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Abstract v

Production planning and scheduling problems under energy aspects
Abstract

In the last few years, economic and societal developments have led to a rapid increase in energy
consumption. Moreover, in almost every industrial nation, electricity prices, one of the main energy
sources used in the manufacturing factories, have been rising continuously. Therefore, improving electric
power efficiency and saving electricity plays a very important role in modern industries. Recently, several
studies are devoted to integrate energy efficiency into the scheduling problems. However, only few of
them considered a multi-states machine-scheduling problem under time varied energy prices. Therefore,
this thesis deals with the case of a single machine scheduling problem with different operating states
characterized by different speeds and energy consumptions. It aims to provide a complete study to
investigate the complexity and the optimization methods of different variant of this problem. For this
purpose, a dynamic programming approach based on a finite graph is used to model several problems
and establish their complexities. We also address different mathematical formulations and optimization
methods to solve the NP-hard variants of this problem. A new heuristic algorithm and a genetic algorithm
are proposed for the single machine scheduling problem with multi-states and the Time-Of-Use electricity
(TOU) costs. A heuristic algorithm, a genetic algorithm as well as a memetic algorithm are proposed for
the single machine scheduling problem with multi-states, multi-speeds, TOU costs and different energy
consumptions for the jobs.

Keywords: mathematical optimization, production scheduling, energy consumption, metaheuristics

Résumé

Ces derniéres années, les évolutions économiques et sociétales ont entrainé une augmentation rapide de la
consommation d’énergie. De plus, dans presque tous les pays industriels, le prix de 1’électricité a augmenté
continuellement. [’amélioration de 'efficacité énergétique et la réduction de la consommation d’électricité
jouent donc un roéle trés important dans les industries modernes. Récemment, plusieurs études ont été
consacrées a l'intégration de 'efficacité énergétique dans les problémes d’ordonnancement. Cependant,
seuls certains travaux précédents considéraient un probléme d’une seule machine multi-états avec différents
prix d’énergie. Cette thése aborde le cas d’un probléeme d’ordonnancement d’une seule machine avec
différents états de fonctionnement caractérisés par différentes vitesses et consommations d’énergie. Cette
theése vise a fournir une étude compléte pour étudier la complexité et les méthodes d’optimisation des
différentes variantes de ce probleme. Dans ce but, une nouvelle approche de programmation dynamique
basée sur un graphe fini est utilisée pour modéliser plusieurs problémes et établir leur complexité. Nous
abordons également différentes formulations mathématiques et méthodes d’optimisation pour résoudre les
variantes NP-difficile de ce probleme. Des méthodes approchées sont proposées pour résoudre le probleme
d’ordonnancement d’une seule machine avec multi-états et les cofits d’électricité de temps d’utilisation
dans le cas avec vitesse unique ainsi que dans le cas avec vitesse multiple et différentes consommations
d’énergie pour les taches.

Mots clés : optimisation mathématique, ordonnancement (gestion), consommation d’énergie, métaheu-
ristiques

Institut Charles Delaunay (ICD)- Laboratoire d’Optimisation des Systémes Indus-
triels(LOSI)
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Background and relevance

In the last few years, economic and societal developments have led to a rapid increase in energy
consumption and energy shortage has become a bottleneck to economic growth in many countries
([1]). Meanwhile, CO2 emissions generated from energy use became one of the main factors for
global climate change and the greenhouse effect. Since the industrial revolution, the rate of
greenhouse gases has increased up to 70% (between 1970 and 2004). The industrial sector is the
largest consumer of energy in most of the countries, so, it is important to focus on the industrial
sector to address the energy consumption minimization and the reduction of greenhouse gas
emissions.

Moreover, since the turn of the millennium, in almost every industrial nation, electricity prices,
one of the main energy sources used in the manufacturing factories, have been rising continuously
(Fig. 1 and Fig. 2). This is mainly a result of taxes and duties to support the integration of
renewable energies and the turning away from low-cost electricity generated by nuclear power.
As a result, the share of the energy costs relative to the production costs increases, resulting in
a lower competitiveness compared to countries with lower or more slowly increasing electricity

prices.
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M Industrial

M Transportation
[ Residential
W Commercial

Nord Pool
€21.0 MWh (-29.1%)

Great Britain
€55.7 MWh (+6.7%)

Belai Netherlands
gique €40.0 MWh (-2.8%
€44.7 MWh (+9.5%) ¢ J
France Germany
€38.5 MWh (+11.2%) €31.6 MWh (-3.6%)
Switzerland

€40.3 MWh (+9.5%)

Spain Htaly
€50.3 MWh (+17.8%) €52.3 MWh (+0.4%)

Figure 2 — European average electricity prices exchanges in 2015 and change vs 2014 (annual
electricity report 2015 (Rte))

Due to increasing electricity price fluctuations, savings in energy costs without capital-intensive
investments are possible by implementing specific organizational methods. These methods attempt
to process energy-intensive orders at times of low prices and energy-low orders at times of high

prices. All these issues have encouraged many researchers all around the world to study how to
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improve the efficiency of a production system in terms of electricity consumption perspective to

reduce production costs and environmental impact.

In the literature, the studies dealing with the energy efficiency of manufacturing systems
can be divided in three different categories: papers which address energy consumption value
minimization, papers on energy consumption cost or operational cost reduction, and problems

with energy constraints.

The energy consumption minimization has been conducted in different perspectives such
machine-level, product-level and system-level. Machine-level studies focus on developing and
designing more efficient machines and equipment. Researchers concentrate on product design to
reduce energy consumption in the product-level. Both the machine redesign and product redesign
need enormous financial investments. In the system-level perspectives, manufacturers can achieve
a significant reduction in energy consumption with fewer investment costs (by using decision
models and optimization techniques to apply at production planning and scheduling decision
levels). In this thesis, the system-level perspective is addressed to present some decreasing energy

consumption methods for our problem.

The total energy consumptions of a production system consists of the amount of energy
consumed during the non-processing states (NPE) (start-up, transition between different states,
shut down and idle states), and during the processing state (PE). Besides, the amount of energy
consumption in each system depends on the machine, the machine state, the processing speed,
and the processed job. Therefore, decision makers may focus on the NPE and/or PE parts of any
system to reduce its energy consumption. For this purpose, one of the most popular approach
is investigating the NPE and PE consumption and using a scheduling method to change the
processing jobs or machines order, and the machine’s state or speed during a time period by

shifting from on-peak periods to off-peak ones.

A comprehensive review of previous studies on production scheduling and energy consumption

problem shows that there are different methods to integrate energy consumption concept in
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# Problem Single machine Unique energy | Different energy | Uniform-speed | Speed-scalable
for the jobs for the jobs
Pb1 8 8 8 t

Pb2 b4 % b4 %
Pb3 ® b4 b4 8

Figure 3 — Three main sets of the studied problems in this thesis

production scheduling problem. Merkert et al:[2] introduced several options on how enterprise-
wide optimization concepts can integrate energy management and scheduling. Gahm et al:[3]
investigated scheduling approaches which aims to improve energy efficiency. They classified the
literature based on three aspects which consist of energetic coverage, energy supply and energy

demand. Finally, they developed a framework for energy efficient scheduling.

Contributions

In this thesis, we focus on the energy consumption minimization of a single machine system.
To the best of our knowledge, few publications exist in the literature addressing the energy
efficiency of a multi-state single machine system with the time-dependent electricity cost. For
this purpose, a single machine system whom energy consumption depends on the machine’s
state is considered and several problems with different assumptions are studied. Three main
variants of this problem are studied in this thesis. They are respectively: multi-states single
machine scheduling problem with the same energy consumption for the jobs, multi-states and
uniform speed single machine scheduling problem with different energy consumptions of the
jobs, and multi-states and multi-speeds single machine scheduling problem with different energy
consumptions of the jobs. These problems and their assumptions are presented in figure 3. The
complexity of each problem and some sub-problems are analyzed and several solution methods

are presented.

Outline

This thesis is organized into five chapters. In chapter 1, a brief definition about the different kinds

of scheduling problems as well as a literature review of the studies which deal with production
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scheduling and energy consumption problems are provided. The description is divided into
several sections, including the studies which consider the environmental impacts of the energy
consumption such as carbon emission, the papers that study decreasing energy consumption
value, the work which try to reduce energy consumption cost or operational cost and the problem
with energy sources constraint. Existent works and results are analyzed and the research gap is
identified.

In chapter 2, the basic problem which deals with a multi-states single machine scheduling problem
under time-of-use electricity tariffs, is introduced. A new mathematical model for the fixed
sequence case is presented. Computational experiments on randomly generated instances are
conducted to evaluate the proposed model and compare to an existing model. The complexity of
this problem is analyzed by using a dynamic programming approach.

Chapter 3, presents a mathematical model for the problem which considers production scheduling
at the machine-level and job-level simultaneously, to acquire minimum energy consumption cost.
It means that in this case, the sequence of the jobs is not fix. So, the model searches firstly
an optimal schedule for the state of the machine in each period and secondly it searches an
optimal schedule for the jobs during the processing states. The proposed model is solved by
CPLEX software. This problem is proved to be NP-hard and a new heuristic algorithm and a
genetic algorithm are proposed to obtain good solutions. A large number of randomly generated
instances are used to evaluate the proposed model and the performance of the proposed algorithms.
Moreover, the complexity of this problem under different cost function assumption are analyzed
and some lower bounds are presented for the general problem.

Chapter 4, investigates the problems when the energy consumptions are also related to the
processing jobs, in two cases: uniform speed case and speed scalable case. It studies the
complexity of these problems in two versions (with and without fixed sequence for the jobs) and
proposes the mathematical models and some solution methods for each one.

Finally, chapter 5 concludes this thesis. It summarizes the different contributions ans discusses
the limitations of the present research. It also introduces some potentially promising directions

for future research.
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10 CHAPTER 1. Energy-efficient scheduling problems: state of the art

1.1 Introduction

Since the third industrial revolution which used electronics and information technology to au-
tomate production (between 1970 and 2004), the rate of greenhouse gases has increased. It
caused climate change problem that concerns individuals and societies. Therefore, environmental
protection is a major and essential issue. Moreover, in most of the countries, the unit of electricity
price, as one of the main energy sources of the manufacturing sector, is rising continuously.
Besides, a significant part of production costs for most of the industry is related to the energy
consumption costs. Consequently, the production costs for producer is growing, resulting in a
lower competitiveness compared to countries with lower or more slowly increasing electricity
prices ([4]). These issues have encouraged many researchers all around the world to improve the
electricity consumption efficiency of a production system with the aim of reducing the production

costs and the ecological aspects, simultaneously.

Many works exist in the literature which integrate the ecological aspect in decision problems.
They can be categorized based on the considered decision level: strategic, tactical and operational.
At the strategic level, usually the papers are related to supply chain problems in which researchers
want to determine the location of the sites, the capacities and the number of distribution centers,
in order to minimize total costs and emissions of greenhouse gases. For example, Rodoplu et
al. in [5] addressed a new single item lot sizing problem, including different energy sources to
determine the optimal production planning and energy contract which minimize production and
energy costs with respect to constraints of production systems and energy supplier contract
conditions. At the tactical level, the papers deal with optimization of planning and resources
management to manage energy consumption to limit greenhouse gas emissions and waste. For
example, Masmoudi et al. in [6] and [7] considered energy constraints and different energy costs
during the planning horizon of a flow-shop system in a lot-sizing problem. At the operational
level, the research studies address the scheduling problems to maximize the performance of a

production line with considering the energy factors.

This thesis deals with the scheduling problem which is in the operational level. A compre-
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hensive review of previous works shows that the energy consumption of a manufacturing system
can be minimized at three levels: machine, product and system ([8]). From the machine-level
perspective, researches attempt to concentrate on developing and designing more energy-efficient
machines and equipment to reduce power and energy demands of machine components. From
the product-level perspective, researchers effort focus on modelling embodied product energy
framework from the product design point of view. Note that, at the machine and the product
levels, enormous financial investment and times are needed to design the new machine(s) or
product(s) which consume less energy than the previous one. The benefits could not be interesting
for most of manufacturing companies, especially those small and medium sized enterprises. At
the system-level, manufacturers may reduce the energy consumption of their system by using
several existing decision models and optimization techniques to manage the production plan or
the schedule of the related system.

The system-level considered in this thesis is addressed to reduce energy consumption of a produc-
tion system. We concentrated to the production scheduling problems which address the energy

consumptions.

Chapter 1 introduces a brief synthesis of the scheduling problems. Then, we focus on the
energy efficient single machine scheduling problems and a comprehensive review of the previous
studies is presented. The papers are categorized in four general sets, the studies which consider
the environmental impact of energy consumption such as carbon emissions, the works which
studied the amount of energy consumptions, the researches addressing the energy consumption

costs minimization, and the papers with energy constraints.

1.2 Scheduling problems

1.2.1 Definition

Production scheduling is one of the most important activities of a company at the operational-level
that cause to remain competitive in demanding consumer markets. The problems of production

scheduling and sequencing refer to decision making regarding the designation of jobs to available
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resources and their subsequent order to optimize pre-defined performance measures. The relevance
and potential of research and application in this area is enormous for both manufacturing and
service companies, which has led researchers to address the problems of production scheduling
from various perspectives over the past decades ([9]).

Depending on the studied problems, the resources can be considered as the machines in an
assembly plant, computational resources such as CPU, memory and I/O devices in a computer
system, runways at an airport, mechanics (human) in an automobile repair shop, etc. Activities
can be considered as different operations in a manufacturing system, execution of a computer
program, landings and take-offs at an airport, car repairs in an automobile repair shop, and so on
(110)).

In this study, we focus on the existing scheduling problems in a manufacturing system to improve

production efficiency and reduce the production costs.

1.2.2 Scheduling in manufacturing

In a manufacturing system, when the orders are released, they are considered as the jobs with
associated due dates. These jobs often have to be processed in a sequence by the machines
in a work-center. The scheduling problems arise in this context. In scheduling terminology, a
distinction is often made between a sequence and a schedule. A sequence usually corresponds to
the order in which the jobs are processed on a given machine, while, a schedule usually refers to
an allocation of jobs within a more complicated setting of machines, indicating the sequence on
each machine. Assuming that m machines M;(i = 1, ..., m) have to process n jobs J;(j = 1,...,n).
The schedules may be machine-oriented like Fig. 1.1. This means that the schedule is for each
machine and it represents an allocation of one or more time intervals to one or more jobs. It also
may be job-oriented as illustrated at Fig. 1.2. An allocation of one or more time intervals to one
or more machines for each job is done.

In a production system, some unforeseen events on the shop floor, such as machine breakdowns
or longer-than-expected processing times, may have a major impact on the schedules. Moreover,
the shop floor is not the only part of the organization that impacts the scheduling process. For

example, processing of the jobs may sometimes be delayed if certain machines are busy, and the
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Figure 1.2 — Gantt chart for a job-oriented schedule ([11])

preemptions may occur when high priority jobs arrive while machines are busy. The decisions

made at this higher planning level for the entire organization may also impact the scheduling

process directly. In such an environment, the development of a detailed task schedule helps to

maintain efficiency and control of operations. Therefore, the scheduling function has to interact

with other decision-making functions that have to be taken into account. Fig. 1.3 illustrates the

information flow in a manufacturing system. Regarding to the schedulers activities, 3 different

classes of schedules may be defined as follows ([12]).

e Non-delay schedule: No machine is kept idle while a job is waiting for processing in a

feasible schedule.

e Active schedule: No job can be put into an empty hole earlier in the non-preemptive

schedule without loosing it’s feasibility.

e Semi-Active schedule: No job can be completed earlier without changing the processing

order on any machine in a feasible non-preemptive schedule.
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1.2.3 Scheduling problems classification

In the literature, different definitions and classifications of the scheduling problems can be found.
One of the most famous classification for classical scheduling problems is presented in [13].
The authors introduced the 3-field notation which is called Graham’s notation (c|3|7y). In this
notation, the first field (o) defines the machine environment. The second field (3) describes jobs’
characteristics and scheduling constraints. It may contain multiple entries or no entry at all. The
main possible symbols and their definitions for the fields « and S are listed in Table 1.1. Any

other entry that may appear in the 3 field is self-explanatory. For example, p; = p implies that
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a B
symbol description symbol description

1 Single Machine pmtn Preemptions

Pm Parallel and Identical Machines nwt No-Wait

Qm Uniform Machines prec Precedence Constraints

Rm Unrelated Machines batch(b) Batch processing

Jm Job Shop T Release Dates

FJc Flexible Job Shop d; Due Date

Fm Flow Shop d} Deadline

FFc Flexible Flow Shop w; Weigh

Om Open Shop nbr Restrictions on the Number of Jobs
- - n; Restrictions on the Number of Operations for each Job

Table 1.1 — Description for the using symbols in Graham’s notation: partl

0
symbol description
Crmaz = maz(Ci,---,Ch) Makespan
TCT =%7%_,C; Total Completion Time
TWCT = X7_ w;.C; Total Weighted Completion Time
Lmaz = max(L1, -+, Ln) Maximum Lateness
TT =%7_,T; Total Tardiness
TWT = X7_ w;.T; Total Weighted Tardiness
X7 _1U;j Total Number of Tardy Jobs
E;L:ij.Uj Total Weighted Number of Tardy Jobs

Table 1.2 — Description for the using symbols in Graham’s notation: part2

all processing times are equal, and d; = d implies that all due dates are equal. The third field
(7) in Graham’s notation provides the objective function to optimize which usually contains a
single entry ([10]). In scheduling problems, the objective to be minimized is often a function of
the completion times of the jobs. Regarding to a schedule, let C'; be the completion time of job j.
Based on the due date of each job (d;), the lateness of job j is defined as L; = C; — d; and it’s
tardiness is defined as T; = max(L;,0). The difference between tardiness and lateness is that the
tardiness is never negative. The unit penalty for a tardy job j is defined as U; = 1 if C; > dj;
otherwise, U; = 0. The earliness of job j is defined as E; = max(d; — C},0). The lateness, the
tardiness, the earliness, and the unit penalty are the four basic due date related penalty functions
in the scheduling problems. Some possible symbols and their definitions for v field are listed in
Table 1.2.

Also, [11] proposed new classifications for new cases which are not included in [13]. The authors
have taken into account the cases where machines are dedicated to performing certain types of
tasks as well as the case where a machine can handle several tasks in parallel. Other properties

of scheduling problems, like deterministic or stochastic problems, that follow laws of probability
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Polynomial Pseudo-polynomial NP-hard
1]batch(b)|Cmaz 1||Xw; Uj 1|r;|2C;
1lrj, pj = p, prec|3Cj 1lr;, pmin|Sw;U; 1|prec|XC;
1lrj, pmtn|XC; 1|batch(oo)|Xw;U; 1lr;, pmtn, tree|SC;
1|batch(b)|XC; 12T 1lr;, pmitn|Sw;C;
1|tree|Xw;C} 1|r;, pj =1, tree|Sw;C}
1|batch(oo)|Xw; C} 1lp; = 1, prec|Zw;C;
1|prec|Lmax
1lrj, pmtn, prec|Lmaz 1|7j| Lmax
1|batch(c0)|Lmax 1|batch(b)|Lmax
12U, Lr;|SU;
1lr;, pmtn|ZU; 1lp; =1, chains|XU;
1|batch(c0)|XU; 1|batch(b)|XU;
1lrj, pj = p|Zw;U; Lry|XT;
1lr;, pj = p, pmin|Sw;U; 1|batch(b)|XT;
Lrj, pj = 1[¥w;T; L[Zw; T;

Table 1.3 — Complexity classification of single machine scheduling problems ([12])

for tasks and machines characteristics are also considered.

1.2.4 Scheduling problems complexity

To study scheduling problems, we also need to address their complexity such as [14] and [15].
Complexity theory is an important tool in scheduling research, which provides a mathematical
framework for classifying problems as “easy” or “hard”, based on the problem solving times.
Regarding to the complexity theory, the scheduling problems can be divided into 3 classes such
as: polynomially solvable, pseudo-polynomially solvable, and NP-hard problems.

Table 1.3 presents a sample of complexity classification of fairly general single machine scheduling
problems. For each scheduling problem the very first step is to try to propose a solution method for
solving the problem. According to the complexity of each problem, different solution methods like
exact and heuristic methods have been proposed. Some scheduling problems can be solved exactly
by using standard techniques, such as branch-and-bound and dynamic programming methods or
linear programming. These approaches have limits in terms of the size of the problem because of
the computation time. Another possibility is to apply approximation algorithms to propose a
good quality solution for the large size problems by reducing computing time. The heuristics and
meta-heuristics algorithms like genetic algorithm are other approximation alternatives for solving
the NP-hard problems. These methods cannot guaranteed the optimality of the solutions.
Depending on the types of problems and their complexities, for the instances larger than a specific

size, it is not possible to obtain an exact solution in a reasonable computational time. That’s why
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we use approximate methods. Also, we need to define some indicators to evaluate the performance
of these methods. For this purpose, two most usual performance indicators in the literature are:
the GAP (the difference between the obtained solution by the proposed method and the obtained

solution by the exact method or a lower bound in percent), and it’s execution time.

After a brief definition on the scheduling problems, in the following section, we give a

comprehensive review of the studies which deal with energy concepts.

1.3 Energy-aware scheduling (EAS) problems

In the literature, there exist different approaches which integrate the energy concept in production
scheduling problem. For example, [16] presented a literature review of decision support models
for energy efficient production planning. [2] introduced several options on how enterprise-wide
optimization concepts can integrate energy management and scheduling. [3] investigated scheduling
approaches which aims to improve energy efficiency. They classified the literature based on three
aspects: energetic coverage, energy supply and energy demand. They also developed a framework
for energy efficient scheduling.

In this thesis, we divide the presented problems in the literature within different categories: the
papers which consider the environmental impacts of the energy consumption such as carbon
emission; the papers that study decreasing energy consumption value; the paper which try
to reduce energy consumption cost or operational cost; and the problem with energy sources

constraint.

1.3.1 Carbon emission

Regarding to the 5th assessment report of the Intergovernmental Panel on Climate Change in
2014, global annual greenhouse gas (GHG) emissions reached an all-time high of 49.5 billion
tons carbon dioxide equivalent (GtCO2eq) in 2010. Of these 49.5 GtCO2eq/yr, industry directly
contributed 18% of total emissions. Besides, industry indirectly contributed another 10.6% to
emissions. In a result, 28.6% of global greenhouse gas emissions is contributed by industry sections.

Therefore, the reduction of carbon emissions generated from energy consumption in production
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systems is necessary and meaningful. For this purpose, in some cases, the authors deal with the
carbon emission of the system.

For example, [17] considered the renewable energy as well as a related rechargeable battery and
studied the minimization of total carbon emission which includes three terms: task production,
procured power, equipment maintenance and daily operations. [18] dealt with minimizing of the
total carbon dioxide emission and total completion time as a multi-objective optimization model.
They focused on a single machine system with deterministic product arrival times and they
emphasized the machine’s energy consumption during idle and switched states. [19] examined
carbon footprint in the production scheduling problem. They studied two multi-objective problem
of a batch-processing machine followed by two parallel-processing machines to minimize the total
weighted tardiness, carbon footprint and peak power. [20] presented a mathematical programming
formulation to minimize total weighted flow time and carbon dioxide emission by considering
renewable energy uncertainty, rechargeable battery and a weight for the importance of jobs. [21]
developed the e-archived genetic algorithm (e-AGA) to examine two batch scheduling problems
with the goal of minimising COy emissions and the traditional due date-based objective of
minimizing total weighted tardiness (TWT). [22] presented a new mathematical programming
model of the flow shop scheduling problem that considers peak power load, energy consumption,
and associated carbon footprint in addition to cycle time. In addition to the processing order
of the jobs, the proposed scheduling problem considers the operation speed as an independent
variable, which can be changed to affect the peak load and energy consumption. [23] investigated
a scheduling problem in dual-resource constrained (DRC) job shop with interval processing time
and heterogeneous resources. A lexicographical method is applied to minimize Interval carbon

footprint and makespan.

1.3.2 Energy consumption

In the studies considering energy consumption, the decision maker has to decide the timing
and the length of OFF/ON operations in addition to optimize the sequence of jobs. There are
different ways to analyze the energy consumption of a manufacturing system. For example,

[24] proposed a new parallel bi-objective hybrid genetic algorithm by considering makespan
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and energy consumption for a scheduling precedence-constrained parallel applications problem.
A multi-objective model that minimizes the energy consumption and total completion time is
proposed in [25] to develop the operational methods by using dispatching rules.

For the systems with more than one machine, in most cases, the energy consumption depends on
the machine (machine-dependent). Moreover, several states are considered for each production
system, which can divided in two main sets: processing and non-processing states. The system’s
energy consumption is usually composed of the amount of consumed energy during the non-
processing states (NPE) (start-up, transition between different states, shut down and idle states),
and the amount of consumed energy during the processing state (PE). Usually, within these
different states, the machine consumes different amount of energy (state-dependent). Moreover,
several characteristics may change the energy consumption of the machine during the processing
states such as: type of the processed job (job-dependent) and the processing speed of the machine
(speed-dependent). In the following, a descriptions of the papers which studied each of these

characteristics are presented.

Machine-dependent

Within the papers which studied the machine-dependent energy consumption, [26] proposed
a modeling method of task-oriented energy consumption for machining manufacturing system.
The energy consumption characteristics driven by task flow in this system are analyzed, which
describes that energy consumption dynamically depends on the flexibility and variability of task
flow in production processes. [27] introduced a uniform parallel machine scheduling problem
where the objective is to minimize resource consumption such that the maximum completion
time does not exceed a certain level. They shown that the problem is strongly NP-hard. [28]
studied a multi-objective Flexible Job-shop Scheduling Problem (FJSP) optimization model, in
which the makespan, processing cost, energy consumption and cost-weighted processing quality
are considered. [29] focused on classical job shop environment which is widely used in the
manufacturing industry. A model for the bi-objectives problem that minimizes total electricity
consumption and total weighted tardiness is developed and a Non-dominant Sorting Genetic
Algorithm is employed to obtain the Pareto front. [30] investigated an energy-efficient permutation

flow shop scheduling problem with sequence-dependent setup and controllable transportation
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time from a real-world manufacturing enterprise. A novel multi-objective mathematical model
considering both makespan and energy consumption is formulated in this paper. [31] analyzed the
trade-off between minimizing makespan, a measure of service level and total energy consumption,
an indicator for environmental sustainability of a two-machine sequence dependent permutation
flow shop. [32] developed constructive heuristics and multi-objective genetic algorithms (MOGA)
for a two-machine sequence-dependent permutation flow shop problem to address the trade-off
between energy consumption and makespan. They leveraged the variable speed of operations to

develop energy-efficient schedules that minimize total energy consumption and makespan.

State-dependent

Within the papers which studied the state-dependent energy consumption, [33] divided the
electricity consumption of a machine into the non-processing electricity (NPE) and processing
electricity consumption (PE). The NPE is associated to the consumed energy by the machine
during start-up, shut-down and idle states. As indicated by [25], in many manufacturing companies,
on average, machines stay idle 16% of the time during the production shift. So, manufacturers
could reduce their energy consumption easily considering the NPE consumption. Scheduling the
machine and the jobs, as well as, Turn off/ Turn on the machine to reduce the NPE are some
typical electricity saving methods which can be applied to any type of manufacturing system
([19]). A scheduling method can reduce NPE consumption by changing the jobs’ processing order
and the machine’s state during a production shift.

[34] presented a mathematical model to minimize energy consumption and total completion time of
a single machine system with deterministic job arrival and service time, by turning off the machine
instead of leaving it idle. For this purpose, they used a multi-objective genetic algorithm and
dominance rules. [35] presented a framework to minimize the total energy consumption and the
total tardiness of a single machine optimization problem with unequal release dates, simultaneously.
In this paper, they considered idle and setup energy. [36] considered a single-machine scheduling
problem with power-down mechanism to minimize both total energy consumption and maximum
tardiness. The aim is to find an optimal processing sequence of jobs and determine if the machine
execute a power-down operation between two consecutive jobs.

[37] investigated energy consumption reduction in production systems through effective scheduling
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of machine startup and shutdown. [38] proposed an energy-efficient model for flexible flow shop
scheduling (FFS). An improved, genetic simulated annealing algorithm is adopted to make a
significant trade-off between the makespan and the total energy consumption to implement a
feasible scheduling. [39] proposed an energy-saving optimization method that considers machine
tool selection and operation sequence for flexible job shops. A mathematical model is formulated
using mixed integer programming and the energy consumption objective is combined with a
classical objective (makespan). [40] considered an unrelated parallel machine scheduling problem
with energy consumption and total tardiness. This problem is compounded by two challenges:
differences of unrelated parallel machines energy consumption and interaction between job
assignments and machine state operations. [41] established a mixed-integer nonlinear programming

model for hybrid flow shop scheduling problem with minimizing the energy consumption.

Job-dependent

For the papers that considered the job-dependent energy consumption, [42], and [43] deal with a
scheduling problem with a cumulative continuous resource and energy constraints, where each
task requires a continuously-divisible resource. The instantaneous resource usage of any task was
limited by a minimum and maximum resource requirement. They presented a Mixed Integer
Linear Program (MILP) based on an event-based formulation to minimize the amount of energy

consumption and a hybrid branch-and-bound method is proposed to solve the problem.

Speed-dependent

The third factor which can change the energy consumption of a machine is it’s processing speed,
which is included in some studies. For example, [44], and [45] studied the complexity of a
deadline-based scheduling problem under a variable processing speed for the preemptive and
non-preemptive cases, with the aim of finding a feasible schedule that minimizes the energy
consumption. [46] addressed the scheduling problem of a set of jobs characterized by their release
date, deadline and processing volume on a single (or a set of) speed-scalable processor(s). Their
goal was to find a schedule respecting the release dates and the deadlines of the jobs so that the
total energy consumption to be minimized.

[47] modeled an energy-aware multi-organization scheduling problem. They considered energy as
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Figure 1.4 — Daily electricity price from 03/01/2018 to 01/02/2018 in Italy (GME,2018)

a resource, where the objective is to optimize the total energy consumption without increasing the
energy spent by a selfish organization. They proved that the clairvoyant problem with variable
speed processors and jobs with release dates and deadlines is NP-hard. [48] studied a flow-shop
scheduling problem consisting of a series of processing stages and one final quality check stage
with the aim of minimizing energy consumption. They consider that the product quality depends
on its processing time at each stage, and the energy consumption is related to the processing

speed, equipment state and product quality.

