominators
of eqs.(5.60), which, although algebraically correct, can cause several numerical instability of the flow
solver.

Besides the indirect imposition of Neumann conditions with the present IBM, another obstacle still
needs to be dealt with in the present scenario. The definition of the Cartesian wall derivatives

∂Θ

∂x

∣∣∣∣
w

and ∂Θ

∂y

∣∣∣∣
w

,

depends on the knowledge of their normal/tangential counterparts
∂Θ

∂r

∣∣∣∣
w

and ∂Θ

∂φ

∣∣∣∣
w

,

according to eqs.(5.54, 5.55). The wall-normal component naturally corresponds to the isoflux bound-
ary condition we wish to impose, given by eq.(5.20)

∂Θ

∂r

∣∣∣∣
w

= −1 . (5.61)

On the other hand, the expected behaviour of the wall-tangential component is unknown, at least in
a turbulent context. With a body-conformal grid, which is the typical approach in cases like this, the
imposition of the wall-normal derivative is straightforward and the tangential one can be simply left
free. Here however, a prediction of the wall-tangential derivative is necessary in order to define the
target value Θw. Different techniques essentially based on extrapolation with finite-difference schemes
have been tested to deal with this hindrance, they are described in the next section.

5.4.3 Estimation of the wall-tangential derivative contribution

In order to estimate the contribution of the wall-tangential derivative, we propose here a method
based on extrapolation. As a first step, the wall-tangential derivative is computed everywhere in the
fluid domain r < R from eq.(5.51)

∂Θ

∂φ
= − sinφ

∂Θ

∂x
+ cosφ

∂Θ

∂y
.
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Figure 5.6: Schematic representation of the extrapolation stencil for the tangential heat flux
along a x-row. The grid resolution at the vicinity of the body ∆xw is defined as the distance
between the interface and the first fluid node.

Note that different numerical schemes may be used to compute the Cartesian derivatives on the rhs.
Afterwards, as schematised in Figure 5.6, the wall contribution along a Cartesian grid row can be ex-
trapolated from the fluid values with a finite-difference scheme5 such as

∂Θ

∂φ

∣∣∣∣
w

= ae ·
∂Θ

∂φ

∣∣∣∣
i

+ be ·
∂Θ

∂φ

∣∣∣∣
i+1

+ ce ·
∂Θ

∂φ

∣∣∣∣
i+2

+ de ·
∂Θ

∂φ

∣∣∣∣
i+3

. (5.62)

The grid resolution at the vicinity of the body ∆xw is defined, this time, with respect to the first fluid
node. By supposing once again ∆xw ≈ ∆x to express the truncation error (∆xw + i∆x)n ≈ ∆xn,
a Taylor expansion from the wall leads to the following system (the variable ri, already defined in
eq.(5.58), is given here again to simplify the expressions)

ri =
∆xw + i∆x

∆xw

1 = ae + be + ce + de (∆x)

0 = ae + r1be + r2ce + r3de (∆x2)

0 = ae + r2
1be + r2

2ce + r2
3de (∆x3)

0 = ae + r3
1be + r3

2ce + r3
3de (∆x4) . (5.63)

Extrapolation schemes of different orders of accuracy may be used and first fluid nodes may or may
not be skipped depending on the value of the coefficient ae.

5Note that for the present non-body fitted grid, the location of the immersed boundaries do not coincide with
mesh nodes
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Table 5.2: Techniques evaluated for the estimation of the wall-tangential heat flux.

Method Scheme for first-derivatives Scheme for extrapolation
in eq.(5.51) with eq.(5.62)

Method V1 centred ∆x2 + pre-reconstruction ∆x1 skip
Method V2 conditional ∆x2 ∆x1 skip
Method V3 conditional ∆x2 ∆x1 no-skip
Method V4 conditional ∆x2 ∆x2 skip
Method V5 conditional ∆x2 ∆x2 no-skip
Method V6 conditional ∆x2 ∆x4 no-skip

In summary, the estimation of the wall-tangential derivative proposed here consists of: i) predicting
∂Θ

∂φ
every time step, everywhere in the fluid domain, using eq.(5.51); ii) estimating its wall contribu-

tion ∂Θ

∂φ

∣∣∣∣
w

. Numerically speaking, we seek to define an efficient strategy to: i) compute the Cartesian

derivatives required in the calculation of ∂Θ

∂φ
(i.e., the rhs of eq.(5.51)); ii) extrapolate the wall contri-

bution ∂Θ

∂φ

∣∣∣∣
w

from the fluid values ∂Θ

∂φ
.

This procedure must be inserted in the structure of the code before the reconstruction step described
in section 5.4.2, since ∂Θ

∂φ

∣∣∣∣
w

is needed to define the target Θw. Various combinations to meet require-
ments i) and ii) have been evaluated and, to avoid any confusion when presenting them further below,
a description of the algorithm inserted in the structure of the code is provided in Figure 5.7, where the
respective numerical schemes required for each step are listed. We will be constantly referring to this
diagram in the next section.

Numerical techniques evaluated

Table 5.2 presents the different strategies tested for the imposition of NBC. They are listed in func-
tion of the numerical features employed to estimate the contribution of the wall-tangential derivative
(steps I and II in the diagram of Figure 5.7).

Method V1 To compute the Cartesian derivatives, Method V1 employs the following explicit centred
scheme of second-order accuracy

f ′i =
fi+1 − fi−1

2∆x
. (5.64)
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IV) Definition of Θw eq.(5.57)

V) Reconstruction with Θw

Figure 5.7: Description of the algorithm inserted in the time loop of the energy equation for
the prescription of Neumann boundary conditions in the present work.
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In the present IBM framework, the use of centred schemes is always combined with a reconstruction
of the fluid solution into the solid zone to reduce contamination by spurious oscillations around the
interface. Here, reconstructing prior to computing the Cartesian derivatives in step I should allows us
to obtain a more consistent prediction of ∂Θ

∂φ
at the fluid nodes close to solid-fluid interface. The prefix

“pre-” is expressly introduced in Table 5.2 to make the distinction between the reconstruction carried
out for this purpose (step I in the diagram of Figure 5.7) and the one which ultimately performs the
imposition of the NBC (step V in the diagram). Note however that the pre-reconstruction needs to be
carried out for a NBC, which means that a value of Θw is required. This makes the problem somehow
closed-looped: an information of Θw is needed for the pre-reconstruction, whose ultimate goal is to
improve the prediction of Θw for the reconstruction. To deal with this hindrance, Method V1 uses the
estimated wall temperature from the previous time step to carry out the pre-reconstruction, i.e., Θn−1

w .
Once Θ is (pre-)reconstructed, first-derivatives are computed and ∂Θ

∂φ

n

is calculated. Next, along each

transverse-xy grid row, ∂Θ

∂φ

∣∣∣∣
n

w

is extrapolated with scheme (5.62) and the following set of coefficients

be = 1 ae = ce = de = 0 , (5.65)
which consists of a first-order extrapolation with skipping of first fluid nodes (by setting ae = 0).

Methods V2 and V3 To avoid the need for a pre-reconstruction (and the related dependence on
information from the previous time step), the following second-order scheme has been implemented
for the computation of first-derivatives in step I of the diagram

f ′i = (1− εi)
[
εi−1(1− εi+2)(1− εi+1)

−3fi + 4fi+1 − fi+2

2∆x

+ εi+2εi−1(1− εi+1)
fi+1 − fi

∆x

+ εi+1(1− εi−2)(1− εi−1)
3fi − 4fi−1 + fi−2

2∆x

+ εi−2εi+1(1− εi−1)
fi − fi−1

∆x

+ (1− εi+1)(1− εi−1)
fi+1 − fi−1

2∆x

]
. (5.66)

We recall that ε is the scalar that makes the distinction between solid and fluid zones in the computa-
tional domain as defined in eq.(2.17)

ε(r) =

{
1, if R ≤ r ≤ Ro
0, otherwise .

As the goal of step I is to provide a prediction of ∂Θ

∂φ
only in the fluid domain r < R, scheme (5.66)

can be understood as a second-order conditional scheme which employs centred difference at fluid
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nodes away from the interface and switches to non-centred difference close to the interface, so that the
stencil may avoid nodes placed in the solid zone and therefore prevent contamination by interfacial
discontinuities. Concerning the extrapolation of ∂Θ

∂φ

∣∣∣∣
w

, both methods use first-order approximations.
First fluid nodes are skipped with Method V2 (scheme (5.62, 5.65) as for Method V1), whereas for
Method V3, first fluid nodes are not skipped by employing the following set of coefficients

ae = 1 be = ce = de = 0 . (5.67)

Methods V4 and V5 The conditional scheme (5.66) is kept for the first-derivatives in step I while
second-order extrapolation schemes are now tested for step II. With Method V4, first fluid nodes are
skipped. The solution of system (5.63) for second-order accuracy with ae = de = 0 leads to the follow-
ing set of coefficients

be =
r2

r2 − r1
ce = − r1

r2 − r1
ae = de = 0 . (5.68)

With Method V5, first fluid nodes are not skipped, the solution of system (5.63) for second-order ac-
curacy with ce = de = 0 leads to the following set of coefficients

ae =
r1

r1 − 1
be = − 1

r1− 1
ce = de = 0 . (5.69)

Method V6 By conserving the second-order conditional scheme for first-derivatives, a fourth-order
extrapolation is tested for ∂Θ

∂φ

∣∣∣∣
w

. First fluid nodes are not skipped and thus the solution of system
(5.63) for fourth-order accuracy leads to

ae =
r1r2r3

[(r1 − 1)r2 − r1 + 1]r3 + (1− r1)r2 + r1 − 1

be = − r2r3

[(r1 − 1)r2 − r2
1 + r1]r3 + (1− r1)r1r2 + r2

1(r1 − 1)

ce =
r1r3

[r2
2 − (r1 + 1)r2 + r1]r3 − r3

2 + (r1 + 1)r2
2 − r1r2

de = − r1r2

r3
3 − (r1 + r2 + 1)r2

3 + [(r1 + 1)r2 + r1]r3 − r1r2
. (5.70)

Just as for the for the coefficients (a, b, c, d) given by eqs.(5.60), the sets of coefficients (5.68 - 5.70)
are geometry dependent because of the dependence on ∆xw, implicit in ri. In the code, they are initial-
ized together with (a, b, c, d) as 3 × 3 matrices before the time loop. For the extrapolation coefficients
however, ∆xw does not explicitly arise in the denominator, ∆xw → 0 does not lead to critical values of
(ae, be, ce, de), reason why first fluid nodes may not be skipped.
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5.5 Results

In this section, DNS results of validation are presented for Mixed-type (MBC) and Isoflux (IF)
boundary conditions. In a first instance, the performance of the different methods conceived for IF is
compared and the finest one is selected. Then, basic temperature statistics are presented together with
the budget of temperature variance for both IF and MBC. The advantageous features of the present
numerical approach are also discussed with the MBC results. Finally, the particularities of each TBC
are highlighted through a direct comparison between IF and MBC results.

5.5.1 Validation IF

This section is dedicated to the evaluation of the different techniques conceived and described in
section 5.4.3 for the prescription of Neumann boundary conditions with the present Immersed Bound-
ary Method. Then, first and second-order one-point statistics, as well as the budgets of the temperature
variance are presented and compared to accurate reference results.

Comparison of IF techniques

As previously mentioned, the expected behaviour of ∂Θ

∂φ
and its wall extrapolation ∂Θ

∂φ

∣∣∣∣
w

are un-
known in a turbulent framework. Nonetheless, from eq.(5.51)

∂Θ

∂φ
= − sinφ

∂Θ

∂x
+ cosφ

∂Θ

∂y
,

one sees that an accurate prediction of ∂Θ

∂φ
is intrinsically related to the correct computation of the

Cartesian derivatives ∂Θ

∂x
and ∂Θ

∂y
. These same derivatives are also found on the rhs of eq.(5.50) which

gives the expression for the wall-normal derivative in the Cartesian frame of reference

∂Θ

∂r
= − cosφ

∂Θ

∂x
− sinφ

∂Θ

∂y
,

for which, according to eq.(5.61),
∣∣∣∣
∂Θ

∂r

∣∣∣∣→ 1 is expected as r/R→ 1.

Here, therefore, we may define a quantity

qr =
∂Θ

∂r
=⇒ qr = − cosφ

∂Θ

∂x
− sinφ

∂Θ

∂y
,
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to judge the suitability of the numerical scheme used for the computation of the first-derivatives and
also the effectiveness of the pre-reconstruction. However, it is important to stress that, in this analysis,
the quantity qr is assessed as an output, with the one and only purpose of comparing the different
techniques. In addition, to judge the quality of the extrapolation techniques, the asymptotic behaviour
of the temperature fluctuations 〈Θ′Θ′〉will be assessed.

All tests have been performed at low Reynolds number Re = 5300 (Reτ ≈ 181) with Pr = 0.71,
representative of air, in a computational domain (Lx × Ly × Lz) = (1.28D × 1.28D × 12.5D) with
(nx × ny × nz) = (256× 256× 640) nodes, corresponding to a mesh resolution of ∆x+ = ∆y+ = 1.81,
∆z+ = 7.07 in wall units. The viscous filtering technique is combined with a third-order Adams-
Bashforth scheme for the time integration of both momentum and energy equations. The one-filtering
scheme (5.33, 5.34) described in section 5.2.3 is used here. The resulting relaxation of the stability
constraint related to diffusivity allows us to employ a time step 6× bigger if compared to the case
of a full-explicit integration in Incompact3d /Xcompact3d (see section 7.2 in chapter 4 [78] for more
details). The laminar temperature solution for IF, given by eq.(2.14)

Θ(r) = 2

(
3

16
+ r4 − r2

)
− 1

Nu
,

is initialized with a fully developed turbulent velocity field from a previous simulation. The transition
to turbulence is carried out using Method V6, once reached the fully developed state, new simulations
are launched for all the Methods in Table 5.2 and a new, still shorter, transition is required for each
one of them. Once completed the transition, the quantity qr is gathered on the fly. Axial and time
averages are carried out during the simulation whereas the azimuthal one is performed during post-
processing with the projection technique described in section 2.8. For all the methods, temperature data
is averaged over the same physical time window Tstat = 300D/Ub, being physically transported by the
same velocity field. The methods are then compared in terms of the mean quantities 〈qr〉 and 〈qr〉z,t,
where the former consists of data averaged in both homogeneous directions and time (z, φ, t), whereas
for the latter, data is averaged in (z, t) only - i.e., it is not projected in φ - being therefore presented
as a cloud of raw data (see discussion in section 2.8). The analysis of the raw data here allows us to
assess the performance of the Methods in terms of statistical convergence while taking into account the
relative positioning of the Cartesian mesh nodes (xi, yj) with respect to the wall.

To confront the two techniques considered for the computation of the Cartesian derivatives - namely
the centred scheme (5.64) and the conditional scheme (5.66) - Figure 5.8 compares 〈qr〉 and 〈qr〉z,t
obtained with Methods V1 and V2. As both methods use extrapolation of first-order with skip, this
assessment allows us to plainly compare the first-derivative schemes while putting in evidence the
effect of the pre-reconstruction with Θn−1

w used for Method V1. As a matter of fact, with both methods,
the expected behaviour qr → 1 as (R − r)+ → 0 is recovered for both the projected profile 〈qr〉 and
non-projected data cloud 〈qr〉z,t. Furthermore, although performed with data from the previous time
step, the pre-reconstruction seems to successfully smooth down the discontinuity at the interface, since
no abnormal behaviour of the non-projected data cloud V1 is observed in the near-wall region. With
Method V2, the quantity qr presents a similar behaviour with a slight overestimation for the closest
nodes to the interface. This is due in fact to the switch from centred to non-centred difference at the
edges of the fluid domain, accomplished with formulation (5.66). Despite the slight predominance
of Method V1, Method V2 is more favourable and robust as it does not require a pre-reconstruction,
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Figure 5.8: Comparison of the quantity 〈qr〉 with Methods V1 and V2. A zoomed view of
the near wall region is also provided (right). Time average carried out over a time window
Tstat = 300D/Ub.

which suppresses the dependence on data from the previous time step and it is, therefore, retained as
a more suitable solution.

To evaluate the different extrapolation techniques, the conditional scheme (5.66) is retained for the
derivatives computation and Methods V2 through V6 are now assessed in function of the asymptotic
behaviour of the temperature fluctuations. The data is scaled in wall units according to Table 5.1 and,
as before, both the projected profile 〈Θ′Θ′〉+ and non-projected data cloud 〈Θ′Θ′〉+z,t are compared in
Figures 5.9 and 5.10. More specifically, Figure 5.9-left confronts Methods V2 and V3 as both employs
first-order extrapolation and Figure 5.9-right confronts Methods V4 and V5 as both employs second-
order extrapolation. Such comparisons allow us to plainly assess the effect of the skipping of first fluid
points when extrapolating. Subsequently, in Figure 5.10-left, Methods V3 and V5 are re-plotted in order
to confront first and second order extrapolations. Then, in Figure 5.10-right, the best technique from the
previous comparisons (namely Method V3) is ultimately compared to Method V6, which employs a
higher-order extrapolation without skip. The accurate DNS results of [10] are also plotted for reference.

As a first remark, although here Neumann conditions are indirectly imposed with Dirichlet condi-
tions, results in Figures 5.9 and 5.10 show that the present strategy is consistent as non-zero temperature
fluctuations at the wall (characteristic of IF) are well reproduced with all the techniques. Furthermore,
the Nusselt number prediction, calculated and averaged on the fly from Θw according to eq.(5.14)

Nu = − 1

〈Θw〉
,

is predicted within 1% error for all the techniques, as reported in Table 5.3.

Results presented in Figure 5.9 show that, for both first and second-order extrapolations, better
results are obtained without skip of first fluid points, that is, with Method V3 in Figure 5.9-left and
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Table 5.3: Nusselt number prediction from the different IF techniques evaluated at Re = 5300
and Pr = 0.71.

