
HAL Id: tel-03606384
https://theses.hal.science/tel-03606384

Submitted on 11 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep learning for radar data exploitation of autonomous
vehicle

Arthur Ouaknine

To cite this version:
Arthur Ouaknine. Deep learning for radar data exploitation of autonomous vehicle. Computer Vision
and Pattern Recognition [cs.CV]. Institut Polytechnique de Paris, 2022. English. �NNT : 2022IP-
PAT007�. �tel-03606384�

https://theses.hal.science/tel-03606384
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

T0
07 Deep learning for radar data exploitation

of autonomous vehicle
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris et Valeo

École doctorale n◦626 Institut Polytechnique de Paris (ED IP Paris)
Spécialité de doctorat : Signal, Images, Automatique et robotique

Thèse présentée et soutenue à Palaiseau, le 04/03/2022, par

ARTHUR OUAKNINE

Composition du Jury :

David Picard
Directeur de recherche, École des Ponts ParisTech (IMAGINE) President

Dominique Béréziat
Maı̂tre de conférences, Sorbonne Université (LIP6) Rapporteur

Francesca Bovolo
Directrice de recherche, Fondazione Bruno Kessler (RSDE) Rapporteuse

Gustau Camps-Valls
Professeur, Universitat de València (IPL) Examinateur

Guillaume Charpiat
Chargé de recherche, INRIA (TAU) Examinateur

Florence Tupin
Professeure, Télécom Paris & IP Paris (LTCI) Directrice de thèse

Patrick Pérez
Directeur de recherche, Valeo Co-directeur de thèse

Alasdair Newson
Maı̂tre de conférences, Télécom Paris & IP Paris (LTCI) Co-directeur de thèse

i

Acknowledgments

Je souhaite tout d’abord remercier Alasdair, Florence et Patrick, mes encadrants de thèse,
pour m’avoir fait confiance sur ce projet et pour avoir dirigé mes recherches avec rigueur
pendant plus de trois années. Alasdair, merci de m’avoir soutenu et aidé à tout mo-
ment, aussi bien personnellement que professionnellement ; et merci pour ton implication
rigoureuse dans tous mes projets. Tu as été un acteur majeur de cette thèse sans qui elle
n’aurait pas pu aller aussi loin : ne change rien pour tes futurs doctorants. Florence, merci
pour ta disponibilité, pour nos discussions et nos encadrements de projets communs qui
m’ont beaucoup apporté humainement et scientifiquement. Patrick, merci pour nos discus-
sions et tes idées qui ont inspiré nos travaux ainsi que pour ta confiance en m’intégrant à
l’équipe naissante de valeo.ai.

Je remercie également Julien pour avoir contribué à cette thèse de façon significative et
sans qui ces travaux n’auraient pas pu voir le jour. Merci pour tes idées, ton expertise et ta
disponibilité ayant permis des avancées importantes sur ces sujets que nous abordions tous
les deux.

I would like to thank the jury of my thesis for your time and your relevant feedbacks
which truly improved the quality of this thesis. I would like to especially thank Domique
Béréziat and Francesca Bovolo for reviewing my manuscript. Je remercie aussi mon jury
de mi-parcours pour leurs retours et conseils avisés concernant ma thèse.

Je remercie Télécom Paris pour son accueil et tout particulièrement l’équipe IMAGES
du département IDS. J’ai eu la chance de faire de nombreuses rencontres entre Paris 13ème
et le plateau de Saclay. Merci à mes co-bureaux des deux sites : Nicolas Go., Vin-
cent, Raphaël et Matthis. Je remercie toute l’équipe IMAGES, les enseignants-chercheurs,
les post-docs et les actuels et anciens doctorants pour cette vie animée à Télécom Paris.
Merci à Emanuele, Mateus, Giammarco, Nicolas Ga., Clément, Antoine, Inès, Nicolas C.,
Robin, Xu, Xiangli, Corentin, Sylvain, Christophe, Alban, Zoé, Pietro, Saïd, Yann, Is-
abelle et Jean-Marc. Je remercie particulièrement Jean-Marie pour la patience dont il a fait
preuve pour m’enseigner la physique élémentaire au début de ma thèse. Et merci aux co-
organisateurs et aux participants du Deep Learning Working Group, qui a été une source
de discussions riches et de rencontre entre les doctorants.

Je remercie également toute l’équipe de valeo.ai qui a tant évolué depuis mon arrivée.
Je remercie tout particulièrement les Bezos, Charles, Maxime et Simon, pour nos débats
et nos blagues. Sans eux, l’aventure n’aurait pas été la même. Merci à Gabriel de m’avoir
sorti de nombreuses situations difficiles. Merci à Alexandre pour tous nos échanges très en-
richissants et pour ce projet avec beaucoup d’avenir. Je remercie tous les actuels et anciens
permanents, doctorants et stagiaires pour ces échanges scientifiques d’une qualité impres-
sionnante. Merci à Andrei, Hedi, Eloi, Tuan-Hung, Himalaya, Spyros, Florent, Huy, An-
toine, Oriane, Laura, Gilles, Matthieu, Renaud, Mickael, Tristan, Bjoern, Corentin, Leon
et Antonin.

Je remercie tous mes anciens collègues de Zyl, a.k.a. BIM, a.k.a. Comète, a.k.a.
Crossroad, pour tous ces moments incroyables, avant, pendant et après mon stage de fin
d’étude. Merci à Mathieu, Aurel, Anthony, Ophély, Samy, Gauthier, Camille, Thomas,
Martin, Alexandre, Flo et Valentin. Je remercie tout particulièrement Long pour m’avoir

ii

transmis sa passion pour la recherche, pour son encadrement irréprochable et pour avoir
poussé mon projet de thèse sans même le vouloir.

Je remercie tous mes amis pour faire partie de ma vie et pour m’avoir soutenu pendant
toutes ces années d’études et de recherche. Merci à Gauthier, Garance et Félix, mes amis
d’enfance qui ont toujours été et seront toujours là, de Paris au Guatemala. Merci aux
Chocs, Toli, Matthieu, Raphaël, Simon, Mattia, Loris, Maxou et Laloum, mes frères qui
ont partagé ma vie et la partageront pendant encore longtemps sdv. Merci à Lina et Anna
pour m’avoir soutenu en toute condition ces dernières années, je vous en suis extrêmement
reconnaissant ; notre amitié a encore de grandes choses à vivre.

Bien évidemment, je remercie Sofia, Zalie, Hélène et Fanny, les reines de Montalivet,
pour votre indéfectible soutien, pour tout ce qu’on a vécu et tout ce qu’il nous reste à vivre
ensemble.

Je remercie les puissant.e.s, a.k.a. grand est, pour tous ces moments incroyables de vie,
de fêtes, de débats d’experts, entre Paris, Moliets et Bordeaux. Merci à Eugénie, Manon,
Joachim, Romain, Solène, Hicham et Roxane, avec qui j’ai hâte de revivre ces joies.

Je remercie également Lou, Maud, Juliette, Violette, Nico, Vincent et Djav sans qui ces
vacances, ces dîners, ces fêtes et autres moments n’auraient pas créé de si beaux souvenirs
chers à mes yeux. Je remercie JB pour toutes ces discussions, ces apéros et ces soirées où
nous avons refait le monde depuis les bancs de la Sorbonne.

Je remercie Antoine et Matthieu pour nos débats interminables, nos apéros au BM et
à la Butte-aux-Cailles, depuis Télécom à aujourd’hui, vous avez réussi à me motiver pour
cette thèse.

Je remercie toute ma famille, Suzanne, Christiane, Henri, Antoine, Isabelle, Didier,
Michel, Mirjanna, Maud, Wahid et Jonathan pour toutes ces années de partage, qui ne
cesseront jamais je l’espère.

Je remercie mes parents et ma sœur, Lydia, Robert et Lucie, pour leur amour, leur
soutien, leur compréhension et leurs encouragements depuis tant d’années ; sans qui je
n’aurais jamais pu arriver où je suis aujourd’hui. Cette thèse leur est dédiée.

Je remercie finalement celles et ceux que je n’ai pas cité et qui m’ont énormément
apporté au cours de ma vie ; grâce à qui j’ai pu être heureux, me construire et apprendre à
dépasser mes limites. Enfin, un immense merci aux lecteurs, qui auront la patience de se
plonger dans mes travaux ayant occupé mes trois dernières années.

Contents

List of Acronyms vii

List of Figures x

List of Tables xiii

Abstract xv

French Summary xvii

1 Introduction 1
1.1 Context . 1
1.2 Motivations . 4
1.3 Contributions and outlines . 5

2 Background 7
2.1 RADAR theory . 7
2.2 Recordings and signal processing . 10

2.2.1 Transformations in the temporal and frequency domains 10
2.2.2 Speckle noise . 12
2.2.3 RADAR representations . 13

2.3 Artificial neural networks . 15
2.3.1 Introduction . 15
2.3.2 At the neuron level . 16
2.3.3 At the layer level . 17
2.3.4 Training a neural network . 18

2.4 Convolutional neural network . 22
2.4.1 Convolutional layer . 22
2.4.2 Complementary methods and layers 22

2.5 Recurrent neural network . 24
2.6 Deep learning . 26

2.6.1 Classification . 26
2.6.2 Object detection . 29
2.6.3 Semantic segmentation . 33
2.6.4 Methods for 3D point clouds . 38

3 Related work 41
3.1 Diverse applications . 41
3.2 Automotive RADAR datasets . 43

3.2.1 Traditional RADAR . 44
3.2.2 Scanning RADAR . 45

iv Contents

3.2.3 High-definition RADAR . 45
3.2.4 Our proposals . 46

3.3 RADAR object detection . 46
3.3.1 Range-Angle-Doppler tensor . 47
3.3.2 Range-Angle or Range-Doppler view 47
3.3.3 RADAR point cloud . 48

3.4 RADAR semantic segmentation . 49
3.4.1 Range-Angle view . 50
3.4.2 RADAR point cloud . 50

3.5 Sensor fusion . 51
3.5.1 RADAR and camera fusion . 51
3.5.2 RADAR and LiDAR fusion . 53
3.5.3 RADAR, camera and LiDAR fusion 55

3.6 Conclusions . 55

4 Proposed automotive RADAR datasets 57
4.1 RADAR simulation . 58

4.1.1 Parameters and properties . 58
4.1.2 RadarSim dataset . 59
4.1.3 Experiments and results . 61
4.1.4 Discussions . 62

4.2 RADAR data generation . 63
4.2.1 Dataset . 63
4.2.2 Range-Doppler representation . 64
4.2.3 Methods and Experiments . 66
4.2.4 Discussions . 70

4.3 CARRADA dataset . 70
4.3.1 Dataset . 71
4.3.2 Pipeline for annotation generation 72
4.3.3 Semantic segmentation baseline 79
4.3.4 Discussions . 81
4.3.5 Conclusions . 81

4.4 Conclusions . 82

5 RADAR scene understanding 85
5.1 Multi-view RADAR semantic segmentation 86

5.1.1 Motivations . 86
5.1.2 Methods and architectures . 86
5.1.3 Experiments on the CARRADA dataset 92
5.1.4 Experiments on complex urban scenes datasets 96
5.1.5 Conclusions and perspectives . 100

5.2 Sensor fusion . 101
5.2.1 Introduction . 101
5.2.2 Method . 102

Contents v

5.2.3 Simulation . 106
5.2.4 Application to the nuScenes dataset 106
5.2.5 Discussions and future work . 108

5.3 Conclusions . 109

6 High-definition RADAR 111
6.1 Motivations . 112
6.2 RADIal dataset . 113
6.3 Proposed method . 115

6.3.1 MIMO pre-encoder . 115
6.3.2 FPN encoder . 117
6.3.3 Range-Angle decoder . 117
6.3.4 Multi-task learning . 117

6.4 Experiments and Results . 119
6.4.1 Training details . 119
6.4.2 Baselines . 119
6.4.3 Evaluation metric . 120
6.4.4 Performance analysis . 120
6.4.5 Complexity analysis . 121

6.5 Conclusions and discussions . 122

7 Conclusion 125
7.1 Contributions . 125
7.2 Future work . 127

Bibliography 131

Appendices 155

A Background 157
A.1 Deep learning . 157

A.1.1 Object detection . 157
A.1.2 Segmentation . 158

B RADAR scene understanding 161
B.1 Multi-view RADAR semantic segmentation 161

B.1.1 RAD tensor visualisation . 161
B.1.2 Detailed multi-view architectures 161
B.1.3 Pre-processing and training procedures 162
B.1.4 Quantitative results . 162
B.1.5 Variability of the quantitative results by method 162
B.1.6 Variability of the loss ablation study 165
B.1.7 Qualitative results on CARRADA 166
B.1.8 Qualitative results on RADDet . 167

vi Contents

B.1.9 Qualitative results on in-house dataset 167
B.2 Sensor fusion . 168

B.2.1 Sensor settings of the nuScenes dataset 168
B.2.2 Qualitative results of the propagation and fusion module 169

C High-definition RADAR 173
C.1 Ablation study of the MIMO pre-encoder 173

List of Acronyms

AD Angle-Doppler . 13

ADAS Advanced Driving Assistance Systems . 1

ADC Analog-to-Digital Converter . 15

AE AutoEncoder . 48

AN Artificial Neuron . 16

ANN Artificial Neural Network . 3

AoA Angle-of-Arrival . 9

AP Average Precision . 30

AR Average Recall . 35

ASPP Atrous Spatial Pyramidal Pooling . 37

BCE Binary Cross-Entropy . 18

BEV Bird’s Eye View . 38

CAN bus Controller Area Network . 113

CE Cross-Entropy . 18

CFAR Constant False Alarm Rate . 14

cGAN conditional Generative Adversarial Network 53

CNN Convolutional Neural Network . 4

CoL Coherence Loss . 91

DFT Discrete Fourier Transform . 10

DoA Direction-of-Arrival . 14

FCN Fully Convolutional Network . 35

FFT Fast Fourier Transform . 10

FMCW Frequency-Modulated Continuous Wave 8

FoV Field-of-View . 45

FPN Feature Pyramid Network . 48

viii Contents

FPS Frames-per-Second . 32

GAN Generative Adversarial Network . 43

GFLOPS Giga FLoating-point Operations Per Second 112

GPS Global Positioning System . 113

GPU Graphics Processing Unit . 4

HD High-Definition . xv

HNM Hard Negative Mining . 32

IF Intermediate Frequency . 11

iid independent and identically distributed . 12

ILSVRC ImageNet Large Scale Visual Recognition Challenge 4

IoU Intersection over Union . 30

JS Jensen-Shannon . 77

KL Kullback-Leibler . 77

LD Low-Definition . 9

LeakyReLU Leaky Rectified Linear Unit . 17

LiDAR Light Detection And Ranging . xvii

LSTM Long Short-Term Memory . 26

MAE Mean Absolute Error . 66

mAP mean Average Precision . 30

mAR mean Average Recall . 35

mDice mean Dice . 92

MIMO Multiple Input Multiple Output . 8

mIoU mean Intersection over Union . 34

MLP Multilayer Perceptron . 3

MSE Mean Squared Error . 18

NMS Non-Maximum Suppression . 32

PP Pixel Precision . 80

Contents ix

PR Pixel Recall . 80

RA Range-Angle . 13

RAD Range-Angle-Doppler . 11

RAED Range-Azimuth-Elevation-Doppler . 112

RCS Radar Cross Section . 14

RD Range-Doppler . 13

RADAR Radio Detection And Ranging . xvii

ReLU Rectified Linear Unit . 17

RGB Red, Green and Blue . 22

RNN Recurrent Neural Network . 7

RoI Region of Interest . 31

RPN Region Proposal Network . 31

Rx Receiver antenna . 8

SAR Synthetic Aperture RADAR . 43

SDice Soft Dice . 90

SGD Stochastic Gradient Descent . 19

SORT Simple and Online Real time Tracking . 72

Tx Transmitter antenna . 7

wMAE weighted Mean Absolute Error . 67

wCE weighted Cross-Entropy . 90

List of Figures

1.1 Sensor setup of the Valeo Drive4U prototype 2
1.2 Timeline of the evolution of Artificial Neural Networks and deep learning . 3
1.3 Camera image examples of scenes with different lighting and weather con-

ditions . 5

2.1 Example of a RADAR chirp . 8
2.2 Range-Angle-Doppler (RAD) tensor generation 10
2.3 Outline of the RADAR pipeline . 12
2.4 An example of RADAR representations 14
2.5 Illustration of a biological neuron and its mathematical model 16
2.6 Illustration of a Multilayer Perceptron . 18
2.7 Example of Dropout . 21
2.8 Example of a convolutional layer . 23
2.9 Example of a max-pooling layer . 24
2.10 Example of a recurrent neural network . 25
2.11 Comparison between different computer vision applications 27

3.1 Examples of Low-Definition, High-Definition and Scanning RADARs . . . 45
3.2 Example of the annotation of a ‘Car’ signature in Range-Doppler 49

4.1 Example of a Range-Doppler simulation for the category ‘Car’ 60
4.2 Example of two scenes with pedestrians and moving cars 64
4.3 Distributions of the background in RADAR data 65
4.4 Qualitative results of Range-Doppler generations 70
4.5 A scene from CARRADA dataset, with a pedestrian and a car 71
4.6 Object distribution across CARRADA . 73
4.7 Distribution of radial velocities for all categories 73
4.8 Estimation of the radial velocity from natural images 74
4.9 Tracking of the Mean Shift cluster to propagate the annotation in the sequence 75
4.10 Comparison of bandwidth selection methods 78
4.11 Comparison of methods for dense mask annotation generation 79
4.12 Two scenes from CARRADA dataset, one with a car, the other on with a

cyclist and a car . 82

5.1 Overview of our multi-view approach to semantic segmentation of RADAR
signal . 86

5.2 Multi-view architectures for RADAR semantic segmentation 88
5.3 Computation of the coherence loss . 91
5.4 Performance-vs.-complexity plots for all methods in Range-Doppler (RD)

and Range-Angle (RA) tasks . 95

xii List of Figures

5.5 Qualitative results on a test scene of CARRADA 97
5.6 RADDet dataset distributions . 98
5.7 Qualitative results on a test scene of RADDet 100
5.8 Overview of our propagation and fusion approach for RADAR and LiDAR

point clouds . 101
5.9 Simulation of the LiDAR and RADAR point cloud propagation and fusion

method . 107
5.10 Qualitative results on the nuScenes dataset of our propose propagation and

fusion module . 109

6.1 Overview of our RADIal dataset . 113
6.2 Overview of FFT-RadNet . 115
6.3 Trainable MIMO pre-encoder . 116
6.4 Qualitative results for object detection and free space segmentation on Easy

and Hard samples . 121

B.1 Visualisation of the Range-Angle-Doppler (RAD) tensor 161
B.2 Performance-vs.-complexity plots for all methods in RD and RA tasks . . . 166
B.3 Variability of the performances-vs.-complexity plots for all methods in

Range-Doppler and Range-Angle tasks regarding the mDice metric. 167
B.4 Variability of the performances-vs.-complexity plots for all methods in

Range-Doppler and Range-Angle tasks regarding the mIoU metric. 168
B.5 Variability of the performances plots for all combination of losses in Range-

Doppler and Range-Angle tasks regarding the mDice metric. 169
B.6 Qualitative results on two test scenes of CARRADA-Test 170
B.7 Qualitative results on a test scene of RADDet 171
B.8 Qualitative results on two test scenes of in-house sequences 171
B.9 Qualitative results on two test scenes of in-house sequences 172
B.10 Qualitative results on the nuScenes dataset of our propose propagation and

fusion module . 172

C.1 MIMO pre-encoder ablation study . 173

List of Tables

3.1 Publicly-available driving RADAR datasets 44

4.1 Range of values for the simulated RADAR points properties 59
4.2 Performances on the RadarSim-Val and -Test datasets 62
4.3 Quantitative performances of Range-Doppler reconstruction 69
4.4 Parameters and settings of the RADAR sensor 72
4.5 Statistics of the CARRADA dataset . 72
4.6 Semantic segmentation performances (%) on the test dataset for Range-

Doppler (RD) and Range-Angle (RA) representations 80

5.1 Semantic segmentation performance on the CARRADA-Test dataset for
Range-Doppler (RD) and Range-Angle (RA) views) 94

5.2 Ablation study of our proposed architectures 96
5.3 Ablation study of the combination of losses 96
5.4 Semantic segmentation performance on the RADDet-Test dataset for Range-

Doppler and Range-Angle views . 99
5.5 Parameters and settings of the RADAR sensors used in the nuScenes dataset 108

6.1 Specifications of the RADIal’s sensor suite 114
6.2 Scene-type proportions in RADIal . 114
6.3 Object detection performances on RADIal Test split 119
6.4 Free driving space segmentation performances 122
6.5 Complexity analysis of FFT-RadNet . 122

B.1 Multi-view network (MV-Net) architecture 163
B.2 Temporal multi-view network with ASPP modules (TMVA-Net) architecture164
B.3 Hyper-parameters used for training . 165

Abstract

Autonomous driving requires a detailed understanding of complex driving scenes. The
redundancy and complementarity of the vehicle’s sensors provide an accurate and robust
comprehension of the environment, thereby increasing the level of performance and safety.
This thesis focuses the on automotive RADAR, which is a low-cost active sensor measuring
properties of surrounding objects, including their relative speed, and has the key advantage
of not being impacted by adverse weather conditions.

With the rapid progress of deep learning and the availability of public driving datasets,
the perception ability of vision-based driving systems (e.g., detection of objects or trajec-
tory prediction) has considerably improved. The RADAR sensor is seldom used for scene
understanding due to its poor angular resolution, the size, noise, and complexity of raw
RADAR data as well as the lack of available datasets. This thesis proposes an extensive
study of RADAR scene understanding, from the construction of an annotated dataset to the
conception of adapted deep learning architectures.

First, this thesis details approaches to tackle the current lack of data. A simple sim-
ulation as well as generative methods for creating annotated data are presented. It also
describes the CARRADA dataset, composed of synchronised camera and RADAR data
with a semi-automatic method generating annotations on the RADAR representations. To-
day, the CARRADA dataset is the only one to provide annotated raw RADAR data for
object detection and semantic segmentation tasks. The CARRADA dataset and its annota-
tion method form our first major contribution presented at the International Conference on
Pattern Recognition (ICPR).

This thesis then presents a proposed set of deep learning architectures for RADAR
semantic segmentation. A combination of specialized loss functions is also presented, in-
cluding a coherence function that reinforces the spatial harmony of the predictions made
by the model on the different views of the RADAR tensor. The proposed architecture with
the best results outperforms alternative models, derived either from semantic segmentation
of natural images or from RADAR scene understanding, while requiring much less param-
eters. The presented method for semantic segmentation of raw RADAR data is our second
major contribution presented at the International Conference on Computer Vision (ICCV).
This thesis also introduces a method to open up research into the fusion of LiDAR and
RADAR sensors for scene understanding. The proposed method is an early fusion module
propagating the RADAR information in the LiDAR point cloud by considering the reso-
lution and accuracy of the sensor as a quantification of its uncertainty. In this way, our
module is able to create a point cloud that benefits from the advantages of both sensors
while compensating for their disadvantages.

Finally, this thesis exposes a collaborative contribution, the RADIal dataset with syn-
chronised High-Definition (HD) RADAR, LiDAR and camera. A deep learning architec-
ture is also proposed to estimate the RADAR signal processing pipeline while performing
multitask learning for object detection and free driving space segmentation simultaneously.
This collaborative contribution is under review at an international conference.

French Summary

La conduite autonome vise à révolutionner notre mobilité en comprenant et en prévoy-
ant l’environnement de conduite tout en palliant les faiblesses humaines de manière sûre
et efficace. Pour se faire, elle exige une compréhension détaillée de scènes de conduite
complexes. L’environnement du véhicule est observé par des caméras enregistrant des im-
ages facilement compréhensibles par l’œil humain. Au fil du temps, des capteurs actifs
supplémentaires sont apparus, venant compléter les caméras et permettant une meilleure
compréhension des scènes environnantes : le Light Detection And Ranging (LiDAR), le
Radio Detection And Ranging (RADAR) et les capteurs à ultrasons. La redondance et la
complémentarité des capteurs du véhicule permettent ainsi une compréhension précise et
robuste de l’environnement : ils augmentant ainsi le niveau de performance et de sécurité.
Cette thèse se concentre sur le RADAR automobile, qui est un capteur actif à faible coût
mesurant les propriétés des objets environnants, y compris leur vitesse relative, tout en
ayant l’avantage de ne pas être affecté par des conditions météorologiques défavorables.

Avec les progrès rapides de l’apprentissage profond et la disponibilité d’ensembles de
données publiques sur la conduite, la capacité de perception des systèmes de conduite basés
sur la vision (par exemple, la détection d’objets ou la prédiction de trajectoire) s’est consid-
érablement améliorée. Le capteur RADAR est rarement utilisé pour la compréhension de
scène en raison de sa faible résolution angulaire, de la taille, du bruit et de la complexité des
données brutes RADAR ainsi que du manque de données disponibles. Cette thèse propose
une étude approfondie de la compréhension de scènes RADAR : de la construction d’un
jeu de données annotées à la conception d’architectures d’apprentissage profond adaptées.

Tout d’abord, le chapitre 1 de cette thèse introduit les motivations ayant conduit à nos
travaux. En particulier, il aborde les grandes avancées de la conduite autonome ainsi que
l’avènement des algorithmes d’apprentissage.

Le chapitre 2 présente ensuite la théorie de fonctionnement du capteur RADAR et les
méthodes de traitement du signal appliquées aux données enregistrées. Il présente égale-
ment la théorie des réseaux de neurones artificiels ainsi que les architectures d’apprentissage
profond pour l’analyse d’images qui sont, pour la plupart, exploitées dans nos travaux.

Le chapitre 3 présente les ensembles de données RADAR existants et les travaux an-
térieurs sur la compréhension de scènes RADAR pour la détection d’objets et la segmen-
tation sémantique basées sur les algorithmes d’apprentissage profond. Il traite aussi des
approches antérieures de fusion de capteurs combinant le RADAR avec des capteurs de
type caméra ou LiDAR, ou les deux, pour la compréhension de scènes automobiles.

Le chapitre 4 de cette thèse détaille ensuite des approches permettant de remédier au
manque de données. Une simulation simple ainsi que des méthodes génératives pour
créer des données annotées sont présentées. Ce chapitre décrit également le jeu de don-
nées CARRADA, composé de données synchronisées de caméra et de RADAR avec une
méthode semi-automatique générant des annotations sur les représentations RADAR. Au-
jourd’hui, le jeu de données CARRADA est le seul à fournir des données RADAR brutes
annotées pour des tâches de détection d’objets et de segmentation sémantique. Le jeu de

xviii List of Tables

données CARRADA et sa méthode d’annotation forment notre première contribution ma-
jeure présentée à la conférence internationale sur la reconnaissance de forme (International
Conference on Pattern Recognition).

Le chapitre 5 présente ensuite un ensemble d’architectures d’apprentissage profond
pour la segmentation sémantique de données RADAR brutes. Une combinaison de fonc-
tions de perte spécialisées est également proposée dont une fonction de cohérence ren-
forçant l’harmonie spatiale des prédictions réalisées par le modèle sur les différentes vues
du tenseur RADAR. L’architecture proposée la plus performante présente les meilleures
performances comparées aux modèles alternatifs, dérivés soit de la segmentation séman-
tique d’images naturelles, soit de la compréhension de scènes RADAR, tout en nécessi-
tant beaucoup moins de paramètres. La méthode de segmentation sémantique de données
RADAR brutes présentée est notre seconde contribution majeure présentée à la conférence
internationale de vision par ordinateur (International Conference on Computer Vision). Ce
chapitre décrit également une méthode permettant d’ouvrir la recherche sur la fusion des
capteurs RADAR et LiDAR pour la compréhension de scènes. La méthode proposée est
composée d’un module de fusion précoce propageant l’information RADAR dans le nuage
de points LiDAR en considérant la résolution et la précision du capteur RADAR comme
une quantification de son incertitude. De cette manière, notre méthode est capable de créer
un nuage de points bénéficiant des atouts des deux capteurs tout en palliant leurs incon-
vénients.

Le chapitre 6 expose une contribution collaborative, le jeu de données RADIal en-
registré avec un RADAR haute définition (HD), un LiDAR et une caméra synchronisés.
Une architecture d’apprentissage profond est également proposée pour estimer la chaîne
de traitement du signal RADAR tout en effectuant simultanément un apprentissage mul-
titâche pour la détection d’objets et la segmentation de l’espace libre de conduite. Cette
contribution collaborative est en cours de révision dans une conférence internationale.

Enfin, le chapitre 7 de cette thèse conclue sur nos contributions et les limites de nos
travaux. Il présente aussi nos futurs travaux sur la compréhension de scènes RADAR.
En particulier, les pistes d’amélioration de notre méthode de segmentation sémantique
de données RADAR brutes sont abordées. Ce chapitre aborde aussi nos perspectives
d’exploitation de nuages de points RADAR et LiDAR propagés et fusionnés dans le but
d’obtenir une meilleure compréhension des scènes urbaines complexes.

CHAPTER 1

Introduction

Contents
1.1 Context . 1

1.2 Motivations . 4

1.3 Contributions and outlines . 5

1.1 Context

Autonomous driving aims to revolutionize our mobility by understanding and predicting
the driving environment while alleviating for human weaknesses in a safe and efficient
manner. Since the European project Eureka Prometheus (1987-1995) and the American
DRAPA Grand Challenge (2004-2007), the spectacular progresses in visual scene under-
standing using learning algorithms have brought back the old dream of driverless cars
[Janai et al. 2020]. The automotive industry is getting closer and closer to this goal as
the major players have massively invested in advanced technologies: multi-sensor percep-
tion, three-dimensional reconstruction, cartography, high-precision location, planning and
commands.

Scene understanding is a prerequisite, but it goes hand in hand with decision making for
car automation. Both must be mastered to deliver safe vehicles with automatic features to
the public. The automotive industry distinguishes five levels of driving automation. Levels
one and two consist of integrating driving assistance or partially automatic features, while
a human continues to monitor all tasks, e.g. automatic cruise control or lane centering.
These levels are already integrated in the vehicles currently marketed to the public. At
level three, the vehicle is capable of performing most driving tasks in certain conditions,
e.g. highway driving up to 60km/h, but human control is still required for these features.
The automotive industry estimates that level 3 vehicles will be sold to the public in 2024
in European countries. Levels four and five no longer require a driver and perform fully
automatic driving in different circumstances. Depending on the progress of research and
development, these levels could become publicly available in the coming decades.

Advanced Driving Assistance Systems (ADAS) and autonomous driving require a de-
tailed understanding of complex driving scenes. The environment of the vehicle is observed
by cameras recording images that are easily understood by the human eye. Additional ac-
tive sensors have emerged complementing cameras and allowing a better understanding
of the surrounding scenes: Light Detection And Ranging (LiDAR), Radio Detection And

2 Chapter 1. Introduction

Figure 1.1: Sensor setup of the Valeo Drive4U prototype. Source: Valeo.

Ranging (RADAR) and ultrasound sensors. With the transition from assisted to automated
driving, the redundancy and complementary of these sensors aims to provide an accurate
and robust comprehension of the environment, thereby increasing the level of performance
and safety. Redundancy mechanisms are required at all levels of the system: from the
sensing parts to the final decision modules. At the sensor level, they can be reached using
sensors of different types, where each of them offers a vision of the world with its own
properties and physical aspects.

The automotive supplier Valeo is a world leader in the design and manufacturing of
sensors for assistance driving. The company has been actively involved in autonomous
driving research and development for almost ten years, designing sensor prototypes and
real-world experiments (see Figure 1.1). In this context, prototype cars are equipped with
various sensors to record real-life scenes and to understand the complementarity and limi-
tations between the sensors. The recorded and released data from the automotive industry
in collaboration with researchers aim developing research on recent learning algorithms to
better understand the car’s environment.

This thesis focuses on automotive RADARs which are low-cost active sensors mea-
suring properties of surrounding objects, including their relative speed, and have the key
advantage of not being impacted by adverse weather conditions, e.g. rain, snow or fog.
They have been used in the automotive industry for the last two decades, e.g., for auto-
matic cruise control or blind spot detection. RADAR has become the sensor of choice for
applications requiring time to collision as it provides, besides localization, the radial veloc-
ity thanks to the Doppler information. However, it is seldom used for scene understanding
due to its poor angular resolution, the size, noise, and complexity of RADAR raw data as

1.1. Context 3

Figure 1.2: Timeline of the evolution of Artificial Neural Networks and deep learning2.

well as the lack of available datasets. Representations provided by a RADAR sensor are
moreover difficult to understand for non-specialist humans. For these reasons, RADAR
sensors were left out of scene understanding using learning algorithms. This thesis aims
to exploit RADAR data for object recognition in complex driving scenes using modern
machine learning approaches.

Machine learning, as part of artificial intelligence, is the study of computer algo-
rithms that automatically improve their performance by experience. These algorithms use
a dataset, or training data, to learn to recognize patterns and make predictions. Machine
learning algorithms have rapidly developed since the advent of the digital economy and
the abundance of available data. They are applied in many fields, e.g. to predict consumer
behaviour, estimate financial time series, detect cancer cells in medical images, forecast
weather, rank user preferences in video platforms or understand scenes and take decisions
in autonomous driving.

This thesis is centered on a specific category of machine learning algorithms called
Artificial Neural Networks (ANNs). In the human brain, a neuron receives electrical sig-
nals via dendrites. The signals are then processed in the soma, transmitted by the axon
if the signal is above a threshold, and transferred to the next neuron with the synapses.
Inspired by this phenomenon, [McCulloch & Pitts 1943] proposed the first mathematical
formulation of an artificial neuron processing a signal with fixed weights (similarly to den-
drites) and applying a threshold on the output. An extension proposed by [Rosenblatt 1958]
updates the weights regarding the prediction error of the artificial neuron. This algorithm
called the Perceptron is the first biologically inspired machine learning algorithm from
the human brain. In the late 1960’s, [Minsky & Papert 1969] showed the limitations of a
single artificial neuron which is a linear classifier and therefore cannot solve non-linearly
separable classification problems (e.g. XOR). They proposed to overcome this problem by
stacking artificial neurons in layers and by connecting the neurons from a layer to another
creating a neural network, also called Multilayer Perceptron (MLP).

Over the years, several improvements have been published, as illustrated in Figure

2https://towardsdatascience.com/a-weird-introduction-to-deep-learning
-7828803693b0

https://towardsdatascience.com/a-weird-introduction-to-deep-learning-7828803693b0
https://towardsdatascience.com/a-weird-introduction-to-deep-learning-7828803693b0

4 Chapter 1. Introduction

1.2, proposing neural network structures or innovating methods to train these algorithms.
An important step forward is the Convolutional Neural Network (CNN), introduced by
[LeCun et al. 1989] associated with a new learning method, which is particularly adapted
to image analysis. However, it was hampered by the computer limitations of the time.
In the 2010’s, the increase of computing power, in particular with Graphics Processing
Units (GPUs), and the availability of large-scale databases motivated the emergence of
deep learning. Deep learning is a subset of machine learning that involves stacking many
layers in a neural networks. These algorithms were highlighted with a major milestone
reached in 2012 with the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
consisting of classifying images into 1,000 categories (e.g. cats, dogs, or food). The first
deep learning model proposed by [Krizhevsky et al. 2012] outperformed all the existing
methods classifying image in a category with a large margin. In 2015, another deep learn-
ing model introduced by [He et al. 2016] first beat human performance on the ImageNet
challenge making deep learning methods the front page of the computer vision research
community.

Since the 2010’s, deep neural networks have outperformed humans in face recognition
[Taigman et al. 2014] or in the game of Go with AlphaGo [Silver et al. 2016]. The ANN
have been adapted to many types of data: images, videos, point clouds, texts, sounds, time
series or DNA sequences. These impressive performances have attracted the automotive
industry, which sees these algorithms as an answer to the fundamental requirements for
autonomous driving. They are particularly well suited for scene understanding to detect
and classify objects in a car’s environment using camera or LiDAR data. This thesis aims
to investigate deep learning methods for RADAR data, which have barely been explored in
recent years.

1.2 Motivations

Scene understanding requires a high level of perception around the car. For this purpose,
complementary sensors are used to compensate their respective weaknesses. Cameras
record images that provide a comprehensive understanding of a scene, but they are im-
pacted by lighting conditions, e.g. during night or when facing the sun, or by adverse
weather conditions that reduce their visibility (see Figure 1.3). LiDAR is an active sen-
sor transmitting laser beams in the environment and is not affected by lighting condi-
tions. This sensor measures the time it takes to receive reflected light and records the
distance and the intensity of a reflection. The LiDAR sensor provides a 3D point cloud
measuring the geometry of a scene with a resolution below the degree for both azimuth
and elevation angles. However, the laser beams are reflected by droplets or snowflakes
due to their wavelength. Difficult weather conditions create artefacts in the recorded
3D point clouds e.g. with rain [Karlsson et al. 2021], snow [Kurup & Bos 2021] or fog
[Bijelic et al. 2018, Guan et al. 2020]. The RADAR sensor emits electromagnetic waves,
which are not impacted by adverse weather conditions, and records the location, Doppler
and reflectivity of objects in the scenes through the received signals. This sensor is an
interesting candidate for scene understanding because its properties compensate for other

1.3. Contributions and outlines 5

Figure 1.3: Camera image examples of scenes with different lighting and weather
conditions.

sensors in specific scenarios.
With the rapid progress of deep learning and the availability of public driving

datasets, e.g., [Geiger et al. 2013, Cordts et al. 2016, Huang et al. 2019, Yu et al. 2020,
Sun et al. 2020], the perception ability of vision-based driving systems (detection of ob-
jects, structures, markings and signs, estimation of depth, forecasting of other road users’
movements) has considerably improved. This progress quickly extended to LiDAR, with
the help of specific architectures to deal with 3D point clouds [Qi et al. 2017a]. To improve
further the performance of autonomous driving systems, extending the size and scope of
open annotated datasets is a key challenge. The RADAR sensor provides cumbersome and
noisy representations which are difficult to understand. For these reasons, there was no
open source RADAR dataset for automotive application before 2019, which has hampered
research on deep learning applied to RADAR data. Motivated by the relevance of this sen-
sor, this thesis fills the gap in existing works by proposing unique datasets and methods to
generate annotations avoiding costly manual annotations.

While deep learning has brought major progresses in the automotive use of cameras and
LiDARs – for object detection and segmentation in particular – it is only recently that it has
also embraced RADAR signals. In fact, even though the RADAR technology has greatly
improved, the signal processing pipeline has remained the same for years. This sensor is
now a source of interest since public datasets have been released as detailed in Section 3.2.
Motivated by the recent advances in deep learning algorithms, this thesis proposes to adapt
neural network architectures for RADAR scene understanding.

1.3 Contributions and outlines

This thesis proposes an extensive analysis of RADAR scene understanding, from the con-
struction of an annotated dataset to the conception of adapted deep learning architectures.

Chapter 2 provides the background on RADAR theory and signal processing methods
applied to the recorded data. It also briefly introduces the theory behind ANN as well as
present deep learning architectures based on images which are exploited in our work.

Chapter 3 relates the existing RADAR datasets and previous works on RADAR scene
understanding for object detection and semantic segmentation using deep learning algo-
rithms. It also presents previous sensor fusion approaches combining RADAR with either
or both camera and LiDAR sensors for automotive scene understanding.

Chapter 4 details approaches to tackle the lack of data. A simple simulation as well

6 Chapter 1. Introduction

as generative methods for creating annotated data are presented. This chapter also intro-
duces one major contribution, the CARRADA dataset, composed of synchronised camera
and RADAR data with a semi-automatic method generating annotations on the RADAR
representations. Today, the CARRADA dataset is the only dataset providing annotated raw
RADAR data for object detection and semantic segmentation tasks.

Chapter 5 presents our second major contribution, a set of deep learning architectures
with their associated loss functions for RADAR semantic segmentation. Today, the pro-
posed architecture performing the best outperforms alternative models, derived either from
the semantic segmentation of natural images or from RADAR scene understanding, while
requiring significantly fewer parameters. This chapter also introduces a work in progress to
open up research into the fusion of LiDAR and RADAR sensors for scene understanding.

Chapter 6 exposes a collaborative contribution, the RADIal dataset with synchronised
High-Definition (HD) RADAR, LiDAR and camera. A deep learning architecture is also
proposed to estimate the RADAR signal processing pipeline while performing multi-task
learning for object detection and free driving space segmentation3 simultaneously. Today,
RADIal is the only dataset providing raw data from a HD RADAR with annotations for
both object detection and free space segmentation. Moreover, the proposed method is the
only one to successfully learn a part of the RADAR pre-processing pipeline in a multi-task
framework using HD RADAR data.

Finally, Chapter 7 highlights the contributions of this thesis and discuss the perspec-
tives of exploiting RADAR data for scene understanding in the context of autonomous
driving.

The contributions presented in this thesis have led to the following publications:

Publication Chapter

Arthur Ouaknine, Alasdair Newson, Julien Rebut, Florence Tupin and
Patrick Pérez. “CARRADA Dataset: Camera and Automotive Radar with
Range-Angle-Doppler Annotations”, in International Conference on Pattern
Recognition (ICPR), 2020.

4

Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Florence Tupin and
Julien Rebut. “Multi-View Radar Semantic Segmentation”, in International
Conference on Computer Vision (ICCV), 2021.

5

Julien Rebut, Arthur Ouaknine, Waqas Malik and Patrick Pérez. “Raw
High-Definition Radar for Multi-Task Learning”, in Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

6

3The free driving space segmentation task consists to locate pixel-wise the available space that can be
driven.

CHAPTER 2

Background

Contents
2.1 RADAR theory . 7
2.2 Recordings and signal processing . 10

2.2.1 Transformations in the temporal and frequency domains 10
2.2.2 Speckle noise . 12
2.2.3 RADAR representations . 13

2.3 Artificial neural networks . 15
2.3.1 Introduction . 15
2.3.2 At the neuron level . 16
2.3.3 At the layer level . 17
2.3.4 Training a neural network . 18

2.4 Convolutional neural network . 22
2.4.1 Convolutional layer . 22
2.4.2 Complementary methods and layers 22

2.5 Recurrent neural network . 24
2.6 Deep learning . 26

2.6.1 Classification . 26
2.6.2 Object detection . 29
2.6.3 Semantic segmentation . 33
2.6.4 Methods for 3D point clouds . 38

This chapter provides the background to understand the automotive RADAR sensor
and the neural network machine learning algorithms. Section 2.1 presents the theory of the
automotive RADAR sensor. Section 2.2 details the pipeline commonly used to process the
recorded RADAR signals. Sections 2.3, 2.4 and 2.5 introduce the ANN, Recurrent Neural
Network (RNN) and Convolutional Neural Network (CNN) respectively. Finally, Section
2.6 relates deep learning methods and architectures which are exploited in the following
chapters.

2.1 RADAR theory

A Radio Detection And Ranging (RADAR) sensor is an active sensor using its own
source of signal. It generates electromagnetic waves which are emitted via one or sev-
eral Transmitter antennas (Txs). The wavelengths used are significantly larger than the

8 Chapter 2. Background

Figure 2.1: Example of a RADAR chirp. The chirp is generated considering a linearly
modulated frequency as described in Equation 2.1. The signal is transmitted by a Tx an-
tenna and received by a Rx antenna for each reflector in the environment. The IF signal
is deduced from a mixer by comparing the transmitted and received signals (see Equation
2.12). A signal reflected by a single object is illustrated here. Multiple signals are separated
regarding the time delay of the signal round-trips and the phase shift of the waves. It would
be illustrated by distinct IFs, one per object.

visible spectrum and therefore not affected by lighting or adverse weather conditions. The
waves are reflected by an object depending on the composition and the geometry of its
surface. The signals are then received by the RADAR via one or several Receiver anten-
nas (Rxs). The comparison between the transmitted and the received waveforms allows
inferring the distance, the relative velocity, the azimuth angle and the elevation of the re-
flector regarding the RADAR position [Ghaleb 2009] and the positioning of its antennas.
Most of the automotive RADARs use Multiple Input Multiple Output (MIMO) systems
[Donnet & Longstaff 2006]: each couple of (Tx, Rx) receives the reflected signal assigned
to a specific Tx transmitting a waveform.

A Frequency-Modulated Continuous Wave (FMCW) RADAR transmits a signal, called
a chirp [Brooker 2005], whose frequency is linearly modulated over the sweeping period
Ts: at time ts ∈ {0, · · · , Ts}, the emitted sinusoidal signal has the frequency:

fs = fc +
B

Ts
ts, (2.1)

where fc is the carrier frequency, B the bandwidth, B/Ts is the linear slope of the fre-
quency variation, and its phase reads

φE(t) = 2πfst. (2.2)

After reflection on an object at distance r(t) from the emitter, the received signal has
phase:

φR(t) = 2πfs(t− τ) = φE(t)− φ(t), (2.3)

2.1. RADAR theory 9

where τ = 2r(t)
c is the time delay of the signal round trip, with c the velocity of the wave

through the air considered as constant, and φ(t) is the phase shift:

φ(t) = 2πfsτ = 2πfs
2r(t)

c
. (2.4)

Measuring this phase shift (or equivalently the time delay between the transmitted and the
reflected signal) grants access to the distance between the sensor and the reflecting object.

Its relative velocity is accessed through the frequency shift between the two signals,
a.k.a. the Doppler effect. Indeed, the phase shift varies when the target is moving:

fd =
1

2π

dφ

dt
=

2vR
c
fs, (2.5)

where vR = dr/dt is the radial velocity of the target object w.r.t. the RADAR. This
yields the frequency Doppler effect whereby frequency change rate between transmitted
and received signals, fd

fs
= 2vR

c , depends linearly on the relative speed of the reflector.
Measuring this Doppler effect hence amounts to recovering the radial speed:

vR =
cfd
2fs

. (2.6)

Radar’s capability to discriminate between two targets with same range and velocity
but different angles is called its angular resolution. It is directly proportional to the antenna
aperture, that is, the distance between the first and last receiving antennas. The time delay
between the received signals of each Rx transmitted by a given Tx carries the orientation
information of the object.

The MIMO approach [Donnet & Longstaff 2006] is commonly used to improve the an-
gular resolution without increasing the physical aperture: angular resolution increases by a
factor of 2 for each added emitting antenna (Tx). Denoting NTx and NRx the number of its
Tx and Rx channels respectively, a MIMO system builds a virtual array of NTx · NRx an-
tennas. The downside of this approach is that the reflected signal of an object appears NTx

times, making the data interleaved. The RADAR representation is easily de-interleaved
considering a Low-Definition (LD) RADAR since it has at most 2 Tx antennas. This pro-
cessing step applied to a HD RADAR is a greedy task; additional details are provided in
Chapter 6.

Depending on the positioning of the antennas, the azimuth angle and the elevation of
the object are respectively deduced from the horizontal and vertical pairs of (Tx, Rx). The
Angle-of-Arrival (AoA) is deduced from the variation between the phase shift of adjacent
pairs of Rx. In particular, the azimuth angle1 α is obtained with the phase shift variation of
horizontal adjacent Rx noted ∆φα = 2πfs

2h sinα
c , where h is the distance separating the

adjacent receivers.

1A geometric illustration is depicted in Figure 4.8

10 Chapter 2. Background

Figure 2.2: Range-Angle-Doppler (RAD) tensor generation. The signals received by
all pairs of (Tx, Rx) antennas are transformed and stored in a 3D tensor in the frequency
domain. Inverse FFT operations are respectively applied on the chirp index axis to deduce
the range, on the chirp sampling axis (i.e. the frequency sampling for each chirp) for the
Doppler and on the (Tx, Rx) pairs axis for the angle. The generated RAD tensor in the
temporal domain has dimensions BR×BA×BD. Each of its axes has a resolution of δR, δA
and δD respectively depending on the RADAR sensor specificities. The geometry and the
number of RADAR antennas define the recording resolutions in azimuth (δα) and elevation
(δE) angles. Considering low-definition RADAR, the positioning of the antennas is only
able to obtain the azimuth angle and δA = δα.

2.2 Recordings and signal processing

2.2.1 Transformations in the temporal and frequency domains

A RADAR sensor transmits and receives signals, respectively noted sE and sR are written:

sE(t) = AEe
j2πfst = AEe

jφE(t), (2.7)

sR(t) = ARe
j2πfs(t−τ) = ARe

jφR(t), (2.8)

where AE and AR denote their amplitude. The phase shift induced by the time delay
between the transmitted and received signal is computed by correlating the two signals.
The convolution between two signals in the temporal domain is equivalent to a point-wise
product of their Discrete Fourier Transform (DFT). Therefore, the transmitted and received
signals are compared in the frequency domain.

The Fast Fourier Transform (FFT) algorithm applies a DFT to the data from the tem-
poral domain to the frequency domain. Let x : {0, · · · , NT − 1} → C be a sequence of
NT complex signals. For ν ∈ {0, · · · , Nf − 1} a finite sequence of Nf frequencies, the
DFT of x is defined as:

x̂(ν) =

NT−1∑
t=0

x(t)e
−j2πν t

NT . (2.9)

A FFT is applied on NT complex signals for each transmitted and received signals in the

2.2. Recordings and signal processing 11

temporal domain, their DFT is written:

ŝE(ν) =

NT−1∑
t=0

sE(t)e
−j2πν t

NT , (2.10)

ŝR(ν) =

NT−1∑
t=0

sR(t)e
−j2πν t

NT . (2.11)

The signals are compared in the frequency domain with a mixer that generates the
Intermediate Frequency (IF) signal:

m̂(ν) = ŝE(ν) · ŝR(ν). (2.12)

The IF signal, illustrated in Figure 2.1, is deduced from the signal transmitted by Tx and
received by Rx. The mixed signal is filtered using a low-pass filter and digitized by an
analog-to-digital converter (ADC). This way, the recorded signal carries the Doppler fre-
quencies, ranges and angles of all reflectors.

Consecutive filtered IF signals are stored in a frame buffer which is a frequency-domain
3D tensor: the first dimension corresponds to the chirp index; the second one is the chirp
sampling defined by the linearly modulated frequency range; the third tensor dimension
indexes (Tx, Rx) antenna pairs.

The recorded data are finally transformed in the temporal domain as illustrated in Fig-
ure 2.2. E.g. the inverse FFT applied on the chirp index axis processes an inverse DFT
with Nf frequencies on the IF signals (Equation 2.12) as:

m(t) =

Nf−1∑
ν=0

m̂(ν)e
j2πt ν

Nf . (2.13)

This method estimates the peak reached in the IF signal in the temporal domain due
to time delay between the transmission and reception of the signals [Ghaleb 2009,
Molchanov 2014]. Considering the chirp index, the distance of the reflector is then de-
duced from the estimated time delay.

The 3D tensor in the frequency domain (see Figure 2.2) is processed using an inverse
three dimensional fast Fourier transform (3D-FFT): a range-FFT along the rows deducing
the object range, a Doppler-FFT along the columns deducing the objects’ relative velocity
and an angle-FFT along the depth deducing the angle between two objects (see the range-
FFT example in Equation 2.13). This sequence of inverse FFTs results in the Range-Angle-
Doppler (RAD) tensor of dimensions BR×BA×BD, a 3D data cube of complex numbers
where each axis amounts to discretised values of the corresponding physical measurement
as illustrated in Figure 2.2.

The range, velocity and angle bins in the output tensor correspond to discretized values
defined by the resolution of the RADAR. The range resolution is defined as δR = c

2B . The
relative velocity, or Doppler resolution δD = c

2fcT
is inversely proportional to the frame

duration time. The angle resolution δα = c
fcNRxh cos(α) is the minimum angle separation

12 Chapter 2. Background

Figure 2.3: Outline of the RADAR pipeline. An electromagnetic wave is synthetized and
transmitted in the environment with a Tx antenna. The received signal is mixed with the
original one and stored in a tensor in the frequency domain. An inverse Fast Fourier Trans-
form is applied on each axis of the recorded data to generate the Range-Angle-Doppler
tensor in the temporal domain.

between two objects to be distinguished [Iovescu & Rao 2017], withNRx the number of Rx
antennas and α the horizontal azimuth angle between the RADAR and an object reflecting
the signal.

The outline of the RADAR pipeline, which is from the synthesis of the electromagnetic
wave to the generation of the RAD tensor, is depicted in Figure 2.3. The following section
will describe the speckle noise strongly represented in RADAR data.

2.2.2 Speckle noise

The intensities (squared modulus) in the RAD tensor provide information on the power
backscattered by surrounding objects. A visualisation of the tensor by 2D pairs of axes is
proposed in Appendix B.1.1. It can be noticed that information is redundant regarding each
slice of the tensor considering its pairs of axes.

Moreover, the backscattered signal presents strong fluctuations also known as speckle
phenomenon and which have been well-studied by Goodman [Goodman 1976]. The fluc-
tuations are due to the addition of complex backscattered signals of elementary scatterers
in the same resolution cell leading to a random intensity record in the absence of a signif-
icant reflector. The model proposed by Goodman assumes that a large number of echoes
are produced by individual scatterers in a resolution cell with independent and identically
distributed (iid) complex amplitudes. This phenomenon can be modeled as a multiplicative
noise and can be written:

w = u× s, (2.14)

wherew is the measured intensity in a resolution cell, u the underlying reflectivity and s the
speckle [Dalsasso et al. 2021]. According to the work of [Goodman 1976] and considering
multi-looked observations2, the speckle can be modeled as a random variable following a

2The multi-looking method, used with Synthetic Aperture RADAR (SAR), consists in aggregating intensity

2.2. Recordings and signal processing 13

gamma distribution defined as:

p(s) =
LL

Γ(L)
sL−1e−Ls, (2.15)

where L ≥ 1 is the number of looks and Γ(.) the gamma function. As described by
[Goodman 1976], E[s] = 1 and V[s] = 1

L , the higher the number of looks, the lower the
variance of the speckle.

