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Chapter 1

Introduction

The popularization of image acquisition devices, together with technological advances, has led
in recent years to an explosion of frameworks for the use of digital imaging data, in many fields:
Graphic computing, robotics, astronomy or medical research take advantage of images collected
from acquisition systems, such as cameras, telescopes, microscopes, scanners or radars for ex-
ample. Computer vision is the scientific field aimed at recovering high level semantic information
from these data, with the help of the increasing processing power of computers. This field includes
different tasks such as methods for acquiring, processing, analyzing and understanding the digital
sources.

Image acquisition gathers all techniques aimed at producing the data from to digital image
sensors. It ranges from the use of cameras to acquire images, videos, to the use of unmanned aerial
vehicles, telescopes, radars, and from getting images or videos in the visible light spectrum to get-
ting them in invisible wavelengths such as x rays, gamma rays, infrared, micro-waves, radio-waves.
Sound waves can also be used for acquiring images, for instance with the use of sonars or ultra-
sonography. Each distinct channel of acquisition, that may be converted digitally into an image of
scalar values, represents one specific feature of the scene. Because of the human eye sensitivity,
a color image is generally encoded as a two dimension image with three channels. When a sys-
tem deals with a higher number of channels, the acquired images are usually called multi-spectral
or hyperspectral depending of the order of magnitude of the number of channels. In summary,
image acquisition usually refers to a representation of a scene projected on a plane (the image
plane), i.e. with two spatial dimensions, and at least one channel (data dimensionality). However,
a scene can be recorded and/or represented using stacks of images (as defined previously), with
the stack dimension representing for instance different times, different depths (third spatial axis)
or different values for a given acquisition parameter.

Image (pre-)processing includes all the applications dedicated to the processing and modifi-
cation of the data itself, to correct it, or enhance its quality for post analysis by humans or com-
puter. For instance, contrast enhancement and noise removal algorithm can be used for better
visual exploitation of medical images, and in-painting may help for reducing occlusions in stereo-
scopic imaging. Shadow compensation algorithms or color homogenization algorithms may also
improve the behavior of shape from motion algorithms, where multiple photography of a build-
ing are used together for reconstructing a building in three dimensions. Many popular software
solutions incorporate lots of built-in simplified image processing algorithms, which makes them
available for any purpose, may it be scientific or artistic. These techniques, when used in order to
improve posterior image analysis are also considered as pre-processing.

This thesis focuses on image analysis, that deals with the decomposition and recognition of
some elements in the image. More specifically one of its tasks, image segmentation, deals with the
problem of decomposing an image into meaningful regions whose semantic content can be used
for higher level algorithms, like object classification, detection or tracking. This problem is a com-
plex and challenging task. Depending on the application, the segmentation may typically be com-
puted based on specific properties of the image at pixel level, for instance radiometry. However,
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despite advanced image acquisition techniques and preprocessing algorithms, low-level informa-
tion delivered by a single pixel is limited and prone to noise, corrupted data and all kinds of optic
phenomena altering the original image. Therefore, taking into account a statistical relationship
between spatially close pixels has been introduced relatively early in image processing Geman and
Geman [1984]. A classical way to handle this is to model the 2-dimensional (2D) field of pixels as
a Markov Random Field (MRF). This allows for introducing a prior on the expected solution. Sim-
ilarly, the belonging of a pixel to a region can be statistically modeled depending on the observed
pixel properties. Combining these two distinct priors allows for the formulation of the ill-posed
image segmentation problem as a better problem whose solution can be derived by maximizing
the posterior probability of the segmentation knowing the observed image.

Variational approaches are particularly used to provide solutions, by combining the prior and
conditional probabilistic models into a single parametric functional. The functional is composed
of multiple energy terms embedding the priors, and must be minimized in order to produce an
optimal solution. This is a challenging task: the number of dimensions of the space where the
functional has to be minimized is proportional to the number of pixels of the considered image,
which would make any brute-force approach irrelevant. A lot of work has been dedicated to such a
minimization, considering different contexts, with different constraints and energies, under con-
tinuous or discrete formulations. The study Szeliski et al. [2008] gives an insight by comparing
several minimization algorithms (including graph cuts) on typical vision problems, including im-
age segmentation.

Variational approaches usually allow for some reduction of noise and image acquisition arti-
facts, yielding a segmentation that is closer to the expected output. However, it is well known that
standard Total Variation (TVA) regularization (e.g. in image reconstruction Ribal et al. [2018]) or
Potts regularization (e.g. in image segmentation Boykov and Jolly [2001]) behave poorly on thin
structures. Detecting thin structures is very challenging because of their spatial sparsity, their
small size and their potential complex geometry. Since these structures essentially consist of dis-
continuities, they are highly penalized. Standard TVA and Potts regularization tend to remove
them first (as the weight of regularization progressively increases) and are thus not adapted to han-
dle correctly these structures. Thin structures are ubiquitous in a number of applications (such as
medical imaging) and detecting them as accurately as possible is therefore of great interest.

In parallel, due to technological advances in image acquisition, the amount and the diversity
of data to exploit have greatly increased in the last years. The development of fast algorithms for
exploiting this amount of data in a reasonable time is therefore of critical importance.

To reduce the computational burden, superpixel decomposition methods have been devel-
oped for grouping pixels sharing similar radiometric intensities into homogeneous regions. As
they tend to preserve the image contours, superpixels are able to drastically reduce the number of
elements to process while keeping the geometrical information that is lost with multi-resolution
approaches. The problem of creating spatially consistent and homogeneous regions involving a
tradeoff between efficiency, regularity, radiometry, adherence to boundaries and a lot of different
parameters, several different algorithms for constructing them have been proposed, each of them
being driven by different criteria as stated by Stutz et al. [2018]. Due to the large number of types
of superpixels, it is then necessary to integrate different metrics to further analyze their proper-
ties, from shape and size regularity, to geometric and topological constraints and measures of the
semantic consistency of the resulting image of superpixels.

A major drawback of a superpixel segmentation is that the usual hypothesis of a regular topo-
logical grid structure is lost, as well as the regularity in size and shape of every element. As a result,
image segmentation approaches taking advantage of superpixels must cope with these problems
and introduce new methods and spatial relationships. Most often, superpixels are considered
as neighbors when sharing a common border (Cui et al. [2018]; Fulkerson et al. [2009]; Liu et al.
[2016]; Stawiaski and Decencière [2011]). Stawiaski and Decencière [2011] propose to minimize an
energy via graph cuts based on the watershed superpixel adjacency graph, where edges connecting
two regions are weighted upon the common border length between these regions. Similarly, Cui
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et al. [2018] propose to ease the classification of the high-dimensional noisy hyperspectral images
by building a weighted graph based on superpixels. Pei et al. [2014] compute saliency from MRF
using the same concept of adjacency, and take into account in their algorithm the second-order
neighborhood to ease the propagation of information between superpixels. Some approaches
make growing and merging the regions from an initial set of superpixels that they call an over-
segmentation of the initial image Arbeláez et al. [2011]; Gould et al. [2009]. Other superpixel ap-
proaches use patches to analyze the spatial content over a neighboring window and find the near-
est matches in a set of reference patches Giraud et al. [2017a]. In the deep learning community, Yu
et al. [2015] train a deep Hough forest from a set of superpixel patches in order to detect objects in
aerial images. However, both patch match and deep learning approaches require a large labeled
dataset.

Additionally, some other superpixel-based segmentation approaches rely on neighborhoods
that are mainly isotropic, which has been proved, at pixel level, to play an active role in the alter-
ation of thin structures produced by regularization process Favaro [2010].

In this thesis, we focus on the regularization of segmentation obtained with anisotropic neigh-
borhoods, based on thin structures detection on irregular lattices. This thesis contains 7 chapters,
including this introduction and a conclusion.

First, we introduce the concepts used in this thesis and the formulation of the problem in
Chapter 2. This includes a presentation of inverse problems in science, as well as a description of
the concept of regularization. We also disambiguate the term neighborhood, that can have multi-
ple significations depending on the domain. Then, we define thin structures and introduce a few
examples of situations in which they are encountered. Finally, we introduce a few notations that
allow us to present the global formulation of the problem as a MRF and what it entails in terms of
energies.

In Chapter 3, we detail the implementation of the neighborhoods. In a first section, we present
the isotropic neighborhoods at site level, from which our anisotropic neighborhoods are derived.
We then list three options for estimating the presence of thin structures, and their orientations,
that are: An energy-based approach, Tensor Voting (Medioni et al. [2000]), and RORPO (Merveille
et al. [2018]). From each of these options, we may construct anisotropic neighborhoods, that are
the main contribution of this PhD. We propose four anisotropic neighborhood constructions: one
based on shapes, and its declination as a dictionary, and two based on paths, namely the target-
based and path-based neighborhoods.

Then, Chapter 4 is dedicated to the implementation and numerical resolution of the problem.
We detail how the energy presented in the problem formulation is minimized, summarize the
parameters involved in such minimization and the tuning of these parameters. Specifically, a first
section presents the use of graph cuts and the max-flow algorithms that allow us to minimize the
energies of both binary and multi-label problems. Then, we present the algorithm that we can use
for minimizing our functional, and a last section specifies the superpixels we use in practice, as
well as a few implementation details and the parameter settings.

In Chapter 5, we apply our approach to the detection of thin structures, through a toy example
based in a simulated image and an image of cracks. This allows us to compare two of the estima-
tions of thin structures we propose, and to exhibit a few of their limits.

Chapter 6 presents the application to Shape From Focus (SFF). Firstly, we present the context,
and secondly we specify the way we adapt our model to the data used in SFF, that are in a space
in three dimensions. After describing a few details of implementation, we discuss the results and
benefits of our approach in a comparison between isotropic and anistropic regularization.

Finally we conclude this document and present some perspectives in Chapter 7.
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2.1 Background

2.1.1 Regularization and inverse problems

In science, there are two kinds of problems category that can be distinguished: direct problems and
inverse problems. Direct problems deal with the computation of the observable effects of a physi-
cal system. This is realized by mathematical models that allows us to predict some consequences
given their causes. In electrical engineering, solving a direct problem is, for example, knowing the
internal characteristics of a battery, deriving the voltage and the current that will flow if connected
to a lamp or a car. The voltage and current are directly measurable physical consequences.

Conversely, the causes, that describe the state of the physical systems, are often hidden. It is
a nonsense to measure a battery in the sense of “measuring directly its state of charge, level of
wear, internal temperature, resistance”, and so on. Instead, electrical engineers may put the bat-
tery under series of tests, or measure current and voltage at the battery terminals under harmonic
stress. Thanks to a good pre-established knowledge of the direct problem that models the fre-
quency response of a battery with respect to all its parameters, one can compute the data recorded
and assess the internal state of the battery. This is an example of inverse problem, that is called
impedance spectroscopy. In general in science, solving inverse problems therefore allows for char-
acterizing objects or physical systems.

Sometimes, multiple causes can produce the same measurable results, or said differently, a
set of physical measures does not allow for characterizing in an unambiguous way the state of
the physical system. It may be due to an incomplete set of measures, or to a partial knowledge
of the direct problem, or to the noise that may alter the measures. Sometimes, on the opposite,
trying to solve an inverse problem from a set of measures does not yield any solution: The cause
may be the presence of an erroneous hypothesis in the modeling of the direct problem that over-
constraint the solution, or the absence of hypothesis about noise that would allow for considering
measure imprecision. In both cases, a problem that has no solution or multiple solutions is called
an ill-posed problem. In order to compute a solution, one needs adding prior hypotheses or re-
considering previously used ones to reformulate the problem as a well-posed problem.

For instance, let us consider the example of hyperspectral spectroscopy Lachaize et al. [2018].
The principle of hyperspectral spectroscopy is to determine the nature of the materials imaged
using a large number of spectral channels. Indeed, materials cannot be characterized only by
their color in the visible spectrum, that results of pigments in the material itself. This is an under-
constrained problem. The image acquisition is therefore realized in a larger set of additional wave-
lengths, for instance within infra-red or ultraviolet spectral domains, for which the direct model
predicts different measurable responses for the different materials. In this way, the problem could
be considered as well-posed, and each pixel of the image may be classified in one class or another
depending on its spectral response.

Considering more wavelengths added to the acquisition, the operator could however be con-
fronted to contradictory data, and without revising the physical model, the problem would be-
come over-constrained. In practice, for digital imaging and especially with hyperspectral images,
noise often alters the image and must be taken into account. Including noise in the analysis and
establishing models for combining the apparently non consistent sources allow for computing an
optimal solution. In this case, the optimal solution is a compromise between the different mea-
surements, knowing the degree of reliability of each source.

The more complex the physical model is, the more difficult its analytical resolution is. Instead,
the solution is often approximated via numerical resolution, and more especially by solving op-
timization problems. These problems aim at finding the point at which an objective function, or
functional, is maximal, or minimal (over its domain).

The way the points of evaluation are selected, i.e. the optimization algorithm, is an important
element in the resolution of the problem. Gradient descent, for instance, is one of these methods:
from an arbitrary fixed initialization point, the gradient of the objective function in every coordi-
nate is computed, and a new point is selected, in the steepest direction. With this simple example
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Figure 2.2 – An example of gradient descent algorithm, for a smooth and convex function (left), a function
with multiple local minima (middle) and a non smooth function (right). In each image, we plot the function
as a heat map on a surface, and pictured three examples of gradient descent from different initial coordi-
nates in red, white and green. The convergence to a local minimum is possible if the function is continuous
and derivable, but some limitations are already visible in this example in two dimensions: This simple algo-
rithm may not converge, may be stuck in local minimum, and may be sensitive to initialization and to the
tuning of the step size.

depicted in Figure 2.2, we can see that one of the limits of this algorithm is that it may converge to
a local minimum instead of a global minimum. But also, the presence of irregular points such as
in ill-conditioned problems dramatically reduces the chances of the algorithm to converge. This is
the reason why the presence of spikes, irregular points and discontinuities in the physical model
is discouraged, and the smoother and the more regular is the functional, the easier it is to optimize
it numerically.

Problems in the field of image analysis share a common specificity: They usually deal with
billions of variables, that constitute an image. Until now, we have focused on some problems that
solve the inverse problem in each pixel independently.

But the issue that is the most likely to happen is that noise tends to degrade the image and
alter the measures, therefore preventing correct solving of the inverse problem. We picture this
with a simple toy example of local (or blind) segmentation in Figure 2.3. The image in the middle
presents isolated pixels in its labeling that we intuitively discriminate as erroneous.

Usually, a scene is not composed of one-pixel sized physical objects, juxtaposed without in-
teractions or correlation between each other. Instead, an image usually represents a finite set of
objects, each of them composed of multiple pixels. These objects display either homogeneous
properties like color or distance to the camera, or textured but somewhat regular geometric struc-
tures. This knowledge leads to an additional hypothesis on the image that is often called smooth-
ness prior: There is statistically more chances that two adjacent pixels belong to the same object,
because objects are statistically larger than two pixels, and tend to present homogeneous physical
properties.

The problem formulated with this new prior is called a regularization problem: Instead of
solving each pixel as a separate sub-problem, the prior introduces a model of local configurations
on the surroundings of the pixel, and isolated pixels (presenting differences with respect to their
neighbors) are more likely to be considered as errors and regularized, as illustrated by the third
image of Figure 2.3.

Having introduced the concepts of numerical resolution, optimization, and regularization, let
us now define more precisely the notion of neighborhood and the framework used in this thesis.

2.1.2 The notion of neighborhood

The term of neighborhood is a central concept that requires some discussion. We encounter the
notion of neighborhood and similar aspects in several situations both in science in general and in
this thesis.

In everyday life, a neighborhood is a geographically localized community within a larger city,
more specifically defined by sociologists as “a specific geographic area and functionally as a set of
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Grey level image Blind binary segmentation Regularized segmentation

Figure 2.3 – For a toy example image (left), we present the result of a segmentation without regularization
(or blind, in the middle), and of segmentation with regularization (right). With the smoothness prior, the
problem is better-posed: Regularization allows for improving the labeling of some of the erroneous pixels,
by formulating a prior of homogeneity of the labeling in their neighborhood. For instance in the blind
segmentation image, the 4-adjacency or 8-adjacency neighbors of the isolated black pixel are indicated by
the blue arrows and by the union of blue and green arrows, respectively, and allow to regularize this pixel as
a white pixel.

social networks. Neighborhoods, then, are the spatial units in which face-to-face social interac-
tions occur” (Schuck and Rosenbaum [2000]). This definition is not completely unrelated to our
topic. In the same way that the social neighborhood depends on the notion of “face-to-face” social
interactions between people encouraged by spatial proximity, but also local urban planning, that
determines its geographic extent, our notion of neighborhood is also a mathematical construction
that puts into equation the “element-to-element” interactions, where the elements are the image
pixels in our case.

In mathematics, a neighborhood is a basic concept of topological spaces. Intuitively, if some-
thing’s location is at some point, for any displacement in any direction, there exists a small dis-
tance of displacement that makes the new location to be part of the neighborhood of that point.
The neighborhood in topology is then the union of all these possible destinations and the origin,
and can be infinitely small, for instance with continuous spaces: In R, a neighborhood of {1} is
]1− ε,1+ ε[ with ε ∈ R>0. We note that with this mathematical definition, the neighborhood of a
point includes the point itself.

Because our problem of image segmentation has a discrete geometry, we also need to mention
the definition of a neighborhood in graph theory that is closer to our formulation. In graph theory,
a graph is a set of elements named vertices, also called nodes or points, connected by multiple
edges, also called links. Those edges can link vertices symmetrically, for undirected graphs, or
asymmetrically, thus defining directed graphs. The definition of adjacency in graph theory is then
as follows: In undirected graphs, two nodes connected by an edge are said to be adjacent, and in
directed graphs, a vertex t is adjacent to a vertex s if there is a directed edge from s to t . Here, the
first vertex of the edge s is called a predecessor of the second vertex t and t is a successor of s. From
this notion, the neighborhood of any vertex s is defined as the union of its successors (Heijmans
et al. [2005]).

In image processing, the elements that are processed are usually pixels, and as introduced a bit
earlier with the notion of smoothness prior, regularizing the solution corresponds to taking into
account the spatial configurations of the elements over a neighborhood, that is often derived from
a stationary adjacency relationship such as 4-connectivity for instance, as depicted in Figure 2.4.
With 4-connectivity, each pixel is connected to the four pixels directly above, below, at its left and
at its right. The 8-connectivity also involves the pixels in the diagonals. Because the problem can
thus be seen as a graph, the neighbors of a pixel can be derived from the graph theory definition
as, for each vertex s, the union of the successors of s. We note that depending on the reference,
some authors may indifferently mention such neighborhoods as 4-neighborhood (Goldfarb and
Yin [2009]), 4-connected or 4-adjacency (Lézoray and Grady [2017]). We will use the latter denom-
ination in this paper.
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Figure 2.4 – This graph, courtesy of Goldfarb and Yin [2009], represents the neighbors of a pixel (i , j ) by
connecting them with arrows. These neighborhoods are commonly used in image processing: thick red
arrows represent 4-adjacency neighborhoods, while sites connected with blue dashed lines are added to the
8-adjacency neighborhoods. The 16-adjacency neighborhood gathers all the sites of this example. We note
that with Goldfarb and Yin [2009] formulation, each type of arrow has a distinct weight in the neighborhood.

In our work, we aim at remaining generic with respect to the use of pixels or superpixels, there-
fore we consider the term of sites. Because we introduce several notions more or less related to the
concept of neighborhood in its broader acceptance, we now explicit the usage of this term.

The neighborhood definition provided by graph theory is the one we use for the term neighbor-
hood in this thesis. We encounter these neighborhoods in our optimization problem, and discuss
the way they are constructed. However, additional neighborhood-like notions are useful.

Another type of neighborhood-like relationship is encountered in the implementation of our
neighborhood construction. It relies on spatial adjacency as an indicator of whether the sites share
a common border or not. When working at pixel level, this notion reduces to 4-adjacency or 8-
adjacency, see Figure 2.4. If the sites are superpixels, we decide to use 4-adjacency at pixel level for
defining their borders and find the adjacent superpixels from adjacent pixels that belong to two
different superpixels. Two superpixels having this common border are said to be adjacent.

Later in this manuscript, we encounter a similar notion for path based morphological opera-
tors. We will refer to this case as connectedness, since the definition depends on a function that
connects the elements, see Chapter 3.2.3.

With these three distinct notions, we aim at defining new anisotropic neighborhoods for per-
forming anisotropic regularization on sites that may either be pixels or superpixels.

2.1.3 Superpixel segmentation

Initially introduced by Ren and Malik [2003], the term superpixel refers to groups of pixels that
share the same low-level properties, like for instance being similar in color, or sharing close loca-
tions. Existing before the definition of the term, those superpixels have been used in a wide range
of applications as they answer two common issues in image processing. Firstly, superpixels allow
for reducing the computational complexity of algorithms, when compared to the cost of treating
numerous pixels. Secondly, this pre-processing yields regions that are consistent with the content
of the image, and therefore allows for the extraction of higher-level features than when working at
pixel-level.

Various algorithms define different kinds of superpixels that embed different properties, such
as the adherence to the boundaries of the objects, the compactness or convexity of the resulting
superpixels, their regularity, or the smoothness of their boundaries. More generally, when us-
ing superpixels, the authors agree that they should meet the requirements listed in Achanta and
Susstrunk [2017]; Stutz et al. [2018]:

• Partition: Superpixels define a partition of the set of pixels;

• Connectivity: Superpixels are connected sets of pixels;

9
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• Boundary adherence: Superpixels preserve the image boundaries;

• Compactness, Regularity, Smoothness: In the absence of object’s boundaries, the super-
pixels are expected to be compact, placed regularly and to exhibit smooth boundaries;

• Efficiency: Superpixels should be generated efficiently in terms of memory and computa-
tion time;

• Number of superpixels: The number of generated superpixels should be controllable.

For each algorithm, various low-level features are extracted from the original image to ensure
that these properties are, by construction, homogeneous within the derived superpixels. These
features may include the value of each pixel in a selected colorspace (Grayscale, RGB, CieLAB,
YCrCb, etc.), the distance (Euclidean, geodesic, etc.) from a given set of seeds, the belonging to a
boundary map (or alike), the derivatives of the original image, or any other feature that the author
finds relevant. Some algorithms involve parameters that allow the user to balance between dif-
ferent behaviors of the algorithm, thus impacting the superpixel decomposition. Indeed, there is
often a trade-off between the different properties that the superpixels are expected to fulfill.

It is possible to define some criteria that allow us to compare quantitatively the performance
of the superpixel algorithms with respect to each property. A lot of different metrics coexist, some
of them being shared by multiple authors, sometimes with slightly different definitions. While
a few of them are computed only based on the image and its segmentation, a majority of them
also require a ground truth. Most of these criteria strongly vary with the number of generated
superpixels. Some benchmarks Stutz et al. [2018]; Wang et al. [2017] thus vary the number of su-
perpixels, and compute the area under curve for more accurate information about the fidelity of
the generated superpixels with respect to each of the expected properties.

In practice in our works, after a few comparisons, we focus on the superpixels provided by an
algorithm called Extended Topology Preserving Segmentation (ETPS) (Yao et al. [2015]), since it is
energy based (as the general framework adopted for our work) and offered relatively smooth and
regular superpixels.

Using superpixels in segmentation and in image processing introduces a lot of challenges, due
to the loss of regularity of the lattice formerly composed by the pixels of the image. Usually, image
processing algorithms, such as Gaussian blurring, morphological openings or closing, mean filter-
ing, path openings, Laplacian filtering and many others make an intensive use of the topological
regular structure of the pixel grid. In the case of mathematical morphology, Asplund et al. [2019]
have addressed the problem of mathematical morphology on irregularly sampled data in one way,
by duplicating the sampling points to correctly spread grayscale data to the borders of the support
of the structuring function. However, this approach leads to an increase of the number of samples
without solving the problem of the definition of neighborhoods on irregular lattices.

In this thesis, we address this problem in multiple ways. Firstly, we propose various new neigh-
borhood constructions that are compatible with both pixels and superpixels, which is one of the
core contribution of this thesis. Besides, we modify some of the existing algorithms to use them
on superpixels, mainly by using the averaged value of the physical properties of the pixels inside
a superpixel. This allows us to still make use of these algorithms without computing them at pixel
level. For example, the position, or the color, of a superpixel are approximated as the barycenter
of the positions, or colors, of the pixels included. We also aim at providing a generic formula-
tion for both pixels and superpixels, therefore we detail these specific behaviors throughout the
manuscript of this thesis by mentioning them as sites.

One important fact about using superpixels is that it increases the size of the elements of the
image, therefore the objects’ size in terms of number of elements decreases. Since we focus our
interest on anisotropic segmentation, we now introduce thin structures and some examples of
applications that involve them.
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Figure 2.5 – Example of thin structures in 2D. The first image (left) is a retinal image extracted from the
DRIVE Dataset0: The thin structures in this image are the blood vessels. The middle image is a fingerprint,
and the right image features a deer, courtesy of Tran et al. [2019]. While a deer itself may not be thin, its
antlers typically are and may be challenging to segment.

2.2 Thin structures

2.2.1 Definition

A thin structure has very small size in at least one dimension compared to the other one(s).

We present some thin structure examples in two dimensional images in Figure 2.5. In this
context, thin structures are curves, that extend in one dimension. In 3D, thin structures may also
be planes, as long as their thickness can be considered as very small compared to one of their other
dimensions. A common example of thin structures is blood vessels, that are widely considered in
biomedical imaging.

In this thesis, we focus on the two following applications: Crack segmentation and Shape From
Focus (SFF). The aim of crack segmentation is to specifically detect thin structures (the cracks) in
textured backgrounds, through a binary segmentation. Thin structures may or may not be in-
volved in SFF, depending on the scene that is captured. However, we picked this application since
it challenges our anisotropic analysis with the introduction of a third dimension and a larger set of
ordered labels.

2.2.2 Thin structure detection

We illustrate thin structure detection in the context of crack detection. Crack detection is a par-
ticularly useful application for maintenance and safety in general, since fixing a crack before its
deterioration reduces a lot the costs of reparation and reduces the occurrence of unexpected ac-
cidents. It is the case in particular with roads and highways, where for instance the cumulative
length of the French road network is around one million kilometers. Since image-based tech-
nology can provide a non invasive, safe, efficient and economical way for performing road crack
detection, various approaches have been developed for this task.

A crack basically takes the appearance of a discontinuity in the background corresponding to
the material (asphalt, concrete, etc.). The intensity in the crack is usually lower than that of the
background, which naturally tends to favor the use of thresholding methods for the detection of
cracks. However, the materials often exhibit highly textured surfaces, that drastically affect and
degrade the performance of thresholding methods that consequently only produce disjoint crack
fragments. A naive approach would cope with that phenomenon by performing noise removal
algorithms, but by nature, a crack is a thin structure: Its size is very small orthogonally to its prop-
agation direction, and it can therefore easily be concealed by noise or hidden in the texture. For

0The DRIVE Dataset is currently available at: http://www.isi.uu.nl/Research/Databases/DRIVE/
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Figure 2.6 – Two examples of image used for crack detection on the left hand side, and the associated ground
truth on the right hand side. The first row is a simulated image, and the second row is a crack image from
the CrackTree dataset (Zou et al. [2012]). The crack that we expect to detect is the thin dark line snaking in
the image, whose curvature makes it difficult to detect.

these reasons, crack detection is a problem that is difficult to apprehend, and we therefore propose
to challenge our anisotropic regularization model on such task.

Crack segmentation process can be summarized as follows. First, a device realizes an acquisi-
tion of an image (in two dimensions) of the material to analyze. Then some pre-processing steps
may be applied on the image, for helping a better detection of the cracks: Blurring, mean filtering
or opening for instance. In the idea of presegmenting the problem in superpixels, the crack image
is used for generating the superpixel image, sometimes with additional pre-processing aiming at
smoothing the resulting superpixels. We expect the segmentation algorithm to finally discrimi-
nate accurately the sites that contains parts of the crack by labeling each site with “crack” or “non
crack”. The ground truth is a binary image in which pixels are labeled the same way. However, sites
may be larger than one pixel and detection algorithm may be allowed to have slight misalignment,
therefore we measure the quality of the produced labels with a small tolerance to position errors.

Our data comes from the CrackTree dataset Zou et al. [2012], to which we have added a few
simulated images, as shown in Figure 2.6. The simulated images contain simple shapes, forming
the ground truth, to which are manually added textured noises and some imperfections to simu-
late acquisition noise. The data of the CrackTree dataset are some images of crack in the concrete,
with variable angle of exposition, variable textures and perturbations such as shadows. In addi-
tion, the shooting angle induce anisotropic and non-stationary properties in the images: Some
vertical cracks are more visible due to the alignment of their 2D plane of extension with the optical
axis, while some horizontal cracks disappear by obfuscation of the depths of the crack, and the
texture of the concrete is bigger in the foreground, due to the non alignment of the image plane
with the surface captured. The ground truth is a manually labeled image in which all the pixels
labeled “crack” point to the center of the crack along its small dimension. Given that a crack may
be sometimes more than one pixel large, and sometimes less than one pixel large, the ground truth
is by nature a subjective choice made by the human observers.

2.2.3 Shape From Focus (SFF)

SFF is an optical passive method for extracting the 3D shape of a scene from multiple images cap-
tured with varying focus settings (Nayar and Nakagawa [1994]), using a single camera. For doing
so, SFF benefits from prior knowledge of optic phenomena happening during image acquisition,
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(a) (b) (c) (d) (e)

Figure 2.7 – The data used for our Shape From Focus application. The all-in-focus image (a) and the ground
truth (b) allow us to simulate defocused images (c,d,e) from which we try to recover the ground truth. The
first row shows our toy example Brush1, and the second one is Laundry1 from the Middleburry dataset.

the main one being: The more an object is close to the object focal plane of the optical system (i.e.,
the more it is focused), the more it appears sharp. Conversely, the more an object is far from this
object focal plane (i.e., defocused), the more it appears blurry. By definition, because the depth
of each point of the scene is computed from a set of images that are an experimental observation
of the blurring phenomenon, SFF is an ill-posed inverse problem. It is applicable in many appli-
cations including industrial inspection, micro manufacturing, robotic control, 3D model recon-
struction, medical imaging systems and microscopy, and we will detail its theoretical background
and processing steps in the Chapter 6.

In brief, a sharpness operator [Pertuz et al., 2013] is used to measure the sharpness in each
point of the volume. For each 2D coordinate, selecting the slice image giving the maximum of this
measure allows us to produce an initial depth map. At this point the depth estimation is of lim-
ited quality and authors (Gaganov and Ignatenko [2009]; Mahmood and Lee [2020]; Moeller et al.
[2015]; Nair and Stewart [1992]; Nayar and Nakagawa [1994]; Ribal et al. [2018]) aim at improving
this depth map by working on several pre- or post-processing.

In our work, we focus on anisotropic regularization with non regular image lattice, thus placing
this application in the combinatorial optimization framework.

The dataset on which we focused for our experiments is derived from the Middlebury col-
lege one from 2005 and 2006 (Scharstein et al. [2001]). This dataset provides, for various real-
istic scenes, accurate depth maps as well as colored all-in-focus images, with several available
exposures and illumination settings. Among them, we have selected the intermediate exposure,
the lowest illumination and smallest image resolution, for two views denoted 1 and 5. The un-
known depth values due to occlusions have been estimated by the median value of the surround-
ing depths. We selected some scenes, to have an overview of the performance of our approach on
most of the situations available in the dataset.

We generate for each scene a sequence of 50 images with varying focus, using the code pro-
vided by Pertuz et al. [2013]1 run with default parameter values: Each pixel of the all-in-focus
image is blurred depending on the distance between its actual depth and the image focal plane.

An example of all-in-focus images from the dataset as well as a toy example and their simulated
defocused images are presented in Figure 2.7.

1Defocus simulation algorithm currently available as a Matlab source on MathWorks file exchange at https://fr.
mathworks.com/matlabcentral/fileexchange/55095-defocus-simulation.
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2.3 Problem formulation

To sum up the specific aspects introduced in the first sections of this chapter, we place ourselves
in the domain of combinatorial optimization, and aim at improving the regularization of the seg-
mentation of challenging scenes in image processing involving thin structures and irregular lat-
tices. This leads us to take into account, for each site, the local configuration of nearby sites, which
is usually done with the help of MRF, and results in the introduction of the notion of anisotropic
neighborhoods.

2.3.1 Markov Random Fields (MRF)

The configurations of the sites {s}s∈S of an image define a random field that may be described in
two different but equivalent ways, as formulated by Spitzer [1971]. The first approach originates
from statistical mechanics and defines the random field as a Gibbs field. Such formulation de-
scribes each site as a particle in interaction with other sites, the interaction being described by a
potential. The second approach is the one of MRF, and is a purely probabilistic definition based on
a set of properties about conditional independence of the variables of the field given their neigh-
bors.

MRF in image processing analyzes the image as a graph composed of a set of elements S ,
that we call sites, connected to their neighbors by edges. The sites s ∈ S may either be pixels or
superpixels, and constitute in both cases a partition of the image. If we denote byP the set of pixels
of the image, we note that S ⊂ 2P , where the notation 2X is the powerset of X, and the partition
condition can be written ∩S s =; and ∪S s =P . We note that the set of pixels can be described as
P ⊂ RN where N is the dimension of the geometrical space, for which an orthonormal reference
frame is the set of vectors (e0, . . . ,eN−1). In most of our application, N = 2 (2D) or N = 3 (3D)

The concept of MRF derives from a specific model, the Ising model, in 1925. Ernst Ising il-
lustrates his model on the example of a set of atoms of ferromagnetic materials he was working
on, where each element could either be in the position of a “spin up” or “spin down”. The spin of
each site is the hidden and random variable, and we denote the field by u = {us}s∈S ∈ CS , where C
denotes the set of states each site can take.

In the experimental observations, the spins would naturally tend to align (attractive case) or
to alternate (repulsive case), while still being subject to the effects of external magnetic fields. The
idea was however to formulate a purely mathematical model that would describe the probability
of each configuration. Since the focus is on the probability of each configuration and not the
probability of the observation given a configuration, this probability corresponds to the prior on
the configuration, P (u).

For modeling this prior, Ising defines the probability of each configuration from an energy
term, under the assumption that only local interactions between neighboring spins needed to be
taken into account. This hypothesis is the local property of MRF, ∀s ∈S :

P
(
us |{up }p∈S\{s}

)=P(
us |{up }p∈V(s)

)
, (2.1)

where V(s) is the set of neighbors of s. This means that the knowledge of the local interactions
(within neighborhood V(s)) is sufficient to derive the probability in a given site. We define math-
ematically a neighborhood V as an application that maps any site to a subset of sites (called its
neighbors), and denote it V= {S → 2S }.

Then, the configuration probability for each site s ∈S with labeling us depends on the config-
uration of u over its neighbors V(s).

To go further in the probability expression, let us introduce the set of cliques, that is a set of site
subsets, denoted as N ⊂ 2S . Usually, like in the Ising model, these cliques only contain pairs of
adjacent sites and are therefore named 2-order cliques. In the context of ferromagnetic materials,
the random field is a binary field, so that four configurations probabilities are computed (two for
aligned spins, two for opposite spins) for each of the cliques including the site s.
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Figure 2.8 – Examples of cliques of a MRF, for a regular lattice in 4-adjacency (a) and in 8-adjacency (a
and b). We note that the number of cliques available increases rapidly with the adjacency, from singletons
and second order cliques with 4-adjacency to third and fourth order cliques in 8-adjacency, in the second
row. In the last row, we show an example of the eight configurations of another type of 3-order cliques.
These cliques, while introducing more complexity to the model, allow us to take into account more complex
phenomena. For instance, the third and sixth configurations should be the less likely, while first and last
configurations should be of lower potential energy.

However, in the attractive case, the ground state, or the highest probability configurations, ac-
cording to the smoothness prior modeled by 2-order cliques, are uniform images. Higher order
cliques have been studied for taking into account more complex spatial configurations of real im-
ages. Geman and Geman [1984] illustrate how the diversity of clique types increases while growing
the radius of a neighborhood on a regular lattice. For instance, Descombes et al. [1995] propose to
integrate up to 52 energy classes for the 512 configurations of 3×3-cliques in their chien-model,
that allows for discriminating phenomenon such as parallel stripes and object edges with oblique
angles and giving them low energy levels. We give examples of two, three and fourth order cliques
in Figure 2.8. Interesting illustrations and more thorough explanations on MRF are available in
Kindermann and Snell [1980]. In our case though, since solving problems with higher order cliques
is rather complicated in terms of hyperparameter setting, we rather propose to focus on neighbor-
hood adaptive definition while keeping modeling based only on second order cliques.

When the probabilities of all the configurations are strictly positive, it is possible to formulate
them as the negative exponential of a potential energy. This boils down formulating the problem
as a Gibbs field, that is equivalent to a MRF where the potential energy of a configuration is defined
as the negative logarithm of its probability.

In addition to the prior probability of each configuration of u modeled thanks to the MRF
prior, the observation of an image I ∈P ∈F that is a realization from a configuration u allows us to
compute the likelihood P (I|u), which also describes the modeling of the noise in the acquisition
process.

With the Bayes theorem, we can compute the a posteriori probability as:

P (u|I) = P (I|u)P (u)

P (I)
∝P (I|u)P (u) (2.2)

where a ∝ b refers to the proportionality relationship: a scalar value y ∈R exists such that a = y×b,
and P (I) is the probability of observing the image I. Since I is a constant we only have to maximize
the probability P (u|I) with respect to u up to this constant factor. This more likely configuration
is the one satisfying the maximum a posteriori criterion, in the Bayesian framework chosen to
formulate our problem.
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2.3.2 Energy functional

In our case, we consider the maximum a posteriori estimator for a probability expressed with re-
spect to a MRF u ∈ CS with an anisotropic neighborhood V ∈ {S → 2S } =V. Since all the config-
urations have a non null probability by hypothesis, this random field is also a Gibbs field, and we
express the probability as the negative exponential of a potential energy. This energy is a func-
tional F : (CS ×V) −→ R, that we want to minimize with respect to both its variables, i.e. the label
field and the neighborhood local configurations. This energy is written:

F(u,V) = E1(u)+αE2(u,V), (2.3)

where α ∈ R>0 is a parameter controlling the balance between the smoothness prior E2 and the
data fidelity term E1. Note that E1(u) also depends on I, but that the terms that are fixed are often
omitted in the functional, for clarity. This formulation is very common in the literature, and is
used in most regularization problems, with several options for the terms E1 and E2 that depend on
the application.

In the following of this section, we detail the latter ones in our context.

Data fidelity term

The data fidelity term E1(u) (in Equation (2.3)) is the energy term corresponding to the likelihood
P (I|u) (Equation (2.2)). We note that I(s) ∈F in the site image is the average value of I(p) ∈F,∀p ∈ s
with s ∈S , where the feature space F=RN depends on the application. This feature space can be a
scalar, for grayscale images, or depth images, or a three-dimensional vector, for RGB images for in-
stance. At pixel level, very popular models adopt such a statistical approach. Some of them realize
an approximation of the probability density function P (I(s)|us), I(s) ∈F being the observation and
us ∈ C the class of site s. This approximation can be based on the histogram of a set of pre-labeled
reference pixels Boykov and Jolly [2001], for instance with Parzen [1962] kernels.

For each class c ∈ C, we assume the probability density function to be a Gaussian, defined by
its mean value µc ∈F and standard deviation σc ∈R>0. In addition, we suppose averaged pixels of
a site are statistically independent conditionally to the label field, so that ∀s ∈S :

P (I(s)|us) =
(

1

σus

p
2π

exp

(
−‖I(s)−µus‖2

2

2σ2
us

))A(s)

,

where ‖ ·‖2
2 is the squared L2 norm in F and A(s) is the area of the site, in pixel unit.

When considering the negative log likelihood for this normal distribution, we have, for any site
s ∈S :

− log(P (I(s)|us)) = A(s)

2
log(2πσ2

us
)+A(s)

‖I(s)−µus‖2
2

2σ2
us

.

This provides the proposed elementary term of E1 corresponding to one site s ∈ S , up to a
constant:

E1s (us) = A(s)
‖I(s)−µus‖2

2

2σ2
us

+A(s) log(σus ).

Finally, under the hypothesis of conditional independence of each site,

E1(u) = ∑
s∈S

E1s (us).

Smoothness energy

Energy term E2(u,V) corresponds to the smoothness prior on the labeling u and its definition is
based on a neighborhood, V ∈V. The idea of this neighborhood originates from the model of MRF
on 2-vertex cliques, that can be oriented when the probabilistic dependencies are not reciprocal.
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With the hypothesis of u being a MRF with any configuration having a non null probability, u
follows a Gibbs distribution and therefore:

P (u,V) ∝ exp

(
−β ∑

(s,t )∈N

(
E2s,t (us ,ut )

))
.

Note that in previous equation, we assume that N contains oriented cliques. If it was not the case,
then a factor 1/2 would appear later. The above equation then becomes:

P (u,V) ∝ exp

(
−β ∑

s∈S

∑
t∈V(s)

E2s,t (us ,ut )

)
.

The negative logarithm of this quantity is the energy E2(u,V):

E2(u,V) = ∑
s∈S

∑
t∈V(s)

E2s,t (us ,ut ). (2.4)

When the labels are not ordered, we adopt in our experiences the Potts model Wu [1982], with a
weighting function W : S2 7→R that models the strength of interaction between neighboring sites.
The definition of E2(u,V) is thus the following:

E2(u,V) = ∑
s∈S

∑
t∈V(s)

W(s, t )1{us 6=ut },

where,

1{a 6=b} =
{

0 when a = b,
1 otherwise.

With ordered labels, such as in reconstruction problems, we consider the total variation:

E2(u,V) = ∑
s∈S

∑
t∈V(s)

W(s, t )|us −ut |. (2.5)

This energy term favors piecewise constant labeling, and allows for smoother spatial evolution of
the labels than Potts model. However, total variation tends to introduce staircase effect, i.e. flat
regions separated by artifact boundaries.

2.3.3 2D to 3D modeling

In this thesis, since we work with 2D segmentation, we describe our problem with the formulation
of 2D neighborhoods, while we could easily imagine an extrapolation to the 3D or higher dimen-
sional cases. For some applications, we can still work with data with spatial dimensions N > 2,
however for computational resources and also for simplicity with the notations, descriptions and
illustrations of neighborhood construction, we implement 2D neighborhoods and replicate the
two-dimensional superpixel partition over the other dimensions.

Therefore, while the set of sites in 2D is denoted S , the set of sites in 3D is denoted S3and can
be derived from:

S3 =
{

t/∃s ∈S ,h ∈ �0,∆h�/t = {p ∈P/∃q ∈ s,−→qp = he2}
}

, (2.6)

where ∆h is the dimension of the third axis e2, and the notation �a,b� refers to the set of consec-
utive integers, ∀a,b ∈Z, �a,b� = [a,b]∩Z. With this definition, the set S3 is such that for any site
t ∈S3, there exists a site s ∈S that is the translated set of pixels of t with translation −he2.

In the next chapters, we introduce most of the modeling in 2D when the derivation to 3D is
trivial, and present more details for ambiguous situations.
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Figure 2.9 – Flowchart of the proposed approach: We propose a modular formulation where our major
contribution lies in the construction of anisotropic neighborhoods, in block (i i ). Block (i i i ) allows for min-
imizing the functional and thus producing an optimal segmentation, while block (i ) is aimed at detecting
the presence and orientations of thin structures of the image.

2.3.4 Proposed approach

Our contribution is to propose anisotropic neighborhoods suited to thin structures, in the con-
text of the regularization of a segmentation computed on an irregular grid of sites. We present
our approach as a modular approach. The modules (or blocks) are depicted in Figure 2.9, with
a flowchart that describes the operations performed on data, from its acquisition to the desired
regularized segmentation. Decomposing our approach as blocks allows for a generic formulation,
with respect to the nature of the problem (reconstruction, denoising, etc.) or the application, and
allows methods to be implemented and compared as newer alternatives emerge. Chapter 3 and
Chapter 4 introduce the options proposed for those blocks.

Section 3.2 corresponds to the block (i ), and presents as a contribution the operators that we
gathered and propose to use for constructing maps that indicate the presence and orientation of
thin structures of the image. In the block (i i ), corresponding to Section 3.3, the challenge is to
construct anisotropic neighborhood on the irregular grid of sites, which is the main contribution
of our work. Four alternatives for neighborhood construction are proposed in this molude, that
are all computed from the orientation and saliency maps derived from the previous step. The
anisotropic neighborhood constructed allows for finally computing the energy terms of the func-
tional (2.3), functional that is minimized according to the optimization step in block (i i i ) detailed
in Chapter 4.
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CHAPTER 3. NEIGHBORHOOD CONSTRUCTION

We have introduced in Chapter 2 the notion of thin structures and motivated the benefice of
anisotropic neighborhoods for regularizing those thin structures. In this chapter, we formalize the
construction of these neighborhoods, that can be decomposed into the estimation of the presence
of thin structures (often performed by a vesselness operator), and the actual computation of the
neighbors of each site. In this section, we introduce some of the notations required for doing so.

First, we recall that the neighborhoods are constructed in an irregular lattice of sites, S ⊂ 2P ,
with P ⊂RN the set of pixels. In this work the considered sites may either be pixels or superpixels,
and we insist on the genericity of our formulation. We denote the cardinal of our sets by #·, for
instance #S3 is the number of sites in our problem.

As introduced previously, it is important to distinguish the neighborhood, from what we call
adjacency and connectedness relationship. In this work, the neighborhood refers to the vertices of
a graph, that are interconnected with edges. The neighborhood V : S 7→ 2S =V is thus an appli-
cation that maps the set of sites S to its powerset without any specific constraint (e.g., bound on
spatial distance) at this stage.