Method Nu
Reference [10] 18.5
Method V2 18.27
Method V3 18.33
Method V4 18.33
Method V5 18.32
Method V6 18.23

Method V5 in Figure 5.9-right. In fact, when first fluid nodes are skipped, an oscillatory behaviour
is observed in the data cloud 〈Θ′Θ′〉+z,t which may be responsible for the apparent slower statistical
convergence as well. These same patterns have been also observed for the mean temperature profile
〈Θ〉+ and streamwise heat flux 〈u′zΘ′〉+, not shown here for conciseness.

Next, Methods V3 and V5 are compared in Figure 5.10-left. Both projected and non-projected data
are nearly superimposed, yet, the data cloud V3 displays slightly higher values with respect to V5 across
the near-wall region, resulting in a projected profile 〈Θ′Θ′〉+ closer to the reference one. This suggests
that a slightly quicker statistical convergence is achieved with Method V3. The previous assumption
could be verified with the mean temperature profile 〈Θ〉+ (not shown), for which an almost perfect
agreement with reference at the core of the geometry (R − r)+ → Reτ confirmed a quicker statistical
convergence.

Finally, in Figure 5.10-right, the comparison between Methods V3 and V6 - which employ first
and fourth-order extrapolations without skip respectively - confirms the predominance of Method V3.
Once again, oscillations are observed for the non-projected data cloud V6 as well as a slower statistical
convergence. In fact, these high oscillations disturb the azimuthal projection across the conductive
sublayer, the visual effect on the projected profile is an apparent misrepresentation of the zero first-
derivative of temperature fluctuations at the wall, which is a characteristic feature of isoflux conditions
[27, 29]. The use of higher-order extrapolation in the present context seems to go against the efficacy
of the strategy. Moreover, the robustness of the technique - which had already displayed solid results
with the second-order conditional scheme (5.66) for the computation of first-derivatives - seems to be
reinforced now with a simple first-order extrapolation without skip for ∂Θ

∂φ

∣∣∣∣
w

. Conclusively, Method
V3 is retained as the most suitable technique to model isoflux conditions in the present numerical
framework.
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IF at low Reynolds number

Now, a new simulation with Re = 5300 and Pr = 0.71 is relaunched from the last realization with
Method V3 in order to obtain turbulence statistics over an extended time window Tstat = 1740D/Ub.
The same initial condition are also used to launch a new simulation with Pr = 0.025, for which turbu-
lence statistics are only gathered once completed the transition of the thermal field. Such a low Prandtl
number is characteristic of liquid metals which are generally used in advanced cooling devices such as
solar power plants [10]. The same computational configuration is kept for this low Prandtl case. For
the configurations considered here, accurate DNS results of [10] are used as reference.

For Pr = 0.71, the Nusselt number is correctly predicted with Nu = 18.22, consisting of a -1.5%
error with respect to its reference value Nu = 18.50. Likewise, for Pr = 0.025, Nu = 6.45 is obtained
similarly to its reference counterpart Nu = 6.46. In Figure 5.11, one-point temperature statistics are
presented, scaled in viscous units, for both Prandtl numbers. A great agreement with reference results
is observed for the mean temperature profiles 〈Θ〉+ as well as for the temperature variance 〈Θ′Θ′〉+
and streamwise heat flux 〈u′zΘ′〉+. The slight over-estimation of the peak of temperature fluctuation
is within the statistical convergence uncertainty. Moreover, for both Pr, not only the non-zero value
of the temperature fluctuations at the wall is correctly estimated but also the plateau effect across the
conductive sublayer is well reproduced (zero gradient at the wall), which are essential features of
isoflux conditions [29, 27].

The comparison of the mean temperature profiles in Figure 5.11-top shows that with decreasing
Prandtl number, the conductive sublayer spreads from the wall towards the core region [100]. More-
over, for the low Prandtl case, neither buffer nor logarithmic layers can be distinguished (at least not
for the low Reynolds number considered here), and hence the temperature profile displays a laminar-
like aspect, which explains also the proximity of the Nusselt number prediction Nu = 6.46 from the
analytical laminar solution Nu = 4.36. These observations are in agreement with results of [10].

As shown in Figure 5.11-centre, with decreasing Pr, temperature fluctuations are significantly
damped by molecular diffusion and the peak moves towards the core of the pipe, exposing the wider
conductive sublayer throughout which temperature fluctuations are approximately constant [101, 29,
10]. Furthermore, for both Prandtl cases, the value of 〈Θ′Θ′〉+ at the wall accounts for ≈ 70% of the
peak value, reason why this type of TBC is primarily recommended to model applications where tem-
perature fluctuations at the wall are not negligible, such as unsteady heat conduction and solar plants
for instance [27, 10].

As shown in Figure 5.11-bottom, the peak value of the streamwise turbulent heat flux 〈u′zΘ′〉+
increases with increasing Pr and shifts towards the wall, with for instance (R−r)+ ≈ 19 for Pr = 0.025
and (R − r)+ ≈ 16 for Pr = 0.71. In fact, the peak is pushed towards the wall by the conductive
sublayer, which becomes thinner with increasing Pr [100]. Besides, the peak location is always found
between the peak of streamwise velocity fluctuations 〈u′zu′z〉+ located at (R − r)+ ≈ 14, and the peak
of temperature fluctuations 〈Θ′Θ′〉+, located at (R− r)+ ≈ 60 for Pr = 0.025 and at (R− r)+ ≈ 17 for
Pr = 0.71, this is in agreement with results of [100].

To further explore the different mechanisms involved in the Prandtl numbers considered, the bud-
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gets of the temperature fluctuations are also assessed. The transport equation of the temperature vari-
ance, with kθ =

1

2
〈Θ′Θ′〉, is given by [10]

D̄kθ
D̄t

= Pkθ − εkθ +MDkθ + TDkθ + Skθ , (5.71)

where the individual terms are: production Pkθ , dissipation εkθ , molecular diffusionMDkθ and turbu-
lent diffusion TDkθ . They are defined as (cf.[10])

Pkθ = −〈uiΘ′〉
∂〈Θ〉
∂xi

(5.72)

εkθ = −α
〈
∂Θ′

∂xi

∂Θ′

∂xi

〉
(5.73)

MDkθ =
α

2

∂2〈Θ′Θ′〉
∂xi∂xi

(5.74)

TDkθ = −1

2

∂〈uiΘ′Θ′〉
∂xi

(5.75)

and the source term depends on the TBC, which for IF and MBC

Skθ = 4
〈uzΘ′〉
D

. (5.76)

The terms are scaled in viscous units using u2
τΘ2

τ/ν, where the friction temperature is

Θτ =
1

2ReτPr
for IF, (5.77)

Θτ =
Nu

2ReτPr
for MBC. (5.78)

The normalized budget terms are presented in Figure 5.12 for both Prandtl numbers considered (the
source term is masked for clearness). Results from [10] are also plotted for reference. The overall
agreement is satisfactory with the balance of terms being well reproduced. For Pr = 0.71, the peak of
production P+

kθ
occurs at (R − r)+ ≈ 15, whereas for Pr = 0.025, the peak spreads over a larger zone,

expanding itself towards the core of the pipe with a maximum vale occurring at (R− r)+ ≈ 50, reason
why a displacement of the peak of 〈Θ′Θ′〉+ is observed in Figure 5.12 for the low Pr case.

At the wall, MDkθ balances εkθ , revealing that the temperature fluctuations are transported to the
wall only by diffusion - since the turbulent transport term TDkθ vanishes because of the no-slip con-
dition - and then are dissipated by molecular dissipation. The turbulent transport term TDkθ displays
two peaks, a positive one closer to the wall, and a negative one at the production peak location. As
pointed out by [29], this term drains temperature fluctuations from the region where production is
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Figure 5.12: Budget of temperature variance with IF at Re = 5300 with (left) Pr = 0.71 and
(right) Pr = 0.025. Symbols are reference results of [10].

Figure 5.13: Snapshots of the instantaneous temperature Θ atRe = 5300 with (top)Pr = 0.025
and (bottom) Pr = 0.71. Red indicates high values, blue indicates low values.

most intense and conveys them both towards the wall and the core region. At the production peak
location, for Pr = 0.71, transports by turbulence TDkθ and molecular diffusionMDkθ are comparable,
with a slight dominance of the former. They account each for≈ 18% of the production peak amplitude.
Contrarily, for Pr = 0.025, MDkθ accounts for ≈ 13% of the production peak amplitude, against only
4% associated to TDkθ . The same behaviour is also observed in the outer region, where for Pr = 0.71
the turbulence transport term shows a positive plateau, ultimately balancing dissipation at the centre of
the pipe; whereas for Pr = 0.025, it is molecular diffusion that predominantly balances dissipation in
the core region (with only a marginal contribution of turbulence transport). The above considerations
demonstrate the major role played by molecular diffusion over turbulence transport in low Prandtl flu-
ids. Also, the significant difference on the amplitude of the terms between the two cases shows that
thermal turbulent structures are considerably damped in applications with low Prandtl fluids [101],
this can be also verified qualitatively through the instantaneous visualizations of the temperature field
provided in Figure 5.13.
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Table 5.4: Main parameters and results with MBC.

ReD ∆z+ ∆r+ ∆(Rθ)+ Reτ Nu
Pr0.71 Pr0.025

DNS [10] 5300 < 9.4 0.37− 4.5 < 4.9 181.1 18.3 6.43
Present DNS 5300 7 ≈ 1.8 ≈ 1.8 180 18.13 6.43

Present DNS ∆x2 5300 7 ≈ 1.8 ≈ 1.8 262.4 36.6 -

DNS [9] 37700 < 9.98 0.15− 5.12 < 4.87 999 - -
LES [10] 37700 < 18 0.64− 11 < 10 998.9 85.3 -

Present DNS 37700 13 ≈ 2.9 ≈ 2.9 996.8 84.16 -
Present LES 37700 13 ≈ 5.8 ≈ 5.8 1000.6 85.27 -

5.5.2 Validation MBC

In this section DNS results with MBC are assessed at low and moderately high Reynolds numbers
Re = 5300, 37700. Here, major attention is given to the advantageous features of the present compu-
tational configuration. In particular, through comparison with reference results from [10], the combi-
nation of profitable numerical features, leading to a significant reduction of the computational cost, is
demonstrated. Main parameters for each simulation and the predictions of relevant wall quantities are
provided all together in Table 5.4.

For the low Reynolds case, the viscous filtering technique VF1 (scheme (5.33, 5.34)) is used whereas,
for the high Reynolds case, VF3 (scheme (5.30, 5.31)) is employed instead (c.f. section 5.2.3). The ac-
curacy of both strategies have been compared and demonstrated to be very similar in [78]. In fact, the
MBC results discussed here have been already presented in chapter 4 [78] to highlight the benefits of
viscous filtering for the present computational configuration. Indeed, without the significant relax-
ation of the stability constraint related to diffusivity allowed by the viscous filtering technique, these
simulations, at both low and high Reynolds numbers, would be very expensive to carry out with the
full explicit time integration previously used. In particular, as already mentioned in section 5.2.3, up
to 95% of computational resources could be spared.

MBC at low Reynolds number

Firstly, the low Reynolds number case is considered for both Prandtl numbers Pr = 0.71, 0.025. For
this particular flow configuration, accurate DNS results are documented in [10] where the high-order
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spectral element code Nek5000 was used with a highly-refined computational mesh in the near wall
region. The same calculation has been performed here with the same computational mesh used for
the IF investigations, i.e., a computational domain (Lx × Ly × Lz) = (1.28D × 1.28D × 12.5D) with
(nx × ny × nz) = (256× 256× 640) nodes, corresponding to a mesh resolution of ∆x+ = ∆y+ = 1.81,
∆z+ = 7.07 in wall units. With respect to the reference calculation of [10], twice as much degrees of
freedom are used here. Nonetheless, thanks to the numerical efficiency of Incompact3d /Xcompact3d, it
is estimated that the actual computational cost of the present DNS is of 60% of its reference counterpart.

The cell size in the near wall region is another important aspect to be addressed. In [10], the closest
mesh node is set at a distance of 0.37 wall unit from the wall, whereas here, the Cartesian resolution in
the transverse-xy directions is about five times coarser in the near wall region. Recalling the discussions
of chapter 3, this is beyond the typical recommendation for DNS/LES which suggests a cell size for
which the minimal scale computed with accuracyLmin = 4∆xmay capture the thickness of the viscous
sublayer, i. e., L+

min < 5. For the present resolution, we have instead L+
min = 7.2. Despite the resulting

structural bypass of the viscous sublayer, very accurate predictions of the friction Reynolds number
and Nusselt numbers are obtained, in all cases within 1% error, as reported in Table 5.4. Likewise,
in Figure 5.14 a remarkable agreement with the reference DNS results of [10] is recovered for all the
temperature statistics scaled in viscous units.

Besides the mesh distribution factor already addressed in chapter 3 , the preservation of accuracy
observed here must be also connected to the use of high-order schemes in Incompact3d /Xcompact3d.
Formally, the usage of the present IBM results in a solution that is only second-order accurate in space,
as shown by [50]. Despite this limitation, the utilisation of high-order schemes remains highly ben-
eficial to obtain an accurate description of the range of scales of motion that composes the flow (see
discussions in section 2.6.2). To illustrate this crucial point, an additional simulation has been con-
ducted for Pr = 0.71 using conventional second-order schemes instead of the sixth-order compact
schemes normally employed in the code. More precisely, all the finite-difference operators (differentia-
tion and half-staggered mesh interpolation) have been switched from sixth to second-order through a
drastic reduction of the stencil while keeping a centred formulation. The corresponding second-order
schemes are conventional, with for instance the explicit formulation

f ′i =
fi+1 − fi−1

2∆x

to compute the first-derivative. The resulting predictions are reported in Table 5.4 and Figure 5.15 for
respectively the global quantities Reτ , Nu and the profiles of basic temperature statistics6. The incom-
patibility of conventional second-order schemes can be clearly seen when a mesh which bypasses the
viscous sublayer is used. The friction velocity and temperature are found to be strongly affected by the
use of low order schemes. Such a result shows that the present strategy, based on a Cartesian mesh
combined with an IBM, is reliable only if high-order schemes are used irrespective of the formal order
of the approach. However, we stress that the generalisation of these results to any second-order Navier-
Stokes solver should be done carefully. More precisely, the code Incompact3d /Xcompact3d is based
on a half-staggered mesh (same location for the velocity components and staggered locations for the
pressure nodes). In our experience, this particular mesh arrangement is more demanding in terms of

6The reader is referred to [77] for a complete presentation of velocity statistics as well.
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Figure 5.14: First and second-order temperature statistics with MBC at Re = 5300 with (left)
Pr = 0.71 and (right) Pr = 0.025. (Top) Mean-temperature profile, (centre) temperature
variance and (bottom) streamwise heat flux. Symbols are reference results of [10].
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scheme accuracy by comparison to collocated or fully-staggered mesh organisation. Before any general
conclusion about the potential of second-order accurate Navier-Stokes solvers in the present computa-
tional configuration (that is, coarse mesh in the near wall region and immersed boundary method), it is
necessary to investigate other mesh arrangements than the present half-staggered discretisation. This
point is planned to be addressed in future work. The present assessment aims to rather highlight the
importance of high-order schemes for the present numerical strategy. These observations complement
those drawn throughout chapter 3.

In view of the overall agreement, it can be stated that DNS accuracy can be reached despite the
use of a structurally coarse resolution in the near wall region even when heat transfer predictions are
required. However it has to be recognised that the 40% of computational saving enabled by the present
approach is not enough to recommend the use of a simple Cartesian code over Nek5000. The use
of the latter is certainly a more rational choice to perform a DNS of turbulent pipe flow, especially if
its ability for mesh refinement is taken into account. Another advantage of Nek5000 is its high-order
accuracy which is preserved everywhere in the computational domain. On the contrary, the use of an
immersed boundary method limits the formal accuracy to second order, as a fundamental drawback of
the present approach, even if the use of high-order schemes remains highly beneficial. Nevertheless, it
will be shown in the next section that, in more demanding configurations, the loss of accuracy due to
the use of an immersed boundary method can be counterbalanced by the computational efficiency of
the present approach. Reason why its capability to reach DNS accuracy despite the lack of any mesh
refinement in the near wall region can be considered as an attractive feature.

MBC at high Reynolds number

In this second part, MBC is considered at a moderately high Reynolds number Re = 37700 and
Pr = 0.71. For these same physical parameters, the highly-refined DNS simulation of [9] has required
the computation of more than 2 billion degrees of freedom. Here, by using a mesh of (nx × ny × nz) =
(768×768×1920) nodes in a computational domain of dimensions (Lx×Ly×Lz) = (1.12D×1.12D×
12.5D), the number of degrees of freedom is nearly cut by half, with a corresponding mesh resolution
∆x+ = ∆y+ ≈ 2.9 in the transverse-xy directions. In terms of computational efficiency, the cost of the
present simulations is estimated as 5% by comparison to the accurate DNS of [9], whose results have
been served also as reference for our velocity statistics in chapters 3 and 4.

Emphatically, as reported in Table 5.4 and Figure 5.16, this great saving of computational resources
is not achieved by compromising the accuracy. The global quantitiesReτ andNu are predicted correctly
and a very good agreement with reference results are once again recovered for all the basic temperature
statistics. Note that reference data for the temperature statistics are from the well-resolved LES of [10],
whose accuracy has been demonstrated to be very close to DNS through their excellent agreement with
results of [9]. By comparison to the LES of [10], the computational saving associated to the present
calculation is about 40%, despite the use of 3.5×more degrees of freedom.