The speckle becomes additive after a logarithmic transform applied to the recorded in-
tensity while stabilizing its variance [Deledalle et al. 2017]. The log-transformed intensity
w̃ is thus written:

w̃ = ũ+ s̃, (2.16)

where s̃ is the log-speckle following a Fisher-Tippett distribution given by:

p(s̃) =
LL

Γ(L)
eLs̃e−Le

s̃
. (2.17)

The expectation and variance of the log-speckle no longer depend on the underlined re-
flectivity. They are respectively noted E[s̃] = ψ(L) − log(L) and V[s] = ψ(1, L),
where ψ(.) is the diagamma function and ψ(., .) is the polygamma function of order L
[Abramowitz & Stegun 1965].

The multi-looking operation, consisting in averaging a few samples, reduces the noise
strength, whereas the logarithmic transform induces a variance stabilization of the result-
ing signal [Deledalle et al. 2017, Dalsasso et al. 2021]. The next section will describe the
transformations applied to the previously presented RAD tensor to obtain interpretable
RADAR representations while reducing the speckle noise.

2.2.3 RADAR representations

Let XRAD be the complex RAD tensor. Aggregating its intensities across one of its di-
mensions leads to three possible 2D views of the tensor: Range-Angle (RA), Range-
Doppler (RD) and Angle-Doppler (AD) illustrated in Figure 2.4. For instance, we define
the RA view, expressed in decibels, as:

xRA[r, a] = ΦD(XRAD), (2.18)

where ΦD is an arbitrary aggregation function compressing the RAD tensor through its
Doppler dimension. As detailed in Section 2.2.2, an averaging followed by logarithm
transform are commonly used in practice. In this work, we average the intensity of the
RAD tensor on its third axis to reduce the speckle noise. Note that the hypothesis of inde-
pendent and identically distributed samples is no longer verified along the third axis, which
will have the consequence of attenuating the reflections3. With this method, the RA view

values of different looks which can be obtained in different ways.
3This limitation is discussed in Section 5.1.5 and Chapter 7.

14 Chapter 2. Background

Figure 2.4: An example of RADAR representations. The Range-Angle-Doppler (RAD)
tensor corresponding to the scene, illustrated with the camera image (a), is aggregated using
Equation 2.19 to create the (b) Range-Angle, (c) Range-Doppler and (c) Angle-Doppler
views corresponding to each 2D pair of axis of the tensor. This scene is a sample of the
CARRADA dataset presented in Section 4.3.

is then defined as:

xRA[r, a] = 10 log10

(1

BD

BD∑
d=1

∣∣XRAD[r, a, d]
∣∣2), (2.19)

with |.| the modulus and BD the number of Doppler bins. Turning RAD tensors into views
aims both to compress substantially the data representation and to reduce its noise while
preserving the objects’ signature. As a consequence, the view representations are inter-
pretable, offering a viable way to exploit the temporal dimension in tensor sequences. They
also meet practical computational and memory constraints imposed by in-car embedding.
Considering an example of application, it reduces the size of the data by a factor of 504.
An example of the RADAR views is illustrated in Figure 2.4.

With conventional FMCW RADARs, the RAD tensor is usually not available as it is
too computationally intensive to estimate. A Constant False Alarm Rate (CFAR) algorithm
[Rohling 1983] is typically applied to filter RD views. It keeps the highest intensity values
while taking into account the local relation between points. The AoA is then computed
for each high reflection to obtain a sparse RADAR point cloud, also called Direction-of-
Arrival (DoA) point cloud, in Cartesian coordinates while each point has its Doppler and
Radar Cross Section (RCS). To translate the AoA into an effective angle, one needs to
calibrate the sensor. An alternative to the third FFT is to correlate in the complex domain
the RD spectrum with a calibration matrix, to estimate the angles (azimuth and elevation).
The complexity of this operation for a single point of the RD tensor is O(NTxNRxBABE),
where BA and BE are respectively the number of bins over which azimuth and elevation

4As an example, the CARRADA dataset [Ouaknine et al. 2020], detailed in Section 4.3.1, provides RAD
tensors of 17MB each. Their corresponding aggregated views are 0.1MB for RD/AD and 0.5MB for RA.

2.3. Artificial neural networks 15

angles are discretized in the calibration matrix. A LD RADAR considers a single elevation
(BE = 1) and the azimuth resolution is low. This process is therefore computationally
affordable to generate sparse RADAR point clouds. However it meets a bottleneck with
HD RADARs.

Multiple representations of RADAR data are available depending on the signal pro-
cessing pipeline applied on the recordings: Analog-to-Digital Converter (ADC) data, RAD
tensor, RD/RA/AD views or sparse point clouds. The fewer the pre-processing of the data,
the more precise the signal corresponding to the objects is, the more cumbersome the rep-
resentation is and the higher the level of noise. The point cloud is the lighter representation
but the CFAR filtering has drawbacks: it drastically shrinks the shape of the objects’ sig-
nature and loses small, low-reflection signatures, especially non-metallic objects such as
pedestrians. Selecting a RADAR data representation depends on the application (classifi-
cation, detection, semantic segmentation) and on a trade-off between volume of the data
and the applied method. The following section introduces the background on ANN.

2.3 Artificial neural networks

2.3.1 Introduction

Machine learning is the process optimizing parameters of a statistical model to solve a task
[Hastie et al. 2001]. The parameters of the model are adjusted to separate or combine the
input data samples regarding redundant patterns. The supervised learning scheme assumes
that each data sample has a label corresponding to the task to solve (e.g. categorizing the
image of a cat, detecting cancer cells in medical images, predicting the values of a financial
time series and so on). The optimization process consists in minimizing the error between
the prediction of the model and the corresponding label. In other words, a machine learning
algorithm is able to solve a task by learning to transform data.

Datasets are diverse and many different tasks can be learnt by a machine learning al-
gorithm. The most common are classification (e.g. categorizing an image), detection (e.g.
localizing an object in an image), regression (e.g. predicting the future price of a product),
denoising (e.g. cleaning a corrupted sample) and machine translation (e.g. translating a
sentence from a language to another).

Let consider a supervised learning setting, where X = {x0, · · · , xN−1} is a set of
data with N samples and Y =

{
y0, · · · , yN−1

}
their corresponding ground-truth labels.

A machine learning algorithm is a function noted fθ(.) parameterized by a vector θ =

(θ0, · · · , θd−1), where d is the number of parameters in the model. It tries to predict a label
for each sample of the dataset as

fθ(xi) = ŷi, (2.20)

where xi ∈ X and ŷi ∈ Ŷ =
{

ŷ0, · · · , ŷN−1

}
is the prediction of the model.

In practice, the dataset is randomly divided into a training set and a testing set, respec-
tively

{
XTrain,YTrain} and

{
XTest,YTest}. It aims to estimate iid training and testing sets

with a random separation of the entire dataset. Therefore, the algorithm will be evaluated
on data that it has never seen during its training period.

16 Chapter 2. Background

Figure 2.5: Illustration of a biological neuron (left) and its mathematical model (right).
[Karpathy 2021].

Let L(., .) be a function quantifying the error between the ground truth and the pre-
dictions of the mode. The supervised learning optimization process tries to find a set of
optimal parameters θ∗ minimizing the error between the ground-truth labels and the pre-
dictions. During training, it is sought as:

θ∗ ∈ arg min
θ

1

NTrain

NTrain−1∑
i=0

L(yTrain
i , fθ(xTrain

i)), (2.21)

where NTrain is the number of elements in XTrain. Once the optimization process has con-
verged, i.e. the training loss oscillates under a threshold, the generalization error of the
model is evaluated as 1

NTest

∑NTest−1
i=0 L(yTest

i , fθ∗(xTest
i)), where 1

NTest is the number of ele-
ment in XTest, or with a defined evaluation metric related to the task to solve.

2.3.2 At the neuron level

In the human brain, a neuron receives electrical signals via dendrites which are processed
in the soma (the cell body) and transmitted by the axons if the signal is above a threshold.
The synapses finally transfer the signals to another neuron using the axon terminals. A
representation is depicted in Figure 2.5 (left). A simple mathematical formulation of a
biological neuron as illustrated in Figure 2.5 (right), we will name it Artificial Neuron
(AN).

The Perceptron [Rosenblatt 1958] algorithm is the simplest AN optimizing its weights
via a machine learning process. It is a supervised linear classifier predicting a binary out-
puts as

fθ(x) =

{
1 if θ · x + b > 0,

0 otherwise,
(2.22)

where b a bias scalar value. The optimization process will converge only if the data are
linearly separable, which is usually not the case. An activation function, noted σ(.), is
introduced to mimic the axon behavior thresholding the signals in a biological neuron.
This function aims to introduce a non-linearity and extend its capacity to separate the data.

2.3. Artificial neural networks 17

The mathematical formulation of an AN is written

fθ(x) = σ(θ · x + b), (2.23)

which is equivalent to the Perceptron when σ is a Heaviside step function. The most com-
mon activation functions are:

• The sigmoid function “squashing” the values into a range of [0, 1]: σ(a) = 1
1+exp(a) ;

• The hyperbolic tangent (tanh) “squashing” the values into a range of [−1, 1]: σ(a) =
2

1+exp(−2a) − 1;

• The Rectified Linear Unit (ReLU) function thresholding the value to zero: σ(a) =

max(0, a);

• The Leaky Rectified Linear Unit (LeakyReLU) function allowing a small negative
slope of the input value: σ(a) = max(εa, a), where ε is the slope.

Note that the activation functions have linear, or approximately linear, regions according to
their limits. An activation is saturated when it reaches a linear region and has a constant,
or almost constant value.

When the sigmoid function is used as the activation function, the neuron behaves like
a binary linear classifier, a.k.a. logistic regression, providing a probability to belong to a
class. The activation function is chosen according to the problem to solve and the expected
distribution of the data.

2.3.3 At the layer level

The Perceptron algorithm is not able to solve exactly the XOR problem which is not lin-
early separable [Minsky & Papert 1969]. The MLP algorithm leverages this limitation by
considering multiple Perceptrons stacked together to form a layer. Multiple layers of neu-
rons are considered in the MLP to learn specific patterns and non-linear dependencies be-
tween the input data as illustrated in Figure 2.6. The MLP is a special case of the ANN
where each neuron of its hidden layer is connected to each neuron of the next layer with
a unique weight. It is also named fully connected layer. Note that there is no connec-
tion between the neurons of the same layer. The MLP algorithm consists in three types of
layers:

• The input layer receiving the data as input of the model;

• The hidden layer which is a fully connected layer transforming and transmitting the
input signal to the next layer. Note that several hidden layers can follow each others;

• The output layer returning the predictions of the model with one or multiple neurons
depending on the task to solve (i.e. binary classification, multi-class classification,
multi-value regression and so on).

18 Chapter 2. Background

Figure 2.6: Illustration of a Multilayer Perceptron. The illustrated algorithm
[Karpathy 2021] is a 3-layer neural network with three inputs, two hidden layers of four
neurons each and a single output layer. There is no connection between the neurons of the
same layer.

2.3.4 Training a neural network

Training an ANN means adapting the weights associated to each neuron in order to mini-
mize a loss function. The optimization process iteratively updates the weights of the net-
work by quantifying their gradient w.r.t. the loss function. This function must be differen-
tiable and has to be chosen carefully according to the problem to solve.

Loss functions Considering a regression task, the Mean Squared Error (MSE) loss func-
tion is commonly used to minimize the gap between the true and the predicted values. The
objective is formalized as

min
θ

1

N

N−1∑
i=0

(yi − fθ(xi))2, (2.24)

where N is the number of elements in X.
The binary classification task is tackled using a Binary Cross-Entropy (BCE) loss func-

tion. It quantifies the likelihood to predict the true labels. In practice and under the as-
sumption of an activation function defined in [0, 1], the optimization process minimizes the
negative log-likelihood;

min
θ
− 1

N

N−1∑
i=0

yi log(fθ(xi)) + (1− yi) log(1− fθ(xi)). (2.25)

The multi-class classification consists in predicting for each K class a probability that
an input xi belongs to each one of them. The ground-truth yi is a one-hot vector of K
elements, with 1 at the corresponding index of the class, 0 otherwise. The general opti-
mization problem for multi-class classification using a categorial Cross-Entropy (CE) is
written:

min
θ
− 1

K ·N

K−1∑
k=0

N−1∑
i=0

yk,i log(fθ(xi)k), (2.26)

2.3. Artificial neural networks 19

where
∑K−1

k=0 log(fθ(xi)k) = 1.

Gradient descent optimization The weights of a neural network are initialized before
starting the optimization process. The initialized set of weights θ ∈ Rd denotes the starting
point of the process in a d dimensional space. Initialization is an important choice as it
leads to different local minima, and thus to performance variability.

Considering a neural network with a randomly initialized vector of weights, their val-
ues are usually randomly drawn from a Gaussian or uniform distribution to avoid extreme
values in long tail distributions. There is no better choice between these two distributions
[Goodfellow et al. 2016]. However, the initialisation has a significant impact on both the
optimization process and the generalisation capacities of the network. Practical exam-
ples of uniform distributions used for the weight initialisation are U(−0.3, 0.3), U(0, 1) or
U(−1, 1).

The Xavier initialization method [Glorot & Bengio 2010] is commonly used and con-
sists in randomly drawing the initial weight values in U(− 1√

n
, 1√

n
), where n is the number

of inputs of the initialized layer. An extension named normalized Xavier initialisation con-

siders the uniform distribution defined as U(−
√

6
n+m ,

√
6

n+m), where m is the number of
neurons in the initialized layer. This initialization method is generally used to train neural
network architectures because the magnitude of the values is well defined w.r.t. the input
and current layers.

A common practice in deep learning, called pre-training or transfer learning, consists in
initializing the model with a weight vector that has already been learnt on a pretext task with
a large annotated dataset. The pre-trained parameters are then fine-tuned on a down-stream
task, usually with fewer annotations available, benefiting from the knowledge acquired in
the previous optimisation process.

The optimization process considers an arbitrary differentiable loss function L(., .). The
error between the ground truth labels and the predictions of the model fθ(.) is quantified as
1
N

∑N−1
i=0 L(yi, fθ(xi)) as described in the previous paragraphs. The optimization method

commonly used during the training process is the Stochastic Gradient Descent (SGD)
[Robbins & Monro 1951, Kiefer & Wolfowitz 1952]. It updates the weights iteratively in
a direction opposite to the gradient of the loss function. Computing the gradients w.r.t. the
loss is not scalable considering the entire training dataset. Let’s consider a “batch” of B
samples, written XB = {x0, · · · , xB−1}, the SGD method is defined as:

θt := θt−1 −
η

B
∇θ

B−1∑
i=0

L(yi, fθ(xi)), (2.27)

where η > 0 is the learning rate, θt the parameters of the model at iteration t and xi, yi the
i-th sample of the batch with its associated label.

The learning rate is a key hyperparameter defining the amplitude of the weight update.
It is chosen carefully because if it is small, the optimization will reach a local minima with
numerous number of steps. And if it is high, the process may diverge.

The optimization landscape of a neural network training algorithm is complex and non-

20 Chapter 2. Background

convex. Thus it converges to a local minima which is difficult to characterize. Exploring
gradient descent algorithms and the optimization landscape of neural networks is an ac-
tive field of research. In the presented experiments, the ADAM [Kingma 2015] method is
used for optimization. It is an efficient process considering momentum of the gradients
to remember their past trajectories. The parameter update depends on mt the estimation
of the bias-corrected first moment and vt the estimation of the bias-corrected second mo-
ment. Considering a batch of B samples, the iterative gradient descent method proposed
by [Kingma 2015] is defined as:

mt :=
β1mt−1 + (1−β1)

B ∇θ
∑B−1

i=0 L(yi, fθ(xi))
(1− βt1)

, (2.28)

vt :=
β2vt−1 + (1−β2)

B ∇2
θ

∑B−1
i=0 L(yi, fθ(xi))

(1− βt2)
, (2.29)

θt := θt−1 − η
mt√
vt + ε

, (2.30)

where β1, β2 ∈ [0, 1) the exponential decay rates of the momentum estimations, ε = 10−8

and βt1, β
t
2 denoting respectively β1, β2 to the power t.

Forward and backward propagations During the training process, a feedforward pass
through the network is performed to infer the predictions regarding an input. The loss
function is evaluated by comparing the predictions and the ground-truth labels. Then the
back-propagation step aims to evaluate the gradients of the weights regarding the loss func-
tion thanks to the chain rule.

Let θ = (θ0, · · · , θd−1) be the vector of d weights of a neural network. The network
can be represented as an oriented graph where each neuron is a vertex. The neurons are
connected to the previous and next layers via edges corresponding to the weights of the
network.

According to the chain rule, the gradient of a weight will integrate all other weights
on which it depends to calculate the loss, i.e. the path on the graph that leads to the loss.
Considering that θn is the last edge leading to the loss computed at the last neuron, the
gradient of θi w.r.t. the loss depends on (θi, · · · , θn). It is computed as:

∇θiL(y, fθ(x)) =
δL(y, fθ(x))

δθi
=
∑
j

δL(y, fθ(x))

δfθj (x)

δfθj (x)

δθi
, (2.31)

where fθj (x) is the sub-function, i.e. the sub-graph, of fθ(x) parameterized
by {θj , · · · , θn} weights. We suggest that the reader refers to the work of
[Goodfellow et al. 2016] for in-depth details on graph computing for back-propagation.

Regularization A machine learning model is over-parameterized if its number of param-
eters is much larger than the number of training samples. As a consequence, it has the
capacity to learn the data itself, in other words to over-fit the training set, leading to a lack
of generalization and poor performances on the test set. This problem is tackled using

2.3. Artificial neural networks 21

Figure 2.7: Example of Dropout. Example of the Dropout method [Srivastava et al. 2014]
with a probability of 0.5.

regularization methods to constraint the parameters of the model during the optimization
process.

The L1-norm is useful to reduce the dimension of the parameter space by forcing their
value toward zero. The optimization is written

min
θ

N−1∑
i=0

L(yi, fθ(xi)) +
λ

2
‖θ‖1 , (2.32)

where λ is an hyperparameter to scale the regularization strength. The L2-norm used as
a regularization method aims to penalize extreme values of the weights. It reduces over-
fitting on outlier data. The optimization is written

min
θ

N−1∑
i=0

L(yi, fθ(xi)) +
λ

2
‖θ‖22 . (2.33)

The dropout method [Hinton et al. 2012, Srivastava et al. 2014] regularizes neural net-
works by keeping a few active neurons with a propability p at each iteration of the training.
The targeted neurons are randomly chosen at each optimization step. Figure 2.7 illustrates
this method with p = 0.5. During the forward propagation, the neurons of the i-th layer
transmit the signal f iθi(x) to the (i+ 1)-th layer. Let zi+1 be a binary vector taking 1 with
probability p and 0 with probability 1− p. The neurons at the layer i+ 1 are selected as:

f i+1
θi+1

(x) = zi+1 � (f iθi(x) · θi + bi). (2.34)

At training time, each zi is randomly drawn during the forward pass, they are fixed
during the backward pass. A test time, the dropout method is not applied but a scaling
factor of 1

1−p over the set of weights compensates the high number of neurons alive. The
dropout method prevents over-fitting by reducing artificially the number of parameters to
train, it is commonly used in fully connected layers.

22 Chapter 2. Background

2.4 Convolutional neural network

2.4.1 Convolutional layer

Natural images recorded from cameras are presented as 3D matrices. Their pixels are in the
range [0, 255] for each Red, Green and Blue (RGB) channels. Using images as the input
of a machine learning model, in particular considering a fully connected ANN, is com-
putationally expensive. As an example, considering an image of dimension 200×200×3,
a single fully connected layer will be represented by 120,000 parameters to process each
pixel. The previous ANN cannot scale to high dimensional input representations. More-
over, it is not able to learn spatial features directly from the input data.

In recent years, CNNs using convolution operations has been explored to tackle these
issues. Let f ∈ RH×W×C an image or feature map with C channels and g ∈ Rk1×k2×C a
set of C 2D kernels. The 2D convolution operator is formally written

(f ∗ g)(h,w) =

+∞∑
i=−∞

+∞∑
j=−∞

+∞∑
c=−∞

f(i, j, c)g(h− i, w − j, c), (2.35)

where h,w ∈ N defines the coordinates in the output feature map. The equivariance to
translation property implies that the convolution of a shifted input contains the same in-
formation as the original one. As a consequence, the operation is able to detect patterns
anywhere in the input.

A convolutional layer convolves a 2D kernel, over the entire input. At each iteration,
it performs a dot product between the group of local values and the kernel, producing a
scalar value. The scalar values are successively stored to create a feature map. This type
of layer aims to learn local and spatial features, while reducing the number of parameters,
making convergence easier than in the case of fully-connected layers. It is particularly well
suited to high dimensional data, composed of redundant geometric and textural patterns,
e.g. images. Moerover, the weights of a convolutional layer kernel are shared on the
entire image meaning that the number of parameters regarding a fully connected ANN is
dramatically reduced.

As the convolution operation is differentiable, its kernels of weights can be learnt using
the back-propagation method [LeCun et al. 1989] with gradient descent regarding a loss
function.

2.4.2 Complementary methods and layers

Practical methods have been introduced to better adapt to the dimensions of the image
and to reduce the computational cost of the convolution operation. The “padding” method
consists in adding default values at the border of the input to simple handle boundary
conditions due to the convolution. Regarding the size of the kernel, additional values are
required to create a feature map with the same size than the input. The default values are
commonly set to zero (zero-padding) but many other methods are employed as duplicating
the border values or replicating values as a mirror. The “stride” method aims to slide the
convolutional kernel on the input with a pixel gap at each iteration similarly as a down-

2.4. Convolutional neural network 23

Figure 2.8: Example of a convolutional layer. An 200×200×3 input volume (light red)
is convolved by a kernel (dark red) producing a scalar value (small blue cube) at each
convolution step. The kernel creates a 2D feature maps once it has sliced the entire input.
The convolutional layer produces as many feature maps as kernels to learn; the output is a
3D tensor of feature maps.

sampling method. A kernel usually convolves an image with a stride of 1 pixel. This
parameter can be increased to reduce the computational cost of the operation, e.g. a stride of
2 will slide the kernel with a gap of 1 pixel between each matrix product and thus, produces
an output down-sampled by a factor of 2. However, small patterns may be missed. The
stride is usually increased when a convolution is applied to high resolution images. Let D
be the spatial dimension of input (either height or width), S the stride of the convolution, P
the additional padding dimension and k the size of the kernel. The dimension of the output
after applying the convolution operation is D−k−2S

P + 1.
The architecture of a neural network dictates the composition of its successive lay-

ers. A CNN extracts information from the input data with successive convolutional layers
[Krizhevsky et al. 2012]. Each one of these layers takes as input the output feature maps
of the previous layer. To reduce the computational cost of such models and learn features
at different scales, the size of the representations is progressively reduced. A pooling layer
is nested between two convolutions applying a max(.) operation on the intermediate fea-
ture map as illustrated in Figure 2.9. As the convolution, it slides the input with a kernel
(usually 2×2) and stores the maximum value in the outputted feature map. The padding
and stride methods are also applicable in the max-pooling layer.

Recent advances in the understanding of neural networks optimization schemes lead to
a better control on the gradient descent algorithms used during training. The distribution of
the inputs of each layer changes during training due to the initialization of the weights, the
intrinsic randomness of the data and the changes in the distribution of the weights in the pre-
vious layer. This phenomena, named internal covariate shift [Ioffe & Szegedy 2015], slows
down the training (requires low learning rates) and may lead to divergence due to saturated
non-linearities. The batch normalization layer introduced by [Ioffe & Szegedy 2015] re-
fining the distribution of the inputs of each layer during training to reach a Gaussian dis-

24 Chapter 2. Background

Figure 2.9: Example of a max-pooling layer. Left: example of the application of a pooling
layer on a 200×200×32 input with a kernel of size 2×2 and a stride of 2. Right: detail of
the application on local regions of the input [Karpathy 2021].

tribution N (0, 1). The batch normalization layer has a significant impact on convolutional
networks by smoothing the optimization landscape to propagate relevant information with
the gradients [Goodfellow et al. 2016]. Let x be the input of a layer over a mini-batch
B = {x0, · · · , xm−1}. The layer first normalizes x w.r.t. to the statistics of the mini-batch
as

µB =
1

m

m−1∑
i=0

xi, (2.36)

σ2
B =

1

m

m−1∑
i=0

(xi − µB)2, (2.37)

x̂i =
xi − µB√
σ2
B + ε

, (2.38)

where x̂i is the normalized sample of the mini-batch input and ε > 0 a negligible value.
The normalized sample is then scaled and shifted as

oi = γx̂i + β, (2.39)

where oi is the output sample of the batch normalization layer and γ, β two learnt pa-
rameters. This layer is commonly applied after a convolutional layer to normalize the
distribution of the transformed data. It is usually followed by an activation layer avoiding
the saturation of the non-linearity. The following section will briefly introduce recurrent
neural network structures.

2.5 Recurrent neural network

A RNN is specialized in processing sequence of data. It is particularly used in temporal
series analysis (e.g. for music, video or stock market) and Natural Language Processing
(NLP) (e.g. textual analysis or translation). Its structure is based on a cell taking as input
an element of the sequence and an activation vector. It outputs an hidden state and an

2.5. Recurrent neural network 25

Figure 2.10: Example of a recurrent neural network. A traditional recurrent neural net-
work processes a sequence iteratively and produces an hidden state (ht) and an activation
vector (at) (left). The simplest cell consists in applying three fully connected layers at
different level of the data processing (right).

activation vector. At each iteration, the cell of the network processes the next element
of a sequence with the activation vector produced at the previous step as illustrated in
Figure 2.10 (left). Considering an application where a sequence is used to predict another
sequence, the hidden states produced at each step correspond to the predictions of the
network.

This type of network can be formalized differently depending on the task to solve. The
RNN presented and illustrated in 2.10 (left) is a specific case of a many-to-many appli-
cation because it takes a sequence as input and outputs a sequence, both having the same
length. It is generally used for named entity recognition. A many-to-many application
with different length of sequences is used for text translation, the input sequence of words
is processed completely and the predicted sequence, in another language, is generated af-
terward. The many-to-one processes an entire sequence to generate a single output, e.g. for
sentiment classification in texts. Finally, the one-to-many consists in generating a sequence
by considering a single observation as input.

In the many-to-many application presented in Figure 2.10, considering same length se-
quences, the cell of the RNN defines the operations applied to the element of the sequence
and the activation vector. Let θaa, θax, θha, ba, bh be trainable coefficients shared tempo-
rally and σ1, σ2 activation functions. The traditional RNN cell, illustrated in Figure 2.10
(right), is defined as:

at = σ1(θaaat−1 + θaxxt + ba), (2.40)

ht = σ2(θhaat−1 + bh), (2.41)

where xt is the element of the input sequence at time t, at and ht are respectively the
activation and hidden state vectors produced at time t.

The RNN models have multiple benefits: they process sequences of any length, the
number of parameters does not increase with the input size, they consider the historical
information and the parameters are shared at each timestamp. However, they are really

26 Chapter 2. Background

slow to train and suffer from vanishing gradients which are computed at the end of the
sequence. Long-term dependencies are also difficult to learn because they are lost in the
processing of sequences.

The Long Short-Term Memory (LSTM) cell [Hochreiter & Schmidhuber 1997] aims
to alleviate these limitations with a particular structure learning long and short-term de-
pendencies while easily back-propagating the gradients during time. The details of RNN
cell structures are beyond the scope of this thesis. We suggest that the reader refers to
the work of [Goodfellow et al. 2016] for in-depth information. Many best practices and
modules have been developed in the conception of neural network architecture for the past
few years. The next section aims to provide intuitions on the widely used methods in
deep learning for scene understanding, in particular for classification, object detection and
semantic segmentation.

2.6 Deep learning

Deep learning models are composed of multiple layers stacked one after the other forming
an end-to-end differentiable model trained via back-propagation. Layers and neural net-
work architectures have been widely explored in the past few years improving the feature
representations of the data. Recent large scale annotated datasets helped to train models
with increasing the number of parameters while improving the performances on public
benchmarks and challenges.

This section will focus on deep learning applications for computer vision, in particular
on well-known tasks in scene understanding namely classification, object detection and
semantic segmentation. Examples of these applications are illustrated in Figure 2.11. This
section aims to provide a background on existing layers and deep learning architectures
which will be useful for the following chapters. The reported performances in Sections
2.6.1, 2.6.2 and 2.6.3 are evaluated on different tasks and datasets, thus they can not be
directly compared per se.

2.6.1 Classification

One of the most popular task in computer vision is classification, i.e. associating a category
to each image of a dataset. Classification has been widely explored using the ImageNet
dataset [Deng et al. 2009]. A collaboration between Stanford University and Princeton
University led to this large scale dataset of fourteen millions images annotated in one thou-
sand categories. They created the annotations using set of synonym rings (or synsets)5) of
the WordNet6 lexicon tree. The original challenge consisted in a simple classification task,
each image belonging to a single category among one thousand, from specific breed of dog
to precise type of food. Due to its large scale, the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) is one of the most popular in computer vision. For clarity, we will
call it the ImageNet challenge. This section will detail advances in deep learning architec-
tures and methods which have continuously improved the performances on the ImageNet

5A synonym ring or synset, is a group of data elements that are considered semantically equivalent.
6https://wordnet.princeton.edu/

https://wordnet.princeton.edu/

2.6. Deep learning 27

Figure 2.11: Comparison between different computer vision applications. Examples of
well-known computer vision tasks for scene understanding with one of multiple objects to
recognize.

challenges from 2012 to 2018. In the following paragraphs, we note the top-k error rate
as the inverse of the top-k accuracy, also written 1 − TP+TN

TP+FP+TN+FN , where a prediction is
considered as positive if it is ranked in the top-k highest probabilities considering the pre-
dictions for all classes; and TP the true positive, TN the true negative, FP the false positive
and TN the false negative.

The advent of deep learning (AlexNet). The ImageNet challenge has been tradition-
ally tackled with image analysis algorithms such as SIFT [Lowe 2004] with mitigated
results until the late 90’s. However, a leap in performances has been brought by using
neural networks. Inspired by [LeCun et al. 2012], the first deep learning model proposed
by [Krizhevsky et al. 2012] drew attention to the public by beating all the previous com-
puter vision methods with a top-5 error rate of 15.3%. The proposed AlexNet model can
be considered today as a simple architecture with two consecutive convolutional, max-pool
layers and three fully-connected layers.

Going deeper (VGG). In 2014, [Simonyan & Zisserman 2015] proposed the VGG16 ar-
chitecture, composed of sixteen convolutional layers, four nested max-pool layers and three
final fully connected layers. One of its specificities is to chain multiple convolutional lay-
ers with ReLU activation functions creating non-linear transformations. The authors also
introduced kernels of weights of size 3×3 for each convolution (as opposed to 11×11 fil-
ters in the AlexNet model). They noticed that similar patterns can be learnt with smaller
kernels while decreasing the number of parameters to learn. Using smaller kernels allows
more convolutional layers to be stacked. As a consequence, deep layers have a larger re-
ceptive field. They thus have the capacity to learn fine-grained patterns at different scales.
With these methods, the authors reduced by a factor of two the error rate of the AlexNet
model reaching a top-5 error rate of 7.3% on the 2012 ImageNet challenge.

28 Chapter 2. Background

Inception modules (GoogLeNet and Inception V2). The “inception module” has been
inspired by the work of [Lin et al. 2014a], consisting in training successive convolutional
layers while introducing MLP between two layers. This idea have been exploited by
[Szegedy et al. 2015] who proposed GoogLeNet (a.k.a. Inception V1), a deep neural net-
work with 22 layers of inception modules for a total of over 50 convolutional layers. Their
proposed module is composed of parallel convolutions with 1×1, 3×3, 5×5 kernels of
weights and a 3×3 max-pool layer to increase the sparsity in the model. The produced
feature maps are then concatenated and analyzed by the next inception module. The error
rate on the 2012 ImageNet challenge has decreased to 6.7% while requiring significantly
less memory than the VGG16 architecture (55MB v.s. 490MB). This gap is due to the three
more fully-connected layers in the VGG.

In 2015, [Szegedy et al. 2016] developed the Inception V2 model, mostly inspired by
the first version. The authors have changed the 5×5 kernel in the inception modules by
two 3×3 kernels. It reduces the computational cost of the model which reached a top-5
error rate of 5.6% on the ImageNet challenge. The authors also proposed to factorize the
convolution kernels of an inception module. It consists in replacing a convolution with
a 3×3 kernel with two convolutions of kernels 3×1 and 1×3 respectively. This method
reduces the number of parameters and the computational cost of the model. The Inception
V3 architecture is composed of inception modules with factorized kernels. The authors
also changed the first layers to process higher resolution inputs. They finally reached a
top-5 error rate of 3.58% on the 2012 ImageNet challenge.

Residual learning (ResNet). In their work, [He et al. 2016] noticed that extremely deep
models are difficult to train, leading to decreasing performances. They introduced the
“residual learning” method creating a connection between the output of one or multiple
convolutional layers and their original input with an identity mapping. In other words, the
model tries to learn a residual function keeping most of the information.These connections
also help to better propagate the gradients through deep networks by maintaining their
magnitude. Residual learning neither requires any additional parameters, nor increases the
computational complexity of the model. The authors proposed several architectures, named
ResNet-X, where X is the number of convolutional layers with 3×3 kernels using residual
learning by blocks of two layers. The ResNet-152 performed a top-5 error rate of 4.49 %
on the 2012 ImageNet challenge (less that the inception V3) and it won the 2015 challenge
with a top-5 error rate of 3.57%.

Residual learning and inception modules (Inception-ResNet). [Szegedy et al. 2017]
have combined inception modules increasing the sparsity and residual blocks to learn
deeper networks. The residual inception blocks are stacked with a similar architecture
to the Inception V3 model. It results in the Inception V47, or Inception-ResNet, which can
be trained faster and outperforms other methods with a top-5 error rate of 3.08% on the
2012 ImageNet challenge.

7[Szegedy et al. 2017] developed a pure (i.e. without residual block) Inception V4 and an Inception-
ResNet V2 model which uses inception modules and residual blocks. The aforementioned Inception V4 is
the Inception-ResNet V2 providing the best performances.

2.6. Deep learning 29

Squeeze and excitation module. The “Squeeze-and-Excitation” module has been intro-
duced by [Hu et al. 2018]. It performs a global pooling on the input feature maps, followed
by a fully connected layer with ReLU activation, and a second fully connected layer with
Sigmoid activation. The output is scaled by to the input resolution and a residual connec-
tion is performed. Its main advantage is the low number of parameters due to the down-
sampling applied to the input maps. It won the 2017 ImageNet challenge with a top-5 error
rate of 2.25%.

Conclusion This section described the milestones reached in deep learning for the image
classification task, in particular applied to the ImageNet challenge. Well-known modules
and architectures have be detailed and they are still commonly used for feature extraction
nowadays. However, it is not an exhaustive list of all the existing models between 2012
and 2018. The advances from 2018 to date, in particular on Transformers architectures
[Dosovitskiy et al. 2021, Liu et al. 2021d, Touvron et al. 2021], are beyond the scope of
this thesis.

2.6.2 Object detection

Classification methods detailed in Section 2.6.1 categorize images into a single class, usu-
ally corresponding to the most salient object8. Images, e.g. recorded in urban scenes, are
usually complex and contain multiple objects. In this case, such models are uncertain about
which label to assign. The object detection task consists in localising and classifying all the
objects in an input by predicting a bounding box around each one of them. It is therefore
more appropriate for complex scene understanding. In this section, well-known datasets
and evaluation metrics are briefly introduced. Then, each paragraph will detail a commonly
used deep neural network architecture for object detection. This list is not exhaustive and
additional methods are detailed in Appendix A.1.1.

Datasets. The PASCAL Visual Object Classification (PASCAL VOC)9 dataset
[Everingham et al. 2015] is a well-known dataset for classification, object detection and
segmentation of objects. There are eight challenges spanning from 2005 to 2012, each of
them having its own specificities. Considering the object detection task, there are around
10,000 images for training and validation with bounding boxes covering 20 categories.

Since 2013, ImageNet [Russakovsky et al. 2015] has released an object detection chal-
lenge with bounding boxes. The training dataset is composed of around 500,000 images
only for training and 200 categories. It is rarely used because the size of the dataset requires
a large computational power for training. Also, the high number of classes is difficult to
tackle considering the object recognition task. A comparison between the 2014 ImageNet
dataset and the 2012 PASCAL VOC dataset is available online 10.

The Common Objects in COntext (COCO)11 dataset [Lin et al. 2014b], developed by

8Misleading examples in ImageNet have a single label although several objects are visible.
9http://host.robots.ox.ac.uk/pascal/VOC/

10http://image-net.org/challenges/LSVRC/2014/
11http://cocodataset.org

http://host.robots.ox.ac.uk/pascal/VOC/
http://image-net.org/challenges/LSVRC/2014/
http://cocodataset.org

30 Chapter 2. Background

Microsoft, proposes four challenges: caption generation, object detection, key point de-
tection and object segmentation. This section focuses on the object detection task of the
COCO dataset consisting in localizing the objects in an image with bounding boxes and
categorizing each one of them between 80 categories. The dataset changes each year but
it is usually composed of more than 120,000 images for training and validation, and more
than 40,000 images for testing.

Evaluation metrics. The object detection challenge contains a regression and a classifi-
cation task. First of all, the bounding boxes with low confidence (the model usually outputs
many more boxes than actual objects) are removed to assess the spatial precision. Then,
the Intersection over Union (IoU) is defined as the percentage |A∩B||A∪B| , whereA is the area of
the predicted bounding box and B is the ground-truth box. The higher the IoU, the better
the predicted location of the box for a given object. A threshold is usually applied on the
IoU values to select the bounding box candidates.

The mean Average Precision (mAP) metric consists in computing the Average Pre-
cision (AP) over all the categories of the dataset. Let AP = TP

TP+FP be the Average
Precision (AP) with TP the true positive and FP the false positive predictions, we note
mAP = 1

K

∑K−1
k=0 APk where K is the number of classes in the dataset and APk is the

AP for the k-th class. The mAP metric avoids extreme specialization in a few classes and
thus weak performances in the others. This metric considers only the predicted bounding
boxes with a sufficient overlap with the ground truth, i.e. with a threshold on the IoU. The
IoU threshold is usually fixed but a high number of bounding boxes increases the number
of candidate boxes. The COCO challenge has developed an official metric avoiding an
over-generation of boxes. It computes a mean of the mAP scores for a set of IoU threshold
values in order to penalize a high number of bounding boxes with wrong classifications.
This set of thresholds is defined between 0.5 and 1 with a 0.05 step.

Region-based Convolutional Network (R-CNN). This method starts with a selective
search [Uijlings et al. 2013] initializing small regions in an image and merging them with
a hierarchical grouping. The detected regions are merged according to a variety of color
spaces and similarity metrics. It outputs a small number of region proposals which could
contain an object. The R-CNN model [Girshick et al. 2016] combines the selective search
method detecting region proposals and deep learning to classify the objects. Each region
proposal is resized to match the input of a CNN outputting a 4096-dimension vector of
features. This vector is then used as input of binary SVM [Hearst et al. 1998] classifiers,
one for each class. It is also used as input of a linear regressor adapting the shapes of
the corresponding bounding box to reduce the location error. The CNN is trained on the
2012 ImageNet dataset for classification. It is then fine-tuned using the region proposals
corresponding to an IoU greater than 0.5 with the ground-truth boxes. Two versions are
produced, one version is using the 2012 PASCAL VOC dataset and the other the 2013
ImageNet dataset with bounding boxes. The SVM classifiers are also trained for each class
of each dataset. The best R-CNN models have achieved a 62.4% mAP score on the 2012
PASCAL VOC challenge (22.0 points increase w.r.t. the second best result on the leader

2.6. Deep learning 31

board) and a 31.4% mAP score over the 2013 ImageNet dataset (7.1 points increase w.r.t.
the second best result on the leader board).

Fast Region-based Convolutional Network (Fast R-CNN). The objective of Fast R-
CNN [Girshick 2015] is to reduce the computational cost due to the diversity of models
required to analyse all region proposals. A CNN takes the entire image as input instead
of a specialised one for each region proposal (R-CNN). Region of Interests (RoIs) are
detected with the selective search method applied on the produced feature maps. Formally,
the feature maps size is reduced using a RoI pooling layer to get valid Region of Interests
with fixed height and width as hyperparameters. Each RoI layer feeds fully connected
layers12 creating a vector of features. The vector is used to predict the observed object with
a softmax classifier and to adapt the bounding box location with a linear regressor. The
best Fast R-CNN models have reached mAP scores of 70.0% for the 2007 PASCAL VOC
challenge, 68.8% for the 2010 PASCAL VOC challenge and 68.4% for the 2012 PASCAL
VOC challenge.

Faster Region-based Convolutional Network (Faster R-CNN). The aim of the Faster
R-CNN [Ren et al. 2015] is to replace the selective search method with a Region Proposal
Network (RPN) to generate region proposals, predict bounding boxes and detect objects
only with CNNs. The Faster R-CNN combines an RPN and a Fast R-CNN model.

The RPN takes as input the entire image and produces feature maps. A window of
size 3×3 slides over all the feature maps and outputs a 256-dimension vector of features
linked to two fully connected layers, one for box regression and one for box classification.
Multiple region proposals are predicted by the fully connected layers. A maximum of
k regions is fixed, thus the output of the box regression layer has a size of 4k (for each
box, coordinates of a corner of the boxes and its height and width) and the output of the
box classification layer a size of 2k (“objectness” scores to detect an object or not in the
box). The k region proposals detected by the sliding window are called anchors. When the
anchor boxes are detected, they are selected with a threshold applied on the “objectness”
score keeping only the relevant boxes. These anchor boxes and the feature maps computed
by the initial CNN model are used as input of a Fast R-CNN model.

Faster R-CNN uses RPN to avoid the selective search method, it accelerates the training
and testing processes while improving the performances. The RPN is a pre-trained model
using the ImageNet dataset for classification, it is then fine-tuned on the PASCAL VOC
dataset. The best Faster R-CNN models have obtained mAP scores of 78.8% on the 2007
PASCAL VOC challenge and 75.9% on the 2012 PASCAL VOC challenge. The models
have been trained with PASCAL VOC and COCO datasets. One of these models13 is 34
times faster than the Fast R-CNN using the selective search method.

12The entire architecture is inspired from the VGG16 model, thus it has 13 convolutional layers and 3 fully
connected layers.

13The fastest Faster R-CNN has an architecture inspired by the ZFNet model introduced by
[Zeiler & Fergus 2014]. The commonly used Faster R-CNN has an architecture similar to the VGG16 model
and it is only 10 times faster than the Fast R-CNN.

32 Chapter 2. Background

You Only Look Once (YOLO). The YOLO model [Redmon et al. 2016] is a single stage
approach predicting bounding box coordinates and class probabilities with a single net-
work. Its simplicity permits real time predictions during inference. The model takes an
image as input which is divided in an S×S grid. In each cell of this grid is predicted B
bounding boxes with a confidence score. This confidence is defined as the probability to
detect the object multiply by the IoU between the predicted and the ground-truth boxes.
The architecture is inspired by the GoogLeNet model [Szegedy et al. 2015] using incep-
tion modules. It has 24 convolutional layers followed by 2 fully-connected layers. The
inception modules are replaced by 3×3 followed by 1×1 convolutions. The final layer out-
puts a tensor of dimensions S×S×(K + B×5) corresponding to the predictions in each
cell of the grid, where K is the number of classes, B the fixed number of anchor boxes per
cell, each anchor being characterized with 4 coordinates (coordinates of the center of the
box, width and height) and a confidence value. The YOLO model predicts a high number
of bounding boxes since it does not localize Region of Interest (RoI). Thus, there are a lot
of bounding boxes without any object. Non-Maximum Suppression (NMS) it is applied
at the end of the network. It consists in merging highly-overlapping bounding boxes of a
same object into a single one. The YOLO model reached a 63.7% mAP score on the 2007
PASCAL VOC challenge and a 57.9% mAP score over the 2012 PASCAL VOC challenge.
A few years later, the YOLO architecture has been extended in YOLOv2 and the authors
proposed a new model, YOLO9000, capable of detecting more than 9000 categories while
running in almost real time (around 10 Frames-per-Second (FPS)). Details are provided in
Appendix A.1.1.

Single-Shot Detector (SSD). The SSD [Liu et al. 2016] is a single stage model, simi-
larly to YOLO, predicting the bounding box coordinates and the class probabilities simul-
taneously. This end-to-end architecture is fully convolutional using different kernel sizes
(10×10, 5×5 or 3×3). Feature maps from convolutional layers at different levels of the
network are used to predict the bounding boxes. The feature maps are processed by a spe-
cific convolutional layers with a 3×3 kernel called extra feature layers producing a set of
bounding boxes similar to the anchor boxes of the Fast R-CNN. Each box has 4 parameters:
the coordinates of its center, its width and its height. At the same time, a branch produces
a vector of probabilities corresponding to the softmax considering all the classes of object.
The NMS method selecting the relevant bounding boxes is also used at the end of the SSD
model. Hard Negative Mining (HNM) selects relevant boxes among the negative samples
during training: the boxes with the highest confidence are selected depending on the ra-
tio between the negative and the positive samples (evaluated to 1

3 in this work). In their
work, [Liu et al. 2016] distinguished the SSD300 and the SSD512, the latter corresponds
to a SSD300 with an extra convolution on the prediction heads. The best SSD models are
trained with the 2007, 2012 PASCAL VOC datasets and the 2015 COCO dataset with data
augmentation. They obtained mAP scores of 83.2% on the 2007 PASCAL VOC challenge
and 82.2% on the 2012 PASCAL VOC challenge. On the 2015 COCO challenge, they
reached a score of 48.5% for an IoU threshold of 0.5, 30.3% for an IoU threshold of 0.75
and 31.5% for the official mAP metric.

2.6. Deep learning 33

Mask Region-based Convolutional Network (Mask R-CNN). An extension of the
Faster R-CNN has been proposed by [He et al. 2017] performing simultaneously object
detection and semantic segmentation as a multi-task problem. It uses the Faster R-CNN
pipeline with three output branches for each candidate object: a class label, a bounding
box offset and the object mask. It uses RPN to generate bounding box proposals and pro-
duces the three outputs at the same time for each RoI. The initial RoIPool layer, used in
the Faster R-CNN to select object proposals in the feature maps, is replaced by a RoIAlign
layer. It removes the quantization of the coordinates of the original RoI and computes the
exact coordinates of the locations. The RoIAlign layer provides scale-equivariance and
translation-equivariance with the region proposals. The backbone extracting the features is
a ResNeXt architecture [Xie et al. 2017] with 101 layers. Each residual block is slightly
modified from the work of [He et al. 2016] by considering multiple parallel convolutions
producing feature maps which are stacked and followed by a residual connection. The
model detects RoIs which are processed with a RoIAlign layer. One branch of the network
is linked to a fully connected layer adjusting the coordinates of the bounding boxes and
predicting the class probabilities. The other branch is linked to two convolutional layers,
the last one computes the mask of the detected object. Additional details about semantic
segmentation are provided in the next section. The multi-task training is performed by
summing the loss function corresponding to each task into a global one. The gradients
are propagated in the entire network. The Mask R-CNN outperformed the state of the art
in the four COCO challenges: the instance segmentation, the bounding box detection, the
object detection and the key point detection. It reached mAP scores of 62.3% with an IoU
threshold of 0.5, 43.4% for an IoU threshold of 0.75 and 39.8% for the official metric over
the 2016 COCO challenge.

Conclusion. Through the years, object detection models tend to infer localisation and
classification all at once to have an entirely differentiable network. They can be trained
from head to tail with back-propagation. However, a trade-off between high performance
and real time prediction capability is made in the last presented models. This review of
object detection methods using deep learning, supplemented by Appendix A.1.1, is not
exhaustive and ranges from 2015 to 2017. Recent advances have largely extended these
approaches but the previously presented ones are still commonly used.

2.6.3 Semantic segmentation

The semantic segmentation task applied to natural images consists in classifying each pixel
in a category. An extension of this task, called instance segmentation, consisting in classify
each pixel in a category with an identification number to distinguish different instances of
the same category.

Most of the object detection pipelines presented in Section 2.6.2 require anchor boxes
or proposals to localize an object in a scene. Unfortunately, just a few models take into
account the entire context of an image. They are still limited on localizing objects with
small part of the information. They cannot provide a full comprehension of a scene.

Scene understanding requires high visual perception of each entity while considering

34 Chapter 2. Background

the spatial information. In the past few years, other challenges have emerged to better
understand the actions in a image or a video: key point detection, action recognition, video
captioning, visual question answering and so on. This section will focus on the semantic
segmentation task. It will introduce datasets and evaluation metrics; and detail several
well-known architectures and methods. This list is not exhaustive and additional methods
are detailed in Appendix A.1.1.

Datasets. The PASCAL VOC dataset14 (2012) [Everingham et al. 2015], mentioned in
the previous section, is well-known and commonly used for object detection and segmen-
tation covering 20 categories. More than 11,000 images compose the train and validation
datasets while 10,000 images are dedicated to the test dataset.

The PASCAL-Context dataset15 (2014) [Mottaghi et al. 2014] is an extension of the
2010 PASCAL VOC dataset. It contains around 10,000 images for training, 10,000 for
validation and 10,000 for testing. The specificity of this release is that the entire scenes are
segmented between more than 400 categories. Note that the images have been annotated
during three months by six in-house annotators.

There are two COCO challenges16 (in 2017 and 2018) for image semantic segmenta-
tion: “object detection” and “stuff segmentation”. The object detection task consists in
segmenting and categorizing objects into 80 categories. The stuff segmentation task con-
sists in segmenting almost the entire visual information of in an image, e.g. including sky,
wall, grass. This section will denote the COCO semantic segmentation challenge as the
corresponding object detection task since it is the widely explored of the two. The COCO
dataset [Lin et al. 2014b] for semantic segmentation is composed of more than 200,000
images with over 500,000 object instances segmented which are splitted in train, validation
and test17. These datasets contain 80 categories and only the corresponding objects are
segmented.

The Cityscapes dataset18 [Cordts et al. 2016] is composed of complex segmented urban
scenes from 50 cities. There are around 23,500 images for training and validation (fine and
coarse annotations) and 1,500 images for testing (only fine annotation). The images are
fully segmented as the PASCAL-Context dataset with 29 classes, within 8 super categories:
flat, human, vehicle, construction, object, nature, sky, void. This dataset is well-known for
its semantic segmentation task because of its complexity and its similarity with real urban
scenes for autonomous driving applications.

Evaluation metrics. The semantic segmentation task is commonly evaluated using the
mean Intersection over Union (mIoU) metric. As presented in Section 2.6.2, the IoU quan-
tifies the ratio between the overlapping area and the union area between a predicted shape

14http://host.robots.ox.ac.uk/pascal/VOC/
15https://cs.stanford.edu/~roozbeh/pascal-context/
16http://cocodataset.org
17As in many challenges, the test dataset is divided in test-dev (for research) and test-challenge (for the

challenge). The annotations for both datasets are not available
18https://www.cityscapes-dataset.com/

http://host.robots.ox.ac.uk/pascal/VOC/
https://cs.stanford.edu/~roozbeh/pascal-context/
http://cocodataset.org
https://www.cityscapes-dataset.com/

2.6. Deep learning 35

and its ground truth. The mIoU is the average of IoU of all the predicted shapes considering
their ground truth over all the classes.

The official evaluation metric of the Pascal-VOC, PASCAL-Context and Cityscapes
challenges is the mIoU. The COCO challenge also considers the mAP and mean Average
Recall (mAR) metrics for evaluation. Differently from the object detection task, these two
metrics are computed pixel-wise without filtering the shapes with an IoU threshold. The
mAR metric is computed similarly than the mAP detailed in Section 2.6.2. Let AR =

TP
TP+FN be the Average Recall (AR) with TP the true positive and FN the false negative
predictions, we note mAR = 1

K

∑K−1
k=0 ARk where K is the number of classes in the

dataset and ARk is the AR for the k-th class. The works detailed in this section refer to
their performances in term of AP and AR but these metrics are equivalent to the presented
mAP and mAR respectively. We chose to keep the same notations than in Section 2.6.2 for
easier understanding.

Fully Convolutional Network (FCN). The Fully Convolutional Network (FCN) pro-
posed by [Long et al. 2015] is the first model composed only of convolutional layers
trained end-to-end with back-propagation for image segmentation. FCNs are used to
learn features at different scales. It processes an input image with convolutions and
down-samplings. Fully connected layers of well-known architectures (AlexNet, VGG16,
GoogLeNet) are replaced by convolutions to allow non-fixed size inputs. The convolutions
output feature maps with lower and lower dimensions. Thus, they are up-sampled with up-
convolutions (the stride factor is inferior to 1) to recover the original input size. The FCN
uses skip connections from features learnt at different levels of the network to generate the
final output. We denote with FCN-32s a network where the output mask is generated only
by up-sampling and processing feature maps with 1/32 resolution of the input. Similarly,
FCN-16s is a network where 1/32 and 1/16 resolution features maps are used to generate
the output mask. In the same manner, FCN-8s fuses 1/32, 1/16 and 1/8 resolution feature
maps for output prediction. This way, the model classifies each pixel of the input into a
category and it is trained using a pixel-wise loss. The FCN-8s reached a 62.2% mIoU score
on the 2012 PASCAL VOC segmentation challenge using pre-trained models on the 2012
ImageNet dataset.