1.3.3 Energy cost

Another factor which may impact the total energy costs of any production system is variation
of electricity prices during the time slots. For example, the evaluation of the electricity price
in Italy during a working day and during 30 days are presented respectively in Fig. 1.5 and
Fig. 1.4. In practice, electricity suppliers in different countries propose variable prices to balance
the electricity supply and demand, to improve the reliability and efficiency of electrical power
grids. In the literature there exist some papers which assumed the time-dependent energy cost
to compute the total energy consumption cost. They reduced the total energy cost by shifting
the on-peak hour energy consumption to the off-peak hour. The most common categories of
time-varying rates are: Time-Of-Use (TOU), Critical Peak Pricing (CPP) and Real Time Pricing
(RTP) ([49)).
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Figure 1.5 — Hourly electricity price for 01/02/2018 in Italy (GME,2018)

Time-Of-Use (TOU) A static TOU rate divides the day into time periods, and it provides
a schedule of rates for each period. In this option, two types of periods are generally defined:
“on-peak” and “off-peak”. In some cases, TOU rates may have a shoulder (or mid-peak) period,
or even two peak periods. The kWh energy charge during on-peak periods can be evidently
higher than during off-peak periods, such as more than twice. In this rate, there is a certainty
about what the rates will be and when they will occur. For example, in Fig. 1.6, the TOU tariff
was taken from the electricity bill of a Belgian manufacturer. As shown in this figure, this price
structure has two levels where the off-peak period lasts from 9 PM to 6 AM the next day.

TOU rates encourage permanent load shifting away from peak hours. It also could be used to
encourage adoption of plug-in electric vehicles, solar photovoltaic systems, and distributed energy
storage technologies by providing lower rates during the optimal time of charging (off-peak)
and higher rates during the time of discharge or selling back to the grid. TOU rates are not
dynamic, since they are not dispatched based on the changes in actual wholesale market prices or
in reliability-related conditions. They are therefore less useful for addressing specific events on the
grid and integrating variable renewable energy resources. Consequently, TOU rates do not provide
as large a peak load reduction as dynamic rate designs due to the price signal being averaged over
a large number of peak hours instead of a relatively limited number of very high-priced hours.

Within the papers which studied the impact of TOU tarrifs in some manufacturing systems, for
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Figure 1.6 — Time-Of-Use electricity tariff ([50])

example, Ding et al. [51] addressed the unrelated parallel machine scheduling problem under a
TOU pricing scheme. Their objective was to minimize the total electricity cost by appropriately
scheduling the jobs such that the overall completion time does not exceed a predetermined
production deadline. They presented a new time-interval-based mixed integer linear programming
formulation. Moreover, they reformulated the problem using Dantzig—Wolfe decomposition and
proposed a column generation heuristic to solve it. [52] deals with a typical batch-type and energy
intensive process in steel industry. A multi-objective production scheduling optimization model
is proposed under TOU pricing, to minimize the power costs on the premise of ensuring the
product quality. A NSGA-II based production scheduling algorithm is also proposed to generate
Pareto-optimal solutions. [53] studied the steel making-refining continuous casting scheduling
problem with considering variable electricity price to reduce the electricity cost and the associate

production cost. They proposed a decomposition approach for this problem.

Critical Peak Pricing (CPP) Under a CPP rate, participating customers pay higher prices
during the few days when wholesale prices are the highest or when the power grid is severely
stressed. This higher peak price reflects both energy and capacity costs. As a result, the portion
of those costs is spread over relatively few hours of the year. In return, the participants receive a
discount on the standard tariff price during the other hours of the season or year to keep the

total annual revenue constant. Customers are typically notified of an upcoming “critical peak



1.3. Energy-aware scheduling (EAS) problems 25

Electricity price (€ /mWhl

- ] ]

[ 1 1 1 1 1 I I I | | 1 1 1 [ [ [ 1 1 1 [

38:T03%: 90140011 - 90 1308 13: 00 14: 00 13: 00 LE: 30 17 : 90 18 90 1308 59: 03 51 : 03 53: 00 53: 00 90: 0083 : 90 83 9003 00 0A- 04 0303 09: 00 47 : 00 08 : 00
Time (in hour, from Bam March-3-2014 4o Bam March-4-2014)

Figure 1.7 — Critical Peak Pricing electricity tariff ([50])

event” one day in advance. For example as presented in Fig. 1.7, the moderate price lasts from 11
AM to 2 PM of 3 March, and the high price has a period from 2 PM to 6 PM on the same day.
Like the TOU rate, the CPP rate is simple for customers to understand. It provides a strong
price signal and has produced some of the highest observed peak reductions among participants.
In addition, it exposes customers to higher prices during only a very limited number of hours.
But, political acceptance of the rate is sometimes limited due to the relatively high critical peak
price. Furthermore, some customers consider the CPP rate to be more intrusive than a TOU rate
because customers are contacted each time a critical event is called.

As the works which studied CPP rate, for example, [54] addressed the scheduling of continuous
single stage multi-product plants with parallel units and shared storage tanks where the processing
tasks are energy intensive. They considered time-dependent electricity pricing and availability
together with multiple intermediate due dates. A new discrete-time aggregate formulation is
proposed to plan the production levels quickly. [55] studied an off-line scheduling problem arising
in demand response management in a smart grid. The electricity cost is measured by a convex
function of the load in each time slot. Their objective was to schedule all requests with the

minimum total electricity cost.

Real Time Pricing (RTP) Participants in RTP programs pay for energy at a rate that is

linked to the hourly market price for electricity. Depending on customer class, participants are
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Figure 1.8 — Real Time Pricing electricity tariff ([50])

made aware of hourly prices on either a day-ahead or hour-ahead basis. The main advantage of
RTP rates is that they provide the most granularity in conveying accurate hourly price signals
to customers. These rates also provide a dynamic price signal that responds to modifications in
market conditions. Generally, without automation technologies it is difficult for customers to
respond to an hourly basis prices.
Fig. 1.8 illustrates the RTP data which is taken from the Belgian electricity spot market, where
the hourly dynamic electricity price is known one day in advance.

In the literature, as a work which studied RTP rate, [56] developed a time-indexed integer
programming approach to optimize the manufacturing schedule of a factory for minimal energy
cost under real-time pricing (RTP) of electricity. [57] proposed a method for energy efficient and

labor-aware production scheduling at the unit process level under real-time electricity pricing.

1.3.4 Energy consumption cost

In some other papers the effects of other factors such as machine-dependent, speed-dependent or
state-dependent, in addition to time-dependent are investigated simultaneously. For example, [8]
assumed the TOU electricity cost in a hybrid flow shop scheduling problem by considering the
machine-dependent factor to minimize the makespan. [58], and [59] deal with the production and
energy efficiency of the unrelated parallel machine and flexible job-shop scheduling problem. They

minimized total tardiness and total energy consumption cost by considering the time-dependent
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and machine-dependent electricity costs.

[60] investigated online and off-line energy-efficient algorithms for flow time and total cost min-
imization when the machine has variable speed and energy consumption. [1] considered the
scheduling problem of processing jobs with arbitrary power demands that must be processed at a
single uniform speed or speed-scalable machine to minimize total electricity cost under a time of
use electricity tariffs. They analyzed the complexity of these two problems in preemptive and
non-preemptive cases. [61] proposed a mathematical model to minimize energy consumption costs
for single machine scheduling by considering variable energy prices during a production shift and
unique energy consumption for each state of the machine. For this purpose, they made decisions
at machine level to determine the state of the machine at each period as well as specifying the
sequence of the jobs in the process states of the machine.

[62] represented a new scheduling model to minimize the total time slot costs where operational
costs of a job vary over time. [63] deal with the off-line demand scheduling problem with different
power demand at each period. They supposed preemptively and non-preemptively demands
scheduling. [64] assumed an energy-conscious single machine scheduling problem, when each
processing job has its power consumption and electricity prices may vary from hour to hour
throughout a day. The objective was to minimize the total electricity cost required for processing
the jobs.

[65] considered scheduling problem of parallel machine when each machine has a cost per unit
of time and the cost is the sum of the energy cost and clean up cost. [50] and [66] proposed a
generic mixed-integer programming model for a single machine scheduling problem to minimize
total energy costs at volatile energy prices without exceeding the due date. [67] investigated a
preemptive scheduling problem with an energy constraint in each period and different energy
consumption for each job. They assumed the electricity time-varying prices to minimize the total
electricity consumption and operations postponement penalties costs.

[68] addressed a novel production scheduling method to minimize the energy cost when finite
state machine, multiple processes idle modes and time varied electricity price are considered. [69]
presented a bi-objective optimization of a single machine batch scheduling problem to minimize
the makespan and total energy cost. They assumed the Time-of-use tariffs for electricity, and

different energy consumption levels depending on the machine’s temperature level.
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As can be conclude from the presented literature review in this section, since TOU rates have
a simple design that is predictable and easy for customers to understand, they are studied more

than the others by researchers.

1.3.5 Enmnergy constraint

Finally, in the last set of researches which are investigated in this study, the authors addressed
production scheduling involving energy constraints. In these studies, the authors considered
a capacity constraint of total electricity (energy) which is consumed by the machine in each
period or in total. For example, the scheduling problem with continuous resource and energy
constraint is addressed in [70]. The authors proposed a strongly polynomial extension of the
standard energetic reasoning scheme for their problem. [71] addressed a scheduling problem
with continuous resources and energy constraints. Given a set of non-preemptive activities,
each activity requires a continuously divisible resource whose instantaneous usage is limited in
maximum and minimum, its processing satisfying a time window and a total energy requirement.
[72] presented the scheduling of continuous single stage multi product plants with parallel units
and shared storage tanks. They considered time-dependent electricity pricing and availability
together with multiple intermediate due dates, handled as hard constraints. [73] studied the
schedule of the jobs in flexible flow shops in order to account power’s peak. They presented an
approach to modify the original timetable in order to reduce the shop floor power’s peak while
accepting possible worsening of the scheduling objectives (tardiness and makespan).

[74] considered various problems of scheduling under resource constraints on the system which
place the restriction that not all machines can be run at once. These can be power, energy, or
makespan constraints on the system. In the setting where there is a constraint on power, they
showed that the problem of minimizing makespan for a set of divisible jobs is NP-hard. The
scheduling to minimize energy with power constraints is also NP-hard. The scheduling with
energy and makespan constraints with divisible jobs can be solved in polynomial time, and the
problems with non-divisible jobs are NP-hard.

[75] considered a flow shop scheduling problem with a restriction on peak power consumption, in
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addition to the traditional time-based objectives.

To make the difference between the studied works in this thesis, figures 1.9 to 1.12 mark the

considered energy concept in each papers.
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1.4 Conclusion

Based on the presented literature review in this chapter, few works studied energy consumption
and energy cost factors at the same time. Among these studies ,to the best of our knowledge,
very few publications address the energy efficiency of a multi-states single machine system with
the time-dependent electricity cost.

In this thesis, we are interested to study on this problem. For this purpose, a single machine
system with three main states as ON (processing), Idle, and OFF, and two transition states as
turning on and turning off are considered. Our aim is, at first, to analyze the complexity of this
kind of problems, and finally propose some solving methods for them. Moreover, among the
studied papers, we just found one article ([57]) which studied the total energy costs minimization
in addition to the state-dependent and job-dependent energy consumption. Also, there exists
just one paper ([76]) which studied the total energy costs minimization in addition to the state-
dependent and state-dependent energy consumption, and there is no previous work considering
state-dependent, job-dependent and speed-dependent energy consumptions all together. Therefore,

several kind of this problem with different assumptions are studied in the following chapters.
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2.1 Introduction

This chapter deals with energy-efficiency of a multi-states single machine scheduling problem
when the sequence of the jobs is fixed, and the TOU electricity tariffs are considered for each
period. So, the energy costs are varying among the periods and the energy consumption of
the machine’s states are different. Therefore, in this problem the scheduling problem search an
optimal schedule to allocate the states with low consumption in the peak time periods, and the
states with high consumption in the off peak time periods.

This problem was introduced by Shrouf et al. [61]. They proposed a basic mathematical model
for it.

In this chapter, we are attempted to propose an improved model for this problem first of all, and
then, we present a new dynamic programming approach to model this problem and analyze its

complexity.

The remainder of this chapter is organized into five sections. In section 2.2, the definition
of the problem with its assumptions and constraints are presented. In section 2.3, the basic
model for the considered problem is presented and an improved model is proposed. Moreover, the
comparison between these two models is also represented. In section 2.4, the complexity of this
problem is analyzed by using a new dynamic programming approach. Finally, the brief conclusion

of this chapter is presented in section 2.5.

2.2 Problem presentation

This chapter addresses a scheduling problem of several jobs on a multi-states single machine
within a given planning horizon. The horizon is divided into T' periods with the same length
which are characterized by their unit of energy price. Actually, depending on the availability
of the energy sources and the demands at each moment, and some other parameters like the
ecological taxes, the energy suppliers define a time-varying energy price for their customers. As
it is described in the previous chapter, the most common categories of time-varying rates are

Time-Of-Use (TOU), Critical Peak Pricing (CPP), and Real Time Pricing (RTP). In the whole of
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this thesis, TOU is used to define the energy prices. So, in this study, ¢; ;Vt = 1,...,7T, indicates
the unit of energy price at period t. The objective is to find the most economical production
schedule for the machine’s states in terms of total energy consumption costs (T EC'), with making

sure that all the necessary setups are done and the constraints between the states are respected.

2.2.1 Assumptions and constraints

The assumptions and the constraints of this problem are considered as follows.

The considered machine has three main states (ON, OFF, Idle) and two transition states. The
transition states are for transiting from OFF state of the machine to ON state and vice versa
(turning on and turning off procedures) named Ton and Toff, respectively.

It must be mentioned that, the transition time between Idle and ON states is neglected and the
transition between Idle and OFF states is not allowed in our system. Each state of the machine
is characterized by a specific energy consumption and a required periods number. That means,
when the machine is in state s € {OFF, Ton, ON, Tof f, Idle}, it must remain in the same
state during a fixed number of periods (ds), whilst it consumes a specific amount of energy per
period (eg). So, the total energy consumption of the machine for each unit of time in state s is
equal to ez X ds.

The initial and final states of the machine are assumed as OFF states. In the other words, the
machine must be in OFF state during initial (¢ = 0) and final (¢ = T') periods. Note that, in this
study, period t = 0 is just for identifying the initial state of the machine which is OFF and the
scheduling horizon is from period t =1tot =1T.

The machine’s energy consumption during OFF state is equal to zero (eorr = 0), and without

loss of generality, the following relations are considered between the states’ energy consumption:

€ON > €1die > €oFF =0 (2.1)
€ron > €orr =0 (2.2)

eroff > €orr =0 (2.3)
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Figure 2.1 — Machine states and possible transitions.

All the jobs j = 1,...,n are available during whole the horizon (from period t = 0 to t = T') and
they are characterized by their specific processing times p;. The preemption is not allowed in this
problem. It means that, if the machine goes in state s, it must be in the same state during d,
periods. So, for the processing jobs, if the machine was started to perform job 7, it must continue
to perform this job during p; periods.

Moreover, generally the energy consumption during processing the jobs (ON states) depends on
the performed job. Let define g; the unit of energy consumption of the machine per unit of time
when it processes job j. In the other words eony = ¢;. For the presented problem in this chapter, it
is considered that the energy consumption of the machine in ON state is constant and independent
from the processed job. So, in this problem we have eon =qand ¢g; =¢; Vj=1,...,n

These assumptions and the possible transitions between different states are illustrated in Fig. 2.1.

2.2.2 Illustration

The predetermined order of the jobs is addressed for this problem. In the other words, the
sequence of the jobs is fixed and it is required to just identify the optimal sequence for the
machine’s states.

As it is shown in Fig. 2.1, the first step is to choose the best period for turning on the machine.
This transition takes (5, periods and it consumes er,, units of energy per period. Then the

machine is in ON state and is ready to process the first job j = 1, that takes p; periods and
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Parameter Value | Parameter Value
B 2 B2 1
D1 3 D2 2
D3 4 D4 2
D5 3 €OFF 0
EON 4 €rdle 2
€Ton 5 eToff 1

Table 2.1 — The parameters’ values for an instance with 5 jobs and 32 periods

consumes epny = ¢ units of energy per period. Once the job is processed completely, there are
three possibilities for the machine: it may stay in ON state and process the next job; it can go
to Idle state for one period or more and also, the machine can go to OFF state. Note that the
transition between ON and OFF states takes 3 periods and it consumes ey, units of energy
per period. Regarding to their total energy consumption costs, any of these possibilities may be
selected. Moreover, when the machine is in Idle state, for the next period, it may stay in Idle
state or pass to ON state.

The gant chart for an instance of 5 jobs and 32 periods with the parameters’ values as Table. 2.1
is provided in Fig. 2.2. The unit of energy price for each period is presented at the second line of
this figure.

In this solution, the machine is in OFF state until period 3, then it turns to the Ton state during
periods 4 and 5. Since the sequence of the jobs is fixed and the preemption is not allowed, jobs
1,2 and 3 are processed from period 6 to 14, consequently. Since the price of energy are high in
periods 15, 16, 17 and 18, the best solution is shutting down the machine. After turning on the
machine during periods 19 and 20, it processed the jobs 4 and 5 from period 21 to 25. Finally,
the machine goes to Toff state in period 26, and from period 27 to the end, the machine is in
OFF states. Regarding to the unit of energy price in each period, the total energy consumption

costs for this solution is equal to the 222.
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Figure 2.2 — An example for the general problem

2.3 Mathematical model

The primary step to deal with a scheduling problem is to provide a mathematical model for the
problem and then find some solving methods for it. In the literature, the same problem was
addressed by [61], where they proposed a basic model for it. In this section, first of all, the basic

model ([61]) is presented and then an improved version of the model is proposed.

2.3.1 Shrouf et al’s model

In the following, firstly the necessary sets, parameters and variables of the proposed model by
Shrouf et al. [61] are introduced and then, the mathematical model including objective function

and constraints are presented.

Parameters:
n: Number of jobs
T: Total number of periods
s: States of the machine (ON, OFF, Idle, Ton, Toff)
Note: to facilitate the modeling, the three possible states are considered as integer numbers (s=1
represents the ON state; s=2 for OFF state; s=3 for Idle state; s=21 for Ton state; s=12 for Toff
state).
es: Amount of energy that machine consumes during state s
ess: Amount of energy consumption when the machine is transiting from state s to state s’
dss: Number of periods that must elapse when machine switches from state s to state s’
c¢: The energy cost in period ¢

pj: Processing time of job j in number of periods
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Decision variables:

1 ; If the machine is in state s during period ¢t (s =1,2,3)

Qs t =
0 ; Otherwise
8 1 ; If the machine is in transition from state s to s’ in period ¢ (s,s" = 1,2)
ss't —
0 ; Otherwise
1 ; Ifjobj=1,...,nis processed during period ¢
xj,t =
0 ; Otherwise
1 ; Ifjob j=1,...,n begins to be processed in period ¢
Yjt =

0 ; Otherwise

The problem was formulated as follows.

T 3 2 2

Pby = Min Z Ct <Z €s Qs+ Z Z €ss’ * ﬁss’,t) (24)
t=0 s=1 s=1 s'=1
ij,t = a1, Vi=0,..,T (2.5)
j=1

3 2 2
Zas,t'i_zzﬁss’,t:l ,VtIO,,T (26)
s=1

s=1s'=1
3 2 2
As,t S Z Qg/ 141 + Z Z ﬂss”,t«&»l 7v t= 07 7T - la s = 17233 (27)
s'=1ld . /_q s=1\dss”21 s''=1
Bss',t S /Bss’,t+l + s/ t41 7V t= 07 7T - 17 575/ = 1,2737 S % 5/; dsS’ 2 1 (28)
t+d, s
Z ﬁss’,t’ > (as,t + Bs.s’,t+1 - 1) “dsgr ,V t=0,..,T-1; 575/ =12 s ;é S,; dsgr > 1 (29)
p’=p+1
ﬁss/,t + /BSSIHH’dSS/ S 1 5 v t= 07 7T - dss’; 575/ = 1727 S 7{ Sl; dss’ 2 1 (210)

ng‘,t <1 ; Vi=0,..,T (2.11)
Jj=1
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t
yirs < Zyj,t/ Nt=0,...,T:¥Vjj =1,..,n j > (2.12)
/=0
t+p;—1
Z Ty >piyne  VE=0,..T; j=1,..,n (2.13)
t/' =t
T
me <p, Vji=1,..n (2.14)
t=0
T
Zyj,tzl Vi=1,..n (2.15)
t=0
=1 ;t={0,T} (2.16)
sty Basrs € {0,1} (2.17)
zj.e, Yjc € {0,1} (2.18)

In this model, (2.4) deals with the objective function which computes the energy consumption
costs depending on the machine status and the energy prices at each period. Equation (2.5)
ensures that the machine is able to process a job, only when the machine is in processing state.
Equation (2.6) expresses that, at each period, the machine must be in one of the states or
in a transition between two states. Equations (2.7) and (2.8) limit the state of the machine
at one period based on the status or transition that the machine has in the previous period.
Equations (2.9) and (2.10) identify lower and upper number of periods in which the machine can
be in a transition until the operations complete before end of the horizon time. Equation (2.11)
specifies that the machine can process only one job during each period. Equation (2.12) ensures
processing the jobs based on the given sequence. Equation (2.13) imposes the non-preemption of
jobs. Equation (2.14) introduces the processing time of each job. Equation (2.15) forces all jobs
to be processed during the time limitations. Equation (2.16) expresses the boundary conditions.
In the next section, it is attempted to propose an improved mathematical model for this problem

by keeping its assumptions and constraints.

2.3.2 Improved model

In the basic model, the authors use two variables to define the jobs’ situation in each period

(one variable (y;;) for identifying the time that the job begins to be processed and another one
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(xj+), for determining the periods that the job will be processed during them). Whereas, one of
the assumption of this study is that the preemption of the jobs is not allowed. It means that
when a job starts to be processed, the machine must continue the job until it be finished. So,
we can use only one variable to define the jobs situation. Therefore, as a first contribution, we
propose a more efficient model to formulate the problem with the least possible variables, easier
to understand and easier to solve.

For this purpose, instead of using two variables (z;; and y;¢), the model is defined based on only

one decision variable for the jobs (y;.+).

1 ; Ifjob j=1,...,n is performed in period t by the machine
e 0 ; Otherwise

Since j can take n different values from 1 to n, and ¢ can take T + 1 different values from 0 to T,
this change will reduce n * (T'+ 1) from number of variables. This value will be an impressive
amount for large number of jobs and periods.

To formulate the new model, the equations where z; and y;; appeared are changed. For this
purpose, in (2.19) and (2.20), just x;, is replaced by y; ., and constraints (2.21) and (2.22)
replaced to (2.12) and (2.13), respectively. Moreover (2.23) supersedes to (2.14) and (2.15).

The new equations are given in the following:

n
Zym =a1, ;Vt=0,..,T (2.19)
j=1
Zyj,t <1 3¥Vt=0,..,T (2.20)
j=1
t
Pi - Yire < Zyj,t’ Vt=0,....T5 3,5 =1,...,n; j' > (2.21)
t’=0
t—pj T
Z Yjer + Z Yior ST (1 —yje) i Vt=0,..,T—p;—1;j=1,...,n (2.22)
t'=1 t'=t+p;
T
Zyjﬂf Zp] 7v.]: 177” (223)
t=1

yje € {0,1} (2.24)
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As in the basic model, (2.19) guarantees that the machine must be in state ON (s=1) when a
job is processed. Equation (2.20) ensures that only one job can be processed during each period.
Equation (2.21) allows a job to begin whereas, all of the precedent jobs in the given sequence
have been completed. Equation (2.22) ensures the non-preemption of jobs. Finally, (2.23) forces

all jobs to be processed completely during production shift.

2.3.3 Comparison

There are some criteria like objective value, the number of variables and constraints as well as
computing time that can be considered to investigate the difference between these two mathemat-
ical models. Since, both of them are for the same problem, the objective value must be the same,
and they have some difference in the other criteria.

To explore these differences, three different strategies and numerous examples based on each
strategy are considered. All the instances are solved with both of the models using CPLEX

software and on the same computer.

In the first strategy, processing time of each job is considered as an integer random number
between 1 and 5 periods (p; € [1,5]; V j =1,...,n), besides, the cost of energy in each period is
assumed as an integer random number between 1 to 10 (¢; € [1,10]; V¢ =0, ...,T). For examining
the difference between these two model, twelve values are selected for the number of the jobs from
5 to 60, as well as the number of periods based on the other values was calculated and defined as
input data for each example. After each test the objective values of both model in addition to
computing time and difference between their number of variables are collected. Table 2.2 shows
the obtaining results for the first strategy. Note that in this table B represents the basic model
and I represents the improved model.

It must be mention that, the computation time for all of the instances is limited to one hour
(3600 s).

As can be seen in Table 2.2, in the new model by eliminating one variable and rewriting some
constraints, not only computing time and number of variables are significantly reduced (on average

computation time 78.64% and number of variables 39.62%) but also, the amount of constraints



2.3. Mathematical model 45

are decreased which can be very interesting specially for large number of the jobs. Therefore, it
can be concluded that the performances of the model for solving the problem is increased. For
example, within the limitation time, basic model is able to give optimal solution up to problem
size of (30,107) whereas, our proposed model is able to present optimal solution up to problem

size of (45,153).

In the second strategy, generally the assumptions are similar to the first one, just processing
time of each job considered as an integer random number between 1 period and 10 periods
(p; € [1,10]; V j = 1,...,n). This change help us to explore the impact of having jobs with
relatively long process time in the performance of these two models (Table 2.3). As we expected,
this factor only increased the computation times, but actually it do not seem to have effect on
the performance of these two models towards each other. As illustrated in Table 2.3, like the
previous strategy, significantly decreases detected in computing time (83.76%) and number of
variables (36.11%). For example, for the largest problem (problem with size of (25, 140)), for
which the basic model is able to give the optimal solution in less than one hour, the basic model
found the solution in 2785 seconds with 8743 variables, whereas, the improved one find the same

result just in 29 seconds with 5218 variables.

In the third strategy, five examples have been generated by changing the energy costs of
each period and the processing time of each job for each size of the problem. The results of this
examination prove that the improvement in the computing times which is obtained by our model
is not an accident. Among ten examples which basic model was not able to find the optimal
solution in the limited time (3600s), the improved model found the optimal solution in five cases

(Table 2.4).
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(n, T) Objp Objr | CPUg (s) CPU; (s) | Gapyar (%)
(5,23) 322 322 0.18 0.12 22.68
(10, 48) 788 788 5.01 0.83 31.23
(15,59) 1003 1003 13.21 1.78 35.70
(20,72) 1213 1213 110.02 6.38 38.45
(25,92) 1667 1667 1005.87 69.95 40.32
(30,107) 1814 1814 2747.8 46.08 41.66
(35,126) - 2138 3600 491.34 42.68
(40,134) - 2504 3600 102.08 43.47
(45,153) - 2961 3600 2325.49 44.11
(50,172) - - 3600 3600 44.64
(55,191) - - 3600 3600 45.08
(60,213) - 4334 3600 3600 45.45

Table 2.2 — Comparative results for the first group of instances

(n, T) Objp Objr | CPUg (s) CPU; (s) | Gapyar (%)
(5,35) 580 580 0.33 0.21 22.70
(10,72) || 1197 1197 | 1101 1.52 31.24
(15,101) 1769 1769 94.44 14.37 35.71
(20,121) 2285 2285 579.46 8.82 38.46
(25,140) || 2683 2683 2785.4 29.56 40.32
(30,170) || - 3281 | 3600 117.18 41.66
(35,209) - 4452 3600 3600 42.68

Table 2.3 — Comparative results for the second group of instances

Objp  Objr | Gapoy; | Gapcpu (%) | Consg  Consy | Gapcons
1645 1522 123 82.31 40417 40268 149
1738 1580 158 51.52 40417 40272 145
1544 1533 11 17.58 40417 40273 144
1560 1315 245 88.03 40417 40272 145
1421 1275 146 0.00 40417 40279 138
2086 1930 156 0.00 66047 65871 176
2412 2195 217 27.58 66047 65861 186
2125 1968 157 0.00 66047 65867 180
2115 1665 450 0.00 66047 65880 167
2265 2021 244 0.00 66047 65865 182

Table 2.4 — Comparative results for the third group of instances
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2.4 Complexity analysis

The experimental results in [61], show the disability of the presented mathematical model to
solve the medium and large size instances of this problem (more than 60 jobs) in a reasonable
time. In their work, the authors mentioned that “because the shop floor scheduling problem is
considered to be an NP-hard-complete problem, the formulated problem in their paper cannot
be solved in real life”. So, they used a meta heuristic approach (genetic algorithm) to obtain a
feasible solution in a reasonable computational time.

In this section, we prove that it is possible to solve optimally this problem with a polynomial
algorithm which is based on the dynamic programming approach. For this purpose, first of all,
the steps for the graph construction are described and then we discussed the complexity of the

research of the shortest path in the graph.

2.4.1 Dynamic programming approach

In this section, the addressed problem is modeled with a graph and then, a dynamic programming
approach is used to find the optimal solution in a reasonable time. For this purpose, a finite
graph whose dimensions (number of vertices and edges) dependent on the total processing times
and the total number of periods is used to model the problem.

In the following, the presented approach is described with more details.

Graph construction steps

In the considered problem, which is characterized by a fixed number of periods (7'), a minimum
number of periods are required to accomplish the necessary activities. These activities include
turning on and turning off the machine for at least one time, and performing all the jobs. The
number of required periods for performing all the jobs (P) is equal to sum of the processing times
(P = Z?Zl p;). Moreover, at least 81 + B2 + 1 periods are required for initial turning on, final
turning off and final OFF states (if only once switch on and off to be considered). During the
remaining periods (the difference between the total number of periods and the minimum required
number of periods), the machine must be in non-processing states, i.e. initial OFF, middle OFF,

final OFF, and Idle states. Note that each middle-OFF state consists of a sequence of Toff, OFF
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during at least one period, and Ton states.

Let = indicates the number of extra periods, so:

r=T-P—(P1+p2+1) (2.25)

For example, we consider an instance with P = 5,T = 15, 81 = 2, B3 = 1, where = value is equal
to [15-(24+1+1)-5]=6 periods.

Based on the problem’s objective, these x periods can be allocated to a combination of initial or
final OFF states, Idle states between the ON states, and middle OFF states.

In this section, a graph consisting several decision-making levels is considered to model the
problem. Each level represents one period of the horizon time. So, the graph consists of T+ 1

decision levels (0 <1 < T'). This approach can be applied in three steps as follows.

Step 1: putting the nodes For each decision level, let us consider H; consisting the possible
nodes for level [, that corresponds to the different machine states. Therefore, each node of Hj is
characterized by the cumulative number of production units (k) from period 0 to [. Since, the
initial and final states of the machine are considered as OFF state, Hy = {I} and Hr = {F},
where I represents the initial state of the machine, and F' represents the machine’s final status
after processing all the jobs (P).