Adjacency refers to the existence of a common border between the sites: It is a geometrical
observation that is inherent to the topological structure of the sites. Mathematically, adjacency
V ∈V can be defined as follows:

∀s ∈S , V (s) = {t ∈S/∃p ∈ s, q ∈ t ,‖−→pq‖ = 1}, (3.1)

where ∀(s, t ) ∈S2,
−→
st ∈RN is the vector linking site s and site t . When sites are pixels, this is a trivial

definition of a vector between two points of RN, and when the sites are superpixels, we compute it
as the vector linking the two barycenters of the each superpixels. ‖· · ·‖ denotes for the norm inRN.
With this definition, when computing the sites at pixel level, this reduces to the 4-adjacency, since
the condition becomes t ∈ V (s) ⇐⇒ ‖−→st‖ = 1. However, we can modify this constraint in Equa-
tion (3.1) for using 8-adjacency or any other model. In practice though, using more elaborated
adjacency relationship does not change much the neighborhood since at superpixel level corner
contacts are relatively rare, excepted for some algorithms where the topology is constrained.

We note that from the notion of adjacency derives the notion of connected component: A set
of elements X is a connected component if any pair of elements (s, t ) ∈ X2 can be connected by
pairs of successively adjacent elements, forming a path from s to t . Mathematically, a set X ⊂ S is
a single connected component if and only if:

∀(s, t ) ∈ X, ∃(p0, . . . , pn) ∈ Xn+1 with n ∈N such that


s ∈ V (p0)

pi ∈ V (pi+1) , ∀i ∈ �0,n�
pn ∈ V (t )

(3.2)

Finally connectedness in our work deals with sites that are connected in a graph by a structuring
function. The latter one may for example be defined for a morphological operator. We denote
connectedness : S 7→ 2S . More information will be provided in Section 3.2.3.

The construction of neighborhood and the computation of vesselness operator usually rely on
geometrical considerations, like the geometric distance between sites, the angle between vectors,
or the projection of a vector on a plane. For this reason, we introduce geometrical notations:
The normalized scalar product6 ·, ·>, that simplifies equations involving angles and projections,
defined as follows:

6 a,b>= < a,b >
‖a‖‖b‖ , ∀a,b ∈RN, (3.3)

where < ·, · > is a scalar product in RN, associated with the norm ‖ ·‖ such that ‖a‖2 =< a,a >.

3.1 Isotropic Neighborhood

In this section we introduce the construction of isotropic neighborhoods, with a generic formula-
tion that is valid for both pixels and superpixels.
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CHAPTER 3. NEIGHBORHOOD CONSTRUCTION

Figure 3.1 – Stawiaski and Decencière [2011] neighborhood. The neighbors of the reference site (in grey)
are pictured in green. We can see that each neighbor is adjacent to the reference one, but some sites may
extend spatially far away from their actual neighbor. Therefore, the union of the neighborhood with the site
is always a single connected component, but the actual shape of the neighborhood is not controlled. The
introduction of constraints dealing with limited sizes and regular shapes of the superpixels may however
bring regularity to the shape of the neighborhood.

3.1.1 Stawiasky’s neighborhood

Stawiaski and Decencière [2011] propose a simple way to take advantage of a superpixel segmen-
tation to perform the regularization of an image: The superpixels that share a common border
are neighbors, and their interactions are weighted by the length of this common border. As de-
picted in Figure 3.1, this neighborhood corresponds to the adjacency defined in Section 2.1.2 and
Equation (3.1), with a weighting function W : S2 →R, defined by: ∀s ∈S , p ∈ V(s):

W(s, t ) = ∑
p∈s

(∑
q∈t

1{‖−→pq‖=1}

)
, (3.4)

with ∀s ∈S :
V(s) =V (s). (3.5)

We note that this formulation ensures that the set constituted by a site and its neighborhood
is one connected component, but it does not ensure that barycenters of neighboring superpixels
are close from each other. Very large sites may therefore be included in the neighborhood of site s
while most of the pixels that constitute them are actually far from s site. At pixel level, the formula-
tion of Stawiaski and Decencière [2011] boils down to an isotropic formulation with the adjacency
defined in Equation (3.1).

3.1.2 Disc neighborhood

This formulation, derived from superpatch definition Giraud et al. [2017a], is based on the relative
positions of the barycenters of the sites, while disregarding the actual adjacency of sites.

We can mathematically define the neighborhood as: ∀s ∈S3,

V(s) =
{

t ∈S3/‖−→st‖ < R
}

. (3.6)

In this neighborhood, there is no constraint of adjacency: A site and its neighbors may not be-
long to a single connected component. Then, two sites can be neighbors without being adjacent,
and vice versa. The fact that the geometric shape of the sites is ignored can sometimes lead to
unwanted configurations. However, under some assumptions on the properties of the sites, like
some hypotheses on their regularity and compacity for instance, this neighborhood yields consis-
tent results.
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Figure 3.2 – Disc neighborhood. The neighbors of the site s (in grey) are pictured in green. The barycenters
are included in a disc centered on the reference site s. The fact that the union of the neighborhood with the
site V(s)∪ {s} would constitute a single connected component is not ensured, as shown with the green site
in the upper left corner, but under some hypothesis of regularity on both convexity and regularity of the
sites’ area, the likelihood of encountering such configuration is reduced.

3.2 Thin Structures Estimation

When it comes to anisotropic neighborhoods, our formulation will rely on a guidance map that
encodes the information of anisotropy and orientation for every site s ∈ S . Such a map must
be sensitive to the structure of the scene to encourage the alignment of neighborhoods with the
thin structures of the image. What is expected is that, when a site belongs to a thin structure, its
neighbors lie within the structure itself, to ease its good segmentation. The selection of the data to
use for computing such a guidance map is not trivial:

• firstly, these data should allow for computing the structures of the image beforehand, and
discriminate the thin ones among them,

• secondly, the input data itself may be corrupted, prone to noise, occlusions or for example
bad exposure, that can mislead the structure estimation.

One could try to reduce the effects of noise alterations by using regularized data, but obtaining a
regularized estimation of the segmentation of the scene yields the question of defining the neigh-
borhood that require a guidance map, leading to a chicken-and-egg situation.

In this situation, we can explore three distinct ways to solve the problem.

• The first one would be to simultaneously estimate the segmentation, the neighborhood and
its guidance map. Such an estimation presents the advantage of theoretical optimality, i.e. it
should allow for the best segmentation with the best neighborhood according to our model.
Unfortunately, the resolution of such a problem is very complex and we will not follow it up
in this study.

• The second way is to propose an iterative resolution: the guidance map needs to be ini-
tialized at some point, so that the neighborhood can be constructed and a segmentation
computed; the latter one is then used for computing an updated guidance map. The advan-
tage of this resolution lies in its simplicity. Its drawback is that it requires that the iterative
scheme converges to an optimal segmentation. We present in the following subsection the
formulation of a functional with the introduction a single new energy term, that can be min-
imized iteratively with guaranties of convergence.

• Finally, the third way is an empirical approach of the solution with a single estimation of the
guidance map. The methodological and computational advantages of such an approach are
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obvious but, to yield some trustworthy guidance map, its estimation should be robust to the
input data imperfections that we already mentioned. More specifically, if the guidance map
estimation bases on a local estimate of the segmentation, its construction must be robust to
noise in the input data, i.e. in the proposed solution to the presence of False Positive (FP)
and False Negative (FN) in the segmentation. For deriving the empirical guidance map, we
investigate two options, the Tensor Voting (TV) as presented by Medioni et al. [2000] and
the Ranking the Orientation Responses of Path Operators (RORPO) vesselness operator as
introduced by Merveille et al. [2018].

In our works, we implement the guidance map as a vector field g ∈ RN, so that both the direc-
tion and the saliency are encoded by a vector, for each site. For computing the values taken by the
field, we first propose a formulation based on an energy allowing for an iterative minimization,
that we introduce in Section 3.2.1. Then, we present the guidance map construction estimated
from TV in Section 3.2.2 and finally we introduce in Section 3.2.3 the use of the RORPO vesselness
operator.

3.2.1 Energy based guidance map

The approach of energy based guidance map relies on the computation beforehand of a finite set
of configurations of neighbors for each site. The aim is to control the number of available config-
urations, which is equal to 2#S−1 sets of neighbors per site. The computation of the configurations
that are selected only takes into account the positions of the sites, not their color, and will be spec-
ified in Section 3.3.2. Without additional information, the configurations would be equiprobable.
In our case since we aim at designing neighborhoods based on image content, we introduce some
hypothesis to preserve thin structures.

The first hypothesis is that if a site belongs to a thin structure, its neighbors should also belong
to the same structure. Indeed, since we expect thin structures to be labeled homogeneously, a site
should have the same label than its neighbors. This is a strong hypothesis that requires the blind
labeling to be correctly estimated. If the labeling is wrong, the neighborhood selection is more
likely to fail. For that reason, we introduce a second hypothesis, the smoothness of the neighbor-
hood: Near an anisotropic set of neighbors, we expect to find similar neighborhood configura-
tions. However, the notion of similarity for neighborhood configuration must be discussed as-well
and could depend of the actual construction of the neighborhood in Section 3.3. Put together,
these two hypotheses can be formulated as a problem of regularization of the neighborhood in-
volving two energies to minimize jointly. We illustrate these two hypotheses in Figure 3.3.

In the following of this section we specify these energies.
Our first energy term is derived from our first hypothesis, i.e. the neighbors of a site in a thin

structure are expected to lie within the structure itself and the sites in the same structure should
share the same label. Therefore, it favors homogeneous labeling between pairs of neighboring
sites. One rather intuitive way to formulate this term, in addition to bringing a simple converging
minimization scheme, is to consider the regularization term for the labeling in the functional (2.3):

E2(u,V) = ∑
s∈S

∑
t∈V(s)

W(s, t )1{us 6=ut }.

With ordered label set, the TVA can be used, and then:

E2(u,V) = ∑
s∈S

∑
t∈V(s)

W(s, t )‖us −ut‖.

These terms favor the configurations where the neighbors of a site share the same labeling
as this site s ∈ S . However, in the case of an erroneous label us , the orientation of the neighbors
would also be erroneous. We have thus also envisaged another form of the energy E2 that allows for
choosing the orientation that maximizes the homogeneity of the neighborhood of s independently
of us :

E(u,V) = ∑
s∈S

min
u∈C

∑
p∈V(s)

W(s, t )1{us 6=ut }.
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Figure 3.3 – Four examples of neighborhood configurations in which we highlight two sites a and b in
grey whereas the sites with label 0 are in white. In the first image, the neighborhoods are oriented ran-
domly, which corresponds to a bad configuration with respect to both hypotheses of labels homogeneity
and neighborhood similarity. In second image, the neighborhoods in A and B share the same orientation
and are therefore similar, but labels in the neighborhoods are highly heterogeneous and therefore this con-
figuration should be penalized. In third example, both neighborhoods respect the content of the image, but
at the expense of an irregularity of the neighborhood field, and finally an acceptable compromise is shown
in fourth image in which neighborhoods of A and B are shape-similar and rather label-homogeneous.
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Unfortunately, since the sites belonging to a thin structure may be a minority in most of the neigh-
borhoods configurations, this energy rather favors sites belonging to the background. We imple-
mented this energy, and confirmed that, despite the higher sophistication level, such an energy
actually reduces the quality of the obtained neighborhood.

These errors in neighborhood estimation motivate us for introducing our second hypothesis
about the regularity of the neighborhood shape. Assuming the neighborhood is regular means that
spatially “close” sites should share geometrically “similar” neighborhood. For defining similarity,
we introduce an energy E3(V), that encodes the smoothness prior and is therefore a measure of
the heterogeneity of the neighborhood.

Since we propose to regularize the neighborhoods themselves, we need to introduce a new
functional F2 : (CS ×V) −→R, that includes the term E3:

F2(u,V) = E1(u)+αE2(u,V)+βE3(V). (3.7)

This allows for embedding E3 in a global minimization problem, with F2(u,V) = F(u,V)+βE3(V).
The minimization of F2 has to be performed both with respect to the segmentation u and to the
neighborhood V. Since the only terms depending on u are in F(u,V), minimizing F2 still minimizes
F with respect to u, while also fixing a constraint on the neighborhood V.

Now, we must precise E3(V) and introduce the measure of dissimilarity between neighbor-
hoods. Since the sites may constitute an irregular lattice, the neighbors of each site may have
totally different and unique configuration. For this reason, we introduce the guidance map g.
For any site s ∈ S , a vector gs encodes the orientation and the anisotropy of the set of neighbors
V(s), that are respectively represented by the direction and the norm of the vector gs . When the
neighborhood is totally isotropic, gs =−→

0 and there is no orientation defined. In our approach, V is
constructed from g, as explained in Section 3.3. Then, the fact that V depends on g by construction
allows us to compare the neighborhoods by writing E3(V) = E3(V(g)) = E3(g) :RN −→R.

We recall that in this section for simplicity, we focus on the case where N = 2.
To answer the question of the spatial configuration of the smoothness prior for the neighbor-

hoods, we discretize the guidance map and model it as a MRF. We use the adjacency V to define
the second order cliques of this model. Two neighbor configurations V(s) and V(t ) appear in the
regularization term only when the corresponding sites s and t ∈S are adjacent.

Being the smoothness term, E3 is simply written as a sum of elementary pairwise terms Est
3 :

RN ×RN 7→R:
E3(g) = ∑

s∈S

∑
t∈V (s)

Est
3 (gs ,gt ),

where, ∀s, t ∈S ,

Est
3 (gs ,gt ) =


arccos

(|6 gs ,gt > |) if gs 6= 0 and gt 6= 0,

arcsin
(
|6 gs ,

−→
st > |

)
if gs 6= 0 and gt = 0,

arcsin
(
|6−→

st ,gt > |
)

if gs = 0 and gt 6= 0,

0 if gs = 0 and gt = 0.

(3.8)

These terms represent the angles that we have represented geometrically in Figure 3.4. We
recall that 6 ·, · > stands for the normalized scalar product between two vectors, and thus the
term Est

3 depends on the angles between gs , gt , and the orthogonal of
−→
st . With this definition,

Est
3 is a pseudo-metric: it is symmetric, respects the triangular inequality and Est

3 (gs ,gs) = 0. We
note that, with this definition, each subproblem associated to the term E3(g) for α-expansion is
submodular, see Appendix B.1.

The only term of the functional F2 (Equation (3.7)) that depends both of u and V is E2(u,V).
Arbitrary fixing u to an initial value then allows for minimizing the functional with respect to
V, and vice versa. When u is fixed, the minimization of the functional reduces to minimizing
αE2(·,V)+βE3(V). Considering the properties of these two terms with respect to V may allow for
minimizing the partial sum of the functional, and finding an intermediate minimizer of the F2. We
note that the only parameter of this approach is the regularization parameter β ∈R≥0.
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Figure 3.4 – The energy term Est
3 (Equation (3.8)) is defined from the angles visualized in color: If one of

the guidance map vectors is set to
−→
0 (when the norm of the guidance vector is lower than the anisotropic

threshold Γ and thus the neighborhood is considered as isotropic), then the angle considered includes the
displacement from s to t . If both the sites are in isotropic configurations, the energy is null, and if both are
anisotropic, the energy is symbolized by the blue angle.

The same idea also applies when fixing the value of V. Therefore, the formulation of (3.7) allows
for a converging iterative minimization, that we describe later in Section 4.2.

Let us now present the estimation of the guidance map from TV.

3.2.2 Tensor Voting

The Tensor Voting framework

Tensor Voting (TV) has been selected among other solutions for its robustness to noise and ef-
ficiency for thin structures like edges Medioni et al. [2000]. It has one main scale parameter,
σT ∈ R>0, that allows for setting the spatial range in which most of the energy of the tensor vot-
ing will be distributed. The objective is to refine the estimated orientations of local structures, in
order to improve the regularization of thin structures, allowing gap filling without blurring. Ac-
tually, tensor voting takes into account the Gestalt principles of perceptual organization (such as
proximity, continuity and similarity) for designing the voting operation.

Since TV main interpretation is geometrical, we start introducing 3D TV, and then derive 2D
TV from 3D definition which is much simpler than the contrary. Moreover, a presentation in 3D
helps to clarify some counter-intuitive conclusions and avoid confusions that may exist in 2D.
Therefore, in this section, N = 3.

A tensor can be represented by a matrix T ∈ R3×3 that has an origin coordinate O in R3 and is
endowed with a voting function VF :R3×3×R3 7→R3×3. Casting a vote to other site locations allows
the information of each tensor to be propagated in TV. The voting operation VF builds a new
tensor T′ to the cast location P and adds it to the tensor at this location, since tensors have good
summation properties. The tensorT′ is a combination of rotation and scaling of the source tensor
T, combinations that are all derived from the stick kernel. Indeed, tensors can be decomposed in
a basis of tensors, in which the stick tensor is the simplest element. The stick kernel refers to the
voting operation of this stick tensor.

For presenting the TV algorithm, we therefore start by introducing the tensor decomposition,
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Figure 3.5 – The TV framework in our implementation. Depending on the application, we compute or not
a dense tensor map through the dense voting step. In SFF for instance, since the encoding of the initial
tensors is sparse in 3D, but dense when projected in 2D, we only do a sparse refinement of the tensors.

then we present the stick kernel, and finally the derivation of the kernels of the other elements of
the tensor basis.

The choice of which tensors vote to which location is part of the design of the algorithm. An
overview of our implementation, that differs from Medioni et al. [2000] in some aspects, is sum-
marized in Figure 3.5. We discuss these differences in the paragraph about the voting steps, and
finally we present how tensor map is converted into a guidance map encoding the anisotropy in
paragraph feature extraction.

Tensor decomposition

Let us introduce some vocabulary relative to the tensors and their representations. In tensor vot-
ing, a tensor is a second order symmetric tensor that can be represented by a positive semidefinite
diagonalizable matrixT ∈R3×3, whose eigenvectors are orthogonal. We note that its location is im-
portant, since the relative position between a tensor and the cast location plays a role in the voting
function, and therefore we consider that the three coordinates are a property of each tensor.

In addition to its coordinates, one tensor can be characterized either from six scalar values
corresponding to the coefficients of the symmetric matrix or, from three eigenvalues and a ro-
tation. This rotation define the transformation of the orthonormal basis (e0,e1,e2) to align with
(ê0, ê1, ê2) ∈ R33

, the set of eigenvectors sorted by decreasing eigenvalue. This rotation may either
be represented by a unit quaternion (i.e. three scalars) or decomposed into three rotations with
Euler’s angles. Note that both representations are equivalent.

The decomposition of the matrix into a set of diagonal matrices is a key point introduced
by Medioni et al. [2000]. Let the tensor be a diagonal matrix in the system (ê0, ê1, ê2) (by defini-
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Figure 3.6 – Ellipsoids used for the visual representation of the decomposition of a second-order generic
tensor. The stick tensor, with eigenvalue ê0, indicates the saliency of surfaces with normal ê0. The plate
tensor, with a null eigenvalue λ2, indicates the saliency of a curve with tangent ê2, and the ball component
indicates junction saliency. (Image courtesy of Medioni et al. [2005])

.

tion), and its eigenvalues be denoted λ0,λ1,λ2. The decomposition is in the form:λ0 0 0
0 λ1 0
0 0 λ2


︸ ︷︷ ︸

diagonalized Tensor

= (λ0 −λ1)

1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

stick Tensor

+(λ1 −λ2)

1 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

plate Tensor

+λ2

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸
ball Tensor

. (3.9)

These elementary tensors are named according to their representations as ellipsoids, as shown
in Figure 3.6, and each of them represents a different type of structure as follows. The stick compo-
nent, written ê0êT

0 , encodes the saliency of surfaces that are normal to ê0. The plate component,
ê0êT

0 + ê1êT
1 , is encoding some curves with tangent direction ê2. Finally, the ball component is

encoding points, e.g. corresponding to thin structure junctions.

Stick kernel

Once the tensors are initialized, voting kernels are designed for allowing TV operation and the
spatial propagation of information between tensors. This allows for smoothing the effect of noisy
tensors during the voting step and refining their orientations. Since the voting function has an
exponential decay with distance from the source tensor, the voter, its support is approximated by
a finite volume, a sphere, whose radius depends on the scale parameterσT. Such a kernel has con-
tinuous and smoothly varying orientations of eigenvectors, and smoothly decreasing eigenvalues,
excepted at the origin of the kernel. For implementation purpose, the voting kernels are often dis-
cretized and stored into a precomputed field of tensors, which evaluates the values of the tensors
cast from the voter on each point of a regular lattice, see Section 4.3.3.

Let us now describe the stick kernel as the vote cast by a stick tensor, Tst i ck ∈R3×3.
The stick kernel can be defined by two operations: a multiplication of Tst i ck by a decay func-

tion DF, and a rotation by a vector Ω. Two geometrical quantities and two constants allow for

computing them: the vector
−→
OP, between the location of the voter O, and the cast location P, the

voter’s eigenvector ê0, the scale parameter σT ∈ R>0 that controls the spatial scale of vote and a
constant v that controls the decay with curvature. Intermediate geometrical quantities that are

depicted in Figure 3.7 can be altogether computed from
−→
OP and ê0.

Among intermediate variables, we find the length of the circle arc r ∈R>0 between O and P on
the osculating circle joining O and P with normal ê0 at point O, and φ ∈]−π,π] the angle between
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O

P

Figure 3.7 – Notations for stick voting kernel. The tensor localized in O with normal ê0 casts its vote at point
P. The result is a stick tensor which normal is ê′0, with its eigenvalue scaled by the decay function DF. This
decay function is computed from the length r of the arc of the osculating circle passing from O to P with

normal ê0, and from the angle φ. All of these geometrical values can be computed from
−→
OP and ê0.

the tangent to the same osculating circle in O and
−→
OP. They can be computed as follows (see

Appendix B.2.1):
φ=π−2arccos(6 ê0,

−→
OP>),

and

r = π−2arccos(6 ê0,
−→
OP>)

4π|6 ê0,
−→
OP> |

‖−→OP‖

Then, the decay function is defined as:

DF(r,φ,σT) = exp

(
−r 2 + vφ2

σ2
T

)
. (3.10)

The decay function allows for a smooth voting kernel whose support can be bounded to a sphere
of radius 3σT. Along with the term vφ2 used for increasing the decay with curvature, Medioni et al.
[2000] propose also to restrict vote to the area where φ< π

4 and consider that the term DF(r,φ,σT)
is null otherwise. In two dimensional spaces, this allows for dividing the amount of required calcu-
lus by a factor two. In three dimensional spaces, the factor is trickier to calculate but even greater
in any case.

The rotation applied to the tensor is such that in the plane containing the cast location P, the
location of the tensor O and its eigenvector ê0, the new cast tensor’s eigenvector ê′0 is normal to
the osculating circle passing through P and O with normal ê0 in O. Geometrically, ê′0 and ê0 are
symmetrical with respect to the mediator of the segment OP:

ê′0 = ê0 −26 ê0,
−→
OP>

−→
OP

‖−→OP‖
.

The rotation is defined by the rotation vectorΩ ∈R3, whose direction is the axis of the rotation
and whose norm is the angle of rotation. This rotation transforms the vector ê0 into the vector ê′0,
and is computed as follows:

Ω= arccos
(〈

ê0, ê′0
〉) ê0 × ê′0

‖ê0 × ê′0‖
.

29



CHAPTER 3. NEIGHBORHOOD CONSTRUCTION

This allows for computing the rotation matrix R(Ω) ∈ R3×3 (see Equation (B.4) in appendix).
We note that RT(Ω) = R−1(Ω) = R(−Ω), so that the cast tensor T′

st i ck ∈ R3×3 can be computed as
follows:

T′
st i ck = DF(r,φ,σT)R(Ω)Tst i ck RT(Ω).

where ·T is the transposition operation.

With this definition, we obtain the expected smooth stick kernel. This kernel is symmetric
with respect to the origin O and invariant by rotation around ê0. This kernel is a key parameter for
performing the voting steps in TV, since the plate and ball kernels that we introduce in the next
paragraph are derived by integration and rotation of the stick kernel.

Derivation of other kernels

For recall, plate tensor can be written Tpl ate = ê0êT
0 + ê1êT

1 , while ball tensor is written
Tbal l = ê0êT

0 + ê1êT
1 + ê2êT

2 . The plate and ball kernels derive from the stick kernel by integration
of stick tensors. For instance, for plate tensors, the integration of the votes of a stick tensor is done
with respect to an angle ρ such that Tst i ck (ρ) = cos(ρ)ê0êT

0 + sin(ρ)ê1êT
1 .

T′
pl ate =

∫ ρ=Π

ρ=0
DF(r,φ,σT)R(Ω)Tst i ck (ρ)R(Ω)Tdρ.

It is important to mention here that the notations have been simplified, but every term under
the integral depends on ρ: The decay function DF is computed from the curvilinear abscissa r

and φ, which in turn are computed from the vector
−→
OP and the eigenvector of the stick tensor,

cos(ρ)ê0êT
0 + sin(ρ)ê1êT

1 , and the rotation vectorΩ, also computed from the same data.

The ball kernel is also defined by integration. The eigenvector of the stick tensor that is inte-
grated is êst i ck = sin(ψ)(cos(ρ)ê0 + sin(ρ)ê1)+cos(ψ)ê2. The vote of a ball tensor localized in O to
the location P is computed as follows:

T′
bal l =

∫ ρ=Π

ρ=0

∫ ψ=Π/2

ψ=−Π/2
DF(r,φ,σT)R(Ω)Tst i ck (ρ,ψ)RT(Ω)cos(ψ)dψdρ,

where r , φ and (Ω) all depend both on ψ and ρ.

For numerical computation, we approximate these integrals as sums of tensors as follows:

T′
pl ate ≈

I∑
i=0

DF(r,φ,σT)R(Ω)Tst i ck (i∆ρ)RT(Ω)∆ρ,

T′
bal l ≈

I∑
i=0

J/2∑
j=−J/2

DF(r,φ,σT)R(Ω)Tst i ck (i∆ρ, j∆ψ)RT(Ω)sin( j∆ψ)∆ψ∆ρ,

Where ∆ρ = Π
I and ∆ψ = Π

J , and I,J ∈ N are arbitrary constants. Note that these kernels are often
precomputed for computational efficiency.

The analytic expression of the voting function VF for any tensor derives from the notations of
the previous paragraphs. Any tensor Ts at location s ∈R3 can be decomposed from Equation (3.9)
in a basis (ê0, ê1, ê2) as T(s) = (λ0 −λ1)ê0êT

0 + (λ1 −λ2)ê1êT
1 +λ2ê2êT

2 , and the vote cast at location
t ∈R3 is written:

VF(T,
−→
st ) = (λ0 −λ1)VF(Tst i ck (t ),

−→
st )+ (λ1 −λ2)VF(Tpl ate (t ),

−→
st )+λ2VF(Tbal l (t ),

−→
st )

= (λ0 −λ1)DF(r,φ,σT)R(Ω)Tst i ck RT(Ω)

+(λ1 −λ2)
∫ ρ=Π
ρ=0 DF(r,φ,σT)R(Ω)Tst i ck (ρ)R(Ω)Tdρ

+λ2
∫ ρ=Π
ρ=0

∫ ψ=Π/2
ψ=−Π/2 DF(r,φ,σT)R(Ω)Tst i ck (ρ,ψ)RT(Ω)cos(ψ)dψdρ.

(3.11)
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Voting steps

Now that we have introduced the voting operation for one tensor, we detail how these voting op-
erations are used for detecting thin structures.

Two sets S0,S1 ⊂S are defined respectively to be the set of voters and the set of cast locations
(for vote). For instance, if the vote is dense then S1 = S . ∀s ∈ S , let T(s) be the tensor at location
s before the vote, T′(s) the tensor at location s after vote, and VF : (R3×3 ×R3) 7→ R3×3 the voting
function that returns the tensor cast at location. The voting operation is computed as follows:{ ∀p 6∈S1, T′(p) = T(p),

∀p ∈S1, T′(p) = T(p)+∑
s∈S0

VF(T(s),−→sp),

Medioni et al. [2000] depicts the tensor voting as a five step process (see Figure 3.5). First step
is input encoding. In this step, the idea is to select a set of sites of interest, that initializes the set of
tensors that will vote first. In literature, the elements of this set are often called tokens. Because the
objective is to propagate information from each token in order to infer the existence of structures
that may connect them, the set of tokens is converted into a sparse set of ball tensors.

Second step is the refinement step, thanks to a sparse vote that allows for refining the initial set
of ball tensors into a set of stick tensors. The refinement operation is a projection of each tensor
on the stick tensor axis in the basis used for tensor decomposition. It corresponds to removing
the plate tensor and the ball tensor component, and keeping for each tensor the stick component
oriented in the direction of ê0.

Third step is a dense voting in RN in order to propagate the stick information in every point:
every computed tensor votes on any available site in S .

We have found in practice that our implementation had to differ from Medioni et al. [2000]
in some of these first three steps, to allow us for computing our algorithm in a reasonable time.
The non dense voting step of refinement of the tensors for example may be skipped for specific
application-related reasons, or handled instead by a specific initialization. Depending on the ap-
plication, we can initialize stick, plate or ball tensors, such that the initialization tensors can en-
code multiple information: respectively the presence of a plane, a curve or a point in input data
at the tensor’s location. Similarly to Hariharan and Herfet [2018] that remove the refinement step
and use plate tensors along the optical axis e2, we instead remove the dense voting step and adapt
our feature extraction to match with our application. We depict this difference later in application
related chapters, Section 6.2.3.

Feature extraction

Once the tensor map is computed, the final steps aim at extracting information so that we can

compute the guidance map g ∈R3S .
Originally, Medioni et al. [2000] project tensors on the three axes of the decomposition basis

so that three saliency maps can be derived, encoding for surface, curve and junction saliency.
From these maps, the final step of the algorithm aims at deriving the probabilities of presence of
surfaces, curves and points. For instance, for plane detection, the analysis focuses on the stick
component.

In our implementation, we also compute a tensor decomposition as introduced in Equa-
tion (3.9). The saliency and orientation of the guidance map are computed respectively from the
stick saliency and the eigenvalues orientation. Conversely to Medioni et al. [2000], we are not in-
terested at this stage by localizing precisely our structures, since we will detect them later from the
regularized segmentation. The structure orientation is defined as follows, ∀s ∈S ,

gs = (λ0s −λ1s)ê0s . (3.12)

When working in a 3D application, such as SFF, we need to adapt this definition so that the guid-
ance map is usable for 2D neighborhoods. The question of computing the set of 3D tensors for
obtaining a 2D guidance map will be addressed in Section 6.2.3.
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Guidance map

Figure 3.8 – The implementation of the RORPO framework.

3.2.3 RORPO

The RORPO framework

As an alternative to TV, we consider RORPO proposed by Merveille et al. [2018], which is a non
linear operator based on mathematical morphology and used for thin structure detection. For
our implementation, we compute the RORPO in 2D because we only have 2D neighborhoods.
However, since with SFF, the dataset is a stack of 2D images, we compute RORPO on each 2D image
separately and combine the results afterwards in a specific operation described in Section 6.2.3.
The idea of RORPO is to use a set of oriented filters to perform multiple morphological operations
on the same image, but with different orientations. Then, the number of “high” responses in this
set of filters is counted to distinguish the thin structures from the isotropic areas. By definition, at
least one dimension of a thin structure is substantially smaller than the other ones. Thus, finding
the sites where only a small number of high responses are measured among the oriented filters
discriminates the thin structures.

These oriented filters are morphological operations called path openings. A path opening is
based on the notion of adjacency of the sites (V ), for an anisotropic structuring function. This
structuring function defines a set of non-symmetric connection relationships R with a preferred
orientation, and the set of considered structuring functions achieves a sampling of the possible
orientations of the image plane. Compared to TV, RORPO allows for a faster computation of the
guidance map and is consistent with the notion of path-based neighborhood introduced in Sec-
tion 3.3.3. Since in our applications we only consider 2D neighborhoods, let us focus on 2D adja-
cency V between elements (i.e, sites).

Figure 3.8 describes the RORPO implementation: The input is a grayscale 2D map that is first
dilated with respect to its spatial adjacency (cf. just below). We sample the orientations of the
2D space so that only a finite set of structuring functions are used for performing path openings.
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Figure 3.9 – Illustration of the 6 directions of A (left) and an example of path obtained with one structuring
function θ (right). The connectedness θ is characterized by the vector vθ and the angular widthφT. For
this illustration, we have represented directed edges for positive displacements, but the paths are computed
in both directions.

Then, the responses of the path operators are sorted, and compared, to preserve only structures
that have a small number of high responses in the set of path openings. As a final step, a site-wise
minimum is computed between the initial grayscale image and the intermediate RORPO filter’s
answer in order to preserve the anti-extensivity of the path opening.

We detail these steps in the following of this section.

Dilation

In RORPO, the site-wise dilation of the grey level input image X′ ∈RN is defined as follows: ∀s ∈S ,

X(s) = max
p∈V (s)∪{s}

(X′(p)), (3.13)

where V (s) ⊂S is the set of sites adjacent to the site s ∈S , which means that they share a common
border (see definition Equation (3.1)).

Orientation sampling

Next step deals with direction sampling. For our application we consider 6 directions vθ in the
image plane, characterized by their positive angle θ with the e0 axis: vθ = cos(θ)e0 + sin(θ)e1 as
shown on Figure 3.9. Next step is path computation that is based on a oriented (irreflexive and
non-symmetric) structuring function. In our case, not specifying the nature (pixels versus super-
pixels) of the sites of S , we base the anisotropic connections on the relative positions of the sites
barycenters. The connection relationship between sites s and t , denoted s θt , is defined as fol-
lows:

∀(s, t ) ∈S ,
{

s θt ⇐⇒ t ∈V (s) and
∣∣∣〈−→st ,vθ

〉∣∣∣> cos(φT)‖−→st‖
}

,

whereφT represents the angle threshold of the connection relationship, as illustrated in Figure 3.9.
In the following, R denotes the set of connection relationships.

Path Opening

For each connection relationship θ ∈ R, a site-wise gray-level path opening is an extension of
the binary path opening defined in Merveille et al. [2018].
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Figure 3.10 – Example of path opening of length 4 with the connection relationship θ (θ= π
2 ) depicted on

the left hand side. The middle image is a the binary input image where the θ links between active sites
are shown in bold. On the right hand side we have performed the path opening, and consequently all the
paths of length below 4 are removed.

Let us first consider the case of a binary image X and let X̄ ⊂ S be the set of true (or 1-valued)
pixels in X. X̄ is called the support of X. Given the connection relationship θ and a length L ∈R>0,
the path openingO θ

(L, X̄) is the union of all paths connected by θ of length L in X̄. This operator
preserves each point of X̄ belonging to at least one path of O θ

(L, X̄), and removes the others, as
shown in Figure 3.10.

O θ
(L, X̄) =



s ∈ X̄ ⊂S , such that:
∃(p0, . . . , pk ) ∈ X̄k+1, with k ∈N and :

∀i ∈ �0,k�, pi ∈V (pi+1),∑
0≤i<k

(‖−−−−−→pi pi+1‖) ≥ L, and

p0 = s.


Note that, although usually the length L is a positive integer expressed in pixel unit, extending

the case of pixel lattice to superpixel is not trivial. We instead consider that the length of the path
is a real L ∈R>0, computed as the sum of the distances between the sites’ barycenters in the path.

The case of a gray-level image Y is handled through level sets: We denote by X≥τ the binary
image having true values in sites with gray level greater than τ in Y. Let X̄≥τ be the support of X̄≥τ,
also called level set of value τ. Given the connection relationship θ ∈R and a length L ∈R>0, the
gray-level opening of Y is defined as:

GY, θ,L(s) = max{τ ∈R>0|s ∈O θ
(L, X̄≥τ)}.

Since we consider #R connection relationships, each one leading to a path opening result,
considering the set of connection relationship, we get a total of #R gray-level path openings.

The ranking filter

Each of these path openings filters out the structures that are not aligned with a specific orienta-
tion. By definition, the curvilinear structures can only be preserved by a limited number of filters
since they are thin structures. This means that at least one oriented filter will delete the structure.
Conversely, isotropic structures will have homogeneous answer to the set of path openings.

Therefore, we use a non linear filtering technique named rank filtering that is as follows: For
each site s ∈ S , the responses to the #R path openings are ranked according to decreasing order
of magnitude. Then, we denote RF1 the maximum value, RFb#R/2c the median value and RF#R

the minimum (last in the ordering) value, with b·c denoting the floor function. This ranking of the
orientation responses of the path openings gave its name to the algorithm RORPO.

Let iR ∈ �1,#R −1� denote a threshold value set to the maximum number of high responses
expected for a thin structure in our set of path openings. It depends on the orientation sampling
and is empirically set to discriminate the isotropic structures from the thin structures.
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Figure 3.11 – Illustration of the behavior of the ranking filter on the path openings, and the effect of the
subtraction method used for only preserving thin structures. We can see that the circle, preserved by all the
openings, is removed in the final outcome (courtesy of Merveille et al. [2018]).

For each site, the derived i th
R

value is then compared to the maximal one. Now, since a dilation
is performed on input image Y, while RORPO operator is expected to be anti-extensive, Merveille
et al. [2018] apply an infimum operator to the final RORPO result:

RORPOY(s) = min
(
RF1

[
 θ ∈R , GY, θ,L(s)

]−RFiR

[
 θ ∈R , GY, θ,L(s)

]
,Y(s)

)
Note that if the thin structures of interest present low values with respect to the background,

we invert the order of the values before applying RORPO.
This formulation yields higher responses for thin structures that yield a small number of high

responses in path openings. Therefore, the value returned by the RORPO allows us to discriminate
the saliency of thin structures. We illustrate this in Figure 3.11, where we can see that only the thin
structures preserved by less than two path openings are actually present in the final outcome of
RORPO.

Let us now present the estimation of orientations used to derive the guidance map g.

Fine estimation of the orientations

The RORPO operator allows for deriving, for each site, an orientation. For each site s ∈S , Merveille
et al. [2018] extract this information by averaging the orientations of the iR −1 largest responses
given by the structuring functions of the path openings GY, θ,L(s). We proceed to this averaging as
well but in order to ensure appropriate averaging, we must apply a transformation in 2D so that
orthogonal vectors cancel themselves and vectors of opposite directions would not.

Because our search for thin structures is limited to 2D space, the set of directions in R is en-
coded by a single scalar θ, that is the angle between the direction of the vector vθ and the reference
e0. If we project the problem in the complex plane, or in polar coordinates, the transformation we
use is equivalent to doubling the argument value, i.e. the polar coordinate, of the vectors before
averaging them, and dividing the argument of the averaged result by two.

Mathematically, with complex notations, we can write our orientation averaging as follows:

vRORPO(s) =ℵ(s)

(
εR + ∑

 θ∈R′(s)
GY, θ,L(s)exp(2iθ)

)1/2

,
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where ℵ(s) ∈R>0 is a coefficient that normalizes the vector vRORPO(s).The term R′(s) ⊂R is the set
of orientations of the (iR −1) first answers in the rank filter at site s. For recall, the vectors vθ in
complex notations are written:

vθ = exp(iθ). (3.14)

With this construction we obtain a field of vectors that has the same dimensions as the
grayscale input data X′, for instance a 2D image in crack detection or a 3D volume with SFF.

Guidance map construction

With 2D data, the guidance map is computed from the RORPO’s output with

gs = RORPO(s)vRORPO(s). (3.15)

Note that the application-dependent issue of dealing with 3D data for 2D neighborhoods re-
quiring a 2D guidance map is addressed in Section 6.2.3. Now, we detail more how the actual
neighborhoods are built from the guidance map that we have finally constructed.

3.3 Anisotropic Neighborhoods

This section depicts our contribution concerning the construction of anisotropic neighborhoods.
The fact that our problem may deal with sites that do not form a regular lattice and the constraint
to deal with thin structures motivates our new anisotropic neighborhood formulation. In the fol-
lowing subsections, we aim at defining the neighborhood field V : S → 2S =V, possibly anistropic

and non stationary. For anisotropic cases, the guidance map g ∈ R2S contains the data about the
orientation and saliency of the structures in the scene, and is therefore used for constructing the
neighborhood. Note that, for any site s ∈S , when the norm of the guidance vector is below a given
threshold gs < Γ, we consider isotropic neighborhood.

While our definitions could be used for 3D neighborhoods, we note that our application in-
volve 2D neighborhoods in the plane (e0,e1). Thus, the neighbors of a site are only computed
among the sites at a constant depth (in SFF application), i.e. in the same plane. For notation
simplicity, we therefore introduce neighborhoods in 2D context.

3.3.1 Shape-based neighborhood

Shape-based neighborhood are computed from the coordinates of the sites’ centroids and are in-
dependent of their boundaries. The notion of “shape” derives from the representation of the small-
est subspace of R2 containing all the centroids of the sites that are neighbor of a site whose cen-
troid is taken as the origin. We illustrate this idea with the neighbors of a site for an elliptic shape
in Figure 3.12. We note that with this neighborhood, the radiometry of the sites (represented in
gray level in the figure at pixel level) does not impact in any way the neighborhood construction.

Let S s ⊂R2 be a shape defining the neighborhood at s, ∀s ∈S . In the general case, the shape-
based neighborhood of each site is defined as follows:

V(s) =
{

t ∈S/
−→
st ∈S s

}
.

In previous equation, since S s is a subset of R2, we say that a vector belongs to S s as soon as its
coordinates do.

We note that the properties of the shapes (S s)s∈S impact the properties of the neighborhood:
for the shape of the set of neighbors to be regular, we expect S s to be rather compact and convex.

We considered in our case parametric ellipses, that boil down to disks in isotropic situations.
For any s ∈ S , let ε ∈ [0,1[ be the ellipse eccentricity, and let AV ∈ R be the area of the shape, the
relation

−→
st ∈S s becomes:

(1−ε2)6
−→
st ,gs >

2 +
∥∥∥∥−→st−6−→

st ,gs >
gs

‖gs‖
∥∥∥∥2

<p
1−εAV

π
, (3.16)
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(a) Superpixel

s

(b) Pixel

Figure 3.12 – Example of shape-based neighborhood: At superpixel level (a), the shape is represented by
the dotted line centered on the grey site. The neighbors of this site are the ones whose centroid (red cross)
belong to that shape, and are colored in green. At pixel level (b) the shape is represented by a red contin-
uous line centered on the site s represented by a star. The neighbors of s are all the sites within the shape,
indicated by a green dot. We note that the radiometry of the sites (represented in grey level) does not impact
in any way the neighborhood construction.

where gs is given by the guidance map, aligned with the major semi axis of the ellipses,
−→
st is the

vector joining s and t , and6 ·, ·> denotes the normalized scalar product. When ‖gs‖ = 0, this ex-
pression is not numerically stable. However, a null guidance vector corresponds to a null saliency
at this location. To detect the cases where isotropic shape (and thus neighborhood) is best suited,
we set an isotropic threshold Γ ∈ R>0 on below which the isotropic neighborhood is chosen. The
relation

−→
st ∈S s then is equivalent to:

‖−→st‖2 ≤ AV

π
,

since the elliptic shape becomes a disc. When gs < Γ, the shape-based neighborhood boils down
to defining the neighborhood of a site as the isotropic superpatch of Giraud et al. [2017a].

We note that the ellipse eccentricity ε may either be deduced as a function of ‖gs‖ or fixed as
a constant parameter. On the one hand, having a variable eccentricity value allows for a better
flexibility of the neighborhood, since it will depend on the saliency of the site. On the other hand,
the high sensitivity of ‖gs‖ to both the image topology and the parameters and model used for
estimating it (in our case energy-based, TV or RORPO-based models) brings a lot of issues and
complexity when it comes to evaluating separately the benefits of each guidance map model and
anisotropic neighborhood. Therefore, we ended up considering ε as a constant parameter of the
model and decided to leave the problem of a finer dynamic estimation of its value open for future
works.

Geometrically, the shape-based neighborhood only depends on the relative positions of the
sites (their barycenters), and on the guidance map. When it comes to superpixels, such neighbor-
hood has the same limitations as its isotropic equivalent, the disc neighborhood (Section 3.1.2):
Since they are computed from barycenters positions, they do not enforce adjacency of the neigh-
bors. In particular, when the superpixels are highly irregular, concave, or with low compactness,
they very likely produce neighborhoods with disconnected components and that may be far from
the original site.

However, with compact, regular and convex superpixels, this neighborhood provides an effi-
cient and intuitive method for building anisotropic neighborhoods.

Since the number of sites is finite, the number of configurations that this neighborhood can
produce with an arbitrary guidance map is finite. However, if the computation of these config-
urations is required beforehand, this number can be highly dissuasive with large shapes, since
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Figure 3.13 – The dictionary neighborhood defines a set of available configurations beforehand. In the case
of a shape neighborhood, it corresponds to a set of shapes among which the optimization algorithm has to
select a best candidate. Here, the six ellipses aim at capturing most anisotropic thin structures while a disc
is used for isotropic regularization of homogeneous regions.

that in the general case the values that can take gs are not discretized. Therefore, we introduce
the dictionary-based neighborhood, that allows for the practical computation of the energy-based
guidance map presented in Section 3.2.1.

3.3.2 Dictionary-based neighborhood

When the values of the guidance map are discrete and finite, the neighborhood is called
dictionary-based. This name comes from the fact that the set of shapes that derives from the
finite set of values of the guidance map forms a dictionary of shapes. There is therefore a limited
and constant number of configurations available, that can be precomputed. This is particularly
important for energy-based guidance map described on Section 3.2.1, that requires such precom-
puted set of neighbors in order to compute the lowest energy configuration possible for the whole
neighborhood. The bigger the dictionary, the more fitted the neighborhood, but such a flexibility
is obtained at the trade of an increased computational complexity.

The dictionary-based neighborhood that we implemented is very similar to the shape-based
neighborhood. The dictionary denoted by D is composed of ι shapes. In our experiments, ι = 7:
Six ellipses account for six possible orientations of the guidance map when the neighborhood is
anisotropic (gs > Γ) plus the isotropic disc otherwise. We illustrate this dictionary in Figure 3.13,
while an example of associated neighborhood is shown in Figure 3.12.

As in Section 3.3.1, for a fixed shape, the barycenter positions are the only information that
determine whether a site has another site as a neighbor or not:

V(s) =
{

t ∈S/
−→
st ∈S s ∈D

}
.