U-Net. [Ronneberger et al. 2015] proposed an extension of the FCN [Long et al. 2015]
for biological microscopy images. The U-net architecture is composed of two pathways:
a contracting pathway to compute features and an expanding pathway to spatially localise
patterns in the image. The down-sampling or contracting pathway has a FCN architecture
extracting features with 3×3 convolutions. The up-sampling or expanding pathway uses
up-convolution (or deconvolution as detailed in Appendix A.1.2) reducing the number of
feature maps while increasing their dimensions (height and width). Cropped feature maps
from the down-sampling pathway of the network are copied and stacked within the up-
sampling pathway to avoid loosing information. Finally, a 1×1 convolution processes the
feature maps to generate a soft mask of probability to categorise each pixel of the input
image. Since then, the U-net architecture has been widely extended in recent works, a

36 Chapter 2. Background

few of them will be presented in the next paragraphs (FPN, PSPNet, DeepLabv3). This
architecture does not use any fully connected layer. As a consequence, the number of
parameters of the model is reduced and it can be trained with a small labelled dataset
(using appropriate data augmentation). E.g. the authors have used a public dataset with 30
images in their experiments.

Feature pyramid network (FPN). The Feature Pyramid Network (FPN) developped by
[Lin et al. 2017a], inspired from U-Net [Ronneberger et al. 2015], is used in object detec-
tion or image segmentation frameworks. The architecture is composed of a bottom-up
pathway, a top-down pathway and lateral connections in order to join low-resolution and
high-resolution features. The bottom-up pathway takes an image with an arbitrary size as
input. It is processed with convolutional layers and down-sampled by max-pooling lay-
ers. Note that each group of feature maps with the same size is called a stage. The output
feature maps of the last layer at each stage are used for the lateral connections of the fea-
ture pyramid. The top-down pathway consists in up-sampling the last feature maps with
un-pooling while enriching them with feature maps from the same stage of the bottom-up
pathway using lateral connections. Each lateral connection processes the feature maps of
the bottom-up pathway with a 1×1 convolution (reducing the number of feature maps)
and stacks its output with the un-pooled feature maps of the top-down pathway. The con-
catenated feature maps are then processed by a 3×3 convolution producing the output of
the stage. Finally, each stage of the top-down pathway generates a prediction to detect an
object. For semantic segmentation, the authors use two fully connected layers to generate
two masks with different sizes over the objects. It works similarly to Region Proposal Net-
work with anchor boxes (see R-CNN [Girshick et al. 2016], Fast R-CNN [Girshick 2015],
Faster R-CNN [Ren et al. 2015]). According to the authors, the efficiency of this architec-
ture is due to an improvement in the propagation of the information from the last layers
of in the network. The FPN based on DeepMask ([Pinheiro et al. 2015]) and SharpMask
([Pinheiro et al. 2016]) frameworks achieved a 48.1% mAR score on the 2016 COCO seg-
mentation challenge.

Mask R-CNN. As presented in 2.6.2, the Mask R-CNN [He et al. 2017] consists in a
Faster R-CNN with three output branches. First, it uses an RPN extracting RoI and features
are learnt with the RoIPool layer. Then the output branches are specialized in computing
the bounding box coordinates, predicting the associated class and the binary mask19 to
segment the object. The binary mask has a fixed size and it is generated by a FCN for
each RoI. It also uses a RoIAlign layer instead of a RoIPool to avoid misalignments due
to the quantization of the RoI coordinates. The particularity of the Mask R-CNN model
is its multi-task loss combining the losses of the bounding box coordinates, the predicted
class and the segmentation mask. The model tries to solve complementary tasks leading
to better performances on each individual task. The best Mask R-CNN uses a ResNeXt
[Xie et al. 2017] to extract features and an FPN architecture. It has obtained a 37.1% mAP

19The Mask R-CNN model computes a binary mask for each object for a predicted class (instance-first
strategy) instead of classifying each pixel into a category (segmentation-first strategy).

2.6. Deep learning 37

score on the 2016 COCO segmentation challenge and a 41.8% mAP score on the 2017
COCO semantic segmentation challenge.

Atrous convolutions (DeepLab and extensions). Inspired by the FPN model of
[Lin et al. 2017a], [Chen et al. 2018a] proposed the DeepLab architecture combining
atrous convolution, spatial pyramid pooling and fully connected CRFs. This model is also
called the DeepLabv2, it is an adjustment of the original DeepLab model which will not
be detailed here to avoid redundancy. The authors have introduced the atrous convolution
which is equivalent to the dilated convolution of [Zhao et al. 2017]. It consists of convo-
lutions with sparse kernels targeting spread pixels. The number of neurons in the kernel
does not change but they are separated by a fixed number of pixels, named dilation rate.
The atrous convolution helps to capture multiple scales of objects. When it is used without
max-pooling, it increases the resolution of the final output without increasing the num-
ber of parameters. The Atrous Spatial Pyramidal Pooling (ASPP), inspired by PSPNet
[Zhao et al. 2017] (see Appendix A.1.2), consists in applying parallel atrous convolutions
using the same input with different dilation rates. The features maps are processed in sep-
arate branches and concatenated using bilinear interpolation to recover the original size of
the input. The ASPP module helps to learn patterns at different scales with different recep-
tive fields due to the various dilation rates used. The feature maps are then processed by a
fully connected Conditional Random Field (CRF) [Krähenbühl & Koltun 2011] computing
edges between the features and long term dependencies to produce the semantic segmen-
tation. The best DeepLab using a ResNet-101 [He et al. 2016] as backbone has reached
a 79.7% mIoU score on the 2012 PASCAL VOC challenge, a 45.7% mIoU score on the
PASCAL-Context challenge and a 70.4% mIoU score on the Cityscapes challenge.

In their work, [Chen et al. 2017] have revisited the DeepLab framework to create
DeepLabv3 combining cascaded and parallel modules of atrous convolutions. The authors
have modified the ResNet architecture to keep high resolution feature maps in deep blocks
using atrous convolutions. An ASPP module is used with an additional 1×1 layer rand
batch normalization. The contenated outputs are processed by a final 1×1 convolution to
predict the segmentation masks. The best DeepLabv3 model with a ResNet-101 pretrained
on ImageNet and JFT-300M [Sun et al. 2017] datasets has reached 86.9% mIoU score in
the 2012 PASCAL VOC challenge. It also achieved a 81.3% mIoU score on the Cityscapes
challenge with a model only trained with the associated training dataset.

The final version called DeepLabv3+ [Chen et al. 2018b] uses an encoder-decoder
structure. The author first introduce atrous separable convolution composed of a depth-
wise convolution (spatial convolution for each channel of the input using a dilation rate
> 1) and point-wise convolution (1×1 convolution with the depth-wise convolution as in-
put). The DeepLabv3 architecture has been used as encoder. The authors extracted features
with a Xception [Chollet 2017] architecture with modifications: they added convolutional
layers, they replaced max-pooling layers by atrous depth-wise separable convolutions, and
they added batch normalization and ReLU activation following each 3×3 convolutions.
The feature maps of the backbone are processed by an ASPP module with a final 1×1

convolution reducing the number of maps while up-sampling them with a factor of four.

38 Chapter 2. Background

The decoder processes the feature maps from the backbone and from the ASPP module
with convolutions. The final maps are up-sampled by a factor of four to recover the input
dimension and produce the segmentation masks. The best DeepLabv3+ pre-trained on the
COCO and the JFT-300M [Sun et al. 2017] datasets obtained a 89.0% mIoU score on the
2012 PASCAL VOC challenge. The model trained on the Cityscapes dataset reached a
82.1% mIoU score for the corresponding challenge.

Conclusion. The section, supplemented by Appendix A.1.2, described a non-exhaustive
list of neural network architectures for semantic segmentation published between 2015
and 2018. A recurrent problem is these approaches is the lack of global visual context
in the features learnt by the network, partially explored in the EncNet architecture (see
Appendix A.1.2). The state of the art methods used multiple pathways in the network to
better propagate the information and to learn relations between the objects.

Considering an entire image, pixel-wise predictions allow a more accurate understand-
ing of a scene and its environment. It is especially true in the context of autonomous driving
in complex urban scenes. Multi-task learning has also shown that neural networks are able
to learn more relevant features by solving complementary tasks at the same time. As an
improvement, a multi-head architecture could be considered to solve the semantic segmen-
tation task with other tasks proposed in the COCO challenge (e.g. key point detection,
action recognition, video captioning or visual question answering). The following section
will briefly introduce deep learning methods and architectures for 3D point cloud scene
understanding.

2.6.4 Methods for 3D point clouds

Scenes can also be represented in three dimensions, including 3D point clouds, in order to
obtain accurate geometric information. These are points located in 3D Cartesian coordi-
nates. The point cloud representation is sparse, which means that it does not completely
fill the Cartesian space, unlike an image composed of dense adjacent pixels. Methods
presented in Sections 2.6.1, 2.6.2 and 2.6.3 cannot be directly applied to a point cloud
representation as convolutional layers process dense inputs.

The tasks presented in the previous sections for scene understanding have their own
equivalence when applied to point clouds: classification of an entire point cloud, predic-
tion of bounding boxes and point-wise semantic segmentation. In the automotive industry,
the LiDAR sensor is commonly used for theses tasks since it provides 3D point clouds
recordings. Processed RADAR data can be represented as a point cloud in a Cartesian
space (see Section 2.2). The low resolution of the elevation angle of a LD RADAR leads
to process the RADAR point cloud as a Bird’s Eye View (BEV) representation, but both
representations are generally processed with similar methods.

This section introduces well-known deep neural network architectures specialised in
point cloud processing. It aims to provide insights for a better comprehension of the related
work on RADAR point clouds that will be presented in Chapter 3.

2.6. Deep learning 39

PointNet. The PointNet model proposed by [Qi et al. 2017a] is the first end-to-end neu-
ral network architecture that processes unordered sets of 3D points while being adapted for
point cloud classification, point-wise semantic segmentation and scene semantic parsing.
Its first module processes the point cloud with a mini-network called T-Net, based on suc-
cessive fully connected layers extracting point-wise features. The final layer of the T-Net
is a MLP, shared between all the points, predicting an affine transformation matrix. This
matrix is directly applied to the coordinates of the input point cloud to adjust its geometric
representation. Then, a shared MLP learns point-wise features from the transformed point
cloud and forwards them to the next stage. Successive T-Net transformation and shared
MLP process the representations before applying a max-pooling on the point dimension
producing a global feature vector. This vector is then used either as input of an MLP of
point cloud classification, or in a segmentation network for semantic segmentation.

The segmentation network combines local features from the middle stage MLP to the
global feature vector. The concatenated representations are then processed by two succes-
sive MLPs shared between all the points: the first combines the local and global concate-
nated features, the second predicts a class for each point to perform semantic segmentation.

The PointNet architecture uses only shared MLPs and fully connected layers to learn
local and global features from an unordered point cloud. Moreover, it can easily be adapted
to the application. This method reached the best performances for point cloud classifica-
tion, segmentation and scene parsing with less computational complexity than competing
methods. To this day, PointNet is still used as a backbone for point cloud feature extraction
for both LiDAR and RADAR point clouds.

PointNet++. An extension named PointNet++ [Qi et al. 2017b] has been proposed to
capture local patterns with increasing contextual scales in order to improve performances
in complex scenes. The authors proposed a hierarchical neural network applying PointNet
recursively to increase the receptive field of each layer similarly to stacked convolutions
for image processing. This network learns fine-grained structures and either uses the last
down-scaled point cloud as input of a MLP for classification, or merges feature to obtain
the global context of the scene for segmentation.

Additionally to the recursive PointNet, the authors proposed the Multi Scale Grouping
(MSG) and the Multi Resolution Grouping (MRG) approaches. The MSG operates before
the PointNet to concatenate features from different scale levels and obtain a multi-scale
feature. The MRG initially aims to apply a local PointNet on each point provided by the
previous layer. This method is computationally expensive, so the authors approximated
it by using a single PointNet applied to each local group of features which have been
aggregated at a higher level. For the segmentation task, they proposed a Point Feature
Propagation to segment the original point cloud from a down-sampled point cloud. Each
classified point is interpolated at the upper level using an inverse weighting average of its
local neighborhood while the skip connections of the network transmit the information to
each level.

The PointNet++ succeeds to learn hierarchical features with a recursive PointNet while
fusing multi-scale features with grouping approaches. The proposed architecture is more

40 Chapter 2. Background

computationally expensive than PointNet, but it provides better performance and can also
be adapted to various applications. It is also commonly used for 3D scene understanding
depending on the trade-off to reach between the performances and the inference time.

Pixor. The PIXOR architecture [Yang et al. 2018] has been introduced as a single stage
method for 3D object detection from LiDAR point cloud claiming real time inference use-
ful for autonomous driving. The authors transformed a 3D point cloud in dense 2D BEV
representations20, each one corresponding to an elevation angle discretization. The 2D
BEVs are transformed in occupancy grids with fixed resolutions and stacked in the channel
dimension.

The PIXOR architecture is composed of an FPN backbone with successive 2D convo-
lutions and down-sampling layers while respecting that the last feature map has sufficient
resolution per pixel to contain an object. The head part of the network processes the back-
bone feature maps and performs object recognition and location simultaneously. The loca-
tion task consists of classifying each pixel of the feature map as being an object or not. The
recognition task regresses 6 parameters per pixel corresponding to the offset of the object’s
position from the pixel location, its size and orientation.

The proposed architecture uses 2D convolutions on 3D points clouds transformed in
dense representations while being a single stage approach. It reached state of the art perfor-
mances in 3D object detection while operating in real time and is therefore a good trade-off
for autonomous driving applications.

Conclusion. Point clouds are sparse representations that need to be either processed
point-wise, or transformed in dense representations to use conventional methods. This
section provided details on the most mainstream deep learning architectures for point
cloud processing, namely PointNet, PointNet++ and PIXOR. Many recent methods and
specific sparse convolution operations have been designed for 3D point cloud processing
but they are out of the scope of this thesis. We suggest that the reader refers to the work of
[Guo et al. 2020] for in-depth information.

The following chapter will review the related work on RADAR datasets and deep learn-
ing methods applied to RADAR data for scene understanding, in particular for classifica-
tion, object detection and semantic segmentation.

20One of the advantages of the BEV representation is that objects do not overlap w.r.t. the front-views.

CHAPTER 3

Related work

Contents
3.1 Diverse applications . 41
3.2 Automotive RADAR datasets . 43

3.2.1 Traditional RADAR . 44

3.2.2 Scanning RADAR . 45

3.2.3 High-definition RADAR . 45

3.2.4 Our proposals . 46

3.3 RADAR object detection . 46
3.3.1 Range-Angle-Doppler tensor . 47

3.3.2 Range-Angle or Range-Doppler view 47

3.3.3 RADAR point cloud . 48

3.4 RADAR semantic segmentation . 49
3.4.1 Range-Angle view . 50

3.4.2 RADAR point cloud . 50

3.5 Sensor fusion . 51
3.5.1 RADAR and camera fusion . 51

3.5.2 RADAR and LiDAR fusion . 53

3.5.3 RADAR, camera and LiDAR fusion 55

3.6 Conclusions . 55

Over the years, deep learning methods have evolved to suit many research areas. This
chapter reviews the related work of deep learning algorithms applied to RADAR data.
Section 3.1 briefly introduces diverse applications using RADAR data. In Section 3.2,
we focuses on open source RADAR datasets, which are a prerequisite for improvements
in deep learning algorithms. Sections 3.3 and 3.4 respectively review the related works
on object detection and semantic segmentation applied to automotive RADAR. Finally,
Section 3.5 reports on the applications of sensor fusion including a RADAR sensor.

3.1 Diverse applications

As detailed in Section 2.1, a RADAR sensor provides the position and Doppler of the sur-
rounding reflectors, which is interesting to explore in many research areas. Unlike with
a camera, it is difficult to identify and distinguish people in RADAR data. Therefore this

42 Chapter 3. Related work

sensor helps to understand scenes while respecting the privacy of the users. In particu-
lar, hand gesture recognition using RADAR data has been widely explored because of its
application to human control on a mobile device, an electronic watch or inside a car.

Classification of hand gestures has been explored with end-to-end CNN applied
to Doppler spectrograms1 [Kim & Toomajian 2016, Dekker et al. 2017]. Simulated
Doppler spectrograms have also been used to train an MLP for gesture classification
[Ishak et al. 2018]. In their work, [Wang et al. 2016] used CNNs to generate embeddings
of RD sequences used as input of an RNN with an LSTM cell. The presented results have
highlighted that the temporal information is relevant for a classification task using RADAR
data. In the same way, [Zhang et al. 2018b] classified sequences of range spectrograms
stacked in the temporal dimension with 3D convolutions and an LSTM cell trained with a
CTC loss2 function [Graves et al. 2006]. Unsupervised learning has also been explored to
learn representations of range spectrograms with VGG AutoEncoders [Zhang et al. 2019],
which are then fine-tuned for hand gesture classification. [Lei et al. 2020] suggested an ar-
chitecture with different branches to process Range-Doppler and Range-Angle views with
an RNN exploiting the temporal axis for hand gesture classification. An additional spatio-
Doppler attention has also been proposed by [Hazra & Santra 2019]. Since objects’ signa-
tures evolve through time, [Scherer et al. 2021] proposed an architecture for hand gesture
classification with a CNN backbone and a Temporal Convolutional Network (TCN) us-
ing dilated 1D convolutions extracting temporal features from RD and achieving better
results than RNN with LSTM. The RAD tensor has also been considered for hand ges-
ture classification by being aggregated in views which are processed by separate branches
and finally merged [Wang et al. 2021c]. [Sun et al. 2019] detected multiple gestures with
a Faster R-CNN including 3D convolutions on Doppler spectrograms recorded inside a
car. Segmentation and detection of several gestures have also been explored by improving
Mask R-CNN with additional modules of max and average pooling processed by MLPs
[Wang et al. 2019]. Indoor car driver’s hand gesture recognition has been tackled with
multi-class classification using sensor fusion with camera, depth estimation and Doppler
spectrograms processed with 3D convolutions [Molchanov et al. 2015].

Deep learning models have also shown interesting results in differentiating human ac-
tivities. Doppler spectrograms have been used for human detection and indoor activity
classification [Kim & Moon 2016]. A more advanced architecture has been proposed by
[Zhu et al. 2020] using fully 1D convolutions and RNN with LSTM cells to solve the same
task. Doppler spectrograms have been explored for human gait classification including
the temporal information with RNN and LSTM cells [Klarenbeek et al. 2017] or more ad-
vanced architectures with dual stream of the Doppler representation [Chen et al. 2021b]
based on Vision Transformers (ViT) [Dosovitskiy et al. 2021]. Deformable convolutions
[Dai et al. 2017] have been used to adapt convolutional kernels to objects’ signature on
Doppler spectrograms for fall motion classification.

RADAR sensors have also been exploited for outdoor application, e.g. to classify

1A Doppler spectrogram representation is a time-Doppler representation corresponding to a single FFT
applied on the recorded RADAR data considering the chirp sampling axis (see Section 2.2)

2The Connectionist Temporal Classification (CTC) function [Graves et al. 2006] is specialized in calculat-
ing a loss between a continuous time series and a target sequence.

3.2. Automotive RADAR datasets 43

Unmanned Aircraft Vehicles (UAV) using a temporal FCN on Doppler spectrograms
[Brooks et al. 2018]. [Wang et al. 2020b] explored ice layer segmentation with a ground-
penetrating RADAR. Counting people with RADAR data has been addressed by adapt-
ing a network trained on natural images to RA RADAR views and Doppler spectro-
grams using knowledge distillation [Aydogdu et al. 2020]. Since RADAR representa-
tions contain speckle noise, denoising AutoEncoders have been explored on RD views
[de Oliveira & Bekooij 2020] using filtered representations as ground truth. Micro-motions
of raw RADAR data in the temporal domain have been used as input of an AutoEn-
coder to estimate contactless electrocardiograms while considering domain transformation
[Chen et al. 2021a]. Unsupervised learning has also been explored from RA map of a
scanning RADAR to learn feature embeddings using a deep learning architecture for place
recognition [Gadd et al. 2021].

The Synthetic Aperture RADAR (SAR) is used as an embedded sensor on orbital
satellites, planes and aerial platforms. It exploits the motion of the RADAR’s anten-
nas to create an image and uses the combination of multiple pulses to create a synthetic
aperture and improve its spatial resolution. SAR data are similar to 2D BEV represen-
tations, they have been used in many applications, e.g. for pixel-wise land segmentation
[Zhang et al. 2017b, Zhang et al. 2020, Pham & Lefevre 2021] or sensor fusion for panop-
tic semantic segmentation [Garnot et al. 2021]. Deep learning applications have been de-
veloped for SAR data, in particular for earth observation, but are beyond the scope of this
thesis.

The lack of open source RADAR data (with or without annotation) has im-
peded deep learning research in many fields. Generating data as realistic Doppler
spectrograms of simple objects using Generative Adversarial Networks (GANs)
[Goodfellow et al. 2014] has been explored [Truong & Yanushkevich 2019]. Synthetic
RADAR data have been simulated using CycleGAN [Zhu et al. 2017] for ice layer seg-
mentation [Rahnemoonfar et al. 2020]. Doppler spectrograms have also been generated
using GANs for human gait classification. The automotive industry also suffers from the
lack of open source RADAR dataset. Generative approaches could address this issue but
they have shown limitations to reproduce the properties of RADAR data (see Section 4.2.1).
The following section will detail existing automotive RADAR datasets specialized in scene
understanding.

3.2 Automotive RADAR datasets

Deep learning algorithms, trained with large amounts of annotated data, reached impressive
performances for scene understanding tasks. Annotated datasets are required to drive re-
search in scene understanding using RADAR representations. This section will review the
existing open source datasets for RADAR scene understanding which have been released
over the past three years.

44 Chapter 3. Related work

Dataset Year Scale

RADAR data

R
A

D
A

R
ty

pe

M
od

al
iti

es

Se
qu

en
ce

Annotation
type

A
D

C

R
A

D

R
A

or
R

D

PC D
op

pl
er

nuScenes 2019 Large 7 7 7 3 3 LD CLO 3 3D Boxes
Astyx 2019 Small 7 7 7 3 3 HD CL 7 3D Boxes
RadarRobotCar 2020 Large 7 7 3 7 7 S CLO 3 7
RADIATE 2020 Medium 7 7 3 7 7 S CLO 3 2D Boxes
MulRan 2020 Medium 7 7 3 3 7 S CLO 3 7
Zendar 2020 Small 7 7 3 3 3 HD CL 3 2D Boxes

CARRADA (Sec. 4.3) 2020 Small 7 3 3 3 3 LD C 3 2D Boxes, Seg.

CRUW 2021 Medium 7 7 3 7 7 LD C 3 Point Location
RadarScenes 2021 Large 7 7 7 3 3 HD CO 3 Point-wise
RADDet 2021 Small 7 3 3 7 3 LD C 3 2D Boxes

RADIal (Chap. 6) 2021 Medium 3 3 3 3 3 HD CLO 3 2D Boxes, Seg.

Table 3.1: Publicly-available driving RADAR datasets. The dataset scale is Small (<
15k frames), Large (> 130k frames) or Medium (in between). The used RADAR is LD,
HD or Scanning (S). RADAR data are released in different representations, amounting
to different signal processing pipelines: ADC signal, RAD tensor, RA view, RD view,
Point Cloud (PC). Presence of Doppler information depends on the RADAR sensor. Other
sensor modalities are Camera (C), LiDAR (L) and Odometry (O). CARRADA (see Section
4.3) is the only dataset providing both RAD and PC of a LD RADAR with bounding box
and segmentation annotations. RADIal (see Chapter 6) is the only dataset providing each
representation of a HD RADAR, combined with camera, LiDAR and odometry, while
proposing detection and free space segmentation tasks.

3.2.1 Traditional RADAR

Traditional RADARs, or LD RADARs, offer a good trade-off between cost and perfor-
mance. Most of them are composed of two transmitter and four receiver antennas, leading
to eight virtual antennas. They provide accurate range and velocity while being robust to
adverse weather conditions. The nuScenes dataset [Caesar et al. 2020] is composed of 5.5
hours of recorded sequences in two countries including night and rain weather conditions.
This dataset is composed of simultaneous recordings from five RADARs. It has an addi-
tional 32-beam LiDAR and 6 cameras. The RADAR data are filtered and released as sparse
point clouds with Doppler information. Data are annotated with 3D bounding boxes, clas-
sified between 23 classes, and provided in both Cartesian coordinates and camera domain.
The CRUW dataset [Wang et al. 2021b] proposes 3.5 hours of recorded sequences in mul-
tiple scenarios (parking, campus road, city street, highway). The authors used a camera and
a LD RADAR but they released only RA views. The provided annotations are single point
object locations in the RA map with three classes. The recently released RADDet dataset
[Zhang et al. 2021a] contains around 10,158 frames recorded in urban scenes with a sta-
tionary car mounted with stereo cameras and an LD RADAR. The dataset contains RAD
tensors, RA and RD views; it does not contain RADAR point clouds. The annotations are
2D bounding boxes, classified in 6 classes, for each RADAR view. Additional details on
the RADDet dataset and the annotation pipeline proposed by the authors are provided in

3.2. Automotive RADAR datasets 45

Figure 3.1: Examples of Low-Definition, High-Definition and Scanning RADARs.
(Left) Low-Definition RADAR used in the CARRADA dataset (see Section 4.3), (mid-
dle) High-Definition RADAR used in the RADIal dataset (see Chapitre 6) and (right)
Scanning RADAR on the roof of a car used in the Oxford RADAR RobotCar dataset
[Barnes et al. 2020].

Section 5.1.4.1. Traditional RADARs have a poor angular resolution and multiple sensors
are required to have a perception of the scene all around the car. This second limitation is
overcome by scanning RADARs.

3.2.2 Scanning RADAR

Transmitter antennas of scanning RADARs generate signals successively to obtain a
360◦ Field-of-View (FoV) of the scene. The Oxford RADAR RobotCar dataset
[Barnes et al. 2020] contains 280 km of recorded urban scenes in the city of Oxford at
different periods of the year. The car is moving and mounted with three cameras, two 32-
beam LiDARs and a 360◦ scanning RADAR. The provided RADAR representations are
RA maps without annotation. The RADIATE dataset [Sheeny et al. 2021] is composed
of 3 hours of RADAR sequences in diverse types of scenes (parking, urban, motorway
and suburban) with various weather conditions. The moving car is mounted with a cam-
era, a 32-beam LiDAR and a 360◦ scanning RADAR. The provided RA maps are an-
notated with 2D bounding boxes classified between eight classes. The MulRan dataset
[Kim et al. 2020a] has a total of 41.2 km of recorded sequences in urban scenes within
different cities at the month-level temporal gap. The authors used a 64-beam LiDAR and
a 360◦ scanning RADAR to record RA representations without annotation on the RADAR
data. The 360◦ scanning RADARs provide a high perception around the car with their large
FoV, however their angular resolution is limited as traditional RADARs and they do not
provide Doppler information. HD RADAR provides both improved angular resolution and
Doppler information.

3.2.3 High-definition RADAR

Recent HD RADARs reach an azimuth angular resolution below the degree using large
arrays of virtual antennas3. The Astyx dataset [Meyer & Kuschk 2019b] is composed
of only 546 frames without temporal information. The authors used a HD RADAR
coupled with a camera and a 16-beam LiDAR. The dataset provides a dense point

3HD RADARs contains hundreds of virtual antennas against tens for traditional or LD RADARs.

46 Chapter 3. Related work

cloud including the Doppler information with 3D bounding box annotations, classified
in 7 classes, in both Cartesian coordinates and image domain. The Zendar dataset
[Mostajabi et al. 2020] is composed of 7.2 minutes of recorded sequences in urban scenes
with RD, RA representations and RADAR point clouds. The scenes are recorded with a
HD RADAR, a camera and a 16-beam LiDAR. The annotations are provided with 2D
bounding boxes considering a single category in Cartesian coordinates. The RadarScenes
dataset [Schumann et al. 2021] provides four hours for urban scene sequences with diverse
weather conditions, traffic density and road classes (highway, city). The provided data
are point clouds recorded from an HD RADAR and camera images. The camera images
are annotated with semantic segmentation masks and the RADAR data with point-wise
annotations. The objects are distinguished between 11 classes. None of these datasets
provides ADC or RAD tensor data from a HD RADAR. HD RADAR datasets usually pro-
pose RADAR point clouds processed from the raw data. Unfortunately, the pre-processing
pipeline looses information and requires a high computational cost.

3.2.4 Our proposals

In this thesis, we introduce two datasets to overcome the lack of annotated raw RADAR
data for both LD and HD RADAR sensors. In Section 4.3, we propose the CARRADA
dataset, the only dataset providing camera images with synchronised RAD tensors and their
corresponding views annotated with bounding boxes and semantic segmentation labels. A
semi-automatic annotation tool generating the annotations in the RADAR sequences is
also presented. In Chapter 6, our collaborative work proposes the unique RADIal dataset
composed of raw data recorded with HD RADAR together with camera and LiDAR in var-
ious driving environments, filling a gap in existing automotive RADAR datasets. Table 3.1
summarizes the characteristics of the publicly-available driving datasets with RADAR. The
presented open source RADAR datasets have opened up research on scene understanding
for automotive applications. The following sections will detail the related work on object
detection, semantic segmentation and sensor fusion using RADAR data.

3.3 RADAR object detection

Classification of RADAR data for automotive applications has been little explored, e.g. for
vehicle classification [Capobianco et al. 2017]. RADAR point clouds have been exploited
for person identification with the temporal dimension using PointNet [Qi et al. 2017a] with
an attention module [Cheng & Liu 2021] or with causal dilated temporal convolution for
additional tracking [Pegoraro & Rossi 2021]. Classification is a restrictive task not suited
to scene understanding, requiring to detect multiple objects in the environment of the car.
The object detection task has been popular for the past few years to better exploit RADAR
representations and improve the comprehension of the environment of a car.

3.3. RADAR object detection 47

3.3.1 Range-Angle-Doppler tensor

The entire Range-Angle-Doppler tensor has been explored to detect objects in the RA
view corresponding to polar coordinates. In their work, [Major et al. 2019] proposed to
aggregate the views of the RAD tensor by pair of axes, process them with individual CNN
branches and stack their features as the input of a single decoder exploiting the temporal
dimension to detect object in RA. The RAD tensor has also been aggregated in 2D views
in the work of [Gao et al. 2020], each one being processed by a dedicated 3D autoencoder
including the temporal information. The produced feature maps are fused and processed
with an inception module for single point object location in the RA view. The authors also
proposed data augmentation methods specialized for RA views. Additional details on the
RAMP-CNN architecture proposed by [Gao et al. 2020] are provided in Section 5.1.2.2.
In their work, [Palffy et al. 2020] localized an object in RA to crop the RAD tensor and
classify the sub-RAD tensor with the Doppler information into a road user class. Recent
work proposed to extract features from the RAD tensor with a ResNet backbone, consid-
ering the third dimension as channels [Zhang et al. 2021a]. Feature maps are then used
to detect objects with two independent YOLO detection heads, one for 3D coordinates in
the RAD tensor, the other for 2D coordinates in a Cartesian RA map. The RAD tensor is a
cumbersome RADAR representation usually processed with a sub-representation to benefit
from both the location and the Doppler of the reflectors. However, the entire tensor is not
always available, therefore most of the previous related works are single view approaches.

3.3.2 Range-Angle or Range-Doppler view

Single view approaches consider either the Range-Angle or the Range-Doppler view to de-
tect objects in one of them. Information related to the reflectors is reduced because it does
not process the location and the Doppler information of the reflectors simultaneously. Con-
sidering RA view only helps to detect objects in a 2D space but it excludes the Doppler. The
RA views have been used in a two-stage approach [Gao et al. 2019], a clustering localizes
objects’ signatures and a VGG architecture classifies them. Objects have been detected
in RA views with single-stage approaches comparing the YOLO and SSD architectures
[Stroescu et al. 2020]. Objects have been detected and classified in RA views of indoor
scenes using a 300Ghz RADAR with an end-to-end CNN [Sheeny et al. 2020]. Objects
have been detected in Cartesian RA with an architecture similar to SSD while minimizing
the aleatoric uncertainty of the model, i.e. the variance of its predictions [Dong et al. 2020].

The recent CRUW dataset [Wang et al. 2021b] has opened up research on deep learning
architectures for object location (single point detection) in RA view. The RODNet archi-
tecture proposed by [Wang et al. 2021a] processes RA with 3D convolutions and inception
modules to localize objects with a single point considering a confidence map. Objects have
been localised with a teacher-student method based on RODNet while improving spatio-
temporal features with densely connected residual blocks based on atrous convolutions in
both spatial and temporal dimensions [Hsu et al. 2021]. Multiple variants of the RODNet
architectures have been considered [Sun et al. 2021] including temporal inception modules
and fused their prediction to localize objects in RA. A multi-scaled U-Net architecture has

48 Chapter 3. Related work

also been explored for this task [Ju et al. 2021] while proposing an inception module with
3D factorized convolutions. In their work, [Zheng et al. 2021] introduced a neural net-
work with two branches, one recognizing urban scenes and the other localizing objects in
RA. The authors also introduced SceneMix, a set of data augmentation methods for RA
views specialized by type of scenes. More recently, [Azam et al. 2021] proposed to detect
objects in a Bird’s Eye View of RA by considering RADAR representation in grey scale
transformed in RGB, LAB and LUV as the input of a transformer network using multi-head
attention layers.

A few works have performed object detection in RD view providing the velocity infor-
mation of the objects. However their position is ambiguous, only their distance can be de-
duced. Objects have been detected in RD using a YOLO architecture while defining anchor
priors with the objects’ signature in the grid of the representation [Pérez et al. 2019]. The
U-Net architecture has also been considered by [Ng et al. 2020] to process simulated RD
with complex values. In their work, [Lee, Wei-Yu et al. 2021] suggested a self-supervised
method for feature alignment using self-weighted masks and a spatio-temporal consistency
loss exploiting both annotated and non-annotated frames. Their method is applicable to
both RA and RD views.

Other methods have proposed to process the RD view to deduce information about the
location of the objects in the RA. A two-stage approach has been proposed to detect an
object in the RD and then to estimate its angle [Brodeski et al. 2019]. Complex RDs have
been processed with U-Net with complex convolutions to predict bounding boxes in RA
[Stephan et al. 2021]. A recent work of [Meyer et al. 2021] exploited a tensor of RD view,
without the third FFT on the antenna axis, to create a graph which is processed with graph
convolutions and a ResNet Feature Pyramid Network (FPN) backbone for 3D bounding
box detection in RA. These methods try to localise objects without the entire RADAR
information. Advanced neural network architectures have been proposed but they do not
exploit both the location and the Doppler information of the reflectors. The point cloud
RADAR is a lighter representation than the RAD tensor with less information about each
object but it carries both their location and Doppler.

3.3.3 RADAR point cloud

The RADAR representation in Cartesian point cloud contains both the Doppler (excepting
for scanning RADAR) and the RCS information. The point cloud is either sparse or
dense depending on the RADAR sensor (LD or HD). In their work, [Danzer et al. 2019]
processed a 4D RADAR point cloud (Cartesian coordinates, Doppler and RCS) with
modified Frustum PointNets [Qi et al. 2018] generating patch proposals, classifying
each patch, segmenting the points in each patch and regressing the 2D bounding box
coordinates. The work of [Scheiner et al. 2020] used RADAR point clouds to detect,
classify and track masked objects considering reflected waves received by the RADAR
with a specific AutoEncoder (AE) architecture. The PointNet++ [Qi et al. 2017b] archi-
tecture has been explored by [Svenningsson et al. 2021] to process RADAR point clouds
with a 3D convolutional FPN and two output branches, one detecting objects and the
other performing tracking. The work of [Svenningsson et al. 2021] proposed to consider

3.4. RADAR semantic segmentation 49

Figure 3.2: Example of the annotation of a ‘Car’ signature in Range-Doppler. The
annotations of a ‘Car’ signature in a cropped Range-Doppler view are compared between
(a) bounding box and (b) semantic segmentation. The bounding box annotation includes
speckle noise while the segmentation mask is well suited to the object signature. Our
proposed TMVA-Net neural network architecture detailed in Section 5.1.2.3 successfully
segments the object signature (c).

PointNet++ features as a graph and apply graph convolutions to generate contextual
embeddings used to detect and classify objects in a BEV representation of the sparse point
cloud. A dense point cloud of a HD RADAR has been processed for 3D object detection
using a self-attention mechanism to learn global pillar4 features used as input of a 3D
CNN and an RPN head [Xu et al. 2021]. These methods considered point clouds from
either LD or HD RADAR. However, their raw signals are processed to create the point
cloud and objects may be missed as explained in Section 2.2.

The object bounding box detection task has been widely explored but it is not well
suited to RADAR data. Objects’ signatures have non-compact shapes, they are extended
on an axis of the representation and they have various sizes as illustrated in Figure 3.2.
Bounding boxes include noise and sometimes shapes from different categories. The next
section will detail the related work on RADAR semantic segmentation to overcome these
issues.

3.4 RADAR semantic segmentation

The characteristics of the object signature in RADAR representations make semantic seg-
mentation well suited for scene understanding (see Figure 3.2). The shapes are non-
compact due to the surface of the objects which reflecting the signals. Moreover, objects
can be close to each other and partially mixed due to the sensor resolution. The pixel-wise
segmentation of the representations takes these problems into account with more accurate
predictions. RADAR semantic segmentation has not been extensively explored due to the
lack of annotated data. The CARRADA dataset opened up research in this field thanks
to the semi-automatic pipeline generating annotations, including semantic segmentation,
proposed in Section 4.3.2. Nonetheless, to the best of our knowledge, there is no previous

4Point clouds are sometimes transformed into a pillar representation: each point with a 3D Cartesian posi-
tion has its height axis extended with a fixed value.

50 Chapter 3. Related work

work on semantic segmentation using the entire RAD tensor as our method proposed in
Section 5.1. The following sections detail applications of RADAR semantic segmentation
on single RADAR views or on RADAR point clouds.

3.4.1 Range-Angle view

To the best of our knowledge, there is no previous work on RADAR semantic segmentation
on RD views; this section thus focuses on RA views only. Occupancy grid segmentation
is a popular area of research using RADAR data. The work of [Lombacher et al. 2017]
proposed a segmentation of Cartesian RA maps in BEV to distinguish occupied (cars or
others) and free pixels using a 6-layer CNN architecture. The segmentation of Carte-
sian Bird’s Eye View RA map has been extended to classify the pixels between static
(occupied or free) and dynamic road users, using an AutoEncoder architecture with up-
convolutions while predicting the motion of dynamic objects [Hoermann et al. 2018]. In
their work, [Prophet et al. 2019] generated occupancy grids from a dense HD RADAR
point cloud and segmented them between four classes using FCN-8s [Long et al. 2015], U-
Net [Ronneberger et al. 2015] and SegNet [Badrinarayanan et al. 2017]. The DeepLabv3+
[Chen et al. 2018b], FCN and a lightweight version of FCN have been compared for
binary occupancy segmentation of RA views in both Cartesian and polar coordinates
[Nowruzi et al. 2020]. Occupancy grids have also been generated using LiDAR and sparse
RADAR point clouds [Sless et al. 2019] and segmented using a simple CNN architecture
similar to U-Net. HD RADAR point clouds have been used to create 3D occupancy grid
[Prophet et al. 2020], projected in 2D BEV for occupancy segmentation using Deeplabv3+
and SegNet. The work of [Kaul et al. 2020] proposed RSS-Net, the first architecture for
RADAR semantic segmentation trained on Cartesian Bird’s Eye View RA maps with seven
categories. They also proposed a method to transfer the annotations from the LiDAR sen-
sor to the RADAR representation. The RSS-Net architecture is similar to DeepLabv3+
with an ASPP module, it is trained with a custom weighted cross entropy loss. Additional
details on the RSS-Net architecture are provided in Section 5.1.2.2.

3.4.2 RADAR point cloud

The point cloud segmentation task consists in classifying each point in a category.
Point clouds are usually represented in BEV and Cartesian coordinates due to the low
elevation resolution of the RADAR sensor. The PointNet++ architecture [Qi et al. 2017b]
has been used to segment dense HD RADAR point clouds [Feng et al. 2019]. In their
work, [Schumann et al. 2018] segmented 2D RADAR point clouds using PointNet++
with additional multi-scale grouping and feature propagation modules. The Point-
Net++ has also been extended to segment RADAR point clouds with a mean shift
[Comaniciu & Meer 2002] feature extractor learning local dependencies and a feature
fusion module based on attention mechanism [Cennamo et al. 2020]. The work of
[Cheng et al. 2021a] proposed to use the coordinates of the points and the RD view as
inputs of a segmentation network similar to U-Net in order to classify each point as occu-
pied or free. RADAR point clouds in BEV have been segmented for anomaly detection

3.5. Sensor fusion 51

[Griebel et al. 2021], as ghost or multi-reflection, using PointNet++. A 4D RADAR point
cloud from multiple RADARs has been explored by [Schumann et al. 2021], combining
Cartesian coordinates, Doppler and RCS, and processed with three PointNet++ models
and a recurrent point classifier for instance point segmentation. Instance segmentation
has also been explored using HD RADAR with PointNet++ and an additional clustering
method processing the semantic information of the point clouds [Liu et al. 2021a].
Recently, the kernel point convolution (KPConv) layer and a variant of the LSTM cell for
temporal dimension processing have been proposed by [Nobis et al. 2021a] for semantic
segmentation of sparse RADAR point clouds.

RADAR semantic segmentation is an interesting approach for scene understanding as
detailed in Section 5.1. However, many situations are difficult to understand using RADAR
alone because of its low angular resolution and the difficulties of human interpretation. The
following sections will review existing works on sensor fusion using RADAR with camera
and, or, LiDAR providing improvements in many tasks.

3.5 Sensor fusion

3.5.1 RADAR and camera fusion

The camera is a passive sensor that provides a dense and comprehensive representation. It
has been usually preferred to be fused with the RADAR sensor as they are complementary:
they respectively provide dense semantic information and the location and Doppler of the
objects. Camera and RADAR fusion methods commonly use sparse RADAR point clouds.
The following related works are differentiated among three fusion approaches: early (at
the data level, the input of the network), mid-level (at any feature level of the network) and
late (at the prediction level, or last layer of the network). In the presented methods, the
RADAR data have been used to improve performances in image-based tasks.

Early fusion. Early fusion methods project RADAR point clouds in the image using
the calibration of the camera. The precursor work of [Garcia et al. 2012] was not a ma-
chine learning method, but the authors projected a sparse RADAR point cloud in the
camera image to perform block matching and track objects according to their Doppler
information. The work of [Kowol et al. 2021] expended the RADAR points on the entire
height of the image, w.r.t. the poor RADAR elevation resolution, and used it as input of
a YOLO model to perform 2D object detection. Image depth estimation has been explore
by [Long et al. 2021b] with a two-stage approach. The authors trained a network to as-
sociate RADAR points to the objects in the image with a confidence area and a second
model predicts the depth map with the fused camera and RADAR points joined with the
confidence areas. In their work, [Long et al. 2021a] explored full velocity estimation of
sparse RADAR points by mapping a RADAR point to an object in an image, as in the
previous method, and deducing the closed form of the velocity vector of the point using
the optical flow of the object. The RADAR point coordinates have been projected in the
image plan and fused with the image to learn an association between feature vectors of the

52 Chapter 3. Related work

RADAR points and the corresponding object bounding boxes [Dong et al. 2021]. RADAR
point clouds have been aligned with detected objects using a two-path Faster R-CNN for
2D object detection [Liu et al. 2021c].

Mid-level fusion. Mid-level fusion methods process the image and the RADAR data
with independent neural network backbones and merge their feature maps in a common la-
tent space. In the work of [Chadwick et al. 2019], RADAR points have been projected
in the image plan, two ResNet branches process the camera image and the RADAR
point cloud image producing feature maps which are fused and used as input of detec-
tion heads similarly to the SSD architecture improving long range detection. In their
work, [Nobis et al. 2019] used a similar point cloud processing but the two CNN branches
are linked with intermediate connections at each stage, a final FPN detects 2D objects
while an additional module focuses the weights on a certain sensor. In the same manner,
[Yadav et al. 2020] fused the features of the two branches in a mid-level stage of an FPN
for 2D object detection. Feature maps have been fused by considering an SSD architec-
ture with RADAR convolutional attention modules balancing the sensors and improving
detection of small objects [Bai et al. 2020]. The work of [Meyer & Kuschk 2019a] used
HD RADAR point clouds with the camera image as the input of an AVOD architecture
[Ku et al. 2018] producing representations of each modality with 3D anchors and 3D pro-
posals from the RPN. The authors showed better performances than the same pipeline using
LiDAR point cloud combined with the camera image. In their work, [Nabati & Qi 2020]
detected 3D objects by processing RADAR point clouds in the image (early fusion) with
convolutions to detect objects and an additional refinement block takes the RADAR point
cloud to refine proposal coordinates. In the work of [Niesen & Unnikrishnan 2020], the
entire RA view has been processed with the image considering individual branches. Their
feature maps have been fused and up-sampled with a decoder for 3D depth reconstruction.
The RADAR point cloud has also been projected in the image plane with Gaussian kernels
creating a range density map [Cheng et al. 2021b] and processed as an image. The authors
proposed a vision-RADAR fusion based on self-attention and global-attention layers used
as input of an FPN for 2D object detection. This method showed improvements in small and
long range object detection. HD RADAR point clouds have been considered in a BEV and
front view representations, processed with individual backbones [Cui et al. 2021]. Their
feature maps are fused for 3D object detection and tracking is performed using a Kalman
filter. In the work of [Zhang et al. 2021b], RADAR point clouds have also been used to pre-
dict BEV occupancy grid. The authors have projected images from multiple cameras in a
BEV representation with a specific neural network and its feature maps from both branches
have been fused for 2D object detection. Traffic flow has been estimated in the work of
[Jin et al. 2021], i.e. consisting in 3D bounding boxes, speed and traffic density estimation.
The authors used a point pillar expansion on RADAR point clouds and fused them with
image features. They also used a CycleGAN [Zhu et al. 2017] generating image data with
different lighting conditions showing the limitations of image-based methods. Depth esti-
mation has been explored using a self-supervised learning scheme by expanding RADAR
point cloud for weak supervision and image reconstruction [Gasperini et al. 2021].

3.5. Sensor fusion 53

Late fusion. These methods consist in fusing feature maps generated by individual
backbones at the very end of the pipeline, before the predictions. In their work,
[Lekic & Babic 2019] used Cartesian RA views as input of conditional Generative Ad-
versarial Networks (cGANs) [Isola et al. 2017]. Their outputs are fused lately to generate
free space segmentation in camera images from RADAR occupancy grid representation
and segmented images. RADAR point clouds have been used to generate 2D proposals for
2D object detection (mid-level fusion), each modality having its own network. Their fea-
tures are finally fused before the bounding box predictions [Shuai et al. 2021]. The work of
[Kim et al. 2020c] used individual backbones to process images and RADAR voxel grids
creating features maps which are fused and used as input of a 3D RPN (mid-level fu-
sion). The feature maps are then transmitted to the detection head with a gated RoI fusion
module. They showed better performances in middle and long range detection than with
LiDAR point clouds. Similarly, [Kim et al. 2020b] generated features maps from images
and RA with independent backbones as input of a 3D RPN (mid-level fusion). The Carte-
sian RA are also used at the detection head level. In their work, [Kuang et al. 2020] fused
feature maps from each bounding box and the RADAR points to create an affinity matrix
with their features and proposed a dynamic coordinates alignment method to refined the
detection predictions. In the work of [Li & Xie 2020], the RADAR points have been pro-
jected in the camera plan and expanded with pillars and circles. Then, the authors used a
YOLOv3 [Redmon & Farhadi 2018] with an FPN attention to fuse the RADAR image with
the feature maps at different scales. RADAR point clouds have been projected in the image
plan and processed with convolutions in the work of [Hussain et al. 2021]. They processed
the image in parallel with an FPN and fused their feature maps which are up-sampled
for depth map estimation. In their work, [Lo & Vandewalle 2021] proposed a similar ap-
proach projecting the RADAR point clouds in the image plan to create a RADAR depth
map; then, separated backbones generate representations of the modalities which are fused
before an ordinal regression [Fu et al. 2018] for depth map estimation. A two-stage method
for depth estimation has also been proposed by [Lin et al. 2020]. A first CNN generates a
coarse depth map to filter RADAR outliers using images with project RADAR points. In
the second stage, the coarse map, the original image and the filtered image with RADAR
points are processed with a second network predicting the dense depth map. In the work
of [Nabati & Qi 2021], expanded RADAR points in pillars have been associated to object
bounding boxes. Then, the modalities are processed by individual backbones and their
feature maps are stacked for 3D bounding box and velocity estimation. Fusing camera and
RADAR representations have increased performances in vision-based tasks. However the
fusion is not easy since the modalities are not recorded in the same space. The following
section will detail methods fusing RADAR and LiDAR sensors.

3.5.2 RADAR and LiDAR fusion

The LiDAR sensor provides dense 3D point clouds of a scene in polar coordinates. How-
ever, it does not provide the object velocity and its point cloud is dense only at short range.
These limitations are overcome by using a RADAR sensor recording Doppler information
with a longer maximum range capability. RADAR and LiDAR fusion has not been deeply

54 Chapter 3. Related work

explored due to the lack of open source datasets. The related work is generally based on
early fusion since both representation can be projected in a Cartesian space.

The work of [Weston et al. 2019] proposed an inverse sensor model (ISM) converting
a Cartesian BEV of the Range-Angle RADAR view into an occupancy probability grid
based on its uncertainty. The model is trained with self-supervised learning based on an
occupancy grid created from the LiDAR point cloud.

In their work, [Shah et al. 2020] suggested a pipeline processing a HD map, LiDAR
and RADAR point clouds in BEV representations with individual backbones producing
feature maps which are fused for 2D object detection and trajectory prediction. The
RADAR backbone is composed of a spatial network extracting sparse local information
using parametric continuous convolutions, and a temporal network using MLP to combine
the spatial features in the temporal axis acting as an attention layer.

A voxel-based early fusion for better long range detection has also been explored by
[Yang et al. 2020] and combined with an attention-based late fusion to perform 3D object
detection and trajectory estimation using two detection heads from a PnPNet architecture
[Liang et al. 2020].

RADAR Bird’s Eye View RA has been fused with LiDAR at the early stage of the
network to predict RADAR occupancy grid with a U-Net architecture using LiDAR super-
vision [Kung et al. 2021]. The authors proposed a sliding window approach to train the
network at short range and demonstrated generalization outside the LiDAR sensing range
using the RADAR only to predict the occupancy grid.

The work of [Qian et al. 2021] processed RADAR BEV RA and LiDAR BEV map,
corrupted with simulated fog, with independent U-Net backbones. An RPN extracts pro-
posals from their fused feature maps (mid-level fusion). Each modality has an RoI pooler
producing a feature vector from each proposal which is fused with self-attention and cross-
attention (late fusion) for 2D object detection.

Realistic Cartesian RADAR scenes have been generated by improving the elevation of
RADAR points using an adversarial approach with simulated elevation and real LiDAR
elevation considered as ground truth [Weston et al. 2021].

Methods exploiting combined RADAR and LiDAR data without deep learning have
recently emerged. In the work of [Farag 2021] and [Liu et al. 2021b], authors proposed
to detect objects with clustering in LiDAR and RADAR representations independently.
Their features are fused and the objects are tracked using a custom Kalman filter algorithm
while estimating their velocity individually. RADAR and LiDAR data have been com-
bined to detect surfaces in adverse weather conditions highlighting robustness against fog
[Wallace et al. 2021].

Fusion of RADAR and LiDAR data in Cartesian coordinates benefits from the density
of the LiDAR and the long range with Doppler of the RADAR. It is still at the early stage,
fusion methods and adapted neural network architectures will be explored in the future. In
Section 5.2, we will introduce a fusion method propagating RADAR information through
the LiDAR point cloud. The following section will detail methods for RADAR, camera
and LiDAR sensor fusion.

3.6. Conclusions 55

3.5.3 RADAR, camera and LiDAR fusion

Combining RADAR, camera and LiDAR requires to project the data or their representa-
tions in a common space leading to complicated pipelines to perform end-to-end learning.

The work of [Bijelic et al. 2020] projected LiDAR and RADAR point clouds in a range
view, i.e. the image view, and extended the RADAR points on the entire height of the
image. The entropy of each modality is estimated and used as input of the CNN backbone
corresponding to its modality. The entire pipeline is similar to SSD [Liu et al. 2016] with
additional connections linking each backbone and heads for 2D detection in the camera
(details about the SSD architecture are provided in Section 2.6.2).

The architecture of [Shah et al. 2020] introduced in the previous section has been mod-
ified by including camera images and feature gaits simulating sensor dropout to perform
3D object detection and trajectory estimation [Mohta et al. 2020]. It uses a MultiXNet
[Djuric et al. 2021] feature extractor specialized in multi-modality processing. The authors
showed that their method reduces sensor over-fitting while improving generalization when
a sensor is missing.

Partial optical flow has been explored by [Grimm et al. 2020] considering camera to
localize objects, LiDAR as a label for depth estimation and RD RADAR view to estimate
velocity vectors pixel-wise. They proposed to learn a module warping the segmented RD
map into the image domain and to use the depth map from the LiDAR point cloud to
supervise the training.

In their work, [Nobis et al. 2021b] projected image pixels in the LiDAR point cloud
and fused RADAR and LiDAR point clouds in voxels for 2D object detection. Features are
extracted using a VoxelNet [Zhou & Tuzel 2018], processed with 3D sparse sub-manifold
convolutions [Graham et al. 2018] and projected in a dense BEV representation to apply
standard convolutions for the detection heads.