As an example, for the presented problem in Figure 2.7, the possible number of production units
until period 4 can be 1 or 2 units (Hy = {1,2}). Moreover, because of the value of x for this
instance, the machine can be in the initial state during period 4. Also, the possible number of
production units until period 7 can be from 1 to 5 units (H7 = {1,2,3,4,5}). If it was less than 1
unit, there will not be enough time to complete all the jobs in the future. Moreover, based on
the set up times, 7 periods are not enough to process all the 5 production units and turn off the
machine.

The earliest and the latest possible periods (or levels in our graph’s definition) for any node
k depends on the x value of the given problem. These levels can be shown by the interval of
Tk = {lmin(k)> """ > lmaaz(k)} i the scheduling horizon.

For example, the latest period for the machine to be in the initial OFF state (I), is when enough
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periods remain to perform the necessary setups and complete the processing jobs (x). The time

interval for node k is:

{lmintk—1) + Be—1x + L, lnaze—1) + Bre—1,1 + 1} (2.26)

where f_1 i is the required number of periods for the transition from k—1 to k. As it is mentioned
before, in this problem, just the transitions between the OFF state and the first job, besides the
transition between the last job and OFF state are considered. So, Bx—1% =0; V k€ {2,---, P},

and the time interval for node k is simplified as:

n€{f1+k, -, x+b+k} ;Vke{l,---,P} (2.27)

The first step of this dynamic programming approach is to put all the nodes (k € {I,1,--- , P, F'})
in the graph using their related time interval (7%).

Therefore, the total number of nodes (vertices) (V) for the presented graph is:

V|=Px(z+1)+2=TP (2.28)

To illustrate different graph construction steps, the corresponding graph for the considered
example is presented at the end of each step. So, the first step of the related graph for this

example is presented in Figure 2.3 .

Step 2: drawing the edges The second step is to draw the edges of the graph and compute
their values. In this approach, the edges of the graph represent the possible transitions between
two nodes (node (k,!) and node (k’,1')). Moreover, the edges are valued by the amount of total
energy consumption costs for performing the related transition, which are the positive values
(Bvgeyy—eay; Yk € Hy, k' € Hy, ' >1+1).

Because of the different possible transitions between the nodes, different types of the edges exist.

They can be divided into three main sets (E1, E2, Ej3).
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Figure 2.3 — Graph construction: step 1

Step 2.1: E; The first set (E1) connects the nodes with the same cumulative production

number k between level [ and [ + 1, which indicates the Idle states. The edge’s value of this set is:
n—1

Bty —(ei41) = €41 X €raie 5k € {p1,p1 +p2, -, > pj} (2.29)
j=1

Where ¢; is the unit of energy cost in period [, erg. is the machine’s energy consumption in
Idle state, and p; is the process time of job j. The total number of these edges is equal to
|E1]=(n—1) x a.

The first part of the second step of the related graph for the considered example is presented in

Figure 2.4 .

Step 2.2: E; The second set of edges (Fs) connects nodes k in level [ to node k + 1 in level

', which illustrates three transition cases. The first case is for initial turning on phase, with the
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Figure 2.4 — Graph construction: step 2.1
edge value of:
-1
EU(I,O)—(l,l) = Z (Ci X eTon) +c X eon (2.30)
i=l—p1
The second case is for processing the next job with the edge value of:
Ev(k’l),(kJrl’l/) =cy xeony U'=1+1 (2.31)
And the third case is for final turning off with the edge value of:
I+82 T
Evpy—rry = P (ci X erors) + > (ci X eorr) (2.32)
i=l+1 i=l+p2+1

The cardinal of these edges is equal to |Ea| = (P + 1) x (z + 1).

The second part of the second step of the related graph for the considered example is presented

in Figure 2.5.
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Figure 2.5 — Graph construction: step 2.2

Step 2.3: E3 The last set of edges (F3) shows the middle-OFF states between two processing
jobs, which connects nodes k in level I’ with node & + 1 in level I, where, I' € {l;yin(k), - 2 +

k — B2 — 1}. The edge’s value of this set is:

Evgein—(k+1,0) = +l§+1(c1 X erofys) + Zé;[l_ﬁl (¢ X eron) + €1 X eON ;
(2.33)
vk S {p17p1 +p27 e 72?:_111)]}
The cardinal of these edges is equal to:
z—(B1+B2)
|Es| = Z ix(n—1)= (= (B + B2)) X g”_ BrtBe)+l) (n—1) (2.34)
=1

Therefore, the total number of edges (E) for the presented graph is:

|E| = |E1| + | Eo| + | B3| = T?P (2.35)
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Figure 2.6 — Graph construction: step 2

The corresponding graph at the end of the second step for the considered example consists of 37

vertices and 66 edges which is presented in Figure 2.6 .

2.4.2 The shortest path

The third step of this approach is to find the optimal solution of the problem. Based on the graph
modeling approach, each path from node I of level 0, to node F of level T represents a feasible
solution of the problem and its weight represents the total energy consumption costs. Since the
objective is to minimize the total energy costs, the shortest path that starts at node (I,0) and

ends in node (F,T) represents the optimal solution of the problem.
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Recurrence formulation

Until here, in our approach, we present a graph modeling which is able to model all the possible
solutions of the problem in a polynomial time. In this section, our aim is to prove that the
optimal solution of this problem can be obtained in a polynomial time too. All the graph’s edge
values are positive in this approach. So, Dijkstra’s algorithm, which is one of the most efficient
algorithms to find the shortest path between the source node and every other node of a graph, is
applicable for the presented approach.

For this purpose, let us consider the cost C(; ;) associated to node k € H; which indicates the
minimum cost to set production level k at period [. The recurrence relationship for evaluating

the cost of each node, is as follows:

C(I,O) = 0
(2.36)

C(k,l) = {C(k’,l’) + Ev(k’/,l’)—(k,l)}; Vk € {]., oo 7P,F‘}; Vi e {1, cee ,T}

min
(K1) €Ak 1
where Ay is set of the precedent nodes that are connected to node k of period [ directly. For

example, in Figure 5.4, A411 = {(3,10),(3,6),(3,5)} and C(4 11y obtains from the following

calculations:
0(3’10) + EU(3,10)7(4711) =126 + 24 = 150

C(376) + Evs6)—(4,11) = 110 + 84 = 194
(2.37)

0(375) + E'U(375)_(4711) =106 + 83 = 189

Cla11) = min{150, 194, 189} = 150

Finally, C(p 1) represents the optimal value of the objective function for the considered problem.
The application of Dijkstra’s algorithm to the assumed problem when its parameters’ values are
considered as in Table 2.5, is illustrated in Figure 2.7. The shortest pathis (0—1—-2—-3—4—-5—F)
with the cost of 155. In other words, the best solution for this example is to turn on the machine

from period 0, then to process all the jobs based on their order, during periods 3 to 7, and finally,
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Machine’s state | Power consumption (kW) | Required time (period)
ON 6 5={2,1,2}
OFF 0 -
Idle 2 -
Ton 8 2
Toff 1 1

Table 2.5 — Parameter values of example (5,15)

ﬂ_ﬂﬂﬂﬂﬂ-ﬂﬂﬂﬂﬂﬂﬂﬂ
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155
Figure 2.7 — Graph representation for the problem with fixed sequence
to turn the machine off in period 9.

After describing the new formulation approach, the complexity of Dijkstra’s algorithm for this

problem is evaluated in the following section.

2.4.3 Dynamic programming complexity

According to [77], the worst case implementation of Dijkstra’s algorithm is based on a min-priority
queue, that runs in O(|E| + |V|log |V|) (where |E| is the number of edges and |V| is the number

of vertices or nodes). Consequently, the complexity of this algorithm for the presented Dynamic
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programming approach is equal to:

O(T?P +TPlogTP) = O(T?P +TPlogT + TPlog P) & O(T*P) (2.38)

Since the largest possible value of P is T' (worst case analysis), the considered problem is polynomial
of degree 3 or a cubic polynomial problem (O(T3)). Note that, in this study, Dijkstra’s algorithm
is chosen, while in the literature there exist some other algorithms which can find the shortest
path more faster. But, since our objective is to analyze the complexity of this problem, we did
not verify the other algorithms. Whereas, it is possible to optimize the computation time of this
approach by using another algorithm.

In the following, some numerical experiments are presented to investigate the effectiveness of the

proposed dynamic modeling approach for the considered problem.

2.4.4 Numerical experiments

In this section, the proposed approach in this study and the presented mathematical model
in [61], are implemented and tested on several instances. The linear programming method is
implemented on ILOG CPLEX Software, and dynamic programming approach is coded with
the C++ programming language in Visual Studio 2015. A computer with 2.6 GHz Intel Core
i5 processor and 8 GB of RAM is used to implement all the experiments. At first, the 4 cases
presented in [61], are implemented by these two methods (see Table 2.6). The energy prices
during the periods and the optimal solutions of these case are given in figures 2.8 to 2.11. For
all these examples, our approach finds the optimal solution in less than one second. Since, in
[61], the comparison between the analytical solution and the genetic algorithm is evaluated for a
problem as large as (60,135), in this paper, several examples with sizes from (5, 23) to (60,213)
are examined. For this purpose, the number of periods, number of jobs and their processing times,
as well as energy costs in each period, are generated randomly for every instance. Computation
times are limited to 2 hours (7200s) for the proposed model by [61]. Table 2.7 represents a part
of the results obtained for the problem with P process times and T periods, that are compared
in terms of costs obtained and computation times. As the results show, since this problem is

polynomial, in all the cases our approach finds the optimal solution in a few seconds. Whereas,
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Periodnumbers | 1|2 | 3[4 |5|6|7 (8|9 |10|1112(13|14|15|16|17|18|19|20|21]22|23(24|25|26(27(28|29|30|31|32
Priceperperiod |8 (8| 8|4 (4|43 |3 20222 2|10{10/10f10)13|3|3|2(2|2|2|6|6[3]3]|3|5|5
Processing Jobs 16(12|12(12| 8|8 (8|8 |8 1218|888

Idle (1)

Turning ON (Ton) 20(20 15| 15

Turning OFF(T) 10 6

Shutdown (S) 0(0|0 0/0]|0 gj(ofojoj0]0
The Schedule 5 Ton Jobl Job2 Job3 T § Ton | Jobd Job5 T 5

Figure 2.8 — The energy prices during the periods and the optimal solution for the first case ([61])

Period numbers [ 1| 2| 3| 4|5|6|7|8|9|10|11|12|13|14|15(16|17]18]19|20|21|22|23| 24|25 26| 27| 28| 29| 30|31|32|33|34|35|36|37| 38| 30|40 |41 (42 [43 |44 |45 | 46| 47| 48
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Figure 2.9 — The energy prices during the periods and the optimal solution for the second case

([61])

Period numbers | 1| 2|3 [4|5|6|7|8|9|10[11{12|13(14|15|16|17|18|18|20|21|22]|23|24|25)|26| 27| 28| 29| 30|31|32|33| 34| 35| 36| 37 | 38|39 40| 41| 42| 43| 44|45 |46 | 47|48
Price perperiod | 2| 2| 2|2 2[3(3[3|3|7|7|2|2[2{2|2|3|3|3|3|6|6|6|6|2|2|2|2|2[2|3]|3|3|3|7|7|7|7|7]|5|5|5|5|5]|6|6|6|6
Processing Jobs 8|8[8|12(12|112(12(28| |8|B|8|8|8(12|12|12|12|24|24] [24|8|8|8|8|8| 8 [12{12)12
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Figure 2.10 — The energy prices during the periods and the optimal solution for the 3rd case ([61])

Periodnumbers | 1|2(3]4|5|6[7(8)9/10[{11]12|13/14[15|16|17(18|19|20|21(22|23|24|25|26|27|28(29|30|31|32|33|34|35|36|37|38|39|40(41|42|43|44|45|46|47|48
Price perperiod | 2|2(2]2]2|3(3 313[3[2|2])2[2[2|3]|3|3[3[3]|6]|6[6[6]|3]|3[3[3]3]|2[2(2]|2]|2[2(70/70|70{10(/8|8|8[8[(6|6]|6|6
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Figure 2.11 — The energy prices during the periods and the optimal solution for the 4th case ([61])

for the instances larger than (30,170), CPLEX solver is not able to find any solution for these

problems using the presented model in [61], within the 2 hours time limitation.
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(P,T) | Objcpies CPUcpiex(s) | Objpp CPUpp(s)
Casel  (5,32) 222 0.61 222 0
Case2 (1048) | 393 3.57 303 0
Case3 (10,48) 393 1.15 393 0
Cased  (1048) | 366 0.97 366 0

Table 2.6 — Comparison between Cplex and DP approach solutions for the presented cases in [61]

(P,T) Objl CPUl(S) Objg CPUQ(S)

(5,23) 322 0.12 322 0
(5,35) 580 0.91 580 0
(10,48) 789 1.73 789 0
(10,72) | 1239 4.2 1239 0.01
(15,59) | 1032 4.88 1032 0
(15,101) | 1818 24.05 1818 0.01
(20,72) | 1248 14.30 1248 0

(20,121) | 2327 22.58 2327 0.01
(25,92) | 1667 29.54 1667 0.03

(25,140) | 2725 4051 | 2725  0.01
(30,107) | 1871  241.05 | 1871  0.03
(30,170) | 3337  390.81 | 3337  0.11
(35,126) | 2204  1557.47 | 2204  0.09
(35,209) | - 7200 | 4197  0.14
(40,134) | 2565  293.08 | 2565  0.03
(45,153) | 2989  5524.68 | 2989  0.08
(50,172) | - 7200 | 3443  0.06
(55,191) | - 7200 | 3853 0.09
(60,213) | - 7200 | 4291  0.19

Table 2.7 — Comparison between Shrouf et al’s model (1) and our approach (2)
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2.5 Conclusion

In this chapter, the scheduling problem of several jobs with a fixed sequence on a multi-states
single machine (1, TOU |states, sequence|TEC) is addressed. As a first contribution, an improved
LP model is proposed based on the Shrouf et al’s one. The presented model is formulated by
using one decision variable for the jobs, so, the number of variables are reduced comparing to the
basic model. Moreover, by rewriting some constraints, computing times and number of constraints
are decreased. Therefore, the performance of the mathematical model to solve the problem is
increased. For example, within the same limitation time, basic model is able to give optimal
solution up to problem size of (30,107) whereas, the improved model is able to present the optimal
solution up to problem size of (45,153).

A new dynamic programming approach is proposed to model the problem by using a finite graph.
Then, the Dijkstra’s algorithm is used to find the shortest path of the graph. After analysing the
complexity of this approach, it is proved that unlike what is considered in [61] the problem is
polynomial.

After analysing the complexity of this problem, it is very interesting to analyse the complexity of
the general version of this problem without fixed sequence of the jobs (1, TOU]| states|TEC). For
this purpose, in the next chapter, the complexity of this problem and some other sub problems,

is studied.



60CHAPTER 2. Multi-states single-machine energy-efficient scheduling problem with fixed sequence




Multi-states single-machine energy-efficient scheduling

problem: general version

Outline of the current chapter

3.1 Introduction 62
3.2 Problem presentation 63
3.2.1 Hlustrative example . . . . . . . . .. ... 63
3.3 Mathematical model 64
3.4 Complexity analysis 65
3.5 Complexity analysis of some variants of the problem 67
3.5.1 Lyer =clstates|TEC . . . . . ..o v 69
3.5.2 1,¢ < epyrfstates|TEC ... . . oo o000 70
3.5.3 1,TOU|states,pmtn|TEC . . . . . . . . ... ... ... ... 73
3.5.4 1,TOU]|states,p; =p|TEC . . . .. ... ... ... ......... 7
3.6 Lower bounds For (1,70U]|states|TEC") problem 78
3.6.1 First lower bound (LB1) . . . .« . .« v v it 79
3.6.2 Second lower bound (LB2) . . . . . . . . .. .. 80
3.6.3 Third lower bound (LBs) . . . . . ... ... ... ... . ... . 81
3.6.4 Fourth lower bound (LBy4) . . . . . .« v v v it i i 82
3.6.5 Numerical evaluation for the proposed lower bounds . . . .. .. .. 83

61



62CHAPTER 3. Multi-states single-machine energy-efficient scheduling problem: general version

3.7 Optimization methods for (1,70U|states|TEC) problem 85
3.7.1 Heuristic method . . . . . . ... ... o oo 85
3.7.2 Genetic algorithm . . . . . ... ... oL o 90
3.7.3 Numerical experiments . . . . . . . . .. .. ... ... ... 94

3.8 Conclusion 99

3.1 Introduction

Shrouf et al’s study [61] and previous chapter of this thesis deal with the problem in which
the jobs must be done in a fixed sequence and their order is not changeable. So, the presented
models just specify the optimal machine’s state in each period based on the total electricity
cost minimization. Whereas, in most manufacturing industries, finding the optimal sequence of
processing jobs is an important issue for manufacturers that can cause energy cost minimization.
To the best of our knowledge, there is no study that considers the energy efficient scheduling
problem of a single machine system as defined here for finding optimal job’s sequence. Therefore,
in this chapter, a generalization of the previous problem is proposed to find the optimal sequences
of the machine’s states and the jobs simultaneously. A new mathematical model is presented for
this problem, its complexity is analyzed and some resolution methods are proposed. Moreover,

the complexity of several sub problems are analyzed.

The remainder of this chapter is organized into seven sections. In section 3.2, the definition of
the problem with its assumptions and constraints are presented. In section 3.3, a new model for
the considered problem is presented. Moreover, the comparison between this problem and the
studied problem in chapter 2 is also represented. In section 3.4, the complexity of this problem is
analyzed by using 3-PARTITION problem. In section II, several lower bounds are proposed for
the problem. In section II, a heuristic algorithm and a genetic algorithm are presented to solve
the problem. In section II, the complexity of several sub problems are studied. Finally, the brief

conclusion of this chapter is presented in section 3.8.
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Parameter | Value || Parameter | Value
B 2 B2 1
D1 3 P2 2
P3 4 P4 2
D5 3 €OFF 0
eoN 4 €rdle 2
€Ton 5 eTof f 1

Table 3.1 — The parameters’ values for an instance with 5 jobs and 32 periods

3.2 Problem presentation

The problem addressed in this chapter can be described as follows. It deals with the scheduling
problem of several jobs on a multi-states single machine without fixed sequence (1, TOU |states|TEC).
So, we keep all the assumptions and constraints of chapter 2, and we just relax the constraint
that the jobs must be processed in a given order. By this way, the machine can process the jobs

in a economic way and change the machine’s state regarding to their energy consumption costs.

3.2.1 [Illustrative example

Let us consider an example with 5 jobs, 32 periods and the parameters’ values as Table 3.1. The
optimal solution of this instance for a problem with a fixed sequence for the jobs is presented
in Figure 3.1, and for a problem without a fixed sequence is presented in Figure 3.2. As it can
be seen, when the jobs must be processed in a predetermined order (Figure 3.1), the optimal
solution has the total energy cost of 235. It can be obtained by turning on the machine at period
5 and 6, process the jobl, job2 and job3 during periods 7 to 15, turn it off for periods 16 to 20,
process job4 and jobb just after, and finally, turn the machine off from period 26. When the
processing order of the jobs is flexible, the optimal solution has different machine’s state and jobs’
sequence during the horizon which is less expensive. The total energy cost of 234 can be obtained
by turning the machine on at period 8 and 9, process job2, job4 and jobl during the periods 10
to 16, Idle state in periods 17 and 18, process the job5 and job3 just after, and finally, turn the

machine off at period 26.
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Period number 0(1(2]|3]|4 6|7 |8]|9|10(11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29 (30|31 |32 (Cost

Energy price 0|8|(5|5|8|4|4|4|3|3|3|2|2|4|2|2|7|7|10/3|3|3|2|2|4|2|6|6|3[3|3|5]|5

ON (s=1) 16|12|12|12| 8 | 8 |16| 8 | 8 12| 8 |8 |16| 8

OFF (s=2) 0|0(0]|0O|O 0|0 0|0 |[0]0|0]|0

Idle (s=3)

Turn on (s=4) 20|20 15/ 15

The schedule s=2 s=4 Jobl llob2 Job3 .s:l s=4 lloba Jobs . 5 235
Figure 3.1 — Optimal solution of the example with fixed sequence

Periodnumber | 0|12 (3|4 |5|6|7|8|9|10|{11]12|13]|14|15|16|127|18]19|20|21|22(23|24|25|26|27|28|29 30|31 |32 |cost

Energy price o|s|5|s5|8|a|ala|3|3|3|2|2|a]|2]2|7|7|10]/3|3|3]|2]2|4|2|6|6|3]|3]|3|5]|5

ON (s=1) 12/ 8| 8|16/ 8|8 |28 12(12|12| 8 | 8 [16| 8

OFF (s=2) oO|0o|j0O|O0|jO|O|0O|O 0| 0o |le o o

Idle (s=3) 14 | 20

Turn on (s=4) 15|15

The schedule s=2 s=4 job2  |lob4. Jobl s=3 Job3| Job3 I s=2

Figure 3.2 — optimal solution of the example without fixed sequence

3.3 Mathematical model

The mathematical model of this problem can be obtained from the previous model, by relaxing the

constraint (equation 2.21) that forced the machine to process the first job in the given sequence

completely and then process the next jobs.

T k k k
Pby = Min th Zes‘as,t'i‘zzess"ﬂss’,t
t=0

s=1 s=1s'=1

Zyj,t =a1 ;Vvt=0,...,T
j=1

k k k
D+ > Y Bawi=1 VE=0,..,T
s=1

s=1s'=1
k k k
o < Z gy + Z Z Bosrrsr  VE=0,.,T—1;5=1,...k
s'=1/d . _q 5:1/d33//21 s''=1
/Bss’,t < ﬁss’,t-&-l + Qg/ 41 §Vt =0, 7T - 1;575/ = 17 7k7 dss' >1
td,
Z /BSS',t’ > (as,t + ﬁss’,t+l - 1) : dss’ th = 07 7T - 1;838/ = 17 7k7 dss’ >1
p'=p+1

ﬁss/,t + ﬁss’,t-&-dss/ <1 7Vt = 07 7T - dss';575/ = 1> ~-~7k;dss’ > 1

(3.4)

(3.5)

(3.6)

(3.7)
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Sy <1 vi=0,..T (3.5)
j=1
t—pj T
vt Y v <T-(I=y0) %=0,,T—p;—1;j=1,..,n (3.9)
t'=1 t’=t+pj
T
Zyj,t >pi ;Vi=1,..n (3.10)
t=1
aze =1 ;t={0,T} (3.11)
oty Bosrs € {0,1} (3.12)
Y0 € {0,1} (3.13)

In this model, 3.1 deals with the objective function which computes the energy consumption costs
depending on the machine status and the energy prices at each period. Equation (3.2) ensures that
the machine is able to process a job, just when the machine is in processing state. Equation (3.3)
shows that at each period the machine must be in one of the states or in a transition between two
states. Equations (3.4) and (3.5) limit the state of the machine at one period based on the status
or transition that the machine has in the previous period. Equations (3.6) and (3.7) identify
lower and upper number of periods in which the machine can be in a transition state to perform
the jobs before the time limitation. Equation (3.8) specifies that the machine can process only
one job during each period. Equation (3.9) imposes the non-preemption of jobs. Equation (3.10)
introduces the processing time of each job and forces all jobs to be completed during the time

limitations. Equation (3.11) presents the boundary conditions.

3.4 Complexity analysis

One of the first step for investigating a new problem is to analyze its complexity to know that
the problem is an NP-hard problem or a polynomial one. In the following, it is attempted to

prove the NP-hardness of this problem by using a 3-PARTITION problem.

Theorem 1 If the sequence of the jobs not be fire, the Problem (1,TOU |states|TEC )

is strongly NP-hard.
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Proof. The proof is based on the fact that the decision problem related to this optimization
problem, may be reduced to a 3-PARTITION problem, which is strongly NP-hard ([14]).

Given positive integers {aj, as,- - ,ast, b}, such that:

b/4 <a; <b/2 Vj=1,2,--- 3t (3.14)

3t
> a;=tb (3.15)
j=1

The following instance (equations (3.16) to (3.19)), with n = 3¢ jobs and T' = tb + t 4+ 3 periods
can be constructed. The machine consumes the units of energy just when it is in ON state
(eon #0; eoOFF = €rdle = €Ton = eToff = 0). Moreover, the unit of energy price in some periods

(tb periods) equals to 0, and for the rest (¢ + 3 periods) is equal to ¢ (¢ > 0):

pj :aj ,VJ = 172,"' ,3t (316)

ct=c ;Vt:O,l,Z,tb+t+3,(i+1)b+z‘+3 Vi=0,1,--- ,t—1 (317)
=0 ;VtZi(b+1)+3,'--7i(b+1)+(b—1)+3 Ve=0,1,---,t—1 (3.18)
€EOFF = €Ton = €Idle = €Toff = 0, eon=c¢ (319)

Let us consider a decision problem that searches a solution such that it’s total energy consumption
costs is equal to 0. A schedule with total energy costs of 0 (TEC = 0), exists if and only if, the
machine is in one of the states that consume 0 unit of energy during the periods with ¢; = ¢, and
it is in state ON when ¢; = 0. This can be achieved if and only if, all the 3¢ jobs are partitioned
over the t intervals with the length of b periods. For this purpose, the 3¢ jobs must be partitioned
to t sets such that each set consists of 3 jobs, and the sum of their processing times must be
equal to b. Then, each set must be partitioned into one interval with the length of b periods,
which can be achieved if and only if, 3-PARTITION has a solution (see Fig. 3.3). Therefore, since
the 3-PARTITION is known as an NP-complete problem ([14]), so, 1,TOU |states|TEC is an
NP-hard problem. |
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. o o > P = U o j i s é\‘ n
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¢ o o ¢ [y (g o g o o o L
[orf [ron [Ton | ON [ide] on  [ige] on  [idie] [1ae] on
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Figure 3.3 — An example of 1,TOU |states|T EC problem which transfers to a 3-PARTITION
problem

3.5 Complexity analysis of some variants of the problem

In this section we are attempted to investigate the complexity of some variants of the problem. In
this study, we tried to keep the main assumptions as the general problem for all the subproblems
and change just one of them in each problem.

Let consider ¢4 as the set of periods’ number in which the machine is in state

s € {OFF, Ton, ON, Toff, Idle}, and Z which represents the objective value of any feasible
solution. Besides, Z* and ¢} are related to the optimal solution. So, the objective value of each

subproblem may be computed with the following formulation:

Z = (eOFF * EtGLPOFF Ct) + (eTO" * ZtGAPTon Ct)"‘r

(60]\] * ZtepON Ct) + (eTOff * ZtepToff Ct) + (efdle * Ztewmle Ct)

(3.20)

Since the initial and final states of the machine are assumed as OFF states for all the problems,
the machine is in Ton/Toff state at least for once. Let consider A which is a positive integer

number (A > 1) to indicate the number of Ton or Toff states over the T periods, so:

|oTon| = A% f1 (3.21)

leToprl = Ax B2 (3.22)

It must be mention that for each additional Toff/Ton transitions, the machine must stay in OFF
state during at least one period. It means that (|porr| > A).

As it is described in chapter 2, in any feasible solutions for these kind of problems, there are always



68CHAPTER 3. Multi-states single-machine energy-efficient scheduling problem: general version

t O|1(2(3|4(5(6|7|8|9(10(11(12|13(14|15(16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32 |Cost,
Ce 0|8|8|8|4|4|4[3|3[3]|2]2]2 2 {10|10|{10|10{ 3|3 |3 |2 | 2 6|/6|3|3|3|5]|5
ON 16(12(12(12{ 8 |8 |8 |8 | 8 12/ 88|88
OFF 0j0j0]|O 0|0]|O0 0O|0(O0|0O|O0O]|O
Idle
Turn on 20|20 15|15

The schedul Off Ton Job1 Job2 Job3 . off Ton Joba Jobs . off 222

Figure 3.4 — An example for the general problem

some extra periods (denoted by x in equation 5.1) that the machine must be in non-processing
states during them.
Therefore, the cardinal of sets ¢4 ;Vs € {Ton, ON, Toff, Idle, OFF} in any feasible solution

are as follow:

|§0Ton| =Ax [
lpon| =P
loTors] = A * B2 (3.23)
|orate] >0
lporr| > A
where:
loTon| + |@on| + |eTosf| + |P1dic] + |0orF| =T (3.24)

Since in each feasible solution, all the jobs must be processed completely, we have |pon| = P, so:

loTon| + [eTorf| + |@1dic| + l0OFF| =T — P (3.25)

The gant chart for an instance of 5 jobs and 32 periods with the parameters’ values as Table 3.1
is provided in Fig. 3.4.
For this instance, the value of X is equal to 2 (|eorr| =12, |¢1on| =4, |pon| =14, |orofr| =

2, |erdie] = 0).

In the following, first of all, the complexity of the problems with a regular trend for energy
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prices are investigated. Then, we studied the problem when the preemption of the jobs is allowed

and finally, the problem with the same processing times for the jobs is addressed.

3.5.1 1,¢ = c|states|TEC

Here, the complexity of the problem with a constant energy prices is investigated.

Theorem 2 If the energy price during the horizon time is constant (c; = c¢;Vt =

1,...,T), the problem (1,c; = c|states|TEC) is polynomial.

Proof. In the problem (1,c¢; = c|states|TEC), the price of energy during all the periods is
constant (¢; = ¢ ;Vt = 1,---,T), so, for any feasible solution, the expression of the objective

function, denoted by Z;, may be deduced from Equation (3.20) as:

Zy = [(eorr * lporr|) + (eTon * [pTon|)+ (3.26)

(eon * [pon|) + (eTors * [0Toff]) + (erdaie * [Prate])] *

Let consider the solution sol} such that: |phppl = T — (B1 + P + B2), |oronl = Bi, leby] =
P, |g0¥0ff| = Ba, |¢by.] = 0, with the objective function value of Zf. For any other feasible
solution of this problem (sol%) with objective value as Zi, the relation between Zi and Zf is as

follow:

Zi — 77 = (lebrr| = 19brrl) * €orr + (1€ron] = 0T0n!) * eTon+ (3.27)
(€% 0s | = [£T0s 1) * €Tors + (1€ ae] = 1@hael) * eraie] *
Regarding to equations (2.1), (2.2), and (2.3), we have ero, = eorr + 01, erofy = €orr +

02, erdie = €orF + 03, eon = eorr + 04 with (81,62, 93,94 > 0), so:

Zi = 7t = (16 pp| + o] + 1050s sl + 105 ge] = T + P) x eorr
F(16kron| = B1) * 61+ (10751 = Ba) % 62 + (197 4] — 0) % d3] % ¢ (3.28)

= (€% onl = B1) % 01+ (|50 s | — B2) * 02 + || * 03] % ¢

Based on equation 3.23 and the fact that A > 1, we have |¢%,, | — 61 > 0, @] — B2 >
0, |p%yel = 0. Therefore, it can be concluded that Zi — Zf > 0 which means that Z7, is

a lower bound of this problem (1,¢; = c|states|TEC). Since sol} is also a feasible solution,
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t 0 1 2 3 4 5 6 7 8 9 |10|11 (12|13 (14|15 |16 |17 |18 | 19|20 |21 |22 |23 |24 |25
Ct 0 c c C c c c c c c C c c c c c c c c c c c c c c c
Solution 1 Off|Ton ON Off
Solution 2 off |T0n | ON Off
Solution5 | off [fon ] ON [roff] off
| Solution8 | off [fon ] ON off

Figure 3.5 — The possible optimal solutions of 1, ¢; = ¢|states|TEC for an example with T =
25, P=14,61 =2, =1

therefore, sol7 is the optimal solution of this problem. Note that, sol; is not a unique optimal
solution of this problem,. All the feasible solutions which have the same value as |<p£\ for state
s € {OFF, Ton, ON, Toff, Idle}, have the same objective value and can be considered as the
optimal solution.