With a discrete and finite set of configurations per site, we can index the configurations by
an integer and therefore define a field of label in the energy formulation. Practically this is the
retained implementation for our energy minimization algorithm.

We note that even if we have only implemented the shape-based version of the dictionary-
based neighborhood, nothing prevents us from also discretizing the guidance map for path-based
neighborhoods that we introduce in the next section, thus implementing an energy-based guid-
ance map suitable for dictionary of path-based neighborhood.

Both for enforcing the set of neighbors (plus the source site) to form a single connected com-
ponent and for allowing the neighborhood to follow thin structures in the image, we introduced
path-based neighborhoods.
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3.3.3 Path-based neighborhood

Path-based neighborhoods are designed to fit into thin structures of the image, possibly one site
width, especially when working with superpixels.

We use the adjacency graph to build paths that define a set of neighbors. The selection of the
optimal path is done by introducing some constraints. In our case, as we want to ensure that the
neighbors of a site define a single connected component with the site, we build the neighborhood
from the adjacency V . As a reminder, two sites are adjacent when they share a common border.
The notion of border derives from 4-adjacency at pixel level, thus the adjacency is a symmetric
relationship (s ∈V (t ) ⇐⇒ t ∈V (s), ∀s, t ∈V ).

A path of length n ∈N is an ordered list of sites (s0, . . . , sn) such that ∀i ∈ �0,n�, si+1 ∈V (si ). We
denote the set of paths joining two sites s, t ∈ S by Πδ(s, t ) ⊂ 2S . This set gathers the paths of any
length joining the two sites, without loops, and implicitly involves the notion of adjacency V , since
consecutive sites in a path are adjacent. The set of paths of length K ∈N is denoted ΠδK(s, t ) ⊂SK,
such that:

ΠδK(s, t ) =
{

(s0, . . . , sK) ∈SK/ ∀k ∈ �0,K�, sk+1 ∈V (sk ), s0 = s, and sK = t
∀ j ,k ∈ �0,K�, s j 6= sk

}
.

By extension, the set of paths of all lengths can be defined as:

Πδ(s, t ) =∪K∈NΠδK(s, t ).

The path-based neighborhood is computed from the guidance map g ∈ R2S which defines an
orientation in each site. When the norm of the guidance map in a given site s is below a fixed
threshold (‖gs‖ < Γ), the neighborhood in s is V(s) =V (s), an isotropic neighborhood that ensures
adjacency. Otherwise, the set of neighbors is given by the union of the elements of two paths that
expand from the site s to the two opposite directions corresponding to the orientation of gs .

A major difference with the shape-based neighborhoods presented in Section 3.3.1, is that the
selection of the optimal paths does not depend only on the sites’ barycenter positions, but also
take into account the site adjacency and, as we will see further, the input data such as radiometry.
We present now two options for constructing the path-based neighborhoods.

Target-based neighborhood

Target-based neighborhood is derived from paths that join pairs of distant sites t∗0 , t∗1 ∈S (named
“target”) for each source site s ∈ S . The adjacency along these paths is ensured by construction.
We proceed in two stages.

Firstly, for j ∈ {0,1}, the targets are selected with

t∗j ∈ argmin
t

‖I(s)− I(t )‖2
2 −η‖

−→
st‖|6 gs ,

−→
st > |, (3.17)

where

t ∈
{

t ∈S , (1−ε2)6
−→
st ,gs >2 +

∥∥∥−→st−6−→
st ,gs >

gs

‖gs‖
∥∥∥2 < AV

π
p

1−ε ,

with <−→
st ,gs > (−1) j > 0

}
, (3.18)

where η ∈ R>0 is an hyper parameter to be set, and ‖.‖ denotes the Euclidean norm. In Equation
(3.17), the first term favors the sites s and t to have similar image intensities while the second term
favors far targets that are aligned with gs . We note that the range of search in Equation (3.18) is
limited to an ellipse that corresponds to the one of the shape-based neighborhood introduced in
Equation (3.16).

Secondly, the paths are selected among the two sets Πδ(s, t∗j ) joining s to t∗j . For doing so
∀ j ∈ {0,1}, we formulate a cost function that the optimal path p∗

j has to minimize:

p∗
j ∈ argmin

p∈Πδ(s,t∗j )

|p|−1∑
k=0

‖I(p(k))− I(p(k +1))‖2
2, (3.19)
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(a) Superpixel

s

(b) Pixel

Figure 3.14 – Target-based neighborhood. Two “targets” (in red) are selected in an ellipsis centered on the
source site s (in grey in (a), represented with a star in (b)). The arrow indicates the orientation of gs . For
joining them, adjacent sites are selected (in green) until they form two paths towards the targets. We note
that at pixel level (b) the target selected may not be perfectly aligned with gs , since small deviations are
allowed to follow the structures of the image represented in shades of gray.

where |p| stands for the length of the path, and p(k) is the k th element of the path. The term to be
minimized in Equation (3.19) is large when image intensities of successive sites along a path are
dissimilar and small otherwise. The neighborhood V(s) can then be constructed as follows :

V(s) = (p∗
0 ∪p∗

1 ) \ {s}.

We give an illustration of this neighborhood in Figure 3.14. While this neighborhood ensures
that the set of neighbors of a site and s is a single connected component, and favors paths oriented
in the direction of estimated thin structures, there is no guarantees concerning the cardinality
of these paths. Depending on the image content that influences the location of the target sites,
one site may have a very small amount of neighbors in a very contrasted location, or conversely
could possibly have a high number of neighbors if there exists an arbitrary long path with constant
radiometry. Coupled with the fact that the sites may be superpixels with a complex geometry, this
could lead to unrealistic neighborhoods.

In practice however, constant radiometry in real life images is quite rare, and in our imple-
mentation, we overcome this problem by restricting the path search to sites whose barycenters lie
within a large disc. However to evaluate the benefice of ensuring a constant number of neighbors
for each site, we have also implemented a cardinal-based neighborhood.

Cardinal-based neighborhood

The idea of cardinal-based neighborhood is quite simple: Constructing, ∀s ∈ S , V(s) as the union
of two cardinal-fixed paths p∗

0 , p∗
1 ∈ΠδK(s, ·) where the elements ofΠδK(s, ·) are the paths of length

K ∈ N>1 starting from s. Additionally, these paths are encouraged to expand in the two opposite
directions derived from the guidance map g. In this way, the cardinality of the neighborhood is
fixed.

A cost function is set for allowing the paths to follow the structures of the image: As previously,
there is a trade off between fidelity to the thin structure orientation and fidelity to the radiometry
of the reference site. For any j ∈ {0,1}, these paths are computed as:

p∗
j ∈ argmin

p∈ΠδK(s,·)
l j

C(p), (3.20)
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(a) Superpixel

s

(b) Pixel

Figure 3.15 – At superpixel level (a), for a source site s in grey, the cardinal-based neighborhood builds two
paths with the same number of elements K. Ideally, those paths are aligned with gs , whose direction is
indicated by the arrow, but the energy term for selecting the paths also includes a radiometric similarity
measure with the site s to allow deviations from this axis for following thin structures in the image. This fact
is illustrated at pixel level (b): from the source site s, deviations of the neighborhood (in green) from the axis
(blue arrows) are authorized in order to follow the structures represented by darker pixels.

with l j
C(p) the cost function associated with the path p, defined by :

l j
C(p) = ∑

t∈p
‖I(s)− I(t )‖2

2 +η′ψ j (
−→
st ,gs), (3.21)

where η′ ∈R>0 is an hyper parameter to set, and

ψ j (−→u ,−→v ) =
{

arccos
(∣∣6−→u ,−→v >∣∣) if (−1) j 〈−→u ,−→v 〉 > 0,

+∞ otherwise,

measures the angle between the vectors −→u and −→v and discriminates whether the scalar product is
positive or not.

The first term of Equation (3.21) encourages the image intensities of any site si to be similar to
s intensity while the second term aims at aligning the path with gs . We note that the cost function
compares radiometry and positions of each site of the path versus the site s instead of computing
these differences on the adjacent sites on the path, to allow local deviations while ensuring global
neighborhood orientation and color.

Finally, the neighborhood V(s) of the site s can be now constructed as follows:

V(s) = (p∗
0 ∪p∗

1 ) \ {s}

We give an illustration of this neighborhood in Figure 3.15. In anisotropic regions, this defini-
tion ensures the construction of a thin neighborhood with a constant cardinal while constraining
the sets of neighbors and their origins to be single connected components.

3.4 Conclusion

In this chapter, we have presented the main contributions of this work.
We adapted TV, path opening and dilation operators at superpixel level, for performing thin

structure detection on input images. We propose three alternatives. Firstly, an energy-based guid-
ance map, that is computed from the energy of the neighborhood configurations, ensures the reg-
ularization of the neighborhood orientations with an energy term. Secondly, we propose to use TV
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at superpixel level for extracting thin structures orientations, since it naturally provides smooth
orientation maps that allow for edge continuation. Finally, we also introduced RORPO since it is
tailored for thin structure detection, and uses path-based operators that offer consistency with the
path-based neighborhoods that we introduce in the second half of this chapter.

The neighborhoods proposed split in two categories and are inspired by the two neighbor-
hoods that we can compare to at superpixel level: The neighborhood of Stawiaski and Decencière
[2011], and the disc-based neighborhood derived from Giraud et al. [2017a]’s superpatch formu-
lation. The first one is computed from the notion of adjacency of sites only, while the second one
is computed from the relative distances between the barycenters of the sites. The neighborhoods
we propose base on these two aspects: The shape-based neighborhood introduces the notion of
directivity in the analysis of the relative positioning of the sites, and can therefore be seen as a
specialization of the disc-based neighborhood, while the path-based neighborhoods additionally
integrate the notion of adjacency.

A third kind of neighborhood, the dictionary-based neighborhood, is closely related to the
computation of energy-based guidance map, and can be seen as a constrained version of the other
neighborhoods, even if, in our experimental study, we have only implemented its shape-based
version.

In the next chapter, we explicit the way we minimize the energies using such neighborhoods,
with graph cut, and we detail the implementation of our approach, including the tuning of the
parameters introduced in this chapter.
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In the previous chapters, we have presented some applications involving thin structures and
demonstrated the need for anisotropic regularization. Then, we have introduced a new functional,
discussed its formulation and defined new neighborhoods that can be considered as a second
field to be estimated. The methodology for estimating and constructing these neighborhoods are
detailed in Chapter 3.

In this chapter, we detail the numerical resolution of our problem, and its implementation.
First, we introduce Graph Cuts (GC) in Section 4.1 and their use for efficiently minimizing func-
tionals. Then, we present the actual algorithm we implement for minimizing our functional (Equa-
tion (2.3) or (3.7)), in Section 4.2. We present some details of our implementation in Section 4.3
and finally the setting of the parameters in Section 4.3.3.

4.1 Optimization with graph cuts

The problem of minimizing functionals is related to mathematical optimization. More specifically,
when it comes to the labeling u ∈ CS , it is a discrete problem with a finite number of elements, thus
falling into the category of combinatorial optimization.

It is now necessary to discuss the actual method used for regularizing the blind segmentation
with the functionals formulated in Equation (2.3) and Equation (3.7), depending on the applica-
tion. Many methods coexists for minimizing a functional, such as Iterated Conditional Modes
(ICM), Belief Propagation (BP), GC, or Tree Reweighted Message Passing (TRW). Those four meth-
ods have been compared on typical vision tasks in Szeliski et al. [2008] such as stereo imaging,
image stitching, interactive segmentation and denoising.

For instance, ICM [Besag, 1986] is deterministic, greedy, iterative and converges rapidly: ICM
starts with an initial estimation of the labeling, and iteratively scans each site, allowing a change of
label only if the energy function is decreased. Without surprises, the result is extremely sensitive
to the initialization and, in practice, of very poor quality.

BP [Felzenszwalb and Huttenlocher, 2006] iteratively minimizes the energy by transmitting
messages between neighbors. Each message is computed from a data term and the previous mes-
sages received from neighbors. When a stopping criterion is reached, the label of each node is
computed from these data. This methods is however an approximation in the case of graphs inte-
grating loops.

The conclusion of the comparative study of Szeliski et al. [2008] is that TRW and GC remain
particularly competitive compared to the other algorithms, in terms of segmentation accuracy.
For this reason, we decided to select GC for minimizing our functionals. Historically, due to lim-
ited resources and algorithm developments, GC remained limited to binary image restoration
for a long time D. Greig et al. [1989]. The emergence of fast maximum-flow/minimum-cut al-
gorithms Boykov and Kolmogorov [2004] coupled to a better characterization of what energies can
be minimized Kolmogorov and Zabih [2004], has been a milestone for solving challenging vision
tasks such as segmentation, restoration, stereovision, etc. While Kolmogorov and Zabih [2004]
prove their results with energies that write as a function of cliques of order less or equal to three,
Freedman and Drineas [2005] generalize this for k-order cliques involving k ∈N>0 sites.

In this Section, we first present the formalism of graphs, cuts and flow (Section 4.1.1), and
then show how they are used in max-flow/min-cut algorithms (Section 4.1.2) for solving binary
problems. Finally, we remind how multi-label problems can be solved by a decomposition into
binary subproblems in Section 4.1.3.

4.1.1 Definitions

Cuts in graphs

Before describing the minimization algorithm, we present how the construction of a graph allow
for modeling a functional, as reviewed in Boykov et al. [2001].
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Figure 4.2 – An s − t cut, represented as the red dashed line, with value 8. Note that the backward edges
are not taken into account in the computation of the cost of the cut. Only forward edges, oriented from the
source to the sink, are computed.

First, a graph G = (V ,E ,c) is a set of vertices V connected by a set of oriented edges E ⊂ V 2:
V = S ∪ {s, t }
E = N ∪ET

c : V 2 7→R≥0,
(4.1)

where the edge capacities are denoted c. The set of vertices includes two specific ones called
terminals, s and t , called respectively the source and sink of the graph G. Typically, in image
segmentation, the other vertices of V correspond to the set of sites S , for instance a subset of
Z2 with images of pixels. The edges linking the pairs of vertices, terminals excluded, are called
n-links, and are typically the set of cliques N in image segmentation. Finally, the set of edges
ET = ({s}×S)∪ ({t }×S) ⊂ E that link the vertices to the terminals s and t are called t-links.

We recall that the set of cliques N ⊂ S2 depends on the choice of the neighborhood. The
capacities in the graph G also respect the following properties:

∀(p, q) ∈ E ,c(p, q) > 0,
∀(p, q) ∉ E ,c(p, q) = 0,

A cut is the removal of a set of edges C ∈ E from the graph G. An s-t cut C creates a partition
of V by removing edges of G such that the terminals are separated in the induced graph Gs =
(Vs ,Es ,cs) and Gt = (Vt ,Et ,ct ), with s ∈ Vs and t ∈ Vt , see Fig 4.2. The partition means that Vs∩Vt =;
and Vs ∪Vt = V . These two graphs are defined as

Gs = (Vs ,Es ,cs), where


Vs ,
Es = E ∩Vs

2,
cs : V 2

s 7→R≥0,

Gt = (Vs ,Es ,cs), where


Vt ,
Et = E ∩Vt

2,
ct : V 2

t 7→R≥0.

In the context of an s-t cut, a forward edge is an oriented edge (p, q) ∈ E such that (p, q) ∈
(Vs × t ), while a backward edge is an edge (q, p) ∈ (Vt × s). What is called the cost, or the capacity,
or the weight of an s-t cut C , denoted |C |G , is the sum of the capacities of the forward edges
composing the cut. By concision, we omit G and use the simplified notation |C | in the next parts
of this paper. The cost of such an s-t cut can also be written as:

|C | = ∑
(p,q)∈(Vs×Vt )

c(p, q) = ∑
(p,q)∈C

c(p, q). (4.2)

Solving the minimum cut (or min-cut) problem amounts to finding the cut C ∗ of minimum
cost among all the s-t cuts. By definition, the min-cut is the cut that corresponds to the s-t cut
with the minimum cost. In image segmentation, there is typically about 2#S different s-t cuts,
which makes any extensive search impractical. However, it is possible to find the min-cut in
(pseudo-)polynomial time, thanks to the max-flow/min-cut duality.

We present this duality with the definition of the flow in the next subsection, while the way the
min-cut is found is the subject of Section 4.1.2.
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Flow in graphs

The flow is a quantity that respect some convenient properties, in particular: The flow is defined
for each edge e ∈ E of the graph G, where it has a non-negative value, the flow is bounded by above
by the capacity of the edges, and finally, the flow is conservative in most the vertices. Some specific
vertices, often the terminals may however deviate from the conservative flow rule, which explains
the terms of source and sink. The flow pushed from any vertex is the sum of the flows in the edges
that originate from this vertex, and for any vertex but the terminals, this sum is also equal to the
flow pushed to this vertex, by conservative law.

In this section, to be in accordance with the notation of combinatorial optimization literature,
we denote the flow by f ∈ RE

≥0, where f (p, q) is the flow in edge (p, q) ∈ E and its properties write
as: { ∀(p, q) ∈ E c(p, q) ≥ f (p, q) ≥ 0,

∀p ∈ V \ {s, t }
∑

(q,p)∈E
f (q, p)− ∑

(p,q)∈E
f (p, q) = 0. (4.3)

The value of the flow f in the graph G is defined as follows:

| f | = ∑
(s,p)∈E

f (s, p). (4.4)

It is the amount of flow injected in the graph from the terminal s. Solving the maximum flow (or
max-flow) problem amounts to finding the flow of maximum value and is the solution of the linear
program:

| f ∗| =
{

max f ∈RE
≥0

| f |,
such that f respects Equation (4.3).

(4.5)

Loosely speaking, the max-flow is the maximum “amount of water” that can be sent from the
source s to the sink t by interpreting graph edges as directed “pipes” with fixed capacities. An edge
is saturated when the amount of flow that crosses it is equal to its capacity. The flow that is pushed
from the source to the sink can be seen as an amount of water that we try to push through a set
of pipes with limited capacity. A cut can be seen as a hyper-surface separating the source and the
sink, and crossing the set of pipes at some points, from which we can measure a flow or compute
the sum of the capacities of the intersected canals.

One of the fundamental results in combinatorial optimization is that the min s-t cut problem
can be solved by finding a max-flow in a graph with two terminals the source s to the sink t .

The max-flow/min-cut duality

Because the flow is conservative, if the value of the flow that is pushed from the source to the sink
is fixed, each cut has the same amount of flow through its surface. At the same time, the flow is
bounded from above by the capacity of the cut. The increasing flow pushed from the source is
therefore upper bounded by the cut that has the minimum capacity, that behave as a “bottleneck”.

The theorem in Ford and Fulkerson [1956] states that, for any oriented graph G, any couple of
vertex (s, t ), and any set of capacities c, the maximum value of the flow from s to t is equal to the
smallest capacity of any s-t cut: | f ∗| = |C ∗|.

C ∗ can in addition be deduced from f ∗: C ∗ is the min-cut composed of a set of saturated
edges that realize a s-t cut. Some edges may be saturated but not belong to the min-cut: A cut is
minimum only if any edge removed from the cut would connect the two sets Vs and Vt . Therefore,
edges belonging to C ∗ are saturated edges but they may exist saturated edges that do not belong
to C ∗. Because the flow function f is a function that is maximized, there also may exist multiple
min-cuts for f .

The duality relationship between max-flow and min-cut problems motivates the need for an
efficient algorithm for maximizing the flow in graphs. Fortunately, a wide range of algorithms exist
for performing such operation, and therefore can be used for solving min-cut problems. Such
algorithms are detailed in Section 4.1.2.
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These algorithms allow for solving max-flow problems, but may also used in the context of
multi-source and multi-sink flow problems, and allow for computing the maximum number of
disjoint paths from the source to the sink or solving problem of maximum cardinality matching in
bipartite graphs.

4.1.2 Energy minimization and max-flow algorithms

Graphs allow for representing some functionals, and min-cut/max-flow algorithms allow for find-
ing their minimizers. In this section, we present the energy functions that can be represented by
graph cuts, as well as the corresponding construction of the graph and the max-flow algorithm
used for solving binary and multi-label problem. While this allows for solving only binary prob-
lems, we describe later in Section 4.1.3 how these results can be extended in the multi label case.

Graph representation

The graph-representability of a function E : {0,1}S 7→ R is defined as follows. Any function E is
graph-representable if there exists a graph G such that for any s-t cut C ,

|C | = E(uC )+K, (4.6)

where K ∈R is a constant that has no impact on the minimizer and uC is the segmentation corre-
sponding to the cut C . When K is null, the energy is said to be exactly represented by G.

Notice that there is a one-to-one correspondence between the possible configurations of the
MRF, i.e. the labeling in {0,1}S , and the 2#S possible s-t cuts of the graph. When the energy is
graph-representable, one is able to build a graph such that the cost of any s-t cut is equal to the en-
ergy of the configuration that corresponds to the s-t cut. For any s-t cut splitting the graph G into
two subgraphs Gs and Gt , and for any node p ∈ V , the one-to-one correspondence is formalized
by the following equation:

uC
p =

{
0 if p ∈ Vs ,
1 if p ∈ Vt .

(4.7)

The graph-representability of energy functions is detailed in Kolmogorov and Zabih [2004] and
Freedman and Drineas [2005] for a specific class of functions denoted F k where k ∈N>0. Given a
set of variables u = (up )p∈S ∈ {0,1}S , the class F k are functions E : {0,1}S → R that write as a sum
of terms of up to k variables at a time. When k = 2, any function E belonging to F 2 writes:

E(u) = ∑
p∈S

Ep (up )+ ∑
(p,q)∈S2

Epq (up ,uq ). (4.8)

The Theorem 3 in Kolmogorov and Zabih [2004] shows that any E ∈F 2 is graph-representable
if and only if ∀(p, q) ∈N :

Epq (0,0)+Epq (1,1) ≤ Epq (1,0)+Epq (0,1). (4.9)

The condition (4.9) is called submodularity. A function that satisfy this condition is said to be sub-
modular or regular. The representation of submodular energies is not unique, but Kolmogorov
and Zabih [2004] propose a simple and compact graph construction for such energies, and show
in their article that a global and exact minimizer of E can be found with a max-flow/min-cut algo-
rithm.

Graph construction

We detail in this subsection the construction of G for representing the energy E in Equation (4.8),
for both the unary and the pairwise terms in which it can be decomposed. We remind that in this
section the vertex s and t are the terminals of the graph G, and that the proposed construction is
not unique.
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p p

Ep(1)

Ep(0) Ep(0)-Ep(1)

up=1

Figure 4.3 – Graph construction for unary terms of F 1. One of the two edges can be removed by subtracting
the same quantity on the two edges capacities until one of them becomes null. Reducing the number of
edges reduces the time and memory consumption of max-flow algorithms. In this example, the vertex p is
labeled 1 by the cut C , i.e. up = 1.

Unary terms: any term Ep is graph-representable: ∀p ∈S , we can set, without loss of generality:{
c(s, p) = Ep (1)−min(Ep (0),Ep (1)),
c(p, t ) = Ep (0)−min(Ep (0),Ep (1)).

(4.10)

A s-t cut will necessarily cut either edge (s, p) or (p, t ), but not both since the cut has to be minimal.
If the edge from the source to the vertex is cut, the energy is Ep (1), and in this configuration the
label up is set to 1. If the edge from the vertex to the sink is cut, the energy is Ep (0), and the label
up is set to 0 (see Figure 4.3).

However, the fact that the energy may be exactly represented or not does not impact the la-
beling associated with the minimum s-t cut. Thus, we may set K 6= 0 in Equation (4.6) and add or
subtract any quantity to both edge capacities. Subtracting the minimum value min(Ep (0),Ep (1)) to
both edges capacities simplifies the graph by removing at least one of the edges, and thus reduces
the memory footprint.

Pairwise terms: the decomposition of terms involving second order cliques Epq that are sub-
modular is a bit more complex, but can be understood by visualizing the s-t cuts corresponding
to any configuration, see Figure 4.4. The capacities of the edges are non-negative values, there-
fore negative values in the decomposition correspond to backward edges. Explained differently,
it corresponds to an increase of K in Equation (4.6) by this negative value so that every term is
positive.

The energy is decomposed into three components. First, a term that depends on up , then a
term that depends on uq and finally a term that depends on the variable (up ).uq . We have detailed
it in Table 4.1.

In particular, when Ep,q (0,0) = Ep,q (1,1) = 0, the graph can be simplified with only two n-links.
This is typically often the case for segmentation applications, since the Gibbs field that the MRF
represents often deals with the attractive case when neighbors tend to share the same configura-
tions. With most functionals in image segmentation, the global graph representing the energy E is
therefore constructed so that t-links encode the energy terms Ep , and the n−links encode for the
terms Epq .
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E00 +K = E01 +E00 −E01 +0
E01 +K = E01 +0 +0
E11 +K = E11 +0 +0
E10 +K = E11 +E00 −E01 +E01 +E10 −E00 −E11

Table 4.1 – Decomposition of the energy Epq ∈ F 2 when E00 > E01 and K = 0, from which other cases can
be derived. For more readability in this table, we have written E00 for Epq (0,0), E01 for Epq (0,1), and so on.
This decomposition is not unique, but allows for understanding the representation and the capacities of the
edges in Figure 4.4. For keeping every capacity positive, any constant value may be added to any column of
this table. For instance, we add K = E01 −E00 to first and third column, so that the edge c(q, t ) with negative
capacity is replaced by the edge c(s, q) with positive capacity.

E11 E01-E00

E01

E01+E10-E00-E11

E11+K

E01+K

E10+K

E00+K

K=E01-E00 +K

+K

s

q

t

p

E01

E11=0

E01

E10

E00=0

E10

s

q

t

p

Figure 4.4 – Graph construction for energies of F 2. We have represented different cuts that illustrate the
validity of the decomposition for the possible configurations. The graph on the left shows the positioning of
the different edges when E01 ≥ E00, since it is often the case in image processing. We note that it corresponds
to Table 4.1 with the value K = E01 added to the third column. We recall that the cost of a s-t cut is the sum
of the capacities of the edges cut from the source to the sink, while the backward edges are not taken into
account in the cost of the cut. For convenience, we have written E00 for Epq (0,0), E10 for Epq (1,0), and so
on. The graph on the right shows a simplification that can be written when E00 = E11 = 0 and setting K = 0.

The capacities of the edges of the global graph are computed as the sum of the capacities of
the individual terms contribution.

With such construction allowing to represent the energy E(u) of any configuration u ∈ {0,1}S

as the capacity of a cut C , the idea is now to compute the min-cut with an efficient max-flow
algorithm.

Max-flow algorithms

There are multiple max-flow algorithms on graphs, used for solving the dual min-cut problem.
In terms of complexity and because of the large number of vertices in the graph in typical com-
puter vision tasks that often exceeds a billion for modest resolution cameras, it is important to use
efficient algorithms.

As briefly introduced in Section 4.1.1, the idea is to push the maximum possible flow from the
source to the sink, through the oriented edges of the graph. We recall that one property is that the
flow is conservative, and bounded by above in each edge by the capacity of this edge. The intuitive
idea of max-flow algorithm is to increase progressively the flow that emerges from the source to
saturate edges, until the source and the sink of the graph are separated by a set of saturated edges
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Figure 4.5 – Representation of the max-flow problem by analogy with the flow of water through a network
of pipes. The idea is to bring the maximum amount (flow) of water from the source (the lake) to the sink
(the house in fire). For doing so, the operator has multiple choices and multiple canals represented as the
vertices and edges of the graph. The first image on the left presents a situation to which one may arrive
by intuitively and in an iterative way pushing the maximum flow through each path that reaches the fire.
However, it is still possible to find an augmenting path (thick line in the image on the right) that makes use
of an edge in reverse order. This is an illustration of the approach proposed by Algorithm 1, and the min-cut
in the graph is found among the saturated edges. (Image courtesy of Caruso and Fourquaux, CNRS and the
Institut Henri Poincaré).

(the min-cut) that disconnect the graph. This is the idea of the Ford and Fulkerson algorithm that
we introduce first. Next, we present some of the max-flow algorithms reviewed or introduced in
Boykov and Kolmogorov [2004].

Ford Fulkerson max-flow algorithm: The max-flow algorithm in Figure 4.5 bases on the Ford
Fulkerson iterative algorithm. The latter one progressively increases the flow pushed in a graph G
by finding augmenting paths in a residual graph G f .

The residual graph G f = (V ,E ,c f ) shows the same vertices and edges as G with edge capacities
c f reduced by the amount of flow through each edge. At the initial step, the flow is null, therefore
the residual capacities of the edges of G f equal the capacities of the edges in G:

c f (e) = c(e), ∀e ∈ E . (4.11)

It is a way of updating the available capacities of the graph instead of computing the differences
between the flow and the capacities for each edge in the graph.

An augmenting path P = (e0, . . . ,ek ) with k ∈ N>0 is an ordered set of non saturated edges
ei = (pi , qi ) ∈ E , ∀i ∈ �0,k�, from the source to the sink that allow for pushing a flow through a
graph such that: 

p0 = s,
qi = pi+1, ∀i ∈ �0,k�,
qk = t ,
c f (p, q) > 0.

(4.12)

The maximum value δ f of the flow through the augmenting path is reached when one of its
edges becomes saturated. Indeed at this precise moment, the path is not an augmenting path
anymore. Any backward edge ER can also be part of the augmenting path, as long as the total flow
through each edge is non-negative. In this case, the total flow in backward edges is reduced by the
additional amount of flow δ f . δ f is the minimum value between the minimum residual capacities
of forward edges and the minimal flow of the backward edges. For any forward edge (p, q) joining
two sites (p, q) ∈S2, he associated backward edge that links q to p is denoted by (p, q).

The Ford and Fulkerson (FF) algorithm is described below:
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• Initialize G f from G.

• Repeat the following steps while an augmenting path is found:

1. Find an augmenting path P from s to t in G f

2. Compute δ f = min
(p,q)∈P

c f (p, q)

3. Update the capacities of the edges: ∀(p, q) ∈P ,
c f (p, q) ← c f (p, q)−δ f
c f (q, p) ← c f (q, p)+δ f

4. Update the total flow f ← f +δ f .

• Find the min s-t cut among the saturated edges of G f , which value is f .

Algorithm 1: Max-flow algorithm of FF.

At each iteration, the algorithm finds an augmenting path along non-saturated edges of the
residual graph G f , and augments it by pushing into it the maximum possible flow δ f . The residual
capacities of edges in the path are reduced by δ f , the residual capacities of backward edges are
increased by δ f while the total flow is increased by δ f . Then, the maximal flow is reached when
there is no more augmenting path from s to t .

The efficient search of a path from the source to the sink is a critical factor for processing the
solution in a reasonable amount of time. In FF algorithm, the way augmenting paths are selected
is not specified. Therefore, if the capacities are integers, in the worst case scenario the flow is
only increased by one unit at a time, so the worst case complexity of the algorithm is O(#E | f ∗|)
(#E being the number of edges in the graph) which is pseudo-polynomial. Theoretically with real
capacities, the algorithm may not even converge in very specific cases.

Some algorithms focus on paths with largest capacities (see Edmonds [1972]), leading to worst
case time complexity O(#E 2#V ), where #V is the number of nodes. Another type of approaches
that we describe in the following paragraph focus on finding the shortest paths, and sometimes
even mix both approaches (Juan and Boykov [2007]).

Dinic [1970] uses breadth-first search to find the shortest paths from s to t in the residual graph
G f . By opposition to a depth-first search algorithm that searches through the successors of a node
until the end of a path, a breadth-first search is the exploration of a graph from a source node, and
through all its successors, then all the successors of its successors, and so on. In such a search
algorithm, the paths are explored in increasing length: After all shortest paths of a fixed length k
are saturated, the algorithm starts the search for paths of length k +1. The use of shortest paths
improves the theoretical running time complexity for algorithms based on augmenting paths. The
worst case running time complexity becomes O(#E #V 2).

Boykov Kolmogorov max-flow algorithm In the context of graphs in computer vision, building
a breadth-first search tree is a very expensive operation, since it involves scanning the majority
of image pixels. Boykov and Kolmogorov [2004] based their algorithm on augmenting path tech-
niques, but overcome the latter disagreement by building two search trees, one from the source
and one from the sink, that are reused and never rebuilt from scratch. Reusing both the trees has
a theoretical drawback: The complexity of their algorithm O(#E #V 2|C |) is greater than the one of
shortest augmenting path since the augmenting path found from the updated trees are not nec-
essarily the shortest ones. However, in practice in image processing, a linear complexity in the
number of nodes is observed in the paper.

The algorithm of Boykov and Kolmogorov [2004] grows two non-overlapping trees
Gs = (Vs ,Es ,cs) and Gt = (Vt ,Et ,ct ) with roots at the source s and the sink t . We illustrate this ap-
proach on Figure 4.6. Initially, these trees are reduced to Gs = ({s},;,cs) and Gt = ({t },;,ct ). The
algorithm is iterative and repeats the following three stages until convergence:
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Figure 4.6 – The Boykov max-flow algorithm: Two search trees are built, starting from the source and the
sink, respectively colored in blue and red. Active nodes are represented with a color gradient, while the
inactive ones are uniformly colored. Orphaned nodes are shown in dark grey and free nodes in white. Avail-
able edges are represented as continuous lines, while saturated edges are represented as dotted lines. Both
the trees are iteratively updated through the steps of growing, augmenting, and adoption. In this example,
a node (B), active and child of (A), encounters a node (C) belonging to the opposite tree: the augmenting
stage begins. The augmenting path is represented as a thick yellow line, whose smallest capacity edges are
represented by darker yellow dotted thick edges. After the augmentation stage, the node (D) becomes an
orphan for whom the adoption fails, therefore all the black orphan nodes in the second image recursively
become free nodes. At the next growing stage, the acquisition by the node (E) of a child (F) exhibit a new
augmenting path through the node (G).

• First, a growth stage expand trees Gs and Gt until they touch, thus giving a path. If no valid
path is found, the algorithm has converged.

• Secondly, an augmentation stage pushes flow through the path, saturates some edges and
generate orphaned nodes that break the search trees into forests.

• And lastly, the trees of the forests are gathered by reconnecting the orphaned nodes to one
of the trees Gs and Gt in the adoption stage.

During the growth stage, the search trees expand. Each active node acquires new children from
the set of free nodes by exploring adjacent non-saturated edges. These newly acquired nodes
become active members of the corresponding search trees. As soon as all the neighbors of an
active node are explored, it is relabeled as passive. As soon as an active node encounters a neighbor
that belongs to the opposite tree, we assume a path is detected from the source to the sink, and
thus, the growth stage terminates.

The augmentation stage augments the path found at the growth stage. The largest flow pos-
sible is pushed through the path and some edges in the path become saturated. Thus, the search
trees Gs and Gt may split into forests and some nodes become orphans.

The goal of the adoption stage is to restore the tree structure of Gs and Gs with roots at the
source and the sink. Each orphan node seeks for a new valid parent. A node can be a valid parent
only if it belongs to the same tree as the orphan, and can be connected to it with a non saturated
edge. If no valid parent is found, the orphan becomes a free node and all its former children be-
come free nodes. Once all the orphans are explored and marked as active, passive or free nodes,
the structure of the search trees Gs and Gt are restored, and the adoption stage terminates. Since
orphans may become free nodes, we note that both trees may shrink during this step of the algo-
rithm.

The algorithm then returns to the growth stage, until no augmenting path can be found, which
means that the search trees are separated by saturated edges. This implies that the maximum flow
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Figure 4.7 – An example of cut in a graph in a problem with three labels and four sites, where Ep,q is a
function of absolute difference between labels. Courtesy of Ishikawa [2003]. The black arrows represent
data edges, while horizontal edges capacities are linked to the energy brought by the smoothness prior.
Ishikawa [2003] also adds constraint edges of infinite capacity depicted as dotted arrows that prevent the
cut from “going backward”. In this example, v1 = 1, v2 = 2, v3 = 2, and v4 = 3. Beyond absolute difference,
any convex prior may be used at the expense of embedding more edges.

is reached. The min-cut and the final binary labeling is then recovered from the search trees which
terminates the algorithm of Boykov and Kolmogorov [2004], ∀p ∈S :

up = 1 if p ∈ Vs ,
up = 0 if p ∈ Vt .

(4.13)

We used the implementation provided by Veksler and Delong1, using double-precision
floating-point format.

4.1.3 From binary to multi-labels problem resolution

Now that we have presented the way some binary energies can be exactly minimized by graph
cuts, let us introduce how problems of minimization involving more than two labels u ∈ CS may
be minimized, when the energy is in the form:

E(u) = ∑
p∈S

Ep (up )+ ∑
(p,q)∈N

Epq (up ,uq ). (4.14)

Multiple strategies exist for minimizing the above energy. But depending on the application,
the user’s choices depend both on the properties of the energy and the constraints of computation
time and memory consumption. For instance, in the case of convex priors (pairwise terms) Ep,q

but with any unary terms Ep , Ishikawa [2003] proposes the construction of a multi-layer graph
that also allows for an exact minimization of this energy (see Figure 4.7). While such an approach
can exactly minimize non-convex energy functions, this construction is however very memory
consuming, which makes it unsuitable for typical computer vision tasks, in which the order of
magnitude of the number of nodes is around multiple billions of nodes. Such graphs would not fit
into most computer’s memory, and the computation of max-flow algorithm would be far beyond
reach.

1Currently available here https://vision.cs.uwaterloo.ca/code/.
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(a) (b) (c) (d)

Figure 4.8 – Examples of labeling (a) evolving with swap (c) and expansion (d) moves compared to standard
moves (b). While standard move only allow the change of the label of one site, α-β swap allow any site
labeled α to be relabeled β, and reciprocally. α-expansion is an even more efficient move, where all the sites
are free to be relabeled α or keep their previous labeling all at once (Picture courtesy of Boykov et al. [2001]).

In the general case, finding the optimal labeling for such energies is an NP-complete problem,
which encourages the use of heuristic approaches, efficient if possible.

Instead of building very large graphs for solving the problem all at once, Boykov et al. [2001]
have developed efficient algorithms for computing approximate minimizer of multi-label prob-
lems. To do so, they decompose any multi-label problem into a sequence of binary subproblems
that are solved with binary graph cut (see Section 4.1.2). In their article, they present α-β swap
and α-expansion, two heuristics. In α-β swap, each site labeled α or β is allowed to change its
label to α or β, while the other sites remain unchanged. During α-expansion, every site is either
assigned with the label α, or remains unchanged. Both heuristics allow for solving more efficiently
the problem, but the drawback is that the labeling obtained after convergence is a local minimum,
within a known factor of the global minimum. Both heuristics require the energy to respect some
properties, that are stricter for α-expansion, that is a stronger move in the sense that it allows for a
more faster resolution of the problem with better minimum guarantees.

Visually, the effect of a standard move (the change of the label of a single node in S) and of
stronger moves (expansion and swap moves) are pictured in Figure 4.8.

While both methods work well with ordered or unordered labels (respectively image restora-
tion or image segmentation for instance), others approaches may work more efficiently when the
level sets of the image are nested. Darbon and Sigelle [2006] use a divide-and-conquer approach:
They decompose the problem into binary subproblems, solve independently each subproblem
and recombine the solution in order to get the solution of the global problem. The same idea has
for example been instantiated on SFF in our article Ribal et al. [2018]. We detail the latter one a bit
more, to illustrate our dyadic divide-and-conquer strategy.

α-expansion It is an iterative algorithm minimizing a sequence of submodular energies E′.
Those energies are defined as subproblems that only involve binary variables and are classically
solved with max-flow/min-cut algorithms. For each iteration, there are #C subproblems since for
each subproblem, a label is selected until the expansion moves ∀α ∈ C are processed.

For each subproblem, α ∈ C is fixed, and a second field v ∈ {0,1}S determines for each node
p ∈ V if its label remains unchanged or is assigned to the label α (this is the expansion move). The
labeling uv computed from the resolution of the subproblem is defined as:

uv
p =

{
up if vp = 0,
α if vp = 1,

∀p ∈S .

When the label of node p is set to 1, it corresponds to setting up to the labelα in the global problem,
and when the label of node p is set to 0, the label up remain unchanged. Thus, the subproblem
only requires to compute the set of sites p ∈S ᾱ = {p ∈ V \ {s, t }, such that up 6= α}.

By construction, the energy E is guaranteed to decrease at each iteration with the minimization
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of E′ that is defined as:

E(uv ) = E′(v) = ∑
p∈S ᾱ

E′
p (vp )+ ∑

(p,q)∈N
E′

pq (vp , vq ),

where {
E′

p (0) = Ep (up ),
E′

p (1) = Ep (α),
and(

E′
pq (0,0) E′

pq (0,1)
E′

pq (1,0) E′
pq (1,1)

)
=

(
Epq (up ,uq ) Epq (up ,α)
Epq (α,uq ) Epq (α,α)

)
.

The minimization of E′ is done using a max-flow/min-cut algorithm. The idea is to perform ex-
pansion moves for every label α ∈ C, until convergence, as summarized in Algorithm 2.

INPUT: Elements permitting the computation of E
OUTPUT: An approximate minimizer of E

1: Initialize u = (up )p∈S
2: repeat
3: u′ = u
4: for α ∈ C do
5: v ∈ argmin

v∈{0,1}S
E′(v)

6: for p ∈S ᾱ do
7: if vp = 1 then up ← α

8: end for
9: end for

10: until E(u′) ≤ E(u)
Algorithm 2: α-expansion algorithm.

α-expansion can only be applied when each subproblem involves an energy E′ that is submod-
ular (see Equation (4.9)), i.e. when:

Epq (up ,uq )+Epq (α,α) ≤ Epq (up ,α)+Epq (α,uq ), ∀up ,uq ,α ∈ C. (4.15)

In most cases, Epq (α,α) = 0, so the previous equation becomes a triangular inequality.
There are several strategies from this point that allow for a slight tuning of the algorithm and

may impact the results, with the initialization of u, the order in which the label are explored, and
finally the stopping criterion.

The initialization strategy of u impacts the minimization of E, because α-expansion may not
converge to the global optimum solution and may fall into a local minimum. Winner-takes-all,
random and constant label strategies are examples of initialization. Winner-takes-all strategy is to
initialize u with the labeling that minimize the energy E without regards to pairwise terms Epq :

up = argmin
ł∈C

Ep (l ), ∀p ∈S . (4.16)

Random initialization associates a label chosen uniformly at random in C to each site. Constant
label strategy imposes the same label α ∈ C for all sites. In practice, α-expansion appears however
to be robust against the way u is initialized.

For the same reasons of convergence, the order in which the labels are scanned may impact the
final result. Strategies include scanning the labels forward or backward, or even randomly. Finally,
the theoretical convergence speed of the algorithm is unknown. The user may thus add some
arbitrary stopping criterion for speeding up the convergence. In practice though, the α-expansion
typically converges in only a few iterations on typical vision tasks, and this parameter tuning is of
minor importance.
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While knowing that the α-expansion converges to a local minimum of the energy E(û) that
is a poor guarantee in terms of energy minimization, Boykov et al. [2001] proved that the local
minimum is within a known factor 2γ ∈ [1,∞[ of the global minimum of the energy E(u∗):

E(û) < 2γE(u∗),

where:

γ=
max

(p,q)∈E ,α 6=β∈C
Epq (α,β)

min
(p,q)∈E ,α 6=β∈C

Epq (α,β)
.

We refer to the Boykov et al. [2001] for the mathematical proof.

α-β swap The idea of α-β swap sketched in Figure 4.8 is quite similar to the one of α-expansion:
It is an iterative algorithm subdividing the problem of minimizing Equation (4.14) into a set of
subproblems involving binary variables only. Each subproblem deals with the minimization, in
our case via graph cuts, of an energy E′ that is submodular. A subproblem corresponds to a pair of
labels of the global problem, therefore leading to #C2 subproblems for each iteration.

For each subproblem, a pair of labels (α,β) ∈ S2 is fixed. Only sites labeled α or β are allowed
to change their label to be either α or β, that is why it is called a swap move. After the resolution of
this subproblem, the field v ∈ {0,1}S determines if any site p ∈ V previously labeled α or β may be
relabeled differently with the following rule:

uv
p =


up if up 6∈ {α,β},
β if up ∈ {α,β} and vp = 0,
α if up ∈ {α,β} and vp = 1,

∀p ∈S

One important thing to note is that the graph built Gαβ = (Vαβ,Eαβ,c) may have a small number
of vertices as it is only composed of the vertices labeled α or β together with the source and the
sink s, t (that are sometimes renamed α and β in the literature). More precisely, Vαβ =Sαβ∪ {s, t }
where Sαβ = {p ∈S / up ∈ {α,β}} and Eαβ ⊂ {Vαβ}2. We also denote a subset of the cliques N by
N αβ =N ∩ {Vαβ}2, that is also a subset of the edges Eαβ. Boykov et al. [2001] give a definition of the
s-t cut that is equivalent to the formulation of an energy E′ as follows:

E(uv ) = E′(v) = ∑
p∈Sαβ

E′
p (vp )+ ∑

(p,q)∈N αβ

E′
pq (vp , vq ),

with, ∀p ∈Sαβ, 
E′

p (0) = Ep (β)+∑
(p,q)∈S
(q) 6∈Sαβ

Epq (β,uq ),

E′
p (1) = Ep (α)+∑

(p,q)∈S
(q) 6∈Sαβ

Epq (α,uq ),

and(
E′

pq (0,0) E′
pq (0,1)

E′
pq (1,0) E′

pq (1,1)

)
=

(
Epq (β,β) Epq (β,α)
Epq (α,β) Epq (α,α)

)
,∀(p, q) ∈N αβ.

The algorithm is then quite similar to α-expansion, see Algorithm 3.
The condition of submodularity of each subproblem reduces in α-β swap to the following in-

equality, ∀α,β ∈ C, ∀p, q ∈Sαβ:

Epq (β,β)+Epq (α,α) ≤ Epq (β,α)+Epq (α,β). (4.17)

It is a much weaker requirement than Equation (4.15), and that is one of the main advantages of
α-β swap over α-expansion at the expense of a greater algorithm complexity.