Similarly, [Wang et al. 2020a] associated an image pixel to each LiDAR point with
the temporal dimension creating a first 7D point cloud, and grouped RADAR features
to obtain a 8D RADAR point cloud. Both point clouds are processed separately with
the frustum PointNets framework [Qi et al. 2018] and their features are lately used for 3D
object detection and velocity estimation.

RADAR, camera and LiDAR fusion is still at its early stage, there is neither clear com-
mon latent representation to fuse all the representations nor relevant backbone extracting
features from the three sensors simultaneously.

3.6 Conclusions

In recent years, deep learning algorithms applied to autonomous driving have left out the
RADAR sensor for scene understanding. The nuScenes dataset has been the first to pro-
pose sparse RADAR point clouds without annotation. Since then, datasets were released
including various scenes, annotations and sensors (see Table 3.1). The Chapter 4 will dis-
cuss methods to tackle the lack of RADAR data for scene understanding. In particular,
Section 4.3 will detail our proposed CARRADA dataset and a semi-automatic pipeline to
generate its annotations. Result of a recent collaboration, our RADIal dataset including raw

56 Chapter 3. Related work

HD RADAR data is presented in Chapter 6. The two proposed datasets are unique in their
kind; they are publicly available to the machine learning community to support research in
scene understanding.

Deep learning for RADAR scene understanding has been opened up with the release
of large scale datasets. RADAR semantic segmentation has not been widely explored but
it is the most suited task regarding the objects’ signature in the RADAR representation.
Moreover, exploiting raw RADAR data is important since the pre-processing steps reduce
information and miss small object signatures. The Range-Angle-Doppler tensor is noisy
and cumbersome and thus should be aggregated in views. To the best of our knowledge,
there is no related work on RAD tensor segmentation for scene understanding. In Section
5.1, we propose the first approach segmenting multiple views of the RAD tensor simulta-
neously outperforming competitive methods while requiring significantly less parameters.

To the best of our knowledge, there is no previous work on end-to-end object detection
that is capable to scale with raw HD RADAR data. Moreover, there is no previous work
either on free driving space segmentation5 or semantic segmentation using only RD views
of HD RADAR signals. In addition, there is no existing multi-task model that performs
both RADAR object detection and semantic segmentation simultaneously. In Section 6,
we propose a deep neural network architecture learning the costly pre-processing steps and
performing multi-task learning using raw HD RADAR data: 2D object detection and free
space segmentation simultaneously.

Sensor fusion including RADAR has been recently explored. It has shown improve-
ments in long range detection, small object detection and global performances in adverse
weather conditions. LiDAR and RADAR fusion has not been extensively investigated al-
though the two type of sensors have complementary properties and they can be both rep-
resented in a Cartesian space. In Section 5.2, we propose a preliminary sensor fusion
approach aiming to propagate RADAR information through a dense LiDAR point cloud.

5The free driving space segmentation task consists to locate pixel-wise the available space that can be
driven. Further details are provided in Chapter 6.

CHAPTER 4

Proposed automotive RADAR
datasets

Contents
4.1 RADAR simulation . 58

4.1.1 Parameters and properties . 58

4.1.2 RadarSim dataset . 59

4.1.3 Experiments and results . 61

4.1.4 Discussions . 62

4.2 RADAR data generation . 63
4.2.1 Dataset . 63

4.2.2 Range-Doppler representation . 64

4.2.3 Methods and Experiments . 66

4.2.4 Discussions . 70

4.3 CARRADA dataset . 70
4.3.1 Dataset . 71

4.3.2 Pipeline for annotation generation 72

4.3.3 Semantic segmentation baseline 79

4.3.4 Discussions . 81

4.3.5 Conclusions . 81

4.4 Conclusions . 82

RADAR sensors generate electromagnetic wave signals that are not affected by weather
conditions or darkness. These sensors inform not only about the 3D position of other ob-
jects, as LiDAR, but also about their relative speed (radial velocity). However, in com-
parison to other sensory data, RADAR signals are difficult to interpret, very noisy and
cumbersome while having a low angular resolution. RADAR has been left behind LiDARs
and cameras for these reasons and thus, has not been integrated in the data recording cam-
paigns of large automotive datasets.

As detailed in Section 3.2, tackling the lack of open source datasets has been a chal-
lenge in recent years. In this chapter, a simple RADAR simulation is proposed in Section
4.1, a method to generate RADAR data is detailed in Section 4.2; and a novel dataset
with synchronised camera and RADAR data and a semi-automatic algorithm generating its
annotations is described in Section 4.3.

58 Chapter 4. Proposed automotive RADAR datasets

Section 4.3 presents a work mainly inspired from our article published at the Interna-
tional Conference on Pattern Recognition (ICPR) [Ouaknine et al. 2020].

4.1 RADAR simulation

At the beginning of 2019, there was no open source RADAR dataset for automotive scene
understanding. A costly and time consuming solution is to record and annotate a dataset.
A second one is to consider a simple simulation of the behavior of a RADAR sensor. The
simulation has two major benefits: it is an unlimited source of data and fine-grained annota-
tions are available without any cost. In this first approach, we propose a simple simulation
of the RADAR sensor based on geometric considerations. Starting from a RADAR posi-
tion and a moving object and knowing its size and trajectory, we can deduce its distance
to the sensor and its relative velocity and thus predict its approximated signature in the RD
data. We have created a simulated dataset named RadarSim to train a classifier to distin-
guish RD sequences between four categories of objects. Object classification experiments
have been conducted using deep neural network architectures.

4.1.1 Parameters and properties

The simulation starts from a class of objects (among 4 categories) and a straight line trajec-
tory in a delimited 2D space. Each object is represented by a square whose size depends on
its category. The real velocity and the angle of the object direction define a vector in polar
coordinates which will determine the trajectory of the object. The category also defines the
range of values for the trajectory parameters (real velocity and angle).

The object is moving in front of a RADAR, the sensor is considered as a single station-
ary point. The transmitted wave and its reflection on the object are not modeled. Instead,
several points belonging to the reflector are selected and the simulation computes their
relative velocity and distance w.r.t. the RADAR position.

Four categories are supported by the simulation: pedestrian, motorcycle / bicycle (same
category), car and truck / bus (same category). An integer value is associated to each
category, ordered in order of the size of the object. The category defines the size of the
objects, the higher the larger. For each one of them, the size parameter is expressed in
meters and is randomly drawn as l ∼ U([lmin, lmax]). The range of values depends on the
category, see Table 4.1. Each object has a real velocity expressed in meters per second
(m · s−1). Its value is randomly drawn as v ∼ U([vmin, vmax]), where the estimated range
of real world velocities of the objects also reported in Table 4.1. The time interval between
two frames is fixed to ∆t = 0.1 second.

While the object is moving, a vector (angle and length) defines its direction. The angle
of direction of the object is randomly drawn as α ∼ U([0, 2π]) while its length depends on
the velocity previously defined. Depending on this value, the object will start to move in
one of the four regions of the space. These splits are made to ensure that the object will not
cross the boundaries of the space. Only a few points belonging to the object are estimated
to create the signature. For each one of them, the intensity (in dB) of the reflection is

4.1. RADAR simulation 59

Category Size l (m) Velocity v (m · s−1) Intensity I (dB)

0: Pedestrian [0.1; 0.5] [1.0; 3.0] [50.0; 65.5]
1: Motorcycle / Bicycle [0.5; 2.0] [3.0; 11.0] [50.0; 80.0]
2: Car [2.0; 4.0] [4.0; 14.0] [65.5; 80.0]
3: Truck / Bus [4.0; 10.0] [4.0; 14.0] [65.5; 80.0]

Table 4.1: Range of values for the simulated RADAR points properties. An object is
defined by its category, size (in meter), its velocity (in meter per second) and the estimated
intensity of its reflected signal (in decibel).

estimated according to real observations and drawn as I ∼ U([Imin, Imax]). The ranges of
intensity values are defined in Table 4.1.

The RD representation contains a high level of noise divided into three forms when
considering averaged and log-transformed data (see Section 4.2.2): speckle noise, uni-
form noise and zero-Doppler noise. The logarithmic transformation aims to transform the
speckle from a multiplicative to an additive noise as I = u×s, where I is the intensity, u
the underlined reflectivity and s the speckle as detailed in Section 2.2.2. The simulation
considers log-intensity values and thus includes the speckle noise as a global additive noise.
We have estimated the Fisher-Tippett distribution of the background (combining the reflec-
tivity of the background and the speckle) from real log-transformed data [Goodman 2007].
It can be approximated by a Gaussian distribution as illustrated in Figure 4.3 since the data
have been multi-looked. Regarding our estimations, the simulation will use a random vari-
able s ∼ N (35.473,

√
0.244) to generate the background of the representation, including

the speckle noise. We also introduce a uniform noise to mimic reflections of false alarms
that can occur in recordings (ghost or multi-path reflections, ambiguity, and so on). It
will activate each bin according to a random variable defined with a Bernoulli distribution
r ∼ Bern (0.01). Finally, the zero-Doppler noise will contain all the reflections which have
a zero Doppler value (stationary objects) at each range bin. This phenomena is modeled on
the zero Doppler bins with a random variable defined with a Bernoulli distribution defined
as z = Bern (p) at the 0 range bin, where the probability parameter p decreases from 1
by a factor 0.005 for each range bin. For a single bin of the representation, the simulated
background including the noise is thus a random variable written n = s+ r+ z ·1Doppler=0

which is added to the simulated log-intensity. The following section will present the entire
pipeline of simulation and the RadarSim dataset.

4.1.2 RadarSim dataset

The dataset simulation starts by defining the object: randomly drawing its category, real
velocity, direction and its starting point in the space. A sequence of twenty RD frames is
generated (equivalent to two seconds of recordings). Each one of them will be a matrix of
size 220×100. An example of a frame from a generated scene is shown in Figure 4.1. The
following process is executed at each timestamp:

60 Chapter 4. Proposed automotive RADAR datasets

Figure 4.1: Example of a Range-Doppler simulation for the category ‘Car’. (a) Simu-
lation of the objects motion in a Cartesian space with a constant velocity vector and a fixed
RADAR. The closest position of each sampled point w.r.t. radar position and the velocity
of the object is noted the closest point of approach. (b) Range-Doppler points of the simu-
lated reflections on the object. (c) Range-Doppler representation with the simulated object
signature and additional noise phenomena.

• The range-Doppler matrix is created by discretizing the estimated values: the range
is defined between 0 and 55 meters with a resolution of 0.25 meters per bin; the
radial velocity (Doppler) is defined between −5 and 5 meters per second with a
resolution of 0.1 per bin. The matrix is initialized with the estimated background
and the randomly generated noise.

• Random points are selected on the visible edges of the moving object that are visible
to the RADAR.

• The radial velocity component w.r.t. the RADAR is deduced from the real velocity
vector for each point as well as their distance.

• For each point, an intensity value is randomly drawn depending on the category of
the object. An additional sinc effect is considered to simulate the shape of the object
reflection in the RADAR representation. The cardinal sinus function is defined as:
sinc(x) = sin(πx)

πx .

The simulation process generating a sequence of RDs is detailed in Algorithm 1.
The generated RadarSim dataset contains 1000 sequences with 20 frames for each

scene. Each scene lasts 2 seconds, which means that an RD is recorded every 0.1 second.
The probability of randomly drawing a category is set to 0.25 to obtain a well-balanced
data set. The dataset is split into training (60%), validation (20%) and test (20%). The
classification task consists in categorizing sequences between four categories. Depending
on the model used, it either classifies each frame of a sequence or directly classifies the
entire sequence. Further details are provided in the following section.

4.1. RADAR simulation 61

Algorithm 1 Simulation of a sequence of Range-Doppler (RD)
Require: T, e ∈ N, (xRADAR, yRADAR) ∈ R2, dmax, rmax ∈ R

T the number of frames in the sequence, e the number of bins affected by the sinc

function, (xRADAR, yRADAR) the coordinates of the RADAR sensor, dmax and rmax the

maximum Doppler and distance.

1: p = 1 # Initialize the parameter of the random variable z.

2: c ∈ {0, 1, 2, 3} # Set the class of the object.

3: x ∼ U([xmin, xmax]) # Init. x coord. of the object in a bounded Cartesian space.

4: y ∼ U([ymin, ymax]) # Init. y coord. of the object in a bounded Cartesian space.

5: l ∼ U([lmin, lmax]) # Set l the size of the object depending on c.

6: v ∼ U([vmin, vmax]) # Set v the velocity of the object depending on c.

7: α ∼ U([0, π] # Set α the angle of arrival of the object.

8: s ∼ N (35.473,
√

0.244) # Random variable for the speckle noise.

9: r ∼ Bern (0.01) # Random variable for the false alarm reflection.

10: z ∼ Bern (p) # Random variable for the zero-Dopppler noise.

11: n = s+ r + z · 1Doppler=0 # Global random variable for noise and background

generation.

12: for t = 0 to T − 1 do # T the length of the sequence to be generated.

13: A : 220× 100 matrix filled with n where p decreases by 0.005 for each range bin.

14: K: random points on the visible edges of the objects + number of false reflections.

15: for k = 0 to K − 1 do # K the reflected points.

16: I ∼ U([Imin, Imax]) # Set I the intensity of the reflection depending on c.

17: d: compute the radial velocity component of k

18: r =
√

(x− xRADAR)2 + (y − yRADAR)2 # Compute the range of the point k

19: Ad dmax
d
e,d rmax

r
e ← Ad dmax

d
e,d rmax

r
e + I # Add the reflected point k to the RD.

20: Ad dmax
d
e±e,d rmax

r
e±e ← sinc(Ad dmax

d
e±e,d rmax

r
e±e) # Apply sinc on e bins around

the reflection.

21: x← x+ vx× cos(α) # Update x w.r.t. the velocity and orientation of the object.

22: y ← y + vy × cos(α) # Update y w.r.t. the velocity and orientation of the object.

4.1.3 Experiments and results

Each sequence of the RadarSim dataset represents the RD signature of an object belonging
to one of the four categories. The objective of the experiments is to classify each RD matrix
or each sequence into a category depending on the training approach. For this purpose, a

62 Chapter 4. Proposed automotive RADAR datasets

Architecture
Approach Accuracy

Frame Sequence Validation Test
ResNet-101 [He et al. 2016] 3 7 87.5 90.0
ResNet-101 [He et al. 2016] 7 3 83.0 85.0
ResNet-34 [He et al. 2016] + LSTM (3 cells) 7 3 84.0 84.5
3D Convolutions (2 layers + 1 FC) 7 3 63.0 59.0

Table 4.2: Performances on the RadarSim-Val and -Test datasets. Performances of the
explored architectures on the validation and test splits of the RadarSim dataset.

classifier fθ(.) parameterized by θ ∈ Rd is trained. The complexity d of the model depends
on the chosen neural network architecture. The parameters are updated with the gradient
based method Adam [Kingma 2015] for a fixed learning rate value. The parameters θ of
the function are initialized using the Xavier initialization method [Glorot & Bengio 2010].
The Cross-Entropy loss is optimized during training:

min
θ∈Rd

S−1∑
i=0

yi log(f∗θ (xi)), (4.1)

where S is the number of sequences, yi the labels of the RD sequence xi and f∗θ (.) the
estimated model. Performances are evaluated on the validation and the test datasets using
the accuracy metric defined as: TP

TP+FN , where TP is the number of True Positive predictions
and FN the number of False Negative predictions.

The performances are evaluated at the sequence level. A few architectures do not take
into account the time dimension and thus predict a class for each frame of the sequence:
this is the frame-based approach. During the training of the second approach, the loss is
computed using the predictions and ground-truths of each frame. While during validation
and testing, the accuracy is computed after a vote for each sequence regarding the predic-
tions over its frames. For a given sequence x, its attributed category is voted as following:

arg max
k∈{0,...,3}

N−1∑
i=0

1{f∗θ (xi)=k}. (4.2)

The temporal information is incorporated by concatenating the frames of a sequence in the
channel dimension to directly classify the sequence. The sequence-based approach consists
in taking into account the time dimension and classifying the sequence with a single label.

Each architecture has been explored with several parameters including its number of
layers. The highest performances for each architecture are reported in Table 4.2 and dis-
cussed in the following section.

4.1.4 Discussions

Results presented in Section 4.1.3 show that the architectures used have succeeded in es-
timating the parameters of the simulation. The generated scenarios are not challenging

4.2. RADAR data generation 63

enough and it is easy for the system to overfit the training dataset since the distributions
between the splits are similar. We noticed that a light backbone with LSTM cells leads
to similar results as those of extremely deep neural networks. Moreover, a model using
3D convolutions with only two layers has reached almost 60% accuracy on the test dataset
which is a promising result.

The wrong classifications show a common pattern regardless of their ground truth cat-
egory: they cannot be classified by a human. Either because the object is not visible due to
zero Doppler noise, or because only a small part of a large object is visible to the RADAR
and therefore poorly reflects the signal (a large object will be wrongly classified as a small
one).

Real raw RADAR data are necessary to take into account the entire complexity of the
representation. They also should be annotated to train models in a supervised manner. To
this end, the next section will describe methods to generate RD with their entire complexity.

4.2 RADAR data generation

This section presents methods to generate RDs from natural images (camera). A dataset of
complex urban scenes with paired raw RADAR data and natural images has been recorded
and used for our experiments. However, the RADAR data are not directly annotated due
to the complexity of the representation. Because the objects in the raw RADAR repre-
sentations are difficult for a human to distinguish, manual annotation is expensive and of
poor quality. In this work, we tried to approximate a transformation to map the natural
image domain (source) to the RD domain (target). In other words, the model will learn to
generate the signature of objects in the RADAR representation by recognizing them in the
camera image. This transformation is learnt with deep neural networks by reconstructing
the data of the target domain using the source domain as input. The motivation of this work
is to find a common latent space between the two domains to transfer information from the
source to the target. In this way, annotations in the natural images can be transferred to the
raw RADAR representations without human supervision.

4.2.1 Dataset

The dataset was recorded in Canada in an urban environment. The acquisition setup con-
sists of a 77GHz FMCW RADAR and a camera mounted on a stationary car. The RADAR
uses the MIMO system configuration with 2 Tx and 4 Rx producing a total ofNTx ·NRx = 8

virtual antennas. The dataset contains 26, 085 frames divided into 8 sequences for a total
duration of 44 minutes. It consists of complex urban scenes with paired raw RADAR and
natural images recorded at 10 FPS. In this work, we used the recorded natural images
and RD representations which have a resolution of 616×514 and 128×64 respectively.
Bounding boxes annotations are provided for 1

10 of the frames but only for the natural im-
ages. They are classified between two categories: pedestrian and vehicle. Figure 4.2 shows
examples of scenes with pedestrians and cars at a crossroad.

The dataset is split between the training (90%), the validation (5%) and the test (5%)
datasets. The training split is deliberately large to be able to train deeper neural network

64 Chapter 4. Proposed automotive RADAR datasets

Figure 4.2: Example of two scenes with pedestrians and moving cars. For both scenes
(a) and (b); Left: natural image of the scene with bounding boxes around the pedestrian and
the moving cars; Right: Range-Doppler representation of the scene without annotation.

architectures. The next section will provide details about the range-Doppler representation.

4.2.2 Range-Doppler representation

The raw RADAR data are recorded in a 3D tensor in the frequency domain which is pro-
cessed by an inverse FFT on each axis to obtain the RAD tensor in the temporal domain
(see Section 2.2). Let XRAD be the complex RAD tensor. The RD is obtained by aggregat-
ing the tensor on the second axis following Equation 2.19. This method aims to reduce the
global noise on the representation as presented in Section 2.2.

The raw RADAR data is prone to a high level of noise, partly due to the speckle noise
as detailed in Section 2.2.2. It is a noise inherent to the RADAR sensor covering the entire
representation. While working on the reconstruction of the RD representation, it is helpful
to estimate the distribution of the noise that the model will need to overcome. For a given
sequence, the speckle noise is extracted by selecting an image patch in the same spatial
position, over 1, 050 frames. The patch has been chosen so that almost no signal appears
in the area.

Figure 4.3 shows the distributions of the background with different methods to aggre-
gate the data. The data follows the model proposed by [Goodman 2007]: the original signal
has a decreasing exponential distribution and the log-signal has a Fisher-Tippett distribu-
tion. The speckle aggregated in the third dimension of the tensor follows a Gamma distri-
bution. Finally, after applying Equation 2.19 (averaging and log-transform), the speckled
background follows a Fisher-Tippett distribution approximated by a Gaussian distribution
estimated as N (35.38,

√
2.82). Details about the speckle and its distributions are pro-

vided in Section 2.2.2. The following section will explain the methods and experiments
conducted on the presented dataset.

4.2. RADAR data generation 65

Figure 4.3: Distributions of the background in RADAR data. Distribution of the back-
ground for a given patch in a sequence before applying Equation 2.19. These sample
distributions follow the model proposed by [Goodman 2007]; they are described in Sec-
tion 2.2.2. Top left: distribution of the signal values (decreasing exponential distribution).
Top right: distribution of the logarithm of the signal values (Fisher-Tippett distribution).
Bottom left: distribution of the signal values summed over the antennas axis (Gamma dis-
tribution). Bottom right: distribution of the signal values after applying Equation 2.19
(blue) and distribution of random samples of an estimated Gaussian distribution (orange).

66 Chapter 4. Proposed automotive RADAR datasets

4.2.3 Methods and Experiments

This section describes the methods we explored to generate RD representations from nat-
ural images. We modified them to propose adapted architectures for RD reconstruction
from sequence of natural images. The results of the experiments are presented in Table 4.3.
Qualitative results of RD generation are compared in Figure 4.4.

The RD representation contains both the distance and the relative velocity of the re-
flectors in a scene w.r.t. the RADAR. At least two images are required to estimate the
velocity of an object. The sequences are truncated to choose varying window sizes of
natural images. Our experiments have shown that considering a short sequence of three
consecutive images to generate an RD leads to better performances without incurring a
significant computational cost (especially when considering 3D convolutions). In the fol-
lowing experiments, the images of the short sequence are stacked in the depth dimension
to train neural network architectures.

Let S be the input domain (any sequence of three consecutive natural images), and R
the output domain of RD representations. Our goal is to determine a function fθ, parame-
terized by θ, which carries out this domain conversion, such as:

fθ : S −→ R
xs 7−→ xr.

(4.3)

Note that the dimension of xs is much larger than xr (S � R). In these experiments, xr is
reconstructed using xs.

During training, the MSE is used as a loss function to reconstruct the RD representa-
tion: MSE = 1

BR·BD
‖xr − x∗r‖

2
2 where x∗r = f∗θ (xs), f∗θ is the approximated reconstruction

function andBR ·BD the number of elements in the RD representation. The Mean Absolute
Error (MAE) has also been used as a loss function but its primary goal is to compare the
obtained results as an evaluation metric. It is written: MAE = 1

BR·BD
‖xr − x∗r‖1.

Well-known deep neural network methods and architectures have been considered. We
adapted them in our experiments for RD reconstruction. In particular, we explored stacked
convolutions with 2D or 3D kernels, AutoEncoder architectures, radar-based prior informa-
tion to train the network, specific loss functions and generative approaches. The following
paragraphs describes these methods in details.

Stacked 2D convolutions. This group of layers has been considered as a first approach
while using down-samplings to reduce the size of the natural images and directly match
the RD dimensions, noted (BR×BD). A final 1D convolution layer is used to reduce the
number of feature maps and generate the RD map. For this method, we adapted the VGG11
[Simonyan & Zisserman 2015] architecture in a VGG9 by replacing the last three fully-
connected layers by a single 1D convolution layer to perform the reconstruction.

Stacked 3D convolutions. The interest of using 3D convolutions introduced by
[Ji et al. 2012] is to take into account the temporal patterns in the sequence of natural
images used as input. Deep architectures are not feasible due to the high computational

4.2. RADAR data generation 67

cost of 3D convolutions. We created a neural network architecture with 10 layers of 3D
convolutions processing the sequence of images for RD reconstruction.

Convolutional AutoEncoder. This method [Masci et al. 2011] consists in process-
ing the input data with 2D convolutions while deducing its dimensions with down-
samplings.The latent space of feature maps is then up-sampled to recover the output dimen-
sions and reconstruct the RD representation. A well-known extension of Convolutional AE
is U-Net [Ronneberger et al. 2015]. Skip connections process the features learnt at differ-
ent stages of the down-sampling pathway of the network and add the information to the
paired stage of the up-sampling pathway. It helps to keep information even after reduc-
ing it into a low dimensional latent space. We modified the original U-Net architecture to
match our input and output dimensions. The proposed AE architecture has the same down-
sampling and up-sampling architectures as U-Net with 15 convolution layers in total while
the U-Net have additional skip connections. In total, the U-Net contains 19 convolutions
with skip connections. We also proposed a lighter version of the AE to reduce the training
time (‘Light-AE’). Reducing the number of filters leads to small improvements with three
times fewer parameters.

Additional Noise Map. Our experiments have shown that the AE always tries to estimate
the speckle noise distribution to reconstruct the RD representation. To leverage this obser-
vation, we proposed to stack the input data with a noise map randomly generated from the
estimated background distribution detailed in Section 4.2.2. The noise map has the same
dimensions as the input images. The noise map and the images are stacked in the channel
dimension to provide prior information to the network on the speckle distribution. In the
presented experiments, our proposed “Noise Map” approach leads to a significant gain of
time during training to reach similar performances. It also improves results for a similar
training time.

Custom Losses. Reflectors in a scene are represented by high intensity values in the RD
representation. Previous methods have shown that a focus is made on the noise reconstruc-
tion while the shape of the object signature is difficult to recover. Considering the MSE as
a loss leads to learn a global average of the intensity values and thus prioritizes the speckle
noise. The reconstruction of the object’s signature is important because the final objective
of this work is to transfer object annotations from a domain to another. To focus the recon-
struction on high intensity values, we have used a weighted Mean Absolute Error (wMAE).
It considers the ground-truth intensity value as a weight which is applied pixel-wise in the
MAE loss. The wMAE loss is defined as:

wMAE =
1

BR ·BD

BR·BD−1∑
n=0

xr,n
∥∥xr,n − x∗r,n

∥∥
1
, (4.4)

where xr,n is the n-th element of the ground-truth RD representation in the R domain and
x∗r = f∗θ (xs) with f∗θ the approximated reconstruction function.

68 Chapter 4. Proposed automotive RADAR datasets

To both take into account the high intensity value penalization and the global noise
estimation, the wMAE_MSE loss has been experimented which combines both the wMAE
and the MSE losses. The two terms are weighted by positive hyper-parameters λ1 and λ2.
These values have not been explored yet, they are fixed to 1 in the experiments. The loss is
defined as:

wMAE_MSE =
1

BR ·BD

[
λ1

BR·BD−1∑
n=0

xr,n
∥∥xr,n − x∗r,n

∥∥
1

+ λ2 ‖xr − x∗r‖
2
2

]
. (4.5)

Generative Adversarial Network. This approach introduced by
[Goodfellow et al. 2014] is usually used for data synthesis, in particular for natural
images. It combines a set of two neural networks: a generator and a discriminator. For a
given sample of data x, the first one generates a fake data sample using a random variable
z as input (usually normally distributed). The second one is a binary classifier trying to
detect if a sample is fake or real. Both networks are complementary, the generator tries
to fool the discriminator with a high quality sample so it could not distinguish a real
from a fake. Note that the generator takes only a random variable as input in the original
approach, it can also take the initial sample x as input.

Both networks are trained with a minmax game using a cost function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (4.6)

where G is the generator and D the discriminator. In their work, [Goodfellow et al. 2014]
explain that minimizing log(1 − D(G(z))) leads to poor gradient at the beginning of the
training since the generator is not efficient enough. In practice, log(D(G(z))) is maximized
in the optimization process, it is called the Non-Saturating GAN Loss.

In the presented experiments, we proposed to learn a generator to create a fake RD
using the natural image as input instead of a random noise. The discriminator takes either
the generated or real RD and classifies it as fake or real. The loss function is composed
of a MSE reconstruction loss for the generator and a BCE for the discriminator. The final
objective is written:

min
G

max
D
LGAN(D,G) = min

G
max
D

1

BR ·BD
‖xr −G(xs)‖22 + V (D,G). (4.7)

Note that the implemented GAN also uses patchGAN [Isola et al. 2017] for the dis-
criminator classification. This method is described in the following paragraph.

We also considered a second approach called cGAN [Isola et al. 2017]. It consists in
providing additional information to the networks as a condition. This condition helps the
generator to better estimate to distribution of the generated samples. For a given sample
(x, y), the generator tries to reconstruct y using the original data x and a random noise z.
In this case, the condition x provides the distribution of the data in the source domain to
help the generator in estimating the distribution of the data in the target domain. The dis-

4.2. RADAR data generation 69

Method #Parameters Loss MSE Scores MAE Scores

Validation Test Validation Test
VGG-9 9.23M MSE 8.08 7.74 1.69 1.67
3D Conv. 0.23M MSE 9.10 8.74 1.83 1.81
AE 12.9M MSE 4.76 4.84 1.50 1.50
U-Net [Ronneberger et al. 2015] 14.4M MSE 5.22 5.16 1.52 1.52
AE + NoiseMap 12.9M MSE 4.52 4.51 1.48 1.48
Light-AE 3.24M MSE 4.64 4.63 1.49 1.49
Light-AE 3.24M wMAE 5.16 5.16 1.50 1.49
Light-AE 3.24M wMAE_MSE 5.16 5.17 1.50 1.50
Light-GAN 3.31M LGAN 4.92 4.87 1.50 1.50
Light-cGAN 4.98M LcGAN 5.14 5.12 1.49 1.48

Table 4.3: Quantitative performances of Range-Doppler reconstruction. Performances
of the methods detailed in Section 4.2.3, trained and tested on the splits of the dataset
presented in Section 4.2.1, regarding the MSE and MAE evaluation metrics.

criminator classifies either fake or real the generated or the real sample y while observing
x. Considering Equation 4.8, the objective function is defined as:

min
G

max
D

Vx(D,G) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))]. (4.8)

In their work, [Isola et al. 2017] described the patchGAN method to improve the dis-
criminator consistency. Instead of directly classifying a sample as fake or real, each feature
map of the last layer of the discriminator is classified in a category. The final discrimination
result is obtained by aggregating the sub classifications on the feature maps. This way, the
discriminator takes into account local pattern similarities. The MAE loss is used for the
generator and the BCE loss (negative log likelihood) for the discriminator. The objective
function is defined as:

min
G

max
D
LcGAN(D,G) =

1

BR ·BD
‖xr −G(xs)‖1 + Vx(D,G). (4.9)

In our experiments, we note ‘Light-GAN’ and ‘Light-cGAN’ the corresponding gener-
ative methods using a Light-AE architecture for the generator, and the original architectures
proposed by [Goodfellow et al. 2014] and [Isola et al. 2017] for the discriminator.

Results. Quantitative results presented in Table 4.3 show that our proposed Convolu-
tional AE an Light-AE architectures, inspired from U-Net and detailed in the previous
paragraph, reached the best performances regarding the MSE and MAE metrics. In par-
ticular, our proposed AE processing an additional noise map generated from the speckle
noise distribution obtained the higher reconstruction performances. Qualitative results on
the test dataset presented in Section 4.2.1 are illustrated in Figure 4.4. The generated RD
representations using AE architectures succeed to recover several object signatures while
reconstructing the zero-Doppler reflections. However, the speckle noise is estimated as a
global average leading to a smooth background of intensities.

70 Chapter 4. Proposed automotive RADAR datasets

(a)

(b) (c) (d) (e) (f)

Figure 4.4: Qualitative results of Range-Doppler generations. (a) Consecutive natural
images images of a scene with (b) the Range-Doppler ground-truth associated to the image
in the center. Range-Doppler generated from the sequence of natural images using: (c)
VGG9, (d) AutoEncoder, (e) Light AutoEncoder, (f) AutoEncoder with noise map (ours).

4.2.4 Discussions

This section has described several methods to generate Range-Doppler representations us-
ing natural images. The presented experiments have shown that our Noise Map method
integrating a map of generated speckle noise leads to increase the performances while re-
ducing the training time. GAN and cGAN architectures have produced interesting results
but further experiments should be conducted to reach better performances. The selected
methods did not generate high quality RD so the annotation transfer from the image do-
main to the RADAR domain is not usable with this approach. In the next section, a dataset
is introduced with non-urban scenes and a different pipeline to annotate the RADAR rep-
resentations in a semi-supervised manner.

4.3 CARRADA dataset

High quality perception is essential for autonomous driving systems. To reach the accu-
racy and robustness that are required by such systems, several types of sensors must be
combined. Currently, mostly cameras and lidar are deployed to build a representation of
the world around the vehicle. While RADAR sensors have been used for a long time in
the automotive industry, they are still under-used for autonomous driving despite their ap-
pealing characteristics (notably, their ability to measure the relative speed of obstacles and
to operate even in adverse weather conditions). To a large extent, this situation is due to
the relative lack of automotive datasets with real RADAR signals that are both raw and
annotated as detailed in Section 3.2. In this section, CARRADA is introduced, a dataset
of synchronized camera and RADAR recordings with Range-Angle-Doppler annotations.
A semi-automatic annotation approach is also presented, which was used to annotate the
dataset, and a RADAR semantic segmentation baseline evaluated on several metrics. A
sample of camera and RADAR data with generated annotation is illustrated in Figure 4.5.

4.3. CARRADA dataset 71

(a) (b) (c)

Figure 4.5: A scene from CARRADA dataset, with a pedestrian and a car. (a) Video
frame provided by the frontal camera, showing a pedestrian at approximately 8m from
the sensors and a car in the background at approximately 33m; (b-c) RADAR signal at
the same instant in Range-Angle and Range-Doppler representation respectively. Three
types of annotations are provided: sparse points, bounding boxes and dense masks. The
blue squares correspond to the pedestrian and the green ones to the car. Note that the
Range-Angle view illustrated in (b) has been obtained using a maximum aggregation and a
log-transform (Eq. 2.18) while the Range-Doppler view in (c) is computed using Equation
2.19.

Both our code and dataset are available online 1. This section presents a work mainly in-
spired from our article published at the International Conference on Pattern Recognition
(ICPR) [Ouaknine et al. 2020].

4.3.1 Dataset

The dataset has been recorded in Canada on a test track to reduce environmental noise.
The acquisition setup consists of an AWR1843-BOOST2 FMCW RADAR and a camera
mounted on a stationary car. The RADAR uses the MIMO system configuration with 2
Tx and 4 Rx producing a total of 8 virtual antennas. The parameters and specifications
of the sensor are provided in Table 4.4. The image data recorded by the camera and the
RADAR data are synchronized to have the same frame rate in the dataset. The sensors
are also calibrated to have the same Cartesian coordinate system. The image resolution is
1238×1028 pixels. The Range-Doppler and Range-Angle representations are respectively
stored in 2D matrices of size 256×64 (BR×BD) and 256×256 (BR×BA).

One or two objects are moving in the scene at the same time with various trajectories to

1https://github.com/valeoai/carrada_dataset
2https://www.ti.com/tool/AWR1843BOOST

https://github.com/valeoai/carrada_dataset
https://www.ti.com/tool/AWR1843BOOST

72 Chapter 4. Proposed automotive RADAR datasets

Parameter Value

Frequency 77 Ghz
Sweep Bandwidth 4 Ghz
Maximum Range 50 m

FFT Range Resolution 0.20 m
Maximum Radial Velocity 13.43 m/s

FFT Radial Velocity Resolution 0.42 m/s
Field of View 180◦

FFT Angle Resolution 0.70◦

Number of Chirps per Frame 64
Number of Samples per Chirp 256

Table 4.4: Parameters and settings
of the RADAR sensor.

Parameter Value

Number of sequences 30
Total number of instances 78
Total number of frames 12666 (21.1 min)

Maximum number of frames per seq. 1017 (1.7 min)
Minimum number of frames per seq. 157 (0.3 min)

Mean number of frames per seq. 422 (0.7 min)
Total number of annotated frames

with instance(s) 7193 (12.0 min)

Table 4.5: Statistics of the CARRADA
dataset.

simulate urban driving scenarios. The distribution of these scenarios across the dataset is
shown in Figure 4.6. The objects are moving in front of the sensors: approaching, moving
away, going from right to left or from left to right (see examples in Figure 4.12). Each
object is an instance tracked in the sequence. The distribution of mean radial velocities
for each object category is provided in Figure 4.7, while other global statistics about the
recordings can be found in Table 4.5.

Object signatures are annotated in both RA and RD representations for each sequence.
Each instance has an identification number, a category and a localization in the data. Three
types of annotations for localization are provided: sparse points, boxes and dense masks.
The next section will describe the pipeline used to generate them.

4.3.2 Pipeline for annotation generation

Automotive RADAR representations are difficult to understand compared to natural im-
ages. Objects are represented by shapes with varying sizes carrying physical measures.
It is not a trivial task to produce good quality annotations on this data. This section de-
tails a semi-automatic pipeline based on video frames to provide annotations on RADAR
representations.

4.3.2.1 From vision to physical measurements

The camera and RADAR recordings are synchronized. Visual information in the natural
images is used to obtain physical prior knowledge about an instance as well as its category.
The real-world coordinates of the instance and its radial velocity are estimated generating
the annotation in the RADAR representation. This first step instantiates a tracking pipeline
propagating the annotation in the entire RADAR sequence.

Each video sequence is processed by a Mask R-CNN [He et al. 2017] model providing
both semantic segmentation and bounding box predictions for each detected instance. Both
are required for our pipeline to compute the center of mass of the object and to track it.
Instance tracking is performed with the Simple and Online Real time Tracking (SORT)
algorithm [Bewley et al. 2016]. This light-weight tracker computes the overlap between
the predicted boxes and the tracked boxes of each instance at the previous frame. The

4.3. CARRADA dataset 73

Figure 4.6: Object distribution across
CARRADA. Distribution of the eight
object configurations present in the
dataset, expressed as frame numbers
across the three parts of the proposed
split.

Figure 4.7: Distribution of radial ve-
locities for all categories. For each an-
notated instance, its absolute radial ve-
locity in m/s is averaged, over its sparse
annotations in each frame and over time,
and one histogram is built for each object
class. Note that annotated velocities are
actually signed (negative when the object
if moving away and positive when it ap-
proaches the radar).

selected boxes are the most likely to contain the same instance, i.e. the boxes with the
highest overlap.

The center of mass of each segmented instance is projected on the bottom-most pixel
coordinates of the segmentation mask. This projected pixel localized on the ground is con-
sidered as the reference point of the instance. Using the intrinsic and extrinsic parameters
of the camera, pixel coordinates of a point in the real-world space are expressed as:

s p = A B c, (4.10)

where p = [px, py, 1]> and c = [cx, cy, cz, 1]> are respectively the pixel coordinates in the
image and the real-world point coordinates, s a scaling factor, andA andB are the intrinsic
and extrinsic parameters of the camera defined as:

A =

fx 0 ax
0 fy ay
0 0 1

 , B =

r11 r12 r13 m1

r21 r22 r23 m2

r31 r32 r33 m3

 . (4.11)

Using Equation 4.11, one can determine c knowing p with a fixed value of elevation.
Given the time interval δt separating two frames t− δt and t, the velocity vector vt is

defined as:
vt = ct − ct−δt, (4.12)

where ct is the real-world coordinate in frame t. The time interval chosen in practice is
δt = 1 second.

The Doppler effect recorded by the RADAR is the radial velocity of the instance re-

74 Chapter 4. Proposed automotive RADAR datasets

Figure 4.8: Estimation of the radial velocity from natural images. The space (cx, cy, cz)
defines real-world coordinates considering the RADAR as origin, cz is fixed to zero. Points
in the real-world domain ct−δt and ct (bottom) are estimated using the points in the pixel
domain pt−δt and pt (top). The velocity vector vt is estimated with the real-world points.
The radial velocity vtR of the object at time t corresponds to the projection of its velocity
vector on the straight line between the RADAR of the object.

flecting the signal. The radial velocity vtR at a given frame t is defined as:

vtR = cosαt ‖vt‖, (4.13)

where αt is the angle formed by vt and the straight line between the RADAR and the
instance. The quantization of the radial velocity is illustrated in Figure 4.8. This way, each
instance detected in the frame is characterized by a feature point It = [ct, vtR]>. This point
will be projected in a RADAR representation to annotate the raw data and track it in this
representation.

4.3.2.2 DoA clustering and centroid tracking

The RA representation is a RADAR scene in polar coordinates. Its transformation
into Cartesian coordinates is called DoA. Points are filtered by a CFAR algorithm
[Rohling 1983] keeping the highest intensity values while taking into account the local
relation between points. The DoA is then a sparse point cloud in a 2D coordinate space
similar to a BEV representation. The representation is enriched using the recorded Doppler
for each point as the third axis of the point cloud. The 3D point cloud combines the Carte-
sian coordinates of the reflected point and its Doppler value. This helps to distinguish the
signature boundaries of different objects. The feature point It is projected in this space
and assigned to a cluster of points considered as the reflection of the targeted instance. It

4.3. CARRADA dataset 75

��

��

�
�

Time : Initialisation�

��

��

��

Time : Tracking� − 1

��

��

��

��

Time : Tracking� + 1

�
�+1

�
�−1

Figure 4.9: Tracking of the Mean Shift cluster to propagate the annotation in the
sequence. The Mean Shift algorithm used with the bandwidth selection method is applied
to the DoA-Doppler representation at time t. The estimated point It, using the computer
vision pipeline and corresponding to the tracked object, is associated to its closest cluster.
The centroid of this cluster considered as It+1 and It−1 in the next and previous DoA-
Doppler frames is tracked iteratively.

is then tracked in the past and future using the following process, illustrated in Figure 4.9.
This initialisation requires a human supervision to validate the matching between It and
the cluster of RADAR points corresponding to the object before the tracking. This supervi-
sion could be avoided by considering an automatic validation between the camera and the
RADAR frames, it will be explored in a future work.

At a given timestamp chosen by the user, a 3D DoA-Doppler point cloud is clustered
using the Mean Shift algorithm [Comaniciu & Meer 2002]. Let {x0, · · · , xn−1} be a point
cloud of n points. For a given starting point, the algorithm iteratively computes a weighted
mean of the current local neighborhood and updates the point until convergence. Each
iteration reads:

x←
∑n−1

i=0 xiK(x; xi, σ)∑n−1
i=0 K(x; xi, σ)

, (4.14)

where K(x; xi, σ) = N (
∥∥x−xi

σ

∥∥ ; 0, 1) is the multivariate spherical Gaussian kernel with
bandwidth σ, centered at xi. All initial points leading to close final locations at convergence
are considered as belonging to the same cluster.

Mean-Shift clustering is sensitive to the bandwidth parameter σ. Its value should de-
pend on the point cloud distribution and it is usually defined with prior knowledge about
the data. In this application, it is not straightforward to group points belonging to the same
object in the DoA-Doppler point cloud representation. The number of points and their
distribution depend on the distance and the surface of reflectivity of the target. Moreover,
these characteristics change during a sequence while the instance is moving in front of the
RADAR. In the work of [Bugeau & Pérez 2007], the authors proposed to compute several

76 Chapter 4. Proposed automotive RADAR datasets

times the Mean-Shift algorithm with ordered bandwidth values. They finally selected the
optimal bandwidth by comparing the distribution of the clusters. Our method applied the
same procedure to point clouds with multiple instances. It automatically finds an optimal
bandwidth for each instance contained in each point cloud. We proposed additional metrics
to compare the cluster distributions, they are described in the following paragraphs.

For a given DoA-Doppler point cloud, the closest cluster to the feature point It is
associated to an instance. Let σb ∈ {σ0, · · · , σB−1} be a bandwidth in a range of B
ordered values. A Mean-Shift algorithm noted MeanShift(σb) selects the closest cluster
Cb to It containing nb points. After running the algorithm with all bandwidth values,
{C0, · · · , CB−1} clusters are found with their corresponding optimal bandwidths.

The following paragraphs will detail methods to select the optimal bandwidth σb∗ re-
garding the distribution and the stability of the clustered point clouds. Once the optimal
bandwidth is found, the closest cluster to It using MeanShift(σb∗) is considered as belong-
ing to the targeted instance. The points It+1 and It−1 are assigned with the centroid of this
cluster. The process is then iterated in the previous and next frames to track the center of
the initial cluster until the end of the sequence.

Log-Ratio The further away the object, the smaller its signature in the RADAR repre-
sentation and the smaller its DoA point cloud. The proposed Log-Ratio method defines
the bandwidth for the Mean Shift algorithm as a function of the distance of the centroid
of the DoA cluster tracked from the previous or next RADAR frame 3. Let dmax and dt−1

be respectively the maximum distance of the RADAR detection (50 meters in our case)
and the distance to the centroid of the tracked DoA-Doppler point cloud at t− 1 (or t+ 1

depending on tracking direction). At time t, the optimal bandwidth σb∗(dt−1) is defined
as:

σb∗(dt−1) =
1 + log(1 + dmax)

1 + log(1 + dt−1)
=


1 if dt−1 = dmax

1 + log(1 + dmax) if dt−1 = 0
1+log(1+dmax)
1+log(1+dt−1) otherwise.

(4.15)

Determinant In this method, the optimal bandwidth σb∗ is selected by comparing the
stability of the determinant between the selected clusters. For each b ∈ {0, · · · , B − 1}
ordered values and a cluster Cb = {x0, · · · , xnb−1} of nb points, its Gaussian distri-
bution N (µ̂b, Σ̂b) is estimated with expectation µ̂b = 1

nb

∑nb−1
i=0 xi and variance Σ̂b =

1
nb−1

∑nb−1
i=0 (xi·− µ̂b)(xi·− µ̂b)>. For each bandwidth b, the determinant |Σ̂b| = Det(Σ̂b)

of the variance-covariance matrix of the corresponding Gaussian distribution is computed.
Using these determinants from the fitted distributions as signatures, the bandwidth σb∗ is
selected by choosing the one which is the most “stable” with respect to a varying band-
width:

b∗ = argmin
b∈{1,··· ,B−2}

(|Σ̂b| − |Σ̂b−1|) + (|Σ̂b+1| − |Σ̂b|). (4.16)

3It depends on the direction of the annotation propagation in the RADAR sequence, either it is in the future
or in the past depending on the initialization frame.

4.3. CARRADA dataset 77

Number of points The optimal bandwidth σb∗ is selected by comparing the stability of
the number of points between the selected clusters. For each b ∈ {0, · · · , B − 1} ordered
values, the cluster Cb ∈ {C0, · · · , CB−1} corresponds to the closest cluster regarding the
tracked centroid in a sequence using MeanShift(σb). The bandwidth σb∗ is selected by
choosing the one which is the most “stable” with respect to a varying bandwidth:

b∗ = argmin
b∈{1,··· ,B−2}

(#Cb −#Cb−1) + (#Cb+1 −#Cb), (4.17)

where #Cb =
∑

x∈Cb 1 is the number of points in the cluster Cb.

Jensen-Shannon divergence The optimal bandwidth σb∗ is selected by comparing the
stability of the probability distribution of the points between the selected clusters. For each
b ∈ {0, · · · , B − 1} ordered values, the probability distribution pb estimated with the nb
points of the cluster Cb = {x0, · · · , xnb−1} is the Gaussian distribution N (µ̂b, Σ̂b) with
expectation µ̂b = 1

nb

∑nb−1
i=0 xi and variance Σ̂b = 1

nb−1

∑nb−1
i=0 (xi· − µ̂b)(xi· − µ̂b)

>.
Using these fitted distributions, the bandwidth σb∗ is selected by choosing the one which is
the most “stable” with respect to a varying bandwidth:

b∗ = argmin
b∈{1,··· ,B−2}

[
JS
(
pb‖pb−1

)
+ JS

(
pb‖pb+1

)]
, (4.18)

where JS is the Jensen-Shannon divergence [Endres & Schindelin 2003]. This is a proper
metric derived from Kullback-Leibler (KL) divergence [Kullback & Leibler 1951] as

JS(p‖q)2 =
KL(p‖p+q2) + KL(q‖p+q2)

2
, (4.19)

where KL(p‖p+q2) =
∑

i p(i)
2p(i)

p(i)+q(i) , for two discrete probability distributions p and q.
The Jensen-Shannon (JS) divergence measure the similarity between q and p since it is
symmetric and has a finite value, contrary to the Kullback-Leibler divergence.

The presented methods have been tested and qualitatively compared on the CARRADA
dataset. The JS divergence used to quantify the stability between the probability distribu-
tions of compared clustered has reached the best results. It succeeds in including a large
number of RADAR points belonging to the object through time. An example comparing
the proposed methods is illustrated in Figure 4.10. The temporal consistency of the band-
width selection using the JS divergence is also highlighted in Figure 4.12.

4.3.2.3 Projections and annotations

We recall that Cb∗ is the cluster associated to the point It at time t using MeanShift(σb∗),
where σb∗ is the estimated optimal bandwidth. This cluster is considered as belonging to
the tracked object. A category is associated to it by using the segmentation model on the
image (Section 4.3.2.1). The points are projected onto the RD representation using the
radial velocity and the distance is computed with the real-world coordinates. They are
also projected onto the RA representation by converting the Cartesian coordinates to polar

78 Chapter 4. Proposed automotive RADAR datasets

Figure 4.10: Comparison of bandwidth selection methods. Qualitative results of the
bandwidth selection methods applied to the Mean Shift algorithm presented in Section
4.3.2.1. The algorithm is applied at each timestamp of the RADAR sequence in order to
track the cluster corresponding to the object. Results are illustrated for a sequence between
timestamps t and t+ 4. The black points correspond to the tracked cluster of points in the
DoA-Doppler space. They are projected in the Range-Doppler representation cropped for
visualisation purpose.

coordinates.
Let fD be the function which projects a point from the DoA-Doppler representation

into the RD representation. Similarly, we denote with fA the projection into the RA repre-
sentation. The sets of pointsMD = fD(Cb) andMA = fA(Cb) correspond, respectively,
to the RD and RA representations of Cb. They are called the sparse-point annotations.

The bounding box of a set of points in R2 (either from MD or MA) is defined as a
rectangle parameterized by {(xmin, ymin), (xmax, ymax)} where xmin is the minimum x-
coordinate of the set, xmax is the maximum, and similarly for the y-coordinates.

Mathematical morphology has been experimented to expand the sparse annotation cre-
ating a dense mask. Let E ⊂ R2 be a structuring element, the dilation ofM by E is defined
asM⊕ E = ∪e∈EMe, whereMe is the translation ofM by e. The erosion ofM by E ,
reducing the shape ofM as opposed to the dilation, is writtenM	E = ∩e∈EM−e, where
M−e is the translation ofM by −e. Finally, the closing ofM by E is the erosion of the
dilation of this set. It is notedM• E = (M⊕E)	 E .

The dense mask annotation is obtained by dilating the sparse annotated set with a circu-
lar structuring element: given the sparse set of pointsM = {(x0, y0), . . . , (xN−1, yN−1)},
the associated dense mask is the set of discrete coordinates in ∪N−1

i=0 Br(xi, yi), where
Br(x, y) is the disk of radius r centered at (x, y). It is called the “Dilation/Circle”
method. We compared it with three other combinations of operations: a dilation with a
cross structuring element (Dilation/Cross), the Dilation/Circle followed by a closing with
a square structuring element (Dilation/Circle-Closing/Square) and the Dilation/Circle fol-

4.3. CARRADA dataset 79

Figure 4.11: Comparison of methods for dense mask annotation generation. For each
(1-3) independent example, the (a) source data is an object signature in a cropped Range-
Doppler. Using the tracking pipeline and the projections presented in Sections 4.3.2.2
and 4.3.2.3, the cluster (b) is projected back in the representation, generating the sparse
annotation. Qualitative results of the following methods are illustrated: (c) Dilation/Cross,
(d) Dilation/Circle, (e) Dilation/Circle-Closing/Square, (f) Dilation/Circle-Closing/Square-
Erosion/Square.

lowed by a closing and an erosion, both with a square structuring element (Dilation/Circle-
Closing/Square-Erosion/Square). Note that the structuring elements are centered in a 3×3

binary patch. The cross structuring element has five 1 values and the square has nine 1
values.

These combinations of mathematical morphology operations are compared to create
the dense mask from the sparse annotation. Qualitative results are illustrated in Figure
4.11. The Dilation/Circle method, used on its own, reached convincing results by covering
homogeneously the shape of the object signature while including fewer noise bins than
other methods for small objects.

In the following section, a baseline is proposed for RADAR semantic segmentation
trained and evaluated on the annotations detailed above.