Since in this problem there is not any priority between the jobs, consequently, the optimal solution
of problem (1, ¢; = c|states|TEC) is when the machine has just one Ton and one Toff states, and
processes all the jobs continuously (in any order). Besides, for the rest of the periods the machine
is in OFF states and it has not any Idle state during the horizon. For example, for the presented
problem in Fig. 3.5, there exist 8 different solutions with the same objective value. Any of these
solutions can be considered as the optimal solution. Therefore, since the set of optimal solutions

for this problem can be obtained directly, (1, ¢; = ¢|states|TEC) is polynomial. [

3.5.2 1,¢ < ¢pyqlstates|TEC

In this section, we are interested to analyze the complexity of the same problem with the increasing

energy prices of the periods.

Theorem 3 If the energy prices are increasing between two consecutive periods (c; <

ctr13Vt=1,--- ,T—1) and eorr = 0, the problem (1,c; < ci11]|states|TEC) is polynomial.

Proof. Total energy consumption costs minimization of a production system can be reached by
two ways: energy consumptions minimization and/or total energy costs minimization. In this

problem (1,¢; < ¢y1|states|TEC), unlike the previous one (1,¢; = ¢|states|TEC), the energy
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costs are different in each period, so, both of these ways may be used. For this purpose, the total
energy consumptions of the machine should be minimized by allocating the minimum number of
periods for each state (as it is demonstrated for 1, ¢; = ¢|states|TEC), and the total energy costs
may be minimize by allocating the states during the low cost periods.

Let consider the solution sol3 as:

(p%*on ={L-- B}

oy ={B+1,---,p1+P}

Ghors ={BL+P+1,- B+ P+ fa} (3.29)

‘P%)*FF:{51+P+52+17"' , T}

|90§dle| =0

with the objective function value of Z3 which may be computed from equation (3.20). For any
other feasible solution of this problem (sol%) with Z& as objective value, the relation between Z3

and Z3 is as follow:

Zé — Z; = €QFF * (Zte‘/’gpp Ct — Zt@ﬂ?)*pp Ct) + e1on * (Zte‘/’iTon Ct — Zte@%im Ct)+

eoN * (Lteghy = Lnegs, )+ etdie ¥ Legy,, 4+ erors * (Liegy,,, & = Lneot,,, )
(3.30)

The other possible solutions for this problem can be divided in two main sets. The first set of the
solutions can be obtained by adding some non-processing states (Idle or middle-off) between two
processing states. The second set can be obtained by changing the starting time of processing,
through adding some initial-off states. All the other solutions may be obtained from a combination
of these two cases.

For the first case, regarding equations (2.1), (2.2), and (2.3), obviously adding some non-processing
states which consume more than OFF state (eopr = 0), causes an increase of the total energy

consumptions and consequently the total energy consumption costs.
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Let consider a general example (Fig. 3.6) such that: 1 < t; <ty < t3 <ty <T. If between two

ON states, the machine goes to Idle state during period t5 + 1, based on the equation (3.30), we

have:
7 * fa 1 2
Zy = 25 = erdie * Ctar1 + €oN * (Dl 1o 0 — Doty 11 Co)F (3.31)
ta+1 t r - |
terofs * (D4l 10t — D ity 11 Ct) F€OFF * (Doy—y, 12 Ct — Dpmpy41 Ct)
Therefore,
Z% — Z5 = €ldle * Cty+1 + €ON * (Ct3+1 o ct2+1)+ (3.32)

+erofs * (Ctyr1 — Ctz41) — COFF * Ctyt2

Since in the problem 1,¢; < ¢iq1|states|TEC, ergie > eorr = 0, and V' > t; ¢y > ¢, we have:
Zi—735>0 (3.33)

For the second case, let consider a general example (Fig. 3.7) such that: 1 <t; <tg <t3<T

and t; < ¢, Vi=1,2,3. Based on the equation (3.30), we have:

. ’ ’
24— 25 = corr * (L42y ¢+ Yoy 1 0t = Yimgy €6) + €xon * (Cyly 1y 66 = 2ihy o)+

t5 t t t
€ON * (Ztitgﬂ Ct = Doiigy 41 Ct) + €Tofs * (ZtS:t/erl Ct = Dttty Ct)
(3.34)

So,

. / [ ’
Z3— 75 = eorr * (L2 ¢t = Yophgy 1 )+ eon * (Dl 1y 00— 2k o)+

(3.35)
t! t t! ts
EON * <Zt2:t'1+1 €= ity 41 Ct) T €Toff * (Ztszt’2+1 Ct= D441 Ct)

Regarding to equations (2.1), (2.2), and (2.3), since in this problem, eopr = 0and V' > t; ¢y > ¢,
we have:

Zy—75>0 (3.36)

Thus, for any feasible solution as soly, we have Z§ — Z5 > 0. It means that Z3, is a feasible

lower bound of this problem (1, ¢; < ¢i41]states|TEC), and solj is the optimal solution.

So, in the optimal solution, the machine must be in Ton state from period 1 to $;. Then, the
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t ofa.[ [a] Je] [ |& w] [ [ [ [ [ |s
53 Off| Ton ON ON Off
t 0 1|| |tJ_ |f2 |t3| t | | | | |T
5L Off| Ton ON Idle ON Off

Figure 3.6 — The comparison between solution sol} and solj of problem 1,¢; < ¢i41]|states|TEC:

casel
t ofsf.] Ja] [ | [ [ sl [ [ [ [ [ [r
S5 Off [Ton ON Off
t o[ [o] [ [ o] T 11 % i
st Off Ton ON off

Figure 3.7 — The comparison between solution sols and solj of problem 1,¢; < ¢y 1|states|TEC:
case2

t 0 1 2 3 4 5 6 7 8 9 |10 |11 |12 13|14 | 15 16‘17‘18 19 (20|21 |22|23 |24 |25
Ct o|2|3|a|5|6|7|8|9|10[11|12(13|14|15|16|17|18|19|20|21]22(23|24|25|26
Solution 1 Off [Ton ON Off
Figure 3.8 — The optimal solution for an instance of problem with ¢; < ¢;1q  (VE =1, ,T—1)
t 0 1 2 3 4 5 6 7 8 9 10|11 (12|13 |14 15|16 |17 |18 (19|20 |21 (22|23 |24 |25
c 027|26|25|24|23]22|21|20|19|18(17|16|15 14|13 |12|11]|20( 9|8 |7 |6 5|43
Solution 8 Off Ton ON E
Figure 3.9 — The optimal solutions for an instance of problem with ¢; > ¢;11  (VE =1, ,T—1)

jobs must be processed from period 81 + 1 to 51 + 1 + P in any order, and finally the machine
must be in Toff and OFF states consecutively (Fig. 3.8).

Therefore, 1, ¢; < ¢i11|states|TEC is a polynomial problem, since the optimal solution can be
obtained in polynomial time with the value of Z3. |
Note that, with the same approach but in the backward way, it can be proved that the problem
1,¢; > ¢ir1|states|TEC is also polynomial (Fig. 3.9).

3.5.3 1,T0U|states, pmtn|TEC

After analysing the affect of energy costs on the complexity of this problem, in this section, we are
interested to study the complexity of the preemptive case. For this purpose, the same approach

as the presented dynamic programming approach in chapter 2 is used.
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Graph construction steps

As it is described before (section 2.4.1), a finite graph which consists of T+ 1 levels and different
number of nodes in each level is considered to model this problem. In this graph the levels
represent the periods, and the nodes represent the status of the system regarding to the performed
jobs in each period.

To construct the related graph for each instance of the problem, three steps must be performed.

Step 1: putting the nodes As it is explained in details at section 2.4.1, in this approach,
there are x 4 1 possibilities for every node k € {1, ..., P}. Note that, for distinction between the
initial and final states of the machine and the other states, one node I and one node F' are
presented to indicate the initial and final OFF states respectively. In the other words, node I
indicates that the machine did not start to perform the jobs yet, while, node F' indicates that the
machine already performed all the jobs completely. Besides, the node k € [1, P] represents that k
units of the processing jobs are performed among P units. Therefore, the total number of nodes

for the related graph is equal to:

V|=Px(z+1)+2=TP

Step 2: drawing the edges The edges of the graph can be divided in three main sets. The
first one indicates the Idle states or the initial and final OFF states, between two side by side
nodes with the same number. The second one illustrates the initial Ton, processing the next job,
and final Toff states. The third one shows the middle-OFF stats between two ON states. The
procedure of drawing the edges is as the following:

After selecting one level to turn on the machine, an edge with the length of (81 + 1) between I
and 1 must be drawn that contains one Ton state and one ON state for processing the first unit
of the jobs. Then, 3 output edges are possible for the node 1: one with the next node 1 that
indicates Idle state, one with node 2 by length of 1 that means processing the next unit of the
jobs, and the third one with node 2 by different lengths to represent middle-OFF states during
some periods.

So, = edges are required to connect x + 1 possible nodes for each k € {I,1, ..., P, F'}, that present
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the first set of edges. Total number of these edges are equal to (P +2) x z.
Moreover, (z + 1) edges are needed to exhibit different transition states between I and 1 for Ton,
k and k + 1 for processing all the jobs (k € [1, P —1]), and between P and F for Toff states. Total
number of the second set of the edges is equal to (P +1) x (z + 1).
Since the machine should be in OFF state for at least one period during the middle-OFF states,
the required number of edges to consider all the possibilities for middle-OFF between k in level I’
and node k + 1 in level I (I" € {lmin(k), - » & +k — B2 — 1}) is equal to:

z—(B1+82)

Z i:(JJ—(ﬂ1+ﬁ2))X;I—(/B1—|—B2)+1) ;Vk‘E[l,P—l]

=1

Consequently, the total number of the edges for this graph is equal to:

|El=((P+2)xa)+(P+1)x(x+1))+((P—-1) x|

(x = (B1+B2)) X (x = (B1+B2) + 1)])
2

= |E|=T*P

In this approach, the difference between the fixed sequence version of this study which is presented
in chapter 2 and it’s preemption version is in number of the edges. For the fixed sequence version,
the non-processing states can be allocated between two processing jobs, it means that the related
edges for the middle-off and Idle states may appear between two jobs just when the first job is
completed and the second one is not start. For the preemption version, these edges can appear at
each moment between two jobs (see figure 2.7 and 3.10. So, the related graph for the preemption
version has more edges than the related graph for the fixed-sequence version, whereas, both of
them have the same number of nodes.

As example, the related graph for the considered instance with P = 5,7 = 15,81 = 2,82 =

1,z = 6 is presented at Fig. 3.10. This graph is composed of |V| = 7 x 7 = 49 nodes and

|E| = (7% 6) 4 (6 x 7) + (4 x [2%1]) = 108 edges.

Recurrence relationship formulation

Since the objective function of this problem is the minimization of total energy costs when energy

prices are different in each period, it is necessary to enter the energy cost of each transition in
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Figure 3.10 — Graph for preemption problem

the presented graph. For this purpose, the energy cost of each transition considered as the value
of the edge that connect every two nodes. After that, the graph is complete and the shortest
path that starts from node I in level 0 and ends at node F in level T, is the best solution of the
problem. To find the shortest path of a graph in a single source problem, Dijkstra’s algorithm is
the most famous and efficient algorithm when all the edge values are positives. Generally, this
algorithm use for finding the shortest path between the source node and every other nodes, but,
it can be used for finding the shortest path from a single source node to a single destination node
(like our problem) by stopping when the shortest path to the destination node is determined. The
Pseudocode of this algorithm is presented in Table 3.2.

As it is presented in section 2.4.3, the complexity of this algorithm for the presented dynamic

programming approach is equal to:

O(|E| + |V|log|V]) = O(T*P + TPlogTP) = O(T>P + TPlog T + TP log P) (3.37)
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Dijkstra’s algorithm
Consider 0 as the source node and (P + 1)(z 4+ 1) — 1 as the destination node.
Shortest path to source vertex is zero (spt[0]=0).
Shortest path to other vertex is infinity (spt[v] = co0 ;Vv € [1,(P+ 1)(z+1) —1]).
M= adjacency matrix of graph V
for Vi,j eV
{
if spifi] + M[i][j] < spt[]
, sptlj] = sptli] + M{i][j]

spt[(P+1)(x+1)-1]= the shortest path value for arriving to the destination vertex.

Table 3.2 — Dijkstra’s algorithm pseudocode
Therefore, the final complexity of this problem can be simplified as follow:

T>PT>logT

(VI,P > 0) — T?P > TPlogT > TPlog P (3.38)

O(T?P + TPlog TP) = O(T2P)

Since, in the presented problem, the biggest value for P is T, so, all these results approve that in

the worst case, this problem is a polynomial of degree 3 or a cubic polynomial.

3.5.4 1,TOU]|states,p; = p|TEC

The last case analysis of the sub-problems of (1, TOU |states|T EC) concerns the problems with

the same processing times for the jobs. The complexity of this problem is studied in the following.

Theorem 4 If the jobs have the same processing times (p =p ;Yj=1,---,n), the

problem (1,TOU]|states,p; = p|TEC) is polynomial.

Proof. To schedule the states of the machine during a horizon time, two important factors are
energy consumption of the machine during each state, and the unit of energy price in each period.
In the general problem (1,TOU|states|TEC), it is considered that the energy consumption of
the machine during the ON states is independent from the processed job. So, the only parameter

which caused a preference between the jobs is their processing times. Thus, when the jobs have the
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same processing times, the machine consumes the same amount of energies for performing them.
Let us consider that, each job needs p periods to be processed (p; = p), and the machine consumes
eon unites of energy per period during the ON states. So, the machine consumes epy * p units of
energy to process any job. Regarding to this information, there is not any advantage between the
different sequence of the jobs {(eon *p) — (eon *p) — (eon *p) —- - - — (eon *p)}. It means that,
when the machine is in the state ON, any job may be processed without affecting the optimality of
the solution. So, the problem 1, TOU |states,p; = p|TEC, can be considered as a fixed sequence
problem in which each job needs p unit times as process times (1, TOU]|states, sequence, p; =
p|TEC). The general version of this problem (1,TOU]|states, sequence|T EC') is previously
examined in section 2.4.1, and proved to be polynomial. Therefore, the considered problem in this
section (1, TOU]|states, p; = p|T EC) which is it’s sub-problem, is also a polynomial problem. l
As it is proved in this section, all the studied sub-problems are polynomial while, the general
problem (1,TOU]|states|TEC) is an NP-hard problem. Therefore, in the following section it
is attempted to propose some efficient resolution methods for this problem to obtain the near

optimal solutions for any size of the problem.

3.6 Lower bounds For (1,70U|states|T EC') problem

A usual tool to evaluate the performances of the approximate methods for an NP-hard problem
is to obtain some lower bounds. For this reason, in the following, we attempt to propose some
lower bounds for the problem 1, TOU |states|TEC.

From the given set of the period’s energy cost C = {¢; ;Vt = 1,---,T}, let consider the set
C = {¢1,@,- -+ ,¢r}, which contains the period’s energy cost in the increasing order, such that

¢1 < ¢y <.+ < ¢ép. Then, the following relation can also be written:

[ [
da<d e VO=1,---,T (3.39)
t=1 t=1

Regarding equations (2.1), (2.2), and (2.3), the OFF state has the minimum energy consumption
between all the non-processing states. Therefore, in the cases that the unite energy prices are

increasing, obviously adding some non-processing states which consume more than OFF state



3.6. Lower bounds For (1,TOU |states|T EC) problem 79

would increase the total energy consumptions and consequently the total energy consumption
costs. That is why, in this section, the minimum number of required periods for Ton and Toff
states are considered for defining the lower bounds, and states of the machine during all the

remaining periods are considered as OFF state.

3.6.1 First lower bound (LB)

Let define LB as the cost of allocating the cheapest periods to each state. So, we have:

T—(B1+P+B2) B1 P B2
LBy = (eorF X D @)+ (eron x D &)+ (con X Y &)+ (erops x Y &) (3.40)
t=1 t=1 t=1

t=1

Lemma 5 LB is a lower bound of (1,TOU]|states|TEC).

Proof. Regarding the equation (3.20), the optimal value of the total energy costs (Z*) for this

problem can be computed as:

Z*=e X ¢t +e X c
OFF 2:tec'D?)*FF t+ Ton Ztetp?’}"{on t+ (3.41)

CON X Duiegs, O €Toss X Ztew%*off Ot eraie X Lpeps,

Based on the problem’s assumption (equations (3.23),(3.24),(3.25)), the cardinal of ¢* for each

state in the optimal solution are as follows (A* > 1):

|5 onl = X X B1;  |opn| = P;
(3.42)

[CTopfl =N X B2i |@Tael =05 [0oprp| = A*

[“Tonl + 170p 7| + 1Tl + 19OFpl =T = lpon| =T = P (3.43)
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Based on equation 3.39, we have the following equations:

1 [eTonl ~
Do G ST E S Y e G
PTon

P .
D=1 Gt < Etaa;m Ct

(3.44)

B2 ~ [PTors! ~
. < _ ¢ < c
t=1% = Et_l t = Etego}off t

T*(ﬁ1+P+ﬁ2) ~ |‘P*OFF‘ ~
Zt_l ¢ < Zt:1 ¢ < Zte%@épF Ct

Regarding to the above equations (3.44), the following relation can be obtained for LB; and Z*:
LB —Z*<0 (3.45)

Therefore, LBy is a lower bound for the problem 1, TOU |states|TEC. n

3.6.2 Second lower bound (LB,)

To define the first lower bound of this problem (LBj), the non-preemption and precedence
constraints for the states of the machine, and the fact that the machine must be in one and only
one state per period are relaxed. Whereas high importance is given to the unit of energy price in
each period. For this reason, L B; value may does not correspond to a feasible solution, since
more than one state can assume for the same period, the jobs be processed preemptively and a
Toff state be located before a ON state. In reality, if the machine starts to process job j in period
t, the machine must be in ON state from period ¢ to ¢ + p; — 1, and it is not possible to be in
other state during these periods or perform another job. For this purpose, we define the second
lower bound (LBs) which is more near to the reality. It sorts the periods based on their energy
costs and allocates them to Ton, ON, Tof f, and OF F states, respectively and continuously. By
this way, the machine has only one state per period, but the precedence constraints for the states

and the non-preemption constraints are not considered yet. Because, it sorts the periods only on
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the basis of their energy price, not their sequence. Therefore, LB is computed as follow:

~ P -
LBy = (e1on X Y4ty &) + (eon x Sopihly @)+

B1+P+B2  ~

(3.46)
T ~
(eToff X Zt:61+P+1 Ct) + (QOFF X Zt:BH‘P-‘rﬂz-i—l Ct)

Lemma 6 LB is a lower bound of (1,TOU]|states|TEC).

Proof. The problem 1, TOU|states|TEC with ¢ (Vt =1,---,T), is equivalent to the problem
with the increasing energy prices (1, ¢; < ¢i41|states|T EC) whom optimal solution is provided in
section II. So, the optimal solution of problem 1, ¢; < ¢;11]|states|TEC may be used as a lower

bound of the problem 1, TOU]|states|TEC. ]

3.6.3 Third lower bound (LBs)

Let consider C; that computes the minimum cost of performing job j (Vj =1,..,n) non-
preemptively during its possible periods. As it is explained before, the possible periods that the
machine can be in Ton, Toff and ON states depend to the total number of periods, the number
of extra periods, and the number of required periods for performing each job. So, C; may be

formulated as follow.

Qj =min{c; + ci41 + - + Ct-‘rpj—l};

(3.47)

Then, following the same idea, the minimum costs for Ton, Toff and OFF states are obtained

with the following formulations.
QTon = min{ct + Ct+1 + -+ Ct+31,1}; Vite {1, 27 e, T+ 1} (348)
QToff = min{ct + Ct+1 + -+ Ct+5271}; Vie {T — T — 527 s ,T - 52} (349)

T—(B1+P+82)
Copp = @ (3.50)
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As it has been discussed before, regarding equations (2.1), (2.2), and (2.3), the Idle state consumes
more than OFF state, so, all the remaining non-processing states are considered as OFF states.

The idea of the third lower bound, named LBs, is to allocate to each state its minimum costs

Qj (Vj € {17"' 7n})7 QTonﬂ QToff? QOFF:

LB; = (eOFF X gOFF) + (eTOﬁ X QTon) + (eON X ZG]) + (eTOff X GT()ff) (351)
j=1

Lemma 7 LBs is a lower bound of 1,TOU|states|TEC.

Proof. To evaluate C;;Vj € {1,--- ,n}, the constraint that the machine can process one job per
period is relaxed and the processing order for the jobs is not considered. Moreover, to evaluate
C; (Vi e{l,---,n}), Crony Crorsr Copp, the constraints that the machine must be in just one
state per period, and the relationship between different state of the machine are relaxed. So, for

a feasible solution of 1, TOU |states|T EC we have the following relations:

Corr < Z ct; Crop < Z ct; Cropp < Z ct; ZQjS Z ct (3.52)
=1

S €T on IS S0

And we have:

er X C,  <epXx Ztecp; ct; Vke {OFF,Ton,Toff}

(3.53)
eoN X Z;;l C; <eonX Zte%N Ct
Consequently:
LBy <Z* (3.54)
Therefore, L B3 is a lower bound of this problem. |

3.6.4 Fourth lower bound (LB,)
Moreover, the optimal solution of the preemption version of this problem can be defined as LBjy.

Lemma 8 LBy is a lower bound of 1,TOU]|states|TEC.
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States and transitions | Power consumption | required periods
ON 4 kW > process times
OFF 0 kW -
Idle 2 kW -
Toff 1 kW 1
Ton 5 kW 2

Table 3.3 — Energy consumption profile of a machine. ([61])

Proof. As it is demonstrated in the previous section (section IT), the preemption version of this
problem (1, TOU |states, pmin|T EC') which is a subproblem of 1, TOU |states|T EC, is polynomial.

So, it’s optimal solution may be used as the fourth lower bound (LBj) of this problem. |

3.6.5 Numerical evaluation for the proposed lower bounds

To evaluate the efficiency of the proposed lower bounds in this study, several randomly generated
instances are considered. Based on the presented examples in a pervious study ([61]), the machine
setup data for all the examined instances in this study are identical and considered as Table. 3.3.
For each size of the problem, several instances have been examined. To generate the instances,
the unit of energy price in each period, as well as the processing times of the jobs are randomly
generated between [1,10] and [1, 5], respectively. In Table 3.4, the gaps between the objective
value of each lower bound and the obtained optimal solution by CPLEX software are given in
percentage. These results are presented for the problems smaller than (35,209), because CPLEX
software was not able to find the optimal solution for the larger instances during 3 hours or 10800
seconds limitation time. The numerical results have been illustrated by minimum, average and
maximum obtained gap value for each problem size. The results show that between LBy, LBs,
and LBg, in all the cases LBy proposed a better bound. Among these lower bounds, LB, which
is the obtained optimal solution of the preemptive case of this problem by CPLEX, finds the

closest solution to the optimal solution. The ranking order for these lower bounds is as follows:

GapLB4 < GapLBz < GapLBl < GapLBS

Moreover, an analysis of the variance (ANOVA) with a confidence level of 95% was taken using

the Minitab.17 software to check the statistical validity of the results (Fig. 5.6). As can be seen
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(n,T) Gaprp, | Gaprp, | Gaprp, | Gaprs,
Min 19.41 8.14 18.94 0.00
(5,30) Average | 39.79 27.70 39.65 0.07
Max 54.75 40.68 56.00 0.37
Min 20.15 13.31 42.53 0.00
(10,50) Average 33.66 26.44 50.27 2.90
Max 50.35 43.94 62.13 11.59
Min 20.02 14.51 47.44 0.00
(15,70) Average 28.76 23.52 57.10 0.00
Max 35.60 30.88 68.39 0.00
Min 15.52 11.05 53.20 0.00
(20,90) Average | 29.83 25.43 57.38 0.00
Max 36.03 31.23 62.37 0.00
Min 25.96 22.44 44.55 0.00
(25,110) | Average | 30.29 26.59 56.68 0.00
Max 34.27 30.65 70.64 0.00
Min 20.29 17.10 54.55 0.00
(30,130) | Average | 25.45 22.51 60.67 0.00
Max 28.29 25.98 71.42 0.00
Min 24.34 22.57 48.42 0.00
(35,209) | Average | 27.27 25.48 53.58 3.11
Max 30.68 28.91 61.46 5.17
Average 30.72 25.38 53.62 0.87

Table 3.4 — The comparison results between the proposed lower bounds and obtained optimal
solutions by CPLEX in percentage

in this figure, for each problem size the interval of the gaps for all the proposed lower bounds

(LBy, LBy, LBs3, LBy) are presented. In all the cases, LB, has the minimum interval of the

gaps.
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Figure 3.11 — Performance comparison of the lower bounds with the obtained optimal solutions
by CPLEX

3.7 Optimization methods for (1, 7OU]|states|T EC') problem

The exact methods can not find the optimal solution for the large size instances of an NP-hard
problem in a reasonable time. So, for the presented problem in this chapter which is NP-hard
(1, TOU|states|TEC'), we attempted to propose some heuristic and meta-heuristic algorithms.
For this purpose, a heuristic algorithm and a genetic algorithm are presented to optimize the
machine’s state and jobs’ production scheduling simultaneously. The description of these two

algorithms and their comparison are presented in the following subsections.

3.7.1 Heuristic method

One of the most popular methods for solving an NP-hard problem is to develop a heuristic
algorithm which is able to find an efficient feasible solution (near optimal) for large size instances
of problem. So, first of all, we attempted to present an intelligent and effective heuristic algorithm

for our problem. As it is mentioned in the previous chapter, the basic condition to have the
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feasible solutions for a problem with a fixed number of periods is that, the number of existing
periods must be greater than or equal to the number of required periods. These required periods
are for switching on the machine, performing all the jobs completely and then switching it off.
The difference between these two numbers indicates the number of extra periods which can
be calculate by equation 5.1 and indicate by x. The principles of the presented heuristic in
this chapter are based on allocating the non-processing states (Ton, OFF, Idle and Toff) to the
machine during these extra periods. The extra periods may be placed anywhere on a production

shift (at the beginning, end or middle).

Heuristic’s procedures

The proposed algorithm is divided into two general steps (forward and backward steps) to specify

the machine’s state period by period and consider all the possibilities for non-processing states.

In each step, the algorithm investigates (z + 1) different situations (from 0 to ) for turning on
the machine at the beginning or turning it off at the end of the horizon, and selects the minimum
objective function among (x + 1) different solutions. By this way, for each solution, some extra
periods will be allocated to OFF state at the first stage and then, the algorithm will decide for
the rest (among OFF or Idle states) in other periods. Finally, the solution is the one with the
minimum objective value between the best solutions of forward and backward steps. Thus, to
obtain the best solution, 2% (z + 1) different solutions must be considered and compared with each
other. This method (determine the number of checking solutions) causes reducing dependency

of the algorithm to the number of jobs and periods (size of the problem) and increases its efficiency.

For the forward step, in the first solution, the OFF state assigns to the machine at period
zero. In the second solution, the OFF state assigns to the machine at period zero and one. In the
third solution, the OFF state assigns to the machine at period zero, one and two. By the same
way, for the next solutions, each time the OFF state assigns to the machine for one more periods.
So, finally in the last solution ((x + 1)th) of this step, the OFF state assigns to the machine at
x + 1 periods (Vt € [0, 2]). The possible solutions in the forward step for an example with 3 jobs

and 14 periods, are given in figure 3.12.
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Figure 3.12 — Forward step’s solutions for instance (3,14)

In the backward step, the same procedures as the forward step will be performed, but by
allocating the OFF states to the machine at the end of horizon. It means that, the algorithm
assigns the OFF state to the machine in the last period for the first solution, and in period T’
and 7" — 1 for the second one. For the other solutions, the OFF state assigns to the machine from
one earlier period. Therefore, in the (z + 1)th solution the machine will be in the OFF states for
periods t € [T — x,T]. The possible solutions in the backward step for an example with 3 jobs

and 14 periods, are given in figure 3.13.

To complete each solution, just after turning on the machine (in forward step) or before turning
of the machine (in backward step), the algorithm selects the best job to process based on the
minimum average value of their energy consumption cost in the related period. As it is shown in
figure 3.14, in the first solution of forward step, the second job (j2) is selected. Also, as can be
seen in figure 3.15, in the second solution of backward step, the first job (j1) is selected.

After processing the chosen job, the algorithm will select the best state for the machine based on
the minimum average value of their energy consumption cost. In the first solution of forward step
for our instance (figure 3.14), Idle state has been chosen for period 4.

These steps will be continued to process all of the jobs completely and specify the machine’s
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Figure 3.13 — Backward step’s solutions for instance (3,14)

Period 01 2 3 4 5 6 7 8 9 10 11 12 13 14
Energycost |O 4 2 3 4 4 5 2 2 4 9 8 5 3 8
Job 1 2 3
Process time | 3 1 2

Table 3.5 — Energy costs in each period & Process time of each job

state during all the periods. After that, the algorithm’s process is finished and it computes the
objective value of each solution.