We can formulate almost the same remarks than for α-expansion: Convergence to a global
minimum is not guaranteed. Several strategies of initialization of u may impact the results, as well
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INPUT: Elements permitting the computation of E
OUTPUT: An approximate minimizer of E

1: Initialize u
2: repeat
3: u′ = u
4: for (α,β) ∈ C2 do
5: v ∈ argmin

v∈{0,1}Vαβ
E′(v)

6: for p ∈Sα,β do
7: if vp = 0 then up ← β

8: if vp = 1 then up ← α

9: end for
10: end for
11: until E(u′) ≤ E(u)

Algorithm 3: α-β swap algorithm.

as the order in which the label are scanned. For both topics, we advise the reader to refer to the
paragraph about α-expansion.

In terms of control of the quality of the solution however, α-β swap gives no guarantees about
the final energy of the local minimum, that can be arbitrary far away from the energy of the global
minimum. Instead, Boykov et al. [2001] propose to initialize u for α-β swap with the result of α-
expansion used on an approached energy function. This approximated energy replaces the pair-
wise energy terms by a Potts model, and allows for obtaining better results, both theoretically and
empirically, but we will not detail further these specific cases of use.

Dyadic search The dyadic search takes advantage of a divide-and-conquer process to drastically
reduce the number of minimum cuts required to minimize Equation (4.14) to log2(#C). It is possi-
ble to do so when the label set C is ordered, and if the binary solutions are “nested”. In the sequel
of this paragraph, we assume that the M ∈N>0 labels {l0, . . . , lM−1} = C are ordered with respect to
their indices in M = {0, . . . ,M−1}: ∀M > i > j ≥ 0, li > l j .

As explained in Darbon and Sigelle [2006], both the unary and pairwise terms of the functional
can be decomposed as a sum of energies on the level sets of u ∈ CS . Let us denote by ul

p the value

at pixel p ∈ S of ul =
(
1{up≥l }

)
p∈S ∈ {0,1}S the l-level set of the image u . For any pixel p ∈ S , the

unary terms can be decomposed as a telescopic sum:

Ep (up ) =
( ∑

0<i<M
uli

p (Ep (li )−Ep (li−1))

)
+Ep (l0). (4.18)

Note that the latter equation is consistent whatever up ∈ C. Similarly, we decompose for any pixel
pair (p, q) ∈N the term:

Epq (up ,uq ) = ∑
0<i<M

Epq (uli
p ,uli

q ). (4.19)

Since ul0
p = v l0

q = 1, ∀p, q ∈S , the sum in the latter equation starts from i = 1.
The functional to minimize Equation (4.14) may now be written, using Equation (4.18) and

Equation (4.19), ∀(p, q) ∈N :
E(u) = ∑

0<i<M
Eli (uli )+K, (4.20)

where K ∈ R is a constant that does not depend on u, and the energies Eli are defined, for any
0 < i < M and any level set (or binary image) uli ∈ {0,1}S , by

Eli (uli ) = ∑
p∈S

uli
p (Ep (li )−Ep (li−1))+ ∑

(p,q)∈N
Epq (uli

p ,uli
q ). (4.21)
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For any k,k ′ ∈ M \ {0}, let us denote by u∗lk ,u∗lk′ ∈ {0,1}S the minimizers of Elk and Elk′ , re-
spectively. If these minimizers satisfy

ulk
p ≥ u

lk′
p , ∀0 ≤ k ≤ k ′ ≤ M−1, ∀p ∈S , (4.22)

i.e. the level sets u∗lk are nested, then, from Equation(4.20), we can check that the level set u∗ ∈ CS

defined for all p ∈S by

u∗
p = max{i ∈M |u∗li

p = 1} (4.23)

minimizes Equation (4.20).

According to Darbon and Sigelle [2006], if the condition Equation (4.22) holds for unary terms,
a minimizer of E can be deduced from all the minimizers of {Eli }i∈M \{0}. In particular, the condi-
tion Equation (4.22) is true for convex unary terms and when Ep,q is the total variation (or here the
perimeter of uli ), which is the case in our applications for the data term.

Due to the monotone condition Equation (4.22), binary solutions are nested. The divide-and-
conquer process proposed in [21] takes advantage of this property and via the tree traversal of a
tree of split values, defining a set of independent binary problems. It allows us to decrease dras-
tically the number of s-t minimum cuts. The key point for reducing the number of used graph
cuts is the definition of a hierarchical tree having K leaves and whose nodes encodes the binary
subproblems.

Each subproblem of Equation (4.21) is solved by max-flow/min-cut algorithms. If (4.23) holds,
instead of computing cuts for every pair of labels∀(α,β) ∈ C2, or for every pair of consecutive labels
in direct order, we can maximize the information received from each cut by splitting by two the
available label set for each site. This is the divide and conquer process proposed in Ribal et al.
[2018]: Similarly to a coarse to fine resolution, we build a tree of split values that defines a set of
independent binary problems.

Because the level sets are nested, the binary solution minimizing the energy of this first sub-
problem acts like a thresholding of the optimal solution by indicating to which subset of label
belongs the optimal label of each site. In particular, it means that testing all the threshold labels
for all the sites is not necessary. Instead, the sites that were labeled 1 in the first subproblem are
tested for a higher threshold value, and sites labeled 0 are tested for lower values of the threshold
label. This is made possible by a modification of the graph: After each subproblem, the edges
that link two sites labeled differently are removed, and a data cost penalty is added to one of the
terminal links weight of the sites, depending of their labeling.

The initial graph of each step Gi = (Vi ,Ei ,c) is split into two graphs according to the labeling v:
Gα = (Vα,Eα,c) and Gβ = (Vβ,Eβ,c).

One of the subsets Vα = {p ∈ Vi /vp = 1, or p ∈ {s, t }} only contains sites whose optimal labels
are higher or equal to the threshold α, and the second one Vα = {p ∈ Vi /vp = 0, or p ∈ {s, t }} only
contains sites whose optimal labels are lower than the threshold α (lower or equal to β = α− 1).
Edges of those graphs are the edges of the initial graph with the set of edges linking both graphs
removed, the latter one being also the edges of the min-cut in Gi : Eα = {(p, q) ∈ Ei /p, q ∈ Vα}, and
Eβ = {(p, q) ∈ Ei /p, q ∈ Vβ}.

We note that those subgraphs are disconnected and can be treated separately. In the general
case, every label α may be tested, and therefore #C graphs may be built, but in practice, those
subgraphs are smaller and their processing per step is completely parallel. Said differently, all
the subproblems of a given step of the algorithm can be computed simultaneously by a single
minimum cut in a graph of the size of the initial one G.

With these properties and for comparison with heuristics of α-expansion and α-β swap, the
number of minimum cut required for dyadic search actually reduces to log2(#C) and ensures con-
vergence, without iterations.
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4.2 Functional minimization

4.2.1 Dictionary

With dictionary neighborhood, the functional is modified in Equation (3.7) as follows:

F2(u,V) = E1(u)+αE2(u,V)+βE3(V).

The global energy F2 depends on two terms at the same time, the segmentation u and the neigh-
borhood V, but it is possible to split the minimization problem into two subproblems by adopting
an alternative minimization: Firstly the minimization of the energy F2 with fixed segmentation u
and variable neighborhood V, and secondly the minimization of F2 with fixed neighborhood V and
variable segmentation u. At each step, the energy is minimized with respect to the free variable,
meaning that F2 is guaranteed to decrease. With such a formulation however, since the energy
is not convex, the convergence to a global minimum is not ensured. However, because both the
set of possible neighborhoods and the set of possible segmentations are finite, the energies E1, E2

and E3 are discrete. With this scheme, F2 is a discrete and decreasing function, and therefore the
convergence is ensured. In particular, this is true because our minimization is deterministic, and
favors the initial configuration of the variable to every other equal-energy configurations, so the
output cannot oscillate between multiple local minima of equal energies.

Thanks to these properties, we are guaranteed that after an initial segmentation has been fixed,
estimating the neighborhood and refining the segmentation iteratively will not lead to a higher
energy situation than with a single straightforward estimation, and may even prevent oscillatory
behaviors.

If we truly consider the problem as two different functional, we can recall that it is a double
regularization: For segmentation, E1 and E2 play respectively the role of data energy term and
smoothness energy term for u, but for neighborhood, it is E2 and E3 that endorse those roles. The
chance is that the smoothness term for u, is also the data energy term for V allows such formula-
tion.

This iterative procedure is summarized in Algorithm 4.

• Initialize u0, n = 0.

• Repeat while
∑

s∈S 1{un
s 6=un−1

s } > ε|S |
– Minimize Equation (3.7) with un fixed to compute with graph cut

Vn ∈ argmin
V

αE2(un ,V)+βE3(V),

– Minimize Equation (3.7) with Vn fixed to compute with graph cut

un+1 ∈ argmin
u∈CS

E1(u)+αE2(u,Vn).

– Increment n
Algorithm 4: Algorithm used for approximating a minimizer of F2, in the configuration where
the best neighborhood is computed as the configuration of elements from a dictionary that
minimizes the modified functional. ε ∈R>0 is a small real number.

The optimization algorithm we use for minimizing the energy for both steps of the algorithms
is graph cuts. As explained in Section 4.1.1, graph cuts provide an efficient way for solving mini-
mization problems in the way they are formulated in Equation (3.7).
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4.2.2 TV and RORPO based neighborhood

The same idea applies with TV and RORPO but there is a crucial difference: The functional (Equa-
tion (2.3)) is not modified for incorporating the vesselness operator, because it has no formulation
as an energy data term that would match the term E2. Instead, we trust the estimation of those
robust operators from a set of data including an initialized segmentation u. What remains consis-
tent with previous description is that we decide to treat alternatively the two parts of our problem,
that is to say that on the one hand we estimate the neighborhood from fixed segmentation, and on
the other hand we regularize the segmentation with anisotropic neighborhoods fixed in advance.

• Initialize u0, n = 0.

• Repeat while
∑

s∈S 1{un
s 6=un−1

s } > ε|S | or if n < Ni Max :

– Estimate gn from un and the available data,

– Construct Vn from gn ,

– Minimize Equation (2.3) with Vn fixed to compute with graph cut

un+1 ∈ argmin
u∈CS

E1(u)+αE2(u,Vn).

– Increment n
Algorithm 5: Algorithm used for approximating a minimizer of F, in the configuration where
the best neighborhood is computed from a vesselness operator or any other guidance map.
ε ∈R>0 is a small real number, and Ni Max is a limit to the number of iterations.

Indeed, with such a formulation we loose the guarantee of convergence established in pre-
vious section: It is always possible that the (un)n∈N oscillates endlessly due to complementary
oscillations of (Vn)n∈N. For this reason, the formal definition of Algorithm 5 includes an additional
stopping criterion when the number of iterations exceeds an arbitrary fixed value Ni Max ∈N.

Additional options for improving the convergence of the minimization algorithm may be con-
sidered. For instance, the module used for orientation estimation may be modified with the value
of the iteration step n of the algorithm. In the module that computes the orientation and saliency
of thin structures, scale parameters such as σT in TV and L in RORPO could be tuned in order to
progressively refine the segmentation, thus defining a coarse-to-fine approach. In this way, the
largest structures would be detected in the first steps of the algorithm, while the following steps
would allow to refine the segmentation in areas with higher tortuousness. However, evaluating the
convergence and efficiency of such approach in an iterative multi-scale context has been left for
future works.

4.2.3 Direct neighborhood estimation

In practice, and because of this specific complexity of the stopping criterion, our contribution
focuses more on the effect of an unique iteration with Ni Max = 1. We indeed carried minimal ex-
periments on the iterative process, and leave the field open for future works. We are therefore able
to propose a generic formulation, but the main contribution and the majority of our researches
deal with a non-iterative minimization of u. For doing so, we initialize u0, follow the same steps
of Algorithm 5 but stop when n = 1. Instead of refining the neighborhood, we only estimate it
once. The estimated neighborhood is imperfect, subsequently to noise on the initial blind seg-
mentation u0, but we rely on the robustness of the vesselness operator with respect to noise and
segmentation errors so that V is accurate enough for improving the resulting segmentation.
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4.3 Implementation

4.3.1 Superpixel generation

We have tested a small set of superpixels that shared desirable properties, were publicly avail-
able, and matched our theoretical background. We have selected them among comparative stud-
ies Stutz et al. [2018]; Wang et al. [2017], and implemented them in our program. The five can-
didates we focused on are Felzenswalb and Huttenlocher (FH), Simple Linear Iterative Clustering
(SLIC), Superpixels Extracted via Energy-Driven Sampling (SEEDS), ETPS and Waterpixels (WP).

Images in Figure 4.9 show typical examples of superpixels features depending on the used su-
perpixel algorithm that ease the choice of this latter. We select two different values for the number
of superpixels #S , 2500 and 10000 for the whole image, but we do not lead an intensive investiga-
tion of the optional other parameters of the algorithms that we let to their default values. We also
note that FH do not propose a parameter for setting the number of superpixels.

However, we also question the benefits of some pre-processing aimed at improving the super-
pixels we obtain: We implemented Zou et al. [2012]’s shadow removal algorithm, as well as median
filtering and Gaussian filtering, on the second row of each stack of superpixel images in Figure 4.9.
While the shadow removal improves the results of the segmentation, the shape of the superpixels
is mainly influenced by the Gaussian and median filtering, since they tend to reduce the contrast
of the textures of the image.

We can see that the implementation of FH Felzenszwalb and Huttenlocher [2004] from Stutz
et al. [2018] (first column) is very poor in terms of consistency of superpixel size, i.e. the variation
of area of the superpixels is high, particularly in the more homogeneous regions. This is caused
by the way FH superpixel are computed. First, the elements processed by the algorithm is initial-
ized from the set of pixels. Then, these elements are progressively merged as long as a measure
of the minimum internal difference in a pair of adjacent elements is higher than a measure of the
difference between these two elements. While the measure of the minimum internal difference
inside a pair of elements includes a term with a parameter that may favor larger superpixels, there
is no warranty on the sizes of the superpixels produced. This explains the high variability in size
depending on the content of the image that makes the implementation of anisotropic neighbor-
hoods at superpixel level more complicated.

In the case of the ground truth, the whole crack is composed of only one superpixel, and the
same behavior is observable in small parts of the crack in the original image, whatever the num-
ber of superpixels #S . We note that the superpixels of the ground truth based segmentation have
already been made considerably more regular thanks to the addition of a slight noise on the input
image. These observations let us think that FH is a probably bad choice for testing our segmenta-
tion algorithm, especially on simulated images. This have been confirmed in early experiments,
whose data have unfortunately not been stored.

The obtained results using SLIC Achanta et al. [2012] (second column) exhibits one of the ma-
jor drawbacks of the naive clustering-based approach: Disjoint pixels require a postprocessing
step to enforce connectivity of superpixels. That being said, the compactness parameter of the
SLIC algorithm could reduce this artifact, that is particularly visible in original image and pro-
gressively disappears when the presence of texture decreases. For these reasons, we discard this
algorithm for the moment.

The next two columns SEEDS Van den Bergh et al. [2012] and ETPS Yao et al. [2015] present su-
perpixels that are based on the formulation of an energy term. The image is initialized as a regular
grid partition, and pixels are exchanged between regions to iteratively minimize this energy. Both
seem to offer more regular superpixels, in terms of shapes and layout. They are still very sensitive
to the ground’s texture, which creates non-smooth superpixel borders when using the original im-
age as an input, but become smoother with the preprocessed image Aldea and Le Hégarat-Mascle
[2015].

In Figure 4.10, Yao et al. [2015] present an illustration of ETPS superpixel construction. The
superpixels are obtained from iteratively minimizing an energy on a grid that is progressively sub-
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divided until reaching pixel level. This is a coarse to fine approach, in which at each step, the
superpixels may evolve such that the energy, that involves terms encouraging spatial consistency
and compacity, radiometric homogeneity, and forbid high variations in superpixels sizes, is mini-
mized.

We expect a suitable superpixel algorithm to be able to define superpixels inside the objects
we want to detect. In other words, superpixels must be small enough to fit inside the objects of
interest, or adaptive enough to shrink into those objects. Combined with the preference we have
for regular superpixels and the interest of lowering the number of segments, we can indicate that
#S = 2500 is a good lower bound for the number of superpixels, since increasing this value does
not seem to improve drastically the performances with respect to the aforementioned criteria.

In terms of speed, ETPS, SEEDS and SLIC run twice faster (around 6.5 seconds) compared to
FH (around 12 seconds) when computing #S = 2500 superpixels on an image of 800 per 600 pixels.

Since ETPS seems to give exploitable results with respect to our constraints, we opted for this
algorithm to conduce our first experiments.

Later, in the application to SFF, we have introduced WP [Machairas et al., 2015], for providing
an illustration of the impact of superpixel generation on the quality of the anisotropic regulariza-
tion. WP generate homogeneous superpixels from a set of seeds using a distance function based
on a Lab-gradient, in the CIELAB colorspace. Each seed is associated with a unique connected
component by applying the watershed transformation. Those superpixels exhibit a good adher-
ence to objects boundary, by construction, but also have a regular positioning in space since the
initial seeds are selected on a regular grid. Figure 4.11 shows an example of FH, WP and ETPS
generated on one image from our dataset in SFF. We note that FH still produces highly variable
sizes and shapes of superpixels, which combined with the need for regular superpixels for our
anisotropic neighborhood confirms our preference for other algorithms like WP and ETPS.

4.3.2 Programming

Neighborhood precomputation

Since the regular lattice is lost with superpixels, it is important to stress that when we refer to the
sites by their indexes, the direct relation between the index and the location of the site is not known
anymore. To be more precise, when seeking for a neighbor, one has multiple choice: Either, try all
the available sites, and test each one of them, or either do this research at pixel level in a limited
area, by testing if the pixel belongs to a site, and then testing this site. However, both are time
consuming, since the extensive test of #S should be avoided, and the test at pixel level, even in a
restricted area, is longer than the same test at site level.

For this reason in practice, we precompute a larger disc based isotropic neighborhood that
restricts the search of potential neighboring superpixels, before computing our anisotropic neigh-
borhoods. In some circumstances, we may miss some superpixels that would otherwise be part of
the neighborhood, but it allows for a clear reduction of the computing time with around O (k#S)
operations instead of O (#S2), where k ∈ N is the average number of sites in the restriction map,
per site.

Graphical User Interface

Image processing is an area of science in which we manipulate fields that contain a large number
of variables. To operate these variables, we often need to simultaneously display multiple fields for
making the phenomenon understandable at one sight. For these reasons, we developed our own
tool for monitoring each step of the process and easily visualize the processed data. While being
remaining relatively simple, this approach required a bit of work in C++ language using Qt as a
graphic interface. Due to early choices in the thesis implementation, for instance the will to keep
Qt an optional dependency, the interface is mostly focused on visualization. Therefore, interactive
computation remained limited, but the interface still allowed us to explore lots of situations during
the experiments.
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image FH SLIC SEEDS ETPS

original

preprocessed

ground truth

original

preprocessed

ground truth

Figure 4.9 – Superpixels obtained on the crack image “6193” of our dataset (above the Table). The input
images, zoomed on the lower right crack junction, are shown in Figure 2.6. Here, the number of superpixels
generated are 10000 for the upper half and 2500 for the lower half. We present four algorithms: FH pro-
posed by Felzenszwalb and Huttenlocher [2004], SLIC by Achanta et al. [2012], SEEDS by Van den Bergh
et al. [2012] and ETPS by Yao et al. [2015]. Since crack images are very textured, we also propose a prepro-
cessing of the image based on Gaussian and median filtering, for smoothing the results, and also show as a
comparison the behavior of the superpixel computed from the ground truth image. After a few experimen-
tation, we have decided to stick with ETPS superpixels for our analysis.
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Figure 4.10 – ETPS superpixel construction (courtesy of Yao et al. [2015]). ETPS minimizes an energy by
moving the set of boundaries of an initial set of superpixels on a grid with a finer and finer resolution. In
this example, the grid initially has 56 regions (top left image) and each region is subdivided until the ob-
taining of the final segmentation (image on the right). The energy terms include geometric and radiometric
homogeneity constraints, as well as size, perimeter and compacity constraints.

Input and FH WP ETPS

Figure 4.11 – Example of superpixels computed on Art image (input image in the first row, left column),
with FH [Felzenszwalb and Huttenlocher, 2004] superpixels (left column, second row), WP [Machairas et al.,
2015] (second column) and ETPS superpixels [Yao et al., 2015] (last column), both for 2000 and 5000 super-
pixel images, respectively in the first and second row. The high variability of FH sizes and shapes is self
explanatory when looking at the bottom left image. In comparison, the positioning of WP and ETPS su-
perpixels is more regular, due to the seed positioning for the former, and to the grid-like approach for the
latter. Visually, the good properties of boundary adherence of ETPS superpixels encouraged us to use this
algorithm first.
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For instance, for SFF application, a 3D viewer has been developed for analyzing visually the
volume of data, see Figure 4.12. Tensor fields from TV, and more precisely the evolution of the
fields of eigenvectors and eigenvalues, are examples of such observations. This tool also allowed
us to perform some parameters tuning manually in neighborhood construction, by showing inter-
actively the behavior of neighbors of a site and computing at the same time some statistics about
global neighborhood performances (see Section 6.3.2 for more details on neighborhood quality
estimation).

Git repository

The code used for RORPO and TV computation in this PhD will be available on github 2 as a con-
tribution. The GUI and other tools may be published as well on this repository, after some reviews
and commenting on the code.

4.3.3 Parameters setting

The introduced model depends on several parameters. Some of them are free, and will influence
the performances of our approach and require to be tuned to the application, while other are
fixed by our model. In this section we discuss roughly the way we tuned these values according to
our model and experiments, and list them in Table 4.2. Some parameters however depend more
specifically on the application, and we mention them in their relative chapters.

First, we implemented multiple algorithms of superpixels and decided visually of their quality
with respect to our application. These comparisons are described in Section 4.3.1. Our experi-
ments lead us to favor ETPS superpixels, that we implemented with a few pre-processing in our
binary examples with cracks and simulated images, whose textures are very contrasted. The con-
straints with those pre-processing was to preserve the thin cracks, and explain the small windows
sizes we used. With SFF application, we did not filter the images the same way, however, we still in-
creased the value of the smooth weight parameter of the algorithm to a hundred, that gave visually
better and logically smoother results.

Energy-based vesselness only integrates one coefficient of regularization, β, for which we em-
pirically fixed three values 0.5, 1 and 2, for seeing its effect on the guidance map regularization.

The other vesselness operators include much more parameters, which makes any extensive
study more complicated. However, since they gave better results in our experiments, we spent
some time tweaking the values of the parameters and decided of what is listed on the Table: after
computing a wide range of values of σT in TV for instance, we fixed σT = 30 for comparison with
the RORPO in the SFF application. The kernel curvature coefficient has been fixed manually so
that in the kernel decay function expression that integrates a negative exponential with two terms,
the order of magnitude of the first term vφ2 would be comparable with the squared arc of circle
length. Then in the case of SFF, since the resolution in depth controlled by the number of defo-
cused images is not the same as the resolution in the image plane controlled by the image sensors,
we added a coefficient in our preliminary trials so that ball kernels would seem reasonably spher-
ical. The latter kernel is computed as an approximation of an integral, which was inspired by the
Matlab code existing for TV3, and we fixed the number of steps computed per axis to 16.

With the RORPO, we have fixed six orientations for space sampling, since it can already pro-
duce a lot of orientations with the guidance map orientation refinement. The angle threshold have
been fixed a bit wider than with Merveille et al. [2018], to reduce the impact of the irregular lattice
on the path opening with larger overlapping orientations. Therefore, the angle threshold is set to
four thirds of the angle between consecutive opening orientations. The minimal length for path
opening has been set to 3 times the radius of an average site in the image, which allows relatively

2Code available in github repository https://github.com/cstoribal/SANTOS (Superpixel Anisotropic Neighbor-
hood for Thin Objects Segmentation).

3Code currently available publicly on https://fr.mathworks.com/matlabcentral/fileexchange/

21051-tensor-voting-framework
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Figure 4.12 – Graphical User Interface: Examples of tools used for easing the understanding the implemen-
tation of anisotropic neighborhoods. On the first row, the 3-dimensional plot allow to display in false colors
the values of the stick (left image) or plate (right image) saliencies projected on the axis e2. Additionally,
this plot allow to visualize 2D slices of the data at any coordinates. However, we did not used nor presented
any maximum saliency extraction method for the derivation of guidance map from TV, since it has not pro-
duced any convincing results yet. In the second row, this is an example of an interactive tool to construct
neighborhoods and explore manually the effect of parameters tuning. It offers visual results for qualitative
evaluation and computes some measures for quantitative evaluation as well, and has been of great use for
understanding some aspects of our approach.
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Context Parameter symbol values (if fixed)
Binary SFF

Su
p

er
p

ix
el

ge
n

er
at

io
n

Type of superpixel - ETPS
Number of sites #S ∈ [2500,5000]

ETPS smooth weight - 100
Median filtering window size - 3×3 -

Morphological opening kernel size - 3×3 -
Morphological closing kernel size - 3×3 -

Energy based vesselness regularization β ∈ [0,2] -

Ve
ss

el
n

es
s

T
V

Scale initial tensors from data - no
Initialize from sites’ shapes - no

Kernel scale σT ∈ [25,200] 30
Kernel curvature v 2×105

Kernel depth scale - N.A. 5
Kernel discretization steps I = J 16

Kernel maximum φ - 45°

Ve
ss

el
n

es
s

R
O

R
P

O

Number of orientations - 6
Opening angle threshold φT 4π/18

Path opening length L 3
√

ÂS
Anisotropic orientation threshold iR 2

Normalization of input data - - no

N
ei

gh
b

o
rh

o
o

d
co

n
st

ru
ct

io
n

Pixel adjacency - 4-adjacency
Weights normalization - yes

Disc radius R
√

20ÂS/π

Guidance map isotropy threshold Γ 0.05
Shape type - ellipsis
Shape area AV 7× ÂS

Shape ellipsis eccentricity ε 0.9
Dictionary shape set size ι 6+1

Isotropic shape relative scale - 2 1
Target based cost function weighting η 5×10−3pAV 30

Cardinal based cost function weighting η′ 5×10−3 100
Cardinal based path length K 4 3
Regularization coefficient α ∈ [1/64,1] ∈ [1/8,64]

Stopping criterion ε -
Maximum iteration Ni Max 1

Table 4.2 – Table of parameters, for listing the main parameters that we have tuned during our experiments.
Most of them have been slightly tuned by trial and error, sometimes using our graphical user interface (GUI)
for finding better combinations of parameters. In practice, we have implemented more internal parameters,
such as boolean switches for trying alternative computations, but we have limited their appearance for
more clarity.
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short paths to be conserved in the opening, but gives good results. For encouraging the detection
of only thin structures however, only sites being member to up to two different paths are consid-
ered belonging to anisotropic structures: The orientation threshold iR has been set to 2. In the
case of 3D spaces with RORPO computed on 2D images, we tried the normalization of the input
data with respect to each site of the image, but it did not produce any improvement.

Finally, there are a few parameters also that impact the neighborhood construction. First, to
derive adjacency at site level, we base on 4-adjacency at pixel level, since the size of these sites
and the length of their borders makes the difference with 8-adjacency or more complex adjacency
relationship unnoticeable. For providing the weighting function W, we normalize the weights of
the neighbors of a site so that they sum to one: This is a design question that gives a better under-
standing of the regularization coefficient α, that can be considered as a parameter.

Then, we set the parameters of each neighborhood specific implementation as depicted in the
table. More generally, with shape (and disc) neighborhoods, the issue is to ensure that the center
of mass of nearby sites may belong to a neighborhood that would seem regular if possible, and to
fit in the thin structures at the same time. Typically, larger neighborhoods produce more regular
topology, since a large radius R or a shape area AV , will help to avoid missing a close neighbor. Con-
versely, thin neighborhoods with small areas and high excentricity will tend to “miss” the location
of the barycenter of close sites that would however be good potential neighbors, and worse, some
sites may also have no neighbors for the same reasons. In isotropic cases with crack detection,
we have empirically seen that increasing the size of the isotropic shape helped with the regular-
ization of homogeneous areas. We also tried implementing rectangular and conic neighbors as a
replacement of ellipsis based neighborhoods, but it did not seem to improve the results.

Similarly, we have realized experiments with path based neighborhoods, and tuned the pa-
rameters by hand while computing interactively the precision of these neighborhoods. The con-
clusions of these empirical observations were that, in SFF, allowing for a good flexibility of the
neighborhood with respect to the expected orientation and reducing the length of cardinal based
neighborhoods to K = 3 (corresponding to 4 neighbors) seemed to produce the best results.

We note that the values used for weighting parameters η and η′ are very different depending
on the application. This is because in the experiments we realize with thin structure detection,
I is expressed in range [0,1], while in SFF, the input image I in Equation (3.17) is the sharpness
profile, constituted of sum of Laplacians of images that we have not normalized. However, in
both situations, we note that η and η′ values correspond to high sensitivity to the image content
component, and a rather reduced sensitivity to orientation.

We compute our experiments for multiple values of α, that have been fixed so that both under-
regularized and over-regularized situations are encountered, and finally, we limited ourselves to
one iteration of minimization of the functional, therefore we did not fix any stopping criterion in
our experiments.

In the following chapters, we now specify the implementation for both applications and
present a few results in the meantime.
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5.1 Context

In this chapter, we compare results obtained using our neighborhoods with results using isotropic
neighborhoods, in two examples: detection of geometrical drawn lines in a simulated image, and
crack detection on some actual gray-level images. Both detections result in a binary segmentation
where thin structures should be highlighted. For segmentation of crack images, Nguyen et al.
[2011] motivates the need for a detection method that takes advantage on free-form anisotropic
path-based neighborhoods. We note that those neighborhoods share some similarities with the
neighborhoods introduced in Section 3.3.3. However, the approach remains specific to cracks and
textured backgrounds and we therefore decided to implement our more generic approach as a
challenge and as a proof of concept.

The simulated image is a grayscale image, with arbitrary shapes and textured noise on it. This
image was generated from a grayscale image with structured drawings, such as lines, arcs of circles
that provides a ground truth from thresholding. Then, we simulate noise by manually adding
artifacts and shadows to the image.

Crack detection consists of the binary segmentation of real images from the CrackTree dataset
(Zou et al. [2012]), which includes the ground truth images. In these images, the cracks are thin
structures over a highly textured and noisy background, for instance some asphalt road or a con-
crete wall. Even with the preprocessing for removing shadows proposed by Zou et al. [2012] and
some background subtraction methods, the texture of such surfaces makes any segmentation by
thresholding unsuitable, which motivates the need for regularization. Note also that the proba-
bility density of the two classes “crack” and “background” are different and that in terms of area
cracks only represent a very small amount of sites. Therefore, they tend to disappear with regu-
larization. For addressing this issue, we encourage over-detection of cracks at data level (without
regularization). Figure 2.6 and Figure 5.2 show an example of each scene type and the associated
ground truth. We note that another crack dataset [Majidifard et al., 2020] exists and presents a
more complete set of images with more labels, such as longitudinal, reflective or alligator cracks.
However, since this dataset has been proposed during the course of this PhD and after our early
experiments on the subject, we continued our experiments with the CrackTree dataset that was
already used in previous experiments in our laboratory.

In the next sections, we specify the energy terms we use for this application (Section 5.2.1),
as well as some specific parameters of implementation (Section 5.2.2). The evaluation itself (Sec-
tion 5.3) consists of the visual comparison of the guidance map obtained with energy-based and
TV models, and then a numerical comparison of performance obtained with the best pair of pa-
rameters (α,σ) for TV.

Finally, note that, in the framework of this PhD, this first application of our contributions for
anisotropic neighborhood was only considered as a toy-application since, unfortunately, we had
not enough time for further investigation.

5.2 Binary implementation

5.2.1 Energy terms

The data fidelity term E1(u) in the functional F(u,V) (see Equation (2.3)) is the energy term derived
from the likelihood P (I|u). In the application to crack detection, the model for assigning a site to
either the background or the crack is often based on the assumption that a crack is shadowed
by the material in the surroundings and therefore has a lower luminosity than the background.
For usual gray-level images (as CrackTree dataset ones and simulated one), image intensities are
usually assumed Gaussian-distributed for each class c ∈ C with mean value µc ∈ F and standard
deviation σc ∈R>0. The data term Es

1 for any superpixel s ∈S and any label us ∈ C can be written:

Es
1(us) = ‖I(s)−µus‖2

2

2σ2
us

+ log(σus ),
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and, assuming conditional independence (cf. Section 2.3.2) for any u ∈ CS , E1 in Equation (2.3) is:

E1(u) = ∑
s∈S

Es
1(us). (5.1)

The way class parameters have been set is specified in the next section about parameter tun-
ing.

For the second energy term, E2(u,V) with u ∈ CS and V ∈ V, we opt for the Potts model Wu
[1982], weighted according to the strength of interaction between neighboring sites:

E2(u,V) =∑
s∈S

∑
t∈V(s) W(s, t )1{us 6=ut },

where 1{a 6=b} =
{

1 when a 6= b,
0 otherwise.

and W : N →R>0 is the weighting function specified right after.

In the case of the neighborhood of Stawiaski and Decencière [2011], i.e. the weighting func-
tion W is defined for any pair (s, t ) ∈N as W(s, t ) = ∂(s,t )

∂(s) ∈ ]0,1], where ∂(s, t ) and ∂(s) denote the
common boundary between s and t and the perimeter of s, respectively. Now, such a definition
requires that s and t have a common boundary, i.e. are adjacent.

Then, alternatively, we propose a weighting function that overcome such a constraint since
several of our neighborhood constructions may involve non adjacent pairs of sites within the
cliques. Specifically, we propose to define for any pair (s, t ) ∈ N the weighting function W as
W(s, t ) = (]V(s))−1 ∈ ]0,1].

The Potts model maintains the property of submodularity and the data fidelity term E1 is con-
vex. Since in our case #C = 2, then according to Kolmogorov and Zabih [2004], we know for sure
that the energy function defined in Equation (2.3) can be exactly minimized.

5.2.2 Parameter tuning

In our implementation, the image intensities are normalized in [0,1].

The parameters of our two classes, background and crack, have been firstly set after measur-
ing the mean value and standard deviation of their grey level from the ground truth first. However,
first experiments showed us that non stationarity of the road texture induces very numerous FP
detections in the bottom of the image while on the top of the image the FN cases become a major-
ity. Actually, the angle formed by the optical axis with the normal of the surface imaged induces a
variation in both the lighting and the size of the texture relatively to the sites. Since the distribution
of the two classes is very unbalanced, the regularization also tends in our experiences to reduce
the number of cracks detected. To overcome both issues, we introduce a correction of the mean
value that is an affine function with respect to the line number, and set σc = 1 for simplicity.

In order to study the benefit of our approach regardless the site decomposition, we propose
a “perfectly shaped” set of superpixels generated from the dilated ground truth. Then, for result
derivation using actual superpixels, we have considered ETPS superpixels (Yao et al. [2015]) after
image smoothing with median filtering with a square window of size (3×3). Indeed, as mentioned
in Section 4.3.1, ETPS superpixels exhibit good compactness (so that they can be efficiently mod-
eled by their centroid) and regularity in size while at the same time allowing the grouping of crack
pixels into thin superpixels.

Concerning the construction of anisotropic neighborhoods, the parameters are chosen so that
there are 6 neighbors per site in average. For shape-based neighborhood, this boils down to setting
the ellipse’s area to 7 times the mean area of a site. With cardinal-based neighborhood, we set K = 4
and β′ = 5× 10−3 in Equation (3.21). Finally for target-based neighborhood, in Equation (3.17),

β= 5×10−3×
√

AV
π where AV is the area of the shape-based neighborhood ellipse (Equation (3.16)).

Notice, these parameters are related to the relative scale of the thin structures with respect to the
site size, and depend on each other.
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5.3 Numerical experiments

5.3.1 Guidance map estimation

Before the evaluation of the performance of anisotropic regularization with respect to classic seg-
mentation, we propose to compare visually the approaches proposed in terms of guidance map
construction: Energy-based and TV. For doing so, Figure 5.1 provides a visualization of the ori-
entations and saliency of the guidance map. These guidance maps are produced from the blind
segmentation shown on the top left image, computed with ground truth based superpixels, the
ground truth being displayed in the top right image. In the middle of the first row, the circle rep-
resents the legend for colormap used for guidance map. For energy-based guidance map, we note
that the used neighborhood is the dictionary-based neighborhood having ellipses elements.

The visual comparison of the two methods shows us that energy-based model is very sensitive
to the presence of FN detections, since it allows isotropic areas in the top left crack, for instance,
and is also sensitive to FP detections, as seen in the middle of the image, contrary to TV. Addi-
tionally, while the orientation is quite well estimated far from the direct surroundings of a crack,
our experiments show that it is not the case in the areas that are close to thin structures. This
drawback is probably due to the fact that the elliptic shapes do not fit easily into the cracks. An
interesting perspective could be to implement such guidance map with path-based dictionary
neighborhoods. To cope with these errors, we can try better fitting with the regularization term
β, but the latter point seems compromising, even when increasing β’s value, as seen for instance
with the two blue stripes representing horizontal neighborhoods that should not exist in the top
right corner for β= 0.5.

TV-based guidance map in contrast seems to produce smooth and robust maps, even for low
values of σT. We tested various initialization options, for instance the use of stick tensors oriented
from the shapes of the superpixels, but no improvement was brought compared to the simple ball
tensor initialization that we finally used.

As energy-based guidance map appear too poor for allowing fine segmentation, we focus on
TV guidance map in the next experiments, i.e. the qualitative comparison of the best segmentation
obtained with respect to the considered measure (introduced in the next subsection), varying the
values of α and β.

5.3.2 Qualitative and quantitative evaluation

Since our ground truth can be composed of 1 pixel width objects, in order to distinguish be-
tween slight location errors and non-detection of some parts of the cracks, we compute the F-
measure (FM) at scale ε= 2, based on the number of True Positive (TP), FP and FN, as in Aldea and
Le Hégarat-Mascle [2015]; Vandoni et al. [2016]. In addition, the crack region and the non-crack
area being highly unbalanced (in favor to the non-crack area), we use a high value of γ = 5 in FM
to increase sensitivity to FN with respect to FP:

FM(γ) =
(
1+ γ2FN

(1+γ2)TP
+ FP

(1+γ2)TP

)−1

∈ [0,1]. (5.2)

For each scene, we compute a segmentation varying α values in [1/64,1], and σT values in
[0,2], and finally select the best result with respect to FM.

The results at pixel level are presented in Fig. 5.2 and those at superpixel level in Figure 5.3,
respectively. For each image, that corresponds to a set of parameters including the type of su-
perpixels and the type of neighborhood, we select the best result, according to the FM criterion,
among the results obtained varying the parameters σ (the scale parameter of tensor voting) and α
(the regularization parameter in Equation (2.3)).

At pixel level, Figure 5.2 illustrates the clear improvement of the quality of the results with the
use of anisotropic neighborhoods. In the first image of crack, anisotropic regularization allows for
enhancing the continuity of the detected cracks, even if some small gaps still fragment it. In the
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β 0 0.5 1 2

σT 25 50 100 200

Energy-based

TV-based

Figure 5.1 – Energy-based and TV-based guidance map comparison. These guidance maps are computed
from the blind segmentation displayed in the image on the top left corner. The top right corner image is
the ground truth, from which are computed the superpixels, and the image in the middle on the top is
the legend of the colormap used for guidance maps. The two rows represent energy-based and TV-based
guidance map, with various values of parameters β and σT, respectively. Visually, the TV-based guidance
map seems to align correctly with the thin structures, even for low values of σT, and to be relatively robust
to the presence of FN, while the energy-based model is very sensitive to them, and must be regularized,
however, crucial information of orientation are quickly lost.

Original image Ground truth Blind Isotropic Shape

58.80 88.82 91.97

99.53 98.98 99.81

Figure 5.2 – Evaluation performance against ground truth at pixel level for a crack image (top row) and a
simulated one (bottom row). The three last columns are segmentations without regularization (“blind”) and
with regularization (isotropic with 4-connectivity or shape-based anisotropic neighborhoods with ellipses).
For each image, in both regularized cases, the results achieving the largest FM with respect to tensor voting
scale σT and regularization parameter α, are depicted. FM(γ) measurements are also provided in percents
for γ= 5.
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simulated image, the improvement appears quite significant: In particular, we notice the correct
segmentation of the six discontinuities in the cracks, without loss of precision on more complex
shapes.

However, at superpixel level (Figure 5.3), while exhibiting better blind results (than at pixel
level) thanks to the noise filtering within superpixels, anisotropic neighborhoods seem to suffer of
the difficulty to derive a correct neighborhood V even with a correct estimation of its orientation
(see last column). Anyway, our experiments reveal that even if we are far from “optimal” neighbor-
hood performance, path-based neighborhoods outperform the shape-based ones. Unfortunately,
the anisotropic approach benefits exhibited in Figure 5.3 do not seem to improve the segmentation
of the crack image in a so significant way: Path-based approach outperforms the other approaches
only when superpixels are perfectly shaped, but are still sensitive to the degradation of the quality
of the superpixels.
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Simulation Crack image
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Figure 5.3 – Evaluation of performance against ground truths at superpixel level for a crack image and
a simulated one. For each isotropic neigborhood or TV-based anisotropic neighborhood, the segmenta-
tions achieving the largest FM(γ) (for γ = 5) with respect to parameters σ and α are depicted. The last two
columns correspond to the use of the “perfectly shaped” superpixel. The last column represents, for one
site highlighted in blue, the sites that are in its neighborhood (in red), depending on the method used for
constructing the latter one: Each row shows a different type of neighborhood, specified in header lines. The
last row is a ground truth-based neighborhood for comparison purpose.
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5.4 Conclusions

In this chapter, our experiments on a simple simulated image and an example of crack images
allowed us to observe the behavior of our anisotropic approach for both energy based and TV
based guidance maps, compared to isotropic neighborhoods. Visually, the second one seems to
outperform the energy based guidance map, that lacks precision near the thin structures that we
want to segment.

With the computation of regularized segmentations, we obtain mitigated results that are dif-
ficult to assess. While only a few results compete with isotropic regularization in these cases, this
gives us a proof that the concept is promising, since it shows improvements in some areas that
could not be possible with isotropic neighborhoods. However, the simulated image that shows the
best improvements cannot be used as a solid evidence. Similarly with crack images, only ground-
truth based superpixels provide slightly better results with anisotropic approaches, and the crack
images remain problematic due to the very challenging task of producing suitable superpixels for
thin structures in highly textured regions.

For these reasons, we complete our observations with a wider panel of scenes in a second
application in the next chapter.
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6.1 Problem and state of the art

6.1.1 Principle

SFF is a very convenient method used for inferring the 3D shape of an object from a set of images
with varying focus settings (Nayar and Nakagawa [1994]). SFF is an inverse problem and a pas-
sive optical method that presents the advantage of only requiring one fixed camera with a rather
short depth of field and the ability to move this camera or to change the focal distance of the opti-
cal system (see Figure 6.1). SFF is therefore applicable in many real world applications including
industrial inspection, micro manufacturing, robotic control, 3D model reconstruction, medical
imaging systems and microscopy.

The reconstruction of the depth is performed thanks to the knowledge of the behavior of the
Point Spread Function (PSF) of an optical system. The PSF is the function that associates to any
point of an object, the image of this point on the sensor. This point image is either a point, when
the point of the object is in the object focal plane, or a blurred spot, when the object is out of focus.
The main idea behind SFF is therefore that the closer an object is to the object focal plane (i.e., the
more it is focused), the more it appears sharp. Conversely, the farther an object is from this object
focal plane, the more it appears blurred. Therefore, SFF makes use of a sharpness operator to find
the depth where each point appears the more sharp, and reconstructs a depth image.

However, such an image is prone to noise and ambiguities since, in homogeneous or poorly
textured area, the measured sharpness will be quite low and unreliable. Therefore, we formulate
the problem in the variational framework in order to introduce some regularization terms. In this
section, let us briefly recall the physics behind the principle of SFF and its resolution.

6.1.2 Geometrical optics

There are two main approaches to describe the formation of an image through an optical system.
The first one, the physical optics approach, is based on electromagnetic wave theory and ana-
lyzes diffraction effects to compute the exact image formation model. However, in SFF, we rather
stick to the second one, geometrical optics approach, that ignores diffraction effects to simplify the
analysis. This approximation is justified by the short wavelength of light, that makes diffraction
unnoticeable for our optical sensors that have a relatively limited resolution.

Figure 6.2 illustrates the geometrical notations involved in the image formation process. The
optical system of the camera is assimilated to a thin lens within the framework of thin lens and
paraxial approximation. The paraxial approximation deals with rays that form small angles with
the optical axis of the system. This allows for setting sin(x) ≈ x, tan(x) ≈ x, and cos(x) ≈ 1, and
establishing three rules:

• Any ray that enters parallel to the axis on one side of the lens proceeds towards the focal
point F on the other side.

• Any ray that arrives at the lens after passing through the focal point on the front side, comes
out parallel to the optical axis on the other side.

df0

Figure 6.1 – An illustration of SFF. A camera (on the left) is moved along the optical axis by a distance d f , or
its focal setting are changed, while taking an array of pictures of the scene. Each of these pictures (middle)
represents the scene with some objects blurred depending on their positioning. The principle of SFF is to
reconstruct a depth image of the scene (represented on the right hand side image) from these pictures.
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• Any ray that passes through the center of the lens will not change its direction.

From these rules the definition of object plane and image plane are derived, both normal to the
optical axis, as well as the Gauss lens law or thin lens equation (6.1). Any ray crossing a point O in
the object plane at distance (or depth) s ∈R and passing through the thin lens then crosses a point
P at distance s′ ∈R in the associated image plane such that:

1

s
+ 1

s′
= 1

f
, (6.1)

where f ∈ R is the focal length of the lens. Then, if the image plane is also the sensor plane, the
point O is said perfectly focused and its image is a single point P in the image.