It must be recognized that the capability of the present computational configuration to reach the
highest standards of DNS is somewhat unexpected in view of the reasonable cost of the simulation.
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Figure 5.15: Comparison of first and second-order temperature statistics using the standard
sixth-order spatial discrezation of Incompact3d /Xcompact3d (∆x6) or conventional second-
order schemes (∆x2). DNS was performed with MBC atRe = 5300 and Pr = 0.71. (Top, left)
Mean-temperature profile, (top, right) temperature variance and (bottom) streamwise heat
flux. Symbols are reference results of [10].
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Figure 5.16: First and second-order temperature statistics with MBC at Re = 37700 and
Pr = 0.71. (Top, left) Mean-temperature profile, (top, right) temperature variance, (bottom)
streamwise heat flux. Symbols are reference results of [10].
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In order to highlight this point, the budget terms of the temperature fluctuations, calculated as in
eqs.(5.71-5.76), are provided in Figure 5.17. Apart from the small under-prediction of ε+kθ at the pro-
duction peak location, a good overall agreement is once again recovered with, in particular, the balance
between the terms being well reproduced. Moreover, very-close to the wall, the shape of the profiles
are correctly captured in a precision clearly smaller than the mesh resolution. This ability to accurately
predict velocity7 and temperature budgets with such an advantageous accuracy/cost ratio, makes the
present approach very attractive for RANS modelling development.

LES In order to explore the limits of the present strategy, a LES has been also carried out forPr = 0.71
to examine to what extent the DNS accuracy can be challenged with the present LES approach only
based on the use of artificial dissipation. By keeping the domain dimensions, we use (nx × ny × nz) =
(384× 384× 1920), obtaining a mesh resolution two times coarser in the transverse-xy directions. The
choice to keep the same longitudinal cell size ∆z+ = 13 is motivated by the analysis of the level of
turbulent kinetic energy to be captured depending on the mesh resolution, presented in chapter 3,
Figure 3.6. In fact, the use of a coarser mesh resolution in z can result in a significant loss of turbulent
kinetic energy. On the contrary, for the transverse-xy directions, the present mesh resolution ∆x+ =
∆y+ ≈ 5.8 is found to be clearly less intrusive8.

7The reader is referred to [77] for the budget of turbulent kinetic energy as well.
8By using the new reconstruction strategy - namely reconstruction in the transverse-xy direction through the

periodicity of the domain boundaries (see section 5.2.1) - the filtering technique discussed in section 3.3.1 should
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Figure 5.18: First and second-order temperature statistics calculated in LES resolution atRe =
37700 andPr = 0.71 with MBC. (Top, left) Mean-temperature profile, (top, right) temperature
variance and (bottom) streamwise heat flux. Symbols are reference results of [10].

As reported in Table 5.4, the predictions of Reτ andNu remain satisfactory. Velocity and tempera-
ture statistics are also presented in Figure 5.18. Even if a slight loss of accuracy is observed, the overall
agreement is still suitable. In particular, the deviation of the profiles from their reference counterparts
can be considered as small enough if the purpose is to assess RANS data which are typically subjected
to higher discrepancies. From this point of view, the present low-cost approach, whose computational
cost is about only 0.5% by comparison to the highly accurate DNS of [9], can be presented as a good
compromise in terms of accuracy/cost.

Note that in two of our recent studies [76, 75] (see article in Appendix A), it has been shown that,
to obtain this level of accuracy despite a poor near-wall resolution, it is mandatory to introduce a sig-
nificant amount of numerical viscosity in the spirit of implicit LES. Because of the robustness of the

be also improved.
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Table 5.5: Nusselt predictions for present DNS with IF and MBC at Re = 5300.

Nu
Pr = 0.71 Pr = 0.025

MBC 18.13 6.43

IF 18.22 6.46

strategy, artificial dissipation was considered to exhibit the features of implicit wall-layer modelling
(see discussions in chapter 3). The present results confirm the reliability of the technique also for heat
transfer prediction.

5.5.3 MBC vs. IF

In this section the previous results at low Reynolds number with IF and MBC are now confronted
to highlight the influence of the TBC used to model a constant heat flux.

The Nusselt predictions reported in Table 5.5 reveal a small influence of the TBC as both IF and
MBC values are always found within 1% error with respect to reference [10]. This agrees well with
results of [29, 10]. In Figure 5.19, first and second-order one-point statistics obtained with IF and MBC
are confronted, DNS results of [10] with isothermal boundary conditions (IT) are also plotted for com-
parison. Results are scaled in viscous units, following Table 5.1. The assumption of zero fluctuations
for the wall temperature, intrinsic in MBC, is find to be quite valid for the mean field for both Prandtl
cases, given the fact that profiles of 〈Θ〉+ for MBC and IF superimpose each other [27, 10]. Comparisons
here are limited to low Reynolds numbers, however, Straub et. al [10] have shown that this equivalence
of temperature distributions between MBC and IF is also kept with increasing Reynolds number.

Concerning the temperature fluctuations 〈Θ′Θ′〉+ in Figure 5.19-centre, the effect of the non-zero
fluctuating wall temperature of IF affects mostly the conductive sublayer, as MBC and IF profiles draw
near to each other in the outer layer for both Prandtl numbers. This same behaviour is also observed
for the streamwise heat flux 〈u′zΘ′〉+, for which IF and MBC profiles differ mostly in the near-wall
region and the gap between them is reduced with increasing Pr. For instance, for Pr = 0.025, at
(R − r)+ = 0.5 the streamwise heat flux with IF gets to be ≈ 70× bigger than MBC, whereas, for
Pr = 0.71 this difference drops to ≈ 12×. The location of the peak also moves closer to the wall with
increasing Pr as the conductive sublayer gets thinner. The above observations are in agreement with
results presented by [27, 101, 29, 10]. As a matter of fact, the suppression of thermal fluctuations with
MBC causes the profiles of both temperature variance and streamwise heat flux to draw near to IT in
the near-wall region and to IF in the outer region, evidencing the mixed character of MBC [29, 10]
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Figure 5.19: Comparison of first and second-order temperature statistics with IF or MBC at
Re = 5300. (Left) Pr = 0.71 and (right) Pr = 0.025. (Top) Mean-temperature profile,
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In Figure 5.20, the budget terms of temperature variance, calculated with eqs.(5.71 - 5.76), are com-
pared only for the case with Pr = 0.71. The production P+

kθ
profiles are close to each other with slightly

higher values being seen with IF across the conductive sublayer. Both transport terms, namely molec-
ular diffusion MD+

kθ
and turbulent transport TD+

kθ
, play the same functional role of conveying tem-

perature fluctuations from the region of maximum production (where they display a negative value)
to the wall and the core region (positive values) [29]. Furthermore, transport by molecular diffusion
is always smaller with IF than MBC at the wall. Also with IF, the molecular dissipation ε+kθ decreases
across the conductive sublayer. As pointed out by [29], this is associated to the fact that its major con-
tribution, the term containing the radial derivative in eq.(5.73), is damped with isoflux conditions due
to the absence of temperature front, that is, absence of sharp temperature gradients along the edge of
the viscous sublayer. Because of the similarity with the velocity field, these gradients exist with MBC,
but not with IF [101]. All the above considerations are in qualitative agreement with DNS results of
[101, 29].

In summary, it can be stated that both IBM strategies developed for the prescription of IF and MBC
- which require the imposition of Dirichlet and Neumann conditions respectively - provide solid re-
sults, given the good agreement with reference data. Furthermore, the present high-order numerical
strategy based on compact finite difference schemes can provide results with accuracy similar to the
reference data obtained with a spectral element code [9, 10]. In addition, the present strategy enables
the use of structurally coarse meshes thanks to the association of profitable numerical features, result-
ing in significant savings of computational resources. The viscous filtering technique was also crucial
to achieve the advantageous accuracy/cost ratios presented here, especially for the combination high
Reynolds/low Prandtl numbers.
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5.6 General conclusion

This chapter is dedicated to the development and validation of numerical strategies for the ideal
local imposition of a wall heat flux with isoflux (IF) and mixed-type (MBC) boundary conditions. The
originality of the method is found in the fact that the imposition of these thermal boundary condi-
tions (TBC) is done through our immersed boundary method (IBM) based on Lagrange polynomial
reconstructions, which, additionally, receives an improved and more efficient version.

As MBC consists of imposing a constant and uniform temperature at the wall, i.e., a Dirichlet bound-
ary condition (DBC), its implementation within the IBM is straightforward by applying the same strat-
egy used for the no-slip condition. On the other hand, special attention is given to IF as an origi-
nal methodology is developed to prescribe the related wall-normal heat flux, which corresponds to
the imposition of a Neumann boundary condition (NBC). In order to be compatible with the 2D MPI
pencil decomposition and regular Cartesian grid of Incompact3d /Xcompact3d, the imposition of the
wall-normal derivative is decomposed into its Cartesian components as functions of the local normal
and tangential directions to the surface. Implemented this way, the technique can be straightforwardly
employed to investigate more complex geometries. Then, the IBM strategy developed is based on an
indirect imposition of the NBC, in the sense that the wall derivative is virtually ensured with a DBC.
In other words, a target value for the temperature at the wall is defined locally in order to provide the
expected Cartesian wall derivative and, subsequently, the Lagrange reconstruction is performed by im-
posing this value at the interface as if it was a DBC. Furthermore, a finite-difference strategy - based
on the computation of first-derivatives and extrapolation of wall values - is implemented to handle the
projection from the local reference frame (associated to the geometry) to the Cartesian components
(associated to the grid). Different variants of the technique have been tested and a robust method has
been ultimately selected.

Then, DNS results of validation are presented with both IF and MBC for two Prandtl numbers
Pr = 0.71, 0.025, representative of air and liquid metals respectively. The accuracy of the IF technique
has been clearly demonstrated at low Reynolds number Re = 5300 through a great agreement for the
budget of temperature variance and basic turbulence statistics. For MBC, the great agreement of turbu-
lence statistics with reference results is demonstrated at low and moderately high Reynolds numbers
Re = 5300, 37700. The very advantageous accuracy/cost ratio of the present numerical strategy is also
highlighted. In particular, it is shown that the present numerical strategy can reach the highest stan-
dards of DNS while enabling the use of coarse meshes. Such a profitable feature is in fact attributed
to the association of an efficient immersed boundary method with use of high-order schemes and vis-
cous filtering technique. The ability to predict accurately the budget of temperature variance is also
demonstrated, making of this numerical strategy an attractive tool for RANS modelling development.
Finally, IF and MBC results are confronted in order to highlight the main effects of the TBC chosen to
model an uniform heat flux. The considerations have been found to be in agreement with results of
[101, 29, 100, 10]. The validation of the numerical techniques provided in this chapter paves the way
for performing high-fidelity simulation of thermal hydraulics while including conjugate heat transfer
(CHT), the subject of next chapter.
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Version française

Ce chapitre est consacré au développement et à la validation de techniques numériques pour l’imposition
locale idéale d’une condition aux limites thermique (TBC) pariétale de types isoflux (IF) et mixte
(MBC). L’originalité réside dans le fait que cette imposition doit être réalisée dans le cadre d’une
méthode de frontières immergées qui est basée ici sur des reconstructions polynomiales Lagrangiennes
de la solution dans une nouvelle version plus précise et efficace.

Comme le cas MBC consiste à imposer une température constante et uniforme à la paroi, soit une
condition aux limites de type Dirichlet (DBC), sa mise en œuvre par IBM est directe par application
de la même technique que celle utilisée pour la condition d’adhérence. A l’inverse, une attention par-
ticulière doit être accordée au cas IF qui réclame l’imposition de la dérivée normale à la paroi, soit
une condition aux limites du type Neumann (NBC). Afin d’être compatible avec la décomposition 2D
en crayon de la grille cartésienne régulière d’Incompact3d /Xcompact3d (parallélisme par communi-
cations globales via MPI), l’imposition de la dérivée normale à la paroi est décomposée en ses com-
posantes cartésiennes en tant que fonctions des directions normales et tangentielles locales à la surface.
Mise en œuvre de cette façon, la technique peut être utilisée directement pour étudier des géométries
plus complexes. Par ailleurs, La technique présentée ici ne prescrit pas la condition de Neumann di-
rectement, dans le sens où cette dernière est convertie en une condition de Dirichlet. Cette conversion
consiste en l’estimation d’une valeur cible pour la température à la paroi qui est définie localement afin
de fournir la dérivée normale attendue à la même position. Ensuite, la reconstruction de Lagrange
est effectuée en imposant cette valeur à l’interface comme dans le cas DBC. En outre, une stratégie de
différences finies - basée sur le calcul des dérivées premières et l’extrapolation des valeurs de paroi - est
mise en œuvre pour gérer librement la projection du référentiel local (associé à la géométrie) vers les
composantes cartésiennes (associées à la grille). Différentes variantes de la technique ont été testées
en conduisant à la sélection d’une méthode robuste.

Ensuite, les résultats DNS de validation par prédiction du transfert de chaleur dans les cas IF et
MBC sont présentés pour deux nombres de Prandtl Pr = 0.71, 0.025 représentatifs de l’air et de métaux
liquides respectivement. La précision de la technique IF a été clairement démontrée à bas nombre de
Reynolds Re = 5300 au regard du bon accord observé pour le budget des fluctuations de température,
ainsi que pour les statistiques turbulentes, par comparaison avec des données de référence. Pour le cas
MBC, un bon accord est également obtenu à bas et haut nombres de Reynolds Re = 5300, 37700. Le
rapport précision/coût très avantageux de cette approche est bien mis en évidence. En particulier, il est
montré que cette stratégie numérique peut atteindre les plus hauts standards de la DNS tout en per-
mettant l’utilisation de maillages assez grossiers. Parmi les raisons de ce succès, on peut mentionner
la méthode de frontières immergées dédiée à des schémas de haute précision mais aussi la technique
de filtrage visqueux. La capacité de prédire avec précision les bilans de fluctuations de température
est également bien montrée, faisant de cette stratégie numérique un outil attractif pour la produc-
tion de données de référence utiles aux développements de modélisations de type RANS. Enfin, les
résultats IF et MBC sont confrontés afin de mettre en évidence les différences entre ces deux cas pour
la modélisation d’un flux de chaleur uniforme. Les observations sont en accord avec les résultats de
[101, 29, 100, 10]. La validation des techniques numériques réalisée dans ce chapitre ouvre la voie à
la simulation haute-fidélité de la thermohydraulique avec comme perspective la description réaliste de
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transferts thermiques conjugués qui fait l’objet du prochain chapitre.



Chapter 6

Conjugate Heat Transfer in Turbulent
Pipe Flow

Let us consider once again our flow configuration illustrated in Figure 6.1. For the investigations
performed in the previous chapter, we have performed DNS of this flow configuration with local im-
position, which consists of solving the energy equation for the fluid side only while prescribing ideal
thermal boundary conditions (TBCs) at the fluid subdomain boundary r = R, in the hope that it may
represent the heat transfer phenomena occurring in the solid body. Nonetheless, it is widely recognised
that idealized TBCs cannot provide realistic representations in every scenario possible [28], since sim-
plifications concerning the behaviour of temperature fluctuations at the wall cannot be avoided as long
as the calculations are performed for the fluid side only [27, 25]. This is especially true when the ther-
mal diffusivity of the solid and the fluid are of the same order of magnitude [28].

In the present chapter, the term Conjugate Heat Transfer (CHT) refers to the multiphysics interaction
between a solid body and a fluid in movement subjected to temperature gradients. In this regard,
numerical simulations of the CHT problem are by far a more realistic way to investigate heat transfer in
wall-bounded configurations as the heat conduction occurring in the solid is not only approximated but
explicitly computed and coupled to the fluid solution. This strategy can provide a fine description of the
turbulent thermal interaction between fluid and solid media. In particular, for our flow configuration
schematised in Figure 6.1, a high-fidelity description of the thermal interaction between the pipe body
R ≤ r ≤ Ro and the wall-bounded turbulent flow in r < R can be obtained, which may be valuable, for
instance, to improve RANS/LES modelling in industrial applications where fluctuating thermal stresses
are a concern, e.g. in case of a severe emergency cooling or long-term ageing of materials [28, 104].

In practical terms, the numerical simulation of the CHT problem means computing solutions sub-
jected to different physical phenomena in each medium, and, most of the times, handling different
governing equations, different time and spatial scales, etc [105]. Very often, these complex phenom-
ena are investigated with high-Reynolds LES and RANS [106, 27, 107, 104, 108], which nonetheless rely

141
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on wall-modelling as the near-wall region is not fully resolved. For instance, in their pioneer work in
1989, Kasagi et al. [106] performed simulations of the CHT problem in plane channel configuration
by employing a structural two-dimensional model of near-wall turbulence for the velocity field while
solving the time-dependent heat conduction in the solid and fluid regions very near the wall. For a
very thick wall, a good agreement with results of [109] was recovered, who had previously obtained
an analytical solution of the CHT problem for a semi-infinite wall by linearizing the energy equation
in the laminar sublayer.

The first DNS with CHT was performed by [25], who coupled the fluid and unsteady solid solution
in channel flow for a friction Reynolds number Reτ = 150 and Prandtl number ranging from 0.71
to 7. In this scenario, different wall thicknesses were considered. A general good agreement with
results of [109, 106] - who used less accurate/ cheaper methods - was recovered, and thus, given the
uncertainty of available experimental data back then, it could not be stated whether the DNS results
obtained were superior. Afterwards, [102] used the same numerical method to investigate CHT in
channel configuration at very-low Prandtl Pr = 0.01 (representative of liquid sodium) and friction
Reynolds number Reτ ranging from 180 to 590. Fifteen temperature fields for various combinations of
fluid and solid material properties were computed in parallel with a single velocity solution. Results
pointed to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall
in liquid sodium-steel systems (represented by the values of Pr and material properties considered),
which are then progressively damped as they infiltrate into the wall.

Then, Flageul et. al [28] compared the impact of different TBCs - namely MBC, IF, Robin and CHT
- in channel flow using Incompact3d. Simulations were performed for Reτ = 150 and Pr = 0.71 rep-
resentative of air and the budgets of turbulent heat flux and temperature variance were extensively
assessed with a post-processing designed to produce validation data for RANS models. For the CHT
case, it was considered equivalency of fluid/ solid thermal conductivities and diffusivities, i.e. λ = λs
and α = αs respectively. Results with Robin boundary conditions were found to be close to the CHT
ones for most of the turbulence statistics and their budgets, however some analytical evidences sug-
gested that very large scale thermal structures related to non-local effects cannot be reproduced with
a Robin boundary conditions with constant coefficients, being therefore reproducible only with conju-
gate heat transfer. Subsequently, the authors [110] further investigated the discontinuity generated on
the dissipation rate associated to the temperature variance at the fluid-solid interface with CHT. Simu-
lations were performed for the same friction Reynolds and Prandtl numbers, Reτ = 150 and Pr = 0.71
respectively, with 9 different scalar fields being computed in parallel, representing various combina-
tions of fluid/ solid material properties.