For better understanding of this algorithm’s procedure, it is applied on a small example with 3
jobs and 14 periods. The energy cost of each period and processing time of each job are detailed
in Table 3.5. According to these parameters values we have z = 4, so, 5 different solutions must
be compared in each step. These solutions and their objectives’ value (total energy cost) have
been presented in figures 3.14 and 3.15. As can be seen, the best solution of the forward step
is the last one with the objective value of 168, while, among the backward’s solutions, the best
solution has the objective value of 114. Therefore, the best scheduling plan found by the proposed
heuristic algorithm for this problem is the last solution of backward step with total energy cost=
114. The pseudo code of this algorithm is represented in Table 3.6. In the following section, a
genetic algorithm based on our heuristic’s method is also presented to examine the possibility of

improving the obtained solutions by this algorithm.
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Heuristic Algorithm : HA
if (xz < 0) then the problem is infeasible.
else if (x =0) then
just one possibility for machine states’ position and the jobs can be processed in different
sequences with the same objective values.
else
Step 1: for (i = 0 to z)
1. put the machine in OFF state for periods p € [0,4] and T
2. turn on the machine just after period 1.
3. once the machine is in processing state, process the job with minimum mean of
energy cost requirement for processing in this period.
4. choose the machine’s state with minimum mean of energy cost requirement
among {processing, Idle or OFF (if z — ¢ > 3)}.
if processing state is selected then go back to the stage 3.
else if Idle state is selected then
put the machine in Idle, consider z — ¢ = x — i — 1 and return to the stage 4.
else OFF state is chosen then
turn off the machine for the (z — @) next periods, (consider Toff,
OFF and Ton steps), put z — ¢ = 0 and return to the stage 4.

end if
5. if (z = 0) then process the remaining jobs based on the numerical order.

end if
6. compute the objective function for each solution (Z;)
end for
let Zpin, =min{Z}
Step 2: fori =0tox
1. put the machine in OFF state for periods p € [T —4,T] and 0.
2. turn on the machine just for the period before (T'—i—1) .
3. do the same as step 1 in backward way from final period ( stages 4 and 5).
4. compute the objective function for each solution (Z5).

end for
let Zpin,=min{Zs}
let Zin=min{Z1, Z>} (minimum objective value of all the solutions)

end if

Table 3.6 — The heuristic algorithm
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Figure 3.15 — Backward step of the heuristic algorithm

3.7.2 Genetic algorithm

Meta-heuristics techniques which are usually inspired by the biological process of natural selection
can be considered to identify a valid solving procedure. Genetic Algorithms are one of these
techniques ([78]) to find good solutions for complex combinatorial optimisation problems. As well
as other evolutionary approaches, like simulated annealing and tabu search, it has been applied to
scheduling and sequencing problems earlier with success ([79]). The implementation of a genetic
algorithm (figure 3.16) needs to establish several concepts such as chromosome, initial population,

parent selection method, crossover and mutation operators. These concepts for our problem are
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defined in the following sections.

Initial population and chromosome representation

Each solution of this problem consists of T" periods for which the machine’s state must be defined.
So, in this genetic algorithm, each chromosome is represented by 7'+ 1 genes and each gene
identifies the machine’s state in any period.

To distinguish between the different states, the numbers of 1, 2, 4 and 5 are assumed to represent
OFF, Ton, Toff and Idle states, respectively. Besides, an integer number more than 10 (w > 10),
represents that the machine is in ON state and processes the (w — 10)th job. The related
chromosome for the presented solution at Figure 3.2 is shown in Figure 5.5. Since in this instance
the number of periods is 32, so, this chromosome consists of 33 genes. The number 11 in 15th
gene means that during period 14 the machine processes the job 11 — 10 = 1. Also, the number 5
in 19th gene means that during period 18 the machine is in Idle state.

Usually, the genetic algorithm (GA) starts with a randomly generated initial population. The
proposed GA uses an initial population which will be generated based on our proposed heuristic
algorithm with a population size of 300. Thus, for each individual, first of all the period for
turning on the machine must be selected randomly. Then, the job’s number to perform will be
chosen randomly. After completing the job, the machine’s state must be selected among ON, Toff
and Idle states arbitrarily. These procedures must be continued to process all of the jobs until
the last period. Finally, the objective value of the solution will be computed as a fitness function

to classify the generated chromosome’s quality.

Operating parameters

For completing the GA’s procedure it is necessary to choose three operators for parents selection,
crossover and mutation procedures. For this purpose, we use the same operators as the existing
study in the literature ([61]). Therefore, the roulette wheel operation is considered for parents
selection. Moreover, single point and swap method are considered as crossover and mutation

operators, respectively, to produce the new children.
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Figure 3.16 — Genetic algorithm’s procedure
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Figure 3.17 — The related chromosome for the obtained solution in Figure 3.2
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Figure 3.18 — Single point crossover operation

Crossover operation For the single point crossover operation, the cut point will be chosen
randomly from the period’s index. The first offspring will be composed of the first parent (from
the beginning to the cut point) and the second parent (from the first gene after the cut point to
the end of the chromosome). The second offspring will be obtained by the same way and reverse
the parents.

After producing the children, a correction procedure must be done to convert the not feasible

solutions to the feasible one. One example of these operations are illustrated in Figure 3.18.

Mutation operation The next step in the genetic algorithm is to apply the mutation operator.
Swap method is selected based on the literature. For this purpose, a chromosome from the
initial population will be randomly selected and the mutation will be performed on the randomly
selected gene by changing its value. Then, like the crossover operating, it is necessary to check
the feasibility of the obtained offsprings and correct them if they are not feasible.

One example of these operations are illustrated in Figure 3.19.

Update the initial population The final step in the first iteration of GA is to update the
population, because the crossover and mutation procedures will increase the population size. So,

for the next iteration, the best chromosomes among all the initial population and the collected
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Randomly selected gene
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Figure 3.19 — Mutation operation: swap method

population in the current iteration, must be selected based on the value of their fitness function
as much as the size of the population. These procedures must be accomplished for a maximum

iteration number which is considered as 300 times in our proposed GA.

3.7.3 Numerical experiments

The proposed algorithms have been implemented in C'++ Visual Studio 2015. In order to evaluate
their performances, several numerical instances have been generated. The generation of these
instances is inspired from the literature. The computational times was limited to 3 hours or 10800
seconds and the numerical results have been illustrated by minimum, average and maximum

value of obtained results for each criterion in Tables 3.7 and 3.8.

For the small size instances, the gap between the objective values and the computation times
of these algorithms and the exact method were collected to illustrate the efficiency of these
algorithms. In table 3.7, Gapga and Gapga, illustrate the obtained gap between HA-exact
method and GA-exact method’s objective values in percentage. Also, CPUcpier, CPUpa and
CPUg 4 represent the computation time of exact method, HA and GA in second. Since the exact
method is not able to find any solution during three hours for the problems with more than 35
jobs and 209 periods, a comparison between HA and GA was performed for large size problems
that has been presented in Table 3.8.

In Shrouf et al’s work ([61]), they did not investigate the efficiency of their proposed genetic
algorithm for the problems larger than 60 jobs and 135 periods, while, in this chapter, we studied

the efficiency of our proposed algorithms for the problems as large as (200,1200).
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The obtained results demonstrate that our proposed algorithms provide the optimal solutions
in some examples and nearly optimal solutions for others in few seconds (gap of 2.2% is achieved
in average by HA and 1.82% by GA in comparing to the objective value of exact solution for small
size instances). Also, among all the computational experiments, the biggest gap of 5.67% and
7.31% are obtained by the HA and GA respectively. These results demonstrate great accuracy
and efficiency of both the proposed algorithms. Generally, the GA presents a better solution in
contrast to HA, but with more time-consuming. The minimum and maximum computing time
are (0.36 s, 8.44 s) and (18.53 s, 424.28 s) for the HA and GA respectively (the average computing
time for the HA is 1.52 seconds and for the GA is equal to 119.13 seconds). These information
illustrate that impact of the problem’s size on HA’s performance is lower than GA. Moreover, an
analysis of the variance (ANOVA) with a confidence level of 95% was taken using the Minitab.17
software to check the statistical validity of the results (Figures 3.20 and 3.21). As can be seen,
the minimum and maximum variation range of gaps belong to GA for the instances with problem
size of (5-30) and (30-130) respectively. Also, just in these two sets of examples, the heuristic
algorithm provides the better solutions generally. In large size instances, the variation range of

gaps between HA and GA are less than 3% and in average are approximately equal to 1%.
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(n, T) Gapua (%)  Gapga (%) CPUcypies () CPUpa (s) CPUga (s)
Min 0.00 1.10 0.25 0.71 20.06
(5,30) Average 1.06 1.58 0.7 1.32 31.68
Max 2.28 2.28 1.34 2.74 39.15
Min 0.00 0.00 1.15 0.53 32.91
(10,50) | Average 1.5 0.83 3.79 0.81 40.44
Max 3.76 2.42 7.09 1.31 47.16
Min 0.35 0.00 7.34 0.51 18.53
(15,70) | Average 2.18 0.9 36.27 0.8 32.92
Max 4.69 2.44 115.15 1.23 41.8
Min 0.00 0.86 6.89 0.6 22.5
(20,90) | Average 1.81 1.67 46.64 0.76 44.17
Max 3.45 2.49 169.96 1.06 60.61
Min 0.46 0.46 31.87 0.37 28.47
(25,110) | Average 2.3 1.56 284.01 0.61 46.32
Max 3.89 2.59 959.53 0.95 60.88
Min 1.55 0.00 331.8 0.51 32.92
(30,130) | Average 3.56 3.68 609.64 0.71 56.04
Max 5.67 7.31 901.65 14 103.37
Min 1.54 1.2 2536.09 0.36 74.92
(35,209) | Average 3.02 2.58 9147.22 0.93 97.53
Max 4.94 4.94 10800 1.92 105.07

Table 3.7 — Comparative results among Heuristic, Genetic Algorithm and exact method
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Individual standard deviations are used to calculate the intervals.

Figure 3.20 — Performance comparison of GA and HA with Exact method
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(n, T) Gap (%) CPUHA (S) CPUGA (S)
Min 0.09 0.65 98.57
(40,249) | Average 0.71 0.85 110.99
Max 1.1 1.31 123.66
Min 0.28 0.79 72.54
(45,270) | Average 1.42 0.91 101.99
Max 2.99 1.07 121.87
Min 0.25 0.76 63.97
(50,300) | Average 0.86 0.94 78.32
Max 1.75 1.31 100.36
Min 0.12 0.98 102.72
(60,360) | Average 1.46 1.1 125.16
Max 2.13 1.23 145.83
Min 0.32 1.04 122.68
(70,420) | Average  1.53 1.14 146.69
Max 2.6 1.2 174.15
Min 0.22 1.09 111.32
(80, 480) Average 0.73 1.17 136.69
Max 1.5 1.24 205.47
Min 0.06 1.29 80.25
(90,540) | Average 0.51 1.6 111.44
Max 1.63 2.07 156.9
Min 0.25 1.42 139.08
(100,600) | Average 0.46 1.96 155.85
Max 0.59 2.26 190.35
Min 0.04 2.1 297.34
(150,900) | Average 0.61 3.33 363.96
Max 1.69 4.32 424.28
Min 0.09 4.94 2170.86
(200,1200) | Average 0.46 6.99 345.64
Max 1.2 8.44 404.67

Table 3.8 — Comparative results of Heuristic and Genetic Algorithm for medium and large size

instances
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Individual standard deviations are used to calculate the intervals.

Figure 3.21 — Performance comparison of GA against HA for large size problems



3.8. Conclusion 99

3.8 Conclusion

Several multi-states single machine scheduling problems, when the jobs consume the same units of
energy and the machine has only one processing speed are addressed in this chapter. It is proved
that when the energy price during the time horizon is constant, increasing or decreasing, this
problem is polynomial. Moreover, when the jobs can be process preemptively, as well as when the
jobs have the same processing time, the problem is polynomial too. The general version of this
problem (1,T0OU|states|T EC') which attempt to find the optimal sequence for processing the
jobs non-preemptively and the optimal state of the machine is each period, is NP-hard. Therefore,
a heuristic algorithm and a genetic algorithm are presented for this problem to find the near
optimal solutions for all size of the problem rapidly. Moreover, several lower bounds are proposed

for this problem to evaluate the efficiency of these algorithms.

In the next chapter we will deal with a multi-states single machine scheduling problem when
the jobs consumes different amount of energy. For this purpose, two versions of this problem with

an uniform speed and a speed-scalable machine are studied.
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4.1 Introduction

In the previous chapters of this thesis, the scheduling problems with the same energy consumption
of the jobs are addressed. In reality, for some manufacturing industries, processing different jobs
with the same machine need different energy consumptions. It may come from the preformed
jobs or from different processing speeds option. Therefore, in this chapter, we study the more
general version of the problem with multi-states and multi-speeds for a single machine. Besides,

the complexity of several sub problems are also analyzed.

The remainder of this chapter is organized into seven sub-sections. In section 4.2, the
definition of the problem with its assumptions and constraints are presented. In section 4.3, two
mathematical models are presented for the considered problem, and the comparison between
them is represented. In section 4.5, a heuristic algorithm and a genetic algorithm, as well as a
memetic algorithm are presented to solve the problem. In section 4.4, the complexity of several

sub problems are studied. Finally, the brief conclusion of this chapter is presented in section 4.6.

4.2 Problem presentation

This section deals with the scheduling problem of several jobs on a multi-states and multi-
speeds single machine (1, TOU |states, speeds, ¢;|TEC'). So, we keep all the main assumptions
and constraints of chapter 2. Moreover, for the studied problem in this section, the energy
consumption of the machine during state ON depends on two factors: the performed job and the
processing speed of the machine. So, there are different possibilities for processing time of each
job and the consumed energy value by the machine. That means for each job j =1,...,n with v;
possible speeds, there are different values for the processing time as P; = {p;1,--- ,Pjn, }, and
for each p; ;, a corresponding energy consumption g;; is associated. Q; = {gj,1,--- , ¢, } is the
set of the different energy consumptions of job j = 1,...,n. Based on the fact that, processing a

job more faster takes less times and consumes more units of energy, the following relations are
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Figure 4.1 — Machine states and possible transitions

considered:

Pj1 > P2 > > iy sViE{Ll - n} (4.1)
G < gi2 < <@, ;VjE{L - ,n} (4.2)

The objective of this problem is to find the most economical production schedule in terms of
energy consumption costs during the whole time horizon. The machine states and the possible

transitions as well as the energy consumptions of each one are illustrated in Figures 5.7.

4.2.1 Illustrative example

Let us consider a scheduling problem of 5 jobs in 32 periods on a machine with 3 speed levels for
each job. A feasible solution of this instance is presented in Figures 4.2. As can be seen, the first
job is processed with speed 1, the second and the fourth jobs are performed by speed 3, and the
third and the fifth jobs are processed with speed 2.

In this kinds of problem, the idea is to process the job with a higher speed when the unit of

energy cost is low and reverse.
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Parameter Value | Parameter Value | Parameter Value
D11 3 D1,2 2 D13 1
D21 5 D22 4 D2,3 2
D31 6 D32 4 D3,3 3
P41 ) D42 3 D43 2
P51 4 D5,2 3 D5,3 2
q1,1 4 q1,2 5 q1,3 6
g2,1 3 2,2 4 92,3 5
43,1 2 43,2 4 43,3 5
qa,1 1 4,2 2 44,3 3
qs,1 2 5,2 3 qs5,3 5

B 2 B2 1 €OFF 0
erdle 2 €Ton 5 ETof f 1

Table 4.1 — The parameters’ values for an instance with 5 jobs, 32 periods and 3 speeds

t 0(1(2(3|4|5|6[7|8]9|10/11|12(13|14|15|16(17(18|19|20|21|22]23|24|25|26|27(28|29|30|31[32|Cost
3 0(8(8(8|4[4]4[3|3|3]2|2|2|2|2|10/10(10{10/3|3|3|2]|2|2|2|6|6|3|3|3]|5(5
ON 16|12|12|15(10/8 | 8|8 |8 9/6[6(6]|6
OFF o(ofofo 0fofo ojojojojofo
Idle
Turnon 20120 15|15
The schedule off  [Ton 1 |23 132 I Off  |Ton  [M43 152 I off 206

Figure 4.2 — A feasible solution for the problem with 5 jobs, 32 periods and 3 speeds

4.3 Mathematical formulation

As the first contribution, two new mathematical models are proposed in the following. To describe
these programming models, first of all, the parameters and decision variables, as well as, the
objective function and the constraints which are used in the first model are presented. Then, we
describe the second model based on the first one and we define the additional parameters and

decision variables.

4.3.1 First model

Parameters:

T : Total number of periods;
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¢¢: Unit of energy price in period t;

n : Number of jobs

v;: Number of possible processing speed for job j;

pj,i: Processing time of job j with speed ¢ = {1,--- ,v;} (in a number of periods);

gj,:: Energy consumption of job j per period which is associated with p; ;;

s : States of the machine (s={1,2,3} for ON, OFF and idle states, respectively.);

es: Energy consumption of the machine during state s = {1, 2, 3};

ess: Energy consumption of the machine in transiting between s and s’ (s, s’ = {1,2}|s # ¢');
dss: Required number of periods for switching from state s to s’ (s # s');

Decision variables:
In this formulation, two binary decision variables are used to describe the state of the machine in

each period:

1 If the machine is in state s during period ¢t =0, ...,T
Qg t =

)

0 Otherwise

1 If the machine is in transition from state s to s’ in period t =0,...,T
Bss’,t =
0 Otherwise

Moreover, two binary decision variables are also used to define the status of the jobs in each

period:
1 If job j is processed with speed i = {1,--- ,v;}
Tji =
0  Otherwise
1 If the machine processes job j with speed i in period t =0, ..., T
Yjit =

0 Otherwise

Mathematical formulation:

n

T v 3 3 3
Min Z ct <Z 27 Qj,i - Yjit T Z Es - as + Z Z Eggr - 555/,15) (4.3)
t=0 =2

j=1i=1 s=1s'=1
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3 3 3
D e+ D Y Bua=1  Vte{o T} (4.4)
s=1

s=1s'=1
3 3 3
Qs t < Z sl 41 + Z Z Bss”,t+1 VvVt € {07 s, T = 1}7VS € {17273} (45)
s'=1ld =0 s=1]d  n>1s""=1
633/’t §63$/1t+1 +a$'7t+1 ;Vte {01 7T_1}:V575/ S {17273}7dss’ >1 (46)
t+d,
Z 555’,15’ > (aS,t+ﬁss’,t+1 _1)‘dss’ ;Vte {07 7T_1}7V575/ € {17273}7d55’ >1 (47)
t/=t+1
Bss’,t+ﬁss/,t+dss, S 1 ;Vte {07 7T_t55/},V575/ S {1,273}7d55/ Z 1 (48)
n Vj
Zzym,t =ai; Vte{l,--,T} (4.9)
=1 i=1
n Yj
Zzym,t <1 vte{o,--,T} (4.10)
j=1 i=1
t=pji T
Z Yjip + Z Yiae <Pji- (1= yj,)
t'=0 t'=t+pj; (4.11)

vt e {pji,-- T —pji— 15V €{l,--- ,n},Vie {1,--- ,v;}

vj
Zwm =1 ;Vje{l,---,n} (4.12)
i=1
T
Zym,t >pji-®ie Vi E€{l - n},Vie{l,. - v} (4.13)
t=0
asr =1 ;vte{0,T} (4.14)

In this model, the objective value depends on the machine states, the processing job, the
processing speed (energy consumption of the machine), and the unit of electricity price in each
period (equation (4.3)). Equation (4.4) expresses that in each period the machine must be in
one of the possible states ( ON, OFF, Idle, Ton, and Toff). Equations (4.5) and (4.6) limit the
machine’s state in each period regarding to the machine’s state in previous period. Equations (4.7)
and (4.8) identify the required number of periods for Ton and Toff states. Equation (4.9) indicates
that the machine may process at most one job per period, and if the machine processes job j
during period ¢, it must be in ON state (s = 1). Equation (4.10) imposes the constraint that the
machine can process at most one job per period. Equation (4.11) translates the non-preemption
constraints of the jobs. Equation (4.12) imposes the constraint that each job must be processed

with only one speed. Equation (4.13) specifies the processing time of each job, regarding to its
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processing speed. Equation (4.14) identifies that the machine is in OFF state during the initial

and final periods.

4.3.2 Second model

In the first formulation, two decision variables (y;;+ and z;;) and three indexes (j, 7 and t)
are used to modelize the problem. For the second model, it is attempted to propose a more
efficient model to formulate the problem by using just one decision variable and two indexes.
This formulation is inspired by the approach proposed by [80].

Let us define IV jobs such that N = 2?21 vj. Let define J = {Ji, Ja, ..., Jn} the set of all the job
such that J1 ={1,2,..,v1}, J; = {vjo1 +1,..,vj_1 4+ v }; Vi=2,..,n

Let also consider the set P = {py,...,pn} of the processing time of each job k € J and the set
Q ={q1,-..,qn} of the energy consumptions of the jobs k € J such that g is the unit of energy
consumption corresponding to the processing time py.

Let also define Ry ; = Zii’;rl ¢; that computes the sum of energy unit cost if the machine
performs job k =1,..., N from period ¢ to period ¢ 4+ py — 1. Then, gj * R+ represents the total

energy consumption for performing job k from period t¢.

Moreover, xj, ; is used as a decision variable to formulate the problem:

1 If job k begins to be processed at period t (k=1,...,N)
Tkt =
0  Otherwise

So, in this model, the objective function can be written as follow:

Min ZZ% Tt - sz-f-zct <ZEs'ast+ZZE55/ 565’15) (4.15)

t=0 k=1 s=1s'=1

Also, the constraints in which variable y; ; ; and x;; are present (equations: (4.9) to (4.13)) must
be changed. Therefore, equation (4.16) is replaced (4.9), (4.11) and (4.13). Moreover, equations
(4.17) and (4.18) respectively replace equations (4.10) and (4.12). The new equations are given in
the following;:

N t

ZaSﬁZZﬁSS,t_FZ Z opy  VE€{0,---,T} (4.16)

s=1s'=1 k=1t'=t—pp+1
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N
Zxk,t <1 vte{o,---,T} (4.17)
k=1
T
szm:l Vie {1, n} (4.18)
keJ; t=0

It must be mention that, in the second model, all the related constraints for defining the machine’s
state in each period are kept as the same as in the first model (equations: (4.4), (4.5), (4.6), (4.7)
and (4.8)).

Note that, the second model integrates a pre-treatment phase that computes the value of

parameters Ry, ; for any k and .

4.3.3 Comparison

The performance of these two mathematical models have been examined by several randomly
generated instances. For this purpose, CPLEX 12.6.1 software is used to solve instances with
the exact method (Branch and Cut). Five different examples are randomly generated for each
instance by changing the processing times and the energy consumptions of the jobs among [1, 8],
as well as the unit of energy price in each period among [1,10]. It must be mention that these
generations are inspired from the literature [61]. The computation time for all the experiments
was set to 1 hour or 3600 seconds. By using the first model, CPLEX was able to find the optimal
solutions for problems smaller than 15 jobs, 5 speeds, and 120 periods. Therefore, the results of
the models in terms of the number of constraints and variables, as well as the computation time
are compared together. These results are presented in Table 4.2. The second model is faster than
the first one (in average, it takes 271.87 s for the first model, and 1.80 s for the second one), and

it decreased about 64% in number of constraints and 1.3% in number of variables, in average.
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(n-v-T) consi  consy | Gap (%) | vary vary | Gap (%) | CPUi(s) CPUa(s)
(2-3-15) 578 517 11.80 295 289 2.08 0.36 0.29
(3-3-25) 1030 858 19.95 556 547 1.65 1.23 0.49
(4-3-30) 1318 1029 28.03 757 745 1.61 2.00 0.82
(5-2-40) 1677 1370 22.39 913 903 1.11 3.08 1.07
(5-3-40) 1827 1370 33.36 1123 1108 1.35 4.46 1.07
(5-5-40) 2150 1370 56.89 1543 1518 1.65 4.12 1.62
(10-2-80) 4149 2735 51.69 2613 2593 0.77 375.67 2.58
(10-3-80) 4857 2735 77.57 3433 3403 0.88 188.57 2.56
(10-5-80) 6277 2735 129.48 5073 5023 1.00 390.72 3.22
(15-5-120) 12609 4100 207.54 10603 10528 0.71 1748.52 4.32
Average 63.87 1.28 271.87 1.80

Table 4.2 — Comparison between Modell and Model2

4.4 Complexity analysis of sub problems

The complexity of a speed-scalable single machine scheduling problem, when the machine has
just two states (ON and OFF), (1, TOU|speeds, ¢;|TEC) is already studied in [1]. The authors
proved that the problem is NP-hard. So, the general version of this problem which is considered
in this chapter, with three main states and two transition states, (1, TOU |states, speeds, ¢;|T EC)
is also NP-hard.

In this section, we are interested to analyze the complexity of two sub versions of this problem.
For this purpose, we considered the uniform speed case and the speed-scalable case of the problem

when the sequences of the jobs are fixed.

4.4.1 1,TOU]|states, sequence, ¢;|TEC

problem statement

This section deals with a non-preemption scheduling problem of n jobs (Ji,---,J,) on a multi-
states single machine in a predefined order (sequence = Ji — Jo — -+ — Jy—1 — J» ), with their related
processing time (p;) and energy consumption (g;)(j = 1,--- ,n). This problem can be denoted
by 1,TOU |states, sequence, ¢;|TEC, where ‘TOU’ represents the time of use policy of energy
price, ‘states’ represents different states for the machine, ‘sequence’ represents pre-defined se-

quence of the jobs, ‘q;’ represents jobs’ power demand, and ‘T"EC" represents the total energy cost.

To analyze the complexity of this problem, the same approach as what we did for the problems
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(1, TOU]|states, sequence|TEC) and (1, TOU]|states, pmitn|TEC) in the previous chapters, is

realized. So, in the following, a finite graph is proposed to model this problem.

Dynamic programming modelling approach

In this approach, the problem with 7" periods and n jobs is modelled by a graph with V' nodes
and F edges, which is composed of T' 4+ 1 decision levels. Each level corresponds to a period
of the time horizon (from 0 to T'). A set of nodes (H;) is allocated to each decision level (1)
representing the possible last jobs in the given sequence (J;), which has been processed until
period [. The initial-OFF and final-OFF states are respectively specified by the nodes I and
F. Each node is identified by a (k,[) notation, where, k € {I,J1, -+ ,Jn,F} and [ € {0,--- ,T}.
Therefore, the graph is composed of n + 2 different kinds of nodes. For example, in Fig. 4.5,

Hy={I,J1};Hio = {J1, J2, J3, F}.

Step 1: putting the nodes In this problem, the number of periods is fixed, and the required
time for processing all the jobs, transitions and setups are given. So, the decision makers are
facing = extra periods (z = T — (P + f1 + B2 + 1), where P = Z?:I p;), corresponding to x
non-processing periods. That is why each node of the graph can appear in x 4+ 1 consecutive
periods. Thus, sets 7 are defined for any k € {I, J1,--- , Jn, F'}, which contains the possible periods
(decision levels) that machine can be in state k& during them. For example, 77 = {0,--- ,z}; 75, =
{Br+p1, -, Pr+pr+a}; 77 ={T—=x,---,T} So, the total number of nodes for a problem with
T periods and n jobs is:

[Vl=(n+2)*(xz+1) =2nT (4.19)
To illustrate the construction of this modelling approach, we consider an example with 3 with

n=3,p; ={2,1,2},q; = {3,5,7},T = 15,81 = 2,82 = 1,z = 6, and ¢; € [0,10]. The first step of this

approach for this example is presented in Fig. 4.3 which consists of 35 vertices.

Step 2: drawing the edges The edges of the graph can be divided into three sets (Ey, E2, Es).
In this approach, the value of each edge (Ev(kyl),(kgl/)), represents the total energy consumption

cost (positive value) of related transition between two connecting nodes ((k,1) and (k',1')).
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perod [0 [1 2 3 4 [s [e 7 s Jo f10 fu 1z |1 |14 15 ]
2 5 4 2 3 4 7 2 5 4 6 1 3 2

cost 0 3
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Figure 4.3 — Graph representation: stepl

Step 2.1: E; The first set of edges (F1) connects two nodes with the same k value in two
consecutive decision levels (I and [ + 1). These edges can indicate the initial and final OFF state

with the edge value of 0 (if eorpp = 0) or the idle state with the edge value of:
BV~ (ki41) = Ci41 * 1dle  ;Vk € {J1, -, InphVLI+1E T, (4.20)

where, ¢; is the energy unit price in period [, and ejq;e is the machine’s energy consumption in

idle state. The cardinal of F; is |F1| = (n+ 1) x z.

Step 2.2: F; The second set of edges (F»), connects a node k at period I with a node k + 1

at period I’ (I’ > 1), which illustrates three transitions cases:

e initial turning on and processing the first job (J1) with the edge value of:

I4+61 I+B1+p1

EU(I7[)_(]1’1/) = Z (Ci * eTon) + Z Ci ¥ q1 ,Vl €T (4.21)
i=l+1 i=l+B1+1
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e processing the job k+1 (k= Jy, -, Jh—1):

Evgpy— (et 1,04pp0) = Zﬁiﬁ’ﬁl ci*qry1 Yk e{Ji, Ja, oo, Inh VI €Ty (4.22)
e final turning off:
-1
Evg, n—(Fr)y = Z (ci x erofs) + ¢y xeorr VI E 15, =1+ B2 +1 (4.23)

i=l+1

The cardinal of this set of edges is equal to |F2| = (n+ 1) * (z + 1).

Step 2.3: E5 The last set of the edges (E3) corresponds to middle scheduling shutdowns
between two processing jobs. Each middle shutdown consists of Toff, OFF, and Ton states. These
edges connect nodes k in level [, and node k+1 in level I, where, I’ € {I+ 81+ B2+ 1+ prr1, -+ , 1+

z+ 1}l € k41 with the edge value of:

I+82

Evgy—(kt1,0) = i:l+1(ci * eToff)+ (4.24)
- ’ .
Zi:ff;;rl,ﬂl,l(cz- * eTon) + Zé:l,,pkﬂﬂ(q *qri1) (VkE{J1, - Ju1} VI E T
The total number of the third set of edges is equal to:
z—(B1+82)
|Es| = i*x(n—1)
> )
_ (w—(/31+52))*(237— (BL+p2)+1) f(n—1)
Therefore, the total number of edges for a problem with T periods and n jobs is:
|E| = |Bu| + |Ba| + |Bs| = T°n (4.26)

The second step of this approach for our considered example is presented in Fig. 4.4 which

consists of 35 vertices and 64 edges.

Problem complexity analysis

Based on the presented modelling approach, each path of the graph which starts from node I
in level 0 and ends at node F in level T, represents a feasible solution of the problem. Since

the objective is to find the minimum total energy consumption costs, the shortest path that
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period Jo 1 ]2 [3 Ja s Jo |7 Ja [o oo [n 12 |13 [1s 15 ]
2 5 4 2 3 4 7 2 5 4 6 1 3 2

cost 0 3

Figure 4.4 — Graph representation: step2

starts at node (7,0) and ends in node (F,T) represents the optimal solution of the problem. For
this purpose, Dijkstra’s algorithm is used to find the shortest path of the graph as the optimal
solution.