But object planes and image planes go together as pairs of planes that are orthogonal to the
optical axis and whose positioning respect the thin lens equation. Imaged scenes include points at
variable depths. Therefore, the images of these points are localized in a multitude of image planes,
whereas the sensor plane is unique for a given camera setting. For any non null shift between
image and sensor planes, equal to δ, the energy received from the light that comes from the object
through the lens is uniformly distributed over a circular patch on the sensor plane. The diameter
d ′ ∈ R≥0 of this patch depends on the diameter d ∈ R>0 of the surface of the lens that is crossed
by light, which is the diameter of the diaphragm also called aperture of the optical system. This
diameter is computed by using similar triangles as:

d ′ = δd

s′
.

Such an effect is known as the defocusing effect: When an object does not belong to the plane
that projects points to the sensor plane, it appears blurred. The resulting image on the sensor
actually becomes similar to a convolution between the PSF and the input image, except that, since
the PSF varies with depth of the image sources, the actual convolution involves a third dimension.
In words, the more focused, the more sharp, and the more defocused, the more blurred are the
objects representation in the acquired image.

6.1.3 From physics to sharpness operators

The idea behind SFF is to take series of pictures of the scene with varying focal settings and to
discriminate sharp pixels in the set of images to recover depth (see Figure 6.3). For some appli-
cations, when the focal settings are fixed by design, another way of achieving the same result is
to translate the object we want to measure in small steps towards the camera, or the camera may
move towards the scene. In any cases, each setting corresponds to a specific depth for which the
objects would be focused, and that is the reason why the set of 2D images is considered as a 3D
volume.

Once the images have been acquired, the second step of SFF is to measure how focused is each
point in the volume. This is done using a sharpness measure or focus measure operator. Typically,
the sharpness measure quantifies the contrast in the surroundings of a pixel with the use of gra-
dient or Laplacian operators, and averages the obtained values on a window centered on the pixel
to produce the sharpness volume Pertuz et al. [2013].

6.1.4 Depth derivation from sharpness

Initially the depth of each pixel of the 2D scene is computed as the one that maximizes the pixel’s
sharpness measure. Nayar and Nakagawa [1994] approximate the sharpness curve (that represents
the sharpness values versus the focus parameter values) with a Gaussian model, and interpolate
(along the optical axis) the three focus measures centered on the maximum sharpness value to al-
low for a better depth estimation. To reduce the sensitivity to noise, some authors do the sharpness
curve interpolation by using quadratic, cubic or polynomial interpolation [Moeller et al., 2015] or
Gaussian interpolation [Ribal et al., 2018].
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Figure 6.2 – The image formation scheme: In geometric optics, for a thin lens of focal f in the paraxial
approximation, a point O in the object plane at distance s is associated to a point P in an image plane
whose position s′ is determined by Equation (6.1). With an aperture of diameter d , moving the sensor (or
the object) away from the image plan (respectively the object plan) introduces blur: This process is called
the defocusing effect. The diameter d ′ of the blurred image of point O is approximated by the point spread
function derived from geometry. (Courtesy of Ahmad and Tae-Sun Choi [2005]).

⇒

⇒

Figure 6.3 – Depth reconstruction in SFF, from the images acquired for scene Art (top row). For two sites (A)
and (B), marked in the all-in-focus image (on the left), the sharpness curves are represented in the middle
image. From the maximum of sharpness, a blind depth map (right image on the second row) is derived. The
multiple curves illustrate options for computing the depth, in orange, from the raw sharpness data, and in
blue, from gaussian interpolation [Ribal et al., 2018].
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The result of such an estimation is however obviously limited in homogeneous regions: Be-
cause sharpness is supposed to be null in such areas, even a small Gaussian noise on the grey level
values of the set of images can produce a Gaussian noise on the sharpness curve. Since each focus
value is prone to the same Gaussian noise, this produces an uniform noise of maximal intensity
on depth map. Without further improvements, the locally estimated depth map appears to be
inaccurate in such areas excepted in textured regions and on the edges of the objects.

6.1.5 SFF in variational framework

To overcome previously mentioned limits, some authors have considered SFF in the variational
framework, such as Gaganov and Ignatenko [2009]; Moeller et al. [2015]; Ribal et al. [2018]. With
regularization, the information extracted in the scene areas where SFF is reliable, such as in ob-
jects details, contours, is propagated from neighbors to ambiguous areas, such as homogeneous,
overexposed or underexposed regions. However, the presence of thin structures induces a need
for anisotropic regularization.

6.2 Model application to SFF

6.2.1 Data in SFF

We test our approach on some scenes extracted from the Middlebury College dataset of 2005 and
20061, with the third-sized images. For each scene, we use a ground truth and an all-in-focus
image to generate a set of simulated blurred images thanks to the defocusing algorithm of Pertuz
et al. [2013]2. We note that each image is a plane for which a basis is (e0,e1) and a normal is e2. The
multiple images correspond to different focal object plane depths along the axis e2. For simplicity
and readability, we consider taking images at regular steps and set this step to be the unit. The
maximum depth on this axis is therefore a multiple of the unit denoted by ∆h ∈ N, but images
taken at irregular steps could be considered without loss of generality as well.

Then, the set of defocused images is assumed to be the only input data available, and we re-
cover depth from it based on the following steps: First, we compute the sharpness in each pixel
independently to derive the blind depth map. In the case of sites that are superpixels, we can then
compute the superpixels from an approximated all-in-focus image. Finally (as described in Sec-
tion 6.2.2), we instantiate our anisotropic regularization through the definition of an energy and
the adaptation of our guidance map and neighborhood construction to SFF.

Sharpness computation

Indeed, sharpness information cannot be computed at superpixel level, since sharp information
is lost by the phenomenon of averaging the color of the pixels into superpixels. Therefore, we
compute the sharpness at pixel level beforehand, and if needed, the sharpness at superpixel level
would be derived from the mean sharpness values of the pixels that compose it.

The sharpness operator we use is the Summed Modified LAPlacian (SMLAP) introduced in
Pertuz et al. [2013]. For each pixel p ∈P , it is defined as

SMLAP(p) = f(p) = ∑
q∈Ω(p)

q=(i , j ,k)

(∥∥∥∥∂I(i , j ,k)

∂e0

∥∥∥∥
1
+

∥∥∥∥∂I(i , j ,k)

∂e1

∥∥∥∥
1

)
∈R≥0

where I(i , j ,k) ∈ F is the intensity of the image at pixel q = (i , j ,k) ∈ P , where k is the depth, and
Ω(p) is a window centered on the pixel p ∈ P . In our case, Ω(p) is a flat squared window of size
7×7×1 but other choices are possible.

1Scharstein and Pal [2007], dataset available currently on https://vision.middlebury.edu/stereo/data/
2The defocus simulation algorithm is currently available as a Matlab source on MathWorks file exchange at https:

//fr.mathworks.com/matlabcentral/fileexchange/55095-defocus-simulation.
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From the maximum of sharpness, we can estimate the all-in-focus image. For each pair of
coordinates (i , j ) ∈N2:

AFI(i , j ) = I(i , j ,k), with k ∈ argmax
k∈�0,∆h�

(f(i , j ,k)).

If needed, this image allows us to compute superpixels that have a good sensitivity to the sharp
edges of the scene, everywhere in the 2D space, since it picks for each pair of coordinates the pixel
that is the sharpest, that is to say that has the most contrast with its neighbors. The chance of
constructing superpixels on blurred edges of the objects is minimized this way.

Superpixel generation

Since SFF data is composed of a lot of frames represented in 3D, we denote by S3 the set of the
sites in 3D. For computing the sites in the case of superpixels, we first compute them on the 2D
image named all-in-focus image AFI, and we obtain the set of sites in 2D S .

Then, the sites of S3 are constructed by replicating the sites of S along the third dimension, as
depicted in Equation (2.6). For later use, we will denote the set of sites that correspond to the 2D
coordinates (i , j ) ∈R2 of a given site s ∈S by:

H(i , j ) =H s = {p ∈S3 | −→sp ∝ e2}.

Depth derivation

Having defined the sites set, the sharpness of a site is defined in an ad hoc way as the mean of the
sharpness of its pixels. ∀s ∈S3:

f(s) = 1

#{p}p∈s

∑
p∈s

f(p) ∈R≥0.

Then, the depth is naturally computed as the depth of the maximum of sharpness at site level. We
define the blind depth map as û = (ûs)s∈S :

ûs = |−→st |,
with t ∈ argmax

p∈H s

(f(p)),

∀s ∈S .

Naturally, this depth map may be noisy and sensitive to the low sharpness profile of homogeneous
regions of the scene, which we cope with thanks to our anisotropic neighborhood based regular-
ization. When ∃s ∈ S/maxt∈H s (ft ) < κf, where κf is a small positive real, we found that the depth
estimate ûs may be erroneous and could lead to a constant bias. For that reason, we prefer, in such
a case, to select a uniform random blind initialization ûs . In our experiments, we set κf = 2.

6.2.2 Anisotropic regularization

We implement the functional presented in Equation (2.3), with the terms E1 and E2 instantiated
respectively with quadratic distance to the blind estimate ûs and total variation Equation (2.5),
∀u ∈NS , and for V ∈V:

F(u,V) = ∑
s∈S

Ws(us − ûs)2 +α ∑
(s,t )∈N

Wst |us −ut |,

where

Ws ∝


∆h ×

(
max
t∈H s

(f(t ))− min
t∈H s

(f(t ))

)
∑

p∈H s

(
f(p)− min

t∈H s

(f(t ))

)
+ε

 , (6.2)
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where α ∈ R>0 is an hyper parameter, ε ≈ 0 and Wst is the weighting function depending on the
neighborhood V.

With this weighting term Ws , the fidelity to the data term is decreased when the sharpness
profile is homogeneous, or when it presents a very low dynamic. On the contrary, the areas with
a sharpness profile with a localized high response have high values of Ws reflecting the belief that
they are trustful. We note that compared to our binary implementation, the data used for E1 is not
the radiometric information of the input image, but the blind depth derived from the sharpness
profile.

6.2.3 Thin structure estimation in SFF

In Chapter 3, we have introduced both the construction of a guidance map from thin structures es-
timation and the construction of anisotropic neighborhoods from the latter guidance map. How-
ever, specific aspects linked to the implementation have been overlooked in this general presen-
tation and must be detailed in this section. First, we will introduce our implementation for the TV
operator, and then for RORPO.

Note that when we perform segmentation at pixel level, since the number of pixels is very high
for TV and RORPO computation, we nevertheless compute the guidance map at superpixel level.
The input data used for both approaches is the sharpness profile f ∈RS3

≥0.

Tensor voting

Initialization In SFF, for each pair of coordinates (i , j ) corresponding to a location in (e0,e1)
plane, the token selected to initiate the vote are chosen among the local maxima of sharpness in
H(i , j ). However, since the sharpness profile is likely to be noisy, one faces multiple close maxima
possibly inducing as many initial tensor that will reinforce artificially. To cope with this, we in-
troduce a non-maximum suppression (specifically, we keep only one maximum per continuous
interval of focus values associated to sharpness values greater than 80% of the maximum of sharp-
ness value in H(i , j )). This way, we ensure that initial voters are all separated by a local minimum
which value is under 80% of the global maximum.

This initialization provides a tensor map that is sparse in 3D, but dense in 2D.

Voting steps In our implementation of TV for SFF, since the number of pairs of sites in (S3 ×S3)
is very large, we restrict the vote for the orientation estimation to the initial set of tokens. This
allows for reducing the computational burden by removing the dense voting step, at the risk of a
loss of accuracy when the initial depth estimations (and thus voters) are erroneous. However, as
stressed, the voting remains dense when projected into 2D space.

3D to 2D guidance map derivation Similarly to RORPO, TV allows for computing a set of tensors
that are defined in R3, instead of R2. However, the choice of the tensor that best describes the
orientations of thin structures for any site s ∈ S is not trivial. Having tested different possibilities
such as performing dense voting and various estimation methods, either based on stick, ball or
plate maximum saliency or relative saliency maximum detection, we finally found that the more
convincing results are obtained when only considering the cumulated tensors (after voting) at the
blind estimated depth û. Indeed, we have seen through our experiments that while this leads to
irregularities when û is noisy, this also allows for gaps in the orientations estimated on the edges
of the structures of the images, which could be beneficial.

The method for extracting the guidance map from the 2D map of tensors is then to project the
tensor into 2D space to derive the major eigenvector’s orientation. Our tensors are 3×3 matrices
of contravariant coordinates that associate to each vector of the plane a second vector. The pro-
jection of the tensorT in (e0,e1) corresponds to null coefficients in the third line and third column
of the tensor.
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From this projected tensor, we extract the major orientation, and two eigenvectorsλ0,λ1 ∈R2
≥0,

as explained in Section 3.2.2.

RORPO

Just as with TV, the RORPO algorithm uses the sharpness profile in Equation (3.13). Then the data
is dilated, and the grey level openings realized. One important point is that we only consider 2D
neighborhoods, which means that the path can only spread at fixed depth. This is a parameter of
the algorithm that we fixed empirically after achieving better results than with 3D neighborhoods
allowing paths between sites at different depth. Another parameter that we have tested is the
normalization of the sharpness profiles along each set H s , so that the effect of the local texture
of the scene would be minimized with respect to the effect of being localized at the more focused
depth. However, this does not yield good results, and we limited ourselves to the use of the dilated
sharpness profile without normalization.

3D to 2D guidance map derivation After computation of the RORPO, the guidance map g in
Equation (3.15) is computed for every site s ∈ S3 in R3, while we expect the neighborhood to be
computed in 2D. To get 2D values, we average the directions in any given set H s with the same
technique than in Equation (3.14), ∀s ∈S :

gs =
( ∑

t∈H s

|gt |exp(2i arg(gt ))

)1/2

, (6.3)

where arg(c) denotes the argument of any complex number c ∈C.

6.3 Proposed evaluation

The purpose of this chapter is to evaluate the benefits of our approach on the application of SFF
compared against isotropic neighborhoods. Since isotropic neighborhood using discs of fixed size
had worse performances than Stawiaski and Decencière [2011] in Chapter 5, we removed it from
the comparison for readability. In this section, we introduce evaluation methods for our applica-
tion in which, for recall, the labels are ordered. We can therefore use measures that are often used
in image restoration. We do these measures at pixel level. When the sites are superpixels, we note
that there is a maximum value of an optimal segmentation (or depth map), that can also be mea-
sured. All along this section, we illustrate these quality observations with images from a sample of
our dataset, Brush2, that is a toy example.

Let x = (xp )p∈P ∈ CP and y = (yp )p∈P ∈ CP be respectively the ground truth image and the
segmentation image at pixel level. In the rest of this manuscript, however, please note that the
segmentation obtained is u = y. We show the all-in-focus image, the ground truth and an exam-
ple of segmentation for Brush2 in Figure 6.4 We define such ground truth at site level in the next
subsection.

At superpixel level, the ground truth y = (ys)s∈S ∈ CS is computed as the mean of the depths of
the sites that constitute it, ∀p ∈S :

ys =
∑
p∈s

yp

#{p}p∈s
. (6.4)

6.3.1 Depth error map

A first qualitative and intuitive evaluation is provided by the error map with error defined ∀p ∈ S
as εm(p) = |xp − yp |. The visualization of this error as a heat map with colors allows us to represent
the error of segmentation more visually and to locate erroneous areas. In practice, the presence
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Figure 6.4 – Brush sample: All-in-focus image (left), ground truth (middle) and an example of segmentation
(right). In the ground truth and depth map, the darkest areas are the closest areas, while brighter areas are
further.

of some outliers can affect the error map dynamic. Since we are less interested by these very lo-
cal errors than by more significant and spatially expended errors, the presented error maps are
bounded to two fifth of the maximum dynamic of the segmentation:

εm(p) = min

(
|xp − yp |, 2∆h

5

)
.

Figure 6.5 shows an example of such bounded error map. Besides, due to the important size
of the set of parameters, an exhaustive visual analysis of the experiences would be intractable. In
this presentation, results are thus displayed varying only the two main parameters: The neighbor-
hood type, and the regularization parameter. For example, in the case of our toy example Brush2,
Figure 6.6 and Figure 6.7 allow for comparison between the results obtained with our six differ-
ent neighborhood implementations (cardinal-based, target-based, shape-based, for both TV and
RORPO-based guidance map) and results provided using the perfect neighborhood and Stawiaski
and Decencière [2011]’s neighborhood.

Figure 6.7 showing the depth error allows us to better visualize the difficult areas, i.e. the areas
where the errors are mainly located. As expected, the errors mostly concentrate around the sharp
edges of the brushes, that are sharp edges of the ground truth.

Depth error histogram

To have additional information, we plot the histogram of errors, and derive the corresponding
boxplots. The histogram displays the distribution of the depth error. We plot it at logarithmic
scale, since some bins of the histogram have very high values. However, since this prevents the
direct comparison of the neighborhood performances, we also show the corresponding boxplots.

A boxplot allows us to visualize the location of the mean value, of the first and last quartile, and
of the first and last decile of a distribution. In Figure 6.8, the positioning of the mean is marked
with a circle with a dot, the first and last quartile are delimited by the thick vertical line, and the de-
limitation of the last decile is shown by a thin vertical line. The outliers, data points that are farther
than 1.5 times the interquartile range from the median, are also represented as small circles.

The histograms and boxplot of Figure 6.8 correspond to the best estimation of depth maps
among those shown in Figure 6.6 and Figure 6.7.

We compare the neighborhood performance from the boxplots, that visually allow us to distin-
guish three groups. Firstly, the group of perfect and cardinal-based neighborhood exhibit the best
results, with a small mean value and a small dispersion until the last decile, and also a very small
amount of outliers, nevertheless exhibiting quite small depth errors. Secondly, the target-based
neighborhood have a higher dispersion of outliers. Thirdly, the last group gathers shape-based
neighborhoods and Stawiaski and Decencière [2011]’s neighborhood that have a much wider dis-
persion according to the value of the ninth decile.
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Figure 6.5 – Depth error map for the depth map in Figure 6.4 on the right hand side, with its legend on the
left hand side. The color map ranges from blue (null error) to red (error higher than two fifth of the depth
span). In this example, horizontal brush is quite well detected, as is the background, but the depth of the
areas around the bristles of the vertical brush and the depth in the upper part of the handle of the vertical
brush are badly estimated.

These plots allow for non-spatial numerical evaluation, thus being very complementary to the
quality analysis of the error maps.

6.3.2 Neighborhood quality estimation

Knowing the localization of the errors gives important hints about the challenges that our
anisotropic neighborhoods may help to overcome. To evaluate the quality of such neighborhoods,
let us introduce indicators to visualize their performance.

We can represent the neighborhood orientations computed for each site with the guidance
map in a single image. However in SFF the ground truth orientation of the thin structures is not
known. Thus, the quality of the orientations will mainly be evaluated in a qualitative way. More-
over, the quality of the neighborhood itself is hard to appreciate, mainly since there is no such
thing as a perfect neighborhood that would be the unique solution for thin structure preservation.
For completing our analysis, we thus define several specific indicators in that section, after a short
description of the orientation map.

Neighborhood orientation

The orientation map represents saliency and direction information extracted from the guidance
map, computed by TV (Equation (3.12)) or by RORPO (Equation (3.15)), the saliency being the
norm of the vector gs , ∀s ∈ S , and the orientation being the angle between gs and the axis e0, in
the plane of the image.

For representing both information types, in Figure 6.9, we use a color representation, such
that the saturation and the hue encode respectively the saliency and the orientation. Then, the
orientation map is expected to be relatively smooth while following the sharp edges of the objects
and aligning with the thin structures, to improve their segmentation.

However, this qualitative hint is not enough for appreciating the quality of the neighborhood
construction that results from each guidance map, therefore we also introduce two criteria that we
can also display as colormaps.
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Figure 6.6 – Segmentation obtained for the scene Brush2, for different neighborhood strategies and different
values of α (Equation (2.3)), which are indicated at the bottom. The arrows indicate the direction of increas-
ing α, from left to right. For each row, the neighborhood used is indicated at the left hand side, and the best
depth map obtained (with respect to the Peak Signal to Noise Ratio among a given row is marked with a
star. Finally, among the best results, the neighborhood that gives the best result (excluding the theoretically
perfect one) is also designed by a black star.
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Figure 6.7 – Error maps obtained for the scene Brush2, for different neighborhood strategies named on the
left hand side and different values of α (Equation (2.3)), which are indicated at the bottom. For each row, the
best depth map obtained (with respect to the PSNR) row is indicated with a star. Finally, the neighborhood
that gives the best result (excepted the theoretically perfect one) is designed by a black star. The color map
the same as in Figure 6.5.
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Figure 6.8 – Brush2 depth error map histograms and boxplots corresponding to the best results of Figure 6.7.
Because of the logarithmic scale, the histograms are difficult to compare visually. However, the boxplots
in the last row give a simpler representation of the distribution, and allow us to compare and cluster the
neighborhoods according to their performance.
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Ground truth dynamic

Since we expect the regularization to smooth depths within the neighbors of a site, the dynamic of
the ground truth within these neighbors is expected to be as low as possible. We therefore propose
a criterion underscoring the configurations where the ground truth labels xq of the neighbors of a
site p are close to its label xp , ∀p ∈S :

QV(p) = max
q∈V(p)

|xq −xp | ∈ [0,∆h],

where x = (xp )p ∈S is the ground truth expressed at site level.
Note that such a criterion only works with ordered labels (as are depth values in our case).

Figure 6.9 presents an example of this quality measure for the eight neighborhoods we consider,
with reversed the dynamic in [0,255], so that dark area represent bad performance.

A major benefit of such an evaluation criterion is that it does not require any neighborhood
ground truth. Another advantage is its straightforward interpretation in terms of neighborhood
consistency measure. However, such a definition does not take into account the geometry of the
neighborhood: For instance, a valid neighborhood for this criterion could assign scattered neigh-
bors {p}p∈V(s) ⊂ S to each site s ∈ S as long as their depth xp in the ground truth is equal to the
depth xs of s. This can be seen either as an advantage in case of multiple solutions, or a disadvan-
tage since we want to evaluate the neighborhood geometry.

Perfect neighborhood

In this subsection we propose a criterion based on Precision with respect to a perfect neighbor-
hood V′. However, since we do not have a ground truth for thin structures and neighborhoods,
we see in the next sections that the word perfect must not be taken literally as the only acceptable
construction for a neighborhood.

We define an ideal neighborhood that performs well for the criterion involving ground truth
dynamic, while at the same time limiting the neighbors of a site to the ones that located close
to it. Typically, this neighborhood is implemented as a shape-based neighborhood with a disc of
constant radius as unique shape, where neighbors of a site s ∈S for which the ground truth depth
difference with s is higher than a fixed threshold DV = (∆h/10)+1 are removed. We can write it as,
∀s ∈S :

V′(s) = {p ∈S such that |−→sp| ≤ R̂ and |xq −xp | < DV},

where R̂ and DV are respectively the radius of the disc for constraining geometrically the neighbor-
hood, and the depth threshold for constraining the neighborhood. Additionally, elements that do
not form a single connected component with s are removed from the neighbors of s, ∀s ∈ S . We

select a high radius R̂ =
√

(40∗ ÂS )+1, where ÂS is the mean area of the sites (that reduces to 1 if
the sites are pixels), such that the set of neighbors of a site is the closest to what could be the union
of all the sites that should be acceptable as neighbors. The perfect neighborhood V′ therefore acts
as an upper bound for V, and ideally, for any neighborhood V, V(s) should be a subset of V′(s).

Since the perfect neighborhood has a large radius, note that its performances with the criterion
QV′ may be lower than the one of the other neighborhoods, despite being bounded by the value
of the depth threshold. By comparison, the error QV for Stawiasky’s neighborhood is much more
localized, but not bounded.

For this reason, we also compute a quality map based on Precision.

Precision

This quality criterion ranges in [0,1], the higher the better, and is based on the computation of FP
and TP values as follows, ∀p ∈S :

Pr ecV,V′(p) = TP(p)

TP(p)+FP(p)
, (6.5)
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p ∈ V′(s) p ∉ V′(s)

p
∈V

(s
)

TP FP

p
∉V

(s
)

TN FN

Table 6.1 – Confusion matrix for counting the number of TP, TN, FP, FN for neighborhoods.

where a true positive is defined as a site p belonging to the neighbors of a site s ∈ S for both the
neighborhoods V and V′. The FP are computed as sites belonging to V without belonging to V′.
See Table 6.1 for visual explanation of TP, FP, True Negative (TN), FN in the case of neighborhoods.
Precision, or positive predictive value does not include the count of FN and therefore corresponds
better with our expectations: Neighbors of s for V should belong to the perfect neighborhood V′,
but the reciprocal is not true. We illustrate this criterion on the eight neighborhoods in Figure 6.9.

We can see that the shape-based neighborhood exhibit the worst performances near the sharp
edges of the objects, and that the regions of bad performances seem to correspond to the regions
where the depth estimation seem to be erroneous.

We also draw the readers attention on the fact that the perfect neighborhood shows an im-
perfect quality map for Pr ecV′,V′ since a site sometimes has no neighbors, which results in Equa-
tion (6.5) being mathematically unstable. This happens when the sites are isolated by a sharp
difference of depth from the adjacent sites. We added in the definition a small coefficient in the
denominator to cope with this phenomena, which explains the darker sites in the quality map. For
these sites, since the count of TP is always null, the performances of the other neighborhoods are
also impacted and can be ignored.

IoU and threat score

Precision is derived from Intersection over Union (IoU), initially considered for comparing geo-
metrical shapes. In this subsection we show how IoU relates to the threat score, and how ignoring
the FN lead us to use Precision instead.

The IoU for our neighborhood would be computed as follows:

IoUV,V′(p) = #{V(p)∩V′(p)}

#{V(p)∪V′(p)}
, (6.6)

ranges in [0,1] and reaches its maximum when the sets of neighbors of p in V,V′ : S 7→ 2S are equal.
If, in this division, we consider the sites as units instead of computing their areas, this formulation
is very close to the Threat Score defined ∀p ∈S as:

TS(p) = TP

TP+FN+FP
, (6.7)

where TP, FN, FP are defined in Table 6.1. To take into account the fact that the perfect neigh-
borhood includes more neighbors than required, we implemented other representations of the
quality of our neighborhood such as precision and a quality estimation based on the segmenta-
tion ground truth dynamic. Because the FN are taken into account, the Threat Score criterion is
not suitable for our evaluation and we replaced it with Precision.

Now that we have introduced criteria that allows us to visually interpret the quality of neigh-
borhood construction and depth reconstruction, we need quantitative metrics to corroborate our
observations and draw conclusions over larger set of experiments, including more scenes of the
dataset.
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Figure 6.9 – On the left hand side, we present the neighborhood guidance map orientation and saliency,
computed using the colormap which is represented below as a legend. Our two neighborhood qualitative
criteria are displayed for each of the eight neighborhoods on the right hand side. The guidance map rep-
resentation allows us to visualize the behavior of both TV and RORPO algorithm: While TV offers smooth
orientations based on the location of the voters, RORPO guidance map highlights the thin areas of high
sharpness values in the scene, may they be on the same depth or not. The quality criteria each show a
specific nature of error on the neighborhood: The first column penalizes low precision with respect to the
theoretical neighborhood, while the second column penalizes the high dynamic of the ground truth in the
neighborhood.
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6.3.3 Global metrics

Global metrics allow for a quantitative comparison of the depth reconstruction for any setting
of the parameters on the whole dataset. We introduce four measures frequently used in image
reconstruction, the Root Mean Square Error (RMSE), the PSNR, the Universial image Quality Index
(UQI) and the Structural Similarity Index Measure (SSIM). For computing these measures, x ∈ CP

and y ∈ CP are respectively the ground truth and the segmentation (or depth map) at pixel level.

RMSE and PSNR

First of all is the well known RMSE, non negative, that has to be minimized:

RMSE(x,y) =

√√√√ ∑
p∈P

(xp − yp )2

#P ∈ [0,∆h],

It is correlated to the PSNR, that has to be maximized:

PSNR(x,y) = 20log10

(
∆h

RMSE(x,y)

)
≥ 0

Nevertheless, with RMSE and PSNR, a small constant bias or a variation of contrast between
two otherwise identical images can produce a significant error measure, despite the two images
being perceptually very close. For this reason, we complete these measures with UQI and SSIM.

UQI

The UQI index of Zhou Wang and Bovik [2002] measures the similarity between two images under
a perception-based model:

UQI(x,y) = 4σx y x̄ ȳ

(σ2
x +σ2

y )(x̄2 + ȳ2)
∈ [0,1],

where x̄,ȳ are respectively the mean value of x and y, and σx y , σ2
x and σ2

y are respectively the
variances of x, y, and their covariance.

SSIM

The SSIM shares the same idea of introducing perception-based models to compare two images,
but integrates the variances and covariances locally over a sliding window Ω(p). The SSIM writes:

SSIM(x,y) = 1

]P
∑

p∈P

(
2x̄Ω(p) ȳΩ(p) +C1

)(
2σx yΩ(p) +C2

)(
x̄2
Ω(p) + ȳ2

Ω(p) +C1

)(
σ2

xΩ(p)
+σ2

yΩ(p)
+C2

) ∈ [0,1],

where P is the set of the centers p of the used windows Ω(p) of size 7× 7, x̄Ω(p), ȳΩ(p) are the
means over Ω(p) of x and y values respectively, and σxΩ(p) , σyΩ(p) , and σx yΩ(p) are the variances
and covariance. Finally, the constants C1 and C2 are computed from ∆h as C1 = (0.01∆h)2 and
C2 = (0.03∆h)2 for numerical stability.

This is the version of SSIM specified in Wang and Sheikh [2004] with (according to their nota-
tions) α= β= γ= 1. By computing the variances, covariance and mean values on a set of windows
covering the whole image, SSIM incorporates comparison measurements of luminance, contrast
and structure of two images, and aims at taking into account important perceptual phenomena in
its evaluation.

We start the next section by using these metrics to have an overview of the best performances
of our approach.
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6.4 Experimental results

In this section we present the interest of our approach by comparing the depth map obtained with
different parameters and different neighborhoods, both with qualitative and quantitative evalua-
tion methods. In the qualitative approach, we compare visually the depth maps and neighborhood
quality metrics for different values of the regularization coefficient α and different types of neigh-
borhoods, for both RORPO and TV. In the quantitative evaluation, we use the evaluation metrics
proposed in Section 6.3.3 to discriminate the best results for each parameter and compare them
for all the images of our dataset.

6.4.1 Global segmentation results

We now test our approach extensively on a selection of images from the Middlebury college
dataset. For comparing the performances of each neighborhood construction on each scene, we
compute the PSNR, the UQI and the SSIM, for each depth map with different sets of parameters.
Even if we compute each neighborhood for a set of values of the regularization coefficient α, we
represent the performance of each neighborhood with its best result for each measure. We do this
both for computing the depth at superpixel level, and at pixel level, in Figure 6.10.

This allows for a quick numerical comparison of the performances over different scenes. Over-
all, the perfect neighborhood seems to perform well against most of the neighborhood imple-
mented in this experience, both at pixel and superpixel level, even if some exceptions exist. In
general, Stawiasky’s neighborhood performs better at pixel level than at superpixel level.

In a complementary fashion, our anisotropic approach generally seems to bring less satisfac-
tory results at pixel level, and even tends to fail drastically on some isolated cases, for instance
in Wood21, Bowling or Plastic. In other cases, these anisotropic neighborhoods at pixel level are
quite close in term of performances to perfect and Stawiaski and Decencière [2011], sometimes
even seems to outperform one or two of them, for some of the metrics, but the results are some-
what mitigated.

At superpixel level however, anisotropic and isotropic performances for depth reconstruction
seem to be more balanced, to the benefit of cardinal-based neighborhood. For exhibiting the ben-
efits of our approach, we turn our attention to the cases where the performances highly depend
on the type of neighborhood. For instance, Flowerpot, Reindeer and Lampshade present high vari-
ations in the performances, to the advantage of cardinal-based neighborhood, both with TV and
RORPO. We also draw your attention to the more difficult cases, that seem to be the same scenes
than at pixel level.

For further scene analysis, we present the corresponding error maps and neighborhood quality
maps.

In general however, shape-based neighborhood seems to often yield average or poor results,
both at pixel and superpixel level, both with RORPO and TV. For this reason and because the num-
ber of images we can display in a figure is limited, we decide to let aside shape-based neighbor-
hood and to compare only cardinal-based and target-based neighborhoods against Stawiaski and
Decencière [2011] and the perfect one in what follows.

Qualitative analysis

Successful scenes

We focus on the scenes Reindeer and Lampshade for analysis and validation of the interest of our
approach. Through the display of error maps and neighborhood quality maps, for each neigh-
borhood with multiple values of α, we discuss in this section what makes the strengths of each
approach in these two examples.

Reindeer The ground truth of this scene, called Reindeer1 in the Middlebury College dataset, is
presented in Figure 6.11.
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SSIM at pixel level

tv + cardinal
rorpo + cardinal
perfect neighborhood
tv + shape
rorpo + shape
stawiasky
tv + target
rorpo + target

Figure 6.10 – Per scene best results at superpixel (left column) and pixel level (right column). Each row plots
the best results for each neighborhood construction and for each scene, among all experiences, respectively
to a quality measure: From top to bottom, PSNR, UQI and SSIM. For all of these measures, the higher is the
value, the better is the result. Values obtained with TV are colored in green, and with RORPO in purple,
while our perfect neighborhood and Stawiasky’s isotropic neighborhood are represented respectively with
black diamonds and blue crosses marks. Cardinal-based, target-based and shape-based neighborhoods’
performances are represented with four types of triangles, circles and asterisks (see more details in the leg-
end). Since shape-based neighborhood results generally seems to be slightly below the other approaches,
we removed it from the qualitative comparison in the next figures for better readability.
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Figure 6.11 – The ground truth and the all-in-focus image for the scene Reindeer of the dataset.

In this image, we have, from the bottom to the top, a moving box with a thin textured rope in
the foreground, topped by a reindeer that has antlers above his head and holds gifts. The reindeer
lays below the background, and is therefore very contrasted in the depth map, whereas the rope
is a challenging thin structure that lies just a few centimeters below the moving box. A second
moving box lies on the right hand side of the image, in the foreground. Both moving boxes exhibit
a relatively poorly textured surface, for which obtaining the blind estimate of the depth may be
challenging.

Both in the middle-ground and in the middle of the image, a carved head seems to rest on a
sofa, haloed by the handle of a wicker basket. On the top of the image, the background is com-
posed of a tote bag and the back of the sofa.

The construction of superpixels with ETPS yields the partition of the image visualized in Fig-
ure 6.12. We note that the choice of the superpixel algorithm used may have a high impact on
the decomposition of the image in sites and therefore on the construction of the guidance map,
the neighborhoods, and the resulting segmentation. We formulated in the beginning of our works
some qualitative requirements for the superpixels to be used. Among them, there are for instance
the regularity of the superpixel lattice, especially in homogeneous areas, the adherence to bound-
aries, and the regularity of the size of the superpixels.

While ETPS seems to fulfill these prerequisites and allows the construction of suitable neigh-
borhoods for our application, more advanced experiments could be carried out on this topic and
are left for future works.

We present in Figure 6.13 the depth maps obtained by varying of the regularization coeffi-
cient for each of the neighborhoods considered, namely: The Perfect neighborhood, the Cardinal-
based neighborhood, the Target-based neighborhood, and Stawiasky’s neighborhood. For the
anisotropic neighborhoods, we compute two versions, based on TV and RORPO.

For this scene, we note in the blind segmentation that the moving boxes are very noisy. This
noisy aspect is an expected consequence of the noise added in the blind depth. This occurs in low-
texture areas, designed for avoiding any constant bias that could be introduced by the sharpness
operator when its response is too small. There are also errors of depth on the reindeer, on his head
and on the chest.

On the contrary, the rope, the wicker handle and the head, look correctly estimated. The
carved head also looks quite satisfying, as well as the top-left part of the background.

In the end, the challenges of the regularization is to preserve these correct depths while
smoothing the erroneous areas.
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Figure 6.12 – The superpixels generated by the ETPS algorithm (Yao et al. [2015]) for the scene Reindeer of
the dataset. These superpixel exhibit relatively regular shapes in areas that are homogeneous, and follow
the edges of the objects of the scene, which makes them a good candidate for our experiments.

When looking at the board, from blind segmentation to more regularized depth maps until the
best result of each column, we see that the first parts to be regularized are the noisy areas in the
foreground on the moving boxes, thus improving the quality of the depth reconstruction according
to our quality criteria. For target-based and Stawiaski and Decencière [2011]’s neighborhoods
however, the antlers start to deteriorate (for α = 0.5), while noisy areas of the boxes in the front-
ground are not correctly segmented.

These errors are easier to localize in Figure 6.14. The best result is achieved for α = 2 with
RORPO and cardinal-based neighborhood. When increasing the regularization parameter further,
we can see here that the cardinal-based neighborhood and the perfect neighborhood still quite
preserve the antlers. This suggests that these neighborhood exhibit better performances in these
areas.

As expected when looking at the boxplot Figure 6.15, the distribution of the errors in the perfect
neighborhood is very small and its mean is a null error, which is encouraging. The other neigh-
borhoods share these characteristics, and the distinctions between them are mostly a question
of positioning of the outliers. For instance, target-based neighborhood with TV-based guidance
map has a large amount of consequent errors, localized in the same area as the other target-based
neighborhood, that seems to be related to errors in red/orange on Figure 6.14 on the antlers. The
boxplot also signals more outliers on RORPO-cardinal-based neighborhood than on TV-cardinal-
based neighborhood, which favors the latter one, as confirmed both by PSNR, UQI and SSIM.

To go further, we finally compare the neighborhood themselves through the indicators we have
implemented in Figure 6.16. First, we can compare the orientations. On the TV-based guidance
map, we can see clearly piecewise smoothly varying orientations, with a few set of outliers. Due
to our implementation, we recall that the TV is only performed over a surface computed from the
maximum of sharpness, and that the smoothness of orientations is therefore only ensured over the
smooth parts of that surface. A side effect of the voting algorithm is that sites close to the border
of the image tend to have an orientation that is parallel to the edge of the image. On a larger
image or with the appropriate border extrapolation, such effect would not impact the orientation
estimation; as a result we ignore this effect in our analysis. However, looking at its effect near the
angles of the image still gives us hints about the behavior of TV near edges of compact structures:
In a counter-intuitive manner, the estimated orientation in the top left corner of the image is the
orientation of the diagonal of the image, from the bottom right to the top left. This indicates that
the estimated orientations near the edges of high curvature of a compact structure will tend to
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be orthogonal to these edges. This problem of orientation near edges with TV is visible near the
basket handle and the right side of the rope in the comparison of cardinal-based neighborhoods
in the second and third row of Figure 6.16.

With RORPO, the approach is different, and it visually produces saliency and orientation maps
that highlight better the sharp edges of the objects. This is consistent with the fact that with
RORPO, we seek for high values of the sharpness operator (the SMLAP) for performing the path
opening and discriminating thin structures. A drawback is that the map of orientations seems to
lack a bit of smoothness.

If we look at the rope in the foreground, we see without any doubt that both the method con-
verge towards a set of orientations that seems to fit the curvature of the rope: The left side is col-
ored in purple and red corresponding to an angle of about π/2 with the horizontal axis e1. The
right side is colored in shades of green to blue that corresponds to an angle of about −π/2 with e1.

The same idea goes with the edges of the boxes, the four feet of the deer, its neck, and the
wicker handle, that seem to have a correct orientation estimation, even if it is less clear with the
RORPO.

However, when looking at the direct surroundings of the handle in the TV guidance map depth
map, we can notice the orthogonal orientations on the edges of compact structures that we men-
tioned. This effect is especially visible above the handle, and is also noticeable above the left foot
of the reindeer in the surroundings of the right part of the rope.

We also note that the sharp details at equal depths in the image are not impacting the TV
guidance map, while they appear in the RORPO guidance map as for example in the edge of the
tote bag.

Finally, the second and third row of Figure 6.16 confirm the location of the weaknesses of the
anisotropic approaches: We can see the antlers of the reindeer are the main area where, for all the
approaches, the neighborhood construction seems delicate, and especially for target-based and
Stawiaski and Decencière [2011]’s neighborhood. This both corroborates the observations on the
error maps and validates the interest of our neighborhood quality criteria.
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Figure 6.13 – Depth maps obtained for the scene Reindeer1, for different neighborhood strategies and dif-
ferent values of α, which are indicated on the left hand side. The arrows indicate the direction of increasing
α, from top to bottom. The neighborhood strategy used is indicated above of each column, and the best
depth map obtained (with respect to the PSNR) for each neighborhood is indicated with a star on the upper
right corner of the depth map. According to the PSNR, the neighborhood that gives the best result here is
the TV cardinal-based neighborhood, after the perfect one. The differences are mainly visible on the antlers
of the reindeer that are well preserved by cardinal-based neighborhoods. For interpreting the results, we
also print the error map on Figure 6.14.
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Figure 6.14 – Error of depth maps obtained for the scene Reindeer, for different neighborhood strategies
and different values of α, which are indicated at the top and on the left hand side, respectively. The arrows
indicate the direction of increasing α, from the top to bottom. We can see that the best results are obtained
by cardinal-based neighborhoods, since the depth of the moving box at the right hand side seems badly
estimated for the other ones while the antlers of the reindeer get quickly degraded.
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Figure 6.15 – Reindeer error map boxplot corresponding to the best results of Figure 6.14. According to
these boxplots, the distribution of errors tends to present the Perfect and cardinal-based neighborhoods as
the best candidates for this scene.
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Figure 6.16 – The guidance map from RORPO and TV are displayed on the first row and exhibit the behavior
of these two algorithms for estimating the saliency and orientation of structures of the image. While TV
looks smoother in terms of orientation, RORPO highlights better the sharp areas of the scene. The second
and third rows show comparative quality of the neighborhood construction with respect to Pr ec and QV

respectively. For instance note that the area near the antlers effectively indicate a significant difference of
quality between the neighbors.
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Figure 6.17 – The ground truth and all-in-focus image for the scene Lampshade of the dataset.

Lampshade This scene features a set of boxes in the background, with a plastic folder and a piece
of wood. On the left hand side, the foot of the lamp is a thin structure that contrasts with the wall
on the background, and in the foreground in the middle of the image lies a lampshade. By nature,
this scene does not feature much thin and complex structures, and thus, the need for anisotropic
neighborhood is not clear, except for the preservation of the foot of the lamp.

However, when looking at Figure 6.10, anisotropic neighborhoods seem to perform well in that
situation, and bring an important added value against the isotropic neighborhood. We can check
what happens visually in Figure 6.18. First of all, in the blind segmentation, we see two noisy
areas, the lampshade excepted in its edges and the whole plastic folder in the background. Thus,
the challenge of regularization is twofold: Firstly, the goal is to strongly regularize those errors in
the depth estimate without loosing the lamp foot, and secondly, the regularized mean value of the
depth in the lampshade section must approach the actual depth of the lampshade.

The best results, also indicated by a star in Figure 6.19, are obtained with cardinal-based neigh-
borhoods (and, indeed, perfect neighborhood). Isotropic neighborhood fails at both the chal-
lenges, while target-based approaches seem to at least preserve a bit the lamp foot while the
parameter α increases. Shape-based and perfect neighborhoods succeed in preserving the thin
structure while at the same time allowing for a good regularization of the lampshade, even if most
the depth error concentrates on this part of the scene.

Boxplot pictured in Figure 6.20 confirm that the depth errors in this image tends to be larger,
since even for perfect neighborhood, depth error as big as nine frames in the set of defocused
images still belong to the ninth decile of the distribution. The mean error for Stawiaski and De-
cencière [2011]’s neighborhood even reaches one frame.

Figure 6.21 allows to compare the neighborhood quality for each strategy. We can clearly see
on the colored map of orientations the side effect of TV near the borders of the lamp foot, and
its consequences on both of our neighborhood quality criteria. Here, RORPO performs a bit bet-
ter than TV with respect to these criteria, and cardinal-based neighborhood performs better than
target-based and Stawiaski and Decencière [2011]’s neighborhood. Once again, it is totally reflect-
ing the results shown by the depth error maps and the Table 6.4 that show the best result achieved
with RORPO cardinal-based neighborhood.
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Figure 6.18 – Depth maps obtained with scene Lampshade, for the neighborhood strategies indicated above
and multiple values of α indicated at on the left hand side. For each neighborhood strategy, a star on the top
right corner of a depth map indicates the best result according to PSNR. This scene is challenging since the
initial depth is very noisy because of homogeneous regions. The advantage of anisotropic neighborhood
here is to preserve the sharp edges of the scene while α increases.
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Figure 6.19 – Depth error maps obtained with the scene Lampshade, for the neighborhood strategies indi-
cated above and multiple values of α indicated at on the left hand side. For each neighborhood strategy, a
star on the top right corner of a depth map indicates the best result according to PSNR. One challenge of
this image, additionally to the preservation of sharp edges and thin structures, is the convergence of the
regularized depth map to the right depth, without bias induced by the noise. Such challenge may however
fall to the model formulated in Equation (2.3).
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Figure 6.20 – Lampshade error map boxplot corresponding to the best results of Figure 6.19. Compared to
previous experiments, the interquartile range is much higher as well as the ninth decile value. This explains
the small number of outliers in this case. The results are somewhat similar but RORPO-based and perfect
neighborhoods seems to perform better, followed by TV-based and Stawiasky’s neighborhood.
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Figure 6.21 – The guidance map computed for the Lampshade scene from TV and RORPO are presented in
the first row. The qualitative criteria for the each neighborhood are displayed on the second and the third
row. We note that the cardinal-based neighborhood still present better results, especially when looking at
the foot of the lamp on the left side of the scene.
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Figure 6.22 – The ground truth and all-in-focus image for the scene Plastic1 of the dataset.