Then recently, still with Incompact3d, Narváez et. al [91] implemented a dual immersed bound-
ary method (IBM) to perform simulations of the CHT problem in channel flow. In this validation
framework, a low Reynolds number Reτ = 150 was considered with a Prandtl number Pr = 0.71 and
equivalent thermal properties for fluid and solid media as in [28]. The numerical approach was re-
ferred to as dual because fluid and solid temperature fields are defined separately, everywhere in the
computational domain, such that, the solid subdomain is the immersed region for the fluid and, con-
versely, the fluid for the solid. This strategy allows then the numerical differentiation to individually
perceive fluid and solid solutions as smooth for any combination of fluid solid thermal properties since
the reconstruction is carried out in its own immersed zone for each temperature field separately.
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Figure 6.1: Schematic representation of the pipe flow geometry subjected to a uniform heat
flux qwo imposed at the fluid-solid interface r = Ro.

The challenge inherent to numerical methods for CHT simulation lies in handling properly the
above mentioned physical processes occurring in each medium. For this purpose, in terms of numeri-
cal implementation, two approaches are most commonly used. The first one consists of interfacing in-
dividual solvers already used to investigate the distinct physics [111, 112, 105]. The second approach,
consists of handling the different physics implied in the CHT problem in a single solver. This latter
strategy is the one followed here and in this chapter, we describe the numerical developments brought
to the code Xcompact3d in order to couple the DNS solution in the fluid to the heat conduction solution
in the solid. This coupling between fluid and solid solutions is mainly based on our customised IBM,
which is also further developed. This strategy is in fact an expansion of the methodology of [91], which
is extended here for a non-body conformal grid. Results of validation are presented and discussed for
various combinations of fluid and solid material properties.

6.1 Conjugate heat transfer problem

In the present scenario, the influence of temperature fluctuations on the fluid dynamics is neglected
as well as any temperature dependence of fluid and solid material properties, we consider therefore a
passive temperature field T . Thus, according to the schematic illustration in Figure 6.1, heat transfer in
the fluid medium will occur by forced convection governed by the advection-diffusion equation

∂T

∂t
+ uj

∂T

∂xj
= α

∂2T

∂xj∂xj
in r < R , (6.1)

where α = λ/ρcp is the thermal diffusivity of the fluid, with λ its thermal conductivity, ρ its density
and cp its specific heat at constant pressure. In the solid stationary medium, heat transfer occurs only
by conduction and it is governed by the unsteady heat diffusion equation

∂T

∂t
= αs

∂2T

∂xj∂xj
in R ≤ r ≤ Ro , (6.2)
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where αs = λs/ρscps is the thermal diffusivity of the solid with λs its thermal conductivity, ρs its
density and cps its specific heat at constant pressure. The evolution of the mean profiles 〈T 〉 along the
streamwise-z direction in Figure 6.1 exemplifies the existence of a temperature gradient that triggers
heat transfer between fluid and solid media.

To make the above expressions non-dimensional, and to be consistent with the imposition of the
constant and uniform heat flux at the outer surface, we use the non-dimensional form (5.13)

Θ = − 1

Nu

(
T − Tb
〈Tw〉 − Tb

)

introduced for isoflux conditions (IF) in the previous chapter, which leads to the following non-dimensional
forms of the governing equations

∂Θ

∂t∗
+ u∗j

∂Θ

∂x∗j
=

1

Pe

∂2Θ

∂x∗j∂x
∗
j

+ fΘ in r∗ < R/D (6.3)

∂Θs

∂t∗
=

1

G Pe

∂2Θs

∂x∗j∂x
∗
j

in R/D ≤ r∗ ≤ Ro/D , (6.4)

where we denote as Θ and Θs the temperature solutions in the fluid and solid subdomains respectively.
The quantity G = α/αs is the fluid-to-solid ratio of thermal diffusivities, fΘ = 4u∗z/Pe is the source
term ensuring the thermal stationary condition in the fluid zone (as given by eq.(5.16)) and ∗ denotes
non-dimensional quantities but it shall be dropped hereafter for the sake of simplicity.

By defining the temperature field in two individual subdomains, the physical processes related
are also considered individually while conjugate boundary conditions are provided at the fluid-solid
interface r = R to ensure the continuity of the thermal field. More specifically, these conditions are the
equality of temperature

Θ = Θs at r = R, (6.5)

and heat flux

λ
∂Θ

∂r

∣∣∣∣
w

= λs
∂Θs

∂r

∣∣∣∣
w

at r = R, (6.6)

which - by introducing the fluid-to-solid ratio of thermal conductivitiesG2 = λs/λ - may be re-expressed
as

∂Θ

∂r

∣∣∣∣
w

= G2
∂Θs

∂r

∣∣∣∣
w

at r = R. (6.7)

The boundary condition for the solid body at its outer surface is a constant and uniform heat flux qwo
∂Θs

∂r

∣∣∣∣
wo

=
qwo
λs

at r = Ro. (6.8)
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In order to illustrate the coupling between conduction and convection in the present configuration,
let us briefly analyze a simplified framework. We consider a laminar flow together with steady, one-
dimensional radial conduction in the solid. The fluid energy equation (6.3) is therefore reduced to

1

Pe

(
4uz +

1

r

d

dr

(
r
dΘ

dr

))
= 0 , (6.9)

and the solid equation (6.4) is reduced to the one-dimensional heat diffusion equation

1

GPe

(
1

r

d

dr

(
r
dΘs

dr

))
= 0 . (6.10)

To obtain proper boundary conditions to solve eqs.(6.9, 6.10), we apply an energy balance to the
annular differential control volume π(R2

o − R2)dz represented in Figure 6.2-left. The differential heat
rate input dQ̇o through the outer surface dAo = 2πRodz balances the heat rate output dQ̇i through the
inner surface dAi = 2πRdz

dQ̇o − dQ̇i = 0 =⇒ qwodAo − qwdAi = 0 , (6.11)

where the heat fluxes qwo and qw are expressed by Fourier’s Law as

qwo = λs
∂Θs

∂r

∣∣∣∣
wo

and qw = λs
∂Θs

∂r

∣∣∣∣
w

. (6.12)

Thus, from the equality (6.11), the heat flux qw in transit from the solid into the fluid subdomain (ac-
cording to the heat flux continuity condition (6.7)) is of the form

qw =
Ro
R
qwo = cst . (6.13)

That is, in these simplified conditions, the fluid temperature field in r < R is subjected to a constant
and uniform heat flux qw = cst, i.e., an isoflux condition (IF). These consideration allows us to directly
recover, for the fluid temperature field Θ, the laminar solution (2.14) previously presented for IF

Θ(r) = 2

(
3

16
+ r4 − r2

)
− 1

Nu
, (6.14)

with Nu = 4.36 for a laminar flow. We may recover as well the related boundary conditions at r = R,
given by eqs.(5.20, 5.14)

∂Θ

∂r

∣∣∣∣
w

= −1 (6.15)

Θ|w = − 1

Nu
. (6.16)
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Thereby, for the solid temperature field Θs, an expression for the Neumann boundary condition
at the outer surface r = Ro (uniform and constant heat flux qwo) can be conveniently derived from
eqs.(6.12, 6.13, 6.15) together with the heat flux continuity condition (6.7)

∂Θs

∂r

∣∣∣∣
wo

= − 1

G2

R

Ro
. (6.17)

A second boundary condition is obtained at the inner interface r = R from the equality of temperatures
with eqs.(6.5, 6.16)

Θs|w = − 1

Nu
. (6.18)

As the general solution of eq.(6.10) is of the form

Θs(r) = c1 ln (r) + c2 , (6.19)

with the two boundary conditions (6.17, 6.18), the following expression can be finally derived

Θs(r) =
R

G2
ln

(
R

r

)
− 1

Nu
. (6.20)

Temperature solutions Θ and Θs calculated with eqs.(6.14, 6.20) are plotted in Figure 6.2-right
for different fluid-to-solid ratios of thermal conductivities G2 = λs/λ. It is interesting to notice the
behaviour of the temperature profiles across the interface and how the heat flux continuity condition
(6.7) can introduce a paradoxical discontinuity on the slope of the temperature profile for G2 6= 1. In
a finite-difference framework, numerically dealing with the resulting loss of differentiability in such
cases can represent an obstacle [91], especially when compact schemes are used, given their well-know
sensitivity to local discontinuities. Here, we further develop the dual IBM strategy of [91] to deal with
this hindrance. Also, G2 � 1 represents a scenario where the solid material is much more conductive
than the fluid (conducting solid) and, as a result of the very effective heat diffusion in the solid medium,
the temperature asymptotes to the interfacial constant value Θw = −1/Nu. Conversely, when G2 �
1, heat is diffused in the fluid medium much more effectively, in this scenario, the solid acts as an
insulating wall [110].

Now, when the flow is turbulent, velocity fluctuations are naturally imparted to the fluid temper-
ature field through the advective term in eq.(6.3). These thermal fluctuations are then transmitted to
the solid body through the interface r = R by the thermal coupling conditions (6.5, 6.7). The process
of heat conduction in the solid is slow, which may require the simulation of a long transient time as a
result of the discrepancy of time and spatial scales involved in the problem [112]. More specifically,
the speed of penetration of turbulent fluctuations stemming from the fluid domain certainly depends
on the relation between fluid and solid material properties. To better address this point, we introduce
the thermal activity ratio defined as [102]

K =

√
λρcp
λsρscps

, (6.21)
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Figure 6.2: (Left) Annular differential control volume π(R2
o −R2)dz under uniform heat flux

dqwo . (Right) Fluid and solid temperature solutions for different fluid-to-solid thermal con-
ductivity ratios G2 = λs/λ.

which therefore relates to the thermal diffusivity and conductivity ratios G and G2 according to

K =
1

G2

√
G

. (6.22)

The thermal activity ratio is a dimensionless quantity that expresses the fluid-to-solid thermal effusiv-
ity ratio, with √λρcp the fluid thermal effusivity and √λsρscps the solid thermal effusivity. Roughly
speaking, the effusivity of a material expresses its interfacial ability to exchange heat with its surround-
ings, thereby,K can express how effective is the thermal interaction between fluid and solid, including
how temperature fluctuations may or may not be damped at the vicinity of the fluid-solid interface
depending on the materials considered. In fact, this helps to better understand the simplifications
intrinsic to the ideal conditions considered in the previous chapter, namely mixed-type (MBC) and
isoflux (IF) [25]. MBC corresponds to K = 0 and consists of assuming that heat conduction in the
wall is ideally more efficient than in the fluid and hence fluctuations are transported away from the
wall quickly [27], this is expressed by the assumption of vanishing temperature fluctuations at the wall
(see section 5.2.2). On the other hand, IF corresponds to K = ∞ and assumes that heat conduction
is ideally more efficient in the fluid than in the solid and therefore turbulent fluctuations can plainly
penetrate the conductive sublayer, this is represented for instance by the constant value (zero gradient)
of the temperature variance across the conductive sublayer in Figure 5.11-middle. In this chapter, CHT
simulations are performed for different combinations of material properties, i.e., different values of G
and G2, corresponding to distinct (and finite) values of the thermal activity ratio K. The behaviour of
the CHT turbulence statistics is therefore expected to be found between the extreme cases delimited by
MBC and IF [109, 106, 110].

In the following section, we provide a full description of the numerical strategy developed here
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to simulate the CHT problem. More precisely, the numerical method implemented in Xcompact3d
structure is described in details, namely the solver for the heat conduction equation as well as the
techniques employed to couple DNS and thermal conduction solutions.

6.2 Numerical methodology

For the present computational configuration illustrated in Figure 6.3, fluid Ωf and solid Ωs subdo-
mains are defined as

Ωf = {(r, φ, z) | r ∈ [0, R[, φ ∈ [0, 2π], z ∈ [0, Lz]} , (6.23)

and

Ωs = {(r, φ, z) | r ∈ [R,Ro], φ ∈ [0, 2π], z ∈ [0, Lz]} (6.24)
respectively. A solver for the unsteady heat conduction in the solid is implemented in Xcompact3d
and (weakly) coupled to the DNS solution in the fluid with the Neumann-Dirichlet coupling method
of [113], which is described in details in section 6.2.3. The same finite-difference schemes for spatial
differentiation and/or viscous filtering are kept for the solver of the solid energy equation.

This numerical methodology is an expansion of the strategy developed by [91] in the framework
of channel flow with Incompact3d. Here, the method is expanded for a non-body fitted grid. More-
over, this approach is mainly based on the customised IBM to couple fluid and solid energy equations
through thermal boundary conditions (TBCs) at the interface. In particular, the dual IBM technique of
[91] is further developed for a non-body fitted grid, more details are given in section 6.2.2.

The numerical simulations presented in this chapter are computed at low Reynolds number Re =
5300 (Reτ ≈ 180) for two Prandtl numbers Pr = 0.71, 0.025 representative of air and liquid metals
respectively. A mesh of nx×ny ×nz = 320× 320× 640 points regularly distributed in a computational
domain of dimensions Lx × Ly × Lz = 1.6D × 1.6D × 12.5D is used, resulting in the same mesh res-
olution employed for the low Reynolds cases in the previous chapter: ∆x = ∆y ≈ 1.8, ∆z ≈ 7. This
same grid is used for the momentum, fluid/ solid energy equations at both Prandtl numbers consid-
ered. Tri-periodic boundary conditions are applied for the computational domain in all three Cartesian
directions.

With a single velocity solution, several energy equations are solved in parallel to spare compu-
tational resources. More precisely, for the CHT simulations, 4 different combinations of fluid/solid
material properties G and G2 (representing different values of thermal activity ratio K according to
eq.(6.22)) are considered for each Prandtl number, amounting to 8 CHT scalars. In addition, reference
solutions with MBC and IF are also computed for each Pr with the same velocity field, adding 4 ad-
ditional cases, which leads to 12 scalars in total. The different cases considered are listed in Table 6.1.
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Table 6.1: Different TBCs considered for the multi-scalar simulation of the present chapter.

Label Pr G G2 K = (G2

√
G)−1

1) MBC/0.71 0.71 - - 0
2) IF/0.71 0.71 - - ∞

3) CHT11/0.71 0.71 1 1 1
4) CHT12/0.71 0.71 1 2 0.5
5) CHT21/0.71 0.71 2 1 0.71
6) CHT22/0.71 0.71 2 2 0.35

7) MBC/0.025 0.025 - - 0
8) IF/0.025 0.025 - - ∞

9) CHT11/0.025 0.025 1 1 1
10) CHT12/0.025 0.025 1 2 0.5
11) CHT21/0.025 0.025 2 1 0.71
12) CHT22/0.025 0.025 2 2 0.35
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Figure 6.3: Schematic view of the computational configuration. The same regular Cartesian
mesh is used to discretize fluid (Ωf) and solid (Ωs) subdomains. Physical solutions are rep-
resented by solid lines and reconstructed solutions by dashed lines. Lagrange reconstructions
are performed separately for fluid and solid solutions in the present dual-IBM framework.

6.2.1 Governing equations

As already defined in section 6.1, buoyancy effects are neglected as well as any temperature de-
pendence of fluid and solid material properties. We consider therefore a passive temperature field
governed by the following equations [91]

∂Θ

∂t
+ ui

∂Θ

∂xi
=

1

Pe

∂2Θ

∂xi∂xi
+ fΘ in Ωf (6.25)

∂Θs

∂t
=

1

GPe

∂2Θs

∂xi∂xi
in Ωs (6.26)

Θ = Θs at r = R (6.27)

∂Θs

∂r
=

1

G2

∂Θ

∂r
at r = R (6.28)

∂Θs

∂r
= − 1

G2

R

Ro
at r = Ro , (6.29)
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where G = α/αs and G2 = λs/λ are the thermal diffusivity and conductivity ratios respectively, the
two independent non-dimensional parameters1 needed to describe the fluid-solid thermal coupling as
stressed by [102]. Θ and Θs are the fluid and solid temperature solutions respectively and, within the
present dual IBM approach, they are computed separately, everywhere in the computational domain.
Note also that the calculation of the solid temperature solution with eq.(6.26) is straightforward with
the viscous filtering technique, more details are given in section 6.2.4.

Fluid and solid governing equations are coupled to each other through the TBCs (6.27-6.29) with
a Neumman-Dirichlet coupling method. More precisely, TBC (6.27) is imposed to the fluid temper-
ature as a Dirichlet boundary condition (DBC), whereas TBCs (6.28) and (6.29) are imposed to the
solid temperature as Neumman boundary conditions (NBC). Moreover, TBCs (6.27) and (6.28) are
co-dependent and they represent the continuity of temperature and heat flux at the inner interface re-
spectively. The TBC (6.29) on the other hand, corresponds to a constant (time) and uniform (space)
heat flux prescribed at the outer wall - i.e., an isoflux condition (IF) - following the simplified frame-
work considered in section 6.1. To be consistent with the imposition of this constant and uniform heat
flux, the dimensionless form defined for IF in the previous chapter (eq.(5.13)) is used here for both
fluid Θ and solid Θs temperature fields. All the above TBCs are ensured with the present IBM by fur-
ther adapting the DBC/ NBC techniques described in the previous chapter in order to be incorporated
to the weak coupling technique, a full description is provided hereafter.

Because of the dual approach, the 8 CHT cases considered require the computation of both equa-
tions (6.25) and (6.26) in the entire computational domain, 8× every time step. Additionally, the local
imposition cases require 4 additional computations of eq.(6.25) with MBC or IF. That is, for the 12
scalars considered here, the fluid energy equation is solved 12× per time step and the solid one 8×.
In this sense, the viscous filtering technique and the advantageous massively parallel scalability of
Xcompact3d were of utmost importance to perform this large simulation. The former on account of the
relaxation on the stability constraint linked to the diffusivity, allowing for the use of larger time steps;
while the latter enabled to handle the different time scales involved in the problem, making possible to
simulate the long transient time required by the solid conduction equation.