Let us consider that the cost C(y, ;) associated to node (k,1), indicates the minimum cost to obtain
production level k at period I. The recurrence relationship used to evaluate it for each node, is as

follows:

C(I,O) - 0
' (4.27)
Cuypy = min  {Cu )y + Vi -y}

(k' 1) €Ak,
where Ay is set of the precedent nodes connected to node (k,!) directly. For example, in Fig. 4.5
Ao ={(J1,4),(J1,8),(J2,8)}. Finally, C(p 1) represents the value of the optimal solution for the
considered problem.
The application of Dijkstra’s algorithm for the considered example, gives the optimal solution

with turning on during period 1 and 2, then processing all the jobs based on their order, within

period 3 to 7, and finally turning off at period 9, with the total cost of 133 (Fig. 4.5).
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porod [0 1 f2 s fa [s [ |7 [s o [0 Ju [s2 1 [ [15
2 5 4 2 3 4 7 2 5 4 6 1 3 2

cost 0 3

0 @\3(':@_03@_05@95@—03@25@ V)= 10)

74 87

Cry

PP

133 133 133 133 133 133

Figure 4.5 — Graph representation for an instance of uniform-speed problem

According to [77], the complexity of the developed approach is equal to:

O(T*n + TnlogTn) = O(T*n + Tnlog T + Tnlogn) (4.28)
&~ O(T?n)

Since n < T (worst case for any feasible problem), we have logn < logT < T. So, we can

conclude that the problem is polynomial of degree 3 or a cubic polynomial problem (O(T?)).

4.4.2 1,TOU]|states, speed, sequence, q;|T EC

problem statement

The second sub-problem, which is studied in this chapter, is a fixed sequence version of the general
problem when the number of speeds is fix for all the jobs. Using the three-field notation, this
problem can be denoted by:

1,TOU |states, speed = v, sequence, q;|TEC, where ‘speed = v’ represents the speed scalability
of the machine when the same number of speeds are exist for all the jobs (v; = vj = v; Vj,j).

In this case, for each job, we have to choose its execution speed among a given set values. Each
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speed corresponds to a given energy consumption and a processing time. Consequently, it could
be interesting to process the jobs faster when the energy cost is low and process them slower
when the energy cost is high.

Thus, assuming that the machine has v different processing speeds, each job j has v different possi-
bilities for its processing time and power consumption. Without loss of generality, we assume that
each job has a set of processing time and power consumption (Q; = {(pj,q;), ¥3.4}), - . (p%.d})}),

with the following relations:
p; > > > svjie{l - n} (4.29)

qjl-<q]2-<~~~<q}’ Vied{l,---,n} (4.30)

Note that to satisfy the non-preemption in this case, the solution must be composed of an unique
speed ¢ for each job j to process it with the related process time pé. and power consumption
q§ non-preemptively. In the following, an adaptation of the proposed dynamic programming

approach for uniform speed problem is used to model the speed scalable case.

Dynamic programming modelling approach

As the uniform-speed case of this problem, a graph with 7"+ 1 decision levels is depicted. Each
decision level (1) has a set of nodes (H;) which represents the possible last jobs in the given
sequence J;, which is processed with speed ¢ until moment ! (J; ;Vj € {1,---,n},i € {1,---,v})
(Fig. 4.6). Therefore, by considering initial-OFF and final-OFF states, the graph is composed of
(n *v) + 2 different kinds of nodes, where n represents the number of jobs, and v represents the
number of speeds.

The number of non-processing periods for this case is obtained by the following formulation:
' =T - ZP§ —(Br+ B2+ 1) (4.31)
j=1

In the whole graph, there are at most (2’ + 1) nodes with the same node’s number (k €
{1,Ji,J3,--- ,J:, F}). So, the total number of nodes for a problem with T periods, n jobs, and v
speeds is:

VI<((n*v)+2)* (@ +1)=n-v-T (4.32)
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The first set of edges (E1), indicates the initial and final OFF state with the edge value of 0 (if

eorr = 0) or the idle state with the edge value of:

BV, —(k,14+1) = Ci+1 * €ldle (4.33)
;Vk € J};Vl,l—i— len;Vje{l,--- ,nhic{l,--- v}

The cardinal of Ej is:

|Bi] < [((n—1)*%v) +2] %2’ (4.34)

The second set of edges (E2) illustrates three transitions cases:

e initial turning on and processing the first job with speed i (Ji) with the edge value of:

1481 I+B1+p}
EU(Ial)_(‘]{.’l/) = Z (CG * 6Ton) + Z Cg * qi (4 35)
o=1+1 0=1+51+1 :
Vier;Vie{l,--- v}
e processing the jobs (except Jp):
I+pm
Eveny— (k1,04 p10) = e:ﬁfl Co * Qk+1 (4.36)

7Vk € {J{aJ5> 7J£—1};Vl € Tk§v'i € {17 ,’U}

e final turning off:
-1

Ev(];ﬁ,,l)—(F‘,l’) = Z (Cg * eT(,ff) + ¢y xeorFr
el (4.37)

;VZGT%;WG{17~~,U};l'=l+ﬂ2+1

The cardinal of this set of edges is equal to:
|Bal < [((n— 1) %v) + 2] (4.38)

The last set of the edges (E3) corresponds to middle scheduling shutdowns between two processing
jobs, and processing the second ones. These edges connect nodes k in level [, and node k + 1 in

level I/, where, I’ € {l+ 1+ B2+ 1+ prt1, -+ , 1+ x4+ 1}’ € 7641 with the edge value of:

I+8 V=
Bogeny— (k410 = 2ogepoy (co* erops) + Zgzﬁf;;ﬂfﬁlfl(ce * €Ton) (4.39)

+EZ:1,,M+1+1(09 ¥ qrr1) (Ve e{Ji - T pVl e Vie {1, v}
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The total number of these edges is equal to:

z—(B1+62)

|Es| = Z Ox(n—1)*v
(2= (B + B2)) * (@ = (Bs + Ba) + 1)

= 5 *(n—1)*v

(4.40)

Therefore, the total number of edges for a speed scalable problem with 7' periods, n jobs, and v
speeds is:

|E| = |Er| + |E2| + | E3| = Tno® (4.41)

A part of this graph for a problem with T" periods, n jobs, and v possible processing speeds for

each job is illustrated in Fig. 4.6.

Problem complexity analysis

As it is mentioned in previous section, the shortest path that starts at node (7,0) and ends in
node (F,T) represents the optimal solution for the speed scalable problem too. In this case, the
recurrence relationship for evaluating the cost of each node is the same as uniform-speed case
(equation 9).

According to [77], the complexity of Dijkstra’s algorithm for the speed-scalable problem can be

calculate by the following formulation:

O(T*nv 4+ Tnvlog Tnv) (4.42)

Since n < T, we have logn < logT < T, also logv < v, and there is not any limitation for v. So,

we can conclude that the speed-scalable case of this problem is at most pseudo polynomial.
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e Jo L

Clt) 0 c(T)

Figure 4.6 — Graph representation for a speed scalable problem.
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4.5 Optimization methods

As it is presented in the previous sections of this chapter, the scheduling problem of some jobs
on a multi-states and multi-speeds single machine when the jobs consumed different amount of
energy is NP-hard.

The exact methods are not able to solve the large size instances of the NP-hard problems during a
reasonable time. For this reason, we proposed a heuristic algorithm as well as a genetic algorithm
to solve this problem. The description of these two algorithms and their performance comparison

are presented in the following.

4.5.1 Heuristic method

In this study, it is attempted to present an intelligent and effective heuristic algorithm for the
considered problem to obtain a feasible solution of the large size instances in a reasonable time.
This heuristic’s principles are based on the allocating the non-processing states to the machine
during the extra periods (the same idea as the presented heuristic in the previous chapter (sec-
tion 3.7.1)).

Unlike the considered problem in the previous chapter, in this chapter different possible processing
times are assumed for each job. Therefore, to obtain the maximum number of extra periods which
computes by equation 5.1, the minimum required number of periods for processing times must be
replaced to P. For this purpose, the processing time of each job with the maximum speed (p;o;)

is selected. Thus, by considering the assumed parameters, the value of x can be obtain as:

p=T—(Bi+B2+1) =D pjo, (4.43)
j=1

For example, in a problem with 3 jobs, 30 periods, and 3 speeds, with the parameters values
as follow: p; = {6,4,2},p2 = {5,4,3},p3 = {5,3,1}, 51 = 2,52 = 1, the z value is equal to
[30-(24+1+1)-(2+43+1)]=20.
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Heuristic’s procedure

The presented algorithm is composed of two general steps (forward and backward steps) which
specify the machine’s state period by period to consider all the possibilities. In each step, the
algorithm investigates (x + 1) different situations, and selects the solution with minimum objective
function. Thus, to obtain the best solution, 2 % (z + 1) different solutions must be considered
and compared with each other. Finally, the solution with the minimum objective value between
the best solutions of the forward and the backward steps will be selected as the heuristic’s
solution. Since, number of solutions to be checked is dependent on z value, so, this method
reduces dependency of the algorithm to number of jobs, periods and speeds (size of the problem)

and increases its efficiency.

Forward step For each solution, in the forward step, a specific amount (i = 0, ..., z) of the
extra periods is allocated to the initial-OFF states at the first stage. Then, the machine must be
in Ton state during periods i + 1 to ¢ + ;. For example, for the presented instance in figure 4.7,
in the fourth solution OFF state is considered for the machine from period 0 to 3. When the
machine is in ON state, it must process one job, so, the algorithm selects the job with the
minimum average energy consumption costs per period. As can be seen in figure 4.7, in the fourth
solution, the machine is in ON state from period 6 and j1 is selected to process with speed 1.
After completing the first job, while all the extra periods are not attributed, the algorithm selects
the state of the machine with the minimum average energy consumption cost per period among
ON, middle-OFF, and Idle states. Note that, any middle-OFF state consists of Toff, OFF, and
Ton states, which needs at least 8y + ;1 + 1 periods. These steps are repeated until all the jobs
are performed and the machine’s state is specified during all the periods. Once the algorithm’s
processes is finished, the objective value of the solution is computed (see Table 4.3, steps 1.1 to

1.6).

Backward step For the backward step, the same procedures as forward step are performed,
but by allocating a specific amount of extra periods (i = 0, ..., ) to the final-OFF states during
the final periods. For example, for the presented instance in figure 4.8, in the fourth solution OFF

state is considered for the machine from period 12 to 15. Then, the machine must be in Toff state
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t 0 1 2 3 4 2 6 7 8 9 10 | 11 | 12 | 13 14 15 TEC
ct 0 2 2 5 4 2 1] 7 2 5 2 4 3 1] 9 1]

1 |OFF |Ton |Ton |[J1-1 |J1-1 [J1-1 |J1-1 |Toff |OFF |OFF |Ton |Ton [J2-3 [J2-3 |Toff |OFF 161
2 |OFF |OFF |Ton |Ton |J1-1 [J1-1 |J1-1 |[J1-1 |Toff |OFF |Ton |Ton [J2-3 [J2-3 |Toff |OFF 178
3 |OFF |OFF |OFF |Ton |Ton [J1-1 |J1-1 [J1-1 [J1-1 [idle |Idle |ldle |12-3 [J2-3 |Toff |OFF 172
4 |OFF |OFF |OFF |OFF |Ton |Ten (J1-1 |J1-1 [J1-1 |J1-1 [idle [idle [J2-3 |J2-3 |Toff |OFF 156
5 |OFF |OFF |OFF |OFF |OFF |Ten (Ton |J1-1 [J1-1 |J1-1 [J1-1 [Idle [J2-3 |J2-3 [Toff |OFF 154
6 |OFF |OFF |OFF |OFF |OFF |OFF |Toen |Ton [J1-1 [J1-1 |[J1-1 |J1-1 |J2-3 [J2-3 |Toff |OFF 160
7 |OFF |OFF |OFF |OFF |OFF |OFF |OFF |Ton |Ton [J1-2 |[J1-2 |ldle |12-3 [J2-3 |Toff |OFF 152
8 |OFF |OFF |OFF |OFF |OFF |OFF |OFF |OFF |Ton |Ton |J1-3 |ldle |12-3 [J2-3 |Toff |OFF 129
9 |OFF |OFF |OFF |OFF |OFF |OFF |OFF |OFF |OFF [Ton |Ton |J1-3 |J2-3 [J2-3 |Toff |OFF 114

Figure 4.7 — forward step

during periods T'—i — 2 to T —i — 1, and in ON states from period T'— i — 5 — 1. For example,
in the (z + 1)th solution of the backward step, the machine is allocated in the final OFF states
during periods t =T —x, ..., T, and it is in the Toff state during periodst =T —xz— (o, ...,T —x—1
(see Table 4.3, steps 2.1 to 2.4).

The procedures of this algorithm is represented in Table 4.3.

Illustrative example

For better understanding these procedures, the algorithm is applied to a small example with 2
jobs, 15 periods, and 3 speeds. The processing times and energy consumptions of each job, and
the other parameters’ values of this example are presented in Table 4.4. According to these values,
x = 8. So, 9 different solutions must be compared by the algorithm in each step (18 solutions in
total). These solutions and their objective value (total energy cost) are presented in figures 4.7
and 4.8. Where, Jj — ¢ corresponds to process job j with speed i. The bold texts are for the
states of the machine which are fixed by algorithm for each solution, and the normal texts are
the states which are chosen by algorithm procedures. As it can be seen, the best solution of the
forward step is the last one with the objective value of 114, while, among the backward’s solutions
the best solution has the objective value of 97. Therefore, the best scheduling plan found by the
proposed heuristic algorithm for this problem is the last solution of backward step with total

energy cost equal to 97.
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Heuristic Algorithm : HA
if (z < 0) then The problem is infeasible.
else if (x =0) then
All the jobs must be performed continuously with the maximum speed
in any processing order (with the same objective values).
else
Step 1: for (i = 0 to x)
1.1. Put the machine in initial OFF states for periods ¢ € [0,4] UT.
1.2. Turn the machine on just after period 3.
1.3. Process the job which needs the minimum average of
energy consumption costs per period.
1.4. Choose the machine’s state with the minimum average of energy consumption costs
per period among {ON, Idle (if  — ¢ > 0), middle OFF (if x — i > 82 + 31)}.
if ON state is selected then go back to the stage 1.3.
else if Idle state is selected then
put the machine in Idle; x — i = x — ¢ — 1; return to the stage 1.4.
else middle OFF state is chosen then
Turn the machine off for the (z — ¢) next periods, (consider Toff,
OFF and Ton steps);  — i = 0; return to the stage 1.4.
end if
1.5. if (x — ¢ = 0) then
Perform the remaining jobs based on the numerical order with the maximum speed.
end if
1.6. Compute the objective function for each solution (Z;)
end for
let Zpin, =min{Z;}
Step 2: for k=0 tox
2.1. Put the machine in final OFF state for periods ¢ € [T — k,T] U 0.
2.2. Turn on the machine for the periods before (t =T —k—1tot=T —k — () .
2.3. Do the same as step 1.3 to 1.5 in the backward ways.
2.4. Compute the objective function for each solution (Zy).
end for
let Zyin,=min{Zy}
let Z=min{Zmin, s Zmin,} (minimum objective value of all the solutions)
end if

Table 4.3 — The heuristic algorithm
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Parameter Value | Parameter Value | Parameter Value
P11 4 D1,2 2 D1,3 1
D21 5 D22 3 D2,3 2
q1,1 2 q1,2 3 Q1,3 4
q2,1 3 q2,2 4 42,3 6

B1 2 B2 1 €OFF 0
eldle 2 €Ton 5 eToff 1

Table 4.4 — The parameters’ values for an instance with 2 jobs, 15 periods and 3 speeds

t 0 1 2 3 4 5] 6 7 8 9 10 11 12 13 14 15 TEC
ct 1] 2 3 5 . | 3 5] 7 5 5 2 a 3 i) 9 [}

1 |OFF Ton Ton [J2-3 [12-3 [idle |idle [idle |idle |idle |J1-1 |J1-1 [J1-1 |J1-1 |Toff |OFF 170
2 |OFF Ton Ton [J2-3 (J2-3 |idle |idle |idle [idle (J1-1 |J1-1 [J1-1 |J1-1 |Toff |OFF |OFF 155
3 |OFF Ton Ton [J2-3 (J2-3 (idle |idle |idle (J1-1 (J1-1 |J1-1 (J1-1 |Toff |OFF |OFF |OFF 146
4 |OFF |Ton Ton |(J2-3 [12-3 [idle |idle [idle |idle |Idle |J1-3 |Toff |OFF |OFF |OFF |OFF 143
5 |OFF Ton Ton |[J2-3 (J2-3 (idle |[0)1-1 |J1-1 [J1-1 (J1-1 |Toff |[OFF |OFF |OFF |OFF |OFF 133
6 |OFF Ton Ton |[J2-3 |(J2-3 (J1-1 |[)1-1 |J1-1 |)1-1 |Toff |OFF |OFF |OFF |OFF |OFF |OFF 126
7 |OFF |Ton |[Ton |J2-3 |[J2-3 |idle [J1-2 |11-2 |Toff |OFF |OFF (OFF |OFF |OFF |OFF |OFF 129
8 |OFF |Ton |[Ton |J2-3 |[J2-3 |11-2 [J1-2 |Toff |OFF |OFF |OFF (OFF |OFF |OFF |OFF |OFF 113
9 |OFF |Ton |[Ton |[J2-3 |[J2-3 |11-3 |Toff |OFF |OFF |OFF |OFF (OFF |OFF |OFF |OFF |OFF 97

Figure 4.8 — backward step

4.5.2 Genetic Algorithm

As we used a genetic algorithm in the previous chapter to evaluate the performance of our
heuristics for the problem with the same energy consumption of the jobs, we also developed a
genetic algorithm for the studied problem in this chapter. Genetic algorithms are a population-
based Meta heuristics. The implementation of a genetic algorithm (figure 3.16) needs to establish
several concepts such as chromosome, initial population, parent selection method, crossover and

mutation operators. These concepts for our problem are defined in the following sections.

Initial population and Chromosome representation

Any solution of this problem, is a schedule over a time horizon from period 0 to period T,
that defines the machine’s state during each period. So, in this paper, each chromosome of the
genetic algorithm is represented by 1"+ 1 genes and each gene identifies the machine’s state in
a period. To distinguish the machine’s states, each state is represented by a specific number

as OFF =1, Ton =2, Idle = 3, and Tof f = 4. Besides, an integer number greater than 100



124CHAPTER 4. Multi-states and multi-speeds single-machine energy-efficient scheduling problem

1|1 |1 1|2 2 110/110|110(230(230(320(320(320{320| 4 ( 1 | 1 |1 | 2 | 2 |430(430(520|520(520| 4 | 1 |1 |1 |1 1|1

Figure 4.9 — The chromosome of our genetic algorithm

(k > 100) represents that the machine is in ON state. In the other words, if in period ¢, the
machine processes the job j with speed 7, in the related chromosome, the gene ¢ fills with number
(100 % j + 10 x 7). Figure 5.8 represents the corresponding chromosome of the presented instance
at Figure 4.2. Since in this instance the number of periods is 32, so this chromosome consists of
33 genes. The number 230 in 10th gene means that during period 9 the machine processes job 2
with speed 3. Also, the number 4 in 27th gene means that during period 26 the machine is in
Toff state.

The genetic algorithm’s procedure starts with a randomly generated initial population. In this
study, the proposed genetic algorithm uses an initial population which is randomly generated
based on the same idea as our heuristic. In other words, for each individual, at first, the period
that the machine is in the first Ton state must be selected randomly. Then, the job’s number and
its processing speed will be chosen randomly. After completing the job, the machine’s state must
be selected among ON, Toff and Idle states arbitrarily. These procedures must be continued to
process all of the jobs until the last period. Finally, the objective value of the problem will be
computed as a fitness function to classify the quality of the generated chromosome.

For completing the genetic algorithm’s procedure, it is necessary to choose it’s main parameters
based on the studied problem. These parameters are the population size, the crossover rate, the
mutation rate, a crossover operator, a mutation operator and the number of iterations. The

performance of the algorithm depends on the selection of these parameters.

Crossover and mutation

In this study, the roulette wheel selection operator has been chosen as parents selection operator
to produce the new offsprings. In the literature, two approaches are mostly used as the crossover
operator such as single-point and double-point. For this purpose, the cut point(s) will be randomly

generated from the period’s index.
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Single-point method In the single-point method, the first offspring will be composed of the
first parent from the beginning to the cut point, and the second parent from the first gene after
the cut point to end of the chromosome. The second offspring will be obtained by the same way
and reverse the parents.

After producing the children, a correction procedure must be done to convert the not feasible
solutions to the feasible one. For example, as it is shown in Figure 4.10, the first children has two
processing speed for job 3. There is a preemption for job 3, and job 4 is not performed. So, the
solution is not feasible and it requires some corrections. For this purpose, we start from the first
gene and we correct the chromosome when it is necessary. For the presented child in Figure 4.10
(chl), in 12th gene the machine must perform job 3 with speed 2 which takes 4 periods, so, from
12th to 15th gene must be fill with 320. Then, the next job which is chosen is job 5 with speed 2
that can be performed in 3 periods (from 16th to 18th gene). Since job 4 is not processed yet,
we will perform it with the maximum speed (3). Therefore, gene 19 and 20 must fill with 430.

Finally, once all the job are finished, we can put the machine in Toff and OFF states for the rest.

Double-point method In the double-point method, the first offspring will be composed of
the first parent from the beginning to the first cut point, the second parent from the next gene
after the first cut point to the second cut point, and the first parent from the next gene after
the second cut point to the end of the chromosome. The second offspring will be obtained by
the same way and reverse the parents. Finally, a correction procedure is also required to convert
the not feasible solutions to the feasible one with respecting to the obtained states order and
processing order (Figure 4.11).

For the presented example in Figure 4.11, the first obtained children (ch1) is correct until 9th gene.
Therefore it will be the same in the corrected children (child1). Since the required processing
time for performing the second job with the third speed (230) is equal to 2, so the 10th gene
of child1 must be fill by 230. Just after the 9th gene in (chl), 10th gene is 1, which means the
machine is putted in OFF state, but in the studied system for turning the machine off, one Toff
state (4) is required. Therefore, 11th gene of child1 must be fill by 4. Then, from 12th gene to
19th gene of childl are the same as 10th gene to 17th gene of chl. Since the machine is able to

process the third job with the first speed (310) in 5 periods, so, 20th gene must be fill with (310).
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Cut point

P1: | 1 \ 1 I 1 | 1 | 2 | 2 |110]11IJ|110I2MJ230|320ISZDJE2l]|320| 4 ‘ 1 | 1 J 1 ‘ 2 I 2 J43D‘4301520J520‘520| 4 | 1 ‘ 1 I 1 | 1 \ 1 I 1 |

P2: | 1 \ 2 | 2 |130|430|430|230I230| 4 | 1 ‘ 1 | 1 I 212 |310|310‘310|310‘310‘520|520‘520‘ 4 I 1 ‘ 1 ‘ 1 | 1 | 1 ‘ 1 ‘ 1 | 1 ‘ 1 | 1 |

chl: | 1 ‘ 1 | 1 | 1 | 2 | 2 |110|11IJ|110|230‘230|320|52IJ 2 |310|31IJ‘310|310‘310‘520|520‘520‘ 4 | 1 ‘ 1 ‘ 1 | 1 | 1 ‘ 1 | 1 | 1 ‘ 1 | 1 |

ch2: | 1 \ 2 | 2 |130|430|430|230|230| 4 | 1 ‘ 1 | 1 I 2 320|320| 4 ‘ 1 | 1 ‘ 1 ‘ 2 | 2 ‘430‘430|520‘520‘520l 4 | 1 ‘ 1 ‘ 1 | 1 ‘ 1 | 1 |

Child1: | 1 ‘ 1 | 1 | 1 | 2 | 2 |110|11IJ|110|230‘230|320|52IJ‘320|320|520‘520|520‘430‘43ﬂ| 4 ‘ 1 ‘ 1 | 1 ‘ 1 ‘ 1 | 1 | 1 ‘ 1 | 1 | 1 ‘ 1 | 1 |

Child2: | 1 [ 2 l 2 |130|430|430|230|23IJ| 4 I 1 1 1 | 1 I 2 1 2 |320|320‘320|320} 4 ‘ 1 I 1 1 1 ‘ 2 I 2 1520‘520'520| 4 ‘ 1 l 1 | 1 [ 1 l 1 |

Figure 4.10 — single-point crossover method

Cut point 1 Cut point 2

P1: ‘ 1 | 1 | 1 ‘ 1 ‘ 2 | 2 ‘110‘110|110|230 230|320|320|320|320| 4 ‘ 1 ‘ 111 ‘ 2 ‘ 2 ‘430|430‘520|520|520| 4 | 1 | 1 | 1 | 1 | 1 | 1 ‘

p2: ‘ 1 | 2 | 2 ‘130‘430|430‘230‘230| 4 | 1 | 1 | 1 | 2 | 2 |310|310‘310‘310310‘520‘520‘520| 4 ‘ 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 ‘

chl: ‘ 1 | 1 | 1 ‘ 1 ‘ 2 | 2 ‘110‘110|110|230| 1 | 1 | 2 | 2 |310|310‘310‘310 1 ‘ 2 ‘ 2 ‘430|430‘520|520|520| 4 | 1 | 1 | 1 | 1 | 1 | 1 ‘
I
ch2: ‘ 1 | 2 | 2 ‘130‘430|430‘230‘230| 4 | 1 |230|320|320|320|320| 4 ‘ 1 ‘ 1 310‘520‘520‘520| 4 ‘ 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 ‘

Ch"dl:‘ 1 | 1 | 1 ‘ 1 ‘ 2 I 2 ‘110‘110|110|230I230| 4 | 1 | 1 | 2 | 2 ‘310‘310|310‘310‘310\ 4 | 1 ‘ 2 | 2 |430|430‘520|520|520| 4 | 1 I 1 ‘

Child2: ‘ 1 | 2 | 2 ‘130‘430]430‘230‘230| 4 | 1 [ 2 | 2 |320|320|320|320} 4 ‘ 1 | 1 ‘ 2 ‘ 2 [520|520‘520| 4 | 1 | 1 l 1 | 1 | 1 | 1 | 1 I 1 ‘

Figure 4.11 — Double-point crossover method

For turning off the machine, 4 is putted in 21th gene of child1. From 22th gene to the end are

the same as 18th-28th genes of chl.

Mutation method For the mutation method, a chromosome from the initial population will
be randomly selected and the mutation will be performed on the selected gene by swapping its
value. Then, it is necessary to check the feasibility of the obtained offsprings and correct the not
feasible ones like the crossover method.

The final step of each iteration is to update the initial population for the next iteration. For
this purpose, the best chromosomes in terms of the fitness function must be selected from all
the initial population and the obtained chromosomes by crossover and mutation methods in the

previous iteration.

In this thesis, a Taguchi orthogonal array is utilized instead of a full factorial experimental
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Factor levell Level2 Level3
Crossover operator | single-point | double-point -
Mutation operator swap revers insert
Crossover rate 0.7 0.8 0.9
Mutation rate 0.05 0.10 0.15
Population size 50 100 150
Iteration number 50 100 150

Table 4.5 — Design factors and their levels

design for determining the parameters of the genetic algorithm. This approach is presented in

the following.

Taguchi method for parameters setting

An experimental design method is developed by Genichi Taguchi to increase the efficiency of
implementation and evaluation of experiments. In Taguchi method, experimental results are
converted to a signal/noise (S/N) ratio, which can be calculated in three different ways, such as

small value is good’, 'great value is good’ and 'nominal value is good’ By this way, a level of the

factor which has the highest ratio represents a better performance.

Design factors and their levels

In this study, Taguchi method is applied to reduce the number of experiments. For this purpose, six
factors are considered and one of them has two levels and the others have three levels (Table 5.1).
So, we applied the Lig (one two-level and up to seven three-levels) orthogonal array. Moreover,

to achieve accuracy, experiments were repeated five times for each problem.

Data analysis

The results of taguchi method analysis are given in Figure 5.9. As a result, single-point is selected
as crossover method to produce two new children, and the crossover rate is selected equal to 0.7
(70%). The mutation rate is selected equal to 0.1 (10%), and the initial population size and the

number of iterations are considered equal to 150 and 100, respectively.
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Figure 4.12 — Taguchi analysis result

4.5.3 Memetic Algorithm

Premature convergence is an inherent characteristic of the classical genetic algorithms that makes
them incapable of searching numerous solutions of the problem domain. A memetic algorithm
is an extension of the traditional genetic algorithm. It uses a local search technique to reduce
the likelihood of the premature convergence ([81]). Therefore, to improve the quality of the
obtained solutions by the genetic algorithm for this problem, a local search procedure is also
introduced (memetic algorithm). The local search procedure is applied to increase the quality of
the 15 (10% of the population size) best chromosomes of the population in each iteration. For
this purpose, a new solution will be created by increasing the processing speed one unit for a job,
and consequently, performing all the remaining jobs earlier as much as the difference between
the related processing times. This procedure must be repeated for all the jobs in their sequence
order. So, for a problem with n jobs, at most n new solutions can be created from each initial
solution. Finally, the solution with the best objective function must replace the initial one. For

example, for the considered chromosome in Figure 4.13, the first job was processed with the first
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Figure 4.13 — The local search procedure for an example

At the end of each iteration find the 15 best solutions;
For (i = 1 to 15)
Get the initial solution x;;
Find the sequence order of the job in the solution z;;
For (j =1ton)
If (speed; < speedymq,) Then
Create the new solution (y;), by doing the job j with speed speed; + 1,
then do the remaining jobs respectively and turn off the machine after the last job;
End If
compute the objective function for y;;
If (objective(y;) < objective(z;)) Then
Replace the first solution (z;) by the new one (y;);
End If
End For
End For

Table 4.6 — Local search’s procedure

speed. In the first proposed solution by the memetic algorithm, the first job is processed with the
second speed, and then, all the jobs are done earlier. The pseudo code for this local search is

given in Table 4.6.

4.5.4 Numerical experiments

The performances of the proposed methods in this chapter have been examined by several
numerical instances inspired by the literature ([61]). For this purpose, the heuristic algorithm,
the genetic algorithm and the memetic algorithm have been coded by C++ language in the
Visual Studio 2015, and CPLEX software is used to solve the instances with the exact method
(Branch and Cut). Five different examples are randomly generated for each instance size by
changing the processing times and the energy consumptions of the jobs, as well as the unit
of energy price in each period. The computation time with CPLEX, for all the experiments
was set to 1 hour or 3600 seconds. For the problems smaller than 15 jobs, 5 speeds, and 120
periods, CPLEX was able to find the optimal solutions. Therefore, the results of the proposed

algorithms are compared with the optimal solution. These results are presented in Table ?77.
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The gap between the objective function of each algorithm and the exact method as well as
their computation time are presented as the results. Moreover, the numerical results have been
illustrated by minimum, average, and maximum obtained value of each criterion for each problem
size. In general, for the small size problems, the heuristics find the solutions with the gap
of 17.1% in average, while this gap for the genetic algorithm and the memetic algorithm is
equal to 7.5% and 2.7%, respectively. The average computation time of small size problems

for heuristic, genetic, and memetic algorithms are equals to 1.06 s, 15.64 s and 18.50 s, respectively.