4.3.3 Semantic segmentation baseline

We proposed a baseline for semantic segmentation using RD or RA RADAR represen-
tation to detect and classify annotated objects. FCNs [Long et al. 2015] are used here to
learn features at different scales by processing the input data with convolutions and down-
sampling. Feature maps from convolutional layers are up-sampled with up-convolutions to
recover the original input size. Each bin of the output segmentation mask is then classified.
The particularity of FCN is that is uses skip connections from features learnt at different
levels of the network to generate the final output. We denote with FCN-32s a network

80 Chapter 4. Proposed automotive RADAR datasets

Data Model IoU PP PR

B
ac

kg
ro

un
d

Pe
de

st
ri

an

C
yc

lis
t

C
ar

m
Io

U

hI
oU

B
ac

kg
ro

un
d

Pe
de

st
ri

an

C
yc

lis
t

C
ar

m
PP

hP
P

B
ac

kg
ro

un
d

Pe
de

st
ri

an

C
yc

lis
t

C
ar

m
PR

hP
R

RD

FCN-32s
99.6
(—)

16.8
(—)

3.2
(—)

27.5
(—)

36.8
(—)

8.1
(—)

99.6
(—)

69.4
(17.3)

5.4
(1.0)

64.2
(17.2)

59.7
(11.9)

13.8
(2.2)

99.9
(—)

20.3
(28.3)

6.7
(8.1)

32.3
(47.5)

39.8
(28.0)

13.3
(14.0)

FCN-16s
99.6
(—)

28.9
(—)

7.2
(—)

42.1
(—)

44.5
(—)

17.2
(—)

99.7
(—)

64.7
(15.1)

18.0
(4.7)

67.6
(17.0)

62.5
(12.3)

40.3
(8.6)

99.9
(—)

39.2
(50.9)

10.7
(16.9)

54.1
(74.1)

51.0
(47.3)

23.4
(27.5)

FCN-8s
99.7
(—)

45.2
(—)

15.5
(—)

51.3
(—)

52.9
(—)

34.2
(—)

99.8
(—)

72.3
(15.5)

35.2
(9.6)

69.8
(17.0)

69.3
(14.0)

59.8
(13.1)

99.9
(—)

55.0
(76.4)

22.1
(35.7)

66.8
(88.9)

60.9
(67.0)

44.3
(56.7)

RA

FCN-32s
99.8
(—)

0.0
(—)

0.0
(—)

14.2
(—)

28.5
(—)

0.0
(—)

99.9
(—)

18.8
(6.1)

0.0
(0.0)

69.3
(13.7)

47.0
(6.6)

0.0
(0.0)

100.0
(—)

0.0
(0.1)

0.0
(0.0)

15.5
(24.6)

28.9
(8.2)

0.0
(0.0)

FCN-16s
99.8
(—)

0.9
(—)

0.0
(—)

13.7
(—)

28.6
(—)

0.0
(—)

99.9
(—)

39.8
(5.2)

0.2
(0.0)

68.0
(12.2)

52.0
(5.8)

0.9
(0.0)

100.0
(—)

0.9
(1.7)

0.0
(0.0)

15.4
(22.7)

29.1
(8.1)

0.0
(0.0)

FCN-8s
99.9
(—)

5.5
(—)

0.0
(—)

25.1
(—)

32.6
(—)

0.1
(—)

99.9
(—)

42.2
(10.0)

0.1
(0.1)

65.4
(12.4)

51.9
(7.5)

0.6
(0.2)

100.0
(—)

6.3
(11.3)

0.0
(0.1)

30.0
(45.5)

34.1
(19.0)

0.1
(0.3)

Table 4.6: Semantic segmentation performances (%) on the test dataset for Range-
Doppler (RD) and Range-Angle (RA) representations. Models are trained on dense
mask annotations and evaluated on both dense mask (top values) and sparse points (bottom
values in parentheses) annotations. Results are evaluated with IoU, PP and PR. Metrics are
computed by category and aggregated with both arithmetical (m) and harmonic (h) means.
Lines (—) replacing values indicate non-applicable metrics, for example IoU results on
sparse annotations.

where the output mask is generated only by up-sampling and processing feature maps with
1/32 resolution of the input. Similarly, FCN-16s is a network where 1/32 and 1/16 res-
olution features maps are used to generate the output mask. In the same manner, FCN-8s
fuses 1/32, 1/16 and 1/8 resolution feature maps for output prediction.

The models are trained to recover dense mask annotations with four categories: back-
ground, pedestrian, cyclist and car. The background corresponds to speckle noise, sensor
noise and artefacts which are covering most of the raw RADAR data. Parameters are
optimized for 100 epochs using a categorical cross entropy loss function and the Adam
optimizer [Kingma 2015] with the recommended parameters (β1 = 0.9, β2 = 0.999 and
ε = 1 · 10−8). The batch size is fixed to 20 for the RD representation and to 10 for the RA
representation to fill the memory capacities of the GPU (11GB). For both representations,
the learning rate is initialized to 1 · 10−4 for FCN-8s and 5 · 10−5 for FCN-16s and FCN-
32s. The learning rate has an exponential decay of 0.9 each 10 epochs. Training has been
completed using the PyTorch framework with a single GeForce RTX 2080 Ti GPU.

Performances are evaluated for each RADAR representation using the IoU, the Pixel
Precision (PP) and the Pixel Recall (PR) for each category. Metrics by category are ag-
gregated using arithmetic and harmonic means. To ensure consistency of the results, all
performances are averaged from three trained models initialized with different seeds. Re-
sults are presented in Table 4.6.

Models are trained on dense mask annotations and evaluated on both dense mask (top
values) and sparse points (bottom values in parentheses) annotations. Sparse points are

4.3. CARRADA dataset 81

more accurate than dense masks, therefore evaluation on this type of annotation provides
information on the behaviour of predictions on key points. However, localization should
not be evaluated for sparse points using a model trained on dense masks, therefore IoU
performances are not reported. The background category cannot be assessed for the sparse
points because some of the points should belong to an object but are not annotated per se.
Thus, arithmetic and harmonic means of sparse points evaluations are computed for only
three classes against four for the dense masks.

The baseline shows that meaningful representations are learnt by a popular visual
semantic segmentation architecture. These models succeed in detecting and classifying
shapes of moving objects in raw RADAR representations even with sparse-point annota-
tions. Performances on RA are not as good as in RD because the angular resolution of the
sensor is low, resulting in less precise generated annotations. An extension to improve per-
formances on this representation could be to transform it into Cartesian coordinates as done
in [Major et al. 2019]. For both representations, results are promising since the temporal
dimension of the objects signatures has not yet been taken into account.

4.3.4 Discussions

The semi-automatic algorithm presented in Section 4.3.2 generates precise annotations on
raw RADAR data, but it has limitations. Occlusion phenomena are problematic for track-
ing, since they lead to a disappearance of the object point cloud in the DoA-Doppler rep-
resentation. An improvement could be to detect such occlusions in the video frames and
include them in the tracking pipeline. The clustering in the DoA-Doppler representation is
also a difficult task in specific cases. When objects are close to each other with a similar
radial velocity, point clouds are difficult to distinguish. Further work on the bandwidth
selection and optimisation of this selection could be explored.

The CARRADA dataset provides precise annotations to explore a range of supervised
learning tasks. A simple baseline is proposed for semantic segmentation trained on dense
mask annotations. It could be extended by using temporal information or both dense mask
and sparse points annotations at the same time during training. Current architectures and
loss functions could also be optimized for semantic segmentation of sparse ground-truth
points. Object detection could be considered by using bounding boxes to detect and clas-
sify object signatures. As off-the-shelf object detection algorithms are not adapted to the
RADAR data representation and to the unusual size of the provided annotations, further
work is required to redesign these methods. By identifying and tracking specific instances
of objects, other opportunities are opened. Tracking of sparse points or bounding boxes
could also be considered.

4.3.5 Conclusions

The CARRADA dataset contains synchronised video frames, Range-Angle-Doppler tensor
and thus, Range-Angle and Range-Doppler raw RADAR representations. RADAR data are
annotated with sparse points, bounding boxes and dense masks to localize and categorize
the object signatures. A unique identification number is also provided for each instance.

82 Chapter 4. Proposed automotive RADAR datasets

Figure 4.12: Two scenes from CARRADA dataset, one with a car, the other on with
a cyclist and a car. (a) Video frames provided by the frontal camera showing moving
objects in a fixed environment; (b-c) RADAR signals at the same instants in Range-Angle
and cropped Range-Doppler representation respectively. (1-4) First sequence; (5-8) Second
sequence. Frames in both sequences are selected with an interval of 5 frames. In the first
sequence, the segmentation mask corresponds to the annotation of the approaching car in
the scene. Range-Doppler data (c)(1) and (c)(3) show that our method is robust to recording
noise. In frames (4), the car is still in the radar’s field of view but it has disappeared from
the camera. In the second sequence, the segmentation masks correspond respectively to the
annotations of the moving cyclist (blue) and car (green). The cyclist is moving from right
to left in front of the RADAR, its radial velocity is progressively changing from positive
to negative. Note that the Range-Angle view illustrated in (b) has been obtained using a
maximum aggregation and log-transform in Equation 2.18 while the Range-Doppler view
in (c) is computed using Equation 2.19.

Annotations are generated using a semi-supervised algorithm based on visual and physi-
cal knowledge. The proposed semi-automatic pipeline generating the annotations is robust
to RADAR sensor noise and camera occlusion while being able to track an object in the
RADAR data which is not visible in the camera. These results are illustrated in Figure
4.12. This pipeline could be used to annotate any camera-RADAR recordings with similar
settings. The dataset, code for the annotation algorithm and code for dataset visualisation
are publicly available 4. Even if the recorded scenes contain only one or two objects mov-
ing in a controlled environment, the dataset is unique in its kind by providing raw RADAR
data with detection and semantic segmentation annotations. This work also aims to moti-
vate deep learning research applied to RADAR sensor and multi-sensor fusion for scene
understanding as proposed in the following chapter.

4.4 Conclusions

This chapter has outlined methods to address the lack of open and annotated RADAR data.
We presented a simple simulation of objects’ signature in RD representations by consid-

4https://github.com/valeoai/carrada_dataset

https://github.com/valeoai/carrada_dataset

4.4. Conclusions 83

ering the geometric properties of a moving object in a scene and incorporating different
types of noise (Section 4.1). The proposed simulator is too simple to generate realistic
samples. As our experiments show, deep neural network architectures are capable of easily
over-fitting the simulation.

Secondly, we proposed methods to generate RD representations from camera images
using real data recorded in complex urban scenes (Section 4.2). Our proposed AE architec-
ture combined with the “Noise Map” method, reached the best quantitative and qualitative
results. However, the results were not convincing enough to further explore the transfer of
annotations from the source domain (camera image) to the target domain (RD representa-
tion).

Finally, we presented CARRADA, a unique dataset including synchronized camera
images and raw RADAR data with object detection and semantic segmentation annota-
tions (Section 4.3). We also proposed a semi-automatic pipeline based on camera images
generating annotations on RADAR representations while being robust to object occlusion,
narrow camera FoV and RADAR sensor noise, as illustrated in Figure 4.12. The CAR-
RADA dataset and the presented annotation method were presented at the International
Conference on Pattern Recognition (ICPR).

The proposed dataset contains simple scenes with only one or two moving objects at
the same time. However, it is an interesting source of data for designing deep neural net-
work architectures, while being realistic enough to be generalized to complex urban scenes,
as we detail in the next chapter. The annotation pipeline is also limited in distinguishing
two objects with similar Doppler while being close together. Furthermore, it requires a
human intervention to instantiate the tracking method. This is a preliminary work on au-
tomatic RADAR annotation generation, which has been extended in the recent work of
[Zhang et al. 2021a], as detailed in Section 5.1.4.1.

In the following chapter, we will present methods for RADAR scene understanding.
First, we will propose deep neural architectures for multi-view RADAR semantic seg-
mentation with their corresponding loss functions. Then, we will introduce a method for
LiDAR and RADAR point cloud fusion to take advantage of both sensors for scene under-
standing applications.

CHAPTER 5

RADAR scene understanding

Contents
5.1 Multi-view RADAR semantic segmentation 86

5.1.1 Motivations . 86
5.1.2 Methods and architectures . 86
5.1.3 Experiments on the CARRADA dataset 92
5.1.4 Experiments on complex urban scenes datasets 96
5.1.5 Conclusions and perspectives . 100

5.2 Sensor fusion . 101
5.2.1 Introduction . 101
5.2.2 Method . 102
5.2.3 Simulation . 106
5.2.4 Application to the nuScenes dataset 106
5.2.5 Discussions and future work . 108

5.3 Conclusions . 109

The RADAR sensor is recently a source of interest since public datasets have been
released as detailed in Section 3.2. RADAR scene understanding is in its infancy, but it
provides key information to compensate for weaknesses of the other sensors. The RADAR
data presented as a RAD tensor contains signatures of the objects surrounding the car with
enough details to distinguish them in the representation. Unlike object detection using
bounding boxes, semantic segmentation is appropriate for this task, since the object signa-
tures have extremely variable sizes and may be mixed up due to the sensor’s resolution.

Multi-sensor fusion is essential to improve scene understanding by taking advantage of
complementary sensor properties. LiDAR and RADAR point clouds are easy to fuse in the
Cartesian coordinates around the ego vehicle. Even if the RADAR point cloud is degraded
through the signal processing pipeline (see Section 2.2), it offers reflectivity and velocity
information useful to localise objects in the dense LiDAR dense representation.

In this chapter, we propose a method for RADAR scene understanding. First, a
multi-view approach is proposed for RADAR semantic segmentation in Section 5.1 de-
tails neural network architectures and their associated loss functions adapted to the RAD
tensor. This section is the second main contribution of this thesis, it is mainly inspired
from our article published at the International Conference on Computer Vision (ICCV)
[Ouaknine et al. 2021]. Section 5.2 introduces a method to fuse and propagate RADAR
point cloud properties through the LiDAR point cloud aiming to improve scene under-
standing tasks.

86 Chapter 5. RADAR scene understanding

Figure 5.1: Overview of our multi-view approach to semantic segmentation of RADAR
signal. At a given instant, RADAR signals take the form of a Range-Angle-Doppler tensor.
Sequences of q+ 1 2D views of this data cube are formed and mapped to a common latent
space by our proposed multi-view architectures. Two heads with distinct decoders pro-
duce a semantic segmentation of the Range-Angle and Range-Doppler views respectively
(‘background’ in black, ‘pedestrian’ in red and ‘cyclist’ in green in this example).

5.1 Multi-view RADAR semantic segmentation

5.1.1 Motivations

In this section, an approach to multi-view RADAR semantic segmentation is proposed, il-
lustrated in Figure 5.1, that exploits the entire data while addressing the challenges of its
large volume and high level of noise (see Appendix B.1.1). The segmentation is performed
on the RD and RA views, which suffices to deduce the localisation and the relative speed of
objects. The first contribution is a set of lightweight neural network architectures designed
for multi-view semantic segmentation of RADAR signal (see Section 5.1.2.3. The second
contribution is a set of loss terms to train models on these tasks while preserving coher-
ence between the multi-view predictions (see Section 5.1.2.4). Experiments in Sections
5.1.3 and 5.1.4 demonstrate that our proposed best model outperforms alternative models,
derived either from the semantic segmentation of natural images or from RADAR scene
understanding, while requiring significantly fewer parameters. Both our code and trained
models are available online1. Section 5.1.5 finally concludes and proposes perspectives.

5.1.2 Methods and architectures

The following Sections 5.1.2.1 and 5.1.2.2 briefly present several methods for image seg-
mentation and RADAR scene understanding, to which this work is compared. They are
chosen for their performance and their relevance to the RADAR semantic segmentation
task. Further details on the architectures are provided in Sections 2.6.3 and 3.4. Except

1https://github.com/valeoai/MVRSS

https://github.com/valeoai/MVRSS

5.1. Multi-view RADAR semantic segmentation 87

RSS-Net [Kaul et al. 2020], these architectures were not originally designed for RADAR
semantic segmentation, nor to handle multiple views of a data volume. Consequently, for
each of them, two models have been trained independently for RD and RA segmentation
respectively. More details are provided in Section 5.1.3.2.

The three proposed architectures for multi-view RADAR semantic segmentation are
introduced in Section 5.1.2.3.

5.1.2.1 Image-based competing methods

Long et al. [Long et al. 2015] propose FCN, consisting of convolutional and down-
sampling layers followed by transposed convolutions (“up-convolutions”). The final repre-
sentations are processed by a 1D convolution with softmax to predict a category for each
pixel. Several versions are proposed depending on the feature-map scales used to generate
the output. FCN has been used for semantic segmentation of RADAR data in Section 4.3.3,
where FCN-8s version achieves the best performance.

The U-Net architecture [Ronneberger et al. 2015] is composed of equal-depth down-
sampling and up-sampling pathways linked by skip connections. Originally used for med-
ical images, it is especially well suited for small-object segmentation.

The DeepLabv3+ [Chen et al. 2018b] is a popular encoder-decoder model for semantic
segmentation of natural images. The encoder uses “atrous” separable convolutions which
increase the receptive field of the network. The proposed ASPP layer [Chen et al. 2018a]
combines atrous convolutions with various dilation rates to learn multi-scale features fol-
lowed by a 1D convolution.

These methods are presented in detail in Section 2.6.3.

5.1.2.2 Radar-based competing methods

Kaul et al. [Kaul et al. 2020] propose RSS-Net, specialised in RADAR semantic segmen-
tation, in particular for RA representations. Its architecture is similar to DeepLabv3+ with
an encoder composed of 8 atrous convolutional layers, an ASPP module and a convolu-
tional decoder with up-sampling. The architecture is designed to reduce the dimension of
the feature maps in the encoder, leading to excellent performance for Range-Angle BEV
semantic segmentation.

Gao et al. [Gao et al. 2020] propose the RADAR Multiple-Perspective Neural Network
(RAMP-CNN) for object detection in RA representations. They aggregate the RAD tensor
into 2D RADAR views which are processed by separate encoder-decoders with 3D convo-
lutional layers. The final RA features are processed by a 3D inception module. RAMP-
CNN achieves state of the art performance in localising and classifying multiple objects in
RA views.

These methods are presented in detail in Section 3.4.

5.1.2.3 Proposed multi-view methods

We proposed four lightweight neural network architectures. They are specialised in multi-
view RADAR semantic segmentation, whose general principle is illustrated in Figure 5.2.

88 Chapter 5. RADAR scene understanding

Figure 5.2: Multi-view architectures for RADAR semantic segmentation. (1) The
multi-view network (MV-Net), considered as a baseline, is composed of two encoders, two
decoders and a common latent space. (2) The MVA-Net(a) has an additional Atrous Spatial
Pyramidal Pooling module for each view pathway; (3) The MVA-Net(b) has an additional
Angle-Doppler pathway; (4) The TMVA-Net architecture is similar to the MVA-Net(b)
with 3D convolutions at the top of the encoders exploiting the temporal dimension. The
detailed architectures are provided in Appendix B.1.2.

They take a temporal stack of RADAR views as their input and process them with dedi-
cated encoders. The generated feature maps are fused in a shared latent space from which
different decoders predict semantic segmentation maps for each output view. Since neither
encoders nor decoders share weights, they are kept simple to reduce the size of the total
network. Thus, there are specialised parts of the network in each view, and a reasonable
number of parameters altogether. The proposed architectures are detailed layer by layer in
Appendix B.1.2.

Multi-view network (MV-Net). Firstly, we proposed a baseline (see Figure 5.2 (1)) in
the form of a double encoder-decoder architecture that processes stacked RD and RA views
and predicts simultaneously the RD and RA semantic segmentation maps. It is important to
note that the third view (AD) can be deduced from the RA and RD views, and it is therefore
not necessary to segment it in the output. This is the case for all proposed architectures.

Each encoder is composed of two blocks, each one with two sequences of convolution,
batch normalisation and activation layers. The two blocks are separated by a max-pooling

5.1. Multi-view RADAR semantic segmentation 89

operation to down-sample the feature maps along the range axis (the Doppler’s resolu-
tion being lower, it is kept unchanged). The feature maps from both encoders are down-
sampled, processed by a 1D convolution and stacked into a common latent space. Since
the input views are stacked according to the time dimension, this linear combination of the
feature maps aims to learn temporal correlations. The features in the shared latent space are
then processed with 1D convolution layers and used as the input of each decoder. There are
two decoders predicting respectively the RD and RA semantic segmentation maps. Each
one is composed of two blocks with two sequences of convolution, batch normalisation and
activation layers. The up-sampling between the blocks is carried out by up-convolutions.
A final 1D convolution performs a combination of the outputs of each decoder to generate
K feature maps, where K is the number of classes. A softmax operation is then applied
pixel-wise to the K feature maps generating soft masks.

Multi-view network with ASPP modules (MVA-Net). The ASPP module
[Chen et al. 2018a] used in DeepLabv3 [Chen et al. 2018b] allows features to be jointly
learned at different scales at a given depth of the network with no need for larger ker-
nels or additional parameters. As shown in RSS-Net [Kaul et al. 2020], it is well suited
for RADAR semantic segmentation since the objects’ signatures can vary considerably.
The second architecture, MVA-Net, introduces the use of this ASPP module at the end of
each decoder of our MV-Net baseline. The generated multi-scale feature maps are con-
catenated, processed by a 1D convolution and stacked to the input of each corresponding
decoder. Two variants of MVA-Net are proposed: MVA-Net(a), shown in Figure 5.2 (2),
consists in a double encoder-decoder architecture with ASPP modules to process and seg-
ment RD and RA views; MVA-Net(b), shown in Figure 5.2 (3), has an additional encoding
branch learning features from the AD view. Similarly to the other encoding branches, the
AD backbone generates features that are stacked in the common latent space. However,
the outputs of its ASPP module contain both the angle and Doppler information. Thus the
multi-scale feature maps from the AD pathway are stacked to the inputs of both the RD
and RA decoders.

Temporal multi-view network with ASPP modules (TMVA-Net). The temporal dimen-
sion provides valuable information for RADAR semantic segmentation. It helps in estimat-
ing the shape of an object’s signature despite high noise levels, and distinguishing objects
that are close together with similar velocities. The third architecture, which will show to
have the best performances, TMVA-Net in Figure 5.2 (4), extends MVA-Net by explicitly
leveraging the temporal dimension. The first block’s 2D convolutions are replaced by 3D
convolutions in each encoder branch, making it able to learn the spatio-temporal character-
istics with limited increase in the number of parameters. Since 3D convolutions require a
large number of parameters, full 3D-convolutional encoders, such as in [Gao et al. 2020],
have not been retained. Hence, TMVA-Net is composed of three encoders with 3D and 2D
convolutions, one for each input view. Each one of them has a dedicated ASPP module.
The feature maps generated from each encoding backbone are stacked into a shared latent
space. From there, two decoders segment respectively the RD and RA views. They take as
input the stacked features from the processed latent space and the multi-scale feature maps
from the dedicated ASPP modules.

90 Chapter 5. RADAR scene understanding

5.1.2.4 Losses

In what follows, the following generic notation are used: fθ(x) = p for a segmentation
model with parameters θ, input x and output p. Training fθ amounts to minimising w.r.t. θ
a suitable loss function, given training examples x with ground truth y. The architectures
presented in Sections 5.1.2.1 and 5.1.2.2 take single-view inputs stacked in the temporal
dimension and predict, for each target view, a soft segmentation mask with class “prob-
abilities" for each bin. For instance, the output of a model processing only the RA view
is fθ(xRA) = pRA ∈ [0, 1]BR×BA×K , if BR×BA is the size of the view and K the number
of classes. Our architectures, detailed in Section 5.1.2.3, take instead multi-view inputs:
either x = (xRD, xRA) or x = (xRD, xAD, xRA). In both cases, their goal is to predict soft
masks p=(pRD,pRA) for both RD and RA views.

The following section details the loss functions applied to each segmented view to train
our proposed architectures. A “coherence” loss is also introduced to enforce consistency
between the predictions over the two views of the scene. Finally a combination of these
loss terms is proposed.

Weighted Cross Entropy. Semantic segmentation models that predict a score for each
class at each pixel are usually trained by minimising a CE loss function. This loss is
not ideal for unbalanced segmentation tasks such as the RADAR semantic segmentation,
since the optimisation process tends to focus on the classes that are most represented. In
the present case, background and speckle noise dominate, in comparison to the signatures
of the objects we wish to detect. In the same manner as RSS-Net [Kaul et al. 2020], a
weighted Cross-Entropy (wCE) loss is employed to tackle this issue.

Given a training example x, let y ∈ {0, 1}BM×BN×K be its one-hot ground truth and
fθ(x) = p ∈ [0, 1]BM×BN×K the associated prediction where BM×BN is the size of the
view x. The wCE loss function is defined as:

LwCE(y,p) = − 1

K

K∑
k=1

wk
∑

(m,n)∈Ω

y[m,n, k] log p[m,n, k], (5.1)

where Ω = J1, BMK × J1, BNK, and wk’s are normalized positive weights. Weight wk
is inversely proportional to the frequency of class k in the training set, that is wk ∝(∑

y
∑

(m,n)∈Ω y[m,n, k]
)−1. The fewer the bins with ground-truth class k, the larger

wk becomes.

Soft Dice. Object signatures in RADAR representations often correspond to small re-
gions. This is a well known issue in medical image segmentation, where the Dice metric
(detailed in Section 5.1.3.1) is usually reformulated in a function called Dice loss, ranging
between 0 and 1. In their work, [Milletari et al. 2016] have proposed the Soft Dice (SDice)
loss defined as:

LSDice =
1

K

K∑
k=1

[
1−

2
∑

(m,n) y[m,n, k]p[m,n, k]∑
(m,n) y2[m,n, k] + p2[m,n, k]

]
, (5.2)

where (m,n) ∈ Ω, as in Equation 5.1. This formulation has proved useful for 2D and 3D

5.1. Multi-view RADAR semantic segmentation 91

Figure 5.3: Computation of the coherence loss. The segmentation maps pRD and pRA of
the two views are aggregated by max pooling along the axis that they do not share (either
the Doppler or the angle). The coherence loss is the Mean Squared Error between the two
resulting vectors p̃RD and p̃RA.

medical image semantic segmentation, including for small objects.

Coherence. The objective of multi-view RADAR semantic segmentation is to simultane-
ously segment several views of the aggregated RAD tensor. The objects we wish to detect
are observed in the different RADAR views, thus it is clear that a certain coherence must
be maintained between the segmented views. For example, one view should not represent
a pedestrian, while another represents a cyclist. A Coherence Loss (CoL) is introduced to
preserve a consistency between the predictions of the model. The procedure to calculate
this loss is illustrated in Figure 5.3.

Let (pRD,pRA) be the segmentation maps predicted by the model fθ after the softmax
operation. These two maps are aggregated by applying a max(.) operator along the axis
that they do not share (either the Doppler or the angle). The two resulting maps of same
size, denoted p̃RD and p̃RA, contain the highest probability of each range bin for each
class. In other words, they indicate if the model predicts a high probability to observe
a category at a given distance. The coherence loss is the MSE between these maximum
range probability vectors. It encourages the network to predict high probability values at
the same distance and in the same class for both views. The CoL, in the interval [0, 1], is
defined as:

LCoL(pRD,pRA) =
1

BR ·K
∥∥p̃RD − p̃RA∥∥2

F
, (5.3)

where ‖ · ‖F denotes the Frobenius norm, BR the number of range bins and K the number
of classes.

Combination of losses. The CE loss is specialised in pixel-wise classification and does
not consider spatial correlations between the predictions. The SDice is particularly effec-

92 Chapter 5. RADAR scene understanding

tive for shape segmentation, but it is difficult to optimise as a single loss function due to
its gradient formulation. Finally, the CoL is useful where neither the CE nor the SDice
is able to leverage a coherence between the prediction of the RD and the RA views. To
combine the different strengths of these losses, the following final loss is proposed to train
multi-view architectures:

L = λwCE(LRD
wCE + LRA

wCE) + λSDice(LRD
SDice + LRA

SDice) + λCoLLCoL, (5.4)

where λwCE, λSDice and λCoL are weighting factors set empirically.

5.1.3 Experiments on the CARRADA dataset

This section presents the experimental evaluation of our proposed models on the CAR-
RADA dataset described in Section 4.3. The dataset and the evaluation metrics are briefly
described. Modification made to the competing methods are then explained. Finally, de-
tails are provided concerning the experiments and analyse their results quantitatively and
qualitatively.

5.1.3.1 Dataset and evaluation metrics

Dataset. The CARRADA dataset contains synchronised camera and automotive RADAR
recordings with 30 sequences of various scenarios with one or two moving objects. The
RADAR views are annotated using a semi-automatic pipeline (see Section 4.3.2). This
is the only publicly-available dataset providing RAD tensors and dense semantic segmen-
tation annotation for both RD and RA views. The objects are separated into four cate-
gories: pedestrian, cyclist, car and background. The provided RAD tensors have dimen-
sions BR×BA×BD = 256×256×64. Additional details on the dataset are provided in
Section 4.3.1. The experiments presented in Section 5.1.3.3 use the proposed dataset splits
(see Figure 4.6, denoted CARRADA-Train, CARRADA-Val and CARRADA-Test.

Evaluation metrics. A classic performance metric in semantic segmentation is the IoU
This metric has been introduced in Section 2.6.2. From the perspective of a single object in
a given scene, the IoU measures how well and how completely it is segmented. Averaging
this metric over all classes yields the mIoU score. Another related, yet slightly different
metric, is provided by the Dice score: For a given class and with same notations as above,
it is defined as 2|A∩B|

|A|+|B| . For global performance, it is averaged over all classes into the
mean Dice (mDice). Seeing segmentation as a local 1-vs.-all classification problem for
each class, the Dice amounts to the harmonic mean of the precision and recall (a.k.a. F1
score). The IoU and Dice metrics are considered as complementary; Both of them are
reported in our experiments.

5.1.3.2 Implementation of competing methods

This section describes the architectures used for comparisons. For each method, one model
is trained specifically for single-view semantic segmentation of either RD or RA. Details
concerning pre-processing procedures are provided in the Appendix B.1.3.

5.1. Multi-view RADAR semantic segmentation 93

The non-radar-based architectures have been used “as is”: The FCN-8s archi-
tecture is based on a VGG16 [Simonyan & Zisserman 2015] backbone; DeepLabv3+
uses a ResNet-101 [He et al. 2016]; The U-Net architecture is identical to the one in
[Ronneberger et al. 2015].

In the experiments with RSS-Net, the number of down-sampling layers in the encoding
part has been reduced to be trained with lower resolution inputs.

The RAMP-CNN architecture dedicated to the RD view has been adapted with two
major changes. Firstly, the fusion module has been modified to aggregate and duplicate the
feature maps to suit the RD space. Secondly, the size of the output feature maps has been
reduced on the Doppler axis using an additional convolutional layer with 3×3 filters and a
stride factor of 4. For both RD and RA segmentation tasks, an additional 1D convolutional
layer with a softmax operation processes the last feature maps to predict segmentation
maps.

5.1.3.3 Training and results

Training procedures. Methods presented in Section 5.1.2 are trained using CARRADA-
Train and CARRADA-Val splits and tested on the CARRADA-Test. At each timestamp
of a RADAR sequence, the provided RAD tensor is processed according to the method
presented in Section 2.2.

For each frame, q past frames are also considered for both training and testing phases:
The views from t−q to t are stacked into the time-t input (see Figure 5.1). For the methods
that do not explicitly process the time dimension, q = 2 for a total input sequence length
of 3. Time-based methods using 3D convolutions have specific sequence lengths: q = 8

for RAMP-CNN and q = 4 for TMVA-Net.
The competing architectures have been trained with the CE loss, except for the RSS-

Net, which is trained with a wCE using the formulation in [Kaul et al. 2020]. Our proposed
methods are trained using the combination of loss terms detailed in Section 5.1.2.4. Our
proposed formulation of the wCE loss has been used (Section 5.1.2.4) with weights com-
puted on CARRADA-Train.

All the training procedures use the Adam optimiser [Kingma 2015] with the recom-
mended parameters (β1 = 0.9, β2 = 0.999 and ε = 10−8). Since each method has its
own set of hyper-parameters, further details are provided in the Appendix B.1.3, namely
batch sizes, learning rates, learning rate decays, numbers of epochs and corresponding
pre-processing steps for each one of them. Training was performed using the PyTorch
framework with a single GeForce RTX 2080 Ti graphic card.

Quantitative results. The performance for both RD and RA semantic segmentation tasks
on CARRADA-Test are shown in Table 5.1. Our proposed TMVA-Net achieves the best
scores for both mDice and mIoU metrics and for both segmentation tasks. Moreover, the
proposed methods are the only ones to perform both tasks simultaneously. TMVA-Net also
provides the best trade-off between performance and number of parameters for both tasks,
as illustrated in Figure 5.4 with mDice metric (similar plots with mIoU metric are presented
in Appendix B.1.4). A study of performance variability considering four trained models
for each method leads to the same conclusion as detailed in Appendix B.1.5. Note that the

94 Chapter 5. RADAR scene understanding

View Method # Param. (M)

IoU (%) Dice (%)

B
kg

.

Pe
d.

C
yc

lis
t

C
ar

m
Io

U

B
ac

k.

Pe
d.

C
yc

lis
t

C
ar

m
D

ic
e

RD

FCN-8s [Long et al. 2015] 134.3 99.7 47.7 18.7 52.9 54.7 99.8 24.8 16.5 26.9 66.3
U-Net [Ronneberger et al. 2015] 17.3 99.7 51.0 33.4 37.7 55.4 99.8 67.5 50.0 54.7 68.0
DeepLabv3+ [Chen et al. 2018b] 59.3 99.7 43.2 11.2 49.2 50.8 99.9 60.3 20.2 66.0 61.6

RSS-Net 10.1 99.3 0.1 4.1 25.0 32.1 99.7 0.2 7.9 40.0 36.9
RAMP-CNN 106.4 99.7 48.8 23.2 54.7 56.6 99.9 65.6 37.7 70.8 68.5

MV-Net (ours-baseline) 2.4* 98.0 0.0 3.8 14.1 29.0 99.0 0.0 7.3 24.8 32.8
MVA-Net (a) (ours) 3.6* 99.7 26.5 20.7 48.8 48.9 99.8 41.9 34.3 65.6 60.4
MVA-Net (b) (ours) 4.8* 99.7 30.2 22.0 59.6 52.9 99.9 46.4 36.1 74.7 64.3
TMVA-Net (ours) 5.6* 99.7 52.6 29.0 53.4 58.7 99.8 68.9 45.0 69.6 70.9

RA

FCN-8s [Long et al. 2015] 134.3 99.8 14.8 0.0 23.3 34.5 99.9 25.8 0.0 37.8 40.9
U-Net [Ronneberger et al. 2015] 17.3 99.8 22.4 8.8 0.0 32.8 99.9 36.6 16.1 0.0 38.2
DeepLabv3+ [Chen et al. 2018b] 59.3 99.9 3.4 5.9 21.8 32.7 99.9 6.5 11.1 35.7 38.3

RSS-Net 10.1 99.5 7.3 5.6 15.8 32.1 99.8 13.7 10.5 27.4 37.8
RAMP-CNN 106.4 99.8 1.7 2.6 7.2 27.9 99.9 3.4 5.1 13.5 30.5

MV-Net (ours-baseline) 2.4* 99.8 0.1 1.1 6.2 26.8 99.0 0.0 7.3 24.8 28.5
MVA-Net (a) (ours) 3.6* 99.0 0.0 5.9 7.5 28.1 99.5 0.0 11.1 14.0 31.1
MVA-Net (b) (ours) 4.8* 99.8 6.6 7.4 32.9 36.7 99.9 12.5 13.8 49.5 43.9
TMVA-Net (ours) 5.6* 99.8 26.0 8.6 30.7 41.3 99.9 41.3 15.9 47.0 51.0

Table 5.1: Semantic segmentation performance on the CARRADA-Test dataset for
Range-Doppler and Range-Angle views. The number of trainable parameters (in mil-
lions) for each method corresponds to a single view-segmentation model; Two such mod-
els, one for each view, are required for all methods but ours. In contrast, the number of
parameters reported for our methods (‘*’) corresponds to a single model that segments
both RD and RA views. The RSS-Net and RAMP-CNN methods have been modified to
be trained on both tasks (see Section 5.1.3.2). Performances are evaluated with the In-
tersection over Union and the Dice score per class, and their averages, mIoU and mDice,
over the four classes. The best scores are in red and bold type, the second best in blue and
underlined.

number of parameters reported for each method in Table 5.1, in Figure 5.4 and in Appendix
B.1.4 corresponds to a single trained model, while competing methods require two inde-
pendent models (hence twice more parameters) to perform both RD and RA segmentation
tasks.

Ablation Studies. Table 5.2 reports the performance of the four architectures which have
been introduced in Section 5.1.2.3. It shows that the additional ASPP modules in MVA-
Net(a) boosts the performance relative to MV-Net for both RD and RA segmentation. The
performance is further improved with MVA-Net(b) by the additional encoder that extracts
features from the AD view and provides relevant information to separate object signatures.
Finally, TMVA-Net is the most effective regardless of the metric, thanks to its ability to
learn spatio-temporal features with 3D convolutions. The temporal dimension indeed helps
distinguish between objects and the speckle noise, and to categorise them according to the
shape variations.

Table 5.3 accesses the importance of the different losses on the performance of TMVA-

5.1. Multi-view RADAR semantic segmentation 95

Figure 5.4: Performance-vs.-complexity plots for all methods in Range-Doppler and
Range-Angle tasks. Performance is assessed by mean Dice (%) and complexity by the
number of parameters (in millions) for a single task. Top-left models are the best per-
forming and the lightest. Only our proposed models, MV-Net and TMVA-Net, are able to
segment both views simultaneously. For all the other methods, two distinct models must
be trained to address both tasks, which doubles the number of actual parameters.

Net. The best combination of two loss terms is wCE+SDice for both tasks. The per-
formance is further improved on the RA segmentation task by adding our proposed CoL
term, while slightly reduced on RD views. This loss improves the coherence between the
tasks by better detecting objects in the RA views as discussed in the following section. A
loss ablation study considering the performance variability is proposed in Appendix B.1.6.
Four models have been trained for each combination of loss functions leading to the same
conclusion.

Qualitative results. Figure 5.5 shows qualitative results of each method on a scene from
CARRADA-Test. The results of TMVA-Net (i-j) display well segmented RD views in
terms of localisation and classification. Only TMVA-Net with CoL (j) is able to localise
and classify both objects in the RD and RA views. The enforcement of the coherence
of predictions across views succeeds in correctly classifying the same objects in the two
views. This is not the case for TMVA-Net without CoL, as illustrated in the example (i),
where the model predicts a cyclist instead of a pedestrian in the RA view. Moreover, the
coherence loss also helps to discover new objects: In (i), TMVA-Net predicts a single
object in the RA view, while in (j), it localises and classifies both objects well with the
help of CoL. Additional qualitative results leading to the same conclusions are proposed in
Appendix B.1.7.

96 Chapter 5. RADAR scene understanding

View Method # Param. mIoU mDice

RD

MV-Net (baseline) 2.4M 29.0 32.8
MVA-Net (a) 3.6M 48.9 60.4
MVA-Net (b) 4.8M 52.9 64.3
TMVA-Net 5.6M 59.3 71.5

RA

MV-Net (baseline) 2.4M 26.8 28.5
MVA-Net (a) 3.6M 28.1 31.1
MVA-Net (b) 4.8M 36.7 43.9
TMVA-Net 5.6M 40.1 49.3

Table 5.2: Ablation study of our proposed
architectures. Each architecture has been
trained using the wCE+SDice combination
loss. TMVA-Net delivers the best perfor-
mances under both mIoU and mDice metrics
and for both RD and RA views.

RD view RA view

Loss mIoU mDice mIoU mDice

CE 56.1 67.8 39.1 48.3
SDice 58.5 70.3 37.1 44.8
wCE 51.1 62.8 34.3 41.1
CE+SDice 45.2 54.0 38.8 46.9
wCE+SDice 59.3 71.5 40.1 49.3
wCE+SDice+CoL 58.7 70.9 41.3 51.0

Table 5.3: Ablation study of the combina-
tion of losses. Each individual or combi-
nation of loss(es) is used to train a TMVA-
Net model. Our proposed combination
(wCE+SDice+CoL) reaches the best mIoU
and mDice for the RA view and the second
best scores for the RD view.

5.1.4 Experiments on complex urban scenes datasets

This section presents additional experiments in complex urban scenes highlighting the suit-
ability of our proposed TMVA-Net architecture, trained with its corresponding loss func-
tion. Quantitative and qualitative results are presented using the RADDet dataset. A quali-
tative evaluation is also proposed using an in-house dataset without annotations.

5.1.4.1 RADDet dataset

In their work, [Zhang et al. 2021a] have proposed a dataset with synchronised RADAR and
stereo cameras, a method to annotate the RADAR data and a neural network architecture
for RADAR object detection. To the best for our knowledge, it is the only automotive
RADAR dataset providing annotated views of the RAD tensor in complex urban scenes.

Dataset. The dataset consists in 10 158 frames of synchronised RADAR and stereo cam-
eras mounted on a stationary car. The scenarios consist in complex urban scenes (cross-
roads, sidewalks, crowded roads) recorded in Canada. The authors have used a Texas
Instruments AWR1843-BOOST 2 RADAR sensor as in the CARRADA dataset (see Sec-
tion 4.3.1). The authors have publicly released RAD tensors of size BR×BA×BD =

256×256×64 for each frame. They have proposed an annotation method to detect dy-
namic road users on RADAR representations similarly to the method presented in Section
4.11. First, a Mask R-CNN [He et al. 2017] segments objects in a single camera image.
A Semi-Global Block Matching method [Hirschmuller 2008] estimates the image depth
with stereo cameras. The Cartesian coordinates of each object are then deduced using the
calibration matrix of the cameras.

A CFAR algorithm [Rohling 1983] is applied on the RD and RA views of the RAD ten-
sor to extract a point cloud of high intensity values. The point cloud of each RADAR view
is is then clustered with a DB-SCAN algorithm [Ester et al. 1996]. The object instances

2www.ti.com

www.ti.com

5.1. Multi-view RADAR semantic segmentation 97

Figure 5.5: Qualitative results on a test scene of CARRADA. (Top) camera image of
the scene and results of the Range-Doppler segmentation; (Bottom) Results of the Range-
Angle Segmentation. (a) RADAR view signal, (b) ground-truth mask, (c) FCN8s, (d)
U-Net, (e) DeepLabv3+, (f) RSS-Net, (g) RAMP-CNN, (h) MV-Net (our baseline w/
wCE+SDice loss), (i) TMVA-Net (ours, w/ wCE+SDice loss), (j) TMVA-Net (ours, w/
wCE+SDice+CoL loss).

from the stereo cameras are projected to a RADAR BEV representation using a projection
matrix. The objects are associated to the corresponding clustered point cloud. Finally, the
bounding box annotations are deduced from the RADAR point cloud associated to each
object.

The annotation pipeline proposed by [Zhang et al. 2021a] extends our proposed
method presented in Section 4.3.2 by using the depth estimated by stereo cameras. It helps
to reduce the projection error from the camera to the Cartesian coordinates. However, their
method has a major limitation: it relies on the camera images at each timestamp. It is there-
fore affected by any ambiguity of camera projection or occlusion problems. A future work
could combine both methods to better instantiate the annotation from the camera images
and track it in the RADAR sequences. In the RADDet dataset, the selected 10, 158 frames
correspond to robust annotations.

The dataset is composed of six unbalanced categories: person, bicycle, car, motorcy-
cle, bus and truck. In the following experiments, classes are grouped to compensate the
balance between the classes. Using only three classes as in the CARRADA dataset helps
to train and evaluate the architectures proposed in Section 5.1.2.3; and competing methods
in Sections 5.1.2.1 and 5.1.2.2. The bicycle and motorcycle categories have been merged
to create the two-wheeler class, while the car, bus and truck categories have been reunited
in the vehicle class. In their work, [Zhang et al. 2021a] neither considered the temporal
dimension to build the dataset nor to train their proposed object detection method. The
RADDet dataset has been manually rearranged in sequences to suit the training settings
detailed in Section 5.1.3.3. The distributions of the grouped categories considering the
proposed sequentially splitted RADDet dataset are illustrated in Figure 5.6 (a). The distri-
butions of the proposed training, validation and test splits of the sequential RADDet dataset
are illustrated in Figure 5.6 (b).

The RADDet dataset contains bounding box annotations for each object in the RAD
tensor and thus, in the RD and RA views. In order to perform RADAR semantic segmenta-

98 Chapter 5. RADAR scene understanding

Figure 5.6: RADDet dataset distributions. (a) Distribution of each category by sequence;
(b) Distribution of each category by proposed dataset split (training, validation and test).

tion, the entire bounding box is considered as a dense segmentation annotation as illustrated
in Figure 5.7. There are multiple drawbacks due to this hypothesis: the annotations do not
correspond to the object signature in the RADAR representation (it is not rectangular), the
annotation contains speckle noise and the model will be penalized if it does not succeed
to estimate a rectangle even if the mask covers the signature. However, the CARRADA
and the RADDet datasets are the only publicly avaiable datasets providing RAD tensors
with object-wise annotations 3. RADAR semantic segmentation experiments applied to
the RADDet dataset are therefore considered as relevant to evaluate our proposed methods
in complex urban scenes.

Experiments. The same training procedures as detailed in Section 5.1.3.3 have been
followed. The RAD tensors of the RADDet dataset have been aggregated in RADAR
views according to Equation 2.19. The methods presented in Sections 5.1.2.1, 5.1.2.2 and
5.1.2.3 have been trained according to their corresponding loss function and set of hyper-
parameters detailed in Appendix B.1.3, namely batch sizes, learning rates, learning rate
decays, numbers of epochs and corresponding pre-processing steps.

Results. Quantitative results on the RADDet-Test dataset are presented in Table 5.4.
Our TMVA-Net architecture, trained with our proposed combination of loss functions
(wCE+SDice+CoL), performs the best according to both mIoU and mDice metrics on
the RA view segmentation, and to the mDice on the RD view segmentation. Performances
according to the mIoU metric on the RD view segmentation are similar than the U-Net
method [Ronneberger et al. 2015]. However, our proposed method are the only one to per-
form both task simultaneously. As mentioned in Section 5.1.3.3, TMVA-Net still provides
the best trade-off between performance on the RADDet dataset and number of parameters
for both tasks.

3Note that the methods presented in Sections 5.1.2.1, 5.1.2.2 and 5.1.2.3 are not able to scale with HD
RADAR regarding the size of the RAD tensor and the computational cost to estimate it. The following exper-
iments can not be applied to the RADIal dataset presented in Chapter 6.

5.1. Multi-view RADAR semantic segmentation 99

Method # Params. (M) RD view RA view

mIoU mDice mIoU mDice

FCN-8s [Long et al. 2015] 134.3 51.3 58.5 31.4 36.0
U-Net [Ronneberger et al. 2015] 7.3 49.6 57.1 41.8 49.3
DeepLabv3+ [Chen et al. 2018a] 59.3 49.0 55.8 37.9 43.6
RSS-Net 10.1 54.1 60.9 39.1 43.8
RAMP-CNN 106.4 44.8 50.6 39.2 45.2
MV-Net 2.4* 41.3 47.8 32.6 37.8
TMVA-Net 5.6* 54.0 61.8 44.2 51.4

Table 5.4: Semantic segmentation performance on the RADDet-Test dataset for
Range-Doppler and Range-Angle views. The number of trainable parameters (in mil-
lions) for each method corresponds to a single view-segmentation model; Two such mod-
els, one for each view, are required for all methods but ours. In contrast, the number of
parameters reported for our methods (‘*’) corresponds to a single model that segments
both RD and RA views. The RSS-Net and RAMP-CNN methods have been modified to be
trained on both tasks (see Section 5.1.3.2). Performances are evaluated with the IoU and
the Dice score per class, and their averages, mIoU and mDice, over the four classes. The
best scores are bold type, the second best are underlined.

Figure 5.7 shows qualitative results of each method trained on the RADDet-Train and
RADDet-Validation datasets, and tested on a scene from RADDet-Test. Once again, the
TMVA-Net trained with CoL (i) is the only method to correctly segment two vehicles and
a pedestrian in both RD and RA views. The spatial coherence is enforced between the
two views enabling the detection of the pedestrian in the RA view. Qualitative results
on additional urban scenes are provided in Appendix B.1.8. These results leads to the
same conclusions, our proposed method succeeds to segment multiple objects with a spa-
tial coherence consistency outperforming competing methods while performing both tasks
simultaneously.

5.1.4.2 In-house dataset

Dataset. For qualitative evaluation only, an in-house dataset has been employed. A few
sequences have been recorded by Valeo team members in cities in Canada with a stationary
car. The dataset is composed of complex urban scenes with synchronised camera and
RADAR data. It has not been released publicly. For these sequences, the RAD tensors
have the same dimensions as in CARRADA while the resolution in range is divided by
two. The RADAR views are not annotated, which does not allow quantitative evaluation.

Experiments. The RADAR views of this dataset are not annotated and can not be used
for training. The methods presented in Sections 5.1.2.1, 5.1.2.2 and 5.1.2.3 have been
trained on the CARRADA-Train dataset and tested on the unannotated views of the in-
house dataset. The objective is to qualitatively assess the generalisation capacity in com-
plex urban scenes of our proposed methods trained on a simple and controlled environment.

Qualitative results. Qualitative results on these additional urban scenes are provided in
Appendix B.1.9. They show that our proposed methods unlike others can generalise well

100 Chapter 5. RADAR scene understanding

Figure 5.7: Qualitative results on a test scene of RADDet. (Top) camera image of the
scene and results of the Range-Doppler segmentation; (Bottom) Results of the Range-
Angle Segmentation. (a) RADAR view signal, (b) ground-truth mask, (c) FCN8s, (d)
U-Net, (e) DeepLabv3+, (f) RSS-Net, (g) RAMP-CNN, (h) MV-Net (our baseline w/
wCE+SDice+CoL loss), (i) TMVA-Net (ours, w/ wCE+SDice+CoL loss).

on RD and RA views. Indeed, TMVA-Net succeeds in learning object signatures on the
CARRADA dataset and recognizing them in a different environment. It also succeeds
in detecting and classifying several objects in the scenes, although it has been trained to
segment a maximum of two objects at a time.

5.1.5 Conclusions and perspectives

In this section, lightweight architectures are proposed for multi-view RADAR semantic
segmentation and a combination of loss terms to train them. Our proposed methods localise
and delineate objects in the RADAR scene while simultaneously determining their relative
velocity. Experiments show that both the information from the RAD RADAR tensor and
from its temporal evolution are important for these tasks. The proposed methods signif-
icantly outperform competing architectures specialised either in natural image semantic
segmentation or in RADAR scene understanding using the CARRADA dataset. The ex-
periments conducted on the RADDet dataset support these conclusions in complex urban
scenes with multiple objects to detect. Preliminary experiments on the in-house dataset
also show qualitatively that our method, trained on CARRADA only, generalizes better to
new complex urban scenes without fine-tuning.

Our future investigations will focus on improving the segmentation of cyclists and
pedestrians, which remain difficult to distinguish. Exploiting RADAR properties could
be interesting to improve both RAD tensor aggregation and class-specific data augmenta-
tion methods for the benefit of learning algorithms. We note that experiments considering
the entire RAD tensor (with or without the temporal information) as input of a neural net-
work architecture were unsuccessful due to the large amount of noise. As a first step, we
are exploring aggregation methods applied to the RAD to better separate the object sig-
nature distributions while reducing the variance of the speckle noise in the RADAR data.
The selection of specific slices per view could also be considered with a measure of signal
disparity. We are also trying to reformulate the Coherence Loss by integrating the ground
truth, or by back-propagating the information in specific branches of the network.

5.2. Sensor fusion 101

Figure 5.8: Overview of our propagation and fusion approach for RADAR and Li-
DAR point clouds. The RADAR (qR) and LiDAR (qL) point clouds in Bird’s Eye View
Cartesian coordinates are projected in polar coordinates (respectively q̃R and q̃L) with P(.)
(see Eq. 5.5). LiDAR points are associated to each RADAR point according to the sensor
uncertainties illustrated with green ellipses (qL

+). The Doppler and reflectivities informa-
tion are shared between the two point clouds in the uncertainty areas. They are projected
back in Cartesian coordinates and combined to create the fused point cloud (qF).

The RADAR sensor has benefits, e.g. it provides the Doppler information and it is
robust to adverse weather conditions. It has also limitations, e.g. low angular resolution and
ghost reflections. An ideal framework for scene understanding is to use multiple sensors
to accumulate their benefits while compensating for their limitations. The next section will
present preliminary works exploring senor fusion between LiDAR and RADAR to benefit
from both sensor properties.

5.2 Sensor fusion

5.2.1 Introduction

A LiDAR is an active sensor transmitting laser beams in the environment, so it is not
affected by lighting conditions as during night. The sensor measures the time delay of
the reflected light to be received back, recording the distance and the light, or intensity,
of a reflection. Multiple laser beams (usually 16, 32 or 64 depending on the sensor) scan
the car’s surroundings, generally by considering a 360◦ FoV. The LiDAR sensor provides
a dense 3D point cloud measuring the geometry of a scene with a resolution below the
degree for both azimuth and elevation angles. These advantages have brought LiDAR to
the forefront in understanding 3D scenes.

The RADAR sensor emits electromagnetic waves, which are not impacted by adverse
weather conditions, and records the location, the Doppler and the reflectivity of the objects
in the scenes using the received signals (see Sections 2.1 and 2.2). The RADAR point cloud
is a lightweight representation that is easy to manipulate in Cartesian coordinates. It is ob-

102 Chapter 5. RADAR scene understanding

tained after a pre-processing pipeline degrading the objects’ reflections. The RADAR point
cloud is a sparse representation composed of about ten points considering a LD RADAR
and cannot be used as-is for scene understanding.

The LiDAR sensor is perturbed by adverse weather conditions (fog, rain,
snow) because the light is reflected by droplets, creating artifacts [Bijelic et al. 2018,
Guan et al. 2020, Karlsson et al. 2021]. Moreover, it only provides a dense point cloud
at short range and cannot reach objects as far as RADAR. Consequently, fusing RADAR
and LiDAR point clouds should lead to benefit from their respective advantages while com-
pensating for their limitations. As they are both represented in Cartesian coordinates, an
early fusion module is easily feasible.

As detailed in Section 3.5 and to the best of our knowledge, there is no related work on
RADAR and LiDAR point clouds early fusion to exploit both representations as a single
enriched point cloud. In this section, we propose an early fusion module to propagate
RADAR information through the LiDAR point cloud by considering the resolution and
accuracy of the RADAR sensor as a quantification of its uncertainty.

Section 5.2.2 will describe our propagation and fusion method which will be simu-
lated in Section 5.2.3. Section 5.2.4 will present an application to the nuScenes dataset
[Caesar et al. 2020]. Finally, Section 5.2.5 will discuss our proposed method and our fu-
ture work.