6.2.2 Dual immersed boundary strategy

Although numerical investigations of the CHT problem are relatively recent, different techniques
have been conceived and/or used to couple fluid and solid energy equations. As stressed by [91],
most commonly in the general CHT framework with IBM, both fluid and solid solutions are computed
together as a single temperature field and the switch from fluid (6.25) to solid (6.26) transport equa-
tion is usually achieved through a change of diffusion coefficients (α ↔ αs) and the introduction (or
suppression) of the volumetric source term fΘ. Another technique is to compute fluid and solid so-
lutions separately where each temperature field has its own physical domain and common boundary
conditions ensure the physical coupling between them [91].

1The governing equations may also be expressed in terms of the thermal activity ratio K = f(G,G2), by fol-
lowing eq.(6.22).
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Figure 6.4: Lagrange reconstructions of fluid and solid solutions along a x-row with the dual
IBM approach. The principle is exemplified for a thermal conductivity ratio G2 = 2. Solid
lines are physical solutions, dashed lines are reconstructed solutions.

As pointed out by [91], in most practical applications, thermal conductivities are different in the
fluid and in the solid (G2 6= 1) and hence, because of the heat flux continuity, the wall-normal derivative
of the temperature can become discontinuous. This hindrance is expressed by the dependence on G2

in eq.(6.28) and exemplified in Figure 6.4 for G2 = 2. The resulting lack of smoothness is an obvious
obstacle in cases such as this, given the difficulty of numerically dealing with the loss of differentiability,
especially in the present context, where the efficiency of our customised IBM has been demonstrated
to be intrinsically linked to the use of high-order compact schemes (c.f. section 5.5.2).

In this regard, the dual IBM approach of [91] is expanded here to complex geometries. The ap-
proach is dual in the sense that fluid and solid temperature fields are defined separately, everywhere in
the computational domain. In this way, the solid subdomain Ωs is the immersed region for the fluid so-
lution and the fluid subdomain Ωs becomes the immersed region for the solid solution. Consequently,
each temperature solution can be freely reconstructed without conflicting (replacing) the physical val-
ues of its counterpart and thus the the continuity of fluid and solid solutions are ensured separately,
as illustrated in Figure 6.4. Furthermore, compact finite-difference operators of spatial derivatives and
viscous filtering perceive a smooth interface for both Θ and Θs regardless of the value of G2. The
method is very suitable since not only the efficiency of the IBM is preserved but also a straightforward
treatment for the discontinuity of the first-derivative at the wall is provided. The fact that both en-
ergy equations are solved everywhere in the computational domain can be seen as a drawback, the
associated extra-cost once implemented in Xcompact3d’s structure is +17%, which can be considered
nonetheless secondary if the goal is to preserve accuracy [91].
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As in the previous chapter, the reconstruction of the fluid temperature Θ is performed through the
transverse-xy periodicity with fifth-order Lagrange polynomial interpolations (c.f. section 5.2.1). For
the solid temperature Θs on the other hand, preliminary tests with higher-order polynomial functions
presented a better performance to conserve first-derivatives of the logarithmic-like temperature profile2

in the solid zone and thus, ninth-order Lagrange polynomial interpolations were used. Also, a larger
buffer zone r > Ro is required with respect to the computational configuration of the previous chapter
in order to ensure the continuity of the reconstruction through xy periodicity for the solid temperature
field. Instead of Lx = Ly = 1.28D, we use here Lx = Ly = 1.6D with nx = ny = 320 points in order to
keep the same transverse mesh resolutions ∆x+ = ∆y+ ≈ 1.8. This switch from nx × ny = 256 × 256
to nx × ny = 320× 320 nodes in the transverse-xy directions naturally leads to a moderate increase of
the computational cost which again, we judge well-justified if the goal is to preserve the efficiency of
the IBM.

6.2.3 Weak coupling technique

Fluid and solid energy equations are weakly coupled following the method of [113]. A strong
coupling would require the simultaneous solution of eqs.(6.25-6.29) with, for instance, an iterative
process, which can considerably increase the computational cost. With the weak coupling technique
employed here however, the energy governing equations are sequentially solved while admitting a
small discontinuity of the temperature at the interface. The same method has been successfully used
by [91, 28, 110] in the framework of channel flow with Incompact3d.

The sequential time advancement is carried out every time step. Firstly, the fluid energy equation
(6.25) is solved with TBC (6.27), which is prescribed as the DBC

Θ|n+1
w =

Θ|nw + Θs|nw
2

, (6.30)

where the superscript refers to the time-step number and the subscript w refers to the fluid-solid in-
terface r = R. Note that for the present mesh arrangement disconnected from the body geometry, the
immersed boundary location does not coincide with the Cartesian grid nodes and thus the local wall
values Θ|nw and Θs|nw must be extrapolated. To do so, following the schematic representation in Figure
6.5, we employ the finite-difference extrapolation scheme (5.62) presented in the previous chapter

Θ|nw = ae · Θ|ni + be · Θ|ni+1 + ce · Θ|ni+2 + de · Θ|ni+3 .

A Taylor expansion from the wall leads to system (5.63) (the grid resolution at the vicinity of the body
∆xw is defined with respect to the first fluid node, the variable ri is introduced here to simplify the
expressions)

ri =
∆xw + i∆x

∆xw

2As turbulent fluctuations are damped by diffusivity in the solid, the instantaneous temperature profiles of Θs

present a laminar-like behaviour, following eq.(6.20).
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Figure 6.5: Schematic representation of the extrapolation stencils for the wall temperatures
(fluid and solid) along a x-row. The grid resolution at the vicinity of the body ∆xw is defined
as the distance between the interface and the first fluid node.

1 = ae + be + ce + de (∆x)

0 = ae + r1be + r2ce + r3de (∆x2)

0 = ae + r2
1be + r2

2ce + r2
3de (∆x3)

0 = ae + r3
1be + r3

2ce + r3
3de (∆x4)

Solving the above system for fourth-order accuracy3 leads to the following set of coefficients

ae =
r1r2r3

[(r1 − 1)r2 − r1 + 1]r3 + (1− r1)r2 + r1 − 1

be = − r2r3

[(r1 − 1)r2 − r2
1 + r1]r3 + (1− r1)r1r2 + r2

1(r1 − 1)

ce =
r1r3

[r2
2 − (r1 + 1)r2 + r1]r3 − r3

2 + (r1 + 1)r2
2 − r1r2

de = − r1r2

r3
3 − (r1 + r2 + 1)r2

3 + [(r1 + 1)r2 + r1]r3 − r1r2
.

3Lower-order extrapolation have been also considered as in chapter 5. However, tests showed that higher-order
extrapolation is a better choice if the goal is to extrapolate Θw directly instead of the wall-tangential derivative
∂Θ

∂φ

∣∣∣∣
w

.
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Here, we have exemplified with the extrapolation of the fluid wall value Θ|nw. Figure 6.5 illustrates
however, how the same procedure is also applied for the solid side to extrapolate Θs|nw. These extrap-
olated values are subsequently used to predict Θ|n+1

w , whose imposition is straightforward with the
Lagrange reconstruction. Note that the finite-difference coefficients are geometry dependent because
of the dependence on ∆xw and therefore fluid and solid coefficients differ from each other. In the code,
they are defined before the time loop, from the local coordinates of the immersed boundary r = R and
initialized for fluid and solid as distinct 3× 3 matrices.

Next, the solid energy equation (6.26) is solved with TBCs (6.28, 6.29) which are imposed as NBCs.
At the outer wall “wo”, NBC (6.29) is the isoflux condition

∂Θs

∂r

∣∣∣∣
n+1

wo

= − 1

G2

R

Ro
, (6.31)

which is carried out with the IF technique introduced in the previous chapter. Here however, we con-
sider this heat-flux as purely wall-normal while neglecting the effect of turbulence fluctuations that
penetrate up to the outer surface4 and hence the contribution of ∂Θ

∂φ

∣∣∣∣
w

(c.f. section 5.4.3) is simply
taken as zero.

Now, to impose NBC (6.29) at the inner wall “w”

∂Θs

∂r

∣∣∣∣
n+1

w

=
1

G2

∂Θ

∂r

∣∣∣∣
n+1

w

, (6.32)

the wall-normal derivative of the fluid solution (rhs) must be known. Favorably, its Cartesian compo-
nents5 can be straightforwardly computed from the fluid solution with the non-centred scheme (5.56)
also introduced in the previous chapter

∂Θ

∂x

∣∣∣∣
n+1

w

= a Θ|n+1
w + b Θ|n+1

i+1 + c Θ|n+1
i+2 + d Θ|n+1

i+3 ,

which is third-order accurate with the set the coefficients (5.60). Then, these Cartesian wall-derivatives
are also ensured with the IF technique of the previous chapter. Also in this case, since the values of the
Cartesian wall-derivatives can be directly determined, no estimation of ∂Θ

∂φ

∣∣∣∣
w

is required, which makes
the imposition of NBCs in the CHT framework simpler than for IF. Still, both NBCs (6.31, 6.32) are en-
sured in two steps with the Lagrange reconstruction (Figure 5.5) as described for IF. More precisely, in
the illustration of Figure 6.4, the reconstruction of Θs performed through the transverse-xy periodicity
satisfies NBC (6.31) and the one performed through the fluid zone r < R satisfies NBC (6.32). Also, it
can be clearly seen how the IBM techniques presented in the previous chapter for MBC and IF provide
the basis for coupling fluid and solid energy equations in the present CHT framework.

4By taking into consideration the damping of temperature fluctuations experienced in the solid zone. The effect
of the TBC imposed at the outer wall is not investigated in this work.

5See eqs.(5.54, 5.55).
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Since no iterative process is used, the sequential computation of fluid and solid solutions introduces
a small temperature difference at the wall [91]. When using this same method, [28] mentioned that
this discontinuity is negligible and the error introduced Θ|n+1

w − Θs|n+1
w is first-order accurate in time,

being controlled throughout the simulation by the application of scheme (6.30) at the beginning of
every time step.

As stressed by [91, 28], the explicit nature of this weak coupling technique can introduce several
numerical stability limitations. Yet, the consequent restriction on ∆t can be alleviated if DBC and NBC
are used for the fluid and solid fields respectively [113], as it is done here. This way, by using the
viscous filtering technique, the CFL restriction in the fluid zone becomes stronger than the one related
to the weak coupling, at least for Pr = 0.71. This would allow us to employ, a priori, the same time step
used for the local imposition simulation, i.e. ∆t = 2.4 ·10−3. Nevertheless, the more diffusive case with
Pr = 0.025 required ∆t to be cut by half in order to ensure stability. The source of such a restriction
remains unclear, this is planned to be investigated in further work while relating this restriction to the
investigations of [112].

6.2.4 Time integration

The viscous filtering technique is used here for momentum, fluid and solid energy equations. The
time integration of the fluid temperature equation (6.25) uses the VF1 approach for the diffusive term
together with a third-order Adams-Bashforth scheme for the convective term, as given by eqs.(5.33,
5.34)

Θ∗ = Θn + ∆t

p∑

j=0

ajF
n−j

Θn+1 = TΘΘ∗ + ∆tfn+1
θ ,

which has been thoroughly discussed in the previous chapter, section 5.2.3. The source term fn+1
Θ is

consistently treated as for IF, as described in section 5.2.3.

With the viscous filtering technique, the time integration of the solid energy equation is straight-
forward and it can be expressed as

Θn+1
s = TΘsΘ

n
s , (6.33)

where TΘs is the viscous filter transfer function (according to eqs.(2, 27) in chapter 4 [78]) and it rep-
resents the application of the discrete viscous filtering operator. Note that only one application of the
viscous filter is required and the transfer functions TΘ and TΘs , associated to fluid and solid viscous
filtering, are alike only if fluid and solid thermal diffusivities are equal, i.e. if G = 1.
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6.2.5 Initial conditions

Fluid and solid temperature fields are initialized with the analytical solutions derived in the sim-
plified framework discussed in section 6.1, they are given by eqs.(6.14, 6.20)

Θ(r) = 2

(
3

16
+ r4 − r2

)
− 1

Nu
in Ωf

Θs(r) =
R

G2
ln

(
R

r

)
− 1

Nu
in Ωs .

For the velocity, a fully developed turbulent field from a previous simulation is used. Turbulent fluc-
tuations from the velocity field are then imparted to the fluid temperature field through the convective
term in eq.(6.25), which, in turn, passes them on to the solid temperature field through NBC (6.28). As
discussed in section 6.1, the infiltration of temperature fluctuations in the solid zone is a slow process
which may require the computation of long transients. Therefore, for a matter of computational re-
sources, a first complete CHT transient has been calculated for one single scalar withG = 1 andG2 = 2
(corresponding to K = 0.5). Once fluid and solid solutions reach a statistically stationary state, they
are then used as initial conditions for the other cases in Table 6.1. A new, still shorter, transient is re-
quired for each case and statistical sampling starts only when all 12 scalars have reached the statistically
stationary state.

6.3 Results

In this section, results of validation are discussed for the present numerical strategy. First and
second-order statistics as well as the budgets of temperature variance are assessed for the different com-
binations of fluid/ solid material properties reported in Table 6.1. More precisely, for the 12 temperature
solution computed in parallel with a single velocity field, 4 of them are reference cases with MBC/IF
and the remaining 8 consist of 4 CHT cases for each Prandtl number considered Pr = 0.71, 0.025. The
DNS simulation is computed for a Reynolds number Re = 5300 with a corresponding friction predic-
tion of Reτ = 180.8. Data is scaled in wall-units as for IF, according to Table 5.1.

In numerical terms, the treatment of CHT can be seen as combination of MBC for the fluid energy
equation (prescription of DBC (6.30)) and IF for the solid (prescription of NBCs (6.31, 6.32)). There-
fore, in the light of the validation of the IBM strategies for IF and MBC in the last chapter and given the
lack of reference results for CHT with DNS of pipe flow, here, we compare our results (qualitatively)
to those of [110], who performed DNS of channel flow with CHT at Reτ = 150 and Pr = 0.71 for
different combinations of material properties. Also, as IF, MBC and CHT profiles tend to superimpose
each other in the core region, zoomed views of the statistics are also provided for a better assessment
of the near-wall behaviour of the quantities scaled in viscous units.

For both Prandtl numbers, Figure 6.6 shows no effect of the thermal boundary conditions (TBC) on
the fluid mean temperature profile (R−r)+ > 0, consistently with observations of [29, 28]. On the other
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Figure 6.6: Mean temperature profiles with CHT for different combinations of material prop-
erties K = f(G,G2). (Top) Pr = 0.71 and (bottom) Pr = 0.025. Time average carried out
over a time window Tstat = 960D/Ub.

hand, for the solid side (R−r)+ < 0, the discontinuity on the first-derivative at the interface - provoked
by the heat flux continuity condition (6.28) - occurs for the CHT cases with G2 = 2 for both Prandtl
numbers considered. These observations are in agreement with results of [25, 110]. Note that thanks
to the dual immersed boundary technique, the smoothness of the temperature profile is successfully
preserved despite this discontinuity and irrespective of the fact that the numerical differentiation for
both fluid and solid energy equations are entirely based on high-order compact schemes.

For a channel geometry, the dimensionless mean temperature profile displays a linear decay in the
solid zone [28, 91], for a pipe on the other hand, this decay is logarithmic-like, as an effect of the wall
curvature, as expressed by eq.(6.10). Anyhow, for the wall thickness (Ro − R) = 0.1D considered
here, the wall curvature effect is not so pronounced and therefore does not fully prevent a qualitative
comparison between the two cases in Figure 6.6-right. Indeed, pipe and channel profiles seem to follow



6.3. RESULTS 159

the same tendency while the increasing gap between the data observed as (R − r)+ → −∞ (i.e., into
the solid subdomain) may be associated to the difference in the flow regimes (Reynolds numbers) and
the wall curvature effect.

The profiles of the temperature variance 〈Θ′Θ′〉+ are reported in Figure 6.7 for both Prandtl num-
bers. Here again, forPr = 0.71, the CHT profiles seem to follow the same trend as plane channel results
of [110] into the solid zone (R − r)+ < 0. For both Prandtl numbers, in the fluid zone (R − r)+ > 0,
CHT profiles are always delimited by the two ideal cases MBC and IF across the conductive sublayer
while essentially superimposing each other away from the wall. Moreover, with increasing thermal
activity ratio K, the profiles move from a MBC-like behaviour (which corresponds to K = 0) towards
IF (K = ∞). These conclusions cannot be simply transposed to the solid domain as some of the pro-
files do cross each other with Pr = 0.71, highlighting the complex behaviour of the present conjugate
cases where the thermal properties ratio G and G2 are close to unity [110]. The same behaviour has
been also observed by [110] in the channel flow framework. Furthermore, the discontinuity on the
first-derivative provoked by the heat flux continuity condition (6.28) can be perceived also on the tem-
perature variance profiles across the interface with increasing thermal conductivity ratio G2.

Likewise, the streamwise heat flux profiles 〈u′zΘ′〉+ reported in Figure 6.8 are also bounded by the
two ideal cases MBC and IF, moving from a MBC-like pattern towards IF with increasing thermal ac-
tivity ratioK. Nonetheless, this effect is less evident for this quantity than for the temperature variance
since since the no-slip condition causes the streamwise heat flux to vanish at the wall.