For the problems larger than 20 jobs, 5 speeds and 160 periods, CPLEX was not able to
find the optimal solution. So, in Table 7?7, we just compared the obtained solutions by these
three algorithms. It must be mention that, in all the cases, the memetic algorithm finds the
best-obtained solution. As it is presented in Table 77, the average gap between heuristic and
genetic algorithms’ solutions and the obtained solution by MA, is about 21.1% for HA, and 18.4%
for the GA. The average computation time of these problems for heuristic, genetic, and memetic
algorithms are equals to 7.82 s, 34.37 s, and 61.59 s, respectively.

Moreover, an analysis of the variance (ANOVA) with a confidence level of 95% was taken using

the Minitab.17 software to check the statistical validity of the results (Figures 4.14 and 4.15).
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(n,v,T) Gapra—cplex | Gapaa—cples | Gapya—cples

Min 0.0 0.0 0.0

(2,3,15) Average 1.6 0.0 0.4

Max 4.3 0.0 1.1

Min 0.6 0.6 0.6

(3,3,25) Average 13.9 3.0 1.5

Max 26.1 4.3 2.2

Min 5.9 2.1 0.0

(4,3,30) Average 14.6 4.1 0.6

Max 25.5 9.7 2.1

Min 10.0 0.0 0.0

(5,2,40) Average 17.3 1.6 1.1
Max 31.4 3.1 1.7

Min 7.9 0.0 0.0

(5,3,40) Average 10.3 2.5 1.0

Max 16.4 5.2 3.1

Min 8.4 0.2 0.2

(5,5,40) Average 22.7 2.5 0.8

Max 36.9 5.1 1.5

Min 0.1 5.3 0.3

(10,2,80) Average 12.6 9.8 1.1

Max 21.9 17.7 2.0

Min 5.0 7.6 1.6

(10,3,80) Average 21.1 14.1 3.7

Max 33.4 20.1 6.2

Min 26.8 13.9 2.8

(10,5,80) Average 33.6 21.1 7.7
Max 40.6 28.6 11.0

Min 21.3 12.5 4.5

(15,5,120) Average 23.6 15.9 8.7
Max 25.4 18.2 11.60

Average Gap 17.1 7.5 2.7
Average CPU (s) | Cplex=271.01 1.06 15.64 18.50

Table 4.7 — Comparison between the obtained solutions by the proposed methods and the CPLEX
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Figure 4.14 — Performance comparison of GA, HA, and MA with the optimal solution
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Figure 4.15 — The results improvement by MA against GA and HA for the large size instances
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(n,v,T) Gapra—ma(%) | Gapga—na(%)

Min 6.2 3.0

(20,5,160) Average 20.7 18.0
Max 37.4 33.3

Min 4.7 3.6

(25,5,200) Average 22.9 21.1
Max 39.6 37.8

Min 24.7 23.8

(30,5,240) Average 35.6 32.4
Max 41.1 37.5

Min 8.6 6.1

(35,5,280) Average 16.2 13.8
Max 34.4 33.0

Min 4.5 4.5

(40,5,320) Average 14.4 13.0
Max 26.1 25.2

Min 4.0 1.8

(45,5,360) Average 16.2 12.1
Max 40.7 39.0

Average Gap 21.1 18.4

Average CPU (s) | MA=61.59 s HA=7.82s GA=34.37s

Table 4.8 — The results improvement by MA comparing to GA and HA
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4.6 Conclusion

A scheduling problem of several jobs with different energy consumptions on a speed scalable and
multi-states single machine scheduling problem is addressed in this chapter to minimize the total
energy consumption costs. Our first contribution consists of proposing two new mathematical
formulations to model the problem. Then, since the considered problem is known to be NP-hard,
a heuristic, a genetic and a memetic algorithms are presented to solve the medium and large
size problems in a reasonable time. Moreover, the complexity of two sub-problems when the
jobs must be performed in a predetermined order, are studied. For this purpose, the dynamic
programming approaches are used to solve the problem. As the results, we demonstrated that the
problem with uniform speed in polynomial, and the speed-scalable problem is pseudo-polynomial.

The next chapter will present a summary of all the conclusions of this thesis.



Conclusion and perspectives

This thesis focuses on modeling and optimization of three types of multi-states single machine
scheduling problems arising in industry to minimize their total energy consumption costs under
time varied energy prices. For this purpose, firstly a complete study on the different scheduling
problems with the energy concepts is performed. The studied problems are divided into four
main sets and the brief descriptions of these papers are presented in chapter 1.

As the first contribution of this thesis, we proposed an improved mathematical model for an
existing problem in the literature ([61]), and we analyzed the complexity of the considered
problem by using a new dynamic programming approach in chapter 2. Regarding to the results,
we proved that unlike what is considered before in [61], the scheduling problem of several jobs
with a predetermined sequence on a multi-states single machine (1, TOU |states, sequence|TEC)
is polynomial.

In chapter 3, we studied a general version of the previous problem to optimize the sequence
order of the jobs, as well as, the machine’s state in each period (1,TOU|states|TEC prob-
lem). We presented a mathematical model for this problem and we proved it’s NP-hardness
using a 3-PARTITION problem. Then, we proposed a heuristic and a genetic algorithms able
to find the near optimal solutions for any size of problems in few minutes. We also defined
four lower bounds for this problem. Moreover, the complexity of four sub-problems is also
investigated. As the results, we proved that all these problems (1,c; = c|states|TEC, 1,¢; <
cit1|states|TEC, 1,TOU |states, pmin|TEC and 1,TOU |states, p; = p|TEC) are polynomial

problems.

135
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-~ K E -
1, c; = c|States | TEC H 1, ¢; > cy4q|States | TEC H 1, ¢; < 41 |States | TEC H 1,TOU |States| TEC
NP-hard

Polynomial Polynomial Polynomial

« ¥ \
‘ 1, TOU |States, sequence| TEC ‘ ‘ 1, TOU |States, pmtn | TEC ‘ ‘ 1,TOU |States, p; = p| TEC

Polynomial (O(T%)) Polynomial (0(T*)) Polynomial

Figure 5.1 — Our contributions for different variants of 1, ¢;|states|T EC problem

In chapter 4, we studied a more general scheduling problem with different energy consumption
for the jobs and different speed for the machine (1, TOU |states, speeds, q;|TEC). We proposed
two mathematical models for this problem and three algorithms (one heuristic, one genetic and
one memetic algorithms) to solve the medium and large size instances of this NP-hard problem.
The complexity of two sub-problems is also analyzed. For this purpose, the scheduling problem of
several jobs with different energy consumptions and on a predetermined sequence are studied into
two cases: uniform-speed machine and speed-scalable machine. By using dynamic programming
approaches and finite graphs, it is proved that the problem (1, TOU]|states, sequence, q;|TEC)
is polynomial, and the problem 1, TOU |states, sequence, speeds, ¢;|TEC is pseudo-polynomial.
The contributions of this thesis in terms of complexity analysis are presented in two figures ( 5.1
and 5.2). Figure 5.1 presents the results for different variants of 1, ¢;|states|T EC problem, and
Figure 5.2 presents the results for different variants of 1, TOU |states, q;|TEC problem.

As the future works of this study, for the short-term perspectives, we are interested to improve
the performance of the presented algorithms for 1, TOU |states, speeds, ¢;|TEC problem and
develop other exact methods for this problem. For example, it could be interesting to provide
some dominance rules to improve the performance of branch and bound method for this problem.
Furthermore, we search to propose some other local search method to improve the performance
of the proposed memetic algorithm. Also, we want to generalize the model to consider the release

dates and the due dates for each job. The consideration of multi-objective problems, which
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1,TOU |States, q;| TEC

‘ 1, TOU |States, q;| TEC ‘ ‘ 1, TOU |States, speeds, q;| TEC ‘
NP-hard
‘ 1, TOU |States, q;, sequence| TEC ‘ ‘ 1, TOU |States, speeds, q;, sequence| TEC ‘
Polynomial (O(T?)) Pseudo-Polynomial (O(T3v + T?v?)

Figure 5.2 — Our contributions for different variants of 1, TOU]|states, ¢;|TEC problem

optimize the total energy consumption costs in addition to a traditional scheduling objective like

makespan seems to be relevant and promising.

With regard to long-term perspectives, it must be mention that the basic idea of this thesis
was to introduce some energy and ecological considerations in the scheduling problem of a single
machine manufacturing system. A manufacturer is linked to a producer (supplier) of energy by a
contract specifying the change in the unit of energy price over time slots, same as the variation of
the power. Therefore, the feasibility of production plans must be considered with the available
energy capacity.

Indeed, the energy market will evolve in the years ahead, especially, for the clean energy sources
such as solar or wind power. This can result in the number of expanding research interests on
this subject. A manufacturer will have the opportunity to link up with several suppliers. Some
suppliers offer clean energy, but with uncertainty in the quantity and the availability. Other
suppliers offer less clean energy and more taxed but with guarantees of availability. Therefore, we
plan to use these early works to offer some decision-making method which allow the manufacturer
to choose it’s energy sources policy by varying its suppliers and minimizing its total energy

consumption costs over a given horizon.



138 CHAPTER 5. Conclusion and perspectives




Part 11

French version






French Summary

Outline of the current chapter

Introduction 142
Etat de art 143

Probléme d’ordonnancement a plusieurs états d’une seule machine éco-

nome en énergie avec séquence fixe 145
Définition du probléme . . . . . . . . ... 145
Formulation mathématique . . . . . . . . . . .. ... 146
Analyse de complexité . . . . ... L L 148

Probléme d’ordonnancement a plusieurs états d’une seule machine éco-

nome en énergie : version généralisée 152
Présentation du probleme . . . . . . .. .. 152
Analyse de complexité . . . . ... Lo 152
Analyse de complexité des sous-problemes . . . . . . . ... ... L. 153
Méthodes de résolution du probleme (1, TOU|états|TEC) . . . . . . ... .. 154
Bornes inférieures pour le probleme de (1, TOU|états|TEC) . . . . . . . ... 157

5 Probléeme d’ordonnancement avec une machine ayant plusieurs états

et a plusieurs vitesses 158
Présentation du probleme . . . . .. ..o oo 158
Méthodes de résolution . . . . . . . .. ... L 160
Analyse de complexité des sous-problémes . . . . . ... ... ... ... 164

Conclusions et perspectives 167

141



142 French Summary

Introduction

Au cours des derniéres années, I’évolution économique et sociétale a entrainé une augmentation
rapide de la consommation d’énergie et le risque pénurie d’énergie est devenue un obstacle a la
croissance économique dans de nombreux pays ([1]). Parallélement, les émissions de CO2 générées
par 'utilisation de I'énergie sont devenues 'un des principaux facteurs du changement climatique
mondial et de I'effet de serre. Depuis la révolution industrielle, le taux de gaz a effet de serre a
augmenté de presque 70 % (entre 1970 et 2004). Le secteur industriel est le plus grand consomma-
teur d’énergie dans la plupart des pays, il est donc important de se focaliser sur ce dernier pour

essayer de réduire la consommation d’énergie et par conséquent les émissions de gaz a effet de serre.

En outre, les prix de I’électricité dans presque tous les pays industrialisés, n’ont cessé d’aug-
menter. Cette situation résulte principalement des taxes et des droits de douane visant & soutenir
I'intégration des énergies renouvelables et de 'abandon de 1’électricité a bas prix produite a partir
de I’énergie nucléaire. En conséquence, la part des cofits énergétiques par rapport aux cofits de
production augmente, ce qui se traduit par une compétitivité moindre par rapport aux pays ou
les prix de I’électricité augmentent plus au moins lentement.

En raison des fluctuations croissantes des prix de I’électricité, il est possible de réaliser des écono-
mies d’énergie sans investissements a forte intensité de capital grace a des méthodes d’organisation
spécifiques. Ces méthodes tentent de traiter les commandes énergivores en période de bas prix
et les commandes peu énergivores en période de prix élevés. Ces questions ont encouragé de
nombreux chercheurs du monde entier & travailler sur I'amélioration de D'efficacité énergétique
des systémes de production dans le but de réduire a la fois les cotits de production et de réduire

I’empreinte écologique.

Il existe dans la littérature de nombreux ouvrages qui integrent ’aspect écologique dans les
problémes de décision. Ils peuvent étre distingués en fonction du niveau de décision considéré :
stratégique, tactique et opérationnel. Au niveau stratégique, les travaux sont généralement liés
a des problemes de chaine d’approvisionnement pour lesquels les chercheurs veulent déterminer

I’emplacement des sites, les capacités et le nombre de centres de distribution, afin de minimiser
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les cotlits totaux et les émissions de gaz a effet de serre. Au niveau tactique, les travaux traitent
de optimisation de la planification et de la gestion des ressources pour gérer la consommation
d’énergie afin de limiter les émissions de gaz a effet de serre et les déchets. Au niveau opérationnel,
les études de recherche abordent les problémes d’ordonnancement pour maximiser la performance

d’une ligne de production en tenant compte des facteurs énergétiques.

Dans cette these, nous nous intéressons au niveau opérationnel. Une large étude des travaux
antérieurs montre que la consommation d’énergie d’un systéme de fabrication peut étre minimisée
a trois niveaux : machine, produit et systeme. Notez qu’au niveau de la machine et du produit,
d’énormes investissements financiers et du temps sont nécessaires pour concevoir la ou les nouvelles
machines ou le ou les nouveaux produits qui consomment moins d’énergie que la précédente. Au
niveau du systeme, les fabricants peuvent réduire la consommation d’énergie de leur systéme
en utilisant plusieurs modeles de décision et techniques d’optimisation pour gérer le plan de

production.

Dans I’ensemble de cette these, le niveau systéme est abordé pour fournir des méthodes de
réduction de la consommation d’énergie pour un systeme de production. Nous nous sommes
concentrés sur les problémes d’ordonnancement de la production qui integrent les consommations
d’énergie.

C’est pourquoi, dans ce qui suit, nous présentons tout d’abord une breve introduction sur les
différents types de problemes d’ordonnancement. Ensuite, nous nous focalisons sur les problemes
d’ordonnancement a une seule machine avec aspects énergétiques et une revue compléte des

études précédentes est présentée.

Etat de Part

Dans cette étude, nous nous concentrons sur les problemes d’ordonnancement existants dans un
systeme de fabrication pour améliorer 'efficacité de la production et réduire les cofits.
Dans un systéeme de fabrication, lorsque les ordres sont lancés, ils doivent étre traduits dans les

jobs avec les dates d’échéance associées. Ces ordres de fabrication doivent souvent étre traités en
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séquence par les machines dans un poste de travail. Les probléemes d’ordonnancement se posent
dans ce contexte.

Dans la littérature, on trouve différentes définitions et classifications des problémes d’ordonnance-
ment. Une des classifications les plus répondues pour les problemes d’ordonnancement classique
est présentée dans [13]. Les auteurs ont introduit la notation & 3 champs qui s’appelle la notation
de Graham («|B|y). Dans cette notation, le premier champ («) définit I’environnement machine.
Le deuxieme champ () décrit les caractéristiques des taches et les contraintes du probléme
d’ordonnancement. Le troisitme champ () dans la notation de Graham fournit la fonction

objective a optimiser ([10]).

Une étude assez exhaustive des études antérieures sur I'ordonnancement de la production et
les problemes de consommation d’énergie montre qu’il existe différentes méthodes pour intégrer
le concept de consommation d’énergie dans I'ordonnancement de la production. Par exemple, [16]
une revue de la littérature des modeles d’aide a la décision pour la planification avec aspects
énergétiques. [2] a présenté plusieurs options sur la fagon dont les concepts d’optimisation a
Péchelle de I’entreprise peuvent intégrer la gestion et la planification énergétiques. [3] a étudié
des approches d’ordonnancement qui visent a améliorer 'efficacité énergétique. Ils ont classé
la littérature en fonction de trois aspects : la couverture énergétique, 1'offre énergétique et la

demande d’énergie.

L’efficacité énergétique d’un systeéme de fabrication peut étre étudiée de différentes manieres,
comme une tentative de diminuer la valeur de la consommation d’énergie, de réduire le cotit de
la consommation d’énergie (coiit opérationnel), et de tenir compte des contraintes énergétiques.
D’apres 'analyse documentaire présentée, parmi 90 articles, il n’y a que 24 papiers qui ont étudié
la consommation d’énergie et les facteurs de cotit de ’énergie en méme temps. A notre connais-
sance, trés peu de publications (7 articles sur 90 recherches) traitent de Uefficacité énergétique

d’un systéme a une seule machine et plusieurs états avec le colit de ’électricité en fonction du temps.

Dans cette theése, nous sommes intéressés a combler ce manque dans la littérature. Pour ce

faire, un seul systéme machine avec trois états principaux comme ON (traitement), Idle, et OFF.
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Deux états de transition entre les états ON et OFF sont aussi pris en compte. Notre objectif est,
dans un premier temps, d’analyser la complexité de ce type de probléemes et enfin de proposer
des méthodes d’optimisation pour les résoudre.

Parmi les articles étudiés, nous venons de trouver un article ([57]) qui étudiait la minimisation
des cofits énergétiques totaux en plus de la consommation d’énergie dépendant de I'état et de
Pemploi. De plus, il n’existe qu'un seul document ([76]) qui étudie la minimisation des cofits
énergétiques totaux en plus de la consommation d’énergie dépendante de I’état et dépendante
de I’état. Il n’existe aucun travail antérieur sur la consommation d’énergie dépendante de 1’état,
de 'emploi et de la vitesse en tout. Par conséquent, plusieurs types de ce probleme avec des

hypotheses différentes sont étudiés dans les sections suivantes.

Probleme d’ordonnancement a plusieurs états d’une seule

machine économe en énergie avec séquence fixe

Cette section traite de l'efficacité énergétique d’un probleme d’ordonnancement d’une seule
machine a plusieurs états lorsque la séquence des taches est fixe, et les tarifs d’électricité TOU sont
considérés pour chaque période sont considérés. Ainsi, les colits énergétiques varient d’une période
a l'autre et la consommation d’énergie des états de la machine est différente. Par conséquent, dans
ce probléme, le probleme d’ordonnancement cherche un ordonnancement optimal pour allouer les
états a faible consommation aux heures de pointe, et les états & consommation élevée aux heures

creuses.

Définition du probleme

Un probléme d’ordonnancement non préemptif de n tdches non-préemptive dans un ordre
prédéterminé sur une seule machine est étudié dans [61]. La machine en question peut évoluer
entre trois états différents : ON (traitement), OFF ou Idle. Lorsque la machine est & ’état OFF,
un nombre fixe de périodes doit s’écouler jusqu’a ce que la machine soit préte a traiter un travail

une tache (i.e. Ton (51)). De méme, lorsque la machine est & I’état ON, un nombre fixe différent
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FIGURE 5.3 — Les états et transitions considérés pour la machine.

de périodes doit s’écouler jusqu'a ce qu’elle soit réellement & I’état OFF (i.e. Toff (f83)). Comme

le montre la Figure 5.3, il est supposé que :

e [’horizon de production se compose de T' périodes.

Chaque période ¢ (0 <t <¢ < T) est caractérisée par un prix de ’électricité (c;).

n taches avec des temps de traitement différents (p;) doivent étre traités par la machine.

Chaque état de la machine est caractérisé par une consommation d’énergie, ou leurs valeurs

sont 'entrée du probleme (eon,€o0ff,€0f¢,€rdie; €Tons eToff).

La machine est en état d’arrét a la période initiale (¢ = 0) et la période finale (t = T)).

Formulation mathématique

Un modeéle mathématique LP a été proposé par les auteurs, pour trouver la solution optimale (le
. . N . ) s . .
planning le moins cher en termes de coiits totaux de consommation d’énergie) pendant un horizon
de production, en prenant des décisions au niveau de la machine, avec une séquence de travail
fixe. Leur modele détermine ’allocation optimale du traitement des taches, le temps d’inactivité,
I’état d’arrét et les temps de transition pour la mise en marche et I'arrét. Dans cette section, nous
avons d’abord proposé un modele amélioré pour ce probléme, puis nous présentons une nouvelle

approche de programmation dynamique pour analyser sa complexité.



Probléme d’ordonnancement a plusieurs états d’une seule machine économe en énergie avec séquence fixel47

Dans le modeéle initial proposé par Sharouf et al.([61]), les auteurs utilisent deux variables pour
définir la position des taches dans chaque période (une variable (y;;) pour identifier le moment ot
la tAche commence & étre traité et une autre (x;) pour déterminer les périodes durant lesquelles

la tache sera traité).

1 ; Sitache j =1,...,n est traité pendant la période ¢

Tjt =

0 ; Sinon

1 ; Sitache j =1,...,n commence a étre traité en période ¢
Yt =

0 ; Sinon

L’une des hypotheses de cette étude est que la préemption des jobs n’est pas autorisée. Cela
signifie que lorsqu’une tdche commence a étre traité, la machine doit continuer le traitement
jusqu’a ce qu’elle soit terminée. Ainsi, nous ne pouvons utiliser qu’une seule variable pour définir
la situation de la tache. Pour ce faire, au lieu d’utiliser deux variables (z;; et y; ), le modele est

défini en fonction d’une seule variable de décision (y; ).

1 ; Sitache j =1,...,n est effectué dans la période ¢ par la machine
Yit =
0 ; Sinon

Puisque j peut prendre des valeurs différentes de n de 1 a n, et t peut prendre des valeurs
différentes de T+ 1 de 0 & T, ce changement réduira n % (T'+ 1) du nombre de variables. Cette

valeur sera montant impressionnant pour un grand nombre des tache et de périodes.

Pour explorer les différences entre ces deux modeles mathématiques, en nombre de variables
et de contraintes ainsi qu’en temps de calcul, les deux modeles ont d’abord été testés a partir
des quatre instances présentées par [61]. Les résultats montrent que le nombre de variables et
de contraintes ainsi que le temps de calcul dans le modele amélioré sont réduits par rapport au
modele de base. Ensuite, trois stratégies différentes et de nombreux exemples basés sur chaque
stratégie sont considérés. Toutes les instances sont résolues avec les deux modeles a ’aide du
solveur CPLEX et sur le méme ordinateur. Il faut mentionner que le temps de calcul pour toutes

les instances est limité & une heure (3600 s).
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En conséquence, dans le nouveau modele, en éliminant une variable et en réécrivant certaines
contraintes, non seulement le temps de calcul et le nombre de variables sont significativement
réduits (en moyenne 78,64 % et 39,62 % du temps de calcul et du nombre de variables) mais
aussi le nombre de contraintes est diminué ce qui peut étre tres intéressant surtout pour un grand
nombre de taches. A titre d’exemple, dans les temps impartis de 3600 s, le modele de base est
capable de résoudre de maniéré optimale des instances de taille (30,107) alors que notre modéle

est capable de traiter des instances de tailles plus importantes (jusqu’a 45 taches et,153 périodes).

Analyse de complexité

Dans cette section, nous prouvons qu’il est possible de résoudre de maniére optimale ce probleme
avec un algorithme polynomial basé sur une approche de programmation dynamique. Pour cela,
un graphe fini dont les dimensions (nombre de sommets et de nceuds) dépendent des temps
de traitement totaux et du nombre total de périodes est utilisé pour modéliser le probléme.
Puis nous avons utilisé une approche de programmation dynamique pour trouver la solution op-

timale et nous avons discuté de la complexité de la recherche du chemin le plus court dans ce graph.

Dans le probléme considéré, caractérisé par un nombre fixe de périodes (T'), un nombre
minimum de périodes est requis pour accomplir les taches nécessaires. Ces taches comprennent
la mise en marche et I'arrét de la machine pendant au moins une période et I’exécution de
toutes les taches. Le nombre de périodes requises pour exécuter ces dernieres (P) est égal a la
somme des temps de traitement (P = Z?Zl p;). De plus, au moins 81 + B2 + 1 sont nécessaires
pour les états d’allumage initial, d’extinction finale et d’extinction finale (ne serait-ce qu'une
fois allumés et éteints pour étre considérés). Pendant les périodes restantes (différence entre le
nombre total de périodes et le nombre minimal requis de périodes), la machine doit se trouver
dans des états sans traitement, c’est-a-dire dans les états OFF initial, OFF au milieu, OFF
final et inactif. Notez que chaque état middle-OFF se compose d’une séquence de Toff, OFF

pendant au moins une période, et Ton. Soit x indique le nombre de périodes supplémentaires, donc :
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x=T—-P—(f1+02+1) (5.1)

Selon I'objectif du probleme, ces périodes x peuvent étre attribuées a une combinaison d’états
OFF initiaux ou finaux, d’états inactifs entre les états ON et d’états OFF intermédiaires.

Dans cette approche, un graphe composé de plusieurs niveaux décisionnels est considéré pour
modéliser le probleme. Chaque niveau représente une période de ’horizon. Ainsi, le graphe se
compose des niveaux de décision T +1 (0 <1< <T).

Pour chaque niveau de décision, considérons H; composé des noeuds possibles pour le niveau
[, qui correspond aux différents états de la machine. Par conséquent, chaque nceud de H; est
caractérisé par le nombre cumulé d’unités de production (k) de la période 0 & I. Puisque les états
initial et final de la machine sont considérés comme étant I’état OFF, Hy = {I} et Hy = {F'}, ou
I représente 1’état initial de la machine, et F' représente ’état final de la machine apres avoir
traité toutes les taches (P).

Les périodes les plus anciennes et les plus récentes possibles (ou les niveaux dans la définition
de ce graphe) pour n’importe quel nceud k dépendent de la valeur z du probléme donné. Ces
niveaux peuvent étre caractérisés par 'intervalle 7, =

Lim(kys " ,lmam(k)} dans I’horizon de planification. Par conséquent, la premieére étape de cette
approche de programmation dynamique est de mettre tous les nceuds (k € {I,1,---, P, F}) dans

le graphe en utilisant leurs intervalles de temps associés (7).

La deuxiéme étape consiste a représenter les nceuds du graphe. Dans cette approche, les nceuds
du graphe représentent les transitions possibles entre deux nceuds (nceud (k,1) et nceud (K/,1')).
La troisieme étape consiste a valoriser les nceuds. Dans cette approche, les nceuds sont évalués
par les cofits totaux de consommation d’énergie pour effectuer la transition correspondante :

(EU(k,l)—(k’,l/,l’); vV ke H, k' e Hy, U'>1+ ].)

Le nombre total de sommets (V) et les arcs (E) du graphe proposé sont :

V|=Px(z+1)+2=TP (5.2)
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FIGURE 5.4 — Représentation graphe du probleme de séquence fixe

|E| = T%P (5.3)

Pour illustrer cette méthode de construction graphe, nous considérons un exemple avec P =
5T =15,81 = 2,82 = 1, = 6, et un prix de 1’énergie variable dans chaque période (c¢;). Le

graphe correspondant se compose de 37 sommets et de 66 arcs (voir Fig. 5.4).

La quatrieme étape de cette approche consiste a trouver la solution optimale du probleme.
Selon 'approche de modélisation graphe, chaque chemin du noeud I du niveau 0 au noeud F' du
niveau T représente une solution réalisable du probléme et son poids représente les cofits totaux
de consommation d’énergie. Puisque 1’objectif est de minimiser les colits énergétiques totaux, le
chemin le plus court qui commence au noeud (I,0) et se termine au noeud (F,T') représente la

solution optimale du probleme.



Probléme d’ordonnancement a plusieurs états d’une seule machine économe en énergie avec séquence fixel51

Toutes les valeurs marginales du graphe sont positives dans cette approche. Ainsi, ’algorithme de
Dijkestra, qui est I'un des algorithmes les plus efficaces pour trouver le chemin le plus court entre

le noeud source et tous les autres noeuds d’un graphe, est applicable pour notre approche.

Apres avoir décrit la nouvelle approche de formulation, nous concluons que cette approche est
capable de modéliser toutes les solutions possibles du probleme en un temps polynomial. Ensuite,
nous voulons prouver que la solution optimale de ce probleme peut étre obtenue dans un temps
polynomial aussi. Par conséquent, la complexité de I’algorithme de Dijkstra pour ce probléme est

évaluée.

Selon [77], la pire implémentation de l'algorithme de Dijkstra est basée sur une file d’attente

basée sur une priorité, a une complexité de O(|E| + |V |log|V]) (ou

E| est le nombre de nceuds
et |V est le nombre d’arcs). Par conséquent, la complexité de cet algorithme pour 'approche de

programmation dynamique est donnée par :

O(T?*P +TPlogTP) = O(T?*P +TPlogT + TPlog P) = O(T*P) (5.4)

Puisque la plus grande valeur possible de P est T' (analyse du pire des cas), le probléme considéré
est un polyndéme de degré 3 ou un probléme polynomial cubique (O(T?)). Notez que, dans
cette étude, l'algorithme de Dijkstra est choisi, alors que dans la littérature il existe d’autres
algorithmes qui peuvent trouver le chemin le plus court plus rapidement. Mais, puisque notre
objectif est d’analyser la complexité de ce probléme, nous n’avons pas vérifié les autres algorithmes.
Considérant qu’il est possible d’optimiser le temps de calcul de cette approche en utilisant un

autre algorithme.

Apres avoir analysé la complexité de ce probleme, il est treés intéressant d’analyser la complexité

de la version générale de ce probléme sans séquence fixe des taches (1, TOU|états|TEC). A cette

fin, dans la section suivante, la complexité de ce probléme et d’autres sous-problémes est étudiée.
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Probleme d’ordonnancement a plusieurs états d’une seule

machine économe en énergie : version généralisée

L’étude de Shrouf et al. [61] et la section précédente traitent du probléme dans lequel la séquence
des taches est prédéterminée. Ainsi, les modeles présentés ne font que spécifier I’état optimal de
la machine dans chaque période en fonction de la minimisation du cofit total de 1’électricité.
Néanmoins, dans la plupart des industries manufacturieres, trouver la séquence optimale des
taches est une question primordiale. A notre connaissance, il n’existe aucune étude qui considere
le probleme d’efficacité énergétique tel que défini ici pour trouver la séquence optimale des taches
combinée a I'ordonnancement des états de la machine. Par conséquent, dans cette section, une
généralisation du probleme précédent est proposée pour trouver les séquences optimales des états
de la machine et des taches simultanément.

Nous proposons une modélisation mathématique ainsi que plusieurs méthodes d’optimisation sont
proposées pour résoudre ce probléme. Nous présentons également une analyse de la complexité

du plusieurs variantes de ce probléeme.

Présentation du probléme

Cette section traite du probleme d’ordonnancement de plusieurs travaux sur une seule machine
multi-états sans séquence fixe (1, TOU|états|T EC'). Ainsi, nous conservons toutes les hypothéses et
contraintes de la section II, et nous relachons simplement la contrainte de la séquence prédéterminée.
De cette facon, la machine peut traiter les tdches de maniére optimisée afin de minimisation des

cotits de consommation de ’énergie.