5.2.2 Method

The proposed method consists in projecting the RADAR and LiDAR point clouds in a
2D BEV coordinates plane4. Then it defines an uncertainty area of each RADAR points
w.r.t. the sensor specificity, i.e. a zone in which the points are not perfectly positioned.
Finally, it propagates the RADAR point properties through the LiDAR points belonging to
its uncertainty area and fusing all the points in a unified point cloud.

Let qR ∈ Rm×5 be a RADAR point cloud of m points, where the i-th point is written
(xR
i , y

R
i , vx,i, vy,i, σ

R
i), with (xR

i , y
R
i) its Cartesian coordinates, σR

i the RCS of the reflected
signal and (vx,i, vy,i) the Doppler vector in Cartesian coordinates, compensated by the ego
vehicle velocity.

Let qL ∈ Rn×3 be a LiDAR point cloud of n points, where the j-th point is written
(xL
j , y

L
j , σ

L
j), with (xL

j , y
L
j) its Cartesian coordinates and σL

j the intensity of the reflected
light.

The propagation and fusion module creates a single point cloud qF ∈ R(m+n)×6, where
the k-th point is written (xF

k, y
F
k , σ

L
k , vx,k, vy,k, σ

R
k) including both qL and qR information,

i.e. carrying its 2D Cartesian coordinates, the reflectivity of the LiDAR point, the RCS and
the two components of the Doppler vector.

In this section, we introduce the RADAR sensor uncertainty, i.e. the quantified uncer-
tainty related to the accuracy and resolution of the sensor measurements. Depending on
the RADAR sensor, it will have several modes of transmission and reception of the signals.
The modes will define the maximum distance and the FoV that the signal can reach. An

4The elevation angle of the LD RADAR is not considered as relevant since the position of the antennas in
the sensor does not allow for multiple elevation angles to be recorded.

5.2. Sensor fusion 103

example of the RADAR specificity is presented in Table 5.5; it corresponds to the sensor
used in the nuScenes dataset. This RADAR sensor has three modes: a far-range mode and
two short-range modes (either with ±45◦ or ±60◦ FoV). Each one of these modes has
its own specificity in resolution, accuracy and maximum measurements in both distance
and azimuth angle. Additional details on the application of the presented method are pro-
vided in Section 5.2.4. The distance resolution is assumed to be linearly increasing and its
accuracy is fixed for each mode. The azimuth resolution and accuracy are fixed for each
mode.

By knowing the location of the RADAR point, we can associate a resolution and an
accuracy in both distance and azimuth angle. These sensor uncertainty measurements in
range and azimuth angle, respectively written δr and δα, correspond to the minor and major
axis of an ellipse in polar coordinates.

Let us consider a RADAR and a LiDAR point cloud. Each point cloud is projected in
polar coordinates to propagate the RADAR information in the LiDAR points belonging to
each uncertainty ellipse. Let P be the map defined as

P : Rk×6 −→ Rk×6

q = [q0,q1,q2, . . . ,q5] 7−→ q̃ =
[
tan−1(q1/q0),

√
q2

0 + q2
1,q2, . . . ,q5

]
(5.5)

transforming an arbitrary point cloud q of k points in Cartesian coordinates into a point
cloud q̃ in polar coordinates w.r.t. the sensor coordinates. We will note (xR, yR) the 2D
Cartesian coordinates of the RADAR point cloud qR, and (αR, rR) their corresponding 2D
polar coordinates.

In practice, we initialise the LiDAR and RADAR point cloud with constant values
for their respective missing features to use P . E.g the RADAR point cloud will have an
additional dimension with constant values noted σcst filling the missing information of
a LiDAR point. The LiDAR point cloud will have three additional dimensions written
σcst, (vcst

x , v
cst
y) filling the missing information of a RADAR point cloud, reflectively the

RCS and the Doppler components. This way, the two points clouds qL ∈ Rn×6 and qR ∈
Rm×6 are projected in polar coordinates, respectively written P(qL) = q̃L and P(qR) =

q̃R.

Considering the i-th RADAR point (αR
i , r

R
i) in polar coordinates, its uncertainty ellipse

is defined as B(δα,δr)(α
R
i , r

R
i), a ball centered on (αR

i , r
R
i), where δα, δr are respectively

its azimuth major axis and its range minor axis. On the one hand, the RADAR properties
of the point (αR

i , r
R
i) are propagated to the LiDAR points belonging to this ellipse. On the

other hand, the properties of the LiDAR points belonging to the ellipse will be averaged
to be propagated to the RADAR point. In other words, we propose to propagate the RCS
and the Doppler components, respectively noted σR

i and (vx,i, vy,i), corresponding to the
RADAR point (αR

i , r
R
i), to the LiDAR points in its ellipse. The reflected intensity vector

of the LiDAR points in the ellipse, noted σL, is averaged and associated to the RADAR
point at the center of the ellipse. Note that the proposed method is asymmetric to adapt the
difference in sparsity between the RADAR and LiDAR point clouds.

Considering the j-th LiDAR point (αL
j , r

L
j) in polar coordinates, it belongs to the

104 Chapter 5. RADAR scene understanding

RADAR uncertainty ellipse B(δα,δr)(α
R
i , r

R
i) if

(αL
j − αR

i)2

δα
+

(rL
j − rR

i)2

δr
≤ 1 (5.6)

is verified. The LiDAR points belonging to the ellipse are grouped in a sub point cloud
written q̃L

+ and removed from the initial LiDAR point cloud q̃L.
After the propagation step, three distinct point clouds are obtained: q̃F

+ the sub-LiDAR
point cloud with propagated RADAR information, q̃F the sub-LiDAR point cloud con-
taining the remaining points and q̃R the RADAR point cloud. A single point cloud
q̃F = [(q̃L

+)>, (q̃L)>, (q̃R)>]> ∈ R(m+n)×6 is created by stacking them, containing both
the RADAR and LiDAR point clouds with the propagated information or constant val-
ues where appropriate. The final point cloud is projected back in Cartesian coordinates:
qF = P−1(q̃F). The entire method is detailed in Algorithm 2. A simulation of this method
will be presented in the following section.

5.2. Sensor fusion 105

Algorithm 2 Proposed propagation and fusion module. We note Ai,j the element of the

matrix A at the i-th row and j-th column, A.,j the elements of the matrix A corresponding

to the all rows of the j-th column, and Ai,. the elements of the matrix A corresponding to

all the columns of the i-th row.
Require: qR ∈ Rm×5,qL ∈ Rn×3

m the number of RADAR points, n the number of LiDAR points.

1: [σcst, vcst
x , vcst

y]← [c0, c1, c2] # Set constant values.

2: qR ← [qR
·,0,qR

·,1,σ
cst,qR

·,2,qR
·,3,qR

·,4] # Set qR ∈ Rm×6 with cst: σcst.

3: qL ← [qL
·,0,qL

·,1,qL
·,2, vcst

x , vcst
y ,σ

cst] # Set qL ∈ Rn×6 with cst: σcst, vcst
x , vcst

y .

4: q̃R, q̃L ← P(qR),P(qL) # Project q̃R and q̃L in polar coordinates.

5: h← 0 # Set counter to 0.

6: for i = 0 to m− 1 do # m RADAR points.

7: [αR
i , r

R
i , σ

cst
i , vx,i, vy,i, σ

R
i]← q̃R

i,· # Set the RADAR scalar values.

8: (δα, δr)← get_uncertainty(αR
i , r

R
i) # Get the ellipse parameters.

9: A : empty matrix with 6 columns # Buffer of enriched LiDAR points.

10: k ← 0 # Set counter to 0.

11: for j = 0 to |q̃L| − 1 do # Number of LiDAR points in q̃L.

12: [αL
j , r

L
j , σ

L
j , v

cst
x,i, v

cst
y,i, σ

cst]← q̃L
j,· # Set the LiDAR scalar values.

13: if
(αL
j−αR

i)2

δα +
(rL
j−rR

i)2

δr ≤ 1 then # Check if the LiDAR point is in the ellipse

14: Ak,· ← [αL
j , r

L
j , σ

L
j , vx,i, vy,i, σ

R
i] # Add the point to the enriched buffer.

15: k ← k + 1 # Update the counter.

16: if k 6= 0 then # Check if LiDAR points have been added to the buffer.

17: σ = mean(A·,2) # Compute the mean of LiDAR’s σ in the buffer.

18: q̃R
i,· ← [αR

i , r
R
i , σ, vx,i, vy,i, σ

R
i]

Update the RADAR point with the averaged LiDAR’s σ.

19: q̃L
+,h:h+k,· ← A # Add the buffer to the enriched LiDAR point cloud.

20: q̃L ← q̃L.delete(A) # Remove the buffer from initial LiDAR point cloud.

21: h← h+ k # Update the counter.

22: q̃F ←


q̃R

q̃L
+

q̃L

 # Fuse the point clouds.

23: qF ← P−1(q̃F) # Map the fused point cloud in Cartesian coordinates.

106 Chapter 5. RADAR scene understanding

5.2.3 Simulation

The proposed method detailed in Algorithm 2 has been simulated with randomly generated
point clouds. Let n = 2000 and m = 20 be the number of points in the LiDAR and
RADAR point clouds respectively. For both point clouds, random Cartesian coordinates
are drawn as x ∼ U([−50, 50]) and y ∼ U([0, 250]), the RADAR sensor position has been
fixed to (0, 0). The order of magnitude of the size of each point cloud has been chosen
according to real data recorded from a 32-beam LiDAR and LD RADAR.

The simulation considers the specificity of the RADAR sensor used in the nuScenes
dataset [Caesar et al. 2020] described in Table 5.5. Figure 5.9(a) illustrates the randomly
drawn LiDAR and RADAR point clouds, respectively in yellow and green. The Out-of-
Scope (OS) RADAR points are not belonging to any RADAR mode considering the geo-
metric priors of the sensor specificity; they are excluded from the simulation. Both point
clouds are then mapped in polar coordinates and the uncertainty ellipse of each RADAR
point is computed in polar coordinates as depicted in Figure 5.9(b)5. The resolution and
accuracy in distance and azimuth angle are defined according the method presented in Sec-
tion 5.2.2 and with the sensor specificity described in Table 5.5. As detailed in Algorithm 2,
the LiDAR points belonging to an ellipse obtain the propagated information of the RADAR
point at the center of the ellipse. These points are denoted as “Propag. RADAR” in Figure
5.9(c). Finally, Figure 5.9(d) illustrates in green both the RADAR points and the LiDAR
points which have benefited from the propagation method. The aim of the fusion is to con-
sider both green and yellow points as a single point cloud. The simulation shows that the
proposed method succeeds to locally propagate the RADAR information in a denser point
cloud by only considering the resolution and the accuracy of the sensor. The following
section will present the application of this method to a real dataset.

5.2.4 Application to the nuScenes dataset

The nuScenes dataset [Caesar et al. 2020] is considered as one of the largest automotive
dataset publicly available containing radar data. It has been briefly described in Section 3.2
and Table 3.1. It is composed of 5.5 hours of recorded sequences in two countries including
night and rain weather conditions. The car is mounted with a 32-beam LiDAR, 6 cameras
and 5 LD ARS 408-21 RADARs6 recording simultaneously with a 360◦ FoV. The param-
eters and settings of each RADAR sensor are described in Table 5.5. The authors proposed
3D bounding boxes annotations with tracking metrics and a recent extension containing se-
mantic segmentation annotations while considering 23 classes and 8 attributes. The dataset
is composed of 1000 scenes divided in three sub-sets: “mini”, “trainval” and “test”. In our
preliminary work, only the “mini” dataset containing 10 scenes has been explored yet.

Each sensor used to record the data has its own orientation axis as described in Figure
5.5 of Appendix B.2.1. Therefore our method has been applied iteratively on each RADAR
orientation axis by projecting the LiDAR point cloud in the same coordinates system. By

5Note that a scaling factor of 2.0 has been applied to the ellipses for visualization purpose. The qualitative
results presented in the next section are obtained with a scaling factor fixed to 1.0.

6https://www.continental-automotive.com/

https://www.continental-automotive.com/

5.2. Sensor fusion 107

Figure 5.9: Simulation of the LiDAR and RADAR point cloud propagation and fusion
method. (a) The LiDAR and RADAR point clouds are randomly drawn in Cartesian co-
ordinates, the RADAR points are filtered according to the sensor specificity (Out-of-Scope
(OS) points). (b) The point clouds are transformed in polar coordinates with the RADAR
uncertainty ellipses illustrated with a scaling factor of 2.0. (c) The RADAR point informa-
tion is propagated to the LiDAR points and (d) transformed back in Cartesian coordinates.
Note that the “Propag. RADAR” point cloud groups the RADAR points and LiDAR points
in the uncertainty areas.

doing so, the considered RADAR sensor is at the origin of its coordinates system and the
polar coordinates of each point cloud will be computed w.r.t. its position. The procedure
described in Section 5.2.2 and Algorithm 2 is applied independently for each RADAR
sensor while considering the same 360◦ LiDAR point cloud.

Figure 5.10 (left) illustrates a scene with a LiDAR point cloud in orange and the
RADAR point cloud in green. Each RADAR point is characterized by a black arrow corre-

108 Chapter 5. RADAR scene understanding

Specificity RADAR mode

Far range Near range (45◦) Near range (60◦)

Azimuth angle FoV (deg) ±9◦ ±45◦ ±60◦

Azimuth angle resolution (deg) 1.6◦ 4.5◦ 12.3◦

Accuracy azimuth angle (deg) ±0.1◦ ±1.0◦ ±5.0◦

Distance range (m) [0.2, 250] [0.2, 100] [0.2, 20]
Distance range resolution (m) [0, 1.79] [0, 0.39] [0, 0.39]

Accuracy distance (m) ±0.40 ±0.10 ±0.10

Table 5.5: Parameters and settings of the RADAR sensors used in the nuScenes
dataset.

sponding to its Doppler compensated by the ego-vehicle velocity. The light-blue boxes and
their corresponding arrows are the annotated objects in the scenes with their velocity. By
applying our method, we propagate the RADAR information to the LiDAR points accord-
ing to the sensor uncertainty defined by its specificity (Table 5.5). The propagated points
combined with the RADAR point clouds are depicted in green in Figure 5.10 (middle). By
propagating the RADAR information in the LiDAR point cloud, we show qualitatively in
Figure 5.10 (right) that our method helps to obtain a denser Doppler information in the
combined point cloud. Additional qualitative results are presented in Figure B.10 of Ap-
pendix B.2.2 leading to the same conclusions. Knowing that these points also carry the
RCS and the LiDAR reflection intensity, we hope that our proposed propagation and fu-
sion module will help to improve detection and classification of objects considering point
cloud representations. The following section will discuss our results and future work.

5.2.5 Discussions and future work

In this section, we presented our propagation and fusion module quantifying the measure-
ment uncertainty of the RADAR sensor. By considering both RADAR and LiDAR point
clouds, we propose to propagate the RADAR point properties to the LiDAR points belong-
ing to its uncertainty area. The other way around, the RADAR point will also carry the
average reflection of all the LiDAR points in its uncertainty area. Our module proposes to
fuse both point clouds to benefit from the density of the LiDAR data and the Doppler infor-
mation of the RADAR data while containing the reflectivity information of both sensors.

However, we notice that our method is impacted by ghost and multi-path RADAR re-
flections. In these cases, the propagation may assign a Doppler or RCS to an object which
it does not belong to. Inspired by the work of [Kopp et al. 2021], rule-based method could
be integrated to filter the RADAR point cloud before the propagation step. Another lim-
itation of our method is to consider that each LiDAR point has an equivalent probability
to belong to the uncertainty ellipse of a RADAR point. We will tackle this issue by con-
sidering this ellipse has a multi-variate Gaussian probability distribution, centered on the
RADAR point and with a variance-covariance matrix defined by its distance and azimuth
angle axis (previously noted δr and δα). This way, each LiDAR point will be associated to
a probability to belong to this ellipse.

The aim of this work is to benefit from both LiDAR and RADAR point clouds to
improve scene understanding. In our future work, we will compare a point cloud based

5.3. Conclusions 109

Figure 5.10: Qualitative results on the nuScenes dataset of our propose propagation
and fusion module. (Left) Scene in Bird’s Eye View representation with LiDAR and
RADAR point clouds. (Middle) The point cloud illustrated in green groups the RADAR
and propagated RADAR points with Doppler and reflectivities. (Right) The propagated
Doppler information is illustrated with black arrows to distinguish moving objects.

deep learning algorithm (e.g. PointNet [Qi et al. 2017a] or PointNet++ [Qi et al. 2017b])
while being trained with either a single sensor point cloud or with our enhanced point
cloud. In a second approach, we will explore self-supervised learning by training a model
to predict a modality of our enhanced point cloud and fine-tune it on a downstream task.
E.g. a model trying to predict the Doppler information will learn to discriminate moving
and static objects while using a single timestamp point cloud. The neural network will be
then fine-tuned to improve an object detection or a segmentation task.

5.3 Conclusions

This chapter has described innovative approaches for RADAR scene understanding using
deep learning algorithms. In Section 5.1, we proposed a method for multi-view RADAR
semantic segmentation based on the exploitation of the CARRADA dataset presented in
Section 4.3. We have detailed several deep learning architectures, with their associated
loss functions, outperforming competing methods with significantly fewer parameters. Our
method is the only capable to simultaneously perform RD and RA semantic segmentation.
We have introduced an unsupervised Coherence loss to enforce the spatial coherence be-
tween RADAR views during training. Our proposed method has achieved the state of
the art performances on the CARRADA dataset and on the recently published RADDet
dataset. Conducted experiments have shown that our method is able to segment objects
well in multi-views of the RADAR tensor in both simple and complex urban scenes. This
second main contribution of the thesis was presented at the International Conference of
Computer Vision (ICCV). In our future work, we will improve the aggregation of the RAD
tensor to avoid object signature attenuation. We will also explore an extended Coherence
loss formulation to introduce the ground truth and better quantify the spatial errors.

110 Chapter 5. RADAR scene understanding

In Section 5.2, we presented a preliminary work on LiDAR and RADAR point cloud
fusion. Our fusion and propagation method quantifies the uncertainty of the polar coor-
dinate point location by considering the specificity of the RADAR sensor. On one hand,
our method propagates the Doppler and RCS information of a RADAR point to the LiDAR
points contained in its uncertainty area. On the other hand, it propagates the average LiDAR
reflections contained in this area to the RADAR point. This way, an enriched point cloud
is proposed, containing the velocity and reflection information of the RADAR point cloud
while benefiting from the density of the LiDAR point cloud. In our future work, we will
train deep neural network architectures specialized in point cloud representation with the
proposed enriched point cloud to improve scene understanding tasks, e.g. object detection
and semantic segmentation. In addition, we will explore self-supervised learning schemes
applied to multi-sensor fusion. In particular, we will exploit the enriched point cloud to
learn a neural network for Doppler prediction. We hope that this method will learn repre-
sentations to distinguish moving objects with any additional annotations. This model will
be then fine-tuned on well-known scene understanding tasks to show quantitative improve-
ment from this process.

Further details on our future work will be provided in Section 7.2. In the following
chapter, we will present a collaborative project proposing RADIal, a recent dataset with
synchronized camera, LiDAR and raw HD RADAR data with annotations for 2D object
detection and free driving space segmentation. We will also present a deep learning archi-
tecture for multi-task learning while estimating a part of the costly RADAR pre-processing.

CHAPTER 6

High-definition RADAR

Contents
6.1 Motivations . 112
6.2 RADIal dataset . 113
6.3 Proposed method . 115

6.3.1 MIMO pre-encoder . 115

6.3.2 FPN encoder . 117

6.3.3 Range-Angle decoder . 117

6.3.4 Multi-task learning . 117

6.4 Experiments and Results . 119
6.4.1 Training details . 119

6.4.2 Baselines . 119

6.4.3 Evaluation metric . 120

6.4.4 Performance analysis . 120

6.4.5 Complexity analysis . 121

6.5 Conclusions and discussions . 122

HD RADAR reaches a high angular resolution thanks to the large number of virtual
antennas that it is composed of. However, it generates a large volume of data, directly im-
pacting real-time applications. This chapter details RADIal, a unique dataset with raw HD
RADAR data synchronized with LiDAR and camera. Annotations for 2D object detection
and free driving space segmentation, i.e. classify each pixel of a representation as free
to be driven or not, are generated with a semi-automatic pipeline. It also presents, FFT-
RadNet, a multi-task deep neural network architecture processing raw RADAR signals and
succeeding to estimate the RADAR processing steps avoiding large computational cost.

This chapter is organized as follows: Section 6.2 introduces the RADIal dataset, Sec-
tion 6.3 details the proposed method, Section 6.4 presents the experimental results, finally
Section 6.5 concludes.

This chapter presents a work carried out in collaboration with Julien Rebut and mainly
inspired from our article published at the Conference on Computer Vision and Pattern
Recognition (CVPR) [Rebut et al. 2022].

112 Chapter 6. High-definition RADAR

6.1 Motivations

Recent progress towards HD Imaging RADAR has driven the angular resolution below
the degree, thus approaching LiDAR performance. By using dense virtual antenna arrays,
these sensors achieve high angular resolution both in azimuth and elevation (horizontal and
vertical angular positions, respectively) and produce denser RADAR point clouds. The pre-
vious chapters focused on LD RADARs with a single elevation pitch due to the geometry of
their antennas. As a consequence, the previously noted RA view represented the Azimuth
angle. In this chapter, we distinguish the Elevation angle deduced from adjacent pairs of
antennas in the vertical axis so the RA representation includes both Azimuth and Elevation
angles. As a consequence, HD RADAR representations are cumbersome, with an order of
magnitude larger than the data recorded by a LD RADAR.

As seen in Chapter 3, most of the recent works exploit the Range-Azimuth represen-
tation of the RADAR data (either in polar or cartesian coordinates). Similar to a BEV
(see Figure 6.1), this representation is easy to interpret and allows simple data augmenta-
tion with translations and rotations. However, one barely-mentioned drawback is that the
generation of the RA RADAR view incurs significant processing costs (tens of GOPS, see
Section 6.4.5), which compromises its viability on embedded hardware. While novel HD
RADARs offer better resolution, they make this computational complexity issue even more
acute.

As detailed in Section 2.2, the AoA is deduced by applying an inverse FFT on the pairs
of antennas axis of the recorded tensor in the frequency domain (see Figure 2.2). An alter-
native is to correlate the RD in the complex domain with a calibration matrix to estimate
both the azimuth and the elevation angles. The complexity of this operation for a single
point of the RD tensor is O(NTxNRxBABE), where NTx is the number of transmitting an-
tennas, NRx the number of receiving antennas, BA and BE are respectively the number of
discretization bins for azimuth and elevation angles in the calibration matrix. For a 4D
representation in Range-Azimuth-Elevation-Doppler (RAED), this operation would need
to be performed for each point of the RD tensor1. Considering an embedded HD RADAR,
traditional signal processing cannot be applied as it is too resource greedy in terms of both
computation requirements and memory footprint. For driving assistance systems, there is
therefore the challenge of increasing radar’s angular accuracy while keeping the processing
costs under control.

In this chapter, we propose a unique dataset, nick-named RADIal2 for “RADAR, Li-
DAR et al.”, with the first raw HD RADAR dataset including several other automotive-
grade sensors, as described in Table 3.1. It is composed of 2 hours of raw data from
synchronized automotive-grade sensors (camera, LiDAR, HD radar), annotated for object
detection and free space segmentation, and collected in various environments (city street,
highway, countryside road). We also propose a novel HD RADAR sensing model, FFT-
RadNet, that eliminates the overhead of computing the RAD 3D tensor, learning instead
to recover angles from an RD view. FFT-RadNet is trained both to detect vehicles and to

1Considering a HD RADAR with 0.2◦ of azimuth resolution over 180◦ of horizontal FoV and 11 elevations,
it would require 498 Giga FLoating-point Operations Per Second (GFLOPS) to be computed.

2RADIal is available online at https://github.com/valeoai/RADIal.

https://github.com/valeoai/RADIal

6.2. RADIal dataset 113

Figure 6.1: Overview of our RADIal dataset. RADIal includes a set of 3 sensors (camera,
LiDAR, high-definition radar) and comes with GPS and vehicle’s CAN traces; 25,000
synchronized samples are recorded in raw format. (a) Camera image with projected LiDAR
point cloud in red and RADAR point cloud in indigo, vehicle annotation in orange and
free driving space annotation in green; (b) RADAR power spectrum with bounding box
annotations; (c) Free driving space annotation in bird-eye view, with annotated vehicle
bounding boxes in orange, RADAR point cloud in indigo and LiDAR point cloud in red;
(d) Range-Azimuth map in Cartesian coordinates overlayed with RADAR point cloud and
LiDAR point cloud; (e) GPS trace in red and odometry trajectory reconstruction in green.

segment free driving space. On both tasks, it competes with recent scene understanding
models while requiring less computations and memory.

6.2 RADIal dataset

As depicted in Table 3.1, publicly-available datasets do not provide raw RADAR signal,
either for LD RADAR nor for HD RADAR. Therefore, we built RADIal, a new dataset to
allow research on automotive HD RADAR.

As RADIal includes 3 sensor modalities –camera, RADAR and LiDAR–, it should also
permit one to investigate the fusion of HD RADAR with other common sensors. The spec-
ifications of the sensor suite are detailed in Table 6.2. Except for the camera, all sensors are
automotive-grade qualified. On top of that, the Global Positioning System (GPS) position
and full Controller Area Network (CAN bus) of the vehicle (including odometry) are also
provided. Sensor signals were recorded simultaneously in a raw format, without any signal
pre-processing. In the case of the HD RADAR, the raw signal is the ADC. From this ADC
data, all conventional RADAR representations can be generated: RAD tensor, RA and RD
views or point cloud.

Central to the proposed RADIal dataset, our HD RADAR is composed of NRx = 16

receiving antennas andNTx = 12 transmitting antennas, leading toNRx ·NTx = 192 virtual
antennas. This virtual-antenna array enables reaching a high azimuth angular resolution
while estimating objects’ elevation angles as well. As the RADAR signal is difficult to
interpret by annotators and practitioners alike, a 16-layer automotive-grade LiDAR and a
5 Mpix RGB camera are also provided. The camera is placed below the interior mirror
behind the windshield while the RADAR and the LiDAR are installed in the middle of the
front ventilation grid, one above the other. The three sensors have parallel horizontal lines
of sight, pointing in the driving direction. Their extrinsic parameters are provided together

114 Chapter 6. High-definition RADAR

HD Radar LiDAR Camera

FO
V Range 103 m 150 m –

Azimuth 180◦ 133◦ 100◦

Elevation 12◦ 10◦ 75◦

re
so

lu
tio

n Range 0.2 m 0.1 m
Azimuth 0.1◦ 0.125-0.25◦ 2592 px
Elevation 1◦ 0.6◦ 1944 px
Velocity 0.1 m·s−1 – –

Frame rate 5fps 25fps 30fps
Height above ground 80 cm 42 cm 145 cm

Table 6.1: Specifications of the RADIal’s
sensor suite. The main characteristics
of the HD RADAR, the LiDAR and the
camera are reported. Their synchronized
signals are complemented by GPS and
CAN bus information.

Table 6.2: Scene-type proportions in RA-
DIal. The dataset contains 91 sequences
in total, captured on city streets, highway
or country-side roads, for a total of 25k
synchronized frames (dark colors), out of
which 8,252 are labelled (light colors).

with the dataset. RADIal also offers synchronized GPS and CAN bus traces which give
access to the geo-referenced position of the vehicle as well as its driving information such
as speed, steering wheel angle and yaw rate. The sensors’ specifications are detailed in
Table 6.2.

RADIal contains 91 sequences of about 1-4 minutes, for a total of 2 hours. This
amounts to approximately 25,000 synchronized frames in total, out of which 8,252 are
annotated with 9,550 vehicles. These sequences are categorized in highway, country-side
and city driving. The distribution of the sequences is indicated in Figure 6.2.

The annotation of the RADAR signal is hard to achieve as the RD representation is not
meaningful for the human eye. Vehicle detection labels were first generated automatically
using supervision from the camera and LiDAR. A RetinaNet model [Lin et al. 2017b] was
used to extract object proposals from the camera. Then, these proposals were validated
when both RADAR and LiDAR agree on the object position from their respective point
cloud. Finally, manual verification was conducted to reject or validate the labels. The
free-space annotation was done fully automatically on the camera images. A DeepLabV3+
[Chen et al. 2018b], pre-trained on Cityscape, has been fine-tuned with 2 classes (free or
occupied) on a small manually-annotated part of our dataset.

This model segmented each video frame and the obtained segmentation mask was pro-
jected from the camera’s coordinate system to the radar’s one thanks to known calibra-
tion. Finally, already available vehicle bounding boxes were subtracted from the free-space
mask. The quality of the segmentation mask is limited due to the automatic method we em-
ployed and to the projection inaccuracy from camera to real world. In the next section, the
proposed FFT-RadNet architecture and its associated multi-task loss will be presented.

6.3. Proposed method 115

Figure 6.2: Overview of FFT-RadNet. FFT-RadNet is a lightweight multi-task architec-
ture. It does not use any Range-Angle maps or Range-Angle-Doppler tensor which would
require costly pre-processing. Instead, it leverages complex Range-Doppler containing all
the range, azimuth and elevation information. This data is de-interleaved and compressed
by the MIMO pre-encoder. A Feature Pyramid Network encoder extracts a pyramid of
features which the Range-Angle decoder converts into a latent Range-Azimuth representa-
tion. Based on this representation, multi-task heads finally detect vehicles (red rectangle)
and predict the free driving space (green shape) in a Bird’s Eye View map illustrated in the
image on the right.

6.3 Proposed method

Our approach has been motivated by automotive constraints: automotive-grade sensors
must be used and only limited processing/memory resources are available on the embed-
ded hardware. In this context, the RD is the only representation that is practical for HD
RADAR. Based on it, we propose a multi-task architecture, compatible with above re-
quirements, which is composed of five blocks (see Figure 6.2):

• A pre-encoder reorganizing and compressing the RD tensor into a meaningful and
compact representation;

• A shared FPN encoder combining low-resolution semantic information with high-
resolution details;

• A RA decoder building a Range-Azimuth latent representation from the feature pyra-
mid;

• A detection head localizing vehicles in Range-Azimuth coordinates;

• A segmentation head predicting the free driving space.

6.3.1 MIMO pre-encoder

As explained in Section 2.1, the MIMO configuration implies one complex RD represen-
tation per receiver after the Range-FFT and the Doppler-FFT. This results in a complex

116 Chapter 6. High-definition RADAR

Figure 6.3: Trainable MIMO pre-encoder. Considering three transmitters (NTx=3) and
two receivers (NRx=2), an object’s signature is visible NTx times in the Range-Doppler
representation. The pre-encoder uses atrous convolutions to organize and compress signa-
tures in fewer than NTx ·NRx output channels.

3D tensor of dimension (BR, BD, NRx), where BR and BD are the number of discretization
bins for range and Doppler respectively. It is important to understand how a given reflect-
ing object, say a car in front, appears in this data. Denote R the actual radial distance of
this object to the RADAR and D its relative radial velocity expressed in Doppler effect.
For each receiver, its signature will be visible NTx times, one per transmitter. More specif-
ically, it will be measured at RD positions (R, (D + k∆)[Dmax])k=1···NTx , where ∆ is the
Doppler shift (induced by the phase shift ∆φ = φ(t) in the transmitted signal, see Section
2.1) and Dmax is the largest Doppler that can be measured. The measured Doppler values
are modulo this maximum. This phenomena is illustrated in Figure 6.1(b).

This signal intricacy calls for a rearrangement of the RD tensor that will facilitate a
subsequent exploitation of the MIMO information (to recover angles) while keeping data
volume under control. To this end, we propose a new trainable pre-encoder illustrated in
Figure 6.3 that performs a compact reorganization of the input tensor. In order to handle its
specific structure along the Doppler axis, we use first a suitably-defined atrous convolution
layer that gathers Tx and Rx information at the right positions. The size of its kernel for
one input channel is 1×NTx, hence defined by the number of Tx antennas, and its dilation
amounts to δ = ∆BD

Dmax
, the number of Doppler bins corresponding to the Doppler shift ∆.

The number of input channels is the number NRx of Rx antennas. A second convolution
layer, with a 3×3 kernel, learns how to combine these channels and compresses the signal.
The two-layer pre-encoder is trained end-to-end with the rest of the proposed architecture.

6.3. Proposed method 117

6.3.2 FPN encoder

Using a pyramidal structure to learn multi-scale features is a common practice in object
detection and semantic segmentation as detailed in Sections 2.6.2 and 2.6.3. Our FPN ar-
chitecture uses 4 blocks composed of 3, 6, 6, 3 residual layers [He et al. 2016] respectively.
The feature maps of these residual blocks form the feature pyramid. This encoder has been
optimized considering the nature of the data while controlling its complexity. The channel
dimensions are chosen to encode at best the azimuth angle over the entire distance range
(i.e., high resolution and narrow field of view at far range, low resolution and wider field
of view at near range).

To prevent losing the signature of small objects (typically few pixels in the RD repre-
sentation), the FPN encoder performs a 2×2 down-sampling per block, leading to a total
reduction of the tensor size by a factor of 16 in height and width. For similar reasons and
to avoid overlaps between adjacent Tx’s, it uses 3×3 convolution kernels.

6.3.3 Range-Angle decoder

The RA decoder aims to expand the input feature maps to higher resolution representations.
This up-scaling is usually achieved through multiple deconvolution layers whose output is
combined with previous feature maps to preserve spatial details. In our case, the repre-
sentation is unusual due to the physical nature of the axes: The dimensions of the input
tensor correspond respectively to range, Doppler and azimuth angle, whereas the feature
maps that will be sent to the subsequent task heads should correspond to a Range-Azimuth
representation. Consequently, we swap the Doppler and azimuth axes to match the final
axis ordering and then upscale the feature maps.

However, the range axis has a lower size compared to the azimuth one, since it was
decimated by a factor of 2 after each residual block, while the azimuth axis (formerly the
channel axis) was increasing. Prior to these operations, we apply a 1×1 convolution to
the feature maps from the encoder to the decoder. It adjusts the dimension of the azimuth
channel to its final size, right before swapping the axes. The deconvolution layers upscale
only the range axis, producing feature maps that are concatenated with those from the
previous pyramid level. A final block of two Conv-BatchNorm-ReLU layers is applied,
generating the final Range-Azimuth latent representation. The proposed RA decoder is
illustrated in Figure 6.2.

6.3.4 Multi-task learning

Detection task. The detection head is inspired from PIXOR [Yang et al. 2018], an ef-
ficient and scalable single-stage model. Further details on the PIXOR architecture and
method are provided in Section 2.6.4. It takes the RA latent representation as input and
processes it using a first common sequence of four Conv-BatchNorm layers with 144, 96,
96 and 96 filters respectively. The branch is then divided in a classification and a regression
heads. The classification part is a convolution layer with sigmoid activation that predicts a
probability map. This output corresponds to a binary classification of each “pixel” as occu-
pied or not by a vehicle. In order to reduce computational complexity, it predicts a coarse

118 Chapter 6. High-definition RADAR

RA map, where each cell has a resolution of 0.8m in range and 0.8◦ in azimuth (i.e., 1/4 and
1/8 of native resolutions resp. in range and azimuth). This cell size is enough to dissociate
two close objects. Then, the regression part finely predicts the range and azimuth values
corresponding to the detected object. To do so, a unique 3×3 convolution layer outputs
two feature maps corresponding to the final range and azimuth values.

This two-fold detection head is trained with a multi-task loss composed of a focal
loss, specialized in unbalanced classification, applied to all the locations and of a “smooth
L1” loss for the regression applied only on positive detection as detailed in the work of
[Yang et al. 2018]. Let x be a training example, yclas ∈ {0, 1}

BR/4×BA/8 its classification
ground truth and yreg ∈ R2×BR/4×BA/8 the associated regression ground truth. The detec-
tion head of FFT-RadNet predicts a detection map ŷclas ∈ [0, 1]BR/4×BA/8 and associated
regression map ŷreg ∈ R2×BR/4×BA/8. Its training loss is written:

Ldet(x, yclas, yreg) = focal(yclas, ŷclas) + β smooth-L1(yreg − ŷreg), (6.1)

where β > 0 is a balancing hyper-parameter. The focal and smooth-L1 are respectively
defined as:

focal(y,p) =

{
−(1− p)γlog(p) if y = 1,

−pγlog(1− p) otherwise,
(6.2)

where γ is a down-weighting factor and

smooth-L1(x) =

{
0.5x2 if abs x < 1,

|x| − 0.5 otherwise,
(6.3)

where |.| denotes the absolute value.

Segmentation task. The free driving space segmentation task is formulated as a pixel-
level binary classification. The segmentation mask has a resolution of 0.4m in range and
0.2◦ in azimuth. It corresponds to half of the native range and azimuth resolutions while
considering only half of the entire azimuth FoV (within [−45◦, 45◦]). The RA latent rep-
resentation is processed by two consecutive groups of two Conv-BatchNorm-ReLu blocks,
producing respectively 128 and 64 feature maps. A final 1×1 convolution outputs a 2D
feature map followed by a sigmoid activation to estimate the probability of each location
to be drivable. Let x be a training example, yseg ∈ {0, 1}

BR/2×BA/4 its one-hot ground truth

and ŷseg ∈ [0, 1]
BR/2×BA/4 the predicted soft detection map. The segmentation task is learnt

using a BCE loss:

Lfree(x, yseg) =
∑

(r,a)∈Ω

BCE(yseg(r, a), ŷseg(r, a)), (6.4)

where Ω = J1, BR
2 K× J1, BA

4 K.

6.4. Experiments and Results 119

Model RADAR Overall Easy Hard
Input AP(%) ↑ AR(%) ↑ R(cm) ↓ A(◦) ↓ AP(%) ↑ AR(%) ↑ R(cm) ↓ A(◦) ↓ AP(%) ↑ AR(%) ↑ R(cm) ↓ A(◦) ↓

PIXOR PC 96.46 32.32 0.17 0.25 99.02 28.83 0.15 0.19 93.28 38.69 0.19 0.33
PIXOR RA 96.56 81.68 0.10 0.20 96.86 88.02 0.09 0.16 95.88 70.10 0.12 0.27
FFT-RadNet (ours) RD 96.84 82.18 0.11 0.17 98.49 91.69 0.10 0.13 92.93 64.82 0.13 0.26

Table 6.3: Object detection performances on RADIal Test split. Comparison between
PIXOR [Yang et al. 2018] trained with Point Cloud (PC) or Range-Azimuth (RA) repre-
sentations, and the proposed FFT-RadNet requiring only RD as input. Our method obtains
similar or better overall performances than baselines in both Average Precision (AP) and
Average Recall (AP) for a 50% IoU threshold. It also reaches similar or better Range (R)
and Angle (A) accuracy, showing it successfully learns a signal processing pipeline that
estimates the AoA with significantly fewer operations, as detailed in Table 6.5.

End-to-end multi-task training. The whole FFT-RadNet model is trained by minimiz-
ing a combination of the previous detection and segmentation losses:

LMTL =
∑

x
Ldet(x, yclas, yreg) + λLfree(x, yseg), (6.5)

w.r.t. the parameters of the MIMO pre-encoder, of the FPN encoder, of the RA decoder
and of the two heads, where λ is a positive hyper-parameter that balances the two tasks.
The following section will present the experiments and results of the FFT-RadNet with the
RADIal dataset.

6.4 Experiments and Results

6.4.1 Training details

The proposed architecture has been trained on the RADIal dataset using exclusively the
RD representations as input. The RD being composed of complex numbers, their real and
imaginary parts are stacked along the channel axis and used as input of the MIMO pre-
encoder. The dataset has been split into Training, Validation and Test sets (approximately
70%, 15% and 15% of the dataset, respectively) in such a way that frames from a same
sequence can not appear in different sets. We manually split the Test dataset into “hard” and
“easy” cases. Hard cases are mostly situations where the RADAR signal is perturbed, e.g.,
by interference with other RADARs, important side-lobes effects or significant reflections
on metallic surfaces.

The FFT-RadNet architecture is trained using the multi-task loss detailed in Section
6.3.4 with the following hyper-parameters set-up empirically: λ = 100, β = 100 and
γ = 2. The training process uses the Adam optimizer [Kingma 2015] during 100 epochs,
with an initial learning rate of 10−4 and a decay of 0.9 every 10 epochs.

6.4.2 Baselines

The proposed architecture has been compared to recent contributions in deep learning and
in RADAR scene understanding. Most of the competing methods presented in Chapter

120 Chapter 6. High-definition RADAR

3 have been designed for LD RADAR and can not scale with HD RADAR data due to
memory limitation. Instead, baselines with similar complexity have been selected regard-
ing their input representation (Range-Azimuth or point cloud) for a fair comparison. Input
representations (RD, RA or point cloud) are generated for the entire Training, Validation
and Test sets using a conventional signal processing pipeline.

Object detection with point cloud. The PIXOR [Yang et al. 2018] method has been
adapted to detect vehicles after voxelization of the RADAR point cloud into a 3D vol-
ume of [0 m, 103 m]×[−40 m, 40 m]×[−2.5 m, 2.0 m] around the RADAR (longitudinal,
lateral and vertical ranges), sampled at 0.1m in each direction. The size for this input 3D
grid is thus 800×1030×45. PIXOR is a lightweight architecture intended to be real-time.
However, its input representation generates 96MB of data, which becomes a challenge for
embedded devices.

Object detection with RA tensor. As detailed in Chapter 3 and Section 5.1, several
methods [Major et al. 2019, Gao et al. 2020] including ours used views of the RAD tensor
as input. However, the memory usage would be too extensive for HD RADAR data. As
[Major et al. 2019] showed that using only the RA view leads to better performance for ob-
ject detection, we compared our method to a PIXOR architecture without the voxelization
module. It takes as input the RA representation in RADIal, of size 512×896 with range
values in [0m, 103m] and azimuth in [−90◦, 90◦].

Freespace segmentation. We selected PolarNet [Nowruzi et al. 2020] to evaluate
against our approach. It is a lightweight architecture designed to process RA maps and
predict free space. We re-implemented the model to the best of our ability.

6.4.3 Evaluation metric

For object detection, the AP and AR are used considering an IoU threshold of 50%. For
semantic segmentation, the mIoU metric is used on a binary classification task (free or
occupied). The metric is computed on a reduced [0m, 50m] range as the boundaries of the
road surface are hardly visible beyond this distance. The evaluation metrics are detailed in
Section 2.6.2.

6.4.4 Performance analysis

Object detection. Performances for object detection are reported in Table 6.4. We ob-
serve that FFT-RadNet using RD as input outperforms all baselines overall. The position
accuracy, both in range and azimuth angle, is similar, and even better in angle, compared
to PIXOR using RA as input (PIXOR-RA). These results show that our approach success-
fully learns the azimuth angle from the data. From a manufacturing viewpoint, note that
this opens cost saving opportunities as the end-of-line calibration of the sensor is no longer
required in the proposed framework. In the Easy Test set, FFT-RadNet delivers +1.6%
AP and +3.6% AR compared to PIXOR-RA. However, on the Hard test set, PIXOR-RA

6.4. Experiments and Results 121

Figure 6.4: Qualitative results for object detection and free space segmentation on
Easy and Hard samples. Camera views (1st row) are displayed for visual reference only;
Range-Doppler representation (2nd row) are the only inputs to the model; Ground truths
(3rd row) and predictions (4th row) are shown for both tasks. Ground truths and predictions
are represented by Bird’s Eye View maps with 2D red boxes for object detection and green
shapes for free driving space segmentation. Note that there could be a projection error of
the free driving space from camera to real world due to vehicle pitch variations.

performs the best. The RA approach works well with the hard samples because the data
is pre-processed by a signal processing pipeline that already solves some of these cases.
In contrast, the performance with point-cloud input is much lower than all others. Indeed,
the recall is low due to the limited number of points at far range. Qualitative results of
FFT-RadNet on the Easy and Hard Test sets are illustrated in Figure 6.4.

Free driving space segmentation. The performance for the free driving space segmen-
tation is provided in Table 6.4.5. We observe that FFT-RadNet significantly outperforms
PolarNet by 13.4% IoU on average. This is partly explained by the lack of elevation infor-
mation in the RA representation, an information that is present in the RD. Segmentation
results on the Easy and Hard Test sets are also presented in Figure 6.4.

6.4.5 Complexity analysis

FFT-RadNet has been designed to compress of the signal processing chains that transform
the ADC data into either a sparse point cloud or denser representations (RA or RAD), with-
out compromising the richness of the signal. Because the input data remains quite large,

122 Chapter 6. High-definition RADAR

Model RADAR input mIoU (%) ↑

Overall Easy Hard

PolarNet RA 60.6 61.9 57.4
FFT-RadNet RD 74.0 74.6 72.3

Table 6.4: Free driving space segmenta-
tion performances. FFT-RadNet success-
fully approximates the angle information
in the RADAR data while reaching better
performance than PolarNet. Note that this
performance is achieved by FFT-RadNet
while simultaneously performing object de-
tection, as our model is multi-task.

Method
Input size
(MB) ↓

Params.
(106) ↓

Complexity (GFLOPS) ↓
AoA processing Model

PCL PIXOR 98.30 6.93 8 741
RA PIXOR 1.75 6.92 45* 761
FFT-RadNet 16.00 3.79 0 584

Table 6.5: Complexity analysis of FFT-
RadNet. The proposed method reaches the
best trade-off between the size of the input,
the number of parameters of the model and
the computational complexity. Note that
the Angle-of-Arrival processing of the RA
PIXOR method (*) considers only a single
elevation, otherwise it is up to 496 GFLOPS
for the whole set of BE =11 elevations.

we designed a compact model to bound the complexity in terms of number of operations,
as a trade-off between performance and range/angle accuracy. Moreover, the pre-encoder
layer compresses significantly the input data. An ablation study has been performed to
define the best trade-off between the size of the feature maps and the model’s performance
(details in Appendix C.1).

As shown in Table 6.5, FFT-RadNet is the only method that does not require the AoA
estimation. As explained in Section 6.3.1, the pre-encoder layer compresses the MIMO
signal containing all the information to recover both the azimuth and elevation angles.
The AoA for the point cloud approach generates 3D coordinates for a sparse cloud of
around 1000 points on average, leading to 8 GFLOPS worth of computing, prior to applying
PIXOR for object detection.

To produce the RA or RAD tensor, the AoA runs for each single bin of the RD rep-
resentation, but only considering one elevation. Such a model is thus unable to estimate
the elevation of objects such as bridges or lost cargo (low object). For one elevation, the
complexity is about 45 GFLOPS, but it would increase up to 495 GFLOPS for all the 11
elevations. We have demonstrated that FFT-RadNet can cut these processing costs without
compromising the quality of the estimation.

6.5 Conclusions and discussions

This chapter introduced RADIal, a new dataset containing sequences of automotive-grade
sensor signals (HD RADAR, camera and LiDAR). Synchronized sensor data are available
in a raw format so that various representations can be evaluated and further research can be
conducted, possibly with fusion-based approaches. The FFT-RadNet is also presented as a
novel trainable architecture to process and analyse HD RADAR signals. We demonstrated
that it effectively alleviates the need for costly pre-processing to estimate RA or RAD
representations. Instead, it detects and estimates objects position while segmenting free
driving space from the RD representations directly. Experiments on the RADIal dataset
shown that FFT-RadNet slightly outperforms RA-based and point cloud-based approaches

6.5. Conclusions and discussions 123

while reducing processing requirements.
The annotations of the RADIal dataset have been performed semi-automatically and

thus could be improved. Figure 6.4 illustrates misalignment of the camera’s semantic seg-
mentation mask projections to the Cartesian coordinates in the ground truths where the
object boxes do not perfectly match with the shape of the free space segmentation. An
additional correction could be integrated by quantifying the projection error due to the
calibration of the camera. The azimuth angle estimation could be improved by defining
additional pyramid features in the MIMO pre-encoder layer of the FFT-RadNet architec-
ture. The number of feature maps defined at each level of the pyramid will correspond to
a smoother angle resolution at each scale of the input. Finally, an extensive ablation study
of the MIMO pre-encoder could also be explored to better understand the contribution of
the virtual pairs of antennas regarding their position in the array of antennas in the sensor.
Our experiments showed that best results are reached by considering a subset of the virtual
antennas. A deeper analysis on which antennas contribute the most could be interesting to
selectively build the array of antennas of a HD RADAR and possibly reducing its cost.

HD RADAR is expected to be increasingly used in the near feature for scene under-
standing due to its improved angular resolution. It is complementary to the LiDAR and
camera sensor thanks to its robustness to adverse weather conditions and the recorded
Doppler information. It could even replace the LiDAR sensor thanks to the azimuth and el-
evation resolutions achieved with hundreds of virtual antennas. Sensor fusion considering
HD RADAR, LiDAR and camera will be explored to further improve scene understanding
tasks in the context of autonomous driving.

CHAPTER 7

Conclusion

Contents
7.1 Contributions . 125
7.2 Future work . 127

7.1 Contributions

Advanced driving assistance systems and autonomous driving require a detailed perception
around the ego vehicle. Robust scene understanding is key to ensuring safety of road users.
Thus, complementary sensors recording redundant information are required to compensate
for their limitations while taking advantage of their own physical properties. Since the
recent golden age of deep learning, the performance of algorithms for scene understanding
has increased dramatically and autonomous driving has become within reach. The RADAR
sensor has been left behind due to its cumbersome and noisy representations which are
complex to understand for human eyes. However, it is the only sensor that is robust to
adverse weather conditions, while proving information on the velocity and position of the
surrounding objects.

This thesis explored RADAR scene understanding using deep learning algorithms. We
have addressed the fundamental problem of the lack of annotated datasets while propos-
ing appropriate algorithms to explore RADAR representations. First, we created a simple
simulation of RD representation by taking into account the properties of moving objects
while including RADAR sensor noise (Section 4.1). We experimented with generative ap-
proaches to reconstruct RD representations from camera images with the underlying idea to
automatically transfer annotations between the two domains (Section 4.2). Both methods
aimed to build annotated RADAR dataset without the costly intervention of human experts.
These methods have not been able to produce sufficiently realistic RADAR data to investi-
gate these directions further. Therefore we proposed the CARRADA dataset (Section 4.3),
composed of synchronised camera and annotated RADAR data for scene understanding.
As detailed in Table 3.1, it is still the only dataset providing raw and processed RADAR
data with both object detection and semantic segmentation annotations. A semi-automatic
annotation pipeline has also been proposed, taking advantage of camera images to reduce
the cost of manual annotation. Our annotation method has been slightly improved in the
work of [Zhang et al. 2021a], as detailed in Section 5.1.4.1, demonstrating the relevance of
its application to complex urban scenes. However, the efficiency of the camera projections

126 Chapter 7. Conclusion

in the RADAR data is based on strong assumptions, e.g. non-occluded objects or objects
at close range, and leads to inaccuracies in the annotations. Our proposed propagation of
the annotations in the RADAR sequence alleviates the dependence on the camera image,
but it is also limited regarding the object signature tracking which remains difficult when
small objects are close together. Using increased human supervision or a higher resolution
sensor could solve these problems. Finally, our method is limited in the generation of the
RA annotations because it does not consider the angular resolution of the sensor. There-
fore the generated annotations do not cover entirely the objects’ signature on the RA view.
This could be mitigated by incorporating the angular resolution of the sensor into the shape
extension method presented in Section 4.3.2.3.

In the past two years, the release of annotated datasets has opened up research for
RADAR scene understanding using deep learning algorithms. As detailed in Chapter 3,
mostly object detection has been explored, however it is not well suited to the shapes of
objects’ signatures. We proposed a novel approach for multi-view RADAR semantic seg-
mentation exploiting the raw RAD tensor of RADAR data while reducing its cumbersome
representation and its noise (Section 5.1). Our proposed approach reached the state of the
art performances of semantic segmentation considering several competing methods while
requiring significantly fewer parameters. These results were confirmed after various ab-
lation studies and evaluations on several datasets, including simple and complex urban
scenes. Nonetheless, these small datasets are unbalanced and it is still difficult to provide
a fair and precise evaluation on vulnerable road users (pedestrians and cyclists), which
are usually under represented. Another limitation of our work is the aggregation method
we employed for the RAD tensor. It helps to reduce the noise, as detailed in Section 2.2,
but it also attenuates the high reflections of the objects making difficult to separate them.
Moreover, the proposed Coherence Loss in Section 5.1.2.4 showed limits in improving
radar semantic segmentation performances only on a single view. The spatial coherence
could integrate the ground truth segmentation to penalize the network prediction in a robust
manner.

Each sensor used for automotive scene understanding has its strengths and weaknesses.
Sensor fusion aims to benefit from their advantages while compensating their limitations.
In this thesis, we proposed a preliminary work to exploit jointly RADAR and LiDAR point
clouds with an early fusion method (Section 5.2). It aims to quantify the resolution and
the accuracy of a low-definition RADAR to construct a sensor uncertainty area for each
measurement. The RADAR information of a point is then propagated to the LiDAR points
belonging to its uncertainty area and vice-versa. The presented qualitative results showed
that the RADAR information (Doppler and RCS) are well-propagated locally. The final
point cloud benefits from the density of the LiDAR point cloud while carrying the Doppler
and RCS information in dense local groups of points. The presented method is limited by
the ghost and multi-path reflections of the RADAR point cloud propagating information
in the wrong local space. However it can be tackled by filtering the upstream points. The
RADAR and LiDAR point cloud fusion aims to improve scene understanding in general
by exploiting both sensors at the same time. Various opportunities are discussed in the
following section.