Figure 6.9 provides spatial (top) and temporal (bottom) visualizations of the instantaneous tem-
perature fluctuations

Θ′ = Θ− 〈Θ〉 (6.34)

in the fluid and solid domains with Pr = 0.71 and G = 1, G2 = 2, case 4) in Table 6.1. For the
sake of visibility, distinct scales are used for the color map in each subdomain and only the portion
of the computational domain delimited by π/2 ≤ φ ≤ 3π/2 and 0 ≤ z ≤ 3Lz/4 is shown in the top
figure. Indeed, in Figure 6.9-top, very dissimilar spatial structures can be clearly perceived in each
subdomain, highlighting the different length scales involved in the CHT problem and the dynamics of
the penetration of turbulent structures from the fluid into the solid domain. The same disparity can be
also noticed for the time scales in the visualization of Figure 6.9-bottom for two sequential moments of
the flow with t2 > t1. It can be seen that structures in the fluid zone are found to be substantially more
active than their solid counterparts.

Next, the budgets terms of temperature variance - calculated with eqs.(5.72 - 5.75) - are compared
for the different TBCs in Figure 6.10 for the case with Pr = 0.71. It can be seen that the production term
P+
kθ

is hardly affected by the TBC. Likewise, a small effect is perceived on the turbulent transport term
TD+

kθ
. On the other hand, for the molecular dissipation term ε+kθ , a progressive damping is observed

across the conductive sublayer asK →∞. The same behaviour is observed for the molecular diffusion
MD+

kθ
as the two quantities balance each other at the wall. This balance explains the intermediary

behaviour between IF and MBC observed for the CHT temperature variance profiles in Figure 6.7.

Flageul et al. [110] have shown that, in the case of CHT, the dissipation rate εkθ across the fluid-solid
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Figure 6.9: Visualization of the instantaneous temperature fluctuations in the fluid and solid
subdomains for Pr = 0.71 andG = 1, G2 = 2 (K = 0.5). (Top) Spatial distribution, (bottom)
time evolution at two sequential time steps t2 > t1. Different scales are used for the color map.
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interface satisfies the following compatibility condition

εkθ,s
εkθ,f

=
〈∂nΘ′ ∂nΘ′〉
〈∂iΘ′ ∂iΘ′〉

K2 +

(
1− 〈∂nΘ′ ∂nΘ′〉

〈∂iΘ′ ∂iΘ′〉

)
1

G
, (6.35)

where εkθ,f and εkθ,s are the dissipation rates associated with fluid and solid temperature variance
respectively and ∂n denotes the wall-normal derivative. Thus, any ratio εkθ,s

εkθ,f
6= 1 corresponds to a

discontinuity of the dissipation rate εkθ across the fluid-solid interface. This behaviour was consistently
verified by [110] from DNS results in the context of a flat channel flow and here, it can be observed
in Figure 6.11 for the present pipe geometry for the CHT cases with Pr = 0.71. The discontinuity of
the dissipation across the fluid-solid interface is visible for all cases, except for the combination G = 1
G2 = 1 K = 1, consistently with eq.(6.35). These results are in qualitative agreement with those
reported in [110] in the channel flow framework.

Despite the satisfactory results obtained for the analysis of the budget terms, it must be recognised
that the closest nodes to the wall are not free of influence from the reconstruction technique. More
precisely, an assessment of the Cartesian data cloud of the budget terms6 showed that mesh nodes at a
distance smaller than the mesh resolution itself - that is (R− r)+ < 1.8 - have their behaviour affected
by the Lagrange polynomial interpolation used. This seems to be linked as well to the use of compact
schemes for the computation of derivatives required to calculate the budget terms with eqs.(5.72 -
5.75). This side-effect jeopardizes mostly the reproduction of the asymptotic behaviour of derivatives
of averaged quantities such as for the molecular dissipation term in eq.(5.74)

MDkθ =
α

2

∂2〈Θ′Θ′〉
∂xi∂xi

6That is, prior to perform the azimuthal-φ projection, see discussions in section 2.8.
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and for the turbulent transport term in eq.(5.75)

TDkθ = −1

2

∂〈uiΘ′Θ′〉
∂xi

.

This problem may be better handled by using, for instance, a reconstruction that takes into account the
asymptotic behaviour of first derivatives such as a cubic spline interpolation. Such an interpolation
technique has been already introduced in Xcompact3d by [114] and shall soon be tested for the present
computational configuration.

6.4 General conclusion

This chapter is dedicated to the development and validation of a numerical technique for the sim-
ulation of Conjugate Heat Transfer (CHT) in turbulent pipe flow. This technique is based on an im-
mersed boundary method (IBM) to prescribe both Dirichlet (DBC) and Neumann (NBC) boundary
conditions in a configuration where the mesh arrangement is disconnected from the wall geometry.
Moreover, the dual IBM approach of [91] is expanded to the present non-body fitted configuration re-
sulting in a versatile strategy for CHT simulations. The solver for the heat conduction in the solid is
incorporated in Xcompact3d and, by means of the Neumann-Dirichlet coupling method of [113], the
solid solution is (weakly) coupled to DNS results in the fluid, ultimately providing a high-fidelity de-
scription of the thermal interaction between fluid and solid subdomains. It has been also described
how the IBM techniques introduced in the previous chapter for MBC and IF provide the basis for cou-
pling fluid and solid energy equations in the present CHT framework. Consistent results of validation
are presented, including budgets of temperature variance, which makes of this numerical approach
an attractive tool for RANS modelling development. However, some stability aspects of the technique
remain to be in order to make the coupling method numerically stable for any value of the thermal con-
ductivity ratio G2. The technique has been implemented in terms of the normal and tangential surface
directions which means that the validation presented here for a pipe geometry can be seen as prototype
to investigate, in further work, conjugate heat transfer in more complex geometries such as solar power
plants and T-junction flow.

Version française

Ce chapitre est dédié au développement et à la validation d’une technique numérique pour la sim-
ulation du transfert thermique conjugué (CHT) dans un écoulement turbulent. Cette technique est
basée sur une méthode de frontières immergées (IBM) qui nécessite de prescrire à la fois des condi-
tions aux limites de Dirichlet (DBC) et Neumann (NBC) dans une configuration où l’organisation du
maillage est déconnectée de la géométrie de la paroi. L’approche IBM duale de [91] est étendue à la
configuration actuelle considérée comme une géométrie générique utile pour élaborer une stratégie de
traitement d’un cas CHT en géométrie complexe. Le solveur pour la conduction thermique dans le
solide est incorporé à Xcompact3d et, à travers la méthode de couplage Neumann-Dirichlet de [113], la
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solution solide est (faiblement) couplée à son homologue dans le fluide, fournissant ainsi une descrip-
tion haute-fidélité de l’interaction thermique entre les sous-domaines fluide et solide. Il est également
décrit comment les développements IBM introduits dans le chapitre précédent pour les cas MBC et IF
fournissent les outils techniques permettant de coupler les équations d’énergie fluide et solide dans le
cadre CHT de ce chapitre. Des résultats de validation cohérents sont présentés, ceci comprenant des
bilans de variance de température, ce qui confirme le potentiel de la présente approche pour la produc-
tion de bases de données utiles aux développements pour la modélisation RANS. Cependant, certaines
contraintes liées à la stabilité numérique restent à lever pour conserver une bonne efficacité de calcul
quel que soit le rapport de conductivité thermique G2. La technique a été mise en œuvre par distinc-
tion entre composantes normale et tangentielle localement à la surface, ce qui signifie que la géométrie
cylindrique considérée ici peut être vue comme un prototype de géométrie complexe qui peut se définir
indépendamment de la topologie du maillage. Ceci conduira à court terme à la réalisation de simu-
lations en géométrie réaliste telle que celle d’un Té de mélange avec plus largement des applications
dans le cadre des centrales nucléaires ou solaires.



Chapter 7

Conclusion and Perspectives

The study of wall-bounded turbulence is very pertinent as most turbulent flows present in engi-
neering applications are bounded by solid surfaces. For instance, the turbulent pipe flow - the subject
of interest of the present investigations - has a wide spectrum of industrial applications, being found
in nearly every engineering design. More specifically, our ultimate goal here is to develop an effi-
cient and accurate numerical tool for the high-fidelity simulation of Conjugate Heat Transfer (CHT)
in wall turbulence. Throughout the last three years, by means of Direct and Large-eddy simulations
(DNS/LES), the method has been progressively developed in order to finally grow into the desired
high-fidelity technique. The various numerical developments implied are implemented in Incom-
pact3d/Xcompact3d [7, 11, 12], a massively parallel open-source code that offers a range of profitable
numerical features to investigate incompressible (and low-Mach) turbulent flows, among which we
may highlight its spatial differentiation - mainly based on compact finite-difference schemes of sixth-
order accuracy, which provides quasi-spectral accuracy - and the treatment of complex geometries,
thanks to the efficient IBM of [67, 50] based on Lagrange reconstructions of the physical solution into
the immersed region.

Also, in Incompact3d/Xcompact3d, an extra-numerical dissipation can be flexibly introduced at
small scales through the computation of second derivatives. In section 2.6.3 it is shown that this tech-
nique is equivalent to the use of Spectral Vanishing Viscosity (SVV) and, therefore, it can be seen as a
subgrid-scale (SGS) model [81, 65]. Since the modelling is entirely contained in the regularisation pro-
vided by the artificial dissipation, this methodology is referred to as implicit SVV (ISVV), an implicit
LES (ILES) technique. Furthermore, the use of numerical dissipation is not limited to LES but finds
also applications in DNS as it enables us to control numerical oscillations arising at the smallest scales
(mesh size), which are inevitably compromised when finite-difference is used [90]. In this regard, in
chapter 3, the regularisation provided by the technique have allowed us to ensure DNS accuracy at
marginal resolution. Also in chapter 3, it is shown that in the LES context, ISVV displays an implicit
wall-modelling feature. The term implicit is used to emphasize the capability of the methodology to
regularise the solution in the near-wall region without any explicit wall-model despite the use of mesh
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resolutions that structurally bypass the viscous sub-layer and even the near-wall production region.
Ultimately, the improvement observed is achieved thanks to the damping of spurious oscillations pro-
vided by the hyperviscous second derivative operator together with the use of high-order schemes and
irregular distribution of mesh nodes with respect to the wall geometry.

Then, in chapter 4 [78], a novel solution filtering technique is presented. This approach is equiva-
lent to the use of ISVV and it can be interpreted as the counterpart of the above mentioned hyperviscous
second derivative schemes. Within the viscous filtering framework, the extra-numerical dissipation is
no longer introduced through the computation of second derivatives, instead, it consists of designing
the coefficients of a finite-difference filter to provide both the molecular and artificial dissipations. This
way, by filtering the solution every time step, diffusive terms can be actually removed from the gov-
erning equations and a substantial relaxation on the diffusivity constraint is obtained, allowing us to
use much larger time steps. The implementation of this technique has been of major importance for
advancement of this thesis, as it reinforced the strength of the numerical method for the subsequent
heat transfer simulations. In chapter 4 [78] for instance, it is shown that for a DNS of heat transfer in
turbulent pipe flow withRe = 5300 and Pr = 0.025, the viscous filtering technique enabled the use of a
30× larger time step with respect to the full-explicit time integration with third-order Adams-Bashforth
used before, leading to −95% saving of computational resources.

Having established a solid numerical base, the IBM is now subjected to further developments in
chapters 5 and 6 in order to allow the prescription of thermal boundary conditions (TBCs) as well.
Moreover, in chapter 5, local imposition is considered with two ideal TBCs, namely mixed-type (MBC)
and isoflux (IF). The prescription of MBC is straightforward with the present IBM as it consists of im-
posing a constant (time) and uniform (space) Dirichlet boundary condition (DBC) at the fluid-solid
interface, which follows the same procedure as for the no-slip condition. Thus, the main focus of chap-
ter 5 is the development and validation of a robust IBM strategy for the prescription of IF, which consists
of imposing a constant and uniform Neumann boundary condition (NBC) at the fluid-solid interface.
Within the present IBM, boundary conditions are to be ensured during the Lagrange reconstruction,
which only imposes DBC (a finite value of the solution) at the wall, and thus a NBC (a finite value
of wall-normal derivative of the solution) must be indirectly satisfied. This is done by following the
strategy proposed by [103] and extended to IBM by [74], where a NBC is virtually ensured through the
imposition of a target DBC, so that the desired derivative value (i.e. the NBC) shall be approximately
recovered when first derivatives are computed with the sixth-order compact schemes used in the code.

However, the proper prescription of NBC in the present computational configuration must still deal
with another hindrance. In fact, when a non-body fitted grid is used, the imposition of a wall-normal
first-derivative - while leaving free the tangential one - represents a real challenge. More precisely,
as the cylindrical pipe geometry is discretized with a Cartesian grid, the imposition of the NBC must
be decomposed into its Cartesian components, which requires the knowledge of the wall-tangential
component. To overcome this obstacle, a method based on extrapolation is proposed in chapter 5 and
various techniques are tested. Ultimately, a robust and efficient strategy is chosen and consistent results
of validation are presented for IF, including budgets of temperature variance. Results of validation
for MBC focus rather on the advantageous numerical features of the present numerical tool. Still in
chapter 5, the particularities of each TBC are highlighted through direct comparison between IF and
MBC results.
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The validation of numerical techniques for MBC (imposition of DBC) and IF (imposition of NBC)
provided in chapter 5 serves as a pathway to develop a numerical methodology for the simulation
of CHT in turbulent pipe flow, the subject of chapter 6. To tackle the CHT problem, the code Xcom-
pact3d is further developed to include a solver for the heat conduction in the solid which is coupled to
DNS results in the fluid, providing a high-fidelity description of the thermal interaction between the
two physical media. Fluid and solid solutions are (weakly) coupled through TBCs at the fluid-solid
interface. More precisely, the Neumann-Dirichlet coupling method of [113] is used while relying on
the above mentioned IBM strategies to impose DBCs and NBCs on the fluid and solid solutions re-
spectively. Furthermore, the dual IBM approach of [91] is expanded to the present non-body fitted
configuration resulting in a versatile strategy for CHT simulations in pipe configuration. Consistent
results of validation are presented including budgets of temperature variance, which makes of this
numerical approach an attractive tool for RANS modelling development. Nonetheless, some stability
aspects of the technique remain to be understood more in-depth in order to make the coupling method
numerically stable for any value of the thermal conductivity ratio G2.

Perspectives

The pipe flow configuration is considered in this work as a prototype of complex geometry in the
sense that the computational mesh does not fit the wall geometry. This way, the IBM strategies for IF and
CHT developed in chapters 6 and 5 have been conveniently implemented in Xcompact3d in terms of the
normal and tangential surface directions. This enables us to promptly treat more complex geometries
such as the T-junction flow, which is scheduled to be studied as a continuation of this work. Besides the
fluid/solid thermal treatment, in order to investigate the T-junction flow in fully developed turbulent
conditions, inflow conditions will be generated through a direct recycling, following the technique of
[115]. The method has been already implemented for the present pipe configuration and consistent
results of validation have been obtained.

Although good results could be obtained with the numerical strategy developed for CHT in chapter
6, simulations have been only performed for combinations of material properties G and G2 around
unity, which corresponds to a narrow range of thermal activity ratios 0.35 ≤ K ≤ 1. In order to
expand these studies, the stability characteristics of the coupling technique - based on the Lagrange
reconstruction IBM and extrapolation - must be investigated more in-depth.

The Pao-filtering technique, described in section 3.3.1, remains to be tested with the new reconstruc-
tion technique (section 5.2.1). More precisely, the problem observed a priori and a posteriori related to a
poorly ensured no-slip condition may be better managed with the new reconstruction technique. In ad-
dition, this new version of the reconstruction showed a dependence on the transverse-xy dimensions of
the computational domain, which has not yet been thoroughly investigated. Other interpolation func-
tions shall also be tested for the reconstruction. Since the present IBM has been developed [67, 50],
Lagrange polynomials have been continuously used to prescribe Dirichlet conditions at the interface.
Yet, for the numerical developments brought about in this work, other strategies may be also interest-
ing to be considered, such as a cubic spline interpolation. This type of reconstruction has been recently
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implemented in Xcompact3d [114] and it offers the advantage of taking into account the asymptotic
behaviour of first derivatives in its formulation, which may be advantageous for the indirect imposition
of Neumann conditions proposed here (section 5.4.2) as well as for the computation of budget terms
very close to the wall (see discussion in section 6.3).

Concerning the present ILES technique, the formalism proposed by [65] assumes homogeneous
and isotropic turbulence. For a more consistent utilisation in wall-bounded configurations, the devel-
opment of an in-homogeneous and anisotropic formalism is scheduled.

As the prescription of Neumann boundary conditions with our IBM is now possible, a wall-layer
model could also be included in the code to be used in ILES simulations. This would allow us to inves-
tigate whether the association of an explicit wall-layer model with the implicit improvement provided
by the ISVV technique can improve or not the results presented in chapter 3 and/or perform ILES at
even higher Reynolds numbers.
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Chapter 56
Implicit Wall-Layer Modelling
in Turbulent Pipe Flow

R. Vicente Cruz, E. Lamballais and R. Perrin

Introduction

In the context of large eddy simulations (LES) of wall-bounded turbulence, the
explicit calculation of all the energy-containing near-wall eddies is a key point.
To accomplish this goal, it is recommended the employment of a mesh resolution
between 10 and 100 wall units for the streamwise direction discretization, from
10 to 20 wall units in the spanwise direction, and typically one wall unit in the
wall normal direction through a near-wall mesh refinement. When these resolution
criteria are too demanding in terms of computational resources, an alternative is to
use a discretization that bypasses the inner layer with the aid of a wall-layer model
[1, 2].

However, it was shown by [3] that excellent basic turbulent statistics in a pipe flow
can be obtained with a mesh resolution coarser than the viscous sublayer without
using any explicit wall-layer modelling. In this context, the near-wall regularization is
simply performed by means of an original and robust implicit LES (ILES) technique
that—without any extra cost or adaptation in the near-wall region—displays a wall
modelling feature. Two Reynolds numbers Reτ = 180,5501 were considered when
comparing ILES results to unfiltered DNS data of [4].

The term implicit LES refers here to the use of regularization as a substitute
of subgrid-scale (SGS) modelling [5, 6]. The originality of the method is found

1Based on the friction velocity uτ and the pipe radius R.
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in the built-in numerical dissipation that does not come from the discretization of
the convective term, but from the viscous term in the Navier–Stokes equation. This
strategy has also been used successfully by [7, 8] for turbulent plane channel and
impinging jet configurations with regular Cartesian meshes, nonetheless, the near-
wall behaviour of the implicit SGS modelling was not specifically investigated.