Challenging scenes

Now we present more challenging scenes, for which the RMSE criterion revealed a general failure
in regularization or gave a clear advantage to the isotropic neighborhood against ours. The scenes
Plastic1 and Bowling11 are one of those. We also picked one image to present the approach at
pixel level, Art1, since it presents multiple thin structures and an interesting variety of shapes.

Plastic The Plastic scene is pretty simple in appearance: A yellow plastic folder lies in a fore-
ground, below a blue recycle bin, a light blue wooden board and an unidentified yellow in the
middle-ground. The whole is leaned against textured wall that constitute the background of the
image.

The main issue is that the image is actually poorly textured, with a lot of simple geometric
structures, mostly quadrilaterals with straight edges. In this situation, the benefits of anisotropic
neighborhoods could be limited. However, according to Figure 6.10 and Table 6.5, RORPO-
cardinal-based neighborhood still slightly outperforms the other approaches at superpixel level.
At pixel level, the results are even more mitigated.

Here in Figure 6.23, we present the results at superpixel level. As expected with homogeneous
regions, the blind segmentation here has lots of errors and the challenges are quite the same as
in the scene Lampshade, but with a higher level of noise. As a result, the plastic folder’s depth
tend to converge to the recycle bin’s depth, or even with the yellow object on the right hand side
a bit further. For that reason, there is a bias in the detection and relying only on the numerical
performances may indicate as a best representative some experience that do not look successful.
For instance, the isotropic best result here seems to be the over regularized result with α= 32, even
if the shapes of all the individual objects of the scene have disappeared.

Similar phenomenon happens for all the types of neighborhoods in that scene: Blurring the
plastic folder always increases the accuracy of its depth positioning, while our eyes judge differ-
ently. Indeed, we have the tendency to mentally correct the bias in brightness and to rely on the
edges of the objects to distinguish them. Figure 6.24 allows to disambiguate a bit by bringing color
into the error map, but in general, this example seems too hard to solve simply with regularization,
since even the perfect neighborhood fails at it.

The model could however be modified to improve a bit the behavior of the algorithm. While
the low sharpness randomized sites are already penalized in their data term by the weighting func-
tion Ws in Equation 6.2, an improvement could be to manually set it to a very low value or to set
Ws = 0 when, for any s ∈S : maxt∈H s (f(t )) < κf. However, this corresponds to removing a constraint

106



CHAPTER 6. SHAPE FROM FOCUS (SFF)

on the optimization, and one should care about ensuring that by transitivity, each site should have
in its neighbors a site that connects to a site for which Ws 6= 0. Otherwise, the problem would be-
come ill-posed again. Ideally, this could be done by computing anisotropic neighbors in the sur-
rounding of the homogeneous regions, and isotropic neighbors inside them, at the risk of lowering
the recognition of poorly textured thin structures.
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Figure 6.23 – Depth maps obtained with scene Plastic, for the neighborhood strategies indicated above and
multiple values of α indicated at on the left hand side. For each neighborhood, a star on the top right
corner of a depth map indicates the best result according to PSNR. In this scene, some of the best results
are achieved while seemingly loosing some information on the image. This is mostly because since the
initial depth map is very noisy, the depth inside the plastic folder in the middle is badly estimated and
over-regularizing it yields best results.
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Figure 6.24 – Depth error maps obtained with scene Plastic, for the neighborhood strategies indicated above
and multiple values of α indicated at on the left hand side. For each neighborhood, a star on the top right
corner of a depth map indicates the best result according to PSNR. These maps confirm the issue with depth
initialization, which is a problem that regularization alone is not likely to solve easily.
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Figure 6.25 – The guidance map computed for the Plastic scene from TV and RORPO are presented in the
first row. The qualitative criteria for the each neighborhood are displayed on the second and the third
row. While the orientations are quite well estimated, this scene features regular shapes that do not seem
challenging to segment with any of the neighborhoods, and the performances appear relatively similar for
anisotropic and isotropic neighborhoods.
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Figure 6.26 – The ground truth and all-in-focus image for the scene Bowling of the dataset.

Bowling The Bowling scene shown in Figure 6.26 features a green bowling ball and three pins be-
low a partly textured background. In the foreground, there is a white piece of fabric that is poorly
textured. As confirmed by blind segmentation in Figure 6.27, the challenging regions are mainly
the piece and fabric in the foreground, the bowling ball in the middle ground and the homoge-
neous part of the background.

When looking at Figure 6.28, most the errors in this scene are due to a bias in the estimation of
the piece of fabric’s depth. The best results are obtained with a strong regularization of this area,
therefore leading to a quick deterioration of the edges of the objects, especially with isotropic and
target-based neighborhoods, giving advantage to the RORPO cardinal-based neighborhood. This
advantage is confirmed in Figure 6.29, where the neighborhoods seem overall quite satisfying,
despite the bad quality of the depth reconstruction’s results.

In a way quite similar to the scene Plastic, we can suggest adapting the model to help with
depth regularization.
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Figure 6.27 – Depth maps obtained with the scene Bowling, for the neighborhood strategies indicated above
and multiple values of α indicated on the left hand side. For each neighborhood strategy, a star on the top
right corner of a depth map indicates the best result according to PSNR. In this scene, the depth of the scene
in the foreground is very badly estimated, and explains the bad result obtained with regularization. We note
that despite the bad numerical results, the sharp pins are preserved when increasing the regularization with
cardinal-based and perfect neighborhood, while they quickly deteriorate with other neighborhoods, which
is an interesting property.
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Figure 6.28 – Depth error maps obtained with the scene Bowling, for the neighborhood strategies indicated
above and multiple values of α indicated at on the left hand side. For each neighborhood strategy, a star
on the top right corner of a depth map indicates the best result according to PSNR. The main errors are
brought by depth estimation error in the foreground and the background, and persist even when increasing
α. Slight differences are visible between the two pins on the right hand side and near the sharp edges when
regularization increases even more.
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Figure 6.29 – Bowling neighborhood qualitative criteria displayed for the six neighborhood strategies. The
guidance map computed from RORPO and TV clearly show the differences between smooth TV orientations
with slight errors near the border of objects, and RORPO that highlights sharp areas but yield questionable
orientations in the background, because of the regular pattern in the wall.
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Art at Pixel level Since we have lead no exhaustive study about the impact of the number and
nature of superpixels in our work so far, we bring here an experiment of our approach at pixel
level. To some extent, pixels can be seen as a specific kind of superpixel, with the smallest possible
size and a very regular lattice. Confronting our anisotropic neighborhoods to the case where sites
are pixel is a way to highlight some limitations of our approach that can be the object of future
works.

At pixel level, we consider the scene Art, since it has multiple thin structures and show miti-
gated results, see Figure 6.30.

In the foreground, the most prominent objects are a jug with a large handle, and a large brush,
on the left hand side. On the right hand side, there is a small silhouette in modeling clay just below
a cup, with small brushes in it. In the middle, we can see a huge pink grease pencil, below a conical
pink shape. Finally, there is a carved head in the middle-ground, more small grease pencils in their
box, and four hoops of varying sizes in the upper right corner of the image. In the background,
some paints and posters are pinned to a white wall.

The brushes and the stems of the hoops are straight thin structures. The hoops, and the handle
of the jug, are curved thin structures. On a larger scale, the area between the cone and the carved
head can also be considered as a thin structure.

Figure 6.31 shows that the low sharpness and noisy areas are mostly the inner part of the jug,
the areas in the background at the left and the right side of the cone, and the white wall section
behind the hoops. The hoops themselves are also a lot prone to errors, as well as the end of the
grease pencil. According to the three numerical criteria, the neighborhood that performs the best
on that scene is Stawiaski and Decencière [2011]’s one.

With every strategy, the stems of the hoops are hard to maintain when the regularization pa-
rameter grows, although when we look at RORPO cardinal-based neighborhood’s best result, some
parts of the hoops handle are still more distinguishable. The second main issue in the area of the
hoops, is the wall’s depth bad estimation, that require an important regularization. On this point,
the behavior of each neighborhood is different, between hoops preservation and background’s
regularization, facing the challenges of over smoothing the results and inducing a bias. We can
check this visually and in Figure 6.32 also.

If we look closer to the left side of the cone for instance, we can see the depth of the background
in the isotropic neighborhood is badly estimated, while some of our approach estimate better the
depth in that area.

When we look at quality maps for neighborhoods, in 6.33, we see as expected that the errors
are concentrated on the edges of the objects, and that at pixel level, those edges are even smaller
regions of the image. Even if we can find some small improvements, for instance on the top of the
carved head, it is no surprise that the advantage of anisotropic neighborhoods diminishes at pixel
level, while some of their flaws will impact the quality of the reconstruction.

One way to improve the results could be to adjust the anisotropic threshold Γ on the guidance
map’s saliency to ensure the anisotropic behavior of the neighborhoods is only encountered on
the edges of the objects. Since we have, for computational reasons, computed the guidance map
at superpixel level before deriving the neighborhood at pixel level, therefore, the guidance map
may lack of precision, and we should reformulate some of these elements.
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Figure 6.30 – The ground truth and the all-in-focus image for the scene Art of the dataset.

6.4.2 Sensitivity to the regularization parameter

In real life situations, the ground truth of a scene is not known. For having an estimation of the
performances of the algorithm for a fixed value of lambda, we have run tests over the dataset and
summed the squared values of the RMSE of each scene, in order to approach the measure of the
performance of the algorithm over the whole set of scenes. When the RMSE is the lowest, the best
performances are achieved. The result is shown in Figure 6.34 at superpixel level and in Figure 6.35
at pixel level.

The proof of concept, namely the perfect neighborhood, outperforms all the others ap-
proaches at both pixel and superpixel level, for a wide range of regularization coefficients, the opti-
mal choice seemingly being in the range α ∈ [1,2]. At pixel level, as expected, Stawiaski and Decen-
cière [2011]’s neighborhood has better results than our approaches, which is visible in this dataset
for α = 2. Surprisingly, without having outstanding results, the RORPO-shape-based neighbor-
hood may overcome our other neighborhoods for α = 1 at pixel level, while its performances are
below them at superpixel level.

However, at superpixel level, both RORPO and TV cardinal-based neighborhood yield good
results for a large set of values of α ∈ [2,16]. This robustness of cardinal-based neighborhoods to
the regularization parameter is also confirmed visually and is one of the strengths of this approach
against the other implementations. In the same range of values ofα, cardinal-based neighborhood
also perform almost as well as the perfect neighborhood.

For questioning more aspects of the benefits of anisotropic neighborhood approaches with
superpixels, we also compared the best results at superpixel and pixel level in Figure 6.36. An in-
teresting fact is that working at superpixel level seems to improve the results of anisotropic neigh-
borhoods, not only against isotropic superpixel neighborhood regularization, but also against
isotropic neighborhood at pixel level. For instance, for α ∈ [4,8], RORPO cardinal-based neigh-
borhood outperforms all the other neighborhood constructions, excepted the perfect ones, for
any regularization parameter value and for both pixel and superpixel level. This is an interesting
perspective about the additional regularization that the superpixels may bring to the image that
finally increases the average quality of the image.

6.4.3 Result tables

The exhaustive results obtained with best regularization parameter α for each scene, each neigh-
borhood construction and each type of site (pixels and superpixels) are listed in Table 6.2, 6.3, 6.4
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Figure 6.31 – Depth maps obtained with the scene Art1, at pixel level, for the neighborhood strategies in-
dicated above and multiple values of α indicated on the left hand side. For each neighborhood strategy, a
star on the top right corner of a depth map indicates the best result according to PSNR. In this scene, a few
errors are concentrated on challenging areas, such as the hoops in the top right corner or the body of the
jug. While the body of the jug and the grease pencil are quite well regularized, the main errors seem to occur
near the hoops handles and the background behind the hoops.
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Figure 6.32 – Depth error maps obtained with the scene Art1, at pixel level, for the neighborhood strategies
indicated above and multiple values of α indicated on the left hand side. For each neighborhood strategy,
a star on the top right corner of a depth map indicates the best result according to PSNR. The remaining
errors after regularization are quite contained, making visual estimation of the quality difficult, each neigh-
borhood producing different results on the different areas of the scene.

118



CHAPTER 6. SHAPE FROM FOCUS (SFF)

TV-based RORPO-based

P
re

c
Q

V

Per f ect TV −Car d RORPO−Car d TV −Tar g RORPO−Tar g St awi ask y

Figure 6.33 – Guidance map orientations for the Art scene computed from RORPO and TV neighborhood
at pixel level. The Precision and quality criterion Pr ec and QV are displayed for the six neighborhoods on
the second and third rows. At pixel level, the distinction between anisotropic and isotropic neighborhoods
is quite difficult, since the edges of the objects where the error is concentrated become thinner, especially
for Stawiaski and Decencière [2011]’s neighborhood that becomes the 4-adjacency. Since the performances
of the anisotropic neighborhood may be reduced in isotropic area by introducing erroneous patterns for
instance, the results may even be degraded by such approaches at pixel level.
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Figure 6.34 – RMSE at superpixel level on the whole dataset. Perfect and cardinal-based neighborhoods give
the best results for a wider range of values of α than the other neighborhoods.

and 6.5. They represent the numerical values of the results obtained in Figure 6.10.
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Figure 6.35 – RMSE at pixel level. When increasing the value of the regularization coefficient α, the RMSE
error is reduced more rapidly than at superpixel level, but for α > 0.5, the variations are generally smaller.
The best results are however obtained with perfect and Stawiasky’s neighborhood, and show the limits of
anisotropic neighborhoods at pixel level.
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Figure 6.36 – Comparison of the mean RMSE values between pixel and superpixel level, for the best
anisotropic neighborhood candidate of each and for Stawiasky and perfect neighborhoods. We note that
pixel level neighborhood allows for a quick regularization in the beginning, but for higher values of α, su-
perpixel level anisotropic neighborhood meets and exceeds the performances of pixel level neighborhoods,
except for the perfect one.
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Nbh Perfect TV-Card RO-Card TV-Targ RO-Targ TV-Shape RO-Shape Stawiasky
Sample Art1

PSNR
pxl 61.80 61.66 61.99 60.80 60.62 60.72 60.84 62.08
spx 62.05 61.80 61.83 61.24 61.01 60.37 59.82 61.51

UQI
pxl 99.44 99.43 99.48 99.32 99.30 99.29 99.31 99.51
spx 99.50 99.48 99.48 99.40 99.35 99.24 99.12 99.43

SSIM
pxl 98.87 99.08 99.14 99.06 98.94 98.90 98.97 99.21
spx 98.95 99.15 99.19 98.99 98.83 98.71 98.45 99.04

Sample Brush1

PSNR
pxl 64.51 60.46 61.06 62.19 61.59 60.94 61.05 63.74
spx 63.85 62.75 62.87 60.17 60.57 59.64 59.74 61.13

UQI
pxl 99.75 99.49 99.55 99.65 99.61 99.55 99.56 99.72
spx 99.73 99.68 99.68 99.49 99.52 99.42 99.44 99.58

SSIM
pxl 96.61 96.91 97.25 97.4 97.45 97.02 97.38 98.21
spx 95.24 97.67 97.38 96.22 96.22 95.5 95.15 96.39

Sample Brush2

PSNR
pxl 64.01 60.7 61.32 62.18 61.68 60.89 61.2 64.07
spx 63.14 62.62 63.04 60.26 60.98 59.63 60.29 61.47

UQI
pxl 99.71 99.5 99.55 99.63 99.6 99.53 99.56 99.72
spx 99.66 99.65 99.67 99.48 99.54 99.39 99.46 99.58

SSIM
pxl 96.64 96.82 97.35 97.39 97.45 97.06 97.4 98.05
spx 95.08 97.66 97.52 96.16 96.57 95.35 95.65 96.46

Sample Brush2c

PSNR
pxl 63.81 60.28 60.99 61.63 61.36 60.74 61.11 63.52
spx 62.76 61.22 61.1 59.01 59.7 58.7 58.81 60.59

UQI
pxl 99.69 99.44 99.5 99.58 99.55 99.5 99.53 99.69
spx 99.65 99.54 99.52 99.33 99.39 99.29 99.26 99.49

SSIM
pxl 96.57 96.81 97.39 97.28 97.43 97.04 97.38 98.15
spx 94.85 97.22 97.25 95.95 96.2 95.3 95.2 96.31

Sample Aloe1

PSNR
pxl 63.43 63.46 63.43 63.03 62.97 63.23 63.28 63.58
spx 62.49 62.41 62.4 62.29 62.28 62.29 62.21 62.29

UQI
pxl 99.85 99.86 99.86 99.84 99.84 99.85 99.85 99.86
spx 99.82 99.82 99.82 99.81 99.81 99.81 99.81 99.81

SSIM
pxl 99.77 99.84 99.83 99.81 99.79 99.82 99.81 99.84
spx 99.76 99.78 99.78 99.75 99.75 99.75 99.74 99.75

Nbh Perfect TV-Card RO-Card TV-Targ RO-Targ TV-Shape RO-Shape Stawiasky

Table 6.2 – Global Performance Table 1: In this table we indicate the best results of each scene with respect
to the regularization coefficient α.
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Nbh Perfect TV-Card RO-Card TV-Targ RO-Targ TV-Shape RO-Shape Stawiasky
Sample Baby11

PSNR
pxl 64.61 61.68 63.66 61.76 62.18 61.88 64.14 65.35
spx 63.14 62.94 63.13 61.38 61.1 62.83 62.99 62.94

UQI
pxl 99.36 98.44 99.19 98.6 98.81 98.51 99.27 99.44
spx 98.85 98.95 98.95 98.37 98.31 98.94 98.96 98.98

SSIM
pxl 93.28 87.85 93.46 90.87 92.13 90.47 94.78 97.12
spx 88.94 91.53 89.95 88.5 89.01 91.73 92.44 92.62

Sample Books1

PSNR
pxl 67.68 64.79 64.7 64.45 64.2 64.71 66.1 67.07
spx 67.33 67.07 67.1 66.21 66.35 67.01 66.95 67.19

UQI
pxl 99.9 99.74 99.76 99.74 99.71 99.76 99.83 99.88
spx 99.9 99.89 99.89 99.85 99.86 99.88 99.88 99.89

SSIM
pxl 99.22 98.9 99.02 99.04 99.01 98.88 99.15 99.34
spx 99.35 99.55 99.57 99.44 99.47 99.55 99.52 99.54

Sample Bowling11

PSNR
pxl 54.6 50.66 52.38 52.73 54.34 52.42 53.58 54.28
spx 54.14 53.58 52.56 52.59 53.34 52.45 53.74 53.84

UQI
pxl 97.73 94.89 96.35 96.65 97.6 96.42 97.18 97.59
spx 97.4 97.07 96.43 96.51 96.99 96.48 97.26 97.33

SSIM
pxl 90.66 88.94 88.75 89.96 90.89 89.01 89.69 90.66
spx 89.69 89.73 88.69 89.22 89.53 88.65 89.74 89.81

Sample Cloths11

PSNR
pxl 71.11 71.13 71.13 71.12 71.12 71.14 71.14 71.15
spx 70.44 70.44 70.44 70.46 70.44 70.44 70.45 70.45

UQI
pxl 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88
spx 99.85 99.85 99.85 99.85 99.85 99.85 99.85 99.85

SSIM
pxl 99.53 99.53 99.53 99.53 99.53 99.53 99.53 99.53
spx 99.5 99.51 99.51 99.51 99.5 99.5 99.5 99.5

Sample Dolls1

PSNR
pxl 66.4 64.96 65.34 64.47 64.9 65.34 65.44 68.12
spx 67.08 67.72 68.15 66.52 66.51 66.09 66.16 67.65

UQI
pxl 99.86 99.75 99.78 99.71 99.74 99.78 99.78 99.93
spx 99.9 99.92 99.94 99.86 99.86 99.83 99.84 99.92

SSIM
pxl 98.98 98.34 98.48 98.26 98.62 98.39 98.59 99.19
spx 98.95 99.13 99.22 98.8 98.75 98.59 98.64 99.09

Nbh Perfect TV-Card RO-Card TV-Targ RO-Targ TV-Shape RO-Shape Stawiasky

Table 6.3 – Global Performance Table 2: In this table we indicate the best results of each scene with respect
to the regularization coefficient α.
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Nbh Perfect TV-Card RO-Card TV-Targ RO-Targ TV-Shape RO-Shape Stawiasky
Sample Flowerpots1

PSNR
pxl 60.87 56.65 59.13 57.58 60.04 58.05 60.29 60.37
spx 60.41 61.27 61.75 60.53 60.16 60.56 60.39 60.72

UQI
pxl 95.87 89.6 93.95 91.5 95.06 92.26 95.4 95.4
spx 95.44 96.26 96.75 95.72 95.3 95.8 95.53 95.85

SSIM
pxl 90.35 84.41 89.2 85.34 89.08 85.02 90.07 89.95
spx 89.33 90.83 92.31 90.37 89.98 91.11 90.35 90.6

Sample Lampshade11

PSNR
pxl 56.96 53.32 53.32 53.09 53.25 52.39 53.27 54.61
spx 56.82 56.65 57.78 53.76 55.13 53.29 55.76 54.15

UQI
pxl 97.78 95.23 95.19 94.93 95.12 94.1 95.11 96.34
spx 97.75 97.63 98.18 95.67 96.77 95.25 97.13 95.94

SSIM
pxl 85.21 83.43 83 83.34 83.46 82.56 82.83 83.81
spx 85.13 85.05 86.33 83.02 84.53 83.05 84.4 83.6

Sample Laundry1

PSNR
pxl 65.46 64.08 63.95 63.51 62.94 63.86 64.34 64.77
spx 64.64 64.79 64.56 62.91 63.2 63.24 63.04 64.15

UQI
pxl 99.86 99.78 99.76 99.75 99.7 99.77 99.8 99.82
spx 99.84 99.83 99.82 99.7 99.73 99.72 99.71 99.79

SSIM
pxl 99.43 99.4 99.45 99.38 99.2 99.38 99.4 99.36
spx 99.42 99.52 99.47 99.21 99.26 99.22 99.17 99.36

Sample Midd11

PSNR
pxl 65.86 61.6 66.32 61.39 65.87 62.03 65.87 66.22
spx 64.54 65.81 65.75 63.76 63.76 61.54 62.19 64.53

UQI
pxl 99.88 99.62 99.9 99.59 99.88 99.66 99.88 99.89
spx 99.84 99.89 99.89 99.79 99.79 99.56 99.65 99.83

SSIM
pxl 98.9 98.44 98.97 98.48 98.92 98.45 98.92 98.95
spx 98.74 99.11 99.02 98.76 98.72 98.51 98.67 98.9

Sample Moebius1

PSNR
pxl 66.13 63.93 65.97 63.82 64.3 64 64.97 66.11
spx 66.1 66.56 66.83 65.35 64.54 64.81 63.93 65.5

UQI
pxl 99.85 99.73 99.84 99.72 99.75 99.73 99.79 99.85
spx 99.86 99.87 99.88 99.82 99.77 99.79 99.74 99.82

SSIM
pxl 98.73 98.67 98.93 98.63 98.65 98.62 98.71 98.98
spx 98.91 99.12 99.28 98.86 98.73 98.7 98.46 98.89

Nbh Perfect TV-Card RO-Card TV-Targ RO-Targ TV-Shape RO-Shape Stawiasky

Table 6.4 – Global Performance Table 3: In this table we indicate the best results of each scene with respect
to the regularization coefficient α.
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Nbh Perfect TV-Card RO-Card TV-Targ RO-Targ TV-Shape RO-Shape Stawiasky
Sample Monopoly1

PSNR
pxl 67.26 62.51 64.33 62.17 64.04 62.84 64.55 65.57
spx 64.18 61.88 61.9 61.67 59.94 61.58 60.21 60.72

UQI
pxl 99.88 99.55 99.72 99.5 99.7 99.58 99.73 99.79
spx 99.65 99.43 99.4 99.37 98.98 99.29 99.02 99.14

SSIM
pxl 99.26 99.02 99.21 99.04 99.14 99.07 99.23 99.24
spx 98.98 98.93 98.94 98.76 98.47 98.76 98.51 98.65

Sample Plastic1

PSNR
pxl 53.91 49.67 50.43 51.39 53.28 52.54 53.34 52.98
spx 55.42 53.42 53.71 51.45 52.73 51.82 52.33 52.62

UQI
pxl 92.54 83.29 85.35 87.63 91.61 90.12 91.75 90.98
spx 94.52 91.62 92.28 87.7 90.62 88.55 89.81 90.2

SSIM
pxl 78.77 73.97 73.97 74.62 77.69 76.48 77.84 77
spx 81.62 78.28 80.05 74.9 77.07 75.03 76.37 76.55

Sample Reindeer1

PSNR
pxl 65.66 62.5 64.62 60.47 61.63 60.63 62.11 63.94
spx 66.28 64.9 63.83 60.78 61.01 59.42 59.13 61.59

UQI
pxl 99.76 99.44 99.68 99.03 99.27 99.03 99.35 99.61
spx 99.83 99.74 99.62 99.16 99.18 98.75 98.67 99.28

SSIM
pxl 96.79 96.13 97.18 95.06 95.32 94.28 95.39 96.4
spx 98.16 98.57 97.89 96.49 96.05 95.82 94.14 95.53

Sample Rocks11

PSNR
pxl 70.05 69.06 69.52 68.97 69.27 69.49 69.9 70.1
spx 69.72 69.49 69.28 69.64 69.68 69.57 69.69 69.76

UQI
pxl 99.85 99.81 99.83 99.8 99.81 99.83 99.84 99.85
spx 99.84 99.83 99.82 99.84 99.84 99.83 99.84 99.84

SSIM
pxl 99.39 99.38 99.43 99.35 99.4 99.33 99.43 99.42
spx 99.44 99.41 99.42 99.38 99.44 99.4 99.43 99.42

Sample Wood11

PSNR
pxl 67.35 66.17 66.26 64.92 65.03 66.18 66.36 67.41
spx 67 66.74 66.61 66.72 65.23 66.49 66.16 66.39

UQI
pxl 99.88 99.83 99.84 99.76 99.77 99.83 99.84 99.88
spx 99.87 99.86 99.85 99.86 99.78 99.85 99.83 99.84

SSIM
pxl 99.55 99.54 99.63 99.41 99.45 99.47 99.55 99.63
spx 99.36 99.63 99.62 99.55 99.26 99.49 99.37 99.35

Sample Wood21

PSNR
pxl 60.29 54.54 57.45 52.61 59.56 51.73 60.23 60.51
spx 56.35 55.39 57.53 54.71 56.78 55.04 57.27 57.26

UQI
pxl 98.72 95.27 97.35 93.07 98.49 91.62 98.73 98.81
spx 96.41 95.82 97.42 95.27 96.99 95.44 97.3 97.29

SSIM
pxl 90.05 86.55 86.21 86.52 89.89 85.24 90.11 90.18
spx 84.2 84.45 86.3 85.05 86.66 83.94 86.82 86.55

Nbh Perfect TV-Card RO-Card TV-Targ RO-Targ TV-Shape RO-Shape Stawiasky

Table 6.5 – Global Performance Table 4: In this table we indicate the best results of each scene with respect
to the regularization coefficient α.
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6.5 Conclusion

In this chapter, we have implemented two approaches for the detection of thin structures on SFF,
namely TV and RORPO. For both methods, we have constructed three types of anisotropic neigh-
borhoods, namely shape-based, cardinal-based and target-based. Experiments have been con-
ducted both at pixel and superpixel level, for evaluating the benefits of using anisotropic neigh-
borhoods against isotropic ones. Complementary information also have been gathered during the
redaction of an article, which extracts are in the Appendix C, and that include computation times
and some experiments about the effect of the choice of the algorithm of superpixels.

The results are clearly encouraging at superpixel level, since on the average, RORPO-cardinal-
based neighborhood seems to produce consistently better results than isotropic approaches pro-
posed by Stawiaski and Decencière [2011]. While at pixel level, isotropic approach of Stawiaski and
Decencière [2011] mostly outperforms our anisotropic neighborhoods, it is worth noting that the
RMSE performances of RORPO-cardinal-based neighborhood at superpixel are still better than
Stawiaski and Decencière [2011]’s results at pixel level, for a reasonable computing time.

Based on these observations, anisotropic superpixel neighborhoods seem to offer promising
perspectives. For instance, we can imagine conducing systematic experiments on larger dataset,
for ensuring the observed trend. Since the parameters have only been tuned by hand, at multiple
stages of maturation of the thesis, we can also imagine a more systematic study of the effect of
each set of parameter. Using techniques from other fields such as deep learning could also allow
be beneficial to automatically learn the optimal parameters, depending on the data.

Many perspectives of improvement also have been mentioned when listing the weakness of
each method proposed. To pick an example, the guidance map produced by TV could be derived
from the selection of tensors from a slightly regularized depth map, instead of a blind depth map,
for avoiding outliers in the guidance map. We could compute the algorithm differently so that the
guidance map could also be computed at pixel level.

There is therefore room for improvement of these approaches without risking any over-fitting
of the application. Still, the results presented here prove the positive contribution of anisotropic
regularization for multiple scenes.
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Chapter 7

Conclusions and perspectives

7.1 Conclusions

In this thesis, we take up the challenge of defining anisotropic neighborhoods with generic defini-
tion with respect to the elements of an image, that are either pixels or superpixels. The objective
of such neighborhoods was to allow for the preservation of thin structures while regularizing the
segmentation of an image.

For doing so, we propose three methods for segmenting the thin structures on the images, and
then implement four anisotropic neighborhood constructions based onto the derived guidance
map. Two applications were considered for evaluating the proposed approaches, namely binary
segmentation with thin structures and Shape From Focus.

In the case of the binary segmentation application, we have achieved many experiments with
the energy-based estimation of thin structures combined with the dictionary-based neighbor-
hood, for a large number of shapes (ellipses, rectangles, cones), of different sizes and for different
numbers of orientations. In practice, this approach has shown some limits in terms of robustness
to labeling errors, as well as some artifacts near the structures of the images.

This led us to consider the Tensor Voting-based approach, associated with shape and path-
based neighborhoods. Visually, Tensor Voting seems to yield more convincing and smoother guid-
ance map than energy-based approach. With the simulated image, when it comes to numerical
comparisons of the neighborhood constructions, the F-measure criterion indicates better perfor-
mance for the cardinal-based neighborhood than for the other approaches, including Stawiaski
and Decencière [2011]’s, proposed as the isotropic reference. However, the results are very close,
and the trend is reversing on the crack image. This effect is likely to partially come from the texture
of crack images, that produces irregular superpixels.

We therefore propose a more comprehensive study in the Shape From Focus framework, in-
cluding Tensor Voting and RORPO-based guidance maps and all the proposed anisotropic neigh-
borhoods, except the dictionary-based one. On most scenes, the conclusions regarding the guid-
ance map constructions are the same: Tensor Voting yield smoother guidance maps, when the
initial depth is rather well estimated, while RORPO yields contrasted guidance maps, able to bet-
ter preserve sharp details of the image.

Despite the fact that, at pixel level, the benefit of anisotropic neighborhood (with respect to
Stawiaski and Decencière [2011]) appears mitigated, it appears clearly that RORPO-cardinal-based
neighborhood at superpixel level outperforms the other competitors, with robust performance
with respect to the regularization parameter α. The qualitative comparison shows cardinal-based
neighborhood allows for better preservation of thin structures even with higher values of α. Fur-
thermore, the comparison of pixel and superpixel level performance shows that segmentation
obtained with RORPO-cardinal-based neighborhood still surprisingly outperforms segmentation
obtained with Stawiaski and Decencière [2011]’s neighborhood at pixel level.
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7.2 Perspectives

These results are therefore promising while raising issues that allow us to consider interesting per-
spectives for future work. Indeed, many possible points of the study could not be addressed, due
to limited time. In particular, we could evoke the impact of the choice and the number of su-
perpixels, and their preprocessing. The question of the regularization of depth maps could also
be raised, especially in the case of RORPO, that is faithful on the edges on the objects, but may
be slightly noisy in their center or when the sharpness is low. The set of parameters to build the
map of thin structures, whose ground truth is unknown, such as the length of the opening of the
paths, or the parameters of the Tensor Voting, have been set empirically after qualitative obser-
vations, but a thorough study could have been conducted. At the level of the construction of the
neighborhoods, the same questions arise, the number of parameters playing on the quality of the
neighborhoods being rather large.

It could also be interesting for instance to get rid of the effect of the energy data term when we
know that some observations are not “reliable”. This would ensure convergence of such areas to
consistent values, and solve some issues we had in some scenes considered in Shape From Focus
application. Moreover, partially disabling the data term rises an interesting question about the
neighborhoods and the cliques. Since the regularity of the neighborhoods is relaxed, the consti-
tution of the graph of the image is not constrained, and could for instance be constituted of an
arbitrary large number of connected components disconnected the ones from the others. For the
problem to be well posed, one would need to work on constraints of topology of the image graph
so that the “unreliable” areas would be connected to “reliable” sites.

Finally, the possibility of iterative alternate optimization of the neighborhood and the seg-
mentation has been mentioned, but we did not investigate such an approach further after the
observation of oscillatory phenomena.
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Appendix A

Synthèse en Français

A.1 Introduction générale

La popularisation des systèmes d’acquisition d’images, de pair avec les avancées technologiques
notamment autour des systèmes informatiques et embarqués, a entraîné la multiplication des
cadres d’utilisation de l’imagerie numérique, dans de nombreux domaines. Celui de la vision par
ordinateur traite du problème de la récupération d’informations haut niveau à partir de données
brutes, et avec l’aide de la puissance de calcul des ordinateurs.

Nous pouvons distinguer dans ce domaine de recherche les tâches liées à l’acquisition des
données, à leur traitement et à leur analyse. La première catégorie regroupe les techniques liées
à la production d’images numériques, par exemple le développement de capteurs pour diverses
longuers d’ondes, diverses échelles, ou avec des propriétés spéciales, tels que les capteurs asyn-
chrones dans le cadre de l’imagerie évènementielle. La seconde catégorie s’intéresse aux traite-
ments et modifications des données elles mêmes, afin de les rendre plus facilement exploitables
par l’être humain ou par des ordinateurs. Des exemples classiques en sont les algorithmes de
débruitage d’images ou de compensation d’exposition.

Finalement, la tâche qui retient notre attention dans le domaine du traitement de l’image est
l’analyse des données, qui traite de la décomposition et de la reconnaissance des éléments d’une
image. Plus spécifiquement, nous nous intéressons au problème de segmentation d’image, dont
l’objet est la décomposition d’une image en régions, et l’attribution d’une étiquette à chaque élé-
ment. Il s’agit d’une opération complexe, qui relève d’un problème inverse. Un problème inverse
consiste en l’estimation de la valeur d’une variable aléatoire cachée, ou ici d’un champ aléatoire,
à partir d’observations. Il est opposé, en terme de démarche, au problème direct, dont le but est de
modéliser les observations obtenues à partir d’une variable connue.

Il est typiquement possible par exemple de calculer une segmentation d’image à partir des
informations radiométriques contenues dans les élements d’une image, usuellement des pixels,
correspondant chacun à une unité détectable par un capteur. Dans cette thèse néanmoins, nous
nous intéressons également au cas où une partition des pixels de l’image, baptisée superpixels,
est définie comme décomposition élémentaire de l’image. Lorsque nous souhaitons utiliser une
formulation générique compatible avec pixels et superpixels, nous utilisons la notion de site.

Dans le cadre général toutefois, la qualité des données mesurées en chacun de ces pixels de-
meure limitée, d’une part à cause de la faible quantité d’information et d’autre part à cause des al-
térations pouvant se produire sur ces données, de par des phénomènes optiques ou électroniques,
générant un bruit sur la mesure. En intégrant le bruit au modèle, la variable aléatoire cachée ne
peut plus être estimée de manière unique, et on se retrouve dans le cadre d’un problème dit mal
posé.

C’est pourquoi il est usuel de considérer l’acquisition de données comme un tout et de for-
muler des hypothèses a priori sur la régularité de la variable aléatoire estimée. Pour ce faire, nous
nous plaçons dans le cadre spécifique mais très répandu des Champs de Markov (ou Markov Ran-
dom Fields, ou MRF, Geman and Geman [1984]), dont l’hypothèse principale est l’indépendance
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conditionelle de l’étiquetage de chaque noeud d’un champ par rapport à tous les éléments n’étant
pas dans le voisinage de ce noeud. A contrario, la probabilité de l’étiquetage de chaque noeud
dépend de l’étiquetage de ses voisins: un tel a priori est souvent nommé hypothèse de douceur
ou de régularité, mais l’on note aussi que selon les probabilités associées à chaque configuration,
cette hypothèse peut aussi permettre de modéliser des solutions ayant tendance à l’hétérogénéité.

Ceci nous amène à évoquer les champs de Gibbs et leur équivalence avec les Champs de
Markov, lorsqu’aucune configuration n’est de probabilité nulle (Kindermann and Snell [1980];
Spitzer [1971]). Lorsque cette condition est vérifiée, la probabilité de chaque configuration
peut en effet être exprimées en fonction d’une énergie potentielle. Via cette équivalence, et le
théorème de Bayes, la maximisation de la probabilité a posteriori d’une segmentation sachant
l’observation, correspond à la minimisation d’une énergie F, intégrant dans sa décomposition des
termes d’attache aux données E1, et un terme de régularisation E2, de la forme:

F(u,V) = E1(u)+αE2(u,V).

Si dans la théorie, la régularisation d’une solution telle que décrite vise à s’affranchir du bruit
d’acquisition et d’autres phénomènes optiques rendant la segmentation peu fiable, en pratique,
elle introduit également des artefacts spécifiques à son implémentation. Le phénomène de régu-
larisation en marche d’escaliers est par exemple une conséquence connue de l’utilisation de la
variation totale. L’obtention d’une solution satisfaisante dépend alors souvent d’un compromis,
entre le terme d’énergie traduisant l’attache aux données et le terme d’énergie de régularisation,
compromis réalisé par l’introduction d’un coefficient dit de régularisation α ∈ R>0. Les structures
fines composant une image sont cependant amenées à disparaître bien avant l’élimination de la
composante de bruit de l’image, ce qui peut être pénalisant ensuite dans de nombreuses applica-
tions.

Une structure fine est une structure dont l’une des dimensions est très faible devant les autres.
Par exemple, une structure filiforme de manière générale, telle qu’un crack dans un matériau, le
support d’un feu de signalisation sur l’image acquise par un véhicule autonome ou un vaisseau
sanguin dans une acquisition d’imagerie médicale en 2 ou 3 dimensions. Mais en dimension 3, les
surfaces de faible épaisseur deviennent également des structures fines.

Dans le cadre de l’utilisation de superpixels, qui sont des regroupements de pixels homogènes
constituant une partition de l’image, les structures d’une image ont tendance à être constituées
d’un faible nombre de superpixels, et deviennent fines relativement à la taille de ces derniers. Or
dans de nombreuses applicatins, la préservation de ces structures fines est d’un intérêt crucial. Il
devient donc plus délicat de régulariser la composante due au bruit de l’image. D’autres modèles
existent, faisant par exemple intervenir dans le terme de régularisation le gradient d’intensité de
l’image entre les deux pixels considérés, et visent à remédier à certains des effets négatifs de cette
régularisation.

Nous nous penchons quant à nous sur le questionnement et la redéfinition de la notion de
voisinage pour son utilisation dans le cadre de la segmentation de structures fines sur des images
pouvant être indifféremment constituées de pixels ou de superpixels.

Premièrement, avec l’utilisation de superpixels, la notion de grille régulière de pixels devient
caduque, et les éléments de l’image acquièrent des formes et des dispositions irrégulières, ce qui
pousse à la redéfinition de ce que peut être la notion de voisinage (voir Figure A.1). Par exemple,
Stawiaski and Decencière [2011] s’intéressent aux intéractions des pairs de pixels adjacents au
sein de superpixels distincts, et définissent donc un voisinage pondéré par les longueurs de bords
communs aux superpixels. À l’inverse, dans un cadre autre que la régularisation, Giraud et al.
[2017b] utilise un voisinage isotrope ignorant l’adjacence des superpixels, et défini à partir des
positions relatives des barycentres des pixels constituant chaque superpixel.

Secondement, afin de préserver les structures fines, nous concevons des voisinages
anisotropes, dont les orientations visent à suivre celles des structures de l’image. Pour ce faire,
nous avons implémenté plusieurs méthodes afin de constituer une carte d’orientation et de sail-
lance de ces structures.
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Figure A.1 – Voisinages anisotropes représentés au niveau superpixel. Les voisins du site de référence s (en
gris) sont indiqués en vert. Le voisinage à base de disque (à gauche) est défini comme celui qui associe,
à chaque site s, l’ensemble des sites dont le barycentre se situe à l’intérieur d’un disque centré sur s. De
cette façon, la connexité de V(s)∪ {s} n’est pas garantie, ni la forme exacte du voisinage, cependant le posi-
tionnement des barycentres l’est. Seules certaines hypothèses sur la convexité et la taille des surfaces des
sites permettent d’espérer réduire les configurations atypiques de voisinage. Pour Stawiaski and Decen-
cière [2011] (à droite) en revanche, chaque site adjacent au site de référence est défini comme voisin, ce qui
peut entrainer certains sites voisins à s’étendre spatialement arbitrairement loin du site de référence, selon
leur forme. Avec cette formulation donc, le voisinage V(s)∪ {s} a la garantie d’être constitué d’une unique
composante connexe, mais sa forme globale n’est pas maîtrisée.

Troisièmement, nous présentons dans ce manuscrit différentes options pour la construction
de ces voisinages anisotropes, cohérents simultanément pour une implémentation niveau pixel
ou superpixel.

Enfin, nous mettons à l’épreuve notre approche dans deux applications distinctes, la première
étant le cas d’une segmentation binaire sur une image synthétique ainsi que des essais sur la seg-
mentation d’images de cracks. La seconde application concerne le domaine de la reconstitution
de cartes de profondeur à partir de séries d’images avec différents niveau de mise au points, aussi
appelé Shape From Focus (SFF) en anglais.

Dans la partie de ce résumé suivant cette introduction, nous décrirons la construction des
voisinages dans un premier temps et décrirons brièvement les expériences et leurs conclusions
dans un second temps.

A.2 Voisinages anisotropes

L’obtention de voisinages anisotropes se fait en deux étapes: l’estimation d’une carte d’orientation
et de saillance des structures fines tout d’abord, puis la construction des voisinages eux mêmes à
partir de cette carte. Pour la première étape, nous avons expérimenté trois méthodes distinctes,
qui sont l’approche par minimisation d’une énergie, l’approche par Tensor Voting (Medioni et al.
[2000]) et l’approche par RORPO (Merveille et al. [2018]). Concernant la construction du voisinage,
nous proposons quatre méthodes, nommées d’après ce sur quoi elles se basent: dans l’ordre de
ce manuscrit, il s’agit de l’approche basée sur des formes de voisinages, l’approche basée sur un
dictionnaire, et deux approches basées sur des chemins, l’une trouvant le chemin le plus court
entre deux sites cibles, et l’autre fixant le cardinal du voisinage. Nous proposons aussi l’utilisation
de voisinages isotropes dans les zones homogènes de l’image. Nous détaillons succintement tout
ceci dans cette section.
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A.2.1 Estimation de l’orientation

L’estimation de l’orientation des voisinages est une étape cruciale: l’intérêt est de permettre aux
voisinages anisotropes de «s’adapter» au contenu de l’image, c’est à dire de suivre l’orientation
des structures estimées, et de s’étendre au maximum à l’intérieur de celles ci. C’est seulement à
cette condition que l’étape de régularisation pourrait être facilitée, en limitant les phénomènes de
dégradation sur le pourtour des structures. Pour réaliser cette étapes, une question importante
est le choix des données sur lesquelles se baser. Car en exploitant les mêmes données que celles
utilisées pour la segmentation, se pose la question de la convergence de l’approche: si les données
d’entrées sont erronnées, l’estimation des orientations des voisinages et les voisinages eux mêmes
pourrait être dégradée, conduisant à une diminution de la qualité de segmentation. À l’inverse, si
l’estimation des structures est robuste aux erreurs, il serait possible de s’appuyer directement sur
une segmentation pour en déduire une carte des structures fines, et ainsi améliorer la qualité de la
segmentation, ce qui pourrait même être réalisé récursivement, sous réserve de convergence. Une
possibilité beaucoup plus complexe que nous n’avons pas explorée serait d’estimer simultané-
ment la segmentation, la carte d’orientation des structures et les voisinages, par une optimisation
globale.

Nous nous sommes limités ici à trouver une estimation robuste des orientations à partir d’une
segmentation aveugle (non régularisée) et éventuellement des données de l’observation.

La première option d’estimation explorée est celle par minimisation d’énergie. Cette approche
nécessite d’établir une première segmentation aveugle, et de précalculer un ensemble de voisi-
nages, afin de choisir le voisinage parmi un ensemble de possibilités qui minimise l’hétérogénéité
de l’étiquetage de la segmentation dans chaque ensemble de voisins d’un site. En pratique, cela
revient à minimiser un terme de Potts, déjà présent dans la fonctionnelle d’énergie F. L’une des
limites en revanche serait la sensibilité d’une telle estimation au bruit. Afin de répondre à cette
limitation, nous formulons une hypothèse de régularité sur les voisinages eux mêmes, et intégrons
un troisième terme d’énergie de régularité des voisinages à la fonctionnelle.

La seconde option explorée fait usage du vote de tenseurs (Tensor Voting en anglais, Medioni
et al. [2000]), afin de produire une carte d’orientation aux orientations et saillances régulières par
construction dans le cas binaire, ou régulière par morceaux dans notre application au Shape From
Focus. Chaque tenseur vote dans chaque point de l’espace à sa proximité en suivant une transfor-
mation précise, que définit un noyau de vote. Cette transformation consiste en une rotation et une
atténuation des valeurs propres du tenseur suivant un comportement assurant la continuité des
orientations. Nous nous servons alors des valeurs propres et vecteurs propres de chaque tenseur
pour extraire l’orientation et la saillance des structures fines.