Our recent collaborative project (Chapter 6) explored the HD RADAR sensor by

7.2. Future work 127

proposing the RADIal dataset, the first dataset composed of camera, LiDAR and raw HD
RADAR data annotated for object detection and free driving space segmentation. A deep
neural network architecture is also proposed to directly learn from the raw RADAR and
replace the costly pre-processing steps for angle estimation. It succeeds in attaining better
performances than competing methods while requiring fewer parameters and operations.
It also operates directly on the raw data, which is an important advantage for real-time
applications using HD RADAR. The proposed dataset is an important step for RADAR
understanding, but it has only a single class for object detection and the annotations are
performed semi-automatically based on camera calibration, which is inaccurate and could
be manually corrected. The proposed pre-encoder layer could also be improved by consid-
ering a smoother estimation of the angular resolution of the sensor which increases with
the distance. Finally, a deeper study on the impact of the selected pairs of virtual antennas
should be realized to better characterize the impact of each one of them. Since we reached
the best performances by estimating fewer pairs of virtual antennas than existing in the
sensor, such analysis should help to improve the geometric positioning of each antenna in
an array of a RADAR.

7.2 Future work

Multiple datasets with RADAR data have been created in the past two years (see Table
3.1) opening up research in object detection and semantic segmentation for scene under-
standing. However, the community is still missing a large scale dataset containing camera,
LiDAR and raw RADAR data with various scenarios (lighting and weather conditions)
and diverse annotations. It is important to obtain such datasets to further explore fully su-
pervised learning using RADAR data that the car will rely on in certain scenarios. It is
also important to provide the raw data to identify the most appropriate representation in
different driving scenarios. E.g., considering LD RADAR, a point cloud representation is
enough to detect vehicles but it will miss pedestrians at middle and long range.

We discussed in Chapter 5 the importance of raw data, in particular the RAD tensor,
with semantic segmentation annotation for scene understanding using LD RADAR sensor.
A simple aggregation method (see Equation 2.19) is then applied to reduce the noise and
the size of the representation. The downside of this method is that high reflections are
attenuated. In a current work, we are exploring diverse aggregation methods to further re-
duce the noise while respecting the high reflection distributions and separating them from
the different classes. One way to carry out this idea is to use a weighted average depending
on the bin intensity values. We note that the selection of specific slices per view could also
be considered with a measure of signal disparity. We are also formulating the Coherence
Loss differently to better balance the performance in multi-view RADAR semantic seg-
mentation (see Section 5.1.2.4). In particular, we are trying to integrate the ground truth in
the loss to better impose the spatial coherence between the prediction in the two branches
of the neural network architecture. Since this loss aims to improve the performances in the
RA view, we are also experimenting with a local back-propagation of the Coherence loss
in specific branches of the network to avoid penalization in the RD branches.

128 Chapter 7. Conclusion

In our opinion, raw data is the most relevant for scene understanding, but most of the
available datasets and integrated algorithms use lightweight RADAR point clouds. This
representation is sparse and misses numerous objects, but it carries the Doppler and the sig-
nal reflection (RCS). We proposed a method which propagates these information through
the dense LiDAR point cloud while fusing them to benefit from their respective properties
(Section 5.2). Our next work will consist in training deep neural network architectures spe-
cialized in point clouds (e.g. PointNet [Qi et al. 2017a] or PointNet++ [Qi et al. 2017b])
using our enriched point cloud to improve scene understanding tasks. Motivated by the
lack of annotations and the difficulty of creating them even for a human, we will explore
self-supervised learning consisting in training a model with a pretext task and to fine-tune it
on a downstream application. As a first experiment, we will used our enriched point cloud
to learn a model to predict the propagated Doppler components. This way, the model will
be able to learn geometric features while distinguishing moving and static objects with-
out any annotation cost. Our propagation and fusion module could be useful to consider
RADAR data as prior weak annotations in a self-supervised setting. The main advantage
is that it could be applied to any dataset with a LiDAR and at least one RADAR, either LD
or HD.

The recent HD RADAR sensors attain a resolution similar to a LiDAR in azimuth
and elevation angles but this requires costly pre-processing steps. This issue is barely dis-
cussed in the related work on HD RADAR but it is essential for real time predictions. In
our collaborative work (Chapter 6), we showed that a neural network architecture is able to
estimate the RADAR pre-processing while decreasing its computational complexity. This
multi-task architecture also increases performance compared to recent competing methods,
as each method is specialised in its own task. Real time predictions and high performances
are reached with a HD RADAR. Moreover it provides representations as dense as LiDAR
does with a comparable resolution. Additional experiments must be conducted to compare
HD RADAR and LiDAR sensors performance individually on automotive scene under-
standing tasks. The HD RADAR suffers from ghost and multi-path reflections but if a
neural network can distinguish the noise, as it does in our experiments, one can argue that
this sensor may replace LiDAR in autonomous cars.

With respect to the limitations of the camera and LiDAR sensors, it is clear that the
RADAR must be integrated into autonomous vehicles in order to obtain sufficient perfor-
mance in any scenario to ensure the safety of drivers. In the near future, supervised learning
using a RADAR sensor will be explored in depth to be able to rely solely on this sensor
in several scenarios. Methods for sensor fusion using RADAR are at their early stage but
they will be explored with any sensor mounted on a car. In particular, LD RADAR and
LiDAR are particularly well suited to be fused and benefit from each of them at lower cost.
Future research will also focus on HD RADAR for fusion, either with camera or LiDAR, to
provide a dense representation of the scene surrounding the vehicle while benefiting from
the properties of each one of them.

Scene understanding for autonomous driving is increasingly being mastered by ex-
ploiting multiple sensors in various driving scenarios. It goes hand in hand with decision
making that uses the observation data to drive the car. The automotive industry estimates
that vehicles with a level 3 of driving automation, i.e. full capacity to perform driving tasks

7.2. Future work 129

but requiring human intervention, will be sold to the public in 2024 in European countries.
If research in this area continues to progress so rapidly, we can estimate that a level of
automation that no longer requires a human driver could be available to the public within
one or two decades.

Bibliography

[Abramowitz & Stegun 1965] Milton Abramowitz and Irene A. Stegun, editors. Hand-
book of mathematical functions: with formulas, graphs, and mathematical tables.
Dover books on mathematics, 1965. (Cited on page 13.)

[Aydogdu et al. 2020] Cem Yusuf Aydogdu, Souvik Hazra, Avik Santra and Robert
Weigel. Multi-Modal Cross Learning for Improved People Counting using Short-
Range FMCW Radar. In IEEE International Radar Conference (RADAR), 2020.
(Cited on page 43.)

[Azam et al. 2021] Shoaib Azam, Farzeen Munir and Moongu Jeon. Channel Boosting
Feature Ensemble for Radar-based Object Detection. In IEEE Intelligent Vehicles
Symposium (IV), 2021. (Cited on page 48.)

[Badrinarayanan et al. 2017] Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla.
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Seg-
mentation. In IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2017. (Cited on page 50.)

[Bai et al. 2020] Jie Bai, Yifan Zhang, Libo Huang and Sen Li. Vehicle Detection Based on
Deep Neural Network Combined with Radar Attention Mechanism. In Automotive
Technical Papers, 2020. (Cited on page 52.)

[Barnes et al. 2020] Dan Barnes, Matthew Gadd, Paul Murcutt, Paul Newman and Ingmar
Posner. The Oxford Radar RobotCar Dataset: A Radar Extension to the Oxford
RobotCar Dataset. In IEEE International Conference on Robotics and Automation
(ICRA), 2020. (Cited on page 45.)

[Bewley et al. 2016] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos and Ben Up-
croft. Simple Online and Realtime Tracking. In IEEE International Conference on
Image Processing (ICIP), 2016. (Cited on page 72.)

[Bijelic et al. 2018] Mario Bijelic, Tobias Gruber and Werner Ritter. A Benchmark for
Lidar Sensors in Fog: Is Detection Breaking Down? In IEEE Intelligent Vehicles
Symposium (IV), 2018. (Cited on pages 4 and 102.)

[Bijelic et al. 2020] Mario Bijelic, Tobias Gruber, Fahim Mannan, Florian Kraus, Werner
Ritter, Klaus Dietmayer and Felix Heide. Seeing Through Fog Without Seeing Fog:
Deep Multimodal Sensor Fusion in Unseen Adverse Weather. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020. (Cited on page 55.)

[Brodeski et al. 2019] Daniel Brodeski, Igal Bilik and Raja Giryes. Deep Radar Detector.
In IEEE Radar Conference (RadarConf), 2019. (Cited on page 48.)

[Brooker 2005] Graham Brooker. Understanding millimetre wave FMCW radars. In IEEE
International Conference on Software Testing (ICST), 2005. (Cited on page 8.)

132 Bibliography

[Brooks et al. 2018] Daniel A. Brooks, Olivier Schwander, Frederic Barbaresco, Jean-
Yves Schneider and Matthieu Cord. Temporal Deep Learning for Drone Micro-
Doppler Classification. In International Radiation Symposium (IRS), 2018. (Cited
on page 43.)

[Bugeau & Pérez 2007] Aurélie Bugeau and Patrick Pérez. Bandwidth selection for kernel
estimation in mixed multi-dimensional spaces. Technical report RR-6286, INRIA,
2007. (Cited on page 75.)

[Caesar et al. 2020] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan and Os-
car Beijbom. nuScenes: A Multimodal Dataset for Autonomous Driving. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020. (Cited on
pages 44, 102, 106, 168 and 172.)

[Capobianco et al. 2017] Samuele Capobianco, Luca Facheris, Fabrizio Cuccoli and Si-
mone Marinai. Vehicle classification based on convolutional networks applied to
FM-CW radar signals. In European Conference on Traffic Mining Applied to Po-
lice Activities (TRAP), 2017. (Cited on page 46.)

[Cennamo et al. 2020] Alessandro Cennamo, Florian Kaestner and Anton Kummert.
Leveraging Radar Features to Improve Point Clouds Segmentation with Neural
Networks. In International Conference on Engineering Applications of Neural Net-
works (EANN), 2020. (Cited on page 50.)

[Chadwick et al. 2019] Simon Chadwick, Will Maddern and Paul Newman. Distant Ve-
hicle Detection Using Radar and Vision. In IEEE International Conference on
Robotics and Automation (ICRA), 2019. (Cited on page 52.)

[Chen et al. 2017] Liang-Chieh Chen, George Papandreou, Florian Schroff and Hartwig
Adam. Rethinking Atrous Convolution for Semantic Image Segmentation. In
ArXiv, 2017. (Cited on page 37.)

[Chen et al. 2018a] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin
Murphy and Alan L. Yuille. DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. In IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2018. (Cited
on pages 37, 87, 89, 99 and 162.)

[Chen et al. 2018b] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff
and Hartwig Adam. Encoder-Decoder with Atrous Separable Convolution for
Semantic Image Segmentation. In European Conference on Computer Vision
(ECCV), 2018. (Cited on pages 37, 50, 87, 89, 94, 114 and 165.)

[Chen et al. 2021a] Jinbo Chen, Dongheng Zhang, Zhi Wu, Fang Zhou, Qibin Sun and Yan
Chen. Contactless Electrocardiogram Monitoring with Millimeter Wave Radar. In
ArXiv, 2021. (Cited on page 43.)

Bibliography 133

[Chen et al. 2021b] Shiliang Chen, Wentao He, Jianfeng Ren and Xudong Jiang.
Attention-based Dual-stream Vision Transformer for Radar Gait Recognition. In
ArXiv, 2021. (Cited on page 42.)

[Cheng & Liu 2021] Yuwei Cheng and Yimin Liu. Person Reidentification Based on Au-
tomotive Radar Point Clouds. In IEEE Transactions on Geoscience and Remote
Sensing, 2021. (Cited on page 46.)

[Cheng et al. 2021a] Yuwei Cheng, Jingran Su, Hongyu Chen and Yimin Liu. A New
Automotive Radar 4D Point Clouds Detector by Using Deep Learning. In IEEE
International Conference on Acoustics, Speech, & Signal Processing (ICASSP),
2021. (Cited on page 50.)

[Cheng et al. 2021b] Yuwei Cheng, Hu Xu and Yimin Liu. Robust Small Object Detec-
tion on the Water Surface Through Fusion of Camera and Millimeter Wave Radar.
In IEEE International Conference on Computer Vision (ICCV), 2021. (Cited on
page 52.)

[Chollet 2017] François Chollet. Xception: Deep Learning with Depthwise Separable
Convolutions. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. (Cited on page 37.)

[Comaniciu & Meer 2002] D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. In IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 2002. (Cited on pages 50 and 75.)

[Cordts et al. 2016] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth and Bernt
Schiele. The Cityscapes Dataset for Semantic Urban Scene Understanding. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
(Cited on pages 5 and 34.)

[Cui et al. 2021] Hang Cui, Junzhe Wu, Jiaming Zhang, Girish Chowdhary and William R.
Norris. 3D Detection and Tracking for On-road Vehicles with a Monovision Cam-
era and Dual Low-cost 4D mmWave Radars. In International Conference on Intel-
ligent Transportation Systems (ITSC), 2021. (Cited on page 52.)

[Dai et al. 2016] Jifeng Dai, Yi Li, Kaiming He and Jian Sun. R-FCN: Object Detection
via Region-Based Fully Convolutional Networks. In Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2016. (Cited on page 157.)

[Dai et al. 2017] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu
and Yichen Wei. Deformable Convolutional Networks. In IEEE International Con-
ference on Computer Vision (ICCV), 2017. (Cited on page 42.)

[Dalsasso et al. 2021] Emanuele Dalsasso, Loïc Denis and Florence Tupin. SAR2SAR: a
semi-supervised despeckling algorithm for SAR images. In Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing, 2021. (Cited on pages 12
and 13.)

134 Bibliography

[Danzer et al. 2019] Andreas Danzer, Thomas Griebel, Martin Bach and Klaus Dietmayer.
2D Car Detection in Radar Data with PointNets. In International Conference on
Intelligent Transportation Systems (ITSC), 2019. (Cited on page 48.)

[de Oliveira & Bekooij 2020] Marcio L. Lima de Oliveira and Marco J. G. Bekooij. Deep
Convolutional Autoencoder Applied for Noise Reduction in Range-Doppler Maps
of FMCW Radars. In IEEE International Radar Conference (RADAR), 2020.
(Cited on page 43.)

[Dekker et al. 2017] B. Dekker, S. Jacobs, A. S. Kossen, M. C. Kruithof, A. G. Huizing
and M. Geurts. Gesture recognition with a low power FMCW radar and a deep
convolutional neural network. In IEEE European Radar Conference (EuRAD),
2017. (Cited on page 42.)

[Deledalle et al. 2017] Charles-Alban Deledalle, Loic Denis, Sonia Tabti and Florence
Tupin. MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR
Speckle Reduction? In IEEE Transactions on Image Processing, 2017. (Cited
on page 13.)

[Deng et al. 2009] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009. (Cited on page 26.)

[Djuric et al. 2021] Nemanja Djuric, Henggang Cui, Zhaoen Su, Shangxuan Wu, Huahua
Wang, Fang-Chieh Chou, Luisa San Martin, Song Feng, Rui Hu, Yang Xu,
Alyssa Dayan, Sidney Zhang, Brian C. Becker, Gregory P. Meyer, Carlos Vallespi-
Gonzalez and Carl K. Wellington. MultiXNet: Multiclass Multistage Multimodal
Motion Prediction. In IEEE Intelligent Vehicles Symposium (IV), 2021. (Cited on
page 55.)

[Dong et al. 2020] Xu Dong, Pengluo Wang, Pengyue Zhang and Langechuan Liu. Prob-
abilistic Oriented Object Detection in Automotive Radar. In IEEE Conference on
Computer Vision and Pattern Recognition Workshop (CVPRW), 2020. (Cited on
page 47.)

[Dong et al. 2021] Xu Dong, Binnan Zhuang, Yunxiang Mao and Langechuan Liu. Radar
Camera Fusion via Representation Learning in Autonomous Driving. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2021. (Cited on
page 52.)

[Donnet & Longstaff 2006] B Donnet and I Longstaff. MIMO Radar, Techniques and
Opportunities. In IEEE European Radar Conference (EuRAD), 2006. (Cited on
pages 8 and 9.)

[Dosovitskiy et al. 2021] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit and Neil Houlsby. An

Bibliography 135

Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In
International Conference on Learning Representations (ICLR), 2021. (Cited on
pages 29 and 42.)

[Endres & Schindelin 2003] D.M. Endres and J.E. Schindelin. A new metric for probabil-
ity distributions. In IEEE Transactions on Information Theory, 2003. (Cited on
page 77.)

[Ester et al. 1996] Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu. A
Density-Based Algorithm for Discovering Clusters in Large Spatial Databases
with Noise. In Knowledge Discovery and Data Mining (KDD), 1996. (Cited on
page 96.)

[Everingham et al. 2015] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn and A. Zisserman. The Pascal Visual Object Classes Challenge: A Ret-
rospective. In International Journal of Computer Vision (IJCV), 2015. (Cited on
pages 29 and 34.)

[Farag 2021] Wael Farag. Real-time lidar and radar fusion for road-objects detection
and tracking. In International Journal of Computational Science and Engineering
(IJCSE), 2021. (Cited on page 54.)

[Feng et al. 2019] Zhaofei Feng, Shuo Zhang, Martin Kunert and Werner Wiesbeck. Point
Cloud Segmentation with a High-Resolution Automotive Radar. In IEEE Automo-
tive meets Electronics (AmE), 2019. (Cited on page 50.)

[Fu et al. 2018] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich and
Dacheng Tao. Deep Ordinal Regression Network for Monocular Depth Estimation.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
(Cited on page 53.)

[Gadd et al. 2021] Matthew Gadd, Daniele De Martini and Paul Newman. Unsupervised
Place Recognition with Deep Embedding Learning over Radar Videos. In IEEE
International Conference on Robotics and Automation Workshop (ICRAW), 2021.
(Cited on page 43.)

[Gao et al. 2019] Xiangyu Gao, Guanbin Xing, Sumit Roy and Hui Liu. Experiments with
mmWave Automotive Radar Test-bed. In Asilomar Conference, 2019. (Cited on
page 47.)

[Gao et al. 2020] Xiangyu Gao, Guanbin Xing, Sumit Roy and Hui Liu. RAMP-CNN:
A Novel Neural Network for Enhanced Automotive Radar Object Recognition. In
IEEE Sensors Journal, 2020. (Cited on pages 47, 87, 89 and 120.)

[Garcia et al. 2012] Fernando Garcia, Pietro Cerri, Alberto Broggi, Arturo de la Escalera
and Jose Maria Armingol. Data fusion for overtaking vehicle detection based on
radar and optical flow. In IEEE Intelligent Vehicles Symposium (IV), 2012. (Cited
on page 51.)

136 Bibliography

[Garnot et al. 2021] Vivien Sainte Fare Garnot, Loic Landrieu and Nesrine Chehata.
Multi-Modal Temporal Attention Models for Crop Mapping from Satellite Time
Series. In ArXiv, 2021. (Cited on page 43.)

[Gasperini et al. 2021] Stefano Gasperini, Patrick Koch, Vinzenz Dallabetta, Nassir
Navab, Benjamin Busam and Federico Tombari. R4Dyn: Exploring Radar for
Self-Supervised Monocular Depth Estimation of Dynamic Scenes. In IEEE Inter-
national Conference on 3D Vision (3DV), 2021. (Cited on page 52.)

[Geiger et al. 2013] A Geiger, P Lenz, C Stiller and R Urtasun. Vision meets robotics:
The KITTI dataset. In International Journal of Robotics Research, 2013. (Cited on
page 5.)

[Ghaleb 2009] Antoine Ghaleb. Micro-Doppler analysis of non-stationary moving targets
in radar imaging. PhD thesis, Telecom Paris, France, 2009. (Cited on pages 8
and 11.)

[Girshick et al. 2016] Ross Girshick, Jeff Donahue, Trevor Darrell and Jitendra Malik.
Region-Based Convolutional Networks for Accurate Object Detection and Seg-
mentation. In IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2016. (Cited on pages 30 and 36.)

[Girshick 2015] Ross Girshick. Fast R-CNN. In IEEE International Conference on Com-
puter Vision (ICCV), September 2015. (Cited on pages 31 and 36.)

[Glorot & Bengio 2010] Xavier Glorot and Yoshua Bengio. Understanding the difficulty
of training deep feedforward neural networks. In International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), 2010. (Cited on pages 19 and 62.)

[Goodfellow et al. 2014] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville and Yoshua Bengio. Gen-
erative Adversarial Networks. In Conference on Neural Information Processing
Systems (NeurIPS), 2014. (Cited on pages 43, 68 and 69.)

[Goodfellow et al. 2016] Ian J. Goodfellow, Yoshua Bengio and Aaron Courville. Deep
Learning. MIT Press, 2016. (Cited on pages 19, 20, 24 and 26.)

[Goodman 1976] J. W. Goodman. Some fundamental properties of speckle. In Journal of
the Optical Society of America, 1976. (Cited on pages 12 and 13.)

[Goodman 2007] Joseph W Goodman. Speckle phenomena in optics: theory and applica-
tions. Roberts and Company Publishers, 2007. (Cited on pages 59, 64 and 65.)

[Graham et al. 2018] Benjamin Graham, Martin Engelcke and Laurens van der Maaten.
3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
(Cited on page 55.)

Bibliography 137

[Graves et al. 2006] Alex Graves, Santiago Fernández, Faustino Gomez and Jürgen
Schmidhuber. Connectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In International Conference on Ma-
chine Learning (ICML), 2006. (Cited on page 42.)

[Griebel et al. 2021] Thomas Griebel, Dominik Authaler, Markus Horn, Matti Henning,
Michael Buchholz and Klaus Dietmayer. Anomaly Detection in Radar Data Using
PointNets. In IEEE Intelligent Transportation Systems Conference (ITSC), 2021.
(Cited on page 51.)

[Grimm et al. 2020] Christopher Grimm, Tai Fei, Ernst Warsitz, Ridha Farhoud, Tobias
Breddermann and Reinhold Haeb-Umbach. Warping of Radar Data into Camera
Image for Cross-Modal Supervision in Automotive Applications. In ArXiv, 2020.
(Cited on page 55.)

[Guan et al. 2020] Junfeng Guan, Sohrab Madani, Suraj Jog, Saurabh Gupta and Haitham
Hassanieh. Through Fog High-Resolution Imaging Using Millimeter Wave Radar.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
(Cited on pages 4 and 102.)

[Guo et al. 2020] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu and Mo-
hammed Bennamoun. Deep Learning for 3D Point Clouds: A Survey. In IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020. (Cited
on page 40.)

[Hastie et al. 2001] Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Elements
of Statistical Learning. Springer Series in Statistics, 2001. (Cited on page 15.)

[Hazra & Santra 2019] Souvik Hazra and Avik Santra. Radar Gesture Recognition System
in Presence of Interference using Self-Attention Neural Network. In IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA), 2019. (Cited
on page 42.)

[He et al. 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2016. (Cited on pages 4, 28, 33, 37, 62, 93, 117, 157,
159 and 160.)

[He et al. 2017] Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick. Mask R-
CNN. In IEEE International Conference on Computer Vision (ICCV), 2017. (Cited
on pages 33, 36, 72 and 96.)

[Hearst et al. 1998] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt and B. Scholkopf. Sup-
port vector machines. In IEEE Intelligent Systems and their Applications, 1998.
(Cited on page 30.)

138 Bibliography

[Hinton et al. 2012] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever and Ruslan R. Salakhutdinov. Improving neural networks by prevent-
ing co-adaptation of feature detectors. In ArXiv, 2012. (Cited on page 21.)

[Hirschmuller 2008] H. Hirschmuller. Stereo Processing by Semiglobal Matching and Mu-
tual Information. In IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2008. (Cited on page 96.)

[Hochreiter & Schmidhuber 1997] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. In Neural Computation, 1997. (Cited on page 26.)

[Hoermann et al. 2018] Stefan Hoermann, Martin Bach and Klaus Dietmayer. Dynamic
Occupancy Grid Prediction for Urban Autonomous Driving: A Deep Learning
Approach with Fully Automatic Labeling. In IEEE International Conference on
Robotics and Automation (ICRA), 2018. (Cited on page 50.)

[Hsu et al. 2021] Chih-Chung Hsu, Chieh Lee, Lin Chen, Min-Kai Hung, Yu-Lun Lin and
Xian-Yu Wang. Efficient-ROD: Efficient Radar Object Detection based on Densely
Connected Residual Network. In ACM International Conference on Multimedia
Retrieval (ICMR), 2021. (Cited on page 47.)

[Hu et al. 2018] Jie Hu, Li Shen and Gang Sun. Squeeze-and-Excitation Networks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
(Cited on pages 29 and 160.)

[Huang et al. 2019] Xinyu Huang, Peng Wang, Xinjing Cheng, Dingfu Zhou, Qichuan
Geng and Ruigang Yang. The ApolloScape Open Dataset for Autonomous Driv-
ing and its Application. In IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2019. (Cited on page 5.)

[Hussain et al. 2021] Muhamamd Ishfaq Hussain, Muhammad Aasim Rafique and
Moongu Jeon. RVMDE: Radar Validated Monocular Depth Estimation for
Robotics. In ArXiv, 2021. (Cited on page 53.)

[Ioffe & Szegedy 2015] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accel-
erating Deep Network Training by Reducing Internal Covariate Shift. In Interna-
tional Conference on Machine Learning (ICML), 2015. (Cited on page 23.)

[Iovescu & Rao 2017] Cesar Iovescu and Sandeep Rao. The fundamentals of millimeter
wave radar sensors. Technical report, Texas Instruments, 2017. (Cited on page 12.)

[Ishak et al. 2018] K. Ishak, N. Appenrodt, J. Dickmann and C. Waldschmidt. Human
Motion Training Data Generation for Radar Based Deep Learning Applications.
In IEEE International Conference on Microwaves for Intelligent Mobility, 2018.
(Cited on page 42.)

[Isola et al. 2017] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou and Alexei A. Efros. Image-
to-Image Translation with Conditional Adversarial Networks. In IEEE Conference

Bibliography 139

on Computer Vision and Pattern Recognition (CVPR), 2017. (Cited on pages 53,
68 and 69.)

[Janai et al. 2020] Joel Janai, Fatma Güney, Aseem Behl and Andreas Geiger. Computer
Vision for Autonomous Vehicles: Problems, Datasets and State of the Art. In FNT
in Computer Graphics and Vision, 2020. (Cited on page 1.)

[Ji et al. 2012] Shuiwang Ji, Wei Xu, Ming Yang and Kai Yu. 3D convolutional neural
networks for human action recognition. In IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2012. (Cited on page 66.)

[Jin et al. 2021] Shaojie Jin, Ying Gao, Shoucai Jing, Fei Hui, Xiangmo Zhao and
Jianzhen Liu. Traffic Flow Parameters Collection under Variable Illumination
Based on Data Fusion. In Journal of Advanced Transportation, 2021. (Cited on
page 52.)

[Ju et al. 2021] Bo Ju, Wei Yang, Jinrang Jia, Xiaoqing Ye, Qu Chen, Xiao Tan, Hao Sun,
Yifeng Shi and Errui Ding. DANet: Dimension Apart Network for Radar Object
Detection. In ACM International Conference on Multimedia Retrieval (ICMR),
2021. (Cited on page 48.)

[Karlsson et al. 2021] Robin Karlsson, David Robert Wong, Kazunari Kawabata, Simon
Thompson and Naoki Sakai. Probabilistic Rainfall Estimation from Automotive
Lidar. In ArXiv, 2021. (Cited on pages 4 and 102.)

[Karpathy 2021] Andrej Karpathy. CS231n Convolutional Neural Networks for Visual
Recognition., 2021. (Cited on pages 16, 18 and 24.)

[Kaul et al. 2020] Prannay Kaul, Daniele De Martini, Matthew Gadd and Paul Newman.
RSS-Net: Weakly-Supervised Multi-Class Semantic Segmentation with FMCW
Radar. In IEEE Intelligent Vehicles Symposium (IV), 2020. (Cited on pages 50,
87, 89, 90, 93 and 162.)

[Kiefer & Wolfowitz 1952] J. Kiefer and J. Wolfowitz. Stochastic Estimation of the Max-
imum of a Regression Function. In The Annals of Mathematical Statistics, 1952.
(Cited on page 19.)

[Kim & Moon 2016] Youngwook Kim and Taesup Moon. Human Detection and Activ-
ity Classification Based on Micro-Doppler Signatures Using Deep Convolutional
Neural Networks. In Geoscience and Remote Sensing Letters, 2016. (Cited on
page 42.)

[Kim & Toomajian 2016] Y. Kim and B. Toomajian. Hand Gesture Recognition Using
Micro-Doppler Signatures With Convolutional Neural Network. In IEEE Access,
2016. (Cited on page 42.)

[Kim et al. 2020a] Giseop Kim, Yeong Sang Park, Younghun Cho, Jinyong Jeong and Ay-
oung Kim. MulRan: Multimodal Range Dataset for Urban Place Recognition. In

140 Bibliography

IEEE International Conference on Robotics and Automation (ICRA), 2020. (Cited
on page 45.)

[Kim et al. 2020b] Jinhyeong Kim, Youngseok Kim and Dongsuk Kum. Low-level Sensor
Fusion Network for 3D Vehicle Detection using Radar Range-Azimuth Heatmap
and Monocular Image. In Asian Conference on Computer Vision (ACCV), 2020.
(Cited on page 53.)

[Kim et al. 2020c] Youngseok Kim, Jun Won Choi and Dongsuk Kum. GRIF Net: Gated
Region of Interest Fusion Network for Robust 3D Object Detection from Radar
Point Cloud and Monocular Image. In IEEE International Conference on Intelli-
gent Robots and Systems (IROS), 2020. (Cited on page 53.)

[Kingma 2015] Diederik P. Kingma. Adam: a method for stochastic optimization. In
International Conference on Learning Representations (ICLR), 2015. (Cited on
pages 20, 62, 80, 93 and 119.)

[Klarenbeek et al. 2017] G. Klarenbeek, R. I. A. Harmanny and L. Cifola. Multi-target
human gait classification using LSTM recurrent neural networks applied to micro-
Doppler. In IEEE European Radar Conference (EuRAD), 2017. (Cited on
page 42.)

[Kopp et al. 2021] Johannes Kopp, Dominik Kellner, Aldi Piroli and Klaus Dietmayer.
Fast Rule-Based Clutter Detection in Automotive Radar Data. In International
Conference on Intelligent Transportation Systems (ITSC), 2021. (Cited on
page 108.)

[Kowol et al. 2021] Kamil Kowol, Matthias Rottmann, Stefan Bracke and Hanno
Gottschalk. YOdar: Uncertainty-based Sensor Fusion for Vehicle Detection with
Camera and Radar Sensors. In International Conference on Agents and Artificial
Intelligence (ICAART), 2021. (Cited on page 51.)

[Krizhevsky et al. 2012] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. Ima-
geNet Classification with Deep Convolutional Neural Networks. In Conference on
Neural Information Processing Systems (NeurIPS), 2012. (Cited on pages 4, 23
and 27.)

[Krähenbühl & Koltun 2011] Philipp Krähenbühl and Vladlen Koltun. Efficient Inference
in Fully Connected CRFs with Gaussian Edge Potentials. In Conference on Neural
Information Processing Systems (NeurIPS), 2011. (Cited on page 37.)

[Ku et al. 2018] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh and Steven
Waslander. Joint 3D Proposal Generation and Object Detection from View Ag-
gregation. In IEEE International Conference on Intelligent Robots and Systems
(IROS), 2018. (Cited on page 52.)

[Kuang et al. 2020] Hongwu Kuang, Xiaodong Liu, Jingwei Zhang and Zicheng Fang.
Multi-Modality Cascaded Fusion Technology for Autonomous Driving. In IEEE

Bibliography 141

International Conference on Robotics and Automation Sciences (ICRAS), 2020.
(Cited on page 53.)

[Kullback & Leibler 1951] S. Kullback and R. A. Leibler. On Information and Sufficiency.
In The Annals of Mathematical Statistics, 1951. (Cited on page 77.)

[Kung et al. 2021] Pou-Chun Kung, Chieh-Chih Wang and Wen-Chieh Lin. Radar Oc-
cupancy Prediction with Lidar Supervision while Preserving Long-Range Sensing
and Penetrating Capabilities. In ArXiv, 2021. (Cited on page 54.)

[Kurup & Bos 2021] Akhil Kurup and Jeremy Bos. DSOR: A Scalable Statistical Filter
for Removing Falling Snow from LiDAR Point Clouds in Severe Winter Weather. In
ArXiv, 2021. (Cited on page 4.)

[LeCun et al. 1989] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard and L. D. Jackel. Backpropagation Applied to Handwritten Zip Code
Recognition. In Neural Computation, 1989. (Cited on pages 4 and 22.)

[LeCun et al. 2012] Yann LeCun, Léon Bottou, Genevieve B. Orr and Klaus-Robert
Müller. Efficient BackProp. In Neural Networks: Tricks of the Trade. Springer,
2012. (Cited on page 27.)

[Lee, Wei-Yu et al. 2021] Lee, Wei-Yu, Martin Dimitrievski, Ljubomir Jovanov and Wil-
fried Philips. Spatio-temporal consistency for semi-supervised learning using 3D
radar cubes. In IEEE Intelligent Vehicles Symposium (IV), 2021. (Cited on
page 48.)

[Lei et al. 2020] Wentai Lei, Xinyue Jiang, Long Xu, Jiabin Luo, Mengdi Xu and Feifei
Hou. Continuous Gesture Recognition Based on Time Sequence Fusion Using
MIMO Radar Sensor and Deep Learning. In Electronics, 2020. (Cited on page 42.)

[Lekic & Babic 2019] Vladimir Lekic and Zdenka Babic. Automotive radar and camera
fusion using Generative Adversarial Networks. In Computer Vision and Image
Understanding (CVIU), 2019. (Cited on page 53.)

[Li & Xie 2020] Liang-qun Li and Yuan-liang Xie. A Feature Pyramid Fusion Detection
Algorithm Based on Radar and Camera Sensor. In IEEE International Conference
on Intelligent Computing and Signal Processing (ICSP), 2020. (Cited on page 53.)

[Liang et al. 2020] Ming Liang, Bin Yang, Wenyuan Zeng, Yun Chen, Rui Hu, Sergio
Casas and Raquel Urtasun. PnPNet: End-to-End Perception and Prediction with
Tracking in the Loop. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020. (Cited on page 54.)

[Lin et al. 2014a] Min Lin, Qiang Chen and Shuicheng Yan. Network In Network. In
International Conference on Learning Representations (ICLR), 2014. (Cited on
page 28.)

142 Bibliography

[Lin et al. 2014b] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár and C. Lawrence Zitnick. Microsoft COCO:
Common Objects in Context. In European Conference on Computer Vision
(ECCV), 2014. (Cited on pages 29 and 34.)

[Lin et al. 2017a] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hari-
haran and Serge Belongie. Feature Pyramid Networks for Object Detection. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
(Cited on pages 36 and 37.)

[Lin et al. 2017b] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He and Piotr Dol-
lár. Focal Loss for Dense Object Detection. In IEEE International Conference on
Computer Vision (ICCV), 2017. (Cited on page 114.)

[Lin et al. 2020] Juan-Ting Lin, Dengxin Dai and Luc Van Gool. Depth Estimation from
Monocular Images and Sparse Radar Data. In IEEE International Conference on
Intelligent Robots and Systems (IROS), 2020. (Cited on page 53.)

[Liu et al. 2015] Wei Liu, Andrew Rabinovich and Alexander C. Berg. ParseNet: Looking
Wider to See Better. In ArXiv, 2015. (Cited on page 158.)

[Liu et al. 2016] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott E. Reed, Cheng-Yang Fu and Alexander C. Berg. SSD: Single Shot MultiBox
Detector. In European Conference on Computer Vision (ECCV), 2016. (Cited on
pages 32 and 55.)

[Liu et al. 2018] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi and Jiaya Jia. Path Aggrega-
tion Network for Instance Segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. (Cited on page 160.)

[Liu et al. 2021a] Jianan Liu, Weiyi Xiong, Liping Bai, Yuxuan Xia and Bing Zhu. Deep
Instance Segmentation with High-Resolution Automotive Radar. In ArXiv, 2021.
(Cited on page 51.)

[Liu et al. 2021b] Ze Liu, Yingfeng Cai, Hai Wang and Long Chen. Surrounding Objects
Detection and Tracking for Autonomous Driving Using LiDAR and Radar Fusion.
In Chinese Journal of Mechanical Engineering (CJME), 2021. (Cited on page 54.)

[Liu et al. 2021c] Ze Liu, Yingfeng Cai, Hai Wang, Long Chen, Hongbo Gao, Yunyi Jia
and Yicheng Li. Robust Target Recognition and Tracking of Self-Driving Cars With
Radar and Camera Information Fusion Under Severe Weather Conditions. In IEEE
Transactions on Intelligent Transportation Systems, 2021. (Cited on page 52.)

[Liu et al. 2021d] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin and Baining Guo. Swin Transformer: Hierarchical Vision Trans-
former using Shifted Windows. In IEEE International Conference on Computer
Vision (ICCV), 2021. (Cited on page 29.)

Bibliography 143

[Lo & Vandewalle 2021] Chen-Chou Lo and Patrick Vandewalle. Depth Estimation from
Monocular Images and Sparse radar using Deep Ordinal Regression Network.
In IEEE International Conference on Image Processing (ICIP), 2021. (Cited on
page 53.)

[Lombacher et al. 2017] Jakob Lombacher, Kilian Laudt, Markus Hahn, Jurgen Dickmann
and Christian Wohler. Semantic radar grids. In IEEE Intelligent Vehicles Sympo-
sium (IV), 2017. (Cited on page 50.)

[Long et al. 2015] Jonathan Long, Evan Shelhamer and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2015. (Cited on pages 35, 50, 79, 87, 94,
99, 158 and 165.)

[Long et al. 2021a] Yunfei Long, Daniel Morris, Xiaoming Liu, Marcos Castro, Punar-
jay Chakravarty and Praveen Narayanan. Full-Velocity Radar Returns by Radar-
Camera Fusion. In IEEE International Conference on Computer Vision (ICCV),
2021. (Cited on page 51.)

[Long et al. 2021b] Yunfei Long, Daniel Morris, Xiaoming Liu, Marcos Castro, Punarjay
Chakravarty and Praveen Narayanan. Radar-Camera Pixel Depth Association for
Depth Completion. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. (Cited on page 51.)

[Lowe 2004] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
In International Journal of Computer Vision (IJCV), 2004. (Cited on page 27.)

[Major et al. 2019] Bence Major, Daniel Fontijne, Amin Ansari, Ravi Teja Sukhavasi,
Radhika Gowaikar, Michael Hamilton, Sean Lee, Slawomir Grzechnik and Sundar
Subramanian. Vehicle Detection With Automotive Radar Using Deep Learning on
Range-Azimuth-Doppler Tensors. In IEEE International Conference on Computer
Vision Workshop (ICCVW), 2019. (Cited on pages 47, 81 and 120.)

[Masci et al. 2011] Jonathan Masci, Ueli Meier, Dan Cireşan and Jürgen Schmidhuber.
Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. In In-
ternational Conference on Artificial Neural Networks (ICANN), 2011. (Cited on
page 67.)

[McCulloch & Pitts 1943] Warren S. McCulloch and Walter Pitts. A logical calculus of
the ideas immanent in nervous activity. In Bulletin of Mathematical Biophysics,
1943. (Cited on page 3.)

[Meyer & Kuschk 2019a] M. Meyer and G. Kuschk. Deep Learning Based 3D Object
Detection for Automotive Radar and Camera. In IEEE European Radar Conference
(EuRAD), 2019. (Cited on page 52.)

144 Bibliography

[Meyer & Kuschk 2019b] Michael Meyer and Georg Kuschk. Automotive Radar Dataset
for Deep Learning Based 3D Object Detection. In IEEE European Radar Confer-
ence (EuRAD), 2019. (Cited on page 45.)

[Meyer et al. 2021] Michael Meyer, Georg Kuschk and Sven Tomforde. Graph Convolu-
tional Networks for 3D Object Detection on Radar Data. In IEEE International
Conference on Computer Vision Workshop (ICCVW), 2021. (Cited on page 48.)

[Milletari et al. 2016] Fausto Milletari, Nassir Navab and Seyed-Ahmad Ahmadi. V-Net:
Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation.
In IEEE International Conference on 3D Vision (3DV), 2016. (Cited on page 90.)

[Minsky & Papert 1969] Marvin Minsky and Seymour Papert. Perceptrons: An Introduc-
tion to Computational Geometry. MIT Press, 1969. (Cited on pages 3 and 17.)

[Mohta et al. 2020] Abhishek Mohta, Fang-Chieh Chou, Brian C. Becker, Carlos Vallespi-
Gonzalez and Nemanja Djuric. Investigating the Effect of Sensor Modalities in
Multi-Sensor Detection-Prediction Models. In Conference on Neural Information
Processing Systems (NeurIPS), 2020. (Cited on page 55.)

[Molchanov et al. 2015] Pavlo Molchanov, Shalini Gupta, Kihwan Kim and Kari Pulli.
Multi-sensor system for driver’s hand-gesture recognition. In IEEE International
Conference and Workshops on Automatic Face and Gesture Recognition (FG),
2015. (Cited on page 42.)

[Molchanov 2014] P. Molchanov. Radar Target Classification by Micro-Doppler Contri-
butions. PhD thesis, Tampere University, Finland, 2014. (Cited on page 11.)

[Mostajabi et al. 2020] Mohammadreza Mostajabi, Ching Ming Wang, Darsh Ranjan and
Gilbert Hsyu. High-Resolution Radar Dataset for Semi-Supervised Learning of
Dynamic Objects. In IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshop (CVPRW), 2020. (Cited on page 46.)

[Mottaghi et al. 2014] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho,
Seong-Whan Lee, Sanja Fidler, Raquel Urtasun and Alan Yuille. The Role of
Context for Object Detection and Semantic Segmentation in the Wild. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014. (Cited on
page 34.)

[Nabati & Qi 2020] Ramin Nabati and Hairong Qi. Radar-Camera Sensor Fusion for Joint
Object Detection and Distance Estimation in Autonomous Vehicles. In IEEE Inter-
national Conference on Intelligent Robots and Systems (IROS), 2020. (Cited on
page 52.)

[Nabati & Qi 2021] Ramin Nabati and Hairong Qi. CenterFusion: Center-based Radar
and Camera Fusion for 3D Object Detection. In IEEE Workshop on Applications
of Computer Vision (WACV), 2021. (Cited on page 53.)

Bibliography 145

[Ng et al. 2020] Weichong Ng, Guohua Wang, Siddhartha, Zhiping Lin and Bhaskar Jyoti
Dutta. Range-Doppler Detection in Automotive Radar with Deep Learning. In
IEEE International Joint Conference on Neural Networks (IJCNN), 2020. (Cited
on page 48.)

[Niesen & Unnikrishnan 2020] Urs Niesen and Jayakrishnan Unnikrishnan. Camera-
Radar Fusion for 3-D Depth Reconstruction. In IEEE Intelligent Vehicles Sympo-
sium (IV), 2020. (Cited on page 52.)

[Nobis et al. 2019] Felix Nobis, Maximilian Geisslinger, Markus Weber, Johannes Betz
and Markus Lienkamp. A Deep Learning-based Radar and Camera Sensor Fusion
Architecture for Object Detection. In IEEE Sensor Data Fusion: Trends, Solutions,
Applications (SDF), 2019. (Cited on page 52.)

[Nobis et al. 2021a] Felix Nobis, Felix Fent, Johannes Betz and Markus Lienkamp. Ker-
nel Point Convolution LSTM Networks for Radar Point Cloud Segmentation. In
Applied Sciences, 2021. (Cited on page 51.)

[Nobis et al. 2021b] Felix Nobis, Ehsan Shafiei, Phillip Karle, Johannes Betz and Markus
Lienkamp. Radar Voxel Fusion for 3D Object Detection. In Applied Sciences,
2021. (Cited on page 55.)

[Noh et al. 2015] Hyeonwoo Noh, Seunghoon Hong and Bohyung Han. Learning Decon-
volution Network for Semantic Segmentation. In IEEE International Conference on
Computer Vision (ICCV), 2015. (Cited on page 159.)

[Nowruzi et al. 2020] F. E. Nowruzi, D. Kolhatkar, Prince Kapoor, E. J. Heravi, R. La-
ganiere, Julien Rebut and Waqas Malik. Deep open space segmentation using
automotive radar. In IEEE International Conference on Microwaves for Intelligent
Mobility (ICMIM), 2020. (Cited on pages 50 and 120.)

[Ouaknine et al. 2020] A. Ouaknine, A. Newson, J. Rebut, F. Tupin and P. Pérez. CAR-
RADA Dataset: Camera and Automotive Radar with Range-Angle-Doppler Anno-
tations. In IEEE International Conference on Pattern Recognition (ICPR), 2020.
(Cited on pages 14, 58, 71 and 162.)

[Ouaknine et al. 2021] Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Florence Tupin
and Julien Rebut. Multi-View Radar Semantic Segmentation. In IEEE International
Conference on Computer Vision (ICCV), 2021. (Cited on page 85.)

[Palffy et al. 2020] Andras Palffy, Jiaao Dong, Julian F. P. Kooij and Dariu M. Gavrila.
CNN based Road User Detection using the 3D Radar Cube. In IEEE Robotics and
Automation Letter (RA-L), 2020. (Cited on page 47.)

[Pegoraro & Rossi 2021] Jacopo Pegoraro and Michele Rossi. Real-time People Tracking
and Identification from Sparse mm-Wave Radar Point-clouds. In IEEE Access,
2021. (Cited on page 46.)

146 Bibliography

[Pham & Lefevre 2021] Minh-Tan Pham and Sebastien Lefevre. Very high resolution Air-
borne PolSAR Image Classification using Convolutional Neural Networks. In IEEE
European Conference on Synthetic Aperture (EUSAR), 2021. (Cited on page 43.)

[Pinheiro et al. 2015] Pedro O. Pinheiro, Ronan Collobert and Piotr Dollár. Learning to
Segment Object Candidates. In Conference on Neural Information Processing Sys-
tems (NeurIPS), 2015. (Cited on page 36.)

[Pinheiro et al. 2016] Pedro O. Pinheiro, Tsung-Yi Lin, Ronan Collobert and Piotr Dollàr.
Learning to Refine Object Segments. In European Conference on Computer Vision
(ECCV), 2016. (Cited on page 36.)

[Prophet et al. 2019] Robert Prophet, Gang Li, Christian Sturm and Martin Vossiek. Se-
mantic Segmentation on Automotive Radar Maps. In IEEE Intelligent Vehicles
Symposium (IV), 2019. (Cited on page 50.)

[Prophet et al. 2020] Robert Prophet, Anastasios Deligiannis, Juan-Carlos Fuentes-
Michel, Ingo Weber and Martin Vossiek. Semantic Segmentation on 3D Occupancy
Grids for Automotive Radar. In IEEE Access, 2020. (Cited on page 50.)

[Pérez et al. 2019] Rodrigo Pérez, Falk Schubert, Ralph Rasshofer and Erwin Biebl. Deep
Learning Radar Object Detection and Classification for Urban Automotive Sce-
narios. In Kleinheubach Conference, 2019. (Cited on page 48.)

[Qi et al. 2017a] Charles R. Qi, Hao Su, Mo Kaichun and Leonidas J. Guibas. PointNet:
Deep Learning on Point Sets for 3D Classification and Segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017. (Cited on
pages 5, 39, 46, 109 and 128.)

[Qi et al. 2017b] Charles R. Qi, Li Yi, Hao Su and Leonidas J. Guibas. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space. In Conference on
Neural Information Processing Systems (NeurIPS), 2017. (Cited on pages 39, 48,
50, 109 and 128.)

[Qi et al. 2018] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su and Leonidas J. Guibas.
Frustum PointNets for 3D Object Detection from RGB-D Data. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2018. (Cited on
pages 48 and 55.)

[Qian et al. 2021] Kun Qian, Shilin Zhu, Xinyu Zhang and Li Erran Li. Robust Multimodal
Vehicle Detection in Foggy Weather Using Complementary Lidar and Radar Sig-
nals. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2021. (Cited on page 54.)

[Rahnemoonfar et al. 2020] Maryam Rahnemoonfar, Masoud Yari and John Paden. Radar
Sensor Simulation with Generative Adversarial Network. In IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 2020. (Cited on page 43.)

Bibliography 147

[Rebut et al. 2022] Julien Rebut, Arthur Ouaknine, Waqas Malik and Patrick Pérez. Raw
High-Definition Radar for Multi-Task Learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. (Cited on page 111.)

[Redmon & Farhadi 2017] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster,
Stronger. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. (Cited on pages 157 and 158.)

[Redmon & Farhadi 2018] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental
Improvement. In ArXiv, 2018. (Cited on page 53.)

[Redmon et al. 2016] Joseph Redmon, Santosh Divvala, Ross Girshick and Ali Farhadi.
You Only Look Once: Unified, Real-Time Object Detection. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016. (Cited on page 32.)

[Ren et al. 2015] Shaoqing Ren, Kaiming He, Ross Girshick and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. In Con-
ference on Neural Information Processing Systems (NeurIPS), 2015. (Cited on
pages 31 and 36.)

[Robbins & Monro 1951] Herbert Robbins and Sutton Monro. A Stochastic Approxima-
tion Method. In The Annals of Mathematical Statistics, 1951. (Cited on page 19.)

[Rohling 1983] Hermann Rohling. Radar CFAR Thresholding in Clutter and Multiple
Target Situations. In Transactions on Aerospace and Electronic Systems, 1983.
(Cited on pages 14, 74 and 96.)

[Ronneberger et al. 2015] Olaf Ronneberger, Philipp Fischer and Thomas Brox. U-Net:
Convolutional Networks for Biomedical Image Segmentation. In International Con-
ference on Medical Image Computing and Computer Assisted Intervention (MIC-
CAI), 2015. (Cited on pages 35, 36, 50, 67, 69, 87, 93, 94, 98, 99 and 165.)

[Rosenblatt 1958] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. In Psychological Review, 1958. (Cited on
pages 3 and 16.)

[Russakovsky et al. 2015] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg and Li Fei-Fei. ImageNet Large Scale Vi-
sual Recognition Challenge. In International Journal of Computer Vision (IJCV),
2015. (Cited on page 29.)

[Scheiner et al. 2020] Nicolas Scheiner, Florian Kraus, Fangyin Wei, Buu Phan, Fahim
Mannan, Nils Appenrodt, Werner Ritter, Jürgen Dickmann, Klaus Dietmayer,
Bernhard Sick and Felix Heide. Seeing Around Street Corners: Non-Line-of-Sight
Detection and Tracking In-the-Wild Using Doppler Radar. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020. (Cited on page 48.)

148 Bibliography

[Scherer et al. 2021] Moritz Scherer, Michele Magno, Jonas Erb, Philipp Mayer, Manuel
Eggimann and Luca Benini. TinyRadarNN: Combining Spatial and Temporal Con-
volutional Neural Networks for Embedded Gesture Recognition with Short Range
Radars. In IEEE Internet of Things Journal (IoT-J), 2021. (Cited on page 42.)

[Schumann et al. 2018] Ole Schumann, Markus Hahn, Jurgen Dickmann and Christian
Wohler. Semantic Segmentation on Radar Point Clouds. In IEEE International
Conference on Information Fusion (FUSION), 2018. (Cited on page 50.)

[Schumann et al. 2021] Ole Schumann, Markus Hahn, Nicolas Scheiner, Fabio
Weishaupt, Julius F. Tilly, Jürgen Dickmann and Christian Wöhler. RadarScenes:
A Real-World Radar Point Cloud Data Set for Automotive Applications. In ArXiv,
2021. (Cited on pages 46 and 51.)

[Shah et al. 2020] Meet Shah, Zhiling Huang, Ankit Laddha, Matthew Langford, Blake
Barber, Sidney Zhang, Carlos Vallespi-Gonzalez and Raquel Urtasun. LiRaNet:
End-to-End Trajectory Prediction using Spatio-Temporal Radar Fusion. In Con-
ference on Robot Learning (CoRL), 2020. (Cited on pages 54 and 55.)

[Sheeny et al. 2020] Marcel Sheeny, Andrew Wallace and Sen Wang. 300 GHz Radar
Object Recognition based on Deep Neural Networks and Transfer Learning. In
IET Radar, Sonar and Navigation, 2020. (Cited on page 47.)

[Sheeny et al. 2021] Marcel Sheeny, Emanuele De Pellegrin, Saptarshi Mukherjee,
Alireza Ahrabian, Sen Wang and Andrew Wallace. RADIATE: A Radar Dataset
for Automotive Perception. In IEEE International Conference on Robotics and Au-
tomation (ICRA), 2021. (Cited on page 45.)

[Shuai et al. 2021] Xian Shuai, Yulin Shen, Yi Tang, Shuyao Shi, Luping Ji and Guoliang
Xing. milliEye: A Lightweight mmWave Radar and Camera Fusion System for
Robust Object Detection. In IEEE International Conference on Internet of Things
Design and Implementation (IoTDI), 2021. (Cited on page 53.)

[Silver et al. 2016] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent
Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. In Nature, 2016. (Cited on page 4.)

[Simonyan & Zisserman 2015] Karen Simonyan and Andrew Zisserman. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. In International Confer-
ence on Learning Representations (ICLR), 2015. (Cited on pages 27, 66 and 93.)

[Sless et al. 2019] Liat Sless, Gilad Cohen, Bat El Shlomo and Shaul Oron. Road Scene
Understanding by Occupancy Grid Learning from Sparse Radar Clusters using
Semantic Segmentation. In IEEE International Conference on Computer Vision
Workshop (ICCVW), 2019. (Cited on page 50.)

Bibliography 149

[Srivastava et al. 2014] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever and Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neu-
ral Networks from Overfitting. In Journal of Machine Learning Research, 2014.
(Cited on page 21.)

[Stephan et al. 2021] Michael Stephan, Avik Santra and Georg Fischer. Human Target
Detection and Localization with Radars Using Deep Learning. In Deep Learning
Applications, 2021. (Cited on page 48.)

[Stroescu et al. 2020] Ana Stroescu, Liam Daniel, Dominic Phippen, Mikhail Cherniakov
and Marina Gashinova. Object Detection on Radar Imagery for Autonomous Driv-
ing Using Deep Neural Networks. In IEEE European Radar Conference (EuRAD),
2020. (Cited on page 47.)

[Sun et al. 2017] Chen Sun, Abhinav Shrivastava, Saurabh Singh and Abhinav Gupta. Re-
visiting Unreasonable Effectiveness of Data in Deep Learning Era. In IEEE In-
ternational Conference on Computer Vision (ICCV), 2017. (Cited on pages 37
and 38.)

[Sun et al. 2019] Yuliang Sun, Tai Fei, Shangyin Gao and Nils Pohl. Automatic Radar-
based Gesture Detection and Classification via a Region-based Deep Convolu-
tional Neural Network. In IEEE International Conference on Acoustics, Speech, &
Signal Processing (ICASSP), 2019. (Cited on page 42.)

[Sun et al. 2020] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vi-
jaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine,
Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott
Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens,
Zhifeng Chen and Dragomir Anguelov. Scalability in Perception for Autonomous
Driving: Waymo Open Dataset. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020. (Cited on page 5.)

[Sun et al. 2021] Pengliang Sun, Xuetong Niu, Pengfei Sun and Kele Xu. Squeeze-and-
Excitation network-Based Radar Object Detection With Weighted Location Fusion.
In ACM International Conference on Multimedia Retrieval (ICMR), 2021. (Cited
on page 47.)

[Svenningsson et al. 2021] Peter Svenningsson, Francesco Fioranelli and Alexander
Yarovoy. Radar-PointGNN: Graph Based Object Recognition for Unstructured
Radar Point-cloud Data. In IEEE Radar Conference (RadarConf), 2021. (Cited on
page 48.)

[Szegedy et al. 2015] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke and Andrew Rabi-
novich. Going deeper with convolutions. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015. (Cited on pages 28 and 32.)

150 Bibliography

[Szegedy et al. 2016] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna. Re-
thinking the Inception Architecture for Computer Vision. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. (Cited on page 28.)

[Szegedy et al. 2017] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke and Alexan-
der A. Alemi. Inception-v4, Inception-ResNet and the Impact of Residual Connec-
tions on Learning. In AAAI Conference on Artificial Intelligence, 2017. (Cited on
page 28.)

[Taigman et al. 2014] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato and Lior Wolf.
DeepFace: Closing the Gap to Human-Level Performance in Face Verification.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
(Cited on page 4.)

[Touvron et al. 2021] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa,
Alexandre Sablayrolles and Hervé Jégou. Training data-efficient image transform-
ers & distillation through attention. In International Conference on Machine Learn-
ing (ICML), 2021. (Cited on page 29.)

[Truong & Yanushkevich 2019] Thomas Truong and Svetlana Yanushkevich. Generative
Adversarial Network for Radar Signal Synthesis. In IEEE International Joint Con-
ference on Neural Networks (IJCNN), 2019. (Cited on page 43.)

[Uijlings et al. 2013] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers and A.W.M.
Smeulders. Selective Search for Object Recognition. In International Journal of
Computer Vision (IJCV), 2013. (Cited on page 30.)

[Wallace et al. 2021] Andrew M. Wallace, Saptarshi Mukherjee, Bemsibom Toh and
Alireza Ahrabian. Combining automotive radar and LiDAR for surface detection in
adverse conditions. In IET Radar, Sonar & Navigation, 2021. (Cited on page 54.)

[Wang et al. 2016] Saiwen Wang, Jie Song, Jaime Lien, Ivan Poupyrev and Otmar
Hilliges. Interacting with Soli: Exploring Fine-Grained Dynamic Gesture Recog-
nition in the Radio-Frequency Spectrum. In ACM User Interface Software and
Technology (UIST), 2016. (Cited on page 42.)

[Wang et al. 2019] Yong Wang, Xiuqian Jia, Mu Zhou, Xiaolong Yang and Zengshan Tian.
Rammar: RAM Assisted Mask R-CNN for FMCW Sensor Based HGD System.
In IEEE International Conference on Communications (ICC), 2019. (Cited on
page 42.)

[Wang et al. 2020a] Leichen Wang, Tianbai Chen, Carsten Anklam and Bastian Gold-
luecke. High Dimensional Frustum PointNet for 3D Object Detection from Cam-
era, LiDAR, and Radar. In IEEE Intelligent Vehicles Symposium (IV), 2020.
(Cited on page 55.)

[Wang et al. 2020b] Yuchen Wang, Mingze Xu, John Paden, Lora Koenig, Geoffrey Fox
and David Crandall. Deep Tiered Image Segmentation forDetecting Internal Ice

Bibliography 151

Layers in Radar Imagery. In IEEE International Conference on Multimedia &
Expo (ICME), 2020. (Cited on page 43.)

[Wang et al. 2021a] Yizhou Wang, Zhongyu Jiang, Yudong Li, Jenq-Neng Hwang, Guan-
bin Xing and Hui Liu. RODNet: A Real-Time Radar Object Detection Network
Cross-Supervised by Camera-Radar Fused Object 3D Localization. In Journal of
Selected Topics in Signal Processing, 2021. (Cited on page 47.)

[Wang et al. 2021b] Yizhou Wang, Gaoang Wang, Hung-Min Hsu, Hui Liu and Jenq-Neng
Hwang. Rethinking of Radar’s Role: A Camera-Radar Dataset and Systematic
Annotator via Coordinate Alignment. In IEEE Conference on Computer Vision
and Pattern Recognition Workshop (CVPRW), 2021. (Cited on pages 44 and 47.)

[Wang et al. 2021c] Zeyu Wang, Chenglin Yao, Jianfeng Ren and Xudong Jiang. Hu-
man Activity Recognition Using 3D Orthogonally-projected EfficientNet on Radar
Time-Range-Doppler Signature. In ArXiv, 2021. (Cited on page 42.)

[Weston et al. 2019] Rob Weston, Sarah Cen, Paul Newman and Ingmar Posner. Probably
Unknown: Deep Inverse Sensor Modelling Radar. In IEEE International Confer-
ence on Robotics and Automation (ICRA), 2019. (Cited on page 54.)

[Weston et al. 2021] Rob Weston, Oiwi Parker Jones and Ingmar Posner. There and Back
Again: Learning to Simulate Radar Data for Real-World Applications. In IEEE
International Conference on Robotics and Automation (ICRA), 2021. (Cited on
page 54.)

[Xie et al. 2017] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu and Kaiming He.
Aggregated Residual Transformations for Deep Neural Networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2017. (Cited on
pages 33, 36 and 160.)

[Xu et al. 2021] Baowei Xu, Xinyu Zhang, Li Wang, Xiaomei Hu, Zhiwei Li, Shuyue Pan,
Jun Li and Yongqiang Deng. RPFA-Net: a 4D RaDAR Pillar Feature Attention
Network for 3D Object Detection. In IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2021. (Cited on page 49.)

[Yadav et al. 2020] Ritu Yadav, Axel Vierling and Karsten Berns. Radar+RGB Attentive
Fusion for Robust Object Detection in Autonomous Vehicles. In IEEE International
Conference on Image Processing (ICIP), 2020. (Cited on page 52.)

[Yang et al. 2018] Bin Yang, Wenjie Luo and Raquel Urtasun. PIXOR: Real-time 3D Ob-
ject Detection from Point Clouds. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. (Cited on pages 40, 117, 118, 119 and 120.)

[Yang et al. 2020] Bin Yang, Runsheng Guo, Ming Liang, Sergio Casas and Raquel Urta-
sun. RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects. In
European Conference on Computer Vision (ECCV), 2020. (Cited on page 54.)

152 Bibliography

[Yu & Koltun 2016] Fisher Yu and Vladlen Koltun. Multi-Scale Context Aggregation by
Dilated Convolutions. In International Conference on Learning Representations
(ICLR), 2016. (Cited on page 159.)

[Yu et al. 2020] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao,
Vashisht Madhavan and Trevor Darrell. BDD100K: A Diverse Driving Video
Database with Scalable Annotation Tooling. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. (Cited on page 5.)

[Zeiler & Fergus 2014] Matthew D. Zeiler and Rob Fergus. Visualizing and Under-
standing Convolutional Networks. In European Conference on Computer Vision
(ECCV), 2014. (Cited on page 31.)

[Zhang et al. 2017a] Hang Zhang, Jia Xue and Kristin Dana. Deep TEN: Texture Encod-
ing Network. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. (Cited on page 160.)

[Zhang et al. 2017b] Zhimian Zhang, Haipeng Wang, Feng Xu and Ya-Qiu Jin. Complex-
Valued Convolutional Neural Network and Its Application in Polarimetric SAR Im-
age Classification. In Transactions on Geoscience and Remote Sensing, 2017.
(Cited on page 43.)

[Zhang et al. 2018a] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiao-
gang Wang, Ambrish Tyagi and Amit Agrawal. Context Encoding for Semantic
Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. (Cited on page 160.)

[Zhang et al. 2018b] Zhenyuan Zhang, Zengshan Tian and Mu Zhou. Latern: Dynamic
Continuous Hand Gesture Recognition Using FMCW Radar Sensor. In Sensors
Journal, 2018. (Cited on page 42.)

[Zhang et al. 2019] Zhenyuan Zhang, Zengshan Tian, Ying Zhang, Mu Zhou and Bang
Wang. u-DeepHand: FMCW Radar-Based Unsupervised Hand Gesture Feature
Learning Using Deep Convolutional Auto-Encoder Network. In Sensors Journal,
2019. (Cited on page 42.)

[Zhang et al. 2020] Lamei Zhang, Siyu Zhang, Hongwei Dong and Da Lu. Polsar Image
Classification via Complex-Valued Multi-Scale Convolutional Neural Network. In
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2020.
(Cited on page 43.)

[Zhang et al. 2021a] Ao Zhang, Farzan Erlik Nowruzi and Robert Laganiere. RADDet:
Range-Azimuth-Doppler based Radar Object Detection for Dynamic Road Users.
In Computer Vision and Robotics (CVR), 2021. (Cited on pages 44, 47, 83, 96, 97
and 125.)

[Zhang et al. 2021b] Jingwei Zhang, Ming Zhang, Zicheng Fang, Yulong Wang, Xian
Zhao and Shiliang Pu. RVDet: Feature-level Fusion of Radar and Camera for

Bibliography 153

Object Detection. In IEEE International Conference on Intelligent Transportation
Systems (ITSC), 2021. (Cited on page 52.)

[Zhao et al. 2017] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang and Ji-
aya Jia. Pyramid Scene Parsing Network. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. (Cited on pages 37 and 159.)

[Zheng et al. 2021] Zangwei Zheng, Xiangyu Yue, Kurt Keutzer and Alberto Sangio-
vanni Vincentelli. Scene-aware Learning Network for Radar Object Detection.
In ACM International Conference on Multimedia Retrieval (ICMR), 2021. (Cited
on page 48.)

[Zhou & Tuzel 2018] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning for
Point Cloud Based 3D Object Detection. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. (Cited on page 55.)

[Zhu et al. 2017] Jun-Yan Zhu, Taesung Park, Phillip Isola and Alexei A. Efros. Un-
paired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.
In IEEE International Conference on Computer Vision (ICCV), 2017. (Cited on
pages 43 and 52.)

[Zhu et al. 2020] JianPing Zhu, HaiQuan Chen and WenBin Ye. Classification of Human
Activities Based on Radar Signals using 1D-CNN and LSTM. In IEEE International
Symposium on Circuits and Systems (ISCAS), 2020. (Cited on page 42.)

Appendices

APPENDIX A

Background

A.1 Deep learning

A.1.1 Object detection

This section details deep learning methods and architectures for object detection in natural
images. It provides additional details to those presented in Section 2.6.2.

Region-based Fully Convolutional Network (R-FCN). Fast and Faster R-CNN re-
quires multiple sub-networks to process the region proposals produced by the RPN. The
R-FCN proposed by [Dai et al. 2016] uses a single network, shared on the entire im-
age, processing the region proposals. This module is fully convolutional except the last
fully connected layer used for classification. The architecture starts with a ResNet-101
[He et al. 2016] processing the input and generating feature maps corresponding to the
number of classes. These feature maps are called position-sensitive score maps because
they take into account the spatial localisation of a particular object. There are s×s×(K+1)

score maps forming a “score bank”, where s is the size of the score map and K the number
of classes. The idea of these maps is to create patches recognizing a single part of an ob-
ject, each patch being specialized in a category. A RPN generates RoI in parallel. The RoI
extracted in the feature maps are placed into bins which are compared with the score bank.
A vote is performed, if enough bins are activated (regarding the corresponding score), the
patch localizes and classifies the object. The best R-FCN have reached mAP scores of
83.6% on the 2007 PASCAL VOC challenge while bein trained using the 2007, 2012 PAS-
CAL VOC datasets and the COCO dataset. On 2015 COCO challenge, they performed
a mAP of 53.2% for an IoU = 0.5 and a score of 31.5% for the official mAP metric. The
authors noticed that the R-FCN is 2.5 to 20 times faster than the Faster R-CNN counterpart.

YOLO extensions. In their work, [Redmon & Farhadi 2017] improved the YOLO pre-
sented in a previous paragraph in YOLOv2 and proposed a new model, YOLO9000, capa-
ble of detecting more than 9000 categories while running in almost real time (around 10
FPS).

The YOLOv2 focuses on improving the accuracy while still being a fast detector. Batch
normalization is added to prevent over-fitting without using dropout. The model is also
able to process higher resolution images to potentially detect smaller objects: 608×608

instead of 448×448 in the initial version. The final fully connected layer of the YOLO
model predicting the bounding box coordinates has been removed to use anchor boxes
in the same way as Faster R-CNN. The input image is divided into a grid of cells, each

158 Appendix A. Background

one containing 5 anchor boxes. YOLOv2 uses 19×19×5 = 1805 anchor boxes by image
instead of 98 boxes for the YOLO model. YOLOv2 predicts the correction of each anchor
box relative to the location of the grid cell (ranging between 0 and 1) and selects the boxes
according to their confidence as the SSD model. The dimensions of the anchor boxes
have been fixed using a k-means clustering on the training set of bounding boxes. It uses a
ResNet architecture to stack high and low resolution feature maps to detect smaller objects.
Their proposed backbone called Darknet-19 is composed of 19 convolutional layers with
3×3 and 1×1 kernels, followed by max-pooling layers to reduce the output dimension. A
final 1×1 convolutional layer outputs 5 boxes per cell of the grid with 5 coordinates and
a probability for each class (20 in the case of the PASCAL VOC dataset). The YOLOv2
model trained with the 2007 and 2012 PASCAL VOC datasets obtained a 78.6% mAP
score on the 2007 PASCAL VOC challenge at 40 FPS during inference. The model trained
with the 2015 COCO dataset got mAP scores on the corresponding challenge of 44.0% for
an IoU threshold of 0.5, 19.2% for an IoU threshold of 0.75 and 21.6% for the official mAP
metric.

To train their second proposed architecture, the authors have combined the ImageNet
dataset with the COCO dataset. The ImageNet dataset for classification contains 1000
categories and the 2015 COCO dataset only 80 categories. The ImageNet classes are based
on the WordNet1 lexicon developed by the Princeton University which is composed of
more than 20,000 words. [Redmon & Farhadi 2017] detail a method to construct a tree
version of the WordNet. The model predicting on an image will use a softmax applied
on a group of labels with the same hyponym2. The final probability associated to a label
is computed with posterior probabilities in the tree. When the authors extend the concept
to the entire WordNet lexicon excluding under-represented categories, they obtain more
than 9,000 categories. The ImageNet and COCO dataset combination is used to train a
YOLOv2 architecture with 3 prior convolution layers instead of 5 to limit the output size.
This model called YOLO9000 is theoretically able to learn categories of the presented
lexicon. It is evaluated on the ImageNet dataset for the detection task with around 200
labels. Only 44 labels are shared between the training and the testing dataset so the results
are not significant. It gets a 19.7% mAP score overall the test dataset.

A.1.2 Segmentation

This section details deep learning methods and architectures for semantic segmentation of
natural images. It provides additional details to those presented in Section 2.6.3.

ParseNet. In their work, [Liu et al. 2015] present improvements on the FCN method
[Long et al. 2015]. They claimed that the FCN model looses the global context of the
image in its deep layers by specializing the generated feature maps. The ParseNet is an
end-to-end convolutional network with “contexture” modules. This module takes feature
maps as input and processes them with two pathways. The first one aggregates the feature

1https://wordnet.princeton.edu/
2An hyponym is a word of more specific meaning than a general or superordinate term applicable to.

Source: Oxford Languages.

https://wordnet.princeton.edu/

A.1. Deep learning 159

maps with a global pooling to obtain global features normalised with an L2-norm which
are finally up-pooled (replicated) to recover the original dimensions. The second pathway
simply normalises the input feature maps with a L2-norm. The outputs of both pathways
are stacked and transmitted to the next layer. The normalization is helpful to scale the con-
catenated feature maps values and it leads to better performances. The ParseNet is a FCN
with contexture modules instead of simple convolutional layers. It obtained a 69.8% mIoU
score on the 2012 PASCAL VOC segmentation challenge and a 40.4% mIoU score on the
PASCAL-Context challenge.

Convolution and deconvolutional networks. [Noh et al. 2015] proposed an end-to-end
architecture composed of two linked parts. The first one is a convolutional network with a
VGG16 architecture with only two fully connected layers. It takes as input a proposal, e.g.
a bounding box generated by an object detection model. The proposal is processed and
transformed by the convolutional network to generate a vector of features. The deconvolu-
tional network takes the vector of features as input and aims to classify pixel-wise the entire
image. The deconvolutional network is composed of successive layers of un-pooling and
deconvolutions. The un-pooling targets the location of the maximum value in the mirrored
feature map reduced by the max-pooling in the first convolutional network. It expands the
feature map with sparse values, the value taken as input is placed at the recorded position
while the others are filled with zeros. The deconvolution takes a single value as input and
generates a k×k output depending of the kernel size. It aims in learning the expansion of
the feature maps while recovering the dimension of the input and keeping the information
dense. The authors analyzed deconvolution feature maps and noticed that low-level ones
are specific to the shape while the higher-level ones help to classify the proposal. Finally,
when all the proposals of an image are processed by the entire network, the maps are con-
catenated to obtain the fully segmented image. This network obtained a 72.5% mIoU on
the 2012 PASCAL VOC segmentation challenge.

Pyramid scene parsing network (PSPNet). [Zhao et al. 2017] developed the PSPNet
to better learn the global context representation of a scene. Patterns are extracted from
the input image using a ResNet [He et al. 2016] as feature extractor with a dilated network
strategy3. The feature maps are used as input of a pyramid pooling module to distinguish
patterns with different scales. This pooling layer consists in four parallel convolutions with
different kernel sizes. Their respective outputs are processed by 1×1 convolutions to re-
duce the number of feature maps and up-sampled using bilinear interpolation to match their
dimensions. Each pyramid level analyses sub-regions of the image at different locations.
The outputs of the pyramid levels are concatenated to the initial feature maps. The out-
put thus contains the local and the global context information. They are finally processed
by a convolutional layer to generate the pixel-wise predictions. The best PSPNet with a
pre-trained ResNet (using the COCO dataset) reached a 85.4% mIoU score on the 2012
PASCAL VOC semantic segmentation challenge.

3The dilated convolutional layer has been proposed by [Yu & Koltun 2016]. It consists in a convolutional
layer with an expanded kernel (the neurons of the kernel are no more side-by-side). A dilation rate fixes the
gap between two neurons in term of pixel. More details are provided in the DeepLab paragraph.

160 Appendix A. Background

Path aggregation network (PANet). In their work, [Liu et al. 2018] proposed the
PANet, an improvement of the information propagation in the Mask R-CNN and FPN
frameworks. The feature extractor of the network uses a FPN architecture with an addi-
tional augmented bottom-up pathway of convolutions improving the propagation of low-
layer features. Each stage of this third pathway takes as input the feature maps of the
previous stage and processes them with a 3×3 convolutional layer. The output is summed
with the same stage feature maps of the top-down pathway using lateral connections. These
maps are used as input to the next stage.

The feature maps of the augmented bottom-up pathway are pooled with a RoIAlign
layer to extract proposals from all level features. An adaptive feature pooling layer pro-
cesses the maps of each stage with a fully connected layer and concatenate all the outputs.
The output of the adaptive feature pooling layer is taken as input of three branches simi-
larly to the Mask R-CNN. The two first branches uses a fully connected layer to generate
the predictions of the regression for the location and the classification. The third branch
processes the RoI with a FCN to predict a binary pixel-wise mask for the detected object.
An additional path processes the output of a convolutional layer of the FCN with a fully
connected layer improving the location of the predicted pixels. Finally the output of the
parallel path is reshaped and concatenated to the output of the FCN generating the binary
mask.

The PANet achieved 42.0% AP score on the 2016 COCO segmentation challenge us-
ing a ResNeXt as feature extractor. They also performed the 2017 COCO segmentation
challenge with an 46.7% AP score using a ensemble of seven feature extractors: ResNet
[He et al. 2016], ResNeXt [Xie et al. 2017] and SENet [Hu et al. 2018].

Context encoding network (EncNet). [Zhang et al. 2018a] created the EncNet archi-
tecture capturing global information in an image to improve semantic segmentation. The
model starts by using a ResNet [He et al. 2016] backbone followed by a “context encoding”
module inspired from the encoding layer of [Zhang et al. 2017a]. It learns visual centers
and smoothing factors creating an embedding of contextual information while specializing
feature maps by class. The final layer of the module learns scaling factors of contextual
information by class with an attention layer (fully connected layer). Theses factors are
applied to the output feature maps of the backbone network via a skip connection. In par-
allel, an additional fully connected layer classifies the global context of the module with a
softmax activation. This branch is trained with a Binary Cross-Entropy (BCE) loss, named
semantic encoding loss (SE-Loss), regularizing the training of the module with the entire
context (at the contrary to pixel-wise loss). The outputs of the context encoding module
are reshaped and processed by a dilated convolution while minimizing two SE-losses and
a final pixel-wise loss. The best EncNet reached 52.6% mIoU on the PASCAL-Context
challenge. It also achieved a 85.9% mIoU score on the 2012 PASCAL VOC segmentation
challenge.

APPENDIX B

RADAR scene understanding

B.1 Multi-view RADAR semantic segmentation

B.1.1 RAD tensor visualisation

An illustration of the RAD tensor is proposed in Figure B.1. Each slice of 2D views
corresponds to a discretized bin of the third axis. In Figure B.1(b) for instance, the 256

range-Doppler slices correspond to the view of each discretized value of the angle axis.
One can observe redundant signal information and a significant level of noise for each
group of 2D-view slices.

Figure B.1: Visualisation of the Range-Angle-Doppler (RAD) tensor. (a) Camera image
of the scene. The corresponding RAD tensor is visualised by slices of (b) range-Doppler,
(c) range-angle or (d) angle-Doppler views w.r.t. their discretized third axis.

B.1.2 Detailed multi-view architectures

The architecture details of the proposed multi-view network (MV-Net) and temporal multi-
view network with ASPP modules (TMVA-Net) are respectively provided in Tables B.1 and
B.2. For each layer, the parameters of the operations used are specified in the following
manner:

• n-dim convolution: ConvnD (input_channels, output_channels, kernel_size, stride,
padding, dilation_rate);

• n-dim up-convolution: ConvTransposenD (input_chan-
nels, output_channels, kernel_size, stride, padding, dilation_rate);

• maximum pooling: MaxPool2D (kernel_size, stride);

162 Appendix B. RADAR scene understanding

• atrous spatial pyramid pooling: ASPP (input_channels, output_channels);

• n-D batch normalisation: BNnD (input_channels);

• Leaky ReLU activation: LeakyReLU (negative_slope);

Where n∈{1, 2, 3} is the dimension of the associated operation.
The ASPP module [Chen et al. 2018a] has the same architecture as the one introduced

by Kaul et al. [Kaul et al. 2020] for range-angle semantic segmentation. We note that the
‘output_channels’ parameter for the ASPP module corresponds to the number of output
channels for each parallel convolution. We also note that the ‘stride’ parameter can be
either a scalar or a tuple of scalars depending on the axis on which it is applied.

B.1.3 Pre-processing and training procedures

The experiments in the main paper have been conducted using the parameters detailed in
Table B.3. An exponential decay with γ = 0.9 has been applied to each learning rate with
an epoch step specific to each model (see Table B.3). The competing methods have been
trained using the Cross Entropy (CE) loss, except for the RSS-Net, which is trained with a
weighted Cross Entropy (wCE) using the formulation in [Kaul et al. 2020]. Our methods
have been trained with the proposed combination of losses using the following parameters
set up empirically: λwCE = 1, λSDice = 10 and λCoL = 5.

The architectures with which we compare our work have been designed to process
inputs of size 256 × 256. Since the size of the range-Doppler view is 256 × 64 in the
CARRADA dataset [Ouaknine et al. 2020], it is resized in the Doppler dimension to train
these competing models. On the other hand, the proposed architectures are composed
of down-sampling layers adapted to the size of the Doppler dimension, thus they do not
require this pre-processing step. The range-angle view has a size of 256 × 256 and does
not require a resizing in both cases. For all methods, we used vertical and horizontal flip as
data augmentation to reduce over-fitting.

Each view is normalised between 0 and 1 using local batch statistics for the competing
methods. Our normalisation strategy consists in using the global statistics of the entire
CARRADA dataset to normalise the input views.

B.1.4 Quantitative results

The proposed TMVA-Net architecture provides the best trade-off between performance
and number of parameters for both range-Doppler and range-angle semantic segmentation
tasks, as illustrated in Figure B.2 with mIoU metric.

B.1.5 Variability of the quantitative results by method

This section details a study of performance variability of the proposed and competing meth-
ods. Each model has been trained four times using the CARRADA-Train and CARRADA-
Val datasets following the procedures explained in Section 5.1.3. Three of the four models
have been trained with different weight initialisation. The training process of the fourth

B.1. Multi-view RADAR semantic segmentation 163

Layer Inputs Output resolution
(C ×H ×W) Operations

RD Encoder

rd_layer1 RD view 128× 256× 64
Conv2D(3, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

rd_layer2 rd_layer1 128× 128× 64 MaxPool2D(2, (2, 1))

rd_layer3 rd_layer2 128× 128× 64
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

rd_layer4 rd_layer3 128× 64× 64 MaxPool2D(2, (2, 1))

rd_layer5 rd_layer4 128× 64× 64 Conv1D(128, 128, 1× 1, 1, 0, 1)

RA Encoder

ra_layer1 RA view 128× 256× 256
Conv2D(3, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ra_layer2 ra_layer1 128× 128× 128 MaxPool2D(2, 2)

ra_layer3 ra_layer2 128× 128× 128
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ra_layer4 ra_layer3 128× 64× 64 MaxPool2D(2, 2)

ra_layer5 ra_layer4 128× 64× 64 Conv1D(128, 128, 1× 1, 1, 0, 1)

Latent space layer6 rd_layer5, ra_layer5 256× 64× 64 concatenate(rd_layer5, ra_layer5)

RD Decoder

rd_layer7 layer6 128× 64× 64 Conv1D(256, 128, 1× 1, 1, 0, 1)

rd_layer8 rd_layer7 128× 128× 64 ConvTranspose2D(128, 128, 2× 1, (2, 1), 1, 1)

rd_layer9 rd_layer8 128× 128× 64
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

rd_layer10 rd_layer9 128× 256× 64 ConvTranspose2D(128, 128, 2× 1, (2, 1), 1, 1)

rd_layer11 rd_layer10 128× 256× 64
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

rd_layer12 rd_layer11 K × 256× 64 Conv1D(128,K, 1× 1, 1, 0, 1)

RA Decoder

ra_layer7 layer6 128× 64× 64 Conv1D(256, 128, 1× 1, 1, 0, 1)

ra_layer8 ra_layer7 128× 128× 128 ConvTranspose2D(128, 128, 2× 2, 2, 1, 1)

ra_layer9 ra_layer8 128× 128× 128
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ra_layer10 ra_layer9 128× 256× 256 ConvTranspose2D(128, 128, 2× 2, 2, 1, 1)

ra_layer11 ra_layer10 128× 256× 256
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ra_layer12 ra_layer11 K × 256× 256 Conv1D(128,K, 1× 1, 1, 0, 1)

Table B.1: Multi-view network (MV-Net) architecture. This table lists all the layers
contained in the model taking as input multi-view RADAR representations (RD and RA
views) to predict segmentation maps for each multi-view output. Details about the param-
eters of each operation are provided in Section B.1.2. Let K be the number of classes. The
number of input channels in the first layer corresponds to the consecutive frames of each
view stacked in temporal dimension, here q = 2 and thus the number of channels is 3.

164 Appendix B. RADAR scene understanding

Layer Inputs Output resolution
(C ×H ×W) Operations

RD Encoder

rd_layer1 RD view 128× 256× 64

Conv3D(1, 128, 3× 3× 3, 1, (0, 1, 1), 1)
+ BN3D(128) + LeakyReLU(0.01)
Conv3D(128, 128, 3× 3× 3, 1, (0, 1, 1), 1)
+ BN3D(128) + LeakyReLU(0.01)

rd_layer2 rd_layer1 128× 128× 64 MaxPool2D(2, (2, 1))

rd_layer3 rd_layer2 128× 128× 64

Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)

rd_layer4 rd_layer3 128× 64× 64 MaxPool2D(2, (2, 1))
rd_layer5 rd_layer4 128× 64× 64 Conv1D(128, 128, 1× 1, 1, 0, 1)
rd_layer6 rd_layer5 640× 64× 64 ASPP(128, 128)
rd_layer7 rd_layer6 128× 64× 64 Conv1D(640, 128, 1× 1, 1, 0, 1)

AD Encoder

ad_layer1 AD view 128× 256× 64

Conv3D(1, 128, 3× 3× 3, 1, (0, 1, 1), 1)
+ BN3D(128) + LeakyReLU(0.01)
Conv3D(128, 128, 3× 3× 3, 1, (0, 1, 1), 1)
+ BN3D(128) + LeakyReLU(0.01)

ad_layer2 ad_layer1 128× 128× 64 MaxPool2D(2, (2, 1))

ad_layer3 ad_layer2 128× 128× 64

Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)

ad_layer4 ad_layer3 128× 64× 64 MaxPool2D(2, (2, 1))
ad_layer5 ad_layer4 128× 64× 64 Conv1D(128, 128, 1× 1, 1, 0, 1)
ad_layer6 ad_layer5 640× 64× 64 ASPP(128, 128)
ad_layer7 ad_layer6 128× 64× 64 Conv1D(640, 128, 1× 1, 1, 0, 1)

RA Encoder

ra_layer1 RA view 128× 256× 256

Conv3D(1, 128, 3× 3× 3, 1, (0, 1, 1), 1)
+ BN3D(128) + LeakyReLU(0.01)
Conv3D(128, 128, 3× 3× 3, 1, (0, 1, 1), 1)
+ BN3D(128) + LeakyReLU(0.01)

ra_layer2 ra_layer1 128× 128× 128 MaxPool2D(2, 2)

ra_layer3 ra_layer2 128× 128× 128

Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)

ra_layer4 ra_layer3 128× 64× 64 MaxPool2D(2, 2)
ra_layer5 ra_layer4 128× 64× 64 Conv1D(128, 128, 1× 1, 1, 0, 1)
ra_layer6 ra_layer5 640× 64× 64 ASPP(128, 128)
ra_layer7 ra_layer6 128× 64× 64 Conv1D(640, 128, 1× 1, 1, 0, 1)

Latent space layer8 rd_layer5, ra_layer5, ad_layer5 384× 64× 64 concatenate(rd_layer5, ra_layer5, ad_layer5)

RD Decoder

rd_layer9 layer8 128× 64× 64 Conv1D(384, 128, 1× 1, 1, 0, 1)
rd_layer10 rd_layer7, rd_layer9, ad_layer7 384× 64× 64 concatenate(rd_layer7, rd_layer9, ad_layer7)
rd_layer11 rd_layer10 128× 128× 64 ConvTranspose2D(384, 128, 2× 1, (2, 1), 1, 1)

rd_layer12 rd_layer11 128× 128× 64

Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)

rd_layer13 rd_layer12 128× 256× 64 ConvTranspose2D(128, 128, 2× 1, (2, 1), 1, 1)

rd_layer14 rd_layer13 128× 256× 64

Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1)
+ BN2D(128) + LeakyReLU(0.01)

rd_layer15 rd_layer14 K × 256× 64 Conv1D(128,K, 1× 1, 1, 0, 1)

RA Decoder

ra_layer9 layer8 128× 64× 64 Conv1D(384, 128, 1× 1, 1, 0, 1)
ra_layer10 ra_layer7, ra_layer9, ad_layer7 384× 64× 64 concatenate(ra_layer7, ra_layer9, ad_layer7)
ra_layer11 ra_layer10 384× 128× 128 ConvTranspose2D(128, 128, 2× 2, 2, 1, 1)

ra_layer12 ra_layer11 128× 128× 128

Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)

ra_layer13 ra_layer12 128× 256× 256 ConvTranspose2D(128, 128, 2× 2, 2, 1, 1)

ra_layer14 ra_layer13 128× 256× 256

Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)
Conv2D(128, 128, 3× 3, 1, 1, 1) + BN2D(128)
+ LeakyReLU(0.01)

ra_layer15 ra_layer14 K × 256× 256 Conv1D(128,K, 1× 1, 1, 0, 1)

Table B.2: Temporal multi-view network with ASPP modules (TMVA-Net) architec-
ture. Details about the parameters of each operation are provided in Sec. B.1.2. Let K be
the number of classes. The number of input channels in the first layer is fixed to 1 (frames
are considered as a sequence), here q = 4, thus the number of channels is 5.

B.1. Multi-view RADAR semantic segmentation 165

View Method Param. # q Batch size LR LR step Epoch #

RD

FCN-8s [Long et al. 2015] 134.3 0 20 10−4 10 100
U-Net [Ronneberger et al. 2015] 17.3 3 6 10−4 20 150
DeepLabv3+ [Chen et al. 2018b] 59.3 3 20 10−4 20 150
RSS-Net 10.1 3 6 10−3 10 100
RAMP-CNN 106.4 9 2 10−5 20 150
MV-Net (ours-baseline) 2.4* 3 13 10−4 20 300
TMVA-Net (ours) 5.6* 5 6 10−4 20 300

RA

FCN-8s [Long et al. 2015] 134.3 0 10 10−4 10 100
U-Net [Ronneberger et al. 2015] 17.3 3 6 10−4 20 150
DeepLabv3+ [Chen et al. 2018b] 59.3 3 20 10−4 20 150
RSS-Net 10.1 3 6 10−4 10 100
RAMP-CNN 106.4 9 2 10−5 20 150
MV-Net (ours-baseline) 2.4* 3 13 10−4 20 300
TMVA-Net (ours) 5.6* 5 6 10−4 20 300

Table B.3: Hyper-parameters used for training. The number of trainable parameters
(in millions) for each method corresponds to a single view-segmentation model; Two such
models, one for each view, are required for all methods but ours. In contrast, the number
of parameters reported for our methods (‘*’) corresponds to a single model that segments
both RD and RA views. RSS-Net and RAMP-CNN have been modified to be trained on
both tasks (see Section 5.1.3.3 of the main article). The input of a model consists in q + 1
successive RAD frames, where q is the number of considered past frames, if any. The
learning rate (‘LR’) step is in epochs.

starts from an already explored weight initialisation to take into account the stochasticity
of the optimization. The variability is quantified by considering the average and standard
deviation of the performances over the CARRADA-Test dataset regarding the four mod-
els for each method and each RADAR view. The variability of the quantitative results by
method is illustrated in Figures B.3 and B.4 for the mDice and mIoU evaluation metrics
respectively. The TMVA-Net architecture trained with the proposed combination of losses
(wCE+SDice+CoL) reached the best average performances with the lower standard de-
viation, and thus the most stable results, for both RD and RA views, and both mDice and
mIoU metrics.

B.1.6 Variability of the loss ablation study

This section analyses the variability of the ablation study comparing the combination of
loss functions to train the proposed multi-view architectures. The TMVA-Net architecture
has been optimised considering either the CE or the wCE loss function, combined with
the SDice or CoL, or both. Details on the loss functions are provided in Section 5.1.2.4.
Each model has been trained four times using the CARRADA-Train and CARRADA-Val
datasets following the procedures explained in Section 5.1.3. Three of the four models
have been trained with different weight initialisation. The training process of the fourth
starts from an already explored weight initialisation to take into account the stochasticity
of the optimization. The variability is quantified by considering the average and standard
deviation of the performances over the CARRADA-Test dataset regarding the four models

166 Appendix B. RADAR scene understanding

Figure B.2: Performance-vs.-complexity plots for all methods in Range-Doppler (RD)
and Range-Angle (RA) tasks. Performance is assessed by mean Intersection over Union
(mIoU) (%) and complexity by the number of parameters (in millions) for a single task.
Top-left models correspond to the best performing and the lightest. Only our models, MV-
Net and TMVA-Net, are able to segment both views simultaneously. For all the other
methods, two distinct models must be trained to address both tasks, which doubles the
number of actual parameters.

for each method and each RADAR view. The variability of the loss ablation study usng
the TMVA-Net architecture is illustrated in Figure B.5 for the mDice evaluation metric.
The average performances increased for both RD and RA segmentation by integrating the
CoL term to each individual loss term of CE, wCE and SDice1. It indicates that the CoL
term has a significant impact on the training process. The combination wCE+SDice+CoL
reached the best trade-off between performances and stability of the results for both RD
and RA.

B.1.7 Qualitative results on CARRADA

Additional qualitative results are shown in Figure B.6 for each method on scenes (1-2) from
the CARRADA-Test. For the scene (1), RAMP-CNN (g) and TMVA-Net (i-j) display
well segmented RD views. However, only TMVA-Net with CoL (j) is able to localise
and classify both objects in the RD and RA views of the first example. In scene (2), four
methods (d-e-i-j) are able to well localise objects in the RD view. Once again, only TVMA-
Net with CoL (j) is able to well segment objects in both RD and RA views while our method
without CoL (i) predicts pedestrian and cyclist categories for pixels of the same object.

1Except for the combination SDice+CoL for the RD view.

B.1. Multi-view RADAR semantic segmentation 167

Figure B.3: Variability of the performances-vs.-complexity plots for all methods in
Range-Doppler (RD) and Range-Angle (RA) tasks regarding the mDice metric.. Per-
formance is assessed by mDice (%) and complexity by the number of parameters (in mil-
lions) for a single task. Top-left models correspond to the best performing and the lightest.
The variability of the performances consists in evaluating the average (point) and standard
deviation (vertical line) of four trained models. Only the proposed models, MV-Net and
TMVA-Net, are able to segment both views simultaneously. For all the other methods, two
distinct models must be trained to address both tasks, which doubles the number of actual
parameters.

B.1.8 Qualitative results on RADDet

Figure B.7 shows qualitative results of two complex urban scenes (1-2) for each method
trained on RADDet-Train and RADDet-Val, and tested on RADDet-Test. For the scene (1),
DeepLabv3+ (e), RSS-Net (f) and RMVA-Net (i) display well segmented RD views. How-
ever, only the TMVA-Net trained with the proposed loss combination (wCE+SDice+CoL)
is able to localise and classify two cars and a pedestrian in the RD and RA views of the
first example. In scene (2), most of the methods successfully segment four cars in both RD
and RA views. However, only the TMVA-Net is able to localise and classify the pedes-
trian in the RD view. It is well localised on the RA but misclassified as a car instead of
pedestrian. The annotated shape of the pedestrian is small and thus difficult to recognize.
A reformulation of CoL could be explored to better enforce the spatial coherence.

B.1.9 Qualitative results on in-house dataset

Figure B.8 shows qualitative results for each method trained on CARRADA-Train and
CARRADA-Val, and tested on in-house sequences of complex urban scenes (1-2) with a
different range resolution. The qualitative examples and results have been cropped with
respect to the minimum and maximum range of the dataset used for training. The ground-

168 Appendix B. RADAR scene understanding

Figure B.4: Variability of the performances-vs.-complexity plots for all methods in
Range-Doppler (RD) and Range-Angle (RA) tasks regarding the mIoU metric.. Per-
formance is assessed by mean Intersection over Union (%) and complexity by the number
of parameters (in millions) for a single task. Top-left models correspond to the best per-
forming and the lightest. he variability of the performances consists in evaluating the aver-
age (point) and standard deviation (vertical line) of four trained models. Only our models,
MV-Net and TMVA-Net, are able to segment both views simultaneously. For all the other
methods, two distinct models must be trained to address both tasks, which doubles the
number of actual parameters.

truth masks in columns (1-b) and (2-b) are empty because the RADAR views are not an-
notated. In scene (1), only TMVA-Net models (i-j) are able to localise and classify the
signals related to the pedestrians and cars in both the RD and the RA views. In scene (2),
only TMVA-Net (i-j) methods succeed in localising and classifying cars and pedestrians
in the RA view. We note that TMVA-Net without CoL (i) detects more car signals while
TMVA-Net with CoL (j) is the only method capable of distinguishing pedestrian signatures
on both RD and RA views.

These two examples in complex urban scenes suggest that our method has successfully
learnt object signatures in the CARRADA dataset and is able to generalise well.

B.2 Sensor fusion

B.2.1 Sensor settings of the nuScenes dataset

Figure B.9 illustrates the sensor setup used to record the nuScenes dataset
[Caesar et al. 2020]. The orientation axis is specific to each sensor requiring transforma-
tions to manipulate both RADAR and LiDAR point clouds.

B.2. Sensor fusion 169

Figure B.5: Variability of the performances plots for all combination of losses in
Range-Doppler (RD) and Range-Angle (RA) tasks regarding the mDice metric.. Per-
formance is assessed by mDice (%). All the possible combination of losses are considered,
either with the Cross-Entropy (CE) or weighted Cross-Entropy (wCE) loss, mixed with
or without the Soft Dice (SDice) and Coherence Loss (CoL) losses. The performance
variability consists in evaluating the mean (point) and standard deviation (vertical line) of
four trained models. The proposed combination (wCE+SDice+CoL) is the best trade-off
between performance and stability on both RD and RA.

B.2.2 Qualitative results of the propagation and fusion module

Figure B.10 presents additional qualitative results of our proposed propagation and fusion
module on a scene of the nuScenes dataset. Our proposed method detailed in Section 5.2.2
succeed to obtain an enriched point cloud with a denser Doppler information.

170 Appendix B. RADAR scene understanding

Figure B.6: Qualitative results on two test scenes of CARRADA-Test. (1) and (2) are
two independent examples. (Top) camera image of the scene and results of the Range-
Doppler segmentation; (Bottom) Results of the Range-Angle Segmentation. (a) RADAR
view signal, (b) ground-truth mask, (c) FCN8s, (d) U-Net, (e) DeepLabv3+, (f) RSS-Net,
(g) RAMP-CNN, (h) MV-Net (our baseline w/ wCE+SDice loss), (i) TMVA-Net (ours, w/
wCE+SDice loss), (j) TMVA-Net (ours, w/ wCE+SDice+CoL loss).

B.2. Sensor fusion 171

Figure B.7: Qualitative results on a test scene of RADDet. (Top) camera image of the
scene and results of the Range-Doppler segmentation; (Bottom) Results of the Range-
Angle Segmentation. (a) Radar view signal, (b) ground-truth mask, (c) FCN8s, (d)
U-Net, (e) DeepLabv3+, (f) RSS-Net, (g) RAMP-CNN, (h) MV-Net (our baseline w/
wCE+SDice+CoL loss), (i) TMVA-Net (ours, w/ wCE+SDice+CoL loss).

Figure B.8: Qualitative results on two test scenes of in-house sequences. (1) and (2)
are two independent examples. (Top) camera image of the scene and results of the Range-
Doppler segmentation; (Bottom) Results of the Range-Angle Segmentation. (a) RADAR
view signal, (b) ground-truth mask, (c) FCN8s, (d) U-Net, (e) DeepLabv3+, (f) RSS-Net,
(g) RAMP-CNN, (h) MV-Net (our baseline w/ wCE+SDice loss), (i) TMVA-Net (ours, w/
wCE+SDice loss), (j) TMVA-Net (ours, w/ wCE+SDice+CoL loss).

172 Appendix B. RADAR scene understanding

Figure B.9: Qualitative results on two test scenes of in-house sequences. Source:
[Caesar et al. 2020].

Figure B.10: Qualitative results on the nuScenes dataset of our propose propagation
and fusion module. (Left) Scene in Bird’s Eye View representation with LiDAR and
RADAR point clouds. (Middle) The point cloud illustrated in green groups the RADAR
and propagated RADAR points with Doppler and reflectivities. (Right) The propagated
Doppler information is illustrated with black arrows to distinguish moving objects.

APPENDIX C

High-definition RADAR

C.1 Ablation study of the MIMO pre-encoder

The role of the MIMO pre-encoder is to de-interleave the Range-Doppler (RD) and to
transform them into a representation that is compact and still allows, through learning,
the prediction of azimuth angles along with other information on reflectors. The input of
the MIMO pre-encoder is composed of the NRx = 16 RD in complex numbers, one for
each Rx. The real and imaginary parts are stacked, yielding an input tensor of total size
BR×BD×2NRx, i.e., 512×256×32. The ablation study consists in evaluating the perfor-
mance of FFT-RadNet’s detection head while reducing the number of feature channels that
the MIMO pre-encoder outputs. The maximum number of output channels is the number of
virtual antennas with a complex signal (real and imaginary parts), i.e., NTx·2·NRx = 384.
We vary the number of output channels from a minimum of 24 to this maximum value
and compute the detection performance on the validation set. The results of this ablation
study are reported in Figure C.1. We measure the detection performance with the F1-score,
classically defined as F1-score = AP·AR

AP+AR , which aggregates in a single metric both the Av-
erage Precision (AP) and the Average Recall (AR). We observe that the best performance
is reached with 192 output channels, hence half of the maximum output size. This com-
pressed output is the one that captures at best the range and azimuth information from the
RD inputs toward the detection and segmentation tasks.

Figure C.1: MIMO pre-encoder ablation study. Influence of the number of output chan-
nels of the pre-encoder on the memory footprint and the performance of the detection head.

Titre : Apprentissage profond pour l’exploitation de données radar dans la conduite autonome

Mots clés : Apprentissage profond, données RADAR, traitement du signal, vision par ordinateur

Résumé : La conduite autonome exige une
compréhension détaillée de scènes de conduite com-
plexes. La redondance et la complémentarité des
capteurs du véhicule permettent une compréhension
précise et robuste de l’environnement, augmentant
ainsi le niveau de performance et de sécurité. Cette
thèse se concentre sur le RADAR automobile, qui est
un capteur actif à faible coût mesurant les propriétés
des objets environnants, y compris leur vitesse rela-
tive, et qui a l’avantage de ne pas être affecté par
des conditions météorologiques défavorables. Avec
les progrès rapides de l’apprentissage profond et la
disponibilité d’ensembles de données publiques sur
la conduite, la capacité de perception des systèmes
de conduite basés sur la vision (par exemple, la
détection d’objets ou la prédiction de trajectoire)
s’est considérablement améliorée. Le capteur RA-
DAR est rarement utilisé pour la compréhension de
scène en raison de sa faible résolution angulaire, de
la taille, du bruit et de la complexité des données
brutes RADAR ainsi que du manque d’ensembles
de données disponibles. Cette thèse propose une
étude approfondie de la compréhension de scènes
RADAR, de la construction d’un jeu de données an-

notées à la conception d’architectures d’apprentis-
sage profond adaptées. Tout d’abord, cette thèse
détaille des approches permettant de remédier au
manque de données. Une simulation simple ainsi que
des méthodes génératives pour créer des données
annotées seront présentées. Elle décrit également le
jeu de données CARRADA, composé de données
synchronisées de caméra et de RADAR avec une
méthode semi-automatique générant des annota-
tions sur les représentations RADAR. Cette thèse
présente ensuite un ensemble d’architectures d’ap-
prentissage profond avec leurs fonctions de perte as-
sociées pour la segmentation sémantique RADAR.
Elle décrit également une méthode permettant d’ou-
vrir la recherche sur la fusion des capteurs LiDAR
et RADAR pour la compréhension de scènes. Enfin,
cette thèse expose une contribution collaborative, le
jeu de données RADIal avec RADAR haute définition
(HD), LiDAR et caméra synchronisés. Une architec-
ture d’apprentissage profond est également proposée
pour estimer le pipeline de traitement du signal RA-
DAR tout en effectuant simultanément un apprentis-
sage multitâche pour la détection d’objets et la seg-
mentation de l’espace libre de conduite.

Title : Deep learning for radar data exploitation of autonomous vehicle

Keywords : Deep learning, RADAR data, signal processing, computer vision

Abstract : Autonomous driving requires a detailed un-
derstanding of complex driving scenes. The redun-
dancy and complementarity of the vehicle’s sensors
provide an accurate and robust comprehension of the
environment, thereby increasing the level of perfor-
mance and safety. This thesis focuses the on au-
tomotive RADAR, which is a low-cost active sensor
measuring properties of surrounding objects, inclu-
ding their relative speed, and has the key advantage
of not being impacted by adverse weather conditions.
With the rapid progress of deep learning and the avai-
lability of public driving datasets, the perception abi-
lity of vision-based driving systems (e.g., detection of
objects or trajectory prediction) has considerably im-
proved. The RADAR sensor is seldom used for scene
understanding due to its poor angular resolution, the
size, noise, and complexity of RADAR raw data as
well as the lack of available datasets. This thesis pro-
poses an extensive study of RADAR scene unders-
tanding, from the construction of an annotated data-
set to the conception of adapted deep learning archi-
tectures. First, this thesis details approaches to tackle

the current lack of data. A simple simulation as well as
generative methods for creating annotated data are
presented. It also describes the CARRADA dataset,
composed of synchronised camera and RADAR data
with a semi-automatic method generating annotations
on the RADAR representations. This thesis then pre-
sents a proposed set of deep learning architectures
with their associated loss functions for RADAR se-
mantic segmentation. The proposed architecture with
the best results outperforms alternative models, deri-
ved either from the semantic segmentation of natural
images or from RADAR scene understanding, while
requiring significantly fewer parameters. It also intro-
duces a method to open up research into the fusion
of LiDAR and RADAR sensors for scene understan-
ding. Finally, this thesis exposes a collaborative contri-
bution, the RADIal dataset with synchronised High-
Definition (HD) RADAR, LiDAR and camera. A deep
learning architecture is also proposed to estimate the
RADAR signal processing pipeline while performing
multitask learning for object detection and free driving
space segmentation simultaneously.

Institut Polytechnique de Paris
91120 Palaiseau, France

	List of Acronyms
	List of Figures
	List of Tables
	Abstract
	French Summary
	Introduction
	Context
	Motivations
	Contributions and outlines

	Background
	RADAR theory
	Recordings and signal processing
	Transformations in the temporal and frequency domains
	Speckle noise
	RADAR representations

	Artificial neural networks
	Introduction
	At the neuron level
	At the layer level
	Training a neural network

	Convolutional neural network
	Convolutional layer
	Complementary methods and layers

	Recurrent neural network
	Deep learning
	Classification
	Object detection
	Semantic segmentation
	Methods for 3D point clouds

	Related work
	Diverse applications
	Automotive RADAR datasets
	Traditional RADAR
	Scanning RADAR
	High-definition RADAR
	Our proposals

	RADAR object detection
	Range-Angle-Doppler tensor
	Range-Angle or Range-Doppler view
	RADAR point cloud

	RADAR semantic segmentation
	Range-Angle view
	RADAR point cloud

	Sensor fusion
	RADAR and camera fusion
	RADAR and LiDAR fusion
	RADAR, camera and LiDAR fusion

	Conclusions

	Proposed automotive RADAR datasets
	RADAR simulation
	Parameters and properties
	RadarSim dataset
	Experiments and results
	Discussions

	RADAR data generation
	Dataset
	Range-Doppler representation
	Methods and Experiments
	Discussions

	CARRADA dataset
	Dataset
	Pipeline for annotation generation
	Semantic segmentation baseline
	Discussions
	Conclusions

	Conclusions

	RADAR scene understanding
	Multi-view RADAR semantic segmentation
	Motivations
	Methods and architectures
	Experiments on the CARRADA dataset
	Experiments on complex urban scenes datasets
	Conclusions and perspectives

	Sensor fusion
	Introduction
	Method
	Simulation
	Application to the nuScenes dataset
	Discussions and future work

	Conclusions

	High-definition RADAR
	Motivations
	RADIal dataset
	Proposed method
	MIMO pre-encoder
	FPN encoder
	Range-Angle decoder
	Multi-task learning

	Experiments and Results
	Training details
	Baselines
	Evaluation metric
	Performance analysis
	Complexity analysis

	Conclusions and discussions

	Conclusion
	Contributions
	Future work

	Bibliography
	Appendices
	Background
	Deep learning
	Object detection
	Segmentation

	RADAR scene understanding
	Multi-view RADAR semantic segmentation
	RAD tensor visualisation
	Detailed multi-view architectures
	Pre-processing and training procedures
	Quantitative results
	Variability of the quantitative results by method
	Variability of the loss ablation study
	Qualitative results on CARRADA
	Qualitative results on RADDet
	Qualitative results on in-house dataset

	Sensor fusion
	Sensor settings of the nuScenes dataset
	Qualitative results of the propagation and fusion module

	High-definition RADAR
	Ablation study of the MIMO pre-encoder