Until now, the aforementioned conclusions about the ILES technique performance
were based on comparisons of basic statistics with unfiltered DNS data, which means
that even if a good agreement was observed, no rigorous assessment could be made.
In the present investigation, this matter is examined at higher Reynolds number
(Reτ = 1000) while determining to what extent it can be generalized in terms of
near-wall region bypass. To do so, a quasi-DNS database is presented with an original
method to easily produce filtered statistics in order to enable rigorous comparisons
with ILES at any mesh resolution. The implicit LES results are, thus, analysed in
terms of ability to predict near-wall statistics despite the use of very coarse grid for
which even the near-wall turbulent production region is fully bypassed.

Numerical Method and Computational Configuration

As a generic numerical tool to investigate this concept of implicit LES, the sixth-order
flow solver Incompact3d is used. Thanks to its features of kinetic energy conserva-
tion2 and flexibility for the application of numerical dissipation, this code enables
an easy calibration of the implicit SGS modelling. In particular, the role of its scale
selectivity has been shown in [6] through rigorous comparisons with DNS results
based on a priori and a posteriori analysis with a particular attention to distant triad
interactions between SGS and very large scales [5]. In addition, it was shown by
[6] that the present implicit LES technique is equivalent to the use of spectral van-
ishing viscosity (SVV), ensuring high-order accuracy and flexible application. In
previous studies using the method [5, 6], the validation framework was based on the
Taylor–Green Vortex problem as a prototype of wall-free turbulent flow.

As in [3], a regular Cartesian mesh is combined with the use of an immersed bound-
ary technique to discretize the pipe geometry while considering periodic boundary
conditions in the three spatial directions. A one-dimensional reconstruction method
[9] is used inside the solid to ensure the smoothness of the solution everywhere in
the computational domain. This feature clearly improves the accuracy of compact
finite difference schemes as used in the code Incompact3d.

2In the discrete and inviscid sense up to the time advancement error.
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Filtered Quasi-DNS Database

Quasi-DNS of pipe flow is performed at Reτ = 1000 in order to, afterwards, pro-
duce the filtered benchmark database for comparison with ILES results. A mesh of
nx × ny × nz = 768 × 768 × 1920 cells was used, corresponding, in wall units to
Δx+ = Δy+ = 2.9 and Δz+ = 13. The term “quasi” is naturally used due to the
employed mesh resolution, however, as shown in Fig. 56.1, thanks to the success of
the technique, a very good agreement with DNS data of [4] is found.

As in [5], the filter is chosen to take the implicit SGS dissipation into account
using a spectral Pao-like closure. By specifying the ratio between DNS and LES
mesh resolutions, this Pao-like closure provides the spectral transfer functions that
are used to define the targeted LES solution. Thus, this targeted solution is determined
rigorously and consistently with the artificial dissipation implicitly introduced by the
error differentiation in the present ILES framework [6]. The use of periodic boundary
conditions enables the application of the present homogeneous filter defined in the
Fourier space. The filter is applied once in every direction to take the anisotropy
of the LES mesh into account. Following this procedure, a consistent framework is
established for rigorous comparisons between LES and filtered DNS data.

The filter effect over streamwise-z and normal xy-directions separately is shown
in Fig. 56.2. Acting as a pre-analysis, this information guided the choice of inter-
esting mesh resolutions based on the levels of energy k = 1

2 �ui ui � to be potentially
captured when the viscous and even near-wall production regions are bypassed. It
is important to emphasize that the application of filter in normal xy-directions is
only possible thanks to the solution smoothness provided by the reconstruction.
As shown in Fig. 56.3, if no extension of the fluid solution is made into the solid
zone before filtering, the no-slip condition is poorly ensured and near-wall region
results are not reliable, a problem that is strongly reduced with the reconstruction.
Nonetheless, reconstruction’s ability to ensure the success of normal direction fil-
tering is limited to not so high values of the filter width, as shown in Fig. 56.2 left
by the abnormal near-wall behaviour when data is filtered at a corresponding cell
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Fig. 56.1 Mean velocity (left) and Reynolds stresses profiles (right) for the quasi-DNS at Reτ =
1000 compared to DNS statistics of [4]
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Fig. 56.3 Comparison of mean (left) and instantaneous (right) velocity profiles demonstrates the
effect/necessity of reconstruction on the reliability of data filtered in the normal Cartesian directions
(x, y). In this illustration, quasi-DNS data have been filtered at a corresponding mesh resolution of
Δx+ = Δy+ = 12

size Δx+ = Δy+ = 24. For Δx+ = Δy+ = 15, the unrealistic near-wall rising of
the turbulent kinetic energy k can be avoided, but persistent velocity fluctuations are
observed close to the wall with for instance k+ ≈ 0.156 at (R − r)+ ≈ 1.03 to be
compared to k+ ≈ 0.124 for the reference non-filtered value. Here, we have chosen
to limit our analysis to Δx+ = Δy+ = 12 for which the filtering procedure produces
also k+ ≈ 0.124 at this near-wall location.

LES Results

Before proceeding to the results, it is important to highlight that the term “implicit
wall-layer modelling” is used to emphasize the ability of the present methodology to
regularize the solution in the near-wall region without any explicit wall model. The
improvement brought by the technique is the simple result of a targeted choice of
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Fig. 56.4 Mean velocity profile (left) and Reynolds stresses profiles (right) for the Marginal Resolu-
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statistics

coefficients for the centred compact finite difference scheme used for the discretiza-
tion of the viscous term in the Navier–Stokes equations [3].

For a Reynolds number of Reτ = 1000, two implicit LES have been performed
using: (i) Marginal Resolution: nx × ny × nz = 512 × 512 × 1280 cells, corre-
sponding in wall units to Δx+ = Δy+ ≈ 4.5, Δz+ ≈ 19.5; and (ii) Low Resolution:
nx × ny × nz = 256 × 256 × 960 cells, expressed in wall units: Δx+ = Δy+ = 12,
Δz+ = 26. Mesh resolutions were chosen in order to evaluate the method perfor-
mance in terms of viscous and near-wall production region bypass, respectively.
The implicit wall modelling feature of the present approach is evidenced by com-
paring ILES to no-model LES results performed without any (implicit or explicit)
SGS/wall-layer modelling.

Beginning with the Marginal Resolution comparisons, in Fig. 56.4-right, the devi-
ation between ILES and filtered kinetic energy profiles at the peak points to the exis-
tence of numerical/modelling errors. However, the overall precision and agreement
of the statistics are the confirmation at high Reynolds number that accurate turbulent
statistics can be obtained despite the use of a mesh resolution unable to capture the
viscous sublayer. In particular, it can be observed that the peak of k+ is remarkably
well predicted at a level of detail clearly higher than the minimal scale 4Δx com-
puted with accuracy. When compared to “No-Model” results, numerical dissipation
is found definitely necessary so that it can be seen as playing the role, in this context,
of an implicit viscous sublayer modelling. To explain this improvement, it must be
mentioned that the no-model solution is subjected to small-scale oscillations which
make inaccurate the prediction of friction velocity with an overestimation of about
+6%. Here, the use of numerical dissipation can remove these spurious oscillations
making clearly more accurate the friction velocity prediction with only a deviation
of −1% by comparison to DNS.

For the low resolution results, for which the mesh choice was based on the results
of Fig. 56.2, a good prediction of the mean velocity is recovered by the ILES with an
acceptable −2% underprediction of uτ (see Fig. 56.5-left). The filtered profile of k+
in Fig. 56.5-right shows that good level of energy could still be captured despite the
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Fig. 56.5 Mean velocity profile (left) and Reynolds stresses profiles (right) for the low resolution
ILES at Reτ = 1000. Results are compared to: no-model LES, unfiltered and filtered quasi-DNS
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astonishing value of 12 wall units used for the normal xy-discretization. Even though
the profile of k+ is somewhat irregular in the region of the peak, its amplitude is only
underestimated by −11% with a shape captured at a scale evidently smaller than
the minimum scale of accuracy 4Δx+ = 48. In the outer layer, the agreement with
filtered DNS is almost perfect. The same cannot be said about the no-model LES
for which both mean velocity and kinetic energy profiles are completely unrealistic
when such a coarse mesh resolution is used. Based on these observations, it can
be concluded that the present implicit SGS modelling has also a feature of implicit
wall-layer model through its ability to restore the quality of the wall friction from
+24% to −2% while enabling realistic prediction of the fluctuating velocity profiles.
Note, however, that for the present low resolution, near-wall turbulent statistics are
subjected to errors related to the azimuthal location of the nodes, especially those
close to the cardinal points. These errors, due to the immersed boundary technique,
tend to compensate each other leading to the acceptable k+ profile presented in
Fig. 56.5-right. A development is under progress to remove these immersed boundary
artefacts making a room for further improvement of the present implicit wall-layer
modelling.
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Abstract
A numerical strategy based on an immersed bound-

ary method is presented for imposing Neumann
boundary conditions in configurations where the mesh
arrangement is disconnected from the wall geometry.
The technique is validated with DNS of heat transfer in
pipe flow with isoflux condition and then used to im-
plement a versatile strategy for conjugate heat transfer.

1 Introduction
In recent years, turbulent heat transfer in wall-

bounded configurations has been increasingly inves-
tigated by DNS. Yet, most part of these studies are
carried out for channel flow following the approach
of solving the energy equation for the fluid side only
while prescribing ideal thermal boundary conditions
(TBCs), in the hope that it may represent the heat
transfer phenomena occurring in the solid body. It is
widely recognised however that idealized TBCs (e.g.,
isothermal or isoflux) cannot provide realistic repre-
sentations of real life heat transfer in every possible
scenario (Flageul et al, 2015), since simplifications
concerning the behaviour of temperature fluctuations
at the wall cannot be avoided as long as the calcula-
tions are performed for the fluid side only. This is es-
pecially true when the thermal diffusivity of the solid
and fluid are of the same order of magnitude (Flageul
et al, 2015). Alternatively, in the conjugate heat trans-
fer (CHT) framework, the heat conduction occurring
in the solid is also solved and coupled to the fluid so-
lution. This strategy can provide a fine description
of the turbulent thermal interaction between fluid and
solid media which may be valuable, for instance, to
improve RANS/LES modelling in industrial applica-
tions where fluctuating thermal stresses are a concern
(Flageul et al, 2015).

In a previous work (Vicente Cruz et al, 2021), the
authors have presented DNS results of pipe flow with
ideal mixed-type boundary conditions (MBC). The
pipe geometry was discretized with a Cartesian regular
grid for a numerical differentiation entirely based on
high-order finite-difference schemes. Dirichlet bound-

ary conditions (DBC) were ensured (for both velocity
and temperature) at the fluid-solid interface through
an efficient immersed boundary method (IBM). Ac-
curate velocity/temperature statistics and budgets of
the turbulent kinetic energy have been presented while
highlighting the spectacular saving of computational
resources allowed by the numerical method. In the
present contribution, the same computational strategy
is used and the IBM is further developed so that ideal
isoflux conditions (IF) can be prescribed, which corre-
sponds to the imposition of a Neumann boundary con-
dition (NBC). The pipe flow configuration is consid-
ered as a prototype of complex geometry in the sense
that the computational mesh does not fit the wall ge-
ometry. Thanks to a dual IBM where the new NBC
imposition is implemented, an accurate and versatile
numerical strategy for DNS with CHT is proposed.

2 Flow configuration
We consider the fully developed flow of an incom-

pressible Newtonian fluid in a pipe subjected to a con-
stant heat flux at its outer surface, as illustrated in
Figure 1-top. In the present CHT framework, heat
is conducted through the solid subdomain Ωs - de-
fined in R ≤ r ≤ Ro - and then conveyed by the
turbulent flow in the fluid subdomain Ωf - defined
in r < R. We neglect any temperature dependence
of fluid and solid material properties, the temperature
field is treated as a passive scalar. Thus, the flow is
governed by the incompressible Navier-Stokes equa-
tions and - by defining a dimensionless temperature of
the form Θ = − 1

Nu

�
T−Tb

�Tw�−Tb

�
with Tb and �Tw� the

bulk and mean wall temperatures respectively - fluid
and solid energy equations are expressed as

∂Θ

∂t
+ ui

∂Θ

∂xi
=

1

Pe

∂2Θ

∂xi∂xi
+ fΘ in Ωf (1)

∂Θs

∂t
=

1

GPe

∂2Θs

∂xi∂xi
in Ωs (2)

where Θ and Θs are the temperature solutions in the
fluid and solid subdomains respectively, Pe is the
Péclet number, G = α/αs is the fluid-to-solid ther-



Figure 1: Scheme of flow configuration.

mal diffusivity ratio and is the source
term that ensures thermal state in the fluid
domain. At the interface the continuity of temperature
and heat flux are expressed, respectively, as

Θ = Θs at r = R (3)
∂Θs

∂r
=

1

G2

∂Θ

∂r
at r = R (4)

where G2 = λs/λ is the solid-to-fluid thermal con-
ductivity ratio. And the isoflux condition (NBC) ap-
plied to outer surface r = Ro is

∂Θs

∂r
= − 1

G2

R

Ro
at r = Ro . (5)

However, what is commonly done in numerical
simulation of heat transfer in wall-bounded configura-
tions is to bypass the heat conduction in the solid (2)
and solve only the advection-diffusion in the fluid (1).
In this case, the physical process in the solid is simply
represented by an ideal TBC imposed to eq.(1). This
can be done by assuming, for instance, that the heat
flux transmitted from the solid into the fluid domain
through the interface r = R is also constant and hence
solve eq.(1) with IF, which corresponds to the NBC

∂Θ

∂r
= −1 at r = R . (6)

A numerical technique for IF is presented here as a
pathway into developing the IBM for imposing NBC
in complex geometries1.

3 Numerical methodology
As this work focuses on the validation of two

numerical techniques (namely for IF and CHT), re-
sults are presented only for a low-Reynolds number
Re = 5300 based on the pipe diameter (Reτ =

1The term complex geometry refers to a mesh arrangement dis-
connected from the wall geometry.

181 based on the pipe radius) and a Prandtl number
Pr = 0.71. The massively parallel code Xcompact3d
(Bartholomew et al, 2020) is used to carry out the sim-
ulations. Its spatial differentiation is entirely based
on centred compact finite-difference schemes of sixth-
order accuracy when periodic (or free-slip) boundary
conditions are applied to the boundaries of the com-
putational domain, as in here. The cylindrical pipe is
immersed in the computational domain of dimensions
Lx ×Ly ×Lz = 1.6D × 1.6D × 12.5D which is dis-
cretized with a regular Cartesian grid of nx×ny×nz =
320×320×640 nodes, see schematic view in Figure 1-
bottom. The cylindrical coordinates, associated to the
pipe geometry, relate to the Cartesian ones, used by the
code, according to r =

�
x2 + y2, φ = arctan(y/x),

z = z. The corresponding mesh resolutions in wall
units in the transverse-xy and streamwise-z directions
are Δx+ = Δy+ = 1.8 and Δz+ = 7 respectively.

The ability to reach DNS accuracy despite the
structurally coarse mesh resolution is a highlight of
the present numerical method. This is achieved thanks
to a small amount of artificial dissipation selectively
applied on the smallest scales to regularise the solu-
tion as in the context of implicit LES (Vicente Cruz et
al, 2020). However, differently from previous stud-
ies (Vicente Cruz et al, 2020, 2021) here, this tar-
get numerical dissipation is not introduced through
the computation of second derivatives in equations (1,
2). We use instead the viscous filtering technique for
DNS/LES recently developed by the authors (Lambal-
lais et al, 2021). It consists of designing the coeffi-
cients of a finite-difference filter to provide both the
molecular and artificial dissipations. This way, by ap-
plying the filter every time step, the diffusive terms
can be actually removed from the governing equa-
tions. In Lamballais et al (2021) for instance, the au-
thors have shown that for a DNS with this same com-
putational configuration for a Prandtl number Pr =
0.025 with MBC, the viscous filtering technique en-
abled to use a 30× larger time step with respect to the
full-explicit time integration with third-order Adams-
Bashforth used before, leading to −95% saving of
computational resources.

Another headliner of the present approach is the
customised IBM which enables the treatment of a
complex geometries despite the use of a Cartesian
mesh (Gautier et al, 2014). The method is based on
the reconstruction of an artificial solution into the im-
mersed region, as illustrated in Figure 2-right, and no-
explicit forcing is introduced in the governing equa-
tions. To ensure its effectiveness in the present compu-
tational configuration, the domain needs to be slightly
oversized by introducing the “buffer region” r > Ro,
discernible in Figure 1-bottom. For a DBC, the im-
position is straightforward, the local reconstruction is
carried out with Lagrange polynomial functions pro-
viding the desired value at the wall (Vicente Cruz et
al, 2021). For a NBC on the other hand, the technique



implemented here is an extension of the strategy intro-
duced by Narváez et al (2021) to perform CHT simula-
tion in channel configuration. The method is expanded
here to a pipe as a prototype of complex geometry.