La troisième et dernière option avancée est le RORPO (Merveille et al. [2018]), qui est un opéra-
teur analysant la tortuosité des structures d’une image à partir d’opérateurs morphologiques tels
que l’ouverture de chemins. Cet opérateur réalise sur une image en niveaux de gris un ensem-
ble d’ouvertures de chemins selon différentes orientations, puis compare l’ensemble des images
obtenues. La réponse du RORPO est calculée à partir de ces images en discriminant les zones
présentant un faible nombre de réponses de fortes intensités: ces zones sont les zones désignées
comme présentant des structures anisotropes marquées.

Chacune de ces trois méthode présente des avantages et inconvénients qui lui sont propres, et
que nous décrirons dans la dernière section.

A.2.2 Construction du voisinage

Pour la construction à proprement parler du voisinage, nous nous sommes inspirés de deux con-
structions de voisinages isotropes distinctes au niveau superpixels (Stawiaski and Decencière
[2011] et Giraud et al. [2017a]), dont l’une est basée sur les frontières communes entre super-
pixels (leur adjacence), et l’autre sur les propriétés des barycentres de ceux ci (leur proximité).
Nous avons donc repris ces notions pour formuler nos propres voisinages, en rajoutant la prise en
compte de la directivité (voir Figure A.2).
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(a) Formes géométriques
Shape-based

(b) Dictionnaire
Dictionary-based

(c) Extrémités fixées
Target-based

(d) Cardinal constant
Cardinal-based

Figure A.2 – Les quatre voisinages anisotropes proposés. La première ligne représente le voisinage basé
sur des formes, et le voisinage à base de dictionnaire (illustré sur un dictionnaire de formes). La seconde
ligne présente les deux voisinages à base de chemins. À l’exception du voisinage à base de dictionnaires,
les voisins V(s) du site s (en gris) sont représentés en vert. Le voisinage à base de formes (a) associe à s les
sites dont les centroides (les croix rouges) appartiennent à la forme centrée sur s, ici, l’ellipse en pointil-
lés, alignée avec la direction privilégiée. Le voisinage basé sur un dictionnaire (b) définit quant à lui un
ensemble de configurations possibles avant de déterminer le voisinage V(s) retenu. Ici, dans l’exemple à
base de formes, le dictionnaire est constitué d’un ensemble d’ellipses (en pointillés), et le meilleur candi-
dat peut être sélectionné pour chaque site à partir d’une carte d’orientation ou d’une étape d’optimisation
(voir notamment Section 4.2). Les voisinages à base de chemins élisent les voisins de chaque site s comme
l’union de deux chemins de sites adjacents partant de s, choisis comme les minimiseurs d’une énergie qui
tend non seulement à respecter l’orientation définie (représentée par une flèche noire) mais également
l’homogénéité radiométrique au sein du chemin. Le voisinage à extrémités fixées (c) a pour spécificité de
fixer avant tout deux sites (en rouge) comme cibles pour les extrémités des chemins, à l’intérieur de l’ellipse
du voisinage à base de formes (en pointillés). Enfin, le voisinage à cardinal constant (d) fixe le nombre de
voisins à intégrer au voisinage V(s), en définissant une longueur fixe des chemins.
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Dans le cas des voisinages basés sur les formes, nous considérons des formes géométriques
paramétriques (telles que des ellipses) pour définir autour de chaque site une zone où tous les
sites possédant un barycentre seraient intégrés au voisinage. Dans le cas d’ellipses par exemple, le
demi grand axe de chaque ellipse est aligné avec l’orientation déduite de la carte des orientations
et saillances de structures fines.

Le voisinage basé sur un dictionnaire est, dans notre implémentation, dérivé d’une discréti-
sation du voisinage basé sur les formes, mais peut être dans le cas général implémenté pour tout
type de voisinage. En pratique, l’idée est de discrétiser les orientations estimées des structures
fines, ce qui limite le nombre de configurations de voisinages pour un site donné à un nombre
constant et choisi. Cela permet le précalcul des configurations, et a notamment un intérêt dans le
cas de l’estimation des structures fines basée sur une énergie découlant de ces configurations.

Les deux dernières options de construction d’un voisinage anisotrope sont basée sur
l’adjacence de proche en proche des sites du voisinage, et sont donc des voisinages à base de
chemins. Le premier voisinage à chemins est construit à partir de cibles: pour chaque site, deux
sites sont désignés comme voisins à atteindre, et deux chemins les reliant au site source du voisi-
nage sont sélectionnés parmi tous les chemins possibles, en minimisant une énergie spécifique.
En particulier, cette énergie fait intervenir les différences radiométriques entre sites mais aussi
leur orientation relative, l’idée étant d’encourager l’alignement des sites du chemin mais aussi
d’autoriser une flexibilité vis à vis des structures fines. L’union des chemins constitue le voisinage.
Le deuxième voisinage à base de chemins, basé sur le cardinal, minimise une énergie du même
type, mais a pour contrainte la cardinalité du voisinage, au lieu de la connexion de sites distants.

Dans tous les cas, nous permettons aussi aux voisinages de se résoudre sur une formulation
isotrope, lorsque la saillance des structures fines est en deça d’un certain seuil. Les deux voisinages
considérés pour cela sont un voisinage basé sur une forme de disque, et le voisinage formulé par
Stawiaski and Decencière [2011].

A.3 Applications et conclusions

Nous nous penchons sur deux cadres applicatifs distincts : le premier est une expérience de seg-
mentation sur un problème binaire, réalisée sur une image synthétique, puis sur une image de
cracks, et le deuxième est la reconstitution de cartes de profondeur en SFF.

Au niveau de la segmentation binaire, nous avons mené de nombreuses expériences mêlant
l’estimation de structures fines à partir d’une énergie et la construction de voisinages par dic-
tionnaire, avec un grand nombre de formes (ellipses, rectangles, cônes), de tailles, et différentes
discrétisations des orientations. En pratique, cette approche s’est révélée présenter des sensibil-
ités aux erreurs d’étiquetage, ainsi qu’être assez imprécise à proximité de l’interface des structures
de l’image.

Cela nous a amené à considérer l’approche basée sur le Tensor Voting, pour lequel l’estimation
des orientations semble plus probante, avec des voisinages à base de formes, et également à base
de chemins. En comparaison chiffrée avec une F-Mesure (mesure basée sur les nombres de faux
positifs, faux négatifs, vrai négatifs et vrai positifs), le voisinage à cardinal constant (basé sur des
chemins) semble présenter de meilleurs résultat que le voisinage isotrope de Stawiaski and De-
cencière [2011] au niveau superpixel pour l’image simulée, les résultats étant toutefois contenus
dans un mouchoir de poche au vu du faible nombre d’erreurs (la F-Mesure est comprise en pour-
centage dans l’intervalle [98.84,99.82]).

Bien que demeurant très rapprochés, les résultats dans l’application à la détection de cracks se
retrouvent favorables à Stawiaski and Decencière [2011], et indiquent une certaine sensibilité de
l’approche à la qualité des superpixels: en effet, avec les images de cracks, les superpixels ont ten-
dance à être plus irréguliers, et permettent difficilement de segmenter ceux-ci, mais l’utilisation
de superpixels basés sur la vérité terrain, nous a permis d’exhiber des situations où nos voisinages
anisotropes obtiennent de meilleur résultats que les voisinages isotropes.

Nous avons alors mené une étude plus complète dans le cadre du SFF, incluant le Tensor Vot-
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ing, le RORPO, et les voisinages anisotropes proposés à l’exception de celui à base de dictionnaires.
La reconstruction de cartes de profondeur à partir de séries d’images se fait par l’utilisation d’un
opérateur de netteté, dont la valeur en un point de l’image est élevé lorsque le contraste est im-
portant. En SFF, la profondeur de chaque point de l’image est déduite du maximum de netteté sur
la série d’images en ce point.

Dans notre implémentation, nous utilisons le niveau de netteté de la série d’images comme
donnée d’entrée pour estimer les cartes d’orientation de structures fines. En définitive, celles pro-
duites par le RORPO sont moins régulières que celles produites par Tensor Voting, mais respectent
mieux les structures de l’image.

La comparaison des voisinages implémentés semble prouver une supériorité des voisinages
isotropes au niveau pixel, tendance qui s’inverse de façon intéressante au niveau superpixel. Fi-
nalement, notre comparaison présente aussi les voisinages anisotropes à cardinal constant basés
sur le RORPO au niveau superpixel comme étant une des meilleures options pour la régularisa-
tion, avec des performances robustes par rapport au paramètre de régularisation tout en ayant
des résultats plus performants que les voisinages isotropes. De plus, la comparaison des perfor-
mances des différentes approches entre les niveaux pixel et superpixel indique que la combinai-
son du RORPO et des voisinages à cardinal constant au niveau superpixel offre des résultats qui
dépassent même ceux obtenus par régularisation isotrope au niveau pixel. Ces résultats sont sché-
matisés dans la Figure 6.36.

Ces résultats sont donc encourageants, et soulèvent des questions qui nous permettent
d’envisager des perspectives intéressantes pour de futurs travaux. En effet, de nombreux points
possiblement soumis à étude n’ont pas pu être abordés, suite à notre priorisation sur le sujet. No-
tamment, nous pourrions évoquer l’impact du choix et du nombre de superpixels, et de leurs pré-
traitements. La question de la régularisation des cartes de profondeur pourrait aussi être posée,
notamment dans le cas du RORPO, fidèle sur les pourtours des objets, mais légèrement bruité
en leur centre et lorsque la netteté est faible. L’ensemble des paramètres visant à construire la
carte des structures fines, dont la vérité terrain est inconnue, tels que la longueur de l’ouverture
des chemins, ou les paramètres du Tensor Voting, a été fixée empiriquement après des observa-
tions qualitatives, mais une étude approfondie pourrait être menée. Au niveau de la construc-
tion des voisinages, les mêmes questions se posent, le nombre de paramètres jouant sur la qual-
ité des voisinages étant relativement important. Par ailleurs, une question intéressante se pose
vis à vis des voisinages et de leurs cliques, par rapport à la constitution finale du graphe con-
stituant l’image. En effet, le graphe de l’image n’est pas contraint, par exemple, à ne constituer
qu’une composante connexe, et des nombres arbitraires de noeuds (ou sites), peuvent se retrou-
ver isolés des autres, par paquets de taille tout aussi arbitraire. Il pourrait être intéressant par
exemple, lorsque l’on sait que certaines zones sont assujetties au bruit, de s’affranchir de l’effet
terme d’attache aux données et s’introduire une contrainte de construction des voisinages telle
que ces zones soient connectées à des zones «fiables». Ceci permettrait d’assurer la convergence
de telles zones vers des valeurs cohérentes. Enfin, nous avons évoqué la possibilité d’une opti-
misation itérative du voisinage, que nous n’avons pas étudié en détail après la constatation de
phénomènes oscillatoires.
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Appendix B

Demonstrations

B.1 Energy based guidance map

In this section we prove the fact that the energy Est
3 defined in Equation (3.8) (replicated below)

is a pseudometric. Since it is a pseudometric, the triangle inequality yields the submodularity
required for using α-expansion or α-β swap.

B.1.1 Pseudometric

Est
3 (gs ,gt ) =


arccos

(|6 gs ,gt > |) if gs 6= 0 and gt 6= 0,

arcsin
(
|6 gs ,

−→
st > |

)
if gs 6= 0 and gt = 0,

arcsin
(
|6−→

st ,gt > |
)

if gs = 0 and gt 6= 0,

0 if gs = 0 and gt = 0.

(B.1)

Let a,b,c ∈R2 be three vectors of R2. For proving that Est
3 is a pseudometric, we need to prove

three preperties:
Est

3 (a, a) = 0,
Est

3 (a,b) = Est
3 (b, a),

Est
3 (a,c) ≤ Est

3 (a,b)+Est
3 (b,c).

The first property is trivially verified, since whatever the value of a ∈ R2, either
Est

3 (a, a) = arccos(1) = 0 or Est
3 (

−→
0 ,

−→
0 ) = 0. The verification of the second property is also trivial,

since6 a,b>=6 b, a>.
Now, we need to check whether Est

3 verifies triangular inequality. We split the cases depending

if some vectors are null or not. When a = b = c = −→
0 , when a = b =−→

0 or when b = c =−→
0 , the

triangular inequality is verified since Est
3 (a,c) = Est

3 (a,b)+Est
3 (b,c) in those cases, thanks to the

first property. When a = c = −→
0 , the triangular inequality is also verified since the energy is non

negative and Est
3 (a,c) = 0. This leaves four configurations to explore.

First configuration If neither of the vectors is null, we consider a,b,c ∈ R2 \ {
−→
0 }, and define the

following oriented angles x, y, z ∈R, constructing them wisely such that:
y = (â,b) ∈ [0,π],
x = y + z ∈ [−π

2 , 3π
2 ],

z = (b̂,c) ∈ [−3π
2 , 3π

2 ],

where (â,b) is the angle between the vectors a and b. We note that x ≡ (â,c) (mod 2π).
Then, for convenience, we write:

A = arccos(|6 a,c > |),
B = arccos(|6 a,b> |),
C = arccos(|6 b,c > |).
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We note that, ∀a,b ∈R2,6 a,b>= cos(â,b), and ∀t ∈R,

arccos(|cos(t )|) =
∣∣∣∣t −⌊

t

π
+ 1

2

⌋
π

∣∣∣∣ ,

therefore,

{
A = |x|, if |x| < π

2 ,
A = |π−x|, if x ∈ [

π
2 , 3π

2

] ,

{
B = y, if y ∈ [

0, π2
]

,
B =π− y, if y ∈ [

π
2 ,π

] ,


C = |z|, if |z| < π

2 ,
C = |π− z|, if z ∈ [

π
2 , 3π

2

]
,

C = |π+ z|, if z ∈ [−3π
2 ,−π

2

]
.

The verification of the triangular inequality is then made by checking that A ≤ B+C for any
combination of those values, which yields 9 cases.

• If 0 ≤ y ≤ π
2 , and |x| ≤ π

2 , since x = y + z, we know that π
2 ≥ π

2 − y ≥ z ≥−π
2 − y ≥−π.

– If |z| ≤ π
2 , we have the triangular inequality:

B+C = |y |+ |z| ≥ |y + z| = |x| = A.

– If −π
2 ≥ z ≥−π

2 − y , then
B+C = y +π+ z ≥ y +π− π

2 − y =π/2 > |x| = A.

• If 0 ≤ y ≤ π
2 , and π

2 ≤ x ≤ 3π2 , we know that 3π2 ≥ x ≥ z ≥ x − π
2 ≥ 0.

– If π2 ≤ z ≤ 0 since x ≥ π
2 , x ≥ |π−x| and:

B+C = y + z = x ≥ |π−x| = A.

– If 3π2 ≥ x ≥ z ≥ π
2 :

B+C = y +|z −π| ≥ |y + z −π| = |x −π| = A.

• If π≥ y ≥ π
2 , and |x| ≤ π

2 , we know that 0 ≥ π
2 − y ≥ z ≥−π

2 − y ≥−3π2 .

– If π2 − y ≥ z ≥−π
2 ,

B+C =π− y − z ≥π− y + y − π
2 = π

2 ≥ |x| = A.

– If −π
2 ≥ z ≥−3π2 :

B+C =π− y +|π+ z| ≥ |π− y −π− z| = |−x| = A.

• If π≥ y ≥ π
2 and 3π2 ≥ x ≥ π

2 , we know that π≥ 3π2 − y ≥ z ≥ π
2 − y ≥−π

2 .

– If π2 ≥ z ≥ π
2 − y ,

B+C =π− y +|z| ≥ |π− y − z| = |π−x| = A.

– If 3π2 − y ≥ z ≥ π
2 , we have two cases to distinguish:

* if π≥ x ≥ π
2 ,

B+C =π− y +|π− z| ≥ |2π−x| = 2π−x ≥π−x = A.

* if 3π2 ≥ x ≥π
B+C−A =π− y +|π− z|− (x −π) ≥ |2π−x|+π−x = 3π−2x.
However, 2x ≤ 3π, therefore B+C−A ≥ 0, and B+C ≥ A.

This proves the triangular inequality when a,b,c ∈R2 \ {
−→
0 }.

Second configuration Now, when b =−→
0 and a,c ∈R2 \ {

−→
0 }, note that ∀t ∈R,

arcsin(|cos(t )|) = arcsin
(∣∣∣sin

(
t + π

2

)∣∣∣)= arcsin
(∣∣∣sin

(
t − π

2

)∣∣∣)= arccos
(∣∣∣cos

(
t − π

2

)∣∣∣) ,

and we suppose that
−→
st 6= −→

0 . Let us define b′ ∈ R2 \ {
−→
0 } such that < −→

st ,b′ >= 0. Based on the
foregoing,

arccos(|6 a,c > |) ≤ arccos(|6 a,b′> |)+arccos(|6 b′,c > |), (B.2)
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∀a,b′,c ∈ R \ {
−→
0 }. Similarly to the previous development, we define the following oriented angles

x, y ′, z ′ ∈R, constructing them wisely such that:
y ′ = (�a,b′) ∈ [0,π],
x = y ′+ z ′ ∈ [−π

2 , 3π
2 ],

z ′ = (b̂′,c) ∈ [−3π
2 , 3π

2 ],

and note that x ≡ (â,c) (mod 2π). Equation (B.2) becomes:

arccos(|6 a,c > |) ≤ arccos(|cos(y ′)|)+arccos(|cos(z ′)|). (B.3)

Since the angles y ′ and z ′ are oriented angles, and
−→
st and b′ are orthogonal, we now consider the

following angles: {
y = (�a,

−→
st ) = y ′± π

2

z = (
−̂→
st ,c) = z ′∓ π

2 .

Finally, we obtain the triangular inequality from the definition of the energy Equation (B.1) to-
gether with Equation (B.3),

Est
3 (a,b)+Est

3 (b,c) = arcsin(|6 a,
−→
st > |)+arcsin(|6−→

st ,c > |)
= arcsin(|cos(y)|)+arcsin(|cos(z)|)
= arccos(|cos(y ′)|)+arccos(|cos(z ′)|)
≥ arccos(|6 a,c|> |)
≥ Est

3 (a,c).

Third and fourth configurations In those configurations, only one vector out of a and c is null.
Since the energy is symmetrical, Est

3 (a,c) = Est
3 (c, a) and it is trivial that if one configuration verifies

the triangular inequality, the second does it as well. In the latter, we suppose a,b ∈ R2 \ {
−→
0 } and

c = −→
0 . The demonstration is very similar to the previous configuration, since we define a vector

c ′ ∈R2 \ {
−→
0 } such that <−→

st ,c ′ >= 0.
We define the following oriented angles x ′, y, z ′ ∈R, constructing them wisely such that:

y = (â,b) ∈ [0,π],
x ′ = y + z ′ ∈ [−π

2 , 3π
2 ],

z ′ = (b̂,c ′) ∈ [−3π
2 , 3π

2 ],
z = z ′± π

2 , and
x = x ′± π

2 .

Given the above, it is straightforward that

arccos(|cos(x ′)|) ≤ arccos(|cos(y)|)+arccos(|cos(z ′)|)
⇒ arcsin(|sin(x ′)|) ≤ arccos(|cos(y)|)+arcsin(|sin(z ′)|)
⇒ arcsin(|cos(x)|) ≤ arccos(|cos(y)|)+arcsin(|cos(z)|)
⇒ Est

3 (a,c) ≤ Est
3 (a,b)+Est

3 (b,c).

We have proven in this section of the appendix that the energy Est
3 in Section 3.2.1 and Equa-

tion (3.8) is a pseudo-metric, and therefore all the subproblems involved in the minimization of
this energy are submodular, which allows for using graph cuts as presented in Section 4.1.3.
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B.2 Tensor Voting

B.2.1 Geometry and stick kernel

The aim of the calculus of this section is to express the decay function DF(ê0,
−→
OP) and the rotation

vectorΩ(ê0,
−→
OP), and finally to compute the rotation matrix R(Ω).

We recall that ê0 ∈R3 is the eigenvector of the stick tensorTst i ck = ê0êT
0 , and

−→
OP ∈R3 is the dis-

placement between the tensor that votes in O, and the tensor or site where is cast the vote located
at the point P. The point O and the vectors ê0 and

−→
OP define altogether the plane of Figure B.1,

figure that has already been introduced in Section 3.2.2.

Decay function and rotation vector computation

The definitions given by Medioni et al. [2000] mention the decay function as follows (see Equa-
tion (3.10)):

DF(r,φ,σT) = exp

(
−r 2 + vφ2

σT
2

)
,

where r is defined as the curvilinear abscissa of the osculating circle passing by O and P, with
normal ê0 in O, and φ is defined as the angle between ê0 and ê′0. The latter vector is the eigenvec-
tor with non null eigenvalue of the tensor cast at location P. Given that ê′0 is also normal to the
osculating circle, in point P, this also gives us an expression ofΩ:

Ω= arccos(
〈

ê0, ê′0
〉

)
ê0 × ê′0
‖ê0 × ê′0‖

, when ê′0 6= ±ê0.

The explication of such expression is trivial. Since the rotation vector transforms the vector ê0

into ê′0, it is necessarily orthogonal to both vectors if they are non collinear, so Ω is collinear to
their vector product. Since (ê0, ê′0, ê0 × ê′0) is a direct basis by construction, the angle of rotation,
which is the norm of (Ω), is comprised in [0,π]. Since it is also the angle between ê0 and ê′0, it is
effectively computed by the arc cosinus of their scalar product.

In the specific case where ê′0 = ê0, there is no rotation andΩ=−→
0 . In the case ê′0 =−ê0, and any

rotation vector orthogonal to ê0 with norm Π may be used. However this case is not supposed to
happen since the voting kernels are restricted to the space where ‖Ω‖ <π/2.

Now, we note that ê′0 is not given and must be deduced from other data, as well as r andφ in the
expression of DF. The deduction is purely geometric from the elements presented in Figure B.1:

• Since C is the center of the osculating circle passing through O (normal ê0) and P:
OC = CP, C belongs to the mediator of [OP] that is also the bisector of �OCP.

• A,B are set on this mediator, such that B is the middle of [OP] and COA is a rectangle triangle.

• We note that (AC) is a symmetry axis for the elements of the figure.

• At point A, we note that φ=π−2�OAB.

• In the rectangle triangle OBA, �OAB =π/2− �BOA.

• At point O, we can compute �BOA =π/2−arccos(6 ê0,
−→
OP>).

• Thus, φ=π−2arccos(6 ê0,
−→
OP>)

• The arc of circle’s length is derived from the perimeter of the circle:

r = 2�OCB
2π OC.

• In the rectangle triangle OCB, �OCB =π/2−arccos(6 ê0,
−→
OP>) = �BOA.

XII



APPENDIX B. DEMONSTRATIONS

O

P

Figure B.1 – Notations for stick voting kernel. The tensor localized in O with normal ê0 casts its vote at point
P. The result is a stick tensor which normal is ê′0, with its eigenvalue scaled by the decay function DF. This
decay function is computed from the length r of the arc of the osculating circle passing from O to P with
normal ê0, and from the angle φ. We note three important points, A, B, C, used for constructing the figure
and writing explicit angles. Here, (AC) is the mediator of [OP] and crosses this segment in B. All of these

geometrical values can be computed from
−→
OP and ê0.

• In the same triangle, from the cosine of �COB: OC = OP/2
|6ê0,

−→
OP>| .

• Therefore, r = π−2arccos(6ê0,
−→
OP>)

4π|6ê0,
−→
OP>| ‖−→OP‖ .

This allows for computing DF(ê0,
−→
OP) from the definition of Medioni et al. [2000]. However, we

still need to compute ê′0, and we do so by considering the symmetry with ê0 with respect to (AC):

• By symmetry, 〈ê0,
−→
AC〉 = 〈ê′0,

−→
AC〉, so 〈ê0 − ê′0,

−→
AC〉 = 0.

• Since (OP) is orthogonal to (AC), we can decompose ê0 and ê′0 by their projections:

ê0 − ê′0 = 〈ê0 − ê′0,
−→
AC〉

−→
AC

‖−→AC‖2
+〈ê0 − ê′0,

−→
OP〉

−→
OP

‖−→OP‖2

• Therefore, ê′0 = ê0 −2〈ê0,
−→
OP〉

−→
OP

‖−→OP‖2
.

Now we can computeΩ from ê0 and
−→
OP.

Rotation matrix and rotation of tensors

In this section we present the different ways we compute the rotations of vectors, matrices and
tensors, in that manuscript.

When the rotation is defined by an axis and an angle (represented by a rotation vectorΩ 6= −→
0 ),

the formula we use is the following one. Let ω be the norm of the vector (and therefore the angle
of rotation), ω= ‖Ω‖ ∈ R>0, and let vx , vy , vz ∈ R3 be the components of Ωω . We write the rotation
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matrix as follows:

R(Ω) =

 cos(ω)+ v2
x (1−cos(ω)) vx vy (1−cos(ω)− vz sin(ω) vx vz (1−cos(ω)+ vy sin(ω)

vx vy (1−cos(ω)+ vz sin(ω) cos(ω)+ v2
y (1−cos(ω)) vy vz (1−cos(ω)− vx sin(ω)

vx vz (1−cos(ω)− vy sin(ω) vy vz (1−cos(ω)+ vx sin(ω) cos(ω)+ v2
z (1−cos(ω))

 .

(B.4)
WhenΩ=−→

0 , we note that this reduces to the identity matrix.
We notice that

det(R(Ω)) = 1
R(Ω)R(Ω)T = I3

R(−Ω) = R(Ω)T = R(Ω)−1,

where ·T is the transposition operation and I3 is the identity matrix in R3×3. With this definition,
R(Ω) is a rotation matrix and belongs to the orthogonal group in dimension 3.

The formula for rotating a vector v ∈R3 with such matrix is v′ = Rv .
However, when it comes to a tensor, and the matrix M ∈ R3×3 that represents it, multiple op-

tions coexist when it comes to rotations or change-of-base formulas. Depending of the formula-
tion, the elements of the tensor may be covariant, contravariant, or both, and this leads, in the
general case, to different formulas for rotating them.

For instance, when considering that a matrix M embeds an endomorphism M : R3 −→ R3, it
maps a vector space to itself, and therefore we can write, ∀v ∈R3, ∃w ∈R3 such thatMv = w. Since
we consider a rotation of such endomorphism, we now consider the new equation:

M′(Rv) = R(Mv).

Since it is true ∀v ∈R3, we can write:
M′R = RM,

and, if R is an invertible matrix, we have:

M′ = RMR−1.

Now, if the matrix M embeds a bilinear form M : (R3 ×R3) −→ R, it means that for any pair of
vectors (v,w) ∈ R32

, the value M(v,w) = vTMw is fixed. When we consider the rotation of these
vectors by change of base, we have:

(Rv)TM′(Rw) = vTMw, and so
vT(RTM′R)w = vTMw.

Since this is true ∀(v,w) ∈R32
, we can write:

M′ = (RT)−1MR−1,

if and only if R and RT are invertible.
We can see that the two expressions are, in the general case, non equivalent. However, since

in the orthogonal group, to which belongs R(Ω) in our case, the transpose of a matrix is also its

inverse, we have the expression of the rotation used in tensor voting M′ = RMRT .
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Submitted article

C.1 Introduction

For many image processing problems such as image
segmentation or reconstruction, low-level informa-
tion delivered by a single pixel is limited and prone to
noise, corrupted data and all kinds of optic phenom-
ena altering the original image. Therefore, taking into
account a statistical relationship between spatially
close pixels has been introduced relatively early in im-
age processing Geman and Geman [1984]. A classical
way to handle this is to model the two-dimensional
(2D) field of pixels as a Markov Random Field (MRF).
This allows for introducing a prior on the expected so-
lution. Variational approaches are particularly used
to provide solutions, by combining the prior and con-
ditional probabilistic models into a single paramet-
ric functional to be minimized. However, due to the
dimensionality of the solution space and depending
on the form of the functional, finding a global min-
imizer of it often appears as a challenging task. The
study Szeliski et al. [2008] gives an insight by compar-
ing several minimization algorithms (including graph
cuts) on typical vision problems (including image seg-
mentation and image reconstruction). It is well es-
tablished and documented that standard Total Vari-
ation (TV) regularization (e.g. in image reconstruc-
tion Ribal et al. [2018]) or Potts regularization (e.g.
in image segmentation Boykov and Jolly [2001]) us-
ing isotropic neighborhoods behave poorly on thin
structures. Although they are ubiquitous in a number
of applications, their detection remains very difficult
because of their spatial sparsity, their small size and
their potential complex geometry. Since these struc-
tures essentially consist of discontinuities, standard
TV and Potts regularization tend to early remove them
as regularization increases and are thus not adapted
to handle them correctly Favaro [2010].

In parallel with algorithmic developments, the

volume and the diversity of data to exploit have
greatly increased over the last years, therefore pre-
processing have been proposed to reduce the com-
putational burden. For instance, superpixel decom-
position methods Stutz et al. [2018] have been devel-
oped for grouping pixels sharing similar radiometric
intensities into homogeneous regions, and then dras-
tically reducing the number of elements to process
while preserving the geometrical information that is
lost with multi-resolution approaches. For instance
and specifically for segmentation problem, Arbeláez
et al. [2011]; Gould et al. [2009] grow and merge re-
gions from an initial set of superpixels that they call an
over-segmentation of the initial image. A major draw-
back of a superpixel segmentation is that the usual hy-
pothesis of a regular topological lattice is lost, as well
as the regularity in size and shape of every lattice el-
ement. As a result, image segmentation approaches
taking advantage of superpixels must cope with these
problems and introduce new methods and spatial
relationships. Often, superpixels are considered as
neighbors when sharing a common border Cui et al.
[2018]; Fulkerson et al. [2009]; Liu et al. [2016]; Staw-
iaski and Decencière [2011]. The authors of Staw-
iaski and Decencière [2011] propose to minimize an
energy via graph cuts based on the adjacency graph
obtained from the watershed segmentation, where
edges connecting two regions are weighted upon the
common border length between these regions. Sim-
ilarly, Cui et al. [2018] propose to ease the classifi-
cation of the high-dimensional noisy hyperspectral
images by building a weighted graph based on su-
perpixels. In Pei et al. [2014], the authors compute
saliency from MRF using the same concept of adja-
cency, and take into account in their algorithm the
second-order neighborhood to ease the propagation
of information between superpixels. Other superpixel
approaches use patches to analyze the spatial con-
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tent over a neighboring window and find the near-
est matches in a set of reference patches Giraud et al.
[2017a]. In Yu et al. [2015], the authors train a deep
Hough forest from a set of superpixel patches in order
to detect objects in aerial images.

Although our work on anisotropic neighborhood
can be applied to several segmentation or reconstruc-
tion problems, we focus on the application Shape
From Focus (SFF) in this paper. SFF is a popular
method used for inferring the 3D shape of an object
from a set of images with varying focus settings Na-
yar and Nakagawa [1994]. Such an approach only re-
quires one fixed camera with a rather short depth of
field and is able to move this camera or to change the
focal distance of the optical system. SFF is therefore
applicable in many real world applications including
industrial inspection, micro manufacturing, robotic
control, 3D model reconstruction, medical imaging
systems and microscopy. In addition to its intrin-
sic interest, we focus on this application to illustrate
the benefit of anisotropic neighborhoods since naive
pixel-level estimates are hampered by the presence
of homogeneous surfaces, thus requiring some regu-
larization to propagate the information from reliable
areas to uncertain ones, while preserving thin struc-
tures. However, the regularization is all the more chal-
lenging that the number of labels (i.e., the number
of discrete depth values) is important and that struc-
tures (and input data) are 3D.

Our first contribution is to propose different es-
timations of anisotropic neighborhoods on an irreg-
ular lattice such as the ones provided by superpixel
segmentation. Our second contribution is to propose
SFF based on superpixels. It allows us to illustrate the
benefit of anisotropic neighborhood since SFF repre-
sents a sufficiently complex application so that results
may depend on the considered neighborhood.

The rest of this paper is organized as follows.
In Section C.2, we specify the considered problem,
namely SFF using superpixel segmentation. In Sec-
tion C.3, we detail the proposed path-based construc-
tions of anisotropic neighborhoods, based on a pre-
liminary estimation of local anisotropy and orienta-
tion either from Tensor Voting Medioni et al. [2000],
or from RORPO Merveille et al. [2018]. Section C.4 dis-
cusses the results and benefits of our approach in a
comprehensive comparative study between isotropic
and anisotropic neighborhoods both in terms of ac-
curacy and time complexity. Finally, Section C.5
draws main conclusions and perspectives.

C.2 Superpixels-based SFF

C.2.1 Basics of SFF

The core idea of SFF is that the closer an object is to
the object focal plane (i.e., the more it is focused), the
more it appears sharp. Conversely, the farther an ob-
ject is from this object focal plane, the more it ap-
pears blurred. Therefore, SFF relies on a sharpness
operator to find the depth where each point appears
the more sharp, and reconstructs a depth image: In
the absence of regularization (blind estimation), the
depth of each pixel of the 2D scene maximizes the
pixel’s sharpness measure. Specifically, Nayar and
Nakagawa [1994] approximates the sharpness curve
(that represents the sharpness values versus the focus
parameter values) with a Gaussian model, and inter-
polates (along the optical axis) the three focus mea-
sures centered on the maximum sharpness value to
allow for a better depth estimation. To reduce the sen-
sitivity to noise, some authors do the sharpness curve
interpolation by using quadratic, cubic or polynomial
interpolation Moeller et al. [2015] or Gaussian inter-
polation Ribal et al. [2018].

Nevertheless, blind depth estimation remains
prone to noise and ambiguities since, in homoge-
neous or poorly textured areas, the measured sharp-
ness will be quite low and unreliable. To overcome
this limitation, some authors Gaganov and Ignatenko
[2009]; Moeller et al. [2015]; Ribal et al. [2018] consid-
ered SFF in the variational framework. With regular-
ization, the information extracted in the scene areas
where SFF is reliable, such as in objects details, con-
tours, is propagated from neighbors to ambiguous ar-
eas, such as homogeneous, overexposed or underex-
posed regions. As stated in Section C.1, to overcome
the alteration of thin structures, there is however a
need for anisotropic regularization, all the more criti-
cal that we work with superpixels.

C.2.2 From pixel level to superpixel one

Let us consider the 3D space defined by an orthonor-
mal basis (e0,e1,e2) such that e0 and e1 are aligned
with the image row and column dimensions and e2

will represent the focus dimension. The set of input
image pixels, denoted P , defines a cube in (e0,e1,e2)
having dimensions nrow×ncol×nfoc, where nrow, ncol,
and nfoc are positive integers. We also assume with-
out loss of generality that these three dimensions are
sampled with a unit step even if for focus it implies a
simple transformation.

Then, we assume that superpixels are invariant
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with focus dimension and we thus define them equiv-
alently in 2D ((e0,e1) plane) or 3D by replicating them
along the focus dimension (e2). In the following, we
denote by S the set of superpixels defined in 2D and
by S ↑3 the set of superpixels extended to 3D.

In this study, we aim at extending SFF variational
formulation to superpixel level. However, the sharp-
ness profiles and the superpixels themselves have to
be preliminary computed at pixel level. Specifically,
any sharpness value shall be computed at pixel level
by nature. A sharpness operator is a function com-
puted at every pixel p ∈ P and a sharpness profile is
a vector gathering the sharpness values obtained by
varying the focus dimension for a given pair of (row,
column) coordinates in (e0,e1,e2). In the following,
we denote by f (p) the sharpness operator defined in
pixel p ∈ P and by .↓ the projection on (e0,e1) such
that P↓ and p↓ are the projections of P and p respec-
tively, and f(p↓) denotes the sharpness profile at any
pixel p↓ ∈ P↓. Then, the maximum of sharpness is
estimated at any p↓ ∈ P↓ as maxk∈�1,nfoc� fk (p↓) where
fk denote the k th component of sharpness profile f.
From maximum of sharpness, one can estimate the
all-in-focus image defined on P↓. This image allows
us to compute the superpixels, S , that have a good
sensitivity to the sharp edges of the scene, since in
2D space it picks the pixel that is the “sharpest”, i.e.
that has the highest contrast with its neighbors. The
chance of constructing superpixels on blurred edges
of the objects is minimized this way. From S , the set
of superpixels extended to 3D S ↑3 is then derived by
duplicating nfoc times any superpixel s ∈S along the
axis e3.

The sharpness values of S ↑3 elements can then
be derived from the mean sharpness values of the 3D
pixels p ∈P that compose it, and, for each superpixel
in S , a blind depth estimation is derived from the
maximum of sharpness varying focus (S ↑3 elements
derived from a given superpixel s ∈S ). In the follow-
ing, the blind depth superpixel map is denoted û =
(ûs)s∈S with ûs ∈ N assuming (without loss of gener-
ality) that depth values are sampled as integer num-
bers. This depth map may be noisy and sensitive to
the low sharpness profile of homogeneous regions of
the scene, which we cope with our anisotropic neigh-
borhood based regularization.

Finally, let us specify that, in our case, we consider
the sharpness operator introduced in Pertuz et al.
[2013], namely the Summed Modified LAPlacian (SM-
LAP): f (p) = SMLAP(p),∀p ∈P .

C.2.3 Energetic formulation

Usual energetic formulations map a realisation of the
random field we search, i.e. u in SFF application, to
a real number representing its inadequacy to corre-
spond to the observations and prior knowledge. In
our case, since the neighborhoods are also unknown,
we made the energy depend also on a neighborhood
field that maps a local anisotropic neighborhood to
any field element (superpixels in our case). In the fol-
lowing, u ∈ NS is the researched depth field, V is the
neighborhood field andV is the set of possible neigh-
borhood fields. Then, we aim at finding a minimizer
of

F(u,V) = E1(u)+αE2(u,V), (C.1)

where α ∈ R≥0 is an hyperparameter that need to be
later tuned by the user. Specifically, the data fidelity
term E1(u) is instantiated with a quadratic distance to
the blind estimate ûs :

E1(u) = ∑
s∈S

Ws(us − ûs)2, (C.2)

where Ws depends on the dynamics of the sharpness
profile normalized by its averaged value:

Ws ∝


max

k∈�1,nfoc�
(fk (s))− min

k∈�1,nfoc�
(fk (s))

1
nfoc

( ∑
k∈�1,nfoc�

fk (s)

)
− min

k∈�1,nfoc�
(fk (s))+ε

 ,

(C.3)
with ε ∈ R>0 a small positive real number. With the
weighting term Ws , the importance of the data fidelity
term E1 is decreased when the sharpness profile is ho-
mogeneous or when it presents a very low dynamic.
Conversely, the areas with a sharpness profile with a
precisely localized high response have high values of
Ws reflecting the belief that they are trustful.

The regularization term E2(u,V) is derived from
the TV operator. For any u ∈ NS and any V ∈ V, it is
defined as

E2(u,V) = ∑
s∈S

∑
t∈V(s)

Wst |us −ut |, (C.4)

where Wst is a weighting function depending on the
neighborhood field V:

Wst = 1

2

(
1

]V(s)
+ 1

]V(t )

)
, (C.5)

where ]V(s) denotes the cardinality of the neighbor-
hood at the superpixel s. The weighting term Wst

aims at normalizing the regularization terms E2 with
respect to the size of the considered neighborhoods
since this latter is no longer constant (as it was with
usual 4 or 8-connectivity for instance at pixel level).
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C.2.4 Optimization

Graph cuts optimization refers to the computation
of minimum cuts/maximum-flows in a graph of ap-
propriate topology for minimizing functionals aris-
ing in computer vision, e.g. composed of unary and
pairwise terms. Compared to other combinatorial
algorithms, graph cuts are very competitive both in
terms of accuracy (global minimum is very well ap-
proached if not reached as for many binary prob-
lems) and running time (by avoiding stochastic iter-
ative convergence) for a wide range of computer vi-
sion tasks Szeliski et al. [2008]. Practically, graph cuts
depict linear complexity in the number of sites of
S Boykov and Kolmogorov [2004]. Moreover, com-
pared to continuous minimization algorithms, they
are able to deal with regular or irregular lattices with-
out any difficulties.

In the binary case, the key idea of graph cuts
is to construct a two-terminals graph, where nodes
are sites of S and edges encode relationships be-
tween nodes, in a such a way that any cut sepa-
rating these terminals is equal to the value of the
functional on the underlying binary labeling. In
particular, when all pairwise terms are submodular,
polynomial-time maximum-flow algorithms allow for
efficiently finding the minimum-cut in a graph and
thus a global minimizer of the functional for binary
problems Boykov and Kolmogorov [2004].

In the multi-labels case (such as in our case), effi-
cient algorithmic schemes exist for finding minimiz-
ers of functionals. As explained in Section C.3, we
intend as a first attempt in this paper to minimize F
(see Equation (C.1)) with V fixed. It is not difficult to
see that the functional u 7→ F(u,V) is convex based on
Equation (C.2), (C.3), (C.4) and (C.5). In such a situ-
ation, a global minimizer of this functional can be be
efficiently obtained by decomposing the problem into
a set of subproblems only involving binary variables
(as in the case of isotropic neighborhoods in Ribal
et al. [2018]), where each one of them is solved stan-
dard graph cuts in the aforementioned binary case.

C.3 Anisotropic neighborhood con-
struction

The construction of anisotropic neighborhoods can
be decomposed into (i) the estimation of the presence
of thin structures (in our case performed by a vessel-
ness operator) discussed in Sections C.3.1 and C.3.2,
and (ii) the actual computation of the neighbors of
each superpixel discussed in Section C.3.3. Let us

recall that the neighborhoods are constructed on an
irregular lattice of superpixels, and that a neighbor-
hood relationship can be formalized on a graph repre-
senting the superpixels by vertices, by the edges inter-
connecting some vertices. The neighborhood is thus
an application that maps the set of superpixels S to
its powerset 2S without any specific constraint (e.g.,
bound on spatial distance) at this stage. We want to
outline that it may thus be different to the notion of
adjacency that refers to the existence of a common
border between the superpixels and that allows for
the definition of connected components.

Then, to estimate anisotropic neighborhoods, we
will rely on a guidance map, denoted g, that encodes
the information of anisotropy and orientation for ev-
ery superpixel s ∈ S . Such a map must encourage
the alignment of neighborhoods with the thin struc-
tures of the image. In the absence of knowledge of
the scene objects, the estimation of g is not trivial at
all. Indeed, considering simultaneous estimation of
g and the segmentation or reconstruction, the reso-
lution appears very complex if not intractable, and
considering alternate estimation would require an it-
erative scheme ensuring the convergence in a con-
trolled number of iterations. Therefore in this study,
we rather focus on a single estimation of g as a first
attempt, with obvious methodological and computa-
tional benefit, at the expense of defining an estima-
tion sufficiently robust to the input data imperfec-
tions to yield some trustworthy guidance map. Simul-
taneous estimation of u and V is left for future work.
More specifically, if the estimation of g bases on lo-
cal estimates, its construction must be robust to noise
in these latter. We investigate two options, the Tensor
Voting (TVo) as presented by Medioni et al. [2000] and
the Ranking the Orientation Responses of Path Oper-
ators (RORPO) vesselness operator as introduced by
Merveille et al. [2018]. In what follows, g is a field ofR2

vectors encoding both the direction and the saliency.

C.3.1 Tensor Voting-based guidance map

Tensor Voting basics

Tensor Voting (TVo) has been selected for its robust-
ness to noise and efficiency for connecting thin struc-
tures like edges Medioni et al. [2000]. TVo relies on the
Gestalt principles of perceptual organization (such
as proximity, continuity and similarity) for designing
the voting operation. Its formulation involves one
scale parameter, σT ∈ R>0, setting the spatial range
in which most of the energy of the TVo will be dis-
tributed. The basic idea is that casting a vote to other
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site locations allows the information of each tensor
to be propagated, and then thanks to the voting step,
the tensors are smoothed and their orientations re-
fined. Voting operation is performed through voting
kernels that have continuous and smoothly varying
orientations of eigenvectors and decreasing eigenval-
ues, except at the origin of the kernel. For imple-
mentation purpose, the voting kernels are often dis-
cretized and stored into a precomputed field of ten-
sors, which evaluates the values of the tensors cast
from the voter on each point of a regular lattice. Ap-
pendix B.2.1 specifies and gathers all the main equa-
tions useful for 3D TVo, that is much more complex
than 2D one used in Zou et al. [2012] for instance.

In Medioni et al. [2000], TVo involves the five fol-
lowing main steps. First step is the initial vote that
requires the definition of the initial set of voters also
called tokens and the set of cast locations (for vote).
In the absence of orientation information, the set of
tokens is usually converted into a sparse set of ball
tensors that vote in every image site. Second step is
a refinement step. Based on the previous sparse vote,
the initial set of ball tensors can be refined into a set of
stick tensors. For this, each tensor is projected on the
stick tensor axis in the basis used for tensor decompo-
sition. Third step is a dense voting in order to prop-
agate the stick information at every point. It yields
the dense tensor map. Then, fourth step projects the
tensors on the three axes of the decomposition basis
so that three saliency maps can be derived, encoding
for surface, curve and junction saliency. From these
maps, the final step of the algorithm derives the prob-
abilities of presence of surfaces, curves and points.

Computation of guidance map

We adapt TVo to our SFF problem as follows. The
tokens are the local maxima of sharpness profiles in
every superpixel (in (e0,e1) plane). To avoid redun-
dancy between close maxima (inducing artificial re-
inforcement of these latter) of a same profile, a non-
maximum suppression step is performed on sharp-
ness profiles: Specifically, we only keep one maxi-
mum per continuous interval of focus values associ-
ated to sharpness values greater than 80% of the max-
imum sharpness. This way, we ensure that the tokens
are all separated by a local minimum having value be-
low 80% of the global maximum. This initialization
provides a tensor map that is sparse in 3D, but dense
in 2D.

Then, since the number of pairs in (S ↑3 ×S ↑3)
is very large, the vote for the orientation estimation
is also restricted to the set of tokens. This allows for

reducing the computational burden by removing the
dense voting step, at the risk of a loss of accuracy
when the initial depth estimations (and thus tokens)
are erroneous.