Analyse de complexité

L’une des premieres étapes de I’étude d’un nouveau probléme consiste a analyser sa complexité
pour savoir 8’il s’agit d’un probleme NP-dur ou d’un probleme polynomial. Nous avons prouvé

sa complexité (NP-difficile) du probléeme (1, TOU

états|TEC) en utilisant une réduction en un

probléeme de décision a 3-PARTITION.
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Analyse de complexité des sous-problemes

Puisque la version générale du probleme est NP-hard, nous étudions la complexité de certains
sous problemes. Pour définir les sous-problémes, nous avons retenu les hypotheses principales
comme probleme général pour tous les sous-problémes et nous n’en avons changé qu’une seule

pour chaque sous-probleme.

Pour ce faire, on examine tout d’abord la complexité du probléme en considérant une évolution
réguliere des prix de I’énergie. Ensuite, nous avons étudié le probléme lorsque la préemption des
taches est permise et, enfin le probleme des mémes temps de traitement pour les taches.
Comme résultats, nous avons prouvé que les problémes avec un prix constant de 1’énergie

(1, ¢ = clétats|TEC) et les problémes avec prix croissants ou décroissants sont polynomiaux.

Apres avoir analysé Deffet des colits énergétiques sur la complexité de ce probléme, nous
avons étudié la complexité du cas préemptif. Pour ce faire, la méme approche par programmation
dynamique présentée dans la section 2.4.1 est utilisée. La différence entre I'approche de la version
a séquence fixe de cette étude et sa version a préemption réside dans le nombre de nceuds. Pour
la version avec séquence fixe, les états non traitants peuvent étre répartis entre deux jobs de
traitement, ce qui signifie que les noeuds correspondants aux états intermédiaires et inactifs
peuvent apparaitre entre deux jobs lorsque le premier job est terminé et que le second n’est pas
lancé. Ainsi, le graphe associé au cas avec préemption a plus d’arcs que le graphe associé a la

version avec séquence fixe, alors que les deux ont le méme nombre de nceuds.

V| =(P+2)x (z+1) TP (5.5)

(z = (B1+B2) X (x— (61 +B2) +1)
2

[El=((P+2)xz)+(P+1) x(z+1)+((P—-1) x| D) (5.6)

= |E|=T°P (5.7)

Par conséquent, la complexité de ’algorithme de Dijkestra pour ’approche de programmation

dynamique présentée est donnée comme suit :
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O(T?P 4+ TPlogTP) = O(T*P) (5.8)

Comme la plus grande valeur pour P est T', donc, tous ces résultats prouvent que dans le pire

des cas, la complexité de ce probleme est donnée par un polynéme de degré 3.

La derniére analyse de cas des sous-problémes de (1,TOU |états|T EC) concerne les problémes

avec les mémes délais de traitement pour les emplois (1,70U|états,p; = p|TEC). Pour pro-
grammer les états de la machine au cours d’une période donnée, deux facteurs importants sont

la consommation d’énergie de la machine pendant chaque état et 'unité du prix de I’énergie

pendant chaque période. Dans le probléme général (1, TOU|états|TEC), on considére que la
consommation d’énergie de la machine pendant les états ON est indépendante du travail traité.
Ainsi, le seul parametre qui a causé une préférence entre les jobs est leur temps de traitement.
Ainsi, lorsque les travaux ont les mémes temps de traitement, la machine consomme la méme
quantité d’énergie pour les réaliser. Considérons que chaque travail nécessite des périodes p a
traiter (p; = p), et que la machine consomme epy unit de I’énergie par période pendant les états
ON. Ainsi, la machine consomme ey * p unités d’énergie pour traiter chaque téche.

Dans cette configuration, il n’y a pas de différence entre les différentes séquences des téches
{(eon * p) = (eon * p) — (eon * p) — (eon * p) — -+ — (eon * p)Cela signifie que, lorsque
la machine est a I’état ON, n’importe quel tache étre traitée sans affecter 'optimalité de
la solution. Ainsi, le probleme 1,7T0U |états,p;, = p|TEC, peut étre considéré comme un
probléeme de séquence fixe dans lequel chaque tdche a besoin de p temps unitaires comme
temps de traitement (1, TOU|états, séquence, p; = p|T EC). La version générale de ce probleme
(1, TOU |états, séquence

|TEC) examinée précédemment qui est polynomial. Par conséquent, le sous-probléeme (1, TOU|

états, p; = p|TEC) est aussi polynomial.

Méthodes de résolution du probléeme (1,70U

états|TEC)

Habituellement, les méthodes exactes ne peuvent pas trouver la solution optimale pour les cas
de grande taille d’un probléme NP-difficile dans un délai raisonnable. Ainsi, pour le probléme

présenté dans cette section qui est NP-hard (1, 70U

états|T EC), nous proposons des algorithmes
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heuristiques et méta-heuristiques afin de résoudre les instances de grandes tailles. Il s’agit d’une
heuristique dédiée et d’un algorithme génétique.

Comme nous l’avons mentionné ci-avant, la condition nécessaire pour avoir les solutions réalisables
a un probléme avec un nombre fixe de périodes est que le nombre de périodes soit supérieur ou
égal a la durée totale tes temps de traitement des taches en plus du nombre de périodes nécessaires
pour les transitions entre les états de la machine. Ces périodes sont nécessaires pour mettre la
machine en marche, effectuer toutes les taches complétement et ’éteindre ensuite. La différence
entre ces deux nombres indique le nombre de périodes supplémentaires qui peuvent étre calculées
par équation 5.1 et notée x. Le principe de I'heuristique proposée sont basés sur I'affectation des
états (Ton, OFF, Idle et Toff) de la machine pendant ces périodes supplémentaires. Les périodes
supplémentaires peuvent étre placées n’importe ot sur un horizon de production (au début, a la
fin ou au milieu). Ainsi, notre algorithme est divisé en deux étapes générales (exploration & partir
du début de 'horizon et exploration en commencant par la fin de ’horizon) pour spécifier 1’état
de la machine période par période et considérer toutes les possibilités.

A chaque étape, lalgorithme examine (x + 1) situations différentes (de 0 & z) pour allumer
la machine au début ou I’éteindre a la fin de I'horizon, et sélectionne la celle qui minimise le
colit parmi différentes solutions (x + 1). De cette fagon, pour chaque solution, des périodes
supplémentaires seront allouées a I'état OFF a la premiere étape et ensuite, I’algorithme décide
pour le reste (entre les états OFF ou Idle) pour les autres périodes. Enfin, la solution est celle
qui minimise la fonction-objectif parmi toutes les solutions explorées. Ainsi, pour obtenir la
meilleure solution, des solutions différentes de 2 x(x + 1) doivent étre considérées et comparées
les unes avec autres. Cette méthode (déterminer le nombre de solutions de controle) permet de
réduire la dépendance de P’algorithme au nombre de tiches et de périodes (taille du probléme) et

d’augmenter son efficacité.

Un algorithme génétique est également présenté pour examiner la possibilité d’améliorer les

solutions obtenues par 1'heuristique.

Puisque, chaque solution de ce probléme revient a déterminer 1’état de la machine pour

chacune des T périodes. Ainsi, dans cet algorithme génétique, chaque chromosome est représenté
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FIGURE 5.5 — Le chromosome correspondant a la solution obtenue sur la figure 3.2

par T+ 1 genes et chaque gene identifie I’état de la machine dans pour chacune des périodes. De
plus, pour distinguer les différents états, les nombres de 1, 2, 4 et 5 sont supposés représenter
respectivement les états OFF, Ton, Toff et Idle.

En outre, un nombre entier supérieur & 10 (w > 10), représente que la machine est dans I'état ON
et traite le (w — 10)th job. Le chromosome correspondant a la solution présentée a la figure 3.2
est représenté a la figure 5.5.

Habituellement, I’algorithme génétique (AG) commence par une population initiale générée
au hasard. L’AG proposée utilise une population initiale qui sera générée sur la base de notre
algorithme heuristique proposé avec une population de 300 personnes. Ainsi, pour chaque individu,
il faut tout d’abord sélectionner au hasard la période de mise en marche de la machine. Ensuite,
le numéro du travail a effectuer sera choisi au hasard. Une fois le travail terminé, I’état de la
machine doit étre sélectionné arbitrairement entre les états ON, Toff et Idle. Ces procédures
doivent étre poursuivies pour traiter tous les jobs jusqu’a la derniére période. Enfin, la valeur
objective de la solution sera calculée en fonction de I'aptitude a classer la qualité du chromosome
généré.

Pour compléter la procédure de I’AG, nous utilisons les mémes opérateurs que I’étude existante
dans la littérature ([61]) pour les procédures de sélection des parents, de crossover et de mutation.
Par conséquent, la sélection de la roue de roulette est sélectionné pour la sélection des parents et
un seul point de croisement ainsi que la méthode de swap pour I'opérateur de mutation, sont

considérés pour produire deux nouveaux enfants.

Afin d’évaluer la performance de ces deux algorithmes proposés, ils ont été codés en langage
C'++ en utilisant Visual Studio 2015. Ces derniers ont été testés sur plusieurs instances générées

aléatoirement.

Les résultats obtenus démontrent que les algorithmes que nous proposons fournissent les
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solutions optimales pour certains exemples et des solutions presque optimales pour d’autres en
quelques secondes (1’écart de 2,2% est atteint en moyenne par HA et 1,82% par GA en comparaison
avec la valeur de la fonction-objectif de la solution exacte pour les instances de petite taille).
De plus, parmi toutes les expérimentations, ’écart le plus important, soit 5,67 % et 7,31 %, est
obtenu respectivement par 'AP et PAG. Dans les cas de grande taille, la fourchette de variation
des écarts entre PAH et ’AG est inférieure & 3,0 % et, en moyenne, elle est approximativement

égale a 1,0 %.

Bornes inférieures pour le probléme de (1,70U|états|TEC)

Un outil habituel pour évaluer les performances des méthodes approximatives pour un probléme

NP-dur est d’obtenir quelques limites inférieures. C’est pourquoi, dans cette theése, nous avons

également proposé quatre limites inférieures pour le probléme de (1,00T0U |états|T EC'). Pour
évaluer l'efficacité des limites inférieures proposées dans la présente étude, plusieurs cas générés
au hasard sont examinés. Les résultats montrent qu’entre LBy, LBs, et L B3, dans tous les cas
L Bs propose une meilleure borne. Parmi ces limites inférieures, LB,4 qui est la solution optimale
obtenue du cas préventif de ce probleme par CPLEX, trouve la solution la plus proche de la
solution optimale. L’ordre de classement de ces limites inférieures est le suivant :

Gaprp, < Gaprp, < Gaprp, < Gaprp,

De plus, une analyse de la variance (ANOVA) avec un niveau de confiance de 95% a été effectuée
a l'aide du logiciel Minitab.17 pour vérifier la validité statistique des résultats (Fig. 5.6). Comme
on peut le voir dans cette figure, pour chaque taille de probleme, I'intervalle des écarts pour
toutes les limites inférieures proposées (LBy, LBy, LBs, LBy) est présenté. Dans tous les cas,
LB, alintervalle minimum des écarts.

La section suivante traite d’un probléeme d’ordonnancement d’une seule machine a plusieurs
états lorsque les taches consomment différentes quantités d’énergie. Pour cela, deux versions de

ce probléme avec une vitesse uniforme et une machine a vitesse variable sont étudiées.
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FIGURE 5.6 — Comparaison des performances des bornes inférieures avec les solutions optimales
obtenues par CPLEX

5 Probleme d’ordonnancement avec une machine ayant plu-
sieurs états et a plusieurs vitesses

En réalité, pour certaines industries manufacturieres, le traitement de différentes taches avec la
méme machine nécessite des consommations d’énergie différentes. Elle peut provenir des taches
traitées ou de la vitesse de traitement de ces dernieres. C’est pourquoi, dans cette section, nous
nous intéressons la version plus générale du probleme avec des états multiples et des vitesses

multiples. En outre, la complexité de plusieurs sous-problemes est également analysée.

Présentation du probléeme

Cette section traite du probléme d’ordonnancement de plusieurs taches sur une seule machine
ayant des états multiples et pouvant exécuter chacune des taches avec plusieurs vitesses
(1, TOU |états, vitesses, ;| TEC'). De plus, pour le probleme étudié dans cette section, la consom-

mation d’énergie de la machine & I’état ON dépend de deux facteurs : la tdche a traiter et
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FIGURE 5.7 — Les états et transitions considérés pour la machine.

la vitesse du traitement de la machine. Ainsi, il y a différentes possibilités pour le temps de

traitement de chaque tache et la valeur énergétique consommée par la machine. Cela signifie que

pour chaque job j =1,....,n, v; vitesses de traitement sont possibles, il y a différentes valeurs
pour le temps de traitement comme P; = {pj 1, ,Pj; 8, et pour chaque p; ;, une consommation
énergétique correspondante g;; est associée. Q; = {g; 1, ,qj,»; } est I'ensemble des différentes

consommations énergétiques du job 7 = 1,...,n. En se basant sur le fait que le traitement plus
rapide d’un travail prend moins de temps et consomme plus d’unités d’énergie, les relations

suivantes sont prises en compte :

Pj1 > Dj2 > > Dje; sViE{L - n} (5.9)
i1 < g2 <<, ;VjE{l--,n} (5.10)

L’objectif de ce probleme est de trouver I'ordonnancement de la production le plus économique
en termes de colits de consommation d’énergie sur ’ensemble de I’horizon de temps. Les états
machine et les transitions possibles ainsi que les consommations d’énergie de chaque état sont
illustrés dans la Figureb.7.

Comme premiere contribution, deux nouveaux modeles mathématiques sont proposés pour ce
probléme. La performance de ces deux modeéles mathématiques a été examinée a travers plusieurs
instances générées aléatoirement. Les résultats montrent que le deuxiéme modele est plus rapide
que le premier (en moyenne, il faut 271.87 s pour le premier modele, et 1.80 s pour le second), et

il a diminué d’environ 64 % en nombre de contraintes et 1.3% en nombre de variables.
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Méthodes de résolution

La complexité d’un probléme d’ordonnancement d’une machine unique a vitesse variable, lorsque
la machine n’a que deux états (ON et OFF), (1,TOU |vitesses, ¢;|TEC) est déja étudiée dans
[1]. Les auteurs ont prouvé que le probléme est NP-difficile. Ainsi, la version généralisée de ce
probleme, considérée dans ce chapitre, avec trois états principaux et deux états de transition,

(1, 70U

états, vitesses, ¢;|TEC') est aussi NP-difficile.
Les méthodes exactes ne sont pas en mesure de résoudre les instance de grande taille. C’est
pourquoi, nous avons proposé une heuristique, un algorithme génétique, ainsi qu’un algorithme

mémétique pour les résoudre.

Le principe de ’heuristique proposée est basé sur I'allocation des états non processeurs a la
machine pendant les périodes supplémentaires (la méme idée que 'heuristique présentée dans la
section précédente (section 3.7.1)).

Contrairement au probleme examiné dans la section précédente, nous supposons des délais de
traitement différents pour chacune des taches. Par conséquent, pour obtenir le nombre maximum
de périodes supplémentaires calculé par I’équation 5.1, le nombre minimum requis de périodes
pour les temps de traitement doit étre remplacé par P. Pour cela, le temps de traitement de
chaque travail avec la vitesse maximale (p; ;) est sélectionné. Ainsi, en considérant les parametres

supposés, la valeur de x peut étre obtenue comme suit :

r=T— (5 +52+1)*ij,vj (5.11)
j=1

Par exemple, dans un probléeme avec 3 taches, 30 périodes et 3 vitesses, avec les valeurs des
parameétres comme suit : p; = {6,4,2},ps = {5,4,3},p3 = {5,3,1}, 1 = 2, 82 = 1, la valeur x est

égale A [30-(2+141)-(24+341)]=20.

Comme nous avons utilisé un algorithme génétique pour évaluer la performance de notre
heuristique pour le probleme avec la méme consommation énergétique des taches, nous avons
également développé un algorithme génétique pour le probleme étudié dans ce chapitre.

Toute solution & ce probléme, est un planning sur un horizon temporel allant de la période 0 a la
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FIGURE 5.8 — Le chromosome de notre algorithme génétique

période T', qui définit ’état de la machine pendant chaque période. Ainsi, dans cet article, chaque
chromosome de 'algorithme génétique est représenté par des génes T + 1 et chaque geéne identifie
I’état de la machine dans une période. Pour distinguer les états de la machine, chaque état est
représenté par un nombre spécifique comme OF F =1, Ton = 2, Idle = 3, et Tof f = 4. De plus,
un nombre entier supérieur & 100 (k > 100) représente que la machine est en mode Etat ON. En
d’autres termes, si dans la période t, la machine traite le job j avec speed ¢, dans le chromosome
correspondant, le géne ¢ se remplit avec le nombre (100 * 5 + 10 % ). Figure 5.8 représente le
chromosome correspondant de I’instance présentée a Figure 4.2. Puisque dans ce cas le nombre
de périodes est de 32, ce chromosome est donc constitué de 33 geénes. Le nombre 230 dans le gene
10 signifie qu’au cours de la période 9, la machine traite le travail 2 avec la vitesse 3 et le nombre
4 dans le géne 10 avec la vitesse 3. 27éme gene signifie que pendant la période 26 la machine est
en état Toff.

La performance de 'algorithme génétique dépend de la sélection de ses principaux parametres
(la taille de la population, le taux de croisement, le taux de mutation, un opérateur de croisement,
un opérateur de mutation et le nombre d’itérations) en fonction du probléme étudié. Dans cette
étude, I'opérateur de sélection de la roulette a été choisi comme opérateur de sélection des parents
pour produire les nouveaux chromosomes. Dans cette thése, un plan d’experience de Taguchi
est utilisée au lieu d’un plan expérimental factoriel complet pour déterminer les parametres de
Palgorithme génétique. A cette fin, six facteurs sont considérés comme tels, 'un d’eux ayant deux
niveaux et les autres trois niveaux (Tableau 5.1).

Les résultats de I'analyse de la méthode taguchi sont donnés dans la Figure 5.9. Comme résultat,
un seul point est choisi comme méthode de croisement pour produire deux nouveaux enfants, et
le taux de croisement choisi est égal a 0,7 (70 & %). Le taux de mutation choisi est égal a4 0,1 (10
%), et la taille de la population initiale et le nombre d’itérations sont considérés comme étant

respectivement égaux a 150 et 100.

Pour améliorer la qualité des solutions obtenues par I’algorithme génétique pour ce probléeme,
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Mean of SM ratios

Factor levell Level2 Level3
Crossover operator | single-point | double-point -
Mutation operator swap revers insert

Crossover rate 0.7 0.8 0.9
Mutation rate 0.05 0.10 0.15
Population size 50 100 150
Iteration number 50 100 150
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TABLEAU 5.1 — Design factors and their levels
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une procédure de recherche locale est également introduite (algorithme memetic). La procédure de

recherche locale est appliquée pour augmenter la qualité des 15 (10% de la taille de la population)

meilleurs chromosomes de la population a chaque itération. Pour ce faire, une nouvelle solution

sera créée en augmentant la vitesse de traitement d’une unité pour un travail et, par conséquent,

en exécutant tous les autres travaux plus tot que la différence entre les temps de traitement corres-

pondants. Cette procédure doit étre répétée pour toutes les taches dans 'ordre de leur séquence.

Ainsi, pour un probléme avec n emplois, au plus n nouvelles solutions peuvent étre créées a partir

de chaque solution initiale. Enfin, la solution ayant la meilleure fonction objective doit remplacer

la solution initiale. Par exemple, pour le chromosome considéré dans Figure 4.13, la premiére tache

était traitée a la premiere vitesse. Dans la premiere solution proposée par Ialgorithme memetic, le
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premier travail est traité a la deuxiéme vitesse, et ensuite, toutes les taches sont effectuées plus tot.

Les performances des méthodes proposées ont été examinées par plusieurs instances numériques
inspirées de la littérature ([61]). Pour cela, lalgorithme heuristique, l’algorithme génétique et
l’algorithme mémétique ont été codés en langage C++ dans Visual Studio 2015, et le logiciel
CPLEX est utilisé pour résoudre les instances avec la méthode exacte (Branch et Cut). Cing
exemples différents sont générés au hasard pour chaque taille d’instance en modifiant les temps
de traitement et les consommations d’énergie des jobs, ainsi que I'unité du prix de 1’énergie dans
chaque période. Le temps de calcul avec CPLEX, pour toutes les expériences, a été fixé a 1 heure
ou 3600 secondes. Pour les problemes inférieurs a 15 travaux, 5 vitesses et 120 périodes, CPLEX
a su trouver les solutions optimales.

En général, pour les problemes de petite taille, '’heuristique trouve les solutions avec un écart de
17,1% en moyenne, alors que cet écart pour l’algorithme génétique et I’algorithme mémétique est
égal a 7,56% et 2,7%, respectivement. Le temps de calcul moyen des problémes de petite taille
pour les algorithmes heuristiques, génétiques et mémétiques est égal a 1,06 s, 15,64 s et 18,50 s,

respectivement.

Pour les problemes de plus de 20 taches, 5 vitesses et 160 périodes, CPLEX n’a pas été
en mesure de trouver la solution optimale. Nous avons donc simplement comparé les solutions
obtenues par ces trois algorithmes. Il faut mentionner que, dans tous les cas, 'algorithme mimétique
trouve la meilleure solution. Les résultats montrent que 1’écart moyen entre les solutions des
algorithmes heuristiques et génétiques et la solution obtenue par MA, est d’environ 21,1% pour
I’heuristique, et 18,4% pour le génétique.

De plus, une analyse de la variance (ANOVA) avec un niveau de confiance de 95 % a été réalisée
a l'aide du logiciel Minitab.17 pour vérifier la validité statistique des résultats (figures 5.10 et

5.11).



164 French Summary

Interval Plot
95% (I for the Mean

40,0%
30,0%

20,0%

0,0%.%«1»%é §§§}+%§ ’ %

Algorithm: GAHAMA GAHAMA GAHAMA GAHAMA GAHAMA GAHAMA GAHAMA GAHAMA GAHAMA GAHAMA
Instance: [11 [2] 31 [4] 5] [6] [7] [8] [91 [10]

Individual standard deviations are used to calculate the intervals.

Gap with optimal solution
e

FIGURE 5.10 — Comparaison des performances de GA, HA et MA avec la solution optimale

Analyse de complexité des sous-problemes

Comme il est présenté dans les sections précédentes, le probleme d’ordonnancement de plu-
sieurs taches sur une machine unique a plusieurs états et a plusieurs vitesses lorsque les travaux
consomment différentes quantités d’énergie est NP-hard. Dans cette section, nous nous intéressons
a 'analyse de la complexité de deux sous-versions de ce probleme. Pour ce faire, nous avons consi-
déré le cas de vitesse uniforme et le cas de vitesse du probleme lorsque les séquences des travaux

sont fixes (1, TOU |états, séquence, ¢;|TEC et 1,TOU

états, vitesses = v, séquence, ¢;|TEC).

Pour analyser la complexité de ces problemes, la méme approche que celle que nous avons

utilisée pour les problemes (1, TOU |états, séquence|TEC) et (1, TOU

états, pmitn|TEC), est réa-

lisée. Deux graphes finis différents sont donc proposés pour modéliser ces problemes.

Pour le probleme (1, TOU|états, séquence, ¢;|TEC), le nombre total de noeuds et d’arcs pour

une instance avec des périodes T et des taches n sont :
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FIGURE 5.11 — L’amélioration des résultats par MA contre GA et HA pour les instances de grande
taille

Vi=(n+2)*(z+1) =2nT (5.12)

|E| = T%n (5.13)

Selon [77], la complexité de ’approche développée est égale a :

O(T*n + TnlogTn) = O(T*n + Tnlog T + Tnlogn) (5.14)
=~ O(T?n)
Car n < T (le pire des cas pour tout probléme réalisable), nous avons logn < log7 < T. On

peut donc conclure que le probleme est un polynéme de degré 3 ou un probléme polynomial

cubique (O(T?)).
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Le deuxiéme sous-probléme, est une version séquentielle fixe du probleme général lorsque le
nombre de vitesses est fixe pour tous les travaux (1, TOU |états, vitesses = v, séquence, q;|TEC).
Dans ce cas, pour chaque tache, nous devons choisir sa vitesse d’exécution parmi un ensemble de
valeurs donné. Chaque vitesse correspond & une consommation d’énergie et a un temps de traite-
ment donnés. Par conséquent, il pourrait étre intéressant de traiter les travaux plus rapidement
lorsque le cotit énergétique est faible et de les traiter plus lentement lorsque le coiit énergétique
est élevé. Notez que pour satisfaire la non-prévention dans ce cas, la solution doit étre composée
d’une vitesse unique 4 pour chaque tache j pour la traiter avec le temps de traitement associé pé»

et la consommation électrique q§ non préemptivement.

Comme cas de vitesse uniforme de ce probleme, un graphe avec les niveaux de décision
T + 1 est représenté pour modéliser le cas de vitesse scalable. Chaque niveau de décision (1) a
un ensemble de noeuds (H;) qui représente les derniers jobs possibles dans la séquence donnée
Jj, qui est traité avec la vitesse i jusqu'au moment [ (J; ;Vj € {1,--- ,n},i€ {1,---,v)}. Par
conséquent, en considérant les états initial-OFF et final-OFF, le graphe est composé de (n*v) + 2
différents types de nceuds, ou n représente le nombre de taches, et v représente le nombre de

vitesses. Le nombre de périodes sans traitement pour ce cas est obtenu par la formulation suivante :

@ =T=3 pj—(Bi+p+]) (5.15)
j=1

Dans tout le graphe, il y a au plus (2’ + 1) des noeuds avec le méme numéro de noeud
({1,J%,J%, -+, Ji, F}). Ainsi, le nombre total de nceuds pour un probléme avec des périodes T,

des taches n et des vitesses v est :

VI<((nxv)+2) %@ + 1) =n-v-T (5.16)

Le nombre total d’arcs pour un probleme de vitesse évolutif avec des périodes T, des taches n et

des vitesses v est :

E| = T?n? 5.17
|E|

La complexité de 'algorithme de Dijkstra pour le probleme de ’échelle de vitesse peut étre

calculée par la formulation suivante :
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O(T*nv* 4+ Tnwlog Tnv) (5.18)

Car n < T, nous avons logn < logT < logT < T, logv < v, et il n’y a aucune limitation pour v.
On peut donc conclure que le cas de ce probleme a 1’échelle de la vitesse est tout au plus pseudo

polynomial.

Conclusions et perspectives

Cette these présente des approches de modélisation et de résolution des problemes de planification
de plusieurs taches sur une seule machine multi-états dans le but de minimiser les cotits de
consommation d’énergie. Pour ce faire, une étude complete des différents problémes d’ordonnan-
cement des concepts énergétiques avec aspects énergétiques est réalisée dans la section II.
Comme premiere contribution de cette theése, nous avons proposé un modele mathématique
amélioré pour un probléme existant dans la littérature ([61]), et nous avons analysé la complexité
du probléme en utilisant une nouvelle approche de programmation dynamique. Nous avons prouvé
que contrairement & ce qui est considéré précédemment dans [61], le probléme d’ordonnancement
de plusieurs taches avec une séquence prédéterminée sur une seule machine avec multi-états
(1, TOU |états, séquence|TEC) est polynomial.

Dans la section II, nous avons étudié une version générale du probléeme précédent pour opti-
miser 'ordonnancement des taches, ainsi que I’état de la machine & chaque période (probléme

1,TOU

états|TEC). Apres avoir montré que le probléme est NP-difficile, nous avons présenté
un modele mathématique pour ce probleme. Ensuite, nous avons proposé une heuristique et
un algorithme génétique résoudre les problemes de grande taille. Nous avons également défini
quatre bornes inférieures pour ce probleme. De plus, la complexité de quatre sous-problémes est
également étudiée.

Dans la section II, nous avons étudié le probleme d’ordonnancement plus complexe avec différentes
consommations d’énergie des taches et des vitesses variables de la machine (1, TOU |états, vitesses,
TEC). Nous avons proposé deux modeéles mathématiques pour ce probléme et trois algorithmes

(une heuristique, un génétique et un mémétique) pour résoudre les instances de moyenne et grande
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taille.

Cette these porte sur la modélisation et I'optimisation de trois types de problémes d’ordonnancement
sur seule machine avec plusieurs états afin de minimiser les cofits totaux liés & consommation
d’énergie. Dans ce qui suit, nous discutons des limites de ces travaux de recherche et suggérons
d’autres perspectives et pistes de recherche comme future extension possible.

Pour les perspectives a court terme, nous sommes intéressés a améliorer la performance des
algorithmes présentés pour le probleme 1, TOU|états, vitesses, q;|TEC et développer d’autres
méthodes exactes pour ce probléme. Par exemple, il pourrait étre intéressant de fournir quelques
regles de dominance pour améliorer la performance de la méthode de la branche et de la méthode
liée pour ce probleme. De plus, nous cherchons a proposer une autre méthode de recherche
locale pour améliorer les performances de ’algorithme memetic proposé. De plus, nous voulons
généraliser le modele pour tenir compte des dates de publication et des dates d’échéance pour
chaque emploi. La prise en compte des problemes multi-objectifs, qui optimisent les cofits totaux
de consommation d’énergie en plus d’un objectif de planification traditionnel comme makespan

semble pertinente et prometteuse.
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Ces derniéres années, les évolutions économiques et
sociétales ont entrainé une augmentation rapide de la
consommation d'énergie. De plus, dans presque tous
les pays industriels, le prix de I’électricité a augmenté
continuellement. L'amélioration de [I'efficacité
énergétique et la réduction de la consommation
d'électricité jouent donc un rdle trés important dans
les industries modernes. Récemment, plusieurs
études ont été consacrées a [Ilintégration de
efficacité  énergétique dans les problemes
d’ordonnancement. Cependant, seuls certains
travaux précédents considéraient un probléme d'une
seule machine multi-états avec différents prix
d’énergie. Cette thése aborde le cas d'un probleme
d'ordonnancement d'une seule machine avec
différents états de fonctionnement caractérisés par
différentes vitesses et consommations d'énergie.
Cette thése vise a fournir une étude compléte pour
étudier la complexité et les méthodes d'optimisation
des différentes variantes de ce probléme. Dans ce
but, une nouvelle approche de programmation
dynamique basée sur un graphe fini est utilisée pour
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difficile de ce probléeme. Des méthodes approchées
sont proposées pour résoudre le probleme
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Production Planning and Scheduling
Problems under Energy Aspects

In the last few years, economic and societal
developments have led to a rapid increase in energy
consumption. Moreover, in almost every industrial
nation, electricity prices, one of the main energy
sources used in the manufacturing factories, have
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electric power efficiency and saving electricity plays
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scheduling problem under time varied energy prices.
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