Imposition of IF
For efficiency and simplicity reasons, partially re-

lated to the 2D MPI pencil decomposition used in the
code, all operations are carried out in 1D. This implies
that, when dealing with a complex geometry, the im-
position of a NBC - i.e. the wall-normal derivative in
eq.(6) - must be decomposed into its Cartesian com-
ponents according to

∂Θ

∂x

����
w

= − cosφ
∂Θ

∂r

����
w

− sinφ
∂Θ

∂φ

����
w

(7)

∂Θ

∂y

����
w

= − sinφ
∂Θ

∂r

����
w

+ cosφ
∂Θ

∂φ

����
w

(8)

where “w” denotes an inner wall value. In the present
approach however, these Cartesian wall-derivatives are
not directly imposed, instead, they are softly ensured
with the present IBM. The procedure can be under-
stood in two steps, following the scheme in Figure
2: i) Definition of a target value Θw that satisfies
the NBC; ii) Lagrange polynomial reconstruction with
Θw. In other words, the NBC is ensured through a
target DBC. Let us consider, for instance, the local
reconstruction along a x-row illustrated in Figure 2.
As Narváez et al (2021), we may define a non-centred
finite-difference scheme such as

∂Θ

∂x

����
w

= aΘw + bΘi+1 + cΘi+2 + dΘi+3 (9)

so that the value Θw providing the target derivative
∂Θ

∂x

����
w

(i.e., the NBC) can be estimated from

Θw =

∂Θ

∂x

����
w

− bΘi+1 − cΘi+2 − dΘi+3

a
. (10)

A Taylor expansion can lead to algebraic expres-
sions for the set of coefficients (a, b, c, d) for different
orders of accuracy, they are not shown here for con-
ciseness. Nonetheless, note that these expressions are
function of the mesh size Δx, which is constant, and
of the local mesh resolution in the vicinity of the body
Δxw, which, in turn, is geometry dependent for a com-
plex geometry. Consequently, the finite-difference co-
efficients will be geometry dependent as well. In the
code, they are defined before the time loop, as 3 × 3
matrices (using the local coordinates of the immersed
boundaries) and used later in the solver. One set of co-
efficients is needed for each of the transverse-xy direc-
tions since NBC (7) is satisfied with x-direction recon-
structions and NBC (8) with y-direction reconstruc-
tions. Because the coefficients are geometry depen-
dent, values of Θw computed with eq.(10) will be as

Solid
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ii) Lagrange polynomial reconstruction with Θwi) Estimation of target Θw ensuring the NBC

Figure 2: Two-step technique for imposing NBC.

well. This point explains how the present strategy can
reproduce temperature fluctuations at the wall (char-
acteristic feature of IF) although it is essentially based
on Dirichlet boundary conditions. Note also that first
fluid points (index i in Figure 2) are skipped. In fact,
if taken into account, Δxw can assume very small val-
ues, leading to very large coefficients. This side ef-
fect, although algebraically correct, can cause severe
numerical instability in the solver. Here, a third-order
accurate scheme has been used which requires a sten-
cil {a, b, c, d} �= 0.

Another obstacle still needs to be dealt with in
the present scenario. The definition of the Carte-
sian derivatives with eqs.(7, 8) depends on the knowl-
edge of their cylindrical counterparts on the right-hand
side (rhs). The wall-normal component naturally cor-
responds to the IF condition given by eq.(6). On
the other hand, the expected behaviour of the wall-
tangential component is unknown, at least in a turbu-
lent context. With a body-conformal grid, which is the
typical approach in cases like this, the imposition of
the wall-normal derivative is straightforward and the
tangential one can be simply left free. Here however,
a prediction of the wall-tangential derivative is neces-
sary in order to define the target value Θw.

We propose therefore a method based on extrapo-
lation. As a first step, the wall-tangential derivative is
computed everywhere in the fluid domain Ωf from the
Cartesian components using

∂Θ

∂φ
= − sinφ

∂Θ

∂x
+ cosφ

∂Θ

∂y
. (11)

If the Cartesian derivatives on the rhs of eq.(11) are
to be computed with the same sixth-order compact
schemes used in Xcompact3d, the temperature field
Θ should be reconstructed beforehand, since in the
present IBM framework, the reconstruction role is to
reduce contamination by spurious oscillations due to
a sharp interface (Vicente Cruz et al, 2020). In this
case, this “pre-reconstruction” should also be carried
out for a NBC which would require, in turn, a pre-
diction of Θw making the problem somehow closed-
loop. Alternatively, here, a second-order conditional
scheme is used, which consists of employing conven-
tional central difference f �

i = fi+1−fi−1

2Δx at nodes suf-
ficiently far from the immersed boundary and progres-
sively switch to non-centred difference at nodes close



to the immersed boundary2. The goal is to avoid in-
cluding nodes from the immersed region in the stencil
of the scheme, preventing contamination by interfacial
discontinuities.

Next, from its fluid values, the wall-contribution
of the tangential derivative can be extrapolated along a
Cartesian grid row. It can be done following the same
principle described for scheme (9). This time however,
instead of first-derivatives, we aim to define a finite-
difference extrapolation scheme of the form

∂Θ

∂φ

����
w

= ae
∂Θ

∂φ

����
i

+be
∂Θ

∂φ

����
i+1

+ce
∂Θ

∂φ

����
i+2

+de
∂Θ

∂φ

����
i+3

(12)
As for the coefficients of scheme (9), a Taylor expan-
sion leads to expressions for (ae, be, ce, de) for dif-
ferent orders of accuracy (not shown). These coeffi-
cients are also geometry dependent because of Δxw

and are initialized in the code together with those of
scheme (9). Differently from those however, here
Δxw does not raise stability problems and therefore
first fluid nodes may or may not be skipped, depend-
ing on the value of the coefficient ae. Here, we use a
simple first-order extrapolation without skip, i.e. with
ae = 1, {be, ce, de} = 0. From a series of prelim-
inary tests for different orders of accuracy, this con-
figuration stood out as a robust and efficient solution
to work alongside with the second-order conditional
scheme mentioned above. DNS results of validation
for this technique are presented in the next section.

Imposition of CHT
The code Xcompact3d is further developed to in-

clude a solver for the solid energy equation (2). The
method implemented is mainly based on the (post-IF
version of the) IBM to couple solid and fluid energy
equations trough the TBCs (3-5). Most commonly, in
the general CHT framework with IBM, a single com-
putational domain is used for both fluid and solid tem-
perature solutions (Narváez et al, 2021). As pointed
out by Narváez et al (2021), in most practical applica-
tions, thermal conductivities are different in the fluid
and in the solid (G2 �= 1) and hence, because of
the heat flux continuity condition at the interface, the
wall-normal derivative of the temperature can become
discontinuous. This effect is expressed by the depen-
dence on G2 in eq.(4). The resulting lack of smooth-
ness is an obvious obstacle when high-order compact
schemes are used, as in here, given the difficulty of
numerically dealing with a loss of differentiability.

In this regard, the dual IBM approach of Narváez
et al (2021) is expanded here to complex geometries.
The approach is dual in the sense that fluid Θ and
solid Θs temperature fields are defined separately, ev-
erywhere in the computational domain. In this way,
the solid subdomain Ωs is regarded as the immersed
region for the fluid solution and the fluid subdomain

2The complete formulation of the conditional scheme is not
given here for the sake of brevity.
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Figure 3: Principle of the reconstructions with the dual IBM
for G2 = 2. Solid lines are physical solutions,
dashed lines are reconstructed solutions.

Ωf becomes the immersed region for the solid solu-
tion. Consequently, each temperature solution can be
freely reconstructed without conflicting (replacing) the
physical values of its counterpart. Furthermore, com-
pact finite-difference operators of spatial derivatives
and viscous filtering perceive a smooth interface for
both Θ and Θs regardless of the value of G2, see ex-
ample in Figure 3 for G2 = 2. Hence, not only the
efficiency of the IBM is preserved but also a straight-
forward treatment for the wall-normal derivative dis-
continuity is provided.

Fluid and solid energy equations are coupled in
time with the Neumann-Dirichlet coupling method of
Giles (1997). It consists of a weak coupling where
eqs.(1, 2) are solved sequentially while admitting a
small discontinuity of the temperature at the interface.
Firstly, the fluid energy equation (1) is solved with the
TBC (3), which is prescribed as the DBC

Θ|n+1
w =

Θ|nw + Θs|nw
2

, (13)

where the superscript refers to the time-step number.
Note that for the present complex geometry, the im-
mersed boundary location does not coincide with the
Cartesian grid nodes and thus the local wall values
Θ|nw and Θs|nw must be extrapolated. This is done
with scheme (12) following the same rationale. Here
however, the extrapolation coefficients are defined to
provide fourth-order accuracy3 without skipping the
closest nodes to the interface, which requires a sten-
cil {ae, be, ce, de} �= 0.

Next, the solid energy equation (2) is solved with
TBCs (4, 5) which are imposed as NBCs. At the outer
wall “wo”, NBC (5) is the isoflux condition

∂Θs

∂r

����
n+1

wo

= − 1

G2

R

Ro
, (14)

which is carried out with the IF technique described
hereinbefore. Here however, we consider this heat-
flux as purely wall-normal and hence the contribution

3Tests showed that higher-order extrapolation is better if the goal
is to extrapolate Θw instead of the wall-tangential derivative.



of the wall-tangential derivative in eqs.(7, 8) is set to
zero4. Now, to impose NBC (4) at the inner interface

∂Θs

∂r

����
n+1

w

=
1

G2

∂Θ

∂r

����
n+1

w

, (15)

the wall-normal derivative of the fluid solution (rhs)
must be known. Note that its Cartesian components
can be straightforwardly computed from the fluid so-
lution Θ with the non-centred scheme (9). Also in this
case, as the Cartesian wall-derivatives are defined di-
rectly, the estimation of the wall-tangential derivative
is not required, which makes the imposition of NBCs
in the CHT case simpler than in IF. Still, both NBCs
(14, 15) are ensured in two steps with the Lagrange
reconstruction as described for IF. More precisely, in
the illustration of Figure 3, the reconstruction of Θs

performed through the transverse-xy periodicity satis-
fies NBC (14) and the one performed through the fluid
zone r < R satisfies NBC (15).

As stressed by Flageul et al (2015), the explicit
nature of this weak coupling technique can introduce
several numerical stability limitations. Yet, the conse-
quent restriction on Δt can be alleviated if DBC and
NBC are used for the fluid and solid fields respectively
(Giles, 1997), as it is done here. This way, for the
Prandtl number Pr = 0.71 considered here, the CFL
restriction in the fluid zone becomes stronger than the
one related to the weak coupling. In the next section,
CHT results are presented for 4 different combinations
of fluid/solid material properties - i.e. different values
of G and G2 - corresponding to distinct thermal activ-
ity ratios (Tiselj et al, 2001) K = (G2

√
G)−1. The

8 temperature solutions (4 Θ + 4 Θs) are computed in
parallel with a single velocity field in order to spare
computational resources.

4 Results

Isoflux (IF)
For the sake of conciseness and in order to directly

demonstrate the consistency of the present IF tech-
nique, only the budget terms of the temperature vari-
ance, scaled in viscous units, are assessed in Figure 4.
They are calculated as in Straub et al (2019) and com-
pared to their DNS results which were obtained with
the high-order spectral element code Nek5000. Be-
sides the small over-prediction of the molecular dif-
fusion term (which may be associated to a lack of sta-
tistical convergence), the overall agreement is satisfac-
tory, with in particular, the balance of terms being well
reproduced.

At the wall, molecular diffusive transport MDkθ

balances well molecular dissipation �kθ
as the turbu-

lent transport term TDkθ
vanishes due to the no-slip

condition. The two peaks of TDkθ
are also well cap-

tured, showing that the method reproduces well the
4The effect of the TBC imposed at the outer wall is not investi-

gated in this work.
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Figure 4: Budget of temperature variance with IF. Symbols
are DNS data of Straub et al (2019).

role associated to this term which is to drain temper-
ature fluctuations from the region where production is
most intense in order to convey them both towards the
wall and the core region (Piller, 2005).

Conjugate heat transfer (CHT)
In numerical terms, the treatment of CHT can be

seen as combination of MBC for the fluid energy equa-
tion (DBC (13)) and IF for the solid (NBCs (14, 15)).
Therefore, in the light of the validation of the IF tech-
nique and given the lack of reference results for CHT
with DNS of pipe flow, we confront our results here
only to IF and MBC (from Vicente Cruz et al, 2021).
The analysis are focused on the mean temperature
profile �Θ�, temperature variance �Θ�Θ�� and stream-
wise heat flux �u�

zΘ
�� in function of the wall distance

(R − r), as reported in Figure 5. As IF, MBC and
CHT profiles tend to superpose each other in the core
region, axis ranges are readjusted to better assess the
near-wall behaviour of the quantities scaled in viscous
units.

No effect of the TBC is perceived on the mean fluid
temperature �Θ�+ in Figure 5-top, consistently with
observations of Piller (2005) and Flageul et al (2015).
For the solid temperature �Θs�+ on the other hand,
the discontinuity on the first-derivative at the interface,
provoked by the heat flux continuity condition eq.(4),
appears for the CHT cases with G2 = 2. These ob-
servations are in agreement with CHT results of Tiselj
et al (2001) and Flageul et al (2017) for the channel
flow. Note that thanks to the dual immersed boundary
technique, the smoothness of the temperature profile
is successfully preserved across the interface, regard-
less of this discontinuity and despite the fact that the
numerical differentiation for both fluid and solid en-
ergy equations (1, 2) is entirely based on high-order
compact schemes.

The profiles of the temperature variance �Θ�Θ��+
and streamwise heat flux �u�

zΘ
��+ are delimited by

the two ideal cases MBC and IF across the conductive
sublayer. Moreover, in the fluid region, with increas-
ing thermal activity ratio K, the profiles move from a
MBC-like behaviour (which corresponds to K = 0)



towards IF (K = ∞). This effect is evident for the
temperature variance but less visible for the stream-
wise heat flux since the no-slip condition causes it to
vanish at the wall. These conclusions cannot be trans-
posed to the solid domain as some of the profiles do
cross each other. The same behaviours has been also
observed by Flageul et al (2017) in the channel flow
framework.

5 Conclusions
New numerical techniques are introduced for sim-

ulating IF and CHT in pipe configuration. The impo-
sition of the NBCs required for both cases are mostly
based in an efficient IBM designed to ensure accu-
racy in the near-wall region. Furthermore, for the CHT
treatment, the code Xcompact3d is further developed
to include a solver for the heat conduction in the solid
which is (weakly) coupled to DNS results in the fluid,
providing a high-fidelity description of the thermal in-
teraction between the two media. Consistent results of
validation are presented which makes of this numer-
ical approach an attractive tool for RANS modelling
development while paving the way for investigating
CHT in complex geometries. Some stability aspects
of the technique need to be understood in-depth in or-
der to make the coupling method numerically stable
for any value of the thermal conductivity ratio G2.
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[103] T. Dairay, “Simulation haute fidélité de l’aérothermique d’un jet en impact,” Ph.D. dissertation,
Universite de Poitiers, Poitiers, 2013. [Online]. Available: https://tel.archives-ouvertes.fr/
tel-01101235/

[104] F. Aulery, A. Toutant, R. Monod, G. Brillant, and F. Bataille, “Numerical simulations of sodium
mixing in a T-junction,” Applied Thermal Engineering, vol. 37, pp. 38–43, May 2012. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S1359431111007411

[105] S. Jaure, F. Duchaine, G. Staffelbach, and L. Y. M. Gicquel, “Massively parallel conjugate heat
transfer methods relying on large eddy simulation applied to an aeronautical combustor,”
Comput. Sci. Disc., vol. 6, no. 1, p. 015008, Oct. 2013. [Online]. Available: https://iopscience.iop.
org/article/10.1088/1749-4699/6/1/015008

[106] N. Kasagi, A. Kuroda, and M. Hirata, “Numerical Investigation of Near-Wall Tur-
bulent Heat Transfer Taking Into Account the Unsteady Heat Conduction in the
Solid Wall,” Journal of Heat Transfer, vol. 111, no. 2, pp. 385–392, May 1989.
[Online]. Available: https://asmedigitalcollection.asme.org/heattransfer/article/111/2/385/
414102/Numerical-Investigation-of-NearWall-Turbulent-Heat

[107] G. Iaccarino and S. Moreau, “Natural and Forced Conjugate Heat Transfer in Complex
Geometries on Cartesian Adapted Grids,” Journal of Fluids Engineering, vol. 128, no. 4, pp. 838–
846, Jul. 2006. [Online]. Available: https://asmedigitalcollection.asme.org/fluidsengineering/
article/128/4/838/466716/Natural-and-Forced-Conjugate-Heat-Transfer-in

[108] D. De Marinis, M. D. de Tullio, M. Napolitano, and G. Pascazio, “Improving a conjugate-
heat-transfer immersed-boundary method,” International Journal of Numerical Methods for
Heat & Fluid Flow, vol. 26, no. 3/4, pp. 1272–1288, May 2016. [Online]. Available:
https://www.emerald.com/insight/content/doi/10.1108/HFF-11-2015-0473/full/html

[109] A. F. Polyakov, “Wall effect on temperature fluctuations in the viscous sublayer,” Teplofizika
Vysokikh Temperatur, vol. 12, Mar.-Apr. 1974, p. 328-337. High Temperature Science, vol. 12, no. 2,
Nov. 1974, p. 286-293., 1974.

http://link.springer.com/10.1007/3-540-39999-2_49
https://linkinghub.elsevier.com/retrieve/pii/S0142727X07000239
https://linkinghub.elsevier.com/retrieve/pii/S0142727X07000239
http://aip.scitation.org/doi/10.1063/1.1350899
https://linkinghub.elsevier.com/retrieve/pii/S0029549312004396
https://tel.archives-ouvertes.fr/tel-01101235/
https://tel.archives-ouvertes.fr/tel-01101235/
https://linkinghub.elsevier.com/retrieve/pii/S1359431111007411
https://iopscience.iop.org/article/10.1088/1749-4699/6/1/015008
https://iopscience.iop.org/article/10.1088/1749-4699/6/1/015008
https://asmedigitalcollection.asme.org/heattransfer/article/111/2/385/414102/Numerical-Investigation-of-NearWall-Turbulent-Heat
https://asmedigitalcollection.asme.org/heattransfer/article/111/2/385/414102/Numerical-Investigation-of-NearWall-Turbulent-Heat
https://asmedigitalcollection.asme.org/fluidsengineering/article/128/4/838/466716/Natural-and-Forced-Conjugate-Heat-Transfer-in
https://asmedigitalcollection.asme.org/fluidsengineering/article/128/4/838/466716/Natural-and-Forced-Conjugate-Heat-Transfer-in
https://www.emerald.com/insight/content/doi/10.1108/HFF-11-2015-0473/full/html


196 BIBLIOGRAPHY
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