Although TVo allows us to handle tensors defined
in R3 for the vote, at the end (for decision after voting)
we have to decide a single tensor for any 2D super-
pixel s ∈ S . In our experiments, we found that the
most convincing results are obtained when only con-
sidering the cumulated tensors (after voting) at the
blind estimated depth ûs . Indeed, while this leads
to irregularities when û is noisy, this also allows for
gaps in the orientations estimated on the edges of the
structures of the images, which could be beneficial.
Then, for extracting the guidance map g, for each su-
perpixel s ∈ S , we project the selected tensor (in ûs)
into image plane and derive the major eigenvector ê0s

in s and the two eigenvectors (λ0s ,λ1s) ∈ R2
≥0 so that

the saliency and orientation of the guidance map in s
is computed as follows:

gs = (λ0s −λ1s)ê0s , ∀s ∈S .

C.3.2 RORPO-based guidance map

As an alternative to TVo, we consider RORPO, a non
linear operator based on mathematical morphology
and used for thin structure detection (see Merveille
et al. [2018] for more details).

RORPO basics

The idea of RORPO is to use a set of oriented fil-
ters with different orientations to analyze the im-
age in terms of the response of multiple morpholog-
ical operations. Indeed, for a thin structure, at least
one dimension is substantially smaller than the other
ones by definition. Thus, determining the image ar-
eas where only a small number of high responses are
measured among the oriented filters discriminates
the thin structures. These oriented filters, called path
openings, are parameterized by structuring functions
defining the set of connection relationships R be-
tween sites (pixels, or superpixels in our case). Since
the RORPO is based on these path openings, let us
briefly recall how these latter work, firstly on a binary
image and secondly on a gray level image.

Denoting by R the set of connection relation-
ships, for each connection relationship  θ∈ R, we
remind how a path opening is defined for binary im-
ages in Merveille et al. [2018]: Given θ and a length
L ∈ R>0, the path opening O θ,L(X) is the union of all
paths connected by θ and of length L in the set of
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true pixels (1-valued) in the considered binary image
X. Each path opening filters out the structures that are
not aligned with the considered orientation. Thus, a
thin structure will be deleted by at least one oriented
filter, conversely to isotropic structures that will have
an homogeneous answer to the set of path openings.

Then, to extend binary path openings to gray level
images, one considers level sets, i.e. sets of sites hav-
ing a value greater than the considered gray level:
Given  θ and a length L ∈ R>0, the gray level path
opening of an image Y is defined as

O θ,L(Y, s) = max
{
τ ∈R>0|s ∈O θ,L(Y≥τ)

}
,

where Y≥τ is the level set of Y at level τ.
In Merveille et al. [2018], RORPO implementation

involves the following five main steps. The first step is
the dilation of the gray level input image with respect
to spatial adjacency. The second step deals with di-
rection sampling. It boils down defining a finite set of
connection relationships, denoted by  θ, such that
two sites s and t are connected if and only if (i) they
are adjacent and (ii)

−→
st vector’s direction and the sam-

pled direction θ are considered equal been given the
imprecision angle φT threshold. The third step is
the computation of the path opening results for the
sampled directions and the fourth step ranks their re-
sponses as follows: For each site, the responses to the
#R path openings are ranked in decreasing order of
magnitude, i.e. denoting RF1 the maximum value and
RF#R the minimum (last in the ordering) value. This
ranking of the orientation responses of the path open-
ings gave its name to the algorithm RORPO. Then, for
each site, the RORPO value is the difference between
maximum path opening value (RF1) and the i largest
response, (RFi ). In our case, we set i = 4. Finally, fifth
step derives, for each site, an orientation by averaging
the orientations of the three largest responses.

This formulation yields higher responses for thin
structures that have a small number of high responses
in path openings. Therefore, the value returned by the
RORPO allows us to discriminate the saliency of thin
structures. Let us now present the estimation of ori-
entations used to derive the guidance map g.

Computation of guidance map

Like TVo, our implementation of RORPO works with
the data volume corresponding to the sharpness pro-
files in every superpixel. The choice of these input
data is fully relevant for the RORPO that will detect
structures presenting high gray level values and in-
deed we want to detect highest sharpness values.

For numerical convenience, path openings are
only performed with 2D slices, i.e. at given focus
value, which boils down researching structures in im-
age plane. This is simply performed by restricting
the connection relationships θ to be within image
plane. Then, we consider six directions vθ in the im-
age plane, characterized by their positive angle θwith
the e0 axis: vθ = cos(θ)e0 + sin(θ)e1 (see Figure C.1).

Figure C.1 – Illustration of the 6 directions of R (left) and
an example of path obtained with one structuring function
 θ (right). The connectedness θ is characterized by the
vector vθ and the angular width φT. For this illustration,
we have represented directed edges for positive displace-
ments, but the paths are computed in both directions.

Note that, although usually the length L is a posi-
tive integer expressed in pixel unit, extending the case
of pixel lattice to superpixel one, we instead consider
that the length of the path is a real L ∈R>0, computed
as the sum of the distances between the superpixels’
barycenters in the path.

Each of the connection relationships yields a path
opening result. From this set of path openings, we
firstly compute the RORPO index that is further in-
terpreted as a saliency index and secondly the struc-
ture orientation. For the latter, we use a specific av-
erage operation such that orthogonal vectors cancel
and vectors of opposite directions would not. The
trick consists in considering polar coordinates and
doubling the argument value of the vectors before av-
eraging them, and dividing the argument of the av-
eraged result by two. Mathematically, with complex
notations, and omitting the normalization coefficient
useless here, it is as follows:

vRO(s) ∝
(
ε+ ∑
 θ∈R′(s)

O θ,L(Y, s)exp(2iθ)

) 1
2

,

where ε > 0 is a very small real number used for nu-
merical stability of the expression, and R′(s) ⊂ R is
the set of orientations of the three first answers in the
rank filter at site s.

With this construction, we obtain a 3D volume of
vectors that has the same dimensions as the grayscale
input data and from which the 2D guidance map g is
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finally computed. For this, we average the vRO direc-
tions varying the depth:

gs =
( ∑

t∈S ↑3,t↓=s

|gt |exp(2i arg(gt ))

) 1
2

, ∀s ∈S ,

where t↓ is the result of the projection of 3D site t on
the 2D image plane and arg(c) denotes the argument
of any complex number c ∈ C. In previous equation,
the angles are simply weighted by the norm gt , but
more sophisticated weighting may also consider the
distance with respect to the blind depth, e.g. using a

weighting coefficient equal to |gt |exp(−2(t−ûs )2

∆h
).

Compared to TVo, RORPO allows for a faster com-
putation of the guidance map and is consistent with
the notion of path-based neighborhood introduced
in Section C.3.3 that specify the construction of the
neighborhoods from g.

C.3.3 Path-based neighborhoods

This section depicts our contribution concerning the
construction of anisotropic neighborhoods, i.e. the
neighborhood field V ∈V (see Section C.2.3).

We propose path-based neighborhoods to fit into
thin structures of the image, possibly one super-
pixel width. Being based on the adjacency graph
A , the neighborhood construction ensures that the
neighbors of a superpixel defines a single connected
component. We recall that two superpixels are ad-
jacent when they share a common border at pixel
level, thus the adjacency is a symmetric relation-
ship: s ∈A (t ) ⇐⇒ t ∈A (s), ∀s, t ∈S . Then, a path
of length n ∈N is an ordered list (s0, . . . , sn) of consec-
utive adjacent superpixels.

More formally, let us denote by ΠK(s, t ) the set
of paths joining any pair of superpixels (s, t ) ∈ S 2,
without any loop, and having length K: ΠK(s, t ) =
(s0, . . . , sK) ⊂S K+1, such that ∀k ∈ �0,K�, sk+1 ∈A (sk ),
s0 = s, sK = t , and ∀ j ,k ∈ �0,K�, s j 6= sk . Similarly, we
also define Π(s, t ), the set of paths joining superpixels
s, t with any length, by extension:

Π(s, t ) = ⋃
K∈N

ΠK(s, t ).

The proposed path-based neighborhoods relies
on previously estimated guidance map g that con-
tains the information about the orientation and
saliency of the structures of the scene, useful to de-
fine neighborhoods in every superpixel. In particu-
lar, when the norm ‖gs‖ at a given superpixel s is be-
low a fixed threshold, the neighborhood in s is V(s) =

A (s), i.e. an isotropic neighborhood that ensures ad-
jacency. Otherwise, the set of neighbors is given by
the union of the elements of two paths that expand
from s to the two opposite directions corresponding
to the orientation of gs . In the next subsections, we
present the two options investigated for constructing
the path-based neighborhoods.

Target-based neighborhood

Target-Based Neighborhood (TBN) is derived from
paths that join, starting from a source superpixel s ∈
S , two “targets" corresponding to distant superpixels
(t∗0 , t∗1 ) ∈ (S \ {s})2. Specifically, for j ∈ {0,1}, the tar-
gets are selected with

t∗j ∈ argmin
t∈S s.t. (−1) j 〈gs ,

−→
st 〉>0

‖I(s)−I(t )‖2
2−η‖

−→
st‖2×

∣∣∣6 gs ,
−→
st >

∣∣∣ ,

(C.6)
where 〈., .〉 denotes the dot product between two vec-
tors so that the constraint (−1) j 〈gs ,

−→
st 〉 > 0 refers to an

half-space domain, 6 ., .> stands for the cosine sim-
ilarity (also called normalized dot product) between
two vectors, ‖.‖2 is the Euclidean norm of a vector, |.|
is the absolute value of a real number, and η ∈ R>0 an
hyperparameter to set.

In Equation (C.6), the first term favors the super-
pixels s and t to share similar image intensities while
the second one favors far targets being aligned with
gs . Note that, for selecting close neighbors, the range
of search is restricted to an ellipse centered at s with
major axis aligned with gs and that solutions are de-
rived by Dynamic Programming (DP).

Then, the paths are selected among the two sets
Π(s, t∗0 ) andΠ(s, t∗1 ) joining s to t∗0 and t∗1 , respectively.
For doing so, we formulate a cost function that the op-
timal path (denoted by p∗

j ), j ∈ {0,1}, has to minimize:

p∗
j ∈ argmin

p∈Π(s,t∗j )

|p|−1∑
k=0

‖I(p(k))− I(p(k +1))‖2
2, (C.7)

where |p| stands for the length of the path p, and p(k)
denotes the k th element of it. The term to minimize in
Equation (C.7) is large when the gray levels of succes-
sive superpixels along a path are dissimilar and small
otherwise. We also use DP to derive a minimizer of
previous equation, and the neighborhood V(s) is fi-
nally constructed as the set of the superpixels in p∗

0
or in p∗

1 , but s: V(s) = (p∗
0 ∪ p∗

1 ) \ {s}. The adjacency
along these paths being ensured by construction, the
derived neighborhood forms a single connected com-
ponent.
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We give an illustration of this kind of neighbor-
hood in Figure C.2a. While this neighborhood en-
sures that the set of neighbors of a superpixel s forms
a single connected component and favors paths ori-
ented in the estimated direction of thin structures,
there is no guarantee concerning the cardinality of
these paths. Depending on the image content that in-
fluences the location of the target sites, one site may
have a very small amount of neighbors in a very con-
trasted location, or conversely could possibly have a
large number of neighbors if there exists an arbitrary
long path with constant radiometry. In our experi-
ments, we set η= 30.

(a) Target-Based Neighborhood
(TBN)

(b) Cardinal-Based Neighbor-
hood (CBN)

Figure C.2 – Toy example of path-based neighborhoods.
The arrow indicates the orientation of gs and superpixels of
neighborhood are shown in color. For TBN, two “targets”
(in red) are selected in an ellipse centered on the source
superpixel s (in grey). For CBN, two paths with K = 3 ele-
ments are built to be aligned with gs , taking into account
radiometric similarity with the site s.

Cardinal-based neighborhood

Cardinal-Based Neighborhood (CBN) is also a path-
based neighborhood. However, instead of constrain-
ing the path extremities like TBN (see Section C.3.3), it
constraints path cardinality (and thus neighborhood
cardinality): ∀s ∈ S , V(s) is the union (excepting el-
ement s) of two length-fixed paths p∗

0 , p∗
1 ∈ ΠK(s, ·),

with ΠK(s, ·) denoting the set of paths of length K ∈
N>1 starting from s. Additionally, these paths are en-
couraged to expand in opposite directions.

As previously, we define a cost function present-
ing a tradeoff between fidelity to the thin structure
orientation and fidelity to the gray level of originating
superpixel s. For any j ∈ {0,1},

p∗
j ∈ argmin

p∈ΠK(s,·)

∑
t∈p

‖I(s)− I(t )‖2
2 +η′ψ j (

−→
st ,gs),

where η′ ∈R>0 is an hyperparameter to set, and

ψ j (−→u ,−→v ) =
{

arccos
(∣∣6−→u ,−→v >∣∣) if (−1) j 〈−→u ,−→v 〉 > 0,

+∞ otherwise,

measures the angle between the vectors −→u and −→v and
discriminates whether the dot product is positive or
not.

Note that, in CBN, the cost function compares
gray level and positions of each site of the path versus
the site s instead of computing these differences on
the adjacent sites on the path (as with TBN), to allow
local deviations while ensuring global neighborhood
orientation and gray level value. Figure C.2b shows
an example of neighborhood constructed with such
an approach. In our experiments, we set η′ = 100 and
K = 3.

C.4 Experiments and results

C.4.1 Data

We test our approach on some scenes extracted from
the public1 Middlebury College dataset Scharstein
and Pal [2007]. For each scene, a ground truth depth
map and an all-in-focus RGB image are provided.
Both images have 360 × 360 pixels. These images
enable us to simulate the desired set of blurred im-
ages thanks to the defocusing algorithm Pertuz et al.
[2013], that is currently available as a Matlab source
on MathWorks file exchange. In our simulations, the
multiple images correspond to different focal object
plane depths along the axis e2 (whereas (e0,e1) is a
basis for image plane). For simplicity and readabil-
ity, we simulate images at focus values regularly sam-
pled and set this step to be the unit. The maximum
depth, denoted by ∆h ∈ N, is therefore equal to nfoc

that we set equal to 50. However, images taken at ir-
regular steps could be considered as well without loss
of generality.

Then, the set of defocused images is assumed to
be the only input data available, and we reconstruct
depth values based on the following steps. Firstly, we
compute the sharpness profiles in each pixel inde-
pendently and from maximum of these profiles, we
derive the blind estimate of all-in-focus image. Sec-
ondly, we compute the superpixels from this blind all-
in-focus image. The number of superpixel algorithms
proposed in the literature is rather important, includ-
ing different kinds of superpixels that embed different
properties, such as the adherence to the boundaries
of the objects, the compactness or convexity of the
resulting superpixels, their regularity, or the smooth-
ness of their boundaries. We refer the reader to Stutz

1https://vision.middlebury.edu/stereo/data/
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et al. [2018] to have an overview of the variety of su-
perpixel algorithms. In practice, after a few compar-
isons, we focus on the superpixels provided by an al-
gorithm called ETPS Yao et al. [2015], since it is en-
ergy based (as the general framework adopted for our
work) and offers relatively smooth and regular su-
perpixels. Thirdly, as described in Section C.2.2, the
sharpness profile in each superpixel as well as the
blind superpixel depth map û are derived. Fourthly,
we compute the guidance map g and construct the
neighborhood field {V(s),∀s ∈S }, based on the cho-
sen method as described in Sections C.3.1, C.3.2, C.3.3
and C.3.3. Fifthly, V and û allow us to instantiate our
anisotropic regularization and to derive the regular-
ized depth map results presented in the following next
sections.

C.4.2 Evaluation criteria

The Ground Truth (GT) provided in Middlebury Col-
lege dataset Scharstein and Pal [2007] is at pixel level.
To perform evaluation, we duplicate the depth esti-
mated for a given superpixel to each of its pixels. In
the following, for the sake of clarity, we prefer not to
change the variable name so that we also denote by
u the estimated depth map at pixel level (the element
lattice P or S removing ambiguity if any) and by ũ
the GT.

Evaluation metrics We focus on three complemen-
tary global metrics, namely RMSE (Root Mean Square
Error) that has good additive properties, PSNR (Peak
Signal to Noise ratio) derived from RMSE and SSIM
(Structural Similarity Index Measure Wang and Sheikh
[2004]) that bases on perception-model to measure
the similarity between two images. The mathemati-
cal expressions of these metrics are as follows:

RMSE(u, ũ) =
√

1

#P

∑
p∈P

(up − ũp )2,

PSNR(u, ũ) = 20log10

(
∆h

RMSE(u, ũ)

)
,

SSIMΩ(u, ũ) = 1

]P

∑
p∈P

(
2µu,pµũ,p +C1

)(
2σu,ũ,p +C2

)(
µ2

u,p +µ2
ũ,p +C1

)(
σ2

u,p +σ2
ũ,p +C2

) ,

where ]P stands for the cardinality of P , Ω is a win-
dow centered at any pixel p and of size 7× 7 in our
case, µu,p , µũ,p are the means over Ω centered at p
of u and ũ values respectively, σ2

u,p , σ2
ũ,p , and σu,ũ,p

are the variances and covariance, respectively. Finally,
the constants C1 and C2 are computed from ∆h as

C1 = (0.01∆h)2 and C2 = (0.03∆h)2 for numerical sta-
bility. This is the version of SSIM specified in Wang
and Sheikh [2004] with (according to their notations)
α = β = γ = 1. By computing the variances, covari-
ance and mean values on a set of windows cover-
ing the whole image, SSIM incorporates comparison
measurements of luminance, contrast and structure
of images that allows to take into account important
perceptual phenomena in its evaluation.

For result comparison, we remind that the lower
the RMSE values are (in [0,∆h]), the better the results
are while for PSNR and SSIM criteria, higher values (in
R≥0 and [0,1] respectively) reflect better performance.

Evaluation maps Three complementary kinds of
maps allow us to visualize the difficult areas. Firstly,
depth error map, called E, will stress the image areas
with poorest reconstruction. Secondly, neighborhood
orientation map will represent saliency and direction
information extracted from the guidance map, that al-
lows us to evaluate qualitatively this latter. Thirdly,
depth dynamic within neighborhoods, called QV , pro-
vides a measure of the neighborhood consistency in
terms of depth. Pixel values of E and QV maps are
computed as follows:

E(p) = |up − ũp |, ∀p ∈P ,

QV(p) = max
q∈V(p)

|ũq − ũp |, ∀p ∈P ,

where V(p) at pixel level is simply the set of pixels that
belong to any superpixel neighbors of the superpixel
including p.

Concerning the interpretation of these maps, the
lower the E values (in [0,∆h]), the better the depth
estimation at considered pixel. The orientation map
is expected to be relatively smooth while following
the sharp edges of the objects and aligning with the
thin structures. Finally, in QV , low values (in [0,∆h])
reflect a consistent neighborhood (without implying
uniqueness of the solution). Note that a major benefit
of QV criterion is that it does not require any neigh-
borhood ground truth (which we obviously do not
have).

C.4.3 Alternative approaches considered for
comparison

To evaluate the benefits of our approach com-
pared against isotropic neighborhoods or simplest
anisotropic ones, we focus on the following alterna-
tive approaches.
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Stawiaski’s isotropic neighborhood In Stawiaski
and Decencière [2011], an isotropic neighborhood is
computed such that the superpixels that share a com-
mon border are neighbors and their interactions are
weighted by the length of this common border. This
neighborhood corresponds to the adjacency relation-
ship, with a weighting function. This formulation en-
sures that the set constituted by a superpixel and its
neighbors is a single connected component, but it
does not ensure that the barycenters of neighboring
superpixels are close from each other: Very large su-
perpixels may therefore be included in the neighbor-
hood of a given superpixel s while most of the pixels
that constitute them are actually far from s. Fortu-
nately, such configurations are rare for regular super-
pixels.

Shape-based neighborhood inspired from Giraud
et al. [2017a] Shape-based neighborhood is an intu-
itive method for building anisotropic neighborhoods.
The “shape” refers to the approximation of the neigh-
borhood as a parametric shape, namely ellipse in
our case. The neighbors of a superpixel s are then
the superpixels whose barycenter is included in the
“shape” centered in s. We considered in our case para-
metric ellipses whose major semi axis directions are
given by the guidance map in s. Practically, when
saliency in superpixel s is very low, i.e. ‖gs‖ is lower a
given threshold (0.05), the direction is not reliable so
that we rather define neighborhood as a disc, which
boils down to the isotropic superpatch neighborhood
of Giraud et al. [2017a]. Note that we do not exploit
further saliency information that appears noisier than
direction, and set the eccentricity as a constant pa-
rameter of the model.

Finally, let us underline that since such neighbor-
hoods are computed from barycenters positions, they
do not enforce adjacency of the neighbors. In partic-
ular, when the superpixels are highly irregular, con-
cave, or with low compactness, they may yield neigh-
borhoods with disconnected components. However,
with compact, regular and convex superpixels, shape-
based neighborhood provides an efficient and intu-
itive method for building anisotropic neighborhoods.

Perfect neighborhood For having an estimation
of the possibly best performances brought by an
anisotropic approach, we propose a “so-called” per-
fect anisotropic neighborhood. The latter is com-
puted with respect to GT depth map ũ as follows. Per-
fect neighborhood is implemented as a shape-based
neighborhood with a disc of given radius centered in

s ∈ S , where we remove the neighbors presenting
a depth difference between the depths of GT and s
higher than a fixed threshold DV = ∆h

10 + 1. Addition-
ally, elements that do not belong to the s connected
component are removed from the neighbors. Thus,
perfect neighborhood refers to a neighborhood hav-
ing good properties in terms of homogeneity, connec-
tivity and shape, even if it is not unique.

C.4.4 Results

Global performance analysis

Let us first consider global performance obtained
considering the whole Middlebury college dataset.
Figure C.3 shows the results achieved using 5000 su-
perpixels (ETPS Yao et al. [2015]), in terms of RMSE
(allowing summing individual image performance),
varying the regularization parameter α. We notice
that the perfect neighborhood and the CBN, either
from RORPO or TVo, yield the lowest RMSE values
meaning they outperform all the other approaches
for a wide range of regularization coefficients. Since
perfect neighborhood was designed to evaluate the
performance gain specifically related to anisotropic
neighborhood (leaving apart the question of its es-
timation) with respect to isotropic one (represented
by Stawiaski’s approach), the results clearly under-
line the benefit of anisotropic neighborhood for reg-
ularization. A satisfactory result is that CBN pro-
vides almost as good results as perfect neighborhood
(which we remind is unrealistic since it requires GT),
stressing the performance of neighborhood estima-
tion itself. Comparing with “ellip” that refers to the
“Shape-based neighborhood inspired from Giraud
et al. [2017a]”, we notice that these latest results are
much worse, underlining the importance of a fine
(not too simplistic) estimation. About TBN estima-
tion, we notice it only leads to interesting results for
low regularization (α < 1). Finally, we also note that
RORPO or TVo use for g estimation does not really
impact the results, but a very slight advantage for
RORPO. In conclusion, according to Figure C.3, best
performance is achieved by RORPO CBN, with a very
noticeable robustness of the results with respect to
regularization coefficient, α ∈ [2,16]. This robustness
of CBN to the regularization parameter that is also
confirmed by visual inspection of error maps, is one
of the strengths of this approach against its alterna-
tives.
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Figure C.3 – Comparison of neighborhood anisotropy ben-
efit measured through RMSE on the whole dataset. The re-
sults are achieved using 5000 ETPS superpixels Yao et al.
[2015] and different neighborhood estimations.

We now check the result dependency to super-
pixel segmentation. However, to investigate how re-
sults are dependent on ETPS superpixels, we con-
sider, as an alternative to ETPS superpixels Yao et al.
[2015], the WaterPixels (WP) proposed in Machairas
et al. [2015]. Figure C.4 shows curves analogous to
those in Figure C.3 considering either 5000 (like with
ETPS superpixels) or 2000 WP, respectively. With re-
spect to Figure C.3, we notice the curves and conclu-
sions are remarkably similar, but a slight loss of per-
formance when the number of superpixels is lower (it
can be seen looking at the lowest value achieved con-
sidering perfect neighborhood) and a more distinct
advantage for RORPO with respect to TVo (when look-
ing at the CBN curves).

To further investigate the performance variability
with respect to scene and/or superpixels, Figure C.5
and Figure C.6 respectively show the PSNR and the
SSIM obtained on each scene, for the best result ob-
tained with a varying α. First of all, the remarks
concerning the robustness to the two kinds of con-
sidered superpixels (ETPS and WP) or their number
(5000 and 2000) still hold: Difficult scenes are the
same and CBN achieves very interesting performance
in most cases. Indeed, on some scenes such as Aloe1,
Books1, Wood11, all approaches yield equivalent re-
sults, whereas in other scenes such as Lampshade,
Plastic1 or Reindeer, achieved results appear more
sensible to neighborhood estimation. We also note
that the two criteria PSNR and SSIM are complemen-
tary since differences of performance can be visible in
only one of them, such as with scene Midd11 or Moe-
bius1.
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Figure C.4 – Comparison of neighborhood anisotropy ben-
efit measured through RMSE on the whole dataset. The re-
sults are achieved using either 5000 WP (left) or 2000 WP
(right) using different neighborhood estimations. The leg-
end is the same as in Figure C.3.

However, let us underline that in most scenes, the
top trio is RORPO-CBN, TVo-CBN and quite obviously
perfect neighborhood. These approaches outperform
both isotropic neighborhood (represented by Staw-
iaski’s approach) and naive anisotropic one (ellipse-
based). Nevertheless we also confirm the fact that
an isotropic neighborhood assumption is preferable
to too naive anisotropic neighborhood estimation. In
conclusion, despite the scene disparity inducing vari-
able performance, the main conclusions concerning
the benefit of anisotropic neighborhood fine estima-
tion can also be drawn at scene level.

Detailed analysis of two cases

For further analysis, we present the corresponding
error maps and neighborhood quality maps, focus-
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ing on some cases where the performance highly de-
pends on the type of neighborhood, such as with the
Lampshade scene and the Reindeer one.

Let us first consider the neighborhood estima-
tion quality. As specified in Section C.4.2, the values
of the depth dynamic within a neighborhood are in
[0,∆h], with low values reflecting a consistent estima-
tion of neighborhood. From Figure C.7, we clearly see
that most of the heterogeneous neighborhoods are
located at the borders of thin structures such as the
lampshade rod or the reindeer antlers.
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Figure C.5 – Per scene best results in terms of PSNR mea-
sure for each neighborhood construction using either 5000
ETPS superpixels (top) or 2000 WP (bottom). The higher
the value is, the better the result is.
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Figure C.6 – Per scene best results in terms of SSIM for each
neighborhood construction; 5000 ETPS superpixels (top)
or 2000 WP (low). The higher the value is, the better the
result is.

We also note that lowest values are achieved for
the perfect neighborhood (by construction) and then
by CBN (either from TVo or RORPO guidance map)
whereas both TBN and Stawiaski’s neighborhood are
much worse in terms of homogeneity.

Secondly, we compare the guidance maps pro-
vided by TVo and by RORPO. Figure C.8 shows these
maps in the cases of the two considered scenes,
Lampshade and Reindeer. In both cases, we notice
that the direction of the structures is rather well es-
timated although we also observe some noise. Com-
paring the two estimators, we note that while TVo
looks smoother in terms of orientation (especially
on Reindeer scene), RORPO both better detects the
isotropic areas (in white) and highlights well the sharp
areas of the scene. However, these observed differ-
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All-in-focus Perfect TVO CBN RORPO CBN TVO TBN RORPO TBN Stawiaski

Figure C.7 – Comparison of neighborhood quality QV for Lampshade (top row) and Reindeer (bottom row) scenes, from
left to right: All-In-Focus image, QV maps for perfect neighborhood, TVo CBN, RORPO CBN, TVo TBN, RORPO TBN and
Stawiaski’s neighborhood. Dynamics has been reversed and spread in the interval [0,255] so that dark areas represent bad
performance.

Figure C.8 – Comparison of guidance maps g for Lampshade and Reindeer scenes, using use a color representation, such
that the saturation and the hue encode respectively the saliency and the orientation; from left to right: Color wheel, TVo
Lampshade, RORPO Lampshade, TVo Reindeer, RORPO Reindeer.

ences seems to have only little impact on the neigh-
borhood consistency as depicted in Figure C.7 or on
depth map reconstruction. In what follows, we now
focus on RORPO algorithm.

Finally, let us observe the error maps versus reg-
ularization parameter α for our two scenes and the
three methods of neighborhood estimation: Perfect
(reference for benefit of anisotropic neighborhood),
RORPO CBN and Stawiaski (reference for isotropic
neighborhood). For Lampshade scene, we notice the
very high noise level in the absence of regulariza-
tion (α= 0) that is progressively corrected by increas-
ing α before new errors this time due to the removal
of thin structures appear. This phenomena can be
clearly seen in the case of Stawiaski’s neighborhood
with apparition of errors located on the vertical thin
bar or rod for α > 1. From this scene, we also no-
tice that the optimal α values vary with the consid-
ered neighborhood; as expected, anisotropic neigh-
borhoods allow for higher α values without recon-
struction degradation (in particular for the thin struc-
tures). Specifically, in Lampshade scene, α values pro-
viding best results are equal to 4, 8 and 2 for the Per-
fect, RORPO CBN and Stawiaski’ neighborhoods, re-
spectively. Reindeer scene is much less noisy than
Lampshade scene. However, regularization is again

required to remove the blind estimation errors in the
vertical right strip and in the bottom triangle, both
been part or subparts of objects presenting a very ho-
mogeneous radiometry. Due to this lower initial level
of noise, α “optimal” values are lower than in Lamp-
shade scene, namely they are equal to 1, 2 and 0.5
for the Perfect, RORPO CBN and Stawiaski’ neighbor-
hoods, respectively. We notice that for higher values,
regularization introduce depth errors on the antlers of
the reindeer figure, all the more quickly as the neigh-
borhood is isotropic (indeed with Stawiaski, bottom
triangle errors cannot be corrected without degrading
reindeer antlers). Using anisotropic neighborhoods,
either Perfect or RORPO CBN, the degradation of thin
structures is delayed so that we observe the existence
of α values allowing for the correction of blind errors
without introduction of new errors.

Superpixel versus pixel level

Finally, let us investigate the benefit of consider-
ing the superpixel level rather than the pixel one.
For doing so, we consider again global performance
statistics, namely the RMSE computed on the whole
dataset.

In terms of complexity, the number of pixels is
360× 360 versus 5000 superpixels (ETPS) in the con-
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RORPO CBNPerfect Stawiaski RORPO CBNPerfect Stawiaskiα
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Figure C.9 – Maps of depth error obtained for the scenes Lampshade (half left) and Reindeer (half right), for three neigh-
borhood construction strategies (Perfect, RORPO CBN and Stawiaski) and different values of regularization parameter
α ∈ {0,0.25,0.5,1,2,4,8}. For better visualization, error value dynamic has been bounded to 2∆h

5 .
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sidered experiments. Table C.1 gives the mean run-
ning times in seconds computed over all the scenes
of the Middlebury college dataset, for the four main
steps of our approach: (i) superpixel segmentation,
(ii) guidance map estimation (either based on RORPO
or on TVo), (iii) neighborhood construction, and (iv)
depth map optimization. These running times have
been obtained on an Intel core i9-10900X @ 4.7 GHz,
with 64 Go of RAM. Table C.1 firstly confirms that
RORPO is much faster (3 times) than TVo. Secondly,
considering RORPO instead of TVo, the average run-
ning time for the global algorithm is 53.7 secs, i.e.
about 1 minute per image. We consider this time
as very encouraging since it was achieved with stan-
dard programming code, i.e. without optimization
using GPU for instance. Thirdly, the running time for
depth map optimization (using graph cuts) is very low
thanks to the complexity reduction working with su-
perpixels instead of pixels. For comparison, running
the isotropic neighborhood depth map optimization
at pixel level, the average running time is 36.8s, i.e.
about 30 times slower. Thus, even without code opti-
mization, the additional running time for anisotropic
neighborhood estimation steps is compensated by
the running time decrease for depth map optimiza-
tion step.

Superpixels RORPO TVo CBN Depth
segmentation construction optim.

13.2 28.1 94.6 11.1 1.3

Table C.1 – Mean running times (in seconds) of the main
steps of our approach for computing segmentation of a
scene at superpixel level.

Lampshade Reindeer
PSNR SSIM PSNR SSIM

RORPO-CBN ETPS 57.78 86.33 63.83 97.89
4-adjacency pix. 54.61 83.81 63.94 96.40
RORPO-CBN pix. 53.32 83.00 64.62 97.18

Table C.2 – Results obtained for the scenes Reindeer and
Lampshade with our proposed anisotropic neighborhood
at superpixel level (first row), compared to isotropic neigh-
borhood at pixel level (second row) and RORPO-CBN
neighborhood at pixel level (last row). SSIM values are in-
dicated in percentage. For each scene, best result is in bold
and second best is underlined.

In terms of performance, Figure C.10 allows for
comparison of the RMSE curves for three kinds of
neighborhoods, namely Stawiaski (i.e., isotropic),
RORPO CBN or RORPO TBN (representing best can-

didate for anisotropic neighborhoods) and Perfect, ei-
ther at superpixel level (using 5000 ETPS superpix-
els) or at pixel level. First of all, from Figure C.10, we
notice an improvement of performance at superpixel
level with respect to pixel one. This improvement is a
very strong point since one could have expected that
superpixels would introduce some spatial impreci-
sion (at the benefit of complexity decrease), especially
since the RMSE is measured at pixel level. Neverthe-
less, at least on the considered dataset, this prepro-
cessing step is beneficial for the precise image recon-
struction. This comment is confirmed in most cases
when we examine individual scenes. For instance, for
the two detailed cases Lampshade and Reindeer, the
two first lines of Table C.2 show the performance in-
dicators PSNR and SSIM achieved by RORPO-CBN on
ETPS superpixels and isotropic (4-connectivity) and
we see that RORPO-CBN yields to significantly bet-
ter result except in terms of PSNR on Reindeer scene
where nevertheless the performance values are very
close.

Then, we notice the potential benefit of
anisotropic neighborhood with respect to isotropic
one (at pixel level, Stawiaski’s neighborhood boils
down to 4-connectivity neighborhood) since Perfect
neighborhood yields the best results. However, we
also notice that, at pixel level, the difference of per-
formance is very small, and that isotropic neighbor-
hood yields slightly better result than RORPO TBN
or RORPO CBN. A possible explanation is that the
requirement to take into account anisotropic neigh-
borhood is less pregnant at pixel level (due to the
size of neighborhood with respect to objects in pixel
numbers as well as the regularity of the lattice) and
that neighborhood estimation is less efficient. In-
deed it is based on blind depth estimation that may
be much noisier at pixel level that at superpixel one.
Besides, the performance may depend on the consid-
ered scene. For instance, Table C.2 shows that on the
Reindeer scene, RORPO-CBN at pixel level slightly
outperforms isotropic pixel level both in terms of
PSNR and SSIM indicators. These observations also
open perspectives to understand the relationship be-
tween scene feature and scale of analysis (from pixel
level to superpixel ones).

In conclusion, the benefit of presegmenting the
scene in superpixels and then handling anisotropic
neighborhood appears both in terms of global per-
formance and in terms of robustness with respect
to regularization parameter α. Besides the addi-
tional complexity introduced by neighborhood esti-
mation (RORPO-CBN according to this study) is com-
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pensated by the complexity decrease when handling
much less superpixels than pixels.

0
0.125

0.25
0.50 1 2 4 8 16 32

Regularization coefficient
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0.015

0.02
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0.03

0.035
RMSE comparison

RORPO TBN pixels

Stawiasky pixels

Perfect pixels

RORPO CBN pixels

Stawiasky 5000 ETPS superpixel

Perfect 5000 ETPS superpixel

RORPO CBN 5000 ETPS superpixel

Figure C.10 – Superpixel versus pixel level: Comparison in
terms of RMSE computed on the whole dataset, for three
kinds of neighborhoods.

C.5 Conclusion and perspectives

In this paper, we propose some new anisotropic
neighborhoods that offer a flexible and generic for-
mulation with respect to the site lattice (i.e. pos-
sibly irregular). For doing so, we select and cus-
tomize two vesselness operators and we show their ef-
ficiency thanks to their properties of noise robustness
or adaptability to thin structures. Finally, we evaluate
and study the benefit of the constructed anisotropic
neighborhoods in particular for thin structure preser-
vation. Specifically, we consider SFF application and
we evaluate our results on a reference dataset both

according to quantitative criterion but also based on
qualitative observation of evaluation maps.

Future works will involve the following perspec-
tives. Firstly, we aim at studying the relationships be-
tween the hyperparameters characterizing the neigh-
borhoods and the superpixel ones (regularity, num-
ber), also relating these parameters to the scale of
scene main features and objects. Secondly, focus-
ing on RORPO-CBN approach that appears to provide
best performance and based on the evaluation of the
running times per process, we will focus on the code
optimization of the RORPO module. Thirdly, since
the proposed anisotropic neighborhood construction
can be useful for many energetic formulations of dis-
crete inverse problem as confirmed by preliminary
tests on binary segmentation Ribal et al. [2020], we
aim at considering segmentation of thin structures
such as frequently encountered in medical imaging
(e.g., vessels) or remote sensing imagery (e.g., roads,
rivers). Fourthly, in the proposed approach, neigh-
borhood construction relies on guidance map itself
estimated from a first (blind) evaluation of the so-
lution. We aim at evaluating the benefit of using a
current evaluation of the solution for our neighbor-
hood construction process. Although such an alter-
nate minimization seems attractive, first tests showed
that the risk of divergence from the GT solution is real
so that we will have to define rigorously the conver-
gence conditions.

C.6 3D Tensor Voting

Note: This appendix has been removed from this copy
of the article since it is essentially composed of the el-
ements of Appendix B.2.1.
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Appendix E

Acronyms list

BP An optimization algorithm. 44

ETPS Extended Topology Preserving Segmentation, an algorithm of superpixel. 10, 61–65, 67, 71,
96, 97

FF The maximum flow algorithm introduced by Ford and Fulkerson. 50, 51

FH Felzenswalb and Huttenlocher algorithm of superpixels. 61–64

FM An evaluation of performances based on the elements of the matrix confusion. 72, 75

FN False Negative. 23, 71–73, 91

FP False Positive. 23, 71, 72, 90, 91

GC A key optimization algorithm for minimizing functions used in our implementation. 44

ICM An optimization algorithm. 44

IoU A method for computing similarities between two sets. 91

MRF Markov Random Field. 2, 3, 14–17, 25, 47, 48

PSF The function describing the response of an imaging system to a point source. 78, 79

PSNR A quality measure. 87, 88, 93–95, 97, 99, 103, 104, 108, 109, 112, 113, 117, 118

RMSE A quality measure. 93, 106, 116, 120–122, 127

RORPO Ranking the Orientation Responses of Path Operators. 23, 32–37, 42, 60, 65, 67, 68, 83–88,
92, 94–106, 108–119, 127, 129, 130, XXXIX

SEEDS Superpixels Extracted via Energy-Driven Sampling, an algorithm of superpixel. 61–63

SFF Shape From Focus. 3, 11–13, 27, 31, 32, 36, 54, 62, 65, 67, 68, 78–84, 86, 127, XXXVII

SLIC Simple Linear Iterative Clustering, an algorithm of superpixel. 61–63

SMLAP Sharpness operator used in SFF computation.. 81, 98

SSIM A quality measure. 93–95, 97

TN True Negative. 91
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TP True Positive. 72, 90, 91

TRW An optimization algorithm. 44

TV Tensor Voting. 23, 26–28, 30, 32, 37, 41, 60, 65–67, 70, 72, 73, 75, 76, 83–88, 92, 94–105, 108–110,
112–114, 116–119, 127

TVA The total variation. 2, 23

UQI A quality measure. 93–95, 97

WP Waterpixels, an algorithm of superpixel. 61, 62, 64

XXXVIII



Appendix F

Symbols list

AV area of the shape in shape-based neighborhood. 36, 37, 39, 67

C set of labels of the label field. 14, 16, 23, 25, 44, 53–60, 70, 71, 84, 93

D a dictionnary. 38

ε ellipsis excentricity in shape-based neighborhood. 36, 37, 39, 67

F feature space. 15, 16, 70, 81

F energy functional. 59, 60

Γ threshold used for selection between isotropic or anisotropic neighborhoods. 26, 36–39, 67, 115

g guidance map. 23, 25, 31, 35–41, 84, IX

ι size of the dictionnary. 38, 67

N cliques of the random field. 14, 17, 45, 47, 53, 55–57, 71, 82

N scene spatial dimention. 14, 16, 17, 20, 23, 25, 26, 31, 33

Πδ set of paths (in RORPO computation). 39, 40

P set of pixels of an image. 14, 15, 17, 20, 81, 84, 93

R The set of connectedness relationships. 32, 33

S a shape in shape-based neighborhood. 36–38

σT Tensor voting range. 26, 28–30, 60, 65, 67, 72, 73, XII

S set of sites. 14, 16, 17, 20–23, 25, 31, 33–36, 38–40, 44, 45, 47–50, 53–62, 67, 70, 71, 82–84, 86, 90,
91, 106, XL

S3 set of sites (in 3D space). 17, 20, 21, 82–84

u segmentation: a field of labels. 14–17, 23, 25, 44, 47, 49, 53–60, 70, 71, 82–84

V adjacency relationship. 20, 21, 25, 32–34, 39
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V neighborhood. 14, 16, 17, 20, 21, 23, 25, 26, 36, 37, 39, 40, 59, 60, 67, 68, 70, 71, 74, 82, 83, 90, 91,
XXXIX, XL

V set of existing neighborhood, V : S 7→ 2S . 14, 16, 20, 25, 36, 71, 82

W weighting function associated with the neighborhood. 17, 23, 68, 71

 connectedness relationship. 20, 33–35
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Titre: Voisinages anisotropes de superpixels pour la segmentation d’images de structures fines
Mots clés: Traitement d’images – Techniques numériques ; Optimisation combinatoire ; Segmentation bayési-
enne ; Reconstruction d’image ; Vision par ordinateur ; Superpixels ; Structures fines ; Anisotropie ; Voisinage ;
Régularisation.

Résumé: En vision robotique, segmenter une im-
age consiste à décomposer cette image en régions
homogènes, en associant un label à chaque élément
la constituant. Cette thèse propose une approche
générique vis à vis de ces éléments, pixels ou super-
pixels, en les désignant communément sous le terme
de sites. La résolution du problème inverse qu’est
la segmentation d’images est généralement rendue ro-
buste au bruit grâce à la formulation d’une hypothèse
Markovienne sur le champ des labels, et d’un a pri-
ori d’homogénéité des labels au sein des voisinages.
Cependant, la solution optimale (ou régularisée) tend
alors à présenter des artéfacts indésirables, notable-
ment la perte prématurée des structures fines, définies
comme des structures dont la taille est réduite selon
au moins une dimension.

La construction de voisinages anisotropes adap-
tés à ces structures permet de pallier ce prob-
lème. Ces voisinages sont calculés après une première
étape d’estimation des orientations des structures fines
présentes dans l’image. Trois options, dont deux adap-
tées de la littérature, sont proposées pour réaliser cette

étape cruciale : la minimisation d’une énergie, le vote
de tenseurs, et le RORPO.

À partir des cartes d’orientation obtenues, quatres
méthodes de construction des voisinages anisotropes
sont retenues. Tout d’abord, un voisinage défini par
des formes géométriques est présenté, puis la restric-
tion à un nombre fini de configurations pour chaque
site permet de formuler un voisinage basé sur un dic-
tionnaire. Enfin, deux voisinages basés sur des chemins
entre sites (l’un à extrémités fixées et l’autre à taille
constante) sont considérés, tous deux faisant intervenir
une énergie à minimiser.

Dans ce manuscrit, les segmentations obtenues par
estimateur du Maximum A Posteriori (obtenu à partir
de coupes de graphes) avec les voisinages anisotropes
proposés sont comparées à celles supposant un voisi-
nage isotrope dans le cas de deux applications : la dé-
tection de structures fines et la reconstruction de cartes
de profondeur en Shape From Focus. Les résultats des
différentes variantes proposées sont évalués qualitative-
ment et quantitativement dans le but de souligner les
apports de la méthode proposée.

Title: Anisotropic neighborhoods of superpixels for thin structure segmentation
Keywords: Computer vision; Image processing–Digital techniques; Combinatorial optimization; Image recon-
struction; Segmentation; Superpixels; Thin structures; Anisotropy; Neighborhood; Regularization

Abstract: In the field of computer vision, image seg-
mentation aims at decomposing an image into homo-
geneous regions. While usually an image is composed
of a regular lattice of pixels, this manuscript proposes
through the term of site a generic approach able to con-
sider either pixels or superpixels. Robustness to noise
in this challenging inverse problem is achieved by for-
mulating the labels as a Markov Random Field, and
finding an optimal segmentation under the prior that
labels should be homogeneous inside the neighborhood
of a site. However, this regularization of the solution
introduces unwanted artifacts, such as the early loss
of thin structures, defined as structures whose size is
small in at least one dimension.

Anisotropic neighborhood construction fitted to
thin structures allows us to tackle the mentioned ar-
tifacts. Firstly, the orientations of the structures in the
image are estimated from any of the three presented
options: The minimization of an energy, Tensor Voting,
and RORPO.

Secondly, four methods for constructing the actual
neighborhood from the orientation maps are proposed:
Shape-based neighborhood, computed from the rela-
tive positioning of the sites, dictionary-based neighbor-
hood, derived from the discretization to a finite num-
ber of configurations of neighbors for each site, and two
path-based neighborhoods, namely target-based neigh-
borhood with fixed extremities, and cardinal-based
neighborhood with fixed path lengths.

Finally, the results provided by the Maximum A
Posteriori criterion (computed with graph cuts opti-
mization) with these anisotropic neighborhoods are
compared against isotropic ones on two applications:
Thin structure detection and depth reconstruction in
Shape From Focus. The different combinations of
guidance map estimations and neighborhood construc-
tions are illustrated and evaluated quantitatively and
qualitatively in order to exhibit the benefits of the pro-
posed approaches.